
Logic Learning and Optimized
Drawing: Two Hard Combinatorial

Problems

Tommaso Pastore

Dep. of Mathematics and Applications, "R. Caccioppoli"
University of Napoli, "Federico II"

Thesis submitted for the degree of
Doctor of Philosophy

Supervisor:
Professor Paola Festa December 2018

Table of contents

List of figures v

List of tables ix

1 Introduction 1

2 Metaheuristics for Information Extraction Problems 11
2.1 From Logic Learning to Minimum Cost

Satisfiability . 11
2.2 A GRASP for MinCostSAT . 15
2.3 Bernoulli Take the Wheel! A probabilistic Stopping Rule 18
2.4 Computational Testing I . 20
2.5 A Hybrid Metaheuristic Algorithm for the Max Cut-Clique Problem 26
2.6 Computational Testing II . 29

3 Graph Drawing: the Art of Representing Data 31
3.1 A Local Objective: the Min-Max Graph Drawing Problem 32
3.2 Solution Approaches . 34
3.3 How to See in the Dark: Evaluating Moves a Min-Max Problem 36
3.4 Computational Experiments I . 42

3.4.1 Preliminary Experiments . 44
3.4.2 Comparative Testing . 47

3.5 Drawing Dynamic Informations: Mental Map and Crossing Reduction . . . 50
3.6 A Mathematical Programing Model for the Constrained-IGDP 56
3.7 Solution Methods . 59

3.7.1 GRASP constructive methods . 59
3.7.2 Memory construction procedure 63
3.7.3 Local Search Procedure . 64
3.7.4 Tabu Search . 66

iv Table of contents

3.8 Path Relinking post-processing . 67
3.9 Computational Experiments II . 68

3.9.1 Experimental Setup . 68
3.9.2 Preliminary Experiments . 70
3.9.3 Final Experiments . 75

4 Handling Dynamic Informations in Network Optimization 83
4.1 The Vehicle Routing Problem with Stochastic Demands 84
4.2 Simheuristics: Bringing Together Optimization and Simulation 84
4.3 Integrating a Biased Randomized GRASP with Monte Carlo Simulations . . 86
4.4 Algorithmic Performances . 90

4.4.1 Experimental Settings and Benchmarks 90
4.4.2 Analysis of Results . 91

4.5 The Shortest Path Problem: Classical Approaches 93
4.6 Reoptimization . 94

4.6.1 Root change . 96
4.6.2 Arc Cost Change . 97

4.7 Comparing Simheuristics and Reoptimization 99

5 Topology Optimization: a Hardly Constrained Design Problem 101
5.1 The Origins of Topology Optimization: the Compliance Problem 101
5.2 The Stress Constrained Problem: Models and Challenges 103
5.3 An Iterative Heuristic Method . 106
5.4 Computational Results . 109

5.4.1 Resistance Class Analysis . 111
5.4.2 Comparison with Von Mises’ Constraints 115
5.4.3 An Example of Project Constraint: Maximum Displacement 118

6 Conclusions and Future Perspectives 121
6.1 Minimum Cost SAT . 121
6.2 Maximum Cut-Clique . 122
6.3 Min-Max GDP . 122
6.4 Constrained Incremental GDP . 122
6.5 Vehicle Routing Problem with Stochastic Demands 123
6.6 Topology Optimization of Stress-Constrained Structures 124

References 125

List of figures

1.1 Mindmap representing the structure of the thesis. 2
1.2 Circular representation of a graph [27]. 4
1.3 Strategic multistage scenario tree with tactical multiperiod graphs rooted

with strategic nodes. 6
1.4 Optimal drawing for crossing minimization of a given graph. 7
1.5 Optimal drawing for crossing minimization of the incremented graph. . . . 8

2.1 A generic GRASP for a minimization problem. 16
2.2 Pseudo-code of the GRASP construction phase. 17
2.3 Empirical analysis of frequencies of the solutions. 19
2.4 Fitting data procedure. 19
2.5 Improve probability procedure. 20
2.6 Experimental evaluation of the probabilistic stopping rule. In each boxplot,

the boxes represent the first and the second quartile; solid line represent
median while dotted vertical line is the full variation range. Plots vary for
each threshold α. The dots connected by a line represent the mean values. 25

2.7 Comparison of objective function values and computation times obtained
with and without probabilistic stopping rule for different threshold values. . 26

2.8 The phased local search procedure used in our GRASP. 28

3.1 δ-evaluation function example. 38
3.2 δ-evaluation function example after swap. 38
3.3 Main Tabu algorithm. 39
3.4 Pseudo-code of the Intensification Phase. 40
3.5 Pseudo-code of the Diversification Phase. 41
3.6 Comparison of δ and min-max objective functions. 47
3.7 Graphviz drawing of a simple hierarchical graph. 52
3.8 Example optimized with new method. 52

vi List of figures

3.9 Project management example. 54
3.10 Example optimized with a previous method. 55
3.11 Graph to illustrate the C2 method. 61
3.12 Initial partial solution. 61
3.13 Partial solution in an iteration of C2 construction phase. 62
3.14 Partial solution after an iteration of C2 construction phase. 62
3.15 Constructive phase C3 for the C-IGDP. 63
3.16 Swapping phase in local search for C-IGDP. 65
3.17 Initial solution. 66
3.18 Local search procedure. Left: Swap phase. Right: Insertion phase. 66
3.19 Example of the Path Relinking procedure. 67
3.20 Scatter Plot for two different instances. 73
3.21 Performance profile for three GRASP implementation and a TS. 74
3.22 GRASP3+PR Search Profile. 76
3.23 Search Profile. 77
3.24 Time to target plot. 82
3.25 Example optimized with new method. 82

4.1 Differences in the selection processes of the classic GRASP (a) and the
BR-GRASP (b). 88

4.2 Flowchart of our SimGRASP algorithm. 89
4.3 Comparison of a MS simheuristic, SimGRASP with BR, and SimGRASP

without BR. 92
4.4 Reoptimization problems hierarchy. 95

5.1 Representation of the stress constraints with asymmetrical traction (σ+)
and compression (σ−) bounds. 105

5.2 General outline of the iterative topology optimization algorithm. 106
5.3 Representation of the case study considered in the experimental phase. . . 111
5.4 Representation of the load scheme considered in the experimental phase. . 111
5.5 Fixed load analysis: Class 20/25. 113
5.6 Fixed load analysis: Class 30/37. 114
5.7 Fixed load analysis: Class 40/50. 115
5.8 Fixed load analysis: Class 60/75. 116
5.9 Proportional load analysis: Class 20/25. 117
5.10 Proportional load analysis: Class 30/37. 118
5.11 Proportional load analysis: Class 40/50. 119

List of figures vii

5.12 Proportional load analysis: Class 60/75. 119
5.13 VMS comparison: case σ ′

vms . 120
5.14 VMS comparison: case σ ′′

vms . 120
5.15 VMS comparison: case σ ′′′

vms . 120
5.16 Beam optimized with project-specific displacement constraint. 120

List of tables

1.1 Hierarchical Graphs applications as listed in [119]. 5

2.1 Comparison between GRASP and other solvers. 23
2.2 Probabilistic stop on instances A, B, C and D. 24
2.3 Average of the solution values (avg-z) and execution time (avg-t) of the algorithms.

The p subscript specifies when the implementation uses proposition 1. 29

3.1 Symbols and Definitions. 34
3.2 Benchmark set. 43
3.3 Fine-Tune parameter α for the TS procedure. 45
3.4 Fine-Tune parameter tenure for the TS procedure. 45
3.5 TS fine-tune on 10 low density instances. 45
3.6 TS fine-tune on 16 high density instances. 46
3.7 Comparison of TS, MCE, and CPLEX on 49 instances (low density). 48
3.8 Comparison of MCE, SO, and TS on 60 instances (high density). 49
3.9 Summary of heuristics performance. 49
3.10 Analysis of both objective on 60 high-density instances. 51
3.11 Symbols and Definitions. 58
3.12 Fine-Tune parameter α for the constructive C1 procedure. 70
3.13 Fine-Tune parameter β for the constructive C4 procedure. 71
3.14 Performance comparison of the construction methods. 71
3.15 Comparison among different local search setups. 72
3.16 Performance comparison of GRASP variants and Tabu Search. 73
3.17 Comparison on entire benchmark set according to instance size 78
3.18 Comparison on entire benchmark set according to K value 79
3.19 Best values on very large instances, with K = 1. 80
3.20 Best values on very large instances, with K = 2. 80
3.21 Best values on very large instances, with K = 3. 81

x List of tables

4.1 Performance of BR-GRASP and SimGRASP for the VRP. 92

5.1 Material parameters considered in the fixed load experiment. 112
5.2 Solution properties obtained in the fixed load experiment. 112
5.3 Material parameters considered in the proportional load experiment. 114
5.4 Solution properties obtained in the proportional load experiment. 114
5.5 Solution properties obtained in the VMS comparison. 117
5.6 Comparison of solution properties obtained in the experiments with (w/)

and without (w/o) displacement constraint. 119

Chapter 1

Introduction

Whether it be while surfing the Internet, registering financial transactions or processing
medical records, we are constantly collecting new data. The process of information gathering,
as acquisition of derived knowledge, substantially represents the basis of modern science
and the foundation of the learning process itself. At the same time, the amount of data we
produce nowadays is unprecedented. According to a column featured on Forbes magazine1,
there are 2.5 · 1018 bytes of data created each day, with the last two years alone that
generated the 90 percent of the data in the world. As a consequence of this, information
extraction from large datasets or networks is a recurring operation in countless fields,
establishing itself as a cornerstone process in an organic revolution that over the course of
time brought us from tally sticks2 to modern data centers.

The purpose leading this thesis is to ideally follow the data flow along its journey,
describing some hard combinatorial problems that arise from two key processes, one
consecutive to the other: information extraction and representation. Moreover, having in
mind the growing size of information networks, the approaches here considered will focus
mainly on metaheuristic algorithms, to address the need for fast and effective optimization
methods.

The core of this thesis is devoted to the study of Supervised Learning in Logic Domains
and the Max Cut-Clique Problem, as examples of NP-hard data extraction processes, and
two different Graph Drawing Problems. Moreover, stemming from these main topics, other
additional themes will be addressed, namely two different approaches to handle Information
Variability in Combinatorial Optimization Problems (COPs), and Topology Optimization

1Bernard Marr - “How Much Data Do We Create Every Day? The Mind-Blowing Stats Everyone Should
Read”, Forbes Magazine - July 2018

2Grandell, Axel. "The reckoning board and tally stick." The Accounting Historians Journal 4.1 (1977):
101-105.

2 Introduction

for the design of stress-constrained lightweight structures. The structure of the thesis and
the interplays among its topics are depicted in Figure 1.1 and described in the following.

Data

Processing

Extraction
Problems

Learning

in Logic

Domains

Max-cut

Cliques

Design
Problems

Graph
Drawing

Problems

Min-

Max

GDP

C-IGDP

Dynamic

COPs

Topology

Optimization

Chapter 2: Metaheuristics for Information Extraction Problems

Chapter 3: Graph Drawing: the Art of Representing Data

Chapter 4: Handling Dynamic Informations in Network Optimization

Chapter 5: Topology Optimization: a Hardly Constrained Design Problem

Fig. 1.1 Mindmap representing the structure of the thesis.

The first problem addressed in this thesis is logic supervised learning. In this scenario,
studied in Chapter 2, we have a dataset of samples, each represented by a finite number of
logic variables, and we show how a particular extension of the classic SAT problem –the
Minimum Cost Satisfiability Problem (MinCost-SAT)– can be used to iteratively identify the
different clauses of a compact formula in Disjunctive Normal Form (DNF), that possesses
the desirable property of assuming the value True on one specific subset of the dataset and
the value False on the rest.

3

The use of MinCost-SAT for learning propositional formulae from data is described
in [48] and [151], and it proved to be very effective in several applications, particularly on
those derived from biological and medical data analysis [10, 3, 155, 156, 154].

One of the main drawbacks of this approach lies in the difficulty of solving MinCost-SAT
exactly or with an appropriate quality level. Such drawback is becoming more and more
evident as, in the era of Big Data, the size of the datasets to analyze steadily increases. While
the literature proposes both exact approaches ([63, 127], [151], and [153]) and heuristics
([138]), still the need for efficient MinCost-SAT solvers remains, and in particular for solvers
that may take advantage of the specific structure of those MinCost-SAT representing
supervised learning problems.

Chapter 2 will describe a GRASP-based metaheuristic algorithm designed to solve
MinCost-SAT problems that arise in supervised learning. In doing so, we developed a new
probabilistic stopping criterion that proves to be very effective in limiting the exploration of
the solution space - whose explosion is a frequent problem in metaheuristic approaches.
The method has been tested on several instances derived from artificial supervised problems
in logic form, and successfully compared with four established solvers in the literature.

As a second example of information extraction problem, the second part of Chapter 2
studies the Max Cut-Clique Problem (MCCP). This problem is a variation of the classical
Max Clique Problem with several applications in the area of market basket analysis. We
formally describe the MCCP and detail the main characteristics of our hybrid heuristic
solution strategy, presenting a comparison between our algorithm and the state-of-the-art.

Chapter 3 deals with data representation, introducing results obtained for two different
Graph Drawing Problems (GDPs). Graph drawing is a well established area of computer
science that consists in obtaining an automatic representation of a given graph, described
in terms of its vertices and edges. In the scientific literature many aesthetic criteria have
been proposed to identify the desirable properties that a good representation has to fulfill,
with the most common being: edge crossings, graph area, edge length, edge bends, and
symmetries. Their main objective is to achieve readable drawings in which it is easy to
obtain or extract information. This goal is particularly critical in graphs with hundreds
of vertices and edges, in which an improper layout could be extremely hard to analyze.
The graph drawing area is very active, and an excellent resource on the topic is the book
by Di Battista et al. [6], where many graph drawing models and related applications are
introduced.

There are different drawing conventions to represent a graph. In some settings, the
vertices of the graph are typically drawn in a circle, such as for example in genetic interaction
networks. Figure 1.2 represents the two hundred and forty-five interactions found among 16

4 Introduction

Fig. 1.2 Circular representation of a graph [27].

micro-RNAs and 84 genes (see [27]). In other cases, the data has a clear sequential nature,
like in workforce scheduling problems, where a set of tasks cannot be undertaken before
the completion of some previous ones. Whenever the data is characterized by this kind of
precedence relationships, the natural representation for the corresponding network is given
by a hierarchical graph. Application fields which benefits from this graph layout can be
found in Table 1.1. For example, in the field of operational inter-period material activities,
a set of operational multi-period scenarios can be represented with a special graph rooted
with replicas of the related strategic node, as it can be seen in Figure 1.3 (e.g see [47]).

The Hierarchical Directed Acyclic Graph (HDAG) representation is obtained by arranging
the vertices on a series of equidistant vertical lines called layers in such a way that all edges
point in the same direction. Note that working with hierarchies is not a limitation, since
there exists a number of procedures to transform any directed acyclic graph (DAG) into a
layered or hierarchical graph [5, 145].

The crossing minimization problem in hierarchical digraphs has received a lot of attention.
Even the problem in bipartite graphs has been extensively studied for more than 40 years,
beginning with the Relative Degree Algorithm introduced in Carpano [25]. Early heuristics
were based on simple ordering rules, reflecting the goal of researchers and practitioners of

5

Context References Description
Workflow visualization [152] Representation of the work to be exe-

cuted by the project team.
Software engineering [29, 22] Representation of calling relationships

between subroutines in a computer pro-
gram.

Database modeling [85] Definition of data connections and sys-
tem processing and storing diagrams.

Bioinformatics [98] Representations of proteins and other
structured molecules with multiple func-
tional components.

Process modeling [81, 51] Analytical representation or illustration
of an organization’s business processes.

Network management [122, 92] Representation of the set of actions that
ensures that all network resources are
put to productive use as best as possi-
ble.

VLSI circuit design [13] Representation of the design of inte-
grated circuits (ICs) which are essential
to the production of new semiconductor
chips.

Decision diagrams [115, 116] Definition of logic synthesis and formal
verification of logic circuits.

Table 1.1 Hierarchical Graphs applications as listed in [119].

quickly obtaining solutions of reasonable quality. However, the field of optimization has
recently evolved introducing complex methods, both in exact and heuristic domains. The
crossing problem has benefited from these techniques, and advanced solution strategies
have been proposed in the last 20 years to solve it. We refer the reader to Martí [113], Di
Battista et al. [6], or Chimani et al. [30] to mention relatively recent developments.

In Chapter 3 we focus on two different variants of the crossing problem: (i) the min-max
GDP [143], and (ii) the Constrained Incremental GDP.

The interest in the min-max GDP, originally called the bottleneck crossing minimization,
arose in the context of VLSI circuits design in which it is more appropriate to minimize
the maximum number of crossings over all edges (min-max) rather than the sum of the
edge crossings over all the graph (min-sum). As stated in Bhatt and Leighton [13], an
undesirable feature of VLSI layouts is the presence of a large number of wire crossings.
More specifically, wires that are crossed by many others are susceptible to cross-talk, when
all the crossing wires simultaneously carry the same signal, thus deteriorating the circuit

6 Introduction

Fig. 1.3 Strategic multistage scenario tree with tactical multiperiod graphs rooted with strategic nodes.

performance. On the other hand, if the number of wire crossings is small, the number
of contact-cuts is also small, thus providing a better signal. Therefore, in order to attain
a good performance over the network it is critical that no edge has a large number of
crossings, more than the overall sum of crossings is small. Remarkably, the solution of
the min-max problem is also useful in general graph drawing softwares, where zooming
highlights a specific area of the graph where it is then desirable to have locally a low number
of crossings.

On the other hand, the Constrained Incremental GDP (C-IGDP) is a variation of the
classical min-sum GDP, that addresses the need of properly handling graph drawing in
areas such as project management, production planning or CAD software, where changes

7

in project structure result in successive drawings of similar graphs. The so-called mental
map of a drawing reflects the user’s ability to create a mental structure with the elements
in the graph. When elements are added to or deleted from a graph, the user has to adjust
their mental map to become familiar with the new graph. The dynamic graph drawing area
is devoted to minimizing this effort. As described in [18], considering that a graph has
been slightly modified, applying a graph drawing method from scratch would be inefficient
and could provide a completely different drawing, thus resulting in a significant effort for
the user to re-familiarize her/himself with the new map. Therefore, models to work with
dynamic or incremental graphs have to be used in this context.

0

1

2

3

4

5

6

7

8

9

3

2

4

7

9

0

1

5

8

6

6

4

3

1

0

2

5

8

9

7

4

3

2

8

0

1

5

6

7

9

0

1

2

3

4

5

6

7

8

9

Fig. 1.4 Optimal drawing for crossing minimization of a given graph.

To illustrate the incremental problem, we consider the hierarchical drawing in Figure
1.4, which shows the optimal solution of the edge crossing minimization problem of a graph
with 50 vertices and 5 layers. We increment this graph now by adding 20 vertices (4 in
each layer), and their incident edges. Figure 1.5 shows the optimal solution of the edge
crossing minimization problem of the new graph, where the new vertices and edges are
represented with dotted lines.

Although the number of crossings in Figure 1.5 is minimum, 99, this new drawing was
created from scratch, and it ignores the position of the vertices in the original drawing (the
one in Figure 1.4). For example, vertex 6 in the first layer is in position 7 in Figure 1.4,
but in position 10 in Figure 1.5. We can say that Figure 1.5 does not keep the mental
map of the user familiarized with Figure 1.4. Therefore, in line with the dynamic drawing
conventions [18], we propose reducing the number of crossings of the new graph while
keeping the original vertices close to their positions in Figure 1.4.

Regarding hierarchical graphs, previous efforts only preserve the relative positions of the
original vertices [106]. As will be shown, this can result in poor incremental drawings (i.e.,
the mental map of the drawing is not properly kept). The approach described in this thesis

8 Introduction

0

1

2

3

4

5

C

A

B

6

7

8

D

9

3

2

4

7

9

A

C

D

0

B

1

5

8

6

6

4

3

B

1

0

A

2

5

8

9

D

C

7

4

3

2

8

A

0

B

1

C

5

6

D

7

9

0

1

2

3

4

A

5

B

6

C

7

8

D

9

Fig. 1.5 Optimal drawing for crossing minimization of the incremented graph.

considers a robust model with constraints on both the relative and the absolute position
of the original vertices when minimizing the number of edge crossings in a sequence of
drawings. In this way, we help the user to keep his or her mental map when working with
a drawing where successive changes occur. In particular, our model restricts the relative
position of the original vertices with respect to their position in the initial drawing (as
in [106]), and also restricts their absolute position within a short distance of their initial
position (as in [6] in the context of orthogonal graphs).

As in the case of the C-IGDP, a challenge of growing consideration in the operations
research community consists in the inclusion of information variability in classical Combina-
torial Optimization Problems. Given the non-deterministic nature of real-world scenarios,
properly addressing information variability (or stochasticity) is essential for embedding
optimization techniques into each of the supply-chain systems that determine production,
scheduling, distribution, location-allocation, etc. Chapter 4 studies two iconic problems
in the landscape of Dynamic Network Optimization: the Vehicle Routing Problem with
stochastic demands, and the Reoptimization of Shortest Paths; presenting a simheuristic
approach for the former, and surveying the research efforts made in the latter.

The vast majority of combinatorial problems are computationally intractable by nature,
and the Vehicle Routing Problem (VRP) is no exception. For a summary of the existing
approaches to solving the classical VRP, we refer the reader to three excellent resources on
the topic: [149], [95], and [75]. Due to the complexity of the VRP, the typical solution
techniques for large-scale instances mainly belong to the class of heuristic and metaheuristic
algorithms. In our approach we embrace the Simheuristic paradigm, in which heuristic

9

algorithms are hybridized with a multi-stage Monte Carlo simulation to properly evaluate
solution quality. More specifically, we couple a GRASP with biased randomization (BR-
GRASP) with stochastic simulation in order to obtain reliable and competitive routing plans
when considering customers with stochastic demands.

On the other hand, the Shortest Path Problem (SPP) established itself as one of the
most representative and widespread polynomially solvable problems of operations research.
Reoptimizing shortest paths on dynamic graphs consists in the solution of a sequence of
shortest path problems, where each problem differs only slightly from the previous one.
Each problem could be simply solved from scratch, independently from the previous one,
by using either a label-correcting or a label-setting shortest path algorithm. Nevertheless,
ad-hoc algorithms can efficiently use information gathered in previous computations and
speed up the solution process.

If in Chapter 3 we address the problem of designing an optimized representation for
information networks, Chapter 5 presents a solution for a different kind of design problem:
the shaping of lightweight stress-constrained structures by means of Topology Optimization.
Topology optimization is the most broad form of structural optimization. In general terms
it aims at determining efficient material layouts within a given design space, starting from
very few prescribed specifications such as load case and boundary conditions [134].

The development of additive manufacturing (AM) and 3D printing technologies makes
possible to produce extremely complex structures which until recently, using traditional
production methods, would have been impossible to accomplish or would require unreliable
efforts and unacceptable costs. Component design by means of topology optimization from
the earliest stages of their conceptual development could lead to major breakthroughs,
maximizing the potential of 3D printing.

More specifically, in Chapter 5 we consider the topology optimization of Reinforced
Concrete (RC) elements. In this scope, the primary goal for designers is to obtain the
lightest structure while having a straight control on the stress levels. It is possible to notice
how most of the optimization methods are limited to compliance minimization problems.
This problem is considered classical in the optimization community and simpler to be solved
if compared to the stress constrained one. Stress problems, indeed, bear more challenging
difficulties, such as high non-linearity [124, 97]. On the other hand, even if some studies
tackle the stress problem, in most of those cases the stress constraints there defined are
based on the classical Von Mises stress, which is more appropriate to describe isotropic
materials, such as steel, or other grouping strategies. See for example [43, 125, 144].

Chapter 5 provides a formal description of the structural optimization problem of interest,
with particular emphasis on the form used in the imposition of the stress constraints, and

10 Introduction

presents an iterative heuristic algorithm with its solutions for a wide range of load cases
and material properties.

Lastly, conclusions are drawn in Chapter 6.

Chapter 2

Metaheuristics for Information
Extraction Problems

Right after being collected and appropriately stored, a data stream is ready to start its
journey and be processed, to extract its most relevant informations and recurring patterns.
The focus of the present Chapter consists in the study of the contributions that operations
research –and more specifically metaheuristic techniques– can bring in the solutions of two
widely different mining problems. The problems of interest are respectively concerned with
the extraction of boolean formulae in supervised learning, and the study of special cliques
in graphs of large size.

2.1 From Logic Learning to Minimum Cost
Satisfiability

The goal of logic supervised learning consists in inductively determining separations among
sets of data, starting from a set of labeled training observations. The approach adopted
in this thesis, as described in [48] and applied in [49], reduces the learning problem to a
sequence of satifiability instances.

The logic data, or the observations to be used in the in the inductive learning process,
are defined as vectors r ∈ {−1, 0, 1}n, and called records. In contrast with classical Boolean
vectors, the components ri can not only indicate the presence (ri = 1) or absence (ri = −1)
of a certain feature i, but additionally include the possibility of an absence of informations
(ri = 0).

For each of such records, we define index sets r+, r−, and r0, containing the indices
i for which the elements ri are respectively equal to 1, −1, and 0. Along with a record

12 Metaheuristics for Information Extraction Problems

r comes a logic outcome, either True or False, to represent the presence or absence of a
given property in the observation. We collect the records r for which the property is absent
in a set A, and those for which it is present in a set B.

The aim in this supervised learning scenario is to extract a Boolean formula from the
observation records, that completely separates the set of positive examples B from the set
A. This separation process takes places by means of a set of vectors, called “separating set”.
To properly define the concept of separation, we introduce the property of being nested.

Let f be a {−1, 0, 1}n vector, then f is said to be nested in a {−1, 0, 1}n vector g, if
and only if for any fi equal to 1 or −1, the corresponding entry of g , gi, is such that
gi = fi. Conversely, f is not nested in g if and only if there is a fi = 1 in f, such that
gi = −fi or gi = 0.

On the base of the nested relation we are able to define separation.
Let A and B be sets of records of the same size n. A record s separates b ∈ B from A

if and only if

S1. s is not nested in a, ∀a ∈ A;

S2. s is nested in b.

Then, a set of records S separates the whole set B from A if, for each record s ∈ S, s
is not nested in any a ∈ A, and for each b ∈ B it exists a sb ∈ S such that sb separates
b from A. As proven in [48], the existence of such a separating set S of B from A is
guaranteed if and only if no record b ∈ B is nested in any record a ∈ A.

The use of satisfiability models for learning propositional formulae gathered several
successes, as reported in [10, 3, 155, 156, 154]. In the following we describe how to
obtain a specific variation of the classical SAT, the Minimum Cost Satisfiability Problem
(MinCostSAT), to model supervised learning in Logic Fields.

Let A and B be non-empty sets of {−1, 0, 1}n records. The core idea of this approach
is to iteratively find logic records s to separate a growing portion B∗ ⊆ B from A, until a
separating set S is obtained.

To write a proper satisfiability model we introduce for each i = 1, . . . , n two Boolean
variables, pi and qi. These variables are tightly connected with the component of the
separating vector s to be found, in the sense that

si = 1, if pi = True∧ qi = False;

si = −1, if pi = False∧ qi = True;

si = 0 if pi = qi = False.

(2.1)

2.1 From Logic Learning to Minimum Cost
Satisfiability 13

The case pi = qi = True has not a clear interpretation, so it is ruled out enforcing

¬pi ∨ ¬qi, ∀i = 1, . . . , n. (2.2)

Since s is a separating vector, it has to fulfill conditions S1 and S2. In the following we
take into account those two separately, and obtain two different set of constraints to be
included in our SAT model.

Condition S1 requires that s is not nested in any a ∈ A. This means that exists at
least an index i such that one of the three following conditions happens:

• ai = 1 and si = −1;

• ai = −1 and si = 1;

• ai = 0 and si = 1∨ si = −1.

So, for this index i, in terms of pi and qi, using 2.1 and 2.2 we obtain

ai = 1⇒ qi

ai = −1⇒ pi

ai = 0⇒ qi ∨ pi.

(2.3)

Since these three conditions have to hold for each a ∈ A and at least an index i, they
can be collected in the following disjunctions:

 ∨
i∈a+∪a0

qi

∨

 ∨
i∈a−∪a0

pi

 , ∀a ∈ A (2.4)

that completely enclose condition S1. On the other hand, to take into account condition
S2, we have that if s separates a record b ∈ B, s has to be nested in b. Following a similar
approach to the one presented for condition S1, we have

bi = 1⇒ ¬qi

bi = −1⇒ ¬pi

bi = 0⇒ ¬pi ∨ ¬qi

(2.5)

At the same time, in our pursuit for a separating record s, there is no guarantee that
a single record is able to separate all the elements of B from A. For this reason, it is
not possible to include, for each b ∈ B, (2.5) as constraint in a satisfiability model. As
a workaround, we define for each b an additional Boolean variable, db, that determines

14 Metaheuristics for Information Extraction Problems

whether s must separate b from A. More specifically, db = True means that s needs not
to separate b from A, while db = False requires that separation. Using variable db in
(2.5), we get to the new following form

¬qi ∨ db, ∀i ∈ b+ ∪ b0

¬pi ∨ db, ∀i ∈ b− ∪ b0.
(2.6)

As mentioned earlier, the idea behind this approach is to decompose the problem of
finding a separating set into a sequence of subproblems, each of which determines a vector
s that separates a nonempty subset of B from A. This idea can be translated in an
optimization problem if at each step we try to maximize the number of elements of B
separated from A. Rendering this insight in terms of variables db, we want a separating
record s, i.e. a vector that satisfies (2.4) and (2.6), and that does so with the minimal
number of db variables with a True value.

For each b ∈ B, we define a cost function cb(db) that is equal to 1 if db is True, and
0 otherwise. Using the costs cb and in light of constraints (2.4) and (2.6), we obtain the
following Satisfiability Problem:

z = min
∑
b∈B

cb(db)

subject to: ∨
i∈a+∪a0

qi ∨
∨

i∈a−∪a0

pi ∀a ∈ A

¬qi ∨ db, ∀i ∈ b+ ∪ b0

¬pi ∨ db, ∀i ∈ b− ∪ b0.

(2.7)

Problems of this family are called Minimum Cost Satisfiability Problems. In their most
general form they can be stated as follows.

Given a set of n Boolean variables X = {x1, . . . , xn}, a non-negative cost function
c : X 7→ R+ such that c(xi) = ci ≥ 0, i = 1, . . . , n, and a Boolean formula φ(X)

expressed in CNF, the MinCostSAT problem consists in finding a truth assignment for the
variables in X such that the total cost is minimized while φ(X) is satisfied. Accordingly,
the mathematical formulation of the problem is:

2.2 A GRASP for MinCostSAT 15

(MinCostSAT) z = min
n∑
i=1

cixi

subject to:
φ(X) = 1,

xi ∈ {0, 1}, ∀i = 1, . . . , n.

It is easy to see that a general SAT problem can be reduced to a MinCostSAT problem
whose costs ci are all equal to 0. Furthermore, the decision version of the MinCostSAT
problem is NP-complete [63]. While the Boolean satisfiability problem is an evergreen in
the landscape of scientific literature, MinCostSAT has received less attention.

2.2 A GRASP for MinCostSAT
GRASP is a well established iterative multistart metaheuristic method for difficult combina-
torial optimization problems [50]. The reader can refer to [57, 58] for a study of a generic
GRASP metaheuristic framework and its applications.

Such method is characterized by the repeated execution of two main phases: a construc-
tion and a local search phase. The construction phase iteratively adds one component at a
time to the current solution under construction. At each iteration, an element is randomly
selected from a restricted candidate list (RCL), composed by the best candidates, according
to some greedy function that measures the myopic benefit of selecting each element.

Once a complete solution is obtained, the local search procedure attempts to improve it
by producing a locally optimal solution with respect to some suitably defined neighborhood
structure. Construction and local search phases are repeatedly applied. The best locally
optimal solution found is returned as final result. Figure 2.1 depicts the pseudo-code of a
generic GRASP for a minimization problem.

In order to allow a better and easier implementation of our GRASP, we treat the
MinCost-SAT as particular covering problem with incompatibility constraints. Indeed, we
consider each literal (x,¬x) as a separate element, and a clause of the CNF is covered if
at least one literal in the clause is contained in the solution. The algorithm tries to add
literals to the solution in order to cover all the clauses and, once the literal x is added
to the solution, then the literal ¬x cannot be inserted (and vice versa). Therefore, if the
literal x is in solution, the variable x is assigned to true and all clauses covered by x are
satisfied. Similarly, if the literal ¬x is in solution, the variable x is assigned to false, and
clauses containing ¬x are satisfied.

16 Metaheuristics for Information Extraction Problems

1 Algorithm GRASP(β)
2 x∗ ← Nil ;
3 z(x∗)← +∞ ;
4 while a stopping criterion is not satisfied do
5 Build a greedy randomized solution x ;
6 x← LocalSearch(x) ;
7 if z(x) < z(x∗) then
8 x∗ ← x ;
9 z(x∗)← z(x) ;

10 return x∗

Fig. 2.1 A generic GRASP for a minimization problem.

The construction phase adds a literal at a time, until all clauses are covered or no more
literals can be assigned. At each iteration of the construction, if a clause can be covered
only by a single literal x – due to the choices made in previous iterations – then x is selected
to cover the clause. Otherwise, if there are not clauses covered by only a single literal, the
addition of literals to the solution takes place according to a penalty function, penalty(·),
which greedily sorts all the candidates literals, as described below.

Let cr(x) be the number of clauses yet to be covered that contain x. We then compute:

penalty(x) =
c(x) + cr(¬x)

cr(x)
. (2.8)

This penalty function evaluates both the benefits and disadvantages that can result from
the choice of a literal rather than another. The benefits are proportional to the number of
uncovered clauses that the chosen literal could cover, while the disadvantages are related
to both the cost of the literal and the number of uncovered clauses that could be covered
by ¬x. The smaller the penalty function penalty(x), the more favorable is the literal x.
According to the GRASP scheme, the selection of the literal to add is not purely greedy,
but a Restricted Candidate List (RCL) is created with the most promising elements, and
an element is randomly selected among them. Concerning the tuning of the parameter β,
whose task is to adjust the greediness of the construction phase, we performed an extensive
analysis over a set of ten different random seeds. Such testing showed how a nearly totally
greedy setup (β = 0.1) allowed the algorithm to attain better quality solutions in smallest
running times.

Let |C| = m be the number of clauses. Since |X| = 2n, in the worst case scenario
the loop while (Figure 2.2, line 3) in the construct-solution function pseudo-coded

2.2 A GRASP for MinCostSAT 17

1 Function construct-solution(C, X, β)
/* C is the set of uncovered clauses */
/* X is the set of candidate literals */

2 s← ∅ ;
3 while C ̸= ∅ do
4 if c ∈ C can be covered only by x ∈ X then
5 s← s ∪ {x};
6 X← X \ {x,¬x};
7 C ← C \ {c̄ | x ∈ c̄};
8 else
9 compute penalty(x) ∀ x ∈ X;

10 th← min
x∈X

{penalty(x)}+ β(max
x∈X

{penalty(x)}−min
x∈X

{penalty(x)}) ;
11 RCL← { x ∈ X : penalty(x) ≤ th } ;
12 x̂← rand(RCL) ;
13 s← s ∪ {x̂};
14 X← X \ {x̂,¬x̂};
15 C ← C \ {c̄ | x̂ ∈ c̄};
16 return s

Fig. 2.2 Pseudo-code of the GRASP construction phase.

in Fig. 2.2 runs m times and in each run the most expensive operation consists in the
construction of the RCL. Therefore, the total computational complexity is O(m · n).

In the local search phase, the algorithm uses a 1-exchange (flip) neighborhood function,
where two solutions are neighbors if and only if they differ in at most one component.
Therefore, if there exists a better solution x̄ that differs only for one literal from the current
solution x, the current solution s is set to s̄ and the procedure restarts. If such a solution
does not exists, the procedure ends and returns the current solution s. The local search
procedure would also re-establish feasibility if the current solution is not covering all clauses
of φ(X). During our experimentation we tested the one-flip local search using two different
neighborhood exploration strategies: first improvement and best improvement. With the
former strategy, the current solution is replaced by the first improving solution found in its
neighborhood; such improving solution is then used as a starting point for the next local
exploration. On the other hand, with the best improvement strategy, the current solution x

is replaced with the solution x̄ ∈ N (x) corresponding to the greatest improvement in terms
of objective function value; x̄ is then used as a starting point for the next local exploration.
Our results showed how the first improvement strategy is slightly faster, as expected, while
attaining solution of the same quality of those given by the best improvement strategy.

18 Metaheuristics for Information Extraction Problems

Based on this rationale, we selected first improvement as exploration strategy in our testing
phase.

2.3 Bernoulli Take the Wheel! A probabilistic Stop-
ping Rule

Although being very fast and powerful, most metaheuristics present a shortcoming in the
effectiveness of their stopping rule. Usually, the stopping criterion is based on a bound on
the maximum number of iterations, a limit on total execution time, or a given maximum
number of consecutive iterations without improvement. In this algorithm, we propose a
probabilistic stopping criterion, inspired by [132].

The stopping criterion is composed of two phases, described in the next subsections.
It can be sketched as follows. First, let X be a random variable representing the value
of a solution obtained at the end of a generic GRASP iteration. In the first phase – the
fitting-data procedure – the probability distribution fX (·) of X is estimated, while
during the second phase – improve-probability procedure – the probability of obtaining
an improvement of the current solution value is computed. Then, accordingly to a threshold,
the algorithm either stops or continues its execution.

The first step to be performed in order to properly represent the random variable X with
a theoretical distribution consists in an empirical observation of the algorithm. Examining
the objective function values obtained at the end of each iteration, and counting up the
respective frequencies, it is possible to select a promising parametric family of distributions.
Afterwards, by means of a Maximum Likelihood Estimation (MLE), see for example [137], a
choice is made regarding the parameters characterizing the best fitting distribution of the
chosen family.

In order to carry on the empirical analysis of the objective function value obtained in
a generic iteration of GRASP, which will result in a first guess concerning the parametric
family of distributions, we represent the data obtained in the following way.

Let I be a fixed instance and F the set of solutions obtained by the algorithm up to the
current iteration, and let Z be the multiset of the objective function values associated to F .
Since we are dealing with a minimization problem, it is harder to find good quality solutions,
whose cost is small in term of objective function, rather than expensive ones. This means
that during the analysis of the values in Z we expect to find an higher concentration of
elements between the mean value µ and the max(Z). In order to represent the values in Z
with a positive distribution function, that presents higher frequencies in a right neighborhood

2.3 Bernoulli Take the Wheel! A probabilistic Stopping Rule 19

Fig. 2.3 Empirical analysis of frequencies of the solutions.

1 Function fitting-data(Z̄)
/* Z̄ is the initial sample of the objective function values */

2 foreach z ∈ Z̄ do
3 z = max(Z̄) − z;
4 {k, θ}← MLE(Z, "gamma");
5 return {k, θ}

Fig. 2.4 Fitting data procedure.

of zero and a single tail which decays for growing values of the random variable, we perform
a reflection on the data in Z by means of the following transformation:

z̄ = max(Z) − z, ∀ z ∈ Z. (2.9)

The behavior of the distribution of z̄ in our instances has then a very recognizable
behavior. A representative of such distribution is given in Figure 2.3 where the histogram
of absolute and relative frequencies of z̄ are plotted. It is easy to observe how the gamma
distribution family represents a reasonable educated guess for our random variable.

Once we have chosen the gamma distribution family, we estimate its parameters
performing a MLE. In order to accomplish the estimation, we collect an initial sample
of solution values and on-line execute a function, developed in R (whose pseudo-code is
reported in Figure 2.4), which carries out the MLE and returns the characteristic shape and
scale parameters, k and θ, which pinpoint the specific distribution of the gamma family
that best suits the data.

The second phase of the probabilistic stop takes place once that the probability distri-
bution function of the random variable X , fX (·) has been estimated.

20 Metaheuristics for Information Extraction Problems

1 Function improve-probability(k, θ, z∗)
/* z∗ is the value of the incumbent */

2 p← pgamma(z∗, shape = k, scale = θ);
3 return p

Fig. 2.5 Improve probability procedure.

Let ẑ be the best solution value found so far. It is possible to compute an approximation
of the probability of improving the incumbent solution by

p = 1−

∫max(Z)−ẑ

0

fX (t) dt. (2.10)

The result of the procedures fitting-data and improve-probability consists in
an estimate of the probability of incurring in an improving solution in the next iterations.
Such probability is compared with a user-defined threshold, α, and if p < α the algorithm
stops. More specifically, in our implementation the stopping criterion works as follows:

a) let q be an user-defined positive integer, and let Z̄ be the sample of initial solution
values obtained by the GRASP in the first q iterations;

b) call the fitting-data procedure, whose input is Z̄ is called one-off to estimate
shape and scale parameters, k and θ, of the best fitting gamma distribution;

c) every time that an incumbent is improved, improve-probability procedure (pseudo-
code in Figure 2.5) is performed and the probability p of further improvements is
computed. If p is less than or equal to α the stopping criterion is satisfied. For the
purpose of determining p, we have used the function pgamma of R package stats.

2.4 Computational Testing I
Our GRASP has been implemented in C++ and compiled with gcc5.4.0 with the flag
-std=c++14. All tests were run on a cluster of nodes, connected by 10 Gigabit Infiniband
technology, each of them with two processors Intel Xeon E5-4610v2@2.30GHz.

We performed two different kinds of experimental tests. In the first one, we compared
the algorithm with different solvers proposed in literature, without use of probabilistic
stop. In particular, we used: Z3 solver freely available from Microsoft Research [34], bsolo
solver kindly provided by its authors [101], the MiniSat+ [46] available at web page http:

http://minisat.se/
http://minisat.se/

2.4 Computational Testing I 21

//minisat.se/, and PWBO available at web page http://sat.inesc-id.pt/pwbo/index.html.
The aim of this first set of computational experiment is the evaluation of the quality of
the solutions obtained by our algorithm within a certain time limit. More specifically, the
stopping criterion for GRASP, bsolo, and PWBO is a time limit of 3 hours, for Z3 and
MiniSat+ is the reaching of an optimal solution.

Z3 is a satisfiability modulo theories (SMT) solver from Microsoft Research that
generalizes Boolean satisfiability by adding equality reasoning, arithmetic, fixed-size bit-
vectors, arrays, quantifiers, and other useful first-order theories. Z3 integrates modern
backtracking-based search algorithm for solving the CNF-SAT problem, namely DPLL-
algorithm; in addition it provides a standard search pruning methods, such as two-watching
literals, lemma learning using conflict clauses, phase caching for guiding case splits, and
performs non-chronological backtracking.

bsolo [101, 102] is an algorithmic scheme resulting from the integration of several
features from SAT-algorithms in a branch-and-bound procedure to solve the binate covering
problem. It incorporates the most important characteristics of a branch-and-bound and
SAT algorithm, bounding and reduction techniques for the former, and search pruning
techniques for the latter. In particular, it incorporates the search pruning techniques of the
Generic seaRch Algorithm-SAT proposed in [104].

MiniSat+ [46, 142] is a minimalistic implementation of a Chaff-like SAT solver based
on the two-literal watch scheme for fast Boolean constraint propagation [117], and conflict
clauses driven learning [104]. In fact the MiniSat solver provides a mechanism which allows
to minimize the clauses conflicts. PWBO [110, 112, 111] is a Parallel Weighted Boolean
Optimization Solver. The algorithm uses two threads in order to simultaneously estimate a
lower and an upper bound, by means of an unsatisfiability-based procedure and a linear
search, respectively. Moreover, learned clauses are shared between threads during the
search.

In our testing, we have initially considered the datasets used to test feature selection
methods in [11], where an extensive description of the generation procedure can be found.
Such testbed is composed of 4 types of problems (A,B,C,D), for each of which 10 random
repetitions have been generated. Problems of type A and B are of moderate size (100
positive examples, 100 negative examples, 100 logic features), but differ in the form of the
formula used to classify the samples into the positive and negative classes (the formula
being more complex for B than for A). Problems of type C and D are much larger (200
positive examples, 200 negative examples, 2500 logic features), and D has a more complex
generating logic formula than C.

http://minisat.se/
http://minisat.se/
http://sat.inesc-id.pt/pwbo/index.html

22 Metaheuristics for Information Extraction Problems

Table 2.1 reports both the value of the solutions and the time needed to achieve them
(in the case of GRASP, it is average over ten runs).1 For problems of moderate size (A
and B), the results show that GRASP finds an optimal solution whenever one of the exact
solvers converges. Moreover, GRASP is very fast in finding the optimal solution, although
here it runs the full allotted time before stopping the search. For larger instances (C and
D), GRASP always provides a solution within the bounds, while two of the other tested
solvers fail in doing so and the two that are successful (bsolo, PWBO) always obtain values
of inferior quality.

The second set of experimental tests was performed with the purpose of evaluating the
impact of the probabilistic stopping rule. In order to do so, we have chosen five different
values for threshold α, two distinct sizes for the set Z̄ of initial solution, and executed
GRASP using ten different random seeds imposing a maximum number of iterations as
stopping criterion. This experimental setup yielded for each instance, and for each threshold
value, 20 executions of the algorithm. About such runs, the data collected were: the
number of executions in which the probabilistic stopping rule was verified (“stops”), the
mean value of the objective function of the best solution found (µz), and the average
computational time needed (µt). To carry out the evaluation of the stopping rule, we
executed the algorithm only using the maximum number of iterations as stopping criterion
for each instance and for each random seed. About this second setup, the data collected
are, as for the first one, the objective function of the best solution found (µẑ) and the
average computational time needed (µt̂). For the sake of comparison, we considered the
percentage gaps between the results collected with and without the probabilistic stopping
rule. The second set of experimental tests is summarized in Table 2.2 and in Figure 2.7.
For each pair of columns (3,4), (6,7), (9,10), (12, 13), the table reports the percentage of
loss in terms of objective function value and the percentage of gain in terms of computation
times using the probabilistic stopping criterion, respectively. The analysis of the gaps shows
how the probabilistic stop yields little or no changes in the objective function value while
bringing dramatic improvements in the total computational time.

The experimental evaluation of the probabilistic stop is summarized in the three distinct
boxplots of Figure 2.6. Each boxplot reports a sensible information related to the impact
of the probabilistic stop, namely: the number of times the probabilistic criterion has been
satisfied, the gaps in the objective function values, and the gaps in the computation times
obtained comparing the solutions obtained with and without the use of the probabilistic
stopping rule. Such information are collected, for each instance, as averages of the data
obtained over 20 trials in the experimental setup described above. The first boxplot depicts

1For missing values, the algorithm was not able to find the optimal solution in 24 hours.

2.4 Computational Testing I 23

Table 2.1 Comparison between GRASP and other solvers.

GRASP Z3 bsolo MiniSat+ pwbo-2T

Inst. Time Value Time Value Time Value Time Value Time Value

A1 6.56 78.0 10767.75 78.0 0.09 78.0 0.19 78.0 0.03 78.0
A2 1.71 71.0 611.29 71.0 109.59 71.0 75.46 71.0 121.58 71.0
A3 0.64 65.0 49.75 65.0 598.71 65.0 10.22 65.0 5.14 65.0
A4 0.18 58.0 4.00 58.0 205.77 58.0 137.82 58.0 56.64 58.0
A5 0.29 66.0 69.31 66.0 331.51 66.0 9.03 66.0 30.64 66.0
A6 21.97 77.0 5500.17 77.0 328.93 77.0 32.82 77.0 359.97 77.0
A7 0.21 63.0 30.57 63.0 134.20 63.0 19.34 63.0 24.12 63.0
A8 0.25 62.0 6.57 62.0 307.69 62.0 16.84 62.0 11.81 62.0
A9 12.79 72.0 1088.83 72.0 3118.32 72.0 288.76 72.0 208.63 72.0
A10 0.33 66.0 42.23 66.0 62.03 66.0 37.75 66.0 1.81 66.0

B1 6.17 78.0 8600.60 78.0 304.36 78.0 121.25 78.0 20.01 78.0
B2 493.56 80.0 18789.20 80.0 4107.41 80.0 48.21 80.0 823.66 80.0
B3 205.37 77.0 7037.00 77.0 515.25 77.0 132.74 77.0 1.69 77.0
B4 38.26 77.0 7762.03 77.0 376.00 77.0 119.49 77.0 1462.18 77.0
B5 19.89 79.0 15785.35 79.0 3025.26 79.0 214.52 79.0 45.05 79.0
B6 28.45 76.0 4087.14 76.0 394.45 76.0 162.31 76.0 83.72 76.0
B7 129.76 78.0 10114.84 78.0 490.30 78.0 266.25 78.0 455.92 81.0*
B8 44.42 76.0 5186.45 76.0 5821.19 76.0 1319.21 76.0 259.07 76.0
B9 152.77 80.0 14802.00 80.0 5216.95 82.0 36.28 80.0 557.02 80.0
B10 7.55 73.0 1632.87 73.0 760.28 79.0 370.30 73.0 72.09 73.0

C1 366.24 132.0 86400 – 8616.25 178.0* 86400 – 343.38 178.0*
C2 543.11 131.0 86400 – 323.90 150.0* 86400 – 1742.68 174.0*
C3 5883.6 174.1 86400 – 6166.06 177.0* 86400 – 421.64 177.0*
C4 4507.63 176.3 86400 – 6209.69 178.0* 86400 – 2443.20 177.0*
C5 5707.51 171.2 86400 – 314.18 179.0* 86400 – 67.73 178.0*
C6 6269.91 172.1 86400 – 1547.90 177.0* 86400 – 2188.82 177.0*
C7 6193.15 165.9 86400 – 794.90 177.0* 86400 – 730.36 178.0*
C8 596.58 137.0 86400 – 306.27 169.0* 86400 – 837.71 178.0*
C9 466.3 136.0 86400 – 433.32 179.0* 86400 – 3455.92 178.0*
C10 938.54 136.0 86400 – 3703.94 180.0* 86400 – 4617.24 179.0*

D1 3801.61 145.3 86400 – 307.25 175.0* 86400 – 127.69 180.0*
D2 2040.64 139.0 86400 – 7704.92 177.0* 86400 – 2327.23 177.0*
D3 1742.78 143.0 86400 – 309.10 145.0* 86400 – 345.97 178.0*
D4 1741.95 135.0 86400 – 6457.79 177.0* 86400 – 295.76 178.0*
D5 1506.22 134.0 86400 – 6283.27 178.0* 86400 – 238.81 173.0*
D6 1960.87 144.5 86400 – 309.11 173.0* 86400 – 2413.42 178.0*
D7 1544.42 143.0 86400 – 4378.73 179.0* 86400 – 1250.07 178.0*
D8 1756.15 144.0 86400 – 1214.97 179.0* 86400 – 248.85 179.0*
D9 2779.38 137.0 86400 – 303.11 146.0* 86400 – 4.73 179.0*
D10 5896.86 149.0 86400 – 319.45 170.0* 86400 – 1239.93 176.0*

Y 16.05 0.0 0.73 0.0 9411.06 974* 1.96 0 0.23 0.0
*sub-optimal solution
– no optimal solution found in 24 hours

the number of total stops recorded for different values of threshold α. Larger values of
α, indeed, yield a less coercive stopping rule, thus recording an higher number of stops.
Anyhow, even for the smallest, most conservative α, the average number of stops recorded
is close to 50% of the tests performed. In the second boxplot, the objective function
gap is reported. Such gap quantifies the qualitative worsening in quality of the solutions
obtained with the probabilistic stopping rule. The gaps yielded show how even with the
highest α, the difference in solution quality is extremely small, with a single minimum of

24 Metaheuristics for Information Extraction Problems

Table 2.2 Probabilistic stop on instances A, B, C and D.

threshold α inst %-gap z %-gap t(s) inst %-gap z %-gap t(s) inst %-gap z %-gap t(s) inst %gap z %gap t(s)

5 · 10−2 A1 -0.0 83.1 B1 -2.1 87.1 C1 -6.6 76.0 D1 -5.0 79.3
1 · 10−2 A1 -0.0 83.1 B1 -2.1 87.1 C1 -6.6 76.1 D1 -5.0 79.3
5 · 10−3 A1 -0.0 83.0 B1 -2.1 87.1 C1 -5.0 74.8 D1 -4.9 78.7
1 · 10−3 A1 -0.0 2.5 B1 -2.1 87.1 C1 -3.8 70.7 D1 -1.7 58.9
5 · 10−4 A1 -0.0 -15.3 B1 -2.1 87.2 C1 -2.6 70.2 D1 -1.2 49.0
1 · 10−4 A1 -0.0 -11.8 B1 -0.5 86.1 C1 -1.3 52.5 D1 -0.2 31.6

5 · 10−2 A2 -0.0 84.0 B2 -0.7 87.0 C2 -3.5 76.0 D2 -0.1 79.1
1 · 10−2 A2 -0.0 84.1 B2 -0.7 87.0 C2 -3.5 76.2 D2 -0.1 79.1
5 · 10−3 A2 -0.0 83.6 B2 -0.7 86.9 C2 -3.5 76.7 D2 -0.1 79.1
1 · 10−3 A2 -0.0 84.0 B2 -0.7 87.0 C2 -1.9 76.4 D2 -0.1 79.1
5 · 10−4 A2 -0.0 84.9 B2 -0.7 87.0 C2 -1.9 76.1 D2 -0.1 75.7
1 · 10−4 A2 -0.0 57.9 B2 -0.1 71.3 C2 -1.9 65.2 D2 -0.1 53.5

5 · 10−2 A3 -0.0 83.4 B3 -2.7 87.0 C3 -2.7 76.3 D3 -1.8 75.2
1 · 10−2 A3 -0.0 83.8 B3 -2.7 87.0 C3 -2.1 73.0 D3 -1.8 75.2
5 · 10−3 A3 -0.0 82.9 B3 -2.7 87.0 C3 -1.7 68.0 D3 -1.7 74.8
1 · 10−3 A3 -0.0 8.3 B3 -2.6 86.6 C3 -0.6 40.9 D3 -0.8 38.5
5 · 10−4 A3 -0.0 -1.6 B3 -2.0 84.1 C3 -0.0 28.3 D3 -0.5 19.1
1 · 10−4 A3 -0.0 -6.8 B3 -0.7 58.4 C3 -0.0 9.9 D3 -0.3 14.5

5 · 10−2 A4 -0.0 86.4 B4 -2.3 86.9 C4 -4.3 78.8 D4 -2.2 75.0
1 · 10−2 A4 -0.0 6.4 B4 -2.3 86.9 C4 -3.3 68.0 D4 -2.2 70.9
5 · 10−3 A4 -0.0 3.5 B4 -2.3 86.9 C4 -2.2 63.9 D4 -2.2 66.8
1 · 10−3 A4 -0.0 1.4 B4 -2.3 87.0 C4 -1.0 51.2 D4 -2.0 41.0
5 · 10−4 A4 -0.0 5.6 B4 -2.3 86.9 C4 -0.8 48.6 D4 -1.2 29.1
1 · 10−4 A4 -0.0 6.4 B4 -0.6 74.8 C4 -0.3 38.1 D4 -1.2 18.9

5 · 10−2 A5 -0.0 87.6 B5 -0.7 86.6 C5 -2.6 79.7 D5 -5.6 75.2
1 · 10−2 A5 -0.0 12.2 B5 -0.7 86.6 C5 -1.5 71.5 D5 -4.9 75.1
5 · 10−3 A5 -0.0 12.5 B5 -0.7 86.6 C5 -0.4 68.1 D5 -4.9 75.2
1 · 10−3 A5 -0.0 12.4 B5 -0.7 86.6 C5 -0.2 53.2 D5 -4.7 67.6
5 · 10−4 A5 -0.0 12.3 B5 -0.6 86.3 C5 -0.0 46.8 D5 -3.8 60.0
1 · 10−4 A5 -0.0 12.5 B5 -0.1 19.0 C5 -0.0 33.2 D5 -3.3 49.8

5 · 10−2 A6 -0.9 87.2 B6 -0.8 86.6 C6 -3.3 79.9 D6 -7.9 76.0
1 · 10−2 A6 -0.9 87.2 B6 -0.8 86.6 C6 -2.0 70.5 D6 -5.9 74.8
5 · 10−3 A6 -0.9 87.2 B6 -0.8 86.6 C6 -1.3 65.4 D6 -5.0 74.0
1 · 10−3 A6 -0.8 87.1 B6 -0.7 86.3 C6 -0.2 49.6 D6 -2.5 71.1
5 · 10−4 A6 -0.5 86.8 B6 -0.1 72.1 C6 -0.2 39.9 D6 -2.5 71.2
1 · 10−4 A6 -0.0 66.1 B6 -0.0 7.6 C6 -0.0 36.6 D6 -2.5 67.3

5 · 10−2 A7 -0.0 87.5 B7 -3.1 86.2 C7 -3.8 74.4 D7 -6.5 75.5
1 · 10−2 A7 -0.0 11.7 B7 -3.1 86.2 C7 -2.4 65.7 D7 -5.3 72.1
5 · 10−3 A7 -0.0 11.7 B7 -3.1 86.2 C7 -1.9 60.7 D7 -4.0 68.0
1 · 10−3 A7 -0.0 11.3 B7 -3.1 86.2 C7 -0.8 43.0 D7 -2.8 61.2
5 · 10−4 A7 -0.0 11.5 B7 -3.0 86.0 C7 -0.0 36.4 D7 -2.2 60.6
1 · 10−4 A7 -0.0 11.4 B7 -0.8 75.8 C7 -0.0 14.0 D7 -2.2 57.4

5 · 10−2 A8 -0.0 88.1 B8 -1.5 86.7 C8 -3.6 73.9 D8 -11.5 76.2
1 · 10−2 A8 -0.0 88.1 B8 -1.5 86.7 C8 -3.3 74.7 D8 -6.7 73.4
5 · 10−3 A8 -0.0 88.1 B8 -1.5 86.7 C8 -3.3 74.4 D8 -6.7 73.4
1 · 10−3 A8 -0.0 16.4 B8 -1.2 86.4 C8 -3.3 73.7 D8 -4.4 68.2
5 · 10−4 A8 -0.0 16.6 B8 -0.8 74.5 C8 -3.2 65.6 D8 -3.4 67.9
1 · 10−4 A8 -0.0 16.5 B8 -0.0 7.8 C8 -2.2 60.5 D8 -2.4 64.9

5 · 10−2 A9 -0.0 88.0 B9 -1.9 85.9 C9 -4.1 75.3 D9 -2.1 75.2
1 · 10−2 A9 -0.0 88.0 B9 -1.9 85.9 C9 -2.7 74.8 D9 -2.1 75.2
5 · 10−3 A9 -0.0 88.0 B9 -1.9 85.9 C9 -1.1 74.4 D9 -2.1 75.2
1 · 10−3 A9 -0.0 16.0 B9 -1.9 85.9 C9 -1.1 66.6 D9 -2.1 75.2
5 · 10−4 A9 -0.0 16.0 B9 -1.7 84.9 C9 -0.2 56.5 D9 -2.1 67.7
1 · 10−4 A9 -0.0 15.9 B9 -0.5 45.2 C9 -0.2 55.7 D9 -1.9 60.4

5 · 10−2 A10 -0.0 83.3 B10 -0.3 87.7 C10 -0.4 76.3 D10 -7.1 73.7
1 · 10−2 A10 -0.0 75.4 B10 -0.3 87.6 C10 -0.4 76.2 D10 -6.9 73.8
5 · 10−3 A10 -0.0 0.5 B10 -0.3 87.7 C10 -0.3 67.9 D10 -6.4 73.1
1 · 10−3 A10 -0.0 -5.4 B10 -0.3 87.6 C10 -0.3 48.0 D10 -4.5 62.0
5 · 10−4 A10 -0.0 -4.8 B10 -0.0 87.4 C10 -0.3 48.0 D10 -4.3 57.3
1 · 10−4 A10 -0.0 -4.7 B10 -0.0 35.7 C10 -0.2 27.0 D10 -3.1 38.6

2.4 Computational Testing I 25

0.05 0.01 0.005 0.001 5e−04 1e−04

0
5

10
15

20

Number of stops

Thresholds

of

 st
op

s

0.05 0.01 0.005 0.001 5e−04 1e−04

−1
2

−1
0

−8
−6

−4
−2

0

Objective function gaps

Thresholds

%
−g

ap

0.05 0.01 0.005 0.001 5e−04 1e−04

0
20

40
60

80

Time gaps

Thresholds

%
−g

ap

Fig. 2.6 Experimental evaluation of the probabilistic stopping rule. In each boxplot, the boxes represent
the first and the second quartile; solid line represent median while dotted vertical line is the full variation
range. Plots vary for each threshold α. The dots connected by a line represent the mean values.

−11.5% for the instance D8, and a very promising average gap, slightly below −2%. As
expected, decreasing the α values the solutions obtained with and without the probabilistic
stopping rule will align with each other, and the negative gaps will accordingly grow up to
approximately −1%. The third boxplot shows the gaps obtained in the computation times.
The analysis of such gaps is the key to realistically appraise the actual benefit provided by
the use of the probabilistic stopping rule. Observing the results reported, it is possible to
note how even in the case of the smallest threshold, i.e., using the most strict probabilistic
stopping criterion, the stops recorded are such that an average time discount close to the
40% is encountered. A more direct display of this time gaps can be obtained straightly
considering the total time discount in seconds: with the smallest α we have experienced a
time discount of 4847.6 seconds over the 11595.9 total seconds needed for the execution
without the probabilistic stop. Analyzing in the same fashion the values obtained under
the largest threshold, we observed an excellent average discount just over 80%, which

26 Metaheuristics for Information Extraction Problems

quantified in seconds amounts to an astonishing total discount of 8919.64 seconds over
the 11595.9 total seconds registered for the execution without the probabilistic stop.

	40
	60
	80

	100
	120
	140
	160
	180
	200

A5 A10 B5 B10 C5 C10 D5 D10

a
lp
h
a
	=
	0
.0
5

Objective	function	value

PS
noPS

	0
	100
	200
	300
	400
	500
	600

A5 A10 B5 B10 C5 C10 D5 D10

Time

PS
noPS

	40
	60
	80

	100
	120
	140
	160
	180

A5 A10 B5 B10 C5 C10 D5 D10

a
lp
h
a
	=
	0
.0
1

PS
noPS

	0
	100
	200
	300
	400
	500
	600

A5 A10 B5 B10 C5 C10 D5 D10

PS
noPS

	40
	60
	80

	100
	120
	140
	160
	180

A5 A10 B5 B10 C5 C10 D5 D10

a
lp
h
a
	=
	0
.0
0
5

PS
noPS

	0
	100
	200
	300
	400
	500
	600

A5 A10 B5 B10 C5 C10 D5 D10

PS
noPS

	40
	60
	80

	100
	120
	140
	160
	180

A5 A10 B5 B10 C5 C10 D5 D10

a
lp
h
a
	=
	0
.0
0
1

Objective	function	value

PS
noPS

	0
	100
	200
	300
	400
	500
	600

A5 A10 B5 B10 C5 C10 D5 D10

Time

PS
noPS

	40
	60
	80

	100
	120
	140
	160
	180

A5 A10 B5 B10 C5 C10 D5 D10
a
lp
h
a
	=
	0
.0
0
0
5 PS

noPS

	0
	100
	200
	300
	400
	500
	600

A5 A10 B5 B10 C5 C10 D5 D10

PS
noPS

	40
	60
	80

	100
	120
	140
	160
	180

A5 A10 B5 B10 C5 C10 D5 D10

a
lp
h
a
	=
	0
.0
0
0
1 PS

noPS

	0
	100
	200
	300
	400
	500
	600

A5 A10 B5 B10 C5 C10 D5 D10

PS
noPS

Fig. 2.7 Comparison of objective function values and computation times obtained with and without
probabilistic stopping rule for different threshold values.

2.5 A Hybrid Metaheuristic Algorithm for the Max Cut-
Clique Problem

The study of Cliques in graphs is a classical field of interest in combinatorial optimization
literature. This family of problems –whose most famous member is the Maximum Clique
Problem (MCP)– finds a wide variety of applications, ranging from bioinformatics [24] to
computer vision [17].

This part of the thesis is concerned with the study of a recent variation of the classical
MCP, called the Max Cut-Clique Problem (MCCP), firstly introduced in [108]. In this case,
rather than the construction of a complete subgraph of maximal cardinality of a certain
graph G, the focus is the extraction of a complete subgraph with maximal cut. If in the
original MCP the attention was on connections within nodes of huge subsets, the focus
of the MCCP is the influence that tightly connected node-subsets have on the rest of the
graph. This paradigm is particularly interesting in the field of Market Basket Analysis.
In fact, as argued in [129, 109], the study of cliques in customer purchase networks may

2.5 A Hybrid Metaheuristic Algorithm for the Max Cut-Clique Problem 27

yield substantial breakthroughs in the extraction of products association rules, and business
analytics in general.

The formal statement of the problem is given as follows. Let G = (V, E) be an
undirected graph, where V is the set of vertices and E is the set of edges. Let C be a clique
of G. The cut-clique of C, E ′(C), is the set of all the edges in the cut (C,V \ C), i.e.,

E ′(C) = {(i, j) ∈ E | i ∈ C and j ∈ V \ C}. (2.11)

Since by definition every clique induces a complete sub-graph, denoting by Γ the set of
all the cliques of G, the Max Cut-Clique problem (MCCP) can be stated as follows:

(MCCP) z = max
C∈Γ

{(∑
i∈C

|E ′(i)|
)
− |C|(|C|− 1)

}
.

Even if the MCCP is a variation of a widely studied problem of Combinatorial Opti-
mization, it has yet to be extensively investigated. Indeed, the only effort to solve this
problem is presented in [109], where the authors discuss several adaptations of the classical
Iterated Local Search (ILS) Framework. The algorithms devised in [109] rely on two main
operations to build cliques: add(·) and swap(·). The former move is used to build a
solution incrementally, selecting one node at a time. While swap(·), on the other hand,
attempts to reach better cliques swapping a node v currently in the clique C with a node
u ∈ V \ C.

Moreover, two main strategies are developed according to the selection criteria in the
add(·) and swap(·) operations: Random-ILS (R-ILS) and Degree-ILS (D-ILS), making
use, respectively, of a random or a greedy node selection scheme.

In order to tackle the MCCP, we devised a meta-heuristic algorithm which, within a
GRASP framework, hybridizes a greedy randomized adaptive construction phase with a
Phased Local Search (PLS).

The GRASP construction phase tailored for the MCCP puts together the clique C one
vertex at a time. As in the classical paradigm, such vertices are selected randomly from a
restricted candidate list (RCL), which contains the best ones according to a greedy function.
In our implementation, the RCL is made up of the vertices with highest degree among
those neighboring the elements of C selected up to the previous step. The construction
phase stops whenever there is no node u ∈ V \ C such that u ∈ N (v), ∀v ∈ C. Where
N (v) is the set of nodes adjacent to v.

Given the analogies with MCP, we decided to use as local search in our GRASP a
suitably adapted version of the PLS proposed in [128], and depicted in Figure 2.8. Let
K0(C) be the set of vertices of V connected to all the elements of the clique C and K1(C)

28 Metaheuristics for Information Extraction Problems

1 Function PLS (C, max_sel)
2 C∗ ← C ;
3 for i = 1 to max_sel do
4 C← Random_selection(n_iter_1) ;
5 C← Degree_selection(n_iter_2) ;
6 C← Penalty_selection(n_iter_3) ;
7 update_solution(C, C∗) ;
8 return C∗

Fig. 2.8 The phased local search procedure used in our GRASP.

be the missing one set, made up of vertices v connected to all but one elements of C, i.e,

K0(C) = {v ∈ V | C ∪ {v} is a clique}; K1(C) = {v ∈ V | ∃!u ∈ C : u /∈ N (v)}.

The main feature of the PLS consists in the phase sub-routine which adopts three different
selection criteria to move from the current clique C to an adjacent one. A clique C ′ is
adjacent to C if it is obtained either by adding to C a vertex of K0(C) or swapping a
vertex v ∈ K1(C) with the only u ∈ C \ N (v). Starting from the clique C built in the
aforementioned construction phase, and up to an user-defined maximum selection number,
the PLS repeatedly applies the phase sub-routine in the three following setups:

1. Random select: in which the nodes to be added, or respectively swapped, are randomly
selected from K0(C) and K1(C);

2. Degree select: in which the nodes are selected from K0(C) and K1(C) according to
their degree;

3. Penalty select: in which the nodes are chosen from K0(C) and K1(C) on the basis of
a penalty function, which penalizes frequently selected vertices.

Moreover, as in [109], we implemented two different versions of our algorithm: GRASP-
PLS and GRASP-PLSp, where the latter implementation exploits the following Proposition.

Proposition 1. Given a clique C of G and a node i ∈ V \ C. If |E ′(i)| < 2|C| then the
node i will not belong to K0(C), and then it does not belong to any one optimal solution
with a clique of cardinality |C|+ 1 or higher. Furthermore, if |E ′(i)| = 2|C| if the node i is
inserted in C then the cardinality of the cut given by C will not increase.

This result allows one to recognize nodes whose addition (or swap, in case of nodes of
K1(C)) generates an improvement in the value of the current cut-clique.

2.6 Computational Testing II 29

Table 2.3 Average of the solution values (avg-z) and execution time (avg-t) of the algorithms. The
p subscript specifies when the implementation uses proposition 1.

D-ILS D-ILSp R-ILS R-ILSp GRASP-PLS GRASP-PLSp

instance avg-z avg-t avg-z avg-t avg-z avg-t avg-z avg-t avg-z avg-t avg-z avg-t
C125.9 2766 0.176 2766 0.176 2766 0.189 2766 0.186 2766 0.152 2766 0.161
C250.9 8123 0.277 8123 0.279 8119.45 0.284 8119.68 0.285 8123 0.25 8123 0.264
C500.9 22367.3 0.476 22353.5 0.478 22325.2 0.487 22334.5 0.487 22616.6 0.43 22578.8 0.453
C1000.9 55371.7 0.826 55263.2 0.826 54675.6 0.854 54725.7 0.849 56500.5 0.731 56499 0.794
C2000.5 16036.9 2.86 16000.1 2.86 15890.4 3.12 15889.6 3.1 15973.6 2.25 15939.2 2.36
C2000.9 127363 1.56 127231 1.55 125979 1.6 125998 1.61 130832 1.34 130730 1.48
C4000.5 34268.4 5.63 34263.2 5.68 34011.9 6.08 34059.2 6.05 34194.5 4.46 34182 4.74
keller4 1140 0.169 1140 0.17 1140 0.199 1140 0.199 1140 0.16 1140 0.168
keller5 15030.5 0.48 15020.7 0.481 15156.8 0.54 15147.8 0.542 15184 0.445 15184 0.487
keller6 141174 1.61 140868 1.61 139669 1.79 142883 1.78 147728 1.42 147452 1.64
MANN-a9 412 0.658 412 0.664 412 0.73 412 0.732 412 0.679 412 0.688
MANN-a27 31080.5 0.28 31077 0.289 31136.4 0.268 31137.5 0.26 31254.4 0.234 31249.8 0.247
MANN-a45 232838 0.787 232900 0.801 232813 0.732 232786 0.704 234382 0.601 234382 0.643
MANN-a81 2418810 2.66 2418990 2.7 2417850 2.9 2417860 2.76 2418930 3.01 2418930 2.86
p-hat300-1 789 0.449 789 0.449 789 0.51 789 0.511 789 0.34 789 0.354
p-hat300-2 4637 0.379 4637 0.381 4637 0.417 4637 0.417 4637 0.327 4637 0.342
p-hat300-3 7740 0.333 7740 0.333 7740 0.355 7740 0.354 7740 0.296 7740 0.314
p-hat500-1 1621 0.682 1621 0.684 1621 0.776 1621 0.78 1621 0.537 1621 0.563
p-hat500-2 11539 0.541 11539 0.543 11539 0.587 11539 0.586 11539 0.493 11539 0.52
p-hat500-3 18859 0.456 18859 0.457 18858.8 0.49 18858.8 0.49 18859 0.422 18859 0.453
p-hat700-1 2606 0.92 2606 0.921 2606 1.05 2606 1.05 2606 0.729 2606 0.766
p-hat700-2 20425 0.701 20425 0.703 20425 0.763 20425 0.763 20425 0.644 20425 0.684
p-hat700-3 33480 0.587 33480 0.589 33479.4 0.629 33479.4 0.626 33480 0.548 33480 0.59
p-hat1000-1 3556 1.27 3556 1.27 3556 1.45 3556 1.46 3556 1.01 3556 1.06
p-hat1000-2 31174 0.973 31174 0.977 31172.9 1.05 31173.2 1.06 31174 0.895 31174 0.952
p-hat1000-3 53259 0.796 53259 0.797 53259 0.854 53259 0.853 53259 0.744 53259 0.811
p-hat1500-1 6018 1.87 6018 1.87 6018 2.14 6018 2.15 6018 1.5 6018 1.58
p-hat1500-2 67486 1.32 67486 1.31 67480.5 1.42 67478.6 1.43 67486 1.24 67486 1.34
p-hat1500-3 112867 1.03 112864 1.03 112842 1.12 112841 1.12 112873 1.01 112873 1.12

2.6 Computational Testing II
All the algorithms considered in the computational experiments were implemented in C++
and compiled with g++ 5.4.0 with the flag -std=c++11. All tests were run on an Intel Core
i7-4720HQ CPU @2.60GHz × 8. The instances tackled in our experiments are taken from
the second DIMACS implementation challenge, and are the same used in [109]. For the
sake of scientific fairness, for our testing we implemented in C++ the algorithms of [109]
-originally implemented in FORTRAN-. Each algorithm has been executed for 100 runs.
The results obtained, reported in Table 2.3, show how our hybrid metaheuristic outperforms
the previous methods on the vast majority of the benchmark set. The occurrences in which
one algorithm yields either the absolute best or tied-best objective function mean value and
the best computation time are reported in bold.

Chapter 3

Graph Drawing: the Art of
Representing Data

As growing chunks of insightful informations are extracted from a dataset, the need for a
representation scheme grows. The resulting visualization, which involves a controlled reduc-
tion of complexity, is a fundamental part of the learning process and human understanding
as we know it.

As Alberto Cairo beautifully put it in his book The Functional Art 1: “Go ahead and
explain a difficult concept to a friend. In the moment she gets what you mean she will
exclaim, with a sparkle of relief and happiness in her eyes: ‘I see!’ Her expression makes
complete sense, because deep inside our minds, to see and to understand are intertwined
processes. We understand because we see.”

It is in this spirit that Graph Drawing aims at automatically producing network repre-
sentations in a way that can enable understanding and ease of communication.

In this chapter we present two different Graph Drawing Problems (GDPs): The Min-Max
GDP, and the Constrained-Incremental GDP (C-IGDP). The first problem, differently from
classical crossing reduction GDPs, considers a local objective that can be a useful measure
both in the case of interactive drawing softwares, and in case of VLSI circuit design. On
the other hand, the C-IGDP addresses the solution of a drawing problem while introducing
the matter of optimization on dynamic networks, that is further addressed in Chapter 4.

1Cairo, A. (2012). The Functional Art: An introduction to information graphics and visualization. New
Riders.

32 Graph Drawing: the Art of Representing Data

3.1 A Local Objective: the Min-Max Graph Drawing
Problem

Crossing minimization is a well-known problem in graph drawing [6], with many optimization
algorithms proposed over the last twenty years to obtain good solutions. The first drawing
problem that we consider is a recent variant proposed by Stallmann [143], where the goal
consists in the minimization of the maximum number of crossings across all edges.

A hierarchical graph H = (G, k, L) is a graph G = (V, E), where the set of vertices V

and the set of edges E are partitioned into k−layers in a way that:

V =
⋃

l=1,...,k

V l; (3.1)

E =
⋃

l=1,...,k−1

El ⊂
⋃

1≤l<k

V l × V l+1, (3.2)

where all edges connect vertices on consecutive layers. Additionally, the function L :

V → {1, . . . , k} indicates the layer where each vertex v ∈ V resides, implicitly defining
V l = {v ∈ V : L(v) = l}. Let nl be the number of elements in layer l (nl = |V l|). A
drawing of H is defined as D = (H,Φ), where Φ = {φ1, φ2, . . . , φk}, and φl is the
ordering (permutation) of the vertices in layer l. Let c(u, v) be the number of edges that
cross edge e = (u, v) ∈ E, called the crossing number of e. Given a drawing D, the aim
of the min-max crossing problem is to minimize its maximum crossing number C(D),

C(D) = max{c(e) : e ∈ E}. (3.3)

For the sake of simplicity, we will use C instead of C(D) whenever there is no ambiguity
among different drawings.

The min-max crossing problem in a bipartite graph was formulated as a linear integer
model (Martí et al. [114]) by adapting the classic formulation for the min-sum problem
proposed by Jünger and Mutzel [91]. To formulate the min-max problem for an arbitrary
number of layers (HDGA), we define binary variables xluu ′ and cluvu ′v ′ such that

xluu ′ =

{
1, if φl(u) < φl(u ′);

0, otherwise,

3.1 A Local Objective: the Min-Max Graph Drawing Problem 33

and cluvu ′v ′ takes the value if edges (u, v) and (u ′, v ′) cross, i.e.,

cluvu ′v ′ =

{
1, if (φl(u) −φl(u ′))(φl+1(v) −φl+1(v ′)) < 0;

0, otherwise.

where u, u ′ ∈ V l and v, v ′ ∈ V l+1 for all layers l = 1, . . . , k − 1. The mathematical
formulation for the min-max edge crossing problem is as follows:

min C

s.t.
− cluvu ′v ′ ≤ xl+1

vv ′ − xluu ′ ≤ cluvu ′v ′ (u, v), (u ′, v ′) ∈ El, u < u ′, v < v ′, l < k

(3.4)
1− cluvu ′v ′ ≤ xl+1

v ′v + xluu ′ ≤ 1+ cluvu ′v ′ (u, v), (u ′, v ′) ∈ El, u < u ′, v > v ′, l < k

(3.5)
0 ≤ xluv + xlvw − xluw ≤ 1 ∀ 1 ≤ u < v < w ≤ nl, ∀l (3.6)
c(u, v) =

∑
(u ′,v ′)∈El

u<u ′

cluvu ′v ′ +
∑

(u ′,v ′)∈El

u ′<u

clu ′v ′uv ∀(u, v) ∈ El (3.7)

c(u, v) ≤ C ∀(u, v) ∈ El (3.8)
xluu ′ ∈ {0, 1} ∀ u, u ′ ∈ V l, u < u ′, ∀l (3.9)
cluvu ′v ′ ∈ {0, 1} ∀ (u, v), (u ′, v ′) ∈ El, u < u ′, ∀l.

(3.10)

Constraints (3.4)-(3.6) are straightforward adaptations of the crossing and ordering
constraints appearing in classical GDP formulations [91, 90]. Constraints (3.7) compute the
crossing number of all edges, and constraints (3.8), together with the objective function,
force variable C to take the maximum of these crossing numbers. Note that the minimization
of C in the objective function tries to reduce it as much as possible, thus matching the
largest c(u, v)-value in constraints (3.8). In this way, it provides the optimal value and
the associated orderings of the min-max edge crossing problem, as in [114] for the bilayer
case. The output solution is indeed the optimal drawing of the hierarchical graph. Table
3.1 summarizes all the symbols introduced in this section.

34 Graph Drawing: the Art of Representing Data

Symbol Definition
G Graph: G = (V, E)
V Set of vertices of G
E Set of edges of G
k Number of layers
H Hierarchical graph: H = (V, E, k, L)
L Function that indicates the layer in which a vertex resides
V l Set of vertices in layer l in H

nl Number of vertices in layer l
D Drawing: D = (H,Φ)
Φ Set of permutations {φ1, . . . , φk}

c(e) Number of edges that cross edge e ∈ E

C(D) Maximum number of edge crossings of a drawing D

Table 3.1 Symbols and Definitions.

3.2 Solution Approaches
In this section, we review the previous methods published to solve the min-max crossing
problem. As mentioned above, the min-max crossing problem has been recently proposed
and, in spite of its practical applications, only two works have published to deal with it.

The first previous paper for this problem is due to Stallmann [143], who developed the
MCE heuristic. It is a very efficient method based on the sifting principle, which performs
passes over the layers of the graph, until no further improvement can be found. It is worth
mentioning that most of the classic optimization methods for the min-sum problem [6],
such as the barycenter or the median procedures, consider the vertices as the main element
in their design. The contribution of Stallman’s paper consists in the introduction of the
problem and a solving method for it. This work came along with a change in paradigm in
terms of considering the edge as the main element in the drawing. This novelty comes from
computing the number of crossing for a single edge, instead of aggregating them as in the
min-sum model. It is well documented, see [99], that min-max and max-min optimization
problems constitute a challenge for heuristic algorithms due to the fact that many solutions
have the same objective function value, thus making local search based methods relatively
inefficient.

MCE identifies the edge with the largest number of crossings and tries to reduce it
relocating its endpoint vertices in their layer. The method starts with an initial drawing D,
determined by the barycenter method. Then, it sorts the edges e ∈ E in descending order

3.2 Solution Approaches 35

according to their number of crossings c(e). At each step, following this order, each edge
e is examined, and its endpoints are checked in search for their best position.

As pointed out by the author, an interesting feature of the MCE method is that it
performs improving moves (vertices relocation) based on a local principle. This means
that, instead of using the objective function value c(D) to determine the move, only edges
incident to the chosen vertex are considered to find its best position. Thus, MCE determines
the best location for a vertex v as the one that minimizes the maximum number of crossings
among the edges incident to v. In practical terms, this implies that a drawing could be
poorer after a vertex relocation since the number of crossings of a non-adjacent edge could
eventually increase. The experiments showed that this local strategy achieves good results,
working as a diversification element and preventing the search from being trapped in a local
optimum. A post-processing procedure of exchanging adjacent vertices is also applied to
further improve the solutions.

Martí et al. [114] proposed an iterated greedy heuristic based on the Strategic Oscillation
(SO) methodology [135]. After the construction and improvement of an initial solution,
this technique alternates between destructive and constructive phases. The SO algorithm is
based on the iteration of these three steps, constructive phase, neighborhood search and
destructive phase.

The construction step starts by randomly selecting a vertex v from all the vertices,
and placing it in an arbitrary position in its layer. In subsequent construction steps, the
next vertex v is randomly chosen from those in the restricted candidate list RCL, that
consists in all unassigned vertices with a degree of no less than a percentage of the
maximum degree found among unassigned vertices. Then, the selected vertex is placed in
the position prescribed by the barycenter, bc(v) in its layer. The barycenter is computed as
the arithmetic mean of the positions of the already adjacent vertices to the chosen vertex.
The construction phase ends when all the vertices have been positioned.

Important ingredients in this algorithm are the sets of near-critical edges (NCE(pIG))
and vertices (NCV(pIG)). These sets depend on a search parameter pIG ∈ [0, 1], such that

NCE(pIG) = {e ∈ E : c(e) ≥ pIG C(D)}.

On the other hand, the set of near-critical vertices is defined as the set of vertices that are
endpoints of near-critical edges.

Once a solution D has been constructed, the neighborhood search is applied. This
procedure attempts to move each vertex v in NCV(pIG) in positions: bc(v)−2, bc(v)−1,
bc(v), bc(v)+1, bc(v)+2, if they exist. The vertex is placed in the position that produces
the minimum of the total (sum) number of crossings. In order to save computational time,

36 Graph Drawing: the Art of Representing Data

the algorithm does not recompute the crossings and near-critical sets after every move,
until the neighborhood of each vertex in NCV(pIG) is explored. This neighborhood search
phase ends when all vertices have been considered for insertions.

During the destructive phase, all the vertices in the set NCV(pIG) are removed from
drawing D. In order to achieve further diversification of the solution, an additional number
of vertices randomly selected from the set V\NCV(pIG) is removed. A new iteration in
the SO algorithm starts by reconstructing the partial solution obtained after the destructive
phase. At the end of the execution, the algorithm returns the best solution found in the
entire search process.

The next section describes the Tabu Search algorithm that we devised to solve the
Min-Max GDP.

3.3 How to See in the Dark: Evaluating Moves a Min-
Max Problem

Tabu Search (TS) is a well-known metaheuristic for solving combinatorial optimization
problems, and is designed to guide a search method to escape from local optimality. This
methodology was first proposed by Glover [70], and precise descriptions appeared in many
studies, as for example [71, 72, 74].

TS is based on the premise that efficient heuristic solution strategies should use the
information collected during the search process. In particular, it achieves this by incorporating
flexible memory structures. This feature allows the algorithm to explore the solution space
in an efficient way, effectively solving many combinatorial problems.

The TS framework is built from two main principles: intensification, in which the search
tries to achieve a local optimum, and diversification, applied to escape from the actual
basin of attraction to find a global optimum. These two strategies let the algorithm explore
the search space in different ways. In general, in the intensification phase the movements
are guided by the objective function, to improve the current solution. Meanwhile, in
the diversification phase, movements are evaluated using both the objective function and
frequency functions recording past information, to guide the search towards unexplored
regions. In this algorithm, we implement these two concepts by incorporating memory
functions of different time spans, namely short and long term.

As already pointed out, in min-max problems, given a solution, most of its neighbors
have the same objective function value, thus making the local search almost blind in terms of
approaching to a local optima. To overcome this difficulty, we consider in the intensification

3.3 How to See in the Dark: Evaluating Moves a Min-Max Problem 37

phase of our tabu search method, the δ function, proposed by Rodriguez-Tello et al. [133]
in the context of the Bandwidth Minimization problem (BMP). The idea that motivates
us to use this evaluation function lies in the similarities that both problems share: (i) a
min-max objective function, (ii) the correspondence between a solution and a permutation
of the vertices, and (iii) trivial feasibility.

In the cases of Min-Max GDP and BMP ([133]), the cardinality of the solution space
presents a factorial growth in the size of the instance input. At the same time, in both
problems, the objective functions can be bounded from above by a polynomial in the size
of the input, linear for the BMP and quadratic for our problem. For example, in the case of
the min-max crossing problem, a trivial bound can be obtained by counting the maximum
number of edges among two consecutive layers minus one. Practically speaking, being the
upper bounds low with respect to the cardinality of the search spaces, in both cases there
is a plethora of solutions sharing the same cost. This means that, during the local search,
a move evaluation function solely based on the min-max objective hardly detects improving
moves, resulting eventually myopic.

The δ-evaluation function for a Drawing D, depending from its ordering Φ, is defined
in equation (3.11), where dx is the number of edges with x crossings, UB an upper bound,
and β defines the current maximum crossing.

δ(D) = β+

β∑
x=1

dx

(UB+β−x+1)
UB!

. (3.11)

Let us consider the graph in Figure 3.1 to illustrate the rationale behind the δ-evaluation
function (3.11). This drawing presents two edges with 3 crossings, which happens to
be the maximum: the edge that connects vertex 0 of the first layer and vertex 3 of the
second, and the edge connecting vertex 2 of the second layer with vertex 0 of the third
layer. The histogram on the right hand side of Figure 3.1 shows the number of crossings
(cost) distribution in the drawing, collecting for each possible cost value the number of
edges with that number of crossings. For this specific graph representation the objective
function (maximum number of crossings) is 3 and the δ function is 3.43959.

Swapping vertices 1 and 0 in the first and in the last layer of Figure 3.1, we achieve
the drawing depicted in Figure 3.2. As the previous one, this hierarchical representation
presents a maximum crossing value of 3, corresponding to the edge connecting vertex 3
of the first layer with vertex 0 of the second. The objective function in this drawing is
therefore 3, however δ function attains a value of 3.20481.

Regardless of the max-crossing, which gets the same value for both drawings, the
representation provided by Figure 3.2 is unambiguously clearer than the one of Figure 3.1.

38 Graph Drawing: the Art of Representing Data

This feature can be deduced by means of a comparison of the two cost distributions, since
the number of edges with a relatively high cost decreased. In this way, we can consider that
in the neighborhood of the new drawing it is more likely to find an improving solution. This
important characteristic for a local search method is properly detected by the decrease of
the δ function, but overlooked by the plain evaluation of the min-max objective function.

0

1

2

3

0

1

2

3

0

1

2

3

Fig. 3.1 δ-evaluation function example.

1

0

2

3

0

1

2

3

1

0

2

3

Fig. 3.2 δ-evaluation function example after swap.

Our two-phase TS method is outlined in Figure 3.3. The first phase, Short-Term TS,
is focused on an intensification strategy. The second phase, Long-Term TS, complements
the first one by performing search diversification to explore new regions of the solution
space. Each phase is executed for a maximum number of iterations without improving the
current solution, MaxInt and MaxDiv respectively. The overall TS method stops when the
TimeLimit is reached.

3.3 How to See in the Dark: Evaluating Moves a Min-Max Problem 39

Data: HDAG D, α, TimeLimit, MaxInt, MaxDiv
Result: Optimized design for the min-max crossing.

1 bestSolution = D;
2 noImprov = 0 ;
3 while time spent < TimeLimit do
4 if noImprov < MaxInt then
5 IntensificationPhase(D,α);
6 if the current best is improved then
7 noImprov = 0 ;
8 else
9 noImprov++ ;

10 else
11 Diversification(S, MaxDiv);
12 noImprov = 0 ;
13 return bestSolution;

Fig. 3.3 Main Tabu algorithm.

Intensification Phase

The exploration in the intensification phase is based on swapping non-tabu vertices in the
same layer. In particular, for each layer l, from l = 1 to l = k, we compute a list of
candidate elements to be swapped (CLl). This list collects all the vertices in the layer with
an edge with number of crossing larger than or equal a threshold, computed as a percentage
(α) of a reference maximum cost clmax. The clmax value is the current maximum number
of crossings in edges incident with a non-tabu vertex in l:

CLl = {u ∈ V l : cu ≥ αclmax}, (3.12)

with cu denoting the maximum number of crossings found in edges incident to vertex u,

cu = max{c(e) : e = (u, v) ∈ El},

and
clmax = max{cu : u ∈ V l non-tabu}.

Starting from a drawing D, for each u ∈ CLl, the method searches for its best swap
with another non-tabu vertex, and performs it whenever the move improves (i.e. decreases)
the δ-value of the current solution D. If for all the vertices no improving solution has been
found, the algorithm performs the least worsening swap. The swapped vertices become
tabu-active and remain in such a status for a specified number of iterations controlled by

40 Graph Drawing: the Art of Representing Data

Data: HDAG D, α
Result: Locally optimal drawing.

1 for l = 1, . . . , k do
2 build CLl;
3 for u ∈ CLl do
4 v← best_swap_vertex(u);
5 if swap(u,v) decreases δ then
6 update solution;
7 update δ;
8 declare tabu u, v;
9 if no swaps performed then

10 perform least worsening;
11 update tabu statuses;
12 return;

Fig. 3.4 Pseudo-code of the Intensification Phase.

the search parameter tenure. Swaps that involve tabu-active vertices are declared tabu
and therefore are not allowed. The intensification phase stops after MaxInt iterations
without improvement. The structure of our intensification phase is illustrated in Figure 3.4.

Diversification Phase

In some TS applications, short term memory strategies produce very high quality solutions
by themselves. However, in general, TS becomes significantly stronger by including longer
term memory, implementing diversification strategies that allow the search process to escape
from the current basin of attraction.

As in classical implementations, our diversification procedure is executed when the
intensification reaches the maximum number of iterations without improving the best-found
solution, i.e., when we consider that the search is trapped in a specific region of the
solution space. In order to move further away from the current local minimum, during the
execution of the algorithm, the procedure records the number of times that each vertex
has been moved. Then, two vertices are randomly selected for a swap according to a
probability distribution defined by the frequency count of the moves that changed their
position, where the lower the move frequency the larger the probability of swapping. More
specifically, let Ml be the total number of swaps performed in layer l, and let ml

u indicate
the number of swaps that involved vertex u of layer l. Being the swap a pairwise move, we
have

∑
um

l
u = 2Ml. Then we define the probability of being selected for a swap in the

diversification phase (prlu) as:

3.3 How to See in the Dark: Evaluating Moves a Min-Max Problem 41

Data: HDAG D, MaxDiv
1 step = 0 ;
2 while step < MaxDiv do
3 for l = 0, . . . , k do
4 for u ∈ V l do
5 compute prlu ;
6 u←random_node(prl);
7 v←random_node(prl);
8 swap(u, v) in V l ;
9 update swap frequencies;

10 update tabu statuses;
11 if the δ decreases then
12 return;
13 step++ ;
14 return;

Fig. 3.5 Pseudo-code of the Diversification Phase.

prlu =
Ml −ml

u∑
v (M

l −ml
v)
, ∀u ∈ V l. (3.13)

The pseudo-code of the diversification phase is shown in Figure 3.5. This phase is
executed sweeping through the layers of the graph for MaxDiv iterations in each layer if
no improving solution is encountered. If the algorithm incurs in an improving solution
we force an early termination of this phase. In any case the TS method restarts with the
intensification phase in order to obtain a locally optimal solution in the new area under
exploration.

Min-Sum post-processing

As discussed previously, the optimization of the min-max crossing function can be found
in different real world scenarios, such as the VLSI circuit design or the development of
interactive graph drawing tools. As we pointed out in the introduction, the use of the
min-max objective function in comparison with the min-sum, reasonably guarantees that
edges with a high number of crossing are unlikely to be found in the layout. This feature
is particularly valuable when the algorithm is embedded in a drawing tool that allows to
zoom onto user-specified areas of the graph.

One of the main characteristics of the min-max problems is that we can find many
solutions with the same objective function value, so we can expect that it has many

42 Graph Drawing: the Art of Representing Data

alternative optima. Therefore, it is possible to consider a post-processing procedure to
reduce the total (sum) number of crossings, without increasing the min-max value. In this
way, we are improving the max-sum as a secondary objective function without deteriorating
the primary objective min-max function. Note that this approach is in line with Stallmann’s
[143] and with the classical drawing approaches that make use of the min-sum as reference
function.

Our post-processing consists of a local search method guided by the min-sum function
with a swap-based neighborhood structure. Note that the TS method described in the
previous subsections is guided by the min-max objective, and more specifically by the δ

function. This post-processing only considers moves that do not worsen the solution in
terms of min-max, thus preserving solution quality, while attaining better min-sum values.
In particular, the method sequentially sweeps layers (from 1 to k), and scans their vertices
in search for an improving swap with respect to the sum of crossings. The procedure stops
after the exploration of all the layers (and all the vertices in each one) when no improving
move is performed.

3.4 Computational Experiments I
In this section, we perform extensive computational experiments to analyze the key elements
in our proposed method (TS) and to compare it with previous methods. In particular, we
compare TS with the maximum crossing edge heuristic method (MCE) by Stallmann [143]
and the strategic oscillation method (SO) proposed by Martí et al. [114]. MCE and SO are
implemented in C, and TS in C++, and the experiments are conducted on a computer
with a 2.6 GHz Intel Core i7 processor with 8 GB of RAM. The MCE algorithm has been
downloaded from https://people.engr.ncsu.edu/mfms. The set of instances we use is
available online in the webpage http://www.optsicom.es.

We divide the experimentation into two main parts, preliminary experiments and
comparative study. In the first one we set the values of the search parameters and finish
with a study of the δ-function contribution in the search process. As mentioned above, in
our comparative study we consider CPLEX, and the two previous heuristics. The benchmark
set of instances is created with Stallmann’s generator [143]. It consists in 149 instances with
different number of layers and graph densities. Table 3.2 summarizes their features. Note
that CPLEX is only able to target medium size instances, and for the heuristic comparison
we consider the 60 instances already used and described in [114]. Additionally, for the
δ-function experimentation, we keep the instance size fixed and vary the density to see how
it may affect the method performance.

https://people.engr.ncsu.edu/mfms
http://www.optsicom.es

3.4 Computational Experiments I 43

Type #inst. Vertices Layers Density Class

49 instances solved with CPLEX
low1 15 100 10 ≈ 1.50 Low
low2 14 200 20 ≈ 1.50 Low
low3 5 450 30 ≈ 1.70 Low
low4 5 450 30 ≈ 2.30 Low
low5 5 450 30 ≈ 2.90 Low
low6 5 450 30 ≈ 3.60 Low

60 instances run in the heuristic comparison
noug3 10 300 15 ≈ 14.00 High
noug4 10 60 3 ≈ 10.00 High
noug5 10 100 5 ≈ 12.00 High
noug6 10 500 25 ≈ 14.50 High
noug7 10 800 40 ≈ 10.00 High
noug8 10 1000 50 ≈ 10.00 High

70 instances run in the δ test
low3 5 450 30 ≈ 1.70 Low
low4 5 450 30 ≈ 2.30 Low
low5 5 450 30 ≈ 2.90 Low
low6 5 450 30 ≈ 3.60 Low
med1 5 450 30 ≈ 4.30 Medium
med2 5 450 30 ≈ 5.00 Medium
med3 5 450 30 ≈ 5.80 Medium
med4 5 450 30 ≈ 6.50 Medium
med5 5 450 30 ≈ 7.20 Medium
high1 5 450 30 ≈ 8.00 High
high2 5 450 30 ≈ 8.70 High
high3 5 450 30 ≈ 9.50 High
high4 5 450 30 ≈ 10.15 High
high5 5 450 30 ≈ 10.85 High

Table 3.2 Benchmark set.

44 Graph Drawing: the Art of Representing Data

We evaluate the results of our experiments with the following statistics:

• C̄: the average of the max edge-crossing value;

• Best: the number of best solutions found;

• Opt: the number of optimal solutions found;

• % dev: the average percent deviation with respect to the best solution found in the
experiment;

• % gap: the average percent deviation with respect to the CPLEX solution found in
the experiment;

• Time: Average total time in seconds to execute the method.

3.4.1 Preliminary Experiments

In this section we first perform a preliminary test to fine tune the parameters of the algorithm.
To avoid the over training of the methods, we consider a fraction (< 24%) of the instances
(26 graphs) with different number of layers and densities. We call this subset the training
set, as opposed to the entire set of instances called the testing set.

The first parameter considered in our tuning is α, which controls the construction of
the vertex candidate list in our intensification phase. We evaluate the results obtained by
considering five different values of α: 0, 0.1, 0.5, 0.9 and 1, with the other parameters
being fixed to reference values. Table 3.3 shows the mean results over the 26 instances
obtained on the training set with a time limit of 60 seconds for each execution. In particular,
it shows the average number of crossing (C), the average percentage deviation (% dev),
the number of instances for which the method is able to match the best solution found
(Best), and the CPU time. It is clear from these results that the best setup is obtained
with α = 1, in terms of number of best solution found, and in terms of both average
max-crossings and deviations.

In our second preliminary experiment, we test the short term TS method described in
Section 3.3 with several tenure values. The competing configuration tested are tenure = 2,
3, 5 and 10. The results in Table 3.4 show that there is not a clear winner. Small values of
the tenure seem more performing, with tenure = 3 (highlited in bold in the table) having
a slight edge on the others, being this our selected configuration.

In the last tuning experiment, we compare different configurations for the parameters
MaxInt and MaxDiv, used to measure, respectively, the maximum lengths of the intensi-
fication and diversification phases. To achieve the right balance between intensification

3.4 Computational Experiments I 45

training set, 26 instances
α C % dev Best Time

0 143.69 4.20 7 63.20
0.1 143.77 5.43 6 62.50
0.5 143.62 4.30 7 62.53
0.9 141.04 3.61 9 61.30
1 139.96 2.21 18 60.75

Table 3.3 Fine-Tune parameter α for the TS procedure.

training set, 26 instances
tenure C % dev Best Time

2 139.58 2.41 14 61.04
3 139.42 1.68 15 60.86
5 139.77 4.89 10 60.83
10 142.31 17.93 2 60.63

Table 3.4 Fine-Tune parameter tenure for the TS procedure.

and diversification, we test the parameters coupled in pairs (MaxInt, MaxDiv), generating
four different configurations: (10, 3), (20, 10), (30, 15), and (50, 20). Being the training
set extremely diverse in terms of density and size of the graph, as can be observed in Table
3.2 in this experiment we divide the training instances into two classes: low-density graphs
and high density graphs.

MaxInt MaxDiv C % dev Best Time

10 3 15.70 6.96 3 60.14
20 10 15.30 3.11 6 60.27
30 15 15.50 7.39 5 60.27
50 20 15.20 1.11 7 60.20
Table 3.5 TS fine-tune on 10 low density instances.

As expected, the differences found in the training set are reflected in tuning results
shown in Table 3.5 (low density) and Table 3.6 (high density). In particular, the best
parameters combination seems to be (50, 20) in the case of low density graphs, and (10, 3)

for high density graphs. In smaller graphs, characterized by low density, the algorithm is
able to perform more intensification steps within the same time limits. Moreover, when
the density is low, even with an high number of diversification steps, random swaps can

46 Graph Drawing: the Art of Representing Data

MaxInt MaxDiv C % dev Best Time

10 3 216.75 0.66 9 61.53
20 10 218.06 1.18 6 62.50
30 15 217.44 0.74 7 61.18
50 20 219.31 1.73 6 61.20

Table 3.6 TS fine-tune on 16 high density instances.

strongly diversify the solution but at the same time worsening its quality in a way that can
still be repaired in the next intensification phase. On the other hand, on high density graph,
a high number of random swaps could generate a worsening in the solution quality that the
intensification phase can not significantly improve.

We conclude our preliminary experimentation with an empirical study on the contribution
of the δ-evaluation function in the search efficiency. The tests are designed to run the TS
with two different move evaluation functions in the intensification phase: the δ-function,
and the plain min-max objective function. More specifically, with the former evaluation, the
algorithm performs a move from solution D to the neighboring drawing D̄ if δ(D̄) < δ(D).
On the other hand, in the latter move evaluation setup, intensification moves are performed
only when the objective function value decreases. We study in this experiment the percentage
of the relative difference of the two solution values:

% rel =
C(DmM) − C(Dδ)

C(Dδ)
· 100, (3.14)

where Dδ and DmM are the optimized drawings obtained respectively by using the δ function
and the plain min-max objective as move evaluation functions.

As discussed in Section 3.3, the evaluation of neighboring solutions is particularly hard
in large sparse graphs, so we perform our comparison with respect to the density of the
graph. Henceforth, to properly relate the performances of the two setups with network
density, in this experimental phase we generate 70 instances with increasing density and
fixed size, both in terms of total vertices and layers. For a summary of the network features
used in these experiments see Table 3.2. The algorithm is executed in both setups for a
total time of 60 seconds and using the same parameter configuration for both cases.

As expected, the results in Figure 3.6-left evidence that the δ-evaluation function is
of critical importance for drawing graphs with low density. Moreover, we can remarkably
observe how the percentage ratio between the two solutions is always greater than zero,
meaning that in all instances the use of δ as evaluation function is always favorable. In

3.4 Computational Experiments I 47

Fig. 3.6 Comparison of δ and min-max objective functions.

addition, Figure 3.6-right depicts an example of the two search profiles obtained for an
instance in our benchmark set. We can note how the use of δ as evaluation function lets
the algorithm improve when the plain min-max stalls, as well as allowing the procedure to
reach earlier good quality solution, as argued in Section 3.3.

3.4.2 Comparative Testing

In this section, we first compare our TS method with MCE heuristic and the solutions obtained
with CPLEX (v 12.8) with the linear integer formulation. The two heuristic algorithms are
executed with a time limit of 60 seconds, and we run CPLEX for 1 hour. We consider
the 49 instances of small-to-medium size and low density in the testing set. For a better
analysis of the results, the graphs considered in this testing are divided into a sequence of
six different groups: from low1 to low6, growing both in size and density.

As can be seen in Table 3.7, CPLEX is able to optimally solve almost all the smallest
instances belonging to the class low1, and half of the instances in class low2. In both
of those classes, even when is not able to reach an optimal solution, CPLEX is able to
obtain the best solution out of the three algorithms. On the other hand, the two heuristics
can reach sub-optimal solution in the very short running time of 60 seconds considered
in this experiment (which is in line with graph drawing applications). When we move to
larger graphs with increasing density, then CPLEX is not able to obtain competitive results
while the heuristics are still obtaining good results. In particular, TS clearly outperforms

48 Graph Drawing: the Art of Representing Data

MCE in low4, low5, and low6 instances with lower percentage deviations from the best
known solution. On small density graphs, MCE performs slightly better than TS. It is worth
mentioning that MCE and TS are able to obtain 4 and 3 optimal solutions respectively in
the low1 group.

Instance Class
low1 low2 low3 low4 low5 low6

CPLEX

C 4.33 5.64 26 42.20 53.40 64.60
Time 449.04 2487.51 3600 3600 3600 3600
Opt 14/15 7/14 0/5 0/5 0/5 0/5
Best 15/15 14/14 0/5 0/5 0/5 0/5
% dev 0.00 0.00 191.44 144.04 105.31 87.90

MCE

C 5.20 6.36 9.20 18.80 29.80 41
Best 4/15 4/14 5/5 1/5 0/5 0/5
% gap 21.44 13.06 -60.67 -55.32 -44.22 -36.44
% dev 21.44 13.06 0.00 8.61 14.53 19.30

TS

C 5.27 6.50 11.20 17.80 26 34.40
Best 3/15 3/14 0/5 4/5 5/5 5/5
% gap 22.22 16.55 -52.40 -57.99 -51.27 -46.66
% dev 22.22 16.55 22.25 2.00 0.00 0.00

Table 3.7 Comparison of TS, MCE, and CPLEX on 49 instances (low density).

In our second experiment in this section, we undertake to evaluate the performance of
our TS with respect to the two previous heuristics, MCE and SO. We consider 60 instances
of mixed size and high density of the testing set (subsets nough3 to nough8), so according
to our previous results, we cannot include CPLEX in this experiment. The two previous
heuristics are run for 60 seconds in noug3 to noug6, and 300 seconds on the harder noug7
and noug8, following what is reported in [114]. Our TS is run for 60 seconds in all the
cases (i.e., in each instance of the testing set). Table 3.8 reports the solutions of this round
of experiments, summed up in Table 3.9. For the three algorithms we report the average
number of crossings (C), the average total time, the number of best solutions found, and
the average percentage deviation from the best solution found.

3.4 Computational Experiments I 49

Analyzing the computational results, we can see how TS obtains the best solution in
57 out of the 60 instances, and shows the minimum average number of crossings among
the three procedures. These remarkable performance is reflected in the average percent
deviation, which amounts to zero percent in 5 out of 6 instance types, and always lower
than 0.60 percent. In particular, we can see in Table 3.9 how the average deviation over the
whole testing set is 0.01 percent, compared to 4.77 and 5.76, respectively for MCE and SO.
Moreover, we observe how the TS achieves high quality solutions in a short computational
time even in the case of graphs of large size (such as in instance classes noug7 and noug8).

Instance Class
noug3 noug4 noug5 noug6 noug7 noug8

MCE

C 269.30 246.80 254.00 270.30 175.00 176.00
Time 60.00 60.00 60.00 60.00 300.00 300.00
Best 0/10 2/10 1/10 1/10 0/10 0/10
% dev 3.85 4.31 2.51 3.27 6.69 7.99

SO

C 267.20 241.80 254.70 273.30 180.70 182.60
Time 80.60 32.20 68.50 145.80 312.50 476.20
Best 0/10 2/10 1/10 0/10 0/10 0/10
% dev 3.04 2.12 2.79 4.41 10.17 12.05

TS

C 259.30 238.20 247.80 261.80 164.10 163.00
Time 61.25 60.53 60.74 62.02 62.02 61.87
Best 10/10 7/10 10/10 10/10 10/10 10/10
% dev 0.00 0.59 0.00 0.00 0.00 0.00
Table 3.8 Comparison of MCE, SO, and TS on 60 instances (high density).

Procedure C % dev Best Time

MCE 231.90 4.77 4 140.00
SO 233.38 5.76 3 185.97
TS 222.37 0.01 57 61.40

Table 3.9 Summary of heuristics performance.

We conclude our experimentation by analyzing the effect of the post-processing procedure
described in Section 3.3 to reduce the sum of crossings. In particular, we compare the

50 Graph Drawing: the Art of Representing Data

previous heuristics MCE and SO with our Tabu Search with post-processing (TS-p). Table
3.10 reports the results for the three methods in terms of the average sum of edge-crossings
cross-sum, its associated average percent deviation, % devs with respect to the best
crossing-sum value found in the experiment, average of the max edge-crossing value, C̄, its
associated average percent deviation, % dev, and average total time in seconds to execute
the method, Time.

The analysis of the computational results shown in Table 3.10 evidences how, out of
the three algorithms, TS-p always achieves the best max-crossing value, while SO shows
the lowest cross-sum over all types of instances. This is expected since SO was meant to
simultaneously optimize both objectives, while our tabu search is designed to minimize
the maximum number of crossings, and the post-processing reduces the total sum without
deteriorating the min.max achieved, which is indeed a hard constraint. Nevertheless, we
can observe how TS-p obtains the second best results in terms of average cross-sum, with
a maximum percentage deviation of 3% with respect to SO. Moreover, analyzing the global
averages of the two percentage deviations, we observe averages of 0.01% and 2.25%,
respectively for the deviation from the best C and from the best cross-sum.

Considering the first heuristic proposed for this problem, MCE, we can observe in Table
3.10 that it presents a relatively good performance considering that it was based on ordering
rules and not in metaheuristic methodologies as its competitors in this table. On the other
hand, TS-p achieves a good trade-off performance between the two objectives: the main
max edge-crossing function, and the secondary edge-crossing sum function. Indeed, it is
worth mentioning that while % dev in TS-p is comparable with % devs in SO, the value
of % dev in SO almost doubles the value of % devs achieved by TS-p.

3.5 Drawing Dynamic Informations: Mental Map and
Crossing Reduction

It is well documented that incremental drawing is a very important area in graph representa-
tions. We can find many references highlighting this problem, or more precisely, this family
of problems. We refer the reader to [121], [37], or [126] to mention a few. The graph
drawing textbook [6] –a reference in the field– devotes an entire chapter to incremental
constructions. The range of applications of incremental techniques is also vast, from on-line
problems, such as affiliation networks or on-line advertisement, to the well-known project
management diagrams in business administration. However, in spite of its importance
and practical significance, there are just a few incremental graph drawing models, and, as

3.5 Drawing Dynamic Informations: Mental Map and Crossing Reduction 51

Instance Class
noug3 noug4 noug5 noug6 noug7 noug8

MCE

cross-sum 276040.8 37764.6 76643.5 475970.2 334284.9 421127.6
% devs 10.28 8.55 8.58 10.78 20.05 20.21
C 269.30 246.80 254.00 270.30 175.00 176.00
% dev 3.85 4.31 2.51 3.27 6.69 8.00
Time 60.00 60.00 60.00 60.00 300.00 300.00

SO

cross-sum 250323.1 34821.3 70594.3 429655.6 278458.1 349641.2
% devs 0.00 0.00 0.00 0.00 0.00 0.00
C 267.20 241.80 254.70 273.30 180.70 182.60
% dev 3.04 2.12 2.79 4.41 10.17 12.05
Time 80.60 32.20 68.50 145.80 312.50 476.20

TS-p

cross-sum 254133.4 35704 72282.8 434861.6 286283.5 260115.7
% devs 1.52 2.54 2.39 1.21 2.81 3.00
C 259.30 238.20 247.80 261.80 164.10 163.00
% dev 0.00 0.59 0.00 0.00 0.00 0.00
Time 61.25 60.53 60.74 62.02 62.02 61.87

Table 3.10 Analysis of both objective on 60 high-density instances.

argued in the following, to some extent not entirely satisfactory. In this second part of
Chapter 3, we review the incremental graph drawing background including previous efforts
in both software and academic context. We discuss the limitations of the existing model
for hierarchical drawings and how the proposal here described, and originally presented in
[119], overcomes them.

Currently, there exists a wide variety of software devised for graph representation. For
example, Graphviz [66] is a free, flexible software, accessible with an easy-to-use web version.
These features altogether make Graphviz one of the most popular drawing systems. As
the vast majority of its competitors, Graphviz incorporates optimization criteria in order
to obtain aesthetically pleasing drawings. We illustrate this point in Figure 3.7, which
shows how Graphviz is able to obtain a clear and aesthetically pleasing layout for a simple
hierarchical graph.

52 Graph Drawing: the Art of Representing Data

Fig. 3.7 Graphviz drawing of a simple hierarchical graph.

However, Graphviz is not able to properly represent objects and relations characterized
by dynamic nature. Indeed, whenever new vertices and edges are added to the network,
the software does not support the identification of incremental elements, and it draws the
graph from scratch. For example, in Figure 3.8, we can observe how the addition of a new
set of vertices and connections forces in the software a completely different representation,
thus “destroying” the mental map of the reader.

Fig. 3.8 Example optimized with new method.

3.5 Drawing Dynamic Informations: Mental Map and Crossing Reduction 53

Recently, in the scientific literature, some efforts were carried out in order to solve
incremental graph drawing problems. The heuristic algorithms proposed there, are able to
solve large instances, but the resulting drawings present shortcomings in terms of mental
map, as can be observed in the following example, arising from project management.
In these projects, tasks are represented with vertices and edges model their precedence
relationships. Many changes occur during the development of a large project and they
have to be reflected in the associated graph or chart. Dynamic graph drawing is a demand
of project managers who need a stable sequence of drawings as the project evolves. The
project is usually represented as hierarchical or layered graph, and constitutes a good
example for the applicability of our incremental graph drawing model. Figure 3.9 shows a
representation of such a graph on a medium size project. Since it is a large graph with 6
layers, we made some simplifications to draw it. In particular, we do not include the first
vertex, which represents the beginning of the project. It would be allocated in the left part
(say in layer 0) and connected to all the vertices in the first layer. Similarly, we do not
represent the final project’s vertex, which would be allocated in layer 7, and connected with
an edge to each vertex in layer 6. To reduce the size of the vertices in the drawing, we
renumbered them, starting from 1 in each layer. We color in light gray the original vertices
and edges, which were in the initial design of the project, and with black the new vertices
and edges that have been added in a later stage.

The manager is used to work with the initial project, in which only the light gray vertices
were included. In Figure 3.9 the new vertices are all placed in the bottom part of the
diagram, leaving in this way the original vertices in their initial position. This is good in
terms of the stability of the drawing. In other words, it preserves the manager mental’s
map of the project. However, it contains a large number of crossings, since no optimization
has been performed after the addition of the new vertices. This drawing has 6963 edge
crossings. The challenge is therefore to reduce the number of crossings while trying to keep
the placement of the original vertices as much as possible. That is esentially the objective
of the incremental graph drawing problem.

We have identified two types of approaches in dynamic graph drawing algorithms with
the objective of creating a sequence of stable representations, as introduced by Böhringer
and Paulisch in [16]. The first type consists of multi-objective methods, which optimize
both the aesthetic criteria and a stability distance function. In this category we can find the
early work by North in [121], who proposed a graph drawing system, Branke in [18], who
adapted Sugiyama’s heuristic to include the stability conditions in the drawing method, and
[126], who based their stability measure in terms of the number of pairs of vertices that are
inverted in the new drawing with respect to their relative position in the previous drawing.

54 Graph Drawing: the Art of Representing Data

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

12

15

5

14

10

9

8

7

16

4

11

13

6

2

1

17

3

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

13

3

1

6

5

7

9

10

4

16

11

14

15

8

17

2

12

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

10

1

9

12

4

5

2

17

11

13

18

8

15

14

6

16

7

3

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

6

16

3

7

5

19

1

13

12

8

17

11

9

14

15

2

18

4

10

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

15

13

8

7

16

4

2

1

14

3

6

10

5

11

12

9

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

12

10

13

15

16

14

18

11

17

9

7

1

19

6

8

2

3

5

4

Fig. 3.9 Project management example.

In the second type of approaches, called incremental graph drawing algorithms, we can
find the models based on the inclusion of additional constraints in the standard crossing
reduction problem. In these approaches, hard constraints about the position of the vertices
in the new graph are established beforehand. In particular, Martí and Estruch considered in
[105] the relative position between vertices in the original drawing as a constraint to create
a new incremental drawing when new vertices and edges are added to the bipartite graph
(their GRASP approach was limited to optimize 2-layered graphs). Martí et al. proposed
in [106] a Tabu Search for the same problem obtaining better solution than the previous
GRASP. Recently, in [136], these authors extended this approach to the general case of
multi-layer graphs and proposed a new heuristic based on the Scatter Search methodology,
which outperforms the previous GRASP. We apply this method to the example in Figure
3.9, obtaining the drawing shown in Figure 3.10 with 4647 edge crossings.

The methods described above, and applied in Figure 3.10, solve the incremental or
dynamic problem based on the relative position of the original vertices. It is easy to check
that these vertices, depicted in gray color, keep the same ordering among them in this
figure than in the original drawing shown in Figure 3.9. However, we believe that this
example also illustrates a serious drawback of this model based on the relative ordering: the
location of the original vertices changes significantly, thus endangering the user’s mental

3.5 Drawing Dynamic Informations: Mental Map and Crossing Reduction 55

Fig. 3.10 Example optimized with a previous method.

map of the original drawing. For example, in the drawing of Figure 3.9, vertex 3 of the
first layer is in the first position, while in Figure 3.10, it is in the sixth position. This is due
to five new vertices (33, 24, 27, 31, 32, and 18) inserted in previous positions to reduce
the number of crossings. Similar and even worse situations can be easily identified in many
original vertices that are now (in Figure 3.10) in positions far from their original placement
(in Figure 3.9). If for example we consider the last original vertex in layer 1, number 12,
which occupied position 17th in Figure 3.9, we can see that it is now (in Figure 3.10) in
position 30. We believe that this difference of 13 positions alters the layout too much and
forces the user to make important adjustments in his or her mental map of the graph, thus
making the reading of the graph a time consuming task. In Section 3.9, to complement
the experimentation, we will show the solution of our method on the example depicted in
Figure 3.10.

An in-depth study of the relations of the mental map and several formal measures can
be found in [20], in the case of orthogonal graphs. The authors define mathematical criteria
to reflect the idea of stability across drawings based on the comparison of different layouts.

56 Graph Drawing: the Art of Representing Data

In particular, they define measures and conduct a student survey to evaluate them. The
authors conclude this study with the analysis of the correspondence between theoretical
results and the survey, thus leading to a ranking of the measures defined, where among
the most important are the relative distance, the nearest neighbor-within position, and the
average and maximum distances.

Considering that the method based on the relative position [106] is somehow limited, we
approach the stability of hierarchical graphs taking into account both relative and absolute
distances of the vertices position by including additional constraints. Our proposal is in
line with previous studies. In the case of orthogonal graphs [20], the authors consider
different measures based on the distances to achieve stability. Similarly, Di Battista et al.
[6] proposed to approach the incremental problem with the coordinates scenario, in which
the coordinates of some vertices and edges may change by a small constant, because of the
insertion of a new vertex and its incident edges. Branke [18] pointed out that we cannot
state that relative position is better than absolute position in terms of preserving the user’s
mental map, and both can be of interest.

To sum it up, based on the previous studies and the examination of practical examples,
in Section 3.6 we describe a model to preserve the mental map of incremental hierarchical
drawings, while minimizing the number of crossings. In particular, we fix the relative position
between the original vertices, and keep their absolute position within a short bounded
distance, K, of their original position.

3.6 A Mathematical Programing Model for the Constrained-
IGDP

With in mind the notations summed up in Table 3.1, let H = (G, k, L) be a hierarchical
graph and D = (H,Φ0) its drawing. Moreover, given a vertex v in layer t, let Λt−1(v) =

{u ∈ V : (u, v) ∈ E} be the set of vertices in layer t− 1 adjacent to v, and symmetrically,
denote with Λt+1(v) = {u ∈ V : (v, u) ∈ E} the set of vertices in layer t+ 1 adjacent to v,
such that Λ(v) = Λt−1(v) ∪ Λt+1(v).

Keeping the same number of layers, we can consider the addition of some vertices V̂ and
edges Ê to the original graph G, obtaining respectively an incremental graph IG = (IV, IE)

and an incremental hierarchical graph IH = (IG, p, L), where IV = V ∪ V̂ and IE = E∪ Ê.
As previously, the sets of vertices and edges can be written as sequences of disjoint sets
IV = IV1 ∪ . . .∪ IVk and IE = IE1 ∪ . . .∪ IEk−1. Let’s denote mt the number of vertices
in the incremental graph in layer t, i.e., mt = |IV t|. The Incremental Graph Drawing

3.6 A Mathematical Programing Model for the Constrained-IGDP 57

Problem (IGDP) consists of finding a drawing ID = (IH,Φ) that minimizes the number of
edge crossings while keeping the same relative position between the original vertices as in
the original drawing D.

Literature dealing with IGDP is scarce. In fact, we are only aware of paper [105],
which is limited to a bipartite graph, and more recently, the work reported in [136] for the
multilayer case. In [105], the authors describe a branch-&-bound procedure that is tested
on a relatively small graph and a meta-heuristic procedure based on GRASP [50] applied to
medium- and large- sized instances. This seminal work is improved in [106] and extended
to more than 2 layers in [136], where the authors propose a Variable Neighborhood Scatter
Search for the IGDP.

In the following we describe an alternative approach, which, together with the relative
position constraints, also requires that the positions of the original vertices are constrained
to be close to their positions in the original drawing. The mathematical model for the
Constrained Incremental Graph Drawing Problem (C-IGDP) is as follows:

(C-IGDP) min
k−1∑
t=1

∑
(u,v),(u ′,v ′)∈IEt

ctuvu ′v ′

s.t.
− ctuvu ′v ′ ≤ xt+1

vv ′ − xtuu ′ ≤ ctuvu ′v ′ , ∀ (u, v), (u ′, v ′) ∈ IEt, v < v ′, ∀t
(3.15)

1− ctuvu ′v ′ ≤ xt+1
v ′v + xtuu ′ ≤ 1+ ctuvu ′v ′ , ∀ (u, v), (u ′, v ′) ∈ IEt, v > v ′ ∀t

(3.16)
0 ≤ xtuv + xtvu ′ − xtuu ′ ≤ 1, ∀ u, v, u ′ ∈ IVt, u < v < u ′, ∀t

(3.17)
xtuv + xtvu = 1, ∀ 1 ≤ i < j ≤ mt, ∀t

(3.18)
xtuv = 1, ∀ u, v ∈ Vt, φt

0(u) < φt
0(v), ∀t

(3.19)
max{1,φt

0(u) − K} ≤ φt(u), ∀ u ∈ Vt, ∀t (3.20)
min{φt

0(u) + K,mt} ≥ φt(u), ∀ u ∈ Vt, ∀t (3.21)
xtuv, c

t
uvu ′v ′ ∈ {0, 1}, ∀ (u, v), (u ′, v ′) ∈ IEt, ∀t.

(3.22)

58 Graph Drawing: the Art of Representing Data

Constraints (3.18) and (3.19) preserve the ordering of the original vertices, while (3.20)
and (3.21) are required to restrict the position of the original vertices. Let K be a parameter
representing a distance slack between the original position and the new one. Without loss
of generality, we suppose that u is in layer t, and φt

0(u) is the original position of vertex u.
The new position φt(u) where vertex u can be relocated in the solution must be such that:

max{1,φt
0(u) − K} ≤ φt(u) ≤ min{φt

0(u) + K,mt}, ∀ u ∈ V, (3.23)

where mt represents the number of vertices in the incremental graph in layer t. Table 3.11
summarizes all the definition used in this section.

Symbol Definition
G Original graph: G = (V, E)
V Set of original vertices of G
E Set of original edges of G
k Number of layers
H Hierarchical graph: H = (G, k, L)
IH Incremental graph: IH = (IG, k, L)
L Function that indicates the label of the layer that contains each vertex
V̂ Set of incremental vertices
IV Set of vertices in the incremental graph IH: IV = V̂ ∪ V

Vt Set of vertices in layer t in H: V = V1 ∪ · · · ∪ Vk

Et Set of edges from Vt to V t+1 in H: E = E1 ∪ · · · ∪ Ek − 1

nt Number of original vertices in layer t: nt = |Vt|

IVt Set of vertices in layer t in IH: IV = IV1 ∪ · · · ∪ IVk

mt Number of vertices in layer t: mt = |IVt|

IE Set of edges in the incremental graph IH

D Drawing: D = (H,Φ0)
Φ0 Set of permutation {φ1

0, . . . , φ
p
0 }

ID Incremental graph drawing: ID = (IH,Φ)
Φ Set of permutation {φ1, . . . , φk}

C(D) Number of crossings of a drawing D

Λ(v) Set of all vertices adjacent to v

K Constraint limit
Table 3.11 Symbols and Definitions.

3.7 Solution Methods 59

3.7 Solution Methods
In this section, we propose three GRASP constructions, C1, C2, C3, a memory-based
construction, C4, and two improving methods: a local search and a tabu search. We
consider their combination in four different algorithms for the C-IGDP problem:

• GRASP1: C1 + Local Search.

• GRASP2: C2 + Local Search.

• GRASP3: C3 + Local Search.

• TS: C4 + Tabu Search.

3.7.1 GRASP constructive methods

We propose three different ways to obtain an initial solution in the GRASP construction
phase. While applying these methods, we should keep in mind that each original vertex v

has to be placed in a position between max{1,φ0(v) − K} and min{φ0(v) + K,mL(v)}.
In a first analysis, we may say that the greedy function is expected to be based on the

objective function and therefore the semi-greedy selection in GRASP has to reflect good
values in terms of the objective. Note however that if the objective function is relatively
time consuming to evaluate, it is a common practice in heuristic search to employ an
alternative evaluation to guide a method. This evaluation has to be fast and somehow
connected with the objective value. In this section we describe two types of approaches to
design a constructive method. The first one employs an alternative evaluation based on
the vertex degree, and the second one is based on the direct number of crossings.

Our first method, called C1, constructs an initial solution from scratch. The method
starts with the random selection of a vertex v among those with maximal degree. This
vertex is placed in a random position in its layer, taking into account that if it is an
original vertex, the position cannot be greater than min{(φ0(v) + K,mL(v)} or less than
max{(1,φ0(v)−K)}. In the next steps, the candidate list CL is formed by all the unassigned
vertices, where the degree ρ(v) of a vertex v is calculated with respect to the partial solution.
Elements of the restricted candidate list RCL are all vertices v whose degree ρ(v) is within
a percentage α ∈ [0, 1] of the maximum degree ρmax = max {ρ(v) : v ∈ CL}:

RCL = {v ∈ CL : ρ(v) ≥ αρmax}. (3.24)

60 Graph Drawing: the Art of Representing Data

The next vertex v∗ to be added to the partial solution is randomly selected from RCL.
The vertex v∗ is placed in its layer, say layer l, in the position prescribed by the barycenter
method, bc(v∗).

The barycenter is probably the most frequently applied method to order vertices in
hierarchical graphs. It simply computes the average position of their neighbors and sorts
vertices with respect to these numbers. More precisely, the barycenter method estimates the
position of vertex v∗ in layer l as the average position of its neighbors (adjacent) vertices,
Λ(v∗). In mathematical terms:

bc(v∗) =

∑
u∈Λl−1(v∗) φ

l−1(u)

2 |Λl−1(v∗)|
+

∑
u∈Λl+1(v∗) φ

l+1(u)

2 |Λl+1(v∗)|
. (3.25)

Each vertex is placed in the closest feasible position prescribed by its barycenter, bc(v∗),
computed as in (3.25) with respect to the adjacent vertices that are already in the partial
solution. If the vertex is an original vertex, v∗ ∈ V , a feasible position in the C-IGDP must
satisfy the problem constraint and cannot be less than max{1,φ0(v) − K} or larger than
min{φ0(v) + K,mL(v)}.

The second constructive method, called C2, considers that we already have a partial
solution of the problem given by the original drawing D = (G,φ). As in [136], C2 starts
with D and iteratively adds one incremental vertex in each iteration. Initially, the candidate
list contains the incremental vertices V̂ = IV \ V . As in C1, the greedy function is based
on the vertex’s degree with respect to its adjacent vertices in the partial solution. The
vertex v∗ to be included is selected at random from RCL, which contains all the unassigned
incremental vertices with a degree higher than or equal to α times the maximum degree
(3.24). The method computes the barycenter by calculating equation (3.25) and inserts v∗

in the closest feasible position to it.
Figures 3.11 to 3.14 illustrate procedure C2. The incremental graph consists of three

layers with four original vertices 0, 1, 2, 3 and two incremental ones A,B in the first layer,
labeled Layer 0. Layer 1 has six vertices, three of them are original, 0, 1, 2, and the other
three are incremental, A,B,C. Finally, the last layer, labeled Layer 2, consists of six vertices,
being 0, 1, 2, 3 the original ones, and A,B the incremental ones. Figure 3.11 also shows
all the edges between pairs of vertices. For example, vertex 0 in Layer 1 is connected to
vertex 0 and A in Layer 0, and to vertices 0 and B in Layer 2. We consider in this example
the position constraint value K = 1.

To feed the constructive method C2, all the original vertices are copied in the solution
in consecutive positions. Figure 3.12 shows the initial partial solution with the original
vertices in the first positions. Note that, positions [4] and [5] are free in Layer 0 and Layer

3.7 Solution Methods 61

[5]

[4]

[3]

[2]

[1]

[0]

Position

B

A

3

2

1

0

Layer 0

C

B

A

2

1

0

Layer 1

B

A

3

2

1

0

Layer 2

Fig. 3.11 Graph to illustrate the C2 method.

2 and in Layer 1 the free positions are [3], [4] and [5]. Firstly, RCL elements are all the
incremental vertices and then at each iteration, one of them is added to the partial solution.

[5]

[4]

[3]

[2]

[1]

[0]

Position

3

2

1

0

Layer 0

2

1

0

Layer 1

3

2

1

0

Layer 2

Fig. 3.12 Initial partial solution.

Let us consider the partial solution in one iteration of the construction algorithm C2,
shown in Figure 3.13. Four incremental vertices are already in the partial solution, vertex A

in Layer 0, vertices B and C in Layer 1 and vertex B in Layer 2. In each layer, all original
vertices were moved one position down in order to insert the incremental vertices, A (Layer
0), B (Layer 1) and B (Layer 2) in the first position, called position [0]. These movements
are feasible since K is equal to 1, and each vertex can move one position up or down to its
original position.

In this iteration the candidate list contains vertices B from Layer 0, A from Layer 1,
and A from Layer 2, too. Suppose that after the construction of the RCL the vertex
to be inserted in the partial solution is A from Layer 1. If we compute its barycenter
with equation (3.25), then bc(A) = 0. Note that to compute this value we only have to

62 Graph Drawing: the Art of Representing Data

[5]

[4]

[3]

[2]

[1]

[0]

Position

A

3

2

1

0

Layer 0

C

B

2

1

0

Layer 1

B

3

2

1

0

Layer 2

Fig. 3.13 Partial solution in an iteration of C2 construction phase.

consider the vertices adjacent to A that are already in the partial solution. However, in
this particular case, A has only one adjacent vertex in the solution, vertex B (Layer 2).

As bc(A) = 0, the candidate position to insert A in Layer 1 is [0], but this position
is already occupied by vertex B. As the position constraint value is K = 1 and vertices 0,
1 and 2 were already shifted to one position down in previous iterations, then vertex A

cannot be inserted in positions [0], [1], [2] and [3]. We then insert A in the closest feasible
free position, which in this case is [4].

[5]

[4]

[3]

[2]

[1]

[0]

Position

A

3

2

1

0

Layer 0

C

B

A

2

1

0

Layer 1

B

3

2

1

0

Layer 2

Fig. 3.14 Partial solution after an iteration of C2 construction phase.

In the basic GRASP construction phase, at each iteration, the choice of the next element
to be added is determined by ordering all candidate elements, in a candidate list with respect
to a myopic greedy function. This function measures the benefit of selecting each element.
In the previous construction methods, C1 and C2, this function is based on the vertices’
degree. In our last construction method, C3, function g(v, q) computes the number of edge
crossings when vertex v is inserted in position q in its layer. To calculate the best insertion
for vertex v, the greedy function g(v) computes the minimum of the g(v, q) values for all

3.7 Solution Methods 63

1 ID← D;
2 CL← IV \ V ;
3 forall v ∈ CL do
4 compute g(v) and τ;
5 forall v ∈ CL do
6 if g(v) ≤ τ then
7 RCL← RCL ∪ {v};
8 while ID is not complete do
9 v∗ ←select_node_randomly(RCL);

10 ID← add_node_to_solution(v∗);
11 recompute g and τ;
12 rebuild RCL;
13 return ID

Fig. 3.15 Constructive phase C3 for the C-IGDP.

q-positions. In mathematical terms, g(v) = minq g(v, q). If the vertex v is selected, then
it is placed in this best position in which the number of crossings is minimized. Initially, as
in the case of C2, the method starts with the original drawing. In subsequent iterations, the
candidate list CL is formed with all unselected vertices and the RCL consists of all vertices
in CL whose the number of edge crossings is lower than or equal to a threshold τ. That is
RCL = {v ∈ CL : g(v) ≤ τ}, where

τ = min
v∈CL

g(v) + α

(
max
v∈CL

g(v) −min
v∈CL

g(v)
)
. (3.26)

The parameter α controls the balance between the diversity and the quality of the
solution, and it is empirically tuned (see Section 3.9). Then, a vertex v∗ is selected at
random among the RCL elements. If the position associated to v∗ is not free, then previous
vertices are shifted up as in C2 if it is possible. The pseudocode of construction phase C3
is described in Figure 3.15.

3.7.2 Memory construction procedure

GRASP constructions are memory-less methods, since no information is recorded and used
from one construction to the next. In other words, it performs an independent sampling in
the solution space. Conversely, it is maybe beneficial to save information from the past
history thus designing constructions performing a guided selection in the solution space. We
consider the inclusion of a frequency memory function freq(·, ·) to modify the evaluations
of the greedy function with the inclusion of the recorded information too. Specifically,

64 Graph Drawing: the Art of Representing Data

we record in freq(v, q) the number of times that vertex v was inserted in the solution in
position q in the previous iterations. Then, we modify the evaluation of the attractiveness
of each non-selected vertex in the current construction to favor different types of solutions,
which were not generated in previous iterations. Algorithm C4 performs the same steps as
C3 but, instead of using the greedy function g(v) = minq g(v, q), it uses:

g(v) = min
q

(g(v, q) + βfreq(v, q)) , (3.27)

where β is a critical parameter between [0, 1]. The first iteration of C4 produces the
same solution as C3 since freq(v, q) = 0, for all vertices v and positions q. But then, in
subsequent iterations the method favors the selection of those vertices with low freq(·, ·)
values.

3.7.3 Local Search Procedure

Our local search method explores each layer from 1 to k, one by one, searching for an
improving move. We consider swapping the position of two new vertices as the first
mechanism in the local search. We called N0(ID) to this neighborhood where ID is initially
the solution obtained with one of the constructive methods described above. In a given
layer, the method examines the new vertices, starting from the first one. For that vertex,
we consider its possible swapping with all the new vertices in its layer.

The method performs the best feasible move if it improves the objective function (i.e.,
if it reduces the number of crossings). Then, it resorts to the next new vertex in the layer
(following the current order) to try to swap it. Note that, since we only swap new vertices
here, all these moves are feasible. When we finish the exploration of a layer, say l, we
consider the next one l + 1, and apply the same procedure. This local search performs
multiple sweeps from the first to the last layer until no further improvement is possible.
In short, it implements the so-called best strategy over a swapping move. We call Swap
this local search phase based on neighborhood N0(ID), whose pseudo-code is reported in
Figure 3.16.

We complement our local search with a second phase, called Insertion, based on
neighborhood N1(ID). Specifically, this phase scans the layers from 1 to k, and within each
layer it considers the incremental vertices in their current ordering to perform an insertion.
Given a new vertex v, the method explores all its feasible insertions in previous position.
Note that we have to check here the feasibility of the original vertices. By a feasible move
we mean that the position of original vertices is within its limits. If φ(v) is the position
of vertex v after the move, then φ(v) ∈ [max(φ0(v) − K, 1),min(φ0(v) + K,mL(v))]. If

3.7 Solution Methods 65

1 best-cost ← C(ID);
2 ID∗ ← ID;
3 improvement ← true;
4 while improvement do
5 improvement ← false;
6 forall layers: t = 1 . . . k do
7 forall vertices: v ∈ Vt | v is a new vertex do
8 best-swap ← −1;
9 forall vertices: v̄ ∈ Vt | v̄ is a new vertex do

10 if v̄ ̸= v then
11 ID∗ ← swap(v, v̄);
12 if C(ID∗) < best-cost then
13 best-cost ← C(ID∗);
14 best-swap ← v̄;
15 ID∗ ← swap(v̄, v);
16 if best-swap ̸= −1 then
17 ID∗ ← swap(v,best-swap);
18 improvement ← true;
19 return ID∗;

Fig. 3.16 Swapping phase in local search for C-IGDP.

the best feasible move in a previous position improves the current solution, we perform it;
otherwise we consider the insertions of v in a posterior position, identifying the best feasible
one. We perform the best move if it improves the solution. Once v has been examined, we
resort to the next incremental vertex (from V̂) in this layer.

As in the previous phase, we perform sweeps from layer 1 to p until no further
improvement is possible. Our local search finishes when the two phases, Swap and Insertion,
are performed, and returns the local optimum found.

Consider again the example in Section 3.7.1 and assume that after the construction
phase shown in Figures 3.11 to 3.14, we obtain the feasible solution in Figure 3.17 with
13 crossings. In the first layer, Layer 0, swapping the vertices A and B does not decrease
the number of crossings. The next layer to explore is Layer 1. In this case, exchanging
positions of vertices A and C produces an improvement in the solution. The move is done
and the the number of crossings is reduced to 11, as shown in Figure 3.18-left. As in the
first layer, the possible moves in last layer do not produce an improvement, then the first
phase stops since no further swaps can reduce the number of crossings. In the second
phase, in Layer 0 and 1 there are no insertion moves for the incremental vertices improving

66 Graph Drawing: the Art of Representing Data

[5]

[4]

[3]

[2]

[1]

[0]

Position

B

A

3

2

1

0

Layer 0

C

B

A

2

1

0

Layer 1

B

A

3

2

1

0

Layer 2

Fig. 3.17 Initial solution.

the quality of the solution. While, in Layer 2, by inserting the new vertex B in position [1]

the number of crossings is reduced from 11 to 10 (see Figure 3.18-right).

B

A

3

2

1

0

Layer 0

C

B

A

2

1

0

Layer 1

B

A

3

2

1

0

Layer 2

B

A

3

2

1

0

Layer 0

C

B

A

2

1

0

Layer 1

B

A

3

2

1

0

Layer 2

Fig. 3.18 Local search procedure. Left: Swap phase. Right: Insertion phase.

3.7.4 Tabu Search

To complement the memory based construction strategy, we implement a tabu search
method, based on the neighborhood N1(ID). The procedure starts with the initial solution
obtained by C4 and operates as follows. It scans the layers from 1 to p, and for each
layer, it evaluates all possible insertions of the new vertices and performs the best one, i.e.,
the one that produces the minimum number of crossings. It is worth mentioning that the
tabu search method always performs the best available move, even if it is a non-improving
move. The moved vertex is made tabu-active and remains tabu for tenure iterations, which
means that during this period it cannot be moved. In the next steps, the insertions are only
possible with non tabu-active vertices. As it is customary in the tabu search methodology,
the tabu status is overridden if the movement leads to a solution that improves upon the

3.8 Path Relinking post-processing 67

1
2
3

1
2
3

1
2
3

C(IDss) = 10

1
2
3

1
2
3

1
2
3

C(ID1) = 10

1
2
3

3
2
1

1
2
3

C(ID2) = 0

1
2
3

1
2
3

3
2
1

C(ID3) = 5

1
2
3

3
2
1

1
2
3

C(ID4) = 0

1
2
3

3
2
1

3
2
1

c(ID5) = 5

1
2
3

3
2
1

3
2
1

C(IDts) = 5

Fig. 3.19 Example of the Path Relinking procedure.

best solution found so far. The tabu search method finishes when a pre-established number
of iterations is met, and the best visited solution is returned as its output.

3.8 Path Relinking post-processing
Path Relinking (PR) is an approach suggested in the context of tabu search to combine
solutions by creating paths between them [73]. GRASP hybridized with PR was first
proposed by Laguna and Martí in [93] as an intensification method, and hybridizations of
GRASP with Path Relinking are deeply discussed in [56]. We consider here the variant
known as forward PR [136] for the C-IGDP.

Path Relinking is performed between two solutions, IDss (source solution) and IDts

(target solution) for the C-IGDP. Each single move generated by the PR consists of replacing
an entire layer from a current solution with a layer from the target solution. The total
numbers of solutions generated by the PR during the path from IDss to IDts is k(k+1)

2
− 1.

For example, given the two solutions, IDss and IDts in Figure 3.19 with 3 layers and 3

vertices in each layer, the algorithm generates three different solutions exchanging one of
the layers of IDss with the layers of IDts. Then, the path continues from the intermediate
solution ID2, which is the best solution found, and generates another two solutions, ID4

and ID5. Finally, the path is completed from ID4 to IDts. The method finds two solutions
that improve the current one ID2 and ID4, both with number of crossings equal to 0.

The procedure operates on a set of solutions, called Elite Set (ES), constructed with
the application of the previous method. In order to obtain an elite set as good and diverse
as possible, we start by considering as elite the m = |ES| solutions obtained by our previous
method. Then, in the subsequent iterations, we analyze whether the solution generates

68 Graph Drawing: the Art of Representing Data

ID∗ qualifies to enter in the elite set or not. In particular, if solution ID∗ is better than
the best solution in ES, then the worst solution is replaced by ID∗. However, if ID∗ is
better than the worst solution and it is sufficiently different (with a distance larger than
a parameter γ) from the other elite solutions then it is also inserted in ES. In this latter
case, it will replace the worst most similar solution. We define the diversity distance or the
difference between two solutions as the number of positions that are not occupied by the
same vertices divided by the number of vertices in the graph. The PR finishes when the
paths between all pairs of elite solutions have been explored.

3.9 Computational Experiments II
This section details our computational experiments to study the performance of the
procedures presented above. In particular, we consider the following methods: GRASP1
(C1+Local Search), GRASP2 (C2+Local Search), GRASP3 (C3+Local Search), and TS
(C4+Tabu Search). Additionally, when we disclose the best GRASP variant, then we couple
it with PR, and called the resulting method as GRASP+PR. In the following subsections, we
first outline the experimental framework (see Subsection 3.9.1), and then we analyze the
performance of these methods with respect to their parameters and settings in Subsection
3.9.2. This subsection also includes a comparison of the GRASP variants and Tabu Search.
Finally, we compare in Subsection 3.9.3 our best heuristics with LocalSolver, and CPLEX,
run with the integer linear programing model proposed above. LocalSolver is a well-known
commercially available optimization software (localsolver.com). It is a black-box solver
that uses metaheuristic methodologies to solve any combinatorial problem. It provides
high-quality solutions in short computing times, and it is currently considered an alternative
to customized heuristic methods.

3.9.1 Experimental Setup

All the procedures were implemented in C++, compiled with gcc 5.4.0, and the experiments
were conducted on an Intel Corei7-4020HQ CPU @2.60Ghz x 8.
The set of instances used is available on-line in the web-page http://www.optsicom.es/igdp.
In line with previous graph drawing papers [136], this set consists of 240 instances with
four different numbers of layers 2, 6, 13 and 20, and 0.065, 0.175 and 0.3 graph densities.
The number of layers p is an input to the graph generator and the number of vertices in
each layer is randomly chosen between 5 and 30. For each vertex u in layer t, an edge to
a randomly chosen vertex v in layer t + 1 is included. In addition, the generator checks

3.9 Computational Experiments II 69

that all vertices in the last layer have a degree of at least one. If a vertex in layer p is
found with a zero degree, an edge is added to a randomly chosen vertex in layer p − 1.
The generator then adds enough edges to cover the difference between the current number
and the number that results from the desired density. We then applied the barycenter
algorithm to obtain a drawing for each graph. Finally, of the 20 instances generated for
each combination of number of layers and density, 10 are augmented by incrementing the
number of vertices by 20%, and 10 are augmented incrementing by 60%.

We divide the test set of 240 instances in four subsets according to the number of
layers, p = 2, 6, 13, and 20, with 60 instances in each one. The average number of vertices
per layer is approximately 25, and the average number of edges between consecutive layers
is approximately 90. To give the reader an idea of the instances dimension, we can say
that according to this average computation, an instance with for example 13 layers would
have close to n = 325 vertices and 1080 edges. To avoid the over training of the methods,
we consider a subset with a 10% of them, 24 instances, 6 in each subset, with different
sizes and densities, to fine tune the parameters of the algorithms. We chose them to be
representative of the entire set. Specifically, their number of vertices ranges from n = 32

(corresponding to a 2-layer instance) to n = 960 (a 20-layer instance). We call this subset
the training set, as opposite to the entire set of instances called the testing set.

During our experiments, we report the following measures:

• C̄: Average number of crossings.

• % dev: Average percent deviation with respect to the best solution found in the
experiment.

• Best: Number of instances for which a procedure is able to match the best-known
solution.

• Score: It is calculated as (s(pr − 1) − r)/(s(pr − 1)), where pr is the number of
procedures being compared, s is the number of instances, and r is the number of
instances in which the pr − 1 competing procedures obtain a better result. Roughly
speaking, the score is inversely proportional to the fraction of instances for which
the competing procedures produce better solutions than the procedure being scored.
Hence, the best score is 1 (when there is no better procedures, r = 0) and the worst
is 0 (when all the procedures in each instances are better than the procedure being
scored, r = s(pr − 1))

• Time: Time in seconds to execute the method.

70 Graph Drawing: the Art of Representing Data

• % gap: Average percentage deviation of the objective function value of the new
method with respect to the solution value obtained with CPLEX.

An important element in the model is the value of the parameter K, which measures the
distance between the original position of the vertices and the feasible ones. It is related to
the problem definition since its objective is to keep vertices close to their original positions
to preserve the user’s mental map. It is clear that K = 1 satisfies this condition but
the resulting problem is extremely constrained. We therefore consider low values of this
parameter and test if a marginal increase would permit to obtain better solutions in terms
of number of crossings. In particular, we tested K = 1, 2, and 3. Therefore, for each
instance in our set we generated three instances, one for each K value in most cases (note
that the number of added vertices in each layer has to be larger than K, thus some values
of K cannot be considered). Then, the training set has a total of 62 instances, and the
testing set a total of 609 instances.

3.9.2 Preliminary Experiments

In this section, we first perform an experimental study to fine tune the algorithmic parameters
of our methods. We have designed four constructive algorithms based on a greedy function
(see Section 3.7.1). These constructive methods, namely C1, C2, C3 and C4 are parametrized
by α, which balances greediness and randomness. In this first experiment, we evaluate
the influence of this parameter by considering three different values of α: 0.25, 0.50, 0.75.
We also include a variant labeled random, where the method randomly selects an α

value in the range [0, 1] for each construction. Table 3.12 shows the corresponding results
when generating 500 independent constructions for each instance in the training set. This
table shows for each procedure, the average number of crossings (C̄), the average percent
deviation from the best solution found (% dev), the number of best solutions (Best),
the score statistic (Score), and the CPU-time in seconds required to execute the method
(Time).

α C % dev Best Score Time

0.25 17711.8 0.63 19 0.49 0.92
0.50 17747.1 0.69 12 0.47 0.96
0.75 17780.1 0.73 14 0.38 0.96
random 17685.7 0.16 39 0.87 0.93

Table 3.12 Fine-Tune parameter α for the constructive C1 procedure.

3.9 Computational Experiments II 71

Results in Table 3.12 clearly show that the best performance for C1 is achieved by the
random variant. This variant is able to obtain 39 best solutions out of the 62 instances,
which compares favorably with the other variants. Likewise, we analyze the value of α for
the constructive methods C2, C3, and C4, obtaining a similar result. Computational effort
does not play a role here because all procedures build solutions in a negligible amount of
time.

In our second preliminary experiment, we undertake the exploration of the memory
construction procedure, C4, which has an additional search parameter, β, to be tuned.
This parameter controls the number of times that a vertex has been selected in previous
iterations. We test β = 0.25, 0.50, 0.75, and a random selection. Table 3.13 summarizes
the results of this experiment with the same measures described above, and shows that
the best solutions on average are obtained with β selected at random in each iteration
(random option).

β C % dev Best Score Time

0.25 17293.6 0.56 15 0.54 9.94
0.50 17288.1 0.82 9 0.43 8.83
0.75 17286.5 0.88 10 0.37 8.52
random 17248.1 0.30 33 0.73 9.27

Table 3.13 Fine-Tune parameter β for the constructive C4 procedure.

Table 3.14 compares the four construction procedures with their parameter values as
indicated above in the training set instances. In order to run the methods for similar CPU
times to perform a fair comparison, the number of constructions performed with each one
is different. In particular, 1000 constructions for the C1 and C2 procedures, 100 for C3
and C4. As in the previous tables, the deviation values reported in this table are obtained
considering the best solutions found in the experiment.

Procedure C % dev Best Score Time

C1 17645.5 3.79 0 0.204 1.837
C2 17681.9 3.77 0 0.156 1.973
C3 17395.3 1.01 29 0.796 2.076
C4 17387.6 0.27 36 0.860 2.185
Table 3.14 Performance comparison of the construction methods.

Our local search method is based on two different moves, swaps and insertions. Initially,
it performs swaps between incremental vertices, and then, in subsequent iterations, it

72 Graph Drawing: the Art of Representing Data

implements insertion moves. In this preliminary experiment, we evaluate the effectiveness of
each type of move (i.e., neighborhood structure) and its contribution to the final solution
quality. In order to perform this analysis, we execute a C3 constructive phase coupled with
three different local search procedures. We also include the solutions of the constructive
method with no local search as a baseline in the comparison (C3). The three methods are:
swap-only neighborhood (C3 + S), insertion-only neighborhood (C3 + I), and both (C3 +
S + I). These four setups are tested on the whole training set, for this experiments we
keep track of: the average number of crossings, the mean percentage deviation from the
best value, the number of best solution found, the score statistics and the time to best.

The results reported in Table 3.15 show that, as expected, the combination of the two
neighborhood strategies achieves the maximum number of bests and best crossing average,
with extremely low deviation and very high score statistic. For this reason, in the next
experiments, the local search used for the GRASP algorithm consists in S + I as described
in Section 3.7.3.

Procedure C % dev Best Score Time

C3 17383.9 7.12 1 0.016 1.698
C3+S 16660.0 1.48 5 0.446 11.713
C3+I 16575.3 0.58 17 0.694 2.299
C3+S+I 16497.9 0.00 60 0.989 12.021

Table 3.15 Comparison among different local search setups.

An interesting question when comparing constructive methods is if they really need to
produce high-quality solutions, or if their role is to obtain diverse initial solutions from which
to apply the local search. To investigate this point, we perform an experiment to compare
the value of the constructed solutions when applying C3, with the value of the improved
ones after applying the local search method. In particular, we compute the correlation of
these two values over 100 solutions for several instances. We obtain that in all the cases
the correlation is relatively low. However, results are heterogeneous since in some instances
the correlation is close to 0, while in others is close to 0.4. Figure 3.20-left shows the
scatter-plot diagram of an instance with very low correlation, and Figure 3.20-right shows
this diagram of another instance with a correlation close to 0.4. The x-axis represents the
value of the constructed solution, and the y-axis the value of the improved one. A point
is plot for each pair of associated values. In both diagrams the points are scattered over
the plane and they are not aligned over a straight line. Note, however, that they present
different patterns in terms of their correlation.

3.9 Computational Experiments II 73

Fig. 3.20 Scatter Plot for two different instances.

Since results in the previous experiment indicate a different pattern across the instances
in terms of their correlation, we cannot conclude that we should construct good solutions to
obtain good local optima. Additionally, diversity is relatively difficult to directly evaluate on
the constructed solutions to test their ability to produce different local optima. Therefore,
we compare the quality of the solutions obtained with the complete method, once the
local search has been applied. Table 3.16 shows the results of the solutions when these
constructive methods are coupled with the local search. We analyze the combination of
the GRASP constructive methods C1, C2, and C3 with the local search, and C4 with the
tabu search. They are denoted as GRASP1, GRASP2, GRASP3, and TS respectively. All of
them generate and improve 100 solutions.

Procedure C % dev Best Score Time

GRASP1 17193.7 0.14 307 0.63 7.61
GRASP2 17188.3 0.15 348 0.70 10.04
GRASP3 17188.3 0.13 358 0.72 11.12
TS 17183.3 0.04 335 0.73 34.36

Table 3.16 Performance comparison of GRASP variants and Tabu Search.

Table 3.16 shows that GRASP3 is slightly better than GRASP1 and GRASP2, both in
average number of crossings (C̄) and number of best results (Best). On the other hand,
TS slightly outperforms GRASP3 in terms of the average percentage deviation (% dev).

74 Graph Drawing: the Art of Representing Data

Fig. 3.21 Performance profile for three GRASP implementation and a TS.

However, it exhibits a lower number of best solutions (335, while GRASP3 is able to obtain
358). We therefore cannot conclude that one is better than the other, and select both
GRASP3 and TS as our solving methods to be applied in the rest of the experimentation.

We complement the comparative analysis of the findings with a performance profile
plot, as described in [39]. This plot consists in the cumulative distribution function for a
certain performance metric, which is the ratio of the computing time of each procedure
versus the best time among all of them. The performance profile of each heuristic shows
the probability φ(r) that the ratio is within a factor r ∈ R of the best possible ratio. Figure
3.21 confirms how GRASP1 is the fastest of the four heuristics. Indeed, this performance
can be observed in r = 1, in which GRASP1 shows the highest probability of achieving the
best solution in the shortest time. This findings are consistent with the ones collected
in Table 3.16, since the performance profile does not select multiple best solutions, but
considers as best solution the one reached in the shortest time. At the same time, we can
observe how considering higher computational efforts, the other two GRASP implementations
are able to outperform GRASP1, with GRASP3 exhibiting the highest probability to obtain
the best solution. This switch in terms of performances happens for relatively low values
of r, the upper bound on the relative time employed. Given the high number of best
solution obtained and the quickly growing performance profile, we select GRASP3 as the

3.9 Computational Experiments II 75

best-performing GRASP implementation. Moreover, the consistency evidenced by TS in
Table 3.16, let us also consider TS as base methodology for our final experimentation.

Note that regarding the comparison between memory-less methods (GRASP in our
case) and memory-based methods (Tabu Search), as we mentioned above, there is no clear
winner. We cannot say that one systematically outperforms the other since each metric
provides a different ranking. These results are in line with previous studies ([107], [26]),
which also indicate that it is more a problem specific or implementation question, than a
methodological one.

Our last preliminary experiment has the goal of setting the parameters of the Path
Relinking post-processing. In particular, we set the value of the elite set size |ES| = 3, and
the distance parameter γ = 0.2). We do not reproduce the table of this experiment, since
as in the previous ones, our selection is based on a trade-of between quality and computing
time.

3.9.3 Final Experiments

In this last section, we undertake to compare GRASP3 and TS methods when solving the
C-IGDP, as well as to compare them with other previous methods: CPLEX and LocalSolver.
Additionally, we evaluate the contribution of the Path Relinking post-processing to the final
quality of the solution. Figure 3.22 shows the typical search profile in which the current
solution value is represented at different times in the search process. Specifically, this figure
shows the time in seconds on the x−axis, and the objective function value on the y−axis
of an instance with 444 vertices (a 20% of them are incremental) and 2228 edges.

Figure 3.22 shows the value of the solution constructed with C3 at 2 seconds. Then,
when we move to the right-hand-side of the diagram, from 2 seconds to almost 60 seconds,
we can see how the local search in GRASP3 is able to improve the solution from a value close
to 24,000 to a value of 23,800. In the final stage of the profile, after 60 seconds, we can
easily identify the PR application since the search profile shows a significant improvement in
the value, which ends close to 23,650. Although this diagram only shows the performance for
a single instance with 20 layers, we have empirically found that this is a typical performance
for different instances.

Figure 3.22 shows the contribution of PR to the final solution of our complete method
GRASP3+PR. We now complement this analysis by comparing GRASP3 with and without PR.
Specifically, Figure 3.23 shows the search profile of GRASP3 over 150 seconds, and also
the profile of a method consisting of applying first GRASP3 for 100 seconds, and then PR
for the remaining 50 seconds. This figure clearly shows that it is worth investing the final
search time on PR instead of continuously applying GRASP3 for the entire search. Note

76 Graph Drawing: the Art of Representing Data

Fig. 3.22 GRASP3+PR Search Profile.

that at a certain time of the search GRASP3 is not able to further improve the solution and
the profile stagnates on a certain value. At that point (around 100 seconds), PR is able
to further improve the current solution. We can conclude that GRASP3+PR obtains high
quality solutions, better than GRASP3 over a relatively long-term horizon.

We now compare GRASP3, TS, GRASP3+PR, and TS+PR with CPLEX and LocalSolver
over the entire set of 609 instances. Table 3.17 shows the associated results classified by
size. In this experiment, we run our heuristics for 100 iterations, which corresponds to
moderate running times (from 0.5 to 50 seconds depending on the instance size). Since
CPLEX performs an implicit enumeration from the mathematical model proposed in Section
3.6, it requires larger running times, so we configure it to run for a maximum of 1, 800
seconds. To give LocalSolver the opportunity to reach high-quality solutions, it is run
with a time limit of 20 seconds on the instances with 2 layers, and 60, 150 and 300 seconds
on those with 6, 13 and 20 layers respectively. As in previous experiments, this table shows,
for each procedure, the average of number of crossings, the average percentage deviation
from the best solution found, the number of best solutions, and the CPU-time in seconds.
In addition, we also show the average percentage deviation between the heuristic solution
value and the CPLEX best solution value (%gap). Note that CPLEX is able to obtain the
optimal solution in 572 out of the 609 instances.

Table 3.17 shows that, as expected, GRASP3+PR consistently obtains better results than
GRASP3, and similarly TS+PR improves upon TS. Note that in the PR variants, only a small
fraction of the total time is employed by PR, since it has the role of a post-processing

3.9 Computational Experiments II 77

Fig. 3.23 Search Profile.

method. It is worth mentioning that CPLEX is able to obtain the exact solutions for the
small instances in similar time than our heuristic methods. However, the situation changes
when we move to the large instances, where heuristics are able to obtain solutions of similar
quality than CPLEX in lower running times. In particular, we can see that in the instances
with 20 layers, GRASP3+PR and TS+PR have an average gap value of −0.12 and −0.19

respectively, which indicates that the heuristic outperforms CPLEX on average. Note that
this table also indicates that CPLEX obtains the optimal solution in 116 instances with 20

layers, while our heuristics only obtain a fraction of these optimal solutions. However, this
is achieved by CPLEX at a large computational cost, and additionally, for the remaining
instances in this set where CPLEX is unable to obtain the optima, GRASP3+PR and TS+PR
obtain better solutions, which cause the average gap to take negative numbers. Note that
our heuristics only employ a fraction of the running time required by CPLEX, which in many
cases employs the total time permitted of 1, 800 seconds, as evidenced by the long average
running times shown in this table. Table 3.17 also shows that LocalSolver presents a
poor performance since in spite of running it for longer CPU times than the competing
heuristics, it exhibits the largest deviations with respect to the best known solutions and
optimal values.

We now summarize the results in this experiment in a different way. In particular, Table
3.18 shows the average value of the statistics considered aggregating the instances by their
K-value. We can observe more differences between the heuristics gap and deviations with

78 Graph Drawing: the Art of Representing Data

Procedures C % gap % dev Bests Opt Time

2 Layers (32 ≤ n ≤ 96), 171 instances
CPLEX 2408.50 - 0.00 171 171 0.77
GRASP3 2409.19 0.14 0.14 161 161 1.11
GRASP3+PR 2408.92 0.14 0.14 164 164 1.18
TS 2408.58 0.00 0.00 163 163 1.03
TS+PR 2408.51 0.00 0.00 170 170 2.73
LocalSolver 2785.47 17.01 17.01 12 12 20.11

6 Layers (48 ≤ n ≤ 288), 159 instances
CPLEX 9995.70 - 0.01 157 157 56.24
GRASP3 9997.43 0.13 0.14 81 81 5.53
GRASP3+PR 9994.32 0.08 0.08 100 98 5.39
TS 9999.73 0.20 0.20 63 63 5.48
TS+PR 9994.19 0.05 0.06 93 93 16.70
LocalSolver 11024.89 16.59 16.6 0 0 62.43

13 Layers (104 ≤ n ≤ 611), 141 instances
CPLEX 23469.05 - 0.21 129 128 273.77
GRASP3 23319.41 0.13 0.33 28 27 15.22
GRASP3+PR 23305.22 0.02 0.22 49 44 15.34
TS 23334.38 0.24 0.44 26 26 15.64
TS+PR 23301.16 -0.07 0.14 38 31 47.42
LocalSolver 25530.24 15.95 16.16 0 0 162.06

20 Layers (120 ≤ n ≤ 960), 138 instances
CPLEX 37918.20 - 0.38 118 116 383.73
GRASP3 37522.42 0.03 0.39 21 20 25.77
GRASP3+PR 37495.44 -0.12 0.24 36 29 28.39
TS 37540.99 0.11 0.47 22 22 26.72
TS+PR 37486.65 -0.19 0.17 39 26 86.26
LocalSolver 40954.07 14.30 14.68 0 0 328.77

Table 3.17 Comparison on entire benchmark set according to instance size

K = 3 than with K = 1, with this being due to the fact that CPLEX is able to solve almost
every instance with K = 1. In line with the analysis in Table 3.17, we can conclude that
our heuristics are performing well when comparing them with CPLEX and LocalSolver.

We complement our comparison with 10 additional very large instances with 50 layers
and 1, 000 vertices. These instances are too large to be solved with CPLEX, therefore we
limit this comparison to GRASP3+PR and LocalSolver. To set up a benchmark for future
comparison, we report in Table 3.19 with K = 1, Table 3.20 with K = 2, and Table 3.21

3.9 Computational Experiments II 79

Procedures C % gap % dev Bests Opt Time

K = 1, 240 instances
CPLEX 17196.63 - 0.03 238 238 49.85
GRASP3 17164.45 0.03 0.06 132 131 5.89
GRASP3+PR 17160.88 0.00 0.04 157 156 6.32
TS 17162.75 0.02 0.05 149 149 6.27
TS+PR 17159.60 0.00 0.03 159 158 23.92
LocalSolver 18205.27 9.45 9.49 6 6 141.80

K = 2, 210 instances
CPLEX 17323.09 - 0.15 195 194 184.94
GRASP3 17183.44 0.06 0.20 93 93 11.01
GRASP3+PR 17172.75 -0.02 0.13 115 109 11.78
TS 17190.76 0.11 0.26 75 75 11.39
TS+PR 17170.58 -0.06 0.08 104 95 36.29
LocalSolver 19164.93 17.11 17.26 4 4 134.46

K = 3, 159 instances
CPLEX 17471.57 - 0.27 142 140 313.39
GRASP3 17230.84 0.30 0.56 66 65 19.17
GRASP3+PR 17210.94 0.15 0.41 77 70 19.80
TS 17254.76 0.33 0.58 50 50 19.15
TS+PR 17203.96 -0.08 0.17 77 67 52.53
LocalSolver 19413.82 24.57 24.85 2 2 121.49

Table 3.18 Comparison on entire benchmark set according to K value

with K = 3, the individual results of both methods on each instance. They run for 100
iterations for GRASP3+PR and a time limit of 900 seconds for the LocalSolver on each
instance. Results in these tables clearly show the superiority of our procedure with respect
to Local Solver in both solution quality and speed. Additionally, when comparing the
solution value for different values of K, we can conclude that only a marginal improvement
in the number of crossing is achieved when K increases, and therefore low values of K are
recommended for the sake of stability in the sequence of drawings.

We perform now the so-called time to target plot, see [1], for this large instance with
20 layers and 512 vertices. This diagram shows the ability of a heuristic to match a target
value (optimal value in our case). In particular, we run our heuristic GRASP3 for n = 100

trials and record the time to reach that target in each run. We sort the time values in
increasing order: t1, . . ., tn. The time to target plot, showed in Figure 3.24, depicts the
cumulative probability pi = (i− 1/2)/n for each time value ti for i = 1, . . . , n. The plots

80 Graph Drawing: the Art of Representing Data

Instance
L50N1000.0
L50N1000.1
L50N1000.2
L50N1000.3
L50N1000.4
L50N1000.5
L50N1000.6
L50N1000.7
L50N1000.8
L50N1000.9

GRASP3+PR LocalSolver
Crossings Time Crossings Time

53048 49.92 59220 1019.69
47051 42.85 52037 1003.95
72018 64.73 78800 1058.08

101428 93.84 110649 1127.93
55112 51.73 61279 1016.93
89599 76.68 97372 1093.13
58829 54.32 65527 1023.40
79236 75.52 87359 1069.29
58147 55.45 65320 1028.31
84496 79.64 92960 1112.17

Table 3.19 Best values on very large instances, with K = 1.

Instance
L50N1000.0
L50N1000.1
L50N1000.2
L50N1000.3
L50N1000.4
L50N1000.5
L50N1000.6
L50N1000.7
L50N1000.8
L50N1000.9

GRASP3+PR LocalSolver
Crossings Time Crossings Time

52010 77.02 62547 1020.65
46152 66.63 54934 1004.17
70711 99.65 83344 1058.18
99767 142.35 108847 1128.66
54020 79.18 63984 1016.26
88247 115.74 100745 1093.07
57639 84.00 67388 1023.72
77716 111.58 91685 1070.21
57160 83.56 68692 1028.18
82910 123.70 96252 1113.10

Table 3.20 Best values on very large instances, with K = 2.

in this figure show the expected exponential runtime distribution for GRASP3. Therefore,
linear speed is expected if the algorithm is implemented in parallel.

To finish our experimentation we consider the example shown in Figure 3.9 and obtain
the incremental drawing with our new GRASP3+PR. Figure 3.25 shows the output of our
method with K = 4. It is easy to check that the vertices in this figure are close to their
original position in Figure 3.9. For example, vertices 3 and 12, which were in positions
1 and 17 respectively, are now in positions 2 and 21. The number of edge crossings of
this graph is 4961, which compares favorably with the 6963 crossings in the initial drawing.
Note however that the solution in Figure 3.10 has 4647 crossings. This is expected since
we are solving a more constrained model. We believe that the marginal increase in the
number of crossings of our model is completely justified by the stability obtained in the

3.9 Computational Experiments II 81

Instance
L50N1000.0
L50N1000.1
L50N1000.2
L50N1000.3
L50N1000.4
L50N1000.5
L50N1000.6
L50N1000.7
L50N1000.8
L50N1000.9

GRASP3+PR LocalSolver
Crossings Time Crossings Time

51413 99.90 63430 1019.81
45361 83.13 57458 1004.67
69940 132.82 84770 1058.01
98704 187.58 120328 1128.18
53298 106.53 65782 1016.16
87324 155.52 103617 1093.30
56783 111.33 70991 1024.39
76828 152.64 94363 1072.14
56527 106.78 70587 1027.96
81838 160.89 91291 1112.31

Table 3.21 Best values on very large instances, with K = 3.

incremental drawing. In other words, the experimentation shows that our proposal provides
a good trade-off between crossing reduction and drawing stability.

82 Graph Drawing: the Art of Representing Data

Fig. 3.24 Time to target plot.

22

21

19

33

26

27

24

32

34

29

23

31

18

12

15

5

14

10

9

8

7

16

25

4

11

13

6

2

1

30

17

20

3

28

18

22

19

26

21

24

31

30

29

23

20

33

27

13

3

1

6

5

7

9

10

4

32

16

11

14

15

8

17

2

28

34

12

25

28

19

26

33

32

34

22

36

31

30

25

21

35

20

10

1

9

12

4

27

5

2

17

11

13

18

8

23

24

15

14

6

16

7

29

3

28

38

27

31

35

34

30

25

21

32

23

36

26

24

22

6

16

3

7

5

19

1

13

12

8

17

11

9

20

14

15

29

37

2

18

4

10

33

19

24

27

18

28

32

22

17

20

31

23

26

15

13

8

7

16

4

30

25

29

2

1

14

3

6

10

5

11

12

21

9

21

37

24

36

33

35

25

26

34

30

29

22

27

32

20

12

10

13

15

16

14

18

11

17

9

7

1

19

6

8

23

38

2

31

3

5

4

28

Fig. 3.25 Example optimized with new method.

Chapter 4

Handling Dynamic Informations in
Network Optimization

In Chapter 3, studying the C-IGDP, we introduced the idea of optimization on a dynamic
graph. Networks of this type are naturally subject to changes: either in their topology, i.e.
their adjacencies, or in other distinctive parameters, such as arc-costs, node-weights, and
so on.

Being able to properly tackle dynamic problems would not only bring theoretical
advancements, but would also mean a step further towards a complete integration of
optimized solutions in non-deterministic real-word scenarios.

While solving a problem on dynamic graphs, there are several approaches that can be
considered. As in the case of the C-IGDP, at times it could be valuable to ensure continuity
in the solutions obtained after repeated changes. In this case we modeled such requirements
in terms of mathematical constraints. In others, the use of past informations can bring
useful insights, able to dramatically speed up the algorithm, or simply ensure a more reliable
solution.

In this chapter we thoroughly discuss the use of a simheuristic, specifically designed to
address the Vehicle Routing Problem with Stochastic Demands, and compare its philosophy
with the one founding re-optimization approaches. In particular, re-optimization refers to
the re-use of past optimized solutions to quickly solve the problem after that small changes
happened in the instance. To give an example of such strategies we consider the case of
Shortest Path Problems (SPPs) on dynamic networks.

84 Handling Dynamic Informations in Network Optimization

4.1 The Vehicle Routing Problem with Stochastic De-
mands

As in the case of other notable stochastic combinatorial optimization problems, a Stochastic
Vehicle Routing Problem (SVRP) emerges whenever a random component is included in
the mathematical model of a classic VRP formulation. The most-common examples of
such random components are mainly related to the stochasticity of customer availability,
customer demands, and travel times.

Given the critical importance of understanding the influence of uncertainty over decisions,
which is a crucial matter in logistics and operations management, solving SVRPs is vitally
important to both the simulation-optimization community and industry [68]. One of the
initial contributions to the VRP with stochastic demands can be found in [12], where the
author tries to: (i) determine a fixed routing sequence covering all potential customers;
and then (ii) update the solution according to two different criteria once the information
regarding customer demands becomes available.

The aim of the algorithm here described, and presented in [59], is to generate a ‘reliable’
or ‘stable’ solution for the VRPSD, i.e., a set of routes that can achieve a good performance
not only in terms of average cost but also by being able to support moderate levels of
variability in the values of the random customer demands.

The VRPSD is formally stated on a graph G = (V, E), where the set of nodes includes
both the depot, usually denoted by 0, and the location of customers, V \ {0}. A fleet of
vehicles with restricted capacity is available at the depot, which is the starting and ending
point for each trip. Moreover, a non-negative cost function c : E→ R+ associates a cost
(either based on distance or on travel time) to each edge in E. For each i ∈ V \ {0}, a
random variable xi indicates the demand of goods that customer i requires. The goal of
the problem is to find a set of routes with minimal total expected cost while serving all
customers and satisfying the capacity constraints.

4.2 Simheuristics: Bringing Together Optimization and
Simulation

The complexity of intractable combinatorial optimization problems, such as the VRP, heavily
limits the size of the instances that can be solved with exact methods. Nevertheless, driven
by the attractiveness of optimal solutions, several efforts have been made in the literature
to design exact algorithms for routing problems. Gendreau et al. [67] provide optimal

4.2 Simheuristics: Bringing Together Optimization and Simulation 85

solutions to the VRP with stochastic customers and demands by means of an integer
L-shaped algorithm. In [96], a branch-and-cut method is described for solving the VRP with
stochastic travel times. Other examples of exact algorithms that have been investigated
are column generation [147] and branch-and-price [31]. At the same time, in order to solve
larger instances, a parallel stream of research has focused on heuristic and metaheuristic
algorithms. Thus, [69] propose a Tabu Search algorithm for the VRP with stochastic
customers and demands. For the VRP with stochastic demands, the work of [103] describes
a particle swarm optimization method, while [14] compare the results achieved by five
different well-known metaheuristics. The common aspect shared by both exact and heuristic
methods is the use of a dynamic approach, in which some of the stochastic values are
only revealed once vehicles reach customers, at which point solutions can be dynamically
re-optimized or updated with recourse actions.

The simheuristic framework is one of the most successful examples of hybrid simulation-
optimization approaches. In this paradigm, the typical randomness of real-world optimization
scenarios is effortlessly accounted for in the solution strategy, whether it has to be included
in a stochastic objective function or a constraint.

One essential idea in the simheuristic concept is the strong relation between the strategy
devised for solving a classical deterministic problem and the simulation of the random
variables. These two different perspectives to the problem are handled respectively by the
heuristic (or metaheuristic) core and by a stochastic simulation (in any of its forms). Thus,
given a stochastic optimization problem, a first step of a simheuristic approach consists of
the transformation of the stochastic variables into their deterministic counterparts. This
allows the approach to efficiently obtain a deterministic solution by means of a heuristic
algorithm. Subsequently, the quality of the constructed solution is evaluated in a stochastic
environment to determine its real value in scenarios with uncertainty. This two-step process
establishes a feedback system between the deterministic optimization algorithm and the
stochastic simulation. This feedback system is not only able to more accurately evaluate
solution quality, but also to better guide the exploration of the search space.

The scientific literature has recently seen several successful applications of simheuristic
algorithms to a broad variety of stochastic combinatorial optimization problems. In [82],
a hybrid simheuristic is proposed to solve a variant of the capacitated VRP. This variant
combines vehicle routing and packing constraints, and so it is known as the two-dimensional
VRP with stochastic travel times. The multi-start randomized simheuristic, presented
in [88] for the single-period and stochastic Inventory Routing Problem with stock-outs,
shows how personalized refill policies can be crucial to enable significant cost reductions in
comparison to what can be achieved by other algorithms employing standard refill policies.

86 Handling Dynamic Informations in Network Optimization

[77] tackle the Arc Routing Problem (ARP) with stochastic demands by embedding Monte
Carlo simulation into a classical strategy for the capacitated ARP. Without being exhaustive
in our review, other notable efforts in the literature can be found in the area of Permutation
Flow Shop Problems ([87]; [53]; [78]), and facility location problems [33].

4.3 Integrating a Biased Randomized GRASP with Monte
Carlo Simulations

This section begins by discussing how a basic GRASP framework can be enhanced by
making use of biased-randomization concepts (BR-GRASP). Subsequently, the BR-GRASP
is hybridized with Monte Carlo simulation to properly address the stochastic component of
the VRPSD.

GRASP is a well-known metaheuristic framework for hard combinatorial optimization
problems. As discussed in Section 2.2, a classical GRASP is made up of two main components
(Algorithm 1): a constructive phase and a local search. In the former, the element to
be added to the solution under construction is selected uniformly at random among the
elements of a restricted candidate list (RCL). The RCL collects all the best insertion
candidates according to some greedy score function. It includes all the elements whose score
is better than a user-specified percentage of the best score. This adaptive thresholding
process is guided by a parameter, α, which tunes the greediness of the constructive phase.
Our solution method relies on a recent extension of the classical GRASP paradigm: GRASP
with biased randomization or BR-GRASP (Algorithm 2).

4.3 Integrating a Biased Randomized GRASP with Monte Carlo Simulations 87

Input: α ∈ [0, 1]

22 s← ∅
44 initialize candidate set: CL ← E
66 order CL according to c(·)
88 while solution s is not complete do

1010 cmin ← minx∈CL{c(x)}

1212 cmax ← maxx∈CL{c(x)}

1414 thr← cmin + α(cmax − cmin)

1616 RCLsize←
|{x ∈ CL : c(x) ≤ thr}|

1818 pos←
UnifRand(1, 2, . . . , RCLsize)

2020 s← s ∪ {CL[pos]}

2222 CL← CL \ {CL[pos]}

2424 Reorder CL
2626 return s

Algorithm 1: Construction phase with
RCL

Input: Distribution D; β
22 s← ∅
44 initialize candidate set: CL ← E
66 order CL according to c(·)
88 while solution s is not complete do

1010 Randomly select
pos ∈ {1, . . . , |CL|} according
to distribution D(β)

1212 s← s ∪ {CL[pos]}

1414 CL← CL \ {CL[pos]}

1616 Reorder CL
1818 return s

Algorithm 2: Construction phase
with Biased Randomization

The aim of the BR-GRASP is to guide the construction process towards more favorable
regions of the search space, with the goal of achieving diversification without excluding
any potentially good candidate elements. More specifically, while in the classical GRASP
the RCL implementation is obtained by the two-step process described above (thresholding
plus uniform selection), this new paradigm guides the constructive phase using a skewed
(non-uniform) probability distribution and without using a RCL.

Different skewed probability distributions can be considered within this extension. As
suggested in [80], we use a geometric distribution with parameter β. The result of this
process is a constructive phase that is able to balance greedy bias and search diversification.
A depiction of the differences among the selection processes of the classical GRASP and
the BR-GRASP can be found in Figure 4.1.

The idea of using biased sampling in a heuristic algorithm was originally described
in [19], and since then biased-randomization techniques have been successfully used to
solve different VRP variants, including the two-dimensional loading VRP ([40]; [41]) or the
multi-depot VRP [89].

88 Handling Dynamic Informations in Network Optimization

Candidate list
Restriction

Solution
element

(a) (b)

Solution
element

Probability
of being
selected

Probability
of being
selected

Fig. 4.1 Differences in the selection processes of the classic GRASP (a) and the BR-GRASP (b).

Metaheuristic frameworks were originally conceived for tackling deterministic problems.
Accordingly, the classic GRASP is not designed to consider uncertainty within the input data.
From a technical perspective, this represents a major drawback when dealing with real-life
scenarios, for which the use of a deterministic model could represent an oversimplification
which leads to suboptimal solutions [100].

With the aim of allowing for the inherent uncertainty within logistics and transportation
problems, our algorithm embraces the paradigm of simheuristics [79]. The resulting
framework, the SimGRASP, incorporates Monte Carlo simulation at two different stages
of the BR-GRASP approach. Incorporating simulation within an optimization algorithm is
not on its own enough to guarantee a reliable solution. The performance of the stochastic
solution obtained by the simheuristic is tightly linked to the quality of the deterministic
optimization algorithm, that is, both components are complementary to the quality of the
final solution. In this work we use BR-GRASP as the deterministic optimization component.
The operation flow of our simulation-optimization technique is summarized in Figure 4.2.

As in the deterministic case, the algorithm begins with a biased-randomized constructive
phase. The output is a first feasible solution s. This first phase is then followed by a local
search, with the aim of improving s to achieve a deterministic local optimal solution, s∗,
according to a two-opt exchange neighborhood structure N(x).

The deterministic local optimum s∗ is then evaluated in a stochastic environment, which
represents the first of two applications of Monte Carlo simulation, in which a limited number
of simulation replications are used. Within each single run of the simulation, all customers’
demands are randomly generated accordingly to the corresponding probability distributions.
The number of runs performed in this first simulation stage is denoted nItershort. This use

4.3 Integrating a Biased Randomized GRASP with Monte Carlo Simulations 89

Initialize BR-
GRASP parameters

Biased randomized constructive phase

Use 2-opt exchange local search
to reach a local optimum s∗

Run a short simulation to es-
timate stochastic cost of s∗

Add s∗ to Elite Set if it improves
the current best stochastic solution

Stopping
criterion
met?

Run extended simulation on the Elite Set

Return the best
solution of Elite Set

yes

no

Fig. 4.2 Flowchart of our SimGRASP algorithm.

of a limited number of simulations runs provides a mechanism for controlling the trade-off
between run times and accuracy. Subsequently, the initial solution s∗ is set as the current
best solution, and the ‘elite set’ (ES) is initialized with s∗ as its only element.

Thereafter, as in the classical GRASP paradigm, the procedure is repeated in a multi-
start fashion until the stopping criterion is satisfied. In each iteration, new deterministic
solutions are generated and consequently improved by means of the local search, hence
obtaining new deterministic local optima s∗∗. Each of the locally optimal solutions is
evaluated in nItershort simulation runs. If in this stochastic analysis it is found that the
performance of s∗∗ is better than those obtained by the current best solution, then s∗∗ is
added to ES and the current best solution is accordingly replaced.

Once the multi-start process has finalized, all the solutions belonging to ES are evaluated
through a second simulation stage, this time using a higher number of simulation runs,

90 Handling Dynamic Informations in Network Optimization

nIterlong, for each evaluation of a candidate solution. This second simulation stage is only
applied to a reduced set of ‘promising’ solutions, which limits the necessary computing
time. The aim of this second simulation stage is to thoroughly assess, with a higher degree
of accuracy, the stochastic quality of the solution generated during the heuristic search
process.

4.4 Algorithmic Performances
In this section, a series of computational experiments are described and their results
analyzed. These numerical experiments contribute to verify and validate the proposed
simulation-optimization methodology.

4.4.1 Experimental Settings and Benchmarks

An assessment of the performance of our SimGRASP was obtained by comparison with
the multi-start simheuristic discussed in [86]. In this paper, the authors use a multi-start
algorithm that is later combined with simulation to estimate the expected distribution costs.
Both the multi-start algorithm and our SimGRASP make use of a geometric probability
distribution to benefit from biased-randomization techniques [80]. In addition, the multi-
start algorithm (SimMultiStart) uses a splitting strategy, which tries to improve each solution
by dividing it into smaller problems. The SimMultiStart approach considers the concept of
safety stocks to prevent running out of goods due to the occurrence of higher-than-expected
demands. Finally, the local search employed in the SimMultiStart algorithm implements a
cache-memory to store past routes, while the local search in our BR-GRASP incorporates
a 2-opt exchange operator. In the interest of a fair analysis, the simulation paradigm
considered for the two algorithms follows the same construction mechanism. The demands
di used in the deterministic benchmark set are replaced by their stochastic counterpart, Di,
according to a Log-Normal probability distribution, with E[Di] = di. Also, Var[Di] = k ·di,
where k > 0 is a design parameter. The experiment results reported here were obtained with
a variance level of k = 0.25. Consequently, the Log-Normal distribution can be described
through the location (µi) and scale (σi) parameters as follows:

4.4 Algorithmic Performances 91

µi = ln(E[Di]) −
1

2
· ln

(
1+

Var[Di]

E[Di]
2

)

σi =

∣∣∣∣∣∣
√√√√ln

(
1+

Var[Di]

E[Di]
2

)∣∣∣∣∣∣

In order to obtain a reliable evaluation, the method presented here was applied to the
well-established benchmark instances of types A and B that were proposed in [4] for the
capacitated VRP. The SimGRASP was implemented as a Java application and run directly
on Eclipse using a personal computer with an Intel i7 Quad core, 2.67 GHz clock, and 6 GB
RAM. After a quick fine-tuning of the BR-GRASP parameters, the following values were
set: for the threshold parameter in Algorithm 1, α = 0.3; for the Geometric distribution
parameter in Algorithm 2, β = 0.5. The algorithm was executed with a time limit of 10
seconds.

4.4.2 Analysis of Results

Table 4.1 summarizes the results generated in the testing phase. The comparison of the
solutions obtained by: (i) the coupling of a multi-start heuristic and simulation; and (ii)
the SimGRASP approach shows how this new technique outperforms the multi-start one in
each instance. The measured gap, indeed, is negative for all instances in the benchmark
set, with an average value of −9.81% over all instances. These good results are mainly due
to the optimization paradigm used in the implementation of our BR-SimGRASP, mainly
due to the incorporation of an enhanced local search operator.

Furthermore, the results show that the performance of the stochastic solutions are
enhanced by the biased-randomized construction with respect to the classical GRASP
paradigm. Another example of the effect of the quality of the solution generated in the
construction phase and stochastic value of the final solution can be found in the radar chart
presented in Figure 4.3. This plot illustrates the solution values obtained, for instances A-
n33-k5 and B-n31-k5, by three different algorithmic approaches: SimMultiStart, SimGRASP,
and SimGRASP with BR. Thus, values closer to the center of the triangle represent a
lower-cost value. Figure 4.3 shows how the biased-randomized SimGRASP achieves the
best results among the three approaches.

92 Handling Dynamic Informations in Network Optimization

Table 4.1 Performance of BR-GRASP and SimGRASP for the VRP.

Instance SimMultiStart
(1)

SimGRASP
(2)

% Gap
(1)-(2)

A-n32-k5 993.20 890.95 -10.30
A-n33-k5 815.40 750.63 -7.94
A-n33-k6 912.60 837.63 -8.21
A-n37-k5 795.00 734.44 -7.62
A-n38-k5 885.10 824.37 -6.86
A-n39-k6 1010.60 926.11 -8.36
A-n45-k6 1184.30 1091.36 -7.85
A-n45-k7 1502.00 1336.08 -11.05
A-n55-k9 1408.40 1258.72 -10.63
A-n60-k9 1795.70 1579.79 -12.02
A-n61-k9 1330.60 1224.44 -7.98
A-n63-k9 2203.70 1897.29 -13.90
A-n65-k9 1555.30 1437.84 -7.55
A-n80-k10 2328.40 2177.10 -6.50
B-n31-k5 855.70 757.60 -11.46
B-n35-k5 1255.50 1098.00 -12.54
B-n39-k5 695.90 621.34 -10.71
B-n41-k6 1103.20 1005.62 -8.84
B-n45-k5 904.60 828.04 -8.46
B-n50-k7 945.80 859.48 -9.13
B-n52-k7 944.40 848.71 -10.13
B-n56-k7 920.00 845.37 -8.11
B-n57-k9 2199.70 1885.69 -14.27
B-n64-k9 1179.60 1064.53 -9.75
B-n67-k10 1404.50 1247.67 -11.17
B-n68-k9 1754.70 1515.88 -13.61
Average -9.81

Fig. 4.3 Comparison of a MS simheuristic, SimGRASP with BR, and SimGRASP without BR.

4.5 The Shortest Path Problem: Classical Approaches 93

4.5 The Shortest Path Problem: Classical Approaches
Shortest Path Problems can be classified in three different sub-categories: shortest path
point-to-point (P2P), shortest path tree (SPTP), and all pairs shortest paths (APSPP). In
the following we give the mathematical formulations of the classical P2P and SPTP, and
list the most notable solution strategies devised in the past decades.

Let G = (V,A) be a directed weighted graph, where:

• V = {1, 2, . . . , n} is a set of nodes;

• A ⊆ { (i, j) ∈ V × V | i, j ∈ V ∧ i ̸= j } is a set of m arcs;

• w : A→ R+ is a function that assigns a non-negative cost wij to each arc (i, j) ∈ A.

Furthermore, for each i = 1, . . . , n, let

• FS(i) = { j ∈ V | (i, j) ∈ A } be the forward star of node i;

• BS(i) = { j ∈ V | (j, i) ∈ A } be the backward star of node i.

The P2P Shortest Path Problem consists in finding a shortest path P∗ = (v1, v2, . . . , vh)

from a source node v1 = s to a destination node vh = t, with s, t ∈ V .
Introducing m Boolean decision variables, xij, ∀ (i, j) ∈ A, such that:

xij =

1, if (i, j) belongs to P∗,

0, otherwise,

the mathematical formulation of the (P2P) problem is the following:

(P2P) z = min
∑

(i,j)∈A

wijxij

subject to:
(P2P-1)

∑
j∈BS(i)

xji −
∑

j∈FS(i)

xij = bi, ∀i ∈ V

(P2P-2) xij ∈ {0, 1}, ∀(i, j) ∈ A,

with bi = −1 for i = s, bi = 1 for i = t, and bi = 0 otherwise.
On the other hand, given an origin node r ∈ V , the aim of the SPTP is to find a

shortest path from r to all the other nodes of V . The SPTP admits the following linear
programming formulation:

94 Handling Dynamic Informations in Network Optimization

(SPTP) min
∑

(i,j)∈A

cijxij

subject to: ∑
(j,i)∈BS(i)

xji −
∑

(i,j)∈FS(i)

xij = bi, ∀ i ∈ V,

xij ≥ 0, ∀ (i, j) ∈ A,

where xij is the flow on the arc (i, j) and the right hand side bi = −n+ 1, for i = r and
bi = 1, for i ̸= r.

A first successful attempt to solve the SPP was originally proposed in [61, 62], although
the most famous algorithm to solve P2P and SPTP is a labeling method proposed by
Dijkstra [38].

In the case of P2P problem, bidirectional versions of Dijkstra’s algorithm were proposed
in [32, 42, 120]. The bidirectional framework is based on the consideration that if s and t

are the source and the destination node, respectively, then it is possible to run the algorithm
into two opposite directions: the first from node s to t, called the forward search, and
the latter from t to s, the backward search. The backward search operates on the reverse
graph, obtained from G reversing the direction of each arc in A. The algorithm terminates
when the two paths meet.

Hart et al. [83] proposed another labeling method for SPP: an informed search algorithm
called A∗. It refines the Dijkstra’s method, using a best first paradigm, firstly exploring
sub-paths which appear to lead most quickly to the solution.

4.6 Reoptimization
Nowadays, there is a rising need of well performing algorithms, able to handle the massive
amount of available information. One of the suitable approaches to tackle this complexity
is to reuse information already computed, in order to reduce the computational time needed
to obtain an optimal solution. In the context of SPP, previous information can be reused
while tackling a problem which differs only slightly from another SPP previously solved.
This occurrence can happen with one of the following changes in the network:

• the source node has been changed;

• some nodes have been added or removed;

• some arcs have been added or removed;

4.6 Reoptimization 95

• some arcs weight have been increased or decreased.

This problem can be addressed as a shortest path reoptimization problem [52, 55], which
consists in solving a sequence of shortest path problems, where the kth problem marginally
differs from the (k− 1)th one.

In the first case, we say that there was a root change from the (k− 1)th problem to
the kth problem, in the remaining cases we say that the graph is dynamic. Moreover, for
what concerns problems on dynamic graphs, they can be classified according to the type of
changes that can occur on the network. A dynamic graph is said to be fully dynamic if
both insertion and deletion of either edges or nodes are allowed.

Re-optimization SPP

The origin node
has been changed

Perturbation
of the graph

ro
ot

ch
an

ge

dynamic graph

Disruption
of the nodes

Disruption
of the arcs

Some nodes
are added

or removed

Some arcs
are added

or removed

Some arcs cost
are increased
or decreased

V
→ V

′

A
→ A

′

c(A
) →

c ′
(A

)

adding
node

deleting
node

adding
arc

deleting
arc

increasing
cost

decreasing
cost

the node must be
connected to the network

all arcs in the FS(·) and BS(·)
of the node must be deleted

the deletion of an arc
is a particular case
of cost increasing

Fig. 4.4 Reoptimization problems hierarchy.

96 Handling Dynamic Informations in Network Optimization

In Figure 4.4, we propose a diagram of the interplays among all possible cases of shortest
path reoptimization.

4.6.1 Root change

The purpose of this paragraph is to briefly review the efforts devoted to the root change
for the SPTP problem, showing how it is possible to obtain a well performing algorithm
making wise use of the information stored in a SPTP previously computed. Such result
relies on some remarkable theoretical properties proven by Gallo [64], starting from the
assumption that a single root shortest path tree problem has been solved.

Let G = (V,A) be a complete directed graph, and let Tr be a shortest path tree rooted
at node r. Let s be a node of V , s ̸= r, and Ts be a SPTP rooted at node s. Moreover,
for all u, v ∈ V , denote with d(u, v) their distance.

The following proposition shows how the knowledge of Tr provides useful informations
on Ts. Let Tr(h) denote the subtree of Tr which contains node h together with all its
descendants, then

Proposition 2. Tr(s) ⊆ Ts and d(s, j) = d(r, j) − d(r, s), for any j ∈ Tr(s).

This result shows how a wise handling of the old solution is likely to be the most
efficient strategy, since –especially when the new root s is close to r– a consistent part
of the previously optimal tree Tr will remain optimal. Indeed, the paths contained in the
subtree of Tr rooted in s still remain optimal shortest paths from s to its descendants.

As formerly stated, beyond the theoretical insight given by Proposition 2, the information
provided by Tr can be employed in order to reduce the computational time needed to solve the
new SPTP problem, improving the classical Dial’s implementation of Dijkstra’s Algorithm
[35, 36]. In Dial’s implementation, in fact, one of the most time consuming tasks consists
in the identification of the minimum temporary node cost, due to the high number of
comparisons to be performed. This number of comparisons strongly depends on the
maximum weight among the arcs, wmax = max(i,j)∈A wij. Gallo [64] shows how theoretical
properties of the shortest path trees make possible to reduce wmax without changing the
sets of feasible and optimal solutions.

Deriving a cost reduction in a similar fashion, in 1982 Gallo and Pallottino [65] devised
an algorithm which outperforms both the one proposed in [64] and classical from scratch
optimization techniques. This algorithm refines the classical label setting paradigm by
partitioning the nodes of the graph in three distinct sets: NT , NP, and NQ. As in a
classical label setting algorithm, NT and NP are the set of nodes whose labels are temporary
and permanent, respectively. Denoting as p(v) the precedessor of v in the shortest path,

4.6 Reoptimization 97

the nodes in NQ are those whose distance from the root node is equal to the one of their
predecessor, i.e. d(r, v)=d(r, p(v)). This property ensures that all the v ∈ NQ can be
inserted straightaway in NP without further comparisons, thus speeding up the execution
of the algorithm. In [65], it has been noted how in any reoptimization problem instance a
large share of nodes of V is likely to be found in NQ.

The observations made by Gallo are the starting point of the work of Florian et al. [60]:
the shortest path tree rooted at node r is an optimal solution to a corresponding linear
program, but when a successive new source s is considered, the previous tree is a dual
feasible and primal infeasible solution for the new problem. The approach proposed in [60]
consists in the adaptation of the dual simplex method to compute the shortest paths from
the new root s, obtaining an algorithm that runs at most in O(n2).

In order to evaluate the performances of their method, the authors tested their code on
graphs representing the regional roads of the cities of Vancouver and Winnipeg, as in [64].

The experimental evaluations proposed in these works show how Gallo [64] is slightly
better performing than Dijkstra’s from scratch technique, meanwhile Gallo and Pallottino
[65] further improves the previous results. Although, among all, the algorithm proposed by
Florian et al. [60] appears to outperform the other competitive methods.

4.6.2 Arc Cost Change

Given a shortest paths tree, Tr, the problem of arc cost change consists in recomputing
the optimal tree Tr when a new weight is assigned to one or more arcs. As extensively
discussed in Gallo [64], the results of Theorem 1 can be used to derive algorithms that
reoptimize the solution of a SPP after a change of the cost of a single arc.

Theorem 1. Let Tr be a shortest paths tree, w ′
uv be the new cost of the arc (u, v) ∈ A,

and S(u) = { v ∈ V | d(r, v) ≤ d(r, u) }. Denoting with T ′
r the new shortest paths tree,

the following properties hold:

(i) if w ′
uv < wuv and (u, v) ∈ Tr, then

Tr(v) ⊆ T ′
r (v),

j ∈ Tr(v)⇒ d ′(r, j) = d(r, j) − (wuv −w ′
uv),

j ∈ S(u)⇒ d ′(r, j) = d(r, j);

(ii) if w ′
uv < wuv and (u, v) /∈ Tr, then

98 Handling Dynamic Informations in Network Optimization

Tr(v) ⊆ T ′
r (v),

j ∈ S(u)⇒ d ′(r, j) = d(r, j);

(iii) if w ′
uv > wuv and (u, v) ∈ Tr, then

j /∈ S(u)⇒ d ′(r, j) = d(r, j);

(iv) if w ′
uv > wuv and (u, v) /∈ Tr, then

Tr(v) = T ′
r (v),

d ′(r, j) = d(r, j) ∀j ∈ V .

In other words, a decrease in the cost of the arc (u, v) (cases (i) and (ii)) implies that
the sub-tree Tr(v) remains part of the optimal solution and the optimal distances of its
nodes accordingly decreased where necessary. Case (iii) tackles the cost increase when
(u, v) is part of the solution, stating that the optimal distances are preserved for each
j ̸∈ S(u). Finally, in case (iv) the entire solution remains optimal.

Pallottino and Scutellà [123] assume that a shortest paths tree Tr has been determined
and address the problem of computing the shortest paths tree when new costs are given to
a subset K of the arcs of G, either lower or higher than the old ones. The reoptimization
framework used is based on the determination of a suitable decomposition of the arc set K
into disjoint subsets, and performs subsequent phases, where each phase reoptimizes with
respect to the change of the arc costs of one subset of such decomposition. Pallottino and
Scutellà [123] also compute the time complexity of the algorithm as a function of both the
input size and the overall cost perturbations, without proposing an implementation.

One of the most important works in shortest path reoptimization in case of arc cost
changes is Ramalingam and Reps [130], that describes the so called DynamicSWSF-FP
algorithm. At any time, it is defined

rhs(v) = min
x∈BS(v)

{
d̂(r, x) +w ′

xv

}
,

where d̂(r, x) is the distance of x from root r in the current intermediate tree T̂ . In the
proposed algorithm, each node is processed differently according to whether rhs(v) is
greater than (underconsistent node), equal to (consistent node), or less than (overconsistent
node) d̂(r, v). The algorithm processes inconsistent nodes, opportunely stored in a heap
H, in a nondecreasing order of key values, where key(v) = min

{
d̂(r, v), rhs(v)

}
. Let

4.7 Comparing Simheuristics and Reoptimization 99

q be the inconsistent node currently selected. If it is underconsistent, then the algorithm
sets d̂(r, q) = +∞; otherwise, it sets d̂(r, q) = key(q), its forward star is relaxed, and q

is removed from the heap. The algorithm terminates when the set of inconsistent nodes is
empty.

Buriol et al. [23] empirically showed how the algorithm devised by Ramalingam and Reps
outperforms an optimization from scratch by means of Dijkstra’s algorithm. Furthermore,
they proposed a new technique to improve computational times of the approach described
above. This technique is called Reduced-Heap, because it reduces the number of nodes of
Q (inconsistent nodes) to be inserted in the heap H.

While the technique proposed in [23] is able to handle the cost update of a single arc,
Chan and Yang [28] discuss a comparison between several algorithms devised to handle
multiple arc cost updates (batch updates). The first algorithm studied is a dynamic version
of the classic Dijkstra’s algorithm. Given the original shortest paths tree Tr, after the arc
cost changes occur, all the updated arcs are removed from Tr, and the set N̄, the set of
nodes that are not reachable anymore from the root r, is computed. The nodes that have
an arc connecting to a node in V \ N̄ are added in an heap H and a Dijkstra-like algorithm
is used to update labels.

The main accomplishment made by Chan and Yang [28] is the MFP algorithm. It is an
extension of algorithm by Ramalingam and Reps [130] that can handle path optimization
in fully dynamic networks. The original algorithm has been improved to avoid unnecessary
rhs value recomputations and also simplifying computation whenever possible.

Other notable approaches able to reoptimize shortest paths in case of batch updates, or
more generally solve SPPs on dynamic networks, are D’Andrea et al. [45], Nannicini et al.
[118], and Tretyakov et al. [150].

4.7 Comparing Simheuristics and Reoptimization
Studying both simheuristics and reoptimization approaches one may be interested in which
approach dominates the other. However, as often happens in Operations Research, it is not
possible to identify any kind of dominance. Moreover, both methods propose a trade-off
between computational expenses and solution flexibility, and the only question that can be
asked is which one is more suitable for a given dynamic optimization problem.

The common thread of the reoptimization techniques discussed is their ability to generate
a deterministic solution and to adjust it in real-time as uncertainties materialize. Such a
strategy has clear advantages whenever the optimization scenario accounts for enough time

100 Handling Dynamic Informations in Network Optimization

resources to solve the problem online, or equivalently in the case of tractable problems, as
the SPP ([52], [55]).

However, for problems that are characterized by their hard complexity or whenever
a reduced amount of computing resources are available to complete a reactive strategy,
then allowing for stochasticity in the initial solution process is beneficial. In this last case,
simheuristics can achieve a reliable outcome, without assuming that recourse actions are
available to correct solutions during search process.

Chapter 5

Topology Optimization: a Hardly
Constrained Design Problem

The Min-Max GDP problem studied in Chapter 3 belongs to that family of combinatorial
optimization problems whose hardness lies in the solution evaluation rather than their
feasibility. On the contrary, this chapter is devoted to the study of a design problem
characterized by the complete opposite paradigm.

Indeed, in this study we focus on the optimization of stress-constrained concrete
structures. In particular, this problem consists in the minimization of the volume (or mass)
of the structure, while satisfying hard stress constraints related to material properties of
concrete elements.

5.1 The Origins of Topology Optimization: the Com-
pliance Problem

One of the most notable contributions in the field of shape optimization and structural
design is due to Bendsøe and Kikuchi [8], whose work paved the way for modern topology
optimization as we know it today. Indeed, in their study the authors considered an
optimization paradigm to not only explore different shapes, but also to include changes in
the connectivity of the structure, defining a distribution method based on the use of an
artificial composite material with microscopic voids.

Since then topology optimization went a long way, not solely for the studies proposed
in scientific literature, but to a great extent because of important advances in the field of
additive manufacturing. See [9] for an extensive review on the subject.

102 Topology Optimization: a Hardly Constrained Design Problem

As can be seen in the literature, the vast majority of topology optimization studies
address the problem of compliance minimization. The use of compliance, as inverse of the
structural stiffness, was the first attempt to to control the response of the structure and
study occasional failures.

To formally model the problem, a Finite Element (FE) analysis is employed to compute
the physical relations that rule the optimization scenario. Moreover, in order to describe the
material domain, classical approaches couple a FE analysis with the density-based model,
as done for example in [139].

Let M be a nx × ny mesh, such model defines decision variables xe for each element e
of the mesh, representing the density of e in the current design, thus requiring 0 ≤ xe ≤ 1

∀e.
On the other hand, intermediate densities do not have a clear physical interpretation,

so it is customary to use a penalization technique to obtain a solid-void solution. The most
widespread penalization technique in the literature is the SIMP method (Solid Isotropic
Material with Penalization) [7, 157, 2]. This method is based on a heuristic relation between
xe and the elemental Young’s modulus Ee, given by:

Ee = Ee(xe) = xpeE0 xe ∈ (0, 1] , (5.1)

where E0 is the Young’s modulus of the solid material and p is the penalization power
(usually p ≥ 3). Moreover, in order to avoid numerical singularities, a modified SIMP
approach uses the adjusted relation:

Ee = Ee(xe) = Emin + xpe (E0 − Emin) xe ∈ (0, 1] , (5.2)

with Emin being the non-zero elastic modulus of a fictitious void-like material.
Accordingly, the general compliance optimization problem reads as follows:

min
N∑
e=1

(xpe)u
T
ekeue (5.3)

s.t.

Ku = f (5.4)
V(x)

V0

= ϕ (5.5)

x ∈ [0, 1]N , (5.6)

5.2 The Stress Constrained Problem: Models and Challenges 103

where x is the vector of design variables representing the density of the elements of the
mesh, xe is the elemental density, and N indicates the number of elements. ue and k0

are, respectively, the element displacement vector and stiffness matrix, while, K, u and
f are the global stiffness matrix, the global displacement and force vectors, respectively.
Finally, volume constraints are enforced by means of (5.5), where V(x) is the volume of
the designed solution, V0 is the total volume of the physical domain, and ϕ is a prescribed
volume fraction.

Problems described by means of (5.3) are considered relatively easy to solve in the
landscape of topology optimization, since there exists several methods able to address them
effectively, such as Optimality Criteria methods [139], Sequential Linear Programming, or
the Method of Moving Asymptotes [146].

5.2 The Stress Constrained Problem: Models and Chal-
lenges

Even if compliance minimization problems gathered notable efforts in the past decades,
as argued in [44], structural layout may be different for maximum stiffness (minimum
compliance) and strength (e.g. with stress measurements) as soon as the material is
characterized by a different behavior in tension and compression.

This difference between tensile and compression strengths is especially notable in the
case of concrete-like materials, that therefore require a stress-constrained optimization
model, rather than the solution of a classical compliance problem.

In the present study we address the problem of designing lightweight concrete elements
under the restrictions of hard stress constraints. Moreover, as argued in the following, we
will study a new form used in the imposition of the stress constraints and compare it with
the classical Von Mises stress criterion.

Our problem of interest can be described by means of the following model:

min
N∑
e=1

xe (5.7)

s.t.

Ku = f (5.8)
σ− ≤ σ ≤ σ+ (5.9)
x ∈ [0, 1]N (5.10)

104 Topology Optimization: a Hardly Constrained Design Problem

where the decision variables xe and the physical quantities appearing in constraint (5.8) are
as in (5.3). Concerning the stress constraint, σ is the stress vector, and σ− and σ+, are,
respectively, the vectors whose components are all equal to the maximum stresses allowed
in compression (-) and traction (+).

It should be noted that the objective function in (5.7) aggregates the contributions
of all the elements in the mesh, without taking into account their size. This means that
the objective values of two different mesh representations of a same beam would not be
directly comparable. For this reason, rather than (5.7), is more appropriate to rescale the
objective function, ruling out the influence of the refinement of mesh. To do this, it suffices
to consider an average of the densities xe, thus giving

min
∑N

e=1 xe

N
(5.11)

s.t.

Ku = f (5.12)
σ− ≤ σ ≤ σ+ (5.13)
x ∈ [0, 1]N (5.14)

In the following we will refer to the objective function in (5.11) as average density.
The main feature of our mathematical formulation consists in a new expression of the

stress constraints. In literature, generally, the Von Mises criterion (σvms) is used to measure
stress levels in the structure,

σvms =
√
σ2
1 − σ1σ2 + σ2

2 + 3τ12, (5.15)

where σ1 and σ2 are respectively the x− and y− components of the stress tensor, and τ12

is the shear stress. Then, the associated constraint is expressed as follows,

σvms ≤ σlim, (5.16)

enforced for each node of the structure, where σlim is the maximum value allowed to the
Von Mises stress.

This measure of the stresses appears to be not highly suitable for concrete design
purposes, being more representative of an isotropic metal body, rather than a concrete
structure. In Section 5.4.2, an experimental assessment of this claim is set out through an
example of comparative testing.

5.2 The Stress Constrained Problem: Models and Challenges 105

Our new form for the stress constraints is based on principal stresses, decoupling stress
limits, and effectively allowing the consideration of different material behavior in traction
and compression, as concrete-based elements require. Consequently, the constraint and the
material distribution law are modified and embedded in an iterative algorithm as follows.

During the generic iteration, a finite element analysis is performed and the stress tensor
σ of the current structure is computed. At this point, rather than computing the Von Mises
stress, we express the tensor σ in terms of principal stresses. After such computation, two
separate bounds are forced on, respectively, the maximum and the minimum values of the
principal stresses. In this way it is possible to control asymmetrically the stresses both in
case of compression (bound on the minimum value) and traction (bound on the maximum
value). Considering a 2D problem, we denote with σx e σy the two principal stresses in
the x and y principal directions. The new constraints can be represented with the help
of Figure 5.1, where for each element in the structure: with respect to the x direction, a
value of σx = 0 indicates that the element is not stressed, a value of σx < 0 indicates that
the element examined is compressed, while σx > 0 shows that the element is in traction.
The same applies to σy.

0 σ+σ− 0
Compression Traction

Fig. 5.1 Representation of the stress constraints with asymmetrical traction (σ+) and compression (σ−)
bounds.

Hence, for each integration point, and for each direction, we write the following
inequalities: σ− ≤ σx ≤ σ+

σ− ≤ σy ≤ σ+.
(5.17)

Moreover, in order to properly handle these constraints throughout the optimization process,
we define the Risk Factors RF1 and RF2 for each principal stress direction:

RF1 = max

(
σx

σ+

,
σx

σ−

)

RF2 = max

(
σy

σ+

,
σy

σ−

)
.

(5.18)

Mathematically speaking, these variables measure how much the values σx e σy computed
are within the allowed interval [σ−, σ+]. Consequently, whenever RFi > 1 it means that the

106 Topology Optimization: a Hardly Constrained Design Problem

stress is outside the allowed interval, and the current solution is not feasible. Furthermore,
as an added value, we observe how specific stress requirements can be taken into account
with the use of the risk factor approach. While σ+ and σ− are strictly related to material
properties, in some optimization scenarios can be indeed desirable to limit the stresses in a
confidence interval which is indeed more conservative than the actual material limits. If this
is the case, it can be defined a percentage of confidence (pσ) of the material limits σ+ and
σ−. Then, the risk factor allows a straightforward adaptation of our method substituting
RFi ≤ 1 with the following constraint

RFi ≤ pσ

100
, i = 1, 2. (5.19)

5.3 An Iterative Heuristic Method
The optimization strategy on which our algorithm relies on is based on the technique
originally proposed in [15], with the name of Proportional Topology Optimization (PTO).
The algorithm described in [15] is a simple heuristic technique that finds a sub-optimal
solution without the use of any gradient information; it follows the iterative two-step
procedure outlined in Figure 5.2, integrating a FE analysis with a heuristic optimization
phase.

Initialize
model

Build
starting

solution x

Perform
FE analysisUpdate x

Stopping
criterion

met?

Return best
solution x∗

no

yes

Fig. 5.2 General outline of the iterative topology optimization algorithm.

5.3 An Iterative Heuristic Method 107

The PTO, starting from a first solution, iterates two distinct processes: the analysis of
the Von Mises stresses and the update of the current solution. The stress analysis, and
the study of the corresponding material constraints, are expressed by means of (5.15) and
(5.16); while the solution is updated in a way such that overly-stressed elements are filled
with more material. This proportional distribution strategy, carried over using the Von
Mises stress criterion, is what gives the name to the algorithm presented in [15].

The algorithm that we describe and test in the present chapter, called Principal Stress
Topology Optimizer (PS-TOpt), is obtained including in the PTO framework the asymmetric
stress constraints, and making use of the Risk-Factor approach to determine the distribution
of material in the beam.

After the initialization phase, a starting solution is built filling each element of the FE
mesh with a constant amount of material, ρst ∈ [0, 1]. Often, in scientific literature, ρst

has been set to a value of 0.5, see [15, 84] for example. In our analysis, we choose a higher
starting value, namely ρst = 0.9. The reason for this choice is two-fold: firstly, a value of
ρst close to 1 would almost certainly guarantee that the beam is feasible from the start, if
the loads are not too heavy for the concrete class, so any possible stopping iteration of the
algorithm would almost always yield a feasible –even if reasonably sub-optimal– solution.
Secondly, we value the choice of a high ρst as a more natural optimization paradigm, in
which the weight of the beam is decreased during the execution of the algorithm, meaning
that the optimization procedure iteratively lighten the structure, yielding a sequence of
improving beams.

After the construction of the first solution, a FE analysis is carried out to compute the
stresses and the main loop begins, being executed for the whole duration of the algorithm.
Each iteration starts with a solution update, and ends with a feasibility check, performed
computing stresses and the subsequent Risk Factors. This two-phased iteration is based
on a feedback process between structural optimization and stress computation, in which
at each step, the stresses in the structure let the algorithm adjust the amount of material
distributed in the physical body, whose feasibility is subsequently tested by means of the
Risk Factor paradigm. More specifically, if the computations reveal that the structure is
over-stressed, i.e., that the extremal measures of the stress among all elements of the mesh
exceed the stress limits (RFi > 1), then some material is added to the structure, otherwise,
a lighter structure can be designed and some material is subtracted.

108 Topology Optimization: a Hardly Constrained Design Problem

To do so, after each FE analysis, as in [15], the algorithm determines a target amount
of material (xTarget) to be distributed in the beam,

xTarget =

N∑
i

xi + 0.001 · N, if the structure is over-stressed
N∑
i

xi − 0.001 · N, otherwise,
(5.20)

and, having set each xi of the solution vector to zero, xTarget is distributed proportionally
among the elements of the mesh. Such distribution is carried out in such a way that
elements with higher stress value are filled with more material. This strategy is translated
in the PS-TOpt algorithm in terms of principal stresses and Risk Factors. As stated
above, with our new formulation of the stress constraints, the structure is considered to be
over-stressed once there are elements such that at least one of their associated risk factors,
RF1 and RF2, is greater than one. According to this new modeling paradigm, the material
distribution for each element of the mesh has to be modified according the following update
proportional factor:

pre =
RFq1 + RFq2∑
(RFq1 + RFq2)

. (5.21)

where q is the proportion exponent, that throughout the experimental phase has been set
to a value of 3, as done in [15].

As reported in scientific literature, checkerboard pattern can arise as pathological
behavior in topology optimization [141, 158, 140]. This phenomenon consists in the
appearing of alternating areas with void and solid spaces in the discrete domain, disrupting
consistency and continuity in the optimized beam design. In order to mitigate its occurrence,
one of the most common approach consists in the usage of a density filter, which rescales
the density of each element of the mesh with respect to the densities of its neighbors. The
procedure adopted in this work is nothing but a weighted local average [21] given by the
following equation:

x̄i =

∑
j wijxj∑
j wij

(5.22)

where

wij =

rmin−rij

r0
when rij < rmin

0 otherwise.
(5.23)

5.4 Computational Results 109

Where x̄i is the filtered density of the ith-element and xj is the density of the jth-element
before the filtering operation, rij is the Euclidean distance between the centers of elements
i and j, and rmin is the filter radius.

Given the filtering process, it has to be noted that the actual amount of total material
distributed among the elements, xDist, can be less than the xTarget computed. For this
reason the remaining material, xRemaining, obtained as the difference between xTarget
and xDist, is then iteratively distributed among the elements of the mesh, with the same
proportional strategy and up to a certain threshold value.

As last step of each iteration, the stopping criteria is checked. If the criterion returns true,
the simulation terminates, otherwise, the algorithm continues to optimize the topology of the
structure. The stopping criteria let the algorithm stop if and only if both the two following
occurrences take place: (i) a minimum number of iterations has been performed, (ii) the
maximum of the risk factor RFi is close to 1 within a certain value (in the present study
the tolerance is set equal to 0.001). The first condition prevents premature convergence to
poor quality solutions, and the second condition is related to the heuristic observation that
the most light-weight structure is most likely obtained once that is no longer possible to
subtract any amount of material due to the stress limitation, i.e. when the stresses cannot
be pushed any further. As the algorithm terminates, the output solution is the lightest
feasible design solution encountered during the search process. For the sake of clarity, a
scheme of the described optimization strategy is reported in Algorithm 3.

As final methodological remark, we implemented an isoparametric bi-linear quadrilateral
element for the FE analysis, adopting a Gauss-Legendre quadrature technique [76] for
the computation of the elemental stiffness matrix. This FE scheme can handle any kind
of rectangular geometry (beam-like objects). Element connectivity, nodes coordinates,
boundary and load conditions are automatically defined through subroutine units.

5.4 Computational Results
This section is devoted to the experimental testing, executed to investigate the material
properties of the optimized designs obtained.

Our analysis can be divided in three different tests: (i) the optimization of concrete
beams belonging to different resistance classes, (ii) a comparative analysis of our solution
with a beam designed using Von Mises stress constraints, and (iii) a final experiment that
investigates the inclusion of a project-specific displacement constraint.

In the first experiment we take on the optimization of concrete beams belonging to the
following classes: C20/25, C30/37, C40/50, and C60/75. For each of such concretes, we

110 Topology Optimization: a Hardly Constrained Design Problem

1 Algorithm: PS-TOpt
2 Set up FE;
3 Set up filtering matrix W;
4 Initialize first solution xst;
5 Perform FE and stress analysis;
6 It = 0;
7 x∗ = xst ; // Initialize best solution
8 while (|maxRF− 1| ≥ 0.001 OR It < MinIt) do
9 if maxRF > 1 then

10 xTarget=
∑N

i xi + 0.001 · N;
11 else
12 xTarget=

∑N
i xi − 0.001 · N;

13 xRemaining = xTarget;
14 set xe = 0 ∀e;
15 Compute pre;
16 while (xRemaining > 0.001) do
17 xDist(e) = xRemaining·pre ∀e;
18 xe = xe +W·xDist(e);
19 check on the bounds imposed on x and cut-off if necessary;
20 xRemaining = xTarget-

∑N
i xi;

21 perform FE analysis;
22 compute Risk Factors;
23 if x is feasible and improves x∗ then
24 x∗ = x;
25 It++;
26 return best solution x∗;

Algorithm 3: Pseudo-code for the proposed PS-TOpt algorithm.

consider two distinct load scenarios, a first one in which the force is equal to a reference
value fixed for all classes (11110 N), and a second load scenario that scales the forces
according to the elasticity of the beam, assigning higher loads to concretes with higher
strength. The aim of this first set of experiments, with its two load scenarios, consists in the
investigation of the versatility of our method over an assorted set of material parameters.

The second set of experiments is focused on the comparison between our Risk-Factor
approach and the classical Von Mises constraints. Its goal is to investigate the necessity of
a method that is able to handle compression and tensile stresses of different magnitudes,
effectively decoupling material properties, rather than grouping together stress requirements
in a single expression as done in Von Mises-like approaches.

Lastly, we conclude our experimental analysis showing how our algorithm allows the
inclusion of project-specific constraints. As an example we consider an additional restriction
regarding the maximum displacement found in the optimized beam.

5.4 Computational Results 111

Fig. 5.3 Representation of the case study considered in the experimental phase.

The physical dimensions of the beam are summed up in Figure 5.3, while the mesh
used has 900x200 elements. Given the symmetry of the physical problem, the loads are
applied following the scheme depicted in Figure 5.4.

Fig. 5.4 Representation of the load scheme considered in the experimental phase.

All the computational experiments are conducted on a computer with a 2.6 GHz Intel
Core i7 processor with 8 GB of RAM, and an Ubuntu 16.04 operating system.

5.4.1 Resistance Class Analysis

This first tranche of experiments is carried out to asses the computational performances
of the algorithm over a diverse set of material parameters. In order to test the flexibility
of our method, we divide this analysis in two different steps: a fixed load analysis, and a
proportional load analysis. The goal of the former step, in which the same load (11110 N)
is considered for each concrete class, is to test the capability of the algorithm to recognize
distinct concrete elasticities, and to design different optimized solutions accordingly. In the
latter step, the loads are scaled according to material parameters, and the aim consists
in verifying the performances of the heuristic while handling a variety of load scenarios,
ranging from 10555 N to 24444 N.

The material parameters considered in the fixed load analysis are summed up in Table
5.1, which lists, for each concrete class, the elastic modulus (E), compression (σ−) and
traction (σ+) stress limits, and the load applied (F).

The results obtained are reported in Table 5.2, and displayed in Figures 5.5-5.8. More
specifically, Table 5.2 lists, for each concrete class, the average density of the optimized

112 Topology Optimization: a Hardly Constrained Design Problem

Class E (Mpa) σ− (Mpa) σ+ (Mpa) F (N)
C20/25 29960 -20 1.9 11110
C30/37 32840 -30 2.9 11110
C40/50 35220 -40 3.5 11110
C60/75 39100 -60 4.4 11110
Table 5.1 Material parameters considered in the fixed load experiment.

solution, the maximum stresses in compression and traction measured in the beam, respec-
tively σ− and σ+, and the maximum displacement detected, max U. On the other hand,
Figures 5.5-5.8 report the outlines of the optimized beams, and two plots, depicting the
evolution of the average density (D-plot) and the maximum of the Risk Factor (RF-plot)
through the execution of the algorithm.

Observing the RF-plots of Figures 5.5-5.8, we can see how the maximum Risk Factor
increases when the amount of material used in the beam decreases, as expected, meaning
that as the structure becomes lighter, the load imposed causes higher stresses. Moreover, in
each one of the RF-plots, we find that below a certain average filling value, instability spikes
occur in the Risk Factor, which locally passes the limit value of 1. Taking as example the
RF-plot in Figure 5.5, we can see how such spikes can be observed starting from iteration
620, when the average filling drops below 30%. These instability spikes indicates that the
material flexibility has been considerably exploited, and that the design of a sensibly lighter
structure can be an unfeasible task. This algorithmic behavior means that the technique
itself, by means of the Risk Factor, is able to detect whether the execution is getting close
to the elastic limits of the material. This reasoning can serve as a retrospective justification
of the stopping rule used, meaning that it is reasonable to stop the algorithm once that the
execution gets closer to feasibility limit values.

Moreover, observing the shapes presented in Figures 5.5-5.8, and the average filling
values in Table 5.2, we can conclude that the heuristic is able to not only design different
beam outlines for distinct concrete classes, but also successfully supply lighter designs when
the concrete class so permits, properly exploiting material elasticity.

Class Avg filling % σ− (Mpa) σ+ (Mpa) max U (mm)
C20/25 25.6 -10.755 1.649 -0.5415
C30/37 14.9 -12.921 2.755 -0.9539
C40/50 14.0 -13.784 3.421 -0.9719
C60/75 13.8 -15.641 4.376 -1.0088

Table 5.2 Solution properties obtained in the fixed load experiment.

5.4 Computational Results 113

Fig. 5.5 Fixed load analysis: Class 20/25.

The second step of the first experimental phase is the proportional load analysis. In
these tests the load applied is scaled according to the material properties of the concrete
class, with the aim of investigating the algorithmic capabilities of handling different loads
and elasticities. For each class, the value of the force F is obtained starting from the classic
Navier’s formula for the stress computation in a beam under simple bending, (5.24).

σmax =
Mx

Ix

h

2
(5.24)

Considering a simply supported beam with a rectangular cross section under a concentrated
load, the moment at the mid-span is Mx = F · L/4 (where L is the length of the beam),
hence equation (5.24) becomes:

σmax =
3FL

2bh2
⇒ F =

2σmaxbh
2

3L
(5.25)

In order to leave some room for the optimization algorithm to subtract material, a suitable
value for the load F is obtained, for each concrete class, setting an appropriate amount
for the stress factor in (5.25). More specifically, for each class, in (5.25) we impose
σmax = σ+/2 , thus obtaining the load values reported in Table 5.3.

The results obtained in the proportional load analysis, Table 5.4, Figures 5.9-5.12, show
how the algorithm is able to optimize beams loaded with a diverse set of forces, suitably
adapting solution design to material properties. Furthermore, comparing the RF-plots of
Figures 5.10-5.12 with the ones presented in 5.6-5.8, we can see how the increase in the

114 Topology Optimization: a Hardly Constrained Design Problem

Fig. 5.6 Fixed load analysis: Class 30/37.

Class E (Mpa) σ− (Mpa) σ+ (Mpa) F (N)
C20/25 29960 -20 1.9 10555
C30/37 32840 -30 2.9 16111
C40/50 35220 -40 3.5 19444
C60/75 39100 -60 4.4 24444

Table 5.3 Material parameters considered in the proportional load experiment.

loads is rightfully reflected upon the Risk Factor value, that in the case of Figures 5.10-5.12
immediately starts closer to 1. As an extreme example of the algorithmic capabilities of
handling high loads, we observe how in Figure 5.12, throughout the whole execution, the
maximum Risk Factor is equal to the limit value 1, meaning that the load of 24444 N

intensely stresses the beam. As concluding remark, we observe how this circumstance is
handled by the heuristic, that in the optimized design properly fills up 55.4% of the total
physical domain.

Class Avg filling % σ− (Mpa) σ+ (Mpa) max U (mm)
C20/25 23.1 -10.255 1.826 -0.5659
C30/37 23.5 -17.220 2.859 -0.8460
C40/50 25.6 -20.000 3.497 -0.9441
C60/75 55.4 -20.000 4.398 -0.6581

Table 5.4 Solution properties obtained in the proportional load experiment.

5.4 Computational Results 115

Fig. 5.7 Fixed load analysis: Class 40/50.

5.4.2 Comparison with Von Mises’ Constraints

In the second part of our computational experiments, we take on the comparison of our Risk
Factor approach with the classical Von Mises’ stress constraint. Our goal is to show how,
while working with strongly anisotropic materials such as concrete, it is highly advisable to
decouple compression and traction stresses, rather than express structural constraints by
means of a merged estimate such as the Von Mises criterion.

The experiment is structured as follows: to properly carry out a comparison, we start
from a set of reference material parameters and a load used in the first phase, namely the
values considered for class C20/25 in the fixed load experiment, and select three different
representative limits for the maximum Von Mises Stress to be used. Then, we run the
algorithm one time for each of such limits, and as in [15], distribute material in the beam
according to the measured Von Mises Stresses in the structure, rather than using our Risk
Factor approach. The aim of this comparison is to show how a Von Mises constraint is not
suited to properly describe tensions and prevent failure in concrete based structures.

The reference principal stress limits and the load considered for class C20/25, as reported
in Table 5.1, are, respectively: σ− = 20 Mpa, σ+ = 1.9 Mpa, and F = 11110 N. These
material parameters led to the reference optimized beam in Figure 5.5.

The three representative limit values for the Von Mises stress, σ ′
vms, σ ′′

vms, and σ ′′′
vms ,

are obtained as follows.

116 Topology Optimization: a Hardly Constrained Design Problem

Fig. 5.8 Fixed load analysis: Class 60/75.

The value for σ ′
vms is set to the absolute value of the maximum compression stress

allowed for class C20/25,
σ ′
vms = 20 Mpa. (5.26)

σ ′′
vms is obtained considering the formula:

σvms =
√
σ2
1 − σ1σ2 + σ2

2 + 3τ12 (5.27)

and assigning to σ1, σ2, and τ12 their maximum absolute values found in the reference
beam (Ω). These three maximum stresses are, respectively,

max
Ω

|σ1| = 6.2842 Mpa;

max
Ω

|σ2| = 8.0070 Mpa;

max
Ω

|τ12| = 3.9267 Mpa.

Substituting these values in (5.27), we obtain σ ′′
vms = 10.01 Mpa.

As last representative value for the Von Mises limit, we choose the maximum Von Mises
stress measured in the reference beam, thus

5.4 Computational Results 117

Fig. 5.9 Proportional load analysis: Class 20/25.

max
Ω

σvms = σ ′′′
vms = 9.75 Mpa. (5.28)

The results obtained in this experiments are outlined in Table 5.5, while Figures 5.13-5.15
depict the optimized beam with its Von Mises stress distribution.

Analyzing the outputs of the Von Mises optimization, we can see how σ ′
vms is not a

proper choice for the limit value, since the resulting beam appears to be excessively thin,
severely violating the traction limit of the material (10.60 Mpa >> 1.9 Mpa), presenting,
at the same time, an unreasonable maximum displacement (−14.04 mm). On the other
hand, while cases σ ′′

vms and σ ′′′
vms distribute a comparable amount of material with respect

to results found in Table 5.2 for class C20/25, once again we can see how the Von Mises
constraint alone is not able to ensure the respect of the specific traction requirement of
concrete-based materials, being both 2.94 Mpa and 2.14 Mpa greater than the required
limit of 1.9 Mpa.

C20/25, σ− = −20 Mpa, σ+ = 1.9 Mpa, F = 11110 N
Case Avg filling % σ− (Mpa) σ+ (Mpa) max U (mm)
σ ′
vms 3.7 -20.00 10.60 -14.04

σ ′′
vms 18.2 -11.27 2.94 -0.75

σ ′′′
vms 25.6 -10.90 2.14 -0.66

Table 5.5 Solution properties obtained in the VMS comparison.

118 Topology Optimization: a Hardly Constrained Design Problem

Fig. 5.10 Proportional load analysis: Class 30/37.

5.4.3 An Example of Project Constraint: Maximum Displacement

As final step of our computational experiments, we show how our algorithm is able to
easily include other project-specific constraints. As an example of such limitations, we take
into account a restriction over the maximum displacement of the beam. Considering the
results obtained in the fixed load analysis for class C40/50 (Table 5.2), we can see how the
optimized beam present a maximum displacement of −0.9719 mm. Let’s assume that our
project requires a maximum displacement not greater than 0.1% of our beam height. With
respect to the dimensions depicted in Figure 5.3, this yields a maximum displacement whose
absolute value is not greater than 0.5 mm. The technique described in Section 5.3 admits
a straightforward adaptation to take into account this new constraint. More specifically, we
let the algorithm distribute material not only when the principal stresses do not respect
traction or compression limits, but also whenever the maximum displacement allowed is
exceeded. Furthermore, the stopping rule is modified accordingly, letting the algorithm stop
whenever, after the minimum number of iteration required, either the Risk Factor or the
maximum displacement, are within a predefined threshold from their limit values.

The inclusion of this new constraint in our algorithm yielded a new beam outline,
depicted in Figure 5.16, that is able to respect the project-specific constraint, strategically
adding a small amount of material in the beam, as can be observed in Table 5.6.

5.4 Computational Results 119

Fig. 5.11 Proportional load analysis: Class 40/50.

C40/50, σ− = −40 Mpa, σ+ = 3.5 Mpa, F = 11110 N, |U| ≤ 0.5 mm
Case Avg filling % σ− (Mpa) σ+ (Mpa) max U (mm)
w/o 25.6 -20.000 3.497 -0.9441
w/ 27.9 -12.53 1.93 -0.4996

Table 5.6 Comparison of solution properties obtained in the experiments with (w/) and without (w/o)
displacement constraint.

Fig. 5.12 Proportional load analysis: Class 60/75.

120 Topology Optimization: a Hardly Constrained Design Problem

Fig. 5.13 VMS comparison: case σ ′
vms

Fig. 5.14 VMS comparison: case σ ′′
vms

Fig. 5.15 VMS comparison: case σ ′′′
vms

Fig. 5.16 Beam optimized with project-specific displacement constraint.

Chapter 6

Conclusions and Future Perspectives

In this thesis we investigated how metaheuristics can effectively address two key problems
of data processing, such as two different instances of data extraction problems and Graph
Drawing. Moreover, we investigated some solution opportunities regarding problems arising
in engineering or management science, such as Topology Optimization or the Vehicle
Routing Problem with Stochastic Demands.

All the algorithms here presented were tested competitively and evidenced soundness
and efficiency, with performances able to outperform other state-of-the-art techniques or
commercial solvers.

In the following paragraphs we briefly sum-up individual conclusions and future investi-
gation opportunities that can be pursued for each one of the problems here discussed.

6.1 Minimum Cost SAT
Section 2.2 describes a GRASP metaheuristic to solve Minimum Cost SAT instances arising
in the context of Supervised Learning in Boolean Fields. The algorithm shows excellent
performances in the solution of instances of large size, both in terms of objective function
value and computational expenses. Moreover, the probabilistic stopping rule studied provides
a notable reduction in terms of number of iterations without jeopardizing the quality of the
solution produced.

Aside from the solution of Minimum Cost SAT instances, the future research directions
that we will consider are twofold. On one hand the goal is to test the capability of
our GRASP in a learning framework, comparing its accuracy with other notable learning
techniques such as Random Forests. At the same time an independent research stream can
lead to the refinement of the dynamic estimate of the probability, extending its application
range to several multistart heuristic algorithms.

122 Conclusions and Future Perspectives

6.2 Maximum Cut-Clique
In Section 2.5, we investigate a hybrid meta-heuristic based on the integration of a GRASP
framework and a Phased Local Search. The method evidenced good performances in
comparison with other two state-of-the-art heuristic approaches based on an ILS technique.

Further investigations will include the solution of specific case study instances arising
from real world networks, and a study of the contributions that a probabilistic stopping
rule –as in Section 2.3– can bring to the performances of our multistart metaheuristic.

6.3 Min-Max GDP
In Section 3.1 we target a hard graph drawing variant recently proposed: minimizing
the maximum number of edge crossings in hierarchical graphs. Our tabu search method
implements two memory structures, short term and long term, for an efficient exploration
based on the search history. Our experimentation shows that they are indeed very effective
compared with the randomized design of a previous heuristic. Special mention deserves the
use of an auxiliary evaluation function to guide the search in such a flat landscape as the
one that characterizes the min-max crossing problem. The comparison with two previous
heuristics, whose moves are based only on the objective function, permits to conclude the
remarkable performance of our tabu search method. The experimentation also reveals that
the mathematical formulation is only able to solve instances with low density and very small
size, and, as expected, requires long running times.

The highly attractive results provided by the δ evaluation function suggest an investi-
gation to address other notable min-max problems with a similar approach. It is of great
interest, indeed, a study on how the coefficients of δ can be set in relation to the topological
characteristics of the graph, and dynamically adjusted according to informations gathered
in the search process.

6.4 Constrained Incremental GDP
As described in Section 3.7, we have developed a heuristic procedure based on the GRASP
methodology to provide high quality solutions to the problem of minimizing straight-line
crossings in hierarchical graphs with an additional constraint. This problem is known as
incremental graph drawing and the additional constraint models the stability on a sequence
of drawings (the so-called user’s mental map) when some vertices and edges are added by
means of a parameter K. Our method is coupled with a Path Relinking post-processing

6.5 Vehicle Routing Problem with Stochastic Demands 123

to obtain improved solutions in the long term. We also tested a tabu search procedure to
evaluate the contribution of memory structures in comparison with semi-random designs.
Exhaustive experimentation first discloses the best configuration of our methods and then
performs an empirical comparison with the existing ones, namely the general purpose
solvers CPLEX and LocalSolver. Our GRASP and TS implementations were shown to be
competitive in a set of problem instances for which the optimal solutions are known, and
clearly outperform LocalSolver. Finally, as revealed on large instances, the larger the
parameter K the lower the number of crossings. However, this improvement is just marginal
and therefore low values of K (close to 1) are recommended to obtain good stable graphs.

Given the importance of both aesthetic criteria considered in Chapter 3, in further
investigations we will focus on the Constrained Incremental problem considering a bi-
objective function, in the attempt of reducing both the total sum of crossings, and the
maximum crossing among edges, as done in the case of the Min-Max GDP.

6.5 Vehicle Routing Problem with Stochastic Demands
The work presented in Section 4.2 is motivated by the benefits of accounting for stochasticity
when solving hard combinatorial optimization problems. In our view, successfully incor-
porating stochasticity within deterministic optimization approaches depends on a careful
integration of well-performing optimization tools in industrial settings. More specifically,
we have proposed the use of an approach that combines simulation and metaheuristic
optimization to solve one of the most difficult and widely studied stochastic optimization
problems: the Vehicle Routing Problem with Stochastic Demands.

The proposed simheuristic is based on a recent extension of the classical GRASP
framework, the GRASP with biased randomization. This extension has been shown to be
a successful meeting point between performance and simplicity of implementation. The
algorithm has been tested over a set of stochastic instances obtained from an established
benchmark set for the deterministic version of the problem. The results show that our
method is able to attain high-quality solutions over all instances in reasonably low computing
times. In particular, our results support the idea that high-quality deterministic local optimal
solutions are complementary to the quality of the robust solutions that are derived from
the proposed hybridization of BR-GRASP and Monte Carlo Simulation.

Future extensions will follow two different research paths: a first stream of investigation
can be based on improving implementation features that enhance the performance of the
heuristic core of our algorithm. Path relinking, for example, is a feature that has been
successfully embedded in multiple GRASP frameworks ([94]; [131]; [54]). On the other

124 Conclusions and Future Perspectives

hand, to improve the quality of the solutions generated specifically for the vehicle routing
problem, some problem-specific intensification-diversification strategies can be devised, such
as the granular neighborhood structure as applied in [148].

6.6 Topology Optimization of Stress-Constrained Struc-
tures

Chapter 5 studies the problem of designing lightweight concrete structures in the case of
hard stress constraints. An appropriate handling of this optimization scenario is of great
interest because of significant breakthroughs that additive manufacturing brought in the
field of structural engineering; moreover, given these technological developments, an early
inclusion of optimization in the design process could lead to structures with unconventional
and high-performing designs.

More specifically, Section 5.2 introduces a new form for the stress constraint that proves
to be more suitable than the classical Von Mises Criterion to handle concrete-like materials.
Furthermore, the heuristic algorithm described in Section 5.3 is able to handle a diverse set
of concrete classes and load scenarios, properly exploiting material elasticity and designing
lightweight concrete beams accordingly.

Future researches will both address other part of the beam production problem, such as
constrained shortest paths for 3D-printability, as well as consider more composed materials,
including a mathematical modeling of steel reinforcing bars in the concrete structure.

References

[1] R. M. Aiex, M. G. C. Resende, and C. C. Ribeiro. Ttt plots: a perl program to create
time-to-target plots. Optimization Letters, 1(4):355–366, Sep 2007.

[2] E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov, and O. Sigmund. Efficient
topology optimization in matlab using 88 lines of code. Structural and Multidisciplinary
Optimization, 43(1):1–16, 2011.

[3] I. Arisi, M. D’Onofrio, R. Brandi, A. Felsani, S. Capsoni, G. Drovandi, G. Felici,
E. Weitschek, P. Bertolazzi, and A. Cattaneo. Gene expression biomarkers in the
brain of a mouse model for alzheimer’s disease: mining of microarray data by logic
classification and feature selection. Journal of Alzheimer’s Disease, 24(4):721–738,
2011.

[4] P. Augerat, J. Belenguer, E. Benavent, A. Corberán, D. Naddef, and G. Rinaldi.
Computational results with a branch-and-cut code for the capacitated vehicle routing
problem. Technical Report R.495, IASI-CNR, 1998.

[5] O. Bastert and C. Matuszewski. Layered Drawings of Digraphs, pages 87–120.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[6] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall PTR, Upper Saddle River, NJ, USA,
1st edition, 1999. ISBN 0133016153.

[7] M. P. Bendsøe. Optimal shape design as a material distribution problem. Structural
and multidisciplinary optimization, 1(4):193–202, 1989.

[8] M. P. Bendsøe and N. Kikuchi. Generating optimal topologies in structural design
using a homogenization method. Computer methods in applied mechanics and
engineering, 71(2):197–224, 1988.

[9] M. P. Bendsøe and O. Sigmund. Topology optimization: theory, methods, and
applications. Springer Science & Business Media, 2013.

[10] P. Bertolazzi, G. Felici, and E. Weitschek. Learning to classify species with barcodes.
BMC bioinformatics, 10(14):1, 2009.

[11] P. Bertolazzi, G. Felici, P. Festa, G. Fiscon, and E. Weitschek. Integer programming
models for feature selection: New extensions and a randomized solution algorithm.
European Journal of Operational Research, 250(2):389–399, 2016.

126 References

[12] D. J. Bertsimas. A vehicle routing problem with stochastic demand. Operations
Research, 40(3):574–585, 1992.

[13] S. Bhatt and F. T. Leighton. A framework for solving vlsi graph layout problems.
Journal of Computer and System Sciences, 28:300–343, 1984.

[14] L. Bianchi, M. Birattari, M. Chiarandini, M. Manfrin, M. Mastrolilli, L. Paquete,
O. Rossi-Doria, and T. Schiavinotto. Hybrid metaheuristics for the vehicle routing
problem with stochastic demands. Journal of Mathematical Modelling and Algorithms,
5(1):91–110, 2006.

[15] E. Biyikli and A. C. To. Proportional topology optimization: A new non-sensitivity
method for solving stress constrained and minimum compliance problems and its
implementation in matlab. PloS one, 10(12):e0145041, 2015.

[16] K.-F. Böhringer and F. N. Paulisch. Using constraints to achieve stability in automatic
graph layout algorithms. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’90, pages 43–51, New York, NY, USA, 1990. ACM.

[17] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum clique
problem. In Handbook of combinatorial optimization, pages 1–74. Springer, 1999.

[18] J. Branke. Dynamic Graph Drawing, pages 228–246. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2001.

[19] J. L. Bresina. Heuristic-biased stochastic sampling. In AAAI/IAAI, Vol. 1, pages
271–278, 1996.

[20] S. Bridgeman and R. Tamassia. A user study in similarity measures for graph drawing.
J. Graph Algorithms Appl., 6(3):225–254, 2002.

[21] T. E. Bruns and D. A. Tortorelli. Topology optimization of non-linear elastic structures
and compliant mechanisms. Computer Methods in Applied Mechanics and Engineering,
190(26):3443–3459, 2001.

[22] M. Burch, C. Müller, G. Reina, H. Schmauder, M. Greis, and D. Weiskopf. Visualizing
Dynamic Call Graphs. In M. Goesele, T. Grosch, H. Theisel, K. Toennies, and B. Preim,
editors, Vision, Modeling and Visualization. The Eurographics Association, 2012.

[23] L. S. Buriol, M. G. Resende, and M. Thorup. Speeding up dynamic shortest-path
algorithms. INFORMS Journal on Computing, 20(2):191–204, 2008.

[24] S. Butenko and W. E. Wilhelm. Clique-detection models in computational bio-
chemistry and genomics. European Journal of Operational Research, 173(1):1–17,
2006.

[25] M.-J. Carpano. Automatic display of hierarchized graphs for computer-aided decision
analysis. IEEE Transactions on Systems, Man, and Cybernetics, 10(11):705–715,
1980.

[26] R. Carrasco, A. Pham, M. Gallego, F. Gortázar, R. Martí, and A. Duarte. Tabu
search for the max-mean dispersion problem. Knowledge based systems, 85:256–264.

References 127

[27] L. D. Cecco, M. Giannoccaro, E. Marchesi, P. Bossi, F. Favales, L. Locati, L. Licitra,
S. Pilotti, and S. Canevari. Integrative mirna-gene expression analysis enables
refinement of associated biology and prediction of response to cetuximab in head
and neck squamous cell cancer. Genes, 8(1):35, 2017.

[28] E. P. Chan and Y. Yang. Shortest path tree computation in dynamic graphs. IEEE
Transactions on Computers, 58(4):541–557, 2009.

[29] J. Chen and I. T. Chau. The hierarchical dependence diagram: improving design for
reuse in object-oriented software development. In Proceedings of 1996 Australian
Software Engineering Conference, pages 155–166, Jul 1996.

[30] M. Chimani, C. Gutwenger, P. Mutzel, M. Spönemann, and H. Wong. Crossing
minimization and layouts of directed hypergraphs with port constraints. Lecture
Notes in Computer Science 6502 LNCS, pages 141–152, 2011.

[31] C. H. Christiansen and J. Lysgaard. A branch-and-price algorithm for the capacitated
vehicle routing problem with stochastic demands. Operations Research Letters, 35(6):
773–781, 2007.

[32] G. Dantzig. Linear Programming And Extensions. Princeton University Press, 1963.

[33] J. de Armas, A. A. Juan, J. M. Marquès, and J. P. Pedroso. Solving the determin-
istic and stochastic uncapacitated facility location problem: from a heuristic to a
simheuristic. Journal of the Operational Research Society, 68(10):1161–1176, 2017.

[34] L. De Moura and N. Bjørner. Z3: An efficient smt solver. pages 337–340. Springer,
2008.

[35] R. Dial, F. Glover, D. Karney, and D. Klingman. A computational analysis of
alternative algorithms and labeling techniques for finding shortest path trees. Networks,
9(3):215–248, 1979.

[36] R. B. Dial. Algorithm 360: Shortest-path forest with topological ordering [h].
Communications of the ACM, 12(11):632–633, 1969.

[37] S. Diehl and C. Görg. Graphs, they are changing. In 10th International Symposium
on Graph Drawing GD 2002, page 23–30. Springer, 2002.

[38] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[39] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance
profiles. Mathematical programming, 91(2):201–213, 2002.

[40] O. Dominguez, A. A. Juan, and J. Faulin. A biased-randomized algorithm for the two-
dimensional vehicle routing problem with and without item rotations. International
Transactions in Operational Research, 21(3):375–398, 2014.

[41] O. Dominguez, A. A. Juan, B. Barrios, J. Faulin, and A. Agustin. Using biased
randomization for solving the two-dimensional loading vehicle routing problem with
heterogeneous fleet. Annals of Operations Research, 236(2):383–404, 2016.

128 References

[42] S. E. Dreyfus. An appraisal of some shortest-path algorithms. Operations research,
17(3):395–412, 1969.

[43] P. Duysinx and M. P. Bendsøe. Topology optimization of continuum structures with
local stress constraints. International journal for numerical methods in engineering,
43(8):1453–1478, 1998.

[44] P. Duysinx, L. Van Miegroet, E. Lemaire, O. Brüls, and M. Bruyneel. Topology
and generalized shape optimization: Why stress constraints are so important? In-
ternational Journal for Simulation and Multidisciplinary Design Optimization, 2(4):
253–258, 2008.

[45] A. D’Andrea, M. D’Emidio, D. Frigioni, S. Leucci, and G. Proietti. Dynamically
maintaining shortest path trees under batches of updates. In International Colloquium
on Structural Information and Communication Complexity, pages 286–297. Springer,
2013.

[46] N. Eén and N. Sörensson. Translating pseudo-boolean constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation, 2:1–26, 2006.

[47] L. F. Escudero, J. F. Monge, and D. R. Morales. On the time-consistent stochastic
dominance risk averse measure for tactical supply chain planning under uncertainty.
Computers & Operations Research, 100:270–286, 2018.

[48] G. Felici and K. Truemper. A minsat approach for learning in logic domains. INFORMS
Journal on computing, 14(1):20–36, 2002.

[49] G. Felici, D. Ferone, P. Festa, A. Napoletano, and T. Pastore. A grasp for the
minimum cost sat problem. In International Conference on Learning and Intelligent
Optimization, pages 64–78. Springer, 2017.

[50] T. A. Feo and M. G. Resende. Greedy randomized adaptive search procedures.
Journal of global optimization, 6(2):109–133, 1995.

[51] M. Fernández-Ropero, R. Pérez-Castillo, and M. Piattini. Graph-based business
process model refactoring. In SIMPDA, pages 16–30, 2013.

[52] D. Ferone, P. Festa, A. Napoletano, and T. Pastore. Reoptimizing shortest paths:
From state of the art to new recent perspectives. In Transparent Optical Networks
(ICTON), 2016 18th International Conference on, pages 1–5. IEEE, 2016.

[53] D. Ferone, P. Festa, A. Gruler, and A. A. Juan. Combining simulation with a
grasp metaheuristic for solving the permutation flow-shop problem with stochastic
processing times. In T. M. K. Roeder et al., editor, Proceedings of the 2016 Winter
Simulation Conference, pages 2205–2215, Piscataway, New Jersey, 2016a. IEEE.

[54] D. Ferone, P. Festa, and M. G. Resende. Hybridizations of grasp with path relinking
for the far from most string problem. International Transactions in Operational
Research, 23(3):481–506, 2016c.

[55] D. Ferone, P. Festa, A. Napoletano, and T. Pastore. Shortest paths on dynamic
graphs: a survey. Pesquisa Operacional, 37(3):487–508, 2017.

References 129

[56] P. Festa and M. Resende. Hybridizations of GRASP with Path-Relinking, volume
434, pages 135–155. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[57] P. Festa and M. G. C. Resende. An Annotated Bibliography of GRASP - Part I:
Algorithms. International Transactions in Operational Research, 16(1):1–24, 2009.

[58] P. Festa and M. G. C. Resende. An Annotated Bibliography of GRASP – Part II:
Applications. International Transactions in Operational Research, 16(2):131–172,
2009.

[59] P. Festa, D. Ferone, T. Pastore, A. A. Juan, and C. Bayliss. Integrating biased-
randomized grasp with monte carlo simulation for solving the vehicle routing problem
with stochastic demands. In accepted paper at the 2018 Winter Simulation Conference,
2018.

[60] M. Florian, S. Nguyen, and S. Pallottino. A dual simplex algorithm for finding all
shortest paths. Networks, 11(4):367–378, 1981.

[61] L. R. Ford Jr. Network flow theory. Technical report, DTIC Document, 1956.

[62] L. R. Ford Jr and D. R. Fulkerson. Flows in networks. Princeton university press,
2015.

[63] Z. Fu and S. Malik. Solving the minimum-cost satisfiability problem using sat based
branch-and-bound search. pages 852–859, 2006.

[64] G. Gallo. Reoptimization procedures in shortest path problem. Rivista di matematica
per le scienze economiche e sociali, 3(1):3–13, 1980.

[65] G. Gallo and S. Pallottino. A new algorithm to find the shortest paths between all
pairs of nodes. Discrete Applied Mathematics, 4(1):23–35, 1982.

[66] E. R. Gansner and S. C. North. An open graph visualization system and its applications
to software engineering. SOFTWARE - PRACTICE AND EXPERIENCE, 30(11):
1203–1233, 2000.

[67] M. Gendreau, G. Laporte, and R. Séguin. An exact algorithm for the vehicle routing
problem with stochastic demands and customers. Transportation science, 29(2):
143–155, 1995.

[68] M. Gendreau, G. Laporte, and R. Séguin. Stochastic vehicle routing. European
Journal of Operational Research, 88(1):3–12, 1996.

[69] M. Gendreau, G. Laporte, and R. Séguin. A tabu search heuristic for the vehicle
routing problem with stochastic demands and customers. Operations Research, 44(3):
469–477, 1996.

[70] F. Glover. Heuristics for integer programming using surrogate constraints. Decision
Science, 8:156–166, 1977.

[71] F. Glover. Tabu search: Part i. ORSA Journal on Computing, 1(3):190–206, 1989.

130 References

[72] F. Glover and M. Laguna. Tabu Search, pages 70–150. Blackwell Scientific Publica-
tions, Oxford, 1993.

[73] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Norwell, MA,
USA, 1997. ISBN 079239965X.

[74] F. Glover, M. Laguna, E. Taillard, and D. de Werra. Tabu search. Annals of
Operations Research, 41, 1993.

[75] B. L. Golden, S. Raghavan, and E. A. Wasil. The Vehicle Routing Problem: Latest
Advances and New Challenges, volume 43. Springer Science & Business Media, New
York, 2008.

[76] G. H. Golub and J. H. Welsch. Calculation of gauss quadrature rules. Mathematics
of computation, 23(106):221–230, 1969.

[77] S. Gonzalez-Martin, A. A. Juan, D. Riera, M. G. Elizondo, and J. J. Ramos. A
simheuristic algorithm for solving the arc routing problem with stochastic demands.
Journal of Simulation, 12(1):53–66, 2018.

[78] E. M. Gonzalez-Neira, D. Ferone, S. Hatami, and A. A. Juan. A biased-randomized
simheuristic for the distributed assembly permutation flowshop problem with stochastic
processing times. Simulation Modelling Practice and Theory, 79:23–36, 2017.

[79] A. Grasas, A. A. Juan, and H. R. Lourenço. Simils: a simulation-based extension
of the iterated local search metaheuristic for stochastic combinatorial optimization.
Journal of Simulation, 10(1):69–77, 2016.

[80] A. Grasas, A. A. Juan, J. Faulin, J. de Armas, and H. Ramalhinho. Biased ran-
domization of heuristics using skewed probability distributions: a survey and some
applications. Computers & Industrial Engineering, 110:216–228, 2017.

[81] T. Gschwind, J. Pinggera, S. Zugal, H. A. Reijers, and B. Weber. A linear time
layout algorithm for business process models. J. Vis. Lang. Comput., 25(2):117–132,
Apr. 2014. ISSN 1045-926X.

[82] D. Guimarans, O. Dominguez, A. A. Juan, and E. Martinez. A multi-start simheuristic
for the stochastic two-dimensional vehicle routing problem. In T. M. K. Roeder et
al., editor, Proceedings of the 2016 Winter Simulation Conference, pages 2326–2334,
Piscataway, New Jersey, 2016. IEEE.

[83] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4
(2):100–107, 1968.

[84] E. Holmberg, B. Torstenfelt, and A. Klarbring. Stress constrained topology optimiza-
tion. Structural and Multidisciplinary Optimization, 48(1):33–47, 2013.

[85] C. Hu, Y. Li, X. Cheng, and Z. Liu. A virtual dataspaces model for large-scale
materials scientific data access. Future Generation Computer Systems, 54:456 – 468,
2016.

References 131

[86] A. A. Juan, J. Faulin, J. Jorba, J. Caceres, and J. M. Marquès. Using parallel &
distributed computing for real-time solving of vehicle routing problems with stochastic
demands. Annals of Operations Research, 207(1):43–65, 2013.

[87] A. A. Juan, B. B. Barrios, E. Vallada, D. Riera, and J. Jorba. A simheuristic
algorithm for solving the permutation flow shop problem with stochastic processing
times. Simulation Modelling Practice and Theory, 46:101–117, 2014a.

[88] A. A. Juan, S. E. Grasman, J. Caceres-Cruz, and T. Bektaş. A simheuristic algorithm
for the single-period stochastic inventory-routing problem with stock-outs. Simulation
Modelling Practice and Theory, 46:40–52, 2014b.

[89] A. A. Juan, I. Pascual, D. Guimarans, and B. Barrios. Combining biased random-
ization with iterated local search for solving the multidepot vehicle routing problem.
International Transactions in Operational Research, 22(4):647–667, 2015.

[90] M. Jünger, E. K. Lee, P. Mutzel, and T. Odenthal. A polyhedral approach to the
multi-layer crossing minimization problem. In International Symposium on Graph
Drawing, pages 13–24. Springer, 1997.

[91] M. Jünger and P. Mutzel. 2-layer straightline crossing minimization: Performance
of exact and heuristic algorithms. Journal of Graph Algorithms and Applications, 1:
Paper 1, 25 p., 1997. URL http://eudml.org/doc/48063.

[92] H.-P. Kriegel, P. Kröger, M. Renz, and T. Schmidt. Hierarchical graph embedding
for efficient query processing in very large traffic networks. In B. Ludäscher and
N. Mamoulis, editors, Scientific and Statistical Database Management, pages 150–167.
Springer Berlin Heidelberg, 2008.

[93] M. Laguna and R. Martí. Grasp and path relinking for 2-layer straight line crossing
minimization. INFORMS Journal on Computing, 11:44–52, 1999.

[94] M. Laguna and R. Marti. Grasp and path relinking for 2-layer straight line crossing
minimization. INFORMS Journal on Computing, 11(1):44–52, 1999.

[95] G. Laporte. The vehicle routing problem: An overview of exact and approximate
algorithms. European journal of operational research, 59(3):345–358, 1992.

[96] G. Laporte, F. Louveaux, and H. Mercure. The vehicle routing problem with stochastic
travel times. Transportation science, 26(3):161–170, 1992.

[97] C. Le, J. Norato, T. Bruns, C. Ha, and D. Tortorelli. Stress-based topology opti-
mization for continua. Structural and Multidisciplinary Optimization, 41(4):605–620,
2010.

[98] N. W. Lemons, B. Hu, and W. S. Hlavacek. Hierarchical graphs for rule-based
modeling of biochemical systems. BMC Bioinformatics, 12(1):45, Feb 2011.

[99] M. Lozano, A. Duarte, F. Gortázar, and R. Martí. Variable neighborhood search with
ejection chains for the antibandwidth problem. Journal of Heuristics, 18(6):919–938,
2012.

http://eudml.org/doc/48063

132 References

[100] T. W. Lucas, W. D. Kelton, P. J. Sanchez, S. M. Sanchez, and B. L. Anderson.
Changing the paradigm: Simulation, now a method of first resort. Naval Research
Logistics (NRL), 62(4):293–303, 2015.

[101] V. M. Manquinho and J. P. Marques-Silva. Search pruning techniques in SAT-based
branch-and-bound algorithms for the binate covering problem. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 21(5):505–516, May
2002.

[102] V. M. Manquinho, P. F. Flores, J. P. M. Silva, and A. L. Oliveira. Prime implicant
computation using satisfiability algorithms. pages 232–239. IEEE, 1997.

[103] Y. Marinakis, G.-R. Iordanidou, and M. Marinaki. Particle swarm optimization for the
vehicle routing problem with stochastic demands. Applied Soft Computing, 13(4):
1693–1704, 2013.

[104] J. P. Marques-Silva and K. A. Sakallah. Grasp: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

[105] R. Martí and V. Estruch. Incremental bipartite drawing problem. Computers &
Operations Research, 28(13):1287–1298, 2001.

[106] R. Martí, A. Martínez-Gavara, J. Sánchez-Oro, and A. Duarte. Tabu search for the
dynamic bipartite drawing problem. Computers & Operations Research, 91:1–12,
2018. ISSN 0305-0548.

[107] A. Martínez-Gavara, D. Landa-Silva, V. Campos, and R. Martí. Randomized heuristics
for the capacitated clustering problem. Information Sciences, 417:154–168.

[108] P. Martins. Cliques with maximum/minimum edge neighborhood and neighborhood
density. Computers & Operations Research, 39(3):594–608, 2012.

[109] P. Martins, A. Ladrón, and H. Ramalhinho. Maximum cut-clique problem: Ils
heuristics and a data analysis application. International Transactions in Operational
Research, 22(5):775–809, 2015.

[110] R. Martins, V. Manquinho, and I. Lynce. Clause Sharing in Deterministic Parallel
Maximum Satisfiability. In RCRA International Workshop on Experimental Evaluation
of Algorithms for Solving Problems with Combinatorial Explosion, 2012.

[111] R. Martins, V. M. Manquinho, and I. Lynce. Parallel search for maximum satisfiability.
AI Commun., 25(2):75–95, 2012.

[112] R. Martins, V. M. Manquinho, and I. Lynce. Clause sharing in parallel maxsat. In
Learning and Intelligent Optimization - 6th International Conference,LION 6, Paris,
France, January 16-20, 2012, Revised Selected Papers, pages 455–460, 2012.

[113] R. Martí. A tabu search algorithm for the bipartite drawing problem. European
Journal of Operational Research, 106:558–569, 1998.

[114] R. Martí, V. Campos, A. Hoff, and J. Peiró. Heuristics for the min-max arc crossing
problem in graphs. Expert Systems with Applications, 2018.

References 133

[115] R. Mateescu, R. Dechter, and R. Marinescu. And/or multi-valued decision diagrams
(aomdds) for graphical models. J. Artif. Int. Res., 33(1):465–519, Dec. 2008. ISSN
1076-9757. URL http://dl.acm.org/citation.cfm?id=1622698.1622711.

[116] C. Matuszewski, R. Schönfeld, and P. Molitor. Using sifting for k-layer straightline
crossing minimization. In J. Kratochvíyl, editor, Graph Drawing, pages 217–224,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg. ISBN 978-3-540-46648-2.

[117] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient sat solver. pages 530–535. ACM, 2001.

[118] G. Nannicini, P. Baptiste, D. Krob, and L. Liberti. Fast paths in dynamic road
networks. Proceedings of ROADEF, 8:1–14, 2008.

[119] A. Napoletano, A. Martínez-Gavara, P. Festa, T. Pastore, and R. Martí. Heuristics for
the constrained incremental graph drawing problem. European Journal of Operational
Research, 2018.

[120] T. A. J. Nicholson. Finding the shortest route between two points in a network. The
computer journal, 9(3):275–280, 1966.

[121] S. C. North. Incremental layout in dynadag. In In Proceedings of the 4th Symposium
on Graph Drawing (GD, pages 409–418. Springer-Verlag, 1996.

[122] B. Oselio, A. Kulesza, and A. O. Hero. Multi-layer graph analytics for social networks.
In 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP), pages 284–287, Dec 2013.

[123] S. Pallottino and M. G. Scutellà. A new algorithm for reoptimizing shortest paths
when the arc costs change. Operations Research Letters, 31(2):149–160, mar 2003.

[124] J. París, F. Navarrina, I. Colominas, and M. Casteleiro. Topology optimization
of continuum structures with local and global stress constraints. Structural and
Multidisciplinary Optimization, 39(4):419–437, 2009.

[125] J. Pereira, E. Fancello, and C. Barcellos. Topology optimization of continuum struc-
tures with material failure constraints. Structural and Multidisciplinary Optimization,
26(1-2):50–66, 2004.

[126] B. Pinaud, P. Kuntz, and R. Lehn. Dynamic Graph Drawing with a Hybridized
Genetic Algorithm, pages 365–375. Springer London, London, 2004.

[127] M. Pipponzi and F. Somenzi. An Iterative Approach to the Binate Covering Problem.
Proceedings of the European Conference on Design Automation, pages 208–211,
1990.

[128] W. Pullan. Phased local search for the maximum clique problem. Journal of
Combinatorial Optimization, 12(3):303–323, 2006.

[129] T. Raeder and N. V. Chawla. Market basket analysis with networks. Social Network
Analysis and Mining, 1(2):97–113, Apr 2011. ISSN 1869-5469. doi: 10.1007/
s13278-010-0003-7. URL https://doi.org/10.1007/s13278-010-0003-7.

http://dl.acm.org/citation.cfm?id=1622698.1622711
https://doi.org/10.1007/s13278-010-0003-7

134 References

[130] G. Ramalingam and T. Reps. An incremental algorithm for a generalization of the
shortest-path problem. Journal of Algorithms, 21(2):267–305, 1996.

[131] M. G. Resendel and C. C. Ribeiro. Grasp with path-relinking: Recent advances and
applications. In Metaheuristics: Progress as Real Problem Solvers, pages 29–63.
Springer, 2005.

[132] C. C. Ribeiro, I. Rosseti, and R. C. Souza. Probabilistic stopping rules for GRASP
heuristics and extensions. International Transactions in Operational Research, 20(3):
301–323, 2013.

[133] E. Rodriguez-Tello, J. K. Hao, and J. Torres-Jimenez. An improved simulated
annealing algorithm for bandwidth minimization. European Journal of Operation
Research, 185(3):1319–1335, 2008.

[134] G. Rozvany. Topology optimization in structural mechanics, volume 374. Springer,
2014.

[135] R. Ruiz and T. Stützle. An iterated greedy heuristic for the sequence dependent setup
times flowshop problem with makespan and weighted tardiness objectives. European
Journal of Operational Research, 187(3):1143–1159, 2008.

[136] J. Sánchez-Oro, A. Martínez-Gavara, M. Laguna, A. Duarte, and A. Martí. Variable
neighborhood scatter search for the incremental graph drawing problem. Computa-
tional Optimization and Applications, 68:775–797, 2017.

[137] F. Scholz. Maximum likelihood estimation. Encyclopedia of statistical sciences, 1985.

[138] M. Servit and J. Zamazal. Heuristic approach to binate covering problem. pages
123–129. IEEE, 1992.

[139] O. Sigmund. A 99 line topology optimization code written in matlab. Structural and
multidisciplinary optimization, 21(2):120–127, 2001.

[140] O. Sigmund. Morphology-based black and white filters for topology optimization.
Structural and Multidisciplinary Optimization, 33(4):401–424, 2007.

[141] O. Sigmund and J. Petersson. Numerical instabilities in topology optimization:
a survey on procedures dealing with checkerboards, mesh-dependencies and local
minima. Structural and Multidisciplinary Optimization, 16(1):68–75, 1998.

[142] N. Sorensson and N. Een. Minisat v1. 13-a sat solver with conflict-clause minimization.
SAT, 2005:53, 2005.

[143] M. F. Stallmann. A heuristic for bottleneck crossing minimization and its performance
on general crossing minimization: Hypothesis and experimental study. ACM Journal
of Experimental Algorithms, 17(1):1–30, 2012.

[144] M. Stolpe and K. Svanberg. On the trajectories of the epsilon-relaxation approach
for stress-constrained truss topology optimization. Structural and multidisciplinary
optimization, 21(2):140–151, 2001.

References 135

[145] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of
hierarchical system structures. IEEE Trans. Syst. Man, Cybern., 11:109–125, 1981.

[146] K. Svanberg. The method of moving asymptotes—a new method for structural
optimization. International journal for numerical methods in engineering, 24(2):
359–373, 1987.

[147] D. Taş, M. Gendreau, N. Dellaert, T. Van Woensel, and A. De Kok. Vehicle routing
with soft time windows and stochastic travel times: A column generation and branch-
and-price solution approach. European Journal of Operational Research, 236(3):
789–799, 2014.

[148] P. Toth and D. Vigo. The granular tabu search and its application to the vehicle-
routing problem. Informs Journal on computing, 15(4):333–346, 2003.

[149] P. Toth and D. Vigo. Vehicle routing: problems, methods, and applications. SIAM,
2014.

[150] K. Tretyakov, A. Armas-Cervantes, L. García-Bañuelos, J. Vilo, and M. Dumas. Fast
fully dynamic landmark-based estimation of shortest path distances in very large
graphs. In Proceedings of the 20th ACM international conference on Information
and knowledge management, pages 1785–1794. ACM, 2011.

[151] K. Truemper. Design of logic-based intelligent systems. John Wiley & Sons, 2004.

[152] J. Vanhatalo, H. Völzer, F. Leymann, and S. Moser. Automatic workflow graph
refactoring and completion. In A. Bouguettaya, I. Krueger, and T. Margaria, edi-
tors, Service-Oriented Computing – ICSOC 2008, pages 100–115. Springer Berlin
Heidelberg, 2008. ISBN 978-3-540-89652-4.

[153] T. Villa, T. Kam, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Explicit and
implicit algorithms for binate covering problems. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 16(7):677–691, 1997.

[154] E. Weitschek, G. Felici, and P. Bertolazzi. Mala: a microarray clustering and
classification software. pages 201–205. IEEE, 2012.

[155] E. Weitschek, A. L. Presti, G. Drovandi, G. Felici, M. Ciccozzi, M. Ciotti, and
P. Bertolazzi. Human polyomaviruses identification by logic mining techniques.
Virology journal, 9(1):1, 2012.

[156] E. Weitschek, G. Fiscon, and G. Felici. Supervised dna barcodes species classification:
analysis, comparisons and results. BioData mining, 7(1):1, 2014.

[157] M. Zhou and G. Rozvany. The coc algorithm, part ii: topological, geometrical
and generalized shape optimization. Computer Methods in Applied Mechanics and
Engineering, 89(1-3):309–336, 1991.

[158] M. Zhou, Y. K. Shyy, and H. L. Thomas. Checkerboard and minimum member size
control in topology optimization. Structural and Multidisciplinary Optimization, 21
(2):152–158, 2001.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	2 Metaheuristics for Information Extraction Problems
	2.1 From Logic Learning to Minimum Cost Satisfiability
	2.2 A GRASP for MinCostSAT
	2.3 Bernoulli Take the Wheel! A probabilistic Stopping Rule
	2.4 Computational Testing I
	2.5 A Hybrid Metaheuristic Algorithm for the Max Cut-Clique Problem
	2.6 Computational Testing II

	3 Graph Drawing: the Art of Representing Data
	3.1 A Local Objective: the Min-Max Graph Drawing Problem
	3.2 Solution Approaches
	3.3 How to See in the Dark: Evaluating Moves a Min-Max Problem
	3.4 Computational Experiments I
	3.4.1 Preliminary Experiments
	3.4.2 Comparative Testing

	3.5 Drawing Dynamic Informations: Mental Map and Crossing Reduction
	3.6 A Mathematical Programing Model for the Constrained-IGDP
	3.7 Solution Methods
	3.7.1 GRASP constructive methods
	3.7.2 Memory construction procedure
	3.7.3 Local Search Procedure
	3.7.4 Tabu Search

	3.8 Path Relinking post-processing
	3.9 Computational Experiments II
	3.9.1 Experimental Setup
	3.9.2 Preliminary Experiments
	3.9.3 Final Experiments

	4 Handling Dynamic Informations in Network Optimization
	4.1 The Vehicle Routing Problem with Stochastic Demands
	4.2 Simheuristics: Bringing Together Optimization and Simulation
	4.3 Integrating a Biased Randomized GRASP with Monte Carlo Simulations
	4.4 Algorithmic Performances
	4.4.1 Experimental Settings and Benchmarks
	4.4.2 Analysis of Results

	4.5 The Shortest Path Problem: Classical Approaches
	4.6 Reoptimization
	4.6.1 Root change
	4.6.2 Arc Cost Change

	4.7 Comparing Simheuristics and Reoptimization

	5 Topology Optimization: a Hardly Constrained Design Problem
	5.1 The Origins of Topology Optimization: the Compliance Problem
	5.2 The Stress Constrained Problem: Models and Challenges
	5.3 An Iterative Heuristic Method
	5.4 Computational Results
	5.4.1 Resistance Class Analysis
	5.4.2 Comparison with Von Mises' Constraints
	5.4.3 An Example of Project Constraint: Maximum Displacement

	6 Conclusions and Future Perspectives
	6.1 Minimum Cost SAT
	6.2 Maximum Cut-Clique
	6.3 Min-Max GDP
	6.4 Constrained Incremental GDP
	6.5 Vehicle Routing Problem with Stochastic Demands
	6.6 Topology Optimization of Stress-Constrained Structures

	References

