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Chapter 1

Introduction

Together with the incessant increase of interest for Game Theory and for the
Nash equilibrium solution concept, certainly the mostly used non-cooperative
game-theoretic notion especially in economics and management science, the need
of developing a theory which allows to explain how an equilibrium can be picked
in a game has been arising. This is both because a game could admit more than
one Nash equilibrium, so difficulties could occur in players when choosing their
actions, and because of the concerns (connected to the latter issue) regarding
the psychological and philosophical foundations of this concept.
In the foreword to the book of Harsanyi and Selten [53], which represents the
first contribution in the development of a theory of Nash equilibrium selection
in games, Aumann emphasizes that

An equilibrium in a game is defined as an assignment to each
player of a strategy that is optimal for him when the others use the
strategies assigned to them. [...] In general, a given game may have
several equilibria. Nash equilibrium makes sense only if each player
knows which strategies the others are playing; if the equilibrium rec-
ommended by the theory is not unique, the players will not have this
knowledge. Thus it is essential that for each game, the theory selects
one unique Nash equilibrium from the set of all Nash equilibria, [53,
p.xi].

Consequently, the following two key points are significant in the theory of equi-
librium selection: on the one hand, the possibility to obtain an equilibrium
selection by means of a constructive (in the sense of algorithmic) process; on
the other hand, the motivations that would induce players to choose the actions
leading to the designed selection, together with the interpretation of the method
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defined to achieve such a selection (still linked to the behavioural peculiarities
of each player).

Many Nash equilibrium selection and refinement concepts have been pro-
posed in Game Theory literature based on perturbations of the data of the
game and/or motivated by possible distortions of players’ rationality, both for
normal-form games (see, for example, [148, 52, 118, 122, 60, 53, 127, 30] and
also [143] and references therein) and, especially when players have finite sets of
actions, for extensive-form games (see, for example, [135, 134, 142, 61, 117, 46]).
Nevertheless, the issue of equilibrium selection in sequential games of perfect in-
formation where players have a continuum of actions has been less investigated
(see [49, 26] for the imperfect information case).

Therefore, in this thesis we examine the issue of selection of the subgame
perfect Nash equilibrium (SPNE for short, see [135, 134]), which represents the
mostly known and broadly applied solution concept in sequential games, in the
class of one-leader N -follower two-stage games (with N ∈ N), namely N + 1-
person non-cooperative sequential games where players have a continuum of
actions and the interactions among players are ruled as follows: one player
acting in the first stage, the leader, chooses an action in his action set, then in
the second stage the remaining N players, the followers, after having observed
the choice made by the leader, reply by choosing simultaneously an action each
one in his own action set. Our main purpose is to propose constructive methods
in order to select an SPNE that both satisfy the desirable features illustrated
above regarding the theory of equilibrium selection and provide SPNEs existence
results.

In Chapter 2, after giving the definitions of one-leader N -follower two-stage
game and subgame perfect Nash equilibrium, the problem of providing a man-
ageable existence result for SPNEs (motivated by the fact that the best reply
correspondence of the followers is, in general, not a lower semicontinuous set-
valued map) in one-leader N -follower two-stage games is introduced. Firstly, we
analyze the case where the followers’ best reaction is assumed to be unique for
any action chosen by the leader (Subsection 2.2.1): in this case the lower semi-
continuity issue regarding the best reply correspondence can be overcome, and
we show that finding the SPNEs of the game is equivalent to find the Stackelberg
solutions of the associated Stackelberg problem (introduced by von Stackelberg
in [145]). Then, we examine the general case where the followers’ best reaction
is not always unique (Subsection 2.2.2): since in this situation multiple SPNEs
could come up we introduce also the arising issue of selection of SPNEs, so we
describe some ways to select an SPNE which are motivated according to the
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Introduction

beliefs that the leader has about how the followers choose actions in their best
reaction sets. Such SPNE selections are obtained by exploiting the solutions
of widely studied problems in Optimization Theory, in particular the strong
Stackelberg, the weak Stackelberg and the intermediate Stackelberg problems
associated to the game (see [66] and [95] for the definitions of such types of
Stackelberg problems).

When the followers’ best reaction is assumed to be unique the SPNEs se-
lection issue could not occur, but a related arising issue concerns, evidently,
the sufficient conditions ensuring the uniqueness of the followers’ best reaction.
Hence, in Chapter 3, we present a result regarding the existence of a unique Nash
equilibrium in two-player normal-form games where the action sets are Hilbert
spaces and which allows (provided that the players’ best reply correspondences
are single-valued) the two compositions of the best reply functions to be not a
contraction mapping (being the existence of a unique Nash equilibrium provided
the compositions of the best reply functions to be a contraction a well-known es-
tablished result; see, for example, [69, Theorem 1]). Moreover, when we restrict
to the class of weighted potential games introduced by Monderer and Shapley
in [105], the (lack of) connections between Nash equilibria and maximizers of
the potential function is proved, referring to Caruso, Ceparano and Morgan
[24]. Finally, still having in mind to provide sufficient conditions guaranteeing
the uniqueness of the followers’ best reaction, the Rosen uniqueness result [132],
which concerns the uniqueness of Nash equilibrium in normal-form games where
the action sets are constrained subsets of Euclidean spaces, is reminded.

Coming back to the SPNE selection issue arising when the followers’ best
reaction is not always unique, the selection methods illustrated in Chapter 2,
although behaviourally motivated, do not provide however a constructive pro-
cedure to achieve an SPNE and, furthermore, require the leader the demanding
task of knowing the best reply correspondence, by definition of (strong, weak
and intermediate) Stackelberg solution. Hence, we focus on designing construc-
tive methods in order to select an SPNE with the following features:

(i) relieving the leader of learning the best reply correspondence;

(ii) allowing to overcome the difficulties deriving from the possible non-single-
valuedness of the best reply correspondence.

These features will be satisfied by exploiting the Tikhonov regularization [140]
and the proximal point algorithm [99, 131] (based on the Moreau-Yosida regu-
larization [106]). Such techniques, widely used in Optimization, are presented
in Chapter 4 together with applications to the selection of Nash equilibria in
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normal-form games (Subsections 4.1.1 and 4.2.2): they have the advantage of
allowing to approximate a solution of a (optimization or Nash equilibrium) prob-
lem by constructing sequences of regularized problems having a unique solution,
so step by step the approximating sequence is uniquely identified.

Therefore, in Chapter 5 two selection methods for SPNEs which fit goals (i)
and (ii) are presented. In both methods an SPNE is achieved by constructing a
sequence of one-leader N -follower two-stage games where the best reply corre-
spondence is single-valued, by using the regularizations illustrated in Chapter 4.
Firstly, we analyze the constructive method introduced by Morgan and Patrone
in [109], where the Tikhonov regularization is exploited (Section 5.1). Then,
referring to Caruso, Ceparano and Morgan [23], we show an SPNE selection
method for one-leader one-follower two-stage games based on proximal point
algorithm which satisfies even the following feature:

(iii) it is based on a learning approach which has a behavioral interpretation
linked to the costs that players face when deviating from their current
actions,

according to the interpretation of proximal point methods provided in [3] and
illustrated in Subsection 4.2.1. Besides, we highlight that both methods embody
an existence result for SPNEs which does not require the lower semicontinuity
of the best reply correspondence. Finally, in Section 5.3 some further under
investigation issues and directions for future research are discussed.

4



Chapter 2

Subgame perfect Nash

equilibria in a continuous

setting

The two main objects of the thesis are presented in this introductory chapter:
the class of one-leader N -follower two-stage games (where N ∈ N can be 1

or more than 1) and the subgame perfect Nash equilibrium solution concept.
After providing the mathematical formulation, the definitions and examples of
applications of such objects, the difficulties of providing a reasonable existence
result for subgame perfect Nash equilibria in one-leader N -follower two-stage
games where players have a continuum of actions are discussed. Motivated by
this drawback, we continue the investigation by analyzing two scenarios.

• When the followers’ best reaction is assumed to be unique for any action
chosen by the leader: the SPNEs can be fully characterized in terms of
solutions of the associated Stackelberg problem and the difficulties above
mentioned can be overcome.

• When the followers’ best reaction is not always unique: aside from the ex-
istence of SPNEs, the arising issue of the selection of SPNEs is analyzed.
Hence, some existing methods to select SPNEs (in one-leader N -follower
two-stage games) are described, which rely on the exploitation of the so-
lutions of broadly studied problems in literature: the strong Stackelberg,
the weak Stackelberg and the intermediate Stackelberg problem.

Finally, the need to define a constructive method in order to select a subgame
perfect Nash equilibrium that relieves the leader of knowing the sets of the
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2. Subgame perfect Nash equilibria in a continuous setting

followers’ best reactions and that allows to overcome the difficulties due to the
non-uniqueness of the followers’ best reactions is pointed out, mentioning that
in Chapter 5 two such constructive methods will be illustrated.

2.1 One-leader N-follower two-stage games

By one-leader N -follower two-stage game ΓN we intend an N + 1-person non-
cooperative sequential game where

1. in the first stage: one player, henceforth called leader, chooses an action
x in his action set X;

2. in the second stage: N players, henceforth called followers, observe
the action x chosen by the leader in the first stage and then simultane-
ously choose actions y1, y2, . . . , yN , where yi is the action chosen by the
i’s follower in his action set Yi, for any i ∈ {1, . . . , N};

3. payoffs: after the two-stage interaction, leader receives L(x, y1, . . . , yN )

where L : X × Y1 × · · · × YN → R is the leader’s payoff function, and the
i’s follower receives Fi(x, y1, . . . , yN ) where Fi : X × Y1 × · · · × YN → R is
the i’s follower payoff function, for any i ∈ {1, . . . , N}.

If N ≥ 2 the followers acting in the second stage, after having observed the
leader’s action x, engage in the non-cooperative simultaneous-move game

Gx = {I, (Yi)i∈I , (Fi(x, ·, . . . , ·))i∈I}, (2.1)

where I := {1, . . . , N} is the set of the followers, and they react to the leader
choosing a Nash equilibrium of Gx, i.e. a strategy profile (y∗1 , . . . , y

∗
N ) ∈ Y :=

Y1 × · · · × YN such that for any i ∈ I

Fi(x, y
∗
1 , . . . , y

∗
i−1, y

∗
i , y
∗
i+1, . . . , y

∗
N ) ≥ Fi(x, y∗1 , . . . , y∗i−1, yi, y

∗
i+1, . . . , y

∗
N ) (2.2)

for any yi ∈ Yi. As usual in game theory, for any i ∈ I we set Y−i := Y1 × · · · ×
Yi−1 × Yi+1 × · · · × YN , so that a strategy profile y ∈ Y can be also written
as (yi, y−i) ∈ Yi × Y−i. Hence, inequality (2.2) can be rewritten in the more
compact way: Fi(x, y∗i , y∗−i) ≥ Fi(x, yi, y∗−i).
We denote by N : X ⇒ Y the set-valued map that associates with each leader’s
action x ∈ X the set of Nash equilibria of Gx, i.e.

N (x) = {y∗ ∈ Y s.t. Fi(x, y∗i , y
∗
−i) ≥ Fi(x, yi, y∗−i)

for any yi ∈ Yi and i ∈ I},
(2.3)
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2.1 One-leader N -follower two-stage games

and we call it Nash equilibrium correspondence of the followers. We use the
notation (X,Y1, . . . , YN , L, F1, . . . , FN ) to refer to the one-leaderN -follower two-
stage game ΓN in order to focus on the relevant features of the game.

If N = 1 the (unique) follower acting in the second stage, after having
observed the leader’s action x, faces the optimization problem

Px : max
y∈Y

F (x, y), (2.4)

where we set Y = Y1 and F = F1, and he reacts to the leader choosing a
maximizer of the function F (x, ·), i.e. an action y∗ ∈ Y such that

F (x, y∗) ≥ F (x, y) for any y ∈ Y. (2.5)

We denote byM : X ⇒ Y the set-valued map that associates with each leader’s
action x ∈ X the set of follower’s actions that solve Px, i.e.

M(x) = {y∗ ∈ Y s.t. F (x, y∗) ≥ F (x, y) for any y ∈ Y }

= Arg max
y∈Y

F (x, y),
(2.6)

and we call it best reply correspondence of the follower. We use the notation
(X,Y, L, F ) to refer to the one-leader one-follower two-stage game Γ1, also de-
noted simply by Γ. Moreover it is worth to note that, if I = {1} in (2.1) finding
a Nash equilibrium of Gx is equivalent to solve the optimization problem Px

in (2.4), since inequality (2.2) is reduced to (2.5); consequently, even the Nash
equilibrium correspondence N is reduced to the follower’s best reply correspon-
denceM.

Let us provide now some relevant examples of one-leader N -follower two-
stage games.

Example 2.1.1 (Ultimatum game [50]) One player, also called the proposer,
has to split an amount of money S > 0 (he is endowed) with another player,
called the responder. The responder, after observed the decision communicated
by the proposer, can accept or reject the split. In the first case, the money is
split according to the decision of the proposer; otherwise, both players receive
nothing. The ultimatum game is a one-leader one-follower two-stage game where
the proposer acts as the leader and the responder as the follower, the action sets
are X = [0, S] for the leader (who decides the sum of money x ∈ [0, S] to keep
for himself) and Y = {a, r} for the follower (who decides whether to accept or
reject the split communicated by the leader), and the payoff functions are

L(x, y) =

x, if y = a

0, if y = r
and F (x, y) =

S − x, if y = a

0, if y = r,

7



2. Subgame perfect Nash equilibria in a continuous setting

for the leader and the follower, respectively.

Example 2.1.2 (Stackelberg competition [145]) There are two firms in a
market which have to choose quantities. Firm 1, the leader, chooses a quantity
q1 ≥ 0; then firm 2, the follower, observes the quantity q1 and chooses a quantity
q2 ≥ 0. Firm i aims to maximize his profit function depending on the inverse
demand function P (·), the total quantity Q = q1 +q2 in the market and his cost
function Ci(·). In such one-leader one-follower two-stage game, well-known as
Stackelberg game, the action sets are X = Y = [0,+∞[ and the payoff functions
are given by the following profit functions:

L(q1, q2) = q1P (Q)− C1(q1) and F (q1, q2) = q2P (Q)− C2(q2),

where P (·) is a differentiable function with P ′(Q) < 0 and Ci(·) is a twice
differentiable function with C ′i(qi) > 0 and C ′′i (qi) ≥ 0 for any i ∈ {1, 2}.

Example 2.1.3 (Leontief wage-employment model [68]) It concerns the re-
lationship between a monopoly union and N firms in an oligopoly. The union,
that has exclusive control over wages, makes a single wage demand w ≥ 0 for all
the firms; then the firms, that have exclusive control over employment, observe
w and simultaneously choose the employment levels (firm i chooses ei ≥ 0 for
any i ∈ {1, . . . , N}). This situation can be modelled as a one-leader N -follower
two-stage game where the union acts as the leader and the firms act as the
followers, the action set of the leader is X = [0,+∞[, the action set of follower
i is Yi = [0,+∞[ for any i ∈ {1, . . . , N}, and the payoff functions for the leader
and the follower i are, respectively,

L(w, e1, . . . , eN ) = (w − wa)E and Fi(w, e1, . . . , eN ) = eiP (E)− wei,

where wa ≥ 0 is the wage that union members can earn in alternative employ-
ment, E = e1 + · · ·+ eN is the total employment of all the firms and P (·) is the
inverse demand function (assumed to be differentiable with P ′(E) < 0).

Example 2.1.4 (Stackelberg competition with two followers [136, 96]) Three
firms choose quantities in a market with inverse demand function given by P (·).
The firms operate as follows: firm 1 (the leader) chooses the quantity q1 ≥ 0;
then firm 2 and firm 3 (the followers), after having observed q1, act as in a
Cournot duopoly and choose simultaneously quantities q2 ≥ 0 and q3 ≥ 0,
respectively. In such one-leader two-follower two-stage game the action set of
the leader is X = [0,+∞[, the action sets of the followers are Y1 = Y2 = [0,+∞[,

8



2.2 Subgame perfect Nash equilibrium

and the payoff functions are given by the following profit functions

L(q1, q2, q3) = q1P (Q)− C1(q1) and
F1(q1, q2, q3) = q2P (Q)− C2(q2),

F2(q1, q2, q3) = q3P (Q)− C3(q3),

where Q = q1 + q2 + q3 is the total quantity produced by all the firms and Ci(·)
is the cost function of firm i (assumed to be twice differentiable with C ′i(qi) > 0

and C ′′i (qi) ≥ 0), for any i ∈ {1, 2, 3}. The model can be easily extended to the
case of N > 2 followers.

2.2 Subgame perfect Nash equilibrium

Before discussing the subgame perfect Nash equilibrium solution concept, it is
worth to recall the notions of player’s strategy and subgame (see, e.g., [45, 100]).
In sequential games, a strategy for a player is a function that specifies which
action the player chooses at any point in the game he could be required to make
a decision (even if some of these points are not actually reached during the play
of the game).
A subgame is any “subset” of the game satisfying the following properties:

1. it starts at a point where a player, who knows the history of the game up
to that point, is required to make a decision;

2. it involves all the interactions among players starting from that point,
until the end of the game;

3. if it contains a point where a player is involved in a simultaneous-move
game with other players, it must contains entirely such a simultaneous-
move game.

In a one-leader N -follower two-stage game ΓN = (X,Y1, . . . , YN , L, F1, . . . , FN )

the set of leader’s strategies coincides with the set of actions X, the set of fol-
lower i’s strategies is Y Xi = {ϕ : X → Yi} and Gx defined in (2.1) is a subgame
of ΓN for any x ∈ X (the only subgame of ΓN different from Gx is ΓN itself).
Analogously, in a one-leader one-follower two-stage game Γ = (X,Y, L, F ) the
set of leader’s strategies is X, the set follower’s strategies is Y X = {ϕ : X → Y }
and the subgames are the degenerate games where the follower is the unique
player and reacts to the a given choice x ∈ X of the leader by maximizing the
function F (x, ·), that is, he solves the optimization problem Px defined in (2.4).

Now we introduce the solution concept we are mostly interested in this work,
the most known refinement of the Nash equilibrium widely used in sequential

9



2. Subgame perfect Nash equilibria in a continuous setting

games: the subgame perfect Nash equilibrium concept ([135, 134]; see also, e.g.,
[54, 100]). The main idea on which this concept is founded is the principle
of sequential rationality : Reinhard Selten suggested to choose those equilibria
where the players’ strategies represent a Nash equilibrium when restricted to
each subgame of the original game, i.e., the players have to behave optimally
from any point of the game onwards, so even with regard to off the equilibrium
path actions. Therefore, more precisely, a strategy profile (i.e., a vector of strate-
gies, one for each player) is a subgame perfect Nash equilibrium of a sequential
game if the restriction of the strategy profile to any subgame constitutes a Nash
equilibrium when that subgame is considered in isolation. The principle of se-
quential rationality is strongly connected to the backward induction procedure,
the most common tool used to find subgame perfect Nash equilibria in sequential
games of perfect information (as the one-leader one-follower two-stage games):
firstly, it is determined the optimal behaviour at the end of the game and then,
knowing this behaviour, the optimal behaviour in the earlier stages of the game
is found (such a procedure, in a generalized version, is used also in sequential
games with almost perfect information, as the one-leader N -follower two-stage
games with N ≥ 2).

Let ΓN = (X,Y1, . . . , YN , L, F1, . . . , FN ) be a one-leader N -follower two-
stage game. The set of strategy profiles is X×Y X1 ×· · ·×Y XN and the definition
of subgame perfect Nash equilibrium is characterized in the following way.

Definition 2.2.1 A strategy profile (x̄, ϕ̄1, . . . , ϕ̄N ) ∈ X × Y X1 × · · · × Y XN is
a subgame perfect Nash equilibrium (SPNE for short) of ΓN if the following
conditions are satisfied:

(SG1N ) for each choice x of the leader, the followers react choosing a Nash
equilibrium of Gx, i.e. for any x ∈ X:

(ϕ̄1(x), . . . , ϕ̄N (x)) ∈ N (x);

(SG2N ) the leader maximizes his payoff function taking into account his hier-
archical advantage, i.e.

x̄ ∈ Arg max
x∈X

L(x, ϕ̄1(x), . . . , ϕ̄N (x)).

It is worth to give the definition of SPNE even in the special case of a
one-leader one-follower two-stage game Γ = (X,Y, L, F ).

Definition 2.2.2 A strategy profile (x̄, ϕ̄) ∈ X × Y X is an SPNE of Γ if the
following conditions are satisfied:
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2.2 Subgame perfect Nash equilibrium

(SG1) for each choice x of the leader, the follower maximizes his payoff function,
i.e. for any x ∈ X:

ϕ̄(x) ∈M(x);

(SG2) the leader maximizes his payoff function taking into account his hierar-
chical advantage, i.e.

x̄ ∈ Arg max
x∈X

L(x, ϕ̄(x)).

Example 2.2.1 (SPNE in Ultimatum game) The game of Example 2.1.1
has one SPNE: the pair (S, ϕ̄) where ϕ̄(x) = a for any x ∈ [0, S]. In this case the
follower agrees with any split decided by the leader; the follower gains nothing,
while the leader receives the total amount of money S.

Example 2.2.2 (SPNE in Stackelberg competition) Setting, for example,
the inverse demand function P (Q) = a−Q and the cost functions C1(q1) = cq1

and C2(q2) = cq2, the unique SPNE of the Stackelberg game in Example 2.1.2
is (q̄1, ϕ̄) where

q̄1 =
a− c

2
and ϕ̄(q1) =

a− q1 − c
2

for any q1 ≥ 0.

Example 2.2.3 (SPNE in Leontief wage-employment model) The game in
Example 2.1.3, set the inverse demand function P (E) = a−E, has one SPNE:
the strategy profile (w̄, ϕ̄1, . . . , ϕ̄N ), where

w̄ =
a+ wa

2
and ϕ̄i(w) =

a− w
N + 1

for any w ≥ 0 and i = {1, . . . , N}.

Example 2.2.4 (SPNE in Stackelberg competition with two followers) Set-
ting P (Q) = a − Q and Ci(qi) = cqi for any i ∈ {1, 2, 3}, the unique SPNE of
the game in Example 2.1.4 is (q̄1, ϕ̄1, ϕ̄2) where

q̄1 =
a− c

2
and ϕ̄i(q1) =

a− q1 − c
3

for any q1 ≥ 0 and i = {1, 2}.

Let us show now a simple result on the existence of SPNEs for one-leader
N -follower two-stage games where the players have a continuum of actions.

Proposition 2.2.3. Let ΓN = (X,Y1, . . . , YN , L, F1, . . . , FN ) be a one-leader
N -follower two-stage game, where N ∈ N. Assume that

(i) X is a compact subset of a Euclidean space;

(ii) Yi is a subset of a Euclidean space, for any i ∈ {1, . . . , N};

(iii) L is upper semicontinuous on X × Y1 × · · · × YN ;

11



2. Subgame perfect Nash equilibria in a continuous setting

(iv) the Nash equilibrium correspondence N : X ⇒ Y1 × · · · × YN

1. is a lower semicontinuous set-valued map, that is, for any sequence
(xk)k ⊆ X converging to x ∈ X and for any y ∈ N (x), there exists
a sequence (yk)k ⊆ Y such that (yk)k converges to y and yk ∈ N (xk)

for any k ∈ N;

2. has nonempty closed convex values, i.e., N (x) is nonempty, closed and
convex for any x ∈ X.

Then ΓN has at least one SPNE.

Proof. Assumptions (i),(ii) and (iv) guarantee the existence of a continuous
function ϕ̄ : X → Y1 × · · · × YN such that ϕ̄(x) = (ϕ̄1(x), . . . , ϕ̄N (x)) ∈ N (x)

for any x ∈ X (by Michael selection theorem, see [101]). In light of (i), (iii)
and the continuity of ϕ̄, there exists x̄ ∈ Arg maxx∈X L(x, ϕ̄1(x), . . . , ϕ̄N (x)).
By Definition 2.2.1, the strategy profile (x̄, ϕ̄1(x), . . . , ϕ̄N (x)) is an SPNE of
ΓN .

It is crucial for our analysis to highlight that in Proposition 2.2.3 a very
demanding assumption is involved: the lower semicontinuity of the set-valued
map N . Such a requirement makes Proposition 2.2.3 a hardly manageable
existence result (for SPNEs), both because it does not involve assumptions
explicitly on the payoff functions and because the lower semicontinuity of the
set-valued map N is, in general, not satisfied even if the payoff functions of
the followers are bilinear, as proved in many folk examples in literature (see, for
example, [11, Remark 4.3] and [94, Example 2.1] for the case of one follower, and
[111], where the lower semicontinuity of the ε-Nash equilibrium correspondence is
investigated, for the case of two followers). Let us illustrate below two examples
(the first one involving one follower, and the second one involving two followers)
that emphasize the arguments just mentioned, and that involve games having
infinitely many SPNEs.

Example 2.2.5 Let Γ = (X,Y, L, F ) where the action sets are X = Y =

[−1, 1] and the payoff functions are defined on [−1, 1]× [−1, 1] by L(x, y) = x+y

and F (x, y) = xy. The follower best reply correspondence M is defined on
[−1, 1] by

M(x) =


{−1}, if x ∈ [−1, 0[

[−1, 1], if x = 0

{1}, if x ∈]0, 1].

(2.7)

The set-valued map M is not lower semicontinuous on X. In fact, consider
the sequence (xk)k = (1/k)k convergent to x = 0 and let y = −1 ∈ M(0).

12



2.2 Subgame perfect Nash equilibrium

Any sequence (yk)k such that yk ∈ M(1/k) for any k ∈ N is not convergent
to −1 (it converges to 1); therefore, M is not lower semicontinuous in x = 0.
Nevertheless, Γ has infinitely many SPNEs: denoted by ϕ̄α the function defined
on [−1, 1] by

ϕ̄α(x) =


−1, if x ∈ [−1, 0[

α, if x = 0

1, if x ∈]0, 1],

the pair (1, ϕ̄α) is an SPNE of Γ for any α ∈ [−1, 1].

Example 2.2.6 (Section 1 in [111]) Let Γ = (X,Y1, Y2, L, F1, F2) where
the action sets are X = Y1 = Y2 = [0, 1] and the payoff functions are de-
fined on [0, 1]× [0, 1]× [0, 1] by L(x, y1, y2) = −x+ y1 + y2 and F1(x, y1, y2) =

F2(x, y1, y2) = −xy1y2. The Nash equilibrium correspondence N is defined on
[0, 1] by

N (x) =

[0, 1]× [0, 1], if x = 0

[0, 1]× {0} ∪ {0} × [0, 1], if x ∈]0, 1].
(2.8)

The set-valued map N is not lower semicontinuous on X. In fact, consider
the sequence (xk)k = (1/k)k convergent to x = 0 and let (y1, y2) = (1, 1) ∈
M(0). By definition of N , the point (1, 1) is never the limit of a sequence
(y1,k, y2,k)k such that (y1,k, y2,k) ∈ N (1/k) for any k ∈ N, therefore N is not
lower semicontinuous in x = 0. However, Γ has infinitely many SPNEs: any
pair (0, ϕ̄) where ϕ̄ : X → Y1 × Y2 is a (not necessarily continuous) selection of
N is an SPNE of Γ.

Furthermore we highlight that, since in Examples 2.2.5 and 2.2.6 (as well
as in [11, Remark 4.3]) the payoff functions are bilinear, Proposition 2.2.3 in
not useful to guarantee the existence of SPNEs even in one-leader N -follower
two-stage games derived from themixed extension (see, for example, [100, Chap-
ter 5]) of games where the action sets are finite, which are broadly and steadily
used in Game Theory literature.

Therefore, in the sequel of this chapter we deal with the issue of how over-
coming the lower semicontinuity of the Nash equilibrium correspondence N in
order to obtain existence of SPNEs, discussing moreover some related arising
topics. We distinguish two circumstances:

1. when the Nash equilibrium correspondence is assumed to be single-valued
(analyzed in Subsection 2.2.1);

13



2. Subgame perfect Nash equilibria in a continuous setting

2. when the Nash equilibrium correspondence is not necessarily single-valued
(analyzed in Subsection 2.2.2).

In the first situation the main issue can be positively answered and, regarding
the sufficient conditions ensuring the single-valuedness of the Nash equilibrium
correspondence, in Chapter 3 uniqueness results for Nash equilibrium in normal-
form games will be presented. In the second situation, aside from the existence
of SPNEs, the consequent arising issue of the selection of a SPNE must be faced:
in Chapter 5 two constructive methods for selecting an SPNE will be illustrated,
by exploiting the tools analyzed in Chapter 4 (such methods guarantee even the
existence of SPNEs regardless of the lower semicontinuity of N ).

2.2.1 Assuming uniqueness of the best reaction

Let ΓN = (X,Y1, . . . , YN , L, F1, . . . , FN ) be a one-leader N -follower two-stage
game. When the followers’ best reaction to any choice of the leader is unique,
i.e. when the Nash equilibrium correspondence N is single-valued, the players
engage in the so-called classical Stackelberg game. In this case the leader can
fully anticipate the reactions of the followers and he takes them into account
before choosing his action, and the followers behave answering to the the leader
in the best (expected) way. Therefore, assumed that N is single-valued and
N (x) = {(n1(x), . . . , nN (x))} for any x ∈ X, the leader is interested in solving

SPN :


maxx∈X L(x, n1(x), . . . , nN (x))

where (n1(x), . . . , nN (x)) ∈ Y1 × · · · × YN

is the unique Nash equilibrium of Gx defined in (2.1).

(2.9)

Analogous arguments hold if we deal with a one-leader one-follower two-stage
game Γ = (X,Y, L, F ). Supposed that the follower’s best reply correspondence
M is single-valued and M(x) = {m(x)} for any x ∈ X, the leader faces the
problem

SP :


maxx∈X L(x,m(x))

where m(x) ∈ Y

is the unique solution of Px defined in (2.4).

(2.10)

Problem SP is called Stackelberg problem or even two-level optimization problem.
A wide literature is devoted to Stackelberg problems: we mention that existence
results are given in [90, 107], approximation schemes and optimality conditions
are analyzed in [137, 83, 81, 123], the dynamic version of such problem is studied
in [27, 138]. A more detailed list of references can be found in [11] and [12].
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2.2 Subgame perfect Nash equilibrium

Regarding to problem SPN , which represents a generalization of the traditional
Stackelberg model introduced in [145], existence and approximation results can
be found in [126] for the case of two followers. In the sequel we refer to both
SPN and SP as Stackelberg problem.

Remark 2.2.4 In the games of Examples 2.1.3 and 2.1.4 the Nash equilibrium
correspondence is single-valued, so the leader acts as in Stackelberg problem
SPN . Similarly, the follower’s best reply correspondence of the game in Exam-
ple 2.1.2 is single-valued, hence the leader acts as in Stackelberg problem SP .
Instead, the follower’s best reply correspondence in Example 2.1.1 is not single-
valued at x = S since the follower, if the leader chooses to keep all the money for
himself, is indifferent between accepting or rejecting the split proposal (he re-
ceives nothing in any case). Moreover, the follower’s best reply correspondence
in Example 2.2.5 and the Nash equilibrium correspondence in Example 2.2.6
are not single-valued, as displayed in (2.7) and (2.8), respectively.

Before discussing existence results for SPNEs when N is assumed to be
single-valued and addressing the issues pointed out in the previous section, it
is worth to give now the definition of the solution concepts associated with
the Stackelberg problems and to show two results concerning the existence of
solutions for SP (whose proof, involving Propositions 4.1 and 5.1 in [107], is
presented for sake of completeness) and SPN (that generalizes the result of
Proposizione 2.1 in [126] regarding the case of N = 2 followers), which will be
used to derive sufficient conditions also for the existence of SPNEs.

Definition 2.2.5 A leader’s action x̄ ∈ X is said to be a Stackelberg solution
of SP if

x̄ ∈ Arg max
x∈X

L(x,m(x)),

that is, if x̄ is a solution of the Stackelberg problem SP . An action profile
(x̄,m(x̄)) ∈ X × Y where x̄ is a Stackelberg solution of SP is called Stackelberg
equilibrium of SP .

Definition 2.2.6 A leader’s action x̄ ∈ X is said to be a Stackelberg solution
of SPN if

x̄ ∈ Arg max
x∈X

L(x, n1(x), . . . , nN (x)),

that is, if x̄ is a solution of the Stackelberg problem SPN . An action profile
(x̄, n1(x̄), . . . , nN (x̄)) ∈ X × Y1 × · · · × YN where x̄ is a Stackelberg solution of
SPN is called Stackelberg equilibrium of SPN .
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2. Subgame perfect Nash equilibria in a continuous setting

Proposition 2.2.7 (Propositions 4.1 and 5.1 in [107]). Let SP be the Stackel-
berg problem defined in (2.10). Assume that

(i) X and Y are compact subsets of two Euclidean spaces;

(ii) L and F are upper semicontinuous on X × Y ;

(iii) for any (x, y) ∈ X × Y and any sequence (xk)k ⊆ X converging to x, there
exists a sequence (ỹk)k ⊆ Y such that

lim inf
k→+∞

F (xk, ỹk) ≥ F (x, y).

Then, there exists at least one Stackelberg solution of SP .

Proof. Let (xk)k ⊆ X be a sequence converging to x ∈ X and consider the
following real-valued functions defined on Y by

gk(y) =− F (xk, y), for any k ∈ N

g(y) =− F (x, y).
(2.11)

The upper semicontinuity of F and assumption (iii) guarantee that the sequence
of functions (gk)k converges variationally to the function g (see [152, 153] for the
definition of variational convergence). Therefore, in light of [153, Theorem 1],
we get

Limsupk→+∞Arg min
y∈Y

gk(y) ⊆ Arg min
y∈Y

g(y), (2.12)

where the “Limsup” in the left hand side of (2.12) stands for the Painlevé-
Kuratowski upper limit of sets (see [63]). By the definition of gk and g in
(2.11), and the definition of m in (2.10), from (2.12) we derive

Limsupk→+∞{m(xk)} ⊆ {m(x)},

that implies, in light of the compactness of Y ,

lim
k→+∞

m(xk) = m(x). (2.13)

Since (2.13) holds for an arbitrary sequence (xk)k ⊆ X converging to x ∈ X,
the follower’s best reply function m is continuous on X. The upper semi-
continuity of L, the continuity of m and the compactness of X ensure that
Arg maxx∈X L(x,m(x)) 6= ∅. Therefore, the Stackelberg problem SP has at
least one Stackelberg solution.

Proposition 2.2.8 (Proposizione 2.1 in [126]). Let SPN be the Stackelberg
problem defined in (2.9). Assume that
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2.2 Subgame perfect Nash equilibrium

(i) X is a compact subset of a Euclidean space;

(ii) Yi is a compact subset of a Euclidean space, for any i ∈ {1, . . . , N};

(iii) L is upper semicontinuous on X × Y1 × · · · × YN ;

(iv) Fi is upper semicontinuous on X × Y1 × · · · × YN , for any i ∈ {1, . . . , N};

(v) for any i ∈ {1, . . . , N} the following holds:
for any (x, yi, y−i) ∈ X ×Yi×Y−i, any sequence (xk)k ⊆ X converging to x
and any sequence (y−i,k)k ⊆ Y−i converging to y−i, there exists a sequence
(ỹi,k)k ⊆ Yi such that

lim inf
k→+∞

Fi(xk, ỹi,k, y−i,k) ≥ Fi(x, yi, y−i).

Then, there exists at least one Stackelberg solution of SPN .

Proof. Given, for the sake of completeness, in the general case of N followers.
Let (xk)k ⊆ X be a sequence converging to x ∈ X and consider a subsequence
(n1(xkj ), . . . , nN (xkj ))j ⊆ Y1× · · · × YN of (n1(xk), . . . , nN (xk))k converging to
(ȳ1, . . . ȳN ) ∈ Y1 × · · · × YN , whose existence in guaranteed by assumption (ii).
Let us show that (ȳ1, . . . ȳN ) = (n1(x), . . . , nN (x)). Fixed i ∈ {1, . . . , N}, in
light of assumption (iv) and the definition of ni in (2.9), we have

Fi(x, ȳi, ȳ−i) ≥ lim sup
j→+∞

Fi(xkj , ni(xkj ), n−i(xkj ))

= lim sup
j→+∞

sup
yi∈Yi

Fi(xkj , yi, n−i(xkj )).
(2.14)

Let zi ∈ Yi. By assumption (v) there exists a sequence (ỹi,j)j ⊆ Yi such that

lim sup
j→+∞

sup
yi∈Yi

Fi(xkj , yi, n−i(xkj )) ≥ lim sup
j→+∞

Fi(xkj , ỹi,j , n−i(xkj ))

≥Fi(x, zi, ȳ−i).
(2.15)

Inequality (2.15) implies

lim sup
j→+∞

sup
yi∈Yi

Fi(xkj , yi, n−i(xkj )) ≥ sup
zi∈Yi

Fi(x, zi, ȳ−i). (2.16)

By (2.14) and (2.16) it follows that

Fi(x, ȳi, ȳ−i) ≥ sup
zi∈Yi

Fi(x, zi, ȳ−i);

then, ȳi = ni(x) and since i was fixed at the beginning of the proof, ȳi = ni(x)

for any i ∈ {1, . . . , N}. Hence, the limit of any convergent subsequence of
(n1(xk), . . . , nN (xk))k is (n1(x), . . . , nN (x)). Il light of assumption (ii), even the

17



2. Subgame perfect Nash equilibria in a continuous setting

entire sequence (n1(xk), . . . , nN (xk))k converges to (n1(x), . . . , nN (x)), and this
holds for any sequence (xk)k ⊆ X converging to x ∈ X, that is, ni is a continuous
function for any i ∈ {1, . . . , N}. Assumptions (i) and (iii), and the continuity
of ni guarantee that Arg maxx∈X L(x, n1(x), . . . , nN (x)) 6= ∅. Therefore, the
Stackelberg problem SPN has at least one Stackelberg solution.

Coming back to the issue of existence of SPNEs, the set of SPNEs of a one-
leader N -follower two-stage game ΓN = (X,Y1, . . . , YN , L, F1, . . . , FN ) where
the followers’ best reaction to any choice of the leader is unique can be fully
characterized in terms of Stackelberg solutions (and Stackelberg equilibria) of
the associated Stackelberg problem SPN defined in (2.9). Consequently, the
same assumptions used to show the existence of Stackelberg solutions ensure
also the existence of SPNEs. In fact, just by exploiting the Definitions 2.2.1 and
2.2.6 and Proposition 2.2.8, the following result can be immediately proved.

Corollary 2.2.9. Let ΓN = (X,Y1, . . . , YN , L, F1, . . . , FN ) be a one-leader N -
follower two-stage game, where N ∈ N, and assume that the Nash equilibrium
correspondence N is single-valued. Then the following equivalence holds:

(x̄, ϕ̄1, . . . , ϕ̄N ) ∈ X × Y X1 × · · · × Y XN is an SPNE of ΓN

m

x̄ is a Stackelberg solution of SPN and

{(ϕ̄1(x), . . . , ϕ̄N (x))} = N (x) for any x ∈ X.

Moreover, if all the assumptions of Proposition 2.2.8 are satisfied, then ΓN has
at least one SPNE.

Finally, we emphasize that Corollary 2.2.9 involves explicit assumptions on
the payoff functions which guarantee the lower semicontinuity of the Nash equi-
librium correspondence N (assumed to be single-valued): in fact, set N (x) =

{(n1(x), . . . , nN (x))} for any x ∈ X with ni : X → Yi for any i ∈ {1, . . . , N}, the
continuity of the functions n1, . . . nN comes from assumptions (ii), (iv) and (v) of
Proposition 2.2.8 (as shown in the first part of the proof of Proposition 2.2.8).
It is immediate to note that the continuity of ni for any i ∈ {1, . . . , N} is
equivalent to the lower semicontinuity of the Nash equilibrium (single-valued)
correspondence N . Therefore, the issue of the lower semicontinuity of N is
positively addressed when N is assumed to be single-valued.
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2.2.2 When the best reaction is not always unique

It may happen in many situations that the followers, after having observed the
action chosen by the leader in the first stage, can be indifferent between two
or more alternatives, i.e. that the Nash equilibrium correspondence N is not
single-valued. In this case the leader cannot predict the behaviour of the fol-
lowers, differently from the situation analyzed in Subsection 2.2.1, and multiple
SPNEs could arise. Hence, the issues that we intend to address now regard not
only the existence of SPNEs, but even the way to select an SPNE.
Before introducing a new selection method for SPNEs (see Chapter 5), we re-
mind here the existing concepts of selection for SPNEs, some of which are based
on the solutions of problems widely investigated in literature. For traditional
reasons, in this subsection we focus primarily on the case of N = 1 follower,
pointing out that analogous discussion, observations and results hold even in
the case of N > 1 followers.

Let us start by defining two well-known problems (and corresponding so-
lution concepts) associated to a one-leader one-follower two-stage game Γ =

(X,Y, L, F ), whose solutions induce selections of SPNEs of Γ. When the fol-
lower’s best reply correspondenceM (defined in (2.6)) is not single-valued, two
extreme behaviors of the leader could arise regarding his beliefs about how the
follower chooses inside his own set of optimal actions in response to each action
chosen by the leader. In the first case, the leader is optimistic and believes that
the follower chooses the best action for the leader; whereas in the second one,
the leader is pessimistic and believes that the follower could choose the worst
action for the leader. These behaviors lead to the following broadly studied
problems, originally named generalized Stackelberg problems (see [66]):

• strong Stackelberg problem, also called optimistic Stackelberg or optimistic
bilevel optimization problem (see, for example, [18, 51, 144, 79, 75, 32, 146,
33, 28] and references therein)

s-SP :

maxx∈X supy∈M(x) L(x, y)

whereM(x) is defined in (2.6),
(2.17)

• weak Stackelberg problem, also called pessimistic Stackelberg or pessimistic
bilevel optimization problem (see, for example, [107, 86, 80, 89, 1, 150, 34,
78], and references therein)

w-SP :

maxx∈X infy∈M(x) L(x, y)

whereM(x) is defined in (2.6).
(2.18)
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2. Subgame perfect Nash equilibria in a continuous setting

Definition 2.2.10 A leader’s action x̄ ∈ X is said to be strong Stackelberg
solution (or optimistic solution) if

x̄ ∈ Arg max
x∈X

sup
y∈M(x)

L(x, y),

that is, if x̄ is a solution of s-SP .
An action profile (x̄, ȳ) ∈ X × Y is said to be strong Stackelberg equilibrium (or
optimistic equilibrium) if

x̄ ∈ Arg max
x∈X

sup
y∈M(x)

L(x, y) and ȳ ∈ Arg max
y∈M(x̄)

L(x̄, y).

Definition 2.2.11 A leader’s action x̄ ∈ X is said to be weak Stackelberg
solution (or pessimistic solution) if

x̄ ∈ Arg max
x∈X

inf
y∈M(x)

L(x, y),

that is, if x̄ is a solution of w-SP .
An action profile (x̄, ȳ) ∈ X × Y is said to be weak Stackelberg equilibrium (or
pessimistic equilibrium) if

x̄ ∈ Arg max
x∈X

inf
y∈M(x)

L(x, y) and ȳ ∈M(x̄).

Regarding the existence of strong Stackelberg and weak Stackelberg solutions,
the following two results show how the strong Stackelberg problem is more
tractable than the weak Stackelberg problem, in the sense that s-SP is guar-
anteed to have solutions under mild compactness and continuity assumptions,
instead for w-SP the lower semicontinuity of the follower’s best reply correspon-
dence is assumed. The proofs are presented for the sake of completeness and to
make easier to understand the connections with the SPNEs of Γ.

Proposition 2.2.12 (Proposition 3.1 and Theorem 3.1 in [74]). Let s-SP be
the strong Stackelberg problem defined in (2.17). Assume that

(i) X and Y are compact subsets of two Euclidean spaces;

(ii) L and F are upper semicontinuous on X × Y ;

(iii) for any (x, y) ∈ X × Y and any sequence (xk)k ⊆ X converging to x, there
exists a sequence (ỹk)k ⊆ Y such that

lim inf
k→+∞

F (xk, ỹk) ≥ F (x, y).

Then, s-SP has at least one strong Stackelberg solution.
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Proof. Firstly, note that M(x) 6= ∅ for any x ∈ X, since Y is compact and F
is upper semicontinuous. Let (xk)k ⊆ X be a sequence converging to x ∈ X.
Arguing as in Proposition 2.2.7, the upper semicontinuity of F and assumption
(iii) guarantee that inclusion (2.12) holds, where functions gk and g are defined
in (2.11). Therefore, by (2.11) and the definition ofM

Limsupk→+∞M(xk) ⊆M(x), (2.19)

i.e, the set-valued mapM is closed at x. Since (2.19) holds for an arbitrary se-
quence (xk)k ⊆ X converging to x ∈ X, the follower’s best reply correspondence
M is closed. Let ω : X → R ∪ {+∞} be the function defined by

w(ξ) := sup
y∈M(ξ)

L(ξ, y).

By definition of w, for any sequence (εk)k ⊆]0,+∞[ decreasing to 0, there exists
a sequence (yk)k ⊆ Y such that

L(xk, yk) ≥ w(xk)− εk,

which implies, since limk→+∞ εk = 0 and using the properties of limit superior,

lim sup
k→+∞

L(xk, yk) ≥ lim sup
k→+∞

w(xk).

Still by limit superior properties, there exists a subsequence of natural numbers
(kj)j such that

lim
j→+∞

L(xkj , ykj ) = lim sup
k→+∞

L(xk, yk) ≥ lim sup
k→+∞

w(xk). (2.20)

Since Y is compact and (ykj )j ⊆ Y , there exists a subsequence (ykjl )l ⊆ (ykj )j

converging to y0 ∈ Y . Moreover, sinceM is closed at x and ykjl ∈M(xkjl ) for
any l ∈ N where (xkjl )l is convergent to x, necessarily y0 ∈ M(x). Hence, in
light of the upper semicontinuity of L and (2.20), we get

w(x) ≥ L(x, y0) ≥ lim sup
l→+∞

L(xkjl , ykjl )

= lim
j→+∞

L(xkj , ykj ) ≥ lim sup
k→+∞

w(xk).

Therefore, w is upper semicontinuous. This, and the compactness of X, guar-
antee that Arg maxx∈X w(x) 6= ∅. So, s-SP has at least one strong Stackelberg
solution.

Remark 2.2.13 As shown in the first part of the proof of Proposition 2.2.12,
the assumptions on the follower’s payoff function F guarantee inclusion (2.19),
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i.e. that the follower’s best reply correspondence M is closed at x ∈ X. Such
a result is proved by exploiting variational convergence properties implied by
assumptions (ii)-(iii) of Proposition 2.2.12 (regarding function F ). We remind
that we could obtain the closedness of M even by using the notion of pseudo-
continuous function introduced by Morgan and Scalzo in [112] (see also [113]).
More precisely, the pseudocontinuity of F guarantees the closedness of the fol-
lower’s best reply correspondence M ([113, Theorem 3.1]) and such a notion
of pseudocontinuity, embedding an economic interpretation connected to the
continuity of the preference relations that players are endowed with (see [113,
Proposition 2.2]), is not related to variational convergence properties (see [112,
Examples 3.1 and 3.2]). Analogous arguments also apply in all the (preceding
and subsequent) results involving the closedness of the follower’s best reply cor-
respondence or of the Nash equilibrium correspondence (in the case of N ≥ 2

followers).

Proposition 2.2.14 (Proposition 4.1 in [107]). Let w-SP be the weak Stackel-
berg problem defined in (2.18). Assume that

(i) X and Y are compact subsets of two Euclidean spaces;

(ii) L and F are upper semicontinuous on X × Y ;

(iii) the follower’s best reply correspondenceM is lower semicontinuous on X.

Then, w-SP has at least one weak Stackelberg solution.

Proof. Firstly, note that M(x) 6= ∅ for any x ∈ X, since Y is compact and F
is upper semicontinuous. Let (xk)k ⊆ X be a sequence converging to x ∈ X

and let y ∈ M(x). By assumption (iii), there exists a sequence (yk)k ⊆ Y such
that (yk)k converges to y and yk ∈M(xk) for any k ∈ N. Consider the function
v : X → R ∪ {−∞} defined by

v(ξ) := inf
y∈M(ξ)

L(ξ, y).

Since yk ∈M(xk) for any k ∈ N, by definition of v and the upper semicontinuity
of L, we get

lim sup
k→+∞

v(xk) ≤ lim sup
k→+∞

L(xk, yk) ≤ L(x, y). (2.21)

Since y is arbitrarily chosen inM(x), by (2.21) it follows that

lim sup
k→+∞

v(xk) ≤ v(x),

so, v is upper semicontinuous. This, and the compactness of X, ensure that
Arg maxx∈X v(x) 6= ∅. Therefore, w-SP has at least one weak Stackelberg
solution.
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2.2 Subgame perfect Nash equilibrium

Remark 2.2.15 We note that Propositions 2.2.12 and 2.2.14 could be shown
even by exploiting directly results on the semicontinuity properties of the margi-
nal functions, proved in [79, 76]. Moreover, Propositions 2.2.12 and 2.2.14 evi-
dently provide existence results even for strong Stackelberg equilibria and weak
Stackelberg equilibria, respectively.

Remark 2.2.16 Regarding the existence of solutions of w-SP , we stress that
assumptions of Proposition 2.2.14 involve the lower semicontinuity of the fol-
lower’s best reply correspondenceM, so the key drawbacks already highlighted
after Proposition 2.2.3 occur also in this framework. In fact, as well as the conti-
nuity (and even the bilinearity) of the follower’s payoff function does not ensure,
in general, the lower semicontinuity of the follower’s best reply correspondence
(see Example 2.2.5), the compactness of the action sets and continuity of payoff
functions do not guarantee, in general, the existence of weak Stackelberg solu-
tions, as illustrated in many examples in literature (see, for example [13], [90]
and [11, Remark 4.1]) and in the following one.

Example 2.2.7 Let X = Y = [−1, 1], L(x, y) = x + y and F (x, y) = −xy.
The follower’s best reply correspondenceM is is defined on [−1, 1] by

M(x) =


{1}, if x ∈ [−1, 0[

[−1, 1], if x = 0

{−1}, if x ∈]0, 1].

(2.22)

Since for any x ∈ [−1, 1]

min
y∈M(x)

L(x, y) =

x+ 1, if x ∈ [−1, 0[

x− 1, if x ∈ [0, 1],

then

Arg max
x∈[−1,1]

min
y∈M(x)

L(x, y) = ∅.

Hence, the weak Stackelberg solution (as well as the weak Stackelberg equilib-
rium) does not exist. Let us note that the follower’s best reply correspondence
M in (2.22) is not lower semicontinuous on [−1, 1]. As regards to the strong
Stackelberg problem, the existence of a strong Stackelberg solution is guaranteed
by Proposition 2.2.12. Let us compute such a solution. Since for any x ∈ [−1, 1]

max
y∈M(x)

L(x, y) =

x+ 1, if x ∈ [−1, 0]

x− 1, if x ∈]0, 1],
,
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2. Subgame perfect Nash equilibria in a continuous setting

then

Arg max
x∈[−1,1]

max
y∈M(x)

L(x, y) = {0}.

Therefore, the strong Stackelberg solution is x̄ = 0, and the strong Stackelberg
equilibrium is the action profile (0, 1) as {1} = Arg maxy∈M(0) L(0, y).

We emphasize that due to the impossibility of overcoming the lower semiconti-
nuity of the follower’s best reply correspondence and the consequent difficulty
of ensuring the existence of weak Stackelberg solutions, approximate solutions
have been investigated and existence and approximation results have been ob-
tained for the ε-regularized weak Stackelberg problem under mild compactness
and continuity assumptions (see, for example, [104, 82, 86, 84, 87, 94]).

As regards to the issue of selection of SPNEs, let us show how the strong
Stackelberg solutions and the weak Stackelberg solutions induce SPNEs in a
one-leader one-follower two-stage game. Let s-SP and w-SP be the strong
Stackelberg problem and the weak Stackelberg problem associated to the one-
leader one-follower two-stage game Γ = (X,Y, L, F ), defined in (2.17) and (2.18),
respectively. Starting from a strong or a weak Stackelberg solution one could de-
rive a selection of SPNE of Γ motivated according to the two different behaviours
of the leader (that is, the optimistic and pessimistic beliefs of the leader dis-
cussed at the beginning of this subsection). More precisely, by Definitions 2.2.2,
2.2.10 and 2.2.11 it follows that

(i) if the leader’s action x̄ ∈ X is a strong Stackelberg solution, then the strategy
profile (x̄, ϕ̄) ∈ X×Y X is an SPNE of Γ when ϕ̄(x) ∈ Arg maxy∈M(x) L(x, y)

for any x ∈ X;

(ii) if the leader’s action x̄ ∈ X is a weak Stackelberg solution, then the strategy
profile (x̄, ϕ̄) ∈ X×Y X is an SPNE of Γ when ϕ̄(x) ∈ Arg miny∈M(x) L(x, y)

for any x ∈ X.

By definition, strong Stackelberg solutions and weak Stackelberg solutions
involve supy∈M(x) L(x, y) and infy∈M(x) L(x, y) respectively. In light of (i) and
(ii) stated above, in order to ensure the existence of an SPNE selection induced
by strong and weak Stackelberg solutions, the equalities supy∈M(x) L(x, y) =

maxy∈M(x) L(x, y) and infy∈M(x) L(x, y) = miny∈M(x) L(x, y) must hold for any
x ∈ X, respectively. In the the following two results we show that such a re-
quirement does not entail any additional assumption for the SPNEs generated by
strong Stackelberg solutions (with respect to assumptions of Proposition 2.2.12
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2.2 Subgame perfect Nash equilibrium

ensuring the existence of such solutions), whereas additional continuity condi-
tions are assumed for the SPNEs generated by weak Stackelberg solutions (with
respect to assumptions of Proposition 2.2.14 guaranteeing the existence of such
solutions) and we emphasize that, in spite of this, the requirement of lower
semicontinuity of the follower’s best reply correspondence cannot be overcome.

Proposition 2.2.17. Let Γ = (X,Y, L, F ) be a one-leader one-follower two-
stage game and s-SP be the associated strong Stackelberg problem defined in
(2.17). If all the assumptions of Proposition 2.2.12 are satisfied, then Γ has at
least one SPNE induced by a strong Stackelberg solution, i.e. the pair (x̄s, ϕ̄s) ∈
X × Y X where

x̄s is a solution of s-SP and ϕ̄s(x) ∈ Arg max
y∈M(x)

L(x, y) for any x ∈ X,

is well-defined.

Proof. Firstly, note that the existence of a strong Stackelberg solution x̄s ∈
X is guaranteed by Proposition 2.2.12. Reviewing the beginning of the proof
of Proposition 2.2.12, inclusion (2.19) showed that the follower’s best reply
correspondence M is a closed set-valued map. Hence, M(x) is closed for any
x ∈ X and, since Y is compact,M(x) is compact for any x ∈ X. Then, in light
of the upper semicontinuity of L, the equality

sup
y∈M(x)

L(x, y) = max
y∈M(x)

L(x, y)

holds for any x ∈ X and result is proved.

Proposition 2.2.18. Let Γ = (X,Y, L, F ) be a one-leader one-follower two-
stage game and w-SP be the associated weak Stackelberg problem defined in
(2.18). Assume that all the hypotheses of Proposition 2.2.14 are satisfied and
that

(i) L(x, ·) is lower semicontinuous on Y , for any x ∈ X;

(ii) for any (x, y) ∈ X × Y and any sequence (xk)k ⊆ X converging to x, there
exists a sequence (ỹk)k ⊆ Y such that

lim inf
k→+∞

F (xk, ỹk) ≥ F (x, y).

Then, Γ has at least one SPNE induced by a weak Stackelberg solution, i.e. the
pair (x̄w, ϕ̄w) ∈ X × Y X where

x̄w is a solution of w-SP and ϕ̄w(x) ∈ Arg min
y∈M(x)

L(x, y) for any x ∈ X,

is well-defined.

25



2. Subgame perfect Nash equilibria in a continuous setting

Proof. Firstly, note that the existence of a weak Stackelberg solution x̄w ∈ X
is ensured by Proposition 2.2.14. Arguing as at the beginning of Proposi-
tion 2.2.12, the upper semicontinuity of F and assumption (ii) guarantee that
the follower’s best reply correspondenceM is a closed set-valued map. Hence,
M(x) is closed for any x ∈ X and, since Y is compact, M(x) is compact for
any x ∈ X. Then, by assumption (i), the equality

inf
y∈M(x)

L(x, y) = min
y∈M(x)

L(x, y)

holds for any x ∈ X and result is proved.

Let us compute the selections of SPNEs induced by strong and weak Stack-
elberg solutions in the games of Examples 2.2.5 and 2.2.7

Example 2.2.8 Let Γ be the game defined in Example 2.2.5. The follower’s
best reply correspondence is given in (2.7). Since

max
y∈M(x)

L(x, y) =

x− 1, if x ∈ [−1, 0[

x+ 1, if x ∈ [0, 1],
and Arg max

x∈[−1,1]

max
y∈M(x)

L(x, y) = {1},

the s-SP associated to Γ has a unique strong Stackelberg solution x̄s = 1, which
induces, according to Proposition 2.2.17, the following SPNE of Γ: the strategy
profile (1, ϕ̄s) where ϕ̄s is defined on [−1, 1] by

ϕ̄s(x) =

−1, if x ∈ [−1, 0[

1, if x ∈ [0, 1],

as {ϕ̄s(x)} = Arg maxy∈M(x) L(x, y) for any x ∈ [−1, 1].
The w-SP associated to Γ, has a unique weak Stackelberg solution x̄w = 1,
since

min
y∈M(x)

L(x, y) =

x− 1, if x ∈ [−1, 0]

x+ 1, if x ∈]0, 1],
and Arg max

x∈[−1,1]

min
y∈M(x)

L(x, y) = {1},

which induces, though Γ does not satisfy the assumptions of Proposition 2.2.18,
the following SPNE of Γ: the strategy profile (1, ϕ̄w) where ϕ̄w is defined on
[−1, 1] by

ϕ̄w(x) =

−1, if x ∈ [−1, 0]

1, if x ∈]0, 1],

since {ϕ̄w(x)} = Arg miny∈M(x) L(x, y) for any x ∈ [−1, 1]. As pointed out in
Example 2.2.5, we remind that Γ has infinitely many SPNEs.
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2.2 Subgame perfect Nash equilibrium

Example 2.2.9 Let Γ be the game defined in Example 2.2.7. The unique
strong Stackelberg solution of the s-SP associated to Γ is x̄s = 0 (see Exam-
ple 2.2.7) and the SPNE induced in Γ, according to Proposition 2.2.17, is the
strategy profile (0, ϕ̄s) where ϕ̄s is defined on [−1, 1] by

ϕ̄s(x) =

1, if x ∈ [−1, 0]

−1, if x ∈]0, 1],

since

Arg max
y∈M(x)

L(x, y) =

{1}, if x ∈ [−1, 0]

{−1}, if x ∈]0, 1],

whereM is defined in (2.22). As computed in Example 2.2.7, the weak Stack-
elberg solution of w-SP does not exist, hence it is not possible to select an
SPNE of Γ by exploiting the solutions of w-SP (note that Γ does not satisfy
the assumptions of Proposition 2.2.18). Moreover, the strategy profile (0, ϕ̄s) is
the unique SPNE of Γ.

We remind that the SPNEs selections induced by the strong Stackelberg
solution and the weak Stackelberg solution reflect just two (extreme) beliefs of
the leader about which actions the follower chooses inside his own set of optimal
reactions. Extending this analysis, the intermediate situation where the leader
has some information on the follower’s choice in his set of optimal actions and,
consequently, attributes a probability measure onM(x) for any x ∈ X has been
considered by Mallozzi and Morgan in [95] (see also [96]). Therefore, arguing in
the same spirit of the strong and weak Stackelberg circumstances, the solutions
of the intermediate Stackelberg problem represent another way to provide a se-
lection of SPNE in one-leader one-follower two-stage games.

Let us mention the case of N ≥ 2 followers. For a one-leader N -follower two-
stage game ΓN = (X,Y1, . . . , YN , L, F1, . . . , FN ), Stackelberg problems analo-
gous to s-SP and w-SP can be defined:

• strong hierarchical Nash equilibrium problem, also called optimistic bilevel
problem with Nash equilibrium constraints (see, for example, [151, 91, 79,
75, 74, 32, 124, 97, 71, 73] and references therein)

s-SPN :

maxx∈X sup(y1,...,yN )∈N (x) L(x, y1, . . . , yN )

where N (x) is defined in (2.3),

• weak hierarchical Nash equilibrium problem, also called pessimistic bilevel
problem with Nash equilibrium constraints (see, for example, [95, 110, 97,
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2. Subgame perfect Nash equilibria in a continuous setting

72, 77, 70] and references therein)

w-SPN :

maxx∈X inf(y1,...,yN )∈N (x) L(x, y1, . . . , yN )

where N (x) is defined in (2.3).

It is immediate to check that if N = 1, then s-SPN and w-SPN are reduced to s-
SP and w-SP , respectively. As regards to the existence of solutions, analogously
to what happens for s-SP and w-SP , we have that s-SPN is more tractable than
w-SPN (in the sense that w-SPN may fail to have a solution since, in general,
the lower semicontinuity of the Nash equilibrium correspondence N does not
hold). About the existence and selection of SPNEs of ΓN , in an analogous way
to how from strong and weak Stackelberg solutions of s-SP and w-SP can be
derived SPNE selections of Γ, one can prove that the solutions of s-SPN and
w-SPN induce selections of SPNEs in ΓN motivated according to the optimistic
or pessimistic beliefs of the leader regarding what the followers choose inside
the set of parametric Nash equilibria N (x) for any leader’s action x ∈ X.

Let ΓN be a one-leader N -follower two-stage game, where N ∈ N. Regarding
the issue of selection of SPNEs, aside from the need of overcoming the lower
semicontinuity requirement for the Nash equilibrium correspondence N (faced
successfully in the case of the SPNEs induced by strong Stackelberg solutions),
we are interested in SPNEs selection results that achieve also the following two
goals:

1. relieving the leader of knowing the Nash equilibrium correspondence;

2. providing algorithmic procedures to approach such SPNEs, especially con-
cerning the strategies chosen by the followers in the SPNEs, that allow
to overcome the difficulties due to the non-single-valuedness of the Nash
equilibrium correspondence.

We note that the ways to obtain SPNEs described up to now do not satisfy
the features mentioned above. Instead, Morgan and Patrone in [109] presented
a constructive method in order to select an SPNE in the cases of N = 1 and
N = 2 followers that positively answers to the goals (i) and (ii). Such a method,
exploiting the Tikhonov regularization, will be shown in detail at the beginning
of Chapter 5. Furthermore, in Chapter 5 we present a learning approach to
select an SPNE in one-leader one-follower two-stage games which fits (i) and
(ii) and has a behavioral interpretation linked to the costs that players face
when they deviate from their current actions, based on Caruso, Ceparano and
Morgan [23].
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Chapter 3

Uniqueness of Nash

equilibrium in normal-form

games

In the first part of Section 2.2 we investigated the issue of existence of SPNEs
when the followers’ best reaction is assumed to be unique and we mentioned that
a related arising issue concerns, evidently, the sufficient conditions ensuring the
uniqueness of the followers’ best reaction (i.e., the single-valuedness of the Nash
equilibrium correspondence). Hence, in this chapter we aim to show a result
regarding the existence of a unique Nash equilibrium in two-player normal-form
games where the action sets are (unconstrained) Hilbert spaces: when the best
reply correspondences of the players are single-valued, we present a theorem
ensuring the existence of a unique Nash equilibrium that allows the two compo-
sitions of the best reply functions to be not a contraction mapping. Moreover,
referring to Caruso, Ceparano and Morgan [24], we illustrate the implications
of such a result when we restrict to the widely investigated class of weighted
potential games, proving the (lack of) connections between Nash equilibria and
maximizers of the potential function, and providing results and examples in
both finite and infinite-dimensional setting. Finally we recall the uniqueness
result shown by Rosen in his seminal paper [132], where the action sets of the
players are constrained subsets of finite-dimensional spaces.

Let us consider a normal-form game Ω = {I, (Ai)i∈I , (Ui)i∈I} where I =

{1, . . . , N} is the set of players, Ai is the set of actions of player i ∈ I and
Ui : A1 × · · · ×AN → R is the payoff function of player i ∈ I.
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3. Uniqueness of Nash equilibrium in normal-form games

We denote by A := A1×· · ·×AN the set of action profiles and, for any i ∈ I we
denote by −i the subset of players that does not contain i, i.e. {−i} = I \ {i}.
So, an action profile a = (a1, . . . , aN ) ∈ A can be equivalently rewritten as
(ai, a−i) ∈ Ai × A−i. We denote by Bi the best reply correspondence of player
i, that is Bi is the set-valued map defined on A−i by

Bi(a−i) := Arg max
ai∈Ai

Ui(ai, a−i) ⊆ Ai, (3.1)

i.e., Bi(a−i) = {ai ∈ Ai : Ui(ai, a−i) ≥ Ui(a
′
i, a−i), for any a′i ∈ Ai}. When Bi

is (nonempty) single-valued, the function bi such that {bi(a−i)} := Bi(a−i) is
well-defined and called best reply function of player i.

Let us recall the definition of Nash equilibrium.

Definition 3.0.1 (Nash [119, 120]) An action profile a∗ = (a∗1, . . . , a
∗
N ) ∈ A is

said to be a Nash equilibrium of Ω if, for any i ∈ I

Ui(a
∗
i , a
∗
−i) ≥ Ui(ai, a∗−i) for any ai ∈ Ai.

In the following remark, an useful characterization of Nash equilibria through
the best reply correspondences is provided.

Remark 3.0.2 An action profile a∗ ∈ A is a Nash equilibrium of Ω if and only
if a∗ is a fixed point of the set-valued map B : A⇒ A defined by

B(a1, . . . , aN ) := B1(a−1)× · · · ×BN (a−N ), (3.2)

that is, if and only if a∗i ∈ Bi(a∗−i) for any i ∈ I.

Before illustrating the results on the uniqueness of Nash equilibrium we out-
lined at the beginning of the chapter, let us remind preliminarily two well-known
results about the existence of a unique solution of maximization problems. The
first one concerns with the maximization of functions defined on constrained
subsets of finite-dimensional spaces; the second one regards functions defined
on (unconstrained) Hilbert spaces. Let us consider the following maximization
problem:

P : max
a∈A

U(a),

where A is a set and U is a real-valued function defined on A. A point a∗ ∈ A
is said to be a solution of P if U(a∗) = maxa∈A U(a).

Proposition 3.0.3. Assume that

(i) A is a compact and convex subset of a Euclidean space;

(ii) U is lower semicontinuous on A;
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3.1 Uniqueness result in games with Hilbert spaces action sets

(iii) U is strictly concave on A, i.e., for any a′, a′′ ∈ A with a′ 6= a′′ and any
t ∈]0, 1[

U(ta′ + (1− t)a′′) > tU(a′) + (1− t)U(a′′).

Then, the problem P has a unique solution.

The result proved in Proposition 3.0.3 holds also for extended real-valued
functions defined over subsets of topological spaces (see, for example, [7, Sec-
tion 2.1] and [29, Chapter 1]).

Remark 3.0.4 If A is not compact, the continuity and the strict concavity of
U do not even guarantee the existence of a solution. For example, let A = R
and U(a) = −ea for any a ∈ R. Assumptions of Proposition 3.0.3 are satisfied,
except the compactness of A, and U has not a maximizer over R.

Therefore, in order to ensure the existence of a unique solution of P when
A is an unconstrained set, the strict concavity of U is not sufficient: a stronger
concavity assumption is required.

Proposition 3.0.5. Assume that

(i) A is a Hilbert space with norm ‖·‖A;

(ii) U is lower semicontinuous on A;

(iii) U is strongly concave on A, i.e., there exists m > 0 such that for any
a′, a′′ ∈ A and any t ∈ [0, 1]

U(ta′ + (1− t)a′′) ≥ tU(a′) + (1− t)U(a′′) +mt(1− t)‖a′ − a′′‖.

Then, the problem P has a unique solution.

We mention that the result in Proposition 3.0.5 can be extended to the case
of extended real-valued supercoercive functions (see, for example, [14, Corollar-
ies 11.15 and 11.16]).

3.1 Uniqueness result in games with Hilbert spa-

ces action sets

In this section we consider a game Ω = {I, (Ai)i∈I , (Ui)i∈I} where I = {1, 2}
and the actions set of player i, namely Ai, is assumed to be a real Hilbert space,
equipped with inner product (·, ·)Ai and associated norm ‖·‖Ai , for any i ∈ I.
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3. Uniqueness of Nash equilibrium in normal-form games

The set of actions profiles A = A1 × A2 is understood as a Hilbert space with
inner product (·, ·)A defined by

(a, a′)A :=

N∑
i=1

(ai, a
′
i)Ai

for any a, a′ ∈ A and associated norm ‖·‖A. Firstly, we remind some usual no-
tations in Functional Analysis, following for example [92, 37, 10], and we state
some properties of the best reply correspondences of the two players in Ω.

Let S and T be normed vector spaces equipped with the norms ‖·‖S and ‖·‖T
respectively, and let L(S, T ) be the normed vector space of all continuous linear
operators from S to T , with the usual norm ‖Λ‖L(S,T ) := sup{‖Λ(s)‖T : ‖s‖S =

1}. In particular, when T = R, the space of all continuous linear opera-
tors from S to R is denoted by S∗, that is S∗ = L(S,R), and the dual-
ity operation between S∗ and S is denoted by 〈·, ·〉S∗×S . When f : S → T

is a twice differentiable function on S, we denote by Df : S → L(S, T ) and
D2f : S → L(S,L(S, T )), respectively, the Fréchet derivative of f and the second
Fréchet derivative of f , and by Df(s) ∈ L(S, T ) and D2f(s) ∈ L(S,L(S, T ))

we mean, respectively, the derivative of f at s ∈ S and the second deriva-
tive of f at s ∈ S. If S = S1 × · · · × Sn and i, j ∈ {1, . . . , n}, we denote
by Dsif : S → L(Si, T ) the partial derivative of f with respect to si, and by
Dsj (Dsif) : S → L(Sj ,L(Si, T )) and D2

sif : S → L(Si,L(Si, T )) we denote, re-
spectively, the second partial derivative of f with respect to si and sj and the
second partial derivative of f with respect to si (obviously, Dsi(Dsif) = D2

sif

for any i ∈ {1, . . . , n}). In light of what above, if g is a twice differentiable func-
tion from A = A1×A2 to R then Dajg(a) ∈ A∗j and Dak(Dajg)(a) ∈ L(Ak, A

∗
j ),

for any j, k ∈ I and a ∈ A. Finally, let GL(S, T ) ⊆ L(S, T ) be the set of all
bijective continuous linear operators from S to T with continuous (and linear)
inverse. If f ∈ GL(S, T ), we denote by f−1 : T → S the inverse operator of f ,
where f−1 ∈ L(T, S).

Let i ∈ I. In the following we use:

(Ci)

 Ui is strongly concave in the i-th argument, i.e. the function Ui(·, a−i)
is strongly concave on Ai, for any a−i ∈ A−i.

Condition (Ci) guarantees that the best reply correspondence Bi defined
in (3.1) is single-valued (in light of Proposition 3.0.5), so it is well-defined
the best reply function bi : A−i → Ai such that {bi(a−i)} := Bi(a−i) for any
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3.1 Uniqueness result in games with Hilbert spaces action sets

a−i ∈ A−i. Nevertheless, Bi may be single-valued even if Ui is not strongly
concave in the i-th argument (this is the case, for example, of Ui defined on
R2 by Ui(a1, a2) = −a4

1 − a4
2). Clearly a function could be strongly concave in

any argument and, at the same time, not concave on A (take, for example, Ui
defined on R2 by Ui(a1, a2) = −a2

1 − a2
2 − 5a2

1a
2
2).

Moreover, we use:

(Di)


Ui is a twice continuously differentiable function on A and D2

aiUi(a) ∈
GL(Ai, A

∗
i ) for any a ∈ A, i.e. there exists the inverse operator

[D2
aiUi(a)]−1 ∈ L(A∗i , Ai) for any a ∈ A.

Proposition 3.1.1. Let i ∈ I and assume (Ci) and (Di). Then the best reply
function bi is continuously differentiable on A−i. Moreover, if λi ∈ [0,+∞[,
where

λi := sup
a∈A
‖[D2

aiUi(a)]−1 ◦Da−i(DaiUi)(a)‖L(A−i,Ai)

then bi is Lipschitz continuous with Lipschitz constant no greater than λi.

Proof. The arguments are similar to those used, for example, in [108], where
algorithms were constructed in order to approach a saddle point of zero-sum
games.
Firstly, note that the function bi is well-defined by (Ci). Let a−i ∈ A−i. In light
of the differentiability of Ui on A and by definition of best reply function, the
pair (bi(a−i), a−i) satisfies the equation:

DaiUi(bi(a−i), a−i) = 0.

Hence, by the Implicit Function Theorem, bi is continuously differentiable on
A−i. Furthermore, Dbi(a−i) ∈ L(A−i, Ai) and

Dbi(a−i) = −[D2
aiUi(bi(a−i), a−i)]

−1 ◦ [Da−i(DaiUi)(bi(a−i), a−i)]. (3.3)

Thus, supa−i∈A−i ‖Dbi(a−i)‖L(A−i,Ai)
≤ λi. By the Mean Value Inequality

‖bi(a′−i)− bi(a′′−i)‖Ai ≤ sup
t∈[0,1]

‖Dbi(ta′−i + (1− t)a′′−i)‖L(A−i,Ai)
‖a′−i − a′′−i‖A−i

≤ λi‖a′−i − a′′−i‖A−i

for any a′−i, a′′−i ∈ A−i. Therefore, if λi ∈ [0,+∞[, then bi is Lipschitz continu-
ous with Lipschitz constant no greater that λi.

Let i ∈ I and define the function βi : Ai → Ai by

βi(ai) := (bi ◦ b−i)(ai) = bi(b−i(ai)), for any ai ∈ Ai. (3.4)
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3. Uniqueness of Nash equilibrium in normal-form games

Remark 3.1.2 An action āi ∈ Ai is a fixed point of βi on Ai if and only if
(āi, b−i(āi)) is a Nash equilibrium of Ω.

We conclude the analysis of the best replies properties with the following
result on the derivative of βi.

Proposition 3.1.3. Assume (Ci) and (Di) for any i ∈ I. Then, for any i ∈ I,
the function βi = bi ◦ b−i is continuously differentiable on Ai and, for any
ai ∈ Ai, Dβi(ai) ∈ L(Ai, Ai) is defined by

Dβi(ai) =[D2
aiUi(βi(ai), b−i(ai))]

−1 ◦ [Da−i(DaiUi)(βi(ai), b−i(ai))]

◦ [D2
a−iU−i(ai, b−i(ai))]

−1 ◦ [Dai(Da−iU−i)(ai, b−i(ai))].
(3.5)

Moreover, if λ1, λ2 ∈ [0,+∞[, then βi is Lipschitz continuous with Lipschitz
constant no greater than λ, where

λ := λ1 · λ2. (3.6)

Proof. By the chain rule, βi is continuously differentiable on Ai, Dβi(ai) =

Dbi(b−i(ai)) ◦Db−i(ai) for any ai ∈ Ai, and equality in (3.5) follows by (3.3).
Furthermore,

sup
ai∈Ai

‖Dβi(ai)‖L(Ai,Ai)
≤ λ1 · λ2 = λ,

which implies, as a consequence of the Mean Value Inequality, that

‖βi(a′i)− βi(a′′i )‖Ai ≤ λ‖a
′
i − a′′i ‖Ai , for any a

′
i, a
′′
i ∈ Ai. (3.7)

Hence, if λ1, λ2 ∈ [0,+∞[, then βi is Lipschitz continuous with Lipschitz con-
stant no greater that λ.

Remark 3.1.4 Propositions 3.1.1 and 3.1.3 hold even replacing assumption
(Ci) with the single-valuedness of the best reply correspondence Bi (which is
weaker than (Ci) as highlighted after the definition of assumption (Ci), but it
does not entail explicit conditions on the payoff funtions).

Let λ be defined as in (3.6) and βi be defined as in (3.4), for any i ∈ I.
We discuss the existence and uniqueness of Nash equilibrium by distinguishing
two cases: firstly we analyze the situation where λ < 1 illustrating a known
uniqueness result, then we prove a uniqueness theorem in the case λ ≥ 1 by
means of an additional assumption.

When λ < 1, βi is a contraction for any i ∈ I. Hence, by using the Con-
traction Mapping Theorem, a well-known Nash equilibrium uniqueness result is
obtained (proved also by Li and Başar in [69, Theorem 1]).
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Theorem 3.1.5. Assume (Ci) and (Di) for any i ∈ I, and λ ∈ [0, 1[. Then Ω

has a unique Nash equilibrium.

Proof. Since λ < 1 and in light of (3.7), the function βi is a contraction for any
i ∈ I. Fixed i ∈ I, by the Contraction Mapping Theorem (see, for example, [9,
Theorem 7 p. 244]) there exists a unique fixed point of βi. Hence, the existence
of a unique Nash equilibrium of Ω follows by Remark 3.1.2.

Remark 3.1.6 When A1 = A2 = R, the strict diagonal dominance condition
(used in [47] in the case where the actions sets are A1 = A2 = [0,+∞[) is
equivalent to require |Dai(Da−iUi)(a)/D2

aiUi(a)| < 1 for any a ∈ R2 and i ∈ I,
which implies λ ≤ 1.

When λ ≥ 1, βi could be not a contraction. Nevertheless, the existence of
one and only one Nash equilibrium of the game Ω will be guaranteed adding the
following hypothesis:

(G)


There exist i0 ∈ I and γi0 ∈]1,+∞[ such that, for any ψ ∈
Ai0 , a

′
i0
, a′′i0 ∈ Ai0 and a−i0 ∈ A−i0 , we have:

(Gi0(a′i0 , a
′′
i0 , a−i0)ψ,ψ)Ai0 ≥ γi0‖ψ‖

2
Ai0

;

where Gi(a′i, a′′i , a−i) : Ai → Ai is the operator defined as:

Gi(a
′
i, a
′′
i , a−i) :=[D2

aiUi(a
′
i, a−i)]

−1 ◦Da−i(DaiUi)(a
′
i, a−i)

◦ [D2
a−iU−i(a

′′
i , a−i)]

−1 ◦Dai(Da−iU−i)(a
′′
i , a−i),

for any a′i, a′′i ∈ Ai, a−i ∈ A−i and i ∈ I.

Remark 3.1.7 When A1 = A2 = R, then for any i ∈ I the derivatives D2
aiUi

and Da−i(DaiUi) can be identified with the usual derivatives of real-valued
functions defined on R2,

[
D2
aiUi(a)

]−1 exists provided that D2
aiUi(a) 6= 0, and[

D2
aiUi(a)

]−1
= 1/D2

aiUi(a). Then (G) holds if there exist i ∈ I and γi > 1

such that

Gi(a
′
i, a
′′
i , a−i) =

Da−i(DaiUi)(a
′
i, a−i)Dai(Da−iU−i)(a

′′
i , a−i)

D2
aiUi(a

′
i, a−i)D

2
a−iU−i(a

′′
i , a−i)

≥ γi,

for any a′i, a′′i ∈ Ai and a−i ∈ A−i.

Let us note that γi0 in hypothesis (G), and λ are related. Indeed:

Lemma 3.1.8. If (G) holds, then λ ≥ γi0 .
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3. Uniqueness of Nash equilibrium in normal-form games

Proof. Let ψ ∈ Ai0 \ {0}, a′i0 , a
′′
i0
∈ Ai0 and a−i0 ∈ A−i0 . Hypothesis (G)

ensures that
(Gi0(a′i0 , a

′′
i0 , a−i0)ψ,ψ)Ai0 ≥ γi0‖ψ‖

2
Ai0

. (3.8)

In light of the Cauchy-Schwarz inequality and the definition of operator norm

(Gi0(a′i0 , a
′′
i0 , a−i0)ψ,ψ)Ai0 ≤ ‖Gi0(a′i0 , a

′′
i0 , a−i0)‖L(Ai0 ,Ai0 )‖ψ‖

2
Ai0

. (3.9)

Hence, by (3.8)-(3.9) and the definition of λ

γi0‖ψ‖
2
Ai0
≤ ‖Gi0(a′i0 , a

′′
i0 , a−i0)‖L(Ai0 ,Ai0 )‖ψ‖

2
Ai0
≤ λ‖ψ‖2Ai0 .

Therefore, γi0 ≤ λ.

Remark 3.1.9 Let us emphasize that if (G) holds, then λ > 1.

Now, we introduce the function gδi : Ai → Ai defined by

gδi (ai) := δai − (δ − 1)βi(ai), (3.10)

where δ ∈ R and i ∈ I. When δ > 1 we call such a function δ-inverse convex
combinator since in this case ai is a convex combination of gδi (ai) and βi(ai),
for any ai ∈ Ai: this justifies the use of term “inverse”.

Lemma 3.1.10. Let δ 6= 1. A point āi is a fixed point of gδi on Ai if and only
if āi is a fixed point of βi on Ai.

Proof. By definition, āi ∈ Ai is a fixed point of gδi on Ai if and only if gδi (āi) = āi,
i.e., δāi − (δ − 1)βi(āi) = āi which is equivalent to βi(āi) = āi being δ 6= 1.

Now we prove our main result, which ensures the uniqueness of Nash equi-
librium for the class of games which satisfy hypoteses (Ci), (Di) and (G).

Theorem 3.1.11. Assume (Ci) and (Di) for any i ∈ I, (G) and λ ∈]1,+∞[.
Then Ω has one and only one Nash equilibrium.

Proof. Let λ ∈]1,+∞[ and let i0 ∈ I and γi0 > 1 be such that (G) holds. Let
gδi0 be the δ-inverse convex combinator where

δ =
λ2 − γi0

λ2 − 2γi0 + 1
. (3.11)

Note that λ2 − 2γi0 + 1 > 0 by Lemma 3.1.8 since λ > 1 and that δ > 1 since
γi0 > 1. By Remark 3.1.2 and Lemma 3.1.10, Ω has a unique Nash equilibrium
if and only if gδi0 has a unique fixed point on Ai0 . Let a′i0 , a

′′
i0
∈ Ai0 . Then

‖gδi0(a′i0)−gδi0(a′′i0)‖2Ai0 = ‖δ[a′i0 − a
′′
i0 ]− (δ − 1)[βi0(a′i0)− βi0(a′′i0)]‖2Ai0

=δ2‖a′i0 − a
′′
i0‖

2
Ai0

+ (δ − 1)2‖βi0(a′i0)− βi0(a′′i0)‖2Ai0 (3.12)

− 2δ(δ − 1)(βi0(a′i0)− βi0(a′′i0), a′i0 − a
′′
i0)Ai0 .
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3.1 Uniqueness result in games with Hilbert spaces action sets

By applying the Mean Value Theorem for real-valued functions to the function
ϕ defined by

ϕ(θ) := (βi0(θa′i0 + (1− θ)a′′i0), a′i0 − a
′′
i0)Ai0 , for any θ ∈ [0, 1],

there exists t ∈]0, 1[ such that

(βi0(a′i0)−βi0(a′′i0), a′i0 − a
′′
i0)Ai0

= (Dβi0(ta′i0 + (1− t)a′′i0)(a′i0 − a
′′
i0), a′i0 − a

′′
i0)Ai0 .

(3.13)

Note that Dβi0(ai0) = G(βi0(ai0), ai0 , b−i0(ai0)) by (3.5). Hence, hypothesis
(G) and condition (3.13) imply that

(βi0(a′i0)− βi0(a′′i0), a′i0 − a
′′
i0)Ai0 ≥ γi0‖a

′
i0 − a

′′
i0‖

2
Ai0

, (3.14)

that is βi0 is strongly monotone with constant γi0 . Thus, in light of (3.12),
(3.14) and (3.7) we have

‖gδi0(a′i0)− gδi0(a′′i0)‖2Ai0 ≤
[
δ2 + (δ − 1)2λ2 − 2δ(δ − 1)γi0

]
‖a′i0 − a

′′
i0‖

2
Ai0

.

Observe that (0 ≤)
[
δ2 + (δ − 1)2λ2 − 2δ(δ − 1)γi0

]
< 1 or, equivalently, that

δ + 1 + (δ − 1)λ2 − 2δγi0 < 0. (3.15)

Indeed, factoring out δ in inequality (3.15), we get

δ(λ2 − 2γi0 + 1) < λ2 − 1,

that is satisfied since γi0 > 1.
Thus, gδi0 defined in (3.10) is a contraction when δ is given by (3.11) and therefore
Ω has one and only one Nash equilibrium.

Remark 3.1.12 Existence of one and only one Nash equilibrium could be still
obtained if we substitute hypotheses (G) and (Ci) with the less restrictive as-
sumptions:

(G′)



There exist i0 ∈ I and γi0 ∈]1,+∞[ such that βi0 is a strongly mono-
tone operator with coefficient γi0 , that is for any a′i0 , a

′′
i0
∈ Ai0 , we

have:

(βi0(a′i0)− βi0(a′′i0), a′i0 − a
′′
i0)Ai0 ≥ γi0‖a

′
i0 − a

′′
i0‖

2
Ai0

.

and
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3. Uniqueness of Nash equilibrium in normal-form games

(C′i)
{

The best reply correspondence Bi is single-valued.

Indeed, as shown in the proof of Theorem 3.1.11, hypothesis (G) implies in-
equality (3.14) and, thus, assumption (G′). Furthermore, as emphasized after
the definition of assumption (Ci), the strong concavity of Ui in the i-th argument
ensures the single-valuedness of the best reply correspondence Bi.
We stated Theorem 3.1.11 requiring hypothesis (G) and (Ci) because we are
interested in finding explicit conditions on the payoff functions.

Remark 3.1.13 In Theorem 3.1.11 hypothesis (G) cannot be dropped, as
shown in the following example.

Example 3.1.1 Let A1 = A2 = R, and U1(a1, a2) = −ea21 + 3a1a2 and
U2(a1, a2) = −a2

2/2+3a1a2. Since D2
a1U1(a) = −2ea

2
1(1+2a2

1), D2
a2U2(a) = −1

and Da2(Da1U1)(a) = Da1(Da2U2)(a) = 3, for any a ∈ R2, then

λ = 3 · sup
a1∈R

3

|−2ea
2
1(1 + 2a2

1)|
=

9

2

and G1(1, a′′1 , a2) = G2(a′2, a
′′
2 , 1) = 9/(6e) < 1 for any a′′1 , a2, a

′
2, a
′′
2 ∈ R.

Hence, for any i ∈ I there does not exist γi > 1 such that (G) holds. Such a
game has the following three Nash equilibria: (−k,−3k), (0, 0), (k, 3k), with
k =
√

ln 9− ln 2.

Remark 3.1.14 The following example illustrates a game which satisfies the as-
sumptions of Theorem 3.1.11 and where best reply functions and the Nash equi-
libria could not be computed explicitly. However, by applying Theorem 3.1.11,
one can conclude that the game has one and only one Nash equilibrium.

Example 3.1.2 Let Ω be the game where A1 = A2 = R and the payoff
functions are defined by

U1(a1, a2) = −a2
1 − cos a1 sin a2 − 5a1a2,

U2(a1, a2) =
1

1 + a2
2

− 4a2
2 + a2 − 12a1a2.

The function U1 is strongly concave in a1 since D2
a1U1(a) = −2 + cos a1 sin a2 ≤

−1 for any (a1, a2) ∈ R2, and the function U2 is strongly concave in a2 since
D2
a2U2(a) = [(6a2

2 − 2)/(1 + a2
2)3] − 8 ≤ −15/2 for any (a1, a2) ∈ R2. So (Ci)

and (Di) hold, for any i ∈ I. Moreover

4

3
≤ λ1 = sup

a∈R2

∣∣∣∣Da2(Da1U1)(a)

D2
a1U1(a)

∣∣∣∣ = sup
a∈R2

5− sin a1 cos a2

2− cos a1 sin a2
≤ 6,

λ2 = sup
a∈R2

∣∣∣∣Da1(Da2U2)(a)

D2
a2U2(a)

∣∣∣∣ = sup
a∈R2

6(a2
2 + 1)3

4a6
2 + 12a4

2 + 9a2
2 + 5

=
8

5
.
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3.1 Uniqueness result in games with Hilbert spaces action sets

Therefore λ > 1, as λ = λ1λ2 ∈ [32/15, 48/5]. Furthermore

G1(a′1, a
′′
1 , a2) =

(5− sin a′1 cos a2)[6(a2
2 + 1)3]

(2− cos a′1 sin a2)(4a6
2 + 12a4

2 + 9a2
2 + 5)

≥ inf
a∈R2

5− sin a1 cos a2

2− cos a1 sin a2
· inf
a∈R2

6(a2
2 + 1)3

4a6
2 + 12a4

2 + 9a2
2 + 5

≥ 4

3
· 6

5
=

8

5
> 1,

for any a′1, a′′1 ∈ R and a2 ∈ R. Hence, (G) is satisfied by taking i0 = 1 and
γi0 = 8/5, so Ω has a unique Nash equilibrium in light of Theorem 3.1.11.

3.1.1 Weighted potential games case

Now, following the work of Caruso, Ceparano and Morgan [24], we focus on the
class of two-player weighted potential games (introduced by Monderer and Shap-
ley in [105], see also [39, 147, 17, 98], and the survey [93] and references therein)
and we illustrate some consequences and applications of the results previously
shown. Preliminarily, let us recall the definition and the characterizations of
weighted potential games.
The game Ω = {I, (Ai)i∈I , (Ui)i∈I} where I = {1, 2} is said to be a weighted po-
tential game (see [105, Section 2]) if there exist a vector w = (w1, w2) ∈ R2

++ :=

{(w1, w2) ∈ R2 : w1 > 0, w2 > 0} and a real-valued function P defined on A

such that

Ui(ai, a−i)− Ui(a′i, a−i) = wi(P (ai, a−i)− P (a′i, a−i)),

for any ai, a
′
i ∈ Ai and a−i ∈ A−i, for any i ∈ I. The function P is called

weighted potential (or w-potential for short) of Ω. When w1 = w2 = 1, the
game Ω becomes a potential game and P is a potential.

A useful characterization of weighted potential games is recalled in the next
proposition.

Proposition 3.1.15 (Theorem 2.1 in [39]). Ω is a weighted potential game with
w-potential P and weights (wi)i∈I if and only if for any i ∈ I

Ui(a) = wiP (a) + hi(a−i) for any a ∈ A, (3.16)

where hi : A−i → R.

From Proposition 3.1.15 we derive the following result.

Proposition 3.1.16 (Proposition 2 in [24]). Ω is a weighted potential game if
and only if there exists c : A→ R such that for any i ∈ I

Ui(a) = fi(ai) + gi(a−i) + wic(a), for any a ∈ A, (3.17)
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3. Uniqueness of Nash equilibrium in normal-form games

where fi : Ai → R and gi : A−i → R.

Proof. If Ω is a weighted potential game, then the equality (3.17) follows im-
mediately from Proposition 3.1.15.
Vice versa, let i ∈ I and let c : A→ R, fi : Ai → R and gi : A−i → R such that
(3.17) holds. Then, Ui(a) can be expressed as in equation (3.16) with

P (a) = c(a) +
f1(a1)

w1
+
f2(a2)

w2
, for any a ∈ A

hi(a−i) = gi(a−i)−
wi
w−i

f−i(a−i), for any a−i ∈ A−i and i ∈ I.

Thus, Ω is a weighted potential game by Proposition 3.1.15.

The following result is a direct consequence of Proposition 3.1.15 and gives a
necessary condition for a game to be a weighted potential game when the payoff
functions are twice-continuously differentiable.

Corollary 3.1.17. If Ω is a weighted potential game and the payoff functions
are twice continuously differentiable then, for any i ∈ I there exists αi > 0 such
that

Da−i(DaiUi) = αiDa−i(DaiU−i).

As regards to the Nash equilibria of weighted potential games, firstly it is
worth to note that the set of Nash equilibria of a weighted potential game with
w-potential P coincides with the set of Nash equilibria of a game in which all
the payoff functions of the players are replaced by the w-potential P (see [105,
Lemma 2.1]). Moreover, literature results about the existence and the unique-
ness of Nash equilibria in weighted potential games exploit the property that
any maximum point of the w-potential P is a Nash equilibrium of the game,
but the converse is not true in general: it may exist a Nash equilibrium of the
weighted potential game that is not a maximum point of P . Nevertheless, if
we assume that A is a convex set and P is bounded and concave on A and
continuously differentiable on the interior of A, then any Nash equilibrium of
the potential game is also a maximum point of P (see [121, Corollary of The-
orem 1]). If, in addition, P is strictly concave and attains a maximum, then
the weighted potential game has one and only one Nash equilibrium which co-
incides with the maximum point of P . The latter result is implied by Rosen
uniqueness result [132, Theorem 2]: in fact, if w-potential P is strictly concave
then the diagonal strict concavity condition holds (see also Theorem 3.2.2 and
Remark 3.2.3 in the next section). However, the strict concavity of P is a very
strong assumption and, incidentally, it is not sufficient to ensure by itself the
existence of a maximum point of P if the actions sets are not compact.
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3.1 Uniqueness result in games with Hilbert spaces action sets

However, by using Theorem 3.1.11, we present a result concerning the existence
of a unique Nash equilibrium in weighted potential games without assuming
neither the existence of a maximum point of the w-potential P nor the strict
concavity of P .
Let Ω = {I, (Ai)i∈I , (Ui)i∈I} be a weighted potential game with w-potential P .
In light of Proposition 3.1.15, in a weighted potential games setting, conditions
(Ci) and (Di) for any i ∈ I, and condition (G) stated before are equivalent to
the following ones, respectively

(C)


P is strongly concave in the i-th argument for any i ∈ I, i.e. the
function P (·, a−i) is strongly concave in Ai, for any a−i ∈ A−i and the
function P (ai, ·) is strongly concave in A−i, for any ai ∈ Ai;

(D)


P is a twice continuously differentiable function on A and D2

aiP(a) ∈
GL(Ai, A

∗
i ) for any a ∈ A and i ∈ I, i.e. there exists the inverse

operator [D2
aiP(a)]−1 ∈ L(A∗i , Ai) for any a ∈ A and i ∈ I;

and

(H)


There exist i0 ∈ I and γi0 ∈]1,+∞[ such that, for any ψ ∈
Ai0 , a

′
i0
, a′′i0 ∈ Ai0 and a−i0 ∈ A−i0 , we have:

(Hi0(a′i0 , a
′′
i0 , a−i0)ψ,ψ)Ai0 ≥ γi0‖ψ‖

2
Ai0

;

where Hi(a
′
i, a
′′
i , a−i) : Ai → Ai is the operator defined as:

Hi(a
′
i, a
′′
i , a−i) :=[D2

aiP(a′i, a−i)]
−1 ◦Da−i(DaiP)(a′i, a−i)

◦ [D2
a−iP(a′′i , a−i)]

−1 ◦Dai(Da−iP)(a′′i , a−i),

for any a′i, a′′i ∈ Ai, a−i ∈ A−i and i ∈ I.
From Theorem 3.1.11 it follows immediately:

Corollary 3.1.18 (Theorem 1 in [24]). Let Ω be a weighted potential game with
w-potential P and assume (C), (D), (H) and λ ∈]1,+∞[. Then Ω has one and
only one Nash equilibrium.

The next proposition explores how the hypotheses of Corollary 3.1.18 are
related to strict concavity and to the existence of maximum points of the w-
potential, when A1 = A2 = R.

Proposition 3.1.19 (Proposition 6 in [24]). Under the assumptions of Corol-
lary 3.1.18 with A1 = A2 = R, P does not admit a maximum point on R2
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3. Uniqueness of Nash equilibrium in normal-form games

(and, therefore, the unique Nash equilibrium of Ω is not a maximum point of
the w-potential P ) and P is not strictly concave.

Proof. First, let i0 ∈ I and γi0 > 1 be such that (H) holds and let a =

(ai0 , a−i0) ∈ R2. Choosing a′i0 = a′′i0 = ai0 , by Remark 3.1.7:

Hi0(ai0 , ai0 , x−i0) =
[Da−i0

(Dai0
P)(ai0 , a−i0)]2

D2
ai0
P(ai0 , a−i0)D2

a−i0
P(ai0 , a−i0)

≥ γi0 > 1,

that is

D2
ai0
P(ai0 , a−i0)D2

a−i0
P(ai0 , a−i0)− [Da−i0

(Dai0
P)(ai0 , a−i0)]2 < 0,

i.e., the Hessian matrix of P is indefinite at a. As a is arbitrary, we have that
P does not attain a maximum in R2 and P is not strictly concave on R2.

Remark 3.1.20 The following example illustrates a game which satisfies the as-
sumptions of Corollary 3.1.18 and where best reply functions and the Nash equi-
libria could not be computed explicitly. However, by applying Corollary 3.1.18
and Proposition 3.1.19, one can conclude that the game has one and only one
Nash equilibrium and that such a Nash equilibrium is not a maximum point of
the w-potential, respectively.

Example 3.1.3 Let Ω be a weighted potential game with A1 = A2 = R and
P defined for any a ∈ R2 by:

P (a1, a2) =
1

1 + a2
1

+
1

1 + a2
2

− 4a2
1 + a1 − 4a2

2 + a2 − 12a1a2.

Since D2
aiP(a) ≤ −15/2 < 0 for any a ∈ A and i ∈ I, then P is strongly concave

in any argument, so (C) and (D) are satisfied. Moreover, for i ∈ I:

λi = sup
ai∈R

6(a2
i + 1)3

4a6
i + 12a4

i + 9a2
i + 5

=
8

5
;

so λ = 64/25 > 1. Finally, for any i ∈ I and a′i, a′′i , a−i ∈ R:

Hi(a
′
i, a
′′
i , a−i) =

36(a′i
2

+ 1)3(a2
−i + 1)3

(4a′i
6 + 12a′i

4 + 9a′i
2 + 5)(4a6

−i + 12a4
−i + 9a2

−i + 5)
.

Since inf(a′i,a
′′
i ,a−i)∈R3 Hi(a

′
i, a
′′
i , a−i) = Hi(0, a

′′
i , 0) = 36/25, assumption (H) is

satisfied with γi = 36/25 > 1.

Now, we present an application of Corollary 3.1.18 when Ω is a weighted
potential game with bilinear common interaction, i.e. when P is defined on
A1 ×A2 by

P (a1, a2) = f1(a1) + f2(a2) +m(a2, a1), (3.18)
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3.1 Uniqueness result in games with Hilbert spaces action sets

where f1 : A1 → R and f2 : A2 → R are twice continuously differentiable
and strongly concave operators, and m : A2 × A1 → R is a bilinear continuous
operator which defines the linear continuous operator M ∈ L(A2, A

∗
1) such that

m(a2, a1) = 〈Ma2, a1〉A∗1×A1
, for any a1 ∈ A1 and a2 ∈ A2. (3.19)

Hence, P is twice continuously differentiable on A and

Da1P(a) = Df1(a1) +Ma2, D2
a1P(a) = D2f1(a1), Da2(Da1P)(a) = M

Da2P(a) = Df2(a2) +M ta1, D2
a2P(a) = D2f2(a2), Da1(Da2P)(a) = M t,

where M t := M∗J and M∗ is the adjoint of M and J is the natural embedding
of A1 into A∗∗1 (see, e.g., VI.2.1 and II.3.18 in [37]). Therefore, the best reply
correspondences are single-valued since P is strongly concave in any argument.
If D2fi(ai) is invertible for any ai ∈ Ai and i ∈ I, then

λ1 = sup
a1∈A1

‖[D2f1(a1)]−1 ◦M‖L(A2,A1),

λ2 = sup
a2∈A2

‖[D2f2(a2)]−1 ◦M t‖L(A1,A2),
(3.20)

and hypothesis (H) holds when there exists γ > 1 such that

(H1(a′1, a
′′
1 ,a2)ψ,ψ)A1 = ({[D2f1(a′1)]−1 ◦M ◦ [D2f2(a2)]−1 ◦M t}ψ,ψ)A1

≥ γ‖ψ‖2A1
, for any a′1, a

′′
1 ∈ A1, a2 ∈ A2, and ψ ∈ A1,

(3.21)

or

(H2(a′2, a
′′
2 ,a1)ψ,ψ)A2

= ({[D2f2(a′2)]−1 ◦M t ◦ [D2f1(a1)]−1 ◦M}ψ,ψ)A2

≥ γ‖ψ‖2A2
, for any a′2, a

′′
2 ∈ A2, a1 ∈ A1, and ψ ∈ A2.

(3.22)

Let us analyze two special classes of weighted potential games with bilinear
common interaction in which the assumptions in Corollary 3.1.18 become easier
to prove.

• Quadratic case. Assume that, for any i ∈ I, fi in (3.18) is defined by

fi(ai) = −ki(ai, ai) + Li(ai) + ci, for any ai ∈ Ai, (3.23)

where ki : Ai×Ai → R is a bilinear continuous operator, Li : Ai → R is a linear
continuous operator and ci ∈ R. Furthermore, for any i ∈ I, assume that ki is
symmetric and that there exists αi ∈ R++ such that

ki(ai, ai) ≥ αi‖ai‖2Ai , for any ai ∈ Ai.
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3. Uniqueness of Nash equilibrium in normal-form games

and let Ki ∈ L(Ai, A
∗
i ) be the operator such that

ki(a
′
i, a
′′
i ) = 〈Kia

′
i, a
′′
i 〉A∗i×Ai , for any a′i, a

′′
i ∈ Ai. (3.24)

When the actions sets of both players coincide and the operators k1, k2 and
m are linear functions of the inner product of the Hilbert space, uniqueness of
Nash equilibrium is proved in the following proposition.

Proposition 3.1.21 (Proposition 7 in [24]). Let A1 = A2 = H be a real Hilbert
space and let P be defined as in (3.18) where f1, f2 satisfy (3.23). Let

ki(a
′
i, a
′′
i ) = αi · (a′i, a′′i )H, for any a′i, a

′′
i ∈ H and i ∈ I, (3.25)

m(a2, a1) = ρ · (a2, a1)H, for any a1, a2 ∈ H, (3.26)

where α1, α2 ∈ R++ and ρ ∈ R.
Assume that ρ2

α1α2
6= 4. Then, Ω has one and only one Nash equilibrium.

Proof. First note that (C) is satisfied and that, in light of Lax-Milgram Theorem
(see, e.g., [65, Theorem 2.1]), the operators K1 and K2 are invertible, so even
(D) is satisfied. Moreover, (3.20) implies λ1 = 1

2‖K
−1
1 ◦ M‖L(H,H) < +∞,

λ2 = 1
2‖K

−1
2 ◦M t‖L(H,H) < +∞ and (3.21)-(3.22) are equivalent to

([K−1
1 ◦M ◦K−1

2 ◦M t]ψ,ψ)H ≥ 4γ‖ψ‖2H, for any ψ ∈ H;

([K−1
2 ◦M t ◦K−1

1 ◦B]ψ,ψ)H ≥ 4γ‖ψ‖2H, for any ψ ∈ H.

Let ψ ∈ H. Then M tψ ∈ H∗; moreover in light of the definitions of M∗ and
J , and by (3.19) and (3.26):

〈M tψ, a2〉H∗×H = 〈M∗Jψ, a2〉H∗×H = 〈Jψ,Ma2〉H∗∗×H∗

= 〈Ma2, ψ〉H∗×H = ρ · (a2, ψ)H, for any a2 ∈ H.
(3.27)

Consider the operator K−1
2 ∈ L(H∗,H). Then, K−1

2 (M tψ) is the unique a2 ∈ H
such that K2a2 = M tψ, that is 〈K2a2, y〉H∗×H = 〈M tψ, y〉H∗×H for any y ∈ H.
In light of (3.24), (3.25) and (3.27)

α2 · (a2, y)H = ρ · (y, ψ)H, for any y ∈ H;

so K−1
2 (M tψ) = a2 = ρ

α2
ψ.

Moreover, the operator M(K−1
2 (M tψ)) ∈ H∗ is defined on H by:

〈M(K−1
2 (M tψ)), x〉H∗×H =

ρ2

α2
· (ψ, x)H, for any x ∈ H. (3.28)

Finally, consider the operator K−1
1 ∈ L(H∗,H). Then, K−1

1 (M(K−1
2 (M tψ))) is

the unique a1 ∈ H such that K1a1 = M(K−1
2 (M tψ)), that is 〈K1a1, x〉H∗×H =
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3.1 Uniqueness result in games with Hilbert spaces action sets

〈M(K−1
2 (M tψ)), x〉H∗×H for any x ∈ H. Therefore, by (3.28)

α1 · (a1, x)H =

(
ρ2

α2
ψ, x

)
H
, for any x ∈ H;

so
K−1

1 (M(K−1
2 (M tψ))) = a1 =

ρ2

α1α2
ψ. (3.29)

If ρ2

α1α2
< 4, then

sup
a∈A
‖Dβ1(a)‖L(H,H) =

1

4
‖K−1

1 ◦M ◦K−1
2 ◦M t‖L(H,H) =

ρ2

4α1α2
= λ < 1

by (3.29), recalling that Dβ1(x1) = H1(β1(a1), a1, b2(a1)) = 1
4 [K−1

1 ◦M ◦K
−1
2 ◦

M t]. Therefore, β1 is a contraction and Ω has one and only one Nash equilibrium
by Theorem 3.1.5.
If ρ2

α1α2
> 4, then by (3.29)

([K−1
1 ◦M ◦K−1

2 ◦M t]ψ,ψ)H =
ρ2

α1α2
‖ψ‖2H, for any ψ ∈ H,

so (H) holds since (3.21) is satisfied. Then, Ω has one and only one equilibrium
by Corollary 3.1.18.

Proposition 3.1.21 allows to prove the existence of a unique open-loop Nash
equilibrium of the following differential game (for definitions see, e.g., [11, 36,
54]).

Example 3.1.4 Consider a two-player differential game with state equation
given by

ẋ(t) = u1(t) + u2(t)− nx(t), x(0) = x0, (3.30)

where t ∈ [0, T ], T ∈]0,+∞[, x is continuously differentiable on [0, T ], u1, u2 ∈
U := L2([0, T ]), n ∈ R++ and x0 ∈ R++.

Player i, i ∈ I, has an instantaneous profit at time t equal to

πi(x(t), u1(t), u2(t)) = x(t)− αi[ui(t)]2 + ρu1(t)u2(t),

where αi > 0 and ρ ∈ R. So, player i’s objective functional is

Ji(x, u1, u2) =

∫ T

0

e−rtπi(x(t), u1(t), u2(t)) dt, (3.31)

where r ≥ 0 is the common discount rate. The differential game (3.30)-(3.31) is
similar to Example 7.1 in [36] which describes a situation where two individuals
invest in a public stock of knowledge (see also Section 9.5 in [36]). We mention
that in [44] the class of potential differential games is introduced: it is defined
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3. Uniqueness of Nash equilibrium in normal-form games

as the class of differential games to which it is possible to associate an optimal
control problem whose solutions are open-loop Nash equilibria for the original
game. The differential game (3.30)-(3.31) does not belong to such a class.

The solution to the first-order differential equation (3.30) is

x(t) = x0e
−nt + e−nt

∫ t

0

[u1(s) + u2(s)]ens ds. (3.32)

Denote by Fi the real-valued function defined on U×U obtained by substituting
(3.32) in (3.31), that is

Fi(u1, u2) :=

∫ T

0

e−rt
[
x0e
−nt + e−nt

∫ t

0

[u1(s) + u2(s)]ens ds

]
dt

−
∫ T

0

e−rt{αi[ui(t)]2 − ρu1(t)u2(t)} dt.

The game Ω = {I,U,U, F1, F2} is a potential game with potential

P (u1, u2) = F1(u1, u2)−
∫ T

0

e−rtα2[u2(t)]2 dt.

Such a potential game belongs to the class of weighted potential games with
bilinear common interaction, since P belongs to the class of functions considered
in (3.18) and (3.23), where:

ki(u
′
i, u
′′
i ) = αi

∫ T

0

e−rtu′i(t)u
′′
i (t) dt for any u′i, u

′′
i ∈ U and i ∈ I; (3.33)

m(u2, u1) = ρ

∫ T

0

e−rtu1(t)u2(t) dt for any u1, u2 ∈ U; (3.34)

Li(ui) =

∫ T

0

e−(r+n)t

[∫ t

0

ensui(s) ds

]
dt for any ui ∈ U;

c =

∫ T

0

x0e
−(r+n)t dt.

We highlight that the operators ki and m in (3.33)-(3.34) are of the same type
of (3.25)-(3.26) where H = U and U is endowed with the inner product defined
by

(u1, u2)U :=

∫ T

0

e−rtu1(t)u2(t) dt, for any u1, u2 ∈ U. (3.35)

Note that U = L2([0, T ]) with the inner product defined in (3.35) is a Hilbert
space. Hence, arguing as in Proposition 3.1.21 we can conclude that the dif-
ferential game defined by (3.30)-(3.31) has one and only one open-loop Nash
equilibrium if ρ2

α1α2
6= 4.

• Real case. Assume that A1 = A2 = R. Then, the operator m in (3.18) can
be written as

m(a2, a1) = ρa1a2, for any a1, a2 ∈ R, (3.36)
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3.1 Uniqueness result in games with Hilbert spaces action sets

where ρ ∈ R. As emphasized in Remark 3.1.7, we identify the first and second
order partial derivatives of P with the usual partial derivatives of real-valued
functions defined on R2.

Proposition 3.1.22 (Proposition 8 in [24]). Let P be defined as in (3.18)
and let Si := − infai∈RD

2fi(ai) and si := − supai∈RD
2fi(ai), for any i ∈ I.

Assume

(i) s1 > 0 and s2 > 0;

(ii) ρ2

S1S2
> 1

where ρ is defined in (3.36). Then, Ω has one and only one Nash equilibrium.

Proof. Let i ∈ I. By (i), D2
aiP(a) ≤ supxi∈RD

2fi(ai) = −si < 0; hence P is
strongly concave in any argument, so (C) and (D) are satisfied. Since

λi = sup
a∈R2

∣∣∣∣Da−i(DaiP)(ai, a−i)

D2
aiP(ai, a−i)

∣∣∣∣ =
|ρ|

infa∈R2 |D2
aiP(ai, a−i)|

=
|ρ|
si
,

then λ = λ1λ2 = ρ2

s1s2
≥ ρ2

S1S2
> 1 in light of (ii). Hence λ ∈]1,+∞[. Moreover,

by (ii), for any a′1, a′′1 , a′2, a′′2 ∈ R:

H1(a′1, a
′′
1 , a
′
2) = H2(a′2, a

′′
2 , a
′
1) =

ρ2

D2f1(a′1)D2f2(a′2)
≥ ρ2

S1S2
> 1.

Hence, (H) holds. Then, in light of Corollary 3.1.18, Ω has one and only one
Nash equilibrium.

Remark 3.1.23 The game in Example 3.1.3 satisfies the assumptions of Pro-
position 3.1.22 since the w-potential P fits (3.18), 0 < 15/2 = si < Si = 10 for
any i ∈ I and ρ2/(S1S2) = 36/25 > 1.

We conclude by mentioning that in Caruso, Ceparano and Morgan [22] an
adjustment process-based algorithm has been defined to approximate the unique
Nash equilibrium of games satisfying the assumptions described in this section.
In particular, we highlight that the unique Nash equilibrium of potential games
satisfying (C), (D) and (H) (as the game in Example 3.1.3) cannot be ap-
proximated through the usual methods based on the potential function (which
exploit the property that any maximizer of the potential function is a Nash
equilibrium of the potential game), since such equilibrium is not a maximizer
of the w-potential (in light of Proposition 3.1.19). See, for example, [38, 133]
and reference therein for further discussion regarding methods based on the
potential function.
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3. Uniqueness of Nash equilibrium in normal-form games

3.2 Rosen uniqueness result

Throughout this section we assume that, in the game Ω = {I, (Ai)i∈I , (Ui)i∈I}
with I = {1, . . . , N}, player i’s action set Ai is a subset of the Euclidean space
Rmi for any i ∈ I, with mi ∈ N. Consequently, the set of action profiles A is
an orthogonal subset of Rm, with m := m1 + · · · + mN . Inequalities between
vectors have to be understood as inequalities between components (for example:
ai ≥ a′i with ai, a′i ∈ Ai ⊆ Rmi means aij ≥ a′ij for any j ∈ {1, . . . ,mi}).
Before dealing with uniqueness issues, we recall the following well-known Nash
equilibrium existence theorem.

Theorem 3.2.1 (Nash [119, 120], Debreu [31], Glicksberg [48], Fan [40]). As-
sume that, for any i ∈ I,

(E1) Ai is nonempty convex and compact,

(E2) Fi is continuous on A,

(E3) Fi(·, a−i) is quasi-concave on Ai, for any a−i ∈ A−i.

Then a Nash equilibrium of Ω exists.

Sketch of the proof. The proof is based on the Kakutani fixed point theorem (see
Theorem 1 and Corollary in [57]). In fact, assumptions (E1)-(E2) guarantee that
the best reply correspondence of each player is nonempty and closed, whereas
assumption (E3) implies that the best reply correspondences are convex-valued.
Hence the set-valued map B defined in (3.2) satisfies the hypotheses of the Kaku-
tani theorem and the existence of a Nash equilibrium follows from Remark 3.0.2.

Rosen in [132, Theorems 1 and 2] established a fundamental uniqueness
result when Ai is a constrained set defined by the solutions of a finite number
of inequalities:

Ai = {ai ∈ Rmi | hi(ai) ≥ 0},

where hi := (hi1, . . . , hiki) and hij : Rmi → R for any j ∈ {1, . . . , ki}, with
ki ∈ N. Hence, the set of action profiles A is a constrained orthogonal subset of
Rm.

Theorem 3.2.2 (Theorems 1 and 2 in [132]). Assume that

(R0) hij is continuously differentiable on Rmi for any i ∈ I and j ∈ {1, . . . , ki},
and there exists ā ∈ A such that hij(āi) > 0 for any i ∈ I and j ∈
{1, . . . , ki} for which hij is a nonlinear function.
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and that, for any i ∈ I,

(R1) hij is concave on Rmi , for any j ∈ {1, . . . , ki},

(R2) Ai is nonempty and bounded,

(R3) Ui is continuous on A,

(R4) Ui(·, a−i) is continuously differentiable on Ai, for any a−i ∈ A−i,

(R5) there exists r ∈]0,+∞[N such that the function g : A × [0,+∞[N→ Rm

defined by

g(a, r) := −(r1∇1U1(a), . . . , rN∇NUN (a)) (3.37)

is strictly monotone on A, i.e., for any a′, a′′ ∈ A with a′ 6= a′′

(a′ − a′′, g(a′, r)− g(a′′, r))m > 0,

where ∇iUi(a) stands for the gradient of Ui with respect to ai ∈ Rmi at
a ∈ A, and (·, ·)m denotes the Euclidean scalar product in Rm.

Then, Ω has a unique Nash equilibrium.

Sketch of the proof. Equilibrium existence comes from assumptions (R1)-(R5)
and Theorem 3.2.1, since (R1)-(R2) guarantee that Ai is a nonempty convex
and compact set, and (R4)-(R5) ensure the concavity of Ui(·, a−i). Uniqueness
is obtained by contradiction exploiting the strict monotonicity of the function
defined in (3.37) and the differential form of the necessary and sufficient Kuhn-
Tucker conditions for a constrained maximum (see [62]), that holds in light of
assumption (R0).

Remark 3.2.3 The uniqueness result of Rosen [132, Theorem 2] is not stated
in terms of strict monotonicity of the function g defined in (3.37), but it is
assumed

(R5′) there exists r ∈]0,+∞[N such that the function σ : A × [0,+∞[N→ R
defined by

σ(a, r) :=

N∑
i=1

riUi(a)

is diagonally strictly concave on A, i.e., for any a′, a′′ ∈ A with a′ 6= a′′

(a′ − a′′, k(a′′, r))m + (a′′ − a′, k(a′, r))m > 0,

where k is the pseudogradient of σ, that is, k : A × [0,+∞[N→ R is the
function defined by k(a, r) := (r1∇1U1(a), . . . , rN∇NUN (a)).
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3. Uniqueness of Nash equilibrium in normal-form games

It is immediate to check that the diagonal strict concavity of function σ is
equivalent to the strict monotonicity of function g defined in (3.37), since k =

−g. Hence, assumptions (R5) and (R5′) are equivalent.

Furthermore, Theorem 6 in [132] provides a sufficient condition for the strict
monotonicity of g in assumption (R5).

Proposition 3.2.4 (Theorem 6 in [132]). Assume that Ui is twice continuously
differentiable on A, for any i ∈ I. Let Jg(a, r) ∈ Rm×m be the Jacobian matrix
of the function g defined in (3.37) at the point (a, r) ∈ A× [0,+∞[N with respect
to the variable a for fixed r, that is

Jg(a, r) :=

[
∂g

∂a1
(a, r) . . .

∂g

∂am
(a, r)

]
,

and let Jg(a, r)T be the transposed matrix of Jg(a, r). If there exists r ∈]0,+∞[N

such that the symmetric matrix [Jg(a, r) +Jg(a, r)
T ] is negative definite for any

a ∈ A, then g(·, r) is strictly monotone on A.

The compactness of the actions sets is crucial for the existence (and also for
the uniqueness) of Nash equilibria, as evident in all the results of this section.
Karamardian in [59, Theorem 5.1] showed that this condition can be relaxed:
he provided an existence and uniqueness result (by using the same assumptions
on the payoff functions of Theorem 3.2.2), in the case where Ai = [0,+∞[mi

for any i ∈ I. However, when Ai = Rmi for any i ∈ I, the assumptions on the
payoff functions in Theorem 3.2.2 do not even guarantee the existence of Nash
equilibria, as illustrated in the following example.

Example 3.2.1 Let Ω = {I, (Ai)i∈I , (Ui)i∈I} where I = {1, 2}, A1 = A2 =

R and U1(a1, a2) = U2(a1, a2) = −ea1 − ea2 . Assumptions (R3)-(R4) in Theo-
rem 3.2.2 are satisfied. Moreover, g(a, r) = (r1e

a1 , r2e
a2) for any a = (a1, a2) ∈

R2 and r = (r1, r2) ≥ (0, 0), and g is strictly monotone on R2 for any r1, r2 > 0

since the Jacobian matrix of g, namely

Jg(a, r) =

(
r1e

a1 0

0 r2e
a2

)

is positive defined on R2, for any r ∈ R2
++ (see, e.g., [58, Theorem 3.1]). Hence,

even (R5) holds. But the best reply correspondences of both players are empty-
valued, so Ω has not Nash equilibria.

Finally, we mention that Carlson in [20] extended the Rosen uniqueness
result [132, Theorem 2] to a setting where the actions set of each player is a
constrained subset of a separable Hilbert space.
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Chapter 4

On the Tikhonov and

Moreau-Yosida regularization

While in the previous chapters we discussed theoretical aspects related to the
existence and the uniqueness of some relevant solution concepts in Game The-
ory, now we deal with an argument closely connected to such theoretical aspects:
the construction of the solutions. In particular, in this chapter we present two
methods for the approximation of solutions of optimization problems: Tikhonov
regularization and Moreau-Yosida regularization. We highlight that such meth-
ods have two important advantage, especially from a numerical point of view:

• they allow to construct sequences of regularized problems having a unique
solution, so step by step the approximating sequence is uniquely identified.

• in the regularized problems the objective function is modified by adding
terms that make the solutions of the the regularized problems easier to be
found, hence the regularized problems are better-behaved than the original
optimization problem.

After showing the definitions, the interpretations and the convergence proper-
ties of Tikhonov and Moreau-Yosida regularization (in optimization setting),
we analyze the applications of such methods to the selection of Nash equilib-
ria in normal-form games: having in mind to define a constructive selection
method for SPNEs in one-leader N -followers two-stage games that satisfies the
features highlighted at the end of Chapter 2, the key feature we pursue (analo-
gously to the optimization framework) is to construct a sequence of regularized
normal-form games where the Nash equilibrium is unique and to give sufficient
conditions in order to guarantee the convergence of the related sequence of Nash
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equilibria to a Nash equilibrium of the original game.

4.1 Tikhonov regularization

Let A be a subset of a Euclidean space A with norm ‖·‖A and U be a real-valued
function defined on A. We deal with the following maximization problem:

P : max
a∈A

U(a).

A point a∗ ∈ A is said to be a solution of P if a∗ is a maximizer of U over A,
i.e. if U(a∗) = maxa∈A U(a), and we denote by M the set of maximizers of U ,
that is

M := {a∗ ∈ A such that U(a∗) ≥ U(a), for any a ∈ A}. (4.1)

Let us consider the sequence of maximization problems (Pk)k, introduced by
Tikhonov in [140] (see also [141]), defined as follows:

Pk : max
a∈A

U(a)− 1

2λk
‖a‖2A,

where k ∈ N and λk > 0. Problem Pk is called Tikhonov regularized problem of
parameter λk and the function Uk : A→ R defined by Uk(a) = U(a)− 1

2λk
‖u‖2A

is called Tikhonov regularization of U of parameter λk.
Before showing the well-known relationship between the solutions of Pk and the
solutions of P , whose proof is given for the sake of completeness, we recall a key
result that will be used in the sequel.

Lemma 4.1.1. Assume that X is a closed convex subset of a Euclidean space
X. Then, there exists a unique point x̂ ∈ X such that

‖x̂‖X = min
x∈X
‖x‖X,

called minimum norm element of X.

Remark 4.1.2 A more general result regarding the existence and uniqueness
of the projection of best approximation of A onto A, when A is a closed convex
subset of a Hilbert space, holds. See, for example, [8, Theorem 2.3].

Theorem 4.1.3. Assume that

(i) A is compact and convex;

(ii) U is upper semicontinuous and concave;

(iii) (λk)k ⊆]0,+∞[ and limk→+∞ λk = +∞.
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4.1 Tikhonov regularization

Then, problem Pk has a unique solution āk ∈ A, for any k ∈ N, and the sequence
(āk)k is convergent to the minimum norm element of the setM , defined in (4.1).

Proof. Firstly, let us note that M is non-empty, closed and convex by assump-
tions (i)-(ii) and that, in light of Lemma 4.1.1, there exists a unique minimum
norm element of M , which we denote by â.
For any k ∈ N, the function U(·)− 1

2λk
‖·‖A is upper semicontinuous and strictly

concave on A, being sum of the upper semicontinuous and concave function U
and the continuous and strictly concave function − 1

2λk
‖·‖A (since λk>0). Hence,

in light of assumption (i) and Proposition 3.0.3, problem Pk has a unique solu-
tion āk ∈ A.
Let (ākj )j ⊆ A be a subsequence of (āk)k converging to ā ∈ A, whose existence
is guaranteed by the compactness of A, and let a ∈ A. Being ākj the solution
of Pkj , we have

U(ākj )−
1

2λkj
‖ākj‖

2
A ≥ U(a)− 1

2λkj
‖a‖2A,

which implies, in light of the upper semicontinuity of U , assumption (iii) and
the compactness of A,

U(ā) ≥ U(a).

Hence, since a is arbitrarily chosen in A, then ā ∈ M . Moreover, by definition
of â,

‖ā‖A ≥ ‖â‖A. (4.2)

Let us prove the opposite inequality. Since ākj is the solution of Pkj and â ∈M ,
we have

U(ākj )−
1

2λkj
‖ākj‖

2
A ≥ U(â)− 1

2λkj
‖â‖2A

≥ U(ākj )−
1

2λkj
‖â‖2A,

which implies
‖ākj‖A ≤ ‖â‖A.

Taking the limit as j goes to infinity, by the continuity of ‖·‖A, we get

‖ā‖A ≤ ‖â‖A,

that, together with inequality (4.2) proves ‖ā‖A = ‖â‖A. Hence, in light of the
uniqueness of the minimum norm element, necessarily ā = â. So, any convergent
subsequence of (āk)k converges to â. Therefore, by the compactness of A, the
whole sequence (āk)k is convergent to â.
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4.1.1 Applications to the selection of Nash equilibria in
normal-form games

Using the same notation of Section 3.2, we consider a normal-form game Ω =

{I, (Ai)i∈I , (Ui)i∈I} where I = {1, . . . , N} is the set of players, Ai is the set
of actions of player i ∈ I and Ui : A → R is the payoff function of player
i ∈ I defined on the set of action profiles A := A1 × · · · × AN . Moreover,
we assume that Ai is a subset of the Euclidean space Rmi (endowed with the
Euclidean scalar product (·, ·)mi and associated norm ‖·‖mi) for any i ∈ I, with
mi ∈ N. Hence, the set of action profiles A is an orthogonal subset of Rm

(endowed with the Euclidean scalar product (·, ·)m and associated norm ‖·‖m),
with m := m1 + · · · + mN . Finally, let us denote by E(Ω) the set of all Nash
equilibria of Ω.
Following the approach used in [109, Section 4], we construct a sequence of
regularized normal-form games (Ωk)k by means of Tikhonov regularization: for
any k ∈ N, consider

Ωk = {I, (Ai)i∈I , (Uki )i∈I},

where Uki : A → R is the Tikhonov regularization of Ui with respect to ai of
parameter λk, that is the function defined on A by

Uki (ai, a−i) = Ui(ai, a−i)−
1

2λk
‖ai‖2mi ,

with λk > 0.
Through the sequence of Tikhonov regularized games described above, it is

possible to select a Nash equilibrium of Ω, as shown in the next result (which is
proved by using the same arguments of [109, Theorem 4.1], where a parametric
Nash equilibrium problem with two players deriving from a one-leader two-
follower two-stage game is involved).

Theorem 4.1.4 (Theorem 4.1 in [109]). Assume that, for any i ∈ I

(i) Ai is compact and convex;

(ii) Ui is upper semicontinuous on A and continuously differentiable with respect
to ai on A;

(iii) Ui(·, a−i) is concave on Ai, for any a−i ∈ A−i;

(iv) for any (ai, a−i) ∈ Ai × A−i and any sequence (a−i,k)k ⊆ A−i converging
to a−i, there exists a sequence (ãi,k)k ⊆ Ai converging to ai such that

lim inf
k→+∞

Ui(ãi,k, a−i,k) ≥ Ui(ai, a−i);
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and that

(v) for any (a′, a′′) ∈ A×A the following inequality is satisfied

N∑
i=1

(∇iUi(a′)−∇iUi(a′′), a′i − a′′i )mi ≤ 0.

(vi) (λk)k ⊆]0,+∞[ and limk→+∞ λk = +∞.

Then, Ωk has a unique Nash equilibrium āk ∈ A, for any k ∈ N, and the
sequence (āk)k is convergent to the minimum norm element of E(Ω).

Proof. Given, for the sake of completeness, in the general case of N players.
Firstly, note that assumptions (i)-(iv) guarantee the existence of at least one
Nash equilibrium of Ω and Ωk for any k ∈ N (in light of [74, Theorem 2.1]).
Let k ∈ N and Wk : A→ Rm be the function defined on A by

Wk(a) =
(
∇1U

k
1 (a), . . . ,∇NUkN (a)

)
.

Then, by assumption (v) and since λk > 0

(Wk(a′′), a′ − a′′)m + (Wk(a′), a′′ − a′)m

=

N∑
i=1

(∇iUi(a′′), a′i − a′′i )mi −
1

λk
(a′′i , a

′
i − a′′i )mi

+

N∑
i=1

(∇iUi(a′), a′′i − a′i)mi −
1

λk
(a′i, a

′′
i − a′i)mi

=

N∑
i=1

(∇iUi(a′′)−∇iUi(a′), a′i − a′′i )mi +
1

λk
‖a′i − a′′i ‖

2
mi

> 0,

for any a′, a′′ ∈ A with a′ 6= a′′. Therefore, for the game Ωk the diagonal strict
concavity condition of Rosen (see Remark 3.2.3) is satisfied and, in light of
Rosen uniqueness result (see Theorem 3.2.2), Ωk has a unique Nash equilibrium
āk ∈ A.
Moreover, āk is the unique solution of the variational inequality associated to
the operator Fk : A → A defined in the following way: Fk(a′) is the unique
element of A such that

(Fk(a′), a′′)m =

N∑
i=1

(∇iUi(a′i), a′′i )mi −
1

λk
(a′i, a

′′
i )mi .

In light of [114, Theorem C], the sequence (āk)k converges to the solution â of
the variational inequality:

(â, a− â)m ≥ 0 for any a ∈ E(Ω),
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4. On the Tikhonov and Moreau-Yosida regularization

that is, â is the minimum norm element of E(Ω).

Remark 4.1.5 Assumption (v) is equivalent to requiring that the function
J : A→ Rm defined by

J(a) := −(∇1U1(a), . . . ,∇NUN (a))

is monotone on A, and it is weaker than the diagonal strict concavity condition
of Rosen, stated in Remark 3.2.3 or, equivalently, than requiring the strict
monotonicity of J , which is used to prove the Rosen uniqueness result (see
assumption (R5) in Theorem 3.2.2).

4.2 Moreau-Yosida regularization and proximal

point methods

Let U : A → R ∪ {−∞} be an extended real-valued function defined on a Eu-
clidean space A with norm ‖·‖A, and let λ > 0. The Moreau-Yosida regulariza-
tion of U of parameter λ (also called Moreau envelope or proximal approxima-
tion) is the function MλU : A→ [−∞,+∞] defined by

MλU (a) := sup
x∈A

U(x)− 1

2λ
‖x− a‖2A,

introduced by Moreau in [106] (see also [130, 149], and [2, 7] and references
therein) for convex lower semicontinuous functions defined on Hilbert spaces.
The Moreau-Yosida regularization satisfies various good properties, as shown in
the following result (whose proof can be found, for example, in [14, Sections 12.1,
12.2 and 12.4]).

Proposition 4.2.1. Assume that U is upper semicontinuous and concave on A
with U 6= −∞, and let λ > 0. Then

(i) supa∈AMλU (a) = supa∈A U(a);

(ii) the net (MνU (a))ν>0 is increasing, for any a ∈ A;

(iii) limν→+∞MνU (a) = supx∈A U(x), for any a ∈ A;

(iv) limν→0MνU (a) = U(a), for any a ∈ A;

(v) MλU is real-valued, differentiable and concave.

Remark 4.2.2 We highlight that, in addition to the properties stated in Pro-
position 4.2.1, the Moreau-Yosida regularization has implications in terms of
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4.2 Moreau-Yosida regularization and proximal point methods

epiconvergence or Γ−convergence (see [2, 29]). More precisely, the hypoconver-
gence (or Γ+−convergence) properties of a sequence of functions (Uk)k can be
restated equivalently in terms of pointwise convergence of the sequence of the
associated Moreau-Yosida regurarizations (MλUk)k. For further details, see [2,
Theorem 2.65 and Corollary 2.67] and [29, Theorem 9.16].

Hence, the Moreau-Yosida regularizationMλU is essentially a smoothed form
of U : it is a real-valued and differentiable function, even when U is not; moreover
MλU and U have the same set of maximizers and they attain the same maximum.
So, the problems of maximizing U and MλU are equivalent, and the latter is
always a smooth optimization problem (being aware thatMλU could be difficult
to evaluate).

Now, let us introduce another important tool strongly connected with the
Moreau-Yosida regularization. When U is upper semicontinuous and concave
on A, the function

x ∈ A 7→ U(x)− 1

2λ
‖x− a‖2A ∈ R

is upper semicontinuous and strongly concave on A for any a ∈ A and λ > 0,
then, in light of Proposition 3.0.3, it has a unique maximizer on A. Hence, it
is well-defined the proximal operator of U of parameter λ, that is the function
ProxλU : A→ A defined by

{ProxλU (a)} := Arg max
x∈A

U(x)− 1

2λ
‖x− a‖2A. (4.3)

The term “proximal” is justified by the fact that, in the particular case where
−U is the indicator function of a closed convex set A ⊆ A, i.e.,

U(x) =

0, if x ∈ A

−∞, if x /∈ A,

then the operator ProxλU is reduced to the projection onto A, that is

{ProxλU (a)} = Arg min
x∈A

‖x− a‖2A,

for any a ∈ A. Hence, the proximal operator can be viewed as a generalized
projection (for a more detailed discussion regarding the interpretation of the
proximal operators see [125, Chapter 3]).
The proximal operator ProxλU and the Moreau-Yosida regularizationMλU dis-
play many connections, some of which are presented in the next result (for the
proofs see, for example, [125, Chapters 2 and 3] and [14, Section 12.4]).
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4. On the Tikhonov and Moreau-Yosida regularization

Proposition 4.2.3. Assume that U is upper semicontinuous and concave on A
with U 6= −∞, and let λ > 0. Then

(i) for any a ∈ A,

MλU (a) = U(ProxλU (a))− 1

2λ
‖a− ProxλU (a)‖2A;

(ii) denoted by Id the identity operator on A, we have

∇MλU (a) = − 1

λ
(Id− Proxλ,−U )(a), for any a ∈ A.

Remark 4.2.4 We emphasize that even ProxλU and U share important di-
rect relationships. In fact, denoted by Fix(ProxλU ) the set of fixed points of
ProxλU , i.e. Fix(ProxλU ) = {a ∈ A s.t. ProxλU (a) = a}, it is immediate to
prove

Fix(ProxλU ) = Arg max
x∈A

U(x);

and, moreover

ProxλU (a) = (Id+ λ∂(−U))−1(a) for any a ∈ A,

where ∂(−U) denotes the subdifferential of the function −U (see [128] and also
[8] for definition and properties of the subdifferential correspondence; for further
discussion concerning the connections with the proximal operator see [129, 19,
131]).

In optimization literature there exist various algorithms relying on the use of
proximal operators (and the Moreau-Yosida regularization, consequently). Such
algorithms belong to the class of the so-called proximal point methods, and they
have been developed with the aim of approximating the solutions of convex opti-
mization problems (for a review of the proximal point methods, see the surveys
[67, 56, 125] and the references therein). Now we describe the proximal point
algorithm introduced by Martinet [99] and Rockafellar in [131], which represents
the first and most natural exploitation of the proximal operator and its related
properties.
Let us remind that U : A→ R ∪ {−∞} is an extended real-valued function de-
fined on a Euclidean space A with norm ‖·‖A, and let (λk)k∈N∪{0} be a sequence
of positive real numbers. Fixed ā0 ∈ A, we define recursively the sequence
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4.2 Moreau-Yosida regularization and proximal point methods

(āk)k ⊆ A in the following way:

{ā1} = Arg max
x∈A

U(x)− 1

2λ0
‖x− ā0‖2A;

...

{āk} = Arg max
x∈A

U(x)− 1

2λk−1
‖x− āk−1‖2A;

...

(4.4)

It is immediate to note that āk = Proxλk−1U (āk−1) for any k ∈ N, by definition
of proximal operator. The convergence of the proximal point algorithm is stated
in the next result.

Theorem 4.2.5 (Theorem 4 in [131]). Assume that

(i) U is upper semicontinuous and concave with U 6= −∞;

(ii) Arg maxa∈A U(a) 6= ∅;

(iii) (λk)k∈N∪{0} ⊆]0,+∞[ and
∑+∞
k=0 λk = +∞.

Let ā0 ∈ A. Then, the sequence (āk)k generated by the proximal point algorithm
defined in (4.4) is convergent to a maximizer of U , and limk→+∞ U(āk) =

maxa∈A U(a).

Remark 4.2.6 In the papers of Martinet [99] and Rockafellar [131] the con-
vergence of the proximal point algorithm is guaranteed allowing A to be a real
Hilbert space, and in this case the sequence (āk)k is weakly convergent to a
maximizer of U (see [131, Theorem 4]). However, the strong convergence can
be guaranteed by adding some extra concavity assumptions which imply the
existence of a unique maximizer of U (see, for example, [14, Theorem 27.1]).

It is worth to note that if U is a real-valued function defined on a subset
A of A, a proximal point algorithm analogous to the one in (4.4) can be de-
fined (just by replacing A with A below the “Argmax”) in light of the following
straightforward result.

Lemma 4.2.7. Let U be a real-valued function defined on A ⊆ A and Ū be the
extended real-valued function defined on A by

Ū(a) =

U(a), if a ∈ A

−∞, if a /∈ A.

If the function U is upper semicontinuous and concave on A, then
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4. On the Tikhonov and Moreau-Yosida regularization

(i) the function Ū is upper semicontinuous and concave on A;

(ii) Arg maxx∈A U(x) = Arg maxx∈A Ū(x);

(iii) Arg maxx∈A U(x)− 1
2λ‖x− a‖

2
A = Arg maxx∈A Ū(x)− 1

2λ‖x− a‖
2
A, for any

λ > 0 and a ∈ A.

Next result follows immediately from Theorem 4.2.5 and Lemma 4.2.7.

Corollary 4.2.8. Let U be a real-valued function defined on A ⊆ A. Assume
that

(i) A is compact and convex;

(ii) U is upper semicontinuous and concave;

(iii) (λk)k∈N∪{0} ⊆]0,+∞[ and
∑+∞
k=0 λk = +∞.

Let ā0 ∈ A. Then, the sequence (āk)k generated by the proximal point algorithm

{ā1} = Arg max
x∈A

U(x)− 1

2λ0
‖x− ā0‖2A;

...

{āk} = Arg max
x∈A

U(x)− 1

2λk−1
‖x− āk−1‖2A;

...

(4.5)

which is obtained just by replacing A with A below the “Arg max” in (4.4), is
convergent to a maximizer of U on A, and limk→+∞ U(āk) = maxa∈A U(a).

We have restated the proximal point algorithm and its convergence proper-
ties for real-valued functions defined on a compact and convex subset of A in
order to make a clear comparison between the proximal point algorithm in (4.5)
and the Tikhonov regularization presented in the previous section.

Firstly, we emphasize that both methods allow to switch from a maximiza-
tion problem, whose solution is not guaranteed to be unique, to a sequence of
regularized problems where the solution is unique at each step. However, the
sequences defined by the two method are deeply different: the sequence gener-
ated by the proximal point algorithm is recursively defined, so each element of
the sequence depends on the preceding one; whereas the sequence of Tikhonov
regularized problems (Pk)k is not defined by recursion.

Regarding the convergence of the two methods, the only difference between
the assumptions of Corollary 4.2.8 and Theorem 4.1.3 involves the sequence
(λk)k: the convergence of the proximal point algorithm requires a less restrictive
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assumption on (λk)k (which is allowed, for example, to be a constant sequence,
as in [99]) than the corresponding one used in the method based on Tikhonov
regularization. This has relevant implications from a numerical point of view: in
fact, if limk→+∞ λk = +∞, the regularizing effect in the Tikhonov regularized
problems disappears and the problems Pk will be not easier to solve than the
original problem P ; instead, requiring just

∑+∞
k=0 λk = +∞ does not imply that

the regularizing effect vanishes, so proximal point methods allow to manage
better-behaved problems and, moreover, to achieve numerical improvements
(see [125, Chapter 4] for further discussion).

Nevertheless, while the limit point of the sequence generated by the solutions
of the Tikhonov regularized problems is uniquely determined (being the mini-
mum norm element of the set of maximizer of U), proximal point methods do
not provide a similar characterization. However, the limit point of the sequence
generated by proximal point algorithms obviously depends on the choice of the
initial point ā0, but just in some very particular circumstances such a limit point
can be explicitly characterized in dependence on ā0 (see [14, Section 5.1]).

4.2.1 Behavioural interpretation: costs to move

After discussing the mathematical derivation and some numerical aspects of
proximal methods (included the comparison with Tikhonov regularization), we
present now a behavioural interpretation of the proximal operators connected
to the costs that agents encounter when deviating from their current actions.
The leading idea is that, in real life, changing an action or improving the quality
of actions has a cost: as explained by Attouch and Soubeyran in [6] where they
aim to model such costs in decision making processes,

if the agent moves, he must pay physical, physiological, psycho-
logical, and cognitive costs of moving from a to some better state
a′, [6, p.12].

Let C(a, a′) be the cost to move from a ∈ A to a′ ∈ A, where A is understood as
the set of the alternatives of the agent. This cost can be, in general, decomposed
in the following way:

C(a, a′) = e(a, a′)k(a, a′),

where e(a, a′) is the per unit of distance cost to move (which depends on the
alternatives a and a′) and k(a, a′) is an index of dissimilarity between a and
a′ (which is related to the distance between the alternatives). In particular,
the proximal operator defined in (4.3) involves a special kind of costs to move,
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called low local costs to move:

C(a, a′) = e‖a− a′‖2A,

where the per unit of distance cost to move is fixed for all the alternatives, and
the index of dissimilarity is the square of the distance between the alternatives
embedding the idea that small changes induce very small costs (see [4, 5] for a
detailed analysis on the typology of costs to move).

Focusing on the proximal point algorithm defined in (4.4), at the generic
step k of the algorithm, the agent chooses his action āk taking into account
his previous action āk−1. In making such a choice, he finds an action that
compromises between maximizing U and being near to āk−1. The latter purpose
is motivated according to an anchoring effect :

agents have a (local) vision of their environment which depends
on their current actions. Each action is anchored to the preceding
one, which means that the perception the agents have of the quality
of their subsequent actions depends on the current ones. In eco-
nomics and management, one may think of actions as routines, ways
of doing, while costs to change reflect the difficulty of quitting a
routine or entering another one or reacting quickly, [3, p.1066].

Such an anchoring effect is formulated by subtracting a quadratic cost to move
that reflects the difficulty of changing the previous action. The coefficient
1/λk−1 is the per unit of distance cost to move of the agent and represents
the trade-off parameter between maximizing U and minimizing the distance
from āk−1. Since the same arguments apply for the preceding steps until going
up to the first step of the algorithm, it follows that āk as well as the limit of the
sequence (āk)k embeds the agent’s willingness of being near to ā0.

4.2.2 Applications to the selection of Nash equilibria in
normal-form games

Similarly to the analysis made in Subsection 4.1.1, now we examine how the
Moreau-Yosida regularization (and, in particular, the proximal point methods)
can be used to select a Nash equilibrium in normal-form games. Firstly, we con-
sider the case where the players choose their actions in (unconstrained) Hilbert
spaces, reviewing the results of Flåm and Greco [43] and Attouch, Redont and
Soubeyran [3]; then, we give some insights in the situation where players’ actions
are chosen in constrained sets.
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Let Ω = {I, (Ai)i∈I , (Ui)i∈I} be a normal-form game where I = {1, . . . , N}
is the set of players, Ai is the set of actions of player i ∈ I, and Ui : A →
R ∪ {−∞} is the payoff function of player i ∈ I defined on the set of action
profiles A := A1×· · ·×AN . We assume that Ai is a real Hilbert space, endowed
with the inner product (·, ·)Ai and associated norm ‖·‖Ai ; hence A is a real
Hilbert space endowed with the natural inner product (·, ·)A defined by (a, a′)A =∑N
i=1(ai, a

′
i)Ai for any a, a′ ∈ A, and associated norm ‖·‖A. Let us denote by

E(Ω) the set of all Nash equilibria of Ω and by Eε(Ω) the set of all ε−Nash
equilibria of Ω, the latter defined by

Eε(Ω) =

{
â ∈ A s.t. inf

ā∈E(Ω)
‖â− ā‖A ≤ ε

}
,

where ε ≥ 0. Clearly, we have Eε(Ω) ⊇ E(Ω) for any ε ≥ 0 and E0(Ω) = E(Ω).
Following the approach used in [43, Section 2], fixed an initial action profile ā0 =

(ā0,1, . . . , ā0,N ) ∈ A and two sequences (λk)k∈N∪{0} ⊆]0,+∞[ and (εk)k∈N ⊆
[0,+∞[, we construct recursively a sequence of regularized normal-form games
(Ωk)k and a sequence of εk−Nash equilibria (āk)k by means of the proximal
operator in the following way:

(S1)

Ω1 = {I, (Ai)i∈I , (U1
i )i∈I},

ā1 = (ā1,1, . . . , ā1,N ) ∈ Eε1(Ω1),

... (4.6)

(Sk)

Ωk = {I, (Ai)i∈I , (Uki )i∈I},

āk = (āk,1, . . . , āk,N ) ∈ Eεk(Ωk),

...

where Uki : A→ R ∪ {−∞} is defined on A by

Uki (ai, a−i) = Ui(ai, a−i)−
1

2λk−1
‖ai − āk−1,i‖2Ai , (4.7)

for any i ∈ I and k ∈ N. It is worth to note that the player i’s payoff function in
Ωk, namely Uki in (4.7), is defined by subtracting to the player i’s payoff function
of Ω a proximal term depending on the equilibrium action chosen by player i
in Ωk−1; consequently, the εk−Nash equilibrium āk reached at step (Sk) is an
updating of the εk−1−Nash equilibrium āk−1 obtained in the preceding step.
Such an updating issue does not appear in the sequence of equilibria defined by
means of Tikhonov regularization, analyzed in Subsection 4.1.1.
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Before showing the convergence result, we recall the notion of monotonicity for
set-valued maps (which extends the analogous notion used for functions, see
[102, 106] or, for example, [14, Chapter 20]). A set-valued map K : A ⇒ A is
said to be monotone if

(a− a′, b− b′)A ≥ 0 for any (a, b), (a′, b′) ∈ gra(K),

where gra(K) = {(a, b) ∈ A× A s.t. b ∈ K(a)}. If K is a monotone set-valued
map, K is said to be maximal monotone if there exists no monotone set-valued
map H : A⇒ A such that gra(H) ⊃ gra(K).

Theorem 4.2.9 (Theorem 2.1 in [43]). Assume that

(i) Ui(·, a−i) is upper semicontinuous and concave on Ai, for any a−i ∈ A−i
and any i ∈ I;

(ii) the set-valued map K : A⇒ A defined on A by

K(a) = ∂1(−U1)(a)× · · · × ∂N (−UN )(a),

where ∂i(−Ui) is the subdifferential of −Ui with respect to ai, is maximal
monotone on A;

(iii)
∑+∞
k=0 λk = +∞;

(iv)
∑+∞
k=1 εk < +∞.

Let ā0 ∈ A. Then the sequences (Ωk)k and (āk)k constructed in (4.6) are well-
defined and

• if E(Ω) = ∅, then limk→+∞‖āk‖A = +∞;

• if E(Ω) 6= ∅, then (āk)k is weakly convergent to a Nash equilibrium of Ω.

Sketch of the proof. In this setting, the Nash equilibria of Ω are characterized
in terms of zeros of the correspondence K, that is E(Ω) = {ā ∈ A s.t. 0 ∈
K(ā)}, since K is nothing but the subdifferential of the vector-valued func-
tion a ∈ A 7→ −(U1(a), . . . , UN (a)) ∈ AN . Analogously, āk ∈ E(Ωk) ⇔
0 ∈ ∂i(−Ui)(āk) − (āk,i − āk−1,i)/2λk−1 for any i ∈ I, which is equivalent
to āk ∈ (Id + λk−1K)−1(āk−1). Finally, in light of Remarks 4.2.4 and 4.2.6, it
is sufficient to apply Theorem 4.2.5 on the convergence of the proximal point
algorithm.

When εk = 0 for any k ∈ N and the action sets are Euclidean spaces, by adding
some differentiability assumptions on the payoff functions, from Theorem 4.2.9
we can derive the following selection result for Nash equilibria.
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Proposition 4.2.10. Let Ai = Rmi for any i ∈ I and A = Rm, with m =

m1 + · · ·+mN . Assume that, for any i ∈ I

(i) Ui is real-valued and continuously differentiable with respect to ai on Rmi ;

(ii) Ui(·, a−i) is concave on Rmi , for any a−i ∈
∏
j 6=iRmj ;

and that

(iii) the function J : Rm → Rm defined by

J(a) := −(∇1U1(a), . . . ,∇NUN (a))

is monotone on Rm;

(iv) E(Ω) 6= ∅;

(v)
∑+∞
k=0 λk = +∞.

Let ā0 ∈ Rm. Then the sequence of games (Ωk)k and the sequence of action
profiles (āk)k constructed in the following way:Ω1 = {I, (Rmi)i∈I , (U1

i )i∈I},

{ā1} = E(Ω1),

... (4.8)Ωk = {I, (Rmi)i∈I , (Uki )i∈I},

{āk} = E(Ωk),

...

where Uki : Rm → R is defined on Rm by

Uki (ai, a−i) = Ui(ai, a−i)−
1

2λk−1
‖ai − āk−1,i‖2mi , (4.9)

for any i ∈ I and k ∈ N, are well-defined and the sequence (āk)k is convergent
to a Nash equilibrium of Ω.

Proof. Firstly, we show by induction on k that each game of the sequence
(Ωk)k has a unique Nash equilibrium. Let k = 1. By assumptions (i)-(iii)
and the definition of U1

i in (4.9), the function J1 : Rm → Rm defined by
J1(a) = −(∇1U

1
1 (a), . . . ,∇NU1

N (a)) for any a ∈ Rm is continuous and strongly
monotone on Rm, i.e. there exists c > 0 such that

(a′ − a′′, J1(a′)− J1(a′′))m ≥ c‖a′ − a′′‖2m,
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for any a′, a′′ ∈ Rm. In fact, fixed b′, b′′ ∈ Rm, then

(b′ − b′′, J1(b′)− J1(b′′))m = (b′ − b′′, J(b′)− J(b′′))m

+

N∑
i=1

(
b′i − b′′i ,

1

λ0
[(b′i − ā0,i)− (b′′i − ā0,i)]

)
mi

= (b′ − b′′, J(b′)− J(b′′))m +
1

λ0

N∑
i=1

‖b′i − b′′i ‖
2
mi

≥ 1

λ0
‖b′ − b′′‖2m.

Therefore, once observed that E(Ω1) = {ā ∈ Rm s.t. J1(ā) = 0}, the game
Ω1 has a unique Nash equilibrium in light of, for example, [14, Example 22.9].
Hence, the base case is proved. Assume that the result holds for k > 1, so
Ωk has a unique Nash equilibrium āk. By assumptions (i)-(iii), the defini-
tion of Uk+1

i in (4.9) and exploiting the same arguments used above, the func-
tion Jk+1 : Rm → Rm defined by Jk+1(a) = −(∇1U

k+1
1 (a), . . . ,∇NUk+1

N (a))

for any a ∈ Rm is continuous and strongly monotone on Rm. Therefore,
Ωk+1 has a unique Nash equilibrium by [14, Example 22.9], once observed that
E(Ωk+1) = {ā ∈ Rm s.t. Jk+1(ā) = 0}. Hence, the inductive step is proved and
the sequences (Ωk)k and (āk)k described in (4.8) are well-defined.
Now, note that assumptions (i)-(ii) imply assumption (i) of Theorem 4.2.9 and
that the correspondence K defined in the statement of Theorem 4.2.9 is single-
valued and K(a) = {J(a)} for any a ∈ Rm. In light of (i) and (iii), the function
J is continuous and monotone, so J is maximal monotone on Rm (see, for ex-
ample, [14, Corollary 20.25]). Hence even assumption (ii) in Theorem 4.2.9 is
satisfied. Finally, by assumption (iv) and applying Theorem 4.2.9 with εk = 0

for any k ∈ N, it follows that the sequence (āk)k converges to a Nash equilibrium
of Ω.

Remark 4.2.11 Assumption (iv) in Proposition 4.2.10 can be dropped by re-
quiring, for example, that J is strongly monotone on Rm. Nevertheless, in this
case, Ω has a unique Nash equilibrium and the issue of selection does not arise.

Let us compare the assumptions and the theses of Theorem 4.1.4 and Pro-
position 4.2.10. Firstly, both results fit our main purpose: they allow to define
a selection of Nash equilibrium in normal-form games via the construction of a
sequence of regularized games where the Nash equilibrium is unique. Moreover,
such a sequence of games (as well as the selection) is obtained by exploiting
two different optimization techniques (the Tikhonov regularization in Theo-
rem 4.1.4 and the Moreau-Yosida regularization in Proposition 4.2.10) whose
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4.2 Moreau-Yosida regularization and proximal point methods

main features and differences have been described after Corollary 4.2.8 and in
Subsection 4.2.1. Finally, we highlight that in Theorem 4.1.4 players choose their
actions in constrained sets and the assumptions ensure the existence of al least
one Nash equilibrium of the original game Ω, whereas in Proposition 4.2.10,
where the action sets of the players are unconstrained Euclidean spaces, the
non-emptiness of the set of Nash equilibria of Ω must be explicitly assumed.

Let us analyze another result which provides a selection of Nash equilibria for
a particular class of normal-form games by means of proximal point algorithm,
which is due to Attouch, Redont and Soubeyran [3]. Suppose that Ω is a two-
player game, so I = {1, 2}, that A1 and A2 coincide with the same Hilbert space
H, and that the payoff functions U1 and U2 of the two players are defined on
A = H×H in the following way:

U1(a1, a2) = u1(a1)− α

2
‖a1 − a2‖2H,

U2(a1, a2) = u2(a2)− β

2
‖a1 − a2‖2H,

(4.10)

where ui : H → R ∪ {−∞} for any i ∈ {1, 2} and α, β > 0. We note that,
in light of (4.10) and Proposition 3.1.16, the game Ω is weighted potential
game. In [3, Section 4] an alternating proximal point algorithm is used to
construct a sequence of action profiles (āk,1, āk,2)k ⊆ H × H as follows: fixed
(ā0,1, ā0,2) ∈ H×H, let

(AlP )

{āk,1} = Arg maxa1∈H u1(a1)− α
2 ‖a1 − āk−1,2‖2H −

µk−1

2 ‖a1 − āk−1,1‖2H
{āk,2} = Arg maxa2∈H u2(a2)− β

2 ‖a2 − āk,1‖2H −
νk−1

2 ‖a2 − āk−1,2‖2H,

for any k ∈ N, where (µk)k∈N∪{0} and (νk)k∈N∪{0} are two sequences of positive
real numbers. It is worth to note that by (4.10) and the definition of proximal
operator given in (4.3), the pair (āk,1, āk,2) in (AlP ) can be rewritten in the
more compact way:

āk,1 = Prox 1
µk−1

U1(·,āk−1,2)(āk−1,1),

āk,2 = Prox 1
νk−1

U2(āk,1,·)(āk−1,2).

In the next result the convergence of the sequence (āk,1, āk,2)k is stated.

Theorem 4.2.12 (Theorem 4.1 in [3]). Assume that

(i) ui : H → R ∪ {−∞} is upper semicontinuous and concave on H, ui 6= −∞
and supai∈H ui(ai) < +∞ for any i ∈ {1, 2};

(ii) E(Ω) 6= ∅;
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(iii) limk→+∞ µk = µ > 0 and limk→+∞ νk = ν > 0.

Let (ā0,1, ā0,2) ∈ H×H. Then, the sequence (āk,1, āk,2)k ⊆ H×H generated by
(AlP ) is well-defined and is weakly convergent to a Nash equilibrium of Ω.

Remark 4.2.13 When H = R, assumption (ii) in Theorem 4.2.12 can be
dropped by requiring, for example, that ui is differentiable and strongly con-
cave on R for any i ∈ {1, 2}. Nevertheless, in this case, Ω has a unique Nash
equilibrium in light of Theorem 3.1.5 and the issue of selection does not arise.

We highlight that, although Theorem 4.2.12 shows the convergence of an al-
gorithm allowing to select a Nash equilibrium by using a (alternating) proximal
point algorithm, the sequence of action profiles generated by (AlP ), notwith-
standing uniquely determined, is not defined as a sequence of Nash equilibria
of some regularized game. Hence, the selection of a Nash equilibrium proved in
Theorem 4.2.12 is not achieved via a sequence of Nash equilibria of regularized
games, as it happens in Proposition 4.2.10 and in Theorem 4.2.9. Moreover,
we note that even in Theorem 4.2.12, as well as in Proposition 4.2.10, the non-
emptiness of the set of Nash equilibria of Ω is explicitly assumed, since players
are allowed to choose their actions in an unconstrained set.

Motivated by the fact that assumptions in the selection result of Theo-
rem 4.2.9 do not guaranteed a priori the existence of at least one Nash equi-
librium as well as in Proposition 4.2.10 the non-emptiness of the set of Nash
equilibria must be explicitly assumed, now we focus on the situation where
player i’s action set is a constrained subset Ai of the Euclidean space Rmi

and the payoff function Ui of player i is a real-valued function defined on
A = A1 × · · · × AN ⊆ Rm (with m = m1 + · · · + mN ) for any i ∈ I. Our
purpose is to give some insights concerning the possibility of extending the re-
sults of Proposition 4.2.10 to the “constrained” game Ω = {I, (Ai)i∈I , (Ui)i∈I}:
we aim to provide a selection result for Nash equilibria in games having con-
strained action sets by means of a sequence of proximal-regularized games with
a unique Nash equilibrium.
This transition from the unconstrained to the constrained case has been dealt
and successfully solved in the optimization framework at the beginning of this
section (see Corollary 4.2.8) by using Lemma 4.2.7. Hence, let us investigate
whether an analogous result to Lemma 4.2.7 holds also in a game-theoretical
framework. Consider the following assumptions on Ω.

Suppose that, for any i ∈ I
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(i) Ai is compact and convex;

(ii) Ui is upper semicontinuous on A;

(iii) for any (ai, a−i) ∈ Ai × A−i and any sequence (a−i,k)k ⊆ A−i converging
to a−i, there exists a sequence (ãi,k)k ⊆ Ai converging to ai such that

lim inf
k→+∞

Ui(ãi,k, a−i,k) ≥ Ui(ai, a−i);

(iv) Ui(·, a−i) is concave on Ai, for any a−i ∈ A−i;

(v) Ui is continuously differentiable with respect to ai on A;

and, furthermore, that

(vi) the function J : A→ Rm defined by

J(a) := −(∇1U1(a), . . . ,∇NUN (a))

is monotone on A.

Denoted with Ω̄ the game obtained from Ω by “extending” the payoff functions
of Ω, that is the game Ω̄ = {I, (Ai)i∈I , (Ūi)i∈I} where Ūi : Rm → R ∪ {−∞} is
defined on Rm by

Ūi(a) =

Ui(a), if a ∈ A

−∞, if a /∈ A,

for any i ∈ I, let us discuss if assumptions (i)-(vi) on Ω imply the following
statements related to Ω̄:

(a) the set-valued map J̄ : Rm ⇒ Rm defined on A by

J̄(a) = ∂1(−Ū1)(a)× · · · × ∂N (−ŪN )(a),

where ∂i(−Ūi) is the subdifferential of −Ūi with respect to ai, is maximal
monotone on Rm;

(b) E(Ω) = E(Ω̄).

Firstly, note that assumptions (i)-(iv) guarantee the existence of at least one
Nash equilibrium of Ω, in light of [74, Theorem 2.1]. Moreover, by assumption
(v) and the definition of J , we have

J̄(a) =

{J(a)}, if a ∈ A

∅, if a /∈ A.

69



4. On the Tikhonov and Moreau-Yosida regularization

Hence, the continuity and monotonicity of J on A provided by assumptions (v)-
(vi) ensure the maximal monotonicity of J̄ on Rm, so (a) is satisfied. If even (b)
held, then it would be possible to restate Theorem 4.2.9 and Proposition 4.2.10
for games where the players action sets are compact and convex subsets of
Euclidean spaces and without requiring explicitly the non-emptiness of the set of
Nash equilibria of Ω. Unfortunately, while the inclusion E(Ω) ⊆ E(Ω̄) obviously
holds, in general E(Ω̄) * E(Ω) as illustrated in the following simple example.

Example 4.2.1 Let Ω be the game where I = {1, 2}, A1 = A2 = [0, 1] and
U1(a1, a2) = U2(a1, a2) = c ∈ R for any (a1, a2) ∈ [0, 1]2. Obviously E(Ω) =

[0, 1]2, while E(Ω̄) = E(Ω)∪]1,+∞[2∪]−∞, 0[2. Therefore E(Ω) 6= E(Ω̄).

However, assumptions (i)-(vi) stated before are sufficient to construct a se-
quence of regularized game (by means of proximal point algorithm) having a
unique Nash equilibrium, as illustrated in the following result. At the moment,
the convergence issue of the sequence of Nash equilibria obtained in such a way
(as well as the related Nash equilibrium selection issue) is under investigation.

Proposition 4.2.14. Assume that Ω = {I, (Ai)i∈I , (Ui)i∈I} satisfies hypotheses
(i)-(v) for any i ∈ I and hypothesis (vi) at page 69. Let (λk)k∈N∪{0} ⊆]0,+∞[

and ā0 ∈ A. Then the sequence of games (Ωk)k and the sequence of action
profiles (āk)k constructed in the following way:Ω1 = {I, (Ai)i∈I , (U1

i )i∈I},

{ā1} = E(Ω1),

...Ωk = {I, (Ai)i∈I , (Uki )i∈I},

{āk} = E(Ωk),

...

where Uki : A→ R is defined on A by

Uki (ai, a−i) = Ui(ai, a−i)−
1

2λk−1
‖ai − āk−1,i‖2mi ,

for any i ∈ I and k ∈ N, are well-defined. In particular Ωk has a unique Nash
equilibrium for any k ∈ N.

Proof. The non-emptiness of the set of Nash equilibria of Ω is guaranteed by
assumptions (i)-(iv), in light of [74, Theorem 2.1]. We show by induction on
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k that the sequence (āk) is well-defined. Let k = 1 and J1 : A → Rm be the
function defined on A by

J1(a) = −
(
∇1U

1
1 (a), . . . ,∇NU1

N (a)
)
.

Then, by definition of J and U1
i , assumption (vi), and since λ0 > 0 we have

(a′ − a′′, J1(a′)− J1(a′′))m = (a′ − a′′, J(a′)− J(a′′))m

+

N∑
i=1

(
a′i − a′′i ,

1

λ0
[(a′i − ā0,i)− (a′′i − ā0,i)]

)
mi

= (a′ − a′′, J(a′)− J(a′′))m +
1

λ0

N∑
i=1

‖a′i − a′′i ‖
2
mi

> 0,

for any a′, a′′ ∈ A with a′ 6= a′′. Therefore, the function J1 is strictly monotone
on A, so in light of Rosen uniqueness result (Theorem 3.2.2), the game Ω1 has
a unique Nash equilibrium ā1 ∈ A (the existence of such equilibrium holds in
light of [74, Theorem 2.1]). Hence, the base case is proved.
Assume that the result holds for k > 1, so Ωk has a unique Nash equilibrium
āk. Let Jk+1 : A→ Rm be the function defined on A by

Jk+1(a) = −
(
∇1U

k+1
1 (a), . . . ,∇NUk+1

N (a)
)
.

Then, by definition of J and Uk+1
i , assumption (vi), and since λk > 0 we get

(a′ − a′′, Jk+1(a′)− Jk+1(a′′))m

= (a′ − a′′, J(a′)− J(a′′))m +

N∑
i=1

(
a′i − a′′i ,

1

λk
[(a′i − āk,i)− (a′′i − āk,i)]

)
mi

= (a′ − a′′, J(a′)− J(a′′))m +
1

λk

N∑
i=1

‖a′i − a′′i ‖
2
mi

> 0,

for any a′, a′′ ∈ A with a′ 6= a′′. Hence, the function Jk+1 is strictly monotone
on A and in light of Rosen uniqueness result, the game Ωk+1 has a unique
Nash equilibrium āk+1 ∈ A (the existence holds in light of [74, Theorem 2.1]).
Therefore the inductive step is proved and the proof is complete.

We conclude this chapter by mentioning that the idea of using regularizations
or perturbations of the data of the game has been broadly exploited in Game
Theory especially to define Nash equilibrium refinement concepts in normal-form
games (see, for example, [148, 52, 118, 122, 60, 30]). Furthermore, recently the
Moreau-Yosida regularization has been used to define a new Nash equilibrium
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refinement for normal-form games when there is uncertainty related to players’
actions (see [15]). Finally, we highlight that algorithms involving proximal point
methods for Nash equilibria (and, more generally, for equilibrium problems) in
a constrained setting have been widely investigated (see, for example, [42, 115,
116, 55, 64] and references therein). However, we highlight that in the references
just mentioned and differently from the analysis presented in this chapter, the
assumptions involve Nikaido-Isoda-type functions and not directly the players’
payoff functions.
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Chapter 5

Selection of subgame perfect

Nash equilibria

Let us face now the issue of selecting a subgame perfect Nash equilibrium
(SPNE) in one-leader N -follower two-stage games (where N ∈ N) by exploiting
the two regularization methods examined in Chapter 4.
In Chapter 2 we showed that, in one-leader one-follower two-stage games, the
strong Stackelberg equilibria and the weak Stackelberg equilibria can provide
particular selections of SPNEs (analogous arguments hold in the case of N ≥ 2

followers). Nevertheless, as emphasized at the end of Section 2.2, the SPNEs de-
rived from strong or weak Stackelberg equilibria require the leader of knowing
the follower’s best reply correspondence and, moreover, they are not achiev-
able as limit point of any algorithmic procedure (as well as for the SPNEs of
one-leader N -followers two-stage games deriving from the solutions of the cor-
responding strong or weak hierarchical Nash equilibrium problems).
In this chapter we introduce two constructive methods in order to select an
SPNE with the following features:

(i) they relieve the leader of learning the Nash equilibrium correspondence;

(ii) they allow to overcome the difficulties deriving from the possible non-single-
valuedness of the Nash equilibrium correspondence.

Such features are obtained by using the Tikhonov regularization and the proxi-
mal point algorithm. In particular, regarding the selection of SPNEs by means
of the proximal point algorithm, an additional feature is achieved:

(iii) the constructive method is based on a learning approach which has a behav-
ioral interpretation linked to the costs that players face when they deviate
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from their current actions.

Firstly, we analyze the constructive method introduced by Morgan and Patrone
in [109], where the Tikhonov regularization is exploited for selecting an SPNE
in one-leader N -follower two-stage games with N = 1, 2 (that fits features (i)-
(ii)). Then, referring to Caruso, Ceparano and Morgan [23], we show an SPNE
selection method for one-leader one-follower two-stage games based on proximal
point algorithm which satisfies even feature (iii), according to the interpretation
presented in Subsection 4.2.1.

5.1 Selection of SPNE via Tikhonov regulariza-

tion

Let us describe in this section the SPNE selection method proposed by Morgan
and Patrone in [109], starting from the analysis of case of one follower. Using
the same notation of Chapter 2 let Γ = (X,Y, L, F ) be a one-leader one-follower
two-stage game, whereX and Y are the action sets of the leader and the follower,
respectively, L : X×Y → R∪{−∞} and F : X×Y → R∪{−∞} are the payoff
functions of the leader and the follower, respectively, andM : X ⇒ Y denotes
the follower’s best reply correspondence defined in (2.6). Assume that X is a
subset of a Euclidean space X and that Y is a subset of a Euclidean space Y
equipped with the inner product (·, ·)Y and associated norm ‖·‖Y.
As illustrated in Section 2.1, the follower, after having observed the leader’s
action x ∈ X, faces the optimization problem Px in (2.4). In [109, Section 3] a
regularized optimization problem for the follower is defined by using Tikhonov
regularization:

Px,k : max
y∈Y

F (x, y)− 1

2λk
‖y‖2Y, (5.1)

where k ∈ N and λk > 0; that is, Px,k is the Tikhonov regularized problem of
parameter λk related to the function F (x, ·), according to the notation used in
Section 4.1. Regarding the connections between the solutions of Px,k and Px,
from Theorem 4.1.3 it follows immediately the next result.

Proposition 5.1.1. Assume that:

(i) Y is compact and convex;

(ii) F (x, ·) is upper semicontinuous and concave on Y , for any x ∈ X;

(iii) (λk)k ⊆]0,+∞[ and limk→+∞ λk = +∞.
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Then, problem Px,k has a unique solution m̄k(x) ∈ Y , for any x ∈ X and any
k ∈ N, and the sequence (m̄k(x))k is convergent to the (unique) minimum norm
element m̂(x) of the setM(x), defined in (2.6), for any x ∈ X.

Therefore, under the assumptions of Proposition 5.1.1, it is well-defined the
following Stackelberg problem:

SPk :


maxx∈X L(x, m̄k(x))

where m̄k(x) ∈ Y

is the unique solution of Px,k defined in (5.1).

In the next result, we illustrate the constructive method proposed in [109] to
select an SPNE of Γ.

Theorem 5.1.2 (Theorem 3.1 in [109]). Let Γ = (X,Y, L, F ) be a one-leader
one-follower two-stage game. Assume that

(i) X is compact;

(ii) Y is compact and convex;

(iii) L is upper semicontinuous on X × Y ;

(iv) L(x, ·) is lower semicontinuous on Y , for any x ∈ X;

(v) F is upper semicontinuous on X × Y ;

(vi) for any (x, y) ∈ X × Y and any sequence (xk)k ⊆ X converging to x, there
exists a sequence (ỹk)k ⊆ Y converging to y such that

lim inf
k→+∞

F (xk, ỹk) ≥ F (x, y);

(vii) F (x, ·) is concave on Y , for any x ∈ X;

(viii) (λk)k ⊆]0,+∞[ and limk→+∞ λk = +∞.

Let (x̄k, ȳk)k ⊆ X × Y be the sequence of actions profiles where

x̄k is a solution of SPk and ȳk = m̄k(x̄k) is the solution of Px̄k,k.

If the sequence (x̄k, ȳk)k is convergent to (x̄, ȳ) ∈ X×Y , then the strategy profile
(x̄, m̄) ∈ X × Y X where

m̄(x) =

ȳ, if x = x̄

m̂(x), if x ∈ X \ {x̄},

is an SPNE of Γ.
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Sketch of the proof. Firstly, assumptions (i)-(iii), (v)-(viii) guarantee that SPk
has at least one solution for any k ∈ N, in light of Proposition 2.2.7. Hence, the
sequence (x̄k, ȳk)k is well-defined. Moreover, assumptions (ii), (v)-(vi) ensure
that the follower’s best reply correspondenceM is closed at x̄ (see, for example,
the first part of the proof of Proposition 2.2.12), so ȳ = m̄(x̄) ∈M(x̄) and prop-
erty (SG1) in Definition 2.2.2 is satisfied (since m̂(x) ∈M(x) for any x 6= x̄ by
definition of m̂(x)). Finally, assumptions (iii)-(iv) and Proposition 5.1.1 prove
(SG2) in Definition 2.2.2.

Let us illustrate the features of the constructive method provided in Theo-
rem 5.1.2 to select an SPNE in one-leader one-follower two-stage games by using
the Tikhonov regularization.

• Denoted with Fk : X × Y → R ∪ {−∞} the function defined on X × Y by

Fk(x, y) = F (x, y)− 1

2λk
‖y‖2Y,

and with Γk = (X,Y, L, Fk) the one-leader one-follower two-stage game obtained
from Γ by replacing the follower payoff function F with Fk, in light of Proposi-
tion 5.1.1 the follower’s best reply correspondence in Γk is single-valued, so Γk is
a classical Stackelberg game whose follower’s best reply function is m̄k : X → Y .
Hence, Γ is approximated via a sequence of one-leader one-follower two-stage
games (Γk)k where the follower’s best reply correspondences are single-valued
and the SPNE of Γ selected according to Theorem 5.1.2 is generated by the
limit of a sequence of Stackelberg equilibria (x̄k, ȳk)k ⊆ X × Y , where (x̄k, ȳk)

is a Stackelberg equilibrium of the Stackelberg problem SPk (associated to Γk).
Therefore, the selection method illustrated above allows to overcome the dif-
ficulties deriving from the possible non-single-valuedness of the follower’s best
reply correspondence M and, by construction, the leader is not demanded to
know the follower’s best reply correspondence, so such a method fits the goals
(i) and (ii) presented in the introduction of this chapter.

• Theorem 5.1.2 guarantees the existence of SPNEs in one-leader one-follower
two-stage games regardless of the lower semicontinuity of the follower’s best
reply correspondenceM, as the following example shows.

Example 5.1.1 Let Γ be the game defined in Example 2.2.5. All the as-
sumptions of Theorem 5.1.2 are evidently satisfied since L and F are continuous
and F is a bilinear function. Choosing λk = k for any k ∈ N, the sequence
(x̄k, ȳk)k obtained by applying the method described in Theorem 5.1.2 is con-
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vergent to (1, 1), in particular, (x̄k, ȳk) = (1, 1) for any k ∈ N. Hence, the SPNE
selected according to the method is (1, m̄(·)), where m̄ : [−1, 1]→ [−1, 1] is the
function defined on [−1, 1] by

m̄(x) =


−1, if x ∈ [−1, 0[

0, if x = 0

1, if x ∈]0, 1].

Furthermore, as proved in Example 2.2.5, the follower’s best reply correspon-
denceM, given in (2.7), is not lower semicontinuous on [−1, 1].

Still regarding the existence of SPNEs, we note that even if the sequence
(x̄k, ȳk)k is not convergent in X × Y , the compactness of X and Y ensure the
existence of a convergent subsequence (x̄kj , ȳkj )j whereby an SPNE can be gen-
erated in the same way as in Theorem 5.1.2.

• The SPNE constructed via the method presented in Theorem 5.1.2 is, in
general, different from the SPNE selections that could be induced by the strong
and the weak Stackelberg solutions, respectively, of the strong and the weak
Stackelberg problems associated to Γ (see Propositions 2.2.17 and 2.2.18). To
investigate this lack of connections, it is sufficient to compare the limit (x̄, ȳ)

of the sequence (x̄k, ȳk)k with the strong and the weak Stackelberg equilibria
associated to Γ, as illustrated in the following example.

Example 5.1.2 (Example 3.4 in [109]) Let Γ = (X,Y, L, F ) where the
action sets are X = [−2, 2] and Y = [−1, 1], and the payoff functions are defined
on [−2, 2]× [−1, 1] by L(x, y) = x+ y and

F (x, y) =


−(x+ 7/4)y, if x ∈ [−2,−7/4[

0, if x ∈ [−7/4, 7/4[

−(x− 7/4)y, if x ∈ [7/4, 2].

The sequence (x̄k, ȳk)k defined in Theorem 5.1.2 converges to (7/4, 0), which
is different both from the strong Stackelberg equilibrium (7/4, 1) and from the
weak Stackelberg equilibrium (2,−1) of the strong and weak Stackelberg prob-
lems associated to Γ.

Now let ΓN = (X,Y1, . . . , YN , L, F1, . . . , FN ) be a one-leader N -follower
two-stage game with N ≥ 2 and, referring to [109, Section 4], let us illus-
trate a constructive selection method for SPNE defined by using the Tikhonov
regularization. We remind that X and Yi are the action sets of the leader

77



5. Selection of subgame perfect Nash equilibria

and the follower i, respectively, L : X × Y1 × · · · × YN → R ∪ {−∞} and
Fi : X × Y1 × · · · × YN → R ∪ {−∞} are the payoff functions of the leader
and the follower i, respectively, and N : X ⇒ Y1 × · · · × YN denotes the Nash
equilibrium correspondence defined in (2.3). Analogously to the case of one
follower, we assume that X is a subset of a Euclidean space X and that Yi is
a subset of a Euclidean space Yi equipped with the inner product (·, ·)Yi and
associated norm ‖·‖Yi for any i ∈ I = {1, . . . , N}.
By definition of one-leader N -follower two-stage game, we recall that the follow-
ers, after having observed the leader’s action x ∈ X, engage in the simultaneous-
move gameGx defined in (2.1). Let us consider the following regularized normal-
form game

Gx,k = {I, (Yi)i∈I , (F ki (x, ·))i∈I}, (5.2)

where F ki : X × Y1 × · · · × YN → R ∪ {−∞} is the Tikhonov regularization of
Fi with respect to yi of parameter λk, that is the function defined on X × Y1 ×
· · · × YN by

F ki (x, yi, y−i) = Fi(x, yi, y−i)−
1

2λk
‖yi‖2Yi ,

with k ∈ N and λk > 0, according to the notation used in Subsection 4.1.1.
By applying the same arguments of the proof of Theorem 4.1.4, it follows im-
mediately the next result concerning the connections between the set of Nash
equilibria of Gx,k and Gx (that provides a generalization to N followers of [109,
Theorem 4.1], where two followers are considered).

Proposition 5.1.3 (Theorem 4.1 in [109]). Assume that, for any i ∈ I

(i) Yi is compact and convex;

(ii) Fi(x, ·) is upper semicontinuous on Y1 × · · · × YN and continuously differ-
entiable with respect to yi on Y1 × · · · × YN , for any x ∈ X;

(iii) Fi(x, ·, y−i) is concave on Yi, for any y−i ∈ Y−i and any x ∈ X;

(iv) for any (x, yi, y−i) ∈ X × Yi × Y−i and any sequence (y−i,k)k ⊆ Y−i con-
verging to y−i, there exists a sequence (ỹi,k)k ⊆ Yi converging to yi such
that

lim inf
k→+∞

Fi(x, ỹi,k, y−i,k) ≥ Fi(x, yi, y−i);

and that

(v) for any x ∈ X and any (y′, y′′) ∈ (Y1 × · · · × YN )2 the following inequality
is satisfied

N∑
i=1

(∇iFi(x, y′)−∇iFi(x, y′′), y′i − y′′i )Yi ≤ 0.
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(vi) (λk)k ⊆]0,+∞[ and limk→+∞ λk = +∞.

Then, Gx,k has a unique Nash equilibrium n̄k(x) = (n̄k,1(x), . . . , n̄k,N (x)) ∈
Y1×· · ·×YN , for any x ∈ X and any k ∈ N. Furthermore, equipped Y1×· · ·×YN
with the norm defined by

‖(y1, . . . , yN )‖2Y1×···×YN =

N∑
i=1

‖yi‖2Yi ,

for any (y1, . . . , yN ) ∈ Y1× · · · × YN , the sequence (n̄k(x))k is convergent to the
(unique) minimum norm element n̂(x) of the set N (x), defined in (2.3), for any
x ∈ X.

Hence, under the assumptions of Proposition 5.1.3, it is well-defined the
following Stackelberg problem:

SPN,k :


maxx∈X L(x, n̄k,1(x), . . . , n̄k,N (x))

where n̄k = (n̄k,1(x), . . . , n̄k,N (x)) ∈ Y1 × · · · × YN

is the unique Nash equilibrium of Gx,k defined in (5.2),

which plays a key role in the construction of an SPNE selection in ΓN , as
described in the next result (that represents a generalization to N followers of
[109, Theorem 4.2], where two followers are considered).

Theorem 5.1.4 (Theorem 4.2 in [109]). Let ΓN be a one-leader N -follower
two-stage game, with N ≥ 2. Assume that, for any i ∈ I

(i) Yi is compact and convex;

(ii) Fi is upper semicontinuous on X×Y1×· · ·×YN and Fi(x, ·) is continuously
differentiable with respect to yi on Y1 × · · · × YN , for any x ∈ X;

(iii) Fi(x, ·, y−i) is concave on Yi, for any y−i ∈ Y−i and any x ∈ X;

(iv) for any (x, yi, y−i) ∈ X×Yi×Y−i and any sequence (xk, y−i,k)k ⊆ X×Y−i
converging to (x, y−i), there exists a sequence (ỹi,k)k ⊆ Yi converging to yi
such that

lim inf
k→+∞

Fi(xk, ỹi,k, y−i,k) ≥ Fi(x, yi, y−i);

and that

(v) X is compact;

(vi) L is upper semicontinuous on X × Y1 × · · · × YN ;

(vii) L(x, ·) is lower semicontinuous on Y1 × · · · × YN , for any x ∈ X;
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(viii) for any x ∈ X and any (y′, y′′) ∈ (Y1× · · · ×YN )2 the following inequality
is satisfied

N∑
i=1

(∇iFi(x, y′)−∇iFi(x, y′′), y′i − y′′i )Yi ≤ 0;

(ix) (λk)k ⊆]0,+∞[ and limk→+∞ λk = +∞.

Let (x̄k, ȳk)k ⊆ X × Y1 × · · · × YN be the sequence of actions profiles where

x̄k is a solution of SPN,k and ȳk = n̄k(x̄k) is the Nash equilibrium of Gx̄k,k.

If the sequence (x̄k, ȳk)k is convergent to (x̄, ȳ) ∈ X × Y1 × · · · × YN , then the
strategy profile (x̄, n̄) ∈ X × (Y1 × · · · × YN )X where

n̄(x) =

ȳ, if x = x̄

n̂(x), if x ∈ X \ {x̄},

is an SPNE of ΓN .

Sketch of the proof. Firstly, assumptions (i)-(vi), (viii)-(ix) guarantee that SPN,k
has at least one solution for any k ∈ N, in light of Proposition 2.2.8. Hence, the
sequence (x̄k, ȳk)k is well-defined. Moreover, assumptions (ii), (iv) ensure that
the Nash equilibrium correspondence N is closed at x̄ (see [74, Theorem 3.1]).
The thesis follows by arguing as in Theorem 5.1.2 and, finally, by using assump-
tions (vi)-(vii) and Proposition 5.1.3.

We emphasize that the SPNE selection method for one-leader N -follower
two-stage games (with N ≥ 2) presented in Theorem 5.1.4 displays analogous
features to one illustrated in Theorem 5.1.2. In fact, it allows to construct
a sequence of one-leader N -follower two-stage games where the Nash equilib-
rium correspondences are single-valued, via the Tikhonov regularization, and
to approach an SPNE by using the limit of the sequence of Stackelberg equi-
libria related the Stackelberg problems (SPN,k)k (which are associated to the
sequence of “regularized” one-leader N -follower two-stage games constructed).
Moreover, even in this case, the leader is not required to know the Nash equilib-
rium correspondence N , hence the selection method defined in Theorem 5.1.4
satisfies both goals (i) and (ii) illustrated in the introduction of this chapter.
Finally, analogously to the case of one follower, Theorem 5.1.4 provides also an
existence result for SPNEs in one-leader N -follower two-stage games that does
not require the Nash equilibrium correspondence N to be lower semicontinuous,
and the SPNE achieved via Theorem 5.1.4 is not connected, in general, with the
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SPNEs obtainable from the solutions of the strong or the weak hierarchical Nash
equilibrium problem associated to ΓN (defined at the end of Subsection 2.2.2).

We conclude by reminding that regularization methods has been already
used to tackle the problem of non-single-valuedness of the follower’s best reply
correspondence both in strong Stackelberg problems (see [35] where the reg-
ularization of Molodtsov [103] is involved) and in weak Stackelberg problems
(see [85], [88] and [89] where the regularizations of Solohovic [139], Tikhonov
and Molodtsov are exploited, respectively). Furthermore, we mention that an
approximation scheme involving sequences of simple functions has been used
in [21] to show the existence of ε-SPNEs in games of perfect information in
continuous setting.

5.2 Selection of SPNE via Moreau-Yosida reg-

ularization in one-leader one-follower two-

stage games

Throughout this section we consider a one-leader one-follower two-stage game
Γ = (X,Y, L, F ), where X and L are the set of actions and the payoff function
of the leader, respectively, and Y and F are the set of actions and the payoff
function of the follower, respectively, with L and F real-valued functions defined
on X × Y . Referring to Caruso, Ceparano and Morgan [23], we introduce
a constructive method in order to select an SPNE of Γ by using a learning
approach based on the proximal point algorithm (linked to the Moreau-Yosida
regularization, analyzed in Section 4.2) with the following features:

(i) it relieves the leader of learning the follower’s best reply correspondence
M : X ⇒ Y ;

(ii) it allows to overcome the difficulties deriving from the possible non-single-
valuedness ofM;

(iii) it has a behavioral interpretation linked to the costs that players face when
deviating from their current actions,

according to the goals highlighted in the introduction of this chapter.
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5.2.1 Constructive procedure and interpretation

Before presenting a constructive procedure to select an SPNE which satisfies
the features stated above, we define a class of games for which such an SPNE
is achievable through the just mentioned procedure.

Definition 5.2.1 A one-leader one-follower two-stage game Γ = (X,Y, L, F )

belongs to the family G if the following assumptions are satisfied:

(A1) X is a compact subset of the Euclidean space X, with norm ‖·‖X;

(A2) Y is a compact and convex subset of the Euclidean space Y, with norm
‖·‖Y;

(L1) L is upper semicontinuous on X × Y ;

(L2) L(x, ·) is lower semicontinuous on Y , for any x ∈ X;

(F1) F is upper semicontinuous on X × Y ;

(F2) for any (x, y) ∈ X × Y and for any sequence (xk)k ⊆ X converging to x
there exists a sequence (ỹk)k ⊆ Y converging to y such that

lim inf
k→+∞

F (xk, ỹk) ≥ F (x, y);

(F3) F (x, ·) is concave on Y , for any x ∈ X.

Remark 5.2.2 Assumptions (F1)-(F2) have implications in term of epicon-
vergence or Γ-convergence (see, for example, [2, 29]). Indeed, let x ∈ X and let
(xk)k ⊆ X be a sequence converging to x and consider the following real-valued
functions defined on Y by

Wk(y) = F (xk, y), for any k ∈ N,

W (y) = F (x, y).

Then the sequence of functions (Wk)k Γ+-converges to W (that is, (−Wk)k

epiconverges to −W ).

In the following remarks some properties of the family G are stated. The main
computations for the first remark are provided in Subsection 5.2.4, while the
proofs related to the second remark can be obtained by using Γ-convergence
results (see, for example, Propositions 6.21 and 6.16 in [29]).
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Remark 5.2.3 Requiring (F1)-(F3) is weaker than requiring the continuity of
F . Indeed, the function F defined on X×Y , where X = [1, 2] and Y = B((1,0),1)

(i.e. Y is the closed ball in R2 centered in (1, 0) with radius 1), by

F (x, (y1, y2)) =

−
y22
2y1

x, if (y1, y2) 6= (0, 0)

0, if (y1, y2) = (0, 0)

satisfies (F1)-(F3) but F (x, ·) is not lower semicontinuous at (0, 0), for any x ∈
[1, 2]. The main computations for this result are provided in Subsection 5.2.4.

Remark 5.2.4 Assume (X,Y, U, V ) ∈ G and (X,Y, Û , V̂ ) ∈ G.

(i) The game (X,Y, hU, kV ) ∈ G for any h, k ≥ 0.

(ii) If V̂ is continuous, then the game (X,Y, U + Û , V + V̂ ) ∈ G.

(iii) If Ψ and Φ are real-valued functions defined on R with Ψ continuous and
Φ increasing and concave, then the game (X,Y,Ψ ◦ U,Φ ◦ V ) ∈ G.

The method we use to select an SPNE of Γ relies on the Costs to Move Proce-
dure (CM) illustrated below, which allows to construct recursively a sequence of
perturbed games (Γn)n and a sequence of strategy profiles (x̄n, ϕn)n ⊆ X×Y X ,
by means of the proximal point algorithm.

Procedure (CM)

Fix an initial point (x̄0, ȳ0) ∈ X × Y and define for any n ∈ N

(Sn)


Γn = (X,Y, Ln, Fn)

{ϕn(x)} = Arg maxy∈Y Fn(x, y), for any x ∈ X

x̄n ∈ Arg maxx∈X Ln(x, ϕn(x))

where for any (x, y) ∈ X × Y
Fn(x, y) := F (x, y)− 1

2γn−1
‖y − ϕn−1(x)‖2Y

Ln(x, y) := L(x, y)− 1
2βn−1

‖x− x̄n−1‖2X,

with (γn)n∈N∪{0} ⊆]0,+∞[ and limn→+∞ γn = +∞,
(βn)n∈N∪{0} ⊆]0,+∞[ and limn→+∞ βn = +∞,

and ϕ0(x) := ȳ0 for any x ∈ X.

Procedure (CM) is well-defined when Fn(x, ·) has a unique maximizer on Y , for
any x ∈ X and for any n ∈ N, and when Ln(·, ϕn(·)) admits a maximizer on
X, for any n ∈ N. For the class of games introduced in Definition 5.2.1 such
properties are satisfied, as it is proved in the next proposition.
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Proposition 5.2.5 (Proposition 1 in [23]). Assume that Γ ∈ G. Then, Pro-
cedure (CM) is well-defined and ϕn is a continuous function on X, for any
n ∈ N.

Proof. We prove the result by induction on n. Let n = 1. By Remark 5.2.4(ii),
Γ1 ∈ G. Moreover F1(x, ·) is strictly concave for any x ∈ X, therefore ϕ1(x) is
well-defined and the follower’s best reply correspondence in Γ1 is single-valued.
Since Γ1 ∈ G, in particular

(a1) F1 is upper semicontinuous on X × Y ,

(b1) for any (x, y) ∈ X × Y and for any sequence (xk)k ⊆ X converging to x,
there exists a sequence (ỹk)k ⊆ Y converging to y such that

lim inf
k→+∞

F1(xk, ỹk) ≥ F1(x, y).

Conditions (a1) and (b1) are sufficient to guarantee that limk→+∞ ϕ1(xk) =

ϕ1(x) for any sequence (xk)k converging to x, i.e. that ϕ1 is continuous (see,
for example, [107, Proposition 5.1]). This fact and the upper semicontinuity of
L1 ensure that x̄1 is well-defined. Hence, the base case is proved.
Assume that the result holds for n > 1, so the strategy profile (x̄n, ϕn) is well-
defined and ϕn is a continuous function. In light of Remark 5.2.4(ii), Γn+1 ∈ G
since ϕn is continuous. Furthermore Fn+1(x, ·) is strictly concave for any x ∈ X,
so ϕn+1(x) is well-defined and ϕn+1 is the follower’s best reply function in Γn+1.
As Γn+1 ∈ G, then

(an+1) Fn+1 is upper semicontinuous on X × Y ,

(bn+1) for any (x, y) ∈ X ×Y and for any sequence (xk)k ⊆ X converging to x,
there exists a sequence (ỹk)k ⊆ Y converging to y such that

lim inf
k→+∞

Fn+1(xk, ỹk) ≥ Fn+1(x, y).

By (an+1) and (bn+1) it follows that ϕn+1 is continuous (again in light of, for
example, [107, Proposition 5.1]). Hence x̄n+1 is well-defined, since Ln+1 is upper
semicontinuous. So the inductive step is proved and the proof is complete.

Remark 5.2.6 Note that assumption (L2) in the definition of the family G (i.e.,
the lower semicontinuity of L(x, ·) for any x ∈ X) is unnecessary in the proof
of Proposition 5.2.5. We assumed Γ ∈ G in the proposition only for simplicity
of exposition.
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In the proof of Proposition 5.2.5 we showed that the follower’s best reply
correspondence in Γn is single-valued, i.e., Γn is a classical Stackelberg game.
Moreover, the follower’s best reply function ϕn in Γn is continuous and the
strategy profile (x̄n, ϕn) is an SPNE of Γn, for any n ∈ N. Hence, Procedure
(CM) allows to define a perturbation of the game Γ consisting of the sequence
of one-leader one-follower two-stage games (Γn)n where the follower’s best reply
correspondence is single-valued, and to construct a sequence of SPNEs related
to such a perturbation. We point out that the payoff functions of both players
in Γn are obtained by subtracting to the payoff functions of Γ a quadratic term
depending on the SPNE reached in Γn−1. Consequently (x̄n, ϕn), SPNE of Γn,
is an update of (x̄n−1, ϕn−1), SPNE of Γn−1, and it is constructed by using a
parametric proximal point algorithm, since

ϕn(x) = Proxγn−1F (x,·)(ϕn−1(x)),

for any x ∈ X and any n ∈ N, according to the definition of proximal point
operator illustrated in Section 4.2.

Regarding the behavioural interpretation of Procedure (CM), issues related
to the costs that players face when deviate from their current actions occur, sim-
ilarly to what illustrated in Subsection 4.2.1. In fact, at the generic step (Sn)

of the procedure, the follower chooses his strategy ϕn taking into account his
previous strategy ϕn−1. In making such a choice, he finds an action that com-
promises between maximizing F (x, ·) and being near to ϕn−1(x), for any x ∈ X.
The latter purpose is motivated according to the anchoring effect explained by
Attouch, Redont and Soubeyran in [3, p.1066] (and quoted in Subsection 4.2.1).
Such an anchoring effect is formulated by subtracting a quadratic slight cost to
move that reflects the difficulty of changing the previous action. The coefficient
γn−1 is linked to the per unit of distance cost to move of the follower and it is
related to the trade-off parameter between maximizing F (x, ·) and minimizing
the distance from ϕn−1(x). Since the same arguments apply for the preceding
steps until going up to step (S1), it follows that ϕn(x) as well as the limit of
ϕn(x) embeds the willingness of being near to ȳ0. Analogous observations hold
also for the leader, who chooses an action having in mind to be near to his
previous choices, and therefore even with the purpose of being near to x̄0.

In the next proposition, we prove that the limit of the sequence (ϕn)n is
a selection of the follower’s best reply correspondence. The pointwise conver-
gence of (ϕn)n is obtained by adapting to a parametric optimization context the
classical results about the convergence of the proximal point algorithm. Before
showing the result, we state the following lemma.
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Lemma 5.2.7. Let G be a real-valued function defined on X × Y and Ḡ be the
extended real-valued function defined on X × Y by

Ḡ(x, y) =

G(x, y), if y ∈ Y

−∞, if y /∈ Y.

Let x ∈ X. If the function G(x, ·) is upper semicontinuous and concave on Y ,
then

(i) the function Ḡ(x, ·) is upper semicontinuous and concave on Y;

(ii) Arg maxy∈Y G(x, y) = Arg maxy∈Y Ḡ(x, y);

(iii) Arg maxy∈Y G(x, y)− 1
2λ‖y− v‖

2
Y = Arg maxy∈Y Ḡ(x, y)− 1

2λ‖y− v‖
2
Y, for

any λ > 0 and v ∈ Y.

(iv) ϕ∗(x) ∈ Arg maxy∈Y G(x, y)⇐⇒ {ϕ∗(x)} = Arg maxy∈Y G(x, y)− 1
2λ‖y −

ϕ∗(x)‖2Y, for any λ > 0.

Proof. Claims (i)-(iii) follow immediately from Lemma 4.2.7, the proof of claim
(iv) comes from Remark 4.2.4, taking into account claims (i)-(iii).

Proposition 5.2.8 (Proposition 2 in [23]). Assume that (A2), (F1) and (F3)

hold. Then the sequence (ϕn)n pointwise converges to a function ϕ ∈ Y X and
ϕ(x) ∈M(x) for any x ∈ X, whereM(x) = Arg maxy∈Y F (x, y).

Proof. Let x ∈ X. By assumptions (F1) and (F3) and Lemma 5.2.7(i), the
function F̄ (x, ·), where F̄ is defined on X × Y by

F̄ (x, y) =

F (x, y), if y ∈ Y

−∞, if y /∈ Y,

is upper semicontinuous and concave and is not identically −∞. Moreover, in
light of Lemma 5.2.7(ii), the compactness of Y and assumption (F1),

Arg max
y∈Y

F̄ (x, y) 6= ∅.

Given the above, and since limn→+∞ γn = +∞ with (γn)n∈N∪{0} ⊆]0,+∞[, the
function F̄ (x, ·) satisfies the hypotheses for the convergence of proximal point
algorithm stated in Theorem 4.2.5. Then, the sequence (zn)n defined by

{zn} = Arg max
y∈Y

F̄ (x, y)− 1

2γn−1
‖y − zn−1‖2Y for any n ∈ N,

where z0 := ȳ0, converges to a point in Arg maxy∈Y F̄ (x, y). Since the unique
maximizer of F̄ (x, ·) − 1

2γn−1
‖ · − ϕn−1(x)‖2Y over Y coincides with the unique
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maximizer of F (x, ·)− 1
2γn−1

‖ · −ϕn−1(x)‖2Y over Y in light of Lemma 5.2.7(iii),
then zn = ϕn(x) for any n ∈ N. Furthermore, since the set of maximizers of
F̄ (x, ·) over Y coincides with the set of maximizers of F̄ (x, ·) over Y in light
of Lemma 5.2.7(ii), sequence (ϕn(x))n converges to a maximizer of F (x, ·) over
Y . Hence, the function ϕ that associates with each x ∈ X the point ϕ(x) :=

limn→+∞ ϕn(x) ∈ Y is well-defined and ϕ(x) ∈M(x) for any x ∈ X.

5.2.2 SPNE selection result

The next theorem provides an existence result of an SPNE selection achievable
via Procedure (CM) for Γ = (X,Y, L, F ) ∈ G. Recall that (x̄n, ϕn)n is the
sequence of strategy profiles generated by Procedure (CM), which is well-defined
in light of Proposition 5.2.5.

Theorem 5.2.9 (Theorem 1 in [23]). Assume that Γ ∈ G and that the sequence
of action profiles (x̄n, ϕn(x̄n))n ⊆ X×Y converges to (x̄, ȳ) ∈ X×Y . Then the
strategy profile (x̄, ϕ̄) ∈ X × Y X , where

ϕ̄(x) :=

ȳ, if x = x̄

limn→+∞ ϕn(x), if x 6= x̄,

is an SPNE of Γ.

Proof. We start to prove property (SG1) of Definition 2.2.2. Let x ∈ X and
ϕ(x) = limn→+∞ ϕn(x), as defined in Proposition 5.2.8. If x 6= x̄, Propos-
ition 5.2.8 ensures that ϕ̄(x) = ϕ(x) ∈ M(x). If x = x̄, pick y ∈ Y . By
assumption (F2), there exists a sequence (ỹn)n converging to y such that

lim inf
n→+∞

F (x̄n, ỹn) ≥ F (x̄, y). (5.3)

By (F1) we have:

F (x̄, ȳ) ≥ lim sup
n→+∞

F (x̄n, ϕn(x̄n))

= lim sup
n→+∞

[
F (x̄n, ϕn(x̄n))− 1

2γn−1
‖ϕn(x̄n)− ϕn−1(x̄n)‖2Y

]
= lim sup

n→+∞
Fn(x̄n, ϕn(x̄n)),

(5.4)

where the first equality holds since the second addend in the lim sup converges
to 0 being (γn)n∈N∪{0} a divergent sequence of positive real numbers and Y

a compact set, and the second equality comes from the definition of Fn in
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Procedure (CM). By the definition of ϕn(x̄n) we get

lim sup
n→+∞

Fn(x̄n, ϕn(x̄n)) ≥ lim sup
n→+∞

Fn(x̄n, ỹn)

= lim sup
n→+∞

[
F (x̄n, ỹn)− 1

2γn−1
‖ỹn − ϕn−1(x̄n)‖2Y

]
.

(5.5)

Recalling the properties of (γn)n∈N∪{0} and the compactness of Y , by (5.3)-(5.5)
we have

F (x̄, ȳ) ≥ lim sup
n→+∞

[
F (x̄n, ỹn)− 1

2γn−1
‖ỹn − ϕn−1(x̄n)‖2Y

]
= lim sup

n→+∞
F (x̄n, ỹn) ≥ lim inf

n→+∞
F (x̄n, ỹn) ≥ F (x̄, y).

Hence, ȳ ∈M(x̄) and (SG1) is satisfied.
In order to prove condition (SG2) in Definition 2.2.2, we have to show that
L(x̄, ȳ) ≥ L(x, ϕ̄(x)) for any x ∈ X. So, let x ∈ X \ {x̄}. In light of (L1) we get

L(x̄, ȳ) ≥ lim sup
n→+∞

L(x̄n, ϕn(x̄n))

= lim sup
n→+∞

[
L(x̄n, ϕn(x̄n))− 1

2βn−1
‖x̄n − x̄n−1‖2X

]
≥ lim sup

n→+∞

[
L(x, ϕn(x))− 1

2βn−1
‖x− x̄n−1‖2X

]
≥ lim inf

n→+∞

[
L(x, ϕn(x))− 1

2βn−1
‖x− x̄n−1‖2X

]
= lim inf

n→+∞
L(x, ϕn(x)) ≥ L(x, ϕ(x))

where the first (resp. second) equality holds since the second addend in the
lim sup (resp. lim inf) converges to 0 being (βn)n∈N∪{0} a divergent sequence of
positive real numbers andX a compact set, the second inequality comes from the
definition of x̄n in Procedure (CM), and the last inequality follows by (L2). As
x ∈ X \ {x̄}, then L(x, ϕ(x)) = L(x, ϕ̄(x)) and, therefore, L(x̄, ȳ) ≥ L(x, ϕ̄(x)).
Hence (SG2) holds, and the proof is complete.

Remark 5.2.10 A selection result for SPNEs analogous to Theorem 5.2.9 can
be obtained if the leader’s payoff function is not modified in Procedure (CM)
by subtracting the quadratic proximal term, that is if the costs to move only
concern the follower stage (i.e., Ln = L, for any n ∈ N).

We emphasize that the SPNE selection method illustrated in Theorem 5.2.9,
based on Procedure (CM), applies (by construction) also in situations where
the follower’s best reply correspondence M is not known. Hence, the learning
approach to select an SPNE shown in Theorem 5.2.9 relieves the leader of know-
ing the follower’s best reply correspondence and so, in light of what discussed
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in Subsection 5.2.1 regarding the features and the interpretation of Procedure
(CM), the SPNE selection method defined in this section fulfills all the proper-
ties described at the beginning of Section 5.2.
In the following remarks, issues concerning the dependence on the initial point
(x̄0, ȳ0) of the SPNE selected, the pointwise limit of (ϕn)n, and the lower semi-
continuity ofM are discussed, and related examples are provided.

Remark 5.2.11 The SPNE selected according to Theorem 5.2.9 is affected, in
general, by the choice of the initial point (x̄0, ȳ0) in Procedure (CM): in fact,
such an SPNE reflects both the leader’s willingness of being near to x̄0 and the
follower’s willingness of being near to ȳ0, as discussed in the interpretation of
the procedure in Subsection 5.2.1. The next example, whose main computations
are provided in Subsection 5.2.4, emphasizes this dependence especially from
the follower’s perspective, whereas in Examples 5.2.2 and 5.2.3 these insights
are more evident also from the leader’s point of view.

Example 5.2.1 Let Γ = (X,Y, L, F ) be the one-leader one-follower two-
stage game where X = Y = [−1, 1] and

L(x, y) = x, F (x, y) = −xy.

The follower’s best reply correspondenceM is defined on [−1, 1] by

M(x) =


{1}, if x ∈ [−1, 0[

[−1, 1], if x = 0

{−1}, if x ∈]0, 1].

(5.6)

Let (x̄0, ȳ0) ∈ [−1, 1] × [−1, 1] be the initial point of the procedure and let
βn = γn = 2n for any n ∈ N ∪ {0}. Then Procedure (CM) generates the
following sequence (x̄n, ϕn)n of strategy profiles:

x̄n =

min{1 + x̄0, 1}, if n = 1

1, if n ≥ 2,
ϕn(x) =


1, if x ∈

[
−1, ȳ0−1

an

[
ȳ0 − anx, if x ∈

[
ȳ0−1
an

, ȳ0+1
an

]
−1, if x ∈

]
ȳ0+1
an

, 1
]
,

(5.7)

where the sequence (an)n is recursively defined bya1 = 1

an+1 = an + 2n for any n ≥ 1.
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The SPNE of Γ selected according to Theorem 5.2.9 is (x̄, ϕ̄), where

x̄ = 1, ϕ̄(x) =


1, if x ∈ [−1, 0[

ȳ0, if x = 0

−1, if x ∈]0, 1].

(5.8)

Let us note that all the SPNEs of Γ are obtained when varying ȳ0 ∈ [−1, 1] in
(5.8). Hence ϕ̄ is, among all the follower’s strategies being part of an SPNE,
the follower’s strategy such that ϕ̄(x) minimizes the distance from the follower’s
initial point ȳ0, for any x ∈ [−1, 1]. Therefore the SPNE constructed by our
method is the nearest SPNE to the initial point (x̄0, ȳ0) in the sense illustrated
in Subsection 5.2.1 about the interpretation of the procedure.

Remark 5.2.12 The follower’s strategy ϕ̄ in the SPNE selected according to
Theorem 5.2.9 differs from the pointwise limit ϕ of sequence (ϕn)n at most in
one point. In fact if the two limits

lim
n→+∞

ϕn(x̄n) and lim
n→+∞

ϕn(x̄), (5.9)

where x̄ = limn→+∞ x̄n, coincide, then ϕ̄(x) = ϕ(x) for any x ∈ X and the
strategy profile (x̄, ϕ) is an SPNE of Γ in light of Theorem 5.2.9. Instead, if the
two limits in (5.9) do not coincide, then ϕ̄(x̄) 6= ϕ(x̄) and the strategy profile
(x̄, ϕ) could be not an SPNE of Γ, hence we need the follower’s strategy ϕ̄ as
in statement of Theorem 5.2.9 in order to get an SPNE. The following two
examples illustrate the two cases described above: in the first one the two limits
in (5.9) are equal, whereas, in the second one the two limits in (5.9) are different.
The main computations of both examples are provided in Subsection 5.2.4. We
mention that the two limits in (5.9) coincide if, for example, the sequence (ϕn)n

continuously converges to ϕ (see, for example, [29, Chapter 4] for the definition
and properties of continuous convergence).

Example 5.2.2 Let Γ = (X,Y, L, F ) be the one-leader one-follower two-
stage game where X = Y = [−1, 1] and

L(x, y) = y, F (x, y) = −xy.

The follower’s best reply correspondenceM is defined on [−1, 1] by

M(x) =


{1}, if x ∈ [−1, 0[

[−1, 1], if x = 0

{−1}, if x ∈]0, 1].

(5.10)
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Let (x̄0, ȳ0) = (1, 1) be the initial point of the procedure and let βn = γn = 2n

for any n ∈ N ∪ {0}. Then Procedure (CM) generates the following sequence
(x̄n, ϕn)n of strategy profiles:

x̄n = 0, ϕn(x) =


1, if x ∈ [−1, 0[

1− anx, if x ∈ [0, 2/an]

−1, if x ∈ ]2/an, 1] ,

(5.11)

where the sequence (an)n is recursively defined bya1 = 1

an+1 = an + 2n for any n ≥ 1.

Hence, the SPNE of Γ selected according to Theorem 5.2.9 is (x̄, ϕ̄), where

x̄ = 0, ϕ̄(x) =

1, if x ∈ [−1, 0]

−1, if x ∈]0, 1].

In this case, ϕ̄ coincides with the pointwise limit of (ϕn)n since limn ϕn(x̄n) =

1 = limn ϕn(limn x̄n).
Let us note that Γ has infinitely many SPNEs. In fact, denoted with ϕ̂α the
function defined on [−1, 1] by

ϕ̂α(x) :=


1, if x ∈ [−1, 0[

α, if x = 0

−1, if x ∈]0, 1],

the set of SPNEs of Γ is {(x̂, ϕ̂α) | x̂ ∈ [−1, 0[, α ∈ [−1, 1]}∪ {(0, ϕ̂1)}, only one
of which is obtained via our method. Hence, the selection method defined by
means of Procedure (CM) is effective.
Moreover, x̄ = 0 is the nearest leader’s action to x̄0 = 1 among all the actions
takeable by the leader in an SPNE, and analogously ϕ̄ is, among all the fol-
lower’s strategies being part of an SPNE, the follower’s strategy such that ϕ̄(x)

minimizes the distance from the follower’s initial point ȳ0, for any x ∈ [−1, 1].
So the insights illustrated in Remark 5.2.11 fit this case.

Example 5.2.3 Let Γ = (X,Y, L, F ) be the one-leader one-follower two-
stage game where X = [1/2, 2], Y = [−1, 1] and

L(x, y) = −x− y, F (x, y) =

0, if x ∈ [1/2, 1]

(1− x)y, if x ∈]1, 2].
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The follower’s best reply correspondenceM is given by

M(x) =

[−1, 1], if x ∈ [1/2, 1]

{−1}, if x ∈]1, 2].
(5.12)

Let (x̄0, ȳ0) = (1, 1) and βn = γn = n+ 1 for any n ∈ N ∪ {0}. Then Procedure
(CM) generates the following sequence (x̄n, ϕn)n of strategy profiles:

x̄n =

{
1/2, if n = 1

1 + 2/an, if n ≥ 2,
ϕn(x) =


1, if x ∈ [1/2, 1]

an + 1− anx, if x ∈ ]1, 1 + 2/an]

−1, if x ∈ ]1 + 2/an, 2] ,

(5.13)

where the sequence (an)n is recursively defined bya1 = 1

an+1 = an + n+ 1 for any n ≥ 1.

Hence, the SPNE of Γ selected according to Theorem 5.2.9 is (x̄, ϕ̄), where

x̄ = 1, ϕ̄(x) =

1, if x ∈ [1/2, 1[

−1, if x ∈ [1, 2].
(5.14)

As mentioned in Remark 5.2.12, in this case

lim
n
ϕn(x̄n) = −1 6= 1 = lim

n
ϕn(lim

n
x̄n)

and, furthermore, the strategy profile (1, ϕ), where ϕ is the pointwise limit of
(ϕn)n, is not an SPNE of Γ since Arg maxx∈[1/2,2] L(x, ϕ(x)) = ∅.
Finally, it is worth to note that even in this example the SPNE obtained is the
nearest SPNE to the initial point (x̄0, ȳ0) = (1, 1), in the sense described in
Remark 5.2.11.

Remark 5.2.13 If the sequence (x̄n, ϕn(x̄n))n involved in the statement of
Theorem 5.2.9 does not converge, the thesis of Theorem 5.2.9 still holds if
(x̄, ȳ) is replaced with the limit of a convergent subsequence (x̄nk , ϕnk(x̄nk))k ⊆
(x̄n, ϕn(x̄n))n, whose existence is guaranteed by the compactness of X and Y .
Therefore, assumption Γ ∈ G ensures the existence of SPNEs in one-leader one-
follower two-stage games regardless of the lower semicontinuity of the follower’s
best reply correspondence. Indeed, in the examples above, the follower’s best
reply correspondences in (5.6), (5.10) and (5.12) are not lower semicontinuous
set-valued maps.

The definition of (ϕn)n in Procedure (CM) is based on a parametric proximal
point method. Since proximal point methods require that an initial point has

92



5.2 Selection of SPNE via M-Y regularization in one-leader one-follower two-stage games

to be fixed (as illustrated in Section 4.2), we have taken in Procedure (CM) the
constant function ϕ0 ∈ Y X defined by ϕ0(x) = ȳ0 as the follower’s initial point.
However, Procedure (CM) could be also defined choosing any continuous func-
tion ϕ0 ∈ Y X as follower’s initial point and all the results of Subsections 5.2.1
and 5.2.2 would be still valid (in particular, Propositions 5.2.5, 5.2.8 and The-
orem 5.2.9).
The next two propositions state some further properties of our constructive
method when in Procedure (CM) the initial constant function defined by ȳ0 is
replaced with a continuous function ϕ0 ∈ Y X . For the sake of simplicity, we
continue to refer to (ϕn)n as the sequence generated by this modified procedure.

Proposition 5.2.14 (Proposition 3 in [23]). Let Γ ∈ G and let the follower’s
initial point ϕ0 ∈ Y X be a continuous function. Assume that ϕ0(x) ∈M(x) for
any x ∈ X. Then ϕn = ϕ0 for any n ∈ N. Moreover, ϕ0 is the strategy chosen
by the follower in the SPNE selected according to Theorem 5.2.9.

Proof. We prove the first part of the result by induction. Firstly, note that the
function F satisfies the assumptions of Lemma 5.2.7 as Γ ∈ G.
Let n = 1. Since ϕ0(x) ∈M(x) for any x ∈ X, in light of Lemma 5.2.7(iv) and
the definition of ϕ1, we have

{ϕ0(x)} = Arg max
y∈Y

F (x, y)− 1

2γ0
‖y − ϕ0(x)‖2Y = {ϕ1(x)}, for any x ∈ X,

so, the base case is satisfied. Let n > 1 and suppose that ϕn = ϕ0. Then
ϕn(x) ∈ M(x) for any x ∈ X and, by Lemma 5.2.7(iv) and definition of ϕn+1,
we get

{ϕn(x)} = Arg max
y∈Y

F (x, y)− 1

2γn
‖y − ϕn(x)‖2Y = {ϕn+1(x)}, for any x ∈ X,

thus, the inductive step is proved. Hence, ϕn = ϕ0 for any n ∈ N and the first
part of the proof is complete.
Since ϕn = ϕ0 for any n ∈ N and ϕ0 is continuous, then, for any sequence
(xn)n ⊆ X converging to x ∈ X, the sequence ϕn(xn) converges to ϕ0(x). So, ϕ0

is the follower’s strategy in the SPNE selected according to Theorem 5.2.9.

Proposition 5.2.15 (Proposition 4 in [23]). Let Γ ∈ G and let the follower’s
initial point ϕ0 ∈ Y X be a continuous function. Assume that there exists ν ∈ N
such that ϕν = ϕν−1. Then ϕν(x) ∈M(x) for any x ∈ X and ϕn = ϕν for any
n > ν. Moreover, ϕν is the strategy chosen by the follower in the SPNE selected
according to Theorem 5.2.9.
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Proof. By the definition of ϕν and since ϕν = ϕν−1, we have

{ϕν(x)} = Arg max
y∈Y

F (x, y)− 1

2γν−1
‖y − ϕν−1(x)‖2Y

= Arg max
y∈Y

F (x, y)− 1

2γν−1
‖y − ϕν(x)‖2Y, for any x ∈ X.

Then, in light of Lemma 5.2.7(iv) we get ϕν(x) ∈M(x) for any x ∈ X.
Consider the new constructive procedure whose follower’s initial point is the
continuous function ϕν and with (γν+n)n∈N∪{0} instead of (γn)n∈N∪{0} (such
a procedure is nothing but the original procedure taken away the first ν − 1

steps). Applying Proposition 5.2.14 we have ϕn = ϕν for any n > ν. Given the
above and by the continuity of ϕν , arguing as in the last part of the proof of
Proposition 5.2.14, it follows that ϕν is the strategy chosen by the follower in
the SPNE selected according to Theorem 5.2.9.

5.2.3 Connections with other methods to select SPNEs

In this section, firstly we analyze the relation between the SPNE selection
method based on Moreau-Yosida regularization (illustrated in Subsections 5.2.1
and 5.2.2) and the method based on Tikhonov regularization proposed in [109]
(displayed in Section 5.1), then we compare the SPNE selection achievable via
Theorem 5.2.9 with the SPNEs obtainable through the strong Stackelberg solu-
tions and the weak Stackelberg solutions of the strong and the weak Stackelberg
problems, respectively, associated to Γ.
Before addressing such issues, we discuss whether the results in [3], where an
alternating proximal algorithm with costs to move is introduced in normal-form
games as illustrated in Subsection 4.2.2, can be used in a one-leader one-follower
two-stage games framework to select SPNEs. We recall that the method pro-
posed in [3] (avoiding the restrictions on the payoff functions given in (4.10)),
fixed an initial point (x̂0, ŷ0) ∈ X × Y , generates a sequence (x̂n, ŷn)n ⊆ X × Y
defined by  ŷn ∈ Arg maxy∈Y F (x̂n−1, y)− 1

2γn−1
‖y − ŷn−1‖2,

x̂n ∈ Arg maxx∈X L(x, ŷn)− 1
2βn−1

‖x− x̂n−1‖2,
(5.15)

for any n ∈ N. Remind that in Procedure (CM) at each step it is defined a
strategy profile (x̄n, ϕn) ∈ X×Y X made of one leader’s action and one follower’s
strategy. Differently, the algorithm schematized in (5.15) constructs at each
step an action profile (x̂n, ŷn) ∈ X × Y composed by one leader’s action and
one follower’s action and, moreover, the limit (x̂, ŷ) is not, in general, connected
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to an SPNE of the one-leader one-follower two-stage game Γ = (X,Y, L, F ), as
highlighted in the following example.

Example 5.2.4 Let Γ = (X,Y, L, F ) where X = Y = [−1, 1] and

L(x, y) = x+ y, F (x, y) = −xy.

The follower’s best reply correspondenceM is defined on [−1, 1] by

M(x) =


{1}, if x ∈ [−1, 0[

[−1, 1], if x = 0

{−1}, if x ∈]0, 1].

The game Γ has a unique SPNE, namely (x̄, ϕ̄), where

x̄ = 0, ϕ(x) =

1, if x ∈ [−1, 0]

−1, if x ∈]0, 1].

Let (x̂0, ŷ0) = (0, 0) and βn = γn = 2n for any n ∈ N ∪ {0}. Then the sequence
defined in (5.15) converges to (x̂, ŷ) = (1,−1), which is not related to the SPNE
of Γ (being x = 1 not chosen by the leader in the SPNE).

As regards to the connections with the SPNE selection method introduced in
[109], we note that the way in which an SPNE is constructed via the Tikhonov
regularization-based method described in Section 5.1 does not involve any task
of learning step by step. Indeed, problem Px,k in (5.1) is not recursively de-
fined and therefore, at a given step k, neither the follower’s strategy m̄k is an
updating of his previous strategy m̄k−1 nor x̄n is an updating of x̄n−1 (see
Theorem 5.1.2). Hence, the anchoring effects arising in Procedure (CM), and
explained in Subsection 5.2.1, do not appear in this framework, as well as other
kinds of behavioral motivation. As a matter of fact, in general, the learning
method based on Procedure (CM) and the selection method in [109] do not
generate the same SPNE, as shown in the next example.

Example 5.2.5 Let Γ be the game defined in Example 5.2.3. The SPNE
selected by using the approach in [109] is (1, ϕ̄), where

ϕ̄(x) =

0, if x ∈ [1/2, 1[

−1, if x ∈ [1, 2];

that does not coincide with the SPNE found out in (5.14).

Let us investigate the connections with the SPNEs induced by the strong
and the weak Stackelberg solutions associated to Γ. Firstly, we remind that the
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computation of both strong and weak Stackelberg solutions, and related SPNEs,
would require the leader to know the best reply correspondence of the follower,
by definition. Instead, an SPNE selected via the method based on the proxi-
mal point algorithm described in Procedure (CM), as well as the one selected
via the method based on Tikhonov regularization (illustrated in Section 5.1),
relieves the leader of knowing the follower’s best reply correspondence. More-
over, we note that the SPNE selection obtained via Procedure (CM) does not
coincide, in general, with the SPNEs induced by the strong and the weak Stack-
elberg solutions of the strong and the weak Stackelberg problems associated to
Γ (not surprisingly since, in general, the motivations underlying all these typolo-
gies of selections are completely different from each other). To show this fact,
analogously to what pointed out in Section 5.1, it is sufficient to check if the
limit (x̄, ȳ) of the sequence of action profiles (x̄n, ϕn(x̄n))n obtained through
Procedure (CM) is a strong or a weak Stackelberg equilibrium. This lack of
connection is exhibited in the following example.

Example 5.2.6 Let Γ be the game defined in Example 5.2.3. The follower’s
best reply correspondenceM is given in (5.12). Since for any x ∈ [1/2, 2]

max
y∈M(x)

L(x, y) = −x+ 1, min
y∈M(x)

L(x, y) =

−x− 1, if x ∈ [1/2, 1]

−x+ 1, if x ∈]1, 2],

then

Arg max
x∈[1/2,2]

max
y∈M(x)

L(x, y) = {1/2}, Arg max
x∈[1/2,2]

min
y∈M(x)

L(x, y) = ∅.

Hence, the strong Stackelberg equilibrium is the action profile (1/2,−1) as
{−1} = Arg maxy∈M(1/2) L(1/2, y). Instead, the weak Stackelberg equilibrium
does not exist.
Procedure (CM) generates the sequence (x̄n, ϕn)n defined in (5.13). The se-
quence of action profiles (x̄n, ϕn(x̄n))n≥2 = (1 + 2/an,−1)n≥2 converges to
(1,−1), which is neither a strong nor a weak Stackelberg equilibrium.

We conclude by mentioning that very recently Flåm in [41], motivated by the
idea that imperfections in people capacity to choose, foresee or know must be
taken into account when defining equilibrium solution concepts, illustrated some
observations concerning the fact that change usually entails cost and gave some
results on the existence and how approaching equilibria modulo cost of change
both in normal-form games and in one-leader one-follower two-stage games.
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5.2.4 Main computations of remarks and examples

In this subsection the main computation of Remark 5.2.3, Examples 5.2.1, 5.2.2
and 5.2.3 are provided.

Main computations of Remark 5.2.3
Firstly, we show that the function F defined in Remark 5.2.3 satisfies (F1)-(F3).

(i) Proof of (F1):
We need to show the upper semicontinuity of F only at (x, (0, 0)), as F is
continuous for any (x, (y1, y2)) ∈ X × (Y \ {(0, 0)}). Let x ∈ X and let
(xk, (y1,k, y2,k))k ⊆ X × Y be a sequence converging to (x, (0, 0)). Since
F (x, (y1, y2)) ≤ 0 for any (x, (y1, y2)) ∈ X × Y and F (x, (0, 0)) = 0, then

lim sup
k→+∞

F (xk, (y1,k, y2,k)) ≤ F (x, (0, 0)).

Therefore (F1) holds.

(ii) Proof of (F2):
We need to show (F2) only at (x, (0, 0)), since F is continuous for any
(x, (y1, y2)) ∈ X × (Y \ {(0, 0)}). Let x ∈ X and let (xk)k ⊆ X be a
sequence converging to x. Define (ỹ1,k, ỹ2,k) := (1/k, 0) ∈ Y for any k ∈ N.
As F (xk, (ỹ1,k, ỹ2,k)) = 0 for any k ∈ N and F (x, (0, 0)) = 0, then

lim inf
k→+∞

F (xk, (ỹ1,k, ỹ2,k)) = F (x, (0, 0)).

Therefore (F2) holds.

(iii) Proof of (F3):
Let x ∈ X. In order to prove the concavity of F (x, (·, ·)) on Y \ {(0, 0)}, we
consider the twice-continuously differentiable function g : ]0,+∞[×R → R
defined by

g(y1, y2) := − y2
2

2y1
x.

The Hessian matrix of g at (y1, y2) is

Hg(y1, y2) =

 −y
2
2

y31
x y2

y21
x

y2
y21
x − 1

y1
x

 .

Since Hg(y1, y2) is negative semi-definite for any (y1, y2) ∈]0,+∞[×R (be-
ing x ∈ [1, 2]), then g is concave on ]0,+∞[×R. Therefore, F (x, (·, ·))
is concave on Y \ {(0, 0)}, as F (x, (y1, y2)) = g(y1, y2) for any (y1, y2) ∈
Y \ {(0, 0)}. The concavity of F (x, (·, ·)) on Y follows by the equality

F (x, t(0, 0) + (1− t)(y1, y2)) = tF (x, (0, 0)) + (1− t)F (x, (y1, y2)),
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that holds for any t ∈ [0, 1] and (y1, y2) ∈ Y . Hence (F3) is satisfied.

Let x ∈ X. We show that the function F (x, (·, ·)) is not lower semicontinuous
at (0, 0). In fact, let (ȳ1,k, ȳ2,k) := (1/k, 1/

√
k) ∈ Y for any k ∈ N. Since

F (x, (ȳ1,k, ȳ2,k)) = −x/2 ∈ [−1/2,−1] and F (x, (0, 0)) = 0, then

lim inf
k→+∞

F (x, (ȳ1,k, ȳ2,k)) � F (x, (0, 0)).

Main computations of Example 5.2.1
Firstly, note that Γ ∈ G. We prove (5.7) by induction on n. Let n = 1, then

{ϕ1(x)} = Arg max
y∈Y

F1(x, y) = Arg max
y∈[−1,1]

−xy −
(y − ȳ0)2

2
=


1, if x ∈ [−1, ȳ0 − 1[

ȳ0 − x, if x ∈ [ȳ0 − 1, ȳ0 + 1]

−1, if x ∈]ȳ0 + 1, 1].

and

{x̄1} = Arg max
x∈X

L1(x, ϕ1(x)) = Arg max
x∈[−1,1]

x−
(x− x̄0)2

2
=

1 + x̄0, if x̄0 ∈ [−1, 0]

1, if x̄0 ∈]0, 1].

As a1 = 1, the base case is fulfilled. Assume that (5.7) holds for n > 1. So

Fn+1(x, y) =


P1(x, y) = − y2

2n+1 −
(
x− 1

2n

)
y − 1

2n+1 , if x ∈
[
−1, ȳ0−1

an

[
P2(x, y) = − y2

2n+1 −
(
x + anx−ȳ0

2n

)
y − (ȳ0−anx)2

2n+1 , if x ∈
[
ȳ0−1
an

, ȳ0+1
an

]
P3(x, y) = − y2

2n+1 −
(
x + 1

2n

)
y − 1

2n+1 , if x ∈
]
ȳ0+1
an

, 1
]
,

and
Ln+1(x, y) = − x2

2n+1
+

(
1 +

1

2n

)
x− 1

2n+1
.

If x ∈ [−1, (ȳ0−1)/an[, then the unique maximizer of P1(x, ·) on Y = [−1, 1] is 1

since the abscissa of the vertex of the parabola P1 := {(y, z) ∈ R2 | z = P1(x, y)}
is 1 − 2nx > 1. If x ∈ [(ȳ0 − 1)/an, (ȳ0 − 1)/(2n + an)[, then the unique
maximizer of P2(x, ·) on Y = [−1, 1] is 1 since the abscissa of the vertex of
the parabola P2 := {(y, z) ∈ R2 | z = P2(x, y)} is ȳ0 − (2n + an)x > 1. If
x ∈ [(ȳ0 − 1)/(2n + an), (ȳ0 + 1)/(2n + an)], then the unique maximizer of
P2(x, ·) on Y = [−1, 1] is ȳ0 − (2n + an)x since the abscissa of the vertex of the
parabola P2 is ȳ0− (2n + an)x ∈ [−1, 1]. If x ∈](ȳ0 + 1)/(2n + an), (ȳ0 + 1)/an],
then the unique maximizer of P2(x, ·) on Y = [−1, 1] is −1 since the abscissa of
the vertex of the parabola P2 is ȳ0 − (2n + an)x < −1. If x ∈ [(ȳ0 + 1)/an, 1[,
then the unique maximizer of P3(x, ·) on Y = [−1, 1] is −1 since the abscissa of
the vertex of the parabola P3 := {(y, z) ∈ R2 | z = P3(x, y)} is −(2nx+1) < −1.
Given the above, since 2n + an = an+1,

{ϕn+1(x)} = Arg max
y∈Y

Fn+1(x, y) =


1, if x ∈

[
−1, ȳ0−1

an+1

[
ȳ0 − an+1x, if x ∈

[
ȳ0−1
an+1

, ȳ0+1
an+1

]
−1, if x ∈

]
ȳ0+1
an+1

, 1
]
,

(5.16)
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for any x ∈ [−1, 1]. Since Ln+1(x, ϕn+1(x)) = Ln+1(x, y) for any (x, y) ∈
X × Y and the abscissa of the vertex of the parabola T = {(x, z) ∈ R2 | z =

Ln+1(x, ϕn+1(x))} is 2n + 1 > 1, then

{x̄n+1} = Arg max
x∈[−1,1]

Ln+1(x, ϕn+1(x)) = {1}. (5.17)

Equalities (5.16)-(5.17) prove the inductive step, so (5.7) holds.
As limn→+∞ an = +∞, we get

x̄ = lim
n→+∞

x̄n = 1, ϕ(x) = lim
n→+∞

ϕn(x) =


1, if x ∈ [−1, 0[

ȳ0, if x = 0

−1, if x ∈]0, 1].

Since limn→+∞ ϕn(x̄n) = 1, then the SPNE selected according to Theorem 5.2.9
is (1, ϕ̄) = (1, ϕ).

Main computations of Example 5.2.2
Firstly, note that Γ ∈ G. We prove (5.11) by induction on n. Let n = 1, then

{ϕ1(x)} = Arg max
y∈Y

F1(x, y) = Arg max
y∈[−1,1]

−xy − (y − 1)2

2
=

1, if x ∈ [−1, 0[

1− x, if x ∈ [0, 1].

and

{x̄1} = Arg max
x∈X

L1(x, ϕ1(x)) where L1(x, ϕ1(x)) =

−
x2−2x−1

2
if x ∈ [−1, 0[

−x2−1
2

, if x ∈ [0, 1],

that is x̄1 = 0. As a1 = 1, the base case is fulfilled. Assume that (5.11) holds
for n > 1. So

Fn+1(x, y) =


P1(x, y) = − y2

2n+1 −
(
x− 1

2n

)
y − 1

2n+1 , if x ∈ [−1, 0[

P2(x, y) = − y2

2n+1 −
(
x+ anx−1

2n

)
y − (1−anx)2

2n+1 , if x ∈
[
0, 2

an

]
P3(x, y) = − y2

2n+1 −
(
x+ 1

2n

)
y − 1

2n+1 , if x ∈
]

2
an
, 1
]
,

and

Ln+1(x, y) = − x2

2n+1
+ y. (5.18)

If x ∈ [−1, 0[, then the unique maximizer of P1(x, ·) on Y = [−1, 1] is 1 since
the abscissa of the vertex of the parabola P1 := {(y, z) ∈ R2 | z = P1(x, y)} is
1 − 2nx > 1. If x ∈ [0, 2/(2n + an)], then the unique maximizer of P2(x, ·) on
Y = [−1, 1] is 1−(2n+an)x since the abscissa of the vertex of the parabola P2 :=

{(y, z) ∈ R2 | z = P2(x, y)} is 1− (2n+an)x ∈ [−1, 1]. If x ∈]2/(2n+an), 2/an],

99



5. Selection of subgame perfect Nash equilibria

then the unique maximizer of P2(x, ·) on Y = [−1, 1] is −1 since the abscissa
of the vertex of the parabola P2 is 1 − (2n + an)x < −1. If x ∈]2/an, 1], then
the unique maximizer of P3(x, ·) on Y = [−1, 1] is −1 since the abscissa of the
vertex of the parabola P3 := {(y, z) ∈ R2 | z = P3(x, y)} is −(2nx+ 1) < −1.
Given the above, since 2n + an = an+1,

{ϕn+1(x)} = Arg max
y∈Y

Fn+1(x, y) =


1, if x ∈ [−1, 0[

1− an+1x, if x ∈
[
0, 2

an+1

]
−1, if x ∈

]
2

an+1
, 1
]
,

(5.19)

for any x ∈ [−1, 1]. Evaluating the function Ln+1 given in (5.18) at (x, ϕn+1(x)),
we get

Ln+1(x, ϕn+1(x)) =


T1(x) = − x2

2n+1 + 1, if x ∈ [−1, 0[

T2(x) = − x2

2n+1 − an+1x+ 1, if x ∈
[
0, 2

an+1

]
T3(x) = − x2

2n+1 − 1, if x ∈
]

2
an+1

, 1
]
,

Since

(i) the abscissa of the vertexes of the parabolas T1 = {(x, z) ∈ R2 | z = T1(x)}
and T3 = {(x, z) ∈ R2 | z = T3(x)} is 0;

(ii) the abscissa of the vertex of the parabola T2 = {(x, z) ∈ R2 | z = T2(x)} is
−2nan+1 < 0;

(iii) Ln+1(·, ϕn+1(·)) is continuous on [−1, 1],

then
{x̄n+1} = Arg max

x∈[−1,1]

Ln+1(x, ϕn+1(x)) = {0}. (5.20)

Equalities (5.19)-(5.20) prove the inductive step, so (5.11) holds.
As limn→+∞ an = +∞, we get

x̄ = lim
n→+∞

x̄n = 0, ϕ(x) = lim
n→+∞

ϕn(x) =

1, if x ∈ [−1, 0]

−1, if x ∈]0, 1].

Since limn→+∞ ϕn(x̄n) = 1, then the SPNE selected according to Theorem 5.2.9
is (0, ϕ̄) = (0, ϕ).

Main computations of Example 5.2.3
Firstly, note that Γ ∈ G. We prove (5.13) by induction on n. Let n = 1, then

{ϕ1(x)} = Arg max
y∈Y

F1(x, y) where F1(x, y) =

−
(y−1)2

2
if x ∈

[
1
2
, 1
]

− y2

2
+ (2− x)y − 1

2
, if x ∈]1, 2],
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that is

ϕ1(x) =

1 if x ∈
[

1
2 , 1
]

2− x, if x ∈]1, 2]

Moreover

{x̄1} = Arg max
x∈X

L1(x, ϕ1(x)) where L1(x, ϕ1(x)) =

−
x2+3

2
if x ∈

[
1
2
, 1
]

−x2−2x+5
2

, if x ∈]1, 2],

that is x̄1 = 1
2 . As a1 = 1, the base case is fulfilled. Assume that (5.13) holds

for n > 1. So

Fn+1(x, y) =


P1(x, y), if x ∈

[
1
2 , 1
]

P2(x, y), if x ∈
]
1, 1 + 2

an

]
P3(x, y), if x ∈

]
1 + 2

an
, 2
]
,

where

P1(x, y) = − (y − 1)2

2(n+ 1)
,

P2(x, y) = − y2

2(n+ 1)
+

(
1− x+

an + 1− anx
n+ 1

)
y − (an + 1− anx)2

2(n+ 1)
,

P3(x, y) = − y2

2(n+ 1)
+

(
1− x− 1

n+ 1

)
y − 1

2(n+ 1)
,

and

Ln+1(x, y) = − x2

2(n+ 1)
−
(

1− an + 2

(n+ 1)an

)
x− (an + 2)2

2(n+ 1)a2
n

− y. (5.21)

If x ∈
[

1
2 , 1
]
, then the unique maximizer of P1(x, ·) on Y = [−1, 1] is 1 since

the abscissa of the vertex of the parabola P1 := {(y, z) ∈ R2 | z = P1(x, y)}
is 1. If x ∈

]
1, 1 + 2

an+n+1

]
, then the unique maximizer of P2(x, ·) on Y =

[−1, 1] is an + n + 2 − (n + 1 + an)x since the abscissa of the vertex of the
parabola P2 := {(y, z) ∈ R2 | z = P2(x, y)} is an + n + 2 − (n + 1 + an)x ∈
[−1, 1]. If x ∈

]
1 + 2

an+n+1 , 1 + 2
an

]
, then the unique maximizer of P2(x, ·)

on Y = [−1, 1] is −1 since the abscissa of the vertex of the parabola P2 is
an +n+ 2− (n+ 1 + an)x < −1. If x ∈

]
1 + 2

an
, 2
]
, then the unique maximizer

of P3(x, ·) on Y = [−1, 1] is −1 since the abscissa of the vertex of the parabola
P3 := {(y, z) ∈ R2 | z = P3(x, y)} is n− (n+ 1)x < −1.
Given the above, since n+ 1 + an = an+1,

{ϕn+1(x)} = Arg max
y∈Y

Fn+1(x, y) =


1, if x ∈

[
1
2
, 1
]

an+1 + 1− (an+1)x, if x ∈
]
1, 1 + 2

an+1

]
−1, if x ∈

]
1 + 2

an+1
, 2
]
,

(5.22)
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for any x ∈
[

1
2 , 2
]
. Evaluating the function Ln+1 given in (5.21) at (x, ϕn+1(x)),

we get

Ln+1(x, ϕn+1(x)) =


T1(x), if x ∈

[
1
2 , 1
]

T2(x), if x ∈
]
1, 1 + 2

an+1

]
T3(x), if x ∈

]
1 + 2

an+1
, 2
]
,

where

T1(x) = − x2

2(n+ 1)
−
(

1− an + 2

(n+ 1)an

)
x− (an + 2)2

2(n+ 1)a2
n

− 1,

T2(x) = − x2

2(n+ 1)
−
(

1− an+1 −
an + 2

(n+ 1)an

)
x− (an + 2)2

2(n+ 1)a2
n

− an+1 − 1,

T3(x) = − x2

2(n+ 1)
−
(

1− an + 2

(n+ 1)an

)
x− (an + 2)2

2(n+ 1)a2
n

+ 1.

Since

(i) the abscissa of the vertexes of the parabolas T1 = {(x, z) ∈ R2 | z = T1(x)}
and T3 = {(x, z) ∈ R2 | z = T3(x)} is 2

an
− n < 1

2 ;

(ii) the abscissa of the vertex of the parabola T2 = {(x, z) ∈ R2 | z = T2(x)} is
(n+ 1)an+1 − n+ 2

an
> 1 + 2

an
> 1 + 2

an+1
;

(iii) T1

(
1
2

)
< T3(2);

(iv) Ln+1(·, ϕn+1(·)) is continuous on
[

1
2 , 2
]
,

then

{x̄n+1} = Arg max
x∈[−1,1]

Ln+1(x, ϕn+1(x)) =

{
1 +

2

an+1

}
. (5.23)

Equalities (5.22)-(5.23) prove the inductive step, so (5.13) holds.
As limn→+∞ an = +∞, we get

x̄ = lim
n→+∞

x̄n = 1, ϕ(x) = lim
n→+∞

ϕn(x) =

1, if x ∈
[

1
2 , 1
]

−1, if x ∈]1, 2].

Since limn→+∞ ϕn(x̄n) = −1, then the SPNE selected according to Theo-
rem 5.2.9 is (0, ϕ̄), where

ϕ̄(x) =

1, if x ∈
[

1
2 , 1
[

−1, if x ∈ [1, 2].
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5.3 Some further discussion

In Section 5.2 we presented a method to select an SPNE in one-leader one-
follower two-stage game by using a learning approach based on costs to move
that relies on proximal point algorithm (related to Moreau-Yosida regulariza-
tion). Our primary purpose is to apply such a method in economics and man-
agement science frameworks, analyzing how costs to move affect the players’
decisions and, consequently, the SPNEs chosen in the several important sub-
jects of study in economics related to two-stage games in a continuous setting
(for example, principal-agent models, incentive design problems, mechanism de-
sign problems, . . . ).

The analysis for one-leader N -follower two-stage games (with N ≥ 2) is
presently under investigation. In this case, the non-single-valuedness of the
Nash equilibrium correspondence N , defined in (2.3), will be possibly overcome
by exploiting Proposition 4.2.14 (concerning the selection of Nash equilibria
via Moreau-Yosida regularization in normal-form games where the players have
constrained action sets) or, in general, by applying a learning method based
on proximal point algorithm and known results about uniqueness of Nash equi-
libria as [132] (which is used in Proposition 4.2.14), [25], or [24] (illustrated in
Section 3.1).

Moreover, we emphasize that the selection method based on Procedure
(CM), as well as the method based on Tikhonov regularization, could be im-
plemented in any finite game in mixed strategies and for any game where the
players have a continuum of actions and the functions ϕn, defined in Subsec-
tion 5.2.1, can be analytically determined for any n ∈ N. However, we aim also
to design an algorithm, based on the constructive selection methods presented
in this chapter, in order to approximate an SPNE in one-leader one-follower
two-stage games.

Finally, we mention that another direction for future research is to adapt
Procedure (CM) to semivectorial bilevel optimal control problems (see [16]),
that are differential games with hierarchical play where one leader in the first
stage faces a scalar optimal control problem and more followers in the second
stage solve a cooperative differential game. In fact, our learning approach re-
lying on proximal point algorithm could be useful to construct SPNEs when
the followers’ Pareto control paths are not unique by requiring only convexity
assumptions, whereas in [16] the non-single-valuedness of the followers’ best re-
ply correspondence is overcome in the optimistic and the pessimistic situations
associated with the problem by means of some strict convexity assumptions.
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