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Abstract

Turbulence is inherent in fluid dynamics, in that laminar flows are rather
the exception than the rule, hence the longstanding interest in the subject,
both within the academic community and the industrial R&D laboratories.

Since 1883, much progress has been made, and statistics applied to
turbulence have provided understanding of the scaling laws which are pe-
culiar to several model flows, whereas experiments have given insight on
the structure of real-world flows, but, soon enough, numerical approaches
to the matter have become the most promising ones, since they lay the
ground for the solution of high Reynolds number unsteady Navier-Stokes
equations by means of computer systems.

Nevertheless, despite the exponential rise in computational capability
over the last few decades, the more computer technology advances, the
higher the Reynolds number sought for test-cases of industrial interest:
there is a natural tendency to perform simulations as large as possible,
a habit that leaves no room for wasting resources. Indeed, as the scale
separation grows with Re, the reduction of wall clock times for a high-
fidelity solution of desired accuracy becomes increasingly important. To
achieve this task, a CFD solver should rely on the use of appropriate
physical models, consistent numerical methods to discretize the equations,
accurate non-dissipative numerical schemes, efficient algorithms to solve
the numerics, and fast routines implementing those algorithms.

Two archetypal approaches to CFD are direct and large-eddy sim-
ulation (DNS and LES respectively), which profoundly differ in several
aspects but are both “eddy-resolving” methods, meant to resolve the struc-
tures of the flow-field with the highest possible accuracy and putting in as
little spurious dissipation as possible. These two requirements of accurate
resolution of scales, and energy conservation, should be addressed by any
numerical method, since they are essential to many real-world fluid flows of
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industrial interest. As a consequence, high order numerical schemes, and
compact schemes among them, have received much consideration, since
they address both goals, at the cost of a lower ease of application of the
boundary condition, and a higher computational cost. The latter problem
is tackled with parallel computing, which also allows to take advantage of
the currently available computer power at the best possible extent.

The research activity conducted by the present author has concerned
the development, from scratch, of a three-dimensional, unsteady, incom-
pressible Navier-Stokes parallel solver, which uses an advanced algorithm
for the process-wise solution of the linear systems arising from the appli-
cation of high order compact finite difference schemes, and hinges upon a
three-dimensional decomposition of the cartesian computational space.

The code is written in modern Fortran 2003 — plus a few features
which are unique to the 2008 standard — and is parallelized through
the use of MPI 3.1 standard’s advanced routines, as implemented by the
OpenMPI library project. The coding was carried out with the objective of
creating an original CFD high-order parallel solver which is maintainable
and extendable, of course within a well-defined range of possibilities. With
this main priority being outlined, particular attention was paid to several
key concepts: modularity and readability of the source code and, in turn,
its reusability; ease of implementation of virtually any new explicit or
implicit finite difference scheme; modern programming style and avoidance
of deprecated old legacy Fortran constructs and features, so that the world
wide web is a reliable and active means to the quick solution of coding
problems arising from the implementation of new modules in the code;
last but not least, thorough comments, especially in critical sections of
the code, explaining motives and possible expected weak links. Design,
production, and documentation of a program from scratch is almost never
complete. This is certainly true for the present effort.

The method and the code are verified against the full three-dimensional
Lid-Driven Cavity and Taylor-Green Vortex flows. The latter test is used
also for the assessment of scalability and parallel efficiency.
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Chapter 1

Introduction

Turbulence is the ever-open challenge of fluid dynamics. Several questions
regarding the most practical needs of aeronautical industry (control of
transition points on airfoils, as well as the reduction of aircrafts’ engine
noise, just to mention two examples) rely upon the worldwide research on
turbulence.

Numerical approaches to fluid dynamics in general, and turbulence in
particular, are the most promising ones, since they can take advantage
of both theoretical developments and advancements, and technological
progress, in which parallel computing represents a major player. CFD
solvers combine these two aspects.

1.1 The CFD Solver

The development from scratch of the three-dimensional, unsteady, incom-
pressible, high-order Navier-Stokes parallel solver, which is the object of
the thesis, was carried out with the objective of creating an original tool
to perform CFD simulations, which is scalable, and maintainable and ex-
tendable, of course within a well-defined range of possibilities.

1.1.1 An in-lab code

Besides requiring an up-front investment plus an annual support/upgrade
fee, commercial software used to perform simulations of fluid flow phe-
nomena (e.g., FIDAP, FLUENT, CFX, STAR-CD, . . . ) are programmed
to be can-do-everything tools — as the word commercial implies — where
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2 1. Introduction

it is possible to plug in new models or, more generally, new components
to suit the specific physical problem under examination.

Sadly, these interventions frequently cause troubles in the basic code
(e.g., stability- and convergence-related) which are not easy to solve, and
can often be faced either by waiting for the next release of the software, or
by devising a work-around, which may be a time consuming activity too.
While the former approach does not guarantee that the software’s develop-
ers will include the needed fixes and required features in the next release,
the latter one hopefully leads to a solution which can speed-up the re-
search activity; still this work-around is temporary solution, though, since
it only fits that specific problem it was designed for, and inherits not at all
the generality of the parent code, thus providing virtually no advantage in
facing next troubles that are likely to be encountered. The reason for the
weakness of these approaches is that we usually do not have the source
code available, an handicap preventing us form attacking the intricacy at
its roots, and forcing to shoe-horn the simulation of unique physical phe-
nomena into the framework provided by the vendor. Without access to
the details of a code feature, the purchaser encounters the real possibility
that the computational tool is marginal for the required application. Con-
versely, in-lab codes are source codes, allowing unique physics sub-models
to be accommodated more readily, and targeted to the specific needs of
the user.

Another well-known issue, with simulation tools in general, is that dif-
ferent codes provide different answers to the same questions. Despite this
being a problem common to both in-lab and commercial software, it has to
be regarded with more suspicion in the latter case; indeed, the numerical
solution of equations describing physical phenomena always carries char-
acteristics of the selected numerical method into the results, especially
when non-linear mechanisms are involved. That is to say, in either case
no one can guarantee that there will be good solutions, but when dealing
with an in-lab code, the author probably knows why he is not getting
good answers and can address the problem either by freely and mindfully
intervening in the source code, or by interpreting the differences, provided
they are not too drastic, and “trimming” the conclusions accordingly.

Last but not least, when it comes to experimenting at a deeper level
with the numerics underling the solver — e.g., changing or trimming the
selected finite difference formulæ, casting a specific term of the equation
in a new, undocumented special form, testing the impact of the order of
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accuracy of boundary condition schemes on the global solution — the ben-
efits springing from having an in-lab code are invaluable, since it naturally
comes with the possibility of tweaking the tiniest details affecting the so-
lution in critical points of the solver’s workflow, thus allowing the author
(and the user as well, if a comprehensive user guide is provided) to isolate
a bug during development stages, or a change when experimenting with
existing features.

All this being said, having an in-lab code available does not replace
timely access to a commercial code, but it does increase the options avail-
able to the analyst.

Concerning other open-source alternatives, four of the most known,
used, and successful ones, are briefly discussed in the following.

Other open-source solvers

OpenFOAM [1–3], originally developed in 1989 as a commercial, closed-
source product under the name of FOAM (Field Operation And Manip-
ulation), was officially released as an open-source, object-oriented library
for C++ in 2004, and has undergone continuous improvement since then.
It is now a full-fledged, general purpose suite, freely available worldwide
under the GNU Public License, with possible applications ranging from
laminar incompressible flow to fully turbulent reacting compressible flow,
or even to solving the Black-Scholes equation for the dynamics of financial
market, thus becoming the de facto standard open-source tool for the so-
lution of a variety of problems. It is shipped with a wide array of utilities
for pre- and post-processing; with these free CFD tools, it is possible to
conduct a full analysis from beginning to end using only the tools provided
by the OpenFOAM distribution. Concerning the numerics, it uses finite
volume and finite element formulations.

SU2 (Stanford University Unstructured [4, 5]) suite, launched in
January 2012, is an open-source collection of software tools, written in
C++/Python, for solving partial differential equations and performing op-
timization problems. It lacks a complete suite of pre- and post-processing
tools, but it is a better choice in specific compressible external flows in
aeronautical problems [6].

NEK5000 [7, 8] is a solver featuring a state-of-the-art, scalable, high-
order spectral element method, and has been developed for more than
30 years. Its applications span a wide range of fields, including fluid
flow, thermal convection, combustion and magnetohydrodynamics. It is
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written in old FORTRAN, and makes massive use of legacy features of
the FORTRAN77 standard. A marginal comparison between that solver
and the present one is drawn in Fig. 5.13.

Incompact3d [9, 10], made available around 2010 together with the
2DECOMP&FFT library [11], is a CFD solver with which the solver
developed by the present author shares several characteristics: it solves
the incompressible Navier-Stokes equations, discretizes the spatial oper-
ators through compact finite difference schemes, integrates the equation
by means of a Runge-Kutta–based fractional step method in a paral-
lelepipedal, structured computational domain. Two main differences are
the use of partially staggered meshes, as opposed to the fully staggered
meshes chosen by the present author, and the approach to paralleliza-
tion, there accomplished through a two-dimensional, dynamic domain-
decomposition, instead of the static three-dimensional decomposition
adopted in the present work. A more extensive discussion is presented in
Section 4.9.

The choice of the Modern Fortran programming language (see Sec-
tion 1.1.2), the use of compact finite-difference schemes (cf. Chapter 2),
and the adoption of a three-dimensional MPI domain-decomposition Sec-
tions 1.1.4 and 4.5, all together put this work in a position of original-
ity with respect to the aforementioned alternatives, which, on the other
hand, all benefit from a long-lasting development, as compared to the code
presented here, which was developed on a one-person–three-years budget
basis.

1.1.2 Fortran

Before digging in the reasons why the Fortran programming language was
chosen, it is worth to recall that Fortran is a modern language, despite
people and (to the author’s experience) computer scientists think of punch
cards and code with line numbers, upon hearing “FORTRAN”. Indeed, al-
though the original specification of the language was written in 1954 — and
even then, it was an incredible leap forward from previous programming
—, Fortran has has undergone many revisions, the most known being rel-
ative to the 66, 77, 90, 95, 03, and 08 standards, each incorporating more
and newer features as time passes (albeit slowly). This is to say, calling
modern Fortran old is like calling C++ old because C was first developed
around 1973.

In academic scientific community, Fortran remains a major tool and
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will not being going away anytime soon. In a survey of Fortran users at
the 2014 Supercomputing Convention [12], 100 % of respondents said they
thought they would still be using Fortran in five years; in 2017 it was still
the major language employed for high performance computing (HPC) [13].

Coming to the choice of the language, in the field of HPC — of which
large scale numerical simulation is a subset — there are mainly two lan-
guages in use today, namely C++ and modern Fortran. The popular
implementations of the OpenMP and MPI libraries for parallelizing code
were developed for these two languages, so basically the choice was limited
to these two options.

It is often said that the reason Fortran is still used is that it is fast. But
is it the fastest? On most benchmarks, Fortran and C++ are the fastest,
with the latter being generally more performant, except for those bench-
marks involving predominant number-crunching over other aspects (e.g.,
n-body simulation, Fourier transforms, LU decomposition, . . . ), which are
very close to what is of interest in HPC as applied to CFD.

Indeed, Fortran is just natively suited for numerical programming. As
a major example, the reference implementations of the low-level routines
for linear algebra, collected in the BLAS and LAPACK libraries, which are
part of the de facto omnipresent Intel’s Math Kernel Library (MKL), are
coded in Fortran. Programs for numerical computing tend to have a large
amount of numbers to crunch, which are typically arranged into arrays
— this is especially true for CFD programs, as the one developed during
this doctorate, since space-dependent physical quantities in a one-, two-,
or three-dimensional space, are naturally thought of as stored in arrays of
rank one, two, or three;1 multidimensional arrays are first class citizens in
Fortran, whose features were carefully designed to allow the compilers to
recognize most spots for optimizations, and the programmer to access lin-
ear algebra tools through a transparent syntax. Indeed, it is often pretty
straightforward to translate numerical kernels from MATLAB into Fortran,
the former being the closest thing to a programming language the author
had knowledge of at the time the Ph.D. started. The relative ease in recy-
cling this previous knowledge was due to the Fortran language’s simplicity
and the nice, succinct, and self-explanatory syntax of array operations,
which MATLAB’s one is pretty much close to. Arrays can be copied, mul-
tiplied by a scalar, or multiplied together quite intuitively; almost all of
the intrinsic functions in Fortran can take arrays as arguments, leading to

1In Fortran, n-dimensional arrays are referred to as “arrays of rank n”.
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easy of use and very neat code; furthermore, dynamically allocating and
deallocating arrays in Fortran is easy.

Contrary to the common misconception that Fortran uses 1-indexed
arrays, this language in fact supports declaring arrays with lower indices
that are zero or negative, an extremely useful feature, which the solver
uses extensively in the declaration and use of space-dependent, processor-
owned three-dimensional arrays, as explained in detail in Chapter 4.

Coming to the code, it is written in Fortran 2003 — plus a few fea-
tures which are unique to the 2008 standard — and is parallelized through
the use of MPI 3.1 standard’s advanced routines, as implemented by the
OpenMPI library project. With this main priority being outlined, particu-
lar attention was paid to several key concepts: modularity and readability
of the source code and, in turn, its re-usability and maintainability; ease
of implementation of virtually any new explicit or implicit finite differ-
ence scheme; intuitive insertion of proper boundary condition; process-
independent output; modern programming style and avoidance of depre-
cated old legacy Fortran constructs and features, so that the world wide
web community is a reliable and active means to the quick solution of
coding problems arising from the implementation of new modules in the
code; last but not least, thorough comments, especially in critical sections
of the code, explaining motives and possible expected weak links.

Lastly, it is mandatory to say that the performances of every language
depend hugely on the used compiler, since a language is nothing more
than a set of grammar rules and meaningful words. So, for a given code,
the compiler is solely responsible to use the given language in order to
translate the source code into a well-performing executable.

1.1.3 High order compact schemes

A main feature of the code, which is uncommon to the majority of the
CFD solver, especially the commercial ones, is the use of the so-called
compact high-order finite difference schemes for the discretization of the
convective and diffusive operators in the Navier-Stokes equations.

A remarkable documentation exists concerning this class of implicit
spatial schemes [14], which have been extensively used for flow problems.
The rational behind the choice of these schemes for the computation of
interpolants and derivatives lies in their amenable properties, which offer
a compromise between spectral schemes, which provide exact resolution
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at all (representable) scales2, but impose significant restrictions on the
geometry, and finite difference schemes, which are highly flexible in the
latter respect, at the price of poor resolution at high wavenumbers, which
hardly improves as their formal accuracy is raised.

With these assets, compact schemes really match the needs of com-
putational fluid dynamics, especially when applied to turbulence (whose
signature is the wide range of spatial scales), and even more when the
solver implements the large eddy simulation (LES), a context in which
truncation errors cannot be allowed to overcome the already fragile con-
tribution of the modelled terms.

One major drawback in using compact finite difference schemes lies in
the fact that they are implicit, since every unknown on the mesh depends
on all knowns, which translates into their application to be dependent
on both the computation of a matrix-vector product, a step common to
classical explicit finite differences, as well as the resolution of a banded
linear system, which is inherently a serial procedure and, as such, cannot
be parallelized straightaway as the former.

1.1.4 Parallel computing

The solver is meant to take advantage of parallel computing capabili-
ties provided by modern hardware, whose exploitation is made available
by modern features of programming languages and message-passing stan-
dards.

In line with this target, a static three-dimensional domain decompo-
sition approach was chosen, in that it allows the maximum number of
processes used in a three-dimensional simulation to increase linearly with
the mesh refinement. As a consequence of this choice, no process holds
all the data along any direction and, therefore, it cannot compute all the
unknowns.

As raised earlier, when only explicit finite differences are concerned,
this is in principle not a big deal, since the distributed computation of the
matrix-vector product (and matrix-matrix as well, for that matter) is a
standard problem of data parallelism, and many libraries are shipped with
suitable routines. On the other hand, when it comes to compact schemes,
the resolution of a banded linear system must be distributed among several
processes. Past attempts can be grouped in three categories. One of this

2As well as the so-called spectral convergence.



8 1. Introduction

is concerned with the use of asymmetric compact schemes at the boundary
between processes, so that their systems of equations are decoupled and
can be solved in parallel [15], at the price that the solution depends on the
number of processes and the spectral-like properties of compacts schemes
are compromised. Another approach was the parallel implementation of
the tridiagonal solver, such as the pipelined Thomas algorithm (PTA)
where the idle time occurring during forward and backward substitutions
is used to carry out non-local data-independent or local data-dependent
computations [16], thus requiring a convoluted schedule of the commu-
nications and computations, which results in a trade-off between the ef-
ficiencies of the two. The third category comprises the so called pencil-
transposition-based approaches, which are grounded in a non-static two-
dimensional domain decomposition (of the three-dimensional domain), on
the base of which each process performs all the required one-dimensional
computations along one direction and then moves to the next direction
[9], not before a very communication intensive transposition of the 2D
decomposition is performed.

The problem of solving banded linear systems in a parallel framework
is tackled by using the algorithm presented in detail in Chapter 3. This
algorithm was developed by the author with no awareness that it already
existed, since it had (and have had) no significant resonance in the fluid-
dynamic community. Indeed, despite slight differences in the formalism
adopted, the procedure coincides with the algorithm presented in 2006
and named SPIKE at that time [17], later reprised with slight variations
and improvements [18–20], but fundamentally already existent a few years
earlier and presented in different areas of research [21, 22], in one case
as an improved version of the so called parallel factorization, originally
developed in 1992, albeit in a different guise by Amodio et al. [23].

MPI

As disclosed in Section 1.1.4, MPI parallelization was accomplished by
defining a static three-dimensional decomposition of the computational
domain and explicit message passing. The adjective static is used to mean
that this decomposition does not change during the run; in other words,
the three-dimensional computational subdomain which is bounded to an
MPI process, is also bounded to a fixed three-dimensional portion of the
geometrical space.

Explicit data exchange at inter-process boundaries takes place twice for
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each application of the interpolation/differentiation operators: the former
exchange is aimed at making the appropriate known quantities available to
each process, and depends on the bandwidth of the RHS compact scheme’s
matrix; the latter is part of the SPIKE algorithm and does not depend on
anything (invariably two data layers per process).

This is in contrast with the dynamic “pencil” domain decomposition
— employed by Incompact3d [9] through the 2DECOMP&FFT library,
developed from scratch by the same authors [11] and mildly used in the
CFD community —, in which each process repeatedly undergoes, at each
time step, a change of the geometrical space it handles, switching among
the three possible configurations by a call to communication-intensive MPI
subroutines. The implementation of this procedure is admittedly complex
(at least more complex than the simpler, less performant, 1D domain
decomposition [9]), even though the use of the routines is made very easy
by a clear and neat API.

The topic is extensively treated in detail within Chapter 4.

1.2 Thesis layout

Chapter 2 explains the motives behind the choice of the compact schemes,
comments the classical approach for the determination of their coefficients
and for conducting a spectral analysis on them; then an algorithm is pre-
sented for the exact, algebraic determination of the coefficients of any finite
difference scheme, being it compact or not, involving derivatives of any or-
der located at any point, even contemplating the possibility of assigning
an integral value to an interval between two points; finally, based on the
experience acquired in the process of implementing that algorithm, com-
pact schemes are meaningfully and, to the best of this author knowledge,
originally commented, in a way that allows a reinterpretation of several
breakthrough works presented in literature.

In Chapter 3 the SPIKE algorithm is derived as an extension of the
basic idea of splitting the solution of a tridiagonal system in two. The
truncated SPIKE algorithm is presented in Section 3.2, whereas another
approach is briefly outlined in Section 3.3.

Chapter 4 is a dense walk-through of the code. It acknowledges the cru-
cial importance of using a version control system, then describes the major
components of the program, from the expected format of the input file,
to an assessment of the predicted performances, by attempting a logical
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travel through the underlying indexing of the variables, their interaction
with the parallel framework, and the core datatypes used to store variables
and operators. Possible weakest links are spotted and commented along
the way, possibly referring to the last chapter for further details.

In Chapter 5 the CFD solver is tested against the three-dimensional
Lid-Driven Cavity and Taylor-Green Vortex flows. The latter test is used
to verify the parallel-independent results, as well as the parallel perfor-
mances of the code. Preliminary tests, conducted by means of a MATLAB
script, are presented beforehand.

Opportunities for the future improvement of the CFD solver in ques-
tion are listed in Chapter 6.

Appendix A contains the Fortran and MATLAB specular functions
for the computation of the coefficients of a general finite difference scheme.
This routine has served to populate finite difference matrix operators.



Chapter 2

High accuracy schemes

Many physical phenomena possess a wide range of space and time scales,
which must be taken into account when it comes to choose a numerical
method, since the reproduction of motions governed by these wavelengths
can be essential to the phenomenon, as is the case for turbulence, which
is characterized by an even wider range of scales.

In the context of computational fluid dynamics, there are two diamet-
rically opposed approaches for a fine enough representations of relevant
motions, and they consist respectively in refining the mesh, and increas-
ing the order of accuracy of the schemes;1 both these attitudes have found
supporters in the CFD community (e.g., [27–30] and [24–26, 31–34], re-
spectively) since the former has the benefit of a low computational cost
per mesh point but requires finer discretization, whereas the latter relaxes
on the mesh by increasing the order of accuracy, at the costs of more
floating point operations per point. In other words, whether a researcher
should prefer the one or the other approach, has long been debated, since
pros and cons are somewhat inverted in the two cases. Even so, among
the low order methods, the mainstream second order schemes applied on
a staggered mesh [30] have found solid ground in their ability to conserve
kinetic energy, as well as mass and momentum, and for this reason they
have been extensively used with remarkable success, even to LES [35,
36]. Nonetheless, the world research have crawled with papers about the
use of high order schemes, and efforts were successfully made to extend
the conservativeness of second-order approach to higher order schemes

1The use of spectral method is avoided for its limitations [14, 24–26] (cf. Sec-
tion 2.1.1).

11
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[37]. Furthermore, there has always been an interest in the application
of high-order schemes to LES [38–40], since the truncation error from a
second-order discretization often overwhelms the contribution of the sub-
grid model, thereby damaging LES at its foundations [41].

Another argument in favour of the application of higher order schemes
on coarser meshes is that accepting the additional floating point compu-
tations implied by those schemes in exchange for a lower memory usage
connected to a coarser grid is often a good deal, since the gain in speed
from reducing memory access is often much greater than the cost of addi-
tional processing [42].

In the present thesis, this latter trend of relying on high-order schemes
was preferred, and the specific selected schemes are the so-called compact
schemes, as anticipated in Section 1.1.3.

2.1 Need for high resolution characteristics

In principle, high accuracy means high order of the truncation error, which
can be obtained using high order classical finite difference approximation
schemes. However, this path is not advisable, for several reasons outlined
in Section 2.1.1, and the compact schemes are preferable, since they pro-
vide a better representation of the shorter length scales with respect to
traditional finite difference schemes, still maintaining the same freedom in
assigning geometry and boundary conditions, as the more common finite
differences [14].

Notwithstanding, with the major exception of Incompact3D [9, 10],
compact schemes have received relatively little resonance in the incom-
pressible community, in contrast to the profitable use for the simulation of
compressible flows in general [15, 33, 43], and aeroacoustics in particular
[18].

2.1.1 Formal accuracy and high-frequency harmonics

Insisting on classical schemes, the so-called formal order of accuracy can be
increased by including a greater number of mesh points in the stencil: for
a 10th order approximation of the collocated first derivative on a uniform
computational domain, an 11-point stencil is required. Such large stencils
can produce undesired oscillation [44, 45], not to mention the problematic
treatment of boundary conditions, which demands for asymmetric high
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order formulæ.
After all, the order of accuracy is only informative of how, and how

much, a refinement of the mesh reduces the truncation error afflicting the
solution; however, increasing the number of grid points for large three-
dimensional simulations is in general not a desirable option [33], since the
memory limitations of the computer system are easily hit; it is desirable,
on the contrary, to enhance the quality of the solution at a fair count
of mesh points, and possibly regardless of the Fourier components of the
given function. Increasing the formal order gives little benefit in this
respect.

The requirement of high accuracy for a wider range of wavenumbers
originally led to the development of spectral methods [46, 47], which have
been used to carry out direct simulations of turbulent flows as well [48–50];
however, the paradigm underlying these methods does not sit easily with
complex domains [14, 24–26]. It is worth to mention that, when a test-
case provides for some periodic directions, those directions are most likely
meshed uniformly, and physical properties does not vary along them; this
is the perfect chance to use spectral methods alongside compact schemes;
the code does not implement spectral methods along periodic directions,
so far, but an upgrade is considered in Chapter 6.

As long as non-spectral methods are concerned, a more meaningful
quantity to be taken into account than the formal order of accuracy when
choosing a scheme, is the so-called modified wavenumber of a finite differ-
ence formula, whose meaning is anticipated in Section 2.1.2 and Fig. 2.1,
and explained in Section 2.4. This characteristic is informative of how well
the scheme can reproduce each representable length-scale of the solution.
Under this point of view, traditional schemes come to be unsatisfactory,
since they have poor spectral characteristics with respect to their com-
pact counterparts, which offer a compromise between those inaccuracies
and the unrivalled spectral schemes.

2.1.2 A first example: the Padé scheme

The most known fourth order scheme for the first derivative on a uniform
mesh is, perhaps, the following one, which allows the explicit computa-
tional of a single unknown, based on several surrounding values of the
function,

y′j =
2(yj+1 − yj−1)

3h
− yj+2 − yj−2

12h
. (2.1)
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This formula is set on a five-point stencil and has a truncation error equal
to −h4f (5)/90. When applied to the simple case of a uniform periodic
domain, Eq. (2.1) can be written for each mesh point and applied inde-
pendently; in matrix notation, Eq. (2.1) can then be written as

y′ =
1

h
Dy, (2.2)

where D is a cyclic Toeplitz banded differentiation matrix storing the
coefficients (+1/12,−2/3, 0,+2/3,−1/12) in its diagonals of indices from
−2 to +2; the fact that y′ does not multiply any matrix — or, that it
multiplies the identity matrix I — expresses the mutual independence of
its components.

The corresponding same-order compact scheme is known the by the
name of Padé scheme, which reads

1

4
y′j−1 + y′j +

1

4
y′j+1 =

3

4h
(yj+1 − yj−1), (2.3)

where the narrower three-point stencil with coordinates (−h, 0,+h) ac-
commodates both three values of the derivatives at x = −h, 0, h, and two
values of the function at x = ±h, which are most likely unknown and
known quantities respectively. Concerning the truncation error, in order
to allow a fair comparison with Eq. (2.1), it must determined once Eq. (2.3)
is cast in a way that all the coefficients at the LHS sum up to 1 [51]. In this
case, the error is −h4f (5)/180, that is half Eq. (2.1)’s error. Since more
unknown values are involved in the LHS of Eq. (2.3), none of them can
be computed independently, thus making the relation implicit; to solve
Eq. (2.3), other equations involving those quantities must be added, in
order to form a determined system of equations for the unknowns. For
instance, with reference to the same simple case of a uniform periodic do-
main as before, Eq. (2.3) can be written for each point, thus resulting in
a cyclic tridiagonal system,

Ay′ =
1

h
By, (2.4)

with obvious meaning of the symbols.2 Here, the differentiation matrix
2It is worth to mention that Eqs. (2.2) and (2.4) are general formulæ that hold for

the non-periodic and/or non-uniform case as well; what changes is the actual content
of the matrices: boundary conditions are encoded in an appropriate number of top and
bottom rows, which can increase the bandwidths, and the Toeplitzness is kept only in
the inner rows, as long as the mesh is kept uniform, otherwise it is lost.
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Figure 2.1: Modified wavenumber w′ relative to Eqs. (2.1) and (2.3) as compared
to the actual wavenumber w, which is real for symmetric formulæ. In the case
of the Padé scheme, the modified wavenumber sticks to the bisector for a wider
range of wavenumbers, as compared to the classical scheme.

corresponding to D is A−1B, which is full, as a consequence of the fact
that the unknowns are all coupled together.3

A major difference between Eqs. (2.1) and (2.3) lies in the their modi-
fied wavenumber w′ (a thorough investigation of which is conducted later,
in Section 2.4), depicted in Fig. 2.1 as function of the actual wavenumber
w, since the one relative to the compact scheme stays close to w over a
longer interval than that relative to the classical fourth order scheme.

2.2 A schematic graphical representation

In Fig. 2.2, an original representation of the stencils relative to Eqs. (2.1)
and (2.3) is sketched. From now on, the stencils are represented in a
similar manner, using the following notation:

• an horizontal line is drawn to represent the 1-D mesh;

• for each mesh point where a quantity is prescribed (resp. requested),
a vertical stem is drawn above (resp. below) the horizontal line, at
its coordinate relative to a reference uniformly-spaced mesh;

3This newly introduced terse matrix notation proves to be far more convenient then
writing single equations in full, especially when the specific schemes are not relevant to
the discussion, e.g., Chapter 3.
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◦ ◦ ◦ ◦ ◦

r

(a) Stencil relative to the classic 4th

order scheme of Eq. (2.1).

◦ ◦ ◦

r r r
(b) Stencil relative to the Padé
compact scheme of Eq. (2.3).

Figure 2.2: Stencils relative to Eqs. (2.1) and (2.3), sketched accordingly to the
convention proposed by Coppola [52] and later reprised by De Angelis [53].

– the stem is drawn even if the corresponding coefficient is zero,
since the latter condition is, in general, an episodic outcome of
the specific metric of the mesh (e.g., the symmetry);

• symbols at the end of the stems are drawn to indicate what quantity
is located there: a single circle (◦) for the function, and as many
oblique dashes (r) as the order of differentiation for the derivative;

• each coefficient is intended to have the value that maximizes the
order of accuracy, unless it is explicitly typeset close to the symbol.

These sketches were first introduced by Coppola [52] and recently pro-
posed again with slight variations [51]. One advantage of such a notation
is that it immediately conveys several aspects relative to the represented
scheme, among which

• the equation of the corresponding scheme,

• the width of both left and right hand side’s stencils,

• the closest-to-boundary point where the scheme can be used without
protruding beyond the boundary,

• the symmetry,

• the order of accuracy.

2.3 General formulation for the symmetric case

In this section the assumption of uniform mesh is done — without which
symmetry cannot occur —, and a general strategy for obtaining sym-
metric finite difference formulæ is derived, which includes the schemes of
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Section 2.1.2. Firstly, some useful operators are defined in Section 2.3.1;
secondly, explicit symmetric schemes, within which Eq. (2.1) can be in-
cluded, are derived in Section 2.3.2; thirdly, the procedure is “upgraded” in
Section 2.3.3 in order to obtain compact schemes that generalize Eq. (2.3).

2.3.1 Convenient linear operators

In this respect, it proves convenient (cf. [52]) to define several linear
operators acting on the numeric array y = (yj)j ; first the I (identity) and
E (shift) elementary operators are defined,

Iyj
.
= yj Eyj

.
= yj+1;

then, by sums and differences,

δk
.
=Ek − E−k, k ≥ 1 (central difference)

µk
.
=Ek + E−k, k ≥ 0 (central sum)

∆k
.
=Ek − I, k ≥ 1 (forward difference)

∇k .= I − E−k, k ≥ 1 (backward difference).

These operators can be applied to yj once to give

δk(yj) = yj+k − yj−k
µk(yj) = yj+k + yj−k
∆k(yj) = yj+k − yj
∇k(yj) = yj − yj−k,

twice to give

δ2
k(yj) = δk(δk(yj)) = yj+k − 2yj + yj−k

µ2
k(yj) = µk(µk(yj)) = yj+k + 2yj + yj−k

∆2
k(yj) = ∆k(∆k(yj)) = yj+2k − 2yj+k + yj

∇2
k(yj) = ∇k(∇k(yj)) = yj − 2yj−k + yj−2k,

and so on.

2.3.2 Explicit symmetric formulæ

The Taylor series expansion of yj±k = f(x± h) is the following

yj±k = yj ± (kh)y′j +
(kh)2

2!
y′′j ±

(kh)3

3!
y′′′j + . . . ;
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subtracting the backward expansion (−) from the forward (+), recalling
the operators defined in Section 2.3.1, and dividing by 2kh, one obtains
the relation

δk(yj)

2kh
= y′j +

(kh)2

3!
y′′′j +

(kh)4

5!
y

(5)
j +

(kh)6

7!
y

(7)
j + . . . , for k ≥ 1, (2.5)

which is the starting point for building the explicit formulæ for the first
derivative y′j , since linear combinations of Eq. (2.5) over k can be written,

n∑

k=1

αk
δk(yj)

2kh
=

n∑

k=1

αk

[
y′j +

(kh)2

3!
y′′′j +

(kh)4

5!
y

(5)
j +

(kh)6

7!
y

(7)
j + . . .

]
,

(2.6)
and subtracted from the sought finite difference formula,

n∑

k=1

αk
δk(yj)

2kh
= y′j ,

and the coefficients αk be determine by requiring that the successive terms
of the resulting truncation error cancel out,

[
n∑

k=1

αk − 1

]
y′jh

0 +

[
n∑

k=1

αk
k2

3!

]
y′′′j h

2+

+

[
n∑

k=1

αk
k4

5!

]
y

(5)
j h4 +

[
n∑

k=1

αk
k6

7!

]
y

(7)
j h6 + . . . (2.7)

In the trivial case that n = 1, all summations collapse to one term, only
the first term of Eq. (2.7) can be set to zero, and the well known second
order 2-point central formula is recovered

y′j =
yj+1 − yj−1

2h
. (2.8)

For n = 2, the second addend in the square brackets is allowed to be can-
celed by choosing α1 = 4

3 and α2 = −1
3 , thus obtaining exactly Eq. (2.1).

Linear combinations with higher values of n lead to higher order schemes,
whose weighs were collected by Fornberg [54, Table 1].
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2.3.3 Compact symmetric formulæ

Eq. (2.3) differs from Eq. (2.1) for having more terms in the LHS, which
suggests to write the Taylor expansion of y′j ,

y′j±k = y′j ± (kh)y′′j +
(kh)2

2!
y′′′j ±

(kh)3

3!
y

(4)
j + . . . ;

and then to apply the central sum operator µk, thus obtaining

µk(y
′
j)

2
= y′j +

(kh)2

2!
y′′′j +

(kh)4

4!
y

(5)
j +

(kh)6

6!
y

(7)
j + . . . , for k ≥ 0. (2.9)

Here the same addends of Eq. (2.5) appear — differing only by the de-
nominators’ factorials —, so one can argue that a linear combination of
Eq. (2.9) over k,

m∑

k=0

α′k
µk(y

′
j)

2
=

m∑

k=0

α′k

[
y′j +

(kh)2

2!
y′′′j +

(kh)4

4!
y

(5)
j +

(kh)6

6!
y

(7)
j + . . .

]
,

(2.10)
can contribute in canceling out other terms of the truncation error. Indeed,
the LHSs of Eqs. (2.6) and (2.10) can be required to be equal to each other,
thus obtaining4

y′j +

m∑

k=1

α′k
µk(y

′
j)

2
=

n∑

k=1

αk
δk(yj)

2kh
, (2.11)

which is the sought symmetric compact finite difference formula for the
first derivative, whose truncation error is clearly the difference between
the RHS of Eqs. (2.6) and (2.10),

y′j +
m∑

k=1

α′k

[
y′j +

(kh)2

2!
y′′′j +

(kh)4

4!
y

(5)
j +

(kh)6

6!
y

(7)
j + . . .

]
+

−
n∑

k=1

αk

[
y′j +

(kh)2

3!
y′′′j +

(kh)4

5!
y

(5)
j +

(kh)6

7!
y

(7)
j + . . .

]
.

4The assumption α′1
.
= 1 is made, so as to avoid the indeterminacy on the coefficients,

and the corresponding term y′j is taken out of the
∑m
k=0 summation.
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Figure 2.3: Stencil of Eq. (2.11) for m = 2 and n = 3. The coefficients are
renamed in agreement with Lele [14], and allow for a 10th order formal accuracy.

This error can be more conveniently refactored by collecting coefficients
of common degree with respect to h:

[
1 +

m∑

k=1

α′k −
n∑

k=1

αk

]
y′jh

0 +

[
m∑

k=1

α′k
k2

2!
−

n∑

k=1

αk
k2

3!

]
y′′′j h

2+

+

[
m∑

k=1

α′k
k4

4!
−

n∑

k=1

αk
k4

5!

]
y

(5)
j h4+

+

[
m∑

k=1

α′k
k6

6!
−

n∑

k=1

αk
k6

7!

]
y

(7)
j h6 + . . . (2.12)

The coefficients αk and α′k to be plugged into Eq. (2.11) are determined in
order to cancel out successive bracketed groups of Eq. (2.12) — thus giving
a scheme of maximum order 2(m+ n) —, or to fulfill other requirements
while relaxing on formal accuracy. This formulation for first derivative is
the most general for the symmetric case.

When m = n = 1 is chosen, one can set to zero at most the first two
bracketed terms of Eq. (2.12), thus enforcing the fourth order accuracy and
obtaining again the Padé scheme of Eq. (2.3), whereas when the choice
is m = 2 and n = 3, the schemes presented by Lele [14, Sec. 2.1] are
obtained, whose stencil is depicted in Fig. 2.3; an explicit scheme of the
same order of accuracy would have the stencil depicted in Fig. 2.4.
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Figure 2.4: Stencil of the 10th order explicit scheme.

2.4 Spectral analysis

This section concerns the Fourier (or spectral) analysis of the errors as-
sociated with both explicit and compact finite difference schemes so far
presented, in order to assess their resolution characteristics, i.e., their
accuracy in representing the result over the full range of length scales re-
alizable on a given mesh — this notion of resolution is akin to, but more
general than, that of intervals per wavelength presented by Swartz et al.
[55]. Fourier analysis consists in applying the numerical scheme to a peri-
odic dependent variable and comparing the outcome with the known exact
result under the specific operation.

Let the domain be [0, L], over which the dependent variable f(x) is
periodic, i.e., f(0) = f(L); let it be divided into N parts by N + 1 points
xj uniformly spaced by a step h = L/N. Since f(x) is periodic and real
valued, it can be decomposed as the sum of complex modes of wavenumber
k, multiplied by Fourier coefficients f̂k ∈ C (which result to be complex
conjugates with respect to k, i.e., f̂k = f̂∗−k for k = 1, 2, ...,N/2 and f̂0 =

f̂∗0 ∈ R),

f(x) =

+N/2∑

k=−N/2

f̂ke
i 2πhk

L
x
h , (2.13)

The maximum wavenumber |k| = N/2 corresponds to the highest frequency
component allowed on the mesh, i.e., the armonic funciton with period 2h,
as depicted in Fig. 2.5.5 By means of Euler’s formula, Eq. (2.13) can be
also rewritten as

f(x) = f̂0 + 2

+N/2∑

k=1

Re(f̂k) cos

(
2πhk

L

x

h

)
− 2

+N/2∑

k=1

Im(f̂k) sin

(
2πhk

L

x

h

)
.

For clarity, the general kth mode can be cast in a simpler form by defining
a non-dimensional abscissa x̃ = x

h and a scaled wavenumber wk = 2πhk
L —

5To take into account odd N numbers — then the sinusoid of Fig. 2.5 cannot be
reproduced — the summation bounds could be written more precisely as ±bN/2c.
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Figure 2.5: Highest-frequency sinusoid allowed on a mesh with an even number
of points (the point at x = L coincides with the one in x = 0).

the adjective is often dropped hereinafter, as long as the subscript k — as
follows,

f̂ke
i 2πhk

L
x
h = f̂ke

iwkx̃.

The exact first derivative with respect to x of the mode of reduced
wavenumber w is

i
w

h
f̂ke

iwx̃,

whereas the numeric differentiation mimics it, thus giving

i
w′

h
f̂ke

iwx̃,

where w′ is the modified scaled wavenumber — the definition of k′ being
obvious — whose closed expression (if exists) is determined by the nu-
merical scheme. Clearly, the more w′ resembles w throughout its domain
[0, π], the more the specific mode is well resolved, so it is of interest to
plot w′ against w, to visualize the spectral inaccuracy as the “gap” be-
tween the actual curve w(w′) and the ideal one, w = w′. This “gap” can
be quantified as the error e [14]

e(w) =
|w′(w)− w|

w
,

and bounded by a given tolerance ε, so that modes of wavenumber w
for which e(w) < ε are considered well resolved, whereas those for which
e(w) > ε are considered poorly resolved. Since a constant function (which
corresponds to w = 0) is exactly resolved by any consistent numerical
scheme, an expected general behavior is that low-wavenumber sinusoids
are well resolved.

The physical implications of the altered wavenumber — using an ad-
jective far more meaningful than modified — can be shown by making a
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single mode evolve through the simple propagation equation

∂f

∂t
+
∂f

∂x
= 0, with t ∈ R+ and x ∈ R,

whose exact solution is any function of ξ = x− t. In this sense, the single
spatial mode (cf. [56]) f(x, 0) = f̂(0)ei

w
h
x is readily proved to evolve in

time like
f(x, t) = f̂(0)ei

w
h

(x−t). (2.14)

This is the initial (t = 0) sinusoid propagating at a phase speed vp = 1.
On the other hand, the numerical solution is the following,

f(x, t) = f̂(0)ei
w
h

(x−w′
w
t),

that is, the same initial wave propagating at a different speed. This
speed can be complex, as is the case for asymmetric formulæ, and so
the wavenumber can be written as w′ = w′r + iw′i, thus finding that

f(x, t) = f̂(0)e
w′i
h
tei

w
h

(x−w
′
r
w
t). (2.15)

Comparing Eq. (2.15) to Eq. (2.14) makes it clear that the discrepancy
between w′r and w is indicative of a wrong phase speed (v′p = w′r

w 6= vp),
whereas the fact that w′i 6= 0 causes the amplitude to change in time.
In CFD community, these two effects are widespread and meaningfully
referred to as dispersion and dissipation. In particular, note that the
latter is potentially catastrophic, since it implies, in the case that w′i > 0,
an unbounded growth of the amplitude of the mode.

2.4.1 Application to compact schemes

Eq. (2.11) can be particularized in the case that m = 2 and n = 3, and
redefine coefficients properly (α′1 = α, α′2 = β, a1 = a, a2 = b and a3 = c),
thus obtaining exactly the same scheme of Lele [14]:

βf ′j−2 + αf ′j−1 + f ′j + αf ′j+1 + βf ′j+2 =

a
fj+1 − fj−1

2h
+ b

fj+2 − fj−2

4h
+ c

fj+3 − fj−3

6h
. (2.16)

By inserting a single mode fj = f̂ke
iwx̃j in Eq. (2.16), using Euler’s for-

mula, and recalling that fj+k = f(xj+k) = f(xj + kh) = f(xj)e
iw = fje

iw
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Figure 2.6: Left: Plot of the real part of the modified wavenumber, w′
r, vs.

wavenumber w for first derivative approximations: (a) 2nd order explicit; (b) 4th

order explicit; (d) 4th order tridiagonal (Padé); (e) 6th order tridiagonal; (f) 8th

order tridiagonal; (h) 10th order pentadiagonal.
Right: w-w′ plane stretched orthogonally to the bisector by a factor 500; each
grey line results from the overlapping — to eye precision — of one horizontal and
one vertical grid line on the left, due to the heavy distortion.

(and similarly for f ′j+k), the expression of the modified wavenumber, for
all the schemes embodied by Eq. (2.16), is obtained

w′(w) =
a sin(w) + b

2 sin(2w) + c
3 sin(3w)

1 + 2α cos(w) + 2β cos(2w)
. (2.17)

For several schemes, spectral curves are traced in the left plot of Fig. 2.6.
The advantage in using compact schemes over classical explicit finite dif-
ference is clear and, already for the mere Padé scheme (d), it is remarkable,
not to mention the spectral-like pentadiagonal one (i).

All the curves but the last, (i), are obtained, as already said, imposing
the truncation error to be of the highest order possible. Scheme (i), on the
other hand, is obtained giving up on formal accuracy — which is just 4th

order, like the Padé scheme (d) — and calibrating coefficients of Eq. (2.17)
so as to extend the good agreement with the bisector towards higher values
of w. The Right plot of Fig. 2.6 shows, for one of the schemes depicted,
that the curve w′(w) can repeatedly intersect the bisector.
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Figure 2.7: Stencil of a asymmetric 6th order interpolation scheme.

2.5 Asymmetric compact schemes

This section deals with the computation of the coefficients relative to
asymmetric compact schemes, whose use is unavoidable, as soon as bound-
ary conditions are concerned.

The coefficients relative to typical asymmetric schemes for the com-
putation of interpolant, first derivative, and second derivative are deter-
mined, in Sections 2.5.1, 2.5.2 and 2.5.3 respectively, and some hints are
given which form the basis for the algorithm developed in Section 2.6,
which is aimed at the computation of those coefficients in the most gen-
eral case of compact finite differences. As anticipated in Section 1.2, this
algorithm is implemented in the CFD code, where it is used to populate
the variables containing the finite difference operators.

The Fortran implementation of the algorithm is presented in List-
ing A.1, together with its more succinct MATLAB version in Listing A.2.

2.5.1 Interpolation schemes on staggered stencils

Interpolation makes sense when the stencils on left and right hand sides
are staggered to each other, so a plausible stencil for a 6th order boundary
scheme of this kind is the one depicted in Fig. 2.7, where the staggering is
supposed to be h/2. Such a scheme can be used, for instance, to interpolate
a function for its first two cell-centered values, based on those at the first
five faces, starting from the left boundary. The corresponding equation is
the following

f 1
2

+ αf 3
2

= af0 + bf1 + cf2 + df3 + ef4. (2.18)
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Upon expanding the terms in Taylor series about the point x0,

[
f0 +

h

2
f ′0 +

(
h

2

)2
f ′′0
2!

+

(
h

2

)3
f ′′′0
3!

+

(
h

2

)4
f
(4)
0

4!
+

(
h

2

)5
f
(5)
0

5!
+ . . .

]
+

+ α

[
f0 +

3h

2
f ′0 +

(
3h

2

)2
f ′′0
2!

+

(
3h

2

)3
f ′′′0
3!

+

(
3h

2

)4
f
(4)
0

4!
+

(
3h

2

)5
f
(5)
0

5!
+ . . .

]
=

= af0 + b

[
f0 + hf ′0 + h2 f

′′
0

2!
+ h3 f

′′′
0

3!
+ h4 f

(4)
0

4!
+ h5 f

(5)
0

5!
+ . . .

]
+

+ c

[
f0 + 2hf ′0 + (2h)2

f ′′0
2!

+ (2h)3
f ′′′0
3!

+ (2h)4
f
(4)
0

4!
+ (2h)5

f
(5)
0

5!
+ . . .

]

+ d

[
f0 + 3hf ′0 + (3h)2

f ′′0
2!

+ (3h)3
f ′′′0
3!

+ (3h)4
f
(4)
0

4!
+ (3h)5

f
(5)
0

5!
+ . . .

]

+ e

[
f0 + 4hf ′0 + (4h)2

f ′′0
2!

+ (4h)3
f ′′′0
3!

+ (4h)4
f
(4)
0

4!
+ (4h)5

f
(5)
0

5!
+ . . .

]
,

the addends of common degree in h can be collected, and their coefficients
set to zero. Clearly, since the 6 unknowns (α, a, b, c, d, e) are to be de-
termined, only 6 conditions can be set, thus obtaining a 6 × 6 system of
equations, enforcing 6th order accuracy. It is straightforward to verify that
the kth equation, for 0 ≤ k ≤ 5, is the following, obtained by setting to
zero the coefficient multiplying hkf (k)

0 ,

[(
1

2

)k
+

(
3

2

)k
α

]
=
[
0ka+ 1kb+ 2kc+ 3kd+ 4ke

]
, (2.19)

where the 1/k! terms have been simplified since they appear both in the
left and right hand sides, because of the same order of differentiation of all
the terms involved in Eq. (2.18). It is worth to observe now that for each
monomial in Eq. (2.18), there is one in Eq. (2.19) which is the product of
the corresponding unknown coefficient by the corresponding x coordinate,
the latter to the power k.

With regards to the solution by hand of Eq. (2.19), multiplying both
sides by 2k, a simpler form is obtained,

−3kα+ 0ka+ 2kb+ 4kc+ 6kd+ 8ke = 1,
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Figure 2.8: Stencil of a asymmetric 5th order first differentiation scheme on a
staggered stencil.

which is easily expanded, with respect to k, in a matrix frame



−1 1 1 1 1 1
−3 0 2 4 6 8
−9 0 4 16 36 64
−27 0 8 64 216 512
−81 0 16 256 1296 4096
−243 0 32 1024 7776 32768



×




α
a
b
c
d
e




=




1
1
1
1
1
1




The solution to this system of equations, can be found using MATLAB’s
symbolic tool, 



α
a
b
c
d
e




=




7/3
35/192
35/16
35/32
−7/48
1/64



.

2.5.2 First differentiation schemes on staggered stencils

Such a scheme is useful when the Harlow-Welch [30] arrangement of vari-
ables is employed. One possible stencil for such a scheme looks very similar
to the preceding one, except that derivatives (r) replace interpolations (◦)
in the LHS (lower part), but they are different in respect of the order of
accuracy as well, since the scheme just presented is 5th order accurate,
because of the factor 1⁄h. The equation corresponding to Fig. 2.8 is the
following,

f ′1
2

+ αf ′3
2

=
1

h
(af0 + bf1 + cf2 + df3 + ef4), (2.20)

each term of which can be expanded in Taylor series about x0, and the re-
sulting terms can be collected in the same fashion as done in Section 2.5.1,
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thus obtaining

1

(k − 1)!

[(
1

2

)k−1

+

(
3

2

)k−1

α

]
=

1

k!

[
0ka+ 1kb+ 2kc+ 3kd+ 4ke

]
,

for 0 ≤ k ≤ 5. (2.21)

where, for convenience and brevity, given any integer n < 0, the number
0 is denoted by the symbol 1/n!. It can be noted now that the RHS
of Eq. (2.21) is exactly the same as that of Eq. (2.19) — before 1/k! is
simplified there —, just like the RHS of Eqs. (2.18) and (2.20). For what
concerns the LHS of the two equations, they are akin as well, except that
k − 1 takes the place of k (both as exponent and as factorial), since it
comes from first derivative terms.

As regards the solution by hand, multiply Eq. (2.21) by 3 · 2kk! yields

2k
(

1 + 3k−1α
)

= 0ka+ 2kb+ 4kc+ 6kd+ 8ke,

which expands to the following matrix form



0 3 3 3 3 3
−6 0 6 12 18 24
−36 0 12 48 108 192
−162 0 24 192 648 1536
−648 0 48 768 3888 12288
−2430 0 96 3072 23328 98304



×




α
a
b
c
d
e




=




0
6
12
18
24
30



,

whose solution is found to be,



α
a
b
c
d
e




=




71/9
−127/216
−49/6
37/4
−29/54

1/24



.

2.5.3 Second differentiation schemes on collocated stencils

Such a scheme, just like the preceding, is useful when the Harlow-Welch
arrangement of variables is employed, since the second derivatives of the



2.5. Asymmetric compact schemes 29

◦
a

◦
b

◦
c

◦
d

◦
e

1
rr

α
rr

◦
a
◦
b

◦
c

◦
d

◦
e

1
rr

α
rr

r
a
◦
b

◦
c

◦
d

◦
e

1
rr

α
rr

Figure 2.9: Three possible stencils of a asymmetric 4th order second differen-
tiation scheme. Left: first node not staggered, Dirichlet. Middle: first node
h/2-staggered, Dirichlet. Right: first node h/2-staggered, Neumann.

components of the velocity (coming from the Laplace operator) are re-
quired in the same location of the components themselves. Three plausi-
ble stencils are depicted in Fig. 2.9: the left one is used when a Dirichlet
boundary condition for the concerned variable is prescribed on a point
where the variable itself is located; if this BC is imposed on a h/2-staggered
node, then the middle stencil is used; when a Neumann condition is set in
this staggered node, then the stencil on the right is chosen.

The system of equation for the coefficients of the scheme corresponding
to the stencil on the right is derived as follows. The corresponding finite
difference equation is

f ′′1
2

+ αf ′′3
2

=
1

h2

(
ahf ′0 + bf 1

2

+ cf 3
2

+ df 5
2

+ ef 7
2

)
,

or, by a convenient shift of all indices by 1/2,

f ′′0 + αf ′′1 =
1

h
af ′− 1

2

+
1

h2
(bf0 + cf1 + df2 + ef3). (2.22)

It is straightforward to derive the following modified equation,

1

(k − 2)!

[
0k−2 + 1k−2α

]
=

1

(k − 1)!

[(
−1

2

)k−1

a

]
+

+
1

k!

[
0kb+ 1kc+ 2kd+ 3ke

]
, for 0 ≤ k ≤ 5, (2.23)

in which factorials and powers are clearly equal to k minus the order
of differentiation they are related to. The system of equation is easily
obtained upon multiplying Eq. (2.23) by 2kk!,

k(k − 1)
(

2k × 0k−2 + 2kα
)

= k
[
2(−1)k−1a

]
+

+
[
0kb+ 2kc+ 4kd+ 6ke

]
,
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and expanding it in matrix form,




0 0 1 1 1 1
0 2 0 2 4 6
−8 −4 0 4 16 36
−48 6 0 8 64 216
−192 −8 0 16 256 1296
−640 10 0 32 1024 7776



×




α
a
b
c
d
e




=




0
0
8
0
0
0



.

The solution is 


α
a
b
c
d
e




=




−979/71
−160/71
−3931/213

2543/71
−1315/71
247/213



.

2.6 The algorithm to compute the coefficients

In Sections 2.5.1, 2.5.2 and 2.5.3, three compact finite difference schemes
have been presented — Eqs. (2.18), (2.20) and (2.22) — and their respec-
tive coefficients have been determined by solving the system of equations
originating from each — Eqs. (2.19), (2.21) and (2.23) —, usingMATLAB’s
Symbolic Toolbox for the actual computation.

In the meanwhile, some hints have been given about the one-to-one
link between the finite difference equations, and the corresponding set of
k-indexed equations that must be solved for the coefficients. The under-
standing of such a link allows one to unambiguously write down the latter
algebraic system as a simple transform of the former difference equation,
with no need to explicitly expanding its terms in Taylor series.

A finite difference scheme — being it compact or not — is, at the
highest possible level of interpretation, a linear combination of values of a
function and/or its derivatives of various orders, located at several points.
Some of these values are considered unknowns, and must be determined
based on the remaining ones. Of course, the linear combination holds true
up to a truncation error, which vanishes as some power of h. The general
difference equation for which we seek the non-dimensional coefficients αj ,



2.6. The algorithm to compute the coefficients 31

can be cast in the following form,
n∑

j=0

αjh
djf

(dj)
rj

= O(hp), (2.24)

where f (dj)
rj is the derivative of order dj of f , located at the point xj , such

that rj =
xj−x0
h , with x0 a reference point and h a reference lenght (e.g.,

the mesh constant or average spacing). The truncation error is explicitly
shown, and its order p is determined in the following as well. It is worth to
stress, however, that p is the degree of the leading term of the truncation
error, not the order of accuracy of the scheme. Indeed, if a derivative of
order d̃ is considered unknown in Eq. (2.24), then the order of accuracy
with respect to that variable is p− d̃ (see Section 2.9.3 for further details).
Eq. (2.24) involves, for each mesh point j, a derivative of order dj located
at xj , which is non-dimensionalized by the appropriate power of the length
h multiplying it. In this frame the ratios rj play the role of the indices of
the knowns and unknowns of the previous examples.6

By expanding the general term of the summation in Taylor series about
x0, one obtains,

n∑

j=0

αjh
dj

+∞∑

i=0

f
(dj+i)
r0

rijh
i

i!
= O(hp).

Taking αjh
dj in the inner summation, and doing the change of variable

i 7→ i = dj + i, the left hand side becomes

n∑

j=0

+∞∑

i=dj

αjf
(i)
r0

r
i−dj
j hi

(i− dj)!
.

On account of the notation of convenience concerning the factorial at the
denominator, already adopted in Section 2.5.2, the lower bound of the
inner summation can be set to −∞, and the two summations can be
switched, resulting in

+∞∑

i=−∞
f (i)
r0
hi

n∑

j=0

αj
r
i−dj
j

(i− dj)!
.

6Indeed, if the mesh is uniform, than an obvious choice for the reference length h,
is the constant spacing; in this case rj ∈ Z, just like was the case in several examples
presented so far.
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Requiring that this quantity be at least of order O(hn) results in the
following homogeneous n× (n+ 1) system of equations,

n∑

j=0

r
i−dj
j

(i− dj)!
αj = 0 for i = 0, 1, . . . , n− 1.

To avoid, the indeterminacy of the solution, αc
.
= 1 is set for a single term

of index c, and take it to the RHS,

n∑

j=1

j 6=c

r
i−dj
j

(i− dj)!
αj = − ri−dcc

(i− dc)!
for i = 0, 1, . . . , n− 1, (2.25)

thus obtaining an inhomogeneous square system of equations for the n
remaining coefficients αj , which can be concisely cast in matrix form as

Mα = q, (2.26)

with obvious meaning of the symbols. M is a Vandermonde-like matrix,
whose general element mi,j can be immediately determined, as much as
the element qi of q, based on the finite difference Eq. (2.24). Indeed, each
column of M, as well as the column vector q, originates from one addend
of Eq. (2.24), according to the following transformation,

hdjf
(dj)
rj

←→
r
i−dj
j

(i− dj)!
, for i = 0, 1, . . . , n− 1. (2.27)

Whether M is singular or not, depends on the set of mesh points {xj},
as well as on the order of differentiation {dj} of the quantity prescribed
at each point. (The stencil of a typical ill-posed scheme is reported in
Fig. 2.10a.) If M is non-singular, the system Eq. (2.26) can be solved
arithmetically, and its solution plugged in Eq. (2.24), thus obtaining the
sought finite difference equation, whose truncation error is at least of order
n.

The two equivalent functions reported in Listings A.1 and A.2, take in
input the sets {rj} and {dj}, as well as the index c used to impose αc = 1,
and exploit the relation in Eq. (2.27), to build the system Eq. (2.26) and
solve it for the αj coefficients.
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2.7 Hermitian compact schemes

As a side work, the author developed a new class of staggered compact
differentiation and interpolation operators. The algorithm has its roots
in an implicit interpolation theory consistent with compact schemes [52]
and reduces to the computation of the required staggered derivatives and
interpolated quantities as a combination of nodal values and collocated
compact derivatives.

For instance, Eq. (2.3) can be used to determine the collocated first
derivatives on the whole mesh, and the values obtained {f ′j}j , together
with the original set {fj}j , can be used to feed Hermitian schemes for the
interpolant, staggered first derivative, and collocated first derivative,

f ′j+1/2 = 3
fj+1 − fj

2h
−
f ′j + f ′j+1

4
.

fj+1/2 =
1

2
(fj + fj+1) +

h

8

(
f ′j − f ′j+1

)
,

f ′′j = 2
fj−1 − 2fj + fj+1

h2
−
f ′j+1 − f ′j−1

2h
,

This new approach is cost-effective, simplifies the imposition of bound-
ary conditions, and has improved spectral resolution properties, on equal
order of accuracy, with respect to classical schemes, as proved in [51].

2.8 Conservative compact schemes

Let the following be a compact scheme for the first derivative

Af ′ = Bf , (2.28)

where asymmetric schemes are used in the first and last few rows of A
and B to impose boundary conditions. Furthermore assume that, for the
sake of simplicity, the mesh is uniform, so that a central scheme is used in
other equations.

Multiplying both sides of Eq. (2.28) by a diagonal matrix W, does not
affect its solution, so the scheme can be re-cast by setting Ã = WA and
B̃ = WB,

Ãf ′ = B̃f . (2.29)
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At this point, the compact operator is required to be telescopic, i.e., that
the contribution to the LHS only depends on first and last elements of f .
To do so, both sides of Eq. (2.29) are integrated through a product by the
row vector 1T (the integral operator with all weighs set to 1), and require
that

1TB̃ = 1TWB = (−1, 0, 0, . . . , 0, 0,+1). (2.30)

Eq. (2.30) is the system for the elements of W; indeed, the column vector
w can be defined such that 1TW = wT, and Eq. (2.30) can be cast as

wTB = (−1, 0, 0, . . . , 0, 0,+1). (2.31)

Since a central symmetric scheme is used in most points, the columns of
B not involved in boundary conditions sum up to 0, so the solution w
mostly contains ones, except for a few leading and trailing elements.

With the weighs w determined, and the solution of Eq. (2.28) being
f ′ = A−1Bf , the discrete integral of f ′ through the quadrature coeffi-
cients defined as

s = wTA (2.32)

correctly results dependent only on boundary elements of f

wTAf ′ = flast − ffirst.

A paper by Knikker [24] inspired this argument in favour of the following
conclusion. As long as Eq. (2.31) admits a solution, the compact scheme of
Eq. (2.28) is conservative with respect to the quadrature weights s defined
in Eq. (2.32), and the weights w, solution of Eq. (2.31), need not be used
explicitly [25], since Eqs. (2.28) and (2.29) coincide.

This conclusion can be extended to compact schemes for successive
derivatives [14].

2.9 Further considerations

2.9.1 Ill-posed schemes

An example of stencil related to an ill-posed scheme is depicted in
Fig. 2.10a. The reason is easily understood: since the values prescribed
are in number of three, the function passing through them should be a
second degree polynomial, i.e., a parabola, whose slope in the middle point
is well-known to be unconditionally equal to the average slope from the
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(a) Stencil of an ill-posed symmet-
ric scheme.
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(b) Stencil of an ill-posed 4th or-
der asymmetric first differentiation
scheme.

Figure 2.10: Stencils of ill-posed schemes.

left point to the right, and cannot be assigned independently; assigning
it results either in no parabola at all, or in infinite parabolæ with varying
curvatures, hence the ill-posedness of the scheme.

Such a scheme is an purely illustrative, and it would be unlikely met
in practical applications. A case which is more likely encountered has
the stencil depicted in Fig. 2.10b; the system for the coefficients is the
following,




0 1 1 1 1
−2 −1 1 3 5
−8 1 1 9 25
−24 −1 1 27 125
−64 1 1 81 625



×




α
a
b
c
d




=




0
2
0
0
0



, (2.33)

which is inconsistent, being 4 the rank of the matrix.7

In order to gain deeper knowledge, it is worthwhile to further investi-
gate Eq. (2.33). The rank of the augmented matrix is 5, so there exists no
linear combination of the columns of M that equals the RHS. This means
that the vector q and one column of M (e.g., the first) can be switched,
and obviously changed in sign, to get a determined system, M̃α̃ = q̃.
Translating this action on the stencil of Fig. 2.10b, the collocation point
(labeled as 1) and the point labeled as α can be switched to obtain a 4th

order scheme. Still the vector q, that now multiplies α, is not spanned by
the columns of M, so that it must be α = 0, thus yielding the well-known
4th order explicit scheme.

7The non-void kernel is spanned by the eigenvector [−24,−1, 27,−27, 1]T.
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2.9.2 Parametric schemes

The inconsistency of Eq. (2.33) does not mean that the stencil of Fig. 2.10b
cannot be used if not changing the collocation point; indeed, we can give
up on 4th order accuracy, cutting out the last equation, and taking one
coefficient (e.g., α) to the RHS, thus obtaining the system for the coeffi-
cients of a one-parameter family of 3rd order schemes, which is used with
α = 0 in [25]:




1 1 1 1
−1 1 3 5

1 1 9 25
−1 1 27 125


×




a
b
c
d


 =




0
2 + 2α

8α
24α


,

whose solution is 


a
b
c
d


 =

1

24




α− 23
21− 27α
27α+ 3
−α− 1


.

2.9.3 The symmetry and the order of accuracy

It is worth observing that, once the coefficients αj are determined by
solving Eq. (2.26) and plugged into Eq. (2.24), some leading terms of the
truncation error can end up being zero already, as a consequence of the
mutual positions where the various terms are located. In short, depending
on {xj} and {dj}, it can automatically result that p > n in Eq. (2.24). In
fact it can be either n or n+1. Indeed, since in the case M is non-singular,
and its rows are linearly independent, the equations relative to i ≥ n in
Eq. (2.25) must be a linear combination of the preceding n. If the element
qi is zero, then the order of the truncation error is higher.

A notable situation in which this happens, occurs when symmetric
schemes are concerned. In this case, having labelled the central point
as x0 and used it for the Taylor expansion, the columns of M relative
to symmetric points of the stencil have the same absolute values, but one
has constant sign, whereas the other has alternating signs. The coefficients
relative to those columns can be appropriately set equal or opposite to each
other, and those columns can be summed or subtracted; the resulting null
rows can be removed, as they represent equalities holding by virtue of
symmetry. This concept is better explained by the following example,
which is the occasion for another interesting comment.
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Figure 2.11: The same stencil as in Fig. 2.10a, except for the point whose coef-
ficient is set to 1.

The coefficients of the scheme with the stencil depicted in Fig. 2.11,
which is asymmetric, fulfill the following system,




0 1 1 1 1
−1 −3 −1 1 3

4 9 1 1 9
−12 −27 −1 1 27

32 81 1 1 81



×




α
a
b
c
d




=




0
1
0
0
0



, (2.34)

whose solution is 


α
a
b
c
d




=




0
1/48
−9/16
9/16
−1/48



. (2.35)

The result that α = 0 testifies that, when only one point breaks the
symmetry of a scheme, then its coefficient must be zero, if the maximum
order is requested.

The system (2.34) can be then rewritten with the last equation and
the first column and unknown α removed, since the latter is known to be
0, 



1 1 1 1
−3 −1 1 3

9 1 1 9
−27 −1 1 27


×




a
b
c
d


 =




0
1
0
0


.

It is quite clear that first and third equations become identities 0 = 0 by
setting a = −d and b = −c, and, as such, can be removed; the columns
can be subtracted accordingly, yielding

(
2 6
2 54

)
×
(
c
d

)
=

(
1
0

)
,
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(a) [32, Eq. (2.7)]
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(b) [32, Eq. (2.8)]
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(c) [26, Eq. (2.5)]

Figure 2.12: (a) and (b): sixth order CCD scheme for fist and second deriva-
tives, [32] (note that in the left and right points both first and second unknown
derivatives are located); (c): CCS scheme for first derivatives, [26] (note that
both cell-centered and face-centered values are used at the RHS).

whose solution is still Eq. (2.35).
As a last remark, symmetry must be identified by considering knowns

and unknowns together. After all, the distinction only consists in choosing
those terms of Eq. (2.24) that are taken to the RHS and those kept in the
LHS. In this respect, some schemes, apparently different and presented
as such, are in fact the same exact equation with a different selection of
unknowns [24, Eq. (20) and (21)].

2.9.4 CCD and other schemes

The 6th order CCD schemes [32] merely use the same coordinate for both
the value of first and second derivatives in Eq. (2.24), and consider them
unknown. The stencil relative to those schemes, depicted in Figs. 2.12a
and 2.12b, is explanatory in this respect. The coefficients of such CCD
schemes can be determined with the procedure outlined in Section 2.6.

The same holds for the CCS schemes presented more recently [26],
whose stencil is depicted in Fig. 2.12c.

2.9.5 Compact schemes as linear combinations of explicit
finite differences

Eqs. (2.1) and (2.3) are very similar in their essence, in that both represent
a relation between nodal values and nodal derivatives. This relation is
expressed by a linear combination of those values, through coefficients to
be determined by imposing that the truncation error be of the desired
degree (which is limited by the number of available coefficients).

Compact schemes can be also obtained as linear combinations of ex-
plicit finite difference schemes, as is done for the Padé scheme in Sec-
tion 2.9.5.
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◦ ◦

r r
(a) Stencil of Eq. (2.37).

◦ ◦ ◦

r rr
(b) Stencil of Eq. (2.36).

◦ ◦

rr
(c) Stencil of Eq. (2.38).

Figure 2.13: Stencils of Eqs. (2.36) to (2.38).

Padé scheme revisited

The truncation error of Eq. (2.8) can be shown to be −y′′′h2/3!, so that
equation can be rewritten for convenience as

y′j =
yj+1 − yj−1

2h
−
[
y′′′

h2

3!
+ y(5)h

4

5!
+ . . .

]
(2.36)

The forward and backward versions of Eq. (2.36) for y′j±1, based on the
same two values, are

y′j−1 =
yj+1 − yj−1

2h
−
[
y′′j h− y′′′j

h2

3
+ y

(4)
j

h3

3!
− y(5)

j

h4

30
+ . . .

]
(2.37)

y′j+1 =
yj+1 − yj−1

2h
+

[
y′′j h+ y′′′j

h2

3
+ y

(4)
j

h3

3!
+ y

(5)
j

h4

30
+ . . .

]
(2.38)

All three schemes are depicted in Fig. 2.13 accordingly to the conven-
tion established in Section 2.2, and it is natural to argue that the three
equations can be linearly combined in order to eliminate further terms
of the truncation error; specifically, it is easy verifiable that multiplying
Eqs. (2.37) and (2.38) by 1/4 and adding them both to Eq. (2.36), the
Padé scheme is recovered, together with its truncation error.

It is worth to note that Eqs. (2.37) and (2.38) are first order accurate
and, as indicated by Figs. 2.13a and 2.13c, do not make use of the value
y′j , whereas Eq. (2.36) does use it — hence the central circle in Fig. 2.13b
—, but the coefficient happens to be zero by symmetry. Should the central
point be included in the two asymmetric formulæ, Eqs. (2.37) and (2.38)
would have been second order accurate, but the overall combination of the
three would have invariably led to the Padé scheme.
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2.10 Impact of boundary schemes over global ac-
curacy

In the present section an accuracy analysis is conducted to assess how
much the accuracy granted by the use of a symmetric compact scheme is
compromised by the asymmetric compact schemes used at the boundaries.

A 6th order interior scheme has been chosen for interpolation, first and
second differentiation. To retain the compactness of the schemes as much
as possible, the boundary formulæ are chosen to be compact too, but in
order to keep the matrices A of the three schemes tridiagonal, they can
involve only the first two unknowns (on the left boundary, the last two
on the right one). This causes the bandwidth of B matrices to increase
significantly if the same order of interior is required to boundary schemes.
The 6th order interior scheme has been coupled to 4th, 5th and 6th order
boundary closure. All of them use the stencils collected in Table 2.1. It
can be noted that two of them are quite unusual in that a node has been
shifted, the reason being explained in the caption.

In Fig. 2.15 it can be seen that the global order of accuracy of a
compact method — interpolation as well as differentiation of both first
and second order — is indeed influenced by boundary schemes’ accuracy,
as compared to that of interior schemes.

• In spite of internal 6th order scheme, the accuracy of the method is
driven down to 4th order when a 4th order boundary scheme is used.
This happens in all the three cases analyzed (i.e., interpolation, first
and second differentiation);

• when the boundary scheme is 6th order accurate — i.e., it equals
internal accuracy — the maximum order is preserved in all the three
cases;

• when the boundary scheme is 5th order accurate, some differences
depend on whether the scheme is for interpolation, first or second
differentiation:

- interpolation: internal accuracy is almost unaffected when N <
500, wheres it is diminished by 1 if N > 500;

- first derivative: for N > 200 the accuracy is clearly 5th order;
- second derivative: the accuracy is not affected at all, before
round-off errors occur.
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0 1 2 3 4 5 6 7 8 9
−3
−2
−1
0

x

f(x)

f(x) f ′(x) f ′′(x)

Figure 2.14: Test-function (Eq. (2.39)) and its first and second derivatives.

Other two observations are of interest:

• the analysis is not significant both when N is too low (say N <
200) and when round-off errors become important (not occurred for
interpolation, N > 600 for first derivative, N > 500 for second
derivative);

• away from the boundaries, the inaccuracy of boundary schemes does
not compromise that granted, in the interior part of the domain, by
high order symmetric formulæ.

Obviously the analysis is dependent on the test function the schemes
are applied to. In the present work the following test function has been
used:

f(x) = arctan(x− 3) + e−(x−4)2 . (2.39)
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Figure 2.15: Results of the accuracy analysis.





Chapter 3

Parallelization of linear
banded systems

Let ϕ(x) be a function of x defined on a interval, and ϕi = ϕ(xi) the values
that ϕ assumes on a certain mesh whose points are xi with i = 1, 2, ..., N ,
and be these values collected in the numerical vector ϕ.

Denoting with a prime the operation of differentiation (being it exact
or not) and referring to an explicit finite difference approach, the problem
of determining the approximate values of the derivative of ϕ in the points
xi reduces to the simple matrix product

ϕ′ = Dϕ, (3.1)

being D an N ×N differentiation matrix (usually sparse). In this case the
relation between ϕ′ and ϕ is explicit, i.e., each component of the vector
ϕ′ can be computed in parallel, being known both the matrix D and the
vector ϕ. The product at the RHS of Eq. (3.1) can be easily parallelized.

The use of implicit schemes (i.e., compact schemes) leads instead to
the problem

Aϕ′ = Bϕ, (3.2)

in which the matrix A is a sparse matrix (tridiagonal, pentadiagonal, etc).
Note that Eq. (3.1) can be seen as a special case of Eq. (3.2) resulting from
the definition B

.
= D and the choice A = I, being I the identity matrix.

Again, the computation of the RHS is a simple matter of parallelizing a
matrix product, so the result can be written as q .

= Bϕ. On the other
hand, the relation between ϕ′ and ϕ is implicit, so the computation of ϕ′

45
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requires now the resolution of the following linear system,

Aψ = q, (3.3)

where ψ .
= ϕ′. Eventually, the task becomes the parallel resolution of the

sparse linear system in which A is a N ×N sparse matrix, ψ is the N × 1
unknown column vector, and q is the N × 1 column vector of knowns.
Moreover the focus is on linear banded systems, in which A is a banded
matrix.

3.1 Exact parallelization

In this section the case of a tridiagonal system is analyzed. The global
system is split up into a number of sub-systems, each of which is coupled
to the preceding and following by one equations each.

In order to provide enough understanding of the ideas and problems
underlying the parallelization, the system is first split up in two, and the
sub-systems and the two scalar coupling equations are treated explicitly.
In a second moment a general number of sub-systems considered, starting
over from another, more convenient, point of view.

3.1.1 Two processors

Here the assumption is made that two processes are available for the so-
lution of a tridiagonal system, whose matrix is A, the extension to multi-
diagonal system being straight forward, although requiring a careful in-
spection of what are referred to as “coupling coefficients” in the following.

The unknown vector ψ is distributed among two processes, i.e., one
process handles its firstM components, whereas the other process handles
the remaining N −M , that is

ψ(1) =
[
ψ

(1)
1 , ψ

(1)
2 , ..., ψ

(1)
M

]T .
= [ψ1, ψ2, ..., ψM−1, ψM ]T (3.4)

ψ(2) =
[
ψ

(2)
1 , ψ

(2)
2 , ..., ψ

(2)
N−M

]T .
= [ψM+1, ψM+2, ..., ψN−1, ψN ]T. (3.5)

where ψ(1) and ψ(2) are the process-local sub-vectors. Likewise, the known
vector q is distributed to the two processes, resulting in the sub-vectors
q(1) and q(2). The two processes have to solve Eq. (3.3) for their own
vectors of unknowns, thus a proper sub-matrix of A must be available
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× =

××××××××
A1

××××××××•

α

××××××××
A2

××××××××

•

β

ψ(1)

ψ(2)

q(1)

q(2)

Figure 3.1: Block structure of the system (3.3): matrix A seen as a 2× 2-block
matrix, vectors ψ and q as 2×1-block vectors. First and last equations, i.e., rows
of A, must be boundary conditions, so they can have more than two non-zero
elements, contrary to what is sketched.

to each. To understand which blocks of the matrix each process need to
access to, it is useful to sketch a simple scheme illustrating the layout of
Eq. (3.3).

As depicted in Fig. 3.1, if the elements α and β were zero, the ma-
trix A would be a block-diagonal matrix, thus allowing a perfect parallel
resolution of the system (3.3), but this is not the case, in the sense that
these “coupling coefficients” α and β are not zero in general.1 The term α

multiplies ψ(2)
1 , the first component of ψ(2), whereas β multiplies ψ(1)

M , the
last component of ψ(1); so the original N ×N system (3.3) can be split in
two as follows, {

A1ψ
(1) + αψ

(2)
1 δ

(1)
M = q(1)

A2ψ
(2) + βψ

(1)
M δ

(2)
1 = q(2)

(3.6)

where the M th (i.e., last) and 1st columns of the identity matrices of size
M ×M and (N −M)× (N −M) are denoted by δ(1)

M and δ(2)
1 respectively.

Eq. (3.6) can be formally solved for ψ(1) and ψ(2) taking coupling terms
to the RHS and inverting the blocks A1 and A2 independently,

{
ψ(1) = −αψ(2)

1 A−1
1 δ

(1)
M + A−1

1 q(1)

ψ(2) = −βψ(1)
M A−1

2 δ
(2)
1 + A−1

2 q(2).
(3.7)

1For the classic Padé scheme A is tridiagonal with elements
[
1
4
, 1, 1

4

]
, so α = β = 1

4
.
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In the RHSs, vectors δ(1)
M and δ(2)

1 extract the last column of A−1
1 and

the first of A−1
2 respectively. These columns, namely a and b, can be

computed in parallel and, most importantly, una tantum. The last terms
of the RHSs of Eq. (3.7) are the solutions of the two uncoupled systems

A1ψ
0(1) = q(1) (3.8)

A2ψ
0(2) = q(2), (3.9)

which can be evaluated in parallel. With these definitions the solution
Eq. (3.7) can be rewritten in a clearer form,




ψ(1) = −αψ(2)

1 a+ψ0(1)

ψ(2) = −βψ(1)
M b+ψ0(2)

(3.10a)

(3.10b)

At this point, coupling terms are the ones multiplying α and β, and they
can be determined as follows. The last row of Eq. (3.10a) and first one of
Eq. (3.10b) are extracted, thus resulting in the 2× 2-scalar system

{
ψ

(1)
M = −αψ(2)

1 aM + ψ
0(1)
M

ψ
(2)
1 = −βψ(1)

M b1 + ψ
0(2)
1 ,

(3.11)

whose solutions are 



ψ
(1)
M =

ψ
0(1)
M − αaMψ0(2)

1

1− αβaMb1

ψ
(2)
1 =

ψ
0(2)
1 − βb1ψ0(1)

M

1− αβaMb1
.

(3.12)

These values can be inserted into Eq. (3.10), to obtain the final solutions
of Eq. (3.6), that is, the solution of the original system (3.3).

The process of solution of the N ×N system (3.3) as obtained by two
processes can be summarized as follows:

1. M unknowns are assigned to the first process and the remaining
N −M unknowns to the second process;

2. the first process extracts the last column of A−1
1 , the second process

the first one of A−1
2 , in parallel;

3. solve Eqs. (3.8) and (3.9) for ψ0(1) and ψ0(2), respectively;

4. ψ(1)
M and ψ(2)

1 are evaluated through Eq. (3.12);

5. ψ(1) and ψ(2) are evaluate through Eq. (3.10).
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3.1.2 Multi processors

In the previous section the problem of parallelizing the solution of the
system Aψ = q has been dealt with by manipulating directly the equa-
tions. Fig. 3.1 has been presented just to facilitate the interpretation of
the equations.

In the present section the problem of the parallelization is extended
to the case that n processes are available, which is not straightforward if
dealing directly with the equations, like in the previous section; in fact, the
general form of the coupling system is not even embodied by Eq. (3.11).
For this reason it is worthwhile to approach the problem by analyzing the
block structure of the system Aψ = q, depicted in Fig. 3.2, and then
solving it as a whole, without explicitly considering the single blocks.

Being ψ unknown and q arbitrary, there is nothing to exploit about
their shape, so they can be simply split up into n sub-vectors each sized
Mi×1. Obviously

∑n
i=1Mi = N , but it is useful in the following to define

Ni
.
=
∑i

k=1Mk, the global index of the last term of the ith block.
The tridiagonal matrix A is symbolically split up in n×n blocks, the ith

diagonal block being a tridiagonalMi×Mi sub-matrix; the terms denoted
by the symbol • are coupling coefficients between adjacent blocks. Fig. 3.2
suggests the obvious decomposition of the matrix A as the following sum

A = ABD + AOD,

where the superscript BD denotes the Block-Diagonal part of A, each
block of which is a tridiagonal sub-matrix Ai, whereas OD denotes the
Off-block-Diagonal part, whose only non-zero elements are αi and βi. The
latter, AOD, is better discussed later in this section.

With this decomposition the system can be rewritten as
[
ABD + AOD]ψ = q, (3.13)

which almost corresponds to Eq. (3.6) in the preceding section.
Now Eq. (3.13) is formally multiplied by

(
ABD)−1, which is equivalent

to multiply, for i = 1, 2, ..., n, the ith block of equations by the matrix A−1
i

— which is invertible provided A is diagonally dominant by rows — thus
obtaining [

I +
(
ABD)−1

AOD
]
ψ =

(
ABD)−1

q; (3.14)

that is, defining S(0) .
=
(
ABD)−1

AOD,
[
I + S(0)

]
ψ =

(
ABD)−1

q, (3.15)
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Figure 3.2: Block structure of the matrix A, unknown vector ψ and known
vector q.

in which
(
ABD)−1 is still a block-diagonal matrix, whose general ith block

is in fact A−1
i . Actually Eq. (3.14) can be rewritten as

(
ABD)−1

Aψ =
(
ABD)−1

q, (3.16)

which makes evident that ABD takes the role of an block-diagonal algebraic
preconditioner [57]. The RHS is a block-diagonal matrix times a block-
column vector, that is, a block-column vector whose blocks are the vectors
ψ0(i), solutions of n systems

Aiψ
0(i) = q(i), i = 1, 2, ..., n, (3.17)

which can be solved in parallel at each step of the iterative process. So it
is convenient and straightforward to define the vector

ψ0 .
=
(
ABD)−1

q.
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Figure 3.3: Block-structure of the spike matrix S. Matrix S(0) is obtained by
substituting identity blocks by null blocks.

About the LHS, the matrix S(0) is the product between the block-
diagonal matrix

(
ABD)−1 and the matrix AOD, and deserves a better

inspection with the help of Fig. 3.2 as follows: the ith block-row of S(0) is
the product of A−1

i times the ith block-row of AOD, the latter having only
two non-null elements — βi in the first row and αi in the last row — that
extract and multiply the first and last column of A−1

i respectively. These
columns (already multiplied by βi and αi) are named bi and ai. Thus,
assembling all these columns in their correct positions the matrix S(0) is
obtained, whose non-null elements are covered in cyan in Fig. 3.3. Upon
adding the identity matrix I to S(0), the following S matrix is obtained

S
.
= I + S(0) = I +

(
ABD)−1

AOD,

which is the one depicted in Fig. 3.3, the observations of which, in conjunc-
tion with Fig. 3.2, clarifies also all the above description of the product
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between
(
ABD)−1 and AOD. Note that S is apparently an identity matrix

with spikes protruding from its diagonal, so it is eloquently referred to
as SPIKE matrix, and the whole algorithm is named SPIKE algorithm
after it [17]. Note also that all these spikes, due to their definition, can be
computed in parallel and una tantum; for instance, the ith process, which
workspace contains Ai, can compute ai and bi independently from other
processors.2 Moreover, if Mi = M = const. for all i and if the matrix A is
Toeplitz, as it is usually the case, the matrices Ai are all equal (at least
for i = 2, 3, ..., n− 1) and only two columns are required (at most four).

With the last two definitions of S and ψ0, Eq. (3.15) can be succinctly
rewritten as

Sψ = ψ0. (3.18)

So far the system is not yet decoupled, but it the problem is not just
shifted from an A-system to S-system. Indeed, a full coupled (or full
implicit) system is transformed into a simpler one in which the “degree of
coupling” is much lower. In the original problem, in fact, each equation
was coupled with both the preceding and the following equations; in the
new formulation, with the symbolic inversion of the block diagonal matrix

Aψ = q︸ ︷︷ ︸
full coupling

inverting ABD
Sψ = ψ0

︸ ︷︷ ︸
low coupling

,

a system is obtained, in which coupling exists only between the N th
i and

(Ni + 1)th equations for i = 1, 2, ..., n− 1. These equations are in number
of 2(n−1)

.
= m, and the sorted set of their indices is referred to as C and,

used as apex, indicates the sub-matrix or sub-vector obtained by retaining
the rows of indices C (and/or the columns, as the case may be).

So, in order to decouple the sub-systems, thus allowing a parallel res-
olution of Eq. (3.18), the “small” m×m determined sub-system involving
only coupling unknowns (ψNi and ψNi+1 for i = 1, 2, ..., n − 1) must be
extracted from it. The coefficients, unknowns and knowns are collected
into the matrix C and the vectors ψC and ψ0C respectively, all of them
highlighted in red in Fig. 3.4.3 Upon this definition, the coupling system

2Obviously the first process does not need to compute b1, whereas the last one does
not need to compute an.

3Maybe it is not wasteful to underline that C is a matrix whereas C is a set of indices
used a superscript.
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Figure 3.4: Block-structure of the matrix S with coupling terms highlighted in
red.

can be cast in the simple form:

CψC = ψ0C. (3.19)

This system is known in literature as reduced system and its matrix is
often symbolized by Ŝ [18, p. 500]. Fig. 3.4 shows only the corners of
the matrix A, and yet it is evident that C is a sparse matrix too, whose
diagonal is made up of ones. More precisely, the coupling matrix is a
pentadiagonal matrix and its sparsity pattern, depicted in Fig. 3.5, shows
that this coupling system is a block-tridiagonal system with 2×2 diagonal
blocks.

At this point Eq. (3.19) can be solved for the coupling sub-vector ψC,
whose components are the only ones affecting the matrix product S(0)ψ
in Eq. (3.15), rewritten here substituting the definition of ψ0

ψ = −S(0)ψ +ψ0, (3.20)
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Figure 3.5: Sparsity pattern of the coupling matrix C. ×-symbols on the diagonal
are simply 1-s, while those out of diagonal depends on the particular matrix A.

so that S(0) can be “compacted”, i.e., its non-null columns are extracted
and placed side-by-side to form an N × m matrix SC, and Eq. (3.20)
rewritten as

ψ = −SCψC +ψ0 (3.21)

becoming an explicit solution — at the time that ψC is available — which
can be computed in parallel.4

Summarizing, in the context of the parallel solution of the N × N
system (3.3) by means of n processes, each process does the following:

• it is assigned to Mi unknowns;

• it extracts first and last columns of A−1
i , multiplying the first by βi,

the latter by αi;

1. it solves its own system (3.17) for ψ0(i);

2. it sends ψ0(i)
1 and ψ

0(i)
Mi

to a master process (solves the coupling

system (3.19) for ψC) and receives back the elements ψ(i−1)
Mi−1

and

ψ
(i+1)
1 ;

3. it computes ψ(i) through Eq. (3.21).
4This time the apex C is used to select columns instead of rows.
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Figure 3.6: Sparsity pattern of the coupling matrix C. ×-symbols are block diag-
onal elements different from 1, while ◦-symbols are off-block-diagonal elements.

(The •-symbol indicates that the step is done una tantum.) It is evident
that the process has been not fully parallelized, because the step 2 requires
a communication between each all processes and a master process. This
is why here is the point where approximations can be inserted into the
SPIKE algorithm [18, pp. 502–503].

3.2 The truncated SPIKE algorithm

The sparsity pattern of C is repeated in Fig. 3.6 with more detail than
in Fig. 3.5, and it makes evident that the reduced system is full-coupled;
nonetheless it is easy to argue a decomposition for C that is akin to that
used for A:

C = CBD + COD.

where CBD is made up of the 2×2 diagonal blocks of C (1s and ×-symbols
in Fig. 3.6). The off-block-diagonal part, COD (◦-symbols) is made up of
the top element of each column ai and the bottom element of each column
bi;5 furthermore, ai and bi are (proportional, through αi and βi, to) the
last and first columns of A−1

i . In summary, COD is made up of the most
upper-right and lower-left elements of matrices A−1

i .
5For completeness, ×-symbols are the bottom elements of each column ai and the

top elements of each column bi.



56 3. Parallelization of linear banded systems

Theorem 2.4 [58, pp. 493–494] guarantees that, for a positive definite
and m-banded matrix M, the following inequality holds

∣∣M−1(k, l)
∣∣ ≤ Cλ|k−l|,

where both C and λ depend on the condition number κ of M. In particular

λ =

(√
κ− 1√
κ+ 1

)2/m

which implies that λ < 1,

thus guaranteeing the elements of M to decay exponentially with increas-
ing distance from the main diagonal. Matrices A−1

i are just the kind of
matrices mentioned in the hypothesis of the theorem — positive definite,
banded matrices — so it can be used. Translating the consequence of
this theorem on Ai onto C, the ◦-elements of the latter matrix decay
exponentially with increasing Mi, and so are negligible if Mi = O

(
102
)
or

more. It is clear that the approximation on which the truncated SPIKE
algorithm is based is indeed to set COD = 0 and, in turn, to make the
approximation C ≈ CBD .

= C̃, neglecting ◦-elements; the reduced system
is thus approximated by the following

C̃y′C = qC, (3.22)

It is now crucial to understand, with the aid of Fig. 3.4, that each
2 × 2 diagonal block of C̃ does not pertain to a single process, as much
as the corresponding two elements of the known term; on the contrary,
each of these 2× 2 systems is shared among two adjacent processes; as a
consequence, the method is still not perfectly parallel, but at least it does
not require global communications with a single process elected master.
This detail makes a huge difference, as explained in Section 4.9.2.

3.3 Other approximate parallelizations

As a side work, the author participated to the development of a con-
servative overlap method for multi-block parallelization of compact finite-
volume schemes [59]. The main idea behind the work, is the following. For
each block, an enlarged linear system is solved by overlapping a certain
number of neighbour cells from adjacent sub-domains. As a consequence,
the two processes on each side of the block-to-block boundary compute a
different value for the unknown on that boundary, thus endangering the
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conservation of the method. Unlike other approaches, conservation is en-
forced by properly re-computing the common interface value between two
neighbouring blocks by reapplying the same compact formula, and involv-
ing as known terms the maximum possible number of available data (see
[59, Sec. 3.2] for details).





Chapter 4

Code walk-through

This chapter contains a thorough description of the most important com-
ponents of the source code. For this reason, it should provide the reader
with enough information that allow him to modify the program with
awareness. The comments are related to the implemented numerics, and
highlight the importance of the motives behind the numerous choices and
assumptions made during the development.

4.1 Foreword

The difficulty level inherent in the work conducted by the present author
emerges from the few specifications around which the main key points for
the development of the code where addressed.

• A few specific test-case should be run, namely the Taylor-Green
Vortices, the Lid-Driven Cavity, and the Channel flow.

• Compact schemes should be used to discretize the spatial operators,
but the Harlow-Welch formulation should be allowed (so that testing
against compact schemes-related bugs is feasible).

• The computational grid should be three-dimensional, structured,
and Cartesian, and allow a variable spacing.

• A three-dimensional domain decomposition should be used, and the
problem of the process-wise resolution of the linear systems arising
from the use of compact schemes should be addressed by means of
the SPIKE algorithm.

59
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• It should be possible that the convective operator be cast in its
divergence and skew-symmetric forms.

The preceding requests translate into the following, lower-level code spec-
ifications.

• The code is requested to deal with both periodic and non-periodic
directions, implementing boundary conditions in the latter case.

• The use of classical explicit finite differences should be allowed.
Compact schemes of several orders of accuracy should be available
in a library (both explicit and compact).

• The coefficients of the schemes should be computed at runtime, and
boundary conditions should adapt to several different inner schemes.

• MPI should be used to run the code on a three-dimensional grid of
logical processes.

• Both divergence and advective forms for the convective terms should
be allowed, since the skew-symmetric one is the average of the two.

It is crystal clear that the opportunities for hard-coding are precluded,
and should not be taken either, since hard-coding, in the context of such
a large project, implies a lot of copy-and-paste — which is common error-
prone practice —, little re-usability of the code, few opportunities for the
compiler to optimize, and several other well-established drawbacks, not to
mention that the unavoidable debugging process should be conducted on
source files several-fold longer than necessary.

4.2 Need for Git

Given the estimated size of the project, a version control system (VCS)
was a foreseeably essential tool for carrying out a successful development,
without the risks of severely messing up the code while trying to implement
a feature, or forgetting the reason why an apparently cryptic edit was
done. It also allows comfortably switching among multiple development
branches, with no risk of confusion; those branches naturally spring up
when implementing some features proves to be too hard, unless another
preparatory feature is implemented beforehand.
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The chosen VCS was git, since it is widely considered unrivalled in
the software development community, due to its amenable features and
reliability [60–62], and the author had to build his knowledge of git form
the ground up, at the same time as coding.

4.3 Input/output

The program is designed to read all the input from the standard input
device /std/stdin, print part of the output to the standard output device
/std/stdout, and send errors to the standard error device /std/stderr.
These three channels are always opened, and allow a convenient interface
with the Unix shell-based user interfaces set up on almost every HPC
facility. In this respect, the Bash script naples is used as a wrapper to the
actual program, i.e., it is a layer around the true Fortran executable, and
constitutes a user interface handling input/output and options in much
the same way as any standard Unix tool does.

Concerning the output, a small fraction of it consists of some quantities
useful to monitor the running simulation (such as time, mean velocity,
energy, number of iterations for the elliptic solver to converge, wall clock
time, . . . ), which are printed to screen at each time step. A far bigger
part of output, referable to as bulk output, is represented by the complete
flowfield, saved to binary files on a time-step or time-interval basis, as
specified in the input file through the write_step key.

One typical command that the author used to enter, most frequently
on the workstation, is the following,
$ naples -n 〈#proc.s〉 -b 〈out. dir.〉 -R < 〈in. file〉 >> 〈out. file〉 & 	�
where -n 〈#procs〉 sets the number of MPI processes, -b 〈out. dir.〉 selects
the directory where the flow field binary files are piled up, -R requests
that the simulation be restarted from the latest-time flowfield contained
in 〈out. dir.〉 (if no file is available in there, an error is thrown). The classic
shell scripting redirectors < and >> are used to select 〈in. file〉 as the input
file, and 〈out. file〉 as the file to which the screen output must be appended;
the ampersand & runs the program in background, to let the shell available.

4.3.1 Example input file

An example 〈in. file〉 is the following, which can be regarded as a template,
as well. It contains lines of space separated words, consisting of one or
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more identifiers, followed by one or more values (numbers, strings, . . . ).
Comment lines starting with # are allowed, and are used in the example to
provide information about the various input lines, the meaning of which
is clarified in the following sections.

# PHYSICS
# I n i t i a l cond i t i ons
I.C. Poiseuille
perturbations 0.05
# Reynolds number ( negat ive means i n v i s c i d f low )
Re 395

# OUTPUT
# in t e r va l between two succ e s s i v e outputs to f i l e
# ( <= 0: don ’ t write , i n t ege r : time steps , r e a l : time )
#write_step −1
write_step 100
#write_step 5e−3

# GEOMETRY
# domain lengths ( negat ive values mul t ip l i ed by −π )
lengths -2 -1 2
# pe r i od i c i t y (1 = true )
periodic 1 1 0
# boundary cond i t i ons
uvw_BC Left none
uvw_BC Right none
uvw_BC Down none
uvw_BC Up none
uvw_BC Back steady_solid_wall
uvw_BC Front steady_solid_wall

# FORCES
gravity 1 0 0

# TIME
# integ ra to r ( ExplEuler , RK4)
time_integrator RK4
# stop c r i t e r i o n ( time <num> or steady_state )
stop_at time 500
# maximum number o f time steps
max_time_steps 1000000000

# NUMERICS
# convect ive term (D,A, S f o r divergence , advective , skew−symm. )
AdvDivSkew S
# e l l i p t i c s o l v e r (J = Jacobi , SRJ = Scheduled Relaxation J . )
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ell_solver SRJ
# Courant−Fr iedr i chs−Lewy number
CFL .3
# number o f c e l l s per dimension
N 32 32 32
# spac ings along each dimension ( i n t e g e r s )
spacings 1 1 1
# se l e c t i o n o f f i n i t e d i f f e r e n c e schemes
scheme dir1_der0_c2f A_L 4C_L 4C_C 4C_R A_R
scheme dir2_der0_c2f A_L 4C_L 4C_C 4C_R A_R
scheme dir3_der0_c2f A_L 4C_L 4C_C 4C_R A_R
scheme dir1_der0_f2c A_L 4C_L_b 4C_C 4C_R_b A_R
scheme dir2_der0_f2c A_L 4C_L_b 4C_C 4C_R_b A_R
scheme dir3_der0_f2c A_L 4C_L_b 4C_C 4C_R_b A_R
scheme dir1_der1_c2f 3C_L 4C_C 3C_R
scheme dir2_der1_c2f 3C_L 4C_C 3C_R
scheme dir3_der1_c2f 3C_L 4C_C 3C_R
scheme dir1_der1_f2c 3E_LL 4C_L_b 4C_C 4C_R_b 3E_RR
scheme dir2_der1_f2c 3E_LL 4C_L_b 4C_C 4C_R_b 3E_RR
scheme dir3_der1_f2c 3E_LL 4C_L_b 4C_C 4C_R_b 3E_RR
scheme dir1_der2_c2c 5C_L 6C_C 5C_R
scheme dir2_der2_c2c 5C_L 6C_C 5C_R
scheme dir3_der2_c2c 5C_L 6C_C 5C_R
scheme dir1_der2_f2f 5C_L 6C_C 5C_R
scheme dir2_der2_f2f 5C_L 6C_C 5C_R
scheme dir3_der2_f2f 5C_L 6C_C 5C_R

# TOLERANCES
# stat ionary reached
vel_tol 1e-3
# e l l i p t i c s o l v e r
ell_tol 1e-6

# MPI
# number o f proce s s e s per d i r e c t i on ( i n t e g e r s ; 0 = MPI dec ides )
np 0 0 0 	�
4.3.2 Parallel-independent output

The output to /dev/stdout, or “to screen” from a user’s perspective, is left
to the root process and, as such, it is clearly independent of the number
of processes running the simulation. The so-called bulk output, on the
contrary, is made up of all the portions of the flowfield pertaining to every
process running the simulation.

The initial approach was to make each process write the flowfield rel-
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ative to its subdomain to a file, and append the process id to each. This
clearly ruled out the possibility of restarting a procedure on a different
grid of processes, and also made the development of an external post-
processing tool necessary to the visualization of the flowfield and/or the
computation of derived quantities.

The second, adopted approach is to use MPI-2 input/output APIs
to make all processes print the whole flowfield to a single file, concur-
rently. Parallel output is thus accomplished through two subroutines: one
is named blk3D_set_output and bounded to the velocity variable (of
class Blk3D, cf. Listing 4.1, Section 4.7), and it is called only at startup
to define the MPI_fileview member, describing the view of a process over
the file (i.e. the portion of the file visible to the processes), as well as
the member MPI_inner_block, describing the non-overlap portion of the
three-dimensional array to be printed; the other subroutine (save_field)
simply uses these two datatypes to coordinate the simultaneous writes to
file (through MPI_FILE_WRITE_ALL).

Deriving an almost perfectly specular subroutine to read in the flow-
field (load_field, which uses MPI_FILE_READ_ALL) was an easy task, and
allowed a comfortable use of the restarting procedure. Restarting a sim-
ulation on a different mesh (finer or coarser) is not possible within the
Fortran program, since it would need interpolation operators acting be-
tween two completely different meshes. The work-around is easily found:
interpolating the output of save_field on a different mesh is easily done
through MATLAB’s interp3 function (or the like), whose output can be
read in by load_field. In this respect, the fact that the column-major
indexing is common to both languages, greatly simplifies the workflow.

4.4 Layout of variables and array indexing

The arrangement of fluid-dynamic variables is fully staggered, according
the well known layout extensively used in the incompressible CFD com-
munity [30], and it poses some code design problem, especially when non-
periodic directions are concerned, as it is the case for the code in object.

Fig. 4.1 shows one elemental computational cell (the building block
of the three-dimensional Cartesian domain), along with the fluid-dynamic
variables relative to it: the pressure (p) is located at the cell center, and
the velocity components (u, v, w) at the center of the faces, with each
component resulting staggered half a cell away from the pressure, in the
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Figure 4.1: Arrangement of fluid-dynamic
variables around an elemental, non-boundary,
computational cell. The 7 labelled variables
(u, v, w, p, uv, vw, wu), together with the
3 pure products of velocity components (u2,
v2, w2, located at cell center together with the
pressure p), all belong to the same depicted
cell and all share the three Cartesian indices
(i.e., each of them is the element (i,j,k) of
the respective variable). The velocity compo-
nents through the three front faces, as well as
the products of components at the 9 remain-
ing edges, belong to the neighboring cells.
Section 4.4.1 contains a thorough description
of the indexing logic, with boundary condi-
tions considered.
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negative direction of the component itself.
Due to the mutual staggering of the velocity components, the quadratic

quantities (e.g., the convective term) cannot be computed without inter-
polations or staggered differentiations of both factors. In this respect, the
choice is made that each component is interpolated/differentiated along
the direction pertaining to the other component [37]. As a result, the
mixed products (uv, vu, wu) are located at the cell edges, whereas the
pure ones (u2, v2, w2) belong to the cell center (the same location as the
pressure p in Fig. 4.1).

4.4.1 Indexing of the grids

For the sake of simplicity, we will refer in the following to the two-
dimensional layout depicted in Fig. 4.2, since it proves very useful, while
not compromising the generality. Indeed, since no third order tensors is
present in the Navier-Stokes equations, no term involves the three velocity
components together, so no variable needs to be defined at cell vertices;
as a consequence, the two-dimensional projection of a plain of cells is
representative of the mutual interaction between the variables.

In order to understand the variable indexing logic explained in the
following, it is crucial to stress the meaning of the legend entries in Fig. 4.2:

• the black arrows indicate ordinary locations, existing along both
periodic and non-periodic directions;
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Figure 4.2: Arrangement of variables in the two-dimensional case (the whole do-
main, not just a process-bounded subdomain). Note that inside the domain, it is
exactly the markers and cells (MAC) arrangement [30], whereas u (resp. v) is de-
fined also on upper and lower (resp. left and right) boundaries h/2-staggered. (In
the legend, minus means left/down/back; likewise plus means right/up/front.)

• the red arrows indicate special locations of components tangential to
the physical boundary, existing only along non-periodic directions;

• blue arrows indicate locations that exist in both cases, but are spe-
cial along non-periodic directions, and ordinary along periodic di-
rections;

• green arrows indicate special locations, existing only along non-
periodic directions (along periodic directions they are a visual copy
of the corresponding blue arrows).

In order to clarify the distinction between ordinary and special locations,
it is beneficial to sketch a 10 cells long mesh, in both the periodic and
non-periodic cases.

periodic In Fig. 4.3: the horizontal component is located at the cell
faces, and takes its index form the cell on its right; the vertical
component belongs to cell centers (with respect to the considered
horizontal direction), and takes its index from the cell itself.1

1In the more general three-dimensional case, the sentence can be reworded as a
velocity component is located at cell faces along its direction and takes its index from
the cell in the minus (i.e., left, down, or back) direction, whereas, along the other two
directions, it is at cell centers and takes the index from the cell itself.
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Figure 4.3: A periodic mesh consisting of ten cells. Indexed elements from the
bottom up: cells, horizontal components, vertical components. The 11th cell and
components do not exist, since they coincide with the 1st ones (just like the green
arrows do not exist in Fig. 4.2 since they coincide with the blue ones). (Note
that this is the whole mesh, not just a process-bounded sub-mesh.)
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Figure 4.4: A non-periodic mesh consisting of ten cells. Indexed elements from
the bottom up: cells, horizontal components, vertical components. On the two
left and right physical boundaries of the domain both components are defined,
with the location 11 being ordinary for the horizontal component, whereas the
locations 0 and 11 are special for the vertical component. (Note that this is the
whole mesh, not just a process-bounded sub-mesh.)

Table 4.1: Fist index, last index, and length of the grids along the non-periodic
x direction. The values corresponding to nx = 10 can be verified against Figs. 4.3
and 4.4.

bounds

quantity lower upper length

p 1 nx nx
u 1 nx + 1 nx + 1
v 0 nx + 1 nx + 2
w 0 nx + 1 nx + 2
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non-periodic The numbering is almost the same, but it is crucial that
some other indices be introduced, as sketched in Fig. 4.4.

• An 11th face is introduced on the right physical boundary, as
opposed the 1st face on the left physical boundary. On this
newly introduced special location, the normal velocity compo-
nent is defined, and assigned through the boundary condition.

• The vertical velocity component, which is ordinarily defined at
cell centers along the horizontal direction, must be assignable
on the left physical face — through the tangential boundary
condition —, which is not its natural position. The index for
this special location is set to 0, so as to avoid shifting the in-
dices of all the following points, which would introduce a useless
and inconvenient difference in the indexing with respect to the
periodic case.

• Similarly, a boundary condition for the tangential velocity on
the right boundary must be allowed as well, so another special
location for the cell centered vertical component is the right
physical boundary, where the index 11 is assigned to the ve-
locity. It is worth to explicitly specify that the fact that the
point 11 is the 12th point, if starting counting from 1, has no
importance at all.

Lower and upper bound of the grids along the direction x discretized with
nx cells are reported in Table 4.1, along with the extent.

Fortran can start indexing from non-positive integers

The design choice outlined so far fits perfectly with the Fortran program-
ming language, which naturally allows arrays be indexed starting from
any integer, beside the default, 1. Indeed, an explicit-shape array can be
declared in Fortran by either of the following two lines

〈type〉, DIMENSION(10) :: x1
〈type〉, DIMENSION(-4:5) :: x2 	�
the difference being in the indices of the first and last elements, which can
be accessed through x1(1) and x1(10), and x2(-4) and x2(5) respectively;
those bounds can be extracted through the intrinsic functions LBOUND and
UBOUND. A complication consequent to the use of lower indices other than
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1, is that expilcit-shape arrays got passed to a procedure (FUNCTION or
SUBROUTINE) along with their size (accessible through SIZE), not their lower
and upper bounds. Indeed, the assumed-shape dummy arguments in the
following subroutine, corresponding to the x1 and x2 actual arguments,

CALL mysub(x1,x2)
...
SUBROUTINE mysub(x1_dummy,x2_dummy)
〈type〉, DIMENSION(:) :: x1_dummy
〈type〉, DIMENSION(:) :: x2_dummy
PRINT *, LBOUND(x1_dummy) ! prints 10
PRINT *, LBOUND(x2_dummy) ! prints 10 	�

both have the same bounds 1 and 10, so x2’s lower bound, which I claimed
useful if not invaluable, gets lost. The selected solution, among the avail-
able ones, was to give up on static memory allocation: on the one hand,
explicit-shape arrays are abandoned in favor of allocatable arrays — the
flagship of dynamic memory allocation —; on the other, dummy arguments
are declared as deferred-shape arrays (available as of Fortran 2003). As a
result, the array gets passed along with its bounds.

〈type〉, DIMENSION(:), ALLOCATABLE :: x
...
ALLOCATE(x(-4:5))
CALL mysub(x)
...
SUBROUTINE mysub(x_dummy)
〈type〉, DIMENSION(:), ALLOCATABLE :: x_dummy
PRINT *, LBOUND(x_dummy) ! prints −4
... 	�
In addition to allowing the comfortable use of arrays with lower bounds

other than 1, the use of allocatable arrays, in place of standard ones, brings
several advantages and resolves disadvantages of old Fortran program-
ming, as thoroughly expressed throughout good Fortran manuals [63].

4.5 The Cartesian grid of MPI processes

When the program is run in parallel on p processes, an MPI communicator
with a three-dimensional Cartesian topology attached to it (cf. Fig. 4.5a),
namely procs_grid, is created through MPI_CART_CREATE.2

2As explained in Section 6.3.1, the program cannot run with less than 2 processes per
direction, so it is the user’s responsibility to request, through the option -n〈#proc.s〉,
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Afterward, the subroutines MPI_CART_COORDS, MPI_CART_SHIFT, and
MPI_CART_SUB are used to make each process aware of its “role” in the
topology, and each bit of information is used in several parts of the code.

• The identities of the two neighbors in the generic direction 〈dir.〉, are
stored in idm(〈dir.〉) and idp(〈dir.〉), with m and p standing for minus
and plus respectively. idm and idp are mainly used for two reasons:

– as source and destination ranks in send-like and receive-like
MPI APIs;

– to determine if the current process is adjacent to the bound-
ary, through the checks idm(〈dir.〉)) == MPI_PROC_NULL and
idp(〈dir.〉)) == MPI_PROC_NULL (MPI_PROC_NULL means “none”).

• The handles to the three orthogonal pencils, which the process be-
longs to (one-dimensional communicators, e.g., the yellow and green
processes in Fig. 4.5b), are stored in the array pencil_comm(1:3),
and are used for

– the communications relative to the SPIKE algorithm, which
acts on one-dimensional operators,

– the communication of pure quadratic convective terms (u2, v2,
w2, uux, vvy, wwz), which need be exchanged only along one
direction.

• Similarly, the handles to the three orthogonal slabs, which the pro-
cess belongs to (two-dimensional communicators, e.g., the blue and
green processes in Fig. 4.5b), are stored in the array slab_comm(1:3),
and are used only the communication of mixed quadratic convective
terms (uv, vw, wu, uvx, vwy, wuz, uyv, vzw, wxu), which need be
exchanged along two directions.

4.6 Process-local array indexing

Once the Cartesian communicator procs_grid is created — which means
that the number of processes along each direction is known, stored in the

a total number of processes p which is the product of at least three integers greater
than 1; provided this condition, MPI_DIMS_CREATE determines a balanced dimension
P1 × P2 × P3 for the grid, such that p = P1P2P3.
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(a) Sketch of the three-dimensional MPI
topology with a 3 × 3 × 3 process grid.
This is the three-dimensional commu-
nicator procs_grid, whose dimensions
are stored in dims(1:3).

x

y

z

(b) A process (green) with two of the
seven communicators it belongs to, e.g.,
pencil_comm(3) and slab_comm(3).
All communicators contain the current
process as well.

Figure 4.5: Communicators with Cartesian topology attached. Processes in (b)
are extracted from (a).

global variable dims(1:3) —, the total numbers of cells along the three
directions, Ntot(1:3), can be distributed among the processes.

Essentially, the integer division of the total number of cells by the
number of processes is computed; then it is augmented by 1 for the leading
r processes, where r is the remainder of the integer division. At the same
time, the cells local to each process are indexed starting from 1; then the
indexing of cell-centered and face-centered locations is inherited from that
of the cells, according to Section 4.4, and extended to take overlaps into
account. The resulting indexing pattern is shown in Fig. 4.6, where a
non-periodic mesh is distributed among three processes. Note that the
middle process, which handles 5 cells, allows overlaps on both sides, and
is therefore illustrative of the periodic case (in which “all processes are
in the middle”). Similarly, the other two processes use the same overlap
indexing, and share Fig. 4.4’s special indexing of boundary variables.

4.7 The Blk3D class

Every scalar local fluid-dynamic variable is stored in a rank-3 array resem-
bling the three-dimensional geometry of the physical domain. Given the
conventions about the one-dimensional indexing explained in Section 4.4.1
and adopted in Figs. 4.3, 4.4 and 4.6, it is clear that each fluid-dynamic
variable has its own indexing based on where it is located (at center/-
face/edge/. . . of the cell), even though those indices are tightly related to
each other. Instead of hard-coding some offset variables, manually used to
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treat differently the various variable-containing arrays, the choice was to
create the derived datatype Blk3D — typeset in Listing 4.1 — which con-
tains the aforementioned rank-3 array (in the member values), together
with a set of other useful members bounded to it, indices included.

The fundamental variables of class Blk3D are declared as follows,

TYPE(Blk3D), DIMENSION(ndims), TARGET :: velocity
TYPE(blk3D), DIMENSION(ndims,ndims) :: velvel, dervel
TYPE(blk3D), DIMENSION(ndims) :: convvel, diffvel 	�
(where ndims is a PARAMETER with value 3, since the solver is intrinsically
three dimensional) and their content is as follows, using the same notation
adopted by Morinishi et al. [37],

• velocity(i) unsurprisingly contains ui;

• velvel(i,j) contains uxij at the beginning of a time-step, and uxij u
xj
i

at the end of it.

• dervel(i,j) contains δuj/δxi at the beginning of a time-step, and
u
xj
i δuj/δxi at the end of it.

• convvel(j) contains
∑

i u
xj
i δuj/δxi.

• diffvel(j) contains the approximation of
∑

i ∂
2uj/∂x

2
i .

With reference to the generic three-dimensional scalar field stored in the
variable 〈var.〉 of type Blk3D among those just listed, all these informa-
tions are contained in 〈var.〉%b, 〈var.〉%b_bc, 〈var.〉%b_bo, and 〈var.〉%b_ol, as
follows.

• The integer 〈var.〉%b(〈dir.〉,1:2) stores the indices of the first (1) and
last (2) elements along the 〈dir.〉 direction, excluding boundaries and
overlaps; it is determined as soon as the cells are distributed among
processes.

• 〈var.〉%b_bc(〈dir.〉,1:2) stores the same indices when boundaries are
included and overlaps are excluded ; also this array is determined just
after the cell are distributed.

• 〈var.〉%b_ol(〈dir.〉,1:2) stores the same indices when boundaries are
excluded and overlaps are included ; this array is stored after the
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compact schemes are build, since the number of overlap layers de-
pends on the number of sub- and super-diagonals of the B matrix,
i.e., on the members ld and ud of the CDS type.

• 〈var.〉%b_bo(〈dir.〉,1:2) contains a copy of the corresponding element
of the %b_bc member if the process is adjacent to the boundary along
that oriented direction, otherwise a copy of the same element from
%b_ol; it is computed just after 〈var.〉%b_ol(〈dir.〉,1:2).

Concerning the MPI exchanges, since they are performed in order to
make available all the quantities to each process, so that each can compute
derivatives and interpolants, it is clear that the exchange should occur only
along certain directions; for instance, each velocity components must be
exchanged in all three directions, since each of them undergoes computa-
tions along all directions, whereas uv undergoes differentiations only along
the directions x and y, so the exchange along z should not take place. In
order to take these informations into account, the POINTER member 〈var.〉
%comm points to the appropriate MPI Cartesian (sub-)communicator’s han-
dle (either the pencil or slab sub-communicators in Fig. 4.5b, or the whole
three-dimensional grid of Fig. 4.5a).

Listing 4.1: Blk3D class.
MODULE class_Blk3D
...
TYPE, PUBLIC :: Blk3D

! Rank-3 array containing the 3D flowfield
REAL, DIMENSION(:,:,:), ALLOCATABLE :: values
! Lower and upper indices
INTEGER, DIMENSION(ndims,2) :: b
INTEGER, DIMENSION(ndims,2) :: b_bc
INTEGER, DIMENSION(ndims,2) :: b_ol
INTEGER, DIMENSION(ndims,2) :: b_bo
! Communicator and datatype to exchange
INTEGER, POINTER :: comm
INTEGER, DIMENSION(:), ALLOCATABLE :: &

& array_of_s_types, array_of_r_types
INTEGER, DIMENSION(:), ALLOCATABLE :: &

& array_of_s_counts, array_of_r_counts
INTEGER(MPI_ADDRESS_KIND), DIMENSION(:), ALLOCATABLE :: &

& array_of_s_displs, array_of_r_displs
! Data-types to write to file
INTEGER :: MPI_inner_block, MPI_fileview
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CONTAINS
PRIVATE
! Specific type-bound procedures for generic support:
PROCEDURE, PASS :: blk3D_set_output
PROCEDURE, PASS :: blk3D_exchange
...
PUBLIC
! Ordinary type-bound procedures
! Generic type-bound procedures, assignment (=) and operators (+, -, *, /, ...)
...

END TYPE Blk3D
CONTAINS

! Body of the procedures
...

END MODULE class_Blk3D 	�
4.8 Compact operators

One compact schemes is defined for each of the several operators acting
on the fluid-dynamic variables.

• Firstly, there are operators to compute interpolants, as well as first
and second derivatives;

• furthermore, for each order of differentiation (0, 1, 2) two operators
are required, one for center-to-face and center-to-center operations
(interpolation and first differentiation, and second differentiation,
respectively), the other for face-to-center and face-to-face operations
(ditto);

• finally, these schemes must be allowed to be different along the three
direction, at least to allow both periodic and non-periodic directions
(the former do not need boundary schemes, unlike the latter).

With these three requirement outlined, all the needed compact schemes
are grouped together in the rank-3 array variable declared as

TYPE(compact_type), DIMENSION(ndims,0:2,2), TARGET :: cmp 	�
each element of which is of type compact_type, a user defined derived data
type to be defined shortly. The general element cmp(i,j,k) contains the
compact operator for the jth derivative, along the direction i, operating
on values located at cell centers if k = 1, or at cell faces if k = 2.
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Since compact schemes consist of two matrices, one multiplying the
array of unknowns, the other multiplying the array of knowns, and both
these matrices are banded, it is natural that compact_type contains the
LHS and RHS matrices as members.3 Because the specific schemes are
selected through some identifying strings expected in input (see Sec-
tion 4.8.1), it is natural, as well, to include another member aimed at
storing those strings, as soon as they are read from the input file, before
parsing them at the time that the matrices are populated with coefficients.
The definition of compact_type is thus the following,
TYPE compact_type
TYPE(CDS) :: A
TYPE(CDS) :: B
CHARACTER(LEN = 20), DIMENSION(:), ALLOCATABLE :: sch
INTEGER :: N

END TYPE compact_type 	�
• The sch member is an array of strings, 20 characters long at most,

whose central element sch(0) is aimed at containing the identifier of
the scheme used in the inner part of the domain (generally a symmet-
ric scheme), while the surrounding elements sch(〈#left sch.〉:-1) and
sch(1:〈#right sch.〉) must contain the boundary and near-boundary
schemes. Clearly, in the periodic case only the central element is
used, while surrounding strings are ignored, if provided.4

• N is a member of convenience to easily access the number of equations
relative to a compact scheme, a number otherwise retrievable from
either A or B member, which are the core of compact_type.

• The members A and B are aimed at containing the true differential
operators, in the form of banded matrices filled with the coefficients
determined at runtime, based on the selected schemes (saved in the
sch member) and on the metrics of the mesh. Both variables are of
type CDS, a user defined derived data type described in Section 4.8.2
and used to store banded matrices in Compressed Diagonal Storage
format, as defined in [64] (Fig. 4.7 is self-explanatory in this regard).

3The term “member” is the name used for variables/functions constituting C++’s
structs, but it is preferred here, since the standard Fortran’s term “component”, could
cause confusion with the components of a vector or array.

4This automatic discarding of unnecessary boundary schemes is useful, since it allows
switching on/off the periodicity of a direction with no need to change the scheme-
specification part of the input file.
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4.8.1 Selection of finite difference schemes from input

Before going in depth into the CDS derived data type, it is worthwhile to
describe how the finite difference schemes are selected, from those available
in the library, on the basis of the corresponding input lines, i.e., what is
the meaning of the sch member. A typical line consists of an odd number
of space separated strings, e.g.,

scheme dir3_der0_f2c A_L 4C_L_bidiag 4C_C 4C_R_bidiag A_R 	�
which undergoes the following processing.

1. The word scheme is the keyword to tell the parsing routine that the
sourced line selects numerical schemes, so it is thrown away once
read;

2. the underscore-separated string dir3_der0_f2c specifies that all the
following strings, up to the EOL, must be used to select schemes
for the interpolation (der0) from faces to centers (f2c) along the 3rd

direction (dir3); once read, these three directives are used to select
the operator cmp(3,0,2) (c2c and c2f are converted to 1, whereas
f2c and f2f are converted to 2);

3. each of the following five strings (n in general, with n odd by
necessity) A_L, 4C_L_bidiag, 4C_C, 4C_R_bidiag, and A_R, is con-
veniently appended to der0_f2c and the result is collected into
cmp(i,j,k)%sch(-2:+2), symmetrically around the element of index
zero.

4. (a) If the direction i is non-periodic, the two strings A_L and
4C_L_bidiag stored in cmp(i,j,k)%sch(-2:-1) are used to de-
termine the coefficients with which the first two rows of the
matrices cmp(i,j,k)%A%matrix and cmp(i,j,k)%B%matrix, are
filled (starting the count from the topmost one); likewise,
the last two rows are filled based on cmp(i,j,k)%sch(+1:+2)

(strings 4C_R_bidiag, and A_R); all other rows are determined
according to cmp(i,j,k)%sch(0) (string 4C_C).

(b) If the direction is periodic, all the rows are equally filled with
coefficients of the scheme specified by cmp(i,j,k)%sch(0).

It is worthwhile to note that the strings A_L, 4C_L_bidiag, 4C_C,
4C_R_bidiag, and A_R of the input line, once the string der0_f2c is
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prepended to each of them, uniquely identify a scheme in the library,
since they are used as case selectors in a SELECT CASE construct. Upon
inserting a new scheme in the library, the identifying string can be chosen
with complete freedom, as long as it does not coincide with an already
existing identifier. For instance, the string der0_f2c_A_L was chosen to
identify an Assignation equation for the Left boundary variable, whereas
the string der0_f2c_4C_C was chosen to identify the fourth order central
compact scheme for the interpolation. The trailing _bidiag substring
in der0_f2c_4C_R_bidiag was put there just to distinguish a newly in-
troduced scheme from an existing one, which already used the identity
der0_f2c_4C_R.

This way of selecting the numerical schemes from input was decided
by the author in order to guarantee that compact schemes of different
order of accuracy could be chosen for the inner part of the domain, and
that an appropriate number of asymmetric schemes could be selected on
both boundaries to close the system of equation. Despite this pragmatic
motive, this implementation turned out to be a very powerful feature,
which provides extreme versatility in that it allows a fine-grained choice
of the schemes.5 Indeed, despite the list of schemes is commonly of the
type

s−B, s−B+1, . . . , s−2, s−1, s0, s1, s2, . . . , sB−1, sB

which is used to select a main, central scheme s0 to be used throughout
the domain, except at B few points at the left and right boundary and
close to them, it is also possible to assign different schemes at different
mesh points, using a list like the following

s1, s2, . . . , sN

or to insert one scheme s̃ to be tested in the middle of a well-tested list of
schemes, e.g.,

s−B, s−B+1, . . . , s−1, s0, . . . , s0, s̃, s0, . . . , s0, s1, . . . , sB−1, sB

The limitation about the odd number of strings, i.e., that the schemes
on the left and on the right of the central one must be the same in number,
is only apparent. For instance, if three boundary schemes must be applied
to the right boundary and only one to the left, then it is enough to replicate

5Actually, at the time of writing, this is possible only along non-periodic directions.
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thrice the string relative to the central scheme, obtaining the list

s−1, s0, s0,︸ ︷︷ ︸
“balance” s2 and s3

s0, s1, s2, s3.

About c2c/c2f/f2c/f2f

It should be already clear that the string 4C_C actually identifies different
schemes depending on the der*_*2* string prepended to it: together with
der0_f2c it identifies the fourth order central compact scheme for the
interpolation, whereas it identifies the Padé scheme if the string der1_f2c

is prepended.
On the other hand, leaving aside non-uniform mesh-related concerns,

the Padé scheme, or any other finite difference scheme, should not depend
on whether the unknown and known values are at faces and centers respec-
tively, or vice-versa. Indeed, they do not. The importance of the substring
defining the one or the other “staggering” (c2c/c2f versus f2f/f2c) lies
in the ordering of variables as described in Section 4.4, which is tightly
related to the ordering of equations.

For instance, the string c2f signifies that the variable with index j
appearing at the RHS is located at a center, i.e., after (e.g., on the left
of) the variable j appearing at the LHS, which is located at the cell face.

This distinction is essential to the correct insertion of the coefficients
in the finite difference matrix operators.

4.8.2 Storage of banded matrices

The concept of the CDS format for a banded matrix, revealed in advance
in Section 4.8, is soon understood upon observing Fig. 4.7. The corre-
sponding CDS derived data type is defined as follows,

TYPE CDS
REAL, DIMENSION(:,:), ALLOCATABLE :: matrix
INTEGER, DIMENSION(2) :: lb, ub
INTEGER :: ld, ud
INTEGER :: lid, uid

END TYPE CDS 	�
Clearly, the same type CDS is used for both the A and B matrices in
Eq. (2.4), both of which are banded, multiply an array, and return an array.
The matrixmember is a rank-2 array, whose columns store the diagonals of
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the actual banded matrix, and must be populated with the coefficients of
the selected compact schemes.6 The lower and upper bandwidths of such
matrices are computed based on the selected schemes, and their values are
stored in the members ld and ud respectively, both positive integers.7

The meaning of the remaining members (the rank-1, dimension-2 ar-
rays lb and ub) is related to the indexing of variables as defined in Sec-
tions 4.4 and 4.6, and is a bit tricky, at the point that a foreword is
imperative, and a sketch like the one in Fig. 4.7 is of great help. With
reference to Fig. 4.6 and to the compact scheme discretizing the staggered
first derivative of u along the non-periodic x direction, the matrix B is
right-multiplied by the discretization of u, which is located at faces and
indexed from 1 to 17, so these are the chosen indices of B’s first and
last columns; likewise, since A is right-multiplied by the sought quantity
∂u/∂x, located at cell centers as well as first and last physical faces, and
indexed from 0 to 17, these are the indices chosen for the first and last
columns of A. At this point, the indices of A’s and B’s rows seem to have
little significance, since they are nothing more than equation indices and
could be freely chosen; on the contrary, it is extremely convenient to set
these indices equal to those of A’s columns, which eases a lot the coding
of matrix-columns multiplication routines, among other advantages. To
conclude the example, the indices of matrices and arrays relative to the
application of the aforementioned compact scheme are collected here:

[0, 17]× [0, 17] [0, 17]× 1 [0, 17]× [1, 17] [1, 17]× 1
A × y′ = B × y.

as well as in Fig. 4.7. The lower and upper row indices are stored in the
members lb(1) and ub(1), whereas those of the columns are stored in
lb(2) and ub(2).

The given definitions of the members lb and ub, and ld and ud, should
make clear that, once these values are computed, the member matrix of
the generic CDS variable 〈mat〉 is allocated by the following statement

ALLOCATE(〈mat〉%matrix(〈mat〉%lb(1):〈mat〉%ub(1), -〈mat〉%ld:+〈mat〉%ud)) 	�
6Actually this choice is not the most efficient, as discussed in Section 6.3.3, especially

for processes adjacent to the boundary.
7The members uid and lid contain “alternative” values of the bandwidths, to the

benefit of the performance in the case of non-periodic directions as explained in Sec-
tion 4.8.3.
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diagonals:

-5 -4 -3 -2 -1 0 1 2 3 4

rows:
0 (0)
1 (1)
2 (2)
3 (3)
4 (4)
5 (5)
6 (6)
7 (1)
8 (2)
9 (3)
10 (4)
11 (5)
12 (1)
13 (2)
14 (3)
15 (4)
16 (5)
17 (6)

columns: 1 2 16 17

-5 -4 -3 -2 -1 0 1 2 3 4

diagonals along columns:

Figure 4.7: Left: sparsity pattern of a possible non-circulant B matrix for the
computation of the first derivative at the cell-centers and physical faces of Fig. 4.6,
based on the values given at cell faces. Right: sparsity pattern of its CDS for-
mat. Indices of rows, columns, and diagonals are labelled as well, according to
Fig. 4.6. The red, dashed rectangles illustrate the partitioning of the matrix
among three processes (the row indices in parenthesis are indeed the local indices
of the row/equation/unknown). See Section 4.8.3 for details.

4.8.3 Distribution of banded matrices

Once the banded matrices of compact schemes are formed by the master
process, they are distributed among other processes through the APIs
MPI_ISEND and MPI_RECV.8 The rows of A and B that each process must
receive are those with the same indices as the locations (faces or centers)
where the unknowns local to the process are prescribed. The red, dashed
lines in Fig. 4.7 represent the sub-matrices relative to three processes (see
Fig. 4.6 for the grids).

The number of null elements in the CDS format of the global matrix
is clearly relevant, due to the boundary conditions protruding far beyond

8In this respect, a call to the collective MPI_SCATTERV could condensate the pair
MPI_ISEND/MPI_RECV, thus allowing for further code optimization from the compiler,
but it is not actually needed, since this distribution is done once and for all, and has an
overall negligible computational cost.
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the band relative to inner schemes. After the matrix is cut in chunks and
scattered to the three processes, the problem is overcome for processes not
adjacent to the boundaries, and slightly alleviated for processes touching
either boundary (the zeros are almost halved in number, in the latter case).
A discussion about a definitive alternative is presented in Section 6.3.3.

With reference to the CDS datatype, the members ld and ud would
store the numbers −3 and 2 respectively, in the case of Fig. 4.7.

4.9 The count of communications

The Taylor-Green Vortex test-case is used in Chapter 5 to assess the per-
formance of the developed solver, in terms of scalability. The results are
still unsatisfactory, but no more than the CFD solver in object is a brand-
new code, developed in relatively little time, considering the given specifics
(cf. Section 4.1).

The topic of poor performance — likely caused by a number of memory
usage-related issues —, and possible strategies to remedy it, are discussed
in Chapter 6. On the other hand, it is important here to compare the num-
ber of the MPI communication calls and the amount of data exchanged,
as compared to 1D and 2D domain decomposition-based solvers, e.g., In-
compact3D [9–11]. 9

4.9.1 Count for slab- and pencil-based solvers

When the one-dimensional domain decomposition approach is chosen, the
domain is cut along one direction, as depicted in Fig. 4.8a, and each pro-
cess is given one of these slab-shaped subdomains. Since each subdomain
extends all the way across the domain along two directions (e.g., x and y),
the process holding those data can perform all differentiations/interpola-
tions along that two directions (ux, uy, vx, vy, wx, wy, . . . ); afterward,
the MPI program switches to the other state of the decomposition, and all
remaining operations along z are performed. It is worthwhile to specify
that the maximum number of processes allowed with this parallelization
on a Nx ×Ny ×Nz global grid (with Nx ≤ Ny ≤ Nz) is Ny.

Similarly, when the two-dimensional domain decomposition approach
is chosen, the domain is cut along two directions, as depicted in Fig. 4.8b,

9The count comparison is not fair since Incompact3D uses a partially stagger mesh,
so the products of velocity are computed with no need for “preparatory” interpolations.
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(a) The two states of the 1D do-
main decomposition approach.

(b) The three states of the 2D (pencil-based) do-
main decomposition approach.

Figure 4.8: Configurations needed for slab- and pencil-transposition-based do-
main decompositions.

and each process is given one of these pencil-shaped subdomains, hence
the name of pencil decomposition. Since each subdomain extends over
the entire length of the domain along one direction (e.g., x), the process
holding those data can perform all differentiations/interpolations along
that direction (ux, vx, wx, . . . ); afterward, the MPI program switches to
the y state of the decomposition, so that all operations along y can be
performed; and so on. The maximum number of processes allowed in this
cases is is NxNy.

In both cases, the transposition implies a “volumetric” exchange of
data among the processes, which is accomplished through the subroutine
MPI_ALLTOALLV, at the end of which, the geometric portion of the domain
held by the processes is changed (switching among two or three configura-
tions in the two variants). This is the reason why the author refers to this
decompositions by the adjective dynamic. In other words, all the total
volume of data is moved in memory, for each variable. The total count of
global transpose operations per time-step is claimed to be between 55 and
67, depending on the boundary conditions [9].

Since the pencil -based approach is considered superior to the other,
earlier alternative, the comparison is made with it only. Furthermore, since
Incompact3D solves the Poisson equation in the spectral space, whereas
the code in question uses an inadequate iterative solver in the physical
space (see Section 4.10 for details), the comparison is made after deducting
the pressure-related exchanges, which add up to 4 to 16 global operations.

In conclusion, this parallelization technique requires about 51 global
operations per time-step, each involving NxNy processes, and transferring
the whole volume of dataN3, for a total of 51N3 floating points transferred
per time-step, being N an appropriate average of Nx, Ny, and Nz.
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Figure 4.9: Exchange blocks relative to a subdomain, each consisting of a number
of layers which depends on the specific compact schemes used. Two, four, or
all blocks are exchanged, depending on the specific variable, as explained in
Section 4.7.

4.9.2 Count for the developed code

The SPIKE algorithm developed in Chapter 3, allows the implementation
of a static three-dimensional domain decomposition, within which no pro-
cess holds all data along any direction, and the portion that it holds is
the same throughout the entire run. In the following, the assumption is
made that the meshgrid and the process grid have size N × N × N and
P × P × P , respectively, with no loss of generality. Concerning the load
per process, in light of the resolution of the reduced system inherent in the
SPIKE algorithm, it is necessary that the ratio N

P be greater than some
threshold τ ; as a consequence, the maximum number of processes allowed
is
(
N
τ

)3.
For each compact scheme of the form Aψ = Bϕ, each process needs to

exchange a few layers of data with the 2 neighbors in the given direction,
in order to compute the product q = Bϕ; then, the “provisional” solution
is computed with no exchange; successively, two pencil-local exchanges are
needed to provide each process with the corrective coefficients; finally, the
correction is applied with no need for further communications. Fig. 4.9
gives a visual representation of the blocks of data (each consists of few
layers, depending on the specific schemes) to be exchanged for a quantity
such as u (which undergoes differentiations/interpolations along all three
directions); clearly only four or two blocks are exchanged for uv and u2,
and the like (see Section 4.7). More in detail, the flow of computations
and communications per time-step is as follows,

1. ` layers are exchanged with the 2 neighbors along the three direc-
tions for each of the three velocity component, for a total of 32` lay-
ers exchanged; in the present implementation, this communication is
accomplished through only 3 calls to MPI_NEIGHBOR_ALLTOALLW, each
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involving the 6 neighbors. (These calls would be condensed into
1, if the upgrade outlined in Section 6.3.4 is to be applied.) Down-
stream of the communication, the product q = Bϕ can be computed
locally.10

2. Each component of velocity is interpolated and differentiated to the
degrees 1 and 2 along each direction, resulting in the parallel res-
olution of 33 systems Aψ = q, which is possible thanks to the
SPIKE algorithm. In this context, each application of the algo-
rithm requires 2P layers to be exchanged twice with the master
process, through MPI_GATHER, before the reduced system is solved,
and MPI_SCATTER, after. The total amount of exchanges is therefore
3322P layers, through 332 collectives, each called within a pencil of
processes. After the communications, the computation of the vari-
ous interpolants and derivatives can be completed locally, and the
diffusive contribution needn’t undergo further exchanges.

3. ` layers of the 32 “advective” products uiuj are exchanged with
two neighbors (each product is exchanged in only 1 direction); the
same is done for the 3 pure “divergence” products uiui; ` layers
of the 3 independent mixed “divergence” products (uiuj with (i −
j) mod 3 6= 2) are exchanged along 2 directions. The total is 322`
layers exchanged, accomplished through 15 (= 32 + 3 · 2) calls calls
to MPI_NEIGHBOR_ALLTOALLW, 12 (= 32 + 3) involving 2 processes, the
remaining 3 involving 4 of them. Virtually these 15 calls could be
regrouped in fewer communications, just like in step 1.11 Once the
communications are completed, the product q = Bϕ can be com-
puted locally.

4. Each communication in step 3 corresponds to the resolution of a
systems Aψ = q, so the last and final step consists of 3222 calls to
MPI_GATHER/MPI_SCATTER (each called within a pencil of processes)
for a total amount of 3223P layers exchanged.

The communication count conducted so far is concisely expressed in
Table 4.2, where it is apparent that Incompact3D uses less then half the

10` refers to the number of layers exchanged with the processes in the minus and
plus directions, added together, so it equals exactly the inner bandwidth of B (see
Section 4.8.2). Each layer consists of

(
N
P

)2
REAL numbers.

11Reducing all 15 calls to 1 is questionably advantageous, due to the distance in
memory of the involved arrays, but the reduction by one third should pay off
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Table 4.2: Communication count.

routine # calls exchanged REALs
per process

MPI_NEIGHBOR_ALLTOALLW 3 + (32 + 3 · 2) = 18 33`
(
N
P

)2

MPI_GATHER/MPI_SCATTER 332 + 3222 = 90 (3322 + 3223)P
(
N
P

)2

total 108 (180P + 27`)
(
N
P

)2

MPI_ALL2ALLV ([9]) 51 N

calls of the developed code. This observation is, in fact, deceptive, for the
following reasons.

• The number of calls to MPI_GATHER/MPI_SCATTER can actually be re-
duced by a factor two if MPI_ALLGATHER is called in their stead, thus
reducing the 108 to 63.

• The 18 calls to MPI_NEIGHBOR_ALLTOALLW can be contracted by a
factor 3, thus reducing the number of calls to exactly 51.

• The call to MPI_ALLGATHER or MPI_GATHER/MPI_SCATTER is reportedly
cheaper than a call to MPI_ALLTOALLV.

• the MPI_NEIGHBOR_ALLTOALLW is a neighbor collective, in that it in-
volves only the 6 surrounding processes [65], and, as such, it is much
cheaper than MPI_ALLTOALLV, which involves all processes in the com-
municator.12

Regarding the amount of data exchanged, in light of the fact that the
ratio N/P can be held fixed to, say, the threshold τ , while the number
of processes grows together with the mesh size, and that the number of
layers ` is a small number only depending on the selected schemes, the
total in Table 4.2 can be rewritten as

180τN + 27`τ2, (4.1)

which is linear with N , even if considerably greater than.

12Even though one-dimensional sub-communicators can be used, thus reducing to P
the number of processes participating to each call.
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On the other hand, as long as the HPC technology advances, and bigger
and bigger simulations are to be run, with the number of cells growing as
N3, the number of maximum processes allowed by the present approach is
asymptotically greater than that relative to a pencil-based decomposition.
Indeed, for τ = 10, the present solver allows N3

1000 processors, which is more
than N2 (the processes allowed by the pencil based decomposition) for
N > 1000.

The last, most important observation, is that Table 4.2 shows that
the quantity of exchanged values, Eq. (4.1), varies with N only in conse-
quence of the collectives MPI_GATHER/MPI_SCATTER, which are necessary to
the SPIKE algorithm. If the truncated variant of the SPIKE algorithm, as
described in Section 3.2, is implemented, then the number of exchanged
values in step 2 and 4 at page 85 do not depend on P , and the total
amount of exchanged data in Eq. (4.1) do not depend on N .

4.10 The Poisson equation for the pressure13

The Poisson equation stemming from the employed pressure-correction
method, is discretized by means of the classic explicit second order finite
differences (for the reasons explained in Section 6.1.1) and solved in the
physical space, preferably through the so-called Scheduled Relaxation Ja-
cobi method (SRJ) [66], which is select by the input line ell_solver SRJ.
Such a method yields substantial reduction in the number of iterations
needed for the iterative solution to converge, as compared to the classical
Jacobi method (which is implemented in the code, and selectable through
ell_solver J).

The way the divergence and gradient operators are built, is coherent
with all other spatial operators throughout the code, therefore higher order
formulæ can be used, in principle; on the other hand, the Laplace operator
is derived as the matrix product between the B matrices of the divergence
and gradient operators, thus preventing the use of compact schemes (in
that case, the matrices A−1B relative to the two operators should be
explicitly computed; see Section 6.1.1 for details). The use of higher order
explicit finite differences is possible, even though it is not tested, but the

13The Fortran module dealing with elliptic equations was not developed by the present
author, who was involved only in so far as he defined the input/output variables: one
rank-3 array in input containing the divergence, 1 rank-3 array in output containing
the pressure.
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specific schemes cannot be requested in the input file, since the identifying
strings are hard-coded in the source files (as it is done for other operators,
cf. Section 4.8.1.



Chapter 5

Applications

In the following pages the CFD solver described in Chapter 4, which ap-
plies compact schemes in parallel through the SPIKE algorithm (Chap-
ter 3) is used to solve the incompressible Navier-Stokes equations in various
test-cases that are well-known in literature and studied worldwide in the
fluid-dynamic community.

5.1 Set up

Continuity and momentum equations, in non-dimensional form, are the
following





∇ · V = 0

∂V

∂t
+ V ·∇V = −∇p+

1

Re
∇2V .

(5.1a)

(5.1b)

Eqs. (5.1a) and (5.1b) are solved with a standard pressure-correction
scheme [67]: first, the current velocity V n is advanced without the contri-
bution of the pressure term, so that a non-incompressible velocity field V ∗

is obtained; then, the pressure is computed as the solution of the Poisson
equation obtained by enforcing the incompressibility of V n+1 = V ∗−∇ p;
finally, the ∇ p is subtracted to V ∗ to get V n+1.

89
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5.2 Preliminary results

In this section the results are presented for a pair of two-dimensional flows,
namely the Lid-Driven Cavity and Taylor-Green Vortex flows. For these
two-dimensional tests, a simpler MATLAB script is used in place of the
Fortran solver.1 Originally, this code was a tool to the development of
the SPIKE algorithm, as derived in Chapter 3, and in fact works as an
emulator (actual decomposition, no actual parallelism); at the same time,
it served as a tool for testing the compact schemes applied to the Navier-
Stokes equations.

5.2.1 Two-dimensional lid-driven cavity flow

The laminar, incompressible flow in a square cavity, whose top wall moves
tangentially with a uniform velocity, has served over and over again as a
model problem for testing and evaluating numerical Navier-Stokes solvers
[68]. Indeed, its importance comes from a number of interesting physical
features peculiar to this test-case, which goes by the name of Lid-Driven
Cavity flow. Among these, a primary vortex developing with increasing
Reynolds number [69], an infinite sequence of viscous corner eddies at the
two consecutive stagnation corners [70], as well as a particular singular-
ity at the other two corners, where the moving wall meets with the two
stationary side walls, [71–73].

The fluid-dynamic community clearly faced the two-dimensional vari-
ant of this test-case first, for which a wide corpus exists, today, that fur-
nishes the basis for comparison; Ghia et al. [29] and Schreiber et al. [74]
were among the first to publish benchmark data about it. The former is
taken as reference.

The specific compact schemes for the spatial discretization are partly
chosen consistently with Boersma [34] (choices from another reference
where considered with caution, for being about compressible simulations
[25]). Specifically, the stencils relative to each operator are reported in
Figs. 5.1 to 5.6, where they are sketched close to the grid, to clarify how
they are used. Concerning the coefficients, as explained in Section 2.2,
they are relative to the maximum order of accuracy allowed on the sten-
cil, unless otherwise specified by a number attached to the symbol.

1As explained in Section 4.5, the program cannot run with less that two processes
per direction; in turn, a true two-dimensional run is not possible, since it would require
the use of one single cell along the spanwise direction.
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Table 5.1: Values of the stream function on the streamlines depicted in Figs. 5.7
to 5.9. Extracted from [29, Tab. III, p. 403].

Contour letter Value of ψ Contour # Value of ψ

a −1 × 10−10 0 1 × 10−8

b −1 × 10−7 1 1 × 10−7

c −1 × 10−5 2 1 × 10−6

d −1 × 10−4 3 1 × 10−5

e −1 × 10−2 4 5 × 10−5

f −3 × 10−2 5 1 × 10−4

g −5 × 10−2 6 2.5× 10−4

h −7 × 10−2 7 5 × 10−4

i −9 × 10−2 8 1 × 10−3

j −1 × 10−1 9 1.5× 10−3

k −1.1 × 10−1 10 3 × 10−3

l −1.15 × 10−1

m −1.175× 10−1

The simulation has been driven forward to the steady state by means
of the explicit Euler method, for the two Reynolds numbers Re = 1000
and Re = 3200, on a grid of 128 × 128 cells, according to [29]; for the
former Reynolds number the grid 64 × 64 was used as well. The results
are presented in terms of streamlines and velocity profiles.

In Figs. 5.7 to 5.9, the contour plots of the stream function, as obtained
with the MATLAB code, are plot on the left, as compared to those from
the reference [29, pg. 400-402], on the right, which were obtained with
a multigrid method. The curves are plot at the same levels used in the
reference (see Table 5.1 copied from [29, Tab. III, p. 403]). The typical
separations and secondary vortices at the bottom corners of the cavity
(for both Re = 1000 and Re = 3200) as well as at the top left (for Re =
3200 only) can be seen. The streamlines show an excellent agreement,
especially considering the extension of secondary vortices in both x- and
y-direction, with the cited benchmark, and other established results [20,
75–77], thereby confirming that the present method yields quantitatively
accurate solutions.

The vertical component of velocity on the horizontal center-line,
and the horizontal component on the vertical center-line are plotted in
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◦ ◦ ◦ ◦

◦ ◦ ◦1

◦ ◦ ◦ ◦

◦ ◦1 α

Figure 5.1: Stencils of the central and boundary schemes used in the interpolation
of u2 from u-nodes to p-nodes. The latter is used with α = 0.

◦ ◦ ◦ ◦

r r r1
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r r1

◦◦ ◦◦

r r r1

Figure 5.2: Stencils of the central, near-boundary and boundary schemes used
in the differentiation of u2 from p-nodes back to u-nodes.

◦ ◦ ◦ ◦

◦ ◦ ◦1

◦ ◦ ◦

◦ ◦1

Figure 5.3: Stencils of the central and boundary schemes used in the interpolation
of v from v-nodes to corners.
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◦ ◦ ◦ ◦

r r r1

◦ ◦ ◦ ◦

r r1 α

Figure 5.4: Stencils of the central and boundary schemes used in the x-
differentiation of ūv̄ from corners back to v-nodes. α = 0 is chosen for this
case.

◦ ◦ ◦ ◦ ◦

rr rr rr1

◦ ◦ ◦ ◦

rr rr1 α

Figure 5.5: Stencil of central and boundary schemes used to perform the second
x-derivative of u. Note that the first node is not staggered, as opposed to Fig. 5.6.
α = 1 is set.
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Figure 5.6: Stencil of central, near-boundary and boundary schemes used to
perform the second x-derivative of v. Note that the first node staggering, as
opposed to Fig. 5.5.
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Figure 5.7: Contour plot of the stream function, at Re = 1000, for the values
reported in Table 5.1. Left: Computed on the uniform grid 64× 64. Right: [29,
p. 400] on a 129× 129 uniform grid.

Figure 5.8: Contour plot of the stream function, at Re = 1000, for the values
reported in Table 5.1. Left: Computed on the uniform grid 128 × 128. Right:
same as in Fig. 5.7.



5.2. Preliminary results 95

Figure 5.9: Contour plot of the stream function, at Re = 3200, for the values
reported in Table 5.1. Left: Computed on the uniform grid 128 × 128. Right:
[29, p. 401] on a 129× 129 uniform grid.

Figs. 5.10a and 5.10b for Re = 1000, and in Fig. 5.10c for Re = 3200, as
compared to the values collected in [29, Tab. I-II, p. 398-399]. Note that
velocity profiles obtained on the grid 128×128 match very well with these
referenced values, which were obtained on a grid 256×256. This behavior
is in common with the method tested in [31].

The near-linearity of the velocity profiles in the central core of the
cavity is indicative of the uniform vorticity region that develops here for
high Reynolds numbers [69]. In the near-wall regions, on the contrary,
these velocity profile should join those of the walls themselves, thus ex-
hibiting high gradients in developing the boundary layers. In particular,
the boundary layer on the top is clearly thinner than that on the bottom
wall: δt ≈ 0.2 and δb ≈ 0.4 for Re = 1000. This is due to the difference
in the local Reynolds number (based on the local velocity), that is higher
for the top wall, which entrains the fluid with its velocity Ulid = 1, wheres
it is lower on the bottom, which brakes the velocity to zero. Clearly, all
boundary layers get thinner as the Reynolds number increases (cf. the
case Re = 3200).
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−
0.
8

−
0.
6

−
0.
4

−
0.
2

u 0.
2

0
.4

0
.6

0.
8

0
.1

0.
2

0.
3

0.
4 x

0
.6

0
.7

0
.8

0
.9

−0.8
−0.6
−0.4
−0.2
v
0.2

0.4

0.6

0.8

(b) 128× 128 cells, Re = 1000.
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(c) 128× 128 cells, Re = 3200.

Figure 5.10: Profiles u(1/2, y, 1/2) and v(x, 1/2, 1/2) for different combinations
of Reynolds number and spacing, as compared to the reference results [29, Tab.
I-II, pp. 398-399], obtained on a 129× 129 uniform grid.
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t = .20 t = .45

t = .50 t = .58

t = .62 t = .97

Figure 5.11: Dipole-wall interaction: vorticity contours at selected time instances
for Re = 2500.
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Figure 5.12: Detailed zoom of the collision zone at t = 0.45. The occurrence
of grid-to-grid oscillations is coherent with the observation made in Section 5.4
with reference to Fig. 5.18.

5.2.2 Dipole-wall interaction

The simulation in this section are performed with the sameMATLAB script
used in Section 5.2 to emulate the Fortran code in two dimensions.

Despite the dipole-wall collision could seem a simple academic test-
case at first sight, it is, on the contrary, of relevant importance in DNS,
for the reasons explained in the following. Direct numerical simulations of
turbulence in bounded domains have recently elucidated the importance
of the role of no-slip boundaries in general, and vortex-wall interactions in
particular. Indeed, the boundaries act as a source of relatively small-scale
vortices. In an attempt to quantify the amount of vorticity produced near
the no-slip walls Clercx and Heijst [78] proposed to set up a relatively
simple numerical experiment: create a self-propelling dipole which trav-
els throughout a square container with no-slip walls, eventually hitting a
boundary, and analyze the vorticity production in the boundary layers.
After the formation of the boundary layers and the subsequent detach-
ment, a complicated sequence of vortex-wall interactions is observed to
take place. Such events have been reported already one decade ago [79].

The simulations starts from the initial conditions imposed as a dipole
made up of a pair of two vortices,

ω1,2(x, y, 0) = ±ωe
[

1−
(
r1,2

r0

)2
]
e
−
(
r1,2
r0

)2
,
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where r1 =
√

(x− x1)2 + (y − y1)2 and r2 =
√

(x− x2)2 + (y − y2)2 are
the distances from the centers of the vortices located at (x1, y1) = (0,+0.1)
and (x2, y2) = (0,−0.1), the vortex radius r0 is assumed equal to 0.1, and
the maximum vorticity ωe equal to 300. These initial condition is imposed
in terms of velocity component, that is

u(x, y, 0) = −1

2
ωe(y − y1)e

−
(
r1
r0

)2
+

1

2
ωe(y − y2)e

−
(
r2
r0

)2

v(x, y, 0) = +
1

2
ωe(x− x1)e

−
(
r1
r0

)2
− 1

2
ωe(x− x2)e

−
(
r2
r0

)2
.

The simulation has been conducted to a final time t = 1.5 in a square
domain discretized by a 256×256 grid. The Reynolds number, Re = 2500,
is based on the maximum velocity in the initial condition, Umax ≈ 10, and
on distance D between the centers of the two monopoles at time t = 0
(D = y1− y2 = 0.2). A sample evolution of the vorticity field is presented
in Fig. 5.11 showing the instantaneous solutions at selected time moments.
Fig. 5.12 depicts a detailed zoom of the collision zone at t = 0.45.

5.3 Three-dimensional cavity at Re = 1000 and
Re = 3200

The results shown in the present section and in Section 5.4 are carried out
by means of the Fortran code described in Chapter 4. All the used schemes
are collected in Table 5.2 according to the rules defined in Section 2.2,
and the order of accuracy is indicated with a roman number beside each
sketch. (Clearly, for periodic case, e.g., the Taylor-Green Vortex test-case
of Section 5.4, the “central scheme” column only is of interest.)

The well-defined structures characterizing its flow, combined with the
very simple geometry, make the investigation of a three-dimensional lid-
driven cavity flow a useful benchmark for numerical schemes. The geo-
metric simplicity allows to evaluate the efficiency of the numerical scheme
as it is, without the introduction of complex transformations which could
affect the overall accuracy.

Despite the three-dimensional cavity flow calculations were first car-
ried out in the late seventies [80, 81], only one decade later the results
of comprehensive studies on the matter were collected by Deville et al.
[82], with the target of describing the formation and evolution of the
three-dimensional structures characterizing the flow. However, the results



100 5. Applications
T
able

5.2:
Left-boundary

and
central

schem
es

used
for

the
lid-driven

cavity
test-case

(right
schem

es
are

sym
m
etric

to
left

schem
es);

the
central

schem
es

are
used

for
the

T
aylor-G

reen
V
ortex

test-case
as

w
ell.

T
he

order
of

accuracy
is

the
rom

an
num

ber
in

parenthesis
beside

the
sketch.

N
ote:

the
outerm

ost
interpolation

sketch
m
erely

indicates
an

assignation
equation

for
the

variable
at

the
boundary;the

near-boundary
interpolation

schem
e
from

centers
to

faces
is
the

sym
m
etric

4
th

order
schem

e
w
ith

the
leftm

ost
value

considered
know

n.
T
he

schem
es

for
the

first
derivative

consider
the

value
on

the
boundary

unknow
n,since

it
is

needed
for

the
com

putation
of

the
convective

term
.

ord.
of

deriv.
type

outerm
ost

to
innerm

ost
non-centralschem

es
centralschem

e

0
c
2
f

◦◦
1

◦
◦
◦
◦
◦

1
(iv)

◦
◦
◦
◦

◦
◦
◦

1
(vi)

f
2
c

◦
◦
◦
◦

◦
◦

1
(v)

1
c
2
f

◦
◦
◦
◦

r
r

1
(iv)

◦
◦

r
r

r
1

(iv)
◦
◦
◦
◦

r
r

r
1

(vi)

f
2
c

◦
◦
◦
◦

r
1

(iii)
◦
◦
◦
◦

r
r

r
1

(v)

2
c
2
c

◦
◦
◦
◦
◦
◦

rr
rr

1
(v)

◦
◦
◦
◦
◦

rr
rr

rr
1

(vi)

f
2
f

◦
◦
◦
◦
◦
◦

rr
rr

1
(v)



5.3. Three-dimensional cavity at Re = 1000 and Re = 3200 101

−
0.
8

−
0.
6

−
0.
4

−
0.
2

u 0.
2

0
.4

0
.6

0.
8

0.1

0.2

0.3

0.4

y

0.6

0.7

0.8

0.9
36× 36× 26
64× 64× 48
96× 96× 64

NEK5000
Albensoeder

0
.1

0
.2

0.
3

0.
4 x

0
.6

0
.7

0
.8

0.
9

−0.8

−0.6

−0.4

−0.2

v

0.2

0.4

0.6

0.8

Figure 5.13: Profiles u(1/2, y, 1/2) and v(x, 1/2, 1/2) for Re = 1000 obtained on
three level of refinement, as compared to reference results [68], as well as those
obtained with NEK5000.

for Re > 1000 (e.g., Re = 3200) were inconclusive, due to unacceptable
method- and mesh-dependencies. The first correct three-dimensional lin-
ear stability analysis for the two-dimensional cavity flow (with periodic
boundary conditions along the spanwise direction), as well as an accurate
study of the full three-dimensional variant, were carried out by Alben-
soeder and Kuhlmann [68, 83], barely a decade ago.

From a physical point of view, this flow exhibits a primary stationary
vortex (common to the 2D cavity), which is disturbed by the appear-
ance of secondary three-dimensional structures, whose presence forbids a
two dimensional flow; such vortices become unsteady at moderately high
Reynolds number, and are known as Taylor-Görtler-like (TGL) vortices.

A first set of simulations is performed at Re = 1000 for three levels of
refinement of the grid, with a unitary CFL number, whereas one simulation
is performed at Re = 3600 on the single meshgrid 80 × 80 × 80. In both
cases, 6th order compact schemes are used in the center, whereas lower
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Figure 5.14: Isosurfaces of vorticity components a little time after start-up (left),
and after the onset of TGL vortical structures (right); from top to bottom: Ωx =
±1, Ωy = ±1, Ωz = ±1. Re = 3200. (NOTE: A few slices of data in the
front-right face are removed to allow a clear view of the inner structures.)
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order formulæ are used at the boundary, as well as close to it.
In Fig. 5.13 the velocity profiles for Re = 1000 are compared to the

reference [68], in which the simulation was carried out by means of a
Chebyshev-collocation method applied on the grid 96×96×64; moreover,
Fig. 5.13 includes profiles computed in NEK5000 on a grid of 12× 12× 8
spectral elements, each of which is 8× 8× 8 cells, thus yielding the same
total number of cells relative to the finest used resolution, 96 × 96 × 64.
Despite all methods lead to the same, correct result in the inner part of
the cavity, they differ close to the boundaries, where the present method’s
agreement with the reference [68] is superior to NEK5000’s, even on the
medium grid, 64× 64× 48.

The result for Re = 3200 is shown in Fig. 5.14 in terms of iso-surfaces,
for values ±1, of the vorticity components Ωx, Ωy, and Ωz. The main and
secondary vortices, which are common to the two-dimensional cavity, are
apparent from Ωz, shortly after the simulation has started; after the initial
start-up phase, the TGL vortical structures are clearly visible from both
Ωx and Ωy’s iso-surfaces.

5.4 Taylor-Green Vortex at Re = 1600

A classic test-case of relevant importance is the viscous Taylor-Green Vor-
tex flow (TGV), which is defined in both 2D and 3D (within domains
[2π × 2π] and [2π × 2π × 2π] respectively). The initial condition in 2D is

u0(x, y) = − sin(kx) cos(ky)

v0(x, y) = + cos(kx) sin(ky),

and the analytical solution is the exponential decay of this initial condition,
through the function e−

2k2

Re t.2

A similar solution, through the coefficient e−
3k2

Re t, exist for the three-
dimensional case, which has the following initial condition [84] (often used

2The index k is such that 2k is the number of vortices per side; the same k is chosen
for both x- and y-side, for simplicity.
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with θ = 0 [85]),

u0(x, y, z) =
2√
3

sin

(
θ +

2π

3

)
sin(kx) cos(ky) cos(kz)

v0(x, y, z) =
2√
3

sin

(
θ − 2π

3

)
cos(kx) sin(ky) cos(kz)

w0(x, y, z) =
2√
3

sin(θ) cos(kx) cos(ky) sin(kz)

but is never observed, since the flow unconditionally undergoes the tran-
sition to non-isotropic turbulence, which evolves towards decaying, homo-
geneous, isotropic turbulence.

The importance of the (three-dimensional) TGV flow lies exactly in
the time evolution of the initially organized structures. Indeed, the tran-
sition to increasingly smaller, but still organized, scale vortices, is followed
by vortex-stretching mechanisms [84], which lead to the formation of fully
developed, disorganized, decaying worm-shaped vortices, which character-
ize the developed turbulence. Afterward, the motion is damped down by
viscosity, whose action is stronger on these newly formed smaller scales,
until the flow is finally steady. Based on direct numerical simulations
conducted in the incompressible regime, the existence of a fairly consis-
tent dissipation peak at the non-dimensional time t = 9 is reported for
Re = 800, 1600, 3000 and 5000 [84, 86].

The conventional wisdom is that numerical diffusion affecting the ini-
tial convection stage is undesirable and should be avoided; indeed, the
kinetic energy can be damped only by the viscous effect of the resolved
(as well as modelled, in LES) scales, and it should otherwise be conserved
[38]. According to this consensus, the time-evolution of integral quanti-
ties has been widely used as reference to assess the unwanted numerical
dissipation effects.

This test-case has thus served to prove the conservation properties of
the developed CFD solver, as compared to the reference [87]. At the same
time, it is used to assess the scaling of the program in its current state
(see Table 5.3 and Figs. 5.21 and 5.22). Concurrently, it also served to
verify that the parallelization has no impact on the results, nor has the
restarting procedure (compare matching plots of Figs. 5.16 and 5.17).3

3Differences consequent to a different choice of the number of processes can occur
in the case that the pressure-related convergence condition is set .TRUE. by the first
process hitting the threshold (which is not the case, at the moment). Differences between
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Figure 5.15: Sketches relative to the 6th order compact schemes discretizing the
operators used for the TGV simulations.

Due to the periodic nature of this test-case, only one symmetric scheme
is required for each interpolation/differentiation operator. The spatial
derivatives of order 0, 1, and 2, are discretized with the 6th order compact
operators whose stencils are sketched in Fig. 5.15, according to the rules
listed in Section 2.2. The classic 4th order Runge-Kutta method (RK4) is
used for the time integration.

Figs. 5.16 and 5.17 show the dissipation time history for several mesh
sizes and process-grid sizes, as compared to the reference solution obtained
with pseudo-spectral methods on a 512 × 512 × 512 mesh [87]. At the
resolution of 256×256×256, which means one eighth the number of points
used in the reference solution, the curve obtained with the present CFD
solver stays stuck to the reference curve up to t = 10 and a beyond. The
solver still behaves well with roughly 5 % as many points as the reference
grid (192×192×192), on which the dissipation is accurate up to t = 8. This
is an indication that the present DNS solver can be promisingly upgraded
by including an LES module.

In Fig. 5.18 a contour plot compares the module of vorticity to that
presented in the same work [87]: the overall pattern is well captured by
the code.

Finally the iso-surfaces of the vorticity vector’s z-component relative
to two values are shown in Figs. 5.19 and 5.20 at different times.

5.4.1 Scalability assessment

Being T (n, p) the wall clock time relative to the solution of the problem
of total size n, as obtained with p processes, the speed-up is defined as the
ratio between serial and parallel wall clock times,

S(n, p) =
T (n, 1)

T (n, p)
, (5.2)

restarted and non-restarted runs occur as a consequence of the first guess for the pressure
field. In both cases the differences are close to the tolerance on the Poisson equation.
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Figure 5.16: Dissipation time evolutions for different meshes, as compared to
the spectral reference solution, obtained on a 512× 512× 512. The solutions are
computed on an MPI cartesian grid of P × P × P processes, so that N/P = 16,
where N ×N ×N is the computational grid, specified in the plots.

whose ideal value is exactly p, in which case it is referred to as linear
speed-up, rarely achieved in real-world applications. A far more meaning-
ful quantity, widely used as index of parallel performance, is the parallel
efficiency, or “per process” speed-up [88], defined as

E(n, p) =
S(n, p)

p
=

T (n, 1)

p× T (n, p)
, (5.3)
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Figure 5.17: Dissipation time evolutions for different meshes, as compared to
the spectral reference solution, obtained on a 512× 512× 512. The solutions are
computed on an MPI Cartesian grid of P × P × P processes, so that N/P = 32,
where N ×N ×N is the computational grid, specified in the plots.

whose ideal value is 1, and corresponds to the linear speed-up.4 In this
case, where the scalability is assessed by incrementing p while keeping n
fixed, we speak of strong scalability.

When the total problem size is increased at the same rate as p, so
that the computational load per process np = n/p is kept constant, weak

4Given its definition, E(n, p) can also be regarded as the serial-to-parallel ratio be-
tween the cumulative wall clock times.
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Figure 5.18: Vorticity contours in the x = 0 plane of the Taylor-Green vortex
at Re = 1600 obtained with the present code on a 256× 256× 256 grid (black),
as compared to the reference [87]. The contours are plotted for several values of
|Ω| = |∇×V |, namely 1, 5, 10, 20 and 30.

scalability is measured. In this case, the speed-up can be written as

S(np × p, p) =
T (np, 1)

T (np × p, p)
, (5.4)

and its ideal value is 1, a value fairly easier to approach than for strong
scalability (hence the adjectives strong and weak).

It is crucial to note that, with reference to the three-dimensional do-
main, n = N3 and p = P 3 in Eqs. (5.2) to (5.4), being N and P the
number of total points per direction and the number of processes per di-
rection (the same along the three directions, for simplicity).

With reference to the present case, two remarks are of importance.

• The runs where aimed at assessing the weak scalability for three
distinct values of the load per process; the timings of few of these
are also used to give a rough estimate of the strong scalability.
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(a) t = 0 (b) t ≈ 2

(c) t ≈ 8 (d) t ≈ 10

Figure 5.19: Iso-surfaces of vorticity for the Taylor-Green vortex test-case rela-
tive to Ωz = ±1 at various times. Grid 256× 256× 256.
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(a) t ≈ 6 (b) t ≈ 8

(c) t ≈ 10

Figure 5.20: Iso-surfaces of vorticity for the Taylor-Green vortex test-case rela-
tive to Ωz = ±7 at various times. Grid 256× 256× 256.
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• At the time of writing, the code cannot run with less than 2 processes
per direction, thus precluding a serial run. The assumption is made
that the run with 23 processes (2× 2× 2 grid) has unitary speed-up
when the weak scaling is concerned, whereas the configurations with
23, 33, and 43 have unitary efficiency when the strong scaling is to
be assessed on total grids of 1283, 1923, and 2563 cells.

• Since the same constant CFL number is used in all simulations
(C = a∆t

∆x = 1
2), the weak scaling implies a decrease in ∆t, as a

consequence of the increase in the one-dimensional total problem
size N (∆t ∝ ∆x = L

N , being L the domain length), and an increase
in wall clock time needed to reach the same, fixed final time of the
simulated phenomenon.

Concerning the latter observation, it is clear that the wall clock time
grows with N , regardless of the parallel framework, and therefore the
corresponding expected increase should be ruled out. In other words, in
order to assess the speed-up, a normalized wall clock time must be defined,
and used in place of the actual one. To do so, it is fruitful to relate P and
∆t, by manipulating the mesh spacing ∆x and the CFL number C, thus
obtaining

P∆t =
LC

aQ
= constant,

from which it is clear that T can be normalized either by multiplying it
by ∆t or dividing it by P , and the latter choice is made here,

T̃ (N3, P 3) =
T (N3, P 3)

P
(5.5)

(Clearly T̃ = T for P = 1.) The definition of speed-up in Eq. (5.4) is thus
adapted to the present needs as follows,

S̃(N3, P 3) =
T̃ (Q3, 1)

T̃ (N3, P 3)
=
P × T (Q3, 1)

T (N3, P 3)
. (5.6)

The wall clock times relative to three values of load per process, 16,
32 and 64, are collected in Table 5.3, together with the speed-up, in bold;
the unitary speed-up for P = 2 is relative to the assumed perfect scaling
with respect to the serial case (which cannot be run, see Section 6.3.1);
these value of the speed-up are plotted against P 3 in Fig. 5.21.
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Figure 5.21: Speed-up relative to the weak-scaling, as defined in Eq. (5.4) with
the wall normalized clock time of Eq. (5.5), for three values of load per process.

Table 5.3: Weak scaling, for three values of
(
N
P

)3. Data from color-coded rows
are used to obtain correspondingly colored curves in Fig. 5.22.

N
P N P P 3 T (N3, P 3) T̃ (N3, P 3) Speed-up

(min)

16

32 2 8 8.14 4.07 1
48 3 27 13.1 4.38 0.930
64 4 64 28.6 7.14 0.570
80 5 125 48.6 9.71 0.419
96 6 216 87.7 14.6 0.278
112 7 343 96.4 13.8 0.296
128 8 512 198 24.7 0.165

32

64 2 8 111 55.6 1
96 3 27 198 65.9 0.843

128 4 64 416 104 0.535
160 5 125 1080 215 0.258
192 6 216 1870 311 0.179
224 7 343 2440 348 0.160
256 8 512 3340 418 0.133

64

128 2 8 2250 1120 1
192 3 27 4640 1550 0.727
256 4 64 8430 2110 0.534
320 5 125 21 800 4350 0.258
384 6 216 34 500 5750 0.196
448 7 343 47 000 6710 0.168
512 8 512 105 000 13 100 0.0860
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Figure 5.22: Efficiency relative to the strong-scaling, as defined in Eq. (5.3) with
the normalized wall clock time of Eq. (5.5), for three total domain sizes.

Seven rows in Table 5.3 are highlight with three colors; the rows of
common color are relative to a fixed total domain size and, as such, can
be used to give a rough estimate of the strong scaling; the parallel efficiency
is indeed plotted in Fig. 5.22, using the same color-coding of Table 5.3.





Chapter 6

Conclusions and future
works

In this chapter, possible opportunities to improve the existing code, fix
problematic shortcomings, and, above all, get a faster code, are briefly
discussed, together with the verified or supposed causes of deficiencies.

6.1 CFD-related

6.1.1 The Poisson equation for the pressure

The solution of the Poisson equation is notoriously the bottleneck of the
CFD solvers (and as such, it has driven the research towards new ap-
proaches [9, 34, 42, 89–91]), and the present code is no exception.

Considering the difficulties inherent in the development of the CFD
code in object, writing an elliptic solver consistent with the compact
schemes used for the computation of the convective term was judged un-
feasible within the three years deadline, for the reasons explained in Sec-
tion 6.1.1. As a consequence, the code development of a standard second
order solver was undertaken by a post graduate, and conducted, as far as
possible, under the mild supervision of the author, who was, at that time,
struggling to climb up the steep learning curve of both Fortran program-
ming and MPI at the same time.

115



116 6. Conclusions and future works

The problematic Laplace operator

The Poisson equation for the pressure, concisely written as ∇2 p = ∇·V ,
hides the consistency between divergence, gradient, and Laplace operators
which is automatically satisfied in the continuous space, ∇·∇ = ∇2.

Since the same property does not hold, in general, in the discrete
space, it must be enforced by explicitly requiring that the discrete Laplace
operator L be the product of the discrete divergence operator D times the
discrete gradient operator G, i.e., that L = DG, which is not an easy task
if compact schemes are concerned. Indeed, if only explicit finite differences
are used, the operators D and G are sparse, together with their product,
the Laplace discrete operator. In turn, solving the elliptic equation means
solving a sparse linear system of equations, whose matrix of the coefficients
is easily stored thanks to its sparsity, by the way. When compact schemes
are used to discretize one-dimensional difference operators, then discrete
divergence and gradient operators are not as sparse, and their product is
even less sparse.

Indeed, assuming for simplicity an n× n two-dimensional uniform pe-
riodic domain, the generic compact scheme for the first derivative Ay′ =
By, corresponds to a difference one-dimensional operator which can be
symbolically written as A−1B and used along both directions, being A
and B both narrow-banded cyclic matrices, the former symmetric, the
latter self-adjoint. The two-dimensional operators for the first derivatives
along the two directions can be written as I ⊗

(
A−1B

)
and

(
A−1B

)
⊗ I

respectively, where ⊗ is the Kronecker product, so that the divergence
operator is the 1× 2 block matrix

D =
[
I⊗

(
A−1B

) (
A−1B

)
⊗ I
]

whereas the gradient operator is the following 2× 1 block matrix, adjoint
of D,

G =

[
I⊗

(
A−1B

)
(
A−1B

)
⊗ I

]
= −DT

Finally, the Laplace operator is equal to their product,

L = DG =
[
I⊗

(
A−1BA−1B

)
+
(
A−1BA−1B

)
⊗ I
]

whose first addend is a sparse block matrix with full blocks, and the second
addend is a permuted version of the former.
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The problem with L is that it must not be applied — which is done
through the solution of several linear systems —, but computed, since it is
the matrix of the coefficients of the elliptic equation that must be solved
for p,

Lp = Du∗ (6.1)

Since L is not properly sparse, and its three-dimensional version is even
bigger, storing it once and for all, and solving the corresponding system
of equations at each time step is a very memory demanding and computa-
tionally intensive task, and this approach is definitely infrequent, the only
attempt to the author’s knowledge being that of Boersma [34].

Other opportunities

An interesting approach, on the base of which the code in object could be
improved, was presented by Reis et al. [42], and consists in decomposing
Eq. (6.1) in a system of one-dimensional first-order differential equations,
and a purely algebraic equation. This system is claimed to be easily solved.

If a more tested approach was desired, then the technique of solving
the Poisson equation in the Fourier space, regardless of the boundary con-
ditions on the velocity, used by Laizet et al. [9], should be considered, and
deeply investigated. A foreseeable problem in the implementation of such
a technique in the source code is that the former really matches the pencil-
transposition-based two-dimensional domain decomposition [11], whereas
the latter is deeply anchored to the three-dimensional domain decompo-
sition, as is apparent throughout this thesis. On the other hand, since
moving a differential equation to the Fourier space roughly means that
the differential operators are algebraized, the implementation will possi-
bly only require the parallelization of a matrix product, much like it is
already done for any compact-related B matrix in the present code.

6.1.2 Spectral methods along periodic directions

Spectral solution along periodic directions should be implemented to take
advantage of fast Fourier transform algorithm as much as possible.
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6.1.3 On time integration

Adaptive ∆t on non-uniform grids

A uniform spatial mesh-compatible adaptive time-stepping procedure is
already implemented in the code, and activated whenever the input line
CFL 〈CFL number〉 is provided; a constant ∆t can be forced by giving in
input the line deltat 〈∆t〉 instead.

In order to adapt the existing procedure to the case of non-uniform
spatial meshes, the CFL number relative to each cell should be computed,
and the ∆t reduced or increased accordingly. Since the local CFL number
depends on the local values of both velocity and grid spacing, properly
defining it on a non-uniform space grid in a domain decomposition frame-
work is not straightforward. Furthermore, the chunks of code relative to
grid generation and handling are not shipped with appropriate functions
to handle operations acting on the grids, since such tool are not needed
for a simulation to be performed. Indeed, the spatial grids are basically
three arrays, used as input for the computation of the finite difference co-
efficients, and then no more. A possible course of action could consist in
the implementation of proper grid-handling routines in order to allow the
computation of the local CFL number, or, more likely, an approximation.

Approximate projection and multi-step integrators

When the Runge-Kutta time integration method is used, the solver already
implements a procedure of zero degree approximate projection for the
pressure [90, FSa] (on request, by appending approx_proj to the time
integrator identifier in the input file). This reduces the number of Poisson
equations for time step from 4 to 1, but degrades the solution. The higher
order method shown in [90, FSb] can be implemented to save computations
at a lower inaccuracy cost.

Multi-step time integrators, such as those of the Adams-Bashforth fam-
ily, can be easily implemented, as well, and used as long as a constant
time-marching procedure is chosen. This methods would require only one
Poisson equation to be solved for time-step, with the almost irrelevant
complication of requiring a starting procedure, which would simply con-
sist in using a few Adams-Bashforth methods in sequence, from the first
order up to the desired one.



6.2. Numerics-related 119

6.1.4 LES

The implementation of sub-grid models is essential to LES runs, and its
implementation consists in the addition of a module making use of already
existing tools for the computation of the sub-grid term in the filtered
Navier-Stokes equations.

6.2 Numerics-related

6.2.1 LU decomposition for tridiagonal matrices

At the time of writing, each time the Thomas algorithm is invoked, it solves
the system through a first sweep elimination of the lower diagonal, followed
by a backward substitution. De facto, it computes the LU decomposition
of A on the run and drops it afterward.

A highly suggested edit to the code is the following. The first time
a tridiagonal system is solved, the LU decomposition of the coefficient
matrix should permanently overwrite the matrix itself, and a new LOGICAL

member of the CDS datatype, for instance named isLU, should be set to
.TRUE., so that subsequent calls to the Thomas algorithm will consist of
the backward substitution only, thus saving 3(n− 1) flops [57].

6.2.2 SPIKE algorithm’s reduced system

In the context of the SPIKE algorithm, the coupling matrix of the so-
called reduced system, presented as a pentadiagonal matrix in Fig. 3.5 of
Section 3.1.2 (see also [18]), can actually be cast as a tridiagonal matrix
[19, 22], thus allowing a slightly faster resolution of the reduced system,
to the benefit of performance, at the only cost of a marginal edit to the
source code, consisting in a reordering of ψ and ψ0 in Eq. (3.18).

As a side note, it is urgent and straightforward to short-circuit the
application of the SPIKE algorithm, when the A matrix is diagonal, which
is trivially the case for explicit finite difference schemes.

6.2.3 Coefficients of compact schemes

The coefficients relative to the compact schemes are computed at runtime
in floating point format, through the routine in Listing A.1, and are not
hard-coded, so that the program naturally deals with non-uniform grids.
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The precision with which these coefficients are computed could represent
a problem when extreme precision is needed.

In the case of uniform grids, it should be possible to implement a
MATLAB preprocessing script which uses the symbolic tool, as in List-
ing A.2, to compute fractional representation of the coefficients and write
them to file, so that the Fortran code can read them in. Similarly, another
possibility is that Fortran uses system calls (through the SYSTEM subrou-
tine/function) to compute coefficients through the widely available calc

Linux tool.

6.3 Programming-related

6.3.1 Serial and/or two dimensional run

At the time of writing, one major flaw of the program is that it cannot
be run with less then 1 process per direction, which means that at least
23 = 8 processes are required for the program to successfully start. As
a consequence, a serial run cannot be performed, neither can it be run
on a one- or two-dimensional MPI Cartesian grid. As side effect, a two-
dimensional simulation is not possible, since it would require the use of a
single cell along one direction, which would of course belong to one process
only.1

This limitation stems from all code sections whose dependence on
the Cartesian grid of processes is hard-coded, mainly those operator and
grid-management declarations and subroutines (executed before the actual
time integration), which are built upon the widely deprecated master-slave
logic. Startup-critical calls should be bypassed along directions with one
process along them. Most importantly, strong assumptions are made in
the pressure module, which should already undergo massive edits for other
reasons explained in Section 6.1.1.

6.3.2 Pointers to avoid temporary arrays

Many procedure calls lead to the copy of large array in memory, due to
the use of expressions, instead of variables, as arguments of the calls:

1Actually the diffusive and convective terms involving the third dimension could be
switched off, based on a flag in input, to force a two-dimensional solution, still using 2
processes along the third direction (with the minimum possible number of cells). In the
author’s opinion, however, it would be not worth it.
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CALL mysub(var) ! var is a variable → not copied
CALL mysub(var(2:10)) ! var(2:10) is a expression → copied

! to a temporary array 	�
The use of pointers could be a possible opportunity to reduce the overhead
due to the creation of temporary arrays, by removing the necessity for
these temporary copies.

6.3.3 CDS by rows and JDS formats for banded matrices

As described in Section 4.8.2, the CDS datatype is used to store all banded
matrices in the Compressed Diagonal Storage format, both A and B of
the compact schemes.

At the time the datatype was coded, the diagonals were mistakenly
decided to be stored along the columns of the matrix member of CDS; for
instance the jth diagonal of B is stored in 〈B var.〉%matrix(:,j). When
B undergoes matrix-vector multiplications, the ith element of the result-
ing array is computed as the matrix product between a small portion of
the given column array, times the in-band portion of the of B’s ith row,
which is stored in the row 〈B var.〉%matrix(i,:), whose elements are not
consecutive in memory, since Fortran stores matrices in a column major
fashion, unlike C++, which uses the row major storage.

So a mandatory edit is to move from the current row-oriented imple-
mentation of the CDS format, which fits with C++ more then with For-
tran, to a column-oriented implementation (the jth diagonal of B stored
in 〈B var.〉%matrix(j,:) ), in order to save several percent points on the
wall clock time elapsed for each multiplication.2

This kind of storage is the most space-efficient, as long as the matrices
have a constant bandwidth, which is certainly the case when a periodic
direction is concerned; otherwise several zeros are stored, thus wasting
memory, as is the case for non-periodic directions. Since the bandwidth
of compact schemes’ matrices vary only close to the boundaries, and since
each matrix is scattered among several processes, it is clear that pro-

2The edit was actually attempted already, and the comparison was performed in a
standalone, non-parallel Fortran program, and resulted in an unexpectedly significant
reduction of the wall clock time needed for a matrix-vector product. The edit, however,
was not pulled in CFD code, since it would have meant substantial a rewrite of the
procedures responsible for distribution of the compact matrices among processes, which
is a fairly delicate task.
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cesses not adjacent to the boundary do not suffer from this problem, since
the outer diagonals are identically zero, in the inner part, and can sim-
ply be dropped, as a beneficial consequence. The processes touching the
boundaries, on the contrary, should store those zeros, which can repre-
sent up to half the content of the 〈matrix〉%matrix member of a CDS-stored
banded matrix; what is more, those zeros will uselessly undergo all scalar
multiplications arising from matrix-vector products, thus increasing the
computational cost suffered by near-boundary processes.

One suggested solution is to implement the JDS format, more space-
efficient for non-constant bandwidth matrices, as defined in [64]. This
format should be used only along non-periodic directions, and only for
those processes who touch the minus or plus boundaries.

6.3.4 Condensation of MPI calls

The possible advantage in abandoning/changing the master-slave logic
intrinsic to the SPIKE algorithm should be investigated.

Considering only those processes belonging to a single pencil within the
3D Cartesian MPI topology, at the current state the first process in the
pencil plays the master, and uses MPI_GATHER to gather two layers of data
from each remaining process, in order to build the array ψ0 of Eq. (3.18),
then solves the reduced system for ψ, and finally scatters the result back
to the processes through a call to MPI_SCATTER. Within this strategy, each
process sends two layers of data to the master, then waits for the master,
and finally receives back two new layers, whereas the master has to receive
2× n layers, solve the system, then send the 2× n new layers back. It is
worthwhile to underline that all first processes along the pencil are master
to their pencil. As a consequence, in a n×n×n MPI Cartesian grid, there
are 3n − 2 processes which are masters to two pencils, and one process
(the process 0) which is master to three pencils. This is a possible reason
for poor performance.

An alternative is a call to MPI_ALLGATHER, which results in all processes
performing 2×n sends and 2×n receives, so that each of them can solve the
reduced system on its own and proceed. With this hypothetical strategy,
all processes would do the same work as only the master process does in
the strategy currently implemented, with apparently no gain. Actually the
author believes that a single call to MPI_ALLGATHER, in place of the twin
calls to MPI_GATHER/MPI_SCATTER, gives an opportunity to the compiler for
an optimization of the communication pattern.



6.3. Programming-related 123

The subroutine MPI_TYPE_CREATE_STRUCT could be used to group in
one datatype the three datatypes used by MPI_NEIGHBOR_ALLTOALLW to ex-
change each component of velocity, thus allowing a single call to exchange
all the near-boundary flowfield between neighboring processes, hopefully
to the benefit of the compiler’s optimization capabilities. Indeed, it is
common knowleknowledge that reducing the number of messages likely
improves the performance of an MPI program [88].

6.3.5 Fortran-native vectorization and OpenMP-MPI

MPI parallelization was accomplished by domain decomposition and ex-
plicit message passing. Explicit data exchange at inter-process boundaries
takes place before every interpolation/differentiation. After the exchange,
each process has to perform repetitive and independent operations along
all the pencils it handles, and this is coded in two nested DO loops. On
vector parallel mainframe, high performance can be achieved with the
vectorization (i.e., linearization) of these loops inside a sub-domain.

When possible, the PURE and ELEMENTAL attributes should be added
to procedures (both FUNCTIONs and SUBROUTINEs). Plain DO loops should
be converted to FORALL constructs/statements; likewise, DO loops enclosing
conditionals constructs, such as IFs and SELECT CASEs, should be converted
to WHERE constructs/statements. These edits, would likely result in sensible
improvements in performance [63], especially if associated to a proprietary,
well-optimizing Fortran compiler, since they could thus take advantage of
vectorization capabilities of modern hardware (especially GPUs).

In order to parallelize each of the aforementioned loops OpenMP direc-
tives can be used, as well. With respect to the Fortran-native approach,
they would leave the Fortran code untouched, since the directive are sim-
ply Fortran comments, which are interpreted as directives for the library.

6.3.6 Availability

The code has been tested only against gfortran, the Fortran complier
shipped with the GNU Compiler Collection, and the OpenMPI imple-
mentation of MPI, the reason being that the workstation the author was
provided with, and on which he have conducted the development, was
equipped with these compilers/libraries by the author himself. As far
as the author had the opportunity to perform some check on CINECA’s
Marconi HPC facility, the latest version of the code is still non-compilable
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with Intel Fortran, due to the well-circumscribed use some non-standard-
conforming Fortran and MPI expressions, which are unexpectedly inter-
preted correctly by gfortran/mpifort and not by ifort/mpiifort.

The mandatory course of action for the Intel compilers and library to
be used, is to perform some troubleshooting to identify the specific lines
of code responsible for the incompatibility and change them accordingly.

Optionally, the Makefile should be upgraded to automatically handle
multiple compilers.



Appendix A

Functions to compute finite
differences’ coefficients

This appendix contains the function that applies the method developed
in Section 2.6 for the determination of the coefficients of a general asym-
metric scheme. This routine has served to populate finite difference matrix
operators.

The codes provides a significant freedom in the choice of the stencil
corresponding to the desired scheme:

• the linear scheme can contain virtually any number of nodes both
in the RHS and in the LHS,

• each of these nodes can be virtually anyhow distributed on the real
axis,

• a derivative of virtually any order of differentiation can be located
in each of the nodes,

where the word “virtually” refers to the fact that too wide stencils and/or
too high orders of differentiation could require too onerous symbolic cal-
culations, which are preferred to floating point operations for generating
fractional coefficients. It is worth to mention that no such problems has
been encountered in the development of the libraries of compact schemes.

In the following, both the used Fortran, and the more more succinct
MATLAB versions are listed, in Listings A.1 and A.2 respectively.
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Listing A.1: Fortran version
FUNCTION cmp_coeff(LHS_s, RHS_s, LHS_o, RHS_o, c) RESULT(coeffs)
! This subrout ine determines the c o e f f i c i e n t s o f a scheme
! co l l o ca t ed in c and with the l e f t hand s ide s t en c i l , where
! d e r i v a t i v e s o f order LHS_o are unknown , de f ined by LHS_s, and
! with the r i gh t hand s ide s t en c i l , where de r i va t i v e s o f order
! RHS_o are known , de f ined by RHS_s. The output i s in the array
! c o e f f s . For instance , the f o l l ow ing c a l l
!
! c o e f f s = cmp_coeff ( [ 0 . 0 , 1 . 0 ] , [ − . 5 , 0 . 0 , 1 . 0 , 2 . 0 , 3 . 0 ] , &
! & [ 2 , 2 ] , [ 1 , 0 , 0 , 0 , 0 ] , 0 . 0 )
!
! Gives the c o e f f i c i e n t s o f the compact scheme whose s t e n c i l i s
! the f o l l ow ing
!
! c o e f f s (2) c o e f f s (3) c o e f f s (4) c o e f f s (5)

c o e f f s (6)
! \ o o o o
! |______|_____________|_____________|_____________|
! | |
! \\ \\ IV ordine
! 1 c o e f f s (1)
!
! TODO: LHS_s and RHS_s should be jo ined in one INTENT(IN)
! va r i ab l e ( the same should be done f o r LHS_o and RHS_o) ; then
! the CALLer should arrange f o r the s ign o f RHS’ c o e f f i c i e n t s to
! be changed . This ed i t would (1) s l im the FUNCTION, and (2) be
! more coherent with the f a c t a FD scheme can be thought o f as a
! l i n e a r combination o f s ev e ra l Taylor s e r i e s ( one f o r each term
! o f the FD) which sum up to a quantity which i s zero up to a
! given order .

IMPLICIT NONE

! input/output va r i ab l e s
REAL, DIMENSION(:), INTENT(IN) :: LHS_s, RHS_s
INTEGER, DIMENSION(SIZE(LHS_s)), INTENT(IN) :: LHS_o
INTEGER, DIMENSION(SIZE(RHS_s)), INTENT(IN) :: RHS_o
REAL, INTENT(IN) :: c
REAL, DIMENSION(SIZE([LHS_s, RHS_s]) - 1) :: coeffs

! i n t e rna l va r i ab l e s
INTEGER :: ncoeff, ic, sz, k, i, kk, info
REAL :: xmin, xc
REAL, DIMENSION(SIZE(LHS_s)) :: xL
REAL, DIMENSION(SIZE(RHS_s)) :: xR
INTEGER, DIMENSION(SIZE([LHS_s, RHS_s])) :: d
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REAL, DIMENSION(SIZE([LHS_s, RHS_s])) :: x
REAL, DIMENSION(SIZE([LHS_s, RHS_s])) :: tmp
REAL, DIMENSION(SIZE([LHS_s, RHS_s]) - 1) :: ipiv
REAL, DIMENSION(SIZE([LHS_s, RHS_s]) - 1, &

& SIZE([LHS_s, RHS_s]) - 1) :: A

sz = SIZE([LHS_s, RHS_s])
ncoeff = sz - 1

xmin = MIN(MINVAL(LHS_s), MINVAL(RHS_s))
xL(:) = LHS_s - xmin + 1
xR(:) = RHS_s - xmin + 1
x(:) = [xL, xR]
d(:) = [LHS_o, RHS_o]
xc = c - xmin + 1
ic = first(find(x == xc))

DO k = 1, ncoeff
tmp(:) = [(PRODUCT([(kk, kk = k - 1, k - d(i), -1)]), &

& i = 1, sz)]*(x**(k - d - 1))
coeffs(k) = - tmp(ic)
A(k,:) = tmp([(kk, kk = 1, ic - 1), &

& (kk, kk = ic + 1, sz)])
END DO

CALL DGESV(ncoeff, 1, A, ncoeff, ipiv, coeffs, ncoeff, info)

! change s ign f o r c o e f f i c i e n t s on the RHS
coeffs(SIZE(xL):) = - coeffs(SIZE(xL):)

END FUNCTION cmp_coeff 	�
Listing A.2: MATLAB version

function [coeff,A,b] = coefficients(LHS_stencil,RHS_stencil,...
LHS_degrees,RHS_degrees,colloc)

%COEFFICIENTS Coe f f i c i e n t s o f a numeric scheme .
% This funct ion determines the c o e f f i c i e n t s o f a numerical
% scheme % co l l o ca t ed in c o l l o c and which l o ca t ing on the
% points de f ined in the array LHS_stencil the unknown
% de r i va t i v e s o f order de f ined in the array LHS_degrees ;
% s im i l a r l y i t l o c a t e s on the po ints de f ined by the array
% RHS_stencil the de r i va t i v e s o f order de f ined by the array
% RHS_degrees .
% ! ! !ATTENTION! ! ! The c o l l o c a t i on point o f the scheme must
% be one o f the po ints o f the array LHS_stencil .
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%
% As an example the f a l l ow ing command
%
% co e f f = COEFFICIENTS( [ 0 1 ] , [ − . 5 0 1 2 3 ] , . . .
% [2 2 ] , [ 1 0 0 0 0 ] , 0 )
%
% gives in output the c o e f f i c i e n t s o f the f o l l ow ing scheme
%
% \ o o o o
% |___|_______|_______|_______|
% | |
% 1\\ \\ IV order
%
% from l e f t to r i gh t and from bottom to top .
%
% Negative powers o f zero are obvious ly not we l l def ined , so the
% te r s e wr i t ing 0^k cannot be used in place o f kron_(0 , k) .
% We simply s h i f t every absc i s s a to the po s i t i v e semi−ax i s .
xmin = min([LHS_stencil RHS_stencil]); % minimum absc i s s a
xL = LHS_stencil - xmin + 1; % sh i f t to x > 0
xR = RHS_stencil - xmin + 1;
xc = colloc - xmin + 1;

dL = LHS_degrees;
dR = RHS_degrees;

ncoeff = length(xL) + length(xR) - 1; % how many c o e f f i c i e n t s
ic = find(xL == xc); % index of c o l l o c . point

A = sym(’A’,[ncoeff ncoeff+1]);

x = [xL xR];
d = [dL dR];
temp = zeros(size(d));
% bui ld up the system
for k = 0:ncoeff-1

for ii = 1:length(d)
temp(ii) = prod(k:-1:k-d(ii)+1);

end
temp(1:length(xL)) = -temp(1:length(xL));
A(k+1,:) = (x.^(k - d)).*temp;

end

b = - A(:,ic);
A(:,ic) = [];

coeff = A\b; 	�
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