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Abstract 

Cholesterol is critical to maintain membrane plasticity, cellular function and synaptic integr ity.  

The neurotrophin Brain-derived neurotrophic factor (BDNF) exerts a critical role in brain 

synaptic plasticity, learning and memory. It was previously reported that BDNF elicits 

cholesterol biosynthesis and promote the accumulation of presynaptic proteins in cholesterol-

rich lipid rafts, but no further data are available on its ability to modulate physiologica l 

mechanisms involved in brain cholesterol homeostasis. One aim of this PhD research project 

was to investigate whether BDNF influences cholesterol homeostasis, focusing on the effect of 

the neurotrophin on Apolipoprotein E (ApoE) synthesis, cholesterol efflux from astrocytes and 

cholesterol incorporation into neurons. Our results show that BDNF significantly stimula tes 

cholesterol efflux by astrocytes, as well as ATP binding cassette A1 (ABCA1) transporter and 

the expression of ApoE in cellular models of human astrocytes. On the other hand, BDNF 

reduce cholesterol incorporation in neurons by enhancing LXR-beta expression, protecting 

these cells from cholesterol excess-induced apoptosis. These results evidence a novel role of 

BDNF in the modulation of ApoE and cholesterol homeostasis in glial and neuronal cells. 

A further objective of this research project was to investigate the effects of a short-term (two-

weeks) fructose-rich diet on brain redox homeostasis, autophagy, as well as on BDNF, its 

receptor TrkB and synaptic function markers, in the cortex of young and adults rats, in order to 

highlight the early risks to which brain is exposed. The results showed that a short-term fructose 

feeding was associated with an imbalance of redox homeostasis, as lower amount of Nuclear 

factor (erythroid derived 2)-like 2, lower activity of Glucose 6-phosphate dehydrogenase and 

Glutathione reductase, together with lower GSH/GSSG ratio, were found in fructose-fed young 

and adult rats. Fructose-rich diet was also associated with the activation of autophagy, as higher 

levels of Beclin, LC3 II and P62 were detected in cortex of fructose-fed rats. A diet-associated 

decrease of synaptophysin, synapsin I, and synaptotagmin I, suggests an impairment of synaptic 

transmission in fructose-fed young and adult rats. Interestingly, BDNF amount was 

significantly lower only in fructose-fed adult rats, while the level of its receptor TrkB decreased 

in both group of treated rats. A further marker of brain functioning, Acetylcholineste rase 

activity was found increased only in fructose-fed young animals. Overall, our findings suggest 

that young rats may severely suffer from the deleterious influence of fructose on brain health 

as the adults and provide experimental data suggesting the need of targeted nutritional strategies 

to reduce its amount in foods.  
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Riassunto 

Il colesterolo svolge un ruolo fondamentale nella regolazione della fluidità e della permeabilità 

della membrana plasmatica e la sua presenza regola la funzione di proteine e recettori ancorati 

alla membrana. Il Fattore Neurotrofico di Derivazione cerebrale (Brain-Derived Neurotrophic 

factor- BDNF) è la neurotrofina maggiormente espressa nel sistema nervoso centrale dove 

svolge un ruolo chiave nel differenziamento neuronale, nella sinaptogenesi, nell’apprendimento 

e nella memoria. È stato dimostrato che il BDNF è in grado di promuovere la sintesi di 

colesterolo e l’accumulo di proteine presinaptiche a livello delle zattere lipidiche, ma non ci 

sono ulteriori dati circa il suo ruolo nella modulazione dei meccanismi fisiologici coinvolt i 

nell’omeostasi del colesterolo cerebrale. Uno degli obiettivi di questo progetto di dottorato è 

stato, quindi, valutare il ruolo del BDNF nella regolazione di meccanismi critici dell’omeostas i 

del colesterolo nel cervello, vale a dire: a) l’efflusso di colesterolo da parte degli astrociti; b) la 

produzione di Apolipoproteina E; c) l’incorporazione di colesterolo nei neuroni. I risulta t i 

evidenziano che il BDNF stimola l’efflusso di colesterolo dagli astrociti, induce l’espressione 

del trasportatore ABCA1 e la sintesi di ApoE in modelli di astrociti umani, riduce 

l’incorporazione del colesterolo da parte dei neuroni mediante l’induzione dell’espressione di 

LXR-beta e protegge queste cellule dall’apoptosi indotta da un eccesso di colesterolo. Questi 

risultati mostrano una nuova funzione del BDNF nella modulazione di ApoE e dell’omeostas i 

del colesterolo in neuroni e cellule gliali. 

Un ulteriore obiettivo di questo progetto di dottorato è stato valutare l’effetto di una dieta di 

breve durata (solo due settimane), ricca in fruttosio, sull’omeostasi redox, l’autofagia, i livell i 

di BDNF, del suo recettore TrkB e di alcuni marcatori di funzionalità sinaptica. Lo studio è 

stato condotto sulla corteccia prefrontale di ratti giovani ed adulti, allo scopo di chiarire quali 

sono gli effetti precoci di questa dieta a livello cerebrale. I dati ottenuti hanno dimostrato che 

una dieta contenente elevate concentrazioni di questo zucchero, induce l’alterazione 

dell’omeostasi redox in seguito alla riduzione dei livelli del fattore trascrizionale Nrf-2, 

dell’attività degli enzimi GSR e G6PD e del rapporto GSH/GSSG. Ulteriori effetti di questa 

dieta sono l’attivazione di autofagia come dimostrato dall’aumento dei livelli di beclina, p62 ed 

LC3 II nei ratti trattati rispetto ai controlli e dalla riduzione dei livelli di marker di funziona lità 

sinaptica come sinaptofisina, sinapsina I e sinaptotagmina I. I livelli di BDNF sono risulta t i 

significativamente ridotti solo nei ratti adulti trattati con dieta ricca in fruttosio mentre i livell i 

di TrkB sono risultati ridotti sia nei ratti giovani che nei ratti adulti nutriti con fruttosio. 

L’attività dell’Acetilcolinesterasi, un ulteriore marcatore di funzionalità cerebrale, è stata 
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trovata significativamente aumentata nei ratti giovani nutriti con questo tipo di dieta. Questi 

risultati dimostrano che un’alimentazione ricca in fruttosio è deleteria per la salute cerebrale di 

giovani e adulti e inducono a riflettere sulla necessità di trovare strategie nutrizionali mirate a 

ridurre la quantità di questo zucchero negli alimenti.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

Abbreviations 

24-OHC   24S-hydroxycholesterol  

ABC   ATP-binding cassette  

ACAT1/SOAT1  Acylcoenzyme A: cholesterol acyltransferase 1  

AChE   Acetylcholinesterase  

AD   Alzheimer’s disease  

ApoE   Apolipoprotein E 

ApoER2  ApoE receptor 2  

ATCI   Acetylthiocholine iodide  

BBB   Blood brain barrier 

BDNF   Brain Derived Neurotrophic Factor  

BSA   Bovine serum albumin fraction V  

CNS   Central nervous system 

CREB   cAMP response element-binding protein  

CY46A1  Cytochrome P450 oxidase 

DAG   Diacylglycerol  

DTNB   5,5-dithiobis-2-nitrobenzoate  

ERK   Extracellular signal‐regulated kinases  

FA   Fatty acid  

FAD   Familial AD 

FBS   Fetal bovine serum  

G6PD   Glucose 6-phosphate dehydrogenase  

GAM-HRP  Goat anti-mouse Horseradish Peroxidase-conjugated IgG  

GAR-HRP  Goat anti-rabbit Horseradish Peroxidase-conjugated IgG  

GSH   Reduced glutathione  

GSR   Glutathione reductase  

GSSG   Oxidized Glutathione 

HDL   High-density lipoprotein  

HMGCR  3-hydroxy-3-methylglutaryl-CoA reductase  

HPRT1  Hypoxanthine phosphoribosyltransferase 1  

IP3   Inositol 1,4,5-trisphosphate  

LC3   Microtubule associated protein light chain  

LDLR   Low-density lipoprotein receptor  



7 
 

LRP1   Low-density lipoprotein receptor-related protein 1  

LTP   Long-term potentiation  

MAPK  Mitogen‐activated protein kinases  

mTOR  Mammalian Target of Rapamycin  

MTT   3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide 

NFkB   Nuclear factor kappa B 

NHA   Normal human astrocyte  

Nrf2   Nuclear factor (erythroid derived 2)-like 2  

P62   P62-sequestosome-1  

PI3K   Phosphoinositide 3‐kinase  

PKC   Protein kinase C  

PLC‐γ   Phospholipase C‐γ 

PVDF   Polyvinylidene difluoride  

RA    Retinoic acid  

SCA17  Spinocerebellar ataxia 17 

SCAP   Sterol-sensitive SREBP cleavage activating protein  

SREBP2  Sterol regulatory element protein 2  

TrkB   Tropomyosin Kinase B  

TrkB-FL  Full length Tropomyosin Kinase B  

TrkB-T  Truncated Tropomyosin Kinase B 

VLDLR  Lipoprotein receptor 
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Introduction 

A major aim of the PhD research plan was to study the role of Brain Derived Neurotrophic 

Factor (BDNF), a member of neurotrophin family, in the modulation of brain cholesterol 

homeostasis. In addition, the deleterious effects of sugars-rich diet on BDNF and its receptor 

levels and other markers of brain functioning were in parallel investigated. BDNF regulates 

protein synthesis and neurotransmitter release, modulates neuronal cell survival, neurite 

growth, synaptic transmission, postsynaptic density, structural plasticity at dendritic spines and 

adult neurogenesis (Yoshii and Constantine-Paton, 2010; Lu, 2003; Leal et al., 2016).  

BDNF is translated as pro-BDNF and is cleaved into mature BDNF by endoproteases in the 

cytoplasm or in the extracellular matrix by plasmin or matrix metalloproteinases (Lima 

Giacobbo et al., 2018). Physiological responses to BDNF are mediated by the activation of two 

classes of membrane-bound receptors: the low affinity neurotrophin receptor p75 that mainly 

mediates cell death responses and the high affinity Tropomyosin Kinase B (TrkB) receptor, 

which mediates cell survival responses (Vidaurre at al., 2012; Gomes et al., 2012; Leal et al.,  

2016). The binding of BDNF to TrkB induces receptor dimerization, autophosphorylation, and 

the activation of three main intracellular signalling cascades, depending of the phosphoryla t ion 

site:  

1) The mitogen‐activated protein kinases (MAPK)/extracellular signal‐regulated kinases 

(ERK) pathway is activated after the phosphorylation of Tyr515 residue by Shc. The 

result is the activation of cAMP response element-binding protein (CREB) transcript ion 

factor, which enhances the transcription of pro-survival genes (Reichardt, 2006).  

2) The recruitment of Shc to TrkB also allows the activation of the phosphoinositide 3‐

kinase (PI3K)/Akt pathway, that lead to the transcription of BDNF and other proteins 

mRNA, by activating the Mammalian Target of Rapamycin (mTOR) (Takei et al., 2004; 

Sarbassov et al., 2005). Additionally, through Akt pathway, BDNF can modulate gene 

expression by activating Nuclear Factor-Kappa B (NF-κB) transcription factor (Yoshii 

and Constantine-Paton, 2010). 

3) The phospholipase C (PLC)‐γ pathway (short-term response) is activated after the 

phosphorylation of Tyr785 residue. PLCγ hydrolyses phosphatidylinositol 4,5-

bisphosphate to obtain diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) 

(Huang and Reichardt, 2003; Reichardt, 2006). DAG activates protein kinase C (PKC) 

while IP3 releases Ca2+ from intracellular stores (Yoshii and Constantine-Paton, 2010). 
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Figure 1. Downstream pathways of BDNF-TrkB signalling. After the binding of BDNF to TrkB, three 
different pathways can be activated: MAPK/ERK pathway, PI3K/Akt pathway and PLC-γ pathway. 
(Lima Giacobbo et al., 2018). 

 

BDNF and regulation of cholesterol homeostasis in brain 

Few data were available in the literature on the role played by BDNF in the regulation of 

cerebral cholesterol. One interesting investigation was from Suzuki and co-workers, which 

demonstrated that the translocation of TrkB in cholesterol-rich lipid rafts is important for 

BDNF-induced synaptic modulation and that pharmacological depletion of cholesterol reduced 

BDNF-dependent synaptic transmission (Suzuki et al, 2004). Also, BDNF induces cholesterol 

biosynthesis in cortical and hippocampal neurons by stimulating the transcription of enzymes 

involved in cholesterol biosynthesis such as 3-hydroxy-3-methylglutaryl-CoA reductase 

(HMGCR), the rate-limiting enzyme of cholesterol synthesis (Suzuki et al., 2007). Furthermore, 

BDNF increase cholesterol and presynaptic proteins accumulation in lipid rafts (Suzuki et al., 

2007). Cholesterol is important for neuronal membrane integrity and neuronal physiology (i.e. 
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synaptic signalling and plasticity) during development and throughout adulthood (Egawa et al., 

2016). Almost all the cholesterol contained in brain derives from de novo synthesis (Zhang and 

Liu, 2015) since the blood brain barrier (BBB) is impermeable not only to cholesterol but also 

to the circulating plasma lipoproteins. De novo synthesis rate of cholesterol in brain is not 

homogeneous among the different cell type and during the cell development. As mature, in fact, 

neurons are no more able to synthetize cholesterol de novo (Vitali et al., 2014) so they become 

dependent to other cell type, mainly astrocytes (Ikonen, 2008). Mature neurons uptake 

cholesterol secreted by astrocytes via Apolipoprotein E (ApoE)-containing lipoproteins, 

through the low-density lipoprotein receptor (LDLR) and the low-density lipoprotein receptor-

related protein 1 (LRP1) (Posse de Chaves et al., 2000; Herz, 2009).  

In the adult brain, the amount of cholesterol is finely regulated with minimal loss (Moutinho et 

al., 2016). Cholesterol homeostasis in brain is maintained by different mechanisms. On one 

hand, cholesterol biosynthesis con be modulated by a) ubiquitination of HMGCR and its 

consequent degradation in the proteasome; b) modulation of HMGR gene expression by ER-

bound membrane transcription factor sterol regulatory element protein 2 (SREBP2), whose 

activation depends on the sterol-sensitive SREBP cleavage activating protein (SCAP). On the 

other hand, to avoid cholesterol overload, brain cells can: a) directly excrete cholesterol through 

ATP-binding cassette (ABC) transporters and ApoE-containing lipoproteins; b) esterify and 

store cholesterol in lipid droplets through acylcoenzyme A: cholesterol acyltransferase 1 

(ACAT1/SOAT1) activity; c) convert cholesterol to 24S-hydroxycholesterol (24-OHC) 

through cytochrome P450 oxidase (CYP46A1) (Arenas at al., 2017).  
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Figure 2. Cholesterol homeostasis in brain. Cholesterol produced by astrocytes is delivered to neurons 

by the secretion of cholesterol-rich apolipoprotein E (ApoE-Chol). Cholesterol is taken by the cells 

through a receptor-mediated endocytosis of ApoE-Chol. Cholesterol overload is handle through its 

esterification by (ACAT1/SOAT1) and through release via ABC transporters or after CYP46A1-

dependent conversion to 24-OHC which can freely cross the BBB and upregulate ABCA1 expression 

via activation of nuclear liver X receptor (LXR). (Arenas et al., 2017). 

 

Since cholesterol alteration as well as BDNF signalling impairment are both associated with 

the development of neurodegenerative diseases, we considered interesting to investigate 

whether BDNF can modulate cholesterol homeostasis, by focusing on its potential role in 

cholesterol trafficking between astrocytes and neurons. In particular, we analyzed the effect of 

BDNF on critical steps of cholesterol homeostasis, namely a) ApoE synthesis, b) cholesterol 

efflux from astrocytes and c) cholesterol incorporation into neurons (see Chapter 2 of this thesis 

for details).  

 

Apolipoprotein E  

In the central nervous system (CNS), ApoE is the most abundantly produced apolipoprotein 

and is primarily synthesized by astrocytes and to a lesser extent by microglia (Shi and 
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Holtzman, 2018). In the CNS, cholesterol and phospholipids produced by glia are critical for 

formation and maintenance of healthy synapses (Pfrieger, 2010). As an apolipoprotein, ApoE 

forms in brain lipoprotein particles with lipids and cholesterol, namely high-density lipoprotein 

(HDL)-like particles, in order to mediate their transport between cells (Mahley, 2016). ApoE is 

crucial for cellular cholesterol efflux in which this sterol is transferred to the lipoprotein via 

ATP-binding cassette subfamily A member 1 (ABCA1) while the uptake of these particles by 

the cells is mediated through the binding of ApoE to LDL receptor family members (Mahley, 

2016). In vitro studies with neuronal cell models and primary cells showed that ApoE plays a 

critical role in differentiation and neurite outgrowth through the activation of the Erk pathway 

(Huang and Mahley, 2014).  In addition, in vivo studies showed that ApoE plays a role in the 

development, remodelling and regeneration of the nervous system (Han, 2004). Also, it was 

demonstrated that a genetic deficiency of ApoE results in a reduction of synapse number 

partially due to the loss of HDL-like particles (Lane-Donovan C, et al., 2016). Besides 

cholesterol trafficking, ApoE is involved in critical step of the onset and progression of 

Alzheimer’s disease (AD), namely amyloid precursor protein processing and -amyloid 

production, deposition and clearance (Bales et al., 1999; Yu et al., 2014).  

In humans, ApoE is a polymorphic protein with three common isoforms, ApoE2, ApoE3, and 

ApoE4, which differ for a single amino acid substitution at the residues 112 and 158. In 

particular, ApoE3 has cysteine (Cys)-112 and arginine (Arg)-158, whereas ApoE4 has arginines 

and ApoE2 has cysteine on both sites (Kim et al., 2014; Mahley, 2016). These aminoac id 

differences among the isoforms significantly alter ApoE’s folding structure affecting its ability 

to bind lipids, lipoprotein receptors and -amyloid (Lin et al., 2018).  

The ε4 isoform of ApoE (ApoE4) was identified as a major genetic risk factor for AD (Rebeck 

GW, 2017). In particular, compared with ApoE3/3 homozygosity, ApoE4 increases the risk of 

developing AD by 4-fold (heterozygotes) to 14-fold (homozygotes) and the age of onset of the 

pathology by 8 years for each ApoE4 allele (Mahley, 2016). In AD patients, the ε4 allele 

detrimentally triggers -amyloid aggregation, induces heavier β-amyloid plaque formation, 

marked brain atrophy, faster disease progression and an exacerbated tau-mediated 

neurodegeneration compared with the other ApoE alleles (Uddin et al., 2018). 

In addition to their effects on -amyloidclearance, ApoE isoforms affect synaptic plasticity in 

an isoform-dependent manner. For instance, ApoE4 is associated with deficits in spatial 

learning and memory (Grootendorst et al., 2005; Knoferle et al., 2014), and with reduced 

dendritic arborization (Dumanis et al., 2009; Wang et al., 2005), neuronal activity (Gillespie et 

al., 2016), neurotransmitter release (Klein et al., 2010; Klein et al., 2014; Dolejší et al., 2016), 
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and dendritic spine density (Rodriguez et al., 2013; Dumanis et al., 2009; Ji et al., 2003). 

Interestingly, it was recently shown that ApoE4 can translocate to the nucleus, bind DNA, and 

act as a transcription factor in human glioblastoma cells In particular, the data indicated that the 

ApoE4 DNA binding sites include about 1700 gene promoter regions, including genes 

associated with synaptic function, neuroinflammation, and insulin resistance (Theendakara et 

al., 2016). ApoE4 was also shown to directly impair mitochondrial function, thus having 

deleterious effects on cerebral energy metabolism (Wolf et al., 2013). Furthermore, ApoE4 can 

induce endoplasmic reticulum stress in astrocytes (Zhong et al., 2009), but not in neurons 

(Brodbeck et al., 2011) thus suggesting that ApoE4 may alter neuronal metabolic functioning 

also affecting astrocytes, which provide neurons with essential metabolic support (Zhong et al., 

2009). As regard to BDNF, it was demonstrated that the three ApoE isoforms differentia l ly 

regulate BDNF expression and secretion from human astrocytes (Sen et al., 2017). In particular, 

the results indicate that the treatment with ApoE2 and ApoE3 mediate a positive regulation of 

BDNF release while ApoE4-treated cells secrete negligible amounts of the neurotrophin. These 

interactions of the ApoE isoforms with BDNF may help explain the increased risk of AD 

associated with the ApoE4 isoform. 

 

Interplay between BDNF and diet  

A further focus of this research project was to study the effect of unbalanced diet, particula r ly 

rich in sugars, on BDNF as well as others brain markers of brain functioning. A continued rise 

in children, adolescents and adults obesity has been described in the last forty years (McCrory 

et al., 2016; Lee and Yoon, 2018). Interestingly, hypothalamic reduction of BDNF or mutations 

in its receptor TrkB, are associated with hyperfagia, weight gain, and obesity (Sandrini et al., 

2018). On the other hand, Smiljanic and co-workers recently demonstrated that a long- term 

dietary restriction upregulates BDNF expression and TrkB levels in cortex of middle-aged rats 

(Smiljanic et al. 2014). In addition, according to recent experimental studies, some dietary 

factors can influence both plasma and brain levels of BDNF. Among these, n-3 fatty acid (FA), 

vitamin E and flavonoids were found to positively influence BDNF expression (Cysneiros et 

al., 2010; Hou et al., 2010) while diets rich in saturated FA decrease brain levels of BDNF, 

neuronal plasticity and induce cognitive decline (Molteni et al., 2002; Wu et al., 2004; Pistell 

et al., 2010). Moreover, a seven days high fat/ high fructose diet, was associated with both 

BDNF and synaptic reduction in rat hippocampus (Calvo-Ochoa et al., 2014).  
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In the last decade, an increase in fructose consumption was registered (Campos et al., 2016) 

mainly because of a strong rise in using corn syrup for sweeten industrial foods and beverages. 

Fructose has been suggested to induce overweight and body weight gain as well as 

dyslipidaemia, insulin resistance and related metabolic diseases (Malik et al., 2010; Stanhope, 

2016; Aragno and Mastrocola, 2017).  

In the last decade, some studies demonstrated that fructose intake may also affects brain health 

inducing cognitive decline (Hsu et al., 2015; Mastrocola et al., 2016), a reduction of 

hippocampal neurogenesis (Van der Borght et al., 2011), widespread reactive gliosis, and 

altered mitochondrial activity in the hippocampus (Mastrocola et al., 2016). Most of these 

studies reported the effect of sugar-rich diets on brain by using long-term treatments (at least 

4-8 weeks) particularly on adults animal models. Therefore, our aim was to investigate the early 

effect of fructose-rich diets not only in adults but also in young rats (see Chapter 3 of this thesis 

for details).  
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Introduction 

Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth 

factors, and regulates neuronal survival, differentiation and plasticity by activating the receptor 

tyrosine kinase TrkB and p75 low-affinity neurotrophin receptor (Huang and Reichardt, 2001; 

Poo, 2001). Binding of BDNF rapidly activates TrkB, which in turn triggers mult ip le 

intracellular signaling pathways (Reichardt, 2006). Cholesterol-rich microdomains, called lipid 

rafts, provide a signaling platform for neurotrophic factor signaling (Simons and Toomre, 2000; 

Paratcha and Ibáñez, 2002), and are required for BDNF-induced synaptic modulation (Suzuki 

et al., 2004) and chemotrophic guidance of nerve growth cones (Guirland et al., 2004). 

Pharmacological depletion of cholesterol reduced BDNF-dependent synaptic transmiss ion 

(Suzuki et al., 2004), suggesting a fundamental role of cholesterol in the neurotrophin biology. 

It has been previously demonstrated that both BDNF and cholesterol increase dramatica lly 

during cortical development (Suzuki et al., 2004), evidencing that this neurotrophic factor 

regulates cholesterol biosynthesis in the brain. Indeed, BDNF was demonstrated to elicit 

cholesterol biosynthesis and promote the accumulation of presynaptic proteins in cholesterol-

rich lipid rafts for the development of presynaptic functions in the central nervous system (CNS) 

(Suzuki et al., 2007). The maintenance of the correct balance of cholesterol is critical for 

neuronal function, and any alteration in its level may severely affect brain performance 

(Cartocci et al., 2017). For instance, suppression of the mevalonate pathway was shown to cause 

defects in learning and memory (Kotti et al., 2006), highlighting the importance of cholesterol 

for the CNS. Further, impaired brain cholesterol distribution and metabolism has been pointed 

to as likely involved in the pathogenesis of Alzheimer’s disease (AD), and other 

neurodegenerative diseases (Solomon et al., 2007; Foley, 2010; Vance, 2012). In the brain, 

cholesterol is transported by high-density lipoprotein (HDL)-like particles, whose major protein 

component is the Apolipoprotein E (ApoE), which mainly mediates the transport of lipids 

between astrocytes and neurons. Cholesterol is locally synthesized in the CNS and brain 

cholesterol metabolism is largely separated from peripheral cholesterol metabolism by the 

blood-brain barrier. Cholesterol synthesis and clearance are highly regulated, thus keeping 

overall levels constant (Vitali et al., 2014). During development and myelinogenesis, both 

astrocytes and neurons produce cholesterol in a cell-autonomous manner, while, as the brain 

matures, neurons downregulate the expression of many genes involved in the cholesterol 

synthesis (Vitali et al., 2014). Therefore adult neurons rely on the import of cholesterol released 

from astrocytes (Ikonen, 2008). In particular, astrocytes secrete cholesterol via ApoE-

containing lipoproteins, which are lipidated by ATP binding cassette (ABC) transporters. The 



24 
 

low-density lipoprotein receptor (LDLR) and the low-density lipoprotein receptor related 

protein 1 (LRP1) mediate uptake of cholesterol by neurons (Posse de Chaves et al., 2000; Herz,  

2009), and neuronal uptake of cholesterol helps to maintain membrane plasticity, cellular 

function, and synaptic integrity. In this way, cholesterol is shuttled from astrocytes to neurons 

(Mauch et al., 2001; Vance and Hayashi, 2010). Despite the importance of cholesterol 

trafficking between astrocytes and neurons, the effect of BDNF on physiological players 

involved in this pathway remains to be identified. Hence, we investigated the ability of BDNF 

to influence cholesterol metabolism by focusing on the influence of this neurotrophin on ApoE 

synthesis, cholesterol efflux from astrocytes and cholesterol incorporation into neurons. 

 

Materials and methods 

Materials 

Bovine serum albumin fraction V (BSA), lecithin, cholesterol, retinoic acid (RA) mouse anti-β 

actin IgG, goat anti-rabbit Horseradish Peroxidase-conjugated IgG (GAR-HRP), goat anti-

mouse Horseradish Peroxidase-conjugated IgG (GAM-HRP), rabbit anti-goat Horseradish 

Peroxidase-conjugated IgG (RAG-HRP), o-Phenylenediamine, and MTT [3-(4,5-

dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide], were purchased from Sigma-Ald r ich 

(St. Louis, MO, USA). Recombinant human ApoE3 and recombinant human BDNF were from 

PeproTech (London, UK). Goat anti-human ApoE IgG (Chemicon), Protein G Plus-Agarose 

Suspension (Calbiochem), and the chemiluminescent HRP substrate (Immobilon Western) 

were purchased from Merk Millipore (Milano, Italy). Mouse anti-human ApoE IgG, and rabbit 

anti-human TrkB IgG were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). 

The dye reagent for protein titration, and the polyvinylidene difluoride (PVDF) membrane were 

from Bio-Rad (Bio-Rad, Hercules, CA). Polystyrene 96-wells ELISA MaxiSorp plates, 96-, 24-

, and 6-well cell culture plates were purchased from Nunc (Roskilde, Denmark). Fuji Super RX 

100 film was from Laboratorio Elettronico Di Precisione (Napoli, Italy). DMEM, F12, fetal 

bovine serum (FBS), L-glutamine, Neuroblastoma growth supplement N2, penicillin and 

streptomycin were from Gibco (Life Technologies Italy, Monza, Italy). Cell culture flasks, and 

sterile pipettes of Sarstedt (Verona, Italy) were used. [1,2-3H]-Cholesterol (52.5 Ci/mmol) 

and the liquid scintillation counting cocktail Ultima Gold were obtained from Perkin-Elmer 

(Boston, MA, USA). 
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Cell culture 

The human neuroblastoma cell line SH-SY5Y and the human glioblastoma-astrocytoma cell 

line U-87 MG were from ATCC (distributed by LGC Standards, Milano, Italy). Normal human 

astrocyte (NHA) were from Lonza (distributed by Euroclone, Milano, Italy). SH-SY5Y cells 

(500,000) were seeded in 50 ml tissue culture flasks (25 cm2 surface), and grown in a mixture 

of DMEM and F12 medium (1:1, v:v) supplemented with 10% FBS, 2 mM L-glutamine, 100 

U/mL penicillin, and 100 μg/mL streptomycin (complete medium) at 37°C and under 

humidified atmosphere of 5% CO2 in air. The medium was changed twice a week, and cells 

were sub-cultivated when confluent. Cells were differentiated to mature neuronal phenotype by 

incubation in low-serum medium containing RA, essentially according to published procedures  

(Påhlman et al., 1984; Nordin- Andersson et al., 2003). In detail, the complete medium was 

changed to DMEM/F12 containing 1 % FBS, 2 mM L-glutamine, 100 IU/mL penicillin, 100 

μg/mL streptomycin, 0.5% neuroblastoma growth supplement N2. The cells were seeded into 

96-, 12-, 24-, or 6-well plates (at the cell density reported below), and allowed to attach for 4 h 

before adding RA (10 μM final concentration). Cells were differentiated for six days, and RA 

was added every 48 hours. The differentiated cells were finally used for the assays reported 

below. NHA were seeded in 50 ml tissue culture flasks (5,000 cells/cm2), and grown in 

recommended medium AGM™ BulletKit™ (Lonza), according with manufacture r’s 

instructions. Culture medium was replenished every 48 h, and cells were subcultivated after 

reaching 85% confluence. In detail, NHA were seeded in 96-, 24- or 6-well plates at 10,000 

cells/cm2 in AGM medium, and incubated (37°C, 5% CO2) for 20 hours. After removal of the 

medium, and washing with serum-free medium, the cells were used in the assays described 

below. U-87 MG cells (900,000 cells) were seeded in 250 mL tissue culture flasks (75 cm2 

surface), and grown in DMEM supplemented with 10% FBS, 2 mM L-glutamine, 100 U/mL 

penicillin, and 100 μg/mL streptomycin (complete medium) at 37°C under humidif ied 

atmosphere of 5% CO2 in air. The medium was changed twice a week, and cells were sub-

cultivated when confluent. U-87 MG cells were seeded into 96- or 6-well plates (at 15,000 

cells/well or 400,000 cells/well density, respectively) in complete medium, and incubated 

(37°C, 5% CO2) for 20 hours. After removal of the medium, and washing with DMEM, the 

cells were used in the assays described below. 

 

Brain tissues 

The study was conducted with brain samples from 4 patients affected by familial AD (FAD) 

and bearing the Met146Leu mutation of the Presenilin1 gene. The mean age of death of the 
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patients was 48 ± 8.2 years, and they were at the terminal stage of dementia (stage 5, according 

to the Clinical Dementia Rating scale). For all patients, the Braak staging for AD pathology 

(AD-related neurofibrillary pathology) was VI. Brain tissues from a patient affected by 

spinocerebellar ataxia 17 (SCA17) and from a healthy age-matched control subject were also 

analysed in this study. The healthy subject died for accidental intracerebral bleeding in left brain 

hemisphere, and the sample was taken from the contralateral brain hemisphere. 

Histopathological lesions suggestive of AD (neurofibrillary pathology, deposition of Aβ 

protein) were excluded in the control subject. The ApoE genotype, determined on DNA from 

peripheral blood lymphocytes, was E3/E3 for all patients. Tissues were sampled from prefrontal 

cortical areas. The brain samples were collected at 4-36 hours post-mortem and stored at -80°C 

until use. Brain tissue samples from human subjects were provided by the Regiona l 

Neurogenetic Center (CRN, ASP CZ, Lamezia Terme). All brain donors or their legal tutors 

gave written informed consent during their lifetime. The protocol for the collection of the brains 

and their use in the study conformed to The Code of Ethics of the World Medical Association 

(Declaration of Helsinki), printed in the British Medical Journal (18 July 1964), and was 

supported by the Italian Health Ministry with appropriate local Ethics committee approval (Prot 

n° 21334-30/12/2003).  

 

TrkB expression and cell viability assay  

SH-SY5Y cells (500,000 cells/well into 6-well plates) were differentiated for six days as above 

described. U-87 MG or NHA cells were cultured into 6 well-plate (400,000 or 100,000 

cells/well respectively) for 20 hours in their specific complete medium. Medium was then 

removed, cells were rinsed with serum-free medium, and then incubated (20 h, 37°C) in serum 

free medium. U-87 MG and SH-SY5Y were detached by treatment (5 min, 37°C) with 500 μl 

of trypsin (TrypLE Express, Gibco), while NHA were detached by treatment with 

ReagentPack™ (Lonza), according with the manufacturer’s instructions. Cells were then lysed 

with 0.1 mL of RIPA buffer (150 mM NaCl, 50 mM Tris-HCl, 0.5% NP-40, 0.5% sodium 

deoxycholate, 0.1% SDS, pH 8) containing Tissue Protease Inhibitor Cocktail (Sigma-Aldr ich, 

1:500, v/v) and Tissue Phosphatase inhibitor cocktail (Sigma-Aldrich, 1:100, v/v). The lysates 

were centrifuged (12,000 g, 30 min, 4°C), and analyzed for their protein concentration 

(Bradford, 1976). Aliquots (60 μg) of lysates were fractionated by 10% SDS-PAGE and blotted 

onto PVDF membrane for revealing TrkB. In detail, after protein transfer onto PVDF 

membrane, the membrane was rinsed in T-TBS (130 mM NaCl, 20 mM Tris-HCl, 0.05% Tween 

20, pH 7.4), blocked with T-TBS containing 5% non-fat milk (1 h, 37°C), and finally incubated 
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(overnight, 4°C) with rabbit anti-human TrkB IgG (1: 1,000 dilution in T-TBS containing 3% 

non-fat milk), followed by GAR-HRP IgG (1: 5,000 dilution; 1h, 37°C). After TrkB detection, 

the membrane was extensively washed with T-TBS, and submerged in stripping buffer (100 

mM β-mercaptoethanol, 2% SDS, 62.5 mM Tris-HCl, pH 6.7; 45 min, 50°C). Membrane was 

then incubated (overnight, 4°C) with mouse anti-β-actin IgG (1:1,000 dilution in T-TBS 

containing 0.25% non-fat milk) followed by GAM-HRP IgG (1:10,000 dilution). The 

immunocomplexes were detected by the ECL detection system. In order to assess whether 

BDNF affects astrocytes survival, U-87 MG or NHA were cultured (96 wellplates; 15,000 or 

4000 cells/well respectively) in complete medium for 20 hours. After medium removal, cells 

were rinsed and then incubated (20 h, 37°C) in serum-free medium containing different amounts 

of BDNF (0, 5, 10, 20, or 30 ng/mL). The medium was then removed and cell survival was 

evaluated by MTT assay, as previously described (Spagnuolo et al., 2015, Valiante et al., 2015). 

The data were expressed as viability percentage, assuming the absorbance value from untreated 

cells as 100%.  

 

BDNF effect on cholesterol efflux  

Basal cellular cholesterol efflux from astrocytes was measured essentially according to 

Spagnuolo et al. (2014 a). In detail, NHA (24 well-plates; 18,000 cells/well) or U-87 MG (96 

well-plates; 15,000 cells/well) were cultured in their specific complete medium for 20 hours. 

After medium removal, cells were rinsed with serum free medium, and labeled by incubation 

(20 h, 37°C) with [1α,2α-3H]- Cholesterol (52.5 Ci/mmol; 0.026 μCi/well) in DMEM (U-87 

MG) containing 0.5% FBS, 100 IU penicillin/mL, 100 μg streptomycin/mL or in AGM medium 

(NHA), in presence of different amounts of BDNF (0, 5, 10 or 20 ng/mL). The medium was 

removed, cells were rinsed twice, and then incubated in serum-free medium containing 0.2% 

BSA. Media samples were collected after 5 hours, and cleared of any cellular debris by 

centrifugation at 400 g for 5 min. The cells were extensively washed, lysed with 0.1 M NaOH, 

and finally centrifuged at 12,000 g for 30 min. Aliquots (70 μL) of supernatants and lysates 

were then analysed by scintillation counting, and the amount of cholesterol effluxed to the 

medium was calculated as a percentage of total radioactivity in the cell lysates and medium. 

Experiments were routinely performed in triplicate and repeated three times. 

 

RNA isolation, retrotranscription and quantitative PCR (qPCR) analysis  

NHA (100,000 cells/well) or U-87 MG (400,000 cells/well) were seeded into 6 well-plate in 

their specific complete medium, and cultured for 20 hours. After medium removal, cells were 
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rinsed, and incubated (0, 1 or 24 h, 37°C) in serum free medium containing 10 ng/mL of BDNF. 

SH-SY5Y were seeded in low-serum medium into a 6-well plate (500,000 cells/well), as above 

described, and cultured for six days in RA-supplemented medium. After removal of the culture 

medium, the cells were incubated (20 h, 37°C) in serum-free DMEM/F12 containing 0.2% 

BSA, 100 IU/mL penicillin, 100 μg/mL streptomycin, 2 mM L-glutamine, and different 

amounts of cholesterol (0, 1.5, or 4.5 μM). At the end of each treatment, total cellular RNA was 

isolated using Trizol Reagent (Invitrogen) according to the manufacturer’s instructions. The 

concentration and the purity of the RNA sample were assessed using NanoDrop® 1000 

(Thermo Scientific). For the ApoE and ABCA1 gene expression analysis in U-87 MG and NHA 

cells, l μg of RNA was reverse transcribed into cDNA using SuperScript III reverse 

transcriptase (Invitrogen). For BDNF expression analysis in SH-SY5Y, we used a couple of 

primers both designed in the CDS containing exon 9. For this reason, a DNase treatment was 

performed accordingly with the manufacturer’s instructions, before cDNA synthesis to 

efficiently remove contaminating genomic DNA from the total RNA. For BDNF gene 

expression analysis, l.5 μg of RNA was reverse transcribed into cDNA using SuperScript III 

reverse transcriptase (Invitrogen). qPCR was performed in technical duplicate using the SYBR 

green method and an Applied Biosystems 7500 System. The reaction mixture contained 20 ng 

of cDNA template for ApoE and ABCA1 genes or 75 ng of cDNA template for BDNF gene. 

The reaction mixture contained 400 nM of each forward and reverse primer in a final volume 

of 15 μL for the analysis of ApoE and ABCA1 in U-87 MG and for analysis of BDNF and 

HMGCR in SH-SY5Y. For the gene expression analysis in NHA cells, the qPCR reaction was 

optimized using a different couple of primers for ApoE (indicated by the subscript in the 

Supplementary Table 1) and by a reaction mixture containing 400 nM of each forward and 

reverse primer for ABCA1 and ApoE, and 600 nM of each forward and reverse primer for the 

reference gene hypoxanthine phosphoribosyltransferase 1 (HPRT1) in a final volume of 15 μL. 

The PCR cycle parameters included a denaturation step (95°C for 10 minutes) followed by 40 

cycles of amplification and quantification (95°C for 35 seconds, 60°C for 1 minute). Relative 

gene expression levels were normalized to HPRT1 and calculated by the 2^ – ΔΔCt method. 

The sequences of the primers used are reported in Supplementary Table 1. The results from 

independent biological replicates in triplicate are expressed as mean ± SEM. Statistical analysis 

of the qPCR data was carried out using a two-tailed t test (Prism 6 software) with a p-value cut-

off of 0.05. 
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ApoE secretion by astrocyte 

NHA or U-87 MG were seeded into 6 well-plate (100,000 or 400,000 cells/well respective ly) 

in complete AGM medium or DMEM, respectively, and cultured for 20 hours. After medium 

removal, cells were rinsed, and incubated (24 h, 37°C) in serum free medium containing 

different amounts of BDNF (0, 5, 10, or 20 ng/mL). At the end of incubation, the cells were 

extensively washed with serum free medium, detached and lysed with RIPA buffer as above 

described, and analyzed for their protein concentration (Bradford, 1976). Media samples were 

collected, supplemented with Tissue Protease Inhibitor Cocktail (Sigma-Aldrich, 1:500, v/v), 

cleared of any cellular debris by centrifugation (400 g, 10 min), and finally immunoprecipitated 

(overnight, 4°C) with 1 μg of goat anti-human ApoE (NHA) or with 1 μg of mouse anti-human 

ApoE (U-87 MG). Twenty μl of protein G Plus Agarose Suspension were added to each sample, 

and a further incubation (3 h, 4°C) was carried out. Immunoprecipitates were collected by 

centrifugation (10 min, 300 g), washed with TBS (130 mM NaCl, 20 mM Tris-HCl, pH 7.4) 

containing 0.05% SDS, fractionated by 12.5% SDS-PAGE and finally blotted onto PVDF 

membrane for revealing ApoE. After blocking with T-TBS containing 5% non-fat milk (1 h, 

37°C), the membrane was incubated (overnight, 4°C) with goat anti-human ApoE IgG (U-87 

MG; 1: 500 dilution in T-TBS containing 0.25% non-fat milk) or with mouse anti-ApoE IgG 

(NHA; 1: 300 dilution in TTBS containing 3% BSA), followed by RAG-HRP IgG (1: 20,000 

dilution; 1h, 37°C) or GAM-HRP IgG (1: 40,000 dilution; 1 h, 37°C) respectively. The 

immunocomplexes were detected by the ECL detection system. Quantitative densitometry of 

the bands was carried out by analyzing digital images of X-ray films exposed to immunosta ined 

membranes. Quantification of the signal was performed by Un- Scan-It gel software (Silk 

Scientific, UT, USA). The intensities of the band was calculated as total pixels, and band 

intensities per mg of cell protein were then calculated. 

 

Analysis of human brain homogenates by Western Blotting  

Postmortem brain tissues from one healthy subject, four AD patients, and one subject affected 

by SCA17 were homogenized in ice cold RIPA buffer (1:7, w/v) containing Tissue Protease 

Inhibitor Cocktail (1:500, v/v) and Tissue Phosphatase inhibitor cocktail (1:100, v/v). 

Homogenates were centrifuged (14,000 g, 45 min, 4°C) and protein concentration of 

supernatants was measured (Bradford, 1976). Aliquots (30 μg) of homogenates from each 

sample were processed by 15% SDS-PAGE and western blotting for titrating BDNF and ApoE. 

In particular, after blocking with T-TBS containing 5% non-fat milk (1 h, 37°C), the membrane 

was incubated with rabbit anti-BDNF IgG (Santa Cruz Biotechnology; 1: 750 dilution in T-
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TBS containing 0.25% non-fat milk; overnight, 4°C) followed by GAR-HRP IgG (1: 95,000 

dilution; 1 h, 37°C), or with goat anti-ApoE IgG (1:1,000 dilution in T-TBS containing 0.25% 

non-fat milk; overnight, 4°C) followed by RAG-HRP IgG (1: 18,000 dilution; 1 h, 37°C). The 

immunocomplexes were detected by the ECL detection system, and densitometric analysis of 

the signal was carried out. After BDNF or ApoE detection, the membrane was extensive ly 

washed with T-TBS, and submerged in stripping buffer (45 min, 50°C) for reprobing with anti-

β-actin. After washing with T-TBS, the membrane was incubated (1 h, 37°C) with mouse anti-

β-actin IgG (1:1000 dilution), followed by GAM-HRP IgG (1:10,000 dilution; 1 h, 37°C).  

 

Extracellular signal-regulated kinase (Erk) 1 and 2 pathway analysis 

NHA (100,000 cells/well) or U-87 MG (400,000 cells/well) were seeded into 6 well-plate in 

their specific complete medium, and cultured for 20 hours. After medium removal, cells were 

rinsed with serum-free medium, and incubated (30, 60, or 120 min, 37°C) in the presence or 

absence of 10 ng/mL BDNF. At the end of incubation, cells were treated as above described, 

and aliquots (40 μg) of lysates were fractionated by electrophoresis on 10% SDS-PAGE. After 

electrophoresis, proteins were blotted onto PVDF membrane, and blocking was performed with 

T-TBS containing 5% non-fat milk (1 h, 7°C). p-Erk 1 and 2 were revealed by incubation 

(overnight, 4°C) with anti-p-Erk IgG (Cell Signaling, MA, USA, 1:1,000 dilution in T-TBS 

containing 3% BSA), followed by GAR-HRP IgG (1:30,000 dilution in T-TBS containing 3% 

non-fat milk; 1 h, 37°C). After p-Erk detection, the membrane was extensively washed with T-

TBS, and submerged in stripping buffer (45 min, 50°C). Erk1/2 was revealed by incubation 

(overnight, 4°C) with rabbit anti-Erk1/2 (Cell Signaling, MA, USA, 1:2,000 in T-TBS 

containing 3% BSA) followed by RAG-HRP IgG (1: 120,000 dilution in T-TBS containing 3% 

non-fat milk; 1h, 37°C). After further stripping, loading control was carried out by incubating 

the membranes (overnight, 4°C) with mouse anti- β-actin IgG (1:1,000 dilution in T-TBS 

containing 0.25% non-fat milk) followed by GAM-HRP IgG (1:10,000 dilution). All the above 

immunocomplexes were detected by the ECL detection system. Quantification of signals was 

carried out by Un-Scan-It gel software (Silk Scientific, UT, USA).  

 

Microarray Experiment Analysis  

BDNF stimulation of differentiated SH-SY5Y cells, RNA extraction and labeling, and 

microarray analysis were essentially performed as reported in Aliperti and Donizetti (2016). 

Briefly, SH-SY5Y cells were differentiated by decreasing FBS concentration from 15 to 1.5% 

and adding 10 μM of RA for 6 days (the medium was refreshed every 2 days). After 6 days of 
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differentiation, the medium containing 1.5% FBS and RA was removed and substituted with a 

medium without FBS for two groups of cells. One of these groups was used as a control for the 

gene expression analysis, whereas the second group was treated with 10 ng/mL of BDNF for 

24 h. RNA extracted from biological duplicate samples was used for microarray experiments. 

The labeled cRNA was hybridized for 17 h at 65°C on an Agilent SurePrint G3 8 × 60K custom 

lncRNA expression array (Agilent Technologies) that contains probes for 17,535 randomly 

chosen protein-coding transcripts. After hybridization, the slide was washed according to 

Agilent protocols and scanned using a High-Resolution Microarray C Scanner (Agilent 

Technologies). The image file was processed using Agilent Feature Extraction software 

(v10.7.3). The microarray grid was correctly placed, and outlier pixels (which were rejected) 

and inlier pixels were identified. Normalization was performed according to the Quantile 

method. qPCR validation for HMGCR gene was performed using biological replicates in 

triplicate as reported in the previous section. 

 

BDNF effect on cholesterol incorporation 

The ApoE-dependent internalization of cholesterol into differentiated SH-SY5Y was carried 

out essentially according to Spagnuolo et al. (2014 a). In detail, cells were seeded in low-serum 

medium (50,000 cells per well) into 24-well plate, as above described, and cultured for six days 

in presence of RA. After medium removal, cells were rinsed with DMEM, and incubated (3 or 

24 h, 37°C) in serumfree DMEM/F12 containing 0.2% BSA, 100 IU/mL penicillin, 100 μg/mL 

streptomycin, 2 mM Lglutamine, and different amounts of BDNF (0, 5, or 10 ng/ml). Cells 

were then washed with DMEM/F12, and further incubated (3 h, 37°C) in DMEM/F12 

containing 0.2% BSA, 100 IU/mL penicillin, 100 μg/mL streptomycin, 2 mM L-glutamine, 

labeled proteoliposome (ApoE final concentration 30 nM; cholesterol final concentration 60 

nM), and unlabeled liposome (cholesterol final concentration 300 nM). At the end of 

incubation, media samples were collected, and cleared of any cellular debris by centrifuga tion 

at 400 g for 5 min. The cells were extensively washed with DMEM, lysed with 0.1 M NaOH, 

and finally centrifuged at 12,000 g for 30 min. Aliquots (170 μl) of supernatants and lysates 

were then analysed by scintillation counting, for evaluating the amount of labeled cholesterol 

incorporated by cells. Protein concentration in cell lysates was measured by Bradford assay. 

The amount of cholesterol internalized was calculated as d.p.m in lysates per mg cell protein. 

Experiments were routinely performed in triplicate and repeated three times. Liposomes 

containing ApoE⁄lecithin⁄cholesterol molar ratio of 1 : 100 : 2 were prepared by the cholate 

dialysis procedure (Spagnuolo et al., 2014 a). [1α,2α-3H]-Cholesterol (specific activity 102.4 
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x106 dpm x nmol-1) in proteoliposome containing 10 μM ApoE was used. An unlabeled 

liposome, prepared without apolipoprotein, was used to evaluate non-apolipoprotein-mediated 

uptake of cholesterol. In detail, nonspecific internalization was determined in the presence of a 

5-fold excess of the unlabelled cholesterol. 

 

BDNF effect on ApoE binding to neurons  

The effect of BDNF on the interaction between ApoE and neurons was evaluated on 

differentiated SH-SY5Y, essentially according to Maresca et al. (2015). As described above, 

SH-SY5Y were seeded into a 96-well plate (10,000 cells/well), and differentiated for six days 

in RA-supplemented medium. After removal of the culture medium, the cells were incubated 

(3 or 24 h, 37°C) in serum-free DMEM/F12 containing 0.2% BSA, 100 IU/mL penicillin, 100 

μg/mL streptomycin, 2 mM L-glutamine, and different amounts of BDNF (0, 5, 10, 20, or 50 

ng/ml). Cells were then washed with PBS, and fixed by incubation (30 min, 4°C) with 0.3% 

glutaraldheyde in PBS. After removing glutaraldheyde, the wells were gentle washed with PBS, 

and finally blocked with PBS containing 1% BSA (overnight, 4°C). After extensive washing, 

the wells were incubated (90 min, 37°C) with 0.7 μM ApoE3. The amount of ApoE bound to 

cells was measured by treatment with goat anti-ApoE IgG (1: 1,000 dilution in PBS; 1 h, 37°C), 

followed by RAG-HRP IgG (1: 70,000 dilution in PBS; 1 h, 37°C), and color development at 

492 nm. Absorbance values were converted to the percent of the value obtained from untreated 

cells (assumed as 100% of ApoE binding). 

 

BDNF effect on LXR-beta expression in neurons 

The effect of BDNF on LXR-beta expression was evaluated on differentiated SH-SY5Y 

exposed to cholesterol. As described above, SH-SY5Y were seeded into a 12-well plate 

(150,000 cells/well), and cultured for six days in RA-supplemented medium. After removal of 

the culture medium, the cells were incubated (3 or 24 h, 37°C) in serum-free DMEM/F12 

containing 0.2% BSA, 100 IU/mL penicillin, 100 μg/mL streptomycin, 2 mM L-glutamine, and 

different amounts of BDNF (0, 5, or 10 ng/ml). Cells were then washed with DMEM/F12, and 

further incubated (3 h, 37°C) as for the cholesterol internalization assay. At the end of 

incubation, media samples were discarded, while cells were extensively washed with DMEM, 

and lysed with 0.07 mL of RIPA buffer containing the protease (1:500, v/v) and the phosphatase 

(1:100, v/v) inhibitor cocktails. The lysates were centrifuged (12,000 g, 30 min, 4°C), and 

analyzed for their protein concentration. Aliquots (30 μg) of lysates were fractionated by 10% 

SDS-PAGE and blotted onto PVDF membrane. The membrane was blocked as above reported 
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(1 h, 37°C), and then incubated (overnight, 4°C) with rabbit anti-human LXR-beta IgG 

(GeneTex, 1: 1,000 dilution in 0.25% non-fat milk), followed by GAR-HRP IgG (1: 15,000 

dilution; 1h, 37°C). The immunocomplexes were detected by the ECL detection system. The 

membrane was then stripped for reprobing with mouse anti-β-actin IgG (1:1000 dilutio n), 

followed by GAM-HRP IgG (1:10,000 dilution; 1 h, 37°C). The immunocomplexes were 

detected by the ECL detection system, and densitometric analysis of the signal was carried out.  

 

Apoptosis analysis 

SH-SY5Y were seeded in low-serum medium into a 12-well plate (150,000 cells/well), as above 

described, and cultured for six days in RA-supplemented medium. After removal of the culture 

medium, the cells were incubated (20 h, 37°C) in serum-free DMEM/F12 containing 0.2% 

BSA, 100 IU/mL penicillin, 100 μg/mL streptomycin, 2 mM L-glutamine, and different 

amounts of cholesterol (0, 5, 10, or 15 μM) in the absence or presence of 10 ng/mL BDNF. At 

the end of incubation, media samples were discarded, while cells were extensively washed with 

DMEM, and lysed with 0.07 mL of RIPA buffer containing the protease (1:500, v/v) and the 

phosphatase (1:100, v/v) inhibitor cocktails. After centrifugation (12,000 g, 30 min, 4°C), 

aliquots of lysate (45 or 20 μg) were fractionated by 12.5% SDS-PAGE and blotted onto PVDF 

membrane for detecting native or cleaved caspase 3 or PARP. The membrane was blocked (1 

h, 37°C), and then incubated (overnight, 4°C) with rabbit anti- Cleaved Caspase-3 (Asp175) 

(5A1E) IgG (Cell Signalling, 1: 1,000 dilution in 3% BSA), followed by GAR-HRP IgG (1: 

6,000 dilution in 3% non-fat milk; 1h, 37°C), or with rabbit anti-Caspase 3 (Immunologica l 

Science, AB-83625, 1: 500 dilution in 3% BSA) followed by GAR-HRP IgG (1: 50,000 dilut ion 

in 3% non-fat milk; 1h, 37°C), or with rabbit anti-human PARP IgG (Santa Cruz, 1: 750 dilut ion 

in 3% BSA), followed by GAR-HRP IgG (1: 4,000 dilution in 5% non-fat milk; 1h, 37°C). The 

immunocomplexes were detected by the ECL detection system. The membrane was then 

stripped for reprobing with mouse anti-β-actin IgG (1:1,000 dilution), followed by GAM-HRP 

IgG (1:10,000 dilution; 1 h, 37°C). The immunocomplexes were detected by the ECL detection 

system, and densitometric analysis of the signal was carried out. 

 

Cholesterol effect on BDNF synthesis 

SH-SY5Y were seeded in low-serum medium into a 6-well plate (500,000 cells/well), as above 

described, and cultured for six days in RA-supplemented medium. After removal of the culture 

medium, the cells were incubated (20 h, 37°C) in serum-free DMEM/F12 containing 0.2% 

BSA, 100 IU/mL penicillin, 100 μg/mL streptomycin, 2 mM L-glutamine, and different 
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amounts of cholesterol (0, 1.5, or 4.5μM). At the end of treatment, media samples were 

collected, and cleared of any cellular debris by centrifugation (400 g, 10 min). Cells were 

extensively washed with DMEM, detached by treatment with trypsin, washed with ice-cold 

PBS, and finally lysed with 0.1mL of RIPA buffer supplemented with the protease (1: 500, v/v) 

and the phosphatase (1: 100, v/v) inhibitor cocktails. The lysates were centrifuged (12,000 g, 

30 min, 4°C) and then analyzed for their protein concentration (Bradford, 1976). BDNF 

concentration in cell lysates was assessed by both immunoblotting and sandwich ELISA. For 

western blotting analysis, aliquots (50 μg) of cell lysates were fractionated by electrophores is 

on 15% polyacrylamide gel, under denaturing and reducing conditions, and blotted onto PVDF 

membrane for revealing BDNF. After blocking, BDNF was revealed by incubation (overnight, 

4°C) with rabbit anti-human BDNF IgG (Immunological Sciences, distributed by Società 

Italiana Chimici; 1: 500 dilution in T-TBS containing 0.25% non-fat milk), followed by GAR-

HRP IgG (1: 80,000 dilution; 1h, 37°C). After BDNF detection, the membrane was extensive ly 

washed with T-TBS, stripped and reprobed with anti-β-actin (mouse anti-β-actin IgG 1:500 

dilution, followed by GAM-HRP IgG 1:6,000 dilution; 1 h, 37°C). The immunocomplexes were 

detected by the ECL detection system, and densitometric analysis of the signal was carried out. 

The quantification by ELISA was carried out using the BDNF ELISA kit (Immunologica l 

Sciences, distributed by Società Italiana Chimici, Rome, Italy), essentially according to the 

manufacturer instructions. Each sample was diluted 1:100, 1:300, 1:1000 in the assay, and data 

were reported as pg of BDNF per mg of cell proteins. 

 

Statistical analysis 

Samples were processed in triplicate in all experiments, and data were expressed as mean value 

± SEM. The program “GraphPad Prism 5.01” (GraphPad Software, San Diego, CA) was used 

to perform linear regression analysis, Student’s t-test, for comparing two groups of data, and 

one-way ANOVA, followed by Tukey’s test, for multiple group comparisons. P < 0.05 was set 

as indicating significance. 

 

Results 

BDNF effect on cholesterol efflux from astrocytes 

BDNF was previously reported to act on astrocytes essentially through the truncated isoform 

of TrkBreceptor, thus regulating calcium entry (Rose et al., 2003), morphology and cytoskeletal 

changes (Ohira, 2005; Ohira et al., 2007), activity and trafficking of GABA transporter-1 (Vaz 

et al., 2011), or glycine uptake (Aroeira et al., 2015). In order to verify the expression of the 
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full length (TrkB-FL) and truncated (TrkB-T) isoform of TrkB-receptor in normal human 

astrocytes (NHA) and astrocyte cell line U-87 MG, we performed a preliminary Western 

Blotting of cell lysates. As shown in Supplementary Figure 1 A, U-87 MG and NHA 

predominantly expressed the truncated form (95 kDa) of TrkB compared to the full length (145 

kDa), while in differentiated neurons SH-SY5Y a predominance of TrkB-FL on TrkB-T was 

found. Further, a MTT assay was performed in order to assess BDNF effect on astrocyte 

survival and/or proliferation. The treatment of NHA or U-87 MG with different concentrations 

of BDNF (5-30 ng/ml) for 24 hours did not affect cell viability (Supplementary Figure 1 B). In 

order to evaluate the effect of BDNF on cholesterol efflux from astrocytes, NHA or U-87 MG 

were labeled (20 hours) with [3H] cholesterol in the presence of different amounts of BDNF 

(0, 5, 10 or 20 ng/ml). After extensive washing, the cells were incubated (5 hours) in serum-

free medium. At the end of incubation, the amount of cholesterol effluxed to the medium was 

evaluated by scintillation counting as reported in methods. As shown in Figure 1, BDNF 

stimulated cholesterol efflux from astrocytes in a dose dependent manner. Indeed, after 

treatment with 5, 10, or 20 ng/ml BDNF, the percent of cholesterol effluxed from NHA 

increased of about 15% (p = 0.04), 35% (p = 0.02) or 44% (p = 0.02) (Figure 1) compared to 

untreated cells. Similarly, the percent of cholesterol effluxed from U-87 MG, after treatment 

with BDNF, was about 28% (p = 0.005), 49% (p = 0.005) or 74% (p = 0.02) higher when 

compared to untreated cells (Figure 1). 

 



36 
 

 

Figure 1. BDNF effect on cholesterol efflux from astrocyte cell models.  Normal human astrocyte 
(NHA) (top) or U-87 MG (bottom) were cultured in their specific complete medium for 20 hours. After 
medium removal, cells were labeled by incubation (20 h) with [3H]-Cholesterol (0.026 μCi/well) in 
AGM medium (NHA) or in DMEM containing 0.5% FBS (U-87 MG), in the presence of BDNF (0, 5, 10 
or 20 ng/ml). After medium removal, cells were incubated (5 h) in serum-free medium. Aliquots of 
supernatants and lysates were then analysed by scintillation counting, and cholesterol effluxed to the 
medium was calculated as percentage of total radioactivity in the cell lysates and medium. Data were 
expressed as mean ± SEM. Significant differences from cells cultured in the absence of treatment (open 
bar; *p < 0.05; **p < 0.01; ***p < 0.001) are indicated. # p < 0.05; ## p < 0.01 (one -way Anova 
followed by Tukey post-test). 

 

BDNF modulates ABCA1 and ApoE expression in astrocyte  

As known, cholesterol efflux is stimulated by the interaction of ApoE with ABC transporters 

(Koldamova et al., 2003; Abildayeva et al., 2006). Therefore we supposed that BDNF might 

promote cholesterol efflux modulating ApoE level and/or ABC transporters expression. In 

order to investigate whether BDNF affects the expression of ABCA1 gene, NHA or U-87 MG 

were incubated (0, 1, or 24 h, 37°C) in serum-free medium containing 10 ng/mL BDNF. After 

treatment, qPCR experiments were performed. BDNF addition significantly increased the 

transcript level of ABCA1 in NHA cells after 24 h (p < 0.05; Figure 2) in agreement with results 

from cholesterol efflux.  
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Figure 2. BDNF effect on ABCA1 expression in cellular models of astrocytes. NHA or U-87 MG  were 
incubated (0, 1, or 24 h) in serum free medium containing 10 ng/mL BDNF. ABCA1 gene expression 
level was normalized to the reference gene hypoxanthine phosphoribosyltransferase 1 (HPRT1) and 
calculated by the 2^ – ΔΔCt method. The results from independent biological replicates in triplicate are 
expressed as mean ± SEM. Statistical analysis of the qPCR data was carried out using a two-tailed t 
test. Significance of difference from time 0 (*, p < 0.05) is shown. 

 

Also, ABCA1 mRNA levels in U-87 MG increased of about 1.8- and 3 fold (p < 0.05) after 1 

and 24 hours, respectively. This result supports the hypothesis that BDNF may regulate the 

expression of this critical transporter involved in cholesterol efflux. We extended the transcript 

level analysis to ApoE as well, which is mainly synthesized by astrocytes in brain (De Mattos 

et al., 2001; Vance and Hayashi, 2010). ApoE transcript level in NHA showed a significant 

increase after 24 h of BDNF treatment (p < 0.01; Figure 3 A). The BDNF-dependent increase 

of ApoE transcript level was confirmed in U-87 MG, both after 1 h and 24 h of treatment with 

BDNF (p < 0.01; Figure 3 A). The effect of BDNF on ApoE secretion by NHA was evaluated 

by analyzing the amount of protein released in the extracellular medium after incubation of 

astrocytes (24 h, 37°C) in serum-free medium containing different amounts of BDNF (0, 5, 10, 

or 20 ng/ml). At the end of incubation, cell culture supernatants were immunoprecipitated by 

anti-human ApoE and then immunostained, as described in Methods, for measuring protein 

level. We found that the amount of ApoE in the supernatants collected after incubation with 5, 

10 or 20 ng/mL BDNF was about 4 (p < 0.001), 5 (p < 0.001) or 7 fold (p < 0.001) higher than 

in those collected from untreated cells (Figure 3 B). Further, a significant dose-dependent 

increase of ApoE level was detected in supernatants from U-87 MG treated with 5, 10 or 20 

ng/ml BDNF, as the amount of ApoE was about 1.4 (p < 0.05), 1.8 (p < 0.001) or 2.7 fold (p < 

0.001) higher in the supernatants collected from treated cells (Figure 3 B). These results suggest 

that BDNF promotes ApoE synthesis and secretion by astrocytes.  
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Figure 3. BDNF effect on ApoE expression in cellular models of astrocytes.  Panel A. NHA or U-87 
MG were incubated (0, 1, or 24 h) in serum free medium containing 10 ng/mL BDNF. ApoE gene 
expression level was normalized to the reference gene hypoxanthine phosphoribosyltransferase 1 
(HPRT1) and calculated by the 2^ – ΔΔCt method. The results from independent biological replicates 
in triplicate are expressed as mean ± SEM. Statistical analysis of the qPCR data was carried out using 
a two-tailed t test. Significance of difference from time 0 (**, p < 0.01) is shown. Panel B. NHA or U-
87 MG were incubated (24 h) in serum free medium containing different amounts of BDNF (0, 5, 10, or 
20 ng/mL). Media samples were immunoprecipitated with anti-human ApoE, and analysed by SDS-
PAGE and Western Blotting. Representative Western blotting is shown on the top. Quantitative 
densitometry of the bands was performed, and band intensities per mg of cell protein is shown (on the 
bottom). Values are reported as means from three independent experiments± SEM. Significance of 
difference from cells cultured in the absence of treatment (open bar; *, p < 0.05;***, p< 0.001) is 
shown. ###, p < 0.001 (one-way Anova followed by Tukey’s post test). 

 

Also, the levels of both BDNF and ApoE were evaluated ex vivo in brain cortex samples of 

different human subjects (N = 6; one healthy, four AD, and one SCA17) by Western blotting 

(Figure 4). Interestingly, a positive correlation between the levels of ApoE and BDNF was 

found (r = 0.962, p = 0.002, Western blotting; r = 0.976). This result from human samples 

analysed ex vivo, although within the limits of a correlation, shows a possible link between 

cerebral concentration of BDNF and ApoE, and supports the results obtained from analyses 

performed with in vitro cell cultures. 
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Figure 4. Correlation between BDNF and ApoE in human prefrontal cortex.  Aliquots (30 μg) of 
homogenates from postmortem brain tissues (prefrontal cortex) from one healthy subject, four AD 
patients, and one subject affected by SCA17 were processed by 15% SDS-PAGE and Western blotting 
for titrating BDNF and ApoE. Quantitative densitometry of BDNF, ApoE, and β-actin was carried out. 
BDNF or ApoE concentrations were calculated relative to β-actin level. Representative Western blots 
are shown on the top. The statistical program Graph Pad Prism 5.01 performed the linear regression 
analysis (shown below), and the calculation of Pearson’s r (shown below; r = 0.962; p = 0.002).  

 

BDNF effect on Erk 1/2 pathway in astrocytes 

BDNF was previously reported to stimulate the activation of Erk1/2 pathway in mice astrocytes, 

inducing the expression of the dopamine receptor D5 (Brito et al., 2004), as well as in cortical 

rat astrocytes modulating GABA Transporter-1 trafficking (Vaz et al., 2011). In order to 

investigate whether BDNF also provides a rise in the degree of phosphorylation of Erk1/2 in 

the astrocyte cell models here used, NHA or U-87 MG cells were incubated (30, 60, or 120 

min) with BDNF and the activation of the Erk 1/2 pathway, namely the ratio p-Erk/Erk, was 

evaluated by Western blotting. BDNF treatment of NHA for 30, 60, or 120 min was associated 

with an increase of both p-Erk1/Erk1 ratio (about 1.4-, 1.5-, or 1.6-fold, respectively; p < 0.001; 

Figure 5 A, B) and pErk2/Erk2 ratio (about 1.3-, 1.5-, or 1.7-fold, respectively; p < 0.001; 

Figure 5 A, B). As shown in Figure 5 C, a slight increase of total Erk1 amount was found only 

after 30 min of BDNF treatment (p< 0.05), while total Erk2 level was not affected by the same 

treatment.  
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Figure 5. BDNF-induced changes in the Erk1 and Erk2 pathway in NHA. NHA  were incubated (30, 
60, or 120 min) in the absence (open bar) or presence of 10 ng/mL BDNF (black bar). Aliquots (30 μg) 
of cell lysates were then processed by SDS-PAGE and Western Blotting. Representative western blots 
are shown (Panel A). Quantitative densitometry of Erk 1 and 2, p-Erk 1 and 2 and β-actin was carried 
out. The degree of activation of Erk 1 and 2 was evaluated by measuring p-Erk/Erk ratio (Panel B). The 
level of Erk 1 and Erk2 was measured relative to β-actin level (Panel C). Data are reported as means ± 
SEM. Significance of difference from cells cultured in the absence of treatment (open bar; *p<0.05, 
***p<0.001) is shown. §, p < 0.05; §§, p< 0.01; §§§, p < 0.001 (one-way Anova followed by Tukey’s 
post test). 

 

Similarly, the p-Erk1/Erk1 ratio, in U-87 MG, increased of about 1.4-(p < 0.01), 2.0- (p < 

0.001), or 1.5-fold (p < 0.001) after 30, 60, or 120 min of BDNF treatment, respectively (Figure 

6 A, B). P-Erk2/Erk2 ratio increased of about 2.3-, 1.9-, or 1.2-fold (p < 0.001) after 30, 60, or 

120 min of BDNF treatment, respectively. As shown in Figure 6 C, total Erk1 amount was not 

affected by BDNF treatment, while Erk2 amount decreased (p < 0.001) after 30 min of 

incubation with BDNF. 
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Figure 6. BDNF-induced changes in the Erk1 and Erk2 pathway in U-87 MG cells. U-87 MG were 
incubated (30, 60, or 120 min) in the absence (open bar) or presence of 10 ng/mL BDNF (black bar). 
Aliquots (40 μg) of cell lysates were then processed by 10% SDS-PAGE and Western Blotting. 
Representative western blots are shown (Panel A). Quantitative densitometry of Erk 1 and 2, p-Erk 1,2 
and β-actin was carried out. The degree of activation of Erk 1 and 2 was evaluated by measuring p-
Erk/Erk ratio (Panel B). The level of Erk 1 and Erk2 was measured relative to β-actin level (Panel C). 
Data are reported as means ± SEM. Significance of difference from cells cultured in the absence of 
treatment (open bar; ***p<0.001) is shown. §§§, p < 0.001 (one-way Anova followed by Tukey’s post 
test). 

 

BDNF effect on cholesterol metabolism and trafficking genes in neurons 

Given the influence of BDNF on the amount of cholesterol released by glial cells, we then 

evaluated the hypothesis that BDNF might regulate neuronal genes involved in cholesterol 

metabolism. To this aim, we performed a preliminary analysis of our unpublished microarray 

data. In particular, the microarray was carried out on RNA extracted from RA-differentiated 

SH-SY5Y cells that were stimulated with 10 ng/mL BDNF for 24 h as reported in Aliperti and 

Donizetti (2016). Total RNA extracted from these BDNF-treated cells was analyzed by 

microarray experiments using not treated cells as a control. The array contained probes for 

17,535 randomly chosen protein-coding transcripts, including genes involved in cholesterol 

metabolism and trafficking. Changes in their transcript level was reported in Supplementary 

Table 2, where it is worthy of note that HMGCR, the gene encoding for the rate-limiting enzyme 

of cholesterol synthesis (namely 3-hydroxy-3-methylglutaryl coenzyme A reductase), showed 
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a fold change above 2. The BDNF-induced upregulation of HMGCR gene was validated by 

qPCR experiments that confirmed a transcript level increase (2.1 fold change; p < 0.05), as 

reported in Figure 7. This result, in agreement with data from Suzuki et al. (2007), confirms 

that BDNF might increase endogenous cholesterol synthesis by regulating gene expression of 

HMGCR. 

 

Figure 7. BDNF influence on HMGCR expression in differentiated SH-SY5Y neurons. Differentiated 

SH-SY5Y cells were incubated (24 h) in the absence or presence of 10 ng/mL of BDNF. RNA extracted 

from biological duplicate samples was used for microarray experiments. qPCR validation for HMGCR 

gene was performed using biological replicates in triplicate as reported in the previous section. 

Significant differences from untreated cells (open bar) is indicated (*p < 0.05). 

 

BDNF effect on the ApoE-mediated cholesterol incorporation 

As above mentioned, adult neurons mainly rely on the import of cholesterol released from 

astrocytes (Ikonen, 2008). In order to investigate whether BDNF influences cholesterol 

internalization in neurons, differentiated SH-SY5Y neurons were incubated (3 or 24 h) in 

serum-free DMEM containing different amounts of BDNF. At the end of incubation, 

cholesterol uptake was evaluated, by further incubating cells for 3 h with a labeled 

proteoliposome with [3H]-cholesterol as tracer. The uptake of extracellular cholesterol was 

significantly reduced after 3 hours incubation with BDNF (about 20%, p < 0.05, Figure 8 A). 

When the treatment with BDNF was carried out for 24 h, the internalization of extracellular 

cholesterol by neurons was reduced of about 30% or 41% by 5 or 10 ng/ml BDNF respectively 

(p < 0.001; Figure 8 B). The cholesterol uptake by neurons is mediated by the binding of ApoE 

to specific cell surface receptors (Pfrieger and Ungerer, 2011). Therefore, we investigated 

whether the ability of neurons to bind ApoE is affected by BDNF, as this binding might reflect 

changes in the expression of ApoE receptors following incubation with the neurotrophin. 

Differentiated SH-SY5Y were incubated (3 or 24 h) in serum-free DMEM/F12 containing 
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different amounts of BDNF (0-50 ng/ml). Cells were then fixed, incubated with 0.7 μM ApoE, 

and the binding of ApoE to the cells was then evaluated by ELISA. BDNF significantly reduces 

the ability of cells to interact with ApoE. Indeed, ApoE binding was reduced of about 20 or 

40% (p <0.05; Figure 8 C) after 3 hours treatment with 20 or 50 ng/ml BDNF, respectively. 

Further, after 24 h incubation with 5, 10, 20 or 50 ng/ml BDNF, ApoE binding to differentiated 

neurons was reduced of about 21, 28, 32 or 36% respectively (p <0.05; Figure 8 D), thus 

suggesting that BDNF might modulate the exposure of ApoE receptors on cell surface.  

 

 

Figure 8. BDNF effect on cholesterol uptake or ApoE binding to neurons.  Panel A-B. Differentiated 
SH-SY5Y were incubated for 3 (Panel A) or 24 h (Panel B) in serum-free DMEM/F12 containing 
different amounts of BDNF (0, 5, or 10 ng/mL). At the end of incubation with BDNF, cells were rinsed 
and the assay of internalization was performed by further incubating cells (3h) with labeled 
proteoliposome (ApoE final concentration 30 nM; cholesterol final concentration 60 nM), and 
unlabeled liposome (cholesterol final concentration 300 nM). After incubation, the cells were lysed for 
measurement of their radioactivity and protein concentration. The amount of cholesterol internalized 
was measured as dpm per mg of cell protein. Panel C-D. Differentiated SH-SY5Y were incubated for 3 
(Panel C) or 24 h (Panel D) with different amounts of BDNF (0-50 ng/mL). Cells were fixed and then 
incubated with 0.7 μM ApoE. The amount of ApoE bound to cells was measured by incubation with goat 
anti-ApoE IgG, followed by RAG-HRP and color development at 492 nm. Data are reported as percent 
of the value obtained by incubation in the absence of BDNF (assumed as 100% of ApoE binding). The 
samples were analysed in triplicate, and the data are expressed as means ± SEM. Significant differences 
from untreated cells (open bar) are indicated (*p < 0.05; **p < 0.01; ***p < 0.001).  

 

Further, in the attempt of unraveling the mechanism underlying BDNF-dependent reduction of 

cholesterol uptake, we investigated whether the neurotrophin affects LXR-beta expression in 
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differentiated neurons exposed to cholesterol. In fact LXR is a key regulator of neuronal content 

of cholesterol, and acts by downregulating lipoprotein receptor cell surface expression (Willy 

et al., 1995; Mouzat et al., 2016; Courtney and Landreth, 2016). As shown in Figure 9, a dose-

dependent increase of LXR-beta expression was observed after 3 (p < 0.05) or 24 hours (p < 

0.001) incubation with BDNF. In particular, LXR-beta level was significantly higher in cells 

incubated for 3 or 24 hours with 5 (about 20%, p < 0.05, or 60%, p < 0.001, respectively) or 10 

ng/mL BDNF (about 33% or 95%, p < 0.01, respectively) compared to untreated neurons. These 

results strongly support the hypothesis that BDNF reduces neurons uptake of cholesterol by 

modulating LXR expression. 

 

 

Figure 9. BDNF effect on LXR-beta expression in neuron. Differentiated SH-SY5Y were incubated (3 
or 24 h) in serum free DMEM/F12 containing different amounts of BDNF (0, 5, or 10 ng/ml). At the end 
of incubation with BDNF cells were rinsed and the assay of internalization was performed by further 
incubating cells (3h) with labeled proteoliposome (ApoE final concentration 30 nM; cholesterol final 
concentration 60 nM), and unlabeled liposome (cholesterol final concentration 300 nM). Aliquots (30 
μg) of cell lysates were then analysed by 10% SDS-PAGE and Western Blotting for revealing LXR-beta. 
Representative Western Blots are shown on the top. Quantitative densitometry was carried out, and LXR 
beta concentrations were calculated relative to β-actin level (on the bottom). The samples were analysed 
in triplicate, and the data are expressed as means ± SEM. Significant differences from untreated cells 
(open bar) are indicated (*p < 0.05; **p < 0.01; ***p < 0.001). #, p < 0.05; ###, p < 0.001 (one-way 
Anova followed by Tukey’s post test). 

 

BDNF effect on cholesterol-induced apoptosis 

Numerous lines of evidence showed that high cholesterol concentration and oxysterols, which 

are formed by auto-oxidation of cholesterol, can induce oxidative stress, inflammation and cell 

apoptosis (Vejux et al., 2008; Lordan et al., 2009). Since our results demonstrated that BDNF 
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reduces the uptake of cholesterol by differentiated neurons, we hypothesized that this action 

might represent a protective mechanism for preventing high cholesterol- induced cell 

dysfunction. To test this hypothesis, we incubated cells (20 h) with different amounts (0, 5, 10 

or 15 μM) of cholesterol, in the absence or presence of 10 ng/mL BDNF. As expected, 

cholesterol treatment induced apoptosis of differentiated SH-SY5Y at any concentration 

assayed, as demonstrated by the increase of cleaved caspase 3 amount (p < 0.001; Figure 10 A, 

black bar). Interestingly, the level of cleaved caspase 3 was significantly lower when the cells 

were incubated with cholesterol in the presence of BDNF compared to cells incubated with 

cholesterol only (p < 0.01; Figure 10 A, grey bar). As shown in Supplementary Figure 2, the 

amount of native caspase 3 was not affected by the treatment. We further investigated whether 

cholesterol treatment affect the integrity of PARP, which is a target of caspase-3 (Kaufmann et 

al., 1993). To this aim, the appearance of the cleaved form (87 kDa) was evaluated, and the 

extent of PARP degradation was calculated by the ratio between the cleaved and the native 

form. Cholesterol treatment produced a decrease of native PARP (117 kDa) and the appearance 

of cleaved form of PARP, at any concentration assayed (p < 0.001; Figure 10 B; black bars), 

thus confirming that cholesterol can promote neuronal apoptosis. The amount of cleaved PARP, 

calculated respect to the native form, was significantly lower when the treatment with 

cholesterol was performed in the presence of BDNF (p < 0.01; Figure 10 B; grey bar) in line 

with the previous results of caspase 3 (Figure 10 A). These results demonstrate that BDNF is 

able to prevent cholesterol- induced apoptosis. 
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Figure 10. BDNF effect on cholesterol-induced apoptosis.  SH-SY5Y cells  were incubated (20 h, 37°C) 
in serum-free DMEM/F12 containing different amounts of cholesterol (0, 5, 10, or 15 μM) in the absence 
(black bar) or presence (grey bar) of 10 ng/mL BDNF. At the end of incubation, aliquots of cell lysates 
were analyzed by 12.5% SDS-PAGE and Western blotting. Representative Western blot is shown on the 
top in each panel. Quantitative densitometry of cleaved caspase 3, native (117 kDa) and cleaved (87 
kDa) PARP and β- actin was carried out and is shown on the bottom of each panel. The extent of PARP 
degradation was calculated as ratio between the cleaved and the native form. Significant differences 
from cells not exposed to cholesterol (open bar) are indicated (**p < 0.01; ***p < 0.001). ##, p < 0.01; 
###, p < 0.001. 

 

Cholesterol stimulates BDNF production 

It was previously reported that toxic concentrations (12-25 μM) of cholesterol impair BDNF 

secretion by undifferentiated SH-SY5Y (Huang et al., 2016). Here we investigated whether 

cholesterol, in a concentration range not affecting cell viability, influences BDNF expression 

and synthesis by differentiated SH-SY5Y neurons. BDNF concentration in cell lysates was 

measured, after 20 h of cholesterol treatment, both by Western blotting and ELISA. The results 
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show that the treatment with 4.5 μM cholesterol stimulates BDNF production (Figure 11 A, p 

< 0.001; Figure 11 B, p < 0.01). The level of BDNF mRNA was assessed by qPCR, and no 

significative change was detected (Figure 11 C). These results show that cholesterol stimula tes 

BDNF synthesis likely affecting post-transcriptional regulation of BDNF expression. Overall 

these findings suggest that cells might increase BDNF production when challenged with 

cholesterol as a protective mechanism to limit a harmful intracellular accumulation of this 

sterol. 

 

 

Figure 11. Cholesterol influence on BDNF synthesis. Differentiated SH-SY5Y cells  were incubated 
(20 h) with different amounts of cholesterol (0, 1.5 or 4.5 μM). At the end of incubation, cells lysates 
were analyzed by 15% SDS-PAGE and Western Blotting (Panel A) or ELISA (Panel B). Panel A. 
Representative Western blot of cell lysates is shown on the left. Quantitative densitometry was carried 
out. BDNF concentrations, calculated relative to β-actin level, are shown on the right. Values are 
reported as means from three independent experiments± SEM. Panel B. BDNF concentration in cell 
lysates was measured by sandwich ELISA. Data are reported as pg of BDNF per mg of cell proteins. 
Panel C. BDNF gene expression level was normalized to the reference gene hypoxanthine 
phosphoribosyltransferase 1 (HPRT1) and calculated by the 2^ – ΔΔCt method. The results from 
independent biological replicates in triplicate are expressed as mean ± SEM. Statistical analysis of the 
qPCR data was carried out using a two-tailed t test. Significance of difference from cells cultured in the 
absence of treatment (open bar; **, p < 0.01; ***, p< 0.001) is shown. §, p < 0.05; §§, p < 0.01 (one-
way Anova followed by Tukey’s post test). 

 

Discussion 

The decrease in BDNF as well as dysregulation of cholesterol balance is increasingly being 

correlated to brain dysfunction and neurodegenerative diseases such as AD (Holsinger et al., 

2000; Siegel and Chauhan, 2000; Peng et al., 2005; Vance, 2012). Thus, a better understand ing 
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of further physiological roles played by BDNF in cholesterol and lipid homeostasis is important 

to unravel the mechanisms underlying neurodegeneration and to elucidate the link between 

cholesterol metabolism and brain physio-pathology. In this paper, we particularly addressed the 

role of BDNF on cholesterol homeostasis, focusing on both the modulation of ApoE expression 

by astrocytes and cholesterol trafficking between astrocytes and neurons. Astrocytes are able 

to respond to BDNF through expressing both full length (TrkB-FL) and truncated (TrkB-T) 

tropomyosin receptor kinase B (TrkB) receptors (Ohira et al., 2005; Aroeira et al., 2015). 

Astrocytes seem to express predominantly the TrkB-T receptors, which are able to mediate 

BDNF-evoked Ca2+ signaling in glia cells and the activation of PLC (Rose et al., 2003). We 

found that the truncated isoform is predominantly expressed over the TrkB-FL receptor in the 

cell models, normal human astrocytes (NHA) and glioblastoma-astrocytoma cell line U-87 MG, 

used in this study. The here presented results show that BDNF treatment stimulates cholesterol 

efflux from astrocytes as well as an increased expression of ABCA1 transporters in these cells. 

Cholesterol efflux is known to be promoted by ApoE, which interacts with ABC transporters 

and also acts as cholesterol acceptor (Koldamova et al., 2003; Abildayeva et al., 2006; Huang 

and Mahley, 2014). The cholesterol transporter ABCA1, in turn, modulates the level of ApoE 

protein and its lipidation state, which are crucial for the apolipoprotein capacity to regulate 

cholesterol metabolism (Tokuda et al., 2000; de Lange, 2004). Interestingly, this work provides 

evidence, for the first time, that BDNF enhances ApoE expression in astrocytes, besides 

ABCA1. On the basis of our results it seems reasonable that the increase in cholesterol efflux, 

observed after BDNF treatment, can be related on the increased expression of ABCA1 and 

ApoE. The BDNF-induced increase in ApoE is a relevant issue and might represent a further 

beneficial effect displayed by this neurotrophin on brain physiology. In fact, besides to 

cholesterol/lipid homeostasis, ApoE is far known to modulate CNS multiple mechanis t ic 

pathways that collectively affect cognition, including synaptic function, glucose metabolism, 

neurogenesis, tau phosphorylation, neuroinflammation, amyloid beta metabolism and  

aggregation (Huang and Mahley, 2014). Moreover, ApoE is also required for maintenance of 

the neural stem or progenitor cell pool in the adult dentate gyrus region of the hippocampus 

(Yang et al., 2011). Neurotrophin engagement of Trk receptors leads to increased downstream 

activities of Erk1 and Erk2 (Skaper, 2008), thus regulating neuronal differentiation, includ ing 

neurite development, and survival (Bonni et al., 1999; Gupta et al., 2013). Also the BDNF-

dependent activation of Erk1/2 signaling pathway in cultured astrocytes was previously 

reported to induce the expression of dopamine receptor D5 (Brito et al., 2004) or GABA 

Transporter-1 (Vaz et al., 2011). Accordingly with these previous reports, we found that BDNF 
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also upregulates the Erk1/2 signaling pathway in our astrocyte models. The Erk pathway plays 

a crucial role in cell proliferation and differentiation (Segal and Greenberg, 1996), and its 

involvement in astroglial regulation of ApoE by BDNF is intriguing. The implication of Erk1/2 

pathway in the enhancement of ApoE expression and secretion by astrocytes (Yin et al., 2012) 

and neuronal cells (Harris et al., 2004) has been previously reported. Further, Erk1/2 signa ling 

regulates ABCA1 expression in different cell types as well (Chang et al., 2013; Mulay et al., 

2013). Although further experiments are required for clarifying the underlying mechanicis t ic 

pathway, it can be hypothesized that the BDNF-induced Erk activation participates in the 

modulation of ApoE and ABCA1 expression in our astrocytes model. Cholesterol homeostasis 

in the brain involves not only the production and efflux of cholesterol from cells but also its 

cellular uptake in neurons via lipoprotein receptors. Given the influence of BDNF on 

cholesterol efflux, we wondered whether this neurotrophic factor, by virtue of its growth 

promoting activities, could also influence cholesterol synthesis and/or uptake in neurons. It was 

previously published that BDNF increased, in cultured cortical and hippocampal neurons, the 

mRNA for HMGCoA reductase (HMGCR), the first committed enzyme in cholesterol 

biosynthesis (Suzuki et al., 2007). Accordingly, the results presented herein indicate that the 

neurotrophin stimulates the transcription of HMGCR into differentiated SH-SY5Y neurons. We 

also found that BDNF significantly reduces cholesterol internalization in differentiated neurons 

and the interaction of ApoE with the same cells. The family of receptors implicated in 

cholesterol incorporation includes low density lipoprotein (LDL) receptor (LDLR), the very 

low-density lipoprotein receptor (VLDLR), apoE receptor 2 (apoER2), and LDLR-related 

protein 1 (LRP1) (Lane- Donovan et al., 2014), that are expressed ubiquitously in the brain. 

Activation of LXRs downregulate lipoprotein receptor cell surface expression, thus reducing 

cholesterol uptake (Courtney and Landreth, 2016). The key role of LXRs as major regulators 

of neuronal content of cholesterol prompted us to investigate whether BDNF effect on neuronal 

cholesterol uptake might be related to LXR beta modulation, and interestingly we demonstrate 

that the neurotrophin enhances the expression of LXR beta. The BDNF-induced decrease of 

cholesterol uptake might therefore depend on the reduced expression of lipoprotein receptors 

on cell, through the enhanced expression of LXR. We believe that BDNF might exert a critical 

neuroprotective role by limiting cholesterol accumulation into neurons. In fact cholesterol may 

be toxic to its host cell, and when accumulated, causes cell apoptosis and death (Liu et al., 2010; 

Spagnuolo et al., 2014 a; Huang et al., 2016; Kim et al., 2017). Excess brain cholesterol has 

been also associated with increased formation and deposition of amyloid beta peptide from 

amyloid precursor protein (Shobab et al., 2005). A number of studies have shown that 
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cholesterol content affects transport, proteolytic cleavage, aggregation, and toxicity of amyloid 

beta (Cossec et al., 2010), and this represents an additional mechanism responsible for 

cholesterol- induced apoptosis. In addition, some oxysterols, including 7-ketocholesterol and 7-

betahydroxycholesterol, which are formed by auto-oxidation of cholesterol, can activate 

inflammation, induce oxidative stress, and trigger cell death (Jang and Lee, 2011; Vejux et al., 

2008; Vejux and Lizard, 2009; Lordan et al., 2009). Here we provide evidence that BDNF 

protects neurons from apoptosis, as reduced levels of both cleaved caspase 3 and PARP were 

detected in the presence of the neurotrophin. Our hypothesis is that BDNF exerts a 

neuroprotective role, as it participates in cholesterol homeostasis by regulating the amount 

internalized by neurons. The BDNF dependent reduction of cholesterol excess uptake, and 

possibly of the resulting oxidized products, might prevent apoptosis. Given the critical role 

played by BDNF in cholesterol homeostasis, we next evaluated whether cholesterol itself may 

affect BDNF synthesis by differentiated SH-SY5Y neurons. The data demonstrate that 

cholesterol, at levels not affecting neuron survival, does not affect BDNF mRNA level but 

significantly induces its protein level. This led us to the hypothesis that cholesterol likely 

influences the translation of BDNF mRNA. This can be presumably due to the fact that 

alterations of rafts cholesterol levels are known to lead to activation of multiple pathways 

(George and Wu, 2012), including BDNF level regulation. Hence the production of the 

neurotrophic factor could be influenced by the alteration of lipid composition of the brain and 

might represent a physiological/pathological response to cholesterol changes in brain. The 

induction of BDNF might work to preserve brain functioning from cholesterol homeostasis 

alteration. Interestingly cholesterol can induce ApoE production in neurons as well (Xu et al., 

2006) and very recently it was reported that the three ApoE isoforms differentially regulate 

expression and secretion of BDNF from human astrocytes (Sen et al., 2017). Intriguingly both 

BDNF and ApoE have been related to AD development. In fact the ApoE 4 allele is the greatest 

genetic risk factor for sporadic AD (Liu et al., 2013). In addition, considerable evidence 

suggests that a reduction in BDNF is associated with AD (Siegel et al., 2000; Holsinger et al., 

2000; Peng et al., 2005). Given the common role of ApoE and BDNF in synaptogenes is, 

neuroprotection, and synaptic plasticity, our results highlight a link between ApoE and BDNF 

in maintaining cholesterol homeostasis. According to our findings in vitro, the analysis ex vivo 

of both BDNF and ApoE levels in human post-mortem brain tissues showed that a positive 

correlation between the two proteins exists. Despite the limit of a correlation, these data in 

samples ex vivo confirm a link between cerebral concentration of BDNF and ApoE and 

supports the results obtained from analyses performed with in vitro culture. Overall, our data 
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point to a novel role of BDNF in cholesterol homeostasis in brain. Taken together, they show 

that BDNF regulates ApoE expression and secretion and, therefore, provide additiona l 

mechanistic insight as to how BDNF may offer neuroprotection through ApoE and modulat ion 

of cholesterol content in glial and neuronal cells (Figure 12).  

 

 

 

Figure 12. BDNF modulates cholesterol metabolism. BDNF stimulates cholesterol (chol) efflux, ATP 
binding cassette A1 (ABCA1) transporter and Apolipoprotein E (ApoE) expression in astrocytes. Also, 
BDNF downregulates the uptake of cholesterol and prevents cholesterol-induced apoptosis in 
differentiated SH-SY5Y neurons. 

 

By providing insight into a previously unknown role of the neurotrophin, this study may 

contribute to a better understanding of the mechanisms by which neurotrophic factors regulate 

lipid metabolism, thus representing a framework for future studies. 
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Supplementary data  

Supplementary Table 1. Primers used for qPCR analysis 

  

Gene symbol Primer Sequence  

HPRT1 F_ 5’- CAGACTTTGCTTTCCTTGGT -3’ 

R_ 5’- TGGCTTATATCCAACACTTC -3’ 

ABCA1 F_ 5’- TGTAATGCCAACAACCCCTG -3’ 

R_ 5’- AAAGAAGCCTCCGAGCATCT -3’ 

APOE F_ 5’- ACCCAGGAACTGAGGGC -3’ 

R_ 5’- CTCCTTGGACAGCCGTG -3’ 

APOENHA F_ 5’- CACTGGGTCGCTTTTGGG -3’ 

R_ 5’- CCAGTTCCGATTTGTAGGCC-3’ 

HMGCR F_ 5’- AGTGACACTGACCATCTGCA -3’ 

R_ 5’- TGTCACTGCTCAAAACATCCTC -3’ 

BDNF F_ 5’- ACACAAAAGAAGGCTGCAGG -3’ 

R_ 5’- TGCTATCCATGGTAAGGGCC -3’ 

 

 

Supplementary Table 2. 

Selected list of genes involved in cholesterol metabolism and trafficking from the Microarray 

analysis. 

   

Gene symbol Regulation FC 

HMGCR up 2,1 
BIN1 up 1,6 

SREBP-2 - - 

PPAR - - 

LXR - - 
MPD - - 

SORL1 - - 

PICALM - - 

IDOL - - 
 

FC: fold change, linear scale; 
-  : no change detected. 
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Supplementary figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TrkB expression and cell viability assay. Panel A. Aliquots of lysates from U-87 MG or NHA or from 
differentiated SH-SY5Y (incubated for 20 hours in serum free medium) were analysed by 10% SDS-
PAGE and Western Blotting. TrkB was detected by rabbit anti-human TrkB IgG and Goat anti-rabbit-
horseradish peroxidase conjugated IgG. β-Actin was revealed by mouse anti- -Actin and Goat anti-
mouse-horseradish peroxidase conjugated IgG. Representative Western blotting of two different 
samples of astrocytes and neurons is shown. Panel B. U-87 MG (on the left) or NHA (on the right) were 
incubated into 96 well-plates (20 h; 15,000 or 4,000 cells/well, respectively) in serum-free medium 
containing different amounts of BDNF (0-30 ng/mL). Cell survival was evaluated by MTT assay, and it 
was expressed as percentage of viability of  the control (cells cultured without BDNF addition; open 
bar). Data are reported as mean ± SEM. 
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Supplementary Figure 2 

 

 

BDNF effect on native caspase 3 level in SH-SY5Y. SH-SY5Y cells (150,000 cells/well; 12-well plate) 

were incubated (20 h, 37°C) in serum-free DMEM/F12 containing different amounts of cholesterol (0, 

5, 10, or 15 μM) in the absence (black bar) or presence (grey bar) of 10 ng/mL BDNF. At the end of 

incubation, aliquots of cell lysates were analyzed by 12.5% SDS-PAGE and Western blotting. 

Immunocomplexes were detected by rabbit anti-Caspase 3 (Immunological Science, AB-83625). After 

caspase 3 detection, the membrane was stripped for reprobing with anti-β-actin. Representative Western 

blot is shown on the top. Quantitative densitometry of native caspase 3 and β-actin was carried out and 

the ratio is shown on the bottom. 
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Introduction  

A significant increase of food and daily energy intake has been described in the last forty years,  

(McCrory et al., 2016) and the increasing worldwide prevalence of overweight and obesity has 

been linked to the shift toward a Western diet pattern (Carlson et al., 2012). In this context, the 

consumption of sugar-added foods was reported to be associated with increased risk for obesity, 

metabolic disorders, and cognitive decline (Rippe and Angelopoulos, 2016). In the last decade 

a strong rise of the fructose content in the human diet has occurred, as corn syrup is widely used 

as a sweetener for beverages, snacks, bakeries and processed food in general. Fructose has been 

suggested as a potential contributor to the worldwide rise in overweight and body weight gain, 

(Malik et al., 2010) and accordingly the association of high fructose intake with the onset of 

dyslipidemia, insulin resistance, related metabolic diseases (Crescenzo et al., 2013; Aragno, 

2017), and impairment of brain structure and function (Hsu et al., 2015; Mastrocola et al., 2016; 

Cigliano et al., 2018) was evidenced in clinical or animal studies. Long-term feeding (more 

than 4 weeks) with fructose was reported to induce an impairment of insulin signalling in the 

hippocampus, (Yin et al., 2014) reduction of neurogenesis, (Van der Borght et al., 2011) 

widespread reactive gliosis and neuroinflammation, altered mitochondrial activity as well as 

oxidative stress ( Mastrocola et al, 2016; Li et al., 2015). Even short time of fructose feeding 

was recently shown to have detrimental effects on brain physiology. In fact, we recently 

reported that a two weeks fructose diet induces inflammation, oxidative stress, impairment of 

insulin signaling as well as a significant decrease in mitochondrial function in the hippocampus 

of young and adult rats (Cigliano et al., 2018). Interestingly, one week of fructose ingestion was 

also shown to have a negative impact on brain plasticity (Jiménez-Maldonado et al., 2018). 

Young people are known to make a widespread consumption of added sugars, especia lly 

fructose-sweetened beverages, (Ford et al., 2008) and therefore investigations on young models 

could contribute to clarify the early risks to which brain is exposed as a result of diets rich in 

fructose. Since most of the studies aiming at the comprehension of the effect of fructose in brain 

have been performed in hippocampus, the present work is focused in frontal cortex, to highlight 

the effects of a two-weeks fructose diet on redox homeostasis, autophagy and synaptic markers 

in rats of different age, young (30 days old) and adult rats (90 days). We focused on this specific 

region, since it includes areas critically implicated in the regulation of higher-order cognitive 

functions such as working memory, attention or behavioral flexibility, (Robbins, 2000) and, 

unlike most other brain areas, maturation in the frontal cortex continues until late adolescence, 

thus being the last brain region to achieve full maturity in humans (Giedd et al., 1999; Gogtay 

et al., 2004) and rodents (O’Donnell, 2011; Manitt et al.,2013). Accordingly, it has been 
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demonstrated that high-fat diets or high-fat high-sugar diets induce severe frontal-dependent 

cognitive deficits when the dietary exposure begins during adolescence as compared to 

adulthood (Morin et al., 2017; Reichelt, 2016; Reichelt et al., 2015). In order to study the effect 

of fructose on redox balance we focused on Nuclear factor (erythroid derived 2)-like 2 (Nrf2)-

activated defences. Nrf2 is the key transcriptional activator of genes responsible for the 

maintenance of redox homeostasis through the synthesis/recycling of reduced glutathione 

(GSH), (Johnson and Johnson, 2015) a fundamental brain antioxidant. Fructose effect on the 

expression of PPAR-alpha and PPAR-gamma, transcription factors exerting anti-inflammatory 

and antioxidant effects in central nervous system, (Deplanque, 2004; Rinwa et al., 2010) was 

further assessed. Moreover, as perturbation of redox homeostasis is known to induce autophagic 

pathway activation, (Mizushima and Komatsu, 2011) which in turn can cause an impairment of 

synaptic function, (Chen et al, 2013; Zhang et al., 2017) we further evaluated specific autophagy 

and brain synaptic proteins in the frontal cortex. Finally, as further marker of brain function, 

we chose to analyze the activity of Acetylcholinesterase (AChE), that plays a key role not only 

for cholinergic signaling, (Pope and Brimijoin, 2018) since it hydrolyzes and thus termina tes 

the synaptic action of acetylcholine, but also in neurotransmitter recycling, proteolysis, 

neurogenesis, morphogenesis and neural differentiation (Janeczek et al., 2018).  

 

 

Methods 

Materials 

Bovine serum albumin fraction V (BSA), acetylthiocholine iodide (ATCI), 5,5-dithiobis-2-

nitrobenzoate (DTNB), salts and buffers were purchased from Sigma-Aldrich (St. Louis, MO, 

USA). The dye reagent for protein titration, and the polyvinylidene difluoride (PVDF) 

membrane were from Bio-Rad (Bio-Rad, Hercules, CA). Fuji Super RX 100 films were from 

Laboratorio Elettronico Di Precisione (Naples, Italy).  

 

Animals and treatments  

Male Sprague–Dawley rats (Charles River, Italy), of 30 (young) or 90 (adult) days of age were 

caged singly in a temperature-controlled room (23±1°C) with a 12-h light/dark cycle (06.30–

18.30). Young (N = 12) and adult (N = 12) rats were divided in two groups and were fed a 

fructose-rich (Young, N = 6; Adult, N = 6) or control diet (Young, N = 6; Adult, N = 6) for 2 

weeks (for composition see Table 1).  
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TABLE 1 

Composition of experimental diets 

  CONTROL DIET FRUCTOSE DIET 

Component (g/100 g)   

Standard chow* 50.5 50.5 

Sunflower oil 1.5 1.5 

Casein 9.2 9.2 

Alphacel 9.8 9.8 

Starch 20.4 --- 

Fructose --- 20.4 

Water 6.4 6.4 

AIN-76 mineral mix 1.6 1.6 

AIN-76 vitamin mix 0.4 0.4 

Choline 0.1 0.1 

Methionine 0.1 0.1 

Gross energy density, kJ/g 17.2 17.2 

Metabolisable energy density,  kJ/g ** 11.1 11.1 

Protein, %  metabolisable energy 29.0 29.0 

Lipids, % metabolisable energy 10.6 10.6 

Carbohydrates, % metabolisable energy 60.4 60.4 

Of  which: Fructose ----- 30.0 

                  Starch 52.8 22.8 

                  Sugars 7.6 7.6 

* Mucedola 4RF21; Italy. **estimated by computation using values (kJ/g) for energy content 

as follows: protein 16.736, lipid 37.656, and carbohydrate 16.736. 

 

Rats were pair-fed for the whole experimental period, by giving them the same amount of diet, 

both as weight and as caloric content, and each rat consumed the full portion of the diet. This 
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cohort of rats was the same as that used in Cigliano et al., 2018 where hippocampus was 

analyzed. During the treatment, body weight, food and water intake were monitored daily. At 

the end of the experimental period, the rats were euthanized by decapitation and blood was 

collected for subsequent analyses. The brains were quickly removed, transferred to a metal 

plate, on ice, and carefully washed with PBS to wipe off surface blood. Frontal cortex dissection 

was performed according to published protocols (Spijker, 2011; Chiu et al., 2007). In detail, 

brain was cut, longitudinally, into right and left hemisphere and, from the medial view of the 

hemisphere, a first cut was performed to remove olfactory bulb. Then frontal cortex was 

dissected from a slice about 2.5–4.5 mm anterior to bregma, taking into account published 

stereotaxic atlas resources. (Paxinos and Watson, 1997; Swanson, 2004; Papp et al., 2014.) 

Samples were snap frozen in liquid nitrogen immediately and stored at –80°C for subsequent 

analyses. 

 

Protein extraction 

Proteins were extracted from frontal cortex by homogenizing frozen tissues (–80°C) in ten 

volumes (w/v) of cold RIPA buffer (150 mM NaCl, 50 mM Tris–HCl, 0.5% NP-40, 0.5% 

sodium deoxycholate, 0.1% SDS, pH 8) containing Tissue Protease Inhibitor Cocktail (Sigma-

Aldrich, 1:500, v/v) and Tissue Phosphatase inhibitor cocktail (Sigma-Aldrich, 1:100, v/v) 

(Spagnuolo et al., 2015). The levels of specific markers of synaptic plasticity (brain derived 

neurotrophic factor, BDNF; synaptophysin, synapsin I; synaptotagmin I), PPAR alpha and 

PPAR gamma, autophagic pathway (Beclin 1; P62-sequestosome-1, P62; Microtubule 

associated protein light chain, LC3), and Tropomyosin receptor kinase B (TrkB) receptor were 

evaluated by Western blotting. Cytosolic and nuclear protein extracts from brain cortex were 

prepared accordingly to a published protocol, (Zvonic Et al., 2004) and used for investiga t ing 

diet-induced modification of the brain redox status. Glutathione/Oxidized Glutathione 

(GSH/GSSG) ratio, Glucose 6-phosphate dehydrogenase (G6PD) and Glutathione reductase 

(GSR) activities were measured into cytosolic extracts, while Nrf2 amount was evaluated by 

Western blotting into nuclear extracts.  

 

Brain redox status and phase 2 enzymes activity  

GSH and GSSG concentrations were quantified using the DTNB-GSSG reductase recycling 

assay accordingly to a published protocol (Rahman et al., 2007). Total GSH (GSH +GSSG), 

GSH and GSSG concentrations, upon normalization to the protein content, were expressed as 

nmol/mg min and the GSH/GSSG ratio was used to indicate brain RedOx modification. GSR 
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and G6PD activities were spectrophotometrically assayed in cytoplasmic extracts, (Monaco et 

al., 2018) and, upon normalization to the protein content, they were expressed as nmol of 

NADPH/mg min or as IU/mg min, respectively. 

 

AChE activity assay  

Fontal cortex aliquots (about 20 mg) were homogenized in 0.3 mL of TBS (100 mM Tris–HCl, 

pH 8.1) and upon centrifugation (4 minutes, 2000g, 4°C), AChE assay was performed 

essentially according to a published protocol, (Ellman et al., 1961) using ATCI as a substrate. 

The rate of production of thiocholine was determined by the reaction of the thiol with DTNB 

to produce the yellow anion of 5-thio-2-nitro-benzoic acid. Briefly, six aliquots (20 μL 

containing 20 μg of proteins) from extracts were plated into 96 well plate. Wells containing 

TBS were used as blank. Aliquots (100 μL) containing 2 mM ATCI in TBS was added to one 

triplicate series (assay), while 100 μL of TBS was added to the second series (control). Finally, 

100 μL of TBS containing 2.4 mM DTNB was added to both series and the absorbance was 

measured at 405 nm after 10 minutes of incubation at room temperature. AChE activity was 

corrected by subtracting the spontaneous hydrolysis of the substrate (blank) or the DTNB 

reaction with protein thiols (control) and enzyme activity was expressed as nmol/min mg 

protein.  

 

Western blotting  

Aliquots (50 μg) of cortex homogenates were fractionated by electrophoresis on 12.5% (to 

quantify PPAR-alpha, PPAR-gamma, P62, LC3, beclin, BDNF, synaptophysin, synaptotagmin 

I), or 10% (to quantify synapsin I or TRkB) polyacrylamide gel, under denaturing and reducing 

conditions (Spagnuolo et al., 2018). After electrophoresis, proteins were blotted onto PVDF 

membrane, the membrane was rinsed in T-TBS (130 mM NaCl, 20 mM Tris–HCl, 0.05% 

Tween 20, pH 7.4), and blocking was carried out with T-TBS containing 5% non-fat milk (60 

minutes, 37°C). BDNF was revealed by incubation (overnight, 4°C) with anti-human BDNF 

IgG (Santa Cruz Biotechnology, CA, USA; 1:500 dilution in T-TBS containing 0.25% non-fat 

milk), followed by goat anti-rabbit Horseradish Peroxidase-conjugated IgG (GAR-HRP; 

Sigma-Aldrich; 1:4000 dilution in TTBS containing 0.25% non-fat milk; 1 hour, 37°C). PPAR-

alpha was detected by incubation (overnight, 4°C) with anti- PPAR-alpha IgG (Thermo Fisher, 

IL, USA; 1:1000 dilution in T-TBS containing 3% BSA) followed by GAR-HRP IgG (Sigma-

Aldrich; 1: 20 000 dilution in T-TBS containing 1% non-fat milk; 1 hour, 37°C). PPAR-gamma 

was detected by incubation (overnight, 4°C) with anti-PPAR-gamma IgG (Santa Cruz 
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Biotechnology; 1:300 dilution in T-TBS containing 3% BSA) followed by GAR-HRP IgG 

(Sigma-Aldrich; 1:4000 dilution in T-TBS containing 1% non-fat milk; 1 hour, 37°C). LC3 was 

revealed by incubation (overnight, 4°C) with anti- LC3A/B (D3U4C) XP IgG (Cell Signaling, 

MA, USA; 1:2000 dilution in T-TBS containing 3% BSA) followed by GAR-HRP IgG (Sigma-

Aldrich; 1:5000 dilution in T-TBS containing 1% non-fat milk; 1 hour, 37°C). Beclin was 

revealed by incubation (overnight, 4°C) with anti-Beclin-1 (D40C5) IgG (Cell Signaling; 

1:2000 dilution in T-TBS containing 3% BSA) followed by GAR-HRP IgG (Sigma-Aldr ich; 

1:7000 dilution in T-TBS containing 1% non-fat milk; 1 hour, 37°C) and ChemiDoc detection. 

P62 was revealed by incubation (overnight, 4°C) with anti- Phospho-SQSTM1/P62 

(Thr269/Ser272) IgG (Cell Signaling; 1:1500 dilution in T-TBS containing 3% non-fat milk) 

followed by GAR-HRP IgG (Sigma-Aldrich; 1:25 000 dilution in T-TBS containing 3% non-

fat milk; 1 hour, 37°C) and ChemiDoc detection. Synaptophysin was revealed by incubation 

(overnight, 4°C) with anti-Synaptophysin IgG (Merk Millipore, Milan, Italy; 1:200 000 dilut ion 

in T-TBS containing 3% BSA) followed by GAR-HRP IgG (Sigma-Aldrich; 1:20 000 dilut ion 

in T-TBS containing 1% non-fat milk; 1 hour, 37°C). Synapsin I was revealed by incubation 

(overnight, 4° C) with anti-Synapsin I IgG (Genetex, distributed by Prodotti Gianni, Milan 

Italy; 1:500 dilution in TTBS containing 3% BSA) followed by GAR-HRP IgG (Sigma-

Aldrich; 1:5000 dilution in T-TBS containing 3% non-fat milk; 1 hour, 37°C) and ChemiDoc 

detection. Synaptotagmin I was revealed by incubation (overnight, 4°C) with anti-

Synaptotagmin I IgG (Cell Signaling; 1:1000 dilution in T-TBS containing 3% non-fat milk) 

followed by GAR-HRP IgG (Immunoreagents, distributed by Microtech, Naples, Italy; 1:500 

000 dilution in T-TBS containing 3% non-fat milk; 1 hour, 37°C). TrkB was revealed by 

incubation (overnight, 4°C) with rabbit anti-TrkB (Santa Cruz Biotechnology; 1:2000 dilut ion 

in T-TBS containing 3% non-fat milk) followed by GAR-HRP IgG (Immunoreagents; 1: 140 

000 dilution in T-TBS containing 3% non-fat milk; 1 hour, 37°C). Nrf2 and GSR levels, in 

nuclear and cytoplasmic extracts (respectively) were revealed accordingly to a published study 

(Monaco et al., 2018). For loading control, the membranes were stripped (Spagnuolo et al., 

2014) and then incubated (overnight, 4°C) with mouse anti-β-actin IgG (Sigma-Aldrich; 1000 

dilution in T-TBS containing 0.25% non-fat milk) followed by goat anti-mouse Horseradish 

Peroxidase-conjugated IgG (GAM-HRP; Sigma-Aldrich; 1:10 000 dilution in 0.25% non-fat 

milk; 1 hour, 37°C). All the above immunocomplexes were detected by the ECL detection 

system. The Excellent Chemiluminescent detection Kit (ElabScience, Microtech, Naples, Italy) 

was used for detection of TrkB and synaptotagmin; the chemiluminescent HRP substrate 

(Immobilon Western, Merk Millipore) was used for detection of the other antigens. Quantitat ive 
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densitometry of the bands was carried out by analyzing chemidoc images or digital images of 

X-ray films exposed to immunostained membranes, and the quantification of the signal was 

performed by Un-Scan-It gel software (Silk Scientific, UT, USA). For each marker, all 

procedures, from transfer to PVDF membrane to detection, were carried out in the same way. 

For each parameter and for each pair of blotting the same method (X-ray or chemidoc), antibody 

dilutions and time of exposure were used in order to compare differences in signal intensity. A 

representative blotting was shown for each parameter. 

 

Statistical analysis 

Data were expressed as mean values±SEM. The program GraphPad Prism 6 (GraphPad 

Software, San Diego, CA) was used to perform two-way ANOVA, followed by the Tukey post-

hoc test. P<0.05 was considered significant. 

 

 

Results 

Animal data 

As reported in Figure 1, during the two weeks of dietary treatment, no significant variation was 

evident in body weight and food intake between control and fructose-fed rats. Further, the whole 

time course of changes in body weight and food intake during the experimental period shows 

the wellbeing state of the animals and the efficacy of the pair feeding protocol.  
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Figure 1. Animal data. Young (30 days old) and adult (90 days old) rats were fed a fructose-rich or a 
control diet for 2 weeks. During the treatment, body weight (panel A) and food intake (panel B) were 
monitored daily. Data are reported as means±SEM of six rats/group. 

 

Analysis of Nrf2 pathway in the cortex of fructose-fed rats 

We previously showed that 2 weeks of fructose feeding induces an increase in lipid and protein 

markers of oxidative stress in rat brain (Cigliano et al., 2018). As Nrf2 plays a critical role in 

brain redox homeostasis, (Johnson and Johnson, 2015) we investigated whether short-term 

fructose feeding affects Nrf2 pathway in the rat frontal cortex. To this aim, the amount of GSH, 

the major intracellular antioxidant, and GSSG, the activities of the phase-2 enzymes GSR and 

G6PD, modulated by the Nrf2 pathway and responsible for the maintenance of GSH 

homeostasis, as well as the amount of Nrf2 were quantified. GSSG content was affected by diet 

but not age (source of variation from two-way ANOVA: age, not significant; treatment, P<0.01; 

interaction, not significant). Conversely neither diet-nor age-related changes of GSH amount 

were observed. The diet associated GSSG increase resulted into a marked decrease of the 

GSH/GSSG ratio (age, not significant; treatment, P<0.01; interaction, not significant Figure 

2A), and the extent of this diet-dependent decrease was similar (about 1.5 fold) in the two 

groups of age. Diet-dependent changes in the activities of G6PD and GSR were observed 
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(Figure 2B and C, respectively), while no age effect was revealed (for both parameters: age, not 

significant; treatment, P<0.01; interaction,not significant). In particular, the diet-dependent 

decrease of G6PD activity (about 1.4 fold) and GSR activity (about 1.2 fold) did not differ 

between young and adult fructose-fed animals.  

 

 

Figure 2. Analysis of Nrf2-activated defences in rat cerebral cortex. Panel A. The ratio between 
reduced (GSH) and oxidized (GSSG) glutathione (panel A), G6PD (panel B) and GSR (panel C) 
activities were quantified in protein extracts from cortex of young and adult rats fed a control or 
fructoserich diet for 2 weeks. Data are reported as means±SEM of six rats/group. Diet effect: *P<0.05, 
**P<0.01 compared to control rats. Source of variation from two-way ANOVA followed by Tukey post-
test: age, not significant; treatment, P<0.01; interaction, not significant. 

 

In addition, a diet-dependent decrease of GSR (Figure 3A) and Nrf2 protein content (Figure 

3B) in brain cytoplasmic and nuclear extracts, respectively, was observed (age, not significant; 

treatment, P<0.01; interaction, not significant). Taken together, these results strongly suggest 

that two weeks fructose feeding negatively influences Nrf2 pathway, impairing the brain 

antioxidant defence system. 
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Figure 3. GSR and Nrf2 levels in rat cerebral cortex. Representative immunoblot of GSR (panel A) and 
Nrf2 (panel B) expression in cytoplasmic and nuclear protein extracts, respectively, from cortex of 
young and adult rats fed a control or fructose-rich diet for 2 weeks. Quantitative densitometry was 
carried out, band intensities were calculated, and GSR or Nrf2 concentrations were expressed relative 
to β-actin level or Lamin B1, respectively. Data are reported as means±SEM of six rats/group. Diet 
effect: *P<0.05, **P<0.01, compared to control rats. Source of variation from two -way ANOVA 
followed by Tukey post-test: age, not significant; treatment, P<0.01; interaction, not significant. 

 

Analysis of PPARs in cortex 

The expression of PPAR-alpha and PPAR-gamma, which are transcription factors exerting 

neuroprotective and anti-inflammatory effects in central nervous system (Deplanque, 2004: 

Rinwa et al., 2010) was also investigated. As shown in Figure 4, significant diet-related changes 

of PPAR-alpha and PPAR-gamma were found. PPAR-alpha amount was affected by diet but 

not by age (age, not significant; treatment, P<0.01; interaction, not significant; Figure 4A), in 

fact it was lower in fructose fed than in control rats, both in young (about 1.6 fold) and adult 

animals (1.9 fold), with no significant difference in the extent of the diet-dependent decrease 

between the two groups of age (Figure S1A). Conversely, PPAR-gamma amount was affected 

by both diet and age (age, P<0.001; treatment, P<0.01; interaction, not significant; Figure 4B). 

In particular, a similar diet-dependent decrease of PPARgamma level (about 1.9 fold) was 

observed in both group of treated rats (Figure S1B), and an age-related increase was found in 

both control and fructose-fed adult rats (Figure 4B). 
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Figure 4. PPAR-alpha and gamma levels in rat cerebral cortex. PPAR-alpha (panel A) and PPAR-
gamma (panel B) levels were assessed by western blot on protein extracts from cortex of young (left) or 
adult rats (right) fed a control or fructose-rich diet for 2 weeks. Representative western blots are shown 
(top). Quantitative densitometry was carried out, band intensities were calculated, and PPARs 
concentrations were expressed relative to β-actin level (bottom). Data are reported as means±SEM of 
six rats/group. Diet effect: **P<0.01 compared to control rats. Age effect: §§§P<0.001 compared to 
young rats. Panel A: source of variation from two-way ANOVA followed by Tukey post-test: age, not 
significant; treatment, P<0.01; interaction, not significant). Panel B. Source of variation from two-way 
ANOVA followed by Tukey post-test: age, P<0.001; treatment, P<0.01; interaction, not significant. 

 

Fructose diet induces activation of autophagy pathway 

As excessive autophagy prompts rapid cell death, (Levine  and Yuan,  2005) we investigated 

whether fructose feeding is associated with the activation of autophagy, and we observed 

significant changes of specific markers of this pathway. As shown in Figure 5A, significant 

age- and diet-related increases of beclin amount were observed (age, P<0.01; treatment, P<0.01; 

interaction, not significant). In particular, a similar age-related increase (about 1.3 fold) was 

observed in control and treated animals. Further, the diet-dependent increase of beclin level was 

similar (about 1.4 fold) in both young and adult animals (Figure S2A). Conversely, the amount 

of LC3 II was affected by diet but not by age (age, not significant; treatment, P<0.01; 

interaction, not significant; Figure 5B), and its increase was similar in both young (2.42±0.40) 

and adult (2.02 ±0.20) fructose-fed rats (Figure S2B).  
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Figure 5. Autophagic markers level in rat cerebral cortex. Beclin (panel A), LC3 II (panel B), and P62 
(panel C) levels were assessed by western blot on protein extracts from cortex of young (left) or adult 
rats (right) fed a control or fructose-rich diet for 2 weeks. Representative western blots are shown (top). 
Quantitative densitometry was carried out, band intensities were calculated, and concentrations were 
expressed relative to β-actin level (bottom). Data are reported as means±SEM of six rats/group. Diet 
effect: **P<0.01 compared to control rats. Age effect: §§ P<0.01 compared to young rats. Panel A. 
Source of variation from two-way ANOVA followed by Tukey post-test: age, P<0.01; treatment, P<0.01; 
interaction, not significant. Panel B. Source of variation from two-way ANOVA followed by Tukey post-
test: age, not significant; treatment, P<0.01; interaction, not significant. Panel C. Source of variation 
from two-way ANOVA followed by Tukey post-test: age, P<0.01; treatment, P<0.01; interaction, not 
significant. 

 

Finally, a significant diet- and age-dependent increase of P62 level was observed (age, P<0.01; 

treatment, P<0.01; interaction, not significant; Figure 5C). In particular, the diet-dependent 

increase of P62 level did not differ between young and adult animals (Figure S2C). The increase 
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of these markers suggests that fructose diet induces the activation of autophagy, likely as a 

protective mechanism for maintaining cell metabolism and homeostasis.  

 

Effect of fructose diet on the expression of BDNF and synaptic proteins 

The level of BDNF, a reliable marker of brain function, that plays a critical role in learning and 

memory by maintaining synaptic plasticity, (Leal et al., 2015) was titrated in frontal cortex 

homogenates, and an interaction between age and diet effect was observed (age, P<0.001; 

treatment, P<0.01; interaction, P<0.01; Figure 6A).  

 

Figure 6. BDNF and TrkB amount in rat cerebral cortex. BDNF (panel A) and TrkB (panel B) levels 
were assessed by western blot on protein extracts from cortex of young (left) or adult rats (right) fed a 
control or fructose-rich diet for 2 weeks. Representative western blots are shown (top). Quantitative 
densitometry was carried out, band intensities were calculated, and concentrations were expressed 
relative to β-actin level (bottom). Data are reported as means±SEM of six rats/group. Diet effect: 
*P<0.05, **P<0.01, ***P<0.001 compared to control rats. Age effect: §§ P<0.01, §§§ 
P<0.001compared to young rats. Panel A. Source of variation from two-way ANOVA followed by Tukey 
post-test: age, P<0.001; treatment, P<0.01; interaction, P<0.01. Panel B Source of variation from two-
way ANOVA followed by Tukey post-test: age, P<0.01; treatment, P<0.001; interaction, P<0.05. 

 

In particular, the age-related increase of BDNF level was observed both in control (about 2 

fold) and treated rats (about 1.4 fold) (Figure 6A), while a diet-related decrease of BDNF 
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amount (about 1.6 fold) was observed only in the adult group of fructose-fed rats (Figure S3 

A). Since BDNF effect on neuron development, survival, and differentiation occurs by the 

binding to TrkB, we also investigated whether the receptor level is modulated by the fructose-

rich diet. Interestingly, also for TrkB an interaction between age and diet effect was observed 

(age, P<0.01; treatment, P<0.001; interaction, P<0.05; Figure 6B), as a significant age-

dependent decrease of receptor level was observed only in control rats (about 2.5 fold; P<0.01), 

in agreement with previously published data (Croll et al., 1998; Silhol et al., 2007). Notably, 

the extent of diet-dependent decrease of TrkB amount was significantly higher (P<0.05; Figure 

S3B) in young (about 2.7 fold) than in adult rats (about 1.6 fold). In order to clarify the impact 

of the fructose diet on synaptic function as well, the levels of synaptophysin, synapsin I and 

synaptotagmin I were evaluated. As shown in Figure 7A, an interaction between age and diet 

effect on synaptophysin amount was found (age, P<0.01; treatment, P<0.001; interaction, 

P<0.05).  
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Figure 7. Synaptic plasticity markers levels in rat cerebral cortex. Synaptophysin (panel A), synapsin 
I (panel B), and synaptotagmin I (panel C) levels were assessed by western blot on protein extracts from 
cortex of young (left) or adult rats (right) fed a control or fructose-rich diet for 2 weeks. Representative 
western blots are shown (top). Quantitative densitometry was carried out, band in tensities were 
calculated, and concentrations were expressed relative to β-actin level (bottom). Data are reported as 
means±SEM of six rats/group. Diet effect: **P<0.01 compared to control rats. Age effect: § P<0.05, 
§§ P<0.01 compared to young rats. Panel A. Source of variation from two-way ANOVA followed by 
Tukey post-test: age, P<0.01; treatment, P<0.01; interaction, P<0.05. Panel B. Source of variation 
from two-way ANOVA followed by Tukey post-test: age, not significant; treatment, P<0.001; 
interaction, not significant. Panel C. Source of variation from two-way ANOVA followed by Tukey post-
test: age, P<0.05; treatment, P<0.001; interaction, P<0.05 

 

Indeed, an age-dependent increase of the protein level (about 1.6 fold; P<0.01) was observed 

only in control animals. Further synaptophysin amount was lower in fructose-fed rats compared 
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to control animals, both in young (about 1.5 fold) and adult (about 1.7 fold) group, and the 

extent of this dietdependent decrease did not differ between young and adult animals (Figure 

S4A). In addition, a diet associated decrease of synapsin I level (Figure 7B) was observed in 

young (about 1.7 fold) and adult (about 2 fold) animals (age, not significant; treatment, 

P<0.001; interaction, not significant), and this change was not different between the two groups 

of age (Figure S4B). An interaction between age and diet effect on synaptotagmin I amount 

was detected (age, P<0.05; treatment, P<0.001; interaction, P<0.05; Figure 7C), as a significant 

age-related increase of synaptotagmin I (about 1.7 fold) was observed only in control rats.  

Protein level was significantly lower in fructose-fed rats compared to control animals, both in 

young (about 1.5 fold) and adult (about 2.5 fold) group. The considerable decrease (P<0.05) of 

synaptotagmin level in adult more than in young treated rats (Figure S4C) suggests an age-

dependent difference in the ability to counteract the deleterious effect of fructose on the level 

of this specific synaptic protein.  

 

Effect of fructose diet on AChE activity  

The effect of the short-term fructose diet on the activity of AChE, one of the most ubiquitous 

enzymes present in central cholinergic pathways, was then evaluated in frontal cortex samples. 

As shown in Figure 8, an interaction between age and diet effect was observed, as fructose 

feeding resulted in a significant increase of AChE activity only in frontal cortex of young 

animals (about 1.7 fold; P<0.05). Further, an age-dependent decrease of enzyme activity was 

observed only in fructose-fed animals (age, P<0.05; treatment, not significant; interaction, 

P<0.01). 

 

Figure 8. AChE activity in rat cerebral cortex. AChE activity was measured in protein extracts from 
cortex of young or adult rats fed a control or fructose-rich diet for 2 weeks, using acetylthiocholine 
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iodide as a substrate. The rate of production of thiocholine was determined by the reaction of the thiol 
with 5,5-dithiobis-2-nitrobenzoate to produce the yellow anion of 5-thio-2-nitro-benzoic acid. Enzyme 
activity is expressed as nmol/min/mg protein. Data are reported as means±SEM of six rats/group. Diet 
effect: *P<0.05 compared to control rats. Age effect: § P<0.05 compared to young rats; source of 
variation from two-way ANOVA followed by Tukey post-test: age P<0.05; treatment, not significant; 
interaction, P<0.01. 

 

Discussion 

A clear impact of fructose on metabolism has been shown in the last years, but further insight 

into the molecular roots of the specific effects of this sugar on brain is required. To date no 

information about the early effects of a short-term fructose intake on Nrf2 and autophagy 

pathways, as well as on critical synaptic markers is available, hence we focus on these issues, 

by comparing the effect of a two weeks fructose-rich diet in young and adults rats. Nrf2 plays 

a critical role in brain redox homeostasis, as modulating the expression of the phase-2 enzymes 

GSR and G6PD that are implicated in the production/ recycling of GSH, the main intracellular 

antioxidant (Johnson and Johnson, 2015). We report here, for the first time, that two weeks of 

fructose-rich diet led, in both groups of age, to the decline of Nrf2-dependent antioxidant 

enzymes involved in GSH homeostasis. In fact, the cortex of fructose-fed rats exhibited 

significantly lower amount of Nrf2, lower activity of GSR and G6PD enzymes, as well as a 

decrease in the GSH/GSSG ratio compared with control rats. The overall imbalance of redox 

homeostasis is corroborated by the lower levels of PPAR-alpha and PPAR-gamma, in both 

young and adult rats after short-term fructose-rich diet. Notably, PPAR-alpha and PPARgamma 

other than possessing neuroprotective, anti-inflammatory and anti-oxidant properties 

(Deplanque, 2004; Rinwa et al., 2010) are also known to modulate synaptic plasticity, (Moreno 

et al., 2004) and enhance cognitive performance (Hajjar et al., 2012). Hence, we could speculate 

that the impairment of Nrf2 pathway together with the decrease of PPARs in brain of fructose-

fed rats might be involved in the induction of brain oxidative stress and synaptic dysfunction in 

fructose-fed rats. Although fructose-enriched diets were previously reported to reduce the 

expression of PPAR alpha and gamma in liver, (Nagai et al., 2002; Roglans et al., 2007) this is 

the first time that a similar effect is reported in brain. Fructose-dependent suppression of PPAR-

alpha activity was reported to induce endoplasmic reticulum stress, (Su et al., 2014) which is a 

main cause of autophagy activation, (Spijker, 2011; Qin et al., 2010) a crucial mechanism for 

maintaining cell homeostasis (Mizushima and Komatsu, 2011, Qin et al., 2010). Indeed 

autophagy is actually activated as a protective mechanism in response to different stress, such 

as oxidative or endoplasmic reticulum stress (Qin et al., 2010, Keller et al., 2004). Notably, we 
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here show that a short-term fructose-rich diet is associated with the activation of autophagy in 

brain of young and adult rats, as increased levels of beclin 1, LC3 II and P62 were detected in 

frontal cortex of young and adult rats. This result is in agreement with previous reports on the 

autophagic activation induced by fructose feeding in mice cardiac tissue (Mellor et al., 2011) 

and skeletal muscle, (De Stefanis et al., 2017) as well as in rat pancreatic β cells (Maiztegui et 

al., 2017). In this context, it should be pointed out that excessive autophagy damages proteins 

and organelles, and may prompt rapid cell death. (Levine and Yuan, 2005) In particular, 

disordered autophagy could disrupt the flow of pre-synaptic terminals and cause axonal 

dystrophy, (Sanchez-Varo et al., 2012) also altering synaptic plasticity (Chen et al., 2013; 

Zhang et al., 2017). In line with these reports, we found lower amounts of the synaptic markers 

synaptophysin, synapsin I and synaptotagmin in the frontal cortex of fructose-fed rats, showing 

higher amounts of autophagic markers compared to the control ones. Both synaptophysin and 

synapsin I are involved in synaptic growth, as they play key roles in synapse formation, 

maturation and maintenance. (58, 59) Further, synaptophysin, synapsin I and synaptotagmin I 

participate in the regulation of synaptic vesicle exocytosis (Cesca et al., 2010; Bacaj et al., 

2013). Synaptotagmin, in particular, was proposed as a marker of synaptic activity, (Mundigl 

et al., 1995) as acting as calcium sensor for fast synchronous evoked neurotransmitter release. 

(Bacaj et al., 2013) The effect of fructose feeding was here assessed on a further critical marker 

of brain function that is BDNF. This neurotrophin plays a key role in the modulation of adult 

neurogenesis, (Scharfman et al, 2005) synaptic plasticity, (Leal et al., 2015) and stabiliza t ion 

of postsynaptic density (Yoshii et al., 2007). A diet-dependent regulation of BDNF level was 

previously reported (Molteni et al., 2002; Wu et al., 2004). In particular, a seven days high-

fat/high fructose diet was associated with both BDNF and synaptic reduction in rat 

hippocampus. (Calvo-Ochoa  et al., 2014) Our investigation revealed a significant reduction of 

BDNF levels in adult, but not in young animals, in line with recent data showing that a long-

term (12 weeks) high fructose diet decreased BDNF expression in adult rats (Liu et al., 2018). 

Interestingly significant lower amount of the neurotrophin receptor TrkB was found in both 

young and adult fructose-fed rats. Although the level of BDNF was not affected by fructose 

diet in young rats, the finding of a significant decrease of TrkB suggests that an impairment of 

neurotrophin signalling might occur also in this group. Although further research is required, 

our data led us to hypothesize that the decrease of synaptic proteins together with the effect on 

BDNF/TrkB, in the two groups of fructose-fed rats, might reflect an alteration of brain 

plasticity, in line with data demonstrating that BDNF decrease is responsible for impaired 

synaptic plasticity and cognitive performance (Lindqvist et al., 2006; Stranahan et al., 2008). 
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Interestingly, the short-term fructose-rich diet showed an age-dependent effect on the activity 

of AChE, which plays a critical role in central cholinergic synapses (Pope and Brimijoin, 2018). 

In particular, the cholinergic innervation of the cerebral cortex is intimately involved in the 

cognitive processes related to memory and attention, and the inhibition of AChE was reported 

to improve cognitive performance (Pope and Brimijoin, 2018). Interestingly, the activity of this 

enzyme was previously found increased following a hypercholesterolemia- induced cognitive 

impairment in mice, (Moreira et al., 2014) and also used to evaluate the antioxidant effects of 

several food nutrients in aluminum-induced neurotoxicity (Jangra et al., 2015; Hosny et al., 

2018). The increase of AChE activity was associated with impaired learning and memory 

functions in stressed rats, (Nawaz et al., 2018) but at the best of our knowledge, the effects of 

dietary fructose on AChE activity has been never investigated. The finding of a significantly 

higher AChE activity only in young treated rats, suggests a more detrimental effect of fructose 

feeding in the frontal cortex of young animals. A putative mechanism for the fructose effects 

on AChE remains to be fully elucidated; however, we can speculate on the possibility that 

alterations in lipid and protein induced by oxidative stress modulate the enzymatic activity of 

AChE through a yet unidentified mechanism. It should be mentioned that synaptotagmin I was 

suggested to play a critical role in modulating acetylcholine release at the neuromuscular 

junction, (Searl and Silinsky, 2006) but whether the observed decrease of synaptotagmin level 

in fructose-fed rats can be involved in the AChE mediated modulation of brain choline rgic 

system in the central nervous system as well remains to be clarified. One limitation of this study 

is the lack of behavioural analyses on the effects of our experimental diet, so we cannot assess 

causal links between brain alterations and cognitive impairments in fructose-fed rats. Also, 

future in vitro cause–effect experiments on brain cells might further clarify the mechanism by 

which fructose impairs brain functioning. Our results indicate that the perturbation of redox 

homeostasis and autophagy are implicated in the deleterious consequences of a fructose-rich 

diet, and probably they both contribute to the observed decrease of synaptic markers in fructose-

fed rats. An interesting issue that remains to be investigated is whether changes in redox status 

and autophagy are maintained after cessation of the fructose-rich diet. Notably, our findings in 

frontal cortex give further support to the data found in hippocampus from other research groups 

that even a short-term fructose diet can induce brain alterations. Overall, this investigation is 

among the first studies to suggest that even young animals may severely suffer from the 

deleterious effects of fructose on brain health as the adults, and provide additional experimenta l 

data suggesting the need of targeted nutritional strategies to reduce the amount of this sugar in 

foods. 
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Supplementary data 

Figure S1. 

 

PPAR-alpha and gamma levels in rat cerebral cortex. PPAR-alpha (panel A) and PPAR-gamma (panel 

B) levels were assessed by western blot on protein extracts from cortex of young or adult rats fed a 

control or fructose-rich diet for 2 weeks. Quantitative densitometry was carried out, band intensities 

were calculated, and PPARs concentrations were expressed relative to β-actin level. Data are reported 

as means ± SEM of six rats/group. Diet dependent protein decrease calculated relative to control 

animals: **p < 0.01 
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Figure S2. 

 

Autophagic markers level in rat cerebral cortex. Beclin (panel A), LC3 II (panel B), and P62 (panel C) 

levels were assessed by western blot on protein extracts from cortex of young or adult rats fed a control 

or fructose-rich diet for 2 weeks. Quantitative densitometry was carried out, band intensities were 

calculated, and concentrations were expressed relative to β-actin level. Data are reported as means ± 

SEM of six rats/group. Diet dependent protein increase calculated relative to control animals: **p < 

0.01. 
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Figure S3. 

 

BDNF and TrkB amount in rat cerebral cortex. BDNF (panel A) and TrkB (panel B) levels were 

assessed by western blot on protein extracts from cortex of young or adult rats fed a control or fructose-

rich diet for 2 weeks. Quantitative densitometry was carried out, band intensities were calculated, and 

concentrations were expressed relative to β-actin level. Data are reported as means ± SEM of six 

rats/group. Diet dependent protein decrease calculated relative to control animals: *p < 0.05, **p < 

0.01, ***p < 0.001. # p < 0.05 compared to young treated rats. 
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Figure S4. 

 

Synaptic plasticity markers levels in rat cerebral cortex. Synaptophysin (panel A), synapsin I (panel 

B), and synaptotagmin I (panel C) levels were assessed by western blot on protein extracts from cortex 

of young or adult rats fed a control or fructose-rich diet for 2 weeks. Quantitative densitometry was 

carried out, band intensities were calculated, and concentrations were expressed relative to β-actin 

level. Data are reported as means ± SEM of six rats/group. Diet dependent protein decrease calculated 

relative to control animals: **p < 0.01 # p < 0.05 compared to young treated rats. 
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Concluding remarks 

Alterations of cholesterol homeostasis have been suggested to play a role in the onset and 

development of neurodegenerative diseases such as AD (Arenas et al., 2017). Also, a reduction 

of BDNF levels was observed in AD patients and was correlated with the pathology severity 

(Bisht et al., 2018).  This PhD work elucidates, for the first time, a critical role for BDNF, in 

modulating cholesterol homeostasis and inducing ApoE synthesis in both glial cell lines and 

primary astrocytes (Spagnuolo et al., 2018; a). ApoE represent the strongest genetic risk factor 

for AD, which in particular depends on the presence of 4 allele that worsen the ability of this 

protein to modulate cholesterol and -amyloid homeostasis in brain (Rebeck GW, 2017; Shi 

and Holtzman, 2018). In view of further clarifying the role of BDNF, it would be interesting in 

future to evaluate whether BDNF affects ApoE expression and release by glial cells in different 

way for the three isoforms of the apolipoprotein (ApoE2, ApoE3 and ApoE4). This analysis 

might be useful to better understand the mechanisms underling the onset of AD and the strong 

link between ApoE and AD. Recent data provided evidence for the link between disturbances 

in autophagy and changes in cholesterol homeostasis. Specifically, high intracellular 

cholesterol enhances beta amyloid- induced autophagosome formation, but impairs lysosomal 

fusion ability by altering RAB7A and SNAP receptors (SNAREs) content and distribution, 

which results in decreased beta amyloid lysosomal clearance, a critical step to avoid beta 

amyloid- induced neuronal death (Barbero-Camps et al, 2018). Interestingly, BDNF was 

previously shown to promote neuronal survival by suppressing autophagy induced by fasting 

(Nikoletopoulou et al., 2017). Deciphering the potential role of BDNF in autophagy induced by 

neuronal cholesterol alteration will be a forthcoming challenge for our group.  

Recent studies also demonstrated that BDNF release in brain is mediated by receptor 1 (1R) 

which is localized at mitochondria-associated ER membranes (MAMs), intracellular lipid rafts 

that include multiple lipid synthesizing enzymes such as cholesterol biosynthesis enzymes 

(Fujimoto et al., 2012; Dalwadi et al., 2017). It has been shown that an alteration of 1R activity 

lead to the onset of neurodegenerative disease such as AD, Parkinson’s disease (PD), 

Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS) (Maurice et al., 2018; Weng 

et al., 2017). Since it has been demonstrated that cholesterol binds 1R (Palmer et al., 2007) 

but the regulation of this receptor is not yet completely known, a future objective could be the 

study of cholesterol influence on 1R activity and, consequently, on BDNF release from 

neuronal cells.  
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Besides cholesterol, some foods and dietary components are able to modulate BDNF expression 

and activity (Pase et al., 2015). Since in the last decade fructose content in diet increased and 

an high consumption of this sugar has been related to the onset of obesity, metabolic diseases 

(Dupas et al. 2016; Aguilera- Mendez et al., 2018; Shi et al., 2018), cognitive decline and 

reduced synaptic plasticity (Chou et al., 2016; Cisternas et al., 2015), we investigated the effect 

of a short-term fructose rich diet in young and adult rats. Our results showed that even two 

weeks of treatment with fructose may induce alteration in brain redox homeostasis, autophagy 

and synaptic function markers including BDNF (Spagnuolo et al., 2018; b). Our data are 

supported by the recent finding that a maternal excess of fructose intake may induce 

hippocampal dysfunction in offspring by modification of BDNF promoter (Yamazaki et al., 

2018) and that cognitive defects induced by a high-fat-high-fructose diet can be reverted by 

inducing BDNF signalling pathways in the CNS (Mi et al. 2017). These results suggest the need 

of educating people, in particular youngs, to a healthy lifestyle, in particular to reduce sugar 

amount and the use of industrial foods, in order to prevent brain functions alterations and in the 

long run neurodegenerative diseases.   
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