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ABSTRACT 
 

The development of Next-Generation Sequencing (NGS) technologies has 

added a new method to investigate the role of genes in several diseases, 

including breast cancer (BC). For example, RNA-Seq is mainly used to 

analyze the continuously changing cellular transcriptome and finding the 

pathways enriched/inhibited by the differently expressed genes. Small RNA-

Seq is a very similar method allowing the detection of other classes of RNA 

such as small non-coding RNA (miRNA, piRNA, tRNA). In particular, 

microRNAs (miRNA) are a small non-coding RNA that regulate gene 

expression at the post-transcriptional level by binding to the 3'UTR 

(untranslated region) of target mRNAs, causing their degradation or 

translation inhibition. Several studies correlated an altered expression of 

these sncRNAs with the onset and /or progression of different diseases, 

including cancer. They can be used as biomarkers, playing a key role in the 

diagnosis, prognosis and prediction of response to specific therapies. 

Moreover, many studies have focused on the possibility of developing new 

therapeutic strategies based on microRNAs modulation and their potential 

use in the personalized management of cancer. Furthermore, also Piwi-

interacting RNA (piRNA) is a class of small non-coding RNA molecules 

expressed in animal cells that are associated with both epigenetic and post-

transcriptional gene silencing of retrotransposons and other genetic elements. 

They are distinct from miRNA in size (26–31 nt rather than 21–24 nt), lack 

of sequence conservation, and increased complexity. The aim of my research 

project was to understand the carcinogenic mechanisms and pathways 

modulated by these mRNAs and smallRNAs, since the clarification of the 

roles played by these molecules in cancer might provide new opportunities to 

develop novel strategies for diagnosing and treating this disease using 

bioinformatics tools and created it. Furthermore, a tool has been created that 

allows the analysis of smallRNAs by integrating various software to facilitate 

the use of this technology and to better explore the expected results. 
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1. INTRODUCTION 
 

Fifteen years ago the Human Genome Project (Human Genome Project) was 

completed and from there on research on genomes structure and functions 

made a significant step forward. This was possible thanks to the significant 

developments in the field of sequencing technologies of DNA, whereby from 

the ‘Sanger’ DNA sequencing technique, which untill that time was the 

standard approach, we moved on to the, so-called, Next-Generation 

Sequencing (NGS), based on massive parallel sequencing technologies. 

Today, the human genome can be sequenced in less than a week and soon, 

systematically, down to a couple of days. NGS has allowed remarkable 

advances in the new era of biology, known as "post-genomics", leading to a 

greater understanding of how, where and when all genes of a given cell or 

tissue are regulated, allowing to gather a great amount of data in a single 

experiment, with significantly lower costs compared to past. This global 

approach to science has been successfully applied to different areas of 

research and led to the birth and development of a new set of disciplines, the 

so-called "-omics", such as transcriptomics (study of the transcriptome), 

proteomics (study of the proteome), interactomics (study of the interactions 

between the products of multiple genes), cellomics (studies of cellular 

functions and impact of drugs at the cell level), genomics (large-scale 

molecular analyzes of a set of genes, on gene products or on regions of 

genetic material) and miRNomics (study of miRnoma), each of these 

stimulating in turn the development of new ones technologies to facilitate 

work. 

 

1.1 New Methods for Genomic Analysis  

 

Traditional techniques for coding and non-coding RNA analysis represent a 

limited approach for the study of genomes, because they generally focus on a 

single gene at a time or on a limited set of them. The advent of Next-

Generation-Sequencing has marked a remarkable and important step forward 

for this field. The global approaches developed, such as the RNA-Seq and 

smallRNA-Seq, have allowed, in fact, to investigate more in depth and at 

lower costs, the complex interactions between DNA and proteins and the role 

played by regulatory transcripts. This progress has also been made possible 

by the parallel development of methods for data analysis that tries to make 

the interpretation less problematic. RNA-Seq is used to analyze the 

continuously changing cellular transcriptome, it is used for look mRNA gene 

splicing, gene fusion and change in gene expression. RNA-Seq also allows 

other classes of mRNA like long non-coding RNA and small non-coding 

RNA. In particular, micro RNA is a small non-coding RNA that regulate 
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gene expression at the post-transcriptional level by binding to the 3'UTR 

(untranslated region) of target mRNAs, causing their degradation or 

translation inhibition. Piwi-interacting RNA (piRNA) is a class of small non-

coding RNA molecules expressed in animal cells that are linked to both 

epigenetic and post-transcriptional gene silencing of retrotransposons and 

other genetic elements. 

 

1.2 microRNA (miRNA)  

 

miRNAs were first identified in the 1993s with the discovery of let-7 and 

Lin-4 in a worm (Caenorhabditis elegans) and after the presentation of this 

small RNA was detected in multiple eukaryotic organisms and mammalian 

species (Lagos-Quintana et al., 2001). They play an important role in the 

modulation of biological processes through the regulation of gene expression 

in a post-transcriptional manner, primarily by binding to the 3’ untranslated 

region (3’UTR) of messenger RNAs and resulting in a down-regulation of 

target proteins through the degradation of these mRNAs or by translation 

inhibition. The miRNA-RISC complex can block translation of target 

mRNAs into protein and/or induce degradation of target mRNA transcripts 

(Bartel et al., 2009) (Figure 1.1). The binding between miRNA and its target 

messenger happens through the complementarity of bases; in mammals, the 

complementarity in most of the cases is partial and determines a translation 

of the block while the total complementarity (especially in plants) occurs 

only rarely and induces degradation of the transcript. miRNAs can modulate 

about 30% of protein-coding genes in humans (Lewis et al., 2005). 

 

 
 

Figure 1.1: miRNAs biogenesis: Several stages in miRNAs maturation started in the nucleus after 

transcription in pri-miRNA and ended in the cytoplasm by RISC complex (from Spadaro et al, 2012) 
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1.3 Piwi-interacting RNAs  

 

Of the other smallRNAs, piRNAs are the least studied and analyzed. One role 

of piRNAs in germline cell is protect from the double-stranded breaks and 

insertional mutagenesis caused by active transposons. Derived from long, 

single-stranded RNAs, nearly all of which are shockingly long and 

transcribed from genomic ‘clusters'—transposon-rich regions of the genome 

thought to record the waves of transposon invasions survived by an animal 

and its evolutionary forebears (Vagin et al., 2013). How show in figure 1.7, 

piRNA precursor transcripts are fragmented and perhaps trimmed to yield 

primary piRNAs; primary piRNAs initiate an amplification loop (the ‘ping-

pong' cycle) that generates secondary piRNAs; and, finally, the resulting 

amplified piRNAs silence their regulatory targets, such as the mRNA 

transcripts of transposons, by guiding a specialized sub-class of Argonaute 

proteins. These specialized Argonaute proteins are called PIWI proteins, after 

the founding member of the sub-family, the Drosophila protein, P-element-

Induced Wimpy Testes or Piwi (Lin and Spradling, 1997).  

 

 

 
 

Figure 1.2: Biogenesis of piRNAs in the germline and in somatic follicle cells. In the germline, 

piRNAs are generated through an Aub- and Ago3-dependent piRNA amplication cycle, whereas in 

somatic cells, biogenesis occurs through a Piwi-dependent, Aub- and Ago3-independent pathway (from 

Zamorea, 2010). 
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1.4 Breast Cancer 

 

Breast cancer (BC) is the second cause of cancer death in women aged from 

20 to 59 years, with 29% of new cancer diagnoses in the female population 

worldwide. Breast tumor occurs after pre-pubertal age with an incidence that 

increases after the third decade of life up to 60 years (Siegel et al., 2016). 

This cancer is manifest in the mammary gland, an exocrine glandular tissue, 

responsible for lactation, characterized by modified apocrine secretion and 

controlled by reproductive hormones.15 to 29 lobes that are segregated in 

stroma by adipose and connective tissue form it. The lobes are divided into 

smaller lobules joining up with the alveoli and each lobule has a lactiferous 

duct that drains into openings of the nipple. When cancer is discovered, 

microscopic analysis of breast tissue is necessary for a definitive diagnosis to 

characterize the histotype of disease. The tissue for microscopic analysis is 

usually obtained via a needle or surgical biopsy. BC generally originates in 

the epithelium of glandular ducts and lobules, namely respectively ductal or 

lobular adenocarcinoma; the first is most of the cases. BC can be classified as 

in situ or invasive carcinoma. They originate from the duct-lobular terminal 

(TDLU, Terminal Duct Lobular Unit) and, while in situ BCs are 

characterized by the proliferation of atypical epithelial elements within the 

lobules and ducts but without overcoming their basement membrane, the 

invasive form, representing the most advanced form of cancer, are 

distinguished by their acquired metastatic skill (Pontieri et al., 2005). Further 

classification takes into account the histological features, distinguishing 

seven different groups among the invasive carcinomas (American Cancer 

Society, 2015). The classification of BC has requested the development of 

several techniques of analysis given its heterogeneity, encompassing multiple 

tumor entities, each characterized by distinct morphology, behavior and 

clinical implications. Immunohistochemistry (IHC) classified BCs by their 

anatomical and molecular features, in particular the presence of the Estrogen 

Receptor alpha (ERα, a well-established diagnostic and prognostic marker) 

into ER-positive (hormone-responsive tumor) and ER-negative categories. 

Today, high throughput proteomics and gene-expression profiling methods 

are being explored as diagnostic tools. The study to examine comprehensive 

gene-expression patterns in human BC have identified 4 subtypes (basal-like, 

HeR2, normal breast-like and luminal) (Perou et al., 2000) and their 

association to the classical tumor classification led to a better diagnosis of the 

disease (Sotiriou et al., 2003; Sorlie et al., 2001). The common cause of 

hereditary BC is an inherited mutation in the BRCA1 and BRCA2 genes (5% 

to 10% cases of BC), involved in DNA reparation. These mutations can act 

bind with mutations in key genes of cell proliferation and survival, such as 

p53, PTEN, ATM, typical of neoplastic transformation of the cells (Robbins 
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e Cotran, 2006). BC is associated with several risk factors divided into 

genetic and environmental factors. The environmental factors are the lifestyle 

(abuse of alcohol, smoking, high fat consumption in the diet), the geographic 

area, exposure to radiation and to infectious agents, even if the most 

important factor is the prolonged exposure to estrogenic stimulation like 

endogenous and exogenous (Platet et al, 2004). For normal development of 

the mammary gland the estrogen signal is essential and a deregulation of this 

pathway is responsible for tumor progression. 70% of the BCs are hormone-

responsive and express ERα. 

 

1.5 GAPT2 role in BC 
 

The first step in glycerolipid biosynthesis is catalyzed by Glycerol-3-

phosphate acyltransferase (GPAT), in which glycerol-3-phosphate is acylated 

to form lysophosphatidic acid. Four isoforms are known such as GPAT1–

GPAT4 and have been described which differ in their subcellular location, 

tissue expression pattern, substrate preference, transcriptional regulation, and 

sensitivity to sulfhydryl group reagents such as N-ethylmaleimide (Gonzalez-

Baro et al., 2017). GPAT2 is a mitochondrial isoform that is highly expressed 

in the testis, where its expression is transient, being restricted mainly to 

primary spermatocytes (Cattaneo et al., 2012). Although GPAT2 was initially 

associated with lipid metabolism a recent work links GPAT2 to the 

biogenesis of Piwi-interacting RNAs (piRNAs) (Shiromoto et al., 2013). 

piRNAs are a class of small non-coding RNAs (sncRNAs) of 24-31 nt in 

length that function in germline cells to silence retrotransposons and maintain 

genome integrity (Iwasaki et al., 2015). GPAT2 knockdown in MDA-MB-

231 BC cells diminished cell proliferation, anchorage-independent growth, 

migration and tumorigenicity, and increased staurosporine-induced apoptosis. 

In contrast, GPAT2 over-expression increased cell proliferation rate and 

resistance to staurosporine-induced apoptosis (Pellon-Maison et al., 2014). 

 

1.6 DOT1L and BC 

 

Based on hypothesis, the molecular partners of ERα involved in the 

multiprotein complexes that it requires for its transcriptional activity, 

including epigenetic regulators, represent potentially exploitable targets for 

new therapies against ER positive and antiestrogens-resistant tumors. For 

proteomic interaction we identified histone methyltransferase DOT1L 

(Disruptor of telomeric silencing-1-like) as a component of multiprotein 

complexes that assemble with ERα in the nuclei of BC cells after estrogen or 

anti-estrogen treatment. DOT1L catalyzes mono-, di- and tri-methylation of 

histone H3 on lysine-79 (H3K79me), a marker of transcriptionally active 
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genes, and is involved in transcription elongation, DNA repair and cell cycle 

progression. This enzyme is associated with the mystical leukemia fusion 

protein (MLL) and plays a key role in the transcription mechanisms that 

support leukemogenesis, and for this reason its inhibitors have been 

proposed, and clinically tested, as therapeutic targets for leukemia by MLL 

merger. The role and functional significance of the DOT1L association with 

ERα in hormone responsive human BC cell nuclei have been studied here in 

detail. The results demonstrate the co-recruitment of both factors, in 

combination with other transcriptional epigenetic regulators, into a 

considerable fraction of ERα -CM-7 cell chromatin, thus influencing the 

transcription of genes involved in key cellular functions, including ESR1 

(encoding ERα), FOXA1 and other ERα co-regulators. These results 

demonstrate for the first time that DOT1L represents a novel molecular target 

for epigenetic therapies against endocrine-responsive and ER-positive, 

hormone-resistant mammary carcinomas. 

 

1.7 Colorectal cancer and LINE-1 transposable elements 
 

Colorectal tumors present with a series of genomic and epigenomic 

alterations through interactions between neoplastic cells, immune cells and 

microbiotics. In particular, the hypo-methylation status of the long nucleotide 

nucleotide element-1 (LINE-1), which constitutes about 18% of the entire 

human genome, has been associated with a greater chromosomal instability 

that may cause a low antitumor immunity level in colorectal cancer (Gaudet 

et al., 2003). In fact this hypomethylation involves a lower density of T cells 

in the tumor tissue and a worse clinical outcome (Ogino et al., 2008). Other 

studies have shown that the prognostic association of the methylation level of 

the LINE-1 tumor with microsatellite instability (MSI) (Rhee et al., 2012). It 

should also be noted that this instability may be sporadic or hereditary, taking 

the name of Lynch syndrome. In species such as Drosophila and mouse, the 

silencing of the Transposable Elements (TE) is performed by piRNAs; in the 

special case of mice, MIWI2 is necessary in germ cells for the determination 

of CpG methylation status on genome sequences of transposons (Aravin et 

al., 2008). Furthermore, piRNAs have also been implicated in silencing the 

LINE1 in human tumor lines. 

 

1.8 Pancreatic cancer and Annexin A1 
 

Recently, the oncogenic role of Annexin A1 (ANXA1) has been found in 

pancreatic cancer (PC), where protein expression is directly related to the 

poor prognosis of patients (Chen et al., 2012). It has also been shown that 

ANXA1 improves cell migration and invasion by acting both directly in the 
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intracellular compartment and indirectly through interaction with formyl 

peptide receptors (FPRs, Belvedere et al., 2012). In addition, the knock-out 

ANXA1 (KO) in our in vitro model using the CRISPR/Cas9 genome editing 

system on PC MIA PaCa-2 cells revealed the deregulation of a large number 

of proteins involved in the organization of cytoskeleton. This led to reversion 

of the epithelial-to-mesenchymal transition (EMT), leading to a less 

aggressive phenotype. Lately, the study of the miRNA profile has been found 

useful as a diagnostic screening method also for PC, where, among the most 

characterized miRNAs, miR-196a has been associated with recurrence and 

shorter survival (Kong et al., 2012). miR-196a is considered a discriminating 

factor between PC and normal pancreas, because it is upregulated only in 

tumor samples (Wang et al., 2009). Furthermore, in vitro it has been 

demonstrated that miR-196a has an expression profile directly correlated to 

the aggressiveness of PC cells, as assessed by EMT (Gaianigo et al., 2017). 

Understanding the molecular mechanisms of ANXA1 in cancer also implies 

the study of its relationship with miRNAs. In fact, the protein can regulate 

downstream gene activation and transcription factors and, on the contrary, 

can be regulated by these. 

 

  



Small non-coding RNAs and cancer: a bioinformatics approach 

 

11 
 

2. AIM 
 

This thesis project has consisted in three main parts: 

1. To develop a tool, named iSmaRT (Small RNA Tool-kit 

integrative), simply to use and to investigate the biological roles of small 

non-coding RNAs (sncRNAs). It will also be tested on various data including 

Huntington disease and several BC cells; 

2. To apply iSmaRT on trancriptomics data from pancreatic cancer 

MIA PaCa-2 cells carrying ANXA1 ‘knock-out’ (ANXA1ko); 

3. To carry out analysis of patient-derived colorectal cancer 

transcriptomics data from samples classified according to the level of 

methylation of the LINE1, microsatellite instability and the presence of the 

Lynch syndrome. 
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3. MATERIALS AND METHODS 
 

iSmaRT 

iSmaRT is a pipeline, wrote in Python and developed in a virtual machine, 

that integrates several third-party software widely used for the analysis of 

smallRNA-Seq data with own algorithms. sRNAbench (Rueda et al., 2015) is 

the core of iSmaRT, for its capability to detect several classes of sncRNAs, 

being used to perform the main analytical steps required. iSmaRT first 

conducts quality control and filtering of the sequence reads using FASTQC 

(http://www.bioinformatics.Babraham.ac.uk/projects/fastqc/), while Cutadapt 

(Martin, 2011) or sRNAbench are used to remove the adapter sequences and 

low quality reads. Differential expression analysis is performed in iSmaRT 

integrating three Bioconductor statistical packages: DESeq2 (Love et al, 

2014), edgeR (Robinson and Smyth, 2008) and NOISeq (Tarazona et al., 

2015). A novel piRNA prediction method was integrated into the tool-kit, 

working on 25–36nt-long reads filtered out from other classes of sncRNAs 

and using an algorithm based on k-mer scheme (Zhang et al., 2011). The 

enrichment analysis of Gene Ontology terms on miRNA and piRNA RNA 

targets is performed using the R Bioconductor package TopGO (Alexa and 

Rahnenfuhrer, 2010) and pathway analysis is performed by ReactomePA (Yu 

and He, 2016). iSmaRT includes also a module for the identification of RNA 

editing events, comprising REDItools (Picardi and Pesole, 2013). 

 

GPAT2 silencing 

For human GPAT2 silencing, MDA-MB-231 cells were transfected using 

Lipofectamine 2000 Reagent (Life Technologies) with HuSH-29 plasmid 

(OriGene) coding for shRNA against human GPAT2 mRNA and selected 

puromycin resistance to generate the respective silenced MDA-MB- 231 cell 

line (SH). A non-effective scrambled sequence shRNA plasmid was used to 

create a negative control (SC). Both plasmids also contain a sequence coding 

for green fluorescent protein driven by a CMV promoter. 

 

Small RNA sequencing library 

Total RNA was extracted from the cell line using the standard RNA 

extraction method with QIAIzol (Qiagen), quantitated with NanoDrop-1000 

spectrophotometer (Thermo Fisher Scientific) before integrity assessment 

with an Agilent 2100 Bioanalyzer (Agilent Technologies). For small RNA-

seq, 1 μg of total RNA from SH and SC cells was used for library preparation 

with Illumina TruSeq small RNA sample preparation Kit. Three independent 

experiments (two clones per cell line) for each condition, were sequenced (10 

pM) on HiSeq2500 (Illumina) with single read for 51 cycles. Small RNA 

sequencing data was analyzed using iSmaRT (Panero et al., 2017) to identify 
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the sncRNA families studied, i.e. miRNAs (miRBase v21), piwi-interacting 

RNAs (piRNABank), and tRNA-derived fragments (tRF, Human genome 

assembly, GRCh37/hg19) with Minimum Read Count of 3. Rfam and 

RefGene correspond to reads mapped to Rfam (Nawrocki et al. and Refgene 

(known human protein-coding and non-protein-coding genes) databases. 

 

Bioinformatics analysis smallRNA-Seq 

To identify differentially expressed miRNAs, piRNAs or tRF between SH 

and SC samples, we used iSmaRT for all the preprocessing of raw file and 

DESeq2 algorithm based on the normalized number of counts mapped to 

each sncRNA transcript (Love et al, 2016). Functional enrichment analyses 

were performed using the databases DAVID, http://david.abcc.ncifcrf.gov/), 

Enrichr (HTTP://amp.pharm.mssm.edu/Enrichr/) and FunRich 

(www.funrich.org), based on the list of genes associated with the deregulated 

sncRNAs (P-adj. ≤0.05; FC ≥|1.5|). Data integration, heatmap visualization of 

differentially expressed transcripts and functional enrichment plots were done 

with R/Bioconductor packages and the Multi Experiment Viewer software 

(MeV v4.9) (Saeed et al., 2003). To validate the bioinformatic analysis of 

small RNA-seq experiments, we compared the global miRNA expression 

profile of SC from our study with the global miRNA expression profile of the 

MDA-MB-231 and MCF10 cell lines obtained from the study of (Zhou et al., 

2014), in which the authors profiled the cellular small RNAs isolated from 

these two cell lines by Solexa deep sequencing. Briefly, normalized data 

were downloaded from GEO (ID#GSE50429) and the miRNAs in common 

to our libraries were selected (n=228). The comparison was made using a 

linear regression model in R. The name or GenBank ID, chromosome 

number, genomic position, strand orientation and sequence length of piRNAs 

was obtained from piRNAbank 

(http://pirnabank.ibab.ac.in/simple_search.html), and validated with the 

NCBI Nucleotide Database (https://www.ncbi.nlm.nih.gov/nuccore/). The 

number of copies in the genome and the genomic loci was obtained from the 

UCSC Genome Browser. To identify potential target genes of relevant 

piRNAs, we employed the NCBI database (Human Genomic plus Transcript) 

based on sequence complementarity using the reverse complement of the 

piRNA sequence as input. The HomoloGene tool from the NCBI database 

was employed to evaluate the grade of conservation of the selected putative 

mRNA targets among different mammalian species. For miRNA target 

prediction and functional annotations, we used the miRDB online resource 

(http://www.mirdb.org/miRDB/). To evaluate differences in the abundance of 

each species of tRF among the upregulated and downregulated group, we 

used Fisher Test to compare their frequencies with the expected frequencies 

according to the Genomic tRNA 
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database (http://gtrnadb.ucsc.edu/). For the identification of putative proteins 

based on amino acids composition, we employed the AAcompIdent tool 

(http://web.expasy.org/aacompident/). For piRNA and snoRNA expression 

levels across human tissues and cell lines, we employed the DASHR database 

(http://lisanwanglab.org/DASHR/smdb.php). To evaluate and compare 

differentially expressed miRNAs found in this study with miRNAs 

deregulated in BCs, we used the YM500v3 database 

(http://driverdb.tms.cmu.edu.tw/ym500v3) which employ TCGA data to 

contrast normal vs cancer tissue. We selected the comparison of 1096 

primary solid tumors against 104 samples of normal breast tissue (Chung et 

al., 2017). Survival section of YM500 database was employed to survival 

analysis of commonly deregulated miRNAs. 
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4. RESULTS 

 

4.1 Part One: Development and testing of iSmaRT tool 
 

Developing tools 

 

A challenging problem in NGS is the choice of the correct strategy to analyse 

the experimental data. SmallRNA-Seq analysis, for example, need different 

bioinformatics software and the possibility to perform multiple, subsequent 

file format conversions that slows-down and makes cumbersome the 

analytical procedure. For this reason, it was decided to design a tool that 

allows the use of graphic interfaces and various homemade scripts to solve 

the problems mentioned above. We will also use various third-party software 

in both standalone and web-based versions. In addition, implementing 

different statistical approaches for sncRNAs expression analyses allows users 

to compare and select the most appropriate method to analyze of their data.  

 

iSmaRT pipeline 

 

iSmaRT is an analytical pipeline, written in Python and R. It can be installed 

with bash script or it can be used running a virtual machine, that integrates 

several third-party software widely used for the analysis of smallRNA-Seq 

data. The workflow of iSmaRT covers several analytical steps with multiple 

programs, that can also be used independently (Figure 4.1). 

 

 

 
 

Figure 4.1: iSmaRT work-flow. 
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All these tools can be used by a Graphical User Interface (GUI)  that allows 

the user to choose different parameters. The tool sRNAbench (Rueda et al., 

2015) is the core of iSmaRT and it is used to perform the main analytical 

steps. iSmaRT starts with the execution of FASTQC in order to perform a 

quality control of the sequencing. Cutadapt (Martin, 2011) or sRNAbench 

can be used to remove the adapter sequences and low quality reads. iSmaRT 

allows to define different libraries to remove all the unwanted reads from the 

next steps of the analysis. iSmaRT can generate different plots, such as those 

showing read-length distributions for each of the sncRNA selected by the 

user, or Principal Component Analysis (PCA) results and heatmaps with 

different distance metrics. iSmaRT can also perform a differential expression 

analysis since it integrates three Bioconductor statistical packages: DESeq2 

(Love et al, 2014), edgeR (Robinson and Smyth, 2008) and NOISeq 

(Tarazona et al., 2015). In recent studies, germline piRNAs have been 

detected also in somatic cells, highlighting the importance of identifying 

specific piRNAs in mammalian somatic tissues, where their exact number 

and functional roles still remain to be elucidated (Ross et al., 2014). To 

address this issue, we integrated in iSmaRT two features that can help 

researchers to address this issue. The first one is the integration of an 

algorithm based on k-mer scheme (Zhang et al., 2011) to select the putative 

new piRNAs from the sequences that are not annotated in the genome. This 

provides a way to identify novel somatic piRNAs that can then be further 

studied. The second one, as increasing evidence suggests that piRNAs are 

able to drive degradation of certain RNA targets via a miRNA-like 

mechanism that operates by imperfect base-pairing rules (Zhang et al., 2015), 

is the implementation of the approach proposed by these Authors to identify 

potential piRNA targets. The enrichment analysis of Gene Ontology terms on 

miRNA and piRNA RNA targets is performed using the R Bioconductor 

package TopGO (Alexa and Rahnenfuhrer, 2010) and pathway analysis is 

performed by ReactomePA (Yu and He, 2016), with the possibility to filter 

the list of mRNA targets against a dataset of mRNAs of interest, such as for 

example those expressed in the samples under study. iSmaRT includes also a 

module for the identification of RNA editing events, comprising REDItools 

(Picardi and Pesole, 2013). We analyzed with iSmaRT the smallRNAs 

sequencing data by Hoss et al. (2015), that demonstrated miRNA 

involvement in Huntington’s disease (HD) pathogenesis by comparing their 

expression in the prefrontal cortex from 26 symptomatic HD patients and 36 

healthy controls. We thereby illustrated the performance of iSmaRT in 

providing a detailed analysis of miRNA and piRNA differentially expressed 

and of piRNA-mRNA interactions. 
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iSmaRT main interface 

 

The iSmaRT main interface, shown in Figure 4.2 reproduces the window that 

appears when the tool is opening. Each choice provided corresponds to a 

particular step of the small RNA-Seq data analysis work-flow and opens one 

or more Graphical Interface (GI), that can be called by clicking the 

corresponding button.  

 

 

      

                

 

 

 

Figure 4.2: iSmaRT main interface. 

 

The click on Complete analysis opening an interface where it is possible to 

select input file (Figure 4.3).  

 

 

 

  

 

 

Figure 4.3: iSmaRT input interface. 
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If Cutadapt is selected, a new window will appear (Figure 4.4), where it is 

possible to specify the adapter sequences. 

 

 

 

 

 

 

Figure 4.4: iSmaRT cutadapt interface. 

The new window (Figure 4.5) is divided in four zones. The first one covers 

the "Mandatory Parameters", where is it necessary to specify where to save 

the output data, the path to the database (DB) folder, the fasta (or index) file 

of mature miRNAs, as downloaded from miRBase, and the fasta file of the 

pre-miRNAs hairpin sequences.  

 

 

Figure 4.5 iSmaRT DB and libraries interface
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The "Pre-filtering" panel allows specifying the name of the library file that 

should be used to filter out certain reads. The "Analysis types and library" 

panel allows defining the other small RNA libraries (Libs) on which to 

perform the analysis and the species (hg19 for human). If "noGenome" 

option is selected (False) then all reads are first mapped to the reference 

genome of species selected. Afterward, the genome coordinates of the 

reference small RNA annotation (Libs for miRNAs and other sncRNAs) are 

determined. In next windows (Figure 4.6) you can select several options of 

output like Principal Component Analysis (PCA), Scatter-plots on two 

samples that can be selected from the window, Heatmaps and Read-length 

distribution graphs. In addition, in this section it is possible to select the 

Differential expression analysis, Target predictions on miRNAs or on 

piRNAs and Novel piRNA identification (if the “Novel piRNAs” function is 

selected). If either of the two “Target predictions” functions is selected, it is 

also possible to select “ReactomePA” function analysis. 

 

 

 

 

 

 

 

Figure 4.6: iSmaRT select workflow 

interface. 

 

 

 

 

 

The new window (Figure 4.7) concerns differential expression analyses.  
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Figure 4.7: iSmaRT DE interface. 

 

It is possible to select here the test and control groups on which library 

(miRNA, piRNA, etc.) to perform the analysis and to choose the statistical 

method to be applied (DESeq2, NoiSeq or edgeR). 

 

Output of iSmaRT 

 Commands.txt: This file contains all the line commands launched by 

iSmaRT and, eventually, the error messages; 

 sRNAbench_analysis:  This folder contains all the output of 

sRNAbench, plus a text file (Terminal.txt) where are saved the 

messages printed in the terminal by sRNAbench; 

 FASTQC: This folder contains the output of FASTQC; 

 R_out: This folder contains the output of the R scripts and, 

eventually, the error messages; 

 Tables: This folder contains the tables generated by sRNAbenchDE. 

If the user selected to perform a differential analysis, the sub-folder 

‘name of test group_VS_name of control group’ will contain the table 

generated by sRNAbench and used for the differential analysis; 

 Differential_analysis: This folder contains the results of the 

differential analysis. The first sub-folder indicates the tool used, the 

second contains indication on the test performed e.g. novel_piRNAs, 

test_vs_control, etc.  

The files that can be generated are: 

 tool_name_normalized_counts.txt: Table of normalized read 

counts; 

 tool_name_log2_med_cent.txt: Table of normalized read 

counts transformed in log2 and median centered; 

 tool_name_results_translibs_name.txt: Table of the tool 

results; 
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 tool_name_results_translibs_name_filtered.txt: Table of 

the filtered tool results with the column FC that indicates the 

fold change;  

 heatmap_norm_counts_log2_med_cent.tiff: Heatmap 

generated from the tool_name_log2_med_cent.txt table. 

 Plots: This folder contains sub-folders with the names of the 

translibs analyzed. Each sub-folder can contain the following files: 

 translibs_name.mat: Read counts generated by 

sRNAbenchDE; 

 Heatmap.tiff: Heatmap made using the rlog function of 

DESeq2; 

 PCA.tiff: PCA made using the rlog function of DESeq2; 

 ScatterPlots.tiff: Scatterplots of the read counts; 

 sequencingStat.txt: File generated by sRNAbench. 

 Read_lengths: This folder contains sub-folders with the names of 

the samples. In each sub-folder can be found the folder(s) with the 

name of each translibs analyzed. Each sub-folder can contain the 

following files: 

 sample_name_translib_name.txt: This file contains each 

sequence of the translibs, with its corresponding read counts; 

 frequencies.txt: Read counts of the sequence in the translibs; 

 sample_name.png: Plots of the frequencies. 

 GO: This folder contains the results of the Gene ontology analysis. 

Each sub-folder contains a description of what was tested and the can 

contain the following files (some may be missing if no enrichment 

was found): 

 GO_results.txt: table with the enriched GO terms with the 

associated genes and statistical tests. 

 enrihMap.tiff 

 enrichment_results_barplot.tiff 

 enrichment_results_dotplots 

 novel_piRNAs: This folder contains the results of the analysis for 

piRNA likes and can contain: 

 novel_piRNAs.txt: This file contains the genomic location of 

each piRNA like identified in all samples, and the 

corresponding read counts in each sample. These putative 

piRNAs are named p_id_numeber if they have a single 

location in the genome 

orcp_sequence_id_number_locus_id_number if the 

corresponding sequence have multi-alignment in the genome; 
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 novel_piRNAs.bed: BED file generated using the 

novel_piRNAs.txt information; 

 novel_piRNAs.fa: FASTA file generated using the 

novel_piRNAs.txt information; 

 piRNA_predictor_ERROR_log.txt: This file can contain 

errors or warnings of piRNApredictor, if the file is empty, no 

error/warnings were found/issued by the tool; 

 info: This folder contains a sub-folder for every sample analyzed. 

Each sub-folder contains the files:  

1. novel_piRNAs.txt, novel_piRNAs.bed and 

novel_piRNAs.fa for the piRNA-like identified in each 

sample; 

2. info folder. This folder contains these files: 

 All_Reads.fa: FASTA file of the not assigned 

reads, with new sequence id.  

 sample_name.txt: Read counts of the reads 

contained in All_reads.fa; 

 All_Reads_Table.txt: Tables that contains the 

information found in All_Reads.fa and 

sample_name.txt; 

 predictedpiRNA_ALL_Reads.fa: piRNAs 

predicted by piRNApredictor using as input 

All_Reads.fa; 

 predictedpiRNA_ALL_Reads.bed: BED file of 

predictedpiRNA_ALL_Reads.fa; 

 merge_test.txt: Output of bedtools merge using 

as input predictedpiRNA_ALL_Reads.bed; 

 piRNA_predictor_error_log.txt: This file can 

contain errors or warnings of piRNApredictor, if 

the file is emptied, no error/warnings were 

found/issued by the tool; 

 RNA-editing: This folder contains a sub-folder 

for every sample analyzed. In each sub-folder the 

output of REDItools can be found; 

 Target_predictions: This folder can contain the 

miRNAs, piRNAs and novel piRNAs RNA target 

predictions. For piRNAs and novel piRNA can 

be found also: 

 3UTR_CDS_5UTR.txt: This file contains 

the name(s) of the piRNA(s) or piRNA 
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like(s) with each RNA target and the 

position of targeting (5UTR, CDS or 5UTR); 

 info: This folder contains: 

 3UTR.txt: Bowtie output for the 

alignment in the 3UTR region; 

 CDS.txt: Bowtie output for the 

alignment in the CDS region; 

 5UTR.txt: Bowtie output for the 

alignment in the 5UTR region; 

 nucl.txt: This file contains the first and 

tenth nucleotides of piRNAs or novel 

piRNAs; 

 piRNA_list.txt: List of the piRNAs 

analyzed; 

 piRNA_list_cutted.fa: FASTA file 

‘cutted’ used by Bowtie. 

 

Testing procedure iSmaRT on Huntington’s disease data 

 

The brain smallRNA-Seq datasets has been analyzed using iSmaRT with the 

default parameters. After to have have obtained the miRNAs results obtained 

by the authors we focused on the piRNAs. Considering piRNAs, this allowed 

identification of 2200 such RNAs present in the datasets analyzed. 

Differential expression analysis was performed comparing HD and control 

samples, revealing 16 piRNAs differentially expressed in HD samples. The 

results are summarized in Figure 4.8 and Figure 4.9. 

 

 

 

 

 

 

 

Figure 4.8: miRNAs differentially 

expressed in Huntington 's disease vs 

healthy brain samples. The 

heatmap shows the 45 miRNAs identified 

with iSmaRT as differentially expressed in 

brain samples of Huntington's disease 

(Huntington) patients respect to normal 

(Healthy) individuals. 
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It is worth noting that cluster analysis revealed a meaningful sample 

distribution between the two groups. Novel piRNA prediction allowed 

identification of 40 000 piRNA-like RNAs. To address the potential 

functional impact of the 16 piRNAs found deregulated in HD, we performed 

target prediction, followed by Reactome Pathway enrichment analysis 

(Figure 4.10 and 4.11).  
 

 
Figure 4.9: piRNAs differentially expressed in Huntington 's disease vs healthy brain samples. The 

heatmap shows the 16 piRNAs identified with iSmaRT as differentially expressed in brain samples of 

Huntington's disease (Huntington) patients respect to normal (Healthy) individuals.  
 

 
 

Figure 4.10: Summary of ReactomePA GO analysis performed on mRNAs target of differentially 

expressed piRNA. The barcharts display enriched pathways identified by the ReactomePA of iSmaRT 

in which are involved the mRNAs target of the 16 piRNAs differentially expressed in Huntington's 

disease patients brain. 
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Figure 4.11: enrichMap visualization performed by iSmaRT on mRNAs target of differentially 

expressed piRNA. Enriched pathways in which are involved the mRNAs target of the 16 piRNAs 

differentially expressed in Huntington's disease patient brain. 
This revealed the involvement of several genes encoding piRNA target 

mRNAs involved in pathways related to brain physiopathology, such as for 

example ‘CASP8 activity’ (CFLAR gene, Strand et al., 2005) and 

‘Downregulation of TGF-beta receptor signaling/ Downregulation of 

SMAD2/3:SMAD4 transcriptional activity’ (NEDD4L gene, Ding et al., 

2013). Finally, miRNA and piRNA sequence analysis revealed, for a subset 

of HD samples, the presence of canonical and non-canonical editing events. 

  

Testing procedure iSmaRT on GPAT2 silenced BC cell 

 

To analyze the role of GAPT2 in the biogenesis of piRNAs and the goodness 

of iSmaRT, GPAT2 silencing was performed by shRNA plasmid transfection 

and puromycin selection in the MDA231 cell. From scramble control cells 

(SC) and GPAT2 silenced cells (SH) GPAT2 mRNA expression was reduced 

by 90% and GPAT2 protein was undetectable in SH cells. Silencing GPAT2 

affects sncRNA distribution. Indeed, SC cells, we identified an average of 

67% of miRNAs, 3% of piRNAs, 7% of tRF, 5% of Rfam, 7% of Refgene 

and 11% of non-assigned transcripts, whereas in SH cells, 53% were 

miRNAs, 8% piRNAs, 13% tRF, 4% Rfam, 9% Refgene and 13% not-

assigned transcripts (Figure 4.12). The percentages of total reads for each 

category differed in SC and SH cells, differences were only significant for 

the miRNA category, with a decrease after GPAT2 silencing (Figure 4.12).  
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Figure 4.12: sncRNA distribution in SC and SH cells. Piecharts of the percentages of aligned 

reads assigned to each category of sncRNA in the SC cells and SH cells. A significant decrease was 

observed in the abundance of miRNAs of the SH cells * p-value≤0.05. 
 

 

 

Total piRNAs abundance did not change after GPAT2 silencing, an upper 

shift in reading length distribution was observed (Figure 4.13).  

 
Figure 4.13: Length distribution of reads assigned to piRNAs in SC and SH libraries 

 

 

In SC cells, length distribution was bimodal, with peaks at 27 and 30 nt, 

whereas in SH cells, only one peak at 29 nt was obtained. Differential 

expression analysis shows that of the 137 piRNAs identified in SC cells, 77 

(56%) were differentially expressed after GPAT2 silencing (p≤0.05, 

FC≥|1.5|), with 38 upregulated (28%) and 39 downregulated (28%) (Figure 

4.14). Length distribution shows that piRNAs of 27 and 28 nt in length were 

significantly associated with the downregulated group (p-value ≤0.05). There 

were no differences in the other lengths (Figure 4.14). 
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Figure 4.14: Piechart representation of the percentages of differentially expressed piRNAs and 

barchart of the frequencies of piRNAs in the upregulated and downregulated groups distributed 

according to their nucleotide length.  

 

A lot of the downregulated piRNAs (32/39, 82%) are single copy (p-

value≤0.05), being mainly intragenic (27/32, 84%); whereas in the 

upregulated group, piRNAs with single (18/38, 47%) and multiple (20/38, 

52%) copies showed similar frequencies (p-value≤0.05) (Figure 4.15).  

 

 

 

 

 

 

 

 

 

Figure 4.15: Heatmap representation of 

the differentially expressed piRNAs; the name 

of the host snoRNAs when it corresponds, and 

copies in the genome are indicated. 
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Single copy, upregulated piRNAs however were mostly intergenic (14/18, 

77%, p-value ≤0.05). Indeed, piR-36011, a multiple copy downregulated 

piRNA, maps to the loci of the SNar genes (small NF90-associated RNAs). 

By contrast, none of the upregulated piRNAs is hosted in a SNOR or SNAR 

gene. Moreover, snoRNAs constituted the host gene of 22 out of 27 (81%) 

intragenic single copy downregulated piRNAs, which is 56% of all 

downregulated piRNAs, with a probability value ≤0.05 when compared with 

the upregulated piRNAs. Certain piRNAs are derived from snoRNAs 

precursors (Taft et. Al, 2009), and that piRNAs are tissue restricted, now in 

this work has been evaluated whether there is a correlation in tissue 

distribution among the downregulated piRNAs and their hosted snoRNAs. 

For the analysis of the tissue profile of the piRNAs and the host snoRNAs 

that were available in the database we use DASHR. Unsupervised clustering 

based on Pearson correlation was assayed on the nine pairs of 

piRNAsnoRNA obtained from the search. In all cases an almost perfect 

correlation (~1) was shown, coincident with a co-expression pattern (Figure 

4.16). 

 

 

 

 

 

 

 

Figure 4.16: Corrplot of the pairs 

piRNA-snoRNA. 

 

Four of the top-five upregulated piRNAs previously identified in BC cells 

(Hashim et. Al., 2014), was found downregulated in the SH cells (piR-31636, 

piR-57125, piR-35548 and piR-57125). piR-36041 and piR-43772 which 

were markedly downregulated in MCF7 growing cells, were found 

upregulated in the SH cells. Furthermore, of the latter group, piR-36743, piR-

36318 and piR-36249 were previously found underexpressed in BC tissues 

compared to their normal counterparts (Hashim et al., 2014). The less 

proliferative phenotype of the SH cells agrees with all these data. Expression 

of four representative piRNAs is shown in Figure 4.17.  
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Figure 4.17: Boxplots of four 

representative piRNAs differentially 

expressed. NDE: Non-Differentially 

Expressed. 

 

Based on literature evidence that piRNAs would be involved in mRNA target 

repression via imperfect base pairing between the piRNA and the potential 

target (Gou et. Al., 2014), we searched for putative mRNA targets by base 

complementarity for all the differentially expressed piRNAs. The genes 

targets varied considerably for each piRNA, ranging from no-hits to hundreds 

of mRNAs. After filtering we obtained a reduced list of targets with 

functional enrichment of piRNA targets yielded terms mainly linked to lipid 

metabolism that included sphingolipid de novo biosynthesis, peroxisomal 

lipid metabolism and synthesis and interconversion of nucleotide di- and 

triphosphates, among others. The expression of the putative piRNA target 

ACSS3, a gene coding for acyl-CoA synthetase short-chain family member 3, 

was assessed by qPCR; as expected, ACSS3 gene expression decreased by 

90% in SH cells. As mentioned earlier, iSmaRT allows the analysis of t-rna 

also.Total reads assigned to tRF did not change after GPAT2 silencing, 275 

tRF were identified as differentially expressed (FC≥|1.5|, p-value≤0.05), with 

147 tRF downregulated and 128 tRF upregulated. The top 40 deregulated tRF 

annotated according to the corresponding mature tRNA ID (Figure 4.18). 

 

 

 

 

 

Figure 4.18: Heatmap 

representation of the top 40 deregulated 

tRF identified in the comparison SC vs 

SH cells and annotated according to the 

name of the mature tRNA.
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To discover a biological meaning for deregulated tRF, we used the 

classification for tRNAs proposed by (Gingold et al., 2014). The authors 

established the existence of two distinct translational programs that operate 

during proliferation and differentiation, which eventually coordinate the 

supply and demand of tRNAs. Differentiated cells are less proliferative, and 

proliferating cells are typically not terminally differentiated, hence, according 

to the cellular status at which they are expressed, Gingold et al. (2014) 

classified the tRNAs into proliferation and differentiation tRNAs. Using 

Venn diagrams, we observed a significant association (p-value≤0.0001) 

between the subset differentiation tRNAs with the downregulated tRF in our 

analysis, whereas the opposite occurred with the upregulated ones, with a 

strong association (p-value≤0.0001) to the proliferation tRNAs subset (Figure 

4.19) 

 

 
Figure 4.19: Venn diagram of the comparison between the upregulated and downregulated tRF 

with the Gingold classification of tRNAs 

 

With tRNAs differently expressed we then used the CompSite expasy 

database and obtained a list of scored putative proteins. Functional 

enrichment of these proteins enabled us to identify the biological processes 

previously associated to GPAT2, such as phosphatidic acid biosynthesis, 

phospholipid acyl chain remodeling and regulation of cell death, among 

others (Figure 4.20). 
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Figure 4.20: Functional enrichment of the putative proteins obtained from the (tRF)-amino acid 

frequencies.  

 

In contrast to piRNAs and tRF, miRNAs abundance significantly decreased 

after GPAT2 silencing (Figure 4.21 and Figure 4.22). Unsupervised 

hierarchical clustering analysis of differentially expressed miRNAs 

demonstrated a clear segregation of SC and SH cells (Figure 4.21). 

 

 

 

 

 

 

 

 

 

Figure 4.21: Heatmap representation 

of deregulated miRNAs in SC vs SH cells. 

 

Statistical analysis revealed 213 transcripts differentially expressed (109 

upregulated & 104 downregulated) between the two cell line conditions. For 

this work we choose miR-5100 and miR-34 to validate small RNAseq data. 

Semiquantitative RT-PCR experiment demonstrates that, as expected, 

premiR-5100 was upregulated whereas pre-miR-34 was downregulated in SH 
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cells. Now we using miRDB, to predict putative targets, and the 50 best 

ranked putative targets for each deregulated miRNA were selected. By pivot 

tables (cross tabulations), the more relevant targets present in at least 5 

miRNAs (>5%) were extracted. This means to select the genes that constitute 

targets for more than five miRNAs. Two lists of putative gene targets were 

obtained, one of 51 genes for the upregulated miRNAs, and the other of 109 

genes for the downregulated miRNAs. To identify biological processes 

associated with miRNA targets, functional enrichment analysis using 

ENRICH database was performed. Pathways analysis revealed specific terms 

associated with mitochondrial biogenesis and IGF1R signaling for genes 

associated with upregulated miRNAs, and oxidative metabolism of lipids and 

lipoproteins for genes associated with downregulated miRNAs (Figure 4.22). 

Among the putative genes targeted by the upregulated miRNAs were APPL1 

and SPRED1, both play critical roles in cell proliferation (Mao et al., 2006; 

Pasmant et al., 2015). 

 

 

 

 

 

 

 

Figure 4.22: (B) Functional 

enrichment of the targets of up-

regulated miRNAs (red) and 

downregulated miRNAs (light blue). 

 

Finally, to discover the impact of deregulated miRNAs on the survival of 

patients with BC, we performed an analysis using the YM500 database. 

According to YM500 there are 226 miRNAs differentially expressed between 

BC tumors (n=994) and normal breast (n=103). We compared this group with 

the 213 deregulated miRNAs identified in our study. We used the normal 

approximation to the binomial distribution as previously described (Smid et. 

Al., 2003) to calculate whether the number of deregulated miRNAs derived 

from each cross-platform comparison was of statistical significance. We 

found sixty-five miRNAs common to both groups (p-value≤0.05, Figure 

4.23). 

 



Small non-coding RNAs and cancer: a bioinformatics approach 

 

33 
 

 

 

 

 

 

Figure 4.23: Comparison of 

differentially expressed miRNAs in SC 

vs SH cells with differentially expressed 

miRNAs in normal vs breast tumors 

indicates a significant association. Venn 

diagrams of opposite groups (Up vs 

Down) also showed a significant. 

 

Of the 65 miRNAs, 45 are upregulated and 20 downregulated in YM500 BC 

tumors, while 36 and 29 are upregulated and downregulated, respectively, in 

the SH cells from our analysis. We discover a significant association between 

the miRNAs upregulated in breast tumors with the miRNAs downregulated 

in the SH cells (22 miRNAs in common, p-value≤0.05), over between the 

miRNAs downregulated in BC tumors and the upregulated in the SH cells 

(13 miRNAs in common, p-value≤0.05, Figure 4.23). We found that 9 of the 

22 miRNAs that are downregulated in the SH cells have a significant impact 

on BC patient survival if they are upregulated in tumors; whereas only 2 of 

the 13 upregulated miRNAs in the SH cells showed poor prognosis. Figure 

4.24 shows the Kaplan Meier curves of 6 of the 9 miRNAs downregulated 

after GPAT2 silencing and upregulated in breast tumors.  
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Figure 4.24: Kaplan-Meier survival 

curves of BC patient survival of six 

miRNA. We then found miRNAs that are 

downregulated in the SH cells have a 

significant impact on breast cancer patient 

survival if they are upregulated in tumors; 

   

 

Moreover, considering that MDAMB-231 cells are negative for hormone 

receptors, we performed the survival analysis on a defined group of ER- and 

PR-negative breast tumors (n=218) for each of the significant miRNAs 

identified in the comparison normal vs tumor, but no significant association 

with overall survival was found in any of the miRNA analyzed.  

 

Testing procedure iSmaRT on BC cell with EPZ a DOT1L inhibitor 

 

To investigate the functional significance of the ERα-DOT1L interaction in 

BC cell nuclei, estrogenstimulated cells were treated with the selective 

DOT1L inhibitor EPZ004777 (EPZ) on MCF7 cells. Analysis of miRNAs 

was performed with iSmaRT using using as cutoff parameters FC> = | 1.5 | 

and pval <= 0.05. In the case of cell treatment with EPZ for 3 days, only 4 

miRNAs changed, in all cases showing an upregulation in expression respect 

to untreated cells (Table 4.1).  

 

 
 

Table 4.1: miRNA DE in EPZ 3g. 

 

On the other hand, with a 6-day treatment, the data changes significantly. 

With these cutoffs we have 36 upregulated miRNAs and 23 downregulated 

miRNA rc_norm_DMSO_3g rc_norm_EPZ_3g Fold-Change pval

hsa-miR-133a-3p 2.91 10.96 3.77 0.037077584

hsa-miR-1538 4.35 19.14 4.40 0.039833103

hsa-miR-548al 1.00 4.91 4.91 0.007889279

hsa-miR-30c-2-3p 1.37 7.70 5.64 0.037251745
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miRNAs. In particular only has-miR-30c-2-3p his present in both condition 

but discordant. 

 

 

 
 

Table 4.2: miRNA DE in EPZ 6g. 

miRNA rc_norm_DMSO_6g rc_norm_EPZ_6g Fold-change pval

hsa-miR-1306-3p 9.89 1.22 -8.08 0.005614476

hsa-miR-30c-2-3p 8.85 1.22 -7.25 0.016545134

hsa-miR-4762-5p 6.60 1.00 -6.60 0.002889501

hsa-miR-6803-3p 8.49 1.63 -5.22 0.024740127

hsa-miR-142-3p 4.40 1.00 -4.40 0.032448753

hsa-miR-6795-3p 4.06 1.00 -4.06 0.029202612

hsa-miR-6862-3p 10.98 2.85 -3.86 0.033365664

hsa-miR-4473 18.72 4.93 -3.79 0.004227637

hsa-miR-6511a-5p 14.47 4.93 -2.93 0.039025164

hsa-miR-6511b-5p 14.47 4.93 -2.93 0.039025164

hsa-miR-219a-5p 14.02 4.96 -2.83 0.049903685

hsa-miR-3679-5p 23.75 9.19 -2.59 0.023602612

hsa-let-7c-3p 43.73 17.24 -2.54 0.001817052

hsa-miR-4638-3p 29.08 11.52 -2.52 0.009176954

hsa-miR-6750-3p 21.87 9.08 -2.41 0.02340518

hsa-miR-95-5p 31.61 14.05 -2.25 0.016872666

hsa-miR-6886-5p 29.40 13.62 -2.16 0.025223209

hsa-miR-365b-5p 79.42 39.50 -2.01 0.010931282

hsa-miR-7-5p 1283.98 773.48 -1.66 0.035913079

hsa-miR-454-5p 977.54 612.45 -1.60 0.002785227

hsa-miR-424-5p 1225.25 778.11 -1.57 0.004976244

hsa-miR-424-3p 537.03 343.94 -1.56 0.005570036

hsa-miR-340-3p 468.03 309.31 -1.51 0.015123091

hsa-miR-489-3p 8427.74 12759.29 1.51 0.003614636

hsa-miR-205-5p 1330.60 2077.03 1.56 0.004288185

hsa-miR-27b-5p 1381.29 2185.77 1.58 0.002413951

hsa-miR-1246 164.28 266.87 1.62 0.005711576

hsa-miR-338-3p 63.99 104.15 1.63 0.013172527

hsa-miR-378a-5p 47.20 76.90 1.63 0.032782012

hsa-miR-326 263.26 430.65 1.64 0.003850568

hsa-miR-504-5p 213.01 350.64 1.65 0.00449435

hsa-miR-143-3p 400.74 694.82 1.73 0.006595452

hsa-miR-27b-3p 336514.89 588440.37 1.75 0.000197463

hsa-miR-218-5p 94.97 166.83 1.76 0.025331602

hsa-miR-335-3p 1174.11 2066.81 1.76 0.000143118

hsa-miR-708-3p 66.04 118.45 1.79 0.01193539

hsa-miR-1287-5p 319.40 574.64 1.80 0.000363817

hsa-miR-199b-5p 41.19 74.29 1.80 0.010585117

hsa-miR-1283 25.26 45.63 1.81 0.048918489

hsa-miR-23b-3p 8082.66 14618.58 1.81 7.20E-05

hsa-miR-512-3p 21.21 38.71 1.83 0.044123495

hsa-miR-708-5p 86.99 160.15 1.84 0.000722596

hsa-miR-147b 31.17 57.46 1.84 0.01797775

hsa-miR-24-1-5p 26.73 51.81 1.94 0.023499753

hsa-miR-363-3p 99.51 200.00 2.01 8.25E-05

hsa-miR-891a-5p 20.04 43.39 2.17 0.008979936

hsa-miR-20b-5p 10.93 23.86 2.18 0.042088296

hsa-miR-184 9.30 22.24 2.39 0.027618344

hsa-miR-221-3p 258.48 620.61 2.40 9.07E-08

hsa-miR-135b-5p 22.07 56.59 2.56 0.000378118

hsa-miR-127-3p 10.95 28.99 2.65 0.006180826

hsa-miR-222-3p 327.10 866.60 2.65 5.90E-10

hsa-miR-570-3p 6.81 20.25 2.98 0.008393601

hsa-miR-320e 3.57 11.10 3.11 0.045043443

hsa-miR-7114-3p 1.00 5.37 5.37 0.002779168

hsa-miR-642a-3p 1.00 5.75 5.75 0.001740819

hsa-miR-34b-5p 1.00 7.44 7.44 0.000258768

hsa-miR-133a-3p 1.44 15.65 10.89 0.000128599

hsa-miR-7641 1.03 16.16 15.74 2.07E-05
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Part Two: Application of iSmaRT on pancreatic tumor. 
 

The silencing of the ANXA1 in pancreatic cancer cells was previously 

assessed using in vitro models of ANXA1ko MIA PaCa-2 cells created using 

the CRISPR/Cas9 genome modification system. To confirm the lack of 

ANXA1 a Western blot was performed confirming the deletion of ANXA1 

with respect to wild type (WT) and PGS MIA PaCa-2 cells. PGS cells were 

obtained by transfecting MIA PaCa-2 WT cells with an empty vector and 

were used as a control, as they behave very similar to the parental cell line. 

iSmaRT was then used to study miRNA change in both conditions.  The 

following PCA (Figure 4.25) shows the difference between samples:  

 

 

 

 

 

 

 

 

Figure 4.25: PCA of pancreatic 

cancer samples. 

 

As reported in the heatmap in Figure 4.26, 19 miRNAs appeared to be 

upregulated and 28 downregulated with the same cutoffs used previously. 

These miRNAs are listed in Table 4.3.  

 

 

 

 

 

 

Figure 4.26: Heatmap representation of 

deregulated miRNAs in ANXA1ko MIA PaCa-2 

cells vs PSG. 
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Several studies have investigated the role of miRNAs in the PC. Many of 

them have focused on miR-196a as a potential marker because it appears to 

be involved in the acquisition of aggression and related to the poor prognosis. 

When we consider the significant low modulation of mR-196a-5p in the 

ANXA1ko MIA PaCa-2 cells, we have transfected the PGS and ANXA1ko 

cells with their mimicry to highlight its role in our system. Initially, we 

performed a wound healing test to test the migratory capacity of the cells. We 

have seen an increase in the migration rate both in PGS and in ‘knock-out’ 

cells.  

 

 
Table 4.3: miRNA DE in ANXA1 KO MIA PaCa-2 cells vs PSG. 

 
This increase appears more evident in the ANXA1ko cells since this clone has 

confirmed that it is characterized by a lower migratory behavior. 

Furthermore, following the same transfection procedures, an invasion test 

was performed through the matrigel lining with PGS and ANXA1ko cells. In 

the presence of miR-196a-5p mimicry, a strong increase in the invasion rate 

of the analyzed clones was observed. 

  

Name log2FoldChange pvalue padj FC PGS1 PGS2 PGS3 B11 D6 G5

hsa-miR-335-3p -3,988886412 5,20E-27 4,55E-24 -15,88 368 429 890 29 21 12

hsa-miR-335-5p -3,499910597 1,26E-13 2,75E-11 -11,31 50 106 241 6 4 0

hsa-miR-196a-5p -3,315893732 2,96E-12 4,32E-10 -9,96 245 107 36 4 2 6

hsa-miR-6510-3p -2,798868925 4,70E-15 1,37E-12 -6,96 135 83 124 15 8 12

hsa-miR-135b-3p -2,701423037 2,10E-15 9,20E-13 -6,50 197 173 177 35 16 12

hsa-miR-34a-5p -2,440875382 2,00E-06 0,000116574 -5,43 10 25 19 0 1 0

hsa-miR-135b-5p -2,420276737 5,53E-11 6,90E-09 -5,35 508 506 482 121 55 30

hsa-miR-205-5p -2,019857469 9,07E-05 0,003773043 -4,06 37 10 4 0 0 0

hsa-miR-4421 -1,9973394 0,000115235 0,004577957 -3,99 11 13 10 0 1 0

hsa-miR-1252-5p -1,899994118 0,000227203 0,007943019 -3,73 22 7 6 0 0 0

hsa-miR-3664-3p -1,79037834 0,000473434 0,01426832 -3,46 23 11 12 1 0 4

hsa-miR-6501-5p -1,621481458 0,001308297 0,032670043 -3,08 16 12 21 2 5 0

hsa-miR-10a-3p -1,558956342 7,04E-06 0,00038447 -2,95 1.188 469 526 270 190 171

hsa-miR-4524a-5p -1,52699932 0,002489867 0,046300932 -2,88 5 14 4 0 0 0

hsa-miR-203a-3p -1,344244283 0,000376896 0,012669507 -2,54 223 356 124 78 108 46

hsa-miR-486-5p -1,309498345 1,85E-08 1,47E-06 -2,48 328.553 222.534 242.884 90.913 94.842 118.640

hsa-miR-10a-5p -1,215868565 0,000459015 0,01426832 -2,32 1.237.694 453.303 459.268 276.480 245.139 295.758

hsa-miR-548f-3p -1,159929075 0,002476268 0,046300932 -2,23 35 32 36 10 13 16

hsa-miR-4461 -1,072940294 0,001408345 0,034191495 -2,10 359 460 188 104 178 151

hsa-miR-3177-3p -1,045932113 0,002360282 0,045841925 -2,06 65 49 50 25 29 17

hsa-miR-10b-5p -1,014936036 0,001930895 0,040181005 -2,02 475 221 214 125 133 155

hsa-miR-589-3p -0,976857478 2,99E-05 0,001450035 -1,97 3.059 2.220 2.558 1.338 1.017 1.477

hsa-miR-2116-3p -0,952462563 0,00098909 0,026195905 -1,94 281 226 176 144 96 92

hsa-miR-584-5p -0,905178961 0,001602456 0,036856499 -1,87 48.437 30.585 29.511 24.624 15.035 15.072

hsa-miR-378e -0,897734504 0,000814801 0,022254239 -1,86 189 275 235 125 93 140

hsa-miR-18a-3p -0,778851246 0,001909198 0,040181005 -1,72 832 654 538 445 317 376

hsa-miR-378d -0,721127459 0,001694498 0,037974123 -1,65 466 633 528 371 286 302

hsa-miR-1275 -0,709818502 0,001553611 0,0366988 -1,64 2.220 2.658 2.262 1.248 1.755 1.252

hsa-miR-1269b 0,626999862 0,001885094 0,040181005 1,54 1.213 1.354 1.512 2.413 1.934 2.063

hsa-miR-15b-5p 0,65674351 0,001073332 0,027590958 1,58 9.158 10.032 7.877 12.664 15.626 15.179

hsa-miR-181a-2-3p 0,840009328 1,77E-06 0,000114476 1,79 2.854 2.753 2.737 5.486 4.645 5.073

hsa-miR-628-5p 0,859023846 0,000657596 0,018539964 1,81 124 184 174 259 315 335

hsa-miR-3912-3p 0,867255438 0,001994361 0,040536541 1,82 40 48 42 86 80 84

hsa-miR-3129-5p 0,899188363 0,000521556 0,015194667 1,87 112 158 98 223 237 257

hsa-miR-3129-3p 0,952049042 0,000165186 0,006277058 1,93 447 320 269 612 724 763

hsa-miR-449a 0,99430699 0,002188548 0,043472522 1,99 59 40 62 160 103 86

hsa-miR-561-5p 1,073417673 0,000445629 0,01426832 2,10 105 244 174 449 390 352

hsa-miR-9-5p 1,281883283 8,35E-05 0,003647348 2,43 297 506 789 1.768 1.197 1.359

hsa-miR-34c-5p 1,32507668 1,83E-06 0,000114476 2,51 260 455 298 1.137 788 813

hsa-miR-455-3p 1,341584901 5,63E-09 4,92E-07 2,53 295 395 451 1.081 939 1.020

hsa-miR-2682-3p 1,462539389 2,16E-09 2,10E-07 2,76 69 66 56 194 177 192

hsa-miR-455-5p 1,516880996 1,08E-05 0,000553835 2,86 195 483 469 1.779 1.035 1.006

hsa-miR-137 1,569743526 1,53E-09 1,67E-07 2,97 134 165 190 654 420 495

hsa-miR-2682-5p 1,612536848 7,18E-13 1,26E-10 3,06 706 561 465 1.742 1.888 1.990

hsa-miR-34b-5p 1,618102176 0,000196521 0,007156648 3,07 5 18 9 65 39 32

hsa-miR-1245a 2,138038481 3,61E-05 0,001658394 4,40 0 1 0 10 11 15

hsa-miR-202-5p 2,203988928 1,91E-07 1,39E-05 4,61 6 15 34 170 96 116

Livello di Espressione (read_count_normalizzato)
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Part Three: Colon cancer transcriptomics analysis with 

iSmaRT.  

 
From the evidence it was decided to use a part of the series of colorectal 

carcinomas available for this project to analyze the expression patterns of the 

small RNA, in particular the piRNA, in different molecular and clinical-

pathological subclasses of these neoplasms, applying the experimental 

methodologies (smallRNA-Seq). Specifically, RNA extracts from 45 samples 

were analyzed by SmallRNA-Seq, organized in the following 4 experimental 

groups: 

 

1) 13 samples of normal tissue and 32 of tumor tissue; 

2) 4 subgroups with a variable percentage of methylation in the 

LINE-1 promoter, ie 20 samples> 60.1% (L1), 9 samples 54.1% - 

60% (L2), 9 samples 45.8% - 54% (L3) and 7 samples < 45.6% 

(L4); 

3) 16 MSI and 16 MSS samples; 

4) 8 MSI S. Lynch samples and 8 sporadic MSI. 

 

For each of the samples an average of 20 million sequences were obtained, 

the collected data allowed to identify ~ 1200 miRNA and ~ 110 piRNA 

expressed in the samples. The differential analysis (performed with iSmaRT) 

of the small RNAs among the different categories under examination (Table 

4.4 and Figure 4.27) showed a high number of miRNAs showing significant 

variations (pValue < 0.05 and FC>=|1.5|) between normal and tumor tissue, 

instead for the piRNAs the most interesting comparison was MSS Vs MSI, in 

which it was possible to identify 46 differentially expressed piRNAs (Figure 

4.28). 

 

 
Table 4.4: miRNAs and piRNAs DE in several condition of colorectal cancer. 

 



Small non-coding RNAs and cancer: a bioinformatics approach 

 

39 
 

 

 

 

 

 

Figure 4.27: Heatmap representation 

of deregulated miRNAs in tumor vs 

normal samples. 

 

 

In particular, 24 piRNA are overexpressed and 22 under-expressed in MSI 

carcinomas compared to MSS, the identified "signature" allows a good 

clasterization of the samples in the two groups and suggests a possible 

involvement of piRNAs in regulatory mechanisms of the stability of the 

genome. 

 

 

 

 

 

 

 

 

Figure 4.28: Heatmap representation 

of deregulated piRNAs in MSS vs MSI 

samples. 

 

The miRNAs and piRNAs are able to exert a post-transcriptional regulation 

of gene expression by binding to the target RNAs, in order to be able to 

identify their targets, the RNA samples of the case series have been 

sequenced by means of the Stranded total RNA protocol. For each of the 

experimental groups a "pool" was created and each library was analyzed in 

quadruplicate to obtain ~ 25 million sequences per sample. The differential 

analysis allowed to identify a large number of genes differentially expressed 

in the 9 comparisons considered (Table 4.5). The data in question are being 

developed to identify the primary targets of miRNA and piRNA and to 
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evaluate the possible existence of an inverse proportionality relationship 

between the levels of expression of the small RNA and respective targets.  

 

 
Table 4.5: mRNAs DE in several condition of colorectal cancer. 

 

In addition, Piwil1 and Piwil4, two proteins involved in the maturation and 

function of piRNAs (Figure 4.39) emerged among the genes altered in the 

different categories of colorectal carcinoma. In particular Piwil1, showed a 

variation of 47 times in the comparison between normal and tumor samples 

and more than 100 times in the comparison between sporadic MSI and Lynch 

tumors, reinforcing the hypothesis of a role of the piRNA-Piwil pathway in 

the molecular mechanisms of the tumor to the colon. 

 

 

 

 

 

Figure 4.29: Fold-change of genes 

Piwil1 and Piwil4 in several condition of 

colorectal cancer. 
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5. DISCUSSION 
 

iSmaRT is a tool made for quality controls, identification of small non-

coding RNAs, prediction of novels ones and differential expression analysis 

across multiple biological conditions, starting from small RNA-Seq datasets. 

This tool is useful to predict potential RNA target of miRNAs and piRNAs 

and to perform Reactome pathway-based analyses. The tool is not a simple 

‘collection’ of available methods and functions, but it is designed to guide the 

user during the entire analysis process. The GUI facilitates and speeds up 

usage of the different tools included. Current implementation focuses on 

simpler experimental conditions, future work will cover complex 

experimental designs. Considering the ease of use of iSmaRT and the 

goodness of the results the tools were used by ourselves to perform 

smallRNA-Seq analysis in BC cells before and after silencing the GAPT2 

protein. Thanks to the tools devised for this work, it was possible to describe 

how the landscape of sncRNAs is affected by GPAT2 silencing in triple-

negative MDA-MB-231 cells, which normally express GPAT2. 

Following the results present in the literature demonstrating that GPAT2 

participates in piRNA biogenesis in mouse germline stem cells, we 

hypothesized that this gene could also be involved in piRNA metabolism in 

somatic MDA-MB-231 cells, where piRNA synthesis was proved to be 

active. By shRNA-mediated gene silencing we showed that although GPAT2 

knockdown did not change significantly the total amounts of piRNAs, a shift 

in small RNA read length distribution was observed and specific piRNAs 

were deregulated.  

The best result is in the group of downregulated piRNAs, whose genomic 

characteristics are homogeneous and clearly distinguishable from the 

upregulated group.  

Interestingly:  

1) of these sncRNAs, 82% are present in single copy in the human 

genome, including a majority (81% - with 100% identity) located 

within the body of snoRNA genes;  

2) a high tissue-specific correlation between piRNA-snoRNA pairs was 

observed, suggesting that they are often/always co-expressed.  

 

These data refer to the mechanism of the primary biogenesis of piRNAs, in 

which piRNAs precursors are transcribed from piRNAs clusters, and then 

processed into piRNA intermediates, which subsequently are trimmed and 

modified by methylation to led to mature piRNAs (Czech et al., 2016). Since 

that snoRNA genes are 65-300 nt long, it is possible to speculate that they 

may be precursors or intermediates in the production of a certain class of 

piRNAs, and that GPAT2 is directly involved in this process. We have shown 
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that certain piRNAs are derived from snoRNAs, and that these play specific 

roles in the transcriptional and posttranscriptional regulation of gene 

expression (Zhang et al., 2015; Zhong et al., 2015). It is also worth 

mentioning that among the downregulated piRNAs it was found piR-36011.  

This piRNAs is encoded in multiple sites in the genome and each copy maps 

in one of the 14 copies of the small NF90- associated RNA A genes (SNAR-

A1 to 14). SnaRs are transcribed by RNA polymerase III and display 

restricted tissue distribution, with high expression in normal testis and 

discrete areas of the brain, and in many immortalized human cell lines 

compared to their pre-immortal counterpart (Parrott et al., 2011). snaR genes 

are predominantly located in three clusters on chromosome 19 and have been 

duplicated as part of a larger genetic element. Like snoRNA derived piRNAs, 

piR-36011 could be originated from the processing of a precursor or 

intermediate SNAR. We also searched for potential targets of the deregulated 

piRNAs, based on sequence complementarity. Several potential target genes 

were found and functional enrichment analysis revealed that the products of 

these RNAs being involved in lipid metabolism. Another relevant finding is 

that deregulated piRNAs correlate with the less tumorigenic SH phenotype. 

Moreover, several downregulated piRNAs (piR-31636, piR-57125, piR-

35548 and piR-57125) were previously found upregulated in BC cells and/or 

in breast tumors, compared to their normal tissues, whereas the upregulated 

piR-36743, piR-36318, piR-36249, piR-43772 and piR36041 were previously 

associated with a growth arrested cell phenotype. A significant association 

was found between the ‘differentiation tRNAs’ subset and the downregulated 

tRF identified in our analysis, whereas the opposite occurred with the 

upregulated ones, with a strong association to the proliferation tRNAs subset. 

Under the hypothesis that cellular tRNA pool constitutes a relevant prime 

factor that controls translation, and that variations in the expression of a 

given tRNA would affect the translation of all genes that need such tRNA, 

the increase of tRF after GPAT2 silencing could be associated with a decay 

of specific tRNAs, affecting the synthesis of specific proteins. Thus, 

deregulated tRF -considered as products of tRNA degradation- were used to 

establish a putative profile of affected proteins. Interestingly, these included 

some related to phospholipid biosynthesis and cell growth, two major 

processes previously linked with GPAT2. Of the three classes of sncRNAs 

analyzed in this study, only miRNAs display a significant variation in the 

total abundance of aligned reads, with a decrease in the SH cells, suggesting 

an impact in the overall production of miRNAs. Bioinformatics analysis 

identifies a set of potential targets for the upregulated and downregulated 

miRNAs. Target genes of miRNAs would be associated with processes 

linked to lipid biosynthesis, cell growth and proliferation. To discover if the 

deregulated miRNAs in the MDAMB-231 cells might have a role in cancer, 
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we used the YM500 database, which contains >8000 small RNA sequencing 

datasets, and integrated analysis results for various cancers miRNome 

studies. A significant overlap between the miRNAs differentially expressed 

between normal  and cancer tissues from the YM500 database and those 

found affected by GPAT2 silencing in the present study was observed. 

Furthermnore, 9 miRNAs downregulated by GPAT2 silencing have been 

found upregulated in BC, were their expression level results associated with a 

worse prognosis. Anyway, differentially expressed miRNAs identified here 

in SC vs SH cells showed a similar pattern in normal vs cancerous breast. On 

the other hand, within a cohort of PR- and ER-negative tumors miRNA 

expression was not correlated with overall survival. We speculated that there 

might be different reasons:  

1) the reduced number of cases with hormone receptor negative status 

and follow up data;  

2)  although there have been defined different molecular subtypes of 

hormone  

receptor negative tumors, particularly triple negative breast tumors, they 

usually constitute a discrete BC subgroup with a homogeneous behavior 

in respect of the prognosis and overall survival.  

 

It is worth noting that miR-454 has been found associated with poor 

prognosis in triple negative BCs (Cao et al., 2016) and miR-301 is known to 

mediate cell proliferation in invasive BC (Shi et al., 2011). Our data 

demonstrate that beyond the molecular subtype of the cell line employed, 

some of the miRNAs identified in our model could be powerful prognostic 

BC biomarkers, as was postulated in other studies, and some of them could 

constitute new ones to further validate in future studies. The specific 

characteristics of deregulated piRNAs, tRF and miRNAs strongly correlate 

with processes associated with GPAT2 in previous studies, indicating a 

specific cause-effect of GPAT2 silencing. The mechanisms by which GPAT2 

deregulate the expression of small noncoding RNAs remains unknown, but in 

this study, we show that GPAT2 modifies the abundance and length of 

specific piRNAs, tRF and miRNAs. The involvement of outer mitochondrial 

membrane proteins in primary piRNA processing was previously described 

(Ipsaro et al., 2012; Honda et al., 2013; Zhang et al., 2016). In this sense, we 

have previously postulated that GPAT2 protein contains intrinsically 

disordered regions (Rajagopalan et al., 2013); hence it is possible to speculate 

that GPAT2 could act as a scaffold protein to function in the processing of 

specific small ncRNAs that eventually control lipid biosynthesis and cell 

proliferation.  We also found a significant change in the miRNome, when 

there was an interaction between ERa and DOT1L in BCX cells treated with 

3-day or 6-day EPZ. iSmaRT was very useful for analyzing colorectal 
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samples from patients and helping us to discover a genetic signature in the 

case of normal vs tumor conditions. Thanks to the use of iSmaRT it was 

possible to analyze pancreatic cancer cells. In this thesis, the regulation 

profile of miRNA associated with ANXA1 expression in human MIA PaCa-2 

PC cells is studied. We observed the differential expression for 47 miRNA 

detected in ANXA1 KO obtained with the CRISPR / Cas9 genomic editing 

system in vitro. The analysis of the miRNoma revealed the involvement of 

ANXA1 in the progression of Pancreatic Cancer. In fact, as regards the 

down-modulated sequences in the ANXA1 KO cells, we have recognized 

miR-196a, miR-205, miR-10a and miR-10b, which are known as oncogenic 

factors, which induce proliferation, migration and invasion in different 

models of cancer (Jin et.Al, 2015). On the other hand, miR-34c, miR-455, 

miR-202, miR-137, which are upregulated in the absence of ANXA1, exert 

cancer suppression (Hagman et.Al, 2013). Subsequent analyzes have reported 

many changes that affected cytoskeletal dynamics and have influenced the 

migratory and invasive capacity of MIA PaCa-2. These cells became less 

aggressive when they lacked ANXA1 and were prone to EMT reversal. Both 

ANXA1 and miR-196a can also improve the metastatisation process. Since 

ANXA1 and miR-196a are involved in the induction of a more aggressive 

mesenchymal and phenotype (Belvedere et.Al, 2016), we evaluated cell 

migration and invasion that shows the increase in the speed of these 

processes in the presence of miR- 196a-5p to imitate. Thus, we suggest that 

the aberrant expression of miRNA, as well as ANXA1, promotes the 

progression of Pancreatic Cancer.  
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6. CONCLUSION 
 

In this PhD thesis, I described a novel tool that allows users to perform an 

accurate and complete analysis of miRNAs, piRNAs and other sncRNA 

classes from smallRNA-Seq data. Differently from other tools with similar 

functions, iSmaRT focuses mainly on piRNAs, integrating in its workflow 

two modules built for prediction of novel piRNAs and their RNA targets. 

Test performed on the data from Hoss et al. demonstrated iSmaRT potential 

in extracting novel information related to sncRNAs, and it was usefull in 

different experimental settings. Analyzing experimental data I found that 

GPAT2 silencing quantitatively and qualitatively affects the population of 

PIWI-interacting RNAs, tRNA derived fragments and miRNAs which, in 

combination, result in a more differentiated cancer cell phenotype with high 

impact on cell proliferation. The correlation between ANXA1 and specific 

miRNA sequences, such as miR-196a, adds an important element in the 

combinatorial panel of specific factors and encourages future investigations. 

In fact, both the protein and the miR-196a in Pancreatic Cancer are important 

factors that promote metastasis. Furthermore, the integration of ANXA1 into 

a more complex panel of PC-based biomarkers and differential diagnosis 

remains our central goal. The potential of iSmaRT is manifold, only in our 

case it was possible to apply it to tumor data coming from cells or patients 

and from different tumors. It has been seen how it works well with other 

diseases and the potential increases if you think about using it with other 

species. 
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