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Abstract 

Morphing wing structures have the greatest ambition to dramatically improve 

aircraft aerodynamic performance (less fuel consumption) and reduce aerody-

namic noise. Several studies in the literature have shown their potential for in-

creased aerodynamic efficiency across nearly all flight conditions, enhanced air-

craft maneuverability and control effectiveness, decreased takeoff/landing 

length, reduced airframe noise, etc. However, despite a long heritage of research, 

morphing wing technology has yet to be approved by the European Aviation 

Safety Authority (EASA) for use in commercial aviation. Models and approaches 

capable to predict the aeroelastic impact of a morphing wing still need to be ma-

tured to safely alter design and operation of future generations of aircraft. Addi-

tionally, a number of practical challenges remain to be addressed in the suitable 

materials, systems reliability, safety and maintenance.  

Due to the reduced stiffness, increased mass and increased Degree Of Free-

dom (DOF) with respect to conventional wings, these mechanical systems can 

cause significant reduction of aircraft flutter margins. This aspect requires dedi-

cated aeroelastic assessments since the early stages of the design process of such 

an innovative wing. Flutter boundaries predictions need sensitivity analyses to 

evaluate bending/torsional stiffness and inertial distribution variability ranges of 

the aircraft wing equipped with the morphing wing devices. In such a way, aero-

elastic assessments become fundamental to drive a balance between weight and 

stiffness of the investigated adaptive systems. Furthermore, in pseudo rigid-body 

mechanisms-based morphing structures, the inner kinematics is so important that 

its faults may compromise the general aircraft-level functions. Similarly to the 

demonstration means of safety compliance, commonly applied to aircraft control 

surfaces, the novel functions resulting from the integration of adaptive devices 

into flying aircraft thus impose a detailed examination of the associated risks. 

In the framework of Clean Sky 2 Airgreen 2 project, the author provides ad-

vanced aeroelastic assessments of two adaptive devices enabling the camber 

morphing of winglets and flaps, conceived for regional aircraft integration 

(EASA CS-25 category). Segmented ribs architectures ensure the transition from 

the baseline (or un-morphed) shape to the morphed ones, driven by embedded 

electromechanical actuators. Some of the advantages resulting from the combi-

nation of the two aforementioned morphing systems are wing load control, lift-

over-drag ratio increase and root bending moment alleviation.  
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The aircraft aeroelastic model was generated by means of the proprietary 

code SANDY 3.0 (see APPENDIX A – General Description of the Sandy code). 

Then, the same code was adopted to solve the aeroelastic stability equations 

through theoretical modes association in frequency domain. To carry out multi-

parametric flutter analyses (P-K continuation method), the actuation lines stiff-

ness and winglet/flap tabs inertial parameters were considered in combination 

each other. Nominal operative conditions as well as systems malfunctioning or 

failures were examined as analyses cases of the investigated morphing devices, 

together with actuators free-play conditions. Proper design solutions were sug-

gested to guarantee flutter clearance in accordance with aircraft stability robust-

ness with respect to morphing systems integration, evaluated through a combina-

tion of “worst cases” simulating the mutual interaction among the adaptive sys-

tems.  

The safety-driven design of the morphing wing devices required also a thor-

ough examination of the potential hazards resulting from operational faults in-

volving either the actuation chain, such as jamming, or the external interfaces, 

such as loss of power supplies and control lanes, and both. The main goal was to 

verify whether the morphing flap and winglet systems could comply with the 

standard civil flight safety regulations and airworthiness requirements (EASA 

CS25). More in detail, a comprehensive study of systems functions was firstly 

qualitatively performed at both subsystem and aircraft levels to identify potential 

design faults, maintenance and crew faults, as well as external environment risks. 

The severity of the hazard effects was thus determined and then ranked in specific 

classes, indicative of the maximum tolerable probability of occurrence for a spe-

cific event, resulting in safety design objectives. Fault trees were finally produced 

to assess the compliance of the system architectures to the quantitative safety 

requirements resulting from the FHAs. 
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1 Introduction 

1.1 General  

Over the last few years, aerospace research efforts are increasingly focusing 

on advanced solutions capable to improve aerodynamic efficiency for reducing 

fuel consumption and pollutant emissions of the next generation air transport. 

One of the ways to accomplish such benefits relies on morphing wing devices, 

capable of adapting their shape in a continuous manner during aircraft flight. 

From the structural perspective, this requires developing fully integrated struc-

tures with actuation and compliance control capable to fulfill conflicting require-

ments: the structure must be stiff to withstand the external loads, but must be 

flexible to enable shape changes.  

There is no doubt that the achievement of adaptive structures entails more 

complex and heavier architectures, if compared to conventional ones, to with-

stand operative loads with adequate margins of safety. This aspect is predictable 

and manageable since the price to be paid for a technology implementation at 

aircraft level is proportioned to the benefits brought by it. Moreover, assuming 

the civil transportation as a target, also the smallest improvement becomes sig-

nificant when multiplied by the massive amount of aircraft composing the fleet. 

It was demonstrated that by means of the adaptive wing trailing edge camber 

morphing, the aerodynamic efficiency increases by 2%; as a consequence, fuel 

burnt saving was estimated equal to the 3% per flight, [1]. These numbers give 

us the immediate perception of the environmental benefits; beyond that, such a 

decrease in fuel burnt allows for a strong operative cost saving (about 10 million 

dollars/year for a mid-size fleet of large commercial airplanes). Therefore, for 

larger fleets there are bigger advantages. Nevertheless, although morphing de-

vices generally have favorable performance for small or unmanned aircraft ap-

plications, the most ambitious challenge is to explore true-scale solutions for 

manned flights, compliant with EASA (/FAA) airworthiness requirements part 

25 ([2]) and with series production and implementation on modern civil aircraft. 

The associated technological development required for such aircraft segment is 

very high. However, it is also true that the payoff may be, in perspective, very 

high. 

When dealing with the design of morphing wing devices, multidisciplinary 

aspects need to be thoroughly considered due to the systems complexity involv-

ing aerodynamics, structures, actuation architectures, control logics and aeroe-

lasticity, [3]. 
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Speaking about the latter, it regards the effect of aerodynamic forces on elas-

tic bodies, such as aircraft wings or compressor blades, which fully depend on 

the deformed shape of the structure in the flow. One of the most serious aeroe-

lastic phenomena is the instability of a structure in a flow. For a given initial 

shape of an elastic structure, the aerodynamic force increases rapidly with the 

flow speed, and there may exist a critical flow speed at which the structure be-

comes unstable. Such instability may cause excessive deformation, and may lead 

to the destruction of the structure. The interplay of aerodynamic, elastic, and in-

ertia forces is usually referred to as flutter or dynamic aeroelastic instability. If a 

structure is excited with external forces in the absence of flow, the structure will 

oscillate and the oscillation will damp gradually. With the presence of a flow, the 

rate of damping of the oscillation may increase at low flow speeds and on in-

creasing the flow speed, a point will be reached at which the damping rapidly 

decreases, and the oscillation can just maintain itself with a steady amplitude. 

This speed is known as the critical flutter speed, and at speed of flow just above 

that critical speed, a great violent oscillation will be triggered, at any small dis-

turbance to the structure, and the structure is said to flutter. 

There are many definitions of flutter within the literature. Some of the most 

recognized are [4] – [5]: 

• Aeroelastic and self-excited vibration, in which the external source 

of energy is the air stream; 

• Aerodynamic self-exited oscillations; 

• Self-sustained oscillatory instability; 

• Cyclic and high frequency oscillation of the airfoil caused by a strug-

gle between the aerodynamic forces and the stiffness of the surfaces; 

• Dynamic instability of an elastic body in an airstream produced by 

aerodynamic forces which result from the deflection of the elastic 

body from its undeformed state; 

• Dynamic aeroelastic instability; 

• Dynamic instability occurring in an aircraft in flight at a certain speed 

where the elasticity of the structure plays an essential part in the in-

stability; 

• Self-excited or unstable oscillation arising out of the simultaneous 

action of elastic, inertia and aerodynamic lift forces upon a mass or a 

system of masses; 
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• Oscillatory instability arising from the condition where one degree of 

freedom is driven at resonance by a second degree of freedom, both 

oscillating at the same frequency; 

• Unstable divergent motion or vibration caused by the aerodynamic 

forces;  

• A condition at which the total damping of a system under the action 

of air forces (and the inertia, elastic, and friction forces) changes from 

positive to negative, at flutter speed the damping is zero so that sus-

tained oscillations would occur. 

The parametric study of flutter is a crucial step of the aeroelastic assessment. 

Aeroelastic stability equations can be solved numerically by adopting different 

methods, detailed in Section 4. Typically, the outputs of flutter analyses are con-

densed in the so-called V-g plot, showing the trend of flutter modes speed as a 

function of the modal damping (further details are provided in APPENDIX B - 

CS 23.629 Flutter). 

When dealing with conventional A/C movable surfaces (flaps, ailerons, rud-

der…), both bell-shaped and sharp flutter instabilities may occur, as shown in 

Fig. 1. Due to the unconventional arrangement of morphing systems and their 

mutual interaction in a morphing wing, especially in systems malfunctioning 

or failure conditions, such aeroelastic assessments are strongly recommended 

since the preliminary stage of the wing design process. In what follows, the aero-

elastic behavior of a regional aircraft wing equipped with morphing flaps and 

adaptive winglets is investigated to estimate design feasibility and effectiveness 

from a structural standpoint. 

 

Fig. 1: Example of flutter shapes in case of movable surfaces 



18 

 

1.2 Motivation of work  

In general, morphing structures can change their geometry in order to achieve 

a wide range of performance, [6]. In case of morphing aircraft, such goals include 

alleviating drag, or altering airfoil lift. 

Conventional engineered structures, such as aircraft wings, are conceived to 

exhibit a desired aeroelastic response. This allows for obtaining small operational 

deflections, and hence well-defined aerodynamic and aeroelastic loading. There-

fore, structural engineers feel certain that a wing with the required mass and stiff-

ness, and with the shape set out by aerodynamics engineers, will allow achieving 

the predicted lift and drag properties. Well-developed aircraft systems sizing 

methods apply, speeding up the early stages of the design process, [7]. It is not 

possible to state the same for the design of morphing wing structures. The large 

changes in performance achievable have an inevitable impact in terms of the 

mass, stiffness and actuation requirements. This complicates the systems sizing, 

since it is not immediate defining which morphing configuration should dominate 

the design. In the literature, these difficulties are overcome by reducing the prob-

lem to its constituent components. These involve designing the aircraft structure 

ensuring the target morphing shapes, or performing aerodynamic optimization to 

find the optimum shapes that wings should morph between. A further step regards 

the interaction between structure and aerodynamics, to ensure aeroelastic stabil-

ity during flight. The strategy of splitting the design problem into distinct disci-

plines has enabled production of a great amount of morphing aircraft concepts. 

However, it should be noted that a more comprehensive approach could empha-

size the potential structural improvements in terms of weight and number of com-

ponents while maintaining the requested aerodynamic benefits. A brief summary 

of these design methods is recalled below to highlight the difficulties of an inte-

grated-design approach.  

• Structural optimization solves a material distribution problem sub-

ject to constraints, [8]. For the majority of structural optimization 

problems, the aim is to conceive a structure which can support a 

given load, although achieving other characteristics as, for example, 

minimum total weight, optimal center of mass location, or meeting a 

given density requirement. Typically, the optimization problem is 

solved through parametrization schemes, such as sizing, material, 

shape and topology optimization [9] - [10] - [11] - [12]. 
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• Aerodynamic optimization is the process of finding the geometry 

providing the best aerodynamic properties. A typical problem opti-

mizes a set of decision variables governing the airfoil shape through 

a predefined parameterization scheme. The new shape’s aerody-

namic properties are then evaluated, and used to update the decision 

variables, until the geometry has converged to an optimal solution 

[13] - [14] - [15]. Aerodynamic optimization of morphing structures 

requires replacement of the shape parameterization by a structural 

model with optimizer-controlled actuation, [16]. The sensitivity 

analysis can then be performed to investigate the result of small per-

turbations in the actuation variables on the resulting structure, and 

subsequent flow properties. Computationally-efficient structural 

models are typically implemented, to reduce the expense of predict-

ing structural displacements, [17]. This reduces the computational 

requirements of the sensitivity analysis, which are often dominated 

by aerodynamic calculations. A benefit of this type of analysis is that 

the aeroelasticity of the problem can be readily evaluated [18]; a 

summary of which follows below. 

• Aeroelastic tailoring regards the effect of interaction between the 

aerodynamic loads due to normal operating flight and the elastic de-

formation of the aircraft structure [18]. It can have a huge impact on 

flight performance: stability, handling and structural load distribu-

tion can all be involved. When dealing with the design of morphing 

wing structures, due to the augmented Degree Of Freedom and 

weight with respect to conventional architectures, it is typically re-

quired to increase their compliance to enable shape changes. This 

can make them susceptible to large deformations due to aerodynamic 

loads, which in turn can influence aircraft stability; flutter boundaries 

can be reduced significantly with respect to rigid airfoils. This indi-

cates that introducing compliance can leads to reduced stability.  

All the aforementioned topics drove toward the scope of the present thesis. 

More in detail, to enable effective aeroelastic wing shape control, a more com-

prehensive design approach was developed to properly predict flutter boundaries 

and the related sensitivity by changing bending/torsional stiffness and mass dis-

tribution.  
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1.3 Objectives 

Sensitivity analyses are a powerful tool to create an accurate representation 

of the “design space”, enabling the optimal design of a next generation aircraft 

wing equipped with morphing devices. The main target of this work was to study 

the aeroelastic impact - at aircraft level – of an adaptive wing incorporating 

morphing flaps and winglets, in nominal and in failure conditions, in accordance 

with the CS-25 airworthiness requirements. More in detail, the key objectives 

are: 

✓ Aeroelastic-driven design and stability investigations of a regional 

aircraft wing equipped with morphing flaps and adaptive winglets. 

High-fidelity trade-off analyses are thus carried out to drive the de-

sign process of the morphing devices. The impacts of morphing sys-

tems kinematics, masses and distributed stiffness of the adaptive de-

vices are evaluated in combination each other. This allows obtaining 

a stability range of such parameters by defining aeroelastic safety 

limits. On the other hand, in case of demonstrated aeroelastic un-

safety, design solutions such as massbalancing of movable parts are 

adopted; also this stage requires trade-off analyses to evaluate the 

minimum degree of balancing ensuring flutter clearance. Moreover, 

the uncertainties in the structural dynamics due to actuators free-play 

are considered in this preliminary assessment, by reducing bi-linear 

actuation line stiffness into equivalent values by means of proper 

methods.  

✓ Aircraft stability robustness assessments to morphing systems in-

tegration. The combination of “worst cases” simulating the mutual 

interaction among the adaptive systems is a key aspect while per-

forming trade-off analyses. The “worst case” indicates that in addi-

tion to the case that the aircraft is aeroelastically safe with the nomi-

nal model, it should also be safe with a combination of morphing 

wing devices. This allows predicting satisfactory margins of stability 

and performance even in case of combined variations in the envis-

aged morphing systems parameters.  

✓ Safety and reliability issues of a morphing wing by assessing dif-

ferent failure conditions to be included in the aeroelastic analyses of 

the morphing devices. It is worth mentioning that the total loss of a 

morphing device due to kinematic failures may result in free unforced 
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oscillations which may potential lead to flutter phenomena. Failure 

scenarios for the morphing wing devices were thus investigated by 

reproducing the rupture of primary hinges and/or actuation links of 

the movable parts.   

Multi-parametric analyses results were thus used to identify and validate 

proper “aeroelastically safe” design solutions with respect to morphing surfaces. 

For that purpose, the proprietary code SANDY 3.0 code was adopted to solve the 

aeroelastic stability equations through theoretical modes association in frequency 

domain. Moreover, safety activities were performed to verify whether morphing 

flap and winglet concepts could comply with the standard civil flight safety reg-

ulations and airworthiness requirements. Fault and Hazard Analysis (FHA) was 

used to assess the severity of properly identified failure conditions and then allo-

cate safety requirements. Fault Tree modelling technique was used to verify the 

compliance of the system architectures to the quantitative safety requirements 

resulting from the FHAs. 

 

1.4 Organization of the thesis 

The present thesis deals with a number of topics ranging from the generation 

of aeroelastic models, up to several cases of trade-off flutter analyses in nominal 

and failure conditions, and finally safety Fault and Hazard and Fault Tree anal-

yses. The work is organized into seven chapters, as follows: 

 

• Chapter 1 contains an introduction to the aircraft aeroelastic problem, 

due to interaction effects among elastic, inertial and aerodynamic 

forces. Particular focus is given to the aeroelastic impact at aircraft 

level of morphing wing devices and how aeroelastic assessments can 

drive their preliminary design. 

• Chapter 2 details the state of the art of morphing wing structures, con-

textualized into Air Green 2 project, concerning the design of inno-

vative devices enabling the controlled shape morphing of relevant 

segments of the wing. Such project investigates three adaptive archi-

tectures: wing leading edge, outer wing flap and winglet. Benefits re-

sulting from the combined applications of the three morphing sur-

faces are herein set out.  
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• Chapter 3 illustrates morphing flap and winglet concepts, in terms of 

structural layouts and aerodynamic benefits. A detailed description of 

some key concepts is given, together with information on the ena-

bling technology and design methods of both the morphing flap and 

adaptive winglet. 

• Chapter 4 explains in detail the numerical approach to perform flutter 

analyses. All the steps needed to generate an aeroelastic model are 

described; aeroelastic stability equations are presented and the most 

common resolution methods are herein mentioned.  

• Chapter 5 is the real heart of this activity. It addresses the aeroelastic 

stability investigation performed on the aircraft equipped with 

morphing flap and winglet tabs. Rational approaches were imple-

mented in order to simulate the effects induced by variations of mov-

able surfaces actuators stiffness on the aeroelastic behavior of the air-

craft also in correspondence of several failure cases. Reliable aeroe-

lastic models and advanced computational strategies were properly 

implemented to enable fast flutter analyses covering several configu-

ration cases in terms of structural system failures. 

• Chapter 6 deals with safety analyses performed to verify whether 

morphing flap and winglet concepts could comply with the standard 

civil flight safety regulations and airworthiness requirements. Ra-

tional failure scenarios were also simulated in aeroelastic analyses to 

be integrated into safety analyses results. 

• Chapter 7 concludes the work, in terms of obtained results and future 

developments of the activity.  
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2 State of the art on morphing structures 

2.1 Adaptive wings 

Morphing wing structures are not a new concept. As well known, the Wright 

brothers exploited wing warping to accomplish roll control of some of their early 

aircraft.  

They knew that aircraft mass reduction was critical to achieve with limited 

thrust, and this eliminated the potentiality of flight control by heavy and complex 

mechanisms. Instead, structure adaptability was utilized; cable actuation used to 

warp the wing, as shown in Fig. 2. The resulting rolling moment ensured flight 

control, corresponding with minimal weight penalty, [19]. 

 

 

Fig. 2: Wright-Brothers aircraft: a detail of wing warping, [19] 

 

Despite the benefits demonstrated by this “primeval” concept, morphing 

wing structures were strongly inadequate to make their way into commercial air-

craft. For certification and reliability reasons, engineers instead are inclined to-

wards rigid structures. Thus, current design conventions establish that aircraft 

should have rigid wings, with control achieved through movable surfaces such as 

leading and trailing edge flaps. However, advances in engineering are inducing 

these conventions to be redescribed. 

The increasing development of smart systems technologies and improved 

analysis techniques made possible the fact that these structures can be designed 

and optimized relatively quickly, [20]. This allows engineers to face with feasi-

bility aspects in ways not previously possible. All of these factors have led to 

renewed interest in the field of morphing wing devices, by providing the neces-

sary confidence needed to invest in achieving the aerodynamic benefits they can 

convey. In the last twenty years, this has provoked a real explosion of literature 

on the subject, a full account of which is beyond the scope of this work. Instead, 
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a summary of key concepts is shown, combined with information on the enabling 

technology and design methods.  

When dealing with morphing wing structures, the type of morphing is typi-

cally separated into two categories ([21]): morphs which occur in the plane of the 

wing itself (planform morphing), varying properties such as wing span, sweep 

and planform area; and those normal to it (out-of-plane morphing), where varia-

tions in camber, chord length, and airfoil profile are achieved. 

Planform morphing typically results in significantly affected performance, 

ensuring the combination of aircraft design requirements previously in discord-

ance each other. For example, high-altitude performance are often at the expense 

of low maneuverability and speed to achieve cruise and loiter characteristics. 

Similarly, military fighter aircraft achieve maneuverability and high speed, pay-

ing in terms of efficiency, [22]. Thus, planform morphing leads the way toward 

a multi-purpose vehicle, capable of operating optimally at both extremes, [23]. 

Some current concepts, and other novel ideas for large-scale planform morphs, 

are demonstrated below. 

Functional inflatable wings have been used in aircraft applications since the 

1950’s. In 2001, an inflatable Unmanned Aircraft Vehicle, developed by NASA 

Dryden, was tested in flight. Such a vehicle was designed as a gun-launched sur-

veillance vehicle, by adopting inflatable wings to assure the concept could fit 

inside a capsule suitable for launching. In-flight deployment of the inflatable con-

cept, which takes approximately 0.3 s, is shown in Fig. 3, [24]. Once deployed to 

their 1.524 meters wingspan, the wings are capable of withstanding the aerody-

namic loads due to the UAV flight. Although wings such as these are unlikely to 

support the large aerodynamic loads found on commercial aircraft, the concept 

has helped to produce new designs for more versatile UAVs. One such example 

is the telescopic spar concept, enabling aspect-ratio variation, shown in Fig. 3(b), 

[25]. Three concentric aluminum tubes, decreasing in diameter and increasing in 

length, compose the internal mechanism. Pressurized deployment of these tubes 

achieves a variety of wingspan configurations. During testing, the joints in the 

outer skin led to viscous drag, making the wing 25% less efficient than a single-

piece wing of comparable size. The fully deployed structure exhibited a lift to 

drag ratio equal to 10. Although much less than some conventional wings, the 

additional benefit of reduced high-speed drag in the partially deployed state must 

also be considered. 



27 

 

 

Fig. 3: Morphing wing concept: (a) NASA Dryden inflatable wing during 

flight testing [24]; and (b) telescopic wing concept [25] 

[26] reports a Lockheed Martin investigation about the design of a planform 

morphing aircraft. In this concept, two chordwise hinges to fold the wing enables 

the morphing, as depicted in Fig. 4. Without changing planform edge alignment, 

an effective sweep change of 30° can be obtained, [27]: this is in association with 

71% of span augment and 180% of total wing area increase. In this specific ap-

plication, morphing allows for a wetted area 23% less in the folded configuration, 

although achieving a 52% increase in L/D in the unfolded state. 

All the described characteristics would facilitate efficient high-speed low-

altitude flight using the folded state to reduce drag and improve efficiency. More-

over, the transition to the unfolded configuration is conceived to improve range 

and endurance for high-lift and loiter situations. The folding-wing idea is, in this 

respect, suitable for a multi-purpose vehicle having characteristics such as effi-

ciency, speed, agility relative to fixed wing counterparts. 

 

 

Fig. 4: (a) Lockheed Martin folding-wing UAV concept, [26], and (b) NextGen 

Batwing morphing UAV concept, [27] 

 

Out-of-plane morphs typically are in association with smaller deflections 

than in-plane variations. For this reason, they seek to aircraft control, instead of 
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providing multi-purpose capabilities. Conventional control surfaces and mecha-

nism can be replaced by morphing wing architectures, enabling a smooth and 

continuous surface to cleave the flow, retarding the onset separation and the tran-

sition to a turbulent boundary layer. Expedients to reach the aforementioned tar-

gets are several: from camber shape changing, to wing twisting and/or banding 

variations. 

These methods are deductible by the following concepts from the literature. 

[28] discusses a Morphing Micro Air Vehicle (MAV) using wing twisting for roll 

control. A carbon composite frame, together with a plastic-membrane wing, com-

poses the MAV structure. Torque rods attached to electronic servos and located 

inside the fuselage are fixed into the membrane wing’s leading edge: this enables 

morphing capabilities. Application of torque allows for the wing twist, through a 

large displacement at the trailing edge, as shown in Fig. 5. During flight tests, a 

sufficient roll control of the aircraft was demonstrated due to the wing warping. 

However, attachment of a rudder was required to give yaw control, also ensuring 

stability. 

 

 

Fig. 5: MAV roll control achieved via wing warping, [28] 

This variety of concepts demonstrates the feasibility of chordwise morphing, 

and all the improvements in control and efficiency it can bring. In addition, the 

possibility of an efficient multi-purpose aircraft vehicle becomes tangible, when 

chordwise adaptability is associated with the large-scale change achievable with 

planform morphing.  
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2.2 Clean Sky 2 Airgreen 2 Project 

Clean Sky2 is one of the largest research program ever launched at European 

level. Funded by the EU’s Horizon 2020 programme, it contributes to establish 

European aero-industry collaboration, global leadership and competitiveness 

[29]. Large efforts are currently spent through the CleanSky2 program to develop 

an efficient air transport system identified through a lower environmental impact 

combined to unequalled capabilities of ensuring safe and seamless mobility while 

complying with very demanding technological requirements. 

Within CleanSky 2 scenario, AirGreen 2 project aims to develop and demon-

strate novel concepts and methodologies for the purposes of a new generation 

wing realization. Such a wing will be characterized by:  

• an innovative structure, resulting from improved life cycle design;  

• a high level of adaptability (shape-changing), enabling load control 

and alleviation functions, and improving the aerodynamic perfor-

mance at the different flight regimes; 

• an innovative aerodynamic design, to preserve of the natural laminar 

flow and for the drag reduction.  

The validation platform of the integrated technologies is what is currently 

presented -at European Level- as the next generation Green Regional Aircraft 

(GRA). Active from 2006, GRA panel aims to conceive, validate and demon-

strate “green” aeronautical technologies best fitting the regional aircraft that will 

fly from 2020 onwards. For that purpose, specific and challenging domains are 

considered: 

• Advanced low weight and high performance structures; 

• All-electric systems and bleed-less engine architectures; 

• Low noise/high efficiency aerodynamic; 

• Environmentally optimized missions and trajectories management.  

Such technologies are destined to two different aircraft concepts, identified 

by means of two seat classes, [29]: 

1. 90-seat, with Turboprop engine (TP90); 

2. 130-seat, with a combination of novel propulsion solutions, as the 

Geared Turbofan (GTF), the Advanced Turbofan (ATF) and the 

Open Rotor (OR) configuration. 
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TP90 will be considered as the reference platform for the integration of 

morphing flaps and winglets concepts in this thesis. 

An overview of the AG2 morphing technologies investigated is provided in 

the following section, for the sake of completeness.   

 

2.3 Overview on AG2 morphing devices 

The REG IADP objective is to bring the integration of technologies for Re-

gional Aircraft to a further level of complexity with respect to the achievements 

of Clean Sky GRA. Retaining GRA outcomes, advanced technologies for re-

gional aircraft are being further developed and will be integrated and validated at 

aircraft level, so as to drastically de-risk their integration on future regional air-

craft product, [29]. 

In the framework of Clean Sky 2 REG-IADP, three morphing wing devices 

are developed with the aim of improving aerodynamic performance of Leonardo 

TP90 A/C: drooped nose, morphing flap and morphing winglet. Such high TRL 

studies include A/C integration, on-ground testing and in-flight validation. 

• The Drooped nose identifies the Morphing Leading Edge, which is 

one of the most investigated morphing concepts since many years. In 

particular, it can be included into the most general active camber-

morphing sector, where the main goal is to modify the airfoil camber 

to improve the A/C aerodynamic performance. Moreover, specific 

performance requirements have been posed, in terms of CL_max en-

hancement with respect the reference configuration, equal to 2.4% 

and 1.7%, considering both trailing and leading edge morphing ef-

fects in take-off and landing, respectively. To achieve these benefits, 

the drooped nose structure was conceived in a “bio-inspired” config-

uration based on a higher number of compliant rib. This architectural 

strategy, developed by University Of Milan (PoliMi) allows for re-

ducing the thickness of the ribs and the number of stiffeners, only 

used as connection between the load paths and the skin. The leading 

edge target shape change can be obtained without skin length varia-

tion. In this way, the morphing LE can change its aerodynamic shape 

in an efficient way, without generating axial stresses, [30]. A repre-

sentation of the drooped nose is depicted in Fig. 6.  
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Fig. 6: Drooped Nose structure, [30] 

• The Morphing flap concept, developed by University of Naples 

(UniNa), was motivated by the opportunity to replace a conventional 

double slotted flap with a single slotted morphing flap. This ensures 

an improvement of high lift performance (CL_max and stall angle), re-

ducing at the same time emitted noise, fuel consumption and the com-

plexity of deployment system. Furthermore, load control and allevia-

tion additional functions were then took into account: dedicated smart 

architecture allows for an independent shape-control of the flap tip 

region along its flight path, [1]. In order to accomplish such benefits, 

morphing flap was conceived to enable three morphing modes: 

➢ Morphing mode 1: overall airfoil camber morphing. This 

function is supposed to be activated during A/C high-lift perfor-

mance (take-off and landing) while flap is deployed, also allowing 

for steeper initial climb and descent, noise-abatement trajectories. 

➢ Morphing mode 2: +10°/-10° (upwards/downwards) de-

flection of the flap tip segment (from the 90% to 100% of the local 

chord). Better known as “tip deflection mode”, it is related to the 

last chordwise segment of the flap and activated in cruise condi-

tion for high-speed function (load control). 

➢ Morphing mode 3: Tip segment twist (±5° along the outer 

flap span). As well as morphing mode 2, this function is used to 

modulate the wing load during high lift performance. 

Nine smart ribs dividing the structure into eight bays along the span compose 

morphing flap architecture. Moreover, each rib is segmented along chordwise 

direction into four consecutive blocks, hinged each other in a finger-like arrange-

ment. Simple and efficient mechanisms are fully integrated into the ribs to 
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smoothly drive the motion of each block during morphing. The morphing mech-

anism is embedded in each rib, and actuated by a limited number of rotary EMAs 

placed within the flap bays and connected to the ribs by suitably designed 

through-shafts, Fig. 7 [31].  

 

Fig. 7: Morphing flap architecture, top view 

• The morphing winglet architecture was developed by Italian Aero-

space Research Center (CIRA). The driving idea of such a concept 

was that the camber variation of the winglet trailing edge, combined 

with the outer wing trailing edge, allows for  a cruise well-controlled 

and modulated wing load distribution. This enables trim drag and in-

duced drag reduction at a parity of lift. The adaptability of the winglet 

trailing edge is obtained through the rotation of a movable surface 

divided into four tabs (two upper and two lower) along the span, ca-

pable of rotate each other by means of a proper gear ratio, [31]. Then, 

a rigid plug ensures the interfacing between wing and winglet, Fig. 8.  

 

Fig. 8: Morphing winglet Finite Element Model (left) and architecture 

(right), [31] 

Drooped nose is not objective of the presented work, while morphing flaps 

and winglets characterize the main topic of this thesis. Indeed, such devices are 
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described in detail in the following sections in terms of structural design and 

aeroelastic impact at aircraft level.  

 

3 Morphing wing devices 

3.1 Morphing flap 

3.1.1 Scope and reference geometries 

Within the scope of Clean Sky 2 Airgreen 2 (REG-IADP) European research 

project, a novel multi-modal morphing flap was studied to enhance the aerody-

namic performance of the next generation 90-Seat Turboprop regional aircraft 

along its flight path. The idea driving the proposed true-scale device (spanning 

5.15 meters, with a mean chord equal to 0.6 meters) is replacing and enhancing 

conventional Fowler flap with three new functions, as described below: 

➢ Mode 1: overall airfoil camber morphing, up to +30°; 

➢ Mode 2: +10°/-10° (upwards/downwards) deflections of the flap tip 

segment; 

➢ Mode 3: flap tip “segmented” twist of ±5° along the outer flap span.  

Morphing mode 1 is assumed operating during take-off and landing phases 

only to improve A/C high-lift performance. This function allows more airfoil 

shapes to be available at each flap setting; consequently, a concrete simplification 

of the flap’s deployment systems may be expected: actuating tracks could be em-

bedded into wing airfoil, and no external fairing is needed. On the other hand, 

morphing modes 2 and 3 are associated with the last segment of the flap in the 

chord-wise direction; they are supposed to get going in cruise condition only (flap 

is in stowed configuration). These modes enable load control functionalities to 

improve lift/drag ratio, [32]. 

The investigation domain region selected for the full-scale outer Fowler flap, 

spanning 5.1 m from the wing kink, with a root chord equal to 0.9 m and a taper 

ratio equal to 0.75, is depicted in Fig. 9. 
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Fig. 9: Morphing flap investigation domain, [32] 

 

The starting point for the development of the presented three-modal morph-

ing flap was provided by the general structural layout discussed in [33] - [34] and 

successfully validated by experimental via in the framework of the JTI-Clean Sky 

project (GRA-ITD Low Noise Domain). The novel architecture was conceived 

responding to all the project design requirements. 

 

3.1.2 Aerodynamics and Benefits 

As known, when dealing with large civil aircraft, the design of any movable 

control surface must observe three fundamental requirements: 

 

1. “Demonstrate that the device is able to support limit loads without 

permanent detrimental deformation and that the deformation levels 

don’t interfere with safe operation” (EASA CS 25.305(a), limit loads); 

2. Capability to withstand ultimate loads without any failure in actuation 

systems; 

3. “Freedom from aeroelastic instability must be shown up to the speeds 

defined in CS 25.629 (b)”, (aeroelastic stability requirements). 

Limit load to be used in the preliminary design can be considered by invoking 

the airworthiness regulation according to which a control surface must be capable 

of providing a rotation angle equal to 33% of its maximum value corresponding 

with A/C dive speed [2]. [32] reports the limit load condition obtained by using 
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an in-house 2D Doublet Lattice Method (DLM) code, herein showed in Table 1 

for the sake of completeness.  

Tab rotation (down) +5 deg 

Tab mean geometric chord 0.236 m 

Pressure coefficient (upper), 0.3247 

Pressure coefficient (lower), 0.5011 

Dynamic pressure, 12005 Pa 

Dynamic Pressure (upper), 𝑞 ∗ 

𝐶𝑝,𝑈𝑃 

3898 Pa 

Dynamic Pressure (lower), 𝑞 ∗ 

𝐶𝑝,𝐿𝑂𝑊 

6015 Pa 

Force resultant (upper), 𝐹𝑈𝑃 2378 N 

Force resultant (lower), 𝐹𝐿𝑂𝑊 3668 N 

Hinge moment around tab hinge axis, 

𝑀B3 

475.8 N*m 

Table 1: Aerodynamic values in limit load condition, [32] 

At preliminary design stage, a pressure uniform distribution on tabs upper 

and lower external surfaces was assumed, as shown in Fig. 10.  

 

 

Fig. 10: Aerodynamic pressure uniform distribution on tabs surfaces, [32] 

Hence, when designing multifunctional morphing structures, several require-

ments need to be observed to make the structures capable of withstanding the 

aerodynamic loads and, at the same time, to enhance aircraft performance and 

extend mission profiles, such as actuators power required and weight. This aspect 

leads the way toward a successful integration of actuation systems in large air-

planes.  
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3.1.3 Morphing flap architecture 

The successful technology demonstration of a bi-modal morphing flap 

(2MMF) in JTI-Clean Sky (GRA-ITD) project scenario drove the design of the 

herein presented three-modal morphing flap (3MMF), objective of the Clean Sky 

2 REGIADP AG2 project. Several design improvements have been achieved, if 

comparing 3MMF with 2MMF, [32].  

Nine articulated ribs in a finger-like configuration enable flap morphing ca-

pabilities. Each rib is divided into four consecutive blocks, namely B0, B1, B2 

and B3, hinged each other by means of cylindrical hinges (A, B, C), positioned 

along the camber-line, Fig. 11.  

 

Fig. 11: Morphing flap articulated rib, [32] 

Not adjacent block B0 and B2 are connected by means of a linking beam 

element (L), forcing the camber line segments to be geared in their relative rota-

tions.  

Aiming to reach specific target shapes (Fig. 12), an equivalent rotation of the 

flap edge around A hinge was took into account in morphing mode 1, Fig. 13. 

Block B1 contains the inner leverage M1, connecting blocks B1 and B2; it am-

plifies the actuator torque. Such a leverage motion is ensured by a rotary actuator, 

R1, acting along the shaft.  

 

 

Fig. 12: Morphing flap target shape, mode 1, [32] 
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Fig. 13:B1/B2 gear ratio trend, [32] 

 

Leverage M1 motion enables relative rotation of block B2 with respect to 

B1, geared through the linking element, L. Moreover, a second leverage (M2) - 

positioned into B2 - connects flap trailing edge (B3) to B2, driven by actuator 

R2. Thanks to mechanism M2, flap tip segment can rotate around the hinge C, 

ensuring morphing mode 2 and 3. Both M1 and M2 mechanisms are activated 

during morphing mode 1 to reach the target shape.  

For what concerns morphing modes 2 and 3, only the mechanism M2 is ac-

tivated, while keeping M1 fixed. An optimization of the hinges positions of both 

M1 and M2 mechanisms was considered to maximize the output and input torque 

ratio – namely, mechanical advantage - mechanical advantage –, also observing 

the encumbrance in B1 and B2.  

A multi-box arrangement was adopted to transfer the ribs kinematic to the 

overall flap structure. In detail, each box is defined as the single-cell structural 

part included: 

➢ in span-wise direction, within homologue blocks of consecutive ribs; 

➢ in chord-wise direction, by consecutive spars. 

When ribs actuation is activated, the synchronized motion of all the boxes 

ensures the morphing flap external shape changing; in a different way, when ac-

tuators are locked, elastic stability of the structure is maintained although the 

aerodynamic loads.  

Each box was preliminarily sized referring to an equivalent static scheme 

based on the following assumptions: 

➢ lumped elastic properties; 
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➢ Spars, rib plates and skin panels made of AL2024-T5 alloy; 

➢ Ultimate load obtained multiplying limit loads by 1.5 (safety factor); 

➢ Limit load condition: outboard flap in landing configuration, aircraft 

angle of attack equal to 0.57°, dynamic pressure equal to 5858 N/m2, 

𝐹𝑍,𝑡𝑜𝑡 = 40000𝑁; 

➢ Boxes were considered as separated structures each other; 

➢ Fixed rib planes adjacent to the deployment system tracks; this made 

possible to transfer internal solicitations from the morphing flap to 

the deployment system (Fig. 14). 

 

Fig. 14: Morphing flap preliminary design assumption, [32] 

Elementary methods were adopted during the structural preliminary design  

to obtain the thickness of the front (rear) spar web, the thickness of (upper/lower) 

skin panels; the thickness of the rib plate was assumed to be equal to the maxi-

mum value among the ones of spars and skin panels. 

Referring with a limit load case, preliminary Finite Elements analyses re-

sults confirmed the assumptions made, [32].  

In an advanced design loop, further developments were carried out the design 

of the transmission line to reduce number of rotary actuators enabling morphing 

functionalities. For that purpose, referring to the limit load condition, a through 

shafts solution was adopted in the transmission line to enable the torque transfer 

to three rib blocks with a single rotary motor, Fig. 15.  
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Fig. 15: Section view of through shaft actuation concept, [32] 

A segmented shaft transfers the torque provided by the actuators (R1 and R2) 

to the Harmonic Drive gear box; each gear box is enabled to transfer the torque 

to the crank of the inner pertinent mechanism (M1 or M2), being jointed to the 

rib block plate (Fig. 16).  

 

 

Fig. 16: Wireframe view of through shaft actuation concept, [32] 

Friction effects between movable parts in relative motion each other are re-

duced by using proper ball bearings.  

It is important to outline how the total weight reduction was always observed 

as structural target; indeed, at each design loop, a great amount of components 

was reduced (i.e. rotary actuators, smart ribs). According to [35], a conventional 

flap system weight is around the 3 per cent of the airplane Maximum Zero-Fuel 

Weight (MZFW). Since the final weight of the outboard three modal morphing 

flap results equal to 92.5Kg, the 12 per cent of weight saving has been estimated 

with respect to a conventional outboard flap (104.6Kg) for a regional Turboprop 

aircraft.  
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3.2 Morphing winglet 

3.2.1 Scope and reference geometries 

Research on morphing aircraft structures aims to wing design optimization 

by considering co-factors involving both aerodynamics and structures. Morphing 

devices applications can bring to several benefits in terms of aircraft perfor-

mance, as literature studies teach. Among such applications, shape-changing 

winglets can enhance Lift-on-Drag ratio in off-design conditions and reduce aer-

odynamic wing loads by providing adapted geometry and wing lift distribution 

throughout the A/C flight envelope. This can potentially lead the way toward 

adaptive winglets application to the next generation aircraft. For that purpose, the 

structural design of a multi-modal morphing winglet is collocated within the 

scope of Clean Sky 2 Regional Aircraft IADP (see section 2), made in compli-

ance with the pertinent requirements posed by the airworthiness regulations.  

The morphing winglet concept observes the following assumptions:  

• Morphing winglet system chord equal to the 40% of the mean winglet 

chord; 

• Deflection range = [-15°, +10°] (negative deflections when reducing root 

bending moment). 

Morphing is ensured by a dedicated mechanism composed by movable sur-

faces (upper and lower), whose deflection is driven by dedicated actuators, [36] 

– [37]. Upper and lower surfaces are shown in Fig. 17, together with morphed 

shapes. Fig. 18 shows two possible settings of the morphing winglet device 

achieved by moving independently upper and lower surfaces, respectively. 

 

Fig. 17: Movable surfaces of the morphing winglet, [38] 
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Fig. 18: Upper (on left) and lower (right) deflection, [38] 

3.2.2 Aerodynamics and Benefits 

Accurate aerodynamic assessments were performed to predict the enhanced 

aerodynamic performance (estimated about 3%) ensured by the integration of 

morphing winglets on a regional aircraft. Such results were gained through a 

panel-based method (Morino) applied to the isolated wing, corrected by 2D Na-

vier Stokes results (Quasi 3D results), together with the drag increment related to 

the nacelle and the body [37] – [39].  

CIRA performed aerodynamic simulations to evaluate the worst hinge mo-

ment values and sizing loads required for the design of the morphing winglet 

structure. Fig. 19 shows an example of Cp distribution on the morphing winglet 

for negative deflections of both the upper and lower surfaces.  

 

Fig. 19: Example of Cp distribution on the morphing winglet for negative 

deflections of both the upper and lower surfaces, [38] 
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Lift on Drag improvements are achieved by separately controlling the down-

ward deflections of the control surfaces in climb and cruise conditions. On the 

other hand, aerodynamic assessments showed that varying the angles between 

inner and outer winglet may lead to further aerodynamic benefits [36]. 

 

3.2.3 Morphing winglet architecture 

The main body of the winglet fully embeds the morphing architecture, con-

ceived to reduce the induced drag by modulating span-wise aerodynamic loads. 

Moreover, such architecture allows also for load alleviation functions, by means 

of negative deflections of the movable parts. Winglet morphing capabilities are 

ensured by relative rotations of three consecutive hinge-connected blocks, 

namely B0, B1 and B2, Fig. 20. The term “block” refers to the structural part 

including a pair of segments connected by a spar box. Both lower and upper elec-

tromechanical linear actuators are located in B1; in order to activate morphing, 

each actuator induces B1 rotation around its hinge axis through a rigid rod. Great 

part of the incoming loads conveys on such structural element, making its design 

very crucial, Fig. 21. Fig. 22 shows the EMA actuators chosen for the morphing 

activation.  

 

Fig. 20: Morphing blocks of the finger-like architecture, [40] 
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Fig. 21: Detail of the morphing winglet architecture, [38] 

 

Fig. 22: EMA actuators: a) sectional and b) external view, [37] 
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The system conceived in such a way results at Single Degree of Freedom; 

the rotation of consecutive blocks occurs according with a proper gear ratio. B0 

is also defined as “dead box”, since it is rigidly connected to the winglet rear spar 

(non-morphing part). The skin covering winglet trailing edge (upper and lower) 

is segmented into two panels for each block, properly connected to the ribs edges 

and spars underneath it. The materials considered for movable and not movable 

parts were different; in particular: 

 

• Carbon-fiber, for the not movable part; 

• Aluminum alloy, for the movable parts. 

Material mechanical properties are reported in Table 2 

Mechanical Property Carbon-fiber Aluminum Alloy 

Young Modulus, E 

[MPa] 

33000 70000 

 

Poisson Coefficient, ν 0.32 0.30 

Density, ρ [Ton/mm3] 1.7*10-9 2.8*10-9 

Table 2: Winglet materials mechanical properties 

Morphing winglet weight, comprehensive of actuators and ECU, is equal to 

36.90 Kg, [31]. 
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4 Aeroelasticity 

4.1 Introduction 

Aeroelasticity is the science involving studies about the mutual interaction 

effects among elastic, inertial and aerodynamic forces. These interactions (Fig. 

23) may lead to instabilities and/or load increases with detrimental impact on the 

integrity of the system. Airworthiness standards as JAR, FAR, VLA provide for 

arrangements for flutter and other instability phenomena to ensure flight safety 

by means of an adequate structural design. According to such standards, the ab-

sence of aeroelastic instabilities must be proved through analyses, flight test or a 

combination of both.  

 

Fig. 23: Aeroelasticity conceptual scheme, [41] 

Proper models representative of the aircraft behavior have to be conceived 

for analytical and experimental analyses. In general, the models can be divided 

into two classes. 

1. Dynamic model, including the structural and inertial ones; 

2. Aerodynamic model. 

 

4.1.1 Structural Model 

The structural model simulates the elastic behavior of the aircraft.  

The structural models can be divided in two categories:  

1. Stick-beam model; 

2. Finite Element model. 



46 

 

The aforementioned distinction is not completely marked, since the two mod-

els may co-exist. For this reason, the choice of the scheme to adopt strongly de-

pends on the structural complexity and on the experience gained dealing with 

similar configurations.  

However, the model must properly describe the links among the movable 

surfaces and the commands, and must be “adaptable”, to include all the stiffness 

variations in potentially association with the aeroelastic instabilities, [43]. Partic-

ular attention must be paid in modelling the interface areas that are fundamental 

for the evaluation of flutter or/and loads induced by aerodynamic turbulence: 

• Wing-engine; 

• Wing-fuselage; 

• Tails-fuselage. 

 

4.1.2 Inertial Model 

The inertial model simulates the mass distribution of the whole aircraft. 

This allows for the transition from an almost continuous representation of the 

aircraft mass to one based on a set of lumped masses, with their moments of in-

ertia.  

 

The results of the dynamic model are normal modes, frequencies and gener-

alized masses.  

 

4.1.3 Aerodynamic Model 

The aerodynamic model simulates the aerodynamic behavior of the aircraft. 

It must involve the use of unsteady aerodynamics for compressible fluid (two-

dimensional strip theory or three-dimensional panel theory). 

The choice of the theory strongly depends on the complexity of the lifting 

surfaces and on the flight envelope speed of the aircraft.  

 

4.2 Aeroelastic stability equations 

4.2.1 Generalized Aerodynamic Forces 

Lifting surfaces are divided into N panels (Fig. 24). 
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Fig. 24: Aerodynamic Lattice, [41] 

 

For each oscillating panel, the normalwash is associated to the pressure dif-

ference by means of the relation:  

 
𝑤

𝑣∞
 = 𝐴̿*∆𝐶𝑝 ∆𝐶𝑝 = 𝐴̿−1 𝑤

𝑣∞
 

 

While the relation expresses the elementary aerodynamic forces:  

 

∆𝐹 = q ∆𝑆̿̿̿̿  * ∆𝐶𝑝  ∆𝐹 = q ∆𝑆̿̿̿̿  𝐴̿−1 𝑤

𝑣∞
 

Where: 

 

𝐴̿−1 (r, kr, M) = Aerodynamic Influence Matrix, depending on the geome-

try (r), reduced frequency (kr = wcr/V) and Mach number (M); 

 

∆𝑆̿̿̿̿  = Diagonal matrix of panels’ area; 

 

q = 
1

2
ρ𝑣2 = aerodynamic pressure of asymptotic flow; 

 
𝑤

𝑣∞
 = 〈

𝑑

𝑑𝑥
+ 𝑗

𝑘𝑟

𝑐𝑟
〉 ℎ𝑐 = 𝐷̿ℎ𝑐 
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𝐷̿ = substantial derivative matrix; 

x = asymptotic flow direction; 

ℎ𝑐 = normal displacements vector in correspondence with control points.  

 

The virtual work of the aerodynamic forces is given by:  

δL =δh𝑖
𝑡 ∆𝐹  q δh𝑖

𝑡 ∆𝑆̿̿̿̿ 𝐴̿−1𝐷̿ℎ𝑐   (1) 

 

where: 

ℎ𝑖 = normal displacements vector in correspondence with integration 

points.  

  

Both hi and hc are related to the structural displacements Zst through interpo-

lation matrix depending exclusively on the geometry. 

  

ℎ𝑐 = 𝐺 𝐴𝐾 
𝐶 (𝑟)̿̿ ̿̿ ̿̿ ̿̿ ̿̿  𝑍𝑠𝑡ℎ𝑖 = 𝐺 𝐴𝐾 

𝑖 (𝑟)̿̿ ̿̿ ̿̿ ̿̿ ̿̿  𝑍𝑠𝑡 (2) 

 

By integrating the Eq. 2 into Eq. 1, the latter becomes: 

 

δL(𝑍𝑠𝑡) = q δ𝑍𝑠𝑡
𝑇𝐺 𝐴𝐾 

𝑖 (𝑟)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ 𝑇∆𝑆̿̿̿̿ 𝐴̿−1𝐷𝐺 𝐴𝐾 
𝐶 (𝑟)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ 𝑍𝑠𝑡  (3) 

 

By projecting the structural displacements in the normal mode space, 𝑍𝑠𝑡  =

 𝛷(𝑟)̿̿ ̿̿ ̿̿ ̿ 𝜂(𝑡), where: 

𝛷(𝑟)̿̿ ̿̿ ̿̿  = normal modes matrix; 

𝜂(𝑡) = lagrangian coordinates vector, 

 

The virtual work of aerodynamic forces expressed as a function of η is: 

 

δL(𝜂) = q δ𝜂𝑇 𝑄(𝑘𝑟,𝑀)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ 𝜂, 

With 𝑄(𝑘𝑟,𝑀)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ =  𝛷𝑇 ̿̿ ̿̿̿   𝐺𝐴𝐾
𝐼 (𝑟)𝑇̿̿ ̿̿ ̿̿ ̿̿ ̿̿   ∆𝑆̿̿̿̿ 𝐴̿−1𝐷𝐺 𝐴𝐾 

𝐶 (𝑟)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿   𝛷̿. 

4.2.2 Impedance matrix 

Kinetic energy (T), elastic energy (U) and dissipation function (D) have the 

following expressions, [41]: 
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T = (1/2)𝑍̇𝑇 𝑀̿ 𝑍̇  

 

U = (1/2)𝑍𝑇 𝐾̿ 𝑍  

 

D = (1/2)𝑍̇𝑇 𝐶̿ 𝑍̇ 

 

And by introducing the modal coordinates: 

  

 T = (1/2) 𝜂̇𝑇 𝑀𝑔
̿̿ ̿̿  𝜂̇ 

 

 U = (1/2) 𝜂𝑇 𝐾𝑔
̿̿̿̿  𝜂 

 

 D = (1/2) 𝜂̇𝑇 𝜎𝑔̿̿ ̿ 𝜂̇ 

 

Where: 

𝑀𝑔
̿̿ ̿̿  = generalized diagonal mass matrix 

𝐾𝑔
̿̿̿̿  = generalized diagonal stiffness matrix 

𝜎𝑔̿̿ ̿ = modal damping matrix (diagonal under the Basile Hypothesis). 

 

Given the Lagrange relation: 

𝑑

𝑑𝑡
 
𝜕𝑇

𝜕𝜂̇
+ 

𝜕𝐷

𝜕𝜂̇
+ 

𝜕𝑈

𝜕𝜂
 =  

𝜕𝐿

𝜕𝜂
 

 

Its Fourier transform in presence of the external forces, 𝐹 𝑔 𝑒𝑥𝑡 (𝑗𝜔) =

 𝛷𝑇̿̿ ̿̿  𝐹  𝑒𝑥𝑡 (𝑗𝜔), totally independent form the movement of the structure leads to 

the aeroelastic equilibrium equation:  

𝐻̿ (𝑗𝜔; 𝑉∞)𝜂(𝑗𝜔) =  𝐹 𝑔 𝑒𝑥𝑡 (𝑗𝜔) 

Where: 

𝐻̿ (𝑗𝜔; 𝑉∞) = [(𝑗𝜔)2𝑀̿𝑔 + (𝑗𝜔) 𝜎𝑔̿̿ ̿ + (𝐾𝑔
̿̿̿̿ −  

1

2
ρ𝑉∞

2𝑄(𝑘𝑟,𝑀)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ )] (4) 

 

Is the impedance matrix, the inverse of which is the transfer matrix. 

Both of them are dependent from the flight speed.  
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The time-domain solutions of the generalized coordinates are obtained by 

the inverse Fourier transform of the (4 ),as expressed in the (5): 

 

𝜂(𝑡) =
1

2𝜋
 ∫ 𝐻̿−1+∞

−∞
(𝑗𝜔; 𝑉∞)𝐹 𝑔 𝑒𝑥𝑡 (𝑗𝜔)exp (𝑗𝜔𝑡)𝑑𝜔 (5) 

 

The asymptotic stability1 of the system under an imposed unit impulse forc-

ing is ensured by the condition: 

∫ |𝐻−1 
+∞

−∞

(𝑗𝜔; 𝑉∞)| 𝑑𝜔 ≤ 0 

 

The transfer matrix at a fixed speed is expressed as a polynomial ratio: 

 

𝐻̿−1(𝑗𝜔; 𝑉∞) =  
∑ 𝐴̿𝑖

𝑛
𝑖=0 (𝑗𝜔)𝑖

∑ 𝑏𝑖
𝑛
𝑖=0 (𝑗𝜔)𝑖

, 

Where the numerator is a polynomial of real matrixes of order n, while the 

denominator is a scalar polynomial with real coefficients of order m, equal to the 

number of the generalized coordinates multiplied by 2. Due to the system causal-

ity, n at maximum can reach the value m. In order to guarantee the dynamic sta-

bility of the system, the denominator cannot have any root with negative real part. 

In other words, the poles of the rational representation of the transfer matrix must 

be included into the negative quadrant of the complex plane. The denominator is 

the determinant of the impedance matrix 𝐻̿ (𝑗𝜔; 𝑉∞).  

A numerical and very efficient method to calculate the determinant of a ma-

trix is based on the calculus of its eigenvectors.  

Flutter speed is defined as the speed value corresponding to a pole with real 

part equal to zero at least.  

4.3 Classification of the methods for flutter evaluation 

The aeroelastic stability equation in absence of the constant term has the 

following expression ([41] – [43]): 

 

−𝜔2𝑀̿𝜂 + 𝑗𝜔𝜎𝐺̿̿ ̿𝜂 + 𝐾̿𝜂 = (
1

2
)ρ𝑣2 𝑄̿ (𝑘𝑟)𝜂    (6) 

 

                                                 
1 |𝜂(𝑡)| ≤ 0, 𝑖𝑓 𝑡 → ∞ 
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With kr is the reduced frequency, equal to ω𝑐𝑟/v (𝑐𝑟 is the reference 

length). 

The methods to calculate the roots of the (6) as functions of the speed can 

be divided into three classes:  

a) K methods; 

b) PK methods; 

c) Methods of state equations. 

4.3.1 K methods 

4.3.1.1 K method, First version 

By using the definition of reduced frequency discussed in §4.3 and by sub-

stituting the following expression: 

𝑣2 = (
𝜔𝑐𝑟

𝑘𝑟
)2 

 

The Eq. 6 becomes: 

[𝑗𝜔𝜎𝐺̿̿ ̿ + 𝐾̿ ]𝜂 =  𝜔2 [
𝜌𝑐𝑟2

2
∗

𝑄 ̿(𝑘𝑟)

𝑘𝑟2
+ 𝑀]𝜂̿̿ ̿̿ ̿ 

 

And considering the hysteretic damping 𝜎𝐺̿̿ ̿ =  
𝑔

𝜔
𝐾̿: 

(1 + 𝑗𝑔)𝐾̿𝜂 =  𝜔2 [
𝜌𝑐𝑟2

2
∗

𝑄 ̿(𝑘𝑟)

𝑘𝑟2
+ 𝑀]𝜂̿̿ ̿̿ ̿ 

From which: 

𝜆𝜂 = 𝐴̿𝜂, 

where: 

 

 𝜆 =  𝜆𝑅 + 𝑗𝜆𝐼 = 
1+𝑗𝑔

𝜔2   

𝐴̿ = 𝐾−1̿̿ ̿̿ ̿ [
𝜌𝑐𝑟2

2
∗

𝑄̿(𝑘𝑟)

𝑘𝑟2
+ 𝑀̿ 

 

The roots are found by means of the solution of the eigenvalues of a com-

plex matrix, according to what described as follows: 

1. Reduced frequency fixed, Kri; 

2. 𝑄̿ (Kri;) matrix evaluation; 

3. 𝐴̿ matrix construction: 
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4. Eigenvalues calculus: for each of them: 

𝜔𝑗 = √(
1

𝜆𝑅,𝐽
) 

 

𝑔𝑗 = √(
𝜆𝐼,𝐽

𝜆𝑅,𝐽
) 

  

𝑣𝑗 =
𝜔𝑗 ∗ 𝑐𝑟

𝑘𝑟𝐼
 

5. Return to step n. ° 1. 

For example, in case of just two modes the V-g plot could be as the rep-

resentation in Fig. 25. 

 

Fig. 25: Example of V-g plot in case of two modes only, K-Method, [41] 

The couples of solutions (ω, V) are on straight lines with constant value 

of Kr: for this reason, this method is called “K-method”. 
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The calculus must be done according to descending values of the re-

duced frequency: Kr1 > Kr2 > Kr3, etc. 

In this version, K – method is very quick. Nevertheless, since it requires 

a non-singular matrix, this method can deal neither with the rigid modes of 

the aircraft nor with the control surfaces modes with free commands. Talking 

about the latter, the difficulty can be overcome by introducing low values of 

stiffness. 

 

4.3.1.2 K method, Second version 

The limitation of the first version of the K-method can be prevented 

through a different expression of the aeroelastic stability equation. By impos-

ing as LHS of the (6): 

 

ω2 =
(𝑉𝑘𝑟)2

(𝑐𝑟)
 

It becomes: 

 

−𝑉[(𝑘𝑟/𝑐𝑟)2 ∗ 𝑀̿ + (
𝜌

2
) ∗ 𝑄̿ (𝑘𝑟)]𝜂 + (1 + 𝑗𝑔)𝐾̿𝜂 = 0 (7) 

 

 From which:  

𝜆𝜂 = 𝐴̿𝜂 

Where:  

 

𝜆 =  
𝑉2

1+𝑗𝑔
  𝐴̿ = [(

𝑘𝑟

𝑐𝑟
)
2

∗ 𝑀̿ + (
𝜌

2
) ∗ 𝑄̿ (𝑘𝑟)]−1 ∗ 𝐾̿ (8) 

 

For each step, a complex matrix will be inverted. The latter formulation 

allows for the calculation of the static divergence speed. Indeed, on the basis 

of the expression of 𝐴̿ for zero reduced frequency: 

 

𝜆𝜂 = [(
𝜌

2
) ∗ 𝑄̿ (0)]−1 ∗ 𝐾̿ ∗ 𝜂  ( 9) 

 

And 𝜆 is the divergence speed squared. By imposing ω = kr = 0 in the 

(1), the following expression is obtained: 
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𝑉2𝜂 = [(
𝜌

2
) ∗ 𝑄̿ (0)]−1 ∗ 𝐾̿ ∗ 𝜂  (10) 

 

The term C = (g/ω)*K does not alter the matrix A structure, but provides 

for the imaginary part of the eigenvalue. 

 

The K methods are not much used in the industrial field, since not in-

cluding the structural damping. 

 

4.3.2 PK methods 

4.3.2.1 PK method, First version (English version) 

In the (6), the aerodynamic matrix is split into its real and imaginary parts:  

 

(
1

2
)ρ𝑣2 [𝑄𝑅

̿̿ ̿̿ + 𝑗 𝑄𝐼
̿̿ ̿]𝜂 

By considering:  

 

(
1

2
)ρ𝑣2 [𝑗 𝑄𝐼

̿̿ ̿]𝜂 = (
1

2
) ρv (

𝑉

𝑐𝑟∗𝜔
) (𝑐𝑟 ∗ 𝜔)𝑗𝑄𝐼

̿̿ ̿𝜂 = (
1

2
) ρV𝑐𝑟 

𝑄𝐼̿̿ ̿

𝑘𝑟
𝑗𝜔𝜂 

And: 

−𝜔2𝜂 = 𝜂̈; 𝑗𝜔𝜂 = 𝜂̇ 

 The (6) becomes: 

𝑀̿𝜂̈ + [𝜎𝐺̿̿ ̿ − (
1

2
)ρVcr

𝑄𝐼̿̿ ̿

𝑘𝑟
]𝜂̇ + [𝐾̿ − (

1

2
) ρ𝑣2 𝑄̿𝑅]𝜂 = 0 

And in a compact expression:  

 

𝑀̿𝜂̈ + 𝐶̿𝜂̇ + 𝐾̿𝜂 = 0  (11) 

 

By imposing 𝜂 = 𝜂𝑒𝑝𝑡: 

 

𝑝2𝑀̿𝜂 + 𝑝𝐶̿𝜂 + 𝐾̿𝜂 = 0  (12) 

 

The Eq. 12 is an eigenproblem of an II order complete system. Its roots, in 

general complex, will have imaginary part depending on the pulsation, and the 

real part depending on the damping. 
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If N modes are present, the (12) is a second-degree and N-order system, due 

to a first-degree and 2N-order one: 

 

[
𝐼 0
0 𝑀

] 𝑝 [
𝜂
𝑝𝜂] − [

0 𝐼
−𝐾𝑠 −𝐶𝑠

] [
𝜂
𝑝𝜂] = 0  (13) 

 

By considering: 

 

[
𝜂
𝑝𝜂] = Y 

The Eq. 13 becomes: 

𝑝𝑌 = 𝐴𝑌 

With:  

𝐴 =  [
0 𝐼

−𝑀−1𝐾𝑠 −𝑀−1𝐶𝑠
] 

 

A is a real matrix. 

The “free” parameter is the reduced frequency for the K-method, while is the 

speed for the PK-method. 

 

The calculation procedure is the following:  

For a fixed speed value, as a first step the aerodynamic and A matrices are 

calculated for a reduced frequency K1,0 close to zero. Then, the eigenvalues are 

evaluated and ordered by increasing values of the imaginary part; the ω deriving 

from the imaginary part of the first eigenvalue ω1,0  and the reduced frequency 

K1,1= ω1,0 *cr/V associated with it are calculated.  

If |𝐾1,0 − 𝐾1,1| > 𝜀 (where 𝜀 is an arbitrarily small real number indicative of 

the precision of the solution), the A matrix and the eigenvalues for this new re-

duced frequency are recalculated. After ordering the eigenvalues by the imagi-

nary part and while indicating the pulsation of the first mode with ω1,1, K1,2= ω1,1 

*cr/V is then calculated. If |𝐾1,1 − 𝐾1,2| < 𝜀, the iteration on the first mode is 

stopped and the next level is reached by taking as initial value for the pulsation 

the ω2 obtained after the previous iteration. The process continues until the con-

vergence is reached for all the modes, corresponding with the fixed value of V.  

 

For the general mode i, the complex eigenvalue 𝑝𝑅 + 𝑗𝑝𝑖 is associated with 

the roots of a mass-spring-damper dynamic system: 
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𝑝 =  −𝜁𝜔 + 𝑗𝜔√(1 − 𝜁2) , 𝑝𝑅 = −𝜁𝜔, 𝑝𝑖 = 𝜔√(1 − 𝜁2) 

From the ratio -
𝑝𝑖

𝑝𝑅
= 

√(1−𝜁2)

𝜁
 the quantity 𝜁𝜔 can be evaluated and 

then 𝜔 =  − 
𝑝𝑅

𝜁
.  

 

Compared to the K method, the PK-method is more costly from a computa-

tional point of view. Anyway, it allows for taking into account the structural 

damping and, in this version (called English version), the solutions can be ob-

tained regardless of the previous solutions.  

 

4.3.2.2 PK method, Second Version (Continuation method) 

The aeroelastic stability equation: 

 

[𝑝2𝑀 + 𝑝𝜎 + 𝐾 −
1

2
𝜌𝑉2𝑄(𝑘𝑟)] 𝜂 = 0  (14) 

 

can be considered as a vectorial equation as a function of p, η: 

 

𝐹(𝑝, 𝜂) = 0  (15) 

 

By adding to the (15) a normalization condition for η: 

 

𝜂𝑡 ∗ 𝑊 ∗ 𝜂 = 1 

 

And by imposing: 

 

𝐺(𝜂) = 𝜂𝑡 ∗ 𝑊 ∗ 𝜂 − 1 = 0  (16) 

 

The Eq. 15 and 16 can be seen as non linear equations system as functions 

of p and η: 

 

 

𝐹(𝑝, 𝜂) = 0 

𝐺(𝜂) = 0  

(17) 
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By expanding the (17) about a fixed speed value point, 𝑝0, 𝜂0: 

 

𝐹(𝑝, 𝜂) =  𝐹(𝑝0, 𝜂0) +
𝜕𝐹

𝜕𝑝
∗ ∆𝑝 +

𝜕𝐹

𝜕𝜂
∗ ∆𝜂 

𝐺(𝜂) =  𝐺(𝜂0)                              +
𝜕𝐺𝑅

𝜕𝜂
∗ ∆𝜂  

 

(18) 

 

Where: 

 

𝐹𝑝 = 
𝜕𝐹

𝜕𝑝
= [2𝑝 𝑀 + 𝜎 −

1

2
 𝜌 𝑣2 𝜕𝑄(𝑘𝑟)

𝜕𝑘𝑟

𝜕𝑘𝑟

𝜕𝑝
]*η 

 

𝐹𝜂 = 
𝜕𝐹

𝜕𝜂
= [𝑝2 𝑀 + 𝑝𝜎 + 𝐾 −

1

2
 𝜌 𝑣2 𝑄(𝑘𝑟) 

𝐺𝜂
𝑅 =

𝜕𝐺𝑅

𝜕𝜂
= 2 𝜂𝑇 ∗ 𝑊 

𝐺𝜂
𝑅 row vector. 

 

By using the (17), the (18) becomes: 

 

−𝐹(𝑝0, 𝜂0) = 𝐹𝑝 ∗ ∆𝑝 + 𝐹𝜂 ∗ ∆𝜂 

 

−𝐺(𝜂0) = 𝐺𝜂
𝑅 ∗ ∆𝜂 

(19) 

 

And by imposing: 

 

𝑉1 = 𝐹𝜂
−1 ∗ 𝐹(𝑝0, 𝜂0); 𝑉2 = 𝐹𝜂

−1 ∗ 𝐹𝑝 

 

From the first of the (19): 

 

∆𝜂 = −𝑉1 − 𝑉2 ∗ ∆𝑝 (20) 
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And by replacing in the second of the (19): 

 

∆𝑝 =
𝐺𝜂

𝑟∗𝑉1−𝐺(𝜂0)

𝐺𝜂
𝑟∗𝑉1

  (21) 

 

Known ∆p, from the (20) ∆η can be obtained and then:  

 

𝑝1 = 𝑝0 + ∆𝑝; 𝜂1 = 𝜂0 + ∆𝜂 

 

If |∆p|<ε, the convergence for the i-mode is reached and the procedure goes 

on for a new speed value. At first, for the i-mode calculation for a speed close 

to zero the assumptions are the following: 

𝑝𝑜𝑟 = − 𝜁𝑖𝜔𝑛𝑖 

 

𝑝𝑜𝑖 = 𝜔𝑛𝑖√(1 − 𝜁𝑖
2) 

 

𝜔𝑛𝑖 = 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑝𝑢𝑙𝑠𝑎𝑡𝑖𝑜𝑛 

 

𝜁𝑖 = 𝑚𝑜𝑑𝑎𝑙 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

 

𝜂0 = 𝑛𝑢𝑙𝑙 𝑣𝑒𝑐𝑡𝑜𝑟, 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑜𝑛𝑙𝑦 𝑖 𝑢𝑛𝑖𝑡𝑎𝑟𝑦 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 

 

For the second speed, the previous iteration values are taken, while for the 

next speeds all the p values are linearly extrapolated between the two immedi-

ately previous iterations. For η the value of the last iteration is assumed.  

The computational speed of the PK-method is comparable to the K-method 

one.   

 

4.4 Aerodynamic forces approximation 

At each step of the solution methods, the aerodynamic matrix Q must be cal-

culated, [41]. 

In general, Q matrices evaluation occurs for a limited range of reduced fre-

quencies and, if required, they need to be interpolated.  

The interpolation techniques are basically two:  
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a) Linear splines; 

b) Rational approximations.  

 

Roger [42] provides an excellent rational approximation: 

 

𝑄(𝑘𝑟) = 𝐴0 + (𝑗𝑘𝑟)𝐴1 + (𝑗𝑘𝑟)2𝐴2 + ∑𝐵𝐿

4

𝐿=1

∗
(𝑗𝑘𝑟)

(𝑗𝑘𝑟) + 𝛾𝐿
 (22) 

 

The values of 𝛾𝐿 depend on the reduced frequencies values for which Q ma-

trices are known. 

To speed up the convergence of the method, A0 = Q(0). The unknown real 

matrices: A1 A2 B1 B2 B3 B4 are evaluated by means of the least square method 

about the difference Q(kr) - Q(0). It is simple to obtain the Q matrix correspond-

ing with a proper reduced frequency value, if the coefficients matrices are known. 

The derived matrix Q(kr)kr can be also achieved through the expansion, and this 

is useful in the II PK method.  

 

4.4.1 P method 

By exploiting the Rogers approximation and by imposing: 

𝑞0 =
1

2
𝜌𝑉2 ; 𝑞1 =

1

2
𝜌𝑉𝑐𝑟; 𝑞2 =

1

2
𝜌𝑐𝑟2 

 

The following expression can be obtained:  

 

𝑞0𝑄(𝑘𝑟)𝜂 = [𝑞0𝐴0 + 𝑞1𝐴1(𝑗𝜔) + 𝑞2𝐴2(𝑗𝜔)2] ∗ 𝜂 + 𝑞0 ∑ 𝐵𝐿
4
𝐿=1 ∗

(𝑗𝜔)∗𝜂

(𝑗𝜔)+𝛾𝐿∗
𝑣

𝑐𝑟

  
(23) 

 

By substituting it into the aeroelastic stability equation:  

 

(𝑗𝜔)2[𝑀 − 𝑞2𝐴2]𝜂 + (𝑗𝜔)[𝜎 − 𝑞1𝐴1]𝜂 + [𝐾 − 𝑞0𝐴0 ]𝜂 −

𝑞0 ∑ 𝐵𝐿
4
𝐿=1 ∗

(𝑗𝜔)∗𝜂

(𝑗𝜔)+𝛾𝐿∗
𝑣

𝑐𝑟

= 0  
(24) 
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Then, setting: 

𝑀𝑠 = [𝑀 − 𝑞2𝐴2]; 𝐶𝑠 = [𝜎 − 𝑞1𝐴1]; 𝐾𝑠 = [𝐾 − 𝑞0𝐴0]; 𝛾𝐿 = 𝐵𝐿 ∗
(𝑗𝜔)∗𝜂

(𝑗𝜔)+𝛾𝐿∗
𝑣

𝑐𝑟

; L=1.4 

 

(24) becomes: 

 

(𝑗𝜔)2𝑀𝑠𝜂 + (𝑗𝜔)𝐶𝑠𝜂 + 𝐾𝑠𝜂 − 𝑞0 ∑ 𝑌𝑙
4
𝑙=1 = 0  (25) 

 

𝛾𝐿 ∗ [(𝑗𝜔) + 𝛾𝐿 ∗
𝑣

𝑐𝑟
] = 𝐵𝐿 ∗ (𝑗𝜔) ∗ 𝜂; L=1.4 

 

Then assuming:  

 

(𝑗𝜔)2𝜂 = 𝜂̈; (𝑗𝜔)𝜂 = 𝜂̇; (𝑗𝜔)𝑌𝐿 = 𝑌𝐿̇ 

 

(25) can be written as follows: 

 

𝑀𝑠𝜂̈ + 𝐶𝑠𝜂̇ + 𝐾𝑠η − 𝑞0 ∑ 𝑌𝑙
4
𝑙=1 = 0  (26) 

 

𝑌̇𝑙 + (
𝛾𝐿𝑣

𝑐𝑟
) 𝑌𝐿 − 𝐵𝐿𝜂̇ = 0; L=1.4 

 

Adding the identity: 

  

𝜂̇ − 𝜂̇ = 0 

 

It is possible to express constant coefficients differential equations system: 

 

𝑍̇ = 𝐴𝑍  (27) 

 

Where: 
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𝐴 =

[
 
 
 
 
 

0 𝐼 0 0 0 0
−𝑀𝑠

−1𝐾𝑠 −𝑀𝑠
−1𝐶𝑠 𝑞0𝑀𝑠

−1 𝑞0𝑀𝑠
−1 𝑞0𝑀𝑠

−1 𝑞0𝑀𝑠
−1

0 𝐵1 −𝐼𝛾1𝑣/𝑐𝑟 0 0 0
0 𝐵2 0 −𝐼𝛾2𝑣/𝑐𝑟 0 0
0 𝐵3 0 0 −𝐼𝛾3𝑣/𝑐𝑟 0
0 𝐵4 0 0 0 −𝐼𝛾4𝑣/𝑐𝑟]

 
 
 
 
 

 

 

𝑍 =

[
 
 
 
 
 
𝜂
𝜂̇
𝑌1

𝑌2

𝑌3

𝑌4]
 
 
 
 
 

 

  

Compared to the first PK-method, the P-method is characterized by the lack 

of iterations on the generic mode; on the other hand, the problem dimensions 

increase from 2-order up to 6N-order. Moreover, this formulation is affordable 

with the modern techniques of systems control.  

 

4.5 Harmonic Balance Method 

The harmonic balance method investigates the oscillations of limit cycle of 

systems with lumped non-linearity by using frequency-domain techniques (Fou-

rier-series). 

The behavior of the linear systems with lumped non-linearity can be ex-

plained through the following block diagram in Fig. 26:  

 

Fig. 26: Non –linearity in a linear system, [41] 

Such a system can provide auto-oscillations with limited amplitude, defining 

periodical movements called limit cycles. 
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If the system is enabled to filter the high-frequency harmonics, as a first at-

tempt, the amplitude and the frequency of the only first harmonic can characterize 

the whole limit cycle. This hypothesis is valid in flutter conditions.  

If the system is described by the following equation:  

 

𝑥̈ + 𝑓(𝑥, 𝑥̇) = 0  (28) 

 

Setting: 

 

𝑥 = 𝐴𝑠𝑖𝑛(𝜔𝑡)  (29) 

 

From which: 

 

𝑥̇ = 𝜔𝐴𝑐𝑜𝑠(𝜔𝑡)  (30) 

 

The function will be: 

 

𝑓(𝑥, 𝑥̇) = 𝑓(𝐴𝑠𝑖𝑛(𝜔𝑡), 𝜔𝐴𝑐𝑜𝑠(𝜔𝑡))  

 

 

Approximating the function 𝑓(𝑥, 𝑥̇) by its first Fourier harmonic:  

 

𝑓(𝑥, 𝑥̇) =  𝑎0 + 𝑎1 cos(𝜔𝑡) + 𝑏1sin (𝜔𝑡) 

 

Where: 

 

𝑎0 =
1

𝑇
∫ 𝑓(𝑡)𝑑𝑡

𝑇

0

 

𝑎1 =
2

𝑇
∫ 𝑓(𝑡) cos (𝜔𝑡)𝑑𝑡

𝑇

0

 

𝑎2 =
2

𝑇
∫ 𝑓(𝑡) sin (𝜔𝑡)𝑑𝑡

𝑇

0

 

 

From the (29) and (30) the following expressions can be obtained: 
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sin(𝜔𝑡) =
𝑥

𝐴
 

 

cos(𝜔𝑡) =
𝑥̇

𝜔𝐴
 

 

Inserting them into (28), it becomes: 

 

𝑥̈ + (
𝑎1

𝐴𝜔
) 𝑥̇ + (

𝑏1

𝐴
) 𝑥 = 0  (31) 

 

(31) is the representation of the linearized equation of the system: the non-

linearity is contained into the (hysteretic) damping term  
𝑎1

𝐴𝜔
 and in the stiffness 

term (
𝑏1

𝐴
). Both of them depend on the oscillation amplitude, in case of reso-

nance.  

If the non-linear function is odd, the damping term is zero, being: 

 

𝑎1 =
2

𝑇
∫ 𝑓(𝑡) cos (𝜔𝑡)𝑑𝑡

𝑇

0

= 0 

 

The Eq. 31 can also be expressed as:  

 

𝑥̈ + 𝐾𝑒𝑞𝑥 = 0  (32) 

 

Where the multiplying coefficient Keq is the equivalent stiffness. According 

with the Optimal Linearization Blaquiere Method, Keq must minimize the mean 

square deviation between the non-linear function f and its approximation Keqx. 

 

The error is equal to: 

 

𝜀(𝐾𝑒𝑞, t) = f(x, 𝑥̇) − 𝐾𝑒𝑞𝑥   (33) 

 

While the mean square deviation is: 

 

𝐸(𝐾𝑒𝑞, 𝑡) = 𝜀2 = 𝑓2(𝑥, 𝑥̇) − 2𝐾𝑒𝑞𝑥𝑓(𝑥, 𝑥̇) + 𝐾𝑒𝑞
2 𝑥2 (34) 
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The mean square deviation minimization in the period T is given by the fol-

lowing expression:  

 

1

𝑇
∫

𝜕𝐸(𝐾𝑒𝑞,𝑡)

𝜕𝐾𝑒𝑞

𝑇

0
𝑑𝑡 = 0   (35) 

 

Where: 

  

𝜕𝐸(𝐾𝑒𝑞, 𝑡)

𝜕𝐾𝑒𝑞
= −2𝑥𝑓(𝑥, 𝑥̇) + 2𝐾𝑒𝑞𝑥

2 (36) 

 

Substituting (36) in (35), the latter becomes: 

 

−
2

𝑇
∫ 𝑥𝑓(𝑥, 𝑥̇

𝑇

0
)𝑑𝑡 +

2

𝑇
𝐾𝑒𝑞 ∫ 𝑥2𝑇

0
𝑑𝑡 = 0  (37) 

 

(37) provides the expression of the equivalent stiffness, Keq: 

 

𝐾𝑒𝑞 =
∫ 𝑥𝑓(𝑥,𝑥̇) 𝑑𝑡

𝑇
0

∫ 𝑥2 𝑑𝑡
𝑇
0

    (38) 
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5 Aeroelasticity of morphing devices  

This chapter addresses the aeroelastic stability investigation performed on 

the reference aircraft (TP90) equipped with morphing flaps and winglets. Ra-

tional approaches were implemented in order to simulate the effects induced by 

variations of such movable surfaces actuators stiffness on the aeroelastic behav-

ior of the A/C also in correspondence of several failure cases.  

More in detail, rational analyses were implemented by considering:  

 

✓ The impact of morphing systems kinematics, masses and dis-

tributed stiffness of the adaptive flaps and winglets at aircraft 

level; 

✓ The adoption of massbalancing to guarantee flutter clearance;  

✓ The uncertainties in the structural dynamics due to actuator 

free-play nonlinearity. 

 

Moreover, aircraft stability robustness with respect to morphing systems in-

tegration was evaluated through a combination of “worst cases” simulating the 

mutual interaction among the adaptive systems. The “worst case” indicates that, 

in addition to the case that the aircraft is aeroelastically safe with the nominal 

model according with the CS-25 requirements [2], it should also be safe with a 

combination of morphing wing devices. 

For that purpose, sensitivity studies were carried out on the base of fast aero-

elastic approaches involving simplified and reliable structural and aerodynamic 

models.  Outcomes of trade-off studies provided useful guidelines to judge the 

adequacy of the morphing surfaces structural configuration in the framework of 

their potential impact on flutter instability. 

 

5.1 Dynamic Model 

5.1.1 Structural Model 

In order to perform fast sensitivity analyses [3] – [31], a representative struc-

tural model of the whole aircraft2 was generated referring to a stick-equivalent 

formulation to catch the entire system dynamics. For that purpose, rational crite-

ria were adopted in terms of the dynamic structural condensation; then, well-

                                                 
2 The need of a full aircraft model is connected to the investigation of the aeroelastic effects in-

duced by asymmetrical failures, as reported in Section 6.  
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consolidated approaches were used to reduce distributed aircraft inertial proper-

ties into an equivalent set of lumped masses.  

More in detail, the stiffness and inertial properties were extracted by two pre-

liminary FE models respectively elaborated by the University of Naples (Fig. 27) 

and by the Italian Aerospace Research Centre (CIRA) (Fig. 28). 

 

 

Fig. 27: LH morphing flap preliminary Finite Element Model developed by 

UniNa, [31] 

 

 

Fig. 28: LH morphing winglet preliminary Finite Element Model developed 

by CIRA, [31] 

From now on, the term “block” will address the structure sub-assy made up 

by the rib homolog blocks and the spars linking them in a closed box.  
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All the properties were condensed in a discrete number of structural grids, 

which position was driven by the intersection among each hinge/elastic axis and 

morphing rib, [31].  

More in detail, the elastic axis evaluation of the wing and of the first block 

of both morphing flap and winglet was carried out by means of an iterative pro-

cedure, described as follows: 

 

1. A trial position of the elastic axis was assumed; 

2. Nodes were added to the structural model in correspondence of the intersec-

tion points between the elastic axis (point 1) and ribs’ planes; 

3. At each rib, available RBE2 elements had to slave the nodes of the rib bound-

ary to the node at the intersection between the rib plane and the (imposed) 

elastic axis; 

4. An arbitrary torque MT, was applied along the elastic axis and in correspond-

ence of its intersection with the plane of the rib located at wing tip. The mas-

ter node on the rib plane at the wing root was constrained in all the degrees 

of freedom; 

5. Static analysis was performed in MSC-NASTRAN® environment and the 

following displacements were evaluated ([44]): 

 

• TYi : displacement of the master node on the i-th rib along the axis Y 

perpendicular to the elastic axis and to the wing box middle plane 

(vertical bending displacement induced by MT); 

• RXi : rotation of the master node on the i-th rib around the axis X 

coincident with elastic axis (torsion induced by MT); 

6.   Ratios li=|TYi/RXi| were evaluated at each rib location thus providing the 

offset of the actual shear centre with respect to its supposed position. 

7.   At each rib location, the master node defined at point 3 was shifted chordwise 

by the amount li ; 

8.   Steps from 4 to 7 were repeated until all ratios li resulted quite equal to zero, 

Fig. 29. 
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Fig. 29: Elastic axis convergence parameter, [31] 

 

Stiffness distributions along the span of the blocks of both the morphing de-

vices (Fig. 27 and Fig. 28), to be applied to the equivalent beam, were determined 

by constraining the first node of the (assessed) elastic/hinge axis and by imposing 

a known load value at the tip (last node of the elastic/hinge axis), [3]. 

Then: 

 

• A Torque Mx, about the elastic/hinge axis, yielded rotations of master 

nodes around x-axis (=elastic/hinge axis). The derivative of these rota-

tions with respect to x coordinate was evaluated and the torsional stiffness 

was obtained according to the following equation: 

 

GJ(x)=Mx(
𝑑𝑅𝑥(𝑥)

𝑑𝑥
)−1 

 

• A Bending moment, about y (and z) axis, yielded rotations of master 

nodes around y (and z)-axis. The derivative of these rotations with respect 

to y (and z) coordinate was evaluated and the bending stiffness was ob-

tained according to the following equations:  

 

EImin(x) = My(
dRy(x)

dx
)−1 

EImax(x) = Mz(
dRz(x)

dx
)−1 

 



69 

 

• A Normal force, aligned to the elastic axis, produced displacements of 

master nodes along x-axis (=elastic/hinge axis). The derivative of these 

displacements with respect to x coordinate was evaluated and the axial 

stiffness was obtained according to the following equation: 

 

EA (x) = Nx(
dTx(x)

dx
)−1 

The logical flow for the stiffness distributions evaluation is depicted in Fig. 

30: 

 

 

Fig. 30: Logical Flow for the stiffness properties evaluation 

 

Where: 

• x is the generic coordinate along the X-axis (Fig. 31); 

• GJ(x) is the torsional stiffness distribution (Fig. 32, Fig. 33, a)) 

• EImin(x) is the vertical bending stiffness distribution (stiffness to 

bending across XY plane, Fig. 32, Fig. 33, b)); 
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• EImax(x) is the lateral (fore & aft) bending stiffness distribution (stiff-

ness to bending across XZ plane, Fig. 32, Fig. 33, c)); 

• EA(x) is the distribution of the stiffness exhibited with respect to 

forces acting along the elastic axis (normal-to-sections solicitations), 

Fig. 32, Fig. 33, d)); 

• Mx and Rx(x) are respectively an arbitrary torque moment acting 

around the elastic axis (X-axis) at its free-end and Rx(x) is the rotation 

around the X-axis of the cross section at span-wise location x; 

• Mz and Rz(x) are respectively an arbitrary bending moment acting 

around Z-axis at elastic axis free-end and Rz(x) is the rotation around 

the Z-axis of the cross section at span-wise location x; 

• Nx and Tx(x) are respectively an arbitrary force acting along elastic 

axis (X-axis) at its free-end and Tx(x) is the displacement along the 

X-axis of the cross section at span-wise location x. 

 

The stiffness properties were obtained using a polynomial interpolation 

limited to the first or second order. Fig. 32 and Fig. 33 show all the stiffness 

properties obtained for the morphing flap and winglet. 

 

 

Fig. 31: Example of load case applied for GJ evaluation, [31] 
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(a) GJ Evaluation, morphing flap 

 

(b) EI min evaluation, LH morphing flap 

 

 

(c) EI max Evaluation, morphing flap 

 

(d) EA Evaluation, morphing flap 

Fig. 32: Flap tabs stiffness properties 

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

0.00 1.00 2.00 3.00 4.00 5.00 6.00

G
J 

[N
m

^2
/r

ad
]

x* [m]

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

1.40E+04

1.60E+04

0.00 1.00 2.00 3.00 4.00 5.00 6.00

EI
_M

in
 [

N
*

m
^2

]

x*[m]

0.00E+00

2.00E+04

4.00E+04

6.00E+04

8.00E+04

1.00E+05

1.20E+05

0.000 1.000 2.000 3.000 4.000 5.000 6.000

EI
_m

ax
 [

N
m

^2
]

x* [m]

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

8.00E+06

0.000 1.000 2.000 3.000 4.000 5.000 6.000

EA
 [

N
]

x* [m]



72 

 

(a) GJ Evaluation, morphing winglet (b) EI min evaluation, LH morphing winglet 

(c) EI max Evaluation, morphing winglet (d) EA Evaluation, morphing winglet

Fig. 33: Winglet tabs stiffness properties 
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For the flaps, the B3 tabs hinge lines were linked to the elastic axis of the 

wing by means of stiff beam elements; pin flags were properly imposed at the 

end-nodes of such elements to release the rotation around the hinge lines. It is 

fundamental to underline that only the B3 tabs were considered, since they are 

involved during high-speed performance and impact the aeroelastic behavior of 

the A/C.  

For the winglets, the stiff beam elements with pin flags were introduced 

among B3-B2, B2-B1, and B1-B0 respective hinge/elastic axes.  

Flap and winglet tabs actuators were modelled by means of grounded spring 

elements linked to the end grid of each movable surface. Moreover, direct input 

matrices condensed at grids (DMIG, [44]) were introduced to properly reproduce 

stiffness and inertial characteristics of each jointing region of the aircraft 

(namely, wing-fuselage, fuselage-tails and wing-winglet interface). 

Auxiliary (not structural) grids were used to assure high quality interpolation 

of modal displacements along the aerodynamic lattice; auxiliary grids were 

linked to structural grids by means of RBE elements. 

 

5.1.2 Inertial Model 

Mass properties of the movable surfaces of the flaps tabs and winglets were 

evaluated by considering a system of lumped masses obtained by the weight of 

the intersection zone between each bay (the portion of the flap and of the winglet 

located between two consecutive ribs, Fig. 27 and Fig. 28) and the tabs’ blocks. 

Such masses were located at the gravity center of each item, and then rigidly 

connected to the closest grid of the beam-equivalent model of the pertaining item. 

This is possible thanks to the hypothesis of considering all the lifting surfaces 

chordwise deformations negligible with respect to the spanwise ones. In this way, 

the inertial effect of each trunk can be represented through a node located at the 

gravity center, with its weight and barycentric inertial moments.  

The leading edge and not movable trailing edge portions aeroelastic impact 

on the wing was only considered from the inertial standpoint, while their effect 

in terms of stiffness was hypothesized negligible.  

The complete dynamic model is depicted in Fig. 34. 

 



74 

 

 

Fig. 34: TP90 Dynamic model in Sandy environment (ref. axes in meters), 

[31] 

5.2 Aerodynamic and Interpolation Model 

The aerodynamic schematization is based on the Doublet Lattice Method 

(DLM), allowing for the calculation of the matrices of unsteady aerodynamic in-

fluence coefficients (AIC). 

The aircraft is divided in a proper number of panels; each of them is divided 

into strips, and subpanels called “box” compose each strip.  

A higher boxes density was considered for the movable trailing edge and -to 

assure mesh uniformity- for the not-movable trailing edge.  

The aerodynamic model is depicted in Fig. 35. 

 

Fig. 35:TP90 aerodynamic model in Sandy environment (ref. axes in me-

ters), [31] 
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Modal displacements at the center of each aerodynamic box were obtained 

by means of superficial spline functions attached to auxiliary (not structural) 

grids, used to assure high quality interpolation of modal displacements along the 

aerodynamic lattice. Auxiliary grids were linked to structural grids by means of 

RBE elements.  

A representation of the aerostructural model is shown in Fig. 36. 

 

Fig. 36: TP90 Aeroelastic model in Sandy Environment (ref. axes in me-

ters), [31] 

5.3 Flutter Analyses 

The overlap between structural and aerodynamic models provided the aero-

structural scheme to study the A/C aeroelastic behavior. Several cases of flutter 

analyses, by means of Sandy© code, were investigated in order to meet the safety 

requirements imposed by the applicable aviation regulations, [2]: 

 

• System fully operative; 

• System in the failure condition 

 



76 

 

5.3.1 Trade-off flutter analysis on flap tabs 

5.3.1.1 Carpet plot Generation 

Flutter analyses on flap tabs were carried out under the following assump-

tions: 

• PK-continuation method with rationalization of generalized aerody-

namic forces for the evaluation of modal frequencies and damping 

trends versus flight speed; 

• Theoretical elastic modes association in the frequency range 0Hz-

50Hz (elastic modes being pertinent to free-free aircraft, with only 

plunge and roll motions allowed); 

• Modal damping (conservatively) equal to 0.015 for all the elastic 

modes;  

• Sea-level altitude, flight speed range 0-200 m/s (1.25 VD, VD(dive 

speed) = 200.00 m/s, [2]); 

• All ailerons control surfaces locked; 

• Winglets tabs locked. 

• Flutter speeds were evaluated corresponding with different settings 

for the movable flap, each setting being defined by means of two 

(trade-off) parameters: 

1. Inertial distribution (to cover possible deviations from preliminary 

design figures); 

2. Actuation line stiffness distribution. 

Investigated cases mapped three different inertial distributions in combi-

nation with fifteen different stiffness distributions of the actuation line mov-

ing the flap tabs; the trade-off domain was therefore composed by forty-five 

different configurations of the flap tabs, Fig. 37. 
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Fig. 37: Trade- off analyses parameters on flap tabs 

 

The condition k=0 Nm/rad was then taken into account to simulate the failure 

(free rigid oscillation) of the tabs; the highest value was defined on the basis of 

practical considerations regarding the probability of coalescence of tabs harmon-

ics with wings modes in the flight speed range [0; 1.25] VD. 

A stability carpet plot was generated to provide a thorough overview of flut-

ter speed trends versus stiffness of flaps tabs actuation line (Fig. 38).  

From this moment on, “K” will denote the actuation line stiffness. 

 

 

Fig. 38: First trade-off Carpet Plot 
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Each curve of the carpet plot is the representation of a specific flutter mode, 

colored according with the inertial configuration it refers to.  

The yellow dotted line defines the safe domain for flutter speed according to 

CS-25, paragraph 629: if a flutter mode occurs at a speed greater than 1.25VD 

(VD=dive speed), it is aeroelastically safe.  

Among the 34 modes investigated, only five appear in the carpet plot since 

the remaining one’s exhibit flutter speed greater than 200 m/s.  

All modes corresponding to each mass configuration are present for each tab 

actuation line stiffness value, except the modes number 17, 18, not present for K 

> 60 Nm/rad.  

The most critical flutter modes – judged in such way because of their 

independence from the K values - resulted: 

 

• Mode 31: symmetric wing tip/winglet bending (Fig. 39);  

• Mode 37: symmetric outer wing torsion (Fig. 40); 

• Mode 38: anti-symmetric outer wing torsion (Fig. 41). 

 

 

Fig. 39: Flutter mode 31 - Symmetric wing tip/winglet bending 

 

MATCHING OF STRUCTURAL MODE 31 ON THE 

AERO PANELS 
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Fig. 40: Flutter Mode 37 - Symmetric outer wing torsion 

 

 

Fig. 41: Flutter Mode 38 - Anti-symmetric outer wing torsion 

By zooming in the outer flap tabs region, a typical underbalanced and un-

stable motion of the flap tabs appears evident.  

 

5.3.1.2 Flutter dynamics investigation 

Accurate analysis of modal cross participation factors into flutter modes was 

performed in order to isolate the principal modes involved in detected flutter. 

More in detail, the investigation protocol followed during this stage is set out 

below: 

 

1. Flutter speed was calculated by considering all modes as participat-

ing; 

MATCHING OF STRUCTURAL MODE 37 ON 

THE AERO PANELS 

MATCHING OF STRUCTURAL MODE 38 ON 

THE AERO PANELS 
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2. Most critical flutter modes were identified (namely, 31, 37 and 38); 

3. Participation factors were evaluated with respect to each most severe 

flutter mode described at point 2; 

4. Flutter speed was furthermore evaluated by considering the only 

modes with the highest participation factors (point 3) at the flutter 

speed of the point 1. 

5. New flutter analyses were performed excluding one by one the modes 

of point 4, until the flutter speed of point 1 was almost reached (iso-

lated flutter condition). 

Participation factors of the modes 31, 37 and 38 are depicted in Fig. 42, Fig. 

43, Fig. 44. 

 

 

Fig. 42: Participation Factors, Mode 31 [31] 
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Fig. 43: Participation factors, Mode 37, [31] 

 

Fig. 44: Participation factors, Mode 38, [31] 

Main results of the flutter dynamic investigation are shown in Fig. 45. 
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Fig. 45: Minimum modal flutter association 

By analysing the minimum flutter association of the most critical flutter 

modes, it can be concluded that the instabilities of M31, M37 and M38 are es-

sentially due to the flap tabs underbalancing which in turns leads to a critical 

coupling with the external tabs harmonics (M13 and M14), while the inner tabs 

harmonics just act as flutter supporting modes.  

This first result totally justifies the almost independence of such instabilities 

from tabs actuation line stiffness, K (as already observed), while a significant 

effect due to tabs inertial distribution is present.  

 

5.3.1.3 Massbalancing of flap tabs 

The definition of massbalancing can be given by indicating with: 

• Mi the generic mass of the mobile surface; 

• Di the distance of Mi with respect to the hinge axis (positive if lo-

cated behind the axis); 

• Mb the massbalancing; 
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• Db the distance of Mb with respect to the hinge axis. 

Under the hypothesis of absence of friction effects, 100% Degree of Balanc-

ing (DoB, in what follows) is the condition according to which the mobile surface 

returns in its original horizontal position, after a small angle deviation.  

This is possible only if the hinge axis static moment is zero: 

 

∑ 𝑀𝑖
𝑛
𝑖=1 𝐷𝑖 − 𝑀𝑏𝐷𝑏 = 0  

 

By imposing the distance Db, the massbalancing Mb can be obtained: 

 

𝑀𝑏 = 
∑ 𝑀𝑖

𝑛
𝑖=1 𝐷𝑖

𝐷𝑏
 

 

(39) 

 

This value, for definition, is associated with 100% Degree of Balancing.  

It is obviously possible to calculate massbalancing values corresponding with 

other DoB, DoB*, by multiplying Mb*DoB*. 

In this specific case of study, Table 3 shows massbalancing values obtained 

for the flap tabs by using (39).  

 

 Mi 

[kg] 

Di 

[m] 

Si 

[Kg*m] 

Stot 

[Kg*m] 

Db 

[m]  

Mb100

% [Kg] 

1st  

Flap 

Tab 

0.83975 0.09956 0.08361 0.20451 0.10000 2.04422 

0.81678 0.09955 0.08131 

0.39775 0.09955 0.03959 

2nd  

Flap 

Tab 

0.39775 0.10004 0.03979 0.22545 0.10000 2.25348 

0.76343 0.10004 0.07668 

0.73887 0.09996 0.07362 

0.35216 0.10042 0.03536 

3rd  

Flap 

Tab 

0.35216 0.09992 0.03519 0.17056 0.10000 1.70487 

0.67884 0.09991 0.06782 

0.678884 0.09951 0.06755 

Table 3: Massbalancing values of morphing flap tabs 
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The mathematical formulation of the massbalancing into the aeroelastic sta-

bility equation is described in [41]. 

Trade-off analyses were then performed by considering the massbalancing 

as a function of a decreasing degree of balancing, varying it from 100% up to the 

minimum value needed to ensure the absence of any flutter instability within the 

safety envelope.  

Under the assumption of K=150 Nm/rad as fixed value in combination with 

each of the three inertial configuration -as already described in §5.3.1- of the tabs 

mass, the minimum flutter speeds have been plotted in Fig. 46 as functions of the 

Degree of Balancing. 

 

 

Fig. 46: Minimum flutter speed as function of flap tabs degree of balancing, 

for a fixed value of tabs actuation line stiffness 

 

Fig. 46 shows that the minimum degree of balancing ensuring flutter clear-

ance over the limit imposed by the CS-25 requirements (black horizontal line) is 

equal to 30%, for the fixed value of K=150 Nm/rad. 

To understand the potential adequacy of the DoB value found equal to 30% 

even for the other values of tabs actuation line stiffness, a new sensitivity was 

performed in an inverse manner with respect to the previous one. In this case, the 

degree of balancing value was fixed, while the stiffness was considered variable 

into the range [0; 200] Nm/rad. The results are depicted in Fig. 47. 
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Fig. 47: Minimum flutter speed as function of flap tabs actuation line stiff-

ness, 30 % Degree of Balancing  

 

Fig. 47 shows a flutter within the speed certification envelope at K=200 

Nm/rad, for 30% DoB. This led to extend the range of variability of K values up 

to 500 Nm/rad, by repeating the trade-off and increasing DoB to 40%. 

Fig. 48 shows the results. 

 

 

Fig. 48: Flutter speed as function of tabs actuation line stiffness, 40% De-

gree of Balancing 
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A comparison between the results of Fig. 47 and Fig. 48 is summarized below 

in terms of minimum Degree of Balancing ensuring flutter clearance: 

 

• K < 200 Nm/rad  30% Degree of Balancing; 

• K ≥ 200 Nm/rad to K ≤ 500 Nm/rad  40% Degree of Balancing.  

This difference affects the weight, as described in Table 4: 

 

Flap Nominal Mass 

[Kg] 

56.74 

Mbal DoB 30% [Kg] 5.81 

Mnom 30% DoB 62.55 

Mbal DoB 40% [Kg] 7.75 

Mnom 40% DoB 64.49 

Table 4: Massbalancing solutions: impact on winglet weight 

Two values of degree of balancing were identified for flap tabs as design 

solution to avoid flutter; aiming to minimize the flap weight, the design solution 

involving 30% of DoB was judged as the best one to assure the aeroelastic safety 

of the morphing flap.  

 

5.3.2 Trade-off flutter analysis on winglet tabs combined with flap tabs 

5.3.2.1 Carpet plot Generation 

To study the aeroelastic impact of the morphing winglets tabs at aircraft level 

in combination with flaps tabs, a further aeroelastic stability assessment was car-

ried out under the following assumptions: 

• PK-continuation method with GAF rationalization was 

adopted for the evaluation of modal frequencies and damping trends 

as a function of the fight speed (V-g plots);   

• Frequency range for the theoretical modes association: [0; 

30] Hz; 

• Modal damping: 0.015 for all the elastic modes; 

• Sea-level altitude;  

• Flight speed: [0; 1.25 VD], where VD is the dive speed of 

the TP90 aircraft, equal to 160 m/s. 

• All ailerons control surfaces locked; 
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• Flap tabs unlocked; 

• Flap tabs in the worst combined conditions of inertial dis-

tribution (M80) and actuation line stiffness (K=150 Nm/rad). 

Flutter speeds were evaluated for different inertial configurations of the mov-

able surfaces of the winglets.  

Trade-off parameters were considered in combination with each other: 

• Inertial distribution: 

• Nominal mass, Mw_nominal; 

• 30% mass increase, Mnominal*1.3 (Mw_30); 

• Stiffness distribution 

 For each inertial distribution, a wide variation range was considered for 

winglet actuation line stiffness: [0; 1500] Nm/rad. Obtained results are depicted 

in Fig. 49. 

 

 

Fig. 49: Trade-off analysis on winglet tabs combined with flap tabs in 

locked commands, carpet plot [31] 

The main points of the carpet plot shown in Fig. 49 are listed below: 

• The flutters of Mode 24 and 27 respectively disappear for 

K>200 and K>400 Nm/rad. 

• The most critical modes belonging to both inertial config-

urations and for each K value are: 

1. Mode 31: anti-symmetric wing tip torsion/winglet bending 

(Fig. 50); 

2. Mode 32: symmetric outer wing torsion/winglet bending 

(Fig. 51); 
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3. Mode 33: anti-symmetric outer wing torsion/winglet bend-

ing (Fig. 52). 

 

 

Fig. 50: Mode 31: anti-symmetric wing tip torsion/winglet bending  

 

Fig. 51: Mode 32: Symmetric outer wing torsion/winglet bending  

 

MATCHING OF STRUCTURAL MODE 31 ON THE 

AERO PANELS 

MATCHING OF STRUCTURAL MODE 32 ON THE 

AERO PANELS 
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Fig. 52: Mode 33: Anti-symmetric outer wing torsion/winglet bending  

 

By analyzing the previous figures, it appears evident the fact that the flutter 

modes strictly involve the winglet area.  

Moreover, two kinds of flutter occurred for all the cases of study: 

• Bell-shaped flutter; 

• Sharp flutter. 

Both flutter types appeared in all investigated cases, but at different speeds. 

In Fig. 53, the trend of the resulting modes frequencies and damping versus flight 

speed are plotted with reference to a generic case of investigation for which both 

flutter types are present in the speed investigation range (K=1500 Nm/rad; 

Mw_nominal).  

 

MATCHING OF STRUCTURAL MODE 33 ON THE 

AERO PANELS 
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Fig. 53: Example of V-g plot on winglets tabs trade-off analysis, [31] 

The results show that for the most critical combinations of flap and winglet 

tabs actuation line stiffness and inertial distributions, flutter modes poorly depend 

on the value of K. As a result, proper design solutions of the winglets tabs were 

studied to avoid any flutter instability within the aircraft certification envelope. 

 

5.3.2.2 Flutter dynamics investigation 

Repeating the procedure as already described in §5.3.1.2, the minimum flut-

ter modal association was studied for the winglet modes 31, 32 and 33. A repre-

sentation of the corresponding participation factors is reported in Fig. 54, Fig. 55 

and Fig. 56 for K=400 Nm/rad and nominal value of the winglet tabs mass. 
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Fig. 54: Mode 31, Participation factors 

 

 

Fig. 55: Mode 32, Participation factors 

 

 

Fig. 56: M33, Participation factors 

Main results of the flutter dynamics investigation are shown in Fig. 57.  
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Fig. 57: Minimum modal association, winglets tabs flutter modes 

In all cases, many are the modes involved in the dynamics acting as support-

ing modes with respect to the principle ones, but among them, no tabs harmonics 

(or fundamental mode, at zero frequency) are present.  

 

The design solutions suggested to abolish this complex flutter within the 

safety envelope are described in the following sections. 

 

5.3.2.3 Massbalancing of winglets tabs 

Further flutter analyses were then carried out in correspondence of trial val-

ues of winglets tabs massbalancing. Analyses assumptions are listed below 

([31]): 

• Two inertial configurations considered for the winglets: nominal 

mass (Mw_nom) and 30% mass increase (Mw_30);  

• Tabs actuation line stiffness , K = 150 Nm/rad; 

• Decreasing values of Degree of Balancing considered from 100% up 

to 10%, (underbalancing). 
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A modular approach was followed by studying the effect of massbalancing 

on B2 tabs only (Fig. 28) and then on B1 and B2 tabs at the same time.  

In any case positive effects in terms of flutter behavior were reached, as de-

picted in Fig. 58. 

 

 

Fig. 58: Minimum flutter speed VS winglet tabs degree of balancing in two 

inertial configurations (nominal and 30% increase of the nominal mass) 

 

For this reason, other analyses were performed by changing the trade-off pa-

rameters (except the inertial configurations) as follows: 

• increasing the values of tabs actuation line stiffness, K=400 Nm/rad; 

• overbalancing the tabs (DoB>100%). 

Obtained results are shown in Fig. 59. 
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Fig. 59: Minimum flutter speed as function of tabs degree of balancing. 

Fig. 59 presents the speed of the flutter modes (minimum value among the 

several occurring) as a function of winglets tabs degree of balancing, in case of 

massbalancing of both B1 and B2, and B2 tabs only. The orange point, corre-

sponding with the latter condition, is unique since it returns a flutter within the 

speed certification envelope, although a DoB equal to 150%. On the other hand, 

the blue curve interpolates analyses results dealing with the case of B1 and B2 

tabs concomitant massbalancing: it appears evident how the winglets tabs mini-

mum degree of balancing required to expel flutter is equal to 130%. 

This solution involves an unavoidable winglet mass increase with respect to 

its nominal mass value, as depicted in Table 5 

 

Mass [Kg] 

Mw_Nom 36.90 

Mw_30 47.97 

Mbal_130% 20.66 

Mw_30+ Mbal_130% 68.63 

Table 5: Winglet weight in case of 130% DoB 

5.3.2.4 Wing/Winglet plug stiffness increment 

A stiffness increment was adopted with respect to the interface plug between 

the wing and the winglet to prevent any flutter instabilities. This operation was 
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numerically handled by introducing a gain factor (F DMIK, in what follows) to 

the stiffness value of the plug.  

For that purpose, a trade-off analysis was firstly performed to evaluate the F 

DMIK value - within the range [5; 100] - ensuring the worst case of flutter, for 

the sake of conservativism. Fig. 60. 

 

Fig. 60: Flutter speed trend as a function of plug stiffness gain factor 

 

A new sensitivity was then performed to study the combined effect of the 

plug stiffness increment (F DMIK = 5) and winglet tabs massbalancing (B2 only 

and B1+B2 at the same time). Obtained results are presented in Fig. 61. 
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Fig. 61: Flutter speed trend as a function of tabs massbalancing, F DMIK 

= 5 

Fig. 61 shows a decreasing trend of the flutter speed corresponding with in-

creasing values of winglets tabs massbalancing.  

Winglet augmented mass - due to the presence of massbalancing – involves 

negative flutter behavior; this led to perform further trade-off analyses, under the 

assumptions: 

• no tabs massbalancing; 

• Gain factor of the plug stiffness (F DMIK): decreasing values  from 

5 to 2; 

• Gain factor of the tabs mass (F): decreasing values, in order to evaluate 

the minimum one to ensure flutter speed out of the speed certification 

envelope condition.  

Fig. 62 and Fig. 63 collect the results obtained. 
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Fig. 62: Winglets tabs mass gain factor as function of flutter speed, with 

plug stiffness gain factor equal to 5 

 

 

Fig. 63: Winglets tabs mass gain factor as function of flutter speed, with 

plug stiffness gain factor equal to 2 

More in detail, trade-off results of Fig. 62 allowed for understanding flutter 

behavior improvement due to decreasing values of tabs mass. Nevertheless, no 

flutter speed resulted out of the speed certification envelope in this case.  
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Positive results were instead achieved by adopting plug stiffness gain factor 

(F DMIK) equal to 2 and winglets tabs mass gain factor (F) equal to 0.70 (Fig. 

63): this led to a flutter speed greater than 200 m/s (1.25 Vdive). 

This design solution, identified to guarantee flutter clearance, entails a wing-

let mass saving of 2.58 Kg, as described in Table 6.  

 

Mass  [Kg] 

M nominal winglet 36.90 

M nominal tabs 8.60 

M tabs x 0.7 6.02 

Mwinglet_no_Tabs =  

Mnominal wlet-Mtabs 

28.3 

Mwinglet_no_Tabs + 

MtabsX0.7 

34.32 

Table 6: Winglet weight in case of doublet stiffness of plug and 30% saving of 

tabs mass 

5.3.2.5 Generalization of the results 

For a generalization of the results, it is helpful to compare the following con-

ditions in terms of outcomes: 

 

• Condition A 

➢ No plug stiffness gain factor;  

➢ Tabs mass 100%; 

➢ Actuation line stiffness, K = 1500 Nm/rad; 

➢ Winglet inertial configuration listed in Table 7. 

 

M_WLET No-

minal [Kg] 

Flutter speed 

[m/s] 

Mode ID 

 

36.90 

 

120 

 

31, 32 

Table 7: Flutter Results of Condition A 

In this condition, flutter dynamics mainly involves the winglets (Fig. 64). 

Flutter instabilities of modes 31 and 32, occurring at a speed equal to 120.0 m/s 
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(Fig. 65), are sustained by supporting modes not associated with the winglet tabs; 

for this reason tabs massbalancing has no positive effect on flutter behavior. 

 

Fig. 64: Winglet bending mode (M32), in case of no plug stiffness gain fac-

tor and 100% tabs mass 

MATCHING OF STRUCTURAL MODE 32 ON THE 

AERO PANELS 



100 

 

 

Fig. 65: V-g plot in the condition A 

 

• Condition B 

➢ Plug stiffness gain factor = 2;  

➢ Tabs mass 70%; 

➢ Actuation line stiffness, K = 1500 Nm/rad; 

➢ Winglets inertial configuration shown in Table 8. 

M_WLET 

Nominal + tabs 

mass X 70% 

[Kg] 

Flutter speed 

 

[m/s] 

Mode ID 

34.32 205.40 35 

Table 8: Flutter Results of Condition B 
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In this condition, flutter dynamics involves the wing (Fig. 66). M35 is a sym-

metric torsional-bending flutter mode in association with flap tabs harmonics, 

occurring at 205.40 m/s (Fig. 67). Tabs mass reduction (F=70%) has beneficial 

effects on flutter dynamics, since the coalescence between winglets tabs harmon-

ics and wing modes occurs above 1.25 Vdive. 

 

 

Fig. 66: – Simmetric wing torsional-bending mode in case of F DMIK=2 

and wlet tabs mass 70% 

 

MATCHING OF STRUCTURAL MODE 35 ON THE 

AERO PANELS 
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Fig. 67: V-g plot in the condition B 

 

In light of all the previous considerations, winglet nominal configuration 

(condition B) was identified in terms of aeroelastic safety: 

• Tabs actuation line stiffness: 1500 Nm/rad; 

• Winglet mass baseline value; 

• Tabs mass 70%. 

• Plug stiffness Gain Factor: 2 

Obtained results showed that the combination of morphing flaps and winglets 

is not responsible for any flutter instability; moreover, compliance with the air-

worthiness requirements for aeroelastic stability provided by CS-25 was demon-

strated. 
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5.3.3 Free-Play Analyses Results, Harmonic Balance Method 

This section describes flutter analyses results obtained in case of morphing 

winglet actuators free-play by using the harmonic balance method (see section 

4.5). 

Tabs actuators non-linearity has been described through a bi-linear stiffness 

law; the trend of the deflection θ as a function of the applied moment M(θ) is 

shown in Fig. 68. 

Corresponding with two characteristic values of tabs actuation stiffness (Fig. 

68): 

 

1. K1 = 0 Nm/rad, if –1°<θ<+1°; 

2. K2 = 1500 Nm/rad, if θ<-1° and θ>+1°, 

 

 

Fig. 68: Load-Deflection non-linear law 

A sinusoidal signal was then introduced, x=Asin(2πffluttert), where A is the 

oscillation amplitude to change and fflutter is the flutter mode frequency. It is im-

portant to underline how the equivalent stiffness is independent from the fre-

quency.  
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By referring to the morphing winglet nominal configuration, the flutter mode 

resulted M35 (see Table 8), which frequency is fM35=21.767 Hz.  

This value was used to calculate the period of the oscillation imposed to the 

tabs. 

Based on the relation shown in Fig. 68, different calculations corresponding 

with as many oscillation amplitude values were performed. Gained results are 

shown in Table 9and in Fig. 69. 

 

A [°] K eq [Nm/rad] 

1 0,0000 

2 1408,4189 

3 1474,4108 

4 1487,8081 

5 1493,3661 

Table 9: Equivalent stiffness of winglet tabs actuation line 

 

Fig. 69: Winglet tabs actuators equivalent stiffness Vs tabs oscillation am-

plitude  

A flutter analysis was accomplished for each equivalent stiffness value de-

picted in Fig. 69. All obtained results are collected in Fig. 70. 
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Fig. 70: Flutter analyses results in case of tabs actuators free-play 

Interesting results emerge: even in case of tabs actuators free-play, M35 is 

an aeroelastically “safe mode”, since it exhibits all speed values are greater than 

1.25 Vdive (200 m/s). 

Although the presence of free-play, these results furthermore confirm an al-

most independence of the flutter speed from the actuation line stiffness values. 
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6 Morphing Wing – Safety and Reliability issues 

 

6.1 Introduction 

A functional analysis is a prerequisite to address safety and certification as-

pects of aircraft equipped with morphing systems. In particular, it is fundamental 

to identify firstly the aircraft functions which can be enhanced by the use of such 

devices and the corresponding aircraft flight segments. After that, all the potential 

failures of the morphing kinematics shall be evaluated by demonstrating that they 

do not compromise any aircraft general function and capability.  

Despite the growing advances in morphing wing technologies, morphing de-

vices continue to be perceived as highly difficult to certify by the aviation indus-

try. Due to the augmented DOF, morphing wings are highly prone to aeroelastic 

instabilities with respect to conventional wing architectures. However, beyond 

structural or any other consideration of airworthiness nature, the novel aircraft 

functions enabled by morphing systems imposes a thorough examination of the 

associated risks which may impact on aircraft flight capabilities and crew work-

load. However, as investigated in this work, for systems related to structural load 

alleviation and control functions, the safety classification and relevant safety fig-

ures shall also be managed as a structural design driver. This is because a safety 

factor (SF) is recommended for those failures whose probability of occurrence is 

higher than 10-5 per flight hour.  

The safety properties of morphing devices are established primarily by anal-

ysis. The potential failures of electromechanically actuated morphing devices, for 

instance, may range from jamming to loss of power supplies and control lanes, 

thus resulting in specific technical requirements that can be traced to the top-level 

aircraft functions. An example of a fault tree of an electromechanical actuator is 

given in Fig. 71. The extensive use of EMA actuation in the most advanced ex-

amples of morphing devices confirms the sensitivity of this issue given the safety 

impact of morphing wing devices on aircraft operation.  

This chapter provides general guidelines for safety-driven design of morph-

ing devices. The study begins with a qualitative analysis of the morphing wing 

functions at subsystem level to identify potential design faults, maintenance and 

crew workload impact, as well as external environment risks. The severity of the 

hazards are determined and ranked in specific classes, indicative of the maximum 

tolerable probability of occurrence for a specific event, resulting in safety design 

objectives. A list of morphing system-level functional and safety objectives is 
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then proposed. These objectives feed the requirements definition process, thus 

assigning reliable and verifiable constraints to the morphing systems design. 

Some fault trees for specific failure cases are also detailed. The proposed analyses 

establish the benefits and needs for a morphing wing incorporating a morphing 

flap and an adaptive winglet. Nevertheless, such a recommended approach is 

likely to be applicable to a wider variety of morphing devices installed in aircraft 

with different adaptive surfaces or functions. 

 

Fig. 71: Example of electromechanical Actuator fault tree with failure rates 

per hour  

As for all the other aircraft control surfaces and systems, the real challenge 

of this work is to show whether the safety targets are met until the single system 

is individually assessed and the interaction between conventional and adaptive 

systems namely performing different functions are collectively evaluated at A/C 

system level. Such predictions are supported by aeroelastic simulations aiming at 

demonstrating the aeroelastic impact of potential failures involving critical sub-

components of the morphing architectures to preserve the essential features of 

safety. 

 

6.2 Safety Analysis: general approach 

According to the EASA CS-25 regulations applicable to large commercial 

aircraft, safety assessments of aircraft devices consist of three major phases, i.e. 

Fault and Hazard Assessment (FHA), Preliminary System Safety Assessment 

(PSSA), System Safety Assessment (SSA), which in turn consider the interaction 

among aircraft systems, software and hardware components, and all the inter-

faces including pilot and crew behavior. In this logic, system functions are firstly 

qualitatively examined to identify potential faults along with external environ-
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mental risks. The severity of these hazards is thus determined and classified, in-

dicative of the maximum tolerable probability of occurrence. After that, the link 

between faults at sub-systems level and their end-effects are evaluated in the 

FHA phase, to identify the actual system constraints throughout the system life-

time. Each hazard is quantitatively examined in a top/down fashion, from the 

events to their causes, until failures of the basic components are categorized. On 

the basis of the probabilities assigned to the failure events of the elementary com-

ponents, the probability of occurrence of the top event is calculated. Such a quan-

titative analysis is usually achieved with the Fault Tree (FT) technique.  

Due to the novelty of the morphing wing technology, the literature on the 

safety effects of morphing devices is very poor. However, some general concepts 

relating the aircraft functions to the capabilities of a morphing winglet, for in-

stance, allows identifying such a device as a “Safety Critical” structure. This 

means that any loss of the system control could result in a “catastrophic” event 

for the aircraft due to the potential risks for the aircraft wing structure. In this 

context, flutter is probably one of the major risks which shall be managed in the 

design process by considering either free wheeling of the morphing tabs or jam-

ming of the actuation systems. It follows that, from the fault hazard assessment 

standpoint, the probability of its occurrence must be proved below the threshold 

value of <10-9 per flight hour.  

The main drivers in the safety-driven design of morphing systems are the 

already-mentioned CS-25 regulations as well as the Aerospace Recommended 

Practices SAE ARP 4754a ([45]) and SAE ARP4761 ([46]). The CS-25 safety 

regulation requires the general safety assessment process shown in Fig. 72. 
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Fig. 72: CS-25 safety assessment process overview 

 

A logical and acceptable inverse relationship must exist between the Average 

Probability per Flight Hour and the severity of Failure Condition effects, as 

shown in Fig. 73. Catastrophic failures shall be extremely improbable and shall 

not result from a single failure, [2]. The upper limit for the average probability 

per flight hour for Catastrophic Failure Conditions is 10-9, which establishes an 

approximate probability value for the term “Extremely Improbable”. On the other 

hand, failure conditions having less severe effects could be relatively more likely 

to occur, with upper average probability limits equal to 10-7 and 10-5 per flight 

hour for Hazardous and Major, respectively. 
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Fig. 73: Relationship between Probability and Severity of Failure Condi-

tion Effects, [2] 

As part of the safety-driven design flow, after safety requirements have been 

issues through the Aircraft level Functional Hazard Assessment, they need to 

flowdown to the next level (the morphing wing system FHA, referred to as “Sys-

tem’s FHA”), and subsequently to lower levels, such us the morphing compo-

nents FHA. If the aircraft is still generic, a generic set of aircraft level functions 

can be arbitrarily chosen to define high-level links between the enhanced morph-

ing system functions and the standard aircraft functions by identifying, at the 

same time, the criticalities associated with the failure conditions.  

The “System Safety Assessment (SSA)” regards a quantitative analysis of 

the Fault Trees generated for those potential failures with hazardous or cata-

strophic consequences. The reliability data of the system components are then 

necessary to calculate the basic events probability figures and may be typically 

requested to the components suppliers (commonly required by contract and by 

equipment specification) prior to the system integration and assembly phases.  

 

The following paragraphs elaborate the safety process assessment approach 

described above by focusing on two morphing systems: 

 

• Morphing Flap 

• Adaptive Winglet  
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6.2.1 Functional Hazard Assessment - FHA 

 

Functional hazard assessment is a safety analysis at system/aircraft func-

tional level. As reported on the already-mentioned SAE ARP 4754a [45], the 

FHA “examines aircraft and system functions to identify potential functional fail-

ures and classifies the hazards associated with specific Failure Conditions. The 

FHA is developed early in the development process and is updated as new func-

tions or Failure Conditions are identified. Thus, the FHA is a living document 

throughout the design development cycle”. The functional failures are thus iden-

tified with the associated severity. Then, qualitative requirements are set in this 

analysis (redundancy, Functional Design Assurance Level (FDAL), specific 

monitoring, etc.).  

When dealing with a morphing device, the following failure scenarios are 

very likely to occur: 

• Total loss of function, 

• Partial loss of function, 

• Erroneous provision of function, and 

• Inadvertent provision of function 

 

Within the total loss of function, we may include very dangerous conditions 

such as uncommanded/undamped free floating of the moveable surface or de-

tected/undetected runaway of the morphing surface involving mainly the actua-

tors.  

The hazards associated with specific failure conditions are classified accord-

ing to the safety effect, as follows [45]: 

 

NO SAFETY EFFECT (NSE) “Failure Conditions that would have no effect 

on safety; for example, Failure Conditions that would not affect the operational 

capability of the aeroplane or increase crew workload”. 

MINOR (MIN) “Failure Conditions which would not significantly reduce 

aeroplane safety, and which involve crew actions that are well within their capa-

bilities. Minor Failure Conditions may include, for example, a slight reduction in 

safety margins or functional capabilities, a slight increase in crew workload, such 

as routine flight plan changes, or some physical discomfort to passengers or cabin 

crew”. 
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MAJOR (MAJ) “Failure Conditions which would reduce the capability of 

the aeroplane or the ability of the crew to cope with adverse operating conditions 

to the extent that there would be, for example, a significant reduction in safety 

margins or functional capabilities, a significant increase in crew workload or in 

conditions impairing crew efficiency, or discomfort to the flight crew, or physical 

distress to passengers or cabin crew, possibly including injuries”. 

HAZARDOUS (HAZ) “Failure Conditions, which would reduce the capa-

bility of the aeroplane or the ability of the crew to cope with adverse operating, 

conditions to the extent that there would be: (i) A large reduction in safety mar-

gins or functional capabilities; (ii) Physical distress or excessive workload such 

that the flight crew cannot be relied upon to perform their tasks accurately or 

completely; or (iii) Serious or fatal injury to a relatively small number of the 

occupants other than the flight crew”. 

CATASTROPHIC (CAT) “Failure Conditions, which would result in multi-

ple fatalities, usually with the loss of the aeroplane. (Note: A “Catastrophic” Fail-

ure Condition was defined in previous versions of the rule and the advisory ma-

terial as a Failure Condition which would prevent continued safe flight and land-

ing.)”.  

Fig. 74 shows how the safety effects on flight crew, passengers, and aircraft 

are classified in terms of severity. It comes up that large reduction in aircraft 

functional capabilities or safety margins is classified as HAZ whereas CAT 

events result in hull loss. 

 



113 

 

 

Fig. 74: Required probability figures versus safety classification 

 

6.2.2 System Safety Assessment—Fault Tree Analysis 

This section deals with the basic principle of the fault tree technique used by 

in the preliminary system safety assessment activity (PSSA). Fault tree analysis 

(FTA) allows checking that the qualitative and quantitative requirements associ-

ated to each Failure Condition and expressed in the FHAs are met. FCs classified 

as NSE (NO SAFETY EFFECT), MIN (MINOR) and MAJ (MAJOR) do no need 

to be modelled by a fault tree (FT), according to the CS25 book 2 (Means Of 

Compliance—[2]). A detailed description of the FTA technique can be found in 

the appendix D of the “Guidelines and methods for conducting the safety assess-

ment process on civil airborne system and equipment”—ARP 4761 ([46]). 

A fault tree analysis (FTA) is a deductive failure analysis, which focuses on 

one particular undesired event (Failure Condition). A FTA is a top-down safety 

analysis technique that is applied as part of the PSSA to determine what single 

failures or combinations of failures at the lower levels (basic events) may cause 

or contribute to each Failure Condition. It uses Boolean logic gates to show the 

relationship of failure effects to failure modes. A basic event is defined as an 
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event which for one reason or another has not been further developed (the event 

does not need to be broken down to a finer level of detail in order to show that 

the system under analysis complies with applicable safety requirements). A basic 

event may be internal (system failure) or external (e.g. icing condition, fire) to 

the system under analysis and can be attributed to hardware failures/errors or 

software errors. Probability of individual failures is only assigned to the hardware 

(HW). The occurrence of software (SW) errors are probabilistic but not in the 

same sense as hardware failures. Unlike hardware failures, these probabilities 

cannot be qualified. No SW failures were thus considered in this work. The FT 

calculation produces the Minimal Cut Sets (MCS), i.e. the shortest logic and com-

bination of independent basic failures that lead to the Failure Condition. The or-

der of the MCS is the number of elements found in the MCS. Failure Conditions 

that are classified as CAT shall comply with the fail safe criteria. This means that 

no single failure shall lead to the occurrence of a CAT Failure Condition. There-

fore, MCS of order equal to 1 are not acceptable for CAT Failure Conditions. 

The hypotheses and common data used by the fault trees are recalled in the fol-

lowing paragraphs. One individual FT is generally built for each Failure Condi-

tion coming from the FHAs whose safety classification is equal or more than 

MAJOR.  

The FC is the top event of the fault tree. Its average probability of occurrence 

per flight hour (FH) is deduced from the quantification of all MCS generated by 

the calculation of the fault tree. 

 

6.2.3 Active Versus Hidden Failures 

Both active and hidden failures shall be considered in the fault tree analyses. 

Active failures are failures that can be detected by the flight crew when they oc-

cur during the current flight. For active failures, a mean flight time, T0, must be 

used in the calculation of the FC. Clean Sky 2 partners agreed to use a mean flight 

time equal to 1 h that has been considered as an appropriate value for regional 

aircraft. However, for some specific scenarios, a proper “exposure” time can be 

used in case a Failure Condition is expected to occur only in a specific flight 

phase. Hidden failures (named also latent/passive/dormant failures) are failures 

not detected by the flight crew or detected but not reported. Such failures shall 

be checked at a certain moment of the aircraft life, according to airworthiness 

requirement during periodic inspections for maintenance purpose. Safety check 

intervals or maintenance time (MT) must be considered in the calculation of the 
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FC involving hidden failures. The MT value is set based on the usual checks 

(periodic inspections) of the aircraft. The standard safety check intervals (A 

checks, B checks …) have been considered in the quantification of the FTs. An 

interval of 8000 flight hours was considered between maintenance checks, i.e. 

disassembly and inspection of all hinges for detection and elimination of all 

dormant failures. For equipment that is never inspected, we use the aircraft life-

time. This value comes from “Fatigue Loads design criteria”. MT of “60,000 h” 

was set as a standard value but a calculation with a more conservative value of 

87,600 h was considered, as reported in [47].  

 

6.2.4 On safety factor 

The structural damage tolerance and loads are out of the PSSA scope. Struc-

ture specialists in separated documents address such specific safety issues. How-

ever what is requested is to identify the systems that may exert loads on structural 

parts when failures occur as explained in the CS25.303 section “Factor of safety” 

[2]: “…Unless otherwise specified, a factor of safety of 1.5 must be applied to 

the prescribed limit load which are considered external loads on the structure” 

(Fig. 75). 

 

 

Fig. 75: Safety factor vs probability in failure condition 

6.3 Morphing devices: Aircraft level functions 

An assessment of the generic A/C level functions is proposed in [45]. The 

functions which may be namely improved by integrating morphing control sur-

faces, like morphing flap and adaptive winglet, into an aircraft wing are listed in 

Table 10. In particular, the use of these devices namely impacts on the following 

A/C level functions:  

• Drag reduction  
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• Lift adaptation 

• Gust/Load alleviation 

• Vibration and Fatigue control 

AIRCRAFT FUNCTIONS 

2. Plan, Generate and Control A/C movement 

 2.2  Generate and Control aircraft movement 

  2.2.5  Control A/C Aerodynamics Configuration 

   2.2.5.1  Control Lift and Drag 

  2.2.6  Protect Aerodynamic Control 

   2.2.6.1  To provide protection against turbulence effects 

   2.2.6.2  To provide protection against stall load 

  2.2.7  Provide aerodynamic control forces 

  2.2.8  Support Supplemental flight control 

   2.2.8.1  To provide overload protection and A/C load protection 

   2.2.8.2  To provide protection against manoeuvres effects 

  2.2.13  Generate lift 

  2.2.14  Provide aerodynamic stability 

8. Provide containment and internal support 

 8.1  Provide containment 

  8.1.2  Provide structural integrity and loads distribution 

   8.1.2.1  To provide fatigue protection 

Table 10: Aircraft functions impacted by Morphing Wing concept, [45]-

[46] 

 

A very high level description of the morphing device is generally required to 

understand the above reported functional breakdown. Overall, these systems aim 

at reducing wing drag, at controlling wing lift distribution and at reducing wing 

loads (including vibrations and fatigue loads). In addition, the wing structural 

integrity can be also taken into account due to the structural load alleviation / 

protection / control function, as envisaged in A/C function 8 “Provide contain-

ment and internal support”.  
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6.4 Morphing flap 

The morphing flap is a high lift device capable to generate extra lift during 

take-off and landing. Additionally, it is conceived to drastically enhance aircraft 

aerodynamic performance in high-lift conditions also through the mode 2 and 

mode 3. Less drag directly reduces fuel consumption. However, in case of system 

deployment in high speed conditions for drag minimization or lift adaptation, any 

possible detachment of the device or erroneous deployment may impact on air-

craft safety. More complex functions such as maneuver load alleviation or gust 

load alleviation shall be excluded for morphing flap due to the current technolog-

ical limits. The FHA of the morphing flap is shown in Table 11. 
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Morphing Flap FHA Table  

A/C  

function 
Phase 

Failure 

 Scenarios  
Failure Effects Failure condition Severity 

Justification for 

classification 

Crew de-

tection 
Recovery Action 

Design 

 parameters 

High lift 

generation   

Take Off/ 

Landing 

Flap loss of 

function: surface 

jammed 

(symmetric con-

dition, both ex-

traction failed 

Reduction of lift 

for landing 

Flap loss of func-

tion: surface 

jammed (symmet-

ric condition, both 

extraction failed) 

MAJ 
Slight increase in 

pilot’s work-load 
Warning 

Land at higher 

speed, 

limitation of sus-

tained 

wind conditions. 

Investigate ro-

bustness of lift 

reduction predic-

tions in order to 

obtain an esti-

mate for preci-

sion tolerance 

High lift 

generation   

Take Off/ 

Landing 

Flap loss of 

function: surface 

jammed 

(asymmetric 

condition, single 

extraction failed) 

Reduction of lift 

for landing. 

Reduced author-

ity on roll and 

yaw 

Asymmetic Flap 

loss of function: 

one surface 

jammed due to 

single extraction 

fail 

 

MAJ 
Slight increase in 

pilot’s work-load 
Warning 

Land at higher 

speed, limitation 

of sustained wind 

conditions. 

Reduced lateral 

authority. Con-

sider flap retrac-

tion in case of un-

favourable cross-

wind 

Investigate ro-

bustness of lift 

reduction predic-

tions in order to 

obtain an esti-

mate for preci-

sion tolerance 

Drag re-

duction 

Climb/ 

cruise 

Undetected dy-

namic motion 

Wing flutter on-

set, total loss of 

morphing flap 

structure 

Free oscillations 

of the tabs in air-

stream not de-

tected by onboard 

systems 

NSE 

Omitted (N/A) in 

force of the imple-

mented design pro-

cess. Rational anal-

ysis must prove 

that morphing flap 

device has no im-

pact on wing flut-

ter clearance also 

Large vi-

brations 

Immediate Speed 

reduction, restore 

baseline shape, de-

activate morphing. 

Demonstrate 

system device 

compliance with 

paragraph 

25.629  (Ac-

ceptable MOC). 

Add redundant 

displays moni-
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in case of uncon-

trolled motion.   

toring oscilla-

tions levels of 

the system. 

Drag  

reduction 

Climb/ 

cruise 

Loss of morph-

ing flap control 

Wing efficiency 

degradation and 

increased fuel 

consumption 

Loss of morphing 

kinematic control 
MAJ   

Reduce speed and 

avoid severe tur-

bulence in order to 

prevent ultimate 

loads, automatic 

recomputation of 

A/C block fuel 

Computation of 

aircraft fuel con-

sumption and al-

lowed range 

even in case of 

loss of control. 

Table 11: Aircraft functions impacted by Morphing Flap concept, [47] 
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On the basis of the probabilities assigned to the failure events of the basic com-

ponents, the probability of occurrence of such top evens shall be then calculated 

through the Fault Tree (FT) technique.  

 

Based on what described in the previous sections regarding the morphing flap 

architecture and all considerations about the FHA, two different failure scenarios 

have been considered in the fault tree analysis concerning the morphing flap: 

 

➢ 1st failure scenario, involving high lift generation function (morph-

ing mode 1); 

➢ 2nd failure scenario, involving undetected inadvertent morphing flap 

tab control at high speed function (morphing mode 2).  

High lift generation function was judged compromised in case of the following 

dissociated failure (right or left side): 

 

1. Deployment system failure 

2. Morphing system failure ; 

Undetected inadvertent morphing flap tab control at high-speed function was 

assessed mined in case of the following dissociated failure (right or left side): 

 

1. Loss of morphing kinematic control; 

2. Control system failure; 

3. Power-off brake failure; 

4. Inadvertent tab deflection – undetected. 

 

All listed levels were furthermore exploded according with a rational “top-

down” approach (Fig. 76 and Fig. 77). Reliability Workbench – Isograph ® ([48]) 

was used to perform the fault tree analyses, by extracting the lowest level events 

probability from literature, [49]. 
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Fig. 76: Morphing Flap High Lift Generation Fault Tree Analysis 

 

 

Fig. 77: Morphing flap Undetected Inadvertent tab control at high speed Fault 

Tree Analysis 

In Fig. 76 and Fig. 77 “undeveloped events” are depicted as diamonds by the 

FT tool. Obtained results show that  

➢ High lift generation function failure meets the required severity of 

MAJ; 

➢ Undetected inadvertent tab control at high speed meets the required 

severity of MAJ. In this case, the safety margin is lower since actuators fail-

ure events are connected by a logic OR gate, which means that they shall 

occur with mutual exclusivity to cause the identified hazard. 
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In order to demonstrate the device compliance with flutter requirements even 

in case of free floating failure, the following aeroelastic simulations were carried 

out: 

 

6.5 Morphing winglet 

The safety-driven design of an adaptive winglet implies a thorough examina-

tion of the potential hazards associated with the system faults, by taking into ac-

count the overall operating environment and functions. The use of such a device 

namely impacts on the following A/C level functions:  

• Drag reduction  

• Load alleviation 

• Fatigue improvement 

 

The potential failures identified in the preliminary FHA are the following (Ta-

ble 12: 

 

Hazard description Potential impact Performed and 

planned actions to tackle 

the hazard 

Uncontrolled dynamic 

motion 

 

 

 

Morphing tabs moving 

undamped in airflow 

(control surfaces flutter) 

which may cause struc-

tural damages of the A/C 

wing 

Flutter simulations and 

trade-off analyses on 

control surfaces 

Immediate A/C speed re-

duction  

Detected jamming of one 

adaptive winglet (either 

left or right) 

Detected drag increase 

and increased loads 

Reduce speed and avoid 

severe turbulence in or-

der to prevent ultimate 

loads, automatic recom-

putation of A/C block 

fuel 
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Undetected loss of con-

trol  of one adaptive 

winglet (either left or 

right) 

Increased fuel consump-

tion and reduced control-

lability 

Reduce speed and avoid 

severe turbulence in or-

der to prevent ultimate 

loads, automatic recom-

putation of A/C block 

fuel 

Table 12: Potential failures identified in morphing winglet  preliminary FHA 

A more detailed description of the MWL FHA is given in Table 13. 
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MWL FHA Table  

A/C  

function 
Phase 

Failure 

 Scenarios  
Failure Effects 

Failure condi-

tion 
Severity 

Justification for 

classification 

Crew detec-

tion 

Recovery 

Action 

Design 

 parameters 

Load control/ 

Load allevia-

tion  

Climb/Cruise 

and others 

Uncontrolled 

dynamic mo-

tion 

MWL tab1 

and/or tab2 mov-

ing undamped in 

airflow (control 

surfaces flutter)  

Possible struc-

tural damage 

of the A/C 

wing. 

CAT 

Loss of A/C, 

emergy pilot's 

actios such as 

immediate speed 

reduction to safe 

aircraft   

strong vibra-

tions, A/C 

uncontrolla-

ble 

Immediate 

speed re-

duction, 

emergency 

landing 

MWL flutter 

simulations and 

trade-off anal-

yses on control 

surfaces 

Load control/ 

Load allevia-

tion  

Climb/Cruise 

and others 

Detected jam of 

one MWL (ei-

ther left or right) 

Uncontrolled 

MWL static tab1 

and/or tab2 de-

flection on one 

side; increased 

drag and/or in-

creased loads 

Detected drag 

increase and 

increased 

loads 

MAJ 

Physical discom-

fort for passen-

gers, pilot’s 

workload 

slightly in-

creased, aircraft 

structure is 

seized for jam 

according to CS-

25  

Warning 

Reduce 

speed and 

avoid severe 

turbulence 

in order to 

prevent ulti-

mate loads, 

automatic 

recomputa-

tion of A/C 

block fuel 

Sizing loads 

shall include 

jamming con-

ditions  

Load control/ 

Load allevia-

tion  

Climb/Cruise 

and others 

Undetected Run-

away of left 

AND right 

MWLs 

Uncontrolled de-

flection of both 

surfaces causing 

a significant drag 

increase and air-

craft perfor-

mance reduction. 

A large reduction 

Significant 

drag increase 

and aircraft 

performance 

reduction 

HAZ 

Significant to 

excessive in-

crease in pilot’s 

workload 

Increased 

fuel con-

sumption 

and reduced 

controllabil-

ity 

Emergency 

landing  

Not further in-

vestigated be-

cause fault tree 

shows very low 

probability 
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in safety mar-

gins. 

Load control/ 

Load allevia-

tion  

Climb/Cruise 

and others 

Undetected inac-

curate deflection 

of the tab  

Inaccurate de-

flection of the 

tab, efficiency 

degradation 

Degraded A/C 

performance 
MAJ 

Limited increase 

in pilot's work-

load 

Increased 

fuel consu-

mption  

Automatic 

recomputa-

tion of A/C 

block fuel 

Investigate ro-

bustness of 

drag and loads 

reduction in or-

der to obtain an 

estimate for 

precision toler-

ance 

Table 13: Aircraft functions impacted by Morphing Winglet concept 
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The “Actuator runaway” refers to the case where the actuator results in free 

floating or excessive backlash. This event may occur when either the actuator is 

mechanically detached from the surface or it has lost its functionality or moves in 

an incorrect position.   

Each row is a failure scenario, and the columns are dedicated to the morphing 

winglet device to identify the associated failure condition, severity, justification for 

classification, crew detection, recovery action and design parameters. In this way, 

it is possible to easily check the coherence of the safety classification and the com-

pleteness of the analysis.  

The first row of the Table 13 deals with a failure scenario developed in terms 

of FHA and also verified in the integrated safety aeroelastic analysis (described in 

the following § 6.6). All other rows, instead, regard failure scenarios not related to 

the aeroelastic behavior; for this reason, they were only mentioned. 

Basically, the morphing winglet can impact load control/load alleviation air-

craft function. The failure scenario investigated is the uncontrolled dynamic motion 

of the left OR right morphing winglet.  

For each side, the “main actors” of the latter event identified are: 

1. Kinematic rupture of upper tabs; 

2. Kinematic rupture of lower tabs. 

Fig. 78 shows the fault tree developed only for the kinematic rupture of the 

upper tabs, identifying the lower tabs one as “undeveloped event” with the same 

failure rate. The further explosion of the gates involved occurs by OR logic, taking 

into account the potential loss of the actuator connection, the rupture of three hinges 

along the first hinge line and the rupture of three hinges/links of the morphing kin-

ematics along the second hinge line. 
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Fig. 78: Morphing winglet - Uncontrolled dynamic motion (left or right) 

Fault Tree Analysis 

 

Moreover, for the sake of completeness, the destruction of the wing was con-

sidered as top event of a new fault tree analysis (Fig. 79) aiming to verify its com-

pliance with the catastrophic target (Failure probability<10-9).  

 

 

Fig. 79: Destruction of wing FTA 
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In Fig. 79, the same failure rate was assigned to both uncontrolled dynamic 

motion of right and left events, linked each other by an OR logic gate. The top event 

results with a failure rate of the order of 10-8: this outcome reveals a light incom-

pliance with respect to the CAT target (10-9), to overcome which the use of proper 

damping devices on actuators or between consecutive tabs is highly suggested.  

 

6.6 Integrated Safety Analyses 

Referring to the winglet baseline configuration depicted in Fig. 80 , identified 

as “Condition B” in section 5.3.2.5, several flutter cases were analyzed taking into 

account failure scenarios described in Table 14:  

 

 

Fig. 80: LH winglet tabs actuators and gear ratio DMIG scheme, Baseline config-

uration 

 

 K lower_tab K upper_tab Link lower_tab Link upper_tab 

1) Nominal value, 

1500 Nm/rad 

Nominal value, 

1500 Nm/rad 

Operative Failure 

2) Nominal value, Nominal value, Failure Operative 

Case 150 – K: 1500 Nm/rad; MwNom; Sea level altitude; Modes up to 30 Hz; 

Modal damping: 0.015; F DMIK= 2; Mtabsx70%, BASELINE CONF. 
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1500 Nm/rad 1500 Nm/rad 

3) Nominal value, 

1500 Nm/rad 

Failure Operative Operative 

4) Failure Nominal value, 

1500 Nm/rad 

Operative Operative 

5) Nominal value, 

1500 Nm/rad 

Failure Operative Failure 

6) Failure Nominal value, 

1500 Nm/rad 

Failure Operative 

7) Nominal value, 

1500 Nm/rad 

Failure Failure Operative 

8) Failure Nominal value, 

1500 Nm/rad 

Operative Failure 

Table 14: Failure scenarios investigated for morphing winglet 

The behavior prediction in failure cases was performed in according to FHA 

(Fault and Hazard Analysis) specifications. 

 

Following figures collect the trends of modes frequencies and damping versus 

speed, evaluated for the aforementioned eight cases of failure.  

 

 

Fig. 81: CASE 1 – LH upper link isolated failure 

 

Case 150 – K: 1500 Nm/rad; MwNom; Sea level altitude; Modes up to 30 Hz; 

Modal damping: 0.015; F DMIK= 2; Mtabsx70%, LH UPPER LINK FAILURE 
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Fig. 82: CASE 2 – LH lower link isolated failure 

 

 

Fig. 83: CASE 3: LH upper tab actuator isolated failure 

Case 150 – K: 1500 Nm/rad; MwNom; Sea level altitude; Modes up to 30 Hz; Modal damping: 

0.015; F DMIK= 2; Mtabsx70%, LH LOWER LINK FAILURE 

SPEED [TAS (m/s)] 

Case 150 – K: 1500 Nm/rad; MwNom; Sea level altitude; Modes up to 30 Hz; Modal damping: 0.015; F DMIK= 2; Mtabsx70%, LH 

UPPER ACT. FAILURE 
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Fig. 84: CASE 4 - LH lower tab actuator isolated failure 

 

Case 150 – K: 1500 Nm/rad; MwNom; Sea level altitude; Modes up to 30 Hz; Modal damping: 0.015; F DMIK= 2; Mtabsx70%, LH 

LOWER ACT. FAILURE 
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Fig. 85: CASE 5 – LH upper actuator and link combined failure 

 

 

Fig. 86: CASE 6 – LH lower actuator and link combined failure 

Case 150 – K: 1500 Nm/rad; MwNom; Sea level altitude; Modes up to 30 Hz; Modal damping: 0.015; F DMIK= 2; Mtabsx70%, LH 

UPPER ACT. FAILURE 

Case 150 – K: 1500 Nm/rad; MwNom; Sea level altitude; Modes up to 30 Hz; Modal damping: 0.015; F DMIK= 2; Mtabsx70%, LH 

LOWER ACT. & LINK FAILURE 
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Fig. 87: CASE 7 – LH upper actuator and lower link combined failure 

 

Case 150 – K: 1500 Nm/rad; MwNom; Sea level altitude; Modes up to 30 Hz; Modal damping: 0.015; F DMIK= 2; Mtabsx70%, LH 

UPPER ACT. & LINK FAILURE 
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Fig. 88: CASE 8 – LH lower tab and upper link combined failure 

 

All flutter analyses informations are summarized in Table 15. 

 

CASE K lower tab K upper tab Lower tab link Upper tab link vflutter [m/s] fflutter [Hz ] 

1 Nominal Nominal Operative Failure 89,842 25,717 

2 Nominal Nominal Failure Operative 92,517 22,922 

3 Nominal Failure Operative Operative 203,819 21,718 

4 Failure Nominal Operative Operative 208,03 21,831 

5 Nominal Failure Operative Failure 6,886 1,919 

6 Failure Nominal Failure Operative 27,541 1,587 

7 Nominal Failure Failure Operative 92,58 22,92 

8 Failure Nominal Operative Failure 89,944 25,711 

Table 15: Flutter analyses results in failure scenarios investigated for morphing 

winglet 

What emerges from these results are the following points: 

• The isolated link rupture (cases 1 and 2) is more critical than the 

isolated actuator loss (cases 3 and 4); 

Case 150 – K: 1500 Nm/rad; MwNom; Sea level altitude; Modes up to 30 Hz; Modal damping: 0.015; F DMIK= 2; Mtabsx70%, 

LH LOWER ACT. & UPPER LINK FAILURE 
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• Upper link rupture (case 1) is more critical than the lower one (case 

2); 

• Actuator and link combined rupture, both belonging to upper tabs or 

lower tabs (cases 5 and 6), is the most critical event possible among the ones 

analyzed.  

• Lower (upper) actuator loss, in combination with upper (lower) link 

rupture is a less critical event, if compared with the ones described in cases 

five and six. 

• The only aeroelastically safe events are cases 3 and 4. 

The use of damping on actuators or on tabs is highly recommended for a reas-

sessment in compliance with the FHA severity.  
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7 Conclusions and Future Works 

This thesis provides an extended aeroelastic assessment of two morphing wing 

devices, flap and winglet, both integrated into a 90-seat turboprop (TP90)regional 

transportation aircraft.  

Experience teaches that due to the augmented Degree Of Freedoms (DOF), 

morphing wings are more prone to aeroelastic instabilities than more conventional 

architectures integrating passive counterparts. Non-classical effects may arise in 

terms of flutter-instabilities due to the unconventional systems arrangement and 

their mutual interaction, especially in malfunctioning or failure conditions. 

This work followed an incremental criterion of problems to face; for this rea-

son, it was divided into five stages: 

1. In order to perform flutter analyses, the A/C aeroelastic model was properly 

generated. Rational approaches were adopted in terms of structural -stiff-

ness and inertial- properties extraction by preliminary Finite Elements 

Models, referring to a stick-equivalent representation. Doublet Lattice 

Method (DLM) was used to develop the A/C aerodynamic grid by means 

of elementary units, called boxes. Superficial spline functions were then 

adopted to interpolate modal displacements at the center of each aerody-

namic box.  

2. A first campaign of trade-off analysis was performed on flap tabs, by con-

sidering the winglet at the loop 0 of the preliminary design configuration. 

Combined variations were considered for flap tabs inertial and actuators 

stiffness parameters. Obtained results showed the presence of several flutter 

modes occurring at speeds lower than 1.25Vdive (200 m/s). The most critical 

flutter modes were analyzed in terms of modal shapes; tabs mass-balancing 

was identified as the best design solution to avoid the flutter.  

3. A second campaign of trade-off analyses was carried out on winglet tabs, 

while flap tabs were maintained at locked commands and  for them the in-

ertial and stiffness configurations providing the lowest (and  not critical) 

flutter speeds were considered. Also in this case, inertial and stiffness pa-

rameters of the actuators were both made to vary .Most critical flutter 

modes were identified and two design solutions were consequently sug-

gested for ensuring flutter clearance: 

• Winglet tabs over-balancing; 

• 100% increase of the stiffness of the interface plug between 

wing/winglet  

By comparing such solutions in terms of weight, the second one 

results the most convenient (less winglet mass) and, for this reason, 
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it was considered as the nominal configuration for the loop 1 of the 

preliminary design. 

4. Further flutter analyses were carried out by simulating winglet actuators 

free-play. For that purpose, harmonic balance method was adopted to 

model actuators equivalent stiffness from a bi-linear law. Flutter speed re-

sulted out of the speed certification envelope in all the investigated cases. 

5. Fault tree analyses were performed on morphing flap and winglet as iso-

lated devices to quantify the probability of particular failure scenarios and 

to verify their eventual compliance with the airworthiness requirements. 

Such studies drove the combined aeroelastic assessments by considering 

several failure cases (isolated or combined link/actuator rupture). Gained 

results showed that actuator failure is more critical than link rupture, and 

the aeroelastic instability can be overcome by using proper damping de-

vices.  

This activity shows the importance of aeroelastic trade-off analyses since the 

early stages of the design process to properly size morphing systems, including kin-

ematics, masses and distributed stiffness of the morphing surfaces. 

In a multidisciplinary framework involving aerodynamics, structures, actuation 

architectures and control logics, aeroelastic instabilities analyses shall be integrated 

in the design loop to maximize the critical speeds of flutter, predict divergence, and 

control reversal of the morphing surfaces. The idea herein described leads the way 

to further researches aimed at enhancing the TRL of a morphing wing concept. In 

this regard, future steps may be:  

• Aeroelastic refinements to guarantee flutter clearance using more ad-

vanced FE models; 

• Aerodynamic model calibration by means of wind tunnel tests; 

• Ground Vibration Test on morphing flap and adaptive winglet to obtain 

experimentally modal characteristics, proving the accuracy of the 

adopted schemes and the validity of aeroelastic instabilities; 

• Mixed numerical-experimental flutter procedure to combine the most rel-

evant experimental modes to the numerical inertial distribution of morph-

ing flap and adaptive winglet.  

• Combined fault tree analysis on morphing flaps and winglets by includ-

ing aircraft failures such as asymmetric inoperative engine or strong lat-

eral wind conditions; 

• Assessment of the interaction among all smart tabs and aircraft primary 

control devices (ailerons, elevator, rudder).  
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APPENDIX A – General Description of the Sandy code 

 

SANDY is a currently not-commercial code developed by M. Pecora [3] Within 

last twenty-five years, it was continuously optimized in order to meet industrial 

requirements for static and dynamic aeroelastic and aero-servo-elastic analyses of 

aircraft  

A multidisciplinary environment - including rational approaches and validated 

numerical methods - achieves the following main tasks: 

 

• A/C dynamic model (structural model and inertial model) generation; 

• A/C aerodynamic model generation; 

• Accurate transfer matrices interfacing between dynamic and aerody-

namic models generation; 

• A/C acceleration and loads response due to flight and ground maneuver 

and/or gust evaluation; 

• A/C static and dynamic acceleration and loads response assessment to 

movable lifting surfaces deflections imposed by mechanical and/or 

electro-mechanical control circuits; 

• Divergence, control reversal and flutter speeds evaluation. 

 

The computational tool and numerical methods also gives the possibility to 

carry out fast analyses by investigating the A/C aeroelastic impact of combined 

design parameters. In this way, trade-off aeroelastic analyses can be achieved 

changing structural and dynamic properties relative to A/C components. 

 

Sandy operates in Visual Fortran® / Matlab® environment, allowing highly 

efficient computational intercommunicating routines to evaluate: 

 

• Static design loads for rigid and elastic aircraft; 

• Turbulence-induced dynamic loads; 

• Aeroelastic instabilities, also including command control laws by 

means of several methodologies. 

Four macro-modules are present in its structure:  

 

• Dynamic module; 

• Aerodynamic module; 
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• Aeroelastic module. 

• Plot visualization module. 

Dynamic module generates A/C structural and inertial models and internally 

FE evaluates A/C modal parameters. For the sake of time optimization and model 

reliability, only two typologies of elements can be used: 

 

• mono-dimensional elements (beam, rod, rigid-link, spring); 

• DMIG (Direct Matrix Input at Grids) elements for a correct evaluation 

of stiffness and inertial properties of all those parts for which a mono-

dimensional elements modelling leads to high approximations and/or is 

not applicable at all. 

The dynamic module offers also the possibility to import DMIG elements and 

A/C modal parameters - modes shapes, frequencies, generalized masses, damping 

(also extractable by ground vibration tests) - by commercial FE software (e.g.: 

MSC-NASTRAN ®). 

The introduction of extra-modes representing movable surfaces deflection is 

allowed in dynamic module, in addition to the normal modes related to A/C struc-

ture. 

 

The aerodynamic module generates the aerodynamic model and evaluates 

modal pressure distributions by means of Doublet Lattice Method.  

In such a way, three-dimensional compressible aerodynamic models as well as 

the possibility of performing local corrections in pressure distributions can be ac-

complished in order to achieve a correct simulation of movable surfaces aerody-

namics (as recommended by FAA AC 25.629-1A paragraph 6). 

 

The aeroelastic module is finally constituted by all the routines devoted to: 

• the interpolation of modal displacements on the aerodynamic lattice 

(matching routines implementing 3D spline methodologies); 

• the evaluation of generalized aerodynamic pressures/forces and 

steady/unsteady aerodynamic influence coefficients; 

• the solution of aeroelastic equations related to A/C aeroelastic response 

and aeroelastic instabilities identification. 

Software overall accomplishments have been successfully proved, in terms of 

theoretical and experimental aeroelastic stability, during the certification processes 

of several commercial aircrafts. 
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APPENDIX B - CS 23.629 Flutter 

 

For the sake of completeness, European airworthiness section regarding flut-

ter analyses is reported. 

 

(See AMC 23.629) 

(a) It must be shown by the methods of (b) and either (c) or (d) , that the aero-

plane is free from flutter, control reversal and divergence for any condition of op-

eration within the limit V-n envelope and at all speeds up to the speed specified for 

the selected method. In addition – 

(1) Adequate tolerances must be established for quantities which affect flutter; 

including speed, damping, mass balance and control system stiffness; and 

(2) The natural frequencies of main structural components must be determined 

by vibration tests or other approved methods. 

(b) Flight flutter tests must be made to show that the airplane is free from flutter, 

control reversal and divergence and to show by these tests that – 

(1) Proper and adequate attempts to induce flutter have been made within the 

speed range up to VD; 

(2) The vibratory response of the structure during the test indicates freedom 

from flutter; 

(3) A proper margin of damping exists at VD; and 

(4) There is no large and rapid reduction in damping as VD is approached. 

(c) Any rational analysis used to predict freedom from flutter, control reversal 

and divergence must cover all speeds up to 1·25 VD. 

(d) Compliance with the rigidity and mass balance criteria (pages 4-12), in Air-

frame and Equipment Engineering Report No. 45 (as corrected) “Simplified Flutter 

Prevention Criteria” (published by the Federal Aviation Administration) may be 

accomplished to show that the aeroplane is free from flutter, control reversal, or 

divergence if – 

(1) VD/MD for the aeroplane is less than 482 km/h (260 knots) (EAS) and less 

than Mach 0·5; 

(2) The wing and aileron flutter prevention criteria, as represented by the wing 

torsional stiffness and aileron balance criteria, are limited to use to aeroplanes with-

out large mass concentrations (such as engines, floats, or fuel tanks in outer wing 

panels) along the wing span; and 

(3) The aeroplane – 

(i) Does not have a T-tail or other unconventional tail configurations; 
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(ii) Does not have unusual mass distributions or other unconventional design 

features that affect the applicability of the criteria; and 

(iii) Has fixed-fin and fixed-stabiliser surfaces. 

(e) For turbo-propeller powered aeroplanes, the dynamic evaluation must in-

clude – 

(1) Whirl mode degree of freedom which takes into account the stability of the 

plane of rotation of the propeller and significant elastic, inertial and aerodynamic 

forces; and 

(2) Propeller, engine, engine mount and aeroplane structure stiffness and damp-

ing variations appropriate to the particular configuration. 

(f) Freedom from flutter, control reversal and divergence up to VD/MD must be 

shown as follows: 

(1) For aeroplanes that meet the criteria of sub-paragraphs (d) (1) to (d) (3), 

after the failure, malfunction, or disconnection of any single element in any tab 

control system. 

(2) For aeroplanes other than those described in sub-paragraph (f) (1), after the 

failure, malfunction, or disconnection of any single element in the primary flight 

control system, any tab control system, or any flutter damper. 

(g) For aeroplanes showing compliance with the fail-safe criteria of CS 23.571 

and 23.572, the aeroplane must be shown by analysis to be free from flutter up to 

VD/MD after fatigue failure, or obvious partial failure of a principal structural ele-

ment. 

(h) For aeroplanes showing compliance with the damage-tolerance criteria of 

CS 23.573, the aeroplane must be shown by analysis to be free from flutter up to 

VD/MD with the extent of damage for which residual strength is demonstrated. 

(i) For modifications to the type design which could affect the flutter charac-

teristics compliance with sub-paragraph (a) must be shown, except that analysis 

alone, which is based on previously approved data, may be used to show freedom 

from flutter, control reversal and divergence for all speeds up to the speed specified 

for the selected method. 

 

Advisory Circular AC No: 23.629-1A 

Advisory Circular presents definitions and procedures to respond to 23.629 

section: 

2. SPECIAL DESIGN. 

The special design category includes airplanes with certain design features that 

experience has shown warrant special consideration with regard to flutter. Flutter 

free operation for these special unconventional configurations may be shown by 

analyses which include an assessment of the effects of critical parameters. Flight 
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flutter tests to supplement those analyses are recommended. Some of these special 

unconventional configurations are: 

a. Any aircraft with a design dive speed of 260 knots15 (EAS) or more at alti-

tudes below 14,000 feet16 and Mach 0.6 or more at altitudes at and above 14,000 

feet. 

b. Any aircraft approved for flight in icing conditions. (The effect of ice accre-

tions on unprotected surfaces, including those which might occur during system 

malfunctions, should be considered). 

c. Pusher powerplants. 

d. Canard geometry. 

e. T, V, X, H, or any other unusual tail configuration. 

f. Any external pods or stores mounted to wing or other major aerodynamic 

surface a 

g. Fuel tanks outboard of 50% semispan. 

h. Tabs which do not meet the irreversibility criteria of chapter 2, paragraph 

3.d., and of reference 1, appendix 4. 

i. Spring tabs. 

j. All-movable tails, i.e., stabilators. 

k. Slender boom or twin-boom fuselages. 

1. Multiple-articulated control surfaces. 

m. Wing spoilers. 

n. Hydraulic control Systems with stability augmentation. 

0. Full span flaps. 

p. Leading edge devices (i.e., slots, etc.). 

q. Geared tabs (servo or anti-servo, etc.). 

 

4. Rational Analysis. 

 

a. Review of Past Analysis. Review of previous flutter analyses conducted upon 

similar aircraft can provide the engineer with useful information regarding trends, 

critical modes, etc. Although in general such a review is not used as a substantiation 

basis for a new aircraft, it can provide a useful tool in evaluating the effect of mod-

ifications to existing certified aircraft. 

b. Two-Dimensional Analysis. The flutter characteristics of straight wings (or 

tails) of large aspect ratio can be predicted reasonably well by considering a "rep-

resentative section that has two or three degrees of freedom. Translation and pitch 

are always needed and) for control surfaces, the third freedom would be rotation 

about the hinge line. 
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c. Three-Dimensional Analysis. Current analysis is based upon consideration 

of total span, rather than representative section discussed in 4.b. above. The behav-

ior is integrated over the whole structure being analyzed. Some idealization is al-

ways necessary; the most common being the division of the span into strips. Other 

types of modeling are also used. For Part 23 airplanes, quite often the wing and 

empennage analyses are conducted separately; however, this is not always adequate 

for unconventional configurations. Both the symmetric and antisymmetric motions 

require investigation. Calculated mass and stiffness distributions are generally used 

to calculate uncoupled modes and frequencies. These values are then used to con-

duct a coupled vibration analysis; the resulting coupled modes and frequencies are 

then usually compared with measured natural modes. The calculated stiffness-re-

lated inputs are generally adjusted until good agreement is obtained with the test 

data. Once satisfactory agreement is achieved, the coupled vibration analysis is nor-

mally used for the flutter calculations. It is suggested that one perform certain var-

iations in the assumed input conditions to see which parameters are critical. Control 

surface balance conditions and system frequencies (especially tab frequencies) are 

often investigated parametrically. The effect of control system tension values at the 

low and high ends of the tolerance range should be assessed. It may be advanta-

geous to arbitrarily vary certain main surface frequencies (stiffness), especially tor-

sional frequencies and engine mode frequencies, while leaving other frequencies 

constant.  

Sometimes it is desirable to evaluate the effect of a slight shift in spanwise node 

location for a very massive item where the node is located very close to or within 

the item. (Test data may not be sufficiently accurate for this assessment.)  

It is normal practice to run a density-altitude check to include near sea-level, 

maximum and any other pertinent altitudes such as the knee of the airspeed-altitude 

envelope where the design dive speed becomes MACH limited. It is desirable to 

investigate combined wing-empennage modes for high performance (VD of 260 

KEAS or above) airplanes, as well as for airplanes with unconventional configura-

tions. 

Flutter Analysis Evaluation: For a given set of input parameters, the resulting 

output generally consists of a number of theoretical damping values (g) with asso-

ciated airspeeds and frequencies. 

Various cross plots of these values among themselves and versus varied input 

parameters allow a study of trends. 

Common plots are: damping vs. equivalent airspeed (g-V plots), control surface 

balance vs. flutter speed, uncoupled frequency vs. flutter speed, altitude vs. flutter 

speed, etc. 

Normally only the critical items will be extensively compared.  
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Of particular importance is an evaluation in the neighborhood of the crossing 

of a damping velocity (g17-V) curve toward the unstable damping region, through 

zero. 

The typical critical g-V curve will first become increasingly stable and with 

increasing speed will turn and rise toward or pass through g=O, then at some higher 

speed may again turn toward the stable region. Typical characteristics are discussed 

in the following examples: 

 

 

Fig. 89: Example of V-g plot 

Curves 1 and 2 show slight trends toward instability, but do not approach ac-

tual instability. 

Curve 3 crosses the stability axis but, depending on the inherent structural 

damping, may or may not actually become unstable.  

Curve 4 is obviously unstable and probably violent, since its slope is steep as it 

passes through zero. In actual flight it may only be a mile an hour or so between 

completely stable and extremely unstable explosive flutter. Flight tests are not ad-

visable when this type plot is observed inside or near the flight envelope.  

Much can be learned from g-V curves. (Absolute values should be viewed with 

some reserve as there is no perfect one-to-one correspondence of the analytical pa-

rameters and flight parameters.) where the critical curve crosses the axis (with re-

spect to V~ for the airplane) is important. Equally important is the rate of approach 

to instability (slope of curve). 

The general practice is to use a damping value of g=O.03 at 1.2 VD as the flutter 

limit of the g-V plots. However, this value should be used with caution if the slope 

of the curve is large (damping decreases very rapidly with an increase in airspeed) 

between g=O and 0.03. In cases where the slope is steep, it is suggested that the 

g=O airspeed be at least 1.2 VD. 

If flight flutter testing is conducted to verify damping under the above circum-

stances, extreme caution should be exercised. 
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For damping curves such as (3), which peak out below 1.2 VD, the predicted 

damping should be no more unstable than g=O.02 unless justification is provided 

by other acceptable means. 
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