
Universitá degli Studi di Napoli Federico II

Dottorato di Ricerca

in

Scienze Matematiche e Informatiche

XXXI ciclo

A Combinatorial Optimization Approach to

Accessibility Services in International Airports

Michele Mele

Anno Accademico 2017/2018

2

" The only disability is when people cannot see

human potential "

Debra Ruh, founder of TecAccess advocate for the rights of people

with special needs.

Contents

Abstract 5

1 Introduction 7

1.1 Motivation for this research . 7

1.2 Outline . 8

2 Literature review 11

2.1 The basic �xed job scheduling . 11

2.2 The Fixed Job Scheduling with Spread-Time Constraints 14

2.3 The Tactical Fixed Job Scheduling 23

2.4 The Tactical Fixed Job Scheduling with Spread Time Constraints . 30

3 Original Contribution 43

3.1 Mathematical Formulation . 43

3.2 Complexity . 44

3.3 Lower Bounds . 45

3.4 An Heuristic Algorithm . 47

3.4.1 The Algorithm . 47

3.4.2 Computational Experiments 49

3.4.3 Conclusions . 51

3

4 CONTENTS

Abstract

In this PhD thesis we study a speci�c variant of the well known Fixed Job Schedul-

ing Problem, namely the Tactical Fixed Job Scheduling Problem with Spread-Time

constraints. In this problem it is required to schedule a number of jobs on non iden-

tical machines that di�er from each other for the set of jobs they can perform and

that have constraints on the length of their duty. After providing an extensive

literature review of the Fixed Job Scheduling and of its main variants, the original

contribution is presented. We illustrate some lower bounds for the optimal value of

the problem and display the �rst heuristic algorithm for solving it. We also study

a speci�c case of interest connected with the assistance of passengers with special

needs in large scale international airports.

5

6 Abstract

Chapter 1

Introduction

1.1 Motivation for this research

Today air transport has become the quickest and safest form of long distance trans-

port. In the last three years the record of the busiest day in aviation history has

been broken 11 times and 83 of the 100 busiest days in civil aviation history have

been recorded in the last 6 years. In fact the last time in which that record has

been broken was on 13 July 2018 with 205468 �ights registered.

However passengers with special needs (for example blind people, partially

sighted people, people in wheelchair) still su�er remarkable inconveniences when

they have to take a �ight, especially when they have to start a journey by their

own or when they have to change �ight at a transition airport. Many airports and

airline companies are planning to organize assistance services for these passengers

to allow them to travel in autonomy.

In the last decades many rules and conventions have been stated to regulate

such services. Unfortunately the road to accessibility is still long to go: in almost

every international airport the assistance services use to violate some of the rules

7

8 CHAPTER 1. INTRODUCTION

stated in the international treaties. So one may ask for the minimum number of

workers needed to provide assistance and accompany passengers with special needs

respecting all the stated rules. The main rules stated by the international treaties

are:

• all passengers with special needs must be assisted by the same worker during

their whole permanence in the airport;

• the worker assisting a passenger has to speak a language comprehensible by

him/her;

• the basic work rules must be respected, especially the rule on the length of a

day duty.

This real world problem can be seen as a Tactical Fixed Job Scheduling with

Spread-Time constraints (TFJSS), a variant of the well known Fixed Job Schedul-

ing (or Fixed Interval Scheduling). In this problem a number of jobs must be pro-

cessed on non identical machines with a limit on the availability of the machines

(spread-time). The machines are not equal because they can process di�erent jobs

and therefore they are divided into classes. In this scenario the workers of the air-

port are identi�ed with the machines, the lenght of the day duty coincides with the

spread-time and workers are not equal because they can speak di�erent languages

and so assist di�erent passenger groups.

1.2 Outline

In Chapter 2 it is �rst introduced the basic Fixed Job Scheduling with the exact

algorithms to solve it (section 2.1). Subsequently we analize the literature of the

main variants of FJS, starting with the Fixed Job Scheduling with Spread-Time

1.2. OUTLINE 9

constraints (section 2.2). Then we analize the variants in which machines di�er

from each other for the sets of jobs they can execute; the results for the Tactical

Fixed Job Scheduling are presented (section 2.3) before reviewing the only exact

algorithm for the Fixed Job Scheduling with Spread-Time constraints (section 2.4).

In Chapter 3 the original contribution is presented. After proving the in-

tractability of the problem (section 3.2) we present two lower bounds for the op-

timal value of TFJSS (section 3.3). Then we present the �rst heuristic algorithm

for TFJSS and analize in detail the results of the computational experiments com-

paring them with the real world cases detected in large scale international airports

(section 3.4).

10 CHAPTER 1. INTRODUCTION

Chapter 2

Literature review

2.1 The basic �xed job scheduling

In an instance of the basic Fixed Job Scheduling Problem (FJS) it is asked to

�nd the minimum number of machines needed to process n jobs Jj with �xed

release time rj and deadline dj, (j = 1, ..., n). Each machine is able to process

only a job at a time and it has to complete the processing of a job after starting

it with no interruption. All the machines are available along the whole (discrete)

interval [0, T], with T = max dj. Two jobs Jj e Jk are said to be incompatible if

rj ≤ rk ≤ dj.

This is a special case of the Dilworth's problem:

let N is a �nite partially ordered set with elements 1, ..., n with a strict order

relation �<�. A sequence of elements of N i1, ..., ik is a chain (or a sting) if and

only if i1 < ... < ik. Which is the minimum number of chains needed to cover N?

The FJS can be seen as a Dilworth's problem in which we explicit the constraints

due to the incompatibility of the jobs. If N is the set of all jobs Jj (j = 1, ..., n)

11

12 CHAPTER 2. LITERATURE REVIEW

an order relation can be de�ned putting Jj < Jk if and only if dj ≤ rk. The jobs

belonging to the same chain can be assigned to an unique machine. So one can ask

to �nd the minimum number of chains (machines) needed to cover N . The jobs

in S = {rj, dj : Jj ∈ N} can be numbered so that Jk ≤ Jj implies that if Jl < Jk

then Jl < Jj. We obtain such a relation ordering jobs in non decreasing rj , i.e.

Jk ≤ Jj if and only if rk ≤ rj. The authors in [1] introduce an algorithm that

constructs an optimal solution of FJS. This procedure, called staircase rule, starts

from the job with lower index (after the above enumeration) and repeatedly selects

the successor of lower index of the last selected element until there are no such

successors anymore. The constructed chain is deleted and the process restarts.

Dilworth's theorem states that for each partially ordered set the minimum num-

ber of chains needed to cover the set equals the maximum number of pairwise non

comparable elements. The authors in [2] introduce an alternative algorithm to com-

put the optimal value of FJS. They introduce a function (step function) de�ned as

follows: fS(0) = 0, the value of the function increases by 1 when a job starts and it

decreases by 1 when it ends. The value of fS(t) is exactly the number of jobs active

at time t. A more formal de�nition of step function can be given introducing the

function xj(t) assuming value 1 when rj ≤ t < dj and value 0 otherwise. So the

step function can be de�ned as follows:

fS(t) =
∑
Jj∈N

xj(t).

This function is de�ned on [0, T] where T is the maximum of the djs. Let M =

max fS(t). The region [t1, t2) will be called a maximum interval if fS(t) = M with

t ∈ [t1, t2) and no job starts or ends in this interval. Now enumerate the maximum

intervals from left to right and denote the i−th maximum interval by Ri = [pi, qi).

Note that the extremes of a maximum interval correspond to the release time or

2.1. THE BASIC FIXED JOB SCHEDULING 13

the deadline of some job (not necessarily the same one), and that, if at a given time

t a job starts and another ends, the regions that immediately precede and follow

t are numbered in a di�erent way. We also de�ne the hollow regions H0 = [0, p1],

H1 = [q1, p2],...,Hk−1 = [qk−1, pk], Hk = [qk, T]. A job Jj is said to be "of the �st

type" if there exists a hollow region in which it starts and ends; a job that is not

of the �rst type is said to be "of the second type". If α is a subset of jobs, S − α

will be the instance obtained removing the jobs of α from the initial instance.

Theorem 1 ([2]). Given an instance S of FJS, the minimum number of machines

needed to process all jobs is z(S) = max{fS(t)|t ∈ [0, T]}. Moreover there exist

z(S) disjoint strings such that each job is in exactly one string.

Proof. If a job Jj of the �rst type is removed, we get a new step function fS−Jj(t)

e {max fS−Jj(t) : t ∈ [0, T]} = max{fS(t)|t ∈ [0, T]}. Removing a job with release

time and deadline in two di�erent hollow region brings to the reduction of the

value of the step function in every region in which the job is active. We now build

a string α1 as follows: we start selecting a job Jj1 with rj1 ∈ H0; if this is a job

of the �rst type, we select another Jj2 with rj2 ∈ H0 and rj2 ≥ dj1 and add it

to the string. That job exists because the right extreme of H0 is the release time

of some job. Then we iterate the process until we �nd a job of the �rst type Jjp

with djp ∈ Hm (m > 0) and add it to the string. If m < k it must exist a job

Jjp+1 with rjp+1 ≥ djp so that rjp+1 ∈ Hm. The process stop when it �nds a job

Jjq with rjq ∈ Hk. Finally we remove the string α1 = {Jj1 , ..., Jjp , Jjp+1 , ..., Jjq}

from S to get the new instance S − α1 and the new step function fS−α1(t). So

{max fS−α1(t) : t ∈ [0, T]} = max{fS(t) − 1 : t ∈ [0, T]}. After removing α1 the

process restarts building and then deleting a new string α2 until no job remains.

Every time a job is removed the value of the step function decreases by 1. So we

14 CHAPTER 2. LITERATURE REVIEW

obtain M strings and the jobs in each string can be assigned to one machine. Let

z(S) be the minimum number of machines needed to process all jobs. By de�nition

of the step function and of M , we have that z(S) ≥M .

In [3] the authors introduce a procedure to construct strings in parallel instead

of building them in series. They de�ne a pile P of non used machines and order

the values of rj and dj in non decreasing order; so they get 2n values that will

be indicated by u1, u2, ..., u2n. For k = 1, ..., 2n the algorithm in [3] takes uk: if

it corresponds to the release time of a job Jj, that job is assigned to the machine

which is on the top of the pile P , that machine is then removed from P ; if it

corresponds to the deadline of a job Jj, the machine to which that job is assigned

is put on the top on the pile P .

2.2 The Fixed Job Scheduling with Spread-Time

Constraints

The authors in [4], [5] and [6] introduce some variants of the Fixed Job Scheduling

Problem adding new real world inspired constraints. In [4] the Fixed Job Scheduling

with spread-time constraints (FJSS)is introduced: an instance of FJSS consists of

n jobs Jj (1 ≤ j ≤ n) that must be processed without preemption from a �xed

release time rj to a �xed deadline dj. The jobs must be processed by identical

machines that can execute only one job at a time. Each machine can only work

for at most L time units that must be consecutive: the spread-time L is de�ned

as the range between the start of the �rst job and the end of the last job assigned

to a machine and it is equal for all machines. The authors in [4] and [6] introduce

the decision variables yi, that assume value 1 if machine Pi is used and value 0

2.2. THE FIXED JOB SCHEDULINGWITH SPREAD-TIME CONSTRAINTS15

otherwise, and xij assuming value 1 if Pi processes job Jj and value 0 otherwise.

If m is an upper bound for the number of machines (m ≤ n) the problem can be

modeled as follows:

min z =
m∑
i=1

yi (2.1)

s. t.

xij ≤ yi i = 1, ...,m; j = 1, ..., n, (2.2)

m∑
i=1

xij = 1 j = 1, ..., n, (2.3)

xij + xik ≤ 1 i = 1, ...,m; j = 1, ..., n− 1; k ∈ {l > j : rl < dj}, (2.4)

xij + xik ≤ 1 i = 1, ...,m; j = 1, ..., n− 1; k ∈ {l : dl > rj + L}, (2.5)

xij, yi ∈ {0, 1} i = 1, ...,m; j = 1, ..., n, (2.6)

The objective function (2.1) aims to minimize the number of machines needed

to process all jobs. Constraints (2.2) assure that yi assumes value 1 only if Pi

is used. Constraints (2.3) assure that every job is assigned to exactly one ma-

chine. Constraints (2.4) assures that no machine processes two incompatible jobs.

Constraints (2.5) grant that the spread-time constraint is not violated.

The problem described above is NP-hard. Consider the problem known as the

Circular Arc Coloring: given n arcs on a circle with the j−th arc having extremes

aj and bj belonging to [0, 2π) and an integer q, is it possible to color these arcs

using at most q colours so that no couple of arcs of the same colour intersects?

W.l.g. assume that the 2n extremes of the arcs are pairwise disjoint. Given an

instance of the Circular Arc Coloring we can build an instance of FJSS putting

L = 2π, rj = aj, dj = bj if aj < bj, dj = bj + 2π otherwise (j = 1, ..., n). Thus

two arcs will be intersecting if and only if the corresponding jobs either overlap or

16 CHAPTER 2. LITERATURE REVIEW

violate the spread-time constraint. So we produce a polynomial reduction from the

Circular Arc Coloring to the FJSS that is cleary NP-hard.

In the preemptive relaxation of the problem it is possible to divide a job during

its execution and to assign the di�erent parts of a job to di�erent machines. Call

z(I) and z(I) the optimal values for an instance I and for its preemptive relaxation

respectively. Clearly we have z(I) ≤ z(I).

The authors in [4] introduce two procedures, one based on a greedy criterion

and one on the preemptive relaxation on the problem: those procedures will be

embedded in the approximation algorithms in [4] and [6]. We will denote by PFJSS

the preemptive relaxation of FJSS.

PROCEDURE GREEDY(J, a)

begin

Let J be the set of unassigned jobs.

for Jj ∈ J in non decreasing order of rj, do

begin

let F be the set of all machines Pi, i ≤ a to which at least a job has already been

assigned and that can process Jj without violating the spread-time constraint;

if F = ∅, then a = a+ 1 and assign Jj to Pa,

else assign Jj to one of the machines of F via a criterion C

end

end

PROCEDURE PREEMPT

begin

J := {J1, ..., Jn};

z := 0;

k := 0;

2.2. THE FIXED JOB SCHEDULINGWITH SPREAD-TIME CONSTRAINTS17

while J 6= ∅ do

begin

let Jj be the job of J with minimum rj;

J := J \ {Jj};

let F be the set of all machines Pi, i ≤ z that can execute the �rst work unit

(rj, rj + 1] of Jj;

if F 6= ∅,

begin

select a machine Pi ∈ F ;

if dj ≤ rf(i) + L (where f(i) is the index of the �rst job assigned to Pi) then

assign Jj to Pi;

else

begin

assign the �rst part of (rj, rf(i) + L] of Jj to Pi;

k := k + 1;

let Jn+k be a new job with rn+k = rf(i) + L and dn+k = dj;

J := J ∪ {Jn+k}

end

end

else

begin

z := z + 1;

assign Jj to Pz;

f(z) := j

end

end

18 CHAPTER 2. LITERATURE REVIEW

end

Theorem 2 ([6]). Procedure PREEMPT solves PFJSS to optimality; moreover it

introduces at most z − 1 < n preemptions.

Proof. Given an instance I of PFJSS, for each time t, let I(t) be the subinstance

obteined removing all jobs starting after t and putting dj = min(dj, t) for the

remaining jobs. Let Q(t) be the set of all jobs active at time t. Since no machine

working at time t can process jobs (or part of a job) in I(t−L), a lower bound for

the optimal value of I(t) can be de�ned by b(t) = 0 if t ≤ r1, b(t) = |Q(t)|+b(t−L)

otherwise. Let u(t) be the number of machines processing at least a work unit in

a solution of an instance I given in output by PREEMPT. Thus b(t) ≤ u(t). The

proof will be complete showing that b(t) = u(t) for each t.

Assume by contraddiction that the last statement is not true and let t′ be the

minimum t so that b(t) < u(t). Consider the iteration in whichPu(t′) is added and

let Jj, with rj = t′− 1, be the job assigned to it. So it means that the machines Pi

(i ≤ u(t′)− 1) process, at time t′, either Q(t′) or part of a job in I(t′ − L). Hence

u(t′) − 1 ≤ (|Q(t′)| − 1) + u(t′ − L). By de�nition of t′, u(t′ − L) = b(t′ − L), so

u(t′) ≤ b(t′).

Note that no more than one preemption is produced for each machine. Assigning

(rj, rf(i) +L] to Pi we avoid that every successive Jh is assigned to Pi since rh ≥ rj.

Notably no preemption is introduced for the machine processing the last job.

The complexity of procedure PREEMPT is O(n log n). An immediate heuristic

algorithm for FJSS is the following one, called HPRS: once executed PREEMPT

to an instance, we introduce a new machine for each preempted job.

2.2. THE FIXED JOB SCHEDULINGWITH SPREAD-TIME CONSTRAINTS19

Theorem 3 ([6]). r(HPRS)=2.

Proof. From the previous proof we have r(HPRS)≤ 2. Consider the family of

instances with n = L even, rj = j for each j, dj = rj + 1 when j is odd, dj = rj +L

when j is odd. The optimal solution uses a machine for each Jj with j even plus a

machine for the remaining jobs; hence z = n
2

+ 1. Procedure PREEMPT introduce

n
2

+ 1 machines preempting all jobs of even index at time dj − 1. HPRS adds n
2

more machines producing a solution with value a = n + 1. The ratio a
z
goes to 2

as n increases.

It is possible to improve the procedure HPRS assigning the preempted jobs at

the end of its execution in a new way instead of opening a new machine.

ALGORITMH SPREEMPT

begin

let z be the value of the solution found by PREEMPT and let J be the set of

preempted jobs;

remove from the machines the parts of the preempted jobs;

GREEDY(J, z)

end

Theorem 4 ([6]). r(SPREEMPT)=2.

Proof. Since SPREEMPT dominates HPRS, than r(SPREEMPT)≤2. The family

of instances of the previous proof shows that the worst case ratio goes to 2 as n

grows.

20 CHAPTER 2. LITERATURE REVIEW

Since GREEDY and PREEMPT can be implemented as O(n log n), SPRE-

EMPT is O(n log n) too.

Putting J = J and a = 0 in GREEDY we get a new algorithm with the same

worst case ratio of SPREEMPT, has proved in [6].

Theorem 5 ([6]). Let J = {J1, ..., Jn} be the set of iobs of an instance I of FJSS.

For each criterion C used in GREEDY, let H = {H1, ..., Ha} be the partition of J

given in output, where Pi processes jobs of Hi (i = 1, ..., a). For each Q ⊆ {1, ..., a}

let I(Q) be the subinstance of I de�ned by the set of jobs J(Q) = J \ ∪i∈QHi.

Then there exists a criterion CQ for GREEDY producing for I(Q) the partition

H \ {Hi : i ∈ Q} di J(Q).

Proof. Let Pxj be the machine selected for processing Jj with criterion C. The

criterion CQ consists in selecting the machine P%j for each Jj ∈ J(Q), where %j =

xj − |{i ∈ Q : i < xj}|. Since CQ assigns the jobs Jj /∈ J(Q) to machines Pi with

i ∈ Q and viceversa those machines only process jobs Jj /∈ JQ, this selection will

always be possible and it will be leading to the required partition.

Theorem 6 ([6]). r(GREEDY)=2, for every choise of C.

Proof. First a(I) < 2z(I), where a(I) is the value of the solution given by GREEDY

and zI is the optimal value of the preemptive relaxation. The proof of this state-

ment is by induction on zI . This is true for zI = 1 since max{dj} − r1 ≤ L and

rj ≥ dj−1; so a(I) = 1. Assume now a(I) < 2z(I ′) for z(I ′) ≤ k and consider

an instance I with set of jobsJ such that zI = k + 1. Let C be the selection

criterion used in GREEDY and suppose that the solution with value zI has been

2.2. THE FIXED JOB SCHEDULINGWITH SPREAD-TIME CONSTRAINTS21

obtained by PREEMPT adopting the following scheme: if some of the machines

able to process the �rst work unit of Jj can also process Jj entirely, then select Pi

among those by criterion C; choose randomly otherwise. Notably GREEDY and

PREEMPT start to build the same solution until a job Jj∗ that is fractioned by

PREEMPT is found. Let Pα be the machine processing the �rst part J ′j∗ of Jj∗ in

the solution given by PREEMPT and Pβ be the machine processing entirely Jj∗

in the solution given by GREEDY. Thus in the solution given by PREEMPT Pα

processes jobs in H ′α = {Jα1 , ..., Jαq , J
′
j∗} while in the solution given by GREEDY

Pα processes jobs in Hα = {Jα1 , ..., Jαq , ...} and Pβ processes jobs in Hβ = {Jj∗, ...}.

Consider now the subinstance I ′ of I de�ned by the set of jobs J∗ = J \ (Hα∪Hβ).

For the previous theorem there exists a criterion C∗ such that a(I ′) = a(I) − 2.

However z(I ′) ≤ z(I)− 1; thus z(I ′) ≤ k and, by induction hypothesis, a(I ′) < 2k

so a(I) < 2k + 2 = 2z(I).

Consider the family of instances I with L = 2m; n = 3m; rj = (j + 1)/2 and

dj = rj + 1 for j = 1, 3, ...2m − 1; rj = dj−1 and dj = rj + L/2 for j = 2, 4, ...2m;

rj = d2(j−2m) and dj = rj+L/2 for j = 2m+1, ..., n. For these instances the optimal

solution assigns the m couples (J2, J2m+1), (J4, J2m+2), ..., (J2m, Jn) to m machines

and the jobs J1, J3, ..., J2m−1 to another machine. GREEDY usesm machines, inde-

pendently from the choice of C, to process couples (J1, J2), (J3, J4), ..., (J2m−1, J2m)

and m more machines, one for each remaining job. Thus z(I) = m+ 1, a(I) = 2m

and the worst case ratio a(I)
z(I)

goes to 2 when m grows.

The authors in [6] introduce another algorithm for which they assume that the

set of unassigned jobs is made up of J1, J2, ..., Ju and that it is ordered in non

decreasing order of rj. De�ne an oriented graph by:

• a vertex v1 for J1;

22 CHAPTER 2. LITERATURE REVIEW

• a vertex vk for each unassigned job Jk with dk ≤ r1 + L;

• an edge (vi, vj) of lenght dj − rj for each couple (Ji, Jj) such that rj ≥ di;

• a vertex vu+1 and all the edges(vi, vu+1) of 0 lenght.

A path of maximum lenght v1 a vu+1 corresponds to a locally optimal assign-

ment. This graph is acyclic and such a path can be constructed in O(n2) for a total

complexity of O(n3). We can also avoid the explicit de�nition of the graph: it is

possible to scan the couples (rj, dj) until we �nd the �rst dj for which dj > r1 +L.

Let t be a time in our timeline and for each job Jj with rj < t:

• Mj the lenght of the longest path from v1 to vj;

• pj the predecessor of Jj in that path;

• i∗ = arg max{Mj : dj < t};

• M∗ = Mi∗ i.e. the lenght of the longest path �nishing before t;

For every iteration if t corresponds to some rj we de�ne Mj by M
∗ + (dj − rj);

if t corresponds to some dl, put M
∗ = max{M∗,Ml}. The required assignment is

provided via backtracking from i∗ through pj.

The authors in [6] solve instances of three types. They consider a discrete

timeline [1, 200] to simulate a 20 hours day activity.

• rj generated with uniform distribution in [1, 200] per ogni Jj;

• the 30% of rj randomly generated with uniform distribution in [30, 40], the

30% in [130, 140] and the remaining 40% in [1, 29], [41, 129] e [141, 200];

• the 20% of rj randomly generated with uniform distribution in [30, 40], the

20% in [80, 90], the 20% in [140, 150] and the remaining 40% in [1, 29],[41, 79],[91, 139]

and [151, 200].

2.3. THE TACTICAL FIXED JOB SCHEDULING 23

The second and the third scenarios represent real world situations that occur in

rail and road transport systems. In every scenario in [6] the authors put L = 100.

For each type of instance three types of generation are considered for the duration

of the jobs:

• dj randomly generated with uniform distribution in [rj + 5, rj + 10];

• dj randomly generated with uniform distribution in [rj + 5, rj + 20];

• dj randomly generated with uniform distribution in [rj + 5, rj + 40].

For each one of the resulting 9 scenarios 5 values for n are considered:50, 100,

200, 500, 1000. Computation experiments suggest that the algorithms in [4] e [6]

produce the best results in the second and in the third scenarios. Moreover they

show that there is no sensible di�erence between the second and the third scenario.

The processing time grows with the lenght of the jobs.

2.3 The Tactical Fixed Job Scheduling

In [7] and [8] authors introduce the Tactical Fixed Job Scheduling (TFJS), another

variant of the basic FJS. The aim is to minimize the number of non identical

machines needed to process n jobs with �xed release time rj and deadline dj.

Preemption is not allowed. The jobs are divided into groups (called "classes" in

[8]); the group Jj belongs to is denoted by aj. The number of job groups is denoted

by g. Each machine is only able to process jobs from a given subset of job groups.

The number of machine classes is denoted by c. Let Qi be the set of job groups

that machines of class i can execute and let Ki be the set of all jobs that machines

of class i can execute. Authors in [8] also assume that no class is embedded: for

24 CHAPTER 2. LITERATURE REVIEW

each two classes i, i′ it never happens that Ai ⊂ Ai′ . The set Γa contains all

the machines that can process jobs from job group a. Let Θ be the set of all the

release times and Θi be the set of all the release times of the jobs that machines

of class i can process. Denote by Λt and Λ the number of jobs active at time t

and the maximum among the Λt with t ∈ Θ. As in [8] we introduce the decision

variables yi representing the number of machines of class i and the binary variables

xij assuming value 1 if Jj is processed by a machine of class i and value 0 otherwise.

So we can formulate TFJS as follows:

zIP = min
c∑
i=1

yi (2.7)

s. t. ∑
{Jj :rj≤t<dj∧Jj∈Ki}

xij ≤ yi i = 1, ..., c (2.8)

∑
i∈Γa

xij = 1 ∀Jj (2.9)

xij ∈ {0, 1} (2.10)

yi ∈ {0, 1, ...} (2.11)

The objective function (2.7) aims to minimize the number of machines needed

to process all jobs. Constraints (2.8) assures that preemption is not allowed and

that the number of jobs executed in parallel by the machines of class i is not greater

than yi. Constraints (2.9) makes a job processed only once. The problem is NP-

hard (as proved by polynomial reduction to the tridimensional matching) also if

preemption is allowed.

A special case of TFJS is the one in which g = 3, c = 2 and a machine of class

i can only process jobs from job groups i and 3. In that special case the problem

can be solved to optimality in polynomial time by the following procedure:

2.3. THE TACTICAL FIXED JOB SCHEDULING 25

PROCEDURE (ROUND-OFF):

Let zLP be the optimal value of the linear relaxation of TFJS;

if zLP is integer, then the optimal solution has been found;

else solve the extended linear formulation obtained adding constraints y1 +y2 =

dzLP e to the linear relaxation.

Authors in [8] introduce some lower bounds for zIP :

• the optimal value obtained removing the class constraints, namely the basic

Fixed Job Scheduling;

• the optimal value of the preemptive relaxation of the problem;

• the optimal value of the linear relaxation obtained relaxing the integrality

constraints;

• the optimal value of the lagrangian relaxation of the problem related to the

second set of constraints.

In the last case we get a problem with the following criterion function:

zLR(v) = min
c∑
i=1

yi +
n∑
j=1

vj(1−
∑
i∈Cai

xij) = min
c∑
i=1

(yi −
∑

{Jj :Jj∈Ki}

vjxij) +
n∑
j=1

vj

where vj is the multiplicator related to the job Jj. This relaxation divides the

problem in c subproblems, each one of those corresponds to a machine class.

The authors in [8] de�ne a graphGi as the graph with nodesNi = {r1, r2, ..., rn, d1, d2, ..., dn}

and edges Ki: every job in Ki can be seen as an oriented edge of capacity 1 from

the vertex corresponding to its release time to the one corresponding to its dead-

line. Ni will be also denoted by {nir : r = 1, ..., pi} where pi = |Ni|. Gi will also

contain edges of the form (nir−1, nir) for each r = 2, ..., pi. TFJS can be seen as

26 CHAPTER 2. LITERATURE REVIEW

a �ow problem on the graph G obtained as union of the Gis. Every subproblem

rising from the lagrangian relaxation corresponds to a graph Gi(v) obtained from

Gi changing the cost of the edge corresponding to Jj to −vj. zLR can be computed

via the following procedure:

PROCEDURE

for i = 1, ..., c do

f := 0; z∗i := 0; OPT=false;

repeat

f := f + 1;

�nd a minimum cost �ow of f units from ni1 to nipi in gi(v). Let zi be the

obtained solution;

if zi + 1 < z∗i , then z
∗
i := zi

else OPT:=true;

repeat until it reaches optimality, yi := f − 1.

zLR(v) is computed as
c∑
i=1

(z∗i + yi) +
n∑
j=1

vj.

Since Λi ≤ n, yi ≤ Λi, that bound can be computed in polynomial time. The

authors in [8] implemented the following breaking criterion: the procedure stops

when the multiplicators are updated n times or when the di�erence between the

lagrangian lower bound and the following greedy upper bound greedy is less than

1. This latter condition implies that we have found an optimal solution. Compu-

tational experiments show that zLR < maxv zLR(v), despite convergence problems.

Every feasible solution of TFJS corresponds to an upper bound for zIP . In

[8] authors presented two upper bound: the class covering bound and the greedy

bound.

2.3. THE TACTICAL FIXED JOB SCHEDULING 27

Class Covering Bound. Let α be a set of job groups; α is said to be admissible

if α ⊂ Qi for some machine class i. Let {α1, ..., αν} be a collection of admissible

subsets covering all job groups, i.e.

ν⋃
k=1

αk = {1, ..., g}.

An admissible subset α′ will be said to be non redundant in such a cover if

{α1, ..., αν} \ {α′} does not cover all job groups anymore.

Theorem 7 ([8]). If {α1, ..., αν} is a collection of admissible subsets covering all

job groups, then
ν∑
k=1

Λαk

is an upper bound for zIP . If all subsets in the cover are not redundant, then that

bound is an approximated solution for TFJS.

Proof. If αk ⊂ Qi is an admissible subset, then all jobs Jj with aj ∈ αk can

be processed by Λαk
machines of class i. Hence, if {α1, ..., αν} is a collection

of admissible subsets covering all job groups, then all jobs can be processed by∑ν
k=1 Λαk

machines.

The second part of the statement is proved by the following family of instances.

Every subset αk contains at least one job group which is not in the other elements

of the cover: denote by a(k) the �rst job group with that property. Consider now

an instance with the following structure: divide the timeline in ν subintervals, the

k−th subinterval will only contain jobs from a(k). For this instance we have that

zIP =
ν∑
k=1

Λαk
.

28 CHAPTER 2. LITERATURE REVIEW

To obtain a cover without redundant subsets we can procede as follows. Let

{α1, ..., αS} be a list of all admissible subsets (note that S = O(c2g)) and introduce

the decision variables xs (s = 1, ..., S) assuming value 1 if αs is chosen and value 0

otherwise. So we have the following model:

zCC = min
∑S

s=1 Λαsxs

s. t.∑
{s:a∈αs} xs = 1 a = 1, ..., g

xs ∈ {0, 1}.

If c and g are �xed we can compute zCC by enumeration in a number of opera-

tions that is independent from the number of jobs.

We can obtain a cover of admissible subsets taking the singletons of the form

{αk}. In this case we get the lower bound

g∑
a=1

Λa

in O(n log n).

Greedy upper bound. The authors in [8] propose an upper bound computed with

an heuristic algorithm. This procedure increases the number of machines opened

to build a feasible solution. We can sum up an iteration of the heuristic algorithm

as follows:

HEURISTIC GREEDYPROC

K := {J1, ..., Jn};

yv := 0 ∀i;

repeat

search for the locally optimal class i∗;

yi∗ := yi∗ + 1;

K := K \W i∗ = set of all jobs that can be processed from a new machine in i∗.

2.3. THE TACTICAL FIXED JOB SCHEDULING 29

repeat until K = ∅.

Suppose that during the execution we have K 6= ∅: this implies that we don't

have enough machines to process all jobs. Increase by 1 the number of machines

used for every class and obtain i∗ as the class for which this increment is more

"suitable". This advantage is computed has the total (lagrangian) value of the new

jobs that could be processed.

For the computational experiments in [8] the time horizon limit is set to 1000

and the following parameters are set:

• Number of job groups: g = 4, g = 5 or g = 6;

• Number of jobs: n = 100, n = 200 or n = 300;

• Maximum job duration D: D = 100, D = 200 or D = 300;

• Job characteristics: The job group to which a job Jj belongs to is chosen

randomly in {1, ..., g}, duration tj = (dj − rj) of a job randomly chosen with

uniform distribution in (0, D], rj randomly chosen in (0, T − tj].

• Machine classes: two cases are studied. In the �rst case every machine can

process jobs from two job groups and the number of classes is chosen so that

every combination of two job groups is considered; in the second case only a

few combinations are considered. For g = 4, g = 5 e g = 6 the authors in

[8] put c = 3, c = 4, c = 5. The set Qi is made so that Qi = {i, i + 1} per

i = 1, ..., g − 1.

30 CHAPTER 2. LITERATURE REVIEW

2.4 The Tactical Fixed Job Scheduling with Spread

Time Constraints

An istance of TFJSS consists of n jobs Jj (j = 1, ..., n) that must be processed

without preemption from a �xed release time (or starting time) rj to a �xed deadline

dj on m non identical machines that can process only one job at a time (m < n).

Each machine can only work for a �xed number L of consecutive time units: as

already mentioned, the spread-time is de�ned as the range from the �rst job and

the last job assigned to a machine. Moreover machines are divided into c classes:

machines belonging to a class can only process jobs from a given subset of jobs.

The goal is to minimize the number of machines required to process all jobs.

Let M i be the set of machines of class i (1 ≤ i ≤ c) and Cj (1 ≤ j ≤ n) be

the set of classes containing all the machines able to process Jj. Let Ki be the

set of jobs that can be processed from the machines of M i. Authors in [9] also

introduce a weight wi for the machines of class i, moreover they suppose the jobs

ordered in non decreasing order of rj. They present two formulation for TFJSS:

an integer programming model and a set covering model for a column generation

procedure to be embedded in a branch-and-price algorithm. Two jobs Jj and Jk

will be said to be compatible if they can be processed by the same machine. For

each Jj ∈ Ki (1 ≤ i ≤ c) let Aj = {Jk ∈ Ki : rk ≤ rj ≤ dk∨rj ≤ rk ≤ dj∨dk−rj >

L∨ dj − rk > L} be the set of jobs that are not compatible with Jj. We de�ne the

decision variables yik, that are equal to 1 if machine k ∈ M i is used to perform at

least one job and equal to 0 otherwise, and the decision variables xijk that assume

value 1 if job Jj ∈ Ki is assigned to machine k ∈M i and value 0 otherwise. So we

can model the TFJSS as follows:

2.4. THE TACTICAL FIXED JOB SCHEDULINGWITH SPREAD TIME CONSTRAINTS31

z = min
c∑
i=1

wi
∑
k∈M i

yik (2.12)

s. t.

xijk ≤ yik Jj ∈ Ki, k ∈M i, i = 1, ..., c (2.13)

xijk + xilk ≤ 1 Jl ∈ Aj, Jj ∈ Ki, k ∈M i, i = 1, ..., c (2.14)∑
i∈Cj

∑
k∈M i

xijk = 1 j = 1, ..., n (2.15)

xijk, y
i
k ∈ {0, 1} Jj ∈ Ki, k ∈M i, i = 1, ..., c. (2.16)

The objective functions (2.12) requires the minimization of the cost (weight) of

machines needed to perform all jobs. Constraints (2.13) assure that a machine is

used only when at least one job is assigned to it. Constraints (2.14) assure that

the compatibility relations are respected. Constraints (2.15) make a job executed

once and by a unique machine.

For implementing their Column Generation procedure the authors in [9] present

a Set Covering model for TFJSS. Every set of compatible jobs (that can be pro-

cessed by a unique machine) will be called �single-machine schedule� (column). For

every i = 1, ..., c they de�ne the binary constants aijs with value 1 if and only if

Jj ∈ Ki is in column s and value 0 otherwise. The vector ais = (ai1s, ..., a
i
ns)

T detects

the jobs of column s that can be processed by a machine in M i. Let Si be the set

of all columns containing jobs of Ki. Now introduce the binary decision variables

xis assuming value 1 if and only if column s is taken in the solution and value 0

otherwise.

zI = min
c∑
i=1

∑
s∈Si

wix
i
s (2.17)

s. t.

32 CHAPTER 2. LITERATURE REVIEW

c∑
i=1

∑
s∈Si

aijsx
i
s ≥ 1 j = 1, ..., n (2.18)

xis ∈ {0, 1} s ∈ Si, i = 1, ..., c (2.19)

The objective function (2.17) aims to minimize the cost of the selected machine.

Constraints (2.18) assure that every job is in at least a column; moreover the

corresponding dual variables will be not negative.

In the algorithm in [9] constraints (2.19) are relaxed to obtain a new formulation

RP from initial model, call it P: denote by XRP and zRP the optimal solution of

RP and its corresponding value respectively.

The �rst step in a Column Generation procedure is the detection of a restricted

subset of columns: this subset describes the restricted problem that will be solved to

optimality. In [9] new columns are added if necessary via a dynamic programming

procedure. The choice of the initial restricted set of columns is provided by a

procedure similar to the greedy procedure described in [6].

ALGORITMH GR ([9])

S = ∅, j := 1, order the jobs in non decreasing order of rj.

if j > n, STOP, output a feasible solution for the relaxation RP corresponding

to the set of columns S.

if there exists a column s ∈ S to which Jj can be added to form a new column

s′, remove s from S and put s′ in S;

else, let h = min{i : i ∈ Cj}, construct a new column sh including only Jj

eand add it to S.

j = j + 1 and go back to the �rst if.

2.4. THE TACTICAL FIXED JOB SCHEDULINGWITH SPREAD TIME CONSTRAINTS33

The reduced costs associated with the (relaxed) variables xis are de�ned by:

P i
s = wi −

∑
Jj∈Ki

λja
i
js,

where λ1, ..., λn are the values of the dual variables corresponding to the solution

of the relaxed problem RP. For a well known result of the duality theory a solution

to that problem is optimal if the reduced costs corresponding to the variables are

non negative: thus to see if a solution is optimal we should scan the reduced costs

searching for negative values. We want to detect the minimum among those values

or, since wi is constant for every s ∈ Si, the maximum among the values

P̃ i
s :=

∑
Jj∈Ki

λja
i
js.

If P̃ i
s ≤ wi ∀i, we have found an optimal solution for the relaxed problem; otherwise

we need to add more columns. Authors in [9] introduce a "pricing" procedure

based on dynamic programming and on the fact that machines processe jobs in

non decreasing order of rj. This procedure is combined with a branch-and-bound

algorithm that grants the integrality of the solution.

A successor of a job Jj is a job that immediately follows Jj in at least a column;

Let K+
j be the set of all successors of Jj.The precedence restrictions are indicated

by

℘ =
n⋃
j=1

K+
j .

∀1 ≤ j ≤ k ≤ n and i = 1, ..., c let Fi(j, k) be the set ol all columns in Si in which Jj

eand Jk are the �rst and the last job respectively, and let fi(j, k) = maxs∈Fi(j,k) P̃
i
s

if Fi(j, k) 6= ∅, 0 otherwise. After posing fi(j, j) = λj ∀Jj ∈ Ki (i =, ..., c), the

ricorsion scheme for k = j + 1, ..., n and Jk ∈ Ki is:

• fi(j, k) = 0 if Jk ∈ Aj

34 CHAPTER 2. LITERATURE REVIEW

• fi(j, k) = maxl:j≤l<k;Jk∈K+
l
fi(j, l) + λk if Jk /∈ Aj

Let f ∗i = max1≤j≤k≤n fi(j, k) (i =, ..., c): if f ∗i ≤ wi ∀i the current solution is

optimal; else, it is necessary to add more columns to the restricted problem. Those

columns will be selected among the ones for which f ∗i > wi. Greater is the number

of columns added for each iteration, then smaller is the number of iterations needed,

however the problem to be solved optimally will be heavier. One can choose the

columns determining the maximum value of f ∗i . The computational complexity of

the procedure is O(cn2).

The concepts of predecessor and successor are the key for the branch-and-bound

algorithm that is combined with the previous procedure. The jobs of a column s

are assigned to a machine in a �xed order, namely in non decreasing order of

rj: every job of s will have one predecessor and one successor that are uniquely

de�ned by the column, apart from the �rst and the last ones for which we de�ne

slack jobs J0 and Jn+1 representing the predecessor of the �rst job and the successor

of the last job in the column. If XRP = {x̃is : s ∈ Si, i = 1, ..., c} is an optimal

solution for RP, let Φ(XRP) be the set of all columns corresponding to the fractional

components of XRP . Hence Φ(XRP) = ∅ if and only if XRP is integer. Moreover

let Sj(XRP) ⊆ Φ(XRP) be the of all columns containing Jj, and let Kf (XRP) be

the set of all jobs corresponding to fractional values in XRP on machines of class

i ∈ Ĩ(s) = {i : 1 ≤ i ≤ c, s ∈ Si ∧ 0 < x̃is < 1}. A job can be removed from the

columns of Φ(XRP) without making the solution worse when it is contained in a

column s with x̃is = 1.

The authors in [9] prove two statements justifying the adopted strategy.

Theorem 8 ([9]). If every Jj ∈ Kf (XRP) has always the same successor in every

column s ∈ Sj(XRP), then there exists an optimal solutionX∗RP for RP in which

2.4. THE TACTICAL FIXED JOB SCHEDULINGWITH SPREAD TIME CONSTRAINTS35

every Jj ∈ Kf (X
∗
RP) has the same predecessor and the same successor in every

s ∈ Sj(X∗RP).

Proof. Let Jl ∈ Kf (XRP) be the job with the greater index l, clearly it is the last

job in every column of Sl(XRP) and it has always the same successor Jn+1. Suppose

now that Jl has at least two di�erent predessors in di�erent columns of Sl(XRP)

and that Jk 6= J0 is one of these. Every column in Φ(XRP) containing Jk must also

contain Jl by hypothesis. Note that for every Jj ∈ Kf (XRP), if Φ(XRP) 6= ∅ we

have ∑
s∈Sj(XRP)

∑
i∈Ĩ(s)

xis ≥ 1.

Since Sk(XRP) ⊆ Sl(XRP), substituting j with k in the previous inequality, we can

remove Jl from every column in Sl(XRP) \Sk(XRP); so we get a new optimal (LP)

solution X ′RP such that Φ(X ′RP) ⊆ Φ(XRP). Note thatX ′RP satis�es our hypothesis

and that Jl has the same predecessor in every column of Sl(X
′
RP). This process can

be iterated substitutingXRP withX ′RP until the optimal solutionX∗RP is found.

Theorem 9 ([9]). If every Jj ∈ Kf (XRP) has the same predecessor and successor in

every s ∈ Sj(XRP), then it is possible to �nd a feasible, and then optimal solution.

Proof. Sj(XRP) contains exactly one column for each Jj ∈ Kf (XRP) by hypothesis.

Thus the sets of jobs corresponding to the columns of Φ(XRP) are pairwise disjoint.

Once �xed a column s ∈ Φ(XRP), for the previous theorem Ĩ(s) contains at least

two elements becasuse of a fractional value of xis for some i ∈ Ĩ(s). The corre-

sponding weights {wi : i ∈ Ĩ(s)} are all equal, if they were not it would be possible

36 CHAPTER 2. LITERATURE REVIEW

to build a new solution in proving the value of the criterion function. So, �xing

i ∈ Ĩ(s), assigning in XRP value 1 to xis and value 0 to xi
′
s for every i′ ∈ Ĩ(s) \ {i},

we �nd a new integer solution.The process described above can be iterated for every

column s ∈ Φ(XRP) until an integer optimal solution is found.

We say a job Jj ∈ Kf (XRP) is separated in the current solution if it has more

than one successor in di�erent Sj(XRP). Authors in [9] design their branch-and-

price tree such that at each node of the tree, they �nd a separated job with lowest

index, and then create descendant nodes in such a way that each of descendant

nodes corresponds to a �xed successor. Consequently, the branching strategy even-

tually eliminates all separated jobs, which is a su�cient condition for an integer

solution.

In their experiments the authors in [9] showed that a breadth-�rst approach for

the branching tree is better than a depth-�rst: the neighbour nodes are explored

before descending in the tree.

The authors in [9] take into account only instances with at most 300 jobs for

their computational experiments. They use some of the parametres used in [8]

and they �x a limit of one hour for the time given to the algorithm for �nding

the optimal solution: The instances for which this limit is met are considered "not

solved". The algorithm in [9] is showed to be more e�cient than CPLEX: this

latter cannot solve the instances in the time limit (formulation ILP). The instances

are generated as follows:

• Number of jobs: n = 100, n = 200 or n = 300;

• Number of classes: c = 2g − 1, where g is the number of job groups, g = 3,

g = 4 or g = 5;

2.4. THE TACTICAL FIXED JOB SCHEDULINGWITH SPREAD TIME CONSTRAINTS37

• Job duration: generated with uniform distribution in [1, 100], [41, 100] or

[81, 100]

• Spread-time: L = 300, L = 400 or L = 500.

For each one of the 81 scenarios they generate 10 instances that have been tested

both with the branch-and-price algotithm and with CPLEX; however the numbers

in the tables are only the averages of the times (running time) of the branch-and-

price algorithm because, as already mentioned, CPLEX cannot solve the instances

within the time limit. The number in superscript represent the number of instances

that are not solved within the time limit.

Table 1: execution time (in seconds) with n = 100

Table 2: execution time (in seconds with n = 200

38 CHAPTER 2. LITERATURE REVIEW

Table 3: execution time (in seconds) with n = 300

In the tables 1-3, the running time for solving each case increases with the

spread-time and with the range of job duration.

The authors in [9] also study how the solution changes with the �exibility of the

machines: that is de�ned as capacity of the machines to process jobs from di�erent

job groups. The parameters are almost the same of the previous experiments

apart from the number of job groups and of jobs that are decreased to 10 and 50

respectively. The total number of machine classes is c = 210− 1 with 10 subsets of

classes where each one of the C10
i = 10!/(i!(10−i)!) i−tier contains all the machines

that can process from i job groups. Let M̃ i be the set of all the machines of the

classes of i−tier. Greater is yhe value of i, more �exible the machines of M̃ i are.

One of the detected data is the average number of used machines. The autgors in

[9] �rst consider two extreme cases (Tables 4-5): in the �rst one (total �exibility)

the weights are all equal to 1 for every M̃ i; in the second one (no �exibility) the

weights are equal to 1 for M̃1 and 999 for the M̃ i with i ≥ 2. For each one of

the described scenarios 10 instances are generated; moreover the percentage of the

machine used related to M̃ i are indicated. From tables 4 and 5 it is clear, as one

might suppose, that in the case of total �exibility the number of machines use is

lower than the other case.

2.4. THE TACTICAL FIXED JOB SCHEDULINGWITH SPREAD TIME CONSTRAINTS39

Table 4: total �exibility

Table 5: no �exibility

The authors in [9] gradually increase the �exibility of the machines studying

some intermediate scenarios: the numbers in tables 6 and 7 are not so di�erent

from the ones reported in table 4; this observation leads to the conclusion that

total �exibility does not provide massive improvements (reduction of the number

of machines used) with respect to the case in which the weights equal to 1 are the

ones in M̃1,M̃2 ed M̃3.

40 CHAPTER 2. LITERATURE REVIEW

Table 6: reduced �exibility (pweights equal to (1,1,999,...,999))

Tabella 7: little �exibility (weights equal to (1,1,1,999,...,999))

Finally the authors in [9] study some cases of more general weights. The weights

are put equal to 1 for the machines that can process jobs only from a unique job

group and equal to 1+kp for the machines that can process jobs from k job groups

more. The parameter p is set to 0,03, 0,20, 0,80 o 1,00 (Tables 8-11). For the

�rst three values of p computational experiments show that the machines that can

process jobs from 3 or 4 job groups are the best choice in the majority of cases. In

the case p = 1 no evident improvement has been recorded.

2.4. THE TACTICAL FIXED JOB SCHEDULINGWITH SPREAD TIME CONSTRAINTS41

Table 8: case of weights equal to 1 + kp with p = 0, 03

Tabella 9: case of weights equal to 1 + kp with p = 0, 20

42 CHAPTER 2. LITERATURE REVIEW

Tabella 10: case of weights equal to 1 + kp with p = 0, 80

Tabella 11: case of weights equal to 1 + kp with p = 1, 00

Chapter 3

Original Contribution

3.1 Mathematical Formulation

An istance of TFJSS consists of n jobs Jj (j = 1, ..., n) that must be processed

without preemption from a �xed release time (or starting time) rj to a �xed deadline

dj on m non identical machines that can process only one job at a time (m < n).

Each machine can only work for a �xed number L of consecutive time units: as

already mentioned, the spread-time is de�ned as the range from the �rst job and

the last job assigned to a machine. Moreover machines are divided into c classes:

machines belonging to a class can only process jobs from a given subset of jobs.

The goal is to minimize the number of machines required to process all jobs.

Let M i be the set of machines of class i (1 ≤ i ≤ c) and Cj (1 ≤ j ≤ n) be

the set of classes containing all the machines able to process Jj. Let K
i be the set

of jobs that can be processed from the machines of M i. Two jobs Jj and Jk are

said to be compatible if they can be performed by the same machine. For each

Jj ∈ Ki (1 ≤ i ≤ c) let Aj = {Jk ∈ Ki : rk ≤ rj ≤ dk ∨ rj ≤ rk ≤ dj ∨ dk − rj >

L∨ dj − rk > L} be the set of jobs that are not compatible with Jj. We de�ne the

43

44 CHAPTER 3. ORIGINAL CONTRIBUTION

decision variables yik, that are equal to 1 if machine k ∈ M i is used to perform at

least one job and equal to 0 otherwise, and the decision variables xijk that assume

value 1 if job Jj ∈ Ki is assigned to machine k ∈M i and value 0 otherwise. So we

can model the TFJSS as follows:

z = min
c∑
i=1

∑
k∈M i

yik (3.1)

s. t.

xijk ≤ yik Jj ∈ Ki, k ∈M i, i = 1, ..., c (3.2)

xijk + xilk ≤ 1 Jl ∈ Aj, Jj ∈ Ki, k ∈M i, i = 1, ..., c (3.3)∑
i∈Cj

∑
k∈M i

xijk = 1 j = 1, ..., n (3.4)

xijk, y
i
k ∈ {0, 1} Jj ∈ Ki, k ∈M i, i = 1, ..., c. (3.5)

The objective function (3.1) requires the minimization of the number of ma-

chines needed to perform all jobs. Constraints (3.2) assure that a machine is used

only when at least one job is assigned to it. Constraints (3.3) assure that the com-

patibility relations are respected. Constraints (3.4) make a job executed once and

by a unique machine.

It is now clear that in this interpretation of the problem there are perfect

correspondences between machines and workers and jobs and passengers. Notably

the spread-time corresponds to the lenght of a day duty.

3.2 Complexity

In this section the intractability of the TFJSS is proved via polynomial reduction

to the FJSS ([4], [6]).

3.3. LOWER BOUNDS 45

Theorem 10 ([10]). The TFJSS is NP-complete.

Proof. We introduce the mathematical formulation of the FJSS ([4]). In an instance

of this problem it is required to schedule n jobs Jj (j = 1, ..., n) on m identical

machines for which there is the same spread-time limit L. Jobs have �xed starting

time rj and deadline dj and they must be processed without preemption. For each

Jj let Aj = {Jk : rk ≤ rj ≤ dk ∨ rj ≤ rk ≤ dj ∨ dk − rj > L ∨ dj − rk > L} be the

set of jobs that are not compatible with Jj. We de�ne decision variables yk that

assume value 1 if machine k is used and 0 otherwise; and xjk that assume value 1

if job Jj is processed by machine k and 0 otherwise. We can formulate as follows:

z′ = min
m∑
k=1

yk (3.6)

s. t.

xjk ≤ yk ∀Jj, k = 1, ...,m (3.7)

xjk + xlk ≤ 1 Jl ∈ Aj; ∀Jj; k = 1, ...,m (3.8)
m∑
k=1

xjk = 1 j = 1, ..., n (3.9)

xjk, yk ∈ {0, 1} ∀Jj, k = 1, ...,m. (3.10)

Putting C = 1 in model (3.1)-(3.5) one can produce a polynomial reduction to

(3.6)-(3.10); this latter is NP-complete so TFJSS is NP-complete too. �

3.3 Lower Bounds

In this section we introduce some lower bounds for the optimal value of TFJSS.

Consider a discrete time-line [0, T], a �xed time t0 ∈ [0, T], let n0 be the number

46 CHAPTER 3. ORIGINAL CONTRIBUTION

of active jobs at t0 (computable in polynomial time as in [1]). Put t01 = t0 +L+ 1,

t0−1 = t0 − L− 1. More generally

t0p = t0p−1 + L+ 1,

t0−p = t01−p − L− 1

when they exist in [0, T]. Denote with n0
p the number of active jobs at time t0p with

p ∈ Z.

Theorem 11 ([10]).

B1(t0) =
∑
p

n0
p

is a lower bound for the optimal value of TFJSS.

Proof. In fact a machine working at time t0p cannot be working at time t0p+1 or

at time t0p−1. Denote with z∗ the optimal value of (1)-(5). Clearly z∗ ≥ B1(t0)

because B1(t0) does not take into account the jobs that have release time and

deadline between some t
0

p and t
0

p+1. We obtain a family of lower bounds moving

t0 ∈ [0, T] obtainable in polynomial time.�

Moreover put

B1 = max
t0∈[0,T]

B1(t0).

Clearly B1 is a lower bound for the optimal value of TFJSS.

Take now t0 ∈ [0, T] and put

τ 0
p = min{t : t ≥ t0p ∧ n(t) ≥ 1},

τ 0
−p = max{t : t ≤ t0−p ∧ n(t) ≥ 1},

3.4. AN HEURISTIC ALGORITHM 47

when they exist in [0, T], where n(t) is the number of active jobs at time t. Note

that if n0
p ≥ 1, then τ 0

p = t0p.

Theorem 12 ([10]).

B2(t0) =
∑
p

τ 0
p

is a lower bound for the optimal value of TFJSS.

Proof. In fact a machine working at time τ 0
p cannot be working at time τ 0

p+1 or

at time τ 0
p−1. Denote with z∗ the optimal value of (1)-(5). Clearly z∗ ≥ B2(t0)

because B2(t0) does not take into account the jobs that have release time and

deadline between some τ
0

p and τ
0

p+1. We obtain a family of lower bounds for the

optimal value of TFJSS moving t0 ∈ [0, T]. �

Moreover

B2 = max
t0∈[0,T]

B2(t0)

is a lower bound for the optimal value of TFJSS.

3.4 An Heuristic Algorithm

3.4.1 The Algorithm

In this section an heuristic algorithm based on a greedy approach is presented,

nevertheless it allows to choose for selection criteria based on the �exibility of the

machines. At this point this is the only heuristic algorithm ever introduced to solve

the TFJSS ([10]).

48 CHAPTER 3. ORIGINAL CONTRIBUTION

The algorithm starts sorting jobs in non decreasing order of rj. For k = 1, ..., n

it selects job Jk: if there is at least a machine able to process Jk among the ones

to which at least one job has already been assigned and for which the spread-time

constraints would be not violated, then the algorithm chooses one of those machines

via a criterion C ′ and assigns Jk to this machine; else, it chooses a new machine

among the ones that are not already used via a criterion C ′′ and assigns Jk to this

machine.

Algorithm 1 Heuristic [10]

Sort jobs in non decreasing order of rj;

for k = 1, ..., n do

if there is at least a machine able to process Jk among the ones to which it has

already been assigned at least one job and for which the spread-time constraints

would be not violated, then

Choose one of those machines via a criterion C ′ and assign Jk to this

machine;

else Choose a new machine among the ones that are not already used via a

criterion C ′′ and assign Jk to this machine.

end if

end for

3.4. AN HEURISTIC ALGORITHM 49

It is possible to choose among three criteria for C ′ and C ′′ before the algorithm

starts:

• Minimum �exibility (cmin): choose one of the machines (to which a job has

already been assigned in the case of C ′, to which no job has already been

assigned in the case of C ′′) with the minimum �exibility; i. e. able to process

jobs from the minimum number of job groups and for which the spread-time

constraints would be not violated;

• Maximum �exibility (cmax): choose one of the machines (to which a job

has already been assigned in the case of C ′, to which no job has already been

assigned in the case of C ′′) with the maximum �exibility; i. e. able to process

jobs from the maximum number of job groups and for which the spread-time

constraints would be not violated;

• Random: choose one of the machines able to process that job and for which

the spread-time constraints would be not violated.

3.4.2 Computational Experiments

The algorithm in [10] has been developed in Java language with Eclipse Jee Oxygen

on a DELL Inspiron with 8 GB RAM, SSD hard disk and Windows 10 operative

system. The instances for [10] have been created to be in accordance with real

world situations that occur in large scale international airports. Informal talks have

been carried out with accessibility and security managers in important european

international airports, detecting averages and numbers of the real world cases that

they face every day.

We consider a discrete time-line of [0, 200], discrete randomly chosen rj in the

whole time-line and integer duration of the jobs randomly chosen in [5, 30]. For

50 CHAPTER 3. ORIGINAL CONTRIBUTION

the experiments we put L = 80 or L = 100, m = 13
20
n and n = 100, 500, 1000 or

2000. The jobs are divided into four groups corresponding to the four languages

spoken by the machines/workers. For simplifying the notation we identify this four

languages with the Italian (basic language spoken by all the machines/workers),

English, Spanish and French language. The m machines/workers are divided into

�ve classes of equal cardinality containing respectively all the machines/workers

speaking only the basic language of the airport (Italian language in our case), all

machines/workers speaking only Italian and English, all machines/workers speak-

ing only Italian, English and French, all machines/workers speaking only Italian,

English and Spanish, all machines/workers speaking Italian, English, Spanish and

French.

Remark. Consider an iteration of the algorithm choosing a job Jk. W. l. g.

we suppose we are adopting criteria (cmin,cmin) for (C ′, C ′′), i.e. choosing the

minimum �exibility criterion cmin for both C ′ and C ′′, and that there are no ma-

chines able to process Jk among the ones to which a job has already been assigned

and with minimum �exibility. Suppose that the algorithm can not �nd a machine

(of minimum �exibility) Jk until it reaches two classes of machines/workers, call

it q and q′, that can process Jk and having the same cardinality. Machines from

q and q′ are able to process Jk and have the same �exibility, so it does not mat-

ter to Jk which one to choose, a machine/worker from q or q′. Preferring always

one of the two classes could a�ect the �nal solution. In this situation the algo-

rithm will pick a machine/worker from q ∪ q′. The same observation is valid also

for other couples of criteria for C ′, C ′′. This situation corresponds to the case in

which a job/passenger asking assistance with Italian or English language cannot

be allocated to a machine from the two classes with minimum �exibility: the class

containing machines/workers speaking Italian, English and French and the class

3.4. AN HEURISTIC ALGORITHM 51

containing ones speaking Italian, English and Spanish have the same �exibility

and can process that job. This situation can occur many times during the execu-

tion of the algorithm and the choices it makes can bring to di�erent solutions. For

this reason every instance has been solved many times.

We study 15 instances for each couple (n, L) with n = 100, 500, 1000 and 2000

and L = 80 or 100. In the left part of the tables there are the numbers of

jobs/passengers requiring respectively Italian (ITA), English (ENG), French (FRA)

and Spanish (SPA) language. This instances represent realistic situations in which

of course the number of jobs/passengers requiring the basic language of the airport

(Italian in our case) or English is greater than the number of jobs/passengers re-

quiring the other two languages. In the right part of the tables there are the results

of the solution of the instances. Each row contains the averages of the results of 20

executions of the algorithm with criteria (cmin,cmin), i.e. choosing the minimum

�exibility criterion cmin for both C ′ and C ′′, for a total of 2400 executions. The

reported numbers are, from left to right:

• the best value obtained for each instance (BVO)

• the average of the values obtained (AVO)

• the average of the times in ms of the initial sorting process via selection sort

(SSA)

• the average of the times in ms of the main algorithm (MAA).

3.4.3 Conclusions

The couple of criteria (cmin,cmin) proved to be the best. All the other combinations

of criteria bring to worst results and sometimes they leave some jobs/passengers

unassigned, especially in the cases in which n = 100.

52 CHAPTER 3. ORIGINAL CONTRIBUTION

Computational study shows that the value of BVO and AVO generally depend

on the distribution of the jobs during the time-line, i. e. on the number of jobs

that overlap, and from the length dj − rj of the jobs.

The results are competitive with the numbers of large scale airports, as stated

by talks and comparisons with accessibility and security managers of international

airports. In the real cases on which the instances with L = 80 are modeled the

number of machines/workers currently used to process n = 500 jobs is generally

between 150 and 160. Similarly in the case in which n = 1000 the number of

machines/workers used to accomplish all jobs is between 290 and 310; in the case

of n = 2000 that number is generally between 570 and 600. In the real cases on

which the instances with L = 100 are modeled the number of machines/workers

currently used to process n = 500 jobs is generally between 110 and 120. Similarly

in the case in which n = 1000 the number of machines/workers used to accomplish

all jobs is between 220 and 240; in the case of n = 2000 that number is generally

between 420 and 450.

Apart from the cases in which n = 100 (see tables 3.1 and 3.5), for which the

numbers obtained by the algorithm are very similar to the ones recorded in airports,

a comparison between the real world numbers and the results of the algorithm shows

that those latter seem to be better in the majority of cases (see Tables 3.2-3.4 and

Tables 3.6-3.8). This stands despite the fact that in almost every airport some of

the rules stated by international conventions and represented in our mathematical

model are ignored, hence the numbers recorded in real world situations arise from

schedulings that are not feasible for our formulation of the problem. So the results

obtained by the algorithm are generally better than the ones recorded in many real

world cases (see table 3.9 and 3.10 for a comparison).

Computational experiments show that at least the 40 per cent of the ma-

3.4. AN HEURISTIC ALGORITHM 53

Table 3.1: Results for the instances with n = 100, L = 80

Instance ITA ENG FRA SPA BVO AVO SSA (ms) MAA (ms)

1 60 20 10 10 39 39,2 8,3 1

2 55 21 13 11 37 37 9,5 1

3 51 23 13 13 32 32,5 1,6 1,6

4 46 26 15 13 34 35,4 1,6 1,7

5 43 28 14 15 39 39,6 1,8 1,4

6 40 30 15 15 27 28,7 2,2 1,4

7 38 31 16 15 33 36,4 2 1,3

8 36 33 15 16 35 37,2 6,1 1,2

9 34 33 17 16 38 39,1 2,5 1,5

10 33 33 17 17 34 35 2,9 1,7

11 31 34 16 19 31 33,5 8,7 1

12 32 30 19 19 39 39 10,1 1

13 31 30 20 19 33 33 9,1 1

14 30 29 21 20 35 36,4 8,5 1

15 27 28 21 24 31 33,2 9 1

chines/workers is saved; moreover in the majority of cases the number of ma-

chines/workers saved reaches notable levels with more than the 60 per cent of

machines/workers saved in the case L = 80 (see Table 3.4, instance 1) and 71 per

cent in the case L = 100 (see Table 3.8, instance 6).

54 CHAPTER 3. ORIGINAL CONTRIBUTION

Table 3.2: Results for the instances with n = 500, L = 80

Instance ITA ENG FRA SPA BVO AVO SSA (ms) MAA (ms)

1 300 100 50 50 134 138,6 26,1 14,6

2 279 109 52 60 146 148,8 22,7 14,3

3 252 133 60 55 135 136,7 25,7 13,4

4 231 142 66 61 152 153 24,2 11,3

5 212 146 72 70 134 136,1 23,1 18,3

6 200 150 75 75 139 142,3 26,5 13,7

7 189 150 80 81 159 160,7 26,2 17,4

8 169 141 100 90 148 149,1 23,1 13,7

9 153 155 91 101 130 132,7 23 16,1

10 158 140 103 99 152 154,6 24,5 13,6

11 147 134 111 108 158 158,7 23,2 14,5

12 140 142 108 110 154 156,6 24,8 15,2

13 141 139 110 110 160 160,9 24,8 15,2

14 138 133 114 115 133 138,3 23 14,2

15 130 134 120 116 125 128 23,8 14,3

3.4. AN HEURISTIC ALGORITHM 55

Table 3.3: Results for the instances with n = 1000, L = 80

Instance ITA ENG FRA SPA BVO AVO SSA (ms) MAA (ms)

1 600 200 100 100 273 275,2 43,8 21,1

2 570 212 110 108 276 278,1 48,4 18.3

3 521 241 117 121 304 304,7 46,6 20,5

4 462 262 140 136 292 295,2 45,1 19,9

5 421 289 150 140 287 289,4 46,9 20,9

6 400 300 150 150 292 294,7 41,3 21,9

7 371 330 152 147 273 276,2 52 16,7

8 363 331 150 156 277 282,1 46,5 14,1

9 351 317 165 167 264 266,2 43,3 14,3

10 324 342 171 163 277 279,9 43,6 14,7

11 330 302 190 178 285 286,3 45,5 14,3

12 310 311 179 200 289 291,7 42,9 14,2

13 303 298 204 195 288 289,8 43 13,1

14 285 287 200 228 280 284,3 40,7 13

15 272 258 240 230 278 281,2 41,1 12,3

56 CHAPTER 3. ORIGINAL CONTRIBUTION

Table 3.4: Results for the instances with n = 2000, L = 80

Instance ITA ENG FRA SPA BVO AVO SSA (ms) MAA (ms)

1 1200 400 200 200 522 523,9 60,6 38,5

2 1114 429 223 234 562 565,3 59,5 36,1

3 1058 457 245 240 552 555,3 61 36,6

4 950 536 258 256 557 558,4 57,3 37,1

5 859 571 291 279 526 530,1 64,1 39,1

6 800 600 300 300 560 562,3 66,1 36,5

7 772 604 319 305 592 593,6 63 38,2

8 729 580 345 346 533 535,9 69,3 41,6

9 708 572 358 362 529 532,4 62,6 41,1

10 680 553 385 382 561 563,7 63,6 37,7

11 651 546 405 398 531 534,4 61,8 38,7

12 619 539 421 421 553 556 60,3 31,6

13 605 520 439 436 539 541,4 59,4 30,3

14 582 523 450 445 558 559,5 59,5 33,1

15 558 511 462 469 567 569,3 66,4 37,3

3.4. AN HEURISTIC ALGORITHM 57

Table 3.5: Results for the instances with n = 100, L = 100

Instance ITA ENG FRA SPA BVO AVO SSA (ms) MAA (ms)

1 60 20 10 10 28 28,8 2,3 1,8

2 55 22 11 12 31 31 8,1 1

3 50 24 13 13 27 27,1 3,9 1,3

4 46 25 15 14 29 29,2 2,1 1,8

5 42 29 14 15 26 26,9 2,6 1,8

6 40 30 15 15 31 31 2,4 1,7

7 38 31 16 15 23 23,9 2,1 1,5

8 36 30 18 16 28 29 3 1,6

9 34 33 17 16 30 30,2 2,7 1,6

10 33 32 18 17 29 29 2,6 1,5

11 33 30 20 17 25 26,7 2,5 1,6

12 31 31 18 20 29 29 9,5 1

13 31 30 21 18 32 33,6 9,8 1

14 29 28 23 20 24 24,8 10,3 1

15 28 27 24 21 27 28,3 9,1 1

58 CHAPTER 3. ORIGINAL CONTRIBUTION

Table 3.6: Results for the instances with n = 500, L = 100

Instance ITA ENG FRA SPA BVO AVO SSA (ms) MAA (ms)

1 300 100 50 50 110 111,7 20,6 14,7

2 273 111 59 57 107 108,7 21,7 15,6

3 249 120 67 64 112 114,4 21,8 12,7

4 230 129 73 68 105 106,6 24,9 14,4

5 212 140 73 75 107 109,8 22,4 14

6 200 150 75 75 102 104,9 25,2 14,2

7 186 149 83 82 104 105,9 21,4 12,7

8 165 144 99 92 99 101,9 23,7 12,9

9 153 156 90 101 107 108,7 22 15,3

10 156 140 99 105 98 100 24 13,7

11 147 133 113 107 103 105 22,3 14,8

12 143 130 116 111 101 102,4 22,6 11,7

13 136 140 111 113 108 109,1 20,5 12,9

14 135 132 124 109 97 98,9 21,9 13,3

15 133 124 127 116 98 100,3 23,3 13,7

3.4. AN HEURISTIC ALGORITHM 59

Table 3.7: Results for the instances with n = 1000, L = 100

Instance ITA ENG FRA SPA BVO AVO SSA (ms) MAA (ms)

1 600 200 100 100 192 194 44,1 12

2 563 217 117 103 199 201,6 44,8 16,5

3 520 242 124 114 210 210,5 45 14,5

4 459 261 144 136 194 197,6 43,5 14,2

5 425 280 145 150 200 201,9 45 17,4

6 400 300 150 150 209 211,4 41,4 16,5

7 382 307 160 151 206 209,3 43,1 18,8

8 365 299 170 166 199 199,7 40,8 17

9 348 298 180 174 220 222,1 41,7 18,1

10 325 345 161 169 200 200,75 41,8 16,1

11 320 290 198 192 190 193,2 42,8 15,9

12 311 289 194 206 201 203,2 44,2 15,9

13 302 281 206 211 195 197,4 42,3 15,2

14 285 275 221 219 202 205,1 47,6 13,6

15 279 253 257 211 195 197,1 44,1 11,1

60 CHAPTER 3. ORIGINAL CONTRIBUTION

Table 3.8: Results for the instances with n = 2000, L = 100.

Instance ITA ENG FRA SPA BVO AVO SSA (ms) MAA (ms)

1 1200 400 200 200 382 385,8 62,6 30,8

2 1103 438 228 231 385 387,8 59,5 28,4

3 1026 481 253 240 371 376,3 58,6 28,4

4 948 539 262 251 387 393,6 56,9 28,8

5 852 569 288 291 386 388,5 59,4 32,9

6 800 600 300 300 370 374,1 63,2 31,1

7 783 598 302 317 376 379,5 61,6 28,8

8 756 601 327 316 395 399,3 62,5 31,1

9 730 582 348 340 380 386,9 61 34,4

10 703 580 361 356 379 381,9 65,1 36,9

11 660 681 335 324 382 385,8 65,1 37,8

12 641 555 394 410 386 388,1 59,2 25,6

13 606 530 447 417 388 391,5 62,1 29,2

14 586 521 450 443 396 396,7 67 34,2

15 553 509 481 457 380 383,1 61 28

3.4. AN HEURISTIC ALGORITHM 61

Table 3.9: Comparison in the case L = 80

L = 80 Case n = 500 Case n = 1000 Case n = 2000

Algorithm 125 - 160 264 - 304 522 - 592

Real case 150 - 160 290 - 310 570 - 600

Table 3.10: Comparison in the case L = 100

L = 100 Case n = 500 Case n = 1000 Case n = 2000

Algorithm 97 - 112 190 - 220 370 - 396

Real case 110 - 120 220 - 240 420 - 450

62 CHAPTER 3. ORIGINAL CONTRIBUTION

3.4. AN HEURISTIC ALGORITHM 63

Acknowledgments

I would like to thank my dear friends and colleagues Anna Tomeo BS and

Francesco Garofalo BS for their fundamental support in the darkest moments of

this adventure.

I am also grateful to Eng. Ersilia Vallefuoco for her constant encouragement

throughout my PhD experience.

I would also like to thank the SInAPSi Centre (Centre for the Active and

Participatory Inclusion of Students) of the University of Naples "Federico II", a true

international excellence in helping students with special needs, for their remarkable

contribution to my PhD program: they helped me to �nd ways to overcome my

sight problems by the use of accessible technologies in order to work and to perform

at my best.

64 CHAPTER 3. ORIGINAL CONTRIBUTION

Bibliography

[1] Ford, L.R., Fulkerson, D.R.: Flows in networks, Princeton University Press,

Princeton, New Jersey (1962)

[2] Gertsbakh, I., Stern, H.I., Minimal resources for �xed and variable job sched-

ules, Operations Research 26(1), 68�85 (1978)

[3] Gupta, U.I., Lee, D.T., Leung, J.Y.-T.: An optimal solution for the channel-

assignment problem. In: IEEE Transactions on Computers C, pp. 807�810.

IEEE (1979)

[4] Fischetti, M., Martello, S., Toth, P.: The Fixed Job Schedule problem with

Spread-Time Constraints, Operations Research 35(6), 849�858 (1987)

[5] Fischetti, M., Martello, S., Toth, P.: The Fixed Job Schedule problem with

Working-Time Constraints, Operations Research 37(3), 395�403 (1989)

[6] Fischetti, M., Martello, S., Toth, P.: Approximation Algorithms for Fixed Job

Schedule Problems, Operations Research 40(1-supplement-1), S96�S108 (1992)

[7] Kolen, A., Kroon, L.: License class design:complexity and algorithms, European

Journal of Operational Research 63(3), 432�444 (1992)

65

66 BIBLIOGRAPHY

[8] Kroon, L., Salomon, M., Van Wassenhove, L.: Exact and approximation algo-

rithms for the tactical �xed interval scheduling problem, Operations Research

45(4), 624�638 (1997)

[9] Zhou, S., Zhang, X., Chen, B., van de Velde, S.: Tactical Fixed Job Scheduling

with Spread-Time Constraints, Computers & Operations Research 47, 53�60

(2014)

[10] Mele, M., Festa, P.: Scheduling assistance for passengers with special needs in

large scale airports. In: 9th International Conference on Computational Logis-

tics, pp. 388�400 (2018)

[11] Reinhardt, L.B., Clausen, T., Pisinger, D.: Route planning for airport person-

nel transporting with reduced mobility, DTU Management Engineering, pp.1�

21 (2010)

[12] Kovalyov, M.Y., Ng., C.T., Chen, T.C.E.: Fixed interval scheduling: Models,

applications, computational complexity and algorithms, European Journal of

Operational Research 178(2), 331�342 (1992)

[13] Kolen, A., Lenstra, J., Papadimitriou, C., Spieksma, F.: Interval scheduling:

A survey, Naval Research Logistics (NRL) 54(5), 530�543 (1992)

[14] Keil, M.: On the complexity of scheduling tasks with discrete starting times,

Operations research letters 12(5), 293�295 (1992)

[15] Huang, Q., Lloyd, E.: Cost Constrained Fixed Job Scheduling. In: 8th Italian

Conference on Theoretical Computer Science, pp. 111�124 (2013)

[16] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms,

Cambridge University Press, New York, U.S.A. (2011)

BIBLIOGRAPHY 67

[17] Scholl, A.: Balancing and Sequencing of Assembly Lines, Springer-Verlag,

Heidelberg (1999)

[18] Martello, S., Toth, P.: A heuristic approach to the bus driver scheduling

problem, European Journal of Operational Research 24(1), 106�117 (1986)

[19] De Leone, R., Festa, P., Marchitto, E.: A Bus Driver Scheduling Problem:

a new mathematical model and a GRASP approximate solution, Springer Sci-

ence+Business Media 17(4), 441�466 (2011)

[20] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the

Theory of NP-Completeness , W.H. Freeman and Company, New York, U.S.A.

(1979)

[21] Cabrera, G.G., Rubio, J. M. L.: Hybrid Algorithm of Tabu Search and Integer

Programming for the Railway Crew Scheduling Problem. In: 2th Asia-Paci�c

Conference on Computational Intelligence and Industrial Applications, pp. 413�

416 (2009)

[22] Wren, A., Rousseau, J. M.: Bus Driver Scheduling - An Overview, School of

Computer Studies Research Report Series, University of Leeds 93(31), 1�14

(1993)

[23] Portugal, R., Lourenco, H. R., Paixao, J. P.: Driver scheduling problem mod-

elling, Public Transport, Springer-Verlag 1(2), 103�120 (2008)

[24] Rodrigues, M. M., de Souza, C. C., Moura, A. V.: Vehicle and crew scheduling

for urban bus lines, European Journal of Operational Research 170(3), 844�862

(2006)

68 BIBLIOGRAPHY

[25] Mastelic, T., Fdhila, W., Brandic, I., Rinderle-Ma, S.: Predicting Resource Al-

location and Costs for Business Processes in the Cloud. In: 11th World Congress

on Services, pp. 47�54 (2015)

