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Introduction 

Radiomics relies on post-processing images derived from diagnostic examinations such as 

ultrasound (US), computed tomography (CT), magnetic resonance (MR) or positron emission 

tomography (PET), by means of appropriate created algorithms with the extraction of a big amount 

of data (Gillies 2015). Radiomics has been recognized to have a great potential offering different 

potential applications especially in the oncologic field, from tissue characterization to the 

assessment/prediction of the response to a specific treatment, towards a “personalized medicine”. 

One of the main applications of radiomics is texture analysis (TA), a post processing imaging 

technique that analyzes the spatial variation of pixel intensity levels within an image obtaining 

quantitative data reflecting image heterogeneity. The texture of an image can be evaluated using 

statistical, model or transformed-based methods. Among these, the statistical method is the most 

widely applied in medical images. According to this tool first, second and higher-order features are 

extracted that depend on the spatial variation in pixel intensity levels (Alobaidli 2014). In detail, 

first-order quantitative features represent the distribution of pixel intensities (Histogram Analysis, 

HA); second-order textural features are extracted by the analysis of grey-level co-occurrence 

matrices (GLCM) and rely on the relation between couples of pixels; finally, high order textural 

features extracted from Neighborhood Grey-Tone Difference Matrices (NGTDM) describe the 

relation between a pixel and the neighboring pixels, while Run Length Matrices (RLNM) consist 

the number of consecutive pixels that have the same intensity level and which occur in a specified 

direction.  

Machine learning (ML) is an application of artificial intelligence for recognizing patterns that can 

be applied to medical images (Erickson 2017); it enables the development of algorithms that can 

learn and make prediction, with the ability to improve with the experience. Three categories of ML 

tool can be identified: 1) supervised, in which data labels are provided by experts to the learning 

algorithm for the training test; 2) unsupervised, in which no data labels are provided to the learning 

algorithm; and 3) reinforcement learning, in which “a computer program performs a certain task in 

a dynamic environment in which it receives feedback in terms of positive and negative 
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reinforcement” (Choy, 2018). ML software can be applied in different fields of radiology: image 

acquisition (e.g. suggesting modifications to acquisition protocol during MR examinations); 

detection of imaging findings (e.g. pulmonary or thyroid nodules detected as incidental findings or 

for breast cancer screening); interpretation of imaging findings; clinical decision support; image 

segmentation and quality analysis; and radiation dose estimation (Choy, 2018). Using TA features 

extracted from medical images, ML algorithms are able to identify the best combination of features 

in order to create a predictive algorithm for the diagnosis of interest (Juntu 2010). Regarding the 

oncologic field, ML analysis using TA applied to CT or MR images has been proved to identify 

combination of features correlated to histopathology parameters in thyroid (Meyer 2017), breast 

(Holli 2010, Waugh 2016) and lung cancer (Ganeshan 2013) as well as to predict locations of 

metastases (Coroller 2015, Vallieres 2015) and the efficiency of treatments (Tixier F 2011, De 

Cecco 2015, Dang 2015). These findings expand the research tools available for tissue 

characterization, clinical management and prediction of patients’ prognosis. 

The aim of this work is to illustrate our experience in TA and ML field using MR and CT images 

acquired in patients with adrenal lesions and head and neck cancer imaging, respectively. In 

particular, we aimed to assess the accuracy of ML algorithms in the differential diagnosis of adrenal 

lesions and to predict tumor grade and nodal involvement in oropharynx and oral cavity 

squamocellular carcinoma.  

 

 

Adrenal lesions characterization 
 
 

Adrenal lesions, frequently detected as incidental imaging findings, are mainly represented 

by benign adrenal adenomas (AA) (Song 2008). Although well-defined CT and MR imaging 

criteria are currently used to characterize adrenal lesions, particularly Lipid-Rich Adenomas (LRA) 

(Korivi 2013), the correct differentiation between AA and non-adenoma adrenal lesions (NAL) is 

still challenging. Of note, lipid-poor adrenal adenomas (LPA) fail to be characterized by 
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measurement of unenhanced CT Hounsfield Unit (HU) threshold as well as by signal intensity loss 

on Chemical-Shift (CS) MR sequence. Therefore, alternative imaging methods, long-term follow-

up, biopsy or surgical resection for final diagnosis are currently used in such adrenal lesions. In a 

previous study CT histogram analysis method was found useful to differentiate adrenal adenomas 

from non-adenomas (Halefoglu 2010, Remer 2006). According to Blake and colleagues, the most 

practical clinical application of HA in adrenal imaging seems to be supplementing unenhanced CT 

to improve sensitivity to almost 90%, maintaining a high specificity (Blake 2010). To the best of 

our knowledge, only one study analyzed the role of HA applied to MR images and specifically on 

Apparent Diffusion Coefficient (ADC) maps to differentiate AA from Pheochromocytomas 

(Umanodan 2017). In this setting, our aim was to assess the diagnostic effectiveness of TA-derived 

parameters (morphologic, first-order, GLCM and RLNM) using a ML approach to characterize 

LRA, LPA and NAL on unenhanced T1-weighted in-phase (IP) and out-phase (OP) as well as T2-

weighted MR images. 

 

Materials and Methods 

Patient population 

This retrospective study was approved by our local Institutional Review Board (IRB) and the 

requirement for informed consent was waived. 

A consecutive case series of 436 abdominal MR examinations of patients with adrenal lesions, 

performed at our institution between September 2014 and September 2016, were reviewed. Inclusion 

criteria were: presence of at least one adrenal lesion; adrenal adenomas classified as LRA and LPA 

based on in & out of phase behavior, in terms of presence/absence of clear and homogeneous signal 

intensity drop on out-phase images compared to in-phase images as previously reported (Maurea 

2006, Chung 2001), confirmed by means of a long-term MR follow-up (at least 1 year) or surgical 

excision; histologically proven NAL. Exclusion criteria were: poor quality MR images affected by 

motion/respiratory artifacts; incomplete MR examinations; patients with clinically/radiologically 



 5 

suspected LRA and LPA without a long term follow up and/or histological confirmation; patients 

with a suspected NAL because of MR features without histological confirmation. Considering NAL 

were the least frequent lesion type (n=20), to obtain equally numerous groups for all three categories, 

the first 20 eligible consecutive patients with LRA and LPA who fulfilled the above-mentioned 

criteria were selected. In all, 60 MR examinations including 20 LRA, 20 LPA and 20 NAL (11 

pheochromocytomas, 5 metastases, 1 hemangioma and 3 carcinomas) were selected. The flow chart 

of patient selection is reported in Figure 1. 

In 24 patients (4 LPA, 20 NAL) post-surgical histology confirmation of the diagnosis was obtained. 

In the remaining 36 patients (20 LRA and 16 LPA), stable lesion size during the 1-year follow-up 

was considered diagnostic criterion for lesion classification as adenomas. The follow-up evaluation 

consisted of clinical and laboratory assessment as well as additional imaging studies (MR and/or 

radionuclide). The mean age of the 60 patients (41F) was 58.6 ±14 years (age range 18-79 years). 

Median values of lesion size were 19 mm (range: 7- 46 mm), 26 mm (range: 8-54mm) and 52 mm 

(range: 13-107mm) for LRA, LPA and NAL respectively. 

 

MR acquisition protocol 

  MR examinations were performed using a 3T MR scanner (Magnetom Trio, Siemens 

Medical Solutions, Erlangen, Germany) and a 4-channel abdominal surface coil and integrated 

spine phased-array coil (Body Matrix, Siemens Medical Solutions); the protocol included axial 

HASTE T2-weighted (T2-w) sequence (TR/TE= 2000/90 ms, Flip Angle 150°, slice thickness 3 

mm, gap 0.6 mm) and axial TFL T1-w CS sequence (TR/TE= 1500/1.37 and 2.27 ms, Flip Angle 

20°, slice thickness 3.5 mm, gap 0.7 mm). 

 

Texture analysis 

Each detected adrenal lesion was manually segmented using a dedicated software (ITK-SNAP v 

3.4) through placement of a spherical Volume of Interest (VOI) on In-Phase (IP), Opposed-Phase 
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(OP) and T2-w images (Yushkevich 2006), as shown in Figure 2. VOIs were placed in the center of 

each lesion and enlarged or reduced in order to stay within the margins of the lesion and to avoid 

the inclusion, when present, of necrotic areas. This segmentation method was applied to reduce 

observer’s influences that were limited to the identification of the center of the lesions. A spherical 

VOI shape was chosen as most adrenal lesion have a rounded shape. If large central necrosis was 

present, VOIs were placed peripherally over solid tumor tissue. Images and VOIs were successively 

imported on 3D Slicer (HeterogeneityCAD module) to extract a total of 138 first-order, GLCM and 

RLM texture parameters, 46 for each MR sequence (Fedorov 2012). The wisdom of each feature 

selection method was assessed by calculating the diagnostic performance of each feature group with 

the J48 classifier. Subsequently, ML analysis was conducted using a dedicated data mining software 

(Weka v. 3.8.1), freely available (www.weka.org) (Eibe 2016, Ian 2011, Remco 2010). The training 

of the ML classifiers required feature selection to avoid overfitting and the overall reduction of 

classifiers’ capabilities. Feature selection methods belong to three main categories: 1) subset feature 

selection methods, which use a learning algorithm and evaluate its performance on the dataset with 

different subsets of features selected; the subset with the best performance was finally selected; 2) 

ranking methods, that rank the texture features by a numeric value and eliminate all features that do 

not achieve an adequate score; 3) embedded methods, using the classification itself to measure the 

importance of features set, hence the feature selected depends on the classifier model used (Fedorov 

2012). To identify the best feature selection method for our data, we used selection methods 

belonging to each of these categories and in particular we tested: 

- subset feature selection: CfsSubsetEval with BestFirst as the search method and using 

forward, backward and bi-directional directions with both leave-one-out and 10-fold cross-

validation; 

- Ranking: InfoGainAttributeEval using Ranker as the search method; 

- Embedded methods: WrapperSubsetEval using GreedyStepwise as the search method. 

Each group of selected data was then tested using J48 as supervised ML classifier associated with a 
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leave-one-out cross-validation. The accuracy of the classifications was assessed using the 

percentage of correctly classified data and the area under the Receiver Operating Characteristic 

(ROC) curve was calculated as a measure of accuracy of the ML algorithm. In particular, we aimed 

to obtain the highest diagnostic performance while employing the smallest number of selected 

features.  

In addition, the diagnostic performance of J48 classifier was compared with that of a senior 

radiologist with >20 years-experience in abdominal and adrenal imaging. The radiologist analyzed 

the in-phase, opposed-phase and T2w images of all 60 patients, blinded to clinical history and final 

diagnosis, identified adrenal lesions and established a diagnosis (LRA, LPA, NAL) which was 

recorded by a research assistant. Diagnostic performances of the classifier and radiologist were 

compared using Mc Nemar’s test. A p value ≤ 0.05 was considered as statistically significant. 

 

Results  

The selected features and diagnostic performances with the J48 classifier are reported in Table 

1. The most relevant results are as follows: 

-  Among the different subset feature selection methods tested, the cfsSubsetEvaluator with an 

associated BestFirst selection method and a forward direction selected 3 features, all 

extracted from the OP images: Root Mean Square (RMS_O), Maximum 3D Diameter (Max 

3D_Diam) and Long Run Emphasis (LRE_O) obtaining the highest correct classification 

(73.3% of correctly classified instances) using the J48 classifier and a leave-one-out cross-

validation.  

- The ranked methods were not suitable for our dataset as too many features reached a high 

score and were considered not selectable (not shown). 

- The WrapperSubsetEvaluator, with an associated GreedyStepwise as selection method and 

the J48 classifier, selected a total of 4 features:  Short Run High Gray Level Emphasis 
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extracted from the IP images (SRHGLE_in), Mean Intensity and Maximum 3D Diameter 

extracted from the OP images (Mean Int_opp, Max 3D Diam_opp) and Standard Deviation 

extracted from the T2w images (SD_T2). Employing such features with J48 classifier, 

without using MDL corrections, a diagnostic accuracy of 80% was obtained; the resulting 

decision tree algorithm is shown in Figure 3. 

The expert radiologist obtained a diagnostic accuracy of 73% in characterizing adrenal lesions. 

AUC, sensitivity and specificity of J48 and the expert radiologist for diagnosis of LRA, LPA 

and NAL are reported in Table 2.  

McNemar’s test did not show significant differences in terms of diagnostic performance 

between the J48 classifier and the expert radiologist (x2= 4; p=0.13); the number of agreements 

and disagreements are summarized in Table 3. The confusion matrix for diagnosis of LRA, 

LPA and NAL according to both J48 classifier and the expert radiologist is shown in Table 4. 

 

Discussion 

On the basis of our results, ML algorithm using texture-derived features extracted from 

unenhanced MR images was useful in characterizing adrenal lesions as compared to a senior 

radiologist. Previous authors have evaluated the role of TA employed with a ML approach. Juntu et 

al studied, from a ML perspective, the performance of several Weka ML classifiers that used TA 

features extracted from soft tissue tumors in nonenhanced T1-weighted MR images to discriminate 

between malignant and benign tumors (Juntu 2010); they concluded that ML classifiers trained with 

TA features are potentially valuable for detecting malignant tumors in T1-weighted MR images. 

They also compared the diagnostic accuracy of the classifier with that of an expert radiologist, 

finding that the former performed better with a higher classification accuracy. More recently, 

Waugh and colleagues evaluated whether MR TA could be useful in non-invasive breast cancer 

subtype classification. They found that entropy features can differentiate between histological and 
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immunohistochemical subtypes of breast cancer, suggesting that TA of breast cancer potentially 

provides additional information for decision making (Waugh 2016). A ML software employing MR 

texture features has been also used in the head and neck field by Dang, who found that MR imaging 

TA correctly predicted p53 status in oropharyngeal squamous cell carcinoma with ~80% of 

diagnostic accuracy (Dang 2015). Regarding adrenal imaging, previous authors have evaluated the 

role of histogram analysis to characterize adrenal lesions on CT images (Halefoglu 2010) while 

only in one study this technique was applied to MR images, particularly to differentiate adrenal 

adenomas from pheochromocytomas on ADC maps, showing that histogram-derived parameters 

extracted from ADC maps could be useful for this purpose (Umanodan 2017); to the best of our 

knowledge, this is the first report describing TA with a ML approach for differential diagnosis of 

adrenal lesions using T2-weighted, in-phase and opposed-phase MR images. We decided to 

perform the analysis only on unenhanced MR images as we intended to propose a faster and 

noninvasive diagnostic MR imaging method able to characterize adrenal lesions, in the light of the 

potential safety issues related to the use of gadolinium-based contrast agents (Gulani 2017). In this 

setting, all the unenhanced sequences resulted useful for differential diagnosis of adrenal lesion as 

at least one of the selected features with the highest diagnostic performance was extracted from 

each of them. Of interest is that, based on the tree algorithm generated by our analysis, the first 

feature to evaluate is the Maximum 3D diameter; this criterion has also a clinical correlation as 

lesion size is considered as a reliable parameter to classify non-adenoma lesions. 

As several concerns have arisen from the recent advances in the application of TA on medical 

images, we aimed to also compare the diagnostic performance of the J48 classifier with that of a 

senior radiologist with >20 years of experience in abdominal and adrenal imaging. The senior 

radiologist correctly classified the 73% of cases, performing worse than the J48 classifier that 

correctly classified the 80% of cases. Even if this difference was not statistically significant at 

McNemar’s test, the J48 classifier still showed a higher classification accuracy compared to the 

expert radiologist’s performance. Our results suggest that TA may be a useful diagnostic tool to 

characterize adrenal lesions at MR, particularly in differentiating LPA from NAL which represents 
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the most relevant topic in adrenal imaging. 

In our perspective, this tool could help radiologist to express the probability of an adrenal lesion to 

belong to each of the three categories (LRA, LPA and NAL), therefore clinicians could be more 

accurately directed towards a more conservative approach (i.e. instrumental follow-up) or a more 

interventional (i.e. biopsy or surgical excision) one. To promote an easier and rapid implementation 

in the clinical practice, we selected the lowest possible number of texture features while 

maintaining the highest diagnostic accuracy. 

Limitations of this study are represented by: 1) relatively small sample; 2) cross-validation of the 

J48 classifier was conducted with a leave-one-out method using the same patient dataset: a 

definitive validation using a different set population would be advantageous; 3) differentiation 

among LRA and LPA was assessed using a qualitative diagnostic criterion in evaluating in and 

opposed phase images, since a quantitative cut-off values of signal intensity drop at 3T have not 

been established yet (Nakamura 2012); nevertheless, qualitative method is the most widely used 

and is considered as reliable as quantitative imaging analysis (Korobkin 1995, Heinz-Peer 1999, 

Ream 2015); 4) enhanced images were not included in our study and thus a) the potential role of 

TA on these images was not investigated and b) the expert radiologist did not assess post-contrast 

adrenal lesion behavior that is instead often provided in clinical practice. A larger study, possibly 

involving different centers with both 1.5 and 3T MR scanners from different vendors, could solve 

many of the above-mentioned limitations and is needed to confirm our promising results before 

application of ML algorithms in the clinical setting to characterize adrenal lesions. 

In conclusion, TA applied to MR unenhanced images using a ML approach may be useful to 

characterize adrenal lesions and could represent a valuable tool to assist radiologists in the 

differential diagnosis suggesting the most appropriate clinical management. 
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Prediction of tumor grade and nodal involvement in oral cavity and oropharynx 

squamocellular carcinoma 

Cancers of the oral cavity (OC) and oropharynx (OP) arise from the uppermost part of the 

digestive tract with a reported incidence of 2.1% and 1%, respectively (Ferlay 2008), causing 

significant mortality and morbidity despite clinical advances enable their early diagnosis and 

treatment. Well recognized risk factors of cancer of the OC and OP are smoking, alcohol and sexual 

behavior (Rettig 2015). Once detected by clinical and/or endoscopic examination, imaging is 

required for tumor staging in order to establish the most appropriate treatment strategy. Surgery is 

the first choice at early stages (I and II), while a combination of chemotherapy and radiotherapy is 

recommended in advanced stages (III and IV) (Gregoire 2010), depending on tumor size and the 

presence of metastatic lymph-nodes; along with nodal involvement, tumor grade is reported as 

independent predictor of distant metastases, both having therefore a role in determining patients 

who may benefit from systemic treatment (Fortin 2001). Moreover, the presence of metastatic 

lymph nodes is considered the single most important negative predicting factor, reducing, when 

present, overall 5-year survival by 50%. In this setting, additionally to ultrasound, CT and MR, 

advanced imaging techniques (i.e. diffusion weighted imaging, perfusion CT), have been employed 

to identify non-enlarged, positive lymph nodes in head and neck cancer patients (Bisdas 2007, Jin 

2016, Trojanowska 2012). However, even if promising, the role of these new modalities still has to 

be established. 

Regarding head and neck cancer imaging, TA and ML applied to CT, PET or MR images were 

proved to be reliable in predicting Human Papilloma Virus (HPV) status (Buch 2015, Fujita 2016), 

p53 mutation (Dang 2015), local treatment (Kuno 2017) as well as patient failure (Vallieres 2017) 

and overall survival (Zhang 2013). In this perspective, we performed a ML analysis using CT-

derived texture features in patients with stage I-II OC and OP SCC candidate to surgical excision, to 

assess whether this approach may predict tumor grade and nodal involvement and potentially 

influence surgical and oncological strategies. 
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Materials and Methods 

Patient population 

This retrospective study was approved by the local Institutional Review Board and written 

informed consent was waived. From our database, all CT examinations performed between January 

2014 and December 2016 for pre-operative staging of patients with head and neck SCC were 

selected (n=116). Inclusion criteria were:> 18 years-old patients with OC and OP SCC who 

performed a contrast-enhanced CT scan at our institution, that subsequently underwent surgical 

excision (stage I or II) and for whom histological report was available (n=58). Exclusion criteria 

were the following: patients with tumor recurrence (n=8); CT images affected by motion or beam 

hardening artifacts by dental implants (n=4); CT examinations in which tumor lesions were not 

clearly detectable (n=6). Based on these criteria, 40 patients (21 M, mean age 69 ±14 yrs), 33 with 

OC and 7 with OP carcinoma, were finally included. Of these, 1 was classified as a G1, 12 as G2 

and the remaining 27 as G3 lesion at the histopathological examination. For prediction of tumor 

grade, only the latter two groups were included, due to the presence of a single G1 lesion. In 19 

patients, no metastatic lymph-nodes were found after surgery, while 21 cases had metastatic nodal 

involvement (N1=8, N2=15). Flow-chart of patient selection is reported in Figure 4. 

 

CT acquisition protocol 

All patients underwent CT scan of the head and neck, performed with a single multidetector 

CT scanner (Toshiba Multi-Slice Aquilion 64 system, Toshiba Medical Systems, Tokyo, Japan) 

after intravenous injection of 100 mL of nonionic iodinated contrast medium (370 mg of iodine per 

milliliter (Iopamidol), Iopamiroâ 370; Bracco Imaging S.p.A.) at a flow rate of 3 mL/sec with 

imaging delayed until 80 seconds after initiation of contrast medium injection. Scan parameters 

were 120 kV; 300 mAs; rotation time=0.5 second; pitch=1; collimation= 0.5 mm using a standard 

smoothing algorithm for axial image reconstruction; section thickness=2.5 mm; and intervals= 2.5 
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mm. A 250 × 250 mm field of view and 512 × 512 pixel matrix size were used for an average pixel 

size of approximately 0.5 × 0.5 mm on the x-axis and y-axis and 2.5 mm on the z-axis. Images were 

reviewed in soft-tissue algorithms. 

 

Texture analysis 

Lesion analysis was performed using a previously established image post-processing 

software (Romeo 2018). CT images were imported on a dedicated software (ITK-SNAP 3.6.0) for 

tumor segmentation (Yushkevich 2006). Lesions were identified on post-contrast CT images and 

manually segmented by drawing a polygonal ROI, further edited with paintbrush tools, excluding 

necrotic areas by a radiologist with 7 years’ experience in head and neck imaging. An example of 

ROI positioning is shown in Figure 5. ROIs were analyzed using 3DSlicer, version 4.8, extracting a 

total of 55 first, second and higher order texture-derived features (Fedorov 2012). The same data-

mining software of the previous study (Weka 3.8.2) was then used for preprocessing of these 

parameters, using various feature selection techniques. A subsequent evaluation of the performance 

of different supervised ML algorithms in the prediction of tumor grade, nodal involvement and N 

stage was conducted (Frank 2016). Feature selection was performed using correlation, information 

gain and learner-based techniques. For the last, C4.5 tree, k-nearest neighbors (k-NN) and locally 

weighted learning algorithms were employed. These were also used as classifiers, together with 

Zero Rules (0-R), Random Tree, Random Forest, Support Vector and Naïve Bayesian ones. Since 

no test population was available, each ML technique was evaluated with a 10-fold cross-validation, 

iterated 10 times, to predict tumor grade and nodal involvement, in terms of presence/absence of 

metastatic lymph-nodes in accordance with previous studies (Chang 2018, Taylor 2017); in patients 

with positive lymph nodes, we also tested the ML classifiers for prediction of N stage (N1 or N2). 

The 0-R classifier assumes all cases belong to the most common class and was included as a 

baseline accuracy reference to further evaluate the real-world value of the other prediction 

algorithms. A corrected paired T-test was used to evaluate the statistical significance of differences 
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observed in algorithm performance (Nadeau 2003); a p value £ 0.05 was considered statistically 

significant. 

 

Results 

For all class groups, feature subsets that performed better were those derived from the 

learner-based selection using the k-NN algorithm. Specifically, Root Mean Square and Long Run 

Emphasis were selected for tumor grade prediction, while Cluster Prominence, Dissimilarity, Long 

Run Low Gray Level Emphasis (LRLGLE) and LRHGLE were selected for nodal involvement; 

finally, Range, Mean Deviation, Surface Area, High Gray Level Run Emphasis, Short Run High 

Gray Level Emphasis, LRLGLE and LRHGLE were selected for N1/N2 stage prediction. 

Performances of all classifiers across the different feature combinations derived from data selection 

for prediction of tumor grade, nodal involvement and nodal status are reported in Tables 5, 6 and 7, 

respectively. In particular, the k-NN algorithm achieved the best performance in all evaluated tasks 

with an accuracy, defined as the ratio between correctly classified instanced and all instances, of 

91.6 ± 14.04 % for tumor grade prediction, 85.5 ± 19.2% for the assessment of nodal involvement 

and 90± 19.8 % for the definition of N stage. In all evaluated settings, it performed significantly 

better than the 0-R classifier that scored 69.17 ± 9.95 %, 47.5 ± 7.54 % and 61.67 ± 19.89 % for 

grade prediction, nodal involvement and N stage, respectively. 

 

Discussion 

According to our results, ML analysis applied to CT-derived texture features was useful to 

accurately predict tumor grade, the presence of nodal involvement and to define N stage in patients 

with OC and OP SCC with a diagnostic accuracy of 91.6%, 85.5% and 90%, respectively. TA has 

been previously found as useful in predicting tumor grade in lung adenocarcinoma and pancreatic 

neuroendocrine tumor (Canellas 2018, Choi 2018, Liu 2017) as well as to assess mediastinal and 

cervical lymph node status in lung and thyroid cancer, respectively (Andersen 2016, Pham 2017, 

Ardakani 2018). In detail, CT was useful for predicting grade 2/3 pancreatic neuroendocrine tumors 
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using not only imaging findings but also CT texture features variables such as sphericity, skewness 

and kurtosis (Choi 2018). Similarly, CT texture features were found predictive of pancreatic 

neuroendocrine tumor aggressiveness and possibly useful to identify patients at risk of early disease 

progression after surgical resection (Canellas 2018). Furthermore, Liu et al extracted TA features 

from contrast-enhanced CT images of patients with lung adenocarcinoma that were useful in 

predicting pathologic grade (Liu 2017). Regarding the assessment of lymph node involvement, a 

diagnostic accuracy of 70% in classifying benign and malignant mediastinal lymph nodes in lung 

cancer patients has been described using TA features extracted by unenhanced CT images (Pham 

2017). Similarly, Andersen and colleagues found a statistically significant difference between CT 

texture features of benign and malignant lymph nodes in patients with non-small cells lung 

carcinoma Andersen 2016. TA has been also applied to ultrasound images, showing a diagnostic 

accuracy of 98.8% in classifying tumor free and metastatic cervical lymph nodes in patients with 

papillary thyroid carcinoma (Ardakani 2018). Differently from our study, these authors extracted 

texture features directly from detected lymph nodes on CT or ultrasound images; according to our 

experience, useful data regarding the possibility of nodal involvement could be obtained even from 

the primary tumor mass, probably related to tumor heterogeneity and aggressiveness. Both tumor 

grade and nodal involvement are well recognized prognostic factors in terms of presence/absence of 

distant metastasis in head and neck cancer patients. As a consequence, providing pre-treatment data 

concerning tumor grade and the possibility of lymph node involvement using a routinely used 

imaging technique may have a significant impact on therapeutic strategies and clinical outcome. In 

particular, the presence of a metastatic lymph node on one side of the neck reduces the 5-year 

survival rate by 50%, and the presence of a metastatic node on both sides of the neck reduces the 

survival rate by further 25% (Trojanowska 2012). Considering this we decided, despite the 

relatively low number of patients, to stratify patients with positive lymph nodes in those classified 

as N1 (unilateral positive lymph nodes) or N2 (contralateral positive lymph nodes) and to 

additionally assess the ability of TA to predict N stage.  
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As selection features method, we decided to use the learner-based technique, which allows to 

identify features that best perform with a selected classifier, based on the previous experience 

(Romeo 2018).  Using this feature selection method and k-NN classifier, also employed as ML 

method, we obtained the highest diagnostic accuracy, thus suggesting the employment of this 

classifier for future studies in this topic, preferably conducted on larger patient population. 

To the best of our knowledge, this is the first study assessing tumor grade and lymph node 

involvement in head and neck cancer. In this field, TA has been previously applied on CT images to 

assess its reliability in predicting HPV status (Buch 2015, Fujita 2016). The authors found 

statistically significant differences in texture features between HPV positive and negative patients 

with OP tumors, thus suggesting this technique as an adjunct to the evaluation of HPV status. The 

potential of radiomics applied to PET-CT and CT images has been also reported in assessing the 

risk of specific tumor outcomes, in terms of locoregional recurrence and distant metastases 

(Vallieres 2017). In a recent study, Dang and colleagues analyzed MR images of 16 patients with 

OP carcinoma using TA, showing a diagnostic accuracy of 80% in predicting p53 status (Dang 

2015). Regarding the employment of TA in predicting head and neck patients’ outcome, pre-

treatment CT images of 62 patients with head and neck cancer who underwent chemo-radiotherapy 

were analyzed in a recent study (Kuno 2017), showing that CT texture parameters were associated 

with local failure. Similarly, a population of 72 patients with head and neck carcinoma candidate to 

induction chemotherapy was evaluated using CT texture and histogram analysis of the primary 

tumor mass to predict the prognosis (Zhang 2013). Authors found that CT texture and histogram 

analysis parameters were associated with overall survival. 

Our investigation expands the current knowledge about the use of TA in head and neck patients 

showing that such approach, in combination with specific ML algorithms, allows for an accurate 

prediction not only of tumor grade, but also of nodal involvement and N grade. Nevertheless, the 

study is not free from limitations, mainly represented by the small sample size. This low number of 

patients included in our study led also to the embrace of a 10-fold cross validation on the same 

patient dataset, since no different set population was available. For these reasons, future multicenter 
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studies are strongly warranted to confirm our preliminary results. ML analysis using contrast-

enhanced CT TA applied to primary tumor lesions in patients with OC and OP may represent a 

reliable tool in predicting tumor grade and nodal involvement; it could also have a role in defining 

the most appropriate surgical strategies and in identifying patients at risk of tumor recurrence. 

 

Conclusion 

Our results are in accordance with the current literature supporting the potential use of ML 

software employing TA-derived features for the differential diagnosis of solid lesions as well as for 

the prediction of histological features and the presence of nodal metastases in oncologic patients. 

The proven potential of ML to provide quantitative imaging biomarkers as well as the fast 

development of this technique will probably lead to its clinical implementation in radiological 

practice. Given the main limitation of our investigations represented by the lack of an external 

population to test and validate the identified algorithms, further studies are needed to establish and 

validate the role of TA and ML in the presented topics.  
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Figures  

Figure 1 

 

Fig. 1 Flow diagram showing patient selection. 
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Figure 2 

 

 

Fig. 2 Example of spherical VOIs positioning in an adrenal lesion on T2-weighted (A), In-phase (B) 

and Opposed-phase (C) images. 

  



 27 

Figure 3 

 

Fig. 3 Flow-chart of the J48 algorithm showing selected features and relative cutoff values for the 

diagnosis of Lipid-Rich Adenomas (LRA), Lipid-Poor Adenomas (LPA) and Non-Adenoma 

Lesions (NAL). The sequence from which each feature was derived is reported in parenthesis as IP 

for in-phase images, OP for opposed phase images and T2 for T2-weighted images. 
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Figure 4 

 

 

Fig. 4 Flow-chart of patient selection. SCC=squamo-cellular carcinoma, OC=oral cavity, 

OP=oropharynx 
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Figure 5 

 

 

Fig. 5 Examples of tumor segmentation. Axial contrast-enhanced CT images of oral cavity (A) and 

oropharynx (C) tumor lesions, along with the corresponding hand-drawn regions of interest 

(superimposed in red; B, D), positioned excluding necrotic areas (arrows). 
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Tables 

Table 1. Results of the different feature selection methods and relative performances using J48 

classifier. For each method are reported the corresponding selected features (specified with *). 

Feature class Features FEATURE SELECTION METHOD 
Subset feature selection Embedded 

Wrapper (J48) 
Best first Greedy Stepwise Greedy Stepwise 

Forward Backward Bi-directional 
I order Energy_opp 

 
*       

Mean_int_opp         * 
RMS_opp   * * *   

SD_T2         * 
Geometric Max_3D_diam_opp   *   * * 

Max_3D_diam_T2     *     
GLRL SRHGLE_in         * 

LRE_opp   * * *   
LRHGLE_t2   *       

J48 Correctly classified instances (%) - 61.6 63.3 73.3 80 
 
 

Note: Energy_opp= energy extracted from the opposed phase images, Mean_int_opp= Mean 

Intensity extracted from the opposed phase images, RMS_opp” = Root Mean Square extracted 

from the opposed phase images, SD_T2= Standard deviation extracted from the T2 weighted 

images, Max_3D_diam_opp= Maximun 3D Diameter extracted from the opposed phase images, 

Max_3D_diam_T2= Maximun 3D Diameter extracted from the T2 weighted images, 

SRHGLE_in= Short Run High Gray Level Emphasis extracted from the IP images, LRE_opp= 

Long Run Emphasis extracted from the opposed phase images, LRHGLE_T2= Short Run High 

Gray Level Emphasis extracted from the T2 weighted images, AUC=Area Under the Curve, CI= 

Confidence Interval, LRA= Lipid Rich Adenoma, LPA=Lipid Poor Adenoma, NAL=Non-

Adenoma Lesion 
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Table 2. AUC values for diagnosis of LRA, LPA and NAL employing the most accurate feature 

selection with J48 classifier. 

 
Classifier DA (%) LRA LPA NAL 

J48 
(Selected feaures: 

SRHGLE_in 
Mean_Int_opp, 

Max_3D_Diam_opp, 
SD_T2) 

80 
AUC: 0.846 

(95% CI: 0.745-0.947) 
Sensitivity:84% 
Specificity:85% 

AUC: 0.678 
(95% CI: 0.547-0.810) 

Sensitivity: 63% 
Specificity:72% 

AUC: 0.860 
(95% CI: 0.767-0.952) 

Sensitivity:89% 
Specificity:82%  

Radiologist 
 73 

AUC:0.820 
(95% CI: 0.710-0.929) 

Sensitivity:79% 
Specificity:85% 

AUC:0.706 
(95% CI: 0.580-0.831) 

Sensitivity:74% 
Specificity:68% 

 
AUC:0.653 

(95% CI: 0.520-0.787) 
Sensitivity:63% 
Specificity:68% 

 
 
Note: DA= Diagnostic Accuracy, AUC=Area Under the Curve, LRA= Lipid Rich Adenoma, 

LPA=Lipid Poor Adenoma, NAL=Non-Adenoma Lesion, SRHGLE_in= Short Run High Gray 

Level Emphasis extracted from the IP images, Mean_int_opp= Mean Intensity extracted from the 

opposed phase images, Max_3D_diam_opp= Maximun 3D Diameter extracted from the opposed 

phase images, SD_T2= Standard Deviation extracted from the T2 weighted images, CI= 

Confidence Interval. 
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Table 3. Table for comparison of J48 classifier and the Radiologist diagnosis with McNemar’s test; 

n00=12 is the number of adrenal lesions misclassified by both the J48 classifier and the radiologist, 

n01=0 is the number of adrenal lesions that were correctly classified by the radiologist and 

misclassified by the J48 classifier, n10=4 is the number of adrenal lesions that were correctly 

classified by the J48 classifier and misclassified by the radiologist, n11=44 is the number of adrenal 

lesions that were correctly classified by both the J48 classifier and the radiologist 

 
n00=12 n01=0 n00 + n01= 12 

n10=4 n11=44 n10 + n11= 48 
n00 + n10= 16 n01 + n11= 44 n= 60 
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Table 4. Confusion matrix for diagnosis of LRA, LPA and NAL according to J48 classifier and the 

expert radiologist. 

 

Confusion 
Matrix 

LRA LPA NAL 
J48 Radiologist J48 Radiologist J48 Radiologist 

LRA 17 16 2 2 1 2 
LPA 3 1 13 15 4 4 
NAL 0 1 2 6 18 13 

 
Note: LRA= Lipid Rich Adenoma, LPA=Lipid Poor Adenoma, NAL=Non-Adenoma Lesion. 
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Table 5. Accuracy of machine learning algorithms across all datasets in the classification of G2 and 

G3 lesions. Note: 0-R= Zero Rules 

 
 

 
G2-G3 

Algorithms 
0-R C4.5 Random 

Tree 
Random 
Forest 

k-Nearest 
Neighbours 

Locally 
Weighted 
Learning 

Support 
Vector 

Machine 

Naive 
Bayesian 

 
 
 
 
 
 

Datasets 

Whole 
Dataset 

69.17 55.58 59.50 64.75 60.50 60.83 61.92 53.42 

Correlation-
derived 
features 

69.17 57.75 65.00 62.00 67.25 67.83 68.08 58.50 

k-Nearest 
Neighbours 

Learner-
derived 
features 

69.17 59.50 79.42 79.33 91.58 69.83 69.17 65.25 

Locally 
Weighted 
Learning 
Learner-
derived 
features 

69.17 67.42 70.50 70.50 70.50 76.67 69.17 71.58 
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Table 6. Accuracy of machine learning algorithms across all datasets in the classification of nodal 

involvement presence or absence. Note: 0-R= Zero Rules 

 

 

 

 

 

 

 

 

 

 

 

 
N0-N1 

Algorithms 
0-R C4.5 Random 

Tree 
Random 
Forest 

k-Nearest 
Neighbours 

Locally 
Weighted 
Learning 

Support 
Vector 

Machine 

Naive 
Bayesian 

 
 
 
 
 
 
 
 
 
 

Datasets 

Whole 
Dataset 

47.50 77.75 56.25 55.00 60.75 78.50 57.00 49.25 

Correlation-
derived 
features 

47.50 62.25 57.75 59.25 50.75 74.75 64.25 61.25 

Information-
derived 
features 

47.50 81.25 82.00 81.50 75.75 88.50 55.50 63.75 

k-Nearest 
Neighbours 

Learner-
derived 
features 

47.50 59.75 68.25 68.00 85.50 81.00 55.25 55.50 

C4.5 
Learner-
derived 
features 

47.50 84.50 82.25 84.50 72.75 87.25 55.00 62.00 

Locally 
Weighted 
Learning 
Learner-
derived 
features 

47.50 81.25 81.00 86.25 63.75 88.50 56.00 64.25 
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Table 7. Accuracy of machine learning algorithms across all datasets in the classification of N1 and 

N2 nodal status. Note: 0-R= Zero Rules 

 
 

 
               N1-N2 

Algorithms 
0-R C4.5 Random 

Tree 
Random 
Forest 

k-Nearest 
Neighbours 

Locally 
Weighted 
Learning 

Support 
Vector 

Machine 

Naive 
Bayesian 

 
 
 
 
 
 
 
 
 

Datasets 

Whole Dataset 61.67 65.17 57.00 61.33 60.83 41.50 70.50 52.00 
Correlation-

derived 
features 

61.67 65.50 60.00 63.67 72.83 58.17 75.33 59.83 

Information-
derived 
features 

61.67 68.67 67.33 67.33 67.33 60.33 61.33 62.00 

k-Nearest 
Neighbours 

Learner-
derived 
features 

61.67 63.17 59.00 63.50 90.00 64.33 59.67 73.50 

Locally 
Weighted 
Learning 
Learner-
derived 
features 

61.67 59.17 72.67 72.67 72.67 86.00 61.67 52.33 

 

 

 


