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INTRODUCTION

The hydrology is the science that studies the water cycle and the physical

processes involved, such as: evaporation, condensation, precipitation, �ow,

underground �ow and in�ltration (see �gure 0.0.1).The hydrological cycle

represents one of the most important Earth's life cycle, i.e. the succession

of water �ow and circulation phenomena and the endless exchanges of wa-

ter mass between the atmosphere and the Earth's crust through surface wa-

ters, groundwater and organisms. Groundwater recharge, irrigation e�ciency,

runo�, evapotranspiration, transport of contaminants, vapors and solutes in

the vadose zone are examples of the di�erent and important issues associated

with a good understanding of soil water dynamics.

Among the many hydrodynamic processes, in�ltration and vertical �ow

problems have received more attention, both for empirical formulations and

for applications. In�ltration through unsaturated soils is de�ned as �the entry

of water into the soil surface and its subsequent vertical motion through the

soil� [Brutsaert, 2005 ][22]. This phenomenon occurs on the soil surface when

water �ows through the spaces between the particles that form the surface.

Once the water in�ltrates into the soil, its journey continues under the e�ect

of gravity and capillary forces that promotes the percolation between soil par-

ticles. The mathematical instrument modelling this process is the Richards

equation, cardinal equation in hydrology and starting point for many other

process, such as polluttant transport. When the in�ltration phase stops, i.e.
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Figure 0.0.1. Hydrological cycle

Water moves from one reservoir to another by way of processes and can be
stored in any one of the following reservoirs: atmosphere, oceans, lakes,

rivers, soils, glaciers, snow�elds, and groundwater.

no more water is applied to the surface and only the water previously in�l-

trated continues its journey in the ground, the redistribution phase begins.

The interchange of these two phenomena names in�ltration-redistribution cy-

cle. Mathematically speaking we only have a change of boundary conditions

in the model, see the section 2.1.

The study involves the knowledge of a lot of properties which are di�-

cult to calculate or modelling, since the strong soil heterogeneity. For this

reason, the determination of the space and time variability of certain in�l-

tration variables, hydraulic parameters, initial and boundary conditions, is

necessary in several applications in soil physics. The main applications are

in the �eld of protection and management of environmental resources and

on the hydrodynamic dispersion of contaminants in surface waters and soils,

since the rapid changes su�ered by the territory especially due to anthro-

pogenic forcing and a growing danger for both the quality and the availability

of water resources. The practices related, for example, to the storage of waste

and/or agro-zootechnical activities play a role of great importance such as

di�use sources of pollution of groundwater and surface water. The only way
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to control and remove at the origin the risk related to the huge injections of

synthetic or natural chemical compounds is an hard territorial management.

Nowadays, the theoretical and applied research in the �eld of hydrology

is oriented towards the development of techniques for the monitoring of wa-

ter and organic, inorganic and microbiological pollutant transport and, at

the same time, the development of speci�c calculation, mathematical and

statistical tools for the prediction of phenomena. From the theoretical (and

also experimental) point of view, we must face insurmountable di�culties to

give an accurate and detailed de�nition of the transport properties in natural

porous media.

With these premises, the thesis aims to evaluate the theoretical-applicative

aspects related to the monitoring (i.e. the description of some aspects of

resources at the current state or during a space-time evolution) and forecasting

of soil water dynamics at practical interest scale. The work is focused on

the development of models for the description of water �ow in homogeneous

and heterogeneous soils and the resolution of them. The spatial variations

of the hydraulic properties of the soil and of the solute concentration are a

consequence of soil heterogeneity. Therefore, considering these variations as

a consequence of a limited knowledge of the porous medium, methods will be

developed that allow to estimate the main statistical indices (mean, variance

and covariance) of the transport process variables, namely: water content,

pressure head, hydraulic conductivity and solute concentration. The validity

of the predictions of mathematical models is linked not only to the correct

schematisation adopted to describe the physical phenomena involved in the

processes during the study, but also by their validation with reference to a

typical case of study.

The main elements of innovation is the development of modern methods

for monitoring the processes of soils, related to agro-zootechnical practices

and to the use of soils as a waste disposal area, to be used at di�erent scales

for prediction aims. Further speci�c elements of innovation are tools (friendly-

user softwares) to progress quickly in decontamination strategies for polluted

sites and management or protection of groundwater.

Speci�cally, the thesis is composed of four chapters.
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In the chapter 1, the general problem is introduced and all the variables

involved are shortly described .

In the chapter 2, the main mathematical instruments, studied in depth and

used during the work, are exposed, in order to give mathematical theoretical

basis that allows the readers to better understand the chapter 3. In particular:

PDEs equations, numerical and stochastic methods.

In the chapter 3, the main results are shown. The chapter is a sort of a

dissertation of the papers published or submitted during the Ph.D course.

In the chapter 4, the conclusions are presented with some suggestions for

future works.
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CHAPTER 1

GENERAL PROBLEM AND STATE OF THE ART

Soil constitutes the interface between atmosphere and lithosphere. As a

consequence of the �uxes of matter and energy between these two spheres and

a large number of interacting physical, chemical and biological processes, the

soil evolves into an exceedingly complex structure whose properties vary in

space and time. Even if we abstract the system to a few important aspects

it cannot still be described quantitatively, and consequently, all knowledge

deduced from abstract models eventually must be veri�ed by experiments.

From a geological point of view we can assume a pro�le similar to that

shown in �gure 1.0.1-D. The �rst zone encountered is the soil zone. This

soil has developed from parent material through biological, �gure1.0.1-B, and

other factors of weathering. At greater depths the soil merges with additional

unconsolidated material and then, eventually, bedrock is encountered. The

dimensions of these various zones are highly variable. Soil is a precious asset

for human being that need a very long time to form as a very short time to be

destroyed. It is a limited and hardly renewable resource and preserve, protect

and defend it is one of the main human task of this century.

The subsurface can also be described in terms of water regimes that ex-

ist. In the most simple model, we reduce soil to a system that consist of

three phases: solid soil matrix, liquid soil water, and gaseous soil air [Sposito,

1989 ][203]. We assume that the solid soil matrix is a rigid porous structure

(porous medium or porous material), presumed to be invariant in time. Soil

1



1. GENERAL PROBLEM AND STATE OF THE ART 2

Figure 1.0.1. Soil formation

Soil starts to form when, due to atmospheric agents, the mother rocks
disintegrate (A) and life forms can grow on the mineral thus formed (B).
Then, organic residues of plants and animals, under the action of bacteria

(C), create a surface layer called humus (D).

water consists of water with some dissolved chemicals and soil air is mostly

composed of molecules with a negligible electrical �eld, so soil air �lls all the

available space. From an hydrological point of view the pro�le consists of the

vadose zone and the phreatic zone, see �gure 1.0.2. The system is unsatu-

rated above the capillary fringe, meaning that some of the pore space is �lled

with both air and water. The capillary fringe is the subsurface layer in which

groundwater seeps up from a water table by capillary action to �ll pores and

its extent is dependent on the porous material. Generally, it can extends a

few centimeters for coarse material, or perhaps a meter for �ne materials.

Often in our study it can be neglected as its thickness is signi�cant only when

the water table largely �uctuates in the time [Li and Yeh, 1998 ][115], or

the water table is shallow [Gillham, 1984 ][76]. The water table is the upper

surface of the zone of saturation. The zone of saturation is where the pores

and fractures of the ground are saturated with water. The water at the water

table is at the atmospheric pressure; above the water table the pressure is less

than atmospheric pressure and below it is greater.

In this thesis, for expediency, �soil� will mean the porous medium com-

posed of solids with air and water (and/or other liquids) �lling the inner

spaces situated between the surface and bedrock. Soils are classi�ed by the

particles size of the media, see �gure 1.0.3, and they can be distinguished

in homogenous soils and heterogeneous soils, depending on whether the hy-

draulic properties are the same at every point in space. As soils are seldom



1. GENERAL PROBLEM AND STATE OF THE ART 3

Figure 1.0.2. The subsurface water regimes

The vertical pro�le of the Earth's subsurface is divided into vadose zone
(root zone, unsaturated zone and capillary fringe) and phreatic zone (water

table and saturated zone).

homogenous over the past three decades a great deal of e�ort has been ex-

pended on the study of heterogeneity of soil properties, in particular the hy-

draulic conductivity (see the de�nition 1.0.10). Citing Freeze �heterogeneity

is in the geology, whereas uncertainty is in the mind of the analyst� [Freeze

et al., 1990 ][143]. The soils, as a result of their genesis, can exhibit layers

that are mainly parallel to the surface and, generally, treated as determinis-

tic variations [Smith, 2002 ][199]; but in a more general case variations are

random and this leads to two important implications: di�erent velocities in

di�erent parts of the medium and uncertainty in predictions. First is a feature

of the physico-chemical system, second is a consequence of our limited knowl-

edge of the system [Selroos, 1996 ][171]. Commonly, simulations of the e�ect

of a randomly varying parameter in a system are done using Monte Carlo

sampling, in which a random number generator produces a large number of

samples of a parameter of interest with a desired statistical distribution. This

set of parameter values may be used in a system to generate an output for

each sample parameter value, so that an ensemble average behavior can be

obtained [Sharma et al., 1980; Smith and Hebbert, 1979 ][126, 200]. Very
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Figure 1.0.3. Particle-size classi�cation

The canonical de�nition of sediment grain sizes as de�ned by geologist
Chester K. Wentworth [Wentworth, 1922 ].[230]

often some assumptions, as ergodicity and stationarity, are needed but the

reader is referred to the section 2.3.

Two densities are of concern regarding the physical properties of soil solids.

The particle density, ρp, given by

(1.0.1) ρp =
Mass of solids

V olume of solids
,

and the bulk density ρb:

(1.0.2) ρb =
Mass of solids

V olume of solids+ Pore space
,

measured in [kgm−3] .
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In any �xed volume, the fraction of space, i.e. the pore space, available

to the water/air is assumed to be ω, which is called the total porosity of the

medium and de�ned as

(1.0.3) ω = 1− ρb
ρp

.

Clearly, 0 < ω < 1 (the porosity would be either zero or one if we looked

on a small scale), as ρb < ρp . The highest values tend to occur for materials

in which the particle density is high or in which have a small percentage of

pore space (e.g. coarse sand); conversely, smaller values tend to occur for

materials with low particle density, as in organic soils and some volcanic soils,

or an high percentage of pore space (e.g. clay). In general, the porosity can

vary with position, or even pressure, but we will assume ω to be constant

throughout the medium. When we say the porosity is constant, that means

we are observing from a distance where there is uniformity in the porosity and

the representative volume element is on an order where averages of percentage

pore space are constant over the entire medium [Juri et al, 1991 ][222].

Maybe, the most important variable involved in the soil water physics

is the water content or soil moisture, the dimensionless quantity of water

contained in the soil. The most elementary measurement technique, for it,

is by weighing the sample, followed by oven drying and weighing once again.

But there are also several geophysical methods available that can approximate

in situ soil water content [Juri et al, 1991 ][222]. Water content can be given

on mass (gravimetric) or a volumetric basis, respectively:

(1.0.4) ϑm =
Mass of water

Mass of solids
,

(1.0.5) ϑ =
V olume of water

Total volume
;

two de�nitions can be related through the expression:

(1.0.6) ϑ =
ρb
ρH2O

ϑm ,
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where ρH2O is the water density. In this thesis we will often prefer the 1.0.5

despite the 1.0.4, but the majority of our applications will probably be better

served by S, the e�ective saturation or reduced water content or normalized

water content, de�ned by:

(1.0.7) S =
ϑ− ϑr
ϑs − ϑr

,

where ϑs is the volumetric water content at saturation and ϑr is the residual

water content. The residual water content is somewhat arbitrarily de�ned as

the water content at which the corresponding hydraulic conductivity (which

we will discuss later, see the equation 1.0.10) is appreciably zero, but very

often the equation 1.0.7 is used with ϑr = 0. The e�ective saturation was

de�ned, �rst, by Van Genuchten [Van Genuchten, 1980 ][218] and it is also

called normalized water content as it varies between zero and one.

The �ow of both surface water and groundwater is driven by di�erences

in potential energy. In the case of surface water, �ow occurs in response to

di�erences in gravitational potential energy, due to elevation di�erences, in

other words, and unsurprisingly, water �ows downhill, from high potential en-

ergy to low potential energy. In groundwater systems, things are a bit more

interesting. Unlike surface water, which is in contact with the atmosphere

and therefore rarely under pressure, water in groundwater systems is isolated

from the land surface, with the consequence that the water can also have

potential energy associated with pressure. In extreme cases, water in con-

�ned aquifers may be under su�cient pressure to drive �ow upward, against

gravity. Note that we restrict ourselves to the simple case where the kinetic

energy may be neglected with respect to the potential energy. Kinetic energy

depends both on water �ow (in a macroscopic scale) and on thermal motion

of molecules (microscopic scale). We will thus be restricted to consider suf-

�ciently slow �ow with su�ciently small temperature gradients. To de�ne

the �ow direction, we need to account for the two types of potential energy:

the potential energy contained by the water by virtue of its elevation above

a reference datum (gravitational potential energy) and the additional energy

contributed by pressure (tensiometer pressure potential energy). This last

potential encompasses the e�ects of surface adsorption, surface tension, air
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pressure, hydrostatic pressure and many others. An important special case

is a rigid, unsaturated soil where the air pressure is constant everywhere and

equal to the atmospheric pressure. this energy is associated with a change in

the curvature of the water-air interface and it is negative for unsaturated soil.

In this case the potential is named matric potential. Generally, the potential

energy of the soil water may be de�ned by the work that is required for mov-

ing an in�nitesimal volume of water from a reference state into the desired

state within the soil. Note that there is no need to specify which is the refer-

ence state as the gradient of energy, which is the physically relevant quantity,

is independent of it. Actually, in accordance with the recommendations of

the International Soil Science Society [Bolt, 1976 ][18], we distinguish three

partial potentials. In addition to those already exposed, the osmotic potential

exists, i.e. a measure of the potential of water to move between regions of

di�ering concentrations. The sum of these three potential is called soil water

potential, a concept having a long and well documented history in soil physics

[Corey and Klute, 1985; Hillel, 1998 ; Jury et al., 1991 ].[39, 89, 222]

In �uid dynamics, head is a concept that relates the energy in an incom-

pressible �uid to the height of an equivalent static column of that �uid. From

Bernoulli's Principle [Hydrodynamica, Britannica Encyclopedia][1], the total

energy at a given point in a �uid is the energy associated with the movement

of the �uid, plus energy from static pressure in the �uid, plus energy from the

height of the �uid relative to an arbitrary datum (often the sea level). Head is

expressed in units of height and it is obtained dividing the potential energy by

the speci�c weight. Heads of our interest are: the elevation head (z), pressure

head or capillary suction (ψ), and the hydraulic head (h). The �rst two are

the heads, respectively, derived from the potential energies described above

and have the dimension of a length [m]. Now, we can give another de�nition

of the water table in terms of pressure head. The water table is de�ned as

the �surface on which ψ = 0�; below ψ > 0 (phreatic zone) and above ψ < 0

(vadose zone). The hydraulic head can be expressed as:

(1.0.8) h = ψ + z ,

if the z-axis is positive upward oriented, otherwise:
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Figure 1.0.4. Hydraulic head

Hydraulic head measurements are essential pieces of information that are
required for characterizing groundwater �ow systems.

(1.0.9) h = ψ − z ;

and the measurement instrument is the piezometer (see �gure 1.0.4). A

piezometer is a hollow tube, or pipe, drilled or forced into a pro�le to a speci�c

depth. Water rises inside the tube to a level corresponding to the pressure

head at the terminus. The level to which water rises in the piezometer, with

reference to a datum is the hydraulic head [Yolcubal et al., 2004 ][94]. The

dimension is a length too.

The distribution of hydraulic head through an aquifer determines where

groundwater will �ow. In a hydrostatic example, where the hydraulic head is

constant, there is no �ow. However, if there is a di�erence in hydraulic head

from the top to bottom due to draining from the bottom, the water will �ow

downward, due to the di�erence in head, also called the hydraulic gradient

(dh/dz). Observe that the head of groundwater at the water table is equal to

the elevation of the water table relative to an arbitrarily chosen reference ele-

vation as the water pressure at such locations is equal to atmospheric pressure

(and for the restriction about the kinetic energy).
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Hydraulic conductivity, symbolically represented as K, is another funda-

mental property of soils that describes the ease with a �uid (usually water)

can move through pore spaces or fractures. In unsaturated soils K depends

on S (or that is the same on the water content ϑ):

(1.0.10) K(S) = KSKr(S) ,

where Kr(S) names relative hydraulic conductivity; while in saturated soils

K can regarded as a constant, K = KS [Bear, 1972 ].[13] This yields for

homogenous soils, while for heterogeneous soils, generally, KS depends on

depth, i.e. KS = KS (z). The hydraulic conductivity is measured in [ms−1].

Measuring K for saturated soils is not an hard task like in unsaturated

soils. The hydraulic conductivity can be computed both with an empirical

approach by which it is correlated to soil properties like pore and particle size,

soil texture and with experimental approach by which the hydraulic conduc-

tivity is determined from hydraulic experiments using Darcy's law (that it will

be discussed later) [van Bavel and Kirkham, 1948 ][216]. As a consequence,

various methods for estimating K (S) have been explored. The methods may

be grouped into three categories: (i) using purely statistical regression analy-

sis where K is related to soil properties like bulk density, fraction of silt and

clay, and organic matter [Wosten and van Genuchten, 1988 ][236]; (ii) assum-

ing a simpli�ed geometrical structure for the pore space, the parameters of the

soil are measured and used to calculate K [Mualem, 1976; van Genuchten,

1980 ][218]; (iii) K is deduced from monitoring the water content and the

water potential as a function of time and space. This method has been used

to estimate the spatial variations of the saturated hydraulic conductivity in

aquifers [Yeh, 1986 ][239] and it is the current state of the art method for

measuring the hydraulic functions in the laboratory [Kool et al.,1985; Parker

et al., 1985; Toorman et al., 1992 ][3, 102, 101] and in the �eld [Green et al.,

1986 ][146]. Some of the methods used attempt to resolve the functional form

of the hydraulic conductivity, they are called the �inverse methods� [Mahbod

et al., 2010;van Dam et al., 1992 ][122, 99]; other, called �parameter esti-

mations�, require a parametric model for the hydraulic functions yielding the
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values of the parameters which lead to an optimal agreement with the data

[Mualem, 1976; van Genuchten, 1980 ][127, 217].

The relationship between the water content ϑ (or S) and the pressure

head ψ, ϑ (ψ), has a crucial role for modeling the movement of water in soils,

and it is called �soil water characteristic� or �water retention curve� . The

trend of the curve o�ers an instant overview of the hydrological properties of

a soil. In general, soils with a high reservoir capacity, capable of receiving

large quantities of water (e.g. soils with a rich in colloids, such as clay soils,

or in organic matter), have water retention curves expanded in width, while

coarse soils or poor in colloids (e.g. sandy or stony soils) have tight water

characteristics. The width of the curve is related with the total porosity of

the soil [Tassinari, 1976; Belsito, 1988 ][210, 16]. All possible curves are

limited by the desorption curve, ϑd (ψ), and the adsorption curve, ϑa (ψ), i.e.

the two limit cases. Desorption occurs when water is slowly and monotonically

removed from an initially water saturated soil until the soil is air saturated.

After that ψ get a certain value, called air-entry value, the air can enter the

porous medium, the water content decreases monotonically and the negative

pressure head increases, with continuous stretches and discontinuous jumps

due to cavities [Feder, 1988 ][63]. The adsorption curve describes the reverse

process. Several methods exist to build the water retention curve for a given

soil on a logarithmic scale or on a linear scale. Experimentally, a hanging

water column, also called �Haines� apparatus is used [Dane and Hopmans,

2002 ][53]; empirically, the suction method [Haines, 1930; Klute, 1986b][108,

83] and the pressure method [Richards and Fireman, 1943 ][148] are the most

used, combined too. Recently, a pore space representation, called angular pore

space model, was proposed [Tuller et al., 1999; Or and Tuller, 1999,2000;

Tuller and Or, 2001 ][121, 133, 134, 214], which o�ers a more realistic

representation of natural pore space and leads to natural relationships for the

interfacial areas between phases and to natural expressions for unsaturated

hydraulic conductivity.

Note that, through the water retention curve, the hydraulic conductivity

can be done in terms of ψ just like S. Several algebraic forms have been

used to describe soil water characteristics. In the table 1.0.1, we present some

examples of water retention curves and expressions ofK/KS. Unless explicitly
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speci�ed, the relations which will be taken in consideration in this thesis is

the number 6 of the table 1.0.1.

There are many other forms and variations as many scientists have focused

on the topic [Campbell and Shiozawa, 1992; Rossi and Nimmo, 1994; Fayer

and Simmons, 1995; Kosugi, 1996 ][26, 156, 62, 109].

Important to mention a second application of the soil water characteristics

in the rough ecological assessment of a site where typical variables of interest

are the storage capacity of the soil and the availability of the stored water for

plants.

To study the �ow of soil water, another important clari�cation is needed.

We are going to talk about stationary systems or nonstationary systems.

In a stationary system all temporal changes are negligible, so, if the sys-

tem is described by the function φ (t, ...), the steady-state condition implies

∂tφ (t, ...) = 0. As a consequence, the state variables of the soil are also con-

stant in time. The soil thus appears to be unchanging with the exception of

the water �owing trough it. This is denoted as a state of dynamic equilib-

rium. Conversely, the non-stationary systems are those where the soil water

�ux varies in space and time, and therefore the variables involved too. We

will �nd that the exact description is rather di�cult and that the arising

equations can only be solved analytically for highly simpli�ed cases. For this

reasons, even if the �rst is a rarer case, it is also important to study to better

understand the conditions and get solutions when it is not possible in the

other case. In fact, the steady case is the large-time asymptotic condition for

most in�ltration boundary conditions found at the soil surface. More realistic

systems are studied using numerical simulations.

The primary �ow equation to be presented, which is a starting point to

examine the �uid dynamics, both in saturated and unsaturated porous media,

is the Darcy's law, formulated as an empirical equation in the 19th century.

Darcy's law combined with conservation mass gives as a result a continuity

equation that can has several di�erent forms and, generally, for unsaturated

soils, it is called Richards equation. Darcy's law states that �ux, or �ow per

unit area, q, is proportional to the gradient of the hydraulic head and the

hydraulic conductivity:
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Table 1.0.1. Hydraulic functional relationships most used

α is the inverse capillary length scale, and, tipically 1/α varies from a few
centimeters in sandy soils to a few meters in clay soils;
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(1.0.11) q = −Kgradh ;

q is also called Darcian velocity and, obviously, has dimension [ms−1]. Ac-

tually, the equation 1.0.12, today, is called Buckingham-Darcy law [Sposito,

1986 ][202], since Buckingham was the �rst to postulate the Darcy's law in

the more general form in which the unsaturated hydraulic conductivity de-

pends on water content [Buckingham, 1907 ][23]. In the contest of in�ltration

calculations, i.e. in a one-dimensional vertical �ow, if we adopt the convention

of measuring z (a convention holding also forward, with the water table at

z = 0), the measure of distance in the direction of �ow, positive downwards

and remembering the de�nition 1.0.9 we can rede�ne the �ux as:

(1.0.12) qz = K

(
1− dψ

dz

)
.

Note that Darcy's law is valid only for laminar �ow (or streamline �ow),

i.e. when a �uid �ows in parallel layers, with no disruption between the layers.

Laminar �ow generally occurs when the �uid is moving slowly or the �uid is

very viscous [Rogers, 1992 ][151]. The dimensionless Reynolds number, Re, is

an important parameter that describe whether fully developed �ow conditions

lead to laminar (Re < 1) or turbulent �ow (Re > 1) and it depends on the

�ux qz [Bear, 1972 ][13].

Actually, the Darcian velocity is a �ctitious velocity since it assumes that

the �ow occurs in the entire cross-section of the soil sample. In fact, within

the column, the water only �ows through the pore space and thus has the

higher average vertical velocity :

(1.0.13) v =
qz
ϑ
,

also called convective velocity, advective velocity and pore water velocity.

For fully saturated conditions ϑ can be replaced by the porosity ω [Warrick,

2003 ][228].

The mathematical descriptions of soil water dynamics will present a set of

simplifying assumptions. Perhaps the most important assumption is that the
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movement of water into relatively dry soil can be described without explicit

treatment of the �ow of air. In�ltration or absorption involves the replacement

by water of air in the soil pores. This is not necessarily the case when rainfall

moves into the surface of a soil. Air can compress and cause a reduction

in the pressure gradient across a wetting "front" of water entering a soil,

and it also has a viscous resistance to movement through the soil ahead of

entering water. However, the hydraulic potential gradient required to move air

against the resistance of the soil pore structure is often quite small compared

to the capillary pressure gradient. Nevertheless, air compression, in some

cases, will modify to some extent the results shown here. The vapor-based

movement due to thermal gradients, the e�ects of soil swelling and the soil

water hysteresis, mentioned above, are also ignored. The general �ow equation

for water in unsaturated soil, the Richards equation, is obtained from the

Darcy-Buckingham equation, 1.0.12, and the continuity equation:

(1.0.14)
∂ϑ

∂t
+
∂q

∂z
= j ,

where j is an external gain/loss rate such as root water use, which will be left

at zero for the present purposes. The equation 1.0.14 combined with 1.0.12

leads to:

(1.0.15)
∂ϑ

∂t
+

∂

∂z

[
K (ϑ)

(
1− ∂ψ

∂z

)]
= 0 ,

an highly non-linear second order partial di�erential equation with two depen-

dent variables and parabolic in the major of cases (see section 2.1)[Richards,

1931 ][147], reducing to an ordinary di�erential equation for 1-D steady-state

case. The equation has two terms: one expressing the contribution of the suc-

tion gradient and the other originated from the gravitational component of

the total potential; whether the one or the other term predominates depends

on initial and boundary conditions and on the stage of the process consid-

ered [Hillel, 1980 ][88]. Generally, if ∂ψ
∂z
� 1, capillary suction predominates,

otherwise, ∂ψ
∂z
� 1, gravity is more relevant and if considered zero this leads

to a simpler quasi-linear equation, instead of a nonlinear one. The number
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Equation Basis

1.
∂ϑ
∂t + ∂K

∂z −
∂ψ
∂z

∂K
∂z −K

∂2ψ
∂z2 = 0 mixed

2.
∂ϑ
∂t − ∂

∂z

(
D∂ϑ

∂z

)
+ ∂K

∂z = 0 ϑ

3. C ∂ψ
∂t − ∂

∂z

(
K ∂ψ

∂z

)
+ ∂K

∂z = 0 ψ

4.
∂S
∂t − ∂

∂z

(
D∂S

∂z

)
+ ∂K

∂z = 0 S

Table 1.0.2. Some Richards equation formulations

• The equation 1 is the extended form of the equation 1.0.15;
• the equation 2 is the �ϑ− based� equation where D is the di�usivity
and D (ϑ) ≡ K dψ

dϑ
, having dimension [m2s−1];

• the equation 3 is the �ψ − based� equation where C is the speci�c
soil water capacity and C (ψ) ≡ dϑ

dψ
, having dimension [m−1];

• the equation 4 is the formulation in S, linearly obtained from the 1
using the de�nition 1.0.7.

of dependent variables may be reduced from two to one providing a soil wa-

ter characteristic relationship, in this way we may eliminate ψ and have a

�ϑ − based� equation or eliminate ϑ and have a �ψ − based� equation. The

table 1.0.2 shows some di�erent forms of Richards equation adopted in this

thesis [Celia, 1990 ][29].

With speci�c description of soil characteristics, analytical solutions of the

local in�ltration can be found. Some of them are approximations, other are

exact solutions. In both of cases they cannot provide the pro�le of water

content without large simpli�cations of the soil description: most of them

assume that di�usivity is constant. Furthermore, these solutions have restric-

tive conditions of application: initially dry pro�le, constant �ux at the soil

surface, for instance. To deal with natural conditions, numerical tools are

needed to solve the water �ow movements [Varado et al., 2006][131]. How-

ever, analytical approaches for unsaturated �ow are attractive and helpful

for better understanding the physics of unsaturated �ow in porous media for

many reasons. They can be also used as screening tools for quick evalua-

tions and for �eld cases where numerical simulations are not feasible. More-

over they may considered as references and benchmarks during validation
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of the numerical scheme processes. Among the existing analytical solutions

are those for steady-state �ow [Warrick, 1988; Salvucci, 1993; Zhu and Mo-

hanty, 2002; Sadeghi et al., 2012; Hayek 2015 ][227, 170, 243, 120, 86]

and others for transient �ow [Zimmerman and Bodvarsson, 1989; Serrano,

1998, 2004; Hayek, 2014 ][244, 172, 173, 85]. Analytical solutions for the

transient Richards equation are restricted to speci�c soil water retention char-

acteristics and hydraulic conductivity functions. These include those based

on the exponential model [Gardner, 1958; Russo, 1988 ][73, 160] and those

based on rational forms of the soil hydraulic conductivity and moisture re-

tention functions [Rogers et al., 1983; Broadbridge and White, 1987,1988;

White and Broadbridge, 1988; Sander et al., 1988; Triadis and Broadbridge,

2010; Basha, 2011 ][24, 19, 20, 231, 212, 10]. Linearization of the Richards

equation simplify the analytical modeling and has been used in numerous

studies [Basha, 1999; Green and Ampt, 1911; Philip, 1957, 1969; Warrick,

1975; Warrick et al. 1985; Chen et al., 2001, 2003; Wang and Dooge, 1994;

Menziani et al., 2007 ][9, 81, 137, 138, 226, 7, 59, 58, 224, 118]. Solu-

tions of Richards equation where the Brooks and Corey model [Brooks and

Corey, 1964 ][21] and the Van Genuchten model [Van Genuchten, 1980 ][218]

are applied, the most used models for water retention characteristic, deserve

particular mention [Nasseri et al., 2012; Hayek, 2016; Caputo and Stepa-

nyants, 2008; Ross and Perlange, 1994; Witelski, 1997, 2005; Zlotnik et al.,

2007 ][119, 87, 27, 155, 234, 235, 215]. Due to this nonlinearity the sim-

plest way to get a solution is by a numerical approach. As a result, scientists

in the past four decades have proposed several numerical methods for model-

ing unsaturated �ow and in�ltration problems [Haverkamp et al., 1977; Van

Genuchten, 1982; Celia et al., 1990; Huang et al., 1994; Pan et al., 1996;

Kavetski et al., 2002; Farthing et al., 2003; Bause and Knabner, 2004; Miller

et al., 2006; D' Haese et al., 2007; Li et al., 2007; Chen and Ren, 2008; Fahs

et al., 2009; Casulli and Zanolli, 2010; Juncu et al., 2012; Ross, 1990 ][150,

75, 29, 110, 111, 44, 128, 12, 41, 32, 82, 30, 117, 28, 72, 154].

However, nowadays, Richards equation solution strategy is still a subject

to research, also because, often, it constitutes the starting point for the study

of solute transport in the groundwater. Solute transport is a problem of great

importance in environmental science to understand how chemical or biological
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tracers and a broad range of pollutants are transported through a porous

medium. Pollution of the subsurface is often considered to be either point

source pollution or di�use source pollution. Point source pollution covers a

limited area, and is often caused by accidental or illegal spills. Di�use source

pollution covers a large area and is in general caused by large-scale application

of compounds as fertilizer, pesticides or atmospheric deposition at the soil

surface. Pollution is not necessarily man induced but may be due to geological

or geohydrological causes, e.g., pollution whit arsenic or salt. A distinction can

be made among the polluting species that will be considered: dissolved and

immiscible, conservative and reactive. Dissolved pollutants or aqueous phase

pollutants will spread with groundwater due to groundwater �ow, di�usion

and dispersion. Immiscible pollutants will spread as a separate phase (non-

aqueous phase liquids, NAPL). Conservative pollutants are those that do not

react with the solid soil material or with other pollutants, and they will not

be degraded by biological activity. Reactive solutes may enter or leave the

water phase through adsorption or desorption, chemical reactions, dissolution

or precipitation and biodegradation. For modeling such processes, the �rst

step is to de�ne the �ow regime. If a mathematical model is developed,

the approach often includes Richards equation for water �ow, followed by a

speci�c model for solute transport.



CHAPTER 2

MATERIALS AND METHODS

Soil physics was born as an empirical science and it has remained so for

the most part to the present, due to the highly nonlinear nature and ran-

dom components of important processes involved. As scienti�c discipline it

is rather young with its roots barely reaching the �rst half of last century.

Even if soil physics does not have the elegance and the formalism just like

the old sciences, it is able to provide quantitative answers to various complex

problems. Soil physics is a collection of often disparate theories, experiences,

hypothesis and beliefs. The role of a soil physics scientist is to re�ects the

character of a such evolving discipline and to introduce and illustrate the tools

which are currently used [Roth, 1996 ][157]. For this purpose, this chapter is

dedicated to the main mathematical tools that have been studied in depth and

used to obtain the results presented in the next chapter. The treatment does

not claim to be extremely rigorous, but only to provide the necessary basis

for a �uid reading of the rest of the thesis also for those who are specialist in

other �elds of study.

2.1. Partial di�erential equations

Almost always, physical models representing natural phenomena are de-

scribed by a partial di�erential equation (PDE) or a system of PDEs. A

partial di�erential equation is an equation linking an unknown function de-

pending on two (or more) independent variables, usually space and time, to

18
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its derivatives. If second order derivatives appear in the equation, the last

will be a second order PDE; otherwise a �rst order PDE, since higher orders

are very rare. The general form of a second order PDE (in two variables) is:

(2.1.1) F
(
D2u (x, y) , Du (x, y) , u (x, y) , x, y

)
= 0 ;

expanding and writing only the maximum order terms:

(2.1.2) A (x, y)uxx + 2B (x, y)uxy + C (x, y)uyy + ... = 0 ,

where uxy = uyx is assumpted. Depending on whether the terms are linear or

not, the equation is linear or nonlinear, respectively. They can be classi�ed

according to the sign of the discriminant ∆ = b2 − ac in the following way:

• hyperbolic for ∆ > 0,

• elliptic for ∆ < 0,

• parabolic for ∆ = 0.

Since many problems in subsurface transport give rise to partial di�erential

equations that belong to the class of parabolic equations, we will now focus

on the PDEs of this type where the variables will be the time t and a spacial

variable x, or z if the variable represents the depth. For a well-posed problem,

initial and boundary conditions must be clear. By specifying particular initial

conditions and boundary conditions, we try to encode mathematically the

physical conditions, constraints, and external in�uences which are present in

a particular situation. For example, in the transport, they constitutes answers

about background conditions as what happens along the soil surface, lower

root zone, water table and so on. For transient problems, the boundaries are

with respect to the time domain as well as spatial boundaries; for steady-

state problems, boundaries are only spatial (actually the equation degenerate

in an ordinary di�erential equation, ODE, easier to treat). A solution to the

di�erential equation, if it is unique and satis�es initial/boundary conditions,

constitutes a prediction about what will occur under these physical conditions.

Thus, the question of uniqueness of solution is extremely important in the

general theory. It needs that the governing equations and the auxiliary (initial
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and boundary) conditions are mathematically well-posed, and therefore that

the following three conditions are met:

(1) the solution exists,

(2) the solution is unique,

(3) the solution depends continuously on the data.

The existence does not usually create any di�culty, just like in our case. The

usual cause of non-uniqueness is a failure to properly match the auxiliary

conditions to the type of governing PDE. For linear problems, powerful and

well-known theorems are available to guarantee the points 1 and 2, but for

nonlinear conditions the basic existence and uniqueness properties are less

well understood. In this case, experience, imagination and e�ort in de�ning

the problem are important. The third criterion above requires that a small

change in the initial or boundary conditions should cause only a small change

in the solution. If the third condition is not met, the errors in the data will

propagate causing the solution to blow up [Pivato, 2010 ]. [140]

The simplest example and prototype of a parabolic equation is the di�u-

sion equation:

(2.1.3) ut = Duzz ,

in heat transfer it is called the heat equation, and, in hydrogeology, it is some-

times called the dispersion equation. It models, for example, the molecular

di�usion of a chemical contaminant of concentration u = u(z, t), dissolved

in an immobile liquid. The positive constant D, having dimensions [L2T−1],

is the di�usion coe�cient, which measures the ability of the contaminant to

di�use through the liquid. The simplest solutions of (2.1.3) are plane wave

solutions of the form:

(2.1.4) u = exp [i(kz + wt)] ,

where k is the wave number and w is the frequency. Substituting this form

into (2.1.3), given the dispersion relation w = ik2D, we obtain solutions of

the form:
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(2.1.5) u (z, t) = exp
(
−k2Dt

)
exp (ikz) .

Finally, superimposing all of the plane wave solutions over all wave num-

bers, i.e. :

+∞ˆ

−∞

exp
(
−k2Dt

)
exp (ikz) dk =

1√
4πDt

exp
(
−z2/4Dt

)
,

we get the most important solution called the fundamental solution:

(2.1.6) u (z, t) =
1√

4πDt
exp

(
−z2/4Dt

)
.

Note that the right-side of this expression is just the Fourier transform of

the Gaussian function y = exp (−k2Dt). The fundamental solution (2.1.6) is

the concentration that arises from an initial, unit contaminant source localized

at the origin in a one-dimensional domain. The time cross sections, or time

snapshots, of the concentration for di�erent times, have the form of a bell-

shaped curve, as the �gure 2.1.1 shows. Since we think of di�usion in terms

of the random motion and collisions of molecules, it is not surprising that the

fundamental solution is a normal probability density.

If we are interested to solve the Cauchy problem:

(2.1.7)

ut = Duzz

u (z, 0) = φ (z) z ∈ R, t > 0
,

the solution is the convolution (over z) of the fundamental solution, that we

indicate here with g (z, t), and the initial condition:

(2.1.8) u (z, t) = g (z, t) ∗ φ (z) =

+∞ˆ

−∞

g (z − ξ, t)φ (ξ) dξ ;

in fact, in applied analysis, the convolution operation is usually regarded as a

solution operator that maps the initial pro�le into the solution pro�le at time

t . This result will be useful in many cases. In many contaminant transport
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Figure 2.1.1. Fundamental solution of di�usive equation

Time pro�les of the fundamental solution showing the di�usion of a unit
amount of contaminant released initially at z = 0.

problems the porous domain is semi-bounded. Let us consider this example

of Cauchy-Dirichlet problem, or the initial-boundary value problem, for the

di�usion equation on a semi-in�nite domain:

(2.1.9)


ut = Duzz

u (z, 0) = φ (z) z ∈ R, t > 0

u (0, t) = 0

,

where t > 0 and z > 0 . To solve the problem, it can be used the method

of re�ection or the Laplace transform method. Actually, many problems on

semi-in�nite domains can also be solved by Laplace transform method, com-

monly used in hydrogeology, although, the inversion problem back from the

transform domain is often impossible to perform analytically, and therefore

numerical methods of inversion are often required [Logan, 2001 ]. [116]

The third condition of the system 2.1.9 represents the Dirichlet boundary

condition, having the general form:
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(2.1.10)

u (a, t) = α1 (t)

u (b, t) = α2 (t)
,

where a and b are the eventually domain extremes. Another type of bound-

ary condition to mention is the Neumann condition, which gives information

about the derivative:

(2.1.11)

u′ (a, t) = α1 (t)

u′ (b, t) = α2 (t)
.

For instance, in water �ow problems, Dirichlet conditions are conditions

where the variable ϑ, S, ψ, are speci�ed; Neumann conditions express condi-

tions about vertical or horizontal �ow (the �ux q), or surface evaporation.

There is no general theory known concerning the solvability of all par-

tial di�erential equations, given the rich variety of physical, geometric and

probabilistic phenomena which can be modeled by PDEs. Instead, research

focuses on various particular PDEs that are important for applications, with

the hope of giving strategy clues for other equations. So by solving a par-

tial di�erential equation in the classical sense we mean if possible to write

down a formula for a classical solution [Evans, 1998 ][57]. Some analytical

methods are: characteristic method, spectral method, calculus of variations

[Salsa, 2010 ][169]. This is almost never feasible and it need to shrink to look

for approximate solutions, analytical (e.g. through perturbation methods) or

numerical. Analytical approximation methods often provide extremely useful

information concerning the character of the solution for critical values of the

dependent variables but tend to be more di�cult to apply than the numerical

methods, that will be discussed in the next section in more detail.

2.2. Numerical methods

Universal analytical techniques to solve PDEs do not exist, so, in the

most cases, we need to �nd numerical solutions, and, even if an analytical

solution exists and we are able to calculate it, often it may result useless for

our purpose because it may be di�cult to handle.
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In literature various methods exist to solve partial di�erential equations.

Here we will brie�y discuss some of them.

(1) Finite Di�erence Method: it is a numerical procedure which solves

a partial di�erential equation by discretizing the continuous physical

domain into a discrete �nite di�erence grid, approximating the in-

dividual exact partial derivatives in the partial di�erential equations

by algebraic �nite di�erence approximations (FDA), substituting the

FDA's into the partial di�erential equations to obtain an algebraic

�nite di�erence equation (FDE), and solving the resulting algebraic

�nite di�erence equations for the dependent variable.

(2) Finite Volume Method: it is a method for representing and evaluating

partial di�erential equations in the form of algebraic equations. Sim-

ilar to the �nite di�erence method, values are calculated at discrete

places on a meshed geometry. �Finite volume� refers to the small

volume surrounding each node point on a mesh. In the �nite volume

method, volume integrals in a partial di�erential equation that con-

tain a divergence term are converted to surface integrals, using the

divergence theorem. These terms are then evaluated as �uxes at the

surfaces of each �nite volume. Because the �ux entering a given vol-

ume is identical to that leaving the adjacent volume, these methods

are conservative.

(3) Finite Element Method: the functions are represented in terms of

basis functions and the partial di�erential equations is solved in its

integral form. In the �nite element method (FEM) the domain is par-

titioned in a �nite set of elements, {Ωi}i∈I , so that {Ωi ∩ Ωj}i,j∈I = /O

for i 6= j, and ∪Ω̄i = Ω̄. Then the function is approximated by

uh =
∑
aiΦi where Φi are functions that are polynomials on each Ωi

(i.e. piecewise polynomials). Usually the functions Φi are continuous

polynomials of a low degree.

We will now examine in more detail �nite di�erences for linear di�usion, well

understood from a theoretical viewpoint and considered in many textbooks

on numerical methods, which often leads towards an expression for Richards

equation.
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As we saw, the objective of a �nite di�erence method for solving a par-

tial di�erential equation (PDE) is to transform a calculus problem into an

algebraic problem by:

(1) Discretizing the continuous physical domain into a discrete di�erence

grid.

(2) Approximating the individual exact partial derivatives in the partial

di�erential equation (PDE) by algebraic �nite di�erence approxima-

tions (FDAs).

(3) Substituting the FDAs into the PDE to obtain an algebraic �nite

di�erence equation (FDE).

(4) Solving the resulting algebraic FDEs.

Consider the pure di�usive equation (2.1.3) with 0 ≤ z ≤ L (also for semi-

bounded/bounded domain) and 0 ≤ t ≤ T supported by an initial condition

u (z, 0) = u0 (z) and boundary conditions u (0, t) = g1 (t) and u (L, t) = g2 (t).

The di�erential equation, the initial and boundary conditions together form

an initial boundary values problem [Quarteroni, 2000 ][142]. Note that, since

a computer does not know �the in�nite�, for a semi-in�nite (or in�nite too)

domains (e.g. z ≥ 0), it comes the need to decrease the size of it as much as

possible by �nding a good compromise between performance and calculation

accuracy: L as small as possible to contain processing times but large enough

to not a�ect (negatively) the �ow.

The solution domain, D (z, t) must be covered by a two-dimensional grid of

lines, called the �nite di�erence grid. The intersections of these grid lines are

the grid points at which the �nite di�erence solution of the partial di�erential

equation is evaluated. The spatial and time grid lines are equally spaced lines

perpendicular, respectively, to the z and t axis having uniform spacing ∆z

and ∆t. The subscript i will denote the spatial grid lines, zi = (i− 1) ∆z, and

the superscript n will be used to denote the time grid lines, tn = (n− 1) ∆t.

Thus, grid point (i, n) corresponds to location (zi, t
n) in the solution domain

D (z, t).

In the development of �nite di�erence approximations, a distinction must

be made between the exact solution of a partial di�erential equation and the

solution of the �nite di�erence equation which is an approximated solution of

the partial di�erential equation, for this reason let uni be an approximation
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of u (zi, t
n). Exact partial derivatives, which appear in the parabolic di�u-

sion equation, can be approximated at a grid point in terms of the values

of ui (t) at that grid point and adjacent grid points. It is known that the

physical information propagation speed associated with second-order spatial

derivatives is in�nite, and that the solution at a point at a speci�ed time level

depends on the in�uences of the all other points in the solution domain at

that time level. Consequently, second-order spatial derivatives, such as uzz,

should be approximated by centered-space approximations at spatial loca-

tion i. The centered-space approximations can be second-order, fourth-order,

etc. Simplicity of the resulting �nite di�erence equation usually dictates the

use of second-order centered-space approximations for second-order spatial

derivatives. This is accomplished by writing Taylor series for u (zi+1, t
n) and

u (zi−1, t
n) using grid point (i, n) as the base point:

(2.2.1) u (zi+1, t
n) = u (zi, t

n) + uz (zi, t
n) ∆z +

1

2
uzz (zi, t

n) ∆z2+

+
1

6
uzzz (zi, t

n) ∆z3 +
1

24
uzzzz (zi, t

n) ∆z4 + . . . ,

(2.2.2) u (zi−1, t
n) = u (zi, t

n)− uz (zi, t
n) ∆z +

1

2
uzz (zi, t

n) ∆z2+

−1

6
uzzz (zi, t

n) ∆z3 +
1

24
uzzzz (zi, t

n) ∆z4 − . . . .
Subtracting the �rst one from the second one and solving for uz (zi, t

n), it

gives

(2.2.3) uz (zi, t
n) =

u (zi+1, t
n)− u (zi−1, t

n)

2∆z
+

1

3
uzzz (ξ) ,

where zi−1 ≤ ξ ≤ zi+1. Truncating the remainder term yields the second-order

centered-space approximation

(2.2.4)
∂u

∂z
(zi, t

n) ≈ uni+1 − uni−1

2∆z
.
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Adding the �rst Taylor series from the second one and solving for uzz (zi, t
n)

gives

(2.2.5) uzz (zi, t
n) =

u (zi+1, t
n)− 2u (zi, t

n) + u (zi−1, t
n)

∆z2
+

1

12
uzzzz (ξ) ,

where zi−1 ≤ ξ ≤ zi+1 again. Truncating the remainder terms, the following

second-order centered-space approximation yields

(2.2.6)
∂2u

∂z2
(zi, t) ≈

u (zi+1, t
n)− 2u (zi, t

n) + u (zi−1, t
n)

∆z2
.

Note that the approximation error is O (∆z2). Clearly, the second-order

centered-di�erence �nite di�erence approximations at time level n + 1 are

obtained simply by replacing n by n+ 1 in the equations above.

The exact time derivative can be approximated at time level n by a �rst-

order forward-time approximation. Writing the Taylor series:

(2.2.7) u
(
zi, t

n+1
)

= u (zi, t
n) + ut (zi, t

n) ∆t+
1

2
utt (zi, t

n) ∆t2 + . . .

and solving for ut (zi, t
n) yields

(2.2.8) ut (zi, t
n) =

u (zi, t
n+1)− u (zi, t

n)

∆t
+

1

2
utt (τ) ∆t2 ,

where t ≤ τ ≤ t + ∆t. Truncating the remainder terms, the �rst-order

forward-time approximation yields:

(2.2.9)
∂u

∂t
(zi, t

n) ≈
un+1
i − uni

∆t
.

Note that, for the approximation (2.2.9), the approximation error isO (∆t).

Finite di�erence equations are obtained by substituting the �nite di�erence

approximations of the individual exact partial derivatives into the PDE eval-

uating the spatial derivative at a time level between the beginning of the time

step and at the end of time step:
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(2.2.10)
un+1
i − uni

∆t
= Dθ

u (zi+1, t
n+1)− 2u (zi, t

n+1) + u (zi−1, t
n+1)

∆z2
+

+D (1− θ) u (zi+1, t
n)− 2u (zi, t

n) + u (zi−1, t
n)

∆z2
,

where 0 < θ < 1 is a sort of weight factor. It is convenient to introduce the

ratio

(2.2.11) γ ≡ D∆t

∆z2
,

the so called Fourier grid number, γ, a key term in evaluating the performance

of �nite di�erence forms for the di�usion equation: the error is not ampli�ed

in time advancing, the numerical method is stable, for instance. There are

four important properties of �nite di�erence methods, for propagation prob-

lems governed by parabolic PDEs, that must be considered before choosing a

speci�c approach. They are:

• Consistency,

• Order,

• Stability,

• Convergence.

A �nite di�erence equation is consistent with a partial di�erential equation if

the di�erence between the FDE and the PDE (i.e., the truncation error)

vanishes as the sizes of the grid spacings go to zero independently. The

order of a FDE is the rate at which the global error decreases as the grid

sizes approach zero. A �nite di�erence equation is stable if it produces a

bounded solution for a stable partial di�erential equation and is unstable if it

produces an unbounded solution for a stable PDE. A �nite di�erence method

is convergent if the solution of the �nite di�erence equation (i.e., the numerical

values) approaches the exact solution of the partial di�erential equation as

the sizes of the grid spacings go to zero. However, the convergence of a

�nite di�erence method is related to the consistency and stability of the �nite

di�erence equation. The Lax equivalence theorem states:
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Theorem. �Given a properly posed linear initial-value problem and a �-

nite di�erence approximation to it that is consistent, stability is the necessary

and su�cient condition for convergence�.

Thus, the question of convergence of a �nite di�erence method is answered

by a study of the consistency and stability of the �nite di�erence equation. If

the �nite di�erence equation is consistent and stable, then the �nite di�erence

method is convergent.

For this method, if θ = 0, all spatial derivatives are evaluated at old time

level. This is a fully explicit method and once the approximation solution at

t = tn is known, we can compute the solution at the next time level t = tn+1,

directly. The main weakness of the explicit method is the requirement of the

stability condition, that imposes a restriction on the relative size of ∆t with

respect to ∆z [Ho�man, 2001 ][92]:

(2.2.12) γ ≡ D∆t

∆z2
<

1

2
;

if θ = 1, we have a fully implicit method where the spatial derivative is

evaluated at the new time level and generally is always stable. When 0 <

θ < 1, we have a mixed scheme, also known as Crank-Nicholsen scheme in

the particular case that θ = 0.5. A fully implicit scheme and a mixed scheme

have the little drawback that they need an algorithm to solving the system

of equations that arises from the equation 2.2.10, the most e�cient is the

well-known Thomas algorithm [Von Rosenberg, 1969 ][153].

Unfortunately, the Lax equivalence theorem can be applied only to well-

posed, linear, initial-value problems. Many problems in engineering and sci-

ence are not linear, and nearly all problems involve boundary conditions in

addition to the initial conditions. There is no equivalence theorem for such

problems, just like for the Richards equation. Nonlinear PDEs must be lin-

earized locally, and the FDE that approximates the linearized PDE is ana-

lyzed for stability. Experience has shown that the stability criteria obtained

for the FDEs which approximates the linearized PDEs are often still useful,

and that the consistent and stable FDEs generally converge, even for nonlin-

ear initial/boundary-value problems. Therefore, nonlinear PDEs are solved

iteratively after being linearized in some way. Taylor's expansion provides a
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standard way of doing this and the method is usually referred to as Newton's

method [Smith, 1985 ][56]. Other very performing method are, e.g., the Richt-

myer's method [Richtmyer and Morton, 1967 ][149] and the three time-level

method [Lees, 1966 ][113]. Which one is the best depends on the type of the

starting equation and on the error that is willing to accept.

2.3. Stochastic methods

In the last decades a signi�cant number of unsaturated water �ow models

have been applied on a regional basis for prediction or simulation purposes.

Examples include the prediction of the system �ow and quality responses to

given excitations, such as natural and arti�cial recharge, change of pumping

rates and/or patterns, surface or subsurface discharge of pollutants, and salt-

water intrusion in coastal aquifers. For this purpose, hydrogeological parame-

ters must be known. However, in practice, the required distributions of system

parameters are very di�cult to obtain. This di�culty is recognized to be a

major impediment to wider use of groundwater models and to their full utiliza-

tion [Frind and Pinder, 1973 ][70]. Freeze called the estimation of parameters

the �Achilles' heel� of groundwater models. The problem arises because of the

scarcity of available direct measurements of the hydrogeological parameters,

but, even in the cases where measurements exist, they cannot be considered

representative of regional conditions and very often they are a�ect by large er-

rors [Freeze, 1972 ][68]. A common approach is thus to treat them as a random

�eld variable [Vanmarcke, 1983; Dagan, 1989; Gelhar, 1993 ][219, 50, 74],

i.e. to use a stochastic approach based on random space functions (RFS). Con-

sequently the governing equations for �ow (and transport) are stochastic, and

the resulting dependent variables are also random. One of the �rst stochas-

tic analysis of groundwater �ow was performed by Freeze [Freeze, 1975 ][69],

but other many contributions were presented [Bakr et al., 1978, Gutjahr et

al., 1978; Dagan, 1979, 1982b, 1984 ][2, 4, 45, 46, 47], overall addressed to

obtain the two �rst spatial moments [Dagan, 1988, 1990, 1991; Neuman et

al., 1987, 1990 ][49, 51, 52, 201, 132]. The conservative travel time can

also only be known statistically, consequently. The main approach to ana-

lyze solute travel times through a �eld characterized by randomness is based
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on repeated numerical solving of the problem, Monte Carlo method [Suciu,

2014 ][205].

Generally, a random �eld, or a stochastic process, f(z) is a process for

which we cannot predict the outcome of an experiment (the trial of a pro-

cess), prior to performing it, contrary to the deterministic process. It can

be described as a set of random variables, f (zi), where each variable corre-

sponding to a point zi in space and it is characterized by a probability density

function (PDF). To every outcome of a probabilistic �experiment� there corre-

sponds a set of sample values of random variables, conveniently, summarized

through a function of space, denoted again by f(z) and characterized by the

joint probability density function. All possible realizations of the �eld form

the ensemble, on which we can perform a statistical analysis and �nd sta-

tistical measures, like mean and standard deviation [Kitanidis, 1983 ][107].

We anticipate that, employing appropriate ergodicity assumptions (we will

discuss this concept later), this ensemble variability represents spatial vari-

ability as well [Dagan, 1987 ][48]. The ensemble average of a random function

is de�ned as:

(2.3.1) E [f (z)] = f (z) =
1

n

n∑
i=1

fi (z) ,

where n is the number of the samples. If the mean is not a function of

the space the process is called homogenous; equivalently, if the process is a

random time function and the mean is independent to the time it is called

stationary. Note that the stochastic terminology does not create confusion

with the terminology used above for the deterministic processes, which may

be considered as a stochastic process with a single realization. The variance

is de�ned as:

(2.3.2) σ2
f (z) =

[
f (z)− f (z)

]2

= f 2 (z)− f (z)
2
,

while the square root of it, σf (z), is called standard deviation, and measures

the average magnitude of the deviations from the mean. Another impor-

tant statistical measure is the cross-covariance between two variables, which

detects if a similar trend exists:
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(2.3.3) covfg (zi, zj) =
[
f (zi)− f (zi)

] [
g (zj)− g (zj)

]
=

= f (zi) g (zj)− f (zi) g (zj) ,

where i and j indicate two di�erent locations. A similar quantity, the cross-

correlation, is de�ned as:

(2.3.4) rfg (zi, zj) = f (zi) g (zj) .

If the location is the same the two de�nitions above are, respectively, called

covariance and correlation. Associated with the covariance and the correlation

functions are the autocovariance and the autocorrelation, respectively, the

covariance and correlation between the same quantity at di�erent locations:

(2.3.5) covff (zi, zj) = f (zi) f (zj)− f (zi) f (zj) ,

(2.3.6) rff (zi, zj) = f (zi) f (zj) .

For a homogeneous model, we assume that the autocovariance is not a

function of a pair of locations, rather of the vector direction χ = z1 − z2. We

can write:

(2.3.7) covff (z, z + χ) = f (z) f (z + χ)− f (z)f (z + χ) = covff (χ) ,

this means that, for homogenous or stationary problems, the autocovariance,

or in general the covariance, not depends on the locations but only on the

vector direction. In particular if the covariance depends only on the distance

between the two points, |χ|, the �eld is isotropic; otherwise if depends on the

direction as well, the �eld is called anisotropic and an anisotropic ratio can

be de�ned. A length scale associated with the autocovariance of a stationary

�eld is the integral scale, de�ned roughly as the distance at which f (z1) and

f (z2) cease to be correlated. One of the possible de�nitions can be:
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(2.3.8) If =
1

σ2
f

∞̂

0

rff (|ξ|) d |ξ| .

The spatial statistics (or temporal statistic for a functions of time) di�ers from

the ensemble statistics, presented above, in a most important way: the former

is performed on a single realization. Given a single realization of a RSF, or

in time, the spatial mean, respectively temporal mean, 〈f〉 (z), is de�ned by:

(2.3.9) 〈f〉 (z) =
1

L

z+L/2ˆ

z−L/2

f (z′) dz′ ,

where L is a length large enough such that the average is independent on the

choice of it and small enough to ensure that the average may still vary with

distance for non-homogeneous problems. The brackets 〈〉, are used to denote

the spatial average and the spatial versions of the all respectively statistically

measures described in the ensemble sense. Generally de�nitions 2.3.1 and

2.3.9 are not the same quantity. The �rst one need a knowledge on the entire

population, the second one a knowledge of the joint PDF. In many cases,

overall in natural processes, may occur that one of the two is impossible to

calculate, and ergodicity hypothesis is essential. It may be stated as follows:

�for a stationary (homogeneous) random process, a large num-

ber of observations made on a single system, at N arbitrary

instants of time (points of space), have the same statistical

properties as observing N arbitrarily chosen systems, from an

ensemble of similar system.�[McQuarrie, 2000 ][125]

Simply, with the egodicity hypothesis we can assume that the average of

a process over time or space is equal to the average of that process over

its statistical ensemble. Notice that the hypothesis is possible only for ho-

mogeneous/stationary problems, so the ergodic process must be homoge-

nous/stationary, but not necessary the reverse. With this assumption we

can state that in a homogenous ergodic process de�nitions 2.3.1 and 2.3.9
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are equal and constant [Bear and Cheng, 2010 ][14]. Actually, various de�ni-

tions of ergodicity can be found in hydrogeological literature,e.g. the general

formulation:

�an observable of the transport process is ergodic with respect

to a stochastic model if the root mean square distance from the

model prediction is smaller than a given threshold.�[Suciu et

al., 2006 ][130]

As mentioned several times, unfortunately, the practical applications of ana-

lytical methods are limited due to the facts that: usually only the �rst two

moments (mean and covariance) of the output variables are obtained; many

problems of transport are nonlinear. On the other hand, numerical methods

provide the most �exible approach to evaluate the uncertainties of dependent

variables using a Monte-Carlo (MC) approach. The MC method does not

attempt to treat the problem as a stochastic partial di�erential equation, but

rather computes deterministic solutions for a number of numerically generated

equally likely (equiprobable) realizations of the �eld, and analyzes statistically

the collection of outputs of the realizations [Wen, 1995 ][229]. There is not a

single MC method, the term, instead, describes a class of approaches widely

used for a wide category of problems. However, these approaches tend to

follow a particular pattern:

(1) De�ne a domain of possible input data;

(2) Generate random inputs from the domain with a given probability

distribution;

(3) Perform a deterministic calculation using input data (input). The

traditional �nite di�erence or �nite element methods are generally

used for the solution of �ow equation, while the particle tracking

method or random walk method is commonly used for the solution

of the mass transport equation [Pollock, 1988 ][141].

(4) Aggregate the results of the individual calculations in the �nal result

with a statistical analysis that estimate mean, variance, and possibly

the joint PDF.

The MC method is completely general with few assumptions and probably

the most powerful method for practical purposes. The main advantages are:
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• It provides the possibility to fully evaluate the PDF of results;

• The input can have any features;

• The principle of this method is simple and easy to implement. Also

a large variety of computer software is available;

• Using this method, also nonlinear problems can be easily handled.

It has been extensively used to treat problems of groundwater �ow and trans-

port [e.g. Warren and Price, 1961; Delhomme, 1979; De Marsily, 1986;

Gomez-Hernandez and Gorelick, 1989 ][225, 55, 124, 79], however, it should

be noted that MC is an approximation method, where the main source of

error is the truncating error in the spatial (or time) discretization of the �ow

(or transport) equations.



CHAPTER 3

RESULTS AND DISCUSSION

3.1. Data mining for geostatistics

Data mining is an important activity for selecting, modelling and exploit-

ing data in the new digital age. It is the automatic process of discovery and

identi�cation, within the data, of patterns, relationships and information not

a priori notes, which, used for descriptive and/or forecasting purposes, are

a valuable tool to support decisions. It releases integrated applications in

decision-making processes and does not study a phenomenon like the statis-

tics do. This type of activity is crucial in many areas of scienti�c research like

the Geostatistics [Journel, 1980 ][104].

Etymologically, the term geostatistics designates the statistical study of

natural phenomena that can be, often, characterized by the distribution in

space of one or more variables. Let z (x) be the value of the variable z at the

point x, the problem is to represent the variability of the function z (x) in space

when x varies . This representation will then be used to solve such problems as

the estimation of the value z (x0) at a point at which no data are available, or

to estimate the proportion of values z (x) within a given �eld that are greater

than a given limit. The geostatistical solution consists of interpreting each

value z (xi) as a particular realization of a random variable Z (xi) at the point

xi. The set of these auto-correlated random variables constitutes a random

function. The problem of characterizing the spatial variability of z (x) then

36
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reduces to that of characterizing the correlations between the various random

variables Z (xi)[Kitanidis, 1996; Goovaerts, 1997 ][106, 80]. In the mining

�eld, geostatistics provides a coherent set of probabilistic techniques like the

variography, e.g. used to obtain the results presented in the following paper,

published in Procedia Computer Science for the International Workshop on

Data Mining on IoT Systems (DAMIS16)[196]. In this paper the variable

z (x), for which we try to catch the heterogeneity, is the α-parameter, or

rather the inverse of the characteristic length (see table 1.0.1), a measure of

the relevance of the capillary force with respect to the gravitational one. The

study of this variable constitutes the true innovative element of the paper

since the most of the e�orts have been addressed to other soil properties.
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Mining in geostatistics to quantify the spatial variability of cer-

tain soil �ow properties.

aGerardo Severino, aMaddalena Scarfato, bGerardo Toraldo

aDepartment of Agricultural Sciences

bDepartment of Mathematics and Applications "R. Caccioppoli"

University of Naples - Federico II, Italy

Abstract. The functional dependence of the relative unsaturated hydraulic

conductivity (UHC) Kr(ψ) ≡ exp(αψ) upon the matric potential ψ, [L], via

the soil-dependent parameter α, [L−1], has been traditionally regarded as a

deterministic process (i.e. α ∼ constant). However, in the practical applica-

tions one is concerned with �ow domains of large extents where α undergoes to

signi�cant spatial variations as consequence of the disordered soil's structure.

To account for such a variability (hereafter also termed as �heterogeneity�)

we adopt the mining geostatistical approach, which regards α as a random

space function (RSF). To quantify the heterogeneity of α, estimates of local-

values were obtained from ∼ 100 locations along a trench where an internal

drainage test was conducted. The analysis of the statistical moments of α

demonstrates (in line with the current literature on the matter) that the log-

transform ζ ≡ lnα can be regarded as a structureless, normally distributed,

RSF. An novel implementation of the present study in the context of the

�Internet of Things� (IoT) is outlined.

Introduction. The challenging and very di�cult task to develop modelling

of �ow and transport in soils of large extents has been undertaken only in

the last decades by using a mining geostatistical approach [Comegna et al.,

2010; Severino et al., 2010 ][33, 174]. The use of data-mining methods is

due to the di�culties into quantifying the spatial distribution of the soil �ow

properties [Severino et al., 2006, 2009, 2012 ][177, 189, 184]. However,

while a considerable e�ort has been invested to quantify the heterogeneity

of certain soil properties, such as the Darcy's permeability coe�cient [Rubin,

2003 ][158], a very limited information about the spatial distribution of the

α-parameter (relating the matric potential to the UHC) is available. Indeed,

there have been only a limited number of studies [Russo and Bouton, 1992;

White and Sully, 1992; Ragab and Cooper, 1993; Russo et al., 1997 ][165,
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232, 145, 168] focusing on the spatial variability of α, and nevertheless

they su�er from many limitations, the most important of which is about

the extreme di�culty to carry out precise in situ measurements (somewhat

similar to the analysis of water waves distribution [Farina et al., 2015 ][61]).

In view of such shortcomings, the present paper aims at showing how to use a

data-mining (geostatistical) approach to quantify the spatial variability of the

α-parameter. In addition, we believe that the present paper provides useful

hints on how to combine devices/sensors and data in order to set up a compact

web-tool (such as IoT) to gain quick analyses of complex (heterogeneous)

environments, similarly to other studies concerning similar problems [Cuomo

et al., 2015, 2016; Farina et al., 2015 ][43, 42, 61].

Characterization of the spatial variability of the α-parameter by means of

the mining geostatistical approach: from theory to the practical use.

THE THEORETICAL FRAMEWORK. The α-parameter is more than

a curve-�tting number, since it is related to the soil's texture. Indeed, it

has been demonstrated [White and Sully, 1992 ][232] that the characteristic

length λc ≡ α−1, [L], is a measure of the importance of the capillary force

relative to the gravitational one. More precisely, λc → 0 implies that grav-

ity dominates capillarity (coarse textured soils), and viceversa (�ne textured

soils). Since, the soil's texture is highly variable from point to point in the

soil, a tantamount degree of variability is detected into the values taken by the

α-parameter. This is clearly seen in the Figure 3.1.1 that shows the contour

levels of λc (cm) along a vertical cross-section in a trench.

A detailed characterization of the spatial distribution of α (and more gen-

erally of any soil �ow property) via the so-called �standard approach� (i.e.

by collecting samples in the �eld and subsequently determining local values)

requires: i) considerable time, and ii) great expense/e�ort, therefore render-

ing such an avenue practically impossible. A viable (and widely accepted)

alternative is to treat α as a �stochastic process in the space� or equivalently

a RSF [Dagan, 1989; Rubin, 2003 ][50, 158]. As a consequence, characteri-

zation of the heterogeneity of α is cast within the more general approach of

the data mining methods.

Thus, the value of α at any x is regarded as one out-coming related to

the many possible geologic materials that might have been generated there.
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x(m)

z(m)

Figure 3.1.1. Distribution of the iso-values of λc (cm) along
a vertical cross-section at the Ponticelli site (Naples, Italy); ver-
tical exaggeration: 250/6

As a consequence, α ≡ α(x; Ω) becomes a random variable. The symbol Ω

refers to the sample space, which is generally dependent upon the position x.

Likewise, if α is measured at di�erent positions x1, x2, ..., xk then the values

αi ≡ αi(xi; Ωi) (i = 1, . . . , k) are random variables, each one characterized

by a (generally position dependent) probability density function (PDF). In

addition, the possibility of �nding any sequence of α-values at a certain x

depends not only upon the PDF itself, but also on those PDF s at other

positions. In the context of the mining geostatistics, the probability of �nding

such a sequence is given by the joint probability density function. Thus, any

sequence of α-values at di�erent points is viewed as a possible out-coming

of the sample space of a joint PDF, and it is usually termed as a single

realization. As a matter of fact, determining the occurrence of any realization

requires the knowledge of the joint PDF. Unfortunately, this latter is not

an accessible information since in the practice only a single realization (the

one obtained by the sampling) is available, and therefore one must resort to

some simplifying assumptions, i.e. stationarity and ergodicity. Stationarity
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implies that the joint PDF is translationally invariant, whereas ergodicity

enables one to infer the joint PDF by means of a single realization [Rubin,

2003 ][158]. The pragmatic approach adopted in Hydrology, and in line with

the statistical continuos theories, is to derive moments of interest for the

�ow variables and to check the applicability of these two assumptions only

ex post. In terms of moments, stationarity requires the space invariance

of �all� the moments: a very stringent assumption. Since, in the practical

applications one is mainly interested into the �rst and second order moments

of the �ow/transport processes [Severino et al., 2008, 2012, 2015; Fiori et al.,

2010; Severino, 2011a, 2011b][191, 186, 175, 66, 180, 192], the stationarity

of the input variables is replaced by the stationarity up to the second order

(weak stationarity). Thus, the pair �mean and covariance� becomes the tool

to characterize the spatial variability of α. Nevertheless, it is important to

emphasize that the knowledge of the mean and covariance does not specify

the α-values at any x, but it rather provides a way to quantify how widely

the α-values spread around the mean, and how these values are spatially

correlated.

RESULTS AND DISCUSSION. In the present paper local measurements

of α were obtained by means of a �eld-scale drainage experiment [Severino

et al., 2003 ][190] at the Ponticelli site (Naples, Italy). Along a transect

(50m long) 40 verticals (1.25 m apart) were chosen, and for each of them the

pair (ψ,Kr) was measured at three depths (z = 30, 60, 90 cm). Hence, from

the 40 × 3 available pairs, the α-parameter was obtained via a best �tting

procedure [Gomez et al., 2009 ][78], and the resulting spatial distribution is

shown in the Figure 3.1.1. The cumulative distribution function of α (m−1)

(red) together with its logarithmic transform ζ ≡ lnα (black) is depicted in

the Figure 3.1.2. At a �rst glance, it is seen that the empirical distribution

(discrete symbols) exhibits a larger deviation from the normal distribution,

whereas deviations from the log-normal one are smaller. This is quantitatively

con�rmed by inspection of Table 3.1.1 where we summarize (among the other)

the result of the hypothesis (Kolmogorov-Smirnov) normality test.

The problem of quantifying the spatial structure (i.e. the covariance, in

the present study) of α is rather complicated, even when measurements are
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Figure 3.1.2. Cumulative distribution function of α (m−1)
(red), and its log-transform ζ ≡ lnα (black)

Discrete symbols and continuous lines refer to the empirical distribution and
to the models, respectively.

statistics α∗ ζ ≡ lnα
mean 3.88 1.33

variance 1.01 5.80· 10−2

D 1.03 5.97· 10−1

Table 3.1.1. Estimates of the: i) mean, and ii) variance,
together with the test (D) of normal/log-normal (null) hypoth-
esis

*values of α are in m−1

numerous. The identi�cation process should involve several steps: i) an hy-

pothesis about the functional model of the covariance, ii) estimates of the

parameters of such a model, and iii) a model validation test. However, the

problem of selecting the most appropriate model remains to some extent in

the realm of the practical applications [Rubin, 2003 ][158]. The prevailing

approach is the pragmatic one: select a model for its practicality/versatility

as well as its performance in similar situations. Nevertheless, it is important
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z (cm) measured σ2
ζ predicted σ2

ζ

30 3.06 · 10−2 2.51 · 10−2

60 1.44 · 10−2 1.26 · 10−2

90 1.66 · 10−2 1.11 · 10−2

†values of α are in m−1

Figure 3.1.3. Scaled variogram γζ/σ
2
ζ at the three measur-

ing depths along the horizontal distance x

The measured vs predicted structured variances σ2
ζ are shown in the insert.

in view of the subsequent analysis to discuss some general properties of the

covariance function C ≡ C(x). Thus, the value C(0) is the so-called �struc-

tured variance�, and it provides information about the spread of the α-values

around the mean. For |x| 6= 0, the value C(x) is a measure of the correla-

tion between the α-values at two points separated by the distance |x|. More

precisely, the higher is |x| the smaller the correlation. Of particular inter-

est is the concept of integral scale, Iα. Roughly speaking the integral scale,

[L], represents the distance over which two values of α cease to be correlated

[Dagan, 1989 ][50]. A frequently encountered case is that of zero intregral

scale, i.e. Iα → 0. In this case the geological formation is characterized by

a complete lack of spatial correlation, i.e. C(x) ' 0 for any |x| 6= 0, and

this is known as stochastic structureless process. In such a circumstance,

it is convenient to deal with the variogram γ ≡ γ(x) [Dagan, 1989; Rubin,

2003 ][50, 158]. Generally, the variogram γ (whose computation is straight-

forward) is of wider applicability as compared with the covariance, since its

applicability does not require the stationarity hypothesis in a strict sense.
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Nevertheless, for a stationary process one can easily demonstrate [Dagan,

1989; Rubin, 2003 ][50, 158] that γ(x) ≡ C(0) − C(x). As a consequence,

for a stochastic, stationary, structureless process the variogram in practice

coincides with the structured variance, i.e. γ(x) ' C(0). Thus, the use of the

variogram is very useful to visualize whether any stochastic process is struc-

tureless. The experimental scaled-variograms γ/σ2
ζ at three di�erent depths

found for the transect in Figure 3.1.1 is plotted in the Figure 3.1.3. The fact

that γ/σ2
ζ ∼ 1 supports the assumption of a spatial lack of correlation, and

concurrently for the geological formation at stake the RSF α can be regarded

as a structureless stochastic process.

Concluding remarks and highlights toward an implementation in the con-

text of the IoT. A preliminary analysis of a �eld scale drainage test suggests

that the log-transform ζ ≡ lnα of the parameter appearing into the relative

UHC: Kr ≡ exp(αψ), characterizing the length of the capillary force acting

into unsaturated porous media (soils), can be modeled as a stationary RSF of

zero integral scale (i.e. a structureless stochastic process). The most impor-

tant consequence in view of the applications is that the covariance of ζ can

be approximated by a white noise signal in the horizontal plane.

Before concluding, we wish to highlight here an application of the pre-

sented material which can be easily implemented in the IoT-context. Indeed,

data-driven agricultural technologies are rapidly becoming a tool of large

use, and in particular they allow one to design a site-speci�c management

plan (precision-agriculture). In particular, a majority of precision-agriculture

strategies rely on statistical analyses (or image processing) of indirect mea-

surements of soil conditions obtained, for example, by satellites, unmanned

aircraft or other means of remote sensing. Various (above-ground) parameters

related to crop conditions can be e�ectively monitored with wireless sensor

networks. Thus, the utility of our approach comes from the use of dynamic

real-time forecasting of the quantity and quality of soil water to guide the �eld

irrigation. This forecasting will be facilitated and informed by in situ mea-

surements of water content obtained with spatially distributed autonomous

and automated sensors along an IoT-approach [Chianese et al., 2016 ][31].
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3.2. Nonstationary unsaturated steady �ows

In this section a very interesting application example, which illustrates

how simpli�ed analytical models of heterogeneous media can be applied to

�eld data avoiding brute force of intensive numerical modelling, is presented.

More precisely, a fully three-dimensional analytical model accounting for the

nonstationarity of the unsaturated �ow variables in�uenced by the water ta-

ble is described and simple (closed form) expressions for the second-order

moments of the speci�c �ux and the pressure head are derived.

Flow behavior close to the water-table was analyzed. In the majority of the

cases the water-table is located at depths which are completely inaccessible

for the experimental applications and solving the unsaturated �ow in the

vicinity of the groundwater, through a reliable model connecting information

of surface to those at the very deep, is even more important.

The listed below major conclusions were achieved and published on Water

Resources Research (on August 2017)[193]:

• the in�ltrating �ux q0 and the integral scale I impact the stationary

values of the speci�c �ux (qh, qz)
>, whereas they have a limited in�u-

ence upon the distance from the water-table at which such stationary

values are attained;

• from the application point of view, one can estimate the thickness of

the �ow domain where the nonstationary is dominant by means of a

1D Richards equation (i.e. valid for the vertical mean pressure head

〈Ψ〉).
The authors strongly believe that simpli�ed analytical solutions can provide

useful insights into the physical processes of the vadose zone, and also serve

as useful tools for applications, all the approximations notwithstanding. The

good agreement between predictions and real data con�rmed the scienti�c

consistency of the developed model and, although we have limited the discus-

sion to the data of the Ponticelli's experiment, the vadose zone �ow model

derived in the present study is rather general.
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Abstract. Steady �ow takes place into a three-dimensional partially sat-

urated porous medium where, due to their spatial variability, the saturated

conductivityKs and the relative conductivityKr are modeled as random space

functions (RSFs). As a consequence, the �ow variables (FVs), i.e. pressure-

head and speci�c �ux, are also RSFs. The focus of the present paper consists

into quantifying the uncertainty of the FVs above the water-table. The sim-

ple expressions (most of which in closed form) of the second-order moments

pertaining to the FVs allow one to follow the transitional behavior from the

zone close to the water-table (where the FVs are non-stationary), till to their

far-�eld limit (where the FVs become stationary RSFs). In particular, it is

shown how the stationary limits (and the distance from the water-table at

which stationarity is attained) depend upon the statistical structure of the

RSFs Ks, Kr and the in�ltrating rate. The mean pressure head 〈Ψ〉 has been
also computed, and it is expressed as 〈Ψ〉 = Ψ0(1 + ψ), being ψ a charac-

teristic heterogeneity function which modi�es the zero-order approximation

Ψ0 of the pressure head (valid for a vadose zone of uniform soil properties)

to account for the spatial variability of Ks and Kr. Two asymptotic limits,

i.e. close (near �eld) and away (far �eld) from the water-table, are derived

into a very general manner, whereas the transitional behavior of ψ between

the near/far �eld can be determined after specifying the shape of the various

input soil properties. Besides the theoretical interest, results of the present

paper are useful for practical purposes, as well. Indeed, the model is tested

against to real data, and in particular it is shown how it is possible for the

speci�c case study to grasp the behavior of the FVs within an environment

(i.e. the vadose zone close to the water-table) which is generally very di�cult

to access by direct inspection.
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Introduction. Soil hydraulic properties, such as saturated conductivity,

water retention and relative conductivity have been largely considered as well-

de�ned properties of the unsaturated porous formations [Hillel, 1998 ][90].

However, in the majority of the hydrological applications unsaturated �ows

take place in a complex environment (often termed as vadose zone) whose

setup changes erratically, thus undermining any attempt to characterize within

a deterministic framework the �ow (and transport) properties. Such a setup

shows discrete and/or continuous variations over several scales, thus making

hydraulic properties to do likewise. On the other side, owing to several logis-

tic and economic limitations, hydraulic properties can be measured only at a

limited number of positions where their values depend upon the size of the

sample(s) as well as the procedure of measurement. Inferring parameters at

points where measurements are not available entails a random error [Sinsbeck

and Tartakovsky, 2015 ][198]. In addition to this, measured values are bi-

ased by experimental errors. As matter of fact, these errors and uncertainties

render the hydraulic parameters RSFs, and the corresponding �ow-equations

stochastic.

It is a common tenet that an appropriate tool to deal with this uncertainty

is the geostatistical approach [Rubin, 2003 ][158]. Thus, measurements of the

hydraulic parameters are regarded as samples of random �elds, which in turn

are characterized by a multivariate probability density function (or alterna-

tively by ensemble moments). If the statistical properties of the hydraulic

parameters can be inferred from measurements, the stochastic �ow-equations

can be solved either analytically [Severino and Indelman, 2004; Severino et

al., 2006, 2012 ][176, 177, 179] or numerically [Severino and De Bartolo,

2015 ][175] by Monte Carlo simulations (MCs), and results analyzed in a sta-

tistical sense [Severino et al., 2007 ][185]. MCs are conceptually simple, and

they have the advantage to be applicable to a large variety of con�gurations

[Barajas-Solano and Tartakovsky, 2016 ][8]. However, MCs pose a number

of serious drawbacks and limitations. Indeed, to account for high-frequency

�uctuations of the input RSFs, very �ne numerical grids are required. As

a consequence, each realization (sampling) may result computer-demanding,

especially when one deals with three-dimensional �ows. In addition, even if
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MCs converge after a su�ciently large number of runs, there is not a sys-

tematic procedure to ascertain whether to consider conclusive (and therefore

completed) the MCs (a deep discussion upon these issues can be found in

[Jankovic et al., 2003; Russo et al., 2009 ][100, 163]).

To avoid the lack of accuracies attached to the MCs, analytical approaches

have been also developed (see, e.g. [Severino, 2011 ][181] and references

therein). Unlike MCs, analytical methods enable one: i) to compute the

�uctuations of the FVs, and subsequently to obtain (by ensemble averaging)

the various (cross)covariances, or ii) to end up with deterministic equations

which are solved for the (cross)covariances. This second avenue (which will

be adopted in the present study) is also known as the method of moments'

equation (MME). The applicability of analytical methods generally relies upon

some assumptions, the most relevant of which are: i) unbounded �ow-domain,

and ii) gravity-dominated mean �ow [Yeh et al., 1985a; Russo, 1993; Severino

and Santini, 2005; Severino et al., 2009 ][238, 161, 178, 189]. In particular,

the latter assumption implies that the mean pressure-head is constant within

the �ow-domain. However, assuming that gravity is the only driving force for

the mean �ow is sometimes too limiting, especially when one is interested in

the �ow's behavior close to the water-table where, as it is well known, the

mean pressure-head is not constant. This renders the problem more di�cult,

and it is not surprising that very few analytical studies have been carried out

toward such a direction. From the stand point of the applications, solving the

unsaturated �ow in the vicinity of the groundwater is even more important.

In fact, in the majority of the cases the water-table is located at depths which

are completely unaccessible, therefore rendering direct inspection impossible

(or extremely time-consuming and expensive). Within such a picture, the use

of a reliable model connecting informations that can be easily acquired at the

soil surface to those at the very deep (di�cult to access) locations becomes

of paramount relevance.

One of the �rst attempt to account for the impact of the water-table upon

the FVs' behavior is from [Andersson and Shapiro, 1983 ][5] who analyzed

the spatial distribution of the water content in a one-dimensional domain

by means of both analytical methods (small perturbations) and MCs. They
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found that the distance from the water-table to the region of �stationarity� de-

pends upon the soil properties as well as the �ux at the soil-surface. However,

in the study of Andersson only the saturated hydraulic conductivity Ks was

regarded as a RSF. The pressure-head behavior under the same conditions of

the previous study was analyzed by Indelman [Indelman et al., 1993 ][96] who

adopted the model of Gardner [Gardner, 1958 ][73] for the relative conduc-

tivity Kr. In the region of non-stationarity, the variance of the pressure-head

was found sensitive to both the mean �ow conditions and to the spatial vari-

ability of the soil hydraulic properties. Tartakovsky et al. [Tartakovsky et al.,

1999 ][209] developed an alternative methodology based upon the Kirchho�'s

transformation which enables one to avoid (or delay) any approximation pro-

cedure. In order to fully take advantage of the Kirchho� transformation, they

regarded the α-parameter as a random constant. Then, by dealing with a

one-dimensional domain and vertical �ow conditions,they derived analytical

solutions for the covariance and the second order correction to the pressure-

head. A similar analysis in a three dimensional formation, relying upon MCs,

has been conducted by Russo [Russo and Fiori, 2008 ][162], who showed that

when the water-table is located at a su�ciently large depth from the soil sur-

face, one can delineate a region where �ow is essentially gravity-dominated

(and concurrently the FVs are stationary).

In the present paper we solve unsaturated steady �ow in three dimensional

bounded heterogeneous formations by means of analytical tools, and we aim

at computing second-order moments of the FVs. More precisely, we employ a

general perturbation procedure to achieve simple (closed-form) results relating

into a straightforward manner the statistical structure of the input soil prop-

erties to the spatial distribution of the FVs in the vicinity of the water-table.

The paper is organized as follows: we begin by formulating the mathematical

problem in the context of a stochastic framework (see section �Mathematical

statement of the problem�), and derive second-order moments for the FVs

(sections �Second-Order Moments of the Pressure-Head� and �Higher-Order

Correction of the Mean Pressure-Head�). The model is calibrated against to

a recently conducted �ow experiment in the vadose zone (section Calibration

Versus Validation�), and subsequently it is used to grasp the behavior of the
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Figure 3.2.1. Sketch of a �ow taking place into a vadose
zone delimitated at the bottom (z = 0) by the water-table and
at the top (z = L) by the soil surface

FVs in the close vicinity of the water-table (section �Discussion�). We end up

with concluding remarks (section �Conclusions�).

Mathematical Statement of the Problem. Unsaturated steady �ow takes

place in a three-dimensional domain Ω which is horizontally unbounded, and

vertically delimited by the position of the water-table (z = 0) and the soil

surface (z = L), i.e.

(3.2.1) Ω = {x ≡ (x, y, z) : (x, y) ≡ xh ∈ R2, 0 6 z 6 L} ,

(Figure 3.2.1). The governing equations are: i) the Buckingham-Darcy (con-

stitutive) law, and ii) the mass-balance law

(3.2.2) q(x) = −K (Ψ)∇ (z + Ψ) , ∇ · q(x) = 0,

respectively. In equations 3.2.2, q ≡ (qx, qy, qz)
> is the speci�c �ux, Ψ ≡ Ψ(x)

is the pressure-head, and K ≡ K(Ψ) is the pressure-dependent hydraulic
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conductivity. Boundary conditions are determined by physical processes at

the soil surface and water-table. Thus, let q0 denote a prescribed (negative

for in�ltration) vertical �ux at the soil surface (z = L) (as determined either

by the rainfall or by the irrigation). This gives rise to a boundary condition:

(3.2.3) K(Ψ)

(
1 +

∂

∂z
Ψ

) ∣∣∣∣∣
z=L

= −q · ez = −q0 ,

being ez ≡ (0, 0, 1) the vertical unit pointing outward vector (Figure3.2.1).

Generally, �ows occurring in the uppermost soil are largely transient as con-

sequence of the high variability of the atmospheric conditions. However, in

the close vicinity of the water-table the dependence of �ow with time results

of negligible impact [Wang et al., 2009 ][223]. More precisely, Russo and Fiori

[Russo and Fiori, 2008 ][162] have demonstrated that, when the water-table

is deep, the vadose zone can be conceptually decomposed into two distinct

zones: a highly transient near-surface zone, and a deeper one where practi-

cally steady state �ow conditions occur. Within such a zone, an equivalent

constant �ux q0 (obtained by averaging the cumulative �ux of the net applied

water over the relevant time period) provides a good approximation of the

cumulative water �ux arriving to the water-table.

Although the pressure head may �uctuate in the zone close to the water-

table, the numerical analysis of Russo and Fiori demonstrates that, when the

water-table is located at su�ciently large depth from the soil surface, a steady

spatially uniform head is worth to reconstruct not only the �ow regime but

also the mass arrivals at the groundwater. Such an approximation applies to

very general vadose zones (i.e. of largely di�erent textures) in the presence or

absence of vegetation [Russo and Fiori, 2009 ][167]. Thus, we assume that the

water-table (z = 0) is at rest, and it separates the unsaturated zone (Ψ < 0)

from the phreatic one (Ψ > 0). Before proceeding further, it is worth also

clarifying why, for the present study, the capillary fringe can be neglected.

Thus, its thickness is signi�cant when the water-table: i) largely �uctuates

in the time [Li and Yeh, 1998 ][115], and ii) when the water-table is shallow

[Gillham, 1984 ][76]. In addition, such �uctuations are particularly relevant

in the coarser soils, and in this case they signi�cantly a�ect the �ow and
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transport regimes [Russo and Fiori, 2009 ][167]. However, under steady state

conditions (which apply in the present study), the situation is completely

reversed, since in the structureless sandy soils (like the one considered in the

sequel), the water's raise due to the capillarity-mechanism is highly contrasted

by the macropores [Zhang and Winter, 1998; Zhang 2002 ][242, 241]. Hence,

a boundary condition at the water-table reads as:

(3.2.4) Ψ (x)

∣∣∣∣
z=0

= 0.

In order to solve the system of the two equations 3.2.2, a functional depen-

dence for K ≡ K (Ψ) must be speci�ed. Several models for K are available

in the literature [Brooks and Corey, 1964; Mualem, 1976; Van Genuchten,

1980 ][21, 127, 217]. In the context of the present study we shall adopt the

exponential model of Gardner [Gardner, 1958 ][73]:

(3.2.5) K (Ψ) ≡ KsKr(Ψ), Kr(Ψ) = exp (αΨ) ,

where Ks and α are the saturation conductivity and a pore-size distribu-

tion parameter, respectively. Generally, other conductivity curves have been

proved to better reproduce the hydrological soil behavior. However, such

curves require a very detailed characterization which is typically carried out

at laboratory scale [Romano et al., 2011 ][152]. Instead, at formation (and

even larger) scales the uncertainty of the soil hydraulic properties and the

limitations of the in situ sampling devices do not allow gaining a very de-

tailed resolution of the conductivity curve. Thus, owing to these limitations

(and wishing to reduce the computational burden), we have adopted, simi-

larly to [Indelman et al., 1993;Tartakovsky et al., 1999, 2004; Severino and

Tartakovsky, 2015 ][96, 209, 206, 194], the Gardner's model. Last, the main

di�erence between the Gardner's and any other model is at the saturation, i.e.

Ψ ∼ 0. Instead, for Ψ < 0 (which in the vadose zone is the rule rather than

the exception) the hydraulic response of the Gardner's model does not signif-

icantly di�er from that of any other ones [Comegna et.al, 1996; Tartakovsky

et al., 2003 ][37, 208].
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Due to their erratic variations [White and Sully, 1992; Russo and Bouton,

1992; Severino et al., 2003, 2010, 2016; Fallico et al., 2016 ][232, 165, 190,

174, 196, 60], the log-transformed parameters ζ = lnα and Y = lnKs

are modelled as stationary RSFs. As a consequence, their geometric means:

αG = exp 〈ζ〉 and KG = exp 〈Y 〉 are constant with zero-mean �uctuations,

i.e., 〈ζ ′〉 = ζ − 〈ζ〉 = 0 and 〈Y ′〉 = Y − 〈Y 〉 = 0. Since the conductivity curve

(3.2.5) depends upon the two RSFs Ks and α, the cross covariance CY ζ has

to be provided, as well. In line with �eld-data [Rubin, 2003], we assume that

covariances of the RSFs have axisymmetric structure, i.e.,

(3.2.6) Cγ (xh, z) = σ2
γ ρh

(
xh
Iγ

)
ρv γ = Y, Y ζ, ζ ,

being Iγ and λγ the horizontal integral scale and the anisotropy-ratio, respec-

tively. The asymmetric (spatial) structure equation 3.2.6 is rather general

feature accounting for the typical statistical anisotropies of a vadose zone (a

wide survey can be found in Rubin [Rubin, 2003 ][158]). We adopt α−1
G and

KG as scales for the length and the �ux, respectively. As a consequence,

equations 3.2.2 write as (for simplicity we retain the same notations):

(3.2.7)

q(x) = − exp (Y ′) exp [Ψ exp (ζ ′)] ∇ (z + Ψ)

∇ · q(x) = 0.
.

Due to the random nature of Y ′ and ζ ′, the system 3.2.7 becomes stochas-

tic, and we aim at computing the statistical moments of the FVs. To solve

3.2.7, we expand Ψ, q, exp(Y ′) and exp(ζ ′) in asymptotic-series as follows

Ψ = Ψ0 + Ψ1 + Ψ2 + . . . ; q = q(0) + q(1) + q(2) + . . . ;

(3.2.8) exp(Y ′) = 1 +
Y ′

1!
+
Y ′2

2!
+ . . . ; exp(ζ ′) = 1 +

ζ ′

1!
+
ζ ′2

2!
+ . . .

The non-linear term f(Ψ, ζ ′) ≡ exp [Ψ exp (ζ ′)] appearing into the �rst of

3.2.7 is likewise expanded up to the second-order, i.e.,
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f(Ψ, ζ ′) = f(Ψ0, 0)+
1

1!

 ∂

∂Ψ1

f(Ψ, ζ ′)

∣∣∣∣∣
(Ψ0,0)

Ψ1(x) +
∂

∂ζ ′
f(Ψ, ζ ′)

∣∣∣∣∣
(Ψ0,0)

ζ ′(x)

+

+
∂

∂Ψ2

f(Ψ, ζ ′)

∣∣∣∣∣
(Ψ0,0)

Ψ2(x) +
∂

∂ζ ′ 2
f(Ψ, ζ ′)

∣∣∣∣∣
(Ψ0,0)

ζ ′ 2(x)+

+
1

2!

 ∂

∂Ψ1

f(Ψ, ζ ′)

∣∣∣∣∣
(Ψ0,0)

Ψ1(x) +
∂

∂ζ ′
f(Ψ, ζ ′)

∣∣∣∣∣
(Ψ0,0)

ζ ′(x)

(2)

+ . . . .(3.2.9)

To compute the �rst-order derivatives of f(Ψ, ζ ′) at the right-hand side of

3.2.9, we employ the chain-rule of derivation, i.e.,

(3.2.10)
∂

∂Ψ1

f(Ψ, ζ ′)

∣∣∣∣∣
(Ψ0,0)

=

[
d

dΨ
f(Ψ, ζ ′) · ∂Ψ

∂Ψ1

]
(Ψ0,0)

=

= [exp(ζ ′)f(Ψ, ζ ′) · 1](Ψ0,0) = Kr(Ψ0) ,

(3.2.11)
∂

∂ζ ′
f(Ψ, ζ ′)

∣∣∣∣∣
(Ψ0,0)

=

[
df(Ψ, ζ ′)

d exp(ζ ′)
· ∂ exp(ζ ′)

∂ζ ′

]
(Ψ0,0)

=

=

[
Ψf(Ψ, ζ ′) · 1

1!

]
(Ψ0,0)

= Ψ0(z)Kr(Ψ0) ,

(3.2.12)
∂

∂Ψ2

f(Ψ, ζ ′)

∣∣∣∣∣
(Ψ0,0)

=

[
d

dΨ
f(Ψ, ζ ′) · ∂Ψ

∂Ψ2

]
(Ψ0,0)

=

= [exp(ζ ′)f(Ψ, ζ ′) · 1](Ψ0,0) = Kr(Ψ0) ,

(3.2.13)
∂

∂ζ ′ 2
f(Ψ, ζ ′)

∣∣∣∣∣
(Ψ0,0)

=

[
df(Ψ, ζ ′)

d exp(ζ ′)
· ∂ exp(ζ ′)

∂ζ ′ 2

]
(Ψ0,0)

=

=

[
Ψf(Ψ, ζ ′) · 1

2!

]
(Ψ0,0)

=
1

2
Ψ0(z)Kr(Ψ0) ,
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where hereafter we shall set: Kr(Ψ0) ≡ exp (Ψ0). The second-order deriva-

tives are computed by means of 3.2.10 and 3.2.11, the �nal result being:

(3.2.14)
∂2

∂Ψ2
1

f(Ψ, ζ ′)

∣∣∣∣∣
(Ψ0,0)

=

[
∂

∂Ψ1

∂

∂Ψ1

f(Ψ, ζ ′)

]
(Ψ0,0)

=

=

[
exp(ζ ′)

∂

∂Ψ1

f(Ψ, ζ ′)

]
(Ψ0,0)

= Kr(Ψ0) ,

(3.2.15)
∂2f(Ψ, ζ ′)

∂Ψ1∂ζ ′

∣∣∣∣∣
(Ψ0,0)

=

{
∂

∂Ψ1

[
∂

∂ζ ′
f(Ψ, ζ ′)

]}
(Ψ0,0)

=

=

{
∂

∂Ψ1

[Ψf(Ψ, ζ ′)]

}
(Ψ0,0)

=

[
f(Ψ, ζ ′)

∂Ψ

∂Ψ1

+ Ψ
∂

∂Ψ1

f(Ψ, ζ ′)

]
(Ψ0,0)

=

= f(Ψ0, 0) + Ψ0

[
∂

∂Ψ1

f(Ψ, ζ ′)

]
(Ψ0,0)

= Kr(Ψ0) + Ψ0Kr(Ψ0) ,

(3.2.16)
∂2

∂ζ ′2
f(Ψ, ζ ′)

∣∣∣∣∣
(Ψ0,0)

=

[
∂

∂ζ ′
∂

∂ζ ′
f(Ψ, ζ ′)

]
(Ψ0,0)

=

= Ψ0

[
∂

∂ζ ′
f(Ψ, ζ ′)

]
(Ψ0,0)

= Ψ2
0Kr(Ψ0) .

To summarize, the asymptotic-expansion of the constitutive-law reads as:

q(x) = −Kr(Ψ0)∇ [z + Ψ0(z) + Ψ1(x) + Ψ2(x) + . . . ] ·

·
[
1 + Y ′(x) +

1

2
Y ′ 2(x) + . . .

]
× {1 + Ψ2(x) + Ψ1(x) + Ψ0(z)ζ ′(x)+

(3.2.17)

+Ψ1(x)ζ ′(x) +
Ψ0(z)

2
ζ ′ 2(x) +

1

2
[Ψ1(x) + Ψ0(z)ζ ′(x)]

2
+ . . .

}
.

We wish to note that a more general result, i.e. accounting for any func-

tional shape Kr ≡ Kr(Ψ), can be found in [Indelman, 1993 ][96]. However,

for the functional model 3.2.5 one easily recovers from [Indelman, 1993] the

same linearized expression 3.2.17.
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THE LEADING-ORDER APPROXIMATION. At the zero-order the sys-

tem 3.2.7 writes as

(3.2.18)q(0)(x) = −Kr(Ψ0)∇ (z + Ψ0)

∇ · q(0)(x) = 0
⇒ ∇ · [Kr(Ψ0)∇Ψ0] +

∂

∂z
Kr(Ψ0) = 0 ,

with the following boundary conditions:

(3.2.19) Ψ0 (x)
∣∣
z=0

= 0, Kr(Ψ0)

(
1 +

∂

∂z
Ψ0

) ∣∣∣∣
z=L

= −q0.

To solve the boundary-value problem 3.2.18-3.2.19, we employ a modi�ed

Kirchho� transformation

(3.2.20) F(x) = exp
(z

2

)ˆ Ψ0

−∞
dsKr(s) = exp

(z
2

)
Kr(Ψ0) ,

[Severino and Tartakovsky, 2015 ][194] to map the second of 3.2.18 into an

Helmholtz-type equation

(3.2.21) ∇2F(x)− 1

4
F(x) = 0,

whereas the boundary-conditions 3.2.19 become:

(3.2.22) F(x)
∣∣
z=0

= 1,
∂

∂z
F(x) +

1

2
F(x)

∣∣∣∣
z=L

= −q0 exp (L/2) .

Skipping the straightforward algebraic derivations, one ends up with

(3.2.23)

q(0) = q0 ez, Ψ0 (z) = ln {−q0 [1− κ exp (−z)]} , κ = 1 + q−1
0 .

Note that the zero-order termsq(0) and Ψ0 are function of the vertical co-

ordinate z solely, since the boundary conditions 3.2.22 do not depend upon

the planar coordinate xh ≡ (x, y) ∈ R2. Moreover, one can easily check

that: 0 6 −q0 [1− κ exp (−z)] 6 1 (it is reminded that −1 6 q0 6 0, and



3.2. NONSTATIONARY UNSATURATED STEADY FLOWS 58

!"! !"# !"$ !"% !"& '"!

!

#

$

%

&

'!

Ψ0(z)

Ψ0(∞)

z αG

q0/KG = −0.001

−0.01

−0.1

−0.5

Figure 3.2.2. The normalized leading order pressure head
Ψ0(z)/Ψ0(∞) as function of the scaled depth z αG, and di�erent
values of the non dimensional �ux q0/KG

concurrently −∞ < κ ≤ 0), therefore implying that Ψ0 ∈ ] − ∞, 0 ] [Sev-

erino and Coppola, 2012 ][184]. Finally, away from the water-table it yields:

Ψ0 ≈ ln (−q0) ≡ Ψ0(∞), in agreement with previous studies dealing with an

unbounded �ow-domain [Russo, 1993; Severino and Santini, 2005; Severino

et al., 2009 ][161, 178, 189].

In the Figure3.2.2 the leading order pressure Ψ0(z) relative to its far �eld

Ψ0(∞) has been depicted along z αG for several values of the normalized �ux

q0/KG. The high sensitivity of Ψ0 to the in�ltrating �ux q0 is clearly seen. In

particular, the smaller q0/KG, the larger the distance (from the water-table

z = 0) of attainment the far �eld, and viceversa.

THE FIRST-ORDER APPROXIMATION. At the �rst order the mass-

conservation and the constitutive law write as

(3.2.24) ∇ · q(1)(x) = 0 ,
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q(1)(x) = −Kr(Ψ0)∇Ψ1(x) + q0 [Ψ1(x) + Y ′(x) + Ψ0(z) ζ ′(x)] ez ,

where we have accounted for the fact that −Kr(Ψ0)∇(z + Ψ0) ≡ q0ez. By

combining equations 3.2.24, one obtains the governing equation for the �uc-

tuation Ψ1 of the pressure-head, i.e.,

(3.2.25) ∇ [Kr (Ψ0)∇Ψ1(x)]− q0
∂

∂z
Ψ1(x) = q0

∂

∂z
[Y ′ (x) + Ψ0 (z) ζ ′ (x)] ,

which, due to the deterministic nature of the pressure head at the water-table,

is solved with zero-boundary conditions.

Equation 3.2.25 represents the starting point to obtain the statistical mo-

ments of interest. In particular, moments can be computed by either solving

for Ψ1 (and subsequently averaging) or via the MME. In the present study,

it was found easier in terms of mathematical derivations to follow this second

avenue. Note that for large z it yields Kr(Ψ0) ≈ −q0, and one recovers from

3.2.25 the same equation of [Severino and Santini, 2005 ][178] valid for an

unbounded domain.

THE SECOND-ORDER APPROXIMATION. The second-order correc-

tion to the �ux is derived similarly to the previous case, the �nal result being:

∇ · q(2)(x) = 0 ,

q(2)(x) = −Kr(Ψ0)∇Ψ2(x) + q0Ψ2(x)ez+

−Kr(Ψ0) [Ψ1(x) + Y ′(x) + Ψ0(z) ζ ′(x)]∇Ψ1(x)+

+q0

{
1

2
[Ψ1(x) + Ψ0(z)ζ ′(x)]

2
+ Ψ1(x)Y ′(x) + Ψ1(x)ζ ′(x)+(3.2.26)

+
1

2
Y ′ 2(x) + Ψ0(z)Y ′(x)ζ ′(x) +

Ψ0(z)

2
ζ ′ 2
}
ez .

Elimination of q(2) into 3.2.26 leads to the following equation for the

second-order approximationΨ2 of the pressure-head:
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(3.2.27) ∇ · [Kr(Ψ0) (z)∇Ψ2 (x)]− q0
∂

∂z
Ψ2 (x) = q0

∂

∂z
L2 (x)− L′2 (x) ,

where we have set

(3.2.28) L2 (x) ≡ Ψ1 (x)Y ′ (x) + Ψ0 (z)Y ′ (x) ζ ′ (x) +

+
1

2
Ψ0 (z) ζ ′2 (x) + Ψ1 (x) ζ ′ (x) +

1

2
Y ′2 (x) +

1

2
[Ψ1 (x) + Ψ0 (z) ζ ′ (x)]

2
+

−q−1
0 Kr(Ψ0) [Ψ1 (x) + Y ′ (x) + Ψ0 (z) ζ ′ (x)]

∂

∂z
Ψ1 (x) ,

(3.2.29) L′2 (x) ≡ Kr (Ψ0)∇h {[Ψ1 (x) + Y ′ (x) + Ψ0 (z) ζ ′ (x)]∇hΨ1 (x)} ,

∇h ≡
(
∂

∂x
,
∂

∂y

)
.

It is important to notice that, since all the RSFs appearing into 3.2.29 are

stationary in horizontal plane, it results 〈L′2 (x)〉 = 0.

Second order moments of the pressure-head. Before proceeding with the

derivation of the second-order moments of Ψ, it is worth noting that, due to

the linear dependence (see equation 3.2.25) of Ψ1 upon Y
′ and ζ ′ in the plane of

isotropy, the various moments will result stationary RSFs there. Furthermore,

since we are interested in the unsaturated �ow close to the water-table (z = 0),

we can regard the soil surface (z = L) su�ciently far away from such a zone,

so that one can let L→∞. Note that this latter assumption does not modify

the leading-order expressions 3.2.23 of the FVs. In addition, away from the

water-table z = 0 the lower boundary condition does not impact anymore, and

consequently the FVs tend to become stationary, unless the upper boundary

condition (i.e. the soil's surface) is approached (in this latter case the �ow

would again result nonstationary).

We start from the two-point covariances CΨγ (x,x′) whose governing equa-

tion is obtained by multiplying 3.2.25 by γ evaluated at x′ 6= x and averaging,

i.e.,
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LCΨγ (x,x′) = q0
∂

∂z
[CY γ (x− x′) + Ψ0 (z)Cζγ (x− x′)] ,(3.2.30)

L ≡ ∇{Kr [Ψ0(z)]∇} − q0
∂

∂z
,

where, by virtue of the stationarity of the soil-properties, we have set 〈Y ′(x) γ(x′)〉
≡ CY γ (x− x′) and similarly for 〈ζ ′(x) γ(x′)〉. Hereafter, we shall assume

that the ensemble average 〈A〉 of any RSF A is interchangeable with its spa-

tial counterpart Ā, i.e. 〈A〉 ' Ā (ergodic hypothesis). We also adopt in

the sequel the following convention: Y γ ≡ Y for γ = Y , and ζγ ≡ ζ for

γ = ζ. To facilitate the successive derivations, it is useful to introduce the

transformation

(3.2.31) CΨγ (x,x′) =
√−q0

exp (−z/2)

Kr [Ψ0(z)]
Φ (x,x′) ,

which converts 3.2.30 into an Helmholtz-type problem:

(3.2.32) ∇2Φ (x,x′)− 1

4
Φ (x,x′) =

= −√−q0 exp
(z

2

) ∂

∂z
[CY γ (x− x′) + Ψ0 (z)Cζγ (x− x′)] .

For the sake of simplicity, we limit to quote the �nal result

(3.2.33) CΨγ (rh, z, z
′) =

= g (z)

ˆ ∞
0

dk kJ0(krh)

ˆ ∞
0

dξ χγ (ξ)
d

dξ

[
exp

(
ξ

2

)
Gβ (z, ξ)

]
,
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g(z) ≡ exp(−z/2)

1− κ exp(−z)
,

χγ (ξ) = σY γ ρ̃h(kIY γ) ρv

(
ξ − z′
λ̄Y γ

)
+ σζγ ρ̃h(kIζγ) Ψ0(ξ) ρv

(
ξ − z′
λ̄ζγ

)
,

(3.2.34)

Gβ (z, ξ) = β−1

[
exp

(
−z + ξ

2
β

)
− exp

(
−|z − ξ|

2
β

)]
, β =

√
1 + 4k2 ,

(3.2.35)

and address the interested reader to the Appendix A for details. In equation

3.2.33 J0 is the zero-order Bessel function of the �rst kind, rh is the magnitude

of the vector (x−x′, y−y′), and λ̄µ ≡ λµ Iµ (no summation-convention). The

expression 3.2.33 is a general representation of the cross-covariances CΨγ, and

its computation is achieved by carrying out two quadratures. The cross-

variance σΨγ(z) is derived by setting rh = 0 andz ≡ z′ into 3.2.33.

The head covariance CΨ is obtained multiplying 3.2.25 by Ψ1 (x′), and

averaging:

(3.2.36) LCΨ (x,x′) = q0
∂

∂z
[CΨY (x′,x) + Ψ0 (z)CΨζ (x′,x)] .

Notice that the cross-covariances CγΨ (x,x′) were replaced by CΨγ (x′,x)

since maintaining the order between x and x′ is crucial due to the non-

stationarity of CγΨ along the depth. The solution for CΨ is achieved similarly

to the previous case, and the �nal result is (Appendix A):

(3.2.37) CΨ(rh, z, z
′) = g (z) g (z′)

ˆ ∞
0

dk k J0 (k rh)

ˆ ∞
0

ˆ ∞
0

dξ dη·

·Σ (ξ, η)
∂2

∂ξ∂η

[
exp

(
ξ + η

2

)
Gβ (z, ξ)Gβ (z′, η)

]
,

(3.2.38) Σ (ξ, η) = σ2
Y IY ρ̃h(kIY )ρv

(
ξ − η
λ̄Y

)
+
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+σY ζIY ζ ρ̃h(kIY ζ) [Ψ0(ξ) + Ψ0(η)] ρv

(
ξ − η
λ̄Y ζ

)
+

+σ2
ζ Iζ ρ̃h(kIζ) Ψ0(ξ) Ψ0(η) ρv

(
ξ − η
λ̄ζ

)
.

Likewise, the head variance σ2
Ψ ≡ σ2

Ψ(z) is obtained by setting rh = 0, and

z ≡ z′ into 3.2.37.

Higher-order correction of the mean pressure-head. To compute the higher-

order correction 〈Ψ〉 = Ψ0 +〈Ψ2〉 of the mean head, one has to solve the equa-

tion 3.2.27 for the second-order correction Ψ2. Like before, such a task is eas-

ily achieved by means of the transformation Ψ2(x) =
√−q0

exp (−z/2)

Kr [Ψ0(z)]
Φ2(x)

which casts 3.2.27 into an Helmholtz equation, i.e.,

(3.2.39) ∇2Φ2 −
1

4
Φ2 = −√−q0 exp

(z
2

)[ ∂
∂z
L2 (x)− q−1

0 L′2 (x)

]
.

Taking the ensemble average into 3.2.39 provides the equation for 〈Φ2〉,
i.e.,

d2

dz2
〈Φ2 (z)〉 − 1

4
〈Φ2 (z)〉 = −√−q0 exp

(z
2

) d

dz
〈L2 (z)〉,(3.2.40)

(3.2.41) 〈L2 (z)〉 =
1

2
σ2
Y + Ψ0(z)σY ζ +

Ψ0(z)

2
[1 + Ψ0(z)]σ2

ζ+

+σΨY (z) + [1 + Ψ0(z)]σΨζ(z) + +
1

2
σ2

Ψ(z)+

− 1

q0

Kr(Ψ0)

[
1

2

d

dz
σ2

Ψ(z) +

〈
Y ′(x)

∂

∂z
Ψ1(x)

〉
+ Ψ0(z)

〈
ζ ′(x)

∂

∂z
Ψ1(x)

〉]
,

where we have accounted for the fact that 〈L′2(x)〉 = 0. Notice that, due

to the stationarity of the term L2 in the horizontal-plane (see eq. 3.2.28),

the function 〈Φ2〉 (and concurrently 〈Ψ2〉) depends upon the depth z, solely.

A similar conclusion was drawn both by [Zhang and Winter, 1998 ][242] via
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extensive MCs, and by [Indelman et. al., 1993 ][96] by means of analytical

tools. Thus, solving for 〈Φ2〉 and back substitution leads to

(3.2.42)

〈Ψ2 (z)〉 =
1

fκ(z)

{
〈L2(∞)〉[1− exp(−z)]− exp(−z)

ˆ z

0

dξ exp(ξ) 〈L2(ξ)〉
}
,

fκ(z) = 1− κ exp(−z).

It is convenient to represent the mean pressure-head as 〈Ψ(z)〉 = Ψ0(z) +

〈Ψ2 (z)〉 = Ψ0(z) Θ(z), where we have set Θ(z) = 1 + ψ(z) with

(3.2.43) ψ(z) =
〈Ψ2 (z)〉
Ψ0(z)

= q0
exp [−Ψ0(z)]

Ψ0(z)
·

·
{

exp(−z)

ˆ z

0

dξ exp(ξ) 〈L2(ξ)〉 − 〈L2(∞)〉[1− exp(−z)]

}
.

The utility of such a representation is that 〈Ψ〉 is expressed via the product
between Ψ0 (valid for a homogeneous formation) and a characteristic func-

tion Θ which "modi�es" Ψ0 according to the medium's heterogeneity. One

advantage related to the representation〈Ψ(z)〉 = Ψ0(z) Θ(z) is that it is in-

strumental to identify the statistical properties of a vadose zone. Indeed,

once 〈Ψ〉 has been estimated by the measurements of the pressure-heads at

di�erent locations, one can identify the statistical parameters pertaining to

the RSFs Y, Y ζ, and ζ by matching against to it.

The general expression of the normalized correction ψ allows one to investi-

gate the �ow behavior in the near and far �eld. More precisely, at large depths

one has ψ(∞) = 0, and concurrently 〈Ψ(∞)〉 ≡ Ψ0(∞)[1 + ψ(∞)] = ln(−q0),

which coincides with the result obtained by Russo [Russo, 1993 ][161] and

Severino [Severino and Santini, 2005 ][178] in the case of an unbounded do-

main. Instead, at the water-table(z = 0) it is easily shown from 3.2.43 (we

omit the algebraic derivations) that: ψ(0) = [〈L2(∞)〉−〈L2(0)〉]/κ <∞, and

therefore we recover that: 〈Ψ(0)〉 ≡ Ψ0(0) [1 + ψ(0)] = 0. This result is ex-

plained by noting that the boundary condition at z = 0 requires a �xed head,

and thus the heterogeneity does not a�ect the value of the pressure-head there

[Severino and Coppola, 2012 ][184]. These two asymptotics can be useful: i)
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in the practical applications (to design proper sampling-strategies), and ii) in

the modeling aspects (to validate more involved numerical codes).

Calibration versus Validation. We wish here to illustrate the application/

use of the theoretical results obtained so far. In particular, it is seen that

a relatively large number of input parameters, i.e. geometric means of the

saturated conductivity and the alpha-parameter as well as the related (cross)-

covariances, has to be preliminarily selected. While the statistical characteri-

zation of Y and ζ has been largely discussed and assessed (see e.g. the survey

exploited in [Rubin, 2003 ][158],and references therein), the cross-correlation

Y -ζ is still a matter of debate, and it deserves a thorough analysis. To this end,

we refer to a recently conducted unsaturated �ow experiment in a �eld [Sev-

erino et al., 2010, 2016a, 2016b][174, 195, 196], which is described brie�y

herein with special care to the identi�cation of the statistical quantities which

are relevant for the present study.

The �eld is located at the Ponticelli-site (Naples, Italy). The soil texture

was analyzed by sampling at several (randomly selected) locations across the

�eld. The resulting structure is that of a typical �andosol�: a structureless

sand with a small (lesser than a coarse-textured soil) bulk density % = (1.0±
0.1) g/cm3[Terribile et al., 2007; Comegna et al., 2013 ][211, 34]. Prior to

any analysis concerning the spatial distribution, it is instrumental to examine

the measurements of Y and ζ by means of conventional (univariate) statistics.

UNIVARIATE ANALYSIS OF Y AND ζ. The saturated conductivity Ks

was measured (by a permeameter working at constant head) upon ∼ 80 sam-

ples taken at two depths along a transect 50 m-long (1.25 m horizontal step)

excavated parallel to the experimental site. The measure of α was instead ac-

quired in the �eld by means of an internal test drainage (a general description

about such a test as well as the identi�cation procedure can be found in [Sev-

erinoet al., 2003; Gomez et al., 2009 ][190, 78]). More precisely, the �eld was

ponded by applying water in excess of the in�ltration rate. After two days of

continuous ponding (when steady state conditions were almost reached) wa-

ter's application was halted, and monitoring initiated. This latter consisted

of simultaneous measurements of the water content ϑ and the pressure head

Ψ (taken by TDR-probes and tensiometers, respectively) at three depths,

z = 0.30, 0.60, 0.90 m (from the soil surface), along the transect. Monitoring
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statistics Y ≡ lnKs ζ ≡ lnα
mean 2.30 −3.31

standard deviation 1.38 2.76· 10−1

coe�cient of variation 6.01· 10−1 8.35· 10−2

D 0.882 0.715
Table 3.2.1. Estimates of the: i) mean, ii) standard devia-
tion, and iii) coe�cient of variation together with the D - test
of normal (null) hypothesis

For comparison purposes, the reference value at the 5%-level of con�dence is
in the circular brackets. Values of Ks and α are expressed in cm/h and

cm−1.

was interrupted 77 days later, when drainage was evolving too slowly to make

it impossible to further collect signi�cantly di�erent pairs of (ϑ,Ψ). The ex-

perimental hydraulic conductivity curve K(ex) ≡ K(ex) (Ψ) was determined by

following the method suggested by [Basile et al., 2003 ][11]. Hence, the value

of α was determined by matching the theoretical curve Kr ≡ Kr(Ψ) (second

of eq. 3.2.5) against to K(ex)(Ψ) divided by the Ks-value measured upon the

sample taken at the same depth (details can be found in [Comegna et al.,

2006 ][35]).

The empirical (symbols) cumulative distribution function (CDF) of Y ≡
lnKs (blue) and ζ ≡ lnα (red) along with the theoretical (continuous) �tted

normal (CDF)s are shown in the Figure 3.2.3. The observed good agreement

between empirical and theoretical CDFs is quantitatively con�rmed by the

Kolmogorov-Smirnov test (Table 3.2.1). To summarize, both ζ and Y can be

considered as normally distributed with the latter exhibiting a larger variabil-

ity than the former. It is worth noting that the intervals of (5%)-con�dence

of the quantity (σu/µu)
2 (being u either Ks or α) as determined i) by the raw

u-data, and ii) by the expression exp (σ2
lnu) − 1 (which is known to apply to

log-normally distributed random variables) are:

Thus, the overlapping between the intervals of con�dence further demon-

strates that the log-transforms of Ks and α can be regarded (up to the ex-

perimental errors) as normally distributed random variables.
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Figure 3.2.3. Cumulative distribution functions of mea-
sured (symbols) Y ≡ lnKs (blue) and ζ ≡ lnα (red)

Continuous lines represent the respective �tted theoretical CDFs. The
saturated conductivity Ks and the α-parameter are expressed in cm/h and

cm−1, respectively.

(σu/µu)
2 lnKs lnα

u-data [0.697; 2.32] [5.27; 10.4] · 10−2

exp (σ2
lnu)− 1 [1.59; 9.85] [5.38; 10.5] · 10−2

Table 3.2.2. Intervals of (5%)-con�dence of (σu/µu)
2 as de-

termined by the u-data, and by the expression exp (σ2
lnu)− 1

In order to investigate possible scale-issues the saturated conductivity Ks

was measured in the �eld (Auger-hole device), as well. The intervals of 5%-

con�dence (see Table 3.2.3) for the estimates of the mean and variance of

Y ≡ lnKs demonstrate that there is no statistical di�erence between the

characterization of Y at laboratory and at �eld scale. This is explained by

recalling that the sampling volume of the Auger-hole device is approximately

of the same size (details are in [Severino et al., 2010 ][174]) of the soil samples
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Scale 〈Y 〉 σ2
Y Number of data

laboratoy (199; 261) · 10−2 (142; 267) · 10−2 82
�eld (227; 293) · 10−2 (150; 287) · 10−2 70

Table 3.2.3. Intervals of 5%-con�dence for the estimates of
the mean and variance of Y at laboratory and �eld scale

(see also discussion in [Fallico et al., 2016 ][60]). The usefulness of using labo-

ratory Ks-measurements stems from the fact that these were more numerous

than those at �eld scale (Table 3.2.3).

Likewise, the support volumes attached to the devices (i.e. time domain

re�ectometry, and piezometers) used in situ to detect the pairs (θ,Ψ) at the

several locations are approximately of the same size of the soil samples taken

from the site [Comegna et al., 2013 ][34]. As a consequence, the measurements

of the α-parameter can be regarded de facto as local ones (comparable with

those of Ks at laboratory scale). Of course, matters would result completely

di�erent if one aims at inferring the statistics of α (or of any other random

variable) by using the ensemble average of the �ow variables [Severino et al.,

2003 ][190]. In this case, due to the completely di�erent size of the involved

volume support, the comparison between local and �eld scale measurements

should also account for the proper upscaling [Russo, 2003; Severino and San-

tini, 2005; Severino and Coppola, 2012 ][164, 178, 184].

To investigate whether ζ and Y can be considered cross-correlated, we

have used the t-Student test with t ' rζY
√

(n− 2)/(1− r2
ζY ), being rζY the

estimate of the correlation coe�cient, i.e.,

(3.2.44) rζY ≡
σζY
σζ σY

'
∑

i(ζi − ζ̄)(Yi − Ȳ )√
(
∑

i ζ
2
i )(
∑

i Y
2
i )

= 0.143, (i = 1, · · · , 82).

Since it yields t = 1.292 (n = 82), the null hypothesis (H0: ρζY ≡ 0) can

not be rejected till to the 10% of con�dence (it is remained that 1.292 ' t0.10).

The residuals (ζ ′, Y ′) along with the regression-line and the 95% con�dence-

limits are displayed in Figure 3.2.4. The weak correlation, which is detected

at a �rst glance (by the modest slope of the regression-line), is also con�rmed

by the Fisher-test (p -value ∼ 5.72 %). However, for the experiment at stake,

such a correlation is not statistically signi�cative (at the 5% of con�dence).
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Figure 3.2.4. Residuals of Y versus residuals of ζ

. The linear regression and the associated 95% con�dence-limits are
represented by solid and dashed lines, respectively.

The same �ndings were observed into similar previous studies [Wierenga et

al., 1991; Russo and Bouton, 1992; Russo et al., 1997 ][233, 165, 168].

More generally, even if a positive correlation may result important for the

variance of the unsaturated conductivityK ≡ K(Ψ) [Russo et al., 1997 ][168],

it is worth noting here that, into studying the impact upon the �ow and trans-

port processes, one can still regard (along the lines suggested by Russo [Russo

and Bouton, 1992 ][165]) Y ≡ lnKs and ζ ≡ lnα as uncorrelated random

�elds (the weak positive correlation notwithstanding). More important is the

fact that in coarser-textured soils (like the one at the Ponticelli site) the cross-

correlation is found of scarce importance [Ragab and Cooper, 1993a, 1993b;

Tartakovsky et al., 1999 ][145, 144, 209]. Finally, in the case of the Ponti-

celli site the α-parameter can be regarded as a given constant (see below),

and this further underpins the neglect of the Y - ζ correlation. Thus, for all

these reasons we feel comfortable disregarding the cross correlation between

Ks and α.
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Though our general theory allows one dealing with a variance of ζ of the

same order of that of Y , the soil properties of the Ponticelli site (see Table

3.1.1) show that σ2
ζ/σ

2
Y = O (10−2), and therefore one can disregard the vari-

ability of the former as compared with that of the latter. This is tantamount

to assume α everywhere equal to αG. Hence, we can limit our analysis to the

zero-order approximation in σζ , and to the second-order approximation in σY .

SPATIAL HETEROGENEITY-STRUCTUREOF Y . The problem of quan-

tifying the spatial structure (autocorrelation) of Y is rather complicated, even

when measurements are numerous. The procedure should involve several

steps: i) an hypothesis about the functional model of the covariance, ii) es-

timates of the parameters of such a model, and iii) a model validation test

[Russo and Bouton, 1992; Russo et al., 1997 ][165, 168]. The problem of

selecting the most appropriate model remains to some extent in the realm

of the practical applications [Rubin, 2003 ][158]. The prevailing approach is

the pragmatic one: select a model for its practicality/versatility as well as its

performance in similar situations, determine the parameter(s), and check sub-

sequently its usefulness by matching against to real data. Thus, by adopting

this stand point, and in line with the model structure 3.2.6, for the horizontal

autocorrelation (for simplicity hereafter denoted by ρh) we select the Gaussian

model, i.e.,

(3.2.45) ρh(xh) ≡ exp

[
−π
( xh

2 I

)2
]
,

with IY ≡ I. Hence, the horizontal integral scale was estimated by consid-

ering the two sampling depths, separately (Figure 3.2.5). The results were

nevertheless quite similar leading to I ∼ 20 m. Note that the relatively large

value of the horizontal integral scale I is not surprising due to the strati�ed

nature of the vadose zone at stake, and it signi�cantly di�ers from its other

counterparts [Russo and Bouton, 1992; Russo et al., 1997 ][165, 168]. It has

to be noted that, given the ratio L/I ' (50 m)/(20 m) between the transect

length-scale L and I, the �ow domain can not be regarded �into a strict sense�

as ergodic. In fact, only when the �ow domain is large enough with respect

to the integral scales of the RSF, the spatial average of the single (available)

realization can be replaced with the ensemble mean. Otherwise, the spatial
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Figure 3.2.5. Horizontal autocorrelation function for the
log-conductivity Y

. Symbols pertain to the measured values, whereas the continuous line refers
to the Gaussian model 3.2.45 with I ≡ 20.5m.

average is only an estimate of the ensemble mean, which in turn is a�ected

by uncertainty. In particular, for a domain of �nite size such an uncertainty

increases with both the coe�cient of variation and the size of the integral

scales of the spatially variable hydraulic properties.

However, a previous study conducted [Comegna and Basile, 1994 ][36]

about the spatial distribution of the soil hydraulic properties in the same site

(and involving a much larger domain) has lead to a similar statistical char-

acterization. Thus, given this extra information, we feel comfortable about

the fact that the domain at the Ponticelli site can be regarded as approxi-

mately ergodic. Last, as it will be clearer later on, the good matching between

theoretical and experimental values provides (among the others) aposteriori

justi�cation of the presumed ergodicity (the numerous approximations, source

of uncertainties and measurement-errors notwithstanding).
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To complete the spatial characterization of Y at the Ponticelli site, the

vertical autocorrelation (hereafter denoted by ρv) has to be identi�ed. How-

ever, the scarce availability of Ks-measurements along the vertical does not

enable one to identify ρv by the same procedure which we used for the hori-

zontal autocorrelation. Thus, we used geological information to gain insight

about the shape of ρv. More precisely, the analysis of the texture suggests

that the soil is a sedimentary structureless sand [Severino et al., 2010 ][174].

This is also con�rmed by the geological pattern of the formation: subsequent

depositions of di�erent (erupted) materials [Comegna et al., 2010 ][33], and

therefore the soil can be sought as a collection of sedimentary lenses each

one exhibiting di�erent Y -values from one lense to the other. This is a typ-

ical feature of those formations where the vertical correlation scale is found

to be much lesser than the horizontal one [Russo and Bresler, 1981 ][166].

In this case the soil property is characterized by a complete lack of vertical

correlation, thus authorizing to replace the vertical autocorrelation with a

Dirac distribution, i.e. ρv ∼ δ. Such an approximation (also known as δ-

correlation) was adopted in previous studies pertaining to both the vadose

zone [Indelman et al., 1993; Severino and Santini, 2005; Severino and Cop-

pola, 2012 ][96, 178, 184], and the aquifers [Fiori et al., 1998; Indelman and

Dagan, 1999; Severino, 2011; Severino et al., 2012; Severino and Bartolo,

2015 ][65, 97, 181, 179, 175]. We apply the statistical characterization ob-

tained by dealing with the �rst meters to the entire �ow domain (∼ 40m).

Such a choice is justi�ed on the basis of the available geological information

[Terribile et al., 2007 ][211] suggesting that the soil at stake can be thought

as a continuous sequence of thin strati�ed (mainly erupted) materials of the

same type of those detected at the shallow depths. At any rate, from a general

point of view, it is reminded that any statistical characterization of the soil's

hydraulic properties based upon shallow measurements is not enough for the

entire �ow domain. A rigorous (methodological) approach would require a

dense sampling campaign at all the depths (similarly to [Russo and Bouton,

1992; Russo et al., 1997 ][165, 168]).

With the input parameters and the autocorrelation functions identi�ed

so far, we are in position to compute the (cross)-variances σΨY and σ2
Ψ. By

omitting the (very lengthy) algebraic derivations, the �nal result is:
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σΨY (z) = σΨY (∞)
FΨY (z)

fκ(z)
, σ2

Ψ (z) = σ2
Ψ (∞)

FΨ(z)

f 2
κ(z)

(3.2.46)

FΨY (z) = 1− Λ(2z)

Λ(0)
(1 + 2πz2) +

2z

Λ(0)
exp(−z),(3.2.47)

FΨ(z) = 1− Λ(2z)

Λ(0)
{1 + 2πz[1− exp(−z)]}+

2

Λ(0)
[exp(−z)− exp(−2z)],

(3.2.48)

being

Λ (a) = exp

[
1 + (πa)2

4π

]
erfc

(
1 + πa

2
√
π

)
,

whereas

σΨY (∞) = −Λ(0)

2
λ Iσ2

Y ,

σ2
Ψ (∞) =

Λ(0)

2
λ (IσY )2 ,

are the far �eld (large z) values of 3.2.46. Note that we have set λY ≡ λ, for

simplicity.

It is seen that the functions ωΨY (z) ≡ σΨY (z) /σΨY (∞) and ωΨ(z) ≡
σ2

Ψ (z) /σ2
Ψ (∞) are weights driving the transition (see 3.2.6) of the (cross)

variance 3.2.46 from the water-table, where ωΨY (0) = ωΨ(0) = 0, to the far

�eld, where ωΨY (∞) = ωΨ(∞) = 1. Note that the rate of the transition from

the water-table to the far �eld with the in�ltration �ux q0 is regulated by

the term fκ ≡ fκ(z), solely. Due to its multiplicative structure, the quantity

κ exp(−z) is signi�cantly di�erent from zero only when z � 1, i.e. close to

the water-table. To the contrary, away from the water-table (i.e. z � 1) one

has fκ ∼ 1, in agreement with Severino and Santini [Severino and Santini,

2005 ][178].

We are now in position to complete the characterization of the hetero-

geneity structure of the �eld at stake by identifying the anisotropy ratio λ by

means of the variance σ2
Ψ of the pressure head. This implies that the steady

state Ψ-measurements are required, and therefore before going further it is

worth exploiting the experimental data set which has been used for such a

purpose. Indeed, during another stage of the experimental campaign (aiming
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Figure 3.2.6. Dependence of the weight-functions (horizon-
tal axe) ωΨY -ωΨ upon the depth z (normalized by α−1

G =
27.4cm)

. The parameter κ associated to the in�ltrating non dimensional �ux
(q0 = −4.21 · 10−2) is κ = 1 + q−1

0 = −22.8.

to monitor a solute transport process), the plot was irrigated (4.2 ·10−1 cm/h)

until stationary (steady) values of the pressure head Ψ (and water content,

as well) were detected at the sampling depths along the trench. By this time,

pressure-head values were read at the tensiometers along the trench, and

the statistical (dimensionless) moments, which are of interest for the present

study, are summarized in the Table 3.2.4.

Since the sampling depths lie very far from the water-table (details are

in the caption of Table 3.2.4), it yields from 3.2.6 that ωΨ(z) ' ωΨ(∞) ≡ 1,

and concurrently one can use the asymptotic value of the head variance to

estimate the anisotropy ratio λ.

The legitimacy of using the asymptotic σ2
Ψ (∞) for calibration purposes

is corroborated by the fact that the far �eld Ψ0(∞) of the mean head lies

within the interval of con�dence of the mean pressure-heads (Table 3.2.5).

The anisotropy ratio λ is approximately 2.4 · 10−3. It is interesting to note



3.2. NONSTATIONARY UNSATURATED STEADY FLOWS 75

z Ψ (−) σΨY (−) σ2
Ψ (−) N

145 −3.60 −6.88· 10−2 7.60 35
144 −2.87 −9.55· 10−2 12.3 37
143 −2.52 −1.30· 10−2 15.5 36

Table 3.2.4. Steady-state values of the experimental spatial variables

i) mean, Ψ, of the pressure head;
ii) cross-variance, σΨY ;
iii) head-variance, σ 2

Ψ;
iv) number of samples, N ;

at the three sampling depths lying at: i) z = 40.0− 0.9 = 39.1m (the
deepest), ii) z = 40.0− 0.6 = 39.4m (intermediate), and iii)

z = 40.0− 0.9 = 39.7m (the shallowest) above the water-table which is 40 m
deep. Moments, i.e. σΨY - σ2

Ψ, and depths, i.e. z, have been made
dimensionless by adopting α−1

G = 27.4 cm as length-scale.

z Ψlower Ψ0(∞) Ψupper

145 −4.1 −3.2 −3.1
144 −3.5 −3.2 −2.3
143 −3.2 −3.1 −1.9

Table 3.2.5. Lower and upper limit of the interval of con�-
dence of the mean pressure head

Lower, i.e. Ψlower ≡ Ψ− σΨ/
√
N , and upper, i.e. Ψupper ≡ Ψ + σΨ/

√
N ,

limit of the interval of con�dence of the mean pressure head as determined
from data at the three sampling depths (Table 3.2.2), along with the

asymptotic mean value Ψ0(∞) ≡ ln (−q0) = ln(4.21 · 10−2). Pressure-head
values and depths have been made dimensionless by adopting α−1

G = 27.4 cm
as length-scale.

that such an estimate implies that Iv = λ I ∼ 5 cm, a value which is in line

with the geological information [Comegna et al., 2010 ][33] about the thickness

of the strata, i.e. O(10 cm), detected at the experimental site.

In the Figure 3.2.7 we have depicted the far �eld value of the pressure-

head variance (continuous red line) as calibrated by means of the experimental

(red symbols) values. In the same �gure we also compare the far �eld cross

variance (continuous black line) against to the experimental (black symbols)
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Figure 3.2.7. Distribution of the cross-variance σΨY

(black), and the head-pressure variance σ2
Ψ (red) along the

depth z (from the water-table)

Symbols refer to the experimental measurements, whereas continuous lines
pertain to the far �eld values of equation 3.2.46.

values which where not used for the above calibration. Note that the devia-

tions of the experimental far �eld σΨY and σ2
Ψ from their theoretical (i.e. con-

stant) counterparts lie within the errors of measurements of the tensiometers

[Comegna et al., 2006, 2010 ][35, 33]. Thus, the matching between theoretical

and experimental σΨY represents a satisfactory validating benchmark.

After determining all the relevant quantities required by the �ow model, we

are in position to make predictions upon the behavior of the FVs in the close

vicinity of the water-table. To this end, we wish to point out here that direct

measurements would have been tremendously time consuming and expensive,

and most of them probably even impossible since the water-table is 40 m deep.

This further underpins the usefulness of our model to predict the behavior of

�ow (and transport) variables by relating shallow measurements (which can

be carried out with a relatively ease) to depths of the vadose zone which are

practically unaccessible.
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Discussion. We wish to illustrate how the developed stochastic model can

be used to grasp the behavior of the �ow variables close to the water-table.

The input parameters are those determined by the set of real data pertaining

to the Ponticelli site (Naples, Italy).

Due to its importance in the applications (e.g. quantifying the recharge

of the aquifers and/or determining the solute mass arrivals at the water-

table), we mainly concentrate the present discussion upon the uncertainty

quali�cation of �ux q along the depth z. To compute the variance of this

latter, the starting point is the �rst-order approximation 3.2.24, which is re-

written here as

(3.2.49) q(1)(x) ' −Kr(Ψ0)∇Ψ1(x) + q0 [Ψ1(x) + Y ′(x)] ez,

to account for the approximations which we have shown to be valid for the

Ponticelli-site. To derive the variance of the �ux in the horizontal plane, we

take advantage from the stationarity of the �ow variables there. Thus, we

write the horizontal component q
(1)
h of the �uctuation 3.2.49 by means of its

spectral (Fourier transform) representation, i.e.,

(3.2.50) q
(1)
h (xh, z) = Kr(z)

ˆ
dk

2π
k Ψ̃1(k, z) exp(−k · xh) ,

being

(3.2.51)

Ψ̃1(k, z) = −q0
exp(−z/2)

Kr(z)

ˆ ∞
0

dξ Ỹ ′(k, ξ)
d

dξ

[
exp

(
ξ

2

)
Gβ(z, ξ)

]
,

the horizontal (2D) Fourier transform of the pressure-head �uctuation. For

ease of notation we have set Kr(Ψ0) ≡ Kr(z). Taking the square of 3.2.50,

and accounting for the property

(3.2.52)
〈
Ỹ ′(k1, z1) Ỹ ′(k2, z2)

〉
= 2πλσ2

Y δ(k1 + k2)ρ̃h(k2)δ(z1 − z2) ,

leads (after introducing polar coordinates) to:
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σ2
qh

(z) = λ (q0σY )2 exp(−z)

ˆ ∞
0

dk k3ρ̃h(k)Gβ(z, z),(3.2.53)

Gβ(z, ζ) ≡
ˆ ∞

0

dξ
d

dξ

[
exp

(
ξ

2

)
Gβ(z, ξ)

]
d

dξ

[
exp

(
ξ

2

)
Gβ(ζ, ξ)

]
.(3.2.54)

Note that, due to the stationarity of the �ux in the isotropy (horizontal)

plane, the variance 3.2.53 does not depend upon xh. To compute Gβ(z, z), we

preliminarily note that upon integrating by parts in 3.2.54 it yields

(3.2.55) Gβ(z, ζ) = −
ˆ ∞

0

dξ exp

(
ξ

2

)
Gβ(z, ξ)

d2

dξ2

[
exp

(
ξ

2

)
Gβ(ζ, ξ)

]
.

Then, by recalling that Gβ(ζ, ξ) is such that
d2

dξ2
Gβ(ζ, ξ)− β2

4
Gβ(ζ, ξ) =

δ(ξ − ζ), one has

(3.2.56)
d2

dξ2

[
exp

(
ξ

2

)
Gβ(ζ, ξ)

]
=

= exp

(
ξ

2

)[
β2 + 1

4
Gβ(ζ, ξ) +

d

dξ
Gβ(ζ, ξ) + δ(ξ − ζ)

]
,

and therefore substitution into the last of 3.2.55 gives

(3.2.57)

Gβ(z, ζ) = − exp(ζ)Gβ(z, ζ)− β2 + 1

4

ˆ ∞
0

dξ exp(ξ)Gβ(z, ξ)Gβ(ζ, ξ)+

−
ˆ ∞

0

dξ exp(ξ)Gβ(z, ξ)
d

dξ
Gβ(ζ, ξ) .

The function Gβ(z, z) is now computed by taking the limit ζ → z into

3.2.57, i.e.,

(3.2.58) Gβ(z, z) = lim
ζ→z
Gβ(z, ζ) = − exp(z)Gβ(z, z)+

−β
2 + 1

4

ˆ ∞
0

dξ exp(ξ)G2
β(z, ξ)− 1

2

ˆ ∞
0

dξ exp(ξ)
d

dξ
G2
β(z, ξ) ,
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and carrying out integration by parts in the last integral, to have

(3.2.59) Gβ(z, z) = − exp(z)Gβ(z, z)− β2 − 1

4

ˆ ∞
0

dξ exp(ξ)G2
β(z, ξ).

Evaluation of the straightforward integral on the right hand side of 3.2.59

leads to

(3.2.60) Gβ(z, z) =
1

2
{exp(z)[β + 2− 2 exp(−βz)]− β exp(−βz)} .

Hence, the variance 3.2.53 reads as

σ2
qh

(z) = σ2
qh

(∞)ωqh(z) ,

ωqh(z) ≡ 1− exp(−z) + 2z
(4π2z2 + 6π − 1)Λ(2z) + 2(1− 2πz) exp(−z)

14 + (6π − 1)Λ(0)
,

(3.2.61)

being σ2
qh

(∞) =
π

8
[14 + (6π − 1)Λ(0)]λ (q0 σY )2 the far �eld (large z). Like

above, it is seen (Figure 3.2.8) that the function ωqh ≡ ωqh(z) is a depth

dependent weight describing the transition of σ2
qh

(z) from the water-table,

where ωqh(0) ≡ 0, till to its far �eld, corresponding to ωqh(∞) ≡ 1. It

is interesting to note that σ2
qh
6= 0 (for z > 0) although the mean �ux is

purely vertical everywhere in the �ow domain. This is due to the fact that,

unlike the mean, the �uctuation of the �ux (and therefore the variance) has

a three dimensional structure. Instead, the vanishing of σ2
qh

at the water-

table (z = 0) is explained by the deterministic nature of the head there which

requires Ψ̃1(k, 0) ≡ 0 (see 3.2.50-3.2.51).

The variance σ2
qz ≡

〈
q

(1) 2
z

〉
of the vertical �ux is computed by the same

token. Thus, starting from the �uctuation

(3.2.62) q(1)
z (x) = −Kr(z)

∂

∂z
Ψ1(x) + q0 [Ψ1(x) + Y ′(x)] ,



3.2. NONSTATIONARY UNSATURATED STEADY FLOWS 80

!"! !"# !"$ !"% !"& '"!

!"!

!"'

!"#

!"(

!"$

!")

z (m)

ωqh(z)

Figure 3.2.8. Dependence of the weight function ωqh ≡
ωqh(z) (horizontal axe) upon the dimensional depth z (verti-
cal axe)

the variance of the vertical �ux reads as

σ2
qz(z) = K2

r (z)

〈
∂

∂z
Ψ1(x)

∂

∂z
Ψ1(x)

〉
+ q2

0

[
σ2
Y + 2σΨY (z) + σ2

Ψ(z)
]

+

(3.2.63)

−2 q0Kr(z)

[
1

2

d

dz
σ2

Ψ(z) +

〈
Y ′(x)

∂

∂z
Ψ1(x)

〉]
.

To compute the two still left ensemble averages, we make use of the spec-

tral representation of 3.2.51, i.e.,

(3.2.64) Ψ1(xh, z) ≡
ˆ

dk

2π
exp(−k · xh)Ψ̃1(k, z) =

= g(z)

ˆ ∞
0

dξ

ˆ
dk

2π
exp(−k · xh) Ỹ ′(k, ξ)

d

dξ

[
exp

(
ξ

2

)
Gβ(z, ξ)

]
,

leading to
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(3.2.65)

〈
∂

∂z
Ψ1(x)

∂

∂z
Ψ1(x)

〉
=

= λσ2
Y g

2(z)

[
L2(z) Υ(z, ζ) + 2L(z)

∂

∂ζ
Υ(z, ζ) +

∂2

∂z∂ζ
Υ(z, ζ)

]
ζ≡z

,

〈
Y ′(x)

∂

∂z
Ψ1(x)

〉
=

λσ2
Y

4 fκ(z)
F(z),(3.2.66)

(3.2.67) F(z) = [4 + Λ(2z)− Λ(0)]L(z)+

+π
[(

1 + 2z + 2πz2
)

Λ(2z) + Λ(0)
]
− (1 + 2πz) exp(−z)− 5 ,

where

L(z) ≡ d

dz
ln [g(z)] = − 1 + κ exp(−z)

2[1− κ exp(−z)]
,

and

Υ(z, ζ) ≡
ˆ ∞

0

dk k ρh(k)Gβ(z, ζ) .

It is therefore clear that the crux of the matter to derive the variance

3.2.63 is the computation of the Υ-function as well as its derivatives. With

the details in the Appendix B, eq. 3.2.63 reads as

σ2
qz(z)

(q0 σY )2
= 1 + 2

σΨY (z)

σ2
Y

+
σ2

Ψ(z)

σ2
Y

[
1 + fκ(z)

d

dz
lnσ2

Ψ(z)

]
+(3.2.68)

−λ
8

[
4L2(z)Υ1(z) + 4L(z)Υ2(z) + Υ3(z)− 4F(z)

]
,

being the Υi-functions given in eqs 3.2.81-3.2.82 of the Appendix B. In par-

ticular, the far and near �eld of σ2
qz are:

σ2
qz(∞)

(q0 σY )2
= 1− λ

4

[
11 + 7π +

3

2
(2π2 − π + 1)Λ(0)

]
,(3.2.69)
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Figure 3.2.9. Normalized variance σ2
qz(z)/σ2

qz(∞) of the
vertical speci�c �ux as a function of the (dimensional) depth
from the water-table lunder a few values of the dimensionless
in�ltration rate q0

Thick dot-line pertains to the normalized in�ltration rate during the
experiment at the Ponticelli site.

σ2
qz(0)

(q0 σY )2
= 1− λ

4
[14− πΛ(0)] ,

respectively. It is seen that σ2
qz(∞) < σ2

qz(0) which is due to the fact that at

the groundwater (z = 0) particles move much more freely (due to the absence

of retention there) as compared with the unsaturated zone, and concurrently

particles experience larger deviation from the mean vertical velocity, therefore

giving raise to a larger variance. The normalized variance σ2
qz(z)/σ2

qz(∞) of

the vertical speci�c �ux along z (expressed in m) is depicted in the Figure

3.2.9.

Close to the water-table the �uctuation Ψ(1) of the pressure head un-

dergoes to the largest variations, as it is clearly detected by the pattern of

ωΨ in the Figure 3.2.6, and concurrently so does (see 3.2.49) the �uctuation

q
(1)
z ≡ qz − q(0)

z . This explains why the major source of uncertainty (i.e. large
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Figure 3.2.10. Distribution of the scaled head-factor
ψ(z)/σ2

Y as computed from equation 3.2.43, and accounting for
the data of the Ponticelli site along the dimensional depth z
from the water-table (z = 0), and a few values of the dimen-
sionless in�ltration rate q0

Thick dot-line pertains to the normalized in�ltration rate (i.e.
q0 = −4.21 · 10−2) during the experiment at the Ponticelli site.

σ2
qz) of the vertical �ux is concentrated next above the water-table. Such an

out-coming is also in agreement with the large time limit of the numerical

results of Ferrante and Yeh [Ferrante and Yeh, 1999 ][64]. Furthermore, it is

worth reminding that the in�ltrating �ux q0 is the upper boundary condition

that, being at z →∞, does not signi�cantly impact the behavior of the vari-

ance of the vertical speci�c �ux at z = 0. This explains the scarce sensitivity

of σ2
qz to the in�ltrating �ux q0 close to the water-table (see also the discussion

in [Wang et al., 2009 ][223]).

To quantify the distortion e�ect upon the mean head 〈Ψ〉 as determined by

the heterogeneity of the Ponticelli's soil, in the Figure 3.2.10 we have depicted

the quantity ψ(z)/σ2
Y versus the (dimensional) depth from the water-table.

Results show that ψ decreases with decreasing q0. In particular, the result:



3.2. NONSTATIONARY UNSATURATED STEADY FLOWS 84

ψ(0) = −σ2
Y

λ

2κ

[
πΛ(0) +

1 + κ

1− κ

]
> ψ(∞) ≡ 0 ,(3.2.70)

(it is reminded that κ ≤ 0) is explained by the fact that close to the water-

table the pressure head attains the highest values, and therefore ψ results

larger than its far �eld. It is worth reminding that a utility of the de�nition

3.2.43 is that one can �lter out from the second-order correction 〈Ψ2(z)〉
the impact of the zero-order one Ψ0, this latter being highly sensitive to

the in�ux q0 (see Figure 3.2.2), and concurrently ψ accounts exclusively for

the heterogeneity of the vadose zone.This explains the slight dependence of

ψ ≡ ψ(z) (Figure 3.2.10) upon the magnitude q0. Of course, to recover the

e�ective dependence of 〈Ψ2(z)〉 upon the in�ltration �ux, the depth, and the

medium's heterogeneity, one has to consider the product ψ(z)Ψ0(z).

The distance at which stationarity is reached is roughly 3m, similarly

to σ2
qz (see Figure 3.2.9). An analogous conclusion was achieved by [Zhang

and Winter, 1998 ][242]. An important (often overlooked) question is about

the asymptotic nature of the perturbation expansions 3.2.8. In fact, for the

perturbation expansion 〈Ψ〉 = Ψ0 + 〈Ψ2〉 to be asymptotic, it is necessary

that 〈Ψ2〉 � Ψ0, a condition which, from eq. 3.2.43, is equivalent to ψ � 1.

Hence, it is seen (Figure 3.2.10) that ψ/σ2
Y . 10−2 (any z and q0), and

therefore, as far as the heterogeneity of Y is accounted for, our solution for

〈Ψ〉 is accurate till to σ2
Y = O(1). In other words, although the perturbation

expansion 3.2.8 is nominally restricted to mildly heterogeneous vadose zones,

it works de facto quite well for relatively highly heterogeneous unsaturated

porous formations (in analogy to what is observed in the aquifers, see e.g.

[Fiori et al., 2010 ][66]). Similar conclusions were drawn by [Tartakovsky et

al., 1999 ][209] for a one dimensional vadose zone.

Conclusions. We have developed a stochastic model for three dimensional

steady �ows in the vadose zone accounting for the presence of the water-table.

The system the governing equations is solved at �rst-order of approximation

in the variances of the log-transforms of: i) the saturated conductivity Ks,

and ii) the α-parameter of the Gardner model. Very general expression of the

statistical (second-order) moments of the pressure head and speci�c �ux are

then obtained. These moments are expressed into analytical (closed form)
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expression which can be easily evaluated once the statistical structure of the

above soil parameters is speci�ed. One of the main result of the present

paper is the general representation 〈Ψ〉 = Ψ0(z)Θ(z) with Θ(z) = 1 + ψ(z).

The term ψ has been derived in a closed form which is easily evaluated after

specifying the shape of the various correlation functions 3.2.6. In particular,

it is shown that at large distances one has ψ(∞) = 0, and concurrently

〈Ψ(∞)〉 ≡ ln(−q0), which coincides with the result valid for an unbounded

vadose zone. Instead, at the water-table it yields ψ(0) <∞, and therefore we

recover 〈Ψ(0)〉 ≡ 0, that is understandable due to the deterministic nature

of the pressure head at the water-table. The overall utility of the proposed

model is that it enables one to assess, into a simple and quick manner, the

impact of the water-table upon the nonstationary behavior of the FVs, by

providing, in particular, explicit relationships between the input parameters

and the model output.

Besides the general relevance, results of the present paper are shown to be

useful toward the practical applications. Indeed, the model is tested against a

recently conducted �ow experiment in the vadose zone [Comegna et al., 2010;

Severino et al., 2010, 2016 ][33, 196, 174]. We use independent (no calibra-

tion) univariate analysis to identify the mean, and variance of Y = lnKs and

ζ = lnα. In particular, the signi�cantly small (∼ 2 two orders of magnitude)

variance of ζ as compared with that of Y authorizes limiting our analysis to

the zero-order approximation in σζ , and to the second-order approximation in

σY . By using the same data set, we determine the horizontal integral scale I

pertaining to Y , whereas to identify the anisotropy ratio λ we have used three

batteries of (shallow) steady state measurements of the pressure head Ψ. To

check the realibility of the estimated value of λ, we have compared the exper-

imental cross-variance Ψ-Y as determined by independent (i.e. not used for

calibration purposes) data against to the theoretical asymptotic cross-variance

σΨY (∞). The very satisfactory comparison (combined with prior geological

informations) with the measurements corroborates the achieved results.

Once the input soil properties are identi�ed, we have analyzed the �ow

behavior close to the water-table. The listed below major conclusions were

achieved:
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(1) the in�ltrating �ux q0 and the integral scale I impact the stationary

values of the speci�c �ux (qh, qz)
>, whereas they have a limited in�u-

ence upon the distance from the water-table at which such stationary

values are attained;

(2) from the application point of view, one can estimate the thickness of

the �ow domain where the nonstationary is dominant by means of a

1D Richards equation (i.e. valid for the vertical mean pressure head

〈Ψ〉).

Although we have limited the discussion to the data of the Ponticelli's ex-

periment, the vadose zone �ow model derived in the present study is rather

general. Thus, one can assess the impact of: i) the spatial variability of the

ζ-parameter, ii) the cross-correlation Y - ζ that in some circumstances may re-

sult relevant [Russo et al., 1997 ][168], and iii) the various correlation length-

scales. These studies are topics of ongoing researches. Finally, we also hope

that our results will be bene�cial for other theoretical/experimental studies

dealing with �ow (and transport) under similar conditions.

APPENDIX A: derivation of CΨγ and CΨ. We preliminarily switch into

3.2.32 to the new variable rh = xh − x′h ≡ (x − x′, y − y′) ∈ R2, and subse-

quently take the (2-D) Fourier transform:

f̃ (k) = (2π)−1

ˆ
drh exp (jk · rh) f (rh) ,

in the horizontal plane rh ∈ R2, to have:

(3.2.71) Lk2 Φ̃(k, z, z′) = −√−q0 exp
(z

2

) d
[
σ̄Y γ ρ̃h(kIY γ) ρv

(
z − z′
λ̄Y γ

)
+

+σ̄ζγ Ψ0(z) ρ̃h(kIζγ) ρv

(
z − z′
λ̄ζγ

)]
,

where we have set Lα ≡ d2

dz2
−
(
α + 1

4

)
, σ̄ηγ ≡ σηγIηγ and λ̄ηγ ≡ ληγIηγ (η =

Y, ζ). Thus, in the mixed domain {(k, z) : k ∈ R2, z > 0} the resulting ODE is

solved by the Green function 3.2.35, solution of the problem: Lk2 Gβ(z, z′) =

δ(z − z′), to end up (after integrating by parts) with
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(3.2.72) C̃Ψγ (k, z, z′) = g (z)

ˆ ∞
0

dξ

[
σ̄Y γ ρ̃h(kIY γ) ρv

(
ξ − z′
λ̄Y γ

)
+

+σ̄ζγ Ψ0(ξ) ρ̃h(kIζγ) ρv

(
ξ − z′
λ̄ζγ

)]
d

dξ

In order to calculate the inverse of 3.2.72 we need to evaluate the following

integral:

(3.2.73) I(r) =

ˆ
dk

2π
exp (−jk · r) τ(k),

beingτ any integrable function depending only upon the modulus of the wave-

number k. Thus, we �rst adopt polar coordinates: k (cos θ, sin θ), and subse-

quently choose the polar axis k in the direction of r, so that k · r = k r cos θ.

By noting that
´ 2π

0
dθ exp (−jk rh cos θ) = 2πJ0 (k r), 3.2.73 writes as I(r) =´∞

0
dk k J0 (k r) τ(k). This together with (3.2.72) leads to (3.2.33).

To compute the head-covariance CΨ, we proceed into a similar manner.

Thus, we �rst apply the transformation 3.2.31 (with CΨγ replaced by CΨ) to

convert 3.2.36 into the following:

(3.2.74) ∇2Φ(x,x′)− 1

4
Φ(x,x′) =

= −√−q0 exp
(z

2

) ∂

∂z
[CΨY (x′,x) + 〈Ψ (z)〉CΨζ (x′,x)] .

Then, we apply the 2-D Fourier transform to 3.2.74 and solve for the

Fourier transform of the function Φ (we omit the straightforward derivations).

Hence, the Fourier transform of the head-covariance

C̃Ψ(k, z, z′) =
√−q0

exp(−z/2)

Kr[Ψ0(z)]
Φ̃(k, z, z′) ,

reads as

(3.2.75) C̃Ψ (k, z, z′) =
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= g (z)

ˆ ∞
0

dξ
[
C̃ΨY (k, z′, ξ) + Ψ0 (ξ) C̃Ψζ (k, z′, ξ)

] d

dξ

[
exp

(
ξ

2

)
Gβ (z, ξ)

]
.

Substitution of 3.2.72, and taking the inverse Fourier-transform of 3.2.75,

leads to 3.2.37.

APPENDIX B: computation of the variance σ2
qz of the vertical �ux. To

this aim, we preliminary observe that

(3.2.76)
∂

∂ζ
Gβ(z, ζ)

∣∣∣∣
ζ≡z

=
1

4
(2β − 1) exp(−zβ)+

−exp(z)

4β

[
β2 + 6β − 2 +

(
β2 − 3β + 2

)
exp(−zβ)

]
,

(3.2.77)
∂2

∂z∂ζ
Gβ(z, ζ)

∣∣∣∣
ζ≡z

=
1

8

(
β3 − 2β2 + 2β − 2

)
exp(−zβ)+

−exp(z)

8β

[
β4 + 2β3 + 4β2 + 4β − 2− 2

(
2β3 − 2β2 + 4β − 1

)
exp(−zβ)

]
.

The derivatives 3.2.76-3.2.77 have been obtained (we omit the very lengthy

algebraic derivations) by: i) di�erentiating 3.2.57, ii) accounting for 3.2.59,

and iii) making use of the straightforward identities

− ∂

∂z
Gβ(z, ξ) =

∂

∂ξ
Gβ(z, ξ) + exp

[
−1

2
(z + ξ)β

]
,(3.2.78)

− ∂2

∂z∂ξ
Gβ(z, ξ) =

β2

4
Gβ(z, ξ) + δ (ξ − z)− β

2
exp

[
−1

2
(z + ξ)β

]
.(3.2.79)

By recalling that:

(1) Υ(z, ζ) ≡
´∞

0
dk k ρh(k)Gβ(z, ζ) ,

(2)
∂

∂ζ
Υ(z, ζ) ≡

´∞
0

dk k ρh(k)
∂

∂ζ
Gβ(z, ζ) ,

(3)
∂2

∂z∂ζ
Υ(z, ζ) ≡

´∞
0

dk k ρh(k)
∂2

∂z∂ζ
Gβ(z, ζ) ,

one ends up (after taking the limit ζ → z, and carrying out the quadrature

over k) with
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(3.2.80) Υ(z, ζ)

∣∣∣∣
ζ≡z

= −1

2
exp(z)Υ1(z),

∂

∂ζ
Υ(z, ζ)

∣∣∣∣
ζ≡z

=

= −1

4
exp(z)Υ2(z),

∂2

∂z∂ζ
Υ(z, ζ)

∣∣∣∣
ζ≡z

= −1

8
exp(z)Υ3(z) ,

(3.2.81) Υ1(z) = π(2πz2 − 2z + 1)Λ(2z)− πΛ(0)+

+2 exp(−z)− (2πz − 1) exp(−2z)− 3 ,

(3.2.82) Υ2(z) = (π − 1)Λ(0)− (2π2z2 − 2πz + π − 1)Λ(2z)+

+(4πz − 1) exp(−2z)− 2(πz + 1) exp(−z) + 7,

(3.2.83) Υ3(z) =
(
6π2 + 4π − 1

)
Λ(0)+

−
[
8π4z4 − 8π3z3 + 4π2 (6π − 1) z2 − 6π (2π + 1) z + 6π2 − 2π − 1

]
Λ(2z)+

+
[
8π3z3 + 4π2z2 + 2π(10π + 1)z + 2π + 1

]
exp(−2z)+

−8
(
2π2z2 + 2π + 1

)
exp(−z) + 14π + 11 .
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3.3. Geostatistics for IoT in hydrology

The following paper, published on May 2018 by Future Generation Com-

puter System, is a valuable contribution to the literature on the application

of the IoT (Internet of Things)[187]. With the neologism IoT, we indicate a

set of technologies that allow us to connect to the Internet any type of device.

The purpose of this type of solutions is essentially to monitor, control and

transfer information and then carry out consequent actions. In order to func-

tion properly and be really useful, the IoT needs to collect, store and process

a large amount of data in real time [Ashton, 2009 ][6]. There are several �elds

of application: industrial applications (production processes), logistics, en-

ergy e�ciency, remote assistance and environmental protection for instance.

In particular, nowadays, Precision farming or Smart Agriculture, also called

Agrifood, is one of the sectors with the highest development opportunities

and with the lowest penetration of digitized solutions. It is a sector which re-

quires digital solutions at the level of environmental and territorial sensors, of

applications for the weather, of automation of equipment for the increasingly

precise management of water, fertilizers, fertilizers and agrochemicals.

The paper is an example of how the geostatistical (stochastic) approach to

the soil hydrology can be combined with the IoT, in fact, we have illustrated

a protocol which can be easily implemented in the IoT-context. This work

present a very interesting case study to the e�ective bene�ts of IoT frameworks

in smart cities and environments and demonstrates how achieving simple tools

is bene�cial for quick estimates or for the cost e�ective investigations. Our

aim is to present a protocol to increase both water supply and to decrease wa-

ter consumption, to improve the e�ciency of irrigation technologies by using

in situ soil saturation measurements, precipitation forecast and modelling pre-

dictions to guide their operations. It designs an IoT framework to assess and

control the environmental risks associated with the use of treated water. The

main contribution are: the design of an autonomous network of environmen-

tal sensors that collect data on soil moisture and contaminants; a predictive

models of soil moisture dynamics and contaminant migration; optimization

of the irrigation practices while minimizing their environmental impact.

A majority of precision-agriculture strategies rely on statistical analysis of

indirect measurements of soil conditions obtained, for example, by satellites,



3.3. GEOSTATISTICS FOR IOT IN HYDROLOGY 91

unmanned aircraft or other means of remote sensing. Hence, the need for a

geostatistical approach arises, in fact the paper makes extensive use, basically,

of the data-mining methods, to overcome the di�culties into quantifying the

spatial distribution of the soil �ow properties.



3.3. GEOSTATISTICS FOR IOT IN HYDROLOGY 92

The IoT as a tool to combine the scheduling of the irrigation

with the geostatististics of the soils.

aGerardo Severino, aGuido D'Urso, aMaddalena Scarfato, bGerardo Toraldo

aDepartment of Agricultural Sciences

bDepartment of Mathematics and Applications "R. Caccioppoli"

University of Naples - Federico II, Italy

Abstract. Persistent droughts, population growth, and consequences of the

climate change put sever constraints on agriculture in many Regions. This

emergence can be ameliorated by: i) either increasing the water supply, or

ii) reducing the water demand. One viable avenue is to enhance the irriga-

tion's e�ciency by both increasing the water supply (via the use of recycled

water), and decreasing the water consumption (via the use of drip irrigation,

autonomous network of environmental sensors and predictive environmental

models). To this aim, we propose an IoT-framework to assess and control

the environmental risks associated with the use of treated water. Overall,

the IoT-framework is organized along the following main streams: i) design

an autonomous network of environmental sensors that collect data on remote

about soil moisture and concentration of dissolved contaminants; ii) assimi-

late these data together with precipitation forecast into predictive models of

soil moisture dynamics and contaminant migration; iii) use these data-driven

models to optimize the irrigation practices while minimizing their environ-

mental impact. The fundamental pre-requisite common to i)-iii) is the proper

processing of the soil data. The present paper will focus on such a topic.

Introduction. The need of enhancing food security with a simultaneous

save of water is drastically a�ecting the irrigation practices. Countries (both

developed and developing) are changing from a purely supply based to a de-

mand based methodology. Indeed, most of the existing irrigation practices

are such that the system is designed for equal distribution. Nevertheless, this

latter remains the biggest challenge for the new irrigation approach [Calera et

al., 2017 ][25]. New technologies, such as data-driven devices as well as wire-

less sensors networks have enhanced the impact of information, computation,

communication and control. On the top of this, the Internet of Things (IoT)
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is replacing the manual practices in many agricultural applications [Vuolo et

al., 2015 ][221].

In most of the Countries, water resources are operated manually. This

provides a huge potential to the IoT to overcome problems related to the scarce

availability of water, as well as to its delivery. The frequency of anomalous

events such as the absence of water supply when a particular distributary is

scheduled to receive water; or the presence of signi�cant �ow in a distributary

when it is not scheduled to receive water; or sharp rises and falls in water levels

can be reported using smart water metering. Wireless real-time monitoring

of water quantity/quality can capture temporal changes and provide broader

spatial coverage. Thus, questions about the e�ciency and systematic ways to

address them can be reported using smart metering approach. This challenge,

which has economic, societal and environmental facets, can be ameliorated by

either increasing water supply or reducing water demand. A long-term goal of

the implementation of the IoT is to signi�cantly enhance irrigation e�ciency

via data-driven simulation-based optimization of these two strategies.

Our aim is to present a protocol to increase both water supply (via the

use of recycled water, e.g., treated sewage water) and to decrease water con-

sumption (via the use of drip irrigation, autonomous network of environmen-

tal sensors and predictive environmental models). The tools we propose to

develop for the latter strategy will also be used to assess and control the en-

vironmental risks associated with the use of treated water, e.g., the risk of

contamination and salinization of the underlying soil and phreatic aquifers.

Agricultural water of good quality can be augmented by deploying �sup-

plemental irrigation technologies�, such as rain harvesting [Boers and Ben

Ashers, 1982; Jones and Hunt, 2010 ][17, 103] and use of marginal-quality

(e.g. saline) [Glenn et al., 2013; Hirich et al., 2014 ][77, 91] and/or grey

[Coppola et al., 2004; Maimon et al., 2010; Pinto et al., 2010 ][38, 123, 139]

water. While rain harvesting is largely conned to the developing world [Oweis

and Hacum, 2006 ][135], marginal-quality water is increasingly used around

the world [Suarez, 2013 ][204]. The latter practice might cause appreciable

degradation of soil health and groundwater quality , and lead to signi�cant de-

cline in crop yield [Hanjra et al., 2012; Pedrero et al., 2012; Singh Grewal and

Maheshwari, 2013 ][84, 136, 197]. Our IoT-aim is to provide a site-speci�c
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optimal irrigation schedule of the alternating use of good and marginal waters;

such a schedule would rely on simulation-based forecasting of contaminants

migration in the vadose zone, guided by in-situ real-time observations of soil-

water quality and short-term weather predictions.

Advanced agricultural practices, e.g., deployment of drip irrigation or mi-

cro sprinkles [De Pascale et al., 2011; Kanety et al., 2014 ][54, 105] and

development of drought-resistant plant varieties [Lawlor, 2013; Yang et al.,

2010 ][112, 237], can provide signi�cant reduction in water demand while

maintaining (or even increasing) a �eld's yield. The present study focuses on

optimization of irrigation practices and their e�ects on plant growth and crop

yield. These e�ects are known to be nonlinear and, hence, often counterintu-

itive. For example, mild water stress applied to (part of) the root zone was

shown to have no adverse a�ects on (and might prove to be bene�cial for) the

yield of citrus trees [Hutton and Loveys, 2011 ][93] and maize [Couto et al.,

2013 ][40]. One of our aims is to dramatically improve the e�ciency of irriga-

tion technologies by using in situ soil moisture measurements, precipitation

forecast and modeling predictions to guide their operations.

The challenging and very di�cult task to develop modelling of �ow and

transport in soils of large extents has been undertaken only in the last decades

by using a mining geostatistical approach [Severino et al., 2010, 2016; Comegna

et al., 2010 ][174, 196, 33]. The use of data-mining methods is due to the

di�culties into quantifying the spatial distribution of the soil �ow properties

[Severino et al., 2006, 2009; Severino and Coppola, 2012 ][177, 189, 184].

Indeed, there have been only a limited number of studies [Russo and Bou-

ton, 1992; White and Sully, 1992; Ragab and Cooper, 1993; Russo et al.�

1997 ][165, 232, 145, 168] focusing on the spatial variability of the log-

hydraulic conductivity Y = lnKS (by far the most important hydraulic prop-

erty), and nevertheless they su�er from many limitations, the most important

of which is about the extreme di�culty to carry out precise in situ measure-

ments (somewhat similar to the analysis of other extremely variables quan-

tities) [Farina et al.� 2015 ][61]. In view of such shortcomings, the present

paper aims at showing how to use a data-mining (geostatistical) approach to

quantify the spatial variability of the Y -parameter, and to combine such an

information within the target of the irrigation's e�ciency.
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Figure 3.3.1. Distribution of the iso-values of Y ≡ lnKs

along a vertical cross-section at the Ponticelli site (Naples,
Italy); vertical exaggeration: 250/6

The conductivity Ks is expressed in cm/h.

Characterization of the spatial variability of the log-conductivity by means

of the mining geostatistical approach: from theory to the practical use.

THE PROBABILISTIC FRAMEWORK. The Y -parameter is highly re-

lated to the soil's structure. Indeed, the commonly accepted dependence

KS ≡ κγ/µ (being γ and µ the speci�c weight and the viscosity, respec-

tively), relating KS to the intrinsic permeability κ, is largely a�ected by the

spatial variability of κ. Since this latter strongly depends upon the e�ective

porosity ne (see e.g. [Illman, 2005 ][95]), it is clear that the spatial variability

of ne is, de facto, the main source of the spatial variability of KS [Severino

et al., 2010; Fallico et al., 2016 ][174, 60]. This is clearly seen in the Figure

3.3.1 that shows the contour levels of Y (being KS in cm/h) along a vertical

cross-section in a trench at the Ponticelli site (Naples, Italy).

A detailed characterization of the spatial distribution of Y (and more gen-

erally of any soil �ow property) via the so-called �standard approach� (i.e. by
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collecting samples in the �eld and subsequently determining local values) re-

quires: i) considerable time, and ii) great expense/e�ort, therefore rendering

such an avenue practically impossible. A viable (and widely accepted) alter-

native is to treat Y as a �stochastic process in the space�, or equivalently as

a random space function (RSF) [Dagan, 1989; Rubin, 2003 ][50, 158]. As

a consequence, the characterization of the heterogeneity of Y is cast within

the more general approach of the data mining methods. Thus, the value

of Y at any position x is regarded as one possible out-coming related to

the many geologic materials that might have been deposited there. Hence,

Y ≡ Y (x; Ω) becomes a random variable. The symbol Ω refers to the sample

space, which is generally dependent upon x. If Y is measured at di�erent

positions x1, x2, . . . , xk then the values Yi ≡ Yi (xi; Ωi) (i = 1, 2, . . . , k) are

random variables, each one characterized by a (generally position dependent)

probability density function (PDF). The probability of �nding any sequence

of Y -values at a certain x depends not only upon the PDF itself, but also

on those PDFs at other positions. In the context of the mining geostatistics,

the probability of �nding such a sequence is given by the joint probability

density function. Thus, any sequence of Y -values at di�erent points is viewed

as a possible out-coming of the sample space of a joint PDF, and it is usually

termed as single realization. As a matter of fact, determining the occurrence

of any realization requires the knowledge of the joint PDF. Unfortunately,

this latter is not an accessible information since in the practice only a sin-

gle realization (the one obtained by sampling) is available, and therefore one

must resort to some simplifying assumptions, such as stationarity and er-

godicity. Stationarity implies that the joint PDF is translationally invariant,

whereas ergodicity enables one to infer the joint PDF by means of a single

realization [Rubin, 2003 ][158]. The pragmatic approach adopted in hydrol-

ogy, and in line with the statistical continuos theories, is to derive moments

of interest for the �ow variables and to check the applicability of these two

assumptions only ex post. In terms of moments, stationarity requires the

space invariance of �all� the moments (a very stringent assumption). Since,

in the practical applications one is mainly interested into the �rst and second

order moments of the �ow/transport processes [Severino et al., 2008, 2012;

Fioriet al., 2010; Severino, 20112011a, 20122b; Severino and De Bartolo,
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2015 ],[191, 186, 66, 182, 180, 192, 175] the stationarity of the input vari-

ables is replaced by the stationarity up to the second order (weak stationarity).

Thus, the pair �mean and covariance� becomes the tool to characterize the

spatial variability of Y . Nevertheless, it is important to emphasize that the

knowledge of the mean and covariance does not specify the Y -values at any

x, but rather it provides a way to quantify how widely the Y -values spread

around the mean, and how these values are spatially correlated.

RESULTS. For illustration purposes, we deal with local measurements of

Y obtained by means of the saturated hydraulic conductivity Ks measured

along 40 pro�les in the �eld [Comegna et al., 2006 ][35]. The PDF of the Y -

values was normal, as underlined by the good agreement between empirical

and theoretical CDF as well as by the Kolmogorov-Smirnov D-test (Figure

3.3.2). The problem of quantifying the spatial structure (i.e. the covariance

in the present study) of Y is rather complicated, even when measurements

are numerous. The identi�cation process should involve several steps: i) an

hypothesis about the functional model of the covariance, ii) the estimate of

the parameters of such a model, and iii) a model validation test. In particular,

the problem of selecting the most appropriate model remains to some extent

in the realm of the practical applications [Rubin, 2003 ][158]. The prevailing

approach is the pragmatic one: select a model for its practicality/versatility

as well as its performance in similar situations.

In view of the subsequent analysis, it is important to discuss some general

properties of the covariance function C ≡ C(x). Thus, the value C(0) is

the varianceσ2
Y and it provides information about the spread of the Y -values

around the mean. For |x| 6= 0, the value C(x) is a measure of the correlation

between values at two points separated by the distance |x|. Speci�cally, the
higher |x| the smaller the correlation. Of particular interest is the concept of

integral scale, IY ,[L]. Roughly speaking, IY is the distance over which two

values of Y cease to be correlated [Dagan, 1989 ][50].

A frequently encountered case is that of small integral scale. In this case

the soil is characterized by a complete lack of spatial correlation (stochas-

tic structureless process). In such a circumstance, it is convenient to deal

with the variogram γY ≡ γY (x). Generally, the variogram γY (whose com-

putation is straightforward) is of wider applicability as compared with the
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mean 2, 30
standard deviation 1, 38

coefficient of variation 6, 01 · 10−1
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Figure 3.3.2. Cumulative distribution functions of mea-
sured (symbols) Y ≡ lnKs and theoretical CDF with the D -
test of normal (null) hypothesis

covariance, since its applicability does not require the stationarity hypoth-

esis in a strict sense. Nevertheless, for a stationary process one can easily

demonstrate [Dagan, 1989; Rubin, 2003 ][50, 158] that γY (x) ≡ σ2
Y − C(x).

As a consequence, for a stochastic, stationary, structureless process the vari-

ogram in practice coincides with the structured variance, i.e. γY (x) ' σ2
Y . To

establish whether the Y -process is structureless, it su�ces to plot the scaled-

variograms γY /σ
2
Y , and check that γY /σ

2
Y ∼ 1. To this end, the experimental

(symbols) vaiogram together with the theoretical (line) one at the two sam-

pling depths (z = 30, 90 cm) for the transect of Figure 3.3.1 is plotted in the

Figure 3.3.3. The fact that for z = 30 cm one has γY /σ
2
Y ∼ 1 supports the

assumption of a spatial lack of correlation, and concurrently for the soil at

stake the RSF Y should be regarded as a structureless stochastic process from

the surface z = 0 till to z = 30 cm. To the contrary, at z = 90 cm (blue face)

the soil clearly exhibits a spatial correlation characterized by IY = 23.1m. A
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Figure 3.3.3. Normalized variograms

Experimental (symbols) together with the theoretical (continuous line)
normalized variograms γY /σ

2
Y at the two sampling depths z along the

horizontal distance x (m) of the plot shown in the Figure 3.3.1

reasonable explanation for such an out coming is that the upper most lay-

ers underwent to tillage practices which have signi�cantly altered the soil's

structure.

Implementation of the geostatistical information in the context if the IoT.

A goal of optimal monitoring-network design is to select the sensor locations

and sampling frequency such that a speci�ed criterion is optimized subject to

a set of constraints (e.g., the costs of individual sensors, their deployment and

operation). One can choose between several optimality criteria such as the D-

optimality, A-optimality, E-optimality, G-optimality and Iλ-optimality [Yeh,

1992 ][240]. Following Tsai et al. [Tsai et al., 2003 ][213], one can employ

the A-optimality criterion that maximizes the trace of a weighted Fisher's

information matrix of the estimated water content and solute concentrations.

Then, a goal of an optimal irrigation design and scheduling is to decrease

the consumption of good-quality water while maintaining acceptable crop

yields and minimizing the environmental costs of using its marginal-quality
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substitutes. Such decisions have to be made in the presence of uncertainty

about the soil properties and precipitation forecast. This task can be accom-

plished within one of the two conceptual frameworks of the IoT, optimization

under uncertainty and decision analysis. While these two frameworks are

sometimes viewed as opposite (e.g.[Mylopoulos, 1999 ][129]), they are closely

related (e.g. [Freeze and Gorelick, 1999 ][67]) rendering this subdivision some-

what arti�cial.

Optimal �eld-speci�c irrigation design and scheduling depends on multi-

ple factors, such as crop type, the type of irrigation system employed, and

quality of the irrigation water. Consider a �eld equipped with a modern ir-

rigation system (e.g., a drip irrigation system or a micro-sprinkler irrigation

system), which enables targeted, user-controlled, and high-frequency applica-

tion of water. Assume, that the irrigation system has access to the water of

two distinct origins: fresh water (FW) and treated water (TW), e.g., treated

sewage e�uents. The two waters have di�erent unit costs a(FW) and a(TW).

Our goal is to minimize the amount of water and irrigation cost while main-

taining desired levels of crop yield and salt leaching. An optimal irrigation

scheduling problem is formulated as follows:

For a given number N of irrigation devices (i.e., micro-sprinklers or drip-

pers) and their spatial locations {xi}Ni=1 in the �eld, minimize the operational

cost of the irrigation system,

min
∀Q(FW)

i,t , Q
(TW)
i,t

top∑
t=1

N∑
i=1

{
a
(FW)
i,t Q

(FW)
i,t + a

(TW)
i,t Q

(TW)
i,t

}
.(3.3.1)

Here the decision variables Q
(FW)
i,t and Q

(TW)
i,t (such that Q

(FW)
i,t ≡ 0 if

Q
(TW)
i,t > 0 and viceversa) represent amounts of the fresh and treated wa-

ters released by the i-th irrigation device during the t-th stress period; a
(FW)
i,t

and a
(TW)
i,t are the unit costs of the fresh and treated waters during the t-th

stress period; and top is the operation horizon. Depending on the physical

constraints imposed by the irrigation equipment, decision variables Qi,t and

Qk,t can be either continuous or binary such that Qi,t, = 1 if the i-th sprinkle

operates during t-th stress period and = 0 if it remains idle. Minimization of

the cost function 3.3.1 is subject to water quantity and quality constraints
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T ≥ T ? and M≤M?.(3.3.2)

The water quantity constraint T ≥ T ? ensures that plant transpiration

T (which is proportional to yield) stays above its critical level T ?. The tran-
spiration is de�ned as T =

´´
sw(x, t)dxdt, where sw = sw(x, t) is the rate

of soil water extraction by the plant roots [Severino, 2015 ][194]. The latter

depends on the spatio-temporal distributions of both hydraulic and osmotic

pressures of the soil water, i.e., on the spatio-temporal distributions of both

water contentθ(x, t) and salt (chloride) concentration c(x, t). The water qual-

ity constraint M ≤ M? enforces the requirement that the mass fraction of

the solute leaching below the root zone,M, does not exceed its critical (maxi-

mum allowable) limitM?. This quantity is de�ned asM = Mlea/Mtot, where

Mlea is the cumulative solute mass discharged through a prescribed horizontal

control plane located at vertical distance x3 = L from the soil surface, and

the total solute massMtot = Msur +Mini−Mext, represents a balance between

cumulative mass of solute applied through the soil surface (Msur), initial so-

lute mass stored in the soil of depth L (Mini), and cumulative mass of solute

extracted from the soil (from the soil surface to soil depth L) by plant roots

and lost to solute transformations (Mext). The tight, two-way coupling of

water �ow and solute transport in the vadose zone suggests that there is a

tradeo� between water uptake and the drainage �ux, and, concurrently, so-

lute discharge below the root zone. The latter, in turn, may be controlled by

irrigation water quality/irrigation water quantity substitutions.

This problem formulation assumes that the irrigation system is already

in place and aims to determine its optimal operating schedule. We can also

investigate an optimal irrigation design problem, which treats the number

(N) and locations ({xi}Ni=1) of the irrigation devices as additional decision

variables in the optimization problem. In the case of an orchard, the positions

{xi}Ni=1 are determined by the tree planting geometry, with the irrigation

devices placed in the trees' vicinity and their laterals located along the trees'

rows. In the case of crops planted in rows (e.g., corn, cotton, vegetables), the

laterals are located along the crop rows. The distance between the MS or

the D along the laterals, however, should be determined in the optimization



3.3. GEOSTATISTICS FOR IOT IN HYDROLOGY 102

process. In the case of crops grown over the entire area of a �eld (e.g., grass),

the locations {xi}Ni=1 do not have geometrical constraints.

For a given set of the �ow rates Q
(FW)
i,t and Q

(TW)
i,t , the constraints 3.3.2 have

to be satis�ed probabilistically since θ(x, t) and c(x, t) are random �elds whose

statistical distributions (probability density functions) satisfy the �ow and

transport problems with uncertain (random) coe�cients and driving forces

(e.g., precipitation). Let p? denote an acceptable probability for predictions

of both T andM. Then the proper formulation of the chance constraint 3.3.2

is Pr[T ≥ T ?] ≥ p? and Pr[M≤M?] ≥ p?.

Optimization under uncertainty is a rapidly developing �eld with applica-

tions in many �elds of science and engineering. State-of-the-art and compre-

hensive reviews of various approaches to optimization under uncertainty, in-

cluding various �avors of stochastic and fuzzy programming, [Infanger, 2010;

Verderame et al., 2010 ][98, 220]. The use of such techniques in subsurface

hydrology is surveyed in [Tartakovsky, 2013 ][207]. Application of stochastic

optimization techniques to real-world problems is hampered by (often pro-

hibitive) computational costs that arise from i) a large number of degrees of

freedom, ii) a large number of decision variables, and iii) the need to propagate

full statistical distributions of θ and c through the modeling process.

Although within the proposed framework �ow and transport processes are

intended as �black boxes�, we believe it is worth brie�y discussing the type

of the output which is expected in order to let the entire framework to prop-

erly work. Thus, �ow and transport simulations are performed for a number

of numerical (typically Monte Carlo) realizations of the soil-parameters [Sev-

erino et al., 2016 ][196]. Generally, such simulations are tightly coupled: �ow

velocity a�ects both solute transport [Severino, 2006; Bellini, 2011; Severino

et al., 2012, 2017 ][177, 15, 179, 183], and water uptake by plant roots

[Severino, 2015 ][194]; water uptake is coupled to both water �ow and solute

transport through its dependence on hydraulic and osmotic pressure heads

[Severino et al., 2017 ][188]. The resulting system of nonlinear equations is

solved by numerical methods.

Given the ubiquity of both soil heterogeneity and data scarcity [Comegna,

2010 ][33], each realization of soil's properties, and hence quantitative fore-

casting of moisture redistribution and solute migration, are merely �educated
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guesses�. Repeating the modeling e�ort multiple times (for multiple realiza-

tions of parameter �elds conditioned on data) and carrying out a statistical

analysis of the multiple modeling forecasts allows one to assign a probabil-

ity (or the likelihood of occurrence) to such �educated guesses�. The level of

intrusiveness is a key feature that determines whether to adopt a particular

probabilistic technique [Severino, 2015 ][175].

Concluding remarks. We have illustrated a procedure which can be easily

implemented in the IoT-context. Indeed, data-driven agricultural technologies

are rapidly becoming a tool of large use, and in particular they allow one to

design a site-speci�c management plan (precision-agriculture). In particular,

a majority of precision-agriculture strategies rely on statistical analyses (or

image processing) of indirect measurements of soil conditions obtained, for

example, by satellites, unmanned aircraft (drones) or other means of remote

sensing. Various (aboveground) parameters related to crop conditions can be

e�ectively monitored by wireless sensor networks. Thus, the utility of our

approach comes from the use of dynamic real-time forecasting of the quantity

and quality of soil water to guide the �eld irrigation. This forecasting will

be facilitated and informed by in situ measurements obtained with spatially

distributed autonomous and automated sensors along an IoT-framework.

The steps of the present framework can be summarized as follows: i)

design an autonomous network of environmental sensors that collect data

on soil moisture and concentration of dissolved contaminants; ii) assimilate

these data, and precipitation forecast, into predictive models of soil-moisture

dynamics and contaminant migration; iii) Use these data-driven models to

optimize the irrigation practices while minimizing their environmental impact;

iv) introduce best management practices to the farming community and public

decision-makers.

Before concluding, it is worth noting that the soil conductivity K(ψ) ≡
Kr(αψ) expY depends not only upon the spatially variable parameter Y but

also upon the relative conductivity Kr(αψ) that, being a function of the

stressψ, de facto, depends upon the soil moisture [Gomez, 2009 ][78]. The

functional dependence of Kr upon ψ, [L], via the soil-dependent parame-

ter α, [L−1], has been traditionally regarded as a deterministic process (i.e.

α ∼ constant). However, in the practical applications one is concerned with
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domains of large extents where α undergoes to signi�cant spatial variations

as consequence of the disordered soil's structure. This is due to the fact that

α is more than a �tting parameter: it depends upon the soil's texture [White

and Sully, 1992 ][232]. Since, the soil's texture is highly variable from point

to point in the soil, a tantamount degree of variability is expected to be recov-

ered in the α-parameter [Severino, 2016 ][195]. As a consequence, a spatial

characterization of the α-parameter has to be provided along the same lines

adopted for Y .
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CHAPTER 4

CONCLUSIONS

Unsaturated water �ow has become one of the major concerns in environ-

mental studies. The traditional deterministic approach or sensitivity analysis

techniques can not e�ectively quantify the complicated spatial variability of

the hydraulic properties. This is the reason why the stochastic approach has

taken hold in the last decade, where the heterogeneous aquifer parameters are

modeled by space random functions and the resulting prediction is in the form

of a probabilistic distribution function. Given the stochastic representation,

the prediction can be obtained using analytical or numerical methods.

The numerical methods, speci�cally Monte-Carlo method in this thesis,

require generating a large number of equiprobable realizations of hydraulic

parameters honoring the same geostatistical features and available �eld data.

These realizations have been constructed by using geostatistical approach (3.1

and 3.3). Other widely used numerical methods are the random walk methods

and the particle tracking. The �rst approach accounts for hydrodynamic

dispersion and the second one does not, but both of them are free of numerical

dispersion and oscillation. It would be very interesting, for future research,

to develop these methods and to compare the results with those presented in

this thesis.

On the other hand, analytical methods are basically focused on the method

of moments which provide closed form of �rst and second moments that can
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be easily evaluated once the statistical structure of the soil parameters is

speci�ed. An example of application has been provided in the 3.2.

This thesis is based on a number of separate studies and is an attempt

to quantitatively analyze the above discussed features of water transport and

uncertainty related to water transport in heterogeneous media. To summarize,

it was obtained:

• The hydraulic parameter α is a structureless process, so it can be fully

described only by mean and variance. In other words, the covariance

(spatial structure) of the log-transform of α can be approximated by

a white noise in horizontal plane, i.e. a disturbance signal during

the information transmission. Mathematically speaking it is a vector

having zero mean and diagonal auto-correlation matrix;

• Analytical expressions of the statistical moments of the pressure head

and speci�c �ux, which allow to quantifying the uncertainty of these

two FVs above the water table. In particular:

(4.0.3)

ψ(∞) = 0 far field

ψ(0) <∞ water table
,

and

(4.0.4)

〈Ψ(∞)〉 ≡ ln(−q0) far field

〈Ψ(0)〉 ≡ 0 water table
;

• The in�ltrating �ux q0 and the integral scale I impact the station-

ary values of the speci�c �ux and have a limited in�uence upon the

distance from the water-table at which such stationary values are

attained;

• It is possible estimate the thickness of the �ow domain where the

nonstationary is dominant by means of a 1D Richards equation;

• An optimal irrigation scheduling problem which can be easily imple-

mented in the IoT-context.

Besides the theoretical interest, conclusions of the present thesis can be useful

for practical purposes.
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From theory to the applications

Nowadays, the uncontrolled action of man on the territory can also trigger

degradation processes, which alter, progressively, the water cycle, soil fertility

and biodiversity. Water and soil conservation has become an economic as-

set of considerable value and its correct management is now one of the most

compelling problems. In the most modern agricultural systems, water man-

agement must be the result of a compromise between the strategies adopted

by Local Authorities, which must consider both environmental problems and

alternative use of water resources, and the immediate needs of farmers, which

have to satisfy the crop water demand in qualitative and quantitative terms.

There is a need to provide more detailed information to farmers about the

applicability of new irrigation methods, in particular the "water-saving" meth-

ods, determining very high irrigation e�ciency and optimization. This is the

purpose of some examples of irrigation protocols presented in the previous

section.

For all these reasons, the need to model and predict unsaturated water

transport is increasing and to understand the nature of the aquifer through

which the �ow and transport take place is one of the problems of the envi-

ronmental science. Soils are heterogeneous in terms of hydraulic parameters

and �ow variables, that vary erratically from point to point in the space. The

stochastic approach is an important tool to evaluate both the uncertainty

quanti�cation of hydrological properties and model predictions, even for com-

plex and hard to study systems where direct measures are missing. The �rst

allows to decide, optimally, how many measures are needed and where to con-

centrate them or to design elaborate �eld experiments; the second one allows

an aquifer management under risk (in contrast with the deterministic model).

Unfortunately, stochastic modelling has not yet become a popular tool used by

the hydrological community. The geostatistical approach, developed in this

thesis, represents a step forward in making hydraulic properties estimation

methods cheaper, in terms of money and time, and more representative of

real conditions, where the heterogeneity is the main source of uncertainty. In

general, there are a lot of factors that may determine uncertainty, for instance

the choice of the model (e.g. discrete versus continuous, two-dimensional ver-

sus three-dimensional, etc.) or the possibility of rains. It would be interesting,
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for future research, to integrate the developed methodology with these sources

as well.

All the innovative techniques and methodologies require a very big amounts

of data, in order to be correctly applied even on extended areas. This re-

quirement, on one hand, has encouraged the entry of the hydrology in the

IoT-framework, widely explained above; on the other hand, it has increased

the acquisition of remote sensing data with the support of Geographic In-

formation Systems (GIS). This �eld of study was not taken in account for

the writing of this thesis, but it would be interesting to discover this area of

research in the future. Both of them make possible to collect, store, manage

and process a large amount of data in real time very easily.

One never grow tired of repeating that the importance of water manage-

ment is closely linked to the problem of pollution and transport of contami-

nant. They can sediment in the root zone and may be absorbed by plants that

we are going to eat. The measurements on the soils are used to evaluate the

trend of the concentrations of the pesticides, some highly toxic to humans.

The contact can take place both directly and indirectly; the �rst case can

occur during the production phases in factories and use in �eld treatments,

the second case concerns the intake, by humans, of water and food contami-

nated by pesticides. The determination of toxicity criteria takes into account

these data to set quality standards suitable to contain the aforementioned

risks of infection. But, one should not forget that the frequent practice that

uses waste water from urban sources for irrigation, even in countries tradi-

tionally not a�ected by water crises, and a new large spectrum of pollutants

(chlorinated products, heavy metals, pesticides, organic compounds), that are

only partially removed during puri�cation treatments, are able to reach the

ground with irrigation. Both areas, root zone and groundwater, if contami-

nated, constitute a serious risk to human and animal health. The technologies

and scienti�c knowledge available to clean up the waters are quite advanced,

although local governments are not always available to support the economic

commitments that may be in some cases very expansive. This is the reason

why, the keyword is to �prevent�, also through an important and frequent

risk analysis, in order to avoid polluting sources of ending up in the water
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table or contaminating the crops, with actions supported by clearer and more

stringent legislation, especially in the repression of abuses.
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