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Introduction

Information Theory was originally proposed by Claude Shannon in 1948 in the land-

mark paper entitled "A Mathematical Theory of Communication"1. In this paper the

concept of entropy was adopted for the �rst time in a �eld other than thermodynam-

ics and statistical mechanics. Since then, the interest in entropy has grown more and

more and the current literature now focuses mainly on the analysis of residual lifetime,

because "in survival analysis and in life testing one has information about the current

age of the component under consideration"2. In recent years the interest has 'changed

direction'. New notions of entropy have been introduced and are used to describe

the past lifetime and the inactivity time of a given system or of a component that is

found not to be working at the current time. Moreover inferences about the history

of a system may be of interest in real life situations. So, the past lifetime and the

inactivity time can also be analysed in the context of the theory of coherent systems.

The present work deals with the concepts of past lifetime and inactivity time in

di�erent contexts. I try to retrace my own course of the research during the three

years of my Phd study. So the discussion unfolds as follows.

Chapter 1 - a prelude - presents a brief history of the concept of entropy, from the

beginning to recent developments; the chapter also contains an introduction of basic

concepts of the theory of reliability.

Chapter 2 discusses the state of art about past entropies. In particular the past

entropy [10] and the cumulative past entropy (CPE) [12] are analysed in detail. But

the question that arises may be:"Why past entropy?". It is reasonable to presume

that in many realistic situations uncertainty is not necessarily related to the future

but can also be referred to the past. For instance, if at time t, a system is found

1Shannon CE, A mathematical theory of communication, Bell System Technical Journal 27 (1948),

after in Shannon CE and Weaver W, The mathematical theory of communication. The University of

Illinois Press. Urbana (1964).
2N. Ebrahimi, How to measure uncertainty in the residual life time distribution. Sankhya A 58

(1996), p. 50.
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to be broken, then the uncertainty of the system life relies on the past, in particular

on which instant in (0, t) it has failed. These measures are particularly suitable to

describe the information in problems related to aging properties of reliability theory

based on the past lifetime and on the inactivity time. For this reason it is interesting

to introduce other past measure of information.

Chapter 3 builds on the discussion in the preceding chapter and proposes a new

measure of past entropy, the cumulative Tsallis entropy (CTE) and its dynamic version

(DCTE), based on past lifetime. These two measures are based on Tsallis entropy [54],

presented in 1988 as possible generalization of Boltzmann-Gibbs statistics and plays

an important role in the measuring uncertainty of random variables. CTE and DCTE

also refer to other important sources, realiablility measures and some features related

to stochastic orders. Moreover, in this chapter, is also presented a new aging class

based on DCTE. Most of the results reported in this chapter has been published in the

paper entitled Some properties of cumulative Tsallis entropy by Camilla Calì, Maria

Longobardi and Jafar Ahmadi, published in 2017 in Physica A: Statistical Mechanics

And Its Applications, vol. 486, pp. 1012-1021.

Chapter 4 - a brief interlude - discusses some foundational topics related to coherent

systems. Structural properties of coherent systems are described also through the

introduction of the concepts of distortion function and copula. In this chapter the main

references are two fundamental books: Statistical Theory of Reliability and Life Testing

by Richard E. Barlow and Frank Proshan published in 1975 and An Introduction to

Copulas by Roger B. Nelsen published for the �rst time in 1998. These topics will be

used in the following chapters. In particular, in the sequel the study of a special kind

of entropy is strictly tied to the analysis of coherent systems.

Chapter 5 is devoted to the study of some properties for another measure of past

entropy, the generalized cumulative past entropy (GCPE). For example, GCPE deter-

mines the underlying distribution. This measure is also analysed when it is referred to

the lifetime of a coherent system with identically distributed components. Moreover a

new generalized inaccuracy measure, the generalized cumulative Kerridge inaccuracy

of order n is de�ned . Most of the results reported in this chapter has been pub-

lished in the paper Properties for generalized cumulative past measure of information

by Camilla Calì, Maria Longobardi and Jorge Navarro, published in 2018 (now is

available only the online version) in Probability in the Engineering and Informational

Sciences, doi:10.1017/S0269964818000360.

Chapter 6 analyses coherent systems under periodical inspections. This study was

conducted during my visiting at the University of Murcia under the supervision of
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Prof. Jorge Navarro. In real life situation the monitoring of a system can be sched-

uled at di�erent times. Under these periodical inspections, the information about

the system can be di�erent and can be a�ected by the condition of the components

of the system at two inspection times t1 and t2. Under this assumption the interest

is on the inactivity time of the system T , (t2 − T |t1 < T < t2). Representations

through distortion functions are obtained for the reliability functions of such inac-

tivity times, considering coherent systems formed by possibly dependent components.

Similar representations are obtained under other assumptions with partial information

about component failures at times t1 and t2. The representations obtained are used

to compare stochastically the inactivity times under di�erent assumptions. In the

last part some illustrative examples are provided. Most of the results reported in this

chapter will be published in the paper Inactivity times of coherent systems with de-

pendent components under periodical inspections by Jorge Navarro and Camilla Calì,

now accepted for publication by the journal Applied Stochastic Models in Business

and Industry.

Appendices contain extra material used in the thesis. Appendix A contains the

list of the main stochastical orders. Appendix B contains the list of the main aging

classes. Appendix C contains the tables Chapter 5 refers to.

Finally, I would like to thank my Phd advisor, Dr. Maria Longobardi, for her

guidance and her continuous support throughout these three years and in writing the

present work.



Chapter 1

Prelude - Entropy and Related Topics

1.1 "Choice, Uncertainty and Entropy": an

Historical Overview

"My greatest concern was what to call it. I thought of calling it infor-

mation, but the word was overly used, so I decided to call it uncertainty.

When I discussed it with John von Neumann, he had a better idea. Von

Neumann told me �You should call it entropy, for two reasons. In the

�rst place your uncertainty function has been used in statistical mechanics

under that name, so it already has a name. In the second place, and more

important, no one really knows what entropy really is, so in a debate you

will always have the advantage.�".1

With this sentence, Claude Shannon gives us a curious starting point to retrace

the history of information theory and its central concept, the information entropy.

The central event that established the birth of information theory was the pub-

lishing of the groundbreaking paper by Claude Shannon, A Mathematical Theory of

Communication, in The Bell System Technical Journal between July and October

1948 [51]. In the introduction we can read:

"The fundamental problem of communication is that of reproducing at

one point either exactly or approximately a message selected at another

1The sentence was pronounced by Claude Shannon as quoted in [53]. In spite of the precise

bibliographic reference, this anecdote has been retold so many times that it has been classi�ed

by some authors as an urban legend in science. For further information and references on the

matter, is availeble an intersting historical background at <http://www.eoht.info/page/Neumann-

Shannon+anecdote>.
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point. Frequently the messages have meaning [...] These semantic aspects

of communication are irrelevant to the engineering problem. The signi�-

cant aspect is that the actual message is one selected from a set of possible

messages. The system must be designed to operate for each possible selec-

tion, not just the one which will actually be chosen since this is unknown

at the time of design. If the number of messages in the set is �nite then

this number or any monotonic function of this number can be regarded as

a measure of the information produced when one message is chosen from

the set, all choices being equally likely"2.

From a mathematical point of view, the main question that Claude Shannon

pointed out in this paper was: "Can we de�ne a quantity which will measure, in

some sense, how much information is produced by such a process, or better, at what

rate information is produced?"3. He supposed to have a set of possible events whose

probabilities of occurrence are p1, p2, . . . , pn. These probabilities are known, but that

is all we know concerning which event will occur. Then "can we �nd a measure of

how much choice is involved in the selection of the event or of how uncertain we are

of the outcome?"4. Clearly, if there is such a measure, say H(p1, p2, . . . , pn), Shannon

listed some basic properties that it is reasonable to require of H:

• Continuity: H should be continuous in the pi;

• Monotonicity: if all the pi are equal, pi = 1
n
, then H should be a monotonic

increasing function of n;

• Recursion: if a choice be broken down into two successive choices, the original

H should be the weighted sum of the individual values of H.

Theorem 1.1. The only H satisfying the three above assumptions is of the form:

H = −K
n∑
i=1

pi log2 pi (1.1)

where K is a positive constant.

2Shannon CE, A mathematical theory of communication, Bell System Technical Journal 27 (1948),

after in Shannon CE and Weaver W, The mathematical theory of communication. The University of

Illinois Press. Urbana (1964), p. 31.
3Ibid., p. 48.
4Ibid., p. 49.
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The base of the logarithm is 2 because in Shannon's entropy the units are bits

(binary information digits).The bit is also called shannon (in symbol, Sh): one shannon

is de�ned as the the entropy of a system with two equiprobable states, so 1 Sh = 1 bit.

It is clear that there are close parallels between the mathematical expressions for

the thermodynamic entropy of a physical system in the statistical thermodynamics

and the new de�nition of information entropy, as Shannon himself highlighted:

"Quantities of the formH = −K
∑n

i=1 pi log2 pi (the constantK merely

amounts to a choice of a unit of measure) play a central role in information

theory as measures of information, choice and uncertainty. The form of H

will be recognized as that of entropy as de�ned in certain formulations of

statistical mechanics where pi is the probability of a system being in cell i

of its phase space. H is then, for example, the H in Boltzmann's famous

H theorem"5.

A suitable extension of the Shannon entropy to the absolutely continuous case is

the so-called di�erential entropy . Let X be an absolutely continuous random variable

with probability density function (pdf) f(·), then its di�erential entropy is given by

H(X) = −E[log f(X)] = −
∫ +∞

−∞
f(x) log f(x)dx, (1.2)

where log is the natural logarithm.

Starting from this de�nition, other entropies have also been introduced and studied

from the mathematical point of view.

One of the �rst generalization of (1.2) was proposed by Khinchin [24] in 1957, by

choosing a convex function φ(x) such that φ(1) = 0. He de�ned this new measure for

an absolutely continuous random variable X as:

Hφ(X) =

∫ +∞

−∞
f(x)φ (f(x)) dx. (1.3)

H(X) can be derived from (1.3) by choosing φ(x) = − log x.

In 1961, Renyi [45] proposed a generalized version of entropy of order α, whose

version for absolutely continuous random variable X is:

Hα(X) =
1

α− 1
log

∫ +∞

−∞
(f(x))α dx α 6= 1, α > 0.

5Ibid., p. 50.
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When α tends to 1, Hα(X) tends to H(X).

Tsallis entropy was introduced by Tsallis [54] in 1988 and it is a generalization

of Boltzmann-Gibbs statistics. For a continuous random variable X with pdf f(x),

Tsallis entropy of order α is de�ned by

Tα(X) =
1

α− 1

(
1−

∫ +∞

−∞
fα(x)dx

)
; α 6= 1, α > 0. (1.4)

Clearly as α→ 1 then Tα(X) reduces to H(X), given in (1.2).

1.2 Relative Information and Inaccuracy

During the same years, other information measures, which examined two probability

distributions associated with the same random experiment, were also investigated.

In 1951, Kullback and Leibler [25] were concerned with

"the statistical problem of discrimination, by considering a measure

of the 'distance' or 'divergence' between statistical populations in terms

of our measure of information. For the statistician two populations di�er

more or less according as to how di�cult it is to discriminate between them

with the best test"6.

Given X and Y two absolutely continuous random variables with probability density

function f(·) and g(·), respectively,

log
f(x)

g(x)

is called the information in x for discrimination between X and Y .

The Kullback-Leibler divergence is de�ned by

HKL(X|Y ) =

∫ −∞
−∞

f(x) log
f(x)

g(x)
dx. (1.5)

Another step forward in this direction was the de�nition of inaccuracy introduced

by Kerridge [23] in 1961. Suppose that the experimenter asserts that the probability

of the i-th eventuality is pi, when the true probability is qi, with
∑
pi =

∑
qi = 1.

6S. Kullback, R.A. Leibler, On information and su�ciency. Annals of Mathematics Statistics 22

(1951), p. 79.
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In the same way of Shannon, Kerridge demonstrated that the only de�nition which

satis�es a set of intuitively reasonable assumptions listed by him was:

HK(P ;Q) = −
n∑
i=1

pi log qi. (1.6)

Kerridge inaccuracy can be considered also a generalization of Shannon entropy be-

cause, obviously, when pi = qi for all i, then (1.6) reduces to (1.1).

In 1968, Nath [29] extended this concept of inaccuracy to the case of continuous

distributions. If f(x) is the actual probability density function related to an absolutely

continuous random variable X and g(x) is the true probability density function as-

signed by the experimenter, related to another absolutely continuous random variable

Y , then the Kerridge inaccuracy is de�ned as

HK(f ; g) = −
∫ +∞

−∞
f(x) log g(x)dx. (1.7)

Also in this case, when f(x) = g(x) for all x, then (1.7) reduces to (1.2).

1.3 Some Concepts of Mathematical Theory of Reli-

ability

"What is mathematical reliability theory? Generally speaking, it is a

body of ideas, mathematical models, and methods directed toward the so-

lution of problems in predicting, estimating, or optimizing the probability

of survival, mean life, or, more generally, life distribution of components or

systems; other problems considered in reliability theory are those involv-

ing the probability of proper functioning of the system at either a speci�ed

or an arbitrary time, or the proportion of time the system is functioning

properly. In a large class of reliability situations, maintenance, such as

replacement, repair, or inspection, may be performed, so that the solution

of the reliability problem may in�uence decisions concerning maintenance

policies to be followed"7.

Let X be a nonnegative absolutely continuous random variable with probability den-

sity function f(·) and cumulative distribution function F (·). The reliability function

7R.E. Barlow, F. Proschan, Mathematical Theory of Reliability. Wiley, New York (1965), p. xiii.
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(or survival function) is de�ned as:

F̄ (x) = P (X > x) = 1− F (x) =

∫ +∞

x

f(x)dx. (1.8)

By the de�nition in (1.8), F̄ is monotonically decreasing and is a right-continuous

function such that F̄ (0) = 1 and limx→+∞F̄ (x) = 0.

In the context of theory of reliability, F̄ (x) gives the probability that a system of

interest - in this case X represent the lifetime of such system - will survive beyond

any given speci�ed time, in this case represented by x.

The hazard rate function, also known as the failure rate function, at time t is

de�ned as:

λ(t) = lim
x→0

P (t < X < t+ x|X ≥ t)

x
= lim

x→0

1

x

F (t+ x)− F (t)

F̄ (t)

so that

λ(t) =
f(t)

F̄ (t)
, (1.9)

when f(t) exists and F̄ (t) > 0. This function has a useful probabilistic interpretation:

λ(t) represents the probability that an object or a system of age t will fail in the interval

[t, t+ x]. A strictly relation between reliability function and hazard rate function can

be obtained by integrating both sides of (1.9),∫ x

0

λ(t)dt = −logF̄ (x),

and then λ(t) uniquely determines the underlying reliability function via the relation

F̄ (x) = exp

[
−
∫ x

0

λ(t)dt

]
.

Keilson and Sumita [22] were among the �rst to de�ne reversed hazard rate function

(or reversed failure rate function), calling it the "dual failure function":

τ(t) = lim
x→0

P (t− x < X < t|X ≤ t)

x
= lim

x→0

1

x

F (t)− F (t− x)

F (t)

so that

τ(t) =
f(t)

F (t)
, (1.10)

when f(t) exists and F (t) > 0. Also this function has a useful probabilistic inter-

pretation: τ(t) represents the probability that an object or a system will fail in the
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interval [t− x, t], since it has been found failed at time t. A strictly relation between

cumulative distribution function and reversed hazard rate function can be obtained

by integrating both sides of (1.10),∫ +∞

x

τ(t)dt = logF (x),

and then τ(t) uniquely determines the underlying distribution function via the relation

F (x) = exp

[
−
∫ +∞

x

τ(t)dt

]
. (1.11)

If X describes the random lifetime of a biological system, such as an organism or

a cell, then the random variable

Xt = [X − t |X > t] (1.12)

describes the residual lifetime of the system at age t, that is the additional lifetime

given that the system has survived up to time t. Hence, if the system has survived up

to time t, the uncertainty about the remaining lifetime is measured by means of Xt.

Let us denote the mean residual life(MRL) by m(t):

m(t) = E [Xt] = E [X − t |X > t] =
1

F̄ (t)

∫ +∞

0

(x− t)dF (x),

where F (·) and F̄ (·) are the distribution function and the survival function of X,

respectively. Writing (x − t) =
∫ x
t
du and employing Fubini-Tonelli's theorem, yields

the equivalent formula

m(t) =
1

F̄ (t)

∫ +∞

t

F̄ (x)dx, ∀t ≥ 0 : F̄ (t) > 0. (1.13)

It is known (see, for istance, [15]) that each of the functions F̄ , λ and m uniquely

determines the other two. More speci�cally

F̄ (t) = exp

(
−
∫ t

0

λ(x)dx

)
,

and

λ(t) =
m′(t) + 1

m(t)
.
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1.4 The Residual Entropy

"Frequently, in survival analysis and in life testing one has information

about the current age of the component under consideration. In such cases,

the age must be taken into account when measuring uncertainty"8.

The di�erential entropy in (1.2) is not appropriate in the situation described above

because there is no connection with the age. For this reason, in 1996 Ebrahimi [15]

proposed a more realistic approach, de�ning the so called residual entropy.

Let X be random variable that represents the lifetime of a component and Xt the

residual lifetime of the component at age t de�ned in (1.12). So the residual entropy

is de�ned as a dynamic measure of entropy based on Shannon di�erential entropy,

given by:

H(f ; t) = −
∫ +∞

0

fXt(x) log fXt(x)dx (1.14)

where fXt(x) denotes the probability density function of the random variable Xt:

fXt(x) =


f(x+t)

F̄ (t)
, if x > t

0 , otherwise.

H(f ; t) basically measures the expected uncertainty contained in the conditional den-

sity of the random variable (X − t) given X > t about the predictability of remaining

lifetime of the unit. Then H(f ; t) can be expressed as

H(f ; t) = −
∫ +∞

t

f(x)

F̄ (t)
log

f(x)

F̄ (t)
dx

= log F̄ (t)− 1

F̄ (t)

∫ +∞

t

f(x) log f(x)dx

= 1− 1

F̄ (t)

∫ +∞

t

f(x) log λ(x)dx.

In compliance with the de�nition, H(f ; t) can be negative and also it can be in�nite.

However Ebrahimi (see [15], Theorem 2.2) showed that when m(t) <∞ then H(f ; t)

is �nite. Moreover in 2004, Belzunce et al. demonstrated that if H(f ; t) is increasing

in t, then it uniquely determines the underlying reliability function (see [4], Theorem

1). It is interesting to note that H(f ; 0) is the di�erential Shannon entropy in (1.2)

for nonnegative random variables.

8N. Ebrahimi, How to measure uncertainty in the residual life time distribution. Sankhya A 58

(1996), p. 50.
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1.5 The Cumulative Residual Entropy

All the de�nitions of entropy presented in the previous sections are related in some

way to the de�nition of di�erential entropy of Shannon in (1.2). However, although

the analogy between de�nitions (1.1) and (1.2) (and so with the other de�nitions of

entropy), the di�erential entropy is an inaccurate extension of the Shannon discrete

entropy, as stated by Reza [46] already in 1994. He summarizes in particular three

basic points to be discussed:

• the di�erential entropy may be negative;

• the di�erential entropy may become in�nitely large or the integral may not exist;

• the di�erential entropy does not remain invariant under the transformation of

the coordinate systems.

So in the last 25 years various attempts have been made in order to de�ne possible

alternative information measures that have analogy with Shannon entropy, but have

also reasonable mathematical properties.

In 2004 Rao et al. [44] introduced the concept of cumulative residual entropy

(CRE) de�ned as

E(X) = −
∫ +∞

0

F̄ (x) log F̄ (x)dx, (1.15)

where X is a nonnegative absolutely continuous random variable and F̄ (x) is the

reliability function of X. The idea was to replace the density function with the relia-

bility function in di�erential Shannon entropy in (1.2). This new de�nition overcomes

the problems mentioned above, while retaining many of the important properties of

Shannon entropy. In particular CRE has the following important properties:

• CRE is always non-negative;

• CRE has consistent de�nitions in both the continuous and discrete domains;

• CRE can be easily computed from sample data and these computations asymp-

totically converge to the true values.

Rao states that

"The distribution function is more regular than the density function,

because the density is computed as the derivative of the distribution. More-

over, in practice what is of interest and/or measurable is the distribution
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function. For example, if the random variable is the life span of a machine,

then the event of interest is not whether the life span equals t, but rather

whether the life span exceeds t. Our de�nition also preserves the well es-

tablished principle that the logarithm of the probability of an event should

represent the information content in the event"9.

9M. Rao, Y. Chen, B.C. Vemuri, F. Wang, Cumulative residual entropy: a new measure of

information. IEEE Transactions on Information Theory 50 (2004), p.1221.



Chapter 2

Past Entropies

2.1 Why Past Entropy?

In many real life situations uncertainty is not necessarily related to the future but

it can be also referred to the past. For instance, we consider a system that can be

observed only at certain preassigned inspection times. We assume that at time t the

system is inspected for the �rst time and it is found in a not working condition. In

this situation, the uncertainty of the system cannot be referred to the future but to

the past lifetime and, as a conseguence, also to the inactivity time. The inactivity

time, in particular, describes the time elapsing between the failure of a system and

the time when it is found to be broken. So it seems natural to introduce a notion of

uncertainty that is suitable to measure information when the uncertainty is related to

the past, a dual concept of the cumulative residual entropy related to uncertainty on

the future lifetime of a system. So, one of the random variables that is used in these

new de�nitions have to represent the past lifetime at time t, that is

tX = [X |X ≤ t], t > 0.

Moreover, in reliability theory, the duration of the time between an inspection time

t and the failure time X, given that at time t the system has been found failed, is

called inactivity time - it was introduced in 1996 by Ruiz and Navarro [47] - and it is

represented by the random variable

X(t) = [t−X |X ≤ t], t > 0.

In this context in 2002 Di Crescenzo and Longobardi [10] introduced the concept

of past entropy and in 2009 [12] the concept of cumulative entropy (in the rest of the

thesis we refer to this de�nition called it cumulative past entropy, CPE).
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2.2 Past Entropy

Let X be a nonnegative continuous random variable that represents the lifetime of a

system or of a component of a system. In analogy with the de�nition of Ebrahimi in

(1.14), Di Crescenzo and Longobardi [10] de�ned the past entropy at time t as

H∗(f ; t) = −
∫ +∞

0

fX(t)(x) log fX(t)(x)dx

where fX(t)(x) denotes the probability density function of the inactivity time X(t),

given by

fX(t) =


f(t−x)
F (t)

, if x < t

0 , otherwise.
(2.1)

For example, given that at time t a component of a system is found to be bro-

ken, H∗(f ; t) basically measures the uncertainty about its past lifetime. From (2.1),

H∗(f ; t) can be expressed as

H∗(f ; t) = −
∫ t

0

f(x)

F (t)
log

f(x)

F (t)
dx. (2.2)

Note that (2.2) can be obtained also as di�erential entropy of the random variable tX

that represents the past lifetime at time t.

Making use of de�nition of reversed hazard rate function in (1.10), H∗(f ; t) can be

rewritten as

H∗(f ; t) = logF (t)− 1

F (t)

∫ t

0

f(x) log f(x)dx

= 1− 1

F (t)

∫ t

0

f(x) log τ(x)dx. (2.3)

As an immediate conseguence of (2.3), also the derivative of H∗(f ; t) can be written

in terms of the reversed hazard rate function τ(t):

d

dt
H∗(f ; t) = τ(t) [1−H∗(f ; t)− log τ(t)] .

Note that if f(t) is decreasing in t > 0, then H∗(f ; t) is increasing in t > 0. However,

this property can be proved under the weaker assumption that the reversed hazard

rate function of X is decreasing, i.e. X is DRHR, in compliance with the de�nition

given in (B.4).
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2.3 Cumulative Past Entropy

2.3.1 De�nition and Basic Properties

In analogy with the de�nition of cumulative residual entropy by Rao in (1.15), Di

Crescenzo and Longobardi [12] de�ned the cumulative past entropy (CPE) of a non-

negative random variable X as

CE(X) = −
∫ +∞

0

F (x) logF (x)dx, (2.4)

where F (x) = P (X ≤ x) is the distribution function of X. The cumulative past

entropy has some basic properties:

(i) CE(X) takes values in [0,+∞] and is equal to 0 if and only if X is a constant;

(ii) CE(X) = E(X) if the distribution of X is symmetric with respect to µ (where

µ = E(X) is �nite), i.e. if F (µ+ x) = 1− F (µ− x) for all x ∈ R;

(iii) CE(Y ) = aCE(X) where Y = aX + b with a > 0 and b ≥ 0; so CE(X) is a

shift-independent measure.

Similarly to the normalized cumulative residual entropy introduced by Rao [43],

Di Crescenzo and Longobardi [12] introduced also a normalized version of (2.4). For

a nonnegative random varible X with 0 < E(X) < +∞, they de�ned the normalized

cumulative past entropy as

NCE(X) =
CE(X)

E(X)
= − 1

E(X)

∫ +∞

0

F (x) logF (x)dx.

2.3.2 More on Reliability Theory

The inactivity time X(t) is well described also through its mean value, called mean

inactivity time (MIT) given by

µ̃(t) = E
[
X(t)

]
= E [t−X |X ≤ t] =

1

F (t)

∫ t

0

(t− x)dF (x),

where F (·) is the distribution function of X. Writing (t − x) =
∫ t
x
du and employing

Fubini-Tonelli's theorem, yields the equivalent formula

µ̃(t) =
1

F (t)

∫ t

0

F (x)dx. ∀t ≥ 0 : F (t) > 0. (2.5)
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The mean inactivity time has a stricly relation with the mean past lifetime of X

de�ned as

µ(t) = E [tX] = E [X |X ≤ t] =

∫ t

0

1− F (x)

F (t)
dx. (2.6)

So, from (2.5) and (2.6), we can state that

µ̃(t) = t− µ(t). (2.7)

The derivative of the mean inactivity time of X can be expressed in term of the

reversed hazard rate function, de�ned in (1.10) (if existing), as states the following

theorem.

Theorem 2.1. Let X be an absolutely continuous random variable with distribution

function F , reversed hazard rate function τ and the mean inactivity time µ̃. Then

µ̃′(t) = 1− τ(t)µ̃(t), (2.8)

and

F (t) = exp

(
−
∫ +∞

t

1− µ̃′(x)

µ̃(x)
dx

)
(2.9)

for all t such that F (t) > 0.

Note that the relation in (2.9) is the same relation that we have found in (1.11).

The cumulative past entropy of a random lifetime X is strictly related to the

concept of mean inactivity time, µ̃(t). In particular, CE(X) can be expressed as the

expectation of its mean inactivity time evaluated at X, as it is shown in the following

theorem.

Theorem 2.2. Let X be a nonnegative random variable X with mean inactivity time

µ̃(t) and cumulative entropy CE(X) < +∞. Then

CE(X) = E [µ̃(X)] .

The cumulative past entropy of a random lifetime X is also strictly related to the

concept of reversed hazard rate of X, τ(t), as it is shown in the following theorem.

Theorem 2.3. Let X be a nonnegative random variable X with cumulative entropy

CE(X) < +∞. Then

CE(X) = E
[
T (2)(X)

]
,

where

T (2)(x) := −
∫ +∞

x

logF (z)dz =

∫ +∞

x

[∫ +∞

z

τ(u)du

]
dz, x ≥ 0.
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The normalized cumulative past entropy has an alternative expression in terms of

Bonferroni curve BF [·], as it is stated in the following proposition.

Proposition 2.1. Let X be a nonnegative random variable with �nite non-vanishing

mean, then the normalized cumulative past entropy can be expressed as:

NCE(X) = 1− E{BF [F (X)]}.

2.3.3 Proportional Reversed Hazards Model

In 1998, Gupta et al. [18] proposed a model called proportional reversed hazards model

(PRHM) expressed by a nonnegative absolutely continous random variable X∗θ whose

distribution function is the θ-th power of the distribution function of X:

F ∗θ (x) = P (X∗θ ≤ x) = [F (x)]θ , x ∈ SX , (2.10)

where θ is a positive real number and F (x) is the distribution function of X and SX
is the support of X.

From this de�nition is interesting comparing the cumulative past entropy of θX and

X∗θ .

Proposition 2.2. Let X be a nonnegative absolutely continuous random variable, then

CE(θX) ≥ (≤)CE(X∗θ )

if θ ≥ 1 (0 < θ ≤ 1).

The proportional reversed hazards model is largely used for the analysis of data

on parallel systems (a parallel structure with n components works if at least one of

the components works). Note that the right-hand side of (2.10) is the distribution

function of the maximum of indipendent and identically distributed (IID) random

variables (and then it rapresents also the distribution function of the lifetime of a

parallel system), as it is shown in the following corollary.

Corollary 2.1. Let X1, X2, . . . , Xn be IID random variables. Then

CE(nX1) ≥ CE(max{X1, X2, . . . , Xn}).
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2.3.4 Dynamic Cumulative Past Entropy

A dynamic version of (2.4) was also introduced and studied by Di Crescenzo and Lon-

gobardi [12] to describe the uncertainty related to the past. For istance, let consider a

system thet begins to work at time 0 and, after an inspection at time t, it is found to

be broken. In this situation, the random variable tX = [X|X ≤ t] describes the past

lifetime of the system at age t.

So the dynamic cumulative past entropy is de�ned as

CE(X; t) = −
∫ t

0

F (x)

F (t)
log

F (x)

F (t)
dx, t > 0 : F (t) > 0. (2.11)

Note that CE(X; t) is exactly the cumulative past entropy of the random variable tX.

For the dynamic cumulative past entropy two results hold, that are similar to

properties that hold for the cumulative past entropy (see Property (iii) and Theorem

2.2).

Proposition 2.3. Let Y = aX + b with a > 0 and b ≥ 0. Then,

CE(Y ; t) = aCE
(
X;

t− b
a

)
, t ≥ b.

Theorem 2.4. Let X be a nonnegative random variable with mean inactivity time

µ̃(·) and dynamic cumulative past entropy CE(X; t) < +∞. Then

CE(X; t) = E [µ̃(X)|X ≤ t] , t > 0.

Note that from Theorems 2.2 and 2.4 it follows that CE(X; t) is nonnegative for

all t with

lim
t→0+
CE(X; t) = 0, lim

t→b−
CE(X; t) = CE(X),

for any random variable X with support (0, b), with b �nite or in�nite. For this

reason CE(X; t) cannot be decresing in t and, moreover, the following theorem gives

a condition in order for the dynamic cumulative past entropy to be increasing.

Theorem 2.5. Let X be a nonnegative absolutely continuous random variable and

let t ≥ 0 be such that F (t) > 0. Then CE(X; t) is increasing in t if and only if

CE(X; t) ≤ µ̃(t).

In the previous sections are described the most important results about past en-

tropies, for further details refer to Di Crescenzo and Longobardi [13] and Longobardi

[27].
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2.4 Past Relative Information and Inaccuracy

After the de�nition of the new measures of entropy based on the past lifetime, also

the measures of "'distance' or 'divergence' between statistical populations in terms of

our measure of information"1 - as Kullback and Leibler wrote in 1951 - have to be

rede�ned.

As in Section 1.2, based on (1.5), Di Crescenzo and Longobardi [11] studied a

measure of divergence which constitutes a distance between two past lifetimes dis-

tributions. Given two nonnegative random lifetimes X and Y having distribution

functions F (·) and G(·) and density function f(·) and g(·), respectively, the discrimi-

nation measure between past lifetimes is

H∗KL(X|Y, t) = HKL(tX|tY ) =

∫ t

0

f(x)

F (t)
log

f(x)/F (t)

g(x)/G(t)
dx.

where tX and tY are the random variable that describe the past lifetime at time t.

If we have a system with true distribution function F (·) and reference distributionG(·),
then H∗KL(X|Y, t) can also be interpreted as a measure of distance between GX(t)(x)

and the true distribution FX(t)(x), where X(t) is the inactivity time X(t). It is also

proved that H∗KL(X|Y, t) is constant if and only if X and Y satisfy the proportional

reversed hazard model (PRHM), de�ned in (2.10).

In 2013, Di Crescenzo and Longobardi [14] de�ned also the cumulative Kerridge

inaccuracy, the cumulative version of the measure of innaccuracy due to Kerridge,

de�ned in (1.7). Given two random lifetimes X and Y having distribution functions

F (·) and G(·), the cumulative Kerridge inaccuracy is de�ned as

K[F,G] = −
∫ +∞

0

F (x) logG(x) dx. (2.12)

1S. Kullback, R.A. Leibler, On information and su�ciency. Annals of Mathematics Statistics 22

(1951), p. 79.



Chapter 3

New Measures of Past Lifetime -

Part I

3.1 Cumulative Tsallis Entropy

In 1988 Tsallis [54] introduced a new measure of information, the Tsallis entropy, as

a generalization of Boltzmann-Gibbs statistics. For a nonnegative continuous random

variable X with pdf f(x), recall, from (1.4), that Tsallis entropy of order α is de�ned

as

Tα(X) =
1

α− 1

[
1−

∫ +∞

0

fα(x)dx

]
; α 6= 1, α > 0. (3.1)

Clearly as α → 1 then Tα(X) reduces to di�erential Shannon entropy H(X), given

in (1.2). Several researchers used Tsallis entropy in many physical applications, such

as developing the statistical mechanics of large scale astrophysical systems, image

processing and signal processing. Recently, Kumar [26] studied Tsallis entropy for k-

record statistics from some continuous probability models, Baratpour and Khammar

[1] proposed some applications of this entropy to order statistics and provided relations

with some stochastic orders, Zhang [56] obtained some quantitative characterizations

of the uniform continuity and stability properties of the Tsallis entropies.

Based on (3.1), Sati and Gupta [49] proposed a cumulative residual Tsallis entropy

of order α (CRTE), which is given by

ηα(X) =
1

α− 1

[
1−

∫ +∞

0

(F̄ (x))
α
dx

]
; α 6= 1, α > 0. (3.2)

The Tsallis entropy in (3.1) can also be expressed as

Tα(X) =
1

α− 1

∫ +∞

0

[f(x)− fα(x)] dx; α 6= 1, α > 0. (3.3)
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By (3.3), Rajesh and Sunoj [42] introduced an alternative measure of CRTE of order

α as

ξα(X) =
1

α− 1

∫ +∞

0

[
F̄ (x)− (F̄ (x))

α]
dx; α 6= 1, α > 0. (3.4)

Tsallis entropy is suitable, for example, to give more information about the intrinsic

stucture (in particular the intrinsic �uctuations) of a physical systems through the

parameter α that characterizes this entropy (see, for instance, Wilk and Wlodarczyk

[55]).

Then, motivated by (3.1)-(3.4), we propose the cumulative Tsallis entropy (CTE)

based on de�nition of CE(X) as

Cξα(X) =
1

α− 1

∫ +∞

0

[F (x)− Fα(x)] dx; α 6= 1, α > 0. (3.5)

It is easy to show that, when α→ 1, Cξα(X) reduces to CE(X).

There is a strict relation between the proposed CTE in (3.5) and mean inactivity

time in (2.5), as shown by the next result.

Theorem 3.1. Let X be a nonnegative continuous random variable with cumulative

distribution function F (x) and density function f(x), then

Cξα(X) = E
[
µ̃(X)Fα−1(X)

]
,

where µ̃(x) is the mean inactivity time of X.

Proof. First of all, note that from (2.5), we have

µ̃(x)F (x) =

∫ x

0

F (u)du.

and, di�erentiating both side of the identity with respect to x, we have

d

dx
(µ̃(x)F (x)) = F (x). (3.6)

The cumulative Tsallis entropy in (3.5) can be written as

Cξα(X) =
1

α− 1

[∫ +∞

0

F (x)dx−
∫ +∞

0

Fα(x)dx

]
=

1

α− 1

[∫ +∞

0

F (x)dx−
∫ +∞

0

d

dx
(µ̃(x)F (x))Fα−1(x)dx

]
.
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Then, using the integration by part for the second integral in the right-hand side we

have

Cξα(X) =

∫ +∞

0

[
µ̃(x)Fα−1(x)f(x)

]
dx,

which completes the proof.

Corollary 3.1. Let X be a nonnegative continuous random variable with cumulative

distribution function F (x). If α > 1(0 < α < 1), then Cξα(X) < (>)E [µ̃(X)] .

Example 3.1. If X is uniformly distributed on (0, c), then

Cξα(X) =
c

2(α + 1)
, µ̃(x) =

x

2
and E [µ̃(X)] =

c

4
.

So, for α > 1 then Cξα(X) < E [µ̃(X)], instead for 0 < α < 1 then Cξα(X) ≥ E [µ̃(X)],

which con�rm Corollary 3.1. Note that we have de�ned Cξα(X) only for α 6= 1, but

in this particular case for α = 1, Cξα(X) = E [µ̃(X)].

Figure 3.1: The �gure refers to Example 3.1 in the case that X is uniformly distributed

on (0, 1), then E [µ̃X(X)] =
1

4
(blue line) and Cξα(X) =

1

2(α+ 1)
(red line) are plotted.

Note that we have de�ned Cξα(X) only for α 6= 1, but in this particular case for α = 1,

Cξα(X) = E [µ̃(X)].

Theorem 3.2. Cξα(X) = 0 if, and only if, X is degenerate, while Cξα(X) > 0 for

any non-negative and absolutely continuous random variable X.
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Proof. Let 0 < α < 1. In this case F (x) ≤ Fα(x), thus Cξα(X) ≥ 0. If α > 1,

then from F (x) ≥ Fα(x) we have Cξα(X) ≥ 0. If X is degenerate, then Cξα(X) = 0.

Conversely, if Cξα(X) = 0, then∫ +∞

0

[F (x)− Fα(x)] dx = 0,

because α 6= 1. The integrand function is non-negative for all x or is non-positive for

all x, according to the value of α. Thus we can state that F (x)(1−Fα−1(x)) = 0. For

this reason, F (x) = 0 or F (x) = 1, that is, X is degenerate.

In the next result, we discuss the e�ect of increasing transformation on CTE.

Lemma 3.1. Let X be a nonnegative continuous random variable with cdf F and take

Y = φ(X), where φ(.) is a strictly increasing di�erentiable function. Then

Cξα(Y ) =
1

α− 1

∫ +∞

max{0,φ−1(0)}
[F (x)− Fα(x)]φ′(x)dx.

Remark 3.1. If φ(u) = au+ b, a > 0 and b ≥ 0, then

Cξα(Y ) = aCξα(X).

Theorem 3.3. Let X be a nonnegative absolutely continuous random variable with

density function f(x), if α ≥ 1(0 < α ≤ 1) then Cξα(X) ≤ (≥)CE(X).

Proof. If α > 1 (0 < α < 1) we can write

Cξα(X) =
1

α− 1

[∫ +∞

0

(F (x)− Fα(x)) dx

]

=
1

α− 1

[∫ +∞

0

F (x)
(
1− Fα−1(x)

)
dx

]

≤ (≥)
1

α− 1

[
−
∫ +∞

0

F (x)
(
logFα−1(x)

)
dx

]
= CE(X),

where the inequality is obtained using the fact that for u > 0, 1− u ≤ − log u.

It should be mentioned that Theorem 3.3 also follows by Lemma 3.1, thanks to the

Theorem 2.2 in which we proved that CE(X) = E(µ̃(X)).
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Example 3.2. If X is uniformly distributed on (0, 1), then CE(X) = E(µ̃(X)) =
1

4

and Cξα(X) =
1

2(α + 1)
. So we can refer again to the Figure 3.1: for α > 1, Cξα(X) ≤

CE(X) and for 0 < α < 1, Cξα(X) ≥ CE(X) which con�rms Theorem 3.3.

In the next result we refer to the de�nition of usual stochastic order, that can be

found in the Appendix A in (A.1) and (A.2).

Lemma 3.2. Let X and Y be two nonnegative continuous random variables with

distribution functions F and G and �nite mean E(X) and E(Y ), respectively.

If X ≤ST Y , then

|Cξα(X)− Cξα(Y )| ≤ E(Y )− E(X), for 1 < α ∈ N.

Proof. Suppose α ∈ N and α > 1, then from (3.5) we can write

Cξα(X)− Cξα(Y ) =
1

α− 1

∫ +∞

0

{[F (t)− Fα(t)]− [G(t)−Gα(t)]}dt

=
1

α− 1

∫ +∞

0

[F (t)−G(t)]

[
1−

α∑
i=1

F i−1(t)Gα−i(t)

]
dt.

By assumption X ≤ST Y , then we reach the following inequality

−
∫ ∞

0

[F (t)−G(t)]dt ≤ Cξα(X)− Cξα(Y )

≤ 1

α− 1

∫ +∞

0

[F (t)−G(t)]dt. (3.7)

Since X and Y are nonnegative random variables, then (3.7) completes the proof.

In the next example, we show that X ≤ST Y does not imply Cξα(X) < Cξα(Y ), in

general.

Example 3.3. Let X and Y be two random variables with cdfs F (x) = x, 0 < x < 1

and G(y) = y2, 0 < y < 1, respectively. From (3.5), we have

Cξα(X)− Cξα(Y ) =
1

2(α + 1)
− 2

3(2α + 1)

=
2α− 1

6(α + 1)(2α + 1)
.

So, Cξα(X) < (>)Cξα(Y ) whenever α < (>)
1

2
while clearly, X ≤ST Y , as it is shown

in Figure 3.2.
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Figure 3.2: The �gure refers to Example 3.3: Cξα(X) is plotted in red line and Cξα(Y ) is

plotted in blue line

.

Lemma 3.3. Let X1, ..., Xn be IID nonnegative continuous random variables with

common cdf F . Then, for 1 < α ∈ N:

(i) Cξα(Xn:n) ≤ nE(X);

(ii) Cξα(Xn:n) ≤ nCξα(X);

(iii) Cξα(X1:n) ≤ E(X),

where X1:n = min{X1, ..., Xn} and Xn:n = max{X1, ..., Xn}.

Proof. (i) From (3.5) we have

Cξα(Xn:n) =
1

α− 1

∫ +∞

0

[F n(x)− F nα(x)]dx

=
1

α− 1

∫ +∞

0

[F (x)−Fα(x)][F n−1(x)+Fα(x)F n−2(x)+. . .+Fα(x)]dx

≤ n

α− 1

∫ +∞

0

[F (x)− Fα(x)]dx

≤ n

α− 1

∫ +∞

0

[F (x)− (1− αF̄ (x))]dx

=
n

α− 1

∫ +∞

0

[(α− 1)F̄ (x)]dx

≤ n

∫ +∞

0

F̄ (x)dx

= nE(X),



3 New Measures of Past Lifetime - Part I 29

for nonnegative random variable X. In the fourth line, we use Bernoulli's inequality,

that is (1 + u)n ≥ 1 + nu for x > −1 and for n ∈ N, so in this case we can write

Fα(x) =
(
1− F̄

)α ≥ 1− αF̄ (x).

(ii) From �rst inequality, it is deduced that Cξα(Xn:n) ≤ nCξα(X) for 1 < α ∈ N.
(ii) Using Bernoulli's inequality, for non-negative random variable X,

Cξα(X1:n) =
1

α− 1

∫ +∞

0

{[1− F̄ n(x)]− [1− F̄ n(x)]α}dx

≤ 1

α− 1

∫ +∞

0

[1− F̄ n(x)− (1− αF̄ n(x))]dx

=

∫ +∞

0

F̄ n(x)dx

≤ E(X).

Consider a system consisting of n components with IID lifetimes X1, ..., Xn. Then,

it is known that for series and parallel systems, the lifetimes of the system are X1:n

and Xn:n, respectively. Thus, Lemma 3.3 provides upper bounds for cumulative Tsallis

entropies of series and parallel systems based on the mean lifetime of their components.

Example 3.4. Let X1, ..., Xn be IID nonnegative continuous random variables uni-

formly distributed on (0, 1). In this case we have E(X) =
1

2
and

Cξα(Xn:n) =
1

α− 1

∫ 1

0

[xn − xnα]dx =
n

(n+ 1)(nα + 1)
.

So, for 1 < α ∈ N and for n ≥ 1, Cξα(Xn:n) ≤ n

2
, which con�rm (i).

As seen in Example 1, Cξα(X) =
1

2(α− 1)
, so it easy to prove that (ii) holds.

With an easy computation also (iii) holds. For simplicity, if we have a system con-

sisting of only n = 2 components, we obtain:

Cξα(X1:2) =
1

α− 1

[
2

3
− 1

2
B

(
1 + α,

1

2

)]
,

where B

(
1 + α,

1

2

)
is the Euler beta function (for α > 0). So, for 1 < α ∈ N,

Cξα(X1:2) ≤ 1

2
, which con�rm (iii) for n = 2.
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3.1.1 Proportional Reversed Hazards Model

Let X and Y be two non-negative continuous random variables with distribution

functions F and G, such that satisfy the proportional reversed hazards model in

(2.10), that is

G(t) = (F (t))θ, for all t ∈ SX ,

where SX is the support of X and θ > 0.

Lemma 3.4. Let X and Y be two nonnegative continuous random variables with

cumulative distribution functions F and G, respectively. If F and G satisfy the PRHR

model, then

(α− 1)Cξα(Y ) = (αθ − 1)Cξαθ(X)− (θ − 1)Cξθ(X). (3.8)

Proof.

Cξα(Y ) =
1

α− 1

∫ +∞

0

[G(x)−Gα(x)]dx

=
1

α− 1

∫ +∞

0

[F θ(x)− Fαθ(x)]dx

=
1

α− 1

{∫ +∞

0

[F (x)− Fαθ(x)]dx−
∫ +∞

0

[F (x)− F θ(x)]dx

}
,

from which we obtain (3.8).

It is obvious that if X and Y have the same distribution then Cξα(X) = Cξα(Y ),

but the converse doesn't hold. Using the proportional reversed hazards model we show

a counterexample.

Suppose X has uniform distribution in (0, b) with b > 0, i.e., F (x) = x/b, 0 < x < b

and X and Y satisfy the PRH model, then Cξα(X) =
b

2(α + 1)
and from Lemma 3.4,

we have

(α− 1)Cξα(Y ) = (αθ − 1)
b

2(αθ + 1)
− (θ − 1)

b

2(θ + 1)
.

If θ =
1

α
, then Cξα(X) = Cξα(Y ).

This means that Cξα(X) does not uniquely characterize the distribution of X.

3.1.2 Computation of Cumulative Tsallis Entropy

In this section we provide an explicit expression for CTE for some continuous distri-

butions. Moreover we note that, for a particular choice of α, CTE has an interesting

relation with Gini index, G(X), as we show in the following lemma.
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Lemma 3.5. Let X be nonnegative continuous random variable, with mean E(X),

distribution function F (x) and Gini index G(X). Then, for α = 2

Cξ2(X) = E (X)G(X).

Proof. For a nonnegative continuous random variable X, the Gini index is given by

(see, for example, Hanada [20]):

G(X) := 1− 1

E(X)

∫ +∞

0

[1− F (x)]2 dx.

From this expression, we have:

E(X)G(X) = E(X)−
∫ +∞

0

F̄ 2(x)dx

=

∫ +∞

0

[
F̄ (x)− F̄ 2(x)

]
dx

=

∫ +∞

0

[
F̄ (x)(1− F̄ (x))

]
dx

=

∫ +∞

0

[F (x)(1− F (x))] dx

= Cξ2(X)

Note that, from the second equality, for α = 2, then Cξ2(X) = ξ2(X).

In the following estimations, the expressions for Gini index are found in [17].

• Exponential distribution: F (x) = 1− e−λx for x > 0 and λ > 0.

Cξα(X) =
Hα − 1

(α− 1)λ
,

where Hα is the harmonic number (α must be a positive integer) given by

Hα = 1 +
1

2
+

1

3
+ . . .+

1

α
=

α∑
k=1

1

k
.

For α = 2,

Cξ2(X) =
1 + 1

2
− 1

λ
=

1

2λ
= E(X)G(X),

where E(X) = 1/λ and G(X) = 1/2.
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• Uniform distribution on (a,b): F (x) = (x− a)/(b− a) for 0 < a < x < b.

Cξα(X) =
b− a

2(α + 1)
.

For α = 2,

Cξ2(X) =
b− a

6
= E(X)G(X),

where E(X) = a+b
2

and G(X) = b−a
3(a+b)

.

• Power function I distribution on (0,1): F (x) = xk for 0 < x < 1 and k > 0.

Cξα(X) =
k

(k + 1)(αk + 1)
.

For α = 2,

Cξ2(X) =
k

(k + 1)(2k + 1)
= E(X)G(X),

where E(X) = k
k+1

and G(X) = 1
2k+1

.

• Fréchet distribution: F (x) = exp
[
−
(
x
λ

)−k]
for x > 0, k > 0 and λ > 0.

Cξα(X) =
λ
(

1− α 1
k

)
Γ
[
k−1
k

]
(α− 1)

,

where Γ[·] is the Gamma function.

For α = 2,

Cξ2(X) = λ
(

1− 2
1
k

)
Γ

[
k − 1

k

]
= E(X)G(X),

where E(X) = λ Γ
[
k−1
k

]
and G(X) = 21/k − 1.

3.2 Dynamic Cumulative Tsallis Entropy

Rajesh and Sunoj [42] proposed the dynamic cumulative residual Tsallis entropy as

ψα(X; t) = ξα(Xt) =
1

α− 1

∫ +∞

0

[
F̄Xt(x)− F̄α

Xt(x)
]
dx

=
1

α− 1

(
m(t)−

∫ +∞

t

(
F̄ (x)

F̄ (t)

)α
dx

)
,

for α 6= 1 and α > 0, where F̄Xt(x) is the survival function of the residual lifetime Xt

and m(t) is the mean residual lifetime de�ned in (1.13).
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We propose the dynamic cumulative Tsallis entropy (DCTE) of a nonnegative

absolutely continuous random variable X as

Cψα(X; t) = Cξα(tX) =
1

α− 1

∫ +∞

0

[
FtX(x)− Fα

tX(x)
]
dx

for α 6= 1 and α > 0, where FtX is the distribution function of the past lifetime

tX = [X |X ≤ t].

Dynamic cumulative Tsallis entropy, Cψα(X; t), can be rewritten as

Cψα(X; t) =
1

α− 1

∫ t

0

[
F (x)

F (t)
− Fα(x)

Fα(t)

]
dx

=
1

α− 1

(
µ̃(t)−

∫ t

0

(
F (x)

F (t)

)α
dx

)
, (3.9)

where µ̃(t) is the mean inactivity time of X de�ned in (2.5).

There is an identity for the dynamic cumulative residual Tsallis entropy and the

dynamic cumulative Tsallis entropy.

Theorem 3.4. Let X be a random variable with support in [0, b] and symmetric with

respect to b/2, that is F (x) = F̄ (b− x) for 0 ≤ x ≤ b. Then

Cψα(X; t) = ψα(X; b− t), 0 ≤ t ≤ b.

Proof. We have

Cψα(X; t) =
1

α− 1

∫ t

0

[
F (x)

F (t)
− Fα(x)

Fα(t)

]
dx

=
1

α− 1

∫ t

0

[
F̄ (b− x)

F̄ (b− t)
− F̄α(b− x)

F̄α(b− t)

]
dx

= − 1

α− 1

∫ b−t

b

[
F̄ (y)

F̄ (b− t)
− F̄α(y)

F̄α(b− t)

]
dy

=
1

α− 1

∫ b

b−t

[
F̄ (y)

F̄ (b− t)
− F̄α(y)

F̄α(b− t)

]
dy.

Example 3.5. If X is uniformly distributed in [0, b], for 0 ≤ t ≤ b we have

Cψα(X; t) =
t

2(α + 1)
and ψα(X; t) =

b− t
2(α + 1)

,

which is in agreement with Theorem 3.4.
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As in Lemma 3.1, we now discuss the e�ect of increasing transformation on the

DCTE.

Lemma 3.6. Let Y = φ(X) an increasing di�erentiable function, then dynamic cu-

mulative Tsallis entropy for the random variable Y is given by

Cψα(Y ; t) =
1

(α− 1)F (φ−1(t))

∫ φ−1(t)

max{0;φ−1(0)}
F (x)φ′(x)dx

− 1

(α− 1)Fα(φ−1(t))

∫ φ−1(t)

max{0;φ−1(0)}
F (x)αφ′(x)dx.

Remark 3.2. If Y = aX + b, with a > 0 and b ≥ 0, then

Cψα(Y ; t) = aCψα
(
X;

t− b
a

)
, t ≥ b.

In the next theorem we use the de�nition of dispersive order, that can be found in

the Appendix A in (A.10) and (A.12).

Theorem 3.5. If Y ≥DISP (≤DISP )X, then

Cψα(Y ; t) ≥ (≤)Cψα(X;φ−1(t)),

where φ is an increasing di�erentiable function which satis�es

φ(x)− φ(x∗) ≥ x− x∗ whenever x ≥ x∗. (3.10)

Proof. The condition (3.10) implies that

d

dx
φ(x) ≥ 1.

Note that from the hypotesis that Y ≥DISP X, using th de�nition (A.12), we know

that Y =ST φ(X) for some φ which satis�es the condition (3.10). So we can apply

Lemma 3.6, and we have

Cψα(Y ; t) =

∫ φ−1(t)

max{0;φ−1(0)} φ
′(x) [F (x)Fα−1(φ−1(t))− Fα(x)] dx

(α− 1)Fα(φ−1(t))

≥ 1

(α− 1)

∫ φ−1(t)

max{0;φ−1(0)}

[
F (x)

F (φ−1(t))
− Fα(x)

Fα(φ−1(t))

]
dx

= Cψα(X;φ−1(t)).

For Y ≤DISP X the proof is similar.
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3.2.1 Monotonicy Properties of Dynamic Cumulative Tsallis

Entropy

In this section we study some properties of Cψα(X; t), in particular its monotonicy.

Note that all the next results highlight the strict relation between the dynamic cumu-

lative Tsallis entropy and the mean inactivity time.

Theorem 3.6. Let X be a nonnegative absolutely continuous random variable with

mean inactivity time µ̃(t) and reversed hazard rate τ(t); then Cψα(X; t) is increasing

(decreasing), if and only if,

Cψα(X; t) ≤ (≥)
µ̃(t)

α
, t > 0.

Proof. From the identity (3.9), we can write

(α− 1)Cψα(X; t) = µ̃(t)−
∫ t

0
Fα(x)dx

Fα(t)
. (3.11)

Di�erentiating both side of (3.11) with respect to t, using (2.8), we have

(α− 1)Cψ′α(X; t) = τ(t)

[
−µ̃(t) + α

∫ t
0
Fα(x)dx

Fα(t)

]
. (3.12)

Substituting (3.11) in (3.12), we obtain

Cψ′α(X; t) = τ(t) [µ̃(t)− αCψα(X; t)] . (3.13)

By the de�nition in in (1.10), τ(t) ≥ 0 for all t, and this complete the proof.

Example 3.6. Let X be a random variable with probability density:

f(x) =

1
2

if x ∈ [0, 1] ∪ [2, 3]

0 otherwise.

Its mean inactivity time is given by:

µ̃(t) =


t
2

if 0 ≤ t ≤ 1

t− 1
2

if 1 ≤ t ≤ 2

t2−2t+3
2(t−1)

if 2 ≤ t ≤ 3,
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and its dynamic cumulative Tsallis entropy is given by:

Cψα(X; t) =


t

2(α+1)
if 0 ≤ t ≤ 1

1
2(α+1)

if 1 ≤ t ≤ 2

(t−1)α−1−1
(α−1)(t−1)α

+ t−1
2(α+1)

if 2 ≤ t ≤ 3.

Cψα(X; t) and µ̃(t)
α

are plotted in Figure 3.3, where it is shown that Cψα(X; t) ≤ µ̃(t)
α

for all t ≥ 0, with Cψα(X; t) increasing for all t, as Theorem 3.6 states, while µ̃(t) does

not exhibit the same behavior.

Figure 3.3: The �gure refers to Example 3.6. The DCTE Cψα(X; t) (red line) and µ̃(t)
α

(blue line) are plotted, on the left for α = 1
2 and on the right for α = 2.

Theorem 3.7. Let X be a nonnegative absolutely continuous random variable, with

mean inactivity time µ̃(t) then

Cψα(X; t) =
E(µ̃(X)Fα−1(X)|X ≤ t)

Fα−1(t)
.

Proof. From the identity (3.9) we have

Cψα(X; t) =
1

α− 1

[
µ̃(t)− 1

Fα(t)

∫ t

0

Fα(x)dx

]
=

1

α− 1

[
µ̃(t)− 1

Fα(t)

∫ t

0

d

dx
(µ̃(x)F (x))Fα−1(x)dx

]

=
µ̃(t)− 1

Fα(t)

(
µ̃(t)Fα(t)− (α− 1)

∫ t
0
[µ̃(x)Fα−1(x)f(x)]dx

)
α− 1

=

∫ t
0
[µ̃(x)Fα−1(x)f(x)]dx

Fα(t)
, (3.14)
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where in the second equality we use the relation in (3.6) and in the third equality we

use the integration by parts. The theorem is proved noting that

E(µ̃(X)Fα−1(X)|X ≤ t) =
1

F (t)

∫ t

0

[µ̃(x)Fα−1(x)f(x)]dx.

A nonnegative random variable X is said to be increasing in mean inactivity time

(IMIT) if µ̃(·) is increasing on (0,+∞) (see Appendix B, de�nition (B.1)). Using this

de�nition we obtain the following result.

Corollary 3.2. Let X be a nonnegative random variable with increasing in mean

inactivity time function µ̃(t), that is IMIT. Then

Cψα(X; t) ≤ µ̃(t)

α

Proof. If X is IMIT then µ̃(x) ≤ µ̃(t) for x ≤ t. From (3.14), we have

Cψα(X; t) ≤
∫ t

0
[µ̃X(t)Fα−1(x)f(x)]dx

Fα(t)

=
µ̃X(t)

Fα(t)

∫ t

0

Fα−1(x)f(x)dx =
µ̃(t)

α
.

Let us give a new de�nition for a random variable X.

De�nition 3.1. X is said to have increasing (decreasing) dynamic cumulative Tsallis

entropy (IDCTE (DDCTE)) if Cψα(X; t) is increasing (decreasing) in t ≥ 0.

Remark 3.3. Combining Corollary 3.2 and Theorem 3.6 we obtain that:

X ∈ IMIT ⇒ Cψα(X; t) ≤ µ̃(t)

α
⇒ X ∈ IDCTE.

In the following theorem we study the relations between Cψα(X; t) and both the

mean inactivity time µ̃(t), de�ned in (2.5) and the mean past lifetime µ(t), de�ned in

(2.6).
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Theorem 3.8. Let X be a random variable with support in [0, b], with b �nite. For

all t ∈ [0, b] and for α > 1 we have

(i) Cψα(X; t)=
c

α
µ̃(t) if and only if F (t)=

(
t

b

) k
1−k

, k=
c

α− c(α− 1)
,

(ii) Cψα(X; t)=
c

α
µ(t) if and only if F (t)=

(
t

b

) 1−k
k

, k=
αc

α + c(α− 1)
,

where c is a constant such that 0 < c < 1.

Proof. (i) Let Cψα(X; t) =
c

α
µ̃(t) for all t ∈ [0, b]. Di�erentiating both side with

respect to t we have:

Cψ′α(X; t) =
c

α
µ̃′(t).

On the other hand, from (3.13) and from (2.8)

τ(t) [µ̃(t)− αCψα(X; t)] =
c

α
[1− τ(t)µ̃(t)] .

Then using the assumption Cψα(X; t) =
c

α
µ̃(t), we obtain

τ(t)µ̃(t) = k,

where k =
c

α− c(α− 1)
is a constant such that 0 < k < 1 for 0 < c < 1 and α > 1.

Note that (2.8) gives

τ(t) =
1− µ̃′(t)
µ̃(t)

, (3.15)

then we have

µ̃′(t) = 1− k.

This di�erential equation yields µ̃(t) − µ̃(0) = (1 − k)t, but from de�nition we note

that µ̃(0) = 0, so µ̃(t) = (1− k)t. Finally, we obtain

τ(t) =
k

1− k
1

t
.

By the relation in (1.11), this implies that

F (t) =

(
t

b

) k
(1−k)

, 0 ≤ t ≤ b.

(ii) Let Cψα(X; t) =
c

α
µ(t) for all t ∈ [0, b]. By di�erentiating with respect to t we

have

Cψ′α(X; t) =
c

α
µ′(t).
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By the relation in (2.7), the derivative of mean past lifetime with respect to t can be

expressed as

µ′(t) = 1− µ̃(t),

so that µ̃(t) − αCψα(X; t) =
c

α
µ̃(t). Using the assumption Cψα(X; t) =

c

α
µ(t) and

(2.7) we obtain

µ̃(t) = kt,

where k =
αc

α + c(α− 1)
is a constant such that 0 < k < 1 for 0 < c < 1 and α > 1.

So, by the relation in (3.15), we have

τ(t) =
1− k
tk

.

Again by the relation in (1.11), this implies that

F (t) =

(
t

b

) 1−k
k

, 0 ≤ t ≤ b.

The converse for both (i) and (ii) is quite straightforward.



Chapter 4

Interlude - Coherent Systems and

Related Topics

4.1 Structural Properties of Coherent Systems

A system with n components is a Boolean function ψ : {0, 1}n → {0, 1} which has

two possible states:

• ψ = 1, if the system is working,

• ψ = 0, if the system has failed.

Generally, it is assumed that the state of the system is completely determined by the

states of the components, so that

ψ = ψ(x1, x2, . . . , xn)

where

xi =

1 if the i-th component is working

0 if the i-th component has failed.

The function ψ is called the structure function of the system.

A system ψ is a coherent system if:

1. ψ is increasing in every component;

2. for every i = 1, 2, . . . , n, ψ is strictly increasing in xi for some speci�c values of

x1, x2, . . . , xi−1, xi+1, . . . , xn.



4 Interlude - Coherent Systems and Related Topics 41

The �rst property means that if a system is working and we replace a failed component

by a functioning component, then the system must be working. The second property

says that every component is relevant for the system in some situations, that is,

for each i there exists x = (x1, x2, . . . , xn) ∈ {0, 1}n such that the system works,

that is ψ(x1, x2, . . . , xn) = 1 if and only if xi = 1. Hence ψ(0, 0, . . . , 0) = 0 and

ψ(1, 1, . . . , 1) = 1.

Series and parallel systems are the two most used coherent systems. A series system

functions if and only if each components works, so it is de�ned by the structure

function

ψ(x1, x2, . . . , xn) = min(x1, x2, . . . , xn),

or, equivalently,

ψ(x1, x2, . . . , xn) =
n∏
i=1

xi

for xi ∈ {0, 1}, for each i.
Analogously, a parallel system functions if and only if at least one component works,

so it is de�ned by the structure function

ψ(x1, x2, . . . , xn) = max(x1, x2, . . . , xn).

or, equivalently,

ψ(x1, x2, . . . , xn) = 1−
n∏
i=1

(1− xi) =
n∐
i=1

xi

for xi ∈ {0, 1}, for each i.
In general, the k-out-of-n system, is the system which works if at least k of its n

components work. The structure function of the k-out-of-n system is

ψ(x1, x2, . . . , xn) = xn−k+1:n,

where (x1:n, x2:n, . . . , xn:n) is the increasing ordered vector obtained from the vector

(x1, x2, . . . , xn). In particular, k = 1 represents the parallel system and k = n repre-

sents series systems.

For the analysis of the coherent systems is useful to introduce two important sub-

sets of the set of indices that represent the components of the system.

De�nition 4.1 (Path set). A path set for a given system ψ with n components is a set

of indices P ⊆ {1, 2, . . . , n} such that if the components in P work, then the system

works.
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De�nition 4.2 (Minimal path set). A path set P is a minimal path set if it does not

contain other path sets.

Note that a system works if and only if at least one of the series systems obtained

from its minimal path sets works. Then the structure function of a system can be

written in terms of its minimal path sets as

ψ(x1, x2, . . . , xn) = max
1≤j≤r

min
i∈Pj

xi, (4.1)

where the sets P1, P2, . . . , Pr are all the minimal path sets of the system. It is easy to

prove that the minimal path sets of a coherent system satisfy

P1 ∪ P2 ∪ · · · ∪ Pr = {1, 2, . . . , n}.

De�nition 4.3 (Cut set). A cut set for a given system ψ with n components is a set

of indices K ⊆ {1, 2, . . . , n} such that if the components in K fail, then the system

fails.

De�nition 4.4 (Minimal cut set). A cut set K is a minimal cut set if it does not

contain other cut sets.

Note that a system fails if and only if at least one of the parallel systems obtained

from its minimal cut sets fails. Then the structure function can be written in terms

of its minimal cut sets as

ψ(x1x2 · · ·xn) = min
1≤j≤s

max
i∈Kj

xi, (4.2)

where the sets K1, K2, . . . , Ks are all the minimal cut sets of the system. It is easy to

prove that the minimal cut sets of a coherent system satisfy

K1 ∪K2 ∪ · · · ∪Kr = {1, 2, . . . , n}.

A system is completely determined by its minimal cut sets and its minimal path

sets.

LetX1, . . . , Xn are the lifetimes of the components in a coherent system. In the general

case, from (4.1) and (4.2), the lifetime T of the coherent system is given by

T = min
i=1,...r

max
j∈Ki

Xj = max
i=1,...s

min
j∈Pi

Xj. (4.3)

So the lifetime of the system can be represented by T = ψ(X1, . . . , Xn). Moreover

note that the lifetime of a k-out-of-n system coincides with the order statistic Xn−k+1:n

from X1, . . . , Xn.
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The distribution function FT of the system T is

FT (t) = P (T ≤ t) = P

(
min
i=1,...r

max
j∈Ki

Xj ≤ t

)
= P

(
∪ri=1{max

j∈Ki
Xj ≤ t}

)
and, by using the inclusion-exclusion formula,

FT (t) =

r∑
i=1

P

(
max
j∈Ki

Xj ≤ t
)
−

r−1∑
i=1

r∑
j=i+1

P

(
max

`∈Ki∪Kj

X` ≤ t
)

+ · · ·+(−1)r+1P

(
max

j∈K1∪···∪Kr

Xj ≤ t
)

for all t.

Let X1, . . . , Xn are the lifetimes of the components in a coherent system. If they

are independent and identically distributed (IID), with the common distribution of

the components represented by F , it holds a theorem due to Samaniego [48].

Theorem 4.1. If T is the lifetime of a coherent system with IID component lifetimes

X1, . . . , Xn, having a common continuous distribution F , then

F̄T (t) =
n∑
i=1

siF̄i:n(t),

where s1, . . . , sn are coe�cients such that
∑n

i=1 si = 1 and that don't depend on F

and where F̄i:n is the reliability function of the order statistic Xi:n. Moreover, these

coe�cients satisfy si = P (T = Xi:n) for i = 1, . . . , n.

The vector s = (s1, . . . , sn) is called the signature of the system.

Let X1, . . . , Xn be the lifetimes of the components in a coherent system. They are

exchangeable (EXC), if

(X1, . . . , Xn) =ST (Xσ(1), . . . , Xσ(n)),

for any permutation σ. Note that EXC implies ID (that is identically distributed,

dependent or independent).

So, ifX1, . . . , Xn are EXC, there are two de�nitions due to Navarro, Ruiz and Sandoval

[37].

De�nition 4.5 (Minimal signature). If T is a coherent system with exchangeable

components, the minimal signature is the vector a = (a1, . . . , an) ∈ R, with
∑n

i=1 ai=1,

such that

F̄T (t) =
n∑
i=1

aiF̄1:i(t), (4.4)

where F̄1:i(t) is the reliability function of X1:i = min{X1, . . . , Xn}.
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De�nition 4.6 (Maximal signature). If T is a coherent system with exchangeable

components, the maximal signature is the vector b = (b1, . . . , bn) ∈ R, with
∑n

i=1 bi=1,

such that

F̄T (t) =
n∑
i=1

biF̄i:i(t), (4.5)

where F̄i:i(t) is the reliability function of Xi:i = max{X1, . . . , Xn}.

Note that minimal and maximal signatures do not depend on the joint distribution

and that they can have negative components. Also note that it is possible to compute

the system reliability from the minimal (maximal) signatures and series (parallel)

reliability functions.

Table 4.1 contains the minimal and maximal signatures for all the possible coherent

systems with three exchangeable components. Note that the minimal signature of

a system is equal to the maximal signature of its dual system (that is the system

ψD(x) = 1− ψ(1− x), given a structure ψ).

Minimal Maximal

System φ(X) signature signature

(a1, a2, a3) (b1, b2, b3)

Series min(X1, X2, X3) = X(1:3) (0, 0, 1) (3,−3, 1)

Series-parallel min(X1,max(X2, X3)) (0, 2,−1) (1, 1,−1)

2-out-of-3 max1≤i<j≤3 min(Xi, Xj) = X(2:3) (0, 3,−2) (0, 3,−2)

Parallel-series max(X1,min(X2, X3) (1, 1,−1) (0, 2,−1)

Parallel max(X1, X2, X3) = X(3:3) (3,−3, 1) (0, 0, 1)

Table 4.1: Minimal and maximal signatures for coherent system with three exchangeable

components.

4.2 Distortion Functions

The distorted distribution associated to a distribution function F and to an increasing

continuous function, called distortion function q : [0, 1] → [0, 1] such that q(0) = 0

and q(1) = 1, is

Fq(t) = q(F (t)).
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Also for the reliability functions F̄ there is a similar expression

F̄q(t) = q̄(F̄ (t))

where F̄q = 1−Fq and q̄(u) = 1− q(1−u) is called the dual distortion function. Note

that q̄ is also a distortion function, that is, it is continuous, increasing and satis�es

q̄(0) = 0 and q̄(1) = 1.

In 2014, Navarro et al. [32] extended the concept of the distorted distributions

to the concept of generalized distorted distributions which are univariate distribution

functions obtained by distorting n distribution functions.

The generalized distorted distribution associated to n distribution functions F1, . . . , Fn

and to an increasing continuous multivariate distortion function Q : [0, 1]n → [0, 1]

such that Q(0, . . . , 0) = 0 and Q(1, . . . , 1) = 1 is de�ned by

FQ(t) = Q(F1(t), . . . , Fn(t)). (4.6)

There is a similar expression for the respective reliability functions

F̄Q(t) = Q̄(F̄1(t), . . . , F̄n(t)) (4.7)

where F̄i = 1− F̄i, for i = 1, . . . , n, F̄Q = 1− F̄Q and

Q̄(u) = 1− Q̄(1− u1, 1− u2, . . . , 1− un)

is called the dual distortion function. Note that Q̄ is also a distortion function, that

is, it is continuous, increasing and satis�es Q̄(0, 0, . . . , 0) = 0 and Q̄(1, 1, . . . , 1) = 1.

Let T is a random variable that represents the lifetime of a coherent system,

X1, . . . , Xn are the lifetimes of the units and Fi(xi) = P (Xi ≤ xi) the marginal

distribution function of the i-th component for i = 1, . . . , n. It is clear that also the

distribution function and the reliability function, FT and F̄T , of the system can be

computed from F1, . . . , Fn using the generalized distorted distributions given in (4.6)

and (4.7) as

FT (t) = Q(F1(t), . . . , Fn(t)) (4.8)

and

F̄T (t) = Q̄(F̄1(t), . . . , F̄n(t)).

The distorted distribution model is a very �exible model, which is useful to study

di�erent concepts in a uni�ed way. For example, it is possible to obtain ordering

properties for distorted distributions as shown in the following theorems given in

[31, 33, 35].
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Theorem 4.2. Let Fq1 = q1(F ) and Fq2 = q2(F ) be two distorted distributions of

two random variables X1 and X2 based on the same distribution function F and on

the distortion functions q1 and q2, respectively. Let q̄1 and q̄2 be the respective dual

distortion functions. Then:

(i) X1 ≤ST X2 for all F if and only if q̄1 ≤ q̄2 in [0, 1].

(ii) X1 ≤HR X2 for all F if and only if q̄2/q̄1 is decreasing in [0, 1].

(iii) X1 ≤RHR X2 for all F if and only if q2/q1 is increasing in [0, 1].

(iv) X1 ≤LR X2 for all F if and only if q̄′2/q̄
′
1 is decreasing in [0, 1].

The analogous results hold for generalized distorted distributions.

Theorem 4.3. Let FQ1 = Q1(F1, . . . , Fn) and FQ2 = Q2(F1, . . . , Fn) be two genera-

lized distorted distributions of two random variables X1 and X2 based on the same

distribution functions F1, . . . , Fn and on the generalized distortion functions Q1 and

Q2, respectively. Let Q̄1 and Q̄2 be the respective generalized dual distortion functions.

Then:

(i) X1 ≤ST X2 for all F1, . . . , Fn if and only if Q̄1 ≤ Q̄2 in [0, 1]n.

(ii) X1 ≤HR X2 for all F1, . . . , Fn if and only if Q̄2/Q̄1 is decreasing in [0, 1]n.

(iii) X1 ≤RHR X2 for all F1, . . . , Fn if and only if Q2/Q1 is increasing in [0, 1]n.

Note that the comparisons in the theorems 4.2 and 4.3 are distribution-free with

respect to the common component reliability.

4.3 Copulas

The de�nition of copula originated in the paper by Sklar [52].

De�nition 4.7. A function C : [0, 1]d → [0, 1] is a d-copula if, and only if, the

following conditions hold:

1. C(u1, . . . , ud) = 0 if uj = 0 for at least one index j ∈ {1, . . . , d};

2. when all the arguments of C are equal to 1, but possibly for the j-th one, then

C(1, . . . , 1, uj, 1, . . . , 1) = uj;
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3. C is d-increasing.

Properties 1. and 2. together are called the boundary conditions of a d-copula. In

particular, by property 2. the univariate marginals of C are uniform on [0, 1]. Note

that from the previous conditions C is continuous.

A particular case is when d = 2.

De�nition 4.8. A function C : [0, 1]2 → [0, 1] is a 2-copula if, and only if, the

following conditions hold:

1. C(0, u) = C(u, 0) = 0, for every u ∈ [0, 1] ;

2. C(1, u) = C(u, 1) = 1, for every u ∈ [0, 1]

3. C is 2-increasing, that is for all a1, a2, b1, b2 in [0, 1], with a1 ≤ b1 and a2 ≤ b2,

VC(]a, b]) = C(a1, a2)− C(a1, b2)− C(b1, a2) + C(b1, b2) ≥ 0,

where VC(]a, b]) expresses the probability that a random variable U distributed

according to the copula C takes values in ]a, b].

Suppose that T is the random variable representing the lifetime of a system and

X1, . . . , Xn are the lifetime of the units. If the component lifetimes are dependent,

then this dependancy can be represented by the joint distribution of the random vector

(X1, . . . , Xn)

F (x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn). (4.9)

Every joint distribution function for a random vector implicitly contains the descrip-

tion of both the marginal behaviour and of their dependence structure. The copula

approach provides a way of highlighting the description of the dependence structure.

Theorem 4.4. Let (F1, . . . , Fd) be univariate distribution functions and let C be any

d-copula. Then the function H : Rd → [0, 1] de�ned, for every point x = (x1, . . . , xd) ∈
Rd, by

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))

is a d-dimensional distribution function with marginal distribution given by(F1,. . . ,Fd).

So the joint distribution in (4.9) can be written in terms of copula function, as it

is shown in the following theorem.
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Theorem 4.5 (Sklar's theorem). Let X be a random vector X = (X1, . . . , Xn), let

P (X1 ≤ x1, . . . , Xn ≤ xn) be the joint distribution function of X and let Fi(xi) =

P (Xi ≤ xi) for i = 1, . . . , n be its marginals. Then there exists a n-copula C such

that, for every point x = (x1, . . . , xd) ∈ Rn,

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). (4.10)

If the marginals F1, . . . , Fn are continuous, then the copula C is uniquely de�ned.

All the properties described above can be also referred to a joint reliability function

F̄ (x1, . . . , xn) = P (X1 ≥ x1, . . . , Xn ≥ xn),

that can be expressed in terms of copula function thanks to Sklar's theorem as

F̄ (x1, . . . , xn) = K(F̄1(x1), . . . , F̄n(xn)),

where K is the so called survival copula. Note that also the survival copula K is a

copula, that is, it is a distribution function and it is not a reliability function. Actually,

the survival copula of the random vector (X1, . . . , Xn) is the distribution function of

the random vector (F̄1(X1), . . . , F̄n(Xn)), where Fi is the marginal reliability function

of Xi. Moreover K can be computed from C and vice versa.

Proposition 4.1. If T = ψ(X1, . . . , Xn) is the lifetime of a coherent system, then

F̄T (t) = Q̄K
ψ (F̄1(t), . . . , F̄n(t)), (4.11)

where Q̄K
ψ is a distortion function that depends on the structure function ψ and on the

survival copula K of (X1, . . . , Xn). Moreover,

Q̄K
ψ (u1, . . . , un) =

∑
I⊆{1,...,r}

(−1)|I|+1KI(u1, . . . , un),

where

KI(u1, . . . , un) = K(uI1, . . . , u
I
n)

where uIj = uj whenever j ∈ ∪i∈IPi or uIj = 1 whenever j 6∈ ∪i∈IPi with P1, . . . , Pr the

minimal path set of the system.

The function Q̄K
ψ is a multivariate (dual) distortion function de�ned in (4.7) and

it is important to highlight that it depends both on the structure function ψ and on
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the dependance between the component lifetimes, that is well expressed by survival

copula K.

For example, if T is the series system X1:n, then Q̄K
ψ = K. Hence, the survival copulas

are valid distortion functions, but, in general, Q̄K
ψ needs not to be a copula function.

In the same way, the distribution function of the system can also be written as

FT (t) = QC
ψ (F1(t), . . . , Fn(t)), (4.12)

where QK
ψ is a multivariate distortion function de�ned in (4.6) that depends on the

structure function ψ and on the copula C of (X1, . . . , Xn).

For example, if T is the parallel system Xn:n, then QC
ψ = C. Hence, the copulas are

valid distortion functions, but, in general, QK
ψ needs not to be a copula function.

There are some particular cases of interest in which the preceding expression can

be simpli�ed.

If the component are identically distributed (ID), that is F1 = . . . = Fn = F , the

equation (4.11) and (4.12) can be written, respectively as

F̄T (t) = q̄Kψ (F̄ (t))

where q̄Kψ (x) = Q̄K
ψ (x, . . . , x) and

FT (t) = qCψ (F (t)), (4.13)

where qCψ (x) = QC
ψ (x, . . . , x).

In the IID case (4.4) and (4.5) can be written, respectively, as

F̄T (t) =
n∑
i=1

aiF̄
i(t),

where a = (a1, . . . , an) is the minimal signature and F̄ (t) is the common relability

function of the components and

FT (t) =
n∑
i=1

biF
i(t), (4.14)

where b = (b1, . . . , bn) is the maximal signature and F (t) is the common distribution

function of the components.



Chapter 5

New Measures of Past Entropy -

Part II

5.1 Generalized Cumulative Past Entropy

As we have seen in the Chapter 1, starting from Shannon entropy and, later on, from

Rao's cumulative residual entropy, a number of alternative measure of information

have been proposed in the literature.

In particular, recently, some extensions of the last one have been proposed.

The generalized cumulative residual entropy (GCRE) was de�ned by Psarrakon and

Navarro [41] for a nonnegative random variable X with reliability function F̄ (·) as

En(X) =

∫ +∞

0

F̄ (x)
[ΛX(x)]n

n!
dx, for n = 0, 1, 2, . . . (5.1)

where ΛX(x) = − log F̄ (x) and where, by convention, 0(log 0)n = 0 for n = 1, 2, . . ..

Note that E0(X) = E(X) and E1(X) = E(X), where E(X) is the cumulative residual

entropy de�ned in (1.15).

In analogy with (5.1), Kayal [21] de�ned the generalized cumulative past entropy

(GCPE) of a nonnegative random variable X with distribution function F (·) as

CEn(X) =

∫ +∞

0

F (x)
[TX(x)]n

n!
dx, for n = 0, 1, 2, . . .

where TX(t) = − logF (t). Note that CE1(X) = CE(X). However CE0(X) = +∞.

Kayal [21] also introduced the dynamic generalized cumulative past entropy (DGCPE),

as

CEn(X; t) = CEn(tX) =
1

n!

∫ t

0

F (x)

F (t)

[
− log

F (x)

F (t)

]n
dx, t > 0 : F (t) > 0,
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for n = 0, 1, 2, . . . where tX = (X|X ≤ t) is the random variable that describes the

past lifetime of a system at age t. Note that CE1(X; t) = CE(X; t), where CE(X; t) is

the dynamic version of cumulative past entropy de�ned in (2.11), and

CE0(X; t) =

∫ t

0

F (x)

F (t)
dx = µ̃(t), (5.2)

where µ̃(·) is the mean inactivity time of X.

5.2 Some Properties of DGCPE Functions

An important property to require for DGCPE CEn(X; t) is that, under some assump-

tions and for a �xed n, it uniquely determines the distribution function FX . To prove

that this property holds, we need some preliminary results. The �rst one is a property

of systems of di�erential equations (see, e.g., [19]).

Theorem 5.1. Let U be an open set in Rn+1 and let fi : U → R be continuous

functions such that ∂fi
∂yj

is continuous on U for all i,j = 1, . . . , n. Then, for every

(x0, z1, . . . , zn) ∈ U , there exist a unique solution of the following system of di�erential

equations 
y′1 = f1(x, y1, . . . , yn)

. . .

y′n = fn(x, y1, . . . , yn)

such that yi(x0) = zi for i = 1, . . . , n which can be continued up to the boundary of U .

The second result is a property of DGCPE functions stated in Theorem 4.9 of [21].

Theorem 5.2. Let X be a nonnegative absolutely continuous random variable, then

CE ′n(X; t) = τ(t) [CEn−1(X; t)− CEn(X; t)] (5.3)

for n = 1, 2, . . . ., where τ(·) is the reversed hazard rate function of X.

Now we can state the following result.

Theorem 5.3. Let X be an absolutely continuous random variable with distribution

function F and di�erentiable DGCPE functions CE i(X; t) for i = 0, 1, . . . , n and t ≥ 0.

Let us also assume that

CEn(X; t) 6= CEn−1(X; t) (5.4)

for all t ≥ 0 such that F (t) > 0 and let t0 ≥ 0. Then the values CE i(X; t0) for

i = 0, 1, . . . , n− 1 and the function CEn(X; t) uniquely determine F .
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Proof. From (5.3), for all t ≥ 0 such that FX(t) < 1, we have
CE ′1(X; t) = τ(t) [CE0(X; t)− CE1(X; t)]

CE ′2(X; t) = τ(t) [CE1(X; t)− CE2(X; t)]

. . .

CE ′n(X; t) = τ(t) [CEn−1(X; t)− CEn(X; t)] .

From the last equality and from the hypothesis in (5.4), we can write

τ(t) =
CE ′n(X; t)

CEn−1(X; t)− CEn(X; t)
.

Substituting in the previous equalities, we obtain

CE ′j(X; t) =
CE j−1(X; t)− CE j(X; t)

CEn−1(X; t)− CEn(X; t)
CE ′n(X; t), j = 1, 2, . . . , n− 1.

Recall that CE0(X; t) = µ̃(t) as it is shown in (5.2). From the relation (2.8) we have

CE ′0(X; t) = 1− τ(t)CE0(X; t)

and then we get the expression:

CE ′0(X; t) = 1− CE ′n(X; t)CE0(X; t)

CEn−1(X; t)− CEn(X; t)
.

If CEn(X; t) is a known function, we have to solve the following system of di�erential

equations: 
y′0 = f0(t, y0, . . . , yn−1)

y′1 = f1(t, y0, . . . , yn−1)

. . .

y′n−1 = fn−1(t, y0, . . . , yn−1),

where yj = CE j(X; t) for j = 0, 1, 2, . . . , n− 1,

f0(t, y0, . . . , yn−1) =
CE ′n(X; t)y0

yn−1 − CEn(X; t)
+ 1

and

fj(t, y0, . . . , yn−1) =
yj−1 − yj

yn−1 − CEn(X; t)
CE ′n(X; t), j = 1, 2, . . . , n− 1.

From Theorem 5.1, this system of di�erential equations has a unique solution when

we �x the initial values CE j(X; t0), with j = 0, 1, . . . , n − 1. So CEn(X; t) uniquely

determines CE j(X; t) for j = 0, 1, . . . , n− 1 and in particular CE0(X; t) = µ̃(t).

Then, from(2.9), we can obtain F (t).
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The following example shows how the preceding theorem can be used to charac-

terize particular models.

Example 5.1. Let us consider a random variable X with the following Power distri-

bution F (t) = tc/bc for t ∈ [0, b], where b, c > 0. Then, a straightforward calculation

shows that

CE0(X; t) =
t

c+ 1
and CE1(X; t) =

c t

(c+ 1)2

for t ∈ [0, b]. Note that

CE1(X; t) =
c t

(c+ 1)2
=

c

c+ 1
CE0(X; t) < CE0(X; t)

for all t ∈ [0, b]. Therefore, this model can be characterized by using Theorem 5.3

from the preceding expression for CE1(X; t) and the initial value CE0(X; 0) = 0.

5.3 GCPE of Coherent Systems

Let X be a random variable absolutely continuous with distribution function F and

density function f . Suppose that F has support (α, β) with 0 ≤ α < β ≤ +∞, then

the GCPE can be written as

CEn(X) =
1

n!

∫ +∞

0

F (x)[− log(F (x))]ndx

=
1

n!

∫ β

α

φn(F (x))dx

=
1

n!

∫ 1

0

φn(u)

f(F−1(u))
du (5.5)

for n = 1, 2, . . . , where F−1 is the inverse function of F in (α, β) and where

φn(u) := u[− log(u)]n ≥ 0, 0 < u < 1.

Note that φ(0) = φ(1) = 0.
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Example 5.2. Let X have a uniform distribution in (0, b), then

CEn(X) =
1

n!

∫ +∞

0

F (x)[− log(F (x))]ndx

=
1

n!

∫ b

0

x

b

[
− log

x

b

]n
dx

=
b

n!2n+1

∣∣∣Γ(n+ 1,−2 log
x

b

)∣∣∣b
0

=
b

n!2n+1
Γ(n+ 1) =

b

2n+1
, n = 1, 2, . . . . (5.6)

where Γ(·, ·) is the incomplete Gamma function and Γ(·) = Γ(·, 0) is the Gamma

function. Note that (5.6) is the same result that we have evaluating

c

n!

∫ 1

0

φn(u)du, n = 1, 2, . . . ,

considering that in this case f(F−1(u)) = f(u).

Let T be the lifetime of a coherent system with n identically distributed (ID)

components. Recalling the identity (4.13) then its distribution function FT can be

written as

FT (t) = q(F (t))

where F is the common distribution of the component lifetimes and where q is a

distortion function.

In particular, if the components are indipendent and identically distributed (IID), we

can use the result in (4.14), then

q(u) =
m∑
i=1

biu
i,

where the vector (b1, b2, . . . , bm) is the maximal signature of the system.

Example 5.3. Referring to Table 4.1, for a 2-out-of-3 system with IID components,

we have q(u) = 3u2 − 2u3.
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Hence, proceeding as above, the GCPE of T can be written as

CEn(T ) =
1

n!

∫ +∞

0

FT (x)[− log(FT (x))]ndx

=
1

n!

∫ +∞

0

φn(FT (x))dx

=
1

n!

∫ +∞

0

φn(q(F (x)))dx

=
1

n!

∫ 1

0

φn(q(u))

f(F−1(u))
du (5.7)

for n = 1, 2, . . . .

Example 5.4. For a 2-out-of-3 system with IID components with a uniform distri-

bution in (0, 1), we have

CE1(T ) = −
∫ 1

0

(3u2 − 2u3) log(3u2 − 2u3)du =
9

8
− 27

32
ln 3 ∼= 0.198 < CE1(X) = 0.25

and

CE2(T ) =
1

2

∫ 1

0

(3u2 − 2u3)
(
− log(3u2 − 2u3)

)2
du ∼= 0.111 < CE2(X) = 0.125.

Starting from the inequalities in the previous example, we can obtain the following

general result.

Proposition 5.1. Let T be the lifetime of a coherent system with m ID components

and with distortion function q. Let φn(u) = u[− log(u)]n. If φn(q(u)) ≥ φn(u) (resp.

≤), then CEn(T ) ≥ CEn(X1) (resp. ≤).

Proof. The proof is immediate comparing the expressions in (5.6) and in (5.7).

The condition φn(q(u)) ≥ φn(u) is not a necessary condition for CEn(T ) ≥ CEn(X1)

to hold: consider, for example, a 2-out-of-3 system with IID components having a

uniform distribution as in the Example 5.4.

Using the dispersive ordering, de�ned in (A.10), (A.11) and (A.12), we obtain the

following result.

Proposition 5.2. Let T1 and T2 be the lifetimes of two coherent systems with the

same structure and with ID components having common distributions F1 and F2, re-

spectively, and having a common copula function C. If T1 ≤DISP T2, then CEn(T1) ≤
CEn(T2) for n = 1, 2, . . . .
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Proof. As the systems have the same structure and the components a common copula,

then both systems have a common distortion function q. If we use the equivalent

de�nition of dispersive order given in (A.11), from (5.7) we have

CEn(T1) =
1

n!

∫ 1

0

φn(q(u))

f1(F−1
1 (u))

du ≤ 1

n!

∫ 1

0

φn(q(u))

f2(F−1
2 (u))

du = CEn(T2),

for n = 1, 2, . . . .

Remark 5.1. In particular, from (5.7) we obtain that, if X ≤DISP Y , then CEn(X) ≤
CEn(Y ) for n = 1, 2, . . . . Therefore these conditions are necessary conditions for the

dispersive order to hold. Hence CEn(X) can also be seen as a dispersion measure.

In particular, CE1(X) can also be connected with a dispersion measure, the Gini mean

di�erence (or mean absolute di�erence) de�ned as

DG(X) := 2

∫ +∞

0

F (t)(1− F (t))dt,

where F is the distribution function of X. As 0 ≤ x(1−x) ≤ −x log x for all x ∈ (0, 1),

we have

DG(X) = 2

∫ +∞

0

F (t)(1− F (t))dt ≤ 2

∫ +∞

0

F (t)(− log(F (t)))dt = 2CE1(X).

Therefore, CE1(X) can also be seen as a dispersion measure closely connected with

the Gini mean di�erence.

We can obtain bounds for CEn(T ) in terms of CEn(X1) in the case of identically

distributed components as follows.

Proposition 5.3. Let T be the lifetime of a coherent system with ID components with

common distribution function F (and common probability density function f) and with

distortion function q. Let φn(u) = u[− log(u)]n. Then

B1,nCEn(X1) ≤ CEn(T ) ≤ B2,nCEn(X1)

for n = 1, 2, . . . , where

B1,n = inf
u∈(0,1)

φn(q(u))

φn(u)
and B2,n = sup

u∈(0,1)

φn(q(u))

φn(u)
.
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Proof. From (5.7), the upper bound can be obtained as follows

CEn(T ) =
1

n!

∫ 1

0

φn(q(u))

f(F−1(u))
du

=
1

n!

∫ 1

0

φn(q(u))

φn(u)

φn(u)

f(F−1(u))
du

≤ 1

n!
sup
u∈(0,1)

φn(q(u))

φn(u)

∫ 1

0

φn(u)

f(F−1(u))
du

=

(
sup
u∈(0,1)

φn(q(u))

φn(u)

)
CEn(X1)

for n = 1, 2, . . . .

The lower bound can be obtained in a similar way.

Example 5.5. As we see in the Example 5.3, for a 2-out-of-3 system with IID compo-

nents, the distortion function is q(u) = 3u2−2u3 and, from the preceding proposition,

we obtain

0 ≤ CE1(T ) ≤ 1.01201 CE1(X1)

for any F . The results given by the precending proposition improve that given in

Proposition 5.1. In this example we can't apply Proposition 5.1 because the upper

bound is greater than 1 and the lower bound is smaller than 1.

Analogously, for n = 2, 3, we obtain

CE2(T ) ≤ 1.17433 CE2(X1)

and

CE3(T ) ≤ 1.50256 CE3(X1).

The preceding proposition can be extended also to compare the GCPE of two

systems as follows.

Proposition 5.4. Let T1 and T2 be the lifetimes of two coherent systems with ID com-

ponents and with distortion functions q1 and q2, respectively. Let φn(u) = u[− log(u)]n.

Then (
inf

u∈(0,1)

φn(q2(u))

φn(q1(u))

)
CEn(T1) ≤ CEn(T2) ≤

(
sup
u∈(0,1)

φn(q2(u))

φn(q1(u))

)
CEn(T1)

for n = 1, 2, . . . .
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Proof. The proof goes similarly to the proof of Proposition 5.3, but in the second

equalities we multiply and divide by φn(q1(u)).

Note that, if

sup
u∈(0,1)

φn(q2(u))

φn(q1(u))
≤ 1,

then CEn(T2) ≤ CEn(T1).

We can obtain additional bounds for CEn(T ) when the ID components have a

bounded density.

Proposition 5.5. Let T be the lifetime of a coherent system with ID components and

with distortion function q. Let φn(u) = u[− log(u)]n. Let us assume that the compo-

nents have an absolutely continuous distribution F with probability density function f

and support S.

(i) If f(x) ≤M for all x ∈ S, then

CEn(T ) ≥ 1

M(n!)

∫ 1

0

φn(q(u))du

for n = 1, 2, . . . .

(ii) If f(x) ≥ L > 0 for all x ∈ S, then

CEn(T ) ≤ 1

L(n!)

∫ 1

0

φn(q(u))du

for n = 1, 2, . . . .

Proof. If f(x) ≤M for all x ∈ S, then

CEn(T ) =
1

n!

∫ 1

0

φn(q(u))

f(F−1(u))
du

≥ 1

n!

∫ 1

0

φn(q(u))

M
du

=
1

M(n!)

∫ 1

0

φn(q(u))du

for n = 1, 2, . . . .

The other bound is obtained in a similar way.
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A particular case of the previous proposition, is when T = X. In this case we

obtain

CEn(X) ≥ 1

M(n!)

∫ 1

0

φn(u)du

whenever f(x) ≤M for all x ∈ S, and

CEn(X) ≤ 1

L(n!)

∫ 1

0

φn(u)du

whenever f(x) ≥ L > 0 for all x ∈ S, for n = 1, 2, . . . .

Example 5.6. The bounds are attained when X has a uniform distribution in (0, b).

In this case

CEn(X) =
1

n!

∫ b

0

x

b

[
− log

x

b

]n
dx

=
(−1)n

n!b

[
−
∫ b

0

x

2
n
(

log
x

b

)n−1

dx

]

=
1

2

[∫ b

0

(−1)n−1

(n− 1)!

x

b

(
log

x

b

)n−1

dx

]
=

1

2
CEn−1(X) for n = 1, 2, . . . .

where the second equality is obtained by integration by part.

Hence

CEn(X) =
1

2
CEn−1(X) = . . . =

1

2n
CE0(X) =

1

2n

∫ b

0

(x
b

)
dx =

1

2n
b

2
.

Therefore CEn(X) = b/2n+1 (as we see in the Example 5.2) for n = 0, 1, . . .. Using the

identity (5.5) and noting that f(F−1(u)) = 1/b for all u ∈ (0, b),

CEn(X) =
1

n!

∫ 1

0

φn(u)du =
b

2n+1

from which

CEn(X) =
1

M2n+1
,

because f(x) ≤ 1/b for all x ∈ (0, b).

Thanks to the previous example we can state that the bounds for CEn(X) and a

general distribution F can be written as

CEn(X) ≥ 1

M2n+1
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whenever f(x) ≤M for all x ∈ S, and

CEn(X) ≤ 1

L2n+1

whenever f(x) ≥ L > 0 for all x ∈ S, for n = 1, 2, . . . .

The following example shows how to obtain the bounds for a system with dependent

and identically distributed (DID) components.

Example 5.7. Let us consider the parallel system T = X2:2 = max(X1, X2) with DID

components having a common distribution F . Then the joint distribution function of

the random vector (X1, X2) can be written as in the equation (4.10):

P (X1 ≤ x1, X2 ≤ x2) = C(F (x1), F (x2)),

where C is a given copula. Then the system distribution can be written as

F2:2(t) = P (X2:2 ≤ t) = P (X1 ≤ t,X2 ≤ t) = C(F (t), F (t)) = q(F (t)),

where q(u) = C(u, u).

For example, let us consider the following Clayton copula with θ = 1, that is

C(u, v) =
(
u−θ + v−θ − 1

)−θ
=

uv

u+ v − uv
, 0 ≤ u, v ≤ 1. (5.8)

Then q(u) = u/(2− u). Hence, from Proposition 5.3, we obtain

B1,1 = inf
u∈(0,1)

(
1

(2− u) log u
log

(
u

2− u

))
and

B2,1 = sup
u∈(0,1)

(
1

(2− u) log u
log

(
u

2− u

))
and then

1

2
CE1(X1) ≤ CE1(T ) ≤ 2 CE1(X1).

As ∫ 1

0

φ1(q(u))du = −2 log 2 +
π2

6
= 0.2586397,

from Proposition 5.5, we also obtain

0.2586397

M
≤ CE1(T ) ≤ 0.2586397

L

whenever L ≤ f(x) ≤M for all x ∈ S.
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In Appendix C, in Table C.1 we give the distortion functions for all the coherent

systems with 1-4 IID components and in Table C.2 we give CEn(T ) for these systems

when the components have a standard exponential distribution (µ = 1). We also give

the respective bounds obtained from Proposition 5.3 and Proposition 5.5. In this case

the upper bound cannot be obtained from Proposition 5.5 since we have L = 0, so the

upper bound is +∞. In particular,

CEn(X1) ≥ 1

n!

∫ 1

0

φn(u)du =
1

2n+1
.

Instead the value of M , de�ned in Proposition 5.5, is M = 1 and hence

Dn :=
1

n!

∫ 1

0

φn(q(u))du

is a lower bound for CEn(T ). Note that B1,n, B2,n and Dn do not depend on F and so

these values can be used for other models (with possible di�erent values for CEn(T )

and M). Note that B1,n = 0 for all the coherent systems with 2�4 components. So

the lower bound is Dn and the upper bound is B2,nCEn(X1).

5.4 Generalized Cumulative Kerridge Inaccuracy

Let X and Y be two random lifetimes having distribution function F and G, re-

spectively. In analogy with (2.12), let us now introduce the generalized cumulative

Kerridge inaccuracy of order n de�ned as

Kn[F,G] =
1

n!

∫ +∞

0

F (x)[− logG(x)]ndx. (5.9)

We now give a probabilistic meaning of the generalized cumulative inaccuracy in terms

of (5.10) and (5.13). First we note that Kayal [21] introduces the following decreasing

convex function:

T
(2)
n,X(x) =

1

n!

∫ +∞

x

[− logF (z)]ndz. (5.10)

Moreover, Lemma 3.12 in [21] provides the following expression of the GCPE:

CEn(X) = E[T
(2)
n,X(X)]. (5.11)

In the following proposition we give a similar result for the measure de�ned in (5.9).

Proposition 5.6. Let X and Y two nonnegative absolutely continuous random vari-

ables having distribution functions F and G, respectively. Then we have

Kn[F,G] = E
[
T

(2)
n,Y (X)

]
, (5.12)
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where

T
(2)
n,Y (x) =

1

n!

∫ +∞

x

[− logG(z)]ndz. (5.13)

Proof. From (5.9), by Fubini-Tonelli's theorem, it follows

Kn[F,G] =
1

n!

∫ +∞

0

F (x)[− logG(x)]ndx

=
1

n!

∫ +∞

0

[∫ x

0

dF (t)

]
[− logG(x)]ndx

=

∫ +∞

0

[∫ +∞

t

[− logG(x)]n

n!
dx

]
dF (t)

=

∫ +∞

0

T
(2)
n,Y (t)dF (t),

which immediately yields the result by virtue of (5.13).

In the following propositions, we obtain a connection between our measure of

discrimination and some stochastic orders.

Here we use the usual stochastic order, de�ned in (A.1) and in (A.2).

Proposition 5.7. Let X and Y be nonnegative random variables having distribution

functions F and G, respectively. If X ≤ST Y , then

Kn[G,F ] ≤ CEn(X) ≤ Kn[F,G]

for n = 1, 2, . . . .

Proof. By assumption, from the equivalent de�nition in (A.2), F (t) ≥ G(t) for all

t ≥ 0. Then, for n = 1, 2, . . . ,

Kn[F,G] =
1

n!

∫ +∞

0

F (x)[− logG(x)]ndx ≥ 1

n!

∫ +∞

0

F (x)[− logF (x)]ndx

and

Kn[G,F ] =
1

n!

∫ +∞

0

G(x)[− logF (x)]ndx ≤ 1

n!

∫ +∞

0

F (x)[− logF (x)]ndx.

We remark that X ≤ST Y does not imply in general CEn(X) ≤ CEn(Y ).

Now we use the decreasing convex order, de�ned in (A.9).
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Proposition 5.8. Let X and Y be nonnegative random variables with distribution

functions F and G, respectively. If X ≤DCX Y , then

CEn(X) ≤ Kn[G,F ]

for n = 1, 2, . . . .

Proof. By assumption E[φ(X)] ≤ E[φ(Y )] for all decreasing convex functionφ :R→R.
Note that from (5.11) and (5.12) both GCPE and Kn[G,F ] can be expressed as mean

value of T (2)
n,X(·). So, the proof follows by noting that T (2)

n,X is a decreasing convex

function.

5.5 Empirical Generalized Cumulative Kerridge In-

accuracy

Let X1, X2, . . . , Xm be a random sample of size m from a lifetime distribution with

absolutely continuous cumulative distribution function F (x). Kayal [21] de�ned the

empirical GCPE as

CEn(F̂m) =
1

n!

∫ +∞

0

F̂m(x)[− log F̂m(x)]ndx, n = 1, 2, . . . , (5.14)

where

F̂m(x) =
1

m

m∑
i=1

I(Xi≤x), x ∈ R

is the empirical distribution of the sample and I is the indicator function. Denoting

X1:m, X2:m, . . . , Xm:m as the order statistics of the sample, (5.14) can be written as

CEn(F̂m) =
m−1∑
j=1

1

n!

∫ Xj+1:m

Xj:m

F̂m(x)[− log F̂m(x)]ndx, n = 1, 2, . . . . (5.15)

Moreover, if F is continuous, then

F̂m(x) =


0, x < X1:m

j

m
, Xj:m ≤ x < Xj+1:m, j = 1, 2, . . . ,m− 1

1, x ≥ Xm:m

Hence, (5.15) can be rewritten as

CEn(F̂m) =
1

n!

m−1∑
j=1

Uj+1
j

m

(
− log

j

m

)n
, n = 1, 2, . . . ,
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where

U1 = X1:m, Ui = Xi:m −Xi−1:m, i = 1, 2, . . . ,m

are the sample spacings corresponding to the sample order statistics.

Let us now consider another random sample Y1, Y2, . . . , Ym of nonnegative, abso-

lutely continuous IID random variables and denote its empirical GCPE by

CEn(Ĝm) =
1

n!

∫ +∞

0

Ĝm(y)[− log Ĝm(y)]ndy,

where Ĝm is the empirical distribution of the second sample.

According to (5.9) we de�ne the empirical generalized cumulative inaccuracy as

Kn[F̂m, Ĝm] =
1

n!

∫ +∞

0

F̂m(u)[− log Ĝm(u)]ndu.

It can be expressed as

Kn[F̂m, Ĝm] =
1

n!

m−1∑
j=1

(
− log

j

m

)n ∫ Yj+1:m

Yj:m

F̂m(u)du,

where Y1:m, Y2:m, . . . , Ym:m are the order statistics of the new sample. Let us denote

by

Nj =
m∑
i=1

I(Xi≤Yj:m), j = 1, 2, . . . ,m

the number of random variables of the �rst sample that are less than or equal to the

j-th order statistic of the second sample. We rename by Xj,1 < Xj,2 < . . . the random

variables of the �rst sample belonging to the interval (Yj:m, Yj+1:m]. From the above

position we have:∫ Yj+1:m

Yj:m

F̂m(u)du =
Nj

m
[Yj+1:m − Yj:m] +

1

m

Nj+1−Nj∑
r=1

[Yj+1:m −Xj,r].

Then

Kn[F̂m, Ĝm] =
1

mn!

m−1∑
j=1

Nj+1Yj+1:m −NjYj:m −
Nj+1−Nj∑

r=1

Xj,r

(− log
j

m

)n
.

Let us remember that the well known Glivenko-Cantelli's theorem states that:

sup
x
| F̂m(x)− F (x) |→ 0 a.s. as m→ +∞.

Using this result we prove the following theorem, which discloses an asymptotic prop-

erty of the empirical generalized cumulative inaccuracy.



5 New Measures of Past Entropy - Part II 65

Theorem 5.4. Let X and Y be nonnegative random variables in Lp for some p > 1;

the empirical generalized cumulative inaccuracy converges to the generalized cumula-

tive inaccuracy of X and Y , that is

Kn[F̂m, Ĝm]→ Kn[F,G] a.s. as m→∞.

Proof. By the dominated convergence theorem, the integral of F̂m(u)[− log Ĝm(u)]n

converges to that of F (u)[− logG(u)]n on any �nite interval. Hence, we only have to

show that∣∣∣∣∫ +∞

1

F̂m(u)[− log Ĝm(u)]ndu−
∫ +∞

1

F (u)[− logG(u)]ndu

∣∣∣∣→ 0 a.s. as m→∞.

Note that, for a �xed n, the function u[− log(v)]n is continuous in [a, 1]2 for any a > 0

and so bounded. Hence, if K = min(F̂m(1), Ĝm(1)) > 0, we get∣∣∣∣F̂m(u)[− log Ĝm(u)]n
∣∣∣∣ ≤ K.

Now, by applying the dominated convergence theorem and by virtue of the Glivenko-

Cantelli's theorem, we obtain the thesis.



Chapter 6

Inactivity Time of Coherent Systems

under Periodical Inspections

The study of representations and comparisons of coherent systems is one of the most

relevant topic in reliability theory. Several studies have been devoted to understand

the behaviour of a system composed by di�erent kind of components in order to

evaluate its reliability. The reliability of a system depends on several factors such

as the structure of the system, the behaviour of each component and the way the

components are correlated with each other. In particular, recently, some authors

have obtained representations for reliability of coherent system formed by components

with possibly dependent lifetimes in terms of distorted distributions and with the

help of copulas (for more details about a copula approach to reliability, see, e.g.,

Eryilmaz [16] and Navarro and Spizzichino [38]). For example, Navarro and Durante

[34] studied the copula-based representations for the reliability of the residual lifetimes

of coherent systems with dependent components. Using the same tools, Navarro et al.

[36] obtained comparison results for inactivity times of k-out-of-n and general coherent

systems with dependent components.

6.1 Why Inactivity Times?

In a real life situation, inference about the past lifetime of the system may be of in-

terest. Suppose that a coherent system with lifetime T has failed some time before

the inspection time t > 0. As in Section 2.1, we can consider the conditional random

variable X(t) = (t − T |T ≤ t), the inactivity time, which usually has a close connec-

tion with the so-called autopsy data, that are information obtained by examining the
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component states of a failed system.

The monitoring of a system can be scheduled at di�erent times, so it is believable

that at a certain inspection time the system can be found broken. In our work, we

consider only two inspwction time, t1 and t2, but more complex inspection plans can

be analysed as well, starting from the results in the following sections. Under this

double monitoring, we assume that the system is working at the �rst inspection time

t1 and it is broken at the second inspection time t2, with 0 ≤ t1 < t2. So, in this

case, the interest is on the history of such system, in particular on the inactivity time

(t2 − T |t1 < T < t2). We study inactivity times in various cases, considering di�erent

informations about the states of the components available at the di�erent inspection

times.

6.2 Representations of Inactivity Times of Coherent

Systems under Periodical Inspections

Let X be a nonnegative random variable representing the lifetime of a unit or a system

with distribution function F . At time t > 0, we know that the unit is broken, then

the inactivity time for that unit is

X(t) = (t−X|X < t),

and the reliability function of X(t) is

F̄ (t)(x) = P (X(t) > x) = P (t−X > x|X < t) =
P (X < t− x)

P (X < t)
=
F (t− x)

F (t)

for all x ∈ [0, t], whenever F (t) > 0.

Under periodical inspections, we know that the unit is working at a time t1 and

that it is broken at a time t2 with 0 ≤ t1 < t2, then the inactivity time in the interval

(t1, t2) is given by

X(t1,t2) = (t2 −X|t1 < X < t2)

and its reliability function by

F̄ (t1,t2)(x) = P (X(t1,t2) > x)

= P (t2 −X > x|t1 < X < t2)

=
P ({t1 < X < t2 − x} ∩ {t1 < X < t2})

P (t1 < X < t2)

=
F (t2 − x)− F (t1)

F (t2)− F (t1)
(6.1)



6 Inactivity Time of Coherent Systems under Periodical Inspections 68

for all x ∈ [0, t2 − t1], whenever F (t2) − F (t1) > 0. Hence, the expected inactivity

time is

E(t2 −X|t1 < X < t2) =

∫ t2−t1

0

F (t2 − x)− F (t1)

F (t2)− F (t1)
dx.

Under periodical inspections, we might have di�erent information about the states

of the system and of its component at the inspection times t1 and t2. We can consider

di�erent kinds of conditional distributions: we analyse three cases that are, in our

opinion, the most realistic ones.

6.2.1 Case I

The simplest case is just to know that the system was working at a time t1 and that

it is broken at second inspection time t2 with 0 ≤ t1 < t2. Then, the inactivity time

of the system is given by

T (t1,t2) = (t2 − T |t1 < T < t2),

whenever FT (t2)− FT (t1) > 0. Recall that FT can be calculated through generalized

distortion function as in (4.8). Thus we obtain the following result.

Proposition 6.1. If the component distribution functions satisfy Fi(t2) − Fi(t1) > 0

for i = 1, . . . , n, then the reliability function of T (t1,t2) = (t2 − T |t1 < T < t2) can be

written as

F̄
(t1,t2)
T (x) = Q̄(t1,t2)(F̄

(t1,t2)
1 (x), . . . , F̄ (t1,t2)

n (x)),

where F̄
(t1,t2)
1 , . . . , F̄

(t1,t2)
n are the reliability functions of the inactivity times of the

components in the interval (t1, t2) and Q̄(t1,t2) is a distortion function given by

Q̄(t1,t2)(u)=
Q(F1(t1)+u1(F1(t2)−F1(t1)),. . ., Fn(t1)+u1(Fn(t2)−Fn(t1)))−Q(F1(t1),. . ., Fn(t1))

Q(F1(t2),. . ., Fn(t2))−Q(F1(t1),. . ., Fn(t1))
(6.2)

for u = (u1, . . . , un) ∈ [0, 1]n.

Proof. From (6.1) the reliability function of T (t1,t2) = (t2 − T |t1 < T < t2) is given by

F̄
(t1,t2)
T (x) = Pr(T (t1,t2) > x) = Pr(t2 − T > x|t1 < T < t2) =

FT (t2 − x)− FT (t1)

FT (t2)− FT (t1)

for all x ∈ [0, t2 − t1] such that FT (t2)− FT (t1) > 0. Hence, from (4.8), we have

F̄
(t1,t2)
T (x) =

Q(F1(t2 − x), . . . , Fn(t2 − x))−Q(F1(t1), . . . , Fn(t1))

Q(F1(t2), . . . , Fn(t2))−Q(F1(t1), . . . , Fn(t1))
. (6.3)
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Finally, we note that from (6.1), the reliability functions of the inactivity times of the

components can be written as

F̄
(t1,t2)
i (x) =

Fi(t2 − x)− Fi(t1)

Fi(t2)− Fi(t1)

for i = 1, . . . , n. Therefore

Fi(t2 − x) = F̄
(t1,t2)
i (x)(Fi(t2)− Fi(t1)) + Fi(t1) (6.4)

for i = 1, . . . , n.

Now, substituting (6.4) in (6.3), we obtain and

F̄
(t1,t2)
T (x) = Q̄(t1,t2)(F̄

(t1,t2)
1 (x), . . . , F̄ (t1,t2)

n (x))

where Q̄(t1,t2)(u1, . . . , un) is the distortion function given in (6.2).

Note that, in the preceding proof, we obtian an explicit expression for the distortion

function Q̄(t1,t2) and it depends on Q, F1(t1), . . . , Fn(t1) and F1(t2), . . . , Fn(t2). If

t1 = 0, then we obtain the representation given in [36].

Remark 6.1. If the components are identically distributed (ID), that is, F1 = · · · =
Fn = F , then we get the following expression

F̄
(t1,t2)
T (x) = q̄(t1,t2)(F̄ (t1,t2)(x)),

where q̄(t1,t2)(u) := Q̄(t1,t2)(u, . . . , u) is a (univariate) distortion function and F̄ (t1,t2) is

the common reliability function of the component inactivity times (t2 −Xi|t1 < Xi <

t2) in the interval (t1, t2).

6.2.2 Case II

Now, we assume that we know which components are working and which have failed

at the inspection times t1 and t2 with 0 ≤ t1 < t2. These informations about the

components implies that the system has failed in the interval (t1, t2). This can be

represented de�ning three subsets, W1, W2 and W3, of the set of the indexes I =

{1, . . . , n} as follows:

• W1 represents the components that have failed in the interval (0, t1);

• W2 represents the components that have failed in the interval (t1, t2);
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• W3 = {1, . . . , n}−W1−W2 represents the components that are working at time

t2 even if the system has failed in the interval (t1, t2).

Note that W1 and/or W3 can be empty sets and that we assume that the event

{Xi > t1, i /∈ W1} implies {T > t1} and the event {Xi < t2, i ∈ W1 ∪W2} implies

{T < t2}.
Then, the inactivity time of the system is given by

T
(t1,t2)
W1,W2

= (t2 − T |EW1,W2)

where

EW1,W2 := {Xi < t1, i ∈ W1; t1 < Xj < t2, j ∈ W2;Xk > t2, k ∈ W3}

We assume P (EW1,W2) > 0 and that EW1,W2 implies t1 < T < t2. By using again (4.8)

we obtain the following proposition.

Proposition 6.2. If the component distribution functions satisfy Fi(t2) − Fi(t1) > 0

for i = 1, . . . , n, then the reliability function of T
(t1,t2)
W1,W2

can be written as

F̄
(t1,t2)
W1,W2

(x) = Q̄
(t1,t2)
W1,W2

(F̄
(t1,t2)
1 (x), . . . , F̄ (t1,t2)

n (x)), (6.5)

where Q̄
(t1,t2)
W1,W2

is a distortion function and F̄
(t1,t2)
1 , . . . , F̄

(t1,t2)
n are the reliability func-

tions of the inactivity times of the components in the interval (t1, t2).

Proof. The reliability function of T (t1,t2)
W1,W2

is

F̄
(t1,t2)
W1,W2

(x) = P (T
(t1,t2)
W1,W2

> x) = P (t2 − T > x|EW1,W2) =
P (T < t2 − x,EW1,W2)

P (EW1,W2)

for x ∈ [0, t2− t1]. The components in W3 cannot fail before t2. So they cannot cause

the failure of the system before t2 − x. Let K1, . . . , Ks be the minimal cut sets of T

which do not contain elements of W3 (i.e. Ki ⊆ W1 ∪W2 for i = 1, . . . , s) and let

T ∗ = mini=1,...,s maxj∈Ki Xj. The lifetime of a system can be written of its minimal

cut sets, then

F̄
(t1,t2)
W1,W2

(x) =
P (T ∗ < t2 − x,EW1,W2)

P (EW1,W2)
=
P (mini=1,...,s maxj∈Ki Xj < t2 − x,EW1,W2)

P (EW1,W2)
.
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Now we can use the inclusion-exclusion formula obtaining

F̄
(t1,t2)
W1,W2

(x) =
P (∪si=1{maxj∈Ki Xj < t2 − x}, EW1,W2)

P (EW1,W2)

=
s∑
i=1

P (maxj∈Ki Xj < t2 − x,EW1,W2)

P (EW1,W2)
+

−
∑
i<j

P (maxz∈Ki∪Kj Xz < t2 − x,EW1,W2)

P (EW1,W2)
+ . . .

+ (−1)s+1P (maxj∈K1∪···∪Ks Xj < t2 − x,EW1,W2)

P (EW1,W2)
. (6.6)

Finally note that for K ⊆ W1 ∪W2, we have

P

(
max
j∈K

Xj < t2 − x,EW1,W2

)
=P (t1 < Xj < t2 − x,j ∈ K ∪W2;Xj < t1,j ∈W1;Xj > t2,j ∈W3)

= Q̄
(t1,t2)
W1,W2,K

(F̄
(t1,t2)
1 (x), . . . , F̄ (t1,t2)

n (x)), (6.7)

where the last equality is obtained by using a procedure similar to that used in the

proof of Proposition 6.1. Finally, using the preceding expression in (6.6) we prove

(6.5).

Note that (6.7) shows that Q̄(t1,t2)
W1,W2,C

(u1, . . . , un) is constant in uj for j /∈ W2.

Remark 6.2. If the components are identically distributed (ID) with common distri-

bution F and common reliability function of the component inactivity times F̄ (t1,t2) ,

then we get the following expression

F̄
(t1,t2)
W1,W2

(x) = q̄
(t1,t2)
W1,W2

(F̄ (t1,t2)(x)),

where q̄(t1,t2)
W1,W2

(u) = Q̄
(t1,t2)
W1,W2

(u, . . . , u).

Another interesting particular case is when the components are independent. In

this case we can state the following result that is a particular case of Proposition 6.2.

Proposition 6.3. Let K1, . . . , Ks be all the minimal cut sets of a system T contained

in W1∪W2. If the components are independent and their distribution functions satisfy

Fi(t2) − Fi(t1) > 0 for i = 1, . . . , n, then the reliability function of T
(t1,t2)
W1,W2

can be

written as

F̄
(t1,t2)
W1,W2

(x) = Q̄W1,W2(F̄
(t1,t2)
1 (x), . . . , F̄ (t1,t2)

n (x)),

where

Q̄W1,W2(u1, . . . , un) =

s∑
i=1

∏
j∈Ki∩W2

uj−
∑
i<j

∏
z∈(Ki∪Kj)∩W2

uz+· · ·+(−1)s+1
∏

j∈(K1∪···∪Ks)∩W2

ūj (6.8)

is a distortion function.
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Proof. In the components are independent, for K ⊆ W1 ∪W2, then the summations
in (6.6) can be written as

SK =
P (maxj∈K Xj < t2 − x,EW1,W2

)

P (EW1,W2)

=

∏
j∈K∩W2

P (t1 < Xj < t2 − x)
∏

j∈W2−KP (t1 < Xj < t2)
∏

j∈W1
P (Xj < t1)

∏
j∈W3

P (Xj > t2)∏
j∈W2

P (t1 < Xj < t2)
∏

j∈W1
P (Xj < t1)

∏
j∈W3

P (Xj > t2)

=

∏
j∈K∩W2

P (t1 < Xj < t2 − x)∏
j∈K∩W2

P (t1 < Xj < t2)

=
∏

j∈K∩W2

F̄
(t1,t2)
j (x),

where the last equality is obtained from (6.1). Then from (6.6) we get

F̄
(t1,t2)
W1,W2

(x) =
s∑
i=1

∏
j∈Ki∩W2

F̄
(t1,t2)
j (x)−

∑
i<j

∏
z∈(Ki∪Kj)∩W2

F̄ (t1,t2)
z (x) + . . .

+ (−1)s+1
∏

j∈(K1∪···∪Ks)∩W2

F̄
(t1,t2)
j (x)

which completes the proof.

Remark 6.3. An important fact here is that we have proved that, if the components

are independent, then the distortion function Q̄W1,W2 does not depend on t1 and t2 (so

we have deleted the superscript (t1, t2) used in the general case). Note that Q̄W1,W2 is

constant in uj for j /∈ W2. The sequence K1 ∩W2, . . . , Ks ∩W2 cannot contain empty

sets, because, if Ki ∩W2 = ∅ for an i ∈ {1, . . . , s}, then Ki ⊆ W1 so T < t1. Moreover

this sequence is not always a sequence of minimal cut sets since one of these sets can

be included in another one.

6.2.3 Case III

We consider again the inspection times t1 and t2 with 0 ≤ t1 < t2 but, in this case,

we assume that t1 is the �rst component failure time. We also assume that we know

which component has failed at time t1 and that this failure does not imply the system

failure. These assumptions may seem unrealistic for some systems but, for others,

they could be reasonable, for example if some continuous monitoring is made over

some components. At the second inspection time we know that the components in the

set W have failed causing the system failure, even if other components are working.

Then, the inactivity time of the system is given by

T
(t1,t2)
i,W = (t2 − T |Xi = t1; t1 < Xj < t2, j ∈ W ;Xj > t2, j /∈ W ),
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where we assume that the conditioning event has a positive probability and implies

t1 < T < t2. More complex assumptions, for example when we know the exact failure

times of more components, can be treated in a similar way by using the techniques

developed below (see also [34]).

Without loss of generality, by choosing an appropriate structure function, we can

assume that i = n and that W = {1, . . . ,m} for m < n. So the inactivity time of the

system is given by

T
(t1,t2)
n,W = (t2 − T |Xn = t1; t1 < Xj < t2, j = 1, . . . ,m;Xj > t2, j = m+ 1, . . . , n− 1).

Thus we can state the following proposition for this inactivity time with a represen-

tation similar (based on distortions) to that obtained in the preceding cases.

Proposition 6.4. IfW = {1, . . . ,m} and the component distribution functions satisfy

Fi(t2)−Fi(t1) > 0 for i = 1, . . . , n, then the reliability function of T
(t1,t2)
n,W can be written

as

F̄
(t1,t2)
n,W (x) = Q̄

(t1,t2)
n,W (F̄

(t1,t2)
1 (x), . . . , F̄ (t1,t2)

n (x)),

where Q̄
(t1,t2)
n,W is a distortion function and F̄

(t1,t2)
1 , . . . , F̄

(t1,t2)
n are the reliability func-

tions of the inactivity times of the components in the interval (t1, t2). Moreover,

Q̄
(t1,t2)
n,W (u1, . . . , un) does not depend on um+1, . . . , un.

Proof. First, we note that, from the copula representation of the joint distribution

given in (4.10), the probability density function (pdf) f of X1, . . . , Xn can be written

as

f(x1, . . . , xn) = f1(x1) . . . fn(xn)∂1 . . . ∂nC(F1(x1), . . . , Fn(xn)),

where f1, . . . , fn are the marginal probability density functions and ∂iC represents the

partial derivative of C with respect to its i-th variable. The function c = ∂1 . . . ∂nC is

the pdf of the copula C. Hence the conditional pdf of (X1, . . . , Xn−1|Xn = x1) is

f1,...,n−1|n(x1, . . . , xn−1|xn) =
f(x1, . . . , xn)

fn(xn)

= f1(x1) . . . fn−1(xn−1)c(F1(x1), . . . , Fn(xn))

for xn such that fn(xn) > 0. Therefore, its distribution function is

F1,...,n−1|n(t1, . . . , tn−1|xn) =

∫ t1

0

· · ·
∫ tn−1

0

f1(x1) . . . fn−1(xn−1)c(F1(x1), . . . , Fn(xn))dxn−1 . . . dx1

=

∫ F1(t1)

0

· · ·
∫ Fn−1(tn−1)

0

c(v1, . . . , vn−1, F (xn))dvn−1 . . . dv1

= Q1,...,n−1|n(F1(t1), . . . , Fn−1(tn−1)),
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where

Q1,...,n−1|n(u1, . . . , un−1) =

∫ u1

0

· · ·
∫ un−1

0

c(v1, . . . , vn−1, F (xn))dvn−1 . . . dv1 (6.9)

depends on F (xn).

Hence, the reliability function of the inactivity time T (t1,t2)
n,W can be calculated as

F̄
(t1,t2)
n,W (x) = P (t2 − T > x|Xn = t1; t1 < Xj < t2, j ∈ Im;Xj > t2, j ∈ Jm)

=
P (T < t2 − x, t1 < Xj < t2, j ∈ Im;Xk > t2, j ∈ Jm|Xn = t1)

P (t1 < Xj < t2, j ∈ Im;Xj > t2, j ∈ Jm|Xn = t1)
, (6.10)

where Im := {1, . . . ,m} and Jm := {m+ 1, . . . , n− 1}.
Recall that, from (4.3), the lifetime of the system can be written as

T = min
i=1,...,r

max
k∈Ki

Xk

where K1, . . . , Kr are the minimal cut sets of the system. As Xj > t2 for j = m +
1, . . . , n−1, only the minimal cut sets included in {1, . . . ,m, n} can cause the failure of
the system in the interval (t1, t2). We can assume, without loss of generality, that those
minimal cut sets are K1, . . . , Ks for 1 ≤ s ≤ r. Let K∗i := Ki−{n} for i = 1, . . . s and
let T ∗ := mini=1,...,s maxk∈K∗

i
Xk. Using the inclusion-exclusion formula, the numerator

in the expression (6.10) can be obtained as

N = P (T < t2 − x, t1 < Xj < t2, j ∈ Im;Xj > t2, j ∈ Jm|Xn = t1)

= P (T ∗ < t2 − x, t1 < Xj < t2, j ∈ Im;Xj > t2, j ∈ Jm|Xn = t1)

=

s∑
i=1

P (t1 < Xj < t2 − x, j ∈ K∗i ; t1 < Xj < t2, j ∈ Im −K∗i ;Xj > t2, j ∈ Jm|Xn = t1)+

−
s−1∑
i=1

s∑
j=1+1

P (t1 < Xl < t2 − x, l ∈ K∗i,j ; t1 < Xl < t2, l ∈ Im −K∗i,j ;Xl > t2, l ∈ Jm|Xn = t1)+. . .

+(−1)s+1P (t1 < Xj < t2 − x, j ∈ K∗1,...,s;t1 < Xj < t2, j ∈ Im −K∗1,...,s;Xj > t2, j ∈ Jm|Xn = t1),

where K∗i,j := K∗i ∪K∗j , . . . , K∗1,...,s := K∗1 ∪ . . . K∗s .
Finally from (6.1) and (6.9), the probabilities in the previous expression can be written

as functions of

F̄
(t1,t2)
k (x) = Pr(X

(t1,t2)
k > x) =

Fk(t2 − x)− Fk(t1)

Fk(t2)− Fk(t1)

for k ∈ Im. This concludes the proof.
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6.3 Comparison results

The distorted representations obtained in the preceding section can be used to compare

inactivity times of systems under di�erent assumptions on the sets W1,W2 or W . We

use the usual stochastic order (≤ST ), the hazard rate order (≤HR), the reversed hazard
rate order (≤RHR) and the likelihood order (≤LR), all de�ned in Appendix A.

To this end recall that Theorem 4.2 and Theorem 4.3 provide necessary and su�-

cient conditions to obtain distribution-free orderings.

For example, all the inactivity times of case II have distorted distributions based on

the same baseline reliability functions, so we can compare them for di�erent choices

of W1 and W2 or with the inactivity time considered in case I. Then from Theorem

4.3 and from Propositions 6.1 and 6.2, we obtain the following result.

Proposition 6.5. Let T be the lifetime of a system with component lifetimesX1,. . ., Xn

having distribution functions F1, . . . , Fn, respectively. Let us assume that Fi(t2) >

Fi(t1) for all i = 1, . . . , n and some 0 ≤ t1 < t2. Let T (t1,t2) = (t2 − T |t1 < T < t2)

and T
(t1,t2)
W1,W2

= (t2 − T |Xi < t1, i ∈ W1; t1 < Xj < t2, j ∈ W2;Xk > t2, k ∈ W3). Then:

(i) T (t1,t2) ≤ST T (t1,t2)
W1,W2

(≥ST ) for all F1, . . . , Fn if and only if Q̄(t1,t2) ≤ Q̄
(t1,t2)
W1,W2

(≥)
in (0, 1)n.

(ii) T (t1,t2) ≤HR T
(t1,t2)
W1,W2

(≥HR) for all F1, . . . , Fn if and only if Q̄
(t1,t2)
W1,W2

/Q̄(t1,t2) is

decreasing (increasing) in (0, 1)n.

(iii) T (t1,t2) ≤RHR T (t1,t2)
W1,W2

(≥RHR) for all F1, . . . , Fn if and only if Q
(t1,t2)
W1,W2

/Q(t1,t2) is

increasing (decreasing) in (0, 1)n.

In particular, if the components are identically distributed (ID), in compliance with

Theorem 4.2, we have the following proposition.

Proposition 6.6. Let T be the lifetime of a system with component lifetimesX1,. . ., Xn

having a common distribution function F . Let us assume that F (t2) > F (t1) for some

0 ≤ t1 < t2. Let T (t1,t2) = (t2 − T |t1 < T < t2) and T
(t1,t2)
W1,W2

= (t2 − T |Xi < t1, i ∈
W1; t1 < Xj < t2, j ∈ W2;Xk > t2, k ∈ W3). Then:

(i) T (t1,t2) ≤ST T (t1,t2)
W1,W2

(≥ST ) for all F if and only if q̄(t1,t2) ≤ q̄
(t1,t2)
W1,W2

(≥) in (0, 1).

(ii) T (t1,t2) ≤HR T
(t1,t2)
W1,W2

(≥HR) for all F if and only if q̄
(t1,t2)
W1,W2

/q̄(t1,t2) is decreasing

(increasing) in (0, 1).

(iii) T (t1,t2) ≤RHR T (t1,t2)
W1,W2

(≥RHR) for all F if and only if q
(t1,t2)
W1,W2

/q(t1,t2) is increasing

(decreasing) in (0, 1).
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(iv) T (t1,t2) ≤LR T (t1,t2)
W1,W2

(≥LR) for all F if and only if (q̄
(t1,t2)
W1,W2

)′/(q̄(t1,t2))′ is decreasing

(increasing) in (0, 1).

Similar propositions can be stated to compare cases I and II with case III or to

compare the di�erent options in cases II and III.

Other interesting results can be obtained comparing inactivity time X(t1,t2) =

(t2 −X|t1 < X < t2) at di�erent inspection times t1 and t2. In this direction we have

the following Lemma where we need some stochastic orders, de�ned in Appendix A,

and some aging classes, de�ned in Appendix B.

Lemma 6.1. Let X be a nonnegative random variable with an absolutely continuous

distribution function F and let X(t1,t2) = (t2 −X|t1 < X < t2). Then:

(i) X(t1,t2) ≥LR X(t∗1,t2) for all 0 ≤ t1 < t∗1 < t2.

(ii) If X(t1,z) is NBUHR for z ∈ [t2, t
∗
2] and 0 ≤ t1 < t2 < t∗2, then

X(t1,t2) ≤ST X(t1,t∗2).

(iii) If X(t1,t2) is IHR for 0 ≤ t1 < t2 < t∗2, then X
(t1,t2) ≤HR X(t1,t∗2).

(iv) If X(t1,t2) is ILR for 0 ≤ t1 < t2 < t∗2, then X
(t1,t2) ≤LR X(t1,t∗2).

Proof. (i) The pdf of the reliability function in (6.1) is

f (t1,t2)(x) =
f(t2 − x)

F (t2)− F (t1)
(6.11)

for all x ∈ [0, t2− t1] and 0 elsewhere. If t1 < t∗1 < t2, then t2− t∗1 < t2− t1 and we get

f (t1,t2)(x)

f (t∗1,t2)(x)
=
F (t2)− F (t∗1)

F (t2)− F (t1)

for all x ∈ [0, t2 − t∗1] and f (t1,t2)(x)/f (t∗1,t2)(x) = ∞ for all x ∈ (t2 − t∗1, t2 − t1].

Therefore the ratio is increasing in x (in the union of their supports) and so, from

de�nition (A.7), X(t1,t2) ≥LR X(t∗1,t2).

(ii) From (6.1) and (6.11), the hazard rate function of X(t1,t2) is

λ(t1,t2)(x) =
f (t1,t2)(x)

F̄ (t1,t2)(x)
=

f(t2 − x)

F (t2 − x)− F (t1)

Then we de�ne the function

g(z) :=
F (z − x)− F (t1)

F (z)− F (t1)
= F̄ (t1,z)(x)
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for z ∈ [t2, t
∗
2]. We have

g′(z) =
f(z − x) [F (z)− F (t1)]− f(z) [F (z − x)− F (t1)]

[F (z)− F (t1)]2
.

Hence, if F (t2 − x) > F (t1), we get

g′(z) =sign
f(z − x)

F (z − x)− F (t1)
− f(z)

F (z)− F (t1)
= λ(t1,z)(x)− λ(t1,z)(0)

for z ∈ [t2, t
∗
2] with 0 ≤ t1 < t2 < t∗2, where a =sign b means that a and b have the same

sign. We assume that X(t1,z) is NBUHR for z ∈ [t2, t
∗
2], so by the de�nition in (B.3)

we have λ(t1,z)(x) ≥ λ(t1,z)(0) for z > 0 and hence g is increasing. Then F̄ (t1,z)(x) is

increasing, that is F̄ (t1,t2)(x) ≤ F̄ (t1,t∗2)(x) for t2 < t∗2 so, by the de�nition in (A.1), we

have X(t1,t2) ≤ST X(t1,t∗2).

(iii) If X(t1,t2) is IHR for 0 ≤ t1 < t2 < t∗2, by the de�nition in (B.2), λ(t1,t2) is

increasing. We note that if 0 ≤ x ≤ t2 − t1, then x+ t2 − t∗2 ≤ x ≤ t2 − t1, so

λ(t1,t2)(x) =
f(t2 − x)

F (t2 − x)− F (t1)
≥ λ(t1,t2)(x+ t2− t∗2) =

f(t∗2 − x)

F (t∗2 − x)− F (t1)
= λ(t1,t∗2)(x).

Therefore, using de�nition (A.4), X(t1,t2) ≤HR X(t1,t∗2).

(iv) We use that f (t1,t∗2)/f (t1,t2) is increasing if and only if

g(x) :=
f(t∗2 − x)

f(t2 − x)

is increasing in x in the interval [0, t2 − t1]. Di�erentiating we get

g′(x) =sign −
f ′(t∗2 − x)

f(t∗2 − x)
+
f ′(t2 − x)

f(t2 − x)
= η(t1,t2)(x)− η(t1,t2)(x+ t2 − t∗2)

where

η(t1,t2)(x) = −(f (t1,t2))′(x)

f (t1,t2)
=
f ′(t2 − x)

f(t2 − x)
.

We assume that X(t1,t2) is ILR for 0 ≤ t1 < t2 < t∗2, so, by the de�nition in (B.6),

η(t1,t2) is increasing. Then we have g′ ≥ 0 and the LR order holds by the de�nition in

(A.7).

Note that the hazard rate of X(t1,t2) can be written as

λ(t1,t2)(x) =
f(t2 − x)/F (t2 − x)

1− F (t1)/F (t2 − x)
=

τ(t2 − x)

1− F (t1)/F (t2 − x)
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for all x ∈ [0, t2 − t1], where τ is the reversed hazard rate of X. If X is DRHR, by

the de�nition in (B.4), τ is decreasing, so λ(t1,t2)(x) is increasing and hence X(t1,t2) is

IHR (and so NBUHR) for all t1 < t2. Thus X(t1,t2) ≤HR X(t1,t∗2) (and also X(t1,t2) ≤ST
X(t1,t∗2)) holds for all for t2 < t∗2 whenX is DRHR (ILR or DHR). So this ordering holds

when X has an exponential or a Pareto distribution (since they are DHR). However,

we do not know if this property is true (as one can expect) for other (non DRHR)

models. Analogously, it is easy to see that X(t1,t2) is ILR if and only if η =:= −f ′/f
is increasing in [t1, t2]. Hence, if X is ILR, by the de�nition in (B.6), we know that η

is increasing in the support of X, then we have X(t1,t2) ≤LR X(t1,t∗2).

As an immediate consequence, from the preceding results and Proposition 6.3, we

obtain the following proposition for the inactivity time of Case II.

Proposition 6.7. If the components are independent and their distribution functions

satisfy Fi(t2) − Fi(t1) > 0 for i = 1, . . . , n, then the reliability function of T
(t1,t2)
W1,W2

is

ST-decreasing in t1. Moreover, if the components are DRHR (ILR or DHR), then it

is ST-increasing in t2.

6.4 Illustrations

6.4.1 Series Systems

Consider a series system with two possibly dependent components and with lifetime

T = X1:2 = min(X1, X2). As in Section 6.2, we consider di�erent types of conditioning

events for the system inactivity time.

Case I We assume that the system was working at a time t1 and that it is broken

at another time t2 (that is t1 < T < t2) with 0 ≤ t1 < t2. In this case we do not have

information about the components. However, note that T > t1, implies Xi > t1 for

i = 1, 2. So we consider the inactivity time of the system T (t1,t2) = (t2−T | t1 < T < t2)

whose reliability function is given by

F̄
(t1,t2)
T (x) = P (min(X1, X2) < t2 − x | t1 < T < t2)

= Q̄(t1,t2)
(
F̄

(t1,t2)
1 (x), F̄

(t1,t2)
2 (x)

)
,

where F̄ (t1,t2)
1 and F̄

(t1,t2)
2 are the reliability functions of the inactivity times of the

components and where, from Proposition 6.1, Q̄(t1,t2) is a distortion function given by

Q̄(t1,t2)(u, v) =
Q(F1(t1) + u(F1(t2)− F1(t1)), F2(t1) + v(F2(t2)− F2(t1)))−Q(F1(t1), F2(t1))

Q(F1(t2), F2(t2))−Q(F1(t1), F2(t1))
.
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The distribution function of a series system is

F1:2(t) = P (X1:2 ≤ t)

= P (X1 ≤ t) + P (X2 ≤ t)− P (X1 ≤ t,X2 ≤ t)

= Q(F1(t), F2(t)),

where, as we have seen in (4.12), Q(u, v) = u + v − C(u, v) and C is the copula

of (X1, X2), because Q depends on the structure function and on the copula C of

(X1, X2). Therefore

Q̄(t1,t2)(u, v)=
zu + zv − C(zu, zv)− F1(t1)− F2(t1) + C(F1(t1), F2(t1)

F1(t2) + F2(t2)− C(F1(t2),F2(t2))− F1(t1)− F2(t1) + C(F1(t1),F2(t1))

where zu := F1(t1) + u(F1(t2)− F1(t1)) and zv := F2(t1) + v(F2(t2)− F2(t1)).

If the two components are indipendents, that is, C(u, v) = uv for every (u, v) ∈
[0, 1]2, then we have

Q̄(t1,t2)(u, v) =
zu + zv − zuzv − F1(t1)− F2(t1) + F1(t1)F2(t1)

F1(t2) + F2(t2)− F1(t2)F2(t2)− F1(t1)− F2(t1) + F1(t1), F2(t1)

Case IIWe analyse the inactivity times obtained for di�erent choices of W1 (com-

ponents that fail before t1) and W2 (components that fail between t1 and t2).

• W1 = ∅,W2 = {1, 2}.

First we assume that, at a time t1, both components were working and that they are

broken at the second inspection time t2, with 0 ≤ t1 < t2. In this case W1 is empty,

W2 = {1, 2} and W3 = {1, 2} −W1 −W2 = ∅. The inactivity time of the system is

T
(t1,t2)
∅,{1,2} = (t2 − T | t1 < X1 < t2, t1 < X2 < t2)

whose reliability function is given by

F̄
(t1,t2)
∅,{1,2}(x) = P (min(X1, X2) < t2 − x | t1 < X1 < t2, t1 < X2 < t2)

= Q̄
(t1,t2)
∅,{1,2}

(
F̄

(t1,t2)
1 (x), F̄

(t1,t2)
2 (x)

)
,

where Q̄(t1,t2)
∅,{1,2} is a distortion function given by

C(zu, F2(t2)) + C(F1(t1),F2(t1)) + C(F1(t2), zv)− C(zu, zv)− C(F1(t1),F2(t2))− C(F1(t2),F2(t1))

C(F1(t2), F2(t2)) + C(F1(t1), F2(t1))− C(F1(t2), F2(t1))− C(F1(t1), F2(t2))
,

where, as above, zu := F1(t1)+u(F1(t2)−F1(t1)) and zv := F2(t1)+v(F2(t2)−F2(t1)).
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• W1 = ∅,W2 = {1}.

We assume that the �rst component was working at a time t1 and that it is broken at

the second inspection time t2. We also know that the second component is working

at time t2 even if the system has clearly failed in the interval (t1, t2). In this case W1

is empty, W2 = {1} and W3 = {1, 2} −W1 −W2 = {2}. Then the system inactivity

time is

T
(t1,t2)
∅,{1} = (t2 − T | t1 < X1 < t2, X2 > t2)

whose reliability function is

F̄
(t1,t2)
∅,{1} (x) = P (t2 − T > x | t1 < X1 < t2, X2 > t2)

=
P (t1 < X1 < t2 − x,X2 > t2)

P (t1 < X1 < t2, X2 > t2)

= Q̄
(t1,t2)
∅,{1}

(
F̄

(t1,t2)
1 (x), F̄

(t1,t2)
2 (x)

)
,

where Q̄(t1,t2)
∅,{1} is a distortion function given by

Q̄
(t1,t2)
∅,{1} (u, v) =

zu + C(F1(t1), F2(t2))− F1(t1)− C(zu, F2(t2))

F1(t2) + C(F1(t1), F2(t2))− F1(t1)− C(F1(t2), F2(t2))

where zu := F1(t1) + u(F1(t2) − F1(t1)). Note that Q̄(t1,t2)
∅,{1} (u, v) does not depend (as

expected) on v, that is F̄ (t1,t2)
2 .

If the components are independent, that is, C(u, v) = uv for every (u, v) ∈ [0, 1]2,

then we have

Q̄
(t1,t2)
∅,{1,2}(u, v) = u+ v − uv,

and

Q̄
(t1,t2)
∅,{1} (u, v) = u.

Note that they do not depend on t1 and t2, as we note in the Remark 6.3.

We have

Q̄
(t1,t2)
∅,{1} (u, v) = u ≤ u+ v − uv = Q̄

(t1,t2)
∅,{1,2}(u, v),

so T (t1,t2)
∅,{1} ≤ST T

(t1,t2)
∅,{1,2} for all t1 < t2 and for all F1, F2.

If we want to study the HR ordering, from Proposition 4.3, (ii), we should analyse

Q̄
(t1,t2)
∅,{1,2}(u, v)

Q̄
(t1,t2)
∅,{1} (u, v)

= 1− v +
v

u
.
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As it is decreasing in u and increasing in v for all (u, v) ∈ [0, 1]2, T (t1,t2)
∅,{1} and T (t1,t2)

∅,{1,2}
are not HR-ordered for all F1, F2.

However, if the components of such system are independent and identically distributed

(IID) with a common distribution F , we have

q̄
(t1,t2)
∅,{1} (u) = Q̄

(t1,t2)
∅,{1} (u, u) = u

and

q̄
(t1,t2)
∅,{1,2}(u) = Q̄

(t1,t2)
∅,{1,2}(u, u) = 2u− u2.

Then, to apply Proposition 4.2, (ii), we study the function

q̄
(t1,t2)
∅,{1,2}(u)

q̄
(t1,t2)
∅,{1} (u)

= 2− u.

As it is decreasing for u ∈ (0, 1), we can state that T (t1,t2)
∅,{1} ≤HR T

(t1,t2)
∅,{1,2} for all F and

all t1 < t2. Even more, as (
q̄

(t1,t2)
∅,{1,2}

)′
(u)(

q̄
(t1,t2)
∅,{1}

)′
(u)

= 2− 2u

is also decreasing, from Proposition 4.2, (iv), we obtain T (t1,t2)
∅,{1} ≤LR T

(t1,t2)
∅,{1,2} for all F

and all t1 < t2.

The following example shows that the HR order may not hold for inactivity time

of systems with independent non-identically distributed components.

Example 6.1. Consider a series system with two independent components whose

lifetimes X1 and X2 have exponential distribution with means µ1 = 2 and µ2 = 1,

respectively. Set t1 = 0.2 and t2 = 0.6. In Figure 6.1 (left) we plot the hazard

rate functions of T (t1,t2)
∅,{1} (blue) and T (t1,t2)

∅,{1,2} (red). Note that the hazard rate functions

are not ordered. In Figure 6.1 (right) we plot the hazard rate functions when the

components are IID with a common exponential distribution with mean 2. In this

case, they are HR-ordered as stated above. This is true for all F and all t1 < t2.

In the following example we assume that the component lifetimes are ID and that

they have a speci�c dependence structure, that is a speci�c copula.

Example 6.2. Consider a series system whose component lifetimes have a common

distribution F and a Clayton copula with θ = 1 de�ned in (5.8).
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Figure 6.1: Hazard rate functions of T
(t1,t2)
∅,{1} (blue) and T

(t1,t2)
∅,{1,2} (red) for inactivity time

of the series system considered in Example 6.1 with independent components (left) or IID

components (right).

Then, in Figure 6.2 we plot the dual distortion functions q̄(t1,t2)
∅,{1} , q̄

(t1,t2)
∅,{1,2} and q̄(t1,t2)

when we set t1 and t2 such that F (t1) = 0.1 and F (t2) = 0.5. As we can see in Figure

6.2, these functions are ordered, and so

T
(t1,t2)
∅,{1} ≤ST T

(t1,t2) ≤ST T (t1,t2)
∅,{1,2}

for any F and for 0 < t1 < t2 such that F (t1) = 0.1 and F (t2) = 0.5.

By analysing the ratio of the dual distortion functions q̄(t1,t2)
∅,{1,2}/q̄

(t1,t2) we obtain that it

is decreasing and so, from Proposition 6.6, (ii), we also have

T (t1,t2) ≤HR T (t1,t2)
∅,{1,2}

for any F and for 0 < t1 < t2 such that F (t1) = 0.1 and F (t2) = 0.5.

We can study, in a similar way, the performance of the dual distortion functions

of the systems when the components are dependent and non identically distributed.

In the following example we �x �rst u and then v to analyse the respective plots.

Example 6.3. Consider a series system whose components are not identically dis-

tributed. We use again the Clayton copula with θ = 1 given above. Consider two dis-

tribution functions and the two inspection times such that F1(t1) = 0.3, F1(t2) = 0.7,

F2(t1) = 0.5 and F2(t2) = 0.9. Then we �x v = 0.2 and, in Figure 6.3 (left), we plot

the dual distortion functions Q̄(t1,t2)
∅,{1} (blue), Q̄(t1,t2) (green) and Q̄

(t1,t2)
∅,{1,2} (red). In a
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Figure 6.2: Dual distortion functions of T
(t1,t2)
∅,{1} (blue), T

(t1,t2)
∅,{1,2} (red) and T

(t1,t2) (green) for

the system in Example 6.2.

similar way, in Figure 6.3 (right), we plot the same functions for a �x u = 0.2. As we

can see in Figure 6.3, the ordering

Q̄
(t1,t2)
∅,{1} ≤ Q̄

(t1,t2)
∅,{1,2} and Q̄(t1,t2) ≤ Q̄

(t1,t2)
∅,{1,2},

may hold but Q̄(t1,t2)
∅,{1} and Q̄(t1,t2) cross each other. So T

(t1,t2)
∅,{1} and T (t1,t2) are not

ST-ordered for any F1, F2.

Figure 6.3: Dual distortion functions Q̄
(t1,t2)
∅,{1} (blue), Q̄(t1,t2) (green) and Q̄

(t1,t2)
∅,{1,2} (red) for

the inactivity time of the series system considered in the Example 6.3 when we �x v = 0.2

(left) and u = 0.2 (right).
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In the following example we show that the inactivity times considered in the pre-

vious example, can be ordered for some speci�c distributions.

Example 6.4. Consider again a series system whose components are not identically

distributed and have a Clayton survival copula (with θ = 1) and let us �x 0 ≤ t1 ≤ t2

such that F (t1) = 0.2 and F (t2) = 0.6.

We assume �rst that the component lifetimes have both exponential distributions with

means 2 and 1, respectively. Then in Figure 6.4 (left) we plot the reliability functions

of the inactivity times T (t1,t2)
∅,{1} (blue), T (t1,t2) (green) and T (t1,t2)

∅,{1,2} (red). As we can see,

we obtain:

T
(t1,t2)
∅,{1} ≤ST T

(t1,t2) ≤ST T (t1,t2)
∅,{1,2}.

By analysing the ratios F̄ (t1,t2)/F̄
(t1,t2)
∅,{1} and F̄ (t1,t2)

∅,{1,2}/F̄
(t1,t2), we �nd that both are in-

creasing and so, from Proposition 6.5, (ii),

T
(t1,t2)
∅,{1} ≤HR T

(t1,t2) ≤HR T (t1,t2)
∅,{1,2}.

However, if the components have Weibull distributions (i.e., F̄ (x) = e−(λx)k) with

parameters (λ = 1, k = 0.5) and (λ = 1, k = 1.5), respectively, we obtain the plots in

Figure 6.4 (right) and so

T (t1,t2) ≤ST T (t1,t2)
∅,{1} ≤ST T

(t1,t2)
∅,{1,2}.

By analysing the ratios we see that, in this case, again from Proposition 6.6, (ii), we

have

T (t1,t2) ≤HR T (t1,t2)
∅,{1} ≤HR T

(t1,t2)
∅,{1,2}.

Note that in all the examples T (t1,t2)
∅,{1,2} seems to be the greatest, and so the worst,

one.

6.4.2 Parallel Systems

Consider now a parallel system with two possibly dependent components and with

lifetime T = X2:2 = max(X1, X2). As in Section 6.2, we consider three possible types

of conditioning events for the system inactivity time.

Case I Assume that the system was working at a time t1 and that it is broken at the

second inspection time t2 with 0 ≤ t1 < t2 and that we do not have information about
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Figure 6.4: Reliability functions of T
(t1,t2)
∅,{1} (blue), T (t1,t2) (green) and T

(t1,t2)
∅,{1,2} (red) for

the series system considered in the Example 6.4 for components having both exponential

distributions with means 2 and 1, respectively (left) and both Weibull distributions with

parameters λ = 1, k = 0.5 and λ = 1, k = 1.5, respectively (right).

the components. Then we can consider the inactivity time of the system T (t1,t2) =

(t2 − T | t1 < T < t2) whose reliability function is given by

F̄
(t1,t2)
T (x) = P (max(X1, X2) < t2 − x | t1 < T < t2)

= Q̄(t1,t2)
(
F̄

(t1,t2)
1 (x), F̄

(t1,t2)
2 (x)

)
,

where, from Proposition 6.1, Q̄(t1,t2)(u, v) is a distortion function given by

Q(F1(t1) + u(F1(t2)− F1(t1)), F2(t1) + v(F2(t2)− F2(t1)))−Q(F1(t1), F2(t1))

Q(F1(t2), F2(t2))−Q(F1(t1), F2(t1))
.

For a parallel system we have

F2:2(t) = P (F2:2 ≤ t)

= P (max(X1, X2) ≤ t)

= P (X1 ≤ t,X2 ≤ t) = C(F1(t), F2(t)),

that is, Q(u, v) = C(u, v). So

Q̄(t1,t2)(u, v) =
C(zu, zv)− C(F1(t1), F2(t1))

C(F1(t2), F2(t2))− C(F1(t1), F2(t1))

where zu := F1(t1) + u(F1(t2)− F1(t1)) and zv := F2(t1) + v(F2(t2)− F2(t1)).

Case II We analyse the inactivity times obtained for di�erent choices of W1 and

W2.



6 Inactivity Time of Coherent Systems under Periodical Inspections 86

• W1 = ∅,W2 = {1, 2}.

Here we assume that at a time t1 both components were working and that they

are broken at the second inspection time t2 with 0 ≤ t1 < t2. In this case W1 = ∅,
W2 = {1, 2} and W3 = {1, 2} −W1 −W2 = ∅. Then we can consider the inactivity

time

T
(t1,t2)
∅,{1,2} = (t2 − T | t1 < X1 < t2, t1 < X2 < t2),

whose reliability function is given by

F̄
(t1,t2)
∅,{1,2}(x) = P (max(X1, X2) < t2 − x | t1 < X1 < t2, t1 < X2 < t2)

= Q̄
(t1,t2)
∅,{1,2}

(
F̄

(t1,t2)
1 (x), F̄

(t1,t2)
2 (x)

)
,

where Q̄(t1,t2)
∅,{1,2}(u, v) is a distortion function given by

C(zu, zv) + C(F1(t1), F2(t1))− C(F1(t1), zv)− C(zu, F2(t1))

C(F1(t2), F2(t2)) + C(F1(t1), F2(t1))− C(F1(t2), F2(t1))− C(F1(t1), F2(t2))
,

where zu := F1(t1) + u(F1(t2)− F1(t1)) and zv := F2(t1) + v(F2(t2)− F2(t1)).

• W1 = {1},W2 = {2}

Assume that the system has failed in the interval (t1, t2), even if the �rst component

stopped to work before the time t1, instead the second component was working at a

time t1 and it is broken at the second inspection time t2. In this case T = X2,

W1 = {1}, W2 = {2} and W3 = {1, 2} −W1 −W2 = ∅. Then we can consider the

inactivity time

T
(t1,t2)
{1},{2} = (t2 − T |X1 < t1, t1 < X2 < t2),

whose reliability function is

F̄
(t1,t2)
{1},{2}(x) = P (max(X1, X2) < t2 − x|X1 < t1, t1 < X2 < t2)

= Q̄
(t1,t2)
{1},{2}

(
F̄

(t1,t2)
1 (x), F̄

(t1,t2)
2 (x)

)
,

where Q̄(t1,t2)
{1},{2} is a distortion function given by

Q̄
(t1,t2)
{1},{2}(u, v) =

C(F1(t1), zv)− C(F1(t1), F2(t1))

C(F1(t1), F2(t2))− C(F1(t1), F2(t1))
,

where zv := F2(t1) + v(F2(t2) − F2(t1)). Note that Q̄(t1,t2)
{1},{2} does not depend (as

expected) on u, that is F̄ (t1,t2)
1 .
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Case III Assume that the second component fails at time t1 and that the �rst

component fails in the interval (t1, t2) for 0 < t1 < t2. Then the system fails in the

interval (t1, t2) and we want to calculate the reliability function of the inactivity time

T
(t1,t2)
2,{1} = (t2 − T |t1 < X1 < t2, X2 = t1).

The pdf function of (X1|X2 = x2) is

f1|2(x1|x2) =
f(x1, x2)

f2(x2)
= f1(x1)∂1∂2C(F1(x1), F2(x2))

for x2 such that f2(x2) > 0. Therefore, its distribution function is

F1|2(x|x2) =

∫ x

0

f1(x1)∂1∂2C(F1(x1), F2(x2))dx1

= ∂2C(F1(x), F2(x2))

since limu→0+ ∂2(u, v) = 0 for all v ∈ [0, 1]. In particular, the distribution function of

(X1|X2 = t1) can be written (see expression (6.9)) as

F1|2(x|t1) = P (X1 ≤ x|X2 = t1) = ∂2C(F1(x), F2(t1)) = Q1|2(F1(x)),

where Q1|2(u) = ∂2C(u, F2(t1)) is a distortion function.

Hence the reliability function of the inactivity time T (t1,t2)
2,{1} can be calculated as

P (T
(t1,t2)
2,{1} > x) = P (t2 − T > x|t1 < X1 < t2, X2 = t1)

=
P (t2 − T > x, t1 < X1 < t2|X2 = t1)

P (t1 < X1 < t2|X2 = t1)
,

where

P (t1 < X1 < t2|X2 = t1) = ∂2C(F1(t2), F2(t1))− ∂2C(F1(t1), F2(t1))

and

P (t2 − T > x, t1 < X1 < t2|X2 = t1) = P (t1 < X1 < t2 − x|X2 = t1)

= ∂2C(F1(t2 − x), F2(t1))− ∂2C(F1(t1), F2(t1)).

Finally, from (6.1), we have

F1(t2 − x) = F̄
(t1,t2)
1 (x)(F1(t2)− F1(t1)) + F1(t1)
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and so

F̄
(t1,t2)
2,{1} (x) = P (T

(t1,t2)
2,{1} > x) = Q̄

(t1,t2)
2,{1} (F̄

(t1,t2)
1 (x), F̄

(t1,t2)
2 (x)),

where

Q̄
(t1,t2)
2,{1} (u, v) =

∂2C(u(F1(t2)− F1(t1)) + F1(t1), F2(t1))− ∂2C(F1(t1), F2(t1))

∂2C(F1(t2), F2(t1))− ∂2C(F1(t1), F2(t1))
.

Note that Q̄(t1,t2)
2,{1} does not depends on v (as expected).

If the component are indipendent and so C is the product copula, then ∂2C(u, v) =

u and we obtain

Q̄
(t1,t2)
2,{1} (u, v) =

u(F1(t2)− F1(t1)) + F1(t1)− F1(t1)

F1(t2)− F1(t1)
= u,

that is,

F̄
(t1,t2)
2,{1} (x) = P (t2 − T > x|t1 < X1 < t2, X2 = t1)

= F̄
(t1,t2)
1 (x)

= P (t2 −X1 > x|t1 < X1 < t2).

However, if, as in the preceding examples, we chose the following Clayton copula

C(u, v) =
uv

u+ v − uv
then

∂2C(u, v) =
u2

(u+ v − uv)2

and

Q̄
(t1,t2)
2,{1} (u, v) =

[F1(t1) + F2(t1)− F1(t1)F2(t1)]2A(zu)− F 2
1 (t1)

[F1(t1) + F2(t1)− F1(t1)F2(t1)]2A(F1(t2))− F 2
1 (t1)

where zu := u(F1(t2)− F1(t1)) + F1(t1) and

A(x) :=

(
x

x+ F2(t1)− xF2(t1)

)2

.

Example 6.5. Consider a parallel system whose component lifetimes have a common

distribution F and the above Clayton copula. Then in Figure 6.5 (left) we plot q̄(t1,t2)

(blue), q̄(t1,t2)
∅,{1,2} (red), q̄(t1,t2)

2,{1} (green) and q̄
(t1,t2)
{1},{2} (black) for 0 ≤ t1 ≤ t2 such that

F (t1) = 0.3 and F (t2) = 0.5. As we can see, we obtain

T
(t1,t2)
∅,{1,2} ≤ST T

(t1,t2) ≤ST T (t1,t2)
2,{1} ≤ST T

(t1,t2)
{1},{2}.

for any F and for 0 ≤ t1 ≤ t2 such that F (t1) = 0.3 and F (t2) = 0.5. These ordering

can be reinforced by plotting the ratios of the dual distortion functions. They are give

in Figure 6.5 (right). As all of them are decreasing, so, from Proposition 6.6, (ii), they

are also HR-ordered in the same way of the ST-order.
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Figure 6.5: Dual distortion functions (left) q̄(t1,t2) (blue), q̄
(t1,t2)
∅,{1,2} (red), q̄

(t1,t2)
2,{1} (green) and

q̄
(t1,t2)
{1},{2} (black) for the inactivity time of the parallel system considered in Example 6.5.

The ratios of the dual distortion functions (right) are all decreasing, so the corresponding

inactivity times they are also HR-ordered.

Some of the orders obtained in Example 6.5 hold also in a more general case, as

we state in the following proposition.

First we need to recall that the diagonal section of a copula C is the function δC :

[0, 1] → [0, 1], de�ned by δC(u) = C(u, u). A theorem (see Theorem 3.2.12 in [39])

proves that, if δ is any function from [0, 1] to [0, 1] such that:

a) δ(1) = 1;

b) 0 ≤ δ(t2)− δ(t− 1) ≤ 2(t2 − t1) for all t1, t2 ∈ [0, 1] with t1 ≤ t2;

c) δ(t) ≤ t for all t ∈ [0, 1],

then the function

C(u, v) = min

(
u, v,

δ(u) + δ(v)

2

)
(6.12)

is a copula whose diagonal section is δ. This copula is called the diagonal copula.

Proposition 6.8. Consider a parallel system with two dependent components with a

common distribution F and the diagonal copula (6.12). Then

T
(t1,t2)
∅,{1,2} ≤ST T

(t1,t2) ≤ST T (t1,t2)
{1},{2}

for all F and all 0 ≤ t1 < t2.
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Proof. From the expressions given above, q̄(t1,t2), q̄(t1,t2)
∅,{1,2} and q̄

(t1,t2)
{1},{2} in terms of the

diagonal copula as:

q̄(t1,t2)(u) =
δ(zu)− δ(a)

δ(b)− δ(a)
,

q̄
(t1,t2)
∅,{1,2}(u) =

δ(zu) + δ(a)− 2 min
(
a, zu,

δ(a)+δ(zu)
2

)
δ(b) + δ(a)− 2 min

(
a, b, δ(a)+δ(b)

2

) ,

q̄
(t1,t2)
{1},{2}(u) =

min
(
a, zu,

δ(a)+δ(zu)
2

)
− δ(a)

min
(
a, b, δ(a)+δ(zu)

2

)
− δ(a)

,

where a = F (t1) < b = F (t2) and zu = u(b − a) + a. Note that a < zu < b and

so δ(a) ≤ δ(zu) ≤ δ(b) because δ(t) is a nondecreasing function on [0, 1]. Hence

min
(
a, zu,

δ(a)+δ(zu)
2

)
= a, implies min

(
a, b, δ(a)+δ(b)

2

)
= a. We also know that δ(u) ≤

u for all u. Thus we have to consider three possible cases:

• min
(
a, zu,

δ(a)+δ(zu)
2

)
= a and min

(
a, b, δ(a)+δ(b)

2

)
= a.

q̄(t1,t2)(u) =
δ(zu)− δ(a)

δ(b)− δ(a)
,

q̄
(t1,t2)
∅,{1,2}(u) =

δ(zu) + δ(a)− 2a

δ(b) + δ(a)− 2a
,

and

q̄
(t1,t2)
{1},{2}(u) =

a− δ(a)

a− δ(a)
= 1.

Then we have q̄(t1,t2)
∅,{1,2} ≤ q̄(t1,t2) ≤ q̄

(t1,t2)
{1},{2}, because 2a ≤ δ(a) + δ(zu) ≤ δ(a) + δ(b).

• min
(
a, zu,

δ(a)+δ(zu)
2

)
= δ(a)+δ(zu)

2
and min

(
a, b, δ(a)+δ(b)

2

)
= a.

q̄(t1,t2)(u) =
δ(zu)− δ(a)

δ(b)− δ(a)
,

q̄
(t1,t2)
∅,{1,2}(u) = 0,

and

q̄
(t1,t2)
{1},{2}(u) =

δ(zu)− δ(a)

2a− 2δ(a)
.

Then we have q̄(t1,t2)
∅,{1,2} ≤ q̄(t1,t2) ≤ q̄

(t1,t2)
{1},{2} because, in this case, 2a ≤ δ(a) + δ(b).

• min
(
a, zu,

δ(a)+δ(zu)
2

)
= δ(a)+δ(zu)

2
and min

(
a, b, δ(a)+δ(b)

2

)
= δ(a)+δ(b)

2
.
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In this case the dual distortion function q̄(t1,t2)
∅,{1,2} does not exist and we have

q̄(t1,t2)(u) =
δ(zu)− δ(a)

δ(b)− δ(a)
= q̄

(t1,t2)
{1},{2}(u).

6.4.3 Other Systems

In the following examples we analyse di�erent cases studied in Section 6.2 for general

coherent systems, di�erent from series and parallel structures.

• Coherent system with lifetime T = max(X1,min(X2, X3))

1

2 3

Figure 6.6: Coherent structure with lifetime T = max(X1,min(X2, X3))

The minimal cut sets are K1 = {1, 2} and K2 = {1, 3}. Then the system distribution

can be obtained as follows

FT (t) = P (max(X1,min(X2, X3)) ≤ t)

= P (X1 ≤ t) + P (min(X2, X3) ≤ t)− P (X1 ≤ t,min(X2, X3) ≤ t)

= F(t,∞,∞) + F(∞, t, t)− F(t, t, t)

= F1(t) + C(1, F2(t), F3(t))− C(F1(t), F2(t), F3(t))

= Q(F1(t), F2(t), F3(t)),

where Q(u1, u2, u3) = u1 + C(1, u2, u3)− C(u1, u2, u3).

Assume now that for 0 < t1 < t2, we know that component three failed before t1,

and that the �rst and the second components failed in the interval (t1, t2). This is case

II of Section 6.2.2 withW1 = {3} andW2 = {1, 2}. Note that these assumptions imply

that the system fails in this interval (t1, t2). The system inactivity time considered is

T
(t1,t2)
{3},{1,2} = (t2 − T |X3 < t1, t1 < X1 < t2, t1 < X2 < t2).
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These conditions imply T = X1 and so, for x ∈ [0, t2 − t1], its reliability function is
given by

F̄
(t1,t2)
{3},{1,2}(x) = P (t2 − T > x|X3 < t1, t1 < X1 < t2, t1 < X2 < t2)

= P (X1 < t2 − x|X3 < t1, t1 < X1 < t2, t1 < X2 < t2)

=
P (t1 < X1 < t2 − x, t1 < X2 < t2, X3 < t1)

P (t1 < X1 < t2, t1 < X2 < t2, X3 < t1)

=
P (X1 < t2 − x, t1 < X2 < t2, X3 < t1)

P (t1 < X1 < t2, t1 < X2 < t2, X3 < t1)
− P (X1 < t1, t1 < X2 < t2, X3 < t1)

P (t1 < X1 < t2, t1 < X2 < t2, X3 < t1)

= Q̄
(t1,t2)
{3},{1,2}(F̄

(t1,t2)
1 (x), F̄

(t1,t2)
2 (x), F̄

(t1,t3)
3 (x)),

where Q̄(t1,t2)
{3},{1,2}(u1, u2, u3) does not depend, as expected, on u2, u3.

In particular, if the components are independent, that is C(u1, u2, u3) = u1u2u3,

then

F̄
(t1,t2)
{3},{1,2}(x) =

P (t1 < X1 < t2 − x)P (t1 < X2 < t2)P (X3 < t1)

P (t1 < X1 < t2)P (t1 < X2 < t2)P (X3 < t1)

=
P (t1 < X1 < t2 − x)

P (t1 < X1 < t2)

= F̄
(t1,t2)
1 (x)

= Q̄{3},{1,2}(F̄
(t1,t2)
1 (x), F̄

(t1,t2)
2 (x), F̄

(t1,t3)
3 (x))

with Q̄{3},{1,2}(u1, u2, u3) = u1.

This distortion function can also be computed from Proposition 6.3 as follows. The

minimal cut sets included in W1 ∪ W2 = {1, 2, 3} are two, then s = 2. We have

K1 ∩ W2 = {1, 2}, k2 ∩ W2 = {1} and (K1 ∪ K2) ∩ W2 = {1, 2, 3} and from (6.8),

Q̄{3},{1,2} is given by

Q̄{3},{1,2}(u1, u2, u3) = u1u2 + u1 − u1u2 = u1.

Note that the sets in the preceding sequence cannot be the minimal cut sets of a

system since {1} ⊂ {1, 2}, as we state in Remark 6.3.

• Coherent system with lifetime T = min(X1,max(X2, X3))

The minimal cut sets are K1 = {1} and K2 = {2, 3}.
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1

2

3

Figure 6.7: Coherent structure with lifetime T = min(X1,max(X2, X3))

Assume that the three components fail in the interval (t1, t2) for 0 < t1 < t2. This

is case II of Section 6.2.2, with W1 = ∅ and W2 = {1, 2, 3}. Note that this assumption

implies that the system fails in this interval (t1, t2). The system inactivity time is

T
(t1,t2)
∅,{1,2,3} = (t2 − T |t1 < Xi < t2, i = 1, 2, 3).

Note that K1 ∩W2 = {1}, K2 ∩W2 = {2, 3} and (K1 ∪K2)∩W2 = {1, 2, 3}. So if the
components are independent, from Proposition 6.3, its reliability function is

F̄
(t1,t2)
∅,{1,2,3}(x) = F̄

(t1,t2)
1 (x) + F̄

(t1,t2)
2 (x)F̄

(t1,t2)
3 (x)− F̄ (t1,t2)

1 (x)F̄
(t1,t2)
2 (x)F̄

(t1,t2)
3 (x)

= Q̄
(t1,t2)
∅,{1,2,3}(F̄

(t1,t2)
1 (x)F̄

(t1,t2)
2 (x)F̄

(t1,t2)
3 (x))

where Q̄(t1,t2)
∅,{1,2,3}(u1, u2, u3) = u1 + u2u3 − u1u2u3.

Now we assume that for 0 < t1 < t2, the second component failed before t1, and

that the other components fail in the interval (t1, t2). This is again case II with W1 =

{2} and W2 = {1, 3}. Note that these assumptions imply that the system fails in this

interval (t1, t2). Noting thatK1∩W2 = {1}, K2∩W2 = {3} and (K1∪K2)∩W2 = {1, 3}
we can calculate as before

F̄
(t1,t2)
{2},{1,3} = F̄

(t1,t2)
1 (x) + F̄

(t1,t2)
3 (x)− F̄ (t1,t2)

1 (x)F̄
(t1,t2)
3 (x)

= Q̄
(t1,t2)
{2},{1,3}(F̄

(t1,t2)
1 (x)F̄

(t1,t2)
2 (x)F̄

(t1,t2)
3 (x))

where Q̄(t1,t2)
{2},{1,3}(u1, u2, u3) = u1 + u3 − u1u3. Note that we have obtained the dual

distortion function of the series system formed by components one and three when

they are independent.

A straightforward calculation shows that Q̄(t1,t2)
∅,{1,2,3} ≤ Q̄

(t1,t2)
{2},{1,3}, so

T
(t1,t2)
∅,{1,2,3} ≤ST T

(t1,t2)
{2},{1,3}

for all F1, F2, F3 and all 0 ≤ t1 < t2. If we analyse the ratio

Q̄
(t1,t2)
{2},{1,3}(u1, u2, u3)

Q̄
(t1,t2)
∅,{1,2,3}(u1, u2, u3)

=
u1 + u3 − u1u3

u1 + u2u3 − u1u2u3
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we note that it is decreasing in u1 and u2 and increasing in u3. Therefore T
(t1,t2)
∅,{1,2,3} and

T
(t1,t2)
{2},{1,3} are not ordered in the HR sense for all F1, F2, F3.

However, if we consider the case of IID components with a common distribution

F , we obtain the ratio
q̄

(t1,t2)
{2},{1,3}(u)

q̄
(t1,t2)
∅,{1,2,3}(u)

=
2u− u2

u+ u2 − u3

which is decreasing for u ∈ [0, 1]. So, from Proposition 4.2, (ii),

T
(t1,t2)
∅,{1,2,3} ≤HR T

(t1,t2)
{2},{1,3}

for all F and all 0 ≤ t1 < t2. In this case we can also consider the ratio

(q̄
(t1,t2)
{2},{1,3})

′(u)

(q̄
(t1,t2)
∅,{1,2,3})

′(u)
=

2− 2u

1 + 2u− 3u2

which is also decreasing for u ∈ [0, 1]. So, from Proposition 4.2, (iv), we obtain

T
(t1,t2)
∅,{1,2,3} ≤LR T

(t1,t2)
{2},{1,3}

for all F and all 0 ≤ t1 < t2.



Appendix A

Stochastic Orders

The simplest way of comparing two distribution functions is by the associated means.

However, such comparison is based on only two single numbers, therefore it is often not

very informative. Moreover, the means sometimes do not exist. So, in the last 40 years,

several stochastic orders, that take into account various forms of possible knowledge

about the two underlying distribution functions, have been introduced. Stochastic

orders are applicable to a lot of �elds, such as reliability theory and survival analysis,

biology (see, e.g., Calì and Longobardi [5]), economics, insurance, actuarial science

(see, e.g., Pellerey [40]) and operations research.

Here we give formal de�nitions of some basic stochastic orders that we use in the

text and their interrelationships. The main reference used is Shaked and Shanthikumar

[50].

Let X and Y be two continuous random variables with density function fX and

fY , distribution functions FX and FY and survival functions F̄X and F̄Y , respectively.

• X ≤ST Y (in the usual stochastic order) if and only if

F̄X(t) ≤ F̄Y (t) for all t ∈ R, (A.1)

or, equivalently, if and only if

FX(t) ≥ FY (t) for all t ∈ R. (A.2)

• X ≤HR Y (in the hazard rate order) if and only if

F̄Y (t)

F̄X(t)
is increasing in t ∈ (−∞,max(uX , uY )), (A.3)
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where uX and uY denote the right endpoints of the supports of X and of Y ,

respectively.

Let λX(t) and λY (t) be the hazard rate functions of X and Y , respectively.

Then, equivalently, X ≤HR Y if and only if

λX(t) ≥ λY (t) for all t ∈ R. (A.4)

• X ≤RHR Y (in the reversed hazard rate order) if and only if

FY (t)

FX(t)
is increasing in t ∈ (min(lX , lY ),+∞), (A.5)

where lX and lY denote the left endpoints of the supports of X and of Y , re-

spectively.

Let τX(t) and τY (t) be the reversed hazard rate functions of X and Y , respec-

tively. Then, equivalently, X ≤RHR Y if and only if

τX(t) ≤ τY (t) for all t ∈ R. (A.6)

• X ≤LR Y (in the likelihood ratio order) if and only if

fY (t)

fX(t)
is increasing in t over the union of the supports of X and Y , (A.7)

or, equivalently, if and only if

fX(x)fY (y) ≥ fX(y)fY (x) for all x ≤ y. (A.8)

• X ≤DCX Y (in the decreasing convex order) if and only if

E[φ(X)] ≤ E[φ(Y )] for all dencreasing convex functions φ : R→ R. (A.9)

• X ≤DISP Y (in the dispersive order) if and only if

F−1
X (y)− F−1

X (x) ≤ F−1
Y (y)− F−1

Y (x) whenever 0 < x ≤ y < 1, (A.10)

where F−1
X and F−1

Y are the right continuous inverses of FX and FY , de�ned as

F−1(x) = sup{x : F (x) ≤ x}.

Equivalently, X ≤DISP Y if and only if

fY (F−1
Y (x)) ≤ fX(F−1

X (x)) whenever x ∈ [0, 1]. (A.11)
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The dispersive order can be characterized also by comparing transformations of

the random variables X and Y . So X ≤DISP Y if and only if

Y =ST φ(X) for some φ which satis�es

φ(x)− φ(x∗) ≥ x− x∗ whenever x ≥ x∗. (A.12)

The following relationships hold:

X ≤LR Y ⇒ X ≤HR Y
⇓ ⇓

X ≤RHR Y ⇒ X ≤ST Y ⇒ E(X) ≤ E(Y ).



Appendix B

Aging classes

The concept of aging is very important in reliability analysis: it describes how a com-

ponent or system improves or deteriorates with age. Many classes of life distributions

are categorized or de�ned in the literature according to their aging properties.

Here we give formal de�nitions of some basic aging notions that we use in the text

and their interrelationships. The main references used are Barlow and Proshan [3],

Chandra and Roy [8], Deshpande et al. [9].

Let X be a nonnegative random variable with distribution function F , survival

functions F̄ and density function f . Let λ = f/F̄ be the hazard rate of X, τ = f/F

the reversed hazard rate of X and µ̃ the mean inactivity time of X. Then X is

• Increasing in Mean Inactivity Time, shortly written as IMIT, if and only if

µ̃(t) is increasing in t > 0. (B.1)

Note that we don't give the de�nition of Decreasing in Mean Inactivity Time

(DMIT) because we suppose that X is a nonnegative random variable (see The-

orem 2.2 in [28]).

• Increasing (Decreasing) in Hazard Rate, shortly written as IHR (DHR), if and

only if

λ(t) ≤ (≥)λ(s) for all 0 < t < s. (B.2)

• New Better (Worse) than Used in Hazard Rate, shortly written as NBUHR

(NWUHR), if and only if

λ(0) ≤ (≥)λ(t) for all t > 0. (B.3)
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• Increasing (Decreasing) Reversed Hazard Rate, shortly written as IRHR (DRHR),

if and only if

τ(t) ≤ (≥)τ(s) for all 0 < t < s. (B.4)

• Increasing (Decreasing) Likelihood Ratio, shortly written as ILR (DLR), if and

only if

f is log-concave (log-convex), (B.5)

or, equivalently if and only if

η(t) := −f
′(t)

f(t)
is increasing for t > 0. (B.6)

The following relationships hold:

ILR ⇒ IHR ⇒ NBUHR

⇓
DHR ⇒ DRHR

⇓
IMIT



Appendix C

Tables

Table C.1: Distortion functions q for all the coherent systems with 1-4 i.i.d. components.

N T q(u)

1 X1 u

2 X1:2 = min(X1, X2) 2u− u2

3 X2:2 = max(X1, X2) u2

4 X1:3 = min(X1, X2, X3) 3u− 3u2 + u3

5 min(X1,max(X2, X3)) u+ u2 − u3

6 X2:3 3u2 − 2u3

7 max(X1,min(X2, X3)) 2u2 − u3

8 X3:3 = max(X1, X2, X3) u3

9 X1:4 = min(X1, X2, X3, X4) 4u− 6u2 + 4u3 − u4

10 max(min(X1, X2, X3),min(X2, X3, X4)) 2u− 2u3 + u4

11 min(X2:3, X4)) u+ 3u2 − 5u3 + 2u4

12 min(X1,max(X2, X3),max(X2, X4)) u+ 2u2 − 3u3 + u4

13 min(X1,max(X2, X3, X4)) u+ u3 − u4

14 X2:4 6u2 − 8u3 + 3u4

15 max(min(X1, X2),min(X1, X3, X4),min(X2, X3, X4)) 5u2 − 6u3 + 2u4

16 max(min(X1, X2),min(X3, X4)) 4u2 − 4u3 + u4

17 max(min(X1, X2),min(X1, X3),min(X2, X3, X4)) 4u2 − 4u3 + u4

18 max(min(X1, X2),min(X2, X3),min(X3, X4)) 3u2 − 2u3

19 min(max(X1, X2),max(X2, X3),max(X3, X4)) 3u2 − 2u3

20 min(max(X1, X2),max(X1, X3),max(X2, X3, X4)) 2u2 − u4

21 min(max(X1, X2),max(X3, X4)) 2u2 − u4

22 min(max(X1, X2),max(X1, X3, X4),max(X2, X3, X4)) u2 + 2u3 − 2u4



C Tables 101

23 X3:4 4u3 − 3u4

24 max(X1,min(X2, X3, X4)) 3u2 − 3u3 + u4

25 max(X1,min(X2, X3),min(X2, X4)) u2 + u3 − u4

26 max(X2:3, X4) 3u3 − 2u4

27 max(min(X1, X2, X3),min(X2, X3, X4)) 2u3 − u4

28 X4:4 = max(X1, X2, X3, X4) u4
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Table C.2: CEn(T ) and bounds for CEn(T ) obtained from Proposition 5.3 and Proposition

5.5 for all the coherent systems given in Table C.1 with i.i.d. components having a standard

exponential distribution (µ = 1) and for n = 1, 2, 3.

N n CEn(T ) B1,n B2,n Dn B2,nCEn(X1)

1 1 0.644934 1 1 0.25 0.644934

2 0.202057 1 1 0.125 0.202057

3 0.082323 1 1 0.0625 0.082323

2 1 0.322467 0 2 0.186915 1.289868

2 0.101028 0 2 0.077728 0.404114

3 0.041162 0 2 0.035552 0.164646

3 1 0.789868 0 2 0.222222 1.289868

2 0.308228 0 4 0.148148 0.808228

3 0.158586 0 8 0.098765 0.658586

4 1 0.214978 0 3 0.146386 1.934802

2 0.067352 0 3 0.056225 0.606171

3 0.027441 0 3 0.024833 0.246970

5 1 0.399153 0 1.056342 0.207481 0.681271

2 0.142395 0 1.015601 0.101309 0.205209

3 0.063844 0 1.004519 0.052122 0.082695

6 1 0.431768 0 1.012007 0.198046 0.652678

2 0.172516 0 1.174332 0.111139 0.237282

3 0.089776 0 1.502561 0.067755 0.123696

7 1 0.641597 0 1.150827 0.221637 0.742207

2 0.233557 0 1.516010 0.130927 0.306320

3 0.116690 0 2.132897 0.081244 0.175587

8 1 0.851469 0 3 0.1875 1.934802

2 0.360179 0 9 0.140625 0.606171

3 0.201894 0 27 0.105469 0.246970

9 1 0.161234 0 4 0.119811 2.579736

2 0.050514 0 4 0.044013 0.808228

3 0.020581 0 4 0.019079 0.329293

10 1 0.258196 0 2 0.165315 1.289868

2 0.087430 0 2 0.070027 0.404114

3 0.037390 0 2 0.032899 0.164647

11 1 0.288437 0 1.136607 0.174634 0.733036

2 0.108046 0 1.041939 0.083079 0.210531
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3 0.050790 0 1.012924 0.043346 0.083387

12 1 0.346483 0 1.098163 0.192391 0.7082429

2 0.123801 0 1.029188 0.091655 0.2079546

3 0.056551 0 1.008789 0.047299 0.0830468

13 1 0.445965 0 1.012468 0.219642 0.652975

2 0.163535 0 1.001239 0.111855 0.202307

3 0.073025 0 1.000127 0.057992 0.082334

14 1 0.300888 0 1.020121 0.170339 0.657911

2 0.121017 0 1.021857 0.088125 0.206473

3 0.063164 0 1.15848 0.051613 0.095370

15 1 0.351058 0 1.005136 0.183012 0.648247

2 0.136686 0 1.046841 0.095728 0.211521

3 0.070459 0 1.22319 0.056271 0.100697

16,17 1 0.394934 0 1.000151 0.192397 0.645032

2 0.154114 0 1.092515 0.103585 0.220750

3 0.079293 0 1.326676 0.061669 0.109216

18,19 1 0.431768 0 1.012007 0.198046 0.652678

2 0.172516 0 1.174332 0.111139 0.237282

3 0.089776 0 1.502561 0.067755 0.123696

20,21 1 0.460559 0 1.045234 0.199342 0.674107

2 0.190620 0 1.310963 0.117482 0.264889

3 0.101742 0 1.807005 0.074229 0.148759

22 1 0.479865 0 1.09667 0.195363 0.707280

2 0.206149 0 1.510379 0.120958 0.305183

3 0.114162 0 2.300398 0.080054 0.189376

23 1 0.487245 0 1.159029 0.184466 0.747497

2 0.213967 0 1.765755 0.11768 0.356783

3 0.122231 0 3.02405 0.080962 0.248950

24 1 0.623248 0 1.057191 0.224525 0.681818

2 0.212041 0 1.258253 0.124132 0.254239

3 0.101572 0 1.618131 0.073492 0.133210

25 1 0.649105 0 1.24926 0.212759 0.805690

2 0.250910 0 1.858282 0.133867 0.375479

3 0.132327 0 2.973261 0.088163 0.244768

26 1 0.642545 0 1.343604 0.195741 0.866536

2 0.257031 0 2.245712 0.127710 0.453762
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3 0.141765 0 4.118911 0.088438 0.339082

27 1 0.766283 0 2 0.197631 1.289868

2 0.308478 0 4 0.136703 0.808228

3 0.168417 0 8.197383 0.097174 0.674835

28 1 0.885292 0 4 0.16 2.579736

2 0.390318 0 16 0.128 3.23291

3 0.228564 0 64 0.1024 5.268687
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