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I

Introduction

Topology is an important topic in mathematics and has direct applica-
tions in physics. In simple words, topology is the branch of mathemat-
ics which classifies the objects on the basis of properties remaining un-
changed under continuous deformations [1]. As an example, a coffee cup
and a doughnut are equivalent from a topological point of view: it is pos-
sible to deform one into the other without breaking them, as shown in
Fig. I.1; while an orange belongs to a different topological class because
there is no continuous deformation which can open up an hole into it.
In other words, these objects can be classified topologically according to
the number of their holes which cannot be closed through continuous de-
formations: this number is a topological invariant and is called the genus.
The genus of a smooth and closed surface, according to the Gauss-Bonnet
theorem [1], is given by the surface integral of a function called Gaussian
curvature containing all the second derivatives of the surface’s equation.
The genus can take only positive, integer values: coffee cups and dough-
nuts have genus one, an orange has genus zero, a two-handle cup has
genus two.

Figure I.1: Continuous deformation of a coffee cup into a doughnut.
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Topological phases of matter

In solid state physics, topology defines phases whose properties are abso-
lutely unique. Indeed, on the one hand, most of the phase transitions
studied in condensed matter physics share two features: they happen
through symmetry breaking, and they are characterized by local order
parameters which take different values in the different phases [2]. This
is true, for example, in the solid/liquid/gas transitions, in the ferroelec-
tric transition, or in the superfluid and the superconducting transitions...
On the other hand, topological phase transitions happen without sym-
metry breaking and are characterized by topological invariants which are
global properties of the systems. Topological invariants only depend on
systems’ dimensionality and symmetries [3]. An example of a topologi-
cal phase transition is the dissociation of vortex and anti-vortex pairs in
the xy model and in neutral 2D superfluids. This phase transition, stud-
ied by Berezinskii, Kosterlitz and Thouless (BKT) in the 70s [4], has been
the first one to be described in terms of this “topological order” [5]. An-
other paradigmatic example of a topological phase of matter is the in-
teger quantum Hall effect (IQHE) [6]. It has been observed for the first
time in 1980 [7]; it consists in the quantization of the transverse electric
(Hall) conductance of a 2D semiconductor at very low temperature un-
der a strong magnetic field; changing the magnetic field, the Hall con-
ductance forms plateaus at integer multiples of e2/h. A couple of years
after its first observation, Thouless, Kohmoto, Nightingale and den Nijs
(TKNN) explained the IQHE with a lattice model [8]. They showed that, in
the low-temperature limit T → 0 and for a Fermi energy lying inside a gap
of the energy spectrum of the bulk, the Hall conductivity is proportional
to a topological invariant, the total Chern number of the occupied bands.
The Chern number takes only integer values. Being a topological invari-
ant, its value remains unchanged under every perturbation, such as inter-
action or disorder, which deforms the energy spectrum without closing its
gaps. In other words, it can only change through a gap-closing in the en-
ergy spectrum. This explains the plateaus in the plot of the Hall conduc-
tivity versus the magnetic flux which benchmarks the IQHE and, in gen-
eral, the robustness of the Hall conductivity against perturbations. The
lattice model used in the TKNN paper is known as Hofstadter model [9].
It describes non-interacting spinless electrons hopping on a square lattice
pierced by a uniform magnetic field. If the magnetic flux per unit cell is set
to a rational value p/q, the system, within periodic boundary conditions,
is translationally invariant and it is possible to define a Bloch Hamilto-
nian for each value of the quasi-momentum k on the Brillouin torus. The
energy spectrum is made of q separate bands, see Fig. I.2(a). For each
band, the Chern number can be extracted from the Bloch Hamiltonian
through an algebraic calculus analogous to the one which provides the
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genus of a closed surface, namely the integral over the Brillouin zone of
the so-called Berry curvature of the energy band [10]. For a system with
boundaries, current-carrying states arise on the edges [11, 12, 13]. These
states are exponentially localized, have energies inside the gaps of the
bulk spectrum and appear in chiral pairs with the same energy propagat-
ing in opposite directions on the two edges. These states are topological
in the sense that, on each edge, their number is equal to the total Chern
number of the occupied bands, see Fig. I.2(b). This makes them robust
against perturbations, namely they overtake possible obstacles, such as
impurities, without being reflected or backscattered [13]. This relation
between edge-states and topological invariant is known as bulk-edge cor-
respondence and holds in all the gapped topological systems in any spa-
tial dimensions [14]. Some years later in 1988, Haldane pointed out that
the condition necessary for the IQHE was not the presence of the mag-
netic flux, but the broken time-reversal symmetry [6]. He showed it using
a model of non-interacting spinless electrons hopping on a honeycomb
lattice pierced by a magnetic field having zero net flux per unit cell [15],
see Fig. I.3(a). The topological phase arising in such a system with zero net
magnetic flux is known as anomalous quantum Hall effect and belongs to
the same class of the IQHE, i.e. the class of Chern insulators.

Almost 20 years later, in 2005, Kane and Mele discovered a time-reversal-
invariant analog of the quantum Hall effect, known as quantum spin Hall
effect (QSHE) [16, 17]. They considered a system of non-interacting spin-
ful electrons hopping on a layer of graphene at very low temperature.
The Hamiltonians of the two different spin kinds, regarded separately,
are equivalent to two conjugate Haldane Hamiltonians in which the spin-
orbit coupling terms play the same role as opposite magnetic fields with
zero net flux through the unit cell. Hence, the time-reversal symmetry
is broken in the single spin Hamiltonians, which possess non-zero (op-
posite) Chern numbers, but it is intact in the overall system. This re-
sults in topologically protected edge currents of electrons with opposite
spins which propagate in opposite directions on each edge. However,
Kane and Mele later realized that the QSHE was too small to be observed
experimentally in graphene; subsequently, its observation has been pro-
posed [18], and realized [19], in a system of quantum nano-wells. The
quantum spin Hall effect has been followed by a series of discoveries of
natural and artificial crystalline systems, known as topological insulators [14].
They exhibit topological features wich depend only on their intrinsic prop-
erties, without any external field. Topological insulators have gapped bulk
Hamiltonians and host localized edge states with energies inside the spec-
tral gaps. These states are topologically protected against perturbations
since their number on each edge is fixed by the value of the invariant
(bulk-edge correspondence). The latter in general can be computed from
the bulk Hamiltonian with periodic boundary conditions and depends on
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the system’s dimensionality and symmetries. According to these features,
the topological insulators can be divided in classes labeled by different
invariants and can be ordered in a periodic table [3].
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Figure I.2: IQHE in the Hofstadter model. a. Hofstadter butterfly: energy
spectrum (projection) of the Hofstadter model within periodic boundary
conditions changing the flux per plaquette φ. The transverse conductivity
inside each gap is proportional to the total Chern numbers of the bands
below (ν). b. Energy spectrum of the Hofstadter Hamiltonian on the cylin-
der with φ = 1/5. As predicted by the bulk-edge correspondence, the
number of edge-states for each edge (red and blue dots) which traverse
each gap during the pumping cycle is equal to the total Chern number of
the bands below.

Quantum simulators

In the last decades, another branch of physics has been growing along-
side the study of topological condensed matter: quantum simulation. The
concept of quantum simulation was first introduced by Feynman in the
beginning of the 80s: a very controllable quantum system is used to sim-
ulate the dynamics of another quantum system, taking into account the
mapping between the two Hamiltonians. Simulators based on cold atoms
in optical lattices [20], and photonic platforms [21] constitute a very ver-
satile tool to simulate crystalline potentials and represent a fundamen-
tal resource in the study of topological phases [22, 23, 24] which in many
cases are very difficult or impossible to observe in natural systems. Em-
blematic examples are the superfluid-Mott insulator transition, observed
for the first time with bosons in an optical lattice in 2002 [25], and the 4D
Integer quantum Hall effect [26], observed recently in three different sim-
ulation platforms based on trapped ultra-cold atoms [27, 28] and array of
optical fibers [29].
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Ultra-cold atoms simulators essentially consist of gases of neutral
atoms at very low temperature trapped in periodic potentials generated
by interfering laser beams [20]. In these systems, the temperature is be-
low the critical temperature of transition to Bose-Einstein condensate or
Fermi gas (depending on the spin of atoms). In this condition, once loaded
in the optical lattice, the atoms mimic the dynamics of electrons in a crys-
talline potential [20]. The features of the lattice potential, such as the po-
tential depth and the lattice shape, can be adjusted at will by tuning the
laser fields. Since the atoms are neutral, it is non trivial to simulate mag-
netic fields or spin-orbit couplings. However, these elements are funda-
mental in order to simulate topological band-structures, and they have
been realized in many cold-atoms simulators [30, 31, 32, 33, 34, 35, 36,
37, 38, 39]. The basic idea to simulate gauge fields in general is to control
the phases of the hopping terms of the Hamiltonian; indeed, they can be
incorporate inside these terms as Peierls phase factors [10]. One method
employed to do this consists in laser assisted coupling between atomic
levels [40]; another is the so-called Floquet engineering [41]. It consists in
modulating periodically in time the atomic potential with a period much
smaller than the characteristic time scale of the problem. In the long-
time limit, the periodically-driven Hamiltonian is equivalent to the evo-
lution under a static effective Hamiltonian, called Floquet Hamiltonian,
in which the phases of the hopping terms depend on the periodically-
driven potential. Floquet simulators are particularly interesting from the
topological point of view since they have been found to possess a topol-
ogy more complex than their static counterpart. Indeed, in addition to the
topological edge-states counted by the topological invariants of the cor-
responding static systems, Floquet systems can exhibit extra edge-states.
Hence, new invariants are needed to obtain a bulk-edge correspondence
for this kind of topological insulators [42, 43, 44, 45, 46]. A fruitful simula-
tion strategy is also to map a lattice dimension onto an internal degree of
freedom of the particles [47]. This synthetic dimension approach allowed,
for example, for the simulation of a stripe starting from atoms trapped in
a 1D potential [36, 37]. The concept of synthetic dimension can be used
also to simulate 1D systems. For example, in Refs. [48, 49, 50], a 1D topo-
logical insulator has been simulated with a synthetic wire of ultra-cold
atoms by mapping the lattice position onto the atomic momentum of the
Bose-Einstein condensate.

Photonic simulators constitute another important family of simula-
tors. They are prominently based on two kinds of architectures: photonic
crystals and arrays of optical wave-guides [21]. Photonic crystals are peri-
odic arrangements of materials with different optical properties [52]. The
resulting periodicity of the dielectric and the magnetic permittivity ten-
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Figure I.3: Floquet honeycomb lattice of helical wave-guides. a. Haldane
model [15]: non-interacting spinless electrons hopping on a honeycomb
lattice pierced by a magnetic field having zero net flux per unit cell. The
topological non-trivial phase arises from the broken time-reversal sym-
metry and it is known as anomalous quantum Hall effect. b. Sketch of
the simulator reported in Ref. [51]: a Floquet Chern insulator is realized
through an honeycomb array of helical wave-guides. Figure adapted from
Ref. [51].

sors allows for the application of the Bloch theorem to the wave equation.
For each value of the light wave-vector in the Brillouin zone, the modes
allowed to propagate inside the crystal organize themselves in bands, as
the energy eigenstates of a normal crystal [52]. The photonic bands can
be made topological by choosing suitably the materials which form the
crystal and, in most of the cases, by using magneto-optic crystals which
work under strong magnetic field, as for example in the Chern photonic
crystal proposed by Haldane and Raghu [53, 54]. While topological pho-
tonic crystal work in general in the microwave domain, topological sim-
ulators made of arrays of wave-guides can work in the optical frequency
domain [24]. In these systems, the propagation direction implements the
time, while the crystalline lattice is mapped onto the transverse plane. In-
deed, under the paraxial approximation [52], the wave-equation which
dictates the propagation of the electric field through the fibers takes the
same form of a Schroedinger equation where the electric field plays the
role of the wave function and the propagation direction that of the time.
Each wave-guide represents a lattice site and the evanescent couplings
between them represent the hopping terms. Thus, the latter can be tuned
by adjusting the light wavelength, the refractive index of the wave-guides
and the spacing between them [55]. In this setup, the Floquet engineering
corresponds to give to the wave-guides a periodic modulation along the
propagation direction. This has been achieved, for example, in Ref. [51],
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where the authors implemented a Floquet Chern insulator through an
honeycomb array of helical wave-guides, see Fig. I.3(b).

Quantum walks represent a very versatile class of simulators, imple-
mentable with both cold atoms and photons [56]. Quantum walks are
periodically driven (Floquet) unitary protocols acting on two quantum
observables: the walker, and its internal degree of freedom, the coin. In
the simplest 1D QW, the coin has a spectrum of dimension two and the
walker has an infinite and discrete spectrum of eigenvalues which can
be regarded as lattice sites. The QW dynamics is given by the periodic
repetition of unitary operators acting on coin and walker. It simulates
stroboscopically the evolution of a particle moving on a lattice under a
Floquet Hamiltonian. QWs allow for the simulation of a wide class of
single-particle solid state phenomena, such as the free evolution of cor-
related particles [57, 58], the effect of decoherence [59, 60], Anderson lo-
calization [61], band dynamics of single electrons under constant elec-
tric fields [62], Berry phase measurement [63, 64, 65, 66]. Furthermore,
in 2010, QWs have been discovered to be a valuable resource in the field
of the topological condensed matter physics as they can simulate all the
single-particle topological insulators in 1 and 2D [67]. In the last years,
many topological 1D QW protocols have been implemented in different
architectures based on both cold atoms and photons [68, 69, 70, 66, 71,
72, 73, 74]. In particular, QWs have been largely used in the study of the
Floquet topological phases which, as we already mentioned, are different
from their solid-state counterparts. Indeed, one can not apply to these
systems the standard classification of topological insulators [3], and a new
classification dedicated to Floquet topological isulators [42, 43, 44, 45, 46],
and in particular to topological quantum walks [75, 67, 76], has been cre-
ated. In this thesis we focused especially on photonic QWs. In these plat-
forms, the walker is typically mapped onto a degree of freedom of a laser
field, such as the optical path of the beam [59, 57, 58, 76, 77], the time de-
lay between optical pulses [60, 78, 79], the light orbital angular momen-
tum [69, 70, 71] (see Fig. I.4(b)) or its wave-vector [80], and the coin in
general corresponds to the light’s polarization.

Contents of this thesis

The aim of this thesis work is to propose detection methods and quantum
walk protocols which led to the simulation of topological insulators in one
and two dimensions. Many previous simulation experiments focused on
detecting topological features at the edges of the systems [76, 81, 49, 82,
36, 37, 53, 51, 39]. In this thesis instead we develop methods to detect the
topological invariants inside the bulk of the systems. These methods have
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(a) (b)

Figure I.4: Chiral-symmetric QW with twisted photons a. Protocol of
the chiral-symmetric QW. The topological classification of Floquet sys-
tems is different from that of static topological insulators; for instance,
chiral-symmetric QWs are characterized by a couple of invariants which
can be extracted from two Floquet operators corresponding to two differ-
ent choices of the starting instant of the driving period (U1 and U2) [75].
b. Sketch of the photonic implementation of the chiral-symmetric QW
with twisted photons. The walker’s positions are mapped onto the values
of the light’s OAM. The latter counts for the number of times the beam’s
wave front winds around the propagation axis. The picture is adapted
from Ref. [69].

the important feature of applying also to simulators in which it is very
difficult or impossible to access the system’s edges, as it often happens
in systems which exploit an internal degree of freedom of particles as a
synthetic dimension, for instance Refs. [69, 70, 71] (see Fig. I.4).

The thesis is organized as follows:

• In chapter II, we review the main features of static non-interacting
topological insulators in one and two dimensions.

• In chapter III, we focus on the detection of the topology in 1D insu-
lators protected by chiral symmetry.

In Sec. III.1, which is mainly based on Ref. [83], we present our method
to detect the topological invariant labeling the chiral class in 1D,
the winding number [84]. It consists in measuring an observable
called mean chiral displacement (MCD) which can be simply ex-
tracted from the particle’s bulk dynamics with no need of additional
elements, such as interferometric architectures [63, 64, 65, 66], in-
troduction of losses [85, 86, 87], and scattering measurements [68]:
the long time limit of the MCD is equal to the winding number. In
this section we derive analytically this result in the case of an infinite
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clean system.

In Sec. III.2, we show that the MCD can be used to detect topology
also in disordered systems. Then, we present the cold atoms sim-
ulation experiment reported in Ref. [50] where the measurement of
the MCD is used to detect topological phase transitions driven by
a strong chiral-preserving disorder. The platform [48, 49, 50] simu-
lates a chiral-symmetric wire; the lattice sites are mapped onto the
values of the atomic momentum of the Bose-Einstein condensate.
In the experiment, the MCD measurement allows for the detection
of a signature of the so-called topological Anderson insulating (TAI)
phase. This phase arises from the interplay between topological or-
der and Anderson localization under a strong chiral-preserving dis-
order; it has been first predicted to occur in metallic 2D HgTe/CdTe
quantum wells [88], but, so far, it was never been observed experi-
mentally. In the TAI phase, the disorder closes the energy gap which
is replaced by a mobility gap, and the band insulator of the clean sys-
tem is replaced by an Anderson insulator that remains topological,
with topology carried by localized states in the spectrum. Thereby
experimental probes relying on the adiabatic transport are expected
to fail and the measurement of the MCD emerges as a very suitable
method to detect the system’s topology.

• In chapter IV, we review the main features of Floquet topological
systems in one and two dimensions, focusing in particular on topo-
logical quantum walks and their topological classification.

• In chapter V, we describe two photonic experiments in which we
realized and characterized two topological QWs, respectively in 1-
and 2D.

In Sec. V.1, we present the simulation experiment reported in Ref. [71]
where we develop and apply for the first time the MCD detection
method to a 1D photonic QW realizing a chiral-symmetric Floquet
topological insulator, see Fig. I.4. In the QW platform [69, 70, 71], the
lattice sites are mapped onto the values of the light’s orbital angu-
lar momentum (OAM) [89, 90] and the coin states onto the circular
polarizations. The OAM is shifted by a liquid crystal device called
q-plate [91] which twists the light beams according to their polariza-
tion. Being a Floquet topological insulator, our QW is not charac-
terized by a single winding number, as the static chiral-symmetric
insulators, but by a couple of winding numbers which can be ex-
tracted from two inequivalent versions of the protocol correspond-
ing to two different choices of the starting time of the periodic evolu-
tion [75]; we accomplish a complete topological characterization of
our QW by measuring the MCD of the walker in these two different
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time-frames.

In Sec. V.2, we present a novel photonic 2D QW realizing a Floquet
Chern insulator [80]. In this experiment, the lattice position is mapped
onto the transverse wave-vector of the light beam. This degree of
freedom is manipulated through a liquid crystal device called g-plate;
this device is obtained from a technology similar to that of q-plates
and is essentially a polarization dependent diffraction grating. This
setup represents a complete novelty in the still almost unexplored
field of 2D quantum walks: these systems have been implemented
in few experiments [78, 79, 92, 93, 94] and, to our knowledge, the
transverse light wave-vector has never been used as lattice position
in any platform. We simulate a constant electric field acting on the
system along one direction. Quantum walks with an extra costant
driving, often referred to as electric quantum walks [95, 62, 96], have
attracted attention for the study of phenomena such as quantum
state refocusing and probability distributions revivals [95, 97, 98, 96],
Bloch oscillations and Landau Zener transitions [62] and for the mea-
surement of topological invariants [63, 64, 65, 66]. We observe the
motion under the constant force of various wave-packets prepared
in the lower energy band of the QW Floquet Hamiltonian and we
extract the band’s Chern number from their overall transverse dis-
placement [99].
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II

Non-interacting static
topological insulators

In this chapter, we review the properties of two classes of non-interacting
topological insulators in one and two dimensions. These Hamiltonians
have a gapped bulk spectrum, but exhibit gapless modes exponentially
localized on the edges, when they are in a topologically non-trivial phase.
These systems are protected by a global topological order which makes
their transport properties robust against gap preserving and symmetry
preseving perturbations. Indeed, a set of discrete nonspatial symmetries,
together with the systems’ dimensionality, determines the topological clas-
sification of these Hamiltonians. Each class is labelled by a topological
invariant which can be derived from the bulk Hamiltonian, it counts the
number of topological states with energy inside the gap which arise on
each edge of the system; this unique property of topological insulators is
called bulk-edge correspondence.

In Sec. II.1, we review the properties of the 1D topological insulators
protected by chiral symmetry: we give the definition of the associated
topological invariant, the winding number (SubSec. II.1.2) and we com-
pute it for a concrete model, the celebrated SSH model (SubSec. II.1.3).
Finally, we give the definitions of Berry-Zak phase (SubSec. II.1.4) and of
bulk polarization for a band insulator (SubSec. II.1.5).

In Sec. II.2, we review the Integer Quantum Hall effect (IQHE) on the
lattice: we give the definition of Chern number and outline its relation
with the quantized Hall conductivity (SubSec. II.2.2) and with the normal-
ized density of particle (SubSec. II.2.3). Finally, we consider a system with
cylindrical boundary conditions (periodic along one direction and open
along the other) and topological edge states (SubSec. II.2.4).
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II.1 1D chiral-symmetric systems

II.1.1 Chiral symmetry and nonspatial discrete symmetries

Figure II.1: SSH model. The SSH model [100] is the simplest 1D chi-
ral model. It describes non-interacting electrons hopping along the poly-
acetylene chain. Each cell of the chain is composed of two sites A and B.
The dynamics of the electrons is described to a very good approximation
by a tight-binding model with staggered tunneling a and b, see Eq. (II.12).

In this section, we review the properties of 1D topological Hamiltoni-
ans with chiral symmetry (CS) [84]. An Hamiltonian is chiral-symmetric, if
there exists an hermitian and unitary operator Γ, such that Γ2 = 1, which
anticommutes with it:

ΓHΓ−1 ≡ ΓHΓ = −H. (II.1)

Equation (II.1) has a remarkable consequence: in a chiral system one may
always identify two intertwined sublatticesA andB, of equal length. Each
unit cell of the lattice containsD sites, withD even: D/2 sites belong to A
and D/2 to B; the Hamiltonian swaps them. We call canonical basis the
eigenbasis of the chiral operator, where it takes the form:

Γ =

(
I 0
0 −I

)
. (II.2)

If we denote the eigenstates of the Bloch Hamiltonian in the canonical
basis by |ψj(k)〉, with j = ±1, . . . ,±D/2, and the corresponding energies
by Ej(k) (with Ej(k) > 0 for j > 0), then Γ|ψj〉 = |ψ−j〉, with E−j = −Ej ;
namely, the eigenstates of chiral systems appear in chiral-partners pair.
We can write Γ in terms of partial chiral operators:

Γ =

D/2∑
j=1

Γj =

D/2∑
j=1

|ψj〉〈ψ−j |+ |ψ−j〉〈ψj |. (II.3)

Together with the chiral symmetry, other two nonspatial discrete sym-
metries, the time-reversal symmetry (TRS) and particle-hole symmetry
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(PHS), allow for a topological classification of the gapped non-interacting
Hamiltonians according to the celebrated periodic table of topological in-
sulators and superconductors [14, 3]. For example, a 1D chiral-symmetric
system of spinless non-interacting particles belongs to the AIII class if it
has no other discrete symmetries, or to the BDI class if it has also TRS and
PHS.

An Hamiltonian is time-reversal-symmetric if it commutes with a anti-
unitary operator T = τK, where τ is a unitary operator and K is the
complex conjugation. The complex conjugation K acts in real space as
Kf(r) = f∗(r)K and in quasi-momentum space as Kg(k) = g∗(−k)K. A
time-reversal-symmetric Hamiltonian verifies:

T HT −1 ≡ τH∗τ † = H. (II.4)

T 2 gives either 1 or −1. In particular systems of particles with odd-half-
integer spin have T 2 = −1, while systems of particles with integer spin (or
spinless) have T 2 = 1 [3].

An Hamiltonian is particle-hole symmetric if it anticommutes with a
anti-unitary operator P = PK, where P is a unitary operator and K the
complex conjugation:

PHP−1 ≡ PH∗P † = −H. (II.5)

If ψj is an eigenstate of a particle-hole symmetric non-interacting Hamil-
tonian of eigenvalue Ej , its particle-hole reversed partner, P|ψj〉 = |ψ−j〉
is still an eigevector of energy−Ej , [3]. P2 gives either 1 or−1.

A chiral operator can be found as combination of a particle-hole and
a time-reversal operator, Γ = T P . Therefore, an Hamiltonian can possess
either just one or the complete set of symmetries.

II.1.2 Winding number

The topological invariant characterizing 1D chiral systems is an integer
called winding numberW . According to the bulk-edge correspondence,
the number of edge states on each edge is equal to |W|. The winding num-
berW may be found in various equivalent ways, starting from either the
Hamiltonian with periodic boundary conditions, or its eigenstates. In this
subsection we give three equivalent definitions of it.

Let us consider a non-interacting tight-binding Hamiltonian on a lat-
tice of N unit cells and D sites per unit cell. We will only consider the
case where D is even, else chiral model necessarily present flat bands at
zero energy. For the chiral symmetry, D/2 sites per unit cell belongs to
the sublattice A andD/2 to the sublattice B. In the canonical basis, where
the chiral operator takes the form (II.2), the Hamiltonian has a completely
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block-off-diagonal form

H =

(
0 h†

h 0

)
. (II.6)

W can be found in terms of the winding of the lower-left block h of
the off-diagonal Hamiltonian [84], for simplicity, unless explicitly needed,
from now on we will often drop momentum indices:

W =

∮
dk

2πi
Tr[h−1∂kh] =

∮
dk

2πi
∂k log[Det(h)] (II.7)

=

∮
dk

2π
∂k arg[Det(h)] =

D/2∑
j=1

∮
dk

2πi
∂k log hj ,

where {hj} denote the complex eigenvalues of the matrix h. We have im-
plicitly assumed that the Hamiltonian is gapped at zero energy, so that
both H and h are invertible, and we have used the fact that the integral of
the derivative of a continuous and periodic function is zero over a com-
plete period. The winding of the model is therefore given by the cumu-
lative winding of all eigenvalues of h around the origin of the complex
plane.

Equivalently, one may compute W using the flat-band Hamiltonian,
the Q-matrix [3]. This is defined as the difference between the projector
on the eigenstates of positive energy, minus the one on the states of neg-
ative energy,

Q =

D/2∑
j=1

Qj =

D/2∑
j=1

Pj − P−j , (II.8)

where Pj = |ψj〉〈ψj |, with j = ±1, . . . ,±D/2, are the projectors on the
Bloch Hamiltonian’s eigenstates. The Q-matrix has the following prop-
erties: (i) it is Hermitian and unitary, (ii) it satisfies Q2 = I, so that its
eigenvalues are simply λQ = ±1, (iii) it is diagonal in any basis of eigen-
vectors ofH , (iv) once expressed in the canonical basis, it becomes block-
off-diagonal,

Q =

(
0 q†

q 0

)
, (II.9)

with q unitary.
W can be extracted from the winding of q,

W =

∮
dk

2πi
Tr[q−1∂kq] =

∮
dk

2π
∂k arg[Det(q)]. (II.10)

The last equality may be simply demonstrated writing q =
√

Det(q)u, so
that u ∈ SU(2), and exploiting the fact that the winding of any SU(2) ma-
trix is zero
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Alternatively, as discussed in Ref. [101], the winding may be identified
with a bulk observable called skew polarization S =

∑
j∈occ. Sj ,

W =

∮
dk

π
S(k). (II.11)

The quantity Sj = i〈Γψj |ψ′j〉 (with |ψ′j〉 ≡ ∂k|ψj〉) may be shown to be a
purely real number, and occ. denotes the set of occupied bands (i.e., of
negative energies). From these definitions, it is clear that the winding is
not a property of a single band, but rather of theD/2 negative (or positive)
energy bands, which all contribute to its value.

Chiral symmetric chains have been simulated with cold atoms [63, 49]
and photonic architectures [76, 86], and their topological properties have
been witnessed through the observation of edge states [76, 49] or the di-
rect measure of the invariant [63, 86].

II.1.3 The SSH model

The simplest 1D chiral model is the one introduced by Su, Schrieffer and
Heeger (SSH) to provide an effective model for a single electron moving
along the polyacetylene chain [100]. It is a tight-binding model with stag-
gered tunnelings, so that the unit cell is composed of two sites (i.e., it has
internal dimensionD = 2), see Fig. II.1.

H =
∑
n

[
ac†nσxcn + b

(
c†n+1

(σx − iσy)
2

cn + h.c.
)]

, (II.12)

where c†n = (c†n,A, c
†
n,B) creates a particle at unit cell n in sub-lattice site

A or B, cn is the corresponding annihilation operator, and σi are the Pauli
matrices. The a and b characterize the intra- and inter-cell tunneling en-
ergies. It is straightforward to see that the SSH Hamiltonian possesses also
time-reversal and particle-hole symmetries squaring to 1 and therefore it
belongs to the BDI topological class [84].

We can consider an infinite chain and pass to the quasi-momentum
space. For each value of k, the Bloch Chiral operator is σz. In the eigen-
basis of σz, the Bloch Hamiltonian (II.6), and the Q-matrix (II.9) take an
off-diagonal form. We will have h = a + beik, and q = h/|h|, so that
arg h = arg q. As k traverses the Brillouin zone from 0 to 2π, both complex
numbers h and q wind once in the positive (counter-clockwise) direction,
so that the winding number computed using Eq. (II.7) and (II.10) is either
0 or 1, depending on whether these circles enclose or not the origin, see
Figure II.2(b). We can compute the winding number also using the skew
polarization (II.11). The normalized eigenvectors, which are also chiral
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Figure II.2: Energy dispersion and winding number of the SSH model.
a. Energy dispersion of the Bloch Hamiltonian for different values of the
hopping ratio b/a, from left to right b/a = 0.6, b/a = 1, b/a = 1.4. The
spectrum is gapped in both the topological phases and gapless at the tran-
sition. b. Winding number of the SSH model. The three definitions of
the winding number (II.7), (II.10) and (II.11) coincide in predicting for the
SSH model a non-trivial phase (W = 1) when the intra-cell hopping a is
smaller that the inter-cell one b. The insets display the winding of h(k)
varying k, namely the value of h(k) = a+ beik in the complex plane, as k is
varied between 0 (blue) to 2π (white), for b/a = 0.6 (left side) and b/a = 1.4
(right side). In the trivial phase, whenW = 0, the winding of h(k) does not
enclose the origin, in the non-trivial one (W = 1), it encloses it.

partners, are |ψ±〉 = 1√
2

(√
a2+2ab cos(k)+b2

a+beik
,±1

)
, and W =

∮
dk
π i〈ψ+|ψ′−〉

equals either 0 or 1. All methods above therefore coincide in predicting
for the SSH model a non-trivial phase (W = 1) when the intra-cell hop-

18



0.0 0.5 1.0 1.5 2.0

-3

-2

-1

0

1

2

3

b/a

E
/a

(a)

0.0 0.5 1.0 1.5 2.0

-3

-2

-1

0

1

2

3

b/a

E
/a

(b)

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0

Figure II.3: Bulk-edge correspondence in the SSH model. a. Energy
spectrum with open-boundary conditions on a lattice of 2N+1 = 201 cells
varying the hopping ratio b/a. The color coding of the spectrum indicates
the degree of localization log10(1−|〈m̂〉)|/N) of each eigenstate on the two
edges x = −N , x = N ; light (dark) colors indicate bulk (edge) states. The
red dashed line passing through the point b = a corresponds to the phase
transition from trivial (W = 0) to topological (W = 1). b. We have added
a chiral-preserving disorder with amplitude ∆ = 0.6 (see text for details)
showing that the edge states are topologically protected.

ping a is smaller that the inter-cell one b. The distinction between intra
and inter-cell hopping depends on the choice of the unit cell and then it
has a physical meaning only when the SSH chain is cut. The energy spec-
trum in the bulk of the SSH model, for b 6= a, is gapped around E = 0,
see Fig. II.2(a); when the chain is cut in such a way that b > a, the en-
ergy spectrum exhibits two eigenstates of energy E = 0 exponentially lo-
calized on opposite edges and opposite sublattices, while, when a > b,
there are no edge-states in the gap of the spectrum, see Fig. II.3. Thus, the
winding number predicts correctly the number of states on each chain’s
edge according to the bulk-edge correspondence. The edge-states are ro-
bust against disorder since they survive as long as the winding number
remains unchanged, that means as long as the energy gap remains open.
In Fig. II.3(a), we show the energy spectrum of the SSH model with open
boundary conditions in both the trivial and non-trivial phases, in this lat-
ter, localized edge-states with zero energy are visible. In Fig. II.3(b), we
show the energy spectrum when a chiral-preserving spatial disorder is
added: the hoppings of the Hamiltonian are multiplied by a factor (1 + ε),
where ε is a random number in the range [−∆/2,∆/2] with ∆ = 0.6. It
is clear that, whereas the zero energy edge-states remain unaffected, the
unprotected bulk states change their energy when disorder is applied.
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II.1.4 Berry-Zak phase

The Berry-Zak phase γ [102, 10] is a fundamental concept, ubiquitous in
the study of the topological matter. It appears in the adiabatic motion of
a particle, is the phase accumulated by the Hamiltonian eigenstates dur-
ing their parallel transport through the Brillouin zone. Differently from
what happens in most of the systems, where the global phase factor of a
wave function has no physical meaning, this phase can be observed as in
the Aharanov-Bohm effect [103]. More recently, various works have pro-
posed [64, 65] and experimentally realized [63, 66] the observation of this
phase.

Let H(R) be an Hamiltonian which depends smoothly on N param-
eters, Ri(t), 1 ≤ i ≤ N . The states |n(R(t))〉, multiplied by an arbitrary
phase factor, are its instantaneous eigenvectors, satisfying at each time t,
the relation:

H(R(t))|n(R)〉 = En(R)|n(R)〉. (II.13)

During the time t → T , each parameter R defines a continuous curve C
and |n(R)〉 is smooth along C. Let us assume that at t = 0 the system’s
state is |ψ(t = 0)〉 = |n(R0)〉, with R0 = R(t = 0). The state of the system
evolves according to the time-dependent Schrodinger equation:

i
d

dt
|ψ(t)〉 = H(R(t))|ψ(t)〉. (II.14)

In the adiabatic approximation, the variation of R(t) along C is slow com-
pared to the frequencies corresponding to the energy gaps |En(R)−En±1(R)|,
and then the system remains in the energy eigenstate |n(R)〉 only picking
up a phase:

|ψ(t)〉 = eiφn(t)e−i
∫ t
0 En(R(t′)))dt′ |n(R(t))〉. (II.15)

Putting Eq. (II.15) in Eq. (II.14) and projecting on |n(R)〉, we find:

φn =

∫
C
i〈n(R)|∂R|n(R)〉dR. (II.16)

i〈n(R)|∂R|n(R)〉 is called Berry connection and is denoted asA(n)(R) [10].
A(n) is not a gauge invariant quantity, and therefore γn in general is not

gauge invariant unless C is a closed path. If C is a closed line, Eq. (II.16)
gives the Berry phase:

γn = i

∮
dR〈n(R)|∂R|n(R)〉. (II.17)

When the slowly varying parameter R is the quasi-momentum k, and the
integral in Eq. (II.17) is taken over the Brillouin zone, the Berry phase is
called Zak phase [104]. In a chiral-symmetric Hamiltonian, the Zak phase
is equal toWπ modulo 2π.
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II.1.5 Bulk polarization and Zak phase

A physical manifestation of the Zak phase is the bulk polarization of a
band insulator [105, 10]. The polarization of a neutral molecule is de-
fined as the difference between the centre of mass’ positions of nega-
tive and positive charges. According to this definition, the bulk polariza-
tion of a band insulator with a fully occupied valence band, is simply the
mean position of the centre of the negative charges. This quantity can-
not be found straightforwardly working in the basis of the energy eigen-
states, since these latter are Bloch waves delocalized over all the bulk. One
has to use a complete orthonormal set of localized states, the Wannier
states [106, 107, 105].

In the simple case of a 1D insulator with only one occupied band,
the bulk polarization is the Zak phase of the occupied band divided by
2π, [107, 105]. For each quasi-momentum k in the Brillouin zone, the en-
ergy eigenstates are Bloch functions:

|Ψi(k)〉 = |k〉 ⊗ |ψi(k)〉 =
1√
N

N∑
m=1

eiα(k)eimk|m〉 ⊗ |ψi(k)〉, (II.18)

where |ψi(k)〉 are the eigenstates of the Bloch Hamiltonian, i is the band
index and α(k) is an arbitrary phase factor. We can omit the band index i
since we are considering the case in which only the lowest band is occu-
pied.

The Wannier states |w(j)〉 should fulfill the following set of properties:

• 〈w(j)|w(j′)〉 = δjj′

• ∑N
j=1 |w(j)〉〈w(j)| = ∑k∈B.Z. |Ψ(k)〉〈Ψ(k)|

• 〈m+ 1|w(j + 1)〉 = 〈m|w(j)〉

• 〈w(j)|m〉〈m|w(j)〉 < e−|j−m|/ξ, with ξ some finite localization length.

We can find such a wave-function performing the inverse Fourier trans-
form of the Bloch function of the occupied band,

|w(j)〉 =
1√
2π

∮
dke−ijkeiα(k)|Ψ(k)〉, (II.19)

and setting α(k) in order to make them as localized as possible. In the
thermodynamic limitN →∞, the average position of a Wannier state can
be calculated easily writing the position operator in quasi-momentum
space m̂ = i∂k:

〈w(j)|m̂|w(j)〉 =
i

2π

∮
dk〈ψ(k)|∂kψ(k)〉+ j. (II.20)
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This equation shows that the centre of each Wannier state is given by the
position of the lattice cell where it is exponentially localized, plus the Zak
phase of the occupied band divided by 2π. The bulk polarization is simply
the sum of the centres of the Wannier states for j ∈ [−N/2, N/2] divided
byN , hence, it corresponds to the Zak phase of the occupied band in units
of 2π.

II.2 The Integer Quantum Hall effect

Discovered in the 80s [7], the integer quantum Hall effect constitutes a
paradigmatic example of topological insulating phase of matter [6]. When
a magnetic field is applied on a 2D semi-conductor at very low tempera-
ture, the transverse conductivity, Hall conductivity, inside the energy gaps
is quantized. Its value is proportional to the bulk topological invariant,
the total Chern number of the occupied energy bands [8]. The system is
thus very robust against perturbations: while the gap is open, the Hall
conductivity remains the same. Finally, for a system with boundaries,
topologically protected current-carrying edge-states arise, their number
is proportional to the total Chern number (bulk-edge correspondence), as
it has been demonstrated in the seminal papers [11, 12, 13]. The IQHE has
been experimentally observed in the last years in a multitude of synthet-
ically engineered systems such as atomic [22, 23], superconducting [108],
photonic [24] and acoustic platforms [109, 110, 111].

II.2.1 Integer Quantum Hall effect on the lattice: the Hofstadter
model

The Hofstadter Hamiltonian [9] has been used to describe the Integer
Quantum Hall effect by Thouless, Kohmoto, Nightingale, and den Nijs in
the celebrated TKNN paper [8]. It is a tight-binding model of spinless elec-
trons on a square lattice pierced by a uniform magnetic field, see Fig. II.4:

H = −tx
∑
〈j,k〉x

eiθjkc†kcj − ty
∑
〈j,k〉y

eiθjkc†kcj , (II.21)

where the first summation is taken over all the nearest-neighbour sites
along the x direction and the second sum along the y direction, and the
lattice spacing is set to one. The phase factor θjk is called the Peierls phase
factor and is defined on a link as:

θjk =
e

~

∫ rk

rj
A · dl, (II.22)

where A is the vector potential. The sum of the Peierls phase factors on
a plaquette is equal to the magnetic flux per plaquette φ in units of the
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Figure II.4: Hofstadter model. The Hofstadter model [9] is a tight-
binding model of spin-less electrons on a square lattice pierced by a uni-
form magnetic field, the lattice spacing is taken to be unity. The phase
factor θjk is the Peierls phase factor defined on a link and represents the
magnetic flux through the lattice plaquette. We chose a gauge in which
this phase only enters the hopping along y. The magnetic flux per plaque-
tte is a rational number p/q, this defines a magnetic super-lattice made of
q cells in the x direction and one in the y direction.

magnetic flux quantum φ0 = ~/e, φ =
∑

plaquette θjk. We can write the
vector potential in the Landau gauge: A = BxIy. Hence, θjk = 0 for the
links along x, and θj,k = 2πxφ for the link between (j, k) and (j, k + 1)
along y. For a rational magnetic flux φ = p/q, the system is periodic over
super-cells made by q cells in one direction (x) and one cell in the other
(y). Thus, we can still write the eigenvalues problem for the Hamiltonian
with periodic boundary conditions in terms of Bloch functions ψk(r) =
eik·ruk(r), obtaining the equation known as Harper equation [112] for each
discrete position x from 0 to q:

Ekuk(x) = −txeikxuk(x+ 1)− txe−ikxuk(x− 1)− 2ty cos(2πxφ+ ky)uk(x).
(II.23)

For tx and ty 6= 0, the energy spectrum is made by q bands.

II.2.2 Chern number and Hall conductivity

In SubSec. II.1.4, we considered a Hamiltonian with a periodic depen-
dence from a slowly varying parameter R which, during a period T , de-
fines a closed curve C. For an energy band separated from the other bands
by a finite gap, we defined the Berry connection of the n-th band as the
vectorA(n)(R) = i〈n(R)|∂R|n(R)〉, where |n(R)〉 is the eigenvector of en-
ergy En. In 2D, starting from the Berry connection, we can define a gauge
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invariant pseudo-vector:

Ω(n)(R) = ∇R ×A(n)(R). (II.24)

The second-rank tensor Ωµν , related to the pseudo-vector above through

the Levi-Civita tensor Ω
(n)
µν = εµνξΩ

(n)
ξ , is called Berry curvature [10]. When

the parameter R is the quasi-momentum k which varies on the Brillouin
torus, the Berry curvature of the n-th band reads:

Ω(n)
xy (k) = −i

(
〈∂kxu

(n)
k |∂kyu

(n)
k 〉 − 〈∂kyu

(n)
k |∂kxu

(n)
k 〉
)
. (II.25)

The Chern number of the n-th band is defined as:

ν(n) =
1

2π

∫
BZ

dkΩ(n)
xy (k), (II.26)

where
∫
BZ dk is the integral over the Brillouin torus. The Chern number is

an integer topological number: it keeps its value under continuous defor-
mations of the band, as long as the gap separating it from the others does
not close [10].

Following the proof given in the TKNN paper [8], one can use the Kubo
formula to compute the Hall conductivity σH ≡ σxy. When the system is
at zero temperature and the Fermi energy is in an energy gap, the Kubo
formula gives:

σH ≡ σxy =
2~e2

(2π)2

∑
Ei<EF ,Ej>EF

∫
BZ

dk
Im[〈uik|vx|u

j
k〉〈u

j
k|vy|uik〉]

(Ei(k)− Ej(k))2
(II.27)

=
2e2

(2π)2~
∑

Ei<EF ,Ej>EF

∫
BZ

dk
Im[〈uik|∂kxHk|ujk〉〈u

j
k|∂kyHk|uik〉]

(Ei(k)− Ej(k))2
,

where we implicitly used the equality v = 1
~∇kH(k). Using the identity:

∑
Ei<EF ,Ej>EF

Im[〈uik|∂kxHk|ujk〉〈u
j
k|∂kyHk|uik〉]

(Ei(k)− Ej(k))2
= (II.28)

Im
∑
i∈occ.

〈∂kxu
(i)
k |∂kyu

(i)
k 〉 = −1

2
Ω(i)
xy(k),

we find:

σH =
e2

h

∑
i∈occ.

ν(i). (II.29)

Hence, when an external electric fieldEy acts on n filled bands of elec-
trons, the transverse (Hall) current density follows the linear relation:

jx = Eyσyx =
e2

h
Ey

n∑
i=0

ν(i) =
e2

h
EyV(n), (II.30)
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where V(n) is the total Chern number of the first n bands.
This Hall response is robust while the gap remains open; for example,

it does not change under small changes of the magnetic flux. This is the
origin of the plateaus in the plot of the Hall conductivity versus the mag-
netic field which benchmark the IQHE [7].

II.2.3 Hall conductivity and the normalized density of particle

We can relate the Hall conductivity with the normalized density of par-
ticles of the Hofstadter model through a purely geometrical considera-
tion [113]. However, this result is very general as it applies to all the Chern
insulators with a fixed number of particles [114]. The label r of the r-th
energy gap and the integers p and q giving the magnetic flux per plaquette
φ are linked by a Diophantine equation:

r = ptr + qsr, (II.31)

where 0 ≤ r < q, tr and sr are integers and |tr| < q
2 . For a system with

a fixed number of particles and r filled bands, the normalized density of
particles is given by the number of filled bands divided by the total num-
ber of bands, i.e. Nr = r

q , hence:

Nr = φtr + sr. (II.32)

The Streda formula [115] predicts the response of the density of parti-
cles of the system to small changing of the perpendicular magnetic field:

σH =
e2

h

∂N
∂B

. (II.33)

Then Eq. II.32 reads
Nr = φV(r) + sr. (II.34)

Figure II.5 shows the Hofstadter butterfly [9], namely the projection
of the energy spectrum of the Hofstadter model with periodic boundary
conditions for different values of the rational magnetic flux φ = p/q in
the range [0, 1]. This plot exhibits a fractal structure of the energy gaps.
The Hall conductivity is quantized and constant inside each gap, we used
Eq. (II.34) to compute its values and we associated to each value a color in
a scale going from blue to red.

II.2.4 Hofstadter model on the cylinder

If we consider the Hofstadter Hamiltonian on a cylinder, i.e. with peri-
odic boundary conditions along y and open boundary conditions along x,
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Figure II.5: Hofstadter butterfly. Energy spectrum (projection) of the
Hofstadter model within periodic boundary conditions changing the flux
per plaquette φ, for tx = ty = 1. The plot shows a fractal structure with
energy gaps, the transverse conductivities inside the gaps are quantized,
their values have been computed using Eq. (II.34) and are associated with
a colour going from blue to red.

states with energy laying in the gaps of the bulk energy spectrum arise on
each edge; their number is equal to the total Chern number of the filled
bands. This bulk-edge correspondence can be understood with the so-
called Thouless’ pump argument [13]. In a cylindrical configuration, the
effect of a constant electric field Ey is to shift the quasi-momentum ky,
since k̇y =

−eEy
~ . It works as a periodic pump which in a period T = 2π

e|Ey |
pushes across the bulk region a number of electrons equal to the total
Chern number. Figure II.6 shows the energy spectrum of the Hofstadter
Hamiltonian with φ = 1/5 and with periodic boundary conditions on y
and open boundary conditions on x (cylindrical geometry) while shifting
ky from 0 to 2π. Since φ = 1/5, the spectrum is made of 5 energy bands;
the total Chern number under the n-th gap, V(n), counts the number of
edge-states crossing the gap during the pumping cycle. The sign of V(n)

corresponds to the chirality of the modes on one edge, i.e. the sign of their
group velocity. Let us consider the Harper equation (II.23) with cylindri-
cal boundary conditions, and let us replace the quasi-momentum com-
ponent ky with a parameter ξx called phason varying in the same range
[0, 2π]. We get a family of Hamiltonians labelled by ξx:

H(ξx) =
∑
x

[
tc†xcx+1 + h.c.+ λ cos(2πφx+ ξx)c†xcx

]
. (II.35)
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Figure II.6: Spectrum of the Hofstadter model on a cylinder. Energy
spectrum of the Hofstadter Hamiltonian with periodic boundary condi-
tions on y and open boundary conditions on x. The rational flux is fixed
to φ = 1/5, tx = ty = 1 and the number of cells in the x direction is
2Nx + 1 = 401. The color of each energy value indicates the degree of lo-
calization of the corresponding eigenstate ψ on the edges x = −Nx (dark
blue) and x = Nx (red), i.e. the value of the function log10[1 − 〈x̂〉ψ]/Nx.
The integers labelling the gaps are the total Chern numbers of the bands
below. In agreement with the bulk-edge correspondence, they count cor-
rectly the number of edge-states (for each edge) which traverse the corre-
sponding gap during the pumping.

The energy spectrum of each H(ξx) is gapped but, exactly as the origi-
nal 2D Hamiltonian, it does not posses any discrete nonspatial symme-
try. While in 2D, the absence of symmetries corresponds to the topo-
logical Chern class, in 1D, it corresponds to the topological triviality [3].
Then the single H(ξx) is topologically trivial, but the union of the H(ξx)
for all the values of ξx in the period is topologically non-trivial: the topo-
logical invariant associated to this family of Hamiltonians is the Chern
number of the corresponding 2D system. In Refs. [116] and [117], it is
demonstrated that when the parameter φ in Eq. (II.35) is incommensu-
rate with the lattice length, for example when φ is an irrational number,
the integration over all the values of ξx is not needed and one can as-
sociate the same Chern number to every H(ξx) in the family. The fact
that φ is incommensurate with the lattice length makes the system quasi-
periodic, namely a quasi-crystal (QC). Equation (II.35) with an irrational
φ is known as Aubry-Andrè quasi-crystal (AAQC) [118]. If edges are intro-
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duced in such a system, topologically protected edge states arise. Chang-
ing adiabatically the parameter ξx these modes cross the energy gaps. In
Ref. [116], this phenomenon has been observed in a AAQC implemented
with an array of optical fibers. Another quasi-crystal is the celebrated Fi-
bonacci quasi-crystal (FQC) [119]; interestingly, the AAQC and the FQC
have been proven to be topologically equivalent [120].
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III

Detecting the winding number
in the bulk of a 1D chiral model

In this chapter we present a method to extract the winding numberW of
a 1D chiral-symmetric non-interacting system from the free bulk dynam-
ics of the single particle. We find thatW emerges in the long time limit of
an observable, the mean chiral displacement (MCD), measured over ini-
tially localized states. This detection requires no precise knowledge about
the Hamiltonian’s details (apart from the fact that it is chiral symmetric),
and it simply relies on the detection of the average position of the parti-
cle’s wavepacket within each sublattice. Our detection method does not
require any kind of external intervention on the system, such as interfer-
ometric architectures [63, 66, 64, 65], introduction of losses [85, 86, 87],
or scattering measurements [68] and it does not require the access to the
system’s edges [76, 49]. This feature makes this method suitable in simu-
lation platforms where the chiral lattice is encoded in a degree of freedom
which has no physical edges, as for example in Ref. [71].

In Sec. III.1, which is based on Ref. [83], we derive our result in the
case of an infinite, clean, chiral system with an arbitrary (even) number of
sites per unit cell: we demonstrate the relation between MCD and wind-
ing number analytically in terms of spectral projectors written in quasi-
momentum space. In SubSec. III.1.2, and III.1.3, we apply our method to
two models extracting their winding numbers from the numerical simu-
lations of their dynamics. All the figures of this section are adapted from
Ref. [83].

In Sec. III.2, we show that the MCD detects the winding number also
in systems with a strong chiral-preserving disorder. In SubSec. III.2.1, we
derive the relation between MCD and winding number in presence of dis-
order. In SubSec. III.2.2, we present the experiment reported in [50]; here
the MCD measurement has been used to detect a signature of the topo-
logical Anderson insulating phase (TAI) in a disordered chiral-symmetric
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wire simulated with ultra-cold atoms. All the figures in this subsection are
adapted from Ref. [50].

III.1 Detection of the winding number in translation-
ally invariant systems

III.1.1 Winding number and mean chiral displacement in quasi-
momentum space

Let us consider a non-interacting tight-binding chiral Hamiltonian on a
lattice of N unit cells, and D (even) sites per unit cell. We describe a
particle moving in such a system using as basis a set of localized wave-
functions:

|ψj〉 =

∮
dk√
2π
|ψj〉, (III.1)

where |ψj(k)〉 are the eigenstates of the Bloch Hamiltonian with j = ±1, . . . ,
±D/2. The generic state written in this basis reads:

|Ψ〉 =
∑
j

cj |ψj〉 =
∑
j

cj

∮
dk√
2π
|ψj〉 =

∮
dk√
2π

∑
j

cj |ψj〉 =

∮
dk√
2π
|Ψ〉,

(III.2)

where cj are complex coefficients which do not depend on k. Comparing
expression (III.1) with (II.19) it is clear that |ψj〉 are Wannier functions lo-
calized in the central site of the lattice, m = 0, with a particular choice of
the phase α(k), namely α(k) = 0 for all values of the quasi-momentum k.
In the following demonstrations, we will use a particular subclass of these
localized functions, the chiral localized states |Γj〉:

|Γj〉 =
sgn(j)|ψj〉+ |ψ−j〉√

2
=

∮
dk√
2π
|Γj〉. (III.3)

These states are eigenstates of the partial chiral operator, Eq. (II.3), such
that Γj |Γj′〉 = δjj′sgn(j)|Γj〉. The average value of the partial Q operator,
Eq. (II.8), evaluated on them yields 〈Qj〉Γj′ = 0.

We now introduce the position operator m̂ (where the integersm label
whole unit cells, as shown in Fig. III.1), and the chiral position operator
Γ̂m ≡ Γm̂. From now on we will set to unity the length of the unit cell.
The position operator in momentum space is represented as usual by a
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derivative,

〈k|m̂|k̃〉 =
∑
m,m̃

〈k|m〉〈m|m̂|m̃〉〈m̃|k̃〉 (III.4)

=
∑
m,m̃

mδ(m− m̃)
ei(k̃m̃−km)

2π
= i∂k

∑
m

ei(k̃−k)m

2π
= i∂kδ(k̃ − k).

The average displacement at time t for a particle starting from the state
|Ψ〉 is given by:

〈m̂(t)〉Ψ =

∮
dk

2π
〈U−t(i∂k)U t〉Ψ =

D/2∑
j=1

∮
dk

2π

{
t∂kEj〈Qj〉Ψ (III.5)

+ Sj sin(2tEj)〈iQjΓj〉Ψ − Sj [1− cos(2tEj)]〈Γj〉Ψ
}

+

D/2∑
j,j′=−1 and |j|6=|j′|

∮
dk

2π
i〈ψj |ψ′j′〉〈Ψ|ψj〉〈ψj′ |Ψ〉eit(Ej−Ej′ ),

where U t ≡ e−iHt is the unitary evolution operator, U−t ≡ eiHt is its in-
verse and Sj is the skew polarization introduced in SubSec. II.1.2. The
explicit derivation of Eq. (III.5) is given in App. VI.1.1. When evaluated on
the chiral localized states |Γj〉, the mean displacement reduces to

〈m̂(t)〉Γj = −sgn(j)

∮
dk

2π
Sj [1− cos(2tEj)]. (III.6)

Let us now define the chiral average displacement as:

〈Γ · m̂(t)〉Ψ ≡
∮

dk

2π
〈ΓU−t(i∂k)U t〉Ψ =

∮
dk

2π
〈U tΓ(i∂k)U

t〉Ψ, (III.7)

and the mean chiral displacement as:

〈Γ̂m(t)〉Ψ ≡
∮

dk

2π
〈U−tΓ(i∂k)U

t〉Ψ. (III.8)

Using Eq. (III.6), we find that, in the long-time limit, 〈Γ · m̂(t)〉Γj , when
summed on the chiral localized states with j > 0, converges to minus one
half of the winding numberW (see App. VI.1.2 for details):

D/2∑
j=1

〈Γ · m̂(t)〉Γj =

D/2∑
j=1

〈m̂(t)〉Γj =

D/2∑
j=1

∮
dk

2π
Sj [−1 + cos(2tEj)] (III.9)

= −W
2

+

D/2∑
j=1

∮
dk

2π
Sj cos(2tEj) = −W

2
+ . . . .
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We find a similar result for 〈Γ̂m(t)〉Γj :

D/2∑
j=1

〈Γ̂m(t)〉Γj =

D/2∑
j=1

〈Γ̂m(t)〉ψj =

D/2∑
j=1

∮
dk

2π
Sj [1− cos(2tEj)] =

W
2

+ . . . ,

(III.10)
The expressions (III.9) and (III.10) are invariant under the change of j to
−j, as the skew polarization is invariant under such change. Therefore,
we can compute the traces over all theD chiral localized states:

−Tr[Γ·m̂(t)] = Tr[Γ̂m(t)] = 2

D/2∑
j=1

∮
dk

2π
Sj [1−cos(2tEj)] =W+. . . , (III.11)

As the trace does not depend of the choice of the basis, these results imply
that a trace taken on any set of D vectors forming a complete basis of the
unit cell will converge to the winding number W in the long time limit.
At topological critical points, the mean chiral displacement converges to
the average of the invariants computed in the two neighboring phases in
agreement with Ref. [121].

As we derive in App. VI.1.2, when D = 2, the contribution of the two
sub-lattice sites A(+) and B(−) is the same, and the trace of the mean
chiral displacement can be rewritten as:

C(t) = Tr[Γ̂m(t)] = 2〈Γ̂m(t)〉|ψ+〉 = 2

∮
dk

2π
i〈ψ+|ψ′−〉[1−cos(2tE)] =W+. . . ,

(III.12)
From now on, we will refer to the trace of the mean chiral displacement,
C(t) as to MCD.

In the following subsections, we will benchmark our method on two
concrete Chiral Hamiltonians. The first model is a direct generalization
of the SSH model with four sites per unit cell, and the second one is an
SSH model with staggered long-range hopping which possesses a richer
topological diagram with phases corresponding to winding numbers ±1,
0 and±2.

III.1.2 The SSH4 model

We now discuss an example of chiral model with D = 4. This model is
a direct generalization of the SSH model (Fig. III.1(a)), we will refer to it
as to SSH4. The SSH4 has a non-interacting Hamiltonian with nearest-
neighbour hoppings. As shown in Fig. III.1(b), the system is a Bravais
lattice with a four atom unit cell of sites A1, B1, A2, B2. The intra-cell
hoppings are a, b and c, the inter-cell hopping is d. The Hamiltonian
defines two sublattices, containing two sites each: A = {A1, A2}, and
B = {B1, B2}. Since the Hamiltonian contains no term acting within a
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(a) (b) (c)

Figure III.1: 1D chiral models. Sketch of the SSH (a), the SSH4 (b) and
the SSH model with staggered long range hoppings (c). Red and blue sites
belong respectively to the A and B sublattices, thin lines denote hoppings,
and the unit cells of the lattice are indexed by the integer m. The cor-
responding Hamiltonians are explicitly chiral, as these contain no term
coupling a sublattice directly with itself.

given sublattice, the model is chiral for arbitrary values of {a, b, c, d}. The
model belongs to class AIII when the tunnelings are complex numbers
and hence the TRS is broken, while it belongs to the more constrained
class BDI if all tunnelings are purely real [3]. We will for simplicity restrict
ourselves to the latter case, but note that our results hold for all 1D chi-
ral models, i.e., also for AIII ones, such as the one considered in Ref. [50].
Finally, note that for a = c and d = b, the SSH4 reduces to the usual SSH
model, shown in Fig. III.1(a). In the canonical basis {ψA1 , ψA2 , ψB1 , ψB2},
the Bloch Hamiltonian assumes the off-diagonal form

H(k) =

(
0 h†(k)

h(k) 0

)
=


0 0 a de−ik

0 0 b c
a b 0 0
deik c 0 0

 . (III.13)

The energy spectrum and the eigenvectors of the different bands may be
found analytically (see App. VI.1.3 for details). The corresponding wind-
ings are computed from Eq. (II.7), and by direct integration one findsW =
0 when ac > bd, andW = 1 when ac < bd. Figure III.2(a) shows the energy
spectrum for a = c = d and for different values of b. The gap closing ap-
pears at b = 1, as it is the case for the SSH model. Figure III.2(b) shows the
winding number in terms of b (solid line). The yellow and green dashed
lines are the separate contributions of the two pairs of chiral partners to
the total winding number. The separate contributions are not quantized,
but their sum is. Finally, the insets show parametric plots of the deter-
minant of h, which performs a circle in the complex plane as k traverses
the Brillouin zone. In the topological phase, the circle contains the origin
(right inset) whereas in the trivial phase the circle does not contain the
origin (left inset).
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Figure III.2: Spectrum and topology of the SSH4 model. a. Energy dis-
persions for a = c = d, and b/a = 0.4, 1, 1.6 (from left to right). The model
is in the trivial phase for bd < ac (W = 0, left), and in the non-trivial phase
for bd > ac (W = 1, right). At the critical point, the two central bands
touch at E = k = 0 (center). Eventual gap closings between the other
bands (such as the one visible in the central figure, at E/a ≈ ±π/2) have
no topological relevance for this model. b. Winding number for the SSH4

model with a = c = d, as a function of b/a. The yellow and green dashed
lines are the separate contributions of the two pairs of chiral partners to
the total winding number, respectively

∮
dk
π S1 and

∮
dk
π S2, while the blue

solid line is the actual winding number, given by their sum. The insets
display the value of the determinant of h(k) in the complex plane, as k is
varied between 0 (blue) to 2π (white).

Measuring the winding number of the SSH4 in real space

We simulate the dynamics of a finite system of 200 unit cells. We prepare
localized initial states at the center of the chain m = 0, and we let them
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Figure III.3: Traces of mean chiral and of chiral average displacements
of the SSH4 model. Parameters are chosen in the topological phase:
{a, b, c, d} = {1, 2.5, 0.3, 0.6}, so that bd > ac and W = 1. There are 2
completely superposed series of dots, showing the results of the two ob-
servables discussed in the text, and the blue line shows the analytical re-
sult, Eq. (III.11). The yellow line shows a sliding average of the data, which
rapidly converges to the expected value of 1.

evolve under the SSH4 Hamiltonian. In particular, we choose as initial
states two different bases of the internal space: the chiral basis, and an
arbitrary basis. At each time t, we compute (minus) the trace of the chiral
average displacement−Tr[Γ · m̂(t)] (Eq. (III.9)) on the chiral basis, and the
trace of the mean chiral displacement Tr[Γ̂m(t)] (Eq. (III.11)) on an arbi-
trary basis. With the choice of the unit cell {ψA1 , ψB1 , ψA2 , ψB2}, in real
space these operators are simply represented by the diagonal matrices
m̂ = diag(. . . , 1, 1, 1, 1, 2, 2, 2, 2, . . .) and Γ̂m = diag(. . . , 1,−1, 1,−1, 2,−2, 2,
−2, . . .).

Figure III.3 shows the results of the numerical simulations for the SSH4

model. The two traces in the different bases are superimposed (green
dots), and match perfectly with the theoretical curve (blue curve) given
in Eq. (III.11). In the figure we also show a sliding average of the data over
ten points (orange curve), which shows a smoother and quicker conver-
gence to the winding number.

Finally, let us note that the simplest procedure which yields the de-
sired result (the winding) is to follow Eq. (III.9) and take the sum of the
mean displacement measured over two orthogonal states which are com-
pletely localized on the central unit cell, and which form a complete basis
of the left sublattice (the one corresponding to the +1 eigenvalue of the
chiral operator). Minus two times this quantity will give the result plotted
in Fig. III.3. Explicitly, e.g., two states of the form Ψ̄a = (0, . . . , 0,1,0,0,0,
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0, . . . , 0) and Ψ̄b = (0, . . . , 0,0,1,0,0, 0, . . . , 0),where the four central num-
bers (marked in bold) indicate the amplitudes on the cell with coordinate
m = 0 in the basis where the chiral operator is (1, 1,−1,−1).

III.1.3 The SSH model with staggered long range hoppings

In this Section we wish to test the validity of our detection method us-
ing a system which exhibits a richer phase diagram (W = 0,±1, 2). To
this aim, we study a one-dimensional chiral Hamiltonian, which is a stan-
dard SSH model with staggered nearest-neighbor hoppings a and b, and
with additional staggered third-nearest-neighbor hoppings c and d (that
is to say, there is a hopping c between sites 1 and 4, d between sites 2 and
5, c between 3 and 6, and so on). The model is shown schematically in
Fig. III.1(c), and given its long-range character we refer to it as the LR-SSH
model.

The model can be written in momentum space when using a two-
atom unit cell. The corresponding Hamiltonian is a 2× 2 matrix,

HLR =

(
0 a+ be−ik + ceik + de−2ik

a+ beik + ce−ik + de2ik 0

)
. (III.14)

The windingW of this model equals +2, +1, 0, or -1. The topological
phase diagram with a = b is shown in Fig. III.4(a). As shown in Fig. III.4(b),
the long time limit of the trace of the mean chiral displacement detects
correctly the winding in all topologically distinct regions. In particular,
when c = d = 0, the model is at the critical point between the phases with
W = 0 andW = 1, recovering the expected SSH result, which is critical
when a = b. In this point, as in all other phase transitions, the mean chi-
ral displacement converges to the intermediate (integer, or half integer)
value between the windings of the neighboring phases (see dashed lines
in Fig. III.4(b)), as discussed in Ref. [121].

III.1.4 Possible experimental implementations

Various possible experimental scenarios may be envisaged to study chiral
models with large internal dimensions. For example, aD = 4 chiral model
with ultracold atoms may be implemented by means of a suitable super-
lattice as it has been proposed also in Ref. [122]. Three superposed opti-
cal lattices with lattice spacings λ/2, λ, and 2λ effectively realize an SSH4

model with two equal tunnelings. The three lattices may be obtained from
a single laser working at λlaser = 1064nm, which once retroreflected pro-
duces an optical potential with lattice spacing λ = λlaser/2. The λ/2 lattice
may be obtained by retroreflecting the frequency-doubled laser, while the
one at 2λ may be obtained by crossing two λlaser beams at a small angle.
Otherwise, the superlattice may be by directly imprinted with a spatial
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Figure III.4: Topology of the LR-SSH model. a. Winding numbers, with
a = b. b. Trace of mean chiral displacement computed for the values
of (c, d) indicated by the corresponding dot in the left figure. The three
dashed lines correspond to values of the parameters at the border be-
tween two phases, where the model is critical; in these cases, the observ-
able remarkably converges to the average of the corresponding invariants.

light modulator (SLM) or with a digital mirror device (DMD). Driven mod-
els may be realized by periodically pulsed Hamiltonians, such as the one
discussed, e.g., in Ref. [44]. Another suitable platform is the synthetic wire
implemented in the space of the discrete momentum of a Bose-Einstein
condensate in an optical lattice [49, 48, 50] which we will describe in fur-
ther detail in the following section. In a photonic setting, we envisage
to use a lattice of evanescently coupled optical wave-guides, where the
different hopping amplitudes correspond to different distances between
the wave-guides [24]. Finally, the SSH4 model may be implemented in
exciton-polariton experiments, by a slight modification of the approach
used by the group of A. Amo in Ref. [123].

III.2 Detection of the winding number in disordered
systems

III.2.1 Winding number and mean chiral displacement in real
space

So far we have dealt with translationally invariant systems where the wind-
ing number is simply calculated in momentum space using the Bloch
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wavefunctions of the energy bands as derived in SubSec. II.1.2. In the
presence of disorder, where translational symmetry is broken, the wind-
ing number must be computed in real space. A method to derive the
winding in real space, valid with periodic boundary conditions, is pre-
sented in Ref. [124] and references therein. Here we present an alternative
one which can be used also with open boundary conditions. After having
derived the winding in real-space for a disordered system, we will derive
the MCD and we will prove that these two quantities are still equal in the
long-time limit. From now on, we will refer to this real-space winding
number using the letter ν.

Let us consider a two-bands Hamiltonian H and the corresponding
Q-matrix, Q = P+ − P−, given in Eq. (II.8). If the original Hamiltonian is
chiral, so is the Q-matrix, and it is therefore possible to write it as

Q = QAB +QBA = ΓAQΓB + ΓBQΓA, (III.15)

where ΓA,ΓB are projectors onto the A or B sublattices respectively, and
Γ = ΓA − ΓB is the chiral operator given in Eq. (II.2). The real-space ex-
pression of the winding number proposed in Ref. [124] reads:

ν = T {QBA[X,QAB]} = T {QBAXQAB −QBAQABX}, (III.16)

where T indicates a “trace per volume” (i.e., per number of unit cells N )
and X is the position operator in real space.

In order to compute the winding number within open boundary con-
ditions we modify a formalism introduced by Bianco and Resta for a real-
space calculation of the Chern number in quantum Hall insulators, in
Refs. [125, 126]. This method consists of defining a “local topological
marker” that depends on the eigenfunctions of the system. This marker
gives a local value for a topological invariant when evaluated in a region
away from the physical boundary of the system. While this quantity is not
exactly quantized, it converges smoothly and rapidly to the integer value
of the corresponding invariant in the limit of an infinite system with mild
assumptions of homogeneity of the bulk phase. Hence, we use the idea
of Bianco and Resta to directly evaluate a symmetrized version of the ar-
gument of the trace per volume of Eq. (III.16), over the central part of the
chain. Our topological marker then takes the form:
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ν(j) ≡ 1

2

{
(QBA[X,QAB])jA,jA + (QBA[X,QAB])jB,jB (III.17)

+ (QAB[QBA, X])jA,jA + (QAB[QBA, X])jB,jB

}
=

1

2

∑
a=A,B

{
(QBA[X,QAB])ja,ja + (QAB[QBA, X])ja,ja

}
=
∑
a=A,B

〈ja|M |ja〉,

where j indicates the lattice site index, the subscripts jA and jB indicate
the entries of the matrix corresponding to the A or B sublattice for lattice
site j and:

M =
QBAXQAB −QBAQABX −QABXQBA +QABQBAX

2
. (III.18)

To extract a value for the winding number ν in a disordered system we
average ν(j) over a small region (∼ N/8 unit cells with N length of the
chain) in the center of the lattice, that is j = 0, and over different disorder
configurations. In particular we consider a state |0a〉, completely localized
on the central cell of the chain, either in a site a = A or in a site a = B.
We project this state on the eigensystem of the Hamiltonian {|φi〉}, with
i = −N, ..N and energies E−i = −Ei denoting 〈0a|φi〉 with αai. Note that
the Chiral symmetry implies that the states φi satisfy |φ−i〉 = Γ|φi〉. We
can now evaluate ν(0) as:

ν(0) =
∑
a=A,B

〈0a|M |0a〉 =
∑
a

[∑
i

|αai|2〈φi|ΓX|φi〉 (III.19)

+
∑

i,j<0;i 6=j
α∗aiαaj〈φi|ΓX|φj〉+

∑
i,j>0;i 6=j

α∗aiαaj〈φi|ΓX|φj〉

 .
The explicit derivation of this result is given in App. VI.2.1. Numerically,
we observe that the off-diagonal part of this expression provides a very
small contribution (typically ∼ 1% of the total), so that the sum is com-
pletely dominated by the diagonal term.

Now, we can derive the real-space formulation of the mean chiral dis-
placement C(t) whose momentum-space formulation is given in Eq. (III.12).
Since the projections αai of the initial state on the energy eigenstates are
effectively randomly distributed variables, upon disorder average, the re-
sult from initializing the system on site A is the same as initializing it on
site B. Hence, the MCD can be computed as mean value of 2ΓX(t) over a
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state initially localized equivalently on either the A or the B site:

C(t) = 〈0a|eiHt(2ΓX)e−iHt|0a〉 = 2
∑
i

|αai|2〈φi|ΓX|φi〉 (III.20)

+ 2
∑
i 6=j

α∗aiαaje
−i(Ej−Ei)t〈φi|ΓX|φj〉,

and the disorder-averaged MCD, C̄(t), is:

¯C(t) ≈ ν̄(0) + ... (III.21)

where the dots corresponds to the oscillatory off-diagonal terms which go
to zero in the long time limit.

III.2.2 Observation of the Topological Anderson Insulator in a
disordered chiral-symmetric wire

Introduction

Here we present the experiment reported in Ref. [50] where the MCD is
used to detect disorder-driven topological transitions of a chiral wire im-
plemented in the space of the discrete momentum sates of trapped ultra-
cold atoms. In particular, two phenomena are observed: a transition from
a topological phase to a trivial one, and, for the first time, evidences of the
the so-called topological Anderson insulator (TAI) phase, namely a topo-
logical non-trivial phase induced by a strong disorder. The TAI has been
first predicted to occur in metallic 2D HgTe/CdTe quantum wells [88], but
so far it was never been observed experimentally.

The topological phases are robust against weak symmetry-preserving
disorder, but a strong disorder can kill them. In a low-dimensional sys-
tem, like the one we are considering, a static disorder also causes the An-
derson localization of the particle wave-functions [127]. Without energy
gap, experimental probes relying on the adiabatic transport are expected
to fail and thus the measure of the MCD emerges as suitable method to
detect the system’s topology. During the last phase of our work [50], a
related work [128] provided a complementary evidence of the TAI phase
through the observation of topological edge states in a 2D photonic waveg-
uides’ array.

Experimental platform

We consider the following chiral Hamiltonian in real space:

H =

N/2∑
n=−N/2

[
mnc

†
nScn + tn

(
c†n+1

(σx − iσy)
2

cn + h.c.
)]

, (III.22)
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Figure III.5: Synthetic chiral symmetric wires engineered with atomic
momentum states. a. Schematic lattice of the nearest-neighbor-coupled
chiral symmetric wire. Site-to-site links within the unit cell (solid) and
those connecting different unit cells (dashed) have independent tunnel-
ing energies mn and tn, respectively. b. Schematic of the experimental
implementation of the tight-binding model depicted in a, with tunneling
based on two-photon Bragg transitions between discrete atomic momen-
tum states.
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Figure III.6: Topological phase diagrams of the BDI model with disor-
der W ≡ W2 = 2W1. All the simulations have been performed for a sys-
tem of 50 unit cells and averaged over 1000 disorder realizations. a. Real
space winding number ν. b. Disorder- and time-averaged mean chiral
displacement 〈C̄〉. The temporal sliding average has been done for times
τ ∈ [5, 50] with ∆τ = 1. c. Disorder-averaged MCD in the long time limit
of 1000 tunneling times, 〈C̄〉∞. The red lines (identical in all panels) indi-
cate the critical phase boundary, where the localization length diverges in
the thermodynamic limit according to Ref. [124].

where c†n = (c†n,A, c
†
n,B) creates a particle at unit cell n in sublattice site A

or B, cn is the corresponding annihilation operator, and σi are the Pauli
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Figure III.7: Comparison of the winding number ν and the time-
and disorder-averaged MCD 〈C̄〉. Cuts through the phase diagrams in
Figs.III.6(a) and III.6(b), comparing the winding number ν (filled dia-
monds), the time- and disorder-averaged MCD, 〈C̄〉 (lines with filled cir-
cles), and its infinite time limit 〈C̄〉∞ (open circles), for a BDI model with
disorder ratio W ≡W2 = 2W1.

matrices. The mn and tn characterize the intra- and inter-cell tunneling
energies. This model can describe chiral wires of the AIII or BDI symmetry
classes, by choosing the intra-cell hopping term to be S = σx (BDI) or
S = σy (AIII).

In Refs. [48, 49, 50], the Hamiltonian Eq. (III.22) is implemented by
using the controlled, parametric coupling of many discrete momentum
states of ultracold atoms, see Fig. III.5. A pair of counter-propagating laser
fields with nominal wavelength λ = 1064nm and wavevector k = 2π/λ
are applied to a weakly-trapped Bose-Einstein condensate (BEC) of 87 Rb
atoms. Both lasers are far-detuned from any atomic transitions; most of
the trapping power is in one of the beams while the other provides only
a weak confinement. This arrangement results in a weak harmonic trap-
ping along the propagation axis of the high-power beam (with a harmonic
trapping frequency of roughly 10 Hz) and tighter trapping (with a har-
monic frequency of roughly 130 Hz) along the other two axes. The lat-
tice is created by passing the high-power trapping beam through a series
of acousto-optic modulators which turn the single frequency beam into
a beam containing many slightly detuned frequency components. This
multi-frequency beam is then directed to counter-propagate with itself at
the location of the atoms. The spatial periodicity of the laser interference
pattern, π/k, defines the set of momentum states separated by integer val-
ues of 2~k. These states may be coupled from the BEC, which is a source of
atoms with essentially zero momentum, and they represent the effective
sites of the synthetic lattice. The tunneling of atoms between these sites
is precisely controlled by simultaneously driving many two-photon Bragg
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transitions with the applied laser fields. The individual, spectroscopically-
resolved, control over many such transitions is allowed for by the Doppler
shifts experienced by the atoms, which are unique to the various Bragg
transitions. This provides local (in momentum space) control of the intra-
and inter-cell tunneling amplitudes and phases, directly through the am-
plitudes and phases of the corresponding Bragg laser fields [48].

In particular, the expressions:

tn = t(1 +W1ωn), (III.23)

mn = t(m+W2ω
′
n), (III.24)

define the variations of the hopping terms, where t is the characteristic
inter-cell tunneling energy,m is the ratio of intra- to inter-cell tunneling in
the clean limit, ωn and ω′n are independent random real numbers chosen
uniformly from the range [−0.5, 0.5], andW1 andW2 are the dimensionless
disorder strengths applied to inter- and intra-cell tunneling.

The BDI model: detecting a phase transition from topological to trivial

Let us first consider the influence of disorder added to a strongly dimer-
ized BDI wire (Eq. (III.22) with S = σx) characterized by a small intra- to
inter-cell tunneling ratio ofm = 0.1 (with t/~ ≈ 2π×1.2 kHz). In the clean
limit, this system is in the topological regime. The disorder amplitudes are
fixed toW ≡W2 = 2W1. Figure III.6(a) shows the disorder-averaged topo-
logical phase diagram of the BDI model as a function ofW andm in terms
of the real-space winding number (Eq. (III.19)) together with the critical
phase boundary predicted for an infinite system in Ref. [124]. We show,
through numerical simulations of the BDI system’s dynamics in the ther-
modynamic limit, that the disorder- and time- averaged MCD matches
the expected value of the real-space winding number, see Figs. III.6(b),
III.6(c) and III.7.

The entire atomic population is initially localized in the central site
of the lattice of N = 20 unit cells, in particular in the site A of the unit
cell n = 0, with all the tunneling couplings turned off. Then the tun-
nel couplings are quenched on in a stepwise fashion. The projection of
the localized initial state onto the quenched system’s eigenstates leads to
a rich dynamics for both weak (W = 0.5) and strong (W = 5) disorder.
Such site-resolved dynamics of the atomic population distribution is di-
rectly measured by a series of absorption images taken after a time τ , for
16 values τ evenly spaced between 0.5~/t ≈ 65µs and 8~/t ≈ 1040µs, and
the discrete momentum states are separated according to their momenta
during a time-of-flight period [48]. The measure is repeated within 20
different disorder configurations. The MCD and its time- and disorder-
average 〈C̄〉 are extracted from the data and shown in Fig. III.8. In par-
ticular, figure III.9 shows that 〈C̄〉 is robust to weak disorder maintaining
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Figure III.8: Disorder-driven transition from topological to trivial
wires. a. Topological phase diagram of a BDI wire of N = 200 unit cells.
The diagram shows the real space winding number ν (inset color scale) as
a function of disorder strength W and tunneling ratio m with tunneling
disorder strengths W ≡ W2 = 2W1. The dashed line at m = 0.1 indi-
cates the region explored experimentally. The solid red curve indicates
the critical phase boundary predicted for an infinite system in Ref. [124].
b. Integrated absorption images of the bulk dynamics following a sudden
quench of the tunnel couplings, for both weak disorder (W = 0.5) and
strong disorder (W = 5), each for a single disorder configuration. The
data refer to a system of N = 20 unit cells. c. Dynamics of the MCD, C(τ),
as calculated from the data shown in b. The solid red curves are numeri-
cal simulations with no free parameters. The dashed gray horizontal lines
denote 〈C̄〉 for each data set. The error bars in c denote one standard error
of the mean.

a nearly-quantized value close to one, while, for strong disorder, W & 2,
we observe a relatively steep drop in 〈C̄〉, with it falling below 〈C̄〉 = 0.5
for W & 3. This behaviour is associated to a disorder-driven transition
from topological (W . 4) to trivial wires (W & 4). We observe a smooth
crossover due to finite-time broadening from the abbreviated period of
quench dynamics and the corresponding finite number of sites. However,
on an infinitely long chain, we would expect to observe a sharp phase
transition in the infinite-time limit of 〈C̄〉 measurement, yielding quan-
tized values of the invariant for all disorders, and half-integer values at
the critical phase boundary, as shown in Fig. III.4 for a clean system.
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Figure III.9: Time- and disorder-averaged MCD. Time- and disorder-
averaged MCD, 〈C̄〉, as a function of W for m = 0.1. The data are aver-
aged over 20 independent disorder configurations and over times τ vary-
ing from 0.5 to 8~/t in steps of 0.5~/t. The solid gold line represents a
numerical simulation for 200 disorder configurations, but with the same
time-average as the data. The dashed gold line represents a numerical
simulation for 200 disorder configurations, as the solid one, but sampled
to much longer times (τ = 1000~/t) in a wire with 250 unit cells. The dot-
ted grey curve shows the topological index in the thermodynamic limit
which takes a value of 0.5 at the critical point, as indicated by the hori-
zontal dashed line. The inset shows C(τ) for W = 3 as a function of time
for all 20 disorder configurations with C(τ) for each disorder shown in the
histogram. The error bars denote one standard error of the mean.

The AIII model: observation of the topological Anderson insulator phase

The mechanism for the formation of a TAI phase was first elaborated in
Ref. [129] for 2D systems. In that work, the disorder is taken into ac-
count perturbatively using the self-consistent Born approximation, and
it was shown to effectively renormalize the parameters in the Hamilto-
nian, including the parameter that tunes between the topological and
trivial phases. In a system described by the Hamiltonian (III.22), the TAI
phase arises because, as disorder is added to the trivial phase tuned near
the clean critical point that is m = 1, m is renormalized through a value
smaller that one which is into the topological phase. This type of reason-
ing was adapted and extended to describe the TAI phase in 1D systems
including both the BDI- and AIII-class wires that we consider here [130,
121, 124]. Numerical simulations show that, in the thermodynamic limit,
a random tunneling disorder induces the TAI phase over a broad range of
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Figure III.10: Emergence of the TAI plateau. Winding number ν of the
AIII model computed as a function of the disorder strength W ≡ W2,
with W1 = 0 and m = 1.12, averaged over 1000 disorder realizations.
The various lines display results for systems with an increasing number
of unit cells N , and the gray dashed line indicates the expected thermo-
dynamic limit, given by the divergence of the localization length, as found
in Ref. [124].

weak to moderate W values, see Fig. III.10. It can also been shown that
a very large disorder generates again a trivial Anderson insulator phase,
see Fig. III.11(a). Let us now consider an Hamiltonian belonging to the
AIII class (Eq. (III.22) with S = σy), with m = 1.12 . In the clean limit, the
system is in a trivial phase. Since the system is so near the critical point,
the band gap in the clean limit is much smaller than in the previous ex-
perimental setup. Here differently from the previous case, the disorder
is added only to the intra-cell hopping terms, i.e. W1 = 0 and W ≡ W2.
From Refs. [129, 130, 121], we expect that, for weak disorder of this form,
the intra-cell hopping m should be renormalized toward the topological
phase resulting in a TAI. Figure III.11(b) shows the dependence of 〈C̄〉 on
the disorder strength. The measured 〈C̄〉 values are obtained, as in the
previous case, through the non-equilibrium bulk dynamics of the atoms
following a quench of the tunneling. Due to the different experimental
conditions, the explored time-range is narrower than in the previous case,
τ goes from 1.5 to 4.5~/twith steps of 0.5~/t. However, the experiment has
been repeated within more disorder configurations, 50, to allow for stable
measures of 〈C̄〉. For weak disorder, 〈C̄〉 rises and reaches a pronounced
maximum at W ≈ 2.5. This is consistent with the expected change in
the renormalized m parameter for weak disorder. In fact, according to
Refs. [129, 130, 121], the lowest-order correction to m has a negative sign.
〈C̄〉 then decays for very strong applied disorder. Therefore, the initial in-
crease of 〈C̄〉 followed by its decrease is indicative of two phase transitions,
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from trivial wires to the TAI phase and from the TAI phase to a trivial An-
derson insulator.
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Figure III.11: Observation of the topological Anderson insulator phase.
a. Topological phase diagram of the AIII wire with N = 200 unit cells.
The diagram shows the computed winding number (color scale at right)
as a function of disorder strength W and tunneling ratio m with tunnel-
ing disorder strengths W ≡ W2 (W1 = 0). The striped black and white
line at m = 1.12 indicates the region explored experimentally. The solid
red curve indicates the critical boundary. b. 〈C̄〉 as a function of W for
m = 1.12. The data refer to a system of N = 20 unit cells. The disorder av-
erage is taken over 50 independent disorder configurations and the time
average over the range 1.5-4.5 ~/t with steps of 0.5 ~/t. The solid gold line
refers to a numerical simulation for 200 disorder configurations, but with
the same time sampling as the data. The dashed gold line is based on the
same simulation as the solid gold line, but sampled to much longer times
(τ = 1,000 ~/t) in a 250 unit cell system. The dotted grey curve shows
the topological index in the thermodynamic limit, which takes a value of
0.5 at the critical points, as indicated by the horizontal dashed line. C(τ)
as a function of time for for W = 2.5 and for W = 6 for all 50 disorder
realizations. All error bars in b denote one standard error of the mean.
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IV

Topological quantum walks

Quantum walks (QWs) are periodically driven (Floquet) protocols imple-
mentable within a large variety of atomic and photonic platforms [131].
QWs have been firstly studied for their importance in matter of quantum
computation [132] and searching algorithms [133, 134]. More recently, in
2010, they have been discovered to be a valuable resource in the field of
the topological condensed matter physics as they can be regarded as stro-
boscopic simulators of all the single-particle topological lattice Hamilto-
nians in 1 and 2D [67]. These systems exhibit extra topologically protected
edge states with respect to their static counterparts [46, 76]. The existence
of these edge states is not predicted by the topological invariant associ-
ated to the system by the standard topological classification [3]. Hence,
a new classification dedicated to Floquet topological systems has been
built [67, 42, 75, 43, 44, 45]. In the last years, many topological protocols
of QW have been implemented in different architectures based on both
cold atoms and photons in 1D [68, 69, 70, 66, 71, 72, 73, 74].

In Sec. IV.1, we focus on topological protocols of QW in 1D. In Sub-
Sec. IV.1.1, we review the classification of 1D Floquet topological insula-
tors in terms of nonspatial discrete symmetries (PHS, TRS, CS) provided
in Refs. [67, 42, 75, 43, 45]. Then, in SubSec. IV.1.2, we introduce briefly
the general concept of discrete time quantum walk (DTQW) in 1D, and
in SubSecs. IV.1.3 and IV.1.4 we describe in details two concrete proto-
cols of chiral symmetric DTQW in 1D. The protocol described in Sub-
Sec. IV.1.3 has been experimentally implemented within a photonic ar-
chitecture with twisted light beam [69, 70, 71]. This setup is discussed in
details in the next chapter in Sec. V.1. The protocol described in IV.1.4 has
been proposed in Ref. [83].

In Sec.IV.2, we focus on topological protocols of DTQW in 2D. In Sub-
Sec. IV.2.1, we review the topological classification of these systems pro-
vided by Rudner et al. in Ref. [44]. In SubSec. IV.2.2, we apply this anal-
ysis to a concrete protocol of topological 2D DTQW which we have im-
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plemented with a novel photonic platform where the walker’s position is
mapped onto the transverse light wavevector [80]. The description of this
setup is discussed in details in the next chapter in Sec. V.2

IV.1 Topological discrete time quantum walks in 1D

IV.1.1 Topological classification of 1D Floquet Hamiltonians

Let us consider non-interacting particles evolving on a 1D lattice under a
time-dependent Hamiltonian H(t) such that H(t+ T ) = H(t), where T is
the period of the driving cycle. The evolution operator of the system over
a full period reads:

U(T ) = Te−i
∫ T
0 H(t)dt, (IV.1)

whereT is the time-ordering operator. U(T ) is called Floquet operator [42].
If |φ〉 is an eigenstate of U(0), then U(T )|φ〉 = eiεT |φ〉, and ε is called quasi-
energy. In the long time limit, the system is a stroboscopic simulator of an
effective (Floquet) Hamiltonian:

Heff =
i logU(T )

T
. (IV.2)

It is important to notice two important differences between Heff and a
static Hamiltonian: i) the Floquet operator and thus Heff depends on
the choice of the starting time of the period, changing this starting time
means applying a unitary operation on U(T ) and then changing Heff , in
this case, the eigenvalues remain unchanged but the eigenvectors can be
different; ii) the eigenvalues of the effective Hamiltonian, called quasi-
energies ε, are defined up to integer multiples of 2π/T . These differences
are crucial in the topological analysis of Floquet systems.

We could be tempted to classify periodically-driven systems possess-
ing a gapped Floquet Hamiltonian, by using the standard topological clas-
sification of static topological insulators and superconductos [3]. Namely,
by looking for the discrete nonspatial symmetries (TRS, PHS and CS) of
their effective Hamiltonians. However two issues appear immediately:
i) the symmetries of the effective Hamiltonian depend on the arbitrary
choice of the starting time of the driving period or time-frame; ii) if the ef-
fective energy spectrum is gapped around ε = 0, it is also gapped around
ε = ±π/T . As a consequence of this, when a 1D periodically-driven sys-
tem lies in a topological phase and edges are inserted in the system, the
topologically protected edge modes can have quasi-energies ε = 0 or
ε = π/T [46, 76]. Hence, in order to have a bulk-edge correspondence for
periodically driven systems, one needs two topological indices counting
separately the number of edge-modes of the two species.
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For these reasons, a new topological classification for 1D periodically
driven systems has been defined in the last decade [42, 67, 75, 43]. Within
this classification, each topological class in 1D, is associated to a couple
of topological invariants recovering the bulk-edge correspondence sepa-
rately for the 0 and the π/T energy modes.

Particle-hole symmetry

Let us start the analysis of the effective Hamiltonian’s symmetries with
the partice-hole symmetry. An effective Hamiltonian is particle-hole sym-
metric if it satisfies Eq. (II.5) with P = PK and P2 = ±1, where P is a uni-
tary operator and K is the complex conjugation. The associated Floquet
operator will satisfy:

PU(T )∗P † = U(T ). (IV.3)

If this condition is satisfied within a choice of the time-frame, it is satis-
fied within all the others by the same particle-hole operator [42, 135]. In
particular, if there exists a basis where all the elements of U(T ) are real
numbers, then P = k [42]. The quasi-energy spectrum of a PHS effec-
tive Hamiltonian is gapped around ε = 0 and ε = ±π/T . For 1D trans-
lational invariant PHS systems, the Z2 invariant associated to the D class
in the standard topological classification [3] is replaced by a couple of Z
invariants, (Q0, Qπ). They are respectively the total number of times the
curves described by the eigenvalues of the Bloch unitary evolution op-
erators Uk=0(t) and Uk=π(t) in the complex plane for t going from 0 to
T, cross the value 1. Q0 and Qπ count correctly the number of topologi-
cally protected modes with energy 0 and π/T arising at the edges of a cut
periodically-driven PHS chain [46].

Chiral symmetry

For the chiral symmetry the analysis is more complex. In Refs. [75, 43],
the authors provide an operative definition of chiral symmetry in a 1D
Floquet system. Such a system is chiral-symmetric if there exists a time
t1 ∈]0, T [ such that U1(T ) = ΓF †ΓF with Γ hermitian and unitary and the
operator F defined as

F = Te−i
∫ t1
0 H(t)dt. (IV.4)

These conditions imply that the effective Hamiltonians associated with
U1(T ) and with U2(T ) = FΓF †Γ anticommute with Γ. The couple of Z
invariants which provide the bulk-edge correspondence for 1D chiral Flo-
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quet systems, (W0,Wπ) is defined as:

W0 =
W1 +W2

2
(IV.5)

Wπ =
W1 −W2

2
,

whereW1 andW2 are the winding numbers of the effective Hamiltonians
H1 = i logU1(T )

T and H2 = i logU2(T )
T which can be computed equivalently

from Eqs. (II.7), (II.10), (II.11). In Ref. [43], the authors derive another
equivalent definition ofW0 andWπ in terms of the blocks of the matrix F
written in quasi-momentum space in the canonical basis (the eigenbasis
of Γ). If

F =

(
a(k) b(k)
c(k) d(k)

)
, (IV.6)

then

W0 =

∮
dk

2πi
∂k log[Det(b(k))] (IV.7)

Wπ =

∮
dk

2πi
∂k log[Det(d(k))].

Time reversal symmetry

Finally, as mentioned in SubSec. II.1.1, if an Hamiltonian possesses two
of the three discrete symmetries entering the topological classification,
it possesses also the third one which can be obtained as product of the
others. Therefore, if an effective Hamiltonian is particle-hole and chiral-
symmetric, it is also time-reversal-symmetric. Namely, it satisfies Eq. II.4
with T = ΓP ≡ τK and T 2 = ±1, where τ is a unitary operator and K is
the complex conjugation. The associated Floquet operator will satisfy:

T U(T )∗T † = U(T )†. (IV.8)

As proven in Ref. [42], to satisfy this equivalence, a sufficient, but not nec-
essary condition, is the existence of a time t0 such that:

T H(t+ t0)∗T † = H(−t+ t0). (IV.9)

IV.1.2 1D discrete time quantum walks

A 1D discrete time quantum walk is a unitary protocol acting on a single
quantum observable, the walker, and on its internal degree of freedom,
the coin [56]; the walker moves on an infinite 1D lattice. A unitary opera-
tor U acts N times on the system |walker〉 ⊗ |coin〉. Hence, U is regarded
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as a Floquet operator U(T ) with T = 1 and N as the total number of steps
of walk. The total QW is given by the operator:

U ≡ UN = e−iNHeff , (IV.10)

where Heff is the effective Hamiltonian of the QW.
In the standard DTQW [56], the Hilbert space of the coin has dimen-

sion 2 and the unitary evolution operator is of the kindU = RT , whereR is
a rotation acting in the coin space, and T is a coin-dependent translation
of the walker position. A standard choice is T =

∑
x [|x+ 1〉〈x| ⊗ |+〉〈+|+

|x− 1〉〈x| ⊗ |−〉〈−|], where {|+〉, |−〉} is a basis of the coin space.
Let us consider the standard DTQW and let us set the lattice spacing

equal to one. For every value of k in the Brillouin zone [−π, π], the Bloch
effective Hamiltonian reads:

Heff (k) = ε(k)n(k) · σ, (IV.11)

with σ = {σx, σy, σz} and n(k) = {nx(k), ny(k), nz(k)} being a unitary vec-
tor.

A state fully localized on the m-th cell of the lattice reads:

|Ψ〉 =

∮
dk√
2π
eikm|k〉 ⊗ |s〉 ≡

∮
dk|Ψ〉, (IV.12)

where
∮

dk is the integral over the quasi-momentum Brillouin zone, |Ψ〉 ≡
eikm√

2π
|k〉 ⊗ |s〉 and |s〉 = c+|+〉 + c−|−〉, with c± complex coefficients such

that |c+|2 + |c−|2 = 1. For a walker starting in such a state, after N steps in
the DTQW, we have:

〈m̂〉Ψ
N

=

∮
dk

2π
〈Ψ|eiNHeff (i∂k)e

−iNHeff |Ψ〉 =

∮
dk

2π

dε

dk
〈s|n · σ|s〉+O(1/N),

(IV.13)

where, for simplicity, we chose as starting site the 0-th cell and we omitted
the explicit dependence on k. Equation (IV.13) clearly shows that, despite
from the fact that the quantum walk was firstly proposed in Ref. [56] as
a quantum analogue of the classical random walk, the two protocols are
dramatically different. Indeed, the propagation of a particle performing
a random walk is diffusive, namely 〈x2〉 ∝ N , with N number of steps,
while the propagation of particle performing a quantum walk is ballistic,
namely 〈x2〉 ∝ N2. Interestingly, by adding decoherence to the 1D DTQW,
one can progressively retrieve the classical random walk’s diffusive distri-
bution, and by adding a strong static disorder one can induce Anderson
localization [60].

Discrete time 1D quantum walks have been realized in many exper-
imental platforms with both trapped ultra-cold atoms and photons, see
Refs. [60, 59, 131] and references therein.
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IV.1.3 Chiral symmetric discrete time quantum walks

The first topological protocol of 1D DTQW has been proposed by Kita-
gawa et al. in 2010 in Ref. [67] and implemented experimentally two years
later, within a photonic architecture [76]. It was called split-step QW as
the standard translation operator T was split in two parts (two transla-
tions in opposite directions) by a rotation operator. The split-step QW
possesses PHS and CS in the sense of the topological classification of Flo-
quet systems reviewed in SubSec. IV.1.1. Thus, its bulk-edge correspon-
dence is provided by the couple of topological indices (W0,Wπ). However,
when this protocol was experimentally implemented for the first time in
Ref. [76], the topological classification of the Floquet system was still in-
complete; then, the observation of a couple of edge states, whose exis-
tence was not predicted by the static system’s winding number, is reported
as a novel phenomenon to be further studied.

Here, we present a protocol of chiral DTQW, belonging to the same
topological class of the split-step QW. We implemented this protocol for
the first time in Ref. [70], within a photonic architecture with twisted light
beams which we will describe in details in the next chapter in Sec. V.1. In
this first work, we detected a topological phase transition by looking at the
even moments of the probability distribution of the walker final positions.
One year later, in Ref. [71], we provided a complete experimental charac-
terization of this protocol by measuring W0 and Wπ through the walker
mean chiral displacement.

The building blocks of the protocol are:

W =
∑
m

c†m(σ0 − iσx)cm, (IV.14)

Q =
∑
m

cos
δ

2
c†mcm + i sin

δ

2

(
c†m+1

(σx − iσy)
2

cm + h.c.

)
,

with c†m = (c†m,+, c
†
m,−). The corresponding Bloch operators for each value

of k in the B.Z. read:

W = e−i
π
4
σx =

1√
2

(
1 −i
−i 1

)
(IV.15)

Q = ei
δ
2

(cos(k)σx+sin(k)σy) =

(
cos(δ/2) ie−ik sin(δ/2)

ieik sin(δ/2) cos(δ/2)

)
.

As we will discuss in further details in the next chapter, in the photonic
implementation of this protocol, the operators W and Q correspond to
two unitary optical devices acting on the light polarization and OAM. The
default Floquet operator is U ≡ U(T ) = QW . The effective Hamiltonian
is Heff = i logU , (T = 1). In quasi-momentum space Heff is given by
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Heff = ε(k)n(k) · σ with

ε(k) = − cos−1

(
cos(δ/2) + sin(δ/2) cos(k)√

2

)
. (IV.16)

and

n(k) =
1

c

 − cos(δ/2) + sin(δ/2) cos(k)
sin(δ/2) sin(k)
− sin(δ/2) sin(k)

 (IV.17)

where c =
√

2− 2 cos2(E) =
√

2| sin(E)|. The spectrum has vanishing
gaps (or band-touchings) at E = 0 for δ = {π2 , 7π

2 }, and at E = ±π for
δ = {3π

2 ,
5π
2 }.

The system is particle-hole symmetric; the particle-hole operator in
quasi-momentum space reads P = Kσz. It is straightforward to see that
P anticommutes withHeff (k) for every k. As mentioned in SubSec. IV.1.1,
P will anticommute also with the effective Hamiltonians corresponding
to the other possible choices of the QW time-frame [42, 135].

For the chiral symmetry, we should find an operator F which fulfils
Eq. (IV.4). We find F =

√
Q
√
W , with Γ = σz. In perfect agreement with

Refs. [75, 43], we find that U1 =
√
WQ
√
W and U2 =

√
QW
√
Q have ef-

fective Hamiltonians which anticommutes with Γ. We can compute the
invariants (W0,Wπ) using Eq. (IV.5) starting from the winding numbers
W1 andW2 of the effective Hamiltonians H1 = i logU1 and H2 = i logU2.
These invariants provide the correct bulk-edge correspondence for the
system once this is cut.

The fact that (W0,Wπ) can be obtained from the winding numbers
W1 and W2 makes possible to measure them using the mean chiral dis-
placements of the walker, as we proved in SubSec. III.1.1. In the long time
limit, namely for the number of QW steps N → ∞, the mean chiral dis-
placement C1(N) (C2(N)) of the walker starting localized in the 0-th cell
and evolving under U1 (U2) will giveW1 (W2), see Eq. (III.12). Hence, we
obtain the complete topological characterization of the system in terms
of the long time limit of the observables C0(t) ≡ (C1(t) + C2(t))/2 and
Cπ(t) ≡ (C1(t) − C2(t))/2. In the next chapter, we show the results of the
measurement of C0 and Cπ for our QW [71].

IV.1.4 Periodically driven SSH4 model

Here we consider a periodically-driven version of the SSH4 model pre-
sented in SubSec. III.1.2, where even and odd tunnelings are turned on
and off in a periodic sequence. More specifically, a single period of the
evolution is generated by the one-step operator U given by a composition
of two unitary operators obtained extending W and Q to a coin-space of
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(a) (b)

Figure IV.1: The driven SSH4 model. a. Scheme of the unit step of the
driven SSH4 model, or quantum-walk with four dimensional coin. The
figure is taken from Ref. [83]. The four sites of each unit cell correspond
to the coin states |A1〉, |A2〉 (red spots), and |B1〉, |B2〉(blue spots). The dy-
namics is obtained by the repeated application of two unitary operators:
W is a rotation acting on the odd sites of the lattice (which are all intra-
cell), while Q acts on the even sites, thereby coupling different cells. b.
Scheme of the quantum-walk protocol. In a periodically driven system,
the choice of the initial instant of the time period, i.e. the time-frame, is
arbitrary. The single-step unitary operators U1 and U2 are explicitly chiral
symmetric in the sense of the topological classification of Floquet systems
[75, 43].

dimension 4. The extended operator W reads:

W = e−i
π
4
S0x (IV.18)

where S0x = σ0 ⊗ σx = I ⊗ σx. As shown in Fig. IV.1, the operator W acts
within each unit cell of the effective lattice (see Fig. IV.1(a)). On the other
hand, the extended operator Q acts both within a given cell, and between
two consecutive cells. It reads:

Q · (|A1〉 ⊗ |m〉) = cos
δ2

2
|A1〉 ⊗ |m〉 − i sin

δ2

2
|B2〉 ⊗ |m− 1〉 (IV.19)

Q · (|B1〉 ⊗ |m〉) =

(
cos

δ1

2
|B1〉 − i sin

δ1

2
|A2〉

)
⊗ |m〉

Q · (|A2〉 ⊗ |m〉) =

(
cos

δ1

2
|A2〉 − i sin

δ1

2
|B1〉

)
⊗ |m〉

Q · (|B2〉 ⊗ |m〉) = cos
δ2

2
|B2〉 ⊗ |m〉 − i sin

δ2

2
|A1〉 ⊗ |m+ 1〉.

In order to characterize the topology of this driven model we have still
to consider the two explicitly chiral inversion-symmetric time-frames de-
fined by the evolution operators U1 =

√
WQ
√
W and U2 =

√
QW
√
Q,

where now W and Q are given by Eq. (IV.18) and (IV.19), see Fig. IV.1(b).

56



0 π 2π 3π 4π
0

π

2π

3π

4π

δ1

δ
2

(a)

0 π 2π 3π 4π
0

π

2π

3π

4π

δ1

δ
2

-0.5

0

0.5

1.0

1.5

2.0

2.5

(b)

Figure IV.2: Mean chiral displacement of the driven SSH4 model. Tem-
poral average of the MCD, obtained performing a sliding average between
the 30th and the 50th step of the numerically simulated walker’s evolution,
as a function of the parameters δ1 and δ2 parametrizing the action of the
Q operators, for the time-framesU1 (a) andU2 (b). The figure is readapted
from Ref. [83]

Figure IV.3(a) depicts the temporal average of C1(t) and C2(t) obtained
performing a sliding average between the 30th and the 50th step of a nu-
merical simulation of the walker’s evolution. To illustrate the bulk-boundary
correspondence for this model, in Fig. IV.3(b), we show the energy spec-
trum and the degree of localization of eigenstates in a chain with open
boundary conditions. Comparing the two panels, it may be seen that the
invariants C0 and Cπ converge, respectively, to the number of edge states
with energy equal to 0 and to π. Finally, figure IV.3(b) also shows the pres-
ence of edge states with energy π/2. These states are not protected by
the chiral symmetry, and therefore not robust against (chiral-preserving)
disorder. In order to illustrate this fact, we add a spatial disorder in the op-
eratorW : the hoppings of the Hamiltonian ofW are multiplied by a factor
(1 + ε), where ε is a random number in the range [−∆/2,∆/2]. The right
side of the energy spectrum (after the dashed line) in Fig. IV.3(b) shows
clearly that, when disorder is applied, the unprotected states change of
energy, whereas the 0 and the π−energy states remain unaffected.

For the chiral symmetric DTQW with coin having dimension two, we
verified that the observables C0 and Cπ are robust topological marker by
observing that, in presence of chiral-preserving dynamical disorder of am-
plitude small compared to the gap, the ensemble average of the mean
chiral displacement smoothly converges to the value obtained for a clean
system. At a qualitative level, systems with internal dimension D > 2 in
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presence of disorder behave analogously to systems withD = 2.
The driven SSH4 may be implemented in a photonic setting using a

lattice of evanescently coupled optical wave-guides. In these devices, the
different hopping amplitudes correspond to different distances between
the wave-guides [86, 136, 137, 61]. The periodic driving could be achieved
by periodical modulation of the separation between the wave-guides along
the propagation direction [136, 61].
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Figure IV.3: Bulk-edge correspondence for the driven SSH4. a. Time
average of the mean chiral displacements C0(t) ≡ C1(t)+C2(t)

2 (blue line)

and Cπ(t) ≡ C1(t)−C2(t)
2 (yellow line). The points are obtained performing

a sliding average between the 30th and the 50th step of the numerically
simulated walker’s evolution. b. Quasi-energy spectrum of the effective
QW Hamiltonian within open boundary conditions for a chain of 2N +
1 = 21 cells varying δ1 at fixed δ2 = π. The color coding of the spectrum
indicates the degree of localization log10(1− |〈m̂〉)|/N) of each eigenstate
on the two edgesm = −N ,m = N ; light (dark) colors indicate bulk (edge)
states. For δ1 > 2π, we have added weak chiral-preserving disorder (see
text for details) with ∆ = 0.6, showing explicitly that the edge states with
E = ±π/2 are localized, but not topologically protected. Comparing the
left and right image, it is easy to see that C0 and Cπ predict respectively
the number of edge states with 0- and π−energies. The figure is readapted
from Ref. [83].

IV.2 Topological discrete time quantum walks in 2D

IV.2.1 Topological classification of 2D Floquet Hamiltonians

Let us consider a non-interacting periodically driven system on a 2D lat-
tice whose effective Hamiltonian (IV.2) belongs to the class of the Chern
insulators according to the classification of static topological insulators.
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The topological invariant associated to this class is the Chern number de-
fined in Eq. II.26. As discussed in SubSec. II.2.4, the total Chern num-
ber below an energy gap counts the number of edge states with the same
chirality (living on the same edge) crossing the gap during one cycle of
the adiabatic pumping. This is equivalent to say that the Chern number
of each band equals the difference between the number of edge modes
with the same chirality exiting and entering the band during the pumping
cycle. The quasi-energy spectrum of a Floquet Hamiltonian is periodic,
therefore a mode could for example exit from the upper band from above
and enter the lower band from below. In Ref. [44], it is shown that, for this
reason, in a Floquet system, one can have chiral edge modes despite the
fact that all the Chern numbers are null. Hence, the authors find a new
invariant, W [Uε], which counts the number of edge states at quasi energy
ε living on the same edge. Then the total Chern number of all the bands
between two energy values ε and ε′ reads Vε,ε′ = W [Uε] −W [Uε′ ]. In order
to define W [Uε] Rudner et al. start from the case of a unitary evolution
operatorU whose Floquet operatorU(T ) is the identity. The quasi-energy
spectrum of the Floquet Hamiltonian is thus made of a single value ε = 0.
Since they are considering a translation invariant system of N cells with
periodic boundary conditions, they can write the Bloch unitary operator
U(kx, ky, t) for each value of (kx, ky, t) in [−π, π]× [−π, π]× [0, 1] (the lattice
spacings and the time period are set to 1). Hence, U defines a map from a
3D torus to the space of the unitary matrices of dimensions N × N . The
index theorem [138], states thatU can be associated to an integer winding
number:

W [U ] =
1

8π2

∫ 1

0

∫ π

−π

∫ π

−π
dkxdkydtTr

(
U−1∂tU

[
U−1∂kxU,U

−1∂kyU
])
,

(IV.20)
Rudner et al. demonstrate analytically that, in this trivial case,W [U ] equals
the number of edge states [44]. Then they consider a generic unitary evo-
lution operator U , with U(T ) 6= I and with a gapped quasi-energy spec-
trum of the Floquet Hamiltonian. In order to obtain the number of edge
states with quasi-energy equal to a certain value ε inside the gap (nedge(ε))
they continuously deform U into an operator Uε, such that Uε(T ) = I.
Then nedge(ε) = W [Uε] where W [Uε] is computed using Eq. IV.20.

The interpolation between U and Uε is achieved by a family of unitary
Us parametrized by s ∈ [0, 1], such thatUs=0(t) = U(t) andUs=1(t) = Uε(t).
The Floquet operator Us(T ) for every s has to keep a gapped quasi-energy
spectrum whose centre moves from ε, for s = 0, to π, for s = 1. Rudner
et al. provide also one simple way, among the many possible, to associate
an operator Uε to U .

Uε(t,k) =

{
U(2t,k) = e−2i

∫ t
0 H(2τ,k)dτ 0 ≤ t ≤ T/2

Vε(t,k) = e−iH
ε
eff (T−2t)U(T,k) T/2 ≤ t ≤ T,

(IV.21)
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with
Ĥε
eff = i log(Ûe−iε)− ε. (IV.22)

Then, the method proposed by Rudner et al. consists in shrinking the
evolution operator U(t) over half of its original period and using the other
half to connect it to the identity through a trivial return map Vε. They
apply this method to a concrete 2D DTQW protocol and they compute
W [Uε=0] andW [Uε=π]. They show that these invariants count correctly the
edge states arising in the quasi-energy spectrum of the QW, when edges
are introduced in one of the two directions.

IV.2.2 Full topological characterization of a protocol of 2D quan-
tum walk

Here we apply the method presented by Rudner et al. in Ref. [44] to the
2D QW protocol that we proposed and experimentally implemented with
a photonic platform [80]. In this setup the walker’s coordinates on the 2D
lattice are mapped onto the transverse components of the light wavevec-
tor, and the unitary operators which consitute the building blocks of the
protocol are implemented with polarization dependent diffraction grat-
ings. Further details on the experimental implementation are discussed
in Sec. V.2 of the next chapter. This protocol belongs to the same topolog-
ical class of the ones presented in Ref. [44] and in Ref. [42].

The building blocks of the protocol are the same operators W and Q
which constitute the 1D DTQW (Eqs. (IV.14)). However, now, the unitary
evolution operator of one step contains two operators, Qx and Qy, which
shift the walker’s position in two perpendicular directions x and y, and the
phase in the W operator has opposite sign. In the momentum space they
read:

W = ei
π
4
σx =

1√
2

(
1 i
i 1

)
(IV.23)

Qx(kx) = ei
δ
2

(cos(kx)σx+sin(kx)σy) =

(
cos(δ/2) ie−ikx sin(δ/2)

ieikx sin(δ/2) cos(δ/2)

)
Qy(ky) = ei

δ
2

(cos(ky)σx+sin(ky)σy) =

(
cos(δ/2) ie−iky sin(δ/2)

ieiky sin(δ/2) cos(δ/2)

)
The Floquet operator of the QW reads:

U ≡ U(T ) = QyQxW, (IV.24)

with T = 1. The quasi-energy spectrum of the associated Floquet Hamil-
tonian is gapped around ε = 0 and ε = ±π. We consider the QW step
T divided in three parts of the same duration (1/3) and we consider the
operators W , Qx and Qy in Eq. (IV.23) as the Floquet operators of three
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time-dependent operatorsW (t),Qx(t) andQy(t), withW ≡W (1/3),Qx ≡
Qx(2/3) and Qy ≡ Qy(1). The unitary evolution operator U(t,k), for each
k = (kx, ky) in the Brillouin torus, reads:

W (t) = ei
3π
4
tσx 0 ≤ t ≤ 1/3

Q(t, kx)W = ei
3δ
2

(t−1/3)[cos (kx)σx+sin (kx)σy ]W 1/3 ≤ t ≤ 2/3

Q(t, ky)Q(kx)W = ei
3δ
2

(t−2/3)[cos (ky)σx+sin (ky)σy ]Q(kx)W 2/3 ≤ t ≤ 1

(IV.25)

Now we build the operator Uε(t) associated to U(t) using the method pro-
posed by Rudner, Eq. (IV.21), and we compute the windings of Uε=0 and
Uε=π using Eq. (IV.20), as

W [U0(π)] = W [U ]+ (IV.26)∫ 1

1/2
d
dt

8π2

∫ π

−π

∫ π

−π
dkxdkyTr

(
V −1

0(π)∂tV0(π)

[
V −1

0(π)∂kxV0(π), V
−1

0(π)∂kyV0(π)

])
In order to compute the winding of V0 and Vπ over the second half of

the period [1/2, 1], we use the relation derived in the Appendix of Ref. [44]:

1

8π2
Tr
(
A(t,k)−1∂tA(t,k) ·

[
A(t,k)−1∂kxA(t,k), A(t,k)−1∂kyA(t,k)

])
(IV.27)

= − 1

2π2
∂tε(t,k) sin2 (ε(k, t))n(k) ·

(
∂kxn(k)× ∂kyn(k)

)
,

with
A(t,k) = e−iε(k,t)n(k)·σ. (IV.28)

Figure IV.4(a) shows the values of W0, Wπ and V = Wπ −W0 that we
computed for our 2D DTQW changing the parameter δ in Qx and Qy si-
multaneously. Figures IV.4(b)-IV.4(d) show the quasi-energy spectrum of
the QW Floquet Hamiltonian evaluated on an infinite stripe along y (open
boundary conditions on x) changing ky, with δ corresponding to three dif-
ferent topological sectors. The comparison with Fig. IV.4(a) shows that the
new invariants count correctly the number of states for each edge cross-
ing the quasi-energy gap during the pumping (red and dark blue dots in
Figs. IV.4(c) and IV.4(d)).

61



●●●

●●●●●●●●●●●●●●●●●●●

●●●■■■■■■■■■■

■■■■■■

■■■■■■■■■

● w0

■ wπ

0 π 2π
0

1

δ

ν
(-
)

(a)

-π - π

2
0 π

2
π

-π

- π

2

0

π

2

π

ky

E

(b)

-π - π

2
0 π

2
π

-π

- π

2

0

π

2

π

ky

E

(c)

-π - π

2
0 π

2
π

-π

- π

2

0

π

2

π

ky

E

(d)

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0

Figure IV.4: Bulk-edge correspondence for the 2D DTQW. a. Expected
values of the lower band’s Chern number ν,Wπ ≡W [Uπ] andW0 ≡W [U0]
changing the parameter δ. b, c, d. Quasi-energy spectrum of the QW ef-
fective Hamiltonian on an infinite strip along y (with 2N + 1 = 201 sites
along x) for δ = π/8 (b), δ = π/2 (c), δ = 7π

8 (d). The color coding of the
spectrum indicates the degree of localization on the two edges x = −N
(dark blue) and x = N (red). As degree of localization of each state ψ we
take the function log10(1 − 〈x̂〉ψ)/N). The invariants W0 and Wπ predict
the correct number of edge states crossing respectively the 0 and the π
quasi-energy gaps.
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V

Topological photonic quantum
walks in one and two
dimensions

In this chapter, we present two photonic experiments in which we real-
ized and characterized two topological QWs, respectively, in 1- and 2D;
their unitary protocols have been introduced in SubSec. IV.1.3 and Sub-
Sec. IV.2.2. Section V.1 is dedicated to the experiment reported in Ref. [71]
where we realized a 1D chiral-symmetric QW and measure its topological
invariants. Section V.2, is dedicated to the 2D QW simulation experiment
reported in Ref. [80] where we realized a Floquet Chern insulator under-
going a constant electric field and we measure its Chern number.

V.1 1D quantum walk of twisted photons

In this section, we discuss the experimental implementation of the pho-
tonic quantum walk introduced in Refs. [69, 70, 71] and the bulk measure-
ment of its topological invariants through the MCD detection. In the liter-
ature, various photonic protocols of 1D QW have been realized in different
architectures: the walker is typically mapped onto a degree of freedom of
a laser field, such as the optical path of the beam [59, 57, 58, 76, 77], the
time delay between optical pulses [60, 78, 79]. Our QW, whose protocol
has been discussed in Subsec. IV.1.3, exploits for the first time two degrees
of freedom of paraxial beams: polarization and orbital angular momen-
tum (OAM). Furthermore, eventhough other methods to measure topo-
logical invariants inside the bulk of chiral symmetric systems have been
proposed [85, 87], so far, they have only been applied to static systems (ar-
rays of optical waveguides) [86]. These detection schemes are also inher-
ently different from ours, as they require the introduction of sub-lattice
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dependent losses and a well-defined initial state.
In SubSec. V.1.1, we introduce the OAM and we describe the optical

device acting on it, the q-plate. In SubSec. V.1.2, we present the experi-
ment: the detection of the topological invariantsW0 andWπ through the
measurements of the walker’s MCD in two inequivalent time-frames. This
experiment is reported in Ref. [71], figures V.2-V.6 are adapted from this
paper.

V.1.1 Twisted light beams

Firstly observed in 1995 [139], the OAM has been extensively studied from
a fundamental point of view [140, 89, 141, 142, 90] and it found many ap-
plications in the fields of quantum communication and simulation [143,
144, 145, 146]. Here, we provide a definition of the OAM valid for monochro-
matic and paraxial electromagnetic waves, as it is reported in the seminal
paper of Allen et al. [140].

Figure V.1: Twisted light beams. LG modes with p = 0 and m =
−2,−1, 0, 1, 2. The intensity profiles show the characteristic donut shape
due to the phase singularity on the propagation axis. This image is
adapted from the Wikipedia page ”Orbital Angular Momentum of light”,
edited by L. Marrucci and E. Karimi.

A wave is monochromatic when its electric field may be written as
E(r, t) = E(r)e−iωt, with ω being the frequency of the radiation; a wave
is paraxial when two components of its wavevector are negligible with re-
spect to the third one, conventionally kz, namely kz ≈ k = ω

c [52]. The
electric field of a monochromatic and paraxial wave reads

E(r, t) = A(r)ei(kz−ωt), (V.1)

with A satisfying the so-called slow-varying envelope approximation [52]:

∂2Ai

∂z2 <<
1

λ

∂Ai
∂z

<<
Ai
λ2
, (V.2)

for i = x, y while Az ≈ 0. One can define the OAM density in vacuum by
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using the classical definition of this quantity in terms of linear momen-
tum density [52]:

j ≡ r× p = r× S

c2
, (V.3)

where c is the light’s velocity in vacuum and S ≡ E×B
µ0

is the Poynting
vector with µ0 being the magnetic permeability of vacuum. The Poynting
vector transports the electromagnetic power; the continuity equation for
the electromagnetic energy in vacuum, known also as Poynting theorem,
reads:

∂u

∂t
= −~∇ · ~S, (V.4)

where u = 1
2ε0E

2 + 1
2
B2

µ0
is the electromagnetic energy density with ε0 being

the electric permittivity of vacuum. Replacing Eq. (V.1) in (V.3) and per-
forming a time average over a period T = 2π/ω, the z-component of the
angular momentum flux, Jz, reads:

Jz = −i~
∫ ∫

dxdy[E∗⊥ · (−ir×∇)zE⊥ + (E∗⊥ × E⊥)z]∫ ∫
dxdyE∗⊥ · E⊥

, (V.5)

where
∫

is an integral over an arbitrary volume,

E⊥ = (Ex, Ey) ≈ E (V.6)

with
Ex(y) = A(z)E0

x(y) cos
(
ωt− z

c
+ φx(y)

)
. (V.7)

Thus, the transverse components are the only two non-negligible com-
ponents of the electric fields, as it follows straightforwardly from the first
Maxwell law within paraxial approximation [52].

Since, in this approximation,Ex andEy only differ in amplitude,E0
x(y),

and phase, φx(y), one can express the polarization of a paraxial beam as a
Jones vector [147], namely a complex column vector which reads

|E〉 ≡
(
Ex
Ey

)
, (V.8)

where Ex(y) = E0
x(y)e

iφx(y) and |Ex|2+|Ey|2 = 1. The scalar product between
two Jones vectors |χ〉 and |ψ〉 is defined as:

〈χ|ψ〉 ≡
∫
dxdy

(
χ∗1 χ∗2

)(ψ1

ψ2

)
. (V.9)

Hence, we can safely use the bra-ket notation. The two orthogonal lin-
ear polarizations {|H〉, |V 〉} are conventionally chosen as the basis; in this
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basis, the two orthogonal left and right circular polarizations read:

|L〉 =
|H〉+ i|V 〉√

2
; (V.10)

|R〉 =
|H〉 − i|V 〉√

2
.

By defining the orbital angular momentum as

Lz ≡ −i(r×∇)z (V.11)

and the spin angular momentum (SAM) as

Sz ≡
(

1 0
0 −1

)
, (V.12)

then, Eq. V.5 reads:

Jz =
〈E|Lz|E〉+ 〈E|Sz|E〉

〈E|E〉 , (V.13)

where the denominator is a normalization term and can be safely set to
one by a proper choice of the wave amplitude [140]. Thus, the angular
momentum of a paraxial beam is the sum of two terms which can be
regarded as the expectation values of two operators: the SAM and the
OAM [140]; these two terms respectively read:

〈E|Sz|E〉 =

∫ ∫
dxdy(|ER|2 − |EL|2) (V.14)

〈E|Lz|E〉 = ~
∫ ∫

dρdφE∗L
∂EL
∂φ

+ E∗R
∂ER
∂φ

, (V.15)

ER(L) are the complex components of the polarization vector in the basis
{|R〉, |L〉} and ρ and φ are the polar coordinates in the transverse plane.

By putting Eq. (V.1) in the wave equation, we obtain the paraxial Helmholtz
equation [52]:

∇2
⊥A + 2ik

∂A
∂z

= 0 (V.16)

where ∇2
⊥ is the transverse Laplacian ∂2

∂2x
+ ∂2

∂2y
. The solutions of Eq. (V.16)

are called paraxial beams; they have transverse dimensions much smaller
than the typical longitudinal distance over which the field changes ap-
preciably in magnitude. Laser beams are described by a class of paraxial
beams called Gaussian modes as the envelopeA(r) is a Gaussian function.
Other solutions of Eq. (V.16) are the modes of Laguerre-Gauss (LG) [140].
Laguerre-Gaussian modes in cylindrical coordinates (ρ, φ, z) read:

ALG =
A0w0

w(z)

(
ρ

w(z)

)|m|
Lp

m

(
2ρ2

w2(z)

)
e
− ρ2

w2(z) e
i[kz+ kρ2

2R(z)
+mφ−(|m|+2p+1)ζ(z)]

,

(V.17)
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where A0 is a constant, w(z) and R(z) are two functions measuring re-
spectively the beam width and the radius of curvature of the wave-front,
w0 is the beam waist, ζ(z) is the Gouy phase [52] and Lmp is the gener-
alized Laguerre polynomial of indices p and m, called respectively radial
and azimuthal number. As shown in Fig. V.1, the integer |m| counts the
number of twisted wave-fronts winded up around the z axis and the sign
of m yields the chirality of the helices [140]; the azimuthal phase φ is not
defined on the optical axis where there is a singularity, namely the inten-
sity of the LG beams is zero on the propagation axis, see the bottom row
of Fig. V.1. LG modes are eigenmodes of the orbital angular momentum
Lz of eigenvalue m [140]; the mode with p = m = 0, often indicated with
TEM00, is a Gaussian beam. While the circular polarizations are eigen-
modes of the spin of eigenvalues±1.

The distinction between the SAM and the OAM of a paraxial beam is
not purely formal, but has a physical meaning: the two angular momenta
interact with the matter in different ways. Being absorbed by a small parti-
cle,a circularly polarized beam produces a rotation of the particle around
itself [148, 149, 150], whereas a LG beam produces a revolution of the par-
ticle around the optical axis [139, 141, 142]. The distinction between SAM
and OAM holds also at the level of single photons, namely each photon of
a circularly polarized paraxial beam carries a well defined SAM equal to
±~ and an OAM equal to ~m [89, 141].

The q-plate

In the interaction with the majority of the materials, SAM and OAM can
be regarded as independent degrees of freedom [89]. However, when a
paraxial beam interacts with an inhomogeneous anisotropic medium, a
polarization’s flip can change the beam’s OAM [144]. This phenomenon
allows one to manipulate the OAM of a paraxial beam using a slab of bire-
fringent material patterned in the transverse plane, such a device is called
q-plate [91].

A birefringent material is a material presenting two different refractive
indices n1 and n2 along two different directions called principal axes [52].
Thus, it introduces a phase retardation between the two polarization com-
ponents oriented along the principal axes. The phase retardation δ intro-
duced by a birefringent plate of thickness d is given by δ = 1

λ [2π(n2−n1)d],
where λ is the wavelength of the incident radiation in vacuum. The Jones
matrix of such a medium, in the basis of its own principal axes, reads:

P =

(
1 0
0 e−iδ

)
(V.18)

If δ = π, the plate is called half-wave plate (HWP); whereas, if δ = π
2 ,

it is called quarter-wave plate (QWP). These names derive from the fact
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that the difference of optical path-length between the polarization com-
ponents is λ

2 in the first case, λ
4 in the second one. In a generic frame,

where the x axis forms an angle θ with one of the principal axes of the
plates, the Jones matrices of the HWP (H) and the QWP (Q) read [147]:

Hθ = R−1(θ)HR(θ) =

(
cos (2θ) sin (2θ)
sin (2θ) − cos (2θ)

)
(V.19)

Qθ = R−1(θ)QR(θ) =
1√
2

(
1− i cos (2θ) −i sin (2θ)
−i sin (2θ) 1 + i cos (2θ)

)
,

with

R(θ) =

(
cos (θ) − sin (θ)
sin (θ) cos (θ)

)
. (V.20)

From these expressions, we can deduce that a HWP rotates the linear po-
larizations, whereas a QWP turns a linear polarization into a circular po-
larization and vice versa. With both plates, rotated of two different angles
θ and φ, it is possible to achieve every polarization state [147]. The Jones
matricesHθ andQθ, in the circular basis {|R〉, |L〉} read:

Hθ =

(
0 ei2θ

e−i2θ 0

)
(V.21)

Qθ =
1√
2

(
1 −ie−i2θ

−iei2θ 1

)
.

In addiction to the natural birefringent materials, such as quartz or mica,
there exist some artificial ones [52]. For instance, a thin slab of liquid crys-
tal (LC) can exhibit a refractive index along the direction in which the
molecules’ axes are oriented, and another along the perpendicular one.
Furthermore, the phase retardation introduced by a thin slab of LC can be
tuned by changing the temperature [151], or by applying a voltage to the
slab [152].

The q-plate is a LC plate where the liquid crystal is arranged according
to an azimuthal pattern; if one sets a couple of axes x and y in the plane,
the local orientation of the LC optic axis reads:

α = α0 + q arctan (y/x) = α0 + qφ, (V.22)

where q is an integer or semi-integer number, namely the topological charge
of the q-plate. The Jones matrix of the q-plate, in the linear polarizations
basis, reads

Q = R−1(α)

(
1 0
0 e−iδ

)
R(α) (V.23)
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where δ is the phase retardation introduced by the liquid crystal andR(α)
is the rotation matrix given in Eq. (V.20). In the basis of the circular polar-
izations Q reads:

Q =

(
cos(δ/2) ie−i(2α0+2qφ) sin(δ/2)

iei(2α0+2qφ) sin(δ/2) cos(δ/2)

)
(V.24)

A circularly polarized beam outgoing from a q-plate contains two terms:
one identical to the input, and the other having an OAM of ±2q and a
circular polarization with opposite chirality. The rate of conversion de-
pends on the LC phase retardation δ; this parameter can be tuned at will
by means of an applied voltage [152]. If we set α0 = 0 and q = 1/2,
equation (V.24) yields the unitary operator Q of the quantum walk pro-
tocol in Eq. (IV.15), with φ being the walker’s quasi-momentum k. In this
chapter, we will use the letter q instead of k to denote the walker’s quasi-
momentum in order to avoid possible confusion with the light wave-vector.

There are other devices allowing for the manipulation of the light’s
OAM, such as the spiral phase plate and the spatial light modulator (SLM).
This latter is a LC screen whose pixels are addressed by an individually
controllable voltage, and thereby it can shape the phase profile of a light
beam according to almost every pattern. It is a very versatile tool whose
applications go beyond the manipulation of light OAM, however it is not a
scalable resource. To conclude, the q-plate offers the opportunity of cou-
pling light’s polarization and OAM in a scalable and unitary fashion and
it can generate beams with high values of OAM. For these reasons, it has
been employed many times in the field of quantum information [153, 154,
155, 156, 157, 158, 159], and in the fascinating branch of classical optics
called singular optics [160, 161].

V.1.2 Implementation of the 1D DTQW and detection of the topol-
ogy

Here we present the experiment reported in Ref. [71] from which the data
and the figures shown in this subsection are readapted. The photonic
setup of this experiment has been previously reported in [69, 70].

The QW takes place on a lattice whose discrete positions |m〉 corre-
spond to values m of the OAM carried by the twisted light beam; the two
coin states are mapped onto the left and right circular polarizations. Such
a QW can be implemented in both a classical regime, i.e. using light beams
as in [71], or in a single-photon regime as in [69, 70]. The unitary evolu-
tion operator U = QW is implemented with a couple of optical plates: a
quarter wave-plate rotated by π/2 radians with respect to the horizontal
direction implements the operator W , and a q-plate implements Q. Both
the operators are given in Eq. (IV.14). The sketch of the setup is shown in
Fig. V.2.
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As we already mentioned in SubSec. IV.1.3, in order to fully character-
ize the system’s topology in terms ofW0 andWπ, we should measure the
walker’s MCD in the two explicitly chiral-symmetric time-frames corre-
sponding to the unitary operators U1 =

√
WQ
√
W and U2 =

√
QW
√
Q.

However, for experimental reasons, we measured the walker’s MCD in the
time-frames corresponding to U = QW and Ũ ≡ U2 =

√
QW
√
Q. This

choice does not affect the final result since the winding number of the de-
fault Floquet Hamiltonian H = i logU , for every value of the parameter
δ, is the same as that of H1 = i logU1. We prepared a QW of seven steps,
once within the protocolU , and once within the protocol Ũ ; we initialized
the system’s state in |0〉 ⊗ |s〉, with |0〉 being the state of zero OAM (TEM00

mode) corresponding to the center of the lattice, and |s〉 being two differ-
ent polarizations for every protocol, namely |L〉 and (|L〉 + |R〉)/

√
2; we

repeated the measurement of the MCD ten times for every polarization in
correspondence of different values of δ sampling the range [0, 2π], and we
took the measurements’ average. As expected, in both the time-frames,
the mean chiral displacement does not depend on the initial polarization
and it oscillates around the value of the winding number, see Fig. V.3(b)
and V.3(d). Combining the measured MCD, C(t) and C̃(t), we obtained the
two observables C0(t) and Cπ(t) whose long time limits give, respectively,
the topological invariantsW0 andWπ, see Fig. V.4.

Robustness of the mean chiral displacements to the dynamical noise

We tested the stability of the quantization of the MCD against disorder.
We chose the protocol U and introduced a dynamical disorder by off-
setting the optical retardation δj (1 ≤ j ≤ 7) of each q-plate by a small
random amount |εj | < ∆ around their common mean value δ̄: we set
∆ = π/10 and π/5. This disorder is dynamic, in the sense that it affects
independently the various q-plates crossed by the beam, but crucially it
respects chiral symmetry. As shown in Fig. V.5, in single realizations, the
mean chiral displacement presents oscillations featuring higher ampli-
tude for increasing disorder, but an ensemble average over independent
realizations smoothly converges to the expected theoretical result which,
in the infinite time limit, gives the winding number. A similar robustness
of the chiral displacement shall hold for every 1D QW chiral protocol, and
more generally for every 1D chiral system, as long as the disorder does not
break chiral symmetry and its strength is smaller than the gap size, as it is
shown in Fig. V.6 for the SSH model.
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Figure V.2: Scheme of the experimental setup of the 1D chiral DTQW. a.
The output of a Ti:Sa pulsed laser source (pulse duration = 100 fs, central
wavelength = 800 nm, repetition rate = 82 MHz) is coupled into a single
mode fiber (SMF) so as to clean the laser spatial mode; this provides a sin-
gle OAM state withm = 0 at the input of the QW. b. At the exit of the fiber,
the beam passes through an interferential filter (IF), whose transmittance
is peaked at 800 nm with bandwidth of 3 nm, which allows to have a sta-
ble control of the light’s wavelength and a narrower frequency distribu-
tion. Then the desired input polarization state is prepared by means of a
half-wave plate (HWP) and a quarter-wave plate (QWP). c. The light beam
passes through a sequence of QWPs and q-plates, as shown in detail in the
inset, which are positioned in order to realize either protocol U or Ũ . d.
At the end of the QW, a polarization component is selected by means of
a QWP and a HWP, followed by a linear polarizer (LP). e. The OAM spec-
trum is measured by diffraction on a spatial light modulator (SLM), that
displays standard pitchfork holograms for the projection over OAM states.
At the first diffraction order, the light is coupled into a SMF that is directly
connected to a power meter recording the field intensity. f. Legend of
optical components displayed in panels a-e.
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Figure V.3: Detection of the winding numbers for the two protocols U
and Ũ a. Sketch of the setup implementing the default protocol U = QW .
A light beam, exiting a single mode fiber depicted on the left, performs
a QW by propagating through a sequence of quarter-wave plates (purple
disks) and q-plates (turquoise disks). b. Mean chiral displacement C after
a 7-steps QW of protocolU , vs. the optical retardation δ. Each data point is
an average over ten different measurements (error bars are the associated
standard errors). Purple and red dots refer, respectively, to different input
polarizations, |L〉 and (|L〉 + |R〉)/

√
2. The lines represent the expected

value of the MCD for different values of the time t. In the long time limit
the MCD converges to the winding number of the Floquet Hamiltonian
(straight dotted line). c. Sketch of the setup implementing the protocol
Ũ =

√
Q ·W ·√Q. The two q-plates at the beginning and end of the optical

path (shown in bright green) yield an optical retardation δ/2, where δ is
the optical retardation characterizing bulk q-plates (turquoise). d. Mean
chiral displacement C̃ after a 7-steps QW with protocol Ũ . The data points
are averages of ten experimental measurements, and errorbars are the as-
sociated standard errors. Purple and orange colors refer, respectively, to
input polarizations |L〉 and (|L〉+ i |R〉)/

√
2.
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(a)

(b)

Figure V.4: Bulk-edge correspondence for the chiral symmetric DTQW.
a. Quasi-energy spectrum of the effective QW Hamiltonian within open
boundary conditions for a chain of 2N + 1 = 21 cells. The plot is taken
from Ref. [71]. The color coding of the spectrum indicates the degree
of localization log10(1 − |〈m̂〉)|/N) of each eigenstate on the two edges
m = −N ,m = N ; light (dark) colors indicate bulk (edge) states. The spec-
trum looks similar to the one of the static SSH model (Fig. II.3) but here
localized edge states have both effective energy 0 and π. b. Time average
of the measured mean chiral displacements C0(t) ≡ C1(t)+C2(t)

2 (green line)

and C0(t) ≡ C1(t)−C2(t)
2 (orange line). The points are obtained averaging

the results obtained from the two different initial states (the error bars are
the propagated standard error). Their long-time limits, namely the topo-
logical indicesW0 andWπ (dotted lines), yield respectively the number of
edge states at energy 0 and π.

73



◇

◇ ◇
◇ ◇

◇ ◇
◇

◇ ◇ ◇
◇ ◇ ◇ ◇ ◇ ◇

◇ ◇
◇ ◇

◇ ◇
◇

◇ ◇ ◇
◇ ◇ ◇ ◇ ◇

2

1

-1

2

1

-1

C

t

(a)

◇

◇ ◇
◇ ◇

◇ ◇
◇

◇ ◇ ◇
◇ ◇ ◇ ◇ ◇ ◇

◇ ◇
◇ ◇

◇ ◇
◇

◇ ◇ ◇
◇ ◇ ◇ ◇ ◇

a)
2

1

-1

2

1

-1

C

t

(b)

Figure V.5: Robustness of the MCD to dynamical disorder. Measurement
of the mean chiral displacement C of protocolU for a localized input state
in presence of dynamical disorder. For the orange (blue) lines, we chose
a mean value of the q-plate optical retardation δ̄ = 7π/4 (δ̄ = π), expected
to yield a winding numberW = 0, and we add at each time step a small
random retardation |ε| < ∆, with ∆ = π/10 (a) and π/5 (b). Thin solid
lines display the measurements of single realizations, and their average is
shown as filled circles (error bars are the standard error of the mean). In
all plots, empty diamonds represent theoretical simulation calculated for
the ideal case ∆ = 0 and dotted lines the expected result for t→∞.
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Figure V.6: Mean displacement and mean chiral displacement in the
SSH model with dynamical disorder. Evolution of a walker on an SSH
lattice with dynamical disorder in the tunnelings a and b. The disorder
is implemented by discretizing the time of the system’s evolution and by
adding to a, at each discrete time, a small random amount chosen in the
range [−∆/2,∆/2]. At t = 0, the walker is initialized on the central unit cell
of the chain, with a random polarization (different for each realization);
we set a = b/2, so that the SSH Hamiltonian (II.12) is in the topological
phase phaseW = 1. Dashed (solid) lines depict the mean (mean chiral)
displacement. a. Single realization in absence of disorder. b. Single re-
alization with disorder amplitude ∆ = 1/5. c. Ensemble-average over
100 realizations of disorder with ∆ = 1/5:the mean chiral displacement
smoothly converges toW .
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V.2 2D quantum walk in the momentum space of struc-
tured light

In this section, we describe the implementation and the topological char-
acterization of the 2D DTQW whose protocol has been introduced in Sub-
Sec. IV.2.2. This experiment is reported in Ref. [80] and all the figures in
this section are adapted from this paper.

The experimental research on QWs has been almost entirely focused
on 1D walks, few exceptions are the studies presented in Refs. [78, 79, 94]
where a 2D walk is cleverly simulated by folding a 2D lattice in a 1D chain
and in Ref. [74], where path and OAM encoding are combined. Very re-
cently, a continuous-time walk has been realized in a 2D array of cou-
pled waveguides [92]. In our 2D QW, the coin is still encoded in the light
polarization, but the walker position is now encoded in the transverse
wavevector of the beam which is manipulated by means of polarization-
dependent diffraction gratings; to our knowledge, this mapping has never
been used in any previous platform. Here we use a 2DQW to simulate
a Floquet Chern insulator; these systems, so far, have only been realized
with cold atoms in periodically driven optical potentials [32, 33, 38, 34]
and with arrays of helical waveguides [51].

In SubSec. V.2.1, we describe the photonic platform. In SubSec. V.2.2,
we consider the dynamics of several wave-packets moving under a con-
stant force acting in one direction, and we extract the Chern number of
the QW from their transverse displacement. Various methods to detect
topology through the center of mass displacement have been proposed [10,
31, 162, 99] and implemented in various simulators [116, 38, 35, 163, 164];
nonetheless, it is the first time that this method is used to detect the Chern
number of a 2DQW.

V.2.1 Experimental setup

The scheme reported in Ref. [80] is based on mapping the coin onto the
circular polarizations {|L〉, |R〉} (as in our first scheme based on twisted
light), and the walker’s position onto the transverse component of the
beam wavevector. Let us stress that, since, in our encoding, the walker’s
position corresponds to the light’s wavevector, then, the walker’s quasi-
momentum corresponds to the light’s transverse position. To our knowl-
edge, this encoding has not been considered hitherto in any photonic
platform. As walker’s states, we use a family of Gaussian modes whose
transverse wavevector assumes the discrete values k⊥ = ∆k⊥m, where
m = (mx,my) are the integer walker’s coordinates on the square lattice,
and the lattice spacing ∆k⊥ is taken to be much smaller than the longitu-
dinal momentum component kz ≈ 2π/λ (λ is the light wavelength). Then,
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the modes propagate along a direction slightly tilted with respect to the z
axis; their explicit expression reads:

|m〉 = A(r)ei[∆k⊥(mxx+myy)+kzz], (V.25)

where A(r) is a Gaussian envelope with waist w0.
The Floquet operator of our protocol isU = QyQxW , see SubSec. IV.2.2,

where Qx,Qy and W are given in Eq. (IV.23). The operators Qx and Qy are
implemented with LC devices similar to standard q-plates (V.24), the g-
plates. The difference is that, in the g-plate, the liquid crystal is arranged
in the plane of the slab according to a pattern which depends linearly
from the transverse coordinate (see Fig. V.7); the local orientation α of the
LC optic axis in the plane of the plate reads

α =
π

Λ
i+ α0, (V.26)

with i = x, y, α0 being the residual angle at i = 0 and Λ being the g-plate’s
spatial periodicity yielding the lattice spacing ∆k⊥ = 2π/Λ. The g-plates’
action in the basis of circular polarizations reads:

Qx|m〉 ⊗ |L〉 = cos

(
δ

2

)
|m〉 ⊗ |L〉+ i sin

(
δ

2

)
ei2α0 |mx + 1,my〉 ⊗ |R〉,

(V.27)

Qx|m〉 ⊗ |R〉 = cos

(
δ

2

)
|m〉 ⊗ |R〉+ i sin

(
δ

2

)
e−i2α0 |mx − 1,my〉 ⊗ |L〉.

The action ofQy is obtained replacing xwith y in Eq. (V.27). In the follow-
ing, for simplicity, every time we will have to refer to one of the transverse
directions, we will use x. The birefringent optical retardation δ of the g-
plates may be controlled dynamically through an applied voltage as in
the q-plates.

For the coin rotation W this time has been used a g-plate yielding the
transformation of a standard quarter-wave-plate, namely a g-plate with
δ = π/2 and α = 0. In this way, all the QW operators are physically
implemented by plates having exactly same size and shape. This allows
for mounting them in a compact system realized by a 3D printing tech-
nique (see Fig. V.7) which reduces the distance between consecutive steps.
Making the inter-step distance as short as possible is crucial in order to
minimize the relative phases between the rays forming the same mode.
Indeed, each output mode |m〉 corresponds to a superposition of waves
which have followed different trajectories during the QW, accumulating
relative phases which act as a decoherence process. In our platform, these
phases are negligible (≈ 10−3π) and then the physical system realizes with
a very good approximation the ideal (perfectly coherent) QW protocol.
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The experimental setup is sketched in Fig. V.7. A collimated Gaussian
laser beam passes through the sequence of LC devices implementing the
QW. At the exit of the walk, a camera placed in the focal plane of a lens
reads out the field intensity providing the probability distribution of the
walker’s positions. Indeed, the lens performs a Fourier transform of the
Gaussian beam: in its focal plane, each mode |m〉 corresponds to a spot
centred in a point of coordinates R = 2π∆k⊥m

λf , with f being the focal
length; the diameter of the spot is given by the waist of the Fourier trans-
form of the beam, i.e. w̃0 = 2/w0. The frequency of the g-plates Λ and
the input beam waist w0 have been chosen in order to have a negligible
overlap between neighbour spots.

Figure V.8 shows the measured probability distribution after a 2DQW
of 5 steps for a walker starting localized at m = (0, 0). All the data show a
good agreement with the numerical simulations of the ideal QW dynam-
ics. A quantitative comparison between experimental P e and simulated

P s distributions is provided by computing the SimilarityS =

(∑
m

√
P emP

s
m

)2
(
∑
m P em

∑
m P sm)

.

V.2.2 2D motion under a constant force: anomalous displace-
ment and Chern number

Simulating a constant force in a DTQW

Quantum walks with an extra constant driving, often referred to as elec-
tric quantum walks [95, 62, 96], have attracted attention for the study of
phenomena such as quantum state refocusing and probability distribu-
tions revivals [95, 97, 98, 96], Bloch oscillations and Landau-Zener transi-
tions [62] and for the measurement of topological invariants [63, 64, 65,
66].

A constant force acting on QW along one direction (x) can be simply
simulated by a modified single-step operator [62, 65, 66]. Indeed, the op-
erator implementing the potential of the constant dimensionless force,
F xx̂, can be regarded as a translation of the walker’s quasi-momentum
component qx of a quantity F x. Since the only dependence on the quasi-
momentum qx is contained in the g-plate operator Qx:

Qx(qx) =

(
cos(δ/2) ie−iq

x
sin(δ/2)

ieiq
x

sin(δ/2) cos(δ/2)

)
, (V.28)

thereby, at the t-th step, the Bloch Floquet operator of the QW reads:

Ũ(q, t) ≡ Ũ(qx + F xt, qy) = Qy(q
y)e−it

Fx

2
σzQx(qx)eit

Fx

2
σzW. (V.29)

The force can be implemented by progressively displacing the g-plates
without using any additional optical device: the g-plate which acts at time
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Figure V.7: Platform working principle. a. Sketch of the setup. A colli-
mated beam crosses a sequence of LC devices which implement either
coin rotations (W ) or spin-dependent walker discrete translations (Qx
and Qy) forming the Floquet operator U = QyQxW . Each shift of the
walker position (transverse wavevector) tilts slightly the photon propaga-
tion direction. The QW is mounted in a compact holder, so that the trans-
verse diffraction is negligible and the entire evolution effectively occurs
in a single beam. At the QW exit, a lens performs the beam Fourier trans-
form. b. The light intensity pattern which appears in the focal plane of the
lens is directly imaged on a camera. It is a grid of small Gaussian spots of
radius≈20 µm spaced of≈ 63 µm. The normalized intensities of the spots
give the probability distribution of the walker’s positions. c. Pattern of the
LC optic-axis in a g-plate implementing a Qx operator. The spatial period
Λ fixes the lattice spacing ∆k⊥ = 2π/Λ. d. Action of a single Qx on a state
|Ψ0〉 = |m, H〉, with m = (0, 0), for different values of the optical retarda-
tion δ. For δ = 0, the device acts as the identity operator; for δ = π/2, the
final state is |Ψout〉 = |mx,my, H〉/

√
2+|mx−1,my, L〉/2+|mx+1,my, R〉/2,

i.e. three spots are visible; for δ = π, |Ψout〉 = (|mx − 1,my, L〉 + |mx +
1,my, R〉)/

√
2, i.e. two spots are visible.

step t is shifted laterally along the x direction by an amount of ∆x =
−tΛFx

2π .

Adiabatic dynamics of a filled band under a constant force

Let us assume to be in adiabatic regime, namely that the variation qx(t) =
qx0 + F xt is slow with respect to the frequency associated to the gap of the
effective energy spectrum. As derived in Refs. [165, 99], in the adiabatic
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t = 0

t = 3

t = 5

measured reconstructed simulated

Figure V.8: 2D Quantum Walk with localized input state. Probability
distributions of the walker’s positions for a QW with initial state |Ψ0〉 =
|m, H〉, with m = (0, 0), and optical retardation δ = π/2. From top
to bottom, we display results after 0, 3, and 5 steps. From left to right,
we show: measurements, probabilities reconstructed by integrating and
normalizing the light intensities of the Gaussian spots, and numerical
simulations. The excellent agreement between the theoretical and the
measured distributions is quantified by the similarity, which equals S =
98.2%±0.5%, 98.0%±0.3%, 98.0%±0.2% for the distributions at t = 0, 3, 5,
respectively. The data points are averages over four independent mea-
surements. The uncertainties on the values of S are obtained by propa-
gating the standard errors of the mean.

approximation, the semi-classical equations of motion of a wave-packet
initially peaked around an energy eigenstate eiq0m0 |u±(q0)〉 read:

ṁi = ∂qiε±(q)− q̇jΩ(±)
ij (q), (V.30)

q̇i = F i,

where i and j ∈ {x, y},± are the band indices, ε± is the energy disper-
sion and Ω

(±)
ji = −Ω

(±)
ij is the Berry curvature (II.25).
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Hence, the components of the particle velocity read

ṁi = ∂qiε±(q) + F jΩ
(±)
ji (q), (V.31)

where ∂qiε(q) is the standard group velocity vgi of the band and F jΩji is
the anomalous velocity. It comes straightforwardly that, if the system’s
state is an homogeneous superposition of all the upper (lower) band’s
eigenstates, the overall mean displacements read:

〈∆my(t)〉± =
F xν(±)

2π
t, (V.32)

〈∆mx(t)〉± = 0,

where ν(±) is the upper (lower) band’s Chern number (Eq. (II.26)). The to-
tal displacement along the x direction is null since the integrals of both
components of the standard group velocity over the Brillouin zone are
zero.

Wave-packet‘s dynamics with no external force

In our experiment, we use as initial states Gaussian wave-packets sharply
peaked around specific values of the quasi-momentum q0 and belonging
to one energy band of the Floquet Hamiltonian; we denote these states as
|Ψg(q0,±)〉. These wave-packets are physically generated as narrow Gaus-
sian beams with a small waist wg (with wg � Λ), centred around specific
transverse positions r⊥ = q0Λ/(2π), and with polarizations equal to the
eigenstates of the Floquet Hamiltonian |u±(q0)〉. The transverse position
r⊥ is controlled by translating the whole QW setup (mounted on a single
motorized mechanical holder) with respect to the input laser beam. In the
simulated square lattice of the walker’s positions the states |Ψg(q0,±)〉 are
delocalized and cover multiple lattice sites m, but with a well defined av-
erage position 〈m〉. Since they approximate the system’s eigenstates, if we
set the external force to zero, they propagate by preserving their shape,
with a dynamics dictated by the standard group velocity, see Fig. V.9. Fig-
ure V.9(c) shows the linear motion of a gaussian wave-packet under the
QW evolution with no force. In Fig. V.9(d), we retrieve the band’s group
velocity by measuring the trajectories of 22 × 22 wavepackets belonging
to the upper band of the Floquet spectrum. The overall displacement of
the band, obtained by summing the data, is very close to the value of zero
expected for a band insulator, see Eqs. (V.32) with F x = 0.

Wave-packet‘s dynamics under a constant force and Chern number de-
tection

The Chern number of the Floquet Hamiltonian of our QW is extracted
from the overall transverse displacement of the upper band under a force
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Figure V.9: Wave-packet’s dynamics without external force. a. Effective
energy ε±(q) at δ = π/2. b. Light intensity distribution measured for a
wave-packet |Ψg(q0,+)〉 with q0 = (−π/2, π) which evolves through our
QW without external force. For this value of the quasi-momentum, the
group velocity components are expected to be vgx = 0 and vgy = −0.5.
The coloured marker correspond to the center of mass. The width of the
initial beam is 150µm on the plane of the camera, corresponding to a
wave-packet covering a diameter of ≈ 5 lattice sites. c. Dynamical evo-
lution of the center of mass of |Ψg(q0,+)〉. Experimental results (points)
are compared to numerical simulations (continuous lines) and to semi-
classical predictions (dashed lines). d. Measured and simulated group
velocity component vgy, for 22 × 22 values of the quasi-momentum in
the Brillouin torus. The experimental vgy has been extracted from the
displacements of the center of mass of the corresponding wave-packets
through a linear fit.

F x = π/20, see Fig. V.10. The total transverse displacement is obtained
by summing up the transverse displacements measured for 11 × 11 dis-
tinct wave-packets |Ψg(q0,−)〉 which provide an homogeneous sampling
of the Brillouin zone.

We choose two values of δ corresponding to two different topologi-
cal sectors: δ = π/2, where the lower band’s Chern number is ν(−) = 1,
and δ = 7π/8, where the lower band’s Chern number is ν(−) = 0, see
Fig. IV.4(a). At δ = π/2, topological edge states arise only in the gap of the
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Floquet energy spectrum centered around zero. Thereby, for this value
of δ, the Chern number provides the correct bulk-edge correspondence,
see Fig. IV.4(c). However, for other values of δ, for example, δ = 7π/8, the
Chern number’s value is zero, but topological edge states are expected to
arise simultaneously in both the gaps of the Floquet energy spectrum, see
Fig. IV.4(d). For this reason, as we mentioned in the previous chapter, the
full topological classification of 2D QWs is given in terms of the invariants
W0 and Wπ, which count separately the topological edge states in the two
gaps of the Floquet energy spectrum.

In Figs. V.10(a) and V.10(b), experimental data (points) are compared
to the numerical simulations of the ideal QW dynamics (dashed lines) and
to the overall lower band’s displacement predicted by the semi-classical
theory within adiabatic regime, Eq. (V.32) (black continuous line). At δ =
π/2, the energy bandgap ≈ 1 is sufficiently larger than the applied force
Fx = π/20 to ensure the validity of the adiabatic approximation. How-
ever, the measured overall displacements of the lower band 〈∆my(t)〉−
(blue empty markers) and 〈∆mx(t)〉− (red empty markers) diverge from
the semi-classical predictions. To reduce this discrepancy, which we as-
cribe to residual group-velocity effects, we consider also the inverse pro-
tocol whose evolution is defined by the Floquet operatorU−1 = W−1Q−1

x Q−1
y .

Indeed, the bands of this inverse protocol have the same dispersion as
the direct one U , but feature opposite Chern numbers. In this way, if fill-
ing the same band, we expect to observe identical contributions from the
group velocity dispersion, while the anomalous displacement should be
inverted. (〈∆my(t)〉U −〈∆my(t)〉U−1)/2 and (〈∆mx(t)〉U −〈∆mx(t)〉U−1)/2
(solid markers) show a better agreement with the expected results. The
measured value of the Chern number extracted from the improoved mea-
surement at δ = π/2 is ν(−) = 1.19 ± 0.13, consistent with the theoretical
value of 1 (errors are given at one standard deviation) and at δ = 7π/8 is
ν(−) = 0.10± 0.15 consisted with the expected 0 value.
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Figure V.10: Anomalous displacement under a constant force a, Overall
center-of-mass average displacements of the lower band 〈∆mx〉(−)(t) and
〈∆my〉(−)(t) under a force F x = π/20 measured for δ = π/2. Empty mark-
ers show results from the simple protocol U , while solid symbols show
the improved results obtained by combining protocol U with its inverse
U−1. Straight lines correspond to the theoretical results dictated by the
semi-classical equations of motion, predicting an anomalous displace-
ment proportional to the band Chern number. b, Center of mass dis-
placements of the lower band under a force F x = π/20 measured with
δ = 7π/8. Meaning of all symbols and lines as in panel a. Statistical un-
certainties include estimated misalignment effects.
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V.3 Conclusions and outlooks

The work presented in this thesis consisted in designing protocols and
detection methods to simulate and characterize non-interacting topolog-
ical insulators in 1- and 2D. We studied both static and Floquet Hamilto-
nians based on different architectures and paid a particular attention to
quantum walk protocols and photonic implementations. We focused on
detection methods of the topological invariants of the systems directly in-
side their bulk. Thereby, our proposals perfectly fit simulation platforms
with no physical boundaries, as for instance the ones in Refs. [70, 71, 80].

The first result presented in this thesis is the derivation of a method to
detect the topological invariant associated to 1D chiral-symmetric topo-
logical insulators, the winding number. We showed that the winding num-
ber can be directly read out from the free dynamics of the bulk through the
measurement of the mean chiral displacement (MCD). We derived ana-
lytically this equivalence in the quasi-momentum space of a clean and
infinite chiral system [83]. The MCD measurement does not require any
external intervention, such as forces, losses nor interferometric setups,
and it can be accomplished in systems both static and periodically driven
with any internal dimension [83]. This method has, then, first been ap-
plied to a 1D chiral-symmetric QW taking place in the space of the light’s
OAM [71]. Furthermore, we measured the MCD in two inequivalent time-
frames in order to characterize the full topology of the Floquet system.
Indeed, QW protocols are periodically driven systems and are described
by effective Floquet Hamiltonians, the bulk-edge correspondence for 1D
chiral-symmetric Floquet Hamiltonians is expressed by a couple of wind-
ing numbers instead of just one. These invariants can be extracted by two
versions of the unitary operator of the QW protocol written in two dif-
ferent time-frames [75]. In the experiment, we implemented these two
versions, changing the optical devices at the edges of the sequence, and
we measured their MCDs.

Recently, it has been pointed out [166] that 1D discrete time QWs can
realize the so-called dynamical topological phase transition which can arise
in topological Hamiltonians undergoing a quench [167]. The dynami-
cal topological phases are labelled by dynamical topological invariants
which generalize the standard Berry phases: finding and implementing
a method to detect such numbers might be an interesting outlook for our
research on topological QW.

Then, we have shown that the MCD measurement can also be used
in disordered systems. We derived both the MCD and the winding num-
ber in the real space of chiral systems with broken translation symmetry
and we showed that they still converge to the same quantity in the long
time limit. The MCD measurement allowed for the detection of disorder-
driven topological phase transitions in a synthetic chiral-symmetric wire [50].
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The experiment, performed within an ultra-cold atoms simulator, has been
the first experimental observation of the so-called topological Anderson
insulator (TAI) which is a disorder driven topological insulator.

Finally, we contributed to the theoretical proposal of a 2D photonic
QW experiment [80], in particular, with a method to measure the Chern
number inside the bulk of the system. This QW simulates a Floquet Chern
insulator in the space of the transverse wavevector of a light beam. It
is the first inherently 2D implementation of a topological QW and the
first QW setup exploiting the transverse components of the light wavevec-
tor as synthetic dimensions. In this experiment, we characterized the
system by measuring one band’s Chern number. We extracted it from
the overall transverse displacement of the band under a constant force.
In order to achieve a cleaner experimental estimate of the Chern num-
ber, we exploited the symmetry of the spectrum of the QW effective en-
ergy: we combined the overall band’s transverse displacement measured
for the QW unitary operator and the one measured for the inverse uni-
tary operator. While, in static Chern insulators, the bulk-edge correspon-
dence is provided by the system’s Chern number, in Floquet Chern insu-
lators, it is expressed by a couple of invariants [44]. In the specific case
of our model, characterized by two bands which are symmetric around
zero quasi-energy, edge states may appear independently within the gap
centred at quasi-energy 0, or within the gap at quasi-energy±π. The bulk-
edge correspondence of such systems is provided by a couple of topolog-
ical invariantsW0 andWπ, which count, respectively, the number of pairs
of edge modes in the 0-energy and π-energy gaps. An interesting prospect
would be to propose and implement a method to measure these invari-
ants in the bulk of a 2D topological QW. In general, the photonic 2D QW is
a new and versatile resource, which paves the way to various interesting
outlooks. For instance, changing the symmetries of our unitary protocol,
it might be possible to address different topological classes [3] in 2D.

Furthermore, it might be possible to add another degree of freedom to
the beams, like for instance the OAM, and accomplish a system with three
synthetic dimensions [168]. This could allow us to simulate 3D topolog-
ical classes. In this scenario, it would be interesting to focus on the 3D
chiral class and to detect the associated invariant through a 3D general-
ization of the MCD.

The platform may also be adapted to simulate a 2D crystal with quan-
tized quadrupole momentum, a quadrupole insulator [169]. In particu-
lar, in order to implement the minimal model proposed by Benalcazar,
Bernevig and Hughes, one should find the suitable optical devices to in-
troduce controllable phases in the hopping terms of the effective Hamil-
tonian.

Finally, it is interesting to study how to simulate some kind of interac-
tion among the walkers in one or two dimensions. A way to accomplish
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this can be for instance to add some non-linear optical effect to the QW
mapped onto the wavevector space of the light beam: we could work in
a quantum regime and exploit the phase-matching conditions to couple
the wavevectors of different photons. In this frame, finding an analogue
of the MCD for interacting chiral systems would provide a way to detect
the topology of the latter. The idea might be developed following the line
of thought displayed in the works of Gurarie [170], and Gurarie and Es-
sin [171]. They provided an expression of the topological invariant of Chi-
ral systems in terms of the zeros of the Green’s functions; we may try to
find a bulk observable containing this quantity and being measurable in
simulation experiments.
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VI

Appendix

VI.1 Detection of the winding number in translation-
ally invariant systems

VI.1.1 Mean displacement

In terms of projectors on energy eigenstates, the mean displacement of a
generic localized state |Ψ〉 reads:

〈m̂(t)〉Ψ =

∮
dk

2π

∑
j,j′=±1,...,±D/2

〈Ψ|PjU−t(i∂k)U tPj′ |Ψ〉. (VI.1)

Using ∂kU tPj′ = e−itEj′ [(−it∂kEj′)Pj′ + |ψ′j′〉〈ψj′ |+ |ψj′〉〈ψ′j′ |], we have

PjU
−t∂kU

tPj′ = eitEjPj∂kU
tPj′ (VI.2)

= δjj′ [−it(∂kEj)Pj + |ψj〉〈ψ′j |] + eit(Ej−Ej′ )Pj |ψ′j′〉〈ψj′ |.

Mean displacement inD = 2

For D = 2, we will denote with +/− the positive/negative energy eigen-
states, so that the skew polarization is simply S = i〈ψ+|ψ′−〉. Multiplying
Eq. (VI.2) by (+i), using |ψ+〉〈ψ−| − |ψ−〉〈ψ+| = QΓ, and inserting a com-
pleteness relation P+ + P− = I after |ψj〉〈ψ′j |, one finds:

〈m̂(t)〉Ψ =

∮
dk

2π

{
t∂kE+〈Q〉Ψ + sin(2tE+)S〈iQΓ〉Ψ − S[1− cos(2tE+)]〈Γ〉Ψ

}
.

(VI.3)

Now we use the following relations:

• Q = n · σ

• iQΓ = −nyσx + nxσy
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• S〈iQΓ〉 = 〈∂kn · σ〉/2

• S[1− cos(2tE+)] = 2S sin2(tE+) = sin2(tE+)(n× ∂kn).

Then Eq. (VI.3) may be written as:

〈m̂(t)〉Ψ =

∮
dk

2π

{
t∂kE+〈n · σ〉Ψ (VI.4)

+
sin(2tE+)

2
〈∂kn · σ〉Ψ − sin2(tE+)(n× ∂kn)〈Γ〉Ψ

}
.

In the particular case of a chiral localized state |Γj〉, only the last term
of Eq. (VI.3) survives. This comes from the facts that 〈Q〉Γj = 0 and 〈QΓ〉Γj =
0. On the other hand, for a localized state built as flat superposition of
states in a single band |ψj〉, Eq. (VI.3) gives 0. This comes from the facts
that

∮
dk∂kE+〈Q〉ψj = sign(j)

∮
dk∂kE+ = 0, 〈QΓ〉ψj = 0 and 〈Γ〉ψj = 0.

Mean displacement inD > 2

ForD > 2, the mean displacement at time t, starting from a generic local-
ized state |Ψ〉 reads:

〈m̂(t)〉Ψ = (VI.5)
D/2∑
j=1

∮
dk

2π

{
t∂kEj〈Qj〉Ψ + Sj sin(2tEj)〈iQjΓj〉Ψ − Sj [1− cos(2tEj)]〈Γj〉Ψ

}
+

∑
j,j′=±1,...,D/2 and |j|6=|j′|

∮
dk

2π
i〈ψj |ψ′j′〉〈Ψ|ψj〉〈ψj′ |Ψ〉eit(Ej−Ej′ ).

It can be shown that the terms arising from the second summation give
rise to a purely real number, in agreement with the fact that the result is
the expectation value of a Hermitian operator.

Noting thatQjΓj = |ψj〉〈ψ−j |−|ψ−j〉〈ψj |, it is easy to see that the states
|ψj〉 are again stationary, as expected. On the other hand, for a chiral lo-
calized state |Γj〉, Eq. (VI.5) gives:

〈m̂(t)〉Γj = −sgn(j)

∮
dk

2π
Sj [1− cos(2tEj)], (VI.6)

which proves Eq. III.9:

D/2∑
j=1

〈m̂(t)〉Γj =

D/2∑
j=1

〈Γ · m̂(t)〉Γj = −
D/2∑
j=1

∮
dk

2π
Sj [1− cos(2tEj)], (VI.7)
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VI.1.2 Mean chiral displacement

In terms of projectors on energy eigenstates, the mean chiral displace-
ment of a generic localized state |Ψ〉 reads:

〈Γ̂m(t)〉Ψ =

∮
dk

2π
〈Ψ|U−tΓ(i∂k)U

t|Ψ〉. (VI.8)

We have

Pj [U
−tΓ∂kU

t]Pj′ = (VI.9)

δjj′

[
PjΓ∂k

ei2tEj

2
+ ei2tEj |ψj〉〈ψ′−j |

]
+ eit(Ej−Ej′ )|ψj〉〈ψ−j |ψ′j′〉〈ψj′ | =

= δjj′

[
PjΓ∂k

ei2tEj

2
+ ei2tEj |ψj〉〈ψ′−j |

]
− eit(Ej−Ej′ )|ψj〉〈ψ′−j |Pj′ .

Mean chiral displacement inD = 2

ForD = 2, the mean chiral displacement at time t, starting from a generic
localized state |Ψ〉 reads:

〈Γ̂m(t)〉Ψ = (VI.10)∮
dk

2π

{
S[1− cos(2tE+)] 〈I〉Ψ +

1

2
∂k [〈Γ〉Ψ cos(2tE+) + 〈iQΓ〉Ψ sin(2tE+)]

}
=

=

∮
dk

2π
S[1− cos(2tE+)] =

∮
dk

2π
S sin2(tE+)

2
=

∮
dk

2π
sin2(tE+)(n× ∂kn).

This expression coincides with the one given in Ref. [71].

Mean chiral displacement inD > 2

Let us now define the projector on the subspace of chiral-partner eigen-
states,

Rj = Pj + P−j , so that
D/2∑
j=1

Rj = I. (VI.11)

When D > 2, we find that Eq. (VI.9) multiplied by i gives the sum of two
terms, a term A which acts in the subspace of chiral partner states (|j| =
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|j′|) and a term B which acts in the subspace of the states with |j| 6= |j′|.

A =

D/2∑
j=1

Sj [1− cos(2tEj)]Rj + iRjΓ∂k

[
cos(2tEj)

2

]
−QjΓ∂k

[
sin(2tEj)

2

]
(VI.12)

− iQjSj sin(2tEj) =

=

D/2∑
j=1

Sj [1− cos(2tEj)]Rj + ∂k

[
iΓj

cos(2tEj)

2
−QjΓ

sin(2tEj)

2

]
,

where we have used the facts thatRjΓ = Γj , ∂kΓ = 0 and iQjSj = ∂k(QjΓ)/2.
And

B =
∑

j,j′=±1,...,D/2 and |j|6=|j′|

i〈ψ−j |ψ′j′〉|ψj〉〈ψj′ |eit(Ej−Ej′ ). (VI.13)

The term B has no diagonal term between chiral partners, and is purely
oscillatory, so for genericEj andEj′ it will average to zero in the long time
limit. Once integrated over the whole Brillouin zone the total derivative
contained in A vanishes, so that the final result is

〈Γ̂m(t)〉Ψ =

∮
dk

2π

〈
B +

D/2∑
j=1

Sj [1− cos(2tEj)]Rj

〉
Ψ

. (VI.14)

For the states |ψj〉 and |Γj〉, we have that 〈B〉ψj = 〈B〉Γj = 0 and
〈Rj〉ψ′j = 〈Rj〉Γ′j = δjj′ . This proves Eq. (III.10):

D/2∑
j=1

〈Γ̂m(t)〉Γj =

D/2∑
j=1

〈Γ̂m(t)〉Ψj =

∮
dk

2π

D/2∑
j=1

Sj [1− cos(2tEj)]. (VI.15)

The mean chiral displacement of a generic localized state, with sup-
port on all bands, in the long time-limit would instead be given by:

lim
t→∞
〈Γ̂m(t)〉Ψ =

∮
dk

2π

D/2∑
j=1

Sj〈Rj〉Ψ, (VI.16)

which, differently from the case D = 2, is not a multiple of the winding
number.

VI.1.3 Eigensystem of the SSH4 model

Given a generic block anti-diagonal matrixM =

(
0 M12

M21 0

)
, we have

M2 =

(
M12M21 0

0 M21M12

)
. The eigenvalues of M therefore are the
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square roots of the eigenvalues of M̂ = M12M21. Thus, if we start from
the SSH4 Hamiltonian written in its completely off-diagonal form (in the

canonical chiral eigenbasis), we have H2 =

(
ĥ 0
0 h̃

)
, with

ĥ = h†.h =

(
a2 + d2 ab+ cde−ik

ab+ cdeik b2 + c2

)
, (VI.17)

and h̃ = h.h†. If we denote by λ2
1 and λ2

2 the two eigenvalues of ĥ, the
eigenvalues of the Hamiltonian are simply given by their square roots:

λ±1 = ±λ1 = ±

√
T

2
−
√
T 2

4
− D̂, λ±2 = ±λ2 = ±

√
T

2
+

√
T 2

4
− D̂,

(VI.18)
whereT = a2+b2+c2+d2 and D̂ = a2c2+b2d2−2abcd cos(k) are respectively
the trace and determinant of ĥ, and |λ±1| < |λ±2|. The topological phase
transition of the SSH4 model takes place when ac = bd and k = 0, where
λ±1 = 0.

In order to find the eigenvectors of H , let us first consider the eigen-
vectors of H2. Provided that eik 6= −ab/cd, we have H2|ĥl〉 = λ2

l |ĥl〉 (for
l = 1, 2) with:

|ĥ1〉 =
1√
〈ĥ1|ĥ1〉


λ2

1 − (b2 + c2)
ab+ cdeik

0
0

 , |ĥ2〉 =
1√
〈ĥ2|ĥ2〉


λ2

2 − (b2 + c2)
ab+ cdeik

0
0

 .

(VI.19)
Similarly, provided that eik 6= −bc/ad, we have H2|h̃l〉 = λ2

l |h̃l〉, with:

|h̃1〉 =
1√
〈h̃1|h̃1〉


0
0

λ2
1 − (c2 + d2)
bc+ adeik

 , |h̃2〉 =
1√
〈h̃2|h̃2〉


0
0

λ2
2 − (c2 + d2)
bc+ adeik

 .

(VI.20)
It is obvious that these will also be eigenvectors of Γ.

The eigenvectors of the Hamiltonian, |ψ±l〉 are also eigenvectors ofH2,
with eigenvalue λ2

l . Therefore, for each value of l, we may write them as a
normalized superposition of the two eigenvectors of H2 with eigenvalue
λ2
l :

|ψ±l〉 = α̂±l|ĥl〉+ α̃±l|h̃l〉. (VI.21)

In particular, chiral symmetry imposes that energy eigenstates have equal
support on both sublattices, i.e., |α̂±l| = |α̃±l| = 1/

√
2. Then, with an

appropriate choice of phases, we can write them as:

|ψ±l〉 =
|ĥl〉 ± eiφl |h̃l〉√

2
. (VI.22)
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The phase φl needs to be fixed imposing that |ψ±l〉 is an eigenstate of H
with positive/negative energy. This may be done using the first line of the
matrix equality H|ψ+l〉 = +λl|ψ+l〉, which yields:

eiφl =
λl|ĥl〉1

a|h̃l〉3 + de−ik|h̃l〉4
, (VI.23)

where |ψ〉n indicates the nth component of the vector |ψ〉. Note finally
that, upon sending k → −k, the eigenstates of H satisfy

|ψ±l(−k)〉 = |ψ±l(k)〉∗, (VI.24)

which tells us that the Hamiltonian is time-reversal symmetric. Now we
can explicitly build theQ-matrix in the canonical chiral eigenbasis, it reads:

Q =
∑
l=1,2

eiφl |h̃l〉〈ĥl|+ e−iφl |ĥl〉〈h̃l| =
∑

1≤r,s,t≤4

|Γr〉MrsΓss(M
†)st〈Γt|,

(VI.25)
withMrs = 〈Γr|ψs〉 the unitary matrix for the change of basis between the
canonical-chiral and energy eigenstates. Computing the determinant of

q, the lower-left block of Q, we see that arg[Det(q)] = −ilog
(
ac−bdeik
|ac−bdeik|

)
=

arg[Det(h)]. The winding of the SSH4 model may now be computed from
Eq. (II.7), or equivalently from Eq. (II.10).

VI.2 Detection of the winding in disorderd systems

VI.2.1 Real-space definition of the Winding number

Here we compute the winding number within open boundary conditions
using the “local topological marker” introduced by Bianco and Resta in
Refs. [125, 126]. In particular we use the symmetrized version of the ar-
gument of the trace per volume appearing in Ref. [124] evaluated over the
central part of the chain. Its explicit expression is given in Eq. (III.17) in
terms of the operator M :

M =
QBAXQAB −QBAQABX −QABXQBA +QABQBAX

2
. (VI.26)

The winding number is given by ν(0) =
∑

a=A,B〈0a|M |0a〉 where |0a〉 is a
state completely localized on the central cell of the chain, either in a site
a = A or in a site a = B. αai are its projections on the eigensystem of the
Hamiltonian {|φi〉}, with i = −N, ..N and energies E−i = −Ei. Note that
the Chiral symmetry implies that the states φi satisfy |φ−i〉 = Γ|φi〉.

In order to compute the scalar product 〈0a|M |0a〉we use the following
properties:
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• The state is localized in 0, then X|0a〉 = 0.

• ΓBQ = QΓA. With open boundary conditions, this equality does not
hold for zero-energy edge states, but here we are only interested in a
bulk state, like |0〉, which has negligible overlap with the edge states.

• ΓA and ΓB are projectors, so that, e.g., ΓAΓA = ΓA.

• The chiral operator is local (i.e., diagonal in the position basis), so
that [X,ΓA] = [X,ΓB] = 0.

These gives:

〈0a|M |0a〉 =
1

2
〈0|QBAXQAB −QBAQABX −QABXQBA +QABQBAX|0〉

(VI.27)

=
1

2
〈0a|QBAXQAB −QABXQBA|0a〉

=
1

2
〈0a|Q(ΓA)4XQ−Q(ΓB)4XQ|0a〉

=
1

2
〈0a|QΓXQ|0a〉.

Finally, using Q = I− 2P−, we arrive to Eq. (III.19)

ν(0) =
∑
a=A,B

〈0a|M |0a〉 (VI.28)

=
∑
a

〈0a|
[

1

2
ΓX − P−ΓX − ΓXP− + 2P−ΓXP−

]
|0a〉

= 2
∑
a

〈0a|P−ΓXP−|0a〉

= 2
∑
a

∑
i<0

|αai|2〈φi|ΓX|φi〉+
∑

i,j<0;i 6=j
α∗aiαaj〈φi|ΓX|φj〉


=
∑
a

∑
i

|αai|2〈φi|ΓX|φi〉+
∑

i,j<0;i 6=j
α∗aiαaj〈φi|ΓX|φj〉

+
∑

i,j>0;i 6=j
α∗aiαaj〈φi|ΓX|φj〉

 .
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