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RIASSUNTO 
 
        L'attuale allarmante scenario dell'inquinamento dovuto alla produzione di 
materiale plastico è esemplificato dal dato che più di 700 mila buste di plastica e 400 
mila bottiglie di plastica vengono consumate nel mondo ogni minuto. La 
conseguenza di tale iper-consumo  di materiale plastico è che circa 35 milioni di 
tonnellate di rifiuti di materiale non biodegradabile vengono prodotte annualmente in 
tutto il mondo, di cui solo il 7% del totale viene oggi riciclato. Inoltre, la maggior parte 
delle materie plastiche di origine petrolifera che viene a contatto con gli alimenti 
risulta pericolosa per la salute umana, potendo causare gravi danni al nostro sistema 
endocrino. Le soluzioni, finora ipotizzate, a questo enorme problema ambientale 
sono individuate nella auspicabile (i) accelerazione della biodegradazione degli 
attuali materiali plastici, (ii) sintesi di nuovi materiali plastici di origine petrolifera che 
siano biodegradabili, (iii) produzione di materiali biodegradabili sostitutivi delle 
tradizionali plastiche in quanto derivati da fonti naturali ("bioplastiche"). Diverse 
bioplastiche edibili sono già attualmente in commercio ed utilizzate per rivestire o 
proteggere alimenti altamente deperibili e per conservare le loro proprietà nutrizionali 
e organolettiche, avendo la capacità di estendere la shelf-life dei singoli prodotti e di 
ridurre gli effetti negativi causati dalla loro lavorazione, come il cambiamento di 
colore, la diminuzione della loro consistenza e lo sviluppo di odori e sapori non 
graditi. Le biomacromolecole proteiche e polisaccaridiche rappresentano due dei 
principali biopolimeri oggetto di studio finora utilizzati per preparare film 
biodegradabili/edibili. Le bioplastiche derivate da tali biomacromolecole presentano 
però ancora diversi svantaggi rispetto ai polimeri sintetici a causa delle loro limitate e 
non comparabili proprietà meccaniche e/o di barriera. Il presente lavoro è stato, 
pertanto, svolto per tentare di preparare e caratterizzare nuovi materiali idrocolloidali 
in grado di essere una valida alternativa alle plastiche tradizionali utilizzate per il 
packaging di prodotti alimentari, realizzando bioplastiche a base di un concentrato di 
proteine estratte da semi della “veccia amara” (Vicia ervilia) (BVPC), o a base di 
chitosano (CH), un polimero derivato dal secondo polisaccaride più abbondante in 
natura dopo la cellulosa, la chitina. 
        Per ottenere film innovativi con caratteristiche chimico-fisiche e proprietà 
superiori a quelle finora descritte per altre bioplastiche, è stata studiata l'efficacia (i) 
dell'aggiunta di nuovi composti con attività plastificanti (le poliammine alifatiche),  a 
soluzioni formanti film costituite sia da BVPC che da CH, (ii) di procedure di 
miscelazione (“blending”) del BVPC con il polisaccaride pectina (PEC) e di 
reticolazione proteica mediante l’uso dell'enzima transglutaminasi (TGasi). I risultati 
ottenuti hanno suggerito come l'uso quale additivo di spermidina (SPD), o di una 
combinazione della poliammina con un plastificante primario come il glicerolo (GLY), 
possa aprire nuove vie di preparazione di biomateriali idrocolloidali edibili dotati di 
proprietà meccaniche e/o di barriera specifiche per il rivestimento/protezione di 
selezionati prodotti alimentari. I risultati ottenuti indicano, infatti, che la SPD non solo 
è in grado di agire di per sè da plastificante, interagendo con le proteine sia con 
legami di idrogeno che con legami ionici (come dimostrato dall'analisi FT-IR), ma 
anche di facilitare la riduzione, provocata dal GLY, delle forze intermolecolari tra le 
catene proteiche, migliorando conseguentemente la flessibilità e l'estensibilità del 
biomateriale prodotto. Pertanto, la SPD si è dimostrata essere non solo un efficace 
plastificante primario, ma anche un valido plastificante secondario a causa della sua 
capacità di migliorare le prestazioni in tal senso del GLY. Inoltre, la miscelazione del 
BVPC con la PEC, in presenza o assenza di TGasi, ha rappresentato un ulteriore 
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efficace approccio metodologico per ottenere una nuova bioplastica edibile. Infatti, 
l'aggiunta di tale  polisaccaride alla soluzione proteica ha marcatamente diminuito la 
permeabilità ai gas dei film a base di BVPC, mentre i legami isopeptidici ottenuti 
grazie all’azione catalitica della TGasi hanno determinato un ulteriore miglioramento 
delle loro proprietà barriera. Questi risultati, supportati da analisi morfologiche 
mediante SEM, suggeriscono che le caratteristiche funzionali osservate erano 
determinate dalla struttura più compatta dei film proteici ottenuta a seguito della 
reticolazione enzimatica prodottasi in presenza di PEC. 
        Il secondo tipo di bioplastiche oggetto della tesi è rappresentato dai biomateriali 
a base di CH. Poiché i rifiuti di chitina, principalmente derivati dalla lavorazione dei 
crostacei, rappresentano un serio problema di inquinamento ambientale, attenzione 
è stata anche rivolta a migliorare le proprietà meccaniche e di barriera di biomateriali 
ottenuti con il CH, biopolimero derivante dalla deacetilazione della chitina, sfruttando 
l’effetto plastificante della SPD in assenza o presenza di GLY. I risultati ottenuti 
hanno dimostrato che i film di CH contenenti SPD sono più estensibili, esibendo un 
allungamento a rottura superiore a quello osservato nei film plastificati con GLY, a 
causa di interazioni idrofobiche e legami di H, evidenziati mediante analisi FT-IR, che 
si instaurano tra la poliammina e le catene di CH. Inoltre, è stato dimostrato che la 
presenza concomitante di appropriate concentrazioni di SPD e GLY migliora la 
plasticità del nuovo biomateriale prodotto, conferendo ad esso la capacità di poter 
essere anche termosaldato. Infine, tutti i film a base di CH preparati hanno mostratp 
una chiara attività antimicrobica, rivelandosi quindi candidati credibili per potenziali 
applicazioni come rivestimenti e/o involucri adatti per la conservazione degli alimenti. 
        Un'applicazione preliminare dei nuovi biomateriali ottenuti, sia quelli a base 
proteica che polisaccaridica, è stata realizzata rivestendo ed analizzando a diversi 
tempi campioni di formaggio fresco, preparato e conservato sia sotto sale che in 
assenza di sale secondo la metodologia tipica del formaggio palestinese di Nablus 
(“Nabulsi cheese”). Infatti, molti fenomeni indesiderati -quali il cambiamento del 
colore, la produzione di aromi sgradevoli, lo sviluppo di sapore amaro e la 
consistenza granulare- sono noti avvenire nei giorni seguenti la produzione di tale 
prodotto caseario, come anche nel corso di una prolungata conservazione in grandi 
contenitori in presenza di un’alta concentrazione salina. I risultati ottenuti hanno 
dimostrato che il packaging del “Nabulsi cheese” mediante i biomateriali prodotti 
(principalmente quelli preparati con BVPC) aveva gli stessi effetti positivi di quelli 
ottenuti con la conservazione sotto sale o mediante packaging con pellicole non 
biodegradabili a base di LDPE. 
        Pertanto, una eventuale produzione industriale di “Nabulsi cheese” non salato, 
ma semplicemente rivestito e protetto con pellicole costituite dai materiali 
biodegradabili oggetto della presente tesi, consentirebbe non solo un incremento 
della durata di conservazione del prodotto caseario fresco, ma anche di incrementare 
significativamente la prevedibile richiesta da parte dei consumatori di un formaggio 
fresco non salato, che sarebbe percepito come alimento maggiormente salutare e 
pronto per un suo possibile utilizzo anche nel settore dell’industria dolciaria. 
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ABBREVIATIONS  
 
AFM, atomic force microscopy 
BV, bitter vetch 
BVPC, bitter vetch protein concentrate 
CH, chitosan 
RH, relative humidity 
FT-IR, fourier-transform infrared 
ATR, attenuated total reflectance 
EB, elongation at break 
FFS, film forming solution 
GLY, glycerol 
HDPE, high density polyethylene 
LDPE, low density polyethylene 
PEC, pectin 
SEM, scanning electron microscopy 
SNC, salted Nabulsi cheese 
PA, polyamine 
SPD, spermidine  
TA, titratable acidity 
TGase, transglutaminase 
mTGase, microbial transglutaminase 
TS, tensile strength 
TSA, tryptic soy agar 
TSB, tryptic soy broth 
UNC, unsalted Nabulsi cheese 
UW, unwrapped 
YM, Young’s module 
W, wrapped 
WV, water vapor 
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SUMMARY 
 

The current alarming scenario of plastic pollution shows that more than 700 
thousand plastic shopping bags and 400 thousand plastic bottles are consumed 
worldwide every minute. Consequently, about 35 millions tons of plastic wastes are 
annually produced in the entire world but only 7% of them are recycled. Moreover, 
when in contact with foods, many petrol-derived plastics can be harmful for human 
health, causing severe damages to the endocrin system. Possible solutions to these 
huge environmental and health problems may be (i) the biodegradation of the plastic 
materials, (ii) the synthesis of oil-derived biodegradable materials, (iii) the synthesis 
of substituting biodegradable materials derived from natural sources called 
“bioplastics”. Several edible bioplastics are currently used to coat or wrap highly 
perishable foodstuff to protect their nutritional and organoleptic properties by 
extending food shelf-life and reducing the negative effects caused by food 
processing, such as enzymatic browning, texture breakdown and off-flavors 
development. 

Protein and polysaccharides represent two of the main biopolymers used to 
prepare biodegradable/edible films, even though they still present several 
disadvantages due to the limited mechanical and/or barrier properties of the derived 
bioplastics. The present work was carried out to prepare and characterize new 
hydrocolloid materials made with either a concentrate of proteins extracted from bitter 
vetch (Vicia ervilia) seeds (BVPC) or from chitosan (CH), a polymer derived from 
chitin, the second most abundant polysaccharide occurring in nature. 
   To achieve innovative films with improved features we investigated the 
effectiveness of the addition of new compounds possessing plasticizing activities to 
BVPC and CH film forming solutions, such as the aliphatic polyamines, as well as the 
procedures of both blending of BVPC with the polysaccharide pectin (PEC) and 
protein crosslinking by the enzyme transglutaminase of microbial origin (mTGase). 
Our findings suggested that the use of spermidine (SPD) or of a combination of the 
polyamine with a primary plasticizer such as glycerol (GLY), as additives of BVPC-
based films, may open new possibilities to generate hydrocolloid edible biomaterials 
endowed with improved mechanical and/or barrier properties specifically suitable for 
the coating/wrapping of different food products. The obtained results indicates that 
SPD is not only able to act as a plasticizer itself, by interacting with proteins by both 
hydrogen and ionic bonds as demonstrated by FT-IR analysis, but that it also 
facilitates GLY-dependent reduction of the intermolecular forces along the protein 
chains, consequently improving film flexibility and extensibility. Thus, SPD was 
demonstrated to be not only a primary, but also as a secondary plasticizer because 
of its ability to enhance GLY plasticizing performance. 

Moreover, the blending of BVPC with PEC in the presence or absence of 
mTGase is the other way to achieve further innovative edible bioplastics. In fact, PEC 
addition markedly decreased the gas permeability of BVPC films and mTGase-
catalyzed protein crosslinks determined a further enhancement of their barrier 
properties. These findings, supported by SEM morphological analyses, suggest that 
the improved functional features depend on film more compact structure due to 
crosslinked proteins grafted with PEC. 
 Since chitin waste, mainly produced from seafood processing (crustacean 
shells), still represents a major environmental issue, the attention was also 
addressed to improve the mechanical and barrier properties of CH-based bioplastics 
by assaying SPD, with and without GLY, as new plasticizer. Our findings 
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demonstrated that SPD containing CH films were always more extensible, exhibiting 
an elongation at break higher than that observed with glycerol-plasticized films, as a 
consequence of the occurrence of both hydrophobic and H-bonding interactions of 
SPD with CH chains observed in FT-IR spectra. Furthermore, the concurrent 
presence of appropriate concentrations of SPD and GLY enhanced the plasticity of 
the new biomaterial, conferring to it the ability to be also heat-sealed. Finally, all the 
prepared CH films exhibited a clear antimicrobial activity, thus representing credible 
candidates as food preservative coatings and/or wrappings.  

A preliminary application of the new obtained biomaterials was realized by 
wrapping salted and unsalted Nabulsi cheese samples. In fact, many undesirable 
changes such as discoloration, off-flavor production, slime and gas formation, 
bitterness and textural problems may occur with Nabulsi cheese, a typical Palestinian 
fresh dairy product produced by traditional methods, during its storage in large cans, 
also in spite of high brine concentration. The obtained results demonstrate that the 
wrapping of the unsalted Nabulsi cheese by hydrocolloid films (mostly BVPC-based 
ones) has the same effects of LDPE wrapping, as well as of the salting treatment, in 
preventing the lowering of pH and the increase of titratable acidity occurring during 
the storage of the unwrapped dairy product. A possible industrial production of 
unsalted Nabulsi cheese wrapped with the reported edible film would present the 
advantages to increase its shelf-life, avoid any postprocess contamination, and 
enhance the following possible demand for an unsalted, healthy and ready-to-eat 
cheese, potentially to be used also in sweet pastry.  
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1. INTRODUCTION 
 
     1.1 Plastics and bioplastics 

 
       Packaging is one of the most important processes to maintain food quality for 

storage, transportation and end-use. The main function of packaging is to achieve 
preservation and the safe delivery of food products until consumption. Therefore, an 
effective packaging contributes to extend the shelf-life and to maintain the quality and 
the safety of the food products (Han, 2005). The world annual production of plastic 
shopping bags overcomes 5 million tons and 60 thousand of them are used every 
five seconds, more than 100 billions of them being consumed only in Europe each 
year. In addition, 2 millions of plastic bottles are consumed worldwide every five 
minutes. Currently, more than 35 millions tons of wastes deriving from different 
plastic products are produced each year in the world and only 7% of them are 
recycled, the remaining waste being deposited in the landfills or dispersed in the 
oceans. Most of the packaging available in the market is developed from synthetic 
traditional polymers such as polyethylene, polypropylene, or polystyrene causing 
health hazards due to migration of toxic additives into the consumables (Ansorena et 
al., 2018).  
         Global production of plastics has increased twenty-fold since the 1960s, 
reaching 322 million tons in 2015, and it is expected to double again over the next 20 
years (Fig. 1). In a business-as-usual scenario, the ocean is expected to contain 1 
ton of plastic for every 3 tons of fish by 2025 and, by 2050, more plastics than fish 
(by weight) (World Economic Forum, 2016).  Plastics disposal in either ground or 
water threatens soil fertility and marine life, whereas plastics burning releases 
poisonous chemicals in the air. Nowadays, people are more aware about the harmful 
effects of the presence in the environment of wastes derived from plastic materials. 

 

Fig. 1. Global plastics production. 
 

Plastics can degrade by a variety of mechanisms such as chemical, thermal, 
photoxidation and biodegradation, all of which take an extremely long time depending 
on the molecular weight of the different polymers (some types of plastics could take 
up to 1000 years to degrade) (Pramila and Ramesh, 2011). Microorganisms can also 
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play a role in this process, since over 90 genera of bacteria, fungi and actinomycetes 
have been found to possess a slow ability to degrade plastics (Mahdiyah and Mukti, 
2013). Conversely, Bombelli et al. (2017) recently reported the fast bio-degradation 
of polyethylene by larvae of the wax moth Galleria mellonella producing ethylene 
glycol.  

 A possible solution to reduce the consumption of the traditional plastics of 
petrochemical origin, and consequently the plastic waste disposal, is their 
replacement with biodegradable materials (generally called “bioplastics”), as it is 
reported in the following recent publication.  
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         Bioplastics seem an attractive eco-friendly alternative since they can be easily 
degraded by the enzymes normally present in different microorganisms. The global 
market for bioplastics is predicted to grow continuously over the next years. In fact, 
according to the latest market data compiled by European Bioplastics in collaboration 
with the nova-Institute, global production capacities of bioplastics should grow from 
around 2 million tons in 2017 to approximately 2.5 million tons by 2022 (Fig. 2) 
(European Bioplastic, nova-Institute, 2017). 
         The main polymers used so far to prepare these innovative biomaterials are 
some aliphatic polyesters (e.g. polylactic acid and polyhydroxyalkanoates), various 
polypeptides (e.g. soy and whey proteins, collagen, gelatin) and numerous 
polysaccharides (e.g. cellulose, starch, chitin, pectins) obtained from plant or animal 
feedstocks. It is possible to produce bioplastics by starting from bio-based monomers 
(e.g. lactic acid), obtained by fermentation or conventional chemistry and 
polymerizing them in a second step. Further ways are both polymer biosynthesis 
directly in microorganisms or in genetically modified crops (e.g. 
polyhydroxyalkanoates) and the utilization of natural biopolymers (e.g. 
polysaccharides or proteins) recovered from organic wastes. However, different 
bioplastics are prepared for different applications. 

 
Fig. 2. Global production capacities of bioplastics. 

 
Bioplastics made of polysaccharides or proteins, while possess good gas 

barrier features towards oxygen and carbon dioxide, usually exhibit poor mechanical 
properties and, due to their hydrophilic nature, are too much water sensitive to be 
applied to the majority of foods having high or intermediate moisture (Krochta and 
DeMulder-Johnston 1997; Nisperos-Carriedo, 1994). These disadvantages can be 
resolved by the preparation of blended films, as protein-polysaccharide films and/or 
by adding lipids or other components like nanoparticles able to reinforce film network 
(Porta et al., 2011b; Rhim, 2007; Rostamzad et al., 2016). An additional strategy to 
improve the characteristics of protein-based films is to create a crosslinked structure 
of its network either chemically or enzymatically. Among the enzymes able to create 
protein crosslinkings, transglutaminase (EC 2.3.2.13; TGase) is certainly the most 
efficient, being able to catalyze isopeptide bonds between reactive Gln and Lys 
residues existing in the polypeptide sequence. Mahmoud and Savello (1992; 1993) 
were the first to have utilized TGase as crosslinker to produce milk whey protein 
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homo- and hetero-polymers containing films. Afterwards, different authors proposed 
further proteins and methodologies to produce TGase-crosslinked biomaterials with 
specific properties suitable for coating specific food products, generally utilizing 
TGase of microbial origin (mTGase) for its several advantages (broad substrate 
specificity and optimal pH, calcium-independence, commercial availability) (Cui et al., 
2017; Elango et al., 2017; Mariniello and Porta, 2003; Porta et al., 2011b, 2011c; 
Rossi Marquez et al., 2014, 2017). However, this kind of food coating needs, of 
course, that the used proteins are able to act as acyl donor and/or acceptor 
substrates of the enzyme and, thus, most of the studies in this direction were mainly 
focused on few specific proteins able to easily form crosslinked polymers in the 
presence of mTGase. 
 

1.2  Edible films: coating and wrapping 
 

    Edible coatings and wrapping are generally used to cover or protect the food 
surface(s). The difference between coating and wrapping is that the coating is 
created directly on food surface itself, whereas in the second case the film represents 
a stand-alone wrapping material (Pavlath and Orts, 2009). Films may take, thus, the 
form of pouches, capsules, casings, or bags (Sánchez-Ortega et al., 2014). Edible 
films may prevent food moisture losses and quality changes and/or help in control 
exchange of various gases as well as they may prevent the quality loss of various 
components of food products and/or ensure their surface resistance (Akhtara et al., 
2015). Edible packaging can be carriers for flavourings, antimicrobial agents or 
antioxidants (Šuput et al., 2015) and are degraded by microorganisms in composting 
processes to produce natural breakdown compounds. They can also ensure sterility 
of the food surface, representing an useful tool for providing food safety preventing 
pathogens contamination by direct contact of the package with its surface.  

    According to Dhanapal et al. (2012), dipping is the most common method to 
apply coatings to fruits and vegetables when the coating solution is highly viscous 
(Fig. 3a). Dipping is carried out by introducing the product, for a time between 5 and 
30 s, in a coating solution under controlled conditions of density and surface tension. 
However, when the coating solution is not highly viscous, a spraying procedure can 
be used (Fig. 3b). The food product is introduced into the coating system and it is 
sprayed by controlling the final drop size of the solution, which depends on the 
thickness of the spray gun, nozzle temperature, air and liquid flow rates, humidity of 
incoming air and polymer solution, drying time and temperature. Finally, the brushing 
method is used in some products, such as fresh beans and strawberries, when the 
reduction of the moisture loss is an issue (Fig. 3c). Thin coatings onto the surface of 
the product are obtained in all cases and they could act as semi-permeable 
membranes reducing gas transfer rates and creating new packaging materials to 
extend food shelf-life (Valdés et al., 2015). Substantial advances have been made 
over the last two decades in the field of biodegradable polymers, mostly derived from 
renewable natural resources, to produce bioplastics with features similar to those 
typical of oil-based materials (Pathak et al., 2014). In particular, protein-based edible 
films and coatings have attracted an increasing interest in recent years since they 
might be used to improve the shelf-life of different food products (Zink et al., 2016). 
These biomaterials are generally first evaluated for their mechanical and barrier 
properties as a function of different types and concentrations of plasticizers, generally 
small and non-volatile organic additives used to increase film extensibility and reduce 
its cristallinity, brittleness and water vapour (WV) permeability. 
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Fig. 3. Main coating methods used in food industry (Dhanapal et al., 2012). 

 
1.3   Plasticizers 

 
     Numerous additives, called plasticizers, have long been known for their 

effectiveness in enhancing the flexibility of synthetic plastics (Mekonnen et al., 2013) 
and new types of plasticizers specifically suitable to bio-based materials are being 
developed. For technical and economic reasons, these additives are a large and 
increasingly significant components of the polymer industry (Rahman and Brazel, 
2004). Generally, plasticizers are small, relatively non-volatile, organic molecules that 
are added to polymers to reduce brittleness, impart flexibility, and improve toughness 
reducing crystallinity, glass transition and melting temperatures. (De Groote et al., 
2002). Plasticization reduces the relative number of polymer–polymer contacts, 
thereby decreasing the rigidity of the three-dimensional structure and allowing 
deformation of material without rupture (Varughese and Tripathy, 1993). 
Consequently, plasticizers improve processability, flexibility, durability and, in some 
cases, reduce the cost of production (Snejdrova and Dittrich, 2012; Ljungberg and 
Wesslen, 2003). Therefore, as the bioplastic industries is continuously growing, the 
demand for new kinds of plasticizers endowed with specific characteristics and 
performances compatible with the single bioplastics is parallel growing (Vieira et al., 
2011; Mekonnen et  al., 2013). 

   Water is the main solvent in the natural biopolymer technology able to reduce 
the glass transition temperature and to increase the free volume of biomaterials and, 
thus, water is considered the most powerful ‘‘natural’’ plasticizer of hydrocolloid-
based films (Cheng et al., 2006; Karbowiak et al., 2006). Recently, many studies 
have focused on the use of plasticizers of different chemical nature, such as glycerol 
(GLY) (Cheng et al., 2006: Cao et al., 2009; Porta et al,. 2015; Sanyang et al., 2016; 
Santana at al., 2018; Fernandez-Bats et al., 2018; Fitri et al., 2018), ethylene glycol, 
diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol 
(Suyatma et al., 2005; Cao et al., 2009), sorbitol (Cao et al., 2009; Sanyang et al., 
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2016; Escamilla-García et al., 2017), fatty acids (Pommet et al., 2003; Jongjareonrak 
et al., 2006), and several monosaccharides (glucose, mannose, fructose, sucrose) 
(Veiga-Santos et al., 2007; Galdeano et al., 2009). 
 

1.4   Bitter vetch (Vicia ervilia) protein concentrate  
 

    Bitter vetch (BV, Vicia ervilia) is an annual Vicia genus cultivated for forage and 
seed yield (Fig. 4). In particular, BV seeds, containing up to 25% of protein, are an 
abundant, inexpensive and renewable source of both protein and energy (Sadeghi et 
al., 2009).  

 

 
 

Fig. 4. Bitter vetch and derived seeds. 
 

    Thus, BV proteins might represent an affordable alternative protein source to 
produce edible films for both pharmaceutical and food applications. In particular, 
Arabestani et al. (2013; 2016), recently described edible films obtained from a BV 
protein concentrate (BVPC), showing promising both barrier and mechanical 
properties, and the ability to give rise to both edible films and biodegradable 
containers. Moreover, Porta et al. (2015) determined the properties of BVPC films 
reinforced by mTGase-catalyzed protein crosslinking. The surface of films prepared 
in the presence of enzyme appeared more compact and smoother and the film cross 
sections showed the disappearance of the discontinuous zones observed in the 
control films and, on the contrary, a very homogeneous structure. mTGase-
crosslinked films exhibited also markedly decreased oxygen (700-fold) and carbon 
dioxide (50-fold) permeability, compared to controls, as well as significantly different 
mechanical properties being increased film resistance and stiffness. More recently, 
Fernandez-Bats et al. (2018) added mesoporous silica nanoparticles and its (3-
aminopropyl)triethoxysilane derivative to improve the mechanical as well as the gas 
and WV barrier properties of the BVPC-based films. Finally, the demonstrated 
antimicrobial and antifungal activities of the obtained biomaterials, increased by nisin 
addition to the film forming solutions (FFSs), suggest the possibility of their potential 
application as bio-preservative active packaging to improve the shelf-life of different 
food products. 

 
1.5  Chitosan 

 
       Chitosan (CH) is a linear polysaccharide of randomly distributed β-(1–4)-linked D 
glucosamine (deacetylated unit) and N-acetyl-D-glucosamine (acetylated unit) (Fig. 
5), derived by deacetylation at high temperatures of chitin, the second most abundant 
natural polysaccharide after cellulose (Siripatrawan, 2016; Muxika et al., 2017). 
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Fig. 5. Structure of chitin and chitosan (Siripatrawan, 2016). 

 
         Although various factors (e.g. chitin source, alkali concentration, deacetylation 
procedure) may affect some of its properties, CH (pKa, 6.3) is easily dissolved in 
acidic solutions, i.e. when its free amino groups are fully protonated (Babu et al., 
2013; Kaur and Dhillon, 2014; Rinaudo, 2006; Yeul and Rayalu, 2013; Van den 
Broek et al., 2015). The degree of both deacetylation (ranging from 40 to 98%) and 
polymerization determines CH molecular weight (generally ranging from 5x104 to 
2x106 Da) and its consequent possible utilization (Aljawish et al., 2015). The unique 
physicochemical and biological features of CH make it worthy in regard to various 
biomedical, pharmaceutical and agricultural applications and, because of its broad 
antibacterial and antifungal properties, CH edible films have been promoted as 
promising biomaterials also for food coating and protection (Kong et al., 2010). In 
fact, although CH-based films exhibit weak mechanical properties, as well as 
unsatisfying WV barrier features, they remain the most up-and-coming ones among 
the various hydrocolloid bioplastics so far proposed, because they are 
biodegradable, biocompatible, non-toxic and obtainable in large quantities from 
waste products of seafood industries (crustacean shells) (Elsabee and Abdou, 2013; 
Mayachiew and Devahastin, 2008; Van der Broek et al., 2015). In addition, it is 
worthy to note that CH has been considered as a GRAS (Generally Recognized As 
Safe) food additive for both consumers and the environment (FDA, 2012).  
     Several advantages have been demonstrated when different food products were 
CH-coated. CH was shown to be able to form a semi-permeable layer on the surface 
of various fruits and vegetables, and to delay the rate of respiration and their ripening 
by reducing food moisture and weight loss (Alvarez et al., 2013; Chofer et al., 2012; 
Eum et al., 2009; Gol et al., 2013; Sun et al., 2014). Moreover, CH films have also 
been used as carriers releasing different bioactive agents like essential oils, as well 
as antimicrobials and/or antioxidants (Acevedo-Fani et al., 2015; Avila-Sosa et al., 
2012; Zivanovic et al., 2005), and to protect fish, red meat, poultry and their 
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processed products with the aim to decrease color changes, lipid oxidation, growth of 
pathogenic and spoilage bacteria and to extend product shelf-life (Chamanara et al., 
2013; Gómez-Estaca et al., 2010; Samelis, 2006; Yingyuad et al., 2006). Many 
different attempts have been made to improve mechanical, barrier and functionality 
properties of CH films by their blending with other biopolymers and/or plasticizers 
(Baron et al., 2017; Di Pierro et al., 2006, 2007; Escamilla-García et al., 2017). For 
instance, CH films plasticized with sorbitol show a lower WV permeability than those 
plasticized with GLY at similar concentrations, due to the lower ability of sorbitol to 
bind water (Siripatrawan, 2016). 
 

1.6  Nabulsi cheese 
 

   Nabulsi cheese (Fig. 6) is one of the traditional white brined cheese known and 
widely consumed in various countries of the Middle East, particularly Palestine and 
Jordan, also used to produce a typical dessert called Knafeh. This cheese is 
classified as unripened, semi-hard dairy product with moisture content ranging from 
45% to 55% and salt content around 9% (Ayyash and Shah, 2011). The white colour 
of Nabulsi cheese is an important factor for consumer acceptance and directly 
related to product quality. Colour or appearance of the cheese is related to its 
physical structure and chemical nature (Rudan et al., 1998). 

 

 
Fig. 6. Nabulsi cheese. 

 
         Nabulsi cheese is produced mainly from sheep and goat milk, but also form 
cow milk, and its most favorable characteristics can be described as follows: 

1- shape is rectangular and the dimensions are generally 8×4×1.5 cm. 
2- color is normally white, yellowish color occurring only when cow milk is used. 
3- texture analysis indicates a semi-hard cheese, with no gas holes, becoming 

soft and elastic when heated.  
4- flavor is characteristic for ewe and goat milk and it is influenced by the 

particular aroma of Prunus mahaleb and Pistacia letiscus extracts added to the 
boiling brine.  

 The traditional method used for Nabulsi cheese preservation is to boil the salted 
cheese in brine (18-20%), and it can be stored in 20% brine solution for 1 year after 
moulded curd pieces have been boiled in brine solution for 10 min (Abd El-Salam 
and Alichanidis, 2004). The cheese is generally stored in cans of various sizes, 
without refrigeration, containing its boiling brine. Boiling procedure of Nabulsi cheese 
is quite similar to milk pasteurization (Yamani et al., 1987). Most Mediterranean 
cheeses contain high salt content -such as Feta (5.0%), Halloumi (3.0-5.0%) and 
Akawi (5.0%) cheeses- (Ayyash and Shah, 2011). Therefore, following the traditional 
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preservation method the final Nabulsi dairy products will contain high amounts of 
salts which can result in negative effects for the consumers suffering of high blood 
pressure and other disease related to high sodium intake. Moreover, many 
undesirable changes such as discoloration, off-flavor production, slime and gas 
formation, as well as bitterness and textural problems, may occur to the Nabulsi 
cheese produced by traditional methods during storage in large cans in spite of high 
brine concentration (Mazaherh et al., 2009; Yamani, 1997). This explains why the 
dairy industries are recently increasing the production of Nabulsi cheese obtained 
from pasteurized cow milk and containing either lower salt amount on the surface or 
even no salt.  

  In conclusion, an innovative packaging, made of edible coating and/or wrapping 
material derived from cheap or waste biological sources, could represent a 
strategical way to protect Nabulsi cheese from the moment of its production until its 
final retail destination and consumption. 
 

1.7  General objectives of the experimental work  
 

  The main objectives of the present thesis were: (i) to produce new hydrocolloid 
edible films, prepared from low price vegetal sources, such as BVPC, or from a 
waste-derived biological source, such as the polysaccharide CH; (ii) to identify 
innovative plasticizing additives, to be used alone or in combination with GLY, to 
improve the mechanical and barrier characteristics of BVPC and CH films; (iii) to 
study the stability of the new FFSs formulated by analyzing their zeta-potential and 
particle size; (iv) to examine the physicochemical and biological properties of the 
obtained biodegradable/edible films in comparison with those o different commercial 
materials; (v) to test the ability of the obtained biomaterials to improve Nabulsi 
cheese shelf-life by its coating and/or wrapping. 
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2. MATERIALS AND METHODS 
 
2.1 Materials 

 
2.1.1 Bitter vetch protein concentrate 

         BV seeds were obtained from a local market in Gallicchio (Potenza, Italy) and 
the contained proteins were extracted as previously described (Arabestani et al., 
2013) with some modifications (Fig.7). The seeds were grinded at speed of 1300 
r.p.m. for 5 minutes and the flour was solubilized in distilled water at pH 11 by stirring 
at medium speed for 1 h at room temperature. After centrifugation at 3200x g for 10 
min, the supernatant was collected and the pH was adjusted to 5.4 by 1 N HCl 
addition to form a precipitate which was then separated by centrifugation at 3200x g 
for 10 min. Finally, the pellet was poured and uniformally distributed on a plastic plate 
and dried at 37°C and 25% relative humidity. The dry protein concentrate was finally 
grinded and its protein content (77%) determined by the Kjeldahl's method (Kjeldahl, 
1883).  
 

 
 

Fig. 7. Summary of BVPC preparation. 
 

2.1.2 Chitosan 
         CH (mean molar mass of 3.7x104 g/mol) with a degree of 9% N-acetylation, was 
a gift from prof. R.A.A. Muzzarelli (University of Ancona, Italy). The mean molar mass 
of CH was determined by a viscometric method, as previously described (Costa et 
al., 2015), by dissolving 0.2 g of CH in 10 mL of 0.1 M acetic acid, containing 0.2 M 
sodium chloride, and obtaining five different dilutions of the original solution. The 
degree of N- acetylation was determined by the first derivative ultraviolet 
spectrophotometric method, as described by Muzzarelli and Rocchetti (1985), based 
on recording of the first derivative of the CH UV spectra at 202 nm by using a 
standard curve obtained by varying N-acetylglucosamine concentrations.  
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2.1.3 Other materials 
         Microbial TGase (mTGase) from Streptoverticillium sp. (Activa WM; specific 
activity 90 units/g) was supplied by Prodotti Gianni SpA (Milano, Italy). The enzyme 
solution was prepared by dissolving the commercial preparation in distilled water at a 
concentration of 100 mg/mL and the mixture was centrifuged at 10,000×g for 2 min to 
remove the precipitate.  
         Citrus peel low-methylated (7%) pectin (PEC) (Aglupectin USP) was from Silva 
Extracts srl (Gorle, BG, Italy). 
         Viscofan NDX edible casings were from Naturin Viscofan GmbH (Tajonar-
Navarra, Spain); Mater-Bi (S 301). 
       MaterBi, as well as high density (HDPE) and low density (LDPE) polyethylene 
materials, were from local market shopping bags, Naples, Italy. 

  Spermidine (SPD) was from Sigma Chemical Company (St. Louis, MO, USA). 
  GLY (about 87%) was from the Merck Chemical Company (Darmstadt, 

Germany). 
  All other chemicals and solvents used in this study were analytical grade 

commercial products. 
 
    2.2 Film forming solution preparation and characterization 

 
  To prepare the different BV protein FFSs, BVPC was dispersed in distilled water 

(2 g/100 mL) and the pH value was adjusted to pH 12.0 by using 0.1 N NaOH under 
constant stirring until the powder was completely solubilized. Aliquots of BVPC 
solution were then added with different concentrations of polyamines (PAs) and 
incubated for 30 min either at 25 or 80°C to obtain FFSs containing both native and 
denatured BV proteins. Two additional aliquots of BVPC solution were brought at pH 
8.0 and 11.0, respectively, by 0.1 N HCl addition and then incubated in the presence 
of PAs for 30 min either at 25 or 80 °C. Where indicated, different concentrations of 
GLY were added to the obtained FFSs at the end of incubation. 

  CH stock solution (2 %) was prepared by dissolving the polysaccharide in 0.1 N 
HCl at room temperature under overnight constant stirring at 700 rpm (Di Pierro et 
al., 2006). CH FFSs were obtained at pH 4.5 by using CH (0.1-0.6 %) mixed or not 
with different concentrations of SPD (2-10 mM) and/or GLY (2-40 mM). 

  Zeta potential and Z-average values of the different BVPC and CH FFSs were 
determined by a Zetasizer Nano-ZSP (Malvern®, Worcestershire, UK) equipped with 
an automatic titrator unit (MPT-2) to study the effect of different pH or any additives 
on the zeta potential and Z-average of FFSs. The device was equipped with a 
helium-neon laser of 4 mW output power operating at the fixed wavelength of 633 nm 
(wavelength of laser red emission). The instrument software programmer calculated 
the zeta potential through the electrophoretic mobility by applying a voltage of 200 
mV using the Henry equation. The zeta potential and Z-average were studied in 
triplicates immediately after their preparation to prevent possible alterations in 
molecular interaction during storage (Schmid et al., 2015). 

In the following two articles an insight into zeta potential measurements in 
biopolymer film preparation is reported, as well as stabilization studies of the 
polysaccharide FFSs by nanoparticle Z-average and zeta potential monitoring is 
described. 
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2.3   Film preparation and characterization 
 
               2.3.1 Casting  
         Fig. 8 illustrates the procedure of film preparation, starting by the different FFSs 
obtained as described in 2.2. Each FFS (50 mL) was casted onto a polystyrene Petri 
dish (8 cm diameter) and dried at 25 °C and 45% RH for 48 h.  
 

 
Fig. 8. Film preparation procedure. 

 
        The obtained film was then peeled from the casting surface and stored at 25 °C 
and 50% RH into a dessicator over a saturated solution of Mg(NO3)2.6H2O before 
being tested. Finally, each film was characterized for morphological, physicochemical 
and antimicrobial properties and for its ability to be heat-sealed and to wrap cheese 
products. 
 

    2.3.2   Morphology  
  Film surface and cross section ultrastructure were analyzed by using a 

Scanning Electron Microscope (SEM). Films were cut using scissors, mounted on 
stub and sputter-coated with platinum-palladium (Denton Vacuum Desk V), before 
observation with Supra 40 ZEISS (EHT= 5.00 kV, detector inlens). 
         Film surface morphology was studied using an Atomic Force Microscope (AFM) 
(Bruker, model Nanos). A sharpened Si3N4 cantilever, with a spring constant of 0.2 
N/m and a V-shaped tip 450 μm long, was positioned over each sample and images 
(42 × 42 μm) under ambient conditions were obtained. 
 
               2.3.3  Physicochemical analysis 

 
                  2.3.3.1 Thickness measurements 

  Film thickness was measured with a micrometer model HO62 (Metrocontrol Srl, 
Casoria (Naples, Italy) at five random positions over the film area. Values are mean ± 
standard deviation (SD) of five replicates. 

 
 2.3.3.2  Mechanical properties 

  Film tensile strength (TS), elongation at break (EB) and Young’s module (YM) 
were measured by using an Instron universal testing instrument model no. 5543A 
(Instron Engineering Corp., Norwood, MA, USA). Film samples were cut, using a 
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sharp scissors, into 10 mm wide and 40 mm length strips equilibrated for 2 h at 50% 
± 5% RH and 23 ± 2 °C in an environmental chamber. Five specimens of each film 
type were tested (1 KN load and 1 mm/5 min speed), as previously reported (ASTM 
D882-97, 1997). 
 
                  2.3.3.3 Barrier properties 

    Film permeabilities to O2 (ASTM D3985-05, 2010) and CO2 (ASTM F2476-13, 
2013) and WV (ASTM F1249-13, 2013) were determined in triplicate for each film by 
using a TotalPerm apparatus (Extrasolution s.r.l., Pisa, Italy). Aluminium masks were 
used to reduce film test area to 5 cm2, whereas the testing was performed at 25 °C 
under 50% RH. 

 
                  2.3.3.4 FT-IR spectroscopy 

    The analysis of film structural links was performed using FT-IR measurements 
on a Bruker model ALPHA spectrometer, equipped with attenuated total reflectance 
(ATR) accessory. Spectra were obtained by averaging 24 scans over the spectral 
range of 400 to 4000 cm−1. Data analysis of each film was performed with Origin Pro 
8.6 program (Origin Lab, Northampton, MA, U.S.A.). 
 

           2.3.3.5 Heat sealability 
    The heat sealability of the different biomaterials was examined by using an 

automatic heat sealer (MAGIC VAC® AXOLUTE Mod: P0608ED, Italy) equipped with 
a vacuum pump (60 cm/Hg -0.80 bar /11.6 PSI). All the samples were cut into strips 
of 5x2.5 cm, and one strip was placed onto another strip of the same sample (Fig. 9).  

Fig. 9. Visualization of the film sealing procedure. 
 
        All the samples were previously conditioned at 25 °C and 50 ± 5% RH for 48 h 
and few drops of distilled water were dispersed onto the sealing areas (0.3 cm) 
before inserting the two strips into the heat sealer. Sealing temperature, dwell time 
and pressure were automatically assessed and the resulting welds were analyzed 
according to ASTM E88-07a (ASTM, 2007) with an Instron universal testing 
instrument model no. 5543A (Instron Engineering Corp., Norwood, MA, USA). The 
seal strength (N/m) was calculated by dividing the maximum peak force to the film 
width. 
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               2.3.4 Antimicrobial activity  
  Salmonella typhimurium ATCC 14028 was grown in tryptic soy broth (TSB, 

Becton Dickinson Difco, Franklin Lakes, NJ) and on tryptic soy agar (TSA; Oxoid 
Ltd., Hampshire, UK). In all the experiments, bacteria were inoculated and grown 
overnight in TSB at 37 °C and, the day after, were transferred into a fresh TSB tube 
and grown to mid-logarithmic phase. Bacterial cells were then diluted in TSB to 
approximately 2x107 CFU/mL and inoculated by surface streaking into TSA plates 
using a swab. 1 cm2 CH film strip was placed onto the center of the inoculated plate 
and pressed to ensure full contact with the agar surface. Plates were incubated at 37 
°C for 24 h and the presence or absence of bacterial growth under the film was 
evaluated. 

 
2.4 Film applications to dairy products 
 

              2.4.1 Nabulsi cheese preparation 
         Unsalted (UNC) and salted (SNC) Nabulsi cheeses were prepared from fresh 
cow milk, obtained from local market (Napoli, Italy), as previously described by Al-
Dabbas et  al., (2014) with the following modifications: 5 L of fresh milk were 
tempered to 35 °C and rennet was added; after 60 min the curd was cut and settled 
for 15 min, and then transferred into cheesecloth that was inside perforated square 
stainless steel frame, 20x20x2 cm; the curd was then pressed with 25 Kg weight for 2 
h and the cheese cut into small blocks (2x2x2 cm) by using a stainless steel cheese 
slicer. Dry salt (2.5%, w/w of cheese) was dispersed onto the surface of the half of 
the cheese blocks to prepare the SNC samples.  
 
              2.4.2 Cheese wrapping  

  Films prepared both from BVPC FFS containing 42 mM GLY and from CH FFS 
containing 25 mM GLY were used to wrap both UNC and SNC, after their 
equilibration for 2 days at 50±5% RH and 23±2 °C in an environmental chamber. The 
two types of film (7.5×9.5 cm) were heat-sealed by three sides giving rise to an open 
bag in which each cheese block was placed. Then, vacuum was applied to discard all 
air inside the bag and also the fourth side of the films was heat-sealed by using a 
professional vacuum packing machine (MAGIC VAC® AXOLUTE Mod: P0608ED, 
Italy) equipped with a vacuum pump (60 cm/Hg -0.80 bar /11.6 PSI). All the wrapped 
cheese samples were finally stored at 4 °C for different times. LDPE was used as 
wrapping control films. 
 
             2.4.3 pH variation 

  The pH of unwrapped and wrapped cheeses was measured according to AOAC 
procedures (AOAC, 1990). Cheese samples (10 g) were homogenized, at the 
maximum speed for 5 min, in 100 mL of distilled water by an Ultra-Turrax T8 
homogenizer (IKA-WerkeGmbH, Staufen, Germany). After stirring for 15 min, the 
homogenates were centrifuged at 2500xg for 10 min and the obtained supernatants 
were filtered through both cotton lint and paper filter. Measurement of pH was carried 
out using a digital pH meter, model 211 (Hanna instruments, PBI International). 

 
            2.4.4 Titratable acidity 

    Titratable acidity (TA) of unwrapped and wrapped cheeses was measured 
according to Di Pierro et al. (2011). Cheese samples (10 g) were added to 50 mL of 
distilled water at 40 °C and homogenized for 5 min at the maximum speed with an 
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Ultra-Turrax T8 homogenizer. After centrifugation at 3000x g for 10 min, the 
supernatants were filtered. Then, 5 drops of phenolphthalein (1% in ethanol) were 
added to 25 mL of supernatant and TA was determined by addition of 0.1 N NaOH 
until the solution became pink. TA, expressed as milliequivalent/100 g, was 
calculated as follow: 

 

TA = 
a ×b ×100

c
  

 
where a and b correspond to the concentration and the volume of titrant solution, 
respectively, and c refers to the weight (g) of the analyzed sample. 
 
            2.4.5 Cheese weight loss  

 Cheeses were individually weighed on an automatic analytical balance (ORMA 
s.r.l. BCA310 S. Milano) with a precision of ± 0.0001 g, at the beginning and during 
the storage period, and the percentage weight loss from the initial cheese weight was 
calculated by the following equation:    

 
weight loss (%) = 

W1−W2
W1

 × 100 
 

where W1 is the cheese initial weight and W2 is the cheese weight after storage. 
Three experiments performed with each cheese sample were detected. 
 
 
      2.5 Statistical analysis  

 
JMP software 10.0 (SAS Institute, Cary, NC, USA), was used for all statistical 

analyses. The data were subjected to analysis of variance, and the means were 
compared using the Tukey-Kramer HSD test. Differences were considered to be 
significant at p<0.05. 
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3. RESULTS AND DISCUSSION 
 
3.1   Plasticizing effects of polyamines in protein-based films 

 
Plasticizers generally improve the processability of the different biomaterials. 

Therefore, as the bioplastic industry is continuously growing, the demand for new 
kinds of plasticizers endowed with specific characteristics and performances 
compatible with each single bioplastic is growing in parallel. GLY is commonly used 
as plasticizer in different hydrocolloid films and coatings, since it increases the free 
space inside the film matrix following hydrogen bond formation between the polymer 
chains. This interaction generally increases film permeability and decreases film 
mechanical properties. BVPC films in the absence of high concentrations of a 
plasticizer like GLY are brittle, difficult to manipulate, and, consequently, impossible 
to study. Moreover, the addition of high amounts of GLY were shown unable to give 
rise to handleable films even when BV proteins were previously denatured by heat 
treatment at 80 °C for 30 min. The attention was, thus, focused on the possible 
plasticizing effects of positively charged small mol. weight compounds, such as the 
aliphatic polyamines, already shown to be able to plasticize PEC-based films 
(Esposito et al., 2016). To this aim, BVPC was used to obtain protein-based SPD 
plasticized films both in the absence and presence of GLY.  

In a first published article (Int. J. Mol. Sci., 18, 1026, 2017) it has been 
demonstrated the specific ability of SPD to act as an effective cationic plasticizer also 
for protein-based films. The presence of appropriate SPD amounts allowed to obtain 
easily manipulable films at low GLY concentrations and even in the absence of GLY. 
Moreover, in a second published article (Int. J. Mol. Sci., 18, 2658, 2017) it was 
demonstrated the SPD positive influence on the morphological, mechanical, and 
barrier properties of films prepared from both native and heat-denatured BV proteins 
at different concentrations of GLY and pH values. 

One of the main technical challenges in food processing and storage today is 
the development of tailor-made coating materials with appropriate characteristics 
according to the specific requirements of the various fresh or processed foodstuffs. 
Our findings suggest that the use of SPD or of a combination of the polyamine with a 
primary plasticizer such as GLY as additives of protein-based films, may open new 
possibilities to generate hydrocolloid edible films endowed with different mechanical 
and barrier properties specifically suitable for the coating of different food products. 
Lower film EB and higher YM values were detected in the presence of the polyamine 
without or with small amounts of GLY. The obtained results suggest that SPD not 
only acts as a plasticizer itself by ionically interacting with proteins, but that it also 
facilitates GLY-dependent reduction of the intermolecular forces along the protein 
chains, consequently improving the film flexibility and extensibility. Thus, SPD may 
be considered not only as a primary, but also as a secondary plasticizer because of 
its ability to enhance GLY plasticizing performance. Moreover, SPD reduce the 
BVPC film thickness from 108 µm with GLY alone to 82 µm this is due to the ionic 
interaction that occur between SPD and protein (Fig. 10).  
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Fig. 10. Proposed model of the effects of GLY or SPD alone, and of GLY 
together with SPD, on the BVPC film thickness (SEM images of the cross-
sections of each film are reported).  
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    3.1.1 FT-IR analysis of BVPC films 
         The broad band ranging between 3100 and 3500 cm−1, corresponding to the 
stretching of O─H and N─H bonds (Martins et al., 2010), showed an increase of 
intensity of the signals only when the films containing GLY were analysed (Fig. 11). 
Moreover, the peaks detected between 2929 cm−1 and 2877 cm−1, attributed to C─H 
stretching vibration with amino group, significantly changed in the films containing 
GLY and/or SPD. The obtained data suggest a C─H stretching vibration with 
hydroxyl group in all obtained films. Fig. 12 shows that the peak observed at 1746 
cm-1, corresponding to N-H band of primary amines and detected in all film samples, 
markedly increased only in the film containing SPD alone. In fact, when also GLY 
occurred, the intensity of such peak dramatically decreased, probably as a 
consequence of SPD-GLY interaction. The intensity of the bands ranging between 
1632 cm−1 and 1519 cm−1 , corresponding to amide-I and amide-II, were observed to 
be reduced in the films plasticized with SPD, probably due to the ionic interaction of 
the polyamine with BV proteins (Fig. 12). Similar findings have been reported by 
Ahmed Ouameur et al. (2004). In fact these Authors, reporting the reduction of the 
intensity of the amide-I and amide-II bands of human serum albumin in the presence 
of polyamines, explained this result suggesting a polycation–protein interaction. 

 

Fig. 11. FT-IR spectra of pure BVPC powder and BVPC films prepared at pH 8 in 
the presence or absence of 42 mM GLY and/or 5mM SPD.  
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Fig. 12. FT-IR spectra of BVPC films prepared at pH 8 in the presence or 
absence of 42 mM GLY and/or 5 mM SPD at wavenumber (1800–400 cmˉ¹). 
 
         Moreover, no significant differences were detected in the peaks occurring in the 
range from 1537-1313 cm−1, corresponding to the symmetrical stretching of the C=O 
and C=N bonds. Conversely, whereas several bands located between 1241-851 cm-1 
disappeared when SPD was used to plasticize BVPC films, a new band at 1158 
cm−1, corresponding to the tertiary amino C─N and probably due to ionic SPD-protein 
interaction, was clearly evident in the SPD-containing film spectrum (Fig. 12). More in 
particular, the bands located at 960–850 cm-1 are known to be specifically related to 
the occurrence of O─H hydrogen bonds (Coates, 2000). Finally, the marked 
decrease of intensity in the spectrum region 1241-851 cm-1, observed in the 
presence of both plasticizers with respect to the spectra of films plasticized by GLY 
alone, should be due to both ionic interaction between SPD and protein and 
hydrogen bonds between GLY and protein (Fig. 12).  
 
 
3.2 Blended films of bitter vetch (Vicia ervilia) proteins and pectin: properties 
and effect of transglutaminase 

 
         As film components, polysaccharides are able to control gas transmission, 
whereas proteins often provide mechanical stability. Therefore, these 
biomacromolecules can be utilized either individually or, frequently, they are mixed to 
produce blended hydrocolloid films. In fact, combined use of compatible proteins and 
polysaccharides may allow preparing films showing improved mechanical or 
permeability properties with respect the ones obtained from proteins or 
polysaccharides alone. In addition, since chemical and/or enzymatic modifications of 
polysaccharides and proteins could provide further promising ways to improve film 
properties, we prepared BVPC/PEC blended films in the absence or presence of the 
enzyme TGase isolated from Streptoverticillium sp.. The microbial molecular form of 
the enzyme (mTGase), catalysing the production of protein inter- and/or intra-
molecular ε-(γ-glutamyl) lysine isopeptide bonds, is able to transform soluble 
substrate proteins into high molecular weight polymers also inside the edible films 
(Porta et al., 2011a). Therefore, we expected that the addition of PEC, as well as of 
PEC and mTGase, into BVPC FFSs could determine significant changes in film 
mechanical and/or permeability features. In the following article the morphological 
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and the main functional characteristics of these new blended BVPC/PEC films were 
described. 
        The blended hydrocolloid film obtained by using BVPC in the presence of PEC 
and mTGase revealed a promising way to obtain possible edible food coatings as 
well as effective drug delivery systems. In fact, unsatisfactory tensile properties and 
poor barrier ability toward the main environmental gases are considered thus far the 
major limitations to a wider use of biodegradable/edible films, being undesirable 
characteristics to maintain the quality of numerous foods and drugs. The improved 
mechanical features exhibited by BVPC/PEC films prepared in the presence of 
mTGase, together with their high barrier activity to both CO2 and O2, represent a 
clear advancement in the search for effective substitutes of traditional plastics. 
Furthermore, the cross-sectional SEM analysis confirmed that BVPC/PEC films 
containing mTGase possess a more compact and homogeneous microstructure, with 
evident continuous zones, in comparison with the reticular structure of control 
samples of BVPC/PEC obtained in absence of mTGase. Therefore, these findings 
suggest these new hydrocolloid materials as potential interesting bioplastics for 
specific applications in both food and pharmaceutical industries. 
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      3.3 Development and properties of new chitosan-based films plasticized 
with spermidine and/or glycerol 

 
         Although CH-based films exhibit weak mechanical properties, as well as 
unsatisfying WV barrier features, they remain the most up-and-coming ones among 
the various hydrocolloid bioplastics so far proposed, because they are 
biodegradable, biocompatible, non-toxic and obtainable in large quantities from 
waste products of seafood industries (crustacean shells). Recent studies have shown 
that aliphatic polyamines, in particular the triamine SPD, are able to influence the 
morphological, mechanical and barrier properties of edible films produced from 
another polysaccharide, i.e. PEC (Esposito et al., 2016), and that the combination of 
different concentrations of both SPD and GLY may give rise to biomaterials that 
possess a wide spectrum of functional characteristics. Therefore, the possible 
improvement of the physicochemical and biological properties of CH-based films by 
incorporating various SPD and GLY proportions in the host matrix was investigated. 
Based on such hypothesis, it is expected that the addition of both plasticizers to 
polymeric matrix can bring about better features of the CH films so that a new 
polysaccharide-based biomaterial can represent a valid alternative to the gelatin-
based films, such as the well commercialized Viscofan (www.viscofan.com) widely 
used for food wrapping. In fact, gelatin is one the most controversial ingredients of 
“kosher and halal” food and it seems advisable to replace it according to the religion-
based dietary restrictions of both Muslim and Jewish consumers and the consequent 
negative impact in their marketplace (Regenstein et al., 2003).  

SPD-containing films were found always much more extensible materials 
exhibiting an EB even higher than that of GLY-plasticized films. In addition they 
resulted able to be thermo-sealed and to retain the well known antimicrobial CH 
features. All these results are reported in the following published article.  
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        3.3.1 FT-IR analysis of CH films 
         The FT-IR of pure CH powder, as well as of CH films prepared in the presence 
or absence of 5 mM SPD and/or 25 mM GLY, were shown in Fig. 13. After film 
formation, some differences were observed in the CH spectrum, probably due to the 
effect of film matrix, in comparison with that of pure CH. The O-H bonds band, 
recorded at approximate wavenumber region 3100-3500 cm−1 due hydrogen bonds, 
was found more intense in films containing 25 mM GLY with respect to the films 
prepared without plasticizer (Cerqueira et al., 2012). As a consequence, the resulting 
area of the band grew in the presence of GLY, indicating a higher intensity of 
hydrogen bonds related with both more OH groups provided by GLY and moisture 
content. Moreover, the C-H stretching peaks of CH films plasticized with GLY or SPD 
were detected at 2879 and 2877 cm−1, whereas the bands at 1649 cm−1, 1568 cm−1, 
and 1372 cm−1 can be assigned to the C=O stretching modes amide-I, N-H 
deformation modes amide-II, and C-N stretching modes amide-III, respectively 
(Homez-Jara et al., 2018; de Morais Lima et al., 2017; Liu et al., 2013 and Hu et al., 
2016). Furthermore, the bands range detected between 1400 to 1600 cm-1  
correspond to the superposition of vibrations of amide, protonated amino groups (–
NH3

+), carboxylate groups (–COO‾), and free amino groups (–NH2) (Mauricio-
Sánchez et al., 2018). Hu et al., (2016) reported that when different compounds are 
mixed together, changes in the infrared spectrum reflect the chemical interactions 
between them. The main differences among the CH films prepared in the presence 
or absence of SPD and/or GLY were observed mostly in the amide region (Branca et 
al., 2016). 
      

 
Fig. 13. FT-IR spectra of pure CH and of 0.6% CH films prepared at pH 4.5 in the 
presence or absence of 25 mM GLY and/or 5 mM SPD.  
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The interaction effects due to the presence of SPD and/or GLY in CH films are 
inferred from the characteristic bands reported in Table 1. By GLY addition we 
observed the shifting in the peak corresponding to the amide-I from 1626 cm-1 (CH 
film prepared without plasticizer) to 1630 cm-1. However, by adding SPD to CH films 
prepared both in the absence or presence of GLY, only an increase in the amide-I 
band intensity was observed. Moreover, a similar shifting from 1519 cm-1 to 1523 cm-

1 was observed in the amide-II band by adding GLY alone or in the presence of SPD. 
In contrast, a shifting of the amide-III from 1309 cm-1 to 1317 cm-1 was observed by 
analyzing CH films prepared in the presence of SPD alone or by adding SPD to the 
GLY containing films. These changes indicate more hydrogen interactions between 
CH and both plasticizers due to the availability of a higher number of hydroxyl groups 
(Liu et al., 2013). Moreover, the shift of the peak detected at 898 cm-1 to 919 cm-1 
after the GLY addition, as well as to 909 cm-1 after GLY addition to the SPD 
containing films, should be related to the symmetric stretching vibrations of the 
alcoxyl groups (Jamróz et al., 2007), while the interaction between CH and SPD by 
H-bonds should be responsible for the observed shifting occurring in the presence of 
polyamine. These conclusions are in agreement with Chanpai and Tajmir-Riahi 
(2016) results indicating the occurrence of hydrophobic and H-bonding interactions 
between polyamines and CH chains.  
 
Table 1. The characteristic bands of pure CH and of 0.6% CH films plasticized 
by 25 mM GLY and/or 5 mM SPD. 
 

Chemical groups 
influenced 

Powder Film 
 

 Pure 
CH 

CH +25mM 
GLY 

+5mM 
SPD 

+25mM GLY 
+ 5 mM SPD 

 
C=O stretching modes 
(amide-I) 

1649 1626 1630 1622 1624 

N-H deformation modes 
(amide-II) 

1568 1519 1523 1517 1523 

–NH3
+, –COO- and 

free –NH2 
1490 1414 1465 1473 1436 

CH3 symmetrical 
deformation mode 

1372 1379 1379 1379 1381 

amide-III and CH2 
wagging 

1313 1309 1306 1317 1317 

C–O group. 1251 1251 1247 1249 1234 
C–O–C– in glycosidic 
linkage 

1061 1061 1063 1063 1065 

C–O–C– in glycosidic 
linkage 

1024 1016 1020 1016 1016 

comprise vibration 
modes of C–C and C–O 
stretching and the 
bending mode of C–H 
bonds 

894 898 919 898 902 
- - 851 - 841 
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     3.4   Food wrapping by different edible films 
 

In order to study the effects of BVPC- and CH-based film wrappings on food 
shelf-life, heat sealability of different films was investigated by determining the seal 
strength according to ASTM (2007). Table 2 shows that both BVPC- and CH-based 
films, prepared under different experimental conditions, may be effectively heat 
sealed, even though the seal strength never reached the values observed with LDPE 
or HDPE materials, used as controls, with the exception of CH films prepared in the 
presence of 25 mM GLY.  Fig. 14, shows different food products (sausage, Za’atar 
and peanuts) wrapped under vacuum with BVPC, CH or LDPE. 
 
Table 2.  Effect of GLY and/or SPD plasticizers the BVPC and CH films on the 
seal strength. 

 
 

Film 
 

Seal strength (N/m) 
BVPC + 42 mM, GLY   33.35 ± 4.61  
BVPC +   5 mM, SPD    57.44 ± 3.54 
BVPC + 42 mM, GLY + 5 mM, SPD   43.61 ± 8.20 
CH  110.75 ± 7.23 
CH + 25 mM,GLY 196.42 ± 8.46 
CH +   5 mM, SPD   65.06 ± 1.84 
CH + 25 mM, GLY + 5 mM, SPD   82.80 ± 6.14 
LDPE* 216.80 ± 4.52 
HDPE* 205.52 ± 7.12 
Mater-Bi* 201.46 ± 6.61 

 *Control materials, LDPE= low density polyethylene, HDPE= high density polyethylene.   
 

Fig. 14. Different food products (A) sausage, (B) Za’atar and (C) salted peanuts 
wrapped under vacuum by BVPC, CH or LDPE films. 
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     3.5   Effects of Nabulsi cheese wrapping with different edible films  
 
Nabulsi cheese is a typical soft and fresh Palestinian cheese generally 

consumed as such or used as an ingredient in sweet or savory foods. Many 
undesirable changes such as discoloration, off-flavor production, slime and gas 
formation, bitterness and textural problems may occur to the Nabulsi cheese 
produced by traditional methods during its storage in large cans, also in spite of high 
brine concentration (Mazaherh et al., 2009; Yamani, 1997). The chemical 
composition of the Nabulsi cheeses varies considerably depending on the source of 
milk, conditions of cheese production, seasonal variations, feed, degree of curd 
pressing and whey drainage (Al-Dabbas et al., 2014).  

Since most packaging films are heat sealed as final step to create a finished 
food package, we wrapped (W) under vacuum conditions UNC and SNC samples, 
prepared in our labs from cow milk, with heat–sealed either LDPE films or 
hydrocolloid edible films (CH films containing 25 mM GLY or BVPC films containing 
42 mM GLY) (Fig.15). These hydrocolloid edible films were selected because of their 
ability to be sealed under vacuum with high seal strength (Table 2). Unwrapped (UW) 
cheese samples were used as controls. All W and UW cheeses were then stored in a 
refrigerator at 4°C and finally analyzed after 3, 6 and 9 days for both pH and TA 
changes.  

 

 
 

Fig. 15. Nabulsi cheese samples wrapped under vacuum with CH (A), BVPC (B) 
or LDPE (C) films before their storage at 4 °C for different times. 
 

Fig. 16 A shows that the pH value of both W and UW UNC was around 7.1 and 
that both LDPE- and BVPC-wrappings of UNC samples were effective to maintain 
such pH value until day 9th, whereas the pH of UW cheese progressively decreased 
to 6.9, 6.7 and 6.4, respectively, after 3, 6 and 9 days of storage. Conversely, a 
significant effect of the CH-wrapping able to counteract the pH decrease was 
observed only after 9 days of UNC storage. Furthermore, Fig 16 B shows that the pH 
values of all W and UW SNC samples did not significantly vary during storage since 
the salt addition alone was effective to hinder the lowering of cheese pH. CH, BVPC 
and LDPE wrappings of UNC markedly reduced the TA of the products. The 
phenomenon was extraordinarily evident after 9 days of storage, when the TA was 
observed to be lower than 7-fold in W cheeses with respect to the UW counterparts 
(Fig. 17 A).  By contrast, Fig 17 B shows that no significant differences were 
observed between the TAs of W and UW SNC samples at the different storage times, 
thus demonstrating that the salt addition alone was sufficient to preserve quite 
effectively the products until the 9th day. 
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Fig. 16. Effect of wrapping with BVPC, CH or LDPE films on the pH of 
“unsalted” (A) and “salted” (B) Nabulsi cheese samples at different storage 
times. *Significantly different values compared to the unwrapped cheese 
samples (p<0.05). 
 

 
Fig. 17. Effect of wrapping with BVPC, CH or LDPE films on TA of “unsalted” 
(A) and “salted” (B) Nabulsi cheese samples at different storage times. 
*Significantly different values compared to the unwrapped cheese samples 
(p<0.05). 

 
Finally, the percentage of W and UW Nabulsi cheese weight loss was 

calculated at different storage times. The results reported in Fig. 18 showed that both 
UNC and SNC lost weight in a similar way (about 40% at 9th day) during their 
storage, both when they were W with BVPC and CH films and when they were UW. 
Conversely, LDPE wrapping of both UNC and SNC hindered almost completely the 
weight loss of the product during its storage. 
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Fig. 18. Effect of wrapping with BVPC, CH or LDPE films on the weight loss of 
“unsalted” (A) and “salted” (B) Nabulsi cheese samples at different storage 
times. *Significantly different values compared to the unwrapped cheese 
samples (p<0.05). 

 
Therefore, our findings demonstrate that the Nabulsi cheese wrapping by 

hydrocolloid films (mostly BVPC-based ones) has the same effects of LDPE 
wrapping, as well as of the salting treatment, in preventing the lowering of pH and the 
increase of TA observed during the storage of the dairy product. In addition, since 
such wrapping was shown to have no effect on the normal weight loss of the cheese 
occurring during storage, it should be useful to prevent cheese spoilage without 
influencing water loss and the consequent regular cheese ripening. This result 
cannot be reached by cheese LDPE wrappings because of the well known barrier 
action toward WV exerted by the plastic film. Therefore, due to the well known short 
shelf-life of UNC, also under refrigeration, the observed hydrocolloid film wrapping 
would allows to preserve the quality of the dairy product during storage without any 
prior addition of salts.  

UNC with a prolonged shelf-life might be particularly required for several 
arabian confectioneries, such kunafeh and other sweet cakes. Moreover, people at 
high risk of developing health problems related to salt consumption, such as patients 
with elevated blood pressure and/or diabetes, might consume unsalted cheese 
appropriately stored in a W form. In fact, the only way used still today by the industry 
to market Nabulsi cheese is by immersing it in plastic/glass jars or cans containing 
high concentrations of brine solution. Consequently, Nabulsi cheese is usually 
consumed as it is or after partial or complete removal of salts by soaking it in water at 
least for 12 hours.  

In conclusion, a possible future industrial production of UNC W with a 
hydrocolloid edible film, such as a BVPC- or CH-based one, would present the 
advantages to increase the shelf-life of a fresh dairy product, avoid any postprocess 
contamination, and enhance the following possible demand for a cheese healthy and 
ready-to-eat.  
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4. CONCLUSIONS 
 

The development of biopolymer-based films, mechanically resistant and 
exhibiting tailored barrier properties, are receiving an increasing attention for their 
possible industrial application as alternatives to oil-derived polymers. Due to their low 
cost and high yield, bitter vetch proteins present undoubted advantages for 
developing new edible eco-friendly biomaterials. On the other hand CH, synthetically 
derived following the deacetylation of chitin, the second most abundant 
polysaccharide occurring in nature, may also represent an interesting biopolymer 
source deriving from the polluting waste of crustacean shells. Our findings suggest 
the use of SPD, alone or in combination with a primary plasticizer such as glycerol, 
as additives of either BVPC- or CH-based edible hydrocolloids endowed with specific 
mechanical and/or barrier properties suitable for coating or wrapping different food 
products. In fact, one of the main technical challenges in food processing and 
storage, today, is the development of tailor-made packaging materials with 
appropriate characteristics, according to the selective requirements of the various 
fresh or processed foodstuffs: meat, fish, dairy products, fruit, vegetables, as well as 
ready-to-eat meals. Desirable mechanical and permeability properties remain, thus, 
strategical for any edible coating in the processing and end use of food products, 
representing the main parameters to ensure food integrity against mechanical 
damage, microbial spoilage, and duration of the guarantee term. Furthermore, the 
blended edible film obtained by adding PEC and crosslinking BVPC by mTGase is 
also a promising biomaterial for food coatings as well as effective drug delivery 
systems. The improved mechanical features exhibited by BVPC/PEC films prepared 
in the presence of the crosslinking enzyme, together with their high barrier activity to 
both CO2 and O2, confer to these innovative materials potential interesting 
applications in both food and pharmaceutical industries. 

The ability of the obtained films to give rise to heat-sealed under vacuum 
wrappings opens to possible new types of future industrial production of unsalted 
Nabulsi cheese, offering the advantages to increase the shelf-life also of other fresh 
dairy products, avoiding any post process contamination, and enhancing the 
following demand for a healthy and ready-to-eat cheese. Finally, the obtained edible 
materials are suggested as alternative to gelatin-based edible casings, widely used 
thus far for sausage production. 
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