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ABSTRACT 
 

The development of Next-Generation Sequencing (NGS) technologies has 

added a new method to investigate the role of genes in several diseases, 

including breast cancer (BC). For example, RNA-Seq is mainly used to 

analyze the continuously changing cellular transcriptome and finding the 

pathways enriched/inhibited by the differently expressed genes. Small RNA-

Seq is a very similar method allowing the detection of other classes of RNA 

such as small non-coding RNA (miRNA, piRNA, tRNA). In particular, 

microRNAs (miRNA) are a small non-coding RNA that regulate gene 

expression at the post-transcriptional level by binding to the 3'UTR 

(untranslated region) of target mRNAs, causing their degradation or 

translation inhibition. Several studies correlated an altered expression of 

these sncRNAs with the onset and /or progression of different diseases, 

including cancer. They can be used as biomarkers, playing a key role in the 

diagnosis, prognosis and prediction of response to specific therapies. 

Moreover, many studies have focused on the possibility of developing new 

therapeutic strategies based on microRNAs modulation and their potential 

use in the personalized management of cancer. Furthermore, also Piwi-

interacting RNA (piRNA) is a class of small non-coding RNA molecules 

expressed in animal cells that are associated with both epigenetic and post-

transcriptional gene silencing of retrotransposons and other genetic elements. 

They are distinct from miRNA in size (26ï31 nt rather than 21ï24 nt), lack 

of sequence conservation, and increased complexity. The aim of my research 

project was to understand the carcinogenic mechanisms and pathways 

modulated by these mRNAs and smallRNAs, since the clarification of the 

roles played by these molecules in cancer might provide new opportunities to 

develop novel strategies for diagnosing and treating this disease using 

bioinformatics tools and created it. Furthermore, a tool has been created that 

allows the analysis of smallRNAs by integrating various software to facilitate 

the use of this technology and to better explore the expected results. 
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1. INTRODUCTION  
 

Fifteen years ago the Human Genome Project (Human Genome Project) was 

completed and from there on research on genomes structure and functions 

made a significant step forward. This was possible thanks to the significant 

developments in the field of sequencing technologies of DNA, whereby from 

the óSangerô DNA sequencing technique, which untill that time was the 

standard approach, we moved on to the, so-called, Next-Generation 

Sequencing (NGS), based on massive parallel sequencing technologies. 

Today, the human genome can be sequenced in less than a week and soon, 

systematically, down to a couple of days. NGS has allowed remarkable 

advances in the new era of biology, known as "post-genomics", leading to a 

greater understanding of how, where and when all genes of a given cell or 

tissue are regulated, allowing to gather a great amount of data in a single 

experiment, with significantly lower costs compared to past. This global 

approach to science has been successfully applied to different areas of 

research and led to the birth and development of a new set of disciplines, the 

so-called "-omics", such as transcriptomics (study of the transcriptome), 

proteomics (study of the proteome), interactomics (study of the interactions 

between the products of multiple genes), cellomics (studies of cellular 

functions and impact of drugs at the cell level), genomics (large-scale 

molecular analyzes of a set of genes, on gene products or on regions of 

genetic material) and miRNomics (study of miRnoma), each of these 

stimulating in turn the development of new ones technologies to facilitate 

work. 

 

1.1 New Methods for Genomic Analysis  

 

Traditional techniques for coding and non-coding RNA analysis represent a 

limited approach for the study of genomes, because they generally focus on a 

single gene at a time or on a limited set of them. The advent of Next-

Generation-Sequencing has marked a remarkable and important step forward 

for this field. The global approaches developed, such as the RNA-Seq and 

smallRNA-Seq, have allowed, in fact, to investigate more in depth and at 

lower costs, the complex interactions between DNA and proteins and the role 

played by regulatory transcripts. This progress has also been made possible 

by the parallel development of methods for data analysis that tries to make 

the interpretation less problematic. RNA-Seq is used to analyze the 

continuously changing cellular transcriptome, it is used for look mRNA gene 

splicing, gene fusion and change in gene expression. RNA-Seq also allows 

other classes of mRNA like long non-coding RNA and small non-coding 

RNA. In particular, micro RNA is a small non-coding RNA that regulate 
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gene expression at the post-transcriptional level by binding to the 3'UTR 

(untranslated region) of target mRNAs, causing their degradation or 

translation inhibition. Piwi-interacting RNA (piRNA) is a class of small non-

coding RNA molecules expressed in animal cells that are linked to both 

epigenetic and post-transcriptional gene silencing of retrotransposons and 

other genetic elements. 

 

1.2 microRNA (miRNA)  

 

miRNAs were first identified in the 1993s with the discovery of let-7 and 

Lin-4 in a worm (Caenorhabditis elegans) and after the presentation of this 

small RNA was detected in multiple eukaryotic organisms and mammalian 

species (Lagos-Quintana et al., 2001). They play an important role in the 

modulation of biological processes through the regulation of gene expression 

in a post-transcriptional manner, primarily by binding to the 3ô untranslated 

region (3ôUTR) of messenger RNAs and resulting in a down-regulation of 

target proteins through the degradation of these mRNAs or by translation 

inhibition. The miRNA-RISC complex can block translation of target 

mRNAs into protein and/or induce degradation of target mRNA transcripts 

(Bartel et al., 2009) (Figure 1.1). The binding between miRNA and its target 

messenger happens through the complementarity of bases; in mammals, the 

complementarity in most of the cases is partial and determines a translation 

of the block while the total complementarity (especially in plants) occurs 

only rarely and induces degradation of the transcript. miRNAs can modulate 

about 30% of protein-coding genes in humans (Lewis et al., 2005). 

 

 
 

Figure 1.1: miRNAs biogenesis: Several stages in miRNAs maturation started in the nucleus after 

transcription in pri-miRNA and ended in the cytoplasm by RISC complex (from Spadaro et al, 2012) 
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1.3 Piwi-interacting RNAs  

 

Of the other smallRNAs, piRNAs are the least studied and analyzed. One role 

of piRNAs in germline cell is protect from the double-stranded breaks and 

insertional mutagenesis caused by active transposons. Derived from long, 

single-stranded RNAs, nearly all of which are shockingly long and 

transcribed from genomic óclusters'ðtransposon-rich regions of the genome 

thought to record the waves of transposon invasions survived by an animal 

and its evolutionary forebears (Vagin et al., 2013). How show in figure 1.7, 

piRNA precursor transcripts are fragmented and perhaps trimmed to yield 

primary piRNAs; primary piRNAs initiate an amplification loop (the óping-

pong' cycle) that generates secondary piRNAs; and, finally, the resulting 

amplified piRNAs silence their regulatory targets, such as the mRNA 

transcripts of transposons, by guiding a specialized sub-class of Argonaute 

proteins. These specialized Argonaute proteins are called PIWI proteins, after 

the founding member of the sub-family, the Drosophila protein, P-element-

Induced Wimpy Testes or Piwi (Lin and Spradling, 1997).  

 

 

 
 

Figure 1.2: Biogenesis of piRNAs in the germline and in somatic follicle cells. In the germline, 

piRNAs are generated through an Aub- and Ago3-dependent piRNA amplication cycle, whereas in 

somatic cells, biogenesis occurs through a Piwi-dependent, Aub- and Ago3-independent pathway (from 

Zamorea, 2010). 
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1.4 Breast Cancer 

 

Breast cancer (BC) is the second cause of cancer death in women aged from 

20 to 59 years, with 29% of new cancer diagnoses in the female population 

worldwide. Breast tumor occurs after pre-pubertal age with an incidence that 

increases after the third decade of life up to 60 years (Siegel et al., 2016). 

This cancer is manifest in the mammary gland, an exocrine glandular tissue, 

responsible for lactation, characterized by modified apocrine secretion and 

controlled by reproductive hormones.15 to 29 lobes that are segregated in 

stroma by adipose and connective tissue form it. The lobes are divided into 

smaller lobules joining up with the alveoli and each lobule has a lactiferous 

duct that drains into openings of the nipple. When cancer is discovered, 

microscopic analysis of breast tissue is necessary for a definitive diagnosis to 

characterize the histotype of disease. The tissue for microscopic analysis is 

usually obtained via a needle or surgical biopsy. BC generally originates in 

the epithelium of glandular ducts and lobules, namely respectively ductal or 

lobular adenocarcinoma; the first is most of the cases. BC can be classified as 

in situ or invasive carcinoma. They originate from the duct-lobular terminal 

(TDLU, Terminal Duct Lobular Unit) and, while in situ BCs are 

characterized by the proliferation of atypical epithelial elements within the 

lobules and ducts but without overcoming their basement membrane, the 

invasive form, representing the most advanced form of cancer, are 

distinguished by their acquired metastatic skill (Pontieri et al., 2005). Further 

classification takes into account the histological features, distinguishing 

seven different groups among the invasive carcinomas (American Cancer 

Society, 2015). The classification of BC has requested the development of 

several techniques of analysis given its heterogeneity, encompassing multiple 

tumor entities, each characterized by distinct morphology, behavior and 

clinical implications. Immunohistochemistry (IHC) classified BCs by their 

anatomical and molecular features, in particular the presence of the Estrogen 

Receptor alpha (ERŬ, a well-established diagnostic and prognostic marker) 

into ER-positive (hormone-responsive tumor) and ER-negative categories. 

Today, high throughput proteomics and gene-expression profiling methods 

are being explored as diagnostic tools. The study to examine comprehensive 

gene-expression patterns in human BC have identified 4 subtypes (basal-like, 

HeR2, normal breast-like and luminal) (Perou et al., 2000) and their 

association to the classical tumor classification led to a better diagnosis of the 

disease (Sotiriou et al., 2003; Sorlie et al., 2001). The common cause of 

hereditary BC is an inherited mutation in the BRCA1 and BRCA2 genes (5% 

to 10% cases of BC), involved in DNA reparation. These mutations can act 

bind with mutations in key genes of cell proliferation and survival, such as 

p53, PTEN, ATM, typical of neoplastic transformation of the cells (Robbins 
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e Cotran, 2006). BC is associated with several risk factors divided into 

genetic and environmental factors. The environmental factors are the lifestyle 

(abuse of alcohol, smoking, high fat consumption in the diet), the geographic 

area, exposure to radiation and to infectious agents, even if the most 

important factor is the prolonged exposure to estrogenic stimulation like 

endogenous and exogenous (Platet et al, 2004). For normal development of 

the mammary gland the estrogen signal is essential and a deregulation of this 

pathway is responsible for tumor progression. 70% of the BCs are hormone-

responsive and express ERŬ. 

 

1.5 GAPT2 role in BC 
 

The first step in glycerolipid biosynthesis is catalyzed by Glycerol-3-

phosphate acyltransferase (GPAT), in which glycerol-3-phosphate is acylated 

to form lysophosphatidic acid. Four isoforms are known such as GPAT1ï

GPAT4 and have been described which differ in their subcellular location, 

tissue expression pattern, substrate preference, transcriptional regulation, and 

sensitivity to sulfhydryl group reagents such as N-ethylmaleimide (Gonzalez-

Baro et al., 2017). GPAT2 is a mitochondrial isoform that is highly expressed 

in the testis, where its expression is transient, being restricted mainly to 

primary spermatocytes (Cattaneo et al., 2012). Although GPAT2 was initially 

associated with lipid metabolism a recent work links GPAT2 to the 

biogenesis of Piwi-interacting RNAs (piRNAs) (Shiromoto et al., 2013). 

piRNAs are a class of small non-coding RNAs (sncRNAs) of 24-31 nt in 

length that function in germline cells to silence retrotransposons and maintain 

genome integrity (Iwasaki et al., 2015). GPAT2 knockdown in MDA-MB-

231 BC cells diminished cell proliferation, anchorage-independent growth, 

migration and tumorigenicity, and increased staurosporine-induced apoptosis. 

In contrast, GPAT2 over-expression increased cell proliferation rate and 

resistance to staurosporine-induced apoptosis (Pellon-Maison et al., 2014). 

 

1.6 DOT1L and BC 

 

Based on hypothesis, the molecular partners of ERŬ involved in the 

multiprotein complexes that it requires for its transcriptional activity, 

including epigenetic regulators, represent potentially exploitable targets for 

new therapies against ER positive and antiestrogens-resistant tumors. For 

proteomic interaction we identified histone methyltransferase DOT1L 

(Disruptor of telomeric silencing-1-like) as a component of multiprotein 

complexes that assemble with ERŬ in the nuclei of BC cells after estrogen or 

anti-estrogen treatment. DOT1L catalyzes mono-, di- and tri-methylation of 

histone H3 on lysine-79 (H3K79me), a marker of transcriptionally active 
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genes, and is involved in transcription elongation, DNA repair and cell cycle 

progression. This enzyme is associated with the mystical leukemia fusion 

protein (MLL) and plays a key role in the transcription mechanisms that 

support leukemogenesis, and for this reason its inhibitors have been 

proposed, and clinically tested, as therapeutic targets for leukemia by MLL 

merger. The role and functional significance of the DOT1L association with 

ERŬ in hormone responsive human BC cell nuclei have been studied here in 

detail. The results demonstrate the co-recruitment of both factors, in 

combination with other transcriptional epigenetic regulators, into a 

considerable fraction of ERŬ -CM-7 cell chromatin, thus influencing the 

transcription of genes involved in key cellular functions, including ESR1 

(encoding ERŬ), FOXA1 and other ERŬ co-regulators. These results 

demonstrate for the first time that DOT1L represents a novel molecular target 

for epigenetic therapies against endocrine-responsive and ER-positive, 

hormone-resistant mammary carcinomas. 

 

1.7 Colorectal cancer and LINE-1 transposable elements 
 

Colorectal tumors present with a series of genomic and epigenomic 

alterations through interactions between neoplastic cells, immune cells and 

microbiotics. In particular, the hypo-methylation status of the long nucleotide 

nucleotide element-1 (LINE-1), which constitutes about 18% of the entire 

human genome, has been associated with a greater chromosomal instability 

that may cause a low antitumor immunity level in colorectal cancer (Gaudet 

et al., 2003). In fact this hypomethylation involves a lower density of T cells 

in the tumor tissue and a worse clinical outcome (Ogino et al., 2008). Other 

studies have shown that the prognostic association of the methylation level of 

the LINE-1 tumor with microsatellite instability (MSI) (Rhee et al., 2012). It 

should also be noted that this instability may be sporadic or hereditary, taking 

the name of Lynch syndrome. In species such as Drosophila and mouse, the 

silencing of the Transposable Elements (TE) is performed by piRNAs; in the 

special case of mice, MIWI2 is necessary in germ cells for the determination 

of CpG methylation status on genome sequences of transposons (Aravin et 

al., 2008). Furthermore, piRNAs have also been implicated in silencing the 

LINE1 in human tumor lines. 

 

1.8 Pancreatic cancer and Annexin A1 
 

Recently, the oncogenic role of Annexin A1 (ANXA1) has been found in 

pancreatic cancer (PC), where protein expression is directly related to the 

poor prognosis of patients (Chen et al., 2012). It has also been shown that 

ANXA1 improves cell migration and invasion by acting both directly in the 



Small non-coding RNAs and cancer: a bioinformatics approach 

 

10 
 

intracellular compartment and indirectly through interaction with formyl 

peptide receptors (FPRs, Belvedere et al., 2012). In addition, the knock-out 

ANXA1 (KO) in our in vitro model using the CRISPR/Cas9 genome editing 

system on PC MIA PaCa-2 cells revealed the deregulation of a large number 

of proteins involved in the organization of cytoskeleton. This led to reversion 

of the epithelial-to-mesenchymal transition (EMT), leading to a less 

aggressive phenotype. Lately, the study of the miRNA profile has been found 

useful as a diagnostic screening method also for PC, where, among the most 

characterized miRNAs, miR-196a has been associated with recurrence and 

shorter survival (Kong et al., 2012). miR-196a is considered a discriminating 

factor between PC and normal pancreas, because it is upregulated only in 

tumor samples (Wang et al., 2009). Furthermore, in vitro it has been 

demonstrated that miR-196a has an expression profile directly correlated to 

the aggressiveness of PC cells, as assessed by EMT (Gaianigo et al., 2017). 

Understanding the molecular mechanisms of ANXA1 in cancer also implies 

the study of its relationship with miRNAs. In fact, the protein can regulate 

downstream gene activation and transcription factors and, on the contrary, 

can be regulated by these. 
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2. AIM  
 

This thesis project has consisted in three main parts: 

1. To develop a tool, named iSmaRT (Small RNA Tool-kit 

integrative), simply to use and to investigate the biological roles of small 

non-coding RNAs (sncRNAs). It will also be tested on various data including 

Huntington disease and several BC cells; 

2. To apply iSmaRT on trancriptomics data from pancreatic cancer 

MIA PaCa-2 cells carrying ANXA1 óknock-outô (ANXA1 ko); 

3. To carry out analysis of patient-derived colorectal cancer 

transcriptomics data from samples classified according to the level of 

methylation of the LINE1, microsatellite instability and the presence of the 

Lynch syndrome. 
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3. MATERIALS AND METHODS  
 

iSmaRT 

iSmaRT is a pipeline, wrote in Python and developed in a virtual machine, 

that integrates several third-party software widely used for the analysis of 

smallRNA-Seq data with own algorithms. sRNAbench (Rueda et al., 2015) is 

the core of iSmaRT, for its capability to detect several classes of sncRNAs, 

being used to perform the main analytical steps required. iSmaRT first 

conducts quality control and filtering of the sequence reads using FASTQC 

(http://www.bioinformatics.Babraham.ac.uk/projects/fastqc/), while Cutadapt 

(Martin, 2011) or sRNAbench are used to remove the adapter sequences and 

low quality reads. Differential expression analysis is performed in iSmaRT 

integrating three Bioconductor statistical packages: DESeq2 (Love et al, 

2014), edgeR (Robinson and Smyth, 2008) and NOISeq (Tarazona et al., 

2015). A novel piRNA prediction method was integrated into the tool-kit, 

working on 25ï36nt-long reads filtered out from other classes of sncRNAs 

and using an algorithm based on k-mer scheme (Zhang et al., 2011). The 

enrichment analysis of Gene Ontology terms on miRNA and piRNA RNA 

targets is performed using the R Bioconductor package TopGO (Alexa and 

Rahnenfuhrer, 2010) and pathway analysis is performed by ReactomePA (Yu 

and He, 2016). iSmaRT includes also a module for the identification of RNA 

editing events, comprising REDItools (Picardi and Pesole, 2013). 

 

GPAT2 silencing 

For human GPAT2 silencing, MDA-MB-231 cells were transfected using 

Lipofectamine 2000 Reagent (Life Technologies) with HuSH-29 plasmid 

(OriGene) coding for shRNA against human GPAT2 mRNA and selected 

puromycin resistance to generate the respective silenced MDA-MB- 231 cell 

line (SH). A non-effective scrambled sequence shRNA plasmid was used to 

create a negative control (SC). Both plasmids also contain a sequence coding 

for green fluorescent protein driven by a CMV promoter. 

 

Small RNA sequencing library 

Total RNA was extracted from the cell line using the standard RNA 

extraction method with QIAIzol (Qiagen), quantitated with NanoDrop-1000 

spectrophotometer (Thermo Fisher Scientific) before integrity assessment 

with an Agilent 2100 Bioanalyzer (Agilent Technologies). For small RNA-

seq, 1 ɛg of total RNA from SH and SC cells was used for library preparation 

with Illumina TruSeq small RNA sample preparation Kit. Three independent 

experiments (two clones per cell line) for each condition, were sequenced (10 

pM) on HiSeq2500 (Illumina) with single read for 51 cycles. Small RNA 

sequencing data was analyzed using iSmaRT (Panero et al., 2017) to identify 



Small non-coding RNAs and cancer: a bioinformatics approach 

 

13 
 

the sncRNA families studied, i.e. miRNAs (miRBase v21), piwi-interacting 

RNAs (piRNABank), and tRNA-derived fragments (tRF, Human genome 

assembly, GRCh37/hg19) with Minimum Read Count of 3. Rfam and 

RefGene correspond to reads mapped to Rfam (Nawrocki et al. and Refgene 

(known human protein-coding and non-protein-coding genes) databases. 

 

Bioinformatics analysis smallRNA-Seq 

To identify differentially expressed miRNAs, piRNAs or tRF between SH 

and SC samples, we used iSmaRT for all the preprocessing of raw file and 

DESeq2 algorithm based on the normalized number of counts mapped to 

each sncRNA transcript (Love et al, 2016). Functional enrichment analyses 

were performed using the databases DAVID, http://david.abcc.ncifcrf.gov/), 

Enrichr (HTTP://amp.pharm.mssm.edu/Enrichr/) and FunRich 

(www.funrich.org), based on the list of genes associated with the deregulated 

sncRNAs (P-adj. Ò0.05; FC Ó|1.5|). Data integration, heatmap visualization of 

differentially expressed transcripts and functional enrichment plots were done 

with R/Bioconductor packages and the Multi Experiment Viewer software 

(MeV v4.9) (Saeed et al., 2003). To validate the bioinformatic analysis of 

small RNA-seq experiments, we compared the global miRNA expression 

profile of SC from our study with the global miRNA expression profile of the 

MDA-MB-231 and MCF10 cell lines obtained from the study of (Zhou et al., 

2014), in which the authors profiled the cellular small RNAs isolated from 

these two cell lines by Solexa deep sequencing. Briefly, normalized data 

were downloaded from GEO (ID#GSE50429) and the miRNAs in common 

to our libraries were selected (n=228). The comparison was made using a 

linear regression model in R. The name or GenBank ID, chromosome 

number, genomic position, strand orientation and sequence length of piRNAs 

was obtained from piRNAbank 

(http://pirnabank.ibab.ac.in/simple_search.html), and validated with the 

NCBI Nucleotide Database (https://www.ncbi.nlm.nih.gov/nuccore/). The 

number of copies in the genome and the genomic loci was obtained from the 

UCSC Genome Browser. To identify potential target genes of relevant 

piRNAs, we employed the NCBI database (Human Genomic plus Transcript) 

based on sequence complementarity using the reverse complement of the 

piRNA sequence as input. The HomoloGene tool from the NCBI database 

was employed to evaluate the grade of conservation of the selected putative 

mRNA targets among different mammalian species. For miRNA target 

prediction and functional annotations, we used the miRDB online resource 

(http://www.mirdb.org/miRDB/). To evaluate differences in the abundance of 

each species of tRF among the upregulated and downregulated group, we 

used Fisher Test to compare their frequencies with the expected frequencies 

according to the Genomic tRNA 
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database (http://gtrnadb.ucsc.edu/). For the identification of putative proteins 

based on amino acids composition, we employed the AAcompIdent tool 

(http://web.expasy.org/aacompident/). For piRNA and snoRNA expression 

levels across human tissues and cell lines, we employed the DASHR database 

(http://lisanwanglab.org/DASHR/smdb.php). To evaluate and compare 

differentially expressed miRNAs found in this study with miRNAs 

deregulated in BCs, we used the YM500v3 database 

(http://driverdb.tms.cmu.edu.tw/ym500v3) which employ TCGA data to 

contrast normal vs cancer tissue. We selected the comparison of 1096 

primary solid tumors against 104 samples of normal breast tissue (Chung et 

al., 2017). Survival section of YM500 database was employed to survival 

analysis of commonly deregulated miRNAs. 
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4. RESULTS 

 

4.1 Part One: Development and testing of iSmaRT tool 
 

Developing tools 

 

A challenging problem in NGS is the choice of the correct strategy to analyse 

the experimental data. SmallRNA-Seq analysis, for example, need different 

bioinformatics software and the possibility to perform multiple, subsequent 

file format conversions that slows-down and makes cumbersome the 

analytical procedure. For this reason, it was decided to design a tool that 

allows the use of graphic interfaces and various homemade scripts to solve 

the problems mentioned above. We will also use various third-party software 

in both standalone and web-based versions. In addition, implementing 

different statistical approaches for sncRNAs expression analyses allows users 

to compare and select the most appropriate method to analyze of their data.  

 

iSmaRT pipeline 

 

iSmaRT is an analytical pipeline, written in Python and R. It can be installed 

with bash script or it can be used running a virtual machine, that integrates 

several third-party software widely used for the analysis of smallRNA-Seq 

data. The workflow of iSmaRT covers several analytical steps with multiple 

programs, that can also be used independently (Figure 4.1). 

 

 

 
 

Figure 4.1: iSmaRT work-flow. 
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All these tools can be used by a Graphical User Interface (GUI)  that allows 

the user to choose different parameters. The tool sRNAbench (Rueda et al., 

2015) is the core of iSmaRT and it is used to perform the main analytical 

steps. iSmaRT starts with the execution of FASTQC in order to perform a 

quality control of the sequencing. Cutadapt (Martin, 2011) or sRNAbench 

can be used to remove the adapter sequences and low quality reads. iSmaRT 

allows to define different libraries to remove all the unwanted reads from the 

next steps of the analysis. iSmaRT can generate different plots, such as those 

showing read-length distributions for each of the sncRNA selected by the 

user, or Principal Component Analysis (PCA) results and heatmaps with 

different distance metrics. iSmaRT can also perform a differential expression 

analysis since it integrates three Bioconductor statistical packages: DESeq2 

(Love et al, 2014), edgeR (Robinson and Smyth, 2008) and NOISeq 

(Tarazona et al., 2015). In recent studies, germline piRNAs have been 

detected also in somatic cells, highlighting the importance of identifying 

specific piRNAs in mammalian somatic tissues, where their exact number 

and functional roles still remain to be elucidated (Ross et al., 2014). To 

address this issue, we integrated in iSmaRT two features that can help 

researchers to address this issue. The first one is the integration of an 

algorithm based on k-mer scheme (Zhang et al., 2011) to select the putative 

new piRNAs from the sequences that are not annotated in the genome. This 

provides a way to identify novel somatic piRNAs that can then be further 

studied. The second one, as increasing evidence suggests that piRNAs are 

able to drive degradation of certain RNA targets via a miRNA-like 

mechanism that operates by imperfect base-pairing rules (Zhang et al., 2015), 

is the implementation of the approach proposed by these Authors to identify 

potential piRNA targets. The enrichment analysis of Gene Ontology terms on 

miRNA and piRNA RNA targets is performed using the R Bioconductor 

package TopGO (Alexa and Rahnenfuhrer, 2010) and pathway analysis is 

performed by ReactomePA (Yu and He, 2016), with the possibility to filter 

the list of mRNA targets against a dataset of mRNAs of interest, such as for 

example those expressed in the samples under study. iSmaRT includes also a 

module for the identification of RNA editing events, comprising REDItools 

(Picardi and Pesole, 2013). We analyzed with iSmaRT the smallRNAs 

sequencing data by Hoss et al. (2015), that demonstrated miRNA 

involvement in Huntingtonôs disease (HD) pathogenesis by comparing their 

expression in the prefrontal cortex from 26 symptomatic HD patients and 36 

healthy controls. We thereby illustrated the performance of iSmaRT in 

providing a detailed analysis of miRNA and piRNA differentially expressed 

and of piRNA-mRNA interactions. 
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iSmaRT main interface 

 

The iSmaRT main interface, shown in Figure 4.2 reproduces the window that 

appears when the tool is opening. Each choice provided corresponds to a 

particular step of the small RNA-Seq data analysis work-flow and opens one 

or more Graphical Interface (GI), that can be called by clicking the 

corresponding button.  

 

 

      

                

 

 

 

Figure 4.2: iSmaRT main interface. 

 

The click on Complete analysis opening an interface where it is possible to 

select input file (Figure 4.3).  

 

 

 

  

 

 

Figure 4.3: iSmaRT input interface. 



Small non-coding RNAs and cancer: a bioinformatics approach 

 

18 
 

 

If Cutadapt is selected, a new window will appear (Figure 4.4), where it is 

possible to specify the adapter sequences. 

 

 

 

 

 

 

Figure 4.4: iSmaRT cutadapt interface. 

The new window (Figure 4.5) is divided in four zones. The first one covers 

the "Mandatory Parameters", where is it necessary to specify where to save 

the output data, the path to the database (DB) folder, the fasta (or index) file 

of mature miRNAs, as downloaded from miRBase, and the fasta file of the 

pre-miRNAs hairpin sequences.  

 

 

Figure 4.5 iSmaRT DB and libraries interface
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The "Pre-filtering" panel allows specifying the name of the library file that 

should be used to filter out certain reads. The "Analysis types and library" 

panel allows defining the other small RNA libraries (Libs) on which to 

perform the analysis and the species (hg19 for human). If "noGenome" 

option is selected (False) then all reads are first mapped to the reference 

genome of species selected. Afterward, the genome coordinates of the 

reference small RNA annotation (Libs for miRNAs and other sncRNAs) are 

determined. In next windows (Figure 4.6) you can select several options of 

output like Principal Component Analysis (PCA), Scatter-plots on two 

samples that can be selected from the window, Heatmaps and Read-length 

distribution graphs. In addition, in this section it is possible to select the 

Differential expression analysis, Target predictions on miRNAs or on 

piRNAs and Novel piRNA identification (if the ñNovel piRNAsò function is 

selected). If either of the two ñTarget predictionsò functions is selected, it is 

also possible to select ñReactomePAò function analysis. 

 

 

 

 

 

 

 

Figure 4.6: iSmaRT select workflow 

interface. 

 

 

 

 

 

The new window (Figure 4.7) concerns differential expression analyses.  
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Figure 4.7: iSmaRT DE interface. 

 

It is possible to select here the test and control groups on which library 

(miRNA, piRNA, etc.) to perform the analysis and to choose the statistical 

method to be applied (DESeq2, NoiSeq or edgeR). 

 

Output of iSmaRT 

¶ Commands.txt: This file contains all the line commands launched by 

iSmaRT and, eventually, the error messages; 

¶ sRNAbench_analysis:  This folder contains all the output of 

sRNAbench, plus a text file (Terminal.txt) where are saved the 

messages printed in the terminal by sRNAbench; 

¶ FASTQC: This folder contains the output of FASTQC; 

¶ R_out: This folder contains the output of the R scripts and, 

eventually, the error messages; 

¶ Tables: This folder contains the tables generated by sRNAbenchDE. 

If the user selected to perform a differential analysis, the sub-folder 

óname of test group_VS_name of control groupô will contain the table 

generated by sRNAbench and used for the differential analysis; 

¶ Differential_analysis: This folder contains the results of the 

differential analysis. The first sub-folder indicates the tool used, the 

second contains indication on the test performed e.g. novel_piRNAs, 

test_vs_control, etc.  

The files that can be generated are: 

¶ tool_name_normalized_counts.txt: Table of normalized read 

counts; 

¶ tool_name_log2_med_cent.txt: Table of normalized read 

counts transformed in log2 and median centered; 

¶ tool_name_results_translibs_name.txt: Table of the tool 

results; 
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¶ tool_name_results_translibs_name_filtered.txt: Table of 

the filtered tool results with the column FC that indicates the 

fold change;  

¶ heatmap_norm_counts_log2_med_cent.tiff: Heatmap 

generated from the tool_name_log2_med_cent.txt table. 

¶ Plots: This folder contains sub-folders with the names of the 

translibs analyzed. Each sub-folder can contain the following files: 

¶ translibs_name.mat: Read counts generated by 

sRNAbenchDE; 

¶ Heatmap.tiff : Heatmap made using the rlog function of 

DESeq2; 

¶ PCA.tiff : PCA made using the rlog function of DESeq2; 

¶ ScatterPlots.tiff : Scatterplots of the read counts; 

¶ sequencingStat.txt: File generated by sRNAbench. 

¶ Read_lengths: This folder contains sub-folders with the names of 

the samples. In each sub-folder can be found the folder(s) with the 

name of each translibs analyzed. Each sub-folder can contain the 

following files: 

¶ sample_name_translib_name.txt: This file contains each 

sequence of the translibs, with its corresponding read counts; 

¶ frequencies.txt: Read counts of the sequence in the translibs; 

¶ sample_name.png: Plots of the frequencies. 

¶ GO: This folder contains the results of the Gene ontology analysis. 

Each sub-folder contains a description of what was tested and the can 

contain the following files (some may be missing if no enrichment 

was found): 

¶ GO_results.txt: table with the enriched GO terms with the 

associated genes and statistical tests. 

¶ enrihMap.tiff  

¶ enrichment_results_barplot.tiff 

¶ enrichment_results_dotplots 

¶ novel_piRNAs: This folder contains the results of the analysis for 

piRNA likes and can contain: 

¶ novel_piRNAs.txt: This file contains the genomic location of 

each piRNA like identified in all samples, and the 

corresponding read counts in each sample. These putative 

piRNAs are named p_id_numeber if they have a single 

location in the genome 

orcp_sequence_id_number_locus_id_number if the 

corresponding sequence have multi-alignment in the genome; 
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¶ novel_piRNAs.bed: BED file generated using the 

novel_piRNAs.txt information; 

¶ novel_piRNAs.fa: FASTA file generated using the 

novel_piRNAs.txt information; 

¶ piRNA_predictor_ERROR_log.txt: This file can contain 

errors or warnings of piRNApredictor, if the file is empty, no 

error/warnings were found/issued by the tool; 

¶ info: This folder contains a sub-folder for every sample analyzed. 

Each sub-folder contains the files:  

1. novel_piRNAs.txt, novel_piRNAs.bed and 

novel_piRNAs.fa for the piRNA-like identified in each 

sample; 

2. info folder. This folder contains these files: 

¶ All_Reads.fa: FASTA file of the not assigned 

reads, with new sequence id.  

¶ sample_name.txt: Read counts of the reads 

contained in All_reads.fa; 

¶ All_Reads_Table.txt: Tables that contains the 

information found in All_Reads.fa and 

sample_name.txt; 

¶ predictedpiRNA_ALL_Reads.fa: piRNAs 

predicted by piRNApredictor using as input 

All_Reads.fa; 

¶ predictedpiRNA_ALL_Reads.bed: BED file of 

predictedpiRNA_ALL_Reads.fa; 

¶ merge_test.txt: Output of bedtools merge using 

as input predictedpiRNA_ALL_Reads.bed; 

¶ piRNA_predictor_error_log.txt : This file can 

contain errors or warnings of piRNApredictor, if 

the file is emptied, no error/warnings were 

found/issued by the tool; 

¶ RNA-editing: This folder contains a sub-folder 

for every sample analyzed. In each sub-folder the 

output of REDItools can be found; 

¶ Target_predictions: This folder can contain the 

miRNAs, piRNAs and novel piRNAs RNA target 

predictions. For piRNAs and novel piRNA can 

be found also: 

¶ 3UTR_CDS_5UTR.txt: This file contains 

the name(s) of the piRNA(s) or piRNA 
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like(s) with each RNA target and the 

position of targeting (5UTR, CDS or 5UTR); 

¶ info: This folder contains: 

¶ 3UTR.txt: Bowtie output for the 

alignment in the 3UTR region; 

¶ CDS.txt: Bowtie output for the 

alignment in the CDS region; 

¶ 5UTR.txt: Bowtie output for the 

alignment in the 5UTR region; 

¶ nucl.txt: This file contains the first and 

tenth nucleotides of piRNAs or novel 

piRNAs; 

¶ piRNA_list.txt : List of the piRNAs 

analyzed; 

¶ piRNA_list_cutted.fa: FASTA file 

ócuttedô used by Bowtie. 

 

Testing procedure iSmaRT on Huntingtonôs disease data 

 

The brain smallRNA-Seq datasets has been analyzed using iSmaRT with the 

default parameters. After to have have obtained the miRNAs results obtained 

by the authors we focused on the piRNAs. Considering piRNAs, this allowed 

identification of 2200 such RNAs present in the datasets analyzed. 

Differential expression analysis was performed comparing HD and control 

samples, revealing 16 piRNAs differentially expressed in HD samples. The 

results are summarized in Figure 4.8 and Figure 4.9. 

 

 

 

 

 

 

 

Figure 4.8: miRNAs differentially 

expressed in Huntington 's disease vs 

healthy brain samples. The 

heatmap shows the 45 miRNAs identified 

with iSmaRT as differentially expressed in 

brain samples of Huntington's disease 

(Huntington) patients respect to normal 

(Healthy) individuals. 
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It is worth noting that cluster analysis revealed a meaningful sample 

distribution between the two groups. Novel piRNA prediction allowed 

identification of 40 000 piRNA-like RNAs. To address the potential 

functional impact of the 16 piRNAs found deregulated in HD, we performed 

target prediction, followed by Reactome Pathway enrichment analysis 

(Figure 4.10 and 4.11).  
 

 
Figure 4.9: piRNAs differentially expressed in Huntington 's disease vs healthy brain samples. The 

heatmap shows the 16 piRNAs identified with iSmaRT as differentially expressed in brain samples of 

Huntington's disease (Huntington) patients respect to normal (Healthy) individuals.  
 

 
 

Figure 4.10: Summary of ReactomePA GO analysis performed on mRNAs target of differentially 

expressed piRNA. The barcharts display enriched pathways identified by the ReactomePA of iSmaRT 

in which are involved the mRNAs target of the 16 piRNAs differentially expressed in Huntington's 

disease patients brain. 
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Figure 4.11: enrichMap visualization performed by iSmaRT on mRNAs target of differentially 

expressed piRNA. Enriched pathways in which are involved the mRNAs target of the 16 piRNAs 

differentially expressed in Huntington's disease patient brain. 
This revealed the involvement of several genes encoding piRNA target 

mRNAs involved in pathways related to brain physiopathology, such as for 

example óCASP8 activityô (CFLAR gene, Strand et al., 2005) and 

óDownregulation of TGF-beta receptor signaling/ Downregulation of 

SMAD2/3:SMAD4 transcriptional activityô (NEDD4L gene, Ding et al., 

2013). Finally, miRNA and piRNA sequence analysis revealed, for a subset 

of HD samples, the presence of canonical and non-canonical editing events. 

  

Testing procedure iSmaRT on GPAT2 silenced BC cell 

 

To analyze the role of GAPT2 in the biogenesis of piRNAs and the goodness 

of iSmaRT, GPAT2 silencing was performed by shRNA plasmid transfection 

and puromycin selection in the MDA231 cell. From scramble control cells 

(SC) and GPAT2 silenced cells (SH) GPAT2 mRNA expression was reduced 

by 90% and GPAT2 protein was undetectable in SH cells. Silencing GPAT2 

affects sncRNA distribution. Indeed, SC cells, we identified an average of 

67% of miRNAs, 3% of piRNAs, 7% of tRF, 5% of Rfam, 7% of Refgene 

and 11% of non-assigned transcripts, whereas in SH cells, 53% were 

miRNAs, 8% piRNAs, 13% tRF, 4% Rfam, 9% Refgene and 13% not-

assigned transcripts (Figure 4.12). The percentages of total reads for each 

category differed in SC and SH cells, differences were only significant for 

the miRNA category, with a decrease after GPAT2 silencing (Figure 4.12).  
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Figure 4.12: sncRNA distribution in SC and SH cells. Piecharts of the percentages of aligned 

reads assigned to each category of sncRNA in the SC cells and SH cells. A significant decrease was 

observed in the abundance of miRNAs of the SH cells * p-valueÒ0.05. 
 

 

 

Total piRNAs abundance did not change after GPAT2 silencing, an upper 

shift in reading length distribution was observed (Figure 4.13).  

 
Figure 4.13: Length distribution of reads assigned to piRNAs in SC and SH libraries 

 

 

In SC cells, length distribution was bimodal, with peaks at 27 and 30 nt, 

whereas in SH cells, only one peak at 29 nt was obtained. Differential 

expression analysis shows that of the 137 piRNAs identified in SC cells, 77 

(56%) were differentially expressed after GPAT2 silencing (pÒ0.05, 

FCÓ|1.5|), with 38 upregulated (28%) and 39 downregulated (28%) (Figure 

4.14). Length distribution shows that piRNAs of 27 and 28 nt in length were 

significantly associated with the downregulated group (p-value Ò0.05). There 

were no differences in the other lengths (Figure 4.14). 
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Figure 4.14: Piechart representation of the percentages of differentially expressed piRNAs and 

barchart of the frequencies of piRNAs in the upregulated and downregulated groups distributed 

according to their nucleotide length.  

 

A lot of the downregulated piRNAs (32/39, 82%) are single copy (p-

valueÒ0.05), being mainly intragenic (27/32, 84%); whereas in the 

upregulated group, piRNAs with single (18/38, 47%) and multiple (20/38, 

52%) copies showed similar frequencies (p-valueÒ0.05) (Figure 4.15).  

 

 

 

 

 

 

 

 

 

Figure 4.15: Heatmap representation of 

the differentially expressed piRNAs; the name 

of the host snoRNAs when it corresponds, and 

copies in the genome are indicated. 
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Single copy, upregulated piRNAs however were mostly intergenic (14/18, 

77%, p-value Ò0.05). Indeed, piR-36011, a multiple copy downregulated 

piRNA, maps to the loci of the SNar genes (small NF90-associated RNAs). 

By contrast, none of the upregulated piRNAs is hosted in a SNOR or SNAR 

gene. Moreover, snoRNAs constituted the host gene of 22 out of 27 (81%) 

intragenic single copy downregulated piRNAs, which is 56% of all 

downregulated piRNAs, with a probability value Ò0.05 when compared with 

the upregulated piRNAs. Certain piRNAs are derived from snoRNAs 

precursors (Taft et. Al, 2009), and that piRNAs are tissue restricted, now in 

this work has been evaluated whether there is a correlation in tissue 

distribution among the downregulated piRNAs and their hosted snoRNAs. 

For the analysis of the tissue profile of the piRNAs and the host snoRNAs 

that were available in the database we use DASHR. Unsupervised clustering 

based on Pearson correlation was assayed on the nine pairs of 

piRNAsnoRNA obtained from the search. In all cases an almost perfect 

correlation (~1) was shown, coincident with a co-expression pattern (Figure 

4.16). 

 

 

 

 

 

 

 

Figure 4.16: Corrplot of the pairs 

piRNA-snoRNA. 

 

Four of the top-five upregulated piRNAs previously identified in BC cells 

(Hashim et. Al., 2014), was found downregulated in the SH cells (piR-31636, 

piR-57125, piR-35548 and piR-57125). piR-36041 and piR-43772 which 

were markedly downregulated in MCF7 growing cells, were found 

upregulated in the SH cells. Furthermore, of the latter group, piR-36743, piR-

36318 and piR-36249 were previously found underexpressed in BC tissues 

compared to their normal counterparts (Hashim et al., 2014). The less 

proliferative phenotype of the SH cells agrees with all these data. Expression 

of four representative piRNAs is shown in Figure 4.17.  

 


