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Introduction 

 

 

 

 

 
Past and recent earthquakes showed that the seismic performance of buildings is 

strongly influenced by the presence and contribution of unreinforced masonry (URM) 

infills, which are usually considered as non-structural elements. Such enclosures are 

used – especially in Mediterranean countries – to provide buildings with thermic, visual 

and acoustic insulation.  

On one hand, URM infills can stand significant lateral loads and, so, they contribute 

to the lateral strength capacity of structures. In addition, they are provided with a high 

in-plane stiffness. For this reason, the assessment of a construction modelled as bare 

frame can yield to a significant underestimation of its lateral strength and stiffness.  

On the other hand, it is well-known that the high force demand that URM enclosures 

attract and then transfer to the confining elements can yield to unexpected failures of 

structural members designed without accounting for infills’ presence. For example, 

Reinforced Concrete (RC) columns (and beams, potentially) not designed addressing 

seismic and capacity design provisions sometimes exhibit brittle failures during strong 

earthquakes due to the so-called “frame-infill interaction”, i.e., due to the shear forces 

transferred by infills and not considered in the design. Moreover, the absence of infills 

at a certain storey of a building (typically, the first) produces a non-negligible stiffness 

variation of the structure lateral stiffness along its height, leading, in this way, to 

potential peaks of inelastic demand at that storey yielding to a sidesway collapse due to 

a soft-storey mechanism. In addition, infills’ damaging due to IP actions and their repair 

or refurbishment produces most of the financial losses consequent to earthquakes. 

In other words, neglecting infills’ presence and their contribution to the seismic 

response of structures can be both conservative and unconservative. For these reasons, 

the interest in the characterization of the seismic response of URM infills has 

significantly grown in the engineering and research community in the last decades. 
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It should be noted that these bi-dimensional non-structural elements are subjected to 

the seismic action both in the in-plane (IP) and in the out-of-plane (OOP) direction. The 

expulsion or overturning from the confining frame due to OOP actions of URM infills 

is potentially highly detrimental for human life safety and amplifies the economic losses 

consequent to earthquakes. The OOP collapse of URM infills is promoted by the damage 

due to IP actions, which can reduce their OOP strength, stiffness and displacement 

capacity. This phenomenon is called IP/OOP interaction. 

This PhD thesis is dedicated to the characterization and modelling of the OOP 

behaviour of URM infills and to the study of the effects of the IP/OOP interaction both 

at the level of the single (non-structural) component and at the level of the infilled 

structure seismic performance.  

Chapter I is dedicated to the existing literature concerning this issue and investigating 

the definition of the OOP strength, stiffness and displacement capacity of URM infills. 

In addition, existing formulation for the prediction and reproduction of the IP/OOP 

interaction effects are addressed. Finally, existing URM infills’ modelling strategies 

accounting for their OOP behaviour and for the IP/OOP interaction effects are described 

in detail.  

Chapter II constitute the second part of the previous literature recall, as it is dedicated 

to a detailed description of the experimental tests carried out in the past to investigate 

the OOP behaviour of URM infills and the IP/OOP interaction effects. It is observed 

that the experimental database allowing evaluating the effectiveness and robustness of 

literature formulations and models described in Chapter I is extremely poor.  

For this reason, a comprehensive and extended experimental program has been 

carried out at the Department of Structures for Engineering and Architecture of 

University of Naples Federico II. The experimental program main aim is the 

characterization of the effects of the panel height-to-thickness slenderness ratio, of the 

boundary conditions at edges and of the IP/OOP interaction on the OOP strength, 

stiffness and displacement capacity of URM infills. A total of fifteen tests has been 

carried out to enrich the available experimental database. Chapter III is dedicated to a 

detailed description of the experimental program and of its results. 

In Chapter IV, the experimental database collected in Chapter II and III is analysed 

and discussed, in order to compare the prediction of literature formulations and models 

aimed at assessing the OOP response of URM infills and/or its significant parameters, 

such as the force at first macro-cracking and at maximum, as well as their secant stiffness 

at the first macro-cracking and at maximum and the displacement capacity/ductility. The 
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predicting capacity of the available IP/OOP interaction models is assessed, too. This 

comparison is aimed at evaluating the effectiveness of the available models for the 

prediction of the OOP response of both IP-undamaged and IP-damaged URM infills. 

Based on the results of this comparison, original and mechanical based proposals are 

described for a robust and effective modelling of URM infills’ OOP response. In 

addition, empirical formulation for the prediction of the IP/OOP interaction are 

proposed. With Chapter IV, the characterization of the OOP behaviour of the single 

panel, which is the first part of this thesis, is completed.  

Chapter V is dedicated to a simple state-of-the-art concerning the current provisions 

given by international technical codes and standards for the assessment of URM infills 

safety with respect to OOP seismic demands. More specifically, demand and capacity 

models provided by codes are described and discussed. This is preliminary to the 

assessment of the seismic performance of RC buildings accounting for the OOP 

response of infills and for the IP/OOP interaction effects, which is the second part of 

this thesis. 

To this aim, a set of sixteen case-study buildings has been designed according to 

Eurocodes’ provisions. The case-study buildings are described and commented in detail 

in Chapter VI. The case-study buildings are different for the number of storeys, which 

is equal to 2, 4, 6 or 8, and for the design peak ground acceleration (PGA) at Life Safety 

Limit State.  

In Chapter VII, the case-study buildings described in the previous section are used to 

assess the PGA at the first OOP collapse of different infill layouts in a non-linear static 

framework by using both a simplified “Designer (code-based) Approach” and a refined 

“Reference Approach”. Only the least accounts, in evaluating the OOP force demand 

and capacity of infills, for the structural nonlinearity as well as for the IP/OOP 

interaction effects. The dependence of such the PGA capacity with respect to the first 

OOP collapse on the number of storeys and on the design PGA is discussed. In addition, 

the PGA at the first OOP collapse is compared with the design PGA of the case-study 

buildings as well as to the PGA corresponding to their conventional structural collapse. 

It is shown that weak infills in mid- and high-rise buildings can collapse for OOP actions 

and due to the IP/OOP interaction effects at PGA demand lower than the PGA at 

structural collapse or even than the design PGA. In addition, simplified criteria to 

evaluate, based on infills geometric and mechanical properties, if the OOP safety check 

is necessary or not are presented. 

In Chapter VIII, the seismic performance of the case-study buildings accounting and 
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not accounting for the IP/OOP interaction effects on URM infills is assessed by means 

of non-linear incremental dynamic analysis. Also in this case, the overall capacity of 

buildings with respect to the first OOP collapse is investigated. In addition, the OOP 

behaviour factor and effective stiffness of URM infills accounting for the IP/OOP 

interaction effects is evaluated. Such values can be used for a simplified OOP safety 

check of URM infills in a linear elastic framework. 

In the appendix section, some theoretical considerations and experimental data 

supporting the discussions above proposed are reported in detail. 
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Chapter I 

Out-of-plane strength, stiffness and displacement 

capacity models for URM infills 

1.1 INTRODUCTION 

The first part of this thesis is focused on the characterization of the out-of-plane 

(OOP) behaviour of unreinforced masonry (URM) infills. This first chapter is dedicated 

to the literature review. More specifically, the existing OOP strength, stiffness and 

displacement capacity models are described and commented in detail for both in-plane 

(IP)-undamaged and IP-damaged infills.  

As will be demonstrated in Chapter II, based on experimental data, the OOP 

behaviour of infills can be represented by a force-displacement relationship that is 

defined through three characteristic points, which correspond to the attainment of the 

following conditions: first visible cracking or macro-cracking, peak load or maximum 

and collapse or ultimate condition. Therefore, the review presented in this chapter will 

be focused on provisions, formulations and models that predict the OOP response 

corresponding to these points. 

The first cracking point is defined as the point in the OOP force-displacement 

relationship corresponding to the opening of the first noticeable crack in the infill that is 

subjected to an OOP action, generally due to mortar detachment from bricks. This 

condition corresponds to the beginning of visible panel damage and to a progressive and 

significant reduction in its stiffness exhibited against OOP actions, while prior to it, the 

infill undergoes a pseudo-elastic linear response and behaves as an orthotropic plate 

under flexure. For these reasons, the first cracking point is also recognizable as the point 
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of the experimental OOP behaviour diagram at which the first significant non-linearity 

occurs and the load corresponding to such condition is associated with the flexural 

resistance of a plate based on the tensile strength of its material.  

Timoshenko and Woinowsky Krieger (1959) proposed a relationship aimed at 

evaluating the central displacement of a uniformly loaded elastic isotropic plate as a 

function of its geometry and material elastic properties. This relationship can be used to 

obtain an expression of the initial stiffness of the infill considered as an elastic isotropic 

plate, i.e., of the initial stiffness up to the first micro-cracking point. In addition, the 

authors provided formulations based on bending analysis to assess the OOP strength of 

infills considered as elastic isotropic plates under flexure. Moreover, yield-line theory 

was used to predict the flexural resistance of plates by Hendry (1973), Haseltine et al. 

(1977) and Drysdale and Essawy (1988). The OOP flexural resistance of URM infills is 

defined by masonry tensile strength. However, analytical studies and experimental 

evidences showed, as reported, e.g., by Pasca et al. (2017), that infills have strength 

capacity greater than the one predicted based on their flexural behaviour. In fact, only 

up to first cracking the infill undergoes a pseudo-elastic linear response and behaves as 

an orthotropic plate. For this reason, models and formulations described in this work 

principally refer to post-cracking strength mechanisms. 

Under certain conditions, i.e., if the infill is sufficiently thick and confined by 

sufficiently stiff and resistant structural elements (according to ASCE-SEI 41/13 2013), 

soon after first cracking, the formation of vertical and horizontal compressive struts 

forming resistant arches in the panel thickness occurs. The strength against external 

OOP loads is mainly attributed to this post-cracking resistant mechanism called “arching 

action”, first individuated by McDowell et al. (1956) and based on masonry compressive 

strength. Based on the infill boundary conditions at edges and on its slenderness ratios 

(height (h)-to-thickness (t) for the vertical direction, width (w)-to-thickness (t) for the 

horizontal direction), arching action can be mono-directional (vertical or horizontal) or 

bi-directional (both vertical and horizontal). For instance, one-way arching action occurs 

if two parts of the masonry infill rotate about their ends thus producing a compressive 

thrust in each infill part. Based on a limit analysis lower bound theorem approach, the 

panel OOP strength is the lateral load in equilibrium with the maximum thrust value that 

the infill parts can withstand based on masonry compressive strength. One-way arching 

occurs in infills bounded to the confining frame elements only along two edges 

(hereinafter, 2E infills). In infills bounded along all four edges (hereinafter, 4E infills), 

two-way arching action can occur. In this case, both arches contribute to the infill 
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strength. However, as will be shown later in this thesis, the activation of two-way or 

one-way arching also influences significantly the post-peak behaviour of infill walls. 

Strength models and formulations based on the formation of one-way or of two-way 

arching will be described in this section. Mechanical-based models and formulations 

depend on the assumed OOP load shape: this issue will be investigated, too. Moreover, 

existing formulations for the prediction of the secant stiffness at maximum will be also 

discussed.  

After the attainment of the peak load point, the panel undergoes a severe and 

extended damage that, together with the collapse of the resistant three-hinged arch(es) 

in its thickness, produces a progressive reduction of its lateral load bearing capacity. For 

this reason, generally, after peak load, in the OOP force-displacement relationship, a 

softening branch is expected. It will be shown that the definition of the OOP collapse 

displacement and/or ductility capacity is an open issue. However, the currently available 

mechanical- or judgment-based potential definition of a conventional OOP ultimate 

displacement will be discussed. 

All the above is referred to IP-undamaged infills. At the end of the chapter, the 

existing formulations aimed at predicting the in-plane (IP)/OOP interaction effects are 

presented and described, as well as the currently available modelling strategies proposed 

to account for the OOP behaviour of URM infills and for the IP/OOP interaction effects 

during structural analyses. 

 

1.2 OOP STRENGTH MODELS BASED ON ARCHING ACTION 

As already stated, An URM infill constrained by sufficiently stiff and resistant 

structural elements (as stated, e.g., in ASCE-SEI 41/13 2013) exhibit an OOP strength 

greater than the one associated to flexure, which is based on masonry tensile strength, 

due to arching action, which is based on masonry compressive strength, instead. In this 

section, OOP strength models based on one-way and two-way arching will be presented 

and discussed. All of them are derived based on mechanical principles, such as the lower 

bound theorem of limit analysis or the principle of virtual works. The least is applied in 

the framework of the so-called yield line theory. 

As reported by Kennedy and Goodchild (2004), yield line theory was born for the 

analysis and design of reinforced concrete (RC) slabs. In that case, a yield line is a large 

crack that concurs, with other large cracks, to the definition of a cracking pattern that 

allows considering the slab as constituted by rigid parts rotating around cracks. Such 
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cracking or fracture lines are named “yield lines” as it is assumed that the slab’s rebars 

passing through them have yielded. Plastic moments develop around such yield lines 

and the rotations around them are plastic rotations. In this framework, the application of 

virtual work equation allows calculating the strength of such slabs with respect to gravity 

uniformly distributed loads. In the second half of last century, efforts to extend the 

feasibility of the yield line theory to masonry structures and, namely, to masonry walls 

under lateral (e.g., wind) loads, were carried out by different authors (see, for example, 

Hendry 1973 and Haseltine 1977). Clearly, in this case the definition of the moment 

acting along cracking lines and working for the rotation of the masonry wall’s parts 

around them is not straightforward and yield line theory should be called, more properly, 

“fracture line analysis”, as done in Hendry et al. (2003). Nevertheless, such approach is 

consolidated also for masonry walls, as was introduced in different standard codes, such 

as BS 5628 (1992) and Eurocode 6 (2005). In these cases, the moment acting around 

fracture lines is calculated based on masonry flexural strength. The use of masonry 

flexural strength within the application of the fracture line/yield line analysis usually 

leads to highly underestimated values of lateral strength (as observed, e.g., by Brincker 

1984). However, as first individuated by McDowell et al. (1956), arching action can 

occur in masonry elements. If arching action occurs, moments acting along cracking 

lines are not limited to those associated with masonry linear elastic behaviour, but are 

defined by arching thrusts forming in the wall thickness and by the lever arm associated 

with them. As this lever arm depends on the deformed shape of the masonry wall, the 

moment acting along fracture lines varies along them, as well as at increasing OOP 

displacement. So, in the literature, fracture line analysis methods for masonry walls and 

for masonry infill walls accounting for arching action were proposed based on the 

discretization of such walls or infill walls into vertical and horizontal stripes. The first 

ones allow accounting for vertical arching and to the moments along fracture lines 

associated with it; the second ones allow accounting for horizontal arching and to the 

moments along fracture lines associated with it.  

Clearly, in 2E infills, in which only one-way arching occurs, only vertical stripes 

should be considered. This is the most simple case, while more complex discussions are 

needed to apply the yield-line theory for 4E infills in which two-way arching action 

occurs. 
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1.2.1. Strength models based on one-way arching action 

The first model based on one-way arching provided in the literature is the one by 

McDowell et al. (1956), which is based on the principle of virtual works applied in the 

framework of the so-called yield line theory. 

Note that in the derivation of McDowell et al.’s strength formulation, masonry 

global mechanical properties are used, with no distinction between the mechanical 

behaviour of mortar and bricks. Considering masonry as a homogeneous anisotropic 

material, based on the mechanical properties determined on wallet specimens with 

standardized dimensions, is a consolidated and usual approach in the application of 

fracture line analysis to masonry walls and infill walls. However, it is worth to remember 

that in recent times, models for the prediction of the OOP response of masonry walls 

accounting for the different properties of bricks and mortar were presented in the 

literature (e.g., Edri and Yankelevsky 2017, Vaculik and Griffith 2017).  

To derive McDowell et al.’s OOP strength formulation for infills in which one-way 

arching occurs, consider a unit-width masonry stripe (i.e., a 2E infill) with length equal 

to L subjected to lateral loading. The stripe is crossed by one or more cracking lines that 

form the considered cracking pattern. In the derivation of McDowell et al.’s strength 

formulation, the stripe is crossed by three cracking lines and separates in two equal-

length parts rotating around their ends, as shown in Figure 1.1. At increasing OOP 

displacement at the infill mid-span, increasing compressive stresses develops at the ends 

of each infill part. Such compressive stresses produce arching thrusts opposite in their 

horizontal component to the external load. 

Note that McDowell et al. assume indeed that the infill bounding elements are stiff 

and that the considered unit-width infill stripe is subjected to a uniformly distributed 

lateral load. 
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Figure 1.1. One-way arching action according to McDowell et al. (1956). 

 

A compressive rectangular stresses distribution acting at the ends of each infill’s 

rigid part, as shown in Figure 1.1, is considered. The distance of the arching thrust 

resultant from this stresses distribution from the stripe cross-section produces a moment, 

My, which the application of the principle of virtual works is referred to. The contact 

length, c, is determined in order to maximize C value. The distance between the 

compressive forces, C, is equal to the infill’s thickness reduced of the OOP displacement 

xy corresponding to the attainment of peak load and of two times one half of the contact 

length itself. One half of the resultant moment is applied at each rigid part’s end and acts 

along the linear fracture line as My. So, My is expressed as reported in Equation 1. 

 

My =
1

8
0.85fm

′ t2 (1 −
fm

′

Eεc

)

2

 (1) 

 

In Equation 1, E is the Young modulus of masonry in the direction of arching thrusts, 

εc is the limit strain of the panel depending on panel length and on its thickness through 

Equation 2a or directly on the panel slenderness through Equation 2b. It represents the 

theoretical strain associated with the diagonal single rotating infill part when the OOP 

central displacement of the infill stripe is equal to the infill thickness, t. 
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εc =
√(L 2⁄ )2 + t2 − L 2⁄

√(L 2⁄ )2 + t2
 (2a) εc =

√0.25(L t⁄ )2 + 1 − 0.5(L t⁄ )

√0.25(L t⁄ )2 + 1
 (2b) 

 

As shown in Equation 2b, the limit strain reduces for increasing slenderness. 

By equating the external work due to the uniformly distributed load, qmax,2E, and the 

internal work due to My, an upper bound value of the infill specific strength (strength 

force per unit area) is derived and reported in Equation 3. 

 

qmax,2E = 16
My

L2
 (3) 

 

By substituting Equation 1 in Equation 3, Equation 4 is obtained. 

 

qmax,2E = 1.7
fm

′

(L t⁄ )2
(1 −

fm
′

Eεc

)

2

 (4) 

 

A more detailed derivation of the above equations is reported in Appendix A. 

Angel et al. (1994), defined an analytical model for estimating the OOP behaviour 

of URM infills based on one-way arching action. For instance, an URM stripe simply 

supported at edges by stiff boundary elements is considered. The lateral uniformly 

distributed load, qmax,2E, first produces cracking at edges and at the infill mid-height; 

after that, arching action occurs. In post-cracking condition, the reference masonry stripe 

can be represented through two equal-length segments rigidly rotating about their ends 

and producing a compressive thrust in each infill part. Stresses and strains due to the 

stripe flexural behaviour are neglected. Based on equilibrium, the out-of-plane load is 

expressed as a function of the resultant of compressive stresses distribution due to 

arching action along the boundary stiff-element/masonry segment contact length, which 

is assumed to be triangular. It is assumed that the length of the outermost fiber of the 

masonry segment is reduced due to a linear strain distribution, with maximum value at 

edges and zero point at mid-height crack. Based only on geometric compatibility 

principles, closed-form relationships are defined for calculating the compressed zone 

thickness, which ranges from 0.3t to 0.5t, the rotation of the stripe segment and the thrust 

direction with respect to a vertical reference line as a function of the maximum strain 

attained and of the panel slenderness. Based on an experimental or assigned stress-strain 

relationship for masonry compressive behaviour in the direction of arching thrust, the 
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reconstruction of the entire lateral load-deflection curve of the stripe is possible up to 

masonry crushing or infill collapse for arching action vanishing (also called “snap-

through”). A more detailed description of the analytical model is reported in Appendix 

A. 

Based on the assumption of a certain relationship, depending on the infill 

slenderness, between the outermost compressed fiber strain at OOP peak load and 

masonry crushing strain, which is set to 0.4%, Angel et al. provided a simplified 

formulation aimed at calculating the OOP strength of URM infills (Equation 5). 

 

qmax,2E =
2fm

′

(L t⁄ )
R1R2λ (5) 

 

Equation 5 expresses, so, in a simplified form, the uniformly distributed load per 

unit width in equilibrium with the maximum thrust that the infill parts could withstand. 

In other word, Angel et al.’s formulation is the result of an application of the lower 

bound limit analysis theorem. 

In Equation 5, λ is a parameter accounting for the actual width of the compressed 

part of the infill cross section due to arching and for the direction of arching thrust. 

Through all these terms, λ can be expressed as a function of the infill slenderness ratio, 

L/t, according to Table 12 reported in Angel et al. or calculated through an expression 

by Flanagan and Bennett (1999) reported in Equation 6. 

 

λ = 0.154 exp (−0.0985(L t⁄ )) (6) 

 

Equation 6 is effective for L/t slenderness values between 10 and 30. R1 is a strength-

reducing factor accounting for IP damage, always equal to 1 for IP-undamaged infills. 

R1 expression will be shown in section 1.5, concerning literature provision for modelling 

IP damage effects on infills’ OOP strength. R2 is a factor accounting for deformability 

of the infill-bounding frame and is reported in Equation 7. 

 

R2 = 0.357 + 2.49x10−14EI≤1 (7) 

 

This term has been defined as ratio of the OOP strength calculated through the 

analytical approach proposed by Angel et al. for stiff bounding frame and the OOP 

strength calculated through the stripe method proposed by Dawe and Seah (1989), which 
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accounts for the confining frame deformability and will be described in detail in the next 

subsection. 

In Equation 7, EI is the smaller flexural stiffness expressed in Nmm2 calculated for 

the structural elements of the confining frame confined by an infill wall on only one 

side; otherwise, i.e., if all the structural elements confining the considered infill wall are 

themselves confined by other infill walls on both sides, R2 is assumed equal to unit. The 

condition of stiff bounding elements is normally assured, according to Angel et al., if 

the infill is confined by common RC members: for instance, an RC element with 30000 

N/mm2 elastic modulus for concrete and 300x400 mm2 cross-section grants an R2 value 

equal to 1. If Angel et al.’s formulation is applied for 4E infills, i.e., if only one resistant 

arch is considered despite the fact that in infills bounded along four edges two-way 

arching can occur, Flanagan and Bennett suggest to evaluate R2 for horizontal and 

vertical arching and to assume the largest to be used, considering that the panel will arch 

mainly in the direction with the greatest stiffness of boundary elements. 

Dawe and Seah (1989) defined a procedure to calculate the OOP response of URM 

infills in which one-way or two-way arching action occurs. This procedure consists in 

the application, for increasing values of the infill OOP central displacement, of the 

equation of virtual works. The model will be described in detail in the next subsection, 

as its general definition is dedicated specifically to 4E infills. However, the 

simplification of the described procedure for 2E infills, in which only one-way arching 

occurs, is straightforward.  

It has been already stated that Chapter V of this thesis will be dedicated to code 

provisions for the calculation of the OOP force capacity and seismic demand on URM 

infills. For what concerns capacity models, non-European standards provide, in general, 

formulations based on Angel et al.’s model or on Dawe and Seah’s model. It is worth to 

anticipate in this section the discussion on Eurocode 6 (2005) strength model, which is 

original and based on a very simple application of the lower bound theorem of limit 

analysis. 

Eurocode 6, in section 6.3.2, proposes an expression to calculate the lateral specific 

strength of masonry walls in which arching action can occur; this relationship can be 

extended, potentially, to URM infills. Clearly, this relationship, which is reported in 

Equation 8, accounts only for one-way arching and, so, it could be rigorously applied 

only on infills bounded along two edges under a uniformly distributed load.  
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qmax,2E = fd (
t

la

)
2

 (8) 

 

In this relationship fd is the design compressive strength of masonry in the direction 

of arching thrust while la is the panel dimension in the same direction. Such ultimate 

load is the 93% of the one that equilibrates the maximum thrust that can form in the 

masonry wall thickness as expressed in Equation 9. 

 

Nad = 1.5fd (
t

10
) (9) 

 

This thrust value is obtained as the expression of the resultant of a triangular 

compressive stress distribution assumed in the panel thickness: this distribution has 

maximum value equal to the masonry compressive strength and resultant applied at a 

distance equal to t/10 from the panel intrados. This also means that the depth of the 

compressed zone from the panel intrados is assumed equal to 0.30t, which is, according 

to Angel et al., the minimum compressed zone that allows the horizontal component of 

arching thrust being opposite to OOP loads. This is a conservative assumption, as 

expected for a code provision, given that, according to Angel et al.’s analytical model, 

the compressed zone width normally ranges from a lower and an upper bound 

respectively equal to 0.3t and 0.5t. Moreover, note that also this approach is based on 

the lower bound theorem of limit analysis, i.e. on the determination of the maximum 

specific load that the infill can withstand as the maximum load in equilibrium with 

internal thrusts, as also pointed out for Angel et al.’s strength model. 

 

1.2.2. Strength models based on two-way arching action 

For 4E infills, mechanical-based OOP strength models (by Dawe and Seah) and 

formulations (by Bashandy et al. 1995) have been proposed, as well as empirical-based 

formulations (by Dawe and Seah and by Flanagan and Bennett). 

As already stated, Dawe and Seah defined a procedure to calculate the OOP response 

of URM infills in which one-way or two-way arching action occurs. Consider an infill 

wall divided in unit-width stripes with length equal to L and subjected to lateral loading. 

Given a cracking pattern, each stripe is crossed by one or more fracture lines.  
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Figure 1.2. Deformed shape of a type A and type B stripes divided by fracture lines in separate 

parts rigidly rotating about their ends. On the right, a particular of a stripe single part. 

 

As shown in Figure 1.2, it is usual considering two types of stripes, as also done in 

this study. A “type A” stripe is crossed by one fracture line at its centre. Such fracture 

line separates type A stripes in two equal length parts rigidly rotating around their ends. 

A “type B” stripe is crossed by two fracture lines, both of them at the same distance 

from the stripe nearer end. The two fracture lines separate type B stripes in three parts, 

with the two exterior parts rigidly rotating around their ends. Clearly, if dOOP is the OOP 

central displacement of the infill, e.g., the central and maximum displacement of a type 

A stripes, type B stripes have a maximum displacement z which is different from dOOP 

due to geometric compatibility. Hence, as the infill will be considered as divided in 

separate parts rigidly rotating around fracture lines, the reference deformed shape 

defined for the application of the method is a linear relation among z (OOP maximum 

displacement of the generic stripe) and dOOP (OOP central displacement of the infill).  

At a certain value of z, a certain rotation φ is defined for each stripe, as reported in 

Equation 8. 

 

φ =
2z

L
 (8) 

 

At increasing dOOP (and, therefore, for each stripe, at increasing z and φ), increasing 
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compressive stresses develop at the ends of each stripe part. Such compressive stresses 

produce arching thrusts opposite in their horizontal component to the external load. The 

compressive stresses develop in the stripe thickness along the contact length between 

the masonry segment and the confining elements. The contact length, c, is calculated as 

reported in Equation 8. 

 

c =
2t tanφ − L(1 − cosφ)

4tanφ + (k1k2fmL/tEm)cosφ
 (9) 

 

In Equation 9, k1 and k2 are stress block parameters both set to 0.85, fm and Em are 

masonry compressive strength and elastic modulus, respectively, in the direction 

examined.  

According to Dawe and Seah, the resultant of compressive stresses acting, per unit 

length, in the depth of contact is equal to N, which is calculated as reported in Equation 

10. 

 

N = k1k2fmc (10) 

 

This force acts at a distance equal to 0.5c from the outermost compressed fibre of 

the stripe cross-section. Note that, through c, N depends only on the rotation, which is 

equal for all stripes oriented in the same direction, and on the infill geometric and 

mechanical properties. As shown in Figure 1.2, N generates a moment with respect to 

the stripe cross section centroid which is calculated as reported in Equation 11.  

 

M = 0.5N(t − c − z) (11) 

 

Note that the moment depends on the OOP maximum displacement of the 

considered stripe, so it varies for each stripe, as already stated (however, note that for 

2E infills, z is equal for all stripes hence also N is equal for all stripes). For each value 

of dOOP, z can be calculated for all stripes as a reference deformed shape has been 

defined, φ can be calculated through Equation 8, c through Equation 9, N through 

Equation 10 and M through Equation 11. The internal work for each infill stripe is 

calculated as reported in Equation 12. 
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LI,stripe = 2N(t − c − z)φ = 4N(t − c − z)
dOOP

L
 (12) 

 

Given a certain value of the OOP central displacement dOOP, the sum of the internal 

works calculated for both horizontal and vertical stripes must be calculated and equated 

to the external work, which depends on the external load shape. This equation provides 

the OOP force corresponding to the fixed OOP central displacement dOOP and, so, the 

OOP force-displacement curve for the considered infill. 

All the above described approach can be applied also when considering the presence 

of a gap g between the infill confining elements and the infill edges (as for “3E” infills, 

that are detached from the upper structural element). To account for this, only Equation 

9 should be modified as reported in Equation 13. 

 

c =
2t tanφ − L(1 − cosφ) − g

4tanφ + (k1k2fmL/tEm)cosφ
 (13) 

 

Note that g is assumed as a constant, i.e., is equal to the initial gap existing between 

the infill wall and the confining elements and does not evolves explicitly at increasing 

value of dOOP. It should be noted that, when accounting for the presence of g, c can result 

lower than zero. This means that the considered stripe is actually not in contact with the 

adjacent structural element and that arching thrusts do not form. However, at increasing 

value of dOOP, c can become greater than zero. This means that the rotation of the infill 

stripe has “filled” the gap and that the stripe and the adjacent element came in contact, 

allowing the formation of arching thrusts. This circumstance occurred during the 

experimental program carried out at the Department of Structures of Engineering and 

Architecture of University of Naples Federico II, as will be shown in Chapter III. 

Equation 9 can be modified to consider also the deformability of the confining frame 

elements. In fact, due to arching thrusts, the structural elements that support infills 

deform and it is possible to associate with each stripe the total outward displacement of 

the confining elements, f, in correspondence with the considered stripe. Note that f is 

calculated as the algebraic sum of the outward displacements calculated at both ends of 

the stripe, according to the reference system reported in Figure 1.3 in the case of an infill 

wall that encloses a simple one-bay one-storey frame. The beam outward displacement 

is assumed as positive when it has the same direction of vertical thrusts, while columns’ 

outward displacements are assumed as positive when they have the same direction of 
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horizontal thrusts acting on each element.  

  

 
Figure 1.3. Global and local reference systems that should be used to correctly define the f 

value for each stripe. 

 

To account for the frame deformability, only Equation 9 should be modified as 

reported in Equation 14. 

 

c =
2t tanφ − L(1 − cosφ) − g − f

4tanφ + (k1k2fmL/tEm)cosφ
 (14) 

  

Differently from g, f is a function of dOOP, as at increasing OOP central displacement 

arching thrusts vary and, so, also the outward displacement of the confining frame 

elements, which is subjected to arching thrusts applied by the infill, varies. Note that, as 

f is different for each stripe, when the deformability of the confining frame is considered, 

the depth of contact c is different for each stripe, and, therefore, also N is different for 

each stripe. In other words, when the infill is confined by stiff elements, the vertical 

and/or horizontal arching thrusts are uniformly distributed along its width/height. On the 

contrary, if the confining elements are deformable, such thrusts are no more uniformly 

distributed and are lower where the confining elements maximum deflections are 
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expected. It will be shown in the next Chapters that arching thrusts in the central part of 

very thick and robust infills can even be zero due to the frame elements’ deformations. 

As explained by Dawe and Seah themselves and herein recalled, when introducing 

the frame deformability in the model, it is necessary to implement an iterative procedure 

to calculate, for each stripe, the correct value of c corresponding to a certain value of 

dOOP.  

The steps of the iterative procedure are reported in the following. Note that in the 

following discussions, it is assumed that the considered infill walls encloses a simple 

one-bay one-storey structural frame. This is assumed for two reasons: first, Dawe and 

Seah’s model accounting for the frame deformability will be applied in Chapter IV on 

the results of experimental tests carried out on infills enclosing simple one-bay one-

storey frames; second, in real buildings, the effects of the frame deformability on the 

OOP response of URM infills can be often neglected, as the deformation of structural 

elements due to arching thrusts is prevented by the confinement provided by other 

structural and non-structural elements 

 

i. The OOP force-displacement must be calculated under the hypothesis of stiff 

confining elements. For a specific value of dOOP, this leads to a distribution 

of arching thrusts N acting on the confining structural elements. As already 

stated, at this stage N is equal for all stripes with the same direction. 

Therefore, a uniformly distributed outward load acts on the RC frame 

structural elements.  

ii. To introduce the frame deformability in the OOP response model, it is 

necessary to calculate the frame deformed shape under the load distribution 

evaluated at the first step. This leads to the definition of a value of f for each 

stripe.  

iii. A new compression-bearing width value must be calculated for each stripe 

by means of Equation 14. Clearly, this yields to a new distribution of arching 

thrusts, which is no more uniform even when associated with stripes with the 

same direction. 

iv. The new outward load distribution leads to a new deformed shape of the 

confining frame, which leads to a new value of c for all stripes and, so, to a 

new distribution of arching thrusts.  

 

Steps iii. and iv. should be reiterated until no significant variation in the value of 
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arching thrusts is observed between successive iterations. As this iterative procedure 

must be performed for each value of dOOP, when accounting for the frame deformability 

it is not possible to provide a closed-form final relationship between the OOP force and 

the OOP central displacement. So, in this case, the OOP force-displacement relationship 

is found numerically: the higher the number of vertical and horizontal stripes, the lower 

the error made in the discretization of the infill wall in stripes.  

To achieve all these goals, it is necessary to introduce in the routine a matrix 

containing the deformability coefficients of the structural frame, Δ. If n is the number of 

horizontal stripes and m is the number of vertical stripes, the frame elements’ outward 

displacements must be calculated in n control section of each column and in m control 

section in the upper beam. Each control section corresponds to the centre of a stripe. For 

all these reasons, the deformability matrix that must be implemented is a 

(2n+m)×(2n+m) square matrix. The generic term of the Δ matrix, δij, represents the 

outward displacement in the i-th control section when a unit-force with the direction of 

arching thrusts is applied in the j-th control section. For each value of dOOP, for each 

iteration, the trial value of the arching thrust acting in the j-th stripe, Nj, must be 

multiplied for the j-th column of Δ to obtain the outward displacement of all control 

sections due to Nj.  

When this has been done for all columns of Δ, the actual outward displacement in 

the i-th control section, fi, which enters Equation 14, is provided by the sum of all Njδij 

products, as reported in Equation 15. 

 

fi = ∑ Nj

2n+m

j=1

δij (15) 

 

To express in a closed form all the δij terms, it is convenient to divide Δ in sub-matrices, 

as shown in Figure 1.4. 
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Figure 1.4. Partitioned deformability matrix. 

 

Namely, both lines and columns are divided in three groups. The first group is 

constituted by n lines/columns and is related to the RC frame left column. The second 

group is constituted by m lines/columns and is related to the RC frame upper beam. The 

third group is constituted by n lines/columns and is related to the RC frame right column. 

Therefore, a total of 9 submatrices is defined. For the sake of clarity, they are numbered 

in Figure 1.4. The generic submatrix carries the outward displacement of a control 

section belonging to the left column/upper beam/right column when a unit-force is 

applied, in the direction of arching thrusts, to a control section belonging to the left 

column/upper beam/right column. 

The values of the frame deformability coefficients are reported in the following 

equations and are determined by considering only the frame flexural deformability.  
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Figure 1.5. Deformability coefficient for the RC frame shown in Figure 1.4. In the above 

Equations, a=EIb/EIc and b=w/h. EIb and EIc are the flexural stiffness of the beam and of the 

columns’ cross sections, respectively. 

 

A second issue should be considered when dealing with URM infills in RC frames. 

Clearly, for steel members, it is possible to assume a constant value of the flexural 

deformability coefficients up to yielding. However, the deformation of RC elements 

depends on their initial elastic stiffness only at low load levels. If the non-linear 

behaviour of concrete and steel rebars is not explicitly modelled, as in the present case, 

an effective deformability of members should be defined to obtain a realistic evaluation 

of the frame displacements given that a linear elastic behaviour is assumed for them.  

The application of the above procedure in a parametric study allowed the 

identification of the more important parameters in determining infills’ OOP strength. 

Based on the experimental results of the tests performed by Dawe and Seah, an empirical 

relationship (Equation 16) involving these parameters was then proposed to compute the 

resistant OOP uniformly distributed load for concrete blocks infills bounded on four 
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edges in a pinned frame. 

 

qmax,4E = 4.5fm
′  0.75t2 (

α

w2.5
+

β

h2.5
) (16) 

 

Clearly, Equation 16 is an additive formulation, in which the contributions of 

vertical and horizontal arching to qmax,4E can be separately evaluated. Masonry 

compressive strength, f’m, is different perpendicular and parallel to bricks’ holes. 

According to Flanagan and Bennett, the value determined perpendicular to bricks’ holes 

should be used, as this is often the only one available. The factors α and β are two 

parameters accounting for flexural (EI) and torsional (GJ) stiffness of the surrounding 

columns (c subscript) and beams (b subscript) determined as reported in Equations 17 

and 18. 

 

α =
1

h
(EcIch2 + GcJcth)0.25 ≤ 50 (17) 

 

β =
1

w
(EbIbw2 + GbJbtw)0.25 ≤ 50 (18) 

 

For infills detached from the confining frame along the upper edge (3E infills), 

Equation 16 is substituted by Equation 12. 

 

qmax,3E = 4.5fm
′  0.75t2 (

α

w2.5
) (19) 

 

In addition, Equation 17 is substituted by Equation 20. 

 

α =
1

h
(EcIch2 + GcJcth)0.25 ≤ 75 (20) 

 

The upper bounds applied on α and β values were determined through the application 

of the step-by-step procedure proposed by the authors to evaluate infills’ OOP force-

displacement relationship on infills surrounded by stiff elements. Note that the 

application of Equations 16 and 19 on infills realized in a moment-resisting frame could 

produce underestimating predictions of their OOP strength. In fact, as will be shown in 

Chapter II, Dawe and Seah tested infilled steel frames with structural members pinned 
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at ends. Steel members constituting infills’ confining frames were provided of relatively 

low flexural and torsional stiffness. For this reason, α and β values close to their 

maximum are usually obtained for infills in RC frames. In other words, common RC 

confining members usually reproduce a “stiff boundary elements” condition. 

Flanagan and Bennett also proposed a modification reported in Equation 21 of 

Equation 16 to best-fit additional experimental data. 

 

qmax,4E = 4.1fm
′  0.75t2 (

α

w2.5
+

β

h2.5
) (21) 

 

In Equation 21, all parameters keep the already discussed meaning, except for α and β 

that are determined by neglecting the torsional stiffness terms.  

Bashandy et al. (1995), extended McDowell et al.’s approach to infills bounded 

along four edges with width equal to w and height equal to h through a stripe method. 

The collapse mechanism shown in Figure 1.6 is considered, with θ=45°. 

 

 
Figure 1.6. Collapse mechanism considered by Bashandy et al. 

 

The infill is divided in vertical and horizontal non-interacting stripes. The first ones 

account for vertical arching, the second ones account for horizontal arching. A 

maximum displacement equal to the one that produces the attainment of peak load due 

to vertical arching, xyv, is assigned to the central horizontal fracture line of the infill, i.e., 

the maximum OOP displacement associated with each central vertical stripes is equal to 

xyv. Given the regularized deformed shape considered, non-central vertical stripes, as 

well as all horizontal stripes, are associated with a maximum OOP displacement lower 

than xyv. In correspondence with fracture lines, moments due to vertical and horizontal 

arching act. Such moments are different for each stripe. Namely, moments due to 

h

w

θ
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vertical arching are equal to Myv for central vertical stripes as to these stripes a 

displacement equal to xyv is assigned. For non-central vertical stripes, whose maximum 

OOP displacement varies from zero (edge stripes) to xyv, moments due to vertical 

arching vary linearly from zero to Myv. For what concerns horizontal stripes, the 

maximum moment can be attained only if the maximum displacement of the considered 

stripe is equal to xyh. However, no horizontal stripe is associated with a maximum OOP 

displacement equal to xyh, as the maximum OOP displacement for the central horizontal 

stripe is, for geometric compatibility, equal to xyv. Hence, moments due to horizontal 

arching are linearly dependent on the maximum displacement attained by the considered 

horizontal stripe and, so, vary from zero to xyv/xyh times Myh, which is the moment due 

to horizontal arching acting around the fracture lines crossing the central horizontal 

stripe. For each vertical and horizontal stripe, a uniformly distributed load whose 

external work is equal to the internal work due to moments acting in correspondence of 

fracture lines crossing the considered stripe is calculated. As moments are linearly 

variable from zero to the maximum value when passing from boundary stripes to central 

stripes, also the uniformly distributed load calculated for each stripe is different from 

stripe to stripe. Namely, it equals zero on the infill edges and is maximum for central 

stripes. In this way, the external load shape reproduces the deformed shape itself. In 

other words, the load distribution is shaped as a hipped roof as the deformed shape itself, 

so it will be defined as “hipped-shaped” in the following. Note that within this approach, 

moments due to arching action and acting in correspondence of fracture lines are null at 

the infill edges and maximum at the infill centre. This assumption has no mechanical 

basis (note in fact that Dawe and Seah’s model is based on completely opposite 

assumptions), and yields to strongly underestimated values of the OOP strength of URM 

infills, as also noted by Bashandy et al. themselves.  

Myv and Myh can be calculated through the application of Equation 1, with masonry 

mechanical properties adapted to the considered direction of arching thrusts. Also εc 

should be calculated separately for vertical and horizontal stripes by using Equation 2a 

or 2b. The OOP resistance obtained is expressed through Equation 22. In Equation 22, 

xyv and xyh are calculated as reported in Equation 23.  

 

Fmax = 16
Myv

h2
[h2ln2 + h2 (

w − h

h
) + wh (

Myh

Myv

xyv

xyh

) ln (
w

w − 0.5h
)] (22) 
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xyv =
tfmv

′

Emvεcv

 (23a) xyh =
tfmh

′

Emhεch

 (23b) 

 

The “equivalent” uniformly distributed load whose resultant on the infill surface 

produces the resistance expressed in Equation 22 is reported in Equation 24. 

 

qmax,4E = 16
Myv

h2
[

h

w
ln2 + (

w − h

w
) + (

Myh

Myv

xyv

xyh

) ln (
w

w − 0.5h
)] (24) 

 

Note that for w that tends to infinity, qmax,4E expressed in Equation 24 becomes qmax,2E 

expressed in Equation 3, i.e., the specific resistance of a panel bounded along four edges 

tends, independently on masonry mechanical properties, to the specific resistance of a 

panel bounded only along two edges as the panel width increases.  

Equation 22 can be generalized for θ varying between 0 and 45°, as reported in 

Equation 25.  

 

Fmax = 16
Myv

h2
[

h2

tgθ
ln2 + h2 (

w − htgθ

h
) +

wh

tg2θ
(

Myh

Myv

xyv

xyh

) ln (
w

w − 0.5htgθ
)] (25) 

 

Independently on θ value, also in this case qmax,4E tends to qmax,2E if w tends to 

infinity. Consider also that the formulation reported in Equation 25 does not have an 

absolute minimum for varying θ, i.e., it cannot be used to individuate the optimal value 

of θ that minimize the predicted OOP strength. 

 

1.2.3. Influence of the load shape on the theoretical OOP strength of infills 

In Table 1, all the OOP strength models described in the previous sections are 

recalled. Each model refers to a specific boundary condition for the infill, to one-way or 

two-way arching action and to a specific external load shape. 

As shown in Table 1.1, all strength models allow calculating the uniformly 

distributed load corresponding to the considered infill’s OOP strength, except for 

Bashandy et al.’s model, in which the calculated load is hipped-shaped as the considered 

collapse mechanism/deformed shape. Not all experimental tests were carried out by 

applying on test specimens a uniformly distributed load. So, in order to assess all 

literature and code formulations predictive capacity by using the collected experimental 

results, which is the scope of Chapter IV of this thesis, it is necessary to “adapt” them 
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to different load shapes. In this section, separately for infills bounded along two and four 

edges, the relationships associated to different strength models are reformulated for 

different load shapes, in order to show the effect of different loading condition on the 

theoretical OOP strength of infills. In addition, it is worth to mention that adapting the 

OOP strength formulations to different load shapes is useful for the interpretation of 

experimental tests’ results, but also preliminary to the proposal of efficient, robust and 

reliable strength formulations. Namely, a formulation valid for uniformly distributed 

lateral load can be effective for a safety assessment of URM infills under wind load. A 

different load shape should be used for infills under seismic load, as will be shown in 

Chapter IV. 

 

Table 1.1. OOP strength models based on one-way and two-way arching action. 

Author/Code 
formulation/model  

type 

arching 

action 

external load  

shape 

McDowell et al. mechanical one-way uniform  

Angel et al. mechanical one-way uniform 

Eurocode 6 mechanical one-way uniform 

Dawe and Seah mechanical two-way whichever 

Dawe and Seah empirical two-way uniform 

Bashandy et al. mechanical two-way hipped  

Flanagan and Bennett empirical two-way uniform 

 

Note that Dawe and Seah’s and Flanagan and Bennett’s formulations are empirical, 

so their expressions cannot be adapted to different loading conditions by using an 

analytical approach. For what concerns Dawe and Seah’s stripe model, its application 

can be always performed by accounting for the OOP load actual shape within the 

calculation of the virtual work of external forces. 

 

1.2.3.1. Strength models accounting for one-way arching 

Consider an URM infill wall with height h and width w, bounded only along the 

lower and upper horizontal edges. Consider for this infill a collapse mechanism defined 

by horizontal fracture lines along the lower and upper edges, as well as along the infill’s 

mid-height. The maximum moment per unit width along linear hinges, My, is calculated 

according to McDowell et al.’s formulation reported in Equation 1. If φ is the rotation 

of the infill rigid parts around the fracture lines at edges and 2φ is the relative rotation 
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of infill parts around the central fracture line, as shown in Figure 1.7, the internal virtual 

work is expressed as in Equation 28. 

 

 
Figure 1.7. Assumed deformed shape at maximum for 2E infills. 

 

LI = 4Myvφ (28) 

 

The external virtual work LE due to loads applied on the infill depends on the 

external load shape. The external virtual work for uniformly distributed load (Figure 

1.8a), for a concentrated load applied on two points, each one distant γh from the nearest 

edge (Figure 1.8b), and for concentrated load applied at the infill mid-height (Figure 

1.8c) are reported in Equations 29-30 and 31, respectively. 

 

   

(a) (b) (c) 

Figure 1.8. Load shapes considered for the calculation of the external virtual work. 

 

LE = q
h2

4
φ (29) 

 

LE = Fγhφ (30) 

2

Myv

Myv

Myv

q
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LE = F
h

2
φ (31) 

 

By equating virtual works, the following expressions, reported in Equations 32-34 

are derived for the OOP strength, Fmax, of the considered infill. As expected, Equation 

20 corresponds to McDowell et al.’s formulation. 

 

uniformly distributed load Fmax = (qmaxhw) = 16Myv

w

h
 (32) 

concentrated load on two points Fmax =
4

γ
Myv

w

h
 (33) 

concentrated load at mid-height Fmax = 8Myv

w

h
 (34) 

 

Equations 32-34 show that an infill subjected to uniformly distributed load exhibits 

an OOP strength equal to two times the resistance exhibited under concentrated load 

applied at mid-height, and to 4γ times the resistance exhibited under concentrated load 

applied on two points, each one distant γh from the nearest edge. 

As already stated, Eurocode 6’s strength model is based on the assumption of a 

maximum value for vertical arching thrust and on the calculation of the maximum 

uniformly distributed load in equilibrium with that thrust value. In other words, it is 

based on one-way arching and on the lower bound theorem of limit analysis. The 

resultant load in equilibrium with the maximum arching thrust reported in Equation 9 

calculated for different load shapes is reported in Equations 35-37. As expected, 

Equation 35 corresponds to Eurocode 6’s formulation (except for the 1.08 factor, which 

is dropped in Eurocode 6 formulation for simplicity). 

 

uniformly distributed load Fmax = 1.08fm (
t

h
)

2

wh (35) 

concentrated load on two points Fmax =
0.27

γ
fm (

t

h
)

2

wh (36) 

concentrated load at mid-height Fmax = 0.54fm (
t

h
)

2

wh (37) 

 

As Equations 32-34, also Equations 35-37 show that an infill subjected to uniformly 
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distributed load exhibits an OOP strength equal to two times the resistance exhibited 

under concentrated load applied at mid-height, and to 4γ times the resistance exhibited 

under concentrated load applied on two points, each one distant γh from the nearest 

edge.  

The same results are obtained by “adapting” Angel et al.’s formulation to different 

load shapes. For all these reasons, it is possible to conclude that the conversion factor 

between one loading shape to another for infills in which one-way arching occurs does 

not depend on the infill mechanical or geometric properties and, above all, does not 

depend on the specific mechanical-based strength model used. 

 

1.2.3.2. Strength models accounting for two-way arching 

Now, consider an URM infill bounded along all edges. In this case, Bashandy et al.’s 

model can be adapted to different loading schemes by equating internal and external 

works calculated by applying the hypotheses of Bashandy et al.’s approach, especially 

in terms on moment distribution along fracture lines.  

Equations 38-40 report the calculated value of Fmax for different loading schemes 

obtained by applying all the hypotheses of Bashandy et al.’s model, which were 

presented in the previous section. The four loading points considered in Equation 39 are 

placed on the infills’ diagonal, at distance equal to γh from the nearer horizontal edge 

for each horizontal couple of loading points. 

 

uniformly distributed load 

Fmax = 16Myv [
3

2

w

h

(2w − h)

(3w − h)

+
3

2

Myh

Myv

xyv

xyh

(
w

3w − h
)] 

(38) 

concentrated load  

on four points 
Fmax = 16Myv [

1

8γ
(2

w

h
− 1 +

Myh

Myv

xyv

xyh

)] (39) 

concentrated load  

at mid-height 
Fmax = 16Myv [

1

2

w

h
−

1

4
+

1

4

Myh

Myv

xyv

xyh

] (40) 

 

If the assumptions reported in Equation 41 are made: 

 

S =
w

h
; (41a); T =

Myh

Myv

xyv

xyh

 (41b) 
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Equations 38-40 can be rewritten as: 

 

uniformly distributed  

load 
Fmax = 16Myv [

3

2
S

(2S − 1)

(3S − 1)
+

3

2
T (

S

3S − 1
)] (42) 

concentrated load  

on four points 
Fmax = 16Myv [

1

8γ
(2S − 1 + T)] (43) 

concentrated load  

at mid-height 
Fmax = 16Myv [

1

2
S −

1

4
+

1

4
T] (44) 

 

As can be observed through Equations 42-44, it is not possible, for infills bounded 

along four edges, to define a “conversion factor” of the OOP resistance in passing from 

one loading scheme to another independently on the infill geometrical (represented by 

S) and mechanical (represented by T) properties. A sensitivity analysis to S and T 

variation for the ratios of Fmax under a hipped load (Fmax,hl) over Fmax under uniformly-

distributed load (Fmax,ud), 4-points load with γ=1/3 (Fmax,4p) and under central 1-point load 

(Fmax,1p) is shown in Figure 1.9. 

 

 

   
(a) (b) (c) 

Figure 1.9. Conversion factor of OOP strength under hipped load to uniformly distributed load 

(a), to concentrated 4 points with γ=1/3 load (b) and to concentrated 1 point load (c). 

 

In all cases, the conversion factor shown in Figure 1.9 is independent on masonry 

mechanical properties for square panels. A slight variability with both S and T is 

observed for Fmax,hl/Fmax,ud, with conversion factor meanly equal to 0.94, while a 

significant variability with S, but not with T, is observed for both Fmax,hl/Fmax,4p and 

Fmax,hl/Fmax,1p.  
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1.3 OOP STIFFNESS MODELS  

As already stated, infill walls under lateral loads behave, in the initial loading stages, 

as an elastic orthotropic plate.  

Timoshenko and Woinowsky-Krieger proposed a relationship aimed at evaluating 

the central displacement of a uniformly-loaded elastic plate, δ, as reported in Equation 

45. 

 

δ = α
qa4

D
 (45) 

 

In Equation 45 α is a parameter accounting for the aspect ratio and bounding 

condition of the plate (see Tables 8, 29 and 47 in Timoshenko and Woinowsky-Krieger); 

a is the shorter dimension of the plate (typically, in an infill wall, the height, h); D is the 

well-known flexural stiffness of the plate per unit width, expressed according to 

Equation 46. 

 

D =
Et3

12(1 − ν2)
 (46) 

 

 The previous relationship can be used to obtain an expression of the initial stiffness 

of the infill considered as an elastic plate, i.e., of the initial stiffness up to the first 

cracking point, as reported in Equation 47, in which b is the longer dimension of the 

plate (typically, in an infill wall, the width, w). 

 

Kel =
F

δ
=

qab

α
qa4

D

=
bD

αa3
=

1

α

w

h3

Et3

12(1 − ν2)
=

1

12α(1 − ν2)

Ew

(h/t)3
 (47) 

 

As Equation 47 is dedicated to isotropic plates, E is the elastic modulus of the 

material. It is well known that masonry is an orthotropic material. Hence, the application 

of Equation 47 to masonry infills is not immediate.  

It is worth mentioning, as it will be useful when dealing with infills under seismic 

loads, that with the same approach above shown it is possible to derive from 

Timoshenko’s work also the elastic stiffness of a rectangular plate under sinusoid load, 

as reported in Equation 48. 
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Kel =
π2

3(1 − ν2)
Ewt3h (

1

w2
+

1

h2
)

2

 (48) 

 

The literature provides a formulation for the calculation of the secant stiffness at 

maximum. Kadysiewski and Mosalam (2009), in fact, propose to calculate this stiffness 

value using an approach based on the first out-of-plane natural frequency of the panel 

considered pinned only at the top and bottom edges given by Blevins and Plunkett 

(1980) and reported in Equation 49. Clearly, for this reason, the formulation is rigorously 

applicable only to 2E infills. 

 

f =
π

2L2
√

ξEI

m/L
=

π

2h2
√

ξEwt3

12m/h
 (49) 

 

In Equation 49, L is the infill length and E is masonry elastic modulus, both of them 

evaluated in the direction perpendicular to the pinned edges: typically, L is the infill 

height, h; m is the infill mass; I is the infill cross-section area moment; ξ is a coefficient 

defining the effective flexural stiffness of the infill cross section. 

For such a type of 2E infill, the mass participating to the first out-of-plane mode, mp, 

is equal to ψ times the infill total mass, with ψ equal to 0.81, as reported by Kadysiewski 

and Mosalam. It is well known that for a Single Degree of Freedom (SDOF) dynamic 

system the fundamental vibration frequency is calculated as reported in Equation 50. 

 

f =
1

2π
√

k

mp

=
1

2π
√

k

ψm
 (50) 

 

In Equation 50, k is the SDOF elastic stiffness. If the URM infill is considered as an 

SDOF with respect to OOP excitations, k is its elastic stiffness in the OOP direction. By 

comparing Equations 49 and 50, the value of k can be determined. According to 

Kadysiewski and Mosalam, this is the value of the OOP secant stiffness at maximum 

and is reported in Equation 51.  
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Kmax =
π4

12
ψξ

Ew

(h/t)3
 (51) 

 

If, according to Kadysiewski and Mosalam, ψ is assumed equal to 0.81 and ξ is 

assumed equal to 0.50 (to account for the cross-section cracking), Equation 52 is 

derived.  

 

Kmax = 3.28
Ew

(h/t)3
 (52) 

 

It is worth to mention that Equation 52 and 47 has the same structure, as if Kmax can 

be expressed as a fraction of Kel depending on the infill boundary condition and effective 

stiffness due to cracking. 

 

1.4 OOP DISPLACEMENT CAPACITY MODELS  

Usually, the collapse displacement of a structural or non-structural member is 

conventionally defined based on a fixed reduction of its resistance. This reduction is 

commonly related to a certain damage state of the element or to a significant variation 

in its response. A unique and commonly accepted definition of OOP displacement 

capacity for URM infills is not available. However, according to previous studies and 

code provisions the OOP displacement capacity can be calculated by associating it to 

different phenomena.  

First, it is commonly accepted that for geometric compatibility the OOP 

displacement cannot be greater than the infill thickness, t.  

In addition, based on Angel et al. (1994)’s analytical model, two candidate 

expression for the definition of the OOP collapse displacement can be derived. The first 

one is associated to an instability phenomenon called “snap-through”, which occurs 

when arching action vanishes. The second one is associated to masonry mechanical 

properties, i.e., to masonry crushing due to the compressive stresses associated with 

arching thrusts. 

To derive such expressions, a masonry stripe simply supported at ends is considered. 

Indefinitely stiff and resistant supports are assumed. As shown in Figure 1.10, masonry 

stripes are supposed to crack at ends and mid-height and to divide in two equal-length 

masonry segments.  
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(a) (b) 

Figure 1.10. Cracked masonry stripe deformed shape at arching action occurrence (a) and 

masonry segment detail (b).  

 

Based only on equilibrium and geometrical compatibility, the expressions reported 

in Equations 53-55 are derived for the compression bearing width in the infill thickness 

normalized with respect to the infill thickness itself, b/t, for the rotation of masonry 

segments, θ, and for the angle of arching thrust direction with respect to vertical 

direction, γ, in the hypothesis of small displacements and rotations. 

 

b

t
= 0.25 (1 + √1 − 2c (

L

t
)

2

) (53) 

θ = c
L t⁄

b t⁄
 (54) 

γ =
2(1 − 2k2(b t⁄ ))

(L t⁄ )
− c

L t⁄

b t⁄
 (55) 

 

In Equations 53-55, L is the length of the infill panel in which arching action occurs, k2 

is assumed equal to 0.33 for triangular compression stresses distribution in the bearing 

width, c is a dimensionless parameter defined as reported in Equation 56. 
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c =
1

4
εmax (56) 

 

In Equation 56, εmax is the strain attained at the outermost compressed fiber in the 

panel thickness. The masonry stripe central displacement is calculated as reported in 

Equation 57. 

 

d = θ
L

2
 (57) 

 

As shown in section 6.2 of Angel et al., when c is equal to the value reported in 

Equation 58, the direction of arching thrust becomes vertical, i.e., γ equals 0. 

 

clim =
0.481

(L t⁄ )2
 (58) 

 

At this point, if a little displacement increment is applied to the masonry stripe, 

arching thrusts assume horizontal component with the same direction of OOP loads, i.e., 

a little increment of lateral displacement produces a sudden snap-through collapse of the 

stripe as arching action separates masonry segments from each other.  

If c=clim, the b/t ratio assumes a limit value as reported in Equation 59. 

 

b

t
= (

b

t
)

lim
= 0.25 (1 + √1 − 2clim (

L

t
)

2

) = 0.30  (59) 

 

In the same case, also the masonry segment rotation attains a limit value, as reported 

in Equation 60. 

 

θ = θlim = clim

L t⁄

(b t⁄ )lim

=
1.60

(L t⁄ )
= 1.60

t

L
 (60) 

 

The displacement at snap-through is obtained by substituting Equation 60 in 

Equation 57, as reported in Equation 61. 
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d = dlim = θlim

L

2
= 1.60

t

L

L

2
= 0.80t (61) 

 

So, both vertical and horizontal arching vanish if the infill central displacement is 

equal to 0.80 times the infill thickness. 

For what concerns the displacement at masonry crushing due to arching thrusts, in 

this case, c assumes the value reported in Equation 62. 

 

ccrush =
1

4
εcrush (62) 

 

The masonry segments’ rotation at masonry crushing is reported in Equation 63. 

 

θ = θcrush = ccrush

L t⁄

b t⁄
= 0.25εcrush

L t⁄

b t⁄
 (63) 

 

In Equation 63, b/t should be equal to the value reported in Equation 64. 

 

(
b

t
)

crush
= 0.25 (1 + √1 − 2ccrush (

L

t
)

2

) (64) 

 

In order to provide a conservatively simplified equation for dcrush prediction, it is 

necessary to assume for b/t the maximum possible value for b/t, equal to 0.50. In this 

case, Equation 63 can be rewritten as reported in Equation 65. 

 

θ = θcrush = ccrush

L t⁄

(b t⁄ )crush

= 0.50εcrush

L

t
 (65) 

 

The displacement at masonry crushing can be expressed as reported in Equation 66. 

 

d = dcrush = θcrush

L

2
= 0.50εcrush

L

t

L

2
= (0.25εcrush

L

t
) L 

 

(66) 

Moreover, the OOP displacement at the attainment of peak load for infills with 

slenderness equal to 20 and masonry crushing strain equal to 0.004 should be lower than 

3% of the infill height to ensure that such infills can reach their maximum load-bearing 
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capacity without snapping through according to Angel et al. and FEMA 274 (1997). This 

height percentage is assumed as OOP displacement capacity by ASCE/SEI 41-13 (2013) 

at Life Safety Limit State. 

Finally, Kadysiewski and Mosalam (2009), based on judgment, suggest assuming 

the OOP collapse displacement equal to 5 times the OOP displacement at peak load. In 

other words, they assume an OOP ductility capacity for the infill equal to 5. 

 

1.5 IP/OOP INTERACTION MODELLING FORMULATIONS  

As already stated, the damage of infills due to IP actions affects their OOP response 

and vice-versa. This phenomenon is called IP/OOP interaction.  

For what concerns the IP damage effects on the OOP response, previous works 

mainly investigate the effects on the OOP strength. The IP damage entity is usually 

represented by a main displacement demand parameter such as the Interstorey Drift 

Ratio (IDR) and, in some cases, by the infill vertical slenderness ratio, h/t. In fact, it is 

assumed that at equal IP displacement demand, less slender infills should be less 

damaged and then that their OOP capacity should be less compromised. The same result 

was observed by Agnihotri et al. (2013) through numerical FEM analyses. 

An OOP strength model accounting for IP/OOP interaction was proposed by Angel 

et al. (1994( based on experimental data. In this case, the pure OOP resistance of the 

undamaged infill is reduced using an R1 factor that will be called R in this thesis. R is 

expressed as a function of the infill height over thickness slenderness ratio and of the 

maximum IP drift (IDR) attained normalized with respect to the IP drift corresponding 

to the infill IP first cracking (IDRcrack), as reported in Equation 67.  

 

R = 1 
IDR

2IDRcrack

< 0.5 

(67) 

R = 

[1.08 + (h t⁄ ) (−0.015

+ (h t⁄ )(−0.00049

+ 0.000013(h t⁄ )))]

IDR
2IDRcrack  

IDR

2IDRcrack

≥ 0.5 

 

OOP strength reduces for increasing IP displacement and reduces faster for higher 

slenderness values, as intuitively expected.  

Morandi et al. (2013) based on Calvi and Bolognini (2001)’s tests, proposed 
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empirical stepwise (Equation 68) and linear (Equation 69) formulations for the 

calculation of the OOP strength reduction factor due to IP damage. In the “stepwise” 

formulation, the onset of IP/OOP interaction effects on the OOP strength for thin infills 

is set corresponding to an IDR equal to 0.30%, which is the threshold IDR for infilled 

RC buildings at the attainment of Damage Limitation limit state according to the Italian 

building code NTC2008 (2008).  

 

R = 

1.00 IDR ≤ 0.30% 

(68) 0.20 0.30% < IDR ≤ 1.00% 

0 IDR > 1.00% 

 

R = 

1-2.67IDR IDR ≤ 0.30% 

(69) 0.20 0.30% < IDR ≤ 1.00% 

0 IDR > 1.00% 

 

Based on Guidi et al. (2013)’s tests on unreinforced masonry strong and thick infills, 

Verlato et al. (2014) proposed an empirical relationship for the evaluation of the R 

factor. Such relationship is reported in Equation 70. 

 

R = 

1-0.86IDR IDR ≤ 0.70% 

(70) 0.40 0.70% < IDR ≤ 1.20% 

0 IDR > 1.20% 

 

For what concerns the effects of damage due to OOP action on the IP response of 

infills, based on numerical analysis, Al-Chaar (2002) states that the effects of OOP loads 

on the IP capacity of infills could be neglected if these loads do not exceed a threshold 

fixed at 20% of the corresponding capacity; otherwise, a formulation based on FEM 

analysis is provided and is reported in Equation 71. 

 

IPred

IPcap

= 1 +
1

4

OPdem

OPcap

−
5

4
(

OPdem

OPcap

)

2

 (71) 

 

In Equation 71, IPred is a general parameter of IP capacity reduced due to OOP 

action; IPcap is the same parameter of IP capacity in absence of OOP action; OPdem is the 

OOP demand acting on the infill corresponding to the IP capacity parameter under exam; 

OPcap is the same parameter of OOP capacity in absence of IP action.  
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Further formulations and approaches dedicated to the prediction of the IP/OOP 

interaction effects will be shown in the next subsection, in which the available modelling 

approaches and strategies to account for the OOP behaviour of infills and for the IP/OOP 

interaction effects during structural analyses are presented and discussed.  

 

1.6 IP/OOP INTERACTION MODELLING STRATEGIES  

Hashemi and Mosalam (2007) proposed a strut and tie macro-model of infills based 

on the results of FEM analyses. In this model, the infill is represented by eight no-tension 

truss elements joined in the center by a no-compression truss element. The coordinates 

of the characteristic points of the constitutive law together with the geometric 

characteristics of struts and tie are calibrated in order to obtain an interaction domain of 

IP action, PH, and OOP action, PN, which follows the one obtained through numerical 

analysis. In order to obtain this domain, several numerical analyses at finite two-

dimensional elements were carried out, during which the infill was subjected to a 

constant OOP action PN and to an IP action PH increasing up to the panel collapse. The 

pushover curves and the resulting interaction domain obtained are shown in Figure 1.11. 

 

 

(a) (b) 

Figure 1.11. IP/OOP interaction represented through IP pushover curves at assigned OOP 

forces (a) and through a static IP/OOP interaction domain (b). Adapted from Hashemi and 

Mosalam (2007). 

 

Kadysiewski and Mosalam (2009) introduced a macro-model alternative to the one 

proposed by Hashemi and Mosalam. In this case, the infill is modelled through one 

diagonal beam element pinned at the edges and provided with a lumped mass in the 
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center active only in the OOP direction. Kadysiewski and Mosalam calculate the OOP 

strength of the undamaged infill by applying FEMA356 (2000) provisions, based on 

Angel et al.’s formulation, as will be explained in Chapter V, while the stiffness is 

determined following the indications based on OOP frequency of the panel discussed 

the previous subsections. Then, the OOP displacement at peak load ΔNy0 is determined 

as the peak force resulting from the peak load to the above-mentioned stiffness ratio, 

while the ultimate displacement is set equal to 5 times the peak load displacement. In 

order to take into account the IP/OOP interaction, the authors introduce a convex 

relationship derived from numerical analysis and represented in Figure 1.12; moreover, 

an interaction domain in terms of yielding and collapse displacements is defined as 

reported in Equation 72. 

 

(
PN

PN0

)
3/2

+ (
PH

PH0

)
3/2

= 1 (72) 

 

 
(a) (b) 

Figure 1.12. IP/OOP interaction domains in terms of forces (a) and displacements (b). Adapted 

from Kadysiewski and Mosalam (2009) 

 

Given that until yielding the IP and OOP behaviour of infill is assumed to be linear 

elastic, the interaction domain in terms of yielding displacement is expressed through 

the same convex relationship used for the domain in terms of forces; moreover, given 

the lack of specific indications in literature, the authors postulate that the same 3/2 power 

relationship can be used to model the interaction in terms of ultimate displacement. 

Integral part of the discussed model is a routine that removes from the structural model 

the elements representative of the infill when their IP/OOP displacement history exceeds 

the interaction domain in terms of ultimate displacement. 

Dolatshahi et al. (2014) carried out three-dimensional FEM analyses resulting in 
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interaction domains in terms of yielding and peak load. The analytical relationship 

proposed to represent the elliptical yielding curve, which is shown in Figure 1.13, is 

reported in Equation 73. 

 

 
Figure 1.13. IP/OOP interaction domain in terms of forces. Adapted from Dolatshahi et al. 

(2014). 

 

(
PN

PN0

)
2

+ (
PH

PH0

)
2

= 1 (73) 

 

Furtado et al. (2016) defined an infill model inspired by the proposal of Kadysiewski 

and Mosalam. In this model, the infill is represented by 4 diagonal rigid elements joined 

in the center by one element which takes into account the non-linearity of the infill 

behaviour. The central element is joined to the diagonal struts through 2 nodes in which 

the OOP mass is lumped. The OOP behaviour is assumed as elastic-plastic with strength 

and stiffness calculated accordingly to Kadysiewski and Mosalam’s approach. Also in 

this case, part of the model is an algorithm that removes the elements representative of 

the infill from the structural model if its IP/OOP displacement history exceeds an 

interaction domain in terms of ultimate displacement. The domain is linear and is based 

on the assumption that, for the undamaged panel, the maximum IP drift is equal to 1.5% 

while the maximum OOP drift is equal to 3%.  

A macro-model based on the one defined by Kadysiewski and Mosalam was also 
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proposed by Longo et al. (2016). The interaction domains previously considered were 

derived through numerical analysis. Maheri et al. (2012) carried out a sequence of tests 

aimed at determining an experimental IP/OOP interaction domain in terms of strength 

of infills. Fifteen masonry panels were tested until collapse under combined IP/OOP 

action. Each of these panels was subjected to a fixed OOP load monotonically applied 

and kept constant while IP diagonal action was applied until the panel collapse. At 

increasing values of the previously imposed OOP load, a reduction of strength and 

stiffness under IP action was registered, as reported in Figure 1.14. 

 

 
Figure 1.14. IP/OOP interaction experimental domains in terms of force. Adapted from Maheri 

and Najafgholipour (2012). 

  

Di Trapani et al. (2018) proposed a macro-model in which the infill wall is 

represented by two fiber-section diagonals accounting for the IP/OOP interaction and 

through a vertical and a horizontal element accounting for the bi-directional arching 

action. 

An infill wall model accounting for the IP/OOP interaction was proposed by Oliaee 

and Magenes (2016). The infill is represented by 2 diagonals, each one divided into 2 

non-interacting in-series no-tension elements, an inelastic truss representing IP 

behaviour and a distributed inelasticity fiber element representing OOP behaviour. The 

IP/OOP interaction is introduced through the updating of the strain at peak load of the 

material assigned to fibers (OOP stiffness reduction) and through the reduction of the 

fiber elements’ thickness (OOP strength reduction) depending on the maximum IP 

displacement registered. The reduction of the fiber elements’ thickness represents the 



44 Chapter I – OOP strength, stiffness and displacement capacity models for URM infills 

 

 

 

expulsion of outer shells of masonry units due to IP damage. The effort made to provide 

the model’s features of a physical meaning, unlike Kadysiewski and Mosalam-based 

models, has to be highlighted. 
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Chapter II 

Experimental state-of-the-art 

2.1 INTRODUCTION 

The first Chapter of this thesis was dedicated to the presentation, analysis and 

discussion of the OOP strength, stiffness and displacement capacity models for IP-

undamaged and IP-damaged URM infills. In order to assess the effectiveness of these 

models, in this Chapter the experimental tests previously carried out and presented in 

the literature aimed at assessing the pure OOP behaviour of such types of infills as well 

as the IP/OOP interaction effects are described.  

First, it is worth to mention that, with respect to the number of IP tests (which is, 

according to De Risi et al. 2018, in the order of hundreds), the number of OOP or 

combined IP/OOP tests performed on URM infills is very small, i.e., in the order of the 

dozens.  In this Chapter, only pseudo-static tests on URM infills will be considered.  

The first section of this Chapter is dedicated to the pseudo-static OOP tests carried 

out on 2-edges (2E) infills, i.e., on infills bounded only along the upper and the lower 

edges also indicated, sometimes, as masonry stripes, in which only one way arching 

occurs. The second section is dedicated to the pseudo-static OOP tests carried out on 4-

edges (4E) infills, i.e., on infills bounded along all edges to the confining structural 

elements. In this second section, also some specimens that will be defined as 3-edges 

(3E) infills, i.e., infills bounded along three out of four edges to the confining structural 

elements, will be presented. A third section is dedicated to other experimental programs 

that will not enter the database discussed in Chapter IV for reasons that will be explained 

for each of them. 

The experimental programs will be presented in chronological order. Within the 
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description of each experimental program, pure OOP tests and combined IP/OOP tests 

will be described. For each experimental program, test specimens’ characteristics, tests’ 

procedure and tests’ remarkable results will be described. Geometric and mechanical 

properties of specimens are reported, if provided by the authors or procurable in the 

literature. More specifically, masonry compressive strength in the vertical (fmv) and in 

the horizontal (fmh) direction are reported, as well as masonry elastic modulus in the 

vertical (Emv) and in the horizontal (Emh) direction. An overall collection of geometric 

and mechanical properties of specimens is reported in Appendix D. 

In addition, for what concerns the OOP response of specimens, information 

concerning the load and displacement corresponding to the first visible crack/first 

significant non-linearity (Fcrack and dcrack, respectively), and to the maximum (Fmax and 

dmax, respectively), as well as the displacement at the end of the test (dend) are collected. 

Based on F and d values, the secant stiffness at first visible crack (Kcrack) and at 

maximum (Kmax) are calculated. If such data are not directly provided by the authors, 

they are derived, if possible, from the observation of the OOP force-displacement 

relationships, based on the tests’ description provided by the authors and, sometimes, on 

judgment. 

 

2.2 EXPERIMENTAL TESTS ON 2E INFILLS 

In this section, the pure OOP experimental tests carried out on 2E infills, i.e., on 

masonry stripes by da Porto et al. (2007) and by Hak et al. (2014) are described. The 

report by Modena et al. (2005) is also considered at support of the description of the 

tests by da Porto et al. (2007). 

 

2.2.1. da Porto et al., 2007 

Single-wythe panels made of clay hollow bricks were built between the ceiling and 

the floor of laboratory and used as test specimens. Each specimen was 2520 mm high, 

1000 mm wide and 300 mm thick, with a slenderness equal to 8.4 and aspect ratio equal 

to 0.40. Bricks were jointed through 10 mm thick M3 cementitious mortar layers.  

The tested specimens differed for the direction of bricks’ holes (O – horizontal, V – 

Vertical) and for the bed joint type (A, B, C). More specifically, stripes with type A 

mortar joints were characterized by non-continuous vertical and horizontal joints; stripes 

with type B mortar joints were characterized by non-continuous vertical joints and 

continuous horizontal joints; stripes with type C mortar joints were characterized by 
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non-continuous vertical and horizontal joints. Three classes of panels were so defined: 

FOA, FOB and FVC; for each one of these classes, three specimen were realized and 

tested 28 days after their construction. Characterization tests on brick units and mortar 

specimens were performed. Their results are reported in Modena et al. (2005). Based on 

these results, masonry compressive strength and elastic modulus are determined based 

on Eurocode 6 (2005) formulations (section 3.6.1.2 and 3.7.2, respectively). Such 

average values determined and provided for FOA, FOB and FVC specimens are reported 

in Table 2.1. 

 

Table 2.1. Mechanical properties of the specimens by da Porto et al. (2007). 

 fmv Emv fmh Emh 

specimen [N/mm2] [N/mm2] [N/mm2] [N/mm2] 

FOA 1.87 1870 - - 

FOB 2.62 2620 - - 

FVC 5.22 5220 - - 

 

Test were performed by applying a concentrated load at the infill mid-height. Such 

load was distributed along a horizontal line through an horizontal steel beam. In 

addition, the load was applied monotonically and in displacement control at 0.01 mm/sec 

velocity. A picture of the experimental program setup is reported in Figure 2.1. All tests 

were interrupted soon after the attainment of peak load, at which the specimen collapsed.  

The experimental evidences showed that the out-of-plane strength of panels was 

mainly influenced by brick units’ compressive strength and by their general robustness: 

in fact, panels made of bricks with vertical cores showed a global collapse mechanism 

instead of the local (at the edges) mechanism exhibited by panels made of bricks with 

horizontal cores. Moreover, panels with continuous horizontal bed joints exhibited a 

peak load greater by about 30% with respect to the one exhibited by panels with 

interrupted joints. In this study, given the boundary conditions of the specimens, there 

was no significant contribution of vertical joints typology to the ultimate load of panels. 

A summary of tests’ results is reported in Table 2.2. 
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Figure 2.1. Experimental setup by da Porto et al. (2007). 

 

Table 2.2. Summary of tests’ results by da Porto et al. (2007). 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

FOA1 13.0 0.35 37.1 43.2 2.3 18.8 2.3 

FOA2 13.0 0.35 37.1 43.8 2.4 18.3 2.4 

FOA3 13.0 0.35 37.1 45.1 2.3 19.6 2.3 

FOB1 14.5 0.35 41.4 63.9 2.9 22.0 2.9 

FOB2 14.5 0.35 41.4 55.3 2.6 21.3 2.6 

FOB3 14.5 0.35 41.4 58.0 2.3 25.2 2.3 

FVC1 23.4 0.20 117 174 3.4 51.2 3.4 

FVC2 23.4 0.20 117 193 4.4 43.9 4.4 

FVC3 23.4 0.20 117 179 3.4 52.6 3.4 

 

2.2.2. Hak et al., 2014 

Hak et al. (2014) tested thick real-scale URM infills both in the in-plane and in the 

OOP direction. Among these, specimen TA5 was bounded only along the upper and the 

lower edges to the confining RC frame. The specimen was realized with clay hollow 

bricks placed with vertical cores and vertical and horizontal mortar joints. It was 350 



Chapter II – Experimental state-of-the-art 51 

 

 

 

mm thick, 2950 mm high and 1380 mm wide. The aspect ratio was equal to 0.47, the 

vertical slenderness was equal to 8.4. The mechanical properties provided for specimen 

TA5 are reported in Table 2.3. 

 

Table 2.3. Mechanical properties of specimen TA5 by Hak et al. (2014). 

 fmv Emv fmh Emh 

specimen [N/mm2] [N/mm2] [N/mm2] [N/mm2] 

TA5 4.64 5299 1.08 494 

 

The OOP test was performed by applying the load at the specimens’ mid-height by 

means of two horizontal beams. Being the infill detached from structural elements at 

both lateral edges, this loading type can be schematized with two concentrated forces 

acting at distance from the infill mid-height equal to one-half the distance between the 

horizontal beams. However, the distance between the two horizontal beams is not 

provided, although it seems to be very small from graphical sketches of the experimental 

setup. Hence, also in this case, the external load will be considered as concentrated at 

the infill mid-height.  

In this case, differently from da Porto et al.’s tests, the OOP load was applied to the 

infill surface with load-unload cycles. In addition, the infill stripe was bounded to the 

upper and to the foundation beam of an RC frame. The compressive strength of da Porto 

et al.’s masonry predicted, based on the compressive strength of bricks with vertical 

holes and mortar, through EC6 formulation and equal to 5.22 N/mm2 was similar to the 

compressive strength parallel to bricks’ holes declared by Hak et al. for their masonry 

wallets, equal to 4.64 N/mm2. Moreover, the two masonry stripes had similar 

slenderness ratio. However, da Porto et al.’s stripes had an OOP strength equal to around 

2.5 times that exhibited by the similar stripe by Hak et al. and a displacement at peak 

load equal to 1/5 of that shown by Hak et al.’s stripe. Moreover, Hak et al.’s specimen 

did not show a brittle failure at peak load. First, such significant differences can be due 

to the cyclic nature of Hak et al. tests. Second, such differences can also be due, for some 

part at least, to the deformability of the bounding elements for Hak et al.’s specimen.  

A summary of the test results is reported in Table 2.4. 
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Table 2.4. Summary of test TA5 results by Hak et al. (2014). 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

TA5 35.0 1.0 35.0 67.0 18.0 3.72 75 

 

A picture of the specimen at the end of the test is reported in Figure 2.2. 

 

 
Figure 2.2. Specimen TA5 by Hak et al. (2014) after tests. 

 

2.3 EXPERIMENTAL TESTS ON 4E INFILLS 

In this section, the pure OOP and combined IP/OOP experimental tests carried out 

on 4E infills, i.e., on URM infills bounded to the confining structural elements along all 

edges are described.  

The tests considered are those by Dawe and Seah (1989), Angel et al. (1994), 

Flanagan and Bennett (1999a), Calvi and Bolognini (2001), Varela-Rivera et al. (2012), 

Guidi et al. (2013), Hak et al. (2014), Furtado et al. (2016). 

 

2.3.1. Dawe and Seah, 1989 

Steel frames infilled by real-scale single-wythe walls made of concrete hollow 
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bricks were used as test specimens. Each infill was 2800 mm high and 3600 mm wide, 

with aspect ratio equal to 1.29. The concrete units were jointed by a type S mortar.  

The tested infills were 90, 140 or 190 mm thick, with a vertical slenderness ranging 

from 14.7 to 31. Specimens WE2, WE4, WE5 and WE8 were realized with plain 

unreinforced masonry and were mortared along all edges to the confining steel elements. 

Specimen WE3 was constituted by a dry-stack unreinforced masonry panel. Specimen 

WE1 was reinforced with trust type joint reinforcement at alternate courses. Specimens 

WE6 and WE7 were unreinforced and reinforced, respectively, infills provided with a 

20 mm gap between the upper edge and the upper beam of the steel frame (i.e., they 

were 3E infills). Specimen WE9 was a plain masonry panel provided with a central 

opening. The mechanical properties provided for the specimens are reported in Table 

2.5. Note that the fmv and Emv values are provided in detail by Flanagan and Bennett 

(1999b) while the average value of fmh and Emh, equal for all specimens, is provided by 

Dawe and Seah. 

 

Table 2.5. Mechanical properties for the specimens by Dawe and Seah (1989). 

 fmv Emv fmh Emh 

specimen [N/mm2] [N/mm2] [N/mm2] [N/mm2] 

WE1 3.1 24600 18.4 17400 

WE2 28.1 23000 18.4 17400 

WE3 24.3 17575 18.4 17400 

WE4 22.7 13800 18.4 17400 

WE5 20.2 15600 18.4 17400 

WE6 22.3 17200 18.4 17400 

WE7 23.0 16100 18.4 17400 

WE8 27.4 16200 18.4 17400 

WE9 24.3 17575 18.4 17400 

 

A uniform pressure normal to the panel surface was applied gradually in increments 

of 0.2 kPa prior to first cracking and 0.4 kPa thereafter. At the end of each load 

increment, the pressure was maintained at a constant level to allow the system to 

stabilize before deflection readings were taken. The tests were interrupted, presumably, 

when each specimen attained an extreme damage condition preventing the prosecution 

of the test itself. Combined IP/OOP tests were not performed. 

It was observed that, after cracking, the lateral strength of infill is granted by arching 
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action, whose effectiveness did not result influenced by the presence of the opening. 

They also observed that the out-of-plane strength increases with the square of the panel 

thickness and reduces as its width and height increase.  

In general, the study was dedicated to the influence of the boundary conditions at 

edges on the pure OOP response of infills. It was observed that the presence of gaps or 

the panel slippage at edge could influence the cracking pattern and the deformed shape 

exhibited by the infill: according to Dawe and Seah’s response model, this circumstance 

has a great influence on the OOP stiffness and strength exhibited by infills. In addition, 

the presence of a gap can prevent the formation of arching action in a specific direction, 

provided that the infill deformation during loading does not make the infill itself come 

in contact with the confining structural element despite the initial gap. In this case, 

arching action does not occur at the initial loading steps, but can form successively. All 

the above considerations are summarized in Figure 2.3. Note that, e.g.., WE2 specimen, 

which was bounded along four edges, exhibited an OOP strength 1.8 times higher than 

WE6 specimen, which was bounded along three edges. 

. A summary of the tests’ results is reported in Table 2.6. 

 

 
Figure 2.3. Effect of boundary conditions at the edges of infills on their deformed shape and 

OOP response. Adapted from Dawe and Seah (1989). 
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Table 2.6. Summary of tests’ results by Dawe and Seah (1989). 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

WE1 26.2 - - 225 - - - 

WE2 38.3 - - 194 - - - 

WE3 - - - 78.6 - - - 

WE4 24.2 - - 113 - - - 

WE5 22.2 - - 78.6 - - - 

WE6 52.4 - - 107 - - - 

WE7 68.5 6.2 11.1 148 70.0 2.1 110 

WE8 48.4 - - 135 - - - 

WE9 32.3 - - 175 - - - 

 

2.3.2. Angel et al., 1994 

Eight one-half scaled RC infilled frames were tested. The infill specimens were 1625 

mm high and 2440 mm wide, with aspect ratio equal to 1.5. Except for one specimen, 

the columns were subjected to an axial load simulating the presence of upper storeys. 

The infills were made of clay bricks placed with horizontal holes (specimens 1, 2, 3, 6, 

7 and 8) or concrete masonry units (CMU, shown in Figure 2.4, specimens 4 and 5). 

Half-wythe (specimens 1, 2 and 3), single-wythe (specimens 4, 6 and 7) and double-

wythe (specimens 5 and 8) panels were tested: their thickness ranged from 48 mm 

(specimens 1, 2, 3) to 190 mm (specimens 5 and 8) while their vertical slenderness varied 

between 9 and 34. The bed joints were realized with various (N, S or lime) types of 

cementitious mortar. Some specimens (2, 3 and 6) were repaired after the out-of-plane 

test and then tested again under lateral actions. A summary of masonry mechanical 

properties provided by the authors is reported in Table 2.7. 

 

 
Figure 2.4. Concrete Masonry Unit (CMU). 
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Table 2.7. Mechanical properties for the specimens by Angel et al. (1994). 

 fmv Emv fmh Emh 

specimen [N/mm2] [N/mm2] [N/mm2] [N/mm2] 

1 11.6 7848 - - 

2b 10.9 8046 - - 

2c 10.9 8046 - - 

3b 10.1 5212 - - 

3c 10.1 5212 - - 

4b 22.9 12438 - - 

5b 21.5 11625 - - 

5d 21.5 11625 - - 

6b 4.6 2137 - - 

6b2 4.6 2137 - - 

6c 4.6 2137 - - 

6d 4.6 2137 - - 

6t 4.6 2137 - - 

7b 11.0 2923 - - 

8b 3.5 2358 - - 

 

Specimen 1 was tested under pure OOP load. For all the other specimens, a 

preliminary in-plane test was carried out. Specimens were subjected to a cyclic in-plane 

load until the attainment of a maximum displacement equal to two times the 

displacement at first cracking Δcr; then, each infill was in-plane unloaded and the panel 

was tested with a monotonically increasing out-of-plane uniformly distributed pressure 

until the attainment of an out-of-plane displacement to infill height ratio equal to 3%. 

Actually, for specimens 4b, 5b, 5d, 7c, 7b and 8b, the out-of-plane strength was higher 

than the lateral load that the actuator could apply: in these cases, a lower bound of the 

lateral strength and displacement capacity is obtained as a result of the test. Specimens 

2, 3 and 6 were repaired after the out-of-plane test with a 12 mm thick plaster layer 

reinforced with a wire mesh. Specimens 5 and 6 were tested out-of-plane at a fixed in-

plane displacement equal to two times the displacement at first cracking, that is, in 

presence of an in-plane load equal to 1.5 times the in-plane force at first cracking. 

This experimental program allowed validating the out-of-plane strength predicted at 

various IDRs by the analytical relationship proposed by Angel et al.. Note that, for what 

concerns the pure OOP behaviour, Angel et al.’s strength model is defined for 2E infills; 

however, the horizontal slenderness of the specimens tested only under pure OOP load, 
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specimen 1, was significantly high, being equal to around 51, and then, most likely, the 

authors assumed that arching action in that direction cannot occur. 

With reference to URM infills made with solid clay bricks, test specimen 1 was 

tested under pure OOP loading and exhibited an OOP strength equal to 31.3 kN and a 

final cracking pattern defined by diagonal cracks developing at the interface between 

mortar and bricks. Test specimens 2b and 3b, equal to the reference specimen for 

geometric and nominal mechanical properties, were IP tested with the application of an 

IP drift equal to 0.34% and 0.22%, respectively. Both of them showed noticeable 

horizontal cracks between mortar joints and bricks at the end of the IP test. Specimens 

2b and 3b attained an OOP strength equal to 15.9 and 23.7 kN, respectively. Also in this 

case, OOP loading produced noticeable diagonal cracking developing at the interface 

between mortar and bricks. Some observations about the effectiveness of the repairing 

method applied are also discussed. 

A summary of the tests’ results is reported in Table 2.8. 

 

Table 2.8. Summary of tests’ results by Angel et al. (1994). 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

1 17.1 3.3 5.2 31.3 16.0 2.0 48.0 

2b 7.5 7.2 1.0 15.9 16.0 1.0 48.0 

2c 37.9 1.6 23.7 79.2 26.0 3.0 48.0 

3b 12.7 7.9 1.6 23.7 23.0 1.0 48.0 

3c 52.3 1.4 37.3 83.0 18.0 4.6 48.0 

4b 118 6.7 17.6 118 7.0 16.9 - 

5b 129 1.7 75.9 129 1.7 75.9 - 

5d 128 1.2 107 128 1.5 85.4 - 

6b 28.9 8.4 3.4 49.2 32.0 1.5 52.0 

6b2 - - - 42.0 52.0 0.8 - 

6c 121 - - 122 1.7 71.9 - 

6d - - - 36.8 56.0 0.7 - 

6t - - - 121 - - - 

7b 127 8.2 15.4 122 8.0 15.2 - 

8b 128 7.3 17.5 127 8.0 15.9 - 
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2.3.3. Flanagan and Bennett, 1999 

Real scale steel frames infilled with square panels made of structural clay tiles were 

tested. The units had horizontal cores and were jointed with type N cementitious mortar; 

bed joints were 19 mm thick. The infill panels were 2240 mm high and wide. During 

the experimental campaign, single wythe and double wythe infills were tested; their 

thickness was 100 (specimen 25), 200 (specimen 2, 11, 13, 18, 19, 20 and 23) or 330 

mm (specimen 22) and their slenderness ranged from 6.8 to 22.4. The double-wythe 

specimen 22 was realized with no plaster between layers. Moreover, the structural 

frames were realized by using two types of beam and column cross section. A summary 

of masonry mechanical properties provided by the authors in Flanagan and Bennett 

(1999b) is reported in Table 2.9. 

 

Table 2.9. Mechanical properties for the specimens by Flanagan and Bennett (1999). 

 fmv Emv fmh Emh 

specimen [N/mm2] [N/mm2] [N/mm2] [N/mm2] 

18 5.59 5300 3.01 2160 

19 5.59 5300 3.01 2160 

20 5.59 5300 3.01 2160 

22 2.29 5040 - - 

23 5.59 5300 3.01 2160 

25 5.59 5300 3.01 2160 

 

Some pure in-plane (specimen 2) and out-of-plane tests (specimens 18, 22, 25) were 

performed in order to estimate the infills capacity under unidirectional load. The OOP 

tests were carried out by applying a uniformly distributed pressure with load-unload 

cycles. The test on specimen 19 was carried out first by applying a cyclic in-plane 

displacement history and then, after in-plane unloading, by applying a monotonically 

increasing out-of-plane pressure. Some infills were subjected first to a load-unload out-

of-plane cycles, with the actuator acting on the top of the specimen or to load-unload 

out of plane cycles first applied at half-height of the specimen, then to its top edge, and 

then to a cyclic in-plane load (specimens 11, 13 and 20). Moreover, one test was carried 

out first by applying a cyclic in-plane load and then, at a fixed and kept constant value 

of in-plane displacement, a cyclic uniformly distributed out-of-plane pressure and so on 

(specimen 23, whose state at the end of the test is shown in Figure 2.5). It is worth to 

mention that this test is the only one presented in the literature allowing the evaluation 
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of the IP force reduction due to OOP damage given by OOP actions applied on the entire 

infill wall.  

 

 
Figure 2.5. State of specimen 23 by Flanagan and Bennett at the end of the test. 

 

The in-plane/out-of-plane interaction seems to be negligible for specimens 18, 22 

and 25 which were 200 mm and 330 mm thick and had a slenderness ratio ranging from 

6.8 to 11.2. However, Shing and Mehrabi (2002) pointed out that this result was 

probably due to the small slenderness of the specimens: in this case, the arching action 

in the panel thickness is so robust that in-plane damage cannot deteriorate it, unless very 

high drift demands are applied. The main effect of the in-plane damage previous to 

lateral loading is the out-of-plane stiffness reduction, therefore the out-of-plane 

displacements are greater for damaged panels than for undamaged infills. To be more 

specific, specimen 18 exhibited an OOP strength equal to 133.5 kN, while its “twin” 

specimen 19, IP-damaged up to a drift equal to 0.85%, exhibited a reduced strength 

equal to 108.9 kN. Actually, specimen 23, which was nominally equal to specimen 18, 

was IP-damaged up to a drift equal to 0.20% and exhibited a strength equal to 75.4 kN, 

which is quite unexpected and difficultly explainable with other reason than 

experimental variability. 
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Prior out-of-plane damaging can modify the in-plane collapse mechanism by 

preventing diagonal cracking and promoting corner crushing. An in-plane action about 

80% of the correspondent capacity leads to a 20% out-of-plane strength reduction; on 

the contrary, a lateral action about 75% of out-of-plane strength do not determine a 

significant reduction of capacity against in plane actions.  

A summary of tests’ results is reported in Table 2.10. 

 

Table 2.10. Summary of tests’ results by Flanagan and Bennett (1999a). 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

18 40.6 1.2 33.9 133 11.5 11.6 38.0 

19 7.5 1.6 4.7 109 19.3 5.6 56.0 

20 - - - 104 10.9 9.5 - 

22 85.3 1.2 71.1 198 49.5 4.0 71.0 

23 - - - 76.8 10.0 7.7 - 

25 - - - 40.6 25.3 1.6 94.0 

 

2.3.4. Calvi and Bolognini, 2001 

Real scale RC infilled frames designed by applying the capacity design rules and 

dispositions provided by Eurocode 8 were tested. Infill wall panels were made of clay 

bricks with horizontal cores; they were 2750 mm high, 4200 mm wide, hence with aspect 

ratio equal to 1.53, 115 mm thick and vertical slenderness ratio equal to 20.4. Two 

plaster layers, each of which with 10 mm thickness, were applied to the specimens’ 

surface. Brick units were jointed through a cementitious mortar.  

The specimens differed mainly for the possible presence and typology of 

reinforcement. Specimens 2, 6 and 10 were non-reinforced. Specimen 10 was tested 

under pure OOP load, while specimens 2 and 6 were first IP cyclically loaded up to drift 

levels equal to 1.20 and 0.40%, respectively; then, they were subjected to OOP loading. 

Specimens 3 and 7 were reinforced with steel bars embedded in the horizontal mortar 

layers; specimen 3 was tested under pure OOP load, while specimen 7 was first IP 

cyclically tested up to 0.40% drift and then OOP tested. Specimens 4, 8 and 11 were 

reinforced with Murfor reinforcing system, shown in Figure 2.6, which consists in two 

parallel wires welded together with a continuous truss wire embedded in bed joints. A 

summary of the average masonry mechanical properties provided by the authors is 

reported in Table 2.11. 
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Figure 2.6. Murfor reinforcing system. Picture from: www.ilnuovocantiere.it. 

 

Table 2.11. Mechanical properties for the specimens by Calvi and Bolognini (2001). 

 fmv Emv fmh Emh 

specimen [N/mm2] [N/mm2] [N/mm2] [N/mm2] 

All 1.10 1873 1.11 991 

 

More specifically, specimen 11 was tested under pure OOP load; specimens 4 and 8 

were first IP tested, both up to a drift equal to 0.40%, and then OOP tested. Specimens 

5 and 9 were reinforced with a wire mesh embedded in the external plaster layer. Both 

tests were aimed at investigating the IP/OOP interaction effects. The IP tests were 

carried out up to a drift level equal to 1.20% and 0.40%, respectively. All out-of-plane 

tests were performed by means of a monotonic increasing load applied on 4 points 

placed on the infills’ diagonals at one-third of the diagonal length. During tests, an axial 

load was applied on the top of the columns.  

The tests were mainly aimed at assessing the IP/OOP interaction effects and the 

influence on them of various reinforcement types. Focusing on URM infills’ 

performance, the IP-undamaged test specimen 10 exhibited a resistance equal to 33.7 

kN, while specimens 6 and 2, IP-damaged up to 0.40% and 1.20% drifts, respectively, 

exhibited an OOP strength equal to 9 kN and 6 kN, respectively. The authors observed 

that the external reinforcement was considerably more efficient than internal 

reinforcement, both in terms of undamaged strength and OOP strength degradation due 

to previous IP damaging limitation. 

A summary of the tests’ results is reported in Table 2.12. 
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Table 2.12. Summary of tests’ results by Calvi and Bolognini (2001). 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

2 - - - 6.0 - - - 

4 - - - 17.2 - - 53.0 

5 - - - 21.4 - - 22.0 

6 6.5 10.0 0.7 9.0 18.4 0.5 37.0 

7 - - - 19.7 16.1 1.2 44.0 

8 8.2 5.5 1.5 17.5 18.4 1.0 48.0 

9 32.0 4.0 8.0 46.6 25.7 1.8 28.0 

10 29.0 2.4 12.1 33.7 5.2 6.5 13.0 

11 29.0 2.4 12.1 36.8 11.2 3.3 46.0 

 

2.3.5. Varela-Rivera et al., 2012 

Six full scale RC infilled frames were tested. Note that, differently from all other 

experimental programs, in this case the infills were built prior than the RC frame. The 

RC frame itself was restrained at its base to the floor of the laboratory in different ways. 

More specifically, specimens E-2, E-3, E-5 and E-6 were attached to the laboratory 

strong floors by means of rollers along the entire length of the RC frame lower beam. 

On the other hand, specimens E-1 and E-4 were not attached to the laboratory floor but 

simply connected to it through a fixed support place at the mid-length of the RC frame 

lower beam. The least technique was used to significantly reduce the IP stiffness of the 

infilled frame system. 

For what concerns infill walls, they were realized with concrete hollow bricks with 

vertical holes and horizontal and vertical mortar joints Specimens E-1, E-2 and E-3 were 

roughly 3700 mm high and 2800 mm wide, with aspect ratio roughly equal to 1.33; 

specimens E-4, E-5 and E-6 were roughly 2900 mm high and 2700 mm high, with aspect 

ratio roughly equal to 1.1. Specimens E-1, E-2, E-4 and E-5 were 150 mm thick, with 

vertical slenderness ratio roughly equal to 19; specimens E-3 and E-6 were 120 mm 

thick, with vertical slenderness ratio roughly equal to 23. Also the confining structural 

elements’ cross-section varied among different specimens; however, note that they were 

usually small, with one dimension equal to the infill thickness (120 or 150 mm) and the 

other dimension typically equal to 200 or 250 mm. In other words, such elements were 

characterized by a significant flexural deformability. A summary of masonry 

mechanical properties provided by the authors is reported in Table 2.13. 
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Table 2.13. Mechanical properties for the specimens by Varela-Rivera et al. (2012). 

 fmv Emv fmh Emh 

specimen [N/mm2] [N/mm2] [N/mm2] [N/mm2] 

E-1 2.84 - - - 

E-2 2.84 - - - 

E-3 2.45 - - - 

E-4 2.84 - - - 

E-5 2.84 - - - 

E-6 2.45 - - - 

 

Only pure OOP tests were performed. All specimens were tested under uniformly 

distributed load applied on a surface centered with respect to the infill and provided with 

length equal to 3.00 m and height equal to 2.40 m. A picture of the specimens at the end 

of tests is reported in Figure 2.7. 

The experimental program main aim was investigating, at fixed infill aspect ratio 

and vertical slenderness ratio, the effect of the frame deformability on the OOP response 

of the infills, especially in terms of strength, damage and collapse mechanism. This 

circumstance will be recalled in the next Chapter, dedicated to the application of 

currently available strength and response models on these and other specimens. 

Actually, the authors observed that the OOP strength of infills with equal slenderness 

ratio and aspect ratio was lower when they were enclosed in more deformable RC 

frames. This is consistent with Dawe and Seah’s findings.  

A summary of the tests’ results is reported in Table 2.14. 

 

Table 2.14. Summary of tests’ results by Varela-Rivera et al. (2012). 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

E-1 - - - 63.1 38.6 1.6 38.6 

E-2 - - - 93.4 36.0 2.6 36.0 

E-3 - - - 86.4 38.6 2.2 38.6 

E-4 - - - 105 25.2 4.2 26.3 

E-5 - - - 130 12.2 10.6 20.0 

E-6 - - - 111 15.1 7.4 25.2 
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Figure 2.7. Specimens’ state at the end of the OOP tests by Varela-Rivera et al. (2012). 
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2.3.6. Guidi et al., 2013 

Full scale RC frames infilled with single-wythe infills were tested. The specimens 

were 2650 mm high, 4150 mm wide (hence, with aspect ratio equal to 1.57); they were 

realized with clay hollow bricks type POROTON P69TA jointed with a 10 mm thick 

horizontal layer of cementitious mortar. No vertical mortar was used, given that each 

brick unit can slot in the one that stands beside it. The frame was designed as if it was 

part of a three-storeys building designed in accordance to 2008 Italian technical code 

and by applying capacity design; even the infill wall panel was designed in accordance 

to modern technical codes provisions and taking into account the IP and OOP actions as 

will be explained in Chapter V, dedicated to current code provisions for the OOP safety 

check of infills.  

Thick and thin infills were tested. The first ones were 300 mm thick (i.e., with 

vertical slenderness equal to 8.8) and were distinguished in unreinforced masonry infills 

(URM) and reinforced masonry infills (RM). The RM specimens were reinforced with 

vertical and horizontal reinforcing bars, as shown in Figure 2.8.  

 

 
Figure 2.8. Reinforcement layout used for thick infills by Guidi et al. (2013). Adapted from 

Guidi et al. (2013). 

 

As already stated, also thin infills were tested. They were 120 mm thick (i.e., with 

vertical slenderness ratio equal to 22.1). In addition, they were provided of a 15 mm 

thick layer of external plaster and were distinguished in unstrengthened (USM) and 

strengthened (SM), the least provided with a quadriaxial fiberglass embedded in an 8 
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mm-thick additional plaster layer.  

A summary of the average masonry mechanical properties provided by the authors 

is reported in Table 2.15. 

 

Table 2.15. Mechanical properties for the specimens by Guidi et al. (2013). 

 fmv Emv fmh Emh 

specimen [N/mm2] [N/mm2] [N/mm2] [N/mm2] 

All 6.00 4384 1.19 1767 

 

First, a cyclic displacement history is applied in the in-plane direction: it consists in 

sinusoidal cycles with increasing amplitude and three times repeated peaks for each 

displacement amplitude. After the in-plane loading and unloading, the infill wall was 

loaded out-of-plane through a monotonic increasing lateral force applied by means of 

four loading points placed along the infill diagonals, each one at one-third of the 

diagonal length. All tests were performed with an axial load applied on columns. Two 

in-plane maximum drift levels were established prior to out-of-plane tests: “D”, 

corresponding to the attainment of Damage Limitation Limit State (IDR=0.50%) 

according to the Italian building code for bare RC frames, and “U”, corresponding, 

according to the authors, to the Ultimate Limit State (IDR=1.2%). Unfortunately, no 

OOP test on an IP-undamaged reference specimen was performed. The main aim of the 

experimental program was the assessment of the effectiveness of the strengthening and 

reinforcing techniques tested at various drift levels.  

According to the authors, thick panels’ strength was mainly due to vertical arching 

while thin panels exhibited a flexural mechanism parallel to bed joints: for these reasons, 

the first ones took advantage of a greater lateral strength.  

The reinforcing and strengthening techniques turned out effective to prevent the 

OOP partial or global expulsion and to grant damage distribution. Reinforced thick 

panels were stronger than the unreinforced ones at different drift levels (+32% at 

ultimate limit state, +14% at damage limit state); moreover, they exhibited a smaller 

strength reduction in passing from damage to ultimate limit state (reinforced: -6%, 

unreinforced, -23%). Similar observations can be extended also to USM and SM panels 

and for the OOP stiffness of infills. Moreover, it was observed that, with a prior in-plane 

maximum attained drift equal to 1.2%, the displacement correspondent to a 20% strength 

degradation is greater than the one registered for unstrengthened panels. 

A summary of tests’ results is reported in Table 2.16. 
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Table 2.16. Summary of tests’ results by Guidi et al. (2013). 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

URM-D 201 15.0 13.4 201 15.0 13.4 29.9 

URM-U 159 19.4 8.2 159 19.4 8.2 48.2 

RM-D 272 20.4 13.3 272 20.4 13.3 28.2 

RM-U 195 18.2 10.7 195 18.2 10.7 38.0 

USM-U 10.0 20.3 0.5 10.0 20.3 0.5 73.5 

SM-U 15.0 24.9 0.6 15.0 24.9 0.6 99.6 

 

2.3.7. Hak et al., 2014 

Five full scale single-wythe panels made of clay hollow bricks with vertical holes 

and class M5 cementitious mortar were used as test specimens. Each infill wall was 

realized in an RC frame. Each specimen was 2950 mm high and 350 mm thick, with 

vertical slenderness ratio equal to 8.4. Specimen TA5, a masonry stripe spanning from 

the upper beam to the foundation beam of the RC frame has been already described in 

the previous section. Four other specimens were tested. Specimen TA1, TA2 and TA3 

were fully infilled, while specimen TA4 was partially infilled, as it was realized with a 

central opening spanning along the entire height of the RC frame. Focusing on the fully 

infilled specimens, they were 4220 mm wide, with aspect ratio equal to 1.43. 

Only combined IP and OOP tests were performed. Specimens TA1, TA2 and TA3 

were first cyclically tested in the IP direction up to three different drift levels equal to 

1.50%, 2.50% and 1.00%, respectively. Then, the specimens were tested by applying 

load-unload OOP cycles. The OOP load was applied by means of 16 loading points 

aligned in two horizontal rows at the center of the infill wall. All OOP tests were 

interrupted at the attainment of an infill central displacement equal to 75 mm. The 

average mechanical properties provided for all specimens are reported in Table 2.17. 

 

Table 2.17. Mechanical properties of the specimens by Hak et al. (2014). 

 fmv Emv fmh Emh 

specimen [N/mm2] [N/mm2] [N/mm2] [N/mm2] 

All 4.64 5299 1.08 494 

 

The experimental program was aimed at the assessment of the IP/OOP interaction 

effects on very thick and robust infills. The damage state of the specimens at the end of 
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the IP tests is sketched. In addition, a detailed description of damage propagation in the 

infill wall during OOP load-unload cycles is provided. It is observed that infills TA1 

and TA3 a similar damage state, manly visible at the upper corners of the specimens, at 

the end of the IP tests. Hence, it is not surprising that they exhibit a very similar OOP 

strength. More specifically, specimen TA3 exhibited a strength slightly higher than that 

observed for specimen TA1 (168.5 kN versus 163.9 kN), even if the IP drift attained by 

specimen TA3 was lower. This is due, most likely, to experimental variability. On the 

other hand, the OOP stiffness of specimen TA1 is lower than that of specimen TA3, as 

expected. Specimen TA2 strength and stiffness is significantly lower than those shown 

by specimens TA1 and TA3, being specimen TA2 IP tested up to the maximum IP drift. 

More specifically, the OOP strength of specimen TA2 was equal to 102.7 kN, with a 

37% reduction with respect to specimen TA1. A picture of specimen TA2 at the end of 

the test is reported in Figure 2.9. 

 

 
Figure 2.9. State of specimen TA5 at the end of the OOP test by Hak et al. (2014). 

 

It should be noted that, even at very high previously imposed IP drift and at very 

high OOP displacement demand, the thick and robust specimens tested by Hak et al. 

exhibit an excellent OOP response, both in terms of strength and in terms of observed 

damage state, which seems to be quite controlled. 
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A summary of  tests’ results on the fully infilled specimens is reported in Table 2.18. 

 

Table 2.18. Summary of tests’ results by Hak et al. (2014). 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

TA1 - - - 168.5 60.0 2.8 82.0 

TA2 - - - 102.7 70.0 1.5 90.0 

TA3 - - - 163.9 28.0 5.9 78.0 

 

2.3.8. Furtado et al., 2016 

Three full-scale RC infilled frames were tested. The infills were 2300 mm high, 

4200 mm wide (i.e., with aspect ratio equal to 1.83); they were realized with clay hollow 

bricks with horizontal cores. All specimens were constituted by a 150 mm thick single-

wythe layer, with vertical slenderness ratio equal to 15.3. Only during the IP test, for 

Inf_03 panel, an internal 110 mm thick leaf (with vertical slenderness equal to 20.9) was 

added by leaving a hollow with thickness equal to 40 mm. The average mechanical 

properties provided for all specimens are reported in Table 2.19. 

 

Table 2.19. Mechanical properties of the specimens by Furtado et al. (2016). 

 fmv Emv fmh Emh 

specimen [N/mm2] [N/mm2] [N/mm2] [N/mm2] 

All 0.53 1418 - - 

 

All the OOP tests were performed by means of air-bags. With an axial load equal to 

300 kN applied on columns, Inf_01 specimen was subjected to an out-of-plane 

monotonic increasing displacement up to the end of the test, which was interrupted at 

the incipient collapse for overturning of the infill. Without axial load on columns (such 

as for Inf_03), Inf_02 was subjected to a sequence of three load-unload cycles 

characterized by the same maximum lateral displacement target, which ranged from 2.5 

to 70 mm. The same cyclic out-of-plane displacement path was applied to Inf_03, which 

had been previously cyclically loaded in-plane up to the attainment of a 0.5% IDR; 

moreover, the in-plane test was performed in presence of the above mentioned internal 

leaf, which was removed prior to out-of-plane testing.  

First, it was observed that the OOP response of specimens Inf_01 and Inf_02 was 

similar, despite the different OOP loading path and the presence of axial load on the 
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columns of specimen Inf_01. More specifically, the two specimens exhibited a very 

similar OOP strength equal to 75 kN and 70 kN, respectively. A picture of the specimens 

at the end of tests is reported in Figure 2.10. 

 

 
Figure 2.10. IP-undamaged Inf_01 (left) and Inf_02 (right) specimens by Furtado et al. (2016) 

at the end of tests. 

 

For what concerns the effects of the IP/OOP interaction, it was observed that the 

lateral strength of the IP-damaged panel was four times smaller than the one registered 

for undamaged panels. The undamaged panel exhibited a softening branch in the force-

displacement relationship that was absent in the one obtained for the previously 

damaged panel: this is due to the rigid-body mechanism observed for the second one, 

whose testing was interrupted at the onset of the OOP collapse for overturning, as shown 

in Figure 2.11. In addition, first cracking occurred at the same OOP drift (0.1%) for both 

undamaged and damaged panels, but in the first case the correspondent load was about 

50 kN (similar for both Inf_01 and Inf_02), while in the second case it was about 18 kN.  
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Figure 2.11. IP-damaged specimen Inf_03 by Furtado et al. (2016) at the end of test. 

 

No significant effect of axial load on columns was observed in terms of OOP 

strength. However, through further tests carried out by Furtado et al. (2018a) it was 

observed that the presence of axial load can influence the OOP cracking pattern, while 

it can have contradictory effects on infills’ initial stiffness, as Angel et al. observe its 

increase in presence of axial load while Furtado et al. (2018b) observe its decrease in 

presence of axial load.  

A summary of tests’ results is reported in Table 2.20. 

 

Table 2.20. Summary of tests’ results by Furtado et al. (2016). 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

Inf_01 50.0 2.3 21.7 75.0 21.0 3.6 70.0 

Inf_02 50.0 2.3 21.7 69.0 13.0 5.3 53.0 

Inf_03 18.0 2.3 7.8 18.0 13.0 1.4 37.0 
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2.4 OTHER EXPERIMENTAL PROGRAMS 

In this subsection, other significant experimental programs presented in the literature 

are described. For reasons that will be explicitly explained for each of them, they will 

be neither included in the experimental database used in Chapter IV for the assessment 

of the existing literature models/formulations nor used for the proposal of new 

formulations/modelling approaches. 

The tests herein presented are those by Beconcini (1997) on 2E masonry stripes, and 

those by Griffith and Vaculik (2007) and by Pereira et al. (2011) on 4E infills. 

 

2.4.1. Beconcini, 1997 

Single-wythe panels made of clay hollow bricks were built between the ceiling and 

the floor of the laboratory and used as test specimens. Each specimen was 1000 mm 

wide. 33 infills were tested. They differed in their height (2800 mm – aspect ratio w/h 

equal to 0.36 – or 3500 mm – aspect ratio w/h equal to 0.29) and thickness (80 or 120 

mm, slenderness ratio h/t ranging from 23.3 to 43.7), as well as for unit dimensions, 

cores and bed joints direction and for the possible presence of a 10 mm thick plaster on 

the wall surface. Unfortunately, the information concerning masonry mechanical 

properties is very poor. The author only state that for specimens 3, 5, 6, 18 and 19 

masonry mean compressive strength, presumably perpendicular to bricks’ holes, is 0.69 

N/mm2. For this reason, such test will be not included in the database. 

28 days after their construction, the panels were tested by applying a monotonically 

increasing OOP load at 1250 mm height from the floor. Such load was distributed along 

a horizontal line through an horizontal steel beam.  

The author reports the out-of-plane behaviour diagrams for all specimens up to the 

attainment of the peak load, at which the test was interrupted due to the specimen 

collapse. The state of some specimens at the end of the tests is shown in Figure 2.12. 

In general, first cracking appears in correspondence to a bed joint and arises due to 

mortar detachment from bricks. In absence of vertical joints, cracking load is around one 

half of the cracking load of panels provided of them, while their presence do not affect 

the value of peak load, given that the panel always arches in the vertical direction. 

Cracking load was greater for panels made of bricks with vertical cores: in fact, 

according to the authors, in this case the interlocking effect due to mortar into the cores 

delayed cracks’ opening.  

For panels characterized by the same thickness, the dimensions of brick units did 
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not affect ultimate load, which was influenced by cores direction instead. More 

specifically, brick units with vertical cores made panels stronger with respect to lateral 

actions, as well as plaster on the panel surface did. 

 

 
Figure 2.12. Some specimens by Beconcini (1997) after tests. 

 

2.4.2. Griffith and Vaculik, 2007 

Full scale single-wythe panels made of clay hollow bricks with horizontal holes were 

used as test specimens. Each infill wall was 2500 mm high and 110 mm thick, i.e., 

provided with vertical slenderness ratio equal to 22.7. The units were jointed by 10 mm 

thick cementitious mortar layers. The infills were not realized in a real and “ordinary” 

structural frame, but they were restrained at edges by steel elements, as shown in Figure 

2.13. 
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Figure 2.13. Experimental setup by Griffith and Vaculik (2007). 

  

All panels were clamped on vertical edges and simply supported at the inferior edge. 

Specimens 1 to 6 were 4000 mm wide, with aspect ratio equal to 1.60, while specimens 

7 and 8 were 2500 mm wide, i.e., with unit aspect ratio. The specimens differed also for 

the boundary condition on the superior edge (free for specimen 6, simply supported for 

all the other specimens;, for the possible presence (for all specimens except for specimen 

6) of a vertical compressive stress σv that ranged from 0 to 0.10 N/mm2; for the possible 

presence of an opening (specimens 3 to 8), as well as for its position in the infill panel 

(central for specimens 7 and 8, non-central in all the other cases). Combined IP/OOP 

tests were not performed. A uniformly distributed monotonically increasing load was 

applied to the specimens through an air-bag system. When the specimen was 

significantly damaged, the panel was unloaded and the test was interrupted.  

The great number of variables introduced in this experimental study do not allow 

the comparison between the OOP response of equal plain and solid URM infill with 

different boundary conditions at edges. For this reason, these test do not enter the 

experimental database. 

However, it is of great interest the fact that an plastic behavior after peak load was 

observed and registered during tests for all specimens. According to Lawrence (1986), 

this is due to the presence of constraints against rotation active on the vertical panel 

edges. In fact, it seems that this circumstance allows the redistribution of bending 

moment along diagonal cracks towards vertical edges in the post-peak response. 

Assuming, as advised by Willis et al. (2004) and Griffith et al. (2005), an elastic-brittle 

moment-rotation relationship for the “plastic hinges” represented by cracks, the panel is 
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preserved from brittle failure at peak load mainly due to this redistribution phenomenon. 

Such redistribution cannot occur for da Porto et al.’s and Beconcini’s specimens, which 

are not restrained on lateral edges: hence, they collapse at peak load. However, it will 

be shown in the next Chapters that the redistribution allowing a post-peak displacement 

capacity for URM infills is not only depending on the boundary conditions, but also to 

masonry own stress-strain response, which is usually brittle in compression 

perpendicular to holes, somehow ductile in compression parallel to bricks’ holes. 

The pre-stressed specimen exhibited a greater stiffness and strength than the others, 

as well as a smaller elastic recovery at unloading. The energy dissipation capacity was 

significant and not negligible. 

 

 

2.4.3. Pereira et al., 2011 

RC infilled frames designed in accordance to Eurocode 2 (2004) and Eurocode 8 

(2004) and 2:3 scaled were tested. The specimens were made with clay hollow bricks 

with horizontal cores; they were 1700 mm high, 3500 mm wide (aspect ratio equal to 

2.06), and 150 mm thick (vertical slenderness ratio equal to 11.3). An M5 class 

cementitious mortar was used to joint brick units.  

This experimental program is similar to the one performed by Calvi and Bolognini 

(2001). Namely, it was mainly aimed at assessing the beneficial effects of two types of 

reinforcement on the OOP response of IP-damaged infills. In fact, specimens differed 

mainly for the possible presence and typology of reinforcement: an unreinforced panel 

(REF specimen) was tested, as well as two infills reinforced with a couple of bars 

embedded in bed joints (JAR specimen), and two infills reinforced with Murfor system 

(RAR specimen). Moreover, REF panel lacked of an external plaster layer, differently 

from the other specimens.  

It is worth to mention that no pure OOP test on a reference unreinforced infill was 

performed. For this reason, the tests are not included in the database. First, an in-plane 

test was performed by applying a cyclical horizontal displacement history up to the 

attainment of an IDR about 0.5%. During tests, an axial load was applied on the columns 

in order to simulate the presence of upper storeys. Then, the specimens was IP unloaded 

and loaded out-of-plane through a couple of actuators active on 4 air-bags that applied 

cyclic lateral displacement to the specimens.  

As already stated, the main purpose of this study was estimating and comparing the 
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effectiveness of the adopted reinforcement. A significant increase in the OOP strength 

of reinforced specimens, which was nearly 5 times that observed for the reference 

unreinforced specimen, which was IP-damaged up to the same drift level, was observed. 

In addition, a significant variation in the OOP collapse mechanism was observed, as the 

unreinforced REF specimens failed with a separation of the masonry wall from the 

confining RC frame, as shown in Figure 2.14. An increase in the IP strength for the 

reinforced specimens was observed, too. 

 

 
Figure 2.14. OOP incipient collapse for REF specimen by Pereira et al. (2011). 
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Chapter III 

DIST-UNINA experimental program 

3.1 INTRODUCTION 

In the previous Chapter, the experimental tests currently available in the literature 

and performed to assess the OOP behaviour of URM infills and the IP/OOP interaction 

effects have been presented and discussed. The aim of the experimental state-of-the-art 

was collecting an experimental database that will be used, in Chapter IV, to assess the 

predicting capacity of strength, stiffness and displacement capacity formulations 

described in Chapter I and to propose efficient original formulation for modelling the 

pure OOP response of infills and the IP/OOP interaction effects. However, it is 

undeniable that the experimental database collected is quite small, with only some 

dozens of pure OOP tests on plain URM infills and a dozen of combined IP/OOP tests. 

To make more robust the evaluations that will be performed in the next chapter, it is 

necessary to enrich the experimental database.  

For this reason, a wide experimental program has been performed in the Department 

of Structures for Engineering and Architecture (DIST) of University of Naples Federico 

II (UNINA). This experimental program will be referenced, hereafter, as DIST-UNINA 

experimental program. 

A total of fifteen OOP pseudo-static tests on URM infills in 2:3 scaled RC frames 

has been performed (Figure 3.1). The experimental program had two main aims:  

 

i. the assessment of the OOP behaviour of URM infills previously damaged by 

the cyclic application of in-plane (IP) displacements up to different drift 

levels (i.e., the investigation of the IP/OOP interaction);  



80 Chapter III – DIST-UNINA experimental program 

 

 

 

ii. ii. the assessment of the OOP behaviour of URM infills with different 

boundary conditions at edges.  

 

The first aim has been achieved through a reference pure OOP test associated with 

three combined IP/OOP tests, each of which carried out up to three different drift 

levels (L, low; M, intermediate; H, high). This set of tests has been performed two 

times on infills equal for nominal mechanical and geometric properties, except for 

the thickness, which was equal to 80 mm for the first set and to 120 mm for the 

second set. 

 

 
Figure 3.1. Overview of the experimental program carried-out at the Department of Structures 

for Engineering and Architecture of the University of Naples Federico II. 

 

For what concerns the second aim, i.e. the investigation of the influence of boundary 

conditions on the OOP response of URM infills, a first set of experimental tests on 80 

mm-thick infills has been performed. Namely, specimen 80_OOP_2E was mortared to 

the confining RC frame along the upper and the lower edge. In this case, the OOP 

strength of the specimen was granted by one-way arching action along the vertical 

direction. Specimen 80_OOP_4E was bounded to the confining RC elements along all 

the edges. In this case, the OOP strength of the specimen was due to two-way (horizontal 

and vertical) arching action. In addition, specimen 80_OOP_3E was bounded along 

three edges to the confining frame, as it was detached from the RC frame upper beam. 
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First, during the test, it exhibited one-way horizontal arching; then, the infill wall came 

in contact with the upper beam allowing the occurrence, also in this case, of double – 

both horizontal and vertical – arching. To complete the assessment of the OOP strength 

of 80 mm-thick infills in which only one-way (horizontal or vertical) arching occurs, the 

experimental behaviour of a second 80 mm-thick infill bounded along three edges is 

presented (specimen 80_OOP_3Eb). Then, the experimental behaviour of three 120 

mm-thick infills is described. Specimen 120_OOP_4E was bounded along four edges to 

the elements of the confining RC frames, while specimens 120_OOP_3E and specimen 

120_OOP_2E were respectively bounded along three and two edges.  

In addition, two other tests have been performed on URM infills bounded along four 

edges: first, a preliminary pure OOP “pilot” test; second, a cyclic pure OOP test. The 

results of these tests will be presented, too. 

In section 3.2, some preliminary issues are discussed. More specifically, the 

specimens are described, material properties are reported and the experimental setup is 

described, as well as the instrumentation layout and the loading path used for the IP tests 

and for the OOP tests.  

In section 3.3, the preliminary pure OOP “pilot” test is described, as well as the 

reference pure OOP tests on the 80 mm thick and on the 120 mm thick infills mortared 

along four edges to the confining frame. 

In section 3.4, the combined IP/OOP tests on the 80 mm thick and on the 120 mm 

thick infills are presented and discussed. 

In section 3.5, the pure OOP tests on the 80 mm thick and on the 120 mm thick infills 

bounded along three and two edges are presented and discussed. 

In section 3.6, the pure OOP cyclic test is presented and discussed. 

Further details on the experimental tests’ results are reported in Appendix B 

(cracking patterns and damage evolution) and in Appendix C (instrumentation 

measurements). 

 

3.2 EXPERIMENTAL PROGRAM GENERAL INFORMATION 

In this section, some general information on the experimental program are provided. 

Namely, the RC frames are described, as well as material properties. The experimental 

setup is presented, together with the instrumentation layout ant the loading path. 
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3.2.1. Specimens’ description and construction materials’ properties 

The experimental tests herein described were carried out on 2:3 scaled infilled RC 

frames designed according to the seismic Italian building code NTC2008 (2008). The 

RC frames were realized using class C28/35 and C32/40 concrete for the RC frames 

realized for the tests on the 80 mm and on the 120 m thick infills, respectively, and steel 

reinforcement bars with nominal characteristic yielding stress equal to 450 N/mm2. 

Construction drawings of the RC frame, with geometric and reinforcement details are 

reported in Figure 3.2.  

For the tests on the 80 mm thick infills, infill walls with thickness equal to 80 mm 

were realized by using 250x250x80 mm3 clay hollow bricks with nominal percentage of 

voids equal to 60%, nominal thickness of internal tiles equal to 7.4 mm and nominal 

thickness of external tiles equal to 8.0 mm. Brick units were placed with horizontal holes 

and with 1 cm thick horizontal and vertical courses of class M5 mortar. A picture of the 

brick unit is reported in Figure 3.3. Similar properties are associated with the 

250x250x120 mm3 clay hollow bricks. A picture of the brick unit is reported in Figure 

3.4.  

The bricks used had lower bound compressive strength equal to 2 N/mm2 

perpendicular to holes and to 5 N/mm2 parallel to holes. 

Recent studies have shown that the absolute dimensions – which are modified 

through scaling – of URM walls can have a significant influence on the IP response of 

URM walls and on the IP/OOP interaction effects due to the so-called size-effect. 

Namely, in Petry and Beyer (2014) and in Frumento et al. (2009), it is shown on 

empirical basis that smaller walls are characterized by a less steep softening branch and, 

so, by a higher IP drift capacity. This can influence the damage evolution due to IP 

action and, potentially, the OOP response of IP-damaged URM walls. Namely, at equal 

IP drift, a lower damage can be exhibited by smaller infills and, so, a lower OOP 

strength/stiffness reduction, too. On the other hand, in TU-DELFT (1997) and in 

Najafgholipour et al. (2013-2014) it was shown through numerical FEM analyses that 

smaller URM walls can exhibit a lower IP strength and a more significant entity of 

IP/OOP interaction. In the Authors’ opinion, it is not possible to immediately extend 

these – somehow contradictory – results obtained for URM walls to URM infill walls. 

In addition, to the Authors’ knowledge, no specific study was dedicated, concerning 

these issues, to URM infill walls. Further experimental and numerical investigation is 

needed on this topic. However, note that the specific scale factor used for this study, 

which is relatively near to the unit, should somehow limit the potential influence of size 
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effect on tests’ results. 

Mean properties of construction materials are reported in Table 3.1 and 3.2. Masonry 

compressive strength fm and elastic modulus Em were determined by vertical and 

horizontal compression tests on 770x770x80 mm3 masonry wallets, according to EN 

1052-1 (1999) standard, while its tensile strength ft and shear modulus Gm were 

determined by performing diagonal compression tests on 1280x1280x80 mm3 wallets, 

according to ASTM E519 – 02 (2002) standard. 

 

 
Figure 3.2. Construction drawings of the RC frame specimen. 

 
Figure 3.3. Picture of the 250x250x80 mm3 clay bricks used for this study. 
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Figure 3.4. Picture of the 250x250x120 mm3 clay bricks used for this study. 

 

Table 3.1. Average RC frames mechanical properties. 

 fcm fym Ecm 

specimen [N/mm2] [N/mm2] [N/mm2] 

frames used for tests on the 80 mm-thick infills 36.0 552 32308 

frames used for tests on the 120 mm-thick infills 46.2 497 34819 

 

Table 3.2. Average masonry mechanical properties. 

 fmv Emv fmh Emh ft Gm fj 

specimen [N/mm2] [N/mm2] [N/mm2] [N/mm2] [N/mm2] [N/mm2] [N/mm2] 

pilot 1.74 1015 2.97 1966   10.4 

80_OOP_4E 1.80 1517 2.21 1188   10.4 

80_OOP_3E 1.80 1517 2.21 1188   10.4 

80_OOP_3Eb 2.44 1846 2.88 2502    

80_OOP_2E 1.81 1090 2.45 1255   8.3 

80_IP+OOP_L 1.81 1090 2.45 1255 0.23 315 8.3 

80_IP+OOP_M 1.81 1090 2.45 1255 0.23 315 8.3 

80_IP+OOP_H 1.81 1090 2.45 1255 0.23 315 8.3 

120_OOP_4E 1.65 1455 2.12 1262    

120_OOP_3E 2.21 1770      

120_OOP_2E 2.21 1770      

120_IP+OOP_L 1.65 1455 2.12 1262    

120_IP+OOP_M 1.65 1455 2.12 1262    

120_IP+OOP_H 1.65 1455 2.12 1262    

120_OOP_4E_cyclic 2.21 1770      
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A picture of the infilled RC frame is shown in Figure 3.5. 

 

 
Figure 3.5. Picture of an infilled RC frame used for this study. 

 

3.2.2. Test setup and loading system 

The experimental setup was constituted by two parts. First, an IP setup was realized. 

A cantilever vertical beam was used as reaction structure for the IP hydraulic actuator. 

Steel plates were placed at each end of the RC frame upper beam and connected to the 

hydraulic actuator. Such plates were connected through four quenched steel rebars, each 

one post-tensioned by applying a 55 kN load, in order to apply positive and negative 

displacements during cyclic IP tests previous to OOP monotonic tests. Two steel stiff 

members transverse to the RC foundation beam were fixed at the rigid floor in order to 

prevent rigid body rotations of the RC frame during IP tests. Moreover, two stiff steel 
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members were fixed to the rigid floor and placed at each end of the foundation beam to 

prevent rigid body translations of the RC frame during IP tests. Second, the OOP setup 

was constituted by steel members and clamps aimed at preventing OOP drifts of the RC 

frame during OOP tests and at functioning as reaction structure for the OOP hydraulic 

actuator.  A rendering of the experimental setup is reported in Figure 3.6. A picture of 

the experimental setup is reported in Figure 3.7. 

 

 
Figure 3.6. Rendering of the experimental setup. 
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Figure 3.7. Picture of the experimental setup. 

 

IP cyclic loads were applied in displacement control at one end of the RC frame 

upper beam, according to the loading path reported in Table 3.3. 

 

Table 3.3. IP loading path defined by nominal target IP drifts and displacements. 

cycle target IP drift target IP displacement n. of sub-cycles velocity 

# [%] [mm] [-] [mm/s] 

1 +/-0.1 +/-1.97 3 0.25 

2 +/-0.2 +/-3.93 3 0.25 

3 +/-0.3 +/-5.90 3 0.25 

4 +/-0.4 +/-7.86 3 0.50 

5 +/-0.5 +/-9.83 3 0.50 

6 +/-0.6 +/-11.79 3 0.50 

7 +/-0.8 +/-15.72 3 0.50 

8 +/-1.0 +/-19.65 3 0.50 

9 +/-1.2 +/-23.58 3 1.00 

10 +/-1.4 +/-27.51 3 1.00 

11 +/-1.6 +/-31.44 3 1.00 

12 +/-1.8 +/-35.37 3 1.00 

13 +/-2.0 +/-39.30 3 1.00 

14 +/-2.4 +/-47.16 3 1.00 
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 According to consolidated analytical studies (Blevins and Plunkett 1980), the 

deformed shape associated to the first OOP vibration mode of an elastic plate simply-

supported at edges is well described, along the vertical and horizontal direction in the 

plate’s plane, through a sinusoidal shape function. Thus, the first mode-proportional 

static load equivalent to the seismic action has the same shape, under the reasonable 

hypothesis of uniform-mass dynamic system, and, so, is characterized by a null load 

along the infill edges. This means that all load distributions applied in the OOP direction 

during pseudo-static tests not shaped as a sinusoid are approximation of the real static 

load equivalent to the seismic action. In this study, OOP loads were applied in 

displacement control monotonically increasing at 0.02 mm/s velocity (except for the 

cyclic test, whose OOP loading protocol will be described in section 3.6) on four 

points/spherical hinges using a loading scheme two times symmetric with respect to the 

horizontal and vertical directions in the infill’s plane. This loading scheme has the 

advantage to reproduce the seismic condition of null load along the infill edge and was 

also adopted by Calvi and Bolognini (2001) and by Guidi et al. (2013) for OOP tests 

and combined IP+OOP tests. The loading points are placed on the infill’s diagonals, at 

a distance from both diagonal’s ends equal to one-third of the diagonal length, as shown 

in Figure 3.8. The loading system was statically determined in order to grant an equal 

partition between the four loading points of the resultant load applied.  

No axial load was applied on columns. The presence of axial load on columns seems 

to not affect significantly the pure OOP strength of URM infills, as shown by Furtado 

et al. (2016, 2018a-b). However, the presence of axial load can influence the OOP 

cracking pattern, as shown by Furtado et al. (2018a-b), while contradictory effects on 

infills’ initial stiffness, as Angel et al. (1994) observe its increase in presence of axial 

load while Furtado et al. (2018b) observe its decrease in presence of axial load. Further 

investigation is needed on this topic.  

For what concerns the IP response, only a very small number of experimental tests 

has been performed investigating the different performance of RC infilled frames in 

presence and absence of axial load. Namely, Stylianidis (2012) tested five couples of 

identical RC infilled frames with and without axial load on columns. Based on these 

results, Del Gaudio et al. (2017) showed that the IDRs corresponding to the attainment 

of Damage States associated with light, medium, severe and heavy damage for the 

specimens tested in presence of axial load on columns can be both higher and lower than 

those obtained for specimens tested in absence of axial load on columns. On average, it 
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seems that the presence of axial load can make higher the IDRs associated with all 

Damage States: in this sense, the choice of performing the tests for the present study 

without the application of the axial load can be considered conservative. However, the 

small number of tests carried out to investigate this issue do not allow a robust judgement 

on the effects of the presence/absence of the axial load on columns on the evolution of 

damage in RC infilled frames during IP tests. Further investigation is needed on this 

topic. 

 

3.2.3. Instrumentation layout 

As shown in Figure 3.8, twelve LVDTs were placed along the infills’ edges to read 

OOP displacements due to potential detachment of the infill from the surrounding frame.  

Five laser displacement transducers were placed to read OOP displacements of the 

infill centre and of the four loading points. Moreover, two LVDTs were placed at the 

centre of the RC frame upper and foundation beam (OOP_top and OOP_bot, 

respectively), in order to read potential OOP translation or drifts of the RC frame during 

tests.  

A horizontal LVDT was placed at the upper beam’s end opposite to the IP-loaded 

end (IP_top) to read IP displacements of the upper beam cross-section centroid. 

Moreover, a horizontal LVDT was placed at the foundation beam’s end to read potential 

rigid translation of the RC frame during IP tests (IP_bot).  

 

 
Figure 3.8. Instrumentation layout. 

OOP LASER DISPLACEMENT 

TRANSDUCER

1
8
3

4
0

2
7
 

174.5

389

2
5
0

ù ù

ù ù

ù ù

OOP LVDT

OOP LOADING POINT

77.5 40 40 77.5

6
1

.5
3

0
3

0
6

1
.5

lengths in centimetres

A1

A3

A5

B1

B2

B4

B5

C1

C3

C5

D1

D2

D4

D5

E1

E3

E5

IP LOADING POINT

IP LVDT

174.5

LVDT FOR BEAM DEFLECTION 

DUE TO OOP ARCHING THRUSTS

IP_bot

IP_top

OOP_bot

IP_up

OOP_top



90 Chapter III – DIST-UNINA experimental program 

 

 

 

 

Only for the tests on the 120 mm-thick infills, a vertical LVDT (IP_up) was placed 

at the centre of the upper beam upper edge to read potential deflections of the beam due 

to arching thrusts. 

 

3.3 REFERENCE TESTS 

This section is dedicated to the description and discussion of the reference pure OOP 

tests carried out on the IP-undamaged URM infills mortared along four edges to the 

confining RC frame. 

Namely, the pilot test on an 80 mm thick infill is described, as well as the pure OOP 

test on the IP-undamaged specimen 80_OOP_4E and the pure OOP test on the IP-

undamaged specimen 120_OOP_4E. 

The experimental tests are described with the support of the OOP force-central 

displacement (or drift, with OOP drift defined as the OOP central displacement of the 

infill divided by one-half of the infill height) diagrams and with the representation of the 

evolution of cracking patterns during the tests. Further details are reported in 

Appendices B-C. 

 

3.3.1. Pilot test 

A pilot OOP test was performed prior to the beginning of the experimental program. 

The main aims of this test were: 

 

i. Evaluating the OOP behaviour of the infill with special attention to the post-

peak response, above all to check the potential necessity of safeguards 

against a particularly brittle or abrupt failure at the end of the test; 

ii. Evaluating the order of magnitude of the OOP strength of the infill and 

compare it with the design load for the experimental setup and for the 

maximum load that it can bear (90 kN and 128 kN, respectively); 

iii. Evaluating the OOP displacement read by LVDTs OOP_top and OOP_bot 

(see the instruments’ layout in Figure 3.8), in order to verify the absence of 

OOP rigid translation and drifts of the RC frame during tests, i.e., the 

effectiveness of the experimental setup lower and upper OOP clamps; 
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iv. Assessing the effectiveness of the instrumentation layout adopted that, for 

this test, was constituted also by instruments placed on the posterior face of 

the infill. 

 

The pilot test provided a positive feedback for what concerns all these issues. 

However, for a homogeneous reading of the OOP displacements of the specimens, all 

instruments were placed in the successive tests on the anterior face of the infill.  

As the experimental results had not to be used for comparison with other 

experimental tests in this experimental program, nor with literature formulation etc., the 

test was performed at higher velocity (0.05 mm/s), with no white painting on the infill 

wall. So, no significant or detailed information is available on the damage evolution of 

the specimen during the test, which was very brief (about 10/15 minutes). However, for 

the sake of completeness, the OOP force-displacement response of the pilot infill is 

reported in Figure 3.9. A picture of the specimen at the end of the test is reported in 

Figure 3.10. 

 

 
Figure 3.9. OOP force vs infill’s central displacement for the pilot specimen. 
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Figure 3.10. Pilot specimen at the end of test. 

 

3.3.2. Test 80_OOP_4E 

The OOP force-infill’s centre displacement diagram obtained for OOP_4E specimen 

is shown in Figure 3.11. Since very low load levels, micro-cracks formation was 

announced by cracking noises. However, the first visible diagonal crack appeared in the 

upper part of the infill only at a central displacement equal to 3.3 mm, corresponding to 

a 19.4 kN load, as shown in Figure 3.12, in which the evolution of cracking pattern 

during the test is shown. 

A second diagonal crack in the lower part of the infill appeared at the attainment of 

the infill resistance, equal to 22.0 kN, corresponding to a central displacement equal to 

5.4 mm. After the attainment of peak load, the infill resistance decreased up to 18.1 kN 

at a displacement equal to 10.3 mm. During this phase, pre-existing diagonal cracks 

extended and noticeable horizontal cracks in the lower part of the infill, along the bottom 

course of bricks, appeared. So, a pseudo-plastic phase in the OOP response of the infill 

was observed up to a displacement of 28.7 mm, with new vertical and horizontal cracks 

opening in the central part of the infill. After that, a softening branch in the OOP 

response diagram was observed. In this phase, pre-existing cracks became wider, 

especially in the lower part of the infill. The test ended at a central displacement equal 

to 76.9 mm, corresponding to a load equal to 2.8 kN, i.e., a resistance loss of the infill 

equal to 87%. During the test, no detachment of the infill from the surrounding frame 

was read by LVDTs and no significant displacement was registered in the OOP direction 

for the foundation and upper beams of the RC frame. A summary of test results is 
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reported in Table 3.4. 

Based on the OOP displacements read by instruments, the evolution of the 

reconstructed deformed shape of the specimen is shown in Figure 3.13. A picture of the 

specimen at the end of the test is reported in Figure 3.14.  

 

 
Figure 3.11. OOP force vs infill’s central displacement for specimen 80_OOP_4E. 

 

Table 3.4. Summary of test 80_OOP_4E results. 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

80_OOP_4E 19.4 3.3 5.9 22.0 5.4 4.1 76.9 
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a) FOOP =19.4 kN dOOP=3.3 mm 

 

b) FOOP =22.0 kN dOOP=5.4 mm 

 
c) FOOP =2.8 kN dOOP=76.9 mm 

Figure 3.12. Cracking pattern evolution at first macro-cracking (a), peak load (b) and at the end 

of the test (c) for specimen 80_OOP_4E. 
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Figure 3.13. Deformed shape evolution along vertical and horizontal alignments (see the 

instruments’ layout in Figure 3.8) for specimen 80_OOP_4E at the end of each one of the five 

phases individuated in Figure 3.11. The deformed shape corresponding to the attainment of 

peak load is highlighted with a red line. 

 

 
Figure 3.14. Specimen 80_OOP_4E at the end of test. 

 

3.3.3. Test 120_OOP_4E 

The OOP force-central displacement response of the specimen 120_OOP_4E is 

shown in Figure 3.15. It is observed that the general behaviour of this specimen is similar 
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to that exhibited by specimen 80_OOP_4E. A first pseudo-elastic branch was observed 

up to the first visible diagonal crack formation in the upper part of the infill, which 

occurred for a load equal to 27.5 kN, which was attained at a displacement equal to 2.5 

mm. Then, the response of the specimen was non-linear up to the attainment of peak 

load, equal to 41.9 kN, which occurred for a central OOP displacement equal to 8 mm. 

Differently from specimen 80_OOP_4E, in this case the peak load was significantly 

higher than the first macro-cracking load. As for specimen 80_OOP_4E, immediately 

after the attainment of peak load a drop in the load-bearing capacity of the specimen 

occurred, as the load reduced to 37.7 kN for a displacement equal to 8.4 mm. Then, a 

smooth softening branch was observed up to a central displacement equal to 26.8 mm 

and to a load equal to around 30 kN. During this phase, a rapid evolution of the cracking 

pattern was observed, with the formation of further diagonal cracks in the upper part of 

the infill, then of horizontal cracks along the lower course of bricks and finally with the 

formation of vertical cracks at mid-width of the infill, in its lower part. After that, a 

steeper softening branch was observed up to the end of the test, which was interrupted 

at an OOP central displacement equal to 64.6 mm, at a force equal to 4.7 kN, with a 

reduction of the OOP load-bearing capacity equal to 89% with respect to the registered 

strength. This last phase was characterized by the formation of horizontal cracks in the 

upper part of the infill and by the further opening of previously-formed cracks, 

especially in the lower part of the infill, where the exterior tiles of lower bricks were 

failing and overturning at the end of the test. A summary of test results is reported in 

Table 3.5. 

During the test, no significant displacement was registered in the OOP direction at 

the edges of the infill and also for the foundation and upper beams of the RC frame. 

Based on the OOP displacements read by instruments, the evolution of the reconstructed 

deformed shape of the specimen is shown in Figure 3.16. The evolution of cracking 

pattern in the specimen is reported in Figure 3.17. A picture of the specimen at the end 

of the test is reported in Figure 3.18. 
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Figure 3.15. OOP force vs infill’s central displacement for specimen 120_OOP_4E. 

 

Table 3.5. Summary of test 120_OOP_4E results. 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

120_OOP_4E 27.5 2.5 11.0 41.9 8.0 5.2 64.6 

 

 
Figure 3.16. Deformed shape evolution along vertical and horizontal alignments (see the 

instruments’ layout in Figure 3.8) for specimen 120_OOP_4E at the end of each one of the five 

phases individuated in Figure 3.15. The deformed shape corresponding to the attainment of 

peak load is highlighted with a red line. 
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a) FOOP =27.5 kN dOOP=2.5 mm 

 

b) FOOP =41.9 kN dOOP=8.0 mm 

 

c) FOOP =4.7 kN dOOP=64.6 mm 

Figure 3.17. Cracking pattern evolution at first macro-cracking (a), peak load (b) and at the end 

of the test (c) for specimen 120_OOP_4E. 
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Figure 3.18. Specimen 120_OOP_4E at the end of test. 

 

3.4 COMBINED IP/OOP TESTS 

This section is dedicated to the description and discussion of the experimental tests 

carried out on infills mortared along all the edges to the confining frame elements to 

investigate the IP/OOP interaction. For each specimen, first, a cyclic IP test is performed 

up to a certain drift level. Then, the specimen is unloaded and, after IP unloading, tested 

in the OOP direction. Note that, due to the slight deformability of the reaction cantilever 

beam part of the IP setup, the actual IP drifts attained during tests are slightly lower than 

the nominal ones. 

For what concerns 80 mm thick infills, three combined IP/OOP tests are presented. 

Test 80_IP+OOP_L was performed at maximum nominal IP drift equal to 0.20%; test 

80_IP+OOP_M was performed at maximum nominal IP drift equal to 0.40%; test 

80_IP+OOP_H was performed at maximum nominal IP drift equal to 0.60%.  

For what concerns 120 mm thick infills, three combined IP/OOP tests are presented. 

Test 120_IP+OOP_L was performed at maximum nominal IP drift equal to 0.30%; test 

120_IP+OOP_M was performed at maximum nominal IP drift equal to 0.60%; test 

120_IP+OOP_H was performed at maximum nominal IP drift equal to 1.00%. A 

summary of the experimental tests carried out and presented in this section is reported 

in Table 3.6. 
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Table 3.6. Summary of the combined IP/OOP tests. 

test nominal maximum IP drift actual maximum IP drift 

80_IP+OOP_L 0.20% 0.16% 

80_IP+OOP_M 0.40% 0.37% 

80_IP+OOP_H 0.60% 0.58% 

120_IP+OOP_L 0.30% 0.21% 

120_IP+OOP_M 0.60% 0.50% 

120_IP+OOP_H 1.00% 0.89% 

 

The experimental tests are described with the support of IP cyclic response diagrams 

and OOP force-central displacement diagrams. In addition, the evolution of cracking 

patterns during the tests is shown. Further details are reported in Appendices B-C. 

 

3.4.1. Test 80_IP+OOP_L 

Test 80_IP+OOP_L was performed first by imposing to the test specimen an IP 

cyclic displacement history up to the attainment of a maximum nominal drift equal to 

0.20%. Due to the deformability of the IP reaction cantilever beam, the actual maximum 

IP drift attained by the specimen, read by the LVDT at the end of the frame’s upper 

beam, was equal to 0.16%, corresponding to a maximum IP displacement equal to 3.14 

mm. The IP cyclic response of specimen IP+OOP_L is reported in Figure 3.19a. 

First masonry cracking occurred for a positive IP drift equal to 0.068%, 

corresponding to a 56.3 kN load, and for a negative IP drift equal to 0.067%, 

corresponding to an IP force equal to 58.0 kN. First crack appeared due to mortar 

detachment from bricks in the lower part of the infill. The test was interrupted after the 

attainment of a maximum displacement equal to 3.1 mm, corresponding to a 0.16% drift 

and to a 79.4 kN load. At this point, further cracks due to mortar detachment from bricks 

appeared also in the upper part of the infill. During the IP tests, the instrumentation read 

very small and absolutely negligible displacements of the foundation beam of the RC 

frame. The evolution of the IP cracking pattern for the specimen is reported in Figure 

3.20. 

Test specimen was IP unloaded and then loaded in the OOP direction. The OOP 

monotonic response of specimen 80_IP+OOP_L is reported in Figure 3.19b.  
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(a) (b) 

Figure 3.19. IP (a) and OOP (b) response of specimen 80_IP+OOP_L. 

 

The first visible diagonal crack due to OOP loading appeared in the upper part of 

the infill, at a central displacement equal to 1.8 mm (0.20% drift), corresponding to a 

load equal to 12.6 kN. After first macro-cracking, further cracks opened along the infill’s 

diagonals up to the attainment of the peak load equal to 23.4 kN for an OOP central 

displacement equal to 6.8 mm (0.74% drift). After peak load, a sudden decrease of the 

OOP load-bearing capacity occurred with the formation of cracks in the lower part of 

the infill. The load decreased to 15.2 kN for a central displacement equal to 10.9 mm 

(1.19% drift). After that, a pseudo-plastic behaviour was observed, up to a load equal to 

14.9 kN for a central displacement equal to 21.7 mm (2.37% drift).  Then, a softening 

branch was registered, first with the opening of previously-formed cracks in the lower 

part of the infill, then with the formation and opening of new cracks in the central part 

and in correspondence of the infill upper corners. The test ended at a central 

displacement equal to 70.5 mm (7.70% drift), corresponding to an OOP load equal to 

3.2 kN and, so, to a load-bearing capacity reduction, with respect to peak load, about 

86%. At the end of the test, the exterior tiles of the infill’s lower brick were failing and 

overturning. No significant OOP displacement was read by LVDTs along the infill’s 

edges. A summary of the OOP test results is reported in Table 3.7. The evolution of the 

OOP cracking pattern for the specimen is reported in Figure 3.21. 

A picture of the test specimen 80_IP+OOP_L at the end of the test is reported in 

Figure 3.22.  

 

IP drift [%] OOP drift [%]
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a) FIP =56.3 kN dIP=1.32 mm 

IP peak load not reached 

b) FIP = - dIP= - 

 

c) FIP =79.4 kN dIP=3.10 mm 

Figure 3.20. Cracking pattern evolution during the IP test at first macro-cracking (a), peak load 

(b) and at the end of the test (c) for specimen 80_IP+OOP_L. 
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a) FOOP =12.6 kN dOOP=1.8 mm 

 

b) FOOP =23.4 kN dOOP=6.8 mm 

 

c) FOOP =3.2 kN dOOP=70.5 mm 

Figure 3.21. Cracking pattern evolution during the OOP test at first macro-cracking (a), peak 

load (b) and at the end of the test (c) for specimen 80_IP+OOP_L. 

 

Table 3.7. Summary of test 80_IP+OOP_L (IP IDR=0.16%) results. 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

80_IP+OOP_L 12.6 1.8 7.0 23.4 6.8 3.4 70.5 
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Figure 3.22. Specimen 80_IP+OOP_L at the end of test. 

 

3.4.2. Test 80_IP+OOP_M 

Test 80_IP+OOP_M was performed first by imposing to the test specimen an IP 

cyclic displacement history up to the attainment of a maximum nominal drift equal to 

0.40%. Also in this case, due to the test setup slight deformability, the actual maximum 

IP drift attained by the specimen was lower than the nominal one and equal to 0.37%, 

corresponding to a maximum IP displacement equal to 7.3 mm. The IP force-

displacement diagram of specimen IP+OOP_M is reported in Figure 3.23a. 

First masonry cracking occurred with mortar detachment from bricks in the lower 

part of the infill, for a positive IP drift equal to 0.064%, corresponding to a 62.2 kN load, 

and to a negative drift equal to 0.062%, corresponding to a 62.1 kN. Up to the attainment 

of an IP displacement equal to 4.8 mm and of an IP force equal to 101.9 kN, cracks 

formed and opened in the central part of the infill, along the two diagonals. The test was 

interrupted at the attainment of a maximum displacement equal to 7.3 mm, 

corresponding to a 0.37% drift and to a load decreasing, within the same cycle, from 

102.5 to 88.6 kN. At this point, the exterior tiles of the central bricks were failing and 

overturning. No significant IP translation of the RC frame was read by the LVTD at its 

base. The evolution of the IP cracking pattern for the specimen is reported in Figure 

3.24. 

The specimen was IP unloaded and then monotonically loaded in the OOP direction. 
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The OOP force-central displacement behaviour diagram of specimen 80_IP+OOP_M is 

reported in Figure 3.23b.  

 

  
(a) (b) 

Figure 3.23. IP (a) and OOP (b) response of specimen 80_IP+OOP_M. 

 

Up to the attainment of a central displacement equal to 11.7 mm (1.28% drift), 

corresponding to an 8.5 kN load no visible cracking due to OOP loading was observed. 

At this point some cracks appeared in the centre of the infill. At the attainment of peak 

load, equal to 10.5 kN for a central displacement of 32.0 mm (3.50% drift), diagonal 

cracks appeared at the infill’s corners. The test ended at a central displacement equal to 

81.2 mm (8.87% drift), corresponding to an OOP load equal to 3.3 kN and, so, to a load-

bearing capacity reduction, with respect to peak load, about 69%. The post-peak 

behaviour was defined by a smooth softening branch. During the load-bearing capacity 

reduction, new diagonal cracks formed and opened along the specimen’s diagonals. Also 

in this case, no significant OOP displacement was read by LVDTs along the infill’s 

edges. A summary of the OOP test results is reported in Table 3.8. The evolution of the 

OOP cracking pattern for the specimen is reported in Figure 3.25. 

A picture of the test specimen 80_IP+OOP_M at the end of the test is reported in 

Figure 3.26.  

 

IP drift [%] OOP drift [%]
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a) FIP =62.2 kN dIP=1.26 mm 

IP peak load not reached 

b) FIP = - dIP= - 

 

c) FIP =102 kN dIP=7.30 mm 

Figure 3.24. Cracking pattern evolution during the IP test at first macro-cracking (a), peak load 

(b) and at the end of the test (c) for specimen 80_IP+OOP_M. 
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a) FOOP =8.5 kN dOOP=11.7 mm 

 

b) FOOP =10.5 kN dOOP=0.3 mm 

 

c) FOOP =3.3 kN dOOP=81.2 mm 

Figure 3.25. Cracking pattern evolution during the OOP test at first macro-cracking (a), peak 

load (b) and at the end of the test (c) for specimen 80_IP+OOP_M. 

 

Table 3.8. Summary of test 80_IP+OOP_M (IP IDR=0.37%) results. 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

80_IP+OOP_M 8.5 11.7 0.73 10.5 32.0 0.33 81.2 
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Figure 3.26. Specimen 80_IP+OOP_M at the end of test. 

 

3.4.3. Test 80_IP+OOP_H 

An IP cyclic displacement history up to a nominal drift equal to 0.60% was applied 

to specimen 80_IP+OOP_H. The actual maximum IP displacement, due to the reaction 

cantilever beam slight deformability, was equal to 11.4 mm, corresponding to a 0.58% 

drift. The IP response diagram of specimen IP+OOP_H is reported in Figure 3.27a. 

First cracks due to IP action formed at the infill’s corner for a positive IP drift equal 

to 0.063%, at an IP load equal to 49.1 kN, and for a negative IP drift equal to 0.070%, 

corresponding to an IP load equal to 43.1 kN. The infilled frame attained its negative 

peak load equal to -95.6 kN for an IP displacement equal to 6.3 mm, during the 4th cycle, 

and its positive peak load equal to 112.3 kN at a displacement equal to 8.4 mm during 

the 5th loading cycle. Up to the attainment of the positive peak load, cracks formed and 

opened first along the infills diagonal, then in the infill’s lower part. During the 5th 

loading cycle exterior tiles of the infill’s brick along diagonals failed. During the 6th 

loading cycle some bricks in the central part of the specimen, along the lower bricks 

courses, collapsed and were expelled from the infill. The 6th loading cycle ended at a 

displacement equal to 11.4 mm, with an IP load ranging from 104.5 to 82.9 kN due to 

intra-cycle softening. Also in this case, the instrumentation read very small and 

absolutely negligible displacements of the foundation beam of the RC frame. The 

evolution of the IP cracking pattern for the specimen is reported in Figure 3.28. 

Test specimen was IP unloaded and then monotonically loaded in the OOP direction. 
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The OOP force-central displacement behaviour diagram of specimen 80_IP+OOP_H is 

reported in Figure 3.27b.  

 

  
(a) (b) 

Figure 3.27. IP (a) and OOP (b) response of specimen 80_IP+OOP_H. 

 

First visible cracks due to OOP loading appeared in the central part of the infill, near 

the RC frame columns, at a central displacement equal to 9.4 mm (1.03% drift), for an 

OOP load equal to 2.6 kN. Such cracks became wider up to the attainment of the infill’s 

OOP strength equal to 5.9 kN at a central displacement equal to 25.8 mm (2.82% drift). 

During the softening response after peak load, new cracks appeared in the central and 

upper part of the infills, especially due to mortar detachment from bricks. The test was 

interrupted at an OOP load equal to 0.7 kN, corresponding to a displacement equal to 

64.0 mm (6.99% drift). Also in this case, no significant OOP displacement was read by 

LVDTs along the infill’s edges. A summary of the OOP test results is reported in Table 

3.9. The evolution of the OOP cracking pattern for the specimen is reported in Figure 

3.29. 

A picture of the test specimen 80_IP+OOP_M at the end of the test is reported in 

Figure 3.30.  

IP drift [%] OOP drift [%]
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a) FIP =49.1 kN dIP=1.24 mm 

 
b) FIP = 112.3 kN dIP= 8.4 mm 

 

c) FIP =105 kN dIP=11.4 mm 

Figure 3.28. Cracking pattern evolution during the IP test at first macro-cracking (a), peak load 

(b) and at the end of the test (c) for specimen 80_IP+OOP_H. 

 

 

 

 

 

 



Chapter III – DIST-UNINA experimental program 111 

 

 

 

 

a) FOOP =2.6 kN dOOP=9.4 mm 

 

b) FOOP =5.9 kN dOOP=25.8 mm 

 

c) FOOP =0.7 kN dOOP=64.0 mm 

Figure 3.29. Cracking pattern evolution during the OOP test at first macro-cracking (a), peak 

load (b) and at the end of the test (c) for specimen 80_IP+OOP_H. 

 

Table 3.9. Summary of test 80_IP+OOP_H (IP IDR=0.58%) results. 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

80_IP+OOP_H 2.6 9.4 0.28 5.9 25.8 0.23 64.0 
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Figure 3.30. Specimen 80_IP+OOP_H at the end of test. 

 

3.4.4. General considerations on the results of tests on the 80 mm thick infills 

A comparison between the experimental IP and OOP force-displacement diagrams 

for the reference 80_OOP_4E specimen and the three IP+OOP tests above described is 

shown in Figures 3.31 and 3.32.  

For what concerns the IP response (Figure 3.31), it is observed that the behaviour of 

the three specimens, that are equal for workmanship and nominal geometric and 

mechanical properties, is actually very similar, especially for positive 

loads/displacements. Specimens 80_IP+OOP_L and 80_IP+OOP_M were not tested up 

the attainment of the infilled frame strength, which was observed for specimen 

80_IP+OOP_H and was roughly equal to 100 kN and was registered for an IP drift 

roughly equal to 0.4%. In addition, specimen 80_IP+OOP_H, which was tested up to 

the maximum IP drift, showed the beginning of the softening branch of the infill wall, 

as can be observed by the strength degradation after the attainment of peak load. The 

similar IP behaviour in terms of force-displacements diagrams is confirmed and 

supported by the evolution of damage in the specimens, which was very similar for all 

of them.. Namely, it seems that all specimens failed under IP loading for diagonal 

compression (Asteris et al., 2011), i.e., for exceeding compression stresses developing 

along diagonal directions in the central part of the infill.  
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Figure 3.31. Comparison of the IP responses of the 80 mm thick infills. 

 

For what concerns the OOP response of specimens (Figure 3.32), infill 

80_IP+OOP_L exhibited an almost bilinear OOP behaviour, with a pseudo-linear 

response up to peak load and a steep softening branch up to the complete OOP resistance 

loss. A smother OOP response was observed for specimen 80_IP+OOP_M, with a sort 

of pseudo-plastic phase over the attainment of peak load, while a nearly bilinear 

response was again observed for specimen 80_IP+OOP_H. First, it is observed that 

specimen 80_IP+OOP_L, which was previously damaged at the lowest IP drift, 

exhibited an OOP strength (Fmax) slightly greater than that exhibited by reference 

specimen 80_OOP_4E. This is quite unexpected but acceptable considering also the low 

IP drift imposed prior to the OOP test. Considering that the IP response of the specimen 

was not significantly different from that exhibited by specimens 80_IP+OOP_M and 

80_IP+OOP_H, the slightly higher strength of specimen 80_IP+OOP_L is due, most 

likely, to experimental variability, which is typical of URM infills. Similar 

considerations can be extended to the secant stiffness at first macro-cracking, Kcrack, of 

the same specimen. Except for these unexpected but acceptable results, secant stiffness 

at first macro-cracking and at peak load (Kmax), as well as force at first macro-cracking 

(Fcrack) and at peak load, decrease at increasing previously applied IP displacement, as 

expected. Moreover, all specimens seem to exhibit a similar softening negative stiffness 

and a reduced displacement capacity at increasing IP damage.  

 

OOP drift [%]IP drift [%]

80_IP+OOP_L

80_IP+OOP_M

80_IP+OOP_H



114 Chapter III – DIST-UNINA experimental program 

 

 

 

 
Figure 3.32. Comparison of the OOP responses of the 80 mm thick infills. 

 

3.4.5. Test 120_IP+OOP_L 

Test 120_IP+OOP_L was performed first by imposing to the specimen an IP cyclic 

displacement history up to the attainment of a maximum nominal drift equal to 0.30%. 

Due to the deformability of the test setup, the actual maximum IP drift attained by the 

specimen, read by the LVDT at the end of the frame’s upper beam, was equal to 0.21%, 

corresponding to a maximum IP displacement equal to 4.13 mm and corresponding to a 

maximum load equal to 106.8 kN. The IP cyclic response of specimen 120_IP+OOP_L 

is reported in Figure 3.33a. 

During the IP test no significant damage involved the specimen (Figure 3.33a), as 

only hairline cracks appeared at the interface with the upper beam. This occurred 

roughly in correspondence with the first significant non-linearity in the cyclic force-

displacement diagram, which occurred for a positive drift equal to 0.083%, 

corresponding to a load equal to 71.0 kN and for a negative drift equal to 0.067%, 

corresponding to a load equal to 68.1 kN. Due to these cracks, the infill was detached 

from the upper beam, as confirmed during the OOP test. During the IP tests, no 

specimen’s rigid translation was read by the instrumentation. The evolution of the IP 

cracking pattern for the specimen is reported in Figure 3.34. 

The specimen was IP unloaded and then monotonically loaded in the OOP direction. 

The OOP force-central displacement behaviour diagram of specimen 120_IP+OOP_L 

is reported in Figure 3.33b.  

 

OOP drift [%]IP drift [%]

80_OOP_4E

80_IP+OOP_L

80_IP+OOP_M

80_IP+OOP_H
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(a) (b) 

Figure 3.33. IP (a) and OOP (b) response of specimen 120_IP+OOP_L. 

 

During the OOP test, the infill had a linear pseudo-elastic behaviour up to a central 

displacement equal to 2.8 mm (0.31% drift) and to an OOP load equal to around 1 kN. 

Then, a second linear pseudo-elastic phase with higher stiffness was observed. This 

occurred as during the first phase the infill wall slipped in the OOP direction along the 

upper edge, while the second phase begun when, due to the infill flexural deflection in 

the vertical direction, the upper edge came in contact with the upper beam and no more 

slippage occurred, allowing the formation of two-way arching action. This second linear 

pseudo-elastic phase ended at the attainment of peak load.  

First horizontal cracks appeared in the upper part of the infill at the interface between 

bricks and mortar joints only at the attainment of the peak load (Figure 3.34b-c). The 

infill exhibited an OOP strength equal to 41.6 kN in correspondence of a central 

displacement equal to 9.7 mm (1.06% drift). Then, a steep softening branch was 

observed. In this phase, further horizontal cracks opened in the upper part of the infill, 

involving both bricks and the interface between mortar and bricks. The test was 

interrupted at a central displacement equal to 22 mm (2.40% drift), at which the OOP 

load was equal to 19 kN, with a reduction in the load-bearing capacity with respect to 

the OOP strength equal to 54%. At that point, the exterior tiles of the bricks in the upper 

part of the infill were failing and overturning. A summary of the OOP test results is 

reported in Table 3.10. The evolution of the OOP cracking pattern for the specimen is 

reported in Figure 3.35. 

A picture of the test specimen 120_IP+OOP_L at the end of the test is reported in 

IP drift [%] OOP drift [%]
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Figure 3.36.  

 

 

a) FIP =69.6 kN dIP=1.47 mm 

IP peak load not reached 

b) FIP = - dIP= - 

 

c) FIP =107 kN dIP=4.1 mm 

Figure 3.34. Cracking pattern evolution during the IP test at first macro-cracking (a), peak load 

(b) and at the end of the test (c) for specimen 120_IP+OOP_L. 
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a) FOOP =41.6 kN dOOP=9.7 mm 

 

b) FOOP =41.6 kN dOOP=9.7 mm 

 

c) FOOP =19.0 kN dOOP=22.0 mm 

Figure 3.35. Cracking pattern evolution during the OOP test at first macro-cracking (a), peak 

load (b) and at the end of the test (c) for specimen 120_IP+OOP_L. 

 

Table 3.10. Summary of test 120_IP+OOP_L (IP IDR=0.21%) results. 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

120_IP+OOP_L 41.6 9.7 4.3 41.6 9.7 4.3 22.0 
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Figure 3.36. Specimen 120_IP+OOP_L at the end of test. 

 

3.4.6. Test 120_IP+OOP_M 

In this case, prior to the OOP loading, the specimen was subjected to an IP cyclic 

displacement history up to the attainment of a maximum nominal IP drift equal to 0.60%, 

corresponding to an actual maximum IP drift equal to 0.50%, i.e., to a maximum IP 

displacement equal to 9.7 mm corresponding to a maximum load equal to 120.4 kN. The 

IP force-displacement diagram of specimen 120_IP+OOP_M is reported in Figure 

3.37a. 

Also in this case, despite the quite high drift achieved, no significant damage 

occurred except from the formation of cracks at the interface with the upper beam. The 

formation of such cracks begun in correspondence of the first significant non-linearity 

in the IP force-displacement response, which was registered for a positive drift equal to 

0.087%, with a load equal to around 100 kN, and for a negative drift equal to 0.073%, 

with a load equal to about 73 kN. During the following cycles, such cracks opened and 

damaged some of the exterior tiles of the upper bricks. In addition, at the attainment of 

the target displacement, further cracks appeared at the interface between the upper part 

of the infill and the left column of the RC frame. No significant IP translation of the RC 

frame was read by the LVTD at its base. The evolution of the IP cracking pattern for the 

specimen is reported in Figure 3.38. 

The specimen was IP unloaded and then monotonically loaded in the OOP direction. 
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The OOP force-central displacement behaviour diagram of specimen 120_IP+OOP_M 

is reported in Figure 3.37b.  

 

  
(a) (b) 

Figure 3.37. IP (a) and OOP (b) response of specimen 120_IP+OOP_M. 

 

Also in this case, up to a central displacement equal to 10 mm (1.09% drift) and to 

a load equal to 8.9 kN, the infill slipped along the upper edge in the OOP direction. 

When the upper edge of the infill came in contact with the upper beam due to its vertical 

flexural deflection, an increase of the OOP stiffness was registered and two-way arching 

formed. At a central displacement equal to 21.1 mm (2.31% drift), for a load equal to 

26.3 kN, a noticeable horizontal crack appeared in the upper part of the infill, along the 

almost entire interface between a course of bricks and the lower mortar joint. After that, 

the load dropped to 22.4 kN, with the formation of some diagonal cracks in the upper 

part of the infill. Then, the load increased up to the attainment of the OOP strength of 

the specimen, equal to 27.9 kN, at a central displacement equal to 26.3 mm (2.87% drift). 

During this phase, further horizontal and vertical cracks formed and opened in the upper 

part of the infill, in correspondence of the interface between bricks and mortar joints. 

Then, the load was pseudo-constant up to a displacement equal to 31.5 mm (3.44% drift), 

from which a steep softening branch begun leading the load to around 15 kN at a central 

OOP displacement equal to 36 mm (3.93% drift). During this phase, horizontal cracks 

damaging bricks’ tiles formed and opened in the lower part of the infill. Then, a less 

steep softening branch was observed up to the end of the test, which was interrupted at 

a central displacement equal to 66 mm (7.21% drift) and at a load equal to 5.4 kN, with 

IP drift [%] OOP drift [%]
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a reduction of the load bearing capacity with respect to the infill OOP strength equal to 

81%. During the last part of the test, horizontal cracks in the lower part of the infill 

widened and some exterior tiles of bricks failed. A summary of the OOP test results is 

reported in Table 3.11. The evolution of the OOP cracking pattern for the specimen is 

reported in Figure 3.39. 

A picture of the test specimen 120_IP+OOP_M at the end of the test is reported in 

Figure 3.40.  

 

 

a) FIP =86.5 kN dIP=1.57 mm 

 

b) FIP = 120.4 kN dIP= 9.7 mm 

 

c) FIP = 120.4 kN dIP= 9.7 mm 

Figure 3.38. Cracking pattern evolution during the IP test at first macro-cracking (a), peak load 

(b) and at the end of the test (c) for specimen 120_IP+OOP_M. 
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a) FOOP =26.3 kN dOOP=21.1 mm 

 

b) FOOP =27.9 kN dOOP=26.3 mm 

 

c) FOOP =5.4 kN dOOP=66.0 mm 

Figure 3.39. Cracking pattern evolution during the OOP test at first macro-cracking (a), peak 

load (b) and at the end of the test (c) for specimen 120_IP+OOP_M. 

 

Table 3.11. Summary of test 120_IP+OOP_M (IP IDR=0.51%) results. 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

120_IP+OOP_M 26.3 21.1 1.2 27.9 26.3 1.1 66.0 
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Figure 3.40. Specimen 120_IP+OOP_M at the end of test. 

 

3.4.7. Test 120_IP+OOP_H 

Specimen 120_IP+OOP_H was loaded in the IP direction through a cyclic 

displacement history up to a maximum nominal IP drift equal to 1.00%, corresponding 

to an actual IP drift equal to 0.89% and to a maximum IP displacement equal to 17.6 

mm. The IP force-displacement diagram of specimen 120_IP+OOP_H is reported in 

Figure 3.41a. 

The first horizontal crack in the infill formed between the right corner brick and the 

corresponding lower mortar joint. This occurred in correspondence of the first 

significant non-linearity in the IP force-displacement diagram, for a positive IP drift 

equal to 0.086% and for a load equal to 72 kN. The first significant non-linearity for 

negative loads occurred for a negative IP drift equal to 0.069% and for a load equal to 

61 kN. From the 3rd to the 6th cycle, respectively carried out up to a nominal IP drift 

equal to 0.30% and 0.60%, the maximum IP positive load was constant and roughly 

equal to 100 kN, while the maximum IP negative load was constant and roughly equal 

to 93 kN. During this phase, the infill wall failed for crushing of the upper corner on the 

right. In addition, horizontal cracks at the interface between the infill and the upper beam 

occurred. As these cracks widened, some of the exterior tiles of the upper bricks failed 

and overturned. During the 7th and 8th loading cycle, respectively carried out up to a 

nominal IP drift equal to 0.80% and 1.00%, no significant crack appeared in the infill, 
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while pre-existing cracks where furtherly opening. During the last cycle, a maximum 

positive load equal to 116 kN and a maximum negative load equal to 119 kN where 

registered. Also in this case, the instrumentation did not show horizontal rigid 

translations of the RC specimen due to IP loading. The evolution of the IP cracking 

pattern for the specimen is reported in Figure 3.42. 

The specimen was IP unloaded and then monotonically loaded in the OOP direction. 

The OOP force-central displacement behaviour diagram of specimen 120_IP+OOP_H 

is reported in Figure 3.41b.  

 

  
(a) (b) 

Figure 3.41. IP (a) and OOP (b) response of specimen 120_IP+OOP_H. 

 

As for the other IP-damaged specimens, also in this case the infill slipped along the 

upper edge in the OOP direction up to a central displacement equal to 8 mm (0.87% 

drift), corresponding to a load equal to 4.3 kN. Then, an increase in the OOP stiffness 

was observed when slippage stopped and two-way arching occurred. First horizontal 

cracks due to OOP loading appeared at the interface between bricks and mortar in the 

upper part of the infill for a central displacement equal to 14.2 mm (1.55% drift) and for 

a load equal to 11.2 kN. The OOP strength of the specimen, which was equal to 23.1 

kN, was reached for a central displacement equal to 31.7 mm (3.46% drift). Up to this 

load, further horizontal cracks appeared at the interface between bricks and mortar in 

the upper part of the infill, together with sub-vertical cracks in the central part of the 

specimen. After a little drop in the OOP load-bearing capacity, load increased again and 

reached 22.1 kN at a central displacement equal to 38.1 mm (4.16% drift). Then, a 

IP drift [%] OOP drift [%]
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softening branch was observed up to the end of the test, which was interrupted at a 

central displacement equal to 65 mm (7.10% drift) and at a load equal to 9.1 kN, with a 

reduction in the load-bearing capacity with respect to the specimen OOP strength equal 

to 60%. After the attainment of peak load, no further significant crack formed, while 

existing cracks opened and widened.  A summary of the OOP test results is reported in 

Table 3.12. The evolution of the OOP cracking pattern for the specimen is reported in 

Figure 3.43. 

A picture of the test specimen 120_IP+OOP_H at the end of the test is reported in 

Figure 3.44.  

 

 
a) FIP =66.5 kN dIP=1.53 mm 

 

b) FIP = 119 kN dIP= 17.6 mm 

 

c) FIP = 119 kN dIP= 17.6 mm 

Figure 3.42. Cracking pattern evolution during the IP test at first macro-cracking (a), peak load 

(b) and at the end of the test (c) for specimen 120_IP+OOP_H. 
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a) FOOP =11.2 kN dOOP=14.2 mm 

 

b) FOOP =23.1 kN dOOP=31.7 mm 

 

c) FOOP =9.1 kN dOOP=65.0 mm 

Figure 3.43. Cracking pattern evolution during the OOP test at first macro-cracking (a), peak 

load (b) and at the end of the test (c) for specimen 120_IP+OOP_H. 

 

Table 3.12. Summary of test 120_IP+OOP_H (IP IDR=0.89%) results. 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

120_IP+OOP_H 11.2 14.2 0.79 23.1 31.7 0.73 65.0 
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Figure 3.44. Specimen 120_IP+OOP_H at the end of test. 

 

3.4.8. General considerations on the results of tests on the 120 mm thick 

infills 

A comparison between the experimental IP and OOP force-displacement diagrams 

for the reference 120_OOP_4E specimen and the three IP+OOP tests above described 

is shown in Figures 3.45 and 3.46.  

The IP behaviour of specimens 120_IP+OOP_L, 120_IP+OOP_M and 

120_IP+OOP_H was similar in terms of force-displacement response and failure mode 

(Figure 3.45). In fact, all the specimens showed an almost equal initial stiffness and, 

when attained, an almost equal strength roughly equal to 120 kN. As already stated, the 

similarity in the force-displacement response is associated with a similarity in the failure 

mode of specimens, that was a sliding shear failure at the interface between the infill 

and the RC frame upper beam for all of them, together with a corner crushing for 

specimen 120_IP+OOP_H (Asteris et al., 2011). 
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Figure 3.45. Comparison of the IP responses of the 120 mm thick infills. 

 

For what concerns the OOP response (Figure 3.46), the reference IP-undamaged 

specimen 120_OOP_4E showed a force-displacement response similar to that observed 

for the 80 mm-thick reference specimen 80_OOP_4E, even if with higher stiffness and 

strength, of course. For what concerns combined IP and OOP tests, differently from the 

80 mm-thick infills, all the tests carried out on the 120 mm-thick infills showed a certain 

slippage of the infill along the upper edge as this edge was detached from the upper 

beam due to IP actions. This was confirmed by the instruments placed along the infill 

upper edge. Namely, LVDT C1 (see the instruments’ layout in Figure 3.8), read a 

maximum OOP displacement equal to around 0 for specimen 120_OOP_4E (no 

slippage) and equal to around 0.6 mm, 7 mm and 5 mm for specimens 120_IP+OOP_L, 

120_IP+OOP_M and 120_IP+OOP_H, respectively.  

The specimen subjected to the lowest IP drift prior to the OOP test, 120_IP+OOP_L 

exhibited a very steep and quite unexpected post-peak behaviour. However, at least up 

to the attainment of the maximum load, its behaviour was not different from the OOP 

response of the corresponding 80 mm-thick specimen, which showed a reduced initial 

stiffness but an unvaried strength with respect to the reference IP-undamaged specimen. 

This confirms the existence of a sort of “critical” IP drift, as already intuited by Angel 

et al., from which the OOP strength begins reducing, while it is not varied before. As 

will be shown in section 7, the statistical regression of the experimental data – from this 

and from other literature works – shows that such a “critical” drift depends on the infill 

slenderness and that it is lower for slender infills, as intuitively expected. Clearly, as 

already observed for the tests on the 80 mm-thick infills, the OOP strength and stiffness 
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reduces at increasing previously-applied IP maximum drift, with the minimum strength 

and stiffness observed for specimen 120_IP+OOP_H. Only the first cracking load for 

specimen 120_IP+OOP_L was higher than that observed for the reference IP-

undamaged specimen, most likely due to experimental variability. 

A quite uncertain behaviour is observed for all specimens on the post-peak branch, 

with no clear relationship of its slope with the amount of IP damage previously achieved.   

 
Figure 3.46. Comparison of the OOP responses of the 120 mm thick infills. 

 

3.5 OOP TESTS ON INFILLS WITH DIFFERENT BOUNDARY 

CONDITIONS 

This section is dedicated to the description and discussion of the experimental tests 

carried out on infills mortared along three (3E specimens) or two (2E infills) to the 

confining RC frames. 

These tests have been carried out to assess the influence of different boundary 

conditions on the OOP response of URM infills. First of all, this yields to the occurrence 

of one-way horizontal arching in 3E specimens, of one-way vertical arching in 2E 

specimens. Clearly, the results of these tests are compared with those obtained for the 

reference tests on infills mortared along all edges to the confining structural elements, 

in which two-way arching (both vertical and horizontal) occurs. 

For what concerns 80 mm thick infills, three tests are presented. Note that these infills 

were provided of a gap with respect to the confining RC elements equal to 2 mm, except 

for specimen 80_OOP_3Eb, for which the gap between the infill and the RC upper beam 

was equal to 40 mm. Test 80_OOP_3E was performed on an infill bounded along three 
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edges to the confining frame elements; however, during the tests, the upper edge of the 

infill came in contact with the upper RC beam: hence, two-way arching occurred. For 

this reason, the test was repeated to assess the OOP behaviour of a nominally identical 

specimen in which only one-way horizontal arching occurred. This test is named 

80_OOP_3Eb. Also the results of this test are presented and discussed. Test 80_OOP_2E 

was performed on an infill in which only the upper and the lower edges were mortared 

to the confining frame elements. In this infill, only one-way vertical arching occurred. 

For what concerns 120 mm thick infills, two tests are presented. Note that these infills 

were provided of a gap with respect to the confining RC elements equal to 40 mm (test 

120_OOP_3E) or to 30 mm (test 120_OOP_2E). Test 120_OOP_3E was performed on 

an infill bounded along three edges to the confining frame elements in which only one-

way horizontal arching occurred. Test 120_OOP_2E was performed on an infill in which 

only the upper and the lower edges were mortared to the confining frame elements. In 

this infill, only one-way vertical arching occurred. 

A summary of the tests presented in this section is reported in Table 3.13. 

 

Table 3.13. Summary of the OOP tests on infills with different boundary conditions. 

test details 

80_OOP_3E detached from the RC upper beam, two-way arching 

80_OOP_3Eb detached from the RC upper beam, one-way horizontal arching 

80_OOP_2E detached from the RC columns, one-way vertical arching 

120_OOP_3E detached from the RC upper beam, one-way horizontal arching 

120_OOP_2E detached from the RC columns, one-way vertical arching 

 

The experimental tests are described with the support of the OOP force-central 

displacement (or drift, with OOP drift defined as the OOP central displacement of the 

infill divided by one-half of the infill height) diagrams and with the representation of the 

evolution of cracking patterns during the tests. Further details are reported in 

Appendices B-C. 

 

3.5.1. Test 80_OOP_3E 

The infill wall is realized with a 2 mm gap with respect to the upper beam. The OOP 

force-infill’s centre displacement diagram obtained for specimen 80_OOP_3E specimen 

is shown in Figure 3.47. Also in this case, micro-cracks formation was announced by 

cracking noises since the test beginning. First vertical cracking occurred in the upper 
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part of the infill, at a central displacement equal to 5.5 mm, corresponding to a 12.3 kN 

load, as shown in Figure 3.48, in which the evolution of cracking pattern during the test 

is reported. This vertical hairline crack is consistent with the expected cracking pattern 

and failure mode for an infill bounded along three edges in which only horizontal 

arching can occur as reported, e.g., by Dawe and Seah (1989). However, immediately 

after first macro-cracking, the upper edge of the infill made contact with the upper beam, 

which prevented further OOP free displacements at that edge. This is demonstrated in 

the evolution of the deformed shape along vertical and horizontal alignments reported 

in Figure 3.49, as well as by the diagonal cracks that appeared in the infill up to the 

attainment of the infill resistance, and by the tangent stiffness increase registered 

immediately after first macro-cracking visible in Figure 3.47. So, soon after first macro-

cracking, the OOP_3E specimen begun behaving as a 4E specimen, with the occurrence 

of vertical arching. The OOP strength of the infill was equal to 17.6 kN and 

corresponded to a central displacement equal to 14.6 mm. After the attainment of peak 

load, the infill resistance decreased up to 11.4 kN at a displacement equal to 21.8 mm. 

During this phase, noticeable horizontal cracks in the lower part of the infill appeared. 

As occurred during Test OOP_4E, a pseudo-plastic phase in the OOP response of the 

infill was observed up to a displacement of 34.6 mm, with new vertical and horizontal 

cracks opening in the central part of the infill. After that, a softening branch in the OOP 

response diagram was observed, with the enlargement of pre-existing cracks. The test 

ended at a displacement equal to 58.4 mm, corresponding to a load equal to 6.5 kN, i.e., 

a resistance loss of the infill equal to 63%. At this point, exterior tiles of brick in the 

lower part of the infill were crushing and overturning. During the test, no detachment of 

the infill from the surrounding frame was read by LVDTs and no significant 

displacement was registered in the OOP direction for the foundation and upper beams 

of the RC frame. A summary of test results is reported in Table 3.14. 

Based on the cracking pattern reported in Figure 3.48 and on the evolution of the 

profile of OOP displacements reported in Figure 3.49, it seems reasonable to assume 

that the deformed shape of the panel evolved during the test according to a hipped 

deformed shape. A picture of the specimen at the end of the test is reported in Figure 

3.40. 
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Figure 3.47. OOP force vs infill’s central displacement for specimen 80_OOP_3E. 

 

Table 3.14. Summary of test 80_OOP_3E results. 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

80_OOP_3E 12.3 5.5 2.2 17.6 14.6 1.2 58.4 
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a) FOOP =12.3 kN dOOP=5.5 mm 

 

b) FOOP =17.6 kN dOOP=14.6 mm 

 
c) FOOP =6.5 kN dOOP=58.4 mm 

Figure 3.48. Cracking pattern evolution at first macro-cracking (a), peak load (b) and at the end 

of the test (c) for specimen 80_OOP_3E. 
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Figure 3.49. Deformed shape evolution along vertical and horizontal alignments (see the 

instruments’ layout in Figure 3.8) for specimen 80_OOP_3E at the end of each one of the five 

phases individuated in Figure 3.47. The deformed shape corresponding to the attainment of 

peak load is highlighted with a red line. 

 

 
Figure 3.50. Specimen 80_OOP_3E at the end of test. 

 

3.5.2. Test 80_OOP_3Eb 

In this case, the infill wall was provided of a 40 mm gap from the RC upper beam. 

The OOP force-central displacement diagram is shown in Figure 3.51.  

The OOP behaviour of the specimen was characterized by five phases, as shown in 

Figure 3.51. First, the infill wall behaved as linear elastic up to the first non-linearity in 
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the force-displacement diagram, which occurred for an OOP central displacement equal 

to around 2.5 mm and for a force equal to around 8.5 kN. However, during this phase, 

no visible damage was observed. Then, a second roughly linear, but with reduced 

tangent stiffness, phase begun. This second phase ended at a central OOP displacement 

equal to 14.8 mm, corresponding to a load equal to 18.2 kN, at which the first visible 

vertical cracks formed in the central upper part of the infill. After that, a non-linear 

behaviour was registered over the attainment of the peak load, which was equal to 18.4 

kN and was registered at an OOP displacement equal to 20 mm. The first smooth 

softening branch was registered up to a central displacement equal to 34 mm, 

corresponding to an OOP force equal to 15 kN. During this phase, further vertical and 

horizontal cracks appeared in the central and upper part of the infill. A second linear 

softening branch was registered up to the end of the test. During this phase, further 

vertical cracks at the interface between mortar and bricks appeared in the lower part of 

the infill. The test ended at a central displacement equal to 65 mm and at an OOP force 

equal to 4.6 kN, corresponding to a reduction of the OOP load bearing capacity of the 

infill with respect to its strength equal to -75%. During the test, no significant 

displacement was registered in the OOP direction for the foundation and upper beams 

of the RC frame. A summary of test results is reported in Table 3.15. 

The evolution of cracking pattern in the specimen is reported in Figure 3.52. Based 

on the OOP displacements read by instruments, the evolution of the reconstructed 

deformed shape of the specimen is shown in Figure 3.53. A picture of the specimen at 

the end of the test is reported in Figure 3.54. 

 
Figure 3.51. OOP force vs infill’s central displacement for specimen 80_OOP_3Eb. 
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Table 3.15. Summary of test 80_OOP_3Eb results. 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

80_OOP_3Eb 8.5 2.5 3.4 18.4 20.0 0.92 65.0 

 

 

a) FOOP =8.5 kN dOOP=2.5 mm 

 
b) FOOP =18.4 kN dOOP=20.0 mm 

 

c) FOOP =4.6 kN dOOP=65.0 mm 

Figure 3.52. Cracking pattern evolution at first macro-cracking (a), peak load (b) and at the end 

of the test (c) for specimen 80_OOP_3Eb. 
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Figure 3.53. Deformed shape evolution along vertical and horizontal alignments (see the 

instruments’ layout in Figure 3.8) for specimen 80_OOP_3Eb at the end of each one of the five 

phases individuated in Figure 3.51. The deformed shape corresponding to the attainment of 

peak load is highlighted with a red line. Some readings are missing as some instruments 

reached the end of their measuring range. 

 

 
Figure 3.54. Specimen 80_OOP_3Eb at the end of test.  

 

3.5.3. Test 80_OOP_2E 

The OOP force-infill’s centre displacement diagram obtained for specimen 

80_OOP_2E is shown in Figure 3.55. First diagonal cracking occurred in the upper part 

of the infill, near to its mid-height, at a central displacement equal to 6.9 mm, 

D5

D4

D2

D1 C1

C3

C5

A1 B1 C1 D1 E1

A3 C3 E3

B2 D2

A3 C3 E3



Chapter III – DIST-UNINA experimental program 137 

 

 

 

corresponding to a 12.9 kN load, as shown in Figure 3.56, in which the evolution of 

cracking pattern is reported. Diagonal cracks in the upper part of the infill appeared until 

the attainment of the infill resistance, equal to 14.6 kN, corresponding to a central 

displacement equal to 17 mm. At this point, a new horizontal crack between a mortar 

and a brick horizontal course appeared, in the upper part of the infill, near mid-height. 

After the attainment of peak load, at a central displacement equal to 18.7 mm, the infill 

resistance suddenly dropped from 13.9 to 4.1 kN, with a load bearing capacity reduction 

of 72%. During the test, no detachment of the infill from the surrounding frame was read 

by LVDTs and no significant displacement was registered in the OOP direction for the 

foundation and upper beams of the RC frame. A summary of test results is reported in 

Table 3.16. 

Based on the OOP displacements read by instruments, the evolution of the 

reconstructed deformed shape of the specimen is shown in Figure 3.57. A picture of the 

specimen at the end of the test is reported in Figure 3.58, with a detail of the crack at the 

infill centre shown in Figure 3.59. 

 

 
Figure 3.55. OOP force vs infill’s central displacement for specimen 80_OOP_2E. 

 

Table 3.16. Summary of test 80_OOP_2E results. 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

80_OOP_2E 12.9 6.9 1.9 14.6 17.0 0.86 18.7 
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a) FOOP =12.9 kN dOOP=6.9 mm 

 

b) FOOP =14.6 kN dOOP=17.0 mm 

 

c) FOOP =4.1 kN dOOP=18.7 mm 

Figure 3.56. Cracking pattern evolution at first macro-cracking (a), peak load (b) and at the end 

of the test (c) for specimen 80_OOP_2E. 
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Figure 3.57. Deformed shape evolution along vertical and horizontal alignments (see the 

instruments’ layout in Figure 3.8) for specimen 80_OOP_2E at the end of each one of the three 

phases individuated in Figure 3.55. The deformed shape corresponding to the attainment of 

peak load is highlighted with a red line.   

 

 
Figure 3.58. Specimen 80_OOP_2E at the end of test. 
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Figure 3.59. Detail of specimen 80_OOP_2E at the end of test. 

 

3.5.4. Test 120_OOP_3E 

The infill wall was provided of a 40 mm gap from the RC upper beam. The OOP 

force-central displacement diagram is shown in Figure 3.60.  

The infill showed since the beginning of the test a clear non-linear behaviour, 

similarly to specimen 80_OOP_3Eb. First cracking occurred with the formation of a 

vertical crack at the center of the infill upper part. First cracking load was equal to 19.5 

kN and was attained at a central displacement equal to 4.3 mm. The infill exhibited an 

OOP strength equal to 33.6 kN. This load was attained for a central displacement equal 

to 16.4 mm. A rapid evolution of the cracking patter was observed from a displacement 

equal to 11.5 mm up to the attainment of the peak load displacement, with the formation 

of further vertical cracks and then of a horizontal crack in the center of the upper part of 

the infill as well as of hairline diagonal cracks in the infill lower corners. Unfortunately, 

due to a technical problem, the test was interrupted at a central displacement equal to 28 

mm, corresponding to a 22.5 kN load. During this third and last part of the test, further 

hairline diagonal cracks formed and opened in both the central and the lower part of the 

infill. During the test, no significant displacement was registered in the OOP direction 

for the foundation and upper beams of the RC frame. A summary of test results is 

reported in Table 3.17. 
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The evolution of cracking pattern in the specimen is reported in Figure 3.61. Based 

on the OOP displacements read by instruments, the evolution of the reconstructed 

deformed shape of the specimen is shown in Figure 3.62. A picture of the specimen at 

the end of the test is reported in Figure 3.63. 

 

 
Figure 3.60. OOP force vs infill’s central displacement for specimen 120_OOP_3E. 

 

Table 3.17. Summary of test 120_OOP_3E results. 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

120_OOP_3E 19.5 4.3 4.5 33.6 16.4 2.0 28.0 
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a) FOOP =19.5 kN dOOP=4.3 mm 

 
b) FOOP =33.6 kN dOOP=16.4 mm 

 

c) FOOP =22.5 kN dOOP=28.0 mm 

Figure 3.61. Cracking pattern evolution at first macro-cracking (a), peak load (b) and at the end 

of the test (c) for specimen 120_OOP_3E. 
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Figure 3.62. Deformed shape evolution along vertical and horizontal alignments (see the 

instruments’ layout in Figure 3.8) for specimen 120_OOP_3E at the end of each one of the 

three phases individuated in Figure 3.60. The deformed shape corresponding to the attainment 

of peak load is highlighted with a red line. Some readings are missing as some instruments 

reached the end of their measuring range. 

 

 
Figure 3.63. Specimen 120_OOP_3E at the end of test. 

 

3.5.5. Test 120_OOP_2E 

The infill was provided with a 30 mm gap from both the two RC columns. The OOP 

force-infill’s centre displacement diagram obtained for 120_OOP_2E specimen is 

shown in Figure 3.64. The OOP response of the infill was characterized by four phases. 
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The first pseudo-elastic linear phase ended at the attainment of an OOP central 

displacement equal to around 1.5 mm, corresponding to a load equal to about 9 kN. At 

this point, at which a loud cracking noise was heard, a reduction of the specimen’s 

tangent stiffness was registered, even if no visible damage was observed. After that, a 

second linear phase was registered, which ended at the infill first macro-cracking with 

the formation of a long horizontal crack between bricks and mortar joints near the infill 

mid-height. This occurred for a load equal to 18.5 kN, at a central displacement equal to 

5.5 mm. After that, a third non-linear phase was observed up to the attainment of peak 

load, equal to 24 kN, at a displacement equal to 9.5 mm. During this phase, the pre-

existing horizontal crack widened. After that, the load was pseudo-constant up to the 

attainment of a central displacement equal to 13 mm. Then, it suddenly dropped to 14 

kN at a central displacement equal to 14.5 mm. With the reduction of the OOP load-

bearing capacity equal to -42% with respect to the peak load, the test was interrupted. 

During the test, no significant displacement was registered in the OOP direction for the 

foundation and upper beams of the RC frame. A summary of test results is reported in 

Table 3.18. 

The evolution of cracking pattern in the specimen is reported in Figure 3.65. Based 

on the OOP displacements read by instruments, the evolution of the reconstructed 

deformed shape of the specimen is shown in Figure 3.66. A picture of the specimen at 

the end of the test is reported in Figure 3.67. 

 
Figure 3.64. OOP force vs infill’s central displacement for specimen 120_OOP_2E. 
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Table 3.18. Summary of test 120_OOP_2E results. 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

120_OOP_2E 18.5 5.5 3.4 24.0 9.5 2.5 14.5 

 

 
a) FOOP =18.5 kN dOOP=5.5 mm 

 

b) FOOP =24.0 kN dOOP=9.5 mm 

 

c) FOOP =14.0 kN dOOP=14.5 mm 

Figure 3.65. Cracking pattern evolution at first macro-cracking (a), peak load (b) and at the end 

of the test (c) for specimen 120_OOP_2E. 
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Figure 3.66. Deformed shape evolution along vertical and horizontal alignments (see the 

instruments’ layout in Figure 3.8) for specimen 120_OOP_2E at the end of each one of the four 

phases individuated in Figure 3.64. The deformed shape corresponding to the attainment of 

peak load is highlighted with a red line.  

 

 
Figure 3.67. Specimen 120_OOP_2E at the end of test. 

 

3.5.6. General considerations on tests’ results 

The OOP response of specimens is compared in Figure 3.68 and in Figure 3.70.  

For both the 80 mm- and the 120 mm-thick infills, the following considerations can 

be drawn from Figure 3.68. First, it is observed that the OOP strength granted by two-
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way arching action is greater than that assured by one-way arching, of course. In 

addition, the OOP resistance granted by one-way vertical arching is lower than that 

associated with horizontal arching. Clearly, this last evidence is not a general rule, as 

the hierarchy between the two resistant mechanisms is determined by both masonry 

mechanical properties and the infill aspect ratio. Second, it is observed that the post-

peak behaviour of infills bounded along three edges is smoother than that registered for 

infills bounded along two or four edges.  

 

  

(a) (b) 

Figure 3.68. Experimental response of the 80 mm-thick specimens (a) and of the 120 mm-thick 

specimens (b). 

 

As already stated, the OOP load-bearing capacity of specimens is granted by arching 

action. The infill walls tested were realized with mortar and hollow clay bricks with 

horizontal holes. Therefore, vertical arching thrusts act perpendicularly to bricks’ holes, 

while horizontal arching thrusts act parallel to bricks’ holes. For this reason, the different 

OOP response of infills in which one-way (horizontal or vertical) arching or two-way 

arching occurs is likely to be related to the different response of unreinforced masonry 

loaded perpendicularly or parallel to bricks’ holes. For example purposes, the axial 

stress-strain relationships obtained for some of the masonry wallets tested for the 

mechanical characterization of test specimens’ masonry are shown in Figure 3.69. It can 

be observed that wallets tested under axial load perpendicular to bricks’ holes exhibited 

a brittle failure due to masonry crushing at the attainment of the maximum stress, while 
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wallets tested under axial load parallel to bricks’ holes showed, in most cases, a certain 

post-peak deformation capacity up to the wallet collapse due to crushing.  

 

  

(a) (b) 

Figure 3.69. Axial stress-strain relationships for some of the masonry wallets tested for the 

mechanical characterization of test specimens’ masonry. Results for wallets tested under 

compressive load perpendicularly to bricks’ holes (a) and parallel to bricks’ holes (b). 

 

In “2E” and “4E” specimens, in which vertical arching occurs, the attainment of 

peak load is followed by a non-negligible drop of the load-bearing capacity of test 

specimens. Most likely, based also on the evidence shown in Figure 3.69a, this occurs 

at masonry crushing due to vertical arching thrusts. In “2E” specimens, this event 

corresponds to the collapse of the infill wall panel, as the stresses acting in masonry 

cannot redistribute towards restrained edges of the infills other than those directly 

involved in the abovementioned crushing due to vertical arching. For “4E” specimens, 

even if masonry seems to crush at the attainment of peak load, a significant post-peak 

displacement capacity is observed. This is likely to be due to the existence of horizontal 

arching.  

In fact, if “3E” specimens are considered, it can be noted that their OOP response is 

smoother than that of “2E” and “4E” specimens, and that a significant post-peak 

displacement capacity is granted. The smoother response over the attainment of peak 

load is consistent with the response of masonry wallets under compressive load parallel 

to bricks’ holes. In other words, the smoother behaviour of specimens characterized by 

one-way horizontal arching seems to be due to the absence of vertical arching and, so, 

of vertical crushing soon after the attainment of peak load. In addition, this seems to be 
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confirmed by the fact that the “zone” over the attainment of peak load of “3E” specimens 

is consistent or corresponding with the “pseudo-plastic” branch (in the 80 mm-thick 

specimen) and with the “smooth” softening branch (in the 120 mm-thick specimen) 

registered for “4E” specimens after the attainment of peak load. Moreover, it is observed 

that the last branch of the force-displacement response of specimens is consistent for the 

“3E” and the “4E” 80 mm-thick specimens and, even if with some extrapolation, also 

for the 120 mm-thick specimens. This seems to indicate that the last part of the force-

displacement curves was determined, in both cases, only by the progressive collapse of 

masonry due to horizontal arching.  

In other words, from tests results it seems that:  

 

i. The failure of the resistant mechanism constituted by vertical arching is 

brittle as the response of masonry loaded perpendicularly to bricks’ holes 

(as shown in Figure 3.69a): “2E” and “4E” specimens show a load-bearing 

capacity drop at the attainment of peak load due to the occurrence of vertical 

arching failure; 

ii. As all the restrained edges are involved in masonry crushing and in the 

consequent failure of the one-way vertical arching resistant mechanism, 

vertical arching failure corresponds to the collapse of the entire infill wall 

if it is bounded only along the upper and the lower edges (“2E” specimens); 

iii. In “4E” specimens, after the brittle failure of vertical arching, stresses move 

towards vertical restrained edges: this allows the infill taking advantage of 

the “ductility”, associated with horizontal arching, that masonry exhibits 

under compressive loads applied parallel to bricks’ holes (as shown in 

Figure 3.69b). For this reason, “4E” specimens do not collapse at vertical 

arching failure but have a certain post-peak displacement capacity; 

iv. In “3E” specimens, the “ductility” associated with horizontal arching is 

“directly” invoked (without passing from stresses’ redistributions). For 

these reasons, “3E” specimens exhibit a smoother response over the 

attainment of peak load and a certain post-peak displacement capacity. 

 

These circumstances partially confirm the statement by Flanagan and Bennett, that 

affirmed that vertical arching provide infills with OOP strength, while horizontal arching 

provide them with OOP post-peak displacement capacity. From the results herein 
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presented, it is clear that infills bounded along two edges, in which only vertical arching 

occurs, have a significantly smaller strength than infills in which two-way arching 

occurs. However, it seems proved that the post-peak OOP displacement capacity of 

URM infills is due, for the most, by the existence of horizontal arching. Clearly, these 

are only qualitative considerations: further theoretical and experimental investigation is 

needed to achieve a deeper knowledge on these issues. 

From Figure 3.70 it is observed that, as expected, the 120 mm-thick infills are 

characterized by greater stiffness and strength than the 80 mm-thick infills. For instance, 

the ratio between the OOP strength of specimens with the same boundary conditions 

and different slenderness ratio ranges from 1.64 to 1.90, with mean value equal to 1.79.  

Only 2E specimens allow a straightforward comparison in terms of ultimate/collapse 

displacement, as they with no doubt collapsed soon after the attainment of peak load. In 

Chapter IV, it will be shown that this occurred, most likely, at masonry crushing due to 

vertical arching thrusts. Based on Equation 66 reported in Chapter I, for equal masonry 

crushing strain εcrush, a lower vertical crushing displacement is expected for thicker, i.e., 

less slender, infills. This is consistent with the experimental evidence, which showed a 

lower displacement capacity for specimen 120_OOP_2E than for specimen 

80_OOP_2E. 
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(a) 

 

(b) 

 

(c) 

 

Figure 3.70. Experimental response of the specimens bounded along four (a) three (b) and two 

(c) edges. 
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3.6 OOP CYCLIC TEST 

This section is dedicated to the description and discussion of a cyclic pure OOP test 

on a 120 mm thick infill mortared along all edges to the confining RC frame elements, 

nominally identical to the specimens presented in the previous section for mechanical 

and geometric characteristics. 

In the first subsection, some preliminary issues are discussed. More specifically, the 

modifications of the experimental setup necessary to perform the test are presented, as 

well as the cyclic loading path adopted. 

In the second subsection, the results of the test are presented with the support of the 

force-displacement diagram for the specimen and of the evolution of cracking pattern. 

A simple comparison with the monotonic reference test 120_OOP_4E is also discussed. 

 

3.6.1. Test setup and loading path 

To perform the test, eight holes were made in the mortar beds of the specimen, two 

holes corresponding to each one of the four loading points. Two holes were realized in 

each one of the four plates belonging to the loading system described in section XXX, 

which were in contact with the posterior surface of the specimen. Then, four steel plates 

equal to those belonging to the loading system were realized and provided each one with 

two holes. These plates were placed in contact with the anterior surface of the specimen. 

Four steel rebars with 10 mm diameter were realized. These rebars passed through the 

holes realized in the four posterior and in the four anterior steel plates, as well as in the 

holes realized in the specimen. In this way, positive and negative displacements were 

imposed to the specimen. 

A picture of the front and back view of the specimen with the above described plates 

and rebars is reported in Figure 3.71. 
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(a) (b) 

Figure 3.71. Back (a) and front (b) view of the specimen tested under cyclic pure OOP load. 

 

To decide the loading path for this test, the OOP response diagram of the reference 

monotonic test 120_OOP_4E was considered. The significant points highlighted in 

Figure 3.15 were considered. The displacements of the actuator corresponding to those 

points were assumed as target positive and negative displacements for the cyclic test. 

The velocity of the test was equal to that of the monotonic test in the first three cycles, 

to allow some comparison with the results of the monotonic reference test. Then, it was 

doubled in the fourth cycle and again doubled in the fifth cycle, in order to limit the test 

duration. No sub-cycle was performed. 

The loading path is summarized in Table 3.19. 
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Table 3.19. OOP loading path defined by nominal target OOP displacements imposed by the 

actuator. 

cycle target OOP displacement velocity 

# [mm] [mm/s] 

1 +/-7.00 0.02 

2 +/-14.0 0.02 

3 +/-32.0 0.02 

4 +/-44.0 0.04 

5 +/-66.0 0.08 

 

3.6.2. Test 120_OOP_4E_cyclic 

The first significant non-linearity in the force-displacement response of the 

specimen was observed for a load equal to 13.2 kN, corresponding to a displacement 

equal to 1.0 mm. However, during the entire first cycle, no visible crack was observed 

in the specimen. During the first cycle, a maximum load equal to 22.8 kN was attained 

at a central displacement equal to 4.7 mm, while a minimum load equal to -24.5 kN was 

attained at a central displacement equal to -4.3 mm. A residual displacement equal to -

0.9 mm was registered at load equal to zero, at the beginning of the second cycle.  

During the second cycle, the first diagonal cracks appeared in the upper part of the 

infill together with a horizontal crack in the infill centre at a load equal to 29.5 kN and 

at a displacement equal to 7.7 mm. The second cycle was characterized by a maximum 

load equal to 36.4 kN attained for a central displacement equal to 11.0 mm and by a 

minimum load equal to -39.4 kN attained for a central displacement equal to -9.0 mm. 

At the end of the second cycle, a residual displacement equal to -1.6 mm was registered. 

Further diagonal cracks appeared in the lower part of the infill. 

The third cycle was characterized by local maximum load equal to 36.2 kN attained 

for a central displacement equal to 12.6 mm. At the attainment of maximum, a small 

drop occurred. This drop yield the load to 33.0 kN. Then, the load increased again up to 

36.7 kN attained at a central displacement equal to 32.2 mm. During this phase, further 

diagonal cracks formed in the lower part of the infill, as well as a horizontal crack near 

the infill lower edge. The minimum load attained was equal to -34.5 kN corresponding 

to a central displacement equal to -25.6 mm. During the unloading phase, the horizontal 

bottom crack widened and expanded also along the lower part of the vertical edges of 

the infill. In addition, a further horizontal crack appeared at the centre of the lower course 

of bricks. At the attainment of the minimum load, a load bearing capacity drop occurred 

yielding the OOP load to -23.0 kN at a central displacement equal to -26.8 mm. This 
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abrupt load reduction was equal to 33%. The third cycle ended with a residual 

displacement equal to -13.1 mm. During the reloading phase, a wide horizontal crack 

appeared in the central part of the upper course of bricks. 

The fourth cycle was characterized by a very fast damaging of the infill, with the 

crushing of the exterior tiles of bricks in the upper and lower part of the infill. The 

maximum load was equal to 20.4 kN and was attained for a central displacement equal 

to 25.1 mm. The target displacement associated with the fourth cycle was attained for a 

central displacement equal to 50.8 mm, corresponding to a load equal to 16.8 kN. The 

unloading phase was characterized by the collapse and overturning of the exterior tiles 

of bricks. A zero load, with a residual central displacement equal to 20.6 mm, the test 

was interrupted. 

The OOP strength of the infill was equal to 36.7 kN and was attained for a central 

displacement equal to 32.2 mm, during the third cycle. A summary of test results is 

reported in Table 3.20. No significant OOP translation of the RC frame was registered 

by the LVDTs at the base of the RC frame. The OOP force-displacement diagram for 

the specimen is reported in Figure 3.72. The evolution of cracking pattern is shown in 

Figure 3.73. A picture of the specimen at the end of the test is reported in Figure 3.74. 

 

 
Figure 3.72. OOP force vs infill’s central displacement for specimen 120_OOP_4E_cyclic 

(black line) compared with the monotonic response of specimen 120_OOP_4E (grey line). 
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Table 3.20. Summary of test 120_OOP_4E_cyclic and test 120_OOP_4E results. 

 Fcrack dcrack Kcrack Fmax dmax Kmax dend 

specimen [kN] [mm] [kN/mm] [kN] [mm] [kN/mm] [mm] 

120_OOP_4E_cyclic 29.5 7.7 3.8 36.7 32.2 1.1 50.8 

120_OOP_4E 27.5 2.5 11.0 41.9 8.0 5.2 64.6 

 

 

a) FOOP =29.5 kN dOOP=7.7 mm 

 

b) FOOP =36.7 kN dOOP=32.2 mm 

 
c) FOOP =16.8 kN dOOP=50.8 mm 

Figure 3.73. Cracking pattern evolution at first macro-cracking (a), peak load (b) and at the end 

of the test (c) for specimen 120_OOP_4E_cyclic. 
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Figure 3.74. Specimen 120_OOP_4E_cyclic at the end of test. 

 

It is observed from Figure 3.72 and Table 3.20 that the monotonic and cyclic test 

had quite different responses, especially after the first non-linearity. More specifically, 

the first cracking load and the strength of the specimens were similar, but the one tested 

under cyclic load exhibited a significantly greater deformability, especially in terms of 

secant stiffness at peak load. On the other hand, the softening branch of the monotonic 

test and the negative stiffness defined by the envelope of the positive peaks of the third 

and fourth cycles seem to be quite similar. 

Most likely, such differences in the infills’ deformability is due to the different 

nature of the loading path. Note also that, as reported in Table 3.2, the infills tested had 

not exactly the same mechanical properties. Also this difference may have had some 

role in the different response of specimens. Clearly, this is the result of the comparison 

of two tests only: further investigation is needed on this issue. 
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Chapter IV 

Experimental database analysis and modelling 

proposals 

4.1.INTRODUCTION 

In Chapter I, mechanical and empirical-based OOP strength, stiffness and 

displacement capacity models for IP-undamaged and IP-damaged infills were presented. 

In Chapter II, the OOP and IP/OOP tests carried out on URM and RM infills were 

described. Considering the fact that the number of experimental tests carried out on 

URM infills and available in the literature was very small, a wide experimental program 

herein named DIST-UNINA was carried out at the Department of Structures for 

Engineering and Architecture of University of Naples Federico II.  

The collection of the experimental tests available in the literature and the realization 

of new experimental tests was aimed at the definition of a wide experimental database 

that can be used for the assessment of the predictive capacity of the literature models 

presented in Chapter I and, if necessary, the proposals of the formulations for modelling 

the OOP behaviour of URM infills and of the IP/OOP interaction effects. This chapter 

is dedicated to both these aims. 

In section 4.2, the experimental database is defined. More specifically, eligibility 

criteria are defined and the experimental tests satisfying these criteria are selected.  

In section 4.3, the models available in the literature for the prediction of the secant 

stiffness at first macro-cracking and at peak load for IP-undamaged URM infills are 

applied to the experimental database. Based on the results of this comparison, modelling 

proposals are provided. 
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In section 4.4, the models available in the literature for the prediction of OOP strength 

for IP-undamaged URM infills are applied to the experimental database. Based on the 

results of this comparison, modelling proposals are provided, also for what concerns the 

force at first macro-cracking. 

In section 4.5, the models available in the literature for the potential definition of a 

conventional OOP collapse displacement of URM infills are applied to the experimental 

database. Based on the results of this comparison, modelling proposals are provided. 

In section 4.6, the models available in the literature for the prediction of the OOP 

strength reduction due to the IP damage are applied to the experimental database. Based 

on the results of this comparison, empirical formulations are proposed to model the 

stiffness and strength reduction due to IP damage are proposed. Further proposals are 

discussed for the prediction of the variation of the displacement capacity due to the IP 

damage. 

In section 4.7, the issue of the IP response variation due to OOP damage is discussed. 

A modelling proposal, based on the experimental data, is provided. 

In section 4.8, a summary of the proposed OOP model for URM infills accounting 

for the IP/OOP interaction effects is described. 

 

4.2. DEFINITION OF THE EXPERIMENTAL DATABASE 

In this section, the experimental database is defined. The first subsection is dedicated 

to the definition of the eligibility criteria for entering the database concerning pure OOP 

tests; the second subsection is dedicated to the definition of the eligibility criteria for 

entering the database concerning IP/OOP tests. 

 

4.2.1. Database of pure OOP tests 

This section is dedicated to the definition of the experimental database constituted 

by pure OOP tests that will be used for the assessment of the effectiveness of literature 

strength, stiffness and displacement capacity models as well as for the proposal, if 

necessary, of new models and formulations. 

First, consider that the number of pure OOP tests described in Chapter II and II is 43. 

Among these, 12 were carried out on 2E infills, 4 on 3E infills, 27 on 4E infills. 

Considering 2E infills, 3 tests were carried out on infills in RC frames, 9 on infills built 

between the floor and the ceiling of the laboratory. Considering 3E infills, 3 tests were 

carried on infills in RC frames, 1 on an infill in a steel frame. Considering 4E infills, 15 
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tests were performed on infills in RC frames, 12 tests were performed on infills in steel 

frames. 

To define the experimental database, only some of the above specimens were 

considered based on the following criteria: 

 

i. All the experimental tests presented in the literature aimed at investigating 

the OOP response and strength of plain URM infills constituted by 

clay/concrete units with vertical and horizontal mortar joints are considered; 

ii. Tests performed on reinforced, repaired, retrofitted or in-plane damaged 

infills are excluded; 

iii. Innovative infills with sliding joints or other devices aimed at reducing their 

in-plane vulnerability are excluded; 

iv. Infills tested in the OOP direction with the presence of pre-compression 

stresses were excluded; 

v. Specimens with non-continuous mortar joints are excluded; 

vi. Specimens with openings are excluded; 

vii. Only one-leaf specimens completely bounded/mortared along two edges, in 

which one-way arching can occur, or completely bounded/mortared along 

four edges, in which two-way arching can occur, are considered;  

viii. Only monotonic and load-unload tests are considered: in fact, the cyclic test 

120_OOP_4E_cyclic revealed that the behaviour of a specimen under “real” 

cyclic load (i.e., tested under cyclic positive and negative imposed 

displacements) can be significantly different, in terms of OOP deformability, 

from that of a specimen under monotonic or load-unload loading path. As 

specimen 120_OOP_4E_cyclic is a singularity with respect to all the other 

tests, it was not included in the database to prevent the introduction of a 

singular source of heterogeneity.  

 

Based on the above-listed criteria, the specimens listed in Table 4.1 entered the pure 

OOP tests database. The database is separated between 2E (6 out 12 infills were selected) 

and 4E specimens (17 out of 27 infills were selected); for 4E specimen, a further 

separation is made between infills in RC frames (11 out of 15 infills were selected) and 

infills in steel frames (6 out of 12 infills were selected). 
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Table 4.1. Experimental database of pure OOP tests. 

# Author Specimen Boundary condition Frame material 

1 da Porto et al. FOB1 2E - 

2 da Porto et al. FOB2 2E - 

3 da Porto et al. FOB3 2E - 

4 Hak et al. TA5 2E RC 

5 DIST-UNINA 80_OOP_2E 2E RC 

6 DIST-UNINA 120_OOP_2E 2E RC 

7 Angel et al. 1 4E RC 

8 Calvi and Bolognini 10 4E RC 

9 Varela-Rivera et al. E-1 4E RC 

10 Varela-Rivera et al. E-2 4E RC 

11 Varela-Rivera et al. E-3 4E RC 

12 Varela-Rivera et al. E-4 4E RC 

13 Varela-Rivera et al. E-5 4E RC 

14 Varela-Rivera et al. E-6 4E RC 

15 Furtado et al. Inf_02 4E RC 

16 DIST-UNINA 80_OOP_4E 4E RC 

17 DIST-UNINA 120_OOP_4E 4E RC 

18 Dawe and Seah WE2 4E Steel 

19 Dawe and Seah WE4 4E Steel 

20 Dawe and Seah WE5 4E Steel 

21 Dawe and Seah WE8 4E Steel 

22 Flanagan and Bennett 18 4E Steel 

23 Flanagan and Bennett 25 4E Steel 

 

4.2.2. Database of combined IP/OOP tests 

Among the OOP tests carried out after a cyclic IP test reported in Chapter II and III, 

only those carried out on URM plain infills were considered. Also in this case, 

reinforced, repaired, retrofitted, engineered, strengthened infills were excluded. 

Combined IP/OOP tests with no reference IP-undamaged specimen were excluded, of 

course. In addition, only experimental programs in which at least two combined IP/OOP 

tests at two different IP IDR levels were considered. This criterion was necessary to 

check the consistency of the results proposed by the experimental programs and to 

prevent the introduction in the database of potential outliers.  

Based on the above criteria, the database of combined IP/OOP tests is constituted 

only by ten 4E infills in RC frames, as reported in Table 4.2. 
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Table 4.2. Experimental database of combined IP/OOP tests. 

# Author Specimen Reference specimen IP IDR [%] 

1 Angel et al. 3b 1 0.22 

2 Angel et al. 2b 1 0.34 

3 Calvi and Bolognini 6 10 0.40 

4 Calvi and Bolognini 2 10 1.20 

5 DIST-UNINA 80_IP+OOP_L 80_OOP_4E 0.16 

6 DIST-UNINA 80_IP+OOP_M 80_OOP_4E 0.37 

7 DIST-UNINA 80_IP+OOP_H 80_OOP_4E 0.58 

8 DIST-UNINA 120_IP+OOP_L 120_OOP_4E 0.21 

9 DIST-UNINA 120_IP+OOP_M 120_OOP_4E 0.50 

10 DIST-UNINA 120_IP+OOP_H 120_OOP_4E 0.89 

 

4.3. ASSESSMENT OF THE OOP STIFFNESS 

In this section, the secant stiffness at first macro cracking and at peak load of the 

specimens considered in the experimental database is compared with the predictions of 

literature models. Based on the results of this comparison, proposals for modelling the 

pure OOP behaviour of URM infills are presented. 

 

4.3.1. Prediction of secant stiffness at first macro-cracking 

In Chapter II and III, data concerning the load, Fcrack, and the OOP displacement, 

dcrack, at the appearance of the first visible crack in the specimens were collected. If such 

data were not directly provided by the authors, the first macro-cracking point was read 

on the OOP force-displacement diagram, if provided, at the first significant non-

linearity. The secant stiffness at first macro-cracking, Kcrack, is derived as the ratio 

between Fcrack and dcrack. 

In this section, Kcrack is compared with the prediction of Timoshenko (1959)’s 

formulation, reported in Equation 47 in Chapter I, for 4E infills and with the prediction 

of Kadysiewski and Mosalam (2009)’s formulation, reported in Equation 51 in Chapter 

I, for 2E infills, with ξ equal to one (i.e., by assuming the gross value for the flexural 

stiffness of the infill horizontal cross section). 

Within this comparison, an assumption is implied. In fact, rigorously, Kcrack is not 

equal to Kel predicted by Timoshenko and by Kadysiewski and Mosalam with ξ equal 

to one, as the initial elastic stiffness of the infill should be greater than Kcrack and roughly 

equal to the secant stiffness at first micro-cracking. However, the first micro-cracking 
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cannot be individuated visually nor on the experimental force-displacement response of 

specimens; on the other hand, specific models for the prediction of the secant stiffness 

at first macro-cracking are not available. For all these reasons, it is assumed that the 

propagation of micro-cracks in the infill panel occurring between the formation of the 

first micro-crack and the opening of the first macro-crack does not produce a significant 

reduction in stiffness, as shown in Figure 4.1. 

In Table 4.3, Kcrack is compared with the predicted value of Kel for 2E infills; the same 

is done in Table 4.4 for 4E infills. Note that for 2E infills, the elastic modulus in the 

vertical direction is always provided and used in the application of Kadysiewski and 

Mosalam formulation. The same is done for the application of Timoshenko’s 

formulation on 4E infills, as masonry elastic modulus in the vertical direction is always 

provided by the authors, differently from masonry elastic modulus in the horizontal 

direction. This is also consistent with the fact that, given the specimens’ aspect ratio, the 

main contribution to their overall OOP stiffness is expected to be provided in the shorter, 

i.e., the vertical direction. Note also that in the application of Timoshenko’s formulation, 

the Poisson coefficient is assumed equal to 0.30, as the values of the α coefficient 

provided are referred to that value of ν. 

The experimental-to-predicted ratio is calculated for each experimental results. The 

mean, the median and the Coefficient of Variation (CoV) of these ratios is then 

calculated. 

 

 
Figure 4.1. OOP Elastic vs secant at first macro-cracking stiffness of URM infills. 
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Table 4.3. Comparison of the experimental and predicted values of Kcrack for 2E specimens. 

  Kcrack [kN/mm] 

Author Specimen experimental predicted exp/pred 

da Porto et al. (2007) FOB1 41.4 29.0 0.70 

da Porto et al. (2007) FOB2 41.4 29.0 0.70 

da Porto et al. (2007) FOB3 41.4 29.0 0.70 

Hak et al. (2014) TA5 35.0 70.4 2.01 

DIST-UNINA 80_OOP_2E 1.9 1.4 0.74 

DIST-UNINA 120_OOP_2E 3.4 7.7 2.26 

   mean 1.19 

   median 0.72 

   CoV 63% 

 

As expected, the elastic stiffness predicted by Kadysiewski and Mosalam’s 

formulation overestimates Kcrack for 2E infills in terms of median value. A median equal 

to one of the experimental-to-predicted ratios is obtained if the predicted Kel is 

multiplied for a reduction factor equal to 0.84. In other words, it seems that, for 2E 

infills, Kcrack is equal to 0.84 times the initial elastic stiffness Kel. However, note that the 

quality of the prediction is not good, as the CoV associated with the experimental-to-

predicted ratios is very high and equal to 63%. 

For 4E specimens, note that Flanagan and Bennett (1999a)’s specimen 18 is 

associated with an experimental-to-predicted ratio that is an outlier according to Peirce 

(1852) criterion. Most likely, this occurs because the confining steel frame has a too 

high deformability to allow considering the restraints at the edges of the infill wall 

simply supported on fix supports. This value is hence dropped from the table.  

However, it is worth to observe that for 4E infills in RC frames Timoshenko’s 

prediction is quite good, with a median of the experimental-to-predicted ratio near to the 

unit and a low CoV. Most likely, the error of the prediction is due to the orthotropic 

nature of masonry. 
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Table 4.4. Comparison of the experimental and predicted values of Kcrack for 4E specimens. 

  Kcrack [kN/mm] 

Author Specimen experimental predicted exp/pred 

Angel et al. 1 5.2 5.9 0.89 

Calvi and Bolognini 10 12.1 11.0 1.10 

Varela-Rivera et al. E-1 - - - 

Varela-Rivera et al. E-2 - - - 

Varela-Rivera et al. E-3 - - - 

Varela-Rivera et al. E-4 - - - 

Varela-Rivera et al. E-5 - - - 

Varela-Rivera et al. E-6 - - - 

Furtado et al. Inf_02 21.7 16.2 1.34 

DIST-UNINA 80_OOP_4E 5.9 4.3 1.38 

DIST-UNINA 120_OOP_4E 11.0 13.8 0.79 

Dawe and Seah WE2 - - - 

Dawe and Seah WE4 - - - 

Dawe and Seah WE5 - - - 

Dawe and Seah WE8 - - - 

Flanagan and Bennett 18 33.9 190.6 - 

Flanagan and Bennett 25 - - - 

   mean 0.95 

   median 1.10 

   CoV 28% 

 

4.3.2. Prediction of secant stiffness at peak load 

In this section, the secant stiffness at maximum Kmax is compared with the prediction 

of Kadysiewski and Mosalam’s formulation, reported in Equation 51 in Chapter I, for 

2E infills, with ξ equal to 0.50, as suggested by the authors. 

The elastic modulus in the vertical direction is always provided and used in the 

application of Kadysiewski and Mosalam formulation.  

The experimental-to-predicted ratio is calculated for each experimental results. The 

mean, the median and the Coefficient of Variation (CoV) of these ratios is then 

calculated. The results of the comparison are shown in Table 4.5. 
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Table 4.5. Comparison of the experimental and predicted values of Kmax for 2E specimens. 

  Kmax [kN/mm] 

Author Specimen experimental predicted exp/pred 

da Porto et al. (2007) FOB1 22.0 14.5 0.66 

da Porto et al. (2007) FOB2 21.3 14.5 0.68 

da Porto et al. (2007) FOB3 25.2 14.5 0.58 

Hak et al. (2014) TA5 3.72 35.2 - 

DIST-UNINA 80_OOP_2E 0.86 0.7 0.82 

DIST-UNINA 120_OOP_2E 2.5 3.8 1.54 

   mean 0.85 

   median 0.68 

   CoV 46% 

 

Note that Hak et al.’s specimen TA5 is associated with an experimental-to-predicted 

ratio that is an outlier according to Peirce (1852) criterion. Most likely, this occurs 

because the confining RC frame has a too high deformability under the arching thrusts 

forming the infill thickness to allow considering the restraints at the edges of the infill 

wall simply supported on fix supports. This value is hence dropped from the table.  

The value of ξ fixed by Kadysiewski and Mosalam to 0.50 is defined based on 

judgment. Hence, it is possible to calibrate it based on this, even if small, experimental 

database. A median of the experimental to predicted ratio equal to 1.00 is obtained if ξ 

is set to 0.73. However, note that the prediction is associated with a quite high value of 

the CoV, which is equal to 46%. 

The assessment of the secant stiffness at peak load for 4E infills is not possible, as 

no literature formulation to this aim exists. 

 

4.3.3. Modelling proposals 

Based on the above comparisons the following empirical-mechanical modelling 

proposals are provided. 

For what concerns 2E infills, the secant stiffness at first macro-cracking can be 

predicted by means of Kadysiewski and Mosalam’s formulation, provided that ξ is 

assumed equal to one and that the resulting elastic stiffness is reduced by means of a 

factor equal to 0.84. The secant stiffness at maximum can be predicted by means of 

Kadysiewski and Mosalam’s formulation with ξ equal to 0.73. In other words, to predict 

the secant stiffness at first macro-cracking and at peak load for 2E infills, Equation 1 

and 2 can be used. 
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Kcrack = 5.51
Ew

(h/t)3
 (1) 

Kmax = 4.79
Ew

(h/t)3
 (2) 

In Equation 1 and 2, E is masonry elastic modulus in the direction in which the 2E 

infill spans. For what concerns 4E infills, the secant stiffness at first macro-cracking can 

be predicted by means of Timoshenko’s formulation with quite good results. No 

literature formulation is available to predict the secant stiffness at maximum. However, 

from the experimental database collected, it is observed that the experimental value of 

Kmax is equal, on average, to 0.40 times Kcrack. Hence, it is suggested to assume Kmax 

equal to 0.40 times the value of Kcrack predicted through Timoshenko’s formulation. 

 

4.4. ASSESSMENT OF THE OOP STRENGTH 

In this section, the OOP strength of the specimens considered in the experimental 

database is compared with the predictions of literature models. Based on the results of 

this comparison, proposals for modelling the pure OOP behaviour of URM infills are 

presented, also for what concerns the prediction of the first macro-cracking load. 

Clearly, models based on two-way arching and adapted to the specific loading 

condition (uniformly distributed or concentrated on one or four points) are applied only 

on specimens bounded along four edges, models based on one-way arching and adapted 

to the specific loading condition are applied only on specimens bounded along two 

edges.  

Due to the impossibility of adapting Dawe and Seah (1989)’s and Flanagan and 

Bennett (1999b)’s formulations to different loading schemes, as these formulations are 

empirical, Equations 7 and 11 are applied only on infills bounded along four edges tested 

through the application of a uniformly distributed load.  

In addition, Dawe and Seah’s response model is applied to all test specimens 

considering the deformability of the confining structural elements. For all specimens, 

the experimental strength is also compared with that predicted by Dawe and Seah’s 

response model. For the application of this model, a very large number of geometric and 

mechanical properties for both the infill and the confining frames are necessary. 

Note that in Appendix D, the specimens included in the experimental database are 
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listed with some of the specimens’ main properties. For what concerns the confining 

frame properties, data concerning the upper beam (b subscript) and the columns (c 

subscript) are provided. The data concerning the lower beam are not reported as, in most 

cases, it cannot deform as it is attached to the laboratory floor as foundation beam. Only 

specimens E-1 and E-4 by Varela-Rivera et al. (2012) are provided with a deformable 

lower beam not attached to the floor. For these specimens, the lower beam has a 150 

mm×200 mm cross section and its deformability will be considered in the application of 

Dawe and Seah’s model. However, as already above stated, some necessary mechanical 

properties for some specimens are missing. In these cases, some assumptions are 

necessary. Namely: 

 

i. when masonry strength parallel to bricks’ holes is missing for 4E 

specimens, it is assumed equal to the product of masonry compressive 

strength perpendicular to bricks’ holes times the average of the parallel-to-

perpendicular strength ratios calculated, when both values were available, 

for each specimen of the entire database. Such average is equal to 1.21; 

ii. when masonry elastic modulus is missing in a certain direction, it is 

assumed equal to the product of masonry compressive strength in the same 

direction times the average of the Em/fm ratios in the same direction 

calculated, when both values were available, for each specimen of the entire 

database. Such average is equal to 809 parallel to bricks’ holes and to 1038 

perpendicular to bricks’ holes; 

iii. the shear modulus G of the confining frame materials is always calculated 

by applying the simple elastic relation G=E/(2(1+ν)), in which the Poisson 

coefficient ν is assumed equal to 0.10 for concrete and to 0.30 for steel. 

 

When the abovementioned assumptions are made to complete the Table 4.6, the 

assumption is marked with an asterisk (*). 

To apply Dawe and Seah’s response model, as reported in Chapter I, it is necessary 

to define a certain OOP deformed shape exhibited during OOP loading. In general, the 

deformed shape exhibited by the infill wall during the tests can be deduced by means of 

the evolution of local displacement during tests (if provided) or through the regularized 

and idealized crack patterns provided by the authors. The main deformed shapes 

individuated in the database are shown in Figure 4.2 and associated with the specimens 

of the experimental database in Table 4.6. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.2. Regularized and idealized deformed shapes of the infills of the experimental 

database collected: the deformed shape shown in (a) is typical of 2E infills; the one shown in 

(b) is typical of rectangular 4E infills; the one shown in (c) is observed for some 4E infills in 

case of slippage at the upper edge; the one shown in (d) is typical of square 4E infills. 
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Table 4.6. Association of the specimens to the regularized and idealized deformed shapes 

reported in Figure 4.2. 

# Author Specimen Boundary condition Deformed shape 

1 da Porto et al. FOB1 2E a 

2 da Porto et al. FOB2 2E a 

3 da Porto et al. FOB3 2E a 

4 Hak et al. TA5 2E a 

5 DIST-UNINA 80_OOP_2E 2E a 

6 DIST-UNINA 120_OOP_2E 2E a 

7 Angel et al. 1 4E b 

8 Calvi and Bolognini 10 4E b* 

9 Varela-Rivera et al. E-1 4E b 

10 Varela-Rivera et al. E-2 4E b 

11 Varela-Rivera et al. E-3 4E b 

12 Varela-Rivera et al. E-4 4E d 

13 Varela-Rivera et al. E-5 4E d 

14 Varela-Rivera et al. E-6 4E d 

15 Furtado et al. Inf_02 4E c 

16 DIST-UNINA 80_OOP_4E 4E b 

17 DIST-UNINA 120_OOP_4E 4E b 

18 Dawe and Seah WE2 4E c 

19 Dawe and Seah WE4 4E c 

20 Dawe and Seah WE5 4E b 

21 Dawe and Seah WE8 4E b 

22 Flanagan and Bennett 18 4E b* 

23 Flanagan and Bennett 25 4E b* 

 

When such deformed shape is neither provided by the Authors nor can be deduced 

by the description of the fracture pattern, it seems reasonable to assume that it is a hipped 

deformed shape (the most common for 4E specimens) as the one shown in Figure 4.2b 

with θ=45°. This assumption is marked with an asterisk (*) in Table 4.2. 

For each strength-predicting formulation/model, the experimental-to-predicted 

strength ratios are calculated for all specimens. Mean, median and Coefficient of 

Variation of these ratios are calculated for all OOP capacity models in order to assess 

their effectiveness. The results of the assessment carried out for all models are then 

discussed and compared. 

A preliminary judgment on the most influent parameters in determining the OOP 

strength of URM infills can be provided by observing Figure 4.3, in which the 

experimental OOP strength of specimens is reported as a function of the infill thickness, 

vertical slenderness and vertical masonry compressive strength both for infills bounded 
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along two edges and for infills bounded along four edges. Clearly, similar trends are 

observed also when relating the OOP strength with the horizontal slenderness and 

compressive strength of masonry.  

URM infills’ OOP strength increases with the panel thickness and masonry 

compressive strength. In fact, for increasing t and fm, the maximum thrust due to arching 

action increases and so also the maximum lateral load in equilibrium with maximum 

thrust increases. The slenderness ratio increases when h increases and t reduces. When 

t reduces, arching thrusts reduce. In addition, when h increases, arching thrusts approach 

the vertical direction: hence, their component opposite to the OOP external load reduces. 

For both of these reasons, clearly, the OOP strength reduces with increasing panel 

slenderness. 
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(a) (b) 

 
(c) 

Figure 4.3. Trends of the experimental value of the OOP strength of the specimens included in 

the database with the specimens’ thickness (a), vertical slenderness (b) and masonry vertical 

compressive strength (c). 

 

4.4.1. Prediction of the OOP strength of 2E infills 

In this section, OOP strength models based on one-way arching are applied to predict 

the resistance of test specimens bounded along two edges. In Table 4.7 and 4.8, the 

observed and predicted values of the OOP strength of all specimens are reported as well 

as the mean, median and CoV of the experimental-to-predicted strength ratios.  

LEGEND

da Porto et al. Hak et al. DIST-UNINA

Dawe and Seah Angel et al. Flanagan and Bennett

Calvi and Bolognini Varela-Rivera et al. Furtado et al.

2E specimens: white-shaded dots

4E specimens: grey-shaded dots
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Table 4.7. Experimental strength, Fmax [kN], of infills bounded along two edges compared to 

the predicted value by McDowell et al., Angel et al. and Eurocode 6. 

  Fmax [kN] 

   predicted 

   McDowell et al. Angel  et al. Eurocode 6 

Author specimen exp.  pred exp/pred pred exp/pred pred exp/pred 

da Porto 

et al. 
FOB1 63.9 71.6 0.87 52.9 1.21 50.5 1.27 

da Porto 

et al. 
FOB2 55.3 71.6 0.75 52.9 1.04 50.5 1.09 

da Porto 

et al. 
FOB3 58.0 71.6 0.79 52.9 1.10 50.5 1.15 

Hak  

et al. 
TA5 67.0 212 0.32 150 0.45 144 0.47 

DIST-

UNINA 
80_OOP_2E 14.6 6.0 2.43 5.1 2.85 12.0 1.21 

DIST-

UNINA 
120_OOP_2E 24.0 37.9 0.63 20.6 1.17 33.1 0.73 

   mean 0.96 mean 1.30 mean 1.01 

   median 0.77 median 1.13 median 1.12 

   CoV  77% CoV 62% CoV 32% 

 

On the entire database, on average, Eurocode 6 (2005)’s and Angel et al. (1994)’s 

models underestimate the OOP strength of test specimens, which is expected as they are 

based on limit analysis lower bound theorem. It is worth to note that all models 

significantly overestimate Hak et al.’s specimen strength. 

Note that the application of Dawe and Seah (1989)’s model (Table 4.8) is performed 

also by accounting for the deformability of the confining elements (except for da Porto 

et al. (2007)’s specimens, of course). It is worth to mention that for specimen 

120_OOP_2E, the evolution of the outward displacement of the RC frame upper beam 

during the OOP test is provided. This allow calibrating an effective stiffness of the RC 

elements’ section equal to one-half their elastic flexural stiffness, in order to obtain a 

predicted maximum beam deflection equal to the experimental one.  

For this reason, in all cases, RC members are considered as provided with both an 

elastic flexural stiffness (EI) and with an effective flexural stiffness equal to one-half 

the elastic one (EIeff=0.5EI).  
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Table 4.8. Experimental strength, Fmax [kN], of infills bounded along two edges compared to 

the predicted value by Dawe and Seah’s model under the hypothesis of stiff confining elements 

(stiff), of deformable confining elements with elastic stiffness (elastic) and of deformable 

confining elements with effective flexural stiffness equal to one-half the elastic one (effective). 

  Fmax [kN] 
   predicted by Dawe and Seah’s model 

Author specimen exp. stiff  exp/pred elastic  exp/pred effective  exp/pred 

da Porto 

et al. 
FOB1 63.9 61.9 1.03 - 1.03 - 1.03 

da Porto 

et al. 
FOB2 55.3 61.9 0.89 - 0.89 - 0.89 

da Porto 

et al. 
FOB3 58.0 61.9 0.94 - 0.94 - 0.94 

Hak  

et al. 
TA5 67.0 181 0.37 172 0.39 164 0.41 

DIST-

UNINA 
80_OOP_2E 14.6 10.9 1.34 9.9 1.47 9.8 1.49 

DIST-

UNINA 
120_OOP_2E 24.0 36.0 0.67 31.8 0.75 28.9 0.83 

   mean 0.87 mean 0.91 mean 0.93 

   median 0.92 median 0.92 median 0.92 

   CoV 38% CoV 39% CoV 37% 

 

The application of Dawe and Seah’s model shows that it works quite well on 2E 

specimens and that accounting, when necessary, for the frame elements’ deformability 

improves the quality of its performance.  

Therefore, it can be concluded that the best prediction of the OOP strength is 

provided by both Eurocode 6 formulation adapted to the real loading condition, which 

is associated with a median of the experimental-to-predicted strength ratios equal to 1.12 

and with a CoV equal to 32%, and Dawe and Seah’s model, which is associated with a 

median of the experimental-to-predicted strength ratios equal to 0.92 and with a CoV 

ranging from 37% to 39%.  

However, being Eurocode 6 model application very simple and straightforward, it 

seems reasonable to suggest its application on 2E infills, provided that its formulation is 

adapted to the real loading condition. 

 

4.4.2. Prediction of the OOP strength of 4E infills 

In this section, OOP strength models based on two-way arching are applied to predict 

the resistance of test specimens bounded along four edges. In Tables 4.9-4.10, the 

observed and predicted values of the OOP strength of all specimens as well as the mean, 
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median and CoV of the experimental-to-predicted strength ratios are reported for 

specimens in RC frames and in steel frames, respectively.  

Remember that the empirical formulations by Dawe and Seah and Flanagan and 

Bennett (1999b) were applied only to test specimens loaded under uniformly distributed 

load, as they are empirical and cannot be adapted to different loading conditions. 

Remember also that they were defined for infills in pinned steel frames and that, for this 

reason, they can underestimate the OOP strength of infills in moment-resisting (such as 

RC) frames. Bashandy et al. (1995)’s formulation is adapted to the specific loading 

condition used during tests. 

 

Table 4.9. Experimental strength, Fmax [kN], of infills bounded along four edges to RC frames 

compared to the predicted value by Dawe and Seah (empirical formula), Flanagan and Bennett 

and Bashandy et al. 

   Fmax [kN] 

    predicted 

    D&S formula F&B Bashandy et al. 

Author specimen exp. exp. exp/pred exp. exp/pred exp exp/pred 
Angel  
et al. 

1 31.3 26.8 1.17 24.4 1.29 8.1 3.89 

Calvi  

and Bolognini 
10 33.7 - - - - 13.3 2.53 

Varela-Rivera 
et al. 

E-1 63.1 17.1 3.68 11.3 5.56 101 0.62 

Varela-Rivera 

et al. 
E-2 93.4 20.5 4.57 14.5 6.43 94.3 0.99 

Varela-Rivera 
et al. 

E-3 86.4 10.2 8.51 7.6 11.32 37.2 2.32 

Varela-Rivera 

et al. 
E-4 105 23.4 4.49 17.1 6.14 103 1.02 

Varela-Rivera 
et al. 

E-5 130 23.8 5.44 17.3 7.50 101 1.28 

Varela-Rivera 

et al. 
E-6 111 12.7 8.75 9.7 11.46 42.1 2.63 

Furtado  
et al. 

Inf_02 69.0 23.6 2.93 21.4 3.23 30.4 2.27 

DIST-

UNINA 
80_OOP_4E 22.0 - - - - 5.6 3.94 

DIST-
UNINA 

120_OOP_4E 41.9 - - - - 21.5 1.95 

   mean 4.94 mean 6.62 mean 2.13 

   median 4.53 median 6.28 median 2.27 

   CoV 53% CoV 53% CoV 52% 
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Table 4.10. Experimental strength, Fmax [kN], of infills bounded along four edges to steel 

frames compared to the predicted value by Dawe and Seah (empirical formula), Flanagan and 

Bennett and Bashandy et al. 

   Fmax [kN] 

    predicted 

    D&S formula F&B Bashandy et al. 

Author specimen exp. exp. exp/pred exp. exp/pred exp exp/pred 
Dawe  

and Seah 
WE2 194 368 0.53 335 0.58 1720 0.11 

Dawe  
and Seah 

WE4 113 170 0.66 155 0.73 523 0.22 

Dawe 

 and Seah 
WE5 78.6 64.5 1.22 58.8 1.34 43.6 1.80 

Dawe  
and Seah 

WE8 135 196 0.69 179 0.76 590 0.23 

Flanagan  

et al. 
18 133 163 0.82 148 0.90 324 0.41 

Flanagan  
et al. 

25 40.6 37.0 1.10 33.7 1.20 38.4 1.06 

   mean 0.84 mean 0.92 mean 0.64 

   median 0.75 median 0.83 median 0.32 

   CoV 32% CoV 32% CoV 104% 

 

The application of Dawe and Seah’s model is performed by accounting for the 

deformability of the confining elements as well as for the specific load shape adopted 

during tests and for the deformed shape shown by infills during tests. It is worth to 

mention that for specimen 120_OOP_4E and for all Varela-Rivera et al.’s specimens, 

the evolution of the outward displacement of the RC frame upper beam during the OOP 

test is reported. This allow calibrating an effective flexural stiffness of the RC elements’ 

section equal to 0.30 times the elastic flexural stiffness for specimen 120_OOP_4E, in 

order to obtain a predicted maximum beam deflection equal to the experimental one. In 

all the other cases, RC members are considered as provided with an elastic flexural 

stiffness or by an effective flexural stiffness equal to one-half the elastic one.   

In addition, the following assumptions were made when applying Dawe and Seah’s 

model: 

 

i. For what concerns Angel et al.’s specimen 1, only vertical arching was 

considered. In fact, the horizontal slenderness ratio w/t, which is greater than 

50 for this specimen, is more than two times the slenderness upper bound 

(25, according to Eurocode 6 and ASCE 41-13) allowing considering 

possible the occurrence of arching action in that direction: based on this, it 
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seems that the occurrence of horizontal arching should be excluded; 

ii. For what concerns Furtado et al. (2016a)’s specimen Inf_02, the predicted 

experimental-to-predicted ratio ranges from 2.50 (stiff boundary elements) 

to 2.62 (deformable boundary elements with effective stiffness). These 

values have been classified as outliers according to Peirce’s criterion (Peirce 

1852) and, so, have been dropped from Table 4.11; 

iii. For what concerns Dawe and Seah’s specimens WE2, WE4, WE5 and WE8, 

the experimental-to-predicted ratios calculated by the Authors of this study 

are equal to 0.86, 0.95, 0.90 and 0.57, respectively. These values are different 

from those presented by Dawe and Seah’s themselves, which are equal to 

1.02, 0.96, 0.88 and 0.99, respectively. To the Authors’ knowledge, this 

difference cannot be explained with other reason than the fact that Dawe and 

Seah’s knowledge level of material properties, boundary conditions of infills 

and assumed deformed shape was of course higher than the knowledge level 

of the Authors of this study: e.g., for what concerns masonry properties in 

the horizontal direction, only an average of the compressive strength and of 

the elastic modulus is provided in the reference paper. For this reason, in 

Table 4.8, the experimental-to-predicted ratios presented for Dawe and 

Seah’s specimens are those declared by Dawe and Seah themselves. This 

circumstance has been pointed out with an asterisk (*) in Table 4.12.  

 

The results of the application of Dawe and Seah’s model is reported in Table 4.11 

for infills in RC frames and in Table 4.12 for infills in steel frames.  
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Table 4.11. Experimental strength, Fmax [kN], of infills bounded along four edges to RC frames 

compared to the predicted value by Dawe and Seah mechanical model under the hypothesis of 

stiff confining elements (stiff), of deformable confining elements with elastic stiffness (elastic) 

and of deformable confining elements with effective flexural stiffness equal to one-half the 

elastic one (effective). 

  Fmax [kN] 

    predicted by Dawe and Seah’s model  
Author specimen exp. stiff  exp/pred elastic exp/pred effective exp/pred 

Angel  

et al. 
1 31.3 46.5 0.67 38.1 0.82 33.4 0.94 

Calvi and 

Bolognini 
10 33.7 31.0 1.08 29.9 1.13 28.4 1.19 

Varela-

Rivera  

et al. 

E-1 63.1 267 0.24 102 0.62 84.5 0.75 

Varela-

Rivera et al. 
E-2 93.4 272 0.34 140 0.67 115 0.81 

Varela-

Rivera et al. 
E-3 86.4 142 0.61 71.4 1.21 55.9 1.55 

Varela-

Rivera et al. 
E-4 105 260 0.40 115 0.92 93.7 1.12 

Varela-

Rivera et al. 
E-5 130 259 0.50 125 1.04 99.5 1.30 

Varela-

Rivera et al. 
E-6 111 137 0.82 89.3 1.24 64.8 1.71 

Furtado et 

al. 
Inf_02 69.0 27.6 - 26.9 - 26.3 - 

DIST-

UNINA 
80_OOP_4E 22.0 22.3 0.99 21.4 1.03 21.0 1.05 

DIST-

UNINA 
120_OOP_4E 41.9 55.0 0.76 51.9 0.81 46.2 0.91 

   mean 0.64 mean 0.95 mean 1.13 

   median 0.64 median 0.97 median 1.08 

   CoV  43% CoV  23% CoV 28% 
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Table 4.12. Experimental strength, Fmax [kN], of infills bounded along four edges to steel 

frames compared to the predicted value by Dawe and Seah mechanical model under the 

hypothesis of stiff confining elements (stiff), of deformable confining elements with elastic 

stiffness (elastic) and of deformable confining elements with effective flexural stiffness equal 

to one-half the elastic one (effective). 

  Fmax [kN] 

    predicted by Dawe and Seah’s model  

Author specimen exp. stiff  exp/pred elastic exp/pred   

Dawe  

and Seah 
WE2 193.5 1731 0.11 189.7* 1.02*   

Dawe  

and Seah 
WE4 112.9 761.1 0.15 117.4* 0.96*   

Dawe  

and Seah 
WE5 78.6 479.4 0.16 89.6* 0.88*   

Dawe  

and Seah 
WE8 135.1 1597 0.08 136.4* 0.99*   

Flanagan 

and Bennett 
18 133.5 642.9 0.21 269.8 0.49   

Flanagan  

and Bennett 
25 40.6 126.4 0.32 65.5 0.62   

   mean 0.17 mean 0.73   

   median 0.16 median 0.74   

   CoV  49% CoV  26%   

*Values provided by Dawe and Seah. 

 

As shown in Table 4.11, Dawe and Seah’s, Flanagan and Bennett (1999b)’s and 

Bashandy et al.’s formulations significantly underestimate the OOP strength of infills in 

RC frames, as expected, with median of the experimental-to-predicted ratios ranging 

from 2.27 to 6.28. On the contrary, Dawe and Seah’s model with elastic flexural stiffness 

of confining members performs, on average, very well, with a median of the 

experimental-to-predicted strength ratios equal to 0.97 associated with a CoV equal to 

23%. For all these reasons, it seems that the prediction of the OOP strength of URM 

infills bounded along four edges to RC frames can be successfully achieved by applying 

Dawe and Seah’s response model, provided that the deformability of the confining 

elements is considered. However, it is worth to mention the labor-intensive nature of the 

model application, for which some simplification is needed. 

As shown in Table 4.10, Bashandy et al.’s formulation predicts an OOP strength of 

URM infills in steel frames equal to, on average, two times the experimental value. On 

the contrary, Dawe and Seah’s model and formulation, as well as Flanagan and Bennett 



Chapter IV – Experimental database analysis and modelling proposals 183 

 

 

 

(1999b)’s formulation, on average, produce similar results, with median of the 

experimental-to-predicted ratios ranging from 0.75 to 0.83. Therefore, using the simpler 

Flanagan and Bennett (1999b)’s formulation seems to be the best predicting approach 

for URM infills in steel frames; however, it is applicable, only under uniformly 

distributed lateral loads. For this reason, it is suggested also in this case the use (with no 

significant loss in the predictive capacity) of Dawe and Seah’s response model, provided 

that the deformability of the confining elements is considered. 

It is worth to mention that the deformability of the confining elements plays a 

fundamental role in predicting the OOP strength of URM infills, especially in steel 

frames, as expected. The ratio between the strength calculated under the hypothesis of 

deformable confining elements (Fdef) and the strength calculated under the hypothesis of 

stiff confining elements (Fstiff) is equal to, on average, 0.67 for infills in RC frames and 

to 0.25 for infills in steel frames. Clearly, the value of the Fdef/Fstiff ratio somehow 

depends on the element-infill “relative” stiffness. In fact, for a given OOP displacement, 

the entity of the frame actual deformation due to arching thrusts increases with 

increasing value of thrust forces. Such a value depends on the infill thickness and on 

masonry compressive strength, which is strongly related to its elastic modulus. Hence, 

the value of arching thrusts depends on the OOP stiffness of the infill, which is strongly 

related to the infill thickness and to masonry elastic modulus. Of course, for a given 

OOP displacement, the entity of the frame actual deformation due to arching thrusts 

decreases with increasing flexural stiffness of the confining elements.  

 

4.4.3.  Final remarks on the predictive capacity of literature 

formulations/models 

Based on the findings above shown, it can be concluded that: 

 

i. The OOP strength of infills bounded along two edges is well predicted by 

Eurocode 6 formulation adapted to the real loading condition (experimental-

to-predicted strength ratios’ mean equal to 1.01, median equal to 1.12, CoV 

equal to 32%); 

ii. The OOP strength of infills bounded along four edges to RC frames is well 

predicted only by Dawe and Seah’s response model accounting for the 

confining elements’ elastic deformability (experimental-to-predicted 

strength ratios’ mean equal to 0.95, median equal to 0.97, CoV equal to 
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23%): 

iii. The OOP strength of infills bounded along four edges to steel frames is 

predicted by Dawe and Seah’s response model with some overestimation 

(experimental-to-predicted strength ratios’ mean equal to 0.73, median equal 

to 0.74, CoV equal to 26%). As an alternative, the simpler Flanagan and 

Bennett (1999a)’s formulation can be used (experimental-to-predicted 

strength ratios’ mean equal to 0.92, median equal to 0.83, CoV equal to 

32%), but only in the case of uniformly distributed load. 

 

For all these reasons, it seems that the prediction of the OOP seismic strength of 

URM infills can significantly benefit from the simplification of Dawe and Seah’s model 

in a reliable and robust way, especially for URM infills bounded along four edges to RC 

frames. Namely, it is useful to define, if possible, a direct formulation to determinate the 

strength that Dawe and Seah’s model would predict. Different attempts showed that this 

cannot be done in closed form: a numerical approach will be used in the following 

subsections.  

This effort is aimed at proposing a formulation that can be used for the assessment 

of 4E URM infills’ OOP strength also in a code-based framework. To achieve this goal, 

as already stated, it seems appropriate to begin from Dawe and Seah’s response model, 

which is robust and reliable: in fact, its effectiveness has been demonstrated based on 

experimental results; in addition, it is a mechanical model, based on consolidated 

principles and reasonable hypotheses. However, prior to this simplification, it is worth 

to discuss some issues reported in the following list. 

 

i. Load shape. It has been shown that experimental tests have been performed 

by using different loading conditions and that Dawe and Seah’s response 

model works quite well for all of them. Hence, the direct and simplified 

strength formulation that will be derived in the following subsections will 

be proposed for the assessment of URM infills in both “experimental” and 

“real” cases, i.e., under realistic loading conditions. For this reason, it seems 

reasonable to perform the simplification effort herein proposed for three 

different load shapes. The first one is a four-point load, with each horizontal 

couple of points distant h/3 from the nearest horizontal edge. This loading 

condition is considered exclusively for comparison with experimental tests’ 

results. The second one is a uniform load, which can represent, e.g., wind 
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load, and also for the comparison with experimental tests. The third one is 

a sinusoid-shaped load, which is representative of seismic loads, as will be 

shown in section 6. 

ii. Frame deformability. It has been shown that when dealing with 

experimental results the confining frame deformability cannot be neglected 

to obtain a good prediction of the OOP strength of URM infills. However, 

as stated by Flanagan and Bennett (1999b), too, in real buildings infill walls 

are confined by structural elements whose deformability is usually 

neutralized as they are themselves confined by other structural and non-

structural elements. For this reason, in real buildings, adopting the 

hypothesis of stiff confining elements when calculating URM infills’ OOP 

strength seems reasonable. So, in the simplified formulations that will be 

proposed, the confining elements deformability will be neglected. However, 

it seems appropriate that the proposed formulations can be applied also for 

comparison with experimental tests results, in which, as demonstrated, the 

frame elements’ deformability cannot be neglected. Therefore, once a direct 

strength formulation has been obtained for all load shapes, an empirical 

correction factor will be calibrated to reduce the OOP strength for a given 

“frame-to-infill relative stiffness ratio”. 

iii. Assumption of a deformed shape. It has been shown that to apply Dawe and 

Seah’s model it is necessary to fix a regularized deformed shape of the infill. 

In addition, it has been shown that for infills bounded along two edges the 

experimental deformed shape can be always regularized with that 

represented in Figure 4.2a. For what concerns infills bounded along four 

edges, the experimental database herein collected shows that two deformed 

shapes are commonly observed: the one shown in Figure 4.2b, which 

transforms in the one represented in Figure 4.2d for square panels, and the 

one shown in Figure 4.2c when the infill detaches from the upper beam 

during OOP loading. In the simplification effort herein proposed, the 

deformed shape shown in Figure 4.2a will be used for 2E infills, both the 

deformed shapes shown in Figure 4.2b (or Figure 4.2d) and in Figure 4.2c 

will be considered for 4E infills. 

 

Remember that the empirical formulations by Dawe and Seah and Flanagan and 

Bennett (1999b) were applied only to test specimens loaded under uniformly distributed 
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load, as they are empirical and cannot be adapted to different loading conditions. 

Remember also that they were defined for infills in pinned steel frames and that, for this 

reason, they can underestimate the OOP strength of infills in moment-resisting (such as 

RC) frames. Bashandy et al.’s formulation is adapted to the specific loading condition 

used during tests. 

 

4.4.4.  Some considerations on the OOP strength of infills under seismic load 

As above mentioned, before showing the derivation of a simplified direct formulation 

for the OOP strength of URM infills, it is worth to discuss the shape of the lateral load 

acting on URM infills when subjected to seismic actions.  

Consider an infill wall bounded only along the upper and lower edges. Such a panel 

can be considered, with acceptable approximation, as a uniformly-distributed mass beam 

pinned at edges, whose first vibration mode in the OOP direction is shaped as a sinusoid 

function, according to expression reported in Equation 3. 

 

φ(y) = Φsin (
π

h
y)                       0 ≤ y ≤ h (3) 

 

In Equation 3, Φ is the maximum displacement attained at the infill mid-height due 

to the first vibration mode; y is the axis denoting the vertical direction. For this boundary 

condition, the participating mass associated to the first vibration mode is the 81% of the 

infill total mass. For a uniformly-distributed mass dynamic system, the static load for 

unit-width equivalent to the seismic action, qseismic,2E, corresponding to the first vibration 

mode, is shaped as the first vibration mode itself, as shown in Equation 4. 

 

qseismic,2E(y) = qs,2Esin (
π

L
y)                0 ≤ y ≤ L (4) 

 

In Equation 4, qs,2E is the maximum value attained at the infill mid-height by the 

sinusoidal-distributed load qseismic,2E, y is the direction in which arching action occurs 

and L is the infill length in the direction of arching action. Given this load shape, under 

the hypothesis of Eurocode 6’s approach and of McDowell et al.’s approach the values 

of qs,2E reported in Equations 5a-b are obtained. Consequently, the OOP strength 

Fmax,seismic,2E reported in Equations 6a-b are calculated by integrating Equation 4 on the 

entire infill height and width. 
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             McDowell et al.’s approach           Eurocode 6 approach  

qs,2E =
π2

L2
Myv (a); qs,2E = 0.85fm (

t

L
)

2

 (b) (5) 

Fseismic,2E = 4πMyv

w

L
 (a); Fseismic,2E = 0.85fm (

t

L
)

2

wh (b) (6) 

 

Based on the above results, the OOP resistance of an infill bounded along two edges 

under seismic load is equal to around 0.78 times the resistance calculated for the same 

infill subjected to a uniformly distributed load, i.e., is always lower than that associated 

with a uniformly distributed load. In this sense, calculating the OOP strength of URM 

infills for a seismic safety check by means of a formulation defined for a uniformly 

distributed load can be not conservative. In addition, note that the OOP strength of 2E 

infills under seismic load is theoretically almost equal to that shown under two 

concentrated forces, each of which distant L/3 from the nearest bounded edge (γ=1/3). 

Now, consider an infill bounded along four edges. According to consolidated 

analytical studies (Blevins and Plunkett, 1980) the deformed shape associated to the first 

OOP vibration mode of an elastic plate simply-supported at edges is well described, 

along the vertical and horizontal direction in the plate’s plane, through a sinusoidal shape 

function. Given these conditions, the deformed shape associated to the first mode in the 

OOP direction of such a plate can be expressed as reported in Equation 7 and represented 

in Figure 4.4. 

 

φ(x, y) = Φsin (
π

w
x) sin (

π

h
y) 

0 ≤ x ≤ w 
(7) 

0 ≤ y ≤ h 

 

In Equation 7, Φ is the maximum displacement attained at the infill center due to the 

first vibration mode. For this boundary condition, the participating mass associated to 

the first vibration mode is the 66% of the infill total mass. Also in this case, given the 

hypothesis of uniformly-distributed mass system, the static load for unit-surface 

equivalent to the seismic action, qseismic,4R, corresponding to the first vibration mode is 

shaped as the first vibration mode itself, as shown in Equation 8. 

 

qseismic,4E(x, y) = qs,4Esin (
π

w
x) sin (

π

h
y) 

0 ≤ x ≤ w 
(8) 

0 ≤ y ≤ h 
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In Equation 8, qs,4E is the maximum value attained at the infill center by the 

sinusoidal-distributed load qseismic,4E.  

 

 
Figure 4.4. First mode sinusoid deformed shape of an infill bounded along all edges. 

 

Clearly, for both 2E and 4E infills, independently on the deformed shape shown at 

peak load, the sinusoid load shape can be considered rigorous only in the first loading 

stages; in the post-elastic range, infills’ modal deformed shape is expected to change 

gradually up to becoming similar to the shape defined by the collapse mechanism 

exhibited. Neither the evolution of the load shape nor the variation of the deformed shape 

can be considered when applying Dawe and Seah’s model, as both of them must be fixed 

since the beginning of the procedure application. For this reason, it is assumed that the 

seismic load shape does not vary at increasing central displacement demand acting on 

the infill, with some analogy with the classical procedure for the application of non-

linear static pushover analysis, in which the modification of the lateral deformed shape 

of the structure, and consequently of the lateral load shape, and are not considered. Note 

that, nevertheless, in the comparison with experimental tests’ results, the model 

effectiveness is demonstrated despite the assumption of a fixed deformed shape. 

 

4.4.5.  Proposed direct mechanical-based formulations 

It has been shown in the previous sections that Dawe and Seah’s mechanical-based 

model works quite well when predicting the OOP strength of URM infills. However, the 

application of the model is, actually, very labor-intensive. With the aim of calculating 

straightforwardly the OOP strength of URM infills without renouncing to the quality of 

the mechanical-based predictions of Dawe and Seah’s model, simplified but robust and 
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reliable formulations are herein proposed. 

As already stated, these proposed formulations are first calculated by applying Dawe 

and Seah’s response model under the hypothesis of stiff confining elements (as in real 

buildings) for 2E and 4E infills under four-point load, uniformly distributed load (which 

can represent, e.g., a wind load) and sinusoid load (which represents, as shown in 

subsection 4.4.4, seismic load). The two deformed shapes observed during experimental 

tests are considered: a hipped deformed shape (Figure 4.2b) and a trilinear deformed 

shape (Figure 4.2c). 

To propose these simplified strength formulations, a parametric study is carried out.  

Namely, sets of: 

 

i. 11 values of possible height (ranging from 1000 to 3000 mm with 200 mm 

steps); 

ii. 17 values of possible width (ranging from 1400 to 4600 mm with 200 mm 

steps); 

iii. 9 values of possible thickness (ranging from 40 to 360 mm with 40 mm 

steps); 

iv. 24 values of possible masonry vertical compressive strength (ranging from 

0.40 to 5.00 N/mm2, which are values typical for hollow clay brick and 

mortar masonry, with 0.20 N/mm2 steps); 

v. 24 values of possible masonry horizontal compressive strength (with the 

same range and steps used for vertical compressive strength); 

 

are considered. The elastic moduli of masonry have been defined based on the Em/fm 

ratios calculated on the collected experimental database. Based on these sets of 

geometric and mechanical properties, 969408 “simulated” 4E infills were defined. 

However, among these, those defined by unrealistic geometric properties were not 

considered. Namely, infills with vertical or horizontal slenderness ratio lower than 5 or 

greater than 35 were excluded, as well as infills with width lower than height, as they 

are not typical of real buildings (and, potentially, can be considered as infills with 

horizontal height and vertical width). Hence, 530496 “simulated” 4E infills were 

actually considered. 

Then, Dawe and Seah’s response model was applied on the simulated infills. The 

calculated values of strength were related to the simulated infills’ geometric and 

mechanical properties by means of a non-linear least square regression analysis. In this 
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way, simple and direct strength formulations were obtained which reproduce, although 

with a certain approximation, the mechanical-based and reliable result that Dawe and 

Seah’s model would have provided.  

To perform non-linear regressions, a model function must be defined. First, the 

model function should be the one that allows reducing the regression error as much as 

possible. However, in the Authors’ opinion, it should be provided with two more 

characteristics: first, the model function should be simple and simply applicable; second, 

even if derived through a numerical analysis, the model function should be defined by 

predictive parameters that can be immediately and straightforwardly related to the 

mechanical phenomena that determinate the predicted variable, i.e., in this case, the 

OOP strength of infills.  

Also considering that Eurocode 6 formulation, which has clear and simple 

mechanical basis, works quite well on 2E specimens, the model function reported in 

Equation 9 – similar to that of Eurocode 6 – was chosen. 

 

Fmax = [θ1vfmv
θ2v (

t

h
)

θ3v

+ θ1hfmh
θ2h (

t

w
)

θ3h

] wh (9) 

 

In Equation 9, in the summation in square brackets, the first term accounts for vertical 

arching, the second term for horizontal arching. In this equation, lengths are expressed 

in millimeters and forces in Newtons. 

In Equation 9, θ1, θ2 and θ3 are coefficients determined by means of the non-linear 

regression analysis of the numerical values of the OOP strength predicted by means of 

Dawe and Seah’s model. The values of the regression coefficients are reported in Table 

4.13 for different loading shapes and deformed shapes; in addition, the mean, median 

and CoV of the theoretical-to-simplified strength ratios are reported.  

It is observed that for all deformed shapes, load shapes and boundary conditions the 

capacity of the proposed equation in substituting the application of Dawe and Seah’s 

model is good, as the median of the theoretical-to-simplified ratios ranges from 0.98 to 

1.01 while the CoV range from 3 to 12%.  
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Table 4.13. Regression coefficients for Equation 9 for different load and deformed shape, 

together with mean, median and CoV of the ratios of the OOP strength calculated for the 

“simulated” infills through Dawe and Seah’s model and by applying the regression 

formulations (simplified). 

# 

load  

shape 

deformed 

shape 

values of the regression coefficients model-to-simplified ratios 

θ1v θ2v θ3v θ1h θ2h θ3h mean median CoV 

1 4-pt hipped 2.20 0.85 2.25 0.35 1.27 1.62 0.97 0.99 10% 

2 unif. hipped 2.36 0.97 2.15 2.17 0.94 1.89 0.97 0.98 8% 

3 sin. hipped 2.86 0.82 2.28 0.23 1.39 1.48 0.97 0.99 12% 

4 4-pt trilinear 0.61 0.99 2.08 1.19 1.00 2.09 0.99 1.00 3% 

5 unif. trilinear 0.97 0.99 2.08 1.91 1.00 2.09 0.99 1.01 3% 

6 sin. trilinear 2.58 0.84 2.24 0.39 1.29 1.62 0.97 0.99 10% 

 

The proposed direct strength formulation has been derived for 4E infills for different 

deformed shapes and load shapes under the hypothesis of stiff boundary structural 

elements. The latter is the condition typical of “real” infill walls in “real” buildings, as 

the deformation of structural elements due to arching thrusts is prevented by the 

confinement provided by other structural and non-structural elements. However, it 

seems reasonable to provide some tool allowing the analyst of experimental data 

applying the proposed formulations also accounting for the frame deformability, based 

on the experimental data, i.e., through an empirical approach (as also done by Dawe and 

Seah, Flanagan and Bennett 1999b).  

As already stated, it seems reasonable to assume as predictor parameter some factor 

dependent on the “relative stiffness” of the structural elements and of the infill wall. As 

vertical arching thrusts act on the frame beam(s) and horizontal arching thrusts act on 

the frame columns, the predictor parameters reported in Equation 10 are defined with 

forces expressed in Newtons and lengths in millimeters. 

 

λv =
(EI)b

1000tfmv

 λh =
(EI)c

1000tfmh

 (10) 

 

Clearly, the application of Dawe and Seah’s model under the hypothesis of 

deformable confining frame accounts also for the axial and torsional deformability of 

elements. For the sake of simplicity, the predictor parameters are expressed only in terms 

of the flexural stiffness of the elements. In other words, it is assumed that the axial and 

torsional deformability of elements is related to the flexural one. In addition, the stiffness 

of the infill wall is represented by the compressive strength, not by the elastic modulus. 
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This is because the elastic modulus is not always available in the considered database. 

Also in this case, it is implied that the elastic modulus is (linearly) related to the 

compressive strength, as also assumed by different codes (e.g., Eurocode 6, ASCE 41-

13). 

The application of Dawe and Seah’s model with confining members provided with 

elastic stiffness provides, on average, the best prediction for both infills in steel frames 

and in RC frames. Hence, for each specimen of the database, the ratio Rd between the 

experimental strength and that calculated by the proposed direct strength formulations 

(Equation 9), which are defined under the hypothesis of stiff confining elements, is 

calculated.  

Through a non-linear regression analysis the experimental values of Rd are related to 

the values of λv and λh. The non-linear regression showed that only the parameter λh is 

significant, because in the considered specimens only one beam deforms (as the lower 

one is attached to the laboratory floor), while two columns deflect; therefore, the 

columns’ deformability is more responsible for the OOP strength reduction. Based on 

all these considerations, the formulation reported in Equation 11 was determined. 

  

Rd = min (1; ks(6.73 × 10−3)λh
0.27) (11) 

 

In Equation 11, ks is a coefficient accounting for the static scheme of the confining 

frame and is equal to 0.60 for infills in steel pinned frames, to 1.00 for infills in moment-

resisting RC frames. 

The experimental and predicted values of Rd are shown in Tables 4.14-4.15. In the 

same tables, the experimental values of the OOP strength of specimens is compared with 

that predicted by Equation 9 (with regression coefficient associated with the specific 

loading condition and observed/assumed deformed shape) multiplied for the calculated 

value of the Rd factor. The experimental-to-predicted ratios are slightly different from 

those reported in Tables 4.11-4.12, which are derived with the application of Dawe and 

Seah’s complete model. On average, it is observed that the proposed simplified 

formulation, with the introduction of the deformability factor, actually allow predicting 

the OOP strength in a straightforward way, without significant lost in the predictive 

capacity compared to the complete model. The comparison between the experimental 

and predicted values of Rd and Fmax is also shown in Figure 4.5. 

 

 

Table 4.14. Experimental and predicted values of the deformability factor Rd and of the OOP 
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strength derived from the proposed simplified approach for infills in RC frames. 

   Rd Fmax [kN] 

Author specimen 

λh 

[mm3] 
exp. predicted exp/pred exp. predicted exp/pred 

Angel  

et al. 
1 3.92E+07 0.82 0.76 0.97 31.3 39.2 0.80 

Calvi  

and 

Bolognini 

10 1.61E+08 0.96 1.00 0.85 33.7 35.4 0.95 

Varela-

Rivera et al. 
E-1 1.87E+06 0.38 0.33 1.05 63.1 96.9 0.65 

Varela-

Rivera et al. 
E-2 3.32E+06 0.52 0.39 1.24 93.4 113.4 0.82 

Varela-

Rivera et al. 
E-3 3.13E+06 0.50 0.38 1.15 86.4 62.1 1.39 

Varela-

Rivera et al. 
E-4 3.71E+06 0.44 0.40 0.94 105.1 121.8 0.86 

Varela-

Rivera et al. 
E-5 3.95E+06 0.48 0.41 1.02 129.6 122.8 1.06 

Varela-

Rivera et al. 
E-6 5.11E+06 0.65 0.44 1.21 110.9 73.6 1.51 

DIST-

UNINA 
80_OOP_4E 5.99E+07 0.96 0.85 1.03 22.0 26.2 0.84 

DIST-

UNINA 
120_OOP_4E 4.49E+07 0.94 0.78 0.43 41.9 49.4 0.85 

    mean 0.99  mean 0.97 

    median 1.02  median 0.86 

    CoV  23%  CoV  28% 

Table 4.15. Experimental and predicted values of the deformability factor Rd and of the OOP 

strength derived from the proposed simplified approach for infills in steel frames. 

   Rd Fmax [kN] 

Author specimen λh [mm3] exp. pred. exp/pred exp. pred. exp/pred 

Dawe  

and Seah 
WE2 1.08E+06 0.11 0.17 0.63 193.5 299.4 0.65 

Dawe  

and Seah 
WE4 1.46E+06 0.15 0.19 0.77 112.9 153.5 0.74 

Dawe  

and Seah 
WE5 2.27E+06 0.19 0.21 0.73 78.6 123.5 0.64 

Dawe  

and Seah 
WE8 1.46E+06 0.09 0.19 0.44 135.1 311.7 0.43 

Flanagan 

and Bennett 
18 2.34E+06 0.42 0.21 1.91 133.5 141.2 0.95 

Flanagan 

and Bennett 
25 4.67E+06 0.52 0.26 1.56 40.6 42.0 0.97 

    mean 1.01  mean 0.73 

    median 0.75  median 0.69 

    CoV  58%  CoV  28% 
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Figure 4.5. Comparison of the experimental and predicted values of the Rd deformability factor 

for infills in RC frames (a) and in steel frames (c). Comparison of the experimental and 

predicted values of the OOP strength of specimens in RC frames (b) and of specimens in steel 

frames (d). 

 

The proposed formulations have been derived based on the application of Dawe and 

Seah’s model. This was possible as it was demonstrated that Dawe and Seah’s model 

well predicts the OOP strength of specimens tested in the literature. For this reason, it is 

necessary to recall that the reliability of Dawe and Seah’s model has been tested only 

with reference to infills with mechanical and, above all, geometric properties defined in 

LEGEND

DIST-UNINA

Dawe and Seah Angel et al. Flanagan and Bennett

Calvi and Bolognini Varela-Rivera et al.

steel frames: grey-shaded dots

RC frames: black-shaded dots
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specific ranges. Namely, only infills with slenderness ratio greater than 15 and thickness 

lower than 200 mm were considered. Therefore, the Authors cannot grant the reliability 

of such model, and of the proposed simplified formulations, outside these bounds. In 

addition, note that Flanagan and Bennett (1999b) express some doubts on the fact that 

in very thick infills arching action can develop as predicted by Dawe and Seah’s model, 

given that thick infills’ behaviour, such as in thick plates and shells, “may be less 

influenced by membrane forces”. 

In new RC buildings, infill walls bounded along four edges to the confining elements 

are usually “thick” and “robust”, being characterized by: 

 

i. High thickness (e.g., t>300 mm), i.e., very low height-over-thickness 

slenderness ratio (e.g., h/t<10); 

ii. High masonry compressive strength in the direction parallel to holes (e.g., 

fm>5 N/mm2); 

iii. Construction with vertical holes. 

 

This choice of such type of infills is very useful to guarantee good acoustic and, 

above all, thermic insulation, i.e., a good energetic performance of buildings. Clearly, 

such a type of infill walls is expected also to be provided with very high OOP strength, 

and, so, to exhibit a good seismic performance under lateral actions. 

The OOP behaviour of this type of infills has been studied in recent years mainly by 

da Porto and co-workers (Guidi et al. 2013) and by Magenes and co-workers (Hak et 

al.). Unfortunately, these experimental programs do not include IP-undamaged infills, 

as they were performed to investigate the effects of IP damage on the OOP response of 

URM infills, i.e., the effects of the so-called IP/OOP interaction. Based also on these 

tests, many experimental and modelling studies have been published in past and recent 

years in the literature concerning the IP/OOP interaction (e.g., Angel et al., Mosalam 

and Günay 2015, Furtado et al. 2016b among many others). However, there is no 

experimental test reporting the OOP strength of thick and robust IP-undamaged URM 

infills in which two-way arching can occur. 

In Authors’ opinion, further research is absolutely necessary on this topic. Given the 

current absence of experimental data, it is suggested for this type of infills the use 

Eurocode 6 (2005) formulation that, being dedicated to 2E infills in which only one-way 

arching can occur, should provide conservative prediction of the OOP strength of such 

type of infills. 
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4.4.6. Modelling proposals 

In the previous section, mechanical-based OOP strength formulations have been 

proposed for different deformed shape, loading and boundary conditions at edges. In 

addition, it has been suggested to use Eurocode 6 strength model, adapted to the specific 

loading condition, for 4E robust and thick infills, widely used in new RC constructions. 

Unfortunately, there is no formulation in the literature to predict the OOP load 

corresponding to the first macro-cracking/significant non linearity. Hence, an empirical-

based proposal is herein provided. 

The experimental value collected for Fcrack are reported in Table 4.16. The empirical 

relationship proposed herein was defined by correlating the observed values of Fcrack 

with n=5 geometric and mechanical properties of infills (t, h, w, fmv, and Emv) using a 

linear least-squares regression. The regressions were carried out by correlating the 

natural logarithm of each observed variable with a set constituted by i (i=1,…,n) 

candidate parameters.  

First, the full model (i=n) was selected as the “reference model”. Then, F-tests were 

performed comparing the reference full model with all reduced models (i=1,…,n-1) to 

associate with each reduced model a p-value related to the null hypothesis of statistical 

equivalence between the considered reduced model and the reference model. Models 

with a p-value lower than the significance level, α, were immediately rejected, because 

in this case the null hypothesis itself should be rejected. Among all possible reduced 

models, the one with a minimum number of parameters and a higher p-value was 

accepted and is herein proposed. Note that α was set to 0.10 to conservatively reduce the 

risk of a Type II error (i.e., not rejecting a false null hypothesis – in this case, accepting 

a reduced model with a statistically significant difference from the reference model) 

according to Draper and Smith (1998). 

The formulation obtained is reported in Equation 12, in which forces are expressed 

in Newtons and lengths in millimetres. In addition, in the experimental database it is 

observed that Fcrack is never greater than 0.90 times Fmax. This upper bound is introduced 

in Equation 12 to avoid modelling issues. Note that no specific relationship can be 

proposed for 2E infills, as the database is constituted only by four data. Prior to further 

investigations, Equation 12 should be used also for them. 

 

Fcrack = min (3.50fmv
0.14

t

h1.48
wh; 0.90Fmax) (12) 
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Table 4.16. Comparison of the experimental and predicted values of Fcrack for 4E specimens. 

  Fcrack [kN] 

Author Specimen experimental predicted exp/pred 

Angel et al. 1 17.1 16.0 0.89 

Calvi and Bolognini 10 29.0 36.5 1.10 

Varela-Rivera et al. E-1 - - - 

Varela-Rivera et al. E-2 - - - 

Varela-Rivera et al. E-3 - - - 

Varela-Rivera et al. E-4 - - - 

Varela-Rivera et al. E-5 - - - 

Varela-Rivera et al. E-6 - - - 

Furtado et al. Inf_02 50.0 46.7 1.34 

DIST-UNINA 80_OOP_4E 19.4 18.6 1.38 

DIST-UNINA 120_OOP_4E 27.5 27.4 0.79 

Dawe and Seah WE2 - - - 

Dawe and Seah WE4 - - - 

Dawe and Seah WE5 - - - 

Dawe and Seah WE8 - - - 

Flanagan and Bennett 18 40.6 49.2 0.82 

Flanagan and Bennett 25 - - - 

   mean 0.98 

   median 1.04 

   CoV 12% 

 

The formulation proposed in Equation 12 has quite good predictive capacity, with a 

median of the experimental-to-predicted ratio equal to 1.04 and a CoV equal to 12%. 

 

4.5. ASSESSMENT OF THE OOP DISPLACEMENT CAPACITY 

For 2E infills made with clay hollow bricks with horizontal holes the OOP collapse 

occurs at the attainment of peak load, due to the fact that masonry does not exhibit 

ductility when arching thrusts act perpendicular to bricks’ holes and to the fact that, for 

such boundary condition, the redistribution of stresses after the attainment of peak load 

is not possible. 

For what concerns 4E infills, due to the small number of experimental tests carried 

out to investigate the OOP behaviour of URM infills which lack, in most cases, of a 

clear and detailed description of damage evolution, the definition of the OOP collapse 

displacement of URM infill walls, du, is currently an open issue. For instance, 

experimental tests carried out on infilled RC frames do not allow a unique definition of 
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du, and the authors of those tests, in most cases, do not discuss this topic and define as 

“collapse displacement” the OOP central displacement at which the test was interrupted. 

In Chapter I, formulations for the prediction of candidate values of the OOP 

conventional collapse associated with specific phenomena or to limit values of the 

ductility were presented and discussed. With reference to 4E infills for which the 

experimental OOP force-displacement diagram is available and presents a post-peak 

branch, the values of these candidate collapse displacements were calculated. The 

position of such values of candidate collapse displacement with respect to the overall 

OOP response of specimens is shown in Figure 4.6 and 4.7. Note that for the prediction 

of the displacement at masonry crushing, a conventional value of εcrush was used. Such 

value is equal to 0.004, as suggested by Angel et al. (1994). 

 

 
Figure 4.6. Normalized OOP force-displacement diagrams (dOOP normalized with respect to 

dmax) and position of the candidate collapse displacements described in Chapter I. 

  



Chapter IV – Experimental database analysis and modelling proposals 199 

 

 

 

 
Figure 4.7. Normalized OOP force-displacement diagrams (dOOP normalized with respect to t) 

and position of the candidate collapse displacements described in Chapter I. 

 

It is clear from Figures 4.6 and 4.7 that there is no evidence of a recurrent trend that 

allows considering one of the candidate collapse displacements as the more robust and 

efficient. 

The collapse displacement of a structural or non-structural member is conventionally 

defined based on a fixed reduction of its resistance. This reduction is commonly related 

to a certain damage state of the element or to a significant variation in its response. 

Similarly to the assumption usually made for the definition of the displacement capacity 

of members realized with brittle materials, it is suggested to assume as conventional 

OOP collapse displacement, du, the infill central displacement at which, in the softening 

branch of the OOP response, the infill exhibit a 20% reduction of the lateral resistance, 

d80. 

As shown in Figures 4.8 and 4.9, this displacement corresponds, based on the results 

of OOP tests on URM infills for which the experimental OOP force-displacement 

diagram is available and presents a post-peak branch, to a ductility capacity which is 

equal to, at least, 1.40 (based on Calvi and Bolognini 2001’s results). In addition, a 

potential correlation of du with the infill geometric and mechanical properties was 

investigated. Among the possible ones, it was observed that the most clear and 

straightforward was the correlation with the infill thickness – which is also related – and 

sufficiently distant – to the infill central displacement at which arching action is 

expected to vanish according to Angel et al., 0.80t.  
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Figure 4.8. Normalized OOP force-displacement diagrams (dOOP normalized with respect to 

dmax) and position of the OOP displacement at 20% strength degradation. 

  

 
Figure 4.9. Normalized OOP force-displacement diagrams (dOOP normalized with respect to t) 

and position of the OOP displacement at 20% strength degradation. 

 

Namely, du is equal, on average, to 0.30 times the infill thickness. For these reasons, 

based on experimental data, it is assumed that the OOP ductility capacity of the infill 

wall is equal to 0.30t/dmax and that such ductility cannot be lower than 1.40 or greater 

than t/dmax, as the infill central OOP displacement cannot overcome the infill thickness 

for geometric compatibility.  
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4.6. ASSESSMENT OF THE IP/OOP INTERACTION EFFECTS 

This section is dedicated to the assessment of the IP/OOP interaction effects in terms 

of OOP strength, stiffness and displacement capacity variation due to the IP 

displacement demand and vice-versa. 

In the first subsection, the formulations aimed at predicting the OOP strength 

reduction factor R due to the IP displacement demand presented in Chapter I are applied 

to the experimental database collected in section 4.2.2 in order to assess their 

effectiveness. 

In the second subsection, based on the experimental database collected, more robust 

and efficient empirical formulations are proposed not only for the prediction of the R 

factor, but also for modelling the first macro-cracking load, the secant stiffness at first 

macro-cracking and at maximum, as well as the displacement capacity variation due to 

IP displacement demands. 

In the third subsection, the effects of the OOP displacement demand on the IP 

response are discussed. Based on experimental data, a modelling proposal is presented. 

 

4.6.1. Assessment of literature formulations 

In this subsection, the formulations proposed in the literature by Angel et al., Morandi 

et al. and Verlato et al. to predict the OOP strength reduction factor, R, which is defined 

as the ratio between the OOP strength of the IP-damaged infill and the OOP strength of 

the IP-undamaged infill, are applied to the experimental database collected. This 

application is aimed at assessing their predicting capacity. Note that the application of 

Angel et al.’s formulation requires, as input datum, the IDR corresponding to the infill 

first visible cracking due to IP actions. As this information is available only for DIST-

UNINA specimens (as the mean of the IDRcrack values evaluated for positive and 

negative displacements), Angel et al.’s formulation will be applied only to these 

specimens. 

The experimental values of the R factor are reported in Table 4.17. They are 

compared with the corresponding predicted values in Tables 4.18 and 4.19. A graphical 

comparison of experimental and predicted R factors is shown in Figures 4.10 and 4.11. 
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Table 4.17. Experimental values of the R factor (Fmax,dam/Fmax,und). 

Author specimen h/t 

IP 

drift 
IDRcrack reference 

specimen 

Fmax 

IP-und IP-dam 
R 

[%] [%] [kN] [kN] 
Angel  

et al. 
2b 33.9 0.34 - 1 31.3 15.9 0.51 

Angel  
et al. 

3b 33.9 0.22 - 1 31.3 23.7 0.76 

Calvi and 

Bolognini 
6 20.4 0.40 - 10 33.7 9.0 0.27 

Calvi and 
Bolognini 

2 20.4 1.20 - 10 33.7 6.0 0.18 

Furtado  

et al. 
Inf_03 15.3 0.50 - Inf_02 69.0 18.0 0.26 

DIST- 
UNINA 

80_IP+OOP_L 22.9 0.16 0.068 80_OOP_4E 22.0 23.4 1.06 

DIST- 

UNINA 
80_IP+OOP_M 22.9 0.37 0.063 80_OOP_4E 22.0 10.5 0.48 

DIST- 
UNINA 

80_IP+OOP_H 22.9 0.58 0.067 80_OOP_4E 22.0 5.9 0.27 

DIST- 

UNINA 
120_IP+OOP_L 15.2 0.21 0.075 120_OOP_4E 41.9 41.6 0.99 

DIST- 
UNINA 

120_IP+OOP_M 15.2 0.50 0.080 120_OOP_4E 41.9 27.9 0.67 

DIST- 

UNINA 
120_IP+OOP_H 15.2 0.89 0.078 120_OOP_4E 41.9 23.1 0.55 

 

Table 4.18. Comparison of the experimental values of the R factor (Fmax,dam/Fmax,und) with the 

value predicted by Angel et al.’s formulation. 

Author specimen experimental R Angel et al.’s R exp/pred 

DIST-UNINA 80_IP+OOP_L 1.06 0.59 1.81 

DIST-UNINA 80_IP+OOP_M 0.48 0.27 1.82 

DIST-UNINA 80_IP+OOP_H 0.27 0.14 1.92 

DIST-UNINA 120_IP+OOP_L 0.99 0.71 1.39 

DIST-UNINA 120_IP+OOP_M 0.67 0.47 1.45 

DIST-UNINA 120_IP+OOP_H 0.55 0.25 2.24 

   mean 1.77 

   median 1.81 

   CoV  19% 
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Table 4.19. Comparison of the experimental values of the R factor (Fmax,dam/Fmax,und) with the 

values predicted by Morandi et al.’s (stepwise and linear) and by Verlato et al.’s formulations. 

  R predicted R 

   
Morandi et al. 

(stepwise) 

Morandi et al.  

(linear) 
Verlato et al. 

Author specimen exp. pred. exp/pred pred. exp/pred pred. exp/pred 

Angel  

et al. 
2b 0.51 0.20 2.55 0.20 2.55 0.71 0.72 

Angel  

et al. 
3b 0.76 1.00 0.76 0.41 1.84 0.81 0.94 

Calvi and 

Bolognini 
6 0.27 0.20 1.35 0.20 1.35 0.66 0.41 

Calvi and 

Bolognini 
2 0.18 0.00 - 0.00  0.40 0.45 

Furtado  

et al. 
Inf_03 0.26 0.20 1.30 0.20 1.30 0.57 0.46 

DIST- 

UNINA 
80_IP+OOP_L 1.06 1.00 1.06 0.57 1.85 0.86 1.23 

DIST- 

UNINA 
80_IP+OOP_M 0.48 0.20 2.40 0.20 2.40 0.68 0.70 

DIST- 

UNINA 
80_IP+OOP_H 0.27 0.20 1.35 0.20 1.35 0.50 0.54 

DIST- 

UNINA 
120_IP+OOP_L 0.99 1.00 0.99 0.44 2.25 0.82 1.21 

DIST- 
UNINA 

120_IP+OOP_M 0.67 0.20 3.35 0.20 3.35 0.57 1.18 

DIST- 

UNINA 
120_IP+OOP_H 0.55 0.20 2.75 0.20 2.75 0.40 1.38 

   mean 1.79 mean 2.10 mean 0.84 

   median 1.35 median 2.05 median 0.72 

   CoV 50% CoV 33% CoV  43% 

 
Figure 4.10. Comparison of the R factor of DIST-UNINA specimens with those predicted by 

applying Angel et al.’s formulation. 
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Figure 4.11. Comparison of the R factors calculated for the entire database with those predicted 

by applying Morandi et al.’s and Verlato et al.’s formulations. 

 

It is observed that Angel et al. (1994)’s and Morandi et al. (2013)’s are quite 

conservative. On the other hand, Verlato et al. (2014)’s formulation, based on the 

median of the experimental-to-predicted R ratios, is unconservative, most likely because 

it has been derived based on experimental tests’ results on very thick and robust URM 

infills. 

 

4.6.2. Modelling proposals (IP effects on OOP) 

In the previous subsection, it was observed that the currently available literature 

formulations for the prediction of the R factor are not sufficiently efficient. In addition, 

no relationship exists to predict the variation due to the IP damage of the first macro-

cracking load and of the secant stiffness at first macro-cracking and at maximum.  

In this subsection, empirical formulations aimed at predicting the variation of such 

significant response parameters are proposed. In addition, an empirical approach for the 

prediction of the variation of the OOP collapse displacement due to IP damage is 

presented. 

At first, it is worth to consider only DIST-UNINA experimental data to discuss the 

predictive parameters entering the proposed formulations. Clearly, one of them is the IP 

displacement demand represented by the IDR demand. However, the OOP strength and 
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stiffness variation due to the IP/OOP interaction is due, more generally, to the entity of 

the IP damage. It is intuitive that, at equal IP drift, the entity of the IP damage depends 

also on the infill geometric and mechanical properties. Angel et al. and Agnihotri et al. 

(2013) already observed that, at equal IP drift, less slender infills are expected to show 

a lower OOP strength reduction with respect to slender infills. This is confirmed also by 

DIST-UNINA results, not only for what concerns the OOP strength, but also for the 

other significant response parameters, except for Kcrack, as shown in Figure 4.12. 

 

 

  

  
Figure 4.12. Experimental values of the reduction factors for secant stiffness and force at first 

macro-cracking and at peak load for DIST-UNINA specimens. 

 

As it is clear from Figure 4.12, there is a strong influence of the vertical slenderness 

ratio (h/t) on the reduction of the significant OOP response parameters of the tested 

infills, except for Kcrack. Namely, at a fixed IDR, the secant stiffness at peak-load and 

force (both at first macro-cracking and at peak-load) reduction factors are generally 

lower for slender infills.  

In this section, empirical formulations aimed at predicting such factors are derived 

through least-square regressions in the logarithmic space. The predictor parameters 

chosen are the maximum IP IDR attained during the IP test and the slenderness ratio 
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(h/t) of the considered infills. Further investigation is needed to evaluate the introduction 

of further predictor parameters, such as the infill aspect ratio (w/h, as Agnihotri et al. 

demonstrate through numerical analyses that square infills exhibit lower effects of the 

IP/OOP interaction with respect to rectangular infills) or masonry mechanical 

properties. 

The experimental data used to carry out regressions are those included in the 

experimental database. These results are recalled in Table 4.20. 

 

Table 4.20. Experimental values of the reduction factors for secant stiffness and force at first 

macro-cracking and at peak load for the entire database collected. 

Authors specimen h/t 

IP 

drift 

experimental damaged-over-

undamaged ratios 

[%] Fcrack Kcrack Fmax Kmax 

Angel et al. 3b 33.9 0.22 0.74 0.31 0.76 0.53 

Angel et al. 2b 33.9 0.34 0.44 0.20 0.51 0.51 

Calvi and 

Bolognini 
6 20.4 0.40 0.22 0.05 0.27 0.08 

Calvi and 

Bolognini 
2 20.4 1.20 - - 0.18 - 

DIST-UNINA 80_IP+OOP_L 22.9 0.16 0.65 1.19 1.06 0.84 

DIST-UNINA 80_IP+OOP_M 22.9 0.37 0.44 0.12 0.48 0.08 

DIST-UNINA 80_IP+OOP_H 22.9 0.58 0.13 0.05 0.27 0.06 

DIST-UNINA 120_IP+OOP_L 15.2 0.21 1.51 0.39 0.99 0.82 

DIST-UNINA 120_IP+OOP_M 15.2 0.50 0.96 0.11 0.67 0.21 

DIST-UNINA 120_IP+OOP_H 15.2 0.89 0.41 0.07 0.55 0.14 

 

To perform the non-linear regression analysis, a model function had to be defined. 

Consider now Figure 4.13, in which the experimental R factors calculated for the entire 

database shown in Table 4.20 are represented as a function of the IDR. From Figure 

4.13, it can be observed that the values of the R ratio for infills with (h/t) ratio equal or 

greater than 20.4 (black-filled dots) seem to follow a unique trend, while a significantly 

different, less degrading trend characterizes the infills with (h/t) ratio equal to 15.2 (blue 

dots). In both cases, the relationship between R and IDR can be well-described by a 

negative power function. 

 



Chapter IV – Experimental database analysis and modelling proposals 207 

 

 

 

 
Figure 4.13. Experimental strength reduction factors reported in Table 4.20. 

 

In other words, it seems that the slenderness ratio actually affects the entity of 

IP/OOP interaction effects only if it is lower than 20. This is consistent with the results 

of Angel et al.’s formulation, which indicates a lower sensitivity of R to the slenderness 

ratio for larger values of (h/t), as also shown by Agnihotri et al. through numerical FEM 

analyses. Similar observations can be extended to the relation existing between force 

and stiffness reduction factors and IDR.  

So, based on a trial-and-error procedure, the model function reported in Equation 13 

is assumed. In Equation 13, P is the generic significant OOP response parameter 

(force/stiffness at first macro-cracking or at peak load). 

 

Pdam

Pundam

= min { [a + b min (20.4;
h

t
)] ˑ(IDR)c; 1.00 } (13) 

 

In Figure 4.14, the observed and predicted values of the stiffness and force at first 

macro-cracking and at peak load reduction factors are compared for the entire database 

shown in Table 4.20.  

In Table 4.21, the values obtained through the least-square regression for the 

coefficients a, b and c in Equation 8 are reported; in addition, the mean, median and 

CoV of the observed-over-predicted ratios are also shown. As expected, the 

formulations derived provide lower reduction factors for higher IP displacement demand 

at equal h/t and for higher h/t at equal IP displacement demand. 
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(a) (b) 

  
(c) (d) 

Figure 4.14. Comparison of the experimental values of the reduction factors for secant stiffness 

and force at first macro-cracking and at peak load for the entire database collected. Black 

curves are obtained by means of Equation 13 referred to specimens with slenderness ratio equal 

to or greater than 20.4. Blue curves are obtained by means of Equation 13 referred to specimens 

with slenderness ratio equal to 15.2. Red curves are determined independently on h/t. For the 

experimental points, see the legend in Figure 4.13.  
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Table 4.21. Values of the coefficients of Equation 13 and mean, median and CoV of the ratios 

between the experimental values of Kcrack, Fcrack, Kmax and Fmax reduction factors and those 

predicted by means of Equation 13. 

experimental damaged-

over-undamaged ratios 

Coefficients of Eq. 13 experimental/predicted 

a b c mean median CoV 

Kcrack 0.03 0.00 -1.65 1.10 1.01 49% 

Fcrack 1.40 -0.06 -1.00 0.83 0.85 38% 

Kmax 0.14 -0.004 -1.57 0.85 0.85 55% 

Fmax 0.98 -0.04 -0.97 1.06 1.08 18% 

 

Consider now the OOP strength degradation factor. Equation 13 can be used for a 

correct assessment and safety check of URM infills with respect to OOP seismic 

demands accounting for the IP/OOP interaction effects. In addition, from Equation 13, 

it is possible to derive the “critical” IDR, IDRcrit, from which IP displacement demand 

is effective in reducing the OOP strength, i.e., the value of the IDR demand at the onset 

of the activation of IP/OOP interaction effects. Such values of IDRcrit calculated for 

different values of h/t are shown in Figure 4.15.  

For example, consider the OOP safety check of URM infills at Damage Limitation 

limit state (DL). The attainment of DL is usually related to the attainment of a certain 

threshold IDR demand in the IP direction. So, such an IDR value should also be the one 

used for the evaluation of the OOP strength reduction factor. The IDR corresponding to 

the attainment of this limit state is set to 0.50% by the current Italian building code 

NTC2008 (2008) and by Eurocode 8 (2004). The commentary to the Italian building 

code, Circolare 617/2009 (2009), states that such threshold should be reduced to 0.30% 

if infill walls are considered in the structural model. In the literature, different 

suggestions have been proposed to define such threshold. Morandi et al. (2013) suggest 

to assume a limit IDR at DL equal to 0.30% for RC buildings with thin infills. In 

addition, the attainment of DL is associated by different Authors with the attainment of 

a Damage State (DS) corresponding to an intermediate/severe damage of the infill 

(DS2). Based on the description of the evolution of damage in URM infills tested in the 

IP direction, a threshold IDR corresponding to a 50% probability of DS2 exceedance 

equal to 0.40%, 0.46% and 0.34% was defined by Cardone and Perrone (2015), Sassun 

et al. (2016), and De Risi et al. (2018), respectively. In addition, drift ranges in which 

the DL is probably attained were proposed, among many others, by Rossetto and 

Elnashai (2003), Dolšek and Fajfar (2008a-b), Colangelo (2013a-b). 

Among the abovementioned threshold drifts for DL exceedance, consider now the 
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higher one, proposed by Sassun et al., equal to 0.46%. It is shown in Figure 4.15 that 

only for slenderness ratios roughly lower than 12.5 it is possible to avoid the reduction 

of the OOP strength at DL, i.e., given the usual values of h, only for very thick infills 

(e.g., t>=250mm). Therefore, for thin infills, which are common in existing RC 

buildings, it is not safe to neglect the effects of the IP/OOP interaction in the seismic 

OOP safety check of URM infills even at DL. Clearly, this is even truer for whichever 

performance level higher than DL. 

 

 
Figure 4.15. Values of the IDR at the onset of the reduction of the OOP strength as a function 

of the slenderness ratio. 

 

Consider the OOP strength reduction due to IP/OOP interaction effects. To predict 

the R factor, an empirical formulation based on experimental data has been proposed 

and reported in Equation 13, which should be applied with the regression coefficients 

reported in Table 4.21. Due to its empirical nature, the proposed relationship is fully 

reliable in the range of h/t and IDR values included in the database, i.e., for slenderness 

ratio greater than 15.2 and IDR lower than 1.20%. Its results outside these bounds must 

be considered an extrapolation, of course.  

As already stated, thick infills (i.e., with thickness typically around 300 mm) with 

low slenderness ratio are nowadays commonly used in RC buildings. Such infills have 

h/t equal to about 10, a value that is outside the abovementioned bounds. So, for such a 

type of infills, the formulation proposed could not be reliable (even if on the side of 
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safety). 

However, based on some hypotheses and assumptions, it is possible to propose a 

formulation for the prediction of the R factor also accounting for tests’ results obtained 

by testing thick and robust infills made of bricks with vertical holes, such as those tested 

by Guidi et al. (2013). As already stated, these results were not included in the original 

database as they are not provided of a reference IP-undamaged OOP strength, i.e., there 

is no OOP test at zero IP drift. The experimental results on URM infills by Guidi et al. 

are recalled in Table 4.22. 

 

Table 4.22. Experimental results by Guidi et al. 

Author specimen h/t IP drift [%] Fmax [kN] 

Guidi et al. URM-D 8.8 0.50 250 

Guidi et al. URM-U 8.8 1.20 203 

 

In the previous section, the concept of critical IDR was introduced. From Figure 4.15, 

it can be observed that, even if determined with some extrapolation, the IDRcrit for a 

slenderness ratio equal to 8.8 is equal to 0.62%. The combined IP+OOP test carried out 

at the lowest drift by Guidi et al. was performed after the application of an IP 

displacement demand corresponding to a drift equal to 0.50%. Therefore, potentially, 

one could assume that, being 0.50% lower than the critical IDR for h/t=8.8 (although 

extrapolated), the OOP strength of specimen URM-D is equal to the OOP strength of 

the IP-undamaged infill. 

If this assumption is accepted, the R factor for specimen URM-D is equal to 1.00, 

while it is equal to 0.81 for specimen URM-U. With the same approach and 

methodology described in the previous section, a regression analysis of the experimental 

data is performed accounting for the R factors already considered and reported in Table 

4.5 as well as those associated with Guidi et al.’s tests.  

The values of the coefficient a, b, and c in Equation 13 are reported in Figure 4.16. 

In the same figure, a comparison between the predicted R curves for h/t equal to 20.4, 

15.2 and 8.8 and the experimental data is shown. 
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Figure 4.16. Experimental and predicted R ratios accounting also for Guidi et al.’s tests. The 

pink curve is associated with h/t=8.8, the blue curve to h/t=15.2 and the black curve to 

h/t≥20.4. 

 

The experimental-over-predicted ratios, in this case, have mean equal to 0.99, median 

equal to 1.03 and CoV equal to 16%. 

The OOP displacement ductility has been defined in section 4.5 for IP-undamaged 

infills and its value has been fixed. Now, assume that the same definition is applied for 

the displacement ductility of IP-damaged infills, i.e., assume the displacement ductility 

of IP-damaged infill equal to the ratio of d80/dmax.  

Based on DIST-UNINA experimental results., as shown in Figure 4.17, it is observed 

that the displacement ductility of IP-damaged URM infills is equal to, at least, 1.10 

(based on specimen 120_IP+OOP_L performance). In addition, it is equal, on average, 

to 0.50 times the displacement ductility of the IP-undamaged infill, roughly 

independently on the infill slenderness ratio h/t and on the IP displacement demand. 

Based on this, it is assumed that the OOP displacement ductility of IP-damaged infills 

is equal to a certain fraction, dependent on the IDR, of the IP-undamaged infill 

displacement ductility according to the simplified linear function shown in Figure 4.17, 

but never lower than 1.10 or greater than t/dmax, as the infill central OOP displacement 

cannot overcome the infill thickness for geometric compatibility. 
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(a) 

 
(b) 

Figure 4.17. Conventional OOP collapse displacement for IP-damaged infills (a) and relation 

with the IDR of the damaged ductility over the undamaged ductility (b). 

 

Note that these assumptions yield, in general, to a displacement ductility which 

reduces due to the IP damage and to a displacement capacity that increases at increasing 

IP drift demand. This occurs because, in general, the OOP central displacement at the 

attainment of peak load of the IP-damaged infill, which is calculated as the ratio between 

the “damaged” strength and the “damaged” secant stiffness, increases with the IDR 

demand. The increase of du, i.e., of the displacement at 20% strength degradation, at 

increasing IP displacement demand is consistent with the recent experimental results 
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proposed in the literature.  

Also for this reason, as well as to avoid numerical issues during the analyses, it is 

assumed that the OOP collapse displacement cannot decrease at increasing IDR. This 

circumstance can occur sometimes at very low IDR levels. 

  

4.6.3. Modelling proposals (OOP effects on IP) 

The experimental tests aimed at investigating the IP/OOP interaction mainly 

examined the IP damage effects on the OOP behaviour rather than vice versa. Flanagan 

and Bennett (1999a) tested an infill (specimen 20) first by pushing it through an OOP 

action that increased up to the 75% of the undamaged infill lateral strength and then by 

applying an IP action up to collapse. This test allowed us to observe, during the IP 

response, a 50% stiffness reduction with respect to the one exhibited by the undamaged 

panel, while no IP strength reduction was observed. However, an identical infilled 

frame, specimen 23, was tested through a “combined” IP/OOP procedure. For instance, 

the specimen was subjected first to a cyclic IP test in displacement control and then, as 

the IP displacement was kept constant, to an OOP test carried out in load control. Later, 

while the OOP load was kept constant at zero, a new cyclic IP test was carried out and 

so on, for a total of six IP tests and five OOP tests.  

It was observed that during the OOP tests, the IP load, which maintained a constant 

IP displacement, decreased. It is possible to reconstruct the IP force-displacement 

relationship for specimen 23, as shown in Figure 4.18. The obtained IP backbone can be 

compared with the one defined for the control specimen 2, which was identical to 

specimen 23 and tested only IP up to collapse. 
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(a) 

 
(b) 

Figure 4.18. Extrapolated IP force degradation based on Flanagan and Bennett’s specimens 2 

and 23 behaviour (b) shown in (a). 

 

In Figure 4.18a, for each drop of the IP load at a fixed IP displacement, the maximum 

OOP displacement attained during the OOP test, which produced that drop, is indicated. 

Clearly, the reduction of the IP load necessary to reach a certain IP displacement is due 

also to the cumulative effects of damage. However, the lack of experimental data on this 

issue makes the use of evidence of this combined test very useful to define the IP 

backbone degradation. First, it is possible to associate IP displacements at which the IP 

tests were stopped to the maximum OOP displacement attained during the 
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corresponding OOP test normalized with respect to the undamaged infill OOP collapse 

displacement declared by the authors. Then, to each OOP displacement ratio, it is 

possible to associate the ratio of the force on specimen 23’s reconstructed IP backbone 

and the force on specimen 2’s IP backbone for the corresponding IP displacement. Note 

that in the diagram shown in Figure 4.18a, the point corresponding to dOOP=43 mm was 

dropped, given that that OOP displacement was greater than the OOP ultimate 

displacement declared by the authors for the undamaged panel (specimen 18). 

Based on this experimental evidence, if the infill has been damaged by the OOP 

action represented by the OOP maximum displacement dOOP, the IP force that produces 

the IP displacement dIP, FIP,dam(dIP, dOOP) can be expressed through a simplified linear 

relationship reported in Equation 14. 

 

FIP,dam(dIP, dOOP)

FIP,undam(dIP)
= 1 −

dOOP

dOOP,u

 (14) 

 

In Equation 14, FIP,undam(dIP) is the IP force that produces the IP displacement dIP of 

the undamaged panel and dOOP,u is the undamaged infill ultimate OOP displacement. 

Experimental data that allow defining the variation in the IP ultimate displacement 

due to the OOP action damage are not provided in the literature: further experimental 

tests should be carried out on this topic.  

 

4.7. SUMMARY OF THE PROPOSED OOP MODEL FOR URM 

INFILLS 

In the previous sections, the comparison of the experimental results proposed in 

Chapter II and III with the predictions of the formulations described in Chapter I has 

been presented. Based on the results of this comparison, mechanical-based or empirical 

formulations have been proposed to predict the significant response parameters for 

URM infills, i.e., the secant stiffness at first macro-cracking and at maximum, the force 

at first macro-cracking and at maximum, the conventional collapse displacement. 

In addition, based on the experimental results, the variation of all these parameters 

due to the IP/OOP interaction effects has been modelled through empirical formulations. 

With these findings, the first part of this thesis, which was dedicated to the 

characterization of the OOP response of URM infills and of the IP/OOP interaction 

effects, is complete. The second part of the thesis will be dedicated to the assessment, 
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through non-linear static and dynamic analyses, of the OOP behaviour of infills and of 

the IP/OOP interaction effects on the seismic response of URM infills and of infilled 

RC buildings. To this aim, the OOP response model accounting for the IP/OOP 

interaction effects defined in this Chapter will be used. 

For all these reasons, it is worth to sum up, at the end of this Chapter, the proposed 

OOP model for URM infills as shown in Figure 4.19. 

 

 
Figure 4.19. Proposed OOP response model for IP-undamaged and IP-damaged infills. 

 

Some considerations have to be discussed. 

i. The analyses will be carried out to assess the seismic response of URM infills 

and of RC buildings; hence, the loading condition considered is the seismic 

one. For this reason, the strength formulation adopted is the one proposed in 

section 4.4.5 for seismic load and hipped deformed shape, which is the most 

recurrent in the experimental database;  

ii. For what concerns Kcrack, it has been shown that Timoshenko’s formulation 

for plates under uniformly distributed load is quite effective in its prediction 

independently on the real load shape. However, for consistency with the 

strength model, Kcrack is calculated through the formulation derived from 

Timoshenko’s closed-form solution for elastic isotropic plates under 

sinusoid load, i.e., under seismic load; 

iii. As already discussed, due to the confinement provided by other structural 

m
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and non-structural elements to the structural elements at the edges of infills, 

in real buildings the effect of the frame deformability on the OOP response 

of infill can be neglected. Hence, also in the model used for the numerical 

analysis such effect will not be considered; 

iv. Note that the assumption of a conventional OOP collapse displacement 

defined at 20% strength degradation, which is quite small, allows the use of 

a response model plastic between the maximum and the conventional 

collapse point. 

 

The formulations defining the characteristic points in Figure 4.19 for URM infills 

under seismic load in RC buildings are summarized in Tables 4.23 and 4.24. 

 

Table 4.23. Formulations defining the seismic response of IP-undamaged URM infills in a stiff 

confining frame adopted for the numerical analyses. 

Fcrack = min (0.9Fmax; 3.50fmv
0.14

t

h1.48
wh) (15) 

Kcrack =
π2

3(1 − ν2)
Emvwt3h (

1

w2
+

1

h2
)

2

 (16) 

Fmax =  

for thin infills  

= [2.86fmv
0.82 (

t

h
)

2.28

+ 0.23fmh
1.39 (

t

w
)

1.48

] wh (17a) 

for thick infills  

= [0.85fmv (
t

h
)

2

] wh (17b) 

Kmax = 0.40Kcrack (18) 

du = μunddmax = max (1.4;
0.30t

dmax

) dmax (19) 
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Table 4.24. Formulations defining the reduction factors (as shown in Figure 4.19) for the 

assessment of the seismic response of IP-damaged URM infills in a stiff confining frame. 

fc = min{[1.40 − 0.06 min(20.4; h t⁄ )] ∙ IDR−1.00; 1} (20) 

kc = min{0.03 ∙ IDR−1.65; 1} (21) 

fm = min{[1.21 − 0.05 min(20.4; h t⁄ )] ∙ IDR−0.89; 1} (22) 

km = min{[0.14 − 0.004 min(20.4; h t⁄ )] ∙ IDR−1.57; 1} (23) 

m = {
1.00, IDR ≤ 0.10%

1.5 − 5IDR, 0.10% < IDR ≤ 0.20%
0.50, IDR > 0.20%

, mμund ≥ 1.10 (24) 
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Chapter V 

Out-of-plane code-based safety assessment of 

URM infills  

5.1. INTRODUCTION 

In the previous Chapters, OOP strength, stiffness and displacement capacity models 

for IP-undamaged and IP-damaged URM infills were presented (Chapter I), the 

experimental tests carried out in the literature were described (Chapter II), the results of 

new experimental tests were introduced (Chapter III), the reliability of the above-

mentioned models and formulations was assessed and an empirical-mechanical OOP 

response model for IP-undamaged and IP-damaged infill was presented (Chapter IV). 

The first four Chapters constitute the first part of this thesis and they were dedicated 

to the characterization of the OOP response of IP-undamaged and IP-damaged URM 

infills, with particular attention to their behaviour under seismic load. 

The second part of the thesis, which begins with this Chapter, is dedicated to the 

seismic assessment of the OOP response of URM infills accounting for the IP/OOP 

interaction effects as well as to the assessment of the seismic response of infilled RC 

buildings accounting for the OOP response of infills and for the IP/OOP interaction. A 

special attention is dedicated to the evaluation of the seismic Intensity Measure (IM) 

corresponding to the OOP collapse of infills and, more specifically, to the value of IM 

corresponding to the attainment of the first OOP collapse. Such assessment is aimed at 

the assessment of the seismic safety of RC buildings with respect to the attainment of 

Life Safety Limit State and, in general, at the seismic safety check of URM infills 

through numerical analyses in a non-linear static (Chapter VII) and dynamic (Chapter 
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VIII) framework. 

Prior to this, it is worth to recall how the OOP safety check of URM infills is carried 

out based on current code provisions, if available, which are expected to be simplified 

on the side of safety. This recall is aimed at providing a more conscious approach to the 

description and comment of the results of the numerical analyses presented in the next 

chapter, in order to define more robust and reliable recommendations for a really safety-

sided check of URM infills under seismic load. 

In section 5.2, a general introduction to the issue of the seismic safety assessment of 

non-structural elements is provided. 

In section 5.3, OOP capacity models provided in current building codes are presented 

and discussed. 

In section 5.4, OOP demand models provided in current building codes are presented 

and discussed. 

In section 5.5, some open issues on which codes are not clear or immediately 

applicable are discussed.  

 

5.2. GENERAL CONSIDERATIONS ON THE SEISMIC SAFETY 

ASSESSMENT OF URM INFILLS 

Despite their significant contribution to the seismic response of structures, infill walls 

are currently considered in building codes as non-structural elements. Hence, whichever 

provision for their seismic safety check should be searched, in such codes, in the section 

dedicated to non-structural elements. 

The seismic safety check of non-structural elements is typically force-based, as they 

are considered sensitive to accelerations. However, their inelastic capacity is sometimes 

considered by means of a behaviour/response modification factor. 

Generally, seismic codes do not provide capacity models for non-structural elements. 

However, considering their wide diffusion and their clear prominence with respect to 

other non-structural elements, some codes provide capacity models for URM infills 

under seismic OOP actions. This issue will be addressed in the next subsection: in 

general, they are simplified versions of the strength models proposed in the literature 

and described in detail in Chapter I. On the other hand, demand models have never been 

discussed in this thesis, so they deserve some introductory words. 

It is well known that, with extreme simplification, the seismic demand on structures 

– when a force-based approach is used, as in the design process according to current 



Chapter V – OOP code-based safety assessment of URM infills 225 

 

 

 

codes – is calculated first in terms of maximum shear demand at its base, with reference 

to an equivalent Single Degree of Freedom (SDOF) system. Such base shear is then 

distributed to each floor according to a more or less simplified distribution consistent 

with the fundamental vibration mode shape of the structure itself.  

A slightly different approach is adopted for non-structural elements and, among 

them, for infill walls. In fact, the seismic demand acting on them cannot be calculated 

by neglecting their exact position in the building. More specifically, the force demand 

acting on them is calculated in general, by multiplying their mass by the so-called floor 

spectral acceleration, which is calculated by means of floor acceleration spectra.  

To understand in few words what a floor acceleration spectrum is, consider 

whichever building with n floors and consider that, at the mass centre of each floor, both 

the translational and the rotational mass are lumped. If such a building is subjected to an 

acceleration time-history at its base, each lumped mass will respond with an acceleration 

time-history at each storey, which will be different from the base acceleration time-

history due to stiffness and damping properties of the building. If an SDOF is placed at 

a certain floor of the building it will be subjected, at its base, to the acceleration time-

history associated with that floor and it will respond, based on its mass, stiffness and 

damping properties, with a certain acceleration time-history. The function that, at fixed 

damping ratio and at varying vibration period of such an SDOF, provides the maximum 

acceleration acting on such a SDOF subjected to the floor acceleration history is the 

floor spectrum of the building at the selected storey. Clearly, one can calculate the floor 

spectrum at each floor.  

In general, based on the above discussion, the floor spectrum at each floor depends 

on the base acceleration, on the building height, on the considered floor height, on the 

period of the building, on the period of the SDOF, on the damping properties of the 

building and on the damping properties of the SDOF. 

Non-structural elements, also called appendages, are considered as SDOF placed at 

a certain floor of buildings. Hence, the acceleration demand acting on them is calculated 

as the floor spectral acceleration at the floor on which the non-structural element is 

placed as a function of its dynamic properties, of the building dynamic properties and of 

the acceleration at the building base. 

Clearly, as simplified design spectra are provided for the design of buildings, also 

direct and simplified floor spectra depending only of the base acceleration in terms of 

Peak Ground Acceleration (PGA) and on the dynamic properties of the non-structural 

elements and of the building/supporting structure are provided. Simplified – i.e., based 
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on the results of numerical analyses – or theoretical formulations for the calculation of 

floor spectra have been proposed in the literature by different authors (e.g., Politopoulos 

2010, Sullivan et al. 2013, Petrone et al. 2015, Vukobratovic and Fajfar 2016-2017, 

Surana et al. 2018, among others). In this Chapter, those proposed by current seismic 

codes are presented. 

The acceleration demand so calculated, multiplied for the mass of the non-structural 

elements and potentially reduced by a behaviour factor is compared with the force 

capacity of the non-structural element to assess its safety against seismic actions.  

Note that not all standards provide indication about both capacity and demand as 

reported in Table 5.1. 

 

Table 5.1. Code provisions on the OOP safety check of URM infills. 

Code EC6 EC8 
FEMA 

306 

FEMA  

356 

ASCE-SEI  

41-13 

ASCE 

7-10 

NZSEE 

2017 

Strength capacity ✓   ✓ ✓ ✓   ✓ 

Force demand   ✓       ✓ ✓ 

 

 

5.3. OOP STRENGTH MODELS IN BUILDING CODES 

In this section, the OOP strength models provided in current building codes are 

discussed. More specifically, the strength model provided by Eurocode 6 (2005), FEMA 

306 (1998), FEMA 356 (2000), ASCE/SEI 41-13 (2013) and NZSEE 2017 (2017) are 

introduced. 

It is worth to note that all the proposed models refer to URM infills under uniformly 

distributed load. It has been demonstrated that, actually, the load shape has a significant 

influence on the strength exhibited by URM infills and that the uniformly distributed 

load is more representative of a wind load than of a seismic load, which is sinusoid-

shaped. 

 

5.3.1. Eurocode 6 strength model 

Eurocode 6 (2005), in section 6.3.2, proposes an expression to calculate the lateral 

specific strength of masonry walls in which arching action can occur; this relationship 

can be extended, potentially, to URM infills and is reported in Equation 1. 

 



Chapter V – OOP code-based safety assessment of URM infills 227 

 

 

 

qmax = fd (
t

la
)
2

 (1) 

 

In this relationship fd is the design compressive strength of masonry in the direction 

of arching thrust while la is the panel dimension in the same direction. Such ultimate 

load is the 93% of the one that equilibrates the maximum thrust that can form in the 

masonry wall thickness as expressed in Equation 2. 

 

Nad = 1.5fd (
t

10
) (2) 

 

This thrust value is obtained as the expression of the resultant of a triangular 

compressive stress distribution assumed in the panel thickness: this distribution has 

maximum value equal to the masonry compressive strength and resultant applied at a 

distance equal to t/10 from the panel intrados. This also means that the depth of the 

compressed zone from the panel intrados is assumed equal to 0.30t, which is, according 

to Angel et al. (1994), the minimum compressed zone that allows the horizontal 

component of arching thrust being opposite to OOP loads. This is a conservative 

assumption, given that, according to Angel et al.’s analytical model, the compressed 

zone width normally ranges from a lower and an upper bound respectively equal to 0.3t 

and 0.5t. Moreover, note that also this approach is based on the lower bound theorem of 

limit analysis, i.e. on the determination of the maximum specific load that the infill can 

withstand as the maximum load in equilibrium with internal thrusts. Hence, it is 

expected to provide a lowed bound of the actual OOP strength of the infill. In addition, 

it neglects the presence of two-way arching, which usually occurs in URM infills in real 

buildings. Also for these reasons, it is expected to provide conservative values of the 

strength, as it is expected for a code provision. However, such conservativeness can be 

at least partially neutralized by the fact that the IP/OOP interaction effects are not 

explicitly considered. 

 

5.3.2. FEMA 306 strength model 

FEMA 306 (1998), in section 8.3.3 suggests evaluating the OOP specific strength of 

URM infills by means of Angel et al. (1994)’s formulation, as reported in Equation 3. 
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qmax =
2fme

′

(h t⁄ )
R1R2λ (3) 

 

Equation 3 expresses the uniformly distributed load per unit width in equilibrium 

with the maximum thrust that the infill parts could withstand. In other word, Angel et 

al.’s formulation provided by FEMA306 is the result of an application of the lower 

bound limit analysis theorem. In Equation 5, λ is a slenderness parameter reported in 

Table 8-5 of FEMA 306 as a function of the infill vertical slenderness, h/t; fme is masonry 

expected compressive strength; R2 is a factor accounting for deformability of the infill-

bounding frame and is reported in Equation 4. 

 

R2 = 0.357 + 2.49x10−14EI≤1 (4) 

 

In Equation 4, EI is defined as flexural rigidity of the weakest frame on the non-

continuous side of the infill panel expressed in Nmm2. 

It is worth to note that in this case the effect of the IP damage is explicitly considered 

through the R1 factor, which is tabulated as a function of the infill vertical slenderness 

h/t and on the entity of IP damage (moderate or severe) in Table 8-5 of FEMA 306. 

 

5.3.3. FEMA 356 and ASCE/SEI 41-13 strength model 

First, it is worth to note that FEMA 356 (2000) lists the conditions allowing the 

occurrence of arching action in URM infills in section 7.5.3.1. Namely, the panel must 

be in full contact with the surrounding elements that must have sufficient strength and 

stiffness to resist arching thrusts. In addition, the panel must have a vertical slenderness 

ratio lower than 25.  

Based on these hypothesis, the code suggests evaluating the OOP specific strength 

of URM infills by means of a simplified version of Angel et al. (1994)’s formulation, as 

reported in Equation 5. 

 

qmax =
0.7fm

′

(h t⁄ )
λ2 (5) 

 

In Equation 5, λ2 is a slenderness parameter reported in Table 7-11 of FEMA 356; 

f’m is the lower bound of the compressive strength of masonry calculated by dividing by 

1.3 (1.6 in FEMA273 1997) its average compressive strength. FEMA274 (1997) points 
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out that the previous expression, which was already provided in FEMA273 (1997), is 

the relationship by Angel et al. (1994) simplified to evaluate a lower bound of the infills 

lateral strength. For instance, according to Flanagan and Bennett (1999), a 24% 

reduction of the undamaged infill’s strength due to IP damage is assumed, as well as a 

39% reduction due to confining frame deformability. 

Identical provisions are given by ASCE/SEI 41-13 (2013) in section 11.4.3.2. 

 

5.3.4. NZSEE 2017 strength model 

The guidelines for the seismic assessment of moment resisting frames with infill 

panels currently applied in New Zealand (NZSEE 2017, section C7.6.1.1) suggest the 

use of Dawe and Seah (1989)’s empirical formulation modified by Flanagan and Bennett 

(1999) and with further corrections to calculate the probable OOP strength of solid URM 

infills in terms of resisting OOP pressure, as reported in Equation 6. 

 

qmax,solid[kPa] = 730γ(fm
′ )0.75t2 (

αarch

Linf
2.5 +

βarch

hinf
2.5 ) (6) 

 

In Equation 6 f’m is the compressive strength of masonry expressed in N/mm2; t is 

the infill thickness expressed in mm and not exceeding 1/8 of the infill height, according 

to Flanagan and Bennett. The coefficients αarch and βarch are the α and β factors defined 

by Dawe and Seah modified by Flanagan and Bennett, as reported in Equations 7 and 8. 

Linf is the infill width expressed in mm. 

Remember that masonry is an orthotropic material, hence it has two different 

compressive strength involved in vertical and in horizontal arching; in general, if clay 

hollow bricks are used, the compressive strength perpendicular to bricks’ holes is 

different, and lower than, the compressive strength parallel to bricks’ holes. The code 

does not provide indications on which one of these should be used. Remember that 

Flanagan and Bennett suggest using masonry compressive strength perpendicular to 

bricks’ holes. Considering that it is usually the minimum one, it should provide a lower 

bound of the probable OOP strength. This is consistent with a code-based approach to 

the strength calculation. Hence, it seems reasonable to accept Flanagan and Bennett 

(1999) suggestion and use masonry compressive strength perpendicular to bricks’ holes 

when applying Equation 6. 
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αarch =
1

h
(EcIch

2)0.25 ≤ 50 (7) 

 

βarch =
1

Linf
(EbIbLinf

2 )0.25 ≤ 50 (8) 

 

In Equations 7 and 8, length are expressed in mm and forces in N. E is the elastic 

modulus and I is the cross-section inertia of the confining beam (b subscript) and of the 

confining column (c subscript). NZSEE suggests to assume αarch equal to zero if a side 

gap greater than 0.02t exists; the same for βarch if a top gap greater than 0.02t exists. 

The coefficient γ accounts for the strength reduction due to the IP damage as a 

function of the infill vertical slenderness ratio. It is expressed as reported in Equation 9. 

 

γ = min (1.1 (1 −
h t⁄

55
) ; 1) (9) 

 

The γ coefficient is obtained through a linearization of Angel et al.’s formulation at 

IDR demand equal to 2 times the IDR at first visible cracking of the infill wall due to IP 

actions, i.e., at moderate damage according to Angel et al. 

In addition, NZSEE suggests reducing the OOP strength calculated by means of 

Equation 6 in presence of openings. Hence, for infills with openings, Equation 10 should 

be used. 

 

qmax= qmax,solid(1 −
Aop

Awtot

) (10) 

 

In Equation 10, Aop is the area of the opening, Awtot is the total area of the infill. This 

expression for the strength reduction factor in presence of openings is reported by 

Flanagan and Bennett (1999) citing Mays et al. (1998). The code states that such 

formulation has not been validated a sufficient number of experimental results. In 

addition, it should be used with caution when Aop>0.2Awtot: in this case, in fact, the 

occurrence of two-way arching is not certain. 

 

5.4. OOP DEMAND MODELS IN BUILDING CODES 

In this section, the OOP demand models provided in current building codes are 
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discussed. More specifically, the demand model provided by Eurocode 8 (2004), 

ASCE/SEI 7-10 (2010) and NZSEE 2017 (2017) are introduced. Of course, demand 

models herein presented are acceleration floor spectra and formulations aimed at 

defining, based on the acceleration demand, the force demand acting on URM infills. 

 

5.4.1. Eurocode 8 demand model 

Eurocode 8 (2004), in section 4.3.5, proposes an expression of the design force 

demand acting on non-structural elements, as reported in Equation 11. 

 

FEd =
SaWaγa
qa

 (11) 

 

In Equation 11, Wa is the weight of the non-structural element, γa is the importance 

factor, qa is the behaviour factor, Sa is the seismic coefficient, which is equal to the 

pseudo-spectral acceleration acting on the non-structural element divided by the 

acceleration of gravity g and is calculated as shown in Equation 12.  

Note that for infill walls the importance factor is assumed equal to 1 according to 

section 4.3.5.3 of EC8 while the behaviour factor is assumed equal to 2, as suggested 

for exterior walls in section 4.3.5.4 of EC8. 

 

Sa = αS [
3(1 + z H⁄ )

1 + (1 − Ta T1⁄ )2
− 0.5] (12) 

 

The floor acceleration has a linear distribution along the building height. In Equation 

12, α is the design acceleration on type A soil, ag, divided by the acceleration of gravity 

g, S is the soil factor, hence, αS is equal to PGA/g. In addition, z is the height of the non-

structural element above the building base, H is the total height of the building. T1 is the 

fundamental vibration period of the building in the relevant direction, Ta is the non-

structural element vibration period.  

Some considerations have to be discussed. First, what is z? American standards are 

more clear on this issue: z is the height, above the building base, of the point in which 

the non-structural element is attached to the building. For infill walls, such attachment 

is “diffused” along the building edges. One could assume that, “on average”, the 

attachment point corresponds to the infill barycentre.  
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Second, what is T1? As Equation 12 should be used in design and assessment of 

buildings, it seems that T1 should be consistent with the framework in which the 

Equation is used. In other words, if it is used in the design process, T1 is the design 

period of the building in the direction of interest (e.g., for RC buildings, the elastic period 

calculated for the bare frame with elements provided with halved inertia – according to 

Eurocode 8). On the other hand, if Equation 12 is used in the assessment process, T1 

should be the period of the building as it has been modelled for the assessment 

procedure, e.g., the effective period of the building if a non-linear static analysis is 

performed. 

For what concerns Ta, no indication is provided in the code for non-structural 

elements in general and for infill walls in particular. This issue will be discussed in 

section 5.5. 

However, it is worth to note that for stiff non-structural element Ta equals zero. 

Hence, in this case, the floor spectral acceleration ranges from PGA at z equal to zero to 

2.5PGA at z equal to H. The floor spectral acceleration is obtained if Ta equals T1. In 

this case, the floor spectral acceleration ranges from 2.5PGA at z equal to zero to 

5.5PGA at z equal to H.  

 

5.4.2. ASCE/SEI 7-10 demand model 

ASCE/SEI 7-10 (2010), in section 13.3.1, proposes an expression of the design force 

demand acting on non-structural elements, Fp, as reported in Equation 13. 

 

Fp =
0.4apSDSWp

(Rp Ip⁄ )
(1 + 2

z

H
) (13) 

 

For the sake of clarity, Equation 13 can be re-written as reported in Equation 14. In 

this way, it can be simply compared with Eurocode 8 formulation. 

 

FEd =
SaWpIp

Rp

 (14) 

 

In Equation 14, Ip is the component importance factor varying from 1.00 to 1.50. 

Values higher than one should be used, as reported in section 13.1.3, only for non-

structural elements in strategical buildings and in buildings containing hazardous 

substances. Rp is the component response modification factor (equivalent to the 
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behaviour factor qa) that varies from 1.00 to 12 as reported in Table 13.5-1 and 13.6-1. 

It should be assumed equal to 2.50 for URM infills. Wp is, of course, the weight of the 

non-structural element. In Equation 14, Sa is the floor acceleration acting on the non-

structural element, as reported in Equation 15. 

 

Sa = 0.4SDS (1 + 2
z

H
) ap (15) 

 

In Equation 15, SDS is the so-called spectral acceleration at short period: 0.4SDS is the 

PGA; H is the average building height above its base, z is the height of the non-structural 

element attachment to the building; ap is a factor accounting for the amplification of 

accelerations due to the deformability of the non-structural element reported in Table 

13.5-1. It is worth to note that the American approach, with this factor, simplifies the 

calculation of the seismic demand acting on non-structural elements, as there is no need 

of a more or less detailed dynamic characterization of the non-structural elements 

required for the determination of its period, Ta, which enters Eurocode 8 formulation. 

Exterior non-structural wall elements, such as URM infills, are associated with an ap 

factor equal to 1.00, which is equivalent to consider them as stiff elements or, in other 

words, as non-structural elements with period equal to zero. 

According to the ASCE/SEI 7-10 approach, the floor spectral acceleration on non-

structural elements is varies linearly along the building height.  For stiff non-structural 

elements, such as infill walls, it ranges from PGA at z equal to zero to 3PGA at z equal 

to H, i.e., it provides higher floor spectral acceleration on stiff non-structural elements 

with respect to Eurocode 8 formulation. The maximum value of ap reported in Table 

13.5-1 is equal to 2.5. Hence, the maximum floor spectral acceleration acting on very 

deformable non-structural elements ranges from 2.5PGA at z equal to zero to 5PGA at 

z equal to H. Hence, such approach provides lower floor spectral acceleration of 

deformable non-structural elements with respect to Eurocode 8 formulation. 

However, note that the code also provides lower and upper bounds for the force 

demand acting on non-structural elements, i.e., with some manipulation of the 

formulations provided in ASCE/SEI 7-10, on the floor spectral acceleration: the lower 

bound is equal to 0.4PGA∙Rp, while the upper bound is equal to 4PGA∙Rp. 

 

5.4.3. NZSEE 2017 demand model 

NZSEE 2017 (2017), in section C7.6.2, explicitly refer to the loading code NZS 
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1170.5 – 2004 (2004) for the calculation of the OOP seismic demand on URM and RM 

infills. More specifically, the formulations proposed in NZS 1170.5 – 2004 are dedicated 

to non-structural elements in general; NZSEE 2017 provides some indications for an 

application of such formulations in the case of URM and RM infills. 

NZS 1170.5 – 2004, in section 8.5.1, provides the formulation reported in Equation 

16 to calculate the force demand on non-structural elements, Fph. 

 

Fph = Cp(Tp)CphRpWp ≤ 3.6Wp (16) 

 

In Equation 16, Cph is the non-structural element response factor, which is equivalent 

to the inverse of the behaviour factor. Its value is expressed in Table 8.2 as a function of 

the expected ductility demand acting on the non-structural element, μp, and ranges from 

0.45 (for μp equal to or greater than 3) to 1 (for μp equal to 1). NZSEE 2017 suggests 

assuming μp equal to 1 for URM infills and to 1.25 for RM infills; hence, Cph is assumed 

equal to 1 for URM infills and to 0.85 for RM infills: this is equivalent to assume a 

behaviour factor equal to 1 for URM infills and to 1/0.85≈1.18 for RM infills.  

In Equation 16, Rp should not be confused with the Rp factor used in the American 

approach. In fact, in this case, Rp is the non-structural element risk factor, which is 

equivalent to the importance factor Ip. The values for Rp are listed in table 8.1. This 

factor is greater than one only when the hazard due to the non-structural component 

failure is “disproportionately great”. Wp is the weight of the non-structural element, of 

course. 

The term Cp(Tp) is the horizontal design coefficient of the non-structural element, 

i.e., in other words, the design floor spectral acceleration. It is calculated according to a 

formulation provided in section 8.2 of NZS 1170.5 – 2004, as reported in Equation 17. 

 

Cp(Tp) = C(0)CHiCi(Tp) (17) 

 

In Equation 17, C(0) is the so-called hazard coefficient at period T equal to zero. It 

should be evaluated “for the modal response spectrum method and numerical integration 

time history methods” as reported in table 3.1 and is equal to 1.00 g for type A and B 

soil (strong rock and rock, respectively), to 1.33 g for type C soil (shallow soil) and to 

1.12 for type D and E (soft and very soft soils, respectively). In other words, C(0) is the 

equivalent of PGA. 

In Equation 17, Ci(Tp) is the spectral shape coefficient of the non-structural elements. 
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It accounts for the non-structural element dynamic properties through the period Tp. 

Ci(Tp) is expressed as a function of the period Tp in section 8.4 and ranges from 0.5 for 

Tp higher than 1.50 s to 2.0 for Tp lower than 0.75 s. NZSEE 2017 suggests assuming, 

for URM infills, Tp lower than 0.75 s, and, so, Ci(Tp) equal to 2.0. 

CHi is a coefficient accounting for the height of the attachment of the non-structural 

part to the supporting structure, hi, and for to the maximum height of the building hn. CHi 

is calculated through the formulations provided in section 8.3 and reported in Equation 

18. 

 

CHi = (1 +
hi
6
) for all hi<12 m (18a) 

CHi = (1 + 10
hi
hn
) for hi<0.2hn (18b) 

CHi = 3.0 for hi≥0.2hn (18c) 

 

In addition, the code states that for elevations that satisfy the height limitations of 

both Equations 18a and 18b, the lower value of CHi shall be used.  

Note that also in this case the distribution of floor accelerations is linear along the 

building height.  

 

5.5. CRITICAL ASPECTS AND OPEN ISSUES 

In the above sections, strength capacity and force demand models provided by 

current building codes have been presented and discussed. With the aid of the literature 

review reported in Chapter 1, the comprehension of the strength capacity models 

provided is quite simple. More specifically, the conservativeness of the assumptions at 

the base of such models has been described as well as the issues that are neglected (e.g., 

two-way arching and the possible presence of opening in the European and American 

approach, the IP/OOP interaction in the European approach, the influence of the load 

shape on the OOP strength in all the approaches). 

For what concerns the calculation of the seismic demand, it has been clarified that 

URM infills are considered as non-structural elements sensitive to accelerations in the 

OOP direction. Hence, the force demand acting on them is calculated by means of floor 

spectra. The acceleration demand acting on non-structural elements in general and on 
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URM infills in particular depends, roughly, on three main aspects: the seismic 

acceleration demand at the building base; the position of the non-structural element/infill 

in the building; the dynamic properties of the non-structural element/infill. In addition, 

the force demand on non-structural elements depends on their ductility capacity, as a 

behaviour factor (or equivalent) is introduced in all the force demand models above 

presented. 

In this section, further discussion is presented on two of the above aspects that are 

not exhaustively addressed in current building codes: the calculation of the OOP 

vibration period of the specific class of non-structural elements herein considered, i.e., 

URM infill walls, as well as the evaluation of the most appropriate value of the 

behaviour factor. Both issues are introduced in this section. A robust and reliable 

proposal for their evaluation is provided in the next Chapters, dedicated to the numerical 

assessment of the seismic response of infills and of infilled RC structures through non-

linear static and dynamic analyses. 

 

5.5.1. OOP vibration period of URM infills 

In the calculation of the seismic demand acting on non-structural elements by means 

of floor response spectra, it is obvious that the acceleration demand acting on a certain 

non-structural element at a certain floor must depend on its dynamic properties 

summarized in the vibration period, Ta. In fact, a stiff non-structural element is expected 

to respond exactly as the floor at which it is attached, while a deformable non-structural 

element is expected to respond differently from such floor, with dynamic amplification 

or de-amplification of the acceleration demand. 

It is worth to note that both the American and the New Zealand loading codes bypass 

the problem of the calculation of Ta for URM infills. ASCE/SEI 7-10 assume that the 

seismic response of the infill as non-structural element is equal to the response of the 

supporting floor: in other words, ASCE/SEI 7-10 assumes that URM infills can be 

considered as stiff elements with period equal to zero. On the other hand, NZSEE 2017 

assumes that URM infills have, presumably, period lower than 0.75 s and that, for this 

reason, the acceleration acting on them is two times that associated with the supporting 

floor. More complex is the approach of Eurocode, which requires an explicit calculation 

of the vibration period of the non-structural element through the introduction of Ta in 

the formulation for the calculation of the acceleration demand; no further indication is 

provided concerning how to calculate such period. Hence, the designer is supposed to 
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refer to the consolidated literature. 

In this regard, the first question that should be addressed is: Ta should be considered 

as an elastic “initial” period of the infill or an “effective” period? In the second case, 

there is no study available in the literature that allows the use of whichever specific 

formulation: this issue will be addressed in Chapter VIII of this thesis. If an elastic period 

should be used, some considerations can be discussed, as reported in the following. 

The elastic period of an infill wall is the vibration period associated with the first 

vibration mode of an elastic orthotropic plate. Clearly, for its calculation, a numerical 

approach can be used, with the FEM modelling of the infill wall. However, as pointed 

out also in recent studies (De Angelis and Pecce 2018), the boundary conditions at the 

edges of the infill play a fundamental role in the definition of its first OOP vibration 

period. Such conditions depend, of course, on the construction quality, but also, and 

primarily, on the modal deformed shape of the entire building. In fact, the deflection or 

torsional rotation of the structural elements surrounding the infill can allow/prevent the 

rotation of the infill edges and, so, reproduce an intermediate (and undetermined a 

priori) condition between a simple support and a clamp acting on the infill edges. 

The determination of the real boundary conditions at the edges of an infill in a real 

building is crucial, as its vibration period strongly depends on them, also considering 

that all the closed-form formulations for the calculation of such a period assume certain 

boundary conditions at the edges of the plate. Hence, to use the correct formulation, 

further numerical studies concerning the modal deformed shape of infills in buildings 

should be performed.  

In addition, note that all the closed-form formulations available in the literature are 

dedicated to isotropic plates: the effect of the material orthotropy is neglected, too.  

Remembering that the above open issues (real boundary condition at edges; material 

orthotropy) still remain, it is worth to recall the closed-form approaches available for a 

straightforward calculation of Ta. 

Blevins and Plunkett (1980) report closed-form formulations for the vibration 

frequencies of elastic isotropic plates with different boundary conditions at edges. For 

what concerns the first vibration mode, Equation 19 applies for simply supported along 

all edges rectangular plates, Equation 20 for clamped along all edges rectangular plates. 

 

f =
π(1 + (w/h)2)

2w2
√

Et2

12ρ(1 − ν2)
 (19) 
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f =
λ2

2πw2
√

Et2

12ρ(1 − ν2)
 (20) 

 

In Equations 19 and 20, w, h and t are the infill width, height and thickness, 

respectively; E is masonry elastic modulus, ρ is masonry density, ν is Poisson 

coefficient, λ is a coefficient depending on the infill aspect ratio. The use of a simplified 

version of Equation 19, with ν equal to zero, is proposed by Penna et al. (2007). 

On the other hand, consistently with a possible modelling approach, the OOP period 

of the infill wall can be calculated by applying the classical SDOF formulation with 

mass equal to the participating mass to the first vibration mode, which is equal to 66% 

of the total mass for an infill simply-supported along all edges, and stiffness equal to the 

initial elastic stiffness of the infill under seismic load calculated, for example, by using 

Timoshenko (1959)’s formulation. 

 

5.5.2. OOP behaviour factor 

It has been already stated that when calculating the OOP seismic demand acting on 

an infill wall, the infill wall is considered an SDOF placed on a certain floor of the 

building provided with a certain mass and with a certain stiffness. Hence, it undergoes 

a certain maximum acceleration, the floor spectral acceleration, that multiplied for the 

infill/SDOF mass provides the OOP force acting on the infill/SDOF. 

However, it should be remembered that this is the force demand acting on the 

infill/SDOF only if it has an indefinitely elastic behaviour. Of course, infill walls under 

OOP action are not indefinitely elastic, as shown also through experimental tests’ results 

in Chapter II and III. In addition, they are provided with a certain ductility equal to, at 

least, 1.4 for IP-undamaged infills and to 1.1 for IP-damaged infills, as shown in Chapter 

IV.  

The ratio between the OOP seismic demand on the infill/SDOF calculated as it was 

elastic and the OOP strength capacity of the infill/SDOF is the OOP behaviour factor of 

the infill, q. Of course, it is used in a force-based seismic-safety design of infills to take 

advantage of the infill post-peak displacement capacity by forcing it entering in the non-

linear behaviour range. Clearly, the value of the behaviour factor strongly depends on 

the ductility capacity of the infill wall under OOP actions: the higher the ductility 

capacity, the higher the behaviour factor that can be used. 

Different values of the behaviour factor (also called response factor) are proposed in 
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codes. Eurocode 8 suggests assuming q equal to 2.0; ASCE/SEI 7-10 suggests assuming 

q equal to 2.5; NZSEE 2017 suggests assuming q equal to 1.0 for URM infills. 

Some issues should be pointed out. First, there is no numerical or analytical study 

justifying the above values. Maybe, if it is assumed that infills have an OOP elastic-

plastic behaviour and the applicability of the equal displacement rule is accepted, these 

q values are fixed by assuming a ductility capacity equal to 2.0, 2.5 or 1.0. However, as 

already stated, there is no study in the literature justifying such an assumption. 

If it assumed that infills have the same ductility capacity and that the calculated OOP 

seismic demand acting on them is equal, independently on the code provisions applied 

to evaluate it, the OOP safety check should provide equal results by using ASCE/SEI 

41-13 strength model or Eurocode 6 if the ratio between the strength provided by 

Eurocode 6 model and the one provided by ASCE/SEI 41-13 is equal to the inverse of 

the ratio of the corresponding behaviour factors, which is equal to 1.25. 

The ratio between the strength provided by Eurocode 6 model (Equation 1) over that 

provided by ASCE/SEI 41-13 (Equation 5) is shown, for varying values of the vertical 

slenderness h/t and under the hypothesis of fd equal to fme, in Figure 7.1. 

 

 
Figure 5.1. Ratio of the OOP strength provided by Eurocode 6 and ASCE models at varying h/t 

values. 

 

The values of the strength ratios are highly different from 1.25, hence, the two safety 

checks are different also in terms of results obtained. 

A second issue should be discussed. One of the effects of the IP/OOP interaction is 

the OOP strength and stiffness reduction, as well as a displacement capacity variation. 
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Do the q-factors provided by codes account for this circumstance?  

In Chapter VIII, all these issues will be covered based on the results of non-linear 

dynamic analyses. An OOP effective stiffness and period for URM infills will be defined 

and, consistently, a unique value of the behaviour factor accounting for the IP/OOP 

interaction effects. 
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Chapter VI 

Description of the case-study RC buildings 

6.1. INTRODUCTION 

In the previous Chapter, the code provisions aimed at the OOP safety assessment of 

URM infills have been presented and discussed. In general, it has been observed that the 

strength capacity and force demand models provided are extremely simplified, most 

likely on the side of safety, and that they neglects many issues, such as a complete 

characterization of the two-way arching strength mechanism, the influence on the OOP 

strength of the load shape, the detailed characterization of the IP/OOP interaction 

effects, the dynamic properties of infills, the definition of their ductility capacity and 

behaviour factor. Such aspects, which are not included in currently applied formulations 

and models, have been deeply discussed in the first part of the thesis, with a complete 

characterization of the OOP response of IP-undamaged and IP-damaged infills based on 

mechanical models and on experimental data. 

As already stated, the second part of this thesis is dedicated to the assessment of the 

seismic response of URM infills and of infilled RC buildings with non-linear static and 

dynamic analyses. This effort is also aimed to the comparison of the results of such 

detailed analyses with the results of code-based safety check, in order to provide robust 

and reliable, although simplified, provisions for a correct and safe assessment of URM 

infills under seismic loads.  

To achieve this goal, it is necessary to define, design and model a wide set of RC 

buildings.  

In this Chapter, the design in Ductility Class “High” (DCH) of 16 Category A 

(Domestic and Residential activities according to Eurocode 1 2002 (EC1), section 6.3.1) 
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RC buildings with a two-times symmetric rectangular plan is presented. In the following, 

the X and Z global axes define the horizontal reference plan while the Y global axis is 

vertical and perpendicular to that plan. The case-study buildings are provided with 5 

bays in the X direction and of 3 bays in the Z direction. All bays spans are 4.5 m long, 

so the structural plan dimensions are 22.5 m along X axis and 13.5 m along Z axis. The 

16 buildings designed are different for the number of storeys, which is equal to 2, 4, 6 

or 8, and for the design PGA (PGAd) at Life Safety Limit State (LS), equal to 0.05, 0.15, 

0.25 or 0.35 g. The inter-storey height is always equal to 3 m. Each building has been 

designed for gravity and seismic loads by applying the Response Spectrum Analysis 

(RSA) according to Eurocode 2 (2004) (EC2) and Eurocode 8 (2004) (EC8).  

A simplified reproduction of the case-study buildings plan is reported in Figure 6.1. 

 

 
Figure 6.1. Structural plan of the case-study buildings, together with the names of the 6 frames 

parallel to the Z axis and of the 4 frames parallel to the X axis. 

 

In section 6.2, the general procedure used to design buildings is described. 

In section 6.3, some general considerations on the results of design are discussed. 

 

6.2. DESIGN PROCEDURE OF THE CASE-STUDY BUILDINGS 

In this section, the procedure used to design buildings according to Eurocodes is 

presented. Namely, design material properties are presented, the design spectra are 



Chapter VI – Description of the case-study RC buildings 245 

 

 

 

shown, the basic modelling and design criteria are discussed, the rationale for 

dimensioning structural elements is presented, loads and load combinations used in the 

design process are shown.  

Finally, the global verification of the building performance is performed at LS and 

at Damage Limitation limit state. The design and verification of beams and columns is 

briefly presented.  

 

6.2.1. Materials’ properties 

The materials used for the design of buildings were class C28/35 concrete and rebars 

with nominal characteristic yielding tensile strength equal to 450 N/mm2. The details of 

material properties are reported in Table 1. 

 

Table 6.1. Materials’ properties used for the design and assessment of the case-study buildings. 

property symbol value 

concrete characteristic compressive strength fck 28.0 N/mm2 

concrete mean compressive strength fcm 36.0 N/mm2 

concrete design compressive strength fcd 15.9 N/mm2 

concrete mean tensile strength fctm 2.77 N/mm2 

concrete design tensile strength fctd 1.29 N/mm2 

concrete ultimate strain εcu 0.00350  

concrete elastic modulus Ecm 32308 N/mm2 

steel characteristic yielding stress fyk 450 N/mm2 

steel mean yielding stress fym 517 N/mm2 

steel design yielding stress fyd 391 N/mm2 

steel elastic modulus Es 210000 N/mm2 

 

The concrete mean compressive strength fcm has been obtained from its characteristic 

value for the cylindrical specimen fck by applying the relationship proposed by EC2 in 

Tab. 3.1, as reported in Equation 1. 

 

fcm = fck + 8 N/mm2 (1) 

 

The design compressive strength fcd has been determined by applying the strain-rate 

coefficient αcc equal to 0.85 and the partial safety factor for concrete γc equal to 1.5 for 

persistent and transient design conditions (as reported in Eurocode 2, section 2.4.2.4),  

according to the relation proposed by EC2 in section 3.1.6, as reported in Equation 2.  

 



246 Chapter VI – Description of the case-study RC buildings 

 

 

 

fcd = αcc

fck

γc

 (2) 

 

The mean, fctm, characteristic, fctk, and design, fctd, tensile strength of the concrete 

were calculated by applying the relationships proposed by Eurocode 2 in Tab. 3.1 and 

Eurocode 2, section 3.1.6, as reported in Equations 3-5. 

 

fctm = 0.3fck
2/3

 (3) 

fctk = 0.7fctm (4) 

fctd = αct

fctk

γc

 (5) 

 

In Equation 5, αct is set equal to one. 

The concrete mean elastic modulus in compression has been calculated by applying 

the formulation proposed in Eurocode 2, Table 3.1, as reported in Equation 6. 

 

Ecm = 22000 (
fcm[N/mm2]

10
)

0.3

 (6) 

 

The reinforcing steel design yielding stress fyd has been determined from its 

characteristic value fyk by applying the relationship proposed in Eurocode 2, section 

3.2.7, as reported in Equation 7. 

 

fyd =
fyk

γs

 (7) 

 

In Equation 7, the safety factor for steel γs for persistent and transient design 

conditions is assumed equal to 1.15 according to Eurocode 2, section 2.4.2.4. 

The constitutive laws adopted in the design process for modelling the materials’ 

behaviour are the elastic-plastic model for the reinforcement steel (according to  

Eurocode 2, section 3.2.7) and the rectangular stress distribution (according to Eurocode 

2, section 3.1.7) for concrete, with λ, the coefficient that defines the effective height of 

the compression zone, equal to 0.8 and η, the coefficient that defines the effective 

compression strength, equal to 1. All the assumptions and relationships above presented 
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are effective for concretes with fck<50 N/mm2, as in the present case. 

 

6.2.2. Elastic and design response spectra 

For the seismic design of buildings, the response spectra provided for horizontal 

motion by Eurocode 8, section 3, have been used. The vertical seismic component was 

neglected, as no one of the conditions that make necessary to take into account for it (as 

reported in Eurocode 8, section 4.3.3.5.2) was realized. The buildings were designed on 

a stiff and horizontal type A soil, with soil factor S equal to 1. Moreover, the importance 

factor γI was set equal to 1, which is proper for buildings with domestic and residential 

use, the damping ratio was set equal to the 5%. The values for the periods TB, TC and TD 

were set equal to the ones suggested for the Type 1 elastic spectrum, which is 

recommended for high-seismicity zones, and were equal to 0.15, 0.40 and 2.00 s, 

respectively. 

The PGA associated to LS elastic spectrum was set to 4 different values: 0.05, 0.15, 

0.25 and 0.35 g for a return period TR of 475 years. The elastic spectra for a return period 

of 50 years, which were used for the design at Damage Limitation Limit State (DL), 

were determined by multiplying for 0.4 the PGA adopted for the elastic spectra at LS 

(Hak et al. 2012). 

The elastic spectra at LS and at DL used for design are reported in Figure 6.2. 

 

 
Figure 6.2. Elastic response spectra at LS and DL 

 

Within the application of the RSA, for the force-based safety check of the structural 

elements at LS, the elastic response spectra were reduced by applying the behavior factor 
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q. It was determined according to section 5.2.2.2 of Eurocode 8 for multi-storey and 

multi-bays RC frame system, for which αu/α1 is equal to 1.3, designed in DCH, for which 

μ is equal to 4.5. It was assumed that the buildings were regular in plan but not in 

elevation: these assumptions will be verified in the following. For this reason, the 

behavior factor reduction coefficient kR=0.8 was applied. The behavior factor applied 

was then equal to 4.68. 

The design response spectra were obtained by dividing by q all the spectral pseudo-

accelerations, as shown in Figure 6.3. Note that they cannot be lower than β times the 

PGA, with β equal to 0.2, as suggested in EC8, section 3.2.2. 

 

 
Figure 6.3. Design response spectra at LS. 

 

6.2.3. Basic design and modelling criteria 

The design of buildings was carried out by applying the basic principles presented in 

section 4.2.1 of Eurocode 8. Among all, the diaphragmatic behavior of the storey levels 

was assured and introduced in the structural model. In addition, a somehow equal lateral 

elastic stiffness along the X and Z directions has been pursued. Therefore, the storey 

masses were lumped in the barycentre of floors, except for the masses of the structural 

elements, which were assigned as linear masses distributed along them, and except for 

the infill walls’ masses, which were introduced in the model as linear masses distributed 

on the perimeter beams. In order to take into account for the structural elements 

cracking, the flexural stiffness of columns and beams were reduced by 50% according 

to Eurocode 8, section 4.3. Elements representative of infill walls were not introduced 
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in the structural model, so the buildings were designed as bare RC frames. 

 

6.2.4. Dimensioning of structural elements 

The structural elements dimensioning was carried out by applying three main criteria. 

First, the lateral deformability at LS was checked based on the results of a linear 

lateral force analysis, according to Eurocode 8, section 4.3.3.2, that was carried out by 

assigning a distributed load of 12 kN/m2 to each floor and by adopting a 5‰ limitation 

for the interstorey drift according to Eurocode 8, section 4.4.3.2. 

Second, the prevention of the bond failure for the anchorage of beams reinforcement 

was ensured. In fact, in section 5.6.2.2, Eurocode 8 sets some lower bounds for the ratio 

between the maximum diameter of longitudinal bars used in beams and the dimension 

of the columns cross section, in order to prevent the bond failure under seismic actions 

of the anchorage of the reinforcement passing through beam-column joints. This control, 

which is very strict, will be discussed again in the next section. To take into account for 

it in the dimensioning of columns sections, it has been assumed that the longitudinal 

bars’ diameter was equal to 16 mm, that the normalized axial load was equal to zero, 

which is on the side of safety, and that the ratio between the compression steel ratio and 

the maximum allowed tension steel ratio was equal to 0.8.  

Third, the dimensions of elements was set in order to inhibit P-δ effects. 

 

6.2.5. Gravity load determination and combination 

Gravity loads were determined with reference to a 25 cm thick concrete and masonry 

floor realized with a 4 cm thick concrete slab in order to guarantee the diaphragmatic 

behavior of the storey levels. The materials’ weight per unit volume used for the 

calculation of gravity loads are reported in Table 7.2. 

 

Table 6.2. Construction materials’ weight per unit volume. 

material value 

reinforced concrete 25 kN/m3 

masonry 8 kN/m3 

mortar/plaster 15 kN/m3 

 

The partitions and the pavement were taken into account through distributed loads 

equal to 1.2 kN/m2 and 0.4 kN/m2, respectively, while the live load was assumed equal 

to 2 kN/m2. These assumptions are in accordance to the values suggested for residential 
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buildings in Eurocode 1, section 6.3.1.2. The weight of infills was not considered on the 

perimeter beams at the roof level, of course. However, the presence of a 1.2 m high 

protection wall realized along the roof perimeter was considered.  

For all buildings, the floor seismic weight per unit area, which was calculated by 

accounting for the weight of structural and non-structural elements, as well as for the 

30% of the live loads, is between 9 and 10 kN/m2, which is consistent with the 

assumptions made in the phase of structural elements’ dimensioning.  

For the safety check of structural members with respect to gravity loads the following 

load combinations were considered according to Eurocode 0 (2002), section 6.4.3. 

 

- For the resistance verifications at Ultimate Limit State (ULS), the load 

combination reported in Equation 8 has been used. 

 

Ed = 1.3Gk1 + 1.5Gk2 + 1.5Qk (8) 

 

- For the stresses limitation, cracking and deformability verifications at 

Serviceability Limit State (SLS), the load combination reported in Equation 9 

has been used. 

 

Ed = Gk1 + Gk2 + ψQk (9) 

 

In Equation 9, the ψ factor was set to 1, 0.7 or 0.5 according to the specific 

verification to carry out. 

For the verification with respect to the seismic actions, the combination reported in 

Equation 10 has been used. 

 

Ed = Gk1 + Gk2 + 0.3Qk + E (10) 

 

In Equation 10, E is the seismic action applied in the two direction in the horizontal 

plan according to the 30% combination rule. To account for accidental torsional effects, 

the floor mass centre is set in four different positions, as shown in Figure 6.4. 
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Figure 6.4. Centre of mass positions assumed in the design process. 

 

Each one of the four application points is 5% of the structural plan dimensions in the 

X and Z direction distant from the floor geometric centre according to Eurocode 8, 

section 4.3.2. 

 

6.2.6. Global verifications of the case-study buildings 

After the definition and elastic modelling of the structures, of the loads and of the 

masses, some global verifications were carried out. 

First, a check of the regularity in plan was performed. The plan regularity criteria are 

listed in section 4.2.3.2 of Eurocode 8. In the present case, all buildings have a 

rectangular compact and two times symmetric structural plan, lacking of any set-back. 

The ratio between the two dimensions of the structural plan is 1.67, which is lower than 

the limit value, 4. The calculation of the radius of gyration of the floor mass in plan ls 

and of the torsional radii rx and ry for each floor allowed verifying that all buildings were 

not torsionally flexible, as the ratio r/ls was equal, on average, to 1.2. For these reasons, 

all designed buildings were regular in plan. 

Second, a check of the regularity in elevation was performed. The elevation 

regularity criteria are listed in section 4.2.3.3 of Eurocode 8. In the present case, all 

buildings are provided of a framed lateral load-resistant structure that runs without 

interruptions or set-backs from the foundation to the roof. Moreover, the mass variation 

between successive floors are always conveniently limited. Based on the results of the 

linear lateral load analysis, i.e., by applying a lateral forces distribution whose shape is 

consistent with a simplified linear deformed shape of the structure, it was possible to 

calculate the lateral interstorey stiffness in the X and Z directions for each building as 

X

Z
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the ratio between the storey seismic shear force and the correspondent interstorey drift. 

For all buildings, in passing from the first to the second storey, a reduction of the lateral 

stiffness upper than the 30% was observed: it is assumed that such a reduction can be 

classified as “non-gradual”, so all buildings are not regular in elevation. This was 

already assumed in the dimensioning phase. 

Third, a check on P-δ effects was performed. In order to verify the negligibility of 

geometric non-linearity second order effects, according to Eurocode 8, section 4.4.2.2, 

the following steps were followed. Said h the Interstorey height, for each storey, the 

vertical action due to gravity loads in the seismic combination, P, was calculated. Hence, 

the storey seismic shear force, V, given by a lateral load linear analysis carried out with 

reference to the spectral pseudo-acceleration associated at LS to the first vibration period 

of the structure in the considered direction given by a modal analysis was calculated.  

Then, the floor barycentre displacement in the two horizontal direction, δ, obtained by 

multiplying the one given as result by the linear lateral load analysis for the ductility 

factor μδ, according to Eurocode 8, section 4.3.4, was calculated. Such ductility factor 

was assumed equal to the behavior factor q, as in all the considered cases, the first 

vibration period of the structure was lower than TC, according to Eurocode 8, section 

5.2.3. From these displacement values, the interstorey drifts, d, were obtained. For all 

buildings, for all storeys and in all the horizontal directions it was verified that the 

second-order effects were negligible, as the inequality reported in Equation 11 was 

satisfied. 

 

Pd

Vh
< 0.1 (11) 

 

Fourth, for all buildings, lateral deformability verifications at DL limit state were 

performed. More specifically, for each floor and in correspondence of two points 

diametrically opposed of the structural plan perimeter, P1 and P2 in Figure 6.5, it was 

verified that in any one of the 32 seismic load combinations the interstorey drift ratio 

(IDR) was upper than the 5‰, according to Eurocode 8, section 4.4.3.2.  

The displacements values were obtained through an elastic response spectrum 

analysis. In all the considered cases, for all buildings and in all directions, the maximum 

IDR was never upper than the 2-3‰, so the verification was satisfied. 
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Figure 6.5. Points for the calculation of the buildings’ displacements for their verification at 

DL. 

 

6.2.7. Design of beams 

The concrete cover thickness was defined accordingly to section 4.4.1 of Eurocode 

2. For instance, a distance of 40 mm from the longitudinal reinforcement centroid closest 

to the concrete surface and the concrete surface itself was considered sufficient to 

guarantee an adequate protection of the reinforcement from aggressive external factors. 

The longitudinal reinforcement of each beam was determined based on the envelope 

of the bending moment diagrams given by the 32 seismic load combinations plus the 

one given by the gravity load combination at ULS. The quantity of steel reinforcement 

this way calculated was then compared with the upper and lower limitations provided 

by Eurocode 2 in section 9.2.2.1 6.2.3 and by Eurocode 8 in section 5.4.3.1.2 and 

potentially  modified based on them. Each beam is provided of longitudinal web 

reinforcement. Given that all dispositions about seismic local detailing for longitudinal 

and transversal reinforcement were respected, the local ductility verification proposed 

in section 5.4.3.1.2(4)b of Eurocode 8 was neglected. According to section 5.6.2.2 of 

Eurocode 8, the anchorage of bars passing through beam-columns joints was verified. 

The shear force acting on beams was determined by applying capacity design rules 

according to section 5.5 of Eurocode 8 while the shear strength was calculated by 

applying the truss model proposed in section 6.2.3 of Eurocode 2. This allowed the 

determination of the transversal reinforcement, which was constituted by vertical 

stirrups with 8 mm diameter whose spacing was verified, and eventually modified, also 

according to the limitations stated in section 9.2.2 of Eurocode 2 and in section 5.5 of 

Eurocode 8. In any case the additional diagonal reinforcement discussed in section 
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5.5.3.1.2 of Eurocode 8 was necessary. 

 

6.2.8. Design of columns 

The concrete cover thickness was defined accordingly to section 4.4.1 of Eurocode 

2. For instance, a distance of 40 mm from the longitudinal reinforcement centroid closest 

to the concrete surface and the concrete surface itself was considered sufficient to 

guarantee an adequate protection of the reinforcement from aggressive external factors. 

The longitudinal reinforcement of each column was determined based on the bending 

moment calculated by applying the beam-column capacity design rules according to 

section 5.5 of Eurocode 8. The number of reinforcing bar used was set in order to respect 

the maximum distance among them accordingly to the maximum distance allowed for 

restrained bars set to 150 mm according to section 5.5.3.2 of Eurocode 8.  

The shear transverse reinforcement constituted by stirrups and ties was calculated by 

applying the truss model proposed in section 6.2.3 of Eurocode 2 based on the shear 

actions obtained by applying capacity design rules and according to the restrictions on 

stirrups spacing and mechanical percentage of transversal reinforcement provided in 

section 9.5.3 of Eurocode 2 and in section 5.5.3.2.2 of Eurocode 8. In all cases, stirrups 

with 8 mm diameter were used for the transverse reinforcement. 

 

6.3. SOME CONSIDERATIONS ON THE DESIGN RESULTS 

In this section, some considerations on the results of the design process are discussed. 

First, modal analysis results showing buildings’ modal characteristics are shown. 

Second, some suggestions on frame elements’ dimensioning are derived.  

In addition, considerations and comments on the structural sections of beams and 

columns and their dependency on the number of floors and on the design seismic 

acceleration are presented, similarly to the discussion presented in Panagiotakos and 

Fardis (2004). 

 

6.3.1. Results of modal analysis 

The design vibration periods of the case-study buildings are reported in Table 6.3 

and in Figure 6.6. Note that the periods shown are calculated with a modal analysis on 

the bare frame models with halved inertia of the structural elements’ cross-section.  
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Table 6.3. Design fundamental periods in the X and Z global directions of the case-study bare 

buildings. 

 
 Number of storeys of the bare frames 

 2  4  6  8  

design PGA at LS 

T1,Z 

[s] 

T1,X 

[s] 

T1,Z 

[s] 

T1,X 

[s] 

T1,Z 

[s] 

T1,X 

[s] 

T1,Z 

[s] 

T1,X 

[s] 

0.05 g 0.418 0.406 0.578 0.554 0.775 0.743 1.070 1.023 

0.15 g 0.418 0.406 0.538 0.520 0.741 0.712 1.022 0.977 

0.25 g 0.418 0.406 0.476 0.459 0.693 0.665 0.961 0.919 

0.35 g 0.345 0.336 0.403 0.389 0.566 0.542 0.762 0.728 

 

 
Figure 6.6. First vibration period in X and Z directions of the case-study buildings. 

 

A quite clear and expected hierarchy between the periods of the case-study buildings 

is observed, with a straightforward trend of the periods with both the number of storeys 

and the design PGA at LS. Note that the periods in the Z direction are always slightly 

higher than the corresponding in the X direction. This occurs because buildings are less 

long in the Z direction, so they tend to be more deformable with respect to X direction; 
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however, in section 6.2.3 it has been stated that the design was oriented at ensuring, as 

much as possible, an equal lateral stiffness in both the horizontal directions, according 

to Eurocode 8 general design principles. However, note also that stairs were not 

introduced, for simplicity, in the structural models. 

 

6.3.2. A proposal for dimensioning criteria 

In section 6.2.4 it has been stated that for dimensioning of structural members in 

general and of columns in particular, the prevention of the bond failure for the anchorage 

of beams reinforcement was ensured. In fact, in section 5.6.2.2, Eurocode 8 sets some 

lower bounds for the ratio between the maximum diameter of longitudinal bars used in 

beams and the dimension of the columns cross section, in order to prevent the bond 

failure under seismic actions of the anchorage of the reinforcement passing through 

beam-column joints. This control is very strict and, in most cases, was the most influent 

in determining the dimensions of columns cross-sections. To take into account for it in 

the dimensioning of columns sections, it has been assumed that the longitudinal bars’ 

diameter was equal to 16 mm, that the normalized axial load was equal to zero, which 

is on the side of safety, and that the ratio between the compression steel ratio and the 

maximum allowed tension steel ratio was equal to 0.8.  

However, based on the results of the design process, it is possible to define some 

more specific and less conservative assumptions for dimensioning of elements. For what 

concerns νd, which is defined as the maximum normalized axial load given by the 

seismic load combinations, it is suggested to use the values reported in Tables 6.4 and 

6.5 for the first and last floor of buildings and to linearly interpolate for intermediate 

floors. 

 

Table 6.4. Value of the design normalized axial load to use in columns’ dimensioning at first 

floor. 

building number of storeys interior joints exterior joints 

2-3 0.08 0.04 

4-7 0.20 0.05 

8 or more 0.30 0.10 
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Table 6.5. Value of the design normalized axial load to use in columns’ dimensioning at last 

floor. 

building number of storeys interior joints exterior joints 

2-3 0.05 0.02 

4-7 0.05 0.02 

8 or more 0.05 0.02 

 

For what concerns ρ’/ρmax, which is defined as the ratio between the compression 

steel ratio and the maximum allowed tension steel ratio based on the verification 

requested in section 5.4.3.1.2 of Eurocode 8, the use of the value 0.8 is suggested. 

For what concerns dbL, the maximum diameter of longitudinal bars, the use of the 

values reported in Tables 6.6 and 6.7 is suggested. 

 

Table 6.6. Value of the maximum diameter of longitudinal bars to use in columns’ 

dimensioning for design PGA at LS lower than 0.20 g. 

building number of storeys from 1st to 4th storey for upper storeys 

1-4 14 mm - 

more than 4 16 mm 14 mm 

 
Table 6.7. Value of the maximum diameter of longitudinal bars to use in columns’ 

dimensioning for design PGA at LS equal to or greater than 0.20 g. 

building number of storeys interior joints exterior joints 

1-4 16 mm - 

more than 4 18 mm 16 mm 

 

6.3.3. Structural members’ characteristics 

To enter more deeply the results of the design of the case-study buildings, in this 

section the average values of: 

 

i. the depth of beams’ cross section, hb; 

ii. the area of columns’ cross section, Ac; 

iii. the top reinforcement ratio of beams’ cross sections, ρtop; 

iv. the bottom reinforcement ratio of beams’ cross section, ρbot; 

v. the total reinforcement ratio of columns’ cross sections, ρtot; 

 

for each storey and for each case-study building are reported in Figure 6.7.  
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Figure 6.7. Average depth of beams’ cross-sections. 

 

In the first row of Figure 6.7, the average depth of beams’ cross-sections is shown, 

for each floor, at varying design PGA in bins homogeneous in terms of number of 

storeys. In the second row of Figure 6.7, the same property is represented for varying 

number of storeys in bins homogeneous in terms of PGA. Some lines are not visible, as 

they often overlap. The average depth ranges from 40 to 60 cm. 

It can be observed that, with the exception of low-rise buildings, beams’ cross-section 

depth is quite independent on the total number of storeys of the building and is equal, 

on average, to 50 cm for low-intermediate design PGA and to 60 cm for high PGA. The 

depth of beams' cross-sections varies sensitively at increasing design PGA. It is observed 

that, as expected, beams’ cross-section depth is lower at upper storeys of mid- and high-

rise buildings designed for lower design PGA. 

 

PGAd=0.05 g
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PGAd=0.25 g
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Figure 6.8. Average top reinforcement ratio of beams’ cross-sections. 

 

In the first row of Figure 6.8, the average top reinforcement ratio of beams’ cross-

sections is shown, for each floor, at varying design PGA in bins homogeneous in terms 

of number of storeys. In the second row of Figure 6.8, the same property is represented 

for varying number of storeys in bins homogeneous in terms of PGA. Some lines are not 

visible, as they overlap. The average top reinforcement ratio ranges from 0.3% to 0.6%. 

It can be observed that, at the upper storeys of mid- and high-rise buildings, the top 

reinforcement ratio of beams’ cross-sections is independent on the total number of 

storeys and is equal, on average, to 0.3% for low-intermediate design PGA and to 0.4% 

for intermediate-high PGA. For low- and mid-rise buildings as well as at the lower 

storeys of mid- and high-rise buildings, there is a certain dependence of the average top 

reinforcement ratio on the total number of storeys, as well as on the design PGA. 

However, there is no clear trend with neither of them. This occurs because the 

reinforcement ratio is equal to the ratio between the reinforcement area and the cross-

section area. Both quantities increase, in general, at increasing design PGA and total 

PGAd=0.05 g

PGAd=0.15 g

PGAd=0.25 g

PGAd=0.35 g
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4P

6P
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number of storeys. However, they not increase with the same rate and this rate depends, 

above all, on the practitioner judgment, so, sometimes, the lines represented in Figure 

6.8 intersect. In general, it is observed that such ratio reduces in passing from lower to 

upper storeys, due to a reduction of the necessary reinforcement steel area.  

 

 
Figure 6.9. Average bottom reinforcement ratio of beams’ cross-sections. 

 

In the first row of Figure 6.9, the average bottom reinforcement ratio of beams’ cross-

sections is shown, for each floor, at varying design PGA in bins homogeneous in terms 

of number of storeys. In the second row of Figure 6.9, the same property is represented 

for varying number of storeys in bins homogeneous in terms of PGA. Some lines are not 

visible, as they overlap. The average bottom reinforcement ratio ranges from 0.2% to 

0.5%. 

It can be observed that, at the upper storeys of mid- and high-rise buildings, the 

bottom reinforcement ratio of beams’ cross-sections is independent on the total number 

of storeys and is equal, on average, to 0.3%. For low- and mid-rise buildings as well as 

at the lower storeys of mid- and high-rise buildings, there is a certain dependence of the 
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average bottom reinforcement ratio on the total number of storeys, as well as on the 

design PGA. However, there is no clear trend with neither of them. This occurs because 

the reinforcement ratio is equal to the ratio between the reinforcement area and the cross-

section area. Both quantities increase, in general, at increasing design PGA and total 

number of storeys. However, they not increase with the same rate and this rate depends, 

above all, on the practitioner judgment, so, sometimes, the lines represented in Figure 

6.8 intersect. In general, it is observed that such ratio, differently from the top 

reinforcement ratio, is quite constant in passing from lower to upper storeys. 

 

 
Figure 6.10. Average area of columns’ cross-sections. 

 

In the first row of Figure 6.10, the average area of columns’ cross-sections is shown, 

for each floor, at varying design PGA in bins homogeneous in terms of number of 

storeys. In the second row of Figure 6.10, the same property is represented for varying 

number of storeys in bins homogeneous in terms of PGA. Some lines are not visible, as 

they overlap. The average area of columns ranges from 2000 cm2 to 4500 cm2. 
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Differently from the previous quantities, clear and straightforward trends are visible 

in Figure 6.10. It is observed that the area of columns is quite independent on the specific 

design PGA for low-intermediate PGA and on the specific number of storeys for low- 

and mid-rise buildings. 

 

 
Figure 6.11. Average total reinforcement ratio of columns’ cross-sections. 

 

In the first row of Figure 6.11, the average total reinforcement ratio of columns’ 

cross-sections is shown, for each floor, at varying design PGA in bins homogeneous in 

terms of number of storeys. In the second row of Figure 6.11, the same property is 

represented for varying number of storeys in bins homogeneous in terms of PGA. Some 

lines are not visible, as they overlap. The average total reinforcement ratio ranges from 

1% to 2%. 

It can be observed that, at the upper storeys of mid- and high-rise buildings, the 

bottom reinforcement ratio of beams’ cross-sections is independent on the total number 

of storeys and is equal, on average, to 1.5% for low design PGA and to 2% for 

intermediate and high design PGA. For low- and mid-rise buildings as well as at the 
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lower storeys of mid- and high-rise buildings, there is a certain dependence of the 

average total reinforcement ratio, which increases at fixed total number of storeys for 

increasing design PGA and decreases, at fixed design PGA, at increasing number of 

storeys. Most likely, this occurs because the necessary reinforcement ratio increases at 

higher rate than the cross-section area at fixed number of storeys and at increasing design 

PGA, while the contrary occurs at fixed design PGA and at increasing number of storeys. 

However, remember that part of these trends is certainly due to the practitioner 

judgment. In addition, the reinforcement ratio in intermediate and high-rise buildings 

increases in passing from lower to upper storeys due to the reduction of columns’ cross-

section area. In addition, the reinforcement ratio also tends to increase at upper storeys 

due to the lower axial load ratio and, hence, to the lower beneficial effect of it on the 

moment strength of columns. 
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Chapter VII 

Out-of-plane seismic safety assessment of URM 

infills in a non-linear static framework 

7.1. INTRODUCTION 

In this Chapter, the 16 RC case-study infilled buildings presented in Chapter VI and 

different for number of storeys (2, 4, 6 and 8) and for the design Peak Ground 

Acceleration (0.05, 0.15, 0.25 and 0.35 g) at Life Safety Limit State (LS) are examined. 

Two different infill layouts are considered, i.e., a double leaf ‘weak’ infill layout (WL) 

and a one leaf ‘strong’ infill layout (SL). First, for each case study building, the Peak 

Ground Acceleration (PGA) at which the first OOP collapse of infills occurs (PGAc) is 

assessed according to a “Designer Approach” (i.e., a “code-based” approach) applied in 

a linear elastic framework on bare frame models and using code provision for the 

assessment of infills’ OOP capacity and demand. Second, the PGAc is evaluated by 

using non-linear static analyses carried out on infilled models of the case-study 

buildings, according to the procedure assumed as “Reference Approach”, and literature 

formulations for OOP capacity and demand accounting for the IP/OOP interaction. The 

influence of the number of storeys and of the design PGA of the building on the PGAc 

are discussed. The overestimation of the PGAc assessed using the “Designer Approach” 

is shown and discussed, as well as the overestimation of the PGAc assessed in a linear 

elastic framework even if the IP/OOP interaction is considered.   

Based on the “Reference Approach” results, fragility curves with respect to the first 

OOP collapse for all case-study buildings are shown considering both the OOP PGA 

and the IP inter-storey drift ratio (IDR) as demand parameter. Finally, for all the case-
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study buildings, a wide range of 42 infill layouts, different for slenderness ratio and 

masonry compressive strength, is considered and the results of the application of the 

“Reference Approach” are shown in order to calculate a “limit state” curve defining the 

slenderness-compressive strength couples for which the OOP safety check of infills may 

be neglected. 

 

7.2. DESCRIPTION OF THE PROCEDURES APPLIED FOR THE 

ASSESSMENT OF THE COLLAPSE PGA 

As previously stated, the first aim of this Chapter is assessing the overestimation of 

the PGA and of the spectral pseudo-acceleration (PSA) associated with the first OOP 

infill collapse (PGAc and PSAc, respectively) calculated by neglecting the IP/OOP 

interaction by using a totally Eurocode-based approach for 16 RC case-study infilled 

buildings different for number of storeys (2, 4, 6 and 8) and for the design PGA (0.05, 

0.15, 0.25 and 0.35 g) at LS. To achieve this goal, the hereafter-described procedures 

are applied. In the following, the X and Z global axes define the horizontal reference 

plan. Consider X as the ‘IP direction’ and Z as the ‘OOP direction’; clearly, the 

following procedures are applied also considering X as the ‘OOP direction’ and Z as the 

‘IP direction’. 

Note that the PGAc is assumed as capacity PGA of the entire building at LS. In other 

words, the OOP collapse of infills is considered as the attainment of the LS. This is in 

accordance with section 2.2.2(6)P of Eurocode 8 (2004) (EC8), in which it is stated that 

at Ultimate Limit States, such as LS, “it shall be verified that under the design seismic 

action the behaviour of nonstructural elements does not present risks to persons and 

does not have a detrimental effect on the response of the structural elements”.  

 

7.2.1. Designer (code-based) Approach (DA) 

For the application of the DA, the OOP strength of infills is calculated by applying 

Eurocode 6 (2005) (EC6) formulation for masonry walls under uniformly-distributed 

lateral load reported in section 6.3.2, herein extended to infill walls (Equation 1). 

 

FRd = fd (
t

la
)
2

wh (1) 

 

In Equation 1, t is the infill thickness, w is the infill width, h is the infill height. Infill 
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walls with w>h, as in the considered case, mainly arch in the vertical direction (Flanagan 

and Bennett, 1999). For this reason, in Equation 1 fd is the design compressive strength 

of masonry in the vertical direction and la is the height of the infill calculated as distance 

between the confining beams’ centrelines.  

For each case-study bare frame, the OOP force demand, FEd, acting on the infills at 

each storey considered as non-structural elements is assessed by applying Equation 2, 

which is proposed in section 4.3.5 of EC8.  

 

FEd =
SaWaγa
qa

 (2) 

 

In Equation 2, Wa is the weight of the infill participating to its first out-of-plane 

vibration mode, γa is the importance factor of the infill, assumed equal to 1 according to 

section 4.3.5.3 of EC8, qa is the behaviour factor of the infill, assumed equal to 2, as 

suggested for exterior walls in section 4.3.5.4 of EC8. Sa is the seismic coefficient, which 

is equal to the PSA acting on the infill in the OOP direction divided by the acceleration 

of gravity g, and is calculated as shown in Equation 3. 

 

Sa = αS [
3(1 + z H⁄ )

1 + (1 − Ta T1⁄ )2
− 0.5] (3) 

 

In Equation 3, α is the design acceleration on type A soil, ag, divided by the 

acceleration of gravity g, S is the soil factor, z is the height of the infill barycentre above 

the building base, H is the total height of the building, T1 is the fundamental vibration 

period of the building in the relevant direction, i.e., in our case, the design fundamental 

vibration period of the building in the OOP direction, calculated for the bare frame 

model with halved-inertia for the structural elements’ section. Ta is the infill vibration 

period in the OOP direction. Codes do not provide indications on this issue, hence there 

is no code prescription that can be assumed as reference. For this reason, Ta is calculated, 

both when applying the DA and the RA, by applying the classical formulation for a 

single-degree of freedom system, with mass equal to the infill mass participating to the 

first OOP vibration mode (assumed as the 66% of the infill total mass), and stiffness 

calculated as for an elastic plate pinned along all edges according to the formulation by 

Timoshenko and Woinowsky-Krieger (1959). With some manipulation, Equations 2 and 

3 can be written as Equations 4 and 5, respectively. 
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FEd =
PSA

g

Waγa
qa

 (4) 

PSA = PGA [
3(1 + z H⁄ )

1 + (1 − Ta T1⁄ )2
− 0.5] (5) 

 

The DA consists in: 

 

i. Calculating, for each infill layout, the OOP strength, FRd, by applying Equation 

1. 

ii. Calculating, for each case study building and in each horizontal direction, the 

maximum demand acting on infills – which always occurs at the last floor – by 

using Equation 4 and matching it to the capacity calculated using Equation 1 in 

order to define the PSAc.  

iii. Calculating PGAc from PSAc using Equation 5. 

 

7.2.2. Reference Approach (RA) 

For the application of RA, literature formulations for OOP capacity and demand are 

applied. For the prediction of the IP-undamaged infill OOP strength under seismic load, 

the mechanical model by Dawe and Seah (1989) is applied for WL, i.e., for thin infills, 

while Eurocode 6 formulation adapted to the seismic load shape is applied to predict the 

OOP strength of the SL, i.e., for thick infills, as suggested in Chapter IV.  

The OOP force displacement-curve for WL infills predicted by Dawe and Seah is 

reported in Figure 7.1.   
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Figure 7.1. OOP response curve predicted by using Dawe and Seah’s model for the 80 mm- and 

120 mm-thick leaves constituting the WL infill type. 

 

R, the OOP strength degradation factor due to the IP damage, represented by the 

maximum IP inter-storey drift ratio, IDR, expressed in percentage, at given infill vertical 

slenderness, h/t, is calculated by applying the empirical relationship derived in Chapter 

IV and reported in Equation 6. 

 

R(IDR) =
FRd(IDR| h t⁄ )

FRd(IDR = 0)
= min(1; [1.21 − 0.05min(20.4; h/t)](IDR)−0.89) (6) 

 

The seismic demand on infills is obtained by multiplying the demand PSA for the 

infill participating mass to the first OOP vibration mode, equal, also in this case, to the 

66% of the infill total mass. Equation 3 proposed by EC8 does not account for the effects 

of the non-linear behaviour of the primary structure on floor acceleration demands while 

at LS the RC structure is supposed to have already exhibited a significant non-linearity 

(Vukobratović and Fajfar, 2016). Also for this reason, Equation 3 generally 

overestimates floor accelerations, especially for high structures, as observed by different 

authors (Pinkawa et al., 2014, Petrone et al., 2015). For this reason, within the RA, the 

OOP acceleration demand will be calculated by using the floor spectra proposed for 

inelastic MDOF by Vukobratović and Fajfar (2017). Vukobratović and Fajfar 

formulation of the PSA demand differs from EC8 proposal mainly for two aspects.  

First, it accounts for the effects of higher vibration modes, which are neglected in 
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EC8 formulation: for this reason, for a given PGA – for example, 1 g - the acceleration 

demand may be not be monotonically increasing along the building height as shown in 

Figure 7.2a for a 6-storey case study-building. Second, it accounts for the inelastic 

structural behaviour due to the excitation of the first vibration mode using the PSA 

reduction factor Rμ, which in this work is obtained from the SPO2IDA tool 

(Vamvatsikos and Cornell, 2006). For this reason, for a given floor, the acceleration 

demand grows up with decreasing rate as PGA increases, as shown for the last storey of 

a 6-storey case-study building in Figure 7.2b.  

The ductility of the non-structural element is considered by assigning to it an 

equivalent damping ratio, i.e., directly when calculating the PSA demand. For this 

reason, the force acting on infills is calculated without the application a posteriori of a 

behaviour factor. According to Vukobratović and Fajfar (2017), such equivalent 

damping ratio is fixed to 10%, which is appropriate for non-structural elements with 

expected ductility demand equal to 1.5 (i.e., with ductility capacity at least equal to 1.5) 

and with 1% damping ratio, while it is conservative for non-structural elements at higher 

ductility demand and with higher damping ratio. It is worth to mention that in Chapter 

IV it is shown that for both IP-undamaged and IP-damaged (up to moderate-high IDR 

levels) URM infills the ductility capacity is compatible with this value of minimum 

ductility capacity.  

 

  
(a) (b) 

Figure 7.2. Floor distribution of demand acceleration for given PGA equal to 1.00 g (a) and 

PSA evolution at increasing PGA for the last storey (b) of a 6-storey case-study building 

obtained by applying Vukobratovic and Fajfar’s and Eurocode 8’s floor spectrum. 
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For simplicity, the procedure is described with reference to a 4-storey building. 

 

i. For each infill layout, the OOP strength, FRd, is calculated by applying Dawe 

and Seah’s model (for WL) or Eurocode 6 formulation (for SL). 

ii. For each case-study infilled building, a static pushover (SPO) analysis is 

performed in the IP direction to obtain a base shear (Vb) vs roof displacement 

(ΔTOP) curve. The loading path used to carry out SPO analyses is proportional 

to the force distribution along the frame height associated with the first vibration 

mode in the considered IP direction. 

iii. The SPO Vb-ΔTOP curve is then multi-linearized according to the piecewise 

procedure described for elastic-hardening-negative systems in De Luca et al. 

(2013). Note that the application of the above procedure results in an effective 

fundamental period assigned to each case-study building equal to its elastic 

fundamental vibration period. 

iv. For each case-study building, the 50th percentile IDA curve is associated with 

each SPO curve by applying the SPO2IDA tool. This allows defining an elastic 

PSA vs Δ curve. The introduction of each elastic PSA in the EC8 Type I 

spectrum allows passing from elastic PSA to elastic PGA vs Δ curve. Using the 

SPO analysis results, to each Δ it is possible to associate the IDR for each storey 

and to define PGA vs IDR curves for each storey (Figure 7.3). 

v. To each IDR demand, for each storey, it is possible to associate the degraded 

strength of the infills at that storey, by means of Equation 7, and trace a PSAc 

vs PGAIP curve (Figure 7.3).  

vi. It is assumed that the PGA acting in the OOP direction is equal to the PGA 

acting in the IP direction: this assumption is discussed in the following. For each 

PGAOOP value the PSA demand in the OOP direction is calculated by means of 

Vukobratović and Fajfar floor spectrum and demand PSA vs PGAOOP curves for 

each storey can be defined (Figure 7.4a).  

vii. The set of PSAc-vs-PGAIP curves and the set of demand PSA-vs-PGAOOP curves 

intersect at various values of PGA. The lowest of such PGAs is the PGAc 

accounting for the IP/OOP interaction (PGAc,W/ in Figure 7.4b). In addition, the 

set of demand PSA-vs-PGAOOP curves intersect the vertical line representative 

of the undamaged PSAc value at various values of PGA. The lowest of such 

PGAs is the PGAc accounting for the IP/OOP interaction (PGAc,W/O in Figure 

7.4b). For each case-study infilled building and for each infill layout the 
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effective PGAc is the minimum between the one calculated assuming X and Z 

as the IP direction, clearly. The IDR distribution associated with PGAc is the 

collapse IDR distribution assessed by accounting for IP/OOP interaction. 

 

Let us call PSAX and PSAZ the PSA associated with the ground motion acting along 

the X and Z direction, respectively. Current building codes, such as EC8, suggest 

combining the effects of multidirectional ground motions by means of a linear 

simplification of the Square Root of Sum of Squares (SRSS) rule by applying the so-

called 30% rule, independently on the value of the PSAX/PSAZ ratio (Menun and Der 

Kiureghian, 1998), for which no indication is provided. As previously stated, an equal 

intensity for the seismic excitation acting along the two horizontal directions, X and Z, 

is assumed in this study. In absence of specific provisions given by technical standards, 

this conservative assumption is consistent with a code-based approach and with the 

suggestion provided by Wilson et al. (1995), recalled by Menun and Der Kiureghian. 

Note that, for simplicity, the effects of OOP actions on the IP response of infills that 

are neglected. This approach, given the overestimation of the infilled structure stiffness, 

leads to a non-conservative underestimation of the infills IP displacement and, so, of 

their OOP capacity reduction due to interaction. For the same reason, the infill OOP 

stiffness reduction due to IP actions is neglected as well as the consequent Ta elongation 

and the presence of openings.  
 

 
Figure 7.3. Reference approach schematic representation: definition of IP displacement 

demand as a function of the IP PGA and definition of the degraded OOP strength of infills 

corresponding to that IP PGA. 
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                              (a)                              (b) 

Figure 7.4. Reference approach schematic representation: definition of OOP demand (a) and 

matching of OOP capacity and demand (b). 

 

7.3. MODELLING OF THE CASE-STUDY BUILDINGS 

In order to apply the RA described in section 2.2, the RC elements non-linearity is 

modelled using a tri-linear moment-chord rotation backbone provided of the cracking 

point and perfectly plastic after yielding point. These points are determined using a 

section analysis and by applying the dispositions about yielding chord rotation given by 

the Annex A of EC8, part 3 (2005). 

The dynamic properties of the case-study bare frames are reported in Table 6.3 in 

Chapter VI. For instance, the design fundamental periods assessed for the structural 

models with halved inertia primary elements, which enter EC8 formulation for floor 

acceleration spectra, are reported for bare frames. The elastic fundamental periods, 

which enter Vukobratović and Fajfar formulation for floor acceleration spectra, are 

presented for the infilled frames in Table 7.1. 
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As previously stated, two infill layouts are considered. The first one is constituted by 

a double-leaf (thickness: 80+120 mm) URM ‘weak’ infill wall (weak layout, WL), the 

second one is constituted by a one-leaf (thickness: 300 mm) URM ‘strong’ infill wall 

(strong layout, SL). The mechanical properties of these infills are those calculated for 

the masonry wallets tested by Calvi and Bolognini (2001) for the WL and those by Guidi 

et al. (2013) for the SL (Table 7.2). Note that the value of the masonry shear strength of 

Guidi et al.’s specimen was not provided by the Authors and so was set to 0.30 N/mm2 

according to Table 3.4 of EC6.  

 

 

 

 

 

 

Table 7.1. Elastic fundamental periods in the X and Z global directions of the case-study 

infilled buildings. 

 
 Number of storeys of the infilled buildings 

design PGA 2  4  6  8  

WL T1,Z [s] T1,X [s] T1,Z [s] T1,X [s] T1,Z [s] T1,X [s] T1,Z [s] T1,X [s] 

0.05 g 0.107 0.085 0.222 0.181 0.298 0.242 0.414 0.329 

0.15 g 0.107 0.085 0.219 0.177 0.293 0.240 0.408 0.326 

0.25 g 0.107 0.085 0.210 0.178 0.277 0.231 0.386 0.315 

0.35 g 0.104 0.083 0.209 0.176 0.277 0.231 0.384 0.318 

SL         

0.05 g 0.103 0.085 0.215 0.173 0.293 0.233 0.407 0.317 

0.15 g 0.103 0.085 0.211 0.172 0.289 0.231 0.401 0.315 

0.25 g 0.103 0.085 0.206 0.169 0.275 0.224 0.383 0.309 

0.35 g 0.102 0.084 0.205 0.168 0.272 0.226 0.381 0.306 
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Table 7.2. Geometric and mechanical properties of all infill layouts. 

property symbol units    

leaf thickness t [mm] 80 120 300 

height h [mm] 3000 3000 3000 

width w [mm] 4500 4500 4500 

slenderness ratio h/t [-] 37.5 25 10 

total mass  mtot [kg] 864 1296 3240 

shear modulus G [N/mm2] 1039 1039 788 

shear strength τcr [N/mm2] 0.15 0.15 0.30 

vertical direction      

compressive strength fmv [N/mm2] 1.10 1.10 6.00 

elastic modulus Emv [N/mm2] 1873 1873 4312 

horizontal direction      

compressive strength fmh [N/mm2] 1.11 1.11 1.19 

elastic modulus Emh [N/mm2] 991 991 1767 

 

Each infill wall was introduced in the structural model using a single equivalent strut 

whose non-linear behaviour is modelled based on Panagiotakos and Fardis (1996) 

proposal. According to this modelling approach, the slope of the softening branch of the 

force-displacement IP behavior relationship is a fraction α of the infill initial elastic 

stiffness, while the infill residual strength is herein set to zero. In Fardis (1996) it is 

suggested to set α to a value between -1.5% and -5%. For the WL and SL leaves, an α 

value equal to -1.6% and -3.6%, respectively, is assumed. Such values lead to 

predictions of the softening stiffness and ultimate IP displacement in good accordance 

with the experimental evidences shown by Calvi and Bolognini (specimen 2) for α=-

1.6% and by Guidi et al. (specimen URM-U) for α=-3.6%. The IP behaviour 

characteristic points are reported in Table 7.3.   

In the following, each case-study building is identified using an acronym, such as 

XPY, in which X is the number of storeys and Y the design PGA at LS expressed in 

g/100. 
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Table 7.3. Infills’ IP behaviour characteristic points. 

property symbol units    

leaf thickness t [mm] 80 120 300 

cracking force Fcrack [kN] 54.0 81.0 405 

initial stiffness Kcrack [kN/mm] 125 187 355 

cracking displ. dcrack [mm] 0.43 0.43 1.14 

cracking IDR IDRcrack [%] 0.014 0.014 0.038 

maximum force Fmax [kN] 70.0 105 526 

secant stiffness at 

max. 

Kmax [kN/mm] 7.66 11.0 42.4 

displ. at maximum dmax [mm] 9.16 9.54 12.4 

IDR at maximum IDRmax [%] 0.30 0.32 0.41 

collapse 

displacement 

du [mm] 44.3 44.7 53.7 

collapse IDR IDRu [%] 1.48 1.49 1.79 

 

7.4. APPLICATION OF DA AND RA PROCEDURES 

7.4.1. Designer Approach (DA) application and results 

In this section, the results of the application of the procedure reported in section 7.2.1 

are presented and described. The OOP infills’ properties are reported in Table 7.4. 

 

Table 7.4. OOP infill properties for all layouts used for DA application. 

property symbol units    

leaf thickness t [mm] 80 120 300 

OOP strength FRd [kN] 10.6 23.8 810 

PSA capacity PSAc [g] 3.70 5.56 75.8* 

OOP period  Ta [s] 0.14 0.09 0.02 
*: Result of the simple comparison of Equations 1 and 4, clearly without any physical acceptable 

meaning. 

 

First, clearly, for given design PGA and number of storeys, a greater PGAc is 

expected for SL, than for WL, due to the different OOP strength associated with them.  

If the IP/OOP interaction is neglected, as in this case, the first OOP infill collapse is 

always expected at the last storey. In fact, Equation 5 proposed by EC8 predicts 

acceleration demands that monotonically grow up with the height of the barycenter of 

the considered non-structural element above the building base. This also means that, for 

our present purpose, the z/H ratio is fixed for all the case-study buildings with the same 
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number of storeys and that the PGAc associated with them varies only due to the 

variation of the infill layout and of the Ta/T1 ratio. Equation 5 returns acceleration 

demands that, for a given z/H, grows up with the Ta/T1 ratio. So, for a given infill layout 

and for a given number of storeys of the considered building, PGAc decreases for 

increasing Ta/T1 ratios, i.e., for increasing stiffness of the case-study bare frames. For 

this reason, the lower PGAc is expected and registered for infills built along the Z 

direction, i.e., subjected to the OOP acceleration in the X direction, which is the 

buildings’ stiffer direction. However, as shown in Figure 7.5, the PGAc in the two 

directions are very similar, with PGAc,X slightly lower than PGAc,Z. 

 

 
Figure 7.5. Comparison of the OOP PGAc in X and Z directions for all case-study buildings 

obtained by applying the DA. 
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It is observed that the PGA capacity for SL infills is very much higher than that 

calculated for WL infills. This occurs because the OOP strength of SL infills is very 

much higher than that of WL infills, as reported in Table 7.4: this circumstance fully 

neutralize the opposite effect on the assessment of the PGA capacity given by a potential 

higher OOP force demand acting on the stiffer and heavier infills, such as SL infills, 

with respect to less stiff and heavy infills, such as WL infills.  

So, in all cases, PGAc,X is the PGAc of the case-study buildings. Moreover, a greater 

stiffness is expected for buildings designed for a greater PGA. For this reason, for a 

given infill layout and for a given number of storeys, PGAc is expected to decrease for 

increasing design PGA (Figure 7.6). 

 

  
Figure 7.6. Comparison of the OOP PGAc for all case-study buildings obtained by applying the 

DA. Effect of the design PGA. 

 

It is observed, from Figure 7.6, that using DA always returns PGAs associated with 

the first OOP collapse of infills greater than the design PGA at LS. In other words, the 

DA usually makes the practitioner sure that the safety check of infills with respect to the 

OOP collapse is satisfied for common infill layouts with a demand-over-capacity ratio 

at most equal to around 0.30.  

Moreover, for a given infill layout, i.e., for a given Ta, a lower T1 is expected for 

buildings with a lower number of storeys, so a lower PGAc is expected for lower case-

study buildings (Figure 7.7). 
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Figure 7.7. Comparison of the OOP PGAc for all case-study buildings obtained by applying the 

DA. Effect of the number of storeys. 

 

However, these are not general rules, because some Ta/T1-z/H combinations can 

result in lower PGAc values assessed for higher buildings. For example, building 2P35 

with WL infills has greater PGAc than building 4P35 with the same infills. In the first 

case, Ta/T1=0.42 and z/H=0.750, while in the second case Ta/T1=0.36 and z/H=0.875. 

As shown in Figure 7.8, for such Ta/T1-z/H combination, PGAc is expected to be lower 

for 4P35 building. 

 
Figure 7.8. PGAc variation with z/H for fixed Ta/T1 ratios. 
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7.4.2. Reference Approach (RA) application and results 

In this section, the results of the application of the procedure reported in section 7.2.2. 

are presented and described. The OOP infills’ properties are reported in Table 7.5. 

 

Table 7.5. OOP infill properties for all layouts used for RA application. 

property symbol units    

leaf thickness t [mm] 80 120 300 

OOP strength FRd [kN] 14.7 38.5 688 

PSA capacity PSAc [g] 3.58 5.23 32.8* 

OOP period  Ta [s] 0.14 0.09 0.02 

*: Ratio of the OOP strength over the 66% of the infill weight, clearly without any physical 

acceptable meaning. 

 

Note that the application of the RA yields to OOP strength values greater than those 

calculated by means of the Eurocode 6 formulation (in its original form) applied within 

the DA in the case of thin leaves. Mainly, this is due to the fact that Dawe and Seah’s 

model accounts for two-way arching, while Eurocode 6 formulation accounts only for 

vertical arching. However, the strength obtained for the thick leaf is lower than that used 

for the application of the DA. This occurs because the strength model used for DA and 

RA is the same, but in the application of the RA the formulation by Eurocode 6 is 

modified to be adapted to the seismic loading condition. In addition, note that being the 

80 mm- and 120 mm-thick leaves’ strength greater than that obtained by applying 

Eurocode 6 model, the lower PGAc obtained for them by applying the RA are only due 

to the different approach used in determining it, above all for the fact that in the RA the 

IP/OOP interaction is considered. 

First, for a given design PGA and number of storeys, a greater PGAc is expected for 

SL than for WL, due to the different OOP “undamaged” strength associated with them.  

If the IP/OOP interaction is considered, the first OOP collapse is not expected at the 

last storey, given that the maximum strength degradation occurs at low-intermediate 

storeys, where the maximum IDR demand is expected. Moreover, for equal PGA applied 

in the X and Z direction, greater IDRs are expected in the less stiff direction, which is 

the Z direction for all the case-buildings. This means that the first OOP collapse is 

expected for infills built along the Z direction, i.e., for infills subjected to the OOP action 

in X direction. As shown in Figure 7.9, for each case-study building PGAc,X is lower 

than PGAc,Z and, for this reason, is assumed as PGAc of the entire building. 

Due to the IP/OOP interaction, the first infill OOP collapse is observed in the lower 
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part of the building, generally below the building mid-height, along the building less 

stiff direction, as shown in Figure 7.10. In Figure 7.10 it is also observed that the storey 

associated with the first OOP collapse tends to pass, in the 8-storey buildings, from the 

third (WL) to the fifth (SL), most likely due to significant changes in the inelastic 

displacement shapes and collapse mechanism of such buildings at increasing strength 

and stiffness of the infills.  

 

 
Figure 7.9. Comparison of the OOP PGAc in X and Z directions for all case-study buildings 

obtained by applying the RA. 
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Figure 7.10. Frequency distribution for the floor at which the first OOP collapse occurs for all 

case-study buildings by accounting for the IP/OOP interaction. 

 

The parameters that define the OOP demand according to EC8, z/H and Ta/T1, also 

enter Vukobratović and Fajfar’s floor spectrum, even if in a more complex and 

elaborated formulation. So, for simplicity, let us explain some trends observed for PGAc 

variation among the case-study buildings with direct reference to those parameters.  

First, consider that, as shown in Figure 7.10, the first OOP collapse storey, i.e., the 

z/H ratio, is fixed, de facto, for all the case-study buildings with the same number of 

storeys. 

Due to IP/OOP interaction, the PGAc associated with them varies only due to the 

variation of the IDR demand distribution, which depends on the lateral deformability of 
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the structure, and of the Ta/T1 ratio. First, it is shown in Figure 7.11 that for a given infill 

layout and design PGA, PGAc decreases for increasing number of storeys, which is 

expected given the higher lateral deformability of higher buildings. 

 

  
Figure 7.11. Comparison of the OOP PGAc for all case-study buildings obtained by applying 

the RA. Effect of the number of storeys. 

 

For a given infill layout, the variability of the Ta/T1 is extremely limited for different 

design PGAs, due to the prevalent effect of the infills’ stiffness in T1 definition with 

respect to the characteristics of the RC structure. For these reasons, for a given infill 

layout and for a given number of storeys, the PGAc is almost independent on the design 

PGA, as shown in Figure 7.12. 
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Figure 7.12. Comparison of the OOP PGAc for all case-study buildings obtained by applying 

the RA. Effect of the design PGA. 

  

According to the RA results, as shown in Figure 12, thin URM infills characterized 

by low OOP resistance (WL) in mid- and high-rise buildings (from 4 to 8 storey) deigned 

for mid- and high-seismicity zones (from 0.25 g) can be unsafe with respect to the OOP 

collapse. This means that, in these cases, the attainment of LS is avoided in terms of 

structural performance at the design PGA, at which wide OOP collapses of infills are 

expected, instead.  

Moreover, especially for WL, the PGA associated with the first OOP failure 

(PGAc,OOP) can be lower than the PGA associated with the structural failure (PGAc,STR) 

with respect to LS, i.e., the attainment for the first time in an RC element of the structure 

of a chord rotation demand equal to ¾ of the ultimate chord rotation of the element, as 

shown in Figure 7.13. This means that the LS can be attained due to non-structural 

collapse prior than for structural collapse. 
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Figure 7.13. Comparison of the PGAc for all case-study buildings with respect to structural 

failure and non-structural OOP failure with respect to LS. 

 

OOP collapse due to IP/OOP interaction is expected for a maximum IDR demand in 

the Z direction equal to, on average, 0.44% for WL. For SL layout, first OOP collapse 

due to IP/OOP interaction occurs for maximum IDRs ranging between 3% and 6%, 

which are always greater than IDRu. This means that the IP collapse always foreruns the 

OOP collapse. This also means, in the Authors’ opinion, that the OOP safety check for 

SL layout can be neglected, as the attainment of LS due to non-structural failure occurs 

for IP failure first. 

Actually, for a given infill layout, 16 values of IDR corresponding to the first OOP 
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collapse of infills were obtained, one for each case-study building. Based on these 

results, fragility curves relating the probability of OOP failure to the IP IDR for each 

infill layout were obtained and are reported in Figure 7.14.  

The reader is strongly recommended to consider such fragility curves only as a 

concise and immediate summary of the results obtained. Such curves are aimed at 

highlighting the role of IP damage in promoting the OOP collapse of infills, the 

importance of IP/OOP interaction phenomena, and the non-negligibility of such 

phenomena in in assessing the safety with respect to seismic action of URM infills and 

of RC structures. In fact, in the Author opinion, it is not possible, nor correct, to define 

a “threshold IDR” at which the OOP collapse can be considered as expected, even in a 

simplified and code-based framework. As observed in this section, IP/OOP interaction 

is a complex phenomenon, whose effects are influenced by structural dynamic behaviour 

and structural and non-structural non-linearity. In order to assess correctly the seismic 

safety of URM infills, a detailed analysis, accounting for all these effects, is 

recommended. 

 

 
Figure 7.14. Comparison of the fragility curves (continuous lines) in terms of IDR with respect 

to the attainment of LS for OOP failure of infills of all case-study buildings for different infill 

layouts. Dashed vertical lines represent the IDR corresponding to the IP collapse of the infill, 

according to Panagiotakos and Fardis’s model. 

 

As expected, a greater fragility with respect to infills’ OOP collapse is observed for 
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WL with respect to SL. Moreover, it is observed that the probability that the OOP 

collapse occurs for IDR lower than the IP collapse IDR, IDRu, is around one for WL and 

around zero for SL. As already stated, this means that the attainment of LS due to non-

structural failure occurs for OOP failure of thin/weak infills and for IP failure of 

thick/strong infills. 

Each fragility curve contains in its parameters the variability of IDRc associated with 

the variation of the buildings’ number of storeys and design PGA. In other words, one 

can enter such fragility curves only knowing the infill typology and without knowing 

the building number of storeys and design PGA, i.e., by assuming an equal probability 

that the considered building is characterized by a number of storeys equal to 2, 4, 6 or 8 

and by a design PGA equal to 0.05 g, 0.15 g, 0.25 g and 0.35 g. 

 

 

7.4.3. Comparison of DA and RA results 

In Figure 7.15, a comparison between the PGAc predicted using the RA and the one 

obtained from the DA for each case-study building and for each infill layout is reported. 

As expected, PGAc is highly overestimated using the DA. The PGAc for WL obtained 

using the DA is, on average, 4.5 times the one obtained using the RA, while the PGAc 

for SL obtained using the DA is, on average, 35 times the one obtained using the RA. 

For a given infill layout, 16 values of PGA corresponding to the first OOP collapse 

of infills were obtained using both the DA and the RA, one for each case-study building. 

Based on these results, fragility curves relating the probability of OOP failure to the 

OOP PGA for each infill layout were obtained separately with reference to DA and RA 

results. These curves are reported in Figure 7.16. The fragility curve for SL obtained 

using the DA is not reported, given the high and physically unacceptable values of the 

assessed collapse PGAs. 
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Figure 7.15. Comparison of the OOP PGAc for all case-study buildings obtained by applying 

the DA and RA. 
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Figure 7.16. Comparison of the fragility curves in terms of PGA, obtained by using the DA and 

RA, with respect to the attainment of LS for OOP failure of infills of all case-study buildings 

for different infill layouts. 

 

The median collapse PGA is equal to 0.29 g for WL, to 0.91 g for SL. As expected, 

a greater fragility with respect to infills’ OOP collapse is observed if the RA is applied. 

A summary of all PGAc assessed using different approaches is reported in Table 7.6, at 

the end of next section. 

Also in this case, each fragility curve contains in its parameters the variability of 

PGAc associated with the variation of the buildings’ number of storeys and design PGA. 

In other words, one can enter such fragility curves only knowing the infill typology and 

without knowing the building number of storeys and design PGA, i.e., by assuming an 

equal probability that the considered building is characterized by a number of storeys 

equal to 2, 4, 6 or 8 and by a design PGA equal to 0.05 g, 0.15 g, 0.25 g and 0.35 g. 

 

7.5. OOP SAFETY CHECK OF INFILLS IN A LINEAR ELASTIC 

FRAMEWORK 

In this section, the PGAc is assessed by applying an elastic RSA on the bare frame 

models of all case-study buildings. The OOP acceleration demand on infills is calculated 

by applying EC8 floor spectrum, while infills’ OOP capacity is calculated using Dawe 

and Seah’s model and the strength degradation curve proposed in Equation 6, in which 
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the IDR resulting from the RSA are introduced. This approach will be called Suggested 

Designer Approach (SDA). The main aim of this section is evaluating if the simplest 

and most common design procedure of RC buildings can be used to predict an accurate 

value of PGAc if, at least, the IP/OOP interaction is considered. SL infills will be 

neglected, as it was demonstrated in the previous section that the OOP safety check for 

them can be omitted. 

In this case, a fundamental role is played by the displacement distribution, and the 

consequent IDR distribution, along the building height resulting from the structural 

analysis. In fact, the OOP strength reduction factor is calculated based on such IDR 

distribution.  

First, let us investigate this issue: is the elastic distribution of IDRs along the building 

height appropriate to carry out infills’ OOP safety check? Considering that the OOP 

safety check is not necessary for SL, as shown in the previous section, let us consider 

the elastic distribution of IDRs along the WL case-study buildings’ height obtained by 

using a RSA with Response Spectrum anchored at the PGAc evaluated, for each case-

study building, using the RA. Moreover, in Figure 7.17 the elastic IDR distribution is 

compared to the one obtained, at the same PGA value, using the RA. 

 



Chapter VII – OOP safety assessment of URM infills in a non-linear static framework 291 

 

 

 

 
Figure 7.17. IDR distribution in Z direction for all case-study buildings with WL infills 

obtained by means of RSA (red line) and non-linear static analysis (black line) for 

PGA=PGAc,RA. 

 

As shown in Figure 7.17, for mid- and high-rise buildings, the OOP strength 

reduction factor is underestimated if it is calculated based on the elastic distribution of 

IDRs obtained by applying the RSA on bare frame models. This unexpected result is 

strictly connected to the non-linear response of the infilled frame assessed with the 
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application of RA. In fact, except for the 2-storey case-study buildings, the top 

displacement demand at PGAc is lower for the elastic bare frame model than for the 

infilled model, due to the non-negligible inelastic demand acting on it at PGAc, as 

schematically shown in Figure 7.18. 

 

 
Figure 7.18. Top displacement demand at PGA=PGAc,RA for the infilled and bare frame 

building. The static pushover of the infilled building is reported in blue, the SPO2IDA for the 

same building in green. The incremental response of the elastic bare frame is reported in black 

(schematic representation). 

 

The non-linear IDR distribution cannot be reproduced using elastic analyses on the 

bare frame models, which are destined to produce predictions of PGAc, which are herein 

called PGAc,SDA, greater than those obtained using the RA. In other words, a safety-check 

procedure not accounting for the inelastic response of the structure is not able to produce 

accurate values of PGAc, for which the values obtained using the RA are assumed as 

benchmark in this work. The practitioner should be aware of this circumstance. 

Considering the observations discussed above, accounting for IP/OOP interaction, even 

if in a linear-elastic framework, is necessary to not overestimate PGAc as shown in the 

comparison of DA and RA results, even if it is not sufficient to obtain an accurate 

prediction of PGAc. In fact, such prediction cannot be other than un-conservative as long 
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as the OOP safety check of infills is carried out in a linear elastic framework. 

The values of PGAc obtained by using the SDA for WL are compared to those 

obtained by means of DA and RA in Figure 7.19. 

 

 

 
Figure 7.19. Comparison of the OOP PGAc for all case-study buildings obtained by applying 

the DA, RA and SDA. 

 

As already stated, accounting for IP/OOP interaction produces a reduction of PGAc 

with respect to those predicted using the DA. However, PGAc assessed using the SDA 

are generally greater than the benchmark ones assessed using the RA: the ratio between 

the PGAc,RA and the PGAc,SDA for each case-study building  ranges from 0.52 and 1.1 
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and is equal, on average, to 0.79. 

In Table 7.6, the PGAc assessed using the Designer Approach, the Reference 

Approach and the Suggested Designer Approach are reported for all case-study 

buildings. 

 

Table 7.6. PGA at first OOP infill collapse for all case-study buildings assessed by means of 

the Designer Approach (DA), Reference Approach (RA) and Suggested Designer Approach 

(SDA). 

 First OOP collapse PGA [g]  

 WL SL 

case-study building DA RA SDA DA RA 

2P05 1.265 0.333 0.305 30.8 1.359 

2P15 1.265 0.334 0.304 30.7 1.358 

2P25 1.265 0.334 0.304 30.7 1.367 

2P35 1.189 0.397 0.406 30.5 1.411 

4P05 1.311 0.324 0.384 30.9 1.234 

4P15 1.248 0.320 0.381 30.9 1.278 

4P25 1.209 0.319 0.355 30.8 1.273 

4P35 1.152 0.300 0.364 30.6 1.291 

6P05 1.308 0.282 0.346 31.6 1.253 

6P15 1.298 0.260 0.396 31.3 1.250 

6P25 1.282 0.278 0.410 31.1 1.276 

6P35 1.228 0.280 0.446 30.8 1.228 

8P05 1.354 0.220 0.368 33.6 1.135 

8P15 1.346 0.202 0.368 33.6 1.177 

8P25 1.335 0.222 0.406 33.6 1.210 

8P35 1.287 0.224 0.427 33.2 1.190 

 

7.6. WHEN IS THE OOP SAFETY CHECK OF INFILLS 

NECESSARY? 

As shown in section 7.4, SL infills, which are characterized by high compressive 

strength of masonry and low slenderness ratio of the panel, are expected to collapse for 

IP failure prior to the OOP failure. Let us call PGAc,OOP the PGA corresponding to the 

first OOP collapse and PGAc,IP the PGA corresponding to the first IP collapse, both 

calculated in a non-linear static framework.  

The main aim of this section is defining, for each case-study building, a sort of “limit 

state” surface that can be used to know a priori, based only on the values of h/t and fm, 

if each leaf of the infill walls of the building must be verified against the OOP collapse 

(PGAc,OOP/PGAc,IP<1) or if the IP collapse foreruns the OOP collapse 
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(PGAc,OOP/PGAc,IP>1) and, so, the OOP safety check is not necessary, as the attainment 

of LS due to non-structural failure occurs for IP failure of infills.  

In this section, the application of the RA is carried out on all case-study buildings 

considering 42 different infill layouts generated by combining 7 different values of 

slenderness ratio (10, 12, 15, 20, 25, 30, 37.5) and 6 different values of masonry 

compressive strength in the vertical direction (1, 2, 3, 4, 5 and 6 N/mm2). Among the 42 

layout considered, 6 are associated with a single-leaf panel (h/t=10) while the others are 

constituted by a two-leaf panel constituted by a leaf with h/t equal to 12, 15, 20, 25, 30 

or 37.5 plus a second leaf with slenderness equal to 37.5. For the double-leaf layouts, 

both leaves are provided of identical mechanical properties and the OOP strength is 

calculated by means of Dawe and Seah’s model, while for single-leaf layouts the OOP 

strength is calculated by means of Eurocode 6 formulation adapted to the seismic 

loading condition. 

Infill walls were IP-modelled by applying Panagiotakos and Fardis’s model. Some 

assumptions have been made to define the IP and OOP behaviour of each infill layout.  

 

i. Based on Calvi and Bolognini and Guidi et al. experimental values of the 

compressive strength in the horizontal direction, which is equal to around 1 

N/mm2 for both Authors, independently on masonry compressive strength in the 

vertical direction, the same value was adopted for all infill layouts considered 

in this section; 

ii. The elastic modulus of masonry in both horizontal and vertical direction has 

been calculated as 1000 times the masonry compressive strength in that 

direction, based on EC6 relationship proposed in section 3.7.2; 

iii. The shear modulus of masonry has been assumed as equal to 0.4 times the elastic 

modulus calculated for the horizontal direction, in accordance with EC6 

recommendation reported in section 3.7.3; 

iv. Masonry tensile strength has been determined as a function of masonry vertical 

compressive strength by means of the linear interpolation of the τcr-fm couples 

defined for Calvi and Bolognini and for Guidi et al.; 

v. For the definition of the IP backbone, the softening stiffness ratio, p, has been 

determined as a function of the panel slenderness by means of a linear 

interpolation of the p-h/t couples defined for Calvi and Bolognini and for Guidi 

et al.. 
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For each case-study building, the PGAc,OOP/PGAc,IP ratio has been calculated for all 

42 infill layouts. As shown in Figure 7.20, the surface obtained by a linear least-square 

regression in the logarithmic space relating the considered h/t-fm couples to the value of 

the PGAc,OOP/PGAc,IP ratio can be represented in the h/t-fm-PGAc,OOP/PGAc,IP space. The 

intersection of this surface with the PGAc,OOP/PGAc,IP=1 plan is a curve whose projection 

on the h/t-fm plan represents the “limit state” curve separating the h/t-fm couples for 

which the IP collapse foreruns the OOP collapse from those for which the OOP collapse 

foreruns the IP collapse. 

 

 
Figure 7.20. Conceptual example of predicted PGAc,OOP/PGAc,IP ratio surface (dark grey) with 

limit state curve (blue) separating the h/t-fm couples for which the IP collapse foreruns the OOP 

collapse from those for which the OOP collapse foreruns the IP collapse. 

 

In Figures 7.21-7.24, for each case-study building, the results of these calculations 

are reported in the h/t-fm plan. Each h/t-fm couple is represented by a point whose color 

indicates a specific condition: 

 

 Blue points are associated with h/t-fm couples for which PGAc,OOP<PGAc,IP; 

 Green points represent h/t-fm couples with PGAc,OOP>PGAc,IP and PGAc,OOP 

greater than the design PGA at LS, i.e., h/t-fm couples for which the OOP safety 

check is necessary but likely to be satisfied; 

 Red points represent couples for which the OOP safety check is not satisfied, as 

PGAc,OOP is lower than the design PGA at LS. 
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For each case-study building, the “limit state” curve is represented in the h/t-fm curve 

in blue. In addition, the curve corresponding to the intersection of the PGAc,OOP/design 

PGA surface with the PGAc,OOP/design PGA=1 plan is reported in dark red. Such curve 

separates h/t-fm couples for which the OOP safety check is satisfied from those for which 

the OOP safety check is not satisfied.  

 

  

  
Figure 7.21. OOP safety domains in terms of slenderness ratio and masonry compressive 

strength obtained for the 2-storey case study buildings by applying the RA.  
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Figure 7.22. OOP safety domains in terms of slenderness ratio and masonry compressive 

strength obtained for the 4-storey case study buildings by applying the RA.  
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Figure 7.23. OOP safety domains in terms of slenderness ratio and masonry compressive 

strength obtained for the 6-storey case study buildings by applying the RA.  
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Figure 7.24. OOP safety domains in terms of slenderness ratio and masonry compressive 

strength obtained for the 8-storey case study buildings by applying the RA.  

 

It is shown in Figures 7.21-7.24 that for slenderness ratios equal to or lower than 15 

and masonry compressive strength in the vertical direction equal to at least 3 N/mm2 the 

OOP safety check of URM infills can be neglected independently on the number of 

floors of the building and on its design PGA at LS, because the infills’ IP failure foreruns 

their OOP collapse.  

Note that, according to the formulation reported in section 3.6.1.2 of Eurocode 6, 

such a masonry compressive strength is attained for a brick compressive strength in the 

vertical direction and for a mortar compressive strength both equal to at least 5 N/mm2. 

More in general, the minimum masonry compressive strength, fm,min, that grants that the 

IP failure foreruns the OOP collapse can be expressed as a function of the h/t ratio, 

consistently with the blue curves reported in Figures 7.21-7.24 and on the side of safety, 

according to Equation 7, as also shown in Figure 7.25.  
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fm,min[N mm2⁄ ] = 0.7(h t⁄ − 10) + 1.5 (7) 

 
Figure 7.25. Limit state curves for all case-study buildings and their linear safety-sided 

simplification. The shaded area covers all the OOP safe h/t-fm couples.  

 

In addition, from Figures 7.21-7.24, it is observed that, independently on the number 

of storeys of the considered building, for low PGA demand at LS only slender and weak 

URM infills are going to collapse. For buildings in high-seismicity zones, widespread 

OOP collapses are expected for infills with slenderness ratio equal to or greater than 20 

and masonry compressive strength lower than 2 N/mm2 and for infills with slenderness 

ratio equal to or greater than 30 independently on their masonry compressive strength. 

 

7.7. CONCLUSIVE REMARKS 

In this Chapter, 16 case-study buildings designed according to EC8, different for 

number of storeys (2, 4, 6 and 8) and design PGA (0.05 g, 0.15 g, 0.25 g and 0.35 g) are 

considered as uniformly infilled by two different infill layouts, a two-leaf “weak” infill 

layout (WL) and a one-leaf “strong” infill layout (SL). On these case-study buildings, 

the PGA at which the first OOP infill collapse occurs (PGAc) has been evaluated by 

means of a “Designer Approach”, which does not account for the IP/OOP interaction 

and for the structural non-linearity, and by means of a “Reference Approach”, which 

accounts for the IP/OOP interaction and for the structural non-linearity in a non-linear 

static framework.  
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The collapse PGAs obtained by applying the DA are similar in X and Z directions. 

However, panels built along Z direction, i.e., subjected to the OOP action in the building 

stiffer direction, are slightly more vulnerable than those aligned along X direction. A 

lower PGAc is expected for stiffer buildings, i.e. for low-rise buildings and/or buildings 

designed for a higher PGA at LS. The first OOP collapse is always expected at the 

building last storey. The PGAc is always greater than the design PGA of the building at 

LS. 

Due to IP/OOP interaction effects, the collapse PGAs obtained by applying the RA 

are significantly lower for panels aligned along the building less stiff direction with 

respect to those built along the building stiffer direction. The PGAc significantly 

decreases at increasing number of storeys of the considered building, while the effects 

of the different design PGA on the PGAc are quite negligible. The first OOP collapse is 

expected at the second storey for 2- and 4-storeys building while it is expected between 

the third and the fifth storey for 6- and 8-storeys buildings. By comparing the PGAc to 

the design PGA at LS, URM infills characterized by low/intermediate OOP resistance 

(WL and ML) in mid- and high-rise buildings (from 4 to 8 storey) deigned for mid- and 

high-seismicity zones (from 0.25 g) can be unsafe with respect to the OOP collapse. 

This means that, in these cases, the attainment of LS is avoided in terms of structural 

performance at the design PGA, at which wide OOP collapses of infills are expected, 

instead.  

Based on the RA results, fragility curves relating the probability of OOP collapse to 

both the PGA acting in the OOP direction and the maximum IDR attained in the IP 

direction assumed as demand parameters are shown. Median PGAc calculated by 

applying the RA are equal to 0.29 g and 0.91 g for WL and SL, respectively. Such values 

are equal to 0.23 and 0.03 times the corresponding median PGAc obtained by applying 

the DA. Moreover, it is shown that the probability of OOP collapse for an IP IDR 

demand lower than the IDR corresponding to the infill IP collapse is around 0 for SL 

infills. In other words, for strong and robust infills, the IP collapse foreruns the OOP 

collapse and the OOP safety check is not necessary, given that LS is attained, 

considering non-structural elements, for infills’ IP failure first. 

It was shown that carrying out the OOP safety check of infills in a linear elastic 

framework and considering IP/OOP interaction produces PGAc lower than those 

obtained by applying the DA but greater than those obtained by using the RA. In other 

words, structural non-linearity has a significant influence, which cannot be neglected, in 

the definition of the IP demand at infills OOP collapse.  
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Finally, for all case-study buildings, a wide range of 42 infill layouts, different for 

slenderness and masonry compressive strength, is considered and a “limit state” curve 

defining the h/t-fm couples for which the IP collapse foreruns the OOP collapse is 

reported. Based on these results, infills with slenderness equal to or lower than 15 and 

masonry compressive strength equal to or greater than 3 N/mm2 are safe with respect to 

the OOP collapse, as it is forerun by IP failure, and the OOP safety check for them can 

be neglected. 

The trends and main concepts above-highlighted will be checked in the next Chapter, 

dedicated to non-linear dynamic analyses on the case-study buildings. 
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Chapter VIII 

Seismic assessment of infilled RC buildings in a 

non-linear dynamic framework accounting for the 

in-plane/out-of-plane interaction 

8.1. INTRODUCTION 

In this chapter, the 16 RC case-study infilled buildings presented in Chapter VI and 

different for number of storeys (2, 4, 6 and 8) and for the design Peak Ground 

Acceleration (0.05, 0.15, 0.25 and 0.35 g) at Life Safety Limit State (LS) are examined. 

Three different infill layouts are considered:  

 

i. a double leaf ‘weak’ infill layout constituted by an 80 mm-thick leaf and by 

a 120 mm-thick leaf (WL);  

ii. a double leaf ‘intermediate’ infill layout constituted by an 120 mm-thick leaf 

and by a 200 mm-thick leaf (ML); 

iii. a one leaf ‘strong’ infill layout constituted by a 300 mm-thick leaf (SL). 

 

A total of 48 case-study buildings is examined by means of non-linear incremental 

dynamic analyses (IDA, Vamvatsikos and Cornell 2002). For each case study building, 

two different models are analyzed: 

i. a W/ model, in which the variation of the IP and OOP backbones due to the 

interaction during structural analyses is implemented, together with the 
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infill removal at the attainment of the IP or of the OOP collapse 

displacement; 

ii. a W/O model, in which the IP and OOP backbones do not vary during the 

analyses and only the infill removal at the attainment of the IP or of the OOP 

collapse displacement is implemented. 

 

The IP behaviour of URM infills is modelled according to Panagiotakos and Fardis 

(1996). The OOP behaviour of URM infills is modelled according to the model proposed 

in Chapter IV. The OOP and IP behaviour variation due to the IP and OOP displacement 

demands is modelled according to the model proposed in Chapter IV. The non-linear 

time history analyses are carried out by using the OpenSees code (McKenna et al. 2000). 

The main aims of this chapter are: 

 

i. the assessment of the global seismic response of the case-study buildings 

accounting and not accounting for the IP/OOP interaction effects; 

ii. the assessment of the IDR and of the PGA associated with the first OOP 

collapse of infills accounting and not accounting for the IP/OOP interaction; 

iii. the assessment of the OOP effective stiffness and behaviour factor of URM 

infills that can be used for their seismic assessment in a simplified linear 

elastic framework. 

 

In section 8.2, the modelling strategy adopted to implement in OpenSees the IP/OOP 

interaction model proposed in Chapter IV is described. 

In section 8.3, the modelling of the case-study buildings is presented. 

In section 8.4, the procedure of the non-linear time-history analysis is presented 

together with the selected records. 

In section 8.5, the analyses’ results in terms of global response of the case-study 

buildings are presented and discussed.  

In section 8.6, the analyses’ results in terms of IDR and PGA corresponding to the 

first OOP collapse are presented. A comparison with the same results obtained in a non-

linear static framework in the previous Chapter is discussed. 

In section 8.7, the analyses’ results in terms of infills’ OOP effective stiffness and 

behaviour factor are presented and discussed. 
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8.2. IP/OOP INTERACTION MODELLING STRATEGY 

In Chapter IV, an OOP model and an IP/OOP interaction model has been presented. 

The proposed model has been introduced in OpenSees through the modelling strategy 

described in this section. The proposed modelling strategy has been conceived to: 

 

i. reproduce the IP and OOP behaviour of infills;  

ii. take into account the IP/OOP interaction effects in terms of strength, stiffness 

and displacement capacity variation during the structural analyses: 

iii. allow the user to model IP and OOP behaviour of infills – and the corresponding 

degrading rules – adopting any trilinear material model as well as any hysteretic 

rule. 

 

Remember that the IP behaviour of infills is herein modelled according to 

Panagiotakos and Fardis (1996)’s model. The OOP behaviour is  modelled by means of 

a trilinear backbone plastic after the attainment of peak load and up to the attainment of 

the conventional OOP collapse displacement. As observed in Chapters III and IV, after 

the OOP peak load displacement, IP-undamaged infills show, actually, a softening 

branch, while IP-damaged infills show a plastic or a softening behaviour. Modelling 

both behaviours can produce physically unexplainable issues, such as a sudden increase 

in the OOP load bearing capacity in passing from the condition of undamaged infill to 

the condition of IP damaged infill, if the trespassing occurs at high OOP displacement 

demand, as shown in Figure 8.1.  

For this reason, given the impossibility of perfectly reproducing experimental 

evidence without the risk of occurrence of physically unexplainable issues, the OOP 

behaviour of infills is modelled as plastic after peak-load displacement for both 

undamaged and IP-damaged infills, as was also done by Kadysiewski and Mosalam 

(2009). Consider that the conventional OOP collapse displacement is set to the 20% 

strength degradation after the attainment of peak load. Such a limited reduction is 

consistent with the adoption of a plastic behaviour after maximum. 
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Figure 8.1. Potential physically unexplainable issues deriving from modelling a degrading 

behaviour for the IP-undamaged infill and a plastic behaviour for the IP-damaged infill. 

 

First, the OOP force-displacement behaviour relationship should be defined for the 

undamaged panel. Given the infill geometric and mechanical properties, an OOP 

trilinear backbone can be defined through the semi-empirical approach described in 

Chapter IV. Hereafter, the above-defined OOP behaviour relationship will be referred 

to as the IDR=0 backbone. Then, n IDRs (IDRi, with i=1, …, n) should be set as discrete 

IP damage thresholds. Through the degradation-modelling relationships, it is possible to 

define n OOP backbones, corresponding to the n IDRs: each one of these curves, which 

will be mentioned hereafter as IDR=IDRi backbones, represents the OOP behaviour that 

the infill will exhibit from the moment when the IP IDR demand exceeds the damage 

threshold represented by IDRi.  

Note that the degradation relationships are used by applying the necessary limitations 

to prevent some issues with no mechanical reason that can occur for low or high values 

of the IDR: e.g., a secant stiffness at peak load greater than the initial one or a cracking 

load higher than the peak one. 

As shown in Figure 8.2, each infill should be represented by a diagonal element 

representing the IP behaviour of the infill. Each of these elements is connected through 

a pinned joint to the surrounding frame and is provided with a central node that is 

connected to a second central node in which the mass participating in the first OOP 

vibration mode of the infill is lumped which is assumed equal to 66% of the panel total 

mass. Note that the infill’s OOP displacement is defined as the OOP displacement of the 
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mid-span mass node with respect to the chord that connects the bottom and top frames’ 

nodes. The connection between these central nodes is ensured by 2n+1 plastic hinges. 

First, a plastic hinge carrying the IDR=0 backbone must be defined (in the following 

analyses, a Hysteretic Material is used for this). Then, for each IDR=IDRi backbone, a 

couple of plastic hinges must be defined: the first one, which will be called the “i-th real 

plastic hinge”, models the OOP behaviour defined by the considered IDRi backbone; the 

second one, which will be called the “i-th auxiliary plastic hinge”, behaves according to 

the force-displacement relationship defined by the IDR=IDRi backbone mirrored with 

respect to the displacements axis. This goal can be achieved in OpenSees by defining 

the “auxiliary” backbones through a Parallel Material that is referred, with scale factor 

equal to -1, to the constitutive relationship used to define the corresponding “real” 

backbone. This means that the OOP force for a given OOP displacement in the i-th real 

plastic hinge is always equal and opposite to the OOP force at the same displacement in 

the i-th auxiliary plastic hinge. This also means that as long as all plastic hinges are part 

of the infill model, the panel OOP behaviour is the one defined by the IDR=0 backbone, 

while the effects of the other plastic hinges are mutually neutralizing. Based on the 

experimental data provided by some authors, such as Hak et al. (2014) and Furtado et 

al. (2016), the β coefficient that governs the stiffness cyclic degradation of the Hysteretic 

Material used to model the OOP backbones seems to be included between 0.5 and 0.8. 

Note that in spite of the suggestion herein provided about the material models for the 

IP/OOP backbones, an interesting difference between the proposed modelling approach 

and the ones described in Chapter I is the possibility for the user to model the IP and 

OOP infills’ behaviour (both non-degraded and degraded) with any desired trilinear 

material model as well as with any hysteretic rule. 

To account for the degradation of infills’ OOP strength, stiffness and ductility 

capacity, an integral part of the proposed model is a routine that removes from the 

structural model the IDRi-1 real plastic hinge and the IDRi auxiliary plastic hinge when 

the IP IDR exceeds the previously defined damage threshold represented by IDRi. In 

this way, as soon as the IDR exceeds IDRi, and as long as the IDR is lower than the 

successive IP damage threshold IDRi+1, the panel OOP behaviour is defined by the 

IDR=IDRi backbone “contained” in the ith real plastic hinge, while the effects of the 

remaining plastic hinges are still mutually neutralizing.  

In other words, once a certain IP displacement is attained, the OOP behaviour is 

definitively modified. An explanatory simplified version of the routine aimed at passing 

from the IDRi to the IDRi+1 backbone is shown in Figure 8.3 and reproduced in a sort of 
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graphical workflow in Figure 8.4. As already stated, the above-mentioned backbone 

removal routine allows the user to implement in the structural model the OOP response 

parameter variation due to IP action. Moreover, similar to what has been done previously 

by different authors and first by Mosalam and Günay (2015), a second and different 

removal routine was implemented: if the OOP displacement exceeds the ultimate 

displacement associated with the IDR=IDRi backbone, all the elements representative 

of the infill wall are removed from the structural model. 

 

 
Figure 8.2. Graphical representation of the proposed modelling strategy. 
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Figure 8.3. Simplified schema of the routine aimed at trespassing from one backbone to 

another. 

 

 

(a) Consider the OOP real backbone for the IP-undamaged infill and introduce it in the 

structural model (blue continuous line, backbone 1) 
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(b) Consider the OOP real backbone for the IP-damaged infill at IP drift equal to 0.2% (for 

example) and introduce it in the structural model (blue dotted line, backbone 2). 

 

 

(c) Consider the OOP backbone for the IP-damaged infill at IP drift equal to 0.2% mirrored 

with respect to the horizontal axis and introduce it in the structural model. This is the 

auxiliary backbone 2 (red dotted line). 
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(d) At this stage, the two backbones at IDR equal to 0.2%, the real and the auxiliary one, are 

mutually neutralizing (grey dashed lines). 

 

 

(e) At this stage, the OOP behaviour of the infill is determined by the active backbone 

associated with IDR=0, i.e., the real backbone of the IP-undamaged infill (backbone 1, blue 

continuous line). 
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(f) At each step of the structural analysis, check if IDR is lower or greater than 0.2%. In the 

least case, remove backbone 1… 

 

(g) … and remove also the auxiliary backbone 2. 
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(h) The active backbone is backbone 2 (blue dotted line). The OOP behaviour of the infill is 

determined by it. 

Figure 8.4. Modelling strategy workflow. 

 

The IP strength and stiffness degradation can be controlled through the ratio between 

the OOP displacement demand and the OOP displacement capacity of the undamaged 

panel. It can be modelled, together with the entire infill removal due to the attainment 

of the IP ultimate displacement, through a procedure that is very similar the one 

explained in the previous lines for the modelling of the infill OOP behaviour. Moreover, 

the proposed model can be easily modified by modelling each infill wall through a 

couple of diagonal non-interacting no-tension struts: only one of these struts should be 

provided with a central mass node that accounts for the OOP behaviour of the infill. 

Additionally, in this case, the user should assume the OOP displacement of that central 

node as the parameter that controls the IP damage and remove, when the generic damage 

threshold dOOP,i is exceeded, the corresponding IP real and auxiliary plastic hinges from 

both elements. In the structural models herein analyzed, a couple of no-tension trusses 

is used to model each infill leaf. 

The “mutually-neutralizing backbones” artifice herein described allows the user to 

model the IP and OOP behaviours of infills, as well as strength, stiffness and 

displacement capacity reduction due to the IP-OOP interaction. Clearly, the proposed 

implementation strategy addresses the current tools and routines available in the 

OpenSees code, which do not allow reproduction of the continuous strength, stiffness 

and displacement capacity degradation rule by updating elements’ and materials’ 
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properties step-by-step during analyses. For this reason, the passage from one backbone 

to another cannot be perfectly smooth - even if it can be as smoother as the number of 

modelled backbones increases, especially at low IDR values for the OOP infill 

behaviour. This issue can be solved, for example, through the implementation in the 

OpenSees code of interaction domains. 

 

8.3. MODELLING OF THE CASE-STUDY BUILDINGS 

The RC elements’ non-linearity is modelled in OpenSees by using 

ModIMKPeakOriented Material with response parameters determined according to 

Haselton et al. (2007) with introduction of the cracking point. This moment-chord 

rotation empirical model was calibrated on a wide database collecting the experimental 

response of RC members under cyclic loading. The empirical nature of the model, 

together with the great number of experimental tests considered, allows reproducing 

accurately and reliably the softening behaviour of RC elements as well as strength and 

stiffness hysteretic degradation due to cyclic loading. These issues are extremely 

important in predicting RC buildings seismic response through incremental dynamic 

analyses, especially for structures controlled by ductile response up to ultimate condition 

as for frames designed according to Eurocode 8 (2004). For all these reasons, together 

with the reliability of Haselton et al.’s model in reproducing the post-peak behaviour of 

RC members, such approach allows the observation of the dynamic instability 

phenomenon in RC structures more straightforwardly than could be done using fiber-

section based structural models. Note that dynamic instability is a clear and immediate 

indicator of the ultimate seismic performance level that can be expected for “ductile-

controlled” RC structures as in the new case-study buildings it is observed, sometimes, 

only accounting for IP-OOP degradation in infills (i.e., only for W/ models). Even if 

limited only to some cases, this allows highlighting the influence of IP/OOP interaction 

on the seismic response of RC structures as well as the importance of considering the 

IP/OOP interaction phenomena in structural analyses of RC buildings, even if designed 

addressing seismic provisions of modern technical codes such as Eurocodes, to not incur 

in a potentially highly detrimental overestimation of such buildings’ seismic 

performance.  

As previously stated, three infill layout are considered. The first one is constituted 

by a double-leaf (thickness: 80+120 mm) URM ‘weak’ infill wall (weak layout, WL), 

the second one is constituted by a two-leaf (thickness: 120+200 mm) URM 
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‘intermediate’ infill wall (intermediate layout, ML), the third one is constituted by a one-

leaf (thickness: 300 mm) URM ‘strong’ infill wall (strong layout, SL). The mechanical 

properties of these infills are those calculated for the masonry wallets tested by Calvi 

and Bolognini for the WL and ML and those by Guidi et al. for the SL (Table 8.1). Note 

that the value of the masonry shear strength of Guidi et al.’s specimen was not provided 

by the Authors and so was set to 0.30 N/mm2 according to Table 3.4 of Eurocode 6 

(2005).  

 

Table 8.1. Infills’ geometric and masonry mechanical properties. 

property symbol units     

leaf thickness t [mm] 80 120 200 300 

height h [mm] 3000 3000 3000 3000 

width w [mm] 4500 4500 4500 4500 

slenderness ratio h/t [-] 37.5 25 15 10 

total mass  mtot [kg] 864 1296 2160 3240 

shear modulus G [N/mm2] 1039 1039 1039 788 

shear strength τcr [N/mm2] 0.15 0.15 0.15 0.30 

vertical direction       

compressive 

strength 

fmv [N/mm2] 1.10 1.10 1.10 6.00 

elastic modulus Emv [N/mm2] 1873 1873 1873 4312 

horizontal direction      

compressive 

strength 

fmh [N/mm2] 1.11 1.11 1.11 1.19 

elastic modulus Emh [N/mm2] 991 991 991 1767 

 

Each infill wall was introduced in the structural model using a single equivalent strut 

whose non-linear behaviour is modelled based on Panagiotakos and Fardis (1996) 

proposal. According to this modelling approach, the slope of the softening branch of the 

force-displacement IP behavior relationship is a fraction α of the infill initial elastic 

stiffness, while the infill residual strength is herein set to zero. In Fardis (1996) it is 

suggested to set α to a value between -1.5% and -5%. For the 80-, 120- and 200-mm 

thick and for the 300-mm thick leaves, it is assumed an α value equal to -1.6% and -

3.6%, respectively. Such values lead to predictions of the softening stiffness and 

ultimate IP displacement in good accordance with the experimental evidences shown by 

Calvi and Bolognini (specimen 2) for α=-1.6% and by Guidi et al. (specimen URM-U) 

for α=-3.6%. The IP behaviour characteristic points are reported in Table 8.2.   
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Table 8.2. Infills’ IP behaviour characteristic points. 

property symbol units     

leaf thickness t [mm] 80 120 200 300 

cracking force Fcrack [kN] 54.0 81.0 135 405 

initial stiffness Kcrack [kN/mm] 125 187 312 355 

cracking displ. dcrack [mm] 0.43 0.43 0.43 1.14 

cracking IDR IDRcrack [%] 0.014 0.014 0.014 0.038 

maximum force Fmax [kN] 70.0 105 175 526 

secant stiffness at max. Kmax [kN/mm] 7.66 11.0 17.5 42.4 

displ. at maximum dmax [mm] 9.16 9.54 10.0 12.4 

IDR at maximum IDRmax [%] 0.30 0.32 0.33 0.41 

collapse displacement du [mm] 44.3 44.7 45.2 53.7 

collapse IDR IDRu [%] 1.48 1.49 1.51 1.79 

 

The OOP behaviour of IP-undamaged infills has been modelled by using the lumped-

plasticity empirical-based modelling strategy proposed in Chapter IV.  

The OOP behaviour characteristic points of the IP-undamaged case-study infill 

leaves are reported in Table 8.3. Note that the mass participating to the first OOP 

vibration mode of each leaf has been set equal to 66% of the infill total mass.  

The dynamic properties of the case-study bare frames are reported in Table 6.3 in 

Chapter VI. The elastic fundamental periods are presented for the infilled frames in 

Table 8.4. 

 

Table 8.3. OOP-undamaged infills’ OOP behaviour characteristic points. 

property symbol units     

leaf thickness t [mm] 80 120 200 300 

cracking force Fcrack [kN] 18.0 39.5 68.4 130 

initial stiffness Kcrack [kN/mm] 1.20 4.06 18.8 146 

cracking displ. dcrack [mm] 14.9 9.73 3.64 0.89 

maximum force Fmax [kN] 20.0 43.9 122.7 688 

secant stiffness at max. Kmax [kN/mm] 0.48 1.63 7.53 58.5 

displ. at maximum dmax [mm] 41.5 27.0 16.3 11.8 

collapse displacement du [mm] 58.1 37.8 60.0 90.0 

initial ductility μund [-] 1.40 1.40 3.68 7.65 

OOP participating mass ma [kg] 570 855 1426 2138 

OOP elastic period Ta [s] 0.137 0.091 0.055 0.024 

 

Note that the WL is characterized by low IP stiffness and low OOP strength; the ML 

is characterized by high IP stiffness and low OOP strength (with reference to the thinner 

leaf); the SL is characterized by high IP stiffness and high OOP strength. For this reason, 
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WL infills are expected to be very prone to IP/OOP interaction and vulnerable with 

respect to OOP actions; ML infills are expected to be less prone to IP/OOP interaction 

but vulnerable with respect to OOP actions not differently than WL infills; SL infills are 

expected to be significantly vulnerable neither to IP/OOP interaction nor to OOP 

actions. 

 

 

In the following, each case-study building is identified using an acronym, such as 

XPY_Z, in which X is the number of storeys, Y the design PGA at LS expressed in g/100, 

Z the infill layout indicator. 

 

8.4. ANALYSIS PROCEDURE 

In order to carry out the dynamic analyses, ten ground motions were selected among 

Table 8.4. Elastic fundamental periods in the X and Z global directions of the case-study 

infilled buildings. 

 
 Number of storeys of the infilled buildings 

design PGA 2  4  6  8  

WL T1,Z [s] T1,X [s] T1,Z [s] T1,X [s] T1,Z [s] T1,X [s] T1,Z [s] T1,X [s] 

0.05 g 0.107 0.085 0.222 0.181 0.298 0.242 0.414 0.329 

0.15 g 0.107 0.085 0.219 0.177 0.293 0.240 0.408 0.326 

0.25 g 0.107 0.085 0.210 0.178 0.277 0.231 0.386 0.315 

0.35 g 0.104 0.083 0.209 0.176 0.277 0.231 0.384 0.318 

ML         

0.05 g 0.097 0.074 0.194 0.154 0.263 0.206 0.366 0.282 

0.15 g 0.097 0.074 0.189 0.153 0.260 0.205 0.362 0.280 

0.25 g 0.097 0.074 0.187 0.150 0.247 0.203 0.344 0.278 

0.35 g 0.095 0.073 0.184 0.145 0.248 0.198 0.348 0.271 

SL         

0.05 g 0.103 0.085 0.215 0.173 0.293 0.233 0.407 0.317 

0.15 g 0.103 0.085 0.211 0.172 0.289 0.231 0.401 0.315 

0.25 g 0.103 0.085 0.206 0.169 0.275 0.224 0.383 0.309 

0.35 g 0.102 0.084 0.205 0.168 0.272 0.226 0.381 0.306 
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the records of European earthquakes collected in the Engineering Strong-Motion (ESM) 

Database (Luzi et al. 2016). Some significant characteristics of the selected ground 

motions are reported in Table 8.5.  

 

Table 8.5. Ground Motions selected for the Incremental Dynamic Analyses. 

# ESM ID Country Date Mw Repi [km] PGANS  PGAEW  

1 ME-1979-0003 Montenegro 15/04/1979 6.9 19.7 0.18 g 0.21 g 

2 IT-1980-0012 Italy 23/11/1980 6.9 28.3 0.10 g 0.08 g 

3 IT-1984-0004 Italy 07/05/1984 5.9 10.1 0.10 g 0.11 g 

4 IT-1997-0006 Italy 26/09/1997 6.0 26.5 0.02 g 0.03 g 

5 IT-1997-0137 Italy 14/10/1997 5.6 8.70 0.18 g 0.10 g 

6 SI-1998-0010 Italy 12/04/1998 5.7 23.5 0.02 g 0.02 g 

7 IT-1998-0103 Italy 09/09/1998 5.6 18.0 0.17 g 0.16 g 

8 GR-1999-0001 Greece 07/09/1999 5.9 19.7 0.11 g 0.12 g 

9 TK-1999-0294 Turkey 13/09/1999 5.8 13.8 0.08 g 0.32 g 

10 IT-2009-0009 Italy 06/04/2009 6.1 26.2 0.03 g 0.02 g 

 

The selection of records was performed by searching among the bidirectional 

registration of stations based on EC8 type A soils, consistently with the design soil type. 

Consistently with the choice of using EC8 Type I design spectrum, only earthquakes 

with magnitude between 5.5 and 7 and only registration of stations with epicentral 

distance between 10 and 30 km were considered. The 5%-damped response spectra of 

the selected records are reported in Figure 8.5a (North-South component) and 8.5b 

(East-West component). Both horizontal components of the selected records were 

simultaneously matched to the 5%-damped EC8 design spectrum at LS using wavelets 

through the RspMatchBi software (Grant 2010). It was observed that the resulting 

spectral shape of the matched record was independent on the target PGA. Hence, it is 

assumed as reference record set the one obtained by matching ground motions to the 

elastic spectrum associated with LS and anchored at a PGA equal to 0.15 g. The response 

spectra of the matched ground motions in the NS direction and in the EW direction are 

shown, together with the mean spectrum and the target response spectrum, in Figure 

8.5c. Note that the record component registered in the NS direction is applied along X 

global direction, while the component registered in the EW direction was applied along 

Z global direction. 

Incremental Dynamic Analyses (Vamvatsikos and Cornell 2002) were performed by 

scaling each selected and matched record for a set of pre-determined scale factors (SF) 

in order to obtain for each horizontal direction an incremental PGA (selected as Intensity 
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Measure) vs maximum IDR and maximum top displacement (selected as Engineering 

Demand Parameters) curve. A total of 32 scale factors ranging from 0.067 to 10 were 

considered. This allowed performing the IDAs for 32 values of PGA roughly equal in 

both directions and ranging from 0.010 g to 1.50 g, as reported in Table 8.6. 

 

  
    (a)     (b) 

 
    (c) 

Figure 8.5. Selected records response spectra for NS components (a) and EW components (b). 

Response spectra of the selected records matched to EC8 design spectrum at LS with PGA 

equal to 0.15 g (c). 
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Table 8.6. Selected Records’ scale factors (SF) and associated PGAs for Incremental Dynamic 

Analyses. 

# SF PGA 

[g] 

# SF PGA 

[g] 

# SF PGA 

[g] 

# SF PGA 

[g] 

1 0.067 0.010 9 1.000 0.150 17 2.333 0.350 25 5.333 0.800 

2 0.100 0.015 10 1.167 0.175 18 2.667 0.400 26 6.000 0.900 

3 0.133 0.020 11 1.333 0.200 19 3.000 0.450 27 6.667 1.000 

4 0.167 0.025 12 1.500 0.225 20 3.333 0.500 28 7.333 1.100 

5 0.333 0.050 13 1.667 0.250 21 3.667 0.550 29 8.000 1.200 

6 0.500 0.075 14 1.833 0.275 22 4.000 0.600 30 8.667 1.300 

7 0.667 0.100 15 2.000 0.300 23 4.333 0.650 31 9.333 1.400 

8 0.833 0.125 16 2.167 0.325 24 4.667 0.700 32 10.00 1.500 

 

Note that IDAs were performed, for each case study building, on a W/ model, in 

which the degradation of IP and OOP behaviours due to the IP/OOP interaction was 

implemented, together with the infill removal routine, and on a W/O model in which 

only the infill removal routine at the attainment of the IP or OOP unchanging collapse 

displacement was implemented. All analyses were performed after the application of 

gravity loads which was followed by the introduction of infill walls in the structural 

model. 

The analyses were carried out by applying mass- and tangent stiffness-proportional 

Rayleigh damping rules for two control frequencies. Modal analyses were performed on 

the elastic models of the infilled case-study frames. For all case-study buildings, three 

groups of modes were recognizable: a first group of global “lower” modes 

corresponding to lower frequencies/modes involving the entire structure; a second group 

of local modes involving groups of infills excited in the OOP direction corresponding 

to intermediate frequencies; a third group of global “higher” modes corresponding to 

higher frequencies/modes involving the whole structure. Frequencies associated to the 

second group are very close to each other and to the infill natural frequency in the OOP 

direction. Two different groups of “intermediate” local modes are registered when 

dealing with two-leaf infill layouts (WL and ML). For all these reasons, the frequencies 

corresponding to one “global” and to one “local” mode were selected as control 

frequencies. Namely, the first control mode corresponds the first natural frequency of 

the infilled structure, while the second control mode corresponds to the “intermediate” 

mode associated to the frequency closer to the infill natural frequency in the OOP 

direction, as reported, for example purposes, in Figure 8.6 for the case-study building 

4P05_SL.  
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Figure 8.6. Mode frequencies, OOP frequency of the SL infill, control modes and Rayleigh 

damping ratios for the 4P05_SL case-study building. 

 

In the case of two-leaf layouts, the control frequency selected among the intermediate 

ones was that associated with the slender and, most likely, more vulnerable leaf. The 

damping ratio assigned to control frequencies was equal to 5% both for the first global 

and for the second local control mode: the latter choice is due to the lack of exhaustive 

studies on the damping properties of infills excited in the OOP direction, which is worth 

to be investigated in the future. 

 

8.5. GLOBAL RESPONSE OF THE CASE-STUDY BUILDINGS 

In this section, the global seismic response of the case-study buildings is discussed 

by comparing their IDA curves. Remember that a total of 96 buildings was analysed (16 

different RC frames x 3 infill layouts x 2 modelling strategies – W/O and W/) under the 

action of 10 bidirectional records scaled per 32 different scale factors. A total of more 

than 30 thousand time history analyses were performed. For the sake of simplicity, the 

IDA curves are not shown for all case-study buildings but only for some of them, in 

order to show in a simple and direct way how the IP/OOP interaction effects influence 

the seismic response of RC buildings.  

In Figure 8.7, the IDA curves for building 8P35_WL are shown for both the W/O 

and the W/ models. 
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(a) (b) 

  
(c) (d) 

Figure 8.7. IDA curves for building 8P35_WL in the X (a-c) and Z (b-d) directions for the W/ 

(a-b) and the W/O (c-d) models. 

 

The OOP collapses of infills (and their removal from the structural model) is visible 

from the sudden increase in the lateral displacement demand. Of course, this jerk is 

visible also in the IDA curves of the W/O model (Figure 8.7d), but for a higher PGA 

demand. It should be noted that, as expected, wide OOP collapses are registered in the 

more deformable direction of the building, i.e., along Z global direction. 

In general, if the IP/OOP interaction effects are neglected, the lateral displacement 

demand acting on buildings is underestimated. For example, at PGA equal to 0.35 g, the 

median displacement demand in Z direction for 8P35_WL building is roughly equal to 

10 mm according to the results of the analyses on the W/O model, while it is roughly 

equal to 35 mm for the W/ model.  

Note also that, especially for the W/ model, the IDA curves are characterized by a 

jagged trend, with many “resurrections”. This is quite expected, as the entity of the 
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IP/OOP interaction effects as well as the number and location of infills collapsed and 

removed from the structural model can vary significantly (and not necessarily 

“monotonically”) at increasing intensity level. Remember that this is the result obtained 

on 8P35_WL case-study building, but that such trends have been observed for all case-

study buildings. That being said, it is interesting to observe also the response of the 

8P35_ML building in Figure 8.8. 

It is quite interesting to observe that the median IDA curve for 8P35_ML building 

(W/ model) presents two sudden increments in the lateral displacement demand due to 

the collapse at different PGAs of the two leaves. Even WL buildings are infilled by two-

leaf infills, but the thicknesses of WL leaves are very similar, hence they collapse at 

quite similar PGAs and the two “jumps” in the lateral displacement demand are not 

discernible. At high PGA demand, in the W/ models, some cases of dynamic instability 

are observed. 
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(a) (b) 

  
(c) (d) 

Figure 8.8. IDA curves for building 8P35_ML in the X (a-c) and Z (b-d) directions for the W/ 

(a-b) and the W/O (c-d) models. 

 

The response of the 8P35_SL building is shown in Figure 8.9. As expected, the 

significant IP stiffness of the infill walls makes such building very stiff and the lateral 

displacement demand very low. The PGA corresponding to the OOP collapse of infills 

is significantly affected by record-to-record variability, hence there is not a unique 

“jump” in the displacement demand but many “resurrections” in the IDA curves, at very 

high PGA, as expected for such thick and robust infills characterized by a high OOP 

capacity and by a lower impact of the IP/OOP interaction effects (as shown in Chapter 

IV). 
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(a) (b) 

  
(c) (d) 

Figure 8.9. IDA curves for building 8P35_SL in the X (a-c) and Z (b-d) directions for the W/ 

(a-b) and the W/O (c-d) models. 

 

 

8.6. ASSESSMENT OF THE OOP COLLAPSE PGA AND IDR 

In this section, for each one of the 48 case-study infilled buildings, the PGA 

associated with the first OOP collapse of infills (PGAc) and the IDR demand associated 

with the first infill collapsed due to OOP actions (IDRc) is assessed. Clearly, for each 

case-study building, ten values of PGAc and IDRc are obtained from structural analyses 

(one for each record). The values herein compared and commented are the average of 

such ten values.  

Clearly, both PGAc and IDRc are evaluated on the W/ and on the W/O model. This 

allows the assessment of the influence on such paramount values of the IP/OOP 

interaction. The values of PGAc and IDRc assessed on W/ models are compared with 

those obtained in a non-linear static framework reported in Chapter VII for the WL and 
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SL case-study buildings.  

The results obtained in terms of PGAc and of IDRc are summarized in fragility curves 

showing the probability of OOP collapse of infills at increasing PGA demand and 

maximum IDR demand. In addition, frequency distributions showing the number of first 

OOP collapses registered during analyses for each storey of each case-study buildings 

are shown. Also these results are compared with the analogous ones obtained in a non-

linear static framework and discussed in Chapter VII. 

 

8.6.1. PGAc assessment 

In this section, the PGA at the first OOP collapse of infills (PGAc) is assessed for 

each case-study building. Of course, ten values are obtained for each case-study 

building, one for each record. The mean values are herein compared and discussed.  

The PGAc values on the W/O model of each case study building are reported in Table 

8.7 and compared in Figures 8.10-11. It is worth to note that, even at PGA equal to 1.50 

g, in many cases the OOP collapse was not observed for SL infills. Hence, the value 

reported in the “mean” column, in this case, is not the average of the PGAc assessed for 

each record but the minimum value of the available results, in order to provide a value 

more similar to a lower bound of the real PGAc of such type of infills. This circumstance 

is also pointed out in Figures 8.10-11, in which the PGAc values reported for the SL 

layout are not represented by a continuous line but by a dashed line, instead. 
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Table 8.7. Values of PGAc [g] for all case-study buildings (W/O models). 

Record #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 mean 

2P05WL 0.550 0.500 0.500 0.600 0.600 0.650 0.700 0.550 0.700 0.700 0.605 

2P15WL 0.550 0.500 0.500 0.600 0.600 0.650 0.700 0.550 0.700 0.700 0.605 

2P25WL 0.550 0.500 0.500 0.600 0.600 0.650 0.700 0.550 0.700 0.700 0.605 

2P35WL 0.500 0.500 0.500 0.600 0.650 0.650 0.750 0.650 0.600 0.700 0.610 

4P05WL 0.650 0.650 0.700 0.500 0.550 0.400 0.350 0.550 0.500 0.650 0.550 

4P15WL 0.600 0.550 0.800 0.450 0.550 0.600 0.450 0.800 0.650 0.700 0.615 

4P25WL 0.650 0.800 0.450 0.600 0.400 0.500 0.350 0.800 0.500 0.600 0.565 

4P35WL 0.650 0.550 0.550 0.600 0.600 0.600 0.500 0.650 0.550 0.650 0.590 

6P05WL 0.600 0.550 0.400 0.600 0.300 0.500 0.350 0.400 0.500 0.400 0.460 

6P15WL 0.500 0.550 0.550 0.700 0.400 0.450 0.275 0.400 0.450 0.550 0.483 

6P25WL 0.650 0.650 0.450 0.650 0.400 0.700 0.500 0.550 0.450 0.450 0.545 

6P35WL 0.550 0.600 0.450 0.600 0.500 0.900 0.450 0.600 0.400 0.600 0.565 

8P05WL 0.400 0.400 0.325 0.350 0.350 0.400 0.300 0.550 0.500 0.350 0.393 

8P15WL 0.550 0.400 0.275 0.450 0.550 0.550 0.300 0.450 0.500 0.550 0.458 

8P25WL 0.600 0.400 0.350 0.500 0.500 0.700 0.400 0.450 0.600 0.550 0.505 

8P35WL 0.600 0.300 0.450 0.500 0.550 0.700 0.550 0.600 0.800 0.700 0.575 

2P05ML 1.400 1.000 1.300 0.900 0.500 0.700 0.450 0.900 1.100 1.100 0.935 

2P15ML 0.900 1.200 0.800 1.100 0.700 0.900 0.550 1.000 1.100 1.000 0.925 

2P25ML 1.300 0.700 0.900 0.900 0.500 0.900 0.450 1.100 1.100 0.900 0.875 

2P35ML 0.900 0.800 0.800 1.200 0.700 0.800 0.450 1.100 1.200 1.100 0.905 

4P05ML 0.900 0.800 1.000 0.800 0.700 0.900 0.650 0.800 0.700 1.000 0.825 

4P15ML 0.700 0.800 1.200 0.700 0.900 0.600 0.600 1.000 1.300 0.800 0.860 

4P25ML 0.900 1.200 0.900 0.650 0.800 0.800 0.650 1.200 0.900 1.100 0.910 

4P35ML 0.800 0.800 1.100 1.100 0.800 0.900 0.550 0.900 1.000 1.100 0.905 

6P05ML 0.800 1.000 0.650 0.900 0.450 0.700 0.600 0.600 0.600 0.450 0.675 

6P15ML 1.000 0.650 0.900 1.200 0.600 0.700 0.350 0.700 0.900 0.800 0.780 

6P25ML 0.600 0.650 0.550 0.800 0.600 0.700 0.600 0.600 1.000 0.550 0.665 

6P35ML 0.800 1.000 1.000 0.700 0.550 0.800 0.800 0.900 0.650 0.700 0.790 

8P05ML 1.000 0.650 0.600 0.650 0.550 0.600 0.500 0.700 0.700 0.600 0.655 

8P15ML 0.600 0.450 0.400 0.700 0.600 0.700 0.350 0.700 0.650 0.700 0.585 

8P25ML 0.700 0.600 0.550 0.800 0.600 0.900 0.650 0.800 1.000 0.800 0.740 

8P35ML 1.000 0.500 0.550 0.800 1.000 1.000 0.700 0.800 1.000 1.100 0.845 

2P05SL n/a n/a n/a n/a 1.200 n/a 1.100 n/a n/a n/a 1.100 

2P15SL n/a n/a n/a n/a 1.400 n/a 0.800 n/a n/a n/a 0.800 

2P25SL n/a n/a n/a n/a 1.200 n/a 1.300 n/a n/a n/a 1.200 

2P35SL n/a n/a n/a n/a n/a n/a 1.400 n/a n/a n/a 1.400 

4P05SL n/a n/a n/a n/a n/a 1.400 1.400 1.500 n/a n/a 1.400 

4P15SL n/a n/a n/a n/a n/a 1.400 1.100 n/a n/a n/a 1.100 

4P25SL n/a n/a n/a n/a n/a n/a 1.200 n/a n/a n/a 1.200 

4P35SL n/a n/a n/a n/a 1.200 n/a n/a n/a n/a n/a 1.200 

6P05SL 1.400 n/a n/a n/a 1.000 1.500 1.000 1.300 n/a 1.400 1.000 

6P15SL n/a n/a n/a n/a 1.100 1.500 1.100 1.200 1.500 n/a 1.100 

6P25SL n/a n/a 1.400 n/a 1.500 n/a 1.100 1.300 n/a 1.100 1.100 

6P35SL n/a 1.400 n/a n/a 1.300 n/a 1.400 n/a n/a 1.400 1.300 

8P05SL n/a 1.400 1.300 1.500 1.100 1.200 1.200 n/a 1.400 1.100 1.100 

8P15SL n/a 0.900 0.800 n/a n/a n/a 1.000 1.100 n/a 1.200 0.800 

8P25SL n/a 1.300 1.400 n/a n/a n/a 1.400 n/a n/a 1.400 1.300 

8P35SL n/a 1.200 1.300 n/a n/a n/a n/a n/a n/a 1.500 1.200 
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Figure 8.10. Mean PGAc values on the W/O models for all case-study buildings. 

 

  

  
Figure 8.11. Mean PGAc values on the W/O models for all case-study buildings. 

PGAd =0.05 g PGAd=0.15 g PGAd=0.25 g PGAd=0.35 g

2P 4P 6P 8P design PGA

WL ML SL design PGA
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Remember that in W/O models the OOP collapse of infills always occurs at the 

building last storey. It is observed that PGAc decreases at increasing number of storeys, 

which is expected, as in higher building the OOP seismic demand at the last storey is 

higher with respect to lower buildings. In addition, PGAc does not show a clear tendency 

with the design PGA, most likely due to the influence of record-to-record variability on 

the OOP seismic demand, which is also dependent on the relationship existing between 

the OOP period of the infill and the vibration period of the building. Note that all trends 

for SL layouts are not very clear, most likely because the values reported and compared 

are not, as already stated, an average value but a lower bound value obtained from a 

reduced number of analyses performed up to the OOP collapse of such a type of infills. 

Clearly, as expected, due to the higher OOP undamaged strength, SL buildings are 

provided with a significantly higher PGAc with respect to WL and ML infills.  

If the IP/OOP interaction is neglected, all buildings result safe with respect to the 

OOP collapse of infills, as for all infill layouts PGAc is always higher than the design 

PGA at LS. 

The PGAc values on the W/ model of each case study building are reported in Table 

8.8 and compared in Figure 8.12-13. 
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Table 8.8. Values of PGAc [g] for all case-study buildings (W/ models). 

Record #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 mean 

2P05WL 0.275 0.275 0.275 0.275 0.150 0.250 0.100 0.275 0.275 0.275 0.243 

2P15WL 0.275 0.275 0.275 0.275 0.150 0.250 0.100 0.275 0.275 0.275 0.243 

2P25WL 0.275 0.275 0.275 0.275 0.150 0.250 0.100 0.275 0.275 0.275 0.243 

2P35WL 0.300 0.275 0.275 0.300 0.175 0.250 0.125 0.275 0.275 0.275 0.253 

4P05WL 0.250 0.225 0.250 0.175 0.175 0.200 0.125 0.200 0.225 0.275 0.210 

4P15WL 0.250 0.250 0.275 0.200 0.200 0.225 0.150 0.275 0.250 0.275 0.235 

4P25WL 0.250 0.275 0.225 0.200 0.200 0.250 0.125 0.300 0.250 0.275 0.235 

4P35WL 0.250 0.275 0.275 0.275 0.200 0.250 0.150 0.275 0.275 0.275 0.250 

6P05WL 0.200 0.200 0.175 0.200 0.100 0.200 0.100 0.175 0.150 0.150 0.165 

6P15WL 0.225 0.200 0.225 0.250 0.175 0.225 0.100 0.200 0.200 0.175 0.198 

6P25WL 0.225 0.225 0.200 0.250 0.175 0.250 0.150 0.200 0.200 0.175 0.205 

6P35WL 0.225 0.225 0.225 0.225 0.200 0.300 0.200 0.200 0.200 0.225 0.223 

8P05WL 0.200 0.100 0.100 0.150 0.125 0.150 0.100 0.225 0.225 0.150 0.153 

8P15WL 0.200 0.100 0.075 0.200 0.200 0.250 0.100 0.225 0.250 0.175 0.178 

8P25WL 0.200 0.125 0.125 0.250 0.200 0.250 0.175 0.225 0.250 0.175 0.198 

8P35WL 0.200 0.125 0.125 0.225 0.250 0.250 0.225 0.250 0.275 0.250 0.218 

2P05ML 0.450 0.350 0.400 0.400 0.225 0.325 0.200 0.350 0.350 0.325 0.338 

2P15ML 0.400 0.350 0.350 0.350 0.275 0.350 0.150 0.400 0.350 0.325 0.330 

2P25ML 0.450 0.325 0.350 0.350 0.200 0.400 0.175 0.325 0.400 0.350 0.333 

2P35ML 0.400 0.350 0.350 0.400 0.225 0.300 0.200 0.325 0.400 0.350 0.330 

4P05ML 0.325 0.325 0.300 0.275 0.275 0.275 0.225 0.300 0.325 0.350 0.298 

4P15ML 0.325 0.300 0.400 0.325 0.300 0.275 0.225 0.450 0.400 0.350 0.335 

4P25ML 0.300 0.400 0.300 0.275 0.300 0.350 0.225 0.450 0.350 0.400 0.335 

4P35ML 0.350 0.325 0.350 0.350 0.250 0.275 0.225 0.325 0.400 0.325 0.318 

6P05ML 0.275 0.300 0.275 0.300 0.175 0.275 0.200 0.250 0.225 0.200 0.248 

6P15ML 0.300 0.300 0.325 0.400 0.225 0.275 0.150 0.275 0.300 0.250 0.280 

6P25ML 0.275 0.225 0.250 0.325 0.250 0.325 0.200 0.250 0.325 0.200 0.263 

6P35ML 0.325 0.300 0.350 0.275 0.250 0.350 0.250 0.325 0.250 0.250 0.293 

8P05ML 0.325 0.200 0.175 0.225 0.200 0.225 0.175 0.300 0.300 0.225 0.235 

8P15ML 0.275 0.150 0.125 0.300 0.275 0.325 0.125 0.250 0.300 0.275 0.240 

8P25ML 0.275 0.200 0.225 0.350 0.250 0.400 0.225 0.300 0.350 0.250 0.283 

8P35ML 0.300 0.225 0.250 0.300 0.300 0.350 0.300 0.350 0.400 0.325 0.310 

2P05SL 0.800 0.900 0.700 0.700 0.500 0.800 0.450 0.700 0.700 0.800 0.705 

2P15SL 1.000 0.900 0.800 0.800 0.500 0.650 0.325 0.800 0.900 0.900 0.758 

2P25SL 1.100 0.800 0.900 0.700 0.400 0.700 0.450 0.650 0.700 0.900 0.730 

2P35SL 1.000 0.700 0.900 0.900 0.500 0.600 0.450 0.800 0.800 0.650 0.730 

4P05SL 0.800 0.650 0.800 0.700 0.700 0.600 0.550 0.650 0.800 0.800 0.705 

4P15SL 0.650 0.650 0.900 0.700 0.700 0.600 0.450 0.900 0.700 0.900 0.715 

4P25SL 0.700 0.900 0.650 0.650 0.650 0.800 0.500 1.200 0.900 0.900 0.785 

4P35SL 0.800 0.800 0.650 0.800 0.500 0.650 0.550 0.800 0.900 0.700 0.715 

6P05SL 0.550 0.800 0.700 0.700 0.350 0.650 0.350 0.550 0.550 0.400 0.560 

6P15SL 0.650 0.700 0.650 0.800 0.450 0.650 0.400 0.500 0.600 0.600 0.600 

6P25SL 0.700 0.600 0.600 0.700 0.600 0.800 0.350 0.550 0.700 0.450 0.605 

6P35SL 0.900 0.600 0.650 0.550 0.500 0.700 0.600 0.700 0.650 0.600 0.645 

8P05SL 0.700 0.500 0.400 0.500 0.400 0.500 0.350 0.600 0.600 0.400 0.495 

8P15SL 0.650 0.325 0.325 0.600 0.550 0.700 0.350 0.450 0.600 0.500 0.505 

8P25SL 0.650 0.350 0.550 0.700 0.600 0.900 0.400 0.650 0.900 0.550 0.625 

8P35SL 0.700 0.500 0.450 0.700 0.800 1.000 0.550 0.700 1.000 0.650 0.705 

 

 

 



Chapter VIII – Assessment of infilled RC buildings in a non-linear dynamic framework 333 

 

 

 

 

   

 

   
Figure 8.12. Mean PGAc values on the W/ models for all case-study buildings. 

 

  

  
Figure 8.13. Mean PGAc values on the W/ models for all case-study buildings. 

PGAd =0.05 g PGAd=0.15 g PGAd=0.25 g PGAd=0.35 g

2P 4P 6P 8P design PGA

WL ML SL design PGA
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It is observed that PGAc is quite independent on the design PGA and on the total 

number of storeys of the building for WL and ML infills. However, some trends are 

slightly visible, with PGAc decreasing at increasing number of storeys, which is 

expected, as higher buildings – being more deformable – are more prone to the IP/OOP 

interaction, and increasing at increasing design PGA, which is also expected, as 

buildings designed for higher seismic acceleration – being more stiff – are less prone to 

the IP/OOP interaction. Such trends were also visible in Chapter VII, in which PGAc 

was assessed in a non-linear static framework. In addition, such trends are more visible 

for the SL buildings.  

Clearly, as expected, due to the higher OOP undamaged strength and to the lower 

impact of the IP/OOP interaction effect, SL buildings are provided with a significantly 

higher PGAc with respect to WL and ML infills.  

As also observed in Chapter VII, mid- and high-rise buildings in mid- and high-

seismicity zones are not safe with respect to the OOP failure of infills if WL and ML 

infills are used. Only SL infills are always safe with respect to the IP/OOP interaction, 

as also observed in Chapter VII, even if with a lower safety margin with respect to that 

assessed in a non-linear static framework. 

It is clear from the comparison of the results obtained on the W/O and on the W/ 

models that accounting for the IP/OOP interaction is necessary to not perform an unsafe 

assessment of the seismic performance of buildings at LS. 

In Figures 8.14 and 8.15, fragility curves relating the probability of OOP collapse to 

the PGA value are shown, separately for each infill layout considered. More specifically, 

in Figure 8.14 the fragility curves for the three infill layouts are compared for the W/ 

and the W/O models. Their parameters (the median and the logarithmic standard 

deviation) are reported in Table 8.9.  

Each fragility curve contains in its parameters the record-to-record variability as well 

as the variability of PGAc associated with the variation of the buildings’ number of 

storeys and design PGA. In other words, one can enter such fragility curves only 

knowing the infill typology and without knowing the building number of storeys and 

design PGA, i.e., by assuming an equal probability that the considered building is 

characterized by a number of storeys equal to 2, 4, 6 or 8 and by a design PGA equal to 

0.05 g, 0.15 g, 0.25 g and 0.35 g. 
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Table 8.9. Fragility curves parameters (PGAc) determined based on the results of the non-linear 

time-history analyses. 

 WL  ML  SL  

 W/O W/ W/O W/ W/O W/ 

median 0.600 0.232 0.881 0.329 1.25 0.691 

log. st. dev. 0.237 0.397 0.282 0.254 0.154 0.275 

 

 
Figure 8.14. Fragility curves (PGAc): comparison of the results obtained by means of non-

linear time-history analyses on W/ models (continuous lines) and on W/O models (dashed 

lines) for all the case-study buildings. 

 

As expected, a greater fragility is observed for W/ models. Remember that for the 

W/O models of SL buildings, the PGA values used for the construction of the fragility 

curves are more similar to a lower bound of the real PGAc, and, hence, also the fragility 

curve reported is more similar to a “lower bound” fragility curve. 

In Figure 8.15, the fragility curves for the WL and the SL layout obtained on the W/ 

model are compared with those obtained by applying the Reference Approach, i.e., with 

those determined in a non-linear static framework, shown in Chapter VII. 



336 Chapter VIII – Assessment of infilled RC buildings in a non-linear dynamic framework 

 

 

 

 
Figure 8.15. Fragility curves (PGAc): comparison of the results obtained by means of non-

linear time-history analyses (continuous lines) with those obtained by means of non-linear 

static analyses (dashed lines). 

 

A greater fragility is observed for both WL and SL infills (especially for the least) 

when dealing with the results of non-linear time-history analyses. Most likely, this is 

due to the unconservative assumptions made to apply the so-called “Reference 

Approach” in Chapter VII and above all, among these, for the fact that the non-linear 

static approach adopted in Chapter VII does not account for the OOP damage effect on 

the IP response of infills. This circumstance, in fact, produces the underestimation of the 

infilled building lateral deformability, so the underestimation of drift demands and, 

hence, the underestimation of the IP/OOP interaction effects.  

 

8.6.2. IDRc assessment 

In this section, the IDR at the first OOP collapse of infills (IDRc) is assessed for each 

case-study building. Of course, ten values are obtained for each case-study building, one 

for each record. The mean values are herein compared and discussed.  

The IDRc values on the W/O model of each case study building are reported in Table 

8.10 and compared in Figures 8.16-17. In the same Figures, the IDRc values are 

compared, for each infill layout, with the corresponding IDR at the IP collapse, i.e., at 

the complete loss of IP resistance, predicted by means of Panagiotakos and Fardis’s 

model. It is observed that the OOP collapse of WL and ML infills always foreruns the 

IP collapse, while SL infills collapse for IP actions prior than for OOP actions.  
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As already stated in the previous subsection, even at PGA equal to 1.50 g, in many 

cases the OOP collapse was not observed for SL infills. Hence, the value reported in the 

“mean” column, in this case, is not the average of the IDRc assessed for each record but 

the minimum value of the available results, in order to provide a value more similar to 

a lower bound of the real IDRc of such type of infills. This circumstance is also pointed 

out in Figures 8.16-17, in which the IDRc values reported for the SL layout are not 

represented by a continuous line but by a dashed line, instead. 
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Table 8.10. Values of IDRc [%] for all case-study buildings (W/O models). 

Record #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 mean 

2P05WL 1.183 0.552 0.571 1.281 0.700 0.696 0.716 0.684 1.179 1.819 0.938 

2P15WL 1.183 0.552 0.571 1.281 0.700 0.696 0.716 0.684 1.179 1.819 0.938 

2P25WL 1.183 0.552 0.571 1.281 0.700 0.696 0.716 0.684 1.179 1.819 0.938 

2P35WL 1.224 0.534 0.470 1.110 0.624 0.663 0.572 0.541 0.856 1.414 0.801 

4P05WL 1.186 0.691 0.619 1.133 0.678 0.600 0.680 0.755 1.180 2.110 0.963 

4P15WL 1.093 0.628 0.561 1.032 0.678 0.643 0.669 0.511 1.073 1.838 0.873 

4P25WL 1.214 0.484 0.540 1.035 0.646 0.653 0.562 0.588 1.007 1.583 0.831 

4P35WL 1.077 0.469 0.394 0.884 0.457 0.553 0.446 0.414 0.734 1.354 0.678 

6P05WL 1.490 0.744 0.589 1.073 0.597 0.641 0.785 0.606 1.017 1.862 0.940 

6P15WL 1.089 0.583 0.559 1.113 0.688 0.671 0.657 0.531 1.001 1.636 0.853 

6P25WL 1.027 0.422 0.487 1.052 0.624 0.665 0.681 0.443 0.993 1.677 0.807 

6P35WL 1.055 0.531 0.442 0.946 0.521 0.561 0.419 0.444 0.931 1.158 0.701 

8P05WL 1.279 0.619 0.556 1.184 0.574 0.585 0.802 0.638 1.127 1.851 0.921 

8P15WL 1.318 0.602 0.478 1.029 0.719 0.694 0.657 0.542 1.037 1.672 0.875 

8P25WL 1.088 0.518 0.437 1.177 0.566 0.706 0.576 0.560 0.868 1.414 0.791 

8P35WL 0.974 0.441 0.391 1.021 0.495 0.551 0.471 0.441 0.802 1.248 0.684 

2P05ML 1.302 0.719 0.621 1.230 0.652 0.844 0.809 0.725 1.294 1.871 1.007 

2P15ML 1.302 0.719 0.621 1.230 0.652 0.844 0.809 0.725 1.294 1.871 1.007 

2P25ML 1.302 0.719 0.621 1.230 0.652 0.844 0.809 0.725 1.294 1.871 1.007 

2P35ML 1.271 0.599 0.537 1.239 0.621 0.874 0.629 0.554 1.182 1.617 0.912 

4P05ML 1.365 0.745 0.659 1.466 0.699 0.728 0.731 0.800 1.259 2.120 1.057 

4P15ML 1.136 0.657 0.635 1.269 0.735 0.739 0.706 0.659 1.356 2.148 1.004 

4P25ML 1.407 0.543 0.497 1.095 0.620 0.760 0.641 0.660 1.023 1.643 0.889 

4P35ML 1.148 0.545 0.411 0.905 0.648 0.627 0.559 0.507 0.848 1.355 0.755 

6P05ML 1.544 0.939 0.654 1.316 0.559 0.606 0.835 0.757 1.278 2.257 1.074 

6P15ML 1.285 0.691 0.626 1.033 0.658 0.707 0.680 0.618 0.985 1.747 0.903 

6P25ML 1.381 0.564 0.542 1.387 0.675 0.693 0.754 0.603 1.227 1.883 0.971 

6P35ML 1.206 0.560 0.404 1.120 0.535 0.699 0.545 0.491 1.006 1.500 0.807 

8P05ML 1.507 0.700 0.636 1.516 0.704 0.624 0.768 0.763 1.041 2.260 1.052 

8P15ML 1.342 0.668 0.477 1.139 0.777 0.797 0.705 0.729 1.183 1.895 0.971 

8P25ML 1.329 0.468 0.541 1.253 0.748 0.727 0.635 0.622 1.074 1.778 0.918 

8P35ML 1.147 0.504 0.467 0.984 0.495 0.653 0.612 0.586 0.901 1.273 0.762 

2P05SL n/a n/a n/a n/a 5.43 n/a 5.91 n/a n/a n/a 5.426 

2P15SL n/a n/a n/a n/a 5.43 n/a 5.91 n/a n/a n/a 5.426 

2P25SL n/a n/a n/a n/a 5.43 n/a 5.91 n/a n/a n/a 5.426 

2P35SL n/a n/a n/a n/a n/a n/a 4.98 n/a n/a n/a 4.984 

4P05SL n/a n/a n/a n/a n/a 5.52 5.8 5.95 n/a n/a 5.524 

4P15SL n/a n/a n/a n/a n/a 5.88 6.03 n/a n/a n/a 5.878 

4P25SL n/a n/a n/a n/a n/a n/a 4.81 n/a n/a n/a 4.812 

4P35SL n/a n/a n/a n/a 5.02 n/a n/a n/a n/a n/a 5.022 

6P05SL 11.09 n/a n/a n/a 4.51 4.81 6.42 6.31 n/a 15.06 4.512 

6P15SL n/a n/a n/a n/a 5.58 5.79 5.57 4.59 7.619 n/a 4.593 

6P25SL n/a n/a 4.15 n/a 5.86 n/a 5.57 4.59 n/a 13.58 4.150 

6P35SL n/a 4.057 n/a n/a 3.95 n/a 4.02 n/a n/a 11.52 3.946 

8P05SL n/a 5.777 4.66 11.36 4.93 5.16 6.13 n/a 8.546 15.65 4.660 

8P15SL n/a 5.573 3.69 n/a n/a n/a 5.68 5.41 n/a 12.43 3.692 

8P25SL n/a 3.975 4.22 n/a n/a n/a 5.63 n/a n/a 12.02 3.975 

8P35SL n/a 3.554 3.5 n/a n/a n/a n/a n/a n/a 11.88 3.499 

 

 

 



Chapter VIII – Assessment of infilled RC buildings in a non-linear dynamic framework 339 

 

 

 

 

   

 

   
Figure 8.16. Mean IDRc values on the W/O models for all case-study buildings. 

 

  

  
Figure 8.17. Mean IDRc values on the W/O models for all case-study buildings. 

PGAd =0.05 g PGAd=0.15 g PGAd=0.25 g PGAd=0.35 g IP collapse

2P 4P 6P 8P IP collapse

WL ML SL
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Remember that in W/O models the OOP collapse of infills always occurs at the 

building last storey. It is quite surprising to observe that the IDR capacity of infills with 

respect to the first OOP collapse is quite independent on the design PGA and on the 

number of storeys.  

Clearly, as expected, due to the higher OOP undamaged strength, SL buildings are 

provided with a significantly higher PGAc with respect to WL and ML infills. At such a 

higher PGA demand, a higher IDR demand is expected and, hence, a higher IDRc, too. 

The IDRc values on the W/ model of each case study building are reported in Table 

8.11 and compared in Figure 8.18-19. Also in this case, the IDRc values are compared, 

for each infill layout, with the corresponding IDR at the IP collapse, i.e., at the complete 

loss of IP resistance, predicted by means of Panagiotakos and Fardis’s model. It is 

observed that the OOP collapse of WL and ML infills always foreruns the IP collapse, 

while SL infills collapse for IP actions prior than for OOP actions. 
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Table 8.11. Values of IDRc [%] for all case-study buildings (W/ models). 

Record #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 mean 

2P05WL 0.414 0.202 0.190 0.398 0.213 0.247 0.227 0.208 0.364 0.611 0.307 

2P15WL 0.414 0.202 0.190 0.398 0.213 0.247 0.227 0.208 0.364 0.611 0.307 

2P25WL 0.414 0.202 0.190 0.398 0.213 0.247 0.227 0.208 0.364 0.611 0.307 

2P35WL 0.387 0.175 0.167 0.372 0.203 0.231 0.186 0.180 0.306 0.503 0.271 

4P05WL 0.422 0.222 0.198 0.402 0.209 0.222 0.250 0.229 0.389 0.665 0.321 

4P15WL 0.385 0.200 0.186 0.366 0.211 0.230 0.225 0.189 0.357 0.604 0.295 

4P25WL 0.372 0.172 0.166 0.362 0.200 0.215 0.193 0.179 0.331 0.519 0.271 

4P35WL 0.329 0.148 0.141 0.309 0.166 0.201 0.158 0.147 0.272 0.433 0.230 

6P05WL 0.464 0.242 0.184 0.378 0.188 0.209 0.250 0.220 0.370 0.672 0.318 

6P15WL 0.366 0.216 0.188 0.340 0.219 0.216 0.230 0.170 0.332 0.562 0.284 

6P25WL 0.376 0.155 0.157 0.369 0.218 0.210 0.209 0.163 0.351 0.555 0.276 

6P35WL 0.359 0.163 0.141 0.309 0.183 0.197 0.153 0.155 0.288 0.424 0.237 

8P05WL 0.426 0.216 0.206 0.410 0.204 0.207 0.245 0.229 0.354 0.619 0.312 

8P15WL 0.412 0.212 0.175 0.359 0.228 0.220 0.230 0.193 0.374 0.550 0.295 

8P25WL 0.398 0.160 0.161 0.391 0.208 0.225 0.193 0.182 0.315 0.483 0.272 

8P35WL 0.333 0.154 0.131 0.334 0.166 0.201 0.172 0.162 0.288 0.394 0.233 

2P05ML 0.480 0.220 0.202 0.457 0.251 0.269 0.237 0.222 0.382 0.672 0.339 

2P15ML 0.480 0.220 0.202 0.457 0.251 0.269 0.237 0.222 0.382 0.672 0.339 

2P25ML 0.480 0.220 0.202 0.457 0.251 0.269 0.237 0.222 0.382 0.672 0.339 

2P35ML 0.457 0.182 0.179 0.384 0.221 0.266 0.200 0.190 0.364 0.574 0.302 

4P05ML 0.498 0.233 0.220 0.458 0.219 0.229 0.268 0.247 0.459 0.785 0.362 

4P15ML 0.412 0.208 0.209 0.439 0.247 0.259 0.241 0.218 0.417 0.659 0.331 

4P25ML 0.436 0.175 0.172 0.391 0.222 0.258 0.203 0.207 0.338 0.602 0.300 

4P35ML 0.385 0.169 0.141 0.324 0.199 0.217 0.188 0.156 0.288 0.502 0.257 

6P05ML 0.474 0.291 0.202 0.419 0.193 0.221 0.280 0.252 0.422 0.733 0.349 

6P15ML 0.439 0.255 0.220 0.368 0.230 0.222 0.248 0.203 0.332 0.590 0.311 

6P25ML 0.451 0.176 0.167 0.432 0.246 0.248 0.251 0.195 0.404 0.600 0.317 

6P35ML 0.384 0.170 0.146 0.371 0.186 0.223 0.171 0.172 0.314 0.492 0.263 

8P05ML 0.507 0.235 0.220 0.475 0.219 0.225 0.250 0.236 0.358 0.693 0.342 

8P15ML 0.449 0.216 0.175 0.387 0.255 0.247 0.232 0.228 0.397 0.589 0.317 

8P25ML 0.458 0.171 0.175 0.457 0.231 0.246 0.220 0.197 0.362 0.579 0.310 

8P35ML 0.382 0.162 0.156 0.337 0.179 0.225 0.196 0.181 0.323 0.465 0.261 

2P05SL 4.104 1.784 1.591 3.747 2.027 2.340 2.100 1.935 3.255 5.601 2.848 

2P15SL 4.104 1.784 1.591 3.747 2.027 2.340 2.100 1.935 3.255 5.601 2.848 

2P25SL 4.104 1.784 1.591 3.747 2.027 2.340 2.100 1.935 3.255 5.601 2.848 

2P35SL 3.510 1.416 1.403 3.371 1.842 2.048 1.665 1.542 2.924 4.749 2.447 

4P05SL 4.423 1.947 1.772 3.504 1.853 1.860 2.120 2.193 4.107 6.667 3.045 

4P15SL 3.496 1.692 1.861 3.597 2.204 1.984 2.168 1.808 3.680 5.376 2.786 

4P25SL 3.660 1.388 1.456 3.143 1.965 2.242 1.711 1.861 2.908 4.714 2.505 

4P35SL 3.374 1.335 1.207 2.765 1.687 1.784 1.667 1.190 2.543 4.351 2.190 

6P05SL 4.177 2.573 1.615 3.672 1.699 1.660 2.437 2.257 3.453 5.517 2.906 

6P15SL 3.553 2.233 1.831 2.845 2.022 1.973 2.106 1.562 2.666 4.444 2.524 

6P25SL 4.008 1.428 1.460 3.408 2.166 2.071 2.029 1.658 3.342 4.678 2.625 

6P35SL 3.214 1.390 1.097 3.026 1.482 1.823 1.450 1.422 2.508 4.338 2.175 

8P05SL 4.307 2.038 1.750 4.150 1.686 1.844 2.100 1.781 3.210 5.927 2.879 

8P15SL 3.582 1.940 1.320 3.056 2.011 1.977 1.976 2.022 3.084 4.644 2.561 

8P25SL 4.069 1.349 1.507 3.650 1.808 2.101 1.877 1.619 2.778 4.465 2.522 

8P35SL 3.063 1.327 1.275 2.639 1.496 1.952 1.582 1.443 2.635 4.126 2.154 
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Figure 8.18. Mean IDRc values on the W/ models for all case-study buildings. 

 

  

  
Figure 8.19. Mean IDRc values on the W/ models for all case-study buildings. 

PGAd =0.05 g PGAd=0.15 g PGAd=0.25 g PGAd=0.35 g IP collapse

2P 4P 6P 8P IP collapse

WL ML SL
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Also in this case, it is observed that IDRc is quite independent on the design PGA 

and on the total number of storeys of the building for WL and ML infills. Clearly, as 

expected, due to the higher OOP undamaged strength and to the lower impact of the 

IP/OOP interaction effect, SL buildings are provided with a significantly higher IDRc 

with respect to WL and ML infills. It is clear from the comparison of the results obtained 

on the W/O and on the W/ models that the IDR capacity with respect to the first OOP 

collapse is highly overestimated if the IP/OOP interaction effects are neglected. 

In Figures 8.20 and 8.21, fragility curves relating the probability of OOP collapse to 

the IDR value are shown, separately for each infill layout considered.  

More specifically, in Figure 8.20 the fragility curves for the three infill layouts are 

compared for the W/ and the W/O models. Their parameters (the median and the 

logarithmic standard deviation) are reported in Table 8.12.  

Each fragility curve contains in its parameters the record-to-record variability as well 

as the variability of IDRc associated with the variation of the buildings’ number of 

storeys and design PGA. In other words, one can enter such fragility curves only 

knowing the infill typology and without knowing the building number of storeys and 

design PGA, i.e., by assuming an equal probability that the considered building is 

characterized by a number of storeys equal to 2, 4, 6 or 8 and by a design PGA equal to 

0.05 g, 0.15 g, 0.25 g and 0.35 g. 

 

Table 8.12. Fragility curves parameters (IDRc) determined based on the results of the non-linear 

time-history analyses. 

 WL  ML  SL  

 W/O W/ W/O W/ W/O W/ 

median 0.776 0.261 0.867 0.288 6.02 2.39 

log. st. dev. 0.405 0.397 0.402 0.410 0.379 0.414 
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Figure 8.20. Fragility curves (IDRc): comparison of the results obtained by means of non-linear 

time-history analyses on W/ models (continuous lines) and on W/O models (dashed lines) for 

all the case-study buildings. 

 

As expected, a greater fragility is observed for W/ models. Remember that for the 

W/O models of SL buildings, the IDR values used for the construction of the fragility 

curves are more similar to a lower bound of the real IDRc, and, hence, also the fragility 

curve reported is more similar to a “lower bound” fragility curve. 

In Figure 8.21, the fragility curves for the WL and the SL layout obtained on the W/ 

model are compared with those obtained by applying the Reference Approach, i.e., with 

those determined in a non-linear static framework, shown in Chapter VII.  
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Figure 8.21. Fragility curves (IDRc): comparison of the results obtained by means of non-linear 

time-history analyses (continuous lines) with those obtained by means of non-linear static 

analyses (dashed lines). 

 

A greater fragility is observed for both WL and SL infills (especially for the least) 

when dealing with the results of non-linear time-history analyses, most likely due to the 

unconservative assumptions of the non-linear static approach, namely the absence of 

OOP effects on the IP behaviour of infills. 

 

8.6.3. Location of the first OOP collapse 

In this section, the issue of the location at which the first OOP collapse occurs is 

discussed. Of course, in the case of W/O models, the first OOP collapse always occurs 

at the building last floor. For what concerns W/ models, the first OOP collapse occurs 

at intermediate-high floors, at which the maximum IP/OOP interaction effect is 

expected.  

Remember that in Chapter VII, it was shown that in a non-linear static framework 

the first OOP collapse always occurs for infills in the Z direction, at the second storey 

for 2- and 4- storey buildings, at the third-fourth storey for 6-storey buildings, between 

the third and the fifth storey for 8-storey buildings. 

Also in this case, the first OOP collapse always occurs in the Z direction, i.e., along 

the buildings’ more deformable direction. In Figure 8.22, the frequency distribution of 

first OOP collapses is shown for each case-study building. More specifically, for each 

one of the 48 case-study buildings, the storeys are shaded with different shades of grey 
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based on the number of records (out of ten)  that were characterized by the occurrence 

of the first OOP collapse at that storey. 

 

 
(a) 

 
(b) 

2P05 4P05 6P05 8P05 2P15 4P15 6P15 8P15

2P25 4P25 6P25 8P25 2P35 4P35 6P35 8P35

WL

0 out of 10 cases 1-2 out of 10 cases 3-4 out of 10 cases 5 or more out of 10 cases

ML

2P05 4P05 6P05 8P05 2P15 4P15 6P15 8P15

2P25 4P25 6P25 8P25 2P35 4P35 6P35 8P35

0 out of 10 cases 1-2 out of 10 cases 3-4 out of 10 cases 5 or more out of 10 cases
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(c) 

Figure 8.22. Frequency distributions of OOP collapses for all the case-study buildings. (W/ 

models) 

 

It is observed that, in general, the first OOP collapse occurs at the building mid-

height or at the upper storeys for WL and ML, while for SL buildings the first OOP 

collapse occurs, in most cases, at the very top of the building, i.e., at the last or second-

to-last storey. Most likely, this occurs because for SL infills the impact of the IP/OOP 

interaction is very limited: hence, the first OOP collapse is generally due to “high” OOP 

displacement demand (typical of upper storeys) more than to “high” IP/OOP interaction 

effects (typical of intermediate storeys). 

 

8.7. ASSESSMENT OF THE OOP BEHAVIOUR FACTOR AND 

EFFECTIVE STIFFNESS OF URM INFILLS 

The main aim of this section is the definition of the behaviour factor associated with 

the OOP seismic response of URM infills.  

Each IP-undamaged infill of the case-study buildings can be considered as a Single 

Degree Of Freedom (SDOF) dynamic system provided of a mass m* equal to the mass 

participating to the first OOP vibration mode, of an initial stiffness, Kel,und, equal to the 

elastic stiffness of a plate calculated according to Timoshenko, of a certain strength, 

Fmax,und, and of a certain displacement capacity du,und, both calculated through the 

formulations proposed in Chapter IV. This is completely correct for the IP-undamaged 

infill. As already stated, due to the OOP modelling strategy adopted for infill walls in 

SL

2P05 4P05 6P05 8P05 2P15 4P15 6P15 8P15

2P25 4P25 6P25 8P25 2P35 4P35 6P35 8P35

0 out of 10 cases 1-2 out of 10 cases 3-4 out of 10 cases 5 or more out of 10 cases
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this study, the SDOF that represents them has an evolutionary behaviour during the non-

linear time-history analyses and its displacement capacity, strength and initial stiffness 

varies during the analyses due to IP/OOP interaction. 

Now, consider a specific record used for the non-linear time-history analysis of a 

single case-study building. As during IDAs the record is scaled, it is possible to define 

the lowest scale factor that multiplied for the unscaled record produces the first OOP 

infill collapse. Such collapse occurs at a certain storey of the case-study building. So, it 

is possible to associate to the specific record considered and to the specific case-study 

building: 

 

i. the storey at which the first OOP infill collapse occurs and the acceleration 

and displacement floor response spectrum corresponding to the scaled 

record. These floor spectra can be considered as capacity floor spectra for 

the specific record and for the specific “capacity condition” considered, i.e., 

the first OOP infill collapse; 

ii. the “residual” OOP initial stiffness, Kel,dam, reduced due to the IP action 

effects, that the infill/SDOF had when it collapsed; 

iii. the “residual” OOP strength, Fmax,dam, reduced due to the IP action effects, 

that the infill/SDOF had when it collapsed; 

iv. the “residual” OOP displacement capacity, du,dam, reduced due to the IP 

action effects, that the infill/SDOF had when it collapsed. 

 

As it is well-known, the behaviour factor of an SDOF is given by the ratio between 

the seismic force that the SDOF would have known if it was elastic, Fel, over its strength, 

Fmax. So, it is possible to calculate the q-factor in two ways: 

 

i. if the IP/OOP interaction is not considered, it is possible to enter the 

capacity acceleration floor response spectrum obtained for the W/O model 

with the elastic period function of Kel,und. The elastic spectral acceleration 

considered is multiplied for the SDOF mass, m*, and then divided by the 

strength of the IP-undamaged infill/SDOF, Fmax,und, to obtain the q-factor in 

the W/O case, as shown in Figure 8.23; 

ii. if the IP/OOP interaction is considered, it is possible to enter the capacity 

acceleration floor response spectrum obtained for the W/ model with the 

elastic period function of Kel,dam. The elastic spectral acceleration 
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considered is multiplied for the SDOF mass, m*, and then divided by the 

strength of the IP-damaged infill/SDOF, Fmax,dam, to obtain the q-factor in 

the W/ case, as shown in Figure 8.23;  

 

 
Figure 8.23. Determination of the behaviour factor for the W/O and the W/ model with 

reference to the OOP elastic stiffness of the IP-undamaged (W/O model) and of the IP-

damaged (W/ model) infill. 

 

The above approaches will be defined “straightforward approaches” for the 

evaluation of the q-factors and will be applied in the following subsection. Further 

approaches will be described in the next subsections. 

 

8.7.1. Straightforward approaches for the evaluation of the q-factor 

The values obtained for the q-factor are shown in Table 8.13 and in Figures 8.24-25 

for the W/O models. As already stated in the previous subsection, even at PGA equal to 

1.50 g, in many cases the OOP collapse was not observed for SL infills. Hence, the value 

reported in the “mean” column, in this case, is not the average of the q-factors assessed 

for each record but the minimum value of the available results, in order to provide a 

value more similar to a lower bound of the real q-factor of such type of infills. This 

circumstance is also pointed out in Figures 8.24-25, in which the q-factors values 

reported for the SL layout are not represented by a continuous line but by a dashed line, 

instead. 
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Table 8.13. Values of the q-factor obtained through the non-linear time-history analysis on the 

W/O models calculated by dividing the OOP seismic demand corresponding to the initial 

elastic stiffness of the IP-undamaged infill by its strength. 

Record #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 mean 

2P05WL 1.04 1.40 1.36 1.22 0.87 1.19 1.25 1.40 1.21 1.02 1.20 

2P15WL 1.05 1.14 1.33 1.08 0.88 1.09 1.16 1.27 1.37 0.90 1.13 

2P25WL 1.22 1.23 1.44 1.33 0.89 1.19 1.34 1.19 1.11 1.04 1.20 

2P35WL 1.12 1.37 1.46 1.17 0.78 1.04 1.44 1.39 1.16 1.00 1.19 

4P05WL 1.40 1.40 1.40 1.45 1.39 1.37 1.35 1.38 1.44 1.45 1.41 

4P15WL 1.45 1.29 1.45 1.29 1.44 1.43 1.37 1.40 1.31 1.45 1.39 

4P25WL 1.35 1.43 1.44 1.44 1.37 1.51 1.44 1.31 1.37 1.38 1.40 

4P35WL 1.33 1.41 1.37 1.49 1.40 1.39 1.34 1.36 1.48 1.41 1.40 

6P05WL 1.44 1.36 1.39 1.38 1.39 1.51 1.48 1.39 1.41 1.42 1.42 

6P15WL 1.46 1.40 1.37 1.48 1.38 1.51 1.38 1.44 1.44 1.33 1.42 

6P25WL 1.51 1.40 1.40 1.47 1.32 1.32 1.43 1.51 1.42 1.34 1.41 

6P35WL 1.41 1.38 1.49 1.39 1.46 1.49 1.44 1.44 1.36 1.44 1.43 

8P05WL 1.58 1.42 1.48 1.54 1.62 1.44 1.47 1.45 1.58 1.58 1.52 

8P15WL 1.54 1.44 1.49 1.54 1.53 1.58 1.61 1.63 1.58 1.56 1.55 

8P25WL 1.45 1.54 1.49 1.58 1.53 1.45 1.56 1.45 1.44 1.51 1.50 

8P35WL 1.54 1.53 1.55 1.54 1.53 1.54 1.55 1.54 1.53 1.54 1.54 

2P05ML 1.24 1.42 1.72 1.14 0.90 1.41 1.28 1.3 1.2 0.9 1.26 

2P15ML 0.90 1.32 1.51 1.21 1.03 1.03 1.14 1.3 1.4 0.9 1.18 

2P25ML 1.17 1.53 1.55 1.19 0.99 1.38 1.59 1.2 1.4 1 1.30 

2P35ML 1.41 1.18 1.66 1.09 0.93 1.11 1.56 1.3 1.1 0.9 1.23 

4P05ML 1.18 1.37 1.64 1.52 1.36 1.40 1.38 1.6 1.6 1.4 1.44 

4P15ML 1.44 1.29 1.42 1.29 1.43 1.50 1.28 1.5 1.4 1.6 1.42 

4P25ML 1.38 1.53 1.58 1.38 1.34 1.60 1.58 1.5 1.6 1.4 1.49 

4P35ML 1.42 1.18 1.53 1.30 1.56 1.60 1.53 1.3 1.5 1.3 1.41 

6P05ML 1.53 1.50 1.24 1.50 1.29 1.66 1.50 1.45 1.43 1.47 1.46 

6P15ML 1.55 1.57 1.23 1.59 1.37 1.59 1.55 1.43 1.64 1.38 1.49 

6P25ML 1.53 1.31 1.55 1.61 1.55 1.32 1.52 1.28 1.43 1.42 1.45 

6P35ML 1.34 1.45 1.61 1.48 1.30 1.51 1.19 1.30 1.32 1.52 1.40 

8P05ML 1.62 1.62 1.65 1.72 1.60 1.39 1.33 1.32 1.43 1.55 1.52 

8P15ML 1.49 1.54 1.32 1.52 1.34 1.42 1.57 1.52 1.59 1.41 1.47 

8P25ML 1.63 1.73 1.38 1.59 1.71 1.26 1.69 1.36 1.75 1.43 1.55 

8P35ML 1.51 1.61 1.80 1.42 1.43 1.71 1.56 1.47 1.66 1.68 1.59 

2P05SL n/a n/a n/a n/a 1.13 n/a 1.84 n/a n/a n/a 1.13 

2P15SL n/a n/a n/a n/a 1.10 n/a 2.14 n/a n/a n/a 1.10 

2P25SL n/a n/a n/a n/a 1.69 n/a 1.54 n/a n/a n/a 1.54 

2P35SL n/a n/a n/a n/a n/a n/a 1.84 n/a n/a n/a 1.84 

4P05SL n/a n/a n/a n/a n/a 2.87 2.84 2.23 n/a n/a 2.23 

4P15SL n/a n/a n/a n/a n/a 2.12 2.34 n/a n/a n/a 2.12 

4P25SL n/a n/a n/a n/a n/a n/a 2.13 n/a n/a n/a 2.13 

4P35SL n/a n/a n/a n/a 2.39 n/a n/a n/a n/a n/a 2.39 

6P05SL 2.95 n/a n/a n/a 2.54 3.07 3.91 2.33 n/a 2.26 2.26 

6P15SL n/a n/a n/a n/a 2.46 2.16 2.79 3.20 2.53 n/a 2.16 

6P25SL n/a n/a 2.55 n/a 2.99 n/a 2.48 3.12 n/a 2.14 2.14 

6P35SL n/a 2.31 n/a n/a 2.67 n/a 2.35 n/a n/a 3.25 2.31 

8P05SL n/a 2.83 3.41 2.52 3.41 2.79 3.39 n/a 2.89 2.84 2.52 

8P15SL n/a 2.61 3.27 n/a n/a n/a 3.07 3.65 n/a 3.17 2.61 

8P25SL n/a 3.46 3.24 n/a n/a n/a 4.04 n/a n/a 3.66 3.24 

8P35SL n/a 3.52 2.83 n/a n/a n/a n/a n/a n/a 3.33 2.83 
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Figure 8.24. Mean q-factor values on the W/O models for all case-study buildings 

(straightforward approach). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PGAd =0.05 g PGAd=0.15 g PGAd=0.25 g PGAd=0.35 g

2P 4P 6P 8P



352 Chapter VIII – Assessment of infilled RC buildings in a non-linear dynamic framework 

 

 

 

 

  

  
Figure 8.25. Mean q-factor values on the W/O models for all case-study buildings 

(straightforward approach) 

 

It is observed that the average q-factor is quite independent on the design PGA of the 

building, while it has a noticeable dependence on the total number of storeys of the 

building for WL and ML infills. This occurs because at fixed design PGA and infill 

layouts, the first OOP collapse occurs at higher acceleration demand for higher buildings 

(remember that in W/O models the first OOP collapse always occurs at the last storey), 

while the strength capacity of the infill is not dependent on the building height. Trends 

are not so clear for SL buildings, as the values of q-factors obtained are derived from a 

small number of data. 

The average q-factor obtained not accounting for the IP/OOP interaction effect is 

equal to 1.38 for WL buildings and to 1.42 for ML buildings. The lower bound q-factor 

for SL buildings is equal to 1.10. 

The values obtained for the q-factor are shown in Table 8.14 and in Figures 8.26-27 

for the W/ models.  

 

 

 

WL ML SL
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Table 8.14. Values of the q-factor obtained through the non-linear time-history analysis on the 

W/ models calculated by dividing the OOP seismic demand corresponding to the initial elastic 

stiffness of the IP-damaged infill by its strength. 

Record #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 mean 

2P05WL 1.29 1.58 1.69 1.37 1.01 1.43 1.57 1.58 1.48 1.17 1.42 

2P15WL 1.23 1.40 1.53 1.32 1.00 1.31 1.51 1.61 1.62 1.08 1.36 

2P25WL 1.39 1.54 1.92 1.45 1.12 1.38 1.58 1.45 1.36 1.33 1.45 

2P35WL 1.44 1.58 1.72 1.36 0.90 1.34 1.71 1.72 1.48 1.19 1.44 

4P05WL 1.58 1.57 1.64 1.63 1.57 1.62 1.66 1.59 1.71 1.62 1.62 

4P15WL 1.64 1.57 1.64 1.56 1.63 1.62 1.62 1.67 1.55 1.55 1.60 

4P25WL 1.60 1.57 1.68 1.59 1.67 1.69 1.65 1.56 1.58 1.54 1.61 

4P35WL 1.56 1.57 1.55 1.69 1.55 1.67 1.54 1.57 1.66 1.55 1.59 

6P05WL 1.81 1.69 1.88 1.75 1.77 1.91 1.84 1.81 1.75 1.73 1.79 

6P15WL 1.82 1.83 1.75 1.78 1.71 1.80 1.73 1.76 1.89 1.75 1.78 

6P25WL 1.77 1.83 1.82 1.87 1.74 1.71 1.75 1.90 1.84 1.80 1.80 

6P35WL 1.74 1.73 1.88 1.89 1.81 1.75 1.70 1.74 1.77 1.85 1.79 

8P05WL 1.90 1.86 2.02 1.97 1.93 1.85 1.92 1.81 1.93 1.93 1.91 

8P15WL 1.90 1.85 1.91 2.01 1.90 1.96 1.89 1.95 1.93 1.99 1.93 

8P25WL 1.90 1.93 1.93 1.92 1.89 1.94 1.93 1.86 1.80 1.98 1.91 

8P35WL 2.02 1.99 2.04 1.98 1.86 1.92 1.87 1.86 1.93 1.89 1.94 

2P05ML 1.29 1.53 1.83 1.22 0.93 1.48 1.34 1.41 1.22 1.01 1.33 

2P15ML 0.99 1.44 1.52 1.22 1.06 1.08 1.30 1.44 1.44 0.91 1.24 

2P25ML 1.28 1.60 1.57 1.22 1.10 1.44 1.65 1.17 1.41 1.12 1.36 

2P35ML 1.48 1.31 1.79 1.21 0.92 1.12 1.55 1.54 1.15 0.97 1.31 

4P05ML 1.24 1.38 1.59 1.51 1.41 1.47 1.39 1.66 1.76 1.46 1.49 

4P15ML 1.58 1.31 1.46 1.29 1.44 1.58 1.33 1.62 1.44 1.60 1.47 

4P25ML 1.49 1.53 1.71 1.47 1.37 1.72 1.66 1.48 1.66 1.52 1.56 

4P35ML 1.49 1.27 1.58 1.45 1.67 1.68 1.54 1.27 1.53 1.35 1.48 

6P05ML 1.80 1.68 1.47 1.63 1.49 1.91 1.63 1.75 1.70 1.72 1.68 

6P15ML 1.71 1.82 1.50 1.84 1.64 1.86 1.82 1.62 1.89 1.60 1.73 

6P25ML 1.88 1.56 1.79 1.82 1.88 1.56 1.65 1.49 1.66 1.54 1.68 

6P35ML 1.57 1.63 1.92 1.78 1.56 1.67 1.38 1.58 1.51 1.79 1.64 

8P05ML 1.91 1.98 1.80 1.96 1.76 1.69 1.62 1.49 1.70 1.84 1.78 

8P15ML 1.67 1.83 1.57 1.79 1.60 1.64 1.82 1.82 1.80 1.73 1.73 

8P25ML 1.99 1.92 1.62 1.79 2.05 1.45 2.02 1.62 1.88 1.59 1.79 

8P35ML 1.70 1.79 2.04 1.64 1.70 1.99 1.69 1.77 1.98 1.92 1.82 

2P05SL 0.86 1.37 1.58 1.02 0.94 1.15 1.39 1.41 1.52 1.17 1.24 

2P15SL 1.02 1.44 1.26 1.15 0.82 1.07 1.24 1.27 1.18 0.98 1.14 

2P25SL 1.09 1.34 1.74 1.10 1.08 1.19 1.24 1.22 1.11 1.24 1.24 

2P35SL 1.23 1.32 1.39 1.18 0.79 1.02 1.18 1.61 1.06 0.92 1.17 

4P05SL 1.36 1.18 1.54 1.26 1.05 1.40 1.41 1.48 1.40 1.18 1.33 

4P15SL 1.23 1.14 1.24 1.01 1.26 1.45 1.22 1.64 1.37 1.30 1.29 

4P25SL 1.51 1.54 1.53 1.42 1.44 1.62 1.45 1.38 1.37 1.59 1.49 

4P35SL 1.51 1.41 1.18 1.39 1.53 1.23 1.12 1.14 1.31 1.45 1.33 

6P05SL 1.52 1.37 1.58 1.57 1.40 1.69 1.87 1.36 1.83 1.21 1.54 

6P15SL 1.48 1.20 1.39 1.58 1.57 1.18 1.67 1.66 1.40 1.57 1.47 

6P25SL 1.71 1.71 1.44 1.48 1.53 1.45 1.36 1.56 1.54 1.39 1.51 

6P35SL 1.50 1.45 1.33 1.64 1.35 1.57 1.33 1.56 1.31 1.49 1.45 

8P05SL 1.55 1.69 1.57 1.33 1.74 1.46 1.53 1.39 1.71 1.43 1.54 

8P15SL 1.25 1.52 1.73 1.61 1.33 1.60 1.62 1.70 1.80 1.86 1.60 

8P25SL 1.60 1.77 1.58 1.53 1.71 1.82 1.75 1.41 1.67 1.55 1.64 

8P35SL 1.40 2.01 1.51 1.54 1.80 1.79 1.65 1.54 1.44 1.52 1.62 
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Figure 8.26. Mean q-factor values on the W/ models for all case-study buildings 

(straightforward approach). 
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Figure 8.27. Mean q-factor values on the W/ models for all case-study buildings 

(straightforward approach) 

 

It is observed that the average q-factor is quite independent on the design PGA of the 

building, while it increases at increasing total number of storeys of the building. As 

shown in Figures 8.26-27, even if accounting for the IP/OOP interaction, most of the 

first OOP collapses occurs at higher storeys in higher buildings. Hence, it occurs, in 

general, for higher OOP seismic demand in higher building. On the other hand, it has 

been shown in the previous subsection that the IDR demand acting on the collapsed infill 

at the attainment of the first OOP collapse is quite similar for all case-study buildings. 

Hence, the residual OOP strength of the first collapsed infills is quite the same, 

independently on the building height. Hence, q-factors are higher for higher buildings. 

The average q-factor obtained not accounting for the IP/OOP interaction effect is 

equal to 1.68 for WL buildings and to 1.57 for ML buildings and 1.41 for SL buildings.  

 

8.7.2. Practice-oriented approach for the evaluation of the q-factor 

Now, consider that in general, for the sake of simplicity, the IP/OOP interaction is 

not explicitly modelled. So, usually, Kel,dam and Fmax,dam are not known by the 

practitioner. For this reason, the q-factor can be calculated by considering the OOP 

WL ML SL
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seismic demand evaluated for the W/ model but entering the capacity acceleration floor 

spectrum with the vibration period associated with Kel,und and dividing the elastic force 

by Fmax,und, as reported in Figure 8.28.  

 

 
Figure 8.28. Determination of the behaviour factor for the W/ model with reference to the OOP 

elastic stiffness of the IP-undamaged infill. 

 

In this case, it should not be surprising that q-factors even lower than the unit are 

obtained, as the OOP seismic demand considered is consistent with the one associated 

with an IP-damaged infill while the OOP strength considered is that associated with the 

IP-undamaged infill. This occurs as if the OOP seismic demand should be indeed 

increased to account for the detrimental effects of the IP/OOP interaction if such a 

demand is compared with the OOP strength of the IP-undamaged infill.  

The values obtained for the q-factor are shown in Table 8.15 and in Figures 8.29-30 

for the W/ models.  
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Table 8.15. Values of the q-factor obtained through the non-linear time-history analysis by 

calculating, for the W/ model, the OOP seismic demand corresponding to the initial elastic 

stiffness of the IP-undamaged infill and dividing the elastic force by the strength of the IP-

undamaged infill. 

Record #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 mean 

2P05WL 0.98 1.18 1.26 1.01 0.74 1.05 1.19 1.17 1.10 0.89 1.06 

2P15WL 0.89 1.06 1.15 0.99 0.74 0.99 1.09 1.16 1.18 0.83 1.01 

2P25WL 1.05 1.17 1.37 1.11 0.80 1.01 1.20 1.05 1.01 0.96 1.07 

2P35WL 1.05 1.18 1.25 1.04 0.69 0.99 1.28 1.24 1.06 0.86 1.07 

4P05WL 1.16 1.16 1.24 1.24 1.20 1.19 1.21 1.18 1.26 1.20 1.20 

4P15WL 1.22 1.16 1.22 1.14 1.21 1.22 1.17 1.22 1.17 1.16 1.19 

4P25WL 1.16 1.20 1.25 1.22 1.21 1.26 1.22 1.14 1.18 1.17 1.20 

4P35WL 1.14 1.18 1.19 1.26 1.19 1.25 1.17 1.18 1.25 1.16 1.20 

6P05WL 1.36 1.27 1.35 1.32 1.35 1.36 1.37 1.35 1.29 1.27 1.33 

6P15WL 1.34 1.37 1.26 1.36 1.26 1.37 1.29 1.29 1.35 1.27 1.32 

6P25WL 1.36 1.34 1.32 1.36 1.28 1.28 1.31 1.37 1.35 1.29 1.33 

6P35WL 1.28 1.28 1.37 1.35 1.31 1.34 1.31 1.32 1.29 1.34 1.32 

8P05WL 1.45 1.40 1.44 1.41 1.47 1.37 1.42 1.37 1.42 1.42 1.42 

8P15WL 1.47 1.37 1.40 1.47 1.40 1.45 1.45 1.47 1.47 1.49 1.44 

8P25WL 1.40 1.43 1.47 1.42 1.44 1.40 1.41 1.39 1.37 1.45 1.42 

8P35WL 1.45 1.43 1.48 1.44 1.41 1.43 1.39 1.41 1.44 1.43 1.43 

2P05ML 0.99 1.14 1.32 0.92 0.68 1.07 1.01 1.08 0.91 0.72 0.98 

2P15ML 0.75 1.09 1.17 0.90 0.77 0.79 0.94 1.11 1.09 0.70 0.93 

2P25ML 0.93 1.18 1.20 0.94 0.82 1.06 1.22 0.86 1.03 0.83 1.01 

2P35ML 1.06 0.97 1.31 0.88 0.71 0.84 1.19 1.10 0.87 0.70 0.96 

4P05ML 0.94 1.06 1.22 1.13 1.07 1.10 1.03 1.19 1.26 1.08 1.11 

4P15ML 1.15 0.96 1.05 1.00 1.09 1.20 0.98 1.19 1.09 1.21 1.09 

4P25ML 1.08 1.13 1.26 1.10 1.03 1.23 1.21 1.12 1.21 1.09 1.15 

4P35ML 1.11 0.94 1.17 1.03 1.23 1.27 1.13 0.98 1.15 0.97 1.10 

6P05ML 1.32 1.25 1.08 1.24 1.08 1.40 1.25 1.26 1.24 1.27 1.24 

6P15ML 1.31 1.35 1.07 1.42 1.17 1.40 1.31 1.18 1.35 1.18 1.27 

6P25ML 1.36 1.18 1.32 1.35 1.35 1.14 1.27 1.10 1.19 1.18 1.24 

6P35ML 1.15 1.26 1.37 1.28 1.14 1.26 1.06 1.16 1.13 1.30 1.21 

8P05ML 1.40 1.45 1.38 1.45 1.33 1.24 1.16 1.10 1.28 1.36 1.32 

8P15ML 1.25 1.33 1.13 1.36 1.15 1.21 1.31 1.35 1.33 1.27 1.27 

8P25ML 1.42 1.47 1.22 1.38 1.49 1.12 1.46 1.18 1.44 1.22 1.34 

8P35ML 1.31 1.36 1.52 1.18 1.25 1.45 1.29 1.31 1.43 1.43 1.35 

2P05SL 0.66 1.01 1.21 0.79 0.68 0.87 1.05 1.02 1.11 0.89 0.93 

2P15SL 0.78 1.03 0.92 0.86 0.60 0.77 0.92 0.91 0.90 0.75 0.84 

2P25SL 0.82 1.02 1.26 0.84 0.81 0.86 0.91 0.90 0.81 0.90 0.91 

2P35SL 0.92 0.96 1.04 0.88 0.61 0.78 0.91 1.16 0.77 0.69 0.87 

4P05SL 0.97 0.90 1.15 0.94 0.80 1.07 1.05 1.11 1.00 0.90 0.99 

4P15SL 0.88 0.83 0.91 0.78 0.92 1.07 0.87 1.24 1.02 0.93 0.95 

4P25SL 1.12 1.14 1.09 1.06 1.03 1.16 1.08 0.99 1.05 1.15 1.09 

4P35SL 1.11 1.03 0.84 1.02 1.13 0.91 0.83 0.84 1.01 1.07 0.98 

6P05SL 1.15 1.02 1.17 1.17 1.06 1.20 1.37 1.00 1.32 0.93 1.14 

6P15SL 1.09 0.89 1.06 1.15 1.12 0.89 1.24 1.20 1.03 1.12 1.08 

6P25SL 1.23 1.24 1.03 1.06 1.16 1.06 1.01 1.16 1.11 1.02 1.11 

6P35SL 1.16 1.08 0.98 1.24 0.97 1.21 1.01 1.14 0.99 1.13 1.09 

8P05SL 1.15 1.21 1.14 1.01 1.30 1.05 1.11 1.06 1.27 1.06 1.14 

continues            
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follows            

8P15SL 0.96 1.11 1.26 1.16 0.99 1.22 1.16 1.27 1.29 1.39 1.18 

8P25SL 1.21 1.27 1.17 1.13 1.27 1.34 1.30 1.08 1.27 1.18 1.22 

8P35SL 1.07 1.50 1.15 1.18 1.33 1.32 1.21 1.13 1.09 1.16 1.21 

 

 

   

 

   
Figure 8.29. Mean q-factor values on the W/ models for all case-study buildings (practice-

oriented approach). 
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Figure 8.30. Mean q-factor values on the W/ models for all case-study buildings (practice-

oriented approach). 

 

It is observed that the average q-factor is quite independent on the design PGA of the 

building, while it increases at increasing total number of storeys of the building. As 

shown in Figures 8.29-30, even if accounting for the IP/OOP interaction, most of the 

first OOP collapses occurs at higher storeys in higher buildings. Hence, it occurs, in 

general, for higher OOP seismic demand in higher building. On the other hand, the OOP 

strength of the IP-undamaged infill is independent on the number of storeys. Hence, q-

factors are higher for higher buildings. 

The average q-factor obtained not accounting for the IP/OOP interaction effect is 

equal to 1.25 for WL buildings and to 1.16 for ML buildings and 1.05 for SL buildings.  

 

8.7.3. Evaluation of the q-factor based on the OOP effective stiffness 

The choice of the period at which the OOP seismic demand should be calculated is 

an open issue, as discussed in Chapter V. In this sense, the concept of effective stiffness 

of an SDOF can be used to provide a consistent approach that accounts, contemporarily, 

for the strength and displacement capacity of the infill/SDOF.  

WL ML SL



360 Chapter VIII – Assessment of infilled RC buildings in a non-linear dynamic framework 

 

 

 

In other word, the OOP effective stiffness of the infill is the one associated to the 

period that is associated to a displacement demand obtained from the displacement 

capacity floor response spectrum equal to the OOP collapse displacement of the infill. 

In this case, the effective stiffness can be calculated both for W/O and for W/ model 

(Figure 8.31). Clearly, an implicit assumption made is a sort of “equal displacement 

rule”, i.e., it is assumed that the displacement demand undergone by the elastic 

infill/SDOF is equal to that undergone by the non-linear SDOF. Further investigation 

are necessary concerning this issue. 

 

 
Figure 8.31. Determination of the behaviour factor for the W/O and the W/ model with 

reference to the OOP effective stiffness. 

 

For the W/O model, in Table 8.16, the values obtained of the OOP effective stiffness 

obtained for the ten records and for each case-study building are normalized with respect 

the initial elastic stiffness as calculated for the analyses carried out for this Chapter, i.e., 

according to Timoshenko (1959)’s approach. As already stated in the previous 

subsection, even at PGA equal to 1.50 g, in many cases the OOP collapse was not 

observed for SL infills. Hence, the value reported in the “mean” column, in this case, is 

not the average of the Keff/Kel ratios assessed for each record but the minimum value of 

the available results, in order to provide a value more similar to a lower bound of the 

real Keff/Kel of such type of infills.  
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Table 8.16. Values of the effective stiffness Keff normalized with respect to the elastic Kel 

stiffness of the IP-undamaged infill obtained through the non-linear time-history analysis on the 

W/O models. 

Record #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 mean 

2P05WL 0.32 0.31 0.28 0.36 0.29 0.45 0.32 0.50 0.33 0.20 0.34 

2P15WL 0.30 0.34 0.35 0.45 0.17 0.31 0.32 0.49 0.39 0.27 0.34 

2P25WL 0.35 0.36 0.29 0.30 0.29 0.41 0.37 0.31 0.27 0.26 0.32 

2P35WL 0.36 0.31 0.58 0.26 0.18 0.22 0.58 0.54 0.26 0.25 0.35 

4P05WL 0.31 0.61 0.54 0.47 0.46 0.37 0.55 0.40 0.53 0.30 0.45 

4P15WL 0.29 0.43 0.44 0.41 0.37 0.26 0.31 0.56 0.33 0.33 0.37 

4P25WL 0.47 0.60 0.41 0.26 0.45 0.48 0.45 0.40 0.46 0.30 0.43 

4P35WL 0.43 0.31 0.50 0.37 0.32 0.33 0.37 0.58 0.35 0.54 0.41 

6P05WL 0.29 0.32 0.36 0.45 0.28 0.36 0.53 0.49 0.31 0.33 0.37 

6P15WL 0.35 0.39 0.35 0.36 0.53 0.31 0.25 0.35 0.42 0.40 0.37 

6P25WL 0.52 0.38 0.53 0.36 0.31 0.43 0.28 0.27 0.34 0.41 0.38 

6P35WL 0.39 0.37 0.62 0.46 0.39 0.45 0.32 0.55 0.29 0.44 0.43 

8P05WL 0.43 0.25 0.61 0.56 0.43 0.35 0.45 0.34 0.44 0.32 0.42 

8P15WL 0.36 0.54 0.34 0.49 0.33 0.42 0.33 0.35 0.53 0.34 0.40 

8P25WL 0.49 0.44 0.59 0.46 0.34 0.52 0.55 0.54 0.57 0.51 0.50 

8P35WL 0.56 0.69 0.28 0.54 0.45 0.51 0.31 0.51 0.31 0.52 0.47 

2P05ML 0.23 0.44 0.29 0.47 0.21 0.33 0.27 0.44 0.32 0.39 0.34 

2P15ML 0.27 0.47 0.53 0.46 0.29 0.29 0.21 0.37 0.42 0.21 0.35 

2P25ML 0.33 0.41 0.30 0.36 0.33 0.43 0.48 0.32 0.44 0.35 0.38 

2P35ML 0.47 0.37 0.58 0.26 0.33 0.31 0.43 0.31 0.35 0.30 0.37 

4P05ML 0.48 0.30 0.46 0.51 0.29 0.48 0.38 0.41 0.64 0.53 0.45 

4P15ML 0.27 0.28 0.65 0.46 0.38 0.33 0.29 0.41 0.62 0.49 0.42 

4P25ML 0.33 0.51 0.40 0.30 0.46 0.37 0.45 0.47 0.45 0.47 0.42 

4P35ML 0.33 0.26 0.41 0.37 0.36 0.26 0.43 0.34 0.34 0.53 0.36 

6P05ML 0.41 0.47 0.56 0.37 0.44 0.59 0.34 0.47 0.49 0.54 0.47 

6P15ML 0.30 0.37 0.34 0.29 0.47 0.40 0.39 0.47 0.54 0.36 0.39 

6P25ML 0.52 0.39 0.58 0.71 0.41 0.38 0.57 0.46 0.33 0.44 0.48 

6P35ML 0.25 0.32 0.37 0.55 0.42 0.45 0.32 0.48 0.26 0.54 0.40 

8P05ML 0.39 0.60 0.41 0.44 0.47 0.53 0.32 0.45 0.52 0.47 0.46 

8P15ML 0.40 0.47 0.34 0.39 0.52 0.39 0.47 0.52 0.58 0.24 0.43 

8P25ML 0.52 0.65 0.31 0.45 0.40 0.45 0.44 0.34 0.55 0.35 0.45 

8P35ML 0.57 0.31 0.53 0.65 0.42 0.62 0.50 0.42 0.64 0.50 0.52 

2P05SL n/a n/a n/a n/a 0.05 n/a 0.06 n/a n/a n/a 0.05 

2P15SL n/a n/a n/a n/a 0.03 n/a 0.11 n/a n/a n/a 0.07 

2P25SL n/a n/a n/a n/a 0.09 n/a 0.06 n/a n/a n/a 0.07 

2P35SL n/a n/a n/a n/a n/a n/a 0.09 n/a n/a n/a 0.09 

4P05SL n/a n/a n/a n/a n/a 0.11 0.16 0.13 n/a n/a 0.13 

4P15SL n/a n/a n/a n/a n/a 0.11 0.06 n/a n/a n/a 0.09 

4P25SL n/a n/a n/a n/a n/a n/a 0.11 n/a n/a n/a 0.11 

4P35SL n/a n/a n/a n/a 0.09 n/a 0.00 n/a n/a n/a 0.05 

6P05SL 0.14 n/a n/a n/a 0.10 0.15 0.16 0.10 n/a 0.11 0.13 

6P15SL n/a n/a n/a n/a 0.10 0.08 0.12 0.19 0.09 n/a 0.11 

6P25SL n/a n/a 0.09 n/a 0.09 n/a 0.08 0.07 n/a 0.09 0.09 

6P35SL n/a 0.11 0.00 n/a 0.08 n/a 0.12 n/a n/a 0.13 0.09 

8P05SL n/a 0.15 0.17 0.12 0.17 0.10 0.14 n/a 0.10 0.11 0.13 

8P15SL n/a 0.13 0.20 n/a n/a n/a 0.18 0.14 n/a 0.07 0.14 

8P25SL n/a 0.10 0.19 n/a n/a n/a 0.16 n/a n/a 0.12 0.14 

8P35SL n/a 0.10 0.10 n/a n/a n/a n/a n/a n/a 0.13 0.11 

 



362 Chapter VIII – Assessment of infilled RC buildings in a non-linear dynamic framework 

 

 

 

The average Keff/Kel ratio obtained not accounting for the IP/OOP interaction effect 

is equal to 0.40 for WL infills and to 0.42 for ML infills, while the minimum value 

registered for SL infills is 0.05. It is worth to mention that the average effective stiffness 

for WL and ML infills is roughly equal to their secant stiffness at peak load (which is 

equal, as reported in Chapter IV, to 0.40 times Kel). Note that the effective stiffness for 

SL is very low. This occurs because the OOP displacement capacity of such a type of 

infills is very high, hence a spectral displacement equal to the displacement capacity is 

attained only for very high values of the effective vibration period of the infill. 

The values for the q-factor obtained from the W/O models by calculating the force 

demand acting on infills as a function of their effective stiffness are shown in Table 8.17 

and in Figures 8.33-34. As already stated in the previous subsection, even at PGA equal 

to 1.50 g, in many cases the OOP collapse was not observed for SL infills. Hence, the 

value reported in the “mean” column, in this case, is not the average of the q-factors 

assessed for each record but the minimum value of the available results, in order to 

provide a value more similar to a lower bound of the real q-factor of such type of infills. 

This circumstance is also pointed out in Figure 8.33-34, in which the q-factors values 

reported for the SL layout are not represented by a continuous line but by a dashed line, 

instead. 
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Table 8.17. Values of the q-factor obtained through the non-linear time-history analysis on the 

W/O models calculated by dividing the OOP seismic demand corresponding to the effective 

period of the infill by its strength. 

Record #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 mean 

2P05WL 0.87 1.16 1.07 0.93 0.73 0.93 0.90 1.16 0.98 0.67 0.94 

2P15WL 0.84 1.06 1.02 0.99 0.78 1.09 0.86 1.18 1.17 0.76 0.97 

2P25WL 0.88 0.96 1.18 0.93 0.73 1.15 0.96 0.97 0.91 0.96 0.96 

2P35WL 0.87 1.39 1.37 0.93 0.81 0.96 1.39 1.07 1.06 0.95 1.08 

4P05WL 1.29 1.28 1.26 1.13 1.04 1.22 1.22 0.95 1.23 1.19 1.18 

4P15WL 1.12 1.02 1.24 1.08 1.30 1.16 1.15 1.38 1.09 1.06 1.16 

4P25WL 1.34 1.49 1.08 1.17 1.27 1.30 1.49 1.14 1.14 1.13 1.25 

4P35WL 1.29 1.14 1.17 1.25 1.05 1.13 1.09 1.43 1.53 1.14 1.22 

6P05WL 1.45 1.27 1.17 1.17 1.15 1.17 1.40 1.31 1.26 1.11 1.25 

6P15WL 1.27 1.21 1.35 1.48 1.21 1.18 1.08 1.48 1.16 1.20 1.26 

6P25WL 1.49 1.05 1.32 1.36 1.13 1.13 1.11 1.16 1.20 1.23 1.22 

6P35WL 1.35 1.13 1.55 1.19 1.51 1.18 1.36 1.38 1.17 1.35 1.32 

8P05WL 1.63 1.19 1.46 1.61 1.41 1.11 1.28 1.47 1.48 1.45 1.41 

8P15WL 1.38 1.10 1.36 1.14 1.49 1.47 1.36 1.09 1.12 1.18 1.27 

8P25WL 1.22 1.34 1.55 1.26 1.32 1.12 1.49 1.39 1.12 1.08 1.29 

8P35WL 1.33 1.59 1.21 1.35 1.39 1.42 1.29 1.36 1.20 1.31 1.35 

2P05ML 1.01 1.43 1.41 0.89 0.70 1.19 1.05 1.18 0.98 0.95 1.08 

2P15ML 0.70 1.15 1.37 1.17 1.00 1.07 0.87 1.20 1.24 0.77 1.06 

2P25ML 1.02 1.42 1.40 1.03 0.96 1.22 1.63 1.28 0.96 0.99 1.19 

2P35ML 1.33 1.13 1.41 0.85 0.95 1.05 1.46 1.28 0.96 0.74 1.12 

4P05ML 1.10 1.12 1.30 1.33 1.07 1.36 1.13 1.37 1.40 1.39 1.26 

4P15ML 1.30 1.04 1.30 1.06 1.15 1.31 1.19 1.47 1.35 1.39 1.26 

4P25ML 1.39 1.36 1.61 1.10 1.17 1.55 1.12 1.14 1.50 1.52 1.35 

4P35ML 0.96 0.93 1.25 1.14 1.56 1.28 1.31 1.01 1.30 1.14 1.19 

6P05ML 1.34 1.46 1.29 1.45 1.06 1.49 1.37 1.11 1.04 1.27 1.29 

6P15ML 1.27 1.27 1.02 1.17 1.19 1.37 1.40 1.25 1.37 1.24 1.25 

6P25ML 1.52 1.14 1.26 1.63 1.68 1.14 1.40 0.95 1.38 1.07 1.32 

6P35ML 1.25 1.08 1.57 1.37 1.41 1.24 0.87 1.24 1.17 1.42 1.26 

8P05ML 1.32 1.41 1.45 1.42 1.38 1.40 1.26 1.08 1.49 1.29 1.35 

8P15ML 1.41 1.47 1.05 1.26 1.51 1.15 1.42 1.32 1.32 1.01 1.29 

8P25ML 1.68 1.58 1.37 1.37 1.42 1.15 1.67 1.33 1.48 1.33 1.44 

8P35ML 1.44 1.19 1.58 1.47 1.31 1.54 1.22 1.45 1.56 1.28 1.40 

2P05SL n/a n/a n/a n/a 0.15 n/a 0.23 n/a n/a n/a 0.15 

2P15SL n/a n/a n/a n/a 0.15 n/a 0.28 n/a n/a n/a 0.15 

2P25SL n/a n/a n/a n/a 0.22 n/a 0.24 n/a n/a n/a 0.22 

2P35SL n/a n/a n/a n/a n/a n/a 0.29 n/a n/a n/a 0.29 

4P05SL n/a n/a n/a n/a n/a 0.33 0.45 0.32 n/a n/a 0.32 

4P15SL n/a n/a n/a n/a n/a 0.37 0.33 n/a n/a n/a 0.33 

4P25SL n/a n/a n/a n/a n/a n/a 0.34 n/a n/a n/a 0.34 

4P35SL n/a n/a n/a n/a 0.39 n/a n/a n/a n/a n/a 0.39 

6P05SL 0.48 n/a n/a n/a 0.37 0.48 0.43 0.29 n/a 0.34 0.29 

6P15SL n/a n/a n/a n/a 0.40 0.31 0.36 0.49 0.38 n/a 0.31 

6P25SL n/a n/a 0.36 n/a 0.42 n/a 0.30 0.33 n/a 0.26 0.26 

6P35SL n/a 0.33 n/a n/a 0.42 n/a 0.35 n/a n/a 0.40 0.33 

8P05SL n/a 0.43 0.59 0.42 0.58 0.48 0.52 n/a 0.35 0.40 0.35 

8P15SL n/a 0.41 0.53 n/a n/a n/a 0.51 0.54 n/a 0.36 0.36 

8P25SL n/a 0.50 0.51 n/a n/a n/a 0.54 n/a n/a 0.44 0.44 

8P35SL n/a 0.49 0.36 n/a n/a n/a n/a n/a n/a 0.38 0.36 
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Figure 8.32. Mean q-factor values on the W/O models for all case-study buildings (effective 

stiffness approach). 
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Figure 8.33. Mean q-factor values on the W/O models for all case-study buildings (effective 

stiffness approach). 

 

It is observed that the q-factors for SL infills are often lower than the unit. This occurs 

because at very high (effective) period, the floor displacement demand is high (and equal 

to the OOP displacement capacity of the infill) but the floor acceleration demand is low 

and, namely, lower than that associated with the OOP strength of the IP-undamaged 

infill. 

The average q-factor obtained not accounting for the IP/OOP interaction effect is 

equal to 1.20 for WL buildings and to 1.26 for ML buildings. The lower bound q-factor 

for SL buildings is equal to 0.15. 

For the W/ model, in Table 8.18, the values obtained of the OOP effective stiffness 

obtained for the ten records and for each case-study building are normalized with respect 

the initial elastic stiffness as calculated for the analyses carried out for this Chapter, i.e., 

according to Timoshenko’s approach.  
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Table 8.18. Values of the effective stiffness Keff normalized with respect to the elastic Kel 

stiffness of the IP-undamaged infill obtained through the non-linear time-history analysis on the 

W/ models. 

Record #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 mean 

2P05WL 0.26 0.25 0.22 0.30 0.22 0.34 0.29 0.36 0.28 0.15 0.27 

2P15WL 0.22 0.29 0.26 0.38 0.12 0.25 0.28 0.41 0.29 0.21 0.27 

2P25WL 0.27 0.32 0.26 0.21 0.23 0.30 0.31 0.28 0.25 0.22 0.27 

2P35WL 0.32 0.25 0.47 0.22 0.15 0.21 0.48 0.42 0.24 0.19 0.30 

4P05WL 0.25 0.47 0.42 0.35 0.36 0.31 0.46 0.30 0.45 0.22 0.36 

4P15WL 0.24 0.35 0.35 0.31 0.29 0.20 0.24 0.47 0.26 0.24 0.30 

4P25WL 0.39 0.44 0.33 0.21 0.36 0.36 0.36 0.34 0.34 0.23 0.33 

4P35WL 0.34 0.23 0.38 0.27 0.25 0.28 0.29 0.46 0.26 0.40 0.32 

6P05WL 0.26 0.27 0.33 0.39 0.26 0.29 0.49 0.46 0.27 0.28 0.33 

6P15WL 0.27 0.35 0.32 0.32 0.43 0.26 0.21 0.28 0.34 0.36 0.31 

6P25WL 0.45 0.35 0.45 0.34 0.29 0.37 0.23 0.25 0.29 0.36 0.34 

6P35WL 0.35 0.34 0.50 0.43 0.31 0.40 0.26 0.44 0.25 0.41 0.37 

8P05WL 0.34 0.23 0.55 0.46 0.34 0.32 0.42 0.29 0.35 0.25 0.35 

8P15WL 0.32 0.45 0.32 0.45 0.30 0.35 0.30 0.28 0.44 0.31 0.35 

8P25WL 0.41 0.38 0.50 0.36 0.29 0.45 0.50 0.46 0.48 0.43 0.43 

8P35WL 0.49 0.58 0.24 0.49 0.37 0.44 0.24 0.42 0.27 0.43 0.40 

2P05ML 0.16 0.32 0.22 0.33 0.15 0.25 0.20 0.35 0.22 0.27 0.25 

2P15ML 0.21 0.34 0.36 0.33 0.20 0.22 0.17 0.28 0.29 0.15 0.26 

2P25ML 0.23 0.30 0.20 0.27 0.23 0.31 0.33 0.23 0.31 0.25 0.27 

2P35ML 0.35 0.29 0.39 0.20 0.22 0.23 0.33 0.23 0.25 0.22 0.27 

4P05ML 0.33 0.23 0.34 0.34 0.21 0.35 0.26 0.30 0.46 0.37 0.32 

4P15ML 0.21 0.21 0.42 0.35 0.27 0.26 0.19 0.28 0.40 0.32 0.29 

4P25ML 0.25 0.32 0.31 0.21 0.34 0.26 0.33 0.35 0.34 0.31 0.30 

4P35ML 0.22 0.20 0.29 0.28 0.25 0.20 0.30 0.24 0.23 0.36 0.26 

6P05ML 0.36 0.38 0.42 0.27 0.33 0.50 0.27 0.35 0.38 0.46 0.37 

6P15ML 0.24 0.31 0.27 0.23 0.35 0.33 0.30 0.34 0.44 0.28 0.31 

6P25ML 0.42 0.32 0.48 0.52 0.31 0.30 0.42 0.36 0.26 0.32 0.37 

6P35ML 0.22 0.24 0.29 0.42 0.33 0.37 0.27 0.40 0.21 0.40 0.32 

8P05ML 0.31 0.48 0.32 0.32 0.34 0.45 0.26 0.34 0.43 0.38 0.36 

8P15ML 0.32 0.38 0.27 0.34 0.39 0.32 0.35 0.40 0.43 0.21 0.34 

8P25ML 0.43 0.49 0.24 0.37 0.30 0.38 0.35 0.29 0.40 0.25 0.35 

8P35ML 0.42 0.25 0.39 0.46 0.36 0.47 0.36 0.37 0.55 0.37 0.40 

2P05SL 0.03 0.03 0.05 0.03 0.03 0.04 0.03 0.03 0.05 0.03 0.03 

2P15SL 0.03 0.04 0.03 0.03 0.02 0.02 0.04 0.04 0.04 0.03 0.03 

2P25SL 0.02 0.03 0.05 0.02 0.04 0.04 0.03 0.03 0.03 0.02 0.03 

2P35SL 0.03 0.03 0.04 0.03 0.02 0.02 0.04 0.04 0.02 0.02 0.03 

4P05SL 0.03 0.02 0.03 0.04 0.02 0.04 0.05 0.06 0.03 0.04 0.03 

4P15SL 0.03 0.03 0.03 0.03 0.05 0.05 0.02 0.03 0.02 0.03 0.03 

4P25SL 0.03 0.03 0.04 0.05 0.04 0.04 0.05 0.02 0.04 0.05 0.04 

4P35SL 0.03 0.03 0.03 0.04 0.04 0.04 0.03 0.03 0.03 0.05 0.04 

6P05SL 0.05 0.04 0.03 0.04 0.04 0.06 0.05 0.04 0.04 0.04 0.04 

6P15SL 0.03 0.03 0.05 0.04 0.04 0.03 0.05 0.06 0.04 0.05 0.04 

6P25SL 0.04 0.05 0.04 0.04 0.03 0.05 0.03 0.03 0.06 0.04 0.04 

6P35SL 0.04 0.05 0.05 0.04 0.03 0.04 0.04 0.04 0.03 0.04 0.04 

8P05SL 0.04 0.06 0.06 0.04 0.06 0.04 0.04 0.04 0.04 0.04 0.05 

8P15SL 0.03 0.05 0.06 0.06 0.03 0.04 0.06 0.04 0.03 0.03 0.04 

8P25SL 0.04 0.03 0.06 0.05 0.03 0.07 0.04 0.03 0.06 0.04 0.04 

8P35SL 0.02 0.04 0.04 0.03 0.04 0.03 0.04 0.03 0.06 0.05 0.04 
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The average Keff/Kel ratio obtained accounting for the IP/OOP interaction effect is 

equal to 0.33 for WL infills, to 0.31 for ML infills and to 0.04 for SL infills. The very 

low effective stiffness of SL infills has been already explained in the case of W/O 

models. The values of the effective stiffness evaluated for W/ models is generally lower 

than that obtained on W/O models. This occurs because the OOP model adopted is 

characterized by an OOP collapse displacement that increases at increasing IP damage 

level. Hence, the OOP collapse of infills occurs, in the case of W/ model, for a higher 

displacement demand than in the case of W/O models. This circumstance yields to 

higher values of the effective period and, so, to lower values of the effective stiffness of 

infills. 

The values for the q-factor obtained from the W/ models by calculating the force 

demand acting on infills as a function of their effective stiffness are shown in Table 8.19 

and in Figures 8.34-35.  
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Table 8.19. Values of the q-factor obtained through the non-linear time-history analysis on the 

W/ models calculated by dividing the OOP seismic demand corresponding to the effective 

period of the IP-undamaged infill by its strength. 

Record #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 mean 

2P05WL 0.82 0.95 0.98 0.85 0.59 0.83 0.89 0.92 0.84 0.64 0.83 

2P15WL 0.77 1.05 0.95 0.94 0.61 0.96 0.86 1.03 1.04 0.74 0.89 

2P25WL 0.84 0.96 1.13 0.81 0.64 1.01 0.92 0.80 0.79 0.98 0.89 

2P35WL 0.91 1.15 1.27 0.88 0.65 0.91 1.26 1.03 0.90 0.88 0.99 

4P05WL 1.05 1.15 1.10 0.91 0.90 1.07 1.13 0.89 1.10 1.07 1.04 

4P15WL 0.97 0.94 1.08 0.87 1.15 0.97 0.93 1.23 0.92 0.95 1.00 

4P25WL 1.20 1.13 0.98 0.94 1.14 1.06 1.21 0.92 0.90 0.94 1.04 

4P35WL 1.06 1.02 0.99 0.98 0.96 1.00 1.02 1.13 1.21 0.99 1.04 

6P05WL 1.25 1.20 1.03 1.02 1.13 1.05 1.20 1.16 1.07 1.02 1.11 

6P15WL 1.20 1.32 1.28 1.32 1.11 1.19 0.99 1.25 1.06 1.21 1.19 

6P25WL 1.29 1.01 1.34 1.34 1.01 1.01 1.01 1.08 1.27 1.17 1.15 

6P35WL 1.27 0.95 1.34 1.27 1.23 1.04 1.20 1.27 1.05 1.16 1.18 

8P05WL 1.43 1.11 1.35 1.36 1.41 1.09 1.25 1.29 1.31 1.18 1.28 

8P15WL 1.28 1.09 1.17 1.18 1.31 1.45 1.32 1.07 1.10 1.24 1.22 

8P25WL 1.18 1.16 1.43 1.07 1.34 1.13 1.39 1.23 1.19 1.13 1.22 

8P35WL 1.27 1.43 1.18 1.24 1.28 1.42 1.18 1.26 1.06 1.32 1.27 

2P05ML 0.79 1.06 1.00 0.80 0.55 0.83 0.81 0.90 0.78 0.73 0.82 

2P15ML 0.58 0.98 1.11 0.85 0.70 0.80 0.79 0.91 0.93 0.66 0.83 

2P25ML 0.85 1.09 0.99 0.89 0.72 1.02 1.14 0.87 0.79 0.84 0.92 

2P35ML 0.93 0.93 1.20 0.69 0.67 0.82 1.09 0.97 0.68 0.62 0.86 

4P05ML 0.80 0.89 0.92 0.96 0.89 1.07 0.82 1.08 1.13 0.99 0.96 

4P15ML 0.98 0.76 1.05 0.87 0.97 1.09 0.95 1.16 1.04 1.04 0.99 

4P25ML 1.11 1.04 1.22 0.81 1.00 1.22 0.91 0.89 1.21 1.14 1.05 

4P35ML 0.83 0.83 1.01 0.93 1.22 0.94 0.94 0.70 1.01 0.93 0.93 

6P05ML 1.29 1.23 1.10 1.18 0.95 1.22 1.07 1.00 0.95 1.17 1.12 

6P15ML 1.04 1.18 0.84 1.05 1.07 1.10 1.18 1.09 1.08 1.05 1.07 

6P25ML 1.33 0.95 1.18 1.27 1.34 0.94 1.07 0.88 1.08 0.91 1.10 

6P35ML 1.00 1.01 1.40 1.09 1.15 0.97 0.76 1.04 1.04 1.33 1.08 

8P05ML 1.19 1.21 1.21 1.33 1.14 1.13 1.21 0.82 1.24 1.09 1.16 

8P15ML 1.17 1.20 0.91 1.05 1.17 1.03 1.18 1.27 1.06 0.99 1.10 

8P25ML 1.44 1.32 1.18 1.24 1.15 0.93 1.39 1.20 1.14 1.05 1.20 

8P35ML 1.26 1.09 1.35 1.20 1.14 1.40 1.11 1.22 1.47 1.09 1.23 

2P05SL 0.09 0.13 0.17 0.09 0.09 0.13 0.13 0.15 0.15 0.14 0.13 

2P15SL 0.10 0.14 0.14 0.13 0.08 0.12 0.13 0.12 0.13 0.10 0.12 

2P25SL 0.11 0.16 0.18 0.12 0.12 0.14 0.14 0.13 0.12 0.12 0.13 

2P35SL 0.12 0.14 0.14 0.11 0.09 0.11 0.13 0.16 0.10 0.08 0.12 

4P05SL 0.14 0.12 0.16 0.15 0.11 0.13 0.16 0.17 0.14 0.13 0.14 

4P15SL 0.14 0.14 0.14 0.09 0.15 0.17 0.12 0.16 0.12 0.15 0.14 

4P25SL 0.18 0.18 0.18 0.17 0.14 0.18 0.16 0.13 0.13 0.15 0.16 

4P35SL 0.16 0.17 0.11 0.16 0.18 0.12 0.10 0.12 0.15 0.16 0.14 

6P05SL 0.17 0.12 0.15 0.17 0.16 0.18 0.17 0.12 0.21 0.13 0.16 

6P15SL 0.15 0.11 0.15 0.18 0.17 0.14 0.17 0.19 0.15 0.16 0.16 

6P25SL 0.19 0.19 0.14 0.13 0.18 0.16 0.12 0.14 0.18 0.14 0.16 

6P35SL 0.15 0.14 0.15 0.19 0.14 0.15 0.14 0.15 0.15 0.13 0.15 

8P05SL 0.16 0.17 0.19 0.16 0.20 0.17 0.18 0.14 0.17 0.16 0.17 

8P15SL 0.15 0.18 0.19 0.17 0.15 0.17 0.19 0.18 0.18 0.16 0.17 

8P25SL 0.14 0.17 0.19 0.16 0.16 0.22 0.17 0.15 0.20 0.16 0.17 

8P35SL 0.12 0.23 0.15 0.16 0.16 0.16 0.17 0.17 0.17 0.15 0.16 
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Figure 8.34. Mean q-factor values on the W/ models for all case-study buildings (effective 

stiffness approach). 
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Figure 8.35. Mean q-factor values on the W/ models for all case-study buildings (effective 

stiffness approach). 

 

Also in this case, it is observed that in many cases, especially for SL infills, q-factors 

are lower than the unit. This occurs because at very high period, such as the effective 

one, the floor displacement demand is high but the floor acceleration demand is low and, 

namely, lower than that associated with the OOP strength of the IP-undamaged infill. 

The average q-factor obtained not accounting for the IP/OOP interaction effect is 

equal to 1.08 for WL infills, to 1.03 for ML infills, and to 0.12 for SL infills. 

 

8.7.4. Final remarks and proposals 

In this section, the results previously shown and discussed are summarized in order 

to define a proposal for the value of the OOP behaviour factor and of the effective 

stiffness of URM infills. 

Remember that the effective stiffness has been evaluated as a fraction of the OOP 

initial stiffness of the IP-undamaged infill. Its value has been determined for both W/O 

and W/ models. The average values obtained for the considered infill layouts are 

reported, separately, in Table 8.20. Actually, the value reported for the SL infills in W/O 

models is not an average, but a lower bound of the Keff/Kel ratio. Note that the average 

WL ML SL
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values are not distinguished also for design PGA of the case-study building and/or for 

total number of storeys of the case-study building as it was observed that both of these 

parameters have only a slight influence on the value of the effective stiffness. 

 

Table 8.20. Average values of the effective stiffness for all infill layouts. 

 WL  ML  SL  

 W/O W/ W/O W/ W/O W/ 

Keff/Kel 0.40 0.33 0.42 0.31 0.05 0.04 

 

It is observed that, on average, the effective stiffness is greater when evaluated on 

W/O models. This occurs because the proposed OOP model is characterized by an OOP 

conventional collapse displacement that can remain constant or increase at increasing IP 

displacement demand. Hence, infills collapsed in the W/O model are characterized by 

lower OOP displacement demand at collapse than in W/ model and, so, by a lower 

effective period. 

For what concerns the behaviour factor, it has been evaluated in different ways on 

both W/O and W/ models: 

 

i. With demand calculated based on the OOP elastic period of the IP-

undamaged infill and capacity calculated based on the OOP strength of the 

IP-undamaged infill (for W/O models, within the “straightforward 

approach” and for W/ models, within the “practice-oriented approach”); 

ii. With demand calculated based on the OOP elastic period of the IP-damaged 

infill and capacity calculated based on the OOP strength of the IP-damaged 

infill (only for W/ models within the “straightforward approach”); 

iii. With demand calculated based on the OOP effective period of the infill and 

capacity calculated based on the OOP strength of the IP-undamaged infill 

(for both W/O and W/ model within the approach based on the “effective 

stiffness”). 

 

The 16th, 50th and 84th percentile values of the q-factors obtained for the considered 

infill layouts and accounting for the record-to-record variability are reported, separately, 

in Tables 8.21-23. Remember that the values reported for the SL infills in W/O models 

are derived based on a reduced dataset, as the collapse of SL infills was not always 

observed in W/O models. Note that the average values are not distinguished also for 
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design PGA of the case-study building and/or for total number of storeys of the case-

study building as it was observed that both of these parameters have only a slight 

influence on the value of the q-factor. In other words, one can use such percentiles of 

the q-factor only knowing the infill typology and without knowing the building number 

of storeys and design PGA, i.e., by assuming an equal probability that the considered 

building is characterized by a number of storeys equal to 2, 4, 6 or 8 and by a design 

PGA equal to 0.05 g, 0.15 g, 0.25 g and 0.35 g. 

 

Table 8.21. Values of the q-factor for all infill layouts: 16th percentile. 

 WL  ML  SL  

approach W/O W/ W/O W/ W/O W/ 

straightforward  1.24 1.53 1.24 1.31 2.14 1.18 

practice-oriented - 1.12 - 0.98 - 0.88 

effective stiffness 1.00 0.91 1.04 0.83 0.29 0.12 

 

Table 8.22. Values of the q-factor for all infill layouts: 50th percentile. 

 WL  ML  SL  

approach W/O W/ W/O W/ W/O W/ 

straightforward  1.41 1.72 1.43 1.59 2.79 1.42 

practice-oriented - 1.27 - 1.18 - 1.06 

effective stiffness 1.18 1.08 1.28 1.04 0.38 0.15 

 

Table 8.23. Values of the q-factor for all infill layouts: 84th percentile. 

 WL  ML  SL  

approach W/O W/ W/O W/ W/O W/ 

straightforward  1.53 1.91 1.60 1.82 3.37 1.63 

practice-oriented - 1.41 - 1.35 - 1.21 

effective stiffness 1.39 1.27 1.45 1.21 0.50 0.18 

 

Based on the above results, the most appropriate and practical way to calculate in a 

linear elastic framework the OOP seismic demand on URM infills and to verify them 

against the seismic action by accounting for the IP/OOP interaction (but without 

explicitly modelling it) is, in the writer opinion:  

 

i. calculating the seismic demand as a function of the initial elastic stiffness of 

the IP-undamaged infill; 
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ii. calculating the OOP capacity as a function of the OOP strength of the IP-

undamaged infill; 

iii. assuming a behaviour factor equal to 1. 

 

First of all, such suggestions derive from a simplification of the “practice-oriented” 

approach results. The value proposed for the behaviour factor is consistent with the 16th 

percentile of the values obtained through the analyses’ results and it seems, to the writer 

judgment, sufficiently conservative for all infill layouts.  

 Such value of the behaviour factor can be considered as representative of a specific 

mechanical phenomenon. If the IP/OOP interaction is not explicitly modelled and the 

OOP seismic demand and capacity of infills is calculated as if the infill were not IP-

damaged, the beneficial effects of the potential OOP ductility capacity of the infill 

should not be considered to perform a safety-sided simplified safety check. It is worth 

to mention that the value herein suggested for the behaviour factor is equal to that 

already assumed by NZSEE 2017. 

The reader should be aware that the OOP seismic demand on infills, for a perfect 

closure on the suggested approach, should be calculated by means of appropriate floor 

spectra derived from the analyses herein performed. Ongoing research is focused also 

on this issue. 
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Appendix A 

Analytical derivation of mechanical-based OOP 

strength models 

A.1.  INTRODUCTION 

In this Appendix, the analytical derivation of the mechanical-based OOP strength 

models presented in Chapter I is reported. 

As reported also in Chapter 1, the mechanical strength formulations based on one-

way arching action are McDowell et al.’s model (1956), Angel et al.’s model (1994), 

Eurocode 6’s model (2004). The only mechanical-based strength formulation based on 

two-way arching action is that by Bashandy et al. (1995).  

The derivation of all these formulations is herein described in detail. Although such 

derivation may be available elsewhere in the literature (especially for which concerns 

Angel et al.’s and Bashandy et al.’s model), presenting all of them with a unique notation 

and critical approach seems to the Author worthy to be included in this thesis and 

potentially useful to the interested reader. 

 

A.2.  OOP STRENGTH MODELS BASED ON ONE-WAY ARCHING 

ACTION 

In this section, the OOP strength models accounting for one-way arching action are 

derived. 
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A.2.1. McDowell et al.’s strength model 

Consider a unit-width masonry stripe constrained at the edges by stiff elements with 

length equal to h, thickness equal to t, material compressive strength fm and elastic 

modulus Em. It is assumed that the considered masonry stripe is subjected to an OOP 

uniformly distributed load. The contribution to the OOP strength of flexural mechanisms 

is neglected. Hence, when calculating the OOP strength, the considered masonry stripe 

is already cracked at its ends and mid-height. Of course, it is assumed that arching action 

occurs. 

At the initial stage, the masonry stripe is separated in two parts with length h/2 and 

diagonal length L’, as shown in Figure A.1 and reported in Equation 1. 

 

L′ = √(
h

2
)

2

+ t2 (1) 

 

 
Figure A.1. McDowell et al.’s masonry stripe at the initial stage. 

 

When the lateral OOP displacement of point m equals the infill thickness, t, the 

diagonal length equals h/2. Hence, when the OOP displacement of the infill centre 

equals t, the shortening strain of the diagonal εm can be expressed as reported in Equation 

2. 

 

εm =
L′ − h 2⁄

L′
=

√(h 2⁄ )2 + t2 − h 2⁄

√(h 2⁄ )2 + t2
 (2) 

 

n

m

L’h
/2

h
/2
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If the material was indefinitely elastic, the maximum compressive stress acting at the 

masonry part ends and producing such a diagonal shortening could be expressed through 

the simple elastic relation reported in Equation 3. 

 

fmax = Emεm (3) 

 

By a simple proportion, it is possible to calculate the lateral displacement xy at which 

the maximum stress equals masonry compressive strength fm, as reported in Equation 4. 

 

xy

fm
=

t

Emεm

→ xy =
tfm

Emεm

 (4) 

 

It is assumed that the OOP strength of the infill is attained when the maximum 

compressive stress at each masonry part end equals fm and when the OOP central 

displacement of the masonry stripe equals xy. In addition, it is assumed that in such a 

state, the compressive stress distribution at each end of masonry parts can be represented 

by a stress block with height equal to 0.85fm and base equal to 0.85c, with c equal to the 

contact length. For all these reasons, the arching thrust according to McDowell et al.’s, 

C, is expressed as reported in Equation 5. 

 

C = 0.85c0.85fm (5) 

 

Considering each masonry part, C acts at both of their ends with distance b, as 

reported in Figure A.2.  
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Figure A.2. McDowell et al.’s arching mechanism for a single masonry part. 

 

Remember that at the attainment of the OOP strength, with reference to Figure A.1, 

point n has not moved while point m has shifted along the horizontal direction with a 

displacement equal to xy. Hence, the initial distance between n and m is equal to t, while 

at the attainment of the OOP strength of the stripe it is equal to t-xy. The centroid of C 

is applied, at the masonry part upper edge, at a distance equal to one half 0.85c from 

point n and at a distance equal to one half 0.85c from point m. Hence, the distance b 

between C directions can be expressed as reported in Equation 6. 

 

b = t − xy −
1

2
0.85c −

1

2
0.85c = t − xy − 0.85c (6) 

 

The torque, M, can be expressed as reported in Equation 7. 

 

M = C ∙ b = 0.85c0.85fm(t − xy − 0.85c) (7) 

 

In Equation 7 all values are known except c, the contact length. It is assumed that its 

value at the attainment of the OOP strength is such that the moment M is maximized. 

Hence, c is calculated by differentiating M with respect to c and by equating such 

derivative to zero. The value obtained for the contact length is reported in Equation 8. 

 

c =
1

2 ∙ 0.85
(t − xy) =

1

1.7
(t − xy) (8) 

 

0.85fm

0.85c

0.85fm

0.85c

b

C

C
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By substituting Equation 8 in Equation 7, the expression of M reported in Equation 

9 is obtained. 

 

M =
1

4
0.85fm(t − xy)

2
 (9) 

 

The principle of virtual work is then applied. It is assumed that M acts on each of the 

two rotating masonry parts and that one-half of M, My, acts at each end of each masonry 

part, as reported in Equation 10.  

 

M𝑦 =
1

8
0.85fm(t − xy)

2
 (10) 

 

The external work under uniformly distributed load calculated with reference to the 

mechanism shown in Figure A.3 is reported in Equation 11. 

 

 
Figure A.3. Collapse mechanism for McDowell et al.’s masonry stripe. 

 

Le = q
h2

4
φ (11) 

 

On the other hand, the internal work is reported in Equation 12. 

 

Li = 4Myφ (12) 

 

By equating Equation 11 and Equation 12, the value of qmax reported in Equation 13 

is obtained. 

q

My

My

My

My



380 Appendix A – Analytical derivation of mechanical-based OOP strength models 

 

 

 

 

qmax =
16My

h2
 (13) 

 

By substituting Equation 10 in Equation 13, a straightforward formulation for qmax is 

derived, as reported in Equation 14. 

 

qmax = 1.7
fm

(h t⁄ )2
(1 −

fm
Emεm

)
2

 (14) 

 

A.2.2. Angel et al.’s strength model 

Consider a unit-width masonry stripe constrained at the edges by stiff elements with 

length equal to h, thickness equal to t, material compressive strength fm and elastic 

modulus Em. It is assumed that the considered masonry stripe is subjected to an OOP 

uniformly distributed load. The contribution to the OOP strength of flexural mechanisms 

is neglected. Hence, when calculating the OOP strength, the considered masonry stripe 

is already cracked at its ends and mid-height. Of course, it is assumed that arching action 

occurs. 

As shown in Figure A.4, the arching thrust T acts in a certain direction at each end 

of each rotating masonry segment. Such direction forms an angle called γ with the 

vertical direction, while the rotation angle of the masonry part is equal to θ. The contact 

length evaluated on the masonry segment undeformed shape is called b. 

 

 
Figure A.4. Angel et al.’s arching mechanism. 
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In Figure A.4, the static scheme of the cracked masonry stripe is shown, too, together 

with the equivalent scheme considered by Angel et al. Under these assumptions, based 

on equilibrium, Equation 15 can be written. 

 

qh

2
= 2Tsinγ (15) 

 

It is assumed that the compressive stresses distribution acting along b is characterized 

by a maximum compressive stress equal to fb and a medium compressive stress equal to 

fav. The k1 ratio is hence defined as reported in Equation 16. 

 

k1 =
fav

fb
 (16) 

 

As shown in Figure A.5, the resultant compressive action C acting perpendicular to 

the undeformed edge of the masonry part can be calculated as reported in Equation 17. 

 

 
Figure A.5. Stresses and forces acting at one end of the upper masonry part according to Angel 

et al. 

 

C = bfav = bk1fb (17) 

 

It is assumed that C is the component acting along the masonry rotating part axis of 

a vertical action V. Hence, V can be expressed as reported in Equation 18. 

 

TC

V

γ

θ

b

fb
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V = C cosθ⁄ = bk1fb cosθ⁄  (18) 

 

At the same time, also T is the component of V acting along the direction of arching 

thrust. Hence, T can be expressed as reported in Equation 19. 

 

T = Vcosγ = Ccosγ cosθ⁄ = bk1fb cosγ cosθ⁄  (19) 

 

By substituting Equation 19 in Equation 15, the formulation reported in Equation 20 

is obtained to express q. 

 

qh

2
= 2bk1fb cosγ sinγ cosθ⁄ → q =

4bk1fb
cosγ
cosθ

sinγ

h
=

4
b
t
k1fb

cosγ
cosθ

sinγ

h/t
 (20) 

 

Now, explicit formulations for calculating γ, b and θ are derived. As shown in Figure 

A.6, it is assumed that the outside fiber of the masonry segment is characterized by a 

linear distribution of strain equal to zero at the cracked end and to εmax to the supported 

end.  

 

 
Figure A.6. Stresses and forces acting at one end of the upper masonry part according to Angel 

et al. 

 

The shortening of the outside fiber evaluated along the masonry part axis, Δ, can be 

expressed as reported in Equation 21. 

 

crack

crack

ε

x

x=h/2

x=0

εmax

Δ



Appendix A – Analytical derivation of mechanical-based OOP strength models 383 

 

 

 

  

Δ = ∫ ε(x)
h/2

0

dx = ∫
εmax

h/2
x

h/2

0

dx =
2εmax

h
∫ x

h/2

0

dx =
1

4
εmaxh = ch (21) 

 

In Equation 21, c is a dimensionless parameter equal to one-fourth of εmax. In addition 

a further parameter is introduces, i.e., the distance of C application point from the outer 

fiber of masonry segment calculated along the undeformed edge of the masonry segment 

normalized with respect to b. Such parameter is named k2. 

 

 
Figure A.7. Calculation of Angel et al.’s contact length b and θ and γ angles based on 

geometrical considerations. 

 

Consider now Figure A.7 and, specifically, the red triangle. Equation 22 applies. 

 

(
h

2
+ 2δ) cosθ =

h

2
 (22) 

 

From Equation 22 the expression of δ is derived as reported in Equation 23. 

 

δ =
h

4
(

1

cosθ
− 1) =

h

4
(
1 − cosθ

cosθ
) (23) 

T

T

h/2

Δ

γ θ

β

θ

a
b

t/2

Δ(1-k2)

θ

Δ(1-k2)
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From the green triangle in Figure A.7, the expression of δ reported in Equation 24 is 

derived. 

 

δ = atanθ = a
sinθ

cosθ
 (24) 

 

By comparing Equation 23 and Equation 24, the value of a is derived as reported in 

Equation 25. 

 

h

4
(
1 − cosθ

cosθ
) = a

sinθ

cosθ
→ a =

h

4
(
1 − cosθ

sinθ
) (25) 

 

It can be observed from Figure A.7 that a is defined as t/2-b. Hence, Equation 26 

applies. 

 

b =
t

2
− a =

t

2
−

h

4
(
1 − cosθ

sinθ
) =

t

2
−

h

4
(

1

sinθ
−

1

tanθ
) (26) 

 

From the blue triangle in Figure A.7, the expressions of sinθ and tanθ are derived as 

reported in Equations 27 and 28. 

 

∆= √b2 + ∆2sinθ → sinθ =
∆2

√b2 + ∆2
 (27) 

 

∆= btanθ → tanθ =
∆

b
 (28) 

 

By substituting Equations 27 and 28 in Equation 26, Equation 29 is obtained for b. 

 

b =
t

2
−

h

4
(
√b2 + ∆2

∆2
−

b

∆
) (29) 

 

Some manipulation on Equation 29 together with the definition of the parameter c 

yield to the expression reported in Equation 30. 

 

(1 −
1

4c
) b −

t

2
= −

1

4c
√b2 + ∆2 (30) 
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By squaring both members of Equation 30 and with some other manipulation, 

Equation 31 is obtained. 

 

(1 −
1

2c
) b2 − t (1 −

1

4c
) b + (

t

2
)

2

− (
h

4
)

2

= 0 (31) 

 

The term (h/4)2 can be rewritten as reported in Equation 32. 

 

(
h

4
)

2

=
1

4
(
h

t
)

2

(
t

2
)

2

 (32) 

 

By substituting Equation 32 in Equation 31, Equation 33 is obtained.  

 

(1 −
1

2c
) b2 − t (1 −

1

4c
) b + (

t

2
)

2

[1 −
1

4
(
h

t
)

2

] = 0 (33) 

 

If in Equation 33 all terms are divided by t2, Equation 34 is obtained. 

 

(1 −
1

2c
) (

b

t
)

2

− t (1 −
1

4c
)
b

t
+

1

2
[1 −

1

4
(
h

t
)

2

] = 0 (34) 

 

The feasible solution in b/t of Equation 34 is reported in Equation 35. 

 

b

t
=

1

2
[
(1 − 4c)

2(1 − 2c)
+ √

1

4(1 − 2c)2
−

c

2(1 − 2c)
(
h

t
)

2

] (35) 

 

In Equation 35, c and its multiples can be neglected when added or subtracted from 

the unit. Hence, Equation 35 simplifies in Equation 36. 

 

b

t
≅

1

2
[
1

2
+ √

1

4
−

c

2
(
h

t
)

2

] =
1

4
[1 + √1 − 2c (

h

t
)

2

] (36) 

 

Based on Equation 36, the contact length is a function of masonry maximum strain 

and of the masonry stripe slenderness ratio. 
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From Equation 28, the value of the rotation θ can be derived as reported in Equation 

37. 

 

∆= btanθ → tanθ =
∆

b
= c

h

b
= c

h/t

b/t
→ θ = atan (c

h/t

b/t
) = atan (c

h/t

b/t
) (37) 

 

By substituting Equation 36 in Equation 37, Equation 38 is obtained. 

 

θ = atan(c
h/t

1
4

[1 + √1 − 2c(h/t)2]
) (38) 

 

Based on Figure A.7, it is observed that the angle formed by the direction of the 

arching thrust with the vertical direction can be expressed as reported in Equation 39. 

 

γ = β − θ (39) 

 

The angle β can be defined by observing the grey triangle in Figure A.7. The length 

of the sides of this triangle are known. In fact, one of them is given by the infill thickness 

t reduced by two times the distance of the compression centroid from the outer fiber of 

the masonry segment, which is equal to k2b. Hence, the first side of the triangle is t-2k2b 

long. The length of the second side of the grey triangle is equal to the initial length of 

the masonry part, h/2, reduced by two times the shortening of the fiber corresponding to 

the compression centroid, which is equal to Δ(1-k2). Hence, the second side of the 

triangle is h/2-2(1-k2)Δ long. For the determination of β, Equation 40 is derived. 

 

tanβ =
t − 2k2b

h 2⁄ − 2(1 − k2)∆
 (40) 

 

With some manipulation, Equation 40 can be rewritten as reported in Equation 41. 

 

tanβ =
2[1 − 2k2(b t⁄ )]

(h t⁄ )[1 − 4c(1 − k2)]
 (41) 

 

In Equation 41, c and its multiples can be neglected when added or subtracted from 

the unit. Hence, Equation 41 simplifies in Equation 42. 
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tanβ ≅
2[1 − 2k2(b t⁄ )]

(h t⁄ )
 (42) 

 

Hence, Equation 43 can be used to calculate β. 

 

β = atan (
2[1 − 2k2(b t⁄ )]

(h t⁄ )
) (43) 

 

For a given OOP displacement of the stripe centre, dOOP, Equation 44 can be applied 

to calculate θ. 

 

θ = atan (
2dOOP

h
) (44) 

 

At this point, one should define the stress-strain relationship for masonry under 

compression. This also means defining the values of k1 and k2. For example, if the 

stress-stain relationship is triangular, k1 is equal to 0.50 and k2 is equal to 0.33. 

The OOP force-displacement relationship for the stripe can be calculated by 

following the procedure listed hereafter. 

 

i. Define a value of the OOP displacement, dOOP; 

ii. Calculate θ by means of Equation 44; 

iii. Calculate c by applying a trial-and-error procedure on Equation 38; 

iv. Calculate εmax equal to 4c; 

v. Enter masonry stress-strain relationship with ε=4c and calculate the value 

of fb; 

vi. Calculate b/t from Equation 36; 

vii. Calculate β from Equation 43; 

viii. Calculate γ from Equation 39; 

ix. Calculate q from Equation 20. 

 

A direct strength formulation is also provided, based on some hypotheses.  

From the application of the above procedure, it is possible to calculate also the OOP 

load q vs εmax diagram. According to Angel et al., the OOP load should be assumed 

equal to zero when εmax equals masonry crushing strain, εcrush, conservatively, provided 

that the arching action has not vanished due to snap-through, as explained in Chapter I. 
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The εmax value at which the OOP strength is attained is called εmax,1. 

Angel et al. assume that εmax,1 normalized with respect to εcrush is a function of the 

infill slenderness ratio h/t according to Equation 45. 

 
εmax,1

εcrush

= 0.73 − 0.016(h/t) (45) 

 

Now consider Equation 20, recalled in Equation 46. Such Equation allows, based on 

the above procedure, the evaluation of the entire OOP force-displacement curve. 

 

q =
4(b/t)k1fb

cosγ
cosθ

sinγ

h/t
 (46) 

 

For the direct calculation of qmax, the following assumptions are made by Angel et al. 

First, Equation 47 applies, i.e., it is assumed that γ and θ are very small angles. 

 
cosγ

cosθ
≅ 1 (47) 

 

Based on Equation 47, Equation 46 can be rewritten as reported in Equation 48. 

 

q =
4(b/t)k1fbsinγ

h/t
 (48) 

 

It is assumed that the compression distribution at the masonry parts ends is triangular. 

Hence, k1 is equal to 0.50 and k2 is equal to 0.33. Equation 48 can be rewritten as 

Equation 49. 

 

q =
2(b/t)fbsinγ

h/t
 (49) 

 

The parameter c can be calculated directly for εmax equal to εmax,1. In this case, it is 

indicated as c1 and calculated as reported in Equation 50, based also on Equation 45. 

 

c1 =
1

4
εmax,1 =

1

4
[0.73 − 0.016(h/t)]εcrush (50) 
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Hence, at the attainment of the OOP strength, Equation 51 applies for the calculation 

of b/t. 

 

b

t
=

1

4
[1 + √1 − 2c1 (

h

t
)

2

] (51) 

 

In addition, Equations 52 and 53 applies for the calculation of θ and β. 

 

tanθ = c1

h/t

b t⁄
 (52) 

 

tanβ =
2[1 − 2k2(b t⁄ )]

(h t⁄ )
→

2 − (4 3⁄ )(b t⁄ )

(h t⁄ )
 (53) 

 

If it is assumed that also β is small, Equations 54-56 applies. 

 

tanθ ≅ θ (54) 

 

tanβ ≅ β (55) 

 

sinγ = sin(β − θ) = sin [
2 − (4 3⁄ )(b t⁄ )

(h t⁄ )
− c1

h/t

b t⁄
] →

→ sin

[
 
 
 
 2 − (4 3⁄ )

1
4

[1 + √1 − 2c1 (
h
t
)

2

]

(h t⁄ )

− c1

h/t

1
4

[1 + √1 − 2c1 (
h
t
)

2

]
]
 
 
 
 

 

(56) 

 

Based on Equation 50, c1 is a function only of h/t and εcrush. Based on Equation 51, 

b/t is a function of h/t and εcrush. Based on Equation 56, sinγ is a function of h/t and 

εcrush. Now consider fb in Equation 48. Clearly, it is the stress corresponding to εmax,1. 

Hence, it depends on masonry behaviour, which depends on masonry mechanical 

properties (fm and εcrush) and on the value of εmax,1, which depends on εcrush and h/t. Hence, 
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the fb/fm ratio depends on εcrush and on h/t. Equation 49 can be rewritten as reported in 

Equation 57.  

 

q =
2fm(b/t)(fb fm⁄ )sinγ

h/t
=

2fm
h/t

[(
b

t
) (

fb
fm

) sinγ] (57) 

 

Consider now the parameter λ reported in Equation 58. 

 

λ = (
b

t
) (

fb
fm

) sinγ (58) 

 

The parameter λ, based on the above discussion, is a function only of h/t and εcrush. 

Equation 57 can be rewritten as reported in Equation 59. 

 

q =
2fm
h/t

λ (59) 

 

Angel et al. have calculated the values of λ as a function of h/t for εcrush equal to 0.004. 

Equation 59 is corrected by means of two coefficients: R1, which accounts for the 

IP/OOP interaction effects and has been calibrated based on experimental data; R2, 

which accounts for the frame deformability effects and has been calibrated based on the 

parametric application of Dawe and Seah (1989)’s stripe model. If Equation 59 is 

multiplied by R1 and R2, Equation 60, which is Angel et al.’s strength direct formulation, 

is obtained. 

 

q = R1R2

2fm
h/t

λ (60) 

 

A.2.3. Eurocode 6 strength model 

Eurocode 6 (2005), in section 6.3.2, proposes an expression to calculate the lateral 

specific strength of masonry walls in which arching action can occur; this relationship 

can be extended, potentially, to URM infills and is reported in Equation 61. 

 

qmax = fd (
t

la
)

2

 (61) 
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Consider a unit-width masonry stripe constrained at the edges by stiff elements with 

length equal to h, thickness equal to t and material compressive strength fm. In these 

hypotheses, Equation 61 can be rewritten as reported in Equation 62. 

 

qmax = fm (
t

h
)

2

 (62) 

 

Equation 62 can be derived based on simple equilibrium conditions and on some 

assumptions. First, it is assumed that the considered masonry stripe is subjected to an 

OOP uniformly distributed load. The contribution to the OOP strength of flexural 

mechanisms is neglected. Hence, when calculating the OOP strength, the considered 

masonry stripe is already cracked at its ends and mid-height. Of course, it is assumed 

that arching action occurs. The compression stress distribution acting at each end of the 

two masonry segments is assumed as triangular, with maximum stress equal to fm and 

neutral axis depth equal to 0.30t. Under these hypotheses, the arching thrust value, called 

Nad, is defined by the expression reported in Equation 63. 

 

Nad =
1

2
0.3tfm = 0.15tfm = 1.5

t

10
fm (63) 

 

It is assumed that the masonry stripe resisting to lateral loads can be represented by 

arching thrusts and by the three-hinged arch that they form. The arch deflection, f, is 

assumed equal to 0.90t. If the angle defined by the arching thrusts and the vertical 

direction is small, the value of the end support vertical reaction H is roughly equal to the 

arching thrust. H can be expressed as a function of the external load as reported in 

Equation 64. 

 

H = q
h2

4
 (64) 

 

It is assumed that H equals Nad when q is equal to qmax. By equating Equations 63 

and 64, Equation 65 is obtained. 

 

qmax = 1.08fm (
t

h
)

2

 (65) 

 

For simplicity, the coefficient 1.08 is reduced to one. 
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A.3.  OOP STRENGTH MODELS BASED ON TWO-WAY ARCHING 

ACTION 

In this section, the OOP strength model accounting for two-way arching action by 

Bashandy et al. is derived. Bashandy et al.’s model should be considered as an extension 

to infills in which two-way arching occurs of McDowell et al.’s model.  

Consider an infill wall with height h, width w, thickness t made with masonry 

provided with compressive strength equal to fmv and fmh in the vertical and horizontal 

direction, respectively, and with elastic modulus equal to Emv and Emh in the vertical and 

horizontal direction, respectively. It is assumed that the idealized and regularized 

deformed shape of the infill wall is the hipped one represented in Figure A.8, with θ 

angle equal to 45°.  

 

 
Figure A.8. Bashandy et al.’s OOP collapse mechanism. 

 

It is assumed that the central displacement of the infill is equal to xyv, which is 

calculated according to Equation 4 by using masonry properties in the vertical direction. 

The infill wall is divided in vertical and horizontal unit-width stripes. Hence, each 

value of x corresponds to a vertical stripe, each value of y corresponds to a horizontal 

stripe. Each vertical stripe is characterized by a maximum OOP displacement δv, which 

is a function of x, while each horizontal stripe is characterized by a maximum OOP 

displacement δh, which is a function of y. The linear functions that express δv(x) and 

δh(y) are known, as they are determined by the definition of xyv value and by the 

definition of the idealized and regularized deformed shape assumed. 

It is assumed that a uniformly distributed load acts on each stripe. The uniformly 

distributed load acting on vertical stripes is named δqv and its entity is a function of x, 

while the uniformly distributed load acting on horizontal stripes is named δqh and its 

entity is a function of y.  

h

w

θ
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Now, consider vertical stripes. As shown in Figure A.9, two types (type A and type 

B) of vertical stripes exist.  

 

 
Figure A.9. Bashandy et al.’s stripe model. 

 

Type A vertical stripes are characterized by a trapezoidal deformed shape with 

maximum OOP displacement varying from zero (edge stripes) to xyv.  

Consider now a Type A vertical stripe at abscissa equal to x. The uniformly 

distributed load acting on it is equal to δqv(x) and its maximum OOP displacement is 

equal to δv(x). The deformed shape along y of such a stripe, dv(x,y), is defined as 

reported in Equations 66 and 67. 

 

dv(x, y) =
δv(x)

x
y                         if y ≤ x (66) 

 

dv(x, y) = δv(x)                             if x ≤ y ≤ h/2 (67) 

 

Of course, the deformed shape is symmetric with respect to the horizontal axis 

passing from the stripe mid-height. Note also that Type A stripes’ deformed shape is 

h

1 1

c
c

δ≠xyv

t

c
c

xyv

t

type B type A

type Btype A
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characterized by three masonry parts at the ends of which MA acts. MA is calculated by 

applying Equation 68. 

 

MA(x) =
δv(x)

x𝑦𝑣

Myv (68) 

 

In other words, it is assumed that the maximum moment due to arching action is a 

function of the OOP maximum displacement of the stripe and that it varies linearly from 

zero, at the infill vertical edge, to Myv, which is calculated by applying McDowell’s 

Equation 10 with masonry mechanical properties in the vertical direction. This 

assumption has not mechanical basis and is opposite to that proposed by Dawe and Seah, 

which assume that the moment due to arching thrusts is maximum at the very edge of 

the infill. 

The external load made by δqv,A(x) on the considered Type A stripe is calculated as 

reported in Equation 69. 

 

δlv,e
A (x, y) = 2∫ δqv,A(x)

x

0

dv(x, y)dy + ∫ δqv,A(x)
h−2x

0

dv(x, y)dy =

= 2∫ δqv,A(x)
x

0

δv(x)

x
y dy + ∫ δqv,A(x)

h−2x

0

δv(x)dy =

=  2δqv,A(x)
δv(x)

x
∫ y

x

0

dy + δqv,A(x)δv(x) ∫ dy
h−2x

0

=

= 2δqv,A(x)x + δqv,A(x)δv(x)(h − 2x) 

(69) 

 

The internal work for a Type A vertical stripe is reported in Equation 70. 

 

δlv,i
A (x, y) = 4MA

δv(x)

x
 (70) 

 

Of course, both the external work and the internal work are only a function of x. By 

equating Equation 69 and Equation 70, the formulation for δqv,A(x) valid for Type A 

vertical stripes and reported in Equation 71 is derived. 

 

δqv,A(x) =
4MA

hx − x2
 (71) 

 

By substituting Equation 68 in Equation 71, Equation 72 is derived. 
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δqv,A(x) =
8Myv

h

x

hx − x2
 

 
(72) 

 

It can be observed that the load acting on the stripe is a function of x, hence it is 

different for each stripe.  

Type B vertical stripes are characterized by a triangular deformed shape with 

maximum OOP displacement equal to xyv. Note also that Type B stripes’ deformed 

shape is characterized by two masonry parts at the ends of which Myv, calculated by 

applying Equation 10 with masonry properties in the vertical direction, acts.  

Consider now a Type B vertical stripe at abscissa equal to x. The uniformly 

distributed load acting on it is equal to δqv(x) and its maximum OOP displacement is 

equal to xyv. The deformed shape along y of such a stripe, dv(x,y), is defined as reported 

in Equation 73. 

 

dv(x, y) =
xyv

x
y                         if y ≤ h/2 (73) 

 

Of course, the deformed shape is symmetric with respect to the horizontal axis 

passing from the stripe mid-height.  

The external load made by δqv,B(x) on the considered Type B stripe is calculated as 

reported in Equation 74. 

 

δlv,e
B (x, y) = 2∫ δqv,B(x)

h/2

0

dv(x, y)dy = 2∫ δqv,B(x)
h/2

0

xyv

x
ydy =

= 2δqv,B(x)
xyv

x
∫ y

h/2

0

dy =
1

2
δqv,B(x)xyvh 

(74) 

 

The internal work for a Type B vertical stripe is reported in Equation 75. 

 

δlv,i
A (x, y) = 8Myv

xyv

h
 (75) 

 

Of course, both the external work and the internal work are only a function of x. By 

equating Equation 74 and Equation 75, the formulation for δqv,B(x) valid for Type B 

vertical stripes and reported in Equation 76 is derived. 
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δqv,B(x) =
16Myv

h2
 (76) 

 

It can be observed that the load acting on the stripe is not a function of x, hence it is 

equal for each stripe. 

The contribution to the entire infill wall OOP strength provided by vertical stripes, 

FV, can be obtained by integrating δqv(x) along the infill width, as reported in Equation 

77.   

 

Fv = 2∫ hδqv,A(x)dx
h/2

0

+ ∫ hδqv,B(x)dx
w−2h

0

= 16Myvln2 + 16Myv

w − h

h
 (77) 

 

Horizontal stripes are, all of them, Type A stripes. All the Equations above defined 

for vertical stripes are valid provided that w is substituted by h, h by w, x by y, y by x. 

However, some discussion is needed concerning the value of the moment acting at 

masonry parts ends.  

In the case of vertical stripes, it was assumed that Myv acts at the ends of central 

stripes while a fraction varying from zero to one of Myv act at the ends of lateral stripes. 

In other words, it was assumed that the value of the moment depends linearly on the 

OOP maximum displacement of the stripe. Remember that Myv can be attained only if 

the OOP displacement is equal to xyv. 

In the horizontal direction, masonry is generally provided with different properties 

with respect to vertical direction. Hence, the maximum moment due to arching thrusts 

can be calculated by applying McDowell et al.’s Equation 10 with masonry properties 

in the horizontal direction. This moment will be attained only if the OOP maximum 

displacement of the considered stripe is equal to xyh, which can be calculated by applying 

McDowell et al.’s Equation 4 to the horizontal direction.  

However, it should be noted that, according to Bashandy et al., the OOP strength is 

attained when the infill central displacement equals xyv. So, it is assumed that the 

maximum horizontal moment acting at the ends of the horizontal masonry parts is equal 

to a fraction xyv/xyh of Myh. Of course, all the non-central horizontal stripes are 

characterized by maximum moment, which is a fraction of xyv/xyh times Myh and it is 

assumed that such a fraction varies linearly from zero at the infill horizontal edges to 

one at the infill centre.  

Based on these assumptions, the uniformly distributed load acting on each horizontal 

stripe is, also in this case, calculated by applying the principle of virtual works and is 
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reported in Equation 78. 

 

δqh,A(y) =
8Myh

h

y

wy − y2

xyv

xyh

 (78) 

 

By integrating δqh,A on the entire height of the infill, the contribution of horizontal 

stripes to the OOP strength of the infill is obtained as reported in Equation 79. 

 

Fh =
16Myh

h

xyv

xyh

ln (
w

w − h/2
) (79) 

 

The OOP strength of the infill is provided by the summation of the contribution of 

vertical and horizontal stripes. Hence, Equation 80 is obtained. 

 

Fmax = 16Myvln2 + 16Myv

w − h

h
+

16Myh

h

xyv

xyh

ln (
w

w − h/2
) (80) 

 

With some manipulation, Equation 81 is obtained. 

 

Fmax = 16
Myv

h2
[h2ln2 + h2 (

w − h

h
) + wh(

Myh

Myv

xyv

xyh

) ln (
w

w − 0.5h
)] (81) 
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Appendix B 

Specimens’ cracking patterns and damage 

evolution 

For each experimental test carried out at the Department of Structures for 

Engineering and Architecture of University of Naples Federico II, the evolution of 

damage observed during experimental tests is herein reported.  

The nature of the test (IP or OOP) to which the cracking pattern are referred is 

declared in the caption to the Figures. The force and displacement reported in the Figures 

are the IP force and the IP displacement of the RC frame upper beam cross-section 

centroid for the IP tests, the OOP force and the OOP displacement of the infill centre for 

the OOP tests. 
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F=19.4 kN d=3.3 mm F=22.0 kN d=5.3 mm F=20.3 kN d=6.0 mm 

   
F=19.4 kN d=7.8 mm F=18.1 kN d=10.3 mm F=18.0 kN d=13.2 mm 

   
F=17.1 kN d=16.3 mm F=16.3 kN d=28.7 mm F=13.5 kN d=40.5 mm 

  

 

F=6.3 kN d=61.4 mm F=4.4 kN d=76.9 mm   

Figure B.1. OOP test 80_OOP_4E. 

  



Appendix B – Specimens’ cracking patterns and damage evolution 401 

 

 

 

   
F=12.2 kN d=5.4 mm F=13.0 kN d=6.5 mm F=13.4 kN d=7.5 mm 

   
F=16.1 kN d=10.6 mm F=17.2 kN d=13.5 mm F=17.6 kN d=15.7 mm 

   
F=13.3 kN d=17.7 mm F=11.4 kN d=21.8 mm F=11.0 kN d=26.7 mm 

   
F=10.6 kN d=34.6 mm F=9.8 kN d=42.3 mm F=8.3 kN d=51.3 mm 

 

  

F=6.5 kN d=58.4 mm     

Figure B.2. OOP test 80_OOP_3E. 
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F=18.2 kN d=14.9 mm F=18.4 kN d=20.1 mm F=16.4 kN d=30.0 mm 

   
F=12.2 kN d=40.0 mm F=8.5 kN d=50.0 mm F=6.1 kN d=58.2 mm 

 

  

F=4.6 kN d=65.4 mm     

Figure B.3. OOP test 80_OOP_3Eb. 
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F=11.7 kN d=3.0 mm F=11.5 kN d=4.3 mm F=12.7 kN d=6.2 mm 

  

 

F=14.4 kN d=11.9 mm F=14.6 kN d=14.2 mm   

Figure B.4. OOP test 80_OOP_2E. 
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first cycle  

  
F=+55.3 kN d=+1.3 mm F=-58.0 kN d=-1.3 mm 

second cycle    

  
F=+79.3 kN d=+3.0 mm F=-79.1 kN d=-3.1 mm 

Figure B.5. IP test 80_IP+OOP_L. 
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F=12.6 kN d=1.8 mm F=23.4 kN d=6.8 mm F=17.2 kN d=8.9 mm 

   
F=14.2 kN d=23.6 mm F=11.3 kN d=29.6 mm F=9.8 kN d=36.5 mm 

  

 

F=7.1 kN d=43.5 mm F=3.1 kN d=70.5 mm   

Figure B.6. OOP test 80_IP+OOP_L. 
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first cycle  

  
F=+62.2 kN d=+1.3 mm F=-62.2 kN d=-1.2 mm 

second cycle    

  
F=+76.2 kN d=+3.0 mm F=-83.5 kN d=-2.9 mm 

third cycle  

  
F=+90.1 kN d=+4.8 mm F=-86.6 kN d=-4.7 mm 

fourth cycle    

  
F=+88.6 kN d=+6.8 mm F=-85.9 kN d=-6.6 mm 

Figure B.7. IP test 80_IP+OOP_M. 
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F=5.2 kN d=4.3 mm F=8.5 kN d=11.6 mm F=10.5 kN d=32.0 mm 

   
F=10.3 kN d=36.7 mm F=9.8 kN d=39.7 mm F=9.2 kN d=43.4 mm 

   
F=7.1 kN d=55.6 mm F=4.7 kN d=70.1 mm F=3.9 kN d=77.4 mm 

Figure B.8. OOP test 80_IP+OOP_M. 
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first cycle  

  
F=+49.1 kN d=+1.2 mm F=-43.1 kN d=-1.4 mm 

second cycle    

  
F=+74.7 kN d=+2.8 mm F=-72.8 kN d=-3.0 mm 

third cycle  

  
F=+88.3 kN d=+4.7 mm F=-84.4 kN d=-4.7 mm 

fourth cycle    

  
F=+103 kN d=+6.5 mm F=-83.9 kN d=-6.6 mm 

Figure B.9a. IP test 80_IP+OOP_H (1st to 4th cycle). 
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fifth cycle  

  
F=+100 kN d=+8.5 mm F=-72.8 kN d=-8.7 mm 

sixth cycle    

  
F=+90.4 kN d=+10.6 mm F=-69.5 kN d=-10.6 mm 

Figure B.9b. IP test 80_IP+OOP_H (5th and 6th cycles). 
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F=2.5 kN d=9.3 mm F=4.6 kN d=17.4 mm F=5.9 kN d=25.8 mm 

   
F=5.3 kN d=29.3 mm F=4.5 kN d=33.7 mm F=3.5 kN d=40.0 mm 

   
F=2.8 kN d=43.0 mm F=1.6 kN d=53.9 mm F=1.4 kN d=55.3 mm 

Figure B.10. OOP test 80_IP+OOP_H. 
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F=27.5 kN d=2.5 mm F=41.8 kN d=8.0 mm F=36.2 kN d=12.5 mm 

   
F=34.8 kN d=17.5 mm F=34.3 kN d=20.0 mm F=29.3 kN d=27.0 mm 

 

  

F=16.3 kN d=37.5 mm     

Figure B.11. OOP test 120_ OOP_4E. 
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F=19.5 kN d=4.3 mm F=31.1 kN d=11.5 mm F=33.6 kN d=16.4 mm 

  

 

F=33.0 kN d=20.0 mm F=23.7 kN d=28.0 mm   

Figure B.12. OOP test 120_ OOP_3E. 
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F=18.5 kN d=5.5 mm F=24.0 kN d=9.5 mm F=24.6 kN d=10.2 mm 

 

  

F=14.2 kN d=14.6 mm     

Figure B.13. OOP test 120_ OOP_2E. 
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first cycle  

  
F=+68.9 kN d=+1.3 mm F=-64.8 kN d=-1.1 mm 

second cycle    

  
F=+93.5 kN d=+2.8 mm F=-97.6 kN d=-2.7 mm 

third cycle  

  
F=+108 kN d=+4.7 mm F=-111 kN d=-4.2 mm 

Figure B.14. IP test 120_IP+OOP_L. 
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F=41.3 kN d=9.7 mm F=28.4 kN d=12.7 mm F=26.4 kN d=17.8 mm 

  

 

F=19.7 kN d=19.6 mm F=19.0 kN d=22.1 mm   

Figure B.15. OOP test 120_IP+OOP_L. 
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first cycle  

  
F=+67.9 kN d=+0.9 mm F=-63.1 kN d=-1.1 mm 

second cycle    

  
F=+105 kN d=+2.2 mm F=-88.5 kN d=-2.5 mm 

third cycle  

  
F=+115 kN d=+3.8 mm F=-90.1 kN d=-4.3 mm 

fourth cycle    

  
F=+116 kN d=+5.7 mm F=-89.6 kN d=-6.1 mm 

Figure B.16a. IP test 120_IP+OOP_M (1st to 4th cycle). 
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fifth cycle  

  
F=+121 kN d=+7.5 mm F=-93.7 kN d=-7.9 mm 

sixth cycle    

  
F=+120 kN d=+9.5 mm F=-95.9 kN d=-9.6 mm 

Figure B.16b. IP test 120_IP+OOP_M (5th and 6th cycles). 
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F=26.3 kN d=21.1 mm F=22.4 kN d=21.6 mm F=25.1 kN d=23.6 mm 

   
F=28.3 kN d=26.3 mm F=26.1 kN d=26.7 mm F=27.1 kN d=31.5 mm 

   
F=20.0 kN d=33.0 mm F=15.0 kN d=38.5 mm F=10.4 kN d=49.8 mm 

 

  

F=5.4 kN d=66.1 mm     

Figure B.17. OOP test 120_IP+OOP_M. 
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first cycle    

  
F=+60.7 kN d=+1.3 mm F=-57.9 kN d=-1.1 mm 

second cycle    

  
F=+90.8 kN d=+2.8 mm F=-83.5 kN d=-2.7 mm 

third cycle  

  
F=+100 kN d=+4.5 mm F=-91.8 kN d=-4.4 mm 

fourth cycle    

  
F=+100 kN d=+6.3 mm F=-91.8 kN d=-6.2 mm 

Figure B.18a. IP test 120_IP+OOP_H (1st to 4th cycle). 
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fifth cycle  

  

F=+98.8 kN d=+8.2 mm F=-92.5 kN d=-8.0 mm 

sixth cycle    

  
F=+98.8 kN d=+10.0 mm F=-96.2 kN d=-9.7 mm 

seventh cycle  

  
F=+112 kN d=+13.6 mm F=-110 kN d=-13.1 mm 

eighth cycle    

  
F=+119 kN d=+17.5 mm F=-120 kN d=-16.4 mm 

Figure B.18b. IP test 120_IP+OOP_H (5th and 8th cycles). 
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F=11.2 kN d=14.2 mm F=17.3 kN d=22.1 mm F=22.9 kN d=31.7 mm 

   
F=19.5 kN d=32.8 mm F=21.1 kN d=34.5 mm F=22.1 kN d=38.1 mm 

  

 

F=17.6 kN d=50.7 mm F=9.1 kN d=65.2 mm   

Figure B.19. OOP test 120_IP+OOP_H. 
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first cycle   

   
F=+23.3 kN d=+4.3 mm F=-25.0 kN d=-3.6 mm F=0 kN d=+0.9 mm 

second cycle      

   
F=+21.5 kN d=+4.3 mm F=+29.5 kN d=+7.7 mm F=+36.4 kN d=+11.0 mm 

   
F=+7.6 kN d=+5.0 mm F=-23.2 kN d=-4.0 mm F=-39.7 kN d=-9.0 mm 

 

  

F=-8.2 kN d=-4.7 mm     

Figure B.20a. OOP test 120_OOP_4E_cyclic (1st and 2nd cycles). 
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third cycle      

   
F=+32.6 kN d=+13.6 mm F=+35.3 kN d=+22.7 mm F=+36.4 kN d=+32.4 mm 

   
F=+3.6 kN d=+16.8 mm F=-8.9 kN d=+2.73 mm F=-30.1 kN d=-10.5 mm 

  

 

F=-34.7 kN d=-25.8 mm F=-1.0 kN d=-15.1 mm   

fourth cycle      

   
F=+6.2 kN d=0 mm F=+19.7 kN d=+21.6 mm F=+16.4 kN d=+51.0 mm 

 

  

F=0 kN d=20.4 mm     

Figure B.20b. OOP test 120_OOP_4E_cyclic (3rd and 4th cycles). 
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Appendix C 

DIST-UNINA experimental tests’ results 

For each experimental test carried out at the Department of Structures for 

Engineering and Architecture of University of Naples Federico II, the OOP measures of 

the instruments (vertical axis) are herein reported as a function of the OOP central 

displacement (horizontal axis).  

In the following Figures, the instruments are named according to the layout 

reproduced in Figure C.1. Remember that LVDT IP_up was used only for the tests on 

the 120 mm-thick infills. 

 

 
Figure C.1. Instrumentation layout. 
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Figure C.2. Test 80_OOP_4E.The vertical axis refers to the displacement read by the 

considered instrument, the horizontal axis refers to the OOP central displacement. 
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Figure C.3. Test 80_OOP_3E. The vertical axis refers to the displacement read by the 

considered instrument, the horizontal axis refers to the OOP central displacement. 
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Figure C.4. Test 80_OOP_3Eb. The vertical axis refers to the displacement read by the 

considered instrument, the horizontal axis refers to the OOP central displacement. 

Instruments B1, C1 and D1 reached the end of their measurement range.  
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Figure C.5. Test 80_OOP_2E. The vertical axis refers to the displacement read by the 

considered instrument, the horizontal axis refers to the OOP central displacement. 
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Figure C.6. Test 80_IP+OOP_L. The vertical axis refers to the displacement read by the 

considered instrument, the horizontal axis refers to the OOP central displacement. 
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Figure C.7. Test 80_IP+OOP_M. The vertical axis refers to the displacement read by the 

considered instrument, the horizontal axis refers to the OOP central displacement. 
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Figure C.8. Test 80_IP+OOP_H. The vertical axis refers to the displacement read by the 

considered instrument, the horizontal axis refers to the OOP central displacement. 
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Figure C.9. Test 120_OOP_4E. The vertical axis refers to the displacement read by the 

considered instrument, the horizontal axis refers to the OOP central displacement.  
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Figure C.10. Test 120_OOP_3E. The vertical axis refers to the displacement read by the 

considered instrument, the horizontal axis refers to the OOP central displacement. 
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Figure C.11. Test 120_OOP_2E. The vertical axis refers to the displacement read by the 

considered instrument, the horizontal axis refers to the OOP central displacement.  
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Figure C.12. Test 120_IP+OOP_L. The vertical axis refers to the displacement read by the 

considered instrument, the horizontal axis refers to the OOP central displacement. 
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Figure C.13. Test 120_IP+OOP_M. The vertical axis refers to the displacement read by the 

considered instrument, the horizontal axis refers to the OOP central displacement. 

Instruments B1, C1 and D1 reached the end of their measurement range. 
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Figure C.14. Test 120_IP+OOP_H. The vertical axis refers to the displacement read by the 

considered instrument, the horizontal axis refers to the OOP central displacement. 

Instruments B1, C1 and D1 reached the end of their measurement range. 
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Appendix D 

Experimental database specimens’ properties 

In this appendix, the geometric and mechanical properties of the specimens that entered the 

experimental database discussed and analysed in Chapter IV are reported. Namely, both infills’ 

and confining frames’ properties are reported in two separate tables. The experimental results 

associated with each specimen are reported in detail in Chapter IV. 

In the following Tables: 

 

- t is the infill thickness; 

- h is the infill height; 

- w is the infill width; 

- h/t and w/t are the vertical and horizontal slenderness ratio of the infill, respectively; 

- fmv and fmh are masonry compressive strength in the vertical and in the horizontal 

direction, respectively; 

- Emv and Emh are masonry elastic modulus in the vertical and in the horizontal direction, 

respectively; 

- Ib and Jb are the frame upper beam cross-section inertia and torsional constant, 

respectively; 

- Ic and Jc are the frame columns’ cross-section inertia and torsional constant, 

respectively; 

- Eb and Ec are the elastic modulus of the frame beams’ and columns’ material. 

 

Some mechanical properties are reported with an asterisk (*). This means that the value 

reported has not been provided by the Authors but they have been assumed by the writer based 

on the criteria reported in Chapter IV. 
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Table D.1. Specimens’ geometric and mechanical properties (infill walls). 
# Author specimen type t [mm] h [mm] w [mm] h/t w/t fmv [MPa] Emv [MPa] fmh [MPa] Emh [MPa] 

1 da Porto et al. FOB1 2E 300 2520 1000 8.4 3.3 2.62 2620 - - 

2 da Porto et al. FOB2 2E 300 2520 1000 8.4 3.3 2.62 2620 - - 

3 da Porto et al. FOB3 2E 300 2520 1000 8.4 3.3 2.62 2620 - - 

4 Hak et al. TA5 2E 350 2950 1380 8.4 3.9 4.64 5299 1.08 494 

5 DIST-UNINA 80_OOP_2E 2E 80 1830 2350 22.9 29.4 1.81 1090 2.45 1255 

6 DIST-UNINA 120_OOP_2E 2E 120 1830 2350 15.3 19.6 2.21 1770 - - 

7 Dawe and Seah WE2 4E 190 2800 3600 14.7 18.9 28.1 23000 18.40 17400 

8 Dawe and Seah WE4 4E 140 2800 3600 20.0 25.7 22.7 13800 18.40 17400 

9 Dawe and Seah WE5 4E 90 2800 3600 31.1 40.0 20.2 15600 18.40 17400 

10 Dawe and Seah WE8 4E 140 2800 3600 20.0 25.7 27.4 16200 18.40 17400 

11 Angel et al. 1 4E 48 1625 2440 33.9 50.8 11.6 7848 14.00* 11355* 

12 Flanagan and Bennett 18 4E 195 2240 2240 11.5 11.5 5.59 5300 3.01 2160 

13 Flanagan and Bennett 25 4E 93 2240 2240 24.1 24.1 5.59 5300 3.01 2160 

14 Calvi and Bolognini 10 4E 115 2750 4200 23.9 36.5 1.10 1873 1.11 991 

15 Varela-Rivera et al. E-1 4E 150 2720 3670 18.1 24.5 2.84 2948* 3.40* 2780* 

16 Varela-Rivera et al. E-2 4E 150 2880 3770 19.2 25.1 2.84 2948* 3.40* 2780* 

17 Varela-Rivera et al. E-3 4E 120 2880 3770 24.0 31.4 2.45 2543* 3.00* 2398* 

18 Varela-Rivera et al. E-4 4E 150 2720 2850 18.1 19.0 2.84 2948* 3.40* 2780* 

19 Varela-Rivera et al. E-5 4E 150 2720 2950 18.1 19.7 2.84 2948* 3.40* 2780* 

20 Varela-Rivera et al. E-6 4E 120 2720 2950 22.7 24.6 2.45 2543* 3.00* 2398* 

21 Furtado et al. Inf_02 4E 150 2300 4200 15.3 28.0 0.53 1418 0.64* 519* 

22 DIST-UNINA 80_OOP_4E 4E 80 1830 2350 22.9 29.4 1.80 1517 2.21 1188 

23 DIST-UNINA 120_OOP_4E 4E 120 1830 2350 15.3 19.6 1.65 1455 2.12 1262 
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Table D.2. Specimens’ geometric and mechanical properties (confining frames). 
# Author specimen type Ib [cm4] Jb [cm4] Eb [MPa] Ic [cm4] Jc [cm4] Ec [MPa] 

1 da Porto et al. FOB1 2E - - - - - - 

2 da Porto et al. FOB2 2E - - - - - - 

3 da Porto et al. FOB3 2E - - - - - - 

4 Hak et al. TA5 2E 125052 211338 32308 125052 211338 32308 

5 DIST-UNINA 80_OOP_2E 2E 32805 39243 32308 32805 39243 32308 

6 DIST-UNINA 120_OOP_2E 2E 32805 39243 34819 32805 39243 34819 

7 Dawe and Seah WE2 4E 4540 22 200000 1880 41 200000 

8 Dawe and Seah WE4 4E 4540 22 200000 1880 41 200000 

9 Dawe and Seah WE5 4E 4540 22 200000 1880 41 200000 

10 Dawe and Seah WE8 4E 4540 22 200000 1880 41 200000 

11 Angel et al. 1 4E 59937 82597 36689 71925 121553 36689 

12 Flanagan and Bennett 18 4E 11900 31 200000 703 26 200000 

13 Flanagan and Bennett 25 4E 11900 31 200000 703 26 200000 

14 Calvi and Bolognini 10 4E 714583 282663 30379 67500 114075 30379 

15 Varela-Rivera et al. E-1 4E 10000 12149 9614 10000 12149 9614 

16 Varela-Rivera et al. E-2 4E 80000 34386 10943 15625 10065 10943 

17 Varela-Rivera et al. E-3 4E 64000 18688 11124 10000 12149 11124 

18 Varela-Rivera et al. E-4 4E 10000 12149 9782 19531 17609 9782 

19 Varela-Rivera et al. E-5 4E 19531 17609 10425 19531 17609 10425 

20 Varela-Rivera et al. E-6 4E 15625 10065 11638 15625 10065 11638 

21 Furtado et al. Inf_02 4E 312500 281737 24700 67500 114075 24700 

22 DIST-UNINA 80_OOP_4E 4E 32805 39243 32308 32805 39243 32308 

23 DIST-UNINA 120_OOP_4E 4E 32805 39243 34819 32805 39243 34819 
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