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Abstract

Prototypes of quantum simulators have been realized in many different physical se-

tups, employing atoms, ions, Bose-Einstein condensates, superconducting cavities and

photons. In particular, many quantum simulators realize a specific class of processes,

known as Quantum Walks (QWs). Quantum walks consist in evolutions over discrete

spaces often conditioned by some internal degree of freedom. These processes have re-

vealed themselves as a powerful tool for studying solid state systems, and, in particular,

topological phases of matter.

This Thesis work is mainly devoted to the implementation of Quantum Walks within

coherent light beams. We explore the possibility to associate the lattice space with some

structural feature of light, e.g. its phase distribution. One possibility is to implement

Quantum Walks in the Orbital Angular Momentum (OAM) space of light, a quantized

quantity (a single photon can carry an OAM that is an integer multiple of ~), which

can be used to emulate a one dimensional discrete space. By exploiting devices, called

q-plates, that change the OAM in a way that is conditioned by the polarization, it is

possible to realize QWs on one dimensional lattices. In this Thesis we explore the topo-

logical phases associated to this system. In particular we demonstrate a new method of

detecting the topological invariant, the signature of the topological phase of a system,

in one dimensional systems with chiral symmetry.

Topological phases of matter are an hot topic due to the possibility of employing topolog-

ically protected states for quantum computation. In particular two dimensional topolog-

ical insulators exhibit interesting features, like edge spin or charge currents that propa-

gate without experiencing back-scattering or being absorbed in the bulk. This motivated

us to look for photonic implementations of QWs on two dimensional lattices. In order

to do this we switched to another degree of freedom: the transverse component of light

wave vector. We devised patterned waveplates, called g-plates, that allow to perform

polarization conditioned discrete translations in the transverse momentum space. The

transverse wave vector allows to implement QWs in one and two dimensional lattices.

We give examples of dynamics in 1D, with and without an applied external force, inves-

tigating ballistic spreading and refocusing phenomena. Then we propose a 2D protocol
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Abstract v

that simulates a periodically driven Chern insulator and perform a first investigation of

the nontrivial topology looking at center of mass displacements. Future investigations of

topological features of quantum walks can exploit our capability of directly explore the

reciprocal lattice space and study the evolution of the polarization distribution in this

space. As a preliminary study we investigated the behavior of polarization singularities

produced by a q-plate. During our studies on the implementation of QW with structured

light, we also investigated a new approach for measuring the OAM power spectrum of

a light beam. Indeed we developed an interferometric technique that allows to retrieve,

from a small number of recorded images (three or four), the full OAM spectrum of an

unknown beam. Moreover our approach allows to reconstruct also the radial phase and

amplitude profile of each OAM mode.

The Thesis is structured as follows:

1.2.3.4.• Chapter 1: Structured Light This introductory Chapter aims to review the

fundamental physics of structured light beams. Some space is dedicated to the

Orbital and Spin angular momenta of light. The transverse momentum space is

reviewed focusing on the possibility of treating it as a useful degree of freedom

for experiments on large Hilbert spaces. Some of the techniques used to generate

structured light beams are introduced, focusing in particular on the properties of

q-plates and g-plates.

• Chapter 2: Measurement of structured light beams This chapter continues

the discourse on structured light, discussing the methods for measuring the features

of these beams. It is focused in particular on the reconstruction of the OAM

power spectrum. A new interferometric technique is introduced that allows also

to characterize the radial structure of the electric field.

• Chapter 3: Topology and dynamics of polarization singularities in op-

tical beams Structured light is a physical phenomenon that allows to illustrate

some basic concepts in topology that will be essential in the last chapter. Here we

present an experiment in which we study the topological singularities in polariza-

tion patterns produced by q-plates with variable optical retardation.

• Chapter 4: Photonic quantum walks employing light’s spatial degrees

of freedom We introduce the concept of Quantum Walks and briefly review the

most important photonic implementations. Then we introduce the 1D protocol

implemented in the OAM space of light. Finally the new architecture performing

QWs in the transverse wave vector space is described in detail together with some

experimental results.
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• Chapter 5: Exploring topological phases with structured light The con-

cept of topological insulators is introduced by defining the topological invariants

related to the energy band structure. We describe the topological features of the

1D and 2D protocols that we implemented. In the 1D case, we experimentally char-

acterized the topological phases of the system by measuring the so called mean

chiral displacement, which can be related to the Zak phase. In the 2D case we

explore experimentally the effects of the topology on the displacements of ground

state center of mass under an external force.
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Chapter 1

Structured light

1.1 Introduction

Light is among the most familiar natural phenomena that a human being experiences.

Through its perception we receive the largest amount of information about the sur-

rounding world. Indeed, most of the knowledge of a single individual, achieved from

direct experience, or from reading books and watching videos, is due to the interaction

of electromagnetic radiation with the eye and with the objects that we perceive. Despite

this, the nature of light, together with the plethora of different features that a single

light ray can possess, has been the subject of long investigations and debates. Some

of the most relevant changes of paradigm in the history of Physics have been strictly

related to new discoveries and ideas on the theory of light. The debate on the wave or

particle description of luminous phenomena flowed into the identification of light with

electromagnetic waves, a result that, put into the form of the Maxwell equations, set

one of the first challenges to the Newtonian mechanics, resulting as the starting point

of the Special Theory of Relativity. At the same time, the discovery of the photoelectric

effect showed that light can still behave, in some situations, as a particle. This was at

the beginning of the formulation of the wave-particle duality, one of the pillars of the

Quantum Theory.

Today, the theory of light can be considered extremely solid, in the sense that the known

phenomena concerning light and its interaction with matter can be described with the

set of equation and models developed hitherto. Nowadays, intense research activities

are focused on the study, characterization and manipulation of the variety of features

that a light beam can possess. Indeed, one can be surprised by the complexity of this

everyday phenomenon. To a light beam one can associate a large number of physical

properties: frequency, intensity, phase, linear and angular momentum. A light beam

1



Chapter 1 -Structured light 2

can thus transfer energy, exert pressure and even torque. All these properties can be ex-

ploited for studying light matter interactions, micro-manipulation, communication and

computation. In particular some optical degrees of freedom are of interest for realizing

large Hilbert spaces. These can be used in turn to perform quantum simulations, com-

munications or computation, or even to enlarge the capabilities of optical communication

channels. For these (and many other) applications, a growing number of researches has

concerned the spatial structure of a light beam.

This chapter is devoted to the description of the main features of these ”structured light

beams” and the principal technologies used for their generation and manipulation. In

particular we will focus on those degrees of freedom that can be used to simulate infinite

and discrete Hilbert spaces, due to their interest in Quantum Walks, one of the main

topics of this thesis work.

We will start reviewing the balance equations for linear and angular momentum of the

electromagnetic field and then focusing on the description of paraxial light beams. It is

indeed in the paraxial approximation that one can treat separately the spin and orbital

angular momentum degrees of freedom. The first will be associated to the polarization,

i.e. to the behavior of the electric field vector in the transverse plane. The second is

related to the wavefront shape of the light beam and, being quantized, will represent

an infinite dimensional, but discrete, degree of freedom, with many potentialities in

quantum applications. This chapter will be mainly devoted into the description of the

Orbital Angular Momentum (OAM) of light, on the beams that transport OAM and

their generation technique. In a separate chapter we will discuss also the methods for

detecting the OAM of an unknown light beam. Moreover we will also give some remarks

on a more familiar feature of a light beam, that is its wavevector, and in particular its

projection on the plane transverse to a ”nominal” propagation direction. We will do this

motivated by the possibility of using this degree of freedom for the implementation of

multidimensional quantum walks exploiting a liquid crystal based polarization grating,

that will be described at the end of this chapter.

1.2 Linear and angular momentum of electromagnetic fields

Light can be described as an electromagnetic wave, thus it can be characterized in terms

of propagation of an electric E and magnetic induction B field. Their evolution in space
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and time is given by the Maxwell equations:

divD = ρ, (1.1)

divB = 0, (1.2)

curlE = −∂B

∂t
, (1.3)

curlH = i +
∂D

∂t
, (1.4)

where ρ and i represents, respectively, free charge and current densities, while D and

H, respectively called the electric displacement field and magnetic field, are related to

E and B by constitutive relations. We will consider the simple case of propagation in

homogeneous, isotropic, dispersionless and non dissipative media, where: D = εE and

B = µH. The constants ε and µ are, respectively, the electric and magnetic permittivity.

Starting from these relations one can derive the balance equations for the linear and

angular momentum.

To obtain the balance equations of the linear momentum, we recall that the force density

applied by an electromagnetic field on a distribution of charges is: f = ρE + i×B. By

vector multiplying Eq. 1.4 with B and using the other Maxwell equations one gets (see

e.g. [1]):
∂

∂t
g = −f + divT, (1.5)

where T is a second rank tensor, known as the Maxwell stress tensor, whose components

are (c is the light speed in the medium):

Ti,j = ε
(
EiEj + c2BiBj −

1

2
(E ·E + c2E ·E)

)
,

and

g =
1

c2
E×H =

S

c2
, (1.6)

where we have introduced the Poynting vector S = E ×H. In absence of charges and

currents it follows from Eq. 1.5 the conservation of the quantity: G =
∫

gdV (the

integral is carried over all the three-dimensional space). G is identified with the total

linear momentum of the electromagnetic field. Using the Planck relation for the energy

E = n~ω for a light beam with n photons and frequency ω, one can easly find that the

linear momentum carried by a photon is G = ~k, where k is the wavevector.

From the balance equation of the linear momentum one can derive the analog for the

angular momentum by taking the vector product of the position vector r with Eq. 1.5

and observing that T is symmetric:

∂

∂t
(r× g) = −r× f + div(r×T). (1.7)
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From this result it follows that, in absence of matter, the total angular momentum of

light,

J =

∫
(r× g)dV,

is a conserved quantity. It is customary to write J in terms of the vector potential A

defined by the relation B = curlA. This leads to:

J = ε

∫ (∑
j

Ej(r×∇)Aj − r× ∂j(EjA)
)
dV. (1.8)

Integration by parts of the second term of the above equation and neglecting the resulting

surface integral (i.e. assuming zero fields at infinity) one obtains:

J = ε

∫ (∑
j

Ej(r×∇)Aj + E×A
)
dV. (1.9)

Observing that the term r×∇ is reminiscent of the orbital angular momentum operator

in quantum mechanics, it is possible to separate J into two contributions:

J = L + S, (1.10)

L =
1

µc2

∫ (∑
j

Ej(r×∇)Aj
)
dV, (1.11)

S =
1

µc2

∫ (
E×A

)
dV, (1.12)

where one can be tempted to interpret L as the orbital angular momentum and S as

the spin angular momentum. However this identification is unlawful, since both L and

S are gauge dependent (while J is not). This issue can be circumvented by substituting

in Eq. 1.9 the vector potential A with its projection on the plane perpendicular to the

wavevector (that we will define as the transverse plane) At. The new formulas thus

obtained satisfy correctly all the symmetries required by the electromagnetic theory.

But this does not guarantee a true physical significance to L and S. For example, it

was shown by van Enk and Nienhuis [2] that the quantum operators corresponding to

L and S do not satisfy the correct commutation relations expected by the generators of

rotations. In this sense they cannot be regarded as ”true angular momenta”.

The issue was made clearer by Barnett [3] who looked at the possible rotations of the

electromagnetic field. The author observed that L, seen as a true angular momentum,

should be associated to a rotation of the amplitude of the fields that leaves their ori-

entation (the polarization) unchanged. Similarly S should be related to rotations in

the field orientation without rotating the amplitude distribution. Surprisingly, these

transformation are not compatible with the Maxwell equations, since they violate the

transversality conditions. Nevertheless, Barnett observed that the expressions of L and
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S with A→ At actually generate the transformations:

E→ E− (θ · (r×∇)E)t, (1.13)

E→ E + (θ ×E)t, (1.14)

where θ is an vector whose direction gives the rotation axis and whose (infinitesimal)

modulus gives the angle of rotation. These transformations are actually the closest

to the expected rotation that satisfy the transversality conditions. They are a good

approximation of real rotations when the components of E and B along the propagation

direction are small. Light beams satisfying this requirement are called paraxial beams.

For these beams the separation of the total angular momentum in a spin and orbital

part can be considered licit and physically meaningful. We will turn now to a detailed

description of these realization of electromagnetic fields. All the works presented in this

Thesis have been done using laser beams well described by the paraxial approximation.

A recent and detailed discussion on the separation of orbital and spin angular momentum

can be found in Ref. [4].

1.3 Paraxial light beams

Let us consider a monochromatic electromagnetic wave described by the electric field:

E(r, t) = U(r) exp(−iωt). It is well known that from the Maxwell equations the field

U(r) must satisfy the Helmholtz equation:

4U(r) + k2U(r) = 0, (1.15)

where k = ω/c = 2π/λ is the wavenumber, λ the wavelength and 4 is the Laplace

operator, that in Cartesian coordinates reads: 4 = ∂2
x + ∂2

y + ∂2
z . We want to look for

(at least approximate) solutions of Eq. 1.15 which are strongly directional, as it happens

for a common laser beam. A plane wave is a trivial example, however we will search also

for solutions that carry an infinite energy and thus have an intensity that decays fast

at infinity. Thus we multiply the pane wave contribution exp(ikz) for a complex field

F(r), called slowly varying envelope, whose amplitude changes slowly along the z axis.

Indeed we require that:
∂2F

∂z2
� 1

λ

∂F

∂z
� F

λ2
.

With these approximations we can neglect the term ∂2F/∂z2 appearing in the Helmholtz

equation obtaining:

(4t + 2ik∂z)F = 0, (1.16)
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where ∂z = ∂/∂z and 4t = ∂2
x + ∂2

y . This is the paraxial wave equation. It has the form

of a Schrodinger equation with the temporal variable replaced by the z coordinate. This

result is of great interest since, in many applications, laser beams are well described by

solutions of the paraxial equation [5].

We will give now a brief review of the best known solution of Eq. 1.16, the Gaussian

Beam, highlighting the features which will be used in the following chapters.

1.3.1 Gaussian Beams

A plane wave is an object infinitely extended in space and time. Such a solution of

the wave equation is thus unphysical, even if useful for understanding fundamental

properties of the physics of electromagnetic waves. A more realistic solution would

be such that its amplitude in the plane transverse to the propagation direction z is a

rapidly decaying function of the distance r =
√
x2 + y2 from the propagation axis. A

simple example would be given by a beam whose intensity distribution is a Gaussian:

I(r) = I0 exp(−2r2/w2), where w is in general a function of z. This parameter is known

as the beam width. At r = w the beam intensity is decreased as I0/e
2. One can thus

search for a solution of the paraxial equation in the form:

F(r, z) = F (r, z)s = F0(z) exp(−r2/a(z)2)s,

where a(z) can be in general a complex function such that <(1/a(z)2) = 1/w(z)2 and s

is a complex vector representing the polarization of the electric field. The corresponding

electric field will be given by: E(r, z, t) = F(r, z) exp(ikzz − iωt). Substituting this

ansatz in the paraxial equation one obtains the two following differential equations for

F0(z) and a(z):

1

a(z)
− ik∂za(z) = 0, (1.17)

ik∂zF0(z) +
2

a(z)2
F0(z) = 0. (1.18)

The solution of the two equations is straightforward and leads to:

F (r, z) = A
w0

w(z)
exp

(
− r2

w(z)2

)
exp

(
− ik r2

R(z)
−i arctan(z/z0)

)
, (1.19)
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where we have used the following standard definitions of the beam parameters:

w(z) = w0

√
1+

(
z

z0

)2

beam width, (1.20)

R(z) = z +
z2

0

z
wavefront curvature radius, (1.21)

z0 =
πw2

0

λ
Rayleigh range. (1.22)

The parameter w0 is the beam width at z = 0 and it is denoted as waist radius. The

Rayleigh range z0 gives a measure of the distance in which the beam width is smaller than
√

2w0. This distance, equal to 2z0, is known as depth of focus or confocal parameter.

R(z) gives the curvature radius of the wavefront. The ratio θ0 = w0/z0 is the beam

divergence.

It is often useful to introduce a parameter q(z) that contains all the information on the

Gaussian beam. This parameter is defined by:

1

q(z)
=

1

R(z)
− i λ

πw(z)2
= z + iz0. (1.23)

The evolution of a Gaussian beam through a paraxial optical system can be expressed

as a transformation of this q-parameter. In geometrical optics the action of a succession

of paraxial optical elements on an arbitrary (but paraxial) input ray can be described

in terms of the so called ABCD matrix (see e.g Ref. [6] or [7]). The same matrix can

be used to calculate the evolution of paraxial beams in an optical system. Let q1(z) the

q-parameter of a Gaussian beam impinging on a paraxial optical system. The outgoing

beam is still a Gaussian beam with q-parameter q2(z) given by:

q2(z2) =
Aq1(z1) +B

C q1(z1) +D
, (1.24)

where z1 and z2 are the positions of the input and output transverse planes. For a proof

we refer to Ref. [6].

1.4 Angular momentum of paraxial beams

We now turn again our attention to the angular momentum of light, focusing on the

case of paraxial beams. Indeed we have seen that, in this approximation, the separation

of J in an orbital and spin component is physically meaningful.
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Consider a monochromatic field, that, in complex representation can be written as:

E = (Ee−iωt + c.c)/2, (1.25)

B = (Be−iωt + c.c)/2. (1.26)

Using iωB = curlE we can rewrite the total angular momentum J = ε
∫ (

r×(E×B)
)
dV :

J = < ε

2iω

∫ [∑
j

E ∗j (r×∇)E j + E∗ ×E

]
dV. (1.27)

For a paraxial beam propagating in the z direction we can focus on the Jz component,

given by [8]:

Jz = Lz + Sz (1.28)

Lz =
ε

2iω

∫ ∑
j

E ∗j (x∂y − y∂x)E jdV (1.29)

Sz =
ε

2iω

∫
(E ∗xE y − E ∗yEx)]dV. (1.30)

Let us consider some special cases. First, we can evaluate the total angular momentum

of a Gaussian beam that is circularly polarized. The electric field is given by: E =

AeikzF (r, z)(x̂ ± iŷ)/
√

2 where the ± sign refers to left or right circular polarization,

respectively, and F (r) is given by Eq. 1.19. Using the identity: (x∂y − y∂x) = ∂φ

(φ = arctan(y/x)) it is immediate to check that Lz = 0. Assuming the normalization

condition: ∫ ∫ ∞
−∞

F ∗(x, y, z)F (x, y, z)dxdy = 1

we obtain:

Jz = Sz = ±ε |A|
2

2ω
.

Using the relation: I = ε |A|2 /2 = N~ω, where N is the average number of photon per

unit area, one gets:

Sz = ±N~ (1.31)

which means that each photon carries a spin equal in modulus to ~ and with sign de-

termined by the polarization handedness. This relation between circular polarization

and angular momentum of light was demonstrated experimentally by the famous work

of Beth [9] in 1936. There a circularly polarized light was shined on a birefringent plate

with half optical retardation. Such a medium inverts the handedness of the circular po-

larization, thus the light spin is expected to be flipped leading to an angular momentum
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transfer to the plate equal to 2~ per photon. The torque exerted on the plate was mea-

sured and shown to be compatible with the prediction. It follows that Sz is maximum

in modulus for circular polarizations while it is zero for linear polarization (see also the

next section).

We now look for fields carrying a non zero value of Lz. To this aim, it is worth nothing

that the expression of Lz resembles the quantum mechanical average of the operator

l̂z = −i∂φ, where φ is the azimuthal angle. Hence a beam carrying a well defined orbital

angular momentum is described by an electric field proportional to an eigenfunction of

lz, that is, in cylindrical coordinates:

E(r, φ, z) = Au(r, z) exp(ilφ)s, (1.32)

where s is the polarization unit vector, u(r, z) a normalized complex function, and l is an

integer (since one should have looked for monotonic solutions of the eigenvalue equation

for lz). For such a beam the orbital angular momentum is:

Lz = N~l. (1.33)

Free space propagating beams described by Eq. 1.32 are called Circular Beams (CiB)

[10]. These beams are characterized by helical wavefronts and annular shaped intensity

patterns. Indeed the point r = 0 is a phase singularity that induces an ”hole” in the

beam amplitude. That a Circular Beam exerts a torque even if linearly polarized (i.e.

Sz = 0) has been demonstrated in experiments with particles trapped by a CiB. If the

particle is trapped on the axis of the beam it will rotate around itself. More interestingly,

due to the particular intensity distribution of these beam, one can trap a particle at a

given distance from the beam axis, corresponding approximately to the distance at which

the beam has the maximum intensity. If the particle is small enough it will be possible to

observe the particle rotate around the beam axis. Moreover, making the beam circularly

polarized, will allow to observe both the rotation of the particle around itself and the

revolution around the beam axis. Experiments of this kind are reviewed in Ref.[11].

1.4.1 The polarization of light

We have seen how the z component of light spin angular momentum is directly related

to the polarization. In this section we will review the description of polarized light using

a formalism adapted from quantum physics. Indeed we will see how the polarization

states of light can be used to encode single qubits.

Light polarization describes how the electric field of an electromagnetic wave evolves

in time. For a paraxial beam we can consider the electric field as lying in the plane
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transverse to the propagation direction z. Therefore it can be written in the following

form, known as Jones vector:

E = E 0(ax̂ + bŷ) = E 0

(
a

b

)
, (1.34)

where we defined the complex coefficients a and b such that |a|2 + |b|2 and E 0 is the

total amplitude of the field. In the following we will impose for simplicity E 0 = 1.

The electric field is linearly polarized when its direction does not change during the

propagation. Circular polarization, on the other hand, is observed when the tip of the

electric field vector describes a circle in the transverse plane. If the rotation in time of

the electric field is counterclockwise (with respect to the positive z axis) one refers to

left handed polarization, that will be labeled in Dirac’s notation as |L〉 (see Fig. 1.1 (a)).

This correspond to the receiver-point-of-view handedness convention. This polarization

state, as we have seen in the previous section, is associated with a positive spin Sz = ~
per photon. Similarly, the clockwise rotation of the electric field is identified with right

handed polarization (labeled as |R〉), for which Sz = −~ per photon. In the Jones vector

formalism one has:

|L〉 =
1√
2

(
1

i

)
, |R〉 =

1√
2

(
1

−i

)
, (1.35)

that is, one has circularly polarized light where the x and y components of the electric

field have a relative phase ±π/2, respectively. In the following we will often choose

to write formulas in the circular polarization basis, i.e. we will assign |L〉 = (1 0)T

and |R〉 = (0 1)T , which is equivalent to write the general Jones vector in the form

E = cLêL+cRêR with êL,R = (x̂± iŷ)/
√

2 and cR,L complex numbers. This description

highlights the analogy with the quantum state of an electron spin: |ψ〉 = c↑| ↑〉+ c↓| ↓〉,
where | ↑〉 and | ↓〉 are electron states with spin Sz = ±~/2, respectively. Similarly, in

the circular polarization basis, |L〉 and |R〉 are eigenstates of the Pauli matrix σ3 while

|H〉 and |V 〉 are eigenstates of σ1. We recall that the Pauli matrices {σ1, σ2, σ3} are

defined by:

σ1 =

(
0 1

1 0

)
, (1.36)

σ2 =

(
0 −i
i 0

)
, (1.37)

σ3 =

(
1 0

0 −1

)
. (1.38)
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The eigenstates of σx are linear polarization states given by:

|H〉 =
|L〉+ |R〉√

2
, |V 〉 =

|L〉 − |R〉√
2

, (1.39)

The eigenstates of σy are still linear polarization states oriented at 45 degrees with

respect to |H〉 and |V 〉:

|D〉 =
|L〉+ i|R〉√

2
, |A〉 =

|L〉 − i|R〉√
2

, (1.40)

that are called, respectively, diagonal and antidiagonal polarization states. Polarization

states can be visualized by means of a beautiful geometrical description as points on the

so called Poincarè sphere (equivalent to the Bloch sphere describing two level systems

in quantum mechanics). To introduce it, we first rewrite the Jones vector (that we will

label as a ket vector |E〉) in the form:

|E〉 = cos

(
θ

2

)
|L〉+ eiφ sin

(
θ

2

)
|R〉. (1.41)

This expression keeps all the essential properties of a polarized state: the relative phase

between the two polarizations and the relative amplitudes of the basis states. The

parameters θ and φ can be considered as, respectively, a polar and azimuthal angle

determining the position of a point on the unit sphere as shown in Fig. 1.1 (b). For

example circular polarization states will be localized on the two poles of the sphere while

linear polarization states, being characterized by an equal superposition of left and right

handed polarization, will be displaced along the equatorial circle (θ = π/2).

It is easy to show that the coordinates of a polarization state on the Poincarè sphere can

be calculated as the mean values of the Pauli matrices, Si = 〈E|σi|E〉 where i = 1, 2, 3,

also called Stokes parameters. Indeed one gets that the Stokes parameters give the

parametric equations of the Poincarè sphere:

S1 = sin(θ) cos(φ), (1.42)

S2 = sin(θ) sin(φ), (1.43)

S3 = cos(θ). (1.44)

The Stokes parameters are useful for obtaining a complete characterization of the polar-

ization state of a light beam. They can be used to go beyond the Jones formalism, i.e.

to describe partially polarized light. A partially polarized beam is indeed an incoherent

ensemble of different polarization states, as such it can be described using the density
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Figure 1.1: Polarization states of light. Inset a) shows the trajectories of the
tip of the electric field vector at a fixed z for the different polarization states that are
eigenstates of the Pauli matrices. In inset b) the Poincarè sphere is illustrated. A
generic polarization state |E〉 is identified by the polar θ and azimuthal φ angles on
this sphere. The Cartesian coordinates of the points on the Poincarè sphere can be
identified with the Stokes parameters Si = 〈E|σi|E〉 where i = 1, 2, 3. Red dots on
the figure individuate the points on the sphere corresponding to the Pauli matrices

eigenstates.

matrix formalism, which describes the polarization state in the form of an operator:

ρ = (1/2)
∑

i=0,1,2,3

Si σi,

where σ0 is the 2× 2 Identity matrix, S0 = 1 and S1,2,3 are the Stokes parameters here

redefined as real coefficients. For completely polarized light one has S2
1 + S2

2 + S2
3 = 1,

while for incoherent mixtures of polarization states one has S2
1 + S2

2 + S2
3 < 1. Indeed

such states can be visualized as points lying inside the Poincarè sphere.

The polarization of a light beam can be manipulated and analyzed by using essen-

tially two kinds of devices: polarizers and birefringent plates. A polarizer acts as a

projector on some linearly polarized state, for example it can be represented by the

operator P = |H〉〈H|. On the other hand, birefringent plates act as unitary operators

in the polarization space. They are based on optically anisotropic devices, whose orien-

tation and thickness determine how light polarization is transformed. More precisely, in

anisotropic media the dielectric permittivity is a 3×3 positive (and symmetric) matrix ε.

Birefringent plates are uniaxial materials, which means that two of the three eigenvalues

of the dielectric tensor are equal. Thus one has two eigenvalues of ε: εe with multiplicity

one, and εo with multiplicity two. This allows to define two different refractive indexes:

the ordinary index no =
√
εo and the extraordinary index ne =

√
εe. It follows that, if

light is linearly polarized along the optic axis, defined as the eigendirection associated
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to εe, then it will propagate with speed c/ne, while it will propagate with speed c/no if

polarized along any direction orthogonal to the optic axis. It is thus easy to derive the

action of such a material on an arbitrary input polarization. Let us consider z as the

propagation axis, x as the optic axis and let d be the thickness. This means that a |H〉
polarized input will acquire a phase exp(i2πned/λ), while the phase acquired for a |V 〉
input will be exp(i2πnod/λ). Thus the action of the birefringent material in the space

of Jones vectors (in linear polarization basis) is given by the unitary matrix:

W (δ) =

(
eiδ/2 0

0 e−iδ/2

)
(1.45)

where we have neglected a global phase factor ei∆/2 (with ∆ = 2π(ne + no)d/λ), and

defined the optical retardation:

δ =
2π

λ
(ne − no)d. (1.46)

The waveplate operator, W (δ, α) in the case of an optic axis rotated at an angle α can

be obtained by simply applying a rotation:

R(α) =

(
cosα − sinα

sinα cosα

)
,

that gives:

W (δ, α) = R(α)W (δ)R−1(α).

The result takes a simple form in the circular polarization basis:

Wcp(δ, α) = cos

(
δ

2

)
1 + i sin

(
δ

2

)(
0 e−2iα

e2iα 0

)
(1.47)

where the subscript cp was used to remind that this expression is valid in the {L,R}
basis and 1 is the identity matrix. This result will be important in the following sections,

where we will introduce waveplates with space variant optic axis α = α(x, y), which are

a powerful tool for manipulating structured light and implementing spin-orbit coupling

in light beams.

There are two specific kinds of waveplates of particular interest: the case δ = π, which

refers to a so called half wave plate (HWP ) and the case δ = π/2 in which the material

is called quarter wave plate (QWP ).

An half wave plate flips the handedness of circular polarization. On the other hand, a

beam linearly polarized along a direction making an angle α with the optic axis of the
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HWP remains linearly polarized but the oscillation direction is rotated by 2α towards

the optic axis of the plate.

A quarter wave plate can be used to convert linear into circular polarization, and vice

versa. Indeed if the optic axis is rotated by α = ±π/4 with respect to an input linearly

polarized light (the angle is positive for counterclockwise rotations as seen from the

observer) then the outgoing light will be, respectively, L or R polarized.

Combining these two devices, one can generate an arbitrary polarization state starting

from a linear one, say |H〉. Indeed, from straightforward calculations, it is possible to

show that, in order to generate the generic state |E〉 = cos(θ/2)|L〉+exp(iφ) sin(θ/2)|R〉
it suffices to apply to the initial |H〉 state the sequence: QWP (β) ·HWP (α), provided

that the angles β and α satisfy the relations:

α =
1

4
(φ+ θ − π

2
) (1.48)

β =
φ

2
. (1.49)

We conclude this section with a remark. In deriving the expression for the waveplate

operators we have considered the optic axis as perpendicular to the z axis. If the optic

axis makes an angle γ with the propagation direction of the light beam, all the previous

formulas are still correct, provided that one replaces the extraordinary index ne with an

effective index n(γ) given by [6]:

1

n2(γ)
=

cos2(γ)

n2
o

+
sin2(γ)

n2
e

. (1.50)

This result allows to tune the optical retardation of a device by simply rotating its optic

axis towards the propagation direction.

1.4.2 The Orbital Angular Momentum (OAM)

We have seen that Circular Beams, i.e. paraxial beams characterized by a phase which is

a linear function of the azimuthal angle, carry a quantized value of the Orbital Angular

Momentum (OAM), equal to l~ per photon (l is an integer number). The wavefront of

a CiB, i.e. the surface of constant phase, consists in |l| intertwined helices with hand-

edness given by the sign of l, as shown in Fig. 1.2. The characteristic wavefronts of

CiBs are singular on the beam axis, r = 0. As a consequence the intensity on the beam

axis is zero. This manifests in a peculiar transverse intensity profile that presents a

”donut” shape. We will give specific examples in the following subsections where par-

ticular classes of CiBs will be introduced.
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Figure 1.2: Wavefronts of Circular Beams. Some examples of wavefronts for
beams carrying OAM are shown for: a) l = 1, b) l = −1, c) l = 2 and d) l = −2.

Since the OAM is an infinite dimensional degree of freedom, one can use it to implement

Hilbert spaces of high dimensionality. We can introduce these spaces even remaining

in a classical framework. Indeed the functions exp(ilφ) are vectors |l〉 that generate an

infinite and discrete Hilbert space Ho. A general state |ψ〉 ∈ Ho will be represented as

the complex superposition:

|ψ〉 =
∑
l

al|l〉. (1.51)

Such a state will correspond to a beam that can be written as a superposition of CBs

with different l. We are ignoring for the moment the radial structures of these states,

which will be introduced below.

In Ho is defined the Hermitian scalar product between two vectors |ψ〉 =
∑

l al|l〉 and

|ζ〉 =
∑

l bl|l〉:

〈ψ|ζ〉 =

∫ 2π

0

∑
l,m

a∗l bme
i(m−l)φdφ

2π
=
∑
l

a∗l bl. (1.52)

As a consequence, a general vector |ψ〉 ∈ Ho carries an average OAM given by:

〈ψ|l̂z|ψ〉 =

∫ 2π

0
ψ∗(φ)(−i∂φ)ψ(φ)

dφ

2π
=
∑
l

l |al|2 . (1.53)

where we used ~ = 1.

The OAM can be considered as a quantized observable even in the quantum domain. The

use of quantum computational tasks involving single photons is an active research field:

for example it has been used for implementing qutrits [12], realizing optimal quantum

cloning in high dimensions [13], and can be an useful tool in quantum communications

[14–16], and for investigating fundamental aspects of quantum physics [17, 18]. A recent

review can be found in Ref. [19].

Until now we have considered only the role of the azimuthal phase factors in CiBs.

In fact the slowly varying envelope of a CiB is given by u(r) exp(ilφ), thus one can deal

with CiBs with the same OAM but different radial profiles u(r). Hence, two beams with

the same OAM can present a partial overlap due to different radial structures. This

is an important consideration for many applications concerning OAM generation and
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measurement. For example, some techniques for measuring the OAM power spectrum

of an unknown beam, based on filtering methods, can suffer of inefficiencies since the

filter actually selects also a specific radial shape.

In general the solutions of the paraxial equation can still be considered as vectors of an

Hilbert space with scalar product:

〈ψ|ζ〉 =

∫
ψ∗(r, φ)ζ(r, φ)rdrdφ. (1.54)

The basis states of this Hilbert space will be given by: ul,p(r) exp(ilφ), where p can be

an additional discrete index labeling the radial modes. An example of such basis modes

is given by the Laguerre-Gaussian beams that we will introduce below.

1.4.2.1 Laguerre-Gaussian beams

Laguerre-Gauss modes where introduced by Zucker in 1970 [20] as higher order modes

of optical resonators with Gaussian profiles of the mirror reflectivity. The Gaussian

mode, often referred as the TEM0,0 mode, arose as the fundamental mode of this family

of solutions of the paraxial equation. In 1992, Allen et al. [21], explicitly considered

Laguerre-Gaussian beams to show that light can carry OAM. In the work of Allen et

al. the relationship between helical wavefronts and Orbital Angular Momentum was

recognized for the first time.

Laguerre-Gaussian LGp,m modes have the well known expression:

LGp,m(ρ, ζ, φ) =

√
2|m|+1p!

π(p+ |m|)!(1 + ζ2)

(
ρ√

1 + ζ2

)|m|
e
− ρ2

1+ζ2 (1.55)

Lp
|m|(2ρ2/(1 + ζ2))e

i ρ2

ζ+1/ζ eimφe−i(2p+|m|+1) arctan(ζ), (1.56)

where we used adimensional coordinates: ρ = r/w0, ζ = z/z0. Lp
|m|(x) are generalized

Laguerre polynomials, defined by Lp
n = (x−pex/n!) dn

dxn (xp+ne−x). The index p is an

integer equal or greater than 0.

These beams possess many remarkable features. Their shape does not change during

propagation, a property which is not surprising since it follows from the fact that they

have been found as stable solutions of the paraxial equation inside an optical resonator.

As a consequence, they are eigenfunction of the 2D Fourier transform operator, i.e. the

phase and amplitude pattern is unchanged (apart from a global rescaling of the coordi-

nates) in the far field. Moreover, as shown in Ref. [22], LGp,m beams are the CiBs with

the smallest possible free space beam divergence, which makes them the best candidate

for long distance free space communications based on OAM.

The intensity and phase of some Laguerre Gaussian modes is plotted in Fig. 1.3. The
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Figure 1.3: Intensity and phase of LG beams. Some examples of Laguerre-
Gaussian beams are shown for m = −2, ... , 2 and p = 0, 1, 2. In a) the intensity
patterns are displayed. It is evident that with increasing m the central hole becomes
larger while the index p gives the number of additional annular rings. The phase
patterns are shown in inset (b). The nonzero OAM is associated with the existence
of a phase singularity with charge m. For nonzero values of p some phase jumps of π

appear in correspondence of the zeros of the Laguerre polynomials.

tipical annular shape associated to the azimuthal phase factor can be appreciated. More-

over the size of the central hole grows with the associated OAM. This is due to the factor

ρ|m| in Eq. 1.56. For p > 0 the Laguerre polynomials have additional zeros at radii ρ > 0.

As a consequence additional concentric rings appear, whose number is determined by the

radial index p. In correspondence of the intensity zeros there are phase singularities. At

ρ = 0 there is a point singularity that is common in all the CiBs. The phase of the beam

changes of a factor 2πm when following a closed path, C, around the singularity. Thus

one says that m is the winding number, or topological charge associated to the phase

singularity. The concept of winding number is very general and will be considered in

many different situations in this Thesis (see in particular Chapters 3 and 5). Additional

phase singularities are disclination lines that correspond to the zeros of the Laguerre

polynomials. Here the change of sign in the beam amplitude manifests in a phase jump

of π.

Laguerre-Gaussian modes are an orthogonal and complete basis. Indeed they satisfy the

relation:

〈LGp,m|LGq,l〉 = δm,lδp,q (1.57)

where the scalar product is the one defined in Eq. 1.54 and the completeness means that

every paraxial beam can be expressed as a linear superposition of (in general infinite)

LG modes.
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1.4.2.2 Hypergeometric-Gaussian Beams

Laguerre-Gaussian modes are the most known examples of Circular Beams, perhaps

because of their remarkable features (like small divergence and propagation invariant

shapes) and historical interest. However, in many applications involving OAM, the

actual beams that are generated in the laboratory can be quite different. Indeed, the

majority of techniques for generating OAM modes are based on optical devices whose

action consist into multiplying an input Gaussian beam by a phase exp(ilφ). Thus, on

the plane of the transforming device, the beam intensity will be a simple Gaussian. The

characteristic hole on the beam center will be generated only during the propagation (in

practice it exist already on the device plane because the central singularity ”written”

on the device has a finite dimension). If we suppose that the beam impinging on this

device is collimated (as usual in the experiments), then the slowly varying envelope of

the beam on the ζ = 0 plane will be:

u(ρ, φ) ∝ exp(−ρ2) exp(−ilφ). (1.58)

This expression cannot match with the one of a Laguerre-Gauss mode and thus it will

propagate in a different way. The expression of the field on the plane ζ, u(ρ, ζ, φ), can

be calculated by means of the Fresnel diffraction integral:

u(ρ, ζ, φ) =
−i
πζ

∫
exp

(
− iρ

2 + ρ′2 − 2ρρ′ cos(φ− φ′)
ζ

)
u(ρ′, 0, φ′)ρ′dρ′φ′. (1.59)

The solution of this integral can be expressed analytically:

u(ρ, ζ, φ) = C|l|(ζ + i)−(|l|/2+1)ζ−|l|/2ρ|l|e
−i ρ

2

ζ+i ei lφ 1F1

( |l|
2

; |l|+ 1;
ρ2

ζ(ζ + i)

)
, (1.60)

where C|l| is a normalization constant and 1F1(a; b;x) is the confluent hypergeometric

function of the first kind [23]. This mode is a special case of a more general family

of modes, called Hypergeometric Gaussian modes, HyGGp,l [24]. Eq. 1.60 corresponds

to the case p = − |l|. Modes with different values of p result from the diffraction of a

beam whose amplitude in the ζ = 0 plane is ρp+|l| exp(−ρ2) exp(−ilφ). Their explicit

expression, together with the expansion in terms of LG modes, can be found in Ref.

[24].

Examples of intensity patterns of HyGG−|m|,m modes are shown in Fig. 1.4. Since the

function 1F1(|l| /2; |l| + 1; ρ2/ζ(ζ + i)) does not have zeros for ρ > 0, the HyGG−|m|,m

do not present additional annular rings like the Laguerre-Gauss modes, hence the only

phase singularity is the one on the beam axis whose topological charge m is related to

the OAM carried by these modes. However, since a single Hypergeometric-Gaussian
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Figure 1.4: Intensity and phase of HyGG beams. In a) the intensity patterns
of some HyGG−|m|,m modes are displayed for m = 1, 2 at different ζ. In inset (b)
the radial profile for m = 10 is plotted for ζ = 0.01, 0.05, 0.2, showing the existence
of characteristic ”ripples” in the near field arising from the superposition of an infinite

number of LG modes

beam is a superposition of an infinite number of LGp,m modes, the multiple rings of

these modes can manifest in ripples along the radial shape of the HyGG−|m|,m intensity.

These ripples are well visible in the near field, as shown in Fig. 1.4 b).

1.5 The discretized transverse wavevector space

We have seen that the Orbital Angular Momentum of light is a degree of freedom that

can be used to emulate high dimensional Hilbert spaces. This makes the OAM a can-

didate for quantum computation with qudits. We recall that a N dimensional qudit is

a quantum state obtained as a linear superposition of N orthogonal states: |i〉 where

i = 1, . . . , N . There are other ways to realize qudits states in photonic experiments.

Perhaps, the most obvious is to separate a beam (or even a single photon) in N multiple

paths, the path i corresponding to the state |i〉. This is the multidimensional extension

of the dual rail logic used in some implementation of photonic quantum gates. Photonic

qudits have been implemented using also the time bin encoding of laser pulses, where

each ket |i〉 is associated to a different arrival time of the pulse [25]. Even the radial

degree of freedom of LGp,m modes could be in principle exploited. Indeed ”quantum

features” related to the p index have been demonstrated, like Hong-Ou-Mandel interfer-

ence effects [18]. However, despite some recent efforts for multiplexing LG modes with

different p indexes [26, 27], a complete toolbox for the manipulation of this degree of

freedom is still missing.

Here we introduce another implementation of qudit states where each qudit |i〉 is asso-

ciated to a tilted plane wave. The idea is to use the linear momentum as the degree

of freedom that encodes an infinite dimensional Hilbert space. This space is actually

not discrete, thus it should in principle studied in the framework of continous variables.
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However, as it will be shown in this Thesis work, one can imagine to consider only a

discrete subset of all the possible linear momenta and to use devices whose action is

closed within this subspace. This consideration holds true also for implementations us-

ing the arrivial times of laser pulses or the optical paths. Moreover, for reasons that

will become clear in Chapter 4, we will consider plane waves where the z component of

the wavevector kz is much larger that the transverse components kx and ky. kz will be

thus considered to be constant: kz ≈ 2π/λ, and the qudit states will be encoded by the

couple (kx, ky), where both the transverse components of the wavevector will be integer

multiples of a fixed constant p. We are thus dealing with qudits states labeled by two

integer indexes |n,m〉 (that will be associated to a two dimensional lattice over which

we can perform quantum walks -see Chapters 4 and 5) encoded in tilted plane waves as

follows:

|n,m〉 → exp
(
i(nx+my)p

)
exp(ikzz). (1.61)

A geneirc state |ψ〉 =
∑

n,m cn,m|n,m〉 in this Hilbert space will be a linear superposition

of different plane waves:

|ψ〉 → eikzz
∑
n,m

cn,m exp
(
i(nx+my)p

)
, (1.62)

where cn,m are complex numbers. Given the condition kx, ky � kz, these plane waves

can be considered, if one works in the near field, as propagating along the z direction

but each with a slightly tilted wavefront. The two dimensional Fourier transform of such

a beam gives the amplitude distribution of the field in the transverse wavevector space

which will be a superposition of Dirac’s delta functions:

∑
n,m

cn,mδ(kx − npx, ky − npy). (1.63)

We note that the intensity of this distribution can be experimentally obtained by looking

at the field in the focus of a converging lens, whose action is indeed equivalent to a 2D

Fourier transform.

In a real experiment one does not deal with plane waves but with beams that are spatially

confined in the transverse plane, like Gaussian beams. As a consequence, the delta

functions of Eq. 1.63 will be broadened and eventually overlap. Thus one should take

into account the beam parameters in order to reduce as much as possible this overlap.

In Chapter 4 these aspects will be discussed in the framework of the implementation of

multidimensional Quantum Walks.
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1.6 Manipulation of structured light

In this chapter we have seen how a light beam can exhibit a large variety of features

related to the spatial variation of its phase, amplitude and oscillation direction of the

electric field. A plethora of techniques has been developed so far. Here we will focus

only on the technologies used in this thesis work.

1.6.1 Computer Generated Holograms

Let us consider the following problem: given an input Gaussian beam, which is easily

produced in the laboratory both as the natural shape of the output of common laser

cavities or by suitable spatial filtering techniques, one wants to transform it changing

the amplitude and phase distribution. We can imagine to do this with a flat device

whose action is to multiply the ingoing field with some transmission function spatially

varying along the transverse plane: t(x, y). This is often achieved using holographic

techniques. In this case t(x, y) is a real valued function that reproduces the intensity

pattern that would result from the interference between the input Gaussian beam (called

the reference wave Ur) and the desired output Uo. Let us approximate, for simplicity, Ur

with a plane wave: exp(i(kxx+ kzz)). The transmission function, applied on the plane

z = 0, is of the form:

t(x, y) = t0 + 2<{Uo(x, y)e−i(kxx)}.

The resulting beam will be:

t(x, y)eikxx = t0e
ikxx + Uo(x, y) + U∗o (x, y)e2ikxx

where we excluded the term describing propagation along z, exp(ikzz), since it is factored

out on both sides of the equation. The second term of the right hand side in the above

equation is the beam that we wanted to produce. Notice that the other two terms have

different wavevectors and will separate from Uo in the far field. Thus one can select the

desired output by filtering the other diffraction orders. This is an example of amplitude

modulation that changes also the phase at the expense of losing some light in other

diffraction orders.

Beam shaping is often done using phase only holograms, i.e. devices whose transmission

function is of the form: t(x, y) = eig(x,y) and thus does not change the intensity of

the beam (this is important especially when using single photons and losses have to be

reduced as much as possible). In particular, blazing holograms are often used to get rid

of effects due to spatial resolution and to maximize the amount of modulated light. A
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blazing hologram is of the form:

g(x, y) = Mod

(
2π

Λx
x+ f(x, y), 2π

)
, (1.64)

where f(x, y) is the desired phase modulation and 2π/Λ is the additional wavevector

component that gives the propagation direction of the modulated beam.

A phase hologram is sufficient to generate beams carrying Orbital Angular Momen-

tum. Indeed it suffices to choose the phase modulation function in the form f(x, y) =

l arctan(y/x) where l will be the OAM of the desired beam. As we have seen in Sec-

tion 1.4.2.2, such an hologram will generate Hypergeometric-Gaussain beams of the type

HyGG−|l|,l. If one wants to control also the radial shape of the beam in general it will be

necessary to introduce an amplitude modulation. Interestingly this can still be done by

phase only holograms (which are the most widely used, especially the ones whose struc-

ture can be dynamically changed by computer control). In principle one should look for

the function exp(ig(x, y)) that best approximates the desired field A(x, y) exp(iψ(x, y)).

Several approaches have been demonstrated that achieve this goal, that are reviewed in

Ref. [28]. Among these we cite the one in Ref. [29], where the authors consider the

transmission function:

t(x, y) = exp

(
iM(x, y)Mod(F (x, y) + 2πx/Λ, 2π)

)
(1.65)

the action on an impinging plane wave gives, after selecting the first diffraction order,

the output mode:

E(x, y) = −sinc(πM − π)ei(F+πM). (1.66)

Thus one can obtain the desired beam by using the relations:

M = 1− 1

π
sinc−1(A) (1.67)

F = ψ − πM, (1.68)

where A and ψ are the amplitude and phase of the desired beam.

Nowadays these holographic techniques are widely used thanks to devices, known as

spatial light modulators (SLMs) that allow to remotely control the displayed hologram

with the help of a computer. These SLMs are usually based on liquid crystal displays

(LC-SLMs) or digital micromirror devices (DMDs). The hologram can be calculated on

a computer and then displayed on the SLM. LC-SLMs consist in a layer of aligned liquid

crystal molecules behind which a matrix of independent electrodes is used to apply an

electric field on the molecules. The orientation of the molecules can be controlled by the

applied voltage that can be different for each pixel. As a result the light beam, polarized
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along the principal axis of the molecules, will acquire at each pixel a different phase.

DMDs operate as binary amplitude modulators. They present higher frame rates that

LC-SLMs, but at the expense of limited modulation depth and diffraction efficiency.

However they are recently emerging as practical SLM, in particular they have been

showed to be superior with respect to LC-SLMs for the light control in complex envi-

ronments, comprising high scattering layers, aberrated optical systems and multimode

fibers [30].

1.6.2 Spin-orbit and spin-momentum coupling in liquid crystal based

devices

In section 1.4.1 we have introduced wave retarders as devices to manipulate the polar-

ization of light. In that case we focused on the common case of waveplate with uniform

optic axis. However, one can also consider a waveplate where some of its properties, i.e.

the optic axis orientation or the optical retardation, are spatially inhomogeneous. As

a consequence of the spatial modulation, a beam crossing such a device will not only

change its polarization but also the phase (and, in general, the amplitude) in a way that

depends on the loal properties of the device. The Jones matrix of these space-variant

waveplates follows directly from the one in Eq. 1.47:

W (δ, α) = cos

(
δ(x, y)

2

)
1 + i sin

(
δ(x, y)

2

)(
0 e−2iα(x,y)

e2iα(x,y) 0

)
(1.69)

where we have simply introduced a dependence on the transverse coordinates x and y

in the optical retardation δ and optic axis angle α. These devices allow to modify the

shape of an optical beam in a way that is conditioned by the input polarization. In this

sense we refer to these effects as spin-orbit coupling of light, where the term ”orbit” can

be understood in the general sense of the trajectories of the light wavevector. In the

specific case of q-plates, as we will see below, one can actually achieve an exchange of

spin and orbital angular momentum. This Thesis work is mainly dedicated to exploit

spin-orbit photonics in classical and quantum applications.

In the following we will focus on devices with uniform optical retardation but space-

variant optic axis. We only mention here the existence of devices that, by means of

applied stresses, use a spatially varying δ to generate inhomogeneous polarization pat-

terns and bottle beams [31][32].

Let us now consider a special case of Eq. 1.69 with δ = π (corresponding to an half

wave plate). In this case an input circularly polarized beam will flip its polarization

handedness but will also acquire a phase exp(±i2α(x, y)), where the sign ± depends on
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the handedness of the input polarization (+ for input |L〉 and − for |R〉). In particular

we can think of a device where the optic axis is a linear function of the azimuthal angle

φ:

α(φ) = α0 + qφ. (1.70)

Some examples of the resulting pattern are shown in Fig. 1.5. In this case one will

obtain a beam with an helical phase factor exp(±i2qφ) that carries a well defined OAM

l = 2q provided that q is an integer or semi-integer. An anisotropic device, with arbi-

trary uniform retardation δ, characterized by the optic axis given in equation Eq. 1.70

is called a q-plate [33]. The q parameter is called the topological charge of the pattern.

Indeed it can be identified with the winding number of the field α(φ) around the origin,

which is a singularity for α(φ).

When δ = π the action of a q-plate consists into a positive (negative) flip of the SAM

and negative (positive) change of the OAM by an amount |2q|. Interestingly, in the case

q = 1 there is a perfect balance between the OAM and SAM variations, implying that

the total angular momentum of light is unchanged. Hence the q-plate can act as a device

that exchanges SAM and OAM. In this particular example (δ = π, q = 1) there is total

SAM to OAM conversion (STOC). For q 6= 1 one has incomplete STOC, and some of

the angular momentum carried by light is transferred to the device. When δ 6= π only

a fraction of the light, equal to sin2(δ/2) experiences the STOC.

The concept of q-plates was introduced in 2006 by Marrucci et al. [33], where for the

first time the STOC process was demonstrated using q-plates based on nematic liquid

crystals. They consist of a 6 µm thick layer of liquid crystal sandwiched between two

glasses coated with a dye. The liquid crystal molecules tend to orient along the axis

of dye molecules, whose pattern is written through a photoalignment technique that

allows to realize geometries wih arbitrary topological charge [34]. Liquid crystal based

q-plates are a versatile tool due to the possibility to control the optical retardation δ.

This was done originally by means of thermal tuning [35], but then it was made faster

by the addition of a conductive ITO substrate on the glasses that allowed to tune δ by

changing the applied voltage [36]. The majority of the works presented in this Thesis

were based on the use of one or more q-plates and on the exploitation of the tuning of

the optical retardation.

As the q-plate implements the coupling between spin and orbital angular momentum of

light, it is possible, with similar devices, to couple the SAM and the linear momentum

(that is the propagation direction). Phenomena involving coupling between spin and

linear momentum of light are at the basis of chiral optics. They often arise in nanopho-

tonic devices where variations of the transverse field on the scale of the wavelength lead

to the appearence of a strong longitudinal field with a phase of ±π/2 with respect to the
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transverse field where the sign, that gives the handedness of the transverse spin com-

ponent, is determined by the propagation direction [37]. We can implement a similar

phenomenon in the framework of paraxial optics by considering again a patterned half-

wave plate where, this time, the optic axis results as a linear function of one Cartesian

coordinate, say x:

α(x) = α0 + (−1)s
π

Λ
x. (1.71)

This device (whose pattern is sketched in Fig. 1.6 (a) ) is such that an L(R) polarized

input beam acquires a transverse component of the wavevector given by ∓(−1)s2π/Λ.

In Eq. 1.71 the parameter s = 0, 1 takes into account that the angular coefficient of the

equation α(x) can be positive or negative. This sign actually depends on the orientation

of the device: it can be inverted by a π rotation of the pattern around the x direction.

The parameter Λ gives the spatial period of the optical axis pattern. We remark that

one period correspond to a π rotation of α(x) (not 2π). The coefficient α0, differently

from its q-plate analogue, does not determine any feature of the pattern shape since it

is actually dependent on the choice of the origin of the x axis. However it will acquire

importance when considering a stack of these devices.

When based on liquid crystals, devices described by Eq. 1.71 are known in literature as

Liquid Crystal Polarization Gratings (LCPG). In general the term polarization grating

can refer both to a polarizer (thus a non unitary operator) or to a waveplate. We will fo-

cus on the case of waveplates and will choose to call these devices with the term g-plates,

where ”g” stands for ”grating” [38]. Indeed, when seen between crossed polarizers, these

devices appear as gratings with spatial periodicity Λ/2 (see Fig. 1.6 (b)). The doubled

frequency of the grating with respect to the spatial frequency of the optic axis pattern

is due to the fact that the light polarization is left unchanged when α(x) = 0 or π/2.

The action of g-plates can be interpreted as a ”circular polarizing beam splitter”, in the

sense that it separates, at least in the far field, the right and left circular component of

light beams. Fig. 1.6 (c) illustrates this concept considering also the case of different δ.

The g-plate can be used a a fundamental device for manipulating the transverse mo-

mentum of light. The last part of this thesis work will be indeed dedicated to the use of

g-plates and uniform waveplates for the implementation of quantum walks on one and

two dimensional lattices.
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Figure 1.5: SAM to OAM conversion with q-plates. The basic features of q-
plates are illustrated. A q-plate is an anisotropic device whose optic axis α angle is a
linear function of the azimuthal angle: α(φ) = α0 +qφ. In the top of the figure different
examples of q-plate patterns are illustrated: (a) q = 1/2, α0 = 0, (b) q = 1, α0 = 0, (c)
q = 1, α0 = π/2, (d) q = 2, α0 = 0. Inset (e) shows a liquid crystal based q = 1 plate
between two crossed polarizers under white light illumination. Inset (f) illustrates
the STOC process: a plane wave L(R) polarized crosses a q = 1 plate at half wave
retardation δ = π and is transformed into an helical wave with OAM l = +2(−2) and

with inverted circular polarization. Panels (a-e) are adapted from [39].
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Figure 1.6: Working principle of LCPGs.(a) Sketch of the liquid crystal pattern
in a g-plate. In (b), a g-plate seen between crossed polarizers under white light illumi-
nation is shown. It appears as a grating whose pitch is Λ/2. In panel (c) the working
principle of a g-plate is illustrated: a laser beam crosses the electrically controlled de-
vice and then is focused by a lens in order to visualize the effect of the g-plate in the
far field. The result, depending on the optical retardation of the device, is illustrated
on the right: at δ = 0 the device acts as the identity operator and only a single Gaus-
sian spot (in this case linearly polarized) appears on the focal plane, increasing δ two
lateral spots appear with opposite circular polarizations. At δ = π the central spot is

suppressed.
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Measurement of structured light

beams

2.1 Introduction

1 As we will see in Chapters 4 and 5, a Quantum Walk in the OAM space generates light

beams that are complex superpositions of different helical modes. Obtaining the prob-

ability distributions resulting from this process will require to experimentally measure

the OAM power spectrum of the final beam. In this chapter we will introduce a simple

method that achieves this goal by digital analysis of the interference pattern formed by

the light beam and a reference field. Our approach allows one to characterize the beam

radial distribution also, hence retrieving the entire information contained in the optical

field. Setup simplicity and reduced number of measurements could make this approach

practical and convenient for the characterization of structured light fields. This tech-

nique will provide useful in replacing the more time consuming approach, used hitherto

in our QW setup, based on multiple projective measurements.

Light beams carrying orbital angular momentum (OAM) are key resources in modern

photonics. In many applications, the ability of measuring the complex spectrum of

structured light beams in terms of these fundamental modes is crucial.

The ability to ascertain experimentally the OAM values associated with individual he-

lical modes represents a fundamental requirement for all applications based on twisted

light. Hitherto, this has been demonstrated by a variety of methods: exploiting double

slit interference [41], diffraction through single apertures [42–45] or through arrays of

pinholes [46], interference with a reference wave [47, 48], interferometers [49–51], OAM-

dependent Doppler frequency shifts [52, 53], phase flattening and spatial mode projection

1Some paragraphs and sentences of this section are adapted or copied verbatim from the work [40]
which I coauthored

28
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using pitchfork holograms [54–56], q-plates [57, 58], spiral phase plates [59] and volume

holograms [60], spatial sorting of helical modes by mapping OAM states into transverse

momentum (i.e. propagation direction) [61, 62], quantum weak measurements [63].

General structured fields are however not given by individual helical modes, but can

always be obtained as suitable superpositions of multiple helical modes. Accordingly, a

full experimental characterization of these structured fields can be based on measuring

the complex coefficients (amplitude and phase) associated with each mode appearing in

the superposition, for any given choice of the mode basis. In general, this is not a triv-

ial task, but several methods for the reconstruction of the complex spectrum associated

with the OAM degree of freedom have been demonstrated thus far [49, 53, 57, 59, 60, 64],

possibly including also the radial mode spectrum reconstruction [55, 56, 61–63, 65, 66].

It is worth noting that, once these complex coefficients are known, the complete spatial

distribution of the electric field can be obtained and important properties such as beam

quality factor M2, beam width and wavefront are easily computed at any propagation

distance [64, 67].

In this chapter we will first review the most important techniques used for the detection

of OAM spectra. Then we will describe in detail our new proposal (Ref. [40]).

2.2 Review of the techniques for measuring the OAM of

light

A general structured light beam can be written as a superposition of helical modes:

|ψ〉 =
∑

l al|l〉 (we ignore, for the moment, the radial modes). Reconstructing the OAM

spectrum means to experimentally measure the complex coefficients al. If one is inter-

ested only in the moduli of these coefficients then we will talk of OAM power spectrum

or OAM probability distribution. These can be obtained by measuring the intensity

of the light passing through a set of devices that implement the projection operator

Pl = |l〉〈l|.
Suppose that we have at disposal a spatial filter that selects only the l = 0 mode. This

can be realized by a single mode fiber or by a pinhole placed in the focus of a converging

lens. We can then implement Pm by multiplying |ψ〉 to a phase exp(−imφ). Indeed

the resulting beam will be:
∑

l al exp
(
i(l − m)φ

)
, and the mode with OAM l will be

transformed into the fundamental one, i.e. its phase structure will be ”flattened”, and

selected by the filter. Doing this for all the values of m will allow to reconstruct the

full power spectrum (of course, in practice this can be done for a limited number of

OAM values). This phase flattening technique can be easly implemented using Spatial

Light Modulators that implement the transmission functions gm(r, φ) = exp(−imφ) and

filtering the first diffraction order with a single mode fiber. It has been used in Ref.
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[54] to demonstrate entanglement in the OAM modes. The same toolbox can be used

also for measuring the full OAM state [68, 69] of photons generated in Spontaneous

Parametric Down Conversion by means of tomographic measurements. Quantum to-

mography requires measurements on multiple non-orthogonal bases, hence in this case

the set of measurements {Pl} is not sufficient. However, with SLMs one can readly

realize the projection on superposition of OAM states, like: |p〉 = (|j〉 + |k〉)/
√

2 and

|q〉 = (|j〉 + i|k〉)/
√

2, where |j〉 and |k〉 are OAM eigenstates. The density matrix

representing a general quantum state can be written as ρ =
∑

j,k ρj,k|j〉〈k|. The coef-

ficients ρj,k can be obtained experimentally by taking the projections over the states:

|p〉, |q〉, |j〉, |k〉 and making use of the identity [68]:

|j〉〈k| = |p〉〈p|+ i|q〉〈q| − (1 + i)(|j〉〈k|+ |k〉〈j|)/2.

The phase flattening technique can in principle been used to distinguish between differ-

ent OAM modes with high accuracy. However it can be unpractical when dealing with

a large number of modes. Indeed, single photons projection measurements are limited

by a success rate 1/N , where N is the number of modes of interest. Moreover it was

shown in Ref. [70] that the detection efficiency can decrease with l. Indeed the single

mode fiber selects not only the modes with l = 0 but more precisely the ones with a

specific radial shape (usually well approximated by a Gaussian). This means that con-

tributions coming from LGl=0,p>0 modes will be suppressed, too. The phase flattening

technique only cancels the helical phase of a specific OAM mode without controlling

the radial shape. As a consequence the contributions from high OAM modes will be

underestimated. This implies that in experiments that make use of the phase flattening

technique a careful calibration procedure is required.

Instead of using projection measurements one can think of spatially separating the dif-

ferent modes contained in an optical beam. A first proposal was given in Ref. [49] where

a cascade of interferometers selectively splitting different OAM modes was devised. The

basic element is a Mach-Zender interferometer with a Dove prism in each arm. The

relative angle α between the prisms is such that, given an input mode with OAM l that

is split into the two arms, the beams meeting in the output beam splitter will have a

phase difference 2lα. For α = π/2 this can be used to sort modes with even and odd

OAM. Ref. [49] shows how cascading different interferometers of this kind, with different

values of α can allow to measure the Orbital Angular Momentum of a single photon.

However this technique is practically challenging in terms of stability and number of

resources.

A more efficient and successful ”OAM sorter” was later introduced by Berkhout et al.
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[65]. This consists in only two optical phase elements and can in principle be applied to

any superposition of modes. The basic idea is to implement a phase transformation that

maps the OAM eigenstates in plane waves with a given transverse wavevector. If such a

transformation is performed, then one can use a Fourier transforming lens to separate the

different wavevector contributions and measure the corresponding intensities. Suppose

that we want to image the point (x, y) in the object plane Γ0 into a point (u, v) in the

image plane Γ1, that we suppose being coincident with the Fourier plane of a lens, given

by the relations: u = u(x, y) and v = v(x, y). This can be achieved introducing a space

variant phase φ1(x, y) on a normally incident plane wave. This phase element introduces

transverse wavevector components given by kx = ∂xφ1(x, y) and ky = ∂yφ1(x, y) which

are focused on the point (u, v) in the Fourier plane provided that the following relations

are satisfied:

∂φ1(x, y)

∂x
=
k

f
u(x, y), (2.1)

∂φ1(x, y)

∂y
=
k

f
v(x, y), (2.2)

where f is the focal length of the lens. For smooth phase elements, i.e. such that

∂x∂yφ1 = ∂y∂xφ1 these relations can be obtained only for conformal transformations,

i.e. the functions u(x, y) and v(x, y) must satisfy: ∂yu(x, y) = ∂xv(x, y). In particular,

for obtaining an OAM sorter, one would map the azimuthal angle φ = arctan(y/x) into

a Cartesian coordinate u. Posing u = arctan(y/x) one has that, in order to obtain a

conformal transformation, v = ln(x2 + y2)/2. The phase φ1(x, y) can be calculated from

Eq. 2.2 to be:

φ1(x, y) =
k

2f

(
y ln(x2 + y2)− 2x arctan(y/x)− 2y − (x2 + y2)

)
. (2.3)

where we added a quadratic phase term −k(x2 + y2)/2f in order to incorporate the

effect of the lens in the optical phase element. If one wants to convert this system into

an afocal one, in order that the coordinate-transformed image propagates unchanged,

and additional phase element, placed at a distance f from φ1, is required [71]. This is

given by the phase varying function:

φ2(u, v) =
k

2f

(
2ev cos(u)− 2y − (u2 + v2)

)
. (2.4)

When implemented with refractive elements this sorter can present a 20% cross talk[72].

However these cross talk effects have been reduced in Ref. [73] by introducing an addi-

tional fan-out phase element that generates N coherent copies of the beam that result

in narrower spots in the Fourier plane. With this technique it has been possible to lower

cross talk effects under 10% [62]. Hitherto the OAM sorter has been used to measure
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states with up to 50 OAM modes [63, 74].

In the following section we will describe an alternative approach for measuring both the

OAM and radial spectrum, based on digital analysis of the unknown beam interfering

with a reference [40]. This approach relies on a small set of measurements and can be

implemented with ordinary equipment without the need for special devices.

2.3 Measuring the complex orbital angular momentum spec-

trum and spatial mode decomposition of structured

light beams

2 Inspired by previous works [53, 75–77], here we present an approach to the measurement

of light OAM spectrum and, more generally, to spatial mode decomposition of structured

light that may prove to be more practical than most alternatives. The OAM complex

spectrum information is contained in the intensity pattern resulting from the interference

of the light beam with a known reference field (such as a Gaussian beam), and can be

hence easily extracted by a suitable processing of the corresponding images recorded

on a camera. First, Fourier transform with respect to the azimuthal angle leads to

determining the complex coefficients associated with each OAM value, as a function

of the radial coordinate. Numerical integration over the latter then allows one to use

this information to determine the OAM power spectrum and, eventually, to decompose

each OAM component in terms of radial modes, e.g. LG beams. Remarkably, the

whole information associated with the spatial mode decomposition, or with the OAM

power spectrum, is contained in a few images, whose number does not scale with the

dimensionality of the set of detected helical modes. A unique series of data recorded for

the characterization of a given field is used for obtaining the decomposition in any basis

of spatial modes carrying OAM (LG, HyGG, Bessel,...), as this choice comes into play

only at the stage of image analysis.

2.3.1 Description of the technique.

In the following, we limit our attention to the case of scalar optics, as the extension to

the full vector field is simply obtained by applying the same analysis to two orthogonal

polarization components. Considering cylindrical coordinates (r, φ, z), the electric field

amplitude associated with a monochromatic paraxial beam propagating along the z

2Some paragraphs and sentences of this section are adapted or copied verbatim from the work [40]
which I coauthored
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direction is given by:

Es(r, φ, z, t) = As(r, φ, z)e
−i(ωt−k z), (2.5)

where ω is the optical frequency and k is the wave number. We refer to Es as the

signal field, to distinguish it from the reference beam that will be introduced later

on. The information concerning the spatial distribution of the field is contained in the

complex envelope As(r, φ, z). Being periodic with respect to the azimuthal coordinate φ,

such complex function can be expanded into a sum of fundamental helical modes eimφ,

carrying m~ OAM per photon along the z axis [78]:

As(r, φ, z) =

K2∑
m=K1

cm(r, z)eimφ, (2.6)

where K1 and K2 are integer numbers representing the OAM spectrum bounds of the

field, respectively (they can also be infinite in the case of unbounded spectra). Coeffi-

cients cm are defined in terms of the angular Fourier transform

cm(r, z) =
1

2π

∫ 2π

0
dφ e−imφAs(r, φ, z). (2.7)

The probability P (m) that a photon is found in the m-order OAM state is obtained from

the coefficients cm by integrating their squared modulus along the radial coordinate:

P (m) =
1

S

∫ ∞
0

dr r |cm(r, z)|2, (2.8)

where S =
∑

m

∫∞
0 dr r |cm(r, z)|2 is the beam power at any transverse plane. The quan-

tity P (m) is the OAM power spectrum, or spiral spectrum of the beam, and does not

depend on the longitudinal coordinate z, because of OAM conservation during propa-

gation. A complete analysis of the field in terms of transverse spatial modes is obtained

by replacing eimφ in Eq. 2.6 with a complete set of modes having a well defined radial

dependance, e.g. LG modes:

A(r, φ, z) =
∞∑
p=0

∞∑
m=−∞

bp,m LGp,m(r, φ, z), (2.9)

The link between coefficients cm and bp,m is then given by:

bp,m =

∫ ∞
0

r dr LG∗p,m(r, z) cm(r, z), (2.10)

where we introduced the radial LG amplitudes LGp,m(r, z) = LGp,m(r, φ, z)e−imφ, for

which the φ dependence is removed.
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The procedure we present here allows one to measure the complex quantities cm(r), or

equivalently the coefficients bp,m. We achieve this goal by letting the signal optical field

interfere with a reference wave Eref = Aref(r, φ, z)e
−i(ωt−kz), having the same polariza-

tion, frequency, wavelength and optical axis of the beam under investigation, and whose

spatial distribution is known. The simplest choice for this reference is a Gaussian beam.

At any plane transverse to the propagation direction, the intensity pattern I formed by

the superposition of signal and reference beams is (we omit the functional dependance

on the spatial coordinates)

I =Is + Iref + Ĩα. (2.11)

Here Is and Iref are the intensities corresponding to the sole signal and reference fields,

respectively, while the term Ĩα = 2 Re(eiαAsA
∗
ref) corresponds to their interference mod-

ulation pattern, α being a controllable optical phase between the two. The interference

modulation pattern can be experimentally singled out by taking three images, namely

I, Iref (blocking the signal beam) and Is (blocking the reference beam), and then calcu-

lating the difference Ĩα = I − Iref − Is.

The interference modulation pattern is linked to the OAM mode decomposition by the

following expression:

Ĩα = 2
∑
m

|Aref||cm| cos [mφ+ α+ βm], (2.12)

where βm(r, z) = arg[cm(r, z)]− arg[Aref(r, z)]. By combining two interference patterns

obtained with α = 0 and α = π/2 one then gets:

Ĩ0 − i Ĩπ/2 = 2|Aref|
∑
m

|cm| ei[mφ+βm], (2.13)

which is proportional to the electric field. Finally, Fourier analysis with respect to the

azimuthal coordinate allows one to determine the coefficients cm(r):

cm(r, z) =
1

4πA∗ref(r, z)

∫ 2π

0
dφ(Ĩ0 − iĨπ/2)e−imφ, (2.14)

which contains all the information associated with the spatial distribution of the electric

field. Notice that this approach can also be seen as taking the scalar product of the

electric field with the OAM eigenmodes

The method just described is required for a full modal decomposition and requires taking

a total of four images (that is I with α = 0 and α = π/2, plus Iref and Is), maintaining

also a good interferometric stability between them. However, for applications requiring
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the measurement of the OAM power spectrum only, that is ignoring the radial structure

of the field, and for which the OAM spectrum is bound from below (that is, there is a

minimum OAM value) there is a simplified procedure that is even easier and more robust

(the case for which the spectrum is limited from above can be treated equivalently). In

the case of beams containing helical modes with both positive and negative charges

(K1 < 0 and K2 > 0 in Eq. 2), this usually requires to have the signal beam pass first

through a spiral optical phase element, described by the transfer factor eiMφ (this can be

achieved with a q-plate or a spiral phase plate with the appropriate topological charge).

If M > |K1|, the spiral spectrum of the beam after this optical component will contain

only modes associated with positive OAM values. If K1 and K2 have the same sign, this

preliminary procedure can be skipped. Then, one can extract the associated probabilities

P (m) by Fourier analysis of Ĩ0 only (see Eq. 2.12), with no need of measuring also Ĩπ/2,

thus reducing the number of required images to three. We discuss this in more detail

in the sections below. In Appendix A we estimate the number of detectable modes for

fixed detector area and resolution.

2.3.2 Experimental results

We demonstrate the validity of our technique by determining the OAM spectrum and

the radial profile of the associated helical modes for a set of structured light fields. The

setup is shown in Fig.2.1 and described in detail in the figure caption. Here, structured

light containing multiple OAM components is generated by means of q-plates.

In Figs. 2.2(a-c) and 2.2(d-f) we report the results of our first experiment, consisting

in the measurement of both amplitude and phase of coefficients cm(r) of optical fields

having one (m = 8) and three (m = {−8, 0, 8}) different helical modes, respectively,

accompanied by the associated OAM power spectrum (see Eq. 2.8). We generate such

structured light by shining a q-plate with q = 4 with a left-circularly (horizontally)

polarized Gaussian beam and setting the plate optical retardation δ to the value π

(π/2), respectively. Our data nicely follow the results from our simulations, with some

minor deviations that are due to imperfections in the preparation of the structured fields.

In particular, in panel (a), the small peaks centered around m = −8 are related to the

possible ellipticity of the polarization of the Gaussian beam impinging on the q-plate,

while a small contribution at m = 0 corresponds to the tiny fraction of the input beam

that has not been converted by the q-plate. In panels (b) and (e) the radial profiles used

for our simulations are those corresponding to the Hypergeometric-Gaussian modes.

Error bars shown in our plots are those associated with the variability in selecting the

correct center r = 0 in the experimental images, which is identified as one of the main

source of uncertainties in the spectral results. They are estimated as three times the
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Figure 2.1: Sketch of the experimental apparatus. a) A He-Ne laser beam
passes through a polarizer (P) and is spatially cleaned and collimated by means of an
objective (Ob), a pinhole (ph) and a lens (L). A half-wave plate (HWP) and a polarizing
beam splitter (PBS) are used in order to split the beam into the signal and reference
arms, whose relative intensities can be controlled by HWP rotation. Fields resulting
from a complex superposition of multiple helical modes were obtained by using q-plates
and quarter-wave plates (QWPs), as shown in panels b-c. After preparing the signal
field, we place a further sequence of a QWP and a q-plate in case we need to shift the
entire OAM spectrum. The reference field is a TEM0,0 Gaussian mode. In the upper
arm of the interferometer, by orienting the QWP at 0 or 90◦ with respect to the beam
polarization we can introduce a α = 0 or π/2 phase delay between the signal and the
reference field, respectively. The two beams are superimposed at the exit of a beam
splitter (BS) and filtered through a polarizer, so that they share the same polarization
state. The emerging intensity pattern is recorded on a CCD camera (with resolution
576× 668). b) A QWP oriented at 45◦ or 0, followed by q-plate with q = 4 and δ = π
or δ = π/2, is used for the generation of a light beam containing a single mode (m = 8)
or three modes (m = −8, 0, 8), respectively. c) two q-plates with q = 1 and q = 1/2 are
aligned to generate spectra with m ∈ [−3, 3]. d) A set of more complex distributions
was obtained by displacing laterally the centre of a q-plate (q = 1 and δ = π) with

respect to the axis of the impinging Gaussian beam. Image from Ref. [40]

standard deviation of the data computed after repeating our analysis with the coordinate

origin set in one of 25 pixels that surround our optimal choice. Other possible systematic

errors, such as for example slight misalignments between the signal and reference fields,

are not considered here.

Data reported in Fig. 2.2 prove our ability to measure the complex radial distribution

of the field associated with individual helical modes in a superposition. For each of

these, we can use our results to obtain a decomposition in terms of a complete set of

modes. For a demonstration of this concept, we consider the field obtained when a left-

circularly-polarized beam passes through a q-plate with q = 4 and δ = π. The latter
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contains only a mode with m = 8, as shown in Fig. 2.2(a-c). By evaluating the integrals

reported in Eq. 2.10 we determine the coefficients bp,8 of a LG decomposition. For our

analysis, we use LG beams with an optimal waist parameter w̃0 (different from the one

of the impinging Gaussian beam), defined so that the probability of the lowest radial

index p = 0 is maximal [79]. In Fig. 2.3 we plot squared modulus and phase of the

coefficients bp,8 determined experimentally, matching nicely the results obtained from

numerical simulations.

As mentioned above, shifting the OAM spectrum of the signal field may be used to

simplify its measurement, when reconstructing the radial profile is not needed. In our

case, we let the signal field pass through a q-plate with q = M/2 and δ = π, after prepar-

ing it in a state of left-circular polarization. If M is large enough, i.e. higher than K1

(see Eq. 2), we have that c(m) 6= 0 only if m > 0. This allows in turn using Eq. 2.12 to

determine the OAM spectrum, instead of Eq. 2.13 that requires the measurement of Iπ/2

also. At the same time, this approach is less sensitive to possible noise related to beam

imperfections, typically associated with small spatial frequencies, that affect lowest-order

helical modes, as reported also in Refs. [53, 76]. Let us note that once the beam passes

through an optical element adding the azimuthal phase eiMφ, thanks to the conservation

of OAM during free propagation, the associated power OAM spectrum is only shifted

by M units, that is P (m) → P (m + M). The radial distribution of individual helical

modes, on the other hand, is altered during propagation, that is cm(r, z) 6→ cm+M (r, z).

For this reason, this alternative procedure proves convenient only when determining the

OAM probability distribution but cannot be applied to the reconstruction of the full

modal decomposition. In Fig. 2.4, we report the measured power spectrum of different

fields containing helical modes with m ∈ [−3, 3], as determined by shifting the OAM

spectrum by M = 8 by means of a q-plate with q = 4 and δ = π.

As a final test, we used our technique for characterizing more complex optical fields,

such as those emerging from a q-plate whose central singularity is displaced with respect

to the input Gaussian beam axis (Fig.2.1c). In Fig. 2.5 we report the OAM probability

distributions obtained when translating a q-plate (q = 1, δ = π) in a direction that is

parallel to the optical table, with steps of ∆x = 0.125 mm. Our data are in excellent

agreement with results obtained from numerical simulations. In the same figure we

show part of the associated total intensity patterns I0 (see Eq. 2.11) recorded on the

camera. In addition, for each configuration we show in Fig. 2.5 that the first and second

order moments of the probability distributions are characterized by Gaussian profiles

〈m〉 = 2q exp(−2x2
0/w

2
0) and 〈m2〉 = (2q)2 exp(−2x2

0/w
2
0) [80]. Fitting our data so that

they follow the expected Gaussian distributions (red curves) we obtain wfit
0 = 1.36±0.04
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mm from 〈m〉 (panel g), and wfit
0 = 1.39±0.06 mm from 〈m2〉 (panel h), which are close

to the expected value w0 = 1.45± 0.18 mm.

2.4 Conclusions

In this chapter we introduced a new technique for measuring the orbital angular momen-

tum spectrum of a laser beam, accompanied by its complete spatial mode decomposition

in terms of an arbitrary set of modes that carry a definite amount of OAM, such as LG

beams or others. Based on the azimuthal Fourier analysis of the interference pattern

formed by the signal and the reference field, relying on only a few measurements this

approach allows one to readily extract the information contained in both the radial and

azimuthal degrees of freedom of a structured light beam. Standard interferometric tech-

niques, as reported for instance in Refs. [81, 82], are commonly used for the measurement

of the phase profile of optical waves, allowing for the measurement of the complex spa-

tial envelope As of the field (see Eq. 1). However, using this information to obtain the

decomposition in terms of a complete set of helical modes (using Eqs. 3 and 6), and, in

turn, the OAM power spectrum, has not been thoroughly explored before. Furthermore,

when interested at the spiral spectrum only, we demonstrated that it is actually possible

to retrieve the OAM distribution without measuring the complete field, making use of

a reduced number of measurements.

In our approach, the most general method requires taking four images, including the

intensity patterns of the signal beam, the reference beam and two interference patterns

between them. Information on the modal decomposition of the signal field is then re-

trieved using a simple dedicated software. Since the spatial mode decomposition is

obtained during this post-processing procedure, the same set of images can be used to

decompose a beam in different sets of spatial modes. As demonstrated here, the exper-

imental implementation of our approach requires a simple interferometric scheme and

minimal equipment. Hence, it may be readily extended to current experiments dealing

with the characterization of spatial properties and OAM decomposition of structured

light.
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Figure 2.2: Experimental reconstruction of light OAM spectrum. We report
the experimental characterization of optical fields containing one (a-b-c) and three (d-
e-f) helical modes, generated using a q-plate with q = 4 and δ = π or π/2, respectively.
In panels g-j we report the experimental intensity patterns Iref, Is, I0 and Iπ/2, respec-
tively, obtained when investigating the field generated by the q-plate with δ = π/2.
Panels a and d show the OAM distributions in the two cases. Error bars are calculated
as three times the standard error. Panels b,c and e,f show the measured amplitude
and phase profiles of the non-vanishing helical modes that are present in the beam,
where blue, red and green colored points are associated with modes with m = 0, 8,−8,
respectively. These results are compared with theoretical simulations, represented as
continuous curves with the same color scheme adopted for the experimental results. For
each value of m, we plot normalized coefficients c̃m = cm/Sm, where Sm is the total
power associated with the helical mode. As expected from theory, a fraction of the
beam is left in the fundamental Gaussian state, while an equal amount of light is con-
verted into helical modes with m = ±8, both having the radial profile of a HyGG−8,8

mode. Simulated profiles of Gaussian and HyGG modes correspond to w0 = 1.45 mm
and z = 30 cm, the latter being the distance between the q-plate and the camera. Error

bars are smaller than experimental points. Image from Ref. [40]
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Figure 2.3: Complete spatial mode decomposition in terms of LG beams.
We consider the light beam emerging from a q-plate with (q = 4, δ = π), described
by a HyGG−8,8 mode. We evaluate the overlap integral between the radial envelope
c8(r) measured in our experiment at z = 30 cm and LGp,8 modes at the same value
of z and characterized by the optimal beam waist w̃0 = w0/9 [79], where w0 is the
input beam waist. In panels a) and b) we plot the squared modulus and the phase of
the resulting coefficients (blue markers), respectively, showing a good agreement with
the values obtained from numerical simulations (red markers). The phases of bp,8 with
p equal to odd integers are absent in the plot since the corresponding amplitudes are

vanishing (smaller than the associated error). Image taken from Ref. [40]

Figure 2.4: Measure of shifted OAM power spectrum. OAM probability distri-
butions are measured for two different optical fields, obtained when shining a sequence
of two q-plates with q1 = 1 and q2 = 1/2. A further q-plate with q = 4 shifts the final
spectrum by M = 8 units. a) OAM spectrum for the case δ1 = π and δ2 = π. b) The
same data are reported for a different field, obtained when δ1 = π and δ2 = π/2. Error

bars represent the standard error multiplied by three. Image from Ref. [40]
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Figure 2.5: OAM spectrum for a shifted q-plate. We measure the OAM power
spectrum at the exit of a q-plate (q = 1, δ = π) shifted with respect to the axis of the
impinging Gaussian beam, which is left-circularly polarized. The overall spectrum is
shifted by M = 8 units since we are using a further q-plate with q = 4 and δ = π.
However, we plot the original OAM distribution associated with the signal field. a-f)
Experimental (green) and simulated (red) OAM power spectra when the lateral shift
is equal to a∆x, with a = 1, 3, 6, 9, 12, 15 and ∆x =0,125 mm, respectively. Error bars
represent the standard error multiplied by three. g-i) Examples of the experimental
intensity pattern I0 used for determining the power spectra reported in panels a,c,e.
The number of azimuthal fringes reveals that the OAM spectrum has been shifted.
j- k) First and second moment (〈m〉 and 〈m2〉) measured as a function of the lateral
displacement. Error bars are not visible because smaller than the experimental points.

Image from Ref. [40]



Chapter 3

Topology and dynamics of

polarization singularities in

optical beams

3.1 Introduction

1 Quantum Walks with structured light are processes that generate complex light fields.

As we have mentioned in the introduction of the previous chapter, they give rise to

superpositions of multiple helical modes. Moreover these processes are implemented

introducing spatially dependent transformations of the polarization state. As a con-

sequence the resulting light beam exhibits a polarization state that changes spatially.

The resulting polarization patterns can present interesting features, like polarization

singularities, that can be investigated in the future to better understand the topolog-

ical properties of Quantum Walks. Motivated by these ideas, we started to study the

polarization patterns that are produced by a single q-plate, focusing on the behavior

of polarization singularities when changing the optical retardation δ. The results, de-

scribed in Ref. [83], showed interesting phenomena like the splitting of singularities with

high topological charge and their peculiar evolution along the propagation direction.

Light beams showing an inhomogeneous polarization distribution, commonly referred

to as vector beams (VBs), represent a precious resource in an increasing number of

photonic applications [84]: astronomy [85], microscopy [86, 87], optomechanics [88, 89],

materials structuring [90], nanophotonics [91, 92] and quantum sciences [16, 93–95] are

some remarkable examples. Uniformly polarized beams can be easily converted into such

1Some paragraphs and sentences of this section are adapted or copied verbatim from the work [83]
which I coauthored

42
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spatially structured fields by coupling the vector and the spatial degrees of freedom of

light [84, 96], as recently demonstrated in a variety of photonic architectures [97–106].

The fine structure of VBs polarization may show several typologies of singular points

[107–111], in close analogy to other inhomogeneous systems (fingerprint, tidal heights

across the oceans, etc.).

This chapter is dedicated to the study of polarization singularities. We will first intro-

duce some generalities on how light beams with spatially varying polarization can be

generated and controlled using devices, like the q-plates, that realize spin-orbit coupling

effects. Then we will review the classification of topological singularities that can be

observed in paraxial beams. Point-like singularities, like C-points and V-points can be

characterized in terms of an index that is an integer or semi-integer number. These

indexes will represent a first simple example of topological invariants, a mathematical

concept that will be of fundamental importance in Chapter 5. Polarization singularities

can evolve and transform under the constraint of index conservation, i.e. the sum of

the indexes of all the singularities present in a given region can change only if some of

these singular points flow out of this region. On the other hand there is no constraint

on the conservation of the ”character” of a singularity, e.g. a V-point can transform and

evolve into C-points. Finally, by reviewing the results in Ref. [83], we will give examples

of these effects by considering the consequences of perturbing a radially or azimuthally

polarized beam with an uniformly polarized one.

3.2 Paraxial beams with spatially varying polarization

We are used to read in standard optics textbooks about uniformly polarized electromag-

netic waves. However one can consider also beams with spatially varying polarization

where at each position in space the electric field rotates in a different fashion. These

kinds of beams are becoming of great interest for their applications in classical and

quantum optics.

A paraxial light beam is inhomogeneously polarized when the electric field can be written

in the form:

E(x, y, z) = AL(x, y, z)eL +AR(x, y, z)eR. (3.1)

This equation can be understood as the superposition of two different spatial modes of

light, AL and AR, with orthogonal polarizations, eL and eR. At each point in space

Eq. 3.1 describes a different point on the Poincaré sphere. Light beams of this kind are

known as Vector Beams (VB).

Among the most known and important examples there are the so called Vector Vor-

tex Beams (VVB) obtained by coherently superimposing beams which are orthogonally
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polarized and carry opposite Orbital Angular Momentum:

|V V B〉m = f(r, z)
(
cL|L〉 e−imφ + cR|R〉 eimφ

)
, (3.2)

where cL/R are complex coefficients and f(r, z) takes into account the radial envelope.

In particular the VVB often considered in literature are of the form:

|l, α〉 =
|l〉 ⊗ |L〉+ eiα| − l〉 ⊗ |R〉√

2
, (3.3)

Here we used the Dirac notation to highlight that these states of the electromagnetic

field are characterized by a non-separability between the SAM and OAM. In this sense

they can be regarded as a realization of entanglement between two degrees of freedom

that are distinct because corresponding to different observables and not because belong-

ing to different particles. As a consequence, the term classical entanglement [112] was

coined (however the debate around this terminology is still open [94, 113]). This idea has

become of interest since one can increase the effective number of qubits in a quantum

system adding degrees of freedom rather than particles: we cite, for example, the recent

realization of a 18 qubit state using 6 photons and 3 degrees of freedom [114].

Eq. 3.3 describes a beam with annular shaped intensity and everywhere linearly polar-

ized with a spatially varying orientation of the polarization ellipse. In particular, the

polarization pattern is singular on the beam axis, where the electric field itself is zero.

Indeed the name Vector Vortex Beams comes from the nonzero vorticity of the electric

field orientation. In the particular case l = 1 and α = 0, π/2 one obtains respectively,

a radially or azimuthally polarized beam (showed in Fig. [? ]). These two kinds of

VVBs are of interest in a large variety of applications: from focusing by high numerical

apertures [86], microscopy [87] etc... Moreover the set |l, 0〉, |l, π/2〉, with l fixed, con-

stitutes a basis of a 2-dimensional Hilbert space, i.e. VVBs can be used as qubit states

for quantum computation and communication. In particular they have been suggested

for performing alignment free quantum communications [16], and have been recently

exploited for intra-city high dimensional Quantum Cryptography [115].

Another interesting class of VBs is given by the so called Full Poincaré Beams (FP

beams), introduced in Ref. [100]. They are optical beams that cover the entire Poincarè

sphere, i.e. they realize a stereographic projection in real space of the sphere. One

example is given by the superposition of a Gaussian and an LG0 1 mode, where each

mode has a polarization orthogonal to the other:

EFP (r, θ) = cos(θ)LG0 0(r)e1 + sin(θ)LG0 1(r)e2. (3.4)
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Figure 3.1: Polarization patterns of VVBs Some polarization patterns of Vector
Vortex Beams are shown for different values of l. Panels a-c correspond to l = 1 and
α = 0, π/2, π for,respectively, radial, (a), spiral, (b), and azimuthal, (c), polarization
patterns. In panels (d-f) the polarization patterns for l = 2, 3, 4 (α = 0) are displayed
showing the characteristic flower-like shape. Web-like patterns can be obtained for
l < 1. Panels (g-i) show examples for l = −2,−3,−4. In all the figures the background
color corresponds to the local intensity, assuming a LG radial mode, whose colour scale

is shown in panel (j).

where e1,2 are orthogonal vectors. Using the explicit expressions of LG0m modes, this

equation can be rewritten as:

EFP (r, θ) ∝
(
e1 + ei(φ−arctan(z/z0))

√
2

r

w(z)
tan(θ)e2

)
cos(θ)e−r

2/w2
. (3.5)

From this expression one can easily see that in the transverse plane there is any possible

polarization state. The factor
√

2 r
w(z) tan(θ) determines at every point in space the ratio

between the polarizations e1 and e2. In particular the polarization state is switched from

e1 to e2 when going from the origin, r = 0, to infinity. At fixed radius the azimuthal

phase term realizes all the possible relative phases between the two polarizations.
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Figure 3.2: Polarization patterns of FP beams. In(a) a FP beam obtained
superposing orthogonally polarized LG0,0 and LG0,1 modes is shown. The colors of
the polarization ellipses correspond to their handedness (red for left-handed ellipses
and blue for right-handed). In (b) we show the pattern that results from replacing
the LG0,1 mode with a LG0,−1. In both cases one obtains a stereographic projection
of the Poincarè sphere (right circular polarization is actually located at infinity). The
dashed black circle indicates the presence of an L-line, i.e. a line where the polarization
is everywhere linear. As we will see in the next section, the difference between panels
(a) and (b) is in the topological charge associated to the point of circular polarization,

called C-point.

Both the space variant polarization patterns described above can be obtained using q-

plates, playing with the input polarization and the optical retardation [17, 101]. Indeed

the action of a q-plate with δ = π on an input linearly polarized beam is:

|L〉+ eiγ |R〉 q−plate δ=π−→ ei2(α0+qφ)|L〉+ e−i2(α0+qφ)+iγ |R〉. (3.6)

For q = 1/2, the resulting polarization pattern is radial, azimuthal or spiral-like, depend-

ing on the value of 2α0 − γ. For higher values of the topological charge q one obtains

the flower-like patterns shown in Fig. 3.1. Similarly one can obtain web-like patterns

using q-plates with negative q.

Poincarè beams can instead be realized by sending a circularly polarized light into a

q-plate with δ < π. For example, an input L polarized beam with Gaussian amplitude

becomes:

cos
(δ

2

)
HyGG0,0(r, z)|L〉+ i sin

(δ
2

)
ei2(α0+qφ)HyGG−|2q|,|2q|(r, z)|R〉. (3.7)

where in the expression of the HyGG mode we considered only the dependence on the r

and z coordinates and made explicit the dependence on the azimuthal angle. The fact

that this is indeed a Full Poincarè beam can be understood by comparing the radial

shapes of the HyGG0,0 (Gaussian mode) and the HyGG−|2q|,|2q| mode. Indeed, the
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HyGG−|2q|,|2q| mode diverges more rapidly than the Gaussian one. Hence at any plane

z > 0 the |R〉 polarization becomes dominant for r → ∞. This is strictly true in the

far field. In the near field the ripples in the radial structure of HyGG modes give rise

to multiple concentric L-lines, i.e. lines in the transverse plane where light is linearly

polarized, hence there is not a one to one mapping from the Poincarè sphere to the

transverse plane. However one can get rid of this by filtering out all the LG modes with

p > 0, as was done in Ref. [104] where vector beams where generated directly from a

laser cavity.

3.3 Polarization singularities in paraxial beams

Singularities are points or, more generally, sets of points, where some property of a field

is ill defined. We have already met some examples of point singularities in complex

scalar fields (like in the amplitude of a scalar beam carrying OAM) and line fields (like

in the liquid crystals orientations in q-plates or in the polarization patterns showed in

the previous section). Here we briefly review the definition and characterization of these

kind of singularities focusing on fields defined in two dimensions. First let us consider a

complex scalar field f(r), with r = (x, y), that can be written as:

f(r) = ρ(r) exp(iψ(r)) = ξ(r) + iη(r).

One will have a phase singularity at the zeros of f , i.e. the points for which f(r) = 0.

Indeed at these points the value of the phase is undefined. As an example, we have seen

that an optical beam whose local amplitude is approximated by: A(x, y) = (x+ iy)m =

r exp(imφ), has a phase singularity at the origin, where the amplitude is zero. The

integer m determines the ”strength” of the singularity. It can be associated to the

number of times the phase of the field goes from 0 to 2π in a path around the singularity.

More precisely, one can define the integral:

s =
1

2π

∮
C
dψ =

1

2π

∮
C
∇ψ(r) · dr, (3.8)

where C is any smooth closed path oriented in the counterclockwise direction over which

the field f is well defined and different from zero. Since the phase is defined modulo

2π, this integral is an integer number and cannot be changed by smooth deformations.

Hence the value of s, when C encloses the singularity, can be ascribed to the singularity

itself. One refers to s as the topological charge, or winding number, of the singularity.

Similar ideas can be introduced for vector fields in two dimensions. A vector field V(r) =(
Vx(r), Vy(r)

)
has an undefined direction when both its components vanish: V(r) = 0.

Still, one can define for this singularity a topological charge, known as Poincarè Index.
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This is done defining the modulus V and direction θ of the vector field. As in Eq. 3.8

one defines:

IP =
1

2π

∮
C
dθ.

In this chapter we will be more interested in line fields, or fields of ”headless vectors”.

Here the direction θ is defined only modulo π (rather than 2π). As a consequence the

Poincarè index can also be a semi-integer. We have already seen an example of semi-

integer topological charges in q-plates. Indeed the liquid crystal pattern can be regarded

as a line field specifying the local orientation of the molecular director. The charge q is

the Poincarè index of this line field.

When dealing with singularities in polarization patterns we must consider ellipse fields.

An ellipse can be defined by two parameters: the eccentricity ε and the orientation

θ. Like in line and vector fields, we can look for points where the orientation θ is ill

defined. These are points where the ellipse becomes a circle. Hence, in polarization

patterns, points of circular polarization, like the ones appearing in Poincarè beams, are

singular points, called C-points. In a polarization pattern one should append to any

ellipse some additional property: the handedness and the intensity of the electric field.

In this case the orientation is ill defined not only where the polarization is circular,

but also at points of zero intensity. Indeed this is the case that we observe in Vector

Vortex Beams where the polarization has a vortex-like structure around the beam axis.

In this case the singularity in the polarization pattern is called V-point. The sign of

the topological charge of a V-point determines the polarization pattern surrounding it.

For positive charges the polarization realizes a flower-like pattern, while for negative

charges one has web-like patterns (see Fig. 3.1). The V-point is actually a singularity

in the electric field and can have only integer topological charges. One can have also

line singularities which are lines where the polarization is linear at each point. These so

called L-lines appear for example in Poincarè Beams as shown in the previous section.

While the winding number of a V-point can be only an integer, the C-points can carry

also semi-integer topological charges. Indeed the simplest C-points are the ones with

IP = ±1/2. These C-points can be further distinguished by the patterns of the ellipses

orientations surrounding them. In particular one looks at the number of radial lines, i.e.

lines starting from the singularity where the orientation θ of the polarization ellipse is

radial (θ = φ, where φ is the azimuthal angle). Thus there are three kinds of C-points

[116] called: lemon, star and monstar. The lemon has a topological charge +1/2 and

only one radial line, an example is shown in Fig. 3.2a. The star has topological charge

−1/2 and three radial lines (like in Fig. 3.2b). The monstar, however, has positive

topological charge IP = +1/2 and three radial lines. Lemon and star patterns can be

realized using q-plates [17], while, for realizing monstars with space variant birefringent

optics, it has been recently showed that one needs an elliptically-symmetric q-plate [117].
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Topological singularities can split, merge and modify their nature. There are some

general principles that allow to understand their dynamics. These principles are dis-

cussed in Ref. [118]. The first is the conservation of total topological charge: due to

the continuity of the wave field, during free propagation the total topological charge in

the field cannot change. As a consequence, point singularities can only appear and dis-

appear as twins with opposite charge. This result is known as the twin principle. This

principle does not necessarily holds in the presence of boundaries where the wave field

changes abruptly. Thus discontinuities induced in the wave field can change its topology.

The twin principle does not completely determines the features of singularities in a wave

field for the signs of the two twin singularities cannot be determined from it. Another

principle, the proof of which can be found in Ref. [118], allows to solve this ambiguity.

The sign principle, indeed states that: adjacent vortices on any given zero crossing must

have opposite sign. Zero crossing are defined as lines where the real, or the imaginary

part, of a scalar complex field is zero. Indeed vortexes always lie on the intersections

of zero crossings. We cite some corollaries of the sign principle: the sign of any single

vortex fixes the sign of all the remaining vortexes in the wave field. As a consequence,

flipping this sign changes the signs of all the other vortexes. Moreover, the sign of the

first vortex generated during the evolution of a wave field fixes the sign of all future

generations of vortexes.

We have stated the sign principle in terms of scalar fields. However it also holds for sin-

gularities in polarization patterns. Indeed, both V-points and C-points can be regarded

as singularities of the scalar field:

σ12 = S1 + iS2. (3.9)

Where S1 and S2 are the first and second reduced Stokes parameters. Indeed the argu-

ment of this field is proportional to the orientation of the polarization ellipse. It is also

evident that the zeros of this field correspond to S3 = ±1, in the case of C-points, or

S3 = 0 where the field intensity itself is zero, which is the case of a V-point singularity.

3.4 Topological features of vector vortex beams perturbed

with uniformly polarized light

2 In this section we will report the results of Ref. [83], where we investigated the prop-

erties of polarization singularities by exploiting the tunability of q-plates.

2Some paragraphs and sentences of this section are adapted or copied verbatim from the work [83]
which I coauthored
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We consider those spatial regions where there is no preferred direction for the oscilla-

tions of the electric field [107, 108, 111], with the most relevant case being represented

by the so called C-points, that is points where the polarization is circular. Their forma-

tion and dynamical evolution has been investigated in the complex polarization pattern

characterizing several structured fields, such as for instance speckle fields [119], random

superposition of vector waves [108], light passing through inhomogeneous anisotropic

media [17, 100], photonic crystals [120, 121]. Independently of the specific system, the

electric field around a polarization singularity is oriented according to the value of the

associated topological charge η. Besides its connection with the surrounding polariza-

tion distribution [122], the value of this charge is particularly important in determining

the singularity robustness, since only the lowest order C-points with η = ±1/2 are stable

with respect to small deformations of the optical system [107, 116, 121, 123, 124]. This

is analogous to the case of high-order optical vortexes in scalar field, which have been

observed to split into elementary vortexes as soon as a tiny perturbation is introduced

[125–130]. The instability of higher-order polarization singularities, with the role of C-

points played by points of unpolarized light, can be beautifully observed in the skylight

polarization pattern; here the original two singular points (η = 1), positioned at the Sun

and the anti-Sun, split into four (η = 1/2) because of the contribution from multiple

Rayleigh scattering of sunlight in the atmosphere [131].

Inspired by these phenomena, here we investigate the formation of lowest order C-points

at the center of vector vortex beams (VVBs) [132, 133] characterized by a polarization

singularity typically referred to as V-point [124]; differently from the case of a C-point,

here the instantaneous oscillation direction of the electric field is undefined (at any time).

The lowest topological charge admitted for V-points is ±1, since these are singularities

of a field of vectors (the instantaneous electric field), while C-points refer to a field of

ellipses (the trajectory described by the vector in a temporal cycle). Here we show that

a small perturbation changes the nature of the vector field characterizing pure VVBs,

whose local polarization states acquire a tiny ellipticity. As in such a field Maxwell’s

equations allows for polarization singularities with a lower charge (C-points), even the

lowest order V-point becomes unstable and unfolds into a pair of equally charged C-

points [124]. We investigate experimentally this mechanism by perturbing a radial and

azimuthal VVB (η = 1) with a uniformly polarized beam, and complete the analysis

with an example of higher order VVB (η = 2). This kind of perturbation acts as a co-

herent background, whose role has been investigated in the decay of optical vortexes at

the center of beams carrying OAM [129]. Recently a similar study of V-point unfolding

was proposed theoretically in Ref. [134], although the analysis is focused on V-point and

C-point dynamics during the beam propagation, rather than the instability of V-points.

By controlling the amplitude of the two fields, we report the progressive formation of

C-points (that originate from the central V-point), whose separation increases as the
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Gaussian term gets higher. Importantly, the polarization pattern modification is always

accompanied by a deformation of the original intensity pattern. Interesting features

arise when increasing the intensity of the perturbing term, in particular when this be-

comes equal or higher than the original VVB and the polarization pattern may lose its

non-trivial topological features (at least in the region where almost all the field energy

is enclosed).

V-point instability at the center of a vector vortex beam

In the case of an ideal VVB, a V-point with charge η = m is present at the center of the

beam, at any plane transverse to the propagation direction. In order to show a possible

mechanism that leads to the V -point decay, let us consider the specific case m = 1 and

cL = cR = 1, corresponding to a radially polarized beam. At a fixed transverse plane

and very close to the beam center, that is at r much smaller than the typical beam

dimensions, Eq. 3.2 has a simpler expression:

|V V B〉rad1 ' Ar
(
|L〉 e−i φ + |R〉 ei φ

)
, (3.10)

where A is a real constant defining the field intensity. We add to Eq. 3.10 a linearly

polarized term with uniform amplitude ε ei αε (ε and αε are real constants), whose elec-

tric field is oriented at an angle θ with respect to the horizontal direction. In the

representation of circular polarizations, this perturbation can be written as |ε, θ〉 =

ε/
√

2 ei αε
(
e−i θ |L〉+ e i θ |R〉

)
; when added to the original VVB, Eq. 3.10 becomes

|V V B〉rad1 → |V V B〉rad1 + |ε, θ〉 '

' (Ar e−i φ + ε ei (αε−θ))|L〉+

+ (Ar ei φ + ε ei (αε+θ))|R〉. (3.11)

Left and right C-points are located at positions (rL, φL) and (rR, φR) where the right

and left circular components of the field are vanishing, respectively. It is straightforward

to see that

rL = rR = ε/A; φR = θ − αε − π; φL = θ + αε + π. (3.12)

In general φL 6= φR and two C-points with opposite handedness but with equal charge

η = 1/2 generate from the original V-point. Using the same approach it is possible to

show that V-points of order m unfold into 2m C-points, with the sign of their charge

being equal to that of the original singularity.
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Figure 3.3: Instability of polarization singularities at the center of a VVB.
The instability of a V-point with topological charge η = 1 is investigated experimentally
by changing the q-plate retardation with respect to the optimal condition δ = π. In
panels a-b we plot the quantity ψ = 1

2Arg(S1 + i S2), that represents the orientation
of polarization ellipses, for a radial (panel a) and an azimuthal (panel b) VVB. Colors
associated with different values of ψ are shown in the figure legend. As visible in the
figure labels, plots are obtained when varying δ in the range {12π/16, π} with steps
of π/16. Importantly, C-points and V-points appear here as vortexes of the scalar
field S1 + i S2; as we decrease δ, two C-points clearly appears in place of the V-point.
As discussed in the main text, we are considering only a small area (of the order of
w2/4, where w is the beam width) at the center of the beam, where the singularity
transformation is taking place. In c-d, we show the corresponding experimental and
theoretical polarization patterns associated with these fields. Here, red and blue colored
ellipses are associated with left (S3 > 1) and right handed (S3 < 1) polarization states,

respectively. Image from Ref. [83]

Generation and perturbation of a VVB in electrically tunable q-plates

These results can be easily simulated experimentally by exploiting the same approach

reported in [101] for the generation of pure VVBs. The preparation and the controlled

alteration of a VVB is obtained by exploiting tunable q-plates [33, 135]. When passing

through a q-plate placed at the beam waist, a TEM00 Gaussian beam with uniform left

or right circular polarization is transformed as follows [136]:

Q̂δ TEM0,0 |L〉 = cos

(
δ

2

)
TEM0,0 |L〉+

i sin

(
δ

2

)
HyGG−|2q|,2q e

i 2(q φ+α0) |R〉,

Q̂δ TEM0,0 |R〉 = cos

(
δ

2

)
TEM0,0 |R〉+

i sin

(
δ

2

)
HyGG−|2q|,−2q e

−i 2(q φ+α0) |L〉, (3.13)

where α0 is the angle of the liquid crystals optic axis at φ = 0. The previous equa-

tion shows that left and right circular polarizations are partially converted into helical

modes of order ±2q, respectively, with the amount of converted light depending on
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the value of δ (δ = π corresponds to a full conversion). Helical modes generated by a

q-plate are described by the so-called HyperGeometric-Gaussian modes (HyGGp,m) [?

], corresponding to a specific class of light beams carrying OAM [137], analogously to

Laguerre-Gauss or Bessel beams. Two indices (p,m) specify the mode properties, where

m is associated with the OAM content while p determines the radial distribution of the

field. Eq. 3.13 clearly shows that, if δ = π, a linearly polarized Gaussian beam is fully

converted into a VVB, showing a V-point with charge η = 2q at its center. In particular,

azimuthally and radially polarized beams are obtained when the input polarization is

vertical (V ) and horizontal (H), respectively, the plate charge is q = 1/2 and α0 = 0

(see Fig. 3.3) :

Q̂π TEM0,0 |H〉 = i |V V B〉rad1 ,

Q̂π TEM0,0 |V 〉 = i |V V B〉az1 . (3.14)

where kets |H〉 and |V 〉 represent H and V polarizations states. When changing the

value of the retardation to δ = π + ε, with ε � π, a fraction ε of the input beam is

added to the pure VVB:

Q̂π+ε TEM0,0 |H〉 = i sin [(π + ε)/2] |V V B〉rad1 +

+ cos [(π + ε)/2] TEM0,0 |H〉 '

' i
(
|V V B〉rad1 + i εTEM0,0 |H〉

)
. (3.15)

A similar expression holds for an azimuthal VVB. In close analogy to Eq. 3.11, the latter

equations show that a small variation of δ can be treated as a perturbation to the origi-

nal VVB. In Fig. 3.3 we show a simulation of the polarization distribution of perturbed

radial and azimuthal VBs (Eq. 3.15). In particular in the upper part of panels a-b we

plot a 2D map of the orientation angle ψ of the local polarization ellipse, calculated

in terms of the reduced Stokes parameters; here the two C-points are clearly visible as

vortexes of this scalar field (the ellipse orientation), with their separation changing with

the value of δ.

Experimental results

To confirm the theoretical predictions discussed in the previous section, we implemented

the setup shown in Fig. 3.4. The output of a Ti:Sa laser (λ=800 nm) is coupled into

a single-mode fiber (SMF), used as a spatial filter in order to produce a pure TEM00

Gaussian mode at the input of the setup. At the exit of the SMF, the beam (uniform)

polarization is prepared into vertical or horizontal states by means of a linear polarizer
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Figure 3.4: Experimental apparatus. A TEM00 beam is obtained by filtering the
output of a Ti:Sapphire laser through a single mode fiber (SMF). The initial polar-
ization state is selected by using a polarizing beam splitter (PBS), a half-wave plate
(HWP) and a quarter-wave plate (QWP). Then the beam passes through an electri-
cally tunable q-plate, whose optical retardation is controlled by applying an adjustable
electric field. When exiting the q-plate the beam has acquired an inhomogeneous po-
larization pattern that can be experimentally reconstructed by employing a point by
point Stokes polarimetry, as discussed in the main text. The projection over the six
polarization states H, V , A, D, L, R is implemented through a QWP and a HWP fol-
lowed by a PBS. The intensity of the analyzed field component is recorded on a CMOS
camera. A lens (focal length f = 10 cm) and a 20X microscope objective placed on
a translation stage are used to study the polarization pattern at different distances z

from the q-plate. Image from Ref. [83]

followed by a half-wave plate (HWP). A q-plate (q=1/2) with optical retardation δ,

whose value is controlled through a tunable electric field applied to the outer faces of

the cell, transforms the beam into the VB reported in Eq. 3.15. In order to reconstruct

the 2D polarization pattern in a transverse plane we implemented a point-by-point po-

larization analysis, similar to that reported in Ref. [101]. For each beam configuration,

on a CMOS camera (1280x1024 pixels) we recorded the intensity profile of the field

components associated with {H,V }, {L,R} and diagonal and anti-diagonal ({D,A})
polarization states. These components are selected by rotating suitably a set of wave-

plates, followed by a linear polarizer. By using a dedicated software, Stokes parameters

are calculated point-by-point according to the definitions S0 = IH + IV , S1 = IH − IV ,

S2 = ID − IA, S3 = IR − IL; here Ij represent the measured intensities of the six polar-

ization components, with j ∈ {H,V,D,A,L,R}. To take into account small fluctuations

of the beam position with respect to the camera the field intensities are averaged over

arrays of 3x3 pixels. An imaging system made of a lens (focal length = 10 cm) followed

by a microscope objective is used to determine the polarization pattern at different po-

sitions along the propagation axis z.

By introducing a tiny alteration of the q-plate voltage with respect to the optimal condi-

tion δ = π, we investigated the instability of a V-point singularity that transforms into a

pair of C-points. When δ = π, the polarization is linear in every point of the transverse

plane and has a radial or azimuthal pattern, depending on the input polarization. If

we introduce a small detuning, that is δ → π − ε, a uniform polarized Gaussian beam

is added coherently to the original VVB. As previously discussed, 2η C-points are ex-

pected to form in place of the original singularity with topological charge η. In Fig. 3.3
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we show the experimental results that confirm these predictions. In order to unveil the

formation of C-points pairs, that occurs very close to the beam center, we used a single

lens to image this small portion of the beam on the camera sensor. We imaged on the

camera the beam at z = 0.22 zR and considered only the region r < 0.58w0, where zR

and w0 are the Rayleigh range and the beam waist, respectively. The measured Stokes

parameters are used to determine the polarization pattern and, as a consequence, the

orientation angle ψ of the local polarization ellipses, calculated as ψ = 1
2 arg (S1 + i S2).

In good agreement with the theoretical predictions (see Fig. 3.3c-d), we observe the

original V-point splitting into two C-points with opposite handedness, whose spatial

separation grows as ε is increased, in agreement with Eq. 3.12. The topological charge

of such C-points is 1/2, hence the total charge is conserved.

The same phenomenon can be observed for V-points with higher topological charge, ob-

tained using q-plates with |q| > 1/2. In Fig. 3.5 we plot the polarization pattern and the

orientation angle of ψ measured for a q-plate with q = 1 and α0 = 3π/4. Here a V -point

with charge η = 2 is observed to split into four C-points. For each circular component,

the central vortex has a charge ±2; being unstable, it decays into two equally charged

vortexes [127, 129], and this process is much faster (with respect to a variation of δ)

with respect to the V-point decay discussed previously (see Fig. 3.3). Two C-point pairs

move away from the beam center as δ decreases, although in each of them the distance

between the two singularities is small and the system resolution does not allow for a

clear detection.

By changing the voltage applied to the q-plate we can tune the device retardation to any

value in the range (0, 2π), thus we can explore what happens when the Gaussian term

becomes comparable with the VVB amplitude. In Fig. 3.6 we show the polarization and

intensity patterns measured in the near field of the beam (compared with theoretical

predictions), obtained when varying δ between 0 and π with steps of π/8. Theoreti-

cal simulations are added here for comparison. At a glance, decreasing δ C-points are

observed to move away from the beam center and seem to disappear when δ < π/2.

Accordingly, the topological features of the polarization pattern change abruptly when

the amplitude of the Gaussian term becomes higher than the original VVB. This is not

surprising, as we are exploring an intermediate regime between the extreme cases δ = 0

(a Gaussian beam with no polarization singularities) and δ = π (VVB beam with a

η = 1 V-point), which have different topological features. In general, we expect that a

well defined threshold at δ = δ∗ should separate these two regimes; when δ < δ∗, the

beam topological features should be those of the uniformly polarized Gaussian beam,

while when δ > δ∗ they should be similar to the radial or azimuthal patterns, with pairs

of C-points in place of the original V-point. However, as the VVB and the perturbing

term diffract differently, these features (and the value of δ∗) are expected to change

when the beam propagates, making the situation much more complex. We investigate



Chapter 3 -Polarization patterns 56

Figure 3.5: Instability of a higher-order V-point in VVB with η = 2 generated by
a q-plate with q = 1 and α0 = 2.121, acting on a TEM0,0 vertically polarized beam.
a-b) We plot the orientation angle ψ of the measured polarization ellipses, and the
corresponding theoretical predictions, when varying δ between δ = π and δ = 3π/4
with steps of π/16. Simulations show that the original V-point splits into two pairs of
C-point; similarly to the previous case, in each pair the two singularities have opposite
handedness. In the experimental data, the formation of these two pairs can be observed
clearly: as discussed in the main text, this is associated with the decay of the high-
order phase vortex in each of the two circular components. Nevertheless, for each pair
the system solution does not allow to distinguish two different C-points, at least for
small deviations from the ideal case. In c-d, we show the correpsonding experimental
and theoretical polarization patterns associated with these fields. Here, red and blue
colored ellipses are associated with left (S3 > 1) and right handed (S3 < 1) polarization

states, respectively. Image from Ref. [83].

this behavior by considering the expression of the beam generated by a q-plate when

shined with a H or V polarized Gaussian beam:

|OUT 〉 =

(
TEM00(ρ, ζ) cos (δ/2)+

+ iHyGG−|m|,|m|(ρ, ζ)eimφ sin (δ/2)

)
|R〉±

±
(

TEM00(ρ, ζ) cos (δ/2)+

+ iHyGG−|m|,|m|(ρ, ζ)e−imφ sin (δ/2)

)
|L〉,
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where the ± sign stands for H or V input polarization, respectively, and m = 2q.

Adimensional units are introduced here, where the distance from the q-plate z and the

radial coordinate r are normalized with respect to the Rayleigh range zR and the waist

w0 of the beam, respectively (ζ = z/zR, ρ = r/w0). C-points positions are calculated

by solving the equations CL/R(ρ, φ, ζ) = 0, where left and circular components CL/R are

those reported in Eq. 3.16 (details on this analysis are reported in Appendix B). In Fig.

3.7 we plot the position of left-handed C-points with respect to the coordinate ζ. For

small values of ζ, multiple rings characterize the radial distribution of HyperGeometric-

Gaussian modes and many C-points may appear at given transverse plane. We can

note that for any value of δ and ζ there exist at least a left-handed C-point (and its

right-handed partner), although it might be positioned in the peripheral regions of the

beam where the field intensity is negligible. On the other hand, we can note that as

we approach the near field, striking differences manifest when the q-plate retardation is

higher or lower than π/2. In the latter case singularities move away at infinite distances,

while in the former case L and R C-points merge at the beam center (forming a single

V-point), since the width of the central dip in HyGGpm modes with m 6= 0 vanishes as

ζ → 0. For high values of ζ (far field), numerical simulations show that the distance

between C-point positions and the beam axis is proportional to the coordinate ζ. In

this configuration, we can evaluate if these singularities can be still considered within

the beam; in particular, for different values of δ we can compute the fraction of the

beam intensity contained in the circular region delimited by the C-point radial position.

In Fig. 3.7b we plot the relative encircled intensity of the beam, which is observed to

increase as the Gaussian contribution becomes stronger. When δ < π/8, for example,

more than the 99% of the beam intensity is contained in the radius defined by the C-

point position, i.e. the singularities can be considered as lying outside the beam. These

different features are a consequence of the irregular behavior of HyGG|m|,m modes in

the limit ζ → 0. As discussed in the following subsection indeed C-points can form at

the intersections between the Gaussian and HyGG|m|,m envelopes; when δ > π/2, these

envelopes cross in the region of the central dip characterizing HyGG|m|,m modes, at a

specific radial distance that depends on δ. However, since the dip width vanishes when

approaching the near field, independently of δ all C-points merge at the center. When

δ < π/2, singularities do not form in the HyGG dip but rather at the intersection of

the tails of both Gaussian and HyGG modes; such intersections exist since the latter

have a larger radial profile, for finite values of ζ. But as ζ → 0, the HyGGs envelope

converges to that of the Gaussian beam, and clearly two Gaussian profiles with different

amplitudes cannot have intersection points, so that all C-points are expelled from the

beam. Below, we will repeat this analysis for the simpler case in which Laguerre-Gauss

modes are taken in the place of HyGG modes.
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Figure 3.6: Transition from a trivial to a topologically non-trivial polarization pat-
tern. In panels a-b we report the experimental and theoretical intensity and polarization
distribution of the near field (ζ = 0.01) for both radial and azimuthal VVB, respectively.
We observe no polarization singularities (actually, C-points exist in a region where the
beam intensity is too low, as shown in Fig. 3.7) when δ < π/2. At δ = π/2 an undefined
number of C-point dipoles appears, in proximity of the nodes of the HyGG−1,1 modes.
When δ is increased, a pair of C-points with η = 1/2 appears in the polarization pat-
tern, with the distance between these points getting smaller as δ → π. The topological
charge associated with a path enclosing both singularities is η = 1. Here, red and blue
colored ellipses are associated with left (S3 > 1) and right handed (S3 < 1) polarization

states, respectively. Image from Ref. [83].
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Figure 3.7: Dynamical evolution of C-points during propagation and asso-
ciated enclosed energy. (a) We plot the radial coordinate ρ of the position of left
handed C-points vs the longitudinal coordinate ζ, for different values of δ (the latter
are encoded in the color of the curve, as displayed in the figure legend). Two regimes
can be distinguished: for π/2 < δ < π C-points merge at the beam center (ρ = 0)
as ζ → 0, hence making the polarization pattern topology non-trivial. In the same
regime, additional closed loops indicate the existence of C-point dipoles appearing and
disappearing as the beam propagates, as a consequence of the dynamical evolution of
the radial ripples characterizing HyGG modes. For 0 < δ < π/2, instead, the C-point
radius increases indefinitely as we approach the beam near field. (b) For the same
values of δ as in panel a, we plot here the fraction of the beam intensity contained in
a circular region with a radius given by the C-point radial coordinate, in the far field
limit. These results, in particular, are obtained when considering ζ = 15, but in the

limit of largeζ, they remain essentially constant. Image adapted from Ref. [83].

As shown in Fig. 3.7, VBs obtained when δ < π/2 may show C-points only after a

definite value of ζ. We confirm experimentally this effect by investigating the dynamical

formation of such singular points in the polarization pattern of a beam obtained when

δ = 6.7π/16. In Fig. 3.8 we report the experimental data and the associated theoret-

ical predictions. Although no C-points are observed in the near field (see Fig. 3.6),

they appear as we increase the propagation distance ζ, in agreement with our previous

discussion (see Fig. 3.7(a)). In particular, at ζ = 0.2 we can observe a double pair of

singularities, as a consequence of the VVB amplitude profile at the first radial node of

the corresponding HyGG mode.

The formation and dynamical evolution of C-points singularities in VBs reported in Eq.

3.16 have simpler features when considering Laguerre-Gauss modes in place of HyGG

modes, since their radial distribution is less complex. LG beams are characterized by a

pair of indexes (p,m), where m is an integer fixing the OAM content of the mode, while

p is a positive integer determining the radial distribution. Specific architectures, such as

for instance a q-plate placed inside a laser cavity [104], can produce VVBs whose radial

distribution is that of LG modes with the lowest radial index p = 0. Differently from

the HyGG case, these have no radial nodes and the light is confined inside a single ring.
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Figure 3.8: Dynamical formation of C-points. Here we show that for δ < π/2
C-points (absent in the near field) appear during propagation. In panel a) we report the
C-point position versus the longitudinal coordinate ζ in the case δ = 6.7π/16, for a H
polarized input beam. The red line indicates the dimension of the regions investigated
in the experiment while blue dashed lines show the corresponding values of ζ. In panel
b), we report the plot of the orientation angle ψ and the polarization pattern of the
associated beam; here, theoretical simulations are added for comparison. Data refers
to three different propagation distances, as reported in the plot: when ζ = 0.1, no
singularities are visible in the polarization pattern; at ζ = 0.2, two C-point dipoles are
clearly emerging, and a single pair is observed at ζ = 0.4. In the polarization plots, red
and blue colored ellipses are associated with left (S3 > 1) and right handed (S3 < 1)

polarization states, respectively. Image from Ref. [83].

As a consequence, only one pair of C-points manifests in the VB polarization pattern,

independently of the longitudinal coordinate ζ. As we will show in the following, the

positions of C-points for LG beams can be analytically calculated and can be compared

with the beam width. In particular, it results that they are both proportional to the

quantity
√

1 + ζ2, with a different proportionality constant that depends on δ. Hence,

when δ is lower than a given threshold, no C-points can be found in the far field and

the polarization pattern is trivial.

3.5 Conclusions

3 In this chapter we investigated the topological features of vector vortex beams and

the robustness of the associated singularities when introducing a perturbation to the

field. Polarization singularities manifesting at the center of such beams are unstable

3Some paragraphs and sentences of this section are adapted or copied verbatim from the work [83]
which I coauthored
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and transform into multiple C-points with equal topological charge ±1/2, the lowest

order singularities of fully polarized light. Here we perturbed a VVB by adding co-

herently a tunable amount of a linearly polarized Gaussian beam and demonstrated

experimentally a possible mechanism that leads to the unfolding of the central singu-

larity, in analogy to similar phenomena observed in the skylight polarization [131] or in

high-order optical vortexes [111]. On one hand this realization provides a simple exam-

ple of transformations between different polarization singularities [123, 124, 134, 138];

on the other, it allows for a detailed investigation of phenomena that may affect op-

tical systems exploiting VVBs, where the presence of the fundamental TEM00 mode

can result from different types of misalignments [125, 126, 128], scattering [129] or from

turbulence in the medium where light propagates [139]. Investigating the stability of

VVBs can be of interest for all photonic applications involving these structured beams,

since a modification of the intensity pattern always accompanies the singularity decay.

As discussed before, similar alterations of a VVB can occur as a consequence of experi-

mental imperfections, and the beam distortion caused by the V-point splitting may play

a role in a variety of applications, as for example in material shaping [140]. Reversing

the current approach, as a prospect it could be possible to tune the q-plate optical retar-

dation in order to compensate the effect of experimental imperfections and reduce such

deformations of the beam profile [141]. Finally, these results may find application in the

context of singularimetry; weak fields can indeed be measured by letting them perturb

unstable optical fields, and features of materials that have interacted with such beams

can be extracted from the pattern formed by split singularities [142]. In addition, since

perturbations can be introduced by imperfections in the optical setup, the unfolding of

the central V-points can be used to assess the quality of the VVB generation system

[129]. We conclude observing that the technique used in this work for generating vortex

beams superimposed with uniformly polarized light has been applied in Ref. [143] to

extend the possible surface patterns that can be obtained with laser ablation.
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Photonic quantum walks

employing light’s spatial degrees

of freedom

4.1 Introduction

Quantum walks were first introduced in 1993 by Aharonov et al. [144] to study a

quantum counterpart of the classical random walk. The latter is a process where a

classical particle moves on a lattice or a graph, choosing randomly the motion direction

at every time-step, independently from its previous path. The simplest picture considers

a particle on a one dimensional lattice. At every step, the particle moves right or left

depending on the outcome of a random process, often depicted as a coin toss. In the

quantum version of this process the particle is in a quantum state with two degrees of

freedom: one spatial, which is infinite dimensional, and one ”internal”, which is finite

dimensional and is often identified with the spin. The internal degree of freedom is

necessary to introduce the quantum version of ”coin tossing”. Indeed, the quantum

walk introduced in Ref. [144] consists in the repetition of two elementary steps. A

translation on the lattice conditioned by the internal state, followed by a trasformation

on the internal state itself, that mimics the classical coin tossing operation.

The fact that the “quantum” coin tossing allows the particle to be not only in a finite

number of possible internal states, but also in a coherent superpositions of them, is the

essential feature that distinguishes the quantum walk from the classical one. This re-

sults in a completely different dynamics of the quantum walk with respect to its classical

counterpart. While the classical quantum walk is characterized by a diffusive spread-

ing of the particle probability distribution in position space (i.e. in one dimension, the

62
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variance of the distribution grows linearly with the number of steps) the quantum walk

presents an asymptotic distribution with ballistic features (in one dimension the vari-

ance of the probability distribution grows as n2, where n is the number of steps), which

results from quantum interference effects occurring during the process. This feature has

lead to the idea of using quantum walks for the speed up of search algorithms [145–147].

Moreover, contrary to the classical case, the probability distribution of the quantum

walk is dependent on the initial coin state.

After the work of Aharonov et al. quantum walks have become of great interest as tools

for quantum simulation and for quantum computation. Indeed it has been shown that

quantum walks can be used for universal quantum computation [148, 149], as a funda-

mental process for realizing quantum search algorithms [145, 146] and Boson Sampling

[150, 151]. Quantum walks have revealed themselves as a powerful tool for simulating

quantum systems, like topological states of matter [152] multiparticle statistics [153],

Anderson localization and other disorder related phenomena [154, 155], multiparticle

interactions [156] and even for modeling energy transfer in photosynthesis [157]. This

broad range of applications came out from new proposals of more complex quantum

walk protocols and their experimental realizations.

This chapter focuses on the experimental realizations of the quantum walks employed in

this Thesis. After a brief description of the general features of Quantum Walk processes

and a review of the most important photonic implementations realized so far, we will

give a detailed description of specific quantum walk protocols that can be implemented

exploiting the OAM space and the transverse momentum space of light. The q-plates

and g-plates, together with ordinary wave-plates, will be shown to be the fundamental

tools for the realization of these experiments. We will also show how these implemen-

tations allow to mimic the dynamic of a charged particle in a periodic potential under

an external electric field. In the next chapter we will show how these platforms allow to

investigate interesting topological phenomena

4.2 General features of quantum walks

The Quantum Walk (QW) is a process evolving in an Hilbert space given by the tensor

product HQW = Hw ⊗ Hc. The space Hw, called walker space, is infinite dimensional

and is spanned by the set of position eigenstates {|j〉}j∈X , where X is a lattice or a graph

of arbitrary dimensionality. Instead, the coin space, Hc, is a finite dimensional space

(often chosen two or four dimensional). The QW is defined by a set of unitary operators

applied to an initial state in HQW . These operators are of two kinds: rotation or coin

operators which act only on the coin space, and shift operators acting on the whole

space HQW . Shift operators change the position on X in a way that is conditioned by
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the coin state.

The simplest example of such a process is the QW introduced by Aharonov et al. [144],

that we will call standard Quantum Walk. In this case X = Z, i.e. the walker space is

a one dimensional lattice, and the coin space is two dimensional, i.e. spanned by the

vectors: {| ↑〉, | ↓〉}. The shift operator Ŝ is defined as:

Ŝ =
∑
j

(
| ↑〉〈↑ | ⊗ |j + 1〉〈j|+ | ↓〉〈↓ | ⊗ |j − 1〉〈j|

)
, (4.1)

where j ∈ Z. The shift operation is such that, if the internal state is, say, | ↑〉, then

the particle will move right, while, if it is | ↓〉 the particle will move left. If it is a

superposition c↑| ↑〉 + c↓| ↓〉, then it will move right or left with probabilities given by

|c↑|2 and |c↓|2. Between two successive traslations, the ”coin operation” changes the

internal quantum state. The coin operator, Ĉ, can be a generic unitary 2 × 2 matrix.

For example one can use the Hadamard matrix:

ĈHad =
1√
2

(
1 −1

−1 1

)

or a more generic rotation around the y axis of the Bloch sphere:

Ĉ(θ) = e−iθσy/2.

The single step operator is thus:

Û = ŜĈ.

Its action is illustrated in Fig. 4.1(a). A N step QW is realized applying the operator

ÛN on a generic initial state |ψ(0)〉. Often one chooses an initial state localized in a

given position. Examples of probability distributions arising form the standard QW are

shown in Fig. 4.1(b).

When the QW is unitary one can define an effective Hamiltonian Ĥeff from the identity

(here and hereafter we pose the Planck constant ~ = 1):

Û = exp(−iĤeff∆T ), (4.2)

where ∆T represents the conventional time interval between two steps. From now on we

will choose ∆T = 1. The basic idea of using QWs for quantum simulations is to engineer

Heff in order for it to have properties (e.g symmetries, spectrum...) shared with some

system of interest. Hence it is desirable to have at disposal an experimental platform

with many controllable parameters allowing to simulate a broad class of Hamiltonians.

The QW considered here is a time periodic process, hence it should be described by a
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Figure 4.1: Standard Quantum Walk. In a the single step of the standard QW
is schematically illustrated (adapted from [152]). In b two probabilities distributions
after 50 steps are plotted. They differ from the choice of the initial coin state. The red
distribution was obtained choosing the state | ↑〉 giving rise to an asymmetrical envelope.
A symmetric distribution is instead obtained for the initial coin state: (| ↑〉+ | ↓〉)/

√
2

(blue dashed line). In both cases the ballistic spreading is evident.

time dependent Hamiltonian:

H(t) = H(t+ ∆T )

. In the case H(t) commutes with itself at different times we can write Heff in the

closed form:

Heff =

∫ t+∆T

t
H(t′)

dt′

∆T
.

The effective Hamiltonian differs from a truly static Hamiltonian since it is defined only

as the exponent of the single step unitary operator. Hence adding to Heff an integer

multiple of 2π will not alter the description of the system. Therefore the eigenvalues of

Heff , called quasi-energies, are defined modulo 2π. This result arises from the the dis-

crete time translational symmetry, in analogy with the more familiar case of invariance

under discrete space traslations which results in the definition of quasi-momentum.

We point out that we are considering here the so called Discrete Time Quantum Walks

(DTQW). There is however also interest in Continuous Time Quantum Walks (CTQWs),

where no coin degree of freedom is introduced. A tipical example of experimental

CTQW is given by arrays of optical waveguides in which light propagates following

a Schroedinger-like equation, where the Hamiltonian resembles a tight binding model

[158].

Symmetry under discrete traslations, or lattice symmetry, is another fundamental prop-

erty of QWs on regular lattices since it allows to define quasi-energy bands, in analogy

with Solid State systems. Eigenstates of the quantum walk operator can in general be
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written as |q〉 ⊗ |s(q)〉, where:

|q〉 =
∑
j

eijq|j〉 (4.3)

is a state uniformly distributed on the lattice with quasi-momentum q, defined in the

Brillouin zone (corresponding to the set BZ = [−π, π) in one dimension), and |s(q)〉 is

a coin state to be determined solving the eigenvalue equation for Ĥeff . To this aim one

writes the effective Hamiltonian in the quasi-momentum basis:

Ĥeff =

∫
BZ

dq

(2π)d
{E(q)n(q) · σ} ⊗ |q〉〈q|, (4.4)

where E(q) is the quasi-energy, n(q) the vector representing |s(q)〉 on the Bloch sphere

and d the system dimensionality.

The quasi-momentum representation allows to calculate easly the asymptotic distribu-

tion of a quantum walker starting at the origin, j = 0 [159]. Let P (X) be the probability

distribution written as function of X = j/n, where n is the number of steps, one obtains,

for large n:

P (X) =

∫ π

−π

dq

2π

{
1

2
(1 + 〈n(q) · σ〉)δ(X + v(q)) (4.5)

+
1

2
(1− 〈n(q) · σ〉)δ(X − v(q))

}
, (4.6)

where v(q) = dE(q)/dq is the group velocity associated to the eigenstate |q〉 and the

brackets 〈. . .〉 represent the mean over the final state. This result clearly shows the

ballistic feature of the particle propagation in a quantum walk: asymptotically the

initial state propagates with speed ±v(q) where the sign depends on the projection

over the two quasi-energy bands. As already stated in the introduction the ballistic,

rather than diffusive, features of QWs have suggested their use for efficient quantum

search algorithms [145, 147]. It is interesting to note that the diffusive behavior can be

restored by introducing decoherence effects [160]. This is a simple example of transition

from quantum to classical phenomena as an effect of the introduction of random phases.

4.3 Review of photonic realizations of quantum walks

Several platforms have been developed for realizing quantum walks and studying their

properties. Here we give a brief account of the most important ones. Quantum Walks

have been implemented in a broad range of physical platforms. Different physical real-

izations allow for different controls of the system. Some platforms can have an easier

access to the lattice space allowing to implement, for example, spatial dependent coins,

boundaries and impurities. Others can have a large variety of tunable parameters, useful
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for exploring the QW dynamics of different effective Hamiltonians. Still, the number of

steps achievable can vary strongly from one platform to the other.

One of the first QW was realized with cold atoms by Karsky et al. [161]. Here Cesium

(Ce) atoms where used encoding the coin degree of freedom in two hyperfine states and

the walker space was realized by trapping the atoms in an optical lattice. The rota-

tion operator was implemented through the application of resonant microwave radiation

between the two hyperfine states, while the shift operator was realized by adiabatic

traslation of the optical lattice. Nowadays, neutral atoms in optical lattices still rep-

resent a competitive physical platform for QWs (see e.g. Refs: [162, 163]). In this

architecture, the QW lattice space coincides with the real space in the laboratory. How-

ever one can exploit any degree of freedom associated to an infinite dimensional space.

As an example, in Ref. [164], the QW was realized in the phase space of trapped ions.

Recently QW walks have been encoded using superconducting qubits in a microwave

cavity [165]. There the transmon qubit encodes the internal degree of freedom while

the lattice is implemented in the cavity phase space. The shift operator arises from the

interaction between the qubit and the coherent cavity mode.

Let us focus now on the photonic implementations. The coin degree of freedom can

be naturally encoded in the polarization of the photon. This is indeed what is done in

the majority of platforms. Coin operations can be easly realized using ordinary wave-

plates. Photonic QWs mostly differ for the choice of the degree of freedom (d.o.f.) to

be used as walker space. The most straightforward realization is probably the encoding

of the lattice space in the optical path of the photon: a different transverse position is

associated to a different lattice site. If the polarization is chosen as the coin, then the

shift operator can be implemented by a birefringent device, for example a calcite crystal

thick enough to spatially separate two orthogonal polarizations. This idea was realized

by Broome et al. [160] where the QW consisted in alternating calcite crystals with half

wave plates (rotated in order to act as the Hadamard coin). By introducing a small

misalignment between calcite crystals, so as to simulate the effects of decoherence, it

was also possible to show the transition from a ballistic to a diffusive behavior. This

kind of architecture has been also used to explore topological phases [152, 167, 168],

QWs with time dependent coins [169], and foundations of quantum mechanics [114].

Another interesting implementation of QW in the space of transverse modes is an array

of Mach-Zender interferometers. Here the polarization does not play any role, but the

coin can be associated to the entrance door of the Beam Splitters in each interferometer.

Such an architecture can be regarded as the optical analogue of the Galton board. Re-

alizing this system with bulk optics would be challenging due to necessity of controlling

the stability of a large number of interferometers. Indeed, this architecture has been

realized using integrated photonics circuits [153], where the laser written waveguides
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Figure 4.2: Examples of photonic quantum walks. (a) Illustration of a QW
realized alternating calcite crystals with wave-plates [160]. Decoherence effects can be
simulated by misalignment the crystals. (b) A photonic quantum walk can, in principle,
be realized within a series of beam splitters. The actual implementations, (c), which
avoids stability issues, consists into arrays of integrated Mach-Zender interferometers
(pictures adapted from [153]). (d) Illustration of the single step of a QW in the time
domain [166]. Panel (e) shows a sketch [166] of the corresponding experimental appara-
tus. This system can be modified for simulating two dimensional QWs by introducing

additional optical paths, as illustrated in (f)[156].

were tailored in order to not alter the polarization state of the crossing photons. Hence

it was possible to inject entangled photon pairs in a state (|H,H〉 + eiα|V, V 〉)/
√

2 in

order to investigate bosonic, fermionic and anyonic statistics. In Ref. [154] the interplay

between particle statistics and spatial disorder was studied by adding controllable phase

shifters in the circuit.

Waveguides arrays have also been used as platforms for CTQWs [158]. In particular,

using arrays of coupled evanescent waveguides, two photon correlations have been ex-

plored [170]. Very recently, a two dimensional CTQW has been demonstrated [171].

Hitherto we have considered photonic quantum walks in which the lattice was realized

in real space. However we have seen in Chapter 1 that light has multiple infinite di-

mensional degrees of freedom. Before discussing the QW implementations using the

OAM and the transverse wavevector spaces, we briefly mention another platform where

the lattice space was encoded by the arrival time of light pulses. The system presented

in Ref. [166] was able to overcome scalability and flexibility issues present in previous

platforms. It was based on a loop architecture that allowed to keep constant the number
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of optical elements with the increasing number of steps. In this kind of setup, the coin is

again identified with the photon polarization, while the lattice position is mapped in the

arrival time of a photon (or a coherent light pulse) at the detector. The coin dependent

shift in lattice space can be easily realized sending the pulses into a Polarizing Beam

Splitter in such a way that H polarized photons will follow an optical path shorter than

the one followed by V polarized photons. Recombining coherently the two paths, one

will have that V polarized photons have been delayed in time, hence displaced in the

lattice step, with respect to H polarized photons. The QW is realized alternating this

interferometric setup with a waveplate performing the coin operation. In Ref. [166]

this system was inserted in an optical feedback loop allowing for an higher stability and

for a number of devices indipendent from the required number of steps. In Ref. [155]

the setup was improved using a fast Electrooptic Modulator (EOM) for performing the

coin operation. The optical retardation of this device can be switched fast enough to

apply a different operator for each arriving pulse. Therefore a spatially (and temporally)

varying coin operation could be implemented for studying static and dynamic disorder

effects. By introducing two additional paths in the experiment [156] it was possible to

demonstrate a Quantum Walk on a plane with a 4-dimensional coin, where the sites on

the square lattice were carefully mapped into the arrival times of the light pulses. In

this kind of setup the 2D single particle QW could be mapped into a 1D Quantum Walk

of two interacting particles, an ingenious method for study multi-particle interactions

with light.

Multi-dimensional quantum walks are still a challenge from the experimental point of

view. The DTQW in Ref. [156] is the only setup realized so far. We also mention a

recent implementation of a 2D Continuous Time QW [171] realized with laser written

waveguides. However, in this chapter we will present a novel platform where 2D-DTQWs

can be performed. There, instead of using the trick of mapping a one dimensional d.o.f.

(the arrival time) into a two dimensional one, we will use a space that is intrinsically

two dimensional.

4.4 Quantum Walks in the OAM space of light

We have seen in Chapter 1 that the Orbital Angular Momentum of light is an infinite

dimensional and discrete degree of freedom that can be exploited in quantum applica-

tions in high-dimensional spaces. As such, the OAM space, Ho, represents a candidate

space over which performing QW experiments. This idea was first proposed by Zhang

et al. [172] in 2010, where the q-plate was suggested as the fundamental element for

performing the shift operation. A similar scheme was discussed in Ref. [173] considering

the possibility of inserting a q-plate and a quarter wave plate into an optical feedback
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Figure 4.3: Experimental setup for QWs with OAM. We show a sketch of the
experimental setup used for performing QWs in the OAM space of light. The initial
coin state of a photon (or a coherent laser beam, depending on the source that we want
to use) is prepared with a polarizer (P1), an half wave plate (HW1) and a quarter wave
plate (QW1). Then the beam crosses the QW setup, consisting in alternate q-plates,
Q, and quarter wave plates, W . In order to detect the final probability distribution we
use a programmable liquid crystal based SLM that, coupled with a single mode fiber
SMF allows to measure the relative intensity of the desired OAM mode. The other
diffraction orders are blocked with an iris (I). Since the pattern displayed on the SLM
is seen by a specific linear polarization, say H, we require that the beam impinging on it
is always H polarized. Thus, in order to measure the total probability distribution, we
first project over two orthogonal polarization states (both transformed in H) and then
send the beam to the SLM. We do this by means of a set of wave-plates (QW2 AND
HW2) and a polarizer P2. The light intensity filtered by the SMF is then measured

by a powermeter (PWM).

loop. In 2015 Cardano et al. [174] made the first experiments with this platform ex-

ploring also wavepacket motions and two photon QWs. In this Thesis the same setup

has been employed to detect the topological invariants of the system, as we will see in

detail in the next chapter [175]. In this section we proceed to illustrate the details of

this experimental scheme. We want to implement a QW where the lattice is encoded

in the OAM space of a light beam (or of a single photon) and, as in other experiments,

the coin corresponds to the polarization. While the coin operation can be obtained by

means of standard wave-plates, we need a device that realizes the shift operator, i.e. that

changes the OAM state in a way that is conditioned by the polarization. The q-plate

does exactly the job. Let us firs consider a q-plate with δ = π (half-wave retardation).

If we limit ourselves to the near field, where the radial profile of the beam is not sensibly

altered, the action of the q-plate on the SAM-OAM space is given by the operator:

Q̂ =
∑
m

(
|m+ 1〉〈m| ⊗ |R〉〈L|+ |m− 1〉〈m| ⊗ |L〉〈R|

)
, (4.7)

where we considered q = 1/2, α0 = 0 and the ket |m〉 correspond to a mode with

amplitude proportional to exp(imφ). Eq. 4.7 strongly resembles the shift operator

(Eq.4.1). The only difference is that, in this case, when the “particle” changes position
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also its coin state changes, i.e. the polarization handedness is flipped. In principle one

can obtain exactly the operator Ŝ of Eq.4.1 adding an half wave plate after the q-plate.

However, having exactly the operator Ŝ is not important for our purposes. The main

features of the standard QW can be obtained alternating a q-plate with a quarter wave

plate.

We can go even beyond the ”standard” QW by considering other values of the q-plate

optical retardation. For arbitrary δ the q-plate action is:

Q̂|L,m〉 = cos

(
δ

2

)
|L,m〉+ i sin

(
δ

2

)
|R,m+ 1〉 (4.8)

Q̂|R,m〉 = cos

(
δ

2

)
|R,m〉+ i sin

(
δ

2

)
|L,m− 1〉. (4.9)

Hence a term whose action is proportional to the identity operator is added. This

means introducing the possibility that, between one step and the other, the walker

stays in its position instead of changing site. In general the probability that the walker

jumps from one site to the other will be sin(δ/2)2. If we depict the term proportional

to the identity as an inertial contribution it is easy to expect that for smaller δ the

probability distributions will have a smaller width (even is always increasing linearly

with the number of steps). We will consider a QW described by the single step operator:

Û(δ) = Q̂(δ) · Ŵ , (4.10)

where W is a quarter wave plate. The experimental setup is sketched in Fig. 4.3.

We prepare the initial coin state with a set of wave-plates and a polarizer. Then we

perform the QW alternating electrically controlled q-plates and quarter wave-plates.

The resulting probability distribution is measured coupling an SLM with a single mode

fiber, as explained in Chapter 2. Since the SLM works on a specific input polarization,

an additional set of wave-plates and polarizer before the OAM projection system is

needed. If we desire to reconstruct the total probability distribution P (m), we need

first to measure the distributions relative to two orthogonal polarizations, say H and

V , given by PH(m) = |〈H,m|ψ(n)〉|2 and PV (m) = |〈V,m|ψ(n)〉|2, where |ψ(n)〉 is the

state after n steps of the QW. The distribution P (m) is then obtained summing PH(m)

and PV (m).

4.4.1 Spectral features

To understand better the dynamical properties of the QW defined by Eq. 4.10 we will

look now at the Fourier transform of Û . From Eq. 4.3 we can write the OAM eigenstates
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as:

|m〉 =

∫ π

−π

dq

2π
e−imq|q〉. (4.11)

Then the q-plate operator takes the form:

Q̂(δ) =

∫ π

−π

dq

2π

{
cos

(
δ

2

)
σ0 + i sin

(
δ

2

)
(cos(q)σx + sin(q)σy)

}
⊗ |q〉〈q|, (4.12)

where σ0 is the identity in the coin space and σ̂ = (σx, σy, σz) the Pauli matrices.

The expression in curly brackets is the representation of the q-plate operator in Fourier

space. It coincides with the Jones matrix of the q-plate where q is identified with the

azimuthal angle φ. Hence, since in our platform the lattice space is associated with the

Orbital Angular Momentum, the quasi-momentum q is encoded in the azimuthal angle

φ. Similarly, the quarter wave plate, considered oriented at an angle θ, is expressed by

the operator:

Ŵ (θ) =
σ0 + i cos(2θ)σx + i sin(2θ)σy√

2
⊗ Îw, (4.13)

where Îw is the identity matrix in the walker space. We will label as W(θ) and Q(q, δ)

the Jones matrices of the quarter wave plate and the q-plate, respectively. The single

step operator is:

Û(δ, θ) =

∫ π

−π

dq

2π
U(q, δ, θ)⊗ |q〉〈q|, (4.14)

where U(q, δ, θ) is:

U(q, δ, θ) = Q(q, δ) · W(θ) (4.15)

= exp(iE(q, δ, θ)n(q, δ, θ) · σ̂) (4.16)

where we have defined the quasi-energy eigenvalues, E(q, δ, θ), and the eigenvectors of

U are represented on the Bloch sphere by the unit vector: n(q, δ, θ). Their explicit

expression can be found from straightforward calculations. The quasi-energies are:

E(q, δ, θ) = ± arccos

[
cos(δ/2)− sin(δ/2) cos(q − 2θ)√

2

]
, (4.17)

where the signs are associated to the two possible eigenstates of the systems, represented

by ±n(q, δ, θ) (whose explicit expression will be investigated in the next chapter). From

this result it is evident that the effect of the angle θ is to shift the energy bands along the

q direction. We will work in the following considering the case θ = 0. The quasi-energy

dispersion relations are shown in Fig. 4.4 (a). They are analog to the energy bands of a

one dimensional insulator. Changing the value of δ we can tune the energy bands and

thus study different effective Hamiltonians. In particular there are two values of δ where

the energy gap is zero (modulo 2π). We remind that, since this is a periodic system,
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Figure 4.4: Energy bands and group velocity of 1D QW. We plot the dispersion
curves of the, a, quasi-energies E(q, δ) and, b, group velocities vg(q, δ) = dE(q, δ)/dq for
different values of δ. Red curves are for δ = π/4. Green curves are for δ = 3π/4, π, 5π/4
and the blue ones for δ = 7π/4. The energy gap closes at E = 0 for δ = π/2 (black
dashed curve) and at E = ±π for δ = 3π/2 (gray dashed curve). The gap closing
manifests itself in jumps of the group velocity dispersion. The different colors have
been chosen to differentiate with respect to the different topological phases, as we will
see in Chapter 5. Dashed curves correspond to points where topological phase transition

occurs.

one can have gap closure at E = 0 but also at E = π, since the values E = π,−π are

identified. To find the values of δ where the gap closes it suffices to solve the equation:

cos(δ/2)− sin(δ/2) cos(q)√
2

= ±1.

Hence one finds that the energy gap closes at E = 0 in q = π when δ = π/2, and at E = π

in q = 0 when δ = 3π/2. In these regions the dispersion relation presents a discontiuity

which is evident when looking at the plots of the group velocity vg(q, δ) = dE(q, δ)/dq

(Fig. 4.4 (b)). Indeed, in correspondence of the gap closing, the group velocity has a

jump discontinuity.

Gap closing points, where the energy dispersion is linear, also called Dirac points, are

signatures of intriguing physics. Indeed the existence of Dirac points in graphene is at

the origin of many of its innovative properties. Moreover, as we will see in Chapter 5,

the closing of a gap when varying some parameter is often associated to a topological

phase transition. This suggest that our system can have different topological phases and

hence can be an useful platform for studying these phenomena.

4.5 Quantum Walks in the transverse wavevector space

QWs implemented in the OAM space have been demonstrated as a powerful tool to

investigate wavepacket dynamics, two photon correlations and topological phases [95,
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174, 175]. However they are limited to a one-dimensional space. To realize QWs on

higher dimensional lattices would require a different scheme. In principle one can think

about increasing the dimensionality of the QW introduced in the previous section by

considering the radial degree of freedom. We have seen that this is indeed another infi-

nite dimensional degree of freedom, indexed, in the case of LGp,m modes, by a positive

integer p which could be associated to a coordinate in another 1D lattice. A 2D QW

could be realized introducing shift operators that change both the indexes m and p.

However, a device able to perform such a task is still unknown.

Here we propose another approach that allows to realize the QW presented in the previ-

ous section with a simpler detection scheme and an higher versatility, and can be easily

extended to two dimensional scheme [38]. The lattice will be encoded by the transverse

projection of the light wavevector. The g-plates, introduced in Chapter 1, will be used to

implement shift operators. Again, the coin d.o.f. will be identified with the polarization.

In the following subsections we will describe the platform, discussing the detection

scheme, and then we will show how to simulate a QW with an external applied force.

Finally we will present some experimental results. In Appendix C we consider in detail

the possible deviations from the ideal QW evolution in our setup. In Chapter 5 we will

look in more detail at the 2D platform, focusing on its topological properties.

4.5.1 Description of the platform

We have seen in Chapter 1 how the transverse wavevector space of the photon can be

used to encode states defined on one and two dimensional lattices. These states are

superpositions of plane waves whose wavevector has a transverse component smaller

than the longitudinal one kz. The transverse wavevector kt is given by:

kt = p(nx +my), (4.18)

where x and y are orthogonal unit vectors lying along the x and y axis, respectively.

The plane wave is associated to a quantum state on a two dimensional lattice defined

by the two integers n and m. The constant p, which has the dimensions of an inverse

length, defines the lattice step. To perform a QW in this space, with the polarization

chosen as the coin d.o.f., we use uniform wave-plates and g-plates. The latter have been

introduced in Chapter 1. They are characterized by an optic axis pattern which is a

linear function of a Cartesian coordinate. If |n,m〉⊗|c〉 is the state encoded by the plane

wave exp(ip(nx + my) + ikzz)c, where c is the direction of the electric field associated

to the coin state |c〉, the action of a g-plate patterned, say, along the direction x is
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described by the operator:

T̂x(δ, α0) = cos

(
δ

2

)
Î (4.19)

+ i sin

(
δ

2

)∑
n

(ei2α0L̂x,+ ⊗ |R〉〈L|+ e−i2α0L̂x,− ⊗ |L〉〈R|), (4.20)

where L̂x,± = |n ± 1,m〉〈n,m|. Here we included explicitly the parameter α0 that will

reveal important for simulating an external force. This is exactly the same action of

a q-plate in the OAM space. However, this new implementation allows access to an

additional dimension by including in the Quantum Walk g-plates patterned along y,

whose associated operator, T̂y, has an expression that can be obtained by replacing x

with y in Eq. 4.20. Hence, with g-plates and wave-plates we can simulate both the 1D

protocol, described in the previous section, and a 2D QW. In this thesis we will consider

the two following protocols:

Û1D(δ) = T̂x(δ) · Ŵ (4.21)

Û2D(δ) = T̂y(δ) · T̂x(δ) · Ŵ . (4.22)

Here W is again a quarter wave plate, but protocols with different coin operators can be

realized: in our setup the g-plates and the uniform wave-plates are both Liquid Crystal

based devices with electrically tunable optical retardation. Hence we can modify, on

demand, both the coin and shift operators. We have chosen to investigate in particular

the protocols in Eqs: 4.21 and 4.22 for their interesting topological features, as we will

see in the next chapter. Another protocol of interest would be the Grover walk with a two

dimensional coin [176] that can be realized with the single step operator T̂y · Ŵ · T̂x · Ŵ .

This is a fundamental element for implementing the Grover search algorithm.

The experimental setup for the protocol Û2D is sketched in Fig. 4.5. The measurement

of the probability distribution P (n,m) is remarkably easy. Indeed we want to detect the

intensity distribution in the transverse wavevector space I(kx, ky) which can be obtained

by Fourier transforming the field exiting the QW. This can be done in an all-optical way:

the distribution I(kx, ky) can indeed be observed in the focal plane of a converging lens.

In the actual experiment the laser beam is spatially limited in the transverse plane.

Hence it cannot be described by plane waves but rather by Gaussian modes. The ket

|n,m〉 is therefore encoded by:

|n,m〉 = G(x, y, z)eip(nx+my)+ikzz,

where G(x, y, z) is the Gaussian beam amplitude. In this case, the Fourier transformed

eld will show an intensity pattern consisting of regularly distributed Gaussian spots,
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Figure 4.5: Experimental setup for 2D QW. The protocol Û2D is realized al-
ternating a waveplate Ŵ with an g-plate patterned along the x direction, T̂x, and one
patterned along y, T̂y (panel (a)). The final probability distribution can be observed
sending the outgoing beam through a converging lens. In its focal plane the Fourier
transform of the beam transverse amplitude can be observed (b). The intensity pattern
on this plane corresponds indeed to the desired probability distribution. Panel (b) is

adapted from Ref. [38]

as shown for instance in Fig. 4.5 (b). If we place a converging lens at the end of

the quantum walk, the field distribution G̃ in its focal plane, will correspond to the

distribution of the transverse wavevector, that is:

G̃(X,Y ;n,m) ∝
∫

Ω
G(x, y, d)eip(nx+my)+ikzze

i k
f

(Xx+Y y)
dxdy, (4.23)

where Ω is the transverse plane, d the distance of the lens from the beam waist (located

at z = 0), f the focal length of the lens, and (X,Y ) the spatial coordinates in the focal

plane of the lens. The intensity of the focused Gaussian beam will be:

∣∣∣G̃(X,Y ;n,m)
∣∣∣2 ∝ exp

(
− 2

(pn− kX/f)2 + (pm− kY/f)2

ω2
k

)
, (4.24)

with ωk = 2/w0. Thus ωk is a measure of the radius of the spots that appear in the

focal plane. The overlap between different spots can be considered small if p ≥ 2ωk.

In our experiment we used g-plates with pitch Λ = 5mm and an input beam waist of

the same order of magnitude: w0 ≈ 5mm. The overlap of adjacent modes is around 0.8%.

Extraction of the probability distributions from the intensity pattern. With

the description given until now, one expects to see the result of the QW as a pattern of

different Gaussian spots arranged on a regular lattice. The probability distribution of

the associated quantum walk can be extracted from the relative amount of light around

the lattice sites, i.e. the probability P (n,m) of finding the particle on site (n,m) can be

calculated normalizing the total intensity around a circular region, centered on the given

site and with radius given by the spot waist. In principle, the positions on the camera

corresponding to the lattice can be extracted as follows: first, all the g-plates are set at

δ = 0, so that a single spot appears on the camera. The spot position corresponds to

the lattice origin. Then, knowing the equivalent in pixel of the lattice step size, one can
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Figure 4.6: Extraction of the probability distributions from the recorded
intensity patterns. a: Examples of the intensity patterns obtained with the ”spin-
momentum locking” protocol Û = T̂x(π) · Ĥwp. An input linearly polarized state is
split into two spots with opposite circular polarizations. At each step these spots are
shifted by a quantity corresponding to the lattice cell size. This process can be used to
identify the coordinates of the lattice sites on the camera, getting rid of the experimental
imperfections explained in the text. Insets b and c show the procedure used to extract
the probability distributions from the intensity patterns. The red squares in b represent
the regions over which we calculate the total intensities associated to specific lattice
sites (since the single spots occupy a small number of pixels there is no substantial
difference in using square or circular integration regions). Normalizing to 1 the sum of

all these intensities we obtain the probability distribution (c).

calculate the positions of all the sites.

In practice, however, each spot can be displaced with respect to the position calculated

with the above method. This can be due to a series of small experimental imperfections.

One contribution can be ascribed to undesired modulations in the g-plates patterns, that

can be modeled by the following local optic axis angle: α(x, y) = α0 + p/2x + ε(x, y),

where ε(x, y) is a small in magnitude, but unknown, function. Another cause can be

a small tilt in the polarization gratings, so that the coordinate x in α(x) should be

replaced by x′ = cos(θ)x + sin(θ)y (with θ small, and different for each grating). We

can get rid of these effects by following a different procedure in which we measure the

center of each spot and assign to it the corresponding lattice site. This procedure is

simplified by employing the following quantum walk protocol. Let us first consider the

1D setup defined by the single step operator Û = T̂x(δ = π) · Ĥwp, where Ĥwp is an

half waveplate (that can be described by the operator σx). This protocol simulates a

recently proposed system where a spin momentum locking effect has been predicted

[177]. The particle dynamics, shown in Fig. 4.6 a, is indeed very simple: at each step

the L polarized component of the state is shifted by one site along one direction (say
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on the left), while the R polarized component is shifted on the right. If we start with

a linearly polarized input beam, in the successive steps we will see two separate spots

(with opposite circular polarizations), that will be located, at the step t, on the effective

positions corresponding to sites t and −t. In this way we reconstruct the coordinates

of each site by performing Gaussian fits for the two spots. The generalization to the

2D case is straightforward, since the same protocol (performed along one transverse

direction, e.g. x) can be obtained turning off (δ = 0) the g-plates patterned along the

perpendicular direction (e.g. y). In this way, by first turning off the Tx operators, and

then operators Ty, one can obtain the coordinates of the sites (n, 0) and (0,m) (with

n and m integers). The remaining sites can be easily found taking, for example, the

set of lattice coordinates of the sites (n, 0) and shifting them by quantities given by

the coordinates of the sites (0, n). In Fig. 4.6 b and c it is shown the result of this

procedure.

4.5.2 Quantum walks with an applied external force

Until now we have considered Quantum Walks as the result of repeated applications of

a fixed unitary operator over some initial state. It is however natural to ask what kind

of phenomena can be observed when considering step-dependent operations. Among the

most interesting effects are deviations from the ballistic behavior that can even reduce

to the revival of the probability distribution or of the full quantum state [169, 178, 179].

Quantum Walks with step dependent operators can be considered as means to simulate

a quantum system under the effect of a time dependent perturbation. In particular

one can think of mimicking the action of an external force. These processes are named

“Electric Quantum Walks” [178]. The effect of a constant force is to drive an eigenstate

of the effective Hamiltonian of the unperturbed system along the Brillouin zone. Hence,

after a given time, if the force is small enough to prevent interband transitions and if

only one band is occupied from the beginning of the process, the system will return to its

initial state. This phenomenon is known as Bloch oscillation. Revivals in QWs can be

interpreted as resulting from Bloch oscillations [165]. In general, when multiple bands

are occupied, Bloch oscillations can be observed only in some particular cases where the

dynamical phase acquired in one cycle is a multiple of π. However refocusing can be

destroyed when the applied force induces energy transfers comparable with the energy

gap, resulting in interband transitions. In particular, when the energy gap becomes zero,

the transition from one band to the other when crossing the Dirac point occurs with

maximum probability as demonstrated by the Landau-Zener theory [180].
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Applying an external force to a periodically driven system can produce phenomena that

do not occur when doing the same on static systems. Remarkably, the dynamics is

strongly conditioned by the force being a rational or irrational multiple of 2π (here con-

sidered as an adimensional quantity), as shown in the work of Cedzich et al. [181]. For

example, localization effects, rather than pure refocusing, have been observed experi-

mentally when applying an irrational force [178]. In our first experiments we considered

rational values of the force, however we can implement any arbitrary value, as we will

show below.

We can turn an ordinary QW, described by the single step unitary Û , into an electric one,

UE , by adding the extra operation: F̂E = exp(−iF x̂∆T ). Here x̂ is the lattice position

operator (expressed in adimensional units) and ∆T the time duration of a single step,

that we conventionally put equal to 1. The parameter F is the force in adimensional

units. It can be associated to an electric field E acting on an electron (whit charge e)

using the formal definition F = eE/~. Thus the electric quantum walk is described by

the process:

ÛE = F̂EÛ . (4.25)

We can rewrite Eq. 4.25 in the quasimomentum space representation by using the

property: x̂ = −i∂/∂k. Indeed this implies that the action of F̂E on a quasimomentum

eigenstate |q〉 is a translation by an amount F in the Brillouin zone: F̂E |q〉 = |q − F 〉.
Thus Eq. 4.25 reads:

ÛE =

∫
BZ

dq

2π
U(q + F )⊗ |q〉〈q|, (4.26)

where U is the action of Û in Fourier space. Hence the external driving force acts, at

every step, as a traslation by F of U : U(q) → U(q + F ). The Fourier space unitary

corresponding to an N -step electric QW is: U(q +NF ) . . .U(q + F ).

We now show how refocusing effects can arise in electric quantum walks. We consider

a two level system in order to understand also which are the contributions leading to

interband transitions. Let |u±(q)〉 be the eigenstates of the effective Hamiltonian in

absence of the external force, with corresponding energies E±(q). The initial state can

be written in the general form:

|ψ0〉 =

∫ π

−π

dq

2π

(
c+(q)|u+(q)〉+ c−(q)|u−(q)〉

)
⊗ |q〉. (4.27)

Depending on the explicit expression of c±(q) one can have localized or delocalized states.

We now consider the action of U(q+F ) on |u±(q)〉 for small values of F . Expanding up
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to the first order around q + F we have:

U(q + F )|u±(q)〉 ≈ e−iE±(q+F )|u±(q + F )〉

− F e−iE±(q+F )〈u±(q + F )|∂qu±(q + F )〉|u±(q + F )〉

− F e−iE∓(q+F )〈u∓(q + F )|∂qu±(q + F )〉|u∓(q + F )〉. (4.28)

The first line represents the adiabatic contribution. The second and third line are non-

adiabatic terms. The second line in a non-adiabatic contribution that is related to the

rapidity of variation of the eigenstates along the Brillouin zone. This contribution does

not induces a transition to the other band. The third line, instead, takes into account

the interband transitions. Next we neglect the non-adiabatic terms retaining only the

first line of Eq. 4.28. In this approximation, after the the first step, we obtain the state:

|ψ1〉 = ÛE |ψ0〉 =

∫ π

−π

dq

2π

(
c+(q)e−iE+(q+F )|u+(q+F )〉+c−(q)e−iE−(q+F )|u−(q+F )〉

)
⊗|q〉.

(4.29)

Suppose now that after N steps we have q + NF = qmod2π, i.e. the BZ has been

traversed by the particle eigenstates in N steps. In the adiabatic approximation we

have:

|ψN 〉 = ÛE |ψ0〉 =

∫ π

−π

dq

2π

(
c+(q)e−iγ+ |u+(q)〉+ c−(q)e−iγ− |u−(q)〉

)
⊗ |q〉. (4.30)

where

γ± =

(2π/F−1)∑
j=0

E±(q + jF ), (4.31)

are the dynamical phases acquired by the system eigenstates when traversing the whole

Brillouin zone. These phases are independent of k, hence they can be factored out from

the integrals. Therefore, in case one single band has been occupied from the beginning,

the final state is coincident with the initial one, apart from a global phase factor. In

this case the QW consists in a dynamical process where every N steps we find the same

quantum state. When the system is prepared in a state that occupies both bands, refo-

cusing can be observed only in some cases, when the difference between the dynamical

phases is a multiple of 2π. In general the final state will be different because of the

additional relative phase acquired by the states over the two bands. In particular, when

γ+ − γ− = π, the final state is orthogonal to the initial one. Non-adiabatic effects have

consequences on the long time dynamics. Indeed, for rational values of F one can con-

sider the N -step process as a single step of a quantum walk without external force. This

QW will show ballistic dynamics on the long time scale arising from the accumulation

of the small non-adiabatic contributions [181] In Eq. 4.30 we have also ignored the ef-

fects of the geometric phase acquired during the cycle. Geometric phases appear as an
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additional contribution to the global phase acquired by a system after a cyclic adiabatic

evolution as a consequence of some global feature of the system. We will consider them

in more detail in the next chapter due to their fundamental importance for the study

of topological phenomena. Actually, Bloch oscillations can be used as a tool to measure

the geometric phase of a quantum system, as showed in Refs: [165, 182].

Experimental implementation of electric Quantum Walks We can easily re-

alize electric QWs in the two photonic implementations presented in this chapter. As

we now show, there is not even need to add any optical device to the ones required in

the case without force. We will explicitly refer to the quantum walk implementation in

transverse momentum space, although the results for the QW in OAM space are the

same.

The transverse plane of the physical space where the QW is performed actually encodes

the quasi-momentum space of the abstract protocol that we want to simulate. Hence a

traslation on this plane must be interpreted as a shift in the Brillouin zone: the transfor-

mation U(q)→ U(q+F ) where q is identified with, say, the x coordinate, correspond to

translating along x the g-plate of an amount proportional to F (obviously, the quarter-

wave-plates, being uniform, can be left in their original position). We have seen that

the transverse translation of a single g-plates correspond to a redefinition of the origin

of the reference frame, or, equivalently, to a change in the value of α0. Indeed, as shown

in Ref. [38], it is easy to verify that:

U(q + jF ) = Tx(δ, α0 + jF/2) · W, (4.32)

where Tx and W are the Jones matrices of the g-plate and the quarter-wave plate. A

similar result holds for the 2D protocol where, by shifting independently the positions

of Tx and Ty one can mimic external fields of arbitrary strength and direction.

Our ability to tune the energy band dispersions allows us to consider different regimes

and to explore the interplay between Bloch oscillations and Landau-Zener transitions.

We considered in particular the protocol U1D(δ), where, when δ = π, we have indeed

that, if F = 2π/2l, with l integer, ( i.e. the Brillouin zone is fully explored in a even

number of steps), γ+ − γ− = 2π. If, otherwise, F = 2π/(2l + 1), then γ+ − γ− = π.

Hence in both cases, if adiabatic theory holds, we expect a revival of the probability

distributions. When F = 2π/2l the revival corresponds to a full refocusing of the

quantum state, i.e. the polarization of the final state is the same of the polarization

of the initial state. On the other hand, if F = 2π/(2l + 1), after a full cycle (that is

a number of steps N = 2π/F ) the particle will be in a state orthogonal to the initial

one, i.e. with the same probability distribution of the initial state but with opposite

polarization. Moreover this result should be independent from the initial state. When



Chapter 4 - Photonic Quantum walks 82

we consider, instead, δ = π/2, Bloch oscillations are suppressed due to the closing of the

energy gap at q = π. This implies that, when the initial state is prepared in an eigenstate

of the unperturbed (F = 0) Hamiltonian, it experiences a Landau-Zener transition to

the other band when crossing the Dirac point. Thus after one cycle we will not have the

same state, but one lying on the other band. Interestingly, if a second cycle is performed,

the particle will again cross the Dirac point and turn back on the initial energy band. As

a consequence we expect a refocusing after a number of steps N = 4π/F . In Fig. 4.7 we

validate these predictions by carrying some computer simulations. These consideration

are based on the assumption that adiabatic approximation holds, at least in points of

the BZ away from the gap closing. However deviation from perfect refocusing at δ = π

are still observed due to the discrete time nature of the process. A stronger force means

that the refocusing should happen in a smaller number of steps. But this implies that

the discreteness of time becomes more relevant in this cases. To show this we carried

simulations for decreasing values of the force. In particular, as shown in Fig. 4.8 we

calculated the refocusing fidelity, RF = |〈ψ0|ψN 〉|2, as a function of the number of cycles

for the different values of the force. Fig. 4.8 (a) clearly shows that the smaller the force

the higher is the RF .

4.5.3 Experimental results

In this section we show some experimental results for the protocols Û1D and Û2D, show-

ing the evolution of initially localized states. We then show how to prepare initial states

which are delocalized, and how to use them to probe the group velocity dispersion.

1D Protocol. We realized a 1D QW of 10 steps, carrying experiments for δ = π

and π/2 with and without an external force F = π/5. The value of F has been cho-

sen in order to observe a single Bloch oscillation after 10 steps. In Fig. 4.9 we present

our data when the initial state is |H,n = 0〉 = (|R, 0〉 + |L, 0〉)/
√

2. The effect of a

constant force in the x direction is simulated by shifting the g-plate at the time-step t

of the amount ∆xt = tΛ/10. In panel (a) and (c) we show the data for a walk with

no force, when δ = π/2 and δ = π, respectively. Panel (b) and (d) contain the walker

distribution for the same configuration of δ, when F = π/5. All data are in good agree-

ment with numerical predictions. Here and in the following, we quantify the overlap

between experimental and numerical results by computing the similarity S ∈ [0, 1] of

the two distributions, which is maximum for two identical distributions and diminishes

when differences increase. Let E(n) and Th(n) be the experimental and theoretical
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Figure 4.7: Simulations of electric quantum walks for different δs and with
decreasing force strength. Here we show theoretical simulations of forced quantum
walks with: (a), F = π/5, (b), F = π/10, (c), F = π/20. The simulations are carried
for a number of steps given by 4π/F at different values of δ (which corresponds to
an eigenstate spanning two times the Brillouin zone). The qualitative behavior looks
independent on the ratio between force strength and step number, only at δ = π/2 we
can notice a suppression of the distribution tails when F becomes smaller. In general we
can observe oscillating behavior on two characteristic periods. At δ = π and δ ≤ π/4
there is approximate refocusing every 2π/F steps, which is the expected period of
Bloch oscillations. At δ = π/2 the period of oscillations is doubled. In this situation
the energy gap closes at q = 0 which implies a probability equal to one of Landau-Zener
transitions (in the adiabatic limit, e.g. the limit F → 0). Notice that in the observed
period (4π/F ) a particle prepared into an eigenstate of Heff (q) explores two times the
Brillouin zone, thus experiencing a double Landau-Zener transition. At intermediate
δs (for example δ = 3π/4) both contribution are present, as it appears in the figures.

distributions, respectively. The Similarity is defined as:

S =

∑
nE(n)Th(n)√∑

nE(n)2
√∑

n T (n)2
. (4.33)

We observe an almost complete refocusing of the quantum state only when δ = π (panel

(d)), independently of the initial polarization (results for different input states are shown

in Figs. 4.10,4.11). The existence of small contributions from other lattice sites is caused

by non-adiabatic effects, as discussed before. Besides being mostly localized at x = 0,

the final state is expected to have the same polarization of the input beam. In the

experiment we were able to measure the refocusing fidelity after 10 steps for the case

F = π/5 and δ = π. Even if we did not reconstruct the full quantum state of the final

step (since measuring the relative phases would require more complex interferometric



Chapter 4 - Photonic Quantum walks 84

Figure 4.8: Refocusing fidelity after more cycles. Here we show that by de-
creasing F the refocusing of the quantum state after several cycles for δ = π (one
cycle correspond to 2π/F steps) is actually enhanced. In panel (a), we show how the
refocusing fidelity RF scales after four cycles for different values of F . We observe
that, as expected, the refocusing is higher for smaller values of F . This should be a
consequence of the suppression of non-adiabatic effects. Panels (c) and (d) show the
probability distributions for, respectively, F = π/5 and F = π/20. While in panel c
the Bloch oscillations are rapidly destroyed after few cycles, they persist in the other

case (d).

Figure 4.9: Quantum walks on a line with and without a constant force.
We show the experimental and numerical probability distributions of 10 steps quantum
walks with an input state |H, 0〉. (a-b), distributions at δ = π/2 with (a) F = 0 and
(b) F = π/5. (c-d), distributions at δ = π with (c) F = 0 and (d) F = π/5. Panel (e)
shows the color scale used in all the plots. In panel (d) an almost complete refocusing of
the initial state is observed, while this does not happen at δ = π/2 due to Landau-Zener
transitions. All the insets show the experimental intensity patterns on the focal plane
after the 10-nth step. For each step we calculated the similarity between the theoretical
and experimental distribution. In the figure we report the average similarities over all
the steps. All experiments are repeated four times, after re-aligning all plates to take
into account possible errors associated with this procedure. Uncertainties represent the

standard errors.
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Figure 4.10: 1D DTQW for input polarization |A〉. Calculated and measured
probability distributions of 10 steps quantum walks with an input state |A, 0〉 = (|R, 0〉+
i|L, 0〉)/

√
2. (a-b), Distributions at δ = π/2 with (a) F = 0 and (b) F = π/5. c-d,

Distributions at δ = π with (c) F = 0 and (d) F = π/5.

Figure 4.11: 1D DTQW for input polarization |L〉. Calculated and measured
probability distributions of 10 steps quantum walks with an input state |L, 0〉. (a-b),
Distributions at δ = π/2 with (a) F = 0 and (b) F = π/5. (c-d), Distributions at δ = π

with (c) F = 0 and (d) F = π/5.

setups), this is not needed to measure the fidelity with a reference state localized in a

single lattice site. Indeed, let |ψ0〉 = |φ0, n = 0〉 be the initial state (with φ0 representing

the polarization state) and |ψf 〉 =
∑

n cn|φf,n, n〉 the general form of the final state. The

fidelity between the two states is:

RF = |〈ψ0|ψf 〉|2 = |c0〈φ0|φf,0〉|2 = Pf (0)Rpol, (4.34)
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Figure 4.12: 2D Quantum Walk on a square lattice. We implemented a 5 steps
of the process Û2D with δ = π/2 and input state |H, 0, 0〉. All experiments are repeated
four times, after re-aligning all plates to take into account possible errors associated
with this procedure. Uncertainties represent the standard errors. In (a), we show
examples of the intensity patterns on the focal plane. The probability distributions (b)
are obtained from these images measuring the relative intensity of the single spots. In

(c) we show the theoretical results. Picture adapted from Ref. [38].

where Pf (0) = |c0|2 is the probability to find the particle in site m = 0 in any polar-

ization state, and Rpol = |〈φ0|φf,0〉|2 the probability that the central spot has the same

polarization of the initial state. We obtained experimentally RF = 83± 2.6% while the

theoretical refocusing is 93%. The discrepancy is due to experimental imperfections,

however we point out that the polarization of the central spot is the same of the initial

state since Rpol = 99.1±0.01% in agreement with the theory. At δ = π/2, no refocusing

is observed. In this case, the quasi-energy spectrum of the effective Hamiltonian exhibits

a gap closing at the center of the Brillouin zone. This gives rise to interband Landau

Zener transitions that destroy the refocusing effect (Fig.4.9(b)).

2D protocol: localized initial state. By exploiting the possibility of moving the

walker along both x and y directions of the transverse wave-vector space, we demon-

strate a discrete time QW on 2D squared lattice, with a 2-level coin.

Our 2D protocol consists in the step operator U2D of Eq. 4.22, made of a quarter-wave

plate W , and two g-plates Tx and Ty, characterized by the same retardation δ. In Fig.

4.12 we show representative data regarding the dynamical evolution of a localized input

state, up to 5 timesteps. Starting from the first steps, the walker distribution remains

concentrated along the diagonal x = −y, as a consequence of the absence of the coin

rotation between Tx and Ty. Distributions obtained for different choices of the coin

input state are reported in Figs. 4.13,4.14.
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Figure 4.13: 2D DTQW for input polarization |A〉. We show the theoretical and
experimental probability distributions of the 2D quantum walk protocol introduced in
the main text. We implemented a 5 steps process with δ = π/2 and input state |A, 0, 0〉.
In (a), we show examples of the intensity patterns on the focal plane. The probability
distributions (b) are obtained from these images measuring the relative intensity of the

single spots. In (c) we show the theoretical results. Picture adapted from Ref. [38].

Figure 4.14: 2D DTQW for input polarization |R〉. We show the theoretical and
experimental probability distributions of the 2D quantum walk protocol introduced in
the main text. We implemented a 5 steps process with δ = π/2 and input state |R, 0, 0〉.
In (a), we show examples of the intensity patterns on the focal plane. The probability
distributions (b) are obtained from these images measuring the relative intensity of the

single spots. In (c) we show the theoretical results. Picture adapted from Ref. [38].

Preparing Gaussian wavepackets By adjusting the shape of the input beam we
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can easily prepare initial states that are spread over many lattice sites. An impor-

tant example is that of Gaussian wavepackets that are sharply peaked around a specific

quasi-momentum q, with a polarization state |φs(q)〉. In the following we refer to these

states as |q̃s〉 = |G(q), φs(q)〉, where s ∈ {1, 2} is the band index. These provide good

approximations of the system eigenstates |q, φs(q)〉, whose spatial part is a plane wave

with quasi-momentum q, and are expected to propagate by preserving their Gaussian

envelope, with a dynamics dictated by the group velocity dispersion [84].

A Gaussian wavepacket of width w, peaked around the quasi-momentum q0 and with

uniform polarization corresponding to the coin eigenstate in q0, |φs(q0)〉, has the explicit

expression:

|G(q0), φs(q0)〉 = N
∫
BZ

d2q

4π2
e

(
− (q−q0)

2

w

)
|q, φs(q0)〉, (4.35)

where N is a normalization factor and BZ = {−π < qx < π,−π < qy < π} is the

Brillouin zone. In lattice space the above expression reads:

|G(q0), φs(q0)〉 = N1

∑
n,m

e−w
2(n2+m2)/4+i(q0xn+q0ym)|n,m, φs(q0)〉. (4.36)

Where n,m are integers denoting the position in lattice space. In our implementation we

can obtain a good approximation of such a state as follows. We recall that the physical

transverse space in which the QW is experimentally realized corresponds to the space

of the quasi-momentum q. Hence the input beam waist determines which region in the

q-space is occupied by the initial state. If all the q ∈ BZ are occupied, i.e. if the beam

has a waist diameter of order Λ, this will correspond to a localized state. Therefore,

decreasing the beam waist only a subset of the BZ, given approximately by 2w0/Λ, will

be occupied. Now it remains to determine experimentally the value of q0. This can

be simply done displacing the beam axis in a position corresponding to (qx, qy) modΛ.

We remark that, in order to do this, the value of α0 in the QW protocol should be set

a-priori (which can always be done redefining the origin of the reference frame). Then,

the coin state |φs(q0)〉 is selected with a standard set of wave plates.

With this approach we prepare a state whose Fourier transform is still a single Gaussian

that, even if overlapping with Eq. 4.36, occupies points in space which do not corre-

spond to any site in the walker space. However this does not alter the results presented

in the main text. Indeed the modes of the initial state with wavevectors that do not

belong to the lattice will never superimpose with the ones belonging to it, since the

quantum walk modifies transverse wavevectors by quantities which are multiple of the

lattice step p. See also the discussion about QW with non-orthogonal states in Ref. [183].
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Figure 4.15: Detection of the group velocity dispersion of U2D. We report the
detected group velocity components, vgx (a) and vgy (b), for 22×22 values of the quasi-
momentum in the 2D Brillouin zone, measured with a linear fit of the center of mass
displacement of the corresponding wavepackets q̃1. Red points are the experimental
data, whose size corresponds to the average standard error extracted from the linear
fits. Cyan surfaces represent the theoretical plots. (c) Representative trajectories for
wavepackets with q = (π/2, π) where the coin eigenstate is circularly polarized (here

we chose the right circular polarization). Data are from Ref. [38]

In the experiment we realize such states by preparing an input beam whose waist is small

(compared to the period Λ), and aligning it so that its central position is r = qΛ/2π.

The sequence of plates yielding the QW evolution is mounted on a x-y translation stage,

synchronized with motors that rotate the wave-plates at the walk entrance, so that the

central position of the wavepackets (that is their momentum) and their overall polariza-

tion can be changed dynamically.

Following the dynamical evolution of Gaussian wavepackets provides a convenient ap-

proach for the detection of the system group velocity dispersion, as already demonstrated

in 1D in Ref. [174]. In Fig. 4.15(a), we report the group velocity of the lower band of

our QW, for 22 values of qx and qy (244 states in total) uniformly distributed in the

entire Brillouin zone. This has been measured by detecting the displacement of the

center of mass 〈r〉(t) of each wavepacket as a function of the time-step t (up to t=5),

which is expected to follow the simple law of motion 〈r〉(t) = vg(q)t. Plotted values are

determined after a linear fit of the detected displacements. Some examples of measured

trajectories are reported in Fig. 4.15(b).



Chapter 5

Exploring topological phases with

structured light

5.1 Introduction

Topology is the study of mathematical properties that are invariant under smooth de-

formations [184]. This abstract mathematical topic has revealed itself as a powerful

tool to understand many physical phenomena. In particular, topological methods have

been employed to study phases of matter that could not be described by the traditional

Landau-Ginzburg theory [185]. The latter proved itself as a successful theory for un-

derstanding phase transitions associated with symmetry breaking in systems described

by local order parameters. However, the discovery of the integer and fractional Hall

effects provided examples of phases of matter that could not be described by a local

order parameter but characterized by a more general global feature. Topological phases

of matter have been identified in strongly interacting systems, like Fractional Quantum

Hall (FQH) systems [186], but also, surprisingly, in non interacting insulators. Indeed

topology has played in the past decades a fundamental role in reformulating the band

theory of crystals [187]. The pioneering works of Thouless, Kohmoto, Nightingale and

den Nijs [188] showed that the Hall conductance in the Quantum Hall Effect (QHE),

which is quantized as a multiple of the quantum of conductance, is proportional to

the Chern number of the occupied energy bands. The Chern number is an example

of a topological invariant, a mathematical object that can be used to classify different

topological phases. The phenomenon of conductance quantization was discovered exper-

imentally by von Kiltzing in 1980 [189] and used to determine with high accuracy the

fine structure constant. Moreover, the discovery of QHE paved the way for the study

of other crystalline structures exhibiting non-trivial topological phases. The research

90



Chapter 5 - Topological phases with structured light 91

was motivated by the observation that topological insulators should host robust edge

states, i.e. states confined at the boundary of the system and that cannot be moved into

the bulk by smooth perturbations (at least without destroying the possible symmetries

defining the topological phase). Hence one can have intriguing phenomena like solitons

in 1D polyacetylene chains [190], edge charge and spin currents circulating without dis-

sipation [191–193], electric polarization induced by magnetic fields (demonstrated in 3D

topological insulators) [193, 194] and Majorana fermions in topological superconductors

[187, 193]. The existence of protected edge modes has suggested their use for quan-

tum computation, for these modes should be resilient against external disturbances and

decoherence effects. This idea has given birth to the new field of topological quantum

computation [195, 196].

Remarkably, the topological band theory developed for crystalline insulators can be

equally applied to periodically structures where the “wave particle” is not an electron

but, for example, a photon or a phonon. Hence, thanks to the increasing capabilities

in material structuring, in recent years there have been growing efforts in developing

topological photonic and phononic crystals, i.e. systems with a spatial periodicity in the

refractive index, or in the sound speed, where the associated frequency bands exhibit

nontrivial topology [197–200]. These systems can be useful in a variety of applications,

since they allow for guiding light or acoustic waves without back-scattering. Topological

phases have also been observed in superconductors [201], atoms [202] and even mechan-

ical systems [203].

Turning back to crystalline topological insulators, it has emerged that finding materials

exhibiting non-trivial topology is not an easy task. In Ref: [204] a new method was sug-

gested for obtaining topological insulators by perturbing a trivial system (a graphene

layer) with an external field periodic in time. Indeed periodically driven systems, also

called Floquet systems, can exhibit richer topological features as a consequence of the

fact that the energy becomes a periodic quantity (the quasi-energy). These results stim-

ulated researchers for a deeper understanding of the theory of these systems, in particular

for the definition of more general topological invariants [205, 206] and for the search of

new experimental platforms [207]. Discrete Time Quantum Walks are a paradigmatic

example of Floquet systems and, indeed, an ideal platform where to study the connec-

tions between topology, dynamics and non-equilibrium physics [95, 114, 159, 175].

In this chapter we will introduce some fundamentals of the theory of topological in-

sulators, in both the static and periodically driven frameworks, and investigate the

topological properties of the quantum walk protocols Û1D and Û2D introduced in Chap-

ter 4. For the 1D case we will introduce a new observable, called chiral displacement,

that allows to distinguish, by means of bulk measurements, between different topolog-

ical phases and to infer the value of the corresponding topological invariant. We will

show the experimental results obtained with the platform employing the OAM of light.
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We will then explore the topological phase diagram of the 2D case. The effect of the

nontrivial topology on the dynamics of the particle subjected to an external force will

be investigated. Therefore, we will report the experimental observation of a drift of the

average position of the ground state in the direction perpendicular to the applied force,

an effect that can be directly ascribed to the non-trivial Chern number of the system.

5.2 Topological Invariants and Geometric Phases

Topology can be regarded as a generalization of Euclideian geometry where different ge-

ometrical structures can be considered equivalent, if they can be continuously deformed

into one another [184]. As such, topology can be regarded as the study of continuity.

Objects that can transform continuously into one another form equivalence classes that

can be distinguished in terms of a mathematical object, called topological invariant.

The nature of a topological invariant depends on the problem of interest: it can be an

integer, as the number of holes in a closed surface, or can be a specific property of a

topological space, like compactness, or even an entire mathematical structure, such as

an homotopy group [184]. Indeed, a topological invariant is any feature that remains

unchanged under smooth infinitesimal transformations.

We give a mathematical example to better clarify the idea. Consider the set of all closed

curves defined on P = R2 − {(0, 0)}, i.e. a plane with an hole in the origin. Then we

can distinguish the closed curves on P in various equivalence classes: there are loops

that do not enclose the origin and loops that enclose the origin one time, or an integer

number of times (this is possible because we can consider also self intersecting curves).

Curves belonging to the first class can be continuously shrunk to a point, while curves

enclosing the origin cannot. A curve that does not contain the origin cannot be smoothly

deformed into one containing it. Each equivalence class can be identified by an integer

number, that is the number of times the curve wraps around the origin. This number

is a topological invariant, called winding number. We have already used the concept of

winding number in the first chapters of this Thesis. For example, the winding number

associated to a polarization singularity was defined as the number of times that the

orientation θ of the polarization ellipse changes by 2π in a loop around the singularity

(see Chapter 3). If, instead, θ is the phase of a scalar optical beam, then the winding

number gives the amount of OAM in units of ~ (Chapter 1). Still, in this chapter we

will introduce a winding number associated to the eigenstates of a topological insulator.

In the study of topological insulators there is another object playing a fundamental

role, that is indeed of fundamental importance for defining some topological invariants.

This object, called Berry phase was introduced investigating cyclic adiabatic evolution

in quantum systems. Next we proceed to a description of this concept that will be of
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fundamental importance as we go on through the Chapter.

In 1984, M.V. Berry [208] demonstrated that when a quantum system is subjected to a

cyclic adiabatic evolution it will acquire a global phase that, in general, is not only given

by the dynamical phase, but also by an additional geometric contribution. The latter,

known as Berry phase or geometric phase, is of physical importance since it cannot be

deleted by a suitable gauge transformation. Indeed, some intriguing physical phenom-

ena, like the Aharonov-Bohm effect, can be understood in terms of the Berry phase

[208]. Later it turned out that some of the assumptions that led to the discovery of

geometric phases were not necessary. The geometric phase concept was anticipated by

Pancharatnam in 1956 under more general hypotheses [209]. Pancharatnam proposed

an operational criterion to establish when two polarized beams can be considered “in

phase”. In doing this he actually found that a geometric phase appears even when con-

sidering processes which are not adiabatic, nor unitary or cyclic.

Here we derive the Berry phase in the specific framework of quantum systems which are

symmetric under discrete translations. For these systems, Bloch theorem states that

the eigenstates, |ψi,q(r)〉, of the Hamiltonian, Ĥ, are plane waves with momentum q

modulated by functions which are spatially periodic, with a period given by the lattice

translation vector R:

|ψi,q(r)〉 = eiq·r|ui(q, r)〉, (5.1)

|ui(q, r)〉 = |ui(q, r + R)〉, (5.2)

where the index i takes into account the presence of other degrees of freedom (like spin).

Since q is a good quantum number, the Hamiltonian can be written in the block diagonal

form:

Ĥ =
∑
q,i,j

Hi,j(q)|ui(q)〉〈uj(q)| (5.3)

where Hi,j(q) are matrix elements of the so called Bloch Hamiltonian, which acts on the

“internal” degrees of freedom, labeled by the indexes i and j. It can be diagonalized by

a suitable unitary transformation: |q, s〉 = Vs,i|ui(q)〉 for which:

H(q)|q, s〉 = Es(q)|q, s〉. (5.4)

The eigenenergies of the system, Es(q), are thus parametrized by the quasi-momentum

q, and thus represented by functions on the reciprocal space called energy bands. We

recall that q is defined up to a translation vector G in the reciprocal lattice space [210],

for this reason it is called quasi-momentum.

Let us consider a curve C in the quasi-momentum space. We want to study the evolution

of the eigenvectors |q, s〉 along C. If there are no degeneracies, i.e. level crossings, on
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C we can consider a single energy band and thus fix the label s. We consider the phase

arg〈q, s|q + dq, s〉, where the infinitesimal displacement is along C. This phase can be

rewritten as:

arg〈q, s|q + dq, s〉 ≈ arg(1 + 〈q, s|gradq|q, s〉dq). (5.5)

The quantity 〈q, s|gradq|q, s〉 is purely imaginary. Hence the total phase acquired during

the evolution along C is:

γs(C) = −i
∫
C
〈q, s|gradq|q, s〉dq ≡

∫
C

A(q) · dq. (5.6)

Now we observe that this phase is in general gauge dependent. Indeed given the trans-

formation:

|q, s〉 → eiα(q)|q, s〉, (5.7)

we have that:

A(q)→ A(q) + gradqα(q) (5.8)

γs(C)→ γs(C) + α(q2)− α(q1), (5.9)

where q1 and q2 are the extremes of the curve C. The field A behaves as the elec-

tromagnetic vector potential under gauge transformations. For this reason it is usually

called Berry vector potential. Often one also uses the name Berry connection, referring

to the language of differential geometry.

Consider the case in which C is a closed curve. Hence the points q2 and q1 coincide.

Single valuedness of the Bloch wavefunctions |q〉 implies that: α(q2) − α(q1) = 2mπ,

where m is an integer. It follows that γs(C) is a meaningful quantity, defined modulo

2π, which cannot be removed by a suitable gauge choice. γs(C) is known as Berry phase.

This quantity is dependent only on the path chosen in the parameter space and not on

the path parameter. In this sense it has a geometric nature.

It has been shown that the Berry phase can be associated to an important physical

quantity that can be observed in a crystal: the electric polarization P . This result,

together with the derivation of the Berry phase in Bloch bands, was first obtained by

Zak [211]. When the Berry phase is evaluated over the entire Brillouin zone in a one

dimensional system, it is called Zak’s phase. Detection of the Berry phase has been

realized first in optical systems [212], but is also of interest in condensed matter due to

its relation with topological invariants [165, 182, 213–215].

If some additional symmetry is included in the system, the Zak phase can be quantized

and therefore regarded as a topological invariant. The first example was given by Zak

itself, which showed that if the system presents inversion symmetry then γ = 0, π [216].

Here we are interested in another symmetry, called chiral symmetry [217]. A quantum
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system, described by the Hamiltonian Ĥ, possess chiral symmetry if there exist a unitary

operator Γ̂, called chiral operator, such that:

Γ̂ĤΓ̂−1 = −Ĥ. (5.10)

It immediately follows that Γ̂2 = 1, hence eigenstates of the chiral operator have eigen-

values ±1. Moreover, chiral symmetry implies that, given any eigenstate |ψ〉 of Ĥ with

energy E, then there exist another eigenstate of Ĥ with energy −E. This state is: Γ̂|ψ〉,
as can be seen by direct calculation. This result has a consequence on the general form

of the Bloch Hamiltonian H(q). First, it is evident that chiral symmetry can exist only

if the internal degrees of freedom are even-dimensional, i.e. s ∈ {1, . . . , 2N} (N integer).

Second, with a proper choice of the zero of the energy, H(q) has the block off-diagonal

form:

H(q) =

(
0 h(q)

h†(q) 0

)
, (5.11)

where h(q) and its Hermitian conjugate, h†(q), are N × N dimensional matrices. Let

us focus on the simplest case N = 1, where the internal degree of freedom is two-

dimensional. In this case we can write the chiral operator in the form:

Γ̂ = exp(−iπvΓ · σ̂/2). (5.12)

Hence Γ̂ rotates a vector in the Bloch sphere orthogonal to vΓ by an angle π. Indeed

the eigenstates of H(q) are represented by vectors on the Bloch sphere, n(q), lying in

a plane perpendicular to vΓ. This is consistent with the fact that the chiral operator

transforms n(q) in −n(q). If we rotate the system in a basis where vΓ = (0, 0, 1)T , the

Bloch Hamiltonian will have the form:

H(q) = E(q)(nx(q)σx + ny(q)σy). (5.13)

The fact that n(q) lies on a fixed plane for every value of q allows to define a topological

invariant. Imagine to follow the direction of n(q) as q changes from −π to π. Because

the Brillouin zone is a circle (the points q = −π and q = π are identified), we will

have n(−π) = n(π). Hence n(q) can rotate by an angle θ(q) < 2π and turn back to its

original position, or it can cover the entire circle a finite number of times. The number

of times that n(q) covers the equatorial plane is an integer and, as such, it cannot be

changed by smooth deformation. We will call it the winding number. Defining

θ(q) = n(q) · n(−π) = arctan
ny(q)

nx(q)
, (5.14)



Chapter 5 - Topological phases with structured light 96

we can write the explicit expression of the winding number ν:

ν =
θ(π)− θ(−π)

2π
=

∫ π

−π

d

dq
θ(q)dq

=

∫ π

−π

(
nx(q)

d

dq
ny(q)− ny(q)

d

dq
nx(q)

)
dq

2π
. (5.15)

It turns out that this expression is also proportional to the Zak phase. Indeed, by

inserting the spinor representation of the Bloch eigenstates,

|n(q)〉 =
1√
2

(
nx(q)− iny(q)

1

)
, (5.16)

into the Zak phase formula:

γZak = −i
∫ π

−π
〈n(q)|∂qn(q)〉dq, (5.17)

we obtain:

γZak = πν. (5.18)

Therefore, in chiral systems, the Zak phase is quantized and can be regarded as a

topological invariant. However the winding number is a more appropriate quantity for

distinguishing topological phases. Indeed the values ν = 2 and ν = 0 represent two

different topological phases even if they are associated to equivalent Zak phases (2π and

0, respectively).

5.3 A 1D model of chiral topological insulator: the SSH

model

We proceed to illustrate one of the most celebrated models on 1D chiral topological

insulators: the Su-Schrieffer-Heeger (SSH) model [190]. This is a nearest neighbor tight

binding model for a one dimensional lattice with two atoms per unit cell. Once the unit

cell has been defined one can consider the hopping amplitudes inside the single cells, the

hoppings and between one cell and the other. We label A and B the two possible sites

in a unit cell and thus define the creation operators c†A,i (c†B,i) that create a particle on

site A(B) belonging to the cell i. Thus, by defining the intracell hopping (t + δt) and

the intercell hopping (t − δt), where δt can be positive or negative, we write the SSH

Hamiltonian as:

HSSH =
∑
i

(t+ δt)c†A,icB,i + (t− δt)c†A,i+1cB,i + h.c. (5.19)
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Figure 5.1: SSH model. (a) Schematic of the SSH model. A single cell is composed
by two lattice sites A and B coupled by an hopping amplitude t + δt, schematized
by a single bond. The intercell hopping, t − δt is indicated by a double bond. (b)
Energy spectrum for different values of δt (we set t = 1). The red plot is for δt = −0.5,
the blue is for δt = 0.2. For δt = 0 (dashed black plot) the gap closes at q = ±π.
(c) Parametric plot of the curve D = (dx(q), dy(q)), with q ∈ [−π, π), for different
values of δt. For positive δt (here we show the cases δt = 0.25, 0.5 represented by blue
curves) the curve D does not contain the origin, indicating a zero winding number. At
δt = 0 (dashed black curve), D touches the origin, therefore the winding number is ill
defined. A non trivial winding number is obtained for δt < 0 (red curves) here shown

for δt = −0.25,−0.5.

This system is illustrated in Fig. 5.1 (a). By Fourier transforming HSSH we obtain the

Bloch Hamiltonian:

HSSH(q) = dx(q)σx + dy(q)σy, (5.20)

dx(q) = (t+ δt) + cos(q)(t− δt), (5.21)

dy(q) = sin(q)(t− δt). (5.22)

Where the distance between two cells is: a = 1. The energy eigenvalues are given by:

E(q) = ± |d(q)| = ±
√

2 [(t2 + δt2) + cos(k)(t2 − δt2)]. (5.23)

This is a simple model of a one dimensional insulator, whose energy band structure is

illustrated in Fig. 5.1 (b). Notice that the energy gap at q = π is zero for δt = 0, i.e.

when the intracell and intercell hoppings are equal. In this case the system becomes

a simple one dimensional crystal with one atom per unit cell. When the energy gap
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is closed the corresponding eigenstates are degenerate. This implies that the winding

number is ill defined for δt = 0. Indeed, if we consider the curve D = (dx(q), dy(q)),

we can identify the winding number as the number of times D encircles the origin (see

Fig. 5.1 (c)). At δt = 0 the origin is a point of D, thus we cannot determine the

winding number, i.e. we cannot say if the origin belongs or not to the interior of D.

When δt > 0 the winding number is ν = 0 (blue curves in Fig. 5.1 (c)). However,

for δt < 0 the winding number is ν = 1 (the curve D must be considered as oriented

counterclockwise), hence we have a nontrivial topological phase. This is a first example

of how a transition from one topological phase to another can happen in correspondence

of a zero gap phase. In general a topological invariant can be changed by crossing regions

of the parameter space where the topological invariant itself is ill defined.

This idea allows to get some intuition about the origin of topologically robust edge states.

These are states with energy lying in the gap of the bulk Hamiltonian whose wavefunction

is localized on the boundary of the system. Let us consider the boundary between a

topologically nontrivial system and a trivial one. By trivial, we mean a system which

can be smoothly transformed into the vacuum, without ever closing the spectral gap.

The boundary can be seen as a spatial transformation of the system parameter, e.g. δt in

the SSH case, from values corresponding to a trivial topology to values corresponding to

a non trivial one. In our case we can consider a function δt(x) which is negative in x < 0

and positive for x > 0. If this function is smooth enough, i.e. slowly changing on the

atomic scale, we can consider any small interval dx as a bulk system, where we can still

define, with good approximation, the quasi-momentum, q, and an energy spectrum given

by Eq: 5.23. Therefore we can say that the energy dispersion is given by E(q, x) and

exhibits the gap closing in x = 0. Hence a zero energy state exists around x = 0. This

state is topologically protected in the sense that any perturbation that does not destroy

the topological features of the system in x < 0 cannot remove this state. We can also

remove the restriction of δt(x) being a smooth function, provided that we change it to a

function jumping abruptly from negative to positive values, with a transformation that

has no influence on the topology. These considerations can be confirmed by numerical

calculations of the spectrum of a finite system. The general result is that a zero point

energy eigenvalue appears inside the energy gap (which still exists for finite systems even

if the energy bands cannot be expressed as functions of the quasi-momentum q).

The result that a bulk property, the topological invariant of the system, tells us what

will happen on the edge of the system, is known as bulk-edge correspondence [187].

More precisely, the bulk-edge correspondence allows to count the number of eigenstates

by simply knowing the value of the topological invariant. We will see some examples in

the following sections.

We conclude showing another method that allows to explicitly construct zero modes by

analytical calculations. We illustrate it in the specific case of the SSH model. Let the
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system parameter δt(x) be a function positive in x > 0 and negative in x < 0. Since

the system is finite we will have to replace the quasi-momentum q with its operatorial

representation q → −i∂x. Since we are interested to low energy solutions, that in the bulk

case lie around q = π, we expand the Bloch Hamiltonian around this point obtaining,

at first order, the Dirac-like equation:

[2δtσx + (t− δt)σy(−i∂x)]ψ(x) = Eψ(x). (5.24)

Then we look for a square integrable solution with E = 0. Multiplying for σy the two

sides of Eq: 5.24 we obtain, for E = 0:

[−2iδtσz + (t− δt)(i∂x)]ψ(x) = 0. (5.25)

Defining m(x) = 2δt(x)/(t− δt(x)), which is negative for x < 0, we can write a bounded

solution:

ψ(x) =

(
1

0

)
exp

(
−
∫
x<0
|m(x)| dx

)
, (5.26)

which is a state peaked on the boundary decaying exponentially in the x < 0 (non-trivial)

region. The topological protection can be understood by noticing that this solution is

valid for any deformation of the function m(x) that does not change its sign [218].

5.4 Simulating topological phases with Quantum Walks

1 As we have seen in the previous Chapter, Quantum Walks are ideal platforms where

to investigate spatially periodic systems with various band structures. The idea to use

Quantum Walks to study topological phases was introduced by Kitagawa [159, 219].

A generalization of the standard quantum walk was proposed, the split-step QW, and

implemented in photonic systems where it was possible to show the existence of protected

bound states [152].

In this section we investigate the topological properties of the 1D protocol proposed

in Chapter 4, Û1D(δ). We will show that this protocol is a chiral symmetric system

that can exhibit non-zero Zak phase for some values of the parameter δ. Therefore

we will investigate the edge states appearing in this system and study how topology

affects the dynamics of the Quantum Walk. In a previous work [95] it was showed that

the topological phase transition is associated to discontinuities in the first and second

moments of the QW probability distribution. Here we will also show that the Zak phase

is actually contained in the expression of the first moment of the probability distribution.

1Some paragraphs and sentences of this section are adapted or copied verbatim from the work [175]
which I coauthored.
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Its contribution can be isolated by defining a new observable, the chiral displacement,

that allows to directly certify the topological phase of the system.

The protocol we are interested in is: Û1D(δ) = Q̂(δ) ·Ŵ , where Q̂(δ) is a q-plate operator

with optical retardation δ and W a quarter wave plate. We have seen that Û1D(δ) is

described by an effective Hamiltonian, whose expression in the Fourier space is of the

form: Heff (q) = E(q)n(q, δ) · σ̂, where E(q) are the energy bands, already described

in Chapter 4, and n(q, δ) is the Bloch sphere representation of the eigenstates of the

system, whose components are:

nx(q, δ) = −cos(δ/2) + cos(q) sin(δ/2)√
2 c(q, δ)

, (5.27)

ny(q, δ) = −sin(q) sin(δ/2)√
2 c(q, δ)

, (5.28)

nz(q, δ) = ny(q, δ), (5.29)

where: c(q, δ) = sin(E(q, δ)). It is straightforward to see that this system exhibits chiral

symmetry. Indeed since nz(q, δ) = ny(q, δ), the vector n(q, δ) is always perpendicular to

the constant vector vΓ = (0, 1,−1)T for every q and δ. This defines the chiral symmetry

operator Γ̂ = vΓ · σ̂. We can therefore ask if there are some values of the system

parameter, δ, where the Zak phase, or equivalently the winding number, has a nonzero

value.

To simplify calculations it is convenient to analyze the system in a basis where vΓ =

(0, 0, 1)T . This is obtained by applying the transformation:

Û1D(δ)→
√
Ŵ Û1D(δ)

√
Ŵ
−1

=
√
Ŵ Q̂(δ)

√
Ŵ , (5.30)

where
√
Ŵ is an operator describing an uniform waveplate with optical retardation

δ = π/4 (see also Eq: 5.44). In this new reference frame the energy band dispersion

remains unaltered, while the vector n(q, δ) has components:

nx(q, δ) = −cos(δ/2) + cos(q) sin(δ/2)√
2 c(q, δ)

, (5.31)

ny(q, δ) = −sin(q) sin(δ/2)

c(q, δ)
, (5.32)

nz(q, δ) = 0. (5.33)

As it can be seen in Fig. 5.9 we have a nontrivial topological phase for π/2 < δ < 3π/2,

where the winding number of the curve D = (dx(q), dy(q)) ≡ E(q) (nx(q), ny(q)) is ν = 1,

corresponding to a value of the Zak phase γZak = π. As we will see below, even the phase

δ > 3π/2 is topologically non trivial, despite exhibiting zero winding number. This is

a consequence of the fact that we are considering a periodically driven system, that
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Figure 5.2: Topological invariants and edge states of the protocol Û1D. (a)
Parametric plots of the curve D = (dx(q), dy(q)) ≡ E(q) (nx(q), ny(q)), for different
values of δ ∈ [0, 2π). Red curves are for δ < π/2 (δ = π/8, π/4) and show a zero winding
number (trivial topology), blue curves correspond to π/2 < δ < π/2 (δ = 3π/4, π, 5π/4)
a winding number ν = 1, since they enclose the origin, while, again, for δ > 3π/2 (green
curves, shown for δ = 7π/4, 15π/8) the winding number is again trivial. Dashed curves
correspond to δ = π/2 (black) and δ = 3π/2 (gray), where the winding number is
ill defined. (b) Energy spectrum of a finite system (made of 2L = 20 lattice sites)
described by the protocol Û1D. The plot shows zero energy states for π/2 < δ < 3π/2,
while no states are observed in the gap for δ < π/2. Surprisingly, edge states are still
present for δ > 3π/2. In this case we have edge states at E = 0 and at E = π. The
winding number is zero because it actually counts the difference between the number of
states at E = 0 and the number of states at E = π. The parameter χ = log10(1−〈|m|〉)
indicates the degree of localization of the eigenstates (〈|m|〉 is the average absolute value

of the position in the lattice space). Panel (b) is adapted from Ref: [175]

can exhibit richer topological features. As expected, the topological phase transitions

happen in correspondence of gap closing points, like at δ = π/2, where the gap closes

at E = 0, and at δ = 3π/2 where the gap closes at E = π (by adding edge modes with

E = π, without destroying the edge modes with zero energy).

These result are confirmed by numerical calculations of the eigenstates and eigenvalues

for a finite lattice, shown in Fig. 5.9 (b), where the presence of edge states is confirmed

by their degree of localization: χ = log10(1− 〈|m|〉) (〈|m|〉 is the average absolute value

of the position in the lattice space). At π/2 < δ < 3π/2, there is an edge mode with

energy E = 0, while for δ > 3π/2 an additional edge state with E = π appears.

Until now we have seen how topology influences the boundary between two different

phases. However, since the topological phase of a system is defined by a bulk property

(notice that we have expressed topological invariants in terms of Bloch wavefunctions),
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we can ask if there is some observation that can be made in the system bulk that allow

to distinguish between a topological phase and the other.

Quantum Walk experiments often focus on measuring the probability distribution after

t steps of evolution of an initially localized state. Therefore one can study the behavior

of the moments of the resulting distributions as the system parameter, in our case δ, is

changed. The k−th order moment, at step t, Mk(δ, t) is defined as:

Mk(δ, t) = 〈ψ(t)|m̂k|ψ(t)〉 =

∫ π

−π

dq

2π
〈U(q, δ)−t(−i∂q)kU(q, δ)t〉ψ0 , (5.34)

where 〈. . .〉ψ0 indicates the average over an initial localized state |ψ(0)〉, and m̂ = −i∂q.
From this equation, in Ref: [95], the first and second order moments have been evalu-

ated to the leading order in t. The results showed that, in the asymptotic limit, t→∞,

these moments exhibit slope discontinuities at the values of δ where a topological phase

transition occurs. Although a general proof is still missing, it was showed that this phe-

nomenon appears also in other systems, like the SSH model, the p-wave superconductor

and also 1D QWs without chiral symmetry.

In Ref: [175] we focused on the first order moment, looking for the complete expression

comprising the subleading contributions. Consider the evolution of a state |ψ0〉 initially

localized at site m = 0, and let its polarization be characterized by the expectation

values of the three Pauli operators: s = 〈σ〉ψ0 ≡ 〈ψ0|σ|ψ0〉. The evolution operator in

the coin space is, for t time-steps: U t = (Q.W )t = e−iEtn·σ = cos(Et)σ0− i sin(Et)n ·σ.

Using of the standard identity (a · σ)(b · σ) = (a · b)σ0 + i(a× b)σ (valid for arbi-

trary vectors a and b), it is straightforward to show that the mean displacement of the

wavepacket reads:

〈m̂(t)〉 = 〈ψ(t)|m|ψ(t)〉 =

∫ π

−π

dq

2π

〈
U−t(i∂q)U t

〉
ψ0

=

∫ π

−π

dq

2π
〈[cos(Et)σ0 + i sin(Et)n · σ] (−i∂q) [cos(Et)σ0 − i sin(Et)n · σ]〉ψ0

=

∫ π

−π

dq

2π

[(
−t∂E

∂q
+

∂

∂q

sin(2Et)

2

)
n + sin(Et)2

(
n× ∂n

∂q

)]
· s .

(5.35)

In the above expression we suppressed the dependence of E,n and U on q and δ. When

a protocol possesses chiral symmetry, the unit vector n of the corresponding effective

Hamiltonian is bound to rotate in the plane orthogonal to the vector vΓ = tr(Γσ)/2

associated to its chiral operator Γ̂. In turn, this means that (n× ∂kn) is parallel to vΓ.

We arrive then to the expression:

〈m(t)〉 = [L(t) + S(t)] + 〈Γ̂〉ψ0SΓ(t). (5.36)
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The terms in square brackets are proportional to 〈Γ̂〉ψ0 , i.e. the projetcion of the initial

state along a vector orthogonal to vΓ. Their explicit expression is:

L(t) =− t
∫ π

−π

dq

2π

∂E

∂q
n · s, (5.37)

S(t) =

∫ π

−π

dq

2π

∂

∂q

(
sin(2Et)

2

)
n · s. (5.38)

L(t) is a term that grows linearly with time and becomes dominant on the subleading

term S(t) in the long time limit. Of particular interest is the term:

SΓ(t) =

∫ π

−π
sin(Et)2

∣∣∣∣n× ∂n

∂q

∣∣∣∣ dq2π
, (5.39)

called the chiral subleading term. By noticing that (n × ∂kn) · s is proportional to the

Berry connection, we can write:

SΓ(t) =
γZak
2π
−
∫ π

−π
cos(2Et)

∣∣∣∣n× ∂n

∂q

∣∣∣∣ dq2π
. (5.40)

The above analysis shows that information on the Zak phase is contained in the mean

displacement of the walker, and it may be extracted by fitting 〈m〉 at long times, iso-

lating in turn the second term of Eq: 5.36. However, this measurement would not be

robust. Indeed, even if one prepared the initial polarization in an eigenstate of the

chiral operator Γ̂, so that 〈Γ⊥〉ψ0 = 0, disorder during the propagation of the beam

would introduce polarization components orthogonal to vΓ. These would give rise to

ballistic contributions, which in the long time limit would dramatically affect the result.

A related result for the case of a non-Hermitian quantum walk initialized on a chiral

eigenstate (i.e., an initial condition such that 〈Γ⊥〉ψ0 = 0) was demonstrated theoreti-

cally in Ref: [220], and verified experimentally in Ref: [221].

We introduced an alternative and more convenient approach, that consists in measuring

the mean chiral displacement:

C(t) ≡ −〈Γm̂(t)〉ψ0 = SΓ(t), (5.41)

which quantifies the relative shift between the two projections of the state onto the

eigenstates of the chiral operator. Importantly, the result contained in Eq: 5.41 is

(i) independent of the initial polarization and (ii) robust against disorder. The chiral

displacement becomes proportional to the Zak phase in the limit t → ∞. Indeed the

additional term appearing in SΓ(t) is an oscillating contribution (as a function of δ)

whose amplitude, in the asymptotic limit, goes to zero as 1/
√
t, as can be easily seen by

evaluating the integral with the method of stationary phase.

We derive here the result of Eq: 5.41 choosing the reference frame in the polarization
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Figure 5.3: Zak phase detection through the mean chiral displacement. (a)
Sketch of the setup implementing the protocol U = Q·W . A light beam, exiting a single
mode fiber depicted on the left, performs a QW by propagating through a sequence of
quarter-wave plates (purple disks) and q-plates (turquoise disks). (b) The unit vector
n(k) winds either 1 or 0 times around the chiral axis, as k traverses the whole Brillouin
zone, depending on the value of the optical retardation δ. (c) Mean chiral displacement
C after a 7-steps QW of protocol U , vs. the optical retardation δ. Each datapoint
is an average over ten different measurements (error bars are the associated standard
errors). Purple and red dots refer, respectively, to different input polarizations, |L〉
and (|L〉+ |R〉)/

√
2. The lines represent the function SΓ(t) given in equation 5.40, for

different values of the time t. In the long time limit, SΓ(t) converges to (a multiple of)
the Zak phase γ of protocol U . Image adapted from Ref: [175].

space such that: Γ̂ = σz. One finds:

C̃(t) =〈Γ̃m(t)〉 =

∫ π

−π

dq

2π

〈
U−tσz(−i∂q)U t

〉
ψ0

=

∫ π

−π

dq

2π

〈
sin(Et)2

[
(n× ∂qn)z σ0 −

i

2
∂q|n|2σz

]
+ i∂q

[
cos(Et) sin(Et)(nxσy − nyσx)− sin(Et)2σz

]
ψ0

=

∫ π

−π

dq

2π
sin(Et)2

(
n× ∂n

∂q

)
z

= SΓ(t).

(5.42)

In the second line of Eq: 5.42, all terms preceded by an imaginary unit i integrate to

zero: the first because n is a vector of unit norm for all k, and the second because it

is the integral of a total derivative over a closed path. The final result is purely real,

in agreement with the fact that the chiral displacement is the expectation value of an

Hermitian operator.

After deriving the above result, we probed the chiral displacement in our OAM-based

platform (see Chapter 4), by performing a 7-step quantum walk of the protocol Û1D, as

depicted in Fig. 5.3(a) [175]. The chiral eigenstates correspond to two specific orthogo-

nal polarization states, which depend explicitly on the protocol, and which we detect at

the end of the quantum walk.

At the end of the walk we can select any polarization component of the final state by
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a combination of a quarter-wave and a half-wave plate, followed by a linear polarizer,

and we measure its OAM content by diffraction on a spatial light modulator coupled to

a SMF and a power meter, which records the light intensity. Since we are interested in

analyzing the OAM spectrum of chiral components of the final wavepacket, waveplates

orientations are selected so as to implement polarization projections onto chiral states

|↑〉 and |↓〉. The chiral operator for Û1D is (σy + σz)/
√

2, so it is straightforward to see

that |↑〉U = cos (π/8)|L〉 + i sin (π/8)|R〉 and |↓〉U = sin (π/8)|L〉 − i cos (π/8)|R〉. The

combination of polarization and OAM projections allows for determining the probabili-

ties Pi,m, with i = {↑, ↓}, that the system is in the chiral state |i〉 and in the OAM state

|m〉. Given the probability distributions Pi,m, the chiral displacement is simply given

by:
∑

mm (P↑,m − P↓,m).

In Fig. 5.3(c), we report the measured values of C for two different initial polarization

states. Experimental points closely follow the theory curve for 7 time steps (blue solid

line), and no significant differences can be observed between the two different initial

states, proving that this measurement is insensitive to the choice of the polarization

of the photons. For completeness we also show results predicted for 33 steps, and the

asymptotic long-time limit, which coincides with the Zak phase (over 2π). We note here

that, although both theory and data oscillate, as few as 7 steps are enough to distinguish

clearly between the two topological phases.

In the experiment we could also test the stability of the quantization of the mean chi-

ral displacement against dynamical disorder. In particular, we introduced dynamical

disorder by offsetting the optical retardation δj (1 ≤ j ≤ 7) of each q-plate by a small

random amount |εj | < ∆ around their common mean value δ̄. In our experiment, we set

∆ = π/10 and π/5.

We note that this disorder is dynamic, in the sense that it affects independently the

various q-plates crossed by the beam, but crucially it respects chiral symmetry. This

can be simply understood by noting that the vector vΓ, defining the chiral operator,

does not depend on δ.

As shown in Fig. 5.4, in single realizations the mean chiral displacement presents oscil-

lations featuring higher amplitude for increasing disorder, but an ensemble average over

independent realizations smoothly converges to the expected theoretical result, which

in the infinite time limit gives the bulk value of the Zak phase. Here we performed

measurements on protocol Û1D, but similar robustness of the chiral displacement shall

hold for every 1D QW chiral protocol, and more generally every 1D chiral system, as

long of course as the disorder does not break chiral symmetry and its strength is small

compared to the gap size to prevent inter-band transitions. As an example, in Ref: [175]

we showed that the mean chiral displacement is an equally robust topological marker

for the SSH model.
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Figure 5.4: Robustness to dynamical disorder. Measurement of the mean chiral
displacement C for a localized input state in presence of dynamical disorder. For the
orange (blue) lines, we choose a mean value of the q-plate optical retardation δ̄ = 7π/4
(δ̄ = π), expected to yield a Zak phases of γ/2π = 0 (γ/2π = 1/2), and we add at each
time step a small random retardation |ε| < ∆, with ∆ = π/10 (left) and π/5 (right).
Thin solid lines display the measurements of single realizations, and their average is
shown as filled circles (error bars are the standard error of the mean). In all plots,
empty diamonds represent theoretical simulation calculated for the ideal case ∆ = 0,

and dotted lines the expected result for t→∞. Image from Ref: [175].

5.4.1 Full topological characterization of our 1D protocol

2The detection of the chiral displacement showed that our protocol exhibits a winding

number equal to ν = 1 for π/2 < δ < 3π/2, while it is zero for the other values of

δ ∈ (0, 2π]. However we have also seen that the phase δ > 3π/2 is actually non-trivial,

since edge modes at energy E = 0 and E = π are present. We will call these modes

0-mode and π-mode, respectively. Hence, the winding number alone, fails to predict the

topological features of the phase δ > 3π/2. Moreover, one single integer cannot give a

complete topological classification of a system that exhibits two kinds of edge modes. In

such a case we would need to count the number of 0-modes and the number of π-modes.

Therefore we expect that our system must be characterized by two integers.

An approach for a full topological characterization of one dimensional chiral systems

which are periodic in time has been developed by J.Asboth and H.Obuse [222] by in-

troducing the concept of time frames. Another way to experimentally measure all the

topological invariants of a DTQW has been demonstrated in Ref: [223]. Here we will

employ the first approach.

We have considered the protocol Q̂Ŵ , but we could also define the protocol Ŵ Q̂, which

is actually the same quantum walk where we start with a q-plate rather than with a

wave-plate, i.e we consider a different starting time. Indeed, in any time-periodic sys-

tem we can introduce the effective Hamiltonian in multiple ways, by considering different

2Some paragraphs and sentences of this section are adapted or copied verbatim from the work [175]
which I coauthored
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starting times. The resulting effective Hamiltonian will have the same energy spectrum

but, in general, different eigenvectors. In particular, as noted in Ref: [222], changing

time-frame can break the chiral symmetry of the system. This has suggested the authors

to define as chiral, any periodically driven system that presents at least one time frame

where the effective Hamiltonian exhibits chiral symmetry (CS). It turns out that, if a

time frame with CS exists, then one can find a second time frame that still presents

chiral symmetry. Indeed, imagine to split the unitary process that starts at time τ ,

into two operators: Û ′(τ) = ĜF̂ . If Û ′ is a time frame with CS, then we can write

Ĝ = Γ̂F̂−1Γ̂. Then it is straightforward to show that also the time frame Û ′′ = F̂ Ĝ

possess chiral symmetry. In general two time frames will have the same energy band

dispersions but different eigenstates. Hence it is possible to observe in Û ′′ a winding

number different from the one in Û ′.

Let us turn to the specific case of our implementation. We consider the protocol Û(δ)

in the basis where Γ̂ = σz:

Û1(δ) =
√
Ŵ Q̂(δ)

√
Ŵ . (5.43)

We have already seen that this time frame exhibit CS, and the measurement of the

corresponding winding number has been shown in the previous section. More precisely

we measured the topological invariants of the protocol Û = Q̂Ŵ , which is actually

another time frame (still chiral symmetric), but since Û1 is equivalent to a rotation

in the coin space of Û , there can be no difference in the winding numbers of the two

systems.

In the following we will make use of the relation (valid for any waveplate L̂ with optical

retardation δ):

L̂k(δ) = L̂(kδ), (5.44)

which can be proved by verifying that L̂k(δ) · L̂1−k(δ) = L̂(δ).

Let us define Û1 = ĜF̂ , with F̂ =

√
Q̂(δ)

√
Ŵ , and Ĝ = Γ̂F̂−1Γ̂ =

√
Ŵ

√
Q̂(δ). We can

thus built the second chiral time frame, ˆ̃U(δ) = F̂ Ĝ, which explicitly reads:

ˆ̃U(δ) =

√
Q̂(δ)Ŵ

√
Q̂(δ). (5.45)

The effective Hamiltonian of this protocol exhibits a winding number given by:

ν = 0, 0 < δ < π/2,

ν = 1, π/2 < δ < 3π/2,

ν = 2, 3π/2 < δ < 2π, (5.46)

as it is also shown in Fig. 5.5. Hence looking also at the winding number of a second

chiral symmetric time frame allows to obtain a full topological characterization of our
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Figure 5.5: Topological invariants and edge states of the protocol ˆ̃U . (a)
Parametric plots of the curve D = (dx(q), dy(q)) ≡ E(q) (nx(q), ny(q)), for different
values of δ ∈ [0, 2π). Red curves are for δ < π/2 (δ = π/8, π/4) and show a zero winding
number (trivial topology), blue curves correspond to π/2 < δ < π/2 (δ = 3π/4, π, 5π/4)
and winding number ν = 1, since they enclose the origin one time, while, for δ > 3π/2
(green curves shown for δ = 7π/4, 15π/8) the winding number is ν = 2, as can be
better appreciated in panel (b), showing the case δ = 7π/4. Dashed curves correspond

to δ = π/2 (black) and δ = 3π/2 (gray), where the winding number is ill defined.

system.

From Eq: 5.44 it is evident that we can physically implement the protocol ˆ̃U by

reordering the waveplates in our setup. We realize experimentally protocol ˆ̃U by the

setup shown schematically in Fig. 5.6 (b). Using the relation

√
Q̂(δ) = Q̂(δ/2), it is

straightforward to see that Ũ t =
√
QWQW...QW

√
Q. Hence, we realize the operator ˆ̃U t

by placing q-plates yielding an optical retardation δ/2 (
√
Q) at the beginning and end

of the optical path, while in the bulk of the walk we adopt the same sequence reported

in Fig. 5.3 (a) (with the last q-plate removed). Overall, our quantum walk implements

7 steps of protocol ˆ̃U by means of a total of eight q-plates, six with retardation δ, two

tuned at δ/2 (first and last plates), separated by quarter-wave plates. In Fig. 5.6(d),

we report the measure of the mean chiral displacement C̃ generated by the single step

operator ˆ̃U . As in the case of protocol Û1, this quantity accurately follows the theory

prediction, providing an unambiguous detection of the Zak phase γ̃ of the infinite system

after just 7 steps.

The bulk-edge correspondence in these driven systems requires two invariants C0 and

Cπ, yielding respectively the number of 0- and π-energy edge states. As shown in Ref:

[222], the complete topological classification of 1D chiral systems may be obtained by
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Figure 5.6: Zak phase in the complementary time frame. (a) Different choices
of the origin of the periodic cycle lead to different protocols. (b) Sketch of the setup
implementing protocol Ũ =

√
Q ·W ·

√
Q. The two q-plates at the beginning and end of

the optical path (shown in bright green) yield an optical retardation δ/2, where δ is the
optical retardation characterizing bulk q-plates (turquoise). (c) The unit vector ñ(k)
associated to the operator Ũ , for optical retardation 3π/2 < δ < 2π, winds twice around
the chiral axis as k spans the whole Brillouin zone. (d) Mean chiral displacement C̃
after a 7-steps QW with protocol Ũ . The data-points are averages of ten experimental
measurements, and error bars are the associated standard errors. Purple and orange
colors refer, respectively, to input polarizations |L〉 and (|L〉 + i |R〉)/

√
2. The lines

display SΓ(t), for different values of the time t. At long times, SΓ converges to the Zak
phase γ̃. Image from Ref: [175].

means of the two quantities

C0 =
C̃ + C

2π
and Cπ =

C̃ − C
2π

, (5.47)

which converge in the long time limit, respectively, to the number of 0- and π-energy edge

states. By combining our measurements of the mean chiral displacements measured in

the nonequivalent time frames we are now able to compute the invariants C0 and Cπ and

detect the complete phase diagram of this system: the result is shown in Fig. 5.7. Once

again, our measurements show a remarkably fast convergence towards the asymptotic

limit.

Although here we investigated experimentally a specific quantum walk, our results are

not restricted to QWs, nor to Floquet systems. Indeed, the mean chiral displacement

provides a robust topological characterization of arbitrary spin-1/2 1D chiral systems,

either static or periodically-driven. These may nowadays be realized in a variety of

platforms, ranging from ultra-cold atoms in optical lattices to photonic waveguides, and

from semiconductor quantum wells to optomechanical systems. While formerly known

methods for detection of topological properties require a uniform filling of the band of

interest, external forces, loss mechanisms, or fine-tuning so that only edge states are

populated, the method proposed here quite remarkably achieves this goal by observing

the free evolution of a single particle, initially localized on a single site in the bulk.
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Figure 5.7: Complete topological characterization of the QW protocol. Topo-
logical invariants C0 and Cπ, obtained by combining the measurements of the mean

chiral displacements C and C̃ of protocols Û and ˆ̃U , and averaging the results obtained
from the two initial states (error bars are the propagated standard errors). The dashed
lines show the long-time limit of the topological indices C0 and Cπ, yielding respectively

the number of edge states at 0- and π-energy. Image from Ref: [175].

This aspect may be specially beneficial for systems where filling a band is intrinsically

challenging, such as bosonic condensates or phononic and photonic ensembles. Indeed,

after this work, the measurement of the chiral displacement has been employed in other

systems. For example, it has been recently used in in Ref: [168], and in the first

observation of a topological Anderson insulator [224]. Moreover the results showed here

for the particular case of a two dimensional coin, have been generalized for chiral systems

with more than two internal states [225].

5.5 2D topological systems

Topology started to have a key role in solid state physics with the discovery of the Quan-

tum Hall Effect (QHE), in 1980. This phenomenon was observed in a two dimensional

electron gas [189] subjected to strong magnetic fields (of the order of few Tesla). At low

temperatures, the Hall conductance, σxy, related to the current traveling in the direc-

tion perpendicular to an applied (in plane) electric field, behaves as a step-like function,

rather than growing linearly with the magnetic field B. Interestingly, the jumps between

one plateau and the other were shown to be integer multiples of the conductance quan-

tum e2/h. Moreover, the longitudinal conductance, related to Ohmic losses, is negligible

in correspondence of the plateaus, while it exhibits peaks at the values of B where σxy

is (in the zero temperature limit) discontinuous. This suggested that the quantized Hall

conductance was associated to a non-dissipative charge transport. Many theoretical

efforts have been employed to explain this phenomenon. In 1982, Thouless, Komoto,
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Nightale and Niu [188] calculated the Hall conductance for a two dimensional crystal

discovering that it was proportional to a topological invariant, today called TKNN in-

variant, related to the sum of the Chern numbers of the occupied bands. This work

allowed to understand that the quantization of the Hall conductance was related to the

topological properties of the spectrum of the system. Moreover it became clear that

the non-trivial Chern numbers where due to the breaking of time reversal symmetry

(TRS), as a consequence of the applied magnetic field. This suggested that, to observe a

quantum Hall effect, there is no need of strong magnetic fields if other ways of breaking

TRS are found. Systems that exhibits non zero Chern numbers in absence of exter-

nal magnetic fields are known as Anomalous Chern insulators [187]. Various models

of Chern insulators without magnetic fields have been proposed: we cite the Haldane

model of an honeycomb lattice with a zero net magnetic flux per unit cell [226], and

the Bernevig Huges Zhang model [227] which can be used as a qualitative description

of HgTe quantum wells with magnetic impurities [193]. In this section we will see how

the 2D quantum walk protocol introduced in Chapter 4 describes a periodically driven

Chern insulator. For completeness we mention that topological insulators with TRS do

actually exist. We cite the two dimensional spin Hall insulators (theoretically proposed

in graphene [228] but realized with HgTe quantum wells [229]) and the three dimensional

topological insulators [230].

Let us proceed to introduce the Chern number. Our aim is to construct a topologi-

cal invariant for a two dimensional system (here we follow Ref: [187]). We start by

considering the Berry phase acquired on a closed loop ∂R, which is the boundary of a

region R, in the 2D Brillouin zone:∮
∂R

A(q(s)) · dq(s), (5.48)

where s is the curve parameter. This equation can be written, by using the Stokes

theorem, as: ∫
R

curlA(q) ·m(q)dS, (5.49)

where m(q) is the normal to the surface D and dS the infinitesimal area over the surface.

The vector field Ω(q) = curlA(q) is known as Berry curvature. Often one also defines

the Berry curvature tensor Ωij = ∂iAj − ∂jAi, in terms of which Eq: 5.49 reads:∫
R
εijΩij(q)d2q, (5.50)

where εij is the Levi-Civita symbol. Let us consider what happens when R is extended

to the whole Brillouin zone. In this case R = BZ is a closed surface, i.e. the boundary
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∂R collapses to a set of measure zero. The integral:

ν =

∫
BZ

εijΩi,j(q)
d2q

2π
, (5.51)

is known as Chern number. Notice that if the Stokes theorem can be applied, in order

to turn back to a curvilinear integral, then the result would be zero since the Brillouin

zone has no boundary. Hence, in order to have a non-zero Chern number, there must be

a point in the Brillouin zone where the Berry connection is singular. This happens when

it is not possible to find a smooth gauge over the whole space. For example, suppose to

choose a gauge, f(q), such that the first component of the Bloch wavefunction, denoted

by ψ(q)1, is real, i.e. to multiply |ψ(q)〉 by exp(if(q)) = |ψ(q)1| /ψ(q)1. However, if at

some points q0 this component vanishes, we cannot prolong our gauge choice to these

points. Therefore one is constrained to make different gauge choices in separate patches

of the Brillouin zone. For example, by defining the gauge: exp(ig(q)) = |ψ(q)2| /ψ(q)2,

one can require that in a closed region around q0 the second component of the Bloch

wavefunction is real. At the boundary ∂P between two patches, P1 and P2 = BZ − P1,

the wavefunctions must be related by a gauge transformation, i.e. they must be equal

except for a global phase χ(q). Let A1 be the Berry connection in P1, and A2 the

Berry connection in P2. At the boundary ∂P these two fields are related by A1(q) =

A2(q) + gradχ(q). We can split the integral defining the Chern number as:

ν =

∫
P1

curlA1(q) ·m(q)
dS

2π
+

∫
P2

curlA2(q) ·m(q)
dS

2π
. (5.52)

The two integrals are on open surfaces, hence we can use Stokes theorem:

ν =

∫
∂P1

A1(q) · dq
2π

+

∫
∂P2

A2(q) · q

2π
(5.53)

=

∫
∂P1

(A1(q)−A2(q)) · dq
2π

(5.54)

=

∫
∂P1

gradχ(q) · dq
2π
. (5.55)

Since χ(q) is a phase, it can change along a closed curve only by a multiple of 2π. hence

the above integral is an integer number [187].

We thus showed that the Chern number can be treated as a topological invariant for 2D

systems. Its value is different from zero in the case there is an obstruction in defining a

smooth gauge over the whole Brillouin zone. The Chern number can be also seen as an

extension of the winding number concept to two dimensions. Indeed in the case of a two

level system described by the Hamiltonian: H(q) = E(q)n(q) · σ̂, the Chern number
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can be written as:

ν =

∫
BZ

dqxdqy
4π

n(q) ·
(
∂qxn(q)× ∂qyn(q)

)
. (5.56)

The integrand is a map from an infinitesimal area on the Brillouin zone to an infinitesimal

area of the Bloch sphere. This map wraps around the Bloch sphere an integer number

of times, given by ν, due to the periodic boundary conditions of the Brillouin zone.

Due to the symmetry properties of the Berry curvature, the Chern number is zero if time

reversal symmetry holds [187]. A system exhibiting a nontrivial Chern number, where

time reversal symmetry was broken in absence of external magnetic fields, was realized

experimentally for the first time in Ref: [231] by introducing ferromagnetic order in

time reversal invariant topological insulators. In 2011, Lindner et al. [232] proposed

the realization of topological Floquet insulators introducing a periodic driving on a

trivial insulator. Floquet insulators with non-trivial Chern numbers have been recently

realized in various systems, see e.g. Refs: [233, 234]. In the next section we investigate

the topological properties of the 2D Quantum Walk introduced in the previous chapter

showing that it can exhibit non-trivial Chern numbers.

5.6 Topological features of the protocol Û2D

Let us turn back to the 2D quantum walk defined by the single step operator:

Û2D(δ) = T̂y(δ) · T̂x(δ) · Ŵ , (5.57)

where we remind that T̂x,y(δ) are shift operators implemented by g-plates with optical

retardation δ. This operator realizes a quantum walk on a square lattice [38]. The

Brillouin zone for this kind of lattices is again a square defined by the set BZ = {−π ≤
qx ≤ π,−π ≤ qy ≤ π}. In Fig. 5.8 (a) we show the Brillouin zone togheter with the high

symmetry points Γ, M, R. The essential features of the quasienergy spectrum can be

analyzed by looking at the quasienergy dispersion along the path joining these points,

shown in Fig. 5.8 (a). The results are plotted in Fig. 5.8 (b) for various values of

δ ∈ [0, π] (the results for δ ∈ [π, 2π] are specularly symmetric with respect to the case

showed here). By changing δ the energy gap closes at E = 0, for δ = π/4, and at E = π

for δ = 3π/4. Hence we can expect a topological phase trasition in correspondence

of these points. Interestingly, the gap closing at the Γ point, for δ = 3π/4, suggests

that in this system time reversal symmetry must be broken. Indeed, a general theorem,

known as the fermion doubling theorem, states that, in a system where time reversal

symmetry holds true, there cannot be an odd number of Dirac cones [218]. The violation

of this result allows for the possibility of observing non trivial Chern numbers. Indeed
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Figure 5.8: Energy band dispersion for the protocol Û2D. (a) The Brillouin
zone is a square set. Here it is showed with the path (in red) joining the high symmetry
points Γ, M, R. In (b) we plot the quasienergies along this path. Gap closing is
observed at E = 0, for δ = π/4 (dashed black line), and at E = π for δ = 3π/4 (dashed

gray line).

we calculated the Chern number for different values of δ ∈ [0, π], obtaining a Chern

number ν = 1 for π/4 < δ < 3π/4, and ν = 0 otherwise. Moreover, by following the line

of reasoning already used in the 1D case, we expect that the phase 3π/4 < δ < 5π/4

is topologically not trivial, with both 0- and π- edge modes. This can be confirmed by

the calculation of generalized topological invariants, W0 and Wπ, that count the number

of 0- and π- edge states (Fig.. 5.9 (a)). These invariants have been introduced in Ref.

[206] to obtain a complete classification of Floquet Chern insulators. Their difference

gives the Chern number. These result are confirmed by numerical calculations of the

energy spectra for a finite system. For a 2D system one can consider an open boundary

along the x direction, while keeping periodic boundary conditions along y. In such a

case the y component of the quasi-momentum, qy, is still a good quantum number. The

Hamiltonian can thus be written in the form: Ĥ =
∑

x,qy
Hx(qy). The eigenvalues of

Hx(qy), for x fixed, form energy bands along the qy direction. For the values of x near

the boundary, if the topological phase of the finite system is not trivial, the bands will

cross the values E = 0 and/or E = π. Thus edge states will appear with a finite group

velocity vg(qy) along the y direction. These states are modes confined at the edge of the

system that propagate without dissipation or backscattering along the boundary. The

energy spectra for our QW protocol are shown in Fig. 5.9 (b).
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Figure 5.9: Topological phases of Û2D. (a) Phase diagram of our QW protocol
in terms of the topological invariants W0, Wπ defined in Ref. [206] and ν =W0 −Wπ.
These invariants provide the bulk-edge correspondence expected in topological systems,
as clear from the quasi-energy spectra, (b), computed within cylindrical boundary con-
ditions for δ = π/8, δ = π/2 and δ = 7π/8. The color coding of the spectrum indicates
the degree of localization on the two edges m = −N (dark blue) and m = N (red). As

degree of localization of each state ψ we take the function log10(1− 〈x̂〉ψ)/N).

5.7 Experimental study of anomalous velocity effects in

2D quantum walks

3 In order to experimentally ascertain the existence of a non-trivial Chern number in our

system, we investigated the propagation in 5 steps of the ground state subjected to a

force along the x direction. As we will briefly discuss now, the effect of an external field

is to give rise to a displacement of the center of mass of the ground state in the direction

perpendicular to the force. The amount of this displacement is indeed proportional to

the Chern number multiplied by the force strength.

Let us consider a constant force F x acting on a translational symmetric 2D system of

Hamiltonian H. We can write a Bloch Hamiltonian H(q) for each value of the quasi-

momentum q = (qx, qy) in the Brillouin torus. Let us assume to be in adiabatic regime,

namely that the momentum variation ∆qx(t) = F xt is slow with respect to the frequency

associated to the energy gaps |E(s±1)−E(s)|, with s being the index of the band where the

dynamics is starting from. As derived in Refs. [235, 236], in adiabatic approximation,

the semi-classical equations of motion for a wave-packet |Ψg(q0, s)〉 sharply centered

3Some paragraphs and sentences of this section are adapted or copied verbatim from Ref. [38] which
I coauthored
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around an energy eigenstate eiq0r0 |us(q0)〉 read:

ṙi = ∂qiE
(s)(q)− q̇jΩ(s)

ij (q), (5.58)

q̇i = Fi,

where i and j ∈ {x, y}, and Ω
(s)
ij is the Berry curvature of the s-th band. Hence the

wave-packet’s velocity reads

ṙi = ∂qiE
(s)(q)− F jΩ(s)

ij (q) = v
(s)
i (q)− F jΩ(s)

ij (q), (5.59)

where v(s) is the standard group velocity of the s-th band and −F jΩ(s)
ij is its anomalous

velocity. The wave-packet’s displacements in adiabatic approximation are simply:

〈∆x(t)〉Ψg = v(s)
x (q)t (5.60)

〈∆y(t)〉Ψg = v(s)
y (q)t+ F xΩ(s)

xy (q)t, (5.61)

where we used the antisymmetry of the Berry curvature tensor: Ω
(s)
yx (q) = −Ω

(s)
xy (q).

Eq. [? ] shows that a non-zero Berry curvature gives rise to an additional term for

the displacement in the direction perpendicular to the applied force. It comes straight-

forwardly that if the system’s state is an homogeneous superposition of all the band’s

eigenstates the overall mean displacements is given by the integrals over the Brillouin

zone of the single wave-packets displacements:

〈∆y(t)〉s =
1

2π
tFν(s), (5.62)

〈∆x(t)〉s = 0. (5.63)

The total displacement along the direction of the force is zero, as the integrals of both

components of the standard group velocity over the Brillouin zone vanish. However, the

integral of the anomalous displacement is proportional to the Chern number, ν(s). Hence,

this topological invariant can be measured by looking at the center of mass displacement

of a state that fills completely the energy band of interest, under the application of an

external field.

Going beyond the adiabatic regime will change the above result, due to effects caused

by interband transitions. However one can still retrieve informations about the Chern

number of the system even in this case. Let us consider a general two band system

described by the unitary operator Û . Imagine now to fill one single band, say the lowest,

i.e to prepare a mixed state, described by a density operator ρ̂, that is an incoherent

superposition of the band eigenstates. Under the application of an external force the

system evolution will partially be subjected to the effects of the Berry curvature, and
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.10: Averaged anomalous velocity in non-trivial topological phase.
(a-b) Average displacements in the (a) x and (b) y directions for the direct protocol,
divided by F/2π. We show results for F = π/10, π/5 (represented, respectively, by blue
and orange plots). Points are experimental data, the continuous lines are the results
of numerical simulations. Similar results where obtained for the inverse protocol (c-d).
In (e-f) we show the difference (divided by two) for the results for the protocols U and
U−1 in order to get rid of non-adiabatic effects. Indeed, in (f) we can appreciate that
the difference between anomalous displacements is in agreement with the “Chern lines”
(shown as dashed lines), while it can be seen (e) that the longitudinal displacement
are the same in the two protocols. All experiments are repeated four times, after re-
aligning all plates to take into account possible errors associated with this procedure.

The calculation of uncertainties is detailed in Appendix D. Data are from Ref. [38]

partially to the interband transitions and band dispersion effects. Now, if we consider

the inverted protocol, Û−1, by preparing the same state of before (that now will be

eigenstate of the upper band), the evolution under Û−1 will be conditioned in the same

way as before by interband transitions and band dispersion, but the displacements due

to the Berry curvature will change sign (since the Berry curvature of the upper band has

the opposite sign with respect to the lowest). Thus, by subtracting the center of mass

displacements obtained by evolving the same initial state, ρ̂, once with Û and another

with Û−1, and dividing by two, one will obtain again the results in Eq. 5.62 and Eq.

5.63.

These considerations allow us to detect the effect of the Chern number, even in a

quantum walk with few steps. We can indeed implement both the protocols Û2D(δ)

and Û−1
2D (δ) and mimic an external force, with the same technique explained in Chapter

4 for the 1D case. The inverse protocol Û−1
2D (δ) can be realized by suitably changing

the ordering of the waveplates and their retardation. Indeed, using Eq. 5.44 and Ŵ =
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Figure 5.11: Anomalous displacement in two different topological phases.
Here we show data for a smaller force, F = π/20 for δ = π/2, (a) and (c), corresponding
to the non-trivial topological phase with ν = 1, and for δ = 7π/8, (b) and (d), where
ν = 0. In (a) and (b) we show the average displacements, together with theoretical sim-
ulations, for the individual protocols Û2D (continuous lines) and Û−1

2D (dashed lines). In
(c-d) we show how subtracting the displacements for the two protocols we can suppress
the non-adiabatic effects and recover, for the y-displacement, a contribution propor-
tional to the Chern number. The calculation of uncertainties is detailed in Appendix

D. Data are from Ref. [38]

L̂(π/2), we have that:

Û−1
2D (δ) =

(
T̂y(δ) · T̂x(δ) · L̂(π/2)

)−1

= L̂−1(π/2) · T̂−1
x (δ) · T̂−1

y (δ)

= L̂(3π/2) · T̂x(2π − δ) · T̂y(2π − δ). (5.64)

As initial states we prepared different Gaussian wavepackets |Ψ(q)〉, each centered

around a given quasi-momentum q, and with uniform polarization corresponding to

the coin eigenstate, n(q), of Û2D(δ). These states are good approximations of the sys-

tem eigenstates: |q,n(q)〉 (as we have already seen in Chapter 4 when probing the group

velocity dispersion). Choosing a set of uniformly distributed quasi-momentum values in

the Brillouin zone {qi,j}i,j=1...M , we performed 5 steps of electric quantum walks for each

wavepacket: |Ψ(qi,j)〉. At each step we measured the mean displacement: 〈∆r(t)〉Ψ(qi,j).
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Then, by summing over all the {qi,j}, we obtained an approximation of the integral:

〈∆r(t)〉 =

∫
BZ
〈∆r(t)〉Ψ(q)dq

2/(4π2).

We have chosen M = 11, i.e. we ran the experiment over 11×11 points of the BZ, after

checking by numerical simulations that these give a good approximations of the above

integral. This procedure was followed for both the protocols Û2D(δ) and Û−1
2D (δ).

Both the simulations and the experiments show that, for the individual protocols, a

nonzero longitudinal displacement appears (see Fig. 5.10). Moreover, the anomalous

displacement presents some, small, deviations from the predictions of the adiabatic the-

ory, Eq. 5.62. All these contributions, unexpected from the adiabatic theory, can be

eliminated by subtracting the results of the two protocols, as already explained above.

We performed the experiment for the cases δ = π/2 where the Chern number is ν = 1,

repeating it for different values of the force: F = π/5, π/10. Fig. 5.10 (a-d) shows the

results of the longitudinal and anomalous displacements for the individual protocols.

Fig. 5.10 (e-f) shows that the subtraction of the results, divided by 2, gives rise to a

behavior of the mean displacement in agreement with the predictions of Eqs: 5.62 and

5.63.

Moreover we studied the same problem for a smaller force F = π/20 considering two dif-

ferent topological phases. In particular we explored the cases δ = π/2, where the Chern

number (for the upper band) is ν = 1, and δ = 7π/8 where ν = 0. As shown in Fig. 5.11

it is possible to appreciate the fact that, while for δ = π/2 the anomalous displacement

increases linearly with time, for δ = 7π/8 it is zero (within the experimental errors).

In conclusion we have demonstrated the experimental realization of a 2D DTQW that

simulates a periodically driven Chern insulator. The effect of the non-trivial topology

in this system has been investigated by the analysis of anomalous displacement in the

motion of wavepackets subjected to an external force. We also observed the effect of

non-adiabatic contributions that are still not completely understood and will be the

subject of future investigations. The exploration of the properties of this new protocol

is still in its infancy. Future work will be devoted to generalizations of the presented

protocols to different lattice geometries (for example triangular lattices), and the study

of dynamical topological phase transitions [237] in 2D quantum walks. If transforming

the platform into a loop architecture, it will be possible to realize other interesting ex-

periments and significantly increase the number of steps. Moreover, a Fourier transform

at each step would in principle allow direct access to the lattice space, opening for the

possibility of implementing boundaries between different topological phases and position

dependent operations. This would be ideal for observing edge modes and study more

complex dynamics. Finally, going in the single photon regime would be interesting for

studying multi-particle correlations and quantum statistics in 2D QWs, or performing
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Boson Sampling experiments.



Conclusions

Light is a natural phenomenon with a rich variety of features that can be controlled

with current technologies. Among these, we considered those degrees of freedom which

are infinite-dimensional, motivated by the possibility of employing these features in the

simulation of quantum phenomena occurring in large Hilbert spaces. In particular we

focused on two degrees of freedom: the Orbital Angular Momentum, and the trans-

verse wavevector component (that can be associated with the linear momentum). Using

special devices developed in our lab, named q-plates and g-plates, respectively, we im-

plemented quantum walk processes on one and two dimensional lattices.

In particular, our 1D platform allowed us to give a complete topological characterization

of the protocol by measuring the topological invariant in two independent chiral time

frames.

This measurement required the reconstruction of the probability distribution of the state

at each step. In this setup this means to measure the OAM power spectrum of the beam,

a task that is typically done by means of many projective measurements. This procedure

can become prohibitive for high numbers of modes to be detected. This has motivated

us to develop an interferometric technique which allows one to reconstruct the OAM

distribution by digital analysis of few image recordings. With an additional measure-

ment, we showed that it is even possible to reconstruct the full electric field. Indeed we

used this technique to determine with high precision the amplitude and phase shape of

the modes produced by a q-plate.

In the transverse momentum based QW, we demonstrated the possibility to simulate

the action of an external force and we employed this feature to detect anomalous dis-

placement effects related to non-trivial Chern numbers in the 2D protocol. In the near

future we plan to generalize this protocol considering the possibility of changing the

retardation of the uniform waveplates (until now we have used them only as quarter

waveplates) and considering the case in which the operators T̂x and T̂y have different

optical retardation. The technique described in the last chapter can then be used to

reconstruct the topological phase diagram of this generalized protocol. However we have

also seen that there are topological phases that host protected edge states even if the
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Chern number is zero. The non-triviality of these phases cannot be ascertained by the

measurement of center of mass displacements but will require a different technique. A

possible approach can be the observation of dynamical topological phase transitions,

which will require the reconstruction of the full quantum state, a task that can be per-

formed in our architecture by making the final state interfere with the initial one. More

insights on the topological features of our system can be obtained exploring the forma-

tion of complex polarization patterns in the Brillouin zone, i.e. at the exit of the QW.

Hence we can extend the approach of Chapter 3 to more complex systems of tunable

anisotropic devices and study the topology and evolution of polarization singularities.

In the future we aim to further develop the 2D platform for studying more complex

protocols, eventually also on triangular lattices. Including an additional coin operator

we can realize the 2D Grover quantum walk, a fundamental element for the realization

of the Grover search algorithm. More possibilities can emerge if our architecture is

inserted into an optical feedback loop, allowing to easily increase the number of steps

and, in principle, to compensate for the undesired phase shifts described in Chapter 4.

Moreover, inserting at every step a 4f system would allow to switch to the lattice space,

where spatially dependent operations can be performed.

The transverse wavevector as a degree of freedom for quantum application is a resource

largely unexplored. The use of g-plates, and the possibility to switch to the more usual

path encoding (by ordinary optical Fourier transform), would pave the way for new

interesting applications.



Appendix A

Limitations on the set of

detectable spatial modes.

1In this Appendix we consider the limitation in the number of spatial modes detectable

with the technique introduced in Chapter 2. The finite size of the detector area and the

finite dimension of sensor pixels impose certain restrictions on the features of the helical

modes that can be resolved in our setup. Let us consider the simple case wherein we

want to decompose the signal field in terms of LGp,m modes, and we want to evaluate

the p,m-bandwidth of detectable modes. We consider only the case m > 0, since only

the absolute value |m| is relevant to our discussion. Consider a camera with N × N
pixels, with pixel dimensions d × d (in our setup N = 576 and d = 9 µm). We define

the following quantities:

rmax = d ∗N/2, (A.1)

rmin = md/π, (A.2)

r1 = w(z)

{
2p+m− 2− [1 + 4(p− 1)(p+m− 1)]1/2

2

}1/2

, (A.3)

rp = w(z)

{
2p+m− 2 + [1 + 4(p− 1)(p+m− 1)]1/2

2

}1/2

, (A.4)

r̃p = w(z) {2p+m+ 1}1/2 . (A.5)

Here rmax is the maximum radius available on the sensor; rmin is the minimum radial

distance where azimuthal oscillation associated with the OAM content of the LGp,m

mode can be detected, before facing aliasing issues; r1 is a lower bound for the first root

of the Laguerre polynomials contained in the expression of LG modes; similarly, rp is the

1This appendix is adapted from the work [40] which I coauthored
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Figure A.1: Detectable LG modes. Different colors, as reported in the legend,
indicate whether a specific LGp,m, in a transverse plane z = 30 cm and with a beam
waist w0 = 0.16 mm [w(z = 30 cm)→ 0.4 mm] can be resolved in our setup. These
parameters correspond to the ones used for the complete spatial decomposition of the
HyGG beam generated by a q-plate (q = 4, δ = π) in terms of LG beams. Image taken

from Ref. [40]

upper bound for the p−th root, while r̃p, with rp < r̃p, delimits the oscillatory region

of the Laguerre polynomials [238, 239]. Interestingly, the spatial region r1 < r < r̃p

well approximates the area containing all the power associated with the mode. At the

same time, the quantity Λ = (rp − r1)/p well describes the average distance between

consecutive nodes of the LG mode, defining the periodicity of their radial oscillations.

A given LGp,m mode is then “detectable” (or properly “resolvable”) if all the following

conditions are satisfied: 
rmin < r1 (i)

rp < rmax (ii)

Λ > 2d (iii)

(A.6)

Indeed, we are requiring that (i) the field is vanishing below the azimuthal aliasing

threshold given by rmin, that (ii) all the power associated with the mode is contained in

the sensor area and (iii) that the field radial oscillations have a spatial period such that

at least two pixels are contained in a single period, respectively (radial aliasing limit).

It is easy to check that in our configuration, where the beam waist is w(z) = 0.4 mm,

conditions (i) and (iii) are always satisfied for the values of {p,m} that are solution of

(ii), i.e. the limiting factor is only the dimension of the sensor area. By solving such

inequality, we get the relation

p <

(
N2d2

4w2(z)
−m− 1

)
/2 (A.7)

In Fig. A.1 we plot a color map for a rapid visualization of detectable modes. If we

apply this analysis to the case of Fig. 2.3, in which a beam with m = 8 is studied, we

obtain that only radial modes with p < 16 can be detected. In general, for smaller

values of w(z) the determination of detectable LG mode is more complex and requires

the complete resolution of the system of inequalities system given in (A.6).
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Appendix B

Determination of C-points

position

1 Here we give a detailed description of the derivation of the C-points position (see Fig.

3.7). We recall here the general expression describing a beam generated by a q-plate

when shined by a H or V polarized Gaussian beam:

|OUT 〉 = CR(ρ, ζ, φ; δ)|R〉 ± CL(ρ, ζ, φ; δ)|L〉 =(
TEM00(ρ, ζ) cos (δ/2) + if|m|(ρ, ζ)e−imφ sin (δ/2)

)
|R〉

±
(

TEM00(ρ, ζ) cos (δ/2) + if|m|(ρ, ζ)eimφ sin (δ/2)

)
|L〉. (B.1)

where the plus or minus sign is for H and V input polarizations, respectively, ζ = z/zR is

the propagation distance normalized with respect to the Rayleigh range zR, and m = 2q.

In our experiment the function f|m| is given by Hypergeometric Gaussian mode HyGG−|m|,|m|.

It is worth noting that specific architectures allow using the q-plate to generate helical

modes with a different radial profile; as an example, recently a q-plate placed inside a

laser cavity has been exploited for the generation of high quality Laguerre-Gauss VBs

[104] with p = 0. For this reason, we consider here also the case f|m| = LG0,m. As we

will show in the following, the C-points positions can be deduced analytically in this

case.

The C-point position at a given δ and ζ can be obtained simply by solving the implicit

equation CL,R(ρ, ζ, φ; δ) = 0 (see Eq. B.1). We limit ourselves to searching for the dis-

tance of C-points from the center, which can be found by solving the simplified equation

1Some paragraphs and sentences of this appendix are adapted or copied verbatim from the work [83]
which I coauthored
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|CL,R(ρ, ζ, φ; δ)|2 = 0. Explicitly, this reads:

cos2 (δ/2)|TEM00(ρ, ζ)|2 + sin2 (δ/2)|f|m|(ρ, ζ)|2+

2 cos (δ/2) sin (δ/2)Re{ie−imφTEM∗0,0(ρ, ζ)f|m|(ρ, ζ)} = 0.
(B.2)

A solution for such equation exists only if the following condition holds

cos2 (δ/2)|TEM00(ρ, ζ)|2 = sin2 (δ/2)|f|m|(ρ, ζ)|2; (B.3)

hence, by solving jointly Eq. B.2-B.3 we are left with an implicit equation for ρ as

function of ζ. If needed, then the solution can be inserted into Eq. B.2 to find the

azimuthal coordinates of the singularities.

The case f|m| = HyGG−|m|,|m| can be solved only numerically. Some solutions are shown

in Fig. 3.7 and discussed in the main text. Here we focus on the case f|m| = LG0,m where

we can find an analytical expression for C-points positions as a function of ζ. In this

case Eq. B.3 reads:∣∣∣∣∣ LG0,m(ρ, ζ)

TEM0,0(ρ, ζ)
tan(δ/2)

∣∣∣∣∣
2

=
2|m|

m!

ρ2|m|

(1 + ζ2)|m|
tan2(δ/2) = 1. (B.4)

It follows that the distance of C-points from the beam center ρC(ζ) is given by:

ρC(ζ) =

[√
m!

2|m|
cot2(δ/2)

]1/2|m|√
1 + ζ2. (B.5)

In order to evaluate if such singularities are contained in the beam or not, it is interesting

to compare this result with the expression of the beam radius, defined as [22]:

σ2(ζ) =

∫
I(ρ, ζ, φ)ρ3dρdφ, (B.6)

where I(ρ, ζ, φ) is the beam intensity. From Eq. B.1 with f|m| = LG0,m we obtain:

σ(ζ) =

√
1 + |m| sin2(δ/2)

2

√
1 + ζ2. (B.7)

The corresponding beam divergence is simply:

θrms(δ, |m|) =

√
[1 + |m| sin2(δ/2)]/2, (B.8)

where r.m.s. stands for root-mean-square. By comparing Eq. B.7 and Eq. B.5 we can

observe that the beam radius has the same functional form as the C-point position. The
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divergence of the latter is:

θc(δ, |m|) =

[√
m!

2|m|
cot2(δ/2)

]1/2|m|

. (B.9)

In conclusion, for LG beams, C-points can diverge more or less rapidly than the beam

radius depending on the value of δ. Thus, there exists a critical value of δ above which

C-points are expelled from the beam and the polarization pattern has a non trivial topol-

ogy. This critical value can be found by solving the equation θc(δ, |m|) = θrms(δ, |m|).
However, we observe that our analysis aims to show only qualitative features: quanti-

tative results are ambiguous as multiple definition of the beam divergence can be given

(for instance the quantity
√

2θrms is often used). In conclusion, we point out that the

same analysis cannot be done for HyGG beams since their r.m.s divergence is not well

defined [22].



Appendix C

Possible deviations from the ideal

QW evolution in the transverse

linear momentum based platform

During propagation through the QW set-up, effects related to free space propagation

of modes |mx,y〉 can act as perturbations to the ideal QW dynamics. In this Appendix

Figure C.1: Deviations from the perfect simulation of a QW process. a, at
the input of the 1D QW, we have a single beam with k⊥ = 0, localized at the lattice
site m = 0. At the exit of a 6-steps QW, we consider two contributions at the final
wavefunction at site m = 0. One is resulting from the part of the input state that has
been left unchanged (red). The second has gained ∆k transverse momentum at the first
three steps, and then has acquired opposite momentum at steps 4 to 6 (black). At the
exit of the walk, also this component corresponds to the lattice site m = 0. However,
the associated beams have some differences, which represent deviations from the ideal
QW; being related to the same lattice site, they should be identical. First, they exit
the walk laterally displaced by ∆x, and the lack of overlap may ruin the interference,
similarly to a decoherence effect. Second, the upper beam suffered a longer optical
path, hence it accumulated a relative phase with respect to the central one. Finally, at
each g-plate, the effective value of α0 changes at each step for the deflected beam. b,
we show the results of a numerical simulation of a 1D walk with protocol U = TxW ,
for δ = π/2 and for an input state |0, R〉, compared to a simulation of the ideal QW

dynamics. After 10 steps differences are minimal. Figure adapted from Ref. [38]
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we describe the main phenomena that can take place in our walk, and investigate their

effect with the help of a numerical analysis. For simplicity, we will refer to a 1D QW,

where modes |mx,y〉 are characterized by a single integer mx = m.

There are essentially two “undesired” effects that arise when considering the tilt in

propagation direction inside the quantum walk:

1. At the end of the quantum walk, to each value of k⊥ will correspond the super-

position of waves that have followed different paths in the wavevector space, as

illustrated in Fig. C.1. These trajectories are actually associated with different

optical paths, which give rise to additional relative phases. The latter are absent in

the ideal QW dynamics and can modify the interference of the wavefunction com-

ponents associated with these paths. To simulate such effect, the final amplitude

of each mode |mx,y〉 should be calculated as the sum of all components related to

these optical paths, multiplied by their relative phase. When propagating between

two consecutive timesteps, mode |0〉 and different mode |s〉 accumulate a phase

delay ∆φ1 = (πλds2)/(Λ2), where d is the distance between consecutive steps.

2. The two beams considered in point 1) have an imperfect overlap that makes them

distinguishable, since they are propagating along axes that are parallel but later-

ally displaced. These modes have a finite extension, and the absence of perfect

spatial overlap results in a reduction of the interference visibility, similarly to a de-

coherence effect. Referring to the case presented above, the two modes accumulate

a lateral shift |∆x| = dλs/Λ.

3. A tilted beam hits two consecutive g-plates at points that have a relative shift. For

instance, in Fig. C.1 we observe a mode |1〉 that at the second timestep is laterally

displaced by ∆x. The action of a g-plate, as described in Eq. 4.20, is derived

by considering a Gaussian beam that hits the plate with its central position at

(x, y) = (0, 0). If the beam center is displaced by ∆x, Eq. 4.20 keeps holding if

replacing α0 with α′0 = α0 + ∆xπ/Λ, which represent the effective LC orientation

at the beam central position. By looking at Eq. 4.20, we can observe that this

effect results in additional phases accumulated by modes |m〉 during propagation,

which have to be added to the phases associated with the different path lengths

(see the previous point 1).

In Fig. C.1, we provide a comparison between an ideal QW evolution and the simulation

of the real beam propagation through our set-up, by taking into account effects described

in points 1-3) and using the real system parameters. After 10 steps of a 1D walk, we

observe no significant deviations. This guarantees that also 5 steps of a 2D would not

suffer any deviations. Indeed, such effects strongly depends on the order of the modes
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that are excited in the walk. In the first case, if starting from a localized input, the

highest-order mode that can be excited is |m = ±10〉. In the 2D case, these modes

would be those with |mxy| = 5. When increasing the number of steps, we expect these

systematic errors to become more relevant. These issues could be tackled by (i) changing

the system parameters, in particular by reducing Λ and decreasing the step distance d,

or (ii) by adopting a loop architecture combined with an imaging system. Indeed, by

imaging the output of each step to the input of the following one, all the effects discussed

above are canceled.



Appendix D

Extimation of errors in the

measurement of the anomalous

velocity

In Chapter 5, Figs. 5.10 and 5.11, we have presented experimental results for the longi-

tudinal and anomalous displacement of the ground state in ad 2D QW with an applied

external force [38]. Results were averages over 4 different measurements. However, a

more careful estimate of statistical errors should take into account the imperfection of

the system. In particular we considered the fact that, in our current setup, we cannot

control with extreme precision the α0 angles of the T̂y operators. Hence the relative

value of these angles is determined during the mounting procedure. We have measured

a standard deviation around the value α0 = 0 of σ = 5 degrees. In order to take account

these effects we ran multiple simulations of the QW choosing each time s a different

sequence of values {α(s)
0,i}i=1,...,N , extracted randomly from a Gaussian distribution, cen-

tered around α0 = 0 and with width σ. The simulations were performed 500 times and

the resulting average displacement 〈r(s)〉 for each event was extracted. We then took

the standard deviation σr of the set {〈r(s)〉}s=0,...,500. Considering also the standard

errors of the mean, Σr, obtained from the 4 repeated experimental measurements, we

calculated the errors in Figs. 5.10 and 5.11 by summing in quadrature σr and Σr.
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[222] Asbóth, J. K. & Obuse, H. Bulk-boundary correspondence for chiral symmetric

quantum walks. Phys. Rev. B 88, 121406 (2013). URL http://link.aps.org/

doi/10.1103/PhysRevB.88.121406.

[223] Barkhofen, S. et al. Measuring topological invariants in disordered

discrete-time quantum walks. Physical Review A 96, 1–10 (2017).

URL http://arxiv.org/abs/1606.00299{%}0Ahttp://dx.doi.org/10.1103/

PhysRevA.96.033846. 1606.00299.

[224] Meier, E. J. et al. Observation of the topological Anderson insulator in disordered

atomic wires 1 (2018). URL http://arxiv.org/abs/1802.02109. 1802.02109.

[225] Maffei, M., Dauphin, A., Cardano, F., Lewenstein, M. & Massignan, P. Topological

characterization of chiral models through their long time dynamics. New Journal

of Physics 20, 1–17 (2018). 1708.02778.

[226] Haldane, F. D. M. Model for a quantum hall effect without landau levels:

Condensed-matter realization of the ”parity anomaly”. Physical Review Letters

61, 2015–2018 (1988). 9712001.

[227] Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum spin hall effect and

topological phase transition in HgTe quantum wells. Science 314, 1757–1761

(2006). URL http://arxiv.org/abs/cond-mat/0611399{%}0Ahttp://dx.doi.

org/10.1126/science.1133734. arXiv:1308.5367.

[228] Kane, C. L. & Mele, E. J. Quantum spin hall effect in graphene. Phys. Rev. Lett.

95, 226801 (2005). URL https://link.aps.org/doi/10.1103/PhysRevLett.

95.226801.

[229] König, M. et al. Quantum spin hall insulator state in hgte quantum wells. Science

318, 766–770 (2007). URL http://science.sciencemag.org/content/318/

5851/766. http://science.sciencemag.org/content/318/5851/766.full.

pdf.

[230] Chen, Y. L. et al. Experimental realization of a three-dimensional topological insu-

lator, bi2te3. Science 325, 178–181 (2009). URL http://science.sciencemag.

http://link.aps.org/doi/10.1103/PhysRevLett.102.065703
http://link.aps.org/doi/10.1103/PhysRevLett.102.065703
http://link.aps.org/doi/10.1103/PhysRevLett.115.040402
http://link.aps.org/doi/10.1103/PhysRevLett.115.040402
http://link.aps.org/doi/10.1103/PhysRevB.88.121406
http://link.aps.org/doi/10.1103/PhysRevB.88.121406
http://arxiv.org/abs/1606.00299{%}0Ahttp://dx.doi.org/10.1103/PhysRevA.96.033846
http://arxiv.org/abs/1606.00299{%}0Ahttp://dx.doi.org/10.1103/PhysRevA.96.033846
1606.00299
http://arxiv.org/abs/1802.02109
1802.02109
1708.02778
9712001
http://arxiv.org/abs/cond-mat/0611399{%}0Ahttp://dx.doi.org/10.1126/science.1133734
http://arxiv.org/abs/cond-mat/0611399{%}0Ahttp://dx.doi.org/10.1126/science.1133734
arXiv:1308.5367
https://link.aps.org/doi/10.1103/PhysRevLett.95.226801
https://link.aps.org/doi/10.1103/PhysRevLett.95.226801
http://science.sciencemag.org/content/318/5851/766
http://science.sciencemag.org/content/318/5851/766
http://science.sciencemag.org/content/318/5851/766.full.pdf
http://science.sciencemag.org/content/318/5851/766.full.pdf
http://science.sciencemag.org/content/325/5937/178
http://science.sciencemag.org/content/325/5937/178


Bibliography 155

org/content/325/5937/178. http://science.sciencemag.org/content/325/

5937/178.full.pdf.

[231] Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect

in a magnetic topological Insulator. Science 340, 167–170 (2013). URL http://

www.sciencemag.org/cgi/doi/10.1126/science.1234414. arXiv:1212.4783.

[232] Lindner, N. H., Refael, G. & Galitski, V. Floquet Topological Insulator in

Semiconductor Quantum Wells 1–7 (2010). URL http://arxiv.org/abs/1008.

1792{%}0Ahttp://dx.doi.org/10.1038/nphys1926. 1008.1792.

[233] Peng, Y. G. et al. Experimental demonstration of anomalous Floquet topological

insulator for sound. Nature Communications 7, 1–8 (2016). URL http://dx.

doi.org/10.1038/ncomms13368. 1508.06243.

[234] Maczewsky, L. J., Zeuner, J. M., Nolte, S. & Szameit, A. Observation of pho-

tonic anomalous Floquet topological insulators. Nature Communications 8 (2017).

1605.03877.

[235] Gao, Y., Yang, S. A. & Niu, Q. Field induced positional shift of bloch electrons

and its dynamical implications. Phys. Rev. Lett. 112, 166601 (2014). URL https:

//link.aps.org/doi/10.1103/PhysRevLett.112.166601.

[236] Price, H. M., Zilberberg, O., Ozawa, T., Carusotto, I. & Goldman, N. Measure-

ment of chern numbers through center-of-mass responses. Phys. Rev. B 93, 245113

(2016). URL https://link.aps.org/doi/10.1103/PhysRevB.93.245113.

[237] Heyl, M. Dynamical quantum phase transitions: a review. Reports on

Progress in Physics 81, 054001 (2018). URL http://arxiv.org/abs/1701.

08851http://stacks.iop.org/0034-4885/81/i=5/a=054001?key=crossref.

023db71bd7c4add223c0ffc515a6cd09. 1701.08851.

[238] Kwon, K. H. & Lee, D. W. On the extreme zeros of orthogonal polynomials.

Journal of the Korean Mathematical Society 36, 489–507 (1999).

[239] Gatteschi, L. Asymptotics and bounds for the zeros of laguerre polynomi-

als: a survey. Journal of Computational and Applied Mathematics 144, 7

– 27 (2002). URL http://www.sciencedirect.com/science/article/pii/

S0377042701005490. Selected papers of the Int. Symp. on Applied Mathemat-

ics, August 2000, Dalian, China.

http://science.sciencemag.org/content/325/5937/178
http://science.sciencemag.org/content/325/5937/178
http://science.sciencemag.org/content/325/5937/178.full.pdf
http://science.sciencemag.org/content/325/5937/178.full.pdf
http://www.sciencemag.org/cgi/doi/10.1126/science.1234414
http://www.sciencemag.org/cgi/doi/10.1126/science.1234414
arXiv:1212.4783
http://arxiv.org/abs/1008.1792{%}0Ahttp://dx.doi.org/10.1038/nphys1926
http://arxiv.org/abs/1008.1792{%}0Ahttp://dx.doi.org/10.1038/nphys1926
1008.1792
http://dx.doi.org/10.1038/ncomms13368
http://dx.doi.org/10.1038/ncomms13368
1508.06243
1605.03877
https://link.aps.org/doi/10.1103/PhysRevLett.112.166601
https://link.aps.org/doi/10.1103/PhysRevLett.112.166601
https://link.aps.org/doi/10.1103/PhysRevB.93.245113
http://arxiv.org/abs/1701.08851 http://stacks.iop.org/0034-4885/81/i=5/a=054001?key=crossref.023db71bd7c4add223c0ffc515a6cd09
http://arxiv.org/abs/1701.08851 http://stacks.iop.org/0034-4885/81/i=5/a=054001?key=crossref.023db71bd7c4add223c0ffc515a6cd09
http://arxiv.org/abs/1701.08851 http://stacks.iop.org/0034-4885/81/i=5/a=054001?key=crossref.023db71bd7c4add223c0ffc515a6cd09
1701.08851
http://www.sciencedirect.com/science/article/pii/S0377042701005490
http://www.sciencedirect.com/science/article/pii/S0377042701005490

	Acknowledgements
	Abstract
	Contents
	1 Structured light
	1.1 Introduction
	1.2 Linear and angular momentum of electromagnetic fields
	1.3 Paraxial light beams
	1.3.1 Gaussian Beams

	1.4 Angular momentum of paraxial beams
	1.4.1 The polarization of light
	1.4.2 The Orbital Angular Momentum (OAM)
	1.4.2.1 Laguerre-Gaussian beams
	1.4.2.2 Hypergeometric-Gaussian Beams


	1.5 The discretized transverse wavevector space
	1.6 Manipulation of structured light
	1.6.1 Computer Generated Holograms
	1.6.2 Spin-orbit and spin-momentum coupling in liquid crystal based devices


	2 Measurement of structured light beams
	2.1 Introduction
	2.2 Review of the techniques for measuring the OAM of light
	2.3 Measuring the complex orbital angular momentum spectrum and spatial mode decomposition of structured light beams
	2.3.1 Description of the technique.
	2.3.2 Experimental results

	2.4 Conclusions

	3 Topology and dynamics of polarization singularities in optical beams
	3.1 Introduction
	3.2 Paraxial beams with spatially varying polarization
	3.3 Polarization singularities in paraxial beams
	3.4 Topological features of vector vortex beams perturbed with uniformly polarized light
	3.5 Conclusions

	4 Photonic quantum walks employing light's spatial degrees of freedom
	4.1 Introduction
	4.2 General features of quantum walks
	4.3 Review of photonic realizations of quantum walks
	4.4 Quantum Walks in the OAM space of light
	4.4.1 Spectral features

	4.5 Quantum Walks in the transverse wavevector space
	4.5.1 Description of the platform
	4.5.2 Quantum walks with an applied external force
	4.5.3 Experimental results


	5 Exploring topological phases with structured light
	5.1 Introduction
	5.2 Topological Invariants and Geometric Phases
	5.3 A 1D model of chiral topological insulator: the SSH model
	5.4 Simulating topological phases with Quantum Walks
	5.4.1 Full topological characterization of our 1D protocol

	5.5 2D topological systems
	5.6 Topological features of the protocol 2D
	5.7 Experimental study of anomalous velocity effects in 2D quantum walks

	Conclusions
	A Limitations on the set of detectable spatial modes.
	B Determination of C-points position 
	C Possible deviations from the ideal QW evolution in the transverse linear momentum based platform
	D Extimation of errors in the measurement of the anomalous velocity
	Bibliography

