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ABSTRACT

The development oNextGenerationSequencing (NGS) technologidss
addeda new methodto investigatethe role of genes in several diseases,
including breast cancerBC). For example,RNA-Seq ismainly used to
analyze the continuously changing cellulaanscriptomeand finding the
pathways enriched/inhibited by the differently expressed g&nesl] RNA-

Seq is a very similar method allowing the detection of other classes of RNA
such as smalhoncoding RNA (miRNA, piRNA, tRNA).In particular,
microRNAs (miRNA) are a small norcoding RNA that regulate gene
expression at the pestanscriptional level by binding to the 3'UTR
(untranslated region) of target mRNAs, causing their degradation or
translation inhibition. Several studies correlated an alterguession of
these sncRNAs with the onset and /or progressioniftérent diseases,
including cancerThey can be used as biomarkegiaying a key role in the
diagnosis, prognosisand prediction of response to specific therapies.
Moreover, many studies @ focused on the possibility of developing new
therapeutic strategies based on microRNAs modulation and their potential
use in he personalized management of candarrthermore also Piwi
interacting RNA (piRNA) is a class of small nonding RNA molecids
expressed in animal celtbat are associatadith both epigenetic and pest
transcriptional gene silencing of retrotransposons and other genetic elements
They are distinct from miRNA in size (B81 nt rather than 21124 nt), lack

of sequence conservatipand increased complexityhe aim of my research
project was to understandhe carcinogenic mechanisms and patlsvay
modulated by thesemRNAs and smallRNAssince the clarification of the
roles played byhese molecules cancemight provide new opportunities to
develop novel strategies for diagnosing and treating this disesisg
bioinformatics toolsand created. Furthermore, a tool has been created that
allows the analysis of smallRNAs by integrating various softwaraditithte

the use of this technology and to better explore the expected results.



1. INTRODUCTION

Fifteenyears agaghe Human Genome Project (Hum@enome Projectyvas
completedand from there onresearchon genomes structure and functions
made asignificant step forward. This wasossiblethanks tothe significant
developments in the field of sequencing technologfd3NA, wherdoy from
the Sanged D NA s e tpcheique iwhicuntill that time wasthe
standard approach we moved on tothe, secalled, NextGeneration
Sequencing (NGS)pbased onmassive parallel sequencingtechnologies
Today, the human genome can bequenced ifess thama week and soon,
systematically,down to a couple of daysNGS has allowed remarkable
advances in thaew era of biology, known @postgenomis’, leading to a
greater understanding of how, where awiten all genesof a given cell or
tissueare regulated allowing to gathera greatamount of datan a single
experiment with significantly lower costs compared fmast. This global
approach to science has been successfully appliedifferent areas of
research and led to thérth and development of a new setdi$ciplines, the
so-called "“omics", such astranscriptomics(study of thetranscriptome),
proteomics (study of the proteome), interactomics (study ofntieeactions
between theproducts of multiplegenes), cellomics (studies of cellular
functions and impact ofirugs at the cell level), genomics (largeale
molecular analyzes of &et of genes, on gene products or on regions of
genetic material) and miRNomicétudy of miRnomg, each of these
stimulating in turn the development of new orieshnologies to facilitate
work.

1.1 New Methods for Genomic Analysis

Traditional techniques for coding and rooding RNA analysis represent a
limited approach for the study genomesbecause¢hey generallyfocuson a
single gene at a time or on a limited set of them. The advent of Next
GenerationSequencing has markedemarkable and important step forward

for this field. The global approaches developed, such as the-$dg¢Aand
smallRNA-Seq, have allowed, in fact, to investigate more in depth and at
lower costs, the complex interactions between DNA and proteins anol¢he r
played by regulatory transcripts. This progress has also been made possible
by the parallel development of methods for data analysis that tries to make
the interpretation less problematic. RMN&q is used to analyze the
continuously changing cellularanscriptome, it is used for look mMRNA gene
splicing, gene fusiomnd change in gene expression. R&q also allows
other classes of mMRNA like long n@oeding RNA and small nenoding

RNA. In particular, micro RNAis a small norcoding RNA that regulate
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gene expression at the pasinscriptional level by binding to the 3'UTR
(untranslated region) of target mRNAs, causing their degradation or
translation inhibition. Piwinteracting RNA (piIRNA) is a class of small ron
coding RNA molecules expressed in aaintells thatare linkedto both
epigenetic and pogtanscriptional gene silencing of retrotransposons and
other genetic elements.

1.2 microRNA (miRNA)

mMiRNAs were first identified in the 1993s with the discovery of7deand

Lin-4 in a worm (Caenorhdlitis elegan¥ and after theresentatiorof this

small RNAwas detected in multiple eukaryotic organisms and mammalian
species (LageQuintana et a] 2001). They play an important role in the
modulation of biological processes through the regulatiorenégxpression
inapost ranscriptional manner , primarily
region (36UTR) of me s s e n g ereégulaRoN Afs and
target proteins through the degradation of these mRNAs or by translation
inhibition. The mMIRNA-RISC complex can block translation of target
MRNASs into protein and/or induce degradation of target mRNA transcripts
(Bartel et al, 2009) (Figurel.1). The binding between miRNA and its target
messenger happens through the complementarity of basesimmals, the
complementarity in most of the cases is partial and determines a translation

of the block while the total complementarity (especially in plants) occurs

only rarely and induces degradation of the transcmi®NAs can modulate

about 306 of pratein-coding genes in humans (Lewis et aD05).

Figure 1.1 miRNAs biogenesis: Several stages in miRNAs maturation started mmitteusafter
transcription irpri-miRNA and ended in the cytoplasm by RISC complex (from Spadaro et al, 2012)

| 5
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1.3 Piwi-interacting RNAs

Of the other smallRNAs, piRNAs are the least studied and analyzed. One role
of piRNAs in germline cell is protect from the doulskeanded breaks and
insertional mutagenesis caused by active transposons. Derived from long,
singlestranded RNAs, nearly all of which are shockingly long and
transcri bed f r dnrangpesormcmiegionséottheugenomer s '
thought to record the waves of transposon invasions survived by an animal
and its evolutionary forebears (Vagin ¢t 2013). How show in figure 1.7,
pPiRNA precursor transcripts are fragmented and perhaps trimmed to yield
primary pi RNAs; primary pi RNAs -ini
pong' cycle) that generates secondary piRNAs; and, finally, the resulting
anmplified piRNAs silence their regulatory targets, such as the mRNA
transcripts of transposons, by guiding a specializedckags of Argonaute
proteins. These specialized Argonaute proteins are called PIWI proteins, after
the founding member of the sdiéimily, the Drosophila protein, -Blement
Induced Wimpy Testes or Piwi (Lin and Spradling, 1997).

Somatic piRNA pathway . Germline piRNA pathway
Follicle cells Oocyte
; \ / Nurse cells
piRNA precursor A / piRNA precursor
5 . 3B Y 5 p— 3

‘Arm) 2y )~E J,
’ Sense @—
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Figure 1.2 Biogenesis of piRNAs in the germline and in somatic follicle cells. In the germline,
piRNAs are generated through an Aund Ago3dependenpiRNA amplication cycle, whereas in
somatic cells, biogenesis occurs through a fieypendent, Auband Ago3independent pathway (from
Zamorea, 2010).
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1.4Breast Cancer

Breastcancer(BC) is the second cause of cancer death in women aged from
20 to 59years, with2%% of new cancer diagnoses in the female population
worldwide. Breast tumor occurs after ppeibertal age with an incidence that
increases after the third decade of life up to 60 years (Siegel @0ab).

This cancer is manifest itthe mammnary gland, an exocrine glandular tissue,
responsible for lactation, characterized by modified apocrine secretion and
controlled by reproductive hormongS.to 29 lobes that are segregated in
stroma by adipose and connective tissue forrihe lobes are divideihto
smaller lobules joining up with the alveoli and each lobule has a lactiferous
duct that drains into openings of the nippWhen cancelis discoveed
microscopic analysis of breast tissue is necessary for a definitive disgnosi
characterize the histotype of disease. The tissue for microscopic ansilysis
usually obtaied via a needle or surgical biopsBC generally originates in

the epithelium of glandular ducts and lobules, namely respectively ductal or
lobular adenocarcoma; the first isnostof thecasesBC can be classified as

in situ or invasive carcinoma. They originate from the doiotilar terminal
(TDLU, Terminal Duct Lobular Unit) and, while in situ BCs are
characterized by the proliferation of atypical epitHedilements within the
lobules and ducts but without overcoming their basement membrane, the
invasive form, representing the most advanced form of cancer, are
distinguished by their acquired metastatic skill (Pontieri et al., 2GQB)her
classification akes intoaccount the histological features, distinguishing
seven different groups among the invasive carcinomas (American Cancer
Society, 2015)The classification of BC has requested the development of
several techniques of analysis givenhigderogenidy, encompassing multiple
tumor entities, each characterized by distinct morpholdmphaior and
clinical implications.Immunohistochemistry (IHCYlassified BCs bytheir
anatomical and molecular featur@s particular the presence of the Estrogen
Receptor alphag R U, -@staklishkd diagnostic and prognostic marker
into ER-positive (hormonegesponsive tumor) and Efegative categories.
Today, high throughput proteomics and gempression profiling methods
are being explokk as diagnostic toalsThestudy to examine comprehensive
geneexpression patterna human BC have identified gubtypes (basdike,
HeR2, normal breadike and luminal) (Perou et .al 2000) and their
association to the classical tumor classification led to a better diagridke
disease (Sotiriou et .al2003 Sorlie et al, 2001). The common cause of
hereditary BC is an inherited mutation in the BRCA1 and BRCA2 genes (5%
to 10% cases of BC), involved in DNA reparationhe® mutations can act
bind with mutations in keygenes ofcell proliferation and survival, sh as

p53, PTEN, ATM,typical of neoplastic transformation of the cells (Robbins



e Cotran 2006). BC is associated with several risk factors dividetb
genetic and environmental factors. Tdrevironmental factors atbe lifestyle
(abuse of alcohol, smoking, high fat consumption in the diet), the geographic
area, exposure to radiation and to infectious agents, even if the most
important factor is the prolonged expasuio estrogenic stimulatn like
endogenous and exogenous (Platet et al, 26@4)normal development of

the mammarylandthe estrogen signal is essential and a deregulation of this
pathwayis responsible fotumor progression. 70% of the BCs are hormone
responsive and expresRE .

1.5GAPT2rolein BC

The first step in glycerolipid biosynthesis catalyzedby Glycerot3-
phosphate acyltransferase (GPAT), in which glye8rphosphate is acylated

to form lysophosphatidic acid. Four isoforraee knownsuch as GPATil
GPAT4 and have been described which differ in their subcellular location,
tissue expression pattern, substrate preference, transcriptional regulation, and
sensitivity to sulfhydryl group reagents such astNylmaleimide (Gonzalez

Baro et al, 2017). GPAT2 is a mitochondrial isoform that is highly expressed
in the testis, where its expression is transient, being restricted mainly to
primary spermatocytes (Cattaneo et 2012). Although GPAT2 was initially
associated with lipid metabolism secent work links GPAT2 to the
biogenesis of Piwinteracting RNAs (piRNAs) (Shiromoto et.al2013).
piRNAs are a class of small n@moding RNAs (sncRNAs) of 231 nt in
length that function in germline cells to silence retrotransposons and maintain
genone integrity (Iwasaki et al 2015). GPAT2 knockdown in MDMB-

231 BC cells diminished cell proliferatioranchoragendependenigrowth,
migrationandtumorigenicity, and increased staurospodim#uced apoptosis.

In contrast, GPAT2 ovesxpression increadecell proliferation rate and
resistance to staurosporimeluced apoptosis (Pellevlaison et al 2014).

1.6DOT1LandBC

Based onhypot hesi s, t he mol ecul ar partn
multiprotein complexes that it requires for its transcriptional activity,
including epigenetic regulators, represent potentially exploitable targets for

new therapies against ER positive amdtiesrogensresistanttumors. For

proteomic interaction we identified histone methyltransferase DOTI1L
(Disruptor of telomeric silencing-like) as a component of multiprotein
complexes that assemble with ERU in t
antrestogen treatment. DOT1L catalyzes mendi- and trrmethylation of

histone H3 on lysing9 (H3K79me), a marker of transcriptionally active



genes, and is involved in transcription elongation, DNA repair and cell cycle
progression. This enzyme is associatgth the mystical leukemia fusion
protein (MLL) and plays a key role in the transcription mechanisms that
support leukemogenesis, and for this reason its inhibitors have been
proposed, and clinically tested, as therapeutic targets for leukemia by MLL
merge. The role and functional significance of the DOT1L association with
ERUin hormoneresponsivehumanBC cell nuclei have been studied here in
detail. The results demonstrate the-reoruitment of both factors, in
combination with other transcriptional epigenetic regulators, into a
considerable fraction oE R UCM-7 cell chromatin, thus influencing the
transcription of gnes involved in key cellular functions, including ESR1
(encoding E R)U, FOXA1l and -reguldtoesr Thés® kesults o
demonstrate for the first time that DOTLL represents a novel molecular target
for epigenetic therapies against endocriegponsive andER-positive
hormoneresistant mammary carcinomas.

1.7 Colorectal canceand LINE -1 transposable elements

Colorectal tumors present with a series of genomic and epigenomic
alterations through interactions between neoplastic cells, immune cells and
microbiotics. In particular, the hypmethylation status of the long nucleotide
nucleotide elemert (LINE-1), which constitutes about 18% of the entire
human genome, has been associated with a greater chromosomal instability
that may cause a low antitumonmunity level in colorectal cancer (Gaudet
etal., 2003) In fact this hypomethylation involves a lower density of T cells

in the tumor tissue ana worse clinical outcome (Ogino dt, 2008) Other
studies have shown that the prognostic associatitimeahethylation level of

the LINE-1 tumor with microsatéte instability (MSI) (Rhee etl., 2012) It
should also be noted that this instability may be sporadic or hereditary, taking
the name of Lynch syndromin species such as Drosophila and mouse, th
silencing of the Transposable Elements (TE) is performed by piRNAS; in the
special case of mice, MIWI2 is necessary in germ cells for the determination
of CpG methylation status on genome sequencegn$posons (Aravin et

al., 2008. FurthermorepiRNAs have also been implicated in silencing the
LINE1 in human tumor lines

1.8 Pancreaticcancerand Annexin Al

Recently, the oncogenic role dhnexin A1 (ANXA1) has been found in
pancreatic cancer (PC), where protein expression is directly related to the
poor prognosis of patients (Chest al.,, 2012) It has also been shown that
ANXAL improves cell migration and invasion by acting both directly in the
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intracellular compartment and indirectly through interaction with formyl
peptide receptorf-PRs, Belvedere etl., 2012) In addition, the knoclout
ANXA1 (KO) in our in vitro model using the CRISPR/Cas9 genome editing
system on PC MIA PaCa2 cells revealed the deyelation of a large number

of proteins involved in the organization of cytoskeleton. This led to reversion
of the epitheliato-mesenchymal transition (EMT), leading to a less
aggressive phenotype. Lately, the study of the miRNA profile has been found
uselll as a diagnostic screening method also for PC, where, among the most
characterized miRNAs, mi®96a has been associated with recweeand
shorter survival (Kong el., 2012) miR-196a is considered a discriminating
factor between PC and normal panstebecause it is upregudak only in
tumor samples (Wanget al., 2009) Furthermore, in vitro it has been
demonstrated that miR96a has an expression profile directly correlated to
the aggressiveness of PE€lls, as assessed by EMT (Gaianagal., 2017)
Understanding the molecular mechanisms of ANXAL in cancer also implies
the study of its relationship with miRNAs. In fact, the protein can regulate
downstream gene activation and transcription factors and, on the contrary,
can be regulated lpese
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2. AIM

This thesis projedtasconsistedn three main parts:

1. To develop a tool, named iSmaRT (Small RNA Tkl
integrative), simply to use and to investigate the biological roles of small
noncoding RNAs (sncRNAs). It will also be tested on various data including
Huntington disease and sevel4l cells;

2. To gply iSmaRT ontrancriptomicsdatafrom pancreaticcancer
MIA PaCaz2 cellscarryingANXA1 6 tkockoutd(ANXA1L*);

3. To carry out analysis of patientlerived colorectal cancer
transcriptomicsdata from samplesclassified according to the level of
methylation of the LINE1, microsatellite instability atite presence of the
Lynch syndrome.

11



3. MATERIALS AND METHODS

iISmaRT

ISmaRTis a pipeline wrotein Python and developed a virtual machine,
that integrates several thipghrty softwarewidely used for the analysis of
smallRNA-Seq data with own algorithmsRNAbench (Ruedat al, 2015) is
the core ofiSmaRT, for its capability to detect several classes of sncRNAS,
being used toperform the main analytical steps require8BmaRT first
conducts quality control and filteringf the sequence reads using FASTQC
(http://www.bioinformatics8Babrahanmac.uk/projects/fastqc/), while Cutadapt
(Martin, 2011)or sRNAbench are used temove the adapter sequences and
low quality reads. Differential expressi@malysis is performed iiSmaRT
integrating three Bioconductastatistical packages: DESeq2 (Love et al,
2014), edgeR (Robinsoand Smyth, 2008) and NOISeq (Tarazona et al.,
2015). A novel piRNA predictionmethod was integratehto the tootkit,
working on 2%36ntlong reads filtered out from other classes of sncRNAs
and using an algorithrbased ork-mer scheme (Zhang et al., 2010he
enrichmentanalysis of Gene Ontology terms aniRNA and piRNARNA
targets is performed using the BRoconductorpackageTopGO (Alexa and
Rahnenfuhrer, 2010) and pathway analysgeidormed ly ReactomePA (Yu
and He, 2016)iSmaRTincludes also a module faneidentificationof RNA
editingeventscomprising REDItools (Picardi and Pesole, 2013).

GPAT2 silencing

For human GPAT2 silencing, MDMB-231 cells were transfected using
Lipofectamine 2000 Reagent (Life Technologies) with HtZ2Hplasmid
(OriGene) coding for shRNA against human GPAT2 mRNA and selected
puromycinresistance to generate the respectilencedViDA-MB- 231 cell

line (SH). A noneffective scrambled sequence shRNA plasmid was used to
create a negative control (SC). Both plasmids also contain a sequence coding
for green fluorescent protein driven by a CMV promoter.

Small RNA sequencindjbrary

Total RNA was extracted from the cell line using the standard RNA
extraction method with QlAlzol (Qiagen), quantitated with NanoBx6p0
spectrophotometer (Thermo Fisher Scientific) before integrity assessment

with an Agilent 2100 Bioanalyzer (AgileMechnologies). For small RNA

seq, 1 €g of tot al RNA from SH and SC
with Illlumina TruSeq small RNA sample preparation Kit. Three independent
experiments (two clones per cell line) for each condition, were sequetzed (

pM) on HiSeq2500 (lllumina) with single read for 51 cycles. Small RNA
sequencing dataas analyzed usingmaRT(Panero edl., 2017)to identify

12



the sncRNA families studied, i.e. miIRNAs (miRBase viyi-interacting
RNAs (piRNABank), and tRNAderived fragmentstRF, Human genome
assembly, GRCh37/hg19) with Minimum Read Count of 3. Rfam and
RefGene correspond to reads mapped to Rfam (Nawroeki &td Refgene
(known human proteisoding and notproteincoding genesjlatabases.

Bioinformatics analysissmallRNA-Seq

To identify differentially expressed miRNAs, piRNAs tRF between SH

and SC samples, wesediSmaRT for allthe preprocessing of raw file and
DESeq2 algorithm based on the normalized number of couafsped to
each sncRNA transcript (Love et &016. Functional enrichment analyses
were performed using the databases DAVRp://david.abcc.ncifcrf.goy/
Enrichr (HTTP://amp.pharm.mssm.edu/Enrichr/  and FunRich
(www.funrich.org, based on the list @fenes associatedth the deregulated
sncRNAs(Padj . OO0. 05; FC Oheatmaplisyalizatibreof a i nt
differentially expressed transcripts and functional enrichment plots were done
with R/Bioconductor packages and the Multi Experiment Vies@ftware
(MeV v4.9) (Saeed edl., 2003. To validate thebioinformatic analysis of
small RNAseq experiments, we compared the global miRNA expression
profile of SC from our study with the global miRNA expression profile of the
MDA-MB-231 and MCF10 cell ties obtained from th&tudyof (Zhouet al,
2014, in which the authors profiled the cellular small RNA®latedfrom
these two cell lines by Solexa deep sequencing. Briefly, normatiaéal
were downloaded from GEO (ID#GSE50429) and the miRNAs in common
to our libraries were selected (n=228). The comparison was made using a
linear regression model in RThe name or GenBankD, chromosome
number genomic position, strand orientation asejuencéength of piRNAs

was obtained from piRNAbank
(http://pirnabank.ibab.ac.in/simple_search.hdml and validated with the
NCBI Nucleotide Database Https://www.ncbi.nlm.nih.gov/nuccone/ The
number of copies in the genome and the gendmciovas obtained from the
UCSC Genome Browser. To identify potential target gepé relevant
piRNAs, we employed the NCBI database (Human Genomic plus Transcript)
based onsequencecomplementarity using the reverse complement of the
pPiIRNA sequenceas input. The HomoloGene tool from the NCBI database
was employed to evaluate the grasfeconservation of the selected putative
MRNA targets among different mammalian species. For miRNA target
prediction and functional annotationsg used the miRDB online resource
(http://www.mirdb.org/miRDBY. To evaluate differences in the abundance of
eachspeciesof tRF among the upregulated and downregulageoup we
usedFisherTest to compare their frequencies with the expected frequencies
accordingo theGenomic tRNA

13
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databasehttp://gtrnadb.ucsc.edu/For the identification of putative proteins
based on amino acids composition, we employed the AAcompldent tool
(http://web.expasy.org/aacompidgntFor piRNA and snoRNA expression
levels across human tissues and loedls, we employed the DASHR database
(http://lisanwanglab.org/DASHR/smdb.php To evaluate and compare
differentially expressed miRNAs found in this study with miRNAs
deregulated in BCs we used the YM500v3 database
(http://driverdb.tms.cmu.edu.tw/ym500v3vhich employ TCGA data to
contrastnormal vs cancer tissue. We selected the comparison of 1096
primary solid tumors against 104 samples of normal breast tissue (€hung
al., 2017%. Survival section of YM500 database was employed to survival
analysis otommony deregulated miRNAs.

14
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4. RESULTS

4.1 Part One:Develpment and testing ofSmaRT bol
Developing tools

A challenging problem in NGS is the choice of the correct strategy to analyse
the experimental dat&mallRNA-Seqganalysis for example, needifferent
bioinformatics softwareand the possibility to perform multiple, subsequent
file format conversions that slove®wn and makes cumbersome the
analytical procedurefor thisreason,it was decided to design a tool that
allows the use of graphic interfaces and various homemadésstigolve

the problems mentioned above. We will also use various-plairty software

in both standalone and wdiased versionsin addition implementing
different statistical approaches for sncRNAs expression analyses allows users
to compare andelectthe mostppropriatanethodto analye of their data.

ISmaRT pipeline

ISmaRTis an analytical pipelineyritten in Pythonand R. It can be installed
with bash script or it can be used runningirdual machine, that integrates
several thirgparty softwarewidely used for the analysis of smTRNA-Seq
data The workflow of iSmaRT coverseveral analyticasteps with multiple
programs, that can also be used independéfityire 4.).

Figure 4.1 ismaRT workflow.

15



All these tools can be used byGaaphical Usr Interface (GUI)thatallows

the user to choose differeparametersThe toolsRNAbench (Ruedat al,
2015) is the core ofSmaRTand it isused toperform the main analytical
steps iSmaRT starts with theexecution of FASTQC in ordeo perform a
quality controlof the sequencingCutadapt (Martin, 20119»r sRNAbench
can beused to remove the adapter sequencedmamdjuality readsiSmaRT
allowsto definedifferentlibrariesto remoe all theunwanted reaglfrom the
next steps of thanalysisiSmaRTcan generatdifferentplots, such as those
showingreadlength distributionsfor each ofthe sncRNAselected by the
user or Principal Component Analysis (PCA) results dmshtmapswith
different distance metricSmaRTcan also perform a differential expression
analysis sincet integratesthree Bioconductorstatistical packages: DESeq2
(Love et al, 2014), edgeR (Robinsand Smyth, 2008) and NOISeq
(Tarazona et al.,, 2015). In et studies,germline piRNAs have been
detected also in somatic cells, highlightitfge importance of identifying
specific piRNAs in mammaliasomatic tissues, where their exact number
and functional rolesstill remain to be elucidated (Ross et al., 20TH).
address thidssue, we integrateth iSmaRT two features that can help
researcherdo address this issudhe first one isthe integration of an
algorithm based ok-mer scheme (Zhang et al., 201tb) select the putative
new piRNAs from the sequences that are not annotated in the gehloisie.
provides away to identify novel somatic piRNAs that can then be further
studied.The second oneas increasing evidence suggests that piRNAs are
able to drive degradation of certain RNA targets via a miRdhike
mechanism that operates by imperfect hasieing rules (Zhangt al., 2015),

is theimplemenation ofthe approach proposed by thesgthorsto identify
potential piRNA targetsThe enrichmenanalysisof Gene Ontology terms on
miRNA and piRNA RNA targets is performed using the BRoconductor
packageTopGO (Alexa and Rahnenfuhrer, 2010) and pathway analysis is
performed by ReactomePA (Yu and He, 2016), with the possibdifiter

the list of mRNAtargets against a dataset of mMRNAsnbérest, such as for
example those expressed in the samples under $8rdgRTincludes also a
module forthe identification of RNA editing events, comprising REDItools
(Picardi and Pesole, 2013We analyzed withiSmaRT the smallRNAs
sequencing data by Hosst al. (2015), that demonstrated miRNA
involvementinHunt i ngt onés di sease (HD) pat h
expressionn the prefrontal cortex from 26 symptomatic HD patients 3&d
healthy controls. We thedog illustrated the performance o&maRT in
providing a detailed analysis of miRNA and piRNA differentiaipressed
and of piRNAMRNA interactions.
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iISmaRTmain interface

TheiSmaRTmain interface, shown in Figure 4t2produces thevindow that
appears wheihe tool is opening Each choice provided corresponds to a
particular step of the small RN8eq data analysis woflow and opens one

or more Graphical Interface (GIl), that can be called by clicking the
corresponding button.

Complote analysis

QC, remove adapter and
sncRNA identification

Differential analysis

Plots

Figure 4.2 ismaRTmain interface.

PiRNA like predictions

Target predictions

RNA editing

ReactomePA

Explore sequences

Lllsll |- l=|E|<

The click on Complete analysis openiaginterfacewhere it is possibléo
selectinput file (Figure 43).

iSmaRT - Complete analysis

Files : source...

Select filels Your Sample/s

i Add Sample N
Delete Sample/s
e | Figure 4.3 ismaRTinput interface.
! Deselect all

Adapter trimming: FASTQC analysis:

7

© Cutadapt ~ Yes
* sRNAbench © No
~ No

17
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If Cutadapt is selected, awewvindow will appear (Figure 4)4where it is
possible to specify the adapter sequences.

ISmaRT - Cutadapt

rAdapter R

Adapter Sequence 3"

Adapter Sequence 5"
Minimum Length : (17

{Ci)

Error Rate in Adapter Sequence: [0.1 =
Quality CutOff in Adapter Sequence : |0

42|

™ Colorspace ™ Double Encode T Trim Primer [~ Strip F3

Figure 4.4: ismaRTcutadapinterface.

-Other Parameters-

"Minimum Read Count : [0 E

FASTQC aftert adapter trimming
[ * Yes " No _‘

fg‘ﬁ.i Main Menu ‘ Back | Next > ‘

The newwindow (Figure 45) is dividedin four zones The first one covers

the "Mandatory Parameters”, where is it necessary to specify where to save
the output data, the path to the database (DB) foldefagta(or index) file

of mature miRNAs, as downloaded from miRBase, andfde&file of the
premiRNAs hairpin sequences.

Mandatory Parameters Pre fitering
LibsFilter: Yes Mo
A O
Output Directary: Source
08 path: S add >
Mature: Source Delet
Hairpin: Source
| i
‘| > ) P
adapter:
Analysis types and lbraries
Libs: Yes. - Mo
Adapter trimming and pre processing 4| 4]
Mapping parameters
Profiing parameters > |
Delete
Prediction of novel micronhas |
i 5
ANATold name | b = - -
Output options. | MicroRNA species: noGenome:
Java heap memery hsa True “ False
Default: Homolog: Species:
ot hg1e
o
ST,
l!l_!szi Main Menu | Back | Mext>

Figure 4.5ismaRTDB andlibrariesinterface
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e "Prefiltering" panel allowsspecifyingthe name of the library file that

should be used to filter out certain reads. The "Analysis types and library"

pa

nel allowsdefining the other small RNA libraries (Libs) on which to

perform the analysis and thepecies(hgl9 for human). If foGenomeg
option is selected (False) then all reads are first mapped to the reference
genome ofspeciesselected. Afterward the genome coordinates of the
reference small RNA annotation (Libs for miRNAs and ogr@RNAg are
determinedIn next windows (Figure 4)6you can select severaptions of

output like Principal Component Analysis (PCA), Scaplets on two
samples that can be selected from the window, Heatmagp&Readlength
distribution graphs. In addition, in thsectionit is possible to select the
Differential expression analysis, Target predictions on miRNAs or on

pi RNAs and Novel pi RNA identification
selected). I f either of tidhselectedyvibis A Tar g
al so possi bl e PtA sealnedti omR eancatl oymse s .
o
o
Select samples:
g 1= i
e gt Figure 4.6: ismaRTselect workflow
;I::’gleei predictions: miRNAs interface.
[ Target predictions: known piRNAs
[~ Novel piRNAs
[ Boutic index |
=
§ EEE
-
8

The newwindow (Figure 4.7 concerns differential expression analyses.
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iSmaRT - Complete analysis

Figure 4.7: iSmaRTDE interface.

It is possible to select here the test and control groups on which library
(miRNA, piRNA, etc.) to perform the analysis and to choose the statistical
method to be applied (DESeq2, NoiSeq or edgeR

Output ofiSmaRT

1 Commands.txt: This file contains all the line commands launched by
ISmaRT and, eventually, the error messages;

1 sRNAbench_analysis: This folder contains all the output of
sRNAbench, plus a text fileTérminal.txt) where are saved the
messges printed in the terminal by sRNAbench;

FASTQC: This folder contains the output of FASTQC;

R_out: This folder contains the output of the R scripts and,

eventually, the error messages;

1 Tables: This folder contains the tables generated by sRNAbenchDE.
If the user selected to perform a differential analysis, thefaddér
6name of test group_VS name of con
generated by sRNAbench and used for the differential analysis;

9 Differential_analysis: This folder contains the resultef the
differential analysis. The first suiolder indicates the tool used, the
second contains indication on the test performed e.g. novel piRNAs,
test_vs_control, etc.

The files that can be generated are:

i tool_name_normalized_counts.txt Table of normated read
counts;

1 tool_name_log2_med_cent.txt Table of normalized read
counts transformed in log2 and median centered,;

i tool _name_results_translibs_name.txt Table of the tool
results;

= =
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1 tool_name_results_translibs_name_filtered.txt Table of
the filteredtool results with the column FC that indicates the
fold change;

1 heatmap_norm_counts_log2_med_cent.tiff Heatmap
generated from the tool_name_log2_med_cent.txt table.

1 Plots: This folder containssubfolders with the names of the
translibsanalyzed. Each $&dfolder can contain the following files:

1 translibs_ name.mat Read counts generated by

sRNAbenchDE;
1 Heatmap.tiff: Heatmap made using thdog function of
DESeq2;

1 PCA.iff : PCA made using thdog function of DESeqz2;

1 ScatterPlotstiff : Scatterplots of thesad counts;

1 sequencingStat.tx File generated by sSRNAbench.

1 Read_lengths This folder containsubfolders with the names of
the samples. In each séddder can be foundhe folder(s) with the
name of eachranslibsanalyzed. Each suiolder can containhie
following files:

1 sample_name_translib_name.txt This file contains each
sequence of theeanslibs with its corresponding read counts;

1 frequencies.txt Read counts of the sequence inttia@aslibs

1 sample_name.pngPlots of the frequencies.

1 GO: This folder contains the results of the Gene ontology analysis.
Each sukolder contains a description of what was tested and the can
contain the following files (some may be missing if no enrichment
was found):

1 GO results.txt: table with the enriched GO termgth the
associated genes and statistical tests.

1 enrihMap.tiff

1 enrichment_results_barplot.tiff

9 enrichment_results_dotplots

1 novel piRNAs: This folder contains the results of the analysis for
piRNA likes and can contain:

1 novel_piRNAs.txt This file containghe genomic location of
each piRNA like identified in all samples, and the
corresponding read counts in eashmple These putative
piRNAs are named p_id _numeber tifiey have a single
location in the genome
orcp_sequence_id_number_locus_id_number if the
carespondingsequencéavemulti-alignmentin the genome;

21
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1 novel piRNAs.bed BED file generated wusing the
novel_piRNAs.txt information;

1 novel piRNAs.fa FASTA file generated using the
novel_piRNAs.txt information;

1 piRNA_predictor ERROR_log.txt: This file can contain
errors or warnings gbiRNApredictor,if the file is empty, no
error/warningsverefound/issued by the tool;

1 info: This folder contains a stblder for every sample analyzed.
Each sulolder contains the files:

1. novel piRNAs.txt, novel_piRNAs.bed and
novel_piRNAs.fafor the piRNAlike identified in each
sample;

2. info folder. This folder contains these files:

1 All_Reads.fa FASTA file of the not assigned
reads, with new sequence id.

1 sample_name.tk Read counts of the reads
contained inAll_reads.fa;

1 All_Reads Table.txt Tables that contains the
information found in All_Reads.fa and
sample_name.txt

1 predictedpiRNA_ALL Reads.fa piRNAs
predicted by piRNApredictor using as input
All_Reads.fg

1 predictedpiRNA_ALL_ Reads.bed BED file of
predictedpiRNA_ALL_Reads.fa;

1 merge_test.txt Output ofbedtoolsmerge using
as inputpredictedpiRNA_ALL_Reads.bed

1 piRNA_ predictor_error_log.txt: This file can
contain errors or warnings @iRNApredictor,if
the file is emptied, no error/warningswere
found/issued by the tool;

1 RNA-editing: This folder contains a sdiolder
for every sample analyzed. In each-$older the
output ofREDItoolscan be found;

1 Target predictions: This folder can contain the

mMiRNAs, piRNAsandnovel piRNAs RNA target

predictions. For piRNAs and novel piRNA can

be found also:

1 3UTR_CDS 5UTR.txt This file contains
the name(s) of the piIRNA(s) or piRNA
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Testing proceduréSmaRTo n

like(s) with each RNA target and the
position of targeting (5UTR, CDS or 5UTR);
info: This foldercontains:

il
il

3UTR.txt: Bowtie output for the
alignment in the 3UTR region;

CDS.txt: Bowtie output for the
alignment in the CDS region;

S5UTR.txt: Bowtie output for the
alignment in the 5UTR region;

nucl.txt: This file contains the first and
tenth nucleotidesof piRNAs or novel
pPiRNAs;

PiIRNA list.txt: List of the piRNAs
analyzed;

pPiIRNA list_cutted.fa: FASTA file
Gutted used by Bowtie.

Huntingtonds disease

The brain smallRNASeq datasetsasbeen analyzedsing iSmaRT with the
defaultparametersAfter to have have obtained th@RNAs results obtained

by the authors we focused on h&NAs. Considering piRNAs, this allowed
identification of 2200 such RNAs present in the datasets analyzed.
Differential expession analysis was performed comparing HD and control
samples, revealing 16 piRNAs differentially expressed in HD samples. The
results are summarized Figure 4.8and Figure 4.

1—1 ol

Figure 4.8 miRNAs differentially
expressed in Huntington 's disease vs
healthy brain samples. The

heatmapshows the 45 miRNAs identified
with iSmaRTas differentially expressed in
brain samples of Huntington's disease
(Huntington) patients respecb tnormal
(Healthy) individuals.
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It is worth noting that cluster analysis revealed a meaningful sample
distribution between the two groups. Novel piRNA prediction allowed
identification of 40 000 piRNAike RNAs. To address the potential
functional impact of the 16 piRNAs found deregulated in HD, we peddrm
target prediction, followed by Reactome Pathway enrichment analysis
(Figure 4.10 and 4.11).

2401 2
hsa_piR_001042
hsa_piR_000045
hsa_piR_001152
hsa_piR_017458
hsa_piR_001078
hsa_piR_015860
hsa_piR_020756
hsa_piR_005019
hsa_piR_005018
hsa_piR_007475
hsa_piR_007474
hsa piR 013738
hsa_piR_017295
hsa_piR_004801
hsa_piR_004150
hsa_piR_016735

M Huntington W Healthy

Figure 4.9: piRNAs differentially expressed in Huntington 's disease vs healthy brain safftpes
heatmapshows the 16 piRNAs identified willsmaRTas differentially expressed in brain samples of
Huntington's disease (Huntington) patients respect to normal (Healthy) individuals.

Figure 4.1Q Summary of ReactomePA GO analysis performed on mRNAs target of differentially
expressed piRNA. Thearchats display enriched pathways identified by the ReactomePA of iSmaRT

in which are involved the mRNAs target of the 16 piRNAs differentially expressed in Huntington's
disease patients brain
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Figure 4.11 enrichMap visualizatiomperformedby iSmaRTon mRNAs target of differentially
expressed piRNAEnrichedpathways in which are involved the mRNAs target of the 16 piRNAs
differentially expresseuh Huntington's disease patient brain

This revealed the involvement of several genes encoding piRNAttarg
MRNASs involved in pathways related to brain physiopathology, such as for
exampl e O0CASPS8 activityo (CFLAR gen
O6Downr egul atbeta mecemor sigmaling/ Downregulation of
SMAD2/3SMAD4 t r anscri ptional &.ching weti al.,y 6 ( N
2013). Finally, miRNA and piRNA sequence analysis revealed, for a subset

of HD samples, the presence of canonical andaamonical editing events.

Testing proceduréSmaRT onGPAT?2 silenced BC cell

To analyze the role of GAPT2 in theogenesi®of piRNAs and the goodness

of iISmaRT GPAT?2 silencing was performed by shRNA plasmid transfection
and puromycin selection in thdDA231 cell. From scramble control cells
(SC) and GPAT2 silenced cells (SH) GPAT2 mRNA expression was reduced
by 90%and GPAT?2 protein was undetectable in SH c8ikncing GPAT2
affects sncRNA distribution. Indeed, SC cells, we identified an average of
67% of miRNAs, 3% of piRNAs, 7% dRF, 5% of Rfam, 7% oRefgene

and 11% of nofassigned transcripts, whereas in SHlls, 53% were
mMiRNAs, 8% piRNAs, 13%RF, 4% Rfam, 9% Refgene and 13% -+ot
assigned transcriptd=igure 4.12. The percentages of total reads for each
category differed in SC and SH cells, differences were only significant for
the miRNA category, with decrease &r GPAT2 silencing (Figure 4.)12
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sC SH
| 53%

67% |

Pi1% 8% 39,
3% 7% 5% 7% 13% 4% 9%

N T 00 /0O = e
miRNA piRNA  tRF Rfam RefGene  N/A

Figure 4.12: sncRNA distribution in SC and SH cells. Piecharts of the percentages of aligned
reads assigned to each category of sncRNA in the SC cells and SH cells. A significant decrease was
observed in the abundance of miRNAs of the SH cqllwv&lueD0 . 0 5 .

Total piRNAs abundance did not change after GPAT2 silencing, an upper
shift in readinglength distribution was observed (Fig4rd 3.

1 sC

B sH ‘ ‘

Nucleotide length
Figure 4.13 Length distribution of reads assigned to piRNAs in SC and SH libraries

Read counts x100000
o
o

In SC cells, length distribution was bimodal, with peaks at 27 andt30

whereas in SH cells, only one peak at @9was obtained. Differential
expression analysishowsthat of the 137 piRNAs identified in SC cells, 77

(56%) were differentially expressea f t er GPAT?2 silenci |
FCO|1.5|]), with 38 upregulated (28%)
4.14). Length distributiorshowsthat piRNAs of 27 and 28t in length were
significantly associated with the downregulated grqupalueO0 . 05) . Ther
were no differences in the other lengths (Figurdy.1
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Figure 4.14 Piechart representation of the percentages of differentially expressed piRNAs and

barchartof the frequencies of piRNAs in the upregulated and downregulated group$®udéstri
according to their nucleotide length.

A lot of the downregulated piRNAs (32/39, 82%) are single capy (
valueD0O . 05) , bei

upregulated group, piRNAs with single (18/38, 47%) and multiple (20/38,

52%) copies showed similar frequencigsv@lueD0 . 0 5)

27

Fold change in MDA231 SH

sC

SH

PIRMA SNORNA Cegias ™ U342
- Muttiple.

ng

mai nl vy i ntrageni c

(Figure

Figure 4.15 Heatmap representation of
the differentially expressed piRNAs; the name
of the host snoRNAs whendbrrespondsand
copies in the genome are indicated.
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Single copy upregulated piRNAdiowever were mostly intergenic (14/18,
77% p-value O0 . 0 5) . piRF360d1ez multiple copy downregulated
piRNA, maps to the loci of the SNar ger@mall NF90associated RNAS).

By contrast none of the upregulated piRNAs is hosted in a SNOR or SNAR
gene. Moreover, snoRNAs constituted the host gene of 22 out of 27 (81%)
intragenic single copy downregulated piRNAs, which is 56% of all
downregulated piRAs, with a probability value
the upregulated piRNAs. Certain piRNAs are derived from snoRNAs
precursors (Taft et. Al, 2009), and that piRNAs &ssue restrictednow in

this work has been evaluated whether there is a correlafiontissue
distribution among the downregulated piRNAs and their hosted snoRNAs.
For the analysisof the tissue profile of the piRNAs and the host snoRNAs
that were available in the database we use DASHR. Unsupervised clustering
based on Pearson correlatiowas assayed on the nine pairs of
piRNAsnoRNA obtained from the search. In alisesan almostperfect
correlation (~1) washown coincident with a cexpression pattern (Figure
4.16).

Figure 4.18 corrplot of thepairs
piIRNA-snoRNA.

Four of the togfive upregulated piRNAs previously identified BC cells
(Hashim et. Al., 2014)wasfound downregulated in the SH cel{sR-31636,
piR-57125, piR-35548 and piR-57125). piR-36041 andpiR-43772 which
were markedly downregulated in MCFgrowing cells, were found
upregulated in the SH cells. Furthermore, of the latter gn@&Rs36743,piR-
36318 andpiR-36249 were previously found underexpressed in BC tissues
compared to their normal counparts (Hashim et al., 2014). The less
proliferative phenotype of the SH celigreeswith all these data. Expression

of four representative piRNAs shownin Figure 4.17
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