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List of symbols 

• Soil slurry 

▪ 𝑊𝑠𝑙𝑢𝑟𝑟𝑦 weight of soil slurry; 

▪ 𝑉𝑠𝑙𝑢𝑟𝑟𝑦 volume of soil slurry; 

▪ 𝛾𝑠𝑙𝑢𝑟𝑟𝑦 =
𝑊𝑠𝑙𝑢𝑟𝑟𝑦

𝑉𝑠𝑙𝑢𝑟𝑟𝑦
 bulk density of soil slurry; 

▪ 𝑤𝑠 =
𝑊𝑤𝑠

𝑊𝑠
𝑠  water content of soil slurry; 

o Solid 

▪ 𝑊𝑠
𝑠   weight of dry soil; 

▪ 𝑉𝑠
𝑠 absolute volume of soil; 

▪ 𝜌𝑠 =
𝑊𝑠

𝑠

𝑉𝑠
𝑠  specific weight of soil; 

o Liquid 

▪ 𝑊𝑤𝑠 weight of water in soil slurry; 

▪ 𝜌𝑤 specific weight of water; 

• Cement paste 

▪ 𝑊𝑐 weight of cement paste; 

▪ 𝑉𝑐 volume of cement paste; 

▪ 𝑊𝑐,ℎ weight of hydrated cement; 

▪ 𝑉𝑐,ℎ volume of hydrated cement; 

▪ 𝑉𝑐,𝑝 total volume of pores in cement paste; 

▪ 𝑉𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠 total volume of capillary pores; 

▪ 𝛼 =
𝑊𝑤𝑐,𝑛−𝑒𝑣

𝑊𝑐,𝑎,ℎ
; 

▪ 𝛽 ≅ 0.746 parameter that takes account for shrinkage of 

non-evaporable water in cement paste; 

▪ 
𝑤𝑐

𝑐⁄ =
𝑊𝑤𝑐

𝑊𝑐,𝑎
 gravimetric water to cement ratio; 

o Solid 

▪ 𝑊𝑐,𝑎 weight of anhydrous (dry) cement (as a powder); 

▪ 𝑊𝑐,𝑎,ℎ weight of the portion of initial anhydrous cement 

(Wc,a) that is hydrated at a certain curing time, i.e. 

“anhydrous hydrated cement”; 

▪ 𝑥 =
𝑊𝑐,𝑎,ℎ

𝑊𝑐,𝑎
 gravimetric portion of anhydrous cement 

hydrated at a certain curing time; 

▪ 𝑉𝑐,𝑎
𝑠  absolute volume of anhydrous (dry) cement; 



▪ 𝜌𝑐,𝑎 =
𝑊𝑐,𝑎

𝑉𝑐,𝑎
𝑠  specific weight of anhydrous (dry) cement; 

▪ 𝑊𝑐,𝑢𝑛ℎ weight of unhydrated cement at certain curing 

time; 

▪ 𝑉𝑐,𝑢𝑛ℎ
𝑠  absolute volume of unhydrated cement; 

▪ 𝑊𝑐
𝑠 = 𝑊𝑐,ℎ

𝑠 + 𝑊𝑐,𝑢𝑛ℎ weight of solid cement paste; 

▪ 𝑉𝑐
𝑠 absolute volume of solid cement paste; 

▪ 𝑊𝑐,ℎ
𝑠  weight of solid products of hydration; 

▪ 𝑉𝑐,ℎ
𝑠  absolute volume of solid products of hydration; 

▪ 𝑊𝑤𝑐,𝑐ℎ weight of chemically combined water; 

▪ 𝑊𝑤𝑐,𝑛−𝑒𝑣 weight of non-evaporable water in cement paste; 

▪ 𝑉𝑤𝑐,𝑛−𝑒𝑣 =
𝑊𝑤𝑐,𝑛−𝑒𝑣

𝜌𝑤
 volume of non-evaporable water; 

o Liquid 

▪ 𝑊𝑐
𝑙 weight of liquid phase in cement paste; 

▪ 𝑉𝑐
𝑙 volume of liquid phase in cement paste; 

▪ 𝑊𝑤𝑐 weight of water added to cement paste; 

▪ 𝑉𝑤𝑐 volume of water added to cement paste; 

▪ 𝑊𝑤 𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠 weight of water in capillary pores; 

▪ 𝑊𝑤𝑐,𝑒𝑣 weight of evaporable water in cement paste; 

▪ 𝑉𝑤 𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠 volume of capillary pores filled with water; 

▪ 𝑊𝑔𝑒𝑙 𝑤𝑎𝑡𝑒𝑟 weight of gel water; 

▪ 𝑉𝑔𝑒𝑙 𝑤𝑎𝑡𝑒𝑟 volume of gel water; 

o Gas 

▪ 𝑉𝑐
𝑔

 volume of gas phase in cement paste; 

▪ 𝑉𝑒 𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠 volume of empty capillary pores; 

• Foam 

▪ 𝑉𝑓 volume of foam; 

▪ 𝑊𝑓 total weight of foam; 

▪ 𝛾𝑓 =
𝑊𝑓

𝑉𝑓
 bulk density of foam; 

o Solid 

▪ 𝑊𝑓
𝑠 weight of solid phase in foam; 

o Liquid 

▪ 𝑊𝑓
𝑙 weight of liquid phase in foam; 

▪ 𝜌𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 density of surfactant solution used to produce the 

foam; 



▪ 𝑉𝑓
𝑙 volume of liquid phase in foam; 

o Gas 

▪ 𝑉𝑎𝑖𝑟,𝑓𝑜𝑎𝑚 volume of air in foam; 

• Lightweight cemented soil 

▪ W weight of lightweight cemented soil; 

▪ V volume of lightweight cemented soil; 

▪ 𝑤 gravimetric water content of lightweight cemented soil; 

▪ 𝑉𝑝 volume of pores of lightweight cemented soil; 

▪ 𝑛 porosity of lightweight cemented soil; 

▪ 𝑒 void ratio of lightweight cemented soil; 

▪ 
𝑐

𝑠
=

𝑊𝑐,𝑎

𝑊𝑠
𝑠 ; 𝑒𝑓

′ =
𝑉𝑓

𝑉𝑠𝑜𝑖𝑙 𝑠𝑙𝑢𝑟𝑟𝑦+𝑉𝑔𝑟𝑜𝑢𝑡
; 𝑛𝑓 =

𝑉𝑓

𝑉
;  

▪ 𝑒𝑏 =
𝑉𝑐ℎ

𝑉𝑠
 void ratio of bonds 

▪ 
𝛾𝑑𝑟𝑦(𝑛𝑓)

𝛾𝑑𝑟𝑦(𝑛𝑓=0)
=

𝛾𝑑𝑟𝑦

𝛾𝑑𝑟𝑦,0
 relative dry density 

o Solid 

▪ 𝑊𝑠weight of solid phase in lightweight cemented soil 

▪ 𝑉𝑠 volume of solid phase in lightweight cemented soil 

▪ 𝜌𝑠 =
𝑊𝑠

𝑉𝑠  specific weight of solid phase of lightweight 

cemented soil 

o Liquid 

▪ 𝑊𝑙 weight of liquid phase in lightweight cemented soil; 

▪ 𝑉𝑙 volume of liquid phase in lightweight cemented soil; 

▪ 𝑊𝑤,𝑒𝑣 weight of evaporable water in lightweight cemented 

soil; 

▪ 𝑉𝑤,𝑒𝑣 volume of evaporable water in lightweight cemented 

soil; 

o Gas 

▪ 𝑉𝑔 volume of gas phase in lightweight cemented soil; 

▪ 𝑉𝑎𝑖𝑟 𝑣𝑜𝑖𝑑𝑠 volume of air in lightweight cemented soil. 
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 Introduction 
The management of large amounts of excavated soil is a primary problem in 

civil engineering, often due to not suitable mechanical properties for its reuse as 

a construction material. Italian legislation defines the excavated soil and rocks 

(DPR 120/17) as the excavated soil deriving from activities aimed to a 

construction project such as excavations (construction excavations, foundations, 

trenches), bores, piles, soil improvement, infrastructural projects (tunnels, 

streets), removal and levelling of soil constructions. They can also contain 

concrete and cementitious mixtures, bentonite, PVC, fiberglass, and admixtures 

for mechanised excavations if pollutant concentration is below specific threshold. 

When the excavated soil is qualified as a waste, its disposal after a temporary 

storage must be considered in site management and high costs can derive. 

However, if the excavated soil can be reused as a material in the same 

construction project (or in a different one) for backfilling, trench reinstatement, 

soil embankments or substituting quarrying material in productive processes, it 

can be qualified as by-product with clear advantages in terms of environmental 

and economic costs. 

A suitable solution for reuse of excavated soil is the addition of cement and 

foam to produce lightweight cemented soils (LWCS). Lightweight cemented soil 

is prepared by mixing soil with water, cement and an air foam. The aim of this 

technique is to obtain a material with high workability in the fresh state (so that 

it can be transferred by pumping from batch plant to the construction site and 

poured) improved mechanical properties of the hardened paste given by the 

binding agent (as cement) and a specific low density (varying from 6 to 15 

kN/m3) thanks to the addition of a foam. The fresh paste is self-levelling and no 

compaction is required, thus reducing construction time. The method can be 

theoretically applied to any kind of soil except for very coarse particles which 

can segregate in the fresh paste. However, the necessity of such a method often 

arise for fine grained soil, especially clayey and silty soil, whose mechanical 

properties are generally not suitable for construction purposes or require high 

compaction efforts. 

The treatment of soil by means of binding agents is nowadays very common 

in engineering practice. Well established soil improvement techniques as deep 

mixing, jet grouting and lime stabilization are based on mixing binding agents as 

cement and lime to improve soil mechanical performances. The former two are 
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grouped in the category of soil mixing, which is referred to as soil improvement 

and conditioning techniques in which soil is disrupted and mixed with binding 

agents via rotating utensils to obtain a “geomaterial” with specific geotechnical 

performances directly on site (Marzano, 2017). They are often used for columnar 

treatments, but also trench mixing techniques exist. A similar soil improvement 

technique is the permeation grouting, that is based on deep injection of 

cementitious mixtures at low pressure. It differs from soil mixing because no 

mixing of soil happens and a very little disturbance to soil fabric occurs (Flora 

and Lirer, 2011). In these cases, soil is not excavated. Conversely, cement and 

lime treatment (stabilization) techniques, as well as the lightweight cemented soil 

method, are used to improve soil mechanical properties to reuse it as a 

construction material. Cement and lime are the most commonly used binding 

agents in soil mixing, but others like fly ash and blast furnace slag, or the 

innovative geopolymers, can be used to substitute them, partially or wholly 

(Kaniraj and Havanagi, 1999; Wild et al., 1998; Zhang et al., 2013). In the LWCS 

method, the most common binding agent is cement, but also other binding agents 

have been efficiently used (S. Horpibulsuk et al., 2014). 

A foam is a dispersion of bubbles in a liquid. In geotechnical engineering, 

foams are commonly used as a soil conditioner in Earth Pressure Balance (EPB) 

mechanized tunnelling technology. The addition of a foam has various purposes. 

It is used to make the soil almost impermeable and to reduce abrasive behaviour 

of some soils; it acts on consistency giving the soil a pseudoplastic state, to help 

muck circulation from excavation to its storage; in a fine grained soil, it is used 

to reduce clogging potential of clays and avoid overconsolidation under the 

action of the cutting edge of the screw (Quebaud et al., 1998). The effect of foam 

conditioning on soil properties related to EPB mechanised is widely studied 

(Borio et al., 2008; Milligan, 2000; Plötze et al., 2013; Sebastiani et al., 2017; 

Thewes et al., 2011; Zumsteg et al., 2012). In civil engineering, foam is also used 

to produce foam concrete (foamed concrete, foamcrete) that is a cellular concrete 

obtained by mixing a preformed foam with grout (like lightweight cemented soil 

method). It differs from gas-concrete, which is a cellular concrete usually 

obtained by adding aluminium powder to the paste. Foam concrete is a 

lightweight concrete whose density can go down to 300 kg/m3 along with 

strength which reduces as well; it is defined as a low density controlled low 

strength material and used for various applications such as backfills, void filling, 

insulation fills and pavement bases (Ramme, 2005). To avoid confusion, it is 
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worth noting that the term “foam” is also used to define dispersion of gas in 

solids, such as porous materials, cellular concrete and polymer foams, thus the 

lightweight cemented soil can be defined as a “foam” as well. However, in the 

following, the term foam will only refer to a gas dispersion in liquid. 

The lightweight cemented soil method or lightweight treated soil method has 

been studied by various authors and efficiently applied on dredged soil in port 

construction in Japan (Tsuchida and Egashira, 2004), or suggested as a 

construction material for constructions on soft clays (Horpibulsuk et al., 2012b). 

The method requires that soil is diluted at a water content, ws, above the liquid 

limit, wl, to obtain a soil slurry, a suspension. The binding agent can be either 

added as a powder or mixed with water at a certain water to cement ratio by 

weight, wc/c. These two procedures are defined as dry and wet in soil mixing, 

respectively. By this way, a cemented soil can be obtained. The amount of 

binding agent is usually defined as the ratio by weight of anhydrous cement to 

dry soil, c/s, or to the volume of material produced. Foam is usually added as the 

last component. The amount of foam can be defined in different ways; in some 

cases, the volume of foam is related to the volume of soil slurry (Teerawattanasuk 

et al., 2015), in other cases to the total volume of soil slurry and foam 

(Horpibulsuk et al., 2012b). A diagram of the mixing method used in this study 

is represented in Figure 1-1. 

 
Figure 1-1. Diagram of lightweight cement soil method. 

In this experimental study, the influence of addition of cement and foam to 

soil on mineralogical and microstructural features is presented. Time dependent 

mineralogical and microstructural changes have been monitored at increasing 

curing time by means of X Ray Diffraction (XRD), Thermogravimetric Analysis 
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(TGA), Scanning Electron Microscopy (SEM) and Mercury Intrusion 

Porosimetry (MIP). Mechanical behaviour of treated soil has been investigated 

by means of oedometric and direct shear tests. Tests are briefly described in 

Appendix B. 

In the following chapter a brief description of the main clay minerals, along 

with their structure and mineralogy, is presented. Then, clay-water interaction 

and rheological behaviour of clay suspensions, i.e., soil slurry, are shown. The 

3rd chapter is about cement and foam. Cement classification, chemistry and 

rheology of the fresh cement paste are briefly summarized. A short description 

of foam properties and stability is given. In these chapters, the phases of each 

component (soil slurry, cement paste and foam) will be identified. The 

superscripts “s”, “l” and “g” will be used to specify respectively the solid, liquid 

and gas phases, the subscripts “s”, “c” and “f” will refer respectively to soil, 

cement and foam. 

In the 4th chapter a literature review on the mechanical behaviour of 

cemented soils and lightweight cement soils is presented. 

In the 5th chapter a description of materials and methods used in this study is 

given. The relations between the phases of the produced material in dependence 

of initial amounts of material are derived, starting from equations in Chapters 2 

and 3 for each component. 

The results of mineralogical and microstructural tests are presented in the 6th 

chapter. Direct shear test and oedometric test results are discussed in 7th chapter; 

in Appendix C, results of all the performed tests are shown. 
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 Soil 
The lightweight cemented soil method can be applied to any kind of soil, 

except for coarse particles which can segregate from bulk. In this study attention 

was given to clayey soils, characterised by an amount of clay higher than 12% 

and non-negligible plasticity (ASTM, 2006). The behaviour of a clayey soil and 

its interaction with water are strictly related to mineral composition. Indeed. 

mineral composition and nature of constituent pore fluid can affect significantly 

some properties of a clayey soil, such as plasticity and residual strength (Di Maio 

and Fenelli, 1994, 1997). Due to this, clay minerals are briefly presented. Then, 

clay-water interaction and rheological behaviour of clay suspensions are shown, 

due to their importance in the treatment method which requires a dilution of 

clayey soil to obtain a slurry to be mixed with other components. 

 Clay and clay minerals 

In geotechnics, the term clay refers to particles with diameter lower than 2 

m (A.G.I., 1963), but in a more general definition, the term clay implies a 

“natural, earthy, fine-grained material which develops plasticity when mixed 

with a limited amount of water” (Grim, 1968). The plasticity is the property that 

a substance, continuously deformed under a finite force, has to maintain its shape 

after the force is removed or reduced (Andrade et al., 2011). Chemical analyses 

showed that clay minerals are composed essentially of silica, alumina, and water, 

with amounts of iron, alkalis and alkaline earths (Grim, 1968). The upper limit is 

dependent on the tendency of clay minerals to be concentrated in a size less than 

2 m (Grim, 1968). 

Clay minerals refer to a group of hydrous aluminosilicates that predominate 

the clay-sized (<2 m) fraction of soils (Barton and Karathanasis, 2002). The 

nomenclature and classification of these minerals have been discussed for many 

years (Grim, 1968). A classification is proposed by “The Clay Minerals Society” 

(Martin et al., 1991). A discussion about clay minerals classification goes beyond 

the purposes of the thesis; however, due to its importance, a brief description of 

clay minerals has been reported in Appendix A. 
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Figure 2-1. Nomenclature and classification of clay minerals, Copyright “The Clay Minerals 

Society”(Martin et al., 1991) 

 Clay-water interaction 

The peculiar behaviour of clay when mixed with water depends on clay 

minerals structure and the high surface area of particles. As already shown in 2.1, 

the surface of clay minerals is composed of oxygen atoms or hydroxyl groups 

and excess electrons can arise from cations substitution in lattice (Grim, 1968). 

By this way, hydrogen covalent bonds can form between particle surface and 

water molecules, due to polarity of water. The totality of the negative electrical 

layer on the surface particles and the positive electrical layer in the adsorbed 

water is called electrical double layer. 
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 Diffuse layer models and clay particle associations 

In the simplest model, electrical double layer can be represented as composed 

of only two planes where all the electrical potential nullifies, proposed by 

Helmholtz as reported by Paunovic and Schlesinger (2006) (Figure 2-2a). 

However, due to counter-ions adsorption on particle surface, the counter-ions 

concentration is higher on the surface and lower in the bulk of solution. This 

causes a diffusive force of counter-ions towards the bulk solution, so that 

concentration of counter-ions is maximal near particle surface and decreases with 

distance. Moreover, due to electrostatic repelling force of surface, there is a 

deficiency of ions of the same sign of the surface charge around the layer. This 

is called diffuse layer model, called Gouy-Chapman model as reported by 

Paunovic and Schlesinger (2006) and it’s represented schematically in Figure 

2-2b. 

 
Figure 2-2. Diagrammatic sketch of electrical double layer. (a) Helmholtz model; (b) diffuse layer 

model. 

The exact distribution of ions as a function of distance from the particle can 

be derived from electrostatic and diffusion theory. As concentration, the electric 

potential is maximum at the surface and decreases exponentially with distance. 

If the double layer is created by adsorption of potential-determining ions then the 

electrical potential, Φ, is expressed by Nernst equation (2-1) and, at a certain 

temperature T, it depends only on concentration of these ions in bulk solution, c, 

and the valence of ions, v: 

𝛷0 =
𝑘𝐵𝑇

𝑣𝑒
ln (

𝑐

𝑐0
) ⇒ c = c0exp (

𝑣𝑒𝛷0

𝑘𝐵𝑇
) (2-1) 
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where kB is the Boltzmann constant and c0 is the concentration at zero point of 

charge when Φ=0 (van Olphen, 1977). As reported by van Olphen (1977), for 

small potentials at surface, the distribution of electric potential, Φ, with distance, 

x, from particle surface can be expressed as: 

𝛷 = 𝛷0 exp(−𝑘𝑥) (2-2) 

where k is a constant inversely proportional to dielectric constant of the medium. 

These equations show that higher the counter-ion valences and concentration, 

lower is the electric potential and the diffuse layer is more compressed. 

When two particles approach, due to their diffuse counter-ions, there is a 

repulsive force between them and work is required to move close two particles. 

However, also attractive forces exist, and flocculation demonstrate their 

existence. These forces are van der Waals attraction forces. According to van 

Olphen (1977), these forces are equal to the sum of all the attractive forces 

between every atom of one particle and every atom of the other particle and this 

summation lead to a less rapid decay with distance. Indeed, while van der Waals 

attractive force between two atoms is inversely proportional to the seventh power 

of the distance, it is inversely proportional to the third power of distance between 

two spherical particles (van Olphen, 1977). The attractive force is basically 

independent on solution, while repulsive forces depend on ion concentration and 

ion valence. As ion concentration decreases, as shown Figure 2-3 from a to c, 

suspension behaviour changes. In case a, which refers to a high ion concentration, 

if two particles come in contact, attractive forces are dominant, and flocculation 

occurs. In case c, at high distances, repulsive forces are dominant, and particles 

don’t flocculate; however, at much lower distances, attractive forces can be 

dominant, and coagulation takes place. Indeed, the sections that represent long-

range repulsions are called “energy barriers” and particles that has passed the 

“barrier” are said to have “jumped over the barrier” (van Olphen, 1977). Case b 

represents an intermediate and unstable state. 
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Figure 2-3. Representation of double layer repulsive forces (Frep) and attractive van der Waals forces 

(Fatt) with distance. 

A more complex model for diffuse layer is the Stern model, that is a 

combination of Helmholtz and Gouy-Chapman models (Paunovic and 

Schlesinger, 2006). It assumes that some ions are restricted to a very small plane 

close to the particle surface (as the Helmholtz model) which cause a strong 

reduction of electric potential, while other ions are distributed in the solution, as 

Gouy-Chapman model. 

The models shown in 2.2.1 can be applied to all suspensions. In the case of 

clay, the electric double layer structure is more complex due to clay mineral 

morphology. On the flat surface, a net negative charge due to ion substitution 

occurs. The compensating cations between unit-layers try to diffuse away in 

presence of water due to lower concentration, while they are attracted 

electrostatically to the charged lattice. These compensating cations act as 

counter-ions of the double layer, they are exchangeable for other cations and are 

confined in a narrow space between unit-layer surfaces. Due to the large 

adsorption force between lattice and counter-ions, conversely to other 

suspensions, a large portion of counter-ions is located on the surface while a 

smaller one is in the diffuse layer, with a better accordance to Stern model. On 

the edge surface, due to the abrupt disruption of tetrahedral and octahedral sheets, 

primary bonds are broken. It is likely that a positive double layer is created also 

on the edge surface. 

Because of the plate-like morphology, when particles flocculate, three 

different particle associations may occur: Face to Face (FF), Edge to Face (EF) 

and Edge to Edge (EE).  
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Figure 2-4. Schematic representation of types of clay particle associations: (a) Deflocculated and 

dispersed; (b) Deflocculated and aggregated; (c) EF flocculated and dispersed; (d) EE flocculated and 

dispersed (e) EF flocculated and aggregated (f) EE flocculated and aggregated (g) EE and EF 

flocculated and aggregated. (van Olphen, 1977). 

Due to different double layers, their interaction changes in dependence of the 

kind of particle association. At the same time, due to different geometry, 

summation of van der Waals forces changes and, by consequence, the attractive 

force. As reported by van Olphen (1977), EE and EF associations lead to 

agglomerates that can be called “flocs”, while FF association can be called 

“aggregate”; dissociation of EE and EF particles is called “deflocculation”, while 

FF separation in thinner flakes can be called “dispersion”. This means that a 

suspension can be flocculated and dispersed or aggregated but deflocculated 

(Figure 2-4). Modes of clay particle association affect rheological behaviour of 

clay suspensions. In the following section, a brief explanation of rheological 

behaviour of suspensions and the influence of flocculation will be presented. 

 Rheological properties of clay suspensions 

Given a unit cube of matter with a fixed lower surface named reference 

surface, if a shear stress  is applied on the top surface, there is movement of the 

top layer in the same direction. The layer below moves in the same direction with 

a lower velocity and so on, which results in a velocity gradient in normal direction 

respect to shear stress direction. This gradient is called rate of shear, D, measured 

in sec-1. The rheological behaviour can be described by a relationship between 

shear stress and the rate of shear. When they are related by a linear relationship 

passing through origin, the fluid is called Newtonian (2-3). The constant of 
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proportionality is called coefficient of viscosity or briefly viscosity, , whose 

physical unit, in the International System, is Poiseuille (Pl), equal to 1∙Pa·sec. 

Water viscosity at 20 °C is 10-3 Pl, equal to 0.01 poise, another commonly used 

unit. 

 = 𝐷 (2-3) 

Dilute suspensions behave as Newtonian fluids. The ratio between 

suspension viscosity, , and liquid medium viscosity, 0, is called relative 

viscosity of suspension, r, and can be related to the amount of dispersed solids 

with a theoretical relation derived by Einstein, as reported by van Olphen (1977): 


𝑟

= 1 + 𝑘𝑟
𝐶𝑠 (2-4) 

where Cs is the concentration of solids by volume and kr
 is a constant equal 

to 2.5 for spheres but it is much larger if particles are anisometric as plates or 

rods. The relation is valid only for suspension dispersed enough so that particles 

(large compared to molecules of medium) don’t influence one each other. 

If solid concentration is high enough that interaction cannot be neglected, 

these formulas are no longer valid. Indeed, concentrated suspensions behave as 

non-newtonian fluids. Examples of non-newtonian behaviours are represented in 

Figure 2-5. In such systems, at each point, the apparent viscosity, /D, and 

differential viscosity (or plastic viscosity), d/dD, can be defined. 

 
Figure 2-5. Rheological behaviour in laminar flow. 

When both apparent and differential viscosity increase with shear stress, the 

flow is defined as dilatant or shear thickening. In the opposite, when both 

apparent and differential viscosity decrease with shear stress, it is defined as 
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shear thinning. Thickening and thinning behaviours can be described by a power 

law model (2-5), where K and n are two constants. If n < 1, it is shear thinning, 

with n > 1 it is shear thickening. 

 = 𝐾𝐷𝑛 (2-5) 

If no flow occurs below a threshold shear stress 0, defined as yield stress, 

and differential viscosity decrease till a constant value where -D relation 

becomes linear, it is called Bingham pseudoplastic flow. Extrapolating the 

straight line to low shear rates, an ordinate B (called Bingham yield stress) is 

obtained. This linear behaviour is called ideal plastic flow or Bingham plastic 

flow, described by equation (2-6). 

 = 𝐵 + 𝐷 (2-6) 

 = 0 + 𝐾𝐷𝑛 (2-7) 

A shear thinning behaviour with an initial yield stress, 0, it’s also possible 

and there are different models which can describe this behaviour, as the Herschel-

Bulkley which simply adds a yield stress to power model (2-7). It is worth noting 

that this representation of rheological behaviour is only valid in laminar flow, 

whereas turbulent flow occurs at high shear rates and behaviour is also 

determined by inertia forces. 

These properties can be also dependent on shear history and shearing time. 

When apparent viscosity decreases with shearing time, it is called thixotropic; at 

the opposite, if apparent viscosity increases with shearing, it is called rheopectic. 

Some models can be used to predict the viscosity of a concentrated 

suspension, as the Einstein model for dilute suspensions (2-4). An example is the 

Krieger-Dougherty model (Krieger and Dougherty, 1959), in which Cs, max is the 

maximum solid concentration by volume, while [] is the intrinsic viscosity of 

suspension. As reported by Struble and Sun (1995), it takes account for the effect 

of individual particle on viscosity. 


𝑟

= (1 +
 𝐶𝑠

𝐶𝑠,𝑚𝑎𝑥
)

−[]𝐶𝑠,𝑚𝑎𝑥

  (2-8) 

2.2.2.1. Rheological behaviour of clay suspensions 

The flow behaviour of dilute and concentrated clay suspensions is of the 

Newtonian and Bingham type, respectively. Indeed, flocculated particles are 
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linked together, thus a certain yield stress is developed. The behaviour can also 

be thixotropic. 

Particle association presented in 2.2.1 affects the behaviour of a clay 

suspension. In a dilute clay suspension, viscosity increases if flocs are formed by 

EE and EF association, while it decreases when FF association occurs. In 

concentrated clay suspension, the continuous card-house structure given by EE 

and EF associations within the total volume leads to a Bingham behaviour. 

However, yield stress is reduced when FF association occurs simultaneously due 

to the lower links in the card-house structure. 

In a pure water suspension, double layers are developed enough to prevent 

particle association by van der Waals attraction but, thanks to the opposite charge 

of edge and faces that exceeds the FF repulsion, EF association occurs with a T 

shape, leading to relatively high viscosity in dilute systems and high yield stress 

in concentrated systems. Salinity of water does affect the association and, by 

consequence, rheological properties. A low concentration of NaCl can lead to a 

compression of the double layer, diminishing both EF attraction and FF 

repulsion, leading to the breakage of the card-house structure and a reduction in 

yield stress and viscosity, respectively in concentrated and dilute clay 

suspensions. However, at higher salt concentration, due to further compression 

of double layer, van der Waals attraction forces between EE and EF association 

enhance and the card-house structure is more likely to occur, leading to an 

increase in viscosity and yield stress. At very high concentrations, yield stress 

can decrease again, maybe due to FF association by which card structure links 

are reduced. However, these effects depend on clay mineralogy and salt. By this 

way, flocculation or deflocculation can be fostered. There are cases in which a 

suspension must be fluid enough to be poured, but with a rather high 

concentration. In such a case, a lower viscosity and yield stress can be obtained 

by deflocculating the system by breaking EE and EF associations. This can be 

achieved by reversing positive-edge charge, determining an EE and EF repulsion 

(van Olphen, 1977). 

In soil science, clay-water interaction is simply defined via Atterberg limits, 

which represent conventional boundary water content, w, between solid-plastic 

state, plastic limit wp, and plastic-liquid state, liquid limit wl, whose difference is 

defined as plasticity index Ip=wl-wp. These index properties are determined by 

means of standard procedures and are used for classification of fine grained soils 

(ASTM, 2006, 2005). The state is defined via the consistency index Ic=(wl-w)/Ip, 
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and liquidity index Il=(w-wp)/Ip. Even if the liquid limit is conventionally defined 

via Casagrande method, it has been shown that it can be related to a specific 

undrained shear strength, that is the water content at which undrained shear 

strength, su, of the remoulded soil is equal to 2 kPa (ASTM, 2005). Indeed, the 

liquid limit can be obtained also via the fall cone test, which allow to determine 

the undrained shear strength of a soil and it is standardized and preferred in many 

countries (Houlsby, 1982; Koumoto and Houlsby, 2001). Liquid limit can be 

assumed as the water content at which a 60°, 60 g cone penetrates 10 mm, 

corresponding to su=2 kPa. Indeed, undrained shear strength, su, can be 

determined as: 

𝑠𝑢 =
𝐾𝑊

ℎ2
 (2-9) 

Where h is the penetration depth, W is the weight of the cone and K is the 

fall cone factor, as defined by Hansbo (1957), which depends on cone geometry 

and roughness, as shown by Koumoto and Houlsby (2001), and it is equal to 0.30 

for a 60° semi-rough cone. The relation between water content and undrained 

shear strength is nonlinear, as shown by Koumoto and Houlsby (2001) which 

propose the relation (2-10), linear in log(w)-log(su) plane, where pa is the 

atmospheric pressure. 

𝑤 = 𝑎 (
𝑠𝑢

𝑝𝑎
)

−𝑏

 (2-10) 

They also suggest a fall cone undrained shear strength at the liquid limit equal 

to 1.4 kPa. The liquidity index and the undrained shear strength can be related to 

rheological properties of clay suspensions. Indeed, Locat and Demers (1988) 

show that a good relation exists between viscosity and liquidity index for 

different clays. They observe both Bingham and Bingham pseudoplastic 

behaviour; as expected, an increase in IL leads to a reduction of viscosity and 

yield stress. The authors identify a good relation between viscosity (in 10-3 Pl) 

and IL, proposing equation (2-11). About yield stress, not a unique relationship 

with IL seems to exist (converging at lower liquid index), but they only identify 

a range. However, for each soil, Locat and Demers (1988) find a linear 

relationship between log 0 – log su. They also propose a relationship between su 

and IL (2-12), whose expression is similar to (2-10). 

 = (
9.27

𝐼𝐿
)

3.33

 (2-11) 
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𝑠𝑢 = (
19.8

𝐼𝐿
)

2.44

 (2-12) 

 Bulk properties of soil slurry 

The soil, in its initial state, is a multiphase material composed of solid, liquid 

and gas phases. However, in the production process of the lightweight cemented 

soil, it is mixed with water at high water content, above liquid limit, to obtain a 

slurry. The initial structure of the soil is disrupted, particles are diluted, and a 

suspension is obtained; thus, slurry properties are, at least theoretically, 

independent of initial condition. If there is no air entrapped, then there is no gas 

phase. The subscript “s” refers to soil, while the superscript “s” refers to the solid 

phase of soil. With Ws
s and Vs

s respectively the weight and the volume of solid 

soil and Wws the weight of water in the slurry: 

𝜌𝑠 =
𝑊𝑠

𝑠

𝑉𝑠
𝑠  (2-13) 

𝑤𝑠 =
𝑊𝑤𝑠

𝑊𝑠
𝑠  (2-14) 

where ws is the water content of soil slurry. Wws is the sum of initial water in 

soil and the water added to obtain a specific ws. Hence: 

𝑊𝑠𝑙𝑢𝑟𝑟𝑦 = (1 + 𝑤𝑠)𝑊𝑠
𝑠 (2-15) 

If the absence of voids and air entrapped is assumed, then: 

𝑉𝑠𝑙𝑢𝑟𝑟𝑦 = 𝑉𝑠
𝑠 + 𝑉𝑤𝑠 =

𝑊𝑠
𝑠

𝜌𝑠
+

𝑊𝑤𝑠

𝜌𝑤
=

𝑊𝑠
𝑠

𝜌𝑠
+

𝑤𝑠𝑊𝑠
𝑠

𝜌𝑤

= 𝑊𝑠
𝑠 (

1

𝜌𝑠
+

𝑤𝑠

𝜌𝑤
) 

(2-16) 

𝛾𝑠𝑙𝑢𝑟𝑟𝑦 =
𝑊𝑠𝑙𝑢𝑟𝑟𝑦

𝑉𝑠𝑙𝑢𝑟𝑟𝑦
=

1 + 𝑤𝑠

1
𝜌𝑠

+
𝑤𝑠

𝜌𝑤

 (2-17) 

where ρw is the density of water. Figure 2-6 shows the percentages of mass 

and volumes in a soil slurry for ws=140% and ρs=2.59 g/cm3. 
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Figure 2-6. Percentages of mass and volume in soil slurry for ws=140% and ρs=2.59 [g/cm3] 

 Summary 

The behavior of clayey soil suspensions, the main constituent of the 

lightweight cemented soil, has been described in this section. The clay-water 

interaction strongly depends on clay mineralogy, which has been briefly 

described in Appendix A; the interaction between water and clay particles can be 

modelled by means of diffuse layer theory; at macroscale, the behavior can be 

modeled as a Bingham fluid. Depending on clay minerals, dilution (i.e. water 

content) and salts concentration different particle associations can occur, thus 

affecting the rheological behavior of clayey suspensions. Rheological properties 

(i.e. yield stress and viscosity) can be related to properties and state parameters 

commonly used in soil science, such as liquid limit and liquidity index. 
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 Cement and foam 
The lightweight cemented soil method requires the addition of two additives 

to soil slurry: cement and foam. The former is the binding agent, required to have 

the hardening of the paste, i.e. to gain strength. A summary of cement 

classification is reported below. Then, the main chemical compounds and 

reactions are presented. Finally, the structure and the different phases in the 

cement paste are widely discussed due to their considerable importance on 

lightweight cemented soil bulk properties. Foam is a dispersion of bubbles in a 

surfactant solution. It is added to lower the density, thanks to bubbles entrapped 

in the fresh paste during mixing, and to enhance workability. The main properties 

of foam and mechanisms of foam stability are discussed in this section. 

 Cement 

Portland cement, named for resemblance of hardened paste to the Portland 

stone (a limestone near Dorset), was patented by Joseph Aspdin in 1824, but the 

prototype of modern cement was made in 1845 by Isaac Johnson (Neville, 2011). 

Nowadays, Portland cement represents the category defined as CEM I, in which 

its percentage has to be higher than 95%. Cements classified as CEM II are blend 

of Portland cement (which is the main constituent) with other materials, such as 

blast furnace slag, silica fume, pozzolana, fly ash, limestone. More generally they 

can be referred to as blended Portland cements. Blastfurnace cements, pozzolanic 

cements and composite cements are classified as CEM III, CEM IV and CEM V, 

respectively. They differ from blend cements in terms of percentages; for 

example, if blastfurnace slag percentage is below 35%, it is classified as CEM II 

Portland slag, if above, it is classified as CEM III Blastfurnace cement. The 

threshold in pozzolanic cements is 11%. Composite cements are composed of 

different materials. A letter, such as A, B or C, indicates that the amount of added 

material is within a specific range, while (for CEM II) a letter specifies the 

additional material, such as P for pozzolana and L or LL for limestone. 

Cements are also classified in terms of minimum compressive strength in 

MPa at 28 days, which gives the name to the class: 32.5, 42.5, 52.5. These classes 

are subdivided in sub-classes depending on early stage strength whose minimum 

value depends on the resistance class. Cements with ordinary early stage strength 

are classified as Normal hardening and denoted by letter N, while cements with 

higher early age are classified as Rapid hardening cements and denoted by letter 

R. 



                                                                                                                Chapter 3 

21 

 

 Chemical composition and hydration reactions 

The cement is manufactured primarily by burning up to 1450 °C a mix of 

calcareous material, such as limestone or chalk, and alumina and silica found as 

clay or shale and grinding the resulting clinker. These raw materials consist 

mainly of lime, silica, alumina and iron oxide. 

The main components of cement are summarized in the following list. The 

name of compound, composition and abbreviation are reported. In cement 

chemistry, the following abbreviations are commonly used: CaO=C, SiO2=S, 

Al2O3=A, Fe2O3=F, H2O=H. 

• Tricalcium silicate - 3CaO∙SiO2 ≡ C3S 

• Dicalcium silicate 2CaO∙SiO2 ≡ C2S 

• Tricalcium aluminate 3CaO∙Al2O3 ≡ C3A 

• Tetracalcium auminoferrite 4CaO∙Al2O3∙Fe2O3 ≡ C4AF 

It is worth noting that C2S can have at least three forms: α, β and γ. The 

former, α-C2S, inverts to β-C2S at 1450° C. This form, that is the one 

hydraulically active, is preserved in commercial cements, otherwise it further 

changes to γ-C2S at 670° C. The composition of cement can vary a lot, but the 

first two compounds usually constitute around 70% by weight. They can contain 

some oxides and impurities. In this case, the “impure” calcium silicates are 

defined as alite and belite, respectively. 

Minor compounds, in terms of quantity, such as K2O, Na2O, MgO, TiO2, 

Mn2O3 constitute usually no more than a few per cent, but they can be of interest. 

The first two are known as “alkalis” and they have been found to react with some 

aggregates leading to disintegration of concrete and its rate of gain of strength 

(Neville, 2011). Gypsum (CaSO4∙2H2O) is also present; it is fundamental for 

workability of fresh past that is related to hydration of tricalcium aluminates. 

The setting time is defined as the time at which the cement paste changes 

from a fluid to a rigid state, losing workability. This stiffening process is called 

“setting”. Initial and final setting time are two arbitrarily conditions that can be 

determined via the Vicat needle (ASTM, 2008). Hardening, which must be 

distinguished by setting, is the gain of strength of a set cement paste. Setting and 

hardening of cement paste depends on the hydration of these compounds, 

primarily C3S and C2S, and their products (products of hydration) that are 

insoluble in water. 
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The hydration process develops in time and its rate decreases continuously. 

The rate of hydration of the main compounds differ considerably. Calcium 

aluminates reactions are faster than calcium silicates. Calcium silicate hydration 

reactions can be assumed as the following, where C3S2H3 is a lower basicity 

calcium silicate and lime is separated as calcium hydroxide (portlandite), 

Ca(OH)2. 

2𝐶3𝑆 + 6𝐻 → 𝐶3𝑆2𝐻3 + 3𝐶𝑎(𝑂𝐻)2 (3-1) 

2𝐶2𝑆 + 4𝐻 → 𝐶3𝑆2𝐻3 + 𝐶𝑎(𝑂𝐻)2 (3-2) 

The hydration of C3S is faster than C2S; rate of reaction can be defined as 

moderate and slow, respectively. The product C3S2H3 is usually referred as C-S-

H gel. Indeed, there are uncertainties about the actual C:S ratio, and it is likely 

that products of C2S and C3S are slightly different, so the reactions above are 

derived by an assumption about CSH composition. The CSH is referred to as gel 

because it appears as amorphous, but electron microscopy shows a crystalline 

character. Its structure is very disordered and can appear often as composed of 

fibrous or flattened particles as some clay minerals, as suggested by Taylor 

(1950). In initial state of hydration, calcium hydroxide forms thin hexagonal 

plates of tens of micrometres. Later, the plates merge into a massive deposit 

constituting up to 25% of hardened paste. 

Portlandite particles produced by hydration of calcium silicates, due to the 

limited solubility, are formed within interstitial space and, with a continuing 

supply of moisture, can react with silica thus producing additional hydration 

products of a fine pore structure (Newman and Choo, 2003). As reported by 

Bergado (1996), portlandite can react in soil-cement stabilization, and reactions, 

namely pozzolanic reactions, can be summarized by the following equations: 

𝐶𝑎(𝑂𝐻)2 + 𝑆𝑖𝑂2 → 𝐶𝑆𝐻 (3-3) 

𝐶𝑎(𝑂𝐻)2 + 𝐴𝑙2𝑂3 → 𝐶𝐴𝐻 (3-4) 

These reactions depend on solubility of silicates and aluminates in soil; 

however, as stated by Bergado (1996), primary products of hydration (3-1, 3-2), 

are much stronger than the secondary ones, which produce a further additional 

cementing substance enhancing the bond strength between particles. 

As already pointed out, the hydration of tricalcium aluminate is faster than 

calcium silicates. If sulphates are absent, its hydration leads to initial formation 

of calcium aluminium hydrate, C4AH19, and subsequently C3AH6 (Black et al., 

2006); the chemical reaction can be assumed as the following: 
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𝐶3𝐴 + 6𝐻 → 𝐶3𝐴𝐻6 (3-5) 

In absence of gypsum, this reaction would be very violent, producing heat 

due to the exothermic nature of reaction, leading to the flash set, that is the 

immediate stiffening of the paste. Carbonation of calcium aluminium hydrate 

leads to formation of calcium hemicarbonaluminate, C8A2C̅H24, and calcium 

monocarboaluminate, C4AC̅H11, (where C̅ is the abbreviation for CO3) observed 

by Black et al. (2006) characterized by peaks in X-Ray diffraction1 at 10.75° and 

11.65°, respectively. 

When gypsum is present, C3A reacts with water and SO4
-2 forming a calcium 

trisulphate aluminate 3CaO∙3CaSO4∙32H2O (3-6), the ettringite, which acts as a 

coating on C3A. When SO4
-2

 goes through it, an expansion occurs, the coating is 

disrupted, and another coating is formed; this process goes on till exhaustion of 

SO4
-2. When all the sulphate has been consumed, the remaining C3A reacts with 

ettringite forming 3CaO∙CaSO4∙12H2O (3-7), known as monosulphate, which 

can reverse again in ettringite if it comes in contact with other sulphates in 

solution (Marchese, 2003; Newman and Choo, 2003). Hydration of C4AF is 

believed to be analogues to C3A, but slower. 

𝐶3𝐴 + 3𝐶𝑎𝑆𝑂4 + 32𝐻 → 3(𝐶3𝐴 ∙ 𝐶𝑆̅ ∙ 32𝐻) (3-6) 

𝐶3𝐴 ∙ 3𝐶𝑆̅ ∙ 32𝐻 + 2𝐶3𝐴 + 4𝐻 → 3(𝐶3𝐴 ∙ 𝐶𝑆̅ ∙ 12𝐻) (3-7) 

It is worth noting that the presence of C3A is undesirable in cement, but 

necessary in the manufacturing process because it acts as a flux, reducing the 

burning temperature of clinker and facilitating the combination of lime and silica. 

In the hardened paste, it gives a negligible contribute to strength, and if attacked 

by sulphates, the expansion due to ettringite formation can cause the disruption 

of the hardened paste. 

Setting is due to the compounds which react first, i.e., C3A and C3S. Due to 

gypsum, C3S sets before; conversely, a porous framework of calcium aluminate 

hydrate would form, in which the remaining compounds would hydrate affecting 

negatively the strength characteristics. Sometimes the “false set” occurs at early 

mixing time. It can be due to dehydration of gypsum during the manufacturing 

of cement, which leads, when mixed with water, to formation of crystals of 

gypsum causing a loss in workability. However, without adding any water, 

workability can be improved by remixing the concrete. 

                                                 
1The XRD analysis is described in Appendix B. 
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3.1.1.1. Temperature effects on products of hydration 

The progress of hydration of the cement paste can be studied via 

thermogravimetric analyses and x-ray diffraction, especially in the early stage 

(Neville, 2011). These methods are briefly explained in Appendix B. As reported 

by Alarcon-Ruiz et al. (2005), many authors have described reactions occurring 

at different ranges of temperature. From 30 to 105 °C, almost all the evaporable 

water and part of the bound water escapes. It is considered that a temperature of 

120 °C is required to remove all the evaporable water. In the range of temperature 

that goes from 110 to 300 °C, the loss of water combined in hydrates take place. 

More specifically, between 110-170 °C, decomposition of gypsum and ettringite 

and part of carbo-aluminate hydrates occur. Decomposition of C-S-H and the 

remaining carbo-aluminate hydrates take place between 180 and 300 °C. 

Decomposition of portlandite usually occurs between 450 and 550 °C, as reported 

by Alarcon-Ruiz et al. (2005), but Lothenbach et al. (2007) observed a slightly 

lower range on CEM II/A-LL 42.5 R (with wc/c=0.5) with a peak at 450°C. 

Lothenbach et al. (2007) also observe, on the same cement paste, dissolution of 

calcium monocarboaluminate at 650 °C. Finally, between 700 and 900 °C, 

CaCO3 decarbonation takes place. 

 Hardening and hardened paste structure 

Hardening is the development of strength in a set paste and it is due to the 

almost total reaction of cement compounds in hydrated forms (Marchese, 2003). 

Cement paste is constituted of a matrix composed of very small (in the order of 

nanometres) interlocking crystals of calcium silicate hydrates, which can be 

described as gel, in which other compounds such as portlandite, aluminates and 

alumina-ferrites, minor components and unhydrated cement are submerged. The 

cement paste is porous due to voids left by hydrated water and the water-filled 

spaces. Thus, these capillary pores can be either empty or filled with water. The 

gel matrix itself is porous (porosity of gel is around 28%), and the interstitial 

voids are called gel pores, with a nominal diameter of 3 nm while capillary pores 

are one or two orders of magnitude larger. 

It is worth noting that because of the colloidal dimension of products of 

hydration the surface area of the solid phase increases enormously, and a large 

amount of free water becomes adsorbed on this surface. Indeed, a fraction of 

water is chemically combined water, a portion is held between the surfaces of gel 

sheets and it is called interlayer or zeolitic water and another fraction is held by 

surface forces and it is called adsorbed water. This water is not free water so, if 

the material is seal cured (i.e. no outward or inward water flow occurs) cement 
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compounds use up the mixing water and water content decreases; this 

phenomenon is known as self-desiccation. If the available water is not enough (a 

water to cement ratio by weight lower than 0.5, approximately), hydration rate in 

a seal cured paste is lower than a moist cured paste. A much higher water to 

cement ratio leads to a much porous paste, decreasing the strength.  

The actual source of the strength of cement gel, which includes also 

portlandite crystals and gel pores, has not been fully understood yet, but it is 

probably related to two different cohesive forces (Neville, 2011). The first one is 

a physical attraction due to van der Waals forces between the particles that have 

a very large surface area. The second one is due to chemical bonds between 

particles. 

3.1.2.1. Rapid hardening cements 

Rapid hardening cements differ from normal hardening because of the 

relatively higher early stage strength. Rapid hardening must not be confused with 

high rate of setting which is usually the same of normal hardening cements. The 

increase rate of hardening is obtained by a higher amount of C3S, up to 70% and 

by a higher fineness (Neville, 2011). Higher strength usually persists at 28 days 

and it equalizes at 2 or 3 months. Later, the strength becomes lower than coarser 

cements. It shouldn’t be used in large construction due to high rate of heat 

development related to the faster rate of hydration. Ultra-high early strength 

cements are also manufactured but they are not standardized. 

 Effect of alkalis 

As already pointed out, the minor compounds can affect significantly the 

cement paste. In first place, they affect alkalinity of fresh cement paste, which 

has normally a pH above 12.5 but it is higher in cements with high alkali content.  

They also affect the development of strength. These effects are not fully 

understood yet, but generally the presence of alkali increases the strength at early 

ages (around 3 days) but decreases the long-term strength, as shown in some tests 

at 28 days curing. 

Alkali can also react with some aggregates, as with silica and carbonates. The 

former is the most common. Alkaline hydroxides in pore water react with 

siliceous minerals in aggregates forming an alkali-silicate gel, with a rate that 

depend on aggregate size. This process is enhanced by the high pH which 

increase silica minerals solubility. The gel can constitute a plane of weakness in 

the aggregate, or it can be a coating on the aggregate, altering the bonds between 
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the surrounding cement paste and the aggregate surface and by consequence 

weakening the structure. Moreover, being a swelling gel under imbibition, its 

expansion can lead to cracks and disruption in the hardened paste due to the 

consequent internal pressure. These reactions seem to occur only in presence of 

Ca+2 ions, so they can be prevented by adding pozzolana in the mix which 

removes Ca(OH)2. Conversely, a large water availability, high permeability and 

wetting-drying cycles accelerate the process. The other phenomenon, alkali-

carbonate reaction, occurs when alkalis react with some dolomitic limestones; 

the volume of gel produced is lower than original and then it is subject to swelling 

under humid conditions. This leads to a breakage of bonds between aggregate 

and cement paste. However, reactive carbonate rocks are not very widespread, 

and this phenomenon is not likely to occur. 

 Fillers and limestone Portland cement 

Fillers are fine-ground material with uniform properties and fineness (about 

the same as cement) which can be added up to a certain maximum content to gain 

beneficial effects on some properties of concrete such as workability, density, 

permeability, bleeding or cracking tendency. They are usually chemical inert, but 

if no harm derives from their reactions, there is no disadvantage by using them. 

They can be either naturally occurring or processed inorganic mineral materials. 

One of the most common filler is limestone and, differently from other fillers 

(usually limited to 5%), it can be added up to 35%. This cement is known as 

Portland limestone cement (for example CEM II/A L, CEM II/B-LL). The CaCO3 

has to be the main constituent of the limestone, above 75%, while clay content 

has to be lower than 1.2 g/ 100 g (Newman and Choo, 2003). Carbonate calcium 

is not chemically inert. As reported by Neville (2011), Zielinska (1972) showed 

that it reacts with C3A and C4AF to produce 3CaO∙Al2O3CaCO311H2O. 

Limestone fillers can also be used in self-compacting concrete to aid cohesion in 

fresh concrete. 

 Rheology of fresh paste 

The rheology of fresh concrete is an important topic in concrete technology 

because it is strictly related to workability and consistency, which have 

qualitative meaning. The ACI Committee (2008) defined workability as the 

“property of freshly mixed concrete or mortar that determines the ease with 

which it can be mixed, placed, consolidated, and finished to a homogenous 

condition”, while consistency is defined as the “degree to which a freshly mixed 

concrete, mortar, grout, or cement paste resists deformation” and it can be 
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normal, plastic and wettest stable. Other words are used to describe flow 

properties of concrete such as stability and mobility. These properties are 

obviously related to rheological properties but, according to Ferraris (1999), this 

terminology should be discarded in favour of parameters which have physical 

meaning, as viscosity and yield stress (2.2.2). Indeed, the rheological behaviour 

of concrete is often assumed as a Bingham flow, described with Bingham plastic 

model which requires two parameters. However, the most common tests measure 

only one factor which is related to these properties. A few tests can give two 

parameters which are not necessarily directly related to yield stress and viscosity. 

They are more expensive and not easy to perform, so they are not commonly 

used. A summary of these tests is reported by Ferraris (1999). 

The rheological properties of cement paste can be also related to the 

concentration of the suspension. Indeed, the fresh cement paste is a highly 

concentrate suspension of solid particles in water (Banfill, 1991), whose 

behaviour, at initial stage, is very similar to unreactive silica suspensions 

(Chougnet et al., 2008); as well known, workability increases with increasing w/c 

ratio, i.e. decreasing concentration, thus decreasing yield stress and viscosity. As 

observed by Struble and Sun (1995), the behaviour tends to be Newtonian in 

dilute suspension and pseudoplastic or Bingham pseudoplastic in concentrated 

suspensions, so that viscosity decreases also with shear stress. In their 

experimental work, Struble and Sun (1995) find the strain rate – stress 

relationship to be best fitted by a power law (2-5) and they suggest that viscosity, 

at a specific strain rate, can be fitted by the Krieger-Dougherty model (2-8) with 

Cs,max varying from 0.64 to 0.8 and [] varying from 4.7 to 0.8 at increasing shear 

rate. They also find that viscosity varies from 5 to 0.01 Pl, depending on water to 

cement ratio by weight (wc/c), type of cement, additives and strain rate. Chougnet 

et al. (2008) find that viscosity decreases with shear strain, varying from 10 to 

0.03 Pl for wc/c=0.5 and from 60 to 0.3 for wc/c=0.3. They also find that the yield 

stress (assuming a Bingham plastic behaviour) ranges from 200 to 40 Pa at 

increasing wc/c. However, assuming a non-linear model to fit data, they find 0 

to be one order of magnitude lower (Figure 2-5). These ranges are in agreement 

to the values reported by Banfill (1991), that is 10-100 Pa for yield stress and 

0.01-1 Pl for viscosity. 

 Bulk properties of cement paste 

The weight and absolute volume of anhydrous cement (i.e. the cement added 

to the mix as a powder) will be termed Wc,a and Vc,a
s , respectively. The “s” 

superscript implies that the volume refers to the volume of the solid phase. The 
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superscript “s” is not used for the terms that refer to unhydrated and anhydrous 

cement because they already refer to a “dry” state. Referring to volumes, being 

the cement a powder, the superscript “s” will be used to specify if symbol refers 

to the volume of the solid phase. Hence, the specific weight of the cement powder 

is defined as: 

𝜌𝑐,𝑎 =
𝑊𝑐,𝑎

𝑉𝑐,𝑎
𝑠  (3-8) 

Given the water to cement ratio by weight, 
wc

c
=

Wwc

Wc, a
, with Wwc the water 

initially added to cement, if air entrapped is neglected, the weight and volume of 

cement suspension, respectively Wc and Vc, are: 

𝑊𝑐 = 𝑊𝑐,𝑎 + 𝑊𝑤𝑐 = (1 +
𝑤𝑐

𝑐
) 𝑊𝑐,𝑎 (3-9) 

𝑉𝑐 = 𝑉𝑐,𝑎
𝑠 + 𝑉𝑤𝑐 (3-10) 

where Vwc is the volume of water added to grout.  

In the mixture, at a generic time, t, a portion x of the anhydrous cement, Wc,a, 

combines with water and it’s hydrated. The solid products of hydration, whose 

weight is Wc, h
s , can be assumed as the sum of the water chemically combined, 

whose weight is Wwc, ch, and the portion of anhydrous cement that is hydrated. 

This portion x of the total anhydrous cement can be defined as “anhydrous 

hydrated cement”, whose weight is Wc,a,h. The residual part is the unhydrated 

cement, Wc,unh: 

𝑊𝑐,ℎ
𝑠 = 𝑊𝑐,𝑎,ℎ + 𝑊𝑤𝑐,𝑐ℎ (3-11) 

𝑊𝑐,𝑎,ℎ = 𝑥𝑊𝑐,𝑎;  𝑊𝑐,𝑢𝑛ℎ = (1 − 𝑥)𝑊𝑐,𝑎;  (3-12) 

𝑊𝑐,𝑎 = 𝑊𝑐,𝑎,ℎ + 𝑊𝑐,𝑢𝑛ℎ (3-13) 

It is worth noting that, conversely to unhydrated cement, water chemically 

combined and anhydrous hydrated cement are not actually present in the cement 

paste, but only their products of hydration exist. In terms of volumes: 

𝑉𝑐,𝑢𝑛ℎ
𝑠 = 𝑊𝑐,𝑢𝑛ℎ/𝜌𝑐,𝑎 (3-14) 

𝑉𝑐,𝑎
𝑠 = 𝑉𝑐,𝑎,ℎ

𝑠 + 𝑉𝑐,𝑢𝑛ℎ
𝑠  (3-15) 
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When a portion of cement is hydrated, the cement paste is composed of 

unhydrated cement, hydrated cement and capillary pores: 

𝑉𝑐 = 𝑉 𝑐,𝑢𝑛ℎ
𝑠 + 𝑉𝑐,ℎ + 𝑉𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠 (3-16) 

The term V c, unh
s  refers to volume of the solid phase of the cement that is still 

not hydrated. The term Vcap pores refers to the volume of capillary pores in the 

cement paste. The term Vc, h is the volume of the hydrated cement and it is 

composed of water and cement. Indeed, as reported by Neville (2011), only a 

portion of water can be regarded as free water, beyond the range of surface force, 

while another amount is held in varying states. A fraction is chemically combined 

water whereas another amount of water is held between the surfaces of the gel 

sheets and it’s called “interlayer” or “zeolitic” water. Another fraction is held by 

surface forces and it’s called adsorbed water. Moreover, the water held in the 

cement paste is denser than free water, occupying a lower volume than the 

volume occupied before chemical reactions began. Given that, the hydrated 

cement can be considered as composed of solid products of hydration and gel 

water: 

𝑉𝑐,ℎ = 𝑉𝑐,ℎ
𝑠 + 𝑉𝑔𝑒𝑙 𝑤𝑎𝑡𝑒𝑟 (3-17) 

𝑊𝑐,ℎ = 𝑊𝑐,ℎ
𝑠 + 𝑊𝑔𝑒𝑙 𝑤𝑎𝑡𝑒𝑟 (3-18) 

From (3-11): 

𝑊𝑐,ℎ = 𝑊𝑐,𝑎,ℎ + 𝑊𝑤𝑐,𝑐ℎ + 𝑊𝑔𝑒𝑙 𝑤𝑎𝑡𝑒𝑟 (3-19) 

The remaining water is within capillary pores (which can be either filled with 

water or empty) or held as gel water: 

𝑉𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠 = 𝑉𝑤 𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠 + 𝑉𝑒 𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠 (3-20) 

Vcap pores, Vw cap pores and Ve cap pores are respectively the volume of capillary 

pores, the volume of capillary pores occupied by water and the volume of empty 

capillary pores. Hence, the balance of mass and volume become: 

𝑊𝑐 = 𝑊𝑐,𝑢𝑛ℎ +  𝑊𝑐,ℎ + 𝑊𝑤 𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠 = 

= 𝑊𝑐,𝑢𝑛ℎ + 𝑊𝑐,𝑎,ℎ + 𝑊𝑤𝑐,𝑐ℎ + 𝑊𝑔𝑒𝑙 𝑤𝑎𝑡𝑒𝑟 + 𝑊𝑤 𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠 
(3-21) 

𝑉𝑐 = 𝑉𝑐,𝑢𝑛ℎ
𝑠 + 𝑉𝑐,ℎ + 𝑉𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠 = 

= 𝑉𝑐,𝑢𝑛ℎ
𝑠 + 𝑉𝑐,ℎ

𝑠 + 𝑉𝑔𝑒𝑙 𝑤𝑎𝑡𝑒𝑟 + 𝑉𝑤 𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠 + 𝑉𝑒 𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠 
(3-22) 
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An example, given by Neville (2011), is shown in Figure 3-1. 

 
Figure 3-1. Cement paste composition at different hydration states for Vc=40 ml and Vwc=60 ml 

(Neville 2011). 

These amounts are not easy to determine. Therefore, as suggested by Neville 

(2011), it’s more convenient to divide the water of the cement paste in 

“evaporable water” and “non-evaporable water”. According to Neville (2011), 

the “non-evaporable water” in a cement paste is composed of almost all of the 

chemically combined water and some water not held by chemical bonds. The 

“evaporable water” can be regarded as free water and it represents the liquid 

phase of cement paste; the “non-evaporable water” can be considered as part of 

solid phase. This division is implicitly assumed when water content is determined 

based on laboratory standard procedure, in which samples are oven dried at a 

specific temperature. Non-evaporable water can be related to the weight of 

hydrated (anhydrous) cement Wc, a, h via a coefficient α: 

𝑊𝑤𝑐,𝑛−𝑒𝑣 = 𝛼𝑊𝑐,𝑎,ℎ = 𝛼𝑥𝑊𝑐,𝑎 =
𝛼𝑥𝑊𝑤𝑐

𝑤𝑐
𝑐⁄

 (3-23) 

𝑊𝑤𝑐 = 𝑊𝑤𝑐,𝑐ℎ + 𝑊𝑔𝑒𝑙 𝑤𝑎𝑡𝑒𝑟 + 𝑊𝑤 𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠 = 𝑊𝑤𝑐,𝑛−𝑒𝑣 + 𝑊𝑤𝑐,𝑒𝑣 (3-24) 

𝑊𝑤𝑐,𝑒𝑣 = 𝑊𝑤𝑐 − 𝑊𝑤𝑐,𝑛−𝑒𝑣 = 𝑊𝑤𝑐 (1 −
𝛼𝑥

𝑤𝑐
𝑐⁄

) (3-25) 



                                                                                                                Chapter 3 

31 

 

The coefficient α depends on the degree of hydration. In a well hydrated 

cement, α is around 18 % while in a full hydrated cement is around 23 %. 

If Wwc, n-ev is assumed as part of solid products of hydration, then: 

𝑊𝑐,ℎ
𝑠 ≅ 𝑊𝑐,𝑎,ℎ + 𝑊𝑤𝑐,𝑛−𝑒𝑣 = 𝑊𝑐,𝑎,ℎ + 𝛼𝑊𝑐,𝑎,ℎ = (1 + 𝛼)𝑊𝑐,𝑎,ℎ

= 𝑥(1 + 𝛼)𝑊𝑐,𝑎 
(3-26) 

𝑊𝑐
𝑠 = 𝑊𝑐,ℎ

𝑠 + 𝑊𝑐,𝑢𝑛ℎ = 𝑊𝑐,𝑎 + (1 − 𝑥)𝑊𝑐,𝑎 = (1 + 𝛼𝑥)𝑊𝑐,𝑎 (3-27) 

This means that if x=0, the solid phase of cement is equal to the initial amount 

of cement powder added to the paste, while the solid phase of hydrated cement 

is equal to zero. When x>0, they both increase due to the amount of water 

combined. 

It is worth noting that the amount of non-evaporable water has a considerable 

significance. It is representative of the progress of hydration, and the 

measurement in time of this quantity can be used as a measure of the degree of 

hydration in the cement paste, which is strictly related to the gain in strength. As 

reported by Neville (2011), Powers (1958) and then Khalil and Ward (1973) 

found a linear relationship between the heat of hydration and the amount of non-

evaporable water. By this way, knowing the heat of hydration, it is possible to 

estimate the amount of non-evaporable water. The amount of non-evaporable 

water can be indirectly derived by measuring the amount of evaporable water in 

a sample. Finally, if non-evaporable water is assumed as the amount of water in 

gel, it can be assumed as the loss of water in the range of temperature 105-350 

°C (3.1.1.1) and derived from the interpretation of a thermogravimetric analysis. 

The balance of mass becomes: 

𝑊𝑐 = 𝑊𝑐,𝑢𝑛ℎ + 𝑊𝑐,𝑎,ℎ + 𝑊𝑤𝑐,𝑛−𝑒𝑣 + 𝑊𝑤𝑐,𝑒𝑣 (3-28) 

The volume occupied by the solid products of hydration, 𝑉𝑐,ℎ
𝑠 , is equal to the 

sum of volumes of anhydrous cement and water less 0.254 of the volume of non-

evaporable water (Neville, 2011). With β= (1-0.254): 

𝑉𝑐,ℎ
𝑠 = 𝑉𝑐,𝑎,ℎ

𝑠 + (1 − 0.254)𝑉𝑤𝑐,𝑛−𝑒𝑣 = 𝑉𝑐,𝑎,ℎ
𝑠 + 𝛽𝑉𝑤𝑐,𝑛−𝑒𝑣 (3-29) 

𝑉𝑐 = 𝑉𝑐,𝑢𝑛ℎ
𝑠 + 𝑉𝑐,ℎ

𝑠 + 𝑉𝑒 𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠

= 𝑉𝑐,𝑢𝑛ℎ
𝑠 + 𝑉𝑐,𝑎,ℎ

𝑠 + 𝛽𝑉𝑤𝑐,𝑛−𝑒𝑣 + 𝑉𝑤𝑐,𝑒𝑣 + 𝑉𝑒 𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠

= 𝑉𝑐,𝑎
𝑠 + 𝛽𝑉𝑤𝑐,𝑛−𝑒𝑣 + 𝑉𝑤𝑐,𝑒𝑣 + 𝑉𝑒 𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠 

(3-30) 
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This simply states that the volume of cement is the sum of solid volume of 

initially added cement, the volume of non-evaporable water multiplied by β (to 

take account of the reduced occupied volume), the evaporable water and the 

empty capillary pores developed during hydration. This also means that the 

volume of pores in the cement paste, Vc, p, is: 

𝑉𝑐,𝑝 = 𝑉𝑒 𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠 + 𝑉𝑤𝑐,𝑒𝑣 (3-31) 

The unhydrated cement, the anhydrous hydrated cement and the non-

evaporable water constitute the solid phase of the cement paste. The evaporable 

water is the liquid phase. The empty capillary pores constitute the volume filled 

with gas phase. 

If shrinkage is neglected and the material is seal cured, then the volume is 

constant and equal to the initial volume of cement suspension (3-10): 

𝑉𝑐 = 𝑉𝑐,𝑎
𝑠 + 𝑉𝑤𝑐 = 𝑉𝑐,𝑢𝑛ℎ

𝑠 + 𝑉𝑐,𝑎,ℎ
𝑠 + 𝛽𝑉𝑤𝑐,𝑛−𝑒𝑣 + 𝑉𝑤𝑐,𝑒𝑣 + 𝑉𝑒 𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠 (3-32) 

Given (3-15) and (3-32), the volume of empty capillary pores can be 

expressed as: 

𝑉𝑒 𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠 = 𝑉𝑐,𝑎
𝑠 + 𝑉𝑤𝑐 − (𝑉𝑐,𝑢𝑛ℎ

𝑠 + 𝑉𝑐,𝑎,ℎ
𝑠 ) − 𝛽𝑉𝑤𝑐,𝑛−𝑒𝑣 − 𝑉𝑤𝑐,𝑒𝑣

= 𝑉𝑤𝑐 − 𝛽𝑉𝑤𝑐,𝑛−𝑒𝑣 − 𝑉𝑤𝑐,𝑒𝑣 
(3-33) 

Dividing equation (3-24) by ρw: 

𝑉𝑤𝑐 = 𝑉𝑤𝑐,𝑒𝑣 + 𝑉𝑤𝑐,𝑛−𝑒𝑣 (3-34) 

𝑉𝑒 𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠 = 𝑉𝑤𝑐,𝑒𝑣 + 𝑉𝑤𝑐,𝑛−𝑒𝑣 − 𝛽𝑉𝑤𝑐,𝑛−𝑒𝑣 − 𝑉𝑤𝑐,𝑒𝑣

= (1 − 𝛽)𝑉𝑤𝑐,𝑛−𝑒𝑣 =
(1 − 𝛽)

𝜌𝑤

𝛼𝑥𝑊𝑤𝑐

𝑤𝑐
𝑐⁄

 
(3-35) 

This means that if no shrinkage occurs, the volume no more occupied by 

water (due to hydration) becomes an empty capillary space occupied by gas 

phase. This is enough to divide the phases in a cement paste at different hydration 

degrees, represented by x, that is a function of time. 

A comparison between the two balances, given by (3-22) and (3-30), is 

carried out for a better understanding of the relations between the terms. The 

volume of gel water can be calculated, according to Neville (2011), as a porosity 

of hydrated cement (3-17), ngel w, approximately equal to 28 %: 
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𝑉𝑔𝑒𝑙 𝑤𝑎𝑡𝑒𝑟 = (
𝑛𝑔𝑒𝑙 𝑤

1 − 𝑛𝑔𝑒𝑙 𝑤
) 𝑉𝑐,ℎ

𝑠 =
𝑛𝑔𝑒𝑙 𝑤

1 − 𝑛𝑔𝑒𝑙 𝑤
(𝑉𝑐,𝑎,ℎ

𝑠 + 𝑉𝑤𝑐,𝑐ℎ)

=
𝑛𝑔𝑒𝑙 𝑤

1 − 𝑛𝑔𝑒𝑙 𝑤
(𝑉𝑐,𝑎,ℎ

𝑠 + 𝑉𝑤𝑐,𝑛−𝑒𝑣) 

(3-36) 

The graphical representation of volumes in cement paste for 100 g of 

anhydrous cement and wc/c=0.5 is reported in Figure 3-2. 

 
Figure 3-2. Graphical representation of volumes in cement paste for 100 g of anhydrous cement and 

wc/c=0.5 assuming Vwc,n-ev=Vwc ch; a) x=0, Vc,a=Vc,unh and Vwc=Vwc,ev; b) x=1, Vc,h=Vc volume balance 

given by (3-22); c) x=1, Vc,h=Vc volume balance given by equation (3-30). 

When x=0 (a) (and no air is entrapped) all the cement is unhydrated and all 

the added water is “evaporable” water. When x=1 (b and c) the volume occupied 

by solid products of hydrated cement is composed of the volume of anhydrous 

cement and part of the water added, the non-evaporable water, multiplied by β. 

The evaporable water, that is the liquid phase, is composed of the gel water and 

the water held in capillary pores. Finally, due to the lower volume occupied by 

water chemically combined, the volume initially occupied by water (a) is reduced 

and if no shrinkage occurs this gap is covered by empty capillary pores. 

In the following, the weights and volume of the solid, liquid and gas phase, 

expressed in function of α, β, x and wc/c and initial amounts of cement and water 

(Wc, a and Wwc) are summarized: 

𝑊𝑐
𝑠 = 𝑊𝑐,𝑢𝑛ℎ + 𝑊𝑐,𝑎,ℎ + 𝑊𝑤𝑐,𝑛−𝑒𝑣 = (1 + 𝛼𝑥)𝑊𝑐,𝑎 (3-37) 

𝑉𝑐
𝑠 = 𝑉𝑐,𝑢𝑛ℎ

𝑠 + 𝑉𝑐,ℎ
𝑠 = 𝑉𝑐,𝑢𝑛ℎ

𝑠 + 𝑉𝑐,𝑎,ℎ
𝑠 + 𝛽𝑉𝑤𝑐,𝑛−𝑒𝑣

= 𝑉𝑐,𝑎
𝑠 + 𝛽𝑉𝑤𝑐,𝑛−𝑒𝑣 =

1

𝜌𝑐
𝑊𝑐,𝑎 +

1

𝜌𝑤
𝛼𝑥𝛽𝑊𝑐,𝑎

= 𝑊𝑐,𝑎 (
1

𝜌𝑐
+

𝛼𝑥𝛽

𝜌𝑤
) = (1 + 𝛼𝑥𝛽

𝜌𝑐

𝜌𝑤
)

𝑊𝑐,𝑎

𝜌𝑐
  

(3-38) 
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𝑊𝑐
𝑙 = 𝑊𝑤𝑐,𝑒𝑣 = 𝑊𝑤𝑐 (1 −

𝛼𝑥
𝑤𝑐

𝑐⁄
) (3-39) 

𝑉𝑐
𝑙 = 𝑉𝑤𝑐,𝑒𝑣 =

𝑊𝑤𝑐

𝜌𝑤
(1 −

𝛼𝑥
𝑤𝑐

𝑐⁄
) (3-40) 

𝑉𝑐
𝑔

= 𝑉𝑒 𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠 =
(1 − 𝛽)

𝜌𝑤

𝛼𝑥𝑊𝑤𝑐

𝑤𝑐
𝑐⁄

 (3-41) 

In Figure 3-3, two bar charts that show the mass and balance for Wc, a=100 g 

are presented. 

 
Figure 3-3. Representation of weights and volumes in the cement paste for Wc,a=100 g and wc/c=0.5. 
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 Foam 

A foam is a dispersed system of bubbles separated by liquid layers. When 

the gas content is low, it can be called emulsion and bubbles have spherical shape; 

when gas content goes above 50%, bubbles become polyhedral. Different 

methods exist to generate foams. In condensation methods, gas bubbles are 

generated by reducing external pressure, increasing temperature or via chemical 

reactions. In dispersion methods, gas can be either injected directly into the 

foaming solution through capillaries, porous plates and gauzes or blown through 

gauzes wetted with surfactant solution. In some cases, solution and gas 

simultaneously flow to produce foam, in which also gas can be pressurized via a 

compressor. However, also other different methods exist (Ekserova and 

Krugli︠ a︡kov, 1998). 

The most important parameters characterising a polyhedral foam are the 

Foam Expansion Ratio (FER), foam dispersity and foam stability. The former is 

defined as the ratio between the volume of foam, Vf, and the volume of the liquid 

content, Vf
l : 

𝐹𝐸𝑅 =
𝑉𝑓

𝑉𝑓
𝑙 =

𝑉𝑓
𝑔

+ 𝑉𝑓
𝑙

𝑉𝑓
𝑙  (3-42) 

where Vf
g
 is the gas content of foam. This parameter represents the foaming 

ability of the solution from which the foam is derived. If the weight of gas phase, 

Wf
g
, is negligible respect to the weight of the liquid phase, Wf

l, the weight of foam 

Wf is equal to the weight of the liquid phase, so that: 

𝐹𝐸𝑅 =
𝑉𝑓

𝑉𝑓
𝑙 =

𝑊𝑓

𝛾𝑓

𝛾𝑠𝑜𝑙

𝑊𝑓
𝑙 ≅

𝛾𝑠𝑜𝑙

𝛾𝑓
 (3-43) 

where 𝛾𝑠𝑜𝑙 and 𝛾𝑓 are the unit weight of solution and foam, respectively. 

Knowing both, it’s possible to determine the foam expansion ratio. The density 

of liquid solution is usually almost equal to the density of water; thus, FER 

depends only on density of foam and the lower it is, the higher the foam 

expansion ratio, which can go up to 1000. However, for very high FER, the 

assumption that the weight of gas phase is negligible fails and other methods 

should be used to measure this parameter. 

Foam dispersity determines many of foam properties. The kinetic of changes 

in foam dispersity indicates the rate of inner destruction of bubbles. It can be 

identified by bubble size distribution (which reveals completely the foam 
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dispersity), the average bubble size or the specific foam surface ε, defined as the 

ratio of total surface area of all liquid/gas interfaces in foam to the volume of 

foam (εf), the volume of gas phase (εg) or the volume of liquid phase (εl). 

The ability of a foam to maintain the expansion ratio and dispersity constant 

with time is referred to as foam stability. The simplest measure of foam stability 

is the foam lifetime. Indeed, a foam is thermodynamically unstable due to the 

increased interfacial area and, by consequence, interfacial free energy; thus, 

sooner or later, it is destroyed. Foams with a considerable lifetime (which can be 

measured also in days) are called metastable, while they are defined as unstable 

if the lifetime is a matter of seconds. 

It is worth noting that no foam can be produced from pure water, because if 

a bubble is introduced in it, it bursts almost immediately, as soon as liquid has 

drained away (Pugh, 1996). The presence of a “surface active agent” (i.e. a 

surfactant) in the solution is required to produce a foam. 

 Surfactants 

A surfactant molecule is composed of polar head groups, which are the 

hydrophilic (lipophobic, oleophobic) part and non-polar tail groups, the 

hydrophobic (lipophilic, oleophilic) part. Both structure and shape affect their 

properties. The simplest one is composed of a tail and head (as soaps), as shown 

in Figure 3-4, but they can also have one head and two tails, two heads and one 

tail or more complex structures. 

 
Figure 3-4. Surfactant molecule sketch. 

Classification of surfactants is based on the hydrophilic group, and they can 

be anionic, cationic, non-ionic and amphoteric. The former two dissociate in 

water in a negative and a positive charged ion and the hydrophilic head is 

negatively (anion) or positively (cation) charged, respectively. Anionic 

surfactants are the most common and inexpensive. Non-ionic surfactants do not 

dissociate in water and the head has a neutral charge. The amphoteric ions can 

show all the behaviours above, depending on pH. 
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The hydrophobic tail is generally composed of hydrocarbon chains, 

synthesised from animal fats, natural vegetable oils or petrochemicals. The 

hydrocarbon chains synthesised from natural sources contain even number of 

hydrocarbon chains because their structures is built up from ethylene (Farn, 

2008). Rarely, they are fluorocarbon and silicone chains which have excellent 

properties, but their usage is limited due to the higher cost. 

 Surface tension and surfactant effect 

A compound is called surfactant when it shows surface activity when added 

to a liquid, that is, it is able to adsorb on the surface or interface of the system to 

reduce surface or interfacial excess free energy (Farn, 2008). The surface tension, 

γ, is a thermodynamic property which can be defined as the amount of work dW 

required to have a unit area expansion, dA; at a liquid-air interface it is the free 

energy per unit area of the surface. It can be also defined as the force acting 

normal to the interface per unit length of the surface at equilibrium. 

𝑑𝑊 = 𝛾𝑑𝐴 (3-44) 

Surface tension of water at 20°C is 72.8 mN/m. The surface tension is due to 

the different interaction between molecules in the bulk fluid and at the interface. 

In the bulk liquid, the molecules are subjected to uniform attractive forces in all 

directions with a zero net force, but at the interface the molecules on the gas side 

are widely spread and the molecular interactions are mainly between surface 

molecules and subsurface liquid molecules. This leads to a non-zero net force 

which gives to the molecules on the surface an excess free energy respect to the 

molecules in the bulk liquid; this free energy is the surface tension (Farn, 2008). 

Conversely, the interfacial tension, γAB, is the tension at the interface between 

two immiscible phases, A and B. Given γA and γB the surface tension of A and 

B, and ψAB the interaction energy of the two phases per unit area, the interfacial 

energy is: 

𝛾𝐴𝐵 = 𝛾𝐴 + 𝛾𝐵 − 𝜓𝐴𝐵 (3-45) 

The interfacial tension is small (and ψ is large) if the two molecules are 

similar, such as water and ethanol. At a water-gas interface, the molecules of gas 

are widely spaced so that compared to condensed phase (A), the interaction in 

the gas phase (B) and between gas phase and condensed molecules is negligible. 

Because of this, at a gas-liquid interface γAB=γA. 

A minimum amount of work is required to have the expansion of an interface, 

because bulk molecules should move from bulk to surface; this work per unit area 
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is given by the interfacial tension. When the surfactant is added, surfactant 

molecules move towards the interface, with the hydrophilic head oriented to the 

liquid and the hydrophobic tail towards the gas phase (Figure 3-5c) replacing the 

polar and non-polar molecules at the interface and destroying the cohesive forces 

between them. Then, the interaction at the interface is between hydrophilic head 

and polar (liquid) molecules and between hydrophobic tail and non-polar (gas) 

molecules. These interactions are stronger, thus decreasing significantly the 

interfacial tension and by consequence the work required to expand the interface. 

The surface tension decreases non-linearly with surfactant bulk 

concentration till a critical value, that is defined as the critical micelle 

concentration (CMC) that is the concentration above which the surfactant 

molecules start forming aggregates called micelles. If concentration is higher 

than CMC no more reduction in surface tension occurs because interface (or 

surface) is saturated with surfactant monomers, while a further increase of 

concentration affects only micelles which have no effect on surface tension. At 

very low surfactant concentration, instead, surfactant molecules lie flat on the 

surface. 

3.2.2.1. Surfactant effects on solid surface 

Surfactants can also adsorb on solid phase, at a solid-liquid interface, due to 

different causes, such as hydrophobic bonding and electrostatic interaction. The 

former occurs between hydrophobic tails and hydrophobic surfaces (tail down 

adsorption). Hydrophobic bonding between tails of surfactant molecules 

adsorbed head down on hydrophilic solid surface and tails of surfactant 

molecules in liquid phase can occur, leading to a bilayer structure. When the solid 

surface is composed of strongly charged sites, the adsorption depends mainly on 

the electrostatic interaction between solid surface and oppositely charged head 

groups, while orientation of surfactant monomers makes the solid surface 

hydrophobic, reducing the electric potential of diffuse layer. At higher 

concentrations the adsorption increases, and a bilayer structure can occur, which 

reverse the potential to the surfactant head group sign. These effects depend on 

surfactant type and concentration, on the solid phase and other conditions such 

as temperature; their presence can indeed affect fine grained soil behaviour. 

Recent studies show the effects of surfactant on soil properties as plasticity 

(Akbulut et al., 2012; Jones et al., 2016; Park et al., 2006; Rahman et al., 2013), 

but it goes beyond the aim of this study. 
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3.2.2.2. Surfactant effect in foams 

When foam is formed, bubbles are dispersed and separated by thin films of 

liquid called lamellae, whose intersection lines form capillaries called Plateu 

borders (Figure 3-5) constituting a continuous network within the foam. Rather 

than a flow from film to film, the fluid is conveyed in the Plateu borders due to 

the lower pressure respect to the pressure in the adjoining lamella and, by 

consequence, the thinning of film between bubbles occurs. As the thinning 

continues, a pressure in lamella due to electrostatic and steric repulsion forces 

between the adsorption layers on the surfaces, termed disjoining pressure, arises 

till an equilibrium is reached and drainage stops. 

 
Figure 3-5. Diagrammatical sketch of (a) bubbles in foam, (b) plateau borders and (c) foam lamella. 

If surfactant concentration is not too low, surfactant molecules move towards 

the interface between gas bubbles and liquid, so that the hydrophilic head points 

towards the liquid while other molecules and micelles (if concentration is above 

CMC) are dispersed in bulk (Figure 3-5c). When the liquid drains from the film 

to borders, the lamella is stretched, thus surfactant molecules concentration in the 

stretched, thinner zone lowers. This causes an increase in surface tension in the 

thinner zone and, by consequence, a surface tension gradient arises along the 

surface which is equivalent to surfactant adsorption gradient. This gradient 

causes a surfactant mass transfer with a diffusion flow from the bulk to the film 

surface and a surface flow in direction of the concentration gradient along the 

surface, dragging along a layer of hydrate water in the bulk phase (Ekserova and 

Krugli︠ a︡kov, 1998; Farn, 2008). This beneficial, self-healing effect of surfactants 

on the thin zone is referred to as Marangoni effect and it is an essential stabilising 

effect in foams. However, this effect is beneficial when compensation occurs via 

the surface flow, and not by a diffusion of molecules from the bulk phase. 

 Foam drainage and internal collapse 

Foam stability is related to foam drainage and internal collapse. The former 

is the loss of liquid volume in time, ΔVL, due to the excess liquid content respect 

to the hydrostatic equilibrium. As soon as the foam is formed the liquid starts to 
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drain out in Plateu borders and through them in lower layers of foam, governed 

by gravity. As reported by Ekserova and Krugli︠ a︡kov (1998), many equations 

have been proposed to describe the foam drainage, as (3-46): 

𝛥𝑉𝐿 =
𝑉𝐿,0

𝑉𝐿,0

𝑤0
+ 

 
(3-46) 

In the equation above, VL,0 and w0 are two parameters. The former can be 

assumed equal to the initial liquid volume in a foam, while w0 characterises the 

initial volumetric flow rate referring to a unit cross-sectional foam area. 

Foam drainage depends on many factors, such as viscosity, FER, surfactant 

type and concentrations etc. When the other conditions are the same, the ratio of 

foam drainage w0 is inversely proportional to viscosity of foaming solution. 

Increasing the FER (i.e. lowering the density of foam) at constant dispersity, the 

foam drainage rate decreases because of the thinner radius of Plateau borders and 

w0 is proportional to the square of FER. Foam dispersity also affects foam 

drainage rate, which seems to be proportional to the square of average radius. An 

increase in surfactant concentration decreases foam drainage rate. 

Internal foam collapse is the internal destruction of foams, that is the 

separation of liquid from gas. It affects foam dispersity and it results from two 

phenomena: diffusion bubble expansion and bubble coalescence. The prevailing 

one depends on surfactant type and time from foam formation. The former occurs 

in polydisperse foams, due to the different gas pressure within bubbles of 

different size. There is a diffusion mass transfer of gas from the smaller bubbles 

to the larger ones. Average-sized bubbles receive gas from smaller ones and 

transfer gas to larger ones. Coalescence is the fusion of two bubbles due to the 

rupture of thin films separating them, which occurs when the films are very 

unstable. In both cases, the specific foam area decreases during process of 

internal foam collapse. 

It is worth noting that these phenomena (foam drainage, internal collapse) 

which affect stability and lifetime of a foam occurs “naturally” due to the intrinsic 

thermodynamic instability. External actions as vibration or mixing with other 

suspensions (as in the lightweight cemented soil method) can also affect foam 

stability in different ways. 
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 Bulk properties 

The foam is a dispersion of bubbles in a liquid solution of water and 

surfactants. The solid phase corresponds to surfactants and residual solid of water 

(if not distilled). However, the residual solid in foam is negligible, thus it can be 

regarded as composed of liquid and gas phases, i.e. the solution and the air 

entrapped in bubbles. If the weight of gas in bubbles can be neglected, the weight 

of foam is: 

𝑊𝑓 = 𝑊𝑓
𝑠 + 𝑊𝑓

𝑔
+ 𝑊𝑓

𝑙 ≅ 𝑊𝑓
𝑙 (3-47) 

The volume of foam, Vf, can be assumed as the sum of the volume of air 

bubbles in the foam, Vair foam, and the volume of solution, Vf
l: 

𝑉𝑓 = 𝑉𝑓
𝑙 + 𝑉𝑎𝑖𝑟,𝑓𝑜𝑎𝑚 = 𝑉𝑓

𝑙 + 𝑉𝑓
𝑔

 (3-48) 

Hence: 

𝑉𝑓
𝑔

= 𝑉𝑎𝑖𝑟,𝑓𝑜𝑎𝑚 = 𝑉𝑓 − 𝑉𝑓
𝑙 = 𝑊𝑓 (

1

𝛾𝑓
−

1

𝜌𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
) ≈ 𝑊𝑓 (

1

𝛾𝑓
−

1

𝜌𝑤
) (3-49) 

where density of solution has been assumed equal to density of water. 

 Summary 

Cement and foam, the two additives required to produce lightweight 

cemented soil, have been described in this chapter. Cement main compounds and 

hydration reactions of cement, related to hardening of cement paste, i.e. gain of 

strength, have been shown. The rheological behaviour of fresh paste, that is 

mixed with soil suspension in the approach adopted in this study (section 5.3.5), 

has been discussed and it can be modelled as a Bingham fluid. Solid, liquid and 

gas phases of cement paste and their time evolution have been identified based 

on a literature approach; the results of this analysis will be used to determine bulk 

properties of lightweight cemented soil in section 5.1. The air foam is made of 

bubbles dispersed in a surfactant solution; it is a thermodynamically unstable 

system and a surface-active agent (i.e. the surfactant) is required to produce it. 

The main mechanisms of foam stability (i.e. foam drainage and internal collapse), 

the stabilizing effect of surfactant (Marangoni effect) and foam properties have 

been discussed in this section. Foam stability increases at increasing surfactant 

concentration up to critical micelle concentration above which no significant 

improvements can be observed. 
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 Mechanical behaviour of cemented soils 
The mechanical behaviour of soils with a bonded structure is similar to that 

of porous weak rocks (Leroueil and Vaughan, 1990). Differently from artificial 

cause (as the addition of a bonding agent), bonds can arise from natural causes, 

such as deposition of silica at particle contacts in sands, deposition of carbonates 

from solution, from re-crystallization of minerals during weathering (Leroueil 

and Vaughan, 1990). 

The increase of strength obtained by the addition of cement and lime has 

been reported by several authors (Clough et al., 1981; Locat et al., 1990; Mitchell, 

1981; Sariosseiri and Muhunthan, 2008). Consoli et al. (2007) investigated the 

effect of cementation on a compacted cemented silty sand; they observed that 

even a small addition of cement is enough to generate a significant gain in 

strength, with an approximately linear increase of Unconfined Compressive 

Strength (UCS) with cement content. They observed that increasing dry density, 

the effectiveness of cementation enhances due to the existence of a larger number 

of contacts; indeed, they found that UCS increases exponentially at decreasing 

cemented soil porosity. 

The effect of cement addition on unconfined compressive strength of 

cemented high water content clays was studied by Horpibulsuk et al. (2003) by 

varying the cement factor on a wide range, from 5 to 200 %. They observed that 

at low cement factors, approximately below 10 %, the increase in strength was 

only marginal, due to the slight amount of available cement per intercluster site. 

At higher cement contents, up to approximately 40 %, they observed a significant 

increase in strength; in this range of cement contents it was supposed to exist a 

continuity in the clay fabric and discontinuity in the hardened structure of the 

cement paste. At very high cement contents (above 70 %), the authors assumed 

that a continuity in cement paste existed, with clay particles embedded in cement 

paste. In the transition zone between 40 and 70 %, a marginal increment in 

strength was observed. 

 Compressibility 

The schematic representation of compressibility behaviour of a cemented 

soil, as reported by different authors (Cuccovillo and Coop, 1999; Lade and 

Trads, 2014; Leroueil and Vaughan, 1990) has been reported in Figure 4-1. 
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Figure 4-1. Schematic representation of compressibility behaviour of strongly cemented soil, after 

Leroueil and Vaughan (1990), Cuccovillo and Coop (1999); PY: Primary Yield, PYCL: Post-Yield 

Compression Line (Rotta et al., 2003). 

On the basis of experimental observations of the mechanical behaviour of 

artificially cemented carbonate sands, Cuccovillo and Coop (1999) stated that the 

effect of cementation was to increase both the size of the elastic domain in the 

stress space (i.e. the domain in which the strains are reversible) and the initial 

stiffness (i.e. the stiffness at small strain level), while larger strains were observed 

in post-yield state. Furthermore, they observed that the paths described in the 

tension-void ratio plane by the results of one-dimensional (i.e. k0) or isotropic 

compression tests on cemented structured sand can reach points representing 

states that are impossible for a reconstituted uncemented sample of the same 

sand. Similar results were found by Pellegrino (1968, 1970) with reference to the 

behaviour in isotropic compression of Neapolitan yellow tuff, a porous weak 

rock; the stress-volumetric strain curves were characterized by a first segment 

with low strains, followed by a segment with much larger strains and finally the 

last segment with a decreasing gradient of the curve at increasing stress. This 

behaviour was interpreted as due to the high porosity and to some inhomogeneity 

of the material composing the matrix, which could lead, in singular points of the 

rock matrix itself, to a stress state characterized by tensile and shear stresses even 

during isotropic compression. Indeed, as stated by Lajtai (1969), the state of 

stress around a pore or void may vary from one of high tension to one of high 

compression even if the stresses applied at the sample boundaries are all 

compressive. 
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Rotta et al. (2003) studied the effect of curing stress on compacted cemented 

silty sands. They show that increasing the curing stress before cementation begins 

(simulating thus the curing of samples at different depths in a sedimentary 

deposit), the isotropic yielding stress increases. They also observed that after 

primary yield (Figure 4-1), the compression paths of all specimens at different 

initial void ratio followed a post-yield compression line (PYCL), that was unique 

for each specific cement content, and at high confining stresses (also above 30 

MPa) converged towards the intrinsic compression line (ICL) of the uncemented 

soil. The PYCL expands and steepens at increasing cement content. The space 

between post-yield compression line and ICL is the zone of “structure permitted 

states”, as defined by Leroueil and Vaughan (1990). Finally, they found that at 

decreasing initial void ratio (at same cement content), primary yield stress 

increases, while the relative effect of cementation decreases (increase in yield 

stress respect to uncemented yield stress). 

Similar results are found for artificially cemented clays. Verástegui Flores 

and Van Impe (2009) show results on an artificially cemented kaolin starting 

from a slurry at a water content equal to 2 times the liquid limit (wl); increasing 

the degree of cementation, the yield stress for k0 compression increases, reaching 

states significantly above the intrinsic compression line of reconstituted soil, with 

a higher post-yield compressibility. 

 
Figure 4-2. Schematic representation of compressibility behaviour of cemented clay, after 

Sasanian and Newson (2014). 

As schematically shown in Figure 4-2, the void ratio at very low confining 

stress can be significantly above the one of the reconstituted soil. Similar results 
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were found by Sasanian and Newson (2014) on artificially cemented Ottawa clay, 

characterized by a bonded structure also in its natural state. Both undisturbed and 

artificially cemented clay (prepared at a water content of 80%, above limit liquid, 

and tested after 28 days of curing) show a higher initial void ratio and stiffness 

in pre-yield compression than reconstituted soil. 

Horpibulsuk et al. (2004a) show the effect of water content on 

compressibility of cemented Bangkok and Ariake clays, by varying the liquidity 

index of slurry from 1 to 3. They show that the pre-yield deformation is 

negligible, and the yielding stress decreases with water content (after 28 days of 

curing). However, in post-yield, all the samples with the same cement content 

converge to the same line, for both soils. Horpibulsuk et al. (2004b) observe an 

increase of yield stress in isotropic compression on cemented Ariake clay at 

increasing cement content. 

The effect of curing time has been shown by Xiao and Lee (2008), by testing 

different mixtures of cement treated marine clay; they show an increase in 

isotropic yield stress and a decrease in void ratio at increasing curing time, in all 

the cases. 

 Shear strength and triaxial compression behaviour 

The behaviour of cemented soils in triaxial compression has been 

investigated by different authors. The behaviour of weakly cemented soils was 

studied by Maccarini (1987) via isotropically consolidated drained triaxial 

compression tests (CID). The artificial bonded soil was produced by firing a 

mixture of sand and kaolin slurry, hence bonds were given by the fired kaolin. At 

low confining stress, peak shear strength, corresponding to failure along a 

localized shear band, was reached before attaining the maximum dilation rate, 

indicating the bonded structure as responsible of the shear over-strength rather 

than dilatancy. However, the post-peak evolution of the compression tests 

showed a clear tendency of the material to reach a critical state, with a strongly 

dilative and brittle behaviour. At higher confining stresses, yield was observed 

before failure, which occurred at larger strains and was accompanied by 

significant contraction. Similar results were found also for natural soil (Saint-

Vallier soft clay and oolitic limestone), as reported by Leroueil and Vaughan 

(1990), and by Consoli et al. (2002), which in particular studied the effect of 

curing pressure on a cemented silty sand. 

Lade and Overton (1989), by studying a soil-cement mixture in triaxial 

compression, found that the peak shear strength and the value of the strain at 



                                                                                                                Chapter 4 

48 

 

failure increased as the confining stress was raised; while cementation was still 

intact, the stress-strain relationship resulted to be almost linear, and a contractive 

behaviour was observed. After yielding, debonding occurred and the stress-strain 

behaviour was highly non-linear whereas, at increasing confining pressure, the 

behaviour became more contractive. 

Similar observations were reported by Schnaid et al. (2001) with reference 

to mechanical tests on artificially cemented sand; they showed that increasing the 

cement content, stiffness and peak strength increased and maximum deviatoric 

stress tended toward a constant value independent on cementation. The 

volumetric behaviour was characterized by an initial contraction followed by a 

strong expansion and the maximum rate of dilation was shown right after 

reaching the peak strength. They also observed an increase of the values of both 

the friction angle and the cohesion at increasing cement content with respect to 

those of the uncemented soil. The idealized behaviour of a cemented soil is 

represented in Figure 4-3. 

 
Figure 4-3. Idealized behaviour of cemented soil at different degree of cementation, after 

Cuccovillo and Coop (1999), Lade and Trads (2014). 

Horpibulsuk et al. (2004b) studied the undrained behaviour of the cemented 

Ariake clay at different cement content. Samples were prepared at high initial 

water content (180 %). The stress-strain curves presented the typical behaviour 

of a cemented soil (behaviour 1 in Figure 4-3), characterized by a peak value of 

the stress deviator and a subsequent softening. They observed a negligible effect 

of confining stress on stress-strain curves, but a significant difference in pore-

pressure development, which increased until peak deviator stress was achieved. 

At increasing confining pressure, higher pore water pressures were measured. 

After peak, a decrease in pore water pressure was observed. At higher cement 

content and low confining stresses, negative pore water pressures were measured, 
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showing a tendency to a dilative behaviour. They concluded that peak strength 

was mainly due to cementation, and not due to interlocking. Similar results were 

found by Verástegui Flores and Van Impe (2009) on a commercial kaolin. 

Sariosseiri and Muhunthan (2008, 2009) studied the effect of cementation on 

two soils from the state of Washington, namely Aberdeen and Everett soils. 

Samples were prepared at maximum dry density and optimum water content. 

They observed an increase in peak shear strength at increasing confining stress 

regardless of cement content. At increasing cement content, they observed an 

increase in the peak of stress deviator achieved at lower strains. The stress strain 

curves were characterized by a significant softening; a decrease of post-peak 

deviator stress was observed at increasing cement content, accompanied by a 

higher brittleness. They also observed an increase in pore water pressure until 

peak strength was reached, which rose almost to the value of the total confining 

pressure, so that the effective confining pressure dropped to near zero. The 

authors suggested that this behaviour depends on cracks forming during split 

failure which transfer pressures immediately to pore water. After peak strength, 

a decrease in pore water pressure is observed, so that at low confining stresses 

slightly negative pore water pressure were measured. 

 Failure envelope and constitutive models 

The adoption of Mohr-Coulomb criterion has been extensively used to 

characterize the failure of soils, but it led to some anomalies if applied to cement 

treated soils (Sariosseiri and Muhunthan, 2008). This is due to the likely 

curvature of failure envelope, as observed by some authors, which doesn’t allow 

to define a unique friction angle to describe behaviour over a wide range of 

confining pressures. Lajtai (1969) suggested that, at increasing confining 

stresses, three mechanisms can be identified in direct shear tests on soft rocks: 

tensile failure, shear failure (both non-linear) and, at high confining stresses, 

ultimate strength failure (described by Mohr-Coulomb criterion with zero 

cohesion). However, this interpretation requires many tests in a wide range of 

confining stresses. As reported by Sariosseiri and Muhunthan (2008), other 

models have been proposed to describe the failure mechanism of geomaterials, 

such as Hoek and Brown, (Hoek, 1988) and Johnston (1985). The Griffith model 

(Griffith, 1924) has been proposed by Consoli et al. (2012) to describe the 

behaviour of a cemented sand. The Griffith criterion, in terms of normal stress 

acting on the failure surface, σn, and shear stress acting along the failure surface, 

, can be represented by the following equation: 
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2 = 4𝜎𝑡(𝜎𝑡 − 𝜎𝑛) (4-1) 

where σt is the tensile strength. However, under compressive stress 

conditions, closure of cracks can occur; if it happens before tensile stress at the 

crack tip is high enough to initiate fracture, the shear resistance resulting from 

the contact pressure between the crack faces has to be overcome before 

propagation of the crack can occur (Hoek and Bieniawski, 1965). To take account 

of this phenomenon, McClintock and Walsh (1962) modified the original theory 

of Griffith to take account of the compressive stress (while original criterion can 

be applied when normal stress is tensile) and a straight-line Mohr envelope 

resulted, namely Modified Griffith theory: 

 = 𝜇𝜎𝑛 − 2𝜎𝑡 (4-2) 

where μ is the coefficient of internal friction. Hoek and Bieniawski (1965) 

compared the modified Griffith theory with a wide variety of materials finding a 

remarkable agreement. A good agreement was also found by Sariosseiri and 

Muhunthan (2008) on artificially cemented soils. A linear expression is also 

proposed by Schnaid et al. (2001). 

Many constitutive models are available in literature to take account for 

structure in soils. The extension of Modified Cam Clay model (Roscoe and 

Burland, 1968) to structured soils has been proposed by some authors (Carter and 

Liu, 2005; Horpibulsuk et al., 2010; Liu and Carter, 2002; Suebsuk et al., 2011), 

namely Structured Modified Cam Clay. They assume an elliptical yield surface 

as the original model, while the effect of structure is considered by means of Δe, 

the difference between the void ratio of the structured soil and the void ratio of 

reconstituted soil at the same stress state. The failure surface is assumed parallel 

to non-treated soil and shifted by an intercept, as also suggested by Kasama et al. 

(2000). Nguyen et al. (2014) proposed a slightly different model, namely 

Cemented Cam Clay, to take account of non-linearity of failure envelope due to 

bonding degradation under isotropic compression. Constitutive models 

characterized by more than one surface, as the one proposed by Rouainia and 

Muir Wood (2000), are also available in literature. An extension to structured 

soils of the model introduced by Nova (1988, 1992) was proposed by Lagioia and 

Nova (1995), by means of 𝑝𝑡0
′ , that is the initial isotropic tensile strength, and 

𝑝𝑚0
′ , that is related to the strength of the bonds in compression. Destructuration 

is related only to volumetric plastic strain. Similar models were proposed by 

Nova et al. (2003), Nova (2005), in which destructuration depends also on 

deviatoric plastic strains. 
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Pinyol et al. (2007) proposed a model for clayey rocks which took account 

for both cementation and suction effects, such as swelling/shrinkage behaviour 

due to wetting-drying cycles, by integrating into a common framework an elasto-

plastic model for expansive materials and a damage model for the bond material. 

The degree of cementation is considered via the state parameters eb, namely void 

ratio of bonds, defined as the ratio of volume of bonds (assumed non-porous) to 

the solid volume of clay matrix, and concentration of bonds, Cb, the ratio of 

volume of bonds to the total volume. The bond behaviour is modelled through 

isotropic damage theory by means of a scalar damage parameter, D. They adopt 

the function proposed by Carol et al. (2001) in which the damage evolution, r(L), 

is related to the damage variable L, that is a logarithmic function of D. 

 Governing parameters on behaviour of cemented soils 

Some authors have tried to identify parameters which affect the mechanical 

properties of cemented soils. Schnaid et al. (2001) suggest that deviatoric stress 

at failure, qf, can be expressed as a linear function of degree of cementation, 

represented by UCS (4-3). Indeed, they argued that the degree of cementation 

can be identified by UCS because it takes account for density, gradation, amount 

and nature of cement, and mineralogy of soil. In the hypotheses that peak strength 

envelopes are linear, the friction angles of cemented and uncemented soil have 

the same magnitude, the soil in uncemented condition is non-cohesive and 

frictional contribution is independent of cement content, the failure surface 

becomes: 

𝑞𝑓 =
2 sin φ

1 − sinφ
𝑝𝑖

′ + 𝑈𝐶𝑆 (4-3) 

where φ and p
I
’ are the friction angle and the initial mean effective stress, 

respectively. Consoli et al. (2007, 2009, 2011) identified a relationship between 

UCS and the ratio between porosity, n, and volumetric cement content, Civ, 

defined as the ratio of absolute volume of cement to total volume: 

𝑈𝐶𝑆 [𝑘𝑃𝑎] = 𝑐1 [
𝑛

(𝐶𝑖𝑣)𝑐2
]

−𝑐3

 (4-4) 

where c1, c2 and c3 are three constants. They suggest that using the parameter 
n

(Civ)𝑐2
, one can design the amount of cement and the compaction effort necessary 

to obtain a mixture that meets the design strength. However, also c2, the exponent 

of Civ, varies depending on soil and cement used. Consoli et al. (2010, 2012) 

suggest that also tensile strength can be related to the ratio between porosity and 
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cement content; the relationship can be substituted in Griffith criterion (4-1) and 

a failure envelope depending on porosity and cement content can be derived. 

Horpibulsuk et al. (2003, 2005, 2006) suggest the “water clay to cement 

ratio” (ws
c

s
⁄  according to the adopted notation) as a governing parameter for 

compressive strength of cemented soils, proposing a relation based on the 

Abrams law (Abrams, 1918). By this way, they find a generalized relationship 

between strength, curing time and the water clay to cement ratio. It is worth 

noting that in admixed clay at high water content, the initial water content of soil 

slurry is strictly related to porosity. Indeed, being the saturation degree equal to 

one in a soil slurry, the void ratio is directly proportional to water content. In a 

subsequent study, Horpibulsuk et al. (2011a, 2011b, 2012a) proposed slightly 

different equations (4-5), (4-6), where A, B, c1 and c2 are four constants. 

According to the authors, A depends on type of clay, liquidity index and curing 

time while B is approximately 1.22~1.24. 

𝑈𝐶𝑆 =
𝐴

(ws
c
s

⁄ )
𝐵 

(4-5) 

𝑈𝐶𝑆
(ws

c
s

⁄ ),   𝑡

𝑈𝐶𝑆
(ws

c
s

⁄ )
𝑟𝑒𝑓

,𝑡=28𝑑

= [

(ws
c
s

⁄ )
𝑟𝑒𝑓

(ws
c
s

⁄ )
]

𝐵

(𝑐1 + 𝑐2l n t) (4-6) 

Sasanian and Newson (2014) studied the behaviour of cemented clays at high 

water content. They investigated the undrained shear strength, cu, at different 

curing times (up to 1200 days) by means of laboratory vane test; they observed 

that, also after 1000 days, the cemented soil continued to gain strength. Of course, 

strength increases with cement content and curing time since both contribute to 

production of cementing bonds. They also observed an increase in residual 

strength with curing time; however, it didn’t increase with same rate of peak 

strength, so that higher brittleness and sensitivity were observed at increasing 

cementation. By normalizing undrained shear strength by cu at a reference time, 

tref, of 28 days, they suggest the following expression for undrained shear 

strength: 

𝑐𝑢

𝑐𝑢,𝑡𝑟𝑒𝑓

= 0.96 (
𝑡

𝑡𝑟𝑒𝑓
)

0.31

 (4-7) 
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They also studied the effect of ws
c

s
⁄ , as proposed by Horpibulsuk et al. 

(2003), on undrained shear strength; to take account of soil mineralogy on the 

gain in strength, the authors proposed a slightly different governing parameter, 

namely β, equal to the product of soil activity, A, to the power of 3.2 and the ratio 
c

s
ws⁄ . According to authors, the undrained shear strength at 28 days, normalized 

respect to atmospheric pressure, is a second order polynomial function of β; they 

also observed the same dependency on yield stress in oedometric loading. 

 Lightweight cemented soil 

The effects of foam addition on properties of cemented soils have not been 

widely investigated. Some results are reported by Tsuchida and Egashira (2004). 

The main purpose of these studies was the reuse of dredged soils in port 

constructions that are characterized by a significant water content, thus 

facilitating the treatment. Indeed, seawater was used in some laboratory tests to 

investigate properties of material, while density was kept higher than density of 

water so that slurry could be poured underwater. Full scale tests were also 

performed. Satoh et al. (2001) report the field test in Kumamoto port for the 

construction of a new quay wall to the depth of 10 m below the sea level; due to 

the low bearing capacity of the extremely soft marine clay of the seabed, namely 

Ariake clay, ground improvement techniques had to be considered. However, it 

was proved that the possible usage of LWCS as a backfill material would have 

reduced the construction costs by 20 ~ 25 %, by decreasing load and seismic earth 

pressure, thus allowing to reduce the width of concrete caisson and the scale of 

ground improvement techniques. The mixture was poured at 10 m below the sea 

level, thus wet density had to be higher than 10 kN/m3; the measured UCS, at 28 

and after 1 year, was approximately 1 MPa, much larger than the target value of 

200 kPa. By using X-ray CT scanner, Otani et al. (2002) show that failure of 

these samples occurred with strain localization. The LWCS was used as a backfill 

material at the seawall in the reconstruction project of Kobe Port Island, after 

Kobe earthquake, and in the offshore expansion project of Tokyo International 

Airport, as reported by Watabe et al. (2009, 2011). In both cases, lightweight 

treated soil was covered by a layer of sand and a pavement. The air foam content 

was below 30%, with a target density around 11 kN/m3 and minimum UCS target 

of 196 kPa. After almost ten years, the lightweight cemented soil was sampled in 

both sites. In Kobe Port Island, the density profile was almost constant and 

approximately equal to target density, except for larger values measured in the 

shallowest layer (around 300 mm) due to infiltration of rainwater. No cracks were 

detected; the UCS proved to be higher than target value along the entire depth 
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but characterized by a larger scatter compared to density vertical profile. Similar 

results were found in Tokyo International Airport. 

Tsuchida and Egashira (2004) show that unconfined compressive strength of 

a LWCS grows almost linearly with cement content and decreases at increasing 

water content of soil slurry, as widely shown for cemented soil; the secant Young 

modulus at 50% of deviator, E50, is approximately 100~200 times UCS. Tsuchida 

et al. (2007) show that lightened cemented soil exhibits considerable volumetric 

compression when subjected to shearing in triaxial compression, ascribing it to 

high compressibility of air foam. Larger strains were measured at increasing 

confining pressure. They also conducted K0-consolidation tests via modified 

triaxial apparatus by controlling cell pressure so that lateral strain didn’t exceed 

0.02%. K0 values declined up to 0.1 around axial strain of 0.5~1%, corresponding 

to consolidation yield points and implying a significant reduction of earth 

pressure. Permeability was studied by Kikuchi et al. (2005, 2006, 2011), which 

show that pores can be impermeable when air content is below 30 %; however, 

at higher air contents, a dramatic increase in permeability was observed. 

Compressibility of lightweight cemented soil was investigated by 

Horpibulsuk et al. (2013); they observed that samples with larger void ratio (due 

to both water and air foam contents) were characterized by the lower yield stress 

and higher rate of destructuring. However, at high normal stresses, compression 

curves tend to converge. Similar results were found by Watabe et al. (2004) on 

two mixtures of lightweight cemented soil; they performed SEM and MIP 

analyses on samples subjected to K0-loading at different confining stresses; along 

unloading paths, the change of void ratio was negligible. They observed that 

larger pores detected by SEM, with spherical shape and a diameter of 200 ~ 500 

μm, were not detected by MIP, in which the largest pores observed were in the 

range of 20-60 μm. All these pores were associated to foam bubbles. At 

increasing normal stress, largest pores distorted into oblate spheres and then 

collapsed, so that at high confining pressures, not only compression curves but 

also pore size distribution coincided. 

Some authors tried to identify parameters to describe the behaviour of 

lightweight cemented soil, as for non-lightened mixtures. Jongpradist et al. 

(2011) suggest to adopt the “effective void ratio”, est, defined as: 

𝑒𝑠𝑡 = 𝑤 ln (
𝑒𝑜𝑡

𝑐
𝑠⁄

) (4-8) 
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where eot and w are the void ratio and water content after-curing, 

respectively, as introduced by Lorenzo and Bergado (2004). Based on their 

investigation, they suggest that any mechanical characteristic normalized respect 

to atmospheric pressure, q’, such as UCS and yield stress, can be identified by 

the following expression, where A and B are two constants: 

𝑞′ = 𝐴 𝑒𝑥𝑝(𝐵𝑒𝑠𝑡) (4-9) 

Horpibulsuk et al. (2012b) extended their approach on cemented clays 

(Horpibulsuk et al., 2011a) to lightweight cemented soils. They suggest, as a 

governing parameter, the ratio between the absolute volume of voids (sum of 

volumes of air and water) to the absolute volume of cement, V/C, as a key 

parameter to rule strength of lightweight cemented soil at a constant initial water 

content. However, to take account of the effect of water content, Horpibulsuk et 

al. (2014a) suggest the “water void to cement ratio”, defined as the product of 

water content of soil slurry (defined in decimal) times V/C: 

𝑈𝐶𝑆 =
𝐴

(
𝑤𝑉
𝐶 )

𝐵 
(4-10) 
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(
ws𝑉

𝐶 )
]

𝐵

(𝑐1 + 𝑐2l n t) (4-11) 

Teerawattanasuk et al. (2015) propose mix design charts to develop 

sustainable lightweight pavement materials, based on cement and air contents 

(related to the volume of wet soil). They varied the cement content from 100 to 

250 kg/m3 and the air content from 0 to 50 % and performed unconfined 

compressive tests. Each design chart is related to a specific cement content, while 

UCS decrease with foam content; thus, once cement content is chosen, based on 

the required UCS, the corresponding foam content can be derived. 

 Summary 

A literature review on the mechanical behaviour of cemented soils has been 

shown in this section. Regardless of grain size distribution, an increase of degree 

of cementation determines an increase in yield stress in both isotropic and 

oedometric compression. Furthermore, an increase in peak strength and 

brittleness is observed, whereas a dilative behaviour can occur after right peak 

strength is reached. Different key parameters governing the strength of cemented 

soils have been proposed in literature and discussed in this section; they are 
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generally related to the amount of cementitious material and porosity; the latter 

has a negative effect on mechanical performances. Some studies on lightweight 

cemented soils have been presented. Despite not being widely investigated, it has 

been shown that the technique and resulting geomaterial can prove useful in 

engineering practice. Some approaches describing the strength of lightweight 

cemented soils have also been discussed. 
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 Materials and methods 
Materials and methods used in this study are described in this chapter. 

Relations between the amounts of soil, cement and foam used for the mixture and 

bulk properties of lightweight cemented soil, such as bulk density, water content 

and porosity, are determined. These equations can be used to design the mixture 

with specific properties that can also be related to mechanical strength of the 

resulting hardened material, as shown in chapter 4. Starting from these equations, 

it is also possible to determine the amounts of soil, cement and foam per unit 

volume, which can be useful in construction projects. The adopted mix design 

approach is presented after a brief description of methods used in literature. 

Finally, materials (soil, cement and foam) and mixtures investigated in this study 

are presented. Microstructural and mechanical tests are described in Appendix B. 

 LWCS bulk properties 

The lightweight cemented soil is a mix of soil slurry, grout and foam. Each 

component is composed of solid, liquid and gas phases. Due to the binding agent 

and subsequent chemical reactions, these phases also evolve with time. In the 

following, the relations between the phases of the obtained material, starting from 

the initial amounts of soil, water, cement and foam, are derived. It will be 

assumed that no shrinkage occurs, that the material is seal cured (i.e. no water 

flow inward or outward occurs) and there is no air entrapped in soil and cement 

slurries. The superscripts “s”, “l” and “g” will be used to specify respectively the 

solid, liquid and gas phases. The subscripts “s”, “c” and “f” will refer respectively 

to soil, cement and foam. Some terms regarding water will not be indicated by 

any superscript for simplicity. Presence of gas and solid phases in water are 

neglected. 

The mass balance of solid and liquid phase state that: 

𝑊𝐿𝑊𝐶𝑆
𝑠 = 𝑊𝑠

𝑠 + 𝑊𝑐
𝑠 + 𝑊𝑓

𝑠 ≅ 𝑊𝑠
𝑠 + 𝑊𝑐

𝑠 (5-1) 

𝑊𝐿𝑊𝐶𝑆
𝑙 = 𝑊𝑤𝑠 + 𝑊𝑐

𝑙 + 𝑊𝑓
𝑙 ≅ 𝑊𝑤𝑠 + 𝑊𝑐

𝑙 + 𝑊𝑓  (5-2) 

Substituting equations (3-37) and (3-39) in equations (5-1) and (5-2), the 

weight of solid and liquid phase and water content of lightweight cemented soil 

are: 

𝑊𝐿𝑊𝐶𝑆
𝑠 = 𝑊𝑠

𝑠 + 𝑊𝑐,𝑎 + 𝑊𝑤𝑐,𝑛−𝑒𝑣 = 𝑊𝑠
𝑠 + (1 + 𝛼𝑥)𝑊𝑐,𝑎 (5-3) 
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𝑊𝐿𝑊𝐶𝑆
𝑙 = 𝑊𝑤𝑠 + 𝑊𝑤𝑐 + 𝑊𝑓 − 𝑊𝑤𝑐,𝑛−𝑒𝑣

=  𝑊𝑤𝑠 + 𝑊𝑤𝑐 (1 −
𝛼𝑥

𝑤𝑐
𝑐⁄

) + 𝑊𝑓 
(5-4) 

𝑤 =
𝑊𝐿𝑊𝐶𝑆

𝑙

𝑊𝐿𝑊𝐶𝑆
𝑠 =

𝑊𝑤𝑠 + 𝑊𝑤𝑐 (1 −
𝛼𝑥

𝑤𝑐
𝑐⁄

) + 𝑊𝑓

𝑊𝑠
𝑠 + (1 + 𝛼𝑥)𝑊𝑐,𝑎

 

(5-5) 

The volume balance of solid phase states that: 

𝑉𝐿𝑊𝐶𝑆
𝑠 = 𝑉𝑠

𝑠 + 𝑉𝑐
𝑠 = 𝑉𝑠

𝑠 + 𝑉𝑐,𝑢𝑛ℎ
𝑠 + 𝑉𝑐,𝑎,ℎ

𝑠 + 𝛽𝑉𝑤𝑐,𝑛−𝑒𝑣 (5-6) 

From (3-38): 

𝑉𝐿𝑊𝐶𝑆
𝑠 = 𝑉𝑠

𝑠 + (1 +
𝛽𝑥𝛼𝜌𝑐,𝑎

𝜌𝑤
) 𝑉𝑐,𝑎

𝑠 =
𝑊𝑠

𝑠

𝜌𝑠
+ (1 + 𝛼𝑥𝛽

𝜌𝑐,𝑎

𝜌𝑤
)

𝑊𝑐,𝑎

𝜌𝑐
 (5-7) 

𝜌𝐿𝑊𝐶𝑆
𝑠 =

𝑊𝐿𝑊𝐶𝑆
𝑠

𝑉𝐿𝑊𝐶𝑆
𝑠 =

𝑊𝑠
𝑠 + (1 + 𝛼𝑥)𝑊𝑐,𝑎

𝑉𝑠
𝑠 + (1 +

𝛽𝑥𝛼𝜌𝑐,𝑎

𝜌𝑤
) 𝑉𝑐,𝑎

𝑠

=
𝑊𝑠

𝑠 + (1 + 𝛼𝑥)𝑊𝑐,𝑎

𝑊𝑠
𝑠

𝜌𝑠
+ (1 + 𝛼𝑥𝛽

𝜌𝑐,𝑎

𝜌𝑤
)

𝑊𝑐,𝑎

𝜌𝑐

 

(5-8) 

Equation (5-8) shows that the specific weight of a lightweight cemented soil 

is independent on the gravimetric water to cement ratio. However, if the water 

available for hydration of cement was not enough, then cement couldn’t fully 

hydrate and that would affect the progress of hydration, represented by x. 

The volume balance of liquid phase states that: 

𝑉𝐿𝑊𝐶𝑆
𝑙 = 𝑉𝑤𝑠 + 𝑉𝑐

𝑙 + 𝑉𝑓
𝑙 = 𝑉𝑤𝑠 + 𝑉𝑤𝑐,𝑒𝑣 + 𝑉𝑓

𝑙 (5-9) 

𝑉𝐿𝑊𝐶𝑆
𝑙 ≅

𝑊𝑤𝑠

𝜌𝑤
+

𝑊𝑤𝑐

𝜌𝑤
(1 −

𝛼𝑥
𝑤𝑐

𝑐⁄
) +

𝑊𝑓

𝜌𝑤

=
1

𝜌𝑤
[𝑊𝑤𝑠 + 𝑊𝑤𝑐 (1 −

𝛼𝑥
𝑤𝑐

𝑐⁄
) + 𝑊𝑓] 

(5-10) 

Due to presence of cement paste, water in a lightweight cemented soil can be 

held in different states. Thus, the same approach adopted for cement paste (3.1.6) 

can be used for a cemented soil and liquid phase can be considered as the 

evaporable water at a specific temperature. This is implicitly assumed if water 

content is determined according to laboratory standard procedure. Hence, the 

volume of liquid phase: 
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𝑉𝐿𝑊𝐶𝑆
𝑙 =

𝑊𝑤,𝑒𝑣

𝜌𝑤
= 𝑉𝑤,𝑒𝑣 ≅ 𝑉𝑤𝑠 + 𝑉𝑤𝑐,𝑒𝑣 + 𝑉𝑓

𝑙 (5-11) 

Where Ww,ev and Vw,ev are respectively the weight and volume of evaporable 

water from the lightweight cemented soil. The volume balance of the gas phase: 

𝑉𝐿𝑊𝐶𝑆
𝑔

= 𝑉𝑎𝑖𝑟 𝑣𝑜𝑖𝑑𝑠 = 𝑉𝑐
𝑔

+ 𝑉𝑓
𝑔

=
(1 − 𝛽)

𝜌𝑤

𝛼𝑥𝑊𝑤𝑐

𝑤𝑐
𝑐⁄

+ 𝑊𝑓 (
1

𝛾𝑓
−

1

𝜌𝑤
) (5-12) 

The volume of pores Vp is composed of the volume of liquid and air voids: 

𝑉𝑝 = 𝑉𝐿𝑊𝐶𝑆
𝑙 + 𝑉𝐿𝑊𝐶𝑆

𝑔
= 𝑉𝑤𝑠 + (𝑉𝑤𝑐,𝑒𝑣 + 𝑉𝑐

𝑔
) + (𝑉𝑓

𝑙 + 𝑉𝑓
𝑔

)

= 𝑉𝑤𝑠 + 𝑉𝑤𝑐,𝑒𝑣 + 𝑉𝑒 𝑐𝑎𝑝 𝑝𝑜𝑟𝑒𝑠 + 𝑉𝑓 
(5-13) 

𝑉𝑝 =
𝑊𝑤𝑠

𝜌𝑤
+

𝑊𝑤𝑐

𝜌𝑤
(1 −

𝛼𝑥
𝑤𝑐

𝑐⁄
+

𝛼𝑥(1 − 𝛽)
𝑤𝑐

𝑐⁄
) + 𝑉𝑓 (5-14) 

Finally, the weight and volume of a lightweight cemented soil are: 

𝑊𝐿𝑊𝐶𝑆 = 𝑊𝐿𝑊𝐶𝑆
𝑠 + 𝑊𝐿𝑊𝐶𝑆

𝑙  

= 𝑊𝑠
𝑠 + 𝑊𝑤𝑠 + (1 + 𝛼𝑥)𝑊𝑐,𝑎 + 𝑊𝑤𝑐 (1 −

𝛼𝑥
𝑤𝑐

𝑐⁄
) + 𝑊𝑓

= 𝑊𝑠
𝑠 + 𝑊𝑤𝑠 + 𝑊𝑐,𝑎

𝑠 + 𝑊𝑤𝑐 + 𝑊𝑓

= 𝑊𝑠𝑜𝑖𝑙 𝑠𝑙𝑢𝑟𝑟𝑦 + 𝑊𝑔𝑟𝑜𝑢𝑡 + 𝑊𝑓 

(5-15) 

𝑉𝐿𝑊𝐶𝑆 = 𝑉𝐿𝑊𝐶𝑆
𝑠 + 𝑉𝐿𝑊𝐶𝑆

𝑙 + 𝑉𝐿𝑊𝐶𝑆
𝑔

= 

= 𝑉𝑠
𝑠 + (1 +

𝛽𝛼𝑥𝜌𝑐,𝑎

𝜌𝑤
) 𝑉𝑐,𝑎

𝑠 + 𝑉𝑤𝑠 + 𝑉𝑓 + 𝑉𝑤𝑐 (1 −
𝛽𝛼𝑥
𝑤𝑐

𝑐⁄
)

= 𝑉𝑠
𝑠 + 𝑉𝑤𝑠 + 𝑉𝑐,𝑎

𝑠 + 𝑉𝑤𝑐 + 𝑉𝑓

= 𝑉𝑠𝑜𝑖𝑙 𝑠𝑙𝑢𝑟𝑟𝑦 + 𝑉𝑔𝑟𝑜𝑢𝑡 + 𝑉𝑓 

(5-16) 

These last two equations are quite trivial and simply state that the total weight 

and volume of the material are the sum of weights and volumes of soil slurry, 

grout and foam, respectively. Moreover, they are constant with time in the 

hypothesis assumed (no shrinkage and sealed material). If equation (5-15) does 

have to be true because it can also come from a mass balance, equation (5-16) 

could be contested. The sum of volumes is not necessarily equal to the sum of 

volumes of each component. It would be true only if the volume of each 

component didn’t change during mix, that is, if no mutual penetration between 

soil slurry, grout and foam occurred. This happens when two liquids with no air 

entrapped are mixed. 
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Even if no foam is added (Vf = 0) and air is not entrapped in soil and cement 

suspensions during mix, equation (5-16) is still not necessarily true. The empty 

capillary pores produced during hydration reactions of cement can be filled by 

water that comes from soil slurry (i.e. mutual penetration of slurry and cement 

paste) and that could reduce the total volume. However, this phenomenon is 

complex and depends on both setting time and stiffness of mix, thus it will be 

neglected for simplicity. In a cemented soil, where no foam is added, equation 

(5-16) can give a good estimation of the volume of material produced. 

More problems occur when foam is added, because it is a dispersion of air 

bubbles in a surfactant solution and air is entrapped for certain. The air bubbles 

can undergo collapse, so the volume of foam can decrease upon mechanical 

mixing. If the equation (5-16) is applied, the resulting volume is just a theoretical 

volume equal or lower than the actual volume produced. A better estimation of 

soil properties can be obtained if the volume of foam is substituted by a corrected 

volume of foam which takes account of the breakage of bubbles. An attempt will 

be shown in paragraph 5.2.1.1. Summarizing the equations above (the subscript 

“LWCS” is removed for simplicity): 

𝑊𝑠 = 𝑊𝑠
𝑠 + 𝑊𝑐,𝑎

𝑠 + 𝑊𝑤𝑐,𝑛−𝑒𝑣 = 𝑊𝑠
𝑠 + (1 + 𝛼𝑥)𝑊𝑐,𝑎 (5-17) 

𝑊𝑙 = 𝑊𝑤𝑠 + 𝑊𝑤𝑐 + 𝑊𝑓 − 𝑊𝑤𝑐,𝑛−𝑒𝑣

= 𝑊𝑤𝑠 + 𝑊𝑤𝑐 (1 −
𝛼𝑥

𝑤𝑐
𝑐⁄

) + 𝑊𝑓 
(5-18) 

𝑊 = 𝑊𝑠𝑜𝑖𝑙 𝑠𝑙𝑢𝑟𝑟𝑦 + 𝑊𝑔𝑟𝑜𝑢𝑡 + 𝑊𝑓 = 𝑊𝑠
𝑠 + 𝑊𝑤𝑠 + 𝑊𝑐,𝑎 + 𝑊𝑤𝑐 + 𝑊𝑓 (5-19) 

𝑉𝑠 = 𝑉𝑠
𝑠 + (1 +

𝛽𝑥𝛼𝜌𝑐

𝜌𝑤
) 𝑉𝑐,𝑎 =

𝑊𝑠

𝜌𝑠
+ (1 +

𝛽𝑥𝛼𝜌𝑐,𝑎

𝜌𝑤
)

𝑊𝑐,𝑎

𝜌𝑐,𝑎
 (5-20) 

𝑉𝑙 =
𝑊𝑤,𝑒𝑣

𝜌𝑤
=

1

𝜌𝑤
[𝑊𝑤𝑠 + 𝑊𝑤𝑐 (1 −

𝛼𝑥
𝑤𝑐

𝑐⁄
) + 𝑊𝑓] (5-21) 

𝑉𝑔 =
(1 − 𝛽)

𝜌𝑤

𝛼𝑥𝑊𝑤𝑐

𝑤𝑐
𝑐⁄

+ 𝑊𝑓 (
1

𝛾𝑓
+

1

𝜌𝑤
) (5-22) 

𝑉𝑝 = 𝑉𝑤𝑠 + 𝑉𝑓 + 𝑉𝑤𝑐 (1 −
𝛽𝛼𝑥
𝑤𝑐

𝑐⁄
) =

𝑊𝑤𝑠

𝜌𝑤
+

𝑊𝑐,𝑎

𝜌𝑤
(

𝑤𝑐
𝑐⁄ − 𝛽𝛼𝑥) + 𝑉𝑓 (5-23) 

𝑉 = 𝑉𝑠 + 𝑉𝑝 = 𝑉𝑠
𝑠 + 𝑉𝑤𝑠 + 𝑉𝑐,𝑎 + 𝑉𝑤𝑐 + 𝑉𝑓

= 𝑉𝑠𝑜𝑖𝑙 𝑠𝑙𝑢𝑟𝑟𝑦 + 𝑉𝑔𝑟𝑜𝑢𝑡 + 𝑉𝑓 
(5-24) 
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The weight and volumes of each phase have been determined, thus bulk 

properties of a LWCS can be defined. However, it is convenient to relate these 

amounts to dry weight of soil. Given: 

𝑐

𝑠
=

𝑊𝑐,𝑎

𝑊𝑠
𝑠 ; 𝑤𝑠 =

𝑊𝑤𝑠

𝑊𝑠
𝑠 ; (5-25) 

The equations (5-17) to (5-24) become: 

𝑊𝑠 = 𝑊𝑠
𝑠 + (1 + 𝛼𝑥) (

𝑐

𝑠
) 𝑊𝑠

𝑠 = 𝑊𝑠
𝑠 [1 + (1 + 𝛼𝑥) (

𝑐

𝑠
)] (5-26) 

𝑊𝑙 = 𝑤𝑠𝑊𝑠
𝑠 + 𝑊𝑠

𝑠 (
𝑤𝑐

𝑐
) (

𝑐

𝑠
) (1 −

𝛼𝑥
𝑤𝑐

𝑐⁄
) + 𝑊𝑓

= 𝑊𝑠
𝑠 [𝑤𝑠 + (

𝑐

𝑠
) (

𝑤𝑐

𝑐
− 𝛼𝑥)] + 𝑊𝑓 

(5-27) 

𝑊 = 𝑊𝑠
𝑠 + 𝑤𝑠𝑊𝑠

𝑠 + (
𝑐

𝑠
) 𝑊𝑠

𝑠 + (
𝑤𝑐

𝑐
) (

𝑐

𝑠
) 𝑊𝑠

𝑠

𝑠
+ 𝑊𝑓

= 𝑊𝑠
𝑠 [1 + 𝑤𝑠 + (1 +

𝑤𝑐

𝑐
) (

𝑐

𝑠
)] + 𝑊𝑓 

(5-28) 

𝑉𝑠 =
𝑊𝑠

𝑠

𝜌𝑠
+ (1 +

𝛽𝑥𝛼𝜌𝑐,𝑎

𝜌𝑤
) (

𝑐

𝑠
)

𝑊𝑠
𝑠

𝜌𝑐,𝑎

= 𝑊𝑠
𝑠 [

1

𝜌𝑠
+ (

1

𝜌𝑐,𝑎
+

𝛽𝑥𝛼

𝜌𝑤
) (

𝑐

𝑠
)] 

(5-29) 

𝑉𝑙 =
𝑊𝑤,𝑒𝑣

𝜌𝑤
=

1

𝜌𝑤
[𝑤𝑠𝑊𝑠

𝑠 + 𝑊𝑠
𝑠 (

𝑐

𝑠
) (

𝑤𝑐

𝑐
− 𝛼𝑥) + 𝑊𝑓]

= 𝑊𝑠
𝑠 [

𝑤𝑠

𝜌𝑤
+

1

𝜌𝑤
(

𝑐

𝑠
) (

𝑤𝑐

𝑐
− 𝛼𝑥)] +

𝑊𝑓

𝜌𝑤
 

(5-30) 

𝑉𝑝 = 𝑊𝑠
𝑠 [

𝑤𝑠

𝜌𝑤
+

1

𝜌𝑤
(

𝑐

𝑠
) (

𝑤𝑐
𝑐⁄ − 𝛽𝛼𝑥)] + 𝑉𝑓 (5-31) 

𝑉 = 𝑉𝑠 + 𝑉𝑝 = 𝑊𝑠
𝑠 [

1

𝜌𝑠
+

𝑤𝑠

𝜌𝑤
+ (

𝑐

𝑠
) (

1

𝜌𝑐,𝑎
+

𝑤𝑐
𝑐⁄

𝜌𝑤
)] + 𝑉𝑓 (5-32) 

By this way the volume and weights of solid, liquid and gas phase have been 

written in terms of weight of solid soil and foam (with Vf=γfWf). Hence: 

𝜌𝑠 =
𝑊𝑠

𝑉𝑠
=

(1 + 𝛼𝑥) (
𝑐
𝑠) + 1

1
𝜌𝑠

+ (
1

𝜌𝑐,𝑎
+

𝛽𝑥𝛼
𝜌𝑤

) (
𝑐
𝑠)

= 𝜌𝑠

1 + (1 + 𝛼𝑥) (
𝑐
𝑠)

1 + (
𝜌𝑠

𝜌𝑐,𝑎
+

𝜌𝑠

𝜌𝑤
𝛽𝑥𝛼) (

𝑐
𝑠)

 (5-33) 
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𝑤 =
𝑊𝑙

𝑊𝑠
=

𝑊𝑠
𝑠 [𝑤𝑠 + (

𝑐
𝑠) (

𝑤𝑐

𝑐 − 𝛼𝑥)] + 𝑊𝑓

𝑊𝑠
𝑠 [(1 + 𝛼𝑥) (

𝑐
𝑠) + 1]

=
𝑤𝑠 + (

𝑐
𝑠) (

𝑤𝑐

𝑐 − 𝛼𝑥) +
𝑊𝑓

𝑊𝑠
𝑠

(1 + 𝛼𝑥) (
𝑐
𝑠) + 1

 

(5-34) 

𝛾 =
𝑊

𝑉
=

𝑊𝑠
𝑠 [1 + 𝑤𝑠 + (

𝑐
𝑠) + (

𝑤𝑐

𝑐 ) (
𝑐
𝑠)] + 𝑊𝑓

𝑊𝑠
𝑠 [

1
𝜌𝑠

+
𝑤𝑠

𝜌𝑤
+ (

𝑐
𝑠) (

1
𝜌𝑐,𝑎

+
𝑤𝑐

𝑐⁄
𝜌𝑤

)] + 𝑉𝑓

=
1 + 𝑤𝑠 + (

𝑐
𝑠) + (

𝑤𝑐

𝑐 ) (
𝑐
𝑠) +

𝑊𝑓

𝑊𝑠
𝑠

1
𝜌𝑠

+
𝑤𝑠

𝜌𝑤
+ (

𝑐
𝑠) (

1
𝜌𝑐,𝑎

+
𝑤𝑐

𝑐⁄
𝜌𝑤

) +
𝑉𝑓

𝑊𝑠
𝑠

 

(5-35) 

𝑛 =
𝑉𝑝

𝑉
=

𝑤𝑠

𝜌𝑤
+

1
𝜌𝑤

(
𝑐
𝑠) (

𝑤𝑐
𝑐⁄ − 𝛽𝛼𝑥) +

𝑉𝑓

𝑊𝑠
𝑠

1
𝜌𝑠

+
𝑤𝑠

𝜌𝑤
+ (

𝑐
𝑠) (

1
𝜌𝑐,𝑎

+
𝑤𝑐

𝑐⁄
𝜌𝑤

) +
𝑉𝑓

𝑊𝑠
𝑠

 (5-36) 

𝑒 =
𝑉𝑝

𝑉𝑠𝑜𝑙𝑖𝑑
=

𝑤𝑠

𝜌𝑤
+

1
𝜌𝑤

(
𝑐
𝑠) (

𝑤𝑐
𝑐⁄ − 𝛽𝛼𝑥) +

𝑉𝑓

𝑊𝑠
𝑠

1
𝜌𝑠

+ (
1

𝜌𝑐,𝑎
+

𝛽𝑥𝛼
𝜌𝑤

) (
𝑐
𝑠)

 (5-37) 

𝛾𝑑𝑟𝑦 =
𝑊𝑠

𝑉
=

𝑊𝑠
𝑠 [1 + (

𝑐
𝑠) (1 + 𝛼𝑥)]

𝑊𝑠
𝑠 [

1
𝜌𝑠

+
𝑤𝑠

𝜌𝑤
+ (

𝑐
𝑠) (

1
𝜌𝑐,𝑎

+
𝑤𝑐

𝑐⁄
𝜌𝑤

)] + 𝑉𝑓

=
[1 + (

𝑐
𝑠) (1 + 𝛼𝑥)]

[
1
𝜌𝑠

+
𝑤𝑠

𝜌𝑤
+ (

𝑐
𝑠) (

1
𝜌𝑐,𝑎

+
𝑤𝑐

𝑐⁄
𝜌𝑤

)] +
𝑉𝑓

𝑊𝑠

 

(5-38) 

𝛾𝑠𝑎𝑡 =
𝑊𝑠 + 𝜌𝑤𝑉𝑝

𝑉

=
𝑊𝑠

𝑠 [1 + 𝑤𝑠 + (1 +
𝑤𝑐

𝑐 + (1 − 𝛽)𝛼𝑥) (
𝑐
𝑠)] + 𝜌𝑤𝑉𝑓

𝑊𝑠
𝑠 [

1
𝜌𝑠

+
𝑤𝑠

𝜌𝑤
+ (

𝑐
𝑠) (

1
𝜌𝑐,𝑎

+
𝑤𝑐

𝑐⁄
𝜌𝑤

)] + 𝑉𝑓

 
(5-39) 
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𝑤𝑚𝑎𝑥 =
𝑊𝑠

𝑠 [𝑤𝑠 + (
𝑐
𝑠) (

𝑤𝑐

𝑐 − 𝛽𝛼𝑥)] + 𝜌𝑤𝑉𝑓

𝑊𝑠 [1 + (1 + 𝛼𝑥) (
𝑐
𝑠)]

=
𝑤𝑠 + (

𝑐
𝑠) (

𝑤𝑐

𝑐 − 𝛽𝛼𝑥) +
𝜌𝑤𝑉𝑓

𝑊𝑠
𝑠

1 + (1 + 𝛼𝑥) (
𝑐
𝑠)

 

(5-40) 

𝑆𝑟 =
𝑤

𝑤𝑚𝑎𝑥
=

𝑤𝜌𝑠

𝑒𝜌𝑤
=

𝑤𝑠 + (
𝑐
𝑠) (

𝑤𝑐

𝑐 − 𝛼𝑥) +
𝑊𝑓

𝑊𝑠
𝑠

𝑤𝑠 + (
𝑐
𝑠) (

𝑤𝑐

𝑐 − 𝛽𝛼𝑥) +
𝜌𝑤𝑉𝑓

𝑊𝑠
𝑠

 (5-41) 

If only soil slurry is considered (Wf=Vf=c/s=0), equation (5-41) gives 

obviously 1 because it has been assumed that no air is entrapped. However, if 

c/s>0 and x>0, even if Wf=Vf=0 (cemented soil), saturation degree is slightly 

lower than 1. This is due to the empty capillary pores formed in the cement paste. 

If x=1, α=0.2, β=0.746, ρc,a/ρw=3.15 and ρs=26 kN/m3 (ρca=31.5 kN/m3): 

𝑊𝑠 = 𝑊𝑠
𝑠 [1.2

𝑐

𝑠
+ 1] (5-42) 

𝜌𝐿𝑊𝐶𝑆
𝑠 =

𝑊𝑠

𝑉𝑠
≅ 𝜌𝑠

1.2 (
𝑐
𝑠) + 1

1 + 1.47
𝜌𝑠

𝜌𝑐,𝑎
(

𝑐
𝑠)

≅ 𝜌𝑠

1.2 (
𝑐
𝑠) + 1

1.22 (
𝑐
𝑠) + 1

≅ 𝜌𝑠 (5-43) 

The equation (5-43) states that, regardless of c/s, if the cement is well 

hydrated, the specific weight of a cemented soil is approximately equal to the 

specific weight of the soil itself. Indeed, the cement paste is lightened by the 

presence of water combined.  

In Figure 5-1 a graphical representation of equations above is shown at 

varying x, from 0 (no hydration) to 1 (100 % of the cement hydrated). The bar 

charts show on the left column the amounts of solid, liquid and gas phase in 

LWCS and on the right column their composition. 
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Figure 5-1 Graphical representation of mass and volume balances for Ws=100 g, ws=1.4, c/s=0.4, 

wc/c=0.5, Vf=0. 

In Figure 5-2 the evolution of w, e and n, for Ws=100 g, Vf=0, c/s=0.4, 

wc/c=0.5 with progress of hydration is presented. Water content decreases with 

time due to water chemically combined, thus reducing the liquid phase and 

increasing the solid phase (even if no outward water flow occurs). This also 

justifies the reduction of void ratio and porosity. 

 
Figure 5-2. Evolution of bulk properties at varying x and ws with Ws=100 g, Vf=0, c/s=0.4, wc/c=0.5. 

On the left, the water content; on the right, the solid lines refer to e whereas the dashed lines refer to n. 
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Starting from equations above it is also possible to determine the amounts of 

soil, cement and foam per unit volume by dividing them to the volume of material 

(5-32): 

𝑚𝑠
𝑠 =

𝑊𝑠
𝑠

𝑊𝑠
𝑠 [

1
𝜌𝑠

+
𝑤𝑠

𝜌𝑤
+ (

𝑐
𝑠) (

1
𝜌𝑐,𝑎

+
𝑤𝑐

𝑐⁄
𝜌𝑤

)] + 𝑉𝑓

=
1

[
1
𝜌𝑠

+
𝑤𝑠

𝜌𝑤
+ (

𝑐
𝑠) (

1
𝜌𝑐,𝑎

+
𝑤𝑐

𝑐⁄
𝜌𝑤

)] +
𝑉𝑓

𝑊𝑠
𝑠

 

(5-44) 

𝑚𝑐,𝑎 =

𝑐
𝑠

[
1
𝜌𝑠

+
𝑤𝑠

𝜌𝑤
+ (

𝑐
𝑠) (

1
𝜌𝑐,𝑎

+
𝑤𝑐

𝑐⁄
𝜌𝑤

)] +
𝑉𝑓

𝑊𝑠
𝑠

 
(5-45) 

𝑚𝑤𝑠 =
𝑤𝑠

[
1
𝜌𝑠

+
𝑤𝑠

𝜌𝑤
+ (

𝑐
𝑠) (

1
𝜌𝑐,𝑎

+
𝑤𝑐

𝑐⁄
𝜌𝑤

)] +
𝑉𝑓

𝑊𝑠
𝑠
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(5-47) 
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1
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𝑠

  (5-48) 

It is worth noting that the sum of unit amounts is equal to the unit weight of 

material, while the sum of volumetric amounts, which can be derived dividing 

the gravimetric unit amounts by their specific weight, respectively ρs, ρc,a, ρw and 

γf) is equal to 1, as also shown by Tsuchida and Egashira (2004): 

𝑚𝑠
𝑠 + 𝑚𝑤𝑠 + 𝑚𝑐,𝑎 +  𝑚𝑤𝑐 + 𝑚𝑓 = 𝛾 (5-49) 

𝑚𝑠
𝑠

𝜌𝑠
+

𝑚𝑤𝑠

𝜌𝑤
+

𝑚𝑐,𝑎

𝜌𝑐,𝑎
+

𝑚𝑤𝑐

𝜌𝑤
+

𝑚𝑓

𝛾𝑓
= 1 (5-50) 

 Mix proportion design 

Some parameters were introduced in equations derived in section 5.1. The 

water content of slurry, ws, is a state parameter commonly used to define the 

amount of water in a soil slurry and it’s often related to the liquid limit of the soil. 
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The water to cement ratio by weight, wc/c, is commonly used to define the 

amount of water for cement paste; however, this parameter is unnecessary when 

the cement is added as a powder to the mix (wc/c=0). The amount of cementitious 

material used to treat the soil can be related to both dry weight of soil, referred to 

as cement factor, c/s, and to the volume of material produced, referred to as 

cement content, mc,a (Marzano, 2017). These parameters can be used for mix 

design, and, based on the approach, it could not be necessary to introduce a 

parameter for foam (except for foam unit weight γf). 

The approach proposed by Tsuchida and Egashira (2004) is based on ws, mc,a 

and γ. The water to cement ratio wc/c is equal to zero because of the treatment 

method chosen by the authors, but the same approach can be easily used once 

wc/c is set beforehand. They also suggest determining the optimal ws based on 

rheological properties, via a flow test (3.1.5), that should be between 1.5 and 3 

times the liquid limit. 

Considering equations (5-51) and (5-52), which can be regarded as a system 

of two equations, there are six variables with four degrees of freedom. Once ws 

and wc/c are set, two other design parameters stay. This is a common approach 

in literature, thus mix design methods usually differ for the last two design 

parameters, which are mca and γ in the case of Tsuchida and Egashira (2004). 

Increasing mca, an enhancement in mechanical properties is expected, while the 

unit cost increases. Tsuchida and Egashira (2004) suggest that mca must be 

included between 90 to 300 kg/m3. On the other hand, γ reflects one of the main 

effects of foam that is lowering the density and it can be related to design 

requirements. The other unit amounts (ms
s, mws, mwc, mf) can be easily obtained 

from (5-51) and (5-52). Other approaches generally require a parameter to 

establish the amount of foam to be added and different parameters can be used. 

In some cases, the volume of foam is related to volume of soil slurry 

(Teerawattanasuk et al., 2015), or to the total volume of soil slurry and foam 

(Horpibulsuk et al., 2012). 

A similar approach was used in this study. Both ws and wc/c are set. The 

second one must ensure a proper viscosity of cement suspension to allow a 

homogenous mixing with soil slurry and, subsequently, with foam. The last two 

parameters adopted for mix design are the cement factor, c/s, and nf, defined as 

the ratio between the volume of foam and the volume of material produced: 
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𝑛𝑓 =
𝑉𝑓

𝑉
=

𝑊𝑓

𝑉𝛾𝑓
=

𝑚𝑓

𝛾𝑓
 (5-51) 

This parameter can be regarded as a theoretical porosity induced by foam. 

Conversely to other parameters, nf is not directly related to the weight of soil. A 

convenient way to determine the volume of foam to be used to obtain a specific 

nf, is to express the volume of foam in relation of the sum of the volumes of the 

two slurries: 

𝑒𝑓
′ =

𝑉𝑓

𝑉𝑠𝑜𝑖𝑙 𝑠𝑙𝑢𝑟𝑟𝑦 + 𝑉𝑔𝑟𝑜𝑢𝑡
=

𝑉𝑓

𝑉 − 𝑉𝑓
=

𝑛𝑓

1 − 𝑛𝑓
 (5-52) 

If nf is a theoretical porosity due to foam, ef
’ is not a void ratio due to foam 

because the denominator in (5-52) is not the solid phase of the LWCS. From 

(5-32), with Vf=0: 

𝑉(𝑛𝑓 = 0) = 𝑉𝑠𝑜𝑖𝑙 𝑠𝑙𝑢𝑟𝑟𝑦 + 𝑉𝑔𝑟𝑜𝑢𝑡

= 𝑊𝑠
𝑠 [
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(5-54) 

𝑉𝑓
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𝛾𝑓𝑊𝑠
𝑠 = 𝑒𝑓

′ [
1

𝜌𝑠
+

𝑤𝑠

𝜌𝑤
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𝑐

𝑠
) (

1

𝜌𝑐,𝑎
+

𝑤𝑐
𝑐⁄

𝜌𝑤
)] (5-55) 

By this way it is possible to relate directly nf (which has a clearer physical 

meaning than ef
’) to the ratio between the volume of foam and the weight of dry 

soil. 

The approach used in this study requires to set ws, wc/c, c/s and nf. Then, 

given the amount of dry soil to treat, Ws
s, it’s trivial to derive the amounts of water 

for soil slurry, cement and water for grout whereas the volume of foam to add 

can be easily determined from (5-55). From equations derived in 5.1 it’s possible 

to estimate the physical properties of the material and the unit amounts. 

5.2.1.1. Volume of foam correction 

Breakage of bubbles can occur due to mechanical mixing of foam with other 

suspensions (i.e. soil and cement suspensions), thus the actual volume of foam 
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and the “actual” nf, defined in the following as nf
*, can result to be lower than the 

theoretical values. Given: 

• Vact actual volume of material produced; 

• Vth theoretical volume of material produced (5-32); 

• ΔV difference between actual volume and theoretical volume of material; 

• W mass weight of material produced; 

• γact actual bulk density; 

• γth theoretical bulk density (5-35); 

• ∆𝛾 = 𝛾𝑎𝑐𝑡 − 𝛾𝑡ℎ; 

nf
* can be determined as: 

𝑛𝑓
∗ =

𝑉𝑓,𝑎𝑐𝑡

𝑉𝑎𝑐𝑡
=

𝑉𝑓,𝑡ℎ + ∆𝑉𝑓

𝑉𝑡ℎ + ∆𝑉𝑓
 (5-56) 

Assuming perfect homogeneity of mixture and that no water evaporates 

during mixing, then the loss in volume of the material ΔV is equal to the loss in 

volume of air bubbles, that is the variation of volume of foam, ΔVf. Hence: 

∆𝑉 = ∆𝑉𝑓 = 𝑉𝑎𝑐𝑡 − 𝑉𝑡ℎ =
𝑊

𝛾𝑎𝑐𝑡
−

𝑊

𝛾𝑡ℎ
= 𝑊 (

1

𝛾𝑎𝑐𝑡
−

1

𝛾𝑡ℎ
)

=
𝑊

𝛾𝑡ℎ
(

𝛾𝑡ℎ − 𝛾𝑎𝑐𝑡

𝛾𝑎𝑐𝑡
) = 𝑉𝑡ℎ (

𝛾𝑡ℎ − 𝛾𝑎𝑐𝑡

𝛾𝑎𝑐𝑡
) 

(5-57) 

∆𝑉𝑓

𝑉𝑡ℎ
= (

𝛾𝑡ℎ − 𝛾𝑎𝑐𝑡

𝛾𝑎𝑐𝑡
) = −

∆𝛾

𝛾𝑎𝑐𝑡
 (5-58) 

Dividing both members of (5-56) by Vth: 

𝑛𝑓
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1 −
∆𝛾
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=
𝛾𝑎𝑐𝑡𝑛𝑓 − ∆𝛾

𝛾𝑎𝑐𝑡 − ∆𝛾
=

𝛾𝑎𝑐𝑡𝑛𝑓 − ∆𝛾

𝛾𝑡ℎ
 (5-59) 

It is worth noting that nf
* can be used in place of nf to derive bulk properties 

by using equation (5-55); e’f
*
 can be calculated by nf

*, thus 
Vf

Ws
s can be calculated 

with the same equation by simply substituting nf with nf
*. However, the term 

Wf

Ws
s 

does not have to be modified because the weight of foam in the mixture does not 

change. Only the volume of foam “decreases” due to collapse of bubbles, as if 

the bulk density of foam, γf, changed upon mixing. 
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 Materials 

 Soil 

In this experimental study two soils were investigated. A wide 

experimentation was carried out on a commercially produced fine grained soil, 

the Speswhite kaolin, and a natural fine-grained soil taken around Caposele 

(Avellino, Italy) termed Caposele soil. Particle size distributions and physical 

properties are reported in Figure 5-3 and Table 5-2, respectively. 

 
Figure 5-3. Grain size distribution of Speswhite kaolin and Caposele soil. 

Table 5-1. Physical properties of Speswhite kaolin and Caposele soil. 

 

The Speswhite kaolin is a clayey silt produced from deposits in the southwest 

of England, mainly composed of kaolinite and muscovite, with presence of 

quartz, as it results from the XRD analysis (Appendix B) shown in Figure 5-4. 

The structure and chemical composition of these minerals are discussed in 2.1. 

The main mineral groups, as reported in Table 5-2, are silica and alumina, which 

are the main mineral groups of kaolinite and muscovite, with a low percentage of 

potassium oxide (K2O), that is present in muscovite structure. 

ρs [kN/m
3
] wl [%] wp [%] Ip [%]

SW Kaolin 25.9 70 32 38

Caposele soil 27.5 62 30 32
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Figure 5-4. Results of X-Ray Diffraction analysis on Speswhite kaolin. 

Table 5-2. Composition of Speswhite kaolin. 

 

Caposele soil is a clay with silt composed of muscovite, quartz and calcite, 

as it derived from XRD analysis (Figure 5-5). 

 
Figure 5-5. Results of X-Ray Diffraction analysis on Caposele soil; C: calcite, M: muscovite, Q: 

quartz. 

Group Percentage

SiO2 53.8

Al2O3 43.75

K2O 1.45

Na2O 0.92

TiO2 0.05

CaO 0.02
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5.3.1.1. Soil slurry 

SW kaolin and Caposele soil were diluted at a water content of 140 and 120 

%, respectively. By this way, water content is approximately equal to 2wl for 

both and the corresponding liquidity index is 2.84 and 2.81 for kaolin and 

Caposele, respectively. This value is in the range suggested by different authors 

(1.5-3wl). It is worth noting that using equation (2-11), viscosity of suspension is 

0.051 Pl for kaolin and 0.053 Pl for Caposele (viscosity of water at 20 °C is 0.001 

Pl), that is in the same range of grout viscosity (3.1.5). Fall cone test results at 

varying water content are shown in Figure 5-6a. Data were fitted via equation 

(2-10) (coefficients are reported in the figure); the bulk weight decreases at 

increasing water content, as reported in Figure 5-6b. 

 
Figure 5-6. a) Fall cone test results. Solid lines refer to fit curves; vertical dotted line refers to su 

at liquid limit, as suggested by Koumoto and Houlsby (2001); horizontal dashed lines refer to water 

content of soil slurry adopted for mixtures. b) Measured unit weight at varying water content. 

 Cement 

Portland cement was chosen as a binding agent. Specifically, a commercial 

rapid hardening limestone Portland cement classified as CEM II/A LL 42.5R, 

was supplied by BUZZI UNICEM, was used for all the tests; the amount of 

CaCO3 is between 6 to 20 %. Some details about limestone cements have been 

discussed in 3.1.4. According to commercial datasheet, the unconfined 

compressive strength after 2 and 28 days is above 25 and 47 MPa (standard 

requirements are 20 and 42.5 MPa), respectively; initial setting time is above 2 

hours (standard requires at least 60 minutes). Sulphates (SO3) and chlorites (Cl-) 

percentages are below 3.5 % and 0.08 % (standard requirements are 4 % and 0.1 

%), respectively. 
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A gravimetric water to cement ratio for grout, wc/c, equal to 0.5 was used for 

all the mixtures. The effect of cement factor, c/s, was investigated on treated 

kaolin with c/s=0.2 and 0.4. Caposele soil was treated with c/s=0.4. 

 Foam 

Foam was generated via an industrial foam generator, the GN-100 AC 

Bunker. It is composed of two independent devices: a proportional dosing pump 

to produce the surfactant solution at a specified concentration, and the foam 

generator, constituted of a pump for surfactant solution and a compressor to inject 

pressurized air in solution producing foam. 

  
Figure 5-7.Foam generator. 

A commercial surfactant, produced by Isoltech Srl, namely ISOCEM S/L, 

was used. It is liquid, brown with a specific weight of 10.015 g/L and pH equal 

to 7. It is composed of a mix of anionic and non-ionic surfactants. Surfactant was 

diluted with tap water at the suggested concentration of 2.5 %. The air pressure 

was set to 3.2 bar, producing a foam with a bulk density of 75 ± 5 g/L 

corresponding to a FER approximately equal to 13 ± 1.  

The effect of foam was studied on samples made up with two different nf, i.e. 

0.2 and 0.4, and compared to corresponding cemented soil (nf=0). 

 Mix proportion 

A summary of mixtures tested in this experimental study is reported in Table 

5-3. The mixtures are identified by the type of soil (“K” for Speswhite kaolin and 

“C” for Caposele soil), the cement factor, specified by “csX” (where X is the c/s 

ratio in percentage) and porosity induced by foam nf, specified by “nfY” (where 
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Y is the nf in percentage); for example, Caposele soil treated with a cement factor 

equal to 40 % and nf equal to 20 % is identified by Ccs40nf20. 

Table 5-3. Treated soil mixtures. 

 

In Table 5-4 the theoretical amounts per cubic meter have been reported. The 

symbol msurf refers to the amount of concentrated surfactant additive per cubic 

meter, while mf is the amount of foam by weight, that is equal to the amount of 

diluted surfactant solution at 2.5 %, as specified in 5.3.3. It is worth noting that 

this amount is always lower than 1 kg per cubic meter. The amounts for Kcs40% 

nf 0-20-40% are also reported graphically in Figure 5-8a. 

Table 5-4. Theoretical amounts of dry soil, water for soil slurry, cement, water for cement, foam, 

surfactant for unit volume and unit weight. 

 

In Figure 5-8b the percentages by volumes of each component on total 

theoretical volume are represented (foam volume percentage is equal to nf). In 

this graph, the effect of foam is immediately clear. Increasing the amount of 

foam, all the other components decrease while foam contribution on total weight 

is negligible. Because of this, both the amounts of cement and water per cubic 

meter decrease, and the unit cost decreases as well. 

wc/c ws [%] c/s [%] nf [%]

0% K cs20

20% K cs20 nf20

40% K cs20 nf40

0% K cs40

20% K cs40 nf20

40% K cs40 nf40

0% C cs40

20% C cs40 nf20

40% C cs40 nf40

40%120%Caposele 0.5

0.5 140%

20%

40%

SW Kaolin

ms [kg] mws [kg] mc,a [kg] mwc [kg] mf [kg] msurf [kg] γ [kN/m
3
]

K cs20 513 718 103 51 0 0.00 13.8

K cs20 nf20 410 574 82 41 15 0.38 11.2

K cs20 nf40 308 431 62 31 30 0.75 8.6

K cs40 473 663 189 95 0 0.00 14.2

K cs40 nf20 379 530 151 76 15 0.38 11.5

K cs40 nf40 284 398 114 57 30 0.75 8.8

C cs40 529 635 212 106 0 0.00 14.8

C cs40 nf20 423 508 169 85 15 0.38 12.0

C cs40 nf40 317 381 127 63 30 0.75 9.2
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Figure 5-8. Graphical representation of theoretical composition of K cs40% nf 0-20-40%: (a) amounts 

of each component per cubic meter by weight; (b) percentages by volume. 

 Specimen preparation 

The amount of soil to treat was set beforehand; samples of treated Caposele 

soil and kaolin were obtained by treating 500 g of dry and 300 g of dry soil, 

except for some cases. The samples were seal cured to avoid evaporation of the 

mixture water. 

The high workability of the fresh paste allows to prepare the samples pouring 

the mixture in moulds. A thin layer of silicone grease was put on lateral walls of 

the mould to minimize the friction when the hardened material had to be 

extruded. The method adopted in this study has been presented in Introduction, 

schematically shown in Figure 1-1. The samples for mechanical tests were 

usually poured in moulds with the geometry required for the specific test, so that 

disturbance on specimen was minimized. The main disadvantage of this 

procedure lays on samples shrinkage that may occur during the curing process. 

In that case, specimen dimensions can slightly decrease, affecting the reliability 

of the assumption of oedometric condition made in some tests. Due to small 

dimensions required for microstructural tests, the specimens for these tests were 

trimmed from bigger samples. 
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Figure 5-9. Pictures of different stages of specimen preparation. The numbers refer to the stage 

indicated in this section (5.3.5). 
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The material was prepared following the lightweight cemented soil method: 

1. the amount of dry soil Ws to be treated is mixed with distilled water 

up to a specific water content, ws; 

2. independently, the amount of cement, Wc a, based on c/s, is mixed 

with distilled water, Wwc, at a specific wc/c; 

3. soil slurry and grout are mixed (if no foam is added, 4 and 5 are 

skipped) 

4. contemporarily, foam is prepared, and density of foam is checked; 

5. an amount of foam, Wf, based on nf and equation (5-55) is added; 

6. the mixture is poured in moulds; each sample is weighted and sealed 

on top with a first layer of cling film to minimize loss in water during 

preparation of other samples. At the end, samples are sealed with 

cling film and scotch tape and cured in a humidity-controlled 

chamber. 

 Summary 

In this chapter, solid, liquid and gas phases of lightweight cemented soils 

have been identified. By this way, LWCS bulk properties can be determined 

starting from initial amounts of soil, cement, water and foam. These properties 

are time dependent due to progress of hydration; time evolution is taken into 

account by means of the amount of non-evaporable water which increases with 

time. The mix design method and parameters adopted in this experimental study 

have been described. The parameter nf, defined as the ratio between the volume 

of foam and theoretical volume of material has been introduced; it can be 

considered as a theoretical porosity induced by foam which can be different from 

the actual value because of bubbles breakage upon mechanical mixing. Thus, a 

method to correct bulk properties after volume of foam reduction has been 

presented. Finally, materials (i.e. soil, cement, foam), mixtures and experimental 

procedures used in this study have been described. Mixtures were prepared 

starting from two different clayey soils, namely Speswhite kaolin and Caposele 

soil. A commercial limestone Portland cement was used as a cementitious 

material, whereas foam was produced with an industrial foam generator with a 

commercial surfactant solution. Samples were prepared following the 

lightweight cemented soil method, as schematically described in Figure 1-1. 
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 Mineralogical and microstructural tests 
The results of mineralogical and microstructural tests carried out on mixtures 

presented in 5.3.4 are shown in this chapter. XRD, MIP and TGA were performed 

at University of Cassino and southern Lazio whereas SEM analyses were carried 

out at Institut des Matériaux Jean Rouxel (IMN) of University of Nantes. A brief 

description of these methods is given in Appendix B. Tests were carried out on 

freeze dried samples at different curing times to study the evolution due to 

progress of hydration; in order to identify the specific sample, the suffix “_td” is 

adopted, where (“t” is the curing time and “d” refers to “days”). Samples were 

freeze dried at the specific curing time before performing the tests to stop 

reactions. 

 XRD2 

X-ray diffraction patterns of non-treated and treated kaolin at increasing 

curing time are shown in Figure 6-1. Comparing non-treated and cemented 

kaolin, new reflections are detected in treated samples at very early stages (24 h 

of curing). These reflections are attributed to formation of portlandite deriving 

by cement hydration processes, as explained in paragraph 3.1.1. The intensities 

of these peaks decrease with increasing curing time, suggesting the partial 

consumption of portlandite over time, consistent with pozzolanic reactions 

(3.1.1). 

This consumption is accompanied by a progressive dissolution of kaolinite, 

muscovite and calcite. New peaks corresponding to calcium mono-

carboaluminate hydrate (C4AC̅H11) are detected after 28 days of curing. Peak 

intensities of new hydrates increase with curing time. 

In Figure 6-2, X Ray diffraction patterns of cement, non-treated kaolin and 

lightweight cemented samples at increasing curing times are represented. Foam 

seems not to alter the chemo-mineralogical evolution of the system, both in terms 

of formed and dissolved phases over time. 

                                                 
2 X-ray analyses were performed using a Brucker AXS D8 Advance Diffractometer with 

CuKα (λ = 0.154 nm) radiation and a step size of 0.021°. The diffraction angle, 2θ, is the angle 

between the diffracted beam and the transmitted beam. 
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Figure 6-1. X Ray diffraction patterns of non-treated and cemented kaolin (Kcs40) at different curing 

times. C, K, P, M refer to calcite, kaolinite, portlandite and muscovite, respectively. 

 
Figure 6-2. X Ray diffraction patterns of non-treated and lightweight cemented kaolin (Kcs40nf40) at 

different curing times. C, K, P, M refer to calcite, kaolinite, portlandite and muscovite, respectively. 
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 TGA3 

The quantitative interpretation of thermogravimetric analyses can be used to 

study the progress of hydration. Indeed, as shown in paragraph 3.1.1.1, mass loss 

can be associated to decomposition of specific phases. 

In Figure 6-3 TGA and DTG on non-treated kaolin, anhydrous cement and 

grout (wc/c = 0.5), are presented. Significant weight loss observed on Speswhite 

kaolin (dotted line), in the range 500 °C - 600 °C is due to dehydroxylation of 

kaolinite and muscovite. The anhydrous cement (dashed line) is characterized by 

a significant mass loss between 700 to 900 °C, typical of CaCO3 dissolution. This 

amount is consistent with the cement adopted (limestone Portland cement) which 

can be characterized by a percentage by mass of CaCO3 up to 20 % (section 

5.3.2). The TGA analysis on grout shows that a significant mass loss occurs 

below 350 °C related to dehydration of hydrate products. Between 400 and 500 

°C, a significant mass loss related to portlandite decomposition is observed, with 

a peak of mass loss rate at 450 °C. It is noteworthy that ranges of temperature in 

which kaolinite and portlandite decomposition occurs slightly overlap; the rate 

of mass loss of Portlandite becomes negligible above 500 °C, whereas a 

significant rate is observed for Kaolinite right below 500 °C. However, at 500 

°C, most of portlandite is decomposed. 

In Figure 6-4 a comparison between thermogravimetric analyses performed 

at different curing times on Kcs40 is represented. The mass loss between 100 and 

350 °C (absent in kaolin) is related to cement hydration products, which increase 

with curing time. Due to partial overlap of kaolinite and portlandite, the peak of 

portlandite cannot be appreciated. However, at increasing curing time, a slight 

reduction of portlandite mass loss is detected, which is consistent with XRD 

results. Similar results are found for Kcs40nf40, as reported in Figure 6-5. 

                                                 
3 Thermo-gravimetric analyses were performed, with a Netzsch STA 449F3 Jupiter, 

equipped with a mass spectrometer. Finely ground sample was heated at a rate of 10 °C min−1, 

under argon atmosphere, from ambient temperature to 1000 °C. The Netzsch Proteus software 

has been used to process the results, represented as percentage of total weight loss versus 

temperature (thermogravimetric curve), or rate of loss versus temperature (differential 

thermogravimetric curve). 
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Figure 6-3. Thermogravimetric analyses on anhydrous cement (CEM II/A LL 42.5R), Speswhite kaolin 

and cement grout (wc/c=0.5); P and K refer to Portlandite and Kaolinite, respectively. 
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Figure 6-4. Thermogravimetric analyses on Kcs40 at different curing times; Speswhite kaolin (dotted 

line) and cement grout (dashed line) are also reported; P and K refer to Portlandite and Kaolinite, 

respectively. 
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Figure 6-5. Thermogravimetric analyses on Kcs40nf40 at different curing times; Speswhite kaolin 

(dotted line) and cement grout (dashed line) are also reported; P and K refer to Portlandite and 

Kaolinite, respectively. 

 Quantitative analyses of TGA 

Quantitative interpretations of TGA are represented in Figure 6-6. 

Neglecting the influence of kaolinite dehydroxylation, the amount of mass loss 

between 390 and 500 °C can be related to decomposition of portlandite. A 

gradual consumption of portlandite is observed after 7 days of curing, consistent 

with XRD results shown in Figure 6-1 and Figure 6-2. 
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Figure 6-6. Evolution of portlandite with curing time by quantitative interpretation of TGA analyses on 

Kcs40 and Kcs40nf40. 

As stated in 3.1.6 for the cement paste, the amount of non-evaporable water 

Ww n-ev can be derived from the results of a thermogravimetric analysis. In the 

hypothesis that non-evaporable water is the water combined in gel and, more 

generally, in products of hydration, mass loss of non-evaporable water occurs 

between 110 and 350 °C. This amount can be determined as the ratio between the 

weight loss in the fixed range of temperature and the weight at 110 °C. However, 

standard procedures consider the weight of solid phase, Ws
, as the oven dried 

weight at 105 °C. Then, assuming a slightly different range of temperature, the 

mass loss due to hydrates dehydration, i.e. the mass loss of non-evaporable water, 

is: 

𝑊𝑤 𝑛−𝑒𝑣

𝑊𝑠
= 𝑤𝑛−𝑒𝑣 ≅

𝑊𝑒𝑖𝑔ℎ𝑡𝑙𝑜𝑠𝑠𝑖𝑛(105° − 350°)

𝑊𝑒𝑖𝑔ℎ𝑡(105°)
  (6-1) 

where wn-ev can be regarded as the water content of non-evaporable water. It 

is worth noting that this amount of water is not free water but part of the solid 

phase. Results of tests on treated kaolin with c/s=0.4 are represented in Figure 

6-7. 
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Figure 6-7. Evolution of the amount of non-evaporable water in time of treated kaolin. 

Except for t=1 day, the non-evaporable water seems to be slightly higher in 

the sample without foam. However, there is a very slight difference and the trend 

is almost the same. The addition of foam seems to not affect significantly the 

products of hydration, as already observed in XRD. 

These data can help to determine physical properties of soil. Indeed, to use 

equations reported in 5.1, it is necessary to determine the evolution of αx with 

curing time, that is the ratio between the amount of non-evaporable water and the 

amount of anhydrous cement (6-1). The non-evaporable water wn-ev can be 

expressed as a function of αx and c/s. Equation (6-2) can be verified by 

multiplying both members of the first expression by the weight of solid soil. 

𝛼𝑥 =
𝑊𝑤 𝑛−𝑒𝑣

𝑊𝑐,𝑎,ℎ

𝑊𝑐,𝑎,ℎ

𝑊𝑐,𝑎
=

𝑊𝑤 𝑛−𝑒𝑣

𝑊𝑐,𝑎
 (6-1) 

𝑤𝑛−𝑒𝑣 =

𝑐
𝑠 𝛼𝑥

𝑐
𝑠

(1 + 𝛼𝑥) + 1
⇒ 𝛼𝑥 =

𝑤𝑛−𝑒𝑣 (1 +
𝑐
𝑠)

(1 − 𝑤𝑛−𝑒𝑣)
𝑐
𝑠

 (6-2) 

The product αx was calculated for Kcs40 and Kcs40nf40 at 1, 7, 28, 60 and 

180 days of curing. In the hypothesis that the chemo-physical evolution is the 

same for both lightened and non-lightened materials, all data were used to fit an 

analytical expression; logarithmic and bi-logarithmic expressions were proposed. 
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Figure 6-8. Evolution of αx with time and best fit of data. 

The logarithmic function seems to fit slightly better the data. Both cannot be 

applied for t=0, and the logarithmic function gives negative values for time below 

half an hour; however, no data are available below 1 day of curing. 

 
Figure 6-9. Evolution of (a) non-evaporable water and (b) αx with curing time on cemented and 

lightweight cemented kaolin. 

A summary of the results of TGA tests performed on other mixtures is 

represented in Figure 6-9. Results on Kcs40nf20 samples are in accordance with 

results on Kcs40 and Kcs40nf40. The amount of non-evaporable water (Figure 

6-9a) obtained on Kcs20, Kcs20nf20 and Kcs20nf40 samples is lower than 
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observed in Kcs40. This is due to the lower amount of cement and it doesn’t 

depend on a slower kinetic. Indeed, looking at Figure 6-9b, the value of αx is also 

higher than samples treated at a cement factor, c/s, equal to 40%. 

 MIP4 

Microstructural features of cemented and lightweight cemented samples 

have been investigated by means of Mercury Intrusion Porosimetry (MIP). Pore 

size distribution curves of cement treated samples at increasing curing times (i.e. 

1, 28 and 60 days) are shown in Figure 6-10. 

 
Figure 6-10. MIP on Kcs40 samples at different curing times (1, 28 and 60 days). 

Pore size distribution of cement treated samples is characterised by the most 

frequent class of pores with modal pore diameter ranging between 0.2 µm - 0.4 

µm, with slight evolution over time; in the smallest pore range (i.e. entrance pore 

diameters <0.2 µm), an increase of frequency is observed over curing time. A 

                                                 
4 MIP tests were by a double chamber Micromeritics Autopore III apparatus. In the filling 

apparatus (dilatometer) samples were outgassed under vacuum and then filled by mercury 

allowing increase of absolute pressure up to ambient one. The detected entrance pore diameters 

range between 134 μm and 7.3 μm (approximately 0.01 MPa - 0.2 MPa for a mercury contact 

angle of 139°). After depressurisation to ambient pressure, samples were transferred to high-

pressure unit, where mercury pressure was increased up to 205 MPa following a previously set 

intrusion program. 
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reverse trend is detected for largest pores (i.e. entrance pore diameters > 0.5 µm), 

with a decrease of frequency of pores as curing time increases, until a complete 

disappearance of the pore class at 60 days of curing. Pore size distributions of 

lightweight cemented samples at 1, 28 and 60 days of curing have been compared 

with those of cement treated samples as shown in Figure 6-11, Figure 6-12 and 

Figure 6-13.  

 
Figure 6-11. (a) Cumulative intruded volumes and (b) pore size distributions of Kcs40 (cemented 

kaolin), Kcs40nf20 and Kcs40nf40 (lightweight cemented kaolin) after 1 day of curing. 

An increase of cumulative intruded mercury volume is observed as air foam 

content increases, regardless of curing time (Figure 6-11a, Figure 6-12a, Figure 

6-13a). Addition of air foam does not modify the modal pore size of cement 
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treated samples (ranging between 0.2 µm - 0.4 µm). An increase of frequency of 

pores larger than 0.5 µm is detected for lightweight cemented samples. 

 
Figure 6-12. (a) Cumulative intruded volumes and (b) pore size distributions of Kcs40 (cemented 

kaolin), Kcs40nf20 and Kcs40nf40 (lightweight cemented kaolin) after 28 days of curing. 
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Figure 6-13. (a) Cumulative intruded volumes and (b) pore size distributions of Kcs40 (cemented 

kaolin), Kcs40nf20 and Kcs40nf40 (lightweight cemented kaolin) after 60 days of curing. 
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 SEM5 

SEM observations of non-treated kaolin and cement treated samples (Kcs40) 

at increasing curing times (i.e. 1 and 60 days of curing) are shown in Figure 6-14. 

 
Figure 6-14. SEM observations on non-treated kaolin (a, b) and cement treated sample (Kcs40 - c, d: 

24h of curing; e, f: 60 days of curing) 

                                                 
5 SEM were performed via SU5000 Hitachi Scanning Electron Microscopy at Institut des 

Matériaux Jean Rouxel (IMN) of University of Nantes. A gold coating of the samples has been 

performed before SEM observations. 
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The effects of cement addition are clearly observed since the very short term 

(i.e. 24h of curing), with kaolinite particles embedded into C-S-H gel. At longer 

curing time (i.e. 60 days) a well-connected matrix of hydrates and particles is 

detected (Figure 6-14c). SEM micrographs performed at higher magnifications 

allow an insight into microstructural features of cement treated sample after 60 

days of curing (Kcs40), as shown in Figure 6-15, where the presence of C-S-H 

network and crystals of portlandite, even if partially dissolved and transformed 

into hydrates, are clearly identified (Figure 6-15a, b, c). New formation of 

aluminate hydrates is also detected (Figure 6-15d). 

 
Figure 6-15. SEM observations on Kcs40 (cement treated sample) at 60 days of curing. 

SEM observations of cement treated and lightweight cemented samples at 60 

days of curing are compared in Figure 6-16. Soil matrix is made of arrangement 

of kaolinite particles or group of particles, embedded in a network of C-S-H 

phases. No significant changes of soil matrix for both cement treated and 

lightweight cemented samples are observed, regardless of air foam content. 
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Figure 6-16. SEM observations on Kcs40 (a, b, c), Kcs40nf20 (d, e, f) and Kcs40nf40 (g, h, i) after 60 

days of curing. 

An insight into the effects of foam on soil-cement-water system with respect 

to distribution and size of voids is shown in Figure 6-17, Figure 6-18 and Figure 

6-19, where SEM observations of lightweight cemented samples, namely 

Kcs40nf20 and Kcs40nf40 at 60 days of curing are respectively reported. At 

lower magnification (Figure 6-17), the effect of air foam is clearly evidenced by 

footprint of air bubbles on the lightweight samples surface as consequence of 

matrix displacement during mixing, whose extent and frequency increase as air 

foam content increases. 

 
Figure 6-17. SEM observations on Kcs40 (a), Kcs40nf20 (b), Kcs40nf40 (c) after 60 days of curing. 
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Figure 6-18. SEM observations on Kcs40nf40 (lightweight cemented samples) at 60 days of curing 

time: details of air bubble footprint surface. 

 
Figure 6-19. SEM observations on Kcs40nf40 (lightweight cemented samples) at 60 days of curing: 

details of air bubbles filled by portlandite and cement hydrates. 
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Soil matrix forms the sub-spherical limit surface of air bubbles footprints, as 

shown in Figure 6-18. Precipitation of portlandite crystals and hydrated phases 

inside air bubble footprints is frequently observed (Figure 6-19). Cavities of 

different shape, also smaller than footprints of air bubbles, are often detected in 

the soil matrix and filled by precipitation of aluminate hydrates and portlandite 

as in Figure 6-20. 

 
Figure 6-20. SEM observations on Kcs40nf40 (lightweight cemented samples) at 60 days of curing: 

details of cavities filled by portlandite and cement hydrates. 

 Discussion 

Chemo-physical evolution of treated samples, regardless of foam addition, is 

ruled by hydration of cement and pozzolanic reactions. Indeed. addition of foam 

to soil – cement - water system does not alter chemo-physical evolution of treated 

samples. Precipitation of portlandite and progressive formation of cementitious 

gel compounds since the very short term (i.e. 24 hours of curing) have been 

clearly detected by XRD and TGA analyses. At increasing curing time, a gradual 

consumption of formed portlandite and progressive dissolution of clay minerals 

(i.e. kaolinite and muscovite) seems to be consistent with development of 

pozzolanic reactions. Calcite in anhydrous cement represents a further reacting 

component during hydration and pozzolanic reactions, as confirmed by formation 

of carboaluminate phases, i.e. calcium monocarboaluminate (Figure 6-1). 
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Effects of chemo-physical evolution on microstructural features of cement 

treated soil have been highlighted by MIP results. Modal pore size seems slightly 

shifted towards smaller sizes because of formation of a well-connected network 

of hydrates over time, which increases small pores frequency and contributes to 

the progressive decrease of pore frequency between 0.6 – 4 µm.  

SEM images confirm MIP results interpretation (Figure 6-14), showing 

kaolinite particles embedded into C-S-H network since early curing times (i.e. 

24h). At longer curing time (i.e. 60 days), it is clearly visible that this well-

connected network of hydrates fills the space left around kaolinite particles or 

groups of particles (Figure 6-15).  

Bubbles constituting foam, and the surrounding surfactant layers, are able to 

displace and sustain the soil-cement slurry matrix upon mixing. Addition of foam 

introduces air in the system included in bubbles of different sizes. Air bubbles 

remaining stable over cement setting and matrix hardening are responsible of 

increase of porosity of lightweight cemented samples. Due to matrix (i.e. soil-

cement hydrates) hardening, the space left by air in the bubbles is preserved from 

collapse under matrix overburden. This is consistent with large footprints clearly 

detected by SEM observations (Figure 6-17). By inspecting the footprints 

surface, soil matrix is clearly visible with its characteristic pore size distribution, 

being pores in the small range as well as modal pore size slightly affected by air 

foam content regardless of curing time. 

As shown by MIP analyses, footprints of air bubbles on sample surface are 

not detected when their size is over the maximum size detectable by MIP (i.e. 

diameter >300 μm); conversely, bubbles inside the samples (not directly 

connected with sample surface) can be detected only through the connected 

smaller pores belonging to soil matrix if accessible from the outer surface of 

samples. In this case, cumulative curves of intruded mercury show an increase of 

intrusion corresponding to the modal size of soil matrix, highlighting the volume 

filling of internal bubbles, and justifying the overall higher porosity of the 

samples. This mechanism is consistent with MIP results also in terms of pores 

frequency, which show a similar modal size of the lightweight cemented samples 

regardless of the foam content, being this distribution characteristic of the matrix. 

The higher frequency of larger voids (i.e. bubbles, cavities or pores) is ruled by 

the amount of foam added to the system. The subsequent reduction of larger pores 

at increasing curing time (i.e. pore entrance diameters between 10 mm and 250 

μm), more evident for samples with higher amount of foam (i.e. Kcs40nf40), 



                                                                                                                Chapter 6 

102 

 

depends on the chemo-physical evolution of the soil system, due to the 

precipitation of hydrates filling the available space in the voids.  
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 Physical and mechanical properties of treated samples 
Physical characterization and mechanical tests were performed at different 

curing times to study the effects of chemo-physical evolution of clay-cement-

water system on properties of treated soils. A brief description of tests, performed 

in geotechnical laboratory of University of Naples Federico II, is given in 

Appendix B. 

 Speswhite kaolin  

 Bulk properties 

7.1.1.1. Cemented kaolin 

A summary of the mechanical tests performed on cemented kaolin is shown 

in Table 7-1. As for microscale, tests were carried out at different curing times to 

study the effect of chemical evolution on mechanical properties; in order to 

identify the specific sample, the suffix “_td” is adopted, (where “t” is the curing 

time and “d” stays for “days”). Oedometric tests are identified by suffix “_oed”. 

The other samples refer to direct shear tests; being the majority, for simplicity 

they are only identified by confining stress at which they are performed, by means 

of the suffix “_ZkPa” (where Z is the confining stress). For example, cemented 

kaolin sample with c/s=20% after 7 days of curing tested in direct shear at a 

confining stress of 100 kPa is “Kcs20_7d_100kPa”. The column “t” refers to the 

curing time at which test was performed, while σv
′  refers to the normal stress 

applied. Bulk density and dry bulk density are also reported for each sample. The 

former is the bulk density at t=0, i.e. at time of mixture preparation. The average 

values for Kcs20 and Kcs40 mixtures are 13.7 and 14.1 kN/m3, respectively, 

which are similar to theoretical bulk weight, 13.8 and 14.2 kN/m3 reported in 

5.3.4. 

Dry density was determined as the ratio of the oven dry weight of sample 

after test and volume before test was performed. It refers to a specific time, 

because dry density grows up slightly along with the progress of hydration, which 

reduces water content and by consequence the volume of pores. 

The specific gravity of cemented kaolin with c/s=40% was determined 

according to ASTM D854. It was 26 kN/m3, approximately equal to specific 

gravity of non-treated soil; this confirms the result of (5-43). Assuming this value 

as constant in time, void ratio can be determined for each sample6. 

                                                 
6 According to theoretical equations, specific gravity of cemented soil slightly decreases 

with time due to progress of hydration. 
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Table 7-1. Summary of direct shear tests performed on cemented soil. 

 

In section 5.1 theoretical equations to determine bulk properties starting from 

mix design parameters were derived (5-41). To apply these equations, it is 

necessary to know αx(t). Two expressions for this function were proposed in 

section 6.2.1, derived by interpreting thermogravimetric analyses at different 

curing times. The following expression will be used: 

𝛼𝑥 = 0.024 ∙ ln(𝑡) + 0.098 (7-1) 

It is worth noting that according to this equation αx is equal to 0.23 at t=245 

days. According to Neville (2011), α is around 0.23 for a fully hydrated paste, 

and 0.23 would be the maximum value of αx (being x at maximum 1). However, 

hydration can continue to take place, thus α should be greater than 0.23; this is a 

t [days] σ'v [kPa] γ [kN/m3] γdry [kN/m3] e

Kcs20_7d_50kPa 7 50 13.5 6.2 3.2

Kcs20_7d_100kPa 7 100 13.7 6.1 3.2

Kcs20_7d_150kPa 7 150 13.6 6.2 3.2

Kcs20_7d_50kPa 28 50 13.9 6.3 3.1

Kcs20_7d_100kPa 28 100 13.7 6.2 3.2

Kcs20_28d_150kPa 28 150 13.7 6.3 3.1

Kcs20_7d_oed 7 - 13.6 6.4 3.1

Kcs20_28d_oed 28 - 13.6 6.5 3.0

Kcs40_1d_50kPa 1 50 14.3 - -

Kcs40_1d_100kPa 1 100 14.1 6.8 2.8

Kcs40_1d_150kPa 1 150 14.0 6.5 3.0

Kcs40_3d_50kPa 3 50 14.1 - -

Kcs40_3d_100kPa 3 100 14.0 6.9 2.8

Kcs40_3d_150kPa 3 150 14.2 6.1 3.3

Kcs40_7d_50kPa 7 50 14.3 6.8 2.8

Kcs40_7d_100kPa 7 100 14.0 6.9 2.8

Kcs40_7d_150kPa 7 150 13.9 6.4 3.1

Kcs40_14d_50kPa 14 50 14.2 - -

Kcs40_14d_100kPa 14 100 13.9 6.8 2.8

Kcs40_14d_150kPa 14 150 13.9 6.8 2.8

Kcs40_28d_50kPa 28 50 14.0 6.8 2.8

Kcs40_28d_100kPa 28 100 14.3 6.7 2.9

Kcs40_28d_150kPa 28 150 14.1 6.8 2.8

Kcs40_60d_50kPa 60 50 14.0 6.9 2.8

Kcs40_60d_100kPa 60 100 14.1 7.0 2.7

Kcs40_60d_150kPa 60 150 14.0 7.0 2.7

Kcs40_90d_50kPa 90 50 14.0 7.0 2.7

Kcs40_90d_100kPa 90 100 14.1 6.9 2.7

Kcs40_90d_150kPa 90 150 14.0 6.9 2.8

Kcs40_7d_oed 7 - 14.1 7.1 2.6

Kcs40_28d_oed 28 - 14.1 7.0 2.7

K cs20

K cs40
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limitation of the equation proposed, which was derived from data up to 180 days. 

Nonetheless, if the equation is regarded as a simplified model to derive physical 

properties of cemented soil, it can still be applied. 

A comparison between theoretical and measured values of dry unit weight 

and void ratio is shown in Figure 7-1. It can be observed that data are 

approximately well fitted. Dry unit weight at 7 days for Kcs20 is slightly 

overestimated (void ratio is underestimated). Data from Kcs40 are well fitted also 

at higher curing times (60 and 90 days). Dry unit weight at 28 days is slightly 

underestimated (void ratio overestimated) for the 3 samples tested in direct shear, 

while Kcs40_28d_oed is well fitted. In terms of dry unit weight, a significant 

deviation comes only from Kcs40_1d_150kPa, Kcs40_3d_150kPa and 

Kcs40_7d_150kPa, in which the error is higher than 5% in terms of dry unit 

weight and void ratio. 

 
Figure 7-1. Comparison between estimated and measured value of (a) dry unit weight and (b) void ratio at 

different curing times. Dotted and dashed line refer to theoretical values. 

By knowing dry weight and the weight before test, water content can be 

determined at time t. In the hypothesis of seal curing, total weight should be equal 

to the initial total weight. However, evaporation can occur if the sample it’s not 

perfectly sealed. In order to compare the measured water content to theoretical 

value, the water content of the seal cured material at curing time t can be 

estimated by using initial total weight and the dry weight at time t. The 

comparison is shown in Figure 7-2a. In this case, the error is more pronounced. 

As for dry unit weight and void ratio, the larger deviations occur for 
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Kcs40_3d_100kPa and Kcs40_7d_150kPa in which measured water content is 

significantly different compared to theoretical value and the error is above 10%. 

In Figure 7-2b, data from samples prepared to measure oven dried (OD) 

water content at varying curing time are compared with theoretical values. Data 

from freeze dried samples (FD) used for microstructural analyses are also 

reported. The water content of Kcs40 samples is well fitted, while water content 

of Kcs20 samples appears to be slightly overestimated. 

 

Figure 7-2. Water content of cemented soil at different curing time. (a) Data from samples after direct 

shear test; (b) data from oven dried and freeze-dried samples. 
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7.1.1.2. Lightweight cemented kaolin 

A summary of the mechanical tests performed on lightweight cemented 

kaolin is given in Table 7-2. 

Table 7-2. Summary of tests on lightweight cemented kaolin. 

 

t [days] σ'v [kPa] γ [kN/m
3
] γdry [kN/m

3
] e

Kcs20_nf20_7d_50kPa 7 50 12.8 5.7 3.5

Kcs20_nf20_7d_100kPa 7 100 12.3 5.5 3.8

Kcs20_nf20_7d_150kPa 7 150 12.9 6.2 3.2

Kcs20_nf20_28d_50kPa 28 50 13.0 5.8 3.5

Kcs20_nf20_28d_100kPa 28 100 13.0 5.8 3.5

Kcs20_nf20_28d_150kPa 28 150 12.5 5.6 3.6

Kcs20_nf20_7d_oed 7 - 12.5 5.8 3.5

Kcs40_nf20_7d_50kPa 7 50 12.6 6.0 3.3

Kcs40_nf20_7d_100kPa 7 100 12.8 6.1 3.2

Kcs40_nf20_7d_150kPa 7 150 12.8 6.1 3.3

Kcs40_nf20_14d_50kPa 14 50 12.5 6.0 3.4

Kcs40_nf20_14d_100kPa 14 100 12.8 - -

Kcs40_nf20_14d_150kPa 14 150 12.9 5.9 3.4

Kcs40_nf20_28d_50kPa 28 50 12.5 6.1 3.3

Kcs40_nf20_28d_100kPa 28 100 13.0 6.2 3.2

Kcs40_nf40_28d_150kPa 28 150 13.0 - -

Kcs20_nf20_7d_50kPa 7 50 10.2 4.7 4.6

Kcs20_nf20_7d_100kPa 7 100 10.2 4.4 4.9

Kcs20_nf20_7d_150kPa 7 150 10.4 4.5 4.8

Kcs20_nf20_28d_50kPa 28 50 10.2 4.5 4.8

Kcs20_nf20_28d_100kPa 28 100 10.2 4.5 4.8

Kcs20_nf20_28d_150kPa 28 150 10.4 4.3 5.1

Kcs20_nf40_14d_oed 14 - 10.2 4.7 4.5

Kcs20_nf40_28d_oed 28 - 10.2 4.7 4.6

Kcs40_nf40_1d_50kPa 1 50 10.3 4.8 4.4

Kcs40_nf40_1d_100kPa 1 100 10.0 4.6 4.6

Kcs40_nf40_3d_50kPa 3 50 10.5 4.8 4.5

Kcs40_nf40_3d_100kPa 3 100 10.6 4.7 4.6

Kcs40_nf40_3d_150kPa 3 150 10.5 4.7 4.5

Kcs40_nf40_7d_50kPa 7 50 10.1 4.7 4.5

Kcs40_nf40_7d_100kPa 7 100 10.7 4.9 4.3

Kcs40_nf40_7d_150kPa 7 150 10.8 5.3 3.9

Kcs40_nf40_14d_50kPa 14 50 10.4 4.9 4.3

Kcs40_nf40_14d_100kPa 14 100 10.0 4.7 4.5

Kcs40_nf40_28d_50kPa 28 50 10.3 5.0 4.2

Kcs40_nf40_28d_100kPa 28 100 10.6 5.0 4.2

Kcs40_nf40_28d_150kPa 28 150 10.0 - -

Kcs40_nf40_60d_50kPa 60 50 10.8 5.0 4.2

Kcs40_nf40_60d_100kPa 60 100 10.8 5.1 4.1

Kcs40_nf40_90d_50kPa 90 50 10.3 5.1 4.1

Kcs40_nf40_90d_100kPa 90 100 10.7 4.8 4.4

Kcs40_nf40_90d_150kPa 90 150 10.9 - -

Kcs40_nf40_7d_oed 7 - 10.2 5.0 4.2

Kcs40_nf40_14d_oed 14 - 10.3 5.1 4.1

Kcs40_nf40_28d_oed 28 - 10.2 5.0 4.2

K cs20 

nf20

K cs40 

nf20

K cs20 

nf40

K cs40 

nf40
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The same approach used for cemented kaolin was used to determine γ, γdry, 

e and w of lightweight samples. In this case, the measured unit weight is higher 

than theoretical value (respectively 11.2 and 8.6 kN/m3 for Kcs20nf20 and 

Kcs20nf40, and 11.5 and 8.8 kN/m3 for Kcs40nf20 and Kcs40nf40 - Table 5-3). 

Indeed, the average values of measured unit weights are 12.8 and 10.3 kN/m3 for 

Kcs20nf20 and Kcs20nf40, and 12.8 and 10.5 kN/m3 for Kcs40nf20 and 

Kcs40nf40. This difference depends mainly on the breakage of foam bubbles 

upon mechanical mixing. In this case, theoretical properties derived from 

equations (5-33) - (5-41) would deviate significantly from data. In order to 

compare data with theoretical values, the approach presented in 5.2.1.1 was used. 

It is assumed that the difference between theoretical and measured unit weight is 

only due to the breakage of foam bubbles; then an “actual” volume of foam is 

determined and, hence, the “actual” ratio Vf/V, referred to as 𝑛𝑓
∗. By this way, 

theoretical unit weight is matched to the measured unit weight and the actual 𝑛𝑓
∗ 

is determined for each sample. The average 𝑛𝑓
∗ values are 9 % and 28 % for 

Kcs20nf20 and Kcs20nf40, and 11 % and 29 % for Kcs40nf20 and Kcs40nf40. 

The theoretical values of bulk properties shown thereafter are determined with 

the average values of 𝑛𝑓
∗.  

 

Figure 7-3. Comparison between estimated and measured (a) dry unit weight and (b) void ratio of 

Kcs40nf 0-20-40 at varying curing time. Dashed lines refer to theoretical values. 

The comparison between measured and estimated values (after volume 

correction) of unit dry weight and void ratio are shown in Figure 7-3a and Figure 

7-3b, respectively. Data regarding Kcs40 are also reported. The lightweight 
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material has a significantly lower (higher) dry unit weight (void ratio), especially 

comparing Kcs40 and Kcs40nf40. Data are well fitted, except for 

Kcs40nf40_7d_150kPa and Kcs40nf40_90d_100kPa. The same can be observed 

in Kcs20 nf 0-20-40, as shown in Figure 7-4; the void ratio is slightly higher than 

Kcs40 nf 0-20-40 (comparing samples with the same nf). This is due to the lower 

amount of cement, which reduces the solid phase. 

 

Figure 7-4. Comparison between estimated and measured (a) dry unit weight and (b) void ratio of 

Kcs20nf 0-20-40 at varying curing time. Dashed lines refer to theoretical values 

 

Figure 7-5. Water content time evolution of Kcs40nf0-20-40. 
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In terms of water content, data from samples of Kcs40 nf0-20-40 subjected 

to mechanical tests are highly dispersed between 100 and 120 % (Figure 7-5a). 

However, data from freeze dried samples for microstructural and mineralogical 

tests, and data from oven dried samples prepared for this purpose are well fitted 

(Figure 7-5b). The same scatter was observed in Kcs20 nf0-20-40 (Figure 7-6). 

 
Figure 7-6. Water content time evolution of Kcs20 nf0-20-40 oven dried samples. 

Finally, it is worth noting that saturation degree of lightened samples is 

significantly lower than 1 because of air bubbles, while saturation degree of 

cemented kaolin is almost 1 (98% on average for both Kcs20 and Kcs40). The 

average degree of saturation for Kcs20nf 20-40 is 90% and 70%, respectively, 

while for Kcs40nf 20-40 is 87% and 69%, respectively. 

 Mechanical tests 

7.1.2.1. Direct shear tests7 

In the following section, direct shear test results on cemented Speswhite 

kaolin are presented. The effects of cement factor, curing time and confining 

stress on mechanical behaviour of cemented kaolin will be highlighted. 

In Figure 7-7 results of tests performed after 7 days of curing are shown. At 

increasing cement/soil ratio (c/s), both peak strength and initial stiffness increase. 

The volumetric behaviour of Kcs40 is dilative for both confining stresses; at a 

confining stress of 50 kPa, the behaviour is initially contractive, and it becomes 

dilative only after peak is reached, which is consistent with results of Schnaid et 

                                                 
7
 The adopted shear box apparatus is a standard one. All direct shear tests have been 

performed at a displacement rate of 0.005 mm/min. Micrometer dial gauges with a resolution of 

0.001 and 0.01 mm have been respectively used to measure vertical and horizontal displacements. 
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al. (2001). For Kcs40 samples, at increasing confining stress, failure occurs at 

higher deformations, but a brittle behaviour is observed in both cases. Non-

linearity of stress-strain curves occur just before peak strength is reached. 

Conversely, the behaviour of Kcs20 after 7 days of curing is contractive and 

ductile, similar to non-treated kaolin (dotted and dashed lines in Figure 7-7). 

Increasing the confining stress, there is no change in initial stiffness whereas an 

increase in peak strength is observed. It is worth noting that peak strength of all 

these samples is higher than non-treated kaolin. 

 
Figure 7-7. Direct shear tests on Kcs20 and Kcs40 at 7 days of curing. Dotted and dashed lines refer to 

tests at 50 kPa and 100 kPa on non-treated kaolin, respectively. 
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Similar results are observed on samples tested at 28 days of curing, as shown 

in Figure 7-8. At increasing cement content, both peak strength and stiffness 

increase. The behaviour of Kcs40 is brittle and dilative. In this case, a softening 

stage at high deformations is observed also on Kcs20 samples; a slight dilatancy 

is observed at a confining stress of 50 kPa, while it is contractive at σv
’  = 100 kPa. 

 
Figure 7-8. Direct shear tests on Kcs20 and Kcs40 after 28 days of curing. 

The effect of curing time at different cement contents is evidenced in Figure 

7-9. From 7 to 28 days an increase in both peak strength and initial stiffness is 

observed at both cement factors. A constant value is not achieved in any of the 

tests, but the curves seem to converge towards the same value, with different 

rates. 
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Figure 7-9. Direct shear tests on Kcs20 and Kcs40 at 𝜎𝑣

’=100 kPa at 7 (dashed lines) and 28 (solid 

lines) days of curing. 

Comparing tests on Kcs40 at 28 days respect to tests at 7 days of curing, a 

higher brittleness is observed; with reference to Kcs20, softening is observed 

only at 28 days of curing. However, a lower displacement was achieved at 7 days 

of curing, thus softening could have occurred also at 7 days if larger deformations 

were reached. At increasing curing time, the volumetric behaviour becomes more 

dilative for Kcs40 and less contractive for Kcs20. 

In Figure 7-10 results of tests at 1, 3, 7 and 14 days of curing at a confining 

stress of 50 kPa are shown. The initial stiffness seems to be similar at varying 

curing time, except for the test at 1 day of curing. At increasing curing time, the 
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peak strength increases, and it is achieved at lower deformations. However, 

stress-strain curves seem to converge towards a unique value, regardless the 

curing time, which results in an augmented brittleness. The volumetric behaviour 

is dilative at all curing times, but an increase in dilatancy is observed along with 

the progress of hydration. 

 
Figure 7-10. Direct shear tests on Kcs40 at 𝜎𝑣

’ =50 kPa at early stages of curing (1, 3, 7, 14 days). 

Results of direct shear tests at the same curing times and σv
’  = 150 kPa are 

shown in Figure 7-11. Increasing curing time, an increase in strength is observed, 

except for t=14 days. However, respect to tests performed at 50 kPa, the increase 

in strength is less pronounced, with a more ductile behaviour. The volumetric 
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behaviour is always contractive, and (except for Kcs40_1d_150kPa) it becomes 

slightly dilative only at large deformations after failure occurs. 

Results at σv
’  = 150 kPa, at longer curing times (28, 60, 90 days) are plotted 

in Figure 7-12 along with the result at 7 days of curing. Except for the test at 60 

days, an increase in strength is observed at increasing curing time. This suggests 

that hydration progresses significantly even after 28 days. Again, the volumetric 

behaviour becomes much more dilative at increasing curing time. 

 
Figure 7-11. Direct shear tests on Kcs40 at 𝜎𝑣

’ =150 kPa at early stages of curing (1, 3, 7, 14 days). 
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Figure 7-12. Direct shear tests on Kcs40 at 𝜎𝑣

’ =150 kPa at different curing times (7, 28, 60, 90 days). 

7.1.2.2. Oedometric tests8 

The results of oedometric tests at different curing times and cement factors 

are represented in Figure 7-13 in the plane εv-logσv
’ . Below yielding stress, strains 

are very low with a slight increase in stiffness with cement factor. The yielding 

stress increases significantly with cement content, as observed by other authors 

                                                 
8

 The apparatus used in laboratory is a standard device with controlled incremental load. 

Specimen diameter is 55 mm with a height of 20 mm. Vertical displacements are measured via a 

Linear Variable Differential Transducer (LVDT). The load increment is applied when the 100% 

of primary consolidation is supposed to be reached. 
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(S. Horpibulsuk et al., 2004; Sasanian, 2011). At larger stresses, large 

deformations occur. The curves at different curing time and same cement factor 

are quite similar. It’s worth noting that, in Kcs40, the yielding stress is 

significantly above the maximum vertical stress adopted in direct shear tests (150 

kPa). Conversely, in Kcs20, non-negligible strains are observed at 150 kPa, 

which means that compared to Kcs40, direct shear tests are performed at an initial 

stress state closer to yielding surface. 

 
Figure 7-13. Oedometric tests on Kcs20 and Kcs40 at 7 and 28 days of curing (ε-log 𝜎𝑣

’ ). 

In Figure 7-14 the results are plotted in the plane e-log(σv
’ ). The two samples 

are characterized by different physical states in the stress field investigated. The 

initial void ratio of Kcs20 is slightly higher than Kcs40, but after yielding stress, 

situation is reversed due to the higher yielding stress of the latter. The comparison 

between the cemented kaolin sample and the non-treated one is represented in 

Figure 7-15. The initial void ratio, at very low confining stress, is much higher in 

cemented sample. The physical states observed up to 2 MPa are impossible for 

non-treated soil. In the range of stress applied it’s not possible to determine if 

cemented sample, after yielding, tends towards the intrinsic compression line of 

non-treated one. 
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Figure 7-14. Oedometric tests on Kcs20 and Kcs40 at 7 and 28 days of curing (e-log 𝜎𝑣

’ ). 

 
Figure 7-15. Comparison between oedometric tests on cemented and non-treated kaolin (dotted line). 

7.1.2.3. Lightweight cemented kaolin 

The effect of foam addition on cemented soil was studied for both cement 

factors at different curing times. In Figure 7-16 and Figure 7-17 results of tests at 

28 days of curing at different vertical stress on Kcs20nf40 and Kcs40nf40, 

respectively, are shown. In both cases, the peak strength increases at increasing 

confining stress, while volumetric behaviour is contractive and ductile in all the 
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tests, except for a slight softening at large displacement in 

Kcs40nf40_28d_50kPa. The volumetric behaviour of the three samples of 

Kcs20nf40 is almost the same characterized by large vertical displacements, 

whereas the behaviour of Kcs40nf40 becomes gradually more contractive as the 

vertical stress increases. 

 
Figure 7-16. Direct shear tests on Kcs20nf40 after 28 days of curing at different vertical stress. 
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Figure 7-17. Direct shear tests on Kcs40nf40 after 28 days of curing at different vertical stress. 

In Figure 7-18 the results of direct shear tests on Kcs40, Kcs40nf20 and 

Kcs40nf40 at a vertical stress of 50 kPa and after 7 days of curing are represented. 

Increasing the amount of foam, the initial stiffness slightly decreases, while a 

significant reduction of peak strength is observed, that it is still higher than non-

treated sample even for Kcs40nf40. The volumetric behaviour, that is slightly 

dilative in Kcs40 sample, becomes contractive with the addition of foam; 

Kcs40nf20 sample is already characterized by a contractive behaviour even if a 

slight softening is still observed. Increasing the amount of foam, the behaviour 

becomes gradually more ductile and contractive, so that vertical displacements 

larger than non-treated soil are observed on Kcs40nf40 sample. 
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Figure 7-18. Direct shear tests on Kcs40, Kcs40nf20 and Kcs40nf40 at 𝜎𝑣

’ =100 kPa after 7 days of 

curing. 

Similar results are found on Kcs20, Kcs20nf20 and Kcs20nf40 samples. 

Increasing the amount of foam, compared to Kcs40, the reduction of peak 

strength is less evident; the peak strength of Kcs20 and Kcs20nf20 is almost the 

same. A lower peak strength is observed in Kcs20nf40, but still higher than non-

treated kaolin. The volumetric behaviour is always contractive, with larger 

settlements observed at increasing amount of foam, higher than non-treated 

kaolin in all the cases. 
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Figure 7-19. Direct shear tests on Kcs20, Kcs20nf20 and Kcs20nf40 at 𝜎𝑣

’ =100 kPa after 7 days of 

curing. 

The results of direct shear tests performed after 28 days of curing at a vertical 

stress of 100 kPa are shown in Figure 7-20 and Figure 7-21. As for samples tested 

after 7 days of curing, at increasing amount of foam (starting from Kcs40, Figure 

7-20) peak strength and stiffness decrease, while the behaviour becomes more 

ductile and contractive. 
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Figure 7-20. Direct shear tests on Kcs40, Kcs40nf20 and Kcs40nf40 at 𝜎𝑣

’ =100 kPa after 28 days of 

curing. 

The decrease in strength of lightened samples with c/s=20% at increasing 

amount of foam, compared to tests at 7 days (Figure 7-19), is more pronounced 

after 28 days of curing (Figure 7-21); indeed, in this case, a significant reduction 

of peak strength is observed between Kcs20 and Kcs20nf20. The behaviour of 

Kcs20nf40, in terms of stress-strain curve, is quite similar to non-treated sample, 

although it is characterized by larger vertical displacements. Moreover, the 

strength of Kcs20nf40 doesn’t achieve a constant value but it is still increasing at 

the maximum displacement reached in test. 
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Figure 7-21. Direct shear tests on Kcs20, Kcs20nf20 and Kcs20nf40 at 𝜎𝑣

’ =100 kPa after 7 days of 

curing. 

In Figure 7-22 results of direct shear tests after 28 days of curing at a vertical 

stress of 50 kPa on Kcs20, Kcs20nf20, Kcs40 and Kcs40nf40 are represented. A 

higher peak strength and initial stiffness of Kcs40nf40 respect to Kcs20nf40 is 

observed. The two lightweight cemented samples (Kcs20nf40 and Kcs40nf40) 

seem to converge towards the same value of stress, higher than non-lightened 

material (Kcs20 and Kcs40) thus showing a more ductile behaviour. It is also 

clear that the behaviour becomes more contractive and ductile adding foam 
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and/or reducing the amount of cement. Furthermore, the volumetric behaviour of 

Kcs20 and Kcs40nf40 is quite similar. 

 
Figure 7-22. Direct shear tests at 𝜎𝑣

’ =50 kPa after 28 days of curing on Kcs20, Kcs40, Kcs20nf20 and 

Kcs40nf40. 

The same is observed at a vertical stress of 150 kPa. The lightened samples 

(Kcs20nf40 and Kcs40nf40) show a more ductile and contractive behaviour. 

Again, the behaviour of Kcs20 and Kcs40nf40 is quite similar. 
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Figure 7-23. Direct shear tests at 𝜎𝑣

’ =150 kPa after 28 days of curing on Kcs20, Kcs40, Kcs20nf20 and 

Kcs40nf40. 

The effect of curing time on strength evolution of Kcs40nf40 is evidenced 

thereafter. In Figure 7-24, direct shear tests after 1, 3, 7 and 14 days of curing at 

a vertical stress of 50 kPa are shown. The same initial stiffness is observed, and 

the curves appear to converge towards a unique ultimate value with a ductile 

behaviour, except for Kcs40nf40_14d_50kPa that shows a very slight softening 

with a peak strength a little higher than the one observed at 7 days. From 1 to 3 

days, non-linearity of stress-strain curves occur at larger displacements. The 

volumetric behaviour is contractive in all the tests, with decreasing vertical 

displacements from 1 to 7 days. 
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Figure 7-24. Direct shear tests on Kcs40nf40 at 𝜎𝑣

’ =50 kPa at early stages of curing (1, 3, 7, 14 days). 

At a vertical stress of 100 kPa (Figure 7-25) the behaviour is always ductile 

(also at 14 days no softening is observed). The final strength, in this case, is 

slightly lower after 1 and 3 days of curing. No difference is observed in terms of 

volumetric behaviour. 
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Figure 7-25. Direct shear tests on Kcs40nf40 at 𝜎𝑣

’ =100 kPa at early stages of curing (1, 3, 7, 14 days). 

A comparison of tests performed at 7, 28, 60 and 90 days of curing on 

Kcs40nf40 is presented in Figure 7-26 and Figure 7-27. At a vertical stress of 50 

kPa (Figure 7-26), the behaviour is still ductile even at high curing times, with a 

slight softening observed only at large displacements. However, at increasing 

curing time, a significant change in volumetric behaviour is observed, that is 

contractive at 7 days of curing and dilative at 90 days. Curves tend towards the 

same value measured at early stages of curing. 
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Figure 7-26. Direct shear tests on Kcs40nf40 at 𝜎𝑣

’ =50 kPa at different curing times (7, 28, 60, 90 

days). 

Similar results were found at 100 kPa (Figure 7-27). The curves tend towards 

the same value, while peak strength slightly increase from 28 to 90 days, so that 

a small softening can be observed at 90 days of curing. The behaviour is 

contractive, conversely to tests at the same curing time and lower vertical stress. 

Except for the test at 90 days, at increasing curing time the volumetric behaviour 

becomes more dilative. 
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Figure 7-27. Direct shear tests on Kcs40nf40 at 𝜎𝑣

’  =100 kPa at different curing times (7, 28, 60, 90 

days). 

7.1.2.4. Oedometric tests 

Oedometric tests results on lightweight samples are shown in the following. 

In Figure 7-28 a comparison between tests on Kcs40 and Kcs40nf40 at two 

different curing times is shown. In the plane ε-logσv
’  the reduction of yield stress 

due to addition of foam (respect to Kcs40) can be clearly observed. At 7 days of 

curing, the yield stress is approximately equal to 150 kPa, but non-negligible 

strains are observed also at lower stresses (50 and 100 kPa). At 28 days, the 

Kcs40nf40 sample shows significant deformations above 220 kPa, with very 

large strains above 300 kPa. 
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Figure 7-28. Comparison between oedometric tests on Kcs40 and Kcs40nf40 after 7 and 28 days of 

curing. 

This significant reduction of yield stress can be explained by the increase of 

porosity, especially in terms of void ratio. Indeed, the initial void ratio of 

lightweight samples is significantly larger than non-lightened ones. In Figure 

7-14 results of oedometric tests on Kcs20, Kcs40, Kcs20nf20 and Kcs40nf40 at 

28 days are presented. The same reduction in yield stress, respect to Kcs20, is 
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observed on Kcs20nf40 sample, in which non-negligible strains occur above 50 

kPa and very large strains occur above 150 kPa. 

 
Figure 7-29. Comparison between oedometric tests on Kcs20, Kcs20nf40, Kcs40 and Kcs40nf40 after 

28 days of curing. 

The behaviour of Kcs20 and Kcs20nf40 is quite similar in terms of strains 

(the same similarity was found in direct shear tests, Figure 7-22 and Figure 7-23); 

however, the physical states are different. The initial void ratio of Kcs40nf40 is 

approximately 1.5 times the initial void ratio of Kcs20. 
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It is also worth noting that yield stress of Kcs40nf40 is higher than 

Kcs20nf40, while void ratio of the former is only slightly lower than the latter. 

In Figure 7-30 a comparison with compression curves of non-treated kaolin 

(dotted lines) is shown. The void ratio of lightweight samples is highly above 

non-treated soil so that they are almost incomparable in the plane e-logσv
’ . 

 
Figure 7-30. Comparison between oedometric tests on cemented and non-treated kaolin (dotted line). 

 Influence of degree of cementation 

Relationships based on index properties and mix design parameters to predict 

the strength of cemented and lightweight cemented soil, usually in terms of 

unconfined compressive strength (UCS), have been proposed by different 

authors, as discussed in section 4.4. These equations show a strong dependency 

on cement content and water content (or porosity). The purpose of these 

equations is usually to have, at least, a reduction of number of tests required to 

design the material, or even an estimation of the expected strength when the 

mixtures are designed. An attempt to describe the evolution of mechanical 

strength due to investigated variables (cement factor, curing time, foam) is shown 

thereafter. 

 Cemented soil 

To take account of cementation, the void ratio of bonds, eb, a state parameter 

introduced by Pinyol et al. (2007) in a constitutive model (described in section 

4.3), was chosen. It is defined as the ratio of bonds volume (assumed non-porous) 

to the solid volume of clay matrix and it is used to take account of the volume of 
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bonds in a soft clayey rock. If the volume of bonds is equal to the volume of 

hydrated cement, then this parameter can be expressed as: 

𝑒𝑏 =
𝑉𝑏𝑜𝑛𝑑𝑠

𝑉𝑠
𝑠 =

𝑉𝑐,ℎ

𝑉𝑠
𝑠 =

𝑥𝑊𝑐,𝑎

𝜌𝑐𝑎
+

𝛼𝑥𝛽𝑊𝑐,𝑎

𝜌𝑤

𝑊𝑠
𝑠

𝜌𝑠

=

𝑐
𝑠 (

𝑥𝑊𝑠
𝑠

𝜌𝑐𝑎
+

𝛼𝑥𝛽𝑊𝑠
𝑠

𝜌𝑤
)

𝑊𝑠
𝑠

𝜌𝑠

= 𝜌𝑠

𝑐

𝑠
(

𝑥

𝜌𝑐𝑎
+

𝛼𝑥𝛽

𝜌𝑤
)  

(7-2) 

All the symbols have been already introduced. The fraction x of cement that 

is hydrated can be derived by dividing the equation (7-1) by α (the ratio by weight 

of the water held in hydrated cement and the anhydrous hydrated cement (3-23), 

equal to 0.23 in a well hydrated paste. It’s worth noting that eb is independent of 

the amount of foam. It increases with cement factor, c/s, and curing time, thus 

representing the degree of cementation. 

Assuming the Mohr-Coulomb criterion and that cohesion depends on the 

volume of bonds expressed via eb, then: 

𝑙𝑖𝑚 = 𝑐 + 𝜎𝑣
′ tan(𝜑0) = 𝑓(𝑒𝑏) + 𝜎𝑣

′ tan(𝜑) (7-3) 

where lim, c and φ are shear strength, cohesion and friction angle, 

respectively. To understand the effect of eb on peak strength, the results of all the 

tests on cemented kaolin were plotted in the plane lim-σv
’ tan(φ)-eb, as shown 

inFigure 7-31. By this way, the effect of confining stress was subtracted so that 

the evolution of cohesion with eb could be observed. At first, the friction angle of 

non-treated soil, equal to 22°, was considered. It’s worth noting that tests at 

different curing time and cement factor are considered together. A linear function 

between cohesion and eb (passing through origin, so that no cohesion exists 

without bonds) was assumed. Hence: 

𝑙𝑖𝑚 = 𝑐𝑏𝑒𝑏 + 𝜎𝑣
′ tan(𝜑) (7-4) 

where cb is a parameter that takes account of the effect of bonds on cohesion 

and φ is the friction angle. 
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Figure 7-31. Effect of void ratio of bonds on peak strength of cemented kaolin, assuming φ=22° (non-

treated kaolin). 

The friction angle of a cemented soil is not necessarily equal to the friction 

angle of non-treated soil; thus, it can be assumed as a fitting parameter. The best 

fit of the two parameters (cb, φ) was carried out minimizing the residual sum of 

squares on all data on cemented kaolin (Kcs20, Kcs40), obtaining φ=27.6° and 

cb=215 kPa. The results are shown in Figure 7-33. 

 
Figure 7-32. Effect of void ratio of bonds on peak strength of cemented kaolin. 
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In Figure 7-33, direct shear test results are reported in the plane /σv
’ -dh. It is 

expected that, at large displacements, cohesion goes to zero due to debonding and 

curves converge towards a critical value, so that /σv
’  is equal to tanφ. It appears 

that 27.6° seems to be consistent with the angle of friction at ultimate strength. 

 
Figure 7-33. Direct shear test results on cemented kaolin in /σ-dh plane. 

A limit of this approach is that the influence of porosity is not considered; 

many authors have shown the negative effect of porosity on the strength (usually 

the UCS) of a cemented soil. The porosity of the cemented soil, when soil water 

content is above liquid limit (so that it can be treated as a slurry without air 

entrapped), depends significantly on the initial water content of slurry itself. 

Thus, the effect of water content (and porosity) cannot be appreciated in these 

tests, because the water content of soil slurry is constant and there is only a slight 

change in porosity with cement factor and curing time. However, especially for 

a lightweight cemented clay, the purpose of the high soil slurry water content is 

the reduction of viscosity. It has been observed that the lower the water content, 

the higher the strength (except for very low water contents); thus, the water 

content can be set beforehand based on literature suggestions or via rheological 
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tests (Tsuchida and Egashira, 2004). If water content is set, as it is in this case, 

the change in porosity is not so emphasized, thus it can be neglected. 

Another assumption is that cohesion depends only on volume of bonds, 

which is dependent on both cement factor and curing time. The peak strength at 

higher curing times and lower cement factor can be equal or higher than the 

strength of cemented soil at lower curing time but higher cement factor. In other 

words, it is assumed that the mechanical behaviour does not depend on the 

amount of cement, but only on the volume of hydrated cement, i.e. the degree of 

cementation. Because of this, results of both Kcs20 and Kcs40 have been 

interpreted together. 

 Lightweight cemented soil 

The same approach was used to study the effect of foam on shear strength. 

The effect of foam on friction angle was neglected, thus φ was assumed equal to 

non-lightened soil one (27.6°). The peak strength of Kcs20nf20 and Kcs40nf20 

samples (Figure 7-34) and Kcs40nf40 and Kcs40nf40 samples (Figure 7-35). was 

plotted in the plane (
lim

− σv
′ tan φ )-eb and cb was determined. 

 
Figure 7-34. Effect of eb on lightweight cemented kaolin with nf=20%. 
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Figure 7-35. Effect of eb on lightweight cemented kaolin with nf=40%. 

 
Figure 7-36. Effect of eb on cemented kaolin and lightweight cemented kaolin at varying nf. 

The best fits of cemented and lightweight cemented kaolin are plotted in 

Figure 7-36. The coefficient cb of lightweight cemented samples is equal to 133 

and 73.4 kPa for nf equal to 20 % and 40 %, respectively. As expected, the 

coefficient cb decreases with nf, thus a lower peak strength is observed at the same 

eb at increasing amount of foam. 
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To take account of the effect of foam on cohesion, studies on cellular material 

were considered (Gibson, L. J., Ashby, M. F. and Triantafillou, 1989; 

Triantafillou and Gibson, 1990). In these studies, assuming a microstructure 

composed of cells (i.e. cellular structure), the authors derive a theoretical failure 

surface for brittle foams (“foam” is intended in the broader sense of cellular 

material) subjected to multiaxial loading; they adopt the relative density, defined 

as the ratio of bulk density of the lightweight material to the density of cell 

material, as a parameter to describe the effect of the increased porosity. The 

failure surface is derived for very low values of relative density (below 0.3), 

which can occur, for example, in foam concrete with nf higher than 60%. 

However, in a lightweight cemented soil, due to the highly porous cell strut 

material, the amount of foam cannot be so high. Thus, the relative density is much 

higher than 0.3 and the resulting material could not have a well-defined cellular 

structure Due to this, the same failure surface cannot be used; nonetheless the 

same parameter was adopted, by using the relative dry bulk density (which is 

independent of water content), 
𝛾𝑑𝑟𝑦(𝑛𝑓)

𝛾𝑑𝑟𝑦(𝑛𝑓=0)
, to describe the effect of foam. 

According to (5-38) and (5-54): 

𝛾𝑑𝑟𝑦(𝑛𝑓)

𝛾𝑑𝑟𝑦(𝑛𝑓 = 0)
=

[
1
𝜌𝑠

+
𝑤𝑠

𝜌𝑤
+ (

𝑐
𝑠) (

1
𝜌𝑐,𝑎

+
𝑤𝑐

𝑐⁄
𝜌𝑤

)]

[
1
𝜌𝑠

+
𝑤𝑠

𝜌𝑤
+ (

𝑐
𝑠) (

1
𝜌𝑐,𝑎

+
𝑤𝑐

𝑐⁄
𝜌𝑤

)] +
𝑉𝑓

𝑊𝑠

=
1

1 + 𝑒𝑓
′

=  1 − 𝑛𝑓 

(7-5) 

This ratio doesn’t depend on curing time, but it depends only on the volume 

of foam and, by consequence, on nf. Due to breakage of bubbles, it has been 

shown that the “actual” volume of foam is lower than theoretical one, and it can 

be different for each sample. However, it would be much more convenient to 

have a unique value to characterize the mixtures. Due to this, the average values 

of nf
* (9 % and 11 % for Kcs20nf20 and Kcs40nf20, and 28 % and 29 % for 

Kcs40nf40 and Kcs40nf40) were considered. The ratio of dry bulk weights was 

calculated, giving respectively 0.91 and 0.89 for Kcs20nf20 and Kcs40nf20, and 

0.72 and 0.71 for Kcs20nf40 and Kcs40nf40. It seems reasonable to use the 

average values, 0.90 for nf20 and 0.71 for nf40. In Figure 7-37 the ratio 

cb(nf)/cb0(nf=0) (where cb0 is the coefficient cb of non-lightened mixture) is 

plotted against relative dry density. 
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Figure 7-37. Ratio of bond coefficient cb/cb0 against relative density. The dashed line is the fitting 

curve. 

Data were fitted with the following power law (7-6): 

𝑐𝑏

𝑐𝑏0
= (

𝛾𝑑𝑟𝑦

𝛾𝑑𝑟𝑦,0
)

𝑐𝑓

 (7-6) 

where cf is a fitting parameter, equal to 3.54 in this case. Hence, the failure 

surface becomes: 

𝑙𝑖𝑚 = 𝑐𝑏0 (
𝛾𝑑𝑟𝑦

𝛾𝑑𝑟𝑦,0 
)

𝑐𝑓

𝑒𝑏 + 𝜎𝑣
′ tan(𝜑)

= 𝑐𝑏0(1 − 𝑛𝑓)
𝑐𝑓

𝑒𝑏 + 𝜎𝑣
′ tan(𝜑) 

(7-7) 

The first term of equation (7-7) states that cohesion decreases with an 

exponential law at increasing porosity induced by foam and, by consequence, at 

increasing overall porosity. A similar expression was adopted by Kearsley and 

Wainwright (2002) for foamed concrete, starting from the Balshin equation for 

concrete (Balshin, 1949): 

𝑈𝐶𝑆 = 𝑈𝐶𝑆0(1 − 𝑛)𝑐 (7-8) 

where n is the porosity, UCS is the unconfined compressive strength, UCS0 

is the unconfined compressive strength at zero porosity and c is a constant (akin 

to cf). By fitting results of unconfined compressive tests on foamed concrete 
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(after 1 year of curing) with varying porosity (from 0.3 to 0.7), they found c=3.6, 

similar to the value of cf determined for lightweight cemented kaolin. 

In the following, a comparison between measured and calculated time 

dependent peak strength is shown, with parameters: φ = 27.6°, cb0 = 215 kPa, cf 

= 3.54. In Figure 7-38, the surfaces at constant σv
’  are plotted in the space eb- 

γdry

γdry,  0 

- , while in Figure 7-39 the surfaces at constant 
γdry

γdry,  0 

 are presented. This 

parameter can be a little tricky: increasing the amount of foam, 
𝛾𝑑𝑟𝑦

𝛾𝑑𝑟𝑦,0 
 decreases; 

increasing 
𝛾𝑑𝑟𝑦

𝛾𝑑𝑟𝑦,0 
, the amount of foam is reduced. 

In Figure 7-38, it is clear that decreasing the 
𝛾𝑑𝑟𝑦

𝛾𝑑𝑟𝑦,0 
 ratio, the effect of eb 

decreases as well and cohesion increases slowly in time even if the progress of 

hydration is the same. 

 
Figure 7-38. Representation of failure surfaces at constant 𝜎𝑣

’  (50 – 100 – 150 kPa) given by (7-7) for 

φ = 27.6°, cb0 = 215 kPa, cf = 3.54. 
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Figure 7-39. Representation of failure surfaces at constant 

𝛾𝑑𝑟𝑦

𝛾𝑑𝑟𝑦,0 
 (0.71 – 0.9 – 1) given by (7-7) for φ = 

27.6°, cb0 = 215 kPa, cf = 3.54. 

 
Figure 7-40. Comparison between measured and estimated lim in time (Kcs40). 
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Figure 7-41. Comparison between measured and estimated lim in time (Kcs20). 

 
Figure 7-42. Comparison between measured and estimated lim in time (Kcs40nf20). 
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Figure 7-43. Comparison between measured and estimated lim in time (Kc40nf40). 

 
Figure 7-44. Comparison between measured and estimated lim in time (Kcs20nf20). 
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Figure 7-45. Comparison between measured and estimated lim in time (Kcs20nf40). 

 
Figure 7-46. Comparison between measured and estimated lim in time, 𝜎𝑣

’ =50 kPa. 
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Figure 7-47. Comparison between measured and estimated lim in time, 𝜎𝑣

’ =100 kPa 

 
Figure 7-48. Comparison between measured and estimated lim in time, 𝜎𝑣

’ =150 kPa 

 



                                                                                                                Chapter 7 

147 

 

Triantafillou and Gibson (1990) also suggest that an influence of relative 

density on the effect of isotropic stress on failure surface exists, and a 

proportionality with the square root of relative density is identified. However, as 

already pointed out, this is derived for brittle foams with relative density lower 

than 0.3, thus the exponent could be different in the case discussed here and it 

would be another parameter to fit. Then, more tests at different amount of foams 

would be required to have a solid fitting of parameters. However, the aim of such 

an approach is to reduce the number of tests required to have a good prediction 

of strength and, in the range of investigated amounts of foam, it seems consistent 

to neglect this effect. Indeed, the main problem of the lightweight cemented soil 

is related to the high number of factors that affect its mechanical properties, 

which can be identified in c/s, ws and nf (or equivalent parameters). Furthermore, 

the effect of confining stress must be considered, and tests must be done at the 

same curing time to be compared. They are usually referred to 28 days, which 

can be a significant amount of time when mix design parameters can be still 

modified. The proposed approach, despite its limits, allows to consider in a 

consistent way both curing time and cement factor, so that tests at different times 

and cement content can be considered together whereas strength at higher curing 

times can be estimated from tests at early curing, so that corrections to mix design 

can be applied in a few days. 

7.2.2.1. Simplified method to estimate αx(t) 

In order to use all the equations proposed it is necessary to know the function 

αx(t). In this study, it was derived from the interpretation of TGA at different 

curing times, but this is not feasible in each design. In the following, a simplified 

method is proposed. The linear relationship between volume of bonds and 

cohesion was assumed to describe the effect of cementation on failure surface: 

𝑐 = 𝑐𝑏𝑒𝑏 →
𝑐

𝑐𝑚𝑎𝑥
=

𝑒𝑏

𝑒𝑏𝑚𝑎𝑥 
=

(
𝜌𝑤

𝜌𝑐𝑎
𝑥 + 𝛼𝑥𝛽)

(
𝜌𝑤

𝜌𝑐𝑎
+ (αx)𝑚𝑎𝑥𝛽)

∝
αx

(αx)𝑚𝑎𝑥
≅ 𝑥 (7-9) 

If a proportionality exists between cohesion of a cemented soil and the 

amount of non-evaporable water, then the same proportionality can be assumed 

between the UCS of cement paste and αx. Hence: 

𝑈𝐶𝑆(𝑡)

𝑈𝐶𝑆𝑚𝑎𝑥
≈ 𝑥 (7-10) 

This equation states that if x=0 (no cement is hydrated) then UCS=0, while 

maximum unconfined compressive strength occurs when all the cement is 
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hydrated; the linear dependency of UCS on x is also assumed. Assuming this 

proportionality, by knowing the evolution in time of UCS of cement paste, it is 

easy to determine the function x(t). However, hydration progresses almost 

indefinitely in time so that it is difficult to define a maximum strength to which 

relate the total hydration. Furthermore, the linear dependency of UCS from x can 

be a bit of a stretch. Nonetheless, the function αx(t) is needed to estimate the 

strength of a cemented soil in a limited period, such as 3 or 6 months; 

furthermore, the linear proportionality between strength and αx has already been 

proven for cohesion. Thus, in these hypotheses, by knowing the UCS of the 

cement paste from commercial datasheet at different times, one can derive the 

function αx(t) from (7-10). For the cement used in this study, the unconfined 

compressive strength after 2 and 28 days is above 25 and 47 MPa, respectively. 

Assuming a logarithmic function for UCS in time, as it is suggested in literature 

(Çolak, 2006; Elaty, 2014), the UCS trend in time can be derived: 

 
Figure 7-49. Theoretical evolution of UCS in time for CEM II/A 42.5R. Circles refer to minimum 

strength at 2 and 28 days according to commercial datasheet. 

According to standard BS 12 1996, the compressive strength of CEM 42.5R 

at 28 days must be between 42.5 and 62.5 MPa. In the hypothesis that 62.5 MPa 

is the maximum compressive strength of the cement paste, the ratio UCS/UCSmax 

can be calculated. If this ratio is equal to x, the trend of x in time is a logarithmic 

function obtained by dividing the equation shown in Figure 7-49 by 62.5 MPa. 

As already pointed out, this is not necessarily true, but the purpose is to define a 

reasonable function to describe the evolution of αx in a simplified way. Hence, 

assuming α=0.23, the function αx(t) is determined. 
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Figure 7-50. Comparison between αx evolution in time derived by TGA analyses and by evolution of 

UCS in time, assuming 62.5 MPa as maximum strength. 

The two functions are quite similar. This is a very simple approach, but it 

could be used as a simplified method to describe progress of hydration. This 

approach will be used in the following section for Caposele soil. 

 Caposele soil 

The lightweight cemented soil method has been used on a natural soil in order 

to understand if it is possible to generalize the results obtained on Speswhite 

kaolin. As already shown in 5.3.4, similar mixtures were prepared. The cement 

factor is kept constant (c/s = 0.4) and the same nf were adopted, thus the 

theoretical amounts of foam per unit volume of lightened mixtures are the same 

of kaolin. A slightly lower water content of soil slurry, equal to 2 times the liquid 

limit of Caposele soil (≅62 %), was adopted (120 %). The water to cement ratio 

of grout (wc/c) is 0.5. 

 Bulk Properties 

In Table 7-3 the physical properties of cement and lightweight cemented 

samples are presented. The column “t” refers to the curing time at which test is 

performed, σv
’  refers to the vertical stress applied in direct shear test, γ is the bulk 

weight, γdry is the dry bulk weight, derived from dry weight after test, as done for 

kaolin (7.1.1.1).  
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Table 7-3. Physical properties of cemented and lightweight cemented Caposele soil. 

 

A comparison between estimated and measured properties is presented. The 

theoretical bulk weights, as shown in 5.3.4, are respectively 14.8, 12 and 9.2 

kN/m3. As for cemented kaolin, the bulk weight of non-lightened samples is 

almost the same of theoretical value. A higher difference is observed for 

Ccs40nf40, except for some samples. Unlike lightweight cemented kaolin, 

measured bulk weights of Ccs40nf20 samples are quite similar to theoretical 

value. As already pointed out, the higher measured bulk weight compared to 

theoretical value depends on breakage of foam bubbles during mixing. By 

applying the correction proposed (5.2.1.1), the “actual” nf can be derived for each 

sample; the average values for Ccs40nf20 and Cs40nf40 are 0.19 and 0.33, 

respectively. Assuming these values, the bulk properties were determined. In this 

case TGA are not available thus αx evolution cannot be estimated directly as for 

kaolin. The curve derived from proportionality with UCS thresholds, as shown 

in 7.2.2.1, was used (7-11): 

𝛼𝑥 = 0.031 ln(𝑡) + 0.07 (7-11) 

A comparison between theoretical and measured bulk properties is shown in 

Figure 7-51. Data are well fitted by theoretical values, except for Ccs40nf40 at 

28 days of curing, characterized by a higher scatter. 

t [days] σ'v [kPa] γ [kN/m
3
] γdry [kN/m

3
] e

Ccs40_7d_50kPa 7 50 14.5 7.6 2.6

Ccs40_7d_150kPa 7 150 14.6 7.6 2.6

Ccs40_28d_50kPa 28 50 14.6 7.5 2.7

Ccs40_28d_150kPa 28 150 14.8 7.6 2.6

Ccs40_7d_oed 7 - 14.9 7.6 2.6

Ccs40_28d_oed 28 - 14.3 7.6 2.6

Ccs40nf20_7d_50kPa 7 50 12.2 6.0 3.6

Ccs40nf20_7d_150kPa 7 150 12.2 6.2 3.4

Ccs40nf20_28d_100kPa 28 50 12.0 6.2 3.4

Ccs40nf20_28d_150kPa 28 150 12.0 6.1 3.5

Ccs40nf20_28d_oed 28 - 12.4 6.5 3.2

Ccs40nf40_7d_50kPa 7 50 10.5 5.3 4.2

Ccs40nf40_7d_150kPa 7 150 10.6 5.1 4.4

Ccs40nf40_28d_100kPa 28 50 9.2 4.5 5.1

Ccs40nf40_28d_150kPa 28 150 10.5 5.2 4.3

Ccs40nf40_7d_oed 7 - 10.0 10.0 4.7

Ccs40nf40_28d_oed 28 - 9.7 9.7 4.6

C cs40

C cs40 

nf20

C cs40 

nf40
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Figure 7-51. Comparison between theoretical and measured dry bulk weight and void ratio of 

cemented and lightweight cemented Caposele soil. 

In Figure 7-52 the comparison between estimated and measured water 

content is shown. As for kaolin, a larger error is observed on water content, 

underestimated (especially for Ccs40nf40), respect to dry bulk weight and void 

ratio. 

 
Figure 7-52. Comparison between theoretical and measured water content of cemented and lightweight 

cemented Caposele soil. 
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 Mechanical tests 

7.3.2.1. Direct shear tests 

Direct shear tests performed on Caposele soil are presented in this section. In 

Figure 7-53, results on Ccs40 samples are shown. At increasing vertical stress, 

an increase in peak strength is observed at both curing times, while behaviour 

goes from brittle to ductile. The volumetric behaviour is contractive at 150 kPa 

and dilative at 50 kPa. However, at increasing curing time, the behaviour 

becomes less contractive (more dilative) at 150 kPa (50 kPa). It is worth noting 

that peak of dilatancy at 50 kPa is observed after the deformation at which peak 

strength is gained. 

 
Figure 7-53. Direct shear tests on Ccs40 at 𝜎𝑣

’  equal to 50 and 150 kPa, at 7 (dashed lines) and 28 

(solid lines) days of curing. 
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In Figure 7-54 direct shear tests on Ccs40nf20 are presented. At 7 days 

(dashed lines) the behaviour is ductile and contractive at both vertical stresses, 

with a more contractive behaviour at a vertical stress equal to 150kPa. After 28 

days of curing, the behaviour becomes brittle and slightly dilative at 50 kPa, 

while it is still ductile and contractive at 150 kPa. 

 
Figure 7-54. Direct shear tests on Ccs40nf20 at 𝜎𝑣

’  equal to 50 and 150 kPa, at 7 (dashed lines) and 28 

(solid lines) days of curing. 

The effect of a further increase of the amount of foam is reported in Figure 

7-55. In this case, regardless of confining stress and curing time, the volumetric 

behaviour is always contractive, and curves are quite similar. The stress-strain 

curves at 7 and 28 days at a confining stress of 150 kPa are almost coincident; 
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the behaviour is ductile and (except for Ccs40nf40_28d_50kPa) characterized by 

a plastic hardening. 

 
Figure 7-55. Direct shear tests on Ccs40nf40 at 𝜎𝑣

’  equal to 50 and 150 kPa, at 7 (dashed lines) and 28 

(solid lines) days of curing. 

In Figure 7-56 the effect of foam addition on cemented Caposele soil after 7 

days of curing is presented; tests performed on non-treated soil are also reported 

(dotted lines). On the left, results at σv
’  = 50 kPa are shown. The addition of foam 

causes a reduction of peak strength and the behaviour becomes ductile and 

contractive. However, curves seem to converge towards the same value, with 

hardening observed in Ccs40nf40, that shows higher vertical displacements and 

a similar stress-strain curve compared to non-treated sample. At 150 kPa, the 

volumetric behaviour of non-lightened sample is already contractive, enhanced 
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by the addition of foam. The slight softening observed in Ccs40 is not observed 

on lightened sample. 

 
Figure 7-56. Direct shear tests on cemented and lightweight cemented Caposele soil at 7 days of curing 

and two vertical stresses (50 and 150 kPa). Dotted lines refer to non-treated Caposele soil. 

Figure 7-57 shows the same results at 28 days. At a vertical stress of 150 kPa, 

results are similar to the ones observed at 7 days of curing. At a vertical stress of 

50 kPa, instead, the reduction in peak strength is clearer, with the gradual 

transition from a brittle and dilative to ductile and contractive behaviour at 

increasing amount of foam. 
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Figure 7-57. Direct shear tests on cemented and lightweight cemented Caposele soil at 28 days of 

curing and two vertical stresses (50 and 150 kPa). Dotted lines refer to non-treated Caposele soil. 

7.3.2.2. Unconfined compressive tests 

In Figure 7-58, results of unconfined compressive tests are shown. Solid and 

dashed lines refer to 28 and 7 days of curing, respectively. The addition of foam 

determines a progressive reduction of UCS. However, at increasing curing time 

(from 7 to 28 days), a significant increase in strength can be observed for both 

Ccs40 and Ccs40nf40. 



                                                                                                                Chapter 7 

157 

 

 
Figure 7-58. Unconfined compressive tests on cemented and lighweight cemented Caposele soil at 

different curing times. 

7.3.2.3. Oedometric tests 

In Figure 7-59, oedometric test results at different amounts of foam at 28 

days of curing are shown; results are plotted in both ε-logσv
’  and e-logσv

’ . In the 

former, the significant reduction of yielding stress with increasing amount of 

foam can be appreciated. Indeed, the Ccs40nf40 is characterized by large 

deformations (around 10 %) at a vertical load equal to 150 kPa. The same vertical 

strain occurs between 450 and 600 kPa in Ccs40nf20 and between 900 and 1200 

kPa in non-lightened sample. The reconstituted Caposele soil sample has a 

completely different behaviour. However, the initial physical states of non-

treated, cemented and lightweight cemented Caposele soil samples are different. 

As it can be seen in the plane e-logσv
’ , the initial void ratio of lightweight material 

is significantly higher than cemented soil one, and they are both characterized by 

physical states that are impossible for non-treated soil. 

It is possible to observe that cemented and lightweight cemented samples 

tend towards the same compression line at high stresses. However, the achieved 
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void ratios are still higher than non-treated sample, thus it’s not possible to 

observe a possible trend towards the same compression line. 

 
Figure 7-59. Oedometric tests on cemented and lightweight cemented Caposele soil at different 

amounts of foam after 28 days of curing in ε-log𝜎𝑣
’  and e- log𝜎𝑣

’  planes. 

In Figure 7-60 a comparison between Ccs40 and Ccs40nf40 at different 

curing times is shown. 
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Figure 7-60. Comparison between oedometric tests on Ccs40 and Ccs40nf40 at 7 and 28 days of 

curing. 

In both cases, especially on lightened mixture, an increase in yield stress at 

increasing curing time is observed. Indeed, significant strains (10%) are observed 

already at 100 kPa for Ccs40nf40 at 7 days, while the same strains are observed 

only above 150 kPa after 28 days of curing. Comparing the same mixture at 
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increasing curing time, it can be observed that the initial void ratio slightly 

decreases, but curves seem to converge towards the same compression line. 

 Caposele-kaolin comparison 

A comparison between the two investigated soils is presented. It’s worth 

noting that even if both soils are treated with the same cement factors and 

amounts of foam, the void ratio of the samples can be slightly different. Indeed, 

the water content of soil slurry is slightly lower in Caposele soil mixtures. 

 
Figure 7-61. Direct shear tests. Comparison between cemented kaolin and cemented Caposele soil, at 

different curing times and confining stresses. 
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In Figure 7-61, direct shear tests performed at a vertical stress of 50 and 150 

kPa at 7 and 28 days of curing on Kcs40 and Ccs40 are reported. At 7 days of 

curing and a vertical stress of 50 kPa, strength and stiffness of cemented Caposele 

soil samples are smaller than kaolin, but characterized by a similar behaviour, 

which is brittle and dilative (after peak strength) for both. At 150 kPa and 7 days 

of curing, the peak strength of Caposele soil is slightly lower than kaolin, with a 

more ductile behaviour but the same volumetric response. 

At 28 days of curing, the initial stiffness is the same for both treated soils. At 

a vertical stress of 50 kPa, the peak strength of cemented kaolin and Caposele 

soil is the same. At 150 kPa, peak strength of Caposele soil sample is slightly 

lower than cemented kaolin sample; it is also characterized by a ductile 

behaviour, conversely to the brittle behaviour observed on cemented kaolin 

sample. In all the tests, the strength at large deformation is higher in cemented 

Caposele soil respect to cemented kaolin. 

In Figure 7-62, the same comparison is proposed between Kcs40nf20 and 

Ccs40nf20. At 7 days of curing, both initial stiffness and peak strength are lower 

in Caposele soil. At a vertical stress of 50 kPa, the behaviour of Ccs40nf20 is 

ductile, while lightweight cemented kaolin shows a brittle behaviour; also, 

volumetric behaviour is significantly different, being contractive for lightweight 

cemented Caposele soil and dilative for lightweight cemented kaolin. At 150 kPa, 

the behaviour is ductile and contractive for both soils, with a slightly higher peak 

strength of treated kaolin sample. At 28 days of curing, the comparison between 

the two cemented soils show a quite similar behaviour, both in terms of stress 

and deformation. Peak strength of lightweight Caposele soil is almost the same 

as lightweight cemented kaolin at both vertical stresses; curves are very similar, 

except for a more ductile behaviour of Ccs40nf20 compared to Kcs40nf20. 
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Figure 7-62. Direct shear tests. Comparison between Kcs40nf20 and Ccs40nf20, at different curing 

times and vertical stresses. 
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Figure 7-63. Direct shear tests. Comparison between cemented kaolin and cemented Caposele soil, at 

different curing times and vertical stresses. 

The comparison of lightened samples at the maximum amount of foam 

investigated is shown in Figure 7-63. At 7 days of curing, the volumetric 

behaviour is contractive in all the tests and, except for Kcs40nf40_50kPa that is 

slightly less contractive, curves are almost coincident. In terms of stress, treated 

Caposele soil show a lower initial stiffness. At 150 kPa, the same peak strength 

is reached, but at significantly higher deformations, due to the hardening 

behaviour of Ccs40nf40; a similar trend is observed at 50 kPa. 
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After 28 days of curing and a vertical stress equal to 50 kPa, the initial 

stiffness of the two treated soils is the same, but a higher peak strength is observed 

on treated kaolin sample. Kcs40nf40_28d_50kPa shows very low vertical 

deformations, while Ccs40nf40_50kPa shows a contractive behaviour. In terms 

of peak strength, lightweight cemented kaolin at 50 kPa shows a higher peak 

strength than lightweight cemented Caposele soil. At 150 kPa, both treated soils 

show a contractive and hardening behaviour (with a slightly higher strength 

observed in lightweight cemented kaolin). 

In Figure 7-64 and Figure 7-65, a comparison between oedometric tests 

performed on Ccs40, Ccs40nf40, Kcs40 and Kcs40nf40 after 7 and 28 days of 

curing, respectively, is presented. 

At 7 days of curing, the initial stiffness of treated samples is quite similar, 

except for Kcs40_7d which exhibits slightly lower strains in the elastic domain. 

The yield stress of cemented Caposele soil is significantly lower than cemented 

kaolin. A vertical strain of about 10 % is achieved only at 1200 kPa in Kcs40_7d, 

while the same strain is observed between 600 and 900 kPa in Ccs40. The same 

difference is observed between Kcs40nf40 and Ccs40nf40; in the former, 

significant strains are observed only above 150 kPa, conversely to the second one 

in which a strain of about 10 % is observed at 100 kPa. 

Void ratio of cemented kaolin is slightly higher than treated Caposele soil, 

due to the higher water content of soil slurry. However, this condition is reversed 

comparing the lightweight samples. Even if nf is the same, void ratio depends 

also on the breakage of foam bubbles upon mixing which is lower in Caposele 

soil, thus justifying the higher void ratio of the latter. 

After 28 days of curing (Figure 7-65), similar results are found. An increase 

in yield stress with curing time is observed for each mixture; yield stress of 

cemented and lightweight cemented kaolin samples is higher than Caposele soil 

one (by comparing tests at the same nf).  
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Figure 7-64. Oedometric tests on cemented and lightweight cemented kaolin and Caposele soil after 7 

days of curing. 
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Figure 7-65. Oedometric tests on cemented and lightweight cemented kaolin and Caposele soil after 28 

days of curing. 

 Failure surface 

The framework derived for lightweight cemented kaolin, in which cohesion 

of Mohr-Coulomb failure surface (7-7) is identified by two variables (eb and 
𝛾𝑑𝑟𝑦

𝛾𝑑𝑟𝑦,0 
) and two constants (cb0 and cf), was applied on lightweight cemented 

Caposele soil. In this case, φ, cb0 and cf were fitted by minimizing the residual 
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sum of squares of all data available from direct shear tests on cemented and 

lightweight cemented Caposele soil. 

The obtained friction angle is φ=29.4°, slightly higher than treated kaolin, 

whereas constants for cementation and foam are cb0=185 kPa, and cf=4. The 

lower cb0 of Caposele soil respect to kaolin (215 kPa) is consistent with the 

slightly lower strength observed on samples at the same curing time. Conversely, 

cf is slightly higher (3.54 for kaolin), so that foam seems to have a slightly larger 

negative effect on peak strength. However, as it can be seen in Figure 7-66, this 

difference is almost negligible. 

 
Figure 7-66. Effect of foam on cb: comparison between kaolin (solid line) and Caposele (dashed line). 

The resulting failure surfaces for treated Caposele soil at different amounts 

of foam are plotted in the space eb- σv
’  - in Figure 7-67. 

The comparison between measured and estimated value of peak strength in 

time is represented in Figure 7-68. The peak strength of Ccs40 and Ccs40nf40 at 

both normal stresses is well fitted, as Ccs40nf20 at 150 kPa. A larger error is only 

observed Ccs40nf20 samples at 50 kPa. 
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Figure 7-67. Failure surface planes at constant 

𝛾𝑑𝑟𝑦

𝛾𝑑𝑟𝑦,0
, with cf=4, cb0=185 and φ=29.4. Increasing 

𝛾𝑑𝑟𝑦

𝛾𝑑𝑟𝑦,0
, 

the amount of foam decreases. 

 
Figure 7-68. Comparison between measured and estimated lim in time of cemented and lighweight 

cemented Caposele soil at two confining stresses. 
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In Figure 7-69 and Figure 7-70 data are reported in the eb-
𝛾𝑑𝑟𝑦

𝛾𝑑𝑟𝑦,0 
- space; 

surfaces at constant σv
’  are also reported. 

 
Figure 7-69. Comparison between measured and estimated lim in time, 𝜎𝑣

’ =50 kPa. 

 
Figure 7-70. Comparison between measured and estimated lim in time, 𝜎𝑣

’ =150 kPa. 
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 Discussion 

The bulk properties of treated soils were compared to theoretical values 

derived by equations proposed in section 5.1. To calculate physical properties 

time evolution, the amount of non-evaporable water, represented by the function 

αx(t), is required. This function was derived by quantitative interpretation of 

TGA analyses for treated kaolin (7-1), while it was estimated by UCS of cement 

paste for Caposele soil (Figure 7-50). 

The measured bulk densities of non-lightened cemented samples (Kcs20, 

Kcs40, Ccs40), are similar to theoretical values. A good agreement was found 

also for dry bulk density and void ratio with curing time, whereas a larger scatter 

was observed for water content on cemented kaolin samples after direct shear 

tests (Figure 7-2a). However, a good agreement was observed on water content 

of cemented kaolin oven dried samples prepared for the specific purpose (Figure 

7-2b) and on cemented Caposele soil samples after direct shear tests (Figure 

7-52). 

The measured bulk density of lightened materials (Kcs20nf20, Kcs20nf40, 

Kcs40nf20, Kcs40nf40, Ccs40nf20, Ccs40nf40) was higher than theoretical 

values, except for Ccs40nf20. This significant difference is due to breakage of 

bubbles upon mechanical mixing with soil-cement slurry. Despite of foam 

collapse, a significant increase in void ratio is observed, accompanied by a 

reduction of dry bulk weight (Figure 7-1, Figure 7-51). This increase in void ratio 

has also been highlighted by MIP in the previous section (Figure 6-11, Figure 

6-12, Figure 6-13). 

A method to derive the “actual” volume of foam (and the related parameter, 

nf), suggested in 5.2.1.1, was applied; the actual values, identified by an asterisk 

(Vf
*, nf

*), are obtained by matching theoretical and measured bulk densities. The 

average values of nf
* are reported in Table 7-4, in which also average values of 

bulk density, actual cement content and relative dry density, 
γdry(nf)

γdry(nf=0)
=

γdry

γdry, 0

, 

defined as the ratio of dry bulk density of lightened cemented soil to dry bulk 

density of non-lightened cemented soil (at the same cement factor), are reported. 

The last one is a measure of the actual weight reduction due to addition of foam, 

and it is independent on curing time. It is worth noting that reduction of nf 

determines an increase of cement content, mc, a, while cement factor, c/s, is not 

affected at all. This means that the required amount of cement per unit volume 

increases respect to theoretical value, as soil and water contents. 
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Table 7-4. Physical properties and parameters of lightweight cemented soils after volume of foam 

correction. 

 

The average values of nf
* reported in Table 7-4 were used to derive bulk dry 

density and void ratio with curing time and a good agreement was found (Figure 

7-3, Figure 7-4, Figure 7-51). A larger scatter was found for water content, 

especially in lightweight cemented kaolin (Figure 7-5, Figure 7-6), while water 

content seems to be underestimated in lightweight cemented Caposele soil 

(Figure 7-52). 

Compressibility was studied via oedometric tests at different curing times. 

The effect of cementation was investigated on kaolin, treated at two cement 

factors (c/s), 20 and 40 %. By comparing results at the same curing time, a 

significant increase in yield stress was observed (Figure 7-13), with a slight 

increase in initial stiffness. At increasing curing time (from 7 to 28 days), a slight 

increase in yield stress is observed; this is likely depending on the amount of 

bonds developed due to products of hydration, with a subsequent increase of 

degree of cementation. Physical states reached by cemented soils are impossible 

for non-treated soil (Figure 7-15, Figure 7-59b). Due to high initial void ratio of 

cemented soil, although significant vertical strains were achieved during the tests 

(up to 20 %), it wasn’t possible to observe a convergence of cemented soil 

compression curves towards intrinsic compression lines of non-treated soil. 

By comparing results at the same curing time and cement factor, it can be 

seen that the addition of foam determines a significant reduction of yield stress 

in both treated kaolin (Figure 7-28a, Figure 7-29a) and treated Caposele soil 

(Figure 7-59a, Figure 7-60a). However, physical states of lightweight cemented 

soil samples are quite different, with significantly larger initial void ratio (Figure 

7-29b, Figure 7-59b, Figure 7-60b, Figure 7-65b). The lower yield stress can be 

likely explained by the increased void ratio due to foam addition, because no 

effect of foam on hydration processes was observed in XRD (6.1) and TGA (6.2) 

analyses. In the case of treated Caposele soil, due to high vertical strains 

achieved, it was possible to observe the convergence of lightweight cemented 

soil and non-lightened cemented soil compression lines (Figure 7-60b). 

nf* mc,a [kg] γ [kN/m
3
] γdry/γdry,0 nf* mc,a [kg] γ [kN/m

3
] γdry/γdry,0

Kcs20 9% 93 12.8 0.91 28% 74 10.3 0.72

Kcs40 11% 168 12.8 0.89 29% 134 10.4 0.71

Ccs40 19% 171 12.1 0.81 33% 142 10.3 0.67

nf20 nf40
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The shear strength of cemented and lightweight cemented soils was 

investigated by means of direct shear tests. Due to limitations related to the test, 

discussed inAppendix B, only qualitative info can be derived. However, it was 

possible to identify the effects of different parameters. Generally, increasing the 

vertical stress, a less brittle and dilative behaviour and a higher maximum 

strength is observed in all the samples. 

Increasing the cement factor, at the same curing time and vertical stress, an 

expected increase of peak shear strength, with a more brittle and dilative (or less 

contractive) behaviour is observed (Figure 7-7, Figure 7-8, Figure 7-9). Similar 

effects are observed at increasing curing time, that was intensively studied 

(especially on Kcs40 and Kcs40nf40 mixtures). With reference to cemented 

kaolin (Kcs40), an increase in curing time (at the same confining stress) causes 

an increase in peak strength and a more brittle and dilative behaviour (or less 

ductile and contractive, depending on vertical stress, Figure 7-10, Figure 7-12) 

typically related to an increase of the degree of cementation (4.2). Indeed, the 

formation of hydrates with curing time leads to a higher volume of bonds, as 

already pointed out. The increase in peak strength is less evident at early stages 

of curing (up to 7 days) and higher vertical stress (Figure 7-11). This can be due 

to the proximity of initial stress state to yielding surface, leading to a higher 

debonding before peak strength is reached. Indeed, the same increase in peak 

strenght observed at 50 kPa at low curing times is also observed at 150 kPa at 

higher curing times (28, 60, 90 days). 

The addition of foam causes a reduction in peak strength and a more ductile 

and contractive behaviour as observed for both treated kaolin and Caposele soil. 

In the case of treated kaolin at a cement factor of 0.4 (Kcs40, Kcs40nf20 and 

Kcs40nf40), this gradual transition can be observed at 50 and 100 kPa (Figure 

7-18, Figure 7-20). Similar results are found at 28 days of curing and a vertical 

stress of 50 kPa on Caposele soil (Figure 7-57). In some cases, the behaviour of 

non-lightened samples (at the same curing time, cement factor and confining 

stress), is already ductile and contractive. This is the case of high vertical stresses 

and low curing times and/or low cement factor (in other terms, at high confining 

stresses and low degrees of cementation). In these cases, at increasing amount of 

foam, a more contractive behaviour with larger vertical displacements is 

observed, whereas non-linearity of stress-strain curves occurs at smaller 

displacements with a lower initial stiffness (Figure 7-23, Figure 7-56, Figure 

7-57). In some cases (at the highest foam contents and vertical stresses 

investigated), a hardening behaviour is observed (Figure 7-21, Figure 7-53). This 
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behaviour is consistent with the significant reduction of yield stress observed in 

oedometric tests at increasing foam content. Indeed, in some cases, the yield 

stress in oedometric compression is lower or very close to vertical stress applied 

in direct shear tests (Figure 7-13, Figure 7-60a) so that debonding due to vertical 

stress can occur before shear stress is applied; then, due to the high porosity 

which characterize the material, highly contractive behaviour (also larger than 

non-treated soil, Figure 7-19) is observed. 

The effect of curing time on lightened mixtures has been intensively 

investigated on Kcs40nf40. In this case, at early stages of curing, a slight increase 

in peak strength is observed only at a confining stress of 50 kPa (Figure 7-24), 

while the same volumetric behaviour, as well as for stress-strain curve, is 

observed at a confining stress of 100 kPa (Figure 7-25). At higher curing times 

(Figure 7-26, Figure 7-27) the effect of cementation observed on non-lightened 

samples can be observed, especially on volumetric behaviour. 

It is worth noting that reduction in mechanical performances (in terms of 

peak strength and yield stress) observed at increasing foam content, depends only 

on the different physical state of lightweight cemented soil, characterized by a 

significantly higher void ratio, whereas no difference in terms of kinetic and 

products of hydration exists, as shown in section 6. 

The comparison between kaolin and Caposele soil was also presented; a 

lower peak strength of treated Caposele soil was observed in direct shear tests for 

both cemented and lightweight cemented samples (Figure 7-61, Figure 7-62, 

Figure 7-63), as well as a lower yield stress (Figure 7-64, Figure 7-65). However, 

the same behaviours observed on treated kaolin were also observed on treated 

Caposele soil, as already discussed. 

Finally, the failure surface of a lightweight cemented soil was related to two 

variables, namely the void ratio of bonds, eb, and relative dry density, 
𝛾𝑑𝑟𝑦(𝑛𝑓)

𝛾𝑑𝑟𝑦(𝑛𝑓=0)
. 

The former was introduced by Pinyol et al. (2007) as a parameter to take account 

of bonds in argillaceous rocks; it is defined as the ratio of volume of bonds and 

volume of solid soil. The relative density is suggested by Triantafillou and 

Gibson (1990) as a parameter to identify the failure surfaces of brittle foams 

subjected to multiaxial loading. As it has been observed, similar effects are 

observed at both increasing curing time and cement factor. Indeed, they both 

affect the degree of cementation, which affects the mechanical behaviour of a 

cemented soil. Thus, a unique parameter to identify the degree of cementation 
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(which takes account for both curing time and cement factor) was adopted. The 

volume of bonds was substituted by the volume of hydrated cement; eb is 

independent of foam content and it is dependent on curing time, via αx(t), and 

cement factor. It has been calculated from equations derived in 5.1. 

The Mohr-Coulomb criterion was assumed. The hypothesis of a linear 

dependency of cohesion on eb, via the coefficient cb0, seemed to be consistent, 

based on direct shear test results on all the cemented kaolin samples (regardless 

of vertical stress, curing time and cement factor). The friction angle, φ, was 

assumed as independent of degree of cementation, and it was considered as a 

parameter to best fit data (as cb0). However, the calculated friction angle (27.6°) 

proved to be consistent with a possible residual friction angle of cemented kaolin 

(Figure 7-32). In the hypothesis that foam doesn’t affect friction angle, the 

coefficient cb was then derived for nf20 and nf40 and a reduction of this 

coefficient (due to lower strength of lightweight samples) was observed (Figure 

7-34, Figure 7-35). The percentage reduction respect to cb0, i.e. cb of non-

lightened material, was related to relative dry density (Figure 7-37) and an 

exponential law with a third constant, namely cf, was derived. By this way, an 

expression of failure surface depending on the amount of foam and degree of 

cementation was determined (7-12). Then, the same approach was applied on 

Caposele soil in which the three parameters (φ, cb and cf) were best fitted by 

minimizing the residual sum of squares on all the samples. Parameters derived 

for failure surface (7-12) are reported for both soils in Table 7-5. 

𝑙𝑖𝑚 = 𝑐𝑏0(1 − 𝑛𝑓)
𝑐𝑓

𝑒𝑏 + 𝜎𝑣
′ tan(𝜑) (7-12) 

Table 7-5. Parameters for failure surface derived for kaolin and Caposele soil 

 

The effect of foam and cement factor on friction angle was neglected; these 

hypotheses can be consistent for low amounts of foam and limited ranges of 

cement factor. The effect of water content of soil slurry, which affects the void 

ratio of treated soil, is not considered. However, the proposed framework allows 

to consider in a consistent way both curing time and cement factor, so that tests 

at different t and c/s can be considered together. The main issues are summarized 

below: 

φ cb0 [kPa] cf [-]

Kaolin 27.6° 215 3.5

Caposele 29.4° 185 4.0
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• theoretical bulk density is almost equal to measured values for 

cemented soil, while it can be significantly higher in lightweight 

cemented soil due to breakage of bubbles upon mixing; 

• despite foam collapse, the dry bulk density has been reduced up to 

71% in lightweight cemented kaolin and 67% in lightweight 

cemented Caposele soil; 

• a good agreement of estimated dry bulk density and void ratio with 

measured values was found, while water content is affected by a 

larger scatter; 

• the yield stress in k0 compression increases significantly with cement 

factor and slightly increases with curing time, while initial stiffness 

is slightly affected; 

• an increase in peak strength, with a more brittle and dilative 

behaviour, is observed at increasing curing time and cement factor in 

non-lightened cemented soil samples; 

• the addition of foam causes a significant reduction in yield stress in 

k0 compression; however, the initial void ratio is significantly higher 

due to addition of foam; 

• a reduction of peak strength is generally observed at increasing 

amount of foam, with a transition to a more ductile and contractive 

behaviour; 

• the reduction of peak strength and yield stress likely depends on the 

increased porosity; indeed, hydration processes are not affected by 

the amount of foam (chapter 6); 

• a unique variable, eb, was identified to describe the degree of 

cementation, by taking account of both curing time and cement 

factor; 

• a failure surface, depending on vertical stress, degree of cementation 

and amount of foam and three constants (φ, cb0 and cf) was identified; 

the relative dry density was used as a variable to describe the effect 

of foam on cohesion. 
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 Summary and conclusions 
The effects of cement and foam addition on soil properties were investigated. 

The experimental study was carried out on a commercial fine grained soil, the 

Speswhite kaolin, and a natural soil, namely Caposele soil. The former is an 

artificial clay, characterized by well-known chemo-physical properties; 

therefore, it was considered in order to simplify the interpretation of the 

experimental results and hence the understanding of the evolution of a complex 

system as the soil-water-cement-foam mixture. The Caposele soil was chosen to 

compare results on a natural soil, that could be typically encountered in 

engineering practice, with similar plasticity and grain size distribution. A 

summary of mixtures tested in this experimental study is reported in Table 8-1. 

Table 8-1. Treated soil mixtures. 

 

Chemo-physical and microstructural evolution of Speswhite kaolin mixtures 

were studied by means of X Ray Diffraction (XRD), Thermogravimetric 

Analysis (TGA), Scanning Electron Microscopy (SEM) and Mercury Intrusion 

Porosimetry (MIP). 

XRD and TGA show that chemo-physical evolution of treated samples is 

ruled by hydration of cement and pozzolanic reactions whereas foam addition 

does not alter chemo-physical evolution of treated samples. Thermogravimetric 

analyses were used to quantitively study the progress of hydration via non-

evaporable water, Wn-ev, identified as the water combined in products of 

hydration; the ratio between non-evaporable water and the amount of anhydrous 

cement, αx, can be used to describe the progress of hydration of samples treated 

at different cement factors (Figure 8-1). 

wc/c ws [%] c/s [%] nf [%]

0% K cs20

20% K cs20 nf20

40% K cs20 nf40

0% K cs40

20% K cs40 nf20

40% K cs40 nf40

0% C cs40

20% C cs40 nf20

40% C cs40 nf40

SW kaolin 0.5 140%

20%

40%

Caposele 0.5 120% 40%
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Figure 8-1. αx time evolution of Speswhite kaolin mixtures. 

Bubbles of different sizes constituting foam are able to displace and sustain 

the soil-cement slurry matrix upon mixing, thus introducing air in the system 

which remains stable over cement setting and matrix hardening. Indeed, an 

increase of pores frequency larger than 1 µm is detected in MIP for lightweight 

cemented samples; furthermore, the addition of air foam does not modify the 

modal pore size of cement treated samples (ranging between 0.2 µm - 0.4 µm). 

SEM images confirm MIP results interpretation showing kaolinite particles 

embedded into C-S-H network since early curing times (i.e. 24h); the effect of 

air foam is clearly evidenced by footprint of air bubbles such as cavities of 

different shape detected on the lightweight samples surface as a consequence of 

matrix displacement during mixing, whose extent and frequency increase as air 

foam content increases; these cavities can be filled by precipitation of aluminate 

hydrates and portlandite with progress of hydration. 

At volume scale the effects of cement and foam addition were investigated 

in terms of bulk properties and mechanical behaviour on both kaolin and 

Caposele soil. 

A theoretical formulation to estimate physical properties time evolution of 

lightweight cemented soils starting from design parameters has been derived 

based on the hypotheses that shrinkage does not occur and samples are seal cured. 

The solid phase increases because of water combined in products of hydration 

due to cement hydration reactions, thus dry weight increases and void ratio 

decreases. It was highlighted that a significant breakage of foam bubbles upon 

mixing can occur; thus, a correction to calculate the “actual” volume of foam 
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based on bulk weight increase was proposed. The “actual” porosity induced by 

foam was determined for each sample and the average values of each mixture 

were considered to calculate theoretical properties. In Table 8-2, the main 

characteristics of the mixtures are reported. 

Table 8-2. Mixtures characteristics after volume of foam correction (void ratio, e, refers to 28 

days of curing). 

 

Results were compared to measured bulk properties determined via standard 

procedures. A good agreement with dry bulk density and void ratio was found, 

while a larger scatter was observed for water content. Despite bubbles breakage, 

the addition of foam (in the range investigated in this study) leads to a reduction 

of bulk weight and dry bulk weight up to 70% of non-lightened mixtures, with a 

significant reduction of the amount of cement required for unit volume of 

material (Figure 8-2). 

 
Figure 8-2. Properties of mixtures (lines refer to theoretical values): a) bulk weight (symbols 

refer to measured values); b) amount of cement per unit volume (symbols refer to corrected values 

5.2.1.1). 

nf
*

ms [kg] mc,a [kg] mf [kg] γ [kN/m
3
] e [-]

K cs20 - 513 103 - 13.8 3.1

K cs20 nf20 9% 467 93 17 12.8 3.5

K cs20 nf40 28% 369 74 36 10.3 4.7

K cs40 - 473 189 - 14.2 2.7

K cs40 nf20 11% 421 168 17 12.8 3.2

K cs40 nf40 29% 336 134 36 10.4 4.3

C cs40 - 529 212 - 14.8 2.5

C cs40 nf20 19% 428 171 15 12.1 3.3

C cs40 nf40 33% 354 142 34 10.3 4.2
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Macroscopic behaviour of cemented and lightweight cemented soils was 

investigated by means of direct shear tests and oedometric tests. Test results 

evidence an evolution of mechanical behaviour of cement treated samples over 

time due to the progress of hydration reactions. An increase of cement factor 

and/or curing time leads to an increase of yield stress in k0 compression and an 

increase in peak strength with a more brittle and dilative behaviour in shearing 

paths. As expected, an increase in vertical stress in direct shear tests leads to an 

increase in peak strength, with a reduction of brittleness and dilatancy 

(comparing samples at same curing time and cement factor, Figure 8-3a).  

 
Figure 8-3. Direct shear test results on different mixtures and curing times. 

The addition of foam causes a significant reduction in yield stress in k0 

compression. A reduction of peak shear strength in direct shear tests is observed 

at increasing amounts of foam, with a transition to a more ductile and contractive 

behaviour (Figure 8-3). The effect of foam on mechanical performances can be 

explained by the significant increase in void ratio, since hydration reactions 
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induced by cement are not altered by foam addition as evidenced by microscale 

analyses. 

At increasing curing time, a gradual increase of peak strength was observed 

also on lightened samples, as shown in Figure 8-4, along with a transition to a 

less ductile and contractive behaviour. These phenomena are less evident than 

observed on non-lightened samples, but this can be due to the lower yield stress 

in k0 compression which leads to an initial stress state (in direct shear tests) closer 

to yield surface, thus the effect of cementation cannot be appreciated in the same 

way. Similar results were found for both Speswhite kaolin and Caposele soil. 

Hence it seems reasonable that the effects of the proposed technique on the 

mechanical behaviour experimentally observed in the case of a commercial 

kaolin and of the natural Caposele soil can develop even in the case of other 

natural soils. 

 
Figure 8-4. Direct shear test results: maximum shear strength at varying curing time of Kcs40 

and Kcs40nf40 in -𝜎𝑣
′  plane. 

The Mohr Coulomb criterion was adopted to describe the failure surface of 

cemented and lightweight cemented soils. The effect of foam and curing time on 

friction angle was neglected, and a unique value for all the mixtures of each soil 

was determined. The void ratio of bonds, eb, defined as the ratio of volume of 

hydrated cement (i.e. volume of bonds) and volume of solid soil, was identified 

as a parameter to describe the increase in strength due to the degree of 

cementation. A linear relation passing through origin was assumed between 

cohesion and void ratio of bonds (c = cbeb), as shown in Figure 8-5a. 
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Figure 8-5. a) increase of cohesion with eb; b) relative reduction of cb with relative density. 

The decrease of strength at increasing amount of foam has been considered 

correlating the reduction of cb to the relative dry density (independent of cement 

factor and curing time) representing the effect of foam (Figure 8-5b). A unique 

failure surface which takes account of cement factor, curing time and amount of 

foam, depending on three constants (φ, cb0 and cf), was determined (8-1). The 

constants determined for each soil are reported in Table 8-3. 

𝑙𝑖𝑚 = 𝑐𝑏0(1 − 𝑛𝑓)
𝑐𝑓

𝑒𝑏 + 𝜎𝑣
′ tan(𝜑) (8-1) 

Table 8-3. Parameters for failure surface derived for kaolin and Caposele soil 

 

 Further developments 

The experimental study was focused on chemo-mechanical evolution of 

lightweight cemented soils. It has been proved that results on a commercial fine-

grained soil can be extended to a natural excavated soil, which is the aim of the 

treatment method. However, the two soils investigated, even if characterized by 

different mineralogical composition, had similar grain size distribution and 

plasticity. Thus, further studies might be focused on treatment of soils 

characterized by higher plasticity; in this case, more difficulties can arise. The 

higher demand in water content to obtain a slurry with a proper viscosity could 

lead to a significantly higher porosity, thus reducing mechanical performances. 

Indeed, many authors have shown that at increasing water content of soil slurry, 

a significant reduction of mechanical performances is observed. Thus, the main 

φ cb0 [kPa] cf [-]

Kaolin 27.6° 215 3.5

Caposele 29.4° 185 4.0
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objective would be the reduction of water demand without affecting viscosity, in 

order to have a deflocculated suspension with high concentrations. Additives 

required for this purpose, such as salts, could affect chemo-physical evolution, 

and a further study would be required. 

The mechanical tests allowed to investigate qualitatively the effects of the 

addition of foam on mechanical behaviour evolution. In the future, more accurate 

mechanical investigations will be performed for numerical modelling of the 

observed behaviours. Tests performed in the range of curing time investigated, 

up to 3 months, showed a significant increase in peak strength with time. 

However, in this study, samples were seal cured before testing whereas site 

conditions could be different. Depending on the case, the material could be 

subjected to wetting-drying cycles, freeze-thaw cycles and seepage of deleterious 

chemicals that could affect long-time mechanical performances; thus, studies on 

durability of lightweight cemented soils should be carried out. These matters are 

also related to hydraulic properties that should be investigated due to the 

significant importance in geotechnical applications. 
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Appendix A 

Clay minerals 

Basic units 

Most of clay minerals are composed of two basic structural units. One is built 

of silica tetrahedron with a silicon atom equidistant from four oxygens at the 

centre of the tetrahedron with formula SiO4
−4

 (Figure A-1). The tetrahedron 

groups are arranged to form a sheet, a phyllosilicate, with the bases in the same 

plane and tips pointing in the same direction, repeated indefinitely with 

composition Si4O6(OH)4 (Grim, 1968). In Figure A-3 the tetrahedral sheet is 

represented. In Figure A-3b, the dashed line represents the repeated unit [Si4O10]
-

4
. 

 
Figure A-1. Silica tetrahedron group. (a) and (b) structure representation; (c) bidimensional 

representation. 

 
Figure A-2. Diagrammatic sketch of the tetrahedral sheet (Murray, 2006). 
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Figure A-3. Diagrammatic sketch of tetrahedral sheet. (a) planar sketch; (b) bidimensional 

representation. 

The second basic unit is composed of octahedral sheets, comprised of closely 

packed oxygens and hydroxyls in which aluminum and magnesium atoms are 

arranged in octahedral coordination (Murray, 2006). 

 
Figure A-4. Diagrammatic sketch of the octahedral sheet (Murray, 2006). 
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Figure A-5. Octahedron unit and bidimensional representation of Gibbsite and Brucite. 

In the first case, namely gibbsite structure, the aluminum with a positive 

valence of three is present; only two-thirds of possible positions are filled, and 

the sheet has formula Al2(OH)6. When magnesium (with a positive charge of two) 

is present, the structure is called brucite. In order to balance the structure, all the 

positions have to be filled and the formula is Mg3(OH)6. Both minerals can 

indefinitely develop on horizontal plane while (being the oxygen valences 

saturated), only hydrogen bonds can allow a growth in normal direction. Starting 

from these basic units, clay minerals, such as kaolinite, can be identified. 

Mineral groups 

Kaolinite-serpentine group 

The structure of kaolinite is composed of a single phyllosilicate and a single 

alumina octahedral sheet so that a composite octahedral-tetrahedral layer is 

formed (T-O mineral) (Grim, 1968). One layer of gibbsite and the plane 

containing the tips of the tetrahedral sheet unite in a common layer, as shown in 

Figure A-6. In this layer, two thirds of the atoms are shared. In Figure A-6, two 

formulas to represent kaolinite are shown. The first one is the chemical formula, 

while the second one, the mineralogical one, allows to identify the composition 

of the mineral. The mineral is defined as a dioctahedral phyllosilicate because 

only two thirds of possible position are occupied by aluminum. 
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Figure A-6. Representation of kaolinite structure. 

The group can repeat indefinitely in the horizontal plane, while (due to 

charge saturation), it cannot grow in normal direction, except for hydrogen bonds 

which can be formed thanks to OH- layer (Figure A-6). Kaolinite appears as well-

formed six-sided flakes with maximum dimension of flake surface from 0.3 m 

up to 4 m, elongated in one direction from 0.05 to 2 m (Grim, 1968). 

Molecules of water (zeolitic water) can be placed between the planes forming 

hydrogen bonds. In this case, the mineral is called Halloysite, with formula 

Al4[Si4O10](OH)8∙4H2O. As reported by Joussein et al. (2005), the dominant 

halloysite particles, conversely to kaolinite, appear as tubular particles with 

lengths from 0.02 to >30 m and widths from 0.05 m to 0.2 m, at least. 

 
Figure A-7. Pyrophyllite bidimensional representation and formula. 

Another structure that comes from gibbsite is the Pyrophyllite, represented 

in Figure A-7. Both layers of gibbsite are in common with the phyllosilicate 

sheet, with a T-O-T structure. As the previous ones, pyrophyllite can repeat 

indefinitely in the horizontal plane. Conversely to them, development in normal 



                                                                                                             Appendix A 

188 

 

direction cannot occur because of charge saturation, neither with hydrogen 

bonds. They can only connect by means of interlayer water with weak bonds. 

Starting from brucite, serpentine and talc are akin to kaolinite and 

pyrophyllite, respectively a T-O and a T-O-T mineral (Figure A-8). Due to 

magnesium valence, all the positions are filled, so they can be defined as 

trioctahedral minerals. 

 
Figure A-8. Serpentine and talc bidimensional representations and formula. 

Illite minerals 

In some cases, substitution of silica atoms in tetrahedral sheets can occur. 

These minerals are called micas. When a substitution occurs, it can cause a charge 

deficiency in T-O-T groups, that has to be balanced by other ions as sodium and 

potassium. 

An example of dioctahedral mica is the Muscovite (white mica), obtained by 

substitution of Si+4 with Al+3 in pyrophyllite (about one-fourth substitution) 

which causes a net negative charge balanced by K+ ions. The structural formula 

is (OH)4K2(Si6Al2)Al4O20. Ionic bonds between TOT sheets are stronger than 

hydrogen bonds, preventing water from occupying interlayer position (Murray, 

2006). 

Illite is another clay mineral mica, also referred to as hydrous mica. As 

muscovite, it is characterized by Al+3 substitution in tetrahedral sheets, but it 

differs from that because about one-sixth of Si+4 are substituted and there are less 

K+ ions (Mitchell and Soga, 2005; Murray, 2006). Illite particles are mainly 

irregular aggregates of poorly defined flakes with diameter that usually goes from 

0.1 to 0.3 m. 

An example of trioctahedral mica is the biotite or black mica, obtained from 

talc, due to Si+4 substitution with Al+3 in tetrahedral sheets and Mg+3 substitution 
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with Fe2+ in octahedral sheets. As muscovite, K+ ions balance the charge 

deficiency and their properties are similar. Another clay mineral is vermiculite, 

composed of biotite sheets interlayed by double molecular layers of water. Even 

if charge deficiency due to Si+4 substitution can be partially balanced by other 

substitutions in mica lattice, a net-charge always stays. This is balanced by 

cations, usually Ca+2 and Mg+2, between biotite like layers and they are largely 

exchangeable (Grim, 1968). 

Smectite (montmorillonite) minerals 

Another group of minerals is named smectite minerals. They are composed 

of a central alumina octahedral sheet between two silica tetrahedral sheet, as 

pyrophyllite, with water placed between units. Smectites always have 

substitution. In the tetrahedral sheet, substitution of Si+4 with Al+3 is up to 15% 

and, in the octahedral sheet, substitution of magnesium and iron for aluminum 

occurs, varying from few to complete. Moreover, the lattice is always unbalanced 

by substitutions that can only be partially compensated by the ones in other 

layers. This results in a net charge on the lattice that is balanced by exchangeable 

cations, as calcium and sodium, adsorbed between unit layers and around edges. 

Indeed, this is one of important differences between illites and smectites. In the 

former, the charge deficiency is mainly in tetrahedral sheet, with potassium 

mainly balancing it thus structural unit layers are relatively fixed in position. In 

smectites, the charge deficiency is in the octahedral sheet, polar molecules can 

enter between units with ease and cations are easily exchangeable. 

When a limited substitution of Al+3 occurs, the smectite is called beidellite 

and it is a dioctahedral smectite. By contrast, when a total two on three 

substitutions of 2Al+3 with 3Mg+2 occur, all the positions are occupied and the 

trioctahedral smectite is called saponite. Nontronite and sauconite come from 

replacement of Al+3 respectively with iron and zinc. 

A very common dioctahedral smectite mineral is the montmorillonite, that 

comes from one on one substitution of Al+3 with Mg+2. When calcium is the 

cation balancing the charge in the adsorbed water, it is called calcium 

montmorillonite and there are two water layers between units. Conversely, in 

sodium montmorillonite there is one layer of water and sodium is the main 

adsorbed cation. 

Montmorillonite is flake shaped, so thin that particles are like films, with 

long axis that goes up to 1 or 2 m and thickness from 1 nm up to 1/100 of width 

(Mitchell and Soga, 2005). Montmorillonite and, more generally, all smectites 



                                                                                                             Appendix A 

190 

 

have a very large specific surface. When there is a large amount of iron and/or 

magnesium substitution, particles have elongated shape like a needle. 

Other clay minerals 

Another group of clay minerals, distinguished by a TOT+O configuration, is 

the chlorite group. Chlorites are composed of a mica-like layer, unbalanced by a 

substitution of Al+3 for Si+4 (for example, starting from pyrophyllite) in the 

central octahedral layer, and a brucite-like layer, which balances the excess 

charge thanks to a substitution of Al+3 for Mg+3
,  (Grim, 1968). They appear as 

microscopic grains of platy morphology and poorly defined crystal edges 

(Mitchell and Soga, 2005). 

Amorphous clay minerals are called allophanes. These minerals are 

substantially amorphous to x-ray diffraction, due to a very low order of structural 

units like silicon in tetrahedral coordination, metallic ions in octahedral 

coordination with occasional other units. Their composition and shape can vary 

substantially, and it is difficult to prove unequivocally their presence. However, 

according to Grim (1968), their importance is marginal on soil physical 

properties. 

Some clay minerals don’t have a planar configuration but a chain-like 

structure, as palygorskite and sepiolite. The diameter is about 5 – 10 nm and 

lengths up to 5 m. However, they are not frequently encountered (Mitchell and 

Soga, 2005). 

Mixed-layer clay minerals are also possible when there is interstratification 

of two or more clay minerals. The interstratification can be regular, so that a 

regular repetition of different layers occurs, or it can be irregular with a random 

interstratification. However, due to the inherent variability, it’s not possible to 

give specific names and they are named after mixtures of layer involved such as 

the most common montmorillonite–illite, chlorite–vermiculite and chlorite–

montmorillonite (Grim, 1968; Mitchell and Soga, 2005). 

Non-clay minerals 

In clayey soils, minerals which can be abundant but not regarded as clay 

minerals are often encountered. The main one is certainly quartz (SiO2), which 

is composed of silica tetrahedra but, conversely to silica sheets, all four of the 

oxygens are shared with other tetrahedra and grouped forming spirals in a three-

dimensional framework (Mitchell and Soga, 2005). Other non-clay minerals 
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which can be encountered are the carbonates, especially in the form of calcite 

(CaCO3) and dolomite CaMg(CO3)2, and gypsum (CaSO4∙2H2O). 
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Appendix B 

Microstructural tests 

X Ray Diffraction (XRD) 

X-ray diffraction is based on the property of crystals to diffract x-rays in a 

way that is dependent on their structure, thus revealing the structure itself. This 

property was discovered in 1912. X-rays are electromagnetic radiations, such as 

visible light, but characterised by a much shorter wavelength, expressed in 

Angstrom, A = 10-8 cm, approximately in the range 0.5 – 2.5 A (visible light 

wavelength is in the order of 6000 A). They can be scattered by atoms (scattering 

centres) which have a spacing of the same order of magnitude of x-ray 

wavelength, such as crystals; moreover, atoms in crystals are periodically 

distributed on the lattice. Because of this, scattered rays’ waves have specific 

phases and destructive interference between them occur in most directions of 

scattering except for a few directions where the diffracted beams are formed 

thanks to a constructive interference between scattered rays. Given θ the angle 

formed by the incident beam and the specific crystal plane known as Bragg angle, 

the angle between the diffracted beam and the transmitted beam is always 2θ; it 

is known as diffraction angle and it is the one usually measured experimentally. 

It is related to the incident beam (generally monochromatic) wavelength, λ, and 

the distance between two parallel planes containing scattering centres, d, by the 

Bragg law (where n is a positive integer). 

𝑛𝜆

2𝑑
= 𝑠𝑖𝑛𝜃 (B-1) 

Diffraction directions depend only on shape and size of the unit cell, thus, by 

measuring intensity of diffracted beam and the diffraction angle, info about the 

structure of mineral can be gained (Cullity, 1978). 

X-ray analyses were performed at University of Cassino and southern Lazio 

using a Brucker AXS D8 Advance Diffractometer and an x-ray tube with CuKα 

(λ = 0.154 nm) radiation and a step size of 0.021°. 

Thermogravimetric Analysis (TGA) 

The thermogravimetric analysis (TGA) is a thermo-analytical technique in 

which changes in weight are measured as a function of increasing temperature, 

so the basic instrumental requirements are a precision balance and a furnace 

programmed for a linear rise of temperature in time (Coats and Redfern, 1963). 

Results can be represented as weight (or percentage of total weight) versus 



                                                                                                             Appendix B 

193 

 

temperature, known as thermogravimetric curve, or rate of loss versus 

temperature (DTG), known as differential thermogravimetric curve. This 

analysis can provide information about physical and chemical phenomena. For 

example, it can be used to study the progress of hydration in cementitious 

materials as shown in 3.1.1.1. 

Thermo-gravimetric analyses were performed at University of Cassino and 

southern Lazio, with a Netzsch STA 449F3 Jupiter, equipped with a mass 

spectrometer. Finely ground sample was heated at a rate of 10 °C min−1, under 

argon atmosphere, from ambient temperature to 1000 °C. The Netzsch Proteus 

software has been used to process the results.  

Scanning Electron Microscopy (SEM) 

The Scanning Electron Microscopy is a type of electron microscopy. The 

image of the structure in electron microscopy is obtained via magnetic lens by 

focusing an electron stream on the sample. The high image resolution and 

magnification, which can go up to 1000000x, are due to the short wavelength of 

electrons According to quantum mechanics, an electron which moves at high 

speed behaves as an electromagnetic wave with a wavelength inversely 

proportional to its speed, up to 0.003 nm, if accelerated. In addition to scanning, 

it can be also performed in transmission. (Callister, 1991). 

In Scanning Electron Microscopy, the surface of the sample is “scanned” 

with an electron beam; the reflected electron stream due to the interaction with 

atoms on the surface are detected by specific detectors to produce an image. This 

analysis is more suitable to imaging rather than analysis, due to the large depth 

of field which allows an immediate interpretation by the observer (Reed, 2005). 

SEM were performed via SU5000 Hitachi Scanning Electron Microscopy at 

Institut des Matériaux Jean Rouxel (IMN) of University of Nantes. A gold coating 

of the samples has been performed before SEM observations. 

Mercury Intrusion Porosimetry (MIP) 

Mercury Intrusion Porosimetry (MIP) is a technique that allows to study the 

pore size distribution in a sample, but also other information can be acquired. It 

is based on the principle that a non-wetting liquid requires to be forced to entry 

in a pore or a capillary. If the pore is cylindrical and the opening is circular in 

cross-section, the relation between pressure, P, applied to fluid and diameter D is 

described by Washburn equation, as 
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𝐷 = −
4𝛾co s(𝜃)

𝑃
 (B-2) 

where γ is the surface tension of the liquid, θ is the contact angle on solid-

liquid interface. Mercury is almost exclusively adopted due to its non-wetting 

behaviour with most of solid materials (Webb, 2001). As reported by Diamond 

(1970), surface tension of mercury at 25 °C can be assumed equal to 0.484 N/m, 

while different contact angles have been observed for clay minerals, but the usual 

values are 130 or 140 degrees. The value of 130 degree can also be adopted for 

concrete (Ma, 2014). 

The test is usually performed applying a series of small pressure step 

increments in which pressure and volume are measured after equilibrium is 

achieved. Pores must be empty of water and any other fluid when analysis begins. 

Then, applying Washburn’s equation (B-2) it is possible to determine the pore 

size associated to volume intruded. By this way, a cumulative curve is obtained. 

The volume intruded for each pressure step, i.e., for each pore size class, is the 

difference between the respective cumulative intrusion volumes. By this way, a 

volume intruded can be associated to each pore size class. To normalize data, 

intrusion volume is expressed in terms of fraction of total volume intruded 

(Webb, 2001). The same procedure can be applied in extrusion, with decreasing 

pressure steps. 

It is worth noting that completely isolated pores which are inaccessible from 

the outside and pores that would require a pressure higher than instrument 

capacity cannot be measured. Larger pores (pore cavities), accessible only by 

smaller pores (pore throats), cannot be intruded until the pressure goes up to the 

value associated to the smaller diameter. By this way, the volume intruded in 

both pores (smaller and larger) is associated to the smaller class of pores leading 

to a bias called “ink bottle” effect (Abell et al., 1999). This phenomenon causes 

the hysteresis of intrusion-extrusion curve. Indeed, when pressure is reduced, in 

a throat-cavity connection the throat is emptied at the same pressure at which it 

has been filled, but cavity remains filled because the pressure is still high enough 

to make the cavity filled. The cavity can be emptied at the lower pressure 

associated with its radius or not emptied at all if pore diameters of the paths 

leading to surface are of inappropriate size (Webb, 2001). In this last case, total 

volume extruded is lower than volume intruded. 

MIP tests were performed at University of Cassino and southern Lazio by a 

double chamber Micromeritics Autopore III apparatus. In the filling apparatus 
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(dilatometer) samples were outgassed under vacuum and then filled by mercury 

allowing increase of absolute pressure up to ambient one. Using the same unit 

the intrusion pressure was than raised up to approximately 200 kPa by means of 

compressed air. The detected entrance pore diameters range between 134 μm and 

7.3 μm (approximately 0.01 MPa - 0.2 MPa for a mercury contact angle of 139°). 

After depressurization to ambient pressure, samples were transferred to high-

pressure unit, where mercury pressure was increased up to 205 MPa following a 

previously set intrusion program. Corrections to pore-size distribution due to 

compressibility of intrusion system were applied performing a blank test. 

Mechanical tests 

Oedometer test 

Oedometer test is a standard test that reproduces in laboratory one 

dimensional consolidation conditions. The specimen is cylindrical, and the 

horizontal confinement is obtained via a confining ring. According to standards 

(ASTM, 1990), diameter and height of sample must be respectively equal or 

higher than 50 mm and 12 mm while their ratio should be at least 2.5 to minimize 

the effect of friction between the sample and the confining ring; this one must be 

stiff enough to ensure that the change in diameter won’t exceed 0.03% of the 

diameter under maximum load (ASTM, 1990). On the bottom and upper surfaces, 

the sample is confined between two porous stone, with a steel head on the upper 

porous stone to apply the load. The ring can be either fixed on the base or floating 

(supported by friction on periphery of specimen) (ASTM, 1990). The sample 

with confining ring and porous stone is put in a box filled with water. 

The apparatus used in laboratory is a standard device with controlled 

incremental load. Specimen diameter is 55 mm with a height of 20 mm, whose 

ratio is higher than 2.5 as the standard requires. Vertical displacements are 

measured via a Linear Variable Differential Transducer (LVDT). The load 

increment is applied when the 100% of primary consolidation is supposed to be 

reached (ASTM, 1990). Indeed, as reported by Lancellotta (2012), the amount of 

deformation that has to be taken into account is the one related to primary 

consolidation while secondary consolidation is related to creep. In Figure B-1 an 

example time-deformation curve is represented. The end of primary 

consolidation is conventionally assumed at the intersection between the tangent 

to the steepest part of the deformation-log time curve and the straight line through 

the points representing the final reading, as suggested by Casagrande (1936) and 

reported by ASTM standard (ASTM, 1990). The standard also suggests another 
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procedure based on deformation-square root of time curve. The results are 

usually represented in e-logσv
’  or ε-logσv

’   planes, where “e” is the void ratio and 

“ε” is the vertical strain: 

𝑒 =
𝑉𝑝

𝑉𝑠
= 𝐻0 −

𝛥𝐻

𝐻𝑠
;  𝜀 =

𝛥𝐻

𝐻0
; (B-3) 

Where Vs is the volume of the solid phase, Vp is the volume of pores, H0 is 

the initial height of the sample and Hs is the height of the solid phase. 

 
Figure B-1. Time-deformation curve in semi-log space (ASTM, 1990) 

Direct shear test 

The direct shear apparatus is a standard device used to determine strength 

parameters soils. The specimen is a rectangular parallelepiped, with a base A that 

is usually 60x60 mm and 20-25 mm height. The specimen, confined below and 

above between two porous rough square plates, is put in the shear box, that is 

stiff enough to ensure oedometric condition under vertical loads (Figure B-2). 

The box is composed of two steel frames that can slide one on another. The test 

is composed of two phases. At first, a vertical load N is applied on the head of 

the sample via the piston in oedometric condition. By this way, a vertical stress 

σv
’  equal to N/A is applied and vertical displacement are measured in time. At the 

end of primary consolidation, a controlled displacement rate is applied to the 

bottom frame of the box, which slides below the upper part that is restrained via 
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a dynamometer that measures the shear load T. During this phase both vertical 

and horizontal displacements are measured. 

Due to test conditions, the shear plane is imposed to be the horizontal plane 

between the two shear box halves, which means that the shear stress acting on 

the plane, , is equal to T/A. Even if the area of the shear surface decreases during 

the test, causing an uncertainty regarding the value of shear and normal stress, it 

shouldn’t affect their ratio (ASTM, 2003). 

 
Figure B-2. Shear box apparatus (ASTM, 2003) 

Due to the impossibility to control the drainage conditions, only drained tests 

are reliable. Stress-strain curves have only qualitative meaning due to the non-

uniformity of strain in sample and progressive failure. It’s also not possible to 

define the stress state in the sample because only the normal and shear stresses 

on horizontal plane are known. Moreover, it’s not certain if the shear stress is 

equal to the shear strength on the plane (B-4a) or the maximum shear stress in 

the sample (B-4b) (Lancellotta 2012). 

(a)  = 𝑓𝑓;  (b)  = 𝑡 =
1

2
(𝜎1 − 𝜎3)𝑚𝑎𝑥;  (B-4) 

In order to determine the strength parameters, three tests are required at 

different normal loads. Then, the resultant σv and  are conventionally reported 

in the plane -σ’ to determine c’ and φ’. 

The adopted shear box apparatus is a standard one, the shear force being 

developed by an electric motor driving, providing a variable speed control 

ranging from 5·10−4 to 2 mm/min. All direct shear tests have been performed at 

a displacement rate of 0.005 mm/min. Micrometer dial gauges with a resolution 

of 0.001 and 0.01 mm have been respectively used to measure vertical and 

horizontal displacements. 
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Appendix C 

Mechanical tests results 

Cemented Speswhite kaolin 
Table C-0-1. Properties of cemented kaolin samples;  

 

t [days] γ [kN/m3] γdry [kN/m3] e σ'v [kPa] max [kPa]

Kcs20_7d_50kPa 7 13.5 6.2 3.2 50 49

Kcs20_7d_100kPa 7 13.7 6.1 3.2 100 69

Kcs20_7d_150kPa 7 13.6 6.2 3.2 150 118

Kcs20_7d_50kPa 28 13.9 6.3 3.1 50 66

Kcs20_7d_100kPa 28 13.7 6.2 3.2 100 92

Kcs20_28d_150kPa 28 13.7 6.3 3.1 150 110

Kcs20_7d_oed 7 13.6 6.4 3.1 - -

Kcs20_28d_oed 28 13.6 6.5 3.0 - -

Kcs40_1d_50kPa 1 14.3 - - 50 62

Kcs40_1d_100kPa 1 14.1 6.8 2.8 100 94

Kcs40_1d_150kPa 1 14.0 6.5 3.0 150 129

Kcs40_3d_50kPa 3 14.1 - - 50 82

Kcs40_3d_100kPa 3 14.0 6.9 2.8 100 107

Kcs40_3d_150kPa 3 14.2 6.1 3.3 150 137

Kcs40_7d_50kPa 7 14.3 6.8 2.8 50 95

Kcs40_7d_100kPa 7 14.0 6.9 2.8 100 120

Kcs40_7d_150kPa 7 13.9 6.4 3.1 150 160

Kcs40_14d_50kPa 14 14.2 - - 50 103

Kcs40_14d_100kPa 14 13.9 6.8 2.8 100 133

Kcs40_14d_150kPa 14 13.9 6.8 2.8 150 143

Kcs40_28d_50kPa 28 14.0 6.8 2.8 50 95

Kcs40_28d_100kPa 28 14.3 6.7 2.9 100 137

Kcs40_28d_150kPa 28 14.1 6.8 2.8 150 177

Kcs40_60d_50kPa 60 14.0 6.9 2.8 50 116

Kcs40_60d_100kPa 60 14.1 7.0 2.7 100 143

Kcs40_60d_150kPa 60 14.0 7.0 2.7 150 154

Kcs40_90d_50kPa 90 14.0 7.0 2.7 50 127

Kcs40_90d_100kPa 90 14.1 6.9 2.7 100 170

Kcs40_90d_150kPa 90 14.0 6.9 2.8 150 206

Kcs40_7d_oed 7 14.1 7.1 2.6 - -

Kcs40_28d_oed 28 14.1 7.0 2.7 - -

K cs20

K cs40



                                                                                                             Appendix C 

200 

 

Kcs40 

Direct shear tests 
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Oedometric tests 
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Kcs20 

Direct shear tests 
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Oedometric tests 
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Lightweight cemented kaolin 
Table C-0-2 

 

t [days] γ [kN/m
3
] γdry [kN/m

3
] e σ'v [kPa] max [kPa]

Kcs20_nf20_7d_50kPa 7 12.8 5.7 3.5 50 49.1

Kcs20_nf20_7d_100kPa 7 12.3 5.5 3.8 100 71.9

Kcs20_nf20_7d_150kPa 7 12.9 6.2 3.2 150 105.5

Kcs20_nf20_28d_50kPa 28 13.0 5.8 3.5 50 47.8

Kcs20_nf20_28d_100kPa 28 13.0 5.8 3.5 100 77.9

Kcs20_nf20_28d_150kPa 28 12.5 5.6 3.6 150 101.9

Kcs20_nf20_7d_oed 7 12.7 5.8 3.5 - -

Kcs40_nf20_7d_50kPa 7 12.6 6.0 3.3 50 69.0

Kcs40_nf20_7d_100kPa 7 12.8 6.1 3.2 100 99.7

Kcs40_nf20_7d_150kPa 7 12.8 6.1 3.3 150 121.1

Kcs40_nf20_14d_50kPa 14 12.5 6.0 3.4 50 70.1

Kcs40_nf20_14d_100kPa 14 12.8 - - 100 100.3

Kcs40_nf20_14d_150kPa 14 12.9 5.9 3.4 150 123.6

Kcs40_nf20_28d_50kPa 28 12.5 6.1 3.3 50 83.2

Kcs40_nf20_28d_100kPa 28 13.0 6.2 3.2 100 106.2

Kcs40_nf40_28d_150kPa 28 13.0 - - 150 127.2

Kcs20_nf20_7d_50kPa 7 10.2 4.7 4.6 50 36.6

Kcs20_nf20_7d_100kPa 7 10.2 4.4 4.9 100 62.5

Kcs20_nf20_7d_150kPa 7 10.4 4.5 4.8 150 86.4

Kcs20_nf20_28d_50kPa 28 10.2 4.5 4.8 50 47.5

Kcs20_nf20_28d_100kPa 28 10.2 4.5 4.8 100 58.3

Kcs20_nf20_28d_150kPa 28 10.4 4.3 5.1 150 92.9

Kcs20_nf40_14d_oed 14 10.4 4.7 4.5 - -

Kcs20_nf40_28d_oed 28 10.4 4.7 4.6 - -

Kcs40_nf40_1d_50kPa 1 10.3 4.8 4.4 50 45.5

Kcs40_nf40_1d_100kPa 1 10.0 4.6 4.6 100 64.7

Kcs40_nf40_3d_50kPa 3 10.5 4.8 4.5 50 44.5

Kcs40_nf40_3d_100kPa 3 10.6 4.7 4.6 100 65.9

Kcs40_nf40_3d_150kPa 3 10.5 4.7 4.5 150 90.8

Kcs40_nf40_7d_50kPa 7 10.1 4.7 4.5 50 46.3

Kcs40_nf40_7d_100kPa 7 10.7 4.9 4.3 100 77.7

Kcs40_nf40_7d_150kPa 7 10.8 5.3 3.9 150 94.9

Kcs40_nf40_14d_50kPa 14 10.4 4.9 4.3 50 52.3

Kcs40_nf40_14d_100kPa 14 10.0 4.7 4.5 100 72.2

Kcs40_nf40_28d_50kPa 28 10.3 5.0 4.2 50 60.3

Kcs40_nf40_28d_100kPa 28 10.6 5.0 4.2 100 75.3

Kcs40_nf40_28d_150kPa 28 10.0 - - 150 104.1

Kcs40_nf40_60d_50kPa 60 10.8 5.0 4.2 50 70.7

Kcs40_nf40_60d_100kPa 60 10.8 5.1 4.1 100 82.4

Kcs40_nf40_90d_50kPa 90 10.3 5.1 4.1 50 71.2

Kcs40_nf40_90d_100kPa 90 10.7 4.8 4.4 100 95.4

Kcs40_nf40_90d_150kPa 90 10.9 - - 150 107.1

Kcs40_nf40_7d_oed 7 10.2 5.0 4.2 - -

Kcs40_nf40_14d_oed 14 10.3 5.1 4.1 - -

Kcs40_nf40_28d_oed 28 10.2 5.0 4.2 - -

K cs20 

nf20

K cs40 

nf20

K cs20 

nf40

K cs40 

nf40
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Kcs40nf20 

Direct shear tests 
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Kcs40nf40 

Direct shear tests 
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Kcs20nf20 

Direct shear tests 
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*Vertical displacements of Kcs20nf20_28d_150kPa are truncated at a 

horizontal displacement of 2 mm due to an problem occurred on vertical 

transducer. 
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Oedometric tests on lightweight cemented kaolin 
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Caposele soil 
Table C-0-3.  

 
 

t [days] γ [kN/m
3
] γdry [kN/m

3
] e σ'v [kPa] max [kPa]

Ccs40_7d_50kPa 7 14.5 7.6 2.6 50 82

Ccs40_7d_150kPa 7 14.6 7.6 2.6 150 148

Ccs40_28d_50kPa 28 14.6 7.5 2.7 50 96

Ccs40_28d_150kPa 28 14.8 7.6 2.6 150 163

Ccs40_7d_oed 7 14.9 7.6 2.6 - -

Ccs40_28d_oed 28 13.9 7.6 2.6 - -

Ccs40nf20_7d_50kPa 7 12.2 6.0 3.6 50 41

Ccs40nf20_7d_150kPa 7 12.2 6.2 3.4 150 107

Ccs40nf20_28d_100kPa 28 12.0 6.2 3.4 50 77

Ccs40nf20_28d_150kPa 28 12.0 6.1 3.5 150 123

Ccs40nf20_28d_oed 28 12.4 6.5 3.2 - -

Ccs40nf40_7d_50kPa 7 10.5 5.3 4.2 50 36

Ccs40nf40_7d_150kPa 7 10.6 5.1 4.4 150 91

Ccs40nf40_28d_100kPa 28 9.2 4.5 5.1 50 41

Ccs40nf40_28d_150kPa 28 10.5 5.2 4.3 150 93

Ccs40nf40_7d_oed 7 10.0 10.0 4.7 - -

Ccs40nf40_28d_oed 28 9.7 9.7 4.6 - -

C cs40

C cs40 

nf20

C cs40 

nf40
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