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Brief thesis presentation 
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1.1  Short overview 

 

Recently, issues concerning the sustainable and harmless disposal of organic solid waste have 

generated interest in microbial biotechnologies aimed at converting waste materials into 

bioenergy and biomaterials, thus contributing to a reduction in economic dependence on fossil 

fuels. 

In particular, the development of high-performance microbial strains to bioenergy and 

biomaterials production using organic by-products and waste, could reasonably make their 

production costs comparable to those required by fossil fuels and petrochemical-derived 

plastics, thus promoting their use. 

For this purpose, promising food processing by-products are dairy wastes, such as cheese whey 

and buttermilk, because they can be conveniently processed and valorized in a biorefinery 

value chain since they are abundant, zero-cost and all year round available. For this reasons, in 

the recent past, many studies have been focused on the use of dairy waste for the production of 

either bioenergy or biopolymers separately. On the contrary, only few studies have been 

focused on a new integrated system based on a series of anaerobic and aerobic stages aimed at 

yielding biogas and/or hydrogen coupled with polyhydroxyalkanoates (PHA) production. In 

fact, in the same processing chain, the volatile fatty acids (VFAs) resulting from the acidogenic 

and acetogenic steps of the anaerobic digestion are used as substrates for aerobically producing 

PHA. In this context, a comprehensive knowledge of the microbial species involved in 

producing biological gases (biohydrogen and biogas) and valuable intermediates (VFAs) from 

dairy wastes is necessary to further improve the performance of the integrated system. 

Therefore, critical aspects, designing as well as managing criteria and future perspectives of 

this integrated system are handled and discussed as topics in this PhD thesis. 

 

1.2 Aims and outline  

 

The objective of this research was achieved by developing the experimental work in two main 

stages, respectively focused on the following intermediate aims: i) enhance the current 

knowledge on the microbial communities involved in the anaerobic digestion of dairy wastes; 

ii) address the valuable chemical intermediates (VFAs) resulting from the anaerobic phase to 

polyhydroxyalkanoates (PHAs) synthesis. Therefore in the first stage of the research, it was 
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investigated the role of microbial groups in the anaerobic processes and the correlation between 

the intermediates or end-products (e.g., H2, CH4 and VFAs) with the bacterial groups during 

the anaerobic process, whereas through the second stage it was examined the PHAs formation 

from the organic acids resulting from the acidogenic and acetogenic phases (anaerobic process) 

using pure cultures as well as mixed. This research led to intermediate results that are reported 

in the different chapters that compose this thesis according to the following structure: 

In Chapter 2, an overview of the suitable substrates and microbial strains used in low-cost 

polyhydroxyalkanoates as well as biohydrogen and biogas production is given with the 

possibility of creating a unique integrated system. The results of a preliminary study on the 

anaerobic digestion of cheese whey and buttermilk collected from a buffalo mozzarella cheese 

factory located in Casoria in the Campania region (Italy) under different operating conditions 

(inoculum percentage and pH) are reported in Chapter 3: the inoculum concentrations was set 

between 1-5% (w/v), natural acid conditions were set and different microbial groups related to 

biogas production were selected. In order to limit the use of the inoculum and make the process 

performance independent on its availability, in Chapter 4 it was investigated the effect of 

inoculum ranging between 1-3% (w/v) on the anaerobic digestion of dairy waste. This effect 

was evaluated by monitoring the microbial growth and communities’ structure with culture-

dependent and independent methods: many archaeal species, mostly involved in the production 

of CH4, were identified by sequencing denaturing gradient gel electrophoresis (DGGE) bands. 

Since the DGGE analysis, although is highly efficient, analyze a limited number of aspects if 

compared with the emerging metagenomic approaches based on high-throughput sequencing 

(HTS), in Chapter 5, it was examined the use of a polyphasic approach including HTS in lab-

scale batch tests addressed to follow the microbiota dynamic in different stages of the anaerobic 

process fed with cheese whey and buttermilk. The fermented cheese whey obtained in these 

last experiments with high concentrations of organic acids, were characterized and used in 

further assays aimed to PHAs accumulation. Actually, in Chapter 6 pure culture of PHAs 

accumulating bacteria were screened for their ability to grow and accumulate PHAs by using 

the fermented cheese whey (organic acids resulting from the previous experiments) and 

comparing their performance with synthetic pure acids. In order to promote low cost processes 

for PHAs production, in Chapter 7,the use of mixed microbial cultures (MMC) in producing 

PHAs was tested: bacteria were selected from the activated sludge of a wastewater treatment 

plant (Mutela, Portugal) using as carbon source a fermented cheese whey at different level of 

salinity. The last chapter, Chapter 8, presents a critical synthesis of the main findings from the 

research and conclusions based on knowledge generated.
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2.1 Introduction 

 

Over the past few decades, the need to reduce pollutant emissions produced by conventional 

systems of organic waste disposal has promoted the development of technologies that convert 

organic waste into bioenergy and biomaterials. In the near future, this new approach in waste 

management, in addition to being eco-friendly, can reasonably replace fossil fuels with biomass 

(organic waste or energy crops) as a source of both energy and materials (e.g., plastics) and 

therefore make two contributions toward reducing greenhouse gas (GHG) emissions into the 

atmosphere (Bauen et al., 2009). 

Petrochemical-derived materials can be replaced with biodegradable materials and 

biochemicals derived from renewable sources. In fact, organic waste materials are interesting 

renewable resources that can be converted into different value-added products, such as 

bioethanol or biochemicals obtained by sugar fermentation (Mezule et al., 2015; Liguori et al., 

2016). Recent technological developments have explored the value of biochemical products as 

precursors to biopolymers, e.g., succinic acid (Ventorino et al., 2016a; Ventorino et al., 2017) 

and 2, 3-butanediol (Saratale et al., 2016) derived from lignocellulosic biomass. Some 

biopolymers can be produced by microorganisms from the accumulation of extracellular 

materials, such as exopolysaccharides (EPS) (Pepe et al., 2013), and used in the food, chemical, 

cosmetic, and packaging industries as adhesives, absorbents, lubricants, and cosmetics. 

Furthermore, several biopolymers, such as polyhydroxyalkanoates (PHAs), polylactides, 

aliphatic polyesters, and polysaccharides (Lee 1996), have already been successfully tested as 

bioplastics (Steinbüchel et al., 1998) because their physical and chemical properties perform 

just as well as conventional synthetic plastics. Among them, PHAs have gained much attention 

thanks to their complete biodegradability under various conditions within a period of one year 

(Cavalheiro et al., 2009). Different bacteria (e.g., Alcaligenes spp., Azotobacter spp., 

methylotrophs, Pseudomonas spp., Bacillus spp., and recombinant Escherichia coli) have been 

used in PHA production from different low-cost substrates. In fact, to replace conventional 

petrochemical-derived plastics, useful substrates for PHA production include organic waste 

and by-products. In fact, to commercialize PHAs, substantial effort has been devoted to 

reducing the production cost through the development of bacterial strains and more efficient 

fermentation/recovery processes because the price of the substrate has the largest influence on 

the production cost of PHA (Salehizadeh et al., 2004).  

To make PHA production more feasible for industrial application, future prospects are mainly 

focused on promoting less expensive substrates, improved microorganism cultivation strategies, 
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and easier downstream processing methods, which are required for reducing production costs 

(Ahn et al., 2001). For this reason, different inexpensive substrates, such as molasses and 

sucrose, starch-based materials, cellulosic and hemicellulosic materials, sugars, whey, oils, 

fatty acids and glycerol, and organic matter from waste and wastewater (Castilho et al., 2009), 

have been tested to produce biopolymers, and the results are promising. 

Furthermore, it is important to highlight that the same substrates used to produce biopolymers 

represent a source of renewable energy (biomethane and biohydrogen) obtainable through an 

anaerobic digestion process. Therefore, such substrates can be simultaneously used to produce 

bioenergy and biopolymers, thus achieving a maximum valorization when they are used as 

organic waste. 

The anaerobic digestion process is characterized by biochemical reactions in series carried out 

by different consortia of bacteria that convert organic compounds into methane, carbon dioxide, 

water, and ammonia. In the first step, complex and not negligibly sized biomolecules of organic 

materials are disintegrated and subsequently hydrolyzed into soluble, biodegradable organics 

by extracellular enzymes (Panico et al., 2014). Then, acidogenic microorganisms metabolize 

products by hydrolysis into volatile fatty acids (VFAs) (Acidogenic phase) (Sans et al., 1995). 

Acidogenic products are first converted into acetic acid, hydrogen, and carbon dioxide 

(Acetogenic phase) and, finally, into methane by methane-producing Archaea (Methanogenic 

phase) (Chynoweth et al., 2001). The same substrates of methanogenic metabolism are the 

precursors that form PHAs (Patel et al., 2011). Thus, this review gives insights into the current 

methodology for producing PHAs and biogas, with a focus on the use of organic waste and by-

products as raw materials to keep production costs low. Moreover, this review examines the 

potential of several biological processes that can occur in the development of an innovative 

unique integrated system able to simultaneously produce bioenergy and biopolymers. 

 

2.2 Bio-based and biodegradable polymers: PHAs production and classification 

 

Polyhydroxyalkanoates (PHAs) represent a group of bio-based and biodegradable polymers, 

considered similar to petroleum-based polymers (Carvalho Morais, 2013). 

Many bacteria, such as Cupriavidus (C.) necator (Koutinas et al., 2007; Xu et al., 2010; Haas 

et al., 2008; Yu et al., 2008; Cavalheiro et al., 2009; Fukui and Doi, 1998; Kahar et al., 2004; 

Füchtenbusch et al., 2000; Yu, 2001; Wang and Yu, 2007) different Pseudomonas (P.) species 

(P. fluorescens, P. hydrogenovora, P. oleovorans, P. resinovorans, P. aeruginosa, P. 

mendocina) (Jiang et al., 2007a; Koller et al., 2008; Füchtenbusch et al., 2000; Cromwick et 
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al., 1996; Hori et al., 2002; Guo et al., 2011), strains belonging to Azotobacter (A.) species (A. 

vinelandii, A. chroococcum, A. beijerinckii) (Page et al., 1992; Chou et al., 1997; Kim 2000; 

Quagliano et al., 1999; Pal et al., 1999, Bacillus (B.) spp. (Halami 2008; Yilmaz and Beyatli 

2005; Law et al., 2003), recombinant Escherichia (E.) coli (Lee 1996; Liu et al., 1998; Lee et 

al., 1997; Kim 2000; Nikel et al., 2006; Ahn et al., 2001; Park et al., 2002) and Burkholderia 

(Bk.) spp. (Nonato et al., 2001; Silva et al., 2004), synthesize PHAs as intracellular carbon and 

energy storage, accumulating these polyesters of hydroxyalkanoates as granules in the 

cytoplasm of cells (Reddy et al., 2003). Polyhydroxyalkanoic acids produced by bacteria are 

the building blocks of biodegradable thermoplastics and elastomers currently in use, or 

candidates to be used, in the medical and pharmaceutical industries as well as in agriculture 

(Suriyamongkol et al., 2007). The production of PHAs occurs mainly when cells are cultivated 

in the presence of a carbon source in excess, and their growth is limited by the lack of another 

nutrient, such as nitrogen, phosphorus, sulfur, or oxygen (Anderson et al., 1990). When the 

supply of the limiting nutrient is restored, PHAs are degraded by an intracellular depolymerase 

and subsequently metabolized as a carbon and energy source (Taidi et al., 1994) and the number 

of bacteria rapidly increases. 

PHAs can be divided into two groups depending on the number of carbon atoms in the 

monomer units: short-chain-length (SCL) PHAs, which consist of 3-5 carbon atoms, and 

medium chain-length MCL-PHAs, which consist of 6-14 carbon atoms (Anderson et al., 1990). 

The length of the side chain and functional group has great importance for the physical 

properties. The SCL-PHAs are crystalline, brittle, and stiff polymers, with a high melting point 

and a low glass transition temperature. In contrast, MCL-PHAs show low crystallinity and 

tensile strength and lower melting points. 

PHAs have the general formula shown in Figure 2.2 (Castilho et al., 2009), where “n” is equal 

to 1, and “R” is a methyl group. The most abundant PHA family member is poly(3-

hydroxybutyrate) (P(3HB)). Using different substrates in a co-feeding system, copolymers of 

PHB (polyhydroxybutyrate) can be formed, such as polymers containing 3-hydroxyvalerate 

(3HV) or 4-hydroxybutyrate (4HB) monomers. 3HV can be incorporated into the PHB 

molecule, forming poly(3-hydroxybutyrateco-3-hydroxyvalerate) [P(3HB-3HV)], resulting in 

a more brittle compound than P(3HB) (Reddy et al., 2003). 
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Figure 2.2. General structure of polyhydroxyalkanoates (PHAs). The most studied PHA type 

is the homopolymer P(3HB), for which n is equal to 1 and R is a methyl group (Castilho et al., 

2009). 

 

Thus, to reduce the environmental footprint by producing and using petrochemical-derived 

products, they can be replaced partially and even completely by polyesters derived from 

biological processes (i.e., PHAs) that have the significant advantage of being completely 

biocompatible (Reddy et al., 2003). Biocompatibility is the property shown by certain materials 

that generates non-toxic compounds when they are disposed of after use as well having the 

same physical property of the artificial material derived from petrol that they would replace 

(Castilho et al., 2009). Unlike petroleum-derived plastics that take several decades to degrade, 

PHAs can be completely bio-degraded within a year by a variety of microorganisms, mainly 

bacteria and fungi (Suriyamongkol et al., 2007). In particular, several aerobic and anaerobic 

PHA-degrading bacteria, such as Comamonas sp. (Jendrossek et al., 1993), P. lemoignei 

(Delafield et al., 1965) from soil, Alcaligenes faecalis (Tanio et al., 1982) and P.fluorescens 

from activated sludge (Mergaert et al., 1994) and P. stutzeri from lake water (Mukai et al., 

1994), and fungi, such as Aspergillus fumigatus (Mergaert et al., 1994), have been isolated 

from various environments. These microorganisms excrete extracellular PHA depolymerases 

to degrade PHAs into water-soluble monomers and oligomers, using them as a carbon source 

(or methane under anaerobic conditions) (Lee, 1996). 
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Thus, life cycle assessment (LCA) conducted on the use of PHAs has been proven as the main 

advantage to avoid the accumulation of plastics in the environment (Patel et al., 2003). 

Therefore, PHAs are better than petrochemical analogues, such as polyethylene and 

polypropylene (Akiyama et al, 2003; Harding et al., 2007; Pietrini et al., 2007), in terms of 

sustainability and environmental protection (Atlić et al., 2011), but the realization and more 

widespread use of these environmentally friendly processes are related to the cost of the final 

product. The current PHA price also depends on monomer composition, and it is usually higher 

for copolymers; overall, it ranges from 2.2-5.0 € Kg-1 (Gholami et al., 2016; Chanprateep, 

2010; Castilho et al., 2009), which is less than the typical range of 10-12 € Kg-1 reported at the 

beginning of the past decade (Gholami et al., 2016). Notwithstanding the burden of costs and 

the environmental impacts of plastic trash, the current PHA prices are not deemed to be 

commercially competitive with respect to conventional petroleum-based polymers, which 

typically cost less than 1.0 € Kg-1 (Gholami et al., 2016; Chanprateep, 2010; Valentino et al., 

2017). Although the price of PHAs is high, several companies are producing PHA products 

worldwide to meet the demand of the market, including in the UK, Japan, US, Germany, Brazil, 

Italy, and China (De Marco, 2005; Tian et al., 2009). 

 

2.3 Suitable substrates and bacterial strains for PHA production 

 

The synthesis of PHAs occurs in many microorganisms under well-defined operating 

conditions and when they are supplemented with specific substrates, better known as PHA 

precursors. These compounds are incorporated into PHAs and used as the sole carbon source 

by microorganisms (or coupled with others as cosubstrates) if the cells are cultivated in the 

presence of an excess carbon source. Moreover, PHAs are also formed when growth is impaired 

or restricted by the lack of another nutrient, such as nitrogen, phosphorus, or oxygen (Lee, 

1996). Thus, different PHAs could be synthesized from the combination of different substrates 

and microorganisms under different growth conditions (aerobic or anaerobic, temperature, and 

pH). 

Relevant substrates for the production of PHAs are as follows: carbon dioxide (Tsuge, 2002) 

or fossil resources, such as low rank coal (Füchtenbusch et al., 1999) renewable resources (e.g., 

starch (Yu, 2001; Halami, 2008; Koutinas et al., 2007; Xu et al., 2010; Vandamme and Coenye, 

2004), cellulose (Lee, 1998), sucrose (Jiang et al., 2007a; Page et al., Koutinas et al., 2007)), 

waste materials (e.g., molasses (Page et al., 1992; Yilmaz and Beyatli, 2005; Liu et al., 1998), 

whey (Ahn et al., 2001; Koller et al., 2008; Lee at al., 1997; Nikel et al., 2006; Park et al., 



27 
 

2002), glycerol (Cavalheiro et al., 2009), and chemicals (e.g., propionic acid (Kalia et al., 

2000)). To avoid the use of fossil resources due to environmental issues and to limit PHA 

production costs, renewable resource and waste materials are reasonably considered suitable 

and promising substrates. 

In the following paragraphs, an overview of different works categorized on the basis of the 

different substrates used is given. The results are presented in terms of the PHA content 

(%PHAs, %) and concentration ([PHAs], g l-1) calculated by the following equations 1 and 2, 

respectively, where mPHAs is the amount of PHAs [mg], mcells [mg] is the amount of freeze-

dried biomass in samples, and CDW is the cell dry weight [g l-1]: 

 

 

%𝑃𝐻𝐴𝑠 =
𝑚𝑃𝐻𝐴𝑠

𝑚𝑐𝑒𝑙𝑙𝑠
× 100      (1) 

 

[𝑃𝐻𝐴𝑠] =
%𝑃𝐻𝐴𝑠

100
× 𝐶𝐷𝑊    (2) 

 

 

2.3.1 Starch-based material as a source of PHAs 

 

Starch is a renewable carbon source available in large amounts. Prior to fermentation, starch is 

hydrolyzed to glucose by a two-step process, liquefaction and saccharification, because PHA-

producing bacteria cannot synthetize amylase enzymes for starch degradation. Commercial 

hydrolyzing enzymes are often used, but they contribute to an increase in the cost of the glucose 

production process (Kim, 2000). Kim (2000) used soluble starch to produce P(3HB), obtained 

after 70 h of incubation with 25 g l-1 of PHB (content of 46% in cell dry weight), in fed-batch 

cultures of A. chroococcum strain 23 under oxygen-limiting conditions. Halami (2008) reported 

the ability of the isolated strain Bacillus cereus CFR06 to accumulate PHAs in a starch medium 

composed of soluble starch, yeast extract, and salts. The genus Bacillus was identified as one 

of the first Gram-positive bacteria suitable to produce PHAs and was cultivated under nitrogen 

limitation in Luria–Bertani (LB) broth for 24 h at 37°C on a rotary shaker at 100–150 rpm/min. 

The results obtained were less promising than those found by Kim (2000) because, after 72 h 

of incubation, a P(3HB) concentration of 0.48 g l-1 with a content of 48% was achieved. 
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Koutinas et al. (2007) proved the potential of Cupriavidus necator (synonym Wautersia 

eutropha and formerly classified as Alcaligenes eutrophus, formerly classified as Ralstonia 

(R.) eutropha (Vandamme et al., 2004)) in PHB production from a specific substrate derived 

from wheat. The authors conducted fed-batch tests using a 500 ml shake flask on a 250 rpm 

rotary shaker at 30°C and a pH range of 6.5–6.8. The results showed a PHB concentration of 

51.1 g l-1 using a culture medium with free amino nitrogen as substrate at a concentration of 

1.2 g l-1. Under the same operating conditions (working volume, rpm, temperature, and pH 

range), Xu et al. (2010) compared the batch and fed-batch modes using C. necator NCIMB 

11599 grown on wheat-derived media. They demonstrated that more PHB was accumulated in 

cells operating in fed-batch mode. In fact, the use of fed-batch mode allowed for an increase in 

PHB concentration to 130.2 g l-1 (PHB cells content ~80%) compared with batch fermentation 

that showed a production of 41.5 g PHB l-1 (PHB cells content ~66%). Haas et al. (2008) used 

saccharified waste potato starch as a carbon source for PHB production by C. necator NCIMB 

11599, obtaining a PHB concentration of 94 g l-1, with a specific yield from starch of 0.22 PHB 

g starch g-1 under phosphate-limiting conditions. Poomipuk et al. (2014) isolated and selected 

the strain Cupriavidus sp. KKU38, which was able to accumulate PHAs up to 65.27% (PHAs 

concentration of 2.8 g l-1) from cassava starch hydrolysate as a sole carbon source in a 250 ml 

flask (Table 2.3.1). 

However, to overcome the high costs of the hydrolysis of starch into glucose by a two-step 

process (liquefaction and saccharification), making this feedstock less economically viable, 

Bhatia et al. (2015) constructed the recombinant E. coli strain SKB99 harboring plasmids 

containing genes for starch hydrolysis (from Paenibacillus sp.) and PHB synthesis (from R. 

eutropha). This engineered strain utilized starch as the sole carbon source, with a maximum 

PHB production of 1.24 g l-1 (PHB content 40%) for 72 h with 2% (w/v) starch (Table 2.3.1). 

In addition, the accumulation of PHB started with the growth of the strain E. coli SKB99 and 

remained consistent until it attained the stationary phase, highlighting that PHB production in 

this engineered strain is not regulated by the stress response, unlike in R. eutropha and other 

microorganisms. 

Therefore, starch-based materials are suitable substrates for PHA accumulation and, in 

particular, for P(3HB) accumulation. However, PHA accumulation strictly depends on the 

bacterial species and strains that exhibit different biotechnological performances depending on 

the carbon source and the culture conditions. The best results were obtained using C. necator 

NCIMB 11599 cultured on wheat and hydrolyzed waste potatoes under nutrient (nitrogen or 

phosphorus) limiting conditions, operating in batch and fed-batch mode, respectively. 
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Table 2.3.1 Overview of studies reporting PHAs production from starch-based materials 

 

Strain 
Type of 

PHA 

Operation 

mode 

Time to 

PHAmax [h] 

PHAs concentration 

[ g l-1] 

PHAs content 

[%] 
Reference 

Azotobacter chroococcum 

23 
P(3HB) Fed-batch 70 25 46 (Kim, 2000) 

Bacillus cereus 

CFR06 
P(3HB) Batch 72 0.48 48 (Halami et al., 2008) 

Cupriavidus necator 

NCIMB 11599 
P(3HB) Fed-batch 168 51.1 70 (Koutinas et al., 2007) 

Cupriavidus necator 
NCIMB 11599  

P(3HB) 
Batch 69 41.5 66 

(Xu et al., 2010) 
Fed-batch 171 130.2 80 

Cupriavidus necator 
NCIMB 11599 

P(3HB) Batch 72 94 22 (Haas et al., 2008) 

Cupriavidus sp. KKU38 PHA Batch 96 2.8 65.3 
(Poomipuk et al., 

2014) 

Recombinant E. coli 

SKB99 
P(3HB) Batch 72 1.2 40 (Bhatia et al., 2015) 
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2.3.2 Molasses and sucrose as sources for PHAs 

 

Molasses is a common industrial by-product of sugar production, is much cheaper than glucose, 

and is extensively used as a carbon source for PHA production from biological processes 

(Table 2.3.2). Liu et al. (1998) demonstrated that recombinant Escherichia coli 

(HMS174/pTZ18u-PHB) can efficiently utilize molasses as the sole carbon source to produce 

PHB. A fed-batch feeding strategy was developed to improve cell growth and PHB production. 

The final PHA concentration was 31.6 g l-1, and 80% of PHAs was accumulated. Jiang et al. 

(2007a) isolated a strain of (PHB)-accumulating bacteria from the soil in Alaska (USA), 

identified as P. fluorescens A2a5. This microorganism is capable of accumulating a large 

amount of granules in its cells when grown in sugarcane liquor medium. Batch cultivation was 

carried out at 25°C in a 5 l bioreactor inoculated with 1% inoculum (v/v) at pH 7.0. In this way, 

a maximum cell dry weight (CDW) of 32 g l-1 with a PHB concentration of 22.4 g l-1 was 

obtained, and the PHB content was approximately 70%. C. necator was aerobically grown in 

a well-balanced medium consisting of sugarcane and inorganic nutrients to reach a high cell 

density (Nonato et al., 2001). Then, cell growth was shifted to PHB synthesis by limiting 

nutrients other than the carbon source. The fed-batch fermentation process was carried out by 

continually feeding (45-50 h) a high concentration of sugar syrup to achieve a biomass of nearly 

65-70% PHB, with a concentration ranging from 80 to 100 g l-1. 

The effect of different molasses concentrations (1-5 g molasses/100 ml water) on PHB 

production by B. cereus M5 was investigated by Yilmaz and Beyatli (2005). They observed 

that PHB productivity by this strain decreased with increasing molasses concentration. In fact, 

the highest P(3HB) concentration produced by this strain was 0.1 g l-1 (polymer content of 

73.8%) with 1% molasses concentration.  

A. vinelandii UWD was investigated by Page et al. (1992) using molasses as the sole carbon 
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Table 2.3.2. Overview of studies reporting PHAs production from molasses and sucrose 

 

 

 

Strain 
Type of 

PHA 

Operation 

mode 

Time to 

PHA max [h] 

PHAs concentration 

[g l-1] 

PHAs content 

[%] 
Reference 

Recombinant E. coli 
(HMS174/pTZ18u-PHB) 

 (C. necator genes) 

P(3HB) Fed-batch 31.5 31.6 80 (Liu et al., 1998) 

Pseudomonas fluorescens  
A2a5 

P(3HB) Batch 96 22.4 70 (Jiang et al., 2007a) 

Cupriavidus necator P(3HB) Fed-batch 45-50 80-100 65-70 (Nonato et al., 2001) 

Bacillus cereus M5 P(3HB) Batch 72 0.13 73.8 
(Yilmaz and Beyatli, 

2005) 

Azotobacter vinelandii 

UWD 
P(3HB) Fed-batch 35 23 66 (Page et al., 1992) 

Bacillus megaterium 

BA-019 

 

P(3HB) Fed-batch 24 72.7 42 
(Kulpreecha et al., 

2009) 
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source. Fed-batch bioreactors were operated with 5% (w/v) molasses at pH 7.2 and inoculated 

with 4%(v/v) of the pre-grown strain. In the beet molasses medium, NH4 was depleted by 10 

to 12 h to establish NH4-limiting conditions and fix nitrogen during the PHA production phase 

of growth. After 35 h, a P(3HB) concentration of 23 g l-1 and a polymer content of 66% were 

achieved.  

Kulpreecha et al. (2009) tested B. megaterium BA-019 on sugarcane molasses (20 g l-1) as a 

carbon source and urea or ammonium sulfate at 0.8 g l-1 as the investigated nitrogen sources. 

In the experiments, a cell dry mass concentration of 72.7 g l-1 in 24 h, with a PHB content of 

42% (w/w), was achieved under nitrogen-limiting conditions operating in fed-batch mode. 

In addition, with sugarcane, C. necator showed the best PHA concentration among the bacterial 

strains (recombinant E. coli, A. vinelandii UWD, and B. megaterium) operating in fed-batch 

mode with molasses as a carbon source. In fact, C. necator is able to accumulate approximately 

100 g l-1 synthesizing glucose (from starch) and sucrose (from sugarcane). 

 

2.3.3 Lignocellulosic material as a source for PHAs 

 

To produce fuels and other valuable bioproducts, lignocellulosic biomass from dedicated crops 

and agricultural and forestry waste are promising renewable sources (Di Pasqua et al., 2014; 

Ventorino et al., 2015; Ventorino et al., 2016a,b). 

Lignocellulosic materials, consisting of lignin (complex polyphenolic structure), cellulosic (b-

D-1,4-glucan), and hemicellulosic (D-arabinose, D-xylose, D-mannose, D-glucose, D-

galactose, and sugar alcohols) fibers, constitute the most abundant renewable resources on our 

planet (Castilho et al., 2009). 

The composition of lignocellulosic biomass differs in terms of lignin (10–25%), cellulose (30–

60%), and hemicellulose (25–35%) content (Kumar et al., 2010). 

Silva et al. (2004) studied the potential of two bacterial strains, Bk.. cepacia IPT 048 and Bk. 

sacchari IPT 101A, in producing P(3HB), comparing biosynthesis from xylose and glucose 

with bagasse hydrolysate. In high-cell-density cultures using a mixture of xylose with glucose 

under P limitation, both strains reached a maximum P(3HB) concentration of 60 g l-1 dry 

biomass, containing 60% biopolymer. Higher polymer content and yield were observed under 

P limitation than under N limitation for Bk. sacchari IPT 101A, whereas Bk. cepacia IPT 048 

showed a similar performance in the presence of both growth-limiting nutrient conditions. 

Using bagasse hydrolysate as the carbon source, polymer contents reached 62% and 53% for 
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B. sacchari IPT 101A and B. cepacia IPT 048, respectively, with a CDW of 4.4 g l-1 for both 

strains under N limitation (Table 2.3.3). Yu and Stahl (2008) also studied the performance of 

C. necator with the same substrate. In their experiment, the cultures were shaken in flasks at 

200 rpm and 30°C for 48 h with pH adjusted to approximately 7.5. They demonstrated that 

P(3HB) was the predominant biopolyester formed from the hydrolysis of sugarcane bagasse, 

with a concentration of 3.9 g l-1, corresponding to a P(3HB) accumulation of 65% of the CDW, 

achieved with a high carbon to nitrogen ratio (C/N = 20 or above). Since a minimum nitrogen 

level should be maintained during cultivation, this high C/N ratio implies a high concentration 

of residual organic carbon or a high amount of hydrolysates. A moderate C/N ratio (7–10) may 

be used to yield a low concentration (less than 1 g l-1) of residual carbons and a moderate level 

of PHA content in the cells (45–50% w/w). Lee et al. (1998) investigated P(3HB) production 

from xylose and hydrolyzed cellulose by growing recombinant E. coli strains with C. necator 

PHA biosynthesis genes, testing the effects of supplementing a complex nitrogen source on 

cell growth and PHB production. The cells were cultivated for 60 h in a 250 ml flask containing 

50 ml of medium in a shaking incubator at 250 rpm. When the strain TG1 (pSYL107) was 

grown on 20 g l-1 xylose, it was capable of accumulating 1.7 g l-1 of P(3HB) with 35.8% of 

polymer content. A higher P(3HB) concentration, equal to 4.4 g l-1, and a polymer content of 

73.9% were reached when the previous culture medium was supplemented with 10 g l-1 of 

soybean hydrolysate. To evaluate the effects of the nitrogen source, tryptone and peptone were 

also tested, achieving 47.7% and 10.3% of PHB content, respectively. 

The ability of R. eutropha ATCC 17699 (C. necator) to produce PHB in the presence of 

different waste biomass hydrolysates (rice paddy straw, soybean husk, sunflower husk, and 

wood straw) was evaluated by Saratale and Oh (2015). The most suitable substrate for PHB 

accumulation by this strain was the rice paddy straw hydrolysate, which was selected by the 

authors for optimization of the process, obtaining the maximal PHA accumulation (75.45%) 

and PHB production (11.42 g l-1) within 48 h of fermentation. Moreover, lignin and its 

derivatives are also used for PHA production. Tomizawa et al. (2014) tested PHA-

accumulating strains on mineral salt media containing each of the 18 lignin derivatives and 

hydroxybenzoic acids, including intermediates derived from the metabolism of lignin 

derivatives in bacteria. Most of the strains grew poorly in media containing lignin derivatives, 

such as p-coumaric acid, caffeic acid, ferulic acid, and sinapinic acid. On the contrary, R. 

eutropha PHB-4 accumulated P(3HB) from 3-hydroxybenzoic acid and 4-hydroxybenzoic acid 

as the sole carbon sources, with a PHA content of 65 and 63 wt % and a dry cell weight of 1.6 

and 0.69 g l-1, respectively. 
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Although C. necator species seems to be the best bacterial candidate for PHB production using 

lignocellulosic hydrolysate, the accumulation is lower than that obtained with sucrose- and 

starch-based materials as carbon sources. The lowest PHA accumulation could be due to the 

presence of specific toxic compounds (e.g., furfural, HMF, p-hydroxybenzoic aldehyde, and 

vaniline) that are usually released during the pretreatment of lignocellulosic biomass, which 

are known to have an inhibitory effect on microbial growth and metabolism. 
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Table 2.3.3. Overview of studies reporting PHAs production from lignocellulosic materials. 

 

 

Strain 

 

Type of 

PHA 
Operation mode 

Time to 

PHAmax [h] 

PHAs concentration 

[g l-1] 

PHA content 

[%] 
Reference 

Burkholderia sacchari 

IPT 101 
P(3HB) Batch 25 2.73 62 (Silva et al., 2004) 

Burkholderia cepacia 

IPT 048 
P(3HB) Batch 25 2.33 53 (Silva et al., 2004) 

Cupriavidus necator  PHA Batch  48 3.9 65 (Yu and Stahl, 2008) 

Recombinant E. coli 

(C. necator genes) 
P(3HB) Batch 

60 1.7 35.8 
(Lee et al., 1998) 

60 4.4 73.9 

R. eutropha ATCC 

17699 (C. necator) 
P(3HB) Batch 48 11.4 75.5 (Saratale and Oh, 2015) 
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2.3.4 Whey-based culture media as a source for PHAs 

 

Whey is the major by-product of cheese factories, representing 80–90% of the volume of 

transformed milk (Lee et al., 1997). It contains approximately 4.5% (w/v) lactose, 0.8% (w/v) 

protein, 1% (w/v) salts, and 0.1–0.8% (w/v) lactic acid, and its high biological oxygen demand 

(40 g l-1) makes it difficult to dispose. The discharge of large amounts of cheese whey into the 

environment can damage the chemical and physical structure of soil and pollute groundwater 

and can also affect the air (Zhong et al., 2015). This by-product represents an attractive low-

cost substrate for producing PHAs (Table 2.3.4). 

As seen in the previous sections, C. necator is one of the best-known bacteria among PHA-

producing microorganisms, but it is unable to hydrolyze lactose or metabolize galactose 

(Gomez et al., 2012). In fact, C. necator was able to use lactose only after the expression of 

genes encoding β-galactosidase and galactokinase, although at a very slow rate (Pries et al., 

1990). Therefore, recombinant E. coli containing the C. necator PHA biosynthesis genes for 

the production of PHB from glucose is considered a good candidate for PHB production from 

whey (Lee et al., 1997). Lee et al. (1997) cultivated recombinant E. coli strains in a defined 

medium supplemented with varying concentrations of whey solution and obtained 5.2 g l-1 of 

PHB, corresponding to 81.3% (w/w) of PHB, with a concentration of 30 g l-1 of whey solution. 

Kim (2000) also studied recombinant E. coli strains as PHB-accumulating microorganisms 

under O2 limitation compared with conditions without O2 limitation. The highest PHB 

accumulation (80%) was observed under O2-limiting conditions, with a PHB concentration of 

25 g l-1. Instead, without O2 limitation, 57% of PHB was achieved with a concentration of 32 

g l-1. A recombinant E. coli strain containing the PHA biosynthetic genes from Azotobacter 

spp., specially designed for the production of PHB from milk whey, was studied by Nikel et al. 

(2006). Fed-batch cultures were carried out at 37°C in a 5.6-liter fermentor with a starting 

volume of 2.0 liters and a controlled pH of 7.20. The feeding solution used for fed-batch 

cultures was a concentrated and deproteinated whey solution containing 25% (w/v) lactose. 

They reported that after 24 h, the cells accumulated PHB up to 72.9% of their cell dry weight, 

reaching a PHA concentration of 51.1 g l-1. Physical analysis of PHB collected from the 

recombinants showed that its molecular weight was similar to PHB produced by an Azotobacter 

spp. strain. 

A new fermentation strategy using a cell recycle membrane system was developed by Ahn et 

al. (2001) for the efficient production of P(3HB) from whey by a recombinant E. coli strain 
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harboring the Alcaligenes latus PHA biosynthesis genes. 

Cell fed-batch cultures of recombinant E. coli CGSC 4401 (pJC4) were carried out to overcome 

the volumetric limitation of a fermentor (2.7 l) fed with a solution with low lactose solubility 

to increase PHB productivity. A whey solution containing 210 g lactose l-1 was used as a 

feeding solution. The final cell concentration, PHB concentration, and PHB content obtained 

in 39 h were 150 g l-1, 100 g l-1, and 67%, respectively. In another experiment, a whey solution 

containing 280 g lactose l-1 was used as a feeding solution. After 36.5 h, a PHB concentration 

and a PHB content of 96.2 g l-1 and 80.5%, respectively, were obtained using a whey solution 

concentrated to contain 280 g lactose l-1 as a feeding medium. No inhibitory effects of the by-

products or nutrients on cell growth and PHB production were found during fermentation by 

the authors. 

The production of P(3HB) from whey by fed-batch cultures of recombinant E. coli harboring 

a plasmid containing the Alcaligenes latus PHA biosynthesis genes was examined by Park et 

al. (2002). Fed-batch cultures of recombinant Escherichia coli SGSC 4401 (pJC4) were carried 

out at 30°C in 30 l (working volume of 10 l) and 300 l (working volume of 150 l) fermenters 

supplying only air. The culture pH was controlled at 6.9. With lactose below 2 g l-1, the cells 

grew to 12 g l-1 with 9% (w/w) P(3HB) content in a 30 l fermenter. The accumulation of P(3HB) 

could be triggered by increasing lactose to 20 g l-1. Using this strategy, 35.5 g l-1 was obtained 

with a 70% (w/w) P(3HB) content after 26 h. The same fermentation strategy was used in a 

300 l fermenter, and a 20 g l-1 with 67% (w/w) P(3HB) content was obtained in 20 h by Park 

et al. (2002). Koller et al. (2008) compared the production of PHB under nitrogen-limiting 

conditions obtained with P. hydrogenovora using the following two substrates: hydrolyzed 

whey permeate and glucose/galactose medium. Shake flasks (1 l) containing 250 ml of 

hydrolyzed whey permeate or synthetic medium supplemented with glucose and galactose 

(each 2.5 g l-1) were both inoculated with 5% (v/v) P. hydrogenovora. The flasks were shaken 

at 30°C for 48 h. Furthermore, the study investigated the influence of the 3HV precursor 

sodium valerate on the bacterial growth of P. hydrogenovora. Thanks to its advanced properties 

compared with those of highly crystalline pure PHB (Koller et al. 2008), the ability of the strain 

to biosynthesize P(3HB-co-3HV) in media supplemented with hydrolyzed whey permeate and 

sodium valerate was evaluated. In these two different experiments, PHA content was confirmed 

at 12% for both types of PHAs, but the PHA concentration was higher when sodium valerate 

was added to P(3HB-co-3HV) production.  

A recombinant strain of E. coli was generally used to obtain the PHA concentration (more than 

90 g l-1) from whey-based culture media because C. necator is unable to hydrolyze lactose. In 
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fact, several studies tested different lactose concentrations to correlate this parameter to PHA 

accumulation. Fed-batch experiments supplemented with a high amount of lactose (hydrolyzed 

from chees whey) were performed to obtain a higher PHA concentration. Otherwise, when 

increasing the lactose concentration to 280 g l-1, a relevant increase in PHA concentration was 

not observed. 

In addition, it is interesting to note that with whey-based culture media, the oxygen-limiting 

conditions enhance PHB biosynthesis from recombinant E. coli but decrease PHA 

concentration in the cells.
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Table 2.3.4. Overview of studies reporting PHAs production from whey-based culture media. 

 

Strain Type of PHA Operation mode Time to 

PHA max [h] 

PHAs concentration 

[g l-1] 

PHA content 

[%] 

Reference 

Recombinant E. coli (C. 

necator genes) 
P(3HB) Batch 49 5.2 81.3 (Lee et al., 1997) 

Recombinant E. coli (C. 

necator genes) GCSC 6576 
P(3HB) 

Fed-batch with 

oxygen limitation 
52 25 80 

(Kim, 2000) 
Fed-batch without 

oxygen limitation 
35 32 57 

Pseudomonas 

hydrogenovora DSM 1749 

P(3HB) 
Fed-batch 

41 1.27 12 
(Koller et al., 

2008) P(3HB-co-3HV) 31 1.44 12 

Recombinant E. coli K24K 

(Azotobacter spp. genes) 
P(3HB) Fed-batch 24 51.1 72.9 

(Nikel et al., 

2006) 

Recombinant E. coli CGSC 

4401 
P(3HB) Fed-batch 36.5 96.2 80.5 (Ahn et al., 2001) 

Recombinant E. coli CGSC 

4401 (A. latus genes) 
P(3HB) 

Fed batch 30 l 

bioreactor 
26 35.5 70 

(Park et al., 2002) 
Fed batch 300 l 

bioreactor 
20 20 67 
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2.3.5 Fatty acid and glycerol culture media as source for PHAs 

 

Pure glycerol is an important industrial feedstock, with applications in the food, drug, cosmetic, 

and tobacco industries, while crude glycerol is the main by-product of biodiesel production, 

with low value due to the presence of impurities (such as methanol, salts, and fatty acids). Thus, 

crude glycerol represents a waste product with an associated disposal cost (Cavalheiro et al., 

2009). For this reason, it can be used as an attractive substrate for PHA production (Table 2.3.5). 

C. necator DSM 545 was used by Cavalheiro et al. (2009) to accumulate P(3HB) from waste 

glycerol and from commercial glycerol as a control substrate. For C. necator cultivated on 

basal medium supplemented with pure glycerol and nitrogen depletion, a maximum of 51.2 g 

l-1 of P(3HB) at 33.5 h was reached, with a PHB content of 62%. On the contrary, using waste 

glycerol as a carbon source, productivity was lower because only 38.5 g l-1 was achieved with 

a PHB content of 50% in 34.5 h. 

Production of PHAs from various plant oils or oleic acid by C. necator H16 was studied by 

Fukui and Doi (1998). The strain was tested on olive oil, corn oil, and palm oil and in all these 

plant oils. The strain was cultivated in a 100 ml nitrogen-limited mineral salt medium 

containing 1% plant oil at 30°C for 72 h. The wild-type strain produced P(3HB) at a high 

polymer content (79-82%) but at low concentrations (2.9-3.4 g l-1). 

Kahar et al. (2004) produced a copolymer of 3HB with 5 mol% (R)-3-hydroxyhexanoate, 

P(3HB-co-3HHx), from soybean oil as a sole carbon source with a recombinant strain of C. 

necator. The medium for PHA production in the fermentor was a mineral salt medium, and the 

initial concentration of NH4Cl was set at 4 g l-1. Additional NH4Cl was intermittently fed into 

the culture broth to avoid nitrogen source depletion. Soybean oil was added to the fermentor 

for an initial concentration of 20 g l-1. A high content of P(3HB) (85-95 g l-1) and a high PHA 

content of 71–74% (w/w) were achieved during 96 h.
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Table 2.3.5. Overview of studies reporting PHAs production from oil, fatty acid and glycerol culture media. 

 

 

 

 

 

 

Strain 
Type of 

PHA 

Operation 

mode 

Time to 

PHA max [h] 

PHAs concentration 

[g l-1] 

PHA content 

[%] 
Reference 

C. necator  DSM 545 P(3HB) Fed-Batch 33.5 51.2 62 (Cavalheiro et al., 2009) 

C. necator H16 

(ATCC 17699) 
P(3HB) Batch 72 2.9-3.4 79-82 (Fukui and Doi, 1998) 

C. necator H16 

(pJRDEE32d13) 
P(3HB) Fed-Batch 96 85-95 72-76 (Kahar et al., 2004) 

C. necator H16 P(3HB) Batch 96 1.24 19.7 (Füchtenbusch et al., 2000) 

Pseudomonas 

resinovorans 
PHA Batch 48 0.14 15.2 (Cromwick et al., 1996) 
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Füchtenbusch et al. (2000) studied R. eutropha and P. oleovorans cultivated in a mineral salt 

medium with the oil from rhamnose production as the sole carbon source under aerobic 

conditions at 30°C in nutrient broth or in mineral salt medium. 

The concentration of ammonium was limited to 0.05% (mass/vol) to promote the accumulation 

of PHAs. The cultivation of P. oleovorans and R. eutropha was performed in 300 ml at 28°C. 

C. necator accumulated only P(3HB) at 6.3 g l-1, with a polyester content of 19.7% during the 

first 96 h. The same authors tested P. oleovorans under the same operating conditions using 

the same carbon source. After 96 h, this strain accumulated 5 g l-1, with a P(3HB-co-3HHx) 

content of 17.3%. 

Different Pseudomonas species (P. oleovorans, P. resinovorans, P. putida, and P. citronellolis) 

were tested by Cromwick et al. (1996) in 2 l shake flasks. The bacteria were evaluated for their 

ability to grow and produce PHAs using tallow free fatty acids and tallow triglyceride as carbon 

substrates; however, only P. resinovorans was able to grow and produce PHAs. The PHA 

concentration in this case was 0.12–0.15 g l-1, with a 15.2% polymer content, using 

unhydrolyzed tallow as the substrate. 

The different fatty acids and glycerol waste materials used as substrates for PHA accumulation 

highlighted that C. necator was the best candidate operating under nitrogen source depletion, 

although PHA accumulation depended on the strain and operating mode. In fact, performing 

the experiments in fed-batch mode, more PHB was accumulated in the cells than in operating 

in batch mode. 

 

2.3.6 Solid agro-industrial by-products and waste as a source of PHAs 

 

Law et al. (2003) showed that recombinant B. subtilis could utilize malt waste in the medium 

as a carbon source better than glucose and thus could substantially lower the cost of PHA 

production (Table 2.3.6). In the paper by Law and co-authors, the pha genes (involved into 

PHAs accumulation) from B. megaterium were cloned into B. subtilis. The recombinant strain 

was cultivated by acid hydrolyzed malt waste, and a 1% inoculum was used in a fermentation 

flask incubated at 37°C at 280 rpm for 16 h. Their results showed PHA accumulation in a malt 

waste medium of 2.53% with a PHB concentration of 0.06 g l-1 in 12 h. 

A. vinelandii UWD strains were tested by Cho et al. (1997) with most poly-3-hydroxybutyrate-

co-valerate (PHBV) production from swine waste liquor. Strain UWD was cultured in a shake 

flask with 4% inoculum at 200 rpm, incubated at 30°C for 18–52 h. 
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Using undiluted swine waste liquor medium without glucose supplementation, cell growth was 

limited to 1.2 g l-1 with 37% in 48 h. Cell growth and PHBV production increased when swine 

waste liquor was diluted two-fold and supplemented with 30 g glucose l-1 (5.48 g l-1 and PHBV 

content 58%). 

Industrial fruit and vegetable waste were successfully used as sole carbon sources by 

Ganzeveld et al. (1999) to produce PHBV by R. eutrophus under oxygen-limiting conditions. 

The fermentor was a 1 l standard fermentor with a working volume of 750 ml. The temperature 

was controlled at 30°C. The stirrer speed was adjusted manually to maintain the dissolved 

oxygen pressure above 30% of the saturation concentration. A concentration of 1.1 g PHBV l-

1, or 40% (w/w) of the cell dry weight, was obtained. 

Starchy wastewater was used by Yu (2001). The waste was first digested in a thermophilic 

upflow anaerobic sludge blanket (UASB) reactor to form acetic, propionic, and butyric acids. 

PHA formation from individual acids was further investigated under nitrogen-limiting 

conditions by active biomass of R. eutropha. PHA formation from acid effluent in 48 h was 1.2 

g l-1, with a PHA content of 34.1%. 

Another suitable substrate for PHA production is food scraps, a complex form of organic solid 

waste that is unusable by PHA-producing microbes, such as R. eutropha. Hydrolysis and 

acidogenesis are the main processes used to convert biodegradable solids into short-chain 

volatile fatty acids, such as acetic, propionic, and butyric acids, which are utilized by PHA-

producing bacteria. This approach was used by Du et al. (2004) by coupling organic acid 

production with anaerobic acetogenesis to produce PHAs. The PHA-synthesis reactor (2 l air-

bubbling bioreactor) was maintained at 30°C via a water jacket and pH 7.5. The dissolved 

oxygen concentration was maintained at 20% of air saturation or above. The PHA content and 

concentration reached their maximal values of 72.6% and 16.5 g l-1, respectively, in 73 h. 

Other studies were conducted on the use of excess activated sludge from a wastewater treatment 

plant fed with industrial waste streams as a substrate for PHB accumulation (Kumar et al., 

2004). Wastewater from food processing (producing mainly potato chips, wafers, and sweets) 

and starch rich grain-based alcohol industries (rice grain-based and jowar grain-based distillery 

spent wash) was used as a substrate for PHB production by Khardenavis et al. (2007). In their 

work, different types of wastewater were tested in 250 ml conical flasks and incubated on a 

rotary shaker at 150 rpm at 30°C: wastewater derived directly from industry, filtered 

wastewater, and deproteinized wastewater, each in the absence and presence of an external 

nitrogen source; the highest biomass concentration of 6.6 g l-1 (dry weight) was produced in 96 

h in a raw rice grain-based distillery spent wash with the addition of di-ammonium hydrogen 



44 
 

phosphate, accumulating 2.7 g l-1 PHB with a content of 67%; a deproteinized jowar grain-

based distillery spent wash and filtered food processing wastewater yielded lower PHB and 

biomass accumulation. 

The studies carried out using solid agro-industrial by-products and waste demonstrated that the 

accumulation of PHAs was lower than that obtained with the other complex starting matrices, 

which was also observed when lignocellulosic hydrolysates were used as carbon sources. In 

addition, with this organic biomass, the highest accumulation was achieved using C. necator 

species, although the operating mode strongly influenced the process. Interestingly, activated 

sludge from a wastewater treatment plant was used as mixed cultures for PHA production from 

industrial waste streams. In particular, the PHA concentration was similar to that observed with 

pure cultures, overcoming the high costs derived from the production of pure cultures and the 

disposal of waste activated sludge. 
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Table 2.3.6. Overview of studies reporting PHAs production from solid agro-industrial by-products. 

 

 

 

 

Strain Type of PHA 
Operation 

mode 

Time to 

PHA max [h] 

PHAs concentration 

[g l-1] 

PHA content 

[%] 
Reference 

Recombinant Bacillus 

subtilis  1A304 (105 

MU331) 

P(3HB) Batch 12 0.06 2.5 (Law et al., 2003) 

Azotobacter vinelandii 
UWD (ATCC 53799) 

P(3HB-co-3HV) Batch 
48 0.43 37 

(Cho et al., 1997) 

18 5.48 58.3 

C. necator (R. eutropha) P(3HB-co-3HV) 

Batch 45 1.13 40.8 (Ganzeveld et al., 1999) 

Batch 48 1.2 34.1 (Yu, 2001) 

Fed-batch 73 16.5 72.6 (Du et al., 2004) 

Activated sludge P(3HB) Batch 96 2.7 67 
(Khardenavis et al., 

2007) 
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2.4. Integrated systems to simultaneous produce intracellular (PHAs) and extracellular 

by-products (biosurfactants) 

 

Bacterial strains actively involved in PHA accumulation can be used at the industrial scale to 

reduce the production costs of biopolymers due to their ability to convert waste materials into 

valuable intracellular and extracellular bi-products (e.g., PHAs and exopolysaccharides (EPS), 

respectively) that are useful for biochemical production. PHAs represent intracellular carbon 

and energy storage, while EPS and biosurfactants are produced as extracellular substances to 

protect the cells from desiccation and predation or are a carbon source. These substances are 

of industrial interest for washing powders and fabric softener production (Cameotra and 

Makkar, 1998). They are used also in the food, chemical, cosmetic, and packaging industries 

as adhesives, absorbents, lubricants, and cosmetics (Ding et al., 2015; Palomba et al., 2012; 

Torrieri et al., 2014). Biosurfactants are amphipathic molecules with polar and nonpolar heads 

produced by different bacterial genera (e.g., Acinetobacter, Arthrobacter, Bacillus, 

Pseudomonas, Rhodococcus, and Enterobacter (Liang et al., 2014). Biosurfactants present as 

a wide variety of structures because their synthesis is influenced by the carbon source (Lin, 

1996). In fact, they can be produced on different substrates, such as sugars, lipids, alkanes, and 

waste materials (Liang et al., 2014). The main property of biosurfactants is the ability to reduce 

surface and interfacial tension, forming microemulsions (Desai and Banat, 1997). Among 

biosurfactants, rhamnolipids are the most studied thanks to the simultaneous production of 

PHAs and rhamnolipids by P. aeruginosa IFO3924 (Hori et al., 2002). In their work, batch 

cultivation was conducted at 30°C in 3 l fermentors equipped with an agitator using 7 g l-1 of 

decanoate as a carbon source. In this experiment, basal salt medium was used to increase the 

concentration of the nitrogen source. After a 3-day cultivation, considerable PHA content (23% 

of CDW corresponding to a concentration of 2.2 g l-1) and rhamnolipid amounts (298 mg l-1) 

were produced. Another type of extracellular polymeric substance is EPS, a mixture of high 

molecular polymers, which supplies carbon units when substrate is limited. Wang and Yu 

(2007) studied the simultaneous biosynthesis of EPS (an extracellular product) and PHB (an 

intracellular product) by R. eutropha. They observed that EPS production was closely coupled 

with cell growth, while PHB was synthesized only under nitrogen-limiting conditions and cell 

growth-limiting conditions. In fact, the experiments were conducted at different concentrations 

of glucose and NH4-N to evaluate their influence on EPS and PHB production. Furthermore, 

the previous authors observed that the PHB content in dry cells decreased with increasing 

nitrogen concentration, while the EPS concentration increased. While keeping the nitrogen 
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concentration constant, further experiments were conducted at varying glucose concentrations, 

and the results showed that an increase in glucose concentration promoted biomass growth and 

PHB production. The relevant production (shown in Table 2.4) of both polymers was observed 

when glucose and nitrogen were supplied at concentrations of 40 g l-1 and 3 g l-1, respectively. 

Among EPS, alginates are of great commercial interest for their use in a wide range of 

applications in the food industry, such as in frozen custards, restructured foods, cream and cake 

mixtures, and beer production. They are composed of variable amounts of β-D-mannuronic 

acid and C5-epimer α-L-guluronic acid linked via β-1, 4-glycosidic bonds. When extracting 

alginates from harvested material, the uronic acids are converted into the salt forms 

mannuronate and guluronate through a neutralization step. The proportion, distribution, and 

length of these blocks determine the chemical and physical properties of the alginate molecules. 

Commercial alginates are currently extracted from marine algae, such as Laminaria and 

Macrocystis, but can also be obtained from bacterial species, such as A. vinelandii, P. 

aeruginosa, and P. mendocina (Hori et al., 2002). The co-production of alginates and PHAs by 

P. mendocina using glucose as a carbon source was studied by Guo et al. (2011). The 

simultaneous production of MCL-PHA and alginate oligosaccharide (AO) cultivation was 

performed in 200 l fermenters with 120 l mineral salt medium containing 20 g l-1 glucose at 

30°C and 200 rpm of impeller speed for 48 h. The authors reported that 0.316 g l-1 PHAMCL 

and 0.57 g l-1 AO were obtained at the end of the fermentation process. The MCL-PHA 

production reached a maximum of 0.360 g l-1 at 36 h when the carbon source was almost 

exhausted. At 48 h, the utilization of intracellular stored MCL-PHA took place, corresponding 

to a decrease in PHA content to 0.316 g l-1. Moreover, the production of PHB and EPS by 

Azotobacter beijerinckii was investigated by Pal et al. (1999) under nitrogen-free conditions 

with an excess of carbon. This strain was maintained by growth on nitrogen-free glucose 

medium at 30°C for 48 h and was then stored at 4°C. Nitrogen-free liquid medium was 

inoculated with 4% (v/v) inoculum, and the flasks were incubated at 30°C on a rotary shaker. 

The highest production of PHB (2.73 g l-1) was reached when glucose was supplemented at 3% 

(w/v), observing an EPS amount of 1.2 g l-1. Quagliano and Miyazaki (1999) studied the 

simultaneous production of PHB and EPS by A. chroococcum, evaluating the influence of 

ammonium addition with glucose, fructose, and sucrose. The organism was grown aerobically 

in 250 and 500-ml flasks at a one-third volume of the culture medium with the carbon sources 

alone or supplemented with 0.1 g l-1 of (NH4)2SO4. The flasks were incubated in a rotatory 

shaker at 220 rpm at 30°C for 72 h. The highest PHB content was obtained with sucrose (1.1 g 

l-1), but EPS production was almost unobservable. Instead, the experiments conducted with 
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glucose showed a maximum EPS concentration (2.1 g l-1), with PHB production of 0.74 g l-1. 

Thus, some microorganisms, such as P. aeruginosa, R. eutropha, A. beijerinckii, A. 

chroococcum, and P. mendocina, are able to concurrently produce PHAs and biosurfactants 

using the same type of organic substrate. However, the bacterial technological performance 

during the coupled process of PHA and biosurfactant production leads to a lower accumulation 

of PHAs. In particular, the optimal operating conditions for PHA and biosurfactant production 

are different. In fact, Wang and Yu (2007)observed that without nitrogen-limiting conditions, 

the PHB content in dry cells decreased, whereas the EPS concentration increased, 

demonstrating that nutrient-limiting conditions promote only PHA accumulation. 
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Table 2.4. Overview of studies reporting PHAs production coupled to metabolites used in industry. 

 

 

 

 

 

 

Strain 
Type of 

PHA 

Operation 

mode 

Time to PHA max 

[h] 

PHAs 

concentration 

[g l-1] 

PHA content 

[%] 

Produced metabolites 

[g l-1] 
Reference 

Pseudomonas 

aeruginosa IFO3924 
PHA Batch 72 0.5 23 

Rhamnolipids 

0.3 

(Hori et al., 

2002). 

Ralstonia eutropha  
ATCC 17699 

PHB Batch 60 12.7 62 
EPS 

0.18 

(Wang and Yu, 

2007) 

Azotobacter 

beijerinckii WDN-01 
PHB Batch 40 2.73 54.6 

EPS 

1.2 
(Pal et al., 1999) 

Azotobacter 

chroococcum 6B 
PHB Batch 48 0.74 28 

EPS 

2.1 

(Quagliano and 

Miyazaki, 1999) 

Pseudomonas 

mendocina NK-01 
PHAMCL Batch 48 0.316 25.3 

Alginate oligosaccharides 

0.57 

(Guo et al., 

2011) 
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2.5 Bioenergy production from industrial and agricultural waste 

2.5.1 Anaerobic digestion and biogas production  

 

Anaerobic digestion is a consolidated biological treatment, mainly used for reducing organic 

content in the sludge produced from municipal waste water treatment plants, thus achieving its 

stabilization (Appels et al., 2008). In the past few decades, the need to drastically reduce the 

use of landfills for the disposal of organic waste and producing energy from renewable 

resources has promoted the use of anaerobic digestion for treating a wide range of organic 

solids, e.g., organic waste and energy crops (Lema and Omil, 2001; Lettinga, 2001). To 

calculate bioenergy production potential based on anaerobic digestion for biomethane, official 

data for food waste generation and management were collected by Dung et al. (2014) from 21 

countries, evaluating a methane potential equal to 379.769 KWh year-1. 

Treatment systems based on the anaerobic digestion process are flexible because they can have 

different configurations according to the number of stages (one or two stages); can operate at 

different temperatures, mostly at 35°C (mesophilic) or 55°C (thermophilic); can be fed in batch, 

semi-batch, or continuous; can take place in completely stirred or plug flow reactors; and can 

work with a content of solids lower than 10% in mass (wet system) or higher than 20% (dry 

system), preceded by several innovative pretreatments to increase waste solubilization 

(Mancuso et al., 2016). Treating organic waste through anaerobic digestion results in economic 

and environmental advantages (Lettinga, 2001; Dung et al., 2014; Mancuso et al., 2016; Barton 

et al., 2008); after treatment, the waste material is reduced in quantity, and it is more stable and 

less harmful for the environment because it is a source of a renewable energy, e.g., biogas, that 

does not alter the balance of CO2 in the atmosphere and therefore does not contribute to global 

warming (Abbasi et al., 2012). Additionally, biogas refined to biomethane is also used to feed 

gas networks (Bekkering et al., 2010) as a surrogate to natural gas, and, finally, the by-product 

of anaerobic digestion, named digestate, can be reused in agriculture as fertilizer (Tambone et 

al., 2009; Rehl and Müller et al., 2011) thanks to its relevant content of nutrients. The 

performance and results of anaerobic digestion are strictly dependent on the environmental 

conditions (Mata-Alvarez et al., 2000; Kerroum et al., 2014; Ariunbaatar et al., 2015; Kim et 

al., 2002), such as temperature, pH, nutrients content, presence of inhibitors (Ariunbaatar et al., 

2015), substrate composition and particle size, micronutrient availability, and the microbial 

strains used as the inoculum. Anaerobic digestion is driven by a complex microbiome 

containing both bacteria and Archaea. Each trophic group in the microbiome contains different 
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microorganisms involved in different metabolic tasks (Kundu et al., 2017). A strong syntrophic 

relationship exists between different consortia of microorganisms, since biochemical reactions 

in series are carried out (Figure 2.5.1). 

 

Figure 2.5.1. Phases of biological production of methane with the occurrence of VFAs, acetate, 

hydrogen and carbon dioxide. Anaerobic bacteria involved are positioned according to their 

probable role in the process. 

 

Bacteria are crucial in the hydrolyzation and acidogenic step of the anaerobic digestion process. 

Novaes (1986) reported that the anaerobic species belonging to the families Streptococcaceae 

and Enterobacteriaceae as well as the genera Bacteroides, Clostridium, Butyrivibrio, 

Eubacterium, Bifidobacterium, and Lactobacillus are most commonly involved in the 

anaerobic digestion process. Furthermore, during the process, bacteria, such as Clostridia, 

fermented the hydrolyzed products of proteins to VFAs, CO2, and hydrogen (H2).  

In addition, Archaea are important in the methanogenic phase of anaerobic digestion. 

Methanogenic Archaea are strictly anaerobic and are able to transform fermentation products 

into CH4 (Gonzalez-Martinez et al., 2016). Some of these bacteria synthesize CH4 using acetic 

acid, including the Methanosaeta, Methanosarcina, and Methanothrix genera. These are 
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acetoclastic or acetotrophic methanogens. Additionally, other groups of methanogens 

synthesize CH4 by utilization of H2 and CO2 or methyl compounds, such as Methanobacterium, 

Methanococcus, Methanospirillum, or Methanomassiliicoccus (Gonzalez-Martinez et al., 

2016). These bacteria are potentially able to use all types of biomass suitable for producing 

biogas: sewage sludge from aerobic wastewater treatment, animal manure, harvest residues, 

organic waste from agriculture and food processing factories, dairy waste, organic fraction of 

municipal solid waste (OFMSW), fruit and vegetable waste, and energy crops, which are 

substrates commonly used for feeding anaerobic digesters (Raposo et al., 2012). 

The amount of biogas obtainable from a specific substrate depends on the operating conditions 

and its content of carbohydrates, proteins, and lipids. Lipids require a longer time than 

carbohydrates and proteins to be converted into biogas but have a more efficient conversion 

rate in terms of biogas produced per gram of substrate thanks to a high number of C and H 

atoms in their molecules (Cirne et al., 2007). Lipids are commonly present in food waste and 

in several wastewater types from factories, such as those that process meat, produce dairy, or 

refine fat (Li and Fang, 2007). Lipids can often be the cause of inconveniences, such as the 

inhibition of methanogenic microorganisms or their flotation and subsequent washout (Neves 

et al., 2006).Organic waste from agriculture, food waste, and OFMSW is mainly composed of 

carbohydrates. Such wastes are easily degraded; if their feeding is not accurately controlled, 

volatile fatty acids (VFAs) produced by the acidification step of the anaerobic digestion tend 

to accumulate, causing a sharp drop in the pH value, which inhibits the activity of 

methanogenic Archaea (Siegert and Banks, 2005) and leads to underperformance of the process. 

Wastes rich in proteins are commonly produced by meat and fish processing factories, 

slaughterhouses, and farms (animal slurry and manure). These wastes are characterized by a 

low C/N ratio (Callaghan et al., 2002; Cuetos et al., 2010; Edström et al., 2003) that can hamper 

and even inhibit the activities of microorganisms (Chen et al., 2008). Furthermore, proteins 

undergoing anaerobic digestion are converted into ammonia as an end product, which is rather 

toxic to microorganisms (Nielsen and Angelidaki, 2008) and should be considered when 

looking for cost-effective ammonia removal techniques (Limoli et al., 2016). 

Wastes rich in cellulose (CWs) are produced by paper and cardboard as well as textile factories. 

CWs are also found, in large amounts, in unsorted municipal solid wastes (MSWs) and 

therefore are not useful for recycling. The C/N ratio in CWs is usually high, ranging from 173/1 

up to values higher than 1000/1 (Zhang et al., 2008), while the optimum C/N ratio ranges from 

20/1 to 30/1 (Hawkes, 1980). 

Microalgae can be an alternative substrate for renewable energy recovery. The co-digestion of 
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microalgae with different types of wastes, such as pig/dairy manure (Astals et al., 2015), lipid 

waste (fat, oil, and grease) (Park et al., 2012), waste activated sludge (Wang and Park et al., 

2015), and corn straw (Zhong et al., 2013), has been extensively evaluated for biomethane 

production. Zhen et al. (2016) examined the technical potential of methane production from 

microalgae through co-digesting with food waste. The results showed that supplementing food 

waste significantly improved microalgae digestion performance compared to the digestion of 

a single food waste, with the highest methane yield of 639.8 ± 1.3 ml/g VSadded. 

In fact, an estimation of the amount of methane that can be produced from a specific substrate 

is commonly obtained through a specific test called the biomethane potential test (BMP). The 

BMP can be used as an index of the anaerobic biodegradation potential, as it is the experimental 

value of the ultimate specific biomethane production for the indefinite degradation time 

(Angelidaki and Sanders, 2004). However, in practice, BMP is estimated at a well-defined 

degradation time that can be a specific day, e.g., the 30th (Browne et al., 2011; Owens and 

Chynoweth, 1993) or 50th (Hansen et al., 2004) of incubation or the day when biomethane 

production is approximately zero (Xie et al., 2011) or less than 5 mld-1 (Browne et al., 2011). 

BMP can be expressed specifically as a volume of methane per amount of waste (dm3-CH4 kg-

1-waste), volume of waste (dm3CH4 dm-3 waste), per mass volatile solids added (dm3 CH4 kg-1 

VS), or COD (chemical oxygen demand) added (dm3 CH4 kg-1 COD). The volume is usually 

expressed at standard conditions in terms of pressure (1 atm) and temperature (0°C). Other 

units for expressing methane potential are also used (Angelidaki et al., 2009). 

For the same substrate, the BMP results can be variable because it is affected by the operating 

conditions in terms of temperature, mixing intensity, pH adjustment, substrate/inoculum (S/I) 

ratio, substrate particle size, liquid/volume ratio, nutrient content, inoculum, and if the substrate 

has been previously pretreated (e.g., mechanically, thermally, chemically) or mixed with one 

or more other substrates to perform a co-digestion process (Esposito et al., 2012). In Table 

2.5.1, the methane yields from different substrates are reported (adapted from Raposo et al. 

(2012)). 

 

2.5.2 Biohydrogen production 

 

Hydrogen is considered an ideal source of energy for the future, since it represents a clean 

combustible but is also easily convertible to electricity (Yokoi et al., 2002). Biological 

hydrogen production is related to biogas production for two main reasons: a similar production 
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process, and the same substrates are suitable These two gaseous products derive from the same 

biological process that switches on hydrogen production when hydrogen-using 

microorganisms are inhibited, such as homoacetogens and methanogens; inhibition is 

commonly achieved through heat treatment of the inoculum to remove all microorganisms, 

except for spore-forming fermenting bacteria (i.e., species belonging to the families 

Clostridiaceae, Streptococcaceae, Sporolactobacillaceae, Lachnospiraceae, and 

Thermoanaerobacteriacea) (Angenent et al.,2004). The most common bacteria used in dark 

fermentation to produce hydrogen are Clostridium (Shin et al., 2004) and 

Thermoanaerobacterium (O-Thong et al., 2009; Nitipan et al., 2014). Moreover, several studies 

have reported successful hydrogen production by mixed cultures in batch or bioreactors (Lin 

et al., 2004; Prasertsan et al., 2009). The advantages of using mixed cultures for biohydrogen 

production are several: no need for sterilization, a high adaptive capacity owing to the microbial 

diversity, the capacity to use a mixture of substrates, and the possibility of obtaining a stable 

and continuous process (Nitipan et al., 2014). 
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Table 2.5.1. Methane yields of solid organic substrates (adapted from Raposo et al. (2012)) 

 

Solid Organic Substrate 
Methane Yield 

[ml CH4 g VSadded
-1] 

Reference 

Apple Fresh wastes 317 (Buffière et al., 2006) 

Banana Peeling 289 (Buffière et al., 2006) 

Cabbage Leaves 2mm size 309 (Gunaseelan et al., 2004) 

Carrot Peeling 388 (Buffière et al., 2006) 

Cauliflower Leaves 341-352 (Zubr, 1986) 

Cellulose 356–375 (Owens and Chynoweth, 1993) 

Cocksfoot 325 (Mähnert et al., 2005) 

Food Wastes 245–510 (Liu et al., 2004) 

Fruit and vegetable 

Wastes 
470 (Scaglione et al., 2009) 

Glucose 335 (Tong et al., 1990) 

Kitchen waste 432 (Neves et al., 2006) 

Leather fleshing 490 (Shanmugam et al., 2009) 

Lettuce Residues 294 (Buffière et al., 2006) 

Maize Residues 317 (Dinuccio et al., 2010) 

Mandarin Peels 2 mm size 486 (Gunaseelan et al., 2004) 

OFMSW 353 (El-Mashad et al., 2010) 

Orange Peeling 297 (Buffière et al., 2006) 

Paper and cardboard 109–128 (Pommier et al., 2010) 

Pineapple Peel 400 (Shin et al., 2004) 

Potato Waste 320 referred to gVSremoved (O-Thong et al., 2009) 

Rape Oil seed 800–900 (Nitipan et al., 2014) 

Rice Straw 347–367 (Lin et al., 2004) 

Starch 348 (Nitipan et al., 2014) 

Sugar beet 340 (Prasertsan et al., 2009) 

Sunflower 428–454 (Ghimire et al., 2015) 

Textiles 228 (Levin et al., 2004) 

Tomato Skins and seeds 218 (Esposito et al., 2012)  

Wheat Straw 267 (Das et L., 2001) 

Algal biomass 640 (Zhen et al. 2016) 
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Furthermore, the same organic substrates, such as solid waste, can be used to produce biogas 

and biohydrogen, thus converting residues into a source of bio-energies (Angenent et al.,2004). 

Many processes for hydrogen production have been extensively investigated; among them, 

hydrogen production by photosynthetic bacteria, algae, and fermentative bacteria is the most 

interesting because it is environmentally sustainable.  In autotrophic conversions, biohydrogen 

can be produced by photosynthetic microorganisms, i.e., microalgae and photosynthetic 

bacteria that convert solar energy to hydrogen (Ghimire et al., 2015). Photosynthetic bacteria 

(e.g., purple non-sulfur bacteria) utilize the end products of dark fermentation, converting them 

into H2 via photo fermentation with simultaneous VFA reduction (Levin et al., 2004; Das et L., 

2001; Miyake ET AL., 1999; Lo et al., 2008; Chen et al., 2008; Tao et al., 2006). The major 

limitation of photo-fermentation systems is its poor H2 production rate due primarily to the 

slow growth of photosynthetic bacteria and the low light conversion efficiency of 

photobioreactors (Chen et al., 2008). A photobioreactor (PBR) was developed by Chen et al. 

(2008) to enhance phototrophic H2 production by Rhodopseudomonas palustris WP3-5 using 

acetate as the sole carbon source. The photobioreactor was illuminated by combinative light 

sources, reaching a maximum H2 yield of 62.3%. Under heterotrophic conditions, two types of 

fermentation occur: photo fermentation carried out by photosynthetic bacteria and dark 

fermentation (Pradhan et al., 2015) carried out by anaerobic bacteria that convert carbohydrates 

into biohydrogen (Ghimire et al., 2015). Different rumen bacteria, such as Clostridia, 

methylotrophs, methanogenic archae, or facultative anaerobic bacteria (Escherichia coli, 

Enterobacter spp., Citrobacter spp.), and aerobic bacteria (Alcaligenes spp., Bacillus spp.) 

have been studied to perform dark fermentation. In particular, Clostridium butyricum and 

Clostridium articum produce butyric acid and propionate as major products, respectively, and 

both products are of interest for hydrogen production (Hawkes et al., 2007). Indeed, photo 

fermentation takes place under anaerobic conditions involving purple non-sulfur 

photosynthetic bacteria using light as an energy source for synthesizing hydrogen (Eroglu et 

al., 2011). The ability of purple non-sulfur bacteria to convert organic acids to biohydrogen is 

coupled with their ability to synthetize PHB under anaerobic conditions. In fact, Luongo et al. 

(2016) investigated hydrogen and poly-b-hydroxybutyrate (PHB) production during 

photofermentative treatment of the effluent from a dark fermentation reactor fed with the 

organic fraction of municipal solid waste. They compared the hydrogen and PHB production 

of an adapted culture of Rhodobacter sphaeroides AV1b and a mixed consortium of purple 

non-sulphur bacteria. The mixed cultures resulted in 1.5-fold more H2 produced than the pure 

culture (559 and 364 N ml H2 l
-1, respectively). On the contrary, Rhodobacter sphaeroides 
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cultures showed higher PHB productivity (155 mg PHB g COD-1) than the mixed cultures (55 

mg PHB g COD-1). As for methane production through anaerobic digestion, biohydrogen can 

be produced by different bacterial strains using several organic substrates. For example, 

Cappelletti et al. (2012) focused their study on H2 production from molasses and cheese whey 

with the aim of valorizing food industry wastes by their recycling; mesophilic, thermophilic, 

and hyperthermophilic bacteria were tested to produce H2. Among them, Thermotoga strains 

showed the most promising results; in particular, T. neapolitana was the best performing strain 

(Table 2.5.2). This result was confirmed by studies conducted on T. neapolitana using other 

organic substrates, such as rice straw (Nguyen et al., 2010), beet pulp pellet, corn starch, and 

rice flour (Yu and Drapcho, 2011). Such substrates are particularly suitable for producing H2 

thanks to their easy biodegradability and are also convenient because they are present in 

different carbohydrate-rich wastewaters and agricultural residues (Davila-Vazquez et al., 2008). 

Other substrates commonly used for biohydrogen production are protein- and fat-rich wastes. 

A Clostridium butyricum strain was studied by Chen et al. (2005) for its ability to produce H2 

from a sucrose-based medium. In particular, Clostridium butyricum CGS5 can efficiently 

produce hydrogen (2.78 mol H2/mol sucrose) on an iron-containing medium (Chen et al. 2005). 

The same microbial strain (C. butyricum CGS5) was isolated from soil with nine cellulolytic 

bacterial strains belonging to Cellulomonas sp. and Cellulosimicrobium cellulans by Lo et al. 

(2008). Among these strains, only C. butyricum CGS5 exhibited efficient H2 production from 

rice husk hydrolysates, with a H2 yield of 17.24 mmol H2 g cellulose-1. Ferchichi et al. (2005) 

investigated hydrogen production from cheese whey by Clostridium 

saccharoperbutylacetonicum, studying the influence of the initial pH; they found that slightly 

acidic initial conditions favored a higher H2 yield than alkaline conditions. The highest 

hydrogen yield (2.7 mol H2/mol substrate) was actually obtained at pH 6. Bisaillon et al. (2006) 

examined hydrogen production by different strains of Escherichia coli under different feeding 

regimes to detect the main limiting factors: strains that showed the highest hydrogen yield (2 

mol H2/mol substrate) when cultured at limiting concentrations of either ammonia or glucose 

(1 mM NH4Cl; 0.04% of glucose). Mesophilic bacterium HN001 was tested by Yasuda and 

Tanisho (2006) as a H2 producer from starch. In the same work, the authors focused their 

studies on the influence of temperature, pH, and substrate concentration; the optimal 

temperature was found to be approximately 37°C, with a hydrogen yield of 2 mol H2/mol 

substrate. Liu et al. (2003) investigated H2 production by mixed cultures in batch experiments 

using cellulose as a substrate; at the optimal pH of 6.5, the maximum hydrogen yield was 92 

ml H2/g hexose, and an analysis of 16S rDNA sequences showed that the cellulose-degrading 
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mixed culture was composed of microbes closely affiliated with genus 

Thermoanaerobacterium. Carbohydrate-rich holocellulose of lignocellulosic organic matter 

can be made available to the H2 conversion by pretreatment. Examples of lignocellulosic 

biomass pretreatment methods for hydrogen fermentation were reported by Kumar et al. (2015). 

They also reported the maximum hydrogen yield associated with pretreatment methods, 

ranging from 44.9 ml H2 g
-1 to 141.29 ml H2 g

-1. The influence of pH was also evaluated by 

Khanal et al. (2004), who used a mixed microbial culture and starch as a substrate. At the 

optimal pH of 4.5, the maximum hydrogen yield was 133 ml H2 g hexose-1. At the same pH 

value, Fang et al. (2005) reached a maximum hydrogen yield of 210 ml H2/g hexose using food 

waste as a substrate. Instead, Valdez-Vazquez et al. (2005) studied the influence of temperature 

using a mixed culture as the inoculum and mixed waste as a substrate. At 37°C, the maximum 

hydrogen yield was 210 ml H2 g hexose-1. 

All biotechnological hydrogen production processes have particular limits, since a considerable 

part of the used substrate is converted into various soluble metabolic products rather than H2. 

Thus, the major side product of dark fermentation is a multi-compound mixture of VFAs and 

other constituents, such as alcohols (Kumar et al., 2016). Therefore, the volatile fatty acid-rich 

fermentation effluent is a perfect substrate for biologically synthesizing polyesters, e.g., 

polyhydroxyalkanoate (Albuquerquea et al., 2011; Morgan-Sagastume et al., 2010), which 

could have an industrial market (Chen et al., 2009). 
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Table 2.5.2. Hydrogen yields of different substrates (adapted from Li and Fang [114]; Davila-Vazquez et al. (2008)). 

Substrate Strain Hydrogen Yield Reference 

Sucrose Clostridium butyricum CGS5 2.78 (mol H2 mol substrate-1) (Chen et al., 2005) 

Glucose Escherichia coli strains 2 (mol H2 mol substrate-1) (Bisaillon et al., 2006) 

Glucose Thermotoga neapolitana 1.6 (mol H2 mol substrate-1) (Cappelletti et al., 2012) 

Molasses Thermotoga neapolitana 2.6 (mol H2 mol substrate-1) (Cappelletti et al., 2012) 

Rice straw Thermotoga neapolitana 2.7 (mol H2 mol substrate-1) (Nguyen et al., 2010) 

Cheese whey Thermotoga neapolitana 2.4 (mol H2 mol substrate-1) (Cappelletti et al., 2012) 

Cheese whey 

Clostridium 

saccharoperbutylacetonicum 

ATCC 27021 

2.7 (mol H2 mol substrate-1) (Ferchichi et al., 2005) 

Starch Mesophilic bacterium HN001 2 (mol H2 mol substrate-1) (Yasuda and Tanisho, 2006) 

Starch Mixed culture from compost 133 (ml H2/g hexose-1) (Khanal et al., 2004) 

Cellulose Mixed culture from sludge 92 (ml H2/g hexose-1) (Liu et al., 2003) 

Mixed waste 
Mixed culture from anaerobic 

digestion sludge 
201 (ml H2/g hexose-1) (Valdez-Vazquez et al., 2005) 

Food waste 
Mixed culture from anaerobic 

digestion sludge 
210 (ml H2 g hexose-1) (Fang et al., 2005) 

Acetate 
Rhodopseudomonas palustris 

WP3-5 in Photobioreactor 
62.3(mol H2 mol substrate-1) (Chen et al., 2008) 

Rice husk Clostridium butyricum CGS5 17.24 (mmol H2 g cellulose-1) (Lo et al. 2008) 
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2.6. Integrated systems for bioenergy production from industrial and agricultural wastes 

Simultaneous production of PHAs and bioenergy from organic wastes 

 

Degradation of biowaste to methane (CH4) and carbon dioxide is a multiple step process with 

the possibility of producing H2 and bioplastics (from volatile fatty acids) as intermediates (Patel 

et al., 2011). Based on this process, anaerobic digestion can be performed with a two-stage 

system, where biomass is degraded in the first stage and hydrolysis-acidification occurs. The 

organic acids produced are processed under aerobic conditions to produce biopolymers and, as 

an alternative, under anaerobic conditions to produce biogas. 

A PHA production system, in its most comprehensive configuration, is composed of four main 

stages (Figure 2.6), as follows: 

1. Feedstock production; 

2. Biomass selection; 

3. PHA production; 

4. PHA extraction 

Simplified configurations can be obtained using synthetic substrates (stage 1 is removed from 

the cycle), using pure culture (stage 2 is removed from the cycle), or using both synthetic 

substrates and pure culture (stages 1 and 2 are removed from the cycle). 

The aims of each stage are listed below: 

1. To produce organic acids from complex organic solids (e.g., wastes rich in 

carbohydrates); 

2. To select the microbial strains from the mixed culture that show the highest capacity 

for PHA accumulation under specific dynamic feeding conditions (Serafim et al., 

2008); 

3. To produce PHAs using the selected culture; 

4. To recover PHAs from microorganisms.  
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Figure 2.6.1 Cycle of polyhydroxyalkanoates (PHAs) production system (adapted from 

Serafim et al. 2008). 

 

A dark fermentation process can be successfully used to perform the first stage. This process 

evolves according to the same sequence of biochemical reactions in the anaerobic digestion 

process, with the exception of the last stage that is repressed using different strategies (e.g., 

setting a short hydraulic retention time-HRT, keeping the pH low at 5.5, adding chemical 

compounds toxic to methanogens, and performing thermal shocks).  

The dark fermentation process can be optimized to produce VFAs and consequently H2 that is 

a by-product of the biological process and VFAs, varying: (i) the operational conditions (i.e., 

pH, temperature, HRT, solid retention time–SRT, organic loading rate-OLR); (ii) the 

configuration of the dark fermentation reactor and feeding system; and (ii) the type of organic 

waste used to feed the reactor (Figure 2.6.2). The effects of these parameters on VFA 

production are listed in Table 2.6 (Lee et al., 2014).
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Table 2.6. Waste, reactor configuration and operation for the production of VFAs (adapted from Lee et al. (2014)). 

Type of waste 
Organic content 

(mgCOD/l) 

Reactor type and 

operating conditions 
VFA production Reference 

Waste activated 

sludge 

18.657 Batch, 55°C, pH=8, HRT=9d 368 mg COD gVSS-1 (Zhang et al., 2009) 

14.878 Batch, 21°C, HRT=6d 339 mg COD L-1 (Jiang et al., 2007b) 

Primary sludge 
22.838 Batch, 21°C, HRT=6d 85 mg COD gVSS-1 (Ji et al., 2010) 

20.631 Batch, 21°C, pH= 10, room temp, HRT=5d 60 mg COD (gVSS d)-1 (Wu et al., 2009) 

Food waste 

91.900 Batch, 37°C, pH=5.5 8950 mg COD L-1 
(Elbeshbishy et al., 

2011) 

146.1 Batch, 35°C, HRT=5d 5610 mg COD L-1 (Kim et al., 2006) 

Kitchen waste 166.18 Batch, 35°C, pH=7, HRT=4d 36 mg L-1 (Zhang et al., 2005) 

OFMSW 

347.0 Batch, 14-22°C, pH=4-5, HRT=4-4.5d 40 mg g VS-1 (Bolzonella et al., 2005) 

196.7 
Plug flow, 37°C, pH=5.7-6.1, 

HRT=SRT=6d, OLR=38.5 gVS/(L d) 
23.110 mg L-1 (Sans et al., 1995) 

Palm oil mill 88.0 Semi-continous, 30°C, pH=6.5, HRT=4d 15.300 mg L-1 (Hong et al., 2009) 

Olive oil mill 37.0 
Packed bed biofilm, 25°C, pH=5.2-5.5, 

HRT=14d, OLR=26gCOD/(L d) 
10.700 mg COD L-1 (Beccari et al., 2009) 

Cheese whey 4590 CSTR, 37°C, pH=6, HRT=2.1d 0.84 gVFA-COD g sCOD-1 (Bengtsson et al., 2008) 
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Various microbes, such as A. eutrophus, B.s megaterium, P. oleovorans, A. beijerincki, 

Rhizobium, and Nocardia, utilize acetic acid, formic acid, and propionic acid as a substrate for 

PHA production (Kalia et al., 2000). A. eutrophus and A. beijerinckii were studied by Kalia et 

al. (2000) and were shown to be capable of accumulating PHAs up to 70% of CDW, under 

nitrogen and phosphorus limiting conditions, whereas Pseudomonas spp. and Rhizobium spp. 

accumulated PHAs at approximately 60% of CDW. 

Many other bacterial strains have also been reported to produce PHAs under adverse conditions 

with different PHA yields. Among them, many purple non-sulfur bacteria, such as Rhodobacter 

sphaeroides, Rhodospirillum rubrum, Rhodopseudomonas palustris, Rhodopseudomonas 

palustris, and Bacillus spp., have been reported to produce H2 and PHA under nutrient-limiting 

conditions (Saharan et al., 2014). 

Patel et al. (2011) investigated the metabolic activities of Bacillus strains to transform glucose 

into H2 and PHB in two stages. Operating in batch mode, Bacillus thuringiensis EGU45 and B. 

cereus EGU44 reached 1.67–1.92 mol H2/mol glucose, respectively, during the first 3 days. In 

the next 2 days, Bacillus thuringiensis EGU45 was supplemented with residual medium 

containing glucose, volatile fatty acids, and residual nutrients (nutrient stress condition) and 

produced a PHB yield of 11.3% of CDW. 

R. palustris WP3-5 was studied by Wu et al. (2012) to evaluate possible competition between 

PHB synthesis and H2 production, testing cultures on six different substrates, such as acetate, 

propionate, malate, lactate, glucose, and lactose. The results highlighted that strain WP3-5 

could utilize acetate, propionate, malate, and lactate to produce H2, whereas it was also able to 

synthesize PHB only on acetate and propionate. PHB synthesis decreased H2; however, under 

pH-stress conditions, such a decrease was not observed. 

R. palustris was also studied by Vincenzini et al. (1997) to investigate the potential of purple 

non-sulfur bacteria in the photoproduction of both hydrogen and PHB-containing biomass 

under limiting amounts of nitrogen. The data demonstrated that under nitrogen-limiting growth 

conditions, R. palustris synthesized 40 mg l-1 d-1 of PHB and produced 200 ml l-1 d of H2 when 

the experiments were supplemented with 60 mg l-1 d-1 of nitrogen. 

Yu (2001) performed a two-step integrated system consisting of microbial acidogenesis and 

acid polymerization from starchy wastewater. In his work, the starchy organic waste was first 

digested in a thermophilic upflow anaerobic sludge blanket reactor to form acetic (60–80%), 

propionic (10–30%), and butyric (5–40%) acids. The acids in the effluent solution after 

microfiltration were polymerized into PHAs by A. eutrophus in a second reactor. PHA 

production from the acid effluent was compared with the production from pure acids in 48 h, 
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Figure 2.6.2 Sustainable PHAs and bioenergy production from organic wastes and by-products 

converted by different bacterial species: an overview of the principal process considered in this 

review. 

 

 

and the results were very similar. In batch mode, 1.2 g l-1 of PHAs was accumulated from acid 

effluent. Instead, 1.0 and 1.3 g l-1 of PHAs was obtained from a mixture of butyric acid and 

propionic acid in batch and fed-batch mode, respectively.  

Albuquerquea et al. (2010) designed another integrated system to valorize the use of 

wastewater for PHA production. They employed a 2-stage continuous stirred tank reactor 

(CSTR) system to effectively select PHA-storing organisms using fermented molasses as 

feedstock. The acidogenic fermentation (step 1) was carried out in a CSTR operated under 

anaerobic conditions. The reactor effluent was clarified by microfiltration and used as a 

feedstock for culture selection (step 2) and PHA batch accumulation (step 3). The culture 

reached a maximum PHA content of 61%. 
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The best integrated systems developed were based on two-step processes consisting of 

acidogenic fermentation (operating under anaerobic condition) aimed to produce acid effluent 

that, after microfiltration, is used in the subsequent aerobic microbial process aimed at PHA 

polymerization. However, the first step (acidogenic fermentation) is also useful for hydrogen 

production and could be designed as a dark fermentation process. 

 

2.7 Conclusions 

 

Biological processes can be successfully used in innovative and eco-sustainable technology to 

convert organic waste into bioenergy and biochemicals, separately or simultaneously. 

Bioprocesses can provide bioenergy or valuable chemicals and, at the same time, perform 

pollution control, according to technical feasibility, simplicity, economics, and societal needs. 

Bio-based plastics can completely replace the conventional ones derived from fossil fuels if the 

production costs can be reduced, and the use of high-performing bacteria fed with organic 

wastes and by-products as substrates significantly contribute to achieving this objective. 

In this context, different organic substrates and by-products can be used to produce bioenergy 

(hydrogen and methane) and biopolymers (PHAs). Otherwise, the review highlights the 

possibility of integrating the two production processes to design a unique system for both 

energy and biopolymer production. The integrated system is a flexible process that aims: (i) to 

produce organic acids from complex organic solid wastes rich in carbohydrates; (ii) to use 

selected microbial strains or mixed cultures that show the highest capacity for PHA 

accumulation under specific dynamic feeding conditions; and (iii) to produce bioenergy or 

accumulate PHAs by microorganisms from acidogenic effluents. 

This integrated system represents new perspectives on the use of organic waste and by-products, 

valorizing organic substrates for the production of both bioenergy and PHAs. 
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CHAPTER 4 

Bioenergy production from dairy waste 
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Pagliano G. Ventorino V, Panico A, Romano I, Robertiello A, Pirozzi F, Pepe O. The effect of 

bacterial and archaeal populations on anaerobic process fed with mozzarella cheese whey and 

buttermilk J Environ Manage. 2018;217:110-122. 
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4.1. Introduction 

 

In recent years, attention in reducing the pollutant emissions produced by conventional organic waste 

disposal systems (e.g., landfills) as well as developing technology to convert organic waste into 

bioenergy and biomaterials has grown.  

This new approach to waste management is eco-friendly, easy to be conducted and economical 

advantageous, mostly for undeveloped and developing countries that have an economic gap with 

more industrialized countries. This gap is often due to the lack of an available energy source and 

technological and infrastructural backwardness (Ragazzi et al., 2017), and efforts to reduce it 

frequently lead to an uncontrolled release of solid and liquid pollutants as well as gaseous emissions 

into the environment (Riahi et al., 2017). Furthermore, the biotechnological development contributes 

to replace fossil fuels with biomass (organic waste and/or energy crops) as source of energy and 

biomaterials, thus preventing the increase of CO2 in the atmosphere and indirectly taking part to 

mitigate the global warming (Bauer et al., 2010). For instance, the organic fraction of the municipal 

solid waste (OFMSW) is successfully and worldwide used for producing enzymes (Clanet et al., 

1988), biohythane (Escamilla-Alvarado et al., 2017) and ethanol (Ballesteros et al., 2010); 

agricultural biomass including corn, woods, sugar, rice and wheat straw, has found a wide use in 

generating bioalcohols, bio-oil, biogas and biohydrogen (Poggi-Varaldo et al., 2014, Mancini et al., 

2016; 2018); and even not readily biodegradable C-based wastes, such as polystyrene (Goff et al., 

2007) and polyethylene terephthalate (PET) (Kenny et al., 2012), have resulted to be suitable for 

polyhydroxyalkanoates (PHA) production. Potential substrates for bioenergy production are cheese 

whey and buttermilk, by-products of cheese, yogurt, milk and butter processing in dairy factories. 

Cheese whey represents approximately 80–90% of the total waste volume from dairy factories (Lee 

et al., 1997) and is the major by-product of mozzarella cheese production. Buttermilk is the liquid left 

after churning mozzarella cheese. These milk-based wastes have high concentrations of soluble 

organic matter and are biodegradable, thus suitable for being treated by an anaerobic process that 

converts them into ethanol, lactic acid, volatile fatty acids (VFAs), H2 and CH4. All of them are 

complementary products of the biological metabolism (Khan et al., 2016) and their production can 

be associated to one or more bacterial and/or archaeal strains in the system. Although the anaerobic 

bacteria belonging to the families Streptococcaceae and Enterobacteriaceae as well as the genera 

Clostridium and Eubacterium are the most frequently involved in the anaerobic digestion process 

(Novaes, 1986; Pagliano et al., 2017), the microflora present in anaerobic digesters is extremely 

various in species, highly specialized, selected on the base of substrates and inoculum as well as the 

operating conditions used. When the biological process is fed with dairy wastes, it is expected that: 
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(i) Lactobacillus spp. and E. coli are the most common hydrolytic bacteria; (ii) Acetobacterium spp., 

which converts lactate to acetate, are the most common homoacetogenic bacteria (Schug et al., 1987); 

(iii) archaea are responsible for CH4 production (Gonzalez-Martinez et al., 2016) from acidogenesis 

products following the acetoclastic pathway, typical of Methanosaeta, Methanosarcina, and 

Methanothrix genera, and/or the hydrogenotrophic pathway, typical of Methanobacterium, 

Methanococcus, Methanospirillum, or Methanomassiliicoccus (Gonzalez-Martinez et al., 2016). 

The main biochemical reactions involved in the anaerobic degradation of dairy waste with the 

production of H2 and CH4 are listed in Table 4.1 with the relative value standard of Gibbs free energy 

(ΔG°). 

As the end-products of an anaerobic process have different commercial value and industrial use, it is 

convenient to control the process physically, chemically and microbiologically up to drive it to 

maximize the production of determined bio-products rather than others (Mohan et al., 2016). 

Therefore, in order to evaluate the biological and anaerobic conversion of dairy wastes into liquids 

(e.g., ethanol and lactic acid) and gaseous compounds (e.g., H2 and CH4), in this study two series of 

batch tests were conducted under strictly controlled mesophilic conditions and run with different 

ratios of substrate and inoculum. In detail, the tests were focused on achieving the following 

objectives: (i) finding a correlation between the intermediate and end-products of the process (e.g., 

H2, CH4 and VFAs) with the bacterial groups at different times during the process; (ii) understanding 

the role of microbial groups during the anaerobic biological processes; (iii) governing the microbial 

activity to achieve a specific target, such as the enhanced production of H2 and/or CH4, rather than 

VFAs, or viceversa. 

 

4.2. Materials and methods 

4.2.1.Physico-chemical analysis of dairy wastes 

 

Cheese whey and buttermilk were collected from a buffalo mozzarella cheese factory located in 

Casoria (latitude: 40° 54' 32.62" N and longitude: 14° 17' 37.07" E) in the Campania region (Italy). 

Dairy wastes were mixed maintaining a ratio of 2:1 (v/v) between cheese whey and buttermilk, in 
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Table 4.1. The main biochemical reactions involved in anaerobic processes with the relative value of standard Gibbs free energy (ΔG°). 

 

 

Reaction ΔG° (kJ/mol) Reference 

Glucose to H2/ethanol/acetate 

𝐂𝟔𝐇𝟏𝟐𝐎𝟔 + 𝟑𝐇𝟐𝐎 → 𝟐𝐇𝟐 + 𝟐𝐂𝐇𝟑𝐂𝐇𝟐𝐎𝐇 + 𝐂𝐇𝟑𝐂𝐎𝐎− + 𝟐𝐇𝐂𝐎𝟑
− + 𝟑𝐇+ 

-182 Azbar and Levin, 2012 

Glucose to H2/ethanol/formate/acetate 

𝐂𝟔𝐇𝟏𝟐𝐎𝟔 + 𝟐𝐇𝟐𝐎
→ 𝐇𝟐 + 𝐂𝐇𝟑𝐂𝐇𝟐𝐎𝐇 + 𝐇𝐂𝐎𝐎− + 𝐂𝐇𝟑𝐂𝐎𝐎− + 𝐇𝐂𝐎𝟑

− + 𝟑𝐇+ 

-183 Azbar and Levin, 2012 

Glucose to ethanol 

𝐂𝟔𝐇𝟏𝟐𝐎𝟔 + 𝟐𝐇𝟐𝐎 → 𝟐𝐂𝐇𝟑𝐂𝐇𝟐𝐎𝐇 + 𝟐𝐇𝐂𝐎𝟑
− + 𝟐𝐇+ 

-196 Azbar and Levin, 2012 

Glucose to H2/acetate 

𝐂𝟔𝐇𝟏𝟐𝐎𝟔 + 𝟒𝐇𝟐𝐎 → 𝟒𝐇𝟐 + 𝟐𝐂𝐇𝟑𝐂𝐎𝐎− + 𝟐𝐇𝐂𝐎𝟑
− + 𝟒𝐇+ 

-168 Azbar and Levin, 2012 

Glucose to H2/butyrate 

𝐂𝟔𝐇𝟏𝟐𝐎𝟔 + 𝟐𝐇𝟐𝐎 → 𝟐𝐇𝟐 + 𝟐𝐂𝐇𝟑𝐂𝐇𝟐𝐂𝐇𝟐𝐂𝐎𝐎− + 𝟐𝐇𝐂𝐎𝟑
− + 𝟑𝐇+ 

-229 Azbar and Levin, 2012 

Glucose to H2 

𝐂𝟔𝐇𝟏𝟐𝐎𝟔 + 𝟏𝟐𝐇𝟐𝐎 → 𝟏𝟐𝐇𝟐 + 𝟔𝐇𝐂𝐎𝟑
− + 𝟔𝐇+ 

+64 Azbar and Levin, 2012 

Glucose to H2/acetate/formate 

𝐂𝟔𝐇𝟏𝟐𝐎𝟔 + 𝟐𝐇𝟐𝐎 → 𝟐𝐇𝟐 + 𝟐𝐂𝐇𝟑𝐂𝐎𝐎− + 𝟐𝐇𝐂𝐎𝐎− + 𝟒𝐇+ 
-170 Azbar and Levin, 2012 

Glucose to lactate 

𝐂𝟔𝐇𝟏𝟐𝐎𝟔 → 𝟐𝐂𝐇𝟑𝐂𝐇(𝐎𝐇)𝐂𝐎𝐎− + 𝟐𝐇+ 
-172 Azbar and Levin, 2012 

Acetate to H2 

𝐂𝐇𝟑𝐂𝐎𝐎− + 𝟒𝐇𝟐𝐎 → 𝟒𝐇𝟐 + 𝟐𝐇𝐂𝐎𝟑
− + 𝐇+ 

+116 Azbar and Levin, 2012 

H2 to acetate 

𝟒𝐇𝟐 + 𝟐𝐇𝐂𝐎𝟑
− + 𝐇+ → 𝐂𝐇𝟑𝐂𝐎𝐎− + 𝟒𝐇𝟐𝐎 

+48.3 Thauer et al., 1977 

Butyrate to acetate/H2 

𝐂𝐇𝟑𝐂𝐇𝟐𝐂𝐇𝟐𝐂𝐎𝐎− + 𝟐𝐇𝟐𝐎 → 𝟐𝐂𝐇𝟑𝐂𝐎𝐎− +  𝐇+ + 𝟐𝐇𝟐 
+88.2 Westermann 1984 

Propionate to acetate/H2 

𝐂𝐇𝟑𝐂𝐇𝟐𝐂𝐎𝐎− + 𝟑𝐇𝟐𝐎 → 𝐂𝐇𝟑𝐂𝐎𝐎− + 𝐇𝐂𝐎𝟑
− + 𝐇+ + 𝟑𝐇𝟐 

+116.4 Westermann 1984 

Acetic acid to methane 

𝐂𝐇𝟑𝐂𝐎𝐎𝐇 → 𝐂𝐇𝟒 + 𝐂𝐎𝟐 
-36 Schlegel et al., 2012 

H2 to methane 

𝐂𝐎𝟐 + 𝟒𝐇𝟐 → 𝐂𝐇𝟒 + 𝟐𝐇𝟐𝐎 
-135.6 Voolapalli and Stuckey 1999 
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order to simulate the standard characteristics of a real dairy waste stream produced from a mozzarella 

cheese factory. Such mixture was used to conduct the tests. Cheese whey, buttermilk and their mixture 

were physically and chemically characterized as follows: pH was measured using a HI 221 pH meter 

(Hanna Instruments Inc., Woonsocket, RI, USA); total titratable acidity (TTA) was calculated as the 

mL of 0.1 N NaOH/10 mL of sample (AAC Methods, 1975); total solids (TS) and volatile solids (VS) 

were evaluated as described in the standard methods (APHA, 2005); COD was measured with an 

ECO08 thermoreactor (VELP Scientifica, Usmate, Italy) and a PF-3 photometer (VELP Scientifica, 

Usmate, Italy) using kit NANOCOLOR®. 

4.2.2. Microbiological analysis of dairy wastes 

 

Bacterial counts were performed on serially diluted cheese whey, buttermilk and their mixture, which 

were spread on the plate surface containing different media. Total aerobic and anaerobic bacteria 

were counted on Plate Count Agar (Oxoid, Milan, Italy) and incubated for 48 h at 30°C under either 

aerobic or anaerobic conditions (Oxoid’s Anairogen™ System). Spore-forming bacteria were 

cultivated on Plate Count Agar after a pretreatment at 80°C for 10 min. The plates were incubated at 

30°C for 48 h in aerobic and anaerobic conditions. Lactic acid bacteria (LAB) were counted on MRS 

(De Man, Rogosa and Sharpe) Agar (Oxoid, Milan, Italy), and the plates were incubated for 48 h at 

30°C. 

Clostridia were enumerated on Reinforced Clostridial Medium (Oxoid, Milan, Italy), and the plates 

were incubated for 48 h at 30°C under anaerobic condition. 

Enterococci were counted on the selective substrate, Slanetz-Bartley agar (Oxoid, Milan, Italy), after 

incubation at 37°C for 48 h. 

4.2.3. Anaerobic tests set up and monitoring 

 

Five batch anaerobic tests were conducted (Table 4.2): (i) two main tests were filled with 200 mL of 

dairy wastes mixture and inoculated respectively with 1% w/v (test A) and 3% w/v (test B) of 

industrial animal manure pellets (Stalfert N2 - Organazoto Fertilizzanti s.p.a, Pistoia, Italy); (iii) two 

of three control tests were filled with 200 mL of tap water and inoculated respectively with 1% w/v 

(test 1) and 3% w/v (test 2) of industrial animal manure pellets, whereas the remaining test (test 3) 

was filled with 200 mL of sole dairy wastes mixture and was not inoculated. Tests were conducted in 

250 mL GL 45 glass bottles, (Schott Duran, Mainz, Germany). Anaerobic conditions were ensured  
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Table 4.2. Tests set-up and operating conditions. 

 Main tests Control tests 

 A B 1 2 3 

Cheese whey and buttermilk mixture (mL) 200 200 - - 200 

Tap water (mL) - - 200 200  

Inoculum (%, w/v) 1 3 1 3 - 

Working temperature (°C) 38±1 38±1 38±1 38±1 38±1 

Repetitions 8 8 3 3 3 

 

by sealing the bottles (working volume of 200 mL) with a 5-mm-thick silicone disc held by a plastic 

screw cap. All bottles were kept at 38±1 °C in 200 W A-763 submersible heaters (Hagen, Germany). 

Tests were differently replicated (i.e. from 3 to 8 repetitions). 

 

4.2.3.1. Biological gas production and intermediate products evolution 

 

Biological gas production was measured with a volumetric displacement method (Esposito et al., 

2012). The volume of biological gas was measured by connecting each bottle, used as bench scale 

biological reactors, with a capillary tube to an inverted 1000 mL glass bottle containing an acid 

solution at 1.5% HCl (Ghimire et al., 2015). The biological gas composition was analyzed in terms 

of H2 and CH4 using a Varian Star 3400 gas chromatograph (Agilent, Santa Clara California, USA) 

equipped with a Shin Carbon ST 80/100 column and a thermal conductivity detector. Argon was used 

as the carrier gas with an operating pressure of 20 psi. Biological gas measurements were performed 

daily during the first week and every three days during the following three weeks of incubation. 

Liquid samples were collected at different times during the incubation. Samples were analyzed for 

lactose, galactose, lactic acid, acetic acid, propionic acid and ethanol by high-performance liquid 

chromatography (refractive index detector 133; Gilson system; pump 307, column Metacarb 67 h 

from Varian with 0.4 mL/min flow of 0.01 N H2SO4). 
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4.2.3.2. Monitoring of microbial growth and bacterial community structure by culture-dependent 

method 

 

Bacterial counts were performed using either generic or selective differential growth media. 

Representative samples collected from the biological reactors during the incubation were 

characterized for total aerobic and anaerobic bacteria, aerobic spore-forming bacteria, LAB and 

clostridia, as described above. Methanogens were counted on agar plates of Medium 119, 120, 141, 

334 (Leibniz Institute DSMZ, Germany) according to manufacturer’s instructions. The plates were 

incubated for 7 days at 37°C under strictly anaerobic conditions by using an anaerobic chamber 

(Whitley DG 250 Anaerobic Workstation, Don Whitley Scientific, Shipley, UK). 

 

4.2.3.3. PCR amplification and DGGE analysis of bacterial 16S rRNA fragments 

 

Total microbial DNA was extracted from samples using the FastDNA Spin Kit for Soil (MP 

Biomedicals, Illkirch Cedex, France) according to manufacturer's instructions. Genetic fingerprinting 

of the bacterial populations by DGGE was performed using two different PCR reactions. For the first 

round, the universal synthetic oligonucleotide primers fD1 (AGAGTTTGATCCTGGCTCAG) and 

rD1 (AAGGAGGTGATCCAGCC), described by Weisburg et al. (1991), were used to amplify the 

bacterial 16S ribosomal RNA (rRNA) gene. PCR mixture and conditions were set according to 

Ventorino et al. (2016a). In the second round, a nested PCR was done using the primers V3f (GC-

CCTACGGGAGGCAGCAG) and V3r (ATTACCGCGGCTGCTGG) (Weisburg et al., 1991), 

spanning the V3 region of the 16S rRNA. Based on the method of Muyzer et al. (1993), a GC-clamp 

was added to the forward primer. PCR mixture and conditions were set according to Ventorino et al. 

(2016b). For the DGGE fingerprint, 25 µL from the nested PCR were analyzed using a Bio-Rad 

DCode Universal Mutation System (Bio-Rad Laboratories, Milan, Italy). 

DGGE analysis of bacterial communities was performed with a polyacrylamide gel (8% w/v 

acrylamide-bisacrylamide 37:5:1) using a denaturing gradient of 30-60% as described by Ventorino 

et al. (2013). The electrophoresis was run at 60°C and 200 V for 240 min. After staining the gels for 

30 min with SYBR Gold, image analyses were performed in Phoretix 1 advanced version 3.01 

(Phoretix International Limited, Newcastle upon Tyne, UK).  
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4.2.3.4. PCR amplification and DGGE analysis of archaeal 16S rRNA fragments 

 

A nested PCR approach was developed in this study to analyze the archaeal community by DGGE 

analysis using two different PCR reactions: the first PCR was performed using the primers Arch 46F 

(YTA AGC CAT GCR AGT) according to Øvreås et al. (1997) and Arch 1017R (GGC CAT GCA 

CCW CCT CTC) according to Barns et al. (1994); the second PCR was subsequently conducted using 

the amplicons from the first PCR as template and utilizing the primers Arch 344FGC (GC-GAC GGG 

GHG CAG CAG GCG CGA), as per Raskin et al. (1994), and Univ 522R (GWA TTA CCG CGG 

CKG CTG) as per Amann et al. (1995). Both PCR conditions were performed as per Akarsubasi et 

al. (2005). A GC-clamp was added to the forward primer. PCR mixture and conditions were 

performed as described by Akarsubasi et al. (2005). Finally, amplicons were analyzed by DGGE 

using a polyacrylamide gel (10% w/v acrylamide-bisacrylamide 37.5:1) with a denaturing gradient of 

30-70% (Akarsubasi et al., 2005). Electrophoresis was run at 60°C and 200 V for 330 min. After 

electrophoresis, gels were stained for 30 min with SYBR Gold and bands were visualized and 

analyzed as described above. 

 

4.2.4. Archaeal DGGE bands sequencing 

 

Archaeal dominant bands were excised from the gel and the eluted DNA was re-amplified using the 

PCR conditions described above. The amplicons were verified by DGGE using DNA amplified from 

samples as the control. Several archaea were identified using a molecular marker obtained by a 

combination of the six PCR products. Actively growing cultures of archaeal strains Methanococcus 

voltae DSM 1537, Methanobrevibacter ruminantium DSM 1093, Methanobacterium congolense 

DSM 7095, Methanosarcina acetivorans DSM 2834, Methanosarcina barkeri DSM 800 and 

Methanosarcina mazei DSM 2053, were provided by Leibniz Institute DSMZ-German (Figure 4.6). 

These strains were inoculated in tubes closed with a flange-type butyl rubber septum and a screw cap 

containing four specific liquid grow media (Medium 119, 141, 120, 120a) as per the laboratory’s 

recommendation. Cultures were then incubated in an anaerobic chamber (Whitley DG 250 Anaerobic 

Workstation) set at 37°C for 7 days. DNA extraction, PCR amplification and DGGE analysis of 

archaeal DSMZ strain 16S rRNA fragments were performed as previously reported. The procedure 

was conducted by evaluating the purity and position of the bands for each strain before mixing the 

PCR products for the marker. All the products that migrated as a single band were purified and 
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sequenced according to Pepe et al. (2013) and compared to the GenBank nucleotide data library using 

the BLAST program at the National Center of Biotechnology Information website to determine their 

closest phylogenetic relatives. 

 

4.2.5. Statistical analyses 

 

A one-way ANOVA followed by a Tukey test for pairwise comparison of means (p ≤ 0.05) were used 

to assess the difference in microbial counts at different incubation times. Statistical analyses were 

performed using the SPSS 21.0 statistical software package (SPSS Inc., Cary, NC, USA) as reported 

by Ventorino et al. (2017). 

Phoretix 1 advanced version 3.01 (Phoretix International Limited, Newcastle upon Tyne, England) 

was used to automatically detect the DGGE bands and perform cluster analysis. The correlation 

matrix was performed using the method described by Saitou and Nei (1987) and the percentage of 

similarity of microbial populations present in different samples was estimated according to the 

average linkage method in the Cluster procedure of Systat 5.2.1. 

 

4.3. Results 

4.3.1. Characterization of the dairy waste, their mixture and inoculum 

 

The chemical characteristics of the substrate and inoculum are reported in Table 4.3. COD was higher 

in cheese whey (124.02.8 g L-1) than buttermilk (19.70.3 g L-1) and the resulting mixture 

consequently showed a COD closer to that of cheese whey than buttermilk (81.00.8 g L-1). In the 

mixture TS and VS concentrations were 49.00.5 g l-1 and 42.30.2 g L-1, respectively. pH was 

5.30.1 and TTA was 0.80.1 °SH. 

The microbial characterization of cheese whey, buttermilk, their mixture and the inoculum is shown 

in Figure 4.1. Initially, total aerobic and anaerobic microorganisms as well as LAB were more 

abundant in cheese whey (7.80.0, 7.20.0 and 6.30.0 log CFU mL-1, respectively) than in 

buttermilk (4.00.1, 3.80.0 and 4.60.0 log log CFU mL-1, respectively). In contrast, aerobic spore-
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forming bacteria were more numerous in buttermilk (2.90.0) than in cheese whey (2.30.0 log CFU 

mL-1). 

Table 4.3. Physico-chemical characterists of whey cheese, buttermilk, their mixture and inoculum. 

 

 

 

 

 

 

 

 

 

*not determined; **(ratio 2:1 v/v); 

 

 

 

 

Figure 4.1. Initial microbial characterization of the cheese whey, buttermilk and mixture (ratio 2:1). 

 

Anaerobic spore-forming bacteria (1.90.0 log CFU mL-1) and enterococci were only detected in 

cheese whey (3.80. log CFU mL-1) and inoculum (4.60.0 log CFU mL-1). The presence of clostridia 

in the tests was only due to inoculum (3.90.0 log CFU mL-1). 

Samples 
COD  

(g L-1) 

TS  

(g L-1) 

VS  

(g L-1) 
pH 

TTA 

(°SH) 

Cheese whey (W) 124.02.8 n.d.* n.d.* 5.30.2 0.80.1 

Buttermilk (B) 19.70.3 n.d.* n.d.* 5.30.1 0.40.1 

Mix of W and B**  81.00.8 49.00.5 42.30.2 5.30.1 0.80.1 

Inoculum n.d.* 0.80.0 0.40.0 n.d.* n.d.* 
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4.3.2. Biological gas production and physico-chemical biosystem changes 

 

The gas volumes measured during the incubation period was used to plot the cumulative H2 and CH4 

curves (Figure 4.2), where the X-axis displays the incubation time, and the Y-axis the corresponding 

H2 and CH4 cumulative production per gram of VS of the initial dairy waste mixture. Moreover, the 

cumulative production curves were plotted subtracting the H2 and CH4 contribution from the 

inoculum. Approximately 8.90.4 mL H2 g VS-1 and 2.20.1 mL CH4 g VS-1 were the cumulative 

productions of H2 and CH4 observed in test B after 28 days of incubation at 38°C. The amount of CO2 

(% v/v) detected in the gas mixture ranged from 99% (at the beginning of the process) to 68% 

measured when CH4 and H2 production occurred (Table 4.4). The H2 production rate showed an 

increasing rate during the first 21 days, followed by a progressive decrease until the end of the 

incubation time. According to Nielfa et al. (2015), the value of theoretical methane production 

(BMPthCOD) at laboratory condition is approximately 0.723 L. Under experimental condition used, the 

methane production achieved was around 0.018 L. 

The H2 production rate was increasing during the first 23 days of incubation, followed by a 

progressive decrease until the end of the incubation time. Cumulative production curves display a 

horizontal asymptote representing the maximum experimental production per gram of VS added. H2 

and CH4 were not detected in test A after 28 days of incubation at 38°C (Figure 4.2) and accordingly 

CO2 amount was around 99.9% (v/v) (Table 4.4). 

Table 4.4. Biological gas composition. 

Incubation 

day 
 1 2 3 4 5 6 10 13 16 18 20 23 27 

TEST A 

Gas  

Composition 

(%) 

H2 0.00 0.00 0.01 0.01 0.01 0.01 0.08 0.05 0.04 0.00 0.01 0.01 0.01 

CH4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.10 3.49 2.57 2.40 

CO2 99.99 99.99 99.99 99.57 99.57 99.89 99.61 99.93 99.96 86.87 96.50 97.60 97.68 

TEST B 

Gas 

Composition 

(%) 

H2 0.00 0.00 0.00 0.01 0.02 0.38 0.10 2.73 5.63 17.61 19.77 10.05 2.25 

CH4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.94 14.20 10.72 5.87 0.00 

CO2 99.99 99.98 99.98 99.98 99.97 99.61 99.89 97.25 92.42 68.18 69.50 84.07 97.74 

During the first week, at least 86% of the lactose present initially in the dairy wastes mixture was 

consumed, and the lactic acid concentration increased up to reach approximately 25 g/L in both tests 
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A and B. After 14 days the lactic acid concentration decreased in test B (Figure 4.3) and an increase 

in H2 production was observed, as shown in Figure 4.2. 

 

Figure 4.2. H2 (white symbols) and CH4 (black symbols) produced during incubation time from test 

A (triangle) and test B (square). 

 

Whereas, in test A lactic acid concentration remained constant from day 14 to the end of the 

incubation time, and H2 and CH4 were not produced. Ethanol, acetic and propionic acids were only 

detected in test B after 14 days, at concentrations of 16.41.5, 7.31.3 and 6.31.2 g L-1, respectively 

(Figure 4.3). Parameters such as pH and TTA were continuously monitored throughout the incubation 

time. pH in test A dropped to 3.50.0 and remained constant until the end of the experiment. 

Interestingly, in test B, the pH decreased initially (3.90.0) and then increased to 5.90.0. TTA 

remained constant, approximately equal to 5.40.0 °SH in test A, whereas in test B decreased from 

4.00.0 °SH to 0.80.0 °SH between days 14 and 21, accordingly with the pH and lactose 

consumption trends. COD in test A moved from the initial value of 79.00.1 g L-1 to the final of 

72.20.4 g L-1, whereas, in test B moved from 83.20.1 g L-1 to 65.00.5 g L-1during the incubation 

time. 
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Figure 4.3. Concentrations of lactose, galactose, lactic acid, acetic acid, ethanol and propionic acid 

in samples collected from test A (A) and test B (B). 

 

4.3.3. Microbial counts during the biodigestion process 

 

Initially, no difference was noticed among the microbial groups in the two tests. Total aerobic and 

anaerobic bacteria were present in a load of approximately 7-8 log CFU mL-1, whereas the 

concentration of aerobic and anaerobic spore-forming bacteria and clostridia was approximately 3-4 

log CFU mL-1 (Figure 4.4). 
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Figure 4.4. Counts of the principal microbial groups in test A (A) and test B (B) and counts of 

methanogen and LAB (C) in both tests during incubation time. 
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Total aerobic and anaerobic bacteria remained constant throughout test A, but the anaerobic bacterial 

load increased after 14 days of incubation in test B (8.10.0 log log CFU mL-1). Moreover, at the end 

of the incubation process, the total aerobic bacteria were more abundant in test A than test B (7.50.1 

and 5.90.1 log log CFU mL-1, respectively). Clostridia and anaerobic spore-forming bacteria 

increased up to reach approximately 6 log CFU/mL, and keeping constant their concentration, equal 

to 5.8-5.9 log CFU mL-1, after 21 days of incubation in both tests A and B.After a decrease during 

the first 14 days (from 6.70.1 to 5.40.1 log CFU mL-1), LAB increased to 7.00.0 log CFU mL-1in 

test A (p = 0.02), whereas the growth trend in test B showed a decrease from 7.00.1 to 5.70.0 log 

CFU mL-1 (p = 0.01) after 21 days of incubation (Figure 4.4). This occurred when all lactose was 

consumed, and the ethanol and organic acid concentrations consequently increased in test B (Figure 

4.3). The initial methanogens count was approximately 5.6-5.7 log CFU mL-1for both tests A and B 

(p =0.03). During the incubation period, methanogens increased in test B, and at the end of the 

experiment, they showed a load of 1 log higher (7.00.1 log CFU mL-1, p = 0.00) than in test A, 

where the methanogen count resulted to be 6.00.0 log CFU mL-1 after 21 days (Figure 4.4). 

 

4.3.4. Bacterial and archaeal community structure 

 

The DGGE band patterns were representative of samples collected at different times throughout the 

process. Bacterial and archaeal diversity increased during the anaerobic process in test B, where H2 

and CH4 production occurred. No difference (similarity of 100%) in the bacterial profile of the 

samples collected at the initial time and after 7 days was observed in both tests A and B (Figure 4.5). 

However, cluster analysis showed that the percentage of similarity among the samples within the 

same test decreased over time, particularly in test B. In detail, from day 14 (T14) to 28 (T28), the 

similarity level ranged from 76 to 79% and from 81 to 89% in test A and B, respectively (Figure 4.5). 

However, on the final day (T28), the number of bands in test B increased, indicating the highest 

bacterial diversity (Figure 4.5). Moreover, the control sample of inoculum (I) had the least similarity 

(24%, Figure 4.5) compared with samples collected at different days of the incubation time. The 

DGGE profiles and cluster analysis of the archaeal community showed a significant difference 

between the two tests, as seen in the marked division of the samples in the cluster analysis (Figure 

4.6). The archaeal community remained mostly constant during the first 14 days in test B (similarity 

81-84%, Figure 4.6), whereas at days 21 and 28 of the incubation time, a remarkable increase in 

diversity was found through DGGE profiles, with a similarity of 69% (Figure 4.6). The high similarity 
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between the inoculum and the samples after 21 days of incubation (91%, Figure 4.6) demonstrated 

that the animal manure concentration influenced the methanogenic microbial community and 

determined the higher CH4 production in test B. 

 

Figure 4.5. Molecular analysis by the culture-independent method (PCR-DGGE) – bacterial 

community structure. The DGGE band patterns (A) and the cluster analysis (B) were representative 

of the samples collected from test A and test B at different days of the incubation time. Lanes: 1, 

animal manure inoculum (I); 2, test A at initial time (T0 A); 3, test A at day 7 (T7 A); 4, test A at day 

14 (T14 A); 5, test A at day 21 (T21 A); 6, test A at day 28 (T28 A); 7, test B at initial time (T0 B); 

8, test B at day 7 (T7 B); 9, test B at day 14 (T14 B); 10, test B at day 21 (T21 B); 11, test B at day 

28 (T28 B). 
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Figure 4.6. Molecular analysis by the culture-independent method (PCR-DGGE) – archaeal 

community structure. The DGGE band patterns (A) and the cluster analysis (B) were representative 

of samples collected from test A and test B at different days of the incubation time. Lanes: 1, Marker: 

a: Methanococcus voltae; b: Methanobrevibacter ruminantium; c: Methanobacterium congolense; d: 

Methanosarcina acetivorans; e: Methanosarcina barkeri; f: Methanosarcina mazei; 2, animal manure 

inoculum (I); 3, test A at initial time (T0 A); 4, test A at day 7 (T7 A); 5, test A at day 14 (T14 A); 6, 

test A at day 21 (T21 A); 7, test A at day 28 (T28 A); 8, test B at initial time (T0 B); 9, test B at day 

7 (T7 B); 10, test B at day 14 (T14 B); 11, test B at day 21 (T21 B); 12, test B at day 28 (T28 B). 
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Table 4.5. Identification based on Blast comparison in the GenBank data libraries of the archaeal bands obtained by PCR-DGGE. The gray color 

indicates the presence of the bands in different samples. 

 

 

 

 

 

 
Test A Test B 

Band 
Closest relative species 

(identity percentage) 

Accession 

number 
Inoculum T0 T7 T14 T21 T28 T0 T7 T14 T21 T28 

a 
Methanococcus voltae  DSM-1537 

 
CP002057.1 

           

b 
Methanobrevibacter ruminantium DSM-1093 

 
CP001719.1 

           

c 
Methanobacterium congolese  DSM-7095 

 
LT607756.1 

           

d 
Methanosarcina acetivorans  DSM-2834 

 
AE010299.1 

           

g 
Nitrososphaera spp. (87%) 

 
NR_134097.1 

           

h 
Methanobrevibacter spp. (97%) 

 
NR_074235.1 

           

i 
Methanoculleus sediminis (96%)/ 

Methanoculleus horonobensis (96%) 

NR_136474.1/ 

NR_112788.1 

           

l 
Methanocorpusculum aggregans  (98%)/ 

Methanocorpusculum labreanum  (98%) 

NR_117749.1/ 

NR_074173.1 

           

m 
Methanoculleus hydrogenitrophicus (98%)/ 

Methanoculleus thermophiles (98%) 

NR_116881.1/ 

NR_028156.1 
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In test A, the archaeal diversity remained similar during the anaerobic process (similarity of 86-94%, 

Figure 4.6) until day 28, when a higher diversity with a similarity of 82% was noticed (Figure 4.6). 

To identify the archaeal species most involved in the production of H2 and CH4, dominant bands were 

excised from the DGGE gels and identified by sequencing. In addition, the DGGE profiles of the 

samples were identified by comparing them with the known archaeal bands as a marker. As reported 

in Table 4.5, several species of methanogens were identified in all samples, whereas others were 

found only at specific times throughout the process. 

Methanobrevibacter ruminantium and Methanobrevibacter spp. were recovered from the inoculum 

and from test B at day 21 (band b and h, Table 4.5), where higher H2 and CH4 production occurred, 

demonstrating the high similarity among these samples (Figure 4.6). Moreover, Methanosarcina 

acetivorans and Methanobrevibacter spp. were recognized at day 28 in test A as well as in test B 

(band d and h, Table 4.5). Methanoculleus sediminis/Methanoculleus horonobensis, 

Methanocorpusculum aggregans/Methanocorpusculum labreanum, Methanoculleus 

hydrogenitrophicus/Methanoculleus thermophiles (band i, l and m) were identified in almost all 

samples except T28 in test B (Table 4.5). 

 

4.4. Discussion 

4.4.1. Characterization of the dairy wastes and inoculum 

 

The chemical characterization of substrates used in this study showed a COD concentration higher 

than the average value reported in the literature, for instance 100 g L-1 (Gelegenis et al., 2007). The 

high COD in the cheese whey influenced the resulting COD in the mixture, indicating the potential 

of this substrate as a feed in anaerobic processes (Pilarska et al., 2016) and produce H2 and CH4. This 

aspect is further demonstrated by the large amount of VS measured in the mixture (Hassan and Nelson, 

2012). Moreover, cheese whey influenced the pH of the mixture since this waste is typically salty due 

to the acidity, with pH ranging from 5.2 to 5.4 (Blaschek et al., 2007). Moreover, the relatively high 

amount of salt in the substrate could inhibit microbial H2 production (Lee et al., 2012). Combined 

specific productions of H2 and CH4 achieved in this work are relatively low if compared to other 

works where the same substrate as well as others were used (Table 4.6). For this reason, organic acids 

were detected at the end of the experiments as organic substance that could be degraded to achieve 

specific production close to the optimal one. 
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Table 4.6. Yields of combined production of H2 and CH4 from different substrates and under different operating conditions (adapted from Roy et al., 

2016). 

 

 

 

 

Substrate Reactor type I stage H2 yield  
Reactor type 

II stage 
CH4 yield References 

Cassava stillage CSTR 56.6 L kg-1 VS CSTR 249 L kg-1 VS Luo et al. (2010) 

OFMSW CSTR 205 L kg-1 VS FBR 464 L kg-1 VS Chu et al. (2008) 

Food waste  Rotating drum reactor 65 L kg-1 VS CSTR 546 L kg-1 VS Wang and Zhao (2009) 

Wheat straw hydrolysate UASB 89 L kg-1 VS UASB 307 L kg-1 VS Kongjan et al. (2011) 

Corn stalk CSTR 79.8 L kg-1 VS CSTR 2272.5 L kg-1 VS Guo et al. (2014) 

Algal biomass Serum bottles 283.4 L kg-1 VS CSTR 253.5 L kg-1 VS Cheng et al. (2014) 

Algal biomass Serum bottles 135 L kg-1 VS Serum bottles 314 L kg-1 VS Wieczorek et al. (2014) 

Dairy waste ASBR 35.6 L kg-1 VS ASBR 627 L kg-1 VS Lateef et al. (2014) 

Dairy waste Batch 8.90.4 L kg-1 VS Batch 2.20.1 L kg-1 VS this manuscript 

Skim latex serum (SLS) UASB 2.25 L L-1 UASB 6.41 L L-1 Kongjan et al. (2014) 

Cassava waste UASB 0.054 L g-1 COD UASB 0.16 L g-1 COD Intanoo et al. (2014) 

Tequila vinasses SBR 918 L kg-1 VS UASB 0.25 L g-1 COD Buitrón et al. (2014) 

Corn silage  UASB 59.4 L kg-1 VS UASB 328 L kg-1 VS Nkemka et al. (2015) 
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This discrepancy is due to the operating conditions tested in this work, definitely far from the 

optimal ones as the aim of the authors was to study the natural development of microbial 

species involved in the anaerobic degradation of dairy waste. 

The microbial composition was mostly affected by cheese whey, which determined the high 

concentration of total aerobic and anaerobic bacteria in the dairy wastes mixture. The microbial 

community of this substrate was mainly composed of LAB that commonly characterize dairy 

wastes (Ercolini et al., 2001). Moreover, in cheese whey, the LAB and enterococci 

concentrations were higher than those generally found in raw milk (Carraro et al., 2011) being 

them closer to those found in natural whey starter cultures used in cheese industry, which 

typically range from 6.0 to 7.7 log CFU mL-1 and from 3.8 to 5.5 log CFU mL-1, respectively 

(De Candia et al., 2007). However, despite a relevant LAB load is usually found in acidic 

environment (pH 4 approximately) (De Candia et al., 2007), in this study, a high LAB 

concentration (approximately 6 log log CFU mL-1) was detected at a pH around 5.3 due to the 

fermentation process during the mozzarella cheese production chain (Carvalho et al., 2013). 

Moreover, enterococci were detected solely in cheese whey and not in buttermilk, consequently, 

they were present in the dairy wastes mixture (Sodini et al., 2006). The presence of this 

microbial group is related to H2 production (Liu et al., 2009).In fact, non-spore-forming species 

such as Enterococcus sp. can contribute to enhanced hydrogen production as reported by Liu 

et al. 2009 that found these microorganisms in the mixed culture tested. Moreover 

Enterococcus sp. was also detected during operations of a fermentative biohydrogen-producing 

continuous stirred tank reactor (CSTR) with cheese whey as substrate by Davila-Vazquez et al. 

(2009). 

Since enterococci were also detected in the inoculum, test B could count on a higher initial 

amount of enterococci than test A and this difference is a possible explanation for the higher 

H2 production from test B rather than test A. Furthermore, the most interesting result obtained 

from the cultural analysis of the inoculum concerns the initial clostridia concentration. The 

genus Clostridium is actually the most common anaerobic population involved in the first steps 

of the anaerobic digestion process (Pagliano et al., 2017) and it is well known as a H2 producing 

bacteria strain (Hung et al., 2011). The presence of this microbial group in tests A and B was 

exclusively due to inoculum that significantly affected the volume of H2 produced. 
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4.4.2. Biological gas production,intermediates and end-products 

 

The microbial analysis highlighted the influence of the inoculum on biological gas production 

yield. Increasing the amount of inoculum in the ratio with substrate from 1% w/v (test A) to 

3% w/v (test B) resulted in a higher LAB and methanogens concentration. Moreover, H2 and 

CH4 production occurred only in test B, demonstrating that the different amounts of inoculum 

also affected the environment acidity, which was lower (i.e. pH higher) in test B than test A, 

thus explaining the difference in biological gas production. The animal manure acted as a buffer 

due to the presence of ammonium (Ghimire et al., 2017). In fact, when proteins are degraded, 

ammonium is released forming ammonium bicarbonate, which results in additional buffer 

capacity (Gallert et al., 1998). Furthermore, also Murto et al. (2004) reported the role of animal 

manure as buffering agents, however they did not neglect that a high ammonia concentration 

could result counter-productive for the process performance because it can be toxic to the 

microorganisms. Actually the presence of high ammonia concentration in the environment can 

be responsible for the process instability due to changes in the intracellular pH interactions as 

well as inhibitions of specific enzyme reaction, thus resulting in a lower methane yield (Chen 

et al., 2008). This inhibitory effect is in general stronger for the acetoclastic methanogens than 

the hydrogenotrophic ones (Angelidaki and Ahring, 1993). Concerning the microbial changes 

during the process, the decrease of LAB and lactic acid concentration occurred in test B coupled 

with methanogen growth toward the end of the process. Furthermore LAB are responsible for 

acidifying the liquid bulk in the reactors (Terzaghi and Sandine, 1975), because they produce 

lactic acid by homolactic and heterolactic fermentation processes (Palomba et al., 2012; 

Pradhan et al., 2017). Therefore the decrease of LAB concentration in test B favored the pH 

increase and CH4 production. Indeed, according to Ghaly (1995), low biological gas 

productivity and CH4 yield are associated to low pH in the fermented cheese whey, explaining 

the low productivity in test A. The higher pH value in test B promoted the growth of 

methanogens that are ecologically related to the animal manure inoculum and are involved in 

the final step of anaerobic digestion. The LAB load in test A was, actually, 1 log CFU mL-1 

higher than in test B, thus limiting the CH4 production. 

Comparing results of biological gas with those of organic acids production, lactic acid 

concentration increased at the beginning of the process in both tests A and B due to lactose 

consumption during the first 7 days of incubation. Actually, lactose is easily degraded by 

acidogenic microorganisms during lactic acid fermentation with high lactic acid synthesis. The 
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degradation of lactose also results in the production of lactic acid, propionate, bioethanol and 

acetate (Vidal et al., 2000). In fact, the major products of heterolactic fermentation are lactic 

acid, ethanol, acetate and carbon dioxide produced by LAB through two patterns. With glucose 

as substrate, these are: (1) the production of lactate, ethanol, and CO2, with occasional traces 

of acetate and (2) the formation of glycerol along with lactate, acetate, and CO2 (DeMoss et al., 

1951). As shown in the results of test A, the accumulation of these intermediate products, 

particularly in the undissociated form, caused the inhibition of several microbial species 

responsible for biological gas production as reported by Aguilar et al. (1995). For instance, 

ethanol was produced in large amount from day 14 of incubation in test B, and probably caused 

an inhibiting effect on the H2 production in agreement with Hung et al. (2011). Moreover, 

according to Yang et al. (2013) cannot be excluded that acetate was converted to ethanol in the 

presence of H2, thus affecting the trend of acetic acid in Figure 4.3. 

Moreover, Noike et al. (2002) observed the decrease or cessation of hydrogen production by 

different strains of Clostridium due to the addition of LAB isolated from the wastes generated 

in the bean curd manufacturing, reporting that a large amount of lactic acid was also produced. 

Indeed, lactic acid fermentation occurred in place of hydrogen fermentation promoted by the 

relationship between LAB and hydrogen producing bacteria, mostly clostridia. The latter 

consideration explains why test A resulted in a really low H2 production: actually, less amount 

of inoculum added resulted in lower clostridia load. On the contrary, the LAB concentration 

showed a decreasing trend in test B after 14 days of incubation, in correspondence of significant 

H2 production. 

 

4.4.3. Effects of microbial community changes on the physico-chemical characteristics of the 

biological system and viceversa 

 

In test B, an increase in the methanogens concentration was observed during the incubation 

time, thus leading to a not neglecting biological gas production and lactic acid consumption. 

Indeed, in test B occurred that LAB, such as Lactococcus lactis and Lactobacillus delbrueckii, 

converted lactose into lactic acid, whereas methanogens such as Methanosarcina and 

Methanosaeta subsequently converted lactate into acetic acid (Hassan and Nelson, 2012). On 

the other hand, lactic acid concentration remained constant in test A where the methanogens 

level was not sufficient to promote biological gas production. 
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Specifically, Methanobrevibacter ruminantium was identified and it is known to be the largest 

methanogen group in lactating dairy cattle and ovine rumen that can use H2, CO2 and formate 

as substrates for CH4 production (Hook et al., 2010). In this study, the presence of 

Methanobrevibacter ruminantium was demonstrated by using cultural-independent molecular 

analysis for the archaeal group, identifying the DGGE bands in the samples collected at the 

incubation time when H2 and CH4 production occurred in test B (T21 B). This result was 

confirmed by the culture data, since from day 14 the methanogens concentration increased in 

test B when the pH reached a value of 6. Within the genus Methanobrevibacter, only 

Methanobrevibacter ruminantium has been reported to grow at pH 6 (Savant et al., 2002). 

Methanobrevibacter ruminantium was identified in the inoculum as well as in samples 

collected from test B at day 21, when the pH increased up to 5.8 and biological gas was 

produced. The pH condition probably selected hydrogenotrophic methanogens (Ventorino et 

al., 2018) rather than acetoclastic methanogens. Methanobacteriales (such as Methanoculleus 

and Methanocorpusculum) and Methanomicrobiales (such as Methanobrevibacter and 

Methanobacterium) were not influenced by pH change according to Kundu et al. (2017). 

Archaeal diversity varied throughout the incubation period, and the growth conditions favored 

several archaeal species that were different from those found in the previously collected 

samples, such as Methanosarcina acetivorans, which was identified in both tests A and B at 

day 28. Methanosarcina acetivorans is actually a metabolically versatile methanogen that 

grows under extreme energy limitations (Schlegel et al., 2012) intended as generation of ATP. 

In fact Methanosarcina acetivorans is lack in hydrogenase enzyme that reduces protons to 

hydrogen and thus it has a different electron transport compared with other aceticlastic 

methanogens (Schlegel et al., 2012). 

In summary, the dynamics of the archaeal community structure were greatly influenced by the 

microbiological features and concentration of the inoculum and consequently affected the 

performance of the anaerobic process in terms of biological gas production and liquid end-

products composition and concentration, according to Hoffmann et al. (2008). 

 

4.5. Practical application and future perspectives 

 

Cheese whey and buttermilk are attractive sources for producing biofuels and bio-based 

materials as they can be successfully converted in valuable end-products through an anaerobic 

process, thus conveniently providing a resource-efficient waste management and 
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environmental protection system. As the performance of a biological process is strictly affected 

by the microbial community that thrives and diversifies on the substrate used, this research was 

focused on associating bacterial and archaeal groups to the occurrence of low or high 

production of different valuable end-products of the process. Results from this study, therefore, 

can be successfully applied as useful tool to reach a full control of the anaerobic process and 

steer it toward the production of a specific end-product, rather than others. This work has 

investigated only few aspects of the interrelations existing in the anaerobic process between 

microbial community and the group of operating variables composed of substrate, inoculum, 

environmental conditions and end-products, therefore further studies on this topic are necessary 

to gain a higher level of knowledge about this key factor of the anaerobic process. 

 

4.6. Conclusions 

 

Cheese whey and buttermilk from mozzarella cheese processing factories are suitable by-

products for being valorized in a biorefinery process. In such process, the inoculum amount 

significantly influenced the bacterial and archaeal communities and consequently the entire 

performance of the process. This study has demonstrated that the increase of 1 log of 

methanogens due to the highest inoculum concentration of 3% (w/v), improved H2 and CH4 

production. Microbial analysis has furthermore recognized in Methanobrevibacter genus and, 

in particular Methanobrevibacter ruminantium the most dominant species in this specific 

conditions of anaerobic process fed with a mixture of mozzarella cheese whey and buttermilk. 
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CHAPTER 5 

Bacterial and  

archaeal communities dynamics 

 

 

 

 

 

 

 

 

 

 

This chapter reports the content of original paper: 

Pagliano G, Ventorino V, Panico A, Romano I, Pirozzi F, Pepe O. Anaerobic process for bioenergy 

recovery from dairy waste: meta-analysis and enumeration of microbial community related to 

intermediates production" accepted by Frontiers in Microbiology, section Microbiological Chemistry 

and Geomicrobiology  
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5.1 Introduction 

In the near future, novel bio-based technologies in waste management can be used to convert organic 

waste into valuable products such as renewable energy and/or biopolymers through biological 

processes (Pagliano et al., 2017) with a goal to potentially replace fossil fuels with biomasses and 

reducing pollutant emissions. 

Several organic wastes are potentially suitable to be used as substrates for producing renewable 

energy vectors (e.g. biohydrogen, biogas and biomethane) through anaerobic biosystems (Raposo et 

al., 2012; Ghimire et al., 2015; Pagliano et al., 2017). Among them, cheese whey and buttermilk, 

residues from dairy factories as by-products of cheese, yogurt, milk and butter production process are 

interesting substrates for their high content of soluble organic matter, i.e. chemical oxygen demand 

(COD) ranging from 0.1 to 100 g L-1 (Prazeres et al., 2014). Besides substrates and operational 

conditions, microorganisms significantly affect the performance of the anaerobic process (Panico et 

al., 2014). In fact, the efficiency and stability of this process is entirely dependent upon the syntrophic 

activity of microorganisms operating in different phases (Li et al., 2009; Vanwonterghem et al., 

2014). 

Actually, anaerobic digestion process can be conceptually divided into four stages defined by the 

primary catabolic reactions that occur at each stage: hydrolysis of complex polymers (I, hydrolysis), 

fermentation of the hydrolysis end-products to volatile fatty acids (VFAs) (II, acidogenesis), 

conversion of VFAs to acetate and hydrogen (III, acetogenesis), and finally the production of methane 

from acetate and hydrogen (IV, methanogenesis) (Yu et al., 2010). Therefore, it is important to 

understand how the raw materials as well as environmental and physical conditions established in the 

system affect microbial growth and activity, and therefore, the performance of the anaerobic process. 

Numerous studies using different types of organic wastes have been conducted to better understand 

the role of the microorganisms involved in each stage and the microbiomes present in the anaerobic 

reactors (Nelson et al., 2011; Li et al., 2017; Ros et al., 2017; Westerholm et al., 2017). For this 

purpose, various methods have been applied to investigate the microbial communities or targeted 

specific groups in anaerobic digesters, including clone library of 16S rRNA genes (Rincón et al., 

2008), denaturing gradient gel electrophoresis (DGGE) analysis (Shin et al., 2010; Palatsi et al., 2011; 

Supaphol et al., 2011; Pagliano et al., 2018; Ventorino et al., 2018) and fluorescence in situ 

hybridization (FISH) (Braguglia et al., 2012). All these methods, although are highly efficient, 

analyze a limited number of aspects if compared with the emerging metagenomic approaches based 

on high-throughput sequencing (HTS) (Yang et al., 2014). Therefore, in this study, the use of a 

polyphasic approach including HTS in lab-scale batch tests, allowed to elucidate the dynamics of 

microbiota in different stages of the anaerobic process fed with a mixture of dairy waste from a 
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mozzarella cheese factory. Culture-independent and culture-dependent approaches coupled with 

hydrogen and methane production can improve the knowledge concerning this specific anaerobic 

biosystem. In particular, it is important to elucidate how specific microbial populations can steer the 

hydrogen and methane production in order to control, also through traditional parameters (pH, TS, 

VS, COD) (Pontoni et al., 2015), the efficiency of the anaerobic biosystems fed with different wastes 

and by-products from dairy industry. 

 

5.2 Materials and Methods 

5.2.1 Dairy wastes characterization and experimental set up 

 

30 L samples of cheese whey and buttermilk were collected from the production chain of buffalo 

mozzarella cheese operating at a temperature of approximately 33-37 °C and immediately analyzed 

for physical-chemical (pH, TTA, TS, VS, COD) and microbial characterization. The pH was 

measured using a HI 221 pH meter (Hanna Instruments Inc., Woonsocket, RI, USA). Total titratable 

acidity (TTA) was calculated as the mL of 0.1 N NaOH 10 mL-1 of sample (AACC, 1975). Total 

solids (TS) and volatile solids (VS) were evaluated as described in the standard methods (APHA, 

2005). COD was measured with an ECO08 thermoreactor (VELP Scientifica, Usmate, Italy) and a 

PF-3 photometer (VELP Scientifica) using kit NANOCOLOR®. 

Microbiological counts were performed on serially diluted cheese whey, buttermilk and the mixture 

of them, which were spread on the plate surface containing different media. Heterotrophic aerobic 

and anaerobic bacteria were counted on Plate Count Agar (Oxoid, Milan, Italy) and incubated for 48 

h at 30 °C under either aerobic or anaerobic conditions (Oxoid’s Anaerogen™ System, Oxoid). 

Spore-forming bacteria were cultivated on Plate Count Agar (Oxoid) after a pretreatment at 80 °C for 

10 min, and the plates were incubated at 30 °C for 48 h in aerobic or anaerobic conditions. Jactic acid 

bacteria (LAB) were counted on MRS agar (Oxoid), and the plates were incubated for 48 h at 30 °C. 

Clostridia were enumerated on Reinforced Clostridial Medium (Oxoid), and the plates were 

incubated for 48 h at 30 °C under anaerobic conditions. Enterococci were counted on the selective 

substrate, Slanetz-Bartley agar (Oxoid), after incubation at 37 °C for 48 h. 

For the experimental plan, 6 L steel vessels were used as anaerobic biodigesters (working volume of 

5 L). Each biodigester was equipped with a manometer and valves for biogas collection as well as 

effluent discharge. 

Biodigesters were filled with a mixture of cheese whey and buttermilk (ratio 2:1 v/v, respectively, to 

simulate the characteristics of a real dairy waste stream produced from a mozzarella cheese factory) 
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and inoculated with 5% (w/v) of industrial animal manure pellets (Stalfert N2 - Organazoto 

Fertilizzanti s.p.a, Pistoia, Italy). Tests were performed in duplicate (B1 and B2) at 30 ± 1 °C and for 

30 days. 

 

5.2.2 Anaerobic biosystem monitoring 

5.2.2.1 Biological gas production and intermediate products evaluation 

 

Biological gas production was measured with a volumetric displacement method (Esposito et al., 

2012) using teflon bags (maximum capacity of 10 L) to collect and storage biogas until analyses. The 

volume of biogas produced was measured by connecting each teflon bag with a capillary tube to an 

inverted 1000 mL glass bottle containing an acid solution (1.5% HCl) (Ghimire et al., 2015). Gas was 

detected using a Varian Star 3400 gas chromatograph (Agilent, Santa Clara California, USA) 

equipped with a Shin Carbon ST 80/100 column and a thermal conductivity detector. Argon was used 

as the carrier gas with an operating pressure of 20 psi. Gas measurements were performed daily during 

the first week and every three days during the following three weeks of incubation. 

At 0, 7, 14, 21 and 30 days, liquid samples were collected from the biological reactors to analyze the 

concentration of lactose, galactose, lactic acid, acetic acid, propionic acid and ethanol by high-

performance liquid chromatography (HPLC, refractive index detector 133; Gilson system; pump 307, 

column Metacarb 67 h from Varian with 0.4 mL min-1 flow of 0.01 N H2SO). The pH and TTA were 

also constantly monitored. 

 

5.2.2.2  Monitoring of microbial growth by cultural dependent analysis 

 

Liquid samples were collected from the biological reactors every week during 30 days of incubation. 

Bacterial counts were performed using either generic or selective differential growth media and, in 

particular, representative samples were characterized for heterotrophic aerobic and anaerobic bacteria, 

aerobic and anaerobic spore-forming bacteria, LAB, Clostridia and enterococci, as above described. 

A one-way ANOVA followed by a Tukey test for pairwise comparison of means (p ≤ 0.05) were used 

to assess the difference in microbial counts at different incubation times. Statistical analyses were 

performed using the SPSS 21.0 statistical software package (SPSS Inc., Cary, NC, USA) as reported 

by Ventorino et al. (2016). 



109 
 

5.2.3 Microbiota analysis by high-throughput sequencing of the 16S rRNA gene 

 

Total genomic DNA was extracted from the liquid samples collected from the biodigesters using a 

FastDNA SPIN Kit for Soil (MP Biomedicals, Illkirch Cedex, France) according to the 

manufacturer’s instructions. 

The microbial diversity was evaluated by amplicon based metagenomics sequencing using the 

primers S-D-Bact-0341F50 (5’- CCTACGGGNGGCWGCAG -3’) and S-D-Bact-0785R50 (5’- 

GACTACHVGGGTATCTAATCC -3’) (Klindworth et al., 2013) for bacterial communities; while 

for archaea, two different PCR reactions were performed. For the first round, the universal synthetic 

oligonucleotide primers, Arch 46f (5’- YTA AGC CAT GCR AGT -3’) (Øvreas et al., 1997) and 

Arch 1017r (5’- GGC CAT GCA CCW CCT CTC -3’) (Barns et al., 1994), were used as previously 

reported (Ventorino et al., 2018). For the second round, a nested PCR was performed using the 

primers Arch516F (5’-TGYCAGCCGCCGCGGTAAHACCVGC -3’) and Arch915R (5’- 

GTGCTCCCCCGCCAATTCCT -3’) (Raymann et al., 2017). Amplicon purification, multiplexing 

and sequencing were carried out by Genomix4Life s.r.l. (Salerno, Italy) as reported in the Illumina 

16S Metagenomic Sequencing Library Preparation manual. Sequencing was carried out on a MiSeq 

platform (Illumina Italy s.r.l., Milan, Italy), leading to 250bp, 2 paired-end reads. 

 

5.2.4 Bioinformatics and data analysis 

 

Row reads were qualitatively analyzed and filtered using PRINSEQ (Schmieder and Edwards, 2011). 

Low quality reads (Phred score <20) were trimmed and reads shorter than 60 bp were discarded in 

end-to-end, sensitive mode. Paired-ends reads were merged using FLASH (Magoč and Salzberg, 

2011) and sequences were then analyzed using QIIME 1.9.1 software (Caporaso et al., 2010). 

Operational taxonomy units (OTUs) at 97% sequence identity were picked through a de novo 

approach and the UCLUST method and taxonomic assignment was obtained using the RDP classifier 

and the Greengenes (McDonald et al., 2012). To avoid biases due to different sequencing depths, 

OTU tables were rarefied at the lowest number of sequences per sample. 

Alpha diversity was evaluated by rarefaction curves, Good’s coverage, and Shannon diversity index 

(Shannon and Weaver, 1949). Beta diversity was also evaluated by UniFrac (Lozupone et al., 2006), 

and PCoA was generated by QIIME. To test the significant differences, statistical analyses were 

performed as previously described (Ventorino et al., 2015). 



110 
 

Phylogenetic trees for the representative bacterial and archaeal OTUs detected in this study and 

sequences downloaded from NCBI were constructed in Mega 4 by the Neighbor-Joining method 

using a maximum composite likelihood model with 1,000 bootstrap replicates. 

 

5.2.4.1 Data Accessibility 

 

The raw Illumina sequencing data are available in the Sequence Read Archive database of the 

National Center of Biotechnology Information (SRP155825). 

 

5.3 Results 

5.3.1 Characterization of dairy wastes 

 

Viable counts of main bacterial groups were evaluated in samples of cheese whey, buttermilk and 

their mixture (Figure 5.1). The results showed a microbial load higher in cheese whey than in 

buttermilk, detected almost for each principal microbial group investigated. Actually, heterotrophic 

aerobic and anaerobic bacteria as well as LAB showed a higher concentration in the cheese whey 

(7.28 ± 0.02, 7.34 ± 0.02 and 6.11 ± 0.01 log CFU mL-1, respectively) than in the buttermilk (5.20 ± 

0.05, 4.95 ± 0.04 and 4.42 ± 0.06 log CFU mL-1, respectively). Aerobic and anaerobic spore-forming 

bacteria were 4.08 ± 0.12 and 3.69 ± 0.12 log CFU mL-1 as well as 4.11 ± 0.05 and 3.15 ± 0.21 log 

CFU mL-1, respectively, for cheese whey and buttermilk. Moreover, the Clostridia load in cheese 

whey (3.84 ± 0.33 log CFU mL-1) was approximately two orders of magnitude greater than that 

recovered in buttermilk (2.02 ± 0.10 log CFU mL-1). 

The inoculum showed a heterotrophic aerobic and anaerobic bacteria load of 5.41 ± 0.12 and 5.20 ± 

0.90 log CFU mL-1, respectively, whereas, loads of aerobic and anaerobic spore-forming bacteria and 

LAB were around 4.5 log CFU mL-1. 

Enterococci were detected in higher amount in inoculum (4.56 log CFU mL-1) and cheese whey (3.17 

log CFU mL-1) samples. 

Chemical characteristics of substrates and inoculum are listed in Table 5.1. The COD value was 

higher in cheese whey (74.10 ± 0.40 g L-1) than buttermilk (14.57 ± 0.20 g L-1) and the resulting 

mixture had a COD value closer to cheese whey than buttermilk (55.45 ± 0.22 g L-1). Obviously, TS 

and VS concentrations of cheese whey influenced the mixture concentrations resulting in 37.60 ± 

0.01 g L-1 and 34.53 ± 0.01 g L-1, respectively. The pH measurement did not drop below 5.0 for 
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cheese whey, buttermilk and their mixture, while the inoculum had a value of 7.8 (Table 5.1); the 

TTA was 0.80 ± 0.10 °SH in the cheese whey as well as in the mixture but was lower in the buttermilk 

(0.40 ± 0.10 °SH). 

 

Figure 5.1. Viable counts of main bacterial groups evaluated in samples of cheese whey, buttermilk 

and their mixture. The error bars represent the means ± SD of two replicates. 

 

 

Table 5.1. Physico-chemical characterization of cheese whey, buttermilk, their mixture and the 

animal manure inoculum. 

Samples COD (g L-1) TS (g L-1) VS (g L-1) pH TTA (°SH) 

Cheese whey (W) 74.10 ± 0.40 54.34 ± 0.02 49.37 ± 0.01 5.00 ± 0.10 0.80 ± 0.10 

Buttermilk (B) 14.57 ± 0.20 12.07 ± 0.01 9.91 ± 0.01 5.00 ± 0.10 0.40 ± 0.10 

Mix of W and B**  55.45 ± 0.22 37.60 ± 0.01 34.53 ± 0.01 5.00 ± 0.10 0.80 ± 0.10 

Inoculum*** n.d.* 0.95 ± 0.0 0.43 ± 0.0 7.80 ± 0.10 n.d.* 

*not determined; **(ratio 2:1 v/v); ***animal manure. 
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5.3.2 Biological gas production and biosystem monitoring 

 

Figure 5.2 shows the cumulative volumes of the specific production of H2 and CH4 during incubation.  

 

 

 

 

Figure 5.2.  Cumulative specific production of H2 and CH4 monitored during 30 days of incubation. 

X-axis displays the day, and the Y-axis is the corresponding cumulative H2 or CH4 specific production 

per gram of the initial concentration of VS of the dairy waste mixture. The error bars represent the 

means ± SD of two replicates.  
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After 7 days of incubation, a H2 production of 9.49 ± 2.41 ml H2 g
-1 of VS was observed, increasing 

up to 54.35±0.1 ml H2 g
-1 of VS after 20 days. Regarding to biogas production, CH4 production was 

observed from days 15 to 30 of incubation, reaching 16.74 ± 0.71 ml CH4 g
-1 of VS (Figure 5.2).The 

amount of CO2 (% v/v) detected in the gas mixture ranged from 99% to 85% during the first week of 

incubation (at the beginning of the process) and from 9% to 12% when CH4 and H2 production 

occurred (data not shown). These results were in good agreement with trends of lactose and lactic 

acid concentration during incubation (Figure 5.3a). Actually, lactose was consumed and lactic acid 

concentration increased from 4.66 ± 0.11 g L-1 (T0) to 21.03 ± 2.11 g L-1 (T7) after 7 days of 

incubation. At day 14, lactic acid decreased until 0 g L-1 and an increase in the pH value up to 6.3 

was observed decreasing to 5.1 at the end of the experiment. Whereas, ethanol concentration 

increased up to 19.69 ± 2.12 g L-1 after 14 days, remaining quite constant until day 30 (Figure 5.3a). 

At day 14, acetic and propionic acids concentrations were 1.92 ± 0.12 and 2.25 ± 0.07 g L-1, 

respectively, increasing up to 4.11 ± 0.5 g L-1 at the end of the process (Figure 5.3b). 
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Figure 5.3. pH and concentration of lactose, lactic acid and ethanol (a), and concentration of acetic 

acid and propionic acid (b) in liquid samples collected from biodigesters at different times of 

incubation. 
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5.3.3 Microbial analysis by culture-dependent method 

 

The monitoring of microbial viable counts during incubation time is listed in Table 5.2. The results 

showed that heterotrophic aerobic and anaerobic bacteria remained constant (approximately 7.2 and 

7.4 log CFU mL-1, respectively) during the first week of incubation decreasing until 2.8-2.9 log CFU 

mL-1, at the end of the biodigestion process (p < 0.05). Similarly, aerobic spore-forming bacteria 

significantly decreased from 4.07 ± 0.09 log CFU mL-1 (T0) to 3.17 ± 0.07 log CFU mL-1 (T30). 

Whereas, an increase of 2 log was observed in anaerobic spore-forming bacteria and Clostridia loads 

from the initial time (3.91 ± 0.11 and 4.03 ± 0.36 log CFU mL-1, respectively) to day 14 of incubation 

(5.17 ± 0.36 and 5.95 ± 0.04 log CFU mL-1, respectively) decreasing again at the end of the incubation 

time (2.92 ± 0.05 and 3.77 ± 0.05 log CFU mL-1, respectively, p < 0.05). Finally, a high load of LAB 

was detected in the biodigesters until day 7 (6.6-7.6 log CFU mL-1), whereas at day 30 the load 

dropped showing a concentration of 1.00 ± 0.11 log CFU mL-1. 

 

Table 5.2. Cultural monitoring of bacterial populations during incubation for 30 days at 30°C. 

The values represent the means ± SD of three replicates. Different letters after the values 

indicate significant differences (p < 0.05). 

 

Microbial 

groups 

(log CFU mL-1) 

Time 

T0* T7* T14* T30* 

Heterotrophic  

aerobic bacteria 
7.25 ± 0.14A 7.22 ± 0.18A 4.72 ± 0.67B 2.81 ± 0.07C 

Heterotrophic 

anaerobic bacteria 
7.30 ± 0.14A 7.36 ± 0.08A 4.51 ± 0.43B 2.88 ± 0.15C 

Aerobic spore-

forming bacteria 
4.07 ± 0.09A 3.39 ± 0.08B 3.40 ± 0.30B 3.17 ± 0.07B 

Anaerobic spore-

forming bacteria 
3.91 ± 0.11B 3.21 ± 0.09C 5.17 ± 0.36A 2.92 ± 0.05C 

Clostridia 4.03 ± 0.36C 5.22 ± 0.36B 5.95 ± 0.04A 3.77 ± 0.05C 

Lactic acid 

bacteria 
6.60 ± 0.11B 7.58 ± 0.23A 4.47 ± 0.00C 1.00 ± 0.10D 

Enterococci 3.26 ± 0.21A 3.30 ± 0.13A 1.00 ± 0.10B 1.00 ± 0.10B 
* T0, mixture of cheese whey and buttermilk  inoculated at day 0 of incubation; T7, samples collected 

after 7 days of incubation; T14, samples collected after 14 days of incubation; T30, samples collected 1 

after 30 days of incubation. 
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5.3.4 High throughput sequencing of PCR-amplified 16S rRNA gene sequences 

5.3.4.1 Bacteria 

 

A total of 677,030 high quality reads were analyzed for bacteria. The alpha-diversity was determined 

by calculating the Shannon diversity index based on OTUs of 97% identity (Table 5.3). The results 

revealed that the bacterial diversity significantly increased over time showing the highest Shannon 

diversity index in the biodigesters after 14 days (B1_T14 and B2_T14; p < 0.05) and 30 days of 

incubation (B1_T30 and B2_T30; P < 0.05). Good’s coverage indicated that 75-78% of the bacterial 

diversity was described in the samples. 

The dynamics of bacterial populations were studied during the anaerobic process through their 

taxonomic composition detected at family level (Figure 5.4). Analysis of amplicon sequences showed 

Streptococcaceae (59% in Mix_T0 and 47% in MixI_T0) and Lactobacillaceae (40% in Mix_T0 and 

36.5% in MixI_T0) families as dominant in the initial non-inoculated and inoculated mixture of 

cheese whey and buttermilk accounting for 99% and 83.5% of the total bacterial biodiversity in 

Mix_T0 and MixI_T0, respectively (Figure 5.4). 

After 7 days of incubation, an increase of the abundance of Lactobacillaceae in the biodigesters B1 

(67.8%) and B2 (64.9%) coupled with a Streptococcaceae decrease (1.9% and 4.1% in B1 and B2, 

respectively) was observed. Moreover, an increase of the Clostridiaceae family by 20% 

approximately, in both B1 and B2 was observed remaining quite stable until the end of the 

biodigestion process (around 32% in both B1_T30 and B2_T30, Figure 5.4). In addition to 

Clostridiaceae, Tissierellaceae was also a dominant family after 14 days (37.1% and 41.4% in B1 

and B2, respectively) and 30 days of incubation (38.3% and 35.4% in B1 and B2, respectively). These 

two taxa accounted together for around the 70% of the bacterial biodiversity at the end of the 

anaerobic process (Figure 5.4). To investigate these two dominant bacterial families to a deeper level, 

a phylogenetic tree was constructed based on the values of OTUs with relative abundances higher 

than 0.1%. Phylogenetic analysis showed that the main Clostridiaceae OTUs, accounted for 2.15% 

of the total reads, were very similar to each other and were affiliated with Clostridium 

thermopalmarium species (Figure 5.5); while, other two OTUs were affiliated with C. tyrobutyricum 

and C. clariflavum. Regarding Tissierellaceae family, phylogenetic tree revealed that the main OTUs 

were affiliated with Sporanaerobacter acetigenes species, which accounted for 15.27% of the total 

reads (Figure 5.5). Among these, OTU denovo78367 and OTU denovo11901 were the most abundant 

which accounted for 7.35% and 3.63% of total reads, respectively. 

Other bacterial taxa belonging to Clostridiales order, such as Ruminococcaceae, Lachnospiraceae, 

Caldicoprobacteraceae, Eubacteriaceae and Peptococcaceae, as well as several OTU identified as 
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Thermoanaerobacteraceae, Bacillaceae, Enterobacteriaceae, Pseudonocardiaceae, 

Actinomycetaceae and Coriobacteriaceae were also found to be lesser extent (Figure 5.4). For these 

taxa, the fluctuating relative abundance among samples does not allow to define a trend during 

incubation time. 

Besides, the principal coordinate analysis (PCoA) of the weighted UniFrac community distances 

revealed a marked difference between the microbiota in the early and final stages of the anaerobic  

process identifying three principal groups on the basis of the sampling time (Figure 5.6, panel a). The 

four samples from biodigesters at days 14 and 30 of incubation (B1_T14, B2_T14, B1_T30 and 

B2_T30) clustered separately (Figure 5.6, panel a). Moreover, the statistical ANOSIM test showed 

that the composition of bacterial community in the different samples during anaerobic  process was 

significantly influenced by the sampling time (p < 0.01; R = 0.938). 

 

Table 5.3. Observed diversity and estimated sample coverage for bacterial and archaeal 16S rRNA 

amplification from DNA extracted from biodigesters during the anaerobic process. The entire data 

set was rarefied to 77670 reads or 47510 reads per sample, for bacteria and archaea respectively, 

before alpha-diversity was calculated. 

 

Sample* 

Bacteria Archaea 

No. 

OTUs 

Shannon 

indexa 

Good’s 

coverage (%) 

No. 

OTUs 

Shannon 

indexa 

Good’s 

coverage (%) 

Mix_T0 18211.40 6.39D 78.1 -- -- -- 

MixI_T0 20739.20 7.70C 75.5 6522.00 5.27A 87.7 

B1_T7 20132.20 8.51B 77.1 6661.00 5.03A 87.4 

B2_T7 20287.00 8.76B 76.8 6264.00 5.51A 88.4 

B1_T14 21732.70 9.66A 76.3 4931.00 5.54A 90.9 

B2_T14 22777.20 9.80A 74.9 6658.00 5.69A 87.5 

B1_T30 22352.40 9.66A 75.2 6215.00 2.82B 88.0 

B2_T30 21285.30 9.65A 76.8 6422.00 2.79B 87.6 
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Figure 5.4. Abundance of bacterial families during the anaerobic process. Only OTUs with an 

incidence > 1% in at least one sample are shown. Abbreviations: Mix_T0, mixture of cheese whey 

and buttermilk at day 0 of incubation; MixI_T0, mixture of cheese whey and buttermilk  inoculated 

at day 0 of incubation; B1_T7, sample collected from B1 after 7 days of incubation; B2_T7, sample 

collected from B2 after 7 days of incubation; B1_T14, sample collected from B1 after 14 days of 

incubation; B2_T14, sample collected from B2 after 14 days of incubation; B1_T30, sample collected 

from B1 after 30 days of incubation; B2_T30, sample collected from B2 after 30 days of incubation. 
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Figure 5.5 Neighbor-joining tree for the representative Clostridiaceae and Tissierellaceae OTUs 

(representatives with relative abundance > 0.1%). OTUs from this study were shown in bold 

reporting in brackets the total relative abundance. The sequence accession numbers of reference 

sequences from NCBI used for the phylogenetic analysis are shown in parentheses following the 

species name. Bootstrap values (> 50%, expressed as percentages of 1,000 replications) are given at 

the nodes. The scale bar estimates the number of substitutions per site. 
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Figure 5.6. Principal Coordinates Analysis of weighted UniFrac distances for bacterial (panel a) and 

archaeal (panel b) 16S rRNA gene sequence data of samples during the incubation process. Colour 

label. red: mixture of cheese whey and buttermilk  at day 0 of incubation;  green: samples collected 

after 7 days of incubation; blue: samples collected after 14 days of incubation; orange: samples 

collected after 30 days of incubation. 

 

5.3.4.2 Archaea 

 

A total of 517,142 high quality reads were analyzed for archaea. The alpha-diversity was determined 

by calculating the Shannon diversity index based on OTUs of 97% identity (Table 5.3). Non-

inoculated samples of cheese whey and buttermilk mixture (Mix_T0) was excluded from the analysis 

since very few archaeal reads were recovered (absolute abundance equal to 97 OTUs). The results 
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showed that the archaeal diversity significantly increased after 5% of the inoculum was added and 

then strongly decreased at the end of the anaerobic process (Table 5.3; p < 0.05). Whereas, good’s 

coverage indicated that approximately 90% of the archaeal diversity was described in most of the 

samples. 

The archaeal taxa were examined at the genera level to determine the eventual occurrence of any 

significant shifts in their composition during the incubation time. Relevant results were shown from 

the samples collected at the initial time of the anaerobic process. Actually, marked differences were 

observed among inoculated and non-inoculated samples of cheese whey and buttermilk mixture 

where the relative abundance of archaeal genera was less than 0.1% (Mix_T0, Figure 5.7). Whereas, 

in the inoculated sample of the same mixture (MixI_T0, Figure 5.7), several archaeal genera were 

identified, such as Methanoculleus (24.7%), Methanobrevibacter (3.4%), Methanosarcina (4.8%), 

Methanocorpusculum (2.2%), Methanobacterium (1.7%) and Nitrososphaera (60.2%). During 

incubation, non-methanogenic archaea belonging to the Nitrososphaera genus decreased from 5.1-

2.9% (T14) to < 1% (T30). A similar trend was observed for the methanogenic archaea genera 

Methanobrevibacter, Methanosarcina, Methanocorpusculum and Methanobacterium, which 

exhibited an abundance < 1% at the end of the incubation time. Otherwise, Methanoculleus was the 

dominant genus during all the process and its relative abundance increased up to 99.1-99.9% after 30 

days of incubation (Figure 5.7). A phylogenetic tree based on the OTUs belonging to this genus 

showing the relative abundances higher than 0.1% was constructed, in order to evaluate which OTUs 

became dominant and who were their closest phylogenetic relatives. Phylogenetic analysis showed 

that the main Methanoculleus OTUs were affiliated with M. thermophilus (OTU denovo22548 and 

OTU denovo56442), M. taiwanensis (OTU denovo19589), M. sediminis (OTU denovo27381), M. 

horonobensis (OTU denovo362) and Methanoculleus spp. (OTU denovo26184), accounted for 

33.83% of total reads (Figure 5.8). However, the dominant OTU was OTU denovo56442, strongly 

related to different strains of M. thermophilus, which explained most of the methanogenic 

biodiversity accounting for 32.32% of archaeal total reads (Figure 5.8).  

The PCoA of the weighted UniFrac community distances showed a marked difference among the 

microbiota in the different samples over time. In fact, the sample of the initial inoculated mixture of 

cheese whey and buttermilk (MixI_T0) and those of the biodigesters at day 7 of incubation cluster 

together; while the two samples of the biodigesters at day 30 of incubation (B1_T30 and B2_T30) 

clustered separately (Figure 5.6, panel b). Moreover, the statistical ANOSIM test showed that the 

composition of archaeal community in the different samples during anaerobic process was 

significantly influenced by the sampling time (p < 0.05; R = 0.729). 
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Figure 5.7. Abundance of archaeal genera during the anaerobic process. Only OTUs with an 

incidence > 1% in at least one sample are shown. Abbreviations: Mix_T0, mixture of cheese whey 

and buttermilk at day 0 of incubation; MixI_T0, mixture of cheese whey and buttermilk  inoculated 

at day 0 of incubation; B1_T7, sample collected from B1 after 7 days of incubation; B2_T7, sample 

collected from B2 after 7 days of incubation; B1_T14, sample collected from B1 after 14 days of 

incubation; B2_T14, sample collected from B2 after 14 days of incubation; B1_T30, sample collected 

from B1 after 30 days of incubation; B2_T30, sample collected from B2 after 30 days of incubation. 
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Figure 5.8 Neighbor-joining tree for the representative Methanoculleus OTUs (representatives with 

relative abundance > 0.1%). OTUs from this study were shown in bold reporting in brackets the total 

relative abundance. The sequence accession numbers of reference sequences from NCBI used for the 

phylogenetic analysis are shown in parentheses following the species name. Bootstrap values (> 50%, 

expressed as percentages of 1,000 replications) are given at the nodes. The scale bar estimates the 

number of substitutions per site. 

 

5.4 Discussion 

 

The microbial composition of the initial dairy waste mixture showed a high concentration of viable 

aerobic and anaerobic bacteria mainly belonging to LAB that commonly thrive in dairy waste (Kasmi 

et al., 2017). Since LAB produce lactic acid by homolactic and heterolactic fermentation processes 

(Palomba et al., 2012; Pradhan et al., 2017) they are well adapted to the acidic environment (De 

Candia et al., 2007), typical of the cheese whey used in this study collected after fermentation and 

addition of organic acids during the production chain (Carvalho et al., 2013). Physical and chemical 

characteristics of the cheese whey are, actually, strictly related to the production chain, thus showing 

a wide range of organic matter concentration as reported in the literature (Ghaly and Singh, 1989; 
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Ghaly and Kamal, 2004; Farizoglu et al., 2007; Saddoud et al., 2007; Azbar et al., 2009). In this study, 

cheese whey characteristics were in accordance with Ghaly and Singh (1989) that reported the 

concentrations of COD and VS equal to 75.8 g L-1 and 47.9 g L-1, respectively. The high COD in 

cheese whey influenced the resulting COD in the mixture, indicating the potential of this substrate 

for feeding anaerobic process (Carvalho et al., 2013) and producing H2 and CH4. During incubation 

a relevant increase in hydrogen production was observed, simultaneously a decrease of the LAB 

concentration occurred until to reach a concentration less than 1 log CFUmL-1 at the end of the 

incubation time. The decrease in the LAB concentration was related to the increase in H2 production 

proving that lactic fermenters were the main competitors with the H2 producing microorganisms 

(Perna et al., 2013). This result was also confirmed by HTS for the bacterial 16S rRNA gene that 

showed a noticeable decrease (from 67% at day 7 to 6% at day 14) in the relative abundance of the 

Lactobacillaceae family when relevant H2 production occurred. Accordingly, it has been reported 

that Lactobacillus could not be related to high H2 production rate (Davila-Vazquez et al., 2009), 

although Yang et al. (2007) found higher abundance of Lactobacillus than Clostridium in anaerobic 

fermentation of cheese processing wastewater, thus reporting Lactobacillus related to H2 production. 

On the other hand, in this work the increase in H2 production occurred simultaneously with an 

increase in Clostridia load. Actually, Clostridia have been reported to convert lactate into butyrate, 

CO2 and H2 in the presence of acetate (Barlow et al., 1991). Thus, the presence of these 

microorganisms could favor the production of hydrogen by fermentation of lactic acid followed by 

H2 production (Perna et al., 2013). For this reason, lactic acid was not detected at day 14 and an 

increase of acetic and propionic acids concentration was observed. This cultural approach allowed to 

acquire information about dynamics of viable bacterial populations which were able to live, grow and 

die during the biodigestion process of this specific waste. Moreover, in order to obtain more 

information, a cultural-dependent approach was combined with a cultural-independent molecular 

method. According to Pandya et al. (2017) these techniques seem to be roughly equivalent and, when 

used in parallel, it is possible to obtain best results leading to major advances in the reliable 

knowledge of microbial populations living in an environment. The cultural results were confirmed 

by the HTS analysis that showed an increase in bacterial families belonging to Clostridiales order, 

such as Tissierellaceae and Clostridiaceae, which represented the most abundant bacterial taxa until 

the end of the incubation time. The selective pressure occurred in the ecosystem due to the presence 

of inoculum and the chemical-physical conditions of the anaerobic process selected these bacterial 

taxa, which are well known to be involved in the H2 production (Navarro-Díaz et al., 2016; 

Alexandropoulou et al., 2018). In particular, in this study, the most dominant OTUs of Clostridiaceae 

and Tissierellaceae were affiliated with Clostridium spp. (C. thermopalmarium, C. clariflavum and 
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C. tyrobutyricum) and Sporanaerobacter acetigenes, respectively, which are commonly detected and 

isolated in many reactors for CH4 or H2 production (Hernandez-Eugenio et al., 2002; Shiratori et al., 

2006; Jo et al., 2008; Weiss et al., 2008; Kim et al., 2010; Sasaki 2012; Xia et al., 2014; Kumar et al., 

2015; Cibis et al., 2016). The genus Clostridium comprised a large number of species that were often 

used to produce H2 (Jiang et al., 2013). Among them, Clostridium tyrobutyricum has been widely 

reported to be able to produce significant quantities of H2 from different sugars (Jiang et al., 2018) as 

well as it is also capable to utilize lactate as the main substrate for producing H2 (Wu et al., 2012; 

Noblecourt et al., 2018). Furthermore, fermentation products of C. clariflavum are H2, CO2, acetate, 

lactate, ethanol and a small amount of formate (Shiratori et al., 2009). Whereas C. thermopalmarium 

species are able to ferment sugars into butyric acid producing simultaneously H2, CO2, small amounts 

of acetate, lactate and ethanol (Soh et al., 1991). Geng et al. (2010) demonstrated that the inoculation 

of C. thermopalmarium strain BVP (DSM 5974) increased biohydrogen production rather than the 

monoculture of C. thermocellum from cellulose.  

In addition, Navarro-Dìaz et al. (2016), reported the positive relationship between the increased H2 

production with the presence of specific microbial families and genera, such as Tissierellaceae that 

may contribute also to complex substrate degradation because of its putative xylanolytic activity (Niu 

et al., 2009). Sporanaerobacter acetigenes strain Lup 33T, closely related to the OTU denovo78367, 

detected at the highest relative abundance, as well as related to the others representative OTUs 

affiliated to Tissierellaceae, was recognized as an acetogenic bacterium able to synthesize a mixture 

of volatile fatty acids, including acetate, isovalerate and isobutyrate, together with H2 and CO2 

(Hernandez-Eugenio et al., 2002). Han et al. (2016) reported that Sporanaerobacter acetigenes was 

one of the main contributors for the hydrolysis and acidogenesis stages during anaerobic digestion of 

food waste-recycling wastewater (Han et al., 2016) as well as it was one of the primary species along 

with Clostridium during semi-continuous fermentation of C. pyrenoidosa biomass for H2 production 

(Xia et al., 2014). Moreover, the presence of Ruminococcaceae members in the samples taken at days 

14 and 30 may be also correlated to H2 production since they are recognized as hydrogen producers 

and important substrate hydrolyzers (Niu et al., 2009). 

In addition, ethanol was also produced in high amount starting from day 14 likely causing an 

inhibiting effect on hydrogen production (Hung et al., 2011) that therefore could have been higher 

than observed. This side effect can be related to the presence of Streptococcaceae, detected during 

incubation by using HTS for the bacterial 16S rRNA gene, since genera belonging to this family 

could produce ethanol thus inhibiting hydrogen production (Ren et al., 2007). 

Furthermore, the environmental and physical conditions established in the system were also effective 

for the selection of the CH4 producing archaea. First, the archaeal populations’ presence in the 



126 
 

biosystem was related to inoculum since the initial samples of the mixture of cheese whey and 

buttermilk had a relative abundance of archaea less than 0.1%. Secondly, the anaerobic environment 

in the biodigesters selected archaeal genera causing the decrease of the aerobic Nitrososphaera genus 

also detected in other studies of anaerobic digestion process (Li et al., 2014; Ventorino et al., 2018) 

even if it could be no able to produce methane (Chen et al., 2012). 

During incubation, Methanoculleus genus percentage increased achieving very high relative 

abundance (99% at the end of the experiment) compared with that reported in other studies, such as 

Di Maria et al. (2017) (85%) and Leven et al. (2007) (18%), related to anaerobic digestion of organic 

waste. As reported by Poirier et al. (2016), Methanoculleus cooperate with acetate oxidizing bacteria 

belonging to the Clostridiaceae family detected in this study by both cultural and molecular 

approaches. 

In agreement with Di Maria et al. (2017), Methanoculleus abundance increased during the incubation 

time and became dominant, whereas Methanosarcina decreased, as they are usually dominant in 

process fed with organic fraction of municipal solid waste (OFMSW) and activated sludge as 

inoculum (Lin et al., 2012). In this biosystem fed with a mixture of cheese whey and buttermilk, 

Methanoculleus was dominant using a hydrogenotrophic pathway to produce CH4 causing no organic 

acids consumption when methane production occurred. This result was in agreement with a previous 

study in which hydrogenotrophic pathway was identified as the main driver for CH4 production in 

batch reactors fed with dairy wastes, although, using different process conditions and a qualitative 

culture-independent method (DGGE) to microbial identification, Methanobrevibacter was found as 

the genus mostly related to the CH4 production (Pagliano et al., 2018). Interestingly, in this study, the 

dominant methanogenic archaeal OTU was affiliated with M. thermophilus which is able to produce 

CH4 from H2 or formate (Rivard and Smith, 1982). Recently, this species, with M. beijingense, was 

found to be dominant in a full-scale thermophilic anaerobic digester treating food wastewater (Lee et 

al., 2017). The other representative OTUs affiliated with Methanoculleus genus were closely related 

to M. sediminis, M. taiwanensis and M. horonobensis previously isolated from sediments near a 

submarine mud volcano (Chen et al., 2015), deep-sea sediment (Shimizu et al., 2013) and deep 

subsurface groundwater from a diatomaceous shale formation (Weng et al., 2015), respectively.  

Comparing the H2 and CH4 production with the literature, the production in this study (54.34 ±0.15 

L H2 Kg VS-1and 16.74 ±0.71 L CH4 Kg VS-1) were higher than that reported by Pagliano et al. (2018) 

(8.9 L H2 Kg VS-1 and 2.2 L CH4 Kg VS-1) using dairy waste as substrate and operating in batch mode. 

Different operating condition can promote the CH4 production, as reported by Lateef et al. (2014) 

that studied an anaerobic sequencing batch reactor (ASBR) fed with dairy waste achieving 35.6 L H2 

Kg VS-1 and 627 L CH4 Kg VS-1. 
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Overall, obtained results highlighted that culture-dependent and independent approaches provided 

evidence for examining the relationship between bacterial and archaeal populations and biogas 

production in this biosystem. Besides, metagenomics sequencing technology is important to quantify 

the different microbial populations occurred in the reactors as well as to better understand the 

microbial dynamic during the anaerobic process of dairy wastes. 

 

5.5 Conclusions 

 

Anaerobic biosystem was strictly influenced by microbial communities structure and dynamics 

derived from the inoculum, feedstock and the operating conditions. It represented a sustainable 

management process for the valorization of abundant wastes and by-products recovered from dairy 

industry. Polyphasic approach highlighted the function of specific bacterial populations that drove 

the biohydrogen production. Besides, the inoculation in the reactors with pelleted manure allowed 

Archaea development, revealing that methane was primarily formed through the hydrogenotrophic 

pathway, since Methanoculleus was the dominant genus during the process. 
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CHAPTER 8 

General discussion 
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Currently, biological processes represent cost-effective and attractive technologies for 

disposing different sorts of organic wastes, owing to the prospect of producing renewable 

energy sources and bioplastics. In fact, growing interest in valorizing wastes was shown by 

different international organizations and the commission of European community that promote 

future perspectives for the next years. European Commission estimated that approximately 

one-third of the EU’s 2020 target for renewable energy in transport could be met by using 

biogas produced from biowaste (European Commission, 2010). Likewise, according to the 

latest market data compiled by European Bioplastics, global bioplastics production capacity is 

set to increase from around 2.05 million tons in 2017 to approximately 2.44 million tons in 

2022 (European bioplastics, 2017). In order to achieve these objectives, bioprocesses can 

provide bioenergy and valuable chemicals through high-performing bacteria fed with organic 

wastes as substrates and, at the same time, keep the pollution under control. 

In this context, Chapter 2 shows that different organic wastes and by-products can be used to 

produce bioenergy (hydrogen and methane) and biopolymers (PHAs), thus highlighting, as a 

new perspective, the possibility of integrating the two production processes in a unique system 

for both energy and biopolymer production. The integrated system is aimed to produce 

hydrogen and/or methane and organic acids from acidogenic effluents, useful to promote the 

production of PHAs by selected microbial strains or mixed cultures with the highest capacity 

for PHA accumulation. 

As the performance of a biological process is strictly affected by the microbial community that 

thrives and diversifies on the substrate used, Chapters 3, 4 and 5 were focused on associating 

bacterial and archaeal groups to the occurrence of low or high production of different valuable 

end-products of the anaerobic process fed with dairy wastes. As preliminary results, Chapter 

3 highlighted the main characteristics of the initial matrices: the mixture of cheese whey and 

buttermilk was a substrate rich in organic matter and indeed, a suitable substrate for bioenergy 

production; the commercial animal manure used as inoculum, was recognized as the driver of 

the anaerobic process. In fact, culture dependent and independent methods demonstrated that 

bacterial populations strongly changed after anaerobic digestion and were influenced by the 

inoculum as well as the biogas production. For this reason, the biodigesters inoculated with 5% 

(w/v) of animal manure resulted in higher biogas production. 

In order to limit the use of the inoculum as microbial starter, Chapter 4 showed batch anaerobic 

tests conducted with a mixture of mozzarella cheese whey and buttermilk, inoculated with 1% 

and 3% w/v industrial animal manure pellets. In agreement with the preliminary experiments, 

the results confirmed that the biogas production was influenced by the inoculum because H2 
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and CH4 were not detected in test with 1% w/v of inoculum. Otherwise, the trend of valuable 

metabolites of the anaerobic process, such as H2, CH4 and VFA were studied in both tests to 

correlate them with the microbial analysis. Moreover, with the aim to design an integrated 

system using the anaerobic effluent, is important to observe the organic acids behavior during 

the process compared with biological gas production. In fact, ethanol, acetic and propionic 

acids were only detected in the test at 3% w/v when H2 production occurred coupled with a 

total lactic acid consumption. 

The microbial analysis highlighted again the influence of the inoculum on biological gas 

production yield. Increasing the amount of inoculum resulted in a higher lactic acid bacteria 

and methanogens concentration. In particular, the archaeal methanogens concentration 

increased in the test inoculated at 3% (w/v) when H2 and CH4 production occurred, being one 

order of magnitude higher than that achieved in the test inoculated at 1% (w/v), thus explaining 

the difference in biological gas production. Obviously, archaeal methanogens were deeply 

investigated and Methanobrevibacter ruminantium and other Methanobrevibacter spp. were 

identified in the inoculum samples and related to the CH4 production during the process. In 

fact, the pH condition probably selected hydrogenotrophic methanogens rather than 

acetoclastic methanogens because Methanobacteriales, with the genera Methanoculleus and 

Methanocorpusculum, and Methanomicrobiales, with the genera Methanobrevibacter and 

Methanobacterium, are not influenced by pH change. 

To better understand the entire process and the relation of microbiota involved in the anaerobic 

process with biochemical intermediates, in the Chapter 5 a scale-up of previous experiments 

confirmed the importance and influence of inoculum to carry out the anaerobic bioprocess. In 

fact, the dynamics of archaeal populations were strongly related to the inoculum since the 

relative abundance of some archeal genus detected in the inoculated samples increased during 

the biodigestion. In particular, among methanogenic archaea, Methanoculleus was the 

dominant genus during all the process especially when the methane production occurred 

throught hydrogenotrophic pathway, and its relative abundance increased up to 99% at the end 

of incubation time. This was confirmed, as observed in the previous experiments (Chapter 4), 

that hydrogenotrophic pathway is dominant when methane production occurred during 

biodigestion of dairy wastes, causing no organic acids consumption that was useful for the 

development of the integrated system. 

For this reason, in the Chapter 6, the organic acids mixture resulted from the anaerobic 

experiment (VFAextracted) was used as growing substrate for a screening of pure culture of PHB 

accumulating bacteria in order to study the potentiality of integrating the two biological 

http://context.reverso.net/traduzione/inglese-italiano/obviously
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processes. From the screening, the growth of C. necator DSM 13513 and P. resinovorans SA39 

was enhanced by synthetic acid mixture (VFA) addition and indeed these strains were chosen 

for the tests with VFAextracted. In these experiments, the percentage of PHB accumulated by C. 

necator DSM 13513 was stimulated by VFAextracted addition reaching 0.50% of PHB after 48 h 

coupled with an increase in the microbial concentration. In fact, the exposition of C. necator 

to ethanol contained in the VFAextracted at the beginning of the stationary phase did not affect 

the microbial growth but increased PHB yields about 30% compared with the optimal substrate. 

On the contrary, Pseudomonas SA39 was inhibited by VFAextracted accumulating 0.043% PHB 

during 24h as a consequence of high ethanol concentrations contained in the VFAextracted. Thus, 

further studies can be useful to increase the H2 production in the anaerobic phase limiting the 

ethanol concentration in the effluent used in PHA accumulation tests. 

In order to promote low cost processes for PHAs production and to test the influence of the 

salty waste, in the Chapter 7, mixed microbial cultures (MMC) were selected from the 

activated sludge of a wastewater treatment plant (Mutela, Portugal) and an organic acid mixture 

resulting from the effluent of an anaerobic process fed with cheese whey at different level of 

salinity was used as organic source. 

Indeed, the cultures were adapted to two different salinity concentration (20 g NaCl L-1 and 10 

gNaCl L-1). The amount of the stored polymer was related to salinity concentration as well as 

their composition. In fact, the MMCs adapted to 20 g NaCl L-1was stimulated to PHA 

accumulation in the assays with salinity lower than the enrichment. Instead, the MMCs adapted 

to 10 g NaCl L-1achieved the maximum polymer percentage under the same enrichment saline 

condition. In both cases, the percentage of the PHA accumulated decrease in the tests without 

NaCl addition demonsting that an adapted MMCs is necessary to valorize a salty waste stream. 

Clearly, further research will be required to better describe the behavior of MMCs adapted to 

salinity concentration. 

The composition of the biopolymers obtained was also affected by salinity concentration. 

Anyway, a general behavior for the two MMCs tested was not found. In fact, for the MMCs 

adapted to 20 g NaCl L-1, HB content in the final biopolymer increased with the increase of 

salinity concentration in the assays indicating that HB precursors in the feed may be 

preferentially consumed for maintenance with the increase of salinity concentration. In the 

experiment with MMCs adapted to 10 g NaCl L-1, a different behavior was observed because 

the HB percentage decreased with the salinity increase. Otherwise, biopolymer recovery in the 

form of a thin film were obtained from these tests with good elastomeric properties due to the 

HV content. 
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These findings suggest that the approach of integrated system is of direct practical relevance 

landing to bioenergy and biopolymers production from dairy wastes. This approach could also 

be applied to different kinds of organic waste representing the opportunity to their valorization 

through sustainable biopolymers and biofuel production via microbial bio-based process of 

biorefinery value chain. 
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