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Abstract 

Immune response is based on a complex molecular and cellular network able to ensure 

protection against pathogens and simultaneously maintain tissue homeostasis. Multiple 

immunoregulatory processes are physiologically involved in preventing potentially deleterious 

immune reactions against self tissues. The key role of regulatory immune cell populations, as 

represented by CD4+CD25+Foxp3+ Treg cells, in induction and maintenance of immunological 

tolerance has been largely demonstrated.  

Aim of this study is to investigate on cell-dependent control of immune response in 

physiological conditions as well as in the context of immune-mediated diseases, also addressing the 

possibility to modulate deranged immune effectors. 

With this purpose we focused: i. a human model of autoimmunity, as represented by a subgroup 

of patients affected by Myelodysplastic Syndrome (MDS), a hematological disorder characterized 

by immune-mediated selection and expansion of pathological stem precursors; ii. human and animal 

models of pharmacological and metabolic immune-modulation; iii. the functional analysis of a T 

cell population, characterized by the co-expression of CD3 and CD56 molecules, whose 

quantitative defect has been observed in autoimmune diabetes.  

Immune-response has been largely recognised as a finely tuned micro-site process. Thus, the 

possibility to focus cell-mediated immune tolerance control in Bone Marrow (BM), the 

microenvironment in which immune-mediated selection of pathological stem precursor takes place, 

represent a powerful analysis tool to investigate on MDS pathogenesis. Our study of BM T cell 

repertoire revealed an inverse correlation between BM Treg levels, activation status and BM clonal 

expansion of CD8+ T lymphocytes in MDS patients. Thus, BM Treg were proposed to represent a 

key element for the control of the deranged immune effectors in an inflammatory 

microenvironment.  

Cross talk between immune response and metabolism is still largely undefined. Particularly, 

Treg availability has been observed in vitro to specifically depend on the oscillatory activity of the 

mammalian Target Of Rapamycin (mTOR), a Serine/Threonine kinase playing a key role in 

regulating cell growth and metabolism in response to nutritional cues. The employment of mTOR 

pharmacological inhibition for the control of tumour cell growth has been largely described. We 

found that dosage and administration schedule of the mTOR inhibitor Everolimus, able to ensure 

mTOR oscillatory activity, is relevant to induce immune-tolerance rather than inhibition of cell 

growth in a model of tolerance induction, as represented by allogeneic kidney transplant. 
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Our study also addressed the possibility to use nutraceutical compounds, by us selected for their 

immune-modulating effects in a veterinary model of chronic infection, to control immune effector 

activity in vitro. Our data are conceivable with the possibility to employ these substances as 

pharmacological co-adjuvants to modulate pro-inflammatory activity in contexts of altered immune 

homeostasis. 

Co-expression of CD3 and CD56 molecules identifies a lymphocyte population whose 

functional activity is largely undefined. A severe reduction of this cells has been associated with the 

extent of β-cell loss in patients affected by type 1 diabetes. We found that CD3+CD56+ 

lymphocytes, by us named TR3-56, represent a distinct subgroup of T lymphocytes, able to 

preferentially modulate effector function of cytotoxic T cells. Indeed, the co-culture of TR3-56 with 

CD8+ effector cells mediates significant inhibition of their cytotoxic activity and IFN- γ production. 

No effects were observed when cytotoxic T cells were cultured with NK, CD4 or CD8 T 

lymphocytes. A contact-dependent mechanism has been observed to underlie immune-modulating 

activity of TR3-56 cells. 

A better knowledge of cell mediated processes involved in immune-tolerance control is 

expected to significantly improve the availability of innovative immune-modulating strategies, thus 

ameliorating clinical management of immune-mediated disorders. 
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1. Introduction 

 

1.1 The immune system 

The immune system represents a complex network of molecular and cellular mediators ensuring 

effective defense against pathogens together with tissue homeostasis maintenance. It is organized in 

two compartments, innate immunity and adaptive immunity, that coordinate their activity in order to 

maximize immune functions.  

The innate immunity represents the first defence-line of both vertebrate and non-vertebrate 

organisms. It is based on the availability of a molecular machinery able to directly recognize and 

consequently destroy potentially harmful agents as well as damaged self tissues. Indeed, a series of 

molecular structures, (TLR, NOD, RIG) enable innate immune effectors to rapidly recognize the 

Pathogen Associated Molecular Patterns (PAMP), representing molecular targets specifically 

expressed by foreign, potentially invading organisms. In addition, Natural Killer cells evaluate cell 

integrity trough a complex repertoire of surface receptors. Thus, the possibility to directly recognize 

a dangerous diversity inside tissues is the basis for molecular and cellular innate defense 

mechanisms. Direct induction of microrganism-lysis (Complement), phagocytosis, as well as 

apoptosis induction of infected or damaged autologous cells are the main mechanisms employed by 

innate immune compartment (1).   

The adaptive immune response (Figure 1), also called acquired, is highly specific and is able to 

"remember" and to respond more effectively to repeated exposure to a specific pathogen. Its 

recognition strategy involves a high variable repertoire of receptors generated by clonal gene 

rearrangement strategies; these receptors are able to recognize a wide range (billions) of molecular 

specificities, but are unable per se to distinguish self and non-self structures (2). 

 

 

 

 

 

 

 

 

 

 

Figure 1: General organization of adaptive immune response. From Abul K. Abbas, Cellular and Molecular Immunology, Elsevier Inc. 
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The adaptive immunity can be distinguished in humoral immunity, mediated by antibody, and 

cell-mediated immunity, dependent on helper (CD4+) and cytotoxic (CD8+) T lymphocytes. Helper 

T cells (TH) are a key element for the orchestration of immune response; indeed, they are able to 

improve phagocytic activity of innate cells and to optimize humoral and cytotoxic functions. 

Moreover, their activity is plastically dependent on the differentiation of peculiar cytokine 

production profile (Figure 2), usually defined as proinflammatory (TH1, TH17) or non-inflammatory 

(TH2). The TH1 response is characterized by the production of Interferon-gamma (IFN-γ) which 

optimizes the bactericidal macrophages capability, induces pathogen-opsonization and optimizes 

cytotoxic T lymphocyte (CTL) response. The TH2 response is characterized by the release of 

Interleukin-4, IL-5, IL-10, IL-13 which results in the activation of B cells to make neutralizing non-

cytolytic antibodies, leading to "humoral non-inflammatory immunity" (3).  

 

 

 

 

 

 

 

 

Figure 2: Plasticity of cytokine profile acquirement by helper CD4 T cells. O’Shea &W. Paul, Mechanisms Underlying Lineage Commitment and 
Plasticity of Helper CD4+ T Cells. Science 2010; 327:1098-110. 

T lymphocytes are unable to recognize native antigens. Indeed, only peptides, expressed on the 

surface of Antigen Presenting Cells (APC) in association with Major Histocompatibility Complex 

(MHC) molecules, are specifically recognized by the T Cells Receptor (TCR).  

 

1.2  The T cell receptor (TCR) 

The TCR is a membrane glycoprotein constituted by two polypeptide chain, called α and β 

chain, each showing a constant (C) and a variable (V) region. The variable region has three handles, 

called Complementary Determining Regions (CDR), representing the hypervariable regions that 

form the binding site for the antigen-MHC complexes. 

The possibility of T lymphocytes to recognize a wide number of specificities is due to TCR 

diversity. It is generated, on clonal basis, during T lymphocytes development thanks to the presence 
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of RAG recombinase enzymes. Gene rearrangement of V and J genes for α chain variable region 

and of V, D, and J genes for β chain variable region are key events for TCR generation (1).   

Each T clone expresses only a TCR type. Therefore, the TCR, that marks a single T clone, is 

characterized by the presence of the particular V gene segment used to build the receptor during the 

gene rearrangement processes (1). When a T cell clone recognizes a foreign substance it undergoes a 

clonal expansion.  

The TCR ligands are represented by the complex of antigenic peptide-MHC molecule 

expressed on APC cells. The MHC molecules are divided into two classes, the MHC class I and 

MHC class II that are recognized by different T cells. The cytotoxic lymphocytes bind endogenous 

antigens associated to MHC class I molecules; instead, the helper T cells recognize, in association 

with MHC class II, exogenous antigens. This recognition strategy, called restriction, allows T cells 

to obtain specific information about pathogen intracellular localization. Indeed, MHC Class I 

molecules preferential binds intracellular molecules, while MHC Class II antigens are mainly 

associated with extracellular antigens (2). 

The TCR-binding to MHC-ligand complex is usually insufficient to achieve antigen-dependent 

naïve T cell activation. In order to allow adaptive response, a second signal (co-stimulation), 

generally delivered by innate compartment after recognition of microbial molecules, is able to place 

the TCR-recognized antigen, in a danger frame. Binding of CD28 molecule, expressed by T 

lymphocytes, with CD80/CD86 costimulatory molecules, expressed by APC, represents the main 

second signal delivering system, able to avoid harmful T cell activation against autologous, non-

dangerous targets (2). 

 

1.3 The Immune Tolerance 

Due to inability of adaptive recognition repertoire to distinguish self from non-self/dangerous 

structures, a complex network of cellular and molecular mechanisms usually controls physiological 

adaptive immune response (Figure 3). Particularly, we define central immune tolerance the 

selection processes of adaptive repertoire taking place in primary lymphoid organs, thymus for T 

lymphocytes and bone marrow for B lymphocytes (1). Moreover, a number of redundant 

mechanisms, belonging to peripheral tolerance control, usually provide to inactivate the auto-

reactive T and B cell clones that, despite central selection, are physiologically present in the 

adaptive repertoire. 
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Figure 3: A scheme of immune tolerance mechanisms. From Abul K. Abbas, Cellular and Molecular Immunology, Elsevier Inc. 

 

A key role in peripheral tolerance control is played by regulatory cell populations mainly 

represented by the Treg subset, characterized by the expression of the fork head box protein 3 

(Foxp3) Transcription Factor (1).  

 

1.4 Regulatory T cells (Treg) 

Treg are a subpopulation of CD4+ T lymphocytes (generally, 5-10% of CD4 population) 

expressing high levels of the α chain of the interleukin-2 receptor (IL-2R or CD25) together with 

Foxp3 (4).  Treg originate in thymus (natural Treg o nTreg) or in tissue by differentiation of CD4+ T 

cells in a microenvironment characterized by high levels of Transforming Growth Factor (TGF)-β, 

in the absence of IL-6 production. Survival and function of Treg is dependent on the presence of 

IL-2 (4). Indeed, expression of high affinity IL-2R on their surface and signalling through IL-2R are 

required for optimal Treg function. Treg act with different mechanisms: direct inhibition of APC 

cells, secretion of anti-inflammatory cytokines (IL-10 and TGF-β), inhibition of effector cells by 

direct contact, induction of T cells death by deprivation of IL-2, their growth factor. Moreover, 

Treg cells have been observed to regulate tissue homeostasis, also affecting neo-angiogenesis 

processes (5). Depletion of Treg results in development of autoimmune disorders (6). Thus, the 

control of Treg availability and function has been largely suggested as a critical element for fine 

tuning of immune response. 

 

1.5 Metabolism and immunity 

Recent observations indicate that nutrient availability influences immune system functions. 

Indeed, nutrient deprivation has been associated with defects in adaptive immunity activation and 
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epidemiological studies refer the failure of immunological responsiveness in hypo-nutrition 

conditions.  Instead, high caloric intake in industrialized countries has been associated with reduced 

infections and increased risk of autoimmune disorders (7,8). Moreover, adipose tissue has been 

observed to produce pro-inflammatory cytokines and adipocytokines that favor activation of pro-

inflammatory immune cells including those with an autoreactive potential (9-11). In this contest, a 

key role is performed by the mammalian Target of Rapamycin (mTOR), the main intracellular 

nutrient sensor (12) (Figure 4). It is a serine-threonine kinase that regulates cell growth, glycolysis 

and nucleotide synthesis.  

A number of data indicate that effector T lymphocytes and Treg are characterized by distinct 

metabolic profiles (13). Indeed, effector T cells contain inactive mTOR, unable to sustain their 

growth, while active mTOR molecules, present in Treg, underlie their proliferation in vivo. These 

observations are conceivable with the opposite effects exerted in vitro by pharmacological mTOR 

inhibition of T cell effectors or Treg (14).  Indeed, the mTOR inhibitor rapamycin is able to inhibit 

effector T cells growth, while restoring TCR-dependent Treg proliferation (15,16). 

 

 

 

 

 

 

 

 

 

 

Figure 4: A simplified model of mammalian target of rapamycin (mTOR) signaling. From Pollizzi and Powell.  Regulation of T cells by mTOR: 
the known knowns and the known unknowns. Trends in Immunology 2015; 36:13. 

Thus, the activation of mTOR represents a key environmental signal for the plasticity of 

adaptive cells that may use metabolic pathways to finely tune their fate and function. In particular, 

the intracellular metabolic balance of Treg, strictly dependent on extracellular environment, 

regulates proliferation or quiescence of these cells highlighting the importance of metabolism for 

immune system control (13). 

The standard treatment for kidney transplantation is currently represented by calcineurin 

inhibitors (CNI) whose chronic use can cause cardiovascular disease, as well as graft dysfunction 

and malignant tumors (17-19). Pharmacological mTOR inhibition might represent a valuable 
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therapeutic alternative for effective immune modulation in this condition. A number of data refer 

the use of mTOR inhibitors (Rapamicin and/or Everolimus) to treat solid and hematological 

malignancies. The possibility to establish specific schedule and administration strategies in order to 

obtain immune modulation instead of cell death, represents a key investigation issue.   

 

1.6 Nutraceutical compounds and pro-inflammatory activity control in vitro.  

A deranged regulation of the immune system represents a key element for the pathogenesis of 

immune-mediated diseases (20,21). In particular, the exacerbation and endurance of TH1 response, 

based on a pathological production of IFN-γ, has been largely associated with inflammatory and 

autoimmune diseases (22,23). Several studies have been suggesting the anti-inflammatory and 

antioxidant properties of some botanicals (24-28). Moreover, previous studies evidenced the immune-

modulating effects of a nutraceutical diet in dogs affected by Canine Leishmaniosis, a model of 

natural chronic infection (29). In this context, the evaluation of in vitro effects of the botanical 

substances, contained in the nutraceutical canine food on cytokine production by human and animal 

lymphocytes, represents an interesting field of investigation to provide useful information about the 

possibility modulate human inflammatory immune response by using metabolic tools.  

 

1.7 Myelodysplastic Syndromes: a model to study deranged immune effectors inside an 

inflammatory microenvironment. 

Myelodysplastic Syndromes (MDS) are clonal haematological disorders characterised by 

emergence, dominance and expansion of dysplastic progenitor/s in the context of ineffective 

haematopoiesis, peripheral cytopenia/s and increased risk to develop Acute Myeloid Leukaemia 

(AML). 

The pathogenesis of the disease is not still well defined; cytogenetic and molecular abnormality 

as well as an altered medullar microenvironment are involved in the selection and clonal expansion 

of the dysplastic precursor/s (30,31). Several data have been suggesting the involvement of an altered 

immune tolerance control in MDS pathogenesis (32). Indeed, an autoimmune attack to normal Bone 

Marrow (BM) precursors by deranged adaptive effectors as well as the activity of bystander T cells, 

recruited during an immune-response against dysplastic antigens, can be hypothesised to be 

relevant for the selection of dysplastic clones that are able to escape to immune-mediated damage. 

The study of the Treg cells, involved in negative control of immune response, in MDS patients 

suggests that these cells can play two opposite pathogenic roles (33,34). Indeed, functional defects 

and altered BM migration of Treg in the first phases of the disease and a Treg increase in the late 
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stages of MDS have been consistently found (33-35). These data support the hypothesis that in the 

advanced stage of the disease, the increase of the regulatory cells might promote the suppression of 

the immune response against the dysplastic clones fostering AML progression while, in the early 

stage of MDS, Treg defects can enhance activity of cytotoxic immune effectors against normal BM 

precursors, favoring selection of the dysplastic clone/s. Therapeutic efficacy of immune-

suppressive drugs (mainly anti-T lymphocyte sera with or without Cyclosporin A) in a group of 

MDS patients (36,37) strongly supports such hypothesis. The possibility to correctly identify the 

subgroup of MDS patients susceptible to immune-modulating therapy represents a key element to 

optimize clinical management of the disease. In this context, the analysis of the Treg role in the 

inflammatory microsite, the BM, is a key element to propose immune-modulating strategies able to 

control the pathological selection of dysplastic stem precursors in MDS. 

 

1.8 Co-expression of CD3 and CD56 molecule as a marker of a new regulatory T cell 

subset. 

The key role of deranged cytotoxic effectors in the pathogenesis of immune-mediated disorders 

has been largely recognized (38). Together with the classical regulatory cells, represented by the 

CD4+CD25+Foxp3+ (Treg) cells, a number of experimental data point to the involvement of other 

regulatory, less characterized, regulatory cell subsets in tolerance maintenance. In this context, the 

involvement of CD8+ T regulatory cells, whose role and phenotype features are still undefined 
(39,40), has been consistently postulated. Moreover, it is not clear whether different CD8+ regulatory 

T cells represent an independent T subset or if they reflect the dynamic plasticity of a single 

population during immune response.  

We observed that co-expression of CD3 and CD56 molecules identifies a T cell subset 

significantly reduced in type I autoimmune diabetes. Moreover, we observed significant positive 

correlation between the number of CD3+CD56+ cells and the β-cell residual function (41). 

Considering that auto-reactive CD8+ cells represent the main T cell subset mediating disruption of 

insulin-producing β-cells in T1D, we investigate whether CD3+CD56+ cells are able to control 

CD8+ T cells functions. The referred correlation of this cell subset with viral persistence in hepatitis 
(42,43) and with the positive outcome of in vitro fertilization approaches (44) strongly supports such 

hypothesis.  
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2. Aim 

This study is aimed to investigate on cell-dependent mechanisms of immune response control in 

physiological conditions as well as in the context of immune-mediated diseases. 

In order to address such issues, we investigated a human model of autoimmunity, as represented 

by a subgroup of patients affected by MDS, a hematological disorder characterized by immune-

mediated selection and expansion of pathological stem precursors. In this model, the possibility to 

directly analyse cell-mediated tolerance control in the microsite of the deranged inflammation, is 

expected to represent a powerful tool to identify the key regulatory mechanisms to be hopefully 

targeted by effective immune-modulating strategies.  

Recent observations indicate that the availability of nutrients and the possibility to modulate 

metabolic pathways might influence immune system regulation and functions. In particular, in vitro 

studies consistently indicate that activation status of mTOR, the main cell nutrient sensor, 

represents a key environmental signal for the plasticity of adaptive cells and that changes in 

metabolic pathways might be used to finely tune their fate and function.  

The employment of mTOR pharmacological inhibition for the control of tumour cell growth 

has been largely described. However, in vitro data indicate that oscillatory mTOR inhibition is 

critical to ensure preferential Treg expansion. Thus, we asked whether dosage and administration 

schedule of mTOR inhibitors, able to ensure mTOR oscillatory activity, might be relevant to induce 

immune-tolerance, rather than cell growth inhibition in a model of tolerance induction as 

represented by kidney allogeneic transplant. 

Moreover, our study addressed the possibility to use nutraceutical compounds, by us selected 

for their immune-modulating effects in a veterinary model of chronic infection, to control immune 

effector activity in vitro.  

Control of deranged cytotoxic effectors is a key therapeutic target in immune-mediated 

disorders. In this context, the involvement of multiple cell-dependent mechanisms of immune 

modulation has been largely demonstrated. Here, we addressed the functional analysis of a poorly 

defined T cell subset, characterized by the co-expression of CD3 and CD56 molecules, recently 

associated with the residual pancreatic function in type I autoimmune diabetes.  

A better knowledge of cell mediated processes involved in immune-tolerance control is 

expected to significantly improve the availability of innovative immune-modulating strategies, thus 

ameliorating clinical management of immune-mediated disorders. 
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3. Materials and methods  

 

3.1 Immune dysregulation and Myelodysplastic Syndromes 

Patients and controls 

In collaboration with the Divisione di Ematologia dell’Università “Federico II” di Napoli, we 

examined BM and peripheral blood (PB) samples of 37 consecutive, newly diagnosed MDS 

patients categorised according to WHO 2016 and IPSS score. Twenty-six have been classified as 

Low Risk, six as Intermediate-1 (Int-1) Risk, five as Intermediate-2 (Int-2) Risk/High Risk. BM and 

PB samples from MDS patients were obtained during routine diagnostic procedures previous 

informed consent from each patient. None of the recruited patients were receiving medical 

treatments that could have an impact on their immune condition. To avoid any interference on 

immune-regulatory mechanisms, patients were devoid of immune-mediated diseases and acute or 

chronic viral infections. All the patients enrolled in the study received a minimal 36-month clinical 

follow up.  

For comparative analysis of T cell repertoire, 10 PB and 3 BM samples of healthy donors have 

been collected. BM specimens, obtained from consenting healthy donors, were part of their marrow 

donation.  

 

mAb, immunofluorescence and flow cytometry 

Lymphocyte population has been gated by using FSC and SSC parameters, as well as CD45 

labelling. FITC, PE, Cychrome and APC labelled mAb against CD3, CD4, CD8, CD56, CD25, 

CD45 and CD54 have been used to the identification of immune cell subsets and to evaluate their 

activation status. To study the T cell repertoire have been used mAbs anti -Vβ14, -Vβ12, -Vβ7.2, -

Vβ20, -Vβ18, -Vβ7.1, -Vβ22, -Vβ13.2, -Vβ1, -Vβ17, -Vβ5.3, -Vβ5.1 -Vβ23, -Vβ4, -Vβ2, -Vβ13.1, 

-Vβ5.2, -Vβ8, -Vβ9, -Vβ11, -Vβ3, -Vβ13.6, -Vβ21.3F, -Vβ16. To define a CD4+ and/or CD8+ 

skewed repertoire, we considered the occurrence of a percentage of expression exceeding of three 

Standard Deviation (SD) that observed, for each Vβ family analysed, in ten healthy controls sex/age 

matched with the MDS patient cohort. Occurrence of a skewed BM CD4/CD8 repertoire with an 

expression frequency higher that 20% respect to peripheral blood (PB) has been considered as a BM 

preferential skewing. Treg subset was identified as the higher CD25 expressing CD4+CD3+ 

population and Foxp3 at a percentage ˃98%. The Foxp3 expression has been evaluated trough an 

intracellular staining using the anti-human Foxp3 kit (eBioscience San Diego, USA) and following 

the manufacturer’s instructions. For the comparative analysis of CD54 expression level on BM 
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CD8+CD3+ and CD4+CD3+ lymphocytes, immune-fluorescence data were expressed as ratio of 

mean intensity fluorescence (MIF) value for the CD4+ and CD8+ population and the control MIF 

value obtained after staining of the same cell population with the isotype control mAb, as 

previously described (34). 

Flow cytometry and data analysis were performed by a two-laser equipped FACScalibur 

apparatus and the CellQuest analysis software (Becton Dickinson). 

 

Statistical analysis 

Statistical evaluation of data, by InStat 3.0 software (GraphPad Software Inc., San Diego, 

California, USA), was performed by Mann-Whitney test or Fisher’s exact test. Two-sided p values 

less than 0.05 have been considered significant.  

 

3.2 mTOR modulation and tolerance in kidney transplanted patients 

Study population  

The study was carried out on 19 renal transplant recipients, all first transplant from cadaver 

donors. Inclusion criteria were: age 18-65 years; transplant vintage >3 years; plasma creatinine <2 

mg/dl, with stable estimated glomerular filtration rate (eGFR) in the previous three months; 

haemoglobin value >10 g/dl; white cell count >3000/μL (neutrophils >1500/μL); platelets 

>75.000/μL; and absence of rejection signs or infectious episodes in the previous three months. 

Individuals with previous or combined transplantation, hyperlipidaemia (baseline cholesterol and/or 

triglycerides values exceeding 220 and 200 mg/dl, respectively) andor evidence of autoimmune 

diseases or viral infections have been excluded from the study. 

Study protocol  

At baseline (T0), dosage of CNI was reduced empirically by 50% and the mTORC1 specific 

inhibitory drug Everolimus was introduced at a starting dosage of 0-50 mg/twice a day (b.i.d). 

Plasma levels of both drugs were checked after 1 week, and Everolimus dosage was modified 

opportunely to reach trough levels (TL) of 5–8 ng/ml. After a 4-week stabilization period, CNI dose 

was further reduced by 25% and finally withdrawn (within the fourth month), whereas Everolimus 

TL was increased up to 6–10 ng/ml. After 6 months all the patients were on Everolimus alone; they 

were evaluated again at one year from baseline (T12). Dosage of steroids was never altered 

throughout the study. Six of the enrolled patients continued mycophenolic acid (MFA) co-treatment 

that was associated to Everolimus. These patients, whose immune modulating regimen included 

MFA co-administration, were independently analysed throughout the study. Clinical management 



 

15 

 

of the patients was performed at Divisione di Nefrologia dell’Università “Federico II” di Napoli. 

All the patients signed their informed consent to the study. Twelve healthy blood donors, age- and 

sex-matched with the patients, were enrolled into the study as controls. 

Immunofluorescence and T cell activation  

To evaluate the immune profile, blood samples of kidney transplanted patients were analysed 

by immunofluorescence and flow cytometry by using a two-laser equipped fluorescence activated 

cell sorter (FACS) Calibur apparatus and CellQuest analysis software (Becton Dickinson, San Jose, 

CA, USA). To identify the different cell populations and the cytokine production were employed 

monoclonal antibodies (mAbs) against CD3, CD4, CD8, CD56, CD25, FoxP3, Ki67, interferon 

(IFN)-, interleukin (IL)-4, IL-17 labelled to fluorochromes [Fluorescein isothiocyanate (FITC), 

phycoerythrin (PE), cychrome (CY) and allophycocyanin (APC)] purchased from Becton 

Dickinson. APC labelled anti-phospho S6 kinase mAb was purchased from Cell Signaling 

Technology, Inc. (Beverly, MA, USA). To analyse cytokine production, Peripheral Blood 

Mononuclear Cells (PBMC) were isolated from whole blood through centrifugation on 

Lymphoprep gradients (Nycomed Pharma) and cultured overnight in the presence of phorbol 

myristate acetate (PMA) and ionomycin to induce the ex vivo cytokine production and with 5 

μg/mL of Brefeldin-A (Sigma-Aldrich) to avoid extracellular cytokine export. Intracellular cytokine 

profile, FoxP3, Ki67 and phospho S6 kinase staining were performed with a fixation-

permeabilization buffer (Becton Dickinson), following the manufacturer’s instructions. CD4+ and 

CD8+ T cells were sorted by FACSJazz (Becton-Dickinson). To mimic antigen-dependent T cell 

activation, sorted CD4+ and CD8+ cells were incubated for 1 hour with anti-CD3/anti-CD28 mAb-

coupled microbeads (Life Technologies AS, Oslo, Norway) at the cell/bead ratio of 1:0.2. 

 

Statistical analysis  

Statistical evaluation of the data using InStat version 3.0 software (GraphPad Software Inc., San 

Diego, CA, USA), was performed by Mann–Whitney test or Wilcoxon’s matched pairs signed-rank 

test, as indicated. Two-sided P-values less than 0.05 have been considered significant. The 

corrected P-value (Pc) were calculated by applying Bonferroni adjustment for multiple 

comparisons. 
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3.3 Study of in vitro effects of Nutraceutical compounds on pro-inflammatory T cell 

profile  

Culture Medium and Botanicals  

PBMCs isolated by peripheral blood samples of 10 healthy donors were tested for their 

capability to produce cytokines in the presence of conditioned cell cultured medium containing 

botanicals compounds. Conditioned cell cultured medium was prepared by using 1gr of powder of 

each plant-derived substance, solubilized in an appropriate chemical vehicle. The botanical 

substances and the amount to be used for the in vitro study were selected according to the immune-

modulating results previously obtained in a canine model (29). In particular, Ascophyllum nodosum 

(pure powder of Ascophyllum nodosum seaweed, laminarin content min. 2.3%, and fucoidans 

content min. 11.4%); Aloe vera (Aloe vera gel 200:1 powder, aloe content min. 1%); Cucumis melo 

(lyophilized extract of melon, superoxide dismutase min. 1 UI/mg), Polygonum cuspidatum 

(powder obtained from dried Polygonum cuspidatum roots, resveratrol content min. 8%), Camellia 

sinensis (standardized decaffeinated green tea leaves powder, catechins content min. 75%), Carica 

papaya (Papaya fermented granular, rich in papain), Glycine max (Soy powder, 40% isoflavones), 

and Grifola frondosa (maitake carpophore dry extract, polysaccharides content min. 20%) have 

been solubilized in 10mL of PBS, while the Glycine max has been added to 30 mL of PBS to gain 

the full solubilization. Haematococcus pluvialis (standardized beadlets of Haematococcus pluvialis 

extract, astaxanthin content min. 2.5%) has been solubilized in 5 mL of dimethyl sulfoxide and 5 

mL of PBS. Echinacea purpurea (Echinacea purpurea dried extract, polyphenols content min 4%), 

Piper nigrum (black pepper powder, piperine content min. 95%), Curcuma longa (turmeric dried 

extract, curcuminoids content min. 95%), and Punica granatum (standardized powdered extract 

from pomegranate, ellagic acid content min. 20%) have been solubilized in 4 mL of ethanol and 6 

mL of water. To obtain a conditioned culture medium, the solubilized botanicals have been added to 

RPMI 1640 culture medium (Sigma-Aldrich, Milan, Italy) in the proportion of 1:10 in order to 

preserve the good conditions of the cell cultures. 

Intracellular cytokine production was evaluated after ON incubation with Phorbol 12-Myristate 

13-Acetate (PMA) and Ionomycin (Sigma-Aldrich, St. Louis, MO) alone or in the presence of 

culture medium containing the single substance or a mixture of all the botanicals tested. This 

approach has been widely described for the study of cytokine profile in human and animal models.  

Cytokine production was evaluated by using immune fluorescence and flow cytometry detection 

(FACSCalibur platform) and CellQuest Software (Becton Dickinson Pharmingen, San Jose, 

California).  
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Statistical Analysis 

Statistical analysis was performed by Kruskal-Wallis followed by Dunn's multiple comparisons 

analysis (GraphPad Prism, San Diego, CA, USA). Results were considered significant at p< 0.05. 

 

3.4 Study of CD3+CD56+ cell subset 

Monoclonal antibodies, immunofluorescence, flow cytometry and cell sorting   

CD3+CD56+ (TR3-56), CD3−CD56+ (NK) and CD4+ and CD8+ T cells were isolated, after Ficoll 

hypaque–gradient centrifugation (GE-Healthcare), from PBMCs of human healthy donors by high-

performance cell sorting (BD FACS-Jazz, BD Bioscience) in the IEOS-CNR Sorting Facility in 

Napoli, after staining with the following antibodies: anti-CD3, anti-CD56, anti-CD4, anti-CD8 or 

by magnetic cell separation with microbeads CD3+CD56+ isolation Kit (Miltenyi Biotec). Sorted 

cells were 95%–99% pure by FACS analysis. Samples were analysed by immunofluorescence and 

Flow Cytometry by using a two-laser equipped FACSCanto II (BD PharMingen).  

 FITC, PE, PE-Cy7, PE-Cy5, APC-H7 and APC-labelled mAbs against CD3, CD4, CD8, CD16, 

CD45, CD25, CD39, CD49d, CD45RA, CD45RO, CD54, CD56, CD57, CD62L, CD69, 

CD107a/LAMP-1, CD94, CCR7, CTLA-4, CXCR4, Foxp3, GITR, DNAM-1, PD1, IFN-, 

NKG2A, NKp30, NKp46, CD1d Ig fusion, V24 and isotype-matched controls, all from BD 

Pharmingen were used for cell characterisation. FITC and PE labelled mAbs against TCR 

Vepitopes, namely anti-V1, V2, V3, V4, V5.1, V5.2 V5.3, V7.1, V8 V, V11, 

V13.1, V13.2, V13.6, V14, V16, V17, V20, V1.3 V22, V23,  all from Beckman 

Coulter were used for T cell repertoire analysis. To analyse the production of Interferon (IFN)- 

intracellular staining with the specific mAb was performed by using the fixing/permeabilization 

(BD Bioscience), following the manufacturer’s instructions. To avoid extracellular cytokine export, 

the cultures were performed in the presence of 5 g/ml of Brefeldin-A (Sigma-Aldrich). Analysis 

were performed by using FlowJo Software (FlowJo, LLC). The control 345.134 IgG2a mAb, 

recognizing a glycoprotein widely expressed on human leucocytes was a kind gift of Dr. S. Ferrone; 

recombinant human soluble NCAM-1/CD56 molecule was purchased from R&D Systems, Inc. 
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Cell culture, CD107/LAMP-1 expression and cytokine production  

To obtain activated IL-2PBMC or IL-2CD8+ cells, PBMC or flow sorted CD8+ T cells were 

cultured for 36 hours in RPMI-1640 (Thermo Scientific Scientific) supplemented with 5% AB 

human serum (Euroclone) in the presence of recombinant human IL-2 (Sigma) at 200UI/ml. IL-

2PBMC or IL-2CD8+ cells were incubated for 4 hours with anti-CD3 plus anti-CD28 mAb-coupled 

microbeads (Gibco by Thermo Scientific) at the cell/bead ratio of 1:1 or with the K562 cell line 

(ATCC) at 1:1 ratio. CD107a/LAMP-1 expression and IFN-production was evaluated in flow 

cytometry gated CD3+CD56- (T cells), TR3-56, NK, CD4+ and CD8+ T cells, as indicated. When 

indicated IL-2PBMC or IL-2CD8+ T cells were co-cultured with fresh isolated TR3-56, NK CD4+ and 

CD8+ T lymphocytes at different ratio. Brefeldin-A at 5 g/ml (Sigma Aldrich) was added in the 

last 3 hours of culture for CD107a/LAMP-1 expression or for the whole culture period for IFN-

production. To avoid cell-to-cell contact, co-culture of TR3-56 cells with IL-2CD8+ T lymphocytes 

was performed by using transwell inserts (Corning Life Sciences). 

 

Proliferation assay 

For the assessment of cell proliferation, cells were cultured in the presence of microbeads coated 

with anti-CD3 plus anti-CD28 (Gibco by Thermo Scientific). Cultures were incubated for 72 hours 

at 37°C in a humidified atmosphere containing 5% CO2 and pulsed with 0.5 Ci/well [3H] 

thymidine for the final 16 hours. The incorporation of the labelled nucleotide was determined by 

scintillation counting after automatic cell harvesting. All tests were performed in the presence of 

RPMI 1640 Medium supplemented with 5% heat inactivated AB human serum (Euroclone). To 

analyse cell division flow cytometry sorted CD4+ and CD8+ T cells were labelled with 5, 6-

carboxyfluorescein-diacetate-succinimidyl ester (CFSE) (ThermoFischer Scientific) before the 

culture.  

Statistical analysis 

Statistical evaluation of data has been performed by Mann-Whitney test and Student's t-test 

using the InStat 3.O software (GraphPad Software Inc, San Diego, California, USA). Two- sided p 

values less than 0.05 has been considered significant. 
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4. Results and Discussion 

 

4.1 Immune dysregulation and Myelodysplastic Syndromes 

Treg increase and decreased expression of CD54 on CD8+ T cells in BM associate with MDS 

progression. 

Immune response is a finely tuned micro-site process. Thus, the possibility to specifically 

access the study of BM immune profile in MDS represents a powerful tool to investigate on Treg-

mediated immune tolerance control in the pathogenesis and progression of the disease. With this 

purpose, we evaluated the level of Treg and activated cytotoxic T cells in the BM of 37 MDS 

patients classified according to IPSS score system, mirroring leukemia progression risk.  Left panel 

of Figure 5 shows that Treg levels in the BM increase with disease progression. A significant 

increment (p<0.05) of BM Treg percentage has been observed in Int-2/High Risk patients in 

comparison with the Low and Int-1 Risk groups. Moreover, in order to investigate on BM cytotoxic 

CD8+ T cells (CTL), largely associated with the occurrence of immune-mediated damage of stem 

precursors (45,46), we focused on activated cytotoxic effectors by evaluating surface expression of 

CD54 molecule, consistently associated with the occurrence of antigen dependent activation of CTL 
(47,48). As shown, a clear trend of reduction of CD54 expression on BM CD8+ cytotoxic T cells was 

observed from the Low Risk to the Int-2/High Risk stage of MDS (Figure 5, right panel). These 

data suggest that BM Treg levels increase with disease progression and that, instead, an higher 

number of activated CD8+ T cells characterises the first stage of the disease.  

 
Figure 5: Treg percentage and CD54 expression on bone marrow CD8+ T lymphocytes in MDS patients. Left panel indicates the percentage of 
Treg cells in BM of MDS patients classified according the International Prognostic Score System (IPSS). Treg are significantly increased in Int-
2/High when compared to the Low and Int-1 patients (p ˂ 0.05). Right panel indicates the expression level of CD54 on CD8+ T lymphocytes in BM of 
MDS patients classified according to the IPSS; a trend of decreased expression from Low to Int-2/High patients is observed. White, grey and black 
columns indicate Low, Int-1 and Int-2/High Risk MDS patients, respectively. 

 

Thus, reduced Treg level in BM might be hypothesised to associate with the occurrence of 

deranged activity of CTL, likely able to damage stem precursors in BM and to select pathological 

dysplastic precursors able to escape CTL attack. (46,49). 
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Reduced BM Treg levels in Low Risk MDS patients are significantly associated with increased BM 

recruitment of CD8+ T cells 

To evaluate whether activity of cytotoxic adaptive effectors in BM of MDS patients associate 

with immune-mediated selection of pathological precursors, we first evaluated the recruitment in 

BM of cytotoxic adaptive effectors in our MDS cohort calculating the ratio between the BM and 

peripheral blood (PB) CD8+ T cells. A value >1 indicates an increased frequency of cytotoxic 

effectors in BM, as compared with the PB. 

 

 
Figure 6: BM recruitment of CTL in Low Risk MDS patients inversely associates with Treg level in BM. Panel A indicates the CTL recruitment 
in BM of MDS patients classified according the IPSS. There is a significant increase of CTL in BM of Int-1 patients compared to Low and Int-2/High 
Risk individuals. White, grey and black columns indicate Low, Int-1 and Int2/high Risk MDS patients, respectively. Panel B shows the CTL 
recruitment in BM of Low Risk MDS patients categorized according to Treg levels in BM; Percentage ˂ 2% or ≥ 2% were indicated with white and 
grey columns, respectively The BM recruitment of CTL has been evaluated by calculating the ratio between CTL percentage in BM and in PB. 

 

As shown in panel A of Figure 6, there is a significant BM recruitment of CD8+ T lymphocytes 

in Int-1 when compared with Low Risk group, while reduction of CTL recruitment in BM 

characterises the Int2/high Risk stage of MDS. 

Previous data obtained by our research group indicated (34) that Treg show a clustered 

distribution in BM of Low Risk patients and that a cut-off of 2% allows the identification of two 

subgroups of Low Risk individuals. A subgroup with physiological level of BM Treg (>2%) and 

another one with lower BM Treg level (<2%) compared to healthy donors (data not shown). As 

shown in panel B of Figure 6 the subgroup of Low Risk MDS patients with lower (<2%) BM Treg 

level show an increased BM recruitment of CD8+ T lymphocyte. No significant difference in the 

BM recruitment of CD4+ T cell effectors was observed (not shown).  

Then, BM-Treg level, seems to preferentially control the BM recruitment of CTL in MDS. 

These observations support the idea that lower Treg level could promote immune-mediated damage 

of stem precursors in BM of Low/Int-1 Risk patients. In addition, the increasing of Treg number 
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associated to a decreased activation status of CD8+ T cells, could allow the suppression of the 

cytotoxic response against the dysplastic clones in the Int-2/High Risk groups (33-35).  

Then, BM Treg levels preferentially control both the activation status and the BM recruitment 

of cytotoxic T cell effectors in MDS.  

 

Clonal expansion and activation status of CD8+ T cells in BM of Low risk MDS patients 

inversely correlates with BM Treg percentage. 

Antigen-dependent activation of effector T lymphocytes is associated with their expansion. 

Diversity of T cell repertoire is dependent on rearrangement of V-D-J gene segments occurring 

during TCR assembly. Each single T cell clone expresses one type of TCR. So, the expression level 

of single Vβ gene segments of the variable region of TCR β-chain indicates the expansion, also 

called “skewing”, of single T cell clones.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Comparative analysis of TCR repertoire on BM and PB of CD4+ and CD8+ T cells in one representative healthy donor (CTR) and 
one Low Risk MDS patient. Panel A shows the expression of Vβ gene segments in BM and PB of CD4 and CD8 T lymphocytes in the CTR. White 
and black symbols indicate BM and PB, respectively; Panel B shows the expression of Vβ gene segments in BM and PB of CD4 and CD8 T 
lymphocytes in a representative Low Risk MDS patient. White and black symbols indicate BM and PB, respectively; The arrows indicate the 
occurrence of BM T cell expansions in CD4 and CD8 lymphocyte repertoire. T lymphocyte expansion has been considered significant when the TCR 
Vβ expression percentage is higher than 3 standard deviations (SD) compared to TCR Vβ expression in a cohort of 10 healthy controls. Furthermore, 
preferential BM TCR Vβ expansions have been considered significant when the expression percentage of a TCR Vβ family in BM was greater than 
20% compared to peripheral blood. 
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In this context, the possibility to directly analyse the BM microenvironment, represents a 

valuable tool to investigate on T-cell mediated mechanisms involved in the selection/expansion of 

pathological clones in the first phases of MDS. Indeed, the presence of a T cell expansion in BM is 

likely related with an ongoing T cell response against BM antigens.  

Figure 7 shows the results obtained when T cell repertoire in BM and PB was compared. As 

shown, (Figure 7A) in one healthy donor no significant difference was observed in BM and PB 

CD4 and CD8 T cell repertoire (indicated by the black and white symbols); at variance, in Low 

Risk MDS patients the presence of preferential BM clonal expansions were observed in both CD4+ 

and CD8+ T lymphocytes (panel B). Of note, no particular Vβ segment expansion has been 

observed to characterise BM of MDS patients. Thus, Low Risk patients were divided in two groups, 

according to the number of T cell expansions detected in BM: those with <2 Vβ skewing and those 

showing ≥2 Vβ skewing in BM T cell repertoire.  

As shown in Figure 8, Low Risk MDS patients with ≥2 Vβ BM clonal expansion have lower 

BM Treg cells level (panel A) and higher CD54 expression (panel C) on BM T lymphocyte as 

compared to patients with <2 Vβ skewing. No significant difference was observed when CD4+ T 

lymphocyte BM clonal expansions were evaluated (panel B and D). 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Treg percentage and CD54 expression on bone marrow (BM) CD8+ and CD4+ T lymphocytes in Low Risk MDS patients classified 
according the number of T cell expansions (skewing) in BM. Panel A and B indicate the Treg percentage in Low Risk MDS patients with ˂2 
(white columns) or ≥2 (gray columns) skewing in BM CD8+ and CD4+ T cells, respectively. Panel C and D indicate CD54 expression on BM CD8+ 
and CD4+ T lymphocytes in Low Risk MDS patients with ˂2 (white columns) or ≥2 (gray columns) skewing in BM CD8+ and CD4+ T cells, 
respectively. Significant difference has been observed only for CD8 T cells. 
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These data confirm the relevance of BM Treg levels in the preferential regulation of both the 

expansion and activation status of cytotoxic T cell effectors in BM of Low Risk MDS patients.  

 

Grouping of Low Risk MDS individuals according to their BM Treg level identifies a subgroup 

of patients showing a skewed CD8 T cell repertoire in BM, lesser leukaemia evolution and better 

survival in a minimal 36 month follow up. 

In order to investigate whether the evaluation of Treg level in BM (˂ 2% versus ≥2%) might 

represent a useful criterion to identify the MDS patients in which immune-mediated mechanism are 

involved in pathogenesis or progression of the disease, we analysed the occurrence of CD8+ and 

CD4+ T cell expansions in BM of 26 Low Risk individuals categorised according to their BM Treg 

level. As shown in Table 1, a significant increase of CD8+ T cell expansions in BM has been 

observed in patients showing lower Treg level (˂ 2%) at disease onset, as compared to the 

counterpart with BM Treg percentage >2% (p<0.05). No significant association of Treg level with 

CD4+ T cell expansions in BM has been observed.  

To investigate on the prognostic relevance of Treg BM level at diagnosis, we also analysed 

leukaemia evolution and survival, in a minimal 36 month follow up, in Low Risk MDS patients 

grouped according to their BM Treg level. Table 1 shows that there is a significant increment of 

leukaemia evolution (p<0.05) and death (p<0.05) in the sub-group of Low Risk patients with BM 

Treg percentage >2% at disease onset.  

These observations are conceivable with the hypothesis that Treg preferentially suppress 

cytotoxic immune effectors in BM of MDS Low Risk patients. Moreover, their number at 

diagnosis, seems to inversely associate with an immune profile able to control disease progression. 

 

Table 1. Follow up evaluation of Low risk MDS patients categorised according to Treg level in BM at disease onset1 

 N Age 
CD8 skewed 

in BM ≥2 

CD4 skewed 

in BM ≥2 

Transfusion 

 dependance 

Leukemia  

evolution 
Death 

Low Risk 26 72.6±9 13 10 8 5 6 

BM Treg ≤2% 14 71±5 102 63 5 04 05 

BM Treg >2% 12 74.4±11 3 4 3 5 6 

        

1data refer a minimum 36 month follow-up; 2 significantly different from BM Treg >2% group (p<0.05 by Fisher exact test; Odd 
Ratio 7.5 (95% CI: 1.307 to 43.047); 3 not significantly different from BM Treg >2% group; 4 significantly different from BM Treg 
>2% group (p<0.05 by Fisher exact test); Odd Ratio 0.047 (95% CI: 0.002279 to 0.9704); 5significantly different from BM Treg 
>2% group (p<0.005 by Fisher exact test); Odd Ratio 0.034 (95% CI: 0.001679 to 0.7082); 
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Taken in all our observations indicate that BM Treg level at diagnosis inversely associates with an 

immune profile able to control disease progression. Indeed, at disease onset, Treg percentage in BM 

associated with decreased occurrence of Leukaemia progression and better survival. Further 

investigation, addressing the molecular target/s of the BM skewed CTL, will likely clarify the role 

of immune mediated processes in MDS pathogenesis and/or progression.    

 

4.2 mTOR modulation and tolerance of kidney transplants  

Effect of conversion from CNI to Everolimus on immune profile  

Previous data indicate that Treg amount in the inflammatory microsite is a key element to 

modulate adaptive cytotoxic effectors and mediate immune-tolerance control. A number of 

experimental data (12,13) suggest mTOR modulation as a valuable strategy to increase Treg subset in 

the context of a deranged tolerance control. Pharmacological mTOR inhibition is currently 

employed in clinical trials to suppress tumor growth in multiple oncological settings. Moreover, 

selective Treg growth in vitro has been observed to depend on oscillatory mTOR activity (14). 

Kidney transplant condition represent a valuable clinical model of tolerance induction. In this 

context, the employment of immune-modulating strategies based on CNI drugs has been largely 

associated with therapy-related damaging of the transplanted organ. Thus, the needing of 

alternative pharmacological approach to immune suppression in kidney transplanted patients is 

largely recognised.  

mTOR inhibition has been proposed as an alternative strategy to obtain immune-modulation, 

also avoiding possible nephrotoxic effect. In this context we took advantage from a clinical trial at 

Divisione di Nefrologia dell’Università di Napoli “Federico II” based on the conversion from CNI 

to mTOR inhibitory immune-modulating protocol in a cohort of kidney transplanted patients. In 

this model we investigated on the hypothesis that dosage and clinical administration schedule of 

mTOR inhibitors, as represented by Everolimus, might selectively mediate the establishment of a 

Treg-dependent tolerance control of the transplanted organ.  

With this aim we analysed the number of leucocytes, neutrophils, CD4+ and CD8+ T 

lymphocytes at T0 (at the beginning of the study) and at T12 (after 12 months of pharmacological 

conversion). We found that conversion from CNI to Everolimus is able to reduce the number of 

total leucocytes, neutrophils cells and CD8+ T lymphocytes at T12 if compared to T0 data. No 

differences were observed in CD4+ T cell numbers (not shown). 
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Then we evaluated the effect of Everolimus conversion on cytokine production, by analysing 

IFN-γ, IL-4 and IL-17 in iNKT lymphocytes, a major player in cytokine profile polarization (50), 

IFN-γ in CD8+ T cells and IFN-γ and IL-17 in CD4+ T lymphocytes. Comparison with healthy 

donors (CTR) was also performed. 

As shown in Figure 9 (panel A-C) IFN-γ and IL-17 produced by iNKT cells remained 

significantly lower respect to healthy donors in patients both at T0 as well as at T12. In contrast, 

the high IL-4 production in CNI treated patients, evident at T0, was significantly reduced at T12 

becoming similar to healthy donors (Figure 5B). The production of IFN-γ by CD8+ T cells (Figure 

9D) significantly decreased after the Everolimus conversion, resulting lower than controls at T12.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Cytokine secretion profile of NKTi, CD8+ T and CD4+ T lymphocytes in kidney-transplanted patients undergoing conversion from 
CNI to Everolimus. Panels A-C refer to the IFN-γ, IL-4 and IL-4 production by NKTi cells at T0 and T12 after CNI to Everolimus conversion. Panel 
D indicates IFN-γ production in CD8+ T cells and Panels E and F indicate IFN-γ and IL-17 production by CD4+ lymphocytes at T0, and T12. Data 
have been referred as mean±SEM. White columns indicate data obtained in all the patients enrolled in the study (N=18); striped columns indicate 
patients whose treatment included MFA co-administration (N=6); Grey columns indicate patients treated with immune modulating regimens not 
including MFA (N=12). Mann-Withney test is reported. For T0-T12 comparison of paired samples Wilcoxon matched-pairs signed-rank test has been 
performed. The corrected p value (pc) was calculated by applying Bonferroni adjustment for multiple comparisons. 

Notably, the IFN- reduction was preferentially observed in the group of patients undergoing 

an immune-modulating treatment without MFA. Such evidence suggests a preferential role for 

mTOR-dependent mechanisms in regulating CD8+ T lymphocyte pro-inflammatory cytokine 

production. IFN-γ by CD4+ T cells was significantly lower at T12 than controls (Figure 9E). In 

addition, the percentage of IL-17 produced by CD4+ T lymphocyte was reduced in patients than in 

controls at T0 and at T12 (Figure 9F). Moreover, in paired samples, the comparison of T0 and T12 

values suggested that Everolimus, in absence of MFA, was able to mediate complete inhibition of 

IL-17 producing CD4+ T cells. Thus, MFA co-administration affects Everolimus-dependent 

modulation of pro-inflammatory cytokines by T cells.  
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Effect of Everolimus on Treg number and proliferation  

Treg cell homeostasis depends on mTOR activation pathways (14,51). Therefore, we analysed the 

effects of the pharmacological mTOR inhibition on number and proliferation of Treg cells. As 

indicated in Figure 10, T12 patients treated without MFA association show a significant increase of 

Treg number as compared to T0 values. Notably, Treg count always remains similar to controls. 

 

 

 

 
 

 
 
 
 
 
 
 
Figure 10: Treg population in kidney-transplanted patients following CNI to Everolimus conversion. Number of Treg, gated as CD4+Foxp3+T 
cells, at T0 and T12 were reported. Data have been referred as mean±SEM. White columns indicate data obtained in all the patients enrolled in the 
study (N=18); striped columns indicate patients whose treatment included MFA co-administration (N=6); Grey columns indicate patients treated with 
immune modulating regimens not including MFA (N=12). For comparison with controls Mann-Withney test is reported. For T0-T12 comparison of 
paired samples Wilcoxon matched-pairs signed-rank test has been performed. The corrected p value (pc) was calculated by applying Bonferroni 
adjustment for multiple comparisons. 
 

Moreover, we analysed Treg growth rate by evaluating ex-vivo the expression of the 

proliferation marker Ki67. As shown in Figure 11, the conversion from CNI to Everolimus was 

associated with a significant increase of Ki67 expression on the Treg population. Conversely, 

Everolimus-MFA co-treatment mediated a significant reduction of Treg proliferation. At variance, 

the ex-vivo evaluation of Ki67 expression in CD4+FoxP3-T effector cells indicated a significant 

proliferation decrease at T12 (data not shown). This decreased trend was observed to be very strong 

in T12 patients treated with Everolimus in association to MFA. Therefore, MFA administration was 

observed to mediate significant growth reduction of both Treg and T cell effectors.  

 

 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 11: Ki67 expression on Treg cells gated as CD4+Foxp3+T cells in kidney-transplanted patients. Data have been referred as mean±SEM. 
White columns indicate data obtained in all the patients enrolled in the study (N=18); striped columns indicate patients whose treatment included 
MFA co-administration (N=6); Grey columns indicate patients treated with immune modulating regimens not including MFA (N=12). For 
comparison with controls Mann-Withney test is reported. For T0-T12 comparison of paired samples Wilcoxon matched-pairs signed-rank test has 
been performed. The corrected p value (pc) was calculated by applying Bonferroni adjustment for multiple comparisons. 

 



 

27 

 

Everolimus serum concentration associates with different levels of mTOR-dependent S6 kinase 

phosphorylation  

To evaluate the activation status of mTOR complex after one year of Everolimus 

administration, we studied the phosphorylation of S6 kinase (p-S6), the major downstream target of 

mTOR activity (52). Moreover, to assess whether phosphorylation of mTOR-dependent targets 

might be conditioned by drug serum concentration, we evaluated S6 kinase phosphorylation (p-S6) 

level in CD4+ and CD8+ T cells of T12 patients after 3h (T12-3h) and 12h (T12-12h) from 

Everolimus administration, reflecting maximal and minimal TL of the drug (data not shown). As 

shown (Panel A and B of Figure 12), comparative analysis by immune fluorescence of basal p-S6 

levels in CD4+ and CD8+ T cells from samples obtained from T12 patients 3h and 12h after 

Everolimus administration (highest and lowest drug TL, respectively) indicated the occurrence of 

an oscillatory inhibition of mTORC1 kinase activity. Indeed, significant decrease of p-S6 kinase 

was observed in CD4+ and CD8+ T cells obtained after 3h, as compared with those obtained after 

12h from Everolimus administration (p<0.001). Moreover, p-S6 kinase levels were significantly 

lower than controls in samples after 3h (p<0.05), but not after 12h from Everolimus (Panel A and B 

of Figure 12). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. p-S6 kinase analysis 3 and 12 hours after Everolimus administration in T12 patients. Panel A refers to flow cytometry comparative 
evaluation of p-S6 kinase levels in CD4+ and CD8+ T cells obtained from one representative T12 patient 3h and 12h after Everolimus administration 
(T12-3h and T12-12h) and in one healthy control. As indicated, upper histogram plots in Panel A show the p-S6 kinase level in CD4+ and CD8+ T 
cells of one healthy donor (plane line); isotype matched control binding is indicated as dashed line. Lower histogram plots in Panel A refer to the p-S6 
kinase evaluation in cells of one representative patient 3h (bold line) and 12h (plane line) after Everolimus administration; dashed line indicates 
isotype matched control binding. Panel B shows comparative analysis of p-S6 phosphorylation levels of CD4+ and CD8+ T cells after 3h (vertical 
depicted column) and 12h (oblique depicted column) in all four T12 patients analysed. Dotted columns indicate healthy controls (CTR). Statistical 
analysis was performed by Mann Whitney test. 

 
Similar data were obtained by western blot analysis. Indeed (Figure 13), no difference in p-S6 

levels in medium cultured samples obtained from T0 and T12 patients were observed in CD4+ and 

CD8+ T cells after a one-hour culture in the presence of medium alone or with anti-CD3/anti-CD28 

beads. Conversely, a strong increase of TCR-dependent p-S6 up-regulation was observed in the 

samples obtained from T12 patients after 12h from Everolimus administration (minimal drug serum 
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concentration), in both the CD4+ and CD8+ T cells. In addition, strongly reduced pS6 up-regulation 

was observed upon TCR triggering in the samples obtained from the same patients 3 hours after 

Everolimus administration (maximal drug serum concentration).  

 

 

 

 

 

 

 

 

 

 

Figure 13:  Western blot analysis of p-S6 kinase from protein lysates of sorted CD4+ T cells.  Data are from two representative T0 and T12 
patients and refer to 1h culture with medium or anti-CD3/anti-CD28 mAb coupled microbeads. As shown, a tremendous increase of pS6 levels was 
observed in T12-12h patients after TCR triggering. As indicated, (Panel B) comparable up-regulation of pS6 was observed in T12-3h patients and 
controls. Arabic numbers (1-4) identify samples obtained from single patients. Data are representative of two concordant experiments.  

Thus, basal phosphorylation level of S6 kinase, a major mTOR-dependent molecular target, 

was substantially maintained in patients treated with Everolimus. Moreover, oscillations in serum 

concentration of Everolimus were associated with changes in basal and activation-dependent S6 

kinase phosphorylation of CD4+ and CD8+ T cells. Indeed, T Cell Receptor (TCR) triggering was 

observed to induce significantly higher S6 kinase phosphorylation in the presence of lower 

Everolimus serum concentrations. Taken in all, our results shed light on the complex mTOR-

dependent immune-metabolic network, and propose that oscillatory inhibition of TCR-dependent 

mTOR activity might represent a therapeutic strategy to optimise targeted manipulation of specific 

adaptive effectors in kidney-transplant recipients. 

 

4.3 Study of in vitro effects of nutraceutical compounds on pro-inflammatory cytokine 

production by T cell effectors 

Nutraceutical compounds co-culture is able to modulate in vitro IFN- production by human T cells  

Our previous work (29) showed, in a model of natural chronic canine infection, as represented by 

Canine Leishmaniosis, that combination of pharmacological treatment with an immune-modulating 

diet containing Ascophyllum nodosum, Cucumis melo, Carica papaya, Aloe vera, Haematococcus 

pluvialis, Curcuma longa, Camellia sinensis, Punica granatum, Piper nigrum, Polygonum 

cuspidatum, Echinacea purpurea, Grifola frondosa and Glycine max was associated with 
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significant restoration of Treg level and with the decrease of TH1 inflammatory response. These 

effects were proposed to have a role in reducing the immune-pathological injury resulting from 

canine leishmaniasis. Thus, we investigated whether co-culture of human T cells with the above 

botanicals might exert immune-modulating effect on activated human T cells.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14: Effects of botanical treatment on INF- production by human PBMCs. Upper dot plots represent results from one representative 
experiment showing the percentage of INF-and IL produced by CD4+ T lymphocytes (R2) and non-T cells (R3). The different cell treatment with 
ad hoc medium or mixture are indicated on the top. Lower histograms show the statistic representation of the INF- production by human CD4+ T 
Lymphocytes evaluated as percentage of INF- producing cells in 10 representative experiments, p < 0.05. The abbreviation “ctr” indicates the basal 
INF- production by PMBC stimulated by PMA and Ionomycin in the presence of the ad hoc medium, containing the same solubilizing-vehicle but 
free from the botanicals. 
 

As shown in Figure 14, co-culture of the botanicals, except Aloe vera, were able to induce a 

significant decrease in IFN-γ production of human T and non-T lymphocytes (manly represented by 

NK cells). Instead, no changes were observed in IL-4 production, undetectable or only slightly 

detectable in T and non-T lymphocytes. The chemical vehicles, used to solubilize the substances, 

were always used as control and the resulting values were subtracted from each experimental point.  

 

4.4 A study of cell-mediated regulation of T cell-dependent cytotoxic effector functions: 

characterization of the CD3+CD56+ T cell subset as a novel regulatory cell population. 

Co-expression of CD3 and CD56 molecules characterises a subset of lymphocytes whose 

physiological function is still undefined. Recently, the absolute number of circulating CD3+CD56+ 

has been observed to mirror residual function of pancreatic -cell up to one year after diagnosis of 

autoimmune type 1 diabetes (T1D) (41). In order to investigate on the possible involvement of 

CD3+CD56+ cells, here defined TR3-56 cells, in the T1D pathogenesis we first analysed the 
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phenotype of TR3-56 cells in order to clarify whether co-expression of T and NK molecules (CD3 

and CD56 molecule) might indicate belonging of TR3-56 cells to the NKT cell lineage. Of note, NKT 

cells have been largely characterized as a CD1d T cell subset, able to ensure prompt cytokine 

production also shaping T cell cytokine profile during antigen-dependent immune response.  

As shown in panel A of Figure 15, TR3-56 cells are not CD1d-restricted for the Ag-recognition, 

their TCR does not express the Vα24 segment in the  chain, commonly associated with the 

invariant NKT subset and are unable to be activated by NK-dependent stimulation, as represented 

by the K562 cell line. Thus, TR3-56 cells do not belong to the NKT cell subset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: TR3-56 cells are a T cell subset distinct from NK and NKT cells. A. left panel shows flow cytometry analysis and gating strategy to 
define NK, TR3-56 and T cell subset on PBMC of one representative healthy subject; right panels show the expression of several molecules usually 
associated with NKT, NK and T cells in NK (magenta), TR3-56 (blue) and T (black) cells. Numbers indicate the percentage of positive cells. B. Left 
panels show the ratio of CD4+ and CD8+ cells in T (black) and TR3-56 (blue) cells. Right panel shows TCR V gene family expression in CD3+CD56- 
(black) and TR3-56 (blue) cells; data are from three independent experiments (n=3); 

 

The TR3-56 cells express low level of the typical molecules of NK lymphocytes (CD94, NKG2A, 

NKp30, Nkp46 and DNAM-1), resembling that observed on CD8 T cells. In addition, the analysis 

of CD45 isoforms shows that TR3-56 cells preferentially express CD45RA molecule (Panel A of 

Figure 15) and do not express specific markers of Treg cells (data not shown). 
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Moreover, TR3-56 cells show a heterogeneous  TCR repertoire, similar to that observed in 

classical CD3+ T cells (Figure 15 B). The assessment of the CD4 and CD8 molecules reveals that a 

CD8 expression generally exceeding 70% characterizes the TR3-56 cells (left panel of Figure 15 B). 

To assess whether the TR3-56 cells are responsive to TCR-dependent signals, they have been 

cultured for 4h with anti-CD3 plus anti-CD28 microbeads, in order to mimic TCR-dependent 

stimulation. After 4h of incubation, we assessed the cytotoxic activity, evaluating the expression of 

CD107a/LAMP-1 molecule that is associated to the release of perforin granules; IFN-γ production 

has been also detected.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16: TR3-56 cells are responsive to TCR-dependent signals. A. Left panels indicate CD107a/LAMP-1 and IFN-staining of CD3+CD56- 
(black), TR3-56 (blue), NK (magenta) cells, after 4 hours of culture in the presence of medium (dotted line) or anti-CD3 plus anti-CD28 microbeads 
(plain line); numbers show the percentage of positive cells; data refer one representative experiment; right panels show cumulative data from three 
independent experiments (n=3; average±s.e.m.); *P <0.005 (two-tailed t-test). B. Left panels show CD107a/LAMP-1 and IFN- staining profiles of 
CD3+CD56- (black), TR3-56 (blue), NK (magenta) cells, after 4 hours of culture in the presence of medium (dotted line) or K562 cells (plain line); 
numbers show the percentage of positive cells; data are from one representative experiment; right panels show cumulative data from three 
independent experiments (n=3; average±s.e.m.); *P <0.005  by two-tailed t-test;   

 

Moreover, we evaluated TCR-dependent proliferation of TR3-56 as compared with conventional 

CD4 and CD8 T cells by analysing their [3H] Thymidine incorporation after 72h of TCR 

stimulation. As indicated in Figure 17, TR3-56 cells show a reduced proliferative capability compared 

to CD4+ and CD8+ T lymphocytes.  

Together, these data suggest that the TR3-56 cell represent a T cell subset with low proliferative 

ability after TCR engagement. 

 

 

 
 
 
 
 
 
 
 
 
Figure 17: TR3-56 cells show a TCR-dependent reduced proliferation, as compared to conventional T lymphocytes. 3H Thymidine incorporation 
is referred in CD4+ (orange), CD8+ (green) T lymphocyte and in TR3-56 cells (blue) after 72 h of incubation without stimulation or in the presence of 
anti-CD3 plus anti-CD28 microbeads (indicated by + and - symbols). 
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TR3-56 are able to modulate antigen-dependent cytotoxicity and interferon- production by CD8+ 

T cells.  

To evaluate the TR3-56 effect on T lymphocytes proliferation, we co-cultured the sorted TR3-56 

cells with isolated CD4+ and CD8+ T cells stimulated with anti-CD3 plus anti-CD28 microbeads. 

As shown in Figure 18, flow cytometry sorted TR3-56 cells reduced [3H] thymidine incorporation 

of both the CD4+ and CD8+ purified T cells. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18: TR3-56 cells control the proliferation of both CD4+ and CD8+ cells. 3H Thymidine incorporation is referred as % of maximum in CD4+ 
(orange) and CD8+ (green) T lymphocytes cultured for 72 hours with anti-CD3 plus anti-CD28 microbeads alone or in the presence of freshly isolated 
TR3-56 cells (blue) at the indicated ratios. 

 

However, the analysis of cell division, assessed by CFSE staining, shows a stronger inhibition 

of the CD8+ T cells, as compared with the CD4+ T cell counterpart, (Figure 19). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19: Freshly isolated TR3-56 cells preferentially affect cell division of CD8+ T lymphocytes. CFSE staining of flow cytometry sorted CD4+ T 
cells and CD3+CD8+ T lymphocytes cultured 72 hours with anti-CD3 plus and CD28 microbeads alone or in presence of TR3-56 cell (blue) at the 
indicated ratios; data are from one representative experiment. 

 

Then, we evaluated whether TR3-56 are able to modulate the cytotoxic activity and IFN-γ production 

by cytotoxic T cells. In order to optimize T cell effector function of the cytotoxic T lymphocytes, 

flow sorted PBMC or CD8+ sorted T cells were cultured for 36h with rhIL-2 (200IU/ml) to obtain 

IL-2PBMC or IL-2CD8, as described (56); these IL-2-treated cells were then stimulated for 4h with 
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anti-CD3 plus anti-CD28 microbeads to induce CD107/LAMP-1 and IFN-γ production. To 

specifically analyse IL-2PBMC, these cells were labelled with an anti CD45 mAb before the TCR 

stimulation with anti-CD3 plus anti-CD28 microbeads. As shown in Figure 20, co-culture of the 

TR3-56 with IL-2PBMC significantly reduces their expression of CD107/LAMP-1 and IFN-γ 

production. No effects have been observed in the presence of control populations as represented by 

NK and CD8+ T cells. Of note, TR3-56 cells are unable to significantly affect TCR-induced 

CD107/LAMP-1 expression and IFN-γ production of CD4+ T cells (data not shown) suggesting that 

TR3-56 cells exert a preferential regulatory role on the effector functions of TCR activated CD8+ T 

cells. 

 
Figure 20: TR3-56 cells significantly reduce CD107a/LAMP-1 and IFN-γ of cytotoxic T cell effectors. A. Left panels show CD107a/LAMP-1 and 
IFN- staining of CD8+ T cells, gated on CD45+ labelled IL-2PBMC after 4 hours of culture with anti-CD3 plus anti-CD28 microbeads alone (black), 
in the presence of TR3-56

 (blue), NK (magenta), CD8+ T cells (green); dotted lines indicate medium culture; numbers indicate the percentage of positive 
cells; data are from one representative experiment. Right panels show cumulative data from nine independent experiments (n= 9; percent of maximum 
± s.e.m.); ***P <0.0005 by two-tailed Wilcoxon matched pairs test. B. Upper and lower panels show CD107a/LAMP-1 and IFN- staining of CD8+ T 
cells, gated on CD45+ labelled IL-2PBMC after 4 hours of culture with anti-CD3 plus anti-CD28 microbeads alone (black), in the presence of 
autologous or allogeneic TR3-56 cells (blue); numbers indicate the percentage of positive cells; data are from one representative experiment out of 
three; dotted lines indicate medium culture. 

 

TR3-56 cells can be induced in vitro and require cell-to-cell contact to exert their regulatory activity 

To investigate on the possibility to generate in vitro TR3-56 cells with regulatory properties, we 

cultured FACS-sorted human CD3+CD56- lymphocytes in presence of anti-CD3 plus anti-CD28 
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microbeads for 10 days with regular supplementation of hrIL-2 (20IU). As shown in Panel A of 

Figure 21, 8 to 10% of cultured CD3+CD56- cells acquired CD56 molecule expression; these 

induced TR3-56 cells (iTR3-56) become able to suppress CDl07a/LAMP-l expression by human CTL 

obtained by 36h incubation of flow sorted CD8+ T cells (indicated as IL-2CD8). 

Moreover, ten-day culture of freshly isolated TR3-56 cells in the presence of TCR stimulation 

and regular rhIL-2 supplementation resulted in massive CD56 down-modulation associated with 

inability to exert regulatory activity.  

 
Figure 21: TR3-56 cells can be induced in vitro upon activation of flow sorted CD3+CD56- T cells. A. Freshly isolated CD3+CD56- cells (purity ˃ 
99%), when cultured for 10 days with anti-CD3 plus anti-CD28 microbeads and regular rhIL-2 supplementation, up-regulate CD56 expression. As 
indicated by lower panels, these TR3-56 cells “induced” in vitro, when co-cultured with IL-2CD8+ suppress their CD107/LAMP-1 expression at the 
same extent than the freshly isolated TR3-56 cells. B. freshly isolated TR3-56 cells cultured for 10 days with anti-CD3 plus anti-CD28 microbeads and 
rhIL-2 regular supplementation are unable to maintain CD56 expression and lose their regulatory ability. Numbers indicate the percentage of positive 
cells; data are from one representative experiment. 

 

To understand mechanisms underlying TR3-56 regulatory activity we evaluated whether direct 

cell-to-cell contact with TCR activated CD8+ T cells was indispensable for TR3-56-dependent 
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suppressive activity. As shown in panel A of Figure 22, the TR3-56 cells are unable to suppress both 

CD107a/LAMP-1 expression and lFN-γ production when physically separated from CD8+ T cells in 

a transwell assay. 

Then, to evaluate whether the CD56 molecule is directly involved in contact-dependent 

suppressive signals, we cultured the TR3-56 cells and TCR-stimulated IL-2CD8 with saturating 

concentration of soluble human recombinant neural cell adhesion molecule (hrNCAM/CD56) or 

anti-CD56 mAb. In these experimental conditions, we observed that TR3-56 cells maintaining their 

capability to modulate CD107a/LAMP-1 expression and IFN-γ production by TCR-activated IL-

2CD8. Suppressive capability of the TR3-56 cells co-cultured with IL-2CD8 has been also evaluated 

in the presence of a blocking anti-CD49d mAb. Indeed, CD49b molecule has been observed to be 

expressed on the surface of TR3-56 cells. As shown in Panel B of Figure 22, incubation of freshly 

isolated human TR3-56 cells with anti-CD49d mAb was unable to affect their suppressive capacity. 

These data indicate that both CD56 and CD49d-mediated contact are irrelevant for TR3-56 cells 

regulatory activity. 

A 

 

 

 

 
 
 
 
 
 
 
 

B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22: TR3-56 cell regulatory functions require cell-to-cell contact and are independent on CD56 expression. A. Upper and lower panels 
show CD107a/LAMP-1 and IFN-γ staining of IL2CD8+cultured for 4 hours with anti-CD3 plus anti CD28 microbeads alone (black), together with 
TR3-56 cells (blue) or with the TR3-56 cells in a transwell assay, as indicated. B. Upper and lower panels show CD107a/LAMP-1 and IFN-γ staining of 
IL2CD8+cultured for 4 hours with anti-CD3 plus anti CD28 microbeads alone (black) or in the presence of TR3-56 cells (blue); co-cultures of TR3-56 cells 
with control 345.134 antibody or with the anti-CD56 or the anti-CD49d neutralizing mAb at saturating concentration were specifically indicated. 
Dotted lines indicate medium culture; numbers indicate the percentage of positive cells; data are from one representative experiment out of four. 
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5. Conclusions 

This study focused the analysis of cell-mediated immune tolerance control in physiological 

conditions as well as in the context of immune-mediated disorders also addressing the possibility to 

modulate deranged immune effectors.  

With this aim we took advantage from a model, as represented by MDS, allowing direct access 

to the microsite (BM) specifically involved in the deranged inflammatory process likely underlying 

the selection/expansion of pathological stem precursors. In this model, we found that, in the first 

stage of the disease (Low Risk), defective Treg recruitment in the inflammatory microsite (BM), 

associates with antigen-dependent expansion of cytotoxic immune effectors (53). 

In the effort to address the possibility to specifically manipulate adaptive immune effectors, 

hopefully improving clinical management of immune-mediated diseases, we analysed the 

mechanisms underlying tolerance induction in a kidney transplantation model. We found (54) that, in 

this model, mTOR inhibition therapy is able to mediate significant oscillation in the mTOR kinase 

activity. This effect, confirming previous in vitro observations, (14) relates to a significant increase 

of Treg number and growing ability, and decreased Ki67 expression by the CD4+Foxp3- (T cell 

effector) counterpart. Thus, oscillatory inhibition of TCR-dependent mTOR activity might represent 

a therapeutic strategy to optimise targeted manipulation of specific adaptive effectors in kidney-

transplant recipients. 

Previous studies suggested the immune-modulating effects of a nutraceutical diet in dogs 

affected by Canine Leishmaniosis, a model of natural chronic infection (29). Thus, in the effort to 

analyze the possibility to modulate a deranged inflammatory response, we also evaluated the in 

vitro effects of the botanical substances, included in the above nutraceutical diet, on cytokine 

production by human lymphocytes. We found (55) that these substances are able to exert immune-

modulating effects in vitro, thus suggesting their possible employ as pharmacological adjuvants 

able to control the pro-inflammatory activity in the context of an altered immune homeostasis. 

Co-expression of CD3 and CD56 molecules, usually associated with T and NK lineage, 

identifies a cell subset, by us named TR3-56, significantly reduced in T1D diabetes and able to mirror 

residual  cell activity, as measured by peptide-C availability (41). In order to analyse the complex 

network of cell-mediated control of immune response we investigated on the possibility that TR3-56 

cells might be able to participate in the regulation of antigen-dependent immune activation. We 

found (paper submitted) that TR3-56 cells play a key role in the control of cytotoxic T lymphocytes.  

Indeed, they have been observed to represent a distinct cell subset preferentially involved in the 

control of effector functions (cytotoxicity and cytokine production) of CD8+ T cells. We 
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consistently found that regulatory ability of TR3-56 cells is strictly relied on cell-to-cell contact and is 

independent on CD56-mediated interactions.  

Taken in all our data confirm the key role of resident Treg in the control of antigen-dependent 

expansion of adaptive immune effectors in the inflammatory micro environment. Moreover, we add 

to the complex scenario of cell mediated immune control, a novel T cell subset, the TR3-56 cells, by 

us observed to preferentially modulate CD8+ T cell effector functions. The possibility that metabolic 

intervention strategies might be able to improve clinical management of immune-mediated 

disorders was also addressed.  
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Reduced regulatory T cells (Treg) in bone marrow
preferentially associate with the expansion of cytotoxic
T lymphocytes in low risk MDS patients

The myelodysplastic syndromes (MDS) include clonal bone

marrow (BM) disorders characterised by the emergence/

dominance of dysplastic progenitors in the context of ineffec-

tive haematopoiesis, peripheral cytopenias and increased risk

of acute myeloid leukaemia (AML) (Ades et al, 2014).

The link between immune dysregulation and MDS has

been suggested (Glenthøj et al, 2016). Autoimmune attack to

normal precursors as well as the activity of bystander T cells,

recruited during an immune-response against dysplastic anti-

gens, were hypothesised as relevant for the selection of dys-

plastic clones that are able to escape immune-mediated

damage. The involvement of Natural Killer cells was also

described (Terrazzano et al, 2012).

Basing on the evidence that innate and adaptive immune-

effectors might participate in MDS development, several tri-

als of immune-suppressive therapy have been performed.

Younger age, Low Risk classification according to the Inter-

national Prognostic Scoring System (IPSS) (Greenberg et al,

1997), the presence of the HLA-DR15 and high percentage of

proliferating CD4+ T cells have been considered as potential

predictors of clinical response to immune-suppression

(Sloand et al, 2008). However, valuable criteria to identify

the subgroup of MDS patients susceptible to immune-modu-

lating approaches, are currently lacking.

The T cell regulatory population (Tregs) are physiologi-

cally involved in the negative control of immune response

(Sakaguchi, 2004). Increased Tregs in the late stages of MDS

and the occurrence, in the first phases of the disease, of func-

tional defects and altered migration patterns of this cell sub-

set support the hypothesis that Tregs could play two

opposite pathogenic roles in MDS (Kotsianidis et al, 2009;

Alfinito et al, 2010).

Immune response has been fundamentally recognised as a

finely tuned microsite process. Thus, the focus on BM immune

profile represents a powerful tool for investigating Treg-

mediated immune-tolerance control in the pathogenesis/pro-

gression of MDS. With this aim, we evaluated Tregs and cyto-

toxic T cells (CTL) in the BM of 37 MDS patients classified

according to IPSS (Greenberg et al, 1997). The materials and

methods are described in the online supporting information

(Data S1). A significant increment (P < 0�05) in the percentage

of BM Tregs was observed in Intermediate-2 (Int-2)/High Risk

patients in comparison with the Low/Int-1 groups (Fig 1A).

Moreover, a reduction trend of CD54 expression, largely

associated with the occurrence of antigen-dependent activation

of CTL, was observed on BM-CTL from Low to the Int-2/High

stages. BM CTL recruitment was then analysed by calculating

the ratio between CTL percentage in the BM and peripheral

blood (PB). There was a significant BM recruitment of CTL in

Int-1 when compared with Low Risk group (1�74 � 0�13 vs.

1�35 � 0�08; P < 0�05), while reduced CTL recruitment in BM

characterises the Int-2/High stage (1�07 � 0�14 in Int2/High vs.

1�74 � 0�13 in Int-1; P < 0�05) (Fig 1B, left).

We previously reported a clustered distribution of Tregs

in BM of Low Risk patients and that a cut-off of 2% allows

identification of two subgroups (Alfinito et al, 2010): thus,

Low Risk patients were grouped accordingly (Fig 1B, right

panel). As shown, the lowest (≤2%) Treg level was signifi-

cantly associated with increased BM/PB CTL ratio

(1�63 � 0�14 vs. 1�21 � 0�03; P < 0�05). No difference in

BM recruitment of CD4+ T cells was observed (not shown).

Thus, BM-Treg level seems to preferentially control the BM

recruitment of CTL in MDS.

Then, we analysed the cytotoxic T cells (TCR) repertoire

in the PB and BM of healthy donors and MDS patients (Fig-

ure S1). CD8+ and CD4+ T lymphocytes were considered

TCR-skewed when they expressed a single TCR-Vb protein

at a percentage higher than 3 standard deviations (SD) than

observed in 10 healthy donors. Moreover, preferential BM-T

cell expansions were defined as BM clones that showed a sin-

gle TCR-Vb protein expression exceeding the 20% of that

observed in PB. Low Risk patients were then divided in two

subgroups according to the number of observed BM-T cell

expansions. The BM Treg percentage was significantly

increased in Low Risk patients with <2 skewed Vb families

in BM CTL (3�04 � 0�35 vs. 1�88 � 0�58; P < 0�005; Fig 1C,

left). Moreover, (Low Risk patients with ≥2 Vb expansions

in BM CTL showed significantly increased CD54 expression

on CTL (12�99 � 2�47 vs. 3�94 � 0�42; P < 0�05; Fig 1D,

left). No difference was observed when CD4+ T cells were

analysed (Fig 1C and D, right panels). Therefore, Tregs

appear to exert a key role in the regulation of CTL activa-

tion/expansion in BM.

We previously observed that Tregs from Low Risk patients

show a clustered, not homogeneous, distribution in BM and

that a 2% cut-off value identifies two populations (Alfinito

et al, 2010). Therefore, the occurrence of T cell expansions

in BM of Low Risk individuals, categorised according to BM
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Treg level, was analysed. A significant increase of CTL expan-

sions was detected in the BM of patients that showed lower

(<2%) Treg level at disease onset (P < 0�05; Table I). No sig-

nificant association of Treg level with BM-CD4+ T cell

expansions was observed.

We also analysed leukaemia evolution and survival, in a

minimal 36-month follow-up, in our Low Risk cohort

grouped according to BM-Treg level. There was a signifi-

cantly higher evolution to leukaemia (P < 0�05) and death

(P < 0�05) in the Low Risk individuals with BM Tregs >2%
at disease onset (Table I).

Taken together, our observations suggest that BM-Treg

preferentially modulate CTL recruitment, activation and pro-

liferation in BM of Low Risk MDS patients, and that their

frequency at diagnosis inversely associates with an immune

profile able to control disease progression.

A long-term follow-up study (Sloand et al, 2008) reported

that responders to immune-suppression showed significantly

longer survival with lower transformation to leukaemia. In

addition, Tregs together with B cell progenitors were described

as independent prognostic predictors in Low Risk patients,

while overall survival and progression-free survival was
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Fig 1. Treg level in BM preferentially controls BM-recruitment, activation and expansion of cytotoxic T cell effectors in Low risk MDS patients.

(A) Treg percentage and CD54 expression on bone marrow cytotoxic T cells (BM-CTL) in myelodysplastic syndrome (MDS) patients classified as

Low (white column), Intermediate 1 (Int-1; grey column) and Int-2/High (black column) risk, respectively; Tregs were significantly increased in

Int-2/High, when compared to the Low (P < 0�05) and Int-1 (P < 0�05) individuals (left panel). For CD54 expression on BM-CTL, a trend of

decreased expression was detected from Low and Int-1 to Int-2/High stages (right panel); (B) Left: there was a significant increase of BM-CTL in

Int-1 (P < 0�05), as compared with the Low Risk, while BM-CTL was decreased in Int-2/High Risk (P < 0�05 as compared with the Int-1); White,

grey and black columns indicate Low, Int-1 and Int-2/High risk patients, respectively; BM recruitment of CTL was evaluated by calculating the

ratio between CTL percentage in BM and peripheral blood (PB); Right: BM recruitment of CTL in Low Risk patients categorised according to

BM-Treg level [≤2% (white column) or >2% (grey column)], as described (Alfinito et al, 2010); Lower Treg percentage significantly correlated

(P < 0�05) with higher recruitment rate of CTL in BM; (C) Treg percentage and T-cell receptor (TCR)-Vb skewing in BM-CTL and BM-CD4+ T

cells of Low Risk patients classified, according to the number of the T cell expansions, in two groups: <2 Vb skewing (white column) vs. ≥2 Vb
skewing (grey column). An increase of Treg percentage in BM characterises Low risk patients with <2 TCR-Vb skewed CTL, as compared those

with ≥2 expansions in the BM (left); no significant difference was observed in the BM-Treg percentage when considering the CD4+ T cell TCR-

Vb repertoire in the BM (right); (D) CD54 expression and TCR-Vb skewing in BM-CTL and BM-CD4+ T cells of Low Risk patients. As shown,

individuals with ≥2 TCR-Vb expansions in BM-CTL are characterised by significantly increased CD54 expression on CTL (left); no difference in

CD54 expression was observed in CD4+ T cells, despite the occurrence of a more skewed TCR-repertoire (right).
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significantly associated with lower Treg levels (Kahn et al,

2015). Moreover, the co-occurrence of MDS with autoimmune

disorders was observed to predict longer survival and reduced

leukaemia progression (Glenthøj et al, 2016; Komrokji et al,

2016). Accordingly, we found a significant association of lower

Treg frequency and higher skewing in the Vb BM-CTL TCR-

repertoire, with decreased leukaemia progression and better

overall survival in Low Risk MDS patients. Further investiga-

tion, addressing the molecular targets of BM skewed CTL, will

hopefully clarify the role of immune-mediated processes in

MDS pathogenesis and/or progression.
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Summary

Intracellular metabolic pathways dependent upon the mammalian target of

rapamycin (mTOR) play a key role in immune-tolerance control. In this

study, we focused on long-term mTOR-dependent immune-modulating

effects in kidney transplant recipients undergoing conversion from

calcineurin inhibitors (CNI) to mTOR inhibitors (everolimus) in a 1-year

follow-up. The conversion to everolimus is associated with a decrease of

neutrophils and of CD81 T cells. In addition, we observed a reduced

production of interferon (IFN)-g by CD81 T cells and of interleukin (IL)-17

by CD41 T lymphocytes. An increase in CD41CD251 forkhead box protein

3 (FoxP3)1 [regulatory T cell [(Treg)] numbers was also seen. Treg increase

correlated with a higher proliferation rate of this regulatory subpopulation

when compared with the CD41FoxP32 effector counterpart. Basal

phosphorylation level of S6 kinase, a major mTOR-dependent molecular

target, was substantially maintained in patients treated with everolimus.

Moreover, oscillations in serum concentration of everolimus were associated

with changes in basal and activation-dependent S6 kinase phosphorylation

of CD41 and CD81 T cells. Indeed, T cell receptor (TCR) triggering was

observed to induce significantly higher S6 kinase phosphorylation in the

presence of lower everolimus serum concentrations. These results unveil the

complex mTOR-dependent immune-metabolic network leading to long-

term immune-modulation and might have relevance for novel therapeutic

settings in kidney transplants.

Keywords: everolimus, immunosuppression, kidney transplants, mTOR

Introduction

Calcineurin inhibitors (CNI) are the standard treatment in

kidney transplantation [1,2]. Chronic use of CNI is associ-

ated with graft dysfunction, increased risk of cardiovascular

disorders and malignancies [3,4]. The key challenge in the

management of renal transplants is to reduce adverse

effects while maintaining a low acute rejection rate. New

therapeutic protocols have been proposed [5,6], aimed at

limiting CNI use from early post-transplant phases up to

their discontinuation. Inhibitors of mammalian target of

rapamycin (mTOR) have been found to represent a viable

alternative to CNI [7–9].
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The serine/threonine kinase mTOR, which belongs to

the phosphatidylinositol kinase-related kinase (PIKK) fam-

ily, regulates cell growth and metabolism in response to

environmental cues [10]. The mTOR structure provides

binding sites for multiple proteins that regulate its activity.

It associates with raptor and rictor to form mammalian tar-

get of rapamycin complex 1 (mTORC1) and mTORC2,

respectively, with different regulatory activities [10].

Survival of a transplanted kidney is mainly dependent

upon immune tolerance versus allogeneic cells [11].

Immune-regulatory systems include accessory signals

intrinsic to antigen recognition and those mediated by sup-

pressor subsets, represented primarily by CD41CD251 reg-

ulatory T cells (Treg) expressing the forkhead box protein 3

(FoxP3) transcription factor [12–14].

Cross-talk between immune response and metabolism is

still largely undefined. Defective mTOR activity severely

impairs T helper type 1 (Th1), Th2 and Th17 cell differen-

tiation [15,16] and induces the Treg [17,18]. Treg availability

and proliferation depend specifically upon mTOR oscilla-

tory activity [19], while FoxO1, a major transcriptional

regulator of CD8 differentiation, also depends upon

mTORC1 [20].

The mTORC1 inhibitor everolimus, a synthetic derivative

of rapamycin, shows high oral bioavailability, stability and

solubility [9,21]. Beyond its use as immunosuppressor, ever-

olimus has been approved for treatment of solid [22,23] and

haematological malignancies [24]. Its dosage is higher (by

six to 10-fold) in an oncology setting than in transplantation

[22,23,25]. The difference in both the dosage and adminis-

tration schedule of the drug could be relevant to induce

immune tolerance rather than inhibition of cancer cell

growth. In order to address this issue, we investigated the

immune profile of kidney-transplanted patients undergoing

conversion from CNI to everolimus. We performed an ex-

vivo analysis of leucocyte number, T cell cytokine profile,

Treg number and proliferation, as well as evaluation of the

major mTOR-dependent molecular pathway (S6 kinase) in

CD41 and CD81 T cells before (T0) and after drug conver-

sion, throughout a 1-year follow-up (T12). A better under-

standing of the mTOR-dependent immune metabolic

network is expected to favour manipulation of specific

adaptive effectors, hopefully improving the survival of func-

tional graft in kidney transplant recipients.

Material and methods

Study population

The study was carried out on 19 renal transplant recipients,

all first transplant from cadaver donors. Inclusion criteria

were aged 18–65 years; transplant vintage> 3 years; plasma

creatinine< 2 mg/dl, with stable estimated glomerular

filtration rate (eGFR) in the previous 3 months; haemoglo-

bin value> 10 g/dl; white cell count> 3000/ll (neutrophils

> 1500/ll); platelets> 75�000/ll; and absence of rejection

signs or infectious episodes in the previous 3 months.

Exclusion criteria included previous or combined trans-

plantation; panel-reactive antibodies (PRA)> 25% and/or

the presence of donor-specific antibodies (DSA) at transplan-

tation; the presence of proteinuria exceeding 300 mg/day on

24-h samples; hyperlipidaemia (baseline cholesterol and/or

tryglicerides values exceeding 220 and 200 mg/dl, respec-

tively); and evidence of autoimmune diseases or of viral

infections.

Study protocol

At baseline (T0), dosage of CNI was reduced empirically by

50% and everolimus was introduced at a starting dosage of

0�50 mg/twice a day (b.i.d.). This initial dose of everolimus,

lower than that (0�75 mg/b.i.d.) suggested by the ZEUS

study [26], was chosen because of the difference in the clini-

cal features of the cohort we enrolled, characterized by a

long transplant vintage, stable renal function and no immu-

nological/infectious problems in the 3 months preceding

enrolment. Plasma levels of both drugs were checked after 1

week, and everolimus dosage was modified opportunely to

reach trough levels (TL) of 5–8 ng/ml (with further dose

modifications, if necessary). After a 4-week stabilization

period, CNI dose was reduced further by 25% and finally

withdrawn (within the fourth month), whereas everolimus

TL were increased up to 6–10 ng/ml. After 6 months all the

patients were on everolimus alone; they were evaluated

again at 1 year from baseline (T12). Dosage of steroids was

never altered throughout the study. Six of the enrolled

patients continued mycophenolic acid (MFA) co-treatment

that was associated with everolimus. These patients, whose

immune-modulating regimen included MFA co-

administration, were analysed independently throughout

the study.

At each study step (T0 and T12), all the patients were

scheduled in clinical visits; samples were withdrawn to

determine the main laboratory data, including TL of

immunosuppressive drugs.

The study, conducted in agreement with good clinical

practice guidelines, was approved by the Ethics Committee

of Federico II University of Naples (protocol number:

66/11). All the procedures were in accordance with the

Declaration of Helsinki, as revised in 2008. All the patients

signed their informed consent to the study. Twelve healthy

blood donors, age- and sex-matched with the patients,

were enrolled into the study as controls.

Immunofluorescence, cell sorting and T cell activation

Blood samples were analysed by immunofluorescence and

flow cytometry by using a two-laser equipped fluorescence

activated cell sorter (FACS)Calibur apparatus and CellQuest

analysis software (Becton Dickinson, San Jose, CA, USA).

Fluorescein isothiocyanate (FITC), phycoerythrin (PE),
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cychrome and allophycocyanin (APC)-labelled monoclonal

antibodies (mAbs) against CD3, CD4, CD8, CD56, invari-

ant natural killer T (NKTi), CD25, FoxP3, Ki67, interferon

(IFN)-g, interleukin (IL)-4, IL-17 and isotype-matched

controls were purchased from Becton Dickinson. APC-

labelled anti-phospho S6 kinase mAb was purchased from

Cell Signaling Technology, Inc. (Beverly, MA, USA).

To analyse cytokine production, peripheral blood mono-

nuclear cells (PBMC) were cultured overnight in the pres-

ence of phorbol myristate acetate (PMA), ionomycin and

brefeldin-A (Sigma-Aldrich, St Louis, MO, USA), as

described previously [27].

All phenotypes referred to flow cytometry analysis of the

lymphocyte population gated using forward- (FSC) and

side-scatter (SSC) parameters. Intracellular cytokine pro-

file, FoxP3, Ki67 and phospho S6 kinase staining were per-

formed with a fixation-permeabilization buffer (Becton

Dickinson), following the manufacturer’s instructions.

CD41 and CD81 T cells were sorted by FACSJazz (Bec-

ton-Dickinson). To mimic antigen-dependent T cell activa-

tion, sorted CD41 and CD81 cells were incubated for 1 h

with anti-CD3/anti-CD28 mAb-coupled microbeads (Life

Technologies AS, Oslo, Norway) at the cell/bead ratio of 1 :

0.2, as described previously [18].

To evaluate some possible oscillation in the results, two

independent samples obtained for each patient at T0 and

T12 were analysed at 1-week intervals and produced sub-

stantially comparable results (not shown).

Molecular signalling analysis

Independent total cell lysates, obtained from CD41 and

CD81 sorted T cells, were incubated as indicated previ-

ously, and 30 lg of total proteins were subjected to sodium

dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-

PAGE) under reducing conditions; proteins were trans-

ferred onto a nitrocellulose filter membrane (Protan;

Schleicher & Schuell, Dassel, Germany) with a Trans-Blot

Cell apparatus (Bio-Rad, Hercules, CA, USA). Filters were

then incubated with specific mAbs (anti-phospho-S6

Ser240/244 and anti-S6 5G10 clone, from Cell Signaling

Technology; anti-extracellular-regulated kinase (ERK)1/2

(clone H72; Santa Cruz Biotechnology Inc., Santa Cruz,

CA, USA) and with a peroxidase-conjugated secondary

antibody (Amersham Biosciences, Picaraway, NJ, USA).

Peroxidase activity was detected with the enhanced chemi-

luminescence (ECL) system (Amersham Biosciences) or

Femto (Pierce, Rockford, IL, USA). Normalization was per-

formed against total ERK1/2. All filters were quantified by

band densitometry analysis using the ScionImage version

1�63 software (Scion Corporation, Frederick, MD, USA).

Statistical analysis

Statistical evaluation of the data using InStat version 3�0 soft-

ware (GraphPad Software Inc., San Diego, CA, USA), was

performed by Mann–Whitney test or Wilcoxon’s matched-

pairs signed-rank test, as indicated. Two-sided P-values less

than 0�05 were considered significant. The corrected P-value

(Pc) was calculated by applying Bonferroni adjustment for

multiple comparisons, as described previously [28].

Results

The clinical evaluation of patients during the study

The demographic data of patients are reported in Table 1.

One patient left the study after the sixth month because of

the occurrence of an acute antibody-mediated rejection. The

main laboratory data are presented in Table 2. Cholesterol

was higher at T12 than at T0 (119�8%; P < 0�001) and hae-

moglobin concentration was lower at T12 than at T0 (26%;

P < 0�001). No modification was detected in urinary protein

excretion. Glomerular filtration rate was increased slightly,

although not significantly, after CNI withdrawal.

The mean everolimus TL, effective in maintaining

adequate immunosuppression, were at the lower step of

the desired range (6–10 ng/ml). The six enrolled patients

receiving CNI/MFA also continued MFA co-administration

after everolimus conversion. No dose adjustment in statins

or in erythropoiesis-stimulating factors was performed

during the study. All the patients remained under 4 mg/day

of methylprednisolone.

Side effects after the everolimus switch were mild and

transient (headache, pruritus, joint pain). One patient

complained of persisting aphthous stomatitis, requiring

therapy and a small reduction of the everolimus dosage.

Effect of conversion from CNI to everolimus on
leucocyte number and cytokine production profile

As shown in Fig. 1a, the conversion from CNI to everoli-

mus was able to reduce the number of total leucocytes to

T12 (7099 6 476) compared to T0 (8443 6 690). This

reduction trend was observed specifically in patients under-

going everolimus treatment without MFA association

(9457 6 770 at T0 versus 7261 6 628 at T12; Pc< 0�05).

Table 1. Demographic and laboratory data of the patients enrolled

into the study.

Patients (n 5 19)

Sex (M/F) 13/6

Age (years) 49�6 6 11�7
Weight (kg) 74�1 6 13�2
Transplant vintage (years) 3�5 6 1�0
CNI (Cya) 19/19

MPA derivatives (yes/no) 6/13

Anti-hypertensive drugs (n) 2�3 6 0�8
Statins (yes/no) 14/5

CNI 5 calcineurin inhibitors; Cya 5 cyclosporin; MPA 5 myco-

phenolic acid; M/F 5 male/female.
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Similar behaviour was seen for neutrophils (Fig. 1b).

Indeed, the significant reduction observed at T12

(6192 6 509 at T0 versus 3958 6 406 at T12; Pc< 0�05) spe-

cifically involved the subgroup of patients treated with

everolimus without MFA (5776 6 660 at T0 versus

3833 6 596 at T12; Pc< 0�05). Analysis of CD81 T cell

number (Fig. 1d) also revealed a significant reduction of

this cell subset in patients receiving the everolimus treat-

ment without MFA (743 6 135 at T0 versus 471 6 58 at

T12; Pc< 0�05). No differences were observed in total lym-

phocyte count (Fig. 1c) or in CD31CD41 T cell number

(data not shown) when comparing T0 versus T12 data. Per-

centage analysis confirmed this trend (data not shown).

Therefore, long-term everolimus-dependent mTORC1

inhibition reduced significantly the number of neutrophils

and CD8 T cells in kidney transplant recipients. These

changes were hampered by MFA co-administration.

To evaluate the effect of everolimus conversion on cyto-

kine production, we analysed IFN-g, IL-4 and IL-17 in

NKTi lymphocytes, a major player in cytokine profile

polarization [29]. IFN-g in CD81 T cells and IFN-g and

IL-17 in CD41 T lymphocytes were also evaluated. Nota-

bly, NKTi lymphocyte numbers in controls were similar to

those in patients, regardless of their immunosuppressive

treatment (data not shown). Comparison with healthy con-

trols has been included in order to underline, when pres-

ent, the persistent reduced cytokine production observed

in our patient cohort after conversion.

As shown in Fig. 2a, no significant changes in IFN-g

production were observed after the conversion from CNI

to everolimus. Indeed, the percentage of IFN-g-producing

NKTi cells remained significantly lower in patients than in

healthy donors both at T0 (12�68 6 2�65 at T0 versus

22�79 6 1�25 in controls; Pc< 0�05) as well as at T12

(6�96 6 1�74; Pc< 0�005 versus controls), regardless of their

immune-modulating regimen.

In contrast, the high IL-4 production in MFA-CNI-

treated patients at T0 (21�51 6 8�35 versus 5�51 6 0�90 in

controls; Pc< 0�005) was reduced at T12, so that it became

similar to healthy donors (Fig. 2b).

The frequency of IL-17-producing NKTi cells reduced

significantly compared to controls at T0, and remained

substantially unchanged at T12 (Fig. 2c).

The production of IFN-g by CD81 T cells (Fig. 2d)

decreased significantly after the everolimus conversion

(30�88 6 5�12 at T0 versus 9�14 6 1�76 at T12; Pc< 0�001),
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Fig. 1. Leucocytes, neutrophils and T cell subsets

in kidney transplanted patients undergoing

calcineurin inhibitors (CNI) to everolimus

conversion. (a–d) Evaluation of leucocytes,

neutrophils, CD4 and CD8 T cell subsets as

indicated at T0 before therapy conversion and

T12 1 year after everolimus conversion. Data

refer to mean 6 standard error of the mean

(s.e.m.). White columns indicate data obtained in

all the patients enrolled into the study (n 5 18);

striped columns indicate patients whose

treatment included mycophenolic acid (MFA)

co-administration (n 5 6). Grey columns indicate

patients treated with immune-modulating

regimens not including MFA (n 5 12). Wilcoxon’s

matched-pairs signed-rank test is reported. The

corrected P-value (Pc) was calculated by applying

Bonferroni adjustment for multiple comparisons.

Table 2. Main laboratory data throughout the study.

T0 T6 T12

eGFR (m/min) 65�9 6 20�1 70�3 6 20�8 72�3 6 27�6
Plasma creatinine (mg/dl) 1�30 6 0�47 1�32 6 0�83 1�27 6 0�47

Plasma haemoglobin (g/dl) 13�8 6 1�4 13�3 6 1�5 13�0 6 1�7*

Plasma albumin (g/dl) 4�7 6 0�3 4�50 6 0�3 4�6 6 0�3
Plasma cholesterol (mg/dl) 176�2 6 29�3 211�6 6 45�3 211�3 6 38�4*

Plasma triglycerides (mg/dl) 126�0 6 58�6 134�3 6 54�0 141�2 6 58�8
24-h urinary protein excretion (g) 0�10 6 0�13 0�19 6 0�24 0�18 6 0�24

Everolimus trough levels (ng/ml) 0 6�47 6 3�4 7�0 6 2�1
T0 5 baseline (under calcineurin inhibitors); T6 5 6 months from baseline (under everolimus); T12 5 12 months from baseline (under evero-

limus); eGFR 5 glomerular filtration rate (MDRD equation). *Indicates significant difference from T0 value.
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significantly lower than controls at T12 (Pc< 0�001).

Notably, the reduction trend was observed to involve

preferentially the group of patients whose treatment

did not include MFA association (34�06 6 7�01 at T0

versus 8�08 6 1�25 at T12; Pc< 0�05). Therefore, MFA

co-administration specifically hampered everolimus-

dependent modulation of IFN-g production in CD81 T

lymphocytes. This observation suggests the relevance for

mTOR-dependent mechanisms in proinflammatory cyto-

kine production by CD81 T lymphocytes.

As shown in Fig. 2e, the production of IFN-g by CD41

T cells was significantly lower than controls at T12

(7�70 6 2�32 versus 31�10 6 4�75; Pc< 0�001), regardless of

the immune-modulating regimen.

IL-17 producing CD41 T lymphocytes (Fig. 2f) were

reduced significantly in patients than in controls at T0

(0�95 6 0�29 versus 1�36 6 0�12; Pc< 0�001) and at T12

(0�2 6 0�09; Pc< 0�001). Moreover, comparison of T0 and

T12 values in paired samples revealed that everolimus

treatment without MFA co-administration was able to

mediate complete inhibition of IL-17 producing CD41 T

cells (0�94 6 0�4 at T0 versus 0�086 6 0�02 at T12;

Pc< 0�05). Thus, MFA association seemed to affect signifi-

cantly everolimus-dependent modulation of IL-17 produc-

tion by CD41 T lymphocytes.

No change was observed in NK-dependent IFN-g pro-

duction between controls and patients, regardless of their

immunosuppressive treatment (not shown).

Treg numbers and proliferation in kidney transplant
recipients undergoing everolimus conversion

Because mTOR-dependent pathways affect Treg homeosta-

sis [17–19], we analysed the effect of everolimus conversion

on number and suppressor activity of Treg in our patients.

No difference in the Treg suppressor activity was observed

in any of the patients, regardless of the treatment group

(not shown). As shown in Fig. 3, the comparison of paired

samples revealed a significant increase of Treg after CNI

to everolimus conversion (89 6 16�5 at T0 versus

129�9 6 22�87 at T12; Pc< 0�05) only in those patients
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Fig. 2. Cytokine secretion profile of invariant natural killer T (NKTi), CD81 T and CD41 T lymphocytes in kidney-transplanted patients undergoing

conversion from calcineurin inhibitors (CNI) to everolimus. (a–c) Interferon (IFN)-g, interleukin (IL)-4 and IL-4 production by NKTi cells at T0 and

T12 after CNI to everolimus conversion. (d) IFN-g production in CD81 T cells and (e,f) IFN-g and IL-17 production by CD41 lymphocytes at T0

and T12. Data refer to mean 6 standard error of the mean (s.e.m.). White columns indicate data obtained in all the patients enrolled into the study

(n 5 18); striped columns indicate patients whose treatment included mycophenolic acid (MFA) co-administration (n 5 6). Grey columns indicate

patients treated with immune-modulating regimens not including MFA (n 5 12). Dotted columns indicate data obtained in healthy controls (CTR).

Mann–Whitney test is reported. For T0–T12 comparison of paired samples, Wilcoxon’s matched-pairs signed-rank test has been performed. The

corrected P-value (Pc) was calculated by applying Bonferroni adjustment for multiple comparisons.
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whose treatment did not include MFA association. Percent-

age data confirmed this trend (not shown). Notably, Treg

numbers always remained similar to controls.

To investigate the growth ability of Treg, we analysed their

ex-vivo expression of the proliferation marker Ki67 [30]. As

shown in Fig. 4, CNI to everolimus conversion associated

with a significant increase of Ki67 expression on the Treg

population (6�99 6 0�89 at T0 versus 8�99 6 1.15 at T12;

Pc< 0�05). Conversely, everolimus-MFA co-treatment was

observed to mediate reduction of this proliferation marker

in the Treg subset (11.43 6 1�23 at T0 versus 4�53 6 0�52 at

T12; Pc< 0�05). Therefore, MFA association hampered the

positive effect of everolimus significantly on Treg growth

ability. As already stated, no difference in Treg suppressor

activity was observed between T0 and T12, regardless of the

immunosuppressive treatment of the patients (not shown).

As the growth ability of T cell effectors is crucial for T

cell activation, we also analysed the ex-vivo Ki67 expression

of CD41FoxP32 T cells supposed to include preferentially

the CD4 effector population. As shown in Fig. 5, Ki67

expression in CD41FoxP32 T lymphocytes was signifi-

cantly higher in T0 patients than in controls (7�07 6 0�83

versus 1�26 6 0�12; Pc< 0�0005), regardless of the immune-

modulating regimen. A significant decrease in growing

CD41FoxP32 T cells was observed at T12 (2�81 6 0�47;

Pc< 0�01 versus T0; NS versus controls). This decreased

trend was observed to be very strong in T12 patients

treated with MFA–everolimus association [7�32 6 0�94 at

T0 versus 1�74 6 0�33 at T12; Pc< 0�05; not significant

(n.s.) versus controls]. Indeed, the reduced level of Ki67

expression in CD41FoxP32 T cells of T12 patients treated

with everolimus alone remained significantly higher than

in controls (6�57 6 1�30 at T0 versus 3�48 6 0�66 at T12;

Pc< 0�05; Pc< 0�01 versus controls). The MFA–everolimus

association was observed to mediate a strong decrease of

cell growth in both Treg and CD41FoxP32 T cells. Con-

versely, a preferential effect on Treg growth ability was

observed in everolimus-treated patients. Notably, the CNI–

everolimus conversion always restored the physiological

difference in growing ability between Treg and T cell effec-

tor subset, lost at T0 in our cohort.

Everolimus serum concentration associates with
different levels of mTOR-dependent S6 kinase
phosphorylation in CD4 and CD8 T cells of kidney
transplant recipients

To investigate the molecular mechanisms underlying

immune modulation in kidney transplant recipients shifted

from CNI to everolimus, we analysed the phosphorylation

P

Fig. 3. Regulatory T cell (Treg) population in kidney-transplanted

patients following calcineurin inhibitors (CNI) to everolimus

conversion. Number of Treg, gated as CD41forkhead box P3 (FoxP3)1

T cells at T0 and T12 were reported. Data refer to mean 6 standard

error of the mean (s.e.m.). White columns indicate data obtained in

all the patients enrolled into the study (n 5 18); striped columns

indicate patients whose treatment included mycophenolic acid (MFA)

co-administration (n 5 6). Grey columns indicate patients treated with

immune-modulating regimens not including MFA (n 5 12). Dotted

columns indicate data obtained in healthy controls (CTR). For

comparison with CTR the Mann–Whitney test is reported. For T0–

T12, comparison of paired-samples Wilcoxon’s matched-pairs signed-

rank test was performed. The corrected P-value (Pc) was calculated by

applying Bonferroni adjustment for multiple comparisons.

P

Fig. 4. Ki67 expression on regulatory T cells (Treg) gated as

CD41forkhead box P3 (Foxp3)1 T cells in kidney-transplanted

patients. Percentage is given for Ki67 expression in Treg, gated as

CD41FoxP32 T cells, at T0 and T12 after calcineurin inhibitors (CNI)

to everolimus conversion. Data refer to mean 6 standard error of the

mean (s.e.m.). White columns indicate data obtained in all the

patients enrolled into the study (n 5 18); striped columns indicate

patients whose treatment included mycophenolic acid (MFA) co-

administration (n 5 6). Grey columns indicate patients treated with

immune-modulating regimens not including MFA (n 5 12). Dotted

columns indicate data obtained in healthy controls (CTR). For

comparison with CTR, the Mann–Whitney test is reported. For T0–

T12, comparison of paired-samples Wilcoxon’s matched-pairs signed-

rank test was performed. The corrected P-value (Pc) was calculated by

applying Bonferroni adjustment for multiple comparisons.
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of S6 kinase as a major downstream target of mTORC1

activity [10]. In order to avoid MFA-dependent interfer-

ence, we analysed only samples obtained from patients

undergoing immune-modulating regimens not including

MFA administration.

To ascertain whether phosphorylation of mTOR-

dependent targets might be conditioned by drug serum

concentration, we evaluated S6 kinase phosphorylation (p-

S6) levels in CD41 and CD81 T cells of T12 patients after 3

(T12–3 h) and 12 h (T12–12 h) from everolimus adminis-

tration, reflecting maximal and minimal TL of the drug

(data not shown). T cell receptor (TCR) triggering was

mimicked by incubation with anti-CD3/anti-CD28 beads,

as reported [18]. Figure 6 shows Western blot analysis of

sorted CD41 and CD81 T cells after a 1-h culture in the

presence of medium alone or with anti-CD3/anti-CD28

beads. As shown, no difference was observed in p-S6 levels

in medium-cultured samples obtained from T0 and T12

patients. Conversely, a tremendous increase of TCR-

dependent p-S6 up-regulation was observed in the samples

obtained from T12 patients after 12 h from everolimus

administration (minimal drug serum concentration) in

both the CD41 and CD81 T cells (Fig. 6a,b). As shown in

Fig. 6c,d, strongly reduced pS6 up-regulation was observed

upon TCR triggering in the samples obtained from the

same patients 3 h after everolimus administration (maxi-

mal drug serum concentration). It should be noted that ex-

vivo TCR triggering of the cells was always performed in

the absence of the drug.
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Fig. 5. Ki67 expression on CD41forkhead box P3 (Foxp3)2 T cells

in kidney-transplanted patients. Percentage is given for Ki67

expression in CD41 T cell effectors, gated as CD41FoxP32 T cells

at T0 and T12 after calcineurin inhibitors (CNI) to everolimus

conversion. Data refer to mean 6 standard error of the mean

(s.e.m.). White columns indicate data obtained in all the patients

enrolled into the study (n 5 18); striped columns indicate patients

whose treatment included mycophenolic acid (MFA) co-

administration (n 5 6). Grey columns indicate patients treated with

immune-modulating regimens not including MFA (n 5 12). Dotted

columns indicate data obtained in healthy controls (CTR). For

comparison with CTR, the Mann–Whitney test is reported. For T0–

T12, comparison of paired-samples Wilcoxon’s matched-pairs

signed-rank test was performed. The corrected P-value (Pc) was

calculated by applying Bonferroni adjustment for multiple

comparisons.
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Fig. 6. Analysis of S6 kinase phosphorylation level

as a measure of mammalian target of rapamycin

complex 1 (mTORC1) activity in CD41 and

CD81 T cells after calcineurin inhibitors (CNI) to

everolimus conversion. (a–d) Comparative analysis

of phospho-S6 kinase in all four patients analysed.

As indicated, samples from T12 patients were

obtained 12 h (T12–12 h) after everolimus

administration (minimal drug TL) and 3 h (T12–

3 h) after drug administration (maximal drug TL).

Western blot analysis for p-S6 kinase from protein

lysates of sorted CD41 and CD81 T cells from

two representative T0 and T12 patients are

reported; as indicated, data refer to 1 h culture

with medium or anti-CD3/anti-CD28 monoclonal

antibody (mAb)-coupled microbeads. As shown, a

tremendous increase of pS6 levels was observed in

T12–12 h patients after T cell receptor (TCR)

triggering. As indicated (c,d) comparable up-

regulation of pS6 was observed in T12–3 h

patients and controls. Arabic numbers (1–4)

identify samples obtained from single patients.

Data are representative of two concordant

experiments.
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Comparative analysis by immune fluorescence of basal

p-S6 levels in CD41 and CD81 T cells from samples

obtained from T12 patients 3 and 12 h after everolimus

administration (highest and lowest drug TL, respectively)

confirmed the occurrence of an oscillatory inhibition of

mTORC1 kinase activity (Fig. 7a,b). Indeed, a significant

decrease of p-S6 kinase was observed in CD41 and CD81

T cells obtained after 3 h, compared with those obtained

after 12 h from everolimus administration (P < 0�001).

Moreover, p-S6 kinase levels were significantly lower than

controls in samples after 3 h (P < 0�05), but not after 12 h

from everolimus (Fig. 7a,b).

Thus, no significant difference in basal S6 phosphoryla-

tion levels was mediated by CNI compared with the

everolimus-based immune-modulating regimen. Moreover,

changes in everolimus serum concentration, due probably

to the dosage and administration schedule of the drug,

were observed to associate with oscillatory basal and TCR-

dependent activation of mTORC1 kinase in both CD41

and CD81 T cells. This behaviour might be of particular

relevance in the presence of chronic TCR stimulation, as

represented by the allotransplantation setting.

Discussion

mTOR targeting was proposed as an immunosuppressor to

limit CNI adverse effects in renal transplant recipients

[5,6]. This condition represents a unique opportunity to

study the effect of long-term mTOR inhibition therapy in a

transplantation model. With this purpose in mind, we

focused on mTOR-dependent immune modulation, also

addressing the hypothesis that targeting the immune

metabolic network could optimize clinical manipulation of

specific adaptive immune effectors.

Our data indicate that an immune-modulating regimen

based on everolimus administration was associated specifi-

cally with a significant decrease in leucocyte and neutrophil

numbers. This effect might be accounted for by mTOR-

dependent effects on cellular survival, migration and

proliferation, as well as by activation of the CD11b/CD18

complex, which alters granulocyte adhesion to endothelial

cells [31–34].

Neutrophils play a key role in inflammation [35]. They

release proinflammatory, angiogenic and anti-inflammatory

mediators and can interfere with the development of intimal

hyperplasia and transplant vasculopathy [36–38]. Ex-vivo

everolimus treatment of isolated neutrophils mediates inhibi-

tion of their vascular endothelial growth factor (VEGF) and

IL-8 release, also increasing the anti-inflammatory IL-1RA

[34]. Therefore, the ability of everolimus to specifically

modulate such a population might be of some relevance to

optimize clinical management of kidney transplants.mTOR

has been described to play a key role in regulating antigen-

independent proliferation of CD81 T cells [39] and in

maintaining homeostasis of effector lymphocytes [40–42];

accordingly, CNI to everolimus conversion was observed to

mediate a significant reduction of CD81 T cells in our

cohort. The MFA–everolimus association was revealed to

hamper such effects significantly.

mTORC1 is a central regulator of adaptive immunity

[43,44]. It affects Th1 and Th17, while mTORC2 is

required for Th2 differentiation [15–18]. Our data confirm

such effects, showing that everolimus-based immune-mod-

ulating therapy is able to decrease the proinflammatory

activity of adaptive effectors significantly in kidney trans-

plant recipients. Accordingly, CNI to everolimus conver-

sion maintained a reduced proinflammatory activity (IFN-

g and IL-17 production) in the absence of significant mod-

ification of IL-4 secretion by NKTi cells, the key regulators

of cytokine polarization [29]. Moreover, everolimus treat-

ment modulates specifically IFN-g-producing CD81 and

CD41 T cells, while maintaining the decreased IL-17
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Fig. 7. p-S6 kinase analysis 3 and 12 h after everolimus administration in T12 patients. (a) Flow cytometry comparative evaluation of p-S6

kinase levels in CD41 and CD81 T cells obtained from one representative T12 patient 3 h and 12 h after everolimus administration (T12–3 h

and T12–12 h) and in one healthy control. As indicated, upper histogram plots in (a) show the p-S6 kinase level in CD41 and CD81 T cells of

one healthy donor (plane line); isotype matched control binding is indicated as dashed line. Lower histogram plots in (a) refer to the p-S6

kinase evaluation in cells of one representative patient 3 h (bold line) and 12 h (plane line) after everolimus administration; dashed line indicates

isotype matched control binding. (b) Comparative analysis of p-S6 phosphorylation levels of CD41 and CD81 T cells after 3 h (vertical depicted

column) and 12 h (oblique depicted column) in all four T12 patients analysed. Dotted columns indicate healthy controls (CTR). Statistical

analysis was performed by Mann–Whitney test.
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production by CD41 T lymphocytes from patients treated

with CNI. These effects seemed to be favoured by immune-

modulating protocols not including MFA administration

(Fig.2a,f). Moreover, the inhibition of IFN-g production

by CD81 T cells without effect on NK effectors confirms

the role of mTORC1-dependent pathways in T cell

response [17,44] and CD81 T cell homeostasis regulation

[39–42]. The major role of mTOR in regulating FoxO1-

dependent CD81 T cell differentiation [20] might also

account for such effects.

A number of data have suggested the critical involve-

ment of Treg-dependent immune modulation in mTOR

inhibition-based immunosuppression regimens [17,45].

Moreover, both Treg-hampering [46,47] as well as enhanc-

ing activity [48] has been referred for MFA-based treat-

ment. Here, we describe that Treg increase, coupled with

significant effects on their growth rate, characterizes

everolimus-based immunosuppression in kidney transplant

recipients. Moreover, opposite effects on Ki67 expression

were observed by mTORC1 inhibition alone (T12 patients

treated with everolimus without MFA association) com-

pared with immune-modulating regimens, including MFA/

everolimus co-administration. The analysis of the growing

ability of CD41Foxp32 T cell subset, probably representing

the effector T lymphocyte population, allowed better char-

acterization of MFA and everolimus-dependent effects in

our cohort. As shown, a preferential effect on growing lym-

phocytes, regardless of the subset to which they belong, has

been observed for MFA co-administration, while a specific

increase of Ki67 expression in the Treg subset, coupled with

a significant modulation of Ki671CD41FoxP32 T cells,

was observed to characterize mTORC1 inhibition. Specific

amplification of Treg cells able to modulate alloreactive T

cell effectors might be hypothesized to account for

everolimus-dependent immune-suppression in kidney

transplant recipients. Conversely, preferential modulation

of growing immune effectors represents a key element for

immunosuppression regimens, including MFA administra-

tion. Moreover, mTOR-dependent immune-modulating

effects are hampered by MFA co-administration. Thus, the

inhibition of purine biosynthesis pathways, key targets of

MFA, has been observed to severely impair mTOR-

dependent immune modulation.

We observed that changes in everolimus serum levels

correlate with oscillation in basal and activation-dependent

phosphorylation of S6 kinase, a major target of mTORC1

kinase. As expected in a transplantation setting, continuous

antigen stimulation is an activation trigger for T cells. Our

data indicate that mTOR inhibition therapy is able to

mediate significant oscillation, probably depending on

drug serum concentration, in the mTOR kinase activity.

This effect relates to a significant increase of Treg numbers

and growing ability, and decreases Ki67 expression by the

CD41FoxP3– counterpart.

The possibility that the effects observed on Treg and T

cell effector homeostasis might affect selected cell clones

preferentially, probably involved in alloantigen recognition,

needs to be investigated. In this context, our data confirm

and extend our previous in-vitro observations indicating

that oscillatory inhibition of mTOR activity induces robust

proliferation of TCR triggered Treg, also inhibiting T cell

effector growth [18,19]. Thus, a key role for Treg modula-

tion coupled with a decrease of neutrophils and CD81 T

cells and reduced proinflammatory activity might be

hypothesized to underlie mTOR inhibition in a transplan-

tation setting.

Two opposite therapeutic indications are currently pro-

posed for everolimus: immunosuppression [8,9,21] and

cancer control [22,23,25]. In this context, we might

hypothesize the possibility that dosage level (lower by six

to 10-fold than in the oncology setting) and administration

schedule (twice versus once a day in cancer therapy) could

represent a therapeutic strategy to regulate mTOR-

dependent intracellular pathways differentially and target

immune tolerance or cancer control preferentially.

Taken together, our results shed light on the complex

mTOR-dependent immune metabolic network, and pro-

pose that oscillatory inhibition of TCR-dependent

mTORC1 activity might represent a therapeutic strategy to

optimize targeted manipulation of specific adaptive effec-

tors in kidney transplant recipients.
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Several extrinsic factors, like drugs and chemicals, can foster autoimmunity. Tetracyclines, in particular oxytetracycline (OTC),
appear to correlate with the emergence of immune-mediated diseases. Accumulation of OTC, the elective drug for gastrointestinal
and respiratory infectious disease treatment in broiler chickens, was reported in chicken edible tissues and could represent a
potential risk for pets and humans that could assume this antibiotic as residue in meat or in meat-derived byproducts. We
investigated the in vitro anti-inflammatory properties of a pool of thirteen botanicals as a part of a nutraceutical diet, with proven
immunomodulatory activity. In addition, we evaluated the effect of such botanicals in contrasting the in vitro proinflammatory
toxicity of OTC. Our results showed a significant reduction in interferon- (INF-) 𝛾 production by human and canine lymphocytes
in presence of botanicals (∗𝑝 < 0.05). Increased INF-𝛾 production, dependent on 24-hour OTC-incubation of T lymphocytes,
was significantly reduced by the coincubation with Haematococcus pluvialis, with Glycine max, and with the mix of all botanicals
(∗𝑝 < 0.05). In conclusion, the use of these botanicals was shown to be able to contrast OTC-toxicity and could represent a new
approach for the development of functional foods useful to enhance the standard pharmacological treatment in infections as well
as in preventing or reducing the emergence of inflammatory diseases.

1. Introduction

The immune system has the fundamental role of not only
protecting and defending the organism against infections
but also controlling homeostasis and health maintenance
against infections, autoimmune diseases, and tumor onset
[1]. Depending on the pathogen or on antigen, two dif-
ferent immune responses can occur: the humoral and the
cellular responses [2]. Moreover, the immune system can
be classified into two fundamental phases: the innate and

acquired (or adaptive) responses [3]. Innate immunity is
present in vertebrates and in nonvertebrates, represents the
first-line defence in the species and is based on cells (i.e.,
macrophages, polymorphonuclear cells, and natural killer
lymphocytes) and on somemechanisms, mediated by soluble
substances (i.e., complement proteins, antibodies, natural
compounds, etc.) that defend the plants and animals from
infections [4]. Conversely, adaptive immunity is present
only in vertebrates and is a host defence related to several
specific cellular mechanisms that specifically recognize the
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antigens and are fundamentally expressed by B and T lym-
phocytes, plasma cells, and antibodies [5].TheCD4+ Thelper
(TH) lymphocytes represent key cells in the polarization
of inflammatory/noninflammatory immune response: TH1
and TH2 are the most common [6]. The TH1 response is
characterized by the a secretion of INF-𝛾, which optimizes the
bactericidal macrophages capability, induces the production
of opsonizing and complement-fixing antibodies, and fosters
the establishment of an optimal CTL response. The TH2
response is characterized by interleukin- (IL-) 4, IL-5, IL-
10, and IL-13 release, which results in the activation of B
cells to make neutralizing noncytolytic antibodies, leading to
humoral immunity [6].

Exacerbation and endurance of TH1 response have been
associated with the emergence of inflammatory diseases [6]
and autoimmune disorders [7]. In particular, INF-𝛾 appears
to play a pivotal role in inducing autoimmune responses
[8–16].

Several extrinsic factors, like drugs and chemicals, can
foster the development of autoimmunity [17–22]. In this
regard, the use of tetracyclines appears to correlate with
the emergence of autoimmune diseases [23–29]. Concerning
this, OTC represents the main drug used to control gastroin-
testinal and respiratory diseases in broiler chickens. Its accu-
mulationwas demonstrated in chicken edible tissues [30] and
could represent a potential risk also for pets and humans that
could assume this antibiotic as a residue in meat or in meat-
derived byproducts. Recently, we published two papers evi-
dencing the in vitro toxicity of bone meal-derived OTC from
intensive poultry farming, in terms of apoptosis induction
[31], as well as the proinflammatory cytokines, that is, INF-
𝛾, release from peripheral blood mononuclear cells (PBMCs)
cultures [32]. Moreover, we evidenced that the presence of
significant concentrations of OTC in gym trained human
subjects was linked to the presence of food intolerances [33].
Therefore, we hypothesized a possible modulatory activity
exerted by a pool of botanicals derived from medical plants,
which are successfully used in several commercially available
nutraceutical diets. Intriguingly, many botanicals could have
the capability to modulate the immune system [34]. In
this regard, it is well known that the immunomodulatory
activity of acemannan, a mucopolysaccharide extracted from
Aloe vera, related to modulation of nitric oxide release that
modulate classes I and II MHC cell surface antigens involved
in antigen presentation [35, 36]. The same immunomodu-
lating activity was observed for fermented Carica papaya
able to increase Treg cells, reduce INF-𝛾

+CD4+ T cells, and
possibly alter the growth of several cancer cell lines [37–39].
As to Maitake mushroom (Grifola frondosa), many reports
have shown its ability to downregulate cytokine secretion,
such as Tumor Necrosis Factor- (TNF-) 𝛼 and INF-𝛾, as
well as to inhibit adhesion molecule expression and cell-
mediated immunity enhancement [40–44]. Downregulation
of overexpressed cytokines in different inflammatory and
immune-related inflammatory conditions was also reported
for curcumin extracted from turmeric (Curcuma longa)
[45–47]. Antiproliferative and chemopreventive effects are
known to be also exerted by other curcuminoids, for
example, demethoxycurcumin, bisdemethoxycurcumin, and

alpha-turmerone [48, 49]. Cytokine downregulation is also
performed by Glycine max (soybean) isoflavones that inter-
fere with leukocyte endothelial adhesion ability [50–54].
In more detail, isoflavones, that is, genistein, can suppress
dendritic cell function and cell-mediated immunity.

It is noteworthy that some botanical principles, which
have been investigated in this study such as astaxanthin
(fromHaematococcus pluvialis), resveratrol (from Polygonum
cuspidatum), andCucumis melo, are characterized by antioxi-
dant and anti-inflammatory properties as well as modulation
properties towards CD8+ T-cell proliferation [55, 56]. Anti-
inflammatory but also oxidative stress preventing activity has
been also ascribed to Cucumis melo extract due to its high
activity on superoxide dismutase [57, 58].

Recently, we published a paper evidencing the role for
a nutraceutical diet in regulating the immune response in
canine Leishmaniosis along with standard pharmacological
treatment [59]. In particular, the presence of Ascophyllum
nodosum, Cucumis melo, Carica papaya, Aloe vera, Haema-
tococcus pluvialis, Curcuma longa, Camellia sinensis, Punica
granatum, Piper nigrum, Polygonum cuspidatum, Echinacea
purpurea, Grifola frondosa, and Glycine max in the diet
correlated with a significant decrease in TH1 response, in
terms of INF-𝛾 production. Such evidence highlighted the
anti-inflammatory effects of these specific botanicals. In addi-
tion, we suggested the anti-inflammatory effects of several
botanicals added to specific diets in relieving inflammatory
conditions in chronic pathologies affecting dogs [59–63].

Based on these premises, the aim of our study was
to investigate the potential anti-inflammatory properties
of those 13 botanicals having immune-modulatory effect
as supplemented diet regulating the immune response in
Leishmaniosis [59]. In particular, we tested the Ascophyllum
nodosum, Cucumis melo, Carica papaya, Aloe vera, Haema-
tococcus pluvialis, Curcuma longa, Camellia sinensis, Punica
granatum, Piper nigrum, Polygonum cuspidatum, Echinacea
purpurea, Grifola frondosa, and Glycine max and their ability
to counteract the proinflammatory toxicity of OTC in vitro.

2. Materials and Methods

2.1. Culture Medium and Botanicals. To evaluate the cellular
production of cytokines, human and canine PBMCs were
incubated overnight with an ad hoc culture medium. Briefly,
the first step was the solubilization of 1 gr of powder of each
plant-derived substance in an appropriate chemical vehicle
depending on solubility degree. In particular, Ascophyllum
nodosum (pure powder of Ascophyllum nodosum seaweed,
laminarin content min. 2.3%, and fucoidans content min.
11.4% [64]), Aloe vera (Aloe vera gel 200 : 1 powder, aloin
content min. 1% [65]), Cucumis melo (lyophilized extract of
melon, superoxide dismutase min. 1 UI/mg [57]), Polygonum
cuspidatum (powder obtained from dried Polygonum cusp-
idatum roots, resveratrol content min. 8% [66]), Camellia
sinensis (standardized decaffeinated green tea leaves powder,
catechins content min. 75% [67]), Carica papaya (Papaya
fermented granular, rich in papain [68]), Glycine max (Soy
powder, 40% isoflavones [69]), andGrifola frondosa (maitake
carpophore dry extract, polysaccharides content min. 20.0%
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[70]) were solubilized in 10mL of PBS 1x, with the exception
of Glycine max that was added to 30mL of PBS 1x to gain
the full solubilization.Haematococcus pluvialis (standardized
beadlets ofHaematococcus pluvialis extract, astaxanthin con-
tent min. 2.5% [71]) was solubilized in 5mL of dimethyl
sulfoxide and 5mL of PBS 1x. Echinacea purpurea (Echi-
nacea purpurea dried extract, polyphenols content min 4%
[72]), Piper nigrum (black pepper powder, piperine content
min. 95% [73]), Curcuma longa (turmeric dried extract,
curcuminoids content min. 95% [74]), and Punica granatum
(standardized powdered extract from pomegranate, ellagic
acid content min. 20% [75]) were solubilized in 4mL of
ethanol and 6mL of water.

The solubilized botanicals were added to RPMI 1640
culture medium (Sigma-Aldrich, Milan, Italy) to obtain the
ad hocmedium in the proportion of 1 : 10 (vehicle-solubilized
substance : RPMI 1640) to preserve the good quality of
cellular condition in the culture.

The cytokine cell production was evaluated in presence
of the ad hoc medium containing the solubilized individual
substance or a mixture containing all the solubilized botan-
icals. The vehicles employed for the solubilization were used
as specific controls in the same proportion of ad hocmedium
(1 : 10, vehicle : RPMI 1640).Themixture was composed by all
ad hoc medium from the botanicals in a variable percentage
according to that contained in the commercial canine food,
previously used as immunomodulating diet able to reduce
INF-𝛾 production [59]. Briefly, the mixture contained 66.3%
of Ascophyllum nodosum, 3.1% of Aloe vera, 6.1% of Cucumis
melo, 1.5% of Polygonum cuspidatum, 1.5% of Camellia sinen-
sis, 3.1% of Carica papaya, 4.6% of Glycine max, 6.3% of
Grifola frondosa, 1.1% of Haematococcus pluvialis, 3.1% of
Echinacea purpurea, 0.6% of Piper nigrum, 2.3% of Curcuma
longa, and 1.5% of Punica granatum. The obtained mixture
was added to RPMI 1640 culturemedium to obtain the ad hoc
medium in the proportion of 1 : 10 (vehicle/mixture : RPMI
1640) to preserve the good quality of cellular condition in the
culture.

Ascophyllum nodosum, Aloe vera, Cucumis melo, Poly-
gonum cuspidatum, Camellia sinensis, and Haematococcus
pluvialis were purchased from Italfeed S.r.l, Milano (Italy).

Carica papaya, Glycine max, Echinacea purpurea, Punica
granatum, Piper nigrum, and Curcuma longa were purchased
from Nutraceutica S.r.l, Monterenzio, Bologna (Italy) while
Grifola frondosa was purchased from A.C.E.F. S.p.a., Fioren-
zuola D’Arda, Piacenza (Italy).

All the botanicals are in form of powder and are free from
genetically modified organisms (Reg. 1829/2003-1830/2003
EC), gluten, bovine transmissible spongiform encephalopa-
thy, and food allergens (DIR 2003/89/EC and 2006/142/EC).

2.2. Human and Canine Donors and Cell Preparation. The
human blood collection from 10 healthy donor volunteers (5
males and 5 females, 20–30 years old) was performed at the
Haemotrasfusional Center of University of Naples “Federico
II,” according to standard procedures and used within the 3
hours from the collection.

Peripheral blood was collected from ten healthy dogs (5
males and 5 females, 5–9 years old and ranging between

15 and 35 kg in weight). All dogs were enrolled with the
owner consent in the Department of Veterinary Medicine
and Animal Productions, University of Naples “Federico II.”
Human or canine PBMCs were isolated by centrifugation
on Lymphoprep (Nycomed Pharma) gradients, as previously
described [59, 76]. Obtained PBMCs were considered as
mixed population of T and non-T lymphocytes.

2.3. Monoclonal Antibodies, Detection of Intracellular Cytok-
ine Production, and Flow Cytometry. For the immune-
fluorescent staining a panel of fluorescent-labelled mono-
clonal antibodies (mAbs) was used to evaluate the human
CD3, CD8, INF-𝛾, and IL-4, as well as a panel of isotype-
matched mAb controls (Becton Dickinson Pharmingen, San
Jose, California). In addition, we used several fluorescent-
labelled mAbs against canine CD3, CD4, CD8, CD45, INF-
𝛾, and IL-4 molecules and isotype-matched controls (Serotec
Ltd., London, UK).

To analyze the production of INF-𝛾 and IL-4 cytokines,
2 × 106/mL purified PBMCs were incubated overnight (10–
12 hours) in the ad hoc medium of each botanical or of
mixture (see Section 2.1). In particular, to obtain the cytokine
production, PBMCs were always cultured in presence of
500 ng/mL of phorbol-12-myristate-13-acetate (PMA) and
1 𝜇g/mL of Ionomycin (Sigma-Aldrich), as described in [77].
To avoid extracellular cytokine export, the cultures were
performed in the presence of 5 𝜇g/mL of Brefeldin-A (Sigma-
Aldrich), as described in [77].

To test the ability of botanicals in contrasting the toxic
role of OTC, we used the commercial preparation of the
drug (Oxytetracycline 20%�, TreI, Reggio Emilia, Italy). 1 𝜇g
of OTC [31] was added to cell culture and incubated for
overnight (10–12 hours) as previously described [32]. In
addition, Haematococcus pluvialis or Glycine max or the
mixture ad hocmedium was used in the coincubation of cells
with OTC and all along the overnight (10–12 hours) culture.

At the end of overnight (10–12 hours) incubation, the
above incubated cells were fixed and permeabilized by using
a commercial cytokine staining kit following the manufac-
turer’s instructions (Caltag Laboratories, Burlingame, CA,
USA). Briefly, the cell fixing and permeabilization procedure
were of 20min at 4∘C each. At the end of procedure, PBMCs
were washed twice by centrifugation (800×g) in RMPI 1640
culture medium.

PBMCs were stimulated overnight with PMA and Ion-
omycin, cultured in a medium containing the botanicals
solubilization buffer (vehicle), and used as control points.The
proportion of vehicle and RPMI 1640 was the same of ad hoc
medium (1 : 10 ratio).

The intracellular cytokine production was evaluated by
using the triple staining technique and analyzed by flow
cytometry (FACSCalibur platform) and CellQuest Software
(Becton Dickinson Pharmingen, San Jose, California). The
analyzed cells were always gated (R1 in dot plot of Figures
1(a) and 2(a)) on forward scatter (FSC) and side scatter (SSC)
FACS parameters (cell size and cell complexity, resp.) to
reasonably select the region of viable lymphocytes in order to
avoid any interference due to the possible presence of death
cells.
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Figure 1:The effects of botanicals on cytokine production by humanPBMCs. (a) shows the gating on viable lymphocytes (R1 in dot plot graph)
based on FSC and SSC parameters (see Section 2); (b) represents the gating on TH lymphocytes (CD3+ CD8− as R2 in the dot plot graph)
and on non-T cells (CD3− CD8− cells as R3 in the dot plot graph); and (c) shows the INF-𝛾 and IL-4 production in human TH lymphocytes
and non-T cells incubated with ad hocmedium derived from botanicals or frommixture (see Section 2). Cytokine production was evaluated
as percentage of INF-𝛾 (𝑦-axis) and IL-4 (𝑥-axis) producing cells. The percentage of INF-𝛾 (upper left quadrant inside the dot plots) and
IL-4 (low right quadrant inside the dot plots) producing CD4 T (R2) and non-T (R3) cells are reported. The different cell incubations with
ad hoc medium derived from botanicals or from mixture (see Section 2) are indicated on the top of each graph. (d) reports the statistic
representation of 10 experiments on human CD4+ T Lymphocytes evaluated as percentage of INF-𝛾 producing cells, ∗𝑝 < 0.05. The different
cell-incubations with ad hocmedium derived from botanicals or from mixture (see Section 2) are indicated on the top of each column. The
abbreviation “ctr” in (c) and (d) indicates the basal cytokine production by PMBCs stimulated by PMA and Ionomycin and in presence of the
ad hocmedium based on the same solubilizing-vehicle but free from the botanicals (see Section 2); specifically, ctr 1 (Ascophyllum n., Carica
p., Aloe v., Cucumis m., Glycine m., and Grifola f.), ctr 2 (Echinacea p., Piper n.), ctr 3 (Haematococcus p.), and ctr 4 (the mixture of all the
botanicals).
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Figure 2:The effects of botanicals on INF-𝛾 production by canine PBMCs. (a) shows the gating on viable lymphocytes (R1 in dot plot graph)
based on FSC and SSC parameters (see Section 2). (b) represents the gating on CD4+ T lymphocytes (CD3+ CD8− as R2 in the dot plot graph).
(c) reports the results fromone representative experiment showing the percentage (the number in upper quadrant) of INF-𝛾 producing canine
CD4+ T lymphocytes gated on R2 (𝑦-axis); 𝑥-axis indicates the SSC parameter (see Section 2). The different coincubations of cells with ad
hocmedium or mixture (see Section 2) are indicated on the top. (d) shows the statistic representation the INF-𝛾 production by canine CD4+
T Lymphocytes evaluated as percentage of INF-𝛾 producing cells in 10 representative experiments, ∗𝑝 < 0.05. The abbreviation “ctr” in (c)
and (d) indicates the basal INF-𝛾 production by PMBCs stimulated by PMA and Ionomycin and in presence of the ad hoc medium based
on the same solubilizing-vehicle but free from the botanicals (see Section 2): specifically, ctr 1 (Ascophyllum n., Carica p., Aloe v., Cucumis v.,
Glycine m., and Grifola f.), ctr 2 (Echinacea p., Piper n.), and ctr 3 (Haematococcus p.).

2.4. Statistical Analysis. Data are presented as the means ±
standard error of the mean (SEM) and were firstly checked
for normality using the D’Agostino-Pearson normality test.
The Kruskal-Wallis followed by Dunn’s multiple comparisons
analysis was performed. A ∗𝑝 < 0.05 was considered
significant. Statistics was performed by GraphPad Prism 6
(GraphPad Software, Inc., La Jolla, CA, USA).

3. Results and Discussion

3.1. The Anti-Inflammatory Effect of Botanicals as Significant
Reduction of INF-𝛾 Production in Human T and Non-T
Lymphocytes. We focused on INF-𝛾 production, as the main
proinflammatory cytokine able to foster the TH1 and non-
T cell immune responses involved in several etiopathogenic
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mechanisms at the basis of inflammatory-mediated disease
[6].

As shown in Figure 1, the overnight incubation (10–12
hours) with each botanical as well as with a mix of all botani-
cals induced a significant decrease in INF-𝛾 production in the
TH lymphocytes (CD3+ CD8− cells gated as R1 in the dot plot
graphs of Figures 1(b) and 1(c) and reported asmean± SEMof
10 experiments in Figure 1(d)) and in non-T cells, mainly rep-
resented byNK lymphocytes (CD3− CD8− cells gated as R2 in
the dot plot graphs of Figure 1(c)). In particular, the individual
incubationwithAscophyllumnodosum,Cucumismelo,Carica
papaya, Haematococcus pluvialis, Curcuma longa, Camellia
sinensis, Punica granatum, Piper nigrum, Polygonum cuspida-
tum, Echinacea purpurea, Grifola frondosa, and Glycine max
was able to reduce INF-𝛾 production. Intriguingly, despite
the obtained slightly decrease in cytokine production, the
Aloe vera incubation did not induce a significant reduction
from the statistical point of view (Figure 1(d)). In this regard,
we cannot rule out that a larger number of experiments
(more than the 10 performed in this study and summarized
in Figure 1(d)) or a higher concentration of substance could
confirm the reduction in lymphocyte INF-𝛾 production by
the incubation with this botanical.

The basal IL-4 production was undetectable or only
slightly detectable in T and non-T lymphocytes, as expected
in PBMCs from healthy human donors after exposure to
PMA and Ionomycin [77] and was not modulated after the
overnight incubation with the botanicals (Figure 1(c)). Each
specific vehicle, used to solubilize the botanicals, was used
as control and the obtained value was substracted from each
experimental point to obtain the correction following the
formula “the value obtained from cell culture in presence of
botanicals – the value obtained from cell culture in presence
of the vehicle alone = corrected experimental point value.”
It is of note that even if the used vehicles appeared to not
induce significant cell death in the culture, the flow cytometry
analysis was always performed by gating on viable cells to
avoid any possible interference dependent on death cells (see
Figure 1(a) and Section 2.3). Moreover, the ad hoc medium
from botanicals did not exert effect in absence of PMA and
Ionomycin stimulation (data not shown).

3.2. The Anti-Inflammatory Effect of Botanicals as Significant
Reduction of INF-𝛾 Production in Canine CD4+ T Lympho-
cytes. The individual incubation withAscophyllum nodosum,
Cucumis melo, Aloe vera, Haematococcus pluvialis, Curcuma
longa, Camellia sinensis, Punica granatum, Polygonum cus-
pidatum, Echinacea purpurea, Grifola frondosa, and Glycine
max was able to significantly decrease the INF-𝛾 production
in the CD4+ lymphocytes (dot plot graphs in Figure 2(c),
summarized in Figure 2(d)). In contrast, the incubation with
Carica papaya or with Piper nigrum seemed not to induce a
statistically significant reduction (Figure 2(c)). Also, in this
case, as referred to in human experiments, we cannot rule
out that a larger number of experiments (more than the 10
performed in this study, summarized in Figure 2(d)) or a
higher concentration of the substances could confirm the
reduction in lymphocyte INF-𝛾 production by the incubation
with these two botanicals.

IL-4 production was undetectable in T lymphocytes, as
expected in PBMCs from healthy dogs after exposure to
PMA and Ionomycin [59], and was not modulated after the
overnight incubation with the botanicals (data not shown).

The specific vehicles, employed to solubilize the sub-
stances, were used as controls and the resulting values were
substracted from experimental points, as described (see
Section 3.1). Flow cytometry analysis was always performed
by gating on viable cells to avoid any possible interference
dependent on death cells (see Figure 2(a) and Section 2.3).

3.3. The Anti-Inflammatory Effect of Botanicals as Signif-
icantly Contrasting Effect on INF-𝛾 Production Dependent
on OTC Exposure of Human T Lymphocytes. Notably, the
individual incubation with Haematococcus pluvialis or with
Glycinemaxwas able to contrast the previously demonstrated
proinflammatory effect of OTC in human T lymphocytes
[32]. Indeed, the increased INF-𝛾 production, dependent on
24-hour OTC-incubation of T lymphocytes, was strongly
reduced by the coincubation with Haematococcus pluvialis
or Glycine max (Figures 3(a) and 2(b), resp.). Note that
the individual incubation with the botanicals, other than
Haematococcus pluvialis and Glycine max, was unable to
contrast OTC-toxicity (data not shown), while the mixture
of all substances exerted a significant effect. Nevertheless, as
referred to in previous sections, we cannot rule out that a
larger number of experiments or a higher concentration of
each substance could confirm the anti-OTC effect also for the
other tested botanicals.

The specific vehicles, used to solubilize the substances,
were considered as controls and the resulting values were
substracted from experimental points, as described (see
Section 3.1).

4. Conclusions

This study was inspired by two recently published in
vivo observations in which we suggested a potential anti-
inflammatory effect of some nutraceutical diets, containing
the studied botanicals, in infectious and inflammatory dis-
eases [59–61].

In particular, we observed that a diet enriched by Asco-
phyllum nodosum, Cucumis melo, Carica papaya, Aloe vera,
Haematococcus pluvialis, Curcuma longa, Camellia sinensis,
Punica granatum,Piper nigrum,Polygonum cuspidatum,Echi-
nacea purpurea, Grifola frondosa, and Glycine max was able
to reduce proinflammatory T cell responses in canine Leish-
maniosis [59] and the clinical feature of ear inflammation in
chronic otitis in dogs [60].

Here, we observed the in vitro effect of Ascophyllum
nodosum, Cucumis melo, Haematococcus pluvialis, Curcuma
longa, Camellia sinensis, Punica granatum, Polygonum cus-
pidatum, Echinacea purpurea, Grifola frondosa, and Glycine
max in reducing in vitro proinflammatory cytokine produc-
tion by human and canine PBMCs.These botanicals appeared
to exert a potential anti-inflammatory effect that was evident
in the reduction of INF-𝛾 production in human T and non-
T cells and in canine T lymphocytes. Conversely, Aloe vera,
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Figure 3: Statistic representation of the INF-𝛾 production in humanCD4+ T Lymphocytes after the OTC exposure and the contrasting effects
after botanicals challenge in 10 representative experiments. (a) Haematococcus p.; (b) Glycine m.; and (c) the mixture of all the botanicals.
Cytokine production was evaluated as percentage of INF-𝛾 producing T CD4+ cells. All the incubations (basal, OTC alone, and OTC +
botanical) were performed in the ad hoc medium based on the vehicle used to solubilize the botanical, so that the abbreviations “ctr”
indicate the basal INF-𝛾 production by PMBCs stimulated by PMA and Ionomycin and in presence of the ad hoc medium based on the
same solubilizing-vehicle but free from the botanicals (see Section 2). ∗𝑝 < 0.05.

Carica papaya, and Piper nigrum appeared to be ineffective
in reducing this cytokine production. These results seem to
be contradictory with the data observed in dogs [59], where
the diet containing all these botanicals, including Aloe vera,
Carica papaya, and Piper nigrum, exerted a therapeutic effect
by reducing the inflammatory aspects of Leishmaniosis. Such
apparent contradictionmay be explained by the different sen-
sitivity between in vitro and in vivo, as well as by the fact that
in vivo botanicals are probably synergized in the combined
administration as in the diet. In this regard, this latter con-
sideration fits with in vitro effect obtained by the mixed incu-
bation with all substances that induced the INF-𝛾 decrease.

Moreover, as stated in Section 3, we cannot rule out that
a larger number of experiments or a higher concentration
of substances could confirm the reduction in lymphocyte
INF-𝛾 production also byAloe vera, Carica papaya, and Piper
nigrum.

Taken together, our observation highlighted the relevance
for the use of botanicals to modulate the inflammatory
responses in both dogs and humans. Indeed, exacerbation
and the persistence of TH1 response frequently result in the
emergence of inflammatory diseases [6] and autoimmunity
disorders [7] and the increase of INF-𝛾 production is associ-
ated with autoimmunity in humans [8–16]. In addition, some
of the botanicals used in this study were previously suggested
as antioxidants and immune-modulating substances to reach
the physiological status in severalmodels of disease in human
[55, 78] and animals [59, 60, 79–83].

Moreover, this study was also inspired by our recent
paper, which evidenced the in vitro toxicity of OTC in terms
of inflammatory response increase by human lymphocytes
[32]. In this regard, here we evaluated the potential ability
of Ascophyllum nodosum, Cucumis melo, Carica papaya,
Aloe vera,Haematococcus pluvialis, Curcuma longa, Camellia
sinensis, Punica granatum, Piper nigrum, Polygonum cusp-
idatum, Echinacea purpurea, Grifola frondosa, and Glycine
max to contrast the OTC-toxicity exerted in vitro in human
lymphocytes.

Our data suggested that the incubation with the mixture
of these botanicals clearly reduced the OTC-induced INF-𝛾
production in T cells. It is of relevance that the individual
incubation withHaematococcus pluvialis or withGlycine max
significantly reduced this cytokine production.

Such evidence may shed new light on the misunderstood
scenario resulting from the increasing emergence of inflam-
matory diseases in humans, dogs, and cats [84–89].Moreover,
it has been suggested that tetracycline, in particular OTC,
could take part in this scenario and could represent harmful
compounds for human health and animals fed meat derived
from intensive livestock [25–30, 33, 90].

In conclusion, this study could open an interesting
approach regarding the use of anti-inflammatory and antiox-
idant botanicals in immune-mediated pathologies and in
infectious diseases as well as to counteract the effect of several
putative toxic substances present in food, such as the OTC,
which can cause inflammatory disorders and diseases.
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[13] L. Rönnblom and M.-L. Eloranta, “The interferon signature in
autoimmune diseases,” Current Opinion in Rheumatology, vol.
25, no. 2, pp. 248–253, 2013.

[14] H. Tang, G. C. Sharp, K. P. Peterson, and H. Braley-Mullen,
“IFN-𝛾-deficient mice develop severe granulomatous experi-
mental autoimmune thyroiditis with eosinophil infiltration in
thyroids,”The Journal of Immunology, vol. 160, no. 10, pp. 5105–
5112, 1998.

[15] S. Yu, G. C. Sharp, and H. Braley-Mullen, “Dual roles for IFN-
𝛾, but not for IL-4, in spontaneous autoimmune thyroiditis in
NOD.H-2h4 mice,” The Journal of Immunology, vol. 169, no. 7,
pp. 3999–4007, 2002.

[16] E. C. Baechler, P. K. Gregersen, and T.W. Behrens, “The emerg-
ing role of interferon in human systemic lupus erythematosus,”
Current Opinion in Immunology, vol. 16, no. 6, pp. 801–807,
2004.

[17] K. M. Pollard, P. Hultman, and D. H. Kono, “Toxicology of
autoimmune diseases,”Chemical Research in Toxicology, vol. 23,
no. 3, pp. 455–466, 2010.

[18] F. Dedeoglu, “Drug-induced autoimmunity,” Current Opinion
in Rheumatology, vol. 21, no. 5, pp. 547–551, 2009.

[19] C. D. Vedove, M. Del Giglio, D. Schena, and G. Girolomoni,
“Drug-induced lupus erythematosus,” Archives of Dermatolog-
ical Research, vol. 301, no. 1, pp. 99–105, 2009.

[20] R. L. Rubin, “Drug-induced lupus,” Toxicology, vol. 209, no. 2,
pp. 135–147, 2005.

[21] R. Patterson and D. Germolec, “Toxic oil syndrome: review of
immune aspects of the disease,” Journal of Immunotoxicology,
vol. 2, no. 1, pp. 51–58, 2005.

[22] K. M. Pollard, P. Hultman, and D. H. Kono, “Immunology
and genetics of induced systemic autoimmunity,”Autoimmunity
Reviews, vol. 4, no. 5, pp. 282–288, 2005.

[23] M. L. Nelson and S. B. Levy, “The history of the tetracyclines,”
Annals of the New York Academy of Sciences, vol. 1241, no. 1, pp.
17–32, 2011.

[24] T. G. Marshall and F. E. Marshall, “Sarcoidosis succumbs to
antibiotics-implications for autoimmune disease,” Autoimmu-
nity Reviews, vol. 3, no. 4, pp. 295–300, 2004.

[25] P. Lenert, M. Icardi, and L. Dahmoush, “ANA (+) ANCA (+)
systemic vasculitis associated with the use of minocycline: case-
based review,” Clinical Rheumatology, vol. 32, no. 7, pp. 1099–
1106, 2013.

[26] U. Christen andM. G. von Herrath, “Transgenic animal models
for type 1 diabetes: linking a tetracycline-inducible promoter
with a virus-inducible mouse model,” Transgenic Research, vol.
11, no. 6, pp. 587–595, 2002.

[27] S. M. Attar, “Tetracyclines: what a rheumatologist needs to
know?” International Journal of Rheumatic Diseases, vol. 12, no.
2, pp. 84–89, 2009.

[28] A. K. Sarmah, M. T. Meyer, and A. B. A. Boxall, “A global per-
spective on the use, sales, exposure pathways, occurrence, fate
and effects of veterinary antibiotics (VAs) in the environment,”
Chemosphere, vol. 65, no. 5, pp. 725–759, 2006.



Journal of Immunology Research 9

[29] B. Halling-Sørensen, G. Sengeløv, and J. Tjørnelund, “Toxicity
of tetracyclines and tetracycline degradation products to envi-
ronmentally relevant bacteria, including selected tetracycline-
resistant bacteria,” Archives of Environmental Contamination
and Toxicology, vol. 42, no. 3, pp. 263–271, 2002.

[30] W. D. Black, “A study in the pharmacodynamics of oxytetracy-
cline in the chicken,” Poultry Science, vol. 56, no. 5, pp. 1430–
1434, 1977.

[31] R. Odore, M. De Marco, L. Gasco et al., “Cytotoxic effects of
oxytetracycline residues in the bones of broiler chickens fol-
lowing therapeutic oral administration of a water formulation,”
Poultry Science, vol. 94, no. 8, pp. 1979–1985, 2015.

[32] A. Di Cerbo, A. T. Palatucci, V. Rubino et al., “Toxicological
implications and inflammatory response in human lympho-
cytes challenged with oxytetracycline,” Journal of Biochemical
and Molecular Toxicology, vol. 30, no. 4, pp. 170–177, 2016.

[33] A.DiCerbo, S. Canello,G.Guidetti, C. Laurino, andB. Palmieri,
“Unusual antibiotic presence in gym trained subjects with food
intolerance; a case report,”Nutricion Hospitalaria, vol. 30, no. 2,
pp. 395–398, 2014.

[34] W. Andlauer and P. Fürst, “Nutraceuticals: a piece of history,
present status and outlook,” Food Research International, vol. 35,
no. 2-3, pp. 171–176, 2002.

[35] S.-A. Im, K.-H. Kim, H.-S. Kim et al., “Processed Aloe vera
Gel ameliorates cyclophosphamide-induced immunotoxicity,”
International Journal of Molecular Sciences, vol. 15, no. 11, pp.
19342–19354, 2014.

[36] A. Djeraba and P. Quere, “In vivo macrophage activation in
chickens with Acemannan, a complex carbohydrate extracted
from Aloe vera,” International Journal of Immunopharmacology,
vol. 22, no. 5, pp. 365–372, 2000.

[37] E. Collard and S. Roy, “Improved function of diabetic wound-
site macrophages and accelerated wound closure in response
to oral supplementation of a fermented papaya preparation,”
Antioxidants and Redox Signaling, vol. 13, no. 5, pp. 599–606,
2010.

[38] M. Abdullah, P.-S. Chai, C.-Y. Loh et al., “Carica papaya
increases regulatory T cells and reduces IFN-𝛾+CD4+ T cells
in healthy human subjects,” Molecular Nutrition and Food
Research, vol. 55, no. 5, pp. 803–806, 2011.

[39] T. T. T. Nguyen, P. N. Shaw, M.-O. Parat, and A. K. Hewavitha-
rana, “Anticancer activity of Carica papaya: a review,”Molecular
Nutrition and Food Research, vol. 57, no. 1, pp. 153–164, 2013.

[40] J. S. Lee, S.-Y. Park, D. Thapa et al., “Grifola frondosa water
extract alleviates intestinal inflammation by suppressing TNF-
𝛼 production and its signaling,” Experimental and Molecular
Medicine, vol. 42, no. 2, pp. 143–154, 2010.

[41] K. R. Martin, “Both common and specialty mushrooms inhibit
adhesion molecule expression and in vitro binding of mono-
cytes to human aortic endothelial cells in a pro-inflammatory
environment,” Nutrition Journal, vol. 9, article 29, 2010.

[42] Y. Masuda, A. Matsumoto, T. Toida, T. Oikawa, K. Ito, and
H. Nanba, “Characterization and antitumor effect of a novel
polysaccharide from Grifola frondosa,” Journal of Agricultural
and Food Chemistry, vol. 57, no. 21, pp. 10143–10149, 2009.

[43] Y. Masuda, K. Ito, M. Konishi, and H. Nanba, “A polysaccha-
ride extracted from Grifola frondosa enhances the anti-tumor
activity of bone marrow-derived dendritic cell-based immun-
otherapy against murine colon cancer,” Cancer Immunology,
Immunotherapy, vol. 59, no. 10, pp. 1531–1541, 2010.

[44] N. Kodama, N. Harada, and H. Nanba, “A polysaccharide,
extract from grifola frondosa, inducesTh-1 dominant responses

in carcinoma-bearing BALB/c mice,” Japanese Journal of Phar-
macology, vol. 90, no. 4, pp. 357–360, 2002.

[45] N. Arora, K. Shah, and S. Pandey-Rai, “Inhibition of
imiquimod-induced psoriasis-like dermatitis in mice by herbal
extracts from some Indian medicinal plants,” Protoplasma, vol.
253, no. 2, pp. 503–515, 2016.

[46] V. Leray, B. Freuchet, J. Le Bloc’h, I. Jeusette, C. Torre,
and P. Nguyen, “Effect of citrus polyphenol- and curcumin-
supplemented diet on inflammatory state in obese cats,” The
British Journal of Nutrition, vol. 106, supplement 1, pp. S198–
S201, 2011.

[47] A. Jain and E. Basal, “Inhibition of Propionibacterium acnes-
induced mediators of inflammation by Indian herbs,” Phy-
tomedicine, vol. 10, no. 1, pp. 34–38, 2003.

[48] G. G. L. Yue, B. C. L. Chan, P.-M. Hon et al., “Evaluation of
in vitro anti-proliferative and immunomodulatory activities of
compounds isolated from Curcuma longa,” Food and Chemical
Toxicology, vol. 48, no. 8-9, pp. 2011–2020, 2010.

[49] N. M. Rogers, S. Kireta, and P. T. H. Coates, “Curcumin induces
maturation-arrested dendritic cells that expand regulatory T
cells in vitro and in vivo,” Clinical and Experimental Immunol-
ogy, vol. 162, no. 3, pp. 460–473, 2010.

[50] Y. Huang, S. Cao, M. Nagamani, K. E. Anderson, J. J. Grady,
and L.-J. W. Lu, “Decreased circulating levels of tumor necrosis
factor-𝛼 in postmenopausal women during consumption of
soy-containing isoflavones,” Journal of Clinical Endocrinology
and Metabolism, vol. 90, no. 7, pp. 3956–3962, 2005.

[51] B. K. Chacko, R. T. Chandler, A. Mundhekar et al., “Revealing
anti-inflammatory mechanisms of soy isoflavones by flow:
modulation of leukocyte-endothelial cell interactions,” Amer-
ican Journal of Physiology—Heart and Circulatory Physiology,
vol. 289, no. 2, pp. H908–H915, 2005.

[52] S. Nagarajan, B. W. Stewart, and T. M. Badger, “Soy isoflavones
attenuate humanmonocyte adhesion to endothelial cell-specific
CD54 by inhibiting monocyte CD11a,” Journal of Nutrition, vol.
136, no. 9, pp. 2384–2390, 2006.

[53] S. Yellayi, M. A. Zakroczymski, V. Selvaraj et al., “The phytoe-
strogen genistein suppresses cell-mediated immunity in mice,”
Journal of Endocrinology, vol. 176, no. 2, pp. 267–274, 2003.

[54] J. Wei, S. Bhatt, L. M. Chang, H. A. Sampson, and M. Masil-
amani, “Isoflavones, genistein and daidzein, regulate mucosal
immune response by suppressing dendritic cell function,” PLoS
ONE, vol. 7, no. 10, Article ID e47979, 2012.

[55] H. Ghanim, C. L. Sia, S. Abuaysheh et al., “An antiinflammatory
and reactive oxygen species suppressive effects of an extract
of Polygonum cuspidatum containing resveratrol,” Journal of
Clinical Endocrinology and Metabolism, vol. 95, no. 9, p. -E8,
2010.

[56] K. T. Noh, J. Cho, S. H. Chun et al., “Resveratrol regulates
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ABSTRACT
Background. Oxytetracycline (OTC), which is largely employed in zootechnical
and veterinary practices to ensure wellness of farmed animals, is partially absorbed
within the gastrointestinal tract depositing in several tissues. Therefore, the potential
OTC toxicity is relevant when considering the putative risk derived by the entry and
accumulation of such drug in human and pet food chain supply. Despite scientific
literature highlights several OTC-dependent toxic effects on human and animal health,
the molecular mechanisms of such toxicity are still poorly understood.
Methods. Here, we evaluated DNA damages and epigenetic alterations by quantitative
reverse transcription polymerase chain reaction, quantitative polymerase chain reac-
tion, chromatin immuno-precipitation and Western blot analysis.
Results. We observed that human peripheral blood mononuclear cells (PBMCs)
expressedDNAdamage features (activation of ATMandp53, phosphorylation ofH2AX
and modifications of histone H3 methylation of lysine K4 in the chromatin) after the
in vitro exposure to OTC. These changes are linked to a robust inflammatory response
indicated by an increased expression of Interferon (IFN)-γ and type 1 superoxide
dismutase (SOD1).
Discussion. Our data reveal an unexpected biological in vitro activity of OTC able to
modify DNA and chromatin in cultured human PBMC. In this regard, OTC presence in
foods of animal origin could represent a potential risk for both the human and animal
health.
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INTRODUCTION
The drug (4S,4aR,5S,5aR, 6S,12aS)-4-(dimethylamino)-3,5,6,10,12,12a-hexahydroxy-
6-methyl-1,11-dioxo1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide, briefly
oxytetracycline (OTC) is active towards a wide range of micro-organisms (Nelson &
Levy, 2011), is efficiently absorbed in the duodenum forming complexes with metallic ions,
is unstable at acid pH and its introduction along with food reduces its serum concentrations
(Palmieri, Di Cerbo & Laurino, 2014). Moreover, such drug could accumulate within bone,
skin, fat, tendons, muscles, liver and gastrointestinal tract (Agwuh & MacGowan, 2006).

OTC is commonly used in medicine and is one of the main antibiotics used in zootech-
nical and veterinary practices as feed supplement to ensure wellness of farmed animals
(i.e., poultry, ovine, swine and livestock) (Graham et al., 2014;Brüning et al., 2014;Di Cerbo
et al., 2014; Odore et al., 2015).

Several studies have investigated the potential toxicity of OTC ranging from teratogenic
effects during pregnancy (Czeizel & Rockenbauer, 2000) to some effect on immune system
(Glette et al., 1984; Potts et al., 1983; Van den Bogert & Kroon, 1982; Myers, Farrell & Hen-
derson, 1995; Di Cerbo et al., 2016). Moreover, scientific literature suggested that the drug
is able to inhibit or reduce catalase (Chi, Liu & Zhang, 2010) and affects avian cartilage
degradation (Peters et al., 2002).

We recently demonstrated that OTC: (a) induces an in vitro inflammatory response
characterized by T and non-T lymphocytes activation and Interferon (IFN)-γ release
(Di Cerbo et al., 2016); (b) triggers the apoptosis of human and dog haematopoietic cells
(Di Cerbo et al., 2016; Odore et al., 2015).

The potential OTC toxicity becomes more relevant when considering the potential risk
derived by the eventuality of entry and accumulation of such drug in human and pet food
with possible consequences on health (Palmieri, Di Cerbo & Laurino, 2014). In this regard,
animal muscle, bone and fat are known to be the elective deposit for several antibiotics
(Palmieri, Di Cerbo & Laurino, 2014; Macy & Poon, 2009) and are routinely employed for
human and pet food production (Palmieri, Di Cerbo & Laurino, 2014).

In the light of the widespread use of OTC and considering the putative risk derived
by the eventuality of entry and accumulation of such drug in human and pet food chain
supply (Graham et al., 2014; Brüning et al., 2014;Di Cerbo et al., 2014;Nelson & Levy, 2011;
Palmieri, Di Cerbo & Laurino, 2014), it is possible to speculate that the OTC accumulates
in these edible tissues and that this occurrence represents the contact between the drug and
the humans or companion animals (dogs and cats).

Here, we addressed the study over the relevance of some molecular mechanisms of drug
toxicity and, specifically, on the genotoxic effect and epigenetic modifications potentially
induced by OTC. This could be relevant since many of the effects observed could affect the
gene expression and represent a potential risk for human and animal health.
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MATERIALS & METHODS
Cells and incubation
Peripheral blood mononuclear cells (PBMCs) were obtained, as previously described (Di
Cerbo et al., 2016). Briefly, we performed the centrifugation on Ficoll-Paque cushion (GE
Healthcare, Uppsala Sweden) gradients of buffy coats obtained from six volunteer healthy
donors. In order to inform the blood donors concerning the possibility to use minimal
amount of their blood donation for scientific purpose, written informed consent (model
n. 5526 of Azienda Ospedaliera Universitaria ‘‘FEDERICO II’’, Naples, Italy) was obtained
from each donor at the time of venous peripheral blood donation performed at Blood
Trasfusional Center of Azienda Ospedaliera Universitaria ‘‘FEDERICO II’’, Naples Italy, as
established by Italian Law. All the experiments were performed anonymously, without any
donor biographical reference. White blood cells have never been used to create a genome
database.

To test the in vitro potential biochemical toxic role of OTC (Liquid Oxytetracycline 20%
R, TreI, Reggio Emilia, Italy), the PBMCs (2.5 × 106/ml) were incubated in presence of
RPMI 1,640mediumwith 10% FCS (Invitrogen, Carlsbad, CA, USA) alone or with 2 µg/ml
OTC (Odore et al., 2015; Di Cerbo et al., 2016) at 37 ◦C for different times (6 h, 12 h, 24 h).

RNA extraction and qRT-PCR and qPCR
Total RNA was extracted using TRI Reagent (T9424, Sigma-Aldrich, St Louis, MO,
USA). cDNA was synthesized in a 20 µl reaction volume containing 1 µg of total RNA, in
accordance to the life technology protocol (High-Capacity cDNAReverse Transcription Kit
4368814; Applied Biosystem, Thermofisher Scientific, Foster City, CA, USA). The products
were stored at −20 ◦C until use. Quantitative reverse transcription polymerase chain
reaction (qRT-PCR) and quantitative polymerase chain reaction (qPCR) were performed
three times in six replicates on a 7,500 Real Time PCR System (Applied Biosystems) using
the SYBR Green-detection system (SYBR select Master Mix, 4473369, Applied Biosystem).
The following primers were used: IFN-γ mRNA, 5′-TGGAAAGAGGAGAGTGACAGA-3′

and 5′-CTGTTTTAGCTGCTGGCGAC-3′; type 1 superoxide dismutase (SOD1) mRNA
5′-CTAGCGAGTTATGGCGACGA-3′ and 5′-GTCTCCAACATGCCTCTCTTCA-3′; 18S,
5′-GCGCTACACTGACTGGCTC-3′ and 5′-CATCCAATCGGTAGTAGCGAC-3′.

Chromatin Immuno-Precipitation (ChIP)
Cells were treated as indicated in Cells and incubation paragraph. The cells (∼2.5× 106 for
each antibody) were crosslinked with a 1% formaldeyhyde/PBS solution for 10min at room
temperature, the reaction was stopped by the addition of glycine to a final concentration
of 125 mM. Fixed cells were harvested and the pellet was resuspended in 1 ml of Lysis
Buffer (10 mM Tris-HCl pH 8.0, 10 mM NaCl, 0.2% NP40) containing 1× protease
inhibitor cocktail (Roche Applied Science, Basel, Switzerland). The lysates were sonicated
in order to have DNA fragments from 300 to 600 bp. An aliquot (1/10) of sheared
chromatin was used as input DNA. Sonicated samples were processed according to
the manufacturer’s protocol of ChIP assay kit (Merck Millipore, Billerica, MA, USA).
Samples were subjected to qPCR using the following primers: IFN-γ Promoter, 5′-GAA
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CAATGTGCTGCACCTCC-3′ and 5′-CACAGGTGGGCATAATGGGT-3′; SOD1 Pro-
moter, 5′-CATCATTTTGCCAATTTCGCGT-3′ and 5′-CGAGTGGCCGGGAATGACT-3′.

Real Time-qPCRs were performed using the SYBR Green-detection system (SYBR select
Master Mix, 4473369; Applied Biosystem).

Western blot preparation and analysis
Aliquots of the cells collected for ChIP were used for western blot. Cells were washed
twice with cold phosphate-buffered saline (PBS) and nuclei were extracted using 1 ml of
Lysis Buffer (10 mM Tris-HCl pH 8.0, 10 mM NaCl, 0.2% NP40) containing 1× protease
inhibitor cocktail. Nuclear lysates were obtained accordingly with Nuclear Fractionation
Protocol (Abcam, Cambridge, UK). γH2AX was detected using part of the sonicated
samples collected for ChIP. Lysates were cleared by centrifugation (13,000 rpm for 20 min).
Protein concentrations were measured by Bio-Rad Protein Assay Dye Reagent Concentrate
#500-0006. Equal amounts of cell extracts were then resolved by SDS–PAGE, transferred
to nitrocellulose membranes, and immunoblotted using specific antibodies. Blots were
detected using an ECL system (LumilightWestern Blotting Substrate, 12015200001, Roche).

Antibodies
Anti-DNMT1 ab87656 (Abcam, Cambridge, UK), -H3K4me2 ab32356 (Abcam), -
H3K4me3 ab1012 (Abcam),—Total H3 ab1791 (Abcam), -Menin sc-0200 (Santa Cruz
Biotechnology); phosphoATM ab81292 (Abcam), -phospho-H2AX (07164, Merck Milli-
pore), MCM7 sc-9966 (Santa Cruz Biotechnology), Normal rabbit IgG sc-2027 (Santa Cruz
Biotechnology), Normal mouse IgG sc-2025 (Santa Cruz Biotechnology) and -p53 ab1101
(Abcam).

Statistical analysis
Statistical significance between groups was determined using Student’s t test.

RESULTS AND DISCUSSION
IFN-γ and SOD1 gene expression
We recently demonstrated the pro-inflammatory effect of OTC in causing both the IFN-γ
secretion in T and non-T lymphocytes (Di Cerbo et al., 2016). Here, we evaluated the effect
of drug treatment in the up-regulation of IFN-γ gene expression. Figure 1A shows that
mRNA levels of IFN-γ robustly increased in PBMCs after 24 h of OTC incubation.

To investigate if OTC-mediated inflammatory condition could depend on oxidative
stress, we evaluated whether the Cu–Zn Super Oxide Dismutase 1 (SOD1) could be
increased after drug exposure. It is of note that one of the SOD1 is involvednot only in oxida-
tive metabolism but also in the T lymphocyte activation dependent on the accumulation of
reactive oxygen species (Terrazzano et al., 2014). Our data (Fig. 1B) show that the mRNA
levels of SOD1 increased from 12 to 24 h of OTC treatment.

The data reported in Fig. 1 showed that the enhancement of mRNA levels of IFN-γ
occurred after 24 h of OTC-treatment, whereas the induction of SOD1 mRNA appeared
already in 12 h. A possible explanation might be that SOD1 is a housekeeping gene (Minc et
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Figure 1 OTC induces IFN-γ and SOD1mRNA. OTC significantly induces the increment of both IFN-
γ and SOD1 mRNA. Total RNA was prepared from PBMC stimulated with OTC for 6, 12, 24 h, as indi-
cated in ‘Materials & Methods’, and analyzed by qPCR with specific primers to IFN-γ (A) and SOD1 (B)
mRNA normalized to 18S RNA levels. The statistical analysis derived from 2 experiments in triplicate (n≥
6; Mean± SD).

al., 1999) and its basal expression is usually higher than IFN-γ gene. Since the used in vitro
model is based on freshly isolated PBMCs that are usually resistant to natural occurring
apoptosis (Miyawaki et al., 1992), the increased SOD1 level after the drug incubation could
be likely associated to the hypothesis of apoptosis induction upon chromatin and DNA
damages (Norbury & Zhivotovsky, 2004; Barbosa et al., 2010).

These results suggest that the drug may affect some important cellular responses as the
induction of a gene expression fostering the activation of previously observed immune
response by T and non-T lymphocytes after in vitro OTC exposure (Di Cerbo et al., 2016).

OTC generates genotoxic damage
Since the OTC is able to induce apoptosis (Odore et al., 2015; Di Cerbo et al., 2016), we
investigated on the potential ability of such drug in causing DNA damage and, in reason of
that, in inducing apoptosis. In particular, we evaluated the presence of genotoxic markers
after in vitro drug treatment of PBMCs. In this regard, it is worth noting the role for Ataxia
Telangiectasia mutated protein (ATM) that is a serin/treonin kinase activated in response
to the DNA double strand break to promote cell cycle arrest, DNA repair and, if necessary,
the cell death by apoptosis (Canman & Lim, 1998; Lee & Paull, 2007).

As shown in Fig. 2A, the phosphorylated form of ATM (pATM) is clearly increased in
human PBMCs after 6 h and 12 h of OTC incubation.

Furthermore, we investigated the levels of p53, as one of principal substrates of pATM
and an important marker of DNA damage (Sakaguchi et al., 1998;Williams & Schumacher,
2016). Figure 2A indicates that p53 significantly increased after 12 h of drug exposure.
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Figure 2 OTC induces genotoxic damage. Cells were treated with OTC for 6, 12 and 24 h and processed
as indicated in ‘Material and Methods’. (A) the western blot for pATM, p53 and DNMT1 was performed
using nuclear extract. Menin is reported as loading control; (B) quantification of the western blots nor-
malized to Menin levels. Values are reported as Optical density (arbitrary units= a.u.).

These observations suggest that some DNA damage may occur after OTC incubation.
One of the main epigenetic modifications involved in gene regulation is the DNA

methylation (Hamidi, Singh & Chen, 2015). It is well known that DNA (cytosine-5)-
methyltransferase 1 enzyme (DNMT1) is recruited to the chromatin, in response to the
oxidative DNA damage, in order to inhibit gene transcription and to support DNA repair
(Ding et al., 2016). It is of relevance that DNMT1 appears to increase after OTC treatment,
following a similar kinetics of pATM and p53 (Fig. 2A).

Such evidence supports the idea that the enzymes could be recruited on the site of
oxidativeDNAdamage occurred uponOTC incubation and cooperate each-other to induce
chromatin modifications aimed to foster the DNA repair (Morano et al., 2014).

To better address the entity of DNA damage, we investigated the presence of DNA
double strand break (DBS) markers. In particular, we evaluated the phosphorylated histone
H2AX (γH2AX) (Rogakou et al., 1998; Mah, El-Osta & Karagiannis, 2010) by performing
western blot analysis on chromatin samples. Figures 3A and 3B shows the significant
increase of γH2AX with the highest peak from 12 to 24 h of drug treatment. Notably, the
phosphorylated histone H2AX binds the regions of chromatin on the sites of DSB and
DNA repair (Mah, El-Osta & Karagiannis, 2010). To better analyze the chromatin changes
caused by the drug, we tested by ChIP assay the presence of γH2AX on the promoters of
genes of our interest. We observed the accumulation of γH2AX at the site of promoter
of IFN-γ gene (Fig. 3C). The presence of γH2AX was also enhanced at the level of SOD1
gene promoter after 24 h of drug incubation (Fig. 3D).
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Figure 3 OTC and the chromatin changes. (A) The western blot for γH2AX performed on chromatin
extracts. MCM7 is reported as loading control; (B) Quantification of γH2AX normalized to MCM7 levels.
Values are reported as Optical density (arbitrary units= a.u.); qChIP analysis evideces that γH2AX accu-
mulates on IFN-γ (C) and SOD1 (D) promoters. Cells were treated with OTC as indicated, crosslinked
and sonicated. The statistical analysis derived from at least 2 experiments in triplicate (n≥ 6; Mean± SD).

Therefore, our results strongly suggest the correlation between DNA damage occurrence
and OTC administration. Moreover, the increased levels of IFN-γ and SOD1 mRNAs
(Fig. 1) appear to be linked to the function of γH2AX, which cooperates with the induction
of ATM mediated transcription (Singh et al., 2015).

Epigenetic changes
Histone modification represents an epigenetic mechanism that affects gene transcription
by altering the chromatin structure and DNA accessibility. Histone methylation can be
associated with the different status of chromatin (Zhang, Cooper & Brockdorff, 2015). Here,
we evaluated if OTC treatment could be correlated to alterations of histone methylation.
More specifically, we investigated on the methylation status of lysine 4 of Histone 3 (H3K4)
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Figure 4 OTC and histone methylation.Methylation profile of histone H3K4 is induced by OTC on
both the IFN-γ and SOD1 gene promoters. PMBC cells were exposed to OTC at the indicated times (0, 6,
12 and 24 h). qChIP was carried out using specific antibodies; (A) H3K4me3 and H3K4me2 occupancy at
IFN-g promoter; (B): H3K4me2 and H3K4me3 occupancy at SOD1 promoter; (C) and (D); the TotalH3
occupancy at IFN-γ and SOD1 promoters respectively. The statistical analysis derived from at least 2 ex-
periments in triplicate (n≥ 6; Mean± SD).

that is implicated in the regulation of gene activation (Barski et al., 2007; Ruthenburg, Allis
& Wysocka, 2007).

To this aim, we performed a ChIP for the promoter of the genes whose expression
appeared to be modified by OTC. After 24 h of drug incubation, the increment of both
the di-methylated (me2) and tri-methylated (me3) H3K4 is particularly evident for IFN-γ
promoter (Fig. 4A), while the increase of H3K4 is more evident for the di-methylated
form at the level of SOD1 promoter (Fig. 4B). These data are correlated with the observed
activation of gene expression (Bernstein et al., 2005). Similar results are obtained from the
analysis of total H3 histone levels (Figs. 4C and 4D).

Together, these data indicate that the OTC treatment can affect the status of
chromatin.
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CONCLUSION
Despite scientific literature that has been suggesting the potential toxicity of OTC (Czeizel
& Rockenbauer, 2000; Glette et al., 1984; Potts et al., 1983; Van den Bogert & Kroon, 1982;
Myers, Farrell & Henderson, 1995), the mechanisms of the toxic effect of such drug is still
poor understood.

We recently demonstrated that OTC induces in vitro inflammatory response (Di Cerbo
et al., 2016) and apoptosis (Di Cerbo et al., 2016; Odore et al., 2015). Therefore, this and
other suggestions open an interesting scenario on the toxicity of OTC that requires a greater
understanding over the nature of observed toxic effects.

This study emphasized the toxicity of OTC, investigating over themolecularmechanisms
involved in human PBMC inflammatory response. It is of note that the drug promoted a ro-
bust inflammatory response as represented by the increasing of IFN-γ mRNA levels. This re-
sult reflects and confirms the previously observed increment of IFN-γ production in T and
non-T lymphocytes (Di Cerbo et al., 2016). In addition, OTC significantly induced SOD1
mRNA in the same experimental condition and cellular model. This evidence extends our
previous observations on apoptosis induction after OTC exposure (Terrazzano et al., 2014;
Odore et al., 2015).

In addition,we observed thatOTC induces genotoxic damage aswell as such drug recruits
some enzymes implicated in the delicate balance between cell death and survival. Indeed,
our data evidenced the increased levels of pATM, p53 and DNMT1 after drug incubation.
It is of note that p53 is a substrate of pATM and is crucial to the cell cycle arrest and/or
to induce the cell death by apoptosis (Norbury & Zhivotovsky, 2004), while DNMT1 repre-
sents a specific enzyme involved in some epigenetic changes (Hamidi, Singh & Chen, 2015),
associated with the DNA damage (Rossetto et al., 2010).

Moreover, we observed the activation of γH2AX, as a main DSB sensor protein, and
suggested an epigenetic effect of OTC on the methylation status of H3K4 that is implicated
in gene expression regulation (Barski et al., 2007; Ruthenburg, Allis & Wysocka, 2007). The
increase of both me2 and me3 H3K4 occurred after OTC incubation and was evident for
IFN-γ and SOD1 gene promoters.

Our data represent a preliminary step in the understanding of OTC toxicity, since
the knowledge of the molecular mechanisms involved in the toxic effect may help in the
generation of new drugs with reduced risk for human health.

In conclusion, it could be of great relevance to ascertain the possible acute and long term
effects of OTC on human health. It is worth noting that the use of antibiotics for growth
promotion is prohibited in Europe and it is considered a health hazard byWHO since 2006.
The use of antibiotics in agriculture for non-therapeutic purposes is allowed in United
States and Canada (FaAOF, 2014). Therefore, new regulations are urgently necessary to
reduce antibiotic contaminants in foods as well as the antibiotic resistance phenomenon
(US Government Publishing Office, 2014).
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STUDY LIMITATIONS
Notably, the current study incurs some limitations that are not addressable without
further researches. In this regard, our study did not perform chemical-pharmaceutical
and pharmacological test to evaluate the molecular complexity and/or stability of the used
OTC or to verify the possible presence of active sub-products generated during in vitro
tests. In addition, this study did not address any chemical evaluation of the excipients (i.e.,
fillers, binders, dyes, flavorings, preservatives and other materials) present in the here used
commercial liquid formulation of OTC drug employed in veterinary medicine. Therefore,
further evaluations are required to complete the significance of OTC toxicity. In particular,
the absence of in vivo experiments, able to confirm the in vitro observed OTC toxicity,
represents the main relevant limitation. Therefore, clinical studies are required to ascertain
the effect of the drug in inducing the inflammatory status in animals and/or in humans.
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A B S T R A C T

Over-nutrition and obesity have been associated with impaired immunity and low-grade inflammation in hu-
mans and mouse models. In this context, a causal role for unbalanced T regulatory cell (Treg)-dependent me-
chanisms has been largely suggested.

Obesity is the most common nutritional disorder in dogs. However, it is not defined whether canine obesity
may influence circulating Treg as well as if their number variation might be associated with the occurrence of
systemic inflammation.

The present study investigated the immune profile of healthy adult obese dogs belonging to the Labrador
Retriever breed, in comparison with the normal weight counterpart. Indeed, obesity has been described as
particularly evident in this dogs. With this purpose, 26 healthy dogs were enrolled and divided into two groups
based on body condition score (BCS): controls (CTR: BCS 4–5) and obeses (OB: BCS≥ 7).

Our data indicate that adult obese Labrador Retrievers are characterised by the inverse correlation between
leptin serum concentration and circulating Treg (CD4+CD25highFoxp3+) levels. In addition, an increased
number of cytotoxic T cell effectors (CD3+CD8+) and a higher IFN-γ production by cytotoxic T lymphocytes
were observed in OB group. These results may provide new insights into the immunological dysregulation
frequently associated to obesity in humans and still undefined in dogs.

1. Introduction

Canine obesity is the most frequent nutritional disorder in the ca-
nine population (German, 2006). Overweight dogs are considered
clinically obese when body weight exceeds by at least 15% the optimum
weight for body size (Laflamme, 2001). Although the aetiology of
obesity is not yet identified, some canine breeds are frequently pre-
disposed. Several factors related to the standard of living and life habits
of the industrialized countries can contribute to the development of this
nutritional alteration (Gossellin et al., 2007). Recently, obesity has been
described as more evident in Labrador Retrievers in reason of a docu-
mented genetic predisposition (Raffan et al., 2016; Mankowska et al.,
2017).

Similarly to humans, dog obesity can predispose or exacerbate
several clinical conditions such as osteoarthritis, respiratory airway
distress, renal diseases, diabetes mellitus and metabolic derangements
in dogs (Impellizeri et al., 2000; Bach et al., 2007; German et al., 2009;
Tvarijonaviciute et al., 2012, 2013).

Some evidence addressed the possible impact of obesity on cardio-
vascular apparatus in dogs. Mehlman et al. (2013) reported an in-
creased systolic blood pressure and left ventricular free wall thickness
in a small number of obese dogs. Pérez-Sánchez et al. (2015) focused on
the correlation between obesity and hypertension in a retrospective
study, including 139 obese dogs. Their data indicated that obesity does
not represent a significant risk factor for hypertension development;
rather, this latter condition has to be considered principally related to

https://doi.org/10.1016/j.vetimm.2018.07.004
Received 26 April 2018; Received in revised form 25 June 2018; Accepted 5 July 2018

⁎ Corresponding author at: Università Federico II, Via Pansini 5, 80131, Napoli, Italy.

1 These authors contributed equally to this work.
2 These authors share senior authorship.

E-mail address: giruggie@unina.it (G. Ruggiero).

Veterinary Immunology and Immunopathology 202 (2018) 122–129

0165-2427/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01652427
https://www.elsevier.com/locate/vetimm
https://doi.org/10.1016/j.vetimm.2018.07.004
https://doi.org/10.1016/j.vetimm.2018.07.004
mailto:giruggie@unina.it
https://doi.org/10.1016/j.vetimm.2018.07.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vetimm.2018.07.004&domain=pdf


co-morbidities, as chronic kidney disease and/or endocrinopathies. In
contrast, Piantedosi et al. (2016) recently demonstrated the significant
association of canine obesity with cardiac and vascular dysfunctions. In
this regard, Tropf et al. (2017) referred that obese dogs showed al-
terations in cardiac structure and function, associated to insulin re-
sistance, dyslipidaemia, hypoadiponectinemia and increased con-
centrations of inflammatory markers, as compared with the normal
weight counterpart.

It is of note that both the over-nutrition and obesity have been as-
sociated with impaired immunity and chronic low-grade inflammation
in humans and mouse models (Nieman et al., 1999; Samartin and
Chandra, 2001; Berg and Scherer, 2005; De Rosa et al., 2015). More-
over, increased concentration of acute-phase proteins, leptin and other
pro-inflammatory cytokines, with reduction of the adipokine adipo-
nectin have been described in obese subjects (Antuna-Puente et al.,
2008).

As in other species, several studies demonstrated a significant in-
crease of serum leptin during weight gain in dogs (Sagawa et al., 2002;
Ishioka et al., 2002; Jeusette et al., 2005; Ishioka et al., 2007). More-
over, canine obesity has been shown to associate with increase of tu-
mour necrosis factor (TNF)-α concentration (Gayet et al., 2004), while
TNF-α reduction has been recently related to weight loss in obese dogs
(German et al., 2009). Van de Velde et al. (2012) observed that weight
gain and increased body condition score (BCS) were accompanied by
significant higher leptin level, IgA and IgM increased concentration,
augmented number of lymphocytes and higher response to mitogen
stimulation of the peripheral blood mononuclear cells (PBMC) in vitro.
However, when immune response was evaluated in stable obese con-
dition, no changes in immune functions, neither systemic, low grade
inflammation were observed by the same authors (Van de Velde et al.
(2013)). Recently, rising level of the pro-inflammatory cytokine IL-6
and of monocyte chemo-attractant protein-1 (MCP-1) have been asso-
ciated with increasing BCS in Labrador Retrievers (Frank et al., 2015),
while decreasing concentration of IL-8 has been related with a weight
loss program in dogs (Bastien et al., 2015).

However, the immune profile of dogs that spontaneously develop
obesity remains largely unexplored. It is noteworthy that pro-in-
flammatory response modulation has been observed to depend on
Regulatory T cell population (Treg), a CD3+CD4+CD25+ T lymphocyte
subset characterized by the expression of Foxp3 transcription factor
(Sakaguchi, 2005). The inverse correlation between leptin serum con-
centration and Treg number has been consistently found in humans and
mice (Matarese et al., 2002, 2010).

Literature has been suggesting the association between obesity and
Treg reduction in visceral adipose tissue (Feuerer et al., 2009; Deiuliis
et al., 2011). Conversely, Treg increase in the visceral fat of lean mice
has been described; in this model a strong correlation between Treg and
anti-inflammatory cytokine production has been observed (Feuerer
et al., 2009); similar results have been referred in humans (Wagner
et al., 2013). Therefore, a reduction of Treg-dependent anti-in-
flammatory mechanisms may be involved in the pathogenesis of the
pro-inflammatory condition, largely associated with obesity.

In veterinary medicine, Treg significantly increase in canine tumour
models (Biller et al., 2007; Horiuchi et al., 2009; O’Neill et al., 2009;
Rissetto et al., 2010), while Treg decreasing has been observed in dog
chronic infections, as Leishmaniasis (Cortese et al., 2013, 2015).
However, the relationship between obesity, leptin and circulating Treg
level as well as the occurrence of systemic inflammation in dogs is still
unclear.

The aim of the present study is to address the correlation between
obesity and immune regulation asset in adult Labrador Retriever dogs,
in the light of predisposition of this breed to overweight condition.

2. Materials and methods

2.1. Animal selection

Twenty-six healthy Labrador Retrievers, 15 females (9 spayed) and
11 males (5 neutered) were recruited into the study from the client-
owned referral population of the Veterinary Teaching Hospital,
Department of Veterinary Medicine and Animal Productions
(University of Naples Federico II). Each enrolled dog was classified
according to a body condition score (BCS) assessed by the same in-
vestigator, utilizing a nine-point scale BCS system (Laflamme et al.,
1997). Ten dogs with a BCS≥ 7 were considered obese
(Tvarijonaviciute et al., 2012), forming the OB group; while 16 dogs
with BCS 4–5 were included in the CTR group. Groups were homo-
geneous by age (dogs younger than 2 years or older than 10 years were
excluded). Sex hormones have been suggested to be relevant for im-
mune modulation (Roved et al., 2017). Moreover, similar hormonal
background has been observed to underlie both the spayed females and
neutered males in dog model (Frank et al., 2003). Thus, in order to
ensure the homogeneity of sex distribution in our dog cohorts, we en-
rolled similar percentage of gonadectomized animals in controls (9/16;
51%) and in the obese cohort (5/10; 50%) in the presence of compar-
able percentage of intact females (19% in CTR versus 30% in Obese
dogs) and males (25% in CTR versus 20% in Obese dogs) in the groups.
Both OB and CTR dogs were considered clinically healthy, based on the
clinical examination, including a measurement of systemic blood
pressure (SBP) and an electrocardiographic exam. Five consecutive
measurements of SBP were obtained by the same operator using an
automated oscillometric system (HDO, S+B MedVet, Babenhausen,
Germany) at the level of the right forelimb of conscious dogs, in sitting
position within a quiet room. The highest and lowest values of systolic,
mean and diastolic arterial blood pressure were excluded, and the
average of the remaining three measurements was recorded. Only dogs
with systolic arterial blood pressure (SABP)>160mmHg were con-
sidered to be hypertensive (Brown et al., 2007). A standard six-lead
electrocardiogram (ECG model 08SD, BTL Italy) was conducted with
dogs in right lateral recumbency. For each dog a 2min strip (paper
speed: 50mm/s; calibration at 1 mV0 1 cm) was recorded. All dogs
were evaluated for complete blood count (CBC), serum biochemistry
and urinalysis.

Exclusion criteria were represented by endocrine diseases (such as
diabetes, hypothyroidism, and Cushing’s syndrome), hepatic failure,
renal failure, heart diseases, inflammatory or infectious diseases, and
systemic hypertension. Animals with evidence of para-physiological
conditions, such as pregnancy or nursing, were not included. Labrador
Retrievers, as unique enrolled breed, were selected for this study in an
attempt to limit genetic and breed variability in body condition as-
sessment differences across breeds and because their predisposition to
obesity.

Table 1
General characteristics of the Labrador Retriever dog population enrolled in the
study. The values of blood arterial pressure and heart rate are also reported.

Control Dogs
(N=16)
BCS 4-5

Obese Dogs
(N=10)
BCS >7

M/F 9/7 2/8
SM/SFa 5/4 0/5
AGE (years) 2-8 3-9
Systolic Arterial Blood Pressure

(mmHg ± SEMb)
143.3 ± 9.9 145.8 ± 11.4

Heart rate (bpm ± SEMb) 116 ± 11 119 ± 19

a SM and SF indicate sterilized male and female animals.
b SEM indicates standard mean error.
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2.2. Sample collection

The blood collection procedure was approved by and performed
according to the Ethical Animal Care and Use Committee of the
University of Naples Federico II, (OPBA, CSV, University of Naples
Federico II, prot. n. 2017/0069148). Blood sample collection was
cruelty free, without any bloody operation and did not provide for any
segregation, even partial, of the animal. A written consent was signed
by the owner.

Ten millilitres of blood were collected by jugular venepuncture after
12 h of fasting. The total blood amount was divided into three fractions.
The first fraction was placed in tubes containing potassium ethylene
diamine tetra-acetic acid (EDTA) for CBC, performed within 30min
from the collection; the second was placed analogously in anti-coagu-
lated tubes containing EDTA, and stored at room temperature up to
5–6 h before immunological assays; the third fraction was placed in
tubes without anticoagulant, allowed to clot and centrifuged at 908 g
for 15min at 4 °C. Serum samples were stored at −80 °C and defrosted
immediately before proceeding with biochemical profile and leptin
assessment. Urine samples were collected by cystocentesis.

2.3. Complete blood count and serum biochemistry (CBC)

CBC was performed using a semi-automatic cell counter (Genius S,
SEAC Radom Group). A semi-automatic chemical chemistry analyser
(OLOT, Spinreact) was used to assess concentrations or activities of

glucose, blood urea nitrogen (BUN), creatinine, triglycerides, total
cholesterol, alanine aminotransferase (ALT), aspartate amino-
transferase (AST), alkaline phosphate (ALP), total bilirubin (T-Bil), al-
bumin and total serum proteins (TP). Serum protein electrophoresis was
also performed. Urinary protein:creatinine ratio (UP:C) was calculated
after their spectrophotometric determination (OLOT, Spinreact).

2.4. Leptin evaluation

Serum leptin concentration in all samples was measured by using a
commercial canine-specific leptin ELISA kit (Canine Leptin ELISA Cat.
EZCL-31 K, Millipore, Billerica, MA, USA) according to the manu-
facturer’s protocol. The minimum detection limit of the assay was
0.2 ng/mL; intra- and inter- assay coefficients of variation were<5%.
Absorbance was determined using an automated microplate spectro-
photometer (Epoch, BioTek Instruments Inc., Winooski, VT, USA) at
450 nm.

2.5. Monoclonal antibodies, immunofluorescence, flow cytometry and cell
culture

The level of CD3+, CD3+CD4+, CD3+CD8+ T cells, CD4/CD8 ratio,
CD21+ B cells and CD4+CD25highFoxp3+Treg cells was evaluated on
peripheral blood samples by immunofluorescence technique and flow
cytometry analysis. All phenotypes referred to flow cytometry analysis
of the lymphocyte population gated by using Forward Scatter (FSC) and

Fig. 1. Increased level of circulating CD3+CD8+ lymphocytes characterizes obese Labrador Retriever dogs. Panel A and B show flow cytometry analysis of one
representative OB and CTR animal. As shown, expression of CD4 and CD8 co-receptors was analysed in the region of CD3 positive cells (identified in the lymphocyte
region). Numbers indicate percent of positive cells; Panel C and D show comparative analysis of percentage and absolute number of CD3+, CD3+CD4+ and
CD3+CD8+ lymphocytes in obese (OB) versus control (CTR) Labrador Retriever dogs; as indicated, significant increase of both percentage (p < 0.01) and number
(p < 0.05) of cytotoxic T cells have been observed in OB dogs, while only a significant decrease in percentage of CD3+CD4+ has been revealed (p < 0.05); grey and
white columns indicate OB and CTR dogs, respectively. Error bars indicate the mean ± SEM; * indicates p < 0.05; **p< 0.01 by two-tailed Mann Whitney test.
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Side Scatter (SSC) parameters. CD3+CD8+ and CD3+CD4+ T cell
subsets were always identified by a combination of canine specific anti-
CD3 together with anti-CD4 or anti-CD8 mAbs on the lymphocyte re-
gion. Dead cells were excluded by evaluating FCS and SSC measure-
ments. Indeed, due to their smaller size, dead cells and cellular debris
typically have a lower level of forward scatter and are found at the
bottom left corner of the dot plot. Fluorescein isothiocyanate (FITC),
Phycoerythrin (PE), PE-Cy7 and Allophycocyanin (APC) labelled
monoclonal antibodies (mAbs) against dog CD3 (Clone CA17.2A12 and
CD3-12), CD4 (Clone YKIX302.9), CD8 (Clone YCATE55.9), IFN-γ
(Clone CC302), IL-4 (Clone CC303) and isotype-matched controls were
purchased from Serotec Ltd (London, UK). Intracellular detection of
Foxp3 was performed by using a cross-reactive murine Foxp3 antibody
(Clone FJK-16 s, eBioscience, San Diego, CA) and the permeabilization
buffer was provided by the detection Kit (Foxp3 Staining Set,
eBioscience). Treg detection was based on the CD3+CD4+CD25+ and
Foxp3 staining FACS strategy, as described (Biller et al., 2007; Cortese
et al., 2013; Alfinito et al., 2010). Specifically, Treg cells were identified
as the high CD25 expressing CD4+CD3+ population expressing Foxp3
at a percentage> 98%, as described (Baccher-Allan et al., 2001;
Alfinito et al., 2010). To analyse the production of IFN-γ and of IL-4, the
purified peripheral blood mononuclear cells (PBMC) were cultured
overnight in the presence of Phorbol 12-Myristate 13-Acetate (PMA)
and Ionomycin (Sigma-Aldrich, St. Louis, MO). This approach has been
widely indicated for the study of cytokine profile in human and animal
models (Cortese et al., 2013). Cells were cultured in RPMI 1640 (Bio-
chrom K.G., Berlin, Germany) supplemented with 5% heat inactivated
foetal bovine serum and 2mM glutamine (Biochrom) at 37 °C in 5%
CO2/95% air. To avoid extra-cellular cytokine export, the cell cultures
were incubated in the presence of 5 μg/ml of Brefeldin-A (Sigma-Al-
drich, St. Louis, MO), as previously described (Terrazzano et al., 2005;
Papadogiannakis et al., 2009). Intracellular staining was performed by
using a fixing/permeabilization kit (Caltag, Burlingame, CA) and fol-
lowing the manufacturer’s recommendations. In order to optimize the
identification of CD4 T cells in the presence of PMA induced down-
modulation of CD4 co-receptor, staining with anti-CD4 antibody has
been performed on permeabilized cells, thus allowing binding of

intracellular CD4 molecules. This strategy has been by us observed to
allow optimal detection of CD4 molecules in PMA treated cultures (our
unpublished results). Flow cytometry and data analysis were performed
by using a two-laser equipped FACSCalibur apparatus and the CellQuest
analysis software (Becton Dickinson, Mountain View, CA).

3. Statistical analysis

Statistical analysis was performed by Mann-Whitney test (GraphPad
Prism, San Diego, CA, USA). Results were considered significant at
p<0.05.

4. Results

4.1. Comparative analysis of clinical and biochemical parameters in normal
weight and obese adult Labrador Retriever dogs

Table 1 shows the characteristics of the animal population enrolled
in the study. The dogs were considered healthy based on clinical exam
and they were not hypertensive (Table 1). The results of metabolic
panel have been summarised in Supplementary Fig. 1. As shown, a mild
no significant increase in cholesterol and triglycerides serum levels
were observed in the OB as compared with the CTR group. There were
no significant differences in the other biochemical parameters as well as
in haematological and UP:C values between the two groups.

Regarding the ECG results, in the OB group 9 animals showed re-
spiratory sinus arrhythmia (ASR) and only one dog had sinus tachy-
cardia. In two obese dogs, there was evidence of ST segment depression,
suggestive of myocardial hypoxia, and only one animal showed features
of left ventricular enlargement. In the CTR group all dogs showed the
presence of ASR. Average electrical axis was within the normal range in
all cases and there were no significant differences in heart rates be-
tween the two groups (OB group 119 ± 19; CTR group 116 ± 11). No
arrhythmias were found in both groups.

4.2. Cytotoxic T lymphocyte increase characterises obese adult Labrador
Retriever dogs, as compared with the normal weight counterpart

In order to investigate the immune profile of the obese adult
Labrador Retrievers in comparison with the CTR normal weight coun-
terpart, we first analysed the number of leukocytes, neutrophils and
lymphocytes in the cohorts of dogs enrolled in the study. As shown in
Supplementary Fig. S2, all the animals, regardless the group belonging
to, revealed normal number of the white cell subsets by us analysed.
Thus, none significant difference between the OB and the CTR groups
was observed.

When the T cell population was evaluated (Fig. 1) a significant in-
crease in both the number (943.4 ± 1161.7 versus 521.7 ± 60.21;
p < 0.05) and percentage (41.64 ± 2.99 versus 28.85 ± 3.23;
p < 0.01) of cytotoxic (CD3+CD8+) T lymphocytes was observed in
OB dogs as compared with the CTR counterpart. Accordingly, a sig-
nificant decrease in the percentage of helper (CD3+CD4+) T lympho-
cytes in OB dogs was revealed (45.28 ± 3.22 versus 56.69 ± 3.24;
p < 0.05). Therefore, significant increase of CD3+CD8+ lymphocytes
seems to characterise our cohort of OB adult Labrador Retrievers as
compared with the normal weight dogs.

4.3. Increased leptin serum concentration accompanied by reduced Treg
and increased Interferon-γ production by cytotoxic T lymphocytes
characterises obese Labrador Retriever dogs as compared with the normal
weight counterpart

To investigate on the relationship between leptin hormone levels,
obesity condition and immune profile in our dog cohorts, we evaluated
the level of leptin in the serum of OB and CTR animals. As shown in
Fig. 2, ELISA assay revealed a significant increase of serum leptin in OB

Fig. 2. Significant increase of leptin hormone in serum characterizes obese
Labrador Retriever dogs as compared with the normal weight counterpart. As
shown, significant difference (p < 0.001) in leptin serum concentration has
been observed in obese (OB), as compared with control (CTR) dogs; grey and
white columns indicate OB and CTR dogs, respectively. Error bars indicate the
mean ± SEM; *** indicates p < 0.001 by two-tailed Mann Whitney test.
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dogs in comparison with the normal weight group (81.72 ± 11.18; ng/
ml versus 30.06 ± 5.64; ng/ml; p < 0.001).

In addition, we analysed both the number and percentage of Treg
subset in OB and CTR adult Labrador Retrievers. Fig. 3 shows that both
number (59.43 ± 5.44; versus 116.6 ± 13.5; p < 0.005) and per-
centage (6.8 ± 0.5; versus 11.84 ± 0.67; p < 0.0001) of circulating
Treg were significantly reduced in OB dogs as compared with the CTR
counterpart.

Moreover, to assess whether the observed immunological features of
OB animals (high number of CD3+CD8+ T lymphocytes, increased

concentration of leptin hormone and reduced level of Treg cells) might
correlate with occurrence of increased pro-inflammatory activity, we
analysed in vitro IFN-γ and IL-4 production by CD3+CD4+ and
CD3+CD8+ lymphocytes of obese dogs as compared with the normal
weight group. As shown in Fig. 4, percentage of cells producing IFN-γ
seems to be increased in both helper and cytotoxic T cell subsets in OB
Labrador Retriever dogs, when compared to the normal-weight coun-
terpart. However, such difference reaches statistical significance only
considering IFN-γ production by CD3+CD8+ effectors (55.36 ± 3.55
versus 42.93 ± 4.76; p < 0.05). As shown, IL-4 production was likely

Fig. 3. Obese Labrador Retrievers show significant reduction of circulating regulatory T cells (Treg). Panel A and B show flow cytometry analysis of one re-
presentative OB and CTR animal. Expression of CD25 was analysed in the region of CD4 positive cells (identified in the CD3 region). Numbers indicate percent of
positive cells; as shown, more than 98% of the CD4 T cells expressing high levels of CD25 are positive for Foxp3 transcription factor; this strategy has been largely
described by other and our group in order to identify functional Treg cells (Baccher-Allan et al., 2001; Alfinito et al., 2010). see material and method section for
details. Panel C and D show comparative analysis of percentage and number of Treg in obese (OB) versus control (CTR) Labrador Retriever dogs; as indicated,
significant decrease of both percentage (p < 0.0001) and number (p < 0.005) were observed in OB versus CTR dogs; grey and white columns indicate OB and CTR
dogs, respectively. Error bars indicate the mean ± SEM; *** indicates p < 0.005; **** indicates p < 0.0001 by two tailed Mann-Whitney test.
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undetectable in our experimental condition in both helper and cyto-
toxic T cell subsets for all enrolled animals, as previously described
(Terrazzano et al., 2005; Cortese et al., 2013).

5. Discussion

This study reveals that in adult obese Labrador Retrievers, com-
pared with the normal weight counterpart, high serum leptin levels
associate with decreased circulating Treg and increased cytotoxic T cell
effectors showing higher in vitro IFN-γ production.

Association of obesity with insulin resistance and alterations of
cardiovascular system has been largely described in human, mouse and
dog models, but the role of a deranged regulation of pro-inflammatory
activity in the pathogenesis of obesity-related diseases needs further
investigation.

Our obese Labrador Retriever dogs showed total cholesterol and
triglycerides values within normal ranges for canine species, although
hyperlipidaemia has been frequently described in obese dogs (Peña
et al., 2008; Park et al., 2015). In this context, several studies
(Tvarijonaviciute et al., 2012; Piantedosi et al., 2016) refer that only a
sub group of obese animals can be considered to be affected by obesity-
related metabolic dysfunction (ORMD), characterised by simultaneously
presence of at least two of the following parameters: triglycerides>
200mg/dL, total cholesterol> 300mg/dL, glucose> 100mg/dL and
SABP > 160mmHg. Moreover, no data are available on the pro-in-
flammatory activity regulation in obese dogs not affected by ORMD.
Here, we specifically focused such issue by analysing the phenotypical
and functional immune profile of adult obese Labrador Retrievers un-
affected by ORMD. These animals were characterized by high serum

leptin levels, decrease of circulating Treg and increase of cytotoxic T
cell effectors highly producing in vitro IFN-γ when compared with the
normal weight counterpart. Thus, a derangement in the regulation of
pro-inflammatory activity in vitro seems to characterize obese subjects
in the absence of clinical alterations.

Notably, the observed immunological alterations in obese animals
were associated with significant increase of serum leptin, the adipokine
largely demonstrated to have the unique ability to modulate both, en-
ergy metabolism and immune response (De Rosa et al., 2017). Several
data consistently indicate that leptin, a hormone produced by the adi-
pose tissue, fosters experimental autoimmune encephalomyelitis (EAE)
in mice by modulating Treg dependent tolerance control (Lord et al.,
2002; De Rosa et al., 2006). The hypothesis that leptin levels, in the
presence of a susceptible genetic background, might sustain the oc-
currence of immune-mediated disorders has been also proposed (De
Rosa et al., 2006; Iikuni et al., 2008).

Our data highlighted the inverse correlation of leptin concentration
with circulating Treg number in adult obese Labrador Retrievers. In
these obese dogs, we revealed a significant increase of cytotoxic T cell
effectors, highly producing IFN-γ in vitro. Therefore our data confirm
and extend the results obtained in human and mouse model, suggesting
the key role of leptin (largely produced by adipocytes) in regulating
Treg level and pro-inflammatory response also in dogs. Of note, no
significant effect of age, sex and breed have been described for leptin
concentration in dogs (Ishioka et al., 2002, 2007).

Literature indicates that cytotoxic CD8+ T cells may contribute to
the mechanisms by which the established risk factors (arterial hy-
pertension and metabolic derangements) promote cardiovascular al-
terations in humans and mice. Hypertension has been observed to

Fig. 4. Cytotoxic T cells of obese Labrador Retriever dogs were observed to produce increased level of Interferon-γ, as compared with the normal weight counterpart.
Panel A and B show flow cytometry analysis of one representative OB and CTR animal. Intracellular expression of IFN-γ and IL-4 was analysed in the region of
CD3+CD4+ (left panels) or cytotoxic T cells (right panels) after an ON culture of PBMC in the presence of PMA plus Ionomycin (see material and methods section for
details); numbers indicate percent of positive cells; no significant production of IL-4 has been observed.
As shown, significant difference (p < 0.05) in IFN-γ production by cytotoxic T lymphocytes in vitro has been observed in obese (OB), as compared with control (CTR)
dogs; grey and white columns indicate OB and CTR dogs, respectively. Error bars indicate the mean ± SEM; * indicates p < 0.05 by two tailed Mann-Whitney test.
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increase activated CD8+ T cell numbers in human subjects (Youn et al.,
2013; Itani et al., 2016), thus likely favouring perivascular inflamma-
tion and the following endothelial dysfunction (Itani et al., 2016;
Mikolajczyk et al., 2016). Moreover, current evidence suggests that
both athero-protective and pro-atherogenic CD8+ T cell subsets exist.
Indeed, CD8+ T cells may contribute to the genesis of apoptotic cells
and necrotic cores in atherosclerotic lesions and macrophages can be
target cells for cytolytic CD8+ T cells in atherosclerosis (Itani et al.,
2016; Mikolajczyk et al., 2016). In this context, it is still unknown if
numbers of CD8+ T cells might correlate with their functional con-
tribution to atherosclerosis, or whether a certain cytokine profile might
contribute to shape CD8+ T cell behaviour in lesion formation/pro-
gression.

Overall, our data suggested that a deranged immune-regulation,
combined with enhanced pro-inflammatory responses, might char-
acterize obese adult Labrador Retrievers in the absence of clinical and
metabolic alterations. It is of note that immune-dysregulation occur-
rence could highlight an increased risk to develop cardiovascular dis-
ease and metabolic complications related to increased body weight. In
this regard, a limit of our study is the absence of a prospective clinical
evaluation to support the prognostic relevance of immune derangement
in obese Labrador Retrievers. Future clinical studies and/or diet re-
gimen approaches could be useful to ascertain the relation between
obesity, the occurrence of inflammatory conditions and cardiovascular
and metabolic complications in dogs.

In conclusion, these results may represent new insights into the
immunological dysregulation frequently associated to obesity in hu-
mans and still undefined in dogs.
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ABSTRACT: Antibiotics are widely used in zoo tech-
nical and veterinary practices as feed supplementation
to ensure wellness of farmed animals and livestock.
Several evidences have been suggesting both the toxic
role for tetracyclines, particularly for oxytetracycline
(OTC). This potential toxicity appears of great rele-
vance for human nutrition and for domestic animals.
This study aimed to extend the evaluation of such tox-
icity. The biologic impact of the drug was assessed by
evaluating the proinflammatory effect of OTC and their
bone residues on cytokine secretion by in vitro human
peripheral blood lymphocytes. Our results showed that
both OTC and OTC-bone residues significantly in-
duced the T lymphocyte and non-T cell secretion of in-
terferon (IFN)-γ , as cytokine involved in inflammatory
responses in humans as well as in animals. These re-
sults may suggest a possible implication for new poten-
tial human and animal health risks depending on the
entry of tetracyclines in the food-processing chain. C©
2015 The Authors Journal of Biochemical and Molecular
Toxicology Published Wiley Periodicals, Inc. J. Biochem.
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INTRODUCTION

The use of antibiotics in the agro-food industry is
a relevant concern [1]. They have been still employed
as growth promoters in livestock, aquaculture, and
pesticides [1–3]. The topic is relevant considering the
potential toxic risk derived by the entry/accumulation
of antibiotics in animal feed and human food with
consequences on health [4].

The use of antibiotics for growth promotion is
prohibited in Europe, whereas the United States and
Canada still allow use of antibiotics in agriculture
for nontherapeutic purposes [5]. New regulations
from the Food and Drug Administration (FDA) are
endeavoring to reduce antibiotic contaminants in
foods [6, 7]. Although allergic reactions are rarely
related to antibiotics, meats and fruit induced by
antibiotic residues have been reported in the literature
[1, 8]. The occurrence of antibiotic toxic effects has
negative consequences on the gastrointestinal tract,
skin, central nervous system, and even accumulating
in calcium-rich organs such as bones and teeth [9–11].
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Food intolerance has described in gym subjects due
to intake of meat derived from administration of
animals-fed tetracycline [12]. Several models have
already been proposed to demonstrate cytotoxic effects
of tetracyclines [13–15]. To the best of our knowledge,
the possible interplay between tetracyclines, in
particular the oxytetracycline (OTC), and immune
system is still lacking and not sufficiently addressed
to rule out the possible toxicity to human and animal
health.

In this regard, the immune system acquires a new
pivotal role in modulating toxicological mechanisms
that could be triggered by tetracyclines derived by
ingested food. Immunity, which has the fundamental
role to protect and defend the organism from the
disease [16–18], is also involved in the homeostasis
and health maintenance against autoimmunity dis-
eases and tumors [17]. The exacerbation of cytotoxic
CD8+ T lymphocytes [18] and CD4+ T Helper 1
(TH1) [19] responses were associated with inflam-
matory diseases and autoimmunity disorders [20].
TH1 activity is mainly based on the production of
interferon-gamma (IFN)-γ , which optimizes the an-
timicrobial responses and fosters CD8+ T lymphocyte
activity, and also appears to play a fundamental role
in triggering autoimmune responses [21–29]. Natural
killer (NK)-dependent secretion of IFN-γ is relevant
to autoimmunity [30–33], allergy [34], and could
have a pathogenetic role in gastrointestinal [35] and
hematological disorders [36, 37]. TH2 response is based
on several cytokines including interleukin (IL)-4 that
results in the activation of humoral immunity [21].

It is worth noting that several extrinsic factors,
such as drugs and chemicals, can induce the devel-
opment of autoimmune conditions [38–43].

Moreover, the use of these drugs to treat in-
flammatory conditions is still not conclusive and, in
some way, controversial as well as the abuse of some
veterinary drugs, including tetracyclines, which have
a global impact on the environment that could be of
great relevance [[44]–[50]].

OTC represents the main drug used to control gas-
trointestinal and respiratory diseases in broiler chick-
ens [51], although its accumulation has been described
in chicken edible tissues [52]. As a consequence, the
European Union established the maximum residue
level of OTC in poultry meat [53] to limit drug
residues and to preserve health of final consumers
that are mainly represented by domestic animals and
humans.

Based on a previous study on the toxicity of
OTC [54], we investigated the potential toxic effect
of OTC in an in vitro human lymphocyte model. In
particular, we addressed the potential induction of
IFN-γ production caused by the in vitro exposure of

human T and non-T lymphocytes to OTC or to chicken
bone-derived residues.

MATERIALS AND METHODS

Cells

Peripheral blood samples from healthy donor
volunteers were collected by vein puncture according
to standard procedures and used within the 3 h
from the collection. Informed consent was obtained
in accordance with the Declaration of Helsinki, as
approved within the study protocol by the Institutional
Review Board at the Federico II University of Naples.
Peripheral blood mononuclear cells (PBMC) were
used as mixed population of T (CD3+) and non-T
(CD3–) (the latter are mainly represented by NK
cells) lymphocytes [17, 18]. Identification of cell sub-
populations was performed by immune-fluorescence
and flow cytometry (see paragraph 2.4, Monoclonal
Antibodies, Flow Cytometry, Detection of Intracellular
IFN-γ , and IL-4 Productions). PBMC were isolated by
centrifugation on Lymphoprep (Nycomed Pharma)
gradients, as described [35].

OTC and the Conditioned Cell Medium

To test the potential toxic role of OTC (Oxyte-
tracycline 20%

R©
, TreI, Reggio Emilia, Italy) and OTC

bone residues, two different conditioned cell culture
mediums (CCM) were used, as previously described
[54]. Briefly, to obtain CCM, 10 mL of a RPMI 1640 cell
culture medium was incubated and constantly shaken
for 48 h at 37°C with 1 g of ground bone (sterilized by
autoclaving at 121°C in a steam pressure of 2 atm for
10 min) from chickens reared in the presence (OTC-
CCM) or in the absence (C-CCM) of treatments with
OTC [54]. After incubation, the CCMs were recovered
and filtered through 0.20 μm syringe filters (Sartorius
Stedim Biotech, Goettingen, Germany) to remove
any residual ground bone particles and microbial
contamination.

Apoptosis Detection

Apoptosis detection was performed as previously
described [54]. Briefly, OTC- CCM and C-CCM were
used at the dilution of 1:4 with an absolute RPMI 1640
growth medium, and the resulting mixtures were incu-
bated with 5 × 105 PBMC/mL for 10 or 48 h at 37°C and
5% CO2 in a cell incubator (Thermo Scientific Heraeus).
The effect of OTC alone was evaluated by incubating
the drug (1 μg/ mL), as described above.

Apoptosis was assessed by staining of the
cell membrane-exposed phosphatidylserine with

J Biochem Molecular Toxicology DOI 10.1002/jbt
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fluorescein isothiocyanate-conjugated (FITC) Annexin
V, according to the manufacturer’s instructions (Becton
Dickinson PharMingen, San Jose, CA) and as previ-
ously described [55]. Samples were analyzed by means
of flow cytometry, using a two laser-equipped FAC-
SCalibur (Becton Dickinson PharMingen, San Jose,
CA), and the CellQuest Analysis Software. The FACS
analysis was based on the percentage of Annexin V-
positive cells to have a measurement of the cells under-
going apoptosis.

Monoclonal Antibodies, Flow Cytometry,
Detection of Intracellular IFN-γ , and IL-4
Productions

FITC, PE, Cychrome, and APC labeled mAbs
against CD3, CD8, CD4, IFN-γ , IL-4, and isotype-
matched controls (Becton Dickinson PharMingen, San
Jose, CA) were used to identify the CD8+ T cytotoxic,
CD4+ TH lymphocytes, or CD3– non-T cells.

To analyze the production of IFN-γ and IL-4, pu-
rified PBMC were cultured overnight (10–12 h) in the
presence of phorbol-12-myristate-13-acetate (PMA) and
ionomycin (Sigma). To avoid extracellular cytokine ex-
port, the cultures were performed in the presence of
5 μg/mL of Brefeldin-A (Sigma-Aldrich) as described
[56].

Intracellular IFN-γ and IL-4 production was
detected by using a triple staining technique and flow
cytometry analysis. Briefly, after the incubation the
culture was harvested, the cells were fixed and per-
meabilized by using a cytokine staining kit, following
the manufacturer’s instructions (Caltag Laboratories,
Burlingame, CA). Samples were analyzed by flow
cytometry (see description in the Apoptosis Detection
section).

Statistical Analysis

Data were analyzed using GraphPad Prism 6
software (GraphPad Software, La Jolla, CA). All data
are presented as the means ± standard error of the
mean and were first checked for normality using
the D’Agostino-Pearson normality test. The analysis
pertaining to the proinflammatory effect was analyzed
using the Kruskal–Wallis test followed by Dunn’s
multiple comparisons test. p < 0.05 was considered
significant. Statistical analysis was specifically per-
formed to evidence differences within the pairs of
comparison (OTC vs. ctr, OTC-CCM vs. ctr, C-CCM
vs. ctr, as indicated in the Figures 1 and 3).

RESULTS

The Toxic Effect of OTC and Their Residues
from Bone as Induction of Apoptotic
Phenomenon in PBMC

According to previous data [56], the OTC was able
to induce the apoptosis in PBMC after 48 h of incubation
(Figure 1, panel A). A similar effect was obtained using
the OTC-CCM, whereas no results were obtained with
C-CCM (Figure 1).

Note that the incubation with OTC or with OTC-
CCM did not exert significant apoptosis phenomenon
in PBMC after an incubation of approximately 10–12 h
(Figure 2).

These results significantly confirmed the toxicity
of OTC and of their residues in bone (OTC-CCM) and
also evidenced the difference between the early (10-
12 h) and late (48 h) exposure to this drug. Such data
allowed to identify the range of time (10-12 h), in which
the cells do not undergo OTC-dependent apoptosis,
to perform experiments of cytokine secretion (see the
Materials and Methods section).

The Proinflammatory Toxic Effect of OTC
and Their Residues from Bone as
Significantly Increasing IFN-γ Production
in T Lymphocytes as well as in Non-T Cells

In the light of the described observation (see the
preceding paragraph), we evaluated the other pos-
sible alterations caused in human lymphocytes after
the exposure to OTC [54]. With this aim, we focused
on the IFN-γ production, as the main proinflamma-
tory cytokine is able to foster the TH1 and T cytotox-
icity immune-responses as well as to be involved in
several etiopathogenetic mechanisms on the basis of
inflammatory-mediated disease [19].

Since the evaluation in vitro of IFN-γ production
by T and non-T lymphocytes is usually performed in
short time (8–18 h) to obtain an optimal functional cy-
tokine secretion [56] and we demonstrated that after
10 h the apoptosis was not induced (Figure 1, panel B),
we incubated human PBMC with OTC and OTC-CCM
for 10 h to avoid this phenomenon. Indeed, the good
viability of lymphocytes is crucial for the induction of
cytokine production functions.

As shown, the incubation with OTC and
OTC-CCM was able to significantly increase
the IFN-γ production in CD4+ TH cells (R1 in
Figure 2 and panel A in Figure 3) and CD8+ lympho-
cytes (R2 in Figure 2 and panel B in Figure 3) as well
as in non-T cells (R3 in Figure 2 and panel C in Figure
3). The cytokine was slightly detectable at the dilution
1:8 and 1:16 of OTC-CCM (data not shown), whereas
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FIGURE 1. Apoptosis induction measured as a percentage of PBMC positive for the FITC-Annexin binding. The graph bar columns represent
the mean values of the percentage of PBMC undergoing apoptosis in the performed experiments (n = 4). The different cell incubations and
conditioned cell culture medium dilutions are indicated on the x-axis. The abbreviations indicate the growth medium with the addition of
a conditioned cell culture medium (CCM) obtained from the ground bone of chickens reared in the presence (OTC-CCM) or in the absence
(C-CCM) of a treatment with OTC, a growth medium with the addition of 1 μg/ mL of OTC alone. The bar column depicted as “ctr” indicates
the incubation in the growth medium with Annexin V staining, which has been used as a control of the apoptosis that occurs in the cells when
in a culture without any other incubation is maintained. The statistical significance is indicated with asterisk(s): *p < 0.05, **p < 0.01, and
***p < 0.001.

the dilution of 1:2 appeared to induce high level of
apoptosis [56].

In the same cytokine production test, the incuba-
tion of PBMC from 12 to 18–24 h resulted in a very
poor cell viability (data not shown) likely dependent
on the here described proapoptotic effect of OTC and
on Brefeldin A exposure used to allow the cytokine
intracellular retention for the measurement (see the
Materials and Methods section)

It is worth noting that C-CCM incubation did not
produce a cytokine increase, while appeared to reduce
IFN-γ production. Although we did not investigated
this phenomenon, we do not exclude that some sub-
stances present in the bone (i.e., cytokines derived from
osteoblasts or fibroblasts) may have an inhibitory role
on the cytokine secretion. However, the difference in
effects between OTC-CCM and C-CCM highlights the
specificity of OTC action since the used chickens were
of the same type and the only difference was the OTC
administration [54].

The basal IL-4 production was only slightly de-
tectable in T and non-T lymphocytes, as expected in
PBMC from healthy donors after exposure to PMA and
ionomycin [56] and was not modulated after 10 h of
OTC or CCM incubations (data not shown).

DISCUSSION

In this article, we suggest that an antibiotic, the
OTC, is able to determine the in vitro toxic effects. Data

acquire great relevance especially in light of the wide
use of OTC in animal breeding.

The OTC or the OTC-conditioned culture medium,
obtained with the incubation of ground bone from
OTC-treated chickens, appeared to generate the in vitro
toxic effect of cell death by apoptosis in human cells
[56].

Here, we suggest that the toxicity of OTC may
also be extended to the induction of a proinflammatory
microenvironment potentially responsible for initiation
of tissue inflammatory spreading [21] or of autoim-
mune diseases [59].

In this regard, besides the ability to induce mortal-
ity of both the T lymphocytes and non-T cells in an in
vitro system for incubation with OTC for 48 h, the drug
potently promotes the production of proinflammatory
cytokines in the first 10–12 h of cell exposure. Specif-
ically, human lymphocytes increase their production
of IFN-γ when exposed to the OTC or to the condi-
tioned culture media with the bone of chickens treated
with such drug as usually happens in livestock com-
mon breeding [51]. In our in vitro model, both the in-
nate (non-T cells that are mainly represented by NK
lymphocytes) and acquired (CD8+ and CD4+ lympho-
cytes) immunity [17, 18] appeared to be involved in this
process and to suffer the OTC-dependent toxicity.

In this context, it is known that IFN-γ represents
the main cytokine involved in the immune response
[19], as well as a crucial element in the onset of im-
paired tissue homeostasis conditions, typically related
to autoimmunity or chronic inflammation [23–31].
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FIGURE 2. One representative experiment showing the IFN-γ production in CD4+ and CD8+ T lymphocytes and in non-T cells. Cytokine
production was evaluated as the percentage of IFN-γ producing cells. Panel A refers to fluorescence gating strategy to identify the CD4+
T lymphocytes (CD3+ CD8–, cells in R1), CD8+ T lymphocytes (CD3+ CD8+ cells in R2) and the non-T cells (CD3– cells in R3). B panels
represent the percentage of IFN-γ producing CD4 T (R1), CD8 T (R2), and non-T (R3) cells. The different cell incubations and conditioned cell
culture medium dilutions are indicated on the top. The abbreviations indicate the growth medium with the addition of a conditioned cell culture
medium (CCM) obtained from the ground bone of chickens reared in the presence (OTC-CCM) or in the absence (C-CCM) of an OTC treatment,
a growth medium with the addition of 1 μg/ mL of OTC alone. The condition indicates as “ctr” refers to basal IFN-γ production. All the cell
cultures (ctr, OTC alone, OTC-CCM and C-CCM) were maintained in a growth medium added with PMA and ionomycin to induce cytokine
production (see the Materials and Methods section).

A number of workers [46–52] have suggested that
OTC would likely to represent a toxic compound and
could be harmful to human health and animals that can
eat meat derived from chikens by intensive livestock.

In addition, the induction of cell mortality could
generate an altered tissue condition, as well as a rel-
evant impact on tissue homeostasis [57, 58] and the
emergence of autoimmune reactions [59–63].

Both pets and humans could take this antibiotic as
a residue from meat or in meat-derived products and
might likely suffer the OTC-dependent toxicity. In this
respect, it is interesting that, over the past 20 years,
there has been an exacerbation of the emergence of
immune-mediated diseases (such as allergies, autoim-
mune reactions, and disorders of the gastrointestinal
tract and the skin) in domestic animals [64–67] and hu-
mans [68, 69]. Moreover, it is surprising that the drastic
increase of antibiotics resistance phenomena is partly
due to the widespread and uncontrolled use of drugs
in breeding [7, 70–74]. We previously correlated the use

of specific meats to the occurrence of these pathologies
in humans [12].

This unusual increase is probably dependent on
a complex set of multifactor events related to new
life habits of humans and pets, as well as to the in-
creasingly introduction of industrialized diets. Hence,
the needing to change the approach to livestock by
promoting sustainable breeding avoiding overcrowd-
ing and by reducing antibiotics favoring the use of
alternative treatments. Unfortunately, the use of sev-
eral drugs can promote development of autoimmu-
nity [38–43].

In conclusion, a special attention is probably
needed on nutrition for large mass since it might ex-
pose humans and pets to increased risk of disease.

STUDY LIMITATIONS

Notably, this research has some study limitations.
In this regard, the absence of in vivo experiments, able

J Biochem Molecular Toxicology DOI 10.1002/jbt



Volume 30, Number 4, 2016 OXYTETRACYCLINE TOXICITY IN LYMPHOCYTES 175

FIGURE 3. Statistical analysis of the all experiments (n = 10) showing the IFN-γ production in CD4+ and CD8+ T lymphocytes and in non-T
cells. Cytokine production was evaluated as the percentage of IFN-γ producing cells. The bar column graphs represent the mean values of
the percentage of IFN-γ producing cells. The different cell incubations and conditioned cell culture medium dilutions are indicated on the x
axis. The abbreviations indicate the growth medium with the addition of a conditioned cell culture medium (CCM) obtained from the ground
bone of chickens reared in the presence (OTC-CCM) or in the absence (C-CCM) of an OTC treatment, a growth medium with the addition of
1 μg/ mL of OTC alone. The condition indicates as “ctr” refers to basal IFN-γ production. All the cell cultures (ctr, OTC alone, OTC-CCM and
C-CCM) were maintained in a growth medium added with PMA and Ionomycin to induce cytokine production (see materials and methods).
Panels A, B, and C show IFN-γ production in CD4+ T lymphocytes, CD8+ T lymphocytes and in non-T cells, respectively. The statistical
significance is indicated with asterisk(s): *p < 0.05, **p < 0.01, and ***p < 0.001.

to verify the in vitro observed OTC toxicity, represents
the main relevant limitation. Therefore, clinical studies
are required to ascertain the in vivo effect of the drug
in inducing the inflammatory status in animals and/or
in humans.

In addition, the use of CCM obtained by incubation
with bones from chickens reared in the presence of OTC
did not directly demonstrate that the cell toxicity is due
to bone’s drug residues and did not ruled out that other
substances could have a role.
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Abstract

Background: Canine keratoconjunctivitis sicca (cKCS) is an inflammatory eye condition related to a deficiency in the
tear aqueous fraction. Etiopathogenesis of such disease is substantially multifactorial, combining the individual genetic
background with environmental factors that contribute to the process of immunological tolerance disruption and, as a
consequence, to the emergence of autoimmunity disease. In this occurrence, it is of relevance the role of the
physiological immune-dysregulation that results in immune-mediated processes at the basis of cKCS. Current
therapies for this ocular disease rely on immunosuppressive treatments. Clinical response to treatment frequently
varies from poor to good, depending on the clinical-pathological status of eyes at diagnosis and on individual
response to therapy. In the light of the variability of clinical response to therapies, we evaluated the use of an anti-
inflammatory/antioxidant nutraceutical diet with potential immune-modulating activity as a therapeutical adjuvant in
cKCS pharmacological treatment. Such combination was administered to a cohort of dogs affected by cKCS in which
the only immunosuppressive treatment resulted poorly responsive or ineffective in controlling the ocular symptoms.

Results: Fifty dogs of different breeds affected by immune-mediated cKCS were equally distributed and randomly
assigned to receive either a standard diet (control, n = 25) or the nutraceutical diet (treatment group, n = 25) both
combined with standard immunosuppressive therapy over a 60 days period. An overall significant improvement
of all clinical parameters (tear production, conjunctival inflammation, corneal keratinization, corneal pigment
density and mucus discharge) and the lack of food-related adverse reactions were observed in the treatment
group (p < 0.0001).

Conclusions: Our results showed that the association of traditional immune-suppressive therapy with the antioxidant/
anti-inflammatory properties of the nutraceutical diet resulted in a significant amelioration of clinical signs and
symptoms in cKCS. The beneficial effects, likely due to the presence of supplemented nutraceuticals in the diet,
appeared to specifically reduce the immune-mediated ocular symptoms in those cKCS-affected dogs that were poorly
responsive or unresponsive to classical immunosuppressive drugs. These data suggest that metabolic changes could
affect the immune response orchestration in a model of immune-mediated ocular disease, as represented by cKCS.
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Background
Keratoconjunctivitis sicca, also defined as “dry eye disease”
or Sjögren’s syndrome in human [1], is a tear film disorder
which causes inter-palpebral ocular surface damage and is
associated with ocular discomfort [2, 3] both in humans
and dogs [4, 5]. Canine keratoconjunctivitis sicca (cKCS)
is an inflammatory eye condition which affects both cor-
nea and conjunctiva and that is related to a deficiency in
tear aqueous fraction [6]. The prevalence of such disease
is estimated in about 4% when considering Schirmer
test I (STT) values < 10 mm/min [7] reaching the 64%
in male crossbred dogs between six to nine years of age
[8]. Moreover, it is often an under-recognized and/or a
sub-clinical condition [9] which, in some breeds, is pre-
ceded by an immune-mediated destruction of lachrymal
glands [10, 11].
In this regard, the immune-mediated mechanisms of

cKCS or of human, like the Sjögren’s syndrome [1] in-
duction are not clearly defined. Etiopathogenesis of such
disease is substantially multifactorial, combining the in-
dividual genetic background with environmental factors
that contribute to the process of immunological toler-
ance disruption and, as consequence, to the autoimmun-
ity processes [12–14]. It is of relevance the role of the
physiologic immune-dysregulation that results in the
autoimmune process of cKCS and Sjögren’s syndrome
[12–15]. Notably, the T and B cell infiltration, the recruit-
ment of dendritic cells, the up regulation of those mole-
cules fostering the antigen presentation as well as the
increased secretion of pro-inflammatory cytokines, such as
interferon (IFN)-γ [16], in ocular tissues have been demon-
strated to contribute to the inflammatory alterations of the
lachrymal gland [17–19]. This process usually results in
mucopurulent-like eye discharge, conjunctival hyperemia,
keratitis, corneal pigmentation, neovascularization and
blepharospasm in cKCS [20, 21].
Current therapies for this ocular disease rely on

immune-suppressive treatments, represented by Cyclo-
sporine A [22], glucorticoid [21], tacrolimus [23] and
artificial tears in order to recover an adequate eye’s lu-
brication [24]. Nevertheless, recognized complementary
or alternative therapeutical approaches are represented
by the cholinergic agents (pilocarpine) [25] and the sur-
gical treatments (punctal occlusion, tarsorrhaphy, con-
junctival flaps, contact lenses, superficial keratectomy, as
well as parotid duct transposition) [26]. Clinical response
to treatment frequently varies from poor to good, de-
pending on the clinical-pathological status of eyes at
diagnosis and on individual response to therapy [13].
Among other causes of cKCS traumas [27], congenital
causes [28], distemper [29], radiation therapy [30, 31],
neurological deficit [32], diabetes mellitus [33] and un-
corrected prolapse of the nictitans gland [34] are of note.
Intriguingly, majority of these aspects could correlate

and contribute to both the determinism and exacerba-
tion of inflammatory condition in ocular tissue.
In the light of the variability of clinical response to clas-

sical therapies, it could be useful the use of therapeutical
adjuvants in cKCS management to improve the response
to pharmacological treatment. Thus, we evaluated a com-
bined therapeutical approach based on the classical drug
administration and the use of an anti-inflammatory/anti-
oxidant diet with potential immune-modulating activity.
Such combination was administered to a cohort of cKCS
dogs in which the only immune-suppressive treatment
resulted poorly responsive or ineffective to control the
ocular symptoms.
The nutraceutical diet used in this clinical evaluation

consisted in a commercial mixed formula based on fish
proteins, rice carbohydrates (whose carbohydrates per-
centage ranges from 75 up to 80, starch 65 to 70% with
a beta-glucans quote of less than 0.1%), Cucumis melo,
Ascophyllum nodosum, Astaxanthin (from Hematococcus
pluvialis), Aloe vera, Carica papaya, Punica granatum,
Camellia sinensis, Polygonum cuspidatum, Curcuma
longa, Piper nigrum, zinc and a Omega3/6 ratio of 1:0.8),
which already provided significant immunomodulating
results, decreasing type 1 helper T lymphocyte (Th1)
cells and increasing T regulatory (Treg) cells, in dogs
affected by Leishmania infantum [35].
Cucumis melo (melon) shares some anti-oxidant and

anti-inflammatory properties that involve the superoxide/
peroxynitrite clearance and the modulation of macropha-
gal interleukin-10 production [36], while the immune-
modulating activity is exerted by the induction of type 1
helper T lymphocyte (Th1) polarization [37].
The Ascophyllum nodosum activity is related to the

presence of a sulfated-polysaccharide, ascophyllan, able
to induce nitric oxide, tumor necrosis factor (TNF)-α
and granulocyte colony-stimulating factor (GM-CSF) se-
cretion in macrophages [38]. Astaxanthin, an orange-
pinkish carotenoid, is known to act on polyunsaturated
fatty acids oxidation [39], inflammatory responses modu-
lation, and to promote eye’s health in humans and animals
[40]. This carotenoid induces lymphoblastogenesis and
lymphocyte cytotoxicity in mice [41] as well as T-cell and
B lymphocyte proliferation and natural killer cytotoxicity
in humans [42]. Reduced production of Interleukin (IL)-
1β, IL-6, TNF-α and IL-10 has been observed in vitro after
the addition of Aloe vera (aloe) extracts to the culture of
corneal cells [43]. The anti-inflammatory effect of Carica
papaya (papaya) is related to an increase of regulatory T
cells and a reduction of IFN-γ+ CD4+ T cells [44]. Reduc-
tion of IL-2 and IL-4 and enhancement of IL-12, inter-
feron (IFN)-γ and TNF-α have been observed in blood
mononuclear cells [45]. The seed oil and juice of Punica
granatum (pomegranate) contains some flavonoids and
anthocyanidins (delphinidin, cyaniding and pelargonidin)
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with an antioxidant activity greater than green tea extract
[46, 47]. Its antioxidant action is related to free radical
scavenging by anthocyanidins [46] and to metal ions che-
lation [48]. A protective effects of Punica granatum on
cardiovascular system has been correlated to angiotensin
converting enzyme inhibition, blood pressure decrease
[49] and endothelial nitric oxide syntase production [50].
Punica granatum also has been shown to inhibit cyclo-
oxygenase, lipooxygenase [51] and IL-1β, modulate
matrix metallo-proteinases in osteoarthritis, prevent
collagen degradation [52], inhibit the p38-mitogen-
activated protein kinase pathway and nuclear factor
kappa (NF-kB) light-chain-enhancer in B cells [53, 54],
and decrease malondialdehyde, TNF-α, IL-1β and IL-6
[55, 56].
The antioxidant effects of Camellia sinensis (green

tea) are exerted through radicals scavenging and lipid-
peroxidation inhibition [57] by flavonoids (catechin, epi-
catechin, epigallocatechin and gallate esters) [58]. In this
context, epigallocatechin-3-gallate is known to inhibit
UVB-mediated erythema, hydrogen peroxide production,
leukocyte infiltration [59], matrix metallo-proteinases
[60, 61], neutrophil chemotaxis [62], degradation of car-
tilage [63], TNF-α expression [64], neutrophil-mediated
angiogenesis [62] and reduce the cyclooxygenase-2 and
neutral endopeptidase activity [65]. Polygonum cuspida-
tum (japanese knotweed), a natural source of resveratrol,
is endowed with anti-inflammatory and antioxidant ac-
tivities [66, 67]. Resveratrol has been shown to directly
act on TANK-binding kinase 1, an integral component
in chronic inflammatory diseases [68], and on arteries by
activating the nitric oxide/soluble guanylyl cyclase path-
way [69]. Its anti-inflammatory effect is supposed to be
regulated by estrogen receptor-α [70]. Moreover, certain
resveratrol dimers (parthenocissin A, quadrangularin A
and pallidol) exert free radical quenching and, select-
ively, single oxygen scavenging activity [71]. Curcuma
longa (curcuma) induces powerful free radicals scavenging
effect and anti-inflammatory activity [72, 73]. Curcumin,
one of the constituents of such plant, reduces leukocyte
adhesion and superoxide production, stimulates spontan-
eous apoptosis and inhibits IL-8 [74].
Moreover, a down regulation of Th1 cytokine response

and of macrophagal nitric oxide production has also
been observed [75]. The anti-inflammatory effect of cur-
cumin involves the inhibition of NF-kB in activated B
cells and the down-regulation of TNF-α and IL-6 [73] as
well as the up-regulation of nuclear factor erythroid 2
activity [76], whose downstream proteins are involved in
the protection mechanisms against oxidative stress [77].
Piper nigrum (pepper) commonly used in the treatment
of flu, cold, rheumatism, pain, muscular aches, chills, ex-
haustion, fevers, is used as a useful nerve tonic also able
to increase blood circulation and saliva production as

well as to stimulate appetite and peristalsis [78]. It is also
known to enhance the effectiveness and bioavailability of
curcumin [79] by acting on membrane lipid dynamics in
reason of the apolar nature of piperine, the main bio-
active compound of Piper nigrum. Piperine has been
shown to promote conformational changes of intestine
enzymes [80] and significantly inhibit the expression of
major histocompatibility complex class II, CD40 and
CD86 in bone-marrow-derived dendritic cells as well as
the production of TNF-α and IL-12 by the same cells
[81]. In addition, piperine was proven to attenuate in-
flammatory processes by partially acting on pituitary ad-
renal axis [82], reduce high-fat diet-induced oxidative
stress [83, 84] and enhance pancreatic activity [85]. The
deficiency of zinc affects both innate and adaptive
immunity [86]. This element is crucial for the balance
between the different T-cell subsets and its deficiency
was shown to decrease the production of Th1 cytokines
(IFN-γ, IL-2 and TNF-α), whereas the Th2 response (IL-
4, IL-6 and IL-10) is affected in a lesser extent [87].
While acute zinc deficiency seems to correlate with the
decrease in innate and adaptive immunity, its chronic
deficiency is known to increase pro-inflammatory cyto-
kines (IL-1β, IL-6 and TNF-α) production influencing
the outcome of several inflammatory diseases [88].
An optimal balance of the omega Omega 3/6 fatty

acids ratio represents a fundamental requirement for
tissue homeostasis recovering during inflammatory re-
sponses. The polyunsaturated fatty acids, usually found
in fish oil (i.e., eicosapentaenoic acid and docosahexae-
noic acids), are known to decrease proinflammatory
cytokine production and to inhibit natural killer cell activ-
ity [89]. The gamma-linolenic acid has been demonstrated
to exert an anti-inflammatory activity by suppressing
IL-1β and TNF-α secretion by monocytes [90]. Add-
itionally, eicosapentaenoic supplementation might fos-
ter the anti-inflammatory activity of gamma-linolenic
acid by decreasing the synthesis of arachidonic acid
and prostaglandin E2 [91].
Here, we evaluated the use of a commercially avail-

able nutraceutical diet as a therapeutical adjuvant in
cKCS-affected dogs that were unresponsive to standard
pharmacological therapies.

Methods
Experimental design, dogs and diets
This evaluation was designed as a randomized, placebo-
controlled clinical one. Fifty client-owned dogs (19 fe-
males and 31 males) aged 6.5 ± 0.7 years [mean ± Standard
Error of Mean] of different breeds (one poodle, two dachs-
hund long hair, four dachshund smooth coat, four west
highland white terrier, two yorkshire terrier, four maltese,
one bulldog, two chinese crested dog, two chinese pug,
eight shih tzu, four german shepherd, 10 mixed breed,
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two chow chow, two cocker, two english setter) were
enrolled in this evaluation. All dogs were previously
evaluated by an Italian Animal Health Foundation cer-
tified panelist (Dr D. Giretto) to confirm the diagnosis
of immune-mediated KCS. Inclusion criteria were the
presence of blepharospasm, conjunctival inflammation,
corneal keratinization, corneal pigmentation density,
neovascularization, mucus discharge and a STT value
< 10 mm/min. Exclusion criteria were the presence of
correlated systemic diseases, neurological disease, trau-
matic and toxic keratoconjunctivitis, in order to better
evaluate the clinical response to the immune-mediated
cKCS, or general symptoms of intolerance/allergy to
ingredients of the nutraceutical diet tested in this clinical
evaluation. Moreover subjects affected by neurological
cKCS were excluded.
Dogs were randomly and equally divided into two

groups: 25 dogs fed a standard diet (SD group), as control
group, and 25 fed an antioxidant/anti-inflammatory nutra-
ceutical diet (ND group), as experimental group. Male and
female dogs were equally represented in both groups. Re-
gardless the type of diet, all dogs were treated over a
60 days period as follows: [0,03% Tacrolimus collyrium di-
luted into a benzalkonium chloride and methyl cellulose
solution (Lacrimart, Fedel Farma S.r.l., Chieti, Italy) BID
and 0,2% Hyalistil eye drops (artificial tears, S.I.F.I. S.p.A.
Aci S. Antonio, Catania, Italy) five times a day] ([http://
eng.forza10.com/immuno-active-755-2.html]).
The recommendations of the ARRIVE guidelines in

animal research were consulted and considered [92].
In Table 1, we reported the background data of the

dogs belonging to both groups along with their scores
before starting the evaluation.
Both diets completely fulfil the recommendations for

proteins, carbohydrates and fats in order to obtain a
complete food for a daily ration in dog, as reported in
Nutritional Guidelines for complete and complementary
pet food for cats and dogs by The European Pet Food
Industry Federation. Foods were in the form of kibbles
industrially produced with extrusion technique. ND and
SD foods reported similar analytical composition in
nutrients (24% of crude protein, 12% of crude oils and
fats, 3.7%, of crude fiber 5% of crude ash, 9% of mois-
ture). Both diets had analogue recipes and included the
same macro and micro nutrients including vitamins,
trace elements and minerals. The two foods differed
mainly from the presence of botanicals in ND food. ND

food was composed by two mixed components: kibbles,
included in the ideal percentage of 93-94% in weight,
and cold-pressed tablets at the 6-7% in weight of
complete food (European patent n. EP 2526781). Tablets
were composed by 60-80% of protein hydrolyzed (fish
and vegetable ones), 20-40% of minerals used as glidants
and were added by therapeutical substances (Ascophyl-
lum nodosum, Cucumis melo, Carica papaya, Aloe vera,
Astaxanthin from Haematococcus pluvialis, Curcuma
longa, Camellia sinensis, Punica granatum, Piper
nigrum, Poligonum spp, Echinacea purpurea, Grifola
frondosa, Glycine max, Omega 3 and Omega 6 un-
saturated fatty acids from fish, as 1.60% and 1.25% of oil
respectively).
The pet food used in SD group did not contain the

above-mentioned active substances.
ND and SD dietary administration were administrated

following a daily table recommendation (Table 2) and
carefully adjusted during the trial to provide similar cal-
oric animal food intake and to satisfy the nutritional re-
quirement of adult dogs. In order to avoid any
deficiency, the energy value of both complete food was
calculated using the expression suggested by Nutritional
Guidelines for Complete and Complementary Pet Food
for Cats and Dogs and Nutrient requirements of dogs
and cats, National research council of the National acad-
emies, (% crude protein x 3.5 + % crude fat x 8.5 + %
NFE (Nitrogen-free extract) × 3.5). The correct dosage
was calculated using another expression 110 kcal ME*kg
bw0.75 (Nutritional Guidelines for Complete and Com-
plementary Pet Food for Cats and Dogs and Nutrient re-
quirements of dogs and cats, National research council
of the National accademies). The constant 110 is re-
ferred to the energy requested by a dog with normal
physical activity. At the enrollment, each animal was
weighed and the suggested daily ratio calculated. The
Veterinarians clearly informed the owners about the cor-
rect dosage to be provided. Moreover the average of
daily administered botanicals was calculated considering
the ratio given to the dogs, related to the amount de-
clared by the manufacturer. Table 3 highlights the aver-
age amount, in terms of mg/kg, of botanicals estimated
according to the mean weight.

Ophthalmologic examination
Each dog was evaluated on day 0,15, 30, and 60 of the
evaluation by an independent observer (SD, DG, CM).

Table 1 Background data of enrolled dogs

Group Mean age
(years ± SEM)

Mean weight
(Kg ± SEM)

STT value
(mm± SEM)

Corneal pigment density
score (0-3 ± SEM)

Conjunctival inflammation
score (0-3 ± SEM)

Mucus discharge
score (0-3 ± SEM)

Corneal keratinization
score (0-2 ± SEM)

Control 6.03 ± 0.15 13.04 ± 1.12 4.3 ± 0.5 1.0 ± 0.1 2.1 ± 0.1 1.7 ± 0.1 1.5 ± 0.1

Treatment 6.1 ± 0.17 12.01 ± 1.17 4.7 ± 0.4 0.9 ± 0.1 2.1 ± 0.1 1.8 ± 0.1 1.5 ± 0.1
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Each dog underwent a complete ophthalmological exam-
ination by three board-certified veterinary ophthalmolo-
gists (Dr. M.C. Muscolo and Dr. S. De Stefanis are
board-certified by the D’Ophtalmologie ENV Alfor; Dr.
D. Giretto is board-certified by Certificat d’Etudes
Superieur en Ophtalmologie ENV Toulouse and is an
Italian Animal Health Foundation board member).
Ophthalmic examinations included, slit-lamp biomi-

croscopy (Kowa Optimed Inc SL-14 Slit Lamp, Kowa
Optimed, Europe Ltd, Berkshire, UK), funduscopic exam-
ination (Heine Omega 180 Binocular Indirect Ophthalmo-
scope, HEINE Optotechnik, Herrsching, Germany),
applanation tonometry (Tono-Pen® Vet, Reichert Tech-
nologies, Depew, NY, USA) preceded by an ocular applica-
tion of oxybuprocaine hydrochloride 0.4% (Novesina
Novartis Farma S.p.A, Origgio (VA), Italy) in order to re-
duce the nuisanceand fluorescein dye staining (fluorescein
0.5% collyre unidose TVM, Laboratoires TVM, Lempdes,
France) along with 0.9% physiologic rinsing solution
(Eurospital S.p.A., Trieste, Italy).
Both eyes of each dog were photographed at each visit

in the afternoon (3–6 pm) and clinical signs, such as
corneal pigment density and corneal keratinization, were
graded according to the scores proposed by Hendrix et
al. [93], whereas conjunctival inflammation and mucus
discharge were graded according to the scores proposed
by Moore et al. [94].

– corneal pigment density (0-3): 0 = no pigment, 1 =
iris easily visualized through the pigment, 2 = iris

partially visualized through the pigment, 3 = iris not
visible through the pigment);

– conjunctival inflammation (0-3): 0 = normal
conjunctiva; 1 = mild hyperemia without chemosis;
2 = moderate hyperemia with mild chemosis; 3 =
intense hyperemia with moderate to severe chemosis;

– mucus discharge (0 – 3): 0 = no visible mucus or
clear mucus thread; 1 = scattered non-adherent
mucopurulent strands; 2 = moderate adherent
mucopurulent strands covering up to 25% of
the cornea; and 3 = diffuse extensive adherent
mucopurulent discharge covering 25% to 50%
of the cornea;

– corneal keratinization (0-2): 0 = none, 1 = mild
opacity, 2 = moderate opacity.

Enrolled dogs were treated by their owners at home by
applying the pharmacological treatment as previously
described and the diet administration approximately
every 12 h.

Schirmer tear test
Schirmer tear test-1 (STT-1) is a routine examination
which is performed by placing a standard test strip
(Schirmer-Plus®, Gecis Ecoparc, Domaine de Villemor-
ant, France) within the ventral conjunctival sac of each
dog for 60 s. Tear production is then recorded in mm/
min for each eye. STT-1 was performed on 100 eyes of
dogs of several breeds.

Statistical analysis
Data were analyzed using GraphPad Prism 6 software
(GraphPad Software, Inc., La Jolla, CA, USA). All data are
presented as the means ± standard error of the mean and
were first checked for normality using the D’Agostino-
Pearson normality test. Differences in Schirmer test,
conjunctival inflammation, corneal keratinization, corneal
pigmentation density and mucus discharge score between

Table 2 Daily table recommendation for diet

Weight (Kg) Diet amount per day (g)

1 – 10 30 – 180

11 – 20 190 – 300

21 – 35 310 – 455

36 – 50 465 – 595

Table 3 Average substances administer to dog depending on body weight (considering medium body weight)

Nutraceutical substances Amount per kg of complete food Dog weight 10 kg 11 kg 12 kg 13 kg

Ascophyllum nodosum 40000 mg/kg 7200 7600 8200 8600

Cucumis melo 300 mg/kg 54 57 61,5 64,5

Carica papaya 135 mg/kg 24,3 25,65 27,675 29,025

Aloe vera 135 mg/kg 24,3 25,65 27,675 29,025

Haematococcus pluvialis (astaxanthin) 49 mg/kg 8,82 9,31 10,045 10,535

Resveratrol (Poligonum Cuspidatum) 7 mg/kg 1,26 1,33 1,435 1,505

Zinc sulphate monohydrate 137 mg/kg 24,66 26,03 28,085 29,455

Curcuma longa 102 mg/kg 18,36 19,38 20,91 21,93

Camellia sinensis 70 mg/kg 12,6 13,3 14,35 15,05

Punica granatum 70 mg/kg 12,6 13,3 14,35 15,05

Piper nigrum 30 mg/kg 5,4 5,7 6,15 6,45
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the two treatments at the end of treatment versus baseline
for each eye were blindly analyzed by ADC using a two-
way analysis of variance (ANOVA) followed by Sidak’s
multiple comparisons test. Conjunctival inflammation,
corneal keratinization, corneal pigmentation density and
mucus discharge score between the two treatments at the
end of treatment versus baseline for each eye were ana-
lyzed using a paired t-test. Veterinary ophthalmologists
were not involved in the statistical analysis of the data.

Results and Discussion
Clinical evaluation of eyes in ND and SD group
Fifty dogs were enrolled in the trial: 25 dogs received the
pharmacological treatment and a standard diet (SD Group),
while 25 dogs received the pharmacological treatment
plus an antioxidant/anti-inflammatory nutraceutical diet
(ND Group).
An overall amount of 100 eyes was considered accord-

ing to literature suggestions [95–97]. All dogs completed
the 60-day evaluation period.
The overall improvement of eye’s condition in two repre-

sentative dogs of ND group at the day 0 of the trial (Fig. 1a,
c) and at the end of the 60-days evaluation (Fig. 1b, d) is
shown. In particular, our results highlight the clinical ameli-
oration occurred in ND group (Fig. 1b, d) in terms of
blepharospasm, ocular hyperemia, periocular swelling and
ocular discharge that is strongly dependent on nutraceuti-
cals administration since no effects were evident in SD
group (Fig. 1e, h). In this regard, the comparative evaluation
between the day 0 (Fig. 1e, g) and the end of 60-days (Fig. 1f,
h) in two representative dogs of SD group showed none
significant clinical amelioration. Indeed, blepharospasm,
ocular hyperemia, periocular swelling and ocular discharge
were still evident or, at least, poorly improved.
These results strongly pointed to a specific effect of

nutraceuticals in inducing anti-inflammatory and immune-
modulating outcomes in eyes of dogs belonging to ND
group. Notably, the standard pharmacological treatment
appeared to be substantially ineffective since no amelior-
ation has been observed in dogs belonging to SD group.
Therefore, the effect of nutraceuticals could be considered
as highly fostering the clinical improvement during the
pharmacological treatment in cKCS.

The eye’s scores amelioration in cKCS dogs treated with ND
Figure 2 shows the eye’s score intensity trend of each
symptom of dogs belonging to SD and ND group.
Dogs conjunctival inflammation score significantly de-

creased from a baseline of 2.1 ± 0.1 to 0.6 ± 0.1 in the ND
group, while no significant variation (from a score of 2.1 ±
0.1 to 1.9 ± 0.1) appeared in SD group (Fig. 2a–b).
In addition, corneal keratinization score resulted

significantly decreased in ND group (from 1.5 ± 0.1 to
0.2 ± 0.1) and not in SD group (from 1.5 ± 0.1 to 1.4 ± 0.1)

(Fig. 2c–d). Finally, corneal pigment density and mucus
discharge resulted significantly decreased only in ND
group, while no effects were evident in SD group.
More in details, corneal pigment density scores de-
creased from a baseline value of 0.9 ± 0.1 to 0.2 ± 0.1
whereas mucus discharge scores decreased from 1.8 ±
0.1 to 0.3 ± 0.1 (Fig. 2e–h).
These results clearly suggest the role for ND in indu-

cing the amelioration of eye’s score testing in cKCS and
that this occurrence appears independent on pharmaco-
logical treatment since drugs alone appeared ineffective,
as evident in SD group.
As to STT-1 values, a significant increase was observed

from a baseline value from 4.7 ± 0.4 mm to 10.7 ± 0.6 mm
after the 60-days of treatment only in the dogs of ND
group, while no significant improvement (STT-1 values
from 4.3 ± 0.5 mm to 5.1 ± 0.5 mm) was evident in the
dogs of SD Group at the end of the trial (Fig. 2i–l).

Fig. 1 Eyes improvement after 60-days treatment with 0,03%
Tacrolimus collyrium BID and 0,2% Hyalistil eyewash plus the
nutraceutical diet in ND group and with with 0,03% Tacrolimus
collyrium BID and 0,2% Hyalistil eyewash plus the standard diet
in SD group. a–c eye before treatment plus nutraceutical diet (time = 0),
b–d eye at the end of treatment plus nutraceutical diet (time = 60). e–g
eye before treatment plus standard diet (time = 0), f–h eye at the end
of treatment plus standard diet (time = 60)
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These results evidenced the effectiveness of ND in in-
crease the tear film in our cohort of sick dogs. It is reason-
able that the anti-inflammatory effects of nutraceuticals
could contribute to restore the physiological eye’s tear
production in cKCS.

The relapse/regression of cKCS symptoms in dependence
of ND administration
After the 60 days of evaluation, dogs belonging to
ND group interrupted the diet supplementation for
30 days, while continuing the pharmacological treatment.

Fig. 2 a mean tear production (STT) in mm/min before and after 60 days treatment for ND and SD group, STT values resulted significantly
increased (****P < 0.0001) in ND group at the end of treatment, b Mean conjunctival inflammation scores before and after 60 days treatment for
ND and SD group, a significant decrease (****P < 0.0001) was observed in ND group at the end of the treatment; c mean corneal keratinization
scores before and after 60 days treatment for ND and SD group, a significant decrease (****P < 0.0001) was observed in ND group at the end of
the treatment; d mean corneal pigment density scores before and after 60 days treatment for ND and SD group, a significant decrease (****P <
0.0001) was observed in ND group at the end of the treatment; e mean mucus discharge scores before and after 60 days treatment for ND and
SD group, a significant decrease (****P < 0.0001) was observed in ND group at the end of the treatment
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It is worth noting that a rapid and intensive relapse
of symptoms was observed after 15 days since ND
suspension. All dogs were newly supplemented with
the ND while continuing the pharmacological therapy
for another 30 days. Intriguingly, an overall regression
of symptoms was again observed after the reintroduc-
tion of ND (Fig. 3).
This occurrence clearly highlighted the specific ef-

fects of nutraceuticals as useful adjuvant in the treat-
ment of cKCS-affected dogs, particularly for those
animals poorly responsive or unresponsive to standard
pharmacological therapy.

Conclusions
To the best of our knowledge, this clinical evaluation
represents first study that proposed the use of a specific
antioxidant/anti-inflammatory ND as an optimal com-
bination of ingredients with synergistic effects able to
potentially exert an immune-modulating activity in com-
bination with standard pharmacological treatments in
cKCS.
The nutraceutical approach appears to significantly in-

crease the eye’s tear production and to clinically amelior-
ate the conjunctival inflammation status as well as the
corneal keratinization, corneal pigment density and
mucus discharge in chronic cKCS dogs poorly responsive
or unresponsive to immune-suppressive therapy.
The increased STT level in response to the proposed

ND was in agreement with previously reported response
to topical CsA and Tacrolimus [23, 98, 99]. Although we
are unaware of the possible action mechanism of all in-
gredients, in particular for the phytotherapic extracts,
we hypothesize that these substances and raw materials
of the ND may exert a synergic action in the T-cell
activation, possibly by preventing inflammatory gene
transcription (IL-2, IL-3, IL-4, IFN- γ, TNF-α, GM-CSF,
c-myc) [16, 100, 101].

Fig. 3 Graphical schematization of clinical symptoms score trends
after 30 days since treatment suspension and after 30 days since
treatment resumption. a Mean conjunctival inflammation scores
before (T 60) and after 30 days nutraceutical diet suspension (T 90)
for ND group and (b) after 30 days since nutraceutical diet resumption
(T 120); c mean corneal keratinization scores before (T 60) and after
30 days nutraceutical diet suspension (T 90) for ND group and (d) after
30 days since nutraceutical diet resumption (T 120); e mean corneal
pigment density scores before (T 60) and after 30 days nutraceutical
diet suspension (T 90) for ND group and (f) after 30 days since
nutraceutical diet resumption (T 120), scores resulted significantly
increased (*P < 0.05); g mean mucus discharge scores before (T 60)
and after 30 days nutraceutical diet suspension (T 90) for ND group
and (h) after 30 days since nutraceutical diet resumption (T 120), scores
resulted significantly increased (**P < 0.01); i mean tear production
(STT) in mm/min before (T 60) and after 30 days nutraceutical diet
suspension (T 90) for ND group and (l) after 30 days since nutraceutical
diet resumption (T 120)
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Based on a possible mimicking action mechanism of all
active substances with respect to CsA, we also hypothe-
sized a reduced secretion of TNF-α by T cells. In this
regard, TNF-α is known to increase mucin secretion from
respiratory epithelial cells, thus it could possibly influen-
cing the mucus production, corneal keratinization and
conjunctival inflammation status [102, 103]. However, as
observed by Hendrix et al. an overall significant improve-
ment of clinical signs was not observed over time [93].
Intriguingly, our results seem to support the use of an

anti-inflammatory/immune-modulating ND as an adju-
vant to drug therapy in those cKCS dogs unresponsive to
pharmacological treatment, in order to achieve analogue
results of the responsive subjects (Moore et al., [94],
Hendrix et al., [93]). Therefore, our investigation high-
lights the relevance of the possible administration of anti-
oxidant/anti-inflammatory nutraceutical diet to cKCS
dogs as useful adjuvant of immunosuppressive therapy.
The combination of a pharmacological treatment with

a specific diet (Ocu-GLO Rx™) was also recently assessed
by Williams et al. who successfully delayed the cataract
formation in dogs with diabetes mellitus [104]. Specific-
ally, the diet consisted in a mixture of a aldose reduc-
tase inhibitor, a glutathione regenerator alpha lipoic
acid, grape seed extract, carotenoids, omega-3-fatty
acids, and coenzyme Q10 which was provided to dia-
betic dogs as far as these developed lens opacification.
Mean time without change in lens opacification was
278 ± 184 days with Ocu-GLO Rx™ and 77 ± 40 days in
the placebo group.
In our treatement approach, the combination of sev-

eral nutraceuticals, such as fish hydrolised proteins, rice
carbohydrates, Cucumis melo, Ascophyllum nodosum,
Astaxanthin, Aloe vera, Carica papaya, Punica grana-
tum, Camellia sinensis, Polygonum L., Curcuma longa,
Piper nigrum, zinc and a omega3/6 polyunsaturated fatty
acids (1:0.8 ratio), appears to exert beneficial immune-
modulating effects on the clinical status of cKCS dogs.
These data seams to confirm the action of nutraceutical
diet on immune system modulation reducing Th1 and
inproving TReg [35].
These plants and substances, widely used in trad-

itional medicine, have been already shown to exert
some intriguing antioxidant and anti-inflammatory ac-
tivities in ocular tissues. In this regard, it is worth
noting that Camellia sinensis extract was effective in
conjunctival inflammation treatment [105] and Curcuma
longa in several ocular diseases (chronic anterior uveitis,
diabetic retinopathy, glaucoma, age-related macular
degeneration and dry eye syndrome) [106, 107]. In
addition, zinc was observed to reduce the progression
of the age-related macular degeneration by the inhib-
ition of the complement activation on retinal pigment
epithelium cells [108] and omega 3 -6 fatty acids were

closely correlated to development of vision and pro-
tection of eyes [109, 110].
The antioxidant/anti-inflammatory effects likely pos-

sessed by the mixture based on all these nutraceuticals
in the diet supplementation seems to specifically reduce
the immune-mediated ocular symptoms, particularly in
those cKCS dogs that were poor responsive or unre-
sponsive to classical immune-suppressive drugs.
In this regard, the pharmacological treatment alone

was able to increase lachrymal production, while the in-
crement was strongly higher and persistent when drugs
were combined with the ND. Likewise, conjunctival in-
flammation was significantly reduced more in dogs be-
longing to ND group (receiving drugs in combination
with nutraceutical supplemented diet) than in the SD
group (receiving only the medical treatments). In
addition, it is of relevance that corneal pigment density
and mucus discharge were improved only in dogs be-
longing to the ND group. Finally, the occurrence of
symptom relapsing, upon the suspension of nutraceutical
diet, and of clinical amelioration, after its reintroduction,
fosters the hypothesis of a possible therapeutical benefit
of this nutraceutical diet in animal as well as in human
ocular diseases [111, 112]
Taken in all, our results suggest that association of clas-

sical drug therapy with a nutraceutical diet with potential
antioxidant/antiinflammatory and immune-modulating
activities induce a significant amelioration of clinical signs
and symptoms in keratoconjunctivitis sicca. Moreover, all
symptoms appeared dependent on immune-mediated
mechanisms. In this regard, the lachrymation impairment
can be altered by an inflammatory condition of lachrymal
gland and related ducts.
Therefore, it is reasonable to hypothesize that meta-

bolic changes could affect immune response orchestra-
tion in a model of immune-mediated ocular disease,
as represented by keratoconjunctivitis sicca, in dogs
and, in a translational perspective, by Sjögren’s syn-
drome in humans.

Study limitations
This research has some study limitations. For instance,
neither the inflammatory cytokines present in the serum
of dogs affected by KCS nor the percentage of regulatory
T cells in the blood were evaluated. Ongoing experi-
ments are characterizing the inflammatory cytokine re-
lease as well as the presence of Treg cells in peripheral
blood. Moreover, preliminary results have evidenced that
it is really hard to find in blood those alterations likely
present in a well-defined peripheral tissue and body district,
as represented by the eye.
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