
UNIVERSITÀ   DEGLI   STUDI   DI   NAPOLI   FEDERICO II 
 

 

 
 

 

DOTTORATO DI RICERCA IN 

MEDICINA CLINICA E SPERIMENTALE 

CURRICULUM IN SCIENZE ODONTOSTOMATOLOGICHE 

 

XXXI Ciclo 
(Anni 2015-2018) 

 

Coordinatore: Prof. Francesco Beguinot 
 

 

TESI DI DOTTORATO 
 

 

 ANTIMICROBIAL EFFECT OF NEW 

RESTORATIVE DENTAL MATERIAL 

INCORPORATING SILVER 
NANOPARTICLES 

 

 

RELATORI                                                                         CANDIDATO 

Chiar.mo                               Dott. Raffaele Conte 
Prof. Sandro Rengo 

Chiar.mo 
Prof. Gianfranco Peluso 



2 

 

 

  



3 

 

UNIVERSITY   OF   NAPLES   FEDERICO II 
 

 

 
 

 

PH.D. PROGRAM IN 

CLINICAL AND EXPERIMENTAL MEDICINE 

CURRICULUM IN ODONTOSTOMATOLOGICAL SCIENCES 

 

XXXI Cycle 
(Years 2015-2018) 

 

Chairman: Prof. Francesco Beguinot 
 

 

PH.D. THESIS 
 

 

ANTIMICROBIAL EFFECT OF NEW 

RESTORATIVE DENTAL MATERIAL 

INCORPORATING SILVER 
NANOPARTICLES 

 

 

TUTORS                                      PH.D. STUDENT 

Prof. Sandro Rengo      Dr. Raffaele Conte 
Prof. Gianfranco Peluso

 



4 

 

 

Scopo di ogni attività dell’intelletto è ridurre  

il mistero a qualcosa di comprensibile 

(Albert Einstein) 
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ABSTRACT 

 

Secondary or recurrent caries are dental lesions originated at the margins 

of an existing restoration, and are considered the most common reason 

for restoration failure. [1] Usually, these lesions are histologically similar 

to the primary caries and can be difficult to detect unless somewhat 

advanced, resulting in a considerable loss of tooth structure. Over the past 

decades, resin-based dental materials have been used in restorative 

dentistry for their excellent esthetics and improved mechanical 

performance. [2] However, they represent potential sources of carbon and 

energy for microorganisms including oral bacteria and fungi residual in the 

dental cavity. In addition, cariogenic bacteria can infiltrate the restoration-

tooth margins compromise the restoration’s longevity. [3] Because caries 

at the restoration margins is a main reason for restoration failures, it 

would be highly desirable for the composite and bonding agent to possess 

antibacterial capabilities.  

Novel antibacterial dental materials were developed by introducing 

quaternary ammonium monomers, including 12-

methacryloyloxydodecylpyridinium bromide (MDPB), 

dimethylaminohexadecyl methacrylate (DMAHDM), and 

dimethylaminododecyl methacrylate (DMADDM). [4] [5] [6] [7] [8]  These 

monomers can form covalent bonds with the polymer matrix and be 

immobilized in the resin-based materials, representing a non-released, 

contact-killing agent. [4] Several other antimicrobial formulations were 

also developed, including a methacryloxylethylcetyl dimethyl ammonium 

chloride (DMAE-CB) containing adhesive, quaternary ammonium 
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polyethylenimine (PEI) nanoparticles for antimicrobial dental composites, 

antibacterial glass ionomer cements, and antibacterial nanocomposites 

and bonding agents incorporating a quaternary ammonium 

dimethacrylate (QADM). [9] [10] [11] 

Quaternary ammonium acrylate (QAM) resins possess positively-charged 

quaternary amine N+ which can interact with the negatively-charged 

membrane of bacteria, leading to membrane disruption and cytoplasm 

leakage. [10] It is postulated that long-chained quaternary ammonium 

compounds can be especially effective by inserting into the bacterial 

membrane, resulting in physical disruption and bacteria death. [12] [13] 

[14] 

Aside from the antibacterial monomers added to the resin matrix, an 

alternative approach is to add silver nanoparticles. Indeed, silver (Ag) is 

known for its antimicrobial activity against a diverse group of bacteria and 

has been used for many years as an antimicrobial substance in the medical 

field. [15] Composite containing Ag particles with long-lasting antibacterial 

activity have been manufactured and observed to inhibit S. mutans 

growth [16]. In addition, resins containing Ag nanoparticles were able to 

inhibit biofilm viability. [17,18] Although the restorative materials had 

significant evolvement in the past few decades, the high rates of 

treatment failure suggest that the current restorative approaches are not 

yet optimized and have a potential for improvement.  

The aim of this work is to synthesize and evaluate new bioactive and 

antibacterial composite materials based on photo-activated Bis-

GMA/TEGDMA matrix, containing an hydrotalcite-like compound 

intercalated with Ag nanoparticles as filler. 
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We have obtained a dental resin with improved physical and biological 

properties and, in addition, able to release low amount of silver in a 

controlled and tunable way for a long period of time. 

In contrast to the conventional and resin-modified glass-ionomers, our CR-

Agx were able to release silver ions when intraoral pH values drop below 

the critical pH of 5.5, counteracting the demineralization process of the 

tooth surface. The caries protective effect of these materials may be 

related to the material’s ability to release adequate amounts of silver ions 

for sustained periods of time and during acidic attack. 
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RIASSUNTO 

 

Le carie secondarie sono lesioni che si originano ai margini di restauri 

dentali e sono tra le cause più comuni di fallimenti terapeutici. Questo 

tipo di lesioni sono istologicamente simili alle carie primarie e sono difficili 

da distinguere da queste ultime, se non in stadi avanzati.  

Durante gli ultimi decenni le resine dentali sono state ampiamente 

utilizzate in odontoiatria restaurativa per le loro eccellenti caratteristiche 

estetiche e le loro performance meccaniche. In contrasto, sono una 

potenziale risorsa di carbonio per i batteri residui nelle cavità dentali. Tali 

microorganismi cariogeni possono infiltrarsi nei margini tra dente e 

restauro e comprometterne la longevità.  A causa di ciò sono stati 

sintetizzati nuovi materiali dentali antibatterici tramite introduzione di  

monomeri di ammonio quaternario come, ad esempio, bromuro di 12-

metacrilossidodecilpiridinio (MDPB), dimetilamminoesadecil metacrilato 

(DMAHDM) e dimetilamminododecil metacrilato (DMADDM). Questi 

monomeri formano legami covalenti con la matrice polimerica e sono 

immobilizzati nella resina, rappresentando un agente battericida da 

contatto.  Sono state inoltre sviluppate altre formulazioni antimicrobiche  

come, ad esempio,  adesivi contenenti cloruro di metacrilossietilcetil 

dimetilammonio (DMAE-CB), nanoparticelle di polietilenimmina da 

inserire in  compositi dentali con attività antibatteriche, GIC (glass 

ionomer cements)  antibatterici e nano compositi contenenti ammonio 

quaternario dimetilacrilato (QADM). Tali resine posseggono ammine 

quaternarie cariche positivamente capaci di interagire con le cariche 

negative della membrana batterica provocandone la distruzione. Inoltre, 

composti con ammonio quaternario a lunga catena sono particolarmente 
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efficaci grazie alla capacità di inserirsi all’ interno della membrana 

batterica.   

Oltre alla presenza di monomeri antibatterici aggiunti alla matrice della 

resina,  un approccio alternativo è quello di utilizzare nanoparticelle di 

argento. Infatti l’argento è dotato di attività antimicrobica contro un 

ampio spettro di batteri. Compositi contenenti nanoparticelle di argento 

con attività antibatterica a lungo termine sono stati sintetizzati e utilizzati 

contro  S. mutans e come agenti anti-biofilm.  

In generale, anche se i materiali restaurativi hanno avuto significanti 

miglioramenti negli ultimi decenni, gli elevati tassi di fallimento indicano 

che gli attuali approcci restaurativi non sono ancora ottimizzati ed hanno 

margini di miglioramento.   

Lo scopo di questo lavoro è quello di sintetizzare e valutare nuovi materiali 

compositi bioattivi basati su una matrice foto attivata di Bis-

GMA/TEGDMA contenente compositi idrotalcite simili intercalati con 

nanoparticelle di argento come riempitivo.  

Abbiamo quindi ottenuto resine dentali con caratteristiche fisiche e 

proprietà biologiche migliorate, capaci di rilasciare basse quantità di 

argento in maniera controllata per un lungo periodo di tempo.  

A differenza delle resine convenzionali, il nostro CR-Ag è in grado di 

rilasciare ioni  argento quando i valori di pH intra-orale sono al di sotto del 

pH critico di 5.5, contrastando il processo di demineralizzazione della 

superficie del dente. Quindi,  l’effetto carie protettivo di questi materiali è 

in relazione all’ abilità del materiale di rilasciare quantità adeguate di ioni 

argento per un tempo sostenuto durante  l’attacco acido.  
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1.1 ETIOPATHOGENESIS OF DENTAL CARIES 

Dental caries is defined as a chronic, diet o microbial, site-specific disease 

of dental hard tissues, caused by shifts from protective factors favoring 

tooth remineralization to destructive factors leading to demineralization. 

[19] When sugars or other fermentable carbohydrates are ingested, the 

resulting fall in dental plaque Ph caused by organic acids increases the 

solubility of calcium hydroxyl apatite in the dental hard tissues and 

demineralization occurs as calcium is lost from the tooth surface (Figure 

1). 

 

Figure 1. The process of tooth remineralization. Adapted from Dodds et al. 

[20] 
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The pH of dental plaque is a key factor in the balance between acid 

demineralization of the teeth and the remineralization of the initial caries 

lesion. Plaque pH falls each time acid accumulates in the plaque due to 

bacterial acid production following the consumption of fermentable 

carbohydrates – mainly sugars – in foods and drinks. Conversely, plaque 

Ph rises when the acids are washed away or neutralized by saliva, which 

contains the important buffer, bicarbonate.[20] 

In healthy teeth, the loss of minerals is balanced by the reparative 

mechanisms of saliva. [20]When the saliva pH or the plaque pH is below a 

‘critical value’ of about 5.5, the saliva or plaque becomes unsaturated with 

respect to tooth mineral. [20] As a result, tooth enamel can begin to 

dissolve. However, when the pH is above this value, the saliva and plaque 

are supersaturated with respect to tooth mineral. The calcium and 

phosphate ions in saliva then start to repair any damaged mineral crystals 

in the enamel, starting the process of remineralization.  

Thus, acidic conditions contribute to bringing phosphate and hydroxyl ions 

below saturation levels, allowing the solid hydroxyapatite crystals of the 

tooth mineral to dissolve. If above saturation levels, the chemical reaction 

will move towards remineralization and any damaged crystals will be 

repaired by the acquisition of ions from the solution. 

The World Health Organization (WHO) affirms that dental caries qualifies 

as a major public-health problem, owing to its high prevalence in all 

regions of the world, with the greatest burden of disease being on 

disadvantaged and socially marginalized populations.  

The initiation and development of the disease is the result of the 

interaction of four main etiological factors (Figure 2):  

 the tooth structure; 
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 the oral bacteria in dental plaque; 

 the dietary, salivary and genetic influences. 

 the time 

 

 

Figure 2. Diagram that describes the multifactorial etiology of dental 
caries. Adapted from Mathur et Dhillon. [21] 
 

 

The plaque and the dietary factors are interdependent on each other for 

the causation of damage. The tooth becomes the ‘platform’ for this 

interaction, as well as the ‘victim’ in the interaction of the other two 

factors. 

It is indeed true that multiple factors have to act in concert with each 

other to produce the disease, but not necessarily at the same time (Figure 

3).  
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Figure 3. Factors affecting the development of dental caries. Adapted 
from Dodds et al. [20] 
 
 

Environmental factors, such as behavioral habits, [22] may also influence 

the development of dental decay. Low socio-economic status is a 

non‐biological risk factor which is often related to educational level, the 

perception of the individual about his/her own health, life style, dietary 

composition, and access to dental care. [23] 

Moreover, caries development is a dynamic process that consists of 

rapidly alternating periods of tooth demineralization and remineralization, 

which, if net demineralization occurs over sufficient time, results in the 

initiation of specific caries lesions at certain anatomical predilection sites 

on the teeth. It is important to balance the pathological and protective 

factors that influence the initiation and progression of dental caries. 

Protective factors promote remineralization and lesion arrest, whereas 

pathological factors shift the balance in the direction of dental caries and 

disease progression (Figure 4). 
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Figure 4. Balancing pathological and protective factors in dental caries. A 
focus on optimizing the protective factors will promote remineralization 
and shift the dynamic balance of the caries process in the direction of 
health and lesion arrest. A failure to mitigate the effects of the 
pathological factors will promote demineralization and shift the dynamic 
balance in the direction of disease initiation and disease progression. 
Adapted from Pitts N.B. et al.[24] 
 

The oral microbiota 

The oral cavity is a unique environment that support the presence of up 

500 species of microorganisms (including viruses, fungi, protozoa and 

bacteria). [25] Unlike oral epithelium, the morphology of the tooth makes 

many areas inaccessible to physiological clearance mechanisms. Thus, a 

tooth becomes an ideal place for the stubborn adherence for many of 

these species. [26] Organisms that are capable of adhesion, adhere to the 

salivary pellicle on the tooth and form a convenient arena for the 
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subsequent aggregation of other organisms that are incapable of initial 

adhesion. 

According to the ‘ecological plaque hypothesis’ (Figure 5), the 

pathogenesis of dental caries is related to a disturbance in two types of 

homeostasis / physiological equilibrium that exist in an oral cavity: 

1. Disruption of microbial homeostasis in the ‘biofilm’. 

2. Disruption of mineral homeostasis between the tooth and the ‘oral 

fluid’. 

 

 

Figure 5. Ecological plaque hypothesis. An increased frequency of 
fermentable sugar intake results in the biofilm spending more time at a 
low Ph, which will select for bacteria that grow preferentially under acidic 
conditions. The growth of bacteria associated with sound surfaces is then 
disadvantaged, which over time results in an increase in the proportions 
and activity of cariogenic species at a site and a heightened risk of caries. 
This risk is raised in individuals with impaired saliva flow and sugar-rich 
diet, but it is reduced in those with appropriate oral hygiene and exposure 
to fluoride. Adapted from Pitts N.B. et al. [27] 
 

The dental biofilm is a population or community of bacteria living in 

organized structures attached to a tooth surface, embedded in a matrix of 

extracellular polymeric substances produced by microbes. [9] The 

formation of dental biofilm is a multiple-stage process (Figure 5).  
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Figure 6. Stages of dental biofilm formation. Within minutes after 
completely cleansing the tooth surface, a pellicle forms from proteins and 
glycoproteins in saliva. A Association: Through purely physical forces, 
bacteria associate loosely with the pellicle. B Adhesion: Because they 
possess special surface molecules that bind to pellicle receptors, some 
bacteria become the “primary colonizers,” particularly streptococci and 
actinomyces. Subsequently, other microorganisms adhere to the primary 
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colonizers. C Bacterial proliferation ensues. D Microcolonies are formed. 
Many streptococci secrete protective extracellular polysaccharides (e. g., 
dextrans, levans).E Biofilm (“attached plaque”): Microcolonies form 
complex groups with metabolic advantages for the constituents. F Plaque 
growth—maturation: The biofilm is characterized by a primitive 
“circulatory system.” The plaque begins to “behave” as a complex 
organism! Anaerobic organisms increase. Metabolic products and evulsed 
cell wall constituents (e. g., lipopolysaccharides, vesicles) serve to activate 
the host immune response. Bacteria within the biofilm are protected from 
phagocytic cells (PMN) and against exogenous bacteriocidal agents. 
(Adapted from Wolf HF. Biofilm-plaque formation on tooth and root 
surfaces. In:Wolf HF, Rateitschak KH (eds). Periodontology, ed 3. Stuttgart: 
Thieme, 2005:24) [28] 

 

The process starts with an initial formation of salivary pellicle, a 

combination of active proteins and glycoproteins from saliva and gingival 

crevicular fluid. After four hours, the aerobic species of the genera 

Streptococcus, Capnocytophaga, Veillonella or Actinomyces (known of as 

initial and early colonizers) adhere to the tooth proteic film, forming a first 

layer of biofilm. This process requires the presence, on the bacterial cell 

surface, of specific (e.i statherins, mucins, agglutinins, alpha-amylase and 

prolin rich proteins) that act like chains between tooth and early 

colonizers. A second layer of biofilm develops through a process known as 

coaggregation or coadhesion, in which other microorganisms attach the 

first colonizers through adhesion of their respective cell surfaces . [29] 

Middle colonizers, such as Fusobacterium nucleatum, and late colonizers, 

like Lactobacillus spp., contribute to this second layer formation. 

The first step is reversible adhesion mediated by electrostatic and 

hydrophobic forces. The second step is irreversible adhesion caused by a 

time-dependent shift to a higher binding affinity state, which involves 

multiple on the bacterial surface and polymer matrix. Division of the 
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attached bacterial cells produces microcolonies. Confluent growth results 

in the formation of plaque biofilm, which increases in complexity with 

time. 

The presence of dental-caries-associated streptococci in the mouth of 

nearly all adults indicates that dental caries is probably the most 

ubiquitous bacterial infectious disease of humans. [30] Although other 

oral microorganisms can be cariogenic, mutans streptococci have unique 

biochemical features that make them efficient at accumulating and 

producing carious surfaces.The characteristics that make mutans 

streptococci particularly efficient at causing dental caries include: [31]  

1. production of large amounts of lactic acid at a rapid rate; 

2. tolerance to extremes of sugar concentration, ionic strength and Ph; 

3. production of the enzymes dextranases and fructanases capable of 

metabolizing extracellular polysaccharides, which contribute to the 

acid production and constitute a substratum in the periods with less 

oxygen supply; 

4. production of insoluble glucans that contribute to biofilm 

complexity and impede salivary protection.  

However, any acidogenic species, including the mutans streptococci, 

aciduric non-mutans streptococci, Bifidobacterium, Lactobacillus, 

Actinomyces, and Scardovia, may contribute to disease development. [32] 

[33] [34] [35]  

In particular,Lactobacillus spp. is the cariogenic bacteria responsible of the 

progression of carious lesions. Lactobacillus spp. are not able to quickly 

attach to hard surfaces and live in niches with low Ph. Lactobacillus spp. 

tolerate acid environments, since these bacteria contain the agmatine 

pathway, which helps neutralize their cytoplasm pH. [36] Similarly, 
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Veillonella spp. are present at all stages of caries progression under high-

glucose conditions and appear to be implied in acid production.  

Interestingly, Veillonella alcalescens and S. mutans can act in synergy 

producing more acid. [25] 

In addition, Tanner AC et al. (2011) [34] propose Scardovia wiggsiae as a 

clear initiator agent of early childhood caries, and Bifidobacterium spp. as 

important microorganisms of tooth decay in root caries lesions. The yeast 

Candida spp. have also been involved in the carious process, since they 

may be present in acidogenic environments. [25] Indeed, excess sugar 

may promote the growth and multiplication of Candida albicans. 

Oral immunity is the balance system used by the human body to control 

the microorganisms present in oral tissues. The mouth is a path of entry 

and exchange with the environment, and is therefore subject to constant 

fluctuations that must be controlled by the immune system.  The main 

barriers against microorganism are saliva, dental tissues and 

immunological components.  

Dental tissues have no immunological capacity to test and respond to the 

degradation and colonization of microorganisms, due to their inert nature. 

[37] During caries infection, oral bacteria degrade enamel and dentin and 

trigger an innate immune response in the dental pulp through the 

diffusion of bacterial by-products into dentin tubules. This response may 

eliminate the insult and block the route of infection when accompanied by 

dentin neo-formation within tubules and/or at the pulp–dentin interface. 

Pathogen invasion may result in excessive and deleterious pulp immune 

response, irreversible acute inflammation, tissue necrosis, and microbe 

dissemination through blood vessels.  
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Cariogenic diet 

Observations in humans and animals have shown clearly that frequent and 

prolonged oral exposure to certain carbohydrates and sugars, especially 

sucrose, are fundamental to caries activity that serves as a substrate for 

microorganisms of the oral cavity.  Indeed, the fermentable carbohydrates 

are the main class of compounds that markedly influence the ecology and 

health of the mouth, because can be broken down to acids by acid genic 

bacteria. Sucrose can be converted by bacterial enzymes 

(glucosyltransferases, GTF and fructosyl transferases, FTF) into glucans 

and fructan, which can be used to consolidate attachment or act as 

extracellular nutrient storage compounds. The frequent consumption of 

dietary carbohydrates is consequently associated with a shift in the 

proportions of the microflora of dental plaque. In addition, the oral 

microflora synthesizes extracellular polysaccharides that play a key role in 

dental plaque formation and in the production of organic acids.  

Stimulation of saliva flow results in an increase in the washing out of acids 

(and sugars), and also an increase in the amount and concentration of 

bicarbonate buffer and of remineralizing ions. On the other hand, food 

affects saliva secretion by means of voluntary and involuntary reflexes, 

other participating factors include smell and the time of mastication. 

During food processing, both the quality and quantity of the saliva 

changes – dry food evokes waterier saliva secretion, consuming meat 

produces saliva with a higher mucoid substance content. These 

parameters return back to normal approximately 20 minutes after the 

incidence of food.  

Some components of food are considered to have a mechanical cleaning 

effect in removing film from the surface of teeth, e.g. some types of fruit 
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and vegetables (apples, carrots). This mechanism, however, only functions 

in areas that are available – the cervix and interdental spaces. Some foods, 

such as carbonized soft drinks with a pH around 2-4, act as acids and 

accelerate dissolution of hydroxyapatite resulting in an enhanced 

occurrence of caries.  

Oral health is directly related to diet and nutrition and dietary advice is 

recommended by dentists for certain ‘at risk’ groups in the community. 

[38] Whilst proteins from food debris in the mouth can be important in 

bacterial generation of malodor. 

Today the world faces two kinds of malnutrition, one associated with 

hunger or nutritional deficiency and the other with dietary excess. 

Urbanization and economic development result in rapid changes in diets 

and lifestyles, which may be reflected by a higher risk of dental caries 

development. A study developed in Scotland confirms a lower prevalence 

of dental caries in the rural areas, mainly justified by the fact that 

adolescents may practice a better and healthier diet when compared with 

adolescents living in urban areas. [39] Market globalization has a 

significant and worldwide impact on dietary excess leading to chronic 

diseases such as obesity, diabetes, cardiovascular diseases, cancer, 

osteoporosis and oral diseases. Diet and nutrition affects oral health in 

many ways. Nutrition, for example, influences cranio-facial development, 

oral cancer and oral infectious diseases. Dental diseases related to diet 

include dental caries, developmental defects of enamel, dental erosion 

and periodontal disease.  

The nutrition transition is a relevant example on how common risks 

influence public health, including oral health. The public health 

community involved with oral health should gain an understanding of the 
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health effects of these complex developments in order to prevent or 

control oral diseases. 

Clearly, food can have also effect on the resident microorganisms of the 

oral cavity. High intake of sweetened baked goods has been shown to be a 

determinant of caries prevalence in children with moderate to high 

salivary counts of S. mutans. [40] In 2002 a WHO/FAO Expert Consultation 

on Diet, Nutrition and the Prevention of Chronic Diseases recommended 

that the intake of free sugars should provide ≤10% of energy intake. [41] 

Moreover, in March 2015, the WHO published a new guideline for intake 

of sugars for adults and children [42] and made a strong recommendation 

for a reduced intake of free sugars throughout the life course. A strong 

recommendation was also made for both children and adults that the 

intake of free sugars should be reduced to ≤10% of total energy intake. 

The WHO also made a conditional recommendation for a further 

reduction of the intake of free sugars to <5% of total energy intake. It was 

also stated that for countries with a low intake of free sugars that levels of 

intake should not be increased and that higher intakes of free sugars 

might jeopardize the quality of the diet by providing energy without 

nutrients. The WHO guideline stated that increasing or decreasing the 

intake of dietary free sugars was associated with parallel changes in body 

weight and that the relation exists irrespective of the quantity of sugar 

either as amount measured or percent contribution to energy intake. The 

quantitative recommendations were therefore based on evidence relating 

to the association of dental caries and free sugars. 
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The teeth 

The tooth is the hardest structure in the oral cavity and represents, in 

humans, about the 20% of all the oral cavity surface. Primary teeth start to 

form between the sixth and eighth weeks in utero, while permanent teeth 

begin to form in the twentieth week. Erupted teeth are located in a cavity 

of the bone called alveolus where a complex specialized ligament, the 

periodontal ligament, supports them. Each tooth is divided in an upper 

portion, the crown, and a bottom one, the dental root, completely 

included in the dental alveolus. [43] These area are separated through a 

boundary zone called neck (Figure7). 

 

Figure 7. Divisions and tissues of the tooth. 

 

Teeth are composed of four tissues: enamel, dentin, cementum (the hard 

mineralized tissues) and pulp (the soft tissue)[44],[45]. 
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 Enamel is the hardest tissue in the body, made up of 96 wt% 

inorganic materials; the main part is composed by carbonated 

hydroxyapatite crystals, while sodium, magnesium, chlorine, 

carbonate, potassium and fluoride represent trace elements. The 

enamel formation process, the Amelogenesis, consists in 

hydroxyapatite crystals precipitation and growth, initiated by the 

secretory activity of the ameloblasts (enamel forming cells) into the 

extracellular space adjacent to the dentino-enamel junction [44]. 

However, enamel shows an acellular and avascular structure 

without the capability to regenerate or repair itself, but with the 

ability of remineralize. Demineralization and remineralization can 

occur without loss of tooth structure when proper nutrition and oral 

care are respected. [43] 

 Dentin is an hydrated tissue that consists of approximately 50 vol% 

of carbonated hydroxyapatite (Hap) minerals, 30 vol% of collagen 

and noncollagenous molecules and 20 % of water [44]. The 90 wt% 

of the organic phase in dentin is composed of collagen type I. 

Dentinogenesis, the biological process that lead to the formation of 

dentin, involves a chain of different mechanisms such as cell 

differentiation and interactions, the synthesis of an organic matrix, 

and the eventual formation of mineral crystals in this extracellular 

matrix. The process is induced by odontoblasts that differentiate 

from ectomesenchymal cells of the dental papilla following an 

organizing influence that emanates from the inner dental 

epithelium. Thus the dental papilla is the formative organ of dentin 

and eventually becomes the pulp of the tooth. There are three 

types of dentin: primary, secondary and tertiary. Primary dentin 
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forms during tooth eruption while secondary dentin grow 

throughout the life of the tooth. Tertiary dentine, also known as 

reparative dentin, forms as a response to irritation and trauma (e.g. 

erosion and dental caries) [43]. 

 Cementum is a mineralized avascular connective tissue, similar in 

composition to bone. It is composed of 65 wt% of Hap minerals, 23 

wt% of organic matrix and 23 %wt of water. The organic substance 

consists in proteoglycans and glycoproteins for the amorphous part, 

and in collagen fibers for the structured one. Cement is secreted 

during cementogenesis by cementoblasts, which are cells that share 

a similar morphology with odontoblasts. This tissue cannot be 

repaired. [44] 

 Dental pulp is a mucous connective tissue contained in the pulp 

chamber, limited by dentin. Dental pulp and dentin have the same 

embryonic origin but the pulp is mainly composed by amorphous 

gelatinous ground substance, rich in glycoproteins, proteoglycans 

and glycosaminoglycans (mostly hyaluronic acid) and few 

fibroblasts. The dental pulp is the best cell source for tissue 

engineering, since it is a rich reservoir of stem cells residing in 

various areas (mainly in root) and with numerous plasticity 

characteristics.  

 

In the case of a caries lesion, the histopathology of dental caries can be 

divided into two stages: the enamel stage, characterized by ultrastructural 

and white spot lesions, and the dentin stage, where tubular sclerosis and 

reactionary dentin are involved. Specifically, the initial stage of dental 

caries starts as a not visible lesion of enamel, resulting from the biofilm 
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activity. The process consists in the direct dissolution of the outer enamel 

surface due to an enlargement of the intercrystalline spaces because of 

the partial dissolution of the individual crystal peripheries, followed by the 

development of irregularities such as pits and focal holes. [46] White spot 

lesions can advance to clinically detected cavitated lesions Cavitation 

occurs because of external forces that lead to the collapse of the outer 

surface, which in turn leads to a discontinuity or break in the surface. This 

stage of the disease is irreversible and requires operative intervention to 

restore function and to arrest the caries process. When the caries lesion 

reaches dentin, pulp-dentin complex deposits mineral within the dentinal 

tubules, during a process called “tubular sclerosis” or “translucent dentin” 

(due to its translucent aspect when examined by transmitted light 

microscopy). [37]Tubular sclerosis in dentin is visible before the enamel 

lesion extends to the enamel-dentin junction. Another defense 

mechanism of the pulp-dentin complex, indicative of a dental disease, is 

the formation of reactionary dentin by surviving odontoblast cells at the 

pulp-dentine interface and in peritubular/intratubular location. [47] 

 

Time 

The time factor has an important role in the manifestation of clinical signs 

of the development of carie lesions. [48] Time factor was added by 

Newbrun to the primary etiological factors identified by Keyes, since these 

need to be present for a certain period of time, so that the progressive 

demineralization of enamel may develop. [49] 
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Secondary etiological factors 

 

Fluorides  

Research has shown that fluoride is most effective in dental caries 

prevention when a low level of fluoride is constantly maintained in the 

oral cavity. The goal of community-based public health programmes, 

therefore, should be to implement the most appropriate means of 

maintaining a constant low level of fluoride in the oral cavity.[50] 

Fluorides can be obtained from fluoridated drinking-water, salt, milk, 

mouth rinse or toothpaste as well as professionally applied fluorides, or 

from combinations of fluoridated toothpaste with either of the other two 

fluoride sources. [50] Fluoride is being widely used on a global scale, with 

much benefit. Millions of people worldwide use fluoridated toothpaste. 

Recent local studies have shown that affordable fluoridated toothpaste is 

effective in caries prevention and should be made available for use by 

health authorities in developing countries. The WHO Global Oral Health 

Programme is currently undertaking further demonstration projects in 

Africa, Asia and Europe in order to assess the relevance of affordable 

fluoridated toothpaste, milk fluoridation and salt fluoridation. [51] [52] 

There is clear evidence that long-term exposure to an optimal level of 

fluoride results in diminishing levels of caries in both child and adult 

populations.[48] However, populations in many developing countries do 

not have access to fluorides for prevention of dental caries for practical or 

economic reasons. [48] There are some undesirable side-effects with 

excessive fluoride intake. Experience has shown that it may not be 

possible to achieve effective fluoride-based caries prevention without 

some degree of dental fluorosis, regardless of which methods are chosen 
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to maintain a low level of fluoride in the mouth. The public health 

administrators must seek to maximize caries reduction while minimizing 

dental fluorosis. 

 

Saliva 

Human saliva is part of the mechanisms of natural or innate immunity of 

the oral cavity. Its viscosity makes the adhesion of microorganisms 

difficult. In addition, salivary flow exerts a cleaning function, provides 

antibacterial proteins, enables high buffering capacity and helps neutralize 

acids. [53]  The two major functions of saliva are:  

1. Protection of the oral and peri-oral tissues exerting functions of 

lubrication, dilution of sugars after food and drink intake, antimicrobial 

and cleansing activity, degradation of some bacterial cell walls and 

inhibition growth, buffering (neutralizing) acid production and controlling 

plaque Ph with bicarbonate, remineralization of enamel with calcium and 

phosphates, tissue repair. 

2. Facilitating eating and speech exerting function of food preparation 

(enhancing chewing, the clearing of food residues and swallowing), 

digestion (food breakdown with enzymes), enhancing taste, enabling 

speech by lubricating the moving oral tissues. 

Normally, the daily production of saliva ranges between 0.5 and 1.0 liter 

and is composed of more than 99% water and less than 1% solids. In 

particular, the solid content consists of desquamated epithelial cells, white 

blood cells, bacteria, yeasts, fungi and viruses. Total salivary proteins 

constitute 0.3% of the volume and are essential elements for 

microorganism’s interactions.  
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The whole saliva is derived predominantly from three paired major 

salivary glands: the parotid, submandibular and sublingual glands, but also 

from the minor salivary glands in the oral mucosa (Figure8). [54] 

 

 

Figure 8. Salivary glands and saliva function. Adapted from Dodds et al. 

[20] 

 

The stimulated saliva is produced in response to a mechanical, gustatory, 

olfactory, or pharmacological stimulus, contributing to around 40-50% of 

daily salivary production. In addition, without exogenous or 

pharmacological stimulation, there is an unstimulated secretion of saliva 

useful to cover, moisturize, and lubricate the oral tissues.  

Other important functions of saliva consists in the protection of the teeth 

by neutralization of acids by buffering actions, the saliva maintains 

supersaturated calcium phosphate concentration with regard to 

hydroxyapatite, and also by participating in enamel pellicle formation. 

Furthermore, saliva components participate in mucosal coating and 

antimicrobial defense as well as digestive actions. Thus, saliva plays a 

major role in oral health and changes affecting salivary function, it may 

also compromise hard and soft oral tissues structure and functions. [55] 
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The oral cavity is constantly exposed to many different kinds of 

substances, some of which influence the caries process to a great extent. 

An important function of saliva is therefore the dilution and elimination of 

substances introduced into the oral cavity, through a physiological process 

usually referred to as salivary clearance or oral clearance. In patients with 

reduced quantity of saliva the mechanistic and cleaning properties of this 

fluid in the mouth are impaired. With regard to prolonged oral clearance, 

a low oral sugar clearance inevitably increases the risk of caries 

development. Concerning this relation, the unstimulated flow rate has 

been found to be diagnostically more important than the stimulated one.  

 

Oral hygiene  

There is a strong correlation between oral hygiene and the prevalence of 

dental caries.  [56] Good oral hygiene habits help to prevent the 

development of caries by reducing the build-up of dental plaque. [57] 

The composition of the dental plaque varies not only from individual to 

individual, but also upon the location of the oral cavity and tooth surface. 

Control of bacterial plaque through proper hygiene, performed by each 

individual and complemented with the intervention of a dental 

professional are key preventive primary measures for the improvement of 

oral health and disease prevention, including dental caries. [48] 
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1.2 DENTAL CARIES THERAPY  
 

Dental caries is regarded as a disease that will affect most people in the 

world to some extent during their lifetime. This inevitability of caries 

developing, at least historically, was a strong stimulus to the development 

and promotion of preventive measures. [58] Therefore, the prevention of 

caries has been, and still is, a major goal for the dental profession. [59] 

[60] It may present different connotations according to the target 

population. For caries-free people, which means person without prior 

caries experience, the definition of prevention follows the classical 

precepts of avoiding the development of a disease. On the other hand, for 

person presenting previous experience of dental caries, preventive 

measures imply in avoiding the development of new lesions and/or the 

reactivation of previous ones.  

In this contest, with a clear understanding of the etiology of dental caries 

and the risk factors that lead to and facilitate the spread of this disease, 

the prevention guidelines should also be multifocal, concentrating on 

topics that can affect the risk of disease, such as dietary counseling (limit 

sugary foods and drinks to mealtimes and avoid carbonated, sugared 

beverages and juice), oral hygiene, and delivery of fluoride, including 

community-based options (water fluoridation), self-administered 

modalities (fluoride toothpaste and supplements), and professional 

applications (fluoride varnish).  [61]  

Water fluoridation is a community-based intervention that optimizes the 

level of fluoride in drinking water, to protect pre-eruptive and post-

eruptive teeth especially in countries with drinking waters with an 

inadequate amount of fluoride. [62] 
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Fluoride toothpaste is an important way to deliver fluoride to the surface 

of the tooth and to reduce dental caries in both primary and permanent 

teeth. [63] Finally, fluoride varnish is a professionally applied, sticky resin 

of highly concentrated fluoride, effective in preventing caries in children at 

high risk of all ages. [64] Application of fluoride varnish is even more 

effective when coupled with counseling. [65] 

Failure to identify and prevent dental disease has consequential and costly 

long-term adverse effects. Indeed, untreated caries in permanent teeth 

was the most prevalent condition evaluated across all medical conditions, 

with a global prevalence of 35% for all ages combined, with 2.4 billion 

people affected. 

Dental caries therapeutic approach has changed during the time, following 

the scientific knowledge about caries etiology, and the availability of new 

dental materials. In the late ninetieth century, G.V. Black introduced a 

classification of dental caries, as well as established the principals of tooth 

preparation, based on his understanding of the nature of the disease. 

Black’s theories required the complete removal of all areas of 

demineralized tooth structures and their subsequent reconstruction 

through inert restoration [66]. The phrase, “extension for prevention,” is 

still famous in the dental community today and represents Black’s idea 

that dentists should incorporate more grooves and pits than those 

currently exhibiting decay as a preventive measure against those grooves 

and pits developing tooth decay in the future. [67] [68] Nevertheless, 

‘Black’s Classification of Caries Lesions’ (Figure 9), based on the most 

common carious lesion sites and size, is still in use today:  
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 Class I Caries affecting pit and fissure, on occlusal, buccal, and 

lingual surfaces of molars and premolars, and palatal of maxillary 

incisors. 

 Class II Caries affecting proximal surfaces of molars and premolars. 

 Class III Caries affecting proximal surfaces of centrals, laterals, and 

cuspids. 

 Class IV Caries affecting proximal including incisal edges of anterior 

teeth. 

 Class V Caries affecting gingival 1/3 of facial or lingual surfaces of 

anterior or posterior teeth. 

 Class VI Caries affecting cusp tips of molars, premolars, and cuspids. 

 

 

Figure 9. G.V. Black Classification of Restorations. Image adapted from 
https://commons.wikimedia.org/wiki/File:GV-BLACK.JPG by Jessica R. 
Martin 
 

This classical therapeutic approach includes extrinsic dental interventions, 

such as tooth filling, tooth extraction and implantation of an inert, 

artificial (metal, ceramic) substitute. Although the “extension for 

prevention” was a widely accepted model, some authors raised many 

arguments about it, provoking unpleasant and/or adverse side-effects [69] 

[70]. In the 1904, Slagle introduced the concept of “extension for 

retention”. This concept focused more on the “anchorage” or retention of 
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the restorative material inside the prepared cavities after careful 

evaluation of occlusal forces. Nowadays, modern dentistry is based on the 

concept of “prevention of extension” that is applied in the “minimally 

invasive dentistry”(MID). [71] The main purpose of MID is to achieve as 

much conservation of dental tissue as possible, taking advantage of 

modern dental materials. [72] MID includes early detection of dental 

caries, assessment and management of caries-risk, remineralization of 

early caries lesions, only restoring cavitated lesions, restriction of the 

excavation to the caries-infected areas and using adhesive-based 

technologies. [73] [74] Instead, it should follow the extent of a carious 

lesion and only eliminate caries-infected tissue with the preservation of 

both caries-affected and sound tissues. [71] 

Indeed, caries-affected dentin can remineralize due to the presence of 

viable odontoblasts in the inner layer and of the collagen network still 

capable of binding calcium and fluoride ions .In particular, MID caries 

treatment is carried out removing only the dentine affected by caries at 

external level (dentin decomposed) and preserving the one at inner levels 

(demineralized dentin). Such tissue is able to remineralize using particular 

biomaterials. Moreover, significant improvement of amalgam alloys and 

introduction of bonded amalgam restorations have modified the cavity 

preparation for amalgam to be more conservative of tooth structure. [75] 

Such approach decreases the risk of more complex interventions of 

conventional prostheses for many years .  
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CHAPTER 2. SECONDARY CARIES 
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2.1 ETIOPATHOGENESIS OF SECONDARY CARIES: THE ROLE OF 

MICROLEAKAGE  

Secondary caries (or recurrent caries) denotes caries of the tooth at the 

margin of existing restoration. Although the “recurrent” term typically is 

used in North America, the term “secondary caries” is used more 

commonly in European languages for caries develops after initial caries 

has been removed and replaced by a restorative material. The 

phenomenon has been known since the early days of restorative dentistry, 

and it was the basis for the “extension for prevention” concept of G.V. 

Black’s principles of cavity preparation. [67] During the Black’s period, an 

obvious solution to prevent recurrent caries was to place the cavosurface 

margin in a location accessible to the toothbrush. Conversely, the present-

day concept of MID is based on the removal only of the dentine affected 

by caries at the external level to minimize the risk of developing recurrent 

caries. 

Secondary caries may develop rapidly around and below a broken 

restoration, or slower and more localized on the enamel along the 

cavosurface margin. (Figure 10)   [76] A third type of secondary caries is 

called “cavity wall caries (Figure 10). 
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Figure 10. Histopathology of secondary caries lesions next to restoration. 
Secondary caries may present as an outer lesion, a cavity-wall lesion or as 
a lesion consisting of both an outer and cavity-wall lesion.  
 

On the basis of the in vitro study of Hals and Nernaes  [77] secondary 

caries lesions consist of two regions: the outer lesion and the cavity wall 

lesion. The outer lesion has a progressing front parallel to the outer 

surface of the tooth surface and is histologically similar to a primary 

lesion, a localized process of both demineralizations of enamel and dentin 

and enzymatic and bacterial degradation of dentin. [19] The wall lesion 

develops at the interface between restoration and tooth and progresses 

perpendicularly to the tooth-restoration interface. 

Any site along the cavosurface margin will demineralize if the local 

conditions change to an acidic environment, that depends on the biomass 

of specific cariogenic bacteria on the more or less polished restoration 

surface, or rather to the intermediary salivary glycoproteins that first form 

a pellicle to this surface. [78] Therefore, a minimum critical amount of 

mature biofilm is required to create an acidic environment, and there are 

few alternative hypotheses regarding the origin of the acidic environment. 

Indeed, it has been discussed whether secondary caries would initiate on 

the external surface and progress to the gap between tooth structure and 
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restoration and/or would (also) be started within this interface by the 

diffusion of bacteria or their products. (Figure 11)  [79] [80] [81] [5] 

 

Figure 11. Schematic representation of injuries related to the secondary 
caries lesions and external wall. Image adapted from Kuper et al. [82] 
 

According to the hydrodynamic flow theory, when the marginal areas of a 

restoration deteriorate with time, this may result in the existence of a gap 

or defect at the cavity wall. Subsequently, a biofilm can establish itself in 

this defect along the tooth-restoration interface and secondary caries can 

develop within the gap. This theory recognizes the not bonded tooth-

restoration interface as a sensitive site, subjected to opening and closing 

forces that create a hydrodynamic flow. The dissolution products move 

with this flow allowing a new acid attack. [83] Consistent with this theory, 

it is clear that a wall lesion can develop in any gap, but the wider the gap, 

the higher the risk that it will occur. 

Recently, several alternative theories have been proposed to explain the 

gaps/lesion wall relationship. [84] In particular, the "theory of micro-

infiltration" indicates, as the cause of the demineralization and the 

consequent lesion wall, the passage of small amounts of fluid into the 
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gaps of the tooth/restoration interface. Bacteria carried with the fluid are 

able to reach the sensible site and cause pathogenicity. In addition, the 

"theory of macro-infiltration" suggests the necessity of a stable settlement 

of the biofilm in the gap to have considerable demineralization and lesion 

development. Gap’s dimensions are expected to be from 225 micrometers 

to 400 micrometers to allow bacteria settlement. [83] [85] [86]  

In this contest, several microleakage studies attest to the existence of this 

“weak link” or “microspace” between the tooth and the restoration. [77] 

Nelsen et colleagues in 1952 reported that droplets with a diameter up to 

44 µm developed along the restoration cavosurface margins in extracted 

teeth upon rapidly freezing and thawing. [87] The authors defined the 

phenomenon “marginal percolation” attributed to differences in thermal 

expansion of the tooth and the restorative material. However, only in 

1961, it was reported the use of the term “marginal leakage”, [88]  while 

the catchy term “microleakage”, still currently used, was published in 

1966. [89] However, numerous variables influence the microleakage 

experiment outcomes such as the source and type of teeth or tooth 

specimens, the choice of storage substrate and time, the type of intra- or 

extra-coronal restoration, including the location of the cavosurface margin 

and angulation of cavity walls. [90] [91] [92] [93] The handling, placement 

technique and polishing of the restorative material also influence the 

extent of observable microleakage. [94] Moreover, the characteristics of 

the dye or tracer, such as its diameter, and the chemical properties of the 

solute and solvent as a function of concentrations and exposure time 

appear also to play a central role. [95] [96] Most tracers have a molecular 

radius of less than one nm, and it is not improbable that the microleakage 

in many cases is simply a manifestation of capillary action phenomena. 
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The minuscule molecular dimension of dyes allows penetration into inter- 

and intra-prismatic microporesin enamel considered to be 1–30 nm wide, 

as well as in the peri- or inter-tubular dentin having 0.8–2.5 µm wide 

dentinal tubules.  

Therefore, as a consequence of a microleakage, there may be the seepage 

of saliva, which drains the bacterial cells into the treated tooth. These 

cracks also act as an ecological niche for the growth of anaerobes. [97] 

However, a general belief is that the cariogenic biofilm for primary and 

secondary caries are similar, and consist mainly of Streptococcus mutans, 

Lactobacilli and Actinomyces naeslundii, [98] [99] [100] although a 

contrary opinion based on observations made in an in situ experiment has 

been proposed. [101]  

In addition, the individual’s risk for secondary caries is also modified by 

the saliva quantity and qualities, which in particular comprise the salivary 

buffering ability. Patients with xerostomia for whatever reason experience 

more secondary caries, as a reflection of a higher risk of all forms of caries. 

In this contest, the oral hygiene habits of the patient are one of the 

primary factors that determines if secondary caries develops. 

However, despite efforts to reduce the effects of caries, population-based 

studies reveal that the prevalence of caries remains stubbornly high. An 

example of this is seen within the United Kingdom population, where 84% 

of dentate adults were found to have at least one restoration. Of these 

adults each had, on average, 7.2 filled teeth. Analysis of the survival of 

dental restorations from within a large database of dental treatments 

within UK dental practice reveals that further intervention is required: 

[102] 

• within 11% of fillings after 1 year of placement 
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•within 20% of fillings after 3 years of placement 

•within 50% of fillings after 10 years of placement. 

Reasons for this can include marginal defects, secondary caries, fracture of 

the restoration or adjacent tooth substance and, in the case of tooth-

colored restorations, unacceptable appearance. [103] Although the recent 

innovation on dental restoration materials, the percentage of replacement 

restorations in adults still accounted for about 50% (with a range of 45 to 

55 percent), remaining constant since to 2001. [104] [103] This percentage 

is higher for amalgam than for resin-based composite restorations. 

Moreover, the percentage of replaced restorations because of the 

diagnosis of recurrent caries is much higher in general dental practice than 

in controlled clinical trials, in which recurrent caries represents 2 to 3 

percent of the failures. In particular, the ratio of restoration replacement 

to primary restorations in general dental practice has been reported to be 

as high as 80:20 for resin-based composite restorations and 70:30 for 

amalgam restorations. [105] More recent studies indicate that this ratio is 

about 50:50 for restorations in permanent teeth. [83] Many factors affect 

this ratio, including the age of the population studied and the position of 

the restoration. [106] In addition, all factors that enhance the 

accumulation of biofilm mass or impede biofilm removal may be 

considered as risk factors for secondary caries. It is probably the reason 

why the location of the restoration played a major role in the occurrence 

of secondary caries. [107] Cervical composite restorations (class V) were 

the least affected by secondary caries, which obviously may be related to 

the fact that many class V studies were set up to evaluate the clinical 

effectiveness of adhesives in non-carious cervical lesions in patients with 

low caries risk and good oral hygiene. The highest overall incidences were 
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found in the posterior region, although there are few studies that 

reported the vulnerability of anterior restorations (classes III and IV). [107] 

However, also the gingival margins of all types of Class II through Class V 

restorations are more prone to develop secondary caries, due to the 

possible contamination from gingival fluid and saliva leaking between the 

matrix and the cavosurface margin, especially if a rubber dam is not used. 

Moreover, corrosion and biodegradation products originating from the 

restorative material may influence the biofilm, [108] even if this 

correlation is complex and not yet fully understood. [109] 
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2.2 DIAGNOSIS AND MANAGEMENT OF SECONDARY CARIES 

 

Accurate detection of secondary lesions is crucial for estimating the true 

burden of the disease and allocating appropriate treatments. Currently, 

there is no standard to be recommended for performing such detection, 

with dentists using a variety of methods, with the even greater 

heterogeneity of subsequent treatment decisions. 

Several conventional and newer methods are available to detect 

secondary lesions. [110] Most of the techniques used for detecting 

primary caries have also been used to detect secondary caries and 

artificial caries-like lesions adjacent to restorations. Visual or visual-tactile 

examinations, often combined with bitewing radiography, are still the 

most common. [111] [112] 

Traditionally, secondary caries lesions were assessed via tactile 

examination. This method seemed to be specific (specificity increased 

even further if only clearly detectable ditches were regarded as lesions) 

but insensitive. In clinical terms, only few secondary lesions would be 

detected, while the risk of false-positive detections was not drastically 

decreased compared with, for example, visual detection. For clearly 

cavitated secondary lesions, the tactile assessment might well be a useful 

method, as both sensitivity and specificity are presumably increased. 

However, the presence of marginal ditching, staining, discoloration of the 

dental tissues and gaps at the tooth restoration interface are unreliable 

predictors for secondary caries. [76] [113] [114] [115] Therefore, visual 

detection of secondary caries is a challenge for the dentist [116] and may 

be confused with microleakage, that can be visualized as a line of stain 
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around the restoration, or with residual (arrested) caries, which can show 

a grey discoloration involving the restoration. 

Radiographic assessment is regularly performed to screen for proximal 

primary or secondary caries lesions. Secondary caries at proximal or 

gingival locations in restorations are diagnosed by X-rays radiography with 

a variable angle in relation to the lesion. [117] However, the radio-opacity 

of restorative materials are radiopaque may hide the lesion completely or 

partially. [118] The risk stemming from such non detection largely 

depends on the progression speed of such lesions, which is so far not fully 

understood. The visual and radiographic assessment might be 

complementary when nonproximal and proximal surfaces are checked, 

respectively. Laser fluorescence-based instruments have been developed 

as an adjunct to visual lesion detection, not causing any radiation and 

allowing easy reexamination and monitoring of lesions and their activity. 

Overall accuracy was similar to that of radiographic detection, which 

makes it a potential alternative, especially in children. Quantitative light-

induced fluorescence (QLF) generates images of the analyzed areas, with 

presumable carious tissues being less fluorescent than sound areas or 

restoration materials. [119]  However, the value of this method for 

detecting secondary lesions might be limited in clinical routine since QLF is 

currently available for visible (nonproximal) surfaces. Moreover, given the 

fact that even on these visually assessable surface, QLF led to false-

positive detections in nearly 4 of 10 cases, there should be severe doubts 

toward the suitability of this method for the outlined purpose. Moreover, 

the burnout that frequently occurs at the cervical margin also makes the 

interpretation difficult. [120] 



47 

 

Marginal defects and staining around the restoration are not predictive for 

secondary caries, [114] [121] [122] and are likely the main factors that 

lead to misinterpretations and possible overtreatment. For example, black 

and brown marginal staining can be misinterpreted as initial lesions and 

are more often detected in tooth-colored resin restorations than in 

amalgam restorations. [76] [91]  Therefore, the diagnosis of recurrent 

caries lacks consistency, and the diagnostic variations among clinicians are 

impressive. [123] These differences reflect the subjective disparities that 

characterize the subsequent treatment.  

To date, the clinical diagnosis of secondary caries invariably has resulted in 

the replacement of the restoration affected, on the basis of the often 

proclaimed advice: “in doubt, take it out”. However, the new guidelines 

recommend to repair and refurbish any localized defects at restoration 

margins, including clinically diagnosed secondary caries, rather than 

performing a total replacement. In the era of minimally invasive operative 

dentistry, the replacement of restorations should be preferably the last 

alternative for patients with a defective restoration, based on the 

available evidence for monitoring, refurbishment and repair of 

restorations. [124] For secondary caries, diagnostic criteria should reflect 

the best options for management based on the presence of cavitation and 

lesion activity, ensuring the best health outcome for the patient. [125] In 

this contest, the treatment has to take into account the extent of the 

lesion, examining three characteristics of carious lesions and specifically 

softening of the tissues, discoloration and wetness of the lesions. 

Subsequently, a small part of the resin-based composite material adjacent 

to the stained margins are removed and, if the defects did not extend 

deep into the tooth-restoration interface, the cavities are considered 
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suitable for repair using a conventional restorative technique. [126] Dental 

teaching programs related to localized defects on restorations, including 

secondary caries, indicate that repair of the restoration is adopted 

frequently as an alternative to total replacement. [83] The majority of 

dental schools consider repair a definitive measure and reported that an 

acceptable life span of repaired restorations is four years. [83] 

  



49 

 

2.3 PREVENTION OF SECONDARY CARIES BY SILVER 

 

The oral hygiene habits of the patient are the primary factor that 

determines if secondary caries develops, not whether the restoration 

along the cavosurface margin can be considered as ‘excellent’, ‘adequate’ 

or ‘deteriorated’. The prevention and preservation approach is significant 

as the caries development is a slow process. Hence, preventing early 

carious lesions by the removal of biofilm as well as the application of silver 

or placement of sealants is advised. [127] Nowadays, silver ions (Ag+) are 

one of the most effective methods to control bacterial growth in a variety 

of medical applications including the prevention of caries disease.  

Since ancient times, the silver ion has been known to be effective against 

a broad range of microorganisms. [15] For instance, vessels made of Ag 

have been used for water disinfection and food preservation since the 

time of the Persian kings [128]. Later, the Phoenicians, Greeks, Romans, 

and Egyptians adopted this practice. In 1869, Raulin described, for the first 

time, the antimicrobial activity of silver against Aspergillus niger. [128] It is 

currently accepted that Ag+ is responsible for the antibacterial properties 

although they are relatively reactive. The binding of silver ions in the form 

of insoluble precipitates (AgCl), or during the interactions with proteins 

(e.g., albumin), causes a significant decrease of its antibacterial efficacy. 

The dynamic development of nanotechnology in recent years has provided 

new challenges for fabricating silver nanoparticles (AgNPs). In general, 

silver atoms (Ag0) on the surface of AgNPs, interacting with molecular 

oxygen or with other redox-active compounds, can be oxidized to silver 

oxide. [129] [130] [131] [132] [133] [134] The oxidation of silver oxide 

allows the release of silver ions in the environmental, and biological media 
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carrying out its antibacterial action. Therefore, AgNPs can also be used as 

a source of Ag+ through the release process. 

Due to the oligodynamic effect, the antibacterial activity of Ag+ is directly 

proportional to its environmental concentration. Jung and colleagues 

compared the antibacterial activity of silver ions obtained in various ways 

and showed that silver ions produced in an electrolytic way are better 

antibacterial agents than those obtained by dissolving the silver 

compounds. [57] 

Despite numerous studies conducted over the last decade, there are still 

considerable gaps in our knowledge about the specific mechanisms of 

antibacterial\antibiofilm action of silver ions. Several proposals have been 

developed to explain the inhibitory effects of Ag+ ions on bacteria. 

Furthermore, the precise basis of their antibacterial activity has yet to be 

defined. This is mainly due to the pleiotropic effects of nano-silver on 

bacterial cells, which suggests multiple mechanisms of action on several 

cellular targets (Figure 12).  

The most noticeable are:  

(i) interaction with the bacterial cell envelope (destabilization of 

the membrane—loss of K+ ions and a decrease of ATP level); 

(ii) interaction with molecules inside the cell (e.g., nucleic acids and 

enzymes); 

(iii) the production of reactive oxygen species (ROS).  
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Figure 12. Schematic representation of the silver nanoparticle mechanism 
of action on the biofilm forming a microbial cell. Ag+ adhere to the 
microbial cell surface and results in membrane damage and disruption of 
electron transport chain; Ag+ penetrate inside the microbial cells and 
affect cellular machinery interacting with DNA bases and enzymes.  
 

The positive charge of Ag+ interacts with the negative charge of the 

microbial cell wall leading to disruptions in the structural morphology of 

the microbial cell. [135] [136] [137] [138] Jung et al. proved that the 

accumulation of Ag+ in the bacterial cell envelope is followed by the 

separation of the cytoplasmic membrane from the cell wall in both Gram-

positive and Gram-negative bacteria. [57] According to reference Jung et 

al., carboxyl groups (–COOH) in glutamic acid and phosphate groups in 

teichoic acid are mostly responsible for the binding of silver ions. 

However, the thickness and composition of the microbial wall is also one 

of the crucial factors in deciding the potency of the antimicrobial Ag. [139] 

The presence of a 30-nm-thick negatively charged peptidoglycan layer in 

gram-positive bacteria such as Staphylococcus aureus makes it less 

vulnerable to the silver compared to gram-negative bacteria such as E. coli 
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where the peptidoglycan layer is a scanty 3–5 nm. [140] [141] The 

thickness of the peptidoglycan layer and its negative charge renders the 

Ag+ ions inactive, thereby making the gram-positive bacteria highly 

resistant to the antimicrobial therapy. [142] [143] The gram-negative 

bacteria, on the other hand, have lipopolysaccharides in their cell 

membranes which protect the microbe from the chemical attacks and 

help maintain the structural integrity of the membrane. The negative 

charge on lipopolysaccharides promotes the adhesion of AgNPs to the 

membrane, thereby making the bacteria highly susceptible to the 

antimicrobial therapy. [144] The morphology and charge on the microbial 

membrane, therefore, render the gram-negative bacteria highly 

susceptible even at a lower antibiotic concentration. [145] 

Silver ions possess a strong affinity towards the sulfur-containing proteins 

in the microbial cell wall. [146] These interactions are sufficient to 

irreversibly disassemble the structural integrity of the microbial lipid 

bilayer adversely affecting its permeability. [147] This restrains the 

microbial cell to regulate the membrane-based transport activity that, in 

particular, impairs the uptake and release of PO4
−2 ions and K+ ions. [148] 

Owing to the malfunctioning of the cell membrane, the loss of vital 

nutrients, cellular contents, and ATP is also inevitable leading to the 

cellular necrosis and cell death. [149] 

The Ag+ ions intercalate between the purine and pyrimidine base pairs, 

disrupt the intermolecular H-bonds leading to the collapse of the double 

helical structure of DNA. [150] [151] The replication phenomenon is also 

impaired because the DNA of the silver-treated cells gets transformed 

from a relaxed state to the condensed state. This leads to the inhibition of 

cell division and reproduction in bacteria S. aureus.  [152] 
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The biocidal mechanism of silver involves the damaging of the microbial 

membrane to penetrate the cell followed by the generation of ROS 

(reactive oxygen species) eventually impairing the cellular machinery. In 

order to develop a natural survival strategy against the host, some 

bacteria develop biofilms by adhering to a surface. [153] [154] It is also 

one of the contributing factors towards the development of antibiotic 

resistance and, hence, being difficult to control, augments the severity of 

the infection.  

The cariogenic biofilm of secondary caries is similar or identical to that of 

primary caries. There are some reports targeting the biofilm formation in 

bacteria without affecting the viability of the mammalian cells. [155] For 

example, AgNPs capped with CMT (carboxymethyl tamarind 

polysaccharide) are known to inhibit the growth and biofilm formation of 

both gram-positive bacteria, Bacillus subtilis, and gram-negative bacteria, 

E. coli and Salmonella typhimurium, at concentrations much lower than 

the minimum inhibitory concentration (MIC) by altering the locating and 

expression of bacterial some cytoskeletal proteins. [156] [157]  Nano-

silver (average particle diameter 25.2 ± 4 nm) was found to effectively 

prevent the formation of P. reduction in the number of colony-forming 

units), suggesting that it could be used for the prevention and treatment 

of biofilm-related infections. [158] A decrease in the bacterial mass in 

biofilms of E. coli, P. aeruginosa,and Serratia proteamaculans was 

observed when the AgNP concentration was between 5 and 10 

micrograms per milliliter. [159] 

This raises the intriguing possibility of treating infections caused by 

biofilm-forming bacteria with Ag+. In this contest, silver-containing dental 

materials (i.e. resins, fillers, adhesives, etc.) represent an alternative to 
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reduce the risk of caries acting as a delivery system to increase the silver 

levels in the proximity of restoration. 

 

2.4 SILVER IN DENTAL MATERIALS 

 

Silver was adopted for caries management and oral care in the early 1900s 

taking advantage of its disinfectant and antibacterial properties. Indeed, 

during the 19th century, silver has been gained a central role in tooth 

restoration as one of the main components in dental amalgams. However, 

its use in amalgams has been reduced since 1930 as they were 

progressively substituted by esthetic polymer-based resins. [160]  With 

the evolution of nanotechnology, the interest in silver has been renewed, 

and several promising new technologies are currently under development, 

especially in dental materials. Indeed, AgNPs have been demonstrated a 

very high antimicrobial effect, in comparison with several antimicrobial 

molecules, in prosthetic materials, [161] adhesives, [162] [163]  and 

implants, [164] in promoting caries arrestment [165] and preventing 

biofilm formation. [166] However, to be generally accepted as 

replacements for the traditional antibacterial agents, new material-

formulation must be safe, or safer than the existing product, and more 

effective. [167] Additionally, any therapeutic agent should not 

compromise the integrity of the dental materials. AgNPs have shown a 

good biocompatibility [161] [168]  and a synergistic action with several 

types of antibiotics [169] [170] [171] [172]. It appears, in fact, that 

bacteria are far less likely to acquire resistance against silver nanoparticles 

than other conventional and narrow-spectrum antibiotics because metals 

https://www.sciencedirect.com/topics/materials-science/resin
https://www.sciencedirect.com/topics/materials-science/dental-materials
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may act on a broad range of microbial targets, and many mutations should 

occur for microorganisms to resist their antimicrobial activity. [173] 

One of the major challenge for AgNPs involves their bacterial uptake 

(penetrability), taking into account that the penetrability of ions and 

nanoparticles are different. Indeed, AgNPs are able to penetrate through 

cell membranes more readily respect to ions, resulting in very high 

antimicrobial activity, [174] which is especially important since 

microorganisms in biofilms are more resistant to antimicrobial agents than 

planktonic pathogens. [175] 

Specifically in dentistry, the preparation of nanoparticles must take into 

account the biofilm architecture and the mechanistic aspects of AgNPs. 

The nanoparticle’s properties may affect its efficiency and interfere with 

its mechanism of action. Important aspects to be mentioned in this 

connection: (i) the diffusion of nanoparticles in biofilm exhibits an inverse 

relationship between effectiveness and size; nanoparticles over 50 nm are 

not able to penetrate the biofilm due to the relative self-diffusion 

coefficients in the biofilm, and this decrease exponentially with the square 

of the nanoparticle diameter. [176] In addition, (ii) charged nanoparticles 

do not diffuse easily through the biofilm, probably because the presence 

of phosphoryl and carboxyl groups on the surface of the bacteria, which 

gives the cell surface an electronegative character. [177] 

The size and shape of AgNPs may also affect their bactericidal activity. 

Materials with a particle size of less than 10 nm have been shown to be 

the most effective against bacteria, [178] [179] while triangular NPs may 

be more bactericidal compared to those with spherical or needle-like 

morphology.  [173] Indeed, according to Cheng et al., [17] [180]  AgNPs 

ranging from 2 to 5 nm were able to penetrate on dentinal tubules, 
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representing a good possibility of inactivating residual bacteria on dentine. 

( Figure 13) 
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Figure 13. (A) Diagram shows the presence of NPs (isolated particles or 
agglomerates) in saliva and the structure of dental tissues. The pellicle 
covers the superficial layer of enamel, and the oral biofilm develops on 
the pellicle surface. The characteristic hexagonal shape of the enamel 
crystallites is apparent and also the presence of the dentinal tubules in the 
underlying tissue of dentine. The NP–ion–protein complexes do not 
adhere directly to the tooth surfaces, but adhesion occurs either to the 
pellicle layer or the developing biofilm. (B) Schematic diagram of the oral 
environment, oral biofilm, and dental mineralized tissues showing the 
distribution of NPs and ions. Natural saliva normally contains a range of 
ions and proteins. In the presence of NPs, NP–ion–protein complexes are 
formed. Oral conditions promote particle agglomeration that results in 
particle sedimentation onto the dental surfaces. The pellicle has a globular 
structure and its proteinaceous layer facilitates the adherence of the early 
colonizing species necessary for the oral biofilm development. The oral 
biofilm and pellicle act as diffusion/permeation barriers to NPs preventing 
them from reaching the enamel–pellicle interface. Certain ions (F–, Cl–, 
SiO4

4–, Zn2+) are more abundant near the external surface of enamel, while 
others (Na+, Mg2+, CO3

2–) are found at higher concentrations near the 
dentino–enamel junction. The most commonly ions found in dentine are 
F–, Na+, Mg2+, and CO3

2–. 
Adapted from Besinis et al. ACS Nano, 2015, 9 (3), pp 2255–2289 [181] 

 

These characteristics promoted AgNPs incorporation into dental materials, 

such as acrylic resin, root canal fillings, implants, composite resin and 

adhesive systems. 

Dentures, mostly constituted by poly(methyl methacrylate) (PMMA) 

acrylic resin [179], have their inner surface considerably rough, [182] and 

this roughness, allied to other factors (e.g., poor hygiene, xerostomy, and 

HIV infection), contributes to the emergence of denture stomatitis. [183] 

[184] This pathology, characterized by red focal area, mostly localized in 

palatal mucosa, is present in 50–70% of complete denture wearers, [185] 

[186] and it is frequently associated with Candida species colonization. 
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These fungi colonize denture surfaces forming a biofilm, [187] which acts 

as a key-factor to denture stomatitis development. [188] 

The treatment of denture stomatitis is based on topical or systemic 

antifungical drugs, for example, fluoconazole and nystatin. [189] [190] 

However, this infection is often persistent, since antifungical resistance 

has been reported in Candida biofilms. [188]  Moreover, it has been 

observed that Candida species present in biofilms are less susceptible to 

antifungical drugs than planktonic cells. [191] [192] Another problem 

related to denture stomatitis is that many geriatric prosthetic wearers 

present difficulties on keeping the denture clean, due to their reduced 

motor dexterity, memory loss, and cognitive impairment. [193] 

Considering the aforementioned factors, denture stomatitis represents a 

challenge for dentistry, and methods for its prevention, should be 

encouraged. Accordingly, AgNPs have been satisfactorily incorporated into 

polymers used as tissue conditioners and as denture base. [194] [195] The 

action mechanisms of AgNPs-incorporated polymers is still unclear, since 

some authors attribute the antimicrobial effectiveness to the silver ions 

release [196] [197] and others to the direct contact between the material 

and the microorganisms. [198] 

Acosta-Torres et al. [199] developed a PMMA containing 1 μg/mL of 

AgNPs and they compared this new compound to unmodified PMMA. It 

has been observed that PMMA-AgNPs specimens showed significantly 

less Candida albicans adherence compared to PMMA, demonstrating the 

antifungical potential of AgNPs incorporated to acrylic resin. Besides that, 

they evaluated the activity of mouse fibroblasts and human lymphocytes, 

and it has been shown that PMMA-AgNP compound does not present 
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cytotoxity or genotoxicity. These results suggest that the novel acrylic 

resin incorporated with AgNPs could be developed as a denture base. 

In a study performed by Monteiro et al. [200] AgNPs were incorporated in 

a commercial acrylic resin, in different concentrations (0.05%, 0.5%, and 

5% of AgNPs, by mass). The authors evaluated the mechanical properties 

of the modified resin, as well of the unmodified one (0% of AgNPs). 

Thereunto, the flexural strength test was performed, and it was observed 

that all the groups presented very similar flexural resistance values, 

suggesting that AgNPs incorporation does not affect the mechanical 

properties of acrylic resin. 

When dentures are ill-fitted is recommended recovering his base with 

tissue conditioners, which are easily degradable with time and 

occasionally susceptible to microbial colonization. [201] Thus, AgNPs 

incorporation could also be profitable in this material and not only in 

dentures base. 

Accordingly, Nam [193] has incorporated AgNPs into a commercial tissue 

conditioner, in the following concentrations: 0.1%, 0.5%, 1.0%, 2.0%, and 

3.0%. Their inhibitory effect was evaluated against Staphylococcus aureus, 

Streptococcus mutans, and Candida albicans after 24 h and 72 h. The 

authors have reported that the modified tissue conditioner presented 

antimicrobial properties even at lower concentrations, that is, 0.1% (for S. 

mutans and S. aureus) and 0.5% (for C. albicans). 

Several studies have demonstrated that bacteria are the main etiologic 

agent of pulpal infection and periradicular lesion formation. [202] [203] 

The microbiota of infected root canals is polymicrobial and is dominated 

by Gram-negative anaerobes. [204] [205] It has been demonstrated that 
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the presence of residual bacteria in root canal is connected with 

significantly higher rates of treatment failure. [206] 

Since elimination of bacteria in root canals is the key to treatment success, 

[207] endodontic materials should ideally provide some antimicrobial 

activity, [208] [209] in order to improve the prognosis of endodontically 

treated teeth. [210] Various materials have been used as root canal 

fillings, among which gutta-percha is one of the most used. [207] This 

material has been proved to present slight antibacterial property, 

provided by the zinc oxide in its components; however, this does not 

provide to gutta-percha an effective bactericidal potential. [210] 

Accordingly, Iranian researchers have introduced nanosilver-gutta-percha, 

as an attempt to improve the antibacterial effect of gutta-percha. The new 

material, which is standard gutta-percha coated with AgNPs, has 

demonstrated significant effect against Enterococcus 

faecalis, Staphylococcus aureus, Candida albicans, and Escherichia coli. 

Besides that, Shantiaee et al.  [211] have tested the biocompatibility of 

this new material, by comparing the cytotoxicity of nanosilver-coated 

gutta-percha and normal gutta-percha on mouse fibroblasts. In this study, 

after 24 hours, nanosilver-coated gutta-percha presented cytotoxicity 

similar to normal gutta-percha and, after one week, it reached the lowest 

level of cytotoxicity among the tested materials. 

Other important step in the endodontic treatment is the 

chemomechanical debridement of pulpal tissue and pathogenic bacteria. 

In this stage, irrigant solutions should be used, for dissolving tissue and 

disinfecting the root canal system. [212] For this purpose, sodium 

hypochlorite (NaOCl) has been used for more than 70 years, and it 

remains as one of the most common solutions. [213] However, if NaOCl 
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passes beyond the apex, it is extremely toxic to the periapical tissues. 

[214] 

In this context, Lotfi et al. performed a study comparing the antibacterial 

effect of NaOCl and AgNP solution against Enterococcus faecalis, which is a 

bacterium often isolated from failed endodontic treatment cases. [214] 

Authors have observed that there were no significant differences among 

5.25% NaOCl and 0.005% AgNPs, suggesting that this solution, in a 

remarkably lower concentration, possesses the same bactericidal effect as 

5.25% NaOCl; hence, it could be used as a new intracanal irrigant. 

Another important endodontic material is the mineral trioxide aggregate 

(MTA), used in many indications such as perforations sealing, 

external/internal root resorption repair, and apexification. [215]  [216] In 

spite of being a material of wide application, the antimicrobial properties 

of MTA are controversial, and they seem to be limited. [217] [218] 

Aiming to improve its antimicrobial potential, Samiei et al. [219] modified 

MTA by adding AgNPs, at 1% weight. Its effect against oral bacteria and 

fungi species was assessed. Results have showed that AgNPs-containing 

MTA possesses higher antimicrobial effect against Enterococcus faecalis, 

Candida albicans, and Pseudomonas aeruginosa, compared to unmodified 

MTA. 

Although AgNP is a promising antimicrobial, there are only a few studies 

employing it in endodontic materials. And considering that endodontic 

treatment success is highly connected to the bacteria elimination, 

researches involving AgNPs incorporation to root canal filling materials 

and intracanal irrigators should be encouraged. 

Titanium (Ti) implants, widely used in dentistry, usually present infection 

around their surface, which remains one of the most important 
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complications in implantology. [220] [221] Several measures have been 

proposed to avoid bacterial contamination, such as implant disinfection 

and aseptic surgical protocols; nevertheless, bacterial invasion often 

occurs after surgery. [222] 

In order to prevent biofilm formation over implants surface, antibacterial 

coatings have been developed; however, most of them present poor long-

term antibacterial action and also the possibility of generating resistant 

strains after prolonged use. [223] In this context, AgNPs incorporation to 

implant surface has been suggested, [224] [222] since it would be possible 

to produce coatings with long-term antibacterial properties by controlling 

Ag release.[225] 

In study performed by Zhao et al., [225] AgNPs were incorporated into 

titania nanotubes (TiO2-NTs) on Ti implants, in a process involving silver 

nitrate immersion and ultraviolet radiation. The antibacterial effect 

against Staphylococcus aureus was assessed, and results have shown 

inhibition of planktonic bacteria during the first several days. Moreover, 

AgNPs-coating Ti implants have presented ability to prevent bacteria 

adhesion for up to 30 days, which are considered sufficient time to 

prevent post-infection in early stages. 

In a similar study, Flores et al. [226] have evaluated the antibacterial 

activity of AgNPs against Pseudomonas aeruginosa. It has been reported 

that the number of total cells found on AgNP-modified implants 

represents only 20% of those attached to unmodified surfaces. This data 

suggests that the incorporation of AgNPs on Ti implants is an efficient 

method to protect implant surface against pathogen colonization. 

As important as the antibacterial potential is the biocompatibility of these 

modified implants. Aiming to evaluate this property, Lu et al. [227] have 
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tested Ti implants incorporated with different concentrations of AgNPs 

(0.5, 1, 1.5, 2 M). For all the tested concentrations, osteoblasts started to 

adhere on the coatings after 1 day of culture and spread well until 7 days 

of culture. However, after this, the inhibitory effect of 1 M Ag on cell 

proliferation became significant, suggesting that AgNP coatings with low 

amounts of silver were more favorable for osteoblasts growth. 

In order to prevent or reduce biofilm accumulation over composite and in 

the restorations margins, were developed antimicrobial restorative 

materials through the incorporation of AgNPs to composite resins [228] 

[83] and adhesive systems. [83] These materials are multiphase 

substances composed of an organic polymer matrix, filler particles, 

coupling agent (silane), and the initiator-accelerator of polymerization, 

and AgNPs incorporation is based on the modification in the filler 

components. [229]A research developed by Cheng et al. [230] reported 

the effect of AgNPs incorporation, at different concentrations, to a 

composite resin, in order to investigate its mechanical properties and 

biofilm formation. In this study, composites were synthesized with AgNPs 

at 0.028, 0.042, 0.088, and 0.175%. Mechanical properties of composites 

with AgNPs at 0.028% and 0.042% were similar to those with no AgNPs. 

Besides that, counts of colony forming units for total streptococci and S. 

mutans, using AgNPs at 0.042%, were 75% smaller than the control group 

without AgNPs. These data suggest that AgNPs incorporation to composite 

resins enables good mechanical properties and notable antimicrobial 

potential, even at low concentration. In order to evaluate the influence of 

AgNPs incorporation on bond strength to the dental substrate, Melo et al. 

[231] added AgNPs, at 0.1% by mass, to an adhesive system. The results 

have shown that AgNPs did not compromise the bond strength and that it 
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decreased metabolic activity on biofilm, compared to the control group 

without AgNPs. In this study, it was also observed a reduction of the 

number of total microorganisms, total streptococci, and mutans 

streptococci. Li et al. [232] performed a study incorporating of AgNPs, at 

0.05% by mass, to an adhesive system, aiming to assess bacterial 

inhibition provided by this antimicrobial. It has been reported that AgNPs 

reduced the number and acid lactic production on biofilm over and away 

to the adhesive surface, evidencing that AgNPs-containing adhesives 

enable long-distance antibacterial potential. Another important aspect to 

be assessed is the biocompatibility of AgNPs-containing restorative 

materials. Accordingly, Zhang et al. [83] have studied the effects of AgNPs 

incorporation, at 0.05% by mass, to a primer and an adhesive, regarding 

human gingival fibroblast viability. It has been shown that AgNPs addition 

did not affect the cytotoxicity of primer and adhesive tested, evidencing 

the clinical applicability of this antimicrobial. Based on above mentioned 

studies, it is possible to say that the antibacterial effects of AgNPs-

containing restorative materials might decrease the development of 

recurrent caries, to increase the longevity of tooth restorations, and to be 

effective in decreasing the formation of bacterial biofilms on teeth and 

restorations, without compromising mechanical properties and 

cytotoxicity of composite resins and adhesive systems. 
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CHAPTER 3. INNOVATIVE DENTAL RESTORATIVE 

MATERIALS 
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3.1 RESTORATIVE DENTAL MATERIALS 

 

Dental structure, compromised by trauma or dental caries, can be direct 

restored using biocompatible synthetic materials (i.e. esthetic resin-based 

composites, ion-release glass ionomer cements, etc.). [233] [234] 

Although the restorative materials had significant evolvement in the past 

few decades, the high rates of treatment failure suggest that the current 

restorative approaches are not yet optimized and have a potential for 

improvement. [235] [236] 

In fact, dental restorative materials placed in oral cavity are subjected to 

aggressive attack by bacteria, that biodegrade material components 

leading to the impairment of the marginal integrity, and 

development/progression of secondary caries. [237] [238] [239] 

Currently, four classes of direct-placement restorative materials exist: 

  

a. amalgam; 

b. composites; 

c. glass ionomers; 

d. resin ionomers. 

 

Advantages and disadvantages of each class are summarized in Table 1. 
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Factor Amalgam Glass ionomers Resin ionomers Composites 

Cavity 

preparation 

Sound tooth 
structure to be 
removed for 
material 
manipulation 

Adhesive 
bonding allows 
removal of less 
tooth structure 

Adhesive 
bonding allows 
removal of less 
tooth structure 

Adhesive 
bonding allows 
removal of less 
tooth structure 

Restoration use Especially 
posterior teeth 

Nonload bearing 
areas  

Nonload bearing 
areas 

Esthetic zone 

Clinical 

conditions 

Wide range 
tolerance 

Well controlled 
field of 
operation 

Well controlled 
field of 
operation 

Well controlled 
field of 
operation 

Resistance to 

fracture 

Brittle, chips at 
the edge 

Low Low to 
moderate 

Moderate 

Durability Good to 
excellent 

Good in nonload 
bearing ; Poor in 
load bearing 

Moderate to 
good in nonload 
bearing 

Good in small to 
moderate 
restorations 

Wear resistance High Low on occlusal 
surfaces 

Low on occlusal 
surfaces 

Moderate 

Moisture 

tolerance during 

placement 

Moderate Very low Very low Very low 

Leakage Moderate Low Low with proper 
bonding 

Low with proper 
bonding 

Recurrent decay Similar to other 
materials 

Similar to other 
materials 

Similar to other 
materials 

Dependant on 
tooth-material 
bond 

Esthetics Poor Good Good Excellent 
Fluoride releas No Yes Yes No 
Placement time 

compared to 

amalgam 

1X 2X 2X 2X 

Material cost 

compared to 

amalgam 

1X 30% more 30% more 30% more 

Failure rate (%) 2.2 7.6 3.1 3.5 
Approx. life of 

restoration 

(years) 

10 4 2 7 

Potential 

environmental 

impact 

Yes Not known Not known Not known 

Operator skills Material 
predictable and 
forgiving, dentist 
comfortable 
with usage 

Material 
unforgiving, 
dentists 
experience 
required while 
using 

Material 
unforgiving, 
dentists 
experience 
required while 
using 

Material 
unforgiving, 
dentists 
experience 
required while 
using 

 

Table 1. Direct placement restorative materials- brief overview 
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Dental amalgam  

Dental amalgam is a dental filling material served as an excellent and 

versatile restorative material for many years, despite periods of 

controversy. Indeed, the combination of reliable long-term performance 

in load bearing situations and low cost is unmatched by other dental 

restorative material. 

Currently, dental amalgam is a mixture of metals, consisting of liquid 

mercury (approximatively 50% by weight) and a powdered alloy composed 

of silver (40–70%), tin (12–30%,) and copper (12–24%). It may also include 

indium 0–4%, palladium 0.5% and zinc up to 1%. 

Besides being prepared easily, dental amalgam is relatively inexpensive 

compared to most other materials used in dental treatment, and the 

longevity of dental amalgam restorations is relatively high. [240] It is the 

only dental material known for marginal-sealing capacity due to the 

corrosion products released from dental amalgam restorations. [241]  It 

also tolerates a wide range of clinical placement conditions such as wet 

fields (for zinc-free products).  

Today, dental amalgam is used in the following situations: 

1. in individuals of all ages, 

2. in stress-bearing areas and in small-to-moderate sized cavities in 

the posterior teeth, 

3. when there is severe destruction of tooth structure and cost is an 

overriding consideration, 

4. as a foundation for cast-metal, metal-ceramic, and ceramic 

restorations, 

5. when patient commitment to personal oral hygiene is poor, 
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6. when moisture control is problematic with patients, and 

7. when cost is an overriding patient concern. 

It is not used when: 

1. esthetics are important, such as in the anterior teeth and in lingual 

endodontic-access (root canal) restorations of the anterior teeth, 

2. patients have a history of allergy to mercury or other amalgam 

components, and 

3. a large restoration is needed and the cost of other restorative 

materials is not a significant factor in the treatment decision. 

However, toxicity of dental amalgam due to mercury has always been a 

concern. In fact, people with amalgam have higher concentrations of 

mercury in various tissues (including blood, urine, kidney, and brain) than 

those without amalgam. Also, a small proportion of individuals may 

manifest allergic reactions to these restorations. 

However, current evidence does not preclude the use of amalgam in 

dental restorative treatment. The choice should be based on patient 

characteristics such as primary or permanent teeth, pregnancy, the 

presence of allergies to mercury, and the presence of impaired renal 

clearance. 

 

Dental composites 

Dental composites were developed as an aesthetic alternative to dental 

amalgam and were intended for restorations of anterior teeth, as they 

were unable to withstand masticatory loads on posterior teeth. However, 

these restorative materials suffered from various issues: 

1.  low abrasion resistance; 

2. poor mechanical strength; 
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3. color instability.  

Nowadays, composite materials have become a versatile material class 

suitable for filling of all restoration classes, as well as the material of 

choice for direct restorative treatment.  

 

Glass ionomers 

Glass Ionomer Cements (GICs) (also referred to as polyalkanoate cements 

or Aluminosilicate-polyacrylic acid cements), glassy powder based on acid 

soluble calcium fluoroaluminosilicate and polyacrylic acids with 

copolymers in liquid form used for dental fillings and luting cements, 

capable of stabilize teeth calcium-deficient carbonated hydroxyapatite by 

ion exchange. [242] The carboxylic groups of GICs replace the phosphate 

ions of the teeth hydroxyapatite surface to establish ionic bonds with 

calcium ions derived from the partially dissolved crystals. [243] GICs 

interfere with subgingival biofilm formation, decreasing the irritation of 

the periodontal tissues.  [244] Examples of commercialized GICs are Fuji IX 

GP, Ketac N100, Dyract Extra and Wave. [83]  

Resin-modified glass ionomer cements (RMGICs), formed starting from 

GICs through acid-base reaction and free radical polymerization 

mechanisms. RMGICs have highly packed filler composition (~69%), of 

which approximately two-thirds are nano-fillers useful to improve thermo-

mechanical properties and to set a controlled release of active principles.  

[245] 

 

Resin 

Acrylic resins, a group of related thermoplastic or thermosetting polymeric 

substances derived from acrylic acid, methacrylic acid or other acrylates 
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that are widely diffused to fabricate dentures due to  their excellent 

biocompatibility, aesthetical properties and easy handling. [246]  

However, acrylic polymers are susceptible to wear and shrinkage due to 

the uncomplete conversion of the monomers during polymerization 

reaction and these phenomena can lead to poor marginal seal and 

fractures. [247]  

Composite resins, fillers for tooth cavities made of synthetic monomers 

able to form the resin matrix (e.g. dimethacrylate), reinforcing fillers (e.g. 

radiopaque glass, quartz or silica), chemical agents ( to promote the 

polymerization reaction) and silane. [248] Composite resins are the most 

commercialized materials for restoration, as shown by the widespread 

utilization of triethylene glycol dimethacrylate(TEGDMA) or urethane 

dimethacrylate (UDMA) blended with bisphenol-glycidyl methacrylate 

(bis-GMA). [83] 

Inorganic fillers, such as silicon dioxide, quartz in its crystalline state, 

aluminium oxide (Al2O3), titanium dioxide (TiO2), zinc oxide (ZnO) and 

zirconium oxide (ZrO2), that are easy to handle but not immune from 

marginal degradation during time and the consequent gap formation 

between the tissue/material interface. [249] 

Fluoroapatites, phosphate minerals formed by fluoride binding to calcium 

hydroxyapatite (HA) used as fillers able to conduct enamel mineralization 

and interfere with bacterial metabolism and dental plaque acidogenicity. 

[83] Such materials can also remineralize dentin and help prevent 

secondary caries. [83] 

Giomers, restorative materials derived from composites and GICs, 

constituted by a glass core coated with 3 semi-permeable layers that 

protect the durability and aesthetics of the glass, while allowing ions to 
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travel freely between the glass core and the oral environment.  Such 

materials are often fluoride modified.  Giomers are widely used in  

toothpaste, topic gels, mouth rinse, and fluoridated water. [83]  

 

 

Table 2 recaps the characteristics of the described dental materials.  
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Material Description Uses Appearance Risk/benefits Ref. 

 

Porcelaines 

 

Ceramic elements 

that are bonded 

into place. 

Fillings, 

Crowns, 

Inlays. 

Tooth 

coloured. 

Brittle. Well tolerated. 

No harmful. 

[250] 

Amalgams 

 

Alloys of mercury 

with silver and 

other metals. 

Harden by 

chemical reaction. 

Fillings. Silver 

coloured.  

Well tolerated. Rare 

sensitivity and 

allergies. No harmful. 

[251] 

Acrylic resins 

 

Thermoplastic 

substances able to 

cross-link 

Dentures. Transparent. Excellent 

biocompatibility.Easy 

handling. 

[246] 

Composite resins 

 

Mixtures of glass 

filler and acrylic 

that harden by 

chemical reaction.  

Fillings, 

Sealants. 

Tooth 

coloured. 

Well tolerated. 

Exposure to a small 

amount of estrogen-

like materials.  

[248] 

 

Inorganic Fillers

 

Metal oxides of 

various elements.  

Fillings. Colour of the 

metal used. 

Easy to handle.  Can 

have marginal 

degradation during 

time. 

[249] 

Fluoroapatites 

 

Phosphate 

minerals formed by 

fluoride binding to 

calcium 

hydroxyapatite. 

Fillings. Opaque. Well tolerated. Rare 

sensitivity and 

allergies. No harmful. 

[83] 

 

Glass ionomers   

 

 

Divided in Glass 

Ionomer Cements, 

Resin-modified 

Glass Ionomer 

Cements and 

Giomers.  

Fillings, 

Sealants, 

Cements 

for crown 

and 

bridges. 

Opaque. Well tolerated. No 

harmful. Low 

resistance to wear and 

fracture.  

[242] 

 

 

Table2. Restorative materials 
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However, no restorative materials were immune from marginal 

degradation during time and/or gap formation between the 

tissue/material interfaces. For this reason, there is a need of innovative 

restorative materials able to prevent the recurrence of caries and to repair 

and/or regenerate the defected dental tissue. 
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3.2 NANOTECHNOLOGICAL APPROACH FOR BIOACTIVE DENTAL 

MATERIALS: LDH AND SILVER NANOPARTICLES 

 

Science and technology in the 21st century rely heavily on the 

development of new materials, which are expected to respond to the 

environmental changes and manifest their own functions according to the 

optimum conditions. [252] Great attention has recently emerged around 

the composites in which layered fillers are dispersed at a nanometric level 

in a polymeric matrix. Such composites possess unusual properties, very 

different from their microscale counterparts. 

New smart dental materials exhibiting antibacterial and antibiofilm 

function were developed. These light activated, nanofilled restorative 

materials were able to release silver ions when intraoral pH values drop 

below the critical pH of 5.5, counteracting the demineralization process of 

the tooth surface. The caries protective effect of these materials may be 

related to the material’s ability to release adequate amounts of silver ions 

for sustained periods of time and during acidic attack. For example, LDHs 

loaded with fluoride (LDH-F) were incorporated into commercial light-

activated restorative material Bis-GMA/TEGDMA dental resin. 

Layered double hydroxide nanoparticles (LDH) are one of the best 

nanocarriers due to their excellent biocompatibility, low toxicity, low cost, 

ease of preparation, biodegradability, pH dependent stability, and 

moreover their drug release rate can be tuned by changing the 

environmental conditions. [253]  A dental resin with improved physical 

and biological properties and, in addition, able to release low amount of 

fluoride in a controlled and tunable way for a long period of time was 

obtained using visible-light cured composites based on photo-activated 
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Bis-GMA/TEGDMA matrix, containing a filler based on an hydrotalcite-like 

compound intercalated with fluoride ions. Such composite have no initial 

toxic fluoride ‘burst’ effect and levels of fluoride release remain relatively 

constant over time. This type of delivery is obtained by a matrix-controlled 

elution and elicits the beneficial effects of low amount of fluoride on 

hDPSC differentiation. 

Smart composites containing ACP (amorphous calcium phosphate) were 

also developed. ACP is one of the most soluble of the biologically 

important calcium phosphates, exhibiting the most rapid conversion to 

crystalline hydroxyapatite (HAP). ACP, when integrated into specially 

designed and formulated resins to make a composite material, has an 

extended time release nature to act as a source for calcium and 

phosphate which will be useful for preventing caries. ACP has been 

evaluated as a filler phase in bioactive polymeric composites. In fact, 

active restorative materials that contain ACP as filler encapsulated in a 

polymer binder may stimulate the repair of tooth structure because of the 

releasing of significant amounts of calcium and phosphate ions in a 

sustained manner. Moreover, ACP have excellent biocompatibility, and 

the ACP containing composites release calcium and phosphate ions into 

saliva milieus, especially in the oral environment caused by bacterial 

plaque or acidic foods, that can be deposited into tooth structures as 

apatitic mineral, which is similar to the hydroxyapatite (HAP) found 

naturally in teeth and bone. ACP at neutral or high pH remains as ACP. 

When low pH values (at or below 5.8) occur during a carious attack, ACP 

converts into HAP and precipitates, thus replacing the HAP lost to the acid. 

So, when the pH level in the mouth drops below 5.8, these ions merge 

within seconds to form a gel. In less than 2 minutes, the gel becomes 
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amorphous crystals, resulting in the release of calcium and phosphate ions 

[254] [255]. This response of ACP containing composites to pH can be 

described as smart. 

 

 

Layered double hydroxide (LDH) 

Hydrotalcites, also defined anionic clays or layered double hydroxide 

(LDH), are magnesium aluminium-hydroxycarbonate naturally occurring in 

lamellar warped form. They were discovered in Switzerland in 1842, but 

their molecular formula, Mg6Al2(OH16)(CO3)・4H2O, was published for the 

first time only in 1915 by Manasse. In 1942, Feitknecht introduced the 

term "double-layer compound" assuming that the synthesized compounds 

with hydrotalcite structure are constituted of intercalated hydroxide 

layers. This hypothesis was confirmed by Allmann and Taylor, who 

demonstrated that the cations are co-located in the layers while 

carbonate anions are intercalated together with water molecules. Overall, 

the structure of hydrotalcite is comparable to brucite, (Mg(OH)2), where 

each Mg2+ ion is bound to six OH- ions with octahedral coordination. In 

particular, the octahedra share an angle, forming layers organized on top 

of each other and bound together by hydrogen bonds. If part of Mg2+ ions 

is substituted by trivalent ions of suitable size, such as Al3
+, layers become 

positive and this charges are balanced by intercalated anions (the most 

common is carbonate). Water molecules in interlayers are binded to layers 

and anions by hydrogen bonds. (fig.14) [256] Various combinations of LDH 

are obtained changing metals during synthesis processes. Below are listed 

the most used: 
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 DivalentMetals = zinc (Zn2+), cobalt(Co2+), nickel (Ni 2+), manganese 

(Mn2+) 

 Trivalent Metals =chromium (Cr3+), iron (Fe3+), vanadium (V3+), 

cobalt (Co3+) e gallium (Ga3+)[257]. 

 

 

Figure 14. Schematic representation of LDH structure (Reproduced from 
Tronto et al., 2013[258]). 

 

The loading of anions interposed between lamella sheets is carried out by 

two simple methods: ion-exchange or co-precipitation. [256] 

LDH/polymer/anion complexes were firstly evaluated for pharmaceutical 

application as delivery carrier for anti-cancer drugs. [257],[83] In fact, the 

incorporated negative charged molecules can be drugs, bioactive anions 

or nucleic acids, substances able to elicit a therapeutic action. Moreover, 

potential fillers can be composed also of nanosized LDHs (NPs-LDH). 

Several studies have demonstrated nano-LDHs biocompatibility and 

activity. In fact, observations on Human Osteosarcoma Cells confirmed 
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LDH biocompatibility and defined its intracellular trafficking. In particular, 

microscopy analysis showed the size dependence of the cellular uptake of 

LDH nanoparticles. Specifically, 50 nm NPs-LDH followed lysosomal 

degradation pathway, whereas 100 nm NPs-LDH were not degraded and 

were probably exocytosed from the Golgi. [259] 

Mouse Motor Neuron uptake studies confirmed the importance of LDH 

nanoparticles dimensions in cellular localization. Two different LDH-NPs 

were analyzed using fluorescein isothiocyanate labeling: 20 nm CO3-LDH 

and 180 nm NO3-LDH. Confocal laser microscopy results showed that 20 

nm LDHs-NPs were localized in nucleus, while 180 nm LDH-NPs in the 

cytoplasm [260]. The release kinetics is a further characteristic that can be 

optimized in loaded LDHs. Different chemical compositions of LDHs exhibit 

distinct adsorption and release kinetics of loaded drugs or anions. 

[261],[262] Indeed, other crucial design parameters are the pH of the 

solution containing the anions to load and that of the fluid in which their 

release occurs. Strongly basic pH leads to a wide presence of OH- ions that 

competes with anions during anionic exchange in loading/release process 

while acid pH triggers LDH layers degradation, releasing the anion in few 

minutes. For example, LDH release capability in acid conditions is used in 

enteral administration (gastric fluid pH is 1.2). [83] LDHs release capability 

was also investigated according to their concentration in resin in order to 

modulate the release kinetics. Hypothetically, concentration optimization 

must be related with appropriate LDH delamination, to guarantee anionic 

exchangers accessibility and to confer a right degree of rigidity to the 

resin. Usually, nano-filler concentration inside the resin varies from less 

than 3% w/w to 20% for larger size ones. [263] Indeed, Rojas and co-

workers demonstrated that low hydrotalcites concentrations induce an 
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uncontrolled release, due to excessive layers slip. In fact, low hydrotalcites 

concentrations compressed resins in platelets showed an initial release 

without classical burst effect and uncontrolled kinetics. [264] Finally, LDHs 

as fillers were also exploited for industrial composites due to their 

capability to improve the mechanical properties (rigidity and flexibility) of 

the material in which they are inserted. In addition, industrial LDH 

composites are also able to protect the material from degradation 

triggered by UV rays, since they are absorbed between the layers. [265] 

Such feature is interesting in dentistry due to the widespread use of light-

curing resins in restoration. 

For all these properties, LDH has been chosen as filler in our experimental 

dental adhesive resin as well as to exploit the possible silver antibacterial 

activity. 

 

The experimental design of the thesis was planned in order to obtain a 

new dental adhesive with improved bioactivity and adequate mechanical 

properties. The project idea was to take advantage from a delivery of low 

amount of silver for a long period of time in order to obtain strong 

antibacterial effect avoiding cytotoxicity of high silver concentration. This 

goal can be obtained by using silver nanoparticles loaded Layered double 

hydroxide. Such antimicrobial device can give continuous protection 

against bacteria and microbes by not allowing them to grow on the 

surface avoiding biofilm formation. For another, at the present, very few 

researches have been done in the field of antibacterial dental adhesive 

preparation using layered double hydroxide.  
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CHAPTER 4. MATERIALS AND METHODS 
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Preparation of layered double hydroxide (LDH) 

The LDH in the nitrate form [Mg0.65Al0.35(OH)2](NO3)0.350.68H2O (LDH-

NO3) was prepared by ammonia precipitation to exclude CO32– ions from 

the interlayer region. In a typical preparation, a mixed metal nitrate 

solution (1 M) containing the stoichiometric requirement ratio of Mg2+ 

and Al3+ ions, was added dropwise to a solution of ammonia (1 M) with 

vigorous stirring at ambient temperature (25–27°C). During the addition, 

the solution’s pH was adjusted to 9.0±0.5 with 1 M NaOH. The resulting 

white precipitate was aged for 24 hours at room temperature with 

continuous stirring. The solid obtained was separated from the 

supernatant by centrifugation, washed several times with decarbonated, 

deionized water until the pH of the wash was neutral, and dried in an oven 

at 60°C. 

 

Anion exchange of MgAl-(NO3¯) LDH by citrate (C6H5O7
3-) 

The citrate ion exchanged MgAl-LDH was performed by the de-

intercalation of the nitrate ions from the as prepared LDH by treating it 

with a salt–acid mixed solution as reported by Liu et al. [266] In this 

condition, the inorganic citrate anion (C6H5O7
3-) readily replaces the weak 

nitrate ion. 1 g of the MgAl-LDH sample was added into 60 ml of aqueous 

solution containing 8.8 g of tri-sodium-citrate (0.03 mol) and was stirred 

for 18 hours at room temperature. The solid was separated from the 

supernatant by centrifugation, washed several times with deionized water 

and anhydrous ethanol, and dried in an oven at 60°C for 24 h. 
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Preparation of Ag nanoparticle deposited Mg-Al LDH 

Monodisperse Ag nanoparticle supported LDH was prepared by the 

reduction of an aqueous silver salt solution by intercalated citrate ions.  

The mechanism of reaction could be expressed as follows: [267] [268] 

4Ag++ C6H5O7Na3+ 2H2O →4Ago+ C6H5O7H3+ 3Na+ + H+ + O2 . 

In particular, 500 ml of 0.170 g (1 mmol) of AgNO3 solution in double-

distilled water was heated to boiling at 90°C. Then, 0.5 g of citrate 

exchanged LDH was added and stirred for 1 hour, in the dark. The reaction 

was complete at room temperature and the resulting precipitate was 

collected by repeated centrifugation, washing with water and finally dried 

at room temperature in a desiccator. 

 

Preparation of resin containing Ag-LDH 

The Ag-LDH (with mass fraction of 0.5, 1, and 5%) was added into a 

commercial light-activated restorative material (CR) provided by Kerr s.r.l. 

(Italy), which consisted of bisphenol-A glycidyldimethacrylate (Bis-GMA), 

tri-ethylene glycol dimethacrylate (TEGDMA), camphorquinone (CQ), 

ethoxylated bisphenol A dimethacrylate (EBPADMA) and glass fillers. The 

samples are coded CR-Agx, where x is the percentage by weight of the 

inorganic solid Ag-LDH in the commercial resin. CR composite resin was 

used as a control. Specimen disks 14 mm in diameter and 1 mm thick were 

fabricated using steel molds. The composite obtained were cured by 

photo-polymerization using a visible light curing unit (Optilux 380, 

distributed through KERR, USA; irradiated diameter: 11 mm) with an 
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irradiation time of 120 s. During the experiment, the light intensity was 

maintained at 550 mW/cm2. 

 

Before incubation with bacteria, all the CR-Agx resins were gas sterilized 

using ethylene oxide.  

 

Characterization and evaluation 

 

X-Ray Powder Diffraction (XRPD) 

XRPD patterns were recorded, in reflection, with an automatic Bruker 

diffractometer (equipped with a continuous scan attachment and a 

proportional counter), using the nickel filtered Cu Ka radiation (l = 1.54050 

A°) and operating at 40 kV and 40 mA, step scan 0.058 of 2u and 3 s of 

counting time. 

 

Fourier Transform Infrared Analysis (Ft-Ir) 

Infrared absorption spectra were obtained by a Bruker 

spectrophotometer, model Vertex 70, with a resolution of 4 cm-1 (32 

scans collected). 

 

Dynamic-Mechanical Analysis 

Dynamic-mechanical properties of the samples were performed in 

triplicate with a dynamic mechanical thermo-analyzer (TA instrument-

DMA 2980). The samples were tested by applying a variable flexural 

deformation in dual cantilever mode. The displacement amplitude was set 

to 0.1%, whereas the measurements were performed at the frequency of 

1 Hz. The range of temperature was -50 to 150 °C, scanning rate of 3 

°C/min. 
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Silver release test 

Weighed disks of all samples were placed at 37°C under magnetic stirring 

in physiological medium and artificial saliva medium (SAGF, 15 ml). [269]  

SAGF was prepared from calculated amounts of chemicals supplied by 

Sigma-Aldrich (Milan, Italy), according to the procedure described in the 

literature. [270] [271] After the time intervals (every hour for 8 h, then 

every day for 10 d, and then every week for 3 wk), the free silver ion 

concentration (ppm) were quantified using an inductively coupled plasma 

mass spectrometer model ELAN DRC II (Perkin Elmer-Sciex, Norwalk, CT, 

USA), operating with high-purity argon (99.999%, White Martins - Praxair, 

Bauru, São Paulo, Brazil). Each specimen was inserted in a polypropylene 

Falcon tube (Becton Dickinson, Franklin Lakes, New Jersey, USA) to a final 

volume of 10 mL (20-fold dilution) with a solution containing 2% HNO3. 

Analytic calibration standards were prepared at a concentration ranging 

between 0 and 100 μg/L in the same diluent. After the specimens had 

been prepared, they were injected directly into the device, and the results 

were expressed in μg/L. The determination of each test solution was 

performed in triplicate (n=9). 

 

Bacterial strains and growth conditions 

Pseudomonas aeruginosa PAO1 (ATCC® BAA-47™), and Staphylococcus 

aureus (ATCC® 25923) were purchased by American Type Culture 

Collection (ATCC, Italy), and growth as supplier’s instructions.  

In addition, saliva from 3 volunteers (without active caries or periodontal 

disease) was used to produce salivary bacteria. Oral bacterial sample was 

collected using a sterile cotton bud and dissolved into 500µl phosphate 
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buffered saline (PBS) buffer (0.12M NaCl, 0.01M Na2HPO4, 5mM KH2PO4 

[pH 7.5]). An aliquot (100 µl) of bacterial suspension was spread on 

Nutrient Broth (NB, Oxoid, Basingstoke, Hants, UK) agar plate, and growth 

overnight at 37°C. Bacterial colonies with distinct morphology were 

cultured on NB liquid medium and subjected to biochemical tests specific 

for their identification and characterization(API®/ID32, bioMérieux, 

Grassina, Italy). In particular, Streptococcus spp., Bacteroidesfragilis, and 

Staphylococcus epidermidis were identified and grown at 37°C in non-

selective NB.  

Minimum inhibitory concentration (MIC) determination 

Bacterial strains were grown overnight (18 h) and sub-cultured in 5 mL of 

sterile NB broth to log phase (OD600 0.7–1.0). Then, individual wells of 

sterile, 96-well flat-bottom polystyrene TCPs were filled with 100 μL of 

diluted culture (at OD600 0.1), and CR-Agx were added. After a 48-h 

incubation, inhibition of bacteria growth was assessed by measuring the 

OD600 using a microplate reader (Cytation 3, ASHI, Italy). CR was used as 

negative control while ampicillin (50 μg/ml) was used as positive control. 

The MIC90 was defined as the concentration required to inhibit the 

growth of 90% of microorganisms and normalized on the basis of the total 

silver content. 

 

Determination of biofilm activity using the tissue culture plate method 

(TCP) 

This assay was performed to determine the ability of silver released by CR-

Agx disks to inhibit biofilm activity. The assay is based on colorimetric 

measurements of the crystal violet incorporated by sessile cells. [272] 
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[273]  Briefly, individual wells of sterile, 96-well flat-bottom polystyrene 

TCPs were filled with 180 μl of a single bacterial species (1 × 106/ml). After 

culturing for 24 h, CR (used as negative control) or CR-Agx disks were 

added. The cell culture plates were then incubated statically at 37°C in a 

humid atmosphere for 48 – 72 h, until a mature biofilm was obtained. 

After incubation, the media were removed and the disks were washed 

three times with 200 μl sterile PBS to remove non-adherent bacteria. The 

wells were air dried for 45 min and 200 μl per well of a 0.1% (v/v) crystal 

violet solution in water were added for 30 min. The wells were then 

washed five times with 300 μl of sterile PBS to remove excess stain. The 

dye incorporated by the adherent cells was solubilized with 200 μl of 96% 

(v/v) ethanol. The absorbance of each well was measured at 570 nm using 

a microplate reader (Cytation 3, ASHI, Italy). Experiments were carried out 

in triplicate. 

LDH assay 

Biofilm viability was measured by lactate dehydrogenase (LDH) assay 

(Sigma). Biofilm was obtained for all bacterial strain as previously 

described. After culturing for 24 h, CR (used as negative control) or CR-Agx 

disks were added, and LDH release into the surrounding medium 

measured after 12, 24 and 48 h, according to the manufacturer’s protocol. 

Absorbance values were corrected with CR. LDH data were expressed as a 

percentage of the total LDH released from cells into the culture medium. 

 

Long term antibacterial and antibiofilm activity 

The evaluation of the long term bactericidal properties was performed by 

collecting the supernatant of bacterial growth in presence of CR or Cr-Agx 

resins after 22 days. For the analysis of long term antibiofilm activity, 
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biofilm of each bacterial strain was incubated in presens of CR or CR-Agx 

resins for 22 days. An aliquot (100 µl) of bacterial suspension from both 

bacterial and biofilm inoculum was spread on NB agar plate, and growth 

overnight at 37°C.A single colony of each bacteria strains was inoculated 

separately in nutrient broth and grown overnight at 37°C. After adjusting 

to an optical density equivalent to 108 cells per ml in PBS, sequential 

tenfold dilutions were added to tubes containing equal volumes of the 

extracts. The effect of the materials’ extracts on bacterial growth was 

assayed by colony forming units (CFU) on nutrient agar plates after 24 h of 

growth. 

 

Statistical Analysis 

All quantitative data are presented as the mean ± SD. Each experiment 

was performed at least 3 times. Student’s t test was used for the silver 

release. Statistical analyses were performed by 1-way analysis of variance 

(ANOVA) with Bonferroni’s post hoc test. 
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CHAPTER 5. RESULTS AND DISCUSSION 
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INCORPORATION OF LDH-F INTO THE DENTAL RESIN 

MECHANICAL PROPERTIES 

 

The mechanical properties were investigated in a wide range of 

temperatures by performing a dynamic mechanical analysis able to detect 

either the elastic modulus and the tan δ in the investigated range of 

temperature. Fig.15  shows the elastic modulus for the pristine resin and 

the resin containing 0.5, 1, 5, and 10 wt.% of Ag-LDH (CR-Agx). 

 

 

Figure 15. Storage modulus (MPa) versus temperature (°C) of: CR, CR-
Ag0.5, CR-Ag1, CR-Ag5, and CR-Ag10. 
 

The study of the mechanical properties in a wide temperature range 

demonstrated that the values of the elastic modulus of the CR-Agx 

increased compared with the resin CR. This increase, which was evident 

after the glass transition temperature, was observed at different 

temperatures and for different compositions. The comparison of the 

storage moduli at three different temperatures (0°C, 37°C, 50°C) and the 

values of the glass transition temperatures are reported in Fig 16 (a and b) 
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Figure 16: (a) Storage moduli (MPa) at 0°C, 37°C and 50°C and (b) glass 
transitiontemperature (°C) for the pristine resins and its composites. 
 

We observed that the storage moduli of the composite resins are 

consistently higher than the pristine resin and the increase is particularly 

relevant at 37°C, the body temperature. The observed reinforcement 
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increases on increasing the inorganic silver concentration. As expected, as 

shown in many composite systems, the deformation at breaking of the 

composite resin was found slightly lower than the pristine resin. However, 

since the stress is increasingly higher in the composites, the toughness 

remained almost unchanged. 

 

Silver release 

Cumulative silver release from CR-Ag0.5, CR-Ag1, CR-Ag5, and CR-Ag10 

was evaluated for 35 days at 37 °C in artificial saliva medium (SAGF), and 

at different pH (pH7.4 and pH 4.5 simulating the two most common in vivo 

conditions). Silver release was determined using Inductively Coupled 

Plasma - Mass Spectrometry (ICP-MS), an analytical technique that 

performs elemental analysis with excellent sensitivity. This technique can 

be applied to solutions, solids and gases, and employs argon plasma, as 

the ionisation source, and a mass spectrometer to separate the produced 

ions. During ICP-MS analysis the investigated material is transferred by an 

argon flow into inductively coupled plasma in which an effective 

temperature results in atomisation and ionisation of the material. 

Subsequently, the ions are extracted into a mass spectrometer, using 

which the elemental composition of the material is determined. ICP-MS, 

as an analytical technique, has many advantages in the laboratory usage 

for trace metals identification:  

- almost all elements can be determined and identified,  

- combination of high sensitivity and low background signal provide a very 

low detection limit and  

- rapid analysis, which is a result of high-speed operation of the mass 

spectrometer (quadrupole)  
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As shown in Figure 17 and Figure 18, the analyses were performed every 

hour for 8 h, then every day for 10 days, and then weekly until the end of 

the experiment. The results demonstrated a time-dependent increase in 

the silver content for all tested resins, at both pH analyzed.  

The major result was obtained with CR-Ag5 and CR-Ag10: a silver 

concentration of 9.20±0.44 and 11.23±0.35 ppm respectively was 

determined at pH 7.5, while at pH 4.5 the concentration reached was of 

15.25 ± 0.36 and 17.24 ± 0.39 ppm respectively. 

On the contrary CR-Ag0.5 and CR-Ag1 released very low concentration of 

silver at both pH and for all time point tested. 
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Figure 17: Release amounts of silver in artificial saliva at pH 7.4. Samples 
were put in mineral medium with composition similar to saliva (SAGF) for 
35 d. The bars represent means ± standard deviation (n = 12). Statistically 
significant variation: ### p< 0.001 for CR-Ag1, CR-Ag5 and CR-
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Ag10versusCR-Ag0.5 at all-time points tested; ***p< 0.001 for CR-Ag5 and 
CR-Ag10versusCR-Ag0.5 and CR-Ag1 at all-time points tested. 
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Figure 18: Release amounts of silver in artificial saliva at pH 4.5. Samples 
were put in mineral medium with composition similar to saliva (SAGF) for 
35 d. The bars represent means ± standard deviation (n = 12). Statistically 
significant variation: ### p< 0.001 for CR-Ag1, CR-Ag5 and CR-
Ag10versusCR-Ag0.5 at all-time points tested; ***p< 0.001 for CR-Ag5 and 
CR-Ag10versusCR-Ag0.5 and CR-Ag1 at all-time points tested. 

 

Bacterial strains 

Dental caries is the destruction of hard tissue of teeth due to due to 

acidogenic and aciduric abilities of several strain of bacteria having 

cariogenic potential. [274] 
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Bacterial strain selected for this thesis were Pseudomonas aeruginosa 

PAO1, and Staphylococcus aureus, two opportunistic pathogenic bacteria 

frequently associated with peri-implant disease and implant failure. [275] 

[276]  [277] [278] 

 Pseudomonas aeruginosa 

Pseudomonas aeruginosa PAO1, a non-periodontal microbial specie, is 

one of the most important Gram-negative bacteria causing biofilm-

associated infections, particularly in immuno-compromised persons, and is 

a well-established model organism to study biofilm development. Indeed, 

it has a strong tendency to form biofilm [279] [280]  extremely resistant to 

antibiotics. [281] [282] Their biofilm formation involves an initial 

attachment to a solid surface leading to the formation of micro-colonies 

that during the time, differentiate into exopolysaccharide-encased, 

mature biofilms. As reported by Canullo et al. PAO1 was identified in 

patients affected by peri-implant disease at the level of both peri-implant 

sulcus, gingival sulcus of the adjacent teeth and the connection and 

abutment at the inner portion of each implant. [283] Moreover, studies of 

patients with mechanical ventilation in intensive care units showed that 

the P. aeruginosa present in the oral cavity may cross easily different 

anatomical sites, such as the nose, the paranasal sinuses, colonizing the 

lungs and promoting pulmonary infections.  [284] [285] [286] P. 

aeruginosa is also associated with mandibular osteomyelitis by 

intraosseous dissemination [287] and to necrotic lesions of the oral 

mucosa of immunosuppressed patients. [288] 
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 Staphylococcus aureus 

Staphylococcus aureus is a multi-drug resistant bacterium, [289] [290] 

[291] that usually harbors in the nasal passages and ears of patients, [292] 

and is associated with medical device-related infections. It grows on 

catheters and chronic wounds as biofilm [293]  and is not only a significant 

cause of many localized and systemic infections such as osteomyelitis, 

[294] and chronic rhinosinusitis, [294] but also has a strong connection to 

dental implant infections. [295] [296] Indeed, several studies have 

demonstrated that S. aureushas high affinity for titanium surfaces and can 

be found in peri-implant lesions [297] as well as in therapy-resistant cases 

of periodontitis. [298] Moreover, S. aureus is a putative pathogen of many 

oral diseases, such as oral mucositis, [299] endodontic infections [300] and 

even dental caries. [301] 

 

In addition, saliva from three healthy volunteers (without active caries or 

periodontal disease) were collected using a sterile cotton budand 

dissolved in phosphate buffered saline (PBS) buffer to produce salivary 

bacteria. Bacterial communities in the oral cavity contain species that 

promote health states, while others contribute to disease. [302] Recent 

studies have shown that poor oral hygiene and/or the presence of specific 

microorganisms in the oral cavity may be associated with periodontitis, 

respiratory and intestinal diseases. [303] [304] [305] In addition, the 

salivary microbiota has been used in different human epidemiological 

studies [306] and has been proposed as a diagnostic marker for oral 

cancer, [307] periodontal disease [308] and dental caries. [309] 
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The oral saliva suspension was spread into a Nutrient Broth (NB) agar 

plate and incubated at 37 °C over night. Bacterial colonies with distinct 

morphology were picked, subsequently cultured on NB liquid medium and 

subjected to biochemical tests specific for their identification and 

characterization. 

Biochemical identification methods such as the Biomerieux produced 

Analytical Profile Index (API) systems are very useful in identifying bacteria 

at a species level. API is a test system of physiological tests for fast 

identification of microorganisms. First invented in the 1970s, API 

introduced standardized, miniaturized versions of established tests like 

the citrate utilization test, the Voges-Proskauer testor the indole test and 

combined them within small and easy to handle test strips. [310] Over the 

time test strips adapted for the testing of different groups of 

microorganisms were developed. The API®/ID32 kit used includes 15 

identification systems that cover more than 600 bacteria species. 

Indeed, API®-tests are defined series of physiological tests in a micro-

format that are used for the identification of microorganisms. Every single 

test represents a physiological reaction, for example the activity of an 

enzyme and/or the utilization of a metabolite (figure 19). 

 

Figure 19. Example of API®/ID32 obtained. 
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The tests are interpreted by color change or turbidity and recorded as 

positive (+), negative (-) or weak (+/-). The identification of the bacteria 

species was made comparing the results obtained with those recorded in 

the API database. 

As reported in table 3, Streptococcus spp., Bacteroides fragilis, and 

Staphylococcus epidermidis were identified  

 

 
 
 
 
 
 
 
 
 
 
Table 3. Interpretation of API/ID32 of saliva isolated bacteria from three 
healthy volunteers 
 
 
Legend: 
 
URE: Urease/Urea hydrolysis; ADH (Arg): Arginine dihydrolase; αGAL: α Galactosidase; βGAL: β 

Galactosidase; βGP: β Galactosidase 6-phosphate; αGLU: α Glucosidase; βGLU: β Glucosidase; αARA: 

α Arabinosidase; βGUR: β Glucoronidase; βNAG: β-N-acetyl-β-glucosaminidase; MNE: Fermentation of 

D-Mannose; RAF: Fermentation of Raffinose; GDC: Glutamate decarboxylase; αFUC: α Fucosidase; 

NIT: Reduction of nitrate; IND: Indole production; PAL: Alkaline Phosphatase; ArgA: L-Ariginine 

Arylamidase; ProA: Proline Arylamidase; LGA: Leucyl Glicyn Arylamidase; PheA: Phenylalanine 

Arylamidase; LeuA: Leucine Arylamidase; PyrA: Pyrrolidonyl Arylamidase; TyrA: Tyrosine 

Arylamidase; AlaA: Alanine Arylamidase; GlyA: Glycine Arylamidase; HisA: Histidine Arylamidase; 

GGA: Glutamyl-glutamate Arylamidase; SerA: Serine Arylamidase 
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 Streptococcus species 

Streptococcus spp. is commonly found in the oral cavity and considered as 

one of the early colonizers of oral surfaces. The bacteria produce 

extracellular polysaccharide in response to dietary sucrose that firmly 

attaches the cells to surfaces and contributes to the biofilm matrix. 

Streptococci represent the majority of the total microbial species detected 

in dental caries. [31] In particular, among the isolates of other 

Streptococcus species, S. mutans isolates have a greater ability to form 

biofilm. [311] S. mutans appears to be important in the initiation of dental 

caries since its activities lead to colonization of the tooth surface, dental 

plaque formation and demineralization. Montanaro et al. [312] 

demonstrated that S. mutans adhesion and colonization on restorative 

material surfaces can also occur in the absence of specific saliva proteins 

and in a period as short as 4 h. In addition, S. epidermidis has greater 

potential to cause infections in patients with immune-compromised state, 

intravenous drug abusers, AIDS patients, immuno-suppressive therapy 

patients and premature new born. [313] [314] 

 

 Bacteroides fragilis 

Bacteroides fragilis is an opportunistic periodontopathogen, as many 

reports have documented the isolation of B. fragilis from dental plaque or 

periodontal pockets of patients with periodontitis. [315] [316] 

 

 Staphylococcus epidermidis 

Staphylococcus epidermidis is the most frequently encountered member 

of the coagulase-negative staphylococci on human epithelial surfaces, and 
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due to its paucity of virulence factors is less invasive than its coagulase-

positive relation, Staphylococcus aureus. [317]  However, in recent years S. 

epidermidis has become a frequent and important nosocomial pathogen, 

particularly in immunocompromised patients. [318] [319] Many strains of 

S. epidermidis are able to produce biofilms and readily colonize implanted 

medical devices, in particular intravascular devices, cerebrospinal fluid 

shunts, intraocular lenses, prosthetic joints and heart valve replacements. 

Colonization of such medical devices may progress to infections that 

manifest as subacute or chronic in nature. S. epidermidis bacteremia is 

predominantly caused by entry of the bacteria through colonized 

intravascular medical devices and removal of the device is recommended 

as an integral part of patient treatment. [320] 

 

Antimicrobial performances of CR-Agx 

The antimicrobial activity of CR-Agx materials was analyzed against above 

reported microorganisms (Pseudomonas aeruginosa PAO1, 

Staphylococcus aureus, Streptococcus spp., Bacteroides fragilis, and 

Staphylococcus epidermidis). Table 4 reported, for each sample tested, the 

minimum inhibitory concentration required to inhibit the growth of 90% 

of microorganisms (MIC90). 

The results obtained revealed that only CR loading high concentration of 

Ag (CR-Ag5 and CR-Ag10) were able to inhibit both Gram positive and 

negative bacteria growth. In particular, CR-Ag10 showed the higher 

antimicrobial activity, ranging from 2.8 ± 0.3 to 3.9 ± 0.5 µg ml-1. 

Lower Ag concentration does not affect bacterial growth.  
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Recently Hwang et al. [321] reported that chemically derived silver 

nanoparticles in the size range 10 to 25 nm are effective antimicrobial 

agents. Earlier studies show that the interaction stage of Ag nanoparticles 

in E. coli and found that at initial stage of the interaction of AgNPs adhere 

to bacterial cell wall subsequently penetrate the bacteria and kill bacterial 

cell by destroying cell membrane. AgNPs may pass through the cell wall of 

bacteria to oxidize the surface proteins on the plasma membrane and 

consequently disturb cellular homeostasis. [322] [323] 
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 MIC90a (µg ml-1) 

Samples Pseudomona

s aeruginosa 

PAO1 

Staphylococcu

s aureus 

Streptococcu

s spp. 

Bacteroide

s fragilis 

Staphylococcu

s epidermidis 

CR-Ag0.5 >5000 >5000 >5000 >5000 >5000 

CR-Ag1 >1000 >1000 >1000 >1000 >1000 

CR-Ag5 4.9 ± 0.5 5.4 ± 0.5 5.1 ± 0.4 6.0 ± 0.6 5.5 ± 0.4 

CR-Ag10 3.2 ± 0.2 2.8 ± 0.3 3.4 ± 0.4 3.6 ± 0.6 3.9 ± 0.5 

CR 

(negative 

control) 

>10000 >10000 >10000 >10000 >10000 

Ampicilli

n 

(positive 

control) 

0.8 ± 0.06 0.5 ± 0.04 0.4 ± 0.05 0.5 ± 0.07 0.4 ± 0.03 

a The MIC90 values were normalized with respect to the silver content 

Table 4. Antimicrobial activity (MIC 90) of LDH-Ag nanocomposites, LDH 
and positive control against selected microorganisms. 
 

 

Anti-biofilm activity of AgNPs 

The dose-dependent ability of CR-Agx to inhibit the activity of biofilms 

formed by the human pathogens Pseudomonas aeruginosa PAO1, 

Staphylococcus aureus, Streptococcus spp., Bacteroides fragilis, and 

Staphylococcus epidermidiswas determined under in vitro conditions. The 

results showed that, for all the tested bacterial strains, the inhibition of 

biofilm activity was observed only for higher concentration of Ag (CR-Ag5 



104 

 

and CR-Ag10), while no effect was observed with both CR-Ag0.5 and CR-

Ag1 (figure 20). 
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Figure 20. Antibiofilm activity of CR-Agx materials against selected 
pathogenic bacteria. The bars represent the means ±s.d. (n =6). 
Statistically significant variations *** p<0.001 for CR-Ag5 and CR-Ag10 
versus CR-Ag0.5 and CR-Ag1. 

 

Kalishwaralal et al. [273] reported that anti-biofilm activity of biologically 

synthesized AgNPs against P. aeruginosa and S. epidermidis biofilms and 

found that 100 nM of AgNPs resulted in a 95% to 98% reduction in biofilm 

formation. Ansari et al. [324] demonstrated that the colonies were grown 

without AgNPs, the organisms appeared as dry crystalline black colonies, 

indicating the production of exopolysaccharides, which is the prerequisite 

for the formation of biofilm, whereas when the organisms were grown 

with AgNPs, the organisms did not survive. Thus, when the 
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exopolysaccharide synthesis is arrested, the organism cannot form 

biofilm. However, different signaling mechanisms could be involved in cell 

survival and biofilm formation. Indeed, Chaudhari et al. [325] reported 

that AgNPs derived from B. megaterium showed enhanced quorum 

quenching activity against S. aureus biofilm and prevention of biofilm 

formation, and they suggested that AgNPs might be involved in 

neutralizing these adhesive substances thus preventing biofilm formation. 

 

Effect of CR-Agx on biofilm viability 

To determine the effect of CR-Agxon biofilm viability, LDH activity, a 

reliable marker for determining cell status, was determined. The effects of 

CR-Agxon LDH activities of selected bacteria are shown in Figure 21.  
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Figure 21: Evaluation of CR-Agx on biofilm viability. Results are expressed 
as % LDH release by bacteria into the culture medium. The bars represent 
the means ±s.d. (n =6). Statistically significant variations *** p<0.001 for 
CR-Ag5 and CR-Ag10 versus CR-Ag0.5 and CR-Ag1. 

 

Our data demonstrated that both CR-Ag5 and CR-Ag10 resins were able to 

decrease the viability of the biofilm already after 24 h of incubation. 

 

Long Term Antibacterial Activity 

The long term bactericidal and antibiofilm properties of CR-Agx against the 

selected bacterial strains were determined by measuring the colony 

forming unitper ml after 22 days of incubation. 

As shown in figure 22, a significant bacteria inhibition after culture with 

CR-Ag5 and CR-Ag10 was observed compared to CR, CR-Ag0.5 and CR-Ag1 

resins.  
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Figure 22. Colony Forming Units per ml for all bacterial strain after 22 days 
of culture with resins.The bars represent the means ±s.d. (n = 12). 
Statistically significant variations §§§ p<0.001 for CR-Ag5 and CR-Ag10 
versus CR, CR-Ag0.5 and CR-Ag1. 

 

In addition, figure 23 shown the long term antibiofilm activity measured 

after 22 days of incubation in presence of selected biofilm. 
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Figure 23. Colony Forming Units per ml for all bacterial biofim after 22 
days of culture with resins.The bars represent the means ±s.d. (n = 12). 
Statistically significant variations §§§ p<0.001 for CR-Ag5 and CR-Ag10 
versus CR, CR-Ag0.5 and CR-Ag1. 
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This results confirmed that the slow and continuous release of Ag+ from 

the CR-Ag5 and CR-Ag10 is able to elicit both a good antibacterial and 

antibiofilm activity also after 22 days of incubation. 
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CONCLUSION 
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Secondary caries are caries of the tooth at the margin of existing 

restoration and are considered the most common reason for restoration 

failure. This pathology develops rapidly around and below a broken 

restoration, while is slower and more localized on the enamel along the 

cavosurface margin.  

In this thesis was discussed the formulation, preparation and 

characterization of novel LDH based restorative dental materials 

intercalated with silver nanoparticles. Such composites have no initial 

toxic Ag ‘burst’ effect and the levels of silver release remain relatively 

constant over time.  

In particular, such long-term controlled delivery of micromolar amounts of 

silver gives to the  modified-hydrotalcite restorative dental resin a strong 

antibacterial effect. Moreover, LDH-Ag are able to release silver ions when 

intraoral pH values drop below the critical pH of 5.5, counteracting the 

demineralization process of the tooth surface. 

LDH-Ag, then, thanks to its physic-chemical characteristics and its  

inherent biocompatibility, satisfy the clinical practical aspects of 

restorative dentistry and acts as an ideal filler able to reduce bacterial 

infiltration and secondary caries development.  

As future perspective, it should be interesting to continue this study with 

in vivo analysis to confirm the effect of silver release kinetic. 
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