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Introduzione

Nel corso degli anni, la Teoria dei Giochi Non Cooperativi si è rivelata sem-
pre più essere un efficace strumento di analisi in diversi campi, tra i quali
l’Economia. Basti pensare, ad esempio, all’analisi dei mercati oligopolistici
([35]) e alla Teoria dell’Equilibrio Economico Generale ([14], [21]). Infatti,
sia la competizione tra produttori in un mercato oligopolistico che la ricerca
di equilibri competitivi in alcune economie fatte di agenti che perseguono il
proprio interesse, possono essere analizzate studiando gli equilibri di Nash di
opportuni giochi non cooperativi.
L’analisi di determinati sistemi economici può consistere, quindi, nello studio
dell’ esistenza di ”equilibri” (intesi come stati in cui gli agenti coinvolti non
hanno incentivi a deviare). Inoltre, dato un sistema economico i cui dati
dipendono da parametri esogeni, può anche essere richiesto lo studio della
sua stabilità variazionale. Con ciò intendiamo lo studio degli equilibri (o an-
che di approssimazioni di equilibri) del sistema in funzione di perturbazioni
dei suoi dati.

Scopo della presente Tesi è stato quello di studiare la stabilità variazionale e
l’esistenza di equilibri approssimati per economie astratte ([15]), anche dette
pseudo-giochi ([21]), rispettivamente nei casi di assenza di continuità delle
funzioni payoffs e di assenza di compattezza degli spazi di strategie. Sem-
pre in assenza di continuità dei payoffs, si sono anche studiati problemi di
MaxSup e di MaxInf, i quali, ad esempio, trovano applicazioni nei mercati
oligopolistici in presenza di leaders ([18]).

Come è ben noto, l’esistenza di equilibri di Nash è equivalente all’esistenza di
punti fissi di un’opportuna multifunzione. Al fine di applicare a tale multi-
funzione i classici teoremi di esistenza di punti fissi ([22], [19]), fondamentali
sono state la continuità dei payoffs e la compattezza degli spazi ([40], [41],
[19]). Tuttavia, vi sono numerosi giochi, anche di natura economica, in cui
i payoffs non sono continui e/o gli spazi delle strategie non sono compatti.
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Basti pensare al classico oligopolio di Bertrand (caso simmetrico), il quale è
un gioco che esibisce discontinuità nei payoffs e spazi di strategie non com-
patti. Nonostante tutto, l’oligopolio di Bertrand è dotato di equilibri di Nash,
anche se all’esistenza di questi non si può giungere applicando i classici teo-
remi di Nash ([41]) o di Glicksberg ([19]) (fondati su teoremi di punto fisso).

Al fine di illustrare la presenza di discontinuità nei giochi, nel Capitolo 1,
oltre al citato oligopolio, viene richiamato qualche gioco di natura economica
che presenta discontinuità nei payoffs. Inoltre, vengono riportati alcuni tra i
più recenti risultati sull’esistenza di equilibri di Nash per giochi con payoffs
non necessariamente continui.

Come viene mostrato nel Paragrafo 5.1, le classi di discontinuità che garan-
tiscono l’esistenza di equilibri e che sono richiamate nel Capitolo 1, non
costituiscono condizioni sufficienti per la stabilità variazionale dei giochi.
A partire da ciò, nella Tesi ci si è occupati di individuare opportune classi di
giochi discontinui e stabili, fornendo, quindi, esplicite condizioni sui payoffs,
più generali della continuità, atte a garantire la chiusura sequenziale della
multifunzione degli equilibri corrispondenti a parametri esogeni.
Precedenti risultati nei quali è stata rilassata la continuità dei payoffs sono
stati ottenuti in [11], dove si considera il caso di assenza di vincoli espliciti,
e in [30], dove le ipotesi sui dati sono fatte in spazi di Banach reali, riflessivi
e separabili.

Al fine di ottenere nuovi risultati sulla chiusura sequenziale della multifun-
zione degli equilibri di Nash sociali, con ipotesi esplicite sui dati e in spazi di
convergenza del tutto generali, fondamentali strumenti si sono rivelate essere
le funzioni sequenzialmente pseudocontinue superiormente e inferiormente,
più generali delle funzioni sequenzialmente semicontinue superiormente e in-
feriormente rispettivamente.
Tali nuove classi di funzioni vengono presentate nel Capitolo 2, unitamente
a qualche notevole caratterizzazione e a condizioni sufficienti. Quest’ultime
esprimono il legame tra le funzioni pseudocontinue e la stretta monotonia:
ogni funzione strettamente monotona è allo stesso tempo sequenzialmente
pseudocontinua superiormente e inferiormente.
I nuovi risultati ottenuti sulla chiusura della multifunzione degli equilibri di
Nash sociali, sono discussi al Capitolo 5.
Inoltre, sempre nel Capitolo 5, è stata studiata la buona posizione paramet-
rica dei giochi e pseudo-giochi con payoffs pseudocontinui. La nozione di
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buona posizione alla quale ci si riferisce è quella alla Tykhonov, il cui signi-
ficato è il seguente. Supponiamo di voler calcolare l’unico equilibrio di Nash
yo di un gioco mediante un metodo composto da una successione di passi,
ciascuno dei quali produce un equilibrio di un gioco i cui payoffs sono una
deformazione di quelli del gioco originario. Supponiamo che le deformazioni
sono rappresentate mediante un insieme di parametri X e che il gioco origi-
nario corrisponde al valore xo ∈ X . L’essere il gioco parametricamente ben
posto vuol dire che gli equilibri prodotti dai passi successivi x costitutiscono
una buona approssimazione dell’equilibrio yo tanto più quanto maggiormente
x è vicino a xo.
Anche per la buona posizione parametrica, le funzioni pseudocontinue si sono
rivelate essere uno strumento con cui rilassare la continuità dei payoffs, ipotesi
dominante, come esplicita sui dati, nei risultati presenti in letteratura ([43],
[34]).

I corrispondenti casi di stabilità variazionale e buona posizione parametrica
in ottimizzazione sono trattati al Capitolo 4.

Anche quando i payoffs di un gioco (o di un pseudo-gioco) sono continui, la
non esistenza di equilibri di Nash può derivare dalla non-compattezza degli
spazi delle strategie (vedi Example 6.1.2).
Partendo da queste circostanze di assenza di compattezza, altro scopo della
presente Tesi è stato quello di fornire delle condizioni sufficienti per l’esistenza
di equilibri approssimati in giochi e in pseudo-giochi. Precisamente, come ben
noto, fissato ε > 0, un profilo di strategie di un gioco è detto un ε-equilibrio
di Nash se ogni giocatore non può incrementare il proprio payoffs più di ε
mediante deviazioni unilaterali. Per quanto concerne le economie astratte
(pseudo-giochi), nel caso di vincoli di disuguaglianze, nel Paragrafo 6.3 viene
proposto un concetto di equilibrio sociale approssimato.
Sia per i giochi che per le economie astratte, nel Capitolo 6 vengono stabilite
condizioni sufficienti per l’esistenza di equilibri approssimati nel caso in cui
gli spazi delle strategie sono sottoinsiemi limitati in spazi di Banach reali,
riflessivi e separabili, e nel caso in cui gli spazi delle strategie sono sottoin-
siemi totalmente limitati in spazi di Banach reali.

Gli strumenti atti ad ottenere l’esistenza di equilibri approssimati per giochi
e economie astratte sono nuovi teoremi di punto fisso approssimato per mul-
tifunzioni, i quali vengono illustrati nel Capitolo 3. In tali risultati, facendo
ipotesi di continuità (chiusura del grafico o semicontinuità superiore) rispetto
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alla topologia debole, l’esistenza di punti fissi approssimati per multifunzioni
è ottenuta in spazi di Banach reali, riflessivi e separabili per regioni convesse,
limitate e con interiore non vuoto. Facendo ipotesi di continuità della multi-
funzione rispetto alla topologia forte, l’esistenza di punti fissi approssimati è
garantita su regioni convesse, totalmente limitate e con interiore non vuoto
in spazi di Banach reali.
Inoltre, viene introdotta una nuova proprietà per multifunzioni, detta tame,
la quale, unitamente a ipotesi di continuità rispetto alla topologia debole
(chiusura del grafico o semicontinuità superiore), garantisce l’esistenza di
punti fissi approssimati in spazi di Banach reali, riflessivi e separabili, anche
per regioni convesse e non limitate, con interiore non vuoto.

Altre situazioni in cui le discontinuità dei payoffs possono essere tali da ren-
dere non applicabili i classici risultati di esistenza di soluzioni, sono i problemi
di MaxSup e di MaxInf. Ad esempio, un giocatore avverso al rischio è por-
tato a cercare una strategia cautelativa, cioé una strategia che gli garantisca
un livello minimo per il proprio payoff. Partendo da ciò, la presente Tesi si
conclude con un capitolo dedicato allo studio dell’esistenza di soluzioni per i
problemi di MaxSup e di MaxInf.
Come discusso al Capitolo 7, la semicontinuità superiore delle funzioni obiet-
tivo garantisce, sotto opportune ipotesi di compattezza, l’esistenza di soluzioni.
Per quanto riguarda i problemi di MaxInf, risultati di esistenza con ipotesi
più generali della semicontinuità superiore dell’obiettivo sono stati ottenuti
in [1] e in [26] mediante gamma-limiti.
Nuovi risultati di esistenza sono stati ottenuti utilizzando la classe delle fun-
zioni sequenzialmente quasicontinue superiormente, introdotta nel Capitolo
2, la quale contiene strettamente la classe delle funzioni sequenzialmente
pseudocontinue superiormente. Cos̀ı come osservato per le funzioni pseudo-
continue, la monotonia è una condizione sufficiente per la quasicontinuità.
I nuovi risultati di esistenza di soluzioni per i problemi citati, sono stati
ottenuti generalizzando il Teorema di Weierstrass in spazi di convergenza,
in cui si rilassa la sequenziale semicontinuità superiore della funzione obiet-
tivo, ispirandosi alle funzioni debolmente continue superiormente per trasfer-
imento introdotte in [48] e che caratterizzano l’esistenza di punti di massimo
in spazi topologici. Quindi, viene discussa una speculare caratterizzazione
dell’esistenza di punti di massimo per funzioni definite in spazi sequenzial-
mente compatti.
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Chapter 1

Games with Discontinuities

Aim of this chapter is to consider some remarkable economic game in which
discontinuities are present. As it will be shown, several authors have studied
the problem of the existence of Nash equilibria when the payoffs are not con-
tinuous. Among the others, we recall Dasgupta and Maskin in 1986 ([13]),
and more recently, Baye, Tian and Zhou in 1993 ([3]) and Reny in 1999
([44]).
Discontinuities can be also present in markets with leadership. In fact, it
will be considered an oligopoly with leadership, in which the inverse of de-
mand will be a set-valued functions. This oligopoly has been studied by
Flam, Mallozzi and Morgan in [18], where the authors obtain the existence
of Stackelberg-Cournot equilibria.

1.1 Existence of Equilibria in Games with Dis-

continuous Payoffs

In this section, we will consider games in normal form with discontinuous pay-
offs and we will refer to some of more recent results on existence of equilibria.

Let give m individuals (where m is a positive integer greater or equal to 2),
each of them possesses a non-empty set of strategic choices Yi (i ∈ {1, ..., m})
and a payoff (or utility) function fi, which is defined on the cartesian product
of all strategy sets Y =

∏m
j=1 Yj. As well know, the list of data G = {Yi, fi}i

is a game in normal form, and an element y∗ ∈ Y is a Nash equilibrium in
pure strategies (see [40] and [41]) if fi(y

∗
i , y

∗
−i) ≥ fi(yi, y

∗
−i) for all yi ∈ Yi and

for all i.
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In the case in which the strategy sets are compact and convex (in topological
vector spaces) and the payoffs are quasiconcave, the early theorems due to
Nash ([41]), Debreu ([15]) and Glicksberg ([19]) reveal that games possess a
pure strategy Nash equilibria when the payoffs are continuous functions.

There are many remarkable economic games in literature which possess dis-
continuous payoffs, as the price competition in an oligopoly due to Bertrand
([5]), the spatial competition in linear city due to Hotelling ([20]), the pay-
your-bid multi-unit auction game (see for example [44]). In the following,
some examples will be given.

Example 1.1.1 (Bertrand’s competition, [5]) There are two firms which
produce the same good. Suppose that firms are price makers and they have
the same marginal cost c > 0: for to produce the quantity q of good, each
firm spends cq. For any fixed price p, the market of consumers asks the total
quantity d(p) of good and we assume that each firm can produce any quantity
d(p) asked by market. The competition between the producers is in to make
an optimal price p in order to maximize own profit. So, the competition
is represented by the game {Y1, Y2, π1, π2} with Y1 = Y2 = [0, +∞[ and πi

defined by:

πi(pi, pj) =





(pi − c)d(pi) if pi < pj
1
2
(pi − c)d(p) if pi = pj = p

0 if pi > pj

where i 6= j. This game has strategic spaces non compact and payoffs which
are not continuous. Hence, the classical existence theorems cannot be ap-
plied. Now, we analyze the behavior of firms. If i wants to make a price
pi > c, the other firm j could make a price pj ∈]c, pi[ and in this way the
profit of i could be 0. So, the firm i will not make a price strictly greater
than c. This game has a unique Nash equilibrium, that is the pair (c, c), even
if the classical hypothesis on the existence are not satisfied.

The Bertrand competition satisfies the better replay security condition due
to Reny in [44], which is a property that, together hypothesis of compactness
of and convexity, recognizes discontinuous games endowed of equilibria. We
recall that a game is said better replay security if for every non-equilibrium
y∗ and for every vector u∗ such that the pair (y∗, u∗) belongs to the closure of
the graph of the vector function f = (f1, ..., fm), some player i has a strategy
ȳi such that fi(ȳi, y−i) > u∗i for all deviation y−i in some neighbourhood of
y∗−i.
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Example 1.1.2 (Hotelling’s competition, [20]) On a linear city of length
l, two sellers A and B of an homogeneous good are located at respective
distances a and b from the ends of the city: a + b = l and a, b ≥ 0. Suppose
that consumers are uniformly distributed on [0, l] and that each customer
consumes exactly one unit of the commodity per one unit of time. The
customers have an uniform rate c of transportation. So, they will buy from
the seller who make a price which minimize own total cost, that is the cost
of the good and the cost of the transport. This situation is described by the
game {Y1, Y2, π1, π2} with Y1 = Y2 = [0, +∞[ and πi defined by:

π1(p1, p2) =





ap1 + 1/2(l − a− b)p1

+(1/2c)p1p2 − (1/2c)p2
1 if | p1 − p2 |≤ c(l − a− b)

lp1 if p1 < p2 − c(l − a− b)
0 if p1 > p2 − c(l − a− b)

and

π2(p1, p2) =





bp2 + 1/2(l − a− b)p2

+(1/2c)p1p2 − (1/2c)p2
2 if | p1 − p2 |≤ c(l − a− b)

lp2 if p2 < p1 − c(l − a− b)
0 if p2 > p1 − c(l − a− b)

The functions π1 and π2 are not continuous and the strategic spaces are not
compact. So, the classical results on existence of equilibria cannot be applied.
As established in [2], the pair (0, 0) is the unique equilibrium when a + b = l
and, if a + b < l, there exists an equilibrium if and only if:

(l +
a− b

3
)2 ≥ 4

3
l (a + 2b) and (l +

b− a

3
)2 ≥ 4

3
l (b + 2a). (1.1)

A characterization of games in normal form which admit equilibria has been
given by Baye, Tian and Zhou in [3]. Here the authors consider the aggrega-
tor function f defined by f(y, z) =

∑m
i=1 fi(yi, z−i) for all y, z ∈ Y , and they

give two condition on f (so non explicit on the data), hard to verify, called
diagonal transfer continuity and diagonal transfer quasiconcavity. More pre-
cisely, a game is said diagonal transfer continuous in z if for every (y, z),
f(y, z) > f(z, z) implies that there exists a point y′ and a neighbourhood I of
z such that f(y′, z′) > f(z′, z′) for each z′ ∈ I. A game is said diagonal trans-
fer quasiconcave in y if for any finite subset {y1, ..., yk} there exists a subset
{z1, ..., zk} such that: if zo is a convex combination of {zi1 , ..., zih}, where
i1, ..., ih ∈ {1, ..., k}, it result in f(zo, zo) ≥ min{f(yi1 , zo), ..., f(yih , zo)}.
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Now, these conditions characterize the existence of Nash equilibria for games
with non-empty, convex strategic spaces and with a suitable ”compactness
assumption”.
For example, one can see that the Hotelling’s competition fails to have equi-
libria when (1.1) is not satisfy, because the game is diagonal transfer quasi-
concave if and only if (1.1) holds.

Example 1.1.3 (Baye, Tian and Zhou, [3]) Two duopolists have zero cost
and set prices (p1, p2) ∈ [0, T ]2. Let c ∈]0, T [. Assume that each firm has
committed to pay brand-loyal consumers a penalty of c if the others firm
make an inferior price. So, this oligopoly is represented in the game in which
the set of strategies are equal to [0, T ] and the payoffs are the following,
where i 6= j:

fi(pi, pj) =

{
pi if pi ≤ pj

pi − c if pi > pj

The game does not satisfy the hypothesis on existence of equilibria of Reny
([44]), but it is diagonal transfer continuous and diagonal transfer quasi-
concave. So, the game admits at least a Nash equilibria in light of the
characterization due to Baye, Tian and Zhou ([3])

Others existence results on Nash equilibria without continuity of payoffs,
they have been obtained by Lignola in [25] and Lignola and Morgan in [30].

In [25], the author considers strongly escaping sequences for to relax the com-
pactness assumption on the strategic spaces. In fact, let (Cn)n be an increas-
ing (with respect to inclusion) sequence of non-empty and compact sets such
that Y = ∪nCn. A sequence (yn)n ⊆ Y is said to be strongly escaping from Y
relative to (Cn)n ([25]) if it results that the set of cluster points of (yn)n has
non-empty intersection with any Cn. Let Yi = ∪nCi,n for all i ∈ {1, 2}, where
(Ci,n)n has non-empty, compact and convex elements, and Cn = C1,n ×C2,n.
The existence of Nash equilibria for a two person game is guaranteed if: every
fi(·, y−i) is quasiconcave for all y−i; f1 +f2 is upper semicontinuous on Cn for
all n; for any i, fi(yi, y−i) ≤ supzi∈Ci,n

lim infz−i→y−i
fi(zi, z−i) for all yi ∈ Yi,

all n and for all y−i ∈ C−i,n; for any strongly escaping sequence (yn)n from Y
with respect (Cn)n, with yn ∈ Cn for any n, there exists some i and a sequence
(zn

i )n, with zn
i ∈ Ci,n, such that either lim infn→∞[f1(z

n
1 , yn

2 )− f1(y
n)] < 0, if

zn
1 ∈ C1,n for any n, or lim infn→∞[f2(y

n
1 , zn

2 ) − f2(y
n)] < 0, if zn

2 ∈ C2,n for
any n, hold.
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When the strategic spaces are non-empty, bounded, convex and closed sub-
sets of reflexive and separable real Banach spaces, under the classical as-
sumption of quasiconcavity on payoffs, existence of Nash equilibria is ob-
tained in [30] for function fi which are sequentially upper semicontinuous
in the weak topology, and such that: for any i, for any y ∈ Y and any se-
quence (yn

−i) weakly convergent to y−i, there exists a sequence (zn
i )n such

that fi(y) ≤ lim infn→∞ fi(z
n
i , yn

−i).

1.2 Discontinuities in Markets with Leader-

ship

Suppose that we have a market in which there are several individuals and
one of them is a leader with respect all of others. Let fo and Yo be the
payoff and the set of choices of the leader respectively, while the list of data
{Yi, fi}m

i=1 characterizes the followers, where all functions fo, f1, ..., fm are
defined on Yo × Y1× ...× Ym. Assume that all individuals want to maximize
their payoffs. The leadership is as following: the leader makes own choice
yo ∈ Yo and, after this choice, the followers play a non-cooperative games,
in which N(yo) is the set of Nash equilibria. So, the leader has a MaxSup
problem to solve:

find y∗o ∈ Yo such that sup
y∈N(y∗o)

fo(y
∗
o , y) = max

yo∈Yo

sup
y∈N(yo)

fo(yo, y)

The classical results for existence of solutions to this problems ask that the
multifunction N : yo 7→ N(yo) is closed. Now, the followers can have discon-
tinuities in their payoffs, as we have already seen in the previous paragraph.
Starting from these situations, in Chapter 5 it will be studied classes of dis-
continuities which guarantee the closedness of the multifunction N .

When the market here considered is an oligopoly in which the competi-
tion between the firms is on the quantities of good to put in the market,
a point (y∗o , y

∗
1, ..., y

∗
m) is said a Stackelberg-Cournot equilibrium (see [18]) if

(y∗1, ..., y
∗
m) ∈ N(y∗o) and y∗o maximize the function supy∈N(·) fo(·, y) over Yo.

Flam, Mallozzi and Morgan consider in [18] a case of this oligopoly in which
the inverse of demand of the market is a multifunction. In fact, the authors
analyze the case in which firms agree to make always the maximal price, when
there are more possible prices for one quantity. Under suitable assumptions
on the inverse of demand set-valued function, Flam, Mallozzi and Morgan
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first prove that this behaviour of firms determine an upper semicontinuous
inverse of demand function. After, the authors prove that the reaction (that
is the set of Cournot equilibria) of the followers, whose payoffs are upper
semicontinuous, is closed over the choices of the leader. Finally, existence of
Stackelberg-Cournot equilibria is obtained.
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Chapter 2

New Tools I: Pseudocontinuous
and Quasicontinuous Functions

In this chapter, in the setting of sequential spaces, we will present new classes
of functions more general than sequential semicontinuity. The first one will
be called sequentially upper and lower pseudocontinuous functions and they
will be the tools able to relax the classical continuity assumptions on payoffs
in order to obtain stability and well-posedness in non-cooperative games and
pseudo-games. The second one will be called sequentially upper and lower
quasicontinuous functions and they will allow, on one hand to enlarge the suf-
ficient conditions for the existence of solutions to MaxSup and MaxInf Prob-
lems, on the other hand to relax the semicontinuity for the well-posedness of
optimization problems.

2.1 Preliminary Notions

First, we recall some well know definitions in sequential spaces.

Let Z be a non-empty set and τ be a subset of ZN × Z, where N is the
set of positive integers. The subset τ is a structure of convergence on Z (see
for example [24] and [27]) if the following axioms are satisfied:

(S1) for each z ∈ Z and any sequence (zn)n in Z such that zn = z for n
sufficiently large, we have ((zn)n, z) ∈ τ ;

(S2) if ((zn)n, z) ∈ τ and if (znk
)k is a subsequence of (zn)n, then we have:

((znk
)k, z) ∈ τ ;
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(S3) if ((zn)n, z) 6∈ τ , then there exists a strictly inscreasing sequence of
integers (also called selection of integers) (nk)k such that for each its
subsequence (nkm)m we have: ((znkm

), z) 6∈ τ .

If τ is a structure of convergence on Z, the pair (Z, τ) is termed convergence
sequential space (or, in short, sequential space). Often, we will denote a se-
quential space (Z, τ) by Z, omitting τ . A sequence (zn)n ⊆ Z is termed
converging to z in Z (in short zn −→ z) if ((zn)n, z) ∈ τ .

A subset U ⊆ Z is termed: sequentially compact, if and only if any sequence
of points of U has a subsequence converging to a point of U ; sequentially
closed, if and only if any converging sequence of points of U , it converges to
a point of U .

Definition 2.1.1 ([24], [27]). Let (Z, τ) be a sequential space and f be an
extended real valued function defined on Z. The function f is said to be
sequentially ( seq. in short) upper semicontinuous at zo ∈ Z if and only if:

lim sup
n→∞

f(zn) ≤ f(zo) for all sequence zn −→ zo in Z,

and f is said to be seq. lower semicontinuous at zo ∈ Z if and only if:

f(zo) ≤ lim inf
n→∞

f(zn) for all sequence zn −→ zo in Z.

Definition 2.1.2 ([24]). Let (An)n be a sequence of subsets of a sequential
space (Z, τ), then:

• z ∈ LiminfAn if and only if there exists a sequence (zn)n converging
to z in Z and such that zn ∈ An for n sufficiently large;

• z ∈ LimsupAn if and only if there exists a sequence (zk)k converging
to z in Z such that zk ∈ Ank

for a subsequence (Ank
) of (An)n and for

each k ∈ N.

Definition 2.1.3 ([24]). Let X and Y be two sequential spaces, K be a
set-valued function (or multifunction) from X to Y and xo ∈ X. Then:

• K is said to be seq. closed at xo if and only if LimsupK(xn) ⊆ K(xo)
for all sequence (xn)n converging to xo in X;
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• K is said to be seq. lower semicontinuous at xo if and only if
K(xo) ⊆ LiminfK(xn) for all sequence (xn)n converging to xo in X.

Definition 2.1.4 ([27]). Let X and Y be two sequential spaces, K be a
set-valued function from X to Y and xo ∈ X. K is said to be sequentially
subcontinuous at xo if and only if for any sequence (xn)n converging to xo

and any sequence (yn)n ⊆ Y such that yn ∈ K(xn) for n sufficiently large,
there exists a subsequence of (yn)n which converges to a point of Y .

2.2 Pseudocontinuous Functions

In this section, following [37], we present the class of sequentially upper pseu-
docontinuous functions and the class of sequentially lower pseudocontinuous
functions, which strictly include, respectively, the class of sequentially upper
semicontinuous functions and the class of sequentially lower semicontinuous
functions. Characterizations and sufficient conditions for pseudocontinuity
will be also given.

Definition 2.2.1 Let (Z, τ) be a sequential space and f be an extended real
valued function defined on Z.

• f is said to be seq. upper pseudocontinuous at zo ∈ Z if and only if for
all z ∈ Z such that f(zo) < f(z), we have:

lim sup
n→∞

f(zn) < f(z) for all sequence (zn)n converging to zo in Z;

f is said to be seq. upper pseudocontinuous on Z if and only if it is
seq. upper pseudocontinuous at zo, for all zo ∈ Z;

• f is said to be seq. lower pseudocontinuous at zo ∈ Z if and only if
−f is seq. upper pseudocontinuous at zo and f is said to be seq. lower
pseudocontinuous on Z if and only if it is seq. lower pseudocontinuous
at zo, for all zo ∈ Z;

• f is said to be seq. pseudocontinuous if and only if it is both seq. upper
and lower pseudocontinuous.

As we have already said in the beginning, if (Z, τ) is a sequential space, every
extended real valued sequentially upper semicontinuous function on (Z, τ) is
also sequentially upper pseudocontinuous on (Z, τ) and every extended real
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valued sequentially lower semicontinuous function on (Z, τ) is also sequen-
tially lower pseudocontinuous. The converse is not true, as shown by the
following counterexamples.

Example 2.2.1 As a simple counterexample in an economic setting we can
consider an utility function u depending on a parameter x, whose values
characterize the states of the world where the agents make their choices.
The value x = 1 corresponds to a threshold level: if x ∈ [0, 1[ the agents
have positive utilities, if x ∈ [1, +∞[ the agents have negative utilities.
So, let α ∈]0, 1[ and u be the function from [0, +∞[×]0, 1]2 to R defined by:

u(x, y1, y2) =

{
(1− x)yα

1 y1−α
2 if x ∈ [0, 1[
−1 if x ∈ [1, +∞[

The function u, which is a Cobb Douglas utility function for x ∈ [0, 1[ (see
for example [35]), is not sequentially upper semicontinuous in (1, y1, y2), for
all (y1, y2) ∈]0, 1]2, but it is sequentially upper pseudocontinuous.

Example 2.2.2 The function defined by:

f(x) =

{
(x− 1)2 if x ∈ ]0, 2[

x if x ∈ [2, +∞[

is not seq. lower semicontinuous at xo = 2 but it is sequentially lower pseu-
docontinuous.

We assume that (Z, σ) is a topological space, where σ denotes the topol-
ogy on Z. In this setting, properties more general than semicontinuity have
been introduced by Tian and Zhou in [48], where the authors used them
for to characterize the existence of optimal points. Now, if we consider the
convergence structure defined by the topology σ, it can be shown (see Ex-
ample 2.2.3) that the classes of functions introduced in Definition 2.2.1 are
not included in the classes of transfer weakly upper and lower continuous
functions introduced in [48]. For example, the class of seq. upper pseudo-
continuous functions are not included in the class of transfer weakly upper
continuous functions, where an extended real valued function f defined on
Z is called transfer weakly upper continuous ([48]) if and only if for every
zo and z belonging to Z such that f(zo) < f(z), there exist z′ ∈ Z and a
neighbourhood I of zo such that f(u) ≤ f(z′) for all u ∈ I.
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Example 2.2.3 Let (R, σ) be the topological space such that A ⊆ R is open
(that is A ∈ σ) if and only if R\A = {z ∈ R/z 6∈ A} is finite or countable. In
(R, σ), a sequence (zn)n converges to a point zo if and only if zn coincides with
zo for n sufficiently large. So, for every extended real valued function defined
on R, every point zo ∈ R and every zn −→ zo, we have limn→∞ f(zn) = f(zo).
Therefore, every extended real valued function defined on R is seq. upper
pseudocontinuous on R with respect to the convergence structure induced
by σ. So, if we consider the identity function i on ]0, 1[ with the relative
topology induced by σ, then i is seq. upper pseudocontinuous on ]0,1[ but it
is not transfer weakly upper continuous. In fact, let z and zo belonging to
]0,1[ such that zo < z. If I is an open neighbourhood of zo in (]0, 1[, σ), there
exists a sequence (yn)n in ]0, 1[ such that I =]0, 1[\{yn/n ∈ N}. Hence, for
every open neighbourhood I of zo in (]0, 1[, σ) and for every z′ ∈ ]0, 1[, there
exists an element y ∈ I such that z′ < y. Therefore, i is not transfer weakly
upper continuous at zo but it is seq. upper pseudocontinuous on ]0, 1[.

For sequentially upper pseudocontinuity there are the following character-
izations, which are in line with the well know characterizations of upper
semicontinuity in terms of hypograph and upper level sets.

Proposition 2.2.1 Let (Z, τ) be a sequential space and let f be an extended
real valued function defined on Z. Then the following statements are equiv-
alent:

(i) f is sequentially upper pseudocontinuous on Z;

(ii) the set L = {(z, λ) / f(z) ≥ λ and λ ∈ f(Z)} is sequentially closed in
Z × f(Z);

(iii) the set Sλ = {z ∈ Z / f(z) ≥ λ} is sequentially closed on Z for all
λ ∈ f(Z).

Proof. First, we prove that (i) implies (ii).
Assume that f is sequentially upper pseudocontinuous on Z. Let (zn, f(yn))n

⊆ L (that is f(zn) ≥ f(yn)) be a sequence converging to a point (z, f(y))
in Z × f(Z). If (z, f(y)) 6∈ L, we have f(z) < f(y). Then, in light of (i),
we obtain that lim supn→∞ f(zn) < f(y) = limn→∞ f(yn) and, consequently,
f(zn) < f(yn) for n sufficiently large. So we get a contradiction.
Now, we prove that (ii) implies (iii).
Let λ ∈ f(Z) (that is λ = f(z) for some z ∈ Z) and let (zn)n be a sequence
of points of Sλ converging to zo. Then (zn, f(z))n is included in L. Since L is

15



sequentially closed in Z × f(Z), we have that (zo, f(z)) ∈ L, that is zo ∈ Sλ.
Finally, we prove that (iii) implies (i).
Assume that Sλ is sequentially closed for all λ ∈ f(Z). Let z ∈ Z and zo ∈ Z
be such that f(zo) < f(z) and let zn −→ zo.
First, we suppose that there exists z′ ∈ Z such that f(zo) < f(z′) < f(z).
Let λ′ = f(z′). Then zo ∈ Z\Sλ′ . We claim that there exists an index no

such that zn ∈ Z\Sλ′ for all n ≥ no. In fact, if for each no, there exists n ≥ no

such that zn ∈ Sλ′ , then there exists a subsequence (znk
)k of (zn)n such that

(znk
)k ⊆ Sλ′ . Being Sλ′ sequentially closed, we obtain zo ∈ Sλ′ and we get a

contradiction. So f(zn) < f(z′) for n sufficiently large. Consequently,

lim sup
n→∞

f(zn) ≤ f(z′) < f(z).

Otherwise, if it does not exist z′ ∈ Z such that f(zo) < f(z′) < f(z), we
set λ = f(z). Being zo ∈ Z\Sλ and Sλ sequentially closed, as above we can
prove that f(zn) < f(z) for n sufficiently large. But f(Z)∩]f(zo), f(z)[= ∅,
so f(zn) ≤ f(zo) for n sufficiently large. Hence

lim sup
n→∞

f(zn) ≤ f(zo) < f(z).

2

Remark 2.2.1 If (Z, τ) is a sequential space and f is an extended real valued
function defined on Z, similarly, one can obtain the following result:
The following statements are equivalent:

(i) f is sequentially upper semicontinuous on Z;
(ii) the hypograph of f is sequentially closed;
(iii) the set Sλ = {z ∈ Z / f(z) ≥ λ} is sequentially closed on Z
for all extended real valued λ.

When (Z, σ) is a topological space which satisfies the first axiom of countabil-
ity, this result is nothing but the well know characterizations of topological
upper semicontinuity.

We conclude the paragraph with a proposition which shows the connection
between the pseudocontinuity and the monotonicity: every strictly mono-
tonic extended real valued function is also a sequentially pseudocontinuous
function.

16



Proposition 2.2.2 Let f be an extended real valued function defined on
Rk and C be a convex and pointed cone in Rk with apex at the origin and
nonempty interior. If f is strictly monotonic with respect to C, that is:

y ∈ x + int(C) ⇐⇒ f(x) < f(y) (strictly increasing)

or
y ∈ x + int(C) ⇐⇒ f(x) > f(y) (strictly decreasing),

then f is sequentially pseudocontinuous on Rk.

Proof. Suppose that f is strictly decreasing with respect to C.
We first prove that f is sequentially lower pseudocontinuous. Let xo and
x be such that f(x) < f(xo) and let xn −→ xo in X. Then, we have:
x ∈ xo + int(C). So there exist an element y ∈ [x− int(C)] ∩ [xo + int(C)]
and an open neighbourhood A of xo such that y ∈ z + int(C) for all z ∈ A.
Since xn −→ xo, we have that y ∈ xn + int(C) for n sufficiently large. Then

f(x) < f(y) ≤ lim inf
n→∞

f(xn).

Now, we prove that f is sequentially upper pseudocontinuous. Let xo and x
be such that f(xo) < f(x) and let xn −→ xo in X. Then xo ∈ x + int(C).
Moreover, there exist y ∈ [xo − int(C)] ∩ [x + int(C)] and an open neigh-
bourhood B of xo such that z ∈ y + int(C) for all z ∈ B. Consequently,
f(xn) < f(y) for n sufficiently large. So

lim sup
n→∞

f(xn) ≤ f(y) < f(x).

Analogously we obtain that f is sequentially pseudocontinuous if it is stricly
increasing. 2

2.3 Quasicontinuous Functions

To conclude the chapter, following [38], we present the classes of sequentially
quasicontinuous functions together sufficient conditions.

Definition 2.3.1 Let (Z, τ) be a sequential space and f be an extended real
valued function defined on Z.
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• f is said to be seq. upper quasicontinuous at zo ∈ Z if and only if for
all z ∈ Z such that f(zo) < f(z), we have:

lim sup
n→∞

f(zn) ≤ f(z) for all sequence (zn)n converging to zo in Z;

f is said to be seq. upper quasicontinuous on Z if and only if it is seq.
upper quasicontinuous at zo, for all zo ∈ Z;

• f is said to be seq. lower quasicontinuous at zo ∈ Z if and only if
−f is seq. upper quasicontinuous at zo and f is said to be seq. lower
quasicontinuous on Z if and only if it is seq. lower quasicontinuous at
zo, for all zo ∈ Z;

• f is said to be seq. quasicontinuous if and only if it is both seq. upper
and lower quasicontinuous.

Obviously, the class of seq. upper (respectively lower) quasicontinuous func-
tions strictly includes the class of seq. upper (respectively lower) pseudocon-
tinuous functions. The well know Dirichlet’s function (which is equal to 0
on Q and equal to 1 on R\Q) is an example of function seq. quasicontinuous
which is not seq. pseudocontinuous.

In the setting of topological spaces, Campbell and Walker have introduced
in [9] a property for preference relations, called weakly lower continuity, in
order to relax the upper semicontinuity in the existence of solutions to opti-
mization problems. Now, any extended real valued function which is weakly
lower continuous in the sense of Campbell and Walker is also seq. upper qua-
sicontinuous. Example 2.2.3 shows that, generally, the class of seq. upper
quasicontinuous functions and the class of weakly lower continuous functions
do not coincide.

Finally, as for the pseudocontinuous functions, also quasicontinuous func-
tions have connections with monotonicity, as showed in the next proposition.

Proposition 2.3.1 Let f be an extended real valued function defined on Rk

and C be a convex and pointed cone in Rk with apex at the origin and non-
empty interior. If f is monotone with respect to C, that is:

y ∈ x + int(C) ⇐⇒ f(x) ≤ f(y) (increasing function)

or
y ∈ x + int(C) ⇐⇒ f(x) ≥ f(y) (decreasing function),

then f is seq. quasicontinuous on Rk.
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Proof. Assume that f is increasing. Let x and y be such that f(x) < f(y)
and xn −→ x. Since f is increasing, y ∈ x + int(C). Moreover there exists
an open neighbourhood I of x such that y ∈ z + int(C) for all z ∈ I. Con-
sequently, f(xn) ≤ f(y) for n sufficiently large. So lim supn→∞ f(xn) ≤ f(y)
and f is seq. upper quasicontinuous.
Similarly, one can prove that h is seq. lower quasicontinuous. 2
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Chapter 3

New Tools II: Approximate
Fixed Point Theorems

In this chapter we will be interested in set-valued functions F : X −→ 2X

which possess approximate fixed points.
As well know, a point x ∈ X is said a fixed point of F if x ∈ F (x). Fixed point
theorems deal with sufficient conditions on X and on F which guarantee the
existence of fixed points. These theorems have been abundantly used in many
applied fields such as game theory, general equilibrium theory, the theory of
quasi-variational inequalities.
If (X, d) is a metric space and ε is a positive real number, an ε-fixed point
of F is a point x∗ ∈ X such that d(x∗, F (x∗)) ≤ ε, where d(x∗, F (x∗)) =
inf{d(x∗, z) / z ∈ F (x∗)}. Such points will be called approximate fixed
points. Now, following [6], when X will be a Banach space, we will present
sufficient conditions on X and on F which will guarantee the existence of
approximate fixed points. Weak and strong topologies will play here a role
and both bounded and unbounded regions will be considered. Application
of fixed point theorems to game theory will be showed in a next chapter.

3.1 Fixed Point Theorems

We recall same of well know fixed point theorems. The first one is due to
Brouwer ([8]). This theorem deal the case of a function from a simplex to
itself.

Theorem 3.1.1 ([8]) Let f be a continuous function from ∆n−1 = {x ∈
Rn

+ / x1 + ... + xn = 1} to itself. Then, f admits at least one fixed point.
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Using Brouwer’s theorem applied to continuous selections, Kakutani ([22])
proved a fixed point theorem for set-valued functions.

Theorem 3.1.2 ([22]) Let F be a set-valued function from ∆n−1 to itself. If
F (x) is non-empty, closed and convex for all x ∈ ∆n−1 and F is sequentially
closed on ∆n−1, then F admits at least one fixed point.

Remark 3.1.1 The hypothesis of F sequentially closed in Theorem 3.1.2 is
said ”upper semicontinuous” in [22]. Precisely, if X,Y are topological spaces,
a multifunction F : X −→ 2Y is said upper semicontinuous at xo ∈ X if for
all open set B ⊆ Y such that F (xo) ⊆ B, there exists an open neighbour-
hood A of xo such that: F (z) ⊆ B for all z ∈ A. Moreover, the multifunction
F is said (topological) closed at xo ∈ X if for all y 6∈ F (xo), there exist a
neighbourhood I of xo and a neighbourhood J of y such that: F (z) ∩ J = ∅
for all z ∈ I. Closedness (in topological sense) and upper semicontinuity
are equivalent when: Y is an Hausdorff compact space and F has compact
values (see for example [4] and [1]). Now, if X and Y are topological space
which satisfy the first axiom of countability, sequential closedness and (topo-
logical) closedness are equivalent. Hence, for multifunctions which satisfy
the hypothesis of Theorem 3.1.2, sequential closedness is equivalent to upper
semicontinuity.

Kakutani’s theorem has been extended in infinite dimensional case by Glicks-
berg in [19].

Theorem 3.1.3 ([19]) Let S be a non-empty, convex and compact subset of
an Hausdorff and locally convex topological vector space. Let F : S −→ 2S.
If F is closed on S and it has non-empty and convex values, then there exists
at least one fixed point of F .

We note that for the existence of fixed points is necessary a compactness
assumption on the domain in which the multifunction is defined. In the next
section, we will deal with sets in which the compactness will be dropped.

3.2 Approximate Fixed Point Theorems on

Bounded and Totally Bounded Sets

In this section, following [6], V will be a real Banach space and for F : X −→
2X with X ⊆ V , the set {x ∈ V / d(x, F (x)) = infy∈F (x) ‖ y−x ‖≤ ε} of the
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ε-fixed points of the multifunction F on X will be denoted by FIXε(F ).

As noted in the previous paragraph, for existence of fixed points, the hy-
pothesis of compactness of the set X is crucial. In Banach spaces, the com-
pactness with respect the strong topology is characterized by completeness
and totally boundedness (see for example [23]). We recall that a set X ⊆ V
is complete if every Cauchy-sequence converges, while it is totally bounded if

for any η > 0 there exists a finite set T ⊆ X such that X ⊆ ∪x∈T

o

B (x, η),

where
o

B (x, η) = {y ∈ V / ‖ y − x ‖< η}. So, if V is a Banach space,
every subset closed and totally bounded is compact. Instead, if the space
V is also reflexive, every subset closed, convex and bounded is also compact
with respect to the weak topology on V (see for example [7]).

Using the weak topology in the following two theorems, sufficient conditions
for existence of approximate fixed points on bounded sets are given.

Theorem 3.2.1 Let V be a reflexive real Banach space and let X be a
bounded and convex subset of V with non-empty interior. Assume that F :
X −→ 2X is a weakly closed multifunction (that is a multifunction closed
with respect to the weak topology) such that F (x) is a non-empty and convex
subset of X for each x ∈ X. Then FIXε(F ) 6= ∅ for each ε > 0.

Proof. Suppose without loss of generality that 0 ∈ intX. Let α = sup{‖ x ‖
/ x ∈ X}. Take ε > 0 and 0 < δ < 1 such that δα ≤ ε. Let Y be the
weakly compact and convex subset of X defined by Y = (1 − δ)X, where
X is the closure of X (note that the closure in strong and weak topologies
are the same for convex set). Define the multifunction G : Y −→ 2Y by
G(x) = (1− δ)F (x) for all x ∈ Y . Then G is a weakly closed multifunction
with non empty, convex and weakly compact values. But, with respect to
the weak topology, V is an Hausdorff locally convex topological vector space,
so, in view of Theorem 3.1.3, G has at least one fixed point on Y . So there is
an x∗ ∈ Y such that x∗ ∈ G(x∗) = (1− δ)F (x∗). Then there is a z ∈ F (x∗)
such that x∗ = (1 − δ)z, so ‖ z − x∗ ‖= δ ‖ z ‖≤ δα ≤ ε. Hence x∗ is an
ε-fixed point of F . 2
For proving Theorem 3.2.2, we need of the following lemma.

Lemma 3.2.1 ([12]) Let V be a reflexive and separable real Banach space
and let X be a non-empty bounded subset of V . Then, there exists a metric
dX on V which induces the weak topology on X.
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Theorem 3.2.2 Let V be a reflexive and separable real Banach space and
let X be a bounded and convex subset of V with non-empty interior. Assume
that F : X −→ 2X is a weakly upper semicontinuous multifunction (that is a
multifunction upper semicontinuous with respect to the weak topology) such
that F (x) is a non-empty and convex subset of X for each x ∈ X. Then
FIXε(F ) 6= ∅ for each ε > 0.

Proof. As in the proof of Theorem 3.2.1, we assume that 0 ∈ intX and
α = sup{‖ x ‖ / x ∈ X}. Take ε > 0, 0 < δ < 1 such that δα ≤ ε

2
and

Y = (1−δ)X. Define the multifunction G : Y −→ 2Y by G(x) = (1−δ)F (x)
for all x ∈ Y . G is weakly upper semicontinuous. In fact, we consider the
metric dX by Lemma 3.2.1. Let x ∈ Y and assume that A is a weakly
open neighbourhood of G(x). For σ > 0, we denote with Aσ the open
set {y ∈ Y / dX(y, G(x)) < σ}. Since G(x) is weakly compact, we have
that dX(Y \A,G(x)) = inf{dX(y, z) / y ∈ Y \A, z ∈ G(x)} > 0, where
Y \A = {y ∈ Y / y 6∈ A}. So, if 0 < σ′ < σ < dX(Y \A,G(x)), we have
G(x) ⊂ Aσ′ ⊂ {y ∈ Y / dX(y, G(x)) ≤ σ′} ⊂ Aσ ⊂ A. In view of the weakly
upper semicontinuity of the multifunction (1 − δ)F , there exists an open
neighbourhood I of x such that (1 − δ)F (z) ⊂ Aσ′ for all z ∈ I. Therefore
G(z) = (1 − δ)F (z) ⊆ {y ∈ Y / dw(y, G(x)) ≤ σ′} ⊂ A for all z ∈ I. So
G is a weakly upper semicontinuous multifunction at x. As noted in Re-
mark 3.1.1, G is also a weakly closed multifunction at x. Therefore, in view
Theorem 3.1.3, there exists a point x∗ ∈ Y such that x∗ ∈ G(x∗). Hence,
there exists z ∈ F (x∗) such that x∗ = (1−δ)z, so ‖ z−x∗ ‖= δ ‖ z ‖≤ δα ≤ ε

2
.

Moreover, there is z′ ∈ F (x∗) such that ‖ z′ − z ‖< ε
2
. Hence ‖ z′ − x∗ ‖< ε,

that is x∗ ∈ FIXε(F ). 2
When the hypothesis on the multifunctions are given with respect to the
strong topology, existence of approximate fixed points is guaranteed on totally
bounded sets, as showed in the next theorem.

Theorem 3.2.3 Let V be a real Banach space and let X be a convex and
totally bounded subset of V with non-empty interior. Assume that F : X −→
2X is a closed or upper semicontinuous multifunction such that F (x) is a
non-empty and convex subset of X for each x ∈ X. Then FIXε(F ) 6= ∅ for
each ε > 0.

Proof. Assume without loss of generality that 0 ∈ intX. Take ε >
0 and η > 0. Since X is totally bounded there exists m ∈ N and x1, ..., xm ∈
X such that X ⊆ ∪m

i=1

o

B (xi, η). If 0 < δ < 1 the set Y = (1 − δ)X is a
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non-empty, convex and totally bounded subset of V . Since Y is also closed,
it is compact. Let h = max{‖ xr ‖ / r = 1, ...,m}.
• First, we assume that F is a closed multifunction and we take 0 < δ < 1
such that δ(η + h) ≤ ε. Then the multifunction G : Y −→ 2Y defined by
G(x) = (1 − δ)F (x) for all x ∈ Y is closed. This implies by Theorem 3.1.3
that G possesses a fixed point x∗. Then there is a point z ∈ F (x∗) such that

x∗ = (1 − δ)z. Since X ⊆ ∪m
i=1

o

B (xi, η), there exists an r ∈ {1, ..., m} such

that z ∈ o

B (xr, η). So ‖ x∗ − z ‖= δ ‖ z ‖≤ δ(‖ z − xr ‖ + ‖ xr ‖) <
δ(η + h) ≤ ε. Hence x∗ ∈ FIXε(F ).
• Assume now that F is an upper semicontinuous multifunction. We take
0 < δ < 1 such that δ(η + h) ≤ ε

2
. Let G : Y −→ 2Y defined by G(x) =

(1 − δ)F (x) for all x ∈ Y . We claim that G is upper semicontinuous. Let
x ∈ Y and assume that A is an open neighbourhood of G(x). For each σ > 0,
we denote with Aσ the open set {y ∈ Y / infz∈G(x) ‖ z − y ‖< σ}. As in the
proof of Theorem 3.2.2, we obtain that G is an upper semicontinuous multi-
function at x and is also a closed multifunction at x. In view of Theorem 3.1.3,
there exists a point x∗ ∈ Y such that x∗ ∈ G(x∗) and z ∈ F (x∗) such that

x∗ = (1− δ)z. Since X ⊆ ∪m
i=1

o

B (xi, η), there exists s ∈ {1, ..., m} such that

z ∈ o

B (xs, η), so ‖ z − x∗ ‖= δ ‖ z ‖≤ δ(‖ z − xs ‖ + ‖ xs ‖) < δ(η + h) ≤ ε
2
.

Moreover there exists a point z′ ∈ F (x∗) such that ‖ z′ − z ‖< ε
2
, so

‖ z′ − x∗ ‖< ε, that is x∗ ∈ FIXε(F ). 2

3.3 Approximate Fixed Point Theorems on

Unbounded Sets

Following [6], the next theorems deal the existence of approximate fixed
points for multifunctions on convex regions which are not necessarily bounded.
Useful here is the notion of a tame multifunction.

Definition 3.3.1 Let U be a normed space and X ⊆ U . A multifunction
F : X −→ 2X is called a tame multifunction if, for each ε > 0, there is an
Rε > 0 such that B(0, Rε) ∩ X 6= ∅ and for each x ∈ B(0, Rε) ∩X the set
F (x) ∩B(0, Rε + ε) is non-empty, where B(0, Rε) = {z ∈ U | ‖ z ‖≤ Rε}.
Tame multifunctions are shown in the following examples.

Example 3.3.1 The map F : [0,∞[−→ 2[0,∞[ defined by

F (x) = [x + (x + 1)−1,∞[ for all x ∈ [0,∞[
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is a tame multifunction on the unbounded set [0,∞[. Moreover, F has ε-fixed
points for each ε > 0 (see the following Theorems 3.3.1 and 3.3.2).

Example 3.3.2 Let U be a normed space and F : U −→ 2U be a multifunc-
tion with F (x) 6= ∅ for each x ∈ U . Suppose that the image F (U) = {y ∈
U / y ∈ F (x) for some x ∈ U} of F is a bounded set. Then F is a tame
multifunction (for each ε > 0, take Rε = 1 + sup{‖ y ‖, y ∈ F (U)}).

It follows from Example 3.3.2 that each F : X −→ 2X , where X is a bounded
subset of a normed space U and F (x) is non-empty for all x ∈ X, is a tame
multifunction.

Example 3.3.3 Let U be a normed linear spece. The translation T : U −→
U given by T (x) = x + a, where a ∈ U\{0}, is not tame and for small ε > 0,
T has no ε-fixed points.

Example 3.3.3 shows that the tame property for multifunction in the next
theorems is a non-superfluous condition for the existence of ε-fixed points.

Theorem 3.3.1 Let X be a convex subset with non-empty interior of a re-
flexive real Banach space. Assume that F : X −→ 2X is a tame and weakly
closed multifunction such that F (x) is a non-empty and convex subset of X
for each x ∈ X. Then FIXε(F ) 6= ∅ for each ε > 0.

Proof. Since F is tame, let ε > 0 and Rε > 0 such that F (x)∩B(0, Rε+
ε
2
) 6=

∅ for each x ∈ B(0, Rε) ∩X, and let C = B(0, Rε) ∩X. C is a non-empty,
bounded and convex set. Then G : C −→ 2C , defined by

G(x) = Rε(Rε +
ε

2
)−1F (x) ∩B(0, Rε +

ε

2
) for all x ∈ C

satisfies the conditions of Theorem 3.2.1. Hence there is x∗ ∈ FIX
ε
4 (G)

such that d(x∗, G(x∗)) ≤ ε
4

< ε
2

and there exists x′ ∈ G(x∗) such that
‖ x′ − x∗ ‖< ε

2
. Moreover there exists an element z ∈ F (x∗) such that

z = R−1
ε (Rε + ε

2
)x′. This implies that

‖ z − x∗ ‖≤‖ R−1
ε (Rε +

ε

2
)x′ − x′ ‖ + ‖ x′ − x∗ ‖< ε

2
R−1

ε ‖ x′ ‖ +
ε

2
≤ ε

So x∗ ∈ FIXε(F ). 2
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Theorem 3.3.2 Let X be a convex subset with non-empty interior of a re-
flexive and separable real Banach space. Assume that F : X −→ 2X is a
tame and weakly upper semicontinuous multifunction such that F (x) is a
non-empty and convex subset of X for each x ∈ X. Then FIXε(F ) 6= ∅ for
each ε > 0.

Proof. Using the same arguments of the proof of Theorem 3.3.1, we can
show that the multifunction G defined on B(0, Rε) ∩X by

G(x) = Rε(Rε +
ε

2
)−1F (x) ∩B(0, Rε +

ε

2
)

satisfies the conditions of Theorem 3.2.2 and the conclusion follows as in
Theorem 3.3.1. 2
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Chapter 4

Stability and Well-Posedness in
Optimization

Let X and Y be non-empty sequential spaces, f be an extended real valued
function defined on X×Y and K be a set-valued function defined on X with
values in Y . In this chapter, in the setting of sequential spaces, we are inter-
ested in stability and well-posedness of the following parametric maximum
problem:

M(x) :

{
find an element y ∈ Y such that :
y ∈ K(x) and f(x, y) ≥ f(x, z) ∀z ∈ K(x)

Let M = {M(x) / x ∈ X} and M : x ∈ X −→ M(x) ∈ 2Y be the set-valued
function such that, for all x ∈ X, M(x) is the set of solutions to M(x).

The family M will be said stable at a point xo (see, for example [1]) if when-
ever one takes a perturbation (xn)n of the value xo, that is xn −→ xo in X,
and a converging sequence (yn)n ⊆ Y , where yn is a solution to M(xn) for all
n, then the limit point of (yn)n is a solution to M(xo). So, the stability at xo

is nothing but the sequential closedness of the multifunction M at a point xo.

The family M is said parametrically well-posed at xo (see [51] for the case
K(x) = Y for all x ∈ X, and [28] for the case in which the constraint K is
described by variational inequalities) if:

(i) there exists a unique solution to M(xo);

(ii) supy∈K(x) f(x, y) < +∞ for all x ∈ X;
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(iii) for any xn −→ xo and any sequence (yn)n ⊆ Y , with yn ∈ K(xn) for n
sufficiently large, such that:

sup
z∈K(xn)

f(xn, z)− f(xn, yn) −→ 0,

then the sequence (yn)n converges to the unique solution of M(xo).

If (xn)n is a sequence in X, a sequence (yn)n in Y is said approximating
sequence (with respect to (xn)n) if yn ∈ K(xn) for n sufficiently large and
supz∈K(xn) f(xn, z)− f(xn, yn) −→ 0.
Following [37] and [39], aim of the chapter is to give new sufficient conditions,
explicit on the data and weaker than continuity, for the stability and the well-
posedness of M.

4.1 Some Previous Results on Closedness of

the Multifunction MMM

In the setting of topological spaces, one of the first results on closedness of
the multifunction defined by solutions to parametric maximum problem is
the Maximum Theorem due to Berge in [4], under recalled.

Theorem 4.1.1 ([4]) Let X and Y be Hausdorff topological spaces. If f is
continuous and K is lower semicontinuous and upper semicontinuous with
compact values, then the multifunction M is upper semicontinuous with com-
pact values (and so also closed).

More recently, Maximum Theorem has been generalized by Tian and Zhou in
[48], where the authors deal the case in which f is not necessarily continuous.
In fact, they introduce properties on the set of data {X,Y, f,K}, called quasi-
transfer upper continuity and transfer upper continuity with respect to K.
Precisely, f is said quasi-transfer upper continuous with respect to K if for
any (xo, yo) ∈ X × Y with yo ∈ K(xo) and f(xo, zo) > f(xo, yo) for some
zo ∈ K(xo), there exists a neighborhood N of (xo, yo) such that: for any
(x, y) ∈ N with y ∈ K(x), there exists z ∈ K(x) such that f(x, z) > f(x, y).
Moreover, f is said transfer upper continuous in y on K if for any (xo, yo) ∈
X × Y with yo ∈ K(xo) and f(xo, zo) > f(xo, yo) for some zo ∈ K(xo),
there exists a point z′ ∈ Y and a neighborhood J of yo such that: for any
y ∈ J with y ∈ K(xo), f(xo, z

′) > f(xo, y) and z′ ∈ K(xo). So, the following
theorem holds.
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Theorem 4.1.2 ([48]) Let X and Y be topological spaces and K closed with
compact values. Then the multifunction M is closed with non-empty and
compact values if and only if the function f is transfer upper continuous in y
on K and quasi-transfer upper continuous with respect to K. If, in addition,
K is upper semicontinuous, then M is upper semicontinuous.

In the setting of gamma limits ([16], [12]), an exhaustive study on the closed-
ness of the multifunction M has been given in the book of Dal Maso ([12]),
where one can find numerous applications.

When the spaces are sequential spaces, sufficient conditions for sequential
closedness of the set-valued function M have been introduced by Zolezzi in
[50], where the set of parameters is N ∪ {∞}. If the set of parameters is a
general sequential space X, the following result holds.

Theorem 4.1.3 ([50]) Let X and Y sequential spaces and xo ∈ X. Assume
that the following statements are satisfy:

(C1) f + δK is sequentially upper semicontinuous in (xo, y);

(C2) for all (xn)n converging to xo in X and for all y ∈ Y , there exists a
sequence (yn)n ⊆ Y such that:

(f + δK)(xo, y) ≤ lim inf
n→∞

(f + δK)(xn, yn);

where δK is the function defined by δK(x, y) = 0 if y ∈ K(x) and δK(x, y) =
−∞ if y 6∈ K(x).
Then, the set-valued function M is sequentially closed at xo.

4.2 Sequential Closedness of Solutions to Para-

metric Maximum Problems

In this section, following [37], we present new sufficient conditions for se-
quential closedness of the set-valued function M in the setting of sequential
upper and lower pseudocontinuous functions. Let v(x) = supz∈K(x) f(x, z)
for any x ∈ X.

Theorem 4.2.1 Let xo ∈ X. Assume that:

(i) the set-valued function K is sequentially closed at xo;
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(ii) the function f is sequentially upper pseudocontinuous at (xo, y), for any
y ∈ Y such that y ∈ K(xo);

(iii) the function v is sequentially lower semicontinuous at xo.

Then, the set-valued function M is sequentially closed at xo.

Proof. Let xn −→ xo and y ∈ LimsupM(xn) such that y 6∈ M(xo). Then
there exists a sequence (yk)k converging to y, with yk ∈ M(xnk

) for all k.
Since yk ∈ K(xnk

) and K is sequentially closed, we have that y ∈ K(xo). So,
for some z ∈ K(xo): f(xo, y) < f(xo, z). Since f is seq. upper pseudocontin-
uous, we have:

lim sup
k→∞

f(xnk
, yk) < f(xo, z) ≤ v(xo).

By (iii), we have

lim sup
k→∞

f(xnk
, yk) < lim inf

k→∞
v(xnk

).

So, there exists ko such that f(xnko
, yko) < v(xnko

) and we get a contradiction.2
Now, we present explicit assumptions on the data in order to obtain the
sequential closedness of M .

Corollary 4.2.1 Let xo ∈ X. Assume that:

(i) the set-valued function K is sequentially closed and sequentially lower
semicontinuous at xo;

(ii) the function f is sequentially upper pseudocontinuous and sequentially
lower semicontinuous at (xo, y), for any y ∈ Y such that y ∈ K(x).

Then, the set-valued function M is sequentially closed at xo.

Proof. It is sufficient to observe that sequential lower semicontinuity of K
and sequential lower semicontinuity of f imply condition (iii) of the Theorem
4.2.1, as one can see by Proposition 3.2.1 in [27]. 2

Theorem 4.2.2 Let xo ∈ X. Assume that:

(i) the set-valued function K is sequentially closed and sequentially lower
semicontinuous at xo;
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(ii) the function f is sequentially lower pseudocontinuous and sequentially
upper semicontinuous at (xo, y), for any y ∈ Y such that y ∈ K(x).

Then, the set-valued function M is sequentially closed at xo.

Proof. Let xn −→ xo and y ∈ LimsupM(xn) such that y 6∈ M(xo). As in the
proof of Theorem 4.2.1, there exists yk −→ y such that yk ∈ M(xnk

) for all k
and z ∈ K(xo) such that f(xo, y) < f(xo, z) . Since K is sequentially lower
semicontinuous at xo, there exists a sequence zk −→ z with zk ∈ K(xnk

) for
all k. Then, in light of (ii), we have:

lim sup
k→∞

f(xnk
, yk) ≤ f(xo, y) < lim inf

k→∞
f(xnk

, zk)

and we get a contradiction. 2
We note that the class of sequentially lower pseudocontinuous functions does
not coincide with the class of functions described by condition (C2). In fact,
in Example 4.2.1, f is a sequentially lower pseudocontinuous function which
does not verify condition (C2), and in Example 4.2.2, f is a function which
satisfies (C2) but it is not sequentially lower pseudocontinuous.

Example 4.2.1 Let f : [1, 2]× [0, 1] −→ R defined by

f(x, y) =





1− x if (x, y) ∈ ]1, 2]× [0, 1]
y − 1 if (x, y) ∈ {1} × [0, 1[

1 if (x, y) = (1, 1)

and K(x) = [0, 1] for all x ∈ [0, 1]. The function f is sequentially lower pseu-
docontinuous at (1, y) for all y ∈ [0, 1], but it does not satisfy the condition
(C2) at xo = 1.

Example 4.2.2 Let f : [0, 1]2 −→ R defined by

f(x, y) =





x(1− y) if (x, y) ∈ ]0, 1]× [0, 1[
1 if (x, y) ∈ [0, 1]× {1}
0 if (x, y) ∈ {0} × [0, 1[

and K(x) = [0, 1] for all x ∈ [0, 1]. The function f satisfies (C2) at xo = 0
but it is not sequentially lower pseudocontinuous at (0, 1).
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Finally, we observe that if X and Y are topological spaces, the sequential
hypothesis, explicit on the data, introduced in the present paragraph are
not always included in hypothesis of Theorem 4.1.2, as it is shown by the
function f defined on ]0, 1[2 as follows:

f(x, y) =

{
0 if (x, y) ∈ ]0, 1

2
[2

−xy if (x, y) 6∈ ]0, 1
2
[2

where the topology on ]0, 1[2 is the product with itself of the topology on
]0,1[ considered in Example 2.2.3.

4.3 Previous Result on Well-Posedness

We start the section recalling the definition of well-posedness due to Tykhonov
([49]). Let Y be a sequential space and f be an extended real valued function
defined on Y . The problem [maximize f(·) over Y ], that is:

find yo ∈ Y such that f(yo) = max
y∈Y

f(y),

is said Tykhonov well-posed if:

(i) there exists a unique maximizer yo ;

(ii) every maximizer sequence (yn)n (that is f(yn) −→ maxy∈Y f(y)) con-
verges to yo.

Let us note that in order to obtain Tykhonov well-posedness of a maximum
problem, the only uniqueness of the maximizer is not sufficient. In fact, we
can see at the following very simple example.

Example 4.3.1 Let f : R −→ R be the function defined by f(y) = −y2e−y

for all y. The point yo = 0 is the only one maximizer of f over R. The
sequence (n)n, which does not converge to yo = 0, is such that f(n) −→
max f = f(0) = 0. So, the maximum problem of f over R is not Tykhonov
well-posed.

Moreover, the problem [maximize f(·) over Y ] is said generalized Tykhonov
well-posedness ([49]) if:

(i) the set of maximizer points of f over Y is non-empty;
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(ii) every maximizer sequence (yn)n has a subsequence which converges to
a maximizer point.

Tykhonov well-posedness is a concept very helpful, for example, in cases in
which one wants to solve optimization problems using algorithms. In these
situations, algorithms develop maximizer sequences and it is fundamental to
know if every maximizing sequence converges to the unique solutions of the
optimization problem. Many applications and examples of Tykhonov well-
posed problems can be find in the book of Dontchev and Zolezzi [17].

The concept of Tykhonov well-posedness deals with optimization problems
in which there are not perturbations of the objective function. When the
objective function f is depending also on a parameter x, an other concept of
well-posedness has been introduced by Zolezzi in [51]: let X, Y be sequential
spaces and f be an extended real valued function defined on X × Y . We
consider the family of maximum problems:

{ [maximize f(x, ·) over Y ] / x ∈ X}
Let xo ∈ X and xn −→ xo. So, ( [maximize f(xn, ·) over Y ] )n is a sequence
of maximum problems which correspond to the perturbation (xn)n of the
problem [maximize f(xo, ·) over Y ].
Let v(x) = supy∈Y f(x, y), the problem [maximize f(xo, ·) over Y ] is said
parametric well-posed (or well-posed by pertubations) at xo ([51]) if the fol-
lowing statements hold:

(i) there is an unique maximizer y(xo) to [maximize f(xo, ·) over Y ];

(ii) v(x) < +∞ for all x ∈ X;

(iii) if (xn)n −→ xo and if (yn)n ⊆ Y is such that v(xn) − f(xn, yn) −→ 0,
then: yn −→ y(xo).

The meaning of parametric well-posedness is the following: suppose that one
wants to solve the problem [maximize f(xo, ·) over Y ] by a method performed
on a sequence of steps, each of them develops a deformation of the objective
function with respect the original one. So, if the problem is parametric well-
posedness, steps produce a sequence of good approximations of the solution
to [maximize f(xo, ·) over Y ], when the perturbation are sufficiently close to
xo.
We emphasize that parametric well-posedness depends on the method used
to produce the approximations: formally, parametric well-posedness is de-
pending on the function f(·, ·), as shown by the following example.
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Example 4.3.2 We want to determine sequences converging to the maxi-
mum point of the function −y2 (defined over R), using the methods f1 and
f2 defined on R2 by:

f1(x, y) = −y2 log(e + x2) and f2(x, y) =

{ −y2 if x = 0
− | x | y2 if x 6= 0

Now, v1(x) = supy f1(x, y) = 0, v2(x) = supy f2(x, y) = 0 for all x ∈ R and
f1(0, y) = f2(0, y) = −y2. Let xn −→ 0 and (yn)n ⊆ Y .
If v1(xn) − f1(xn, yn) = y2

n log(e + xn) −→ 0, then yn −→ 0, so the prob-
lem [maximize f1(0, ·) over R] is parametric well-posed. On the contrary
for the problem [maximize f2(0, ·) over R]. In fact, if xn −→ 0+, we have
that v2(xn) − f2(xn, yn) = xny2

n −→ 0 for any bounded sequence (yn)n. So
[maximize f2(0, ·) over R] is not parametric well-posed.

About sufficient conditions for Tykhonov and parametric well-posedness,
there are the following theorems.

Theorem 4.3.1 ([49]) Let Y be a sequential compact space and f be an
extended real valued function defined on Y . If f is sequentially upper semi-
continuous, then [maximize f(·) over Y ] is Tykhonov well-posed.

Theorem 4.3.2 ([33]) Let X and Y be sequential spaces, f be an extended
real valued function defined on X × Y and xo ∈ X. If: Y is sequentially
compact, f is sequentially upper semicontinuous at (xo, y) for all y ∈ Y , v is
sequentially lower semicontinuous at xo, then the family:

{ [maximize f(x, ·) over Y ] / x ∈ X}

is parametrically well-posed at xo.

With explicit assumptions on the data, there is the following result.

Theorem 4.3.3 ([33]) Let X and Y be sequential spaces, f be an extended
real valued function defined on X × Y and xo ∈ X. If Y is sequentially
compact and f is sequentially continuous at (xo, y) for all y ∈ Y , then the
family:

{ [maximize f(x, ·) over Y ] / x ∈ X}
is parametrically well-posed at xo.
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4.4 Parametric Well-Posedness of Paramet-

ric Maximum Problems

Following [39], this section is devoted to parametric well-posedness of con-
strained (or not) maximum problems.
In addition to the definition of parametric well-posedness already given in the
introduction to the chapter, M is said generalized parametrically well-posed
at xo ∈ X if: the set of maximum points of f(xo, ·) over K(xo) is non-
empty; v(x) = supy∈K(x) f(x, y) < +∞ for all x ∈ X; for any xn −→ xo and
any approximating sequence (yn)n (with respect to (xn)n), there exists a sub-
sequence of (yn)n which converges to a maximum point of f(xo, ·) over K(xo).

Using seq. upper pseudocontinuity, we can relax the hypothesis on the objec-
tive function of the results quoted in the previous section. In particular, we
can obtain a sufficient condition, explicit on the data, weaker than continu-
ity. In the next results we deal with parametric and constrained maximum
problems.

Theorem 4.4.1 Let xo ∈ X. Assume that there is a unique maximum point
yo for f(xo, ·) over K(xo). If Y is sequentially compact and:

(i) the set-valued function K is sequentially closed at xo,

(ii) the function f is sequentially upper pseudocontinuous at (xo, y), for any
y ∈ Y such that y ∈ K(xo),

(iii) the function v is sequentially lower semicontinuous at xo,

then, the family M is parametrically well-posed at xo.

Proof. Let xn −→ xo and (yn)n be an approximating sequence (with respect
to (xn)n) such that yn 6−→ yo. In light of axiom (S3) in Paragraph 2.1 and by
seq. compactness of Y , there exists a subsequence (ynk

)k of (yn)n converging
to a point y ∈ Y \{yo} and ynk

∈ K(xnk
) for k sufficiently large. Since K is

seq. closed at xo, we have that y ∈ K(xo). Now, yo is the unique maximum
point of f on K(xo) and y 6= yo. So, there exists z ∈ K(xo) such that
f(xo, y) < f(xo, z). Since f is seq. upper pseudocontinuous, we have:

lim sup
k→∞

f(xnk
, ynk

) < f(xo, z) ≤ v(xo)

and by seq. lower semicontinuity of v, we obtain:

lim sup
k→∞

f(xnk
, ynk

) < lim inf
k→∞

v(xnk
).
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Let α be a real number such that:

lim sup
k→∞

f(xnk
, ynk

) < α < lim inf
k→∞

v(xnk
), (4.1)

So, we obtain that there exists ko ∈ N such that:

α− f(xnk
, ynk

) < v(xnk
)− f(xnk

, ynk
) (4.2)

for all k ≥ ko. So, by (4.1) and (4.2), we obtain:

0 < α− lim sup
k→∞

f(xnk
, ynk

) ≤ lim
k→∞

[v(xnk
)− f(xnk

, ynk
)] = 0

and we get a contradiction. 2
Under explicit assumptions on the data, we have the following result, which
easy follows by Theorem 4.4.1.

Corollary 4.4.1 Let xo ∈ X. Assume that there is a unique maximum point
yo for f(xo, ·) over K(xo). If Y is sequentially compact and:

(i) the set-valued function K is sequentially closed and sequentially lower
semicontinuous at xo,

(ii) the function f is sequentially upper pseudocontinuous and sequentially
lower semicontinuous at (xo, y), for any y ∈ Y such that y ∈ K(xo),

then, the family M is parametrically well-posed at xo.

We remark that the hypothesis of Theorem 4.4.1 and Corollary 4.4.1 are
sufficient conditions also for parametric well-posedness in generalized sense.
If X, Y are metric space, the following theorem holds, where:

ε−M(x) = {y ∈ K(x) / f(x, y) > v(x)− ε}

Theorem 4.4.2 Let xo ∈ X. Assume that X, Y are metric spaces, with Y
also complete and:

lim
ε↓0

diam{∪x∈B(xo,ε)[ε−M(x)]} = 0 (4.3)

If:

(i) the set-valued function K is sequentially closed at xo,
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(ii) the function f is sequentially upper pseudocontinuous at (xo, y), for any
y ∈ Y ,

(iii) the function v is sequentially lower semicontinuous at xo,

then, the family M is parametrically well-posed at xo.

Proof. Let xn −→ xo and (yn)n be an approximating sequence (with re-
spect to (xn)n). Fixed ε > 0, we have yn ∈ ε − M(xn) for n sufficiently
large. So, by (4.3), (yn)n is a Cauchy sequence. Therefore (yn)n converges
to an element yo and, by seq. closedness of K, yo ∈ K(xo). If yo is not a
solution of M(xo), proceeding as in the proof of Theorem 4.4.1, we obtain a
contradiction. Hence yo ∈ M(xo). Moreover, in light of (4.3), we have that
M(xo) = {yo} and thesis follow. 2
For explicit assumption on the data, we have the following result.

Corollary 4.4.2 Let xo ∈ X. Assume that X, Y are metric spaces, with Y
also complete and:

lim
ε↓0

diam{∪x∈B(xo,ε)[ε−M(x)]} = 0 (4.4)

If:

(i) the set-valued function K is sequentially closed and sequentially lower
semicontinuous at xo,

(ii) the function f is sequentially upper pseudocontinuous and sequentially
lower semicontinuous at (xo, y), for any y ∈ Y ,

then, the family M is parametrically well-posed at xo.

Finally, in the case of Tykhonow well-posedness of an unparametrized and
unconstrained maximum problem, it is possible to weak the seq. upper pseu-
docontinuity by seq. upper quasicontinuity, as shown in the following theo-
rem.

Theorem 4.4.3 Assume that Y is sequentially compact and the problem
[maximize f(·) over Y ] has a unique solution yo. If f is sequentially up-
per quasicontinuous on Y , then [maximize f(·) over Y ] is Tykhonov well-
posedness.
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Proof. Suppose that [maximize f(·) over Y ] is not Tykhonov well-posed:
let (yn)n be a sequence such that f(yn) −→ f(yo) = maxY f and yn 6−→ yo.
Then, there exists a subsequence (ynk

)k of (yn)n which converges to a point
ȳ 6= yo. So f(ȳ) < f(yo) = limk→∞ f(ynk

) and consequently we have
that f(ynk

) ∈]f(ȳ), f(yo)] ∩ f(Y ) for k ≥ ko. Now, if f(ynk
) = f(yo)

for all k ≥ ko, then ynk
= yo for all k ≥ ko because yo is the unique

maximum point. So ȳ = yo, that is a contradiction. Hence there exists
f(y′) ∈]f(ȳ), f(yo)[ ∩ f(Y ). Since f is seq. upper quasicontinuious at ȳ, we
have f(yo) = lim supk→∞ f(ynk

) ≤ f(y′) and we get a contradiction. 2
We note that transfer upper continuity ([48]) cannot be substituted for upper
quasicontinuity in Theorem 4.4.3. In fact, in the following example is given
a function f transfer upper continuous over a compact set Y such that the
problem [maximize f(·) over Y ] is not Tykhonov well-posed.

Example 4.4.1 Let Y = [0, 2] and f : Y −→ R such that:

f(y) =

{ −(y − 1)2 if y ∈ [0, 1[
y − 2 if y ∈ [1, 2]

f is not seq. upper quasicontinuous at yo = 1 but it is transfer upper contin-
uous. Now, if yn −→ 1−, we have f(yn) −→ 0 = max f , but (yn)n does not
converge to the unique maximum point yo = 2. So, the maximum problem
corresponding to f is not Tykhonov well-posed.

We conclude the chapter observing that using the class of pseudocontinu-
ous functions, the continuity of payoffs can be relaxed in the same way for
both problems of stability and well-posedness of parametric and constrained
maximum problems.
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Chapter 5

Stability and Well-Posedness in
Non-Cooperative Game Theory

In this chapter, following [37] and [39], we present sufficient conditions in or-
der to obtain stability and well-posedness of social Nash equilibria problems,
when the data are depending also on an exogenous parameter. In particular,
we are interested in social equilibria problems in which the payoff functions
have some discontinuities. Upper pseudocontinuity and lower pseudocontinu-
ity will play a central role to obtain explicit assumptions on the data, weaker
than continuity of payoffs, for both problems of stability and well-posedness.

5.1 Unstable Discontinuous Games

As we have already noted in Paragraph 1.1, existence of Nash equilibria has
been enough studied for games with discontinuous payoffs. We recall again
that a game is a list of data {Yi, fi}m

i=1, in which {1, ..., m} is the set of
player (individuals), Yi is the set of all strategies for i and fi is its payoff
(utility). A profile of strategies y∗ = (y∗1, ..., y

∗
m) is a Nash equilibrium ([40],

[41]) if fi(y
∗
1, ..., y

∗
i , ..., y

∗
m) ≥ fi(y

∗
1, ..., yi, ..., y

∗
m) for all yi ∈ Yi and for all

i ∈ {1, ..., m}.
Now, the aim of this chapter is to study the stability of equilibria in pres-
ence of discontinuities for games and pseudo-games (also called abstract
economies). In pseudo-games, we consider the concept of ”feasible strate-
gies” in a game in normal form: any individual i has a set-valued function
Ki defined on Y−i =

∏
j 6=i Yj with values in Yi. The values of Ki are the

”feasible strategies” that the individual i will be able to use after that all of
others have chosen a profile of their strategies in Y−i. Hence, in this case,
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the others individuals can influence i also indirectly, restricting his feasible
strategies to Ki(y−i). The list of data {Yi, Ki, fi}i is called abstract econ-
omy (see [15]) or also pseudo-game (see [21]). We emphasize that no one
of the individuals can play individually this ”game”, since he must to know
the choices of others in order to know his feasible strategies. So, a profile
of strategies y∗ is said to be a social Nash equilibrium (see [15]) if for all i:
y∗i ∈ Ki(y

∗
−i) and fi(y

∗
i , y

∗
−i) ≥ fi(yi, y

∗
−i) for all yi ∈ Ki(y

∗
−i).

In section 1.1, several properties, able to recognize games with discontin-
uous payoffs endowed of Nash equilibria, have been recalled. In particular,
the better replay security ([44]) has been presented, which is not the more
general. Even if the better replay security is a property sufficient for exis-
tence of equilibria in a game, it does not guarantee the stability when there is
a perturbation. For example, we can look at the Bertrand competition in an
duopoly considered in section 1.1. Suppose, now, that there are several states
of the world, represented on the interval [0, +∞[. Let the demand function
be constant on the states of the world, and assume that the two firms have
equal constant marginal costs c(·), which are depending on the states of the
world. Assume that the value x = 1 is a threshold level: c(x) = c if x ∈ [0, 1],
c(x) = c + 1 if x ∈]1, +∞[. The payoffs of the two firms i, j (with i 6= j) are:

πi(x, pi, pj) =





(pi − c(x))d(pi) if pi < pj
1
2
(pi − c(x))d(p) if pi = pj = p

0 if pi > pj

For any fixed state of the world x, there is a only one Nash equilibrium pair:
(p∗i (x), p∗j(x)) = (c(x), c(x)). The above perturbed duopoly is better replay
security, but the multifunction N , whose values are the set of Nash equilibria
for any state x, it is not closed at x = 1. In fact, the set of equilibria at x = 1
is N(1) = {(c, c)}, and the set of equilibria at x > 1 is N(x) = {(c+1, c+1)}.
Hence, if xn −→ 1+, we have LimsupN(xn) = {(c + 1, c + 1)} 6⊆ N(1). So
the set-valued function N is not seq. closed at x = 1.
Therefore, following [37], our purpose will be to give sufficient conditions,
weaker than continuity, which will be able to guarantee the stability of solu-
tions in perturbed pseudo-games.
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5.2 Previous Results on Closedness of Nash

Equilibria

In this section we recall some previous result on closedness of equilibria of
parametric games and pseudo-games, when no hypothesis of convexity are
necessary.

A first result on closedness of Nash equilibria is due to Cavazzuti and Pac-
chiarotti in [11]. In their work, the authors considered the case in which the
set of perturbations on each payoff fi is a sequence of functions (fi,n)n. They
gave the following conditions, weaker than continuity.

Theorem 5.2.1 ([11]) Assume that the following statements are satisfied for
all i ∈ {1, ...,m}:
(C1) for any (yi, y−i) and any (yn

i , yn
−i) −→ (yi, y−i) one has:

lim sup
n→∞

fi,n(yn
i , yn

−i) ≤ fi(yi, y−i);

(C2) for all (yi, y−i) and all yn
−i −→ y−i, there exists a sequence (ȳn

i )n con-
verging to yi such that fi(yi, y−i) ≤ lim infn→∞ fi,n(ȳn

i , yn
−i).

Then, denoting with Nn the set of Nash equilibria of {Yi, fi,n}i for any n ∈ N,
one has: LimsupNn ⊆ N .

In the case in which Yi is a subset of a reflexive and separable real Banach
spaces Ei, Lignola and Morgan (see [30]) gave a result on closedness of social
Nash equilibria, where strong and weak topologies are involved and an Haus-
dorff topological vector space X of parameters is considered. Let τ be the
topology on X. Moreover, let si and wi be the strong and the weak topology
on Ei respectively.

Theorem 5.2.2 ([30]) Assume that the following statements are satisfy:

(i) f1+f2 is sequentially upper semicontinuous on (X×Y1×Y2, τ×w1×w2);

(ii) f1 is sequentially lower semicontinuous on (X×Y1×Y2, τ×s1×w2) and
f2 is sequentially lower semicontinuous on (X × Y1 × Y2, τ × w1 × s2);

(iii) K1 is sequentially lower semicontinuous set-valued function from (X ×
Y2, τ ×w2) to (Y1, s1) and K2 is sequentially lower semicontinuous set-
valued function from (X × Y1, τ × w1) to (Y2, s2);
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(iv) for i ∈ {1, 2}, Ki is sequentially closed from (X×Yj, τ×wj) to (Yi, wi),
where i 6= j.

Then, the multifunction N , whose values are social Nash equilibria, is se-
quentially closed from (X, τ) to (Y1 × Y2, w1 × w2).

5.3 Sequential Closedness of Solutions to Para-

metric Social Nash Equilibrium Problems

Let X, Y1,...,Ym be sequential spaces and, for i ∈ {1, ..., m}, let fi be an
extended real valued function defined on X × Y and Ki be a set-valued
function from X×Y−i to Yi, where, as in the previous paragraph, Y =

∏m
j=1 Yj

and Y−i =
∏

j 6=i Yj. For any fixed x ∈ X, we consider the following parametric
problem:

N (x) :





find an element y ∈ Y such that :
∀ i ∈ {1, ...,m}, yi ∈ Ki(x, y−i) and
fi(x, (yi, y−i)) ≥ fi(x, (zi, y−i)) ∀zi ∈ Ki(x, y−i)

The set of solutions to N (x), denoted by N(x), is the set of all social Nash
equilibrium of the parametric abstract economy Γ(x) = {Yi, Ki(x, ·), fi(x, ·)}i.
Following [37], aim of this section is to give sufficient conditions on the payoff
functions fi, weaker than seq. continuity, in order to obtain the seq. closed-
ness of the following social Nash equilibria set-valued function:

N : x ∈ X −→ N(x) ∈ 2Y

In the following, for all i, we will denote by vi the marginal function of
the individual i, defined by vi(x, y−i) = supzi∈Ki(x,y−i)

fi(x, (zi, y−i)) for any
(x, y−i) ∈ X × Y−i.

Theorem 5.3.1 Let xo ∈ X. Assume that:

(i) for all i, the set-valued function Ki is sequentially closed at (xo, y−i),
for any y−i ∈ Y−i;

(ii) for all i, the function fi is sequentially upper pseudocontinuous at
(xo, y), for any y ∈ Y such that yi ∈ Ki(xo, y−i);

(iii) for all i, the function vi is sequentially lower semicontinuous at (xo, y−i),
for any y−i ∈ Y .

42



Then, the set-valued function N is sequentially closed at xo.

Proof. Let xn −→ xo and y ∈ LimsupN(xn) such that y 6∈ N(xo). Then
there exists a sequence (yk)k converging to y, with yk ∈ N(xnk

) for all k.
Since yk

j ∈ Kj(xnk
, yk
−j) and Kj is sequentially closed, we have that yj ∈

Kj(xo, y−j) for all j. Therefore, there exist i ∈ {1, ..., m} and zi ∈ Ki(xo, y−i)
such that

f(xo, (yi, y−i)) < f(xo, (zi, y−i)).

By (ii) we obtain

lim sup
k→∞

fi(xnk
, (yk

i , y
k
−i)) < f(xo, (zi, y−i)) ≤ vi(xo, y−i).

Then, in light of (iii), we have

lim sup
k→∞

fi(xnk
, (yk

i , y
k
−i)) < lim inf

k→∞
vi(xnk

, yk
−i).

So, there exists ko such that fi(xnko
, (yko

i , yko
−i)) < vi(xnko

, yko
−i) and we get a

contradiction. 2
Under explicit assumptions on the data, we have the following two results.

Corollary 5.3.1 Let xo ∈ X. Assume that:

(i) for all i, the set-valued function Ki is sequentially closed and sequen-
tially lower semicontinuous at (xo, y−i), for any y−i ∈ Y−i;

(ii) for all i, the function fi is sequentially upper pseudocontinuous and
sequentially lower semicontinuous at (xo, y), for any y ∈ Y such that
yi ∈ Ki(x, y−i).

Then, the set-valued function N is sequentially closed at xo.

Proof. It is sufficient to observe that, in light of Proposition 3.2.1 in [27],
sequential lower semicontinuity of Ki and sequential lower semicontinuity of
fi imply assumption (iii) of Theorem 5.3.1. 2
The next theorem supplies alternative conditions to hypothesis in Theo-
rem 5.3.1.

Theorem 5.3.2 Let xo ∈ X. Assume that:
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(i) for all i, the set-valued function Ki is sequentially closed and sequen-
tially lower semicontinuous at (xo, y−i), for any y−i ∈ Y−i;

(ii) for all i, the function fi is sequentially lower pseudocontinuous and
sequentially upper semicontinuous at (xo, y), for any y ∈ Y such that
yi ∈ Ki(xo, y−i).

Then, the set-valued function N is sequentially closed at xo.

Proof. Let xn −→ xo and y ∈ LimsupN(xn) such that y 6∈ N(xo). As in the
proof of Theorem 5.3.1, there exists yk −→ y such that yk ∈ N(xnk

) for all
k and zi ∈ Ki(xo, y−i) such that fi(xo, (yi, y−i)) < fi(xo, (zi, y−i)) for some
i ∈ {1, ..., m}. Since Ki is sequentially lower semicontinuous at (xo, y−i),
there exists a sequence zk

i −→ zi with zk
i ∈ Ki(xnk

, yk
−i) for all k. Then, in

light of (ii), we have:

lim sup
k→∞

fi(xnk
, (yk

i , y
k
−i)) ≤ fi(xo, (yi, y−i)) < lim inf

k→∞
fi(xnk

, (zk
i , yk

−i))

and we get a contradiction. 2
About explicit assumptions on the data in the above results, we point out
that the sequential continuity of payoffs has been relaxed through two way: in
the first one (Corollary 5.3.1), the continuity has been replaced by seq. upper
pseudocontinuity and seq. lower semicontinuity; in the second one (Theo-
rem 5.3.2), the continuity has been replaced by seq. upper semicontinuity
and seq. lower pseudocontinuity.

Sufficient conditions for seq. closedness of the set-valued N introduced in
[11] and recalled in the previous section (Theorem 5.2.1), become the follow-
ing when the set of parameter is a general sequential space:

(C1)’ fi is sequentially upper semicontinuous at (xo, y) for all y ∈ Y ;

(C2)’ ∀ y ∈ Y , ∀ xn −→ xo and ∀ yn
−i −→ y−i, there exists a sequence (ȳn

i )n

converging to yi such that fi(x, yi, y−i) ≤ lim infn→∞ fi(xn, ȳ
n
i , yn

−i).

Sequential lower pseudocontinuity of functions (Theorem 5.3.2) is a condition
independent of condition (C2)’. In fact sequential lower pseudocontinuity
does not imply condition (C2)’ and condition (C2)’ does not imply sequential
lower pseudocontinuity, as shown by the following examples.
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Example 5.3.1 Let K1(x, y2) = [0, 1] for all (x, y2) ∈ [0, 2]× [0, 1] and
K2(x, y1) = [0, 1] for all (x, y1) ∈ [0, 2]× [0, 1]. The functions f1, f2 : [1, 2]×
[0, 1]2 −→ R, defined by:

fi(x, yi, yj) =





1− x if yi ∈ [0, 1] and (x, yj) ∈ ]1, 2]× [0, 1]
yi − 1 if yi ∈ [0, 1[ and (x, yj) ∈ {1} × [0, 1]

1 if yi = 1 and (x, yj) ∈ {1} × [0, 1]

(where i 6= j) do not satisfy condition (C2)’ but they are seq. lower pseudo-
continuous.

Example 5.3.2 Let K1(x, y2) = [0, 1] for all (x, y2) ∈ [0, 1]2 and K2(x, y1) =
[0, 1] for all (x, y1) ∈ [0, 1]2. The functions f1, f2 : [0, 1]3 −→ R, defined as
following (where i 6= j):

fi(x, yi, yj) =





x(1− yi) if yi ∈ [0, 1[ and (x, yj) ∈ ]0, 1]× [0, 1]
1 if yi = 1 and (x, yj) ∈ [0, 1]× [0, 1]
0 if x = 0, yi 6= 1 and yj ∈ [0, 1]

satisfy the above condition (C2)’ but they are not seq. lower pseudocontinu-
ous.

Besides, in the case of coupled constraints (that is when Ki is a general
multifunction), (C1)’ and (C2)’ are not explicit sufficient conditions for the
sequential closedness of the set-valued function N , as shown in Example 5.3.3.

Example 5.3.3 We consider the functions defined in Example 5.3.2 and the
constraints defined by:

Ki(x, yj) = [0, 1− x] for all (x, yj) ∈ [0, 1]2

(where i 6= j).
K1 and K2 satisfy condition (i) in Theorem 5.3.2 but the set-valued function
N is not sequentially closed at x = 0. In fact, if xn −→ 0+, we have
N(xn) = {(0, 0)} for any n but N(0) = {(1, 1)}.
We conclude observing that sequential upper pseudocontinuity of payoffs fi

is not connected with assumption (ii) in Theorem 5.2.2 ([30]), as it can be
seen by the following easy example. Let f1, f2 : [0, 2] −→ R defined by:

f1(y) =

{
y − 1 if y ∈ [0, 1]
y + 1 if y ∈]1, 2]
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and

f2(y) =

{
1− y if y ∈ [0, 1]
−y if y ∈]1, 2]

f1 and f2 are seq. upper pseudocontinuous but f1 + f2 is not seq. upper
semicontinuous at y = 1.

5.4 Tykhonov Well-Posedness in Game The-

ory

Tykhonov well-posedness has been extended to zero-sum games (see [10])
and to non-zero sum games (see [43]).
For a unparametrized game G = {Yi, fi}m

i=1, a sequence (yn)n ⊆ Y is said an
approximating equilibria sequence if:

sup
zi∈Yi

fi(zi, y
n
−i)− fi(y

n
i , yn

−i) −→ 0 for all i ∈ {1, ..., m}.

Hence, G is Tykhonov well-posed if there exists a unique Nash equilibrium
yo of G and any approximating equilibria sequence converges to yo.

Moreover, G is generalized Tykhonov well-posed if the set of Nash equilibria
of G is non-empty and any approximating equilibria sequence has a subse-
quence which converges to some equilibrium of G.

In the case in which Y1, ..., Ym are metric spaces, characterizations of Tykhonov
well-posedness and generalized Tykhonov well-posedness have been given by
Margiocco, Patrone and Pusillo Chicco in [34]. In fact, let Ωε be the set of all
ε-Nash equilibria, that is y ∈ Y such that fi(yi, y−i) ≥ supzi∈Yi

fi(zi, y−i)− ε
for all i. In the following, for a metric space (Z, d), δ(A) denotes the diameter
of A and dH denotes the Hausdorff metric.

Theorem 5.4.1 ([34]) The game G is Tykhonov well-posed if and only if
there is a Nash equilibria and limε→0 δ(Ωε) = 0.

Theorem 5.4.2 ([34]) The game G is generalized Tykhonov well-posed if
and only if Ω0 is non-empty, compact and limε→0 dH(Ω0, Ωε) = 0.

Until now, the explicit assumptions on the data for well-posedness of a game
are the continuity of all payoffs. In the next paragraph, sufficient conditions,
explicit on the data and weaker than continuity of payoffs, will be given.
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5.5 Parametric Well-Posedness of Social Nash

Equilibria Problems

Let Γ(x) be the parametric abstract economy defined in Paragraph 5.3, with
x ∈ X. We set:

N = {N (x) / x ∈ X}.
In this section, following [39], we consider the concept of Tykhonov well-
posedness in the setting of abstract economies.
First, we introduce the notion of approximating equilibria sequence for the
problem N (xo). Let (xn)n be a sequence converging to xo. A sequence
(yn)n ∈ Y is said to be an approximating equilibria sequence for N (xo) (with
respect to (xn)n) if the following conditions are satisfied for all i:

• yn
i ∈ Ki(xn, y

n
−i) for n sufficiently large;

• vi(xn, yn
−i)− fi(xn, y

n) −→ 0.

(where vi(x, y−i) = supzi∈Ki(x,y−i)
fi(x, (zi, y−i))).

Definition 5.5.1 The family N is said to be parametrically well-posed at
xo ∈ X if and only if:

• there is a unique solution yo to N (xo);

• vi(x, y−i) < +∞ for all (x, y−i) ∈ X × Y−i;

• for all xn −→ xo and for all approximating equilibria sequence (yn)n

(with respect to (xn)n), we have yn −→ yo.

N is said parametrically well-posed if it is parametrically well-posed at xo for
all xo ∈ X.

Definition 5.5.1 extends to parametric social Nash equilibrium problems the
definitions of well-posedness recalled in the previous section and well-posedness
concepts for Nash equilibria presented in [36], where the more general case
of multicriteria Nash equilibria is considered.

Now, we give sufficient conditions for parametric well-posedness of N in
which the continuity of payoffs is dropped using sequentially upper pseudo-
continuous functions.

Theorem 5.5.1 Let xo ∈ X. Assume that there is a unique solution to
N (xo). If, for all i, Yi is sequentially compact and:
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(i) the set-valued function Ki is sequentially closed at (xo, y−i), for any
y−i ∈ Y−i,

(ii) the function fi is sequentially upper pseudocontinuous at (xo, y), for
any y ∈ Y such that yi ∈ Ki(xo, y−i),

(iii) the function vi is sequentially lower semicontinuous at (xo, y−i), for any
y−i ∈ Y ,

then, the family N is parametrically well-posed at xo.

Proof. Let xn −→ xo and (yn)n be an approximating equilibria sequence
(with respect to (xn)n) such that yn 6−→ yo. In light of axiom (S3) in
Paragraph 2.1 and by seq. compactness of Y1, ..., Ym, there exists a subse-
quence (ynk)k of (yn)n converging to a point y ∈ Y \{yo} and, for all j,
ynk

j ∈ Kj(xnk
, ynk
−j) for k sufficiently large. Since Kj is seq. closed at (xo, y−j),

we have that yj ∈ Kj(xo, y−j) for all j. Then, there exists i ∈ {1, ..., m} and
zi ∈ Ki(xo, y−i) such that fi(xo, (yi, y−i)) < fi(xo, (zi, y−i)). Since fi is seq.
upper pseudocontinuous, we have:

lim sup
k→∞

fi(xnk
, (ynk

i , ynk
−i)) < fi(xo, (zi, y−i)) ≤ vi(xo, y−i)

and by seq. lower semicontinuity of vi, we obtain:

lim sup
k→∞

fi(xnk
, (ynk

i , ynk
−i)) < lim inf

k→∞
vi(xnk

, ynk
−i).

Let α be a real number such that:

lim sup
k→∞

fi(xnk
, (ynk

i , ynk
−i)) < α < lim inf

k→∞
vi(xnk

, ynk
−i), (5.1)

So, we obtain that there exists ko ∈ N such that:

α− fi(xnk
, (ynk

i , ynk
−i)) < vi(xnk

, ynk
−i)− fi(xnk

, (ynk
i , ynk

−i)) (5.2)

for all k ≥ ko. So, by (5.1) and (5.2), we obtain:

0 < α− lim sup
k→∞

fi(xnk
, (ynk

i , ynk
−i)) ≤ lim

k→∞
[vi(xnk

, ynk
−i)−fi(xnk

, (ynk
i , ynk

−i))] = 0

and we get a contradiction. 2
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In the case in which X, Y1, ..., Ym are metric spaces, denoted with B(xo, ε)
the open sphere in X of center xo and ray ε and set:

ε−N(x) = {y ∈ Y / yi ∈ Ki(x, y−i) and vi(x, y−i)− ε < fi(x, y) ∀ i},

we have the following result.

Theorem 5.5.2 Let xo ∈ X. Assume that X, Y1, ..., Ym are metric spaces,
with Y1, ..., Ym also complete and:

lim
ε↓0

diam{∪x∈B(xo,ε)[ε−N(x)]} = 0. (5.3)

If for all i:

(i) the set-valued function Ki is sequentially closed at (xo, y−i), for any
y−i ∈ Y−i,

(ii) the function fi is sequentially upper pseudocontinuous at (xo, y), for
any y ∈ Y such that yi ∈ Ki(xo, y−i),

(iii) the function vi is sequentially lower semicontinuous at (xo, y−i), for any
y−i ∈ Y ,

then, the family N is parametrically well-posed at xo.

Proof. Let xn −→ xo and (yn)n be an asymptotically equilibria sequence
(with respect to (xn)n). Fixed ε > 0, we have yn ∈ ε−N(xn) for n sufficiently
large. So, by (5.4), (yn)n is a Cauchy sequence. Therefore (yn)n converges
to an element yo and, by seq. closedness of Kj, yo

j ∈ Kj(xo, y
o
−j) for all j. If

yo is not a solution of N (xo), proceeding as in the proof of Theorem 5.5.1,
we obtain a contradiction. Hence yo ∈ N(xo). Moreover, in light of (5.4), we
have that N(xo) = {yo} and thesis follow. 2
Concerning parametric well-posedness under explicit assumptions on the
data, we obtain the following results.

Corollary 5.5.1 Let xo ∈ X. Assume that there is a unique solution to
N (xo). If, for all i, Yi is sequentially compact and:

(i) the set-valued function Ki is sequentially closed and sequentially lower
semicontinuous at (xo, y−i), for any y−i ∈ Y−i,
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(ii) the function fi is sequentially upper pseudocontinuous and sequentially
lower semicontinuous at (xo, y), for any y ∈ Y such that yi ∈ Ki(xo, y−i),

then, the family N is parametrically well-posed at xo.

Corollary 5.5.2 Let xo ∈ X. Assume that X,Y1, ..., Ym are metric spaces,
with Y1, ..., Ym also complete and:

lim
ε↓0

diam{∪x∈B(xo,ε)[ε−N(x)]} = 0. (5.4)

If for all i:

(i) the set-valued function Ki is sequentially closed and sequentially lower
semicontinuous at (xo, y−i), for any y−i ∈ Y−i,

(ii) the function fi is sequentially upper pseudocontinuous and sequentially
lower semicontinuous at (xo, y), for any y ∈ Y such that yi ∈ Ki(xo, y−i),

then, the family N is parametrically well-posed at xo.

Now, for well-posedness in the generalized sense, we have the following defi-
nition.

Definition 5.5.2 The family N is said to be generalized parametrically well-
posed at xo ∈ X if and only if:

• the set of solutions to N (xo) is non-empty;

• vi(x, y−i) < +∞ for all (x, y−i) ∈ X × Y−i;

• for all xn −→ xo and for all approximating equilibria sequence (yn)n

(with respect to (xn)n), there exists a subsequence of (yn)n which con-
verges to a solution of N (xo).

N is said generalized parametrically well-posed if it is generalized parametri-
cally well-posed at xo for all xo ∈ X.

In the next theorems, sufficient conditions for generalized parametric well-
posedness are given.

Theorem 5.5.3 Let xo ∈ X. Assume that the set of solutions to N (xo) is
non-empty. If, for all i, Yi is sequentially compact and:
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(i) the set-valued function Ki is sequentially closed at (xo, y−i), for any
y−i ∈ Y−i,

(ii) the function fi is sequentially upper pseudocontinuous at (xo, y), for
any y ∈ Y such that yi ∈ Ki(xo, y−i),

(iii) the function vi is sequentially lower semicontinuous at (xo, y−i), for any
y−i ∈ Y ,

then, the family N is generalized parametrically well-posed at xo.

Proof. Let xn −→ xo and (yn)n be an approximating equilibria sequence
(with respect to (xn)n) such that every convergent subsequence converges to
a point which is not a solution to N (xo). Let (ynk)k be a such sequence con-
verging to a point y. By seq. closedness of Kj, we obtain that yj ∈ Kj(xo, y−j)
for each j. Now, we can proceed as in the proof of Theorem 5.5.1 and thesis
follow. 2
Under explicit assumption on the data, we obtain the following corollary.

Corollary 5.5.3 Let xo ∈ X. Assume that the set of solutions to N (xo) is
non-empty. If, for all i, Yi is sequentially compact and:

(i) the set-valued function Ki is sequentially closed and sequentially lower
semicontinuous at (xo, y−i), for any y−i ∈ Y−i,

(ii) the function fi is sequentially upper pseudocontinuous and sequentially
lower semicontinuous at (xo, y), for any y ∈ Y such that yi ∈ Ki(xo, y−i),

then, the family N is generalized parametrically well-posed at xo.

To conclude the chapter, we note that, using pseudocontinuous functions, the
continuity of payoffs has been relaxed in the same way for both closedness of
solutions and parametric well-posedness of parametric social Nash equilibria
problems.
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Chapter 6

Approximate Nash and Social
Nash Equilibria

As well known, existence of Nash and social Nash equilibria are equivalent to
existence of fixed point of suitable set-valued functions. So, for applying fixed
point theorems, it is crucial to make compactness assumptions on strategic
spaces. In the classical results (among others, see [40], [41], [15], [14], [19],
[21]), in order to obtain existence of equilibria, the compactness of strategic
space cannot be weaken. In fact, there are several games and pseudo-game
in which all assumptions of quoted results on payoffs and on constraints are
satisfy, but in which there are not equilibria, because the strategic spaces are
not compact.
The intention of this chapter is to study games and pseudo-games in the
cases of lake of compactness on sets of strategies. In fact, following [6] and
[46], first it will be presented existence results of approximate Nash equilibria
for games in which the sets of strategies are bounded or totally bounded in
Banach spaces. Finally, following [46], a suitable concept of approximate
equilibria for pseudo-games will be introduced and existence result will be
given in Banach spaces, when the strategic spaces are bounded and totally
bounded.

6.1 Approximate Nash Equilibria for Games

in Normal Form

In Nash [40], Nash equilibria for n-person non-cooperative games have been
introduced and using Kakutani’s fixed point theorem ([22]) it has been shown
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that mixed extensions of finite n-person non-cooperative games possess at
least one Nash equilibrium. The aggregate best response multifunction on the
Cartesian product of the strategy spaces constructed with the aid of the best
response multifunctions for each player possesses fixed points which coincide
with the Nash equilibria of the game. Of course, for many non-cooperative
games Nash equilibria do not exist. For example, this may be the situation
for games which possess not compact strategic sets. Interesting are games
for which ε-Nash equilibria exist for each ε > 0. Here a strategy profile is
called an ε-Nash equilibrium if unilateral deviation of one of the players does
not increase his payoff with more than ε. More precisely, let G = {Yi, fi}i be
the game in normal form considered in Paragraph 5.1 and ε > 0. A profile
of strategies y∗ ∈ Y is said ε-Nash equilibrium if fi(y

∗
i , y

∗
−i) + ε ≥ fi(yi, y

∗
−i)

for all yi ∈ Yi and for all i. Such profile of strategies will be also called
approximate Nash equilibria.
The problem of existence of ε-Nash equilibria is equivalent to a fixed point
problem. In fact, for any player i, let Bε

i : Y−i −→ 2Yi be the ε-best response
multifunction defined by:

Bε
i (y−i) = {yi ∈ Yi / fi(yi, y−i) ≥ sup

zi∈Yi

fi(zi, y−i)− ε},

and let Bε : Y −→ 2Y be the aggregate ε-best response multifunction, defined
by:

Bε(y) =
m∏

i=1

Bε
i (y−i).

It is easy to prove that a profile of strategies y∗ is a ε-Nash equilibrium if
and only if y∗ is a fixed point of the multifunction Bε. So, using approxi-
mate fixed point theorems, we will be able to solve the fixed point problem
y∗ ∈ Bε(y∗) without compactness assumptions on strategic sets. To make
that, following [6], we proceed as in the next scheme:
(i) develop ε-fixed point theorems and find conditions on strategy spaces and
payoff functions of the game such that the aggregate ε-best response multi-
function satisfies conditions in an ε-fixed point theorem;
(ii) add extra conditions on the payoff-functions, guaranteeing that points in
the cartesian product of the strategy spaces nearby each other have payoffs
sufficiently nearby.

The next results are called the key propositions because they open the door
to obtain different ε-equilibrium point theorems, using as inspiration source
the existing literature on Nash equilibrium point theorems. Many of them
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contain collections of sufficient conditions on the strategy spaces and payoff
functions, guaranteeing that the aggregate best response multifunction has a
fixed point. To guarantee the existence of ε-fixed points one has to modify,
often in an obvious way, the conditions guaranteeing the existence of δ-fixed
points for the aggregate ε-best response multifunction and to replace the
condition (iii) or (iii)’ in the key propositions by the obtained conditions.

Key Proposition 6.1.1 Let G = {Yi, fi}m
i=1 be an m-person game in nor-

mal form with the following three properties:

(i) for each i ∈ {1, ..., m}, the strategy space Yi is endowed with a metric
di;

(ii) the payoff functions f1, ..., fm are uniformly continuous on Y =
∏m

i=1 Yi,
where Y is endowed with the metric d, defined by:

d(y, z) =
m∑

i=1

di(yi, zi) for all y, z ∈ Y ;

(iii) for each ε > 0 and δ > 0, the aggregate ε-best response multifunction
Bε possesses at least one δ-fixed point, i. e. FIXδ(Bε) 6= ∅.

Then, for each ε > 0, the set NEε(G) of all ε-Nash equilibria is non-empty.

Proof. Take ε > 0. By (ii) we can find η > 0 such that for all y, y′ ∈ Y with
d(y, y′) < η we have | fi(y)− fi(y

′) |< 1
2
ε for all i. We will prove that:

y∗ ∈ FIX
1
2
η(B

1
2
ε) =⇒ y∗ ∈ NEε(G).

Take y∗ ∈ FIX
1
2
η(B

1
2
ε), which is possible by (iii). Then there exists ŷ ∈

B
1
2
ε(y∗) such that d(y∗, ŷ) < η, and, consequently, for each i:

d((y∗i , y
∗
−i), (ŷi, y

∗
−i)) < η. This implies that:

fi(y
∗
i , y

∗
−i) ≥ fi(ŷi, y

∗
−i)−

1

2
ε for all i ∈ {1, ..., m}. (6.1)

Further ŷ ∈ B
1
2
ε(y∗) implies:

fi(ŷi, y
∗
−i) ≥ sup

zi∈Yi

fi(zi, y
∗
−i)−

1

2
ε for all i ∈ {1, ..., m}. (6.2)

Combining (6.1) and (6.2) we obtain:

fi(y
∗
i , y

∗
−i) ≥ sup

zi∈Yi

fi(zi, y
∗
−i)− ε for all i ∈ {1, ..., m}, (6.3)

that is y∗ ∈ NEε(G).
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2
Now, following [46], a variant of Key Proposition 6.1.1 is here presented.

Key Proposition 6.1.2 Let G = {Yi, fi}m
i=1 be an m-person game in nor-

mal form with the following three properties:

(i)’ for each i ∈ {1, ..., m}, the strategy space Yi is endowed with two metrics
di and d′i such that:

d′i(yi, zi) < η =⇒ di(yi, zi) < η;

(ii) the payoff functions f1, ..., fm are uniformly continuous functions on
Y =

∏m
i=1 Yi, where Y is endowed with the metric d, defined by:

d(y, z) =
m∑

i=1

di(yi, zi) for all y, z ∈ Y ;

(iii)’ for each ε > 0 and δ > 0, the aggregate ε-best response multifunction
Bε possesses at least one δ-fixed point with respect to metric (on Y ) d′

defined by d′(y, z) =
∑m

i=1 d′i(yi, zi).

Then, for each ε > 0, the set NEε(G) of all ε-Nash equilibria is non-empty.

Proof. Let ε and η as in the previous proof and y∗ ∈ FIX
1
2
η(B

1
2
ε). So, there

exists ŷ ∈ B
1
2
ε(y∗) such that d′(y∗, ŷ) < η, and d′((y∗i , y

∗
−i), (ŷi, y

∗
−i)) < η for

all i. This implies d((y∗i , y
∗
−i), (ŷi, y

∗
−i)) < η. From this point, we can proceed

as in the above proof and the thesis follows. 2
It will be clear that using key propositions, many approximate Nash equilib-
rium theorems can be obtained. In the following, we give three examples of
existence of approximate Nash equilibria.

Example 6.1.1 (Games on the open unit square). Let {]0, 1[, ]0, 1[, f1, f2}
be a game with uniform continuous payoff functions f1 and f2. Suppose
that f1 is concave in the first coordinate and f2 is concave in the second
coordinate. Then for each ε > 0, the game has an ε-Nash equilibrium point.
In fact, apply the key proposition to the above game and note that (i) and
(ii) are satisfied by taking the standard metric on ]0,1[. Further, (iii) follows
from Theorem 3.2.3 applied to the set-valued function Bε.
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Example 6.1.2 (Completely mixed approximate Nash equilibria for finite
games). Let A and B be m × n-matrices of real numbers. Consider the

two-person game { o

∆h,
o

∆k, f1, f2}, where:

o

∆h= {p ∈ Rh | pi > 0 for each i ∈ {1, ..., h},
h∑

i=1

pi = 1},

o

∆k= {q ∈ Rk | qj > 0 for each j ∈ {1, ..., k},
k∑

j=1

qj = 1},

f1(p, q) = pT Aq, f2(p, q) = pT Bq for all p ∈ o

∆h, q ∈ o

∆k.

Then for each ε > 0 this game has an ε-Nash equilibrium. Such an ε-Nash
equilibrium is called completely mixed, because both players use each of their
pure strategies with a positive probability. The proof follows from the key
proposition and Theorem 3.2.3 taking the standard Euclidean metric.

Example 6.1.3 Let Y be a normed linear space such that there exists a ∈
Y \{0}. Let G = {Y, Y, f1, f2} be the two-person game with f1(y1, y2) = − ‖
y1 − y2 ‖, f2(y1, y2) = − ‖ y1 − y2 − a

1+‖y1‖ ‖ for all (y1, y2) ∈ Y × Y . Then

B1(y2) = {y2} and B2(y1) = {y1− a
1+‖y1‖}. So B(y1, y2) = {(y2, y1− a

1+‖y1‖)}
for each (y1, y2) ∈ Y × Y . Hence, FIX(B) = ∅. However, for each δ > 0,
FIXδ(B) 6= ∅ since one can take y ∈ Y with ‖ y ‖≥ δ−1 ‖ a ‖ and, then,

(y, y) ∈ FIXδ(B) because ‖ (y, y) − (y, y − a
1+‖y‖) ‖= a

1+‖y‖ ≤ ‖a‖
‖y‖ ≤ δ.

Moreover f1 and f2 are uniform continuous functions on Y × Y . In fact:
| f2(y1, y2) − f2(z1, z2) |≤‖ (y1 − z1) − (y2 − z2) + ‖y1‖−‖z1‖

(1+‖y1‖)(1+‖z1‖)a ‖ ≤
(‖ y1 − z1 ‖ + ‖ y2 − z2 ‖)(1+ ‖ a ‖). Therefore, in light of the Key
Proposition 6.1.1 we can conclude that NEε(G) 6= ∅ for each ε > 0. In fact,

for ‖ y ‖ sufficiently large, (y, y) ∈ NEε(G), since f2(y, y2)−f2(y, y) ≤ ‖a‖
1+‖y‖ .

Following [46], in the next two theorems, using approximate fixed point theo-
rems, explicit assumptions on the data are given in order to obtain existence
of approximate Nash equilibria on bounded and totally bounded sets. For
the first one we need of Remark 6.1.1.

Remark 6.1.1 Assume that E is a reflexive and separable real Banach
space and X is a non-empty bounded subset of E. As we have recalled
in Lemma 3.2.1, the weak topology on X is induced by a metric dX . This
metric can be obtain in the following way (see for example [7]). Let E ′ be
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the topological dual space of E, B′ be the closed unit ball in E ′ and let
(φn)n ⊆ E ′ be a sequence dense in B′. It can be proved that:

dX(x, y) =
∞∑

n=1

2−n | 〈φn, x− y〉 | .

So, the relationship on X between dX and the norm ‖ · ‖ is the following:

C−1dX(x, y) ≤‖ x− y ‖,

where C is a positive number.

Theorem 6.1.1 Let G = {Yi, fi}m
i=1 be an m-person game in normal form.

Let Y1, ..., Ym be convex and bounded subsets, with non empty interior, of
reflexive and separable real Banach spaces. Assume that the following hy-
pothesis are satisfied for all i ∈ {1, ...,m}:

(i) the payoff function fi is uniformly continuous on Y =
∏m

j=1 Yj with
respect the metric dY defined by dY (y, z) =

∑m
j=1 dYj

(yj, zj), where dYj

is the metric which induces the weak topology on Yj;

(ii) the function fi(·, y−i) is quasi concave and bounded above for each
y−i ∈ Y−i =

∏
j 6=i Yj.

Then, for each ε > 0, the set NEε(G) of all ε-Nash equilibria is non-empty.

Proof. First, we will prove that the aggregate ε-best response multifunction
is closed in the weak topology. It will be sufficient to prove that the ε-best
response multifunction Bε

i of any player i is weakly closed. Let i be fixed.
The set Y−i is endowed of the topology τ−i product of the weak topologies
on all Yj with j 6= i. So, in light of Lemma 3.2.1, τ−i coincides with the
topology induced by the metric d−i(y−i, z−i) =

∑
j 6=i dYj

(yj, zj). Hence, for
the multifunction Bε

i , the weak closedness is equivalent to the sequential
closedness with respect to d−i. Let (yn)n a sequence in Y . As usual, the
notation yn

j ⇀ yj indicates that the sequence (yn
j )n is converging to yj in the

weak topology on Yj. Now, let: yn
−i ⇀ y−i, yn

i ∈ Bε
i (y

n
−i) for n sufficiently

large and yn
i ⇀ yi. So:

fi(y
n
i , yn

−i) ≥ sup
zi∈Yi

fi(zi, y
n
−i)− ε for all n (6.4)
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Being fi continuous with respect the weak topology induced by dY , the
marginal function:

z−i 7→ sup
zi∈Yi

fi(zi, z−i) (6.5)

is sequentially lower semicontinuous in the weak topology (see [4] and [27]),
and in light of (6.4) we obtain:

fi(yi, y−i) ≥ lim inf
n→∞

sup
zi∈Yi

fi(zi, y
n
−i)− ε ≥ sup

zi∈Yi

fi(zi, y−i)− ε.

So yi ∈ Bε
i (y−i), which proves the closedness of Bε

i .
Moreover, it is easy to show that hypothesis (ii) implies Bε

i (y−i) convex and
non-empty for all y−i.
Hence, Bε is weakly closed and it has non-empty and convex values. Ap-
plying Theorem 3.2.1, we deduce that FIXδ(Bε) 6= ∅ for all ε, δ ∈ R+. So,
remembering Remark 6.1.1, the thesis follows by Key Proposition 6.1.2. 2

Theorem 6.1.2 Let G = {Yi, fi}m
i=1 be an m-person game in normal form.

Let Y1, ..., Ym be convex and totally bounded subsets, with non empty interior,
of real Banach spaces. Assume that the following hypothesis are satisfied for
all i ∈ {1, ...,m}:

(i) the payoff function fi is uniformly continuous on Y =
∏m

j=1 Yj with
respect the norm ‖ · ‖= ∑m

j=1 ‖ · ‖j, where ‖ · ‖j is the norm of the
space which includes Yj;

(ii) the function fi(·, y−i) is quasi concave and bounded above for each
y−i ∈ Y−i =

∏
j 6=i Yj.

Then, for each ε > 0, the set NEε(G) of all ε-Nash equilibria is non-empty.

Proof. Let yn
−i −→ y−i, yn

i ∈ Bε
i (y

n
−i) for n sufficiently large and yn

i −→ yi.
So fi(y

n
i , yn

−i) ≥ supzi∈Yi
fi(zi, y

n
−i) − ε for all n. Moreover, the marginal

function defined by (6.5) is still lower semicontinuous. Hence fi(yi, y−i) ≥
supzi∈Yi

fi(zi, y−i) − ε, which proves that Bε
i is closed. It is easy to check

that Bε
i has non-empty and convex values. So, in light of Theorem 3.2.3,

FIXδ(Bε) 6= ∅ for all ε, δ ∈ R+ and the thesis follows by Key Proposi-
tion 6.1.1. 2
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6.2 Determinateness of Two-Person Games

In this section, we want briefly to show a question in which approximate
Nash equilibria are strongly involved.
Let G = {Y1, Y2, f1, f2} be a two person game and ε1, ε2 > 0. A pair (y∗1, y

∗
2)

is called an (ε1, ε2)-equilibrium point (see [32]) if:

f1(y
∗
1, y

∗
2) ≥ f1(y1, y

∗
2)− ε1 for all y1 ∈ Y1

f2(y
∗
1, y

∗
2) ≥ f2(y

∗
1, y2)− ε2 for all y2 ∈ Y2

In the case in which G is a zero-sum game, that is f1 + f2 identically equal
to zero, (ε1, ε2)-equilibrium points are related to the determinateness of the
game. More precisely, a zero-sum game is determined ([42]) if it possesses a
value, which is an element v such that:

v = inf
y1∈Y1

sup
y2∈Y2

f(y1, y2) = sup
y2∈Y2

inf
y1∈Y1

f(y1, y2),

where f = f2. Now, we have the following proposition.

Proposition 6.2.1 ([32]) Let {Y1, Y2, f1, f2} be a zero-sum game. Then the
following assertions are equivalent:

(i) The game has finite value.

(ii) The game possesses an (ε1, ε2)-equilibrium point for each ε1, ε2 > 0.

If a game possesses ε-Nash equilibria for any ε > 0, then it has also (ε1, ε2)-
equilibrium points for each ε1, ε2 > 0. In fact, fixed ε1, ε2 > 0, it is sufficient
to choose ε ≤ min{ε1, ε2}. Hence, Theorems 6.1.1 and 6.1.2 are sufficient
conditions in order to recognize zero-sum game with finite value.

The idea of determinateness for zero-sum games has been carried in gen-
eral two-person game by Lucchetti, Patrone and Tijs in [32]. In fact, set
Eε1,ε2 the set of all (ε1, ε2)-equilibrium points and

Eε,k = {(y∗1, y∗2) / f1(y
∗
1, y

∗
2) ≥ supy1∈Y1

f1(y1, y
∗
2)− ε and f2(y

∗
1, y

∗
2) ≥ k},

Ek,ε = {(y∗1, y∗2) / f1(y
∗
1, y

∗
2) ≥ k and f2(y

∗
1, y

∗
2) ≥ supy2∈Y2

f2(y
∗
1, y2)− ε},

Ek1,k2 = {(y∗1, y∗2) / f1(y
∗
1, y

∗
2) ≥ k1 and f2(y

∗
1, y

∗
2) ≥ k2},

a general two person game is said to be determined if at least one of the next
properties is satisfied:

59



• Eε1,ε2 6= ∅ for all ε1, ε2 > 0;

• Eε,k 6= ∅ for all ε > 0 and all k ∈ R;

• Ek,ε 6= ∅ for all k ∈ R and all ε > 0;

• Ek1,k2 6= ∅ for all k1, k2 ∈ R.

As well for general two-person game, Theorems 6.1.1 and 6.1.2 are sufficient
conditions also for determinateness in nonzero sum games.

6.3 Approximate Social Nash Equilibria

In this paragraph, following [46], a suitable concept of approximate social
Nash equilibrium for abstract economies will be considered and existence re-
sults on non-compact sets will be given.

Let Γ = {Yi, Ki, fi}i be the abstract economy considered in Paragraph 5.1.
Assume that the constraints are described by inequalities: any individual i
has a function gi : Y =

∏m
j=1 Yj −→ R (called constraint function) such that

Ki(y−i) = {yi ∈ Yi / gi(yi, y−i) ≤ 0} for all y−i ∈ Y−i.
For every positive real number σ, we set Kσ

i (y−i) = {yi ∈ Yi / gi(yi, y−i) ≤
σ}.
Definition 6.3.1 Let ε and σ be two positive real numbers. A point y∗ ∈ Y
is said to be an (ε, σ)-social Nash equilibrium for Γ if, for every i ∈ {1, ..., m}:

y∗i ∈ Kσ
i (y∗−i) and fi(y

∗
i , y

∗
−i) ≥ sup

yi∈Ki(y∗−i)

fi(yi, y
∗
−i)− ε.

These (ε, σ)-social Nash equilibria will be also said approximate social Nash
equilibria.

As for social Nash equilibria, the existence of (ε, σ)-social Nash equilibria is
equivalent to the existence of fixed points of a suitable set-valued function.
In fact, defining the (ε, σ)-aggregate best response set-valued function Bε

σ as
follows:

Bε
σ : y ∈ Y −→

m∏
i=1

Bε
σ,i(y−i) ∈ 2Y

where

Bε
σ,i(y−i) = {zi ∈ Kσ

i (y−i) / fi(zi, y−i) ≥ sup
ti∈Ki(y−i)

fi(ti, y−i)− ε},
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it is easy to prove that a point y∗ is a (ε, σ)-social Nash equilibrium for Γ if
and only if y∗ ∈ Bε

σ(y∗).

Using approximate fixed point theorems, we can solve the fixed point prob-
lem y∗ ∈ Bε

σ(y∗) without compactness assumptions on the strategic spaces.
As made in the previous section and following [46], first we give two ”key
propositions”.

Key Proposition 6.3.1 Assume that the following statements are satisfied:

(i) for any i ∈ {1, ..., m}, the strategy space Yi is endowed with a metric
di;

(ii) the payoff functions f1, ..., fm and the constraint functions g1, ..., gm are
uniformly continuous on Y with respect to the metric d, defined by:

d(y, z) =
m∑

i=1

di(yi, zi) for all y, z ∈ Y ;

(iii) FIXδ(B
ε
2
σ
2
) is non empty for all ε > 0, all σ > 0 and all δ > 0.

Then, for all ε > 0 and all σ > 0, there exists an (ε, σ)-social Nash equilib-
rium for Γ.

Proof. By uniform continuity on Y of payoffs and constraints, there exists
δ > 0 such that if y ∈ Y and y′ ∈ Y , with d(y, y′) < δ, then we have for all i:

fi(y) ≥ fi(y
′)− ε

2
and

σ

2
+ gi(y) ≥ gj(y

′)

Let y∗ ∈ FIX
δ
2 (B

ε
2
σ
2
), which exists by (iii). Then there exists ŷ ∈ B

ε
2
σ
2
(y∗)

such that d(y∗, ŷ) < δ. So, we have for all i:

fi(ŷi, y
∗
−i) ≥ sup

ti∈Ki(y∗−i)

fi(ti, y
∗
−i)−

ε

2
(6.6)

and
gi(ŷi, y

∗
−i) ≤

σ

2
(6.7)

Moreover d((ŷi, y
∗
−i), (y

∗
i , y

∗
−i)) < δ, therefore, for each i, we have:

fi(y
∗
i , y

∗
−i) ≥ fi(ŷi, y

∗
−i)−

ε

2
(6.8)
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and
gi(y

∗
i , y

∗
−i) ≤ gi(ŷi, y

∗
−i) +

σ

2
(6.9)

Combining (6.6) with (6.8) and (6.7) with (6.9), we obtain respectivelly:

fi(y
∗
i , y

∗
−i) ≥ sup

ti∈Ki(y∗−i)

fi(ti, y
∗
−i)− ε (6.10)

and
gi(y

∗
i , y

∗
−i) ≤ σ (6.11)

for all i ∈ {1, ...,m}.
Finally, (6.10) and (6.11) implies that y∗i ∈ Bε

σ,i(y
∗
−i) for all i ∈ {1, ..., m}. So

y∗ ∈ Bε
σ(y∗), that is: y∗ is a (ε, σ)-social Nash equilibrium for Γ. 2

With the same arguments used in the proof of Key Proposition 6.3.1 and as
made in the proof of Key Proposition 6.1.2, one can prove the following Key
Proposition 6.3.2.

Key Proposition 6.3.2 Assume that the following statements are satisfied:

(i)’ for each i ∈ {1, ..., m}, the strategy space Yi is endowed with two metrics
di and d′i such that:

d′i(yi, zi) < η =⇒ di(yi, zi) < η;

(ii) the payoff functions f1, ..., fm and the constraint functions g1, ..., gm are
uniformly continuous on Y with respect to the metric d, defined by:

d(y, z) =
m∑

i=1

di(yi, zi) for all y, z ∈ Y ;

(iii)’ for all ε > 0, all σ > 0 and all δ > 0, the (ε, σ)-aggregate best response
multifunction Bε

σ possesses at least one δ-fixed point with respect to
metric (on Y ) d′ defined by d′(y, z) =

∑m
i=1 d′i(yi, zi).

Then, for all ε > 0 and all σ > 0, there exists an (ε, σ)-social Nash equilib-
rium for Γ.

Now, by these key propositions, it is possible to obtain existence results for
approximate social Nash equilibria in the case in which strategic spaces are
bounded sets in separable and reflexive real Banach spaces, and in the case in
which strategic spaces are totally bounded sets in real Banach spaces. In fact,
we have the following two theorems ([46]). First, we need of Lemma 6.3.1.
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Lemma 6.3.1 ([27]) Let U1 and U2 be two sequential spaces, xo ∈ U1 and
g : U1 × U2 −→ R. Assume that the following statements are satisfied:

(i) if ym = limn→∞ ym,n and y = limm→∞ ym, then there exists a selection
of integers {m(n) / n ∈ N} such that y = limn→∞ ym(n),n;

(ii) there exists yo ∈ U2 such that g(xo, yo) < 0 (Slater condition);

(iii) for any xn −→ xo and any y ∈ U2, there exists a sequence (ȳn)n con-
verging to y such that lim supn→∞ g(xn, ȳn) ≤ g(xo, y);

(iv) the function g(xo, ·) is strictly quasi convex.

Then, the multifunction K, defined by K(x) = {y ∈ U2 / g(x, y) ≤ 0} ∀ x ∈
U1, is sequentially lower semicontinuous at xo.

Theorem 6.3.1 Let Γ = {Yi, Ki, fi}m
i=1 be an abstract economy. Let Y1, ..., Ym

be convex and bounded subsets, with non empty interior, of reflexive and sep-
arable real Banach spaces. Assume that the following hypothesis are satisfied
for all i ∈ {1, ..., m}:

(i) the payoff function fi and the constraint function gi are uniformly
continuous on Y =

∏m
j=1 Yj with respect the metric dY defined by

dY (y, z) =
∑m

j=1 dYj
(yj, zj), where dYj

is the metric which induces the
weak topology on Yj;

(ii) the function fi(·, y−i) is quasi concave and bounded above for each
y−i ∈ Y−i =

∏
j 6=i Yj;

(iii) for any y−i ∈ Y−i, there exists yi ∈ Yi such that gi(yi, y−i) < 0 (Slater
condition);

(iv) the function gi(·, y−i) is strictly quasi convex for all y−i ∈ Y−i.

Then, for each ε, σ ∈ R+, Γ has at least an (ε, σ)-social Nash equilibrium.

Proof. Let ε and σ be positive real number. In order to apply the ap-
proximate fixed point theorem 3.2.1, we show that the ( ε

2
, σ

2
)-best response

multifunction
B

ε
2
σ
2
,i : y−i ∈ Y−i −→ B

ε
2
σ
2
,i(y−i) ∈ 2Yi

is closed in the weak topology on Y−i, for all individual i. In light of the

Lemma 3.2.1, it is sufficient to prove that B
ε
2
σ
2
,i is closed with respect the
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metric on Y−i defined by d−i(y−i, z−i) =
∑

j 6=i dYj
(yj, zj). Let: yn

−i ⇀ y−i,

yn
i ∈ B

ε
2
σ
2
,i(y

n
−i) for n sufficiently large and yn

i ⇀ yi. So:

fi(y
n
i , yn

−i) ≥ sup
zi∈Ki(yn

−i)

fi(zi, y
n
−i)−

ε

2
for all n. (6.12)

All hypothesis of Lemma 6.3.1 are verified (condition (i) holds because Y−i

is a metric space), so the set-valued function Ki is sequentially lower semi-
continuous and the marginal function:

z−i 7→ sup
zi∈Ki(z−i)

fi(zi, z−i) (6.13)

is sequentially lower semicontinuous (see [4] and [27]). By (6.12) one obtain:

fi(yi, y−i) ≥ lim inf
n→∞

sup
zi∈Ki(yn

−i)

fi(zi, y
n
−i)−

ε

2
≥ sup

zi∈Ki(y−i)

fi(zi, y−i)− ε

2
.

Moreover, by gi(y
n
i , yn

−i) ≤ σ
2

follows that yi ∈ K
σ
2
i (y−i), and so that the mul-

tifunction B
ε
2
σ
2
,i is closed for all i. So, the multifunction B

ε
2
σ
2

is closed. It is easy

to check that B
ε
2
σ
2

has convex and non-empty values. Hence, Theorem 3.2.1

guarantees that FIXδ(B
ε
2
σ
2
) is non empty for all δ > 0. Remembering Re-

mark 6.1.1, the thesis follows by Key Proposition 6.3.2. 2
If the strategic spaces are included in real Banach spaces, we have the fol-
lowing result.

Theorem 6.3.2 Let Γ = {Yi, Ki, fi}m
i=1 be an abstract economy. Let Y1, ..., Ym

be convex and totally bounded subsets, with non empty interior, of real Ba-
nach spaces. Assume that the following hypothesis are satisfied for all i ∈
{1, ..., m}:

(i) the payoff function fi and the constraint function gi are uniformly con-
tinuous on Y =

∏m
j=1 Yj with respect the norm ‖ · ‖Y =

∑m
j=1 ‖ · ‖Yj

;

(ii) the function fi(·, y−i) is quasi concave and bounded above for each
y−i ∈ Y−i =

∏
j 6=i Yj;

(iii) for any y−i ∈ Y−i, there exists yi ∈ Yi such that gi(yi, y−i) < 0 (Slater
condition);
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(iv) the function gi(·, y−i) is strictly quasi convex for all y−i ∈ Y−i.

Then, for each ε, σ ∈ R+, Γ has at least a (ε, σ)-social Nash equilibrium.

Proof. Let yn
−i −→ y−i, yn

i ∈ B
ε
2
σ
2
,i(y

n
−i) and yn

i −→ yi. So fi(y
n
i , yn

−i) ≥
supzi∈Ki(yn

−i)
fi(zi, y

n
−i) − ε

2
for all n. With the same arguments used in the

above proof, one can prove that the marginal function defined by (6.13) is
still lower semicontinuous. So, all hypothesis of Theorem 3.2.3 are satisfied

for B
ε
2
σ
2

and FIXδ(B
ε
2
σ
2
) 6= ∅ for all δ > 0 and the thesis follows by Key Propo-

sition 6.3.2. 2
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Chapter 7

Marginal functions and
Existence in MaxSup and
MaxInf Problems

In the present chapter, properties (weaker than semicontinuity) on marginal
functions are considered in order to obtain new existence results for MaxSup
and MaxInf problems. In fact, in the setting of sequential spaces, following
[38], first we will give a characterization of functions which possess maximum
points on sequentially compact set. Hence, using sequentially upper quasi-
continuous function, we will be able to relax sequential upper semicontinuity
of objective function for existence in both MaxSup and MaxInf problems.

7.1 Existence of Maximum Points in Topo-

logical Spaces

In this section, we will recall existence results of maximum points for ex-
tended real valued function defined on topological spaces.
We recall that an extended real valued function h defined on a topological
space Z is said upper semicontinuous at a point zo ∈ Z (see for exam-
ple [1],[4]) if for all ε > 0 there exists a neighborhood I of zo such that
h(z) ≤ h(zo) + ε for all z ∈ I.

In first we have the famous Theorem of Weierstrass.

Theorem 7.1.1 Let Z be a topological space and h be an extended real valued
function defined on Z. If Z is compact and h is upper semicontinuous, then
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there exists at least a maximum point of h on Z.

The compactness assumption on Z has been relaxed by Rockafellar in [45]
and by Aubin in [1], where authors used upper semicompact functions. An
extended real valued function h is said upper semicompact if {z ∈ Z / h(z) ≥
λ} is relatively compact for all extended real valued λ.

Theorem 7.1.2 ([1]) Let Z be a topological space and h be an extended
real valued function defined on Z. If h is upper semicontinuous and upper
semicompact, then there exists at least a maximum point of h on Z.

Finally, in order to obtain existence of maximum points, the upper semi-
continuity of objective functions has been relaxed by Tian and Zhou in [48].
In this paper, using the class of transfer weakly upper continuous functions
(which definition has been recalled in Paragraph 2.2) the authors character-
ize the functions endowed of maximum points on compact sets.
For reasons of comfort, we recall the definition of transfer weakly upper con-
tinuity. An extended real valued function h is said transfer weakly upper
continuous on Z if: h(zo) < h(z) implies that there exists an element z′ ∈ Z
and a neighborhood I of zo such that h(z) ≤ h(z′) for all z ∈ I.

Theorem 7.1.3 ([48]) Let Z be a compact topological space and h be an ex-
tended real valued function defined on Z. Then, h admits at least a maximum
point if and only if h is transfer weakly upper continuous on Z.

7.2 Existence of Maximum Points in Sequen-

tial Spaces

In this paragraph, following [38], we study the existence of maximum points
for functions defined on sequential spaces.
First, we recall the sequential version of the Weierstrass’ Theorem.

Theorem 7.2.1 Let Z be a sequential space and h be an extended real valued
function defined on Z. If Z is sequentially compact and h is sequentially
upper semicontinuous, then there exists at least a maximum point of h on Z.

Transfer weakly upper continuity has a natural extension in sequential spaces.
In fact, we give the following definition.
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Definition 7.2.1 Let Z be a sequential space and h be an extended real val-
ued function defined on Z. The function h is said to be seq. transfer weakly
upper continuous at zo ∈ Z if and only if for any z ∈ Z with h(zo) < h(z),
there exists z′ ∈ Z such that:

lim sup
n→∞

h(zn) ≤ h(z′) for all sequence (zn)n converging to zo in Z.

The function h is said to be seq. transfer weakly upper continuous on Z if
and only if it is seq. transfer weakly upper continuous at every point of Z.

Note that the class of seq. transfer weakly upper continuous functions strictly
includes the classes of seq. upper pseudocontinuous and quasicontinuous func-
tions.
Obviously, if Z is a topological space, any transfer weakly upper continuous
function is also sequentially transfer weakly upper continuous with respect
to the convergence structure induced by topology but the converse is not
always true. In fact, one can see at Example 2.2.3. The equivalence between
the two classes holds in topological spaces which satisfy the first axiom of
countability, as showed in the next proposition.

Proposition 7.2.1 Let Z be a topological space and h be an extended real
valued function defined on Z. If h is a transfer weakly upper continuous func-
tion on Z then h is seq. transfer weakly upper continuous on Z. Moreover,
if Z satisfies the first axiom of countability, then the converse is also true.

Proof. The first statement is obvious. Assume now that:
• h is seq. transfer weakly upper continuous on Z;
• h is not transfer weakly upper continuous on Z;
• Z satisfies the first axiom of countability.
Let zo ∈ Z and z1 ∈ Z be such that h(zo) < h(z1) and that, for any z ∈ Z
and for any neighbourhood I of zo, there exists zI ∈ I such that h(z) < h(zI).
Then:
• there exists z′ ∈ Z such that lim supn→∞ h(zn) ≤ h(z′) for all sequence
(zn)n converging to zo;
• the function h has not maximum points (see Theorem 7.1.3);
• there exists a countable local base (In)n of zo decreasing with respect to
the inclusion.
Therefore, there exists z′′ ∈ Z such that h(z′) < h(z′′) and for any n ∈
N, there exists zn ∈ In such that: h(z′′) < h(zn) and h(z′) < h(z′′) ≤
lim supn→∞ h(zn). Since the sequence (zn)n converges to zo, we get a contra-
diction.
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2
Now, we have the following generalization of Weierstrass’ Theorem in se-
quential spaces.

Theorem 7.2.2 Let Z be a sequential space and let h be an extended real
valued function defined on Z. The following statements hold:

(i) If h is seq. transfer weakly upper continuous on Z and Z is seq. compact,
then h has at least a maximum point on Z.

(ii) If h has at least a maximum point on Z, then h is seq. transfer weakly
upper continuous on Z.

Proof. First, let us show the statement (i). Assume that h does not have a
maximum point.
If α = supz∈Z h(z) < ∞, there exists a maximizing sequence (zn)n such that
α − 1

n
< h(zn) for all n ∈ N. Being Z seq. compact, there exists a subse-

quence (znk
)k converging in Z to a point zo. Since the function h does not

have maximum points, there exists z ∈ Z such that h(zo) < h(z). The func-
tion h is seq. transfer weakly upper continuous at zo, therefore there exists
z′ ∈ Z such that α = lim supk→∞ h(xnk

) ≤ h(z′), and we get a contradiction,
since z′ become a maximum point.
If α = ∞, the same arguments can be used with the maximizing sequence
(zn)n such that h(zn) ≥ n for all n.
The statement (ii) is obvious. 2
Moreover, we have the following corollary.

Corollary 7.2.1 Let Z be a sequential space and h be an extended real val-
ued function defined on Z. If h is sequentially upper quasicontinuous (or
pseudocontinuous) on Z and Z is sequentially compact, then h admits at
least a maximum point on Z.

7.3 MaxSup and MaxInf Problems

Let X and Y be non-empty sets, f be an extended real value function defined
on X × Y and K be a set-valued function from X to Y with non-empty
values. With respect the data {X, Y, f, K}, we call: sup-marginal function
the function vsup defined on X by:

vsup(x) = sup
y∈K(x)

f(x, y); (7.1)
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and inf-marginal function the function vinf defined on X by:

vinf (x) = inf
y∈K(x)

f(x, y). (7.2)

In this section, we are interested in existence results for the following MaxSup
and MaxInf problems:

MaxSup :

{
find xo ∈ X such that:
vsup(xo) = maxx∈X vsup(x)

and

MaxInf :

{
find xo ∈ X such that:
vinf (xo) = maxx∈X vinf (x)

In the setting of topological spaces, first existence results for these two prob-
lems are two theorems due to Berge.

Theorem 7.3.1 ([4]) Let X and Y be topological spaces, f be an extended
real valued function defined on X × Y and K be a set-valued function from
X to Y with non-empty values. If:

(i) K is upper semicontinuous with compact values;

(ii) f is upper semicontinuous;

then, the sup-marginal function vsup is upper semicontinuous.

Theorem 7.3.2 ([4]) Let X and Y be topological spaces, f be an extended
real valued function defined on X × Y and K be a set-valued function from
X to Y with non-empty values. If:

(i) K is lower semicontinuous;

(ii) f is upper semicontinuous;

then, the inf-marginal function vinf is upper semicontinuous.

Adding the hypothesis of compactness of X to previous theorems and using
Weierstrass’ theorem, one has existence results of solutions to MaxSup and
MaxInf problems respectively.

About the existence of solutions to MaxInf problems, the hypothesis of up-
per semicontinuity on f (and also the compactness of X) has been relaxed
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in Aubin [1], when K(x) = Y for all x ∈ X, and in Lignola and Morgan [26],
when the constraint K is general. In [26], authors used a gamma limit. An
exhaustive study on gamma limits is in De Giorgi and Franzoni [16] and in
Dal Maso [12]. Let τ be the topology on X, σ be the topology on Y and
let (x, y) ∈ X × Y . We denote with τ(x) the family of all neighbourhood
of x and with σ(y) the family of all neighbourhood of y. The gamma limit
Γ(τ+, σ−) of f at (x, y) used in [26] is defined by:

Γ(τ+, σ−)f(x, y) = sup
J∈σ(y)

inf
I∈τ(x)

sup
x′∈I

inf
y′∈J

f(x′, y′).

Theorem 7.3.3 ([1]) Let X and Y be topological spaces and f be an extended
real valued function defined on X × Y . If:

(i) the function f(·, y) is upper semicontinuous for all y ∈ Y ;

(ii) there exists yo ∈ Y such that the function f(·, yo) is upper semicompact;

then, MaxInf problem admits at least a solution.

Theorem 7.3.4 ([26]) Let X and Y be topological spaces, f be an extended
real valued function defined on X × Y and K be a set-valued function from
X to Y with non-empty values. If:

(i) Γ(τ+, σ−)f(x, y) ≤ f(x, y) for all x ∈ X and all y ∈ K(x);

(ii) there exists yo ∈ Y such that the function f(·, yo) is upper semicompact;

(iii) K has open graph;

then, MaxInf problem admits at least a solution.

If X and Y are sequential spaces, Lignola and Morgan present in [27] a
characterization of seq. upper semicontinuity of the inf-marginal function
vinf when K(x) = Y for all x ∈ X. In fact, the next theorem holds.

Theorem 7.3.5 ([27]) Let X and Y be sequential spaces, f be an extended
real valued function defined on X × Y and xo ∈ X. Then, the inf-marginal
function vinf is sequentially upper semicontinuous at xo if and only if the
following statement holds:
for all y ∈ Y and all xn −→ xo, there exists a sequence (yn)n ⊆ Y such that

lim sup
n→∞

f(xn, yn) ≤ f(xo, y) (7.3)
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When the constraint K is general, again in [27], a sufficient condition on f ,
weaker than seq. upper semicontinuity, is given in order to obtain vinf seq.
upper semicontinuous.

Theorem 7.3.6 ([27]) Let X and Y be sequential spaces, f be an extended
real valued function defined on X ×Y , K be a set-valued function from X to
Y with non-empty values and xo ∈ X.
If K is sequentially open graph and if f satisfies the following property:
for all y ∈ K(xo) and all xn −→ xo, there exists a sequence (yn)n ⊆ Y
converging to y such that (7.3) holds,
then, the inf-marginal function vinf is seq. upper semicontinuous at xo.

Hypothesis in Theorems 7.3.5 and 7.3.6 and sequential compactness of X
give sufficient conditions for existence of solutions to MaxInf problems in
sequential spaces.

About the existence of solution to MaxSup problems, in topological or se-
quential spaces, the sufficient condition on f used until now is the upper
semicontinuity (see [27] for sequential spaces). So, some question rises spon-
taneous: Is it possible the obtain sufficient conditions for existence of solu-
tions to MaxSup problems using classes of functions more general than upper
semicontinuity? What is it happen for MaxInf problems?

For to answer to above questions, first we observe that the minimal con-
dition for existence of maximum points is not a sufficient condition neither
for MaxSup nor for MaxInf problems, as shown in the following examples.

Example 7.3.1 Let f : [0, 1]× [0, 1] −→ R defined by:

f(x, y) =

{
1
2
(x + y) if (x, y) ∈ [0, 1[×[0, 1]

x− y if (x, y) ∈ {1} × [0, 1]

and K : [0, 1] −→ 2[0,1] defined by:

K(x) = [x, 1] for all x ∈ [0, 1].

The function f is transfer weakly upper continuous on [0, 1] × [0, 1] but the
sup-value function vsup does not have a maximum on [0,1]. Then, the corre-
sponding MaxSup Problem does not have solutions.

Example 7.3.2 Let f : [0, 1] × [0, 1] −→ R be the transfer weakly upper
continuous function considered in Example 7.3.1 and K(x) = [0, 1] for all
x ∈ [0, 1]. The inf-value function vinf does not have a maximum on [0, 1].
Then, the corresponding MaxInf Problem does not have solutions.
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Affirmative answers to the previous questions will be given in the next two
sections, where the class of sequentially upper quasicontinuous functions (in-
troduced in Paragraph 2.3) will be the tool able to relax the semicontinuity
of f in both MaxSup and MaxInf problems.

7.4 Sequential Upper Quasicontinuity of vvvsup

and MaxSup Problems

In this section, following [38], in the setting of sequential spaces, we present
sufficient conditions of minimal character on the data {X, Y, f, K}, first for
the seq. upper quasicontinuity of the sup-value function vsup defined by (7.1)
and second for the existence of solutions to the MaxSup problem. So, we start
with the following two theorems on the sequentially upper quasicontinuity of
vsup.

Theorem 7.4.1 If K is sequentially closed and sequentially subcontinuous
on X and f is sequentially upper quasicontinuous on X × Y , then vsup is
sequentially upper quasicontinuous on X.

Proof. We assume that vsup(xo) < vsup(x) and lim supn→∞ vsup(xn) >
vsup(x) for some sequence (xn)n converging to xo. Taken ε > 0 such that
lim supn→∞ vsup(xn) > vsup(x) + ε > vsup(x), there exists a subsequence
(xnk

)k of (xn)n and a sequence (yk)k such that: vsup(x) + ε < f(xnk
, yk)

and yk ∈ k(xnk
) for all k. Since K is seq. subcontinuous and seq. closed at

xo, we have that there exists a subsequence (yki
)i of (yk)k that converges to

a point yo ∈ K(xo) and we obtain:

vsup(x) + ε ≤ lim sup
i→∞

f(xnki
, yki

) (7.4)

On the other hand, yo ∈ K(xo) and vsup(xo) < vsup(x) imply that there exists
ŷ ∈ k(x) such that f(xo, yo) < f(x, ŷ). By seq. upper quasicontinuity of the
function f at (xo, yo), we have:

lim sup
i→∞

f(xnki
, yki

) ≤ f(x, ŷ) (7.5)

Combining (7.4) and (7.5) we obtain:

lim sup
i→∞

f(xnki
, yki

) < vsup(x) + ε ≤ lim sup
i→∞

f(xnki
, yki

)

and we get a contradiction.
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2
Theorem 7.4.2 If K is sequentially closed and sequentially subcontinuous
on X and f satisfies the following condition Csup:




f(xo, yo) < f(x, y)
yo ∈ K(xo), y ∈ K(x)

(xn, yn) −→ (xo, yo)
⇒

{ ∃ (y′n)n ⊆ K(x) and no ∈ N such that:
f(xn, yn) ≤ f(x, y′n) ∀ n ≥ no

then vsup is sequentially upper quasicontinuous on X.

Proof. We assume that vsup(xo) < vsup(x) and lim supn→∞ vsup(xn) >
vsup(x) for some sequence (xn)n converging to xo. Then there exists a sub-
sequence (xnk

)k of (xn)n such that vsup(x) < vsup(xnk
) for all k. Therefore

there exists a sequence (yk)k such that, for all k, yk ∈ K(xnk
) and:

f(x, y) < f(xnk
, yk) for all y ∈ K(x). (7.6)

Since K is seq. subcontinuous at xo, there exists a subsequence (yki
)i of

(yk)k which converges to a point yo ∈ Y . Being K seq. closed at xo we
have yo ∈ K(xo) and, since vsup(xo) < vsup(x), f(xo, yo) < f(x, y′) for some
y′ ∈ K(x). By condition Csup, there exists a sequence (y′i)i in K(x) such that:

f(xnki
, yki

) ≤ f(x, y′i) for i sufficiently large. (7.7)

Combining (7.6) and (7.7), we get a contradiction. 2
Note that the class of seq. upper quasicontinuous functions and the class of
functions which satisfy condition Csup are not the same, as shown in next
two examples 7.4.1 and 7.4.2. Moreover, Example 7.4.2 shows also that the
class of functions for which the condition Csup holds does not coincide with
the class of seq. transfer weakly upper continuous functions.

Example 7.4.1 Let f : [0, 1]× [0, 2] −→ R defined by:

f(x, y) =





0 if (x, y) ∈ [0, 1]2

1 if x ∈ [0, 1] and y ∈]1, 2] ∩Q
y if x ∈ [0, 1] and y ∈]1, 2] ∩ (R\Q)

where Q denotes the set of all rational numbers and let K(x) = [2x, 2] for
all x ∈ [0, 1] (note that the set-valued function K satisfies the assumptions
of theorems 7.4.1 and 7.4.2). The function f is seq. upper quasicontinuous
but it does not satisfy condition Csup for (xo, yo) = (0, 1), (x, y) = (1, 2) and
(xn, yn) −→ (0, 1) with (yn)n ⊆ R\Q and yn −→ 1+.
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Example 7.4.2 Let f : [0, 2]× [0, 1] −→ R defined by:

f(x, y) =





1 if (x, y) ∈ [0, 2]× {0}
2− y if (x, y) ∈ [0, 2]×]0, 1

2
]

1− xy if (x, y) ∈ [0, 2]×]1
2
, 1]

and K(x) = [0, 1] for all x ∈ [0, 2]. Then f satisfies condition Csup but it is
not seq. transfer weakly upper continuous on [0, 2] × [0, 1] and so it is not
seq. upper quasicontinuous either.

In light of Theorem 7.4.1 and Theorem 7.4.2, upper quasicontinuity and
condition Csup are sufficient conditions for existence of solutions to MaxSup
Problems. In fact, we have the following result.

Theorem 7.4.3 If X is sequentially compact, K is sequentially closed and
sequentially subcontinuous on X and if f is sequentially upper quasicontinu-
ous on X × Y (or f satisfies the condition Csup), then the MaxSup Problem
has solutions.

Proof. It is sufficient to apply Theorem 7.4.1 (or Theorem 7.4.2) and Corol-
lary 7.2.1. 2

7.5 Sequential Upper Quasicontinuity of vvvinf

and MaxInf Problems

In this section, following [38], we present, in sequential spaces, sufficient con-
ditions of minimal character on the data {X, Y, f, K} for the sequential upper
quasicontinuity of the inf-marginal function vinf defined by (7.2) and for the
existence of solutions to the MaxInf Problem. First, we consider a generic
set-valued function K and we show that the sequential upper quasicontinuity
of f implies the sequential upper quasicontinuity of the inf-marginal function
vinf (under a suitable condition on K). Then, we improve the previous result
when K(x) = Y for any x ∈ X.

Theorem 7.5.1 Assume that f is sequentially upper quasicontinuous on
X × Y and K is sequentially lower semicontinuous on X. Then, the inf-
marginal function vinf is sequentially upper quasicontinuous on X.
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Proof. Let xo and x in X such that vinf (xo) < vinf (x) and xn −→ xo. There
exists yo ∈ K(xo) such that f(xo, yo) < f(x, y) for any y ∈ K(x). Since K
is seq. lower semicontinuous at xo, there exists a sequence (yn)n converging
to yo with yn ∈ K(xn) for n sufficiently large. Being f seq. upper quasi-
continuous at (xo, yo), we have lim supn→∞ f(xn, yn) ≤ f(x, y). Therefore,
lim supn→∞ vinf (xn) ≤ f(x, y) for any y ∈ K(x) and the thesis follows. 2
We note that the condition on the function f considered in Theorem 7.3.6
([27]) is not connected with seq. upper quasicontinuity, as it is shown in the
next example.

Example 7.5.1 Let f : [0, 1]× [0, 1] −→ R defined by:

f(x, y) =





2(1− x) if (x, y) ∈ [0, 1[×[0, 1/2]
2y(1− x) if (x, y) ∈ [0, 1[×]1/2, 1]

−1 if (x, y) ∈ {1} × [0, 1]

and K(x) = [0, 1] for any x ∈ [0, 1]. The assumptions of Theorem 7.5.1 are
satisfied but the inf-marginal function vinf is not seq. upper semicontinuous,
so the condition on f in Theorem 7.3.6 is not verified.

Concerning existence of solutions to the MaxInf Problem, one has the fol-
lowing result.

Theorem 7.5.2 Assume that f is sequentially upper quasicontinuous on
X × Y and K is sequentially lower semicontinuous on X sequentially com-
pact. Then, the MaxInf Problem has at least a solution.

Proof. It is sufficient to apply Theorem 7.5.1 and Corollary 7.2.1. 2
Now we analyze the case in which K(x) = Y for all x ∈ X. We have the
following theorem.

Theorem 7.5.3 Assume that the following condition Cinf is satisfied:
{

f(xo, yo) < f(x, y)
xn −→ xo

⇒
{ ∃ (ȳn)n ⊆ Y such that:

lim supn→∞ f(xn, ȳn) ≤ f(x, y)

then vinf is sequentially upper quasicontinuous on X.

Proof. Let xo and x be two elements of X such that vinf (xo) < vinf (x)
and (xn)n be a sequence converging to xo. There exists yo ∈ Y such that
f(xo, yo) < f(x, y) for all y ∈ Y . Let y ∈ Y . In light of Cinf , there
exists a sequence (ȳn) in Y such that lim supn→∞ f(xn, ȳn) ≤ f(x, y). So
lim supn→∞ vinf (xn) ≤ f(x, y) for all y ∈ Y and the thesis follows.
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2
The condition on f used in Theorem 7.3.5 implies Cinf but the converse is
not true, as shown by the following example.

Example 7.5.2 Let f : [0, 2]× [0, 1] −→ R defined by:

f(x, y) =

{
y − x if (x, y) ∈ [0, 1[×[0, 1]

xy − 3 if (x, y) ∈ [1, 2]× [0, 1]

Then the function f verifies Cinf but not the condition used in Theorem 7.3.5
([27]).

Finally, to conclude the section, one can apply Theorem 7.5.3 and Corollary
7.2.1 in order to obtain an other existence result for the solutions to the
MaxInf problem.

Theorem 7.5.4 If f satisfies condition Cinf , X is sequentially compact and
K(x) = Y for all x ∈ X, then the MaxInf Problem has at least a solution.
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