
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II 

 
 

 

SCUOLA POLITECNICA E DELLE SCIENZE DI BASE 
 

Ph.D Degree in Industrial Engineering 

 

 

 

Ph.D Thesis: 

 

Assessing and inferring intra and inter-rater agreement 

 

 

 

 

 

 

 

 

 

Thesis Advisor       PhD. Candidate: 

Prof. Amalia Vanacore                                      Maria Sole Pellegrino 

  

 

 

 

 

 

 

 

 

 

Academic Year 2018/2019 





No part of this thesis may be extracted, duplicated or diffused by any means without
the written consensus of the author.



Contents

List of Tables iii

List of Symbols iv

Summary 1
Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 A brief overview of agreement models and measures for quantita-
tive data 3
1.1 Model-based approach . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Index-based approach . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Kendall’s W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Goodman and Kuskal’s γ . . . . . . . . . . . . . . . . . . . . . . . . 8
Krippendorff’s α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Kappa-type agreement coefficients 11
2.1 Intra-rater agreement . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Agreement coefficients for nominal data . . . . . . . . . . . . 12
2.1.2 Weighted agreement coefficients for ordinal data . . . . . . . 15

2.2 Inter-rater agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Inter-rater agreement coefficients for nominal data . . . . . . 17
2.2.2 Weighted inter-rater agreement coefficients for ordinal data . 18

3 Characterization of the extent of rater agreement 21
3.1 Straightforward benchmarking procedure . . . . . . . . . . . . . . . 21
3.2 Inferential benchmarking procedure . . . . . . . . . . . . . . . . . . . 23

3.2.1 Standard methods . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Non-parametric methods based on bootstrap resampling . . . 24

3.3 A Monte Carlo simulation study . . . . . . . . . . . . . . . . . . . . 25

4 Real case studies 29

5 Conclusions 31

A Published and forthcoming papers: 33

ii



List of Tables

1.1 Cicchetti benchmark scale for interpreting reliability values . . . . . 6

2.1 k × k contingency table . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 n×k table for classifying the ratings provided by R raters in the same

session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Some benchmark scales for interpreting kappa-type agreement coeffi-
cients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Null and non null inference cases . . . . . . . . . . . . . . . . . . . . 26

iii



List of Symbols

Symbol Meaning
1-β statistical power of the conducted hypothesis test
a acceleration parameter for BCa bootstrap confidence interval
b bias-correction parameter for BC and BCa bootstrap confidence in-

terval
B number of bootstrap replications
De disagreement that would be expected by chance in Krippendorff’s α

among the ratings assigned to the items
dl deviation of true score from the mean for item l when modelling the

evaluation
Do observed disagreement in Krippendorff’s α among the ratings as-

signed to the items
elr measurement error component in the evaluation of item l from rater

r when modelling the evaluation
G cumulative distribution function of the bootstrap distribution of the

kappa coefficient
H number of evaluation sessions replicated over time
h code for indexing the generic session
i code for indexing the generic classification category of the first session

I [·] indicator function
j code for indexing the generic classification category of the second

session
k number of classification categories of the adopted categorical rat-

ing scale
l code for indexing the generic item

LBAsymp lower bound of the asymptotic confidence interval based on the as-
sumption of asymptotic normality

LBBC lower bound of the Bias Corrected bootstrap confidence interval
LBBCa lower bound of the Bias Corrected and Accelerated bootstrap confi-

dence interval
LBp lower bound of the percentile bootstrap confidence interval
Mw weighted misclassification rate

metricδ
2
ij distance metric in Krippendorff’s α

n sample size dimension



v

ni frequencies for category i in Krippendorff’s α
nij number of items classified into category i during the first session and

into category j during the second session
ni· number of items classified into category i during the first session

independently of the second session
n·j number of items classified into category j during the second session

independently of the first session
nri number of items that rater r classified into category i
oij frequencies of values of coincident matrices in Krippendorff’s α
pa proportion of observed agreement among the evaluations provided on

a nominal scale by the same rater in two sessions
pa|c proportion of agreement expected by chance for nominal evaluations

provided by the same rater in 2 sessions
pAC1
a|c proportion of agreement expected by chance of Gwet’s AC1 for nom-

inal evaluations provided by the same rater in 2 sessions
pKa|c proportion of agreement expected by chance of Cohen’s K for nominal

evaluations provided by the same rater in 2 sessions
pUa|c proportion of agreement expected by chance of Uniform kappa for

nominal evaluations provided by the same rater in 2 sessions
pπa|c proportion of agreement expected by chance of Scott’s π for nominal

evaluations provided by the same rater in 2 sessions
paW weighted version of pa
pa|cW

weighted version of pa|c
pAC2
a|cW

weighted proportion of agreement expected by chance of Gwet’s AC2
for ordinal evaluations provided by the same rater in 2 sessions

pKa|cW
weighted proportion of agreement expected by chance of Cohen’s K
for ordinal evaluations provided by the same rater in 2 sessions

pUa|cW
weighted proportion of agreement expected by chance of Uniform
kappa for ordinal evaluations provided by the same rater in 2 sessions
or simultaneously by R raters

pπa|cW
weighted proportion of agreement expected by chance of Scott’s π for
ordinal evaluations provided by the same rater in 2 sessions

pa(R) proportion of observed agreement among the evaluations simultane-
ously provided on a nominal scale by multiple raters

pa|c(R) proportion of agreement expected by chance among the evaluations
simultaneously provided on a nominal scale by multiple raters

pAC1
a|c(R) proportion of agreement expected by chance of AC1 among the evalu-

ations simultaneously provided on a nominal scale by multiple raters
pCa|c(R) proportion of agreement expected by chance of Conger’s K among the

evaluations simultaneously provided on a nominal scale by multiple
raters

pFa|c(R) proportion of agreement expected by chance of Fleiss’s K among the
evaluations simultaneously provided on a nominal scale by multiple
raters

pUa|c(R) proportion of agreement expected by chance of Uniform kappa among
the evaluations simultaneously provided on a nominal scale by mul-
tiple raters



vi

pa(R)W
weighted version of pa(R)

pa|c(R)W
weighted version of pa|c(R)

pAC2
a|c(R) weighted version of pAC1

a|c(R)
pCa|c(R)W

weighted version of pCa|c(R)
pFa|c(R)W

weighted version of pFa|c(R)
pri proportion of items classified into category i by rater r
p̄·i mean value of the proportions pri
R number of raters involved/employed in the study
r code for indexing the generic rater
r number of Monte Carlo replications
r′ code for indexing the generic Monte Carlo replication
rclr interaction effect between rater r and item l

ri probability of classifying an item into category i
rli number of raters who classified item l into category i
S∗ generic bootstrap data set
s2
i sample variance of the proportions pri
s2
ij weighted variant of s2

i

UBAsymp upper bound of the asymptotic confidence interval based on the as-
sumption of asymptotic normality

UBBC upper bound of the Bias Corrected bootstrap confidence interval
UBBCa upper bound of the Bias Corrected and Accelerated bootstrap confi-

dence interval
UBp upper bound of the percentile bootstrap confidence interval
Xr′ benchmark of the generic r′ Monte Carlo data set
Ylh evaluation provided by a rater to item l during session h
Ylr evaluation provided to item l by rater r
Y ′lr ranking provided to item l by rater r
Ylrh evaluation provided to item l by rater r during the hth session
Tw sum of weights wij across the cells of the contingency table
wij symmetric agreement weight for mismatch of ordinal classification

between categories i and j
wωω′ misclassification weight for mismatch of benchmarking classification

between agreement categories ω and ω′
zα α percentile of the standard normal distribution
α statistical significance of the conducted hypothesis test
Φ cumulative distribution function of the normal distribution
κ symbol of the general kappa-type agreement coefficient for 2 sessions

and nominal data
κjl jackknife (j) estimate of κ obtained deleting item l

κ̄j average out of all n jackknife estimate of κjl
κC tested critical value of κ in the hypothesis test



vii

κW symbol of the general weighted kappa-type agreement coefficient for
2 sessions and ordinal data

κ(S∗) κ coefficient of the bootstrap data set S∗
µ mean value of the evaluation
πi proportion of items classified into category i whatever the session
σ2
c variance of the component cr
σ2
d variance of the component dl
σ2
e variance of the component elr
σ2
l variance of the component rclr
σ̂2
κ sample variance of κ
ω code for indexing the generic agreement category

Glossary

ANOVA Analysis of Variance
BC Bias Corrected bootstrap confidence interval
BCa Bias Corrected and Accelerated bootstrap confidence interval
ICC Intraclass Correlation Coefficient
IRR Inter Rater Reliability

p percentile bootstrap confidence interval
R&R Repeatability and Reproducibility



Summary

The research work wants to provide a scientific contribution in the field of
subjective decision making since the assessment of the consensus, or equiva-
lently the degree of agreement, among a group of raters as well as between
more series of evaluations provided by the same rater, on categorical scales
is a subject of both scientific and practical interest. Specifically, the research
work focuses on the analysis of measures of agreement commonly adopted for
assessing the performance (evaluative abilities) of one or more human raters
(i.e. a group of raters) providing subjective evaluations about a given set of
items/subjects. This topic is common to many contexts, ranging from med-
ical (diagnosis) to engineering (usability test), industrial (visual inspections)
or agribusiness (sensory analysis) contexts.

In the thesis work, the performance of the agreement indexes under study,
belonging to the family of the kappa-type agreement coefficients, have been
assessed mainly regarding their inferential aspects, focusing the attention on
those scenarios with small sample sizes which do not satisfy the asymptotic
conditions required for the applicability of the standard inferential methods.
Those scenarios have been poorly investigated in the specialized literature,
although there is an evident interest in many experimental contexts.

The critical analysis of the specialized literature highlighted two criticisms
regarding the adoption of the agreement coefficients: 1) the degree of agree-
ment is generally characterized by a straightforward benchmarking procedure
that does not take into account the sampling uncertainty; 2) there is no evi-
dence in the literature of a synthetic index able to assess the performance of a
rater and/or of a group of raters in terms of more than one evaluative abilities
(for example repeatability and reproducibility).

Regarding the former criticism, an inferential benchmarking procedure
based on non parametric confidence intervals, build via bootstrap resampling
techniques, has been suggested. The statistical properties of the suggested
benchmarking procedure have been investigated via a Monte Carlo simulation
study by exploring many scenarios defined by varying: level of agreement, sam-
ple size and rating scale dimension. The simulation study has been carried out
for different agreement coefficients and building different confidence intervals,
in order to provide a comparative analysis of their performances.

Regarding the latter criticism, instead, has been proposed a novel compos-
ite index able to assess the rater abilities of providing both repeatable (i.e.
stable over time) and reproducible (i.e. consistent over different rating scales)
evaluations. The inferential benchmarking procedure has been extended also
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to the proposed composite index and their performances have been investi-
gated under different scenarios via a Monte Carlo simulation.
The proposed tools have been successfully applied to two real case studies,
about the assessment of university teaching quality and the sensory analysis
of some food and beverage products, respectively.

Outline of the thesis

The remainder of the thesis is as follows: Chapter 2 introduces the family
of κ-type agreement coefficients and describes the most common coefficients
adopted for assessing the degree of intra- and inter-rater agreement when the
evaluations are provided either with nominal or ordinal rating scales.
The inferential benchmarking procedures adopted for characterizing the extent
of rater agreement are presented in Chapter 3, together with the Monte Carlo
simulation study conducted for investigating their statistical properties.
Two real case studies are described in Chapter 4 and finally conclusions are
summarized in Chapter 5.
All the published and forthcoming papers are collected in the Appendix.



Chapter 1

A brief overview of agreement
models and measures for
quantitative data

In many fields, ranging from business and industrial system to medical, social
and behavioral contexts, the research is based on data generated by human
beings (in the specialized literature also defined observers, raters, assessors
or judges, and hereafter referred to as human raters or simply raters) who
are asked to judge some objects (or items or subjects). In content analysis,
for example, people are employed in the systematic interpretation of textual,
visual or audible matter; in industrial contexts the operators classify the pro-
duction faults into defect types or are involved in pass/fail inspection; whereas
in medical sciences they provide clinical diagnosis. Despite the huge involve-
ment of human judgments in research studies, when relying on human raters,
researchers must worry about the quality of the data and, specifically, about
their reliability because of the common premise that only reliable raters can
provide fair evaluations.

Three kinds of reliability can be analyzed: precision (or intra-rater reliabil-
ity or repeatability), reproducibility (or inter-rater reliability) and accuracy.
The former refers to rater ability of providing the same evaluations try after try
under the same conditions (i.e. in different occasions over time); reproducibil-
ity refers to raters’ ability of providing the same evaluations, on average, as
the others of an homogeneous group of raters; whereas accuracy refers to the
closeness of the provided evaluation to the true or accepted value. It is worthy
to note that being subjective, rater evaluations lack a gold standard against
which to check their accuracy, therefore their reliability is related only to pre-
cision and reproducibility.

To deal with these issues, a number of theoretical and methodological ap-
proaches have been proposed over the years in different disciplines.
The key to rater reliability is the agreement observed within rater and among
independent raters, respectively: the more raters agree on the evaluations (or
ratings) they provide, the more comfortable we can be that he/she is pre-
cise and that their evaluations are reproducible and exchangeable with those
provided by other raters [41] and thus trustworthy. Although precision and
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reproducibility are equally important, the reproducibility is, by far, the ability
most frequently tested.

The currently available methods for the assessment of rater repeatability
and reproducibility can be grouped in two main families: index-based approach
and model-based approach. The former quantifies the level of repeatability and
reproducibility in a single number and does not provide insight into the struc-
ture and nature of reliability differences; the latter overcomes this criticism
and models the ratings provided by each rater to each item focusing on the
association structure between repeated evaluations.

1.1 Model-based approach

Of interest in a model-based approach is the joint distribution of the data (i.e.
evaluations provided by each rater) and in particular the association structure
between the repeated evaluations since a lack of association implies a poor level
of Repeatability and Reproducibility (R&R). Specifically, in a R&R study, the
n items are evaluated H times by each of R raters into one of the k classifica-
tion categories. The data are denoted Ylrh, with l indexing items, r indexing
raters, and h indexing evaluation sessions.
Among all the available methods for modelling the data, the main alternatives
are latent variable model (e.g. [2, 18]) and log-linear models [1].
Both of them typically model typically model cell counts rather than the indi-
vidual outcomes of measurements. Particularly, latent variable model assumes
the existence of an underlying latent dimension, widely used in the popular
latent variable modeling framework when dealing with categorical dependent
variables (e.g. [58]); log-linear models, instead, are a class of generalized linear
models that describe the means of cell counts in a multidimensional table and
the cell counts are treated as independent observations of a Poisson random
component.

Recently, instead, De Mast and Van Wieringen suggested to evaluate the
R&R of nominal data on the basis of heterogeneous appraisers model [19]
and that of ordinal data on the basis of models borrowed from Item Response
Theory methodology [51], and particularly using Master’s Partial Credit model
[53] in the generalized form proposed by Muraki [57], estimating —from the
experimental data— the parameters of the model by means of the maximum
likelihood method [21]. The approach they proposed models the individual
outcomes Ylrh and provides insight into the workings of a rating process, which
is vital information for fixing an unreliable rater, and analyses (via both graphic
and diagnostic instruments) the nature of the differences among the raters.

1.2 Index-based approach

A widely adopted methodology for the assessment of inter-rater reliability
(IRR) was developed by Fisher [26]; the method, based on the analysis of
variance (ANOVA), leads to the Intraclass Correlation Coefficient (ICC) which
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expresses the reliability as a ratio of the variance of interest over the total
variance. The ICC, developed to deal with several ratings, has emerged as a
universal and widely accepted reliability index [52, 64, 67].

In a typical IRR study, each of a random sample of n items from a popu-
lation of items is rated independently by R raters belonging to a population
of raters. Therefore, among the possible effects are those for the rth rater, for
the lth item, for the interaction between rater and item, for the constant level
of ratings, and for a random error component. Among the many variants of
ICC proposed in the literature over the years, two will be hereafter presented,
each corresponding to a study design [4, 66] and thus to a standard ANOVA
model:

1. each item is rated by a different set of R raters, randomly selected from
a larger population of rater (one-way random effects ANOVA model);

2. each item is rated by the same random sample of R raters selected from a
larger population (fully-crossed design; two-way random effects ANOVA
model).

One-way random effects ANOVA model

Let Ylr and Ylr′ be the ratings provided to item l by rater r and r′, respectively;
the ICC estimates the correlation between different ratings (Ylr and Ylr′) of a
single item (l) as:

ICC = Cov(Ylr, Ylr′)√
Var(Ylr) · Var(Ylr′)

(1.1)

It is worthy to specify that the ICC is based on the assumption that the
ratings (Y ) provided from multiple raters for a set of items are composed of a
true score component (T ) and of a measurement error component (E):

Rating=True Score + Measurement Error (1.2)

or in abbreviated symbols:
Y = T + E (1.3)

This can be rewritten in the form:

Ylr = µ+ dl + elr (1.4)

where µ is the mean of the ratings for variable Y , dl is the deviation of the
true score from the mean for item l, and elr is the measurement error. It is
assumed that the component dl ∼ N(0;σ2

d), (l = 1, ..., n), elr ∼ N(0;σ2
e), (l =

1, ..., n; r = 1, ..., R) and that the dl are independent of elr.
The ICC is computed adopting the variances of the components in Eq. 1.4

as follows:
ICC = σ2

d

σ2
d + σ2

e

(1.5)

Higher ICC values indicate greater IRR: when there is perfect reliability,
the ICC estimate equals 1; vice-versa when the measurement system is no
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more consistent than chance so that the agreement — and thus the reliability
— is random, the coefficient is null. In presence of reliability the coefficients
return positive values, whereas negative ICC estimates indicate systematic
disagreement, with values less than −1 only when there are three or more
raters. In order to qualify the extent of positive reliability, Cicchetti [12]
provided four ranges of ICC values corresponding to as many categories of
reliability: poor reliability for coefficient values less than 0.4; fair, good and
excellent for coefficient values ranging between 0.4 and 0.6, 0.6 and 0.75, 0.75
and 1.00, respectively, as reported in Table 1.1.

Table 1.1. Cicchetti benchmark scale for interpreting reliability values

Coefficient Reliability

ICC < 0.40 Poor
0.40 < ICC ≤ 0.60 Fair
0.60 < ICC ≤ 0.75 Good
0.75 < ICC ≤ 1.00 Excellent

From a computational point of view, the variance components in Eq. 1.5
can be estimated via one-way ANOVA. Denoting by WMS and BMS the within
and between groups mean squares, respectively, a biased but consistent esti-
mator of ICC is:

ÎCC = BMS−WMS
BMS + (R− 1)WMS (1.6)

Note that this estimate is only acceptable if the items l are sampled randomly
from the population. If this is not the case, σ2

p should be estimated from a
historical sample.

Two-way ANOVA model

Suppose now that each item is rated by the same random sample of R raters
selected from a larger population (fully-crossed designs). A two-way ANOVA
model can be used to represent the data Ylr because there is a systematic
source of variation between items and raters; the component elr may also be
modelled by revising Eq. 1.4 such that

Ylr = µ+ dl + cr + rclr + elr (1.7)

where cr represents the deviation of the ratings of rater r from the over-
all mean and rclr represents the degree to which the rater r departs from
his/her usual rating tendencies when confronted to item l (interaction effect).
It is assumed that cr ∼ N(0;σ2

c ), rclr ∼ N(0;σ2
l ) and that all components

rclr(l = 1, ..., n; r = 1, ..., R) are mutually independent. Under model 1.7, ICC
is defined as:

ICC = σ2
d

σ2
d + σ2

e + σ2
c + σ2

l

(1.8)
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Gauge Repeatability and Reproducibility study, R&R

The standard methods for the assessment of the reliability of a human rater,
who in subjective evaluation systems acts as measurement instrument [6, 59,
60, 61], include also Gauge Repeatability and Reproducibility (Gauge R&R)
studies [10, 54, 55, 78]. The model underlying the Gauge R&R equals model
1.4 of the ICC method; the main difference is that ICC expresses the ratio of
rating variation and total variation in terms of variances whereas the Gauge
R&R in terms of standard deviations or (Pearson) correlations. The rating
variation is compared to the total variation (including rating variation), as is
done by the Gauge R&R statistic:

Gauge R&R = σe
σtotal

(1.9)

with σtotal =
√
σ2
d + σ2

e .
The standard deviation is split into a component due to the measurement

instrument (i.e. human rater; repeatability) and a component due to additional
sources of variation (reproducibility). Proportions suggest that the numerator
plus its complement add up to the denominator. This holds for variances
(σ2

d +σ2
e = σ2

total), but not for standard deviations (in general σd +σe 6= σtotal),
which makes ICC the more natural choice [79]. Anyway, the ICC and the
Gauge R&R are essentially the same:

ICC = 1− (Gauge R&R)2 (1.10)

A drawback of the standard ANOVA methods is that despite their popular-
ity, they are not suitable for subjective evaluations which — because of their
“qualitative” nature — are mainly expressed on categorical (i.e. nominal or
ordinal) rating scales; however ANOVA approach could take great advantage
from a recently proposed unifying approach for assessing variation over every
scale of measurement [32, 33].

Alternative non-parametric methods for the assessment of rater reliability
with categorical data are Kendall’s coefficient of concordance W, Goodman
and Kuskal’s gamma (γ) and Krippendorff’s α.

Kendall’s W

Kendall’s W, a generalization of Spearman’s ρ [45] correlation coefficient, is a
measure of rank correlation between R rankings. Here, the idea is to trans-
form ratings into rankings, and treat these rankings as though they were on
an interval or ratio scale (with equidistant classes), and apply ANOVA-like
techniques (such as sums of squares). The coefficient assesses the correlation
as the sum of squares of the differences in rank number of R rankings for each
item. In this form, it is defined as:

W =
∑n
l=1 rl − 1

2R(n+ 1))2

1
12R

2(n3 − n) (1.11)
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being rl = ∑R
r=1 Y

′
lr and Y ′lr the ranking of item l by rater r.

The main criticism of this coefficient is its analogy to the analysis of variance
because the rankings are treated as independent of each other although they
are assigned in conjunction with each other.

Goodman and Kuskal’s γ

Goodman and Kruskal’s γ is based on the notion of concordance, which refers
to the extent to which raters are consistent in ordering items relative to each
other. Specifically, γ is defined for pairs of ratings (that is ratings provided
during two evaluation sessions) and expresses the rater reliability as a difference
between the probability of observing a concordant pair of ratings and the
probability of observing a discordant pair of ratings. It is defined as:

γ = Pc − Pd
1− Ptie

= P (concordance|no ties)− P (discordance|no ties).
(1.12)

Following the formulas in Goodman and Kruskal [35], γ is estimated as follows:

γ̂ = Ĉ − D̂
Ĉ + D̂

(1.13)

where
Ĉ = 2 1

n2

k−1∑
i=1

k−1∑
j=1

k∑
i′=i+1

k∑
j′=j+1

nijni′j′ (1.14)

D̂ = 2 1
n2

k−1∑
i=1

k∑
j=2

k∑
i′=i+1

j−1∑
j′=1

nijni′j′ (1.15)

and nij counts the items assigned to category i during one evaluation session
and to category j during a second evaluation session on a rating scale with k
classification categories.
Using Eq. 1.13, it is possible to estimate γ̂ (for a fixed couple of raters) for
each pair of evaluation sessions and taking the average of the γ̂-values as the
IRR level. A value of γ̂ = 1 implies perfect consistency in order and thus
concordance, whereas a value of γ̂ = 0 means that the ratings are done at
random and hence they are completely uninformative.

Krippendorff’s α

Krippendorff’s α is a reliability coefficient developed to measure agreement
between raters, or generally between measuring instruments [47]. α emerged
in content analysis but is widely applicable whenever two or more methods of
generating data (namely, evaluations provided by human raters or measure-
ments made by measuring instruments) are applied to the same set of items
and the question is how much the resulting data can be trusted to represent
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something real.
The general form of α is as follows:

α = 1− Do

De

(1.16)

whereDo is the observed disagreement among the ratings assigned to the items:

Do = 1
2n

k∑
i=1

k∑
j=1

oij metricδ
2
ij (1.17)

and De denotes the disagreement that would be expected when the rating is
attributable to chance rather than to the properties of the rated items:

De = 1
2n(2n− 1)

k∑
i=1

k∑
j=1

ni · nj metricδ2
ij. (1.18)

The arguments oij, ni and nj in the two disagreement measures in Eq.
1.17 and 1.18 refer to the frequencies of values in coincidence matrices whereas
metricδ

2
ij is a metric function. See [49] for all computational details.

If the observed disagreement Do is null, α = 1 and thus the reliability will be
perfect. When raters agree by chance then Do = De and α = 0, which indicate
the absence of reliability.
The Krippendorff’s α can be considered a good index of IRR because when
assessing the agreement between more than two raters, independently evalu-
ating each item, it is both independent of the number of employed raters and
invariant to the permutation and selective participation of raters [42].

Another widely applied method to assess the precision of categorical eval-
uations is related to the concept of agreement. Specifically, according to this
approach, the rater precision is assessed in terms of the similarity of the pro-
vided evaluations with respect to the true value of the rated items; otherwise,
namely when the true value does not exist and it is not possible to check
ratings’ trueness, the rater precision is assessed as her/his ability of provid-
ing repeatable evaluations over different occasions (i.e. intra-rater agreement)
and/or as the raters’ ability of providing the same evaluations, on average, as
the whole group of raters (i.e. inter-rater agreement); in such circumstances,
the whole group of raters plays the role of a gold standard.
Among the several agreement indexes proposed in the literature over the years,
the most common ones belong to the family of the kappa-type agreement coef-
ficients. Typically the kappa coefficient, denoted κ, is defined as a population
parameter, and the statistical models for the data are not provided. The focus
of this thesis is on the index-based approach and specifically on the family
of the most widely applied κ coefficients that will be widely discussed in the
following Chapter 2.

It is evident that the index-based approach describes the rater reliability
in a single number generally ranging between −1 and 1. Whereas the ex-
treme values of disagreement/unreliability and perfect agreement/reliability
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have clear interpretations, the intermediate values are hard to give a tangible
meaning different from the rater is somewhere in between unreliable and per-
fectly reliable. Such a single number may be useful for comparing raters (or
generally measurement instruments) relative to each other, but it is hard to see
its practical value when the aim is to characterize the evaluation performance
of a single rater (or generally measurement instrument).

Although the model-based approach gives more information than the sin-
gle estimate, output of the index-based approach, this latter is the easiest to
implement and thus the most widely applied, especially by practitioners.



Chapter 2

Kappa-type agreement
coefficients

The kappa-type agreement coefficients are sample statistics which rescale the
difference between the proportion of observed agreement and the proportion
of agreement expected by chance alone.

A typical agreement study involves n items classified H times (i.e. H
evaluation sessions) by one or more raters on a categorical scale with k ≥ 2
classification categories.
In the case of one rater classifying the n items in two evaluation sessions, the
kappa-type coefficient estimates the level of intra-rater agreement (also defined
precision or repeatability); whereas when two or more raters simultaneously
(i.e. H = 1 evaluation session) classify the n items, the coefficient estimates
the level of inter-rater agreement (also defined reproducibility). The two study
designs will be separately analysed in Section 2.1 and 2.2 for intra- and inter-
rater agreement, respectively.

2.1 Intra-rater agreement

Let Ylh denote the evaluation provided by one rater during the hth evaluation
session to item l. Of interest for the assessment of intra-rater agreement is the
joint distribution of the Ylh.
In the simplest case of two evaluation sessions (i.e. h = 1, 2), the data can be
arranged in a k × k contingency table (nij)k×k (Table 2.1), where the generic
(i, j) cell contains the joint frequency nij that counts the number of items
classified into ith category in the first session and into jth category in the
second session. Specifically the cells along the main diagonal represent the
perfect match between the evaluations provided in the two sessions, whereas
the off-diagonal cells represent mismatch.

The traditional formula of kappa-type agreement coefficient is:

κ = pa − pa|c
1− pa|c

(2.1)
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Table 2.1. k × k contingency table

2nd session
Category 1 ... j ... k Total

1s
t
se
ss
io
n

1 n11 ... n1j ... n1k n1·
...

... ...
... ...

...
...

i ni1 ... nij ... nik ni·
...

... ...
... ...

...
...

k nk1 ... nkj ... nkk nk·

Total n·1 ... n·j ... n·k n

where pa is the proportion of agreement observed among the provided eval-
uations and pa|c is the proportion of agreement expected by chance alone,
corresponding to the agreement observed when raters assign evaluations ran-
domly, independently of the true value of the rated item.

2.1.1 Agreement coefficients for nominal data

When the n items are evaluated on a nominal scale with k classification cat-
egories, independent, mutually exclusive and exhaustive, the proportion of
observed agreement is given by:

pa =
k∑
i=1

nii
n

(2.2)

On the other hand, different notions of agreement expected by chance alone are
advocated in the literature, corresponding to as many kappa-type coefficients,
leading to quite some controversy.

Scott’s π

The pioneer coefficient of the kappa-type family coefficients has been proposed
by Scott in 1955 [63] in the context of content analysis.

According to Scott, the proportion of agreement expected by chance alone
depends not only on the number of classification categories but also on the
frequency with which each of them is used in the two sessions (i.e. marginal
frequencies). Minimum chance agreement occurs when all categories are used
(in the two replications) with equal frequency. Any deviation from a rectangu-
lar distribution of frequencies across categories will increase the agreement ex-
pected by chance. Moreover, he assumes that the distribution of the marginal
frequencies (known for the population) is equal for the two replications. Thus,
the total probability of agreement expected by chance alone is the sum over
all categories of the squared (since the categories are mutually exclusive and
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the probabilities of using any one of the categories are assumed equal in the
two replications) proportion πi:

pπa|c =
k∑
i=1

π2
i (2.3)

Being ni· the number of items classified into ith category in the first replication
(independently of the evaluations of the second replication) and n·j the number
of items classified into jth category in the second replication (independently of
the evaluations of the first replication), πi is the proportion of items classified
into ith category (independently of the replication) and is equal to:

πi = ni· + n·i
2n (2.4)

Cohen’s K

However, the family of the kappa-type coefficients borrowed its name from the
Cohen’s Kappa coefficient, proposed by Cohen in 1960 [15]. Cohen formulates
the proportion of agreement expected by chance alone assuming that:

1. the n rated items are independent to each other;

2. the k classification categories are independent, mutually exclusive and
exhaustive;

3. the two series of evaluations are independent to each other.

The pa|c is thus formulated in terms of marginal frequencies as follows:

pKa|c = 1
n2

k∑
i=1

ni·n·i (2.5)

Despite their popularity, two well-documented effects can substantially
cause Scott’s π and Cohen’s Kappa to misrepresent the degree of agreement
of a measurement system [24, 37].
The first effect appears when the marginal distributions of observed ratings
fall under one classification category at a much higher rate over another, called
the prevalence problem, which typically causes κ estimates to be unrepresenta-
tively low; in other words, for a fixed value of observed agreement, tables with
marginal asymmetry produce lower values of κ than tables with homogeneous
marginal. Prevalence problems may exist within a set of ratings due to the
nature of the rating instrument used in a study, the tendency for raters to
identify one or more classification categories more often than others, or due
to truly unequal frequencies of items/events occurring within the population
under study.
The second effect appears when the marginal distributions of specific ratings
are substantially different between raters, called the bias problem, which typi-
cally causes κ estimates to be unrepresentatively high.
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These criticisms were firstly observed by Brennan and Prediger in 1981 [9] al-
though they are widely known as "Kappa paradoxes" as referred to by Feinstein
and Cicchetti [14, 25].

Two κ variants developed to accommodate these effects are the uniform
kappa, proposed by Bennett, Alpert and Goldstein [7] and advocated by Bren-
nan and Prediger [9] and others [36, 43, 44], and the Agreement Coefficient
AC1 proposed by Gwet [38].

Uniform kappa

The uniform kappa formulates the agreement expected by chance alone adopt-
ing the notion of uniform chance measurement [7] which assigns equal prob-
ability to any classification category and thus is the most non-informative
measurement system given a certain rating scale [20, 23]. pa|c under the as-
sumption of uniform chance measurement is formulated as follows:

pUa|c =
k∑
i=1

1
k2 = 1

k
(2.6)

Gwet’s AC1

The AC1 agreement coefficient, instead, formulates the agreement expected by
chance alone as the probability of the concomitance that a rater performs a
random rating R and that the two raters agree G:

pAC1
a|c = P (G ∩R) = P (G|R) · P (R) (2.7)

where P (G|R) is given assuming the uniform distribution for chance measure-
ments and is formulated as in Eq. 2.6; and P (R) is approximated with a
normalized measure of randomness defined by the ratio of the observed vari-
ance Var, to the variance expected under the assumption of totally random
ratings VarM :

P (R) = Var
VarM

=
∑k
i=1 πi(1− πi)
(k − 1)/k (2.8)

being πi the proportion of items classified into ith category formulated as in
Eq. 2.4. Thus:

pAC1
a|c = 1

k − 1

k∑
i=1

πi(1− πi) (2.9)

The formulation of observed agreement of Eq. 2.2 and those of agreement
expected by chance alone of Eq. 2.3, 2.5, 2.6 and 2.9 are useful only when
the rater provides her/his evaluations on a nominal rating scale because these
formulations treat all disagreements as homogeneous and there is agreement
only in the case of perfect match between evaluations, being the nominal clas-
sification categories mutually exclusive and exhaustive.
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2.1.2 Weighted agreement coefficients for ordinal data

When the evaluations are provided on an ordinal rating scale it is undoubtful
that some disagreements are more serious than others. In this case, the intro-
duction of either a distance metric or a weighting scheme enables to account
that disagreement on two distant categories should be considered more rele-
vant than disagreement on neighbouring categories.
Different kinds of distance metrics and weighting schemes appropriate for var-
ious practical situations have been proposed and discussed in the literature.
Typically, these metrics are expressed as non decreasing functions of |i − j|
when assessing the degree of disagreement among the provided evaluations
(e.g. loss matrix [5]) or, vice-versa, as non-increasing function of |i− j| when
assessing the degree of agreement (e.g. linear agreeing weights and quadratic
agreeing weights).

The weighted version of the kappa-type coefficients, including symmetric
weights (i.e. wij = wji) a priori assigned to each pair (i, j) of ratings, is
formulated as follows:

κW = paW
− pa|cW

1− pa|cW

(2.10)

where paW
is the weighted proportion of observed agreement and is given by:

paW
=

k∑
i=1

k∑
j=1

wij
nij
n

(2.11)

and pa|cW
is the weighted proportion of agreement expected by chance, differ-

ently formulated for each κw coefficient.

wij is the symmetrical agreement weight ranging between 0 and 1, with
the minimum value 0 assigned to maximally disagreeing pairs of ratings, (1,
k) and (k, 1), and the maximum value 1 assigned to pairs of concident ratings
(i, i). It is worthwhile to pinpoint that although the weights can be arbitrary
defined, the linear (wLij) [13] and quadratic (wQij) [29] weights are the most com-
monly used weighting schemes for kappa-type coefficients and are formulated
as follows:

wLij = 1− |i− j|
k − 1 ; wQij = 1− (i− j)2

(k − 1)2 (2.12)

Weighted Scott’s π

The weighted variant of Scott’s π formulates the weighted proportion of agree-
ment expected by chance as:

pπa|cW
=

k∑
i=1

k∑
j=1

πiπjwij (2.13)
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Weighted Cohen’s K

The Cohen’s weighted Kappa [16] formulates the weighted proportion of agree-
ment expected by chance as:

pKa|cW
=

k∑
i=1

k∑
j=1

ni·
n

n·j
n
wij (2.14)

Weighted Uniform kappa

The weighted proportion of agreement expected under the assumption of uni-
form chance measurement is given by:

pUa|cW
= Tw
k2 (2.15)

where Tw is the sum of weights across the cells of the contingency table (Table
2.1):

Tw =
k∑
i=1

k∑
j=1

wij (2.16)

Gwet’s AC2

Gwet, instead, proposed the weighted variant of the AC1 coefficient in [39] and
named it AC2. AC2 formulates the weighted proportion of agreement expected
by chance as:

pAC2
a|c = Tw

k(k − 1)

k∑
i=1

πi(1− πi) (2.17)

It is worthy to note that the coefficients proposed in this Section 2.1 can be
adopted also for assessing the degree of inter-rater agreement between R = 2
raters. In this case, the rows of the contingency table 2.1 refer to the first
rater, whereas its columns to the second rater.

2.2 Inter-rater agreement

Kappa-type coefficients were extended to the general case of three raters or
more by a number of authors. Most generalized versions are formulated as in
Eq. 2.1, where pa is the observed agreement, and pa|c the agreement expected
by chance.
In the case of R ≥ 3 raters assessing the same set of n items in the same
session, the data can be arranged into a n×k table (rli)n×k, where the generic
(l, i) cell contains the number of raters rli who classified item l into category i
(Table 2.2).

While the majority of kappa-type agreement coefficients, generalized for at
least 3 raters, share the same formulation of observed agreement, they still
differ on their expression used to compute the agreement expected by chance.
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Table 2.2. n× k table for classifying the ratings provided by R raters in the same session

Category

1 ... i ... k Total

P
ro
du

ct

1 r11 ... r1i ... r1k R
...

... ...
... ...

... R

l rl1 ... rli ... rlk R
...

... ...
... ...

... R

n rn1 ... rni ... rnk R

2.2.1 Inter-rater agreement coefficients for nominal data

The proportion of observed agreement among the R raters, assessing n items
on a nominal scale with k classification categories, is given by:

pa(R) = 1
n
· 1
R(R− 1)

n∑
l=1

k∑
i=1

rli (rli − 1) (2.18)

and represents the average of all R(R− 1) pairwise agreement percentages.

Fleiss’s kappa

To define the multiple-rater version of the proportion of agreement expected
by chance of Eq. 2.5, Fleiss in 1971 [27] assumed that the knowledge of the
ratings from one rater does not affect those of the others (i.e. the classification
of an item into a category is a random process). Under this assumption of inde-
pendence, he defined the agreement expected by chance as the probability that
any pair of raters classify an item into the same category. Specifically, assum-
ing that a randomly selected rater —selected randomly with replacement from
the population of R raters— classifies a randomly selected item —randomly se-
lected from the population of n items—, the proportion of agreement expected
by chance is defined as follows:

pFa|c(R) =
k∑
i=1

r2
i (2.19)

where ri is the estimate of the probability of classifying an item into ith category
and is given by:

ri = 1
n
·
n∑
l=1

rli
R

(2.20)

Conger’s kappa

The Fleiss’s generalized kappa has been criticized by Conger because it does
not reduce to Cohen’s Kappa when the raters are two. To resolve this gener-
alization problem, Conger in 1980 [17] suggested to estimate the proportion of
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agreement expected by chance among R raters by averaging all R(R−1)/2 Co-
hen’s Kappa pairwise chance agreement estimates (Eq. 2.5). However, Fleiss
and Conger’s coefficients get closer as the number of raters increases.
The merit of Conger’s coefficient is to be a more natural extension of Cohen’s
Kappa to the case of al least three raters solving the generalization problem of
Fleiss’ kappa, but on the other hand averaging all pairwise chance agreement
becomes time-consuming when R ≥ 3.

Fortunately, an alternative method more efficient and with direct calcula-
tion exits. Let nri be the number of items that rater r classifies into category
i, pri = nri/n the relative proportion and s2

i the sample variance of the R
proportions p1i, ..., pRi. This variance is given by:

s2
i = 1

R− 1

R∑
r=1

(pri − p̄·i) (2.21)

where p̄·i is the mean value of the proportions p1i, ..., pRi: p̄·i = 1/R∑R
r=1 pri.

The multiple-rater proportion of agreement expected by chance of Conger’s
kappa is given by:

pCa|c(R) =
k∑
i=1

p̄2
·i −

k∑
i=1

s2
i

R
(2.22)

Uniform kappa

The uniform kappa can be easily generalized to the case of multiple raters;
the agreement expected by chance among R raters under the assumption of
uniform chance measurement is still formulated as in Eq. 2.6, since it does not
depend on the subjective evaluations provided by the raters but only on the
rating scale dimension:

pUa|c(R) =
k∑
i=1

1
k2 = 1

k
(2.23)

Gwet’s AC1

A natural way for generalizing the proportion of agreement expected by chance
to the case of three raters or more consists of replacing in Eq. 2.9 the proportion
of items classified into ith category with the corresponding value for multiple
raters. Using the approach already proposed by Fleiss [27], pAC1

a|c(R) is estimated
as follows:

pAC1
a|c(R) = 1

k − 1

k∑
i=1

ri(1− ri) (2.24)

where ri is the estimate of the probability of classifying an item into ith category
(Eq. 2.20).

2.2.2 Weighted inter-rater agreement coefficients for ordinal data

As for intra-rater agreement, in the case of ordinal classifications the degree
of inter-rater agreement can be assessed adopting the weighted versions of the
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coefficients. For a given set of evaluations, the final level of agreement is de-
termined not only by looking at the number of raters who classify item l into
category i, but also by looking at the other categories j that represent partial
agreement with the category i: two evaluations of the same item are in partial
agreement when the weight corresponding to the categories i and j is nonzero.
The weighted proportion of observed agreement among the evaluations pro-
vided by at least 3 raters, common to all the analysed multiple-raters kappa-
type coefficients, is given as:

pa(R)W
= 1
n
·
n∑
l=1

k∑
i=1

rli
(∑k

j=1 rljwij − 1
)

R(R− 1) (2.25)

Weighted Fleiss’s kappa

The weighted variant of Fleiss’ kappa is obtained by computing the weighted
proportion of agreement expected by chance as follows:

pFa|c(R)W
=

k∑
i=1

k∑
j=1

wijrirj (2.26)

Weighted Conger’s kappa

The weighted proportion of agreement expected by chance among R raters
proposed by Conger is given by:

pCa|c(R)W
=

k∑
i=1

k∑
j=1

wij

(
p̄·ip̄·j −

s2
ij

R

)
(2.27)

where
s2
ij = 1

R− 1

(
R∑
r=1

priprj −Rp̄·ip̄·j
)

(2.28)

Weighted Uniform kappa

The weighted variant of the uniform kappa for multiple raters, instead, assesses
the weighted observed proportion of agreement with Eq. 2.25 and the weighted
proportion of agreement expected by chance under the assumption of uniform
chance measurement with Eq. 2.16.

Gwet’s AC2

The generalized version of AC2 for the case of multiple raters formulates the
proportion of agreement expected by chance as:

pAC2
a|c(R) = Tw

k(k − 1)

k∑
i=1

ri(1− ri) (2.29)

It is worthy to note that the Table 2.2 could be adopted for arranging the
evaluations provided by the same rater in more than two (i.e. H = R) different
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evaluation sessions and the corresponding degree of intra-rater agreement can
be assessed adopting one of the coefficients presented in this Section 2.2.



Chapter 3

Characterization of the extent
of rater agreement

The different notions adopted for defining the agreement expected by chance
lead to as many agreement coefficients. The point now is to interpret the mean-
ing of this empirical number (estimated value of agreement) and to understand
its real value. An intra- or inter-rater agreement coefficient is useful only if it
is possible to interpret its magnitude: even though the coefficient quantifies
the extent of rater/s agreement, this estimate does not tell how valuable that
information is.
It is thus clear that a rule of thumb is needed to characterize the extent of
agreement, that is to relate the magnitude of the estimated coefficient to the
notion of extent of agreement.

3.1 Straightforward benchmarking procedure

Practitioners look for a threshold value for κ, beyond which the extent of
agreement can be considered "good". This process of comparing the estimated
coefficient to a predetermined threshold value for deciding whether the extent
of agreement is good or bad is called Benchmarking.

Many benchmark scales have been proposed in the literature over the years.
According to Hartmann [40], for example, acceptable values for κ should ex-
ceed 0.6 (Table 3.1(a)). The most common benchmark scale, instead, has been
proposed by Landis and Koch in 1977 [50]; the Landis and Koch’s scale consists
in six ranges of κ values corresponding to as many categories of agreement:
Poor agreement for coefficient values less than 0, Slight, Fair, Moderate, Sub-
stantial and Almost perfect agreement for coefficient values ranging between
0 and 0.2, 0.2 and 0.4, 0.4 and 0.6, 0.6 and 0.8 and 0.8 and 1.0, respectively
(Table 3.1(b)). This scale was simplified by Fleiss [31] and Altman [3], with
three (Table 3.1(c)) and five (Table 3.1(d)) ranges, respectively, and by Shrout
[65] who collapsed the first three ranges of values into two agreement categories
(Table 3.1(e)). Munoz and Bangdiwala [56], instead, proposed guidelines for
interpreting the values of a kappa-type agreement coefficient with respect to
the raw proportion of agreement (Table 3.1(f)).

The above described benchmarking procedure is straightforward since the
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Table 3.1. Some benchmark scales for interpreting kappa-type agreement coefficients

(a) Hartmann

Coefficient Agreement
κ > 0.6 Good

(b) Landis and Koch

Coefficient Agreement
κ ≤ 0.0 Poor
0.00 <κ ≤ 0.20 Slight
0.20 <κ ≤ 0.40 Fair
0.40 <κ ≤ 0.60 Moderate
0.60 <κ ≤ 0.80 Substantial
0.80 <κ ≤ 1.00 Almost perfect

(c) Fleiss

Coefficient Agreement
κ ≤ 0.40 Poor
0.40 <κ ≤ 0.75 Intermediate

to Good
0.75 <κ ≤ 1.00 Excellent

(d) Altman

Coefficient Agreement
κ ≤ 0.20 Poor
0.20 <κ ≤ 0.40 Fair
0.40 <κ ≤ 0.60 Moderate
0.60 <κ ≤ 0.80 Good
0.80 <κ ≤ 1.00 Very good

(e) Shrout

Coefficient Agreement
0.00 <κ ≤ 0.10 Virtually none
0.10 <κ ≤ 0.40 Slight
0.40 <κ ≤ 0.60 Fair
0.60 <κ ≤ 0.80 Moderate
0.80 <κ ≤ 1.00 Substantial

(f) Munoz and Bengdiwala

Coefficient Agreement
κ ≤ 0.00 Poor
0.00 <κ ≤ 0.20 Fair
0.20 <κ ≤ 0.45 Moderate
0.45 <κ ≤ 0.75 Substantial
0.75 <κ <1.00 Almost perfect
κ = 1.00 Perfect
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agreement is qualified, whatever the benchmark scale that best fits the aims
of the study, according to the range of values where the estimated coefficient
falls.

Although commonly adopted by practitioners, this straightforward bench-
marking procedure relies on the limited information provided by the estimated
agreement coefficient, a single summary measure of agreement; it is thus ev-
ident that the straightforward benchmarking can be misleading for two main
reasons:

• it fails to consider that an agreement coefficient, as any other sampling
estimate, is imprecise (i.e. the sample statistic is affected by sampling
uncertainty): almost certainly a different agreement estimate will be ob-
tained if the study is repeated under identical conditions on different
samples drawn from the same population of items [34];

• it does not allow to compare the extent of agreement across different
studies, unless they are carried out under the same experimental condi-
tions (i.e. number of rated items, number of classification categories or
distribution of items across the categories).

3.2 Inferential benchmarking procedure

In order to overcome these criticisms and take into account also the uncertainty
due to sampling process, researchers (e.g. [48, 62, 80]) recommend to supple-
ment the agreement coefficient with information on statistical uncertainty and
suggest the use of the lower confidence bound for agreement benchmarking pur-
pose, that is to test for significance the magnitude of the κ coefficient against
desirable levels of agreement.

3.2.1 Standard methods

The standard methods for building confidence interval for kappa-type coef-
ficients (e.g. [8, 30]) are generally based on the assumption of asympotic
normality and require large sample sizes of more than 50 items [28]. Assum-
ing the asymptotic normal approximation, the lower and upper bounds of the
two-sided (1− 2α)% two-sided confidence interval for κ are given by:

LBAsym = κ− zασ̂κ (3.1a)
UBAsym = κ+ zασ̂κ (3.1b)

where zα is the α percentile of the standard normal distribution and σ̂κ the
sample standard error of the κ coefficient.

These methods are commonly adopted in many research studies where large
samples of items are easily obtainable; but when the asymptotic conditions
cannot be reached — as in the most affordable agreement studies — they are
not the methods of choice because of their poor performance with small (of no
more than 30 items) or moderate (approximately 50 or less) samples [46].



3.2. INFERENTIAL BENCHMARKING PROCEDURE 24

3.2.2 Non-parametric methods based on bootstrap resampling

An alternative to the standard method for building confidence intervals, that
picks up where the former leaves off, is the bootstrapping resampling technique,
which leads to build non-parametric confidence intervals, independent of the
assumption of asymptotic normality and suitable for both small and large sam-
ples. The only assumptions required for use of the non-parametric bootstrap
resampling are that the data are independent and identically distributed and
governed by an unknown cumulative distribution function [11].

Among the available methods to build bootstrap confidence intervals [11,
22], the percentile bootstrap is surely the simplest and the most popular one. It
uses the α and 1−α percentiles of the bootstrap distribution as the lower (LBp)
and upper (UBp) bounds of the (1 − 2α)% two-sided p bootstrap confidence
interval:

LBP = G−1(α) (3.2a)
UBP = G−1(1− α) (3.2b)

where G is the cumulative distribution function of the bootstrap distribution
of the κ coefficient.

Another method based on bootstrap resampling is the Bias Corrected or
BC method that adjusts for any bias in the distribution through the bias-
correction parameter b. The lower and upper bounds of the BC bootstrap
confidence interval are:

LBBC = G−1(Φ(−2b− zα)) (3.3a)
UBBC = G−1(Φ(−2b+ zα)) (3.3b)

Specifically, let S =
{
Ylrh, n

}
be the sample of the n evaluations provided for

each item; the detailed algorithm for building the (1 − 2α)% two-sided BC
bootstrap CI for a κ coefficient is:

1. sample n sets of evaluations randomly with replacement from S to obtain
a bootstrap data set, denoted S∗;

2. for each bootstrap data set, compute κ(S∗) according to the generic Eq.
2.1;

3. repeat B times steps 1 and 2 in order to obtain B estimates κ(S∗); count
the number of bootstrap estimates κ(S∗) that are less than the coefficient
value calculated from the original data set. Call this number p and set
b = Φ−1 (p/B), being Φ−1 the inverse cumulative distribution function of
the normal distribution;

4. estimate the lower (LBBC) and upper (UBBC) bounds of the two-sided
(1 − 2α)% two-sided BC bootstrap CI for κ using Eq. 3.3a and 3.3b,
respectively.
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For severely skewed distribution, instead, the Bias-Corrected and Acceler-
ated bootstrap or BCa confidence interval is recommended, since it adjusts
for any bias and lack of symmetry of the bootstrap distribution through the
acceleration parameter a and the bias correction parameter b. The lower and
upper bound of the (1 − 2α)% two-sided BCa confidence-interval are defined
as:

LBBCa = G−1
(

Φ
(
b− zα − b

1 + a(zα − b)

))
(3.4a)

UBBCa = G−1
(

Φ
(
b+ zα + b

1 + a (−zα − b)

))
(3.4b)

LBBCa and UBBCa can be computed as follows:

1. calculate the bias correction parameter b as for BC method (steps 1
through 3);

2. calculate the acceleration parameter a using the jack-knife κ estimates,
κjl :

a =
∑n
l=1

(
κj − κjl

)3

6
[∑n

l=1

(
κj − κjl

)2]3/2 (3.5)

being κj the average out of all n jack-knife estimates κjl .

3. estimate the lower (LBBCa) and upper (UBBCa) bounds of the two-sided
(1 − 2α)% two-sided BCa bootstrap CI for κ using Eq. 3.4a and 3.4b,
respectively.

Despite the higher computational complexity, the BCa confidence intervals
have generally smaller coverage errors than the others bootstrap intervals,
decreasing for α < 0.025 as α tends to 0 [11].

3.3 A Monte Carlo simulation study

In order to analyse the statistical properties of the inferential procedure for
benchmarking purpose, a Monte Carlo simulation study was developed consid-
ering two replications (evaluations provided by the same rater over time in the
case of intra-rater agreement or simultaneously by two raters for inter-rater
agreement) of n items into one of the k classification categories. Specifically,
this research study focused on two bootstrap confidence intervals: the easiest
and most common percentile and the more accurate BCa and aims at:

• investigating whether the lower bound of the bootstrap confidence inter-
vals can be effectively used to characterize the extent of agreement with
small sample sizes;

• comparing the performance of the proposed benchmarking procedures in
order to recommend the method that best fits each specific scenario.
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The performances of the benchmarking procedures under comparison were
evaluated in terms of weighted misclassification rate (hereafter, Mw) and sta-
tistical significance (α) and power (1 − β), computed for the case of null and
non-null inference on rater agreement (Table 3.2).

Table 3.2. Null and non null inference cases

Inference case H0 H1

Null
Chance agreement Positive agreement

κW = 0.00 κW > 0.00

Non Null

No more than Fair Moderate

κW ≤ 0.40 κW > 0.40

No more than Moderate Substantial

κW ≤ 0.60 κW > 0.60

The null inference case tests the hypothesis that the rater agreement is
positive against the null hypothesis of chance agreement; the non-null inference
cases tests the hypothesis that the rater agreement is at least Moderate against
the null hypothesis of no more than Fair agreement as well as the hypothesis
that the rater agreement is at least Substantial against the null hypothesis of
no more than Moderate agreement. Specifically, for the null inference case, 5
alternative hypotheses of positive rater agreement (starting from κW = 0.50
with step size 0.10) were tested against the hypothesis of chance agreement;
for the first case of non-null inference, the above 5 alternative hypotheses were
tested against the hypothesis of at least Moderate agreement; for the second
case of non-null inference, 4 alternative hypotheses (starting from κW = 0.70
with step size 0.10) were tested against the hypothesis of at least Substantial
agreement.

Let I [·] be an indicator taking value 1 if the argument is true and 0 other-
wise, {Xr′ ; r} be a Monte Carlo data set containing r benchmarks Xr′ obtained
for a population value taken as reference for a specific agreement category ω
and wωω′ a linear misclassification weight adopted to account that on an ordi-
nal benchmarking scale some misclassifications are more serious than others;
the weighted misclassification rate Mw is evaluated as the weighted proportion
of misclassified Xr′ :

Mw = 1
r
∑
ω=1,Ω

wωω′ · I
[
Xr′|ω ∈ ω′

]
; ω′ 6= ω (3.6)

The Monte Carlo estimate of the statistical significance α, and statistical
power 1− β, are respectively given by:

α = 1
r

r∑
r′=1

I
[
LB > κC | H0

]
(3.7)

1− β = 1
r

r∑
r′=1

I
[
LB > κC | H1

]
(3.8)
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where LB is the lower bound of the (1 − 2α)% two-sided confidence interval
obtained from the r′ specific Monte Carlo data set and κC is the tested critical
value of rater agreement.

The statistical properties of the benchmarking procedure applied to the
two paradox-resistant agreement coefficients κUW and AC2 were studied under
several scenarios differing for both sample size and rating scale dimension; for
each scenario r = 2000 Monte Carlo data sets were sampled and for each data
set the bootstrap confidence intervals were computed on B = 1500 bootstrap
replications.
The data sets were sampled from a multinomial distribution with parameters
n and p = (π11, ..., πij, ..., πkk) where πij were chosen so as to obtain the desired
true population values for the agreement coefficients.
The simulation algorithm was implemented using Mathematica (Version 11.0,
Wolfram Research, Inc., Champaign, IL, USA).

The statistical significance and power obtained via Monte Carlo simulation
study for the benchmarking procedures based on percentile and BCa bootstrap
confidence intervals in the case of n = 20, 30, 40, 50 items and k = 4 ordinal
classification categories applied to the linear weighted Uniform kappa are pub-
lished in:

Vanacore A.; Pellegrino M. S.: Characterizing the extent of rater
agreement via a non-parametric benchmarking procedure. In: Pro-
ceedings of the Conference of the Italian Statistical Society SIS
2017. Statistics and Data Science: new challenges, new genera-
tions. Firenze University Pres, 2017. p. 999-1004 [70].

The power analysis of the benchmarking procedures based on percentile and
BCa bootstrap confidence intervals was then extended to n = 10, 30, 50, 100
items, k = 2, 3, 5, 7 ordinal classification categories and to the two linear
weighted paradox-resistant agreement coefficients, κUW and AC2 in:

Vanacore A.; Pellegrino M. S.: Inferring rater agreement with or-
dinal classification. Forthcoming in: Post-conference volume Con-
vegno della Società Italiana di Statistica "New Statistical Develop-
ments in Data Science" PROMS (Springer), 2017 [71].

The performances of the benchmarking procedures applied to characterize
the extent of rater agreement were evaluated in terms of Mw and compared
each other in the case of n = 10, 30, 50, 100 items with k = 2, 3, 4 ordinal clas-
sification categories in:

Vanacore A.; Pellegrino M. S.: Benchmarking rater agreement:
probabilistic versus deterministic approach. Advanced Mathemat-
ical and Computational Tools in Metrology and Testing XI, 89,
365-374, December 2018 [72].
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The analysis and comparison in terms of Mw was then extended to k = 5, 7
ordinal classification categories with the same sample sizes in:

Vanacore A.; Pellegrino M. S.: A comparative study of benchmark-
ing procedures for interrater and intrarater agreement studies. In:
Proceedings of the 49th Scientific Meeting of the Italian Statistical
Society 2018 "Book of short Papers SIS 2018" Pearson [77].

The research study about the man acting as measurement instrument re-
veals the importance of the employment of reliable raters in order to not com-
promise the quality of the decision making process.
The uncertainty that does not pertain the inherent variability of the process
under study and that arises from imperfect knowledge and/or incomplete in-
formation can be reduced by selecting the right raters, where right means
accurate and precise.

Anyway, as introduced in Section 1, the subjective evaluations lack a gold
standard against which to check their trueness so that only the precision can
be assessed.
In "RRep: A composite index to assess and test rater precision" is suggested
a new composite index to assess rater precision in terms of her/his ability of
consistently score the same set of items both in different occasions and using
different rating scales; these abilities, respectively defined repeatability over
time and reproducibility over scales, are then properly combined in a syn-
thetic index, denoted RRep.
All details as well as the main statistical properties — investigated via a Monte
Carlo simulation study — of the proposed RRep index and of the recom-
mended inferential benchmarking procedure, useful for characterizing the ex-
tent of rater precision, can be found in [76].

All the published and forthcoming papers are attached in the Appendix.



Chapter 4

Real case studies

The usefulness of the proposed inferential benchmarking procedure in practical
situations has been demonstrated by applications to real case studies involving
human beings acting as measurement instruments.

The first conducted case study involved classes of more than 20 university
students who evaluated the teaching quality of the same university course over
three successive academic years (from 2013 to 2016). The students played the
role of teaching quality assessors and rated n = 20 statements about teaching
quality during 3 evaluation sessions adopting 3 different rating scales.
The evaluations simultaneously provided by the whole class of students were
used to estimate the level of inter-student agreement; whereas those provided
by each student for estimating the level of intra-student agreement. Particu-
larly, the single student’s evaluations collected during two successive sessions
on the same rating scale were used to assess the student ability of providing
stable evaluations in time, whereas those collected during the third session
on different rating scales were used to assess the student ability of providing
consistent evaluations over scales (i.e. adopting different rating instruments).

Preliminary steps of the analysis regarding the estimated level of intra- and
inter-student agreement are presented in:

Vanacore A.; Pellegrino M. S. (2017, June): An agreement-based
approach for reliability assessment of Students’ Evaluations of Teach-
ing. In: Proceedings of the 3rd International Conference on Higher
Education Advances (pp. 1286-1293). Editorial Universitat Politèc-
nica de València [69].

Further analysis supplemented the preliminary steps by inferring the extent
of intra-student agreement via benchmarking procedure based on BCa boot-
strap confidence intervals. The study results are reported in:

Vanacore A.; Pellegrino M. S. (2018): How reliable are Students’
Evaluations of Teaching (SETs)? A study to test student’s repro-
ducibility and repeatability. Forthcoming in: Social Indicator Re-
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search [73].

In the second case study consumers were employed as sensory panellists
and evaluated five sensory dimensions of different food and beverage products
in two evaluation sessions. The quality of sensory data were assessed in terms
of panelist repeatability and panel reproducibility via the proposed inferential
benchmarking procedure.
The case study details and its results are published in:

Vanacore A.; Pellegrino M. S. (2017, September): Checking qual-
ity of sensory data by assessing intra/inter panelist agreement. In
Proceedings of 8th Scientific Conference on INNOVATION & SO-
CIETY, Statistical Methods for Evaluation and Quality - IES 2017.
p. 1-4 [68].

Vanacore A.; Pellegrino M. S. (2018): Checking quality of sen-
sory data via an agreement-based approach. Quality & Quantity,
1–12 [74].



Chapter 5

Conclusions

The research work focused on the assessment of the degree of agreement be-
tween series of subjective evaluations provided on ordinal rating scales by the
same rater in different occasions (intra-rater agreement) or by different raters
in the same occasion (inter-rater agreement).

A short review about approaches proposed in the literature for assessing the
degree of inter/intra-rater agreement is provided in the Introduction; however,
the main corpus of the thesis work is devoted to the index-based approach for
the measurement of rater agreement on categorical scales and particularly to
two paradox-resistant coefficients belonging to the family of the kappa-type.

The crucial point is the inferential benchmarking procedure based on non-
parametric bootstrap confidence interval, adopted for characterizing the extent
of rater agreement. Its statistical properties were investigated via a Monte
Carlo simulation study under different scenarios differing from each other in
sample size, rating scale dimension and bootstrap confidence interval. The
benchmarking procedures were compared in terms of weighted misclassification
rate and statistical significance and power, referred to both null and non-null
inference cases.
Simulation results reveal that the proposed benchmarking procedures are ade-
quately powered in detecting differences in the extent of rater agreement that
are of practical interest for agreement studies. They can be suitably applied
for the characterization of the extent of agreement over a small or moderate
number of subjective evaluations provided by human raters.

Further analysis regarding the unbiasness and robustness of some kappa-
type agreement coefficients were conducted and presented at the 18th Annual
Conference of the European Network for Business and Industrial Statistics,
ENBIS 2018 [75] and will be published in the future.

Additional research efforts aimed at the development of new tools to es-
timate and characterise rater precision. A novel composite index, the RRep,
was formulated in such a way that both rater abilities of providing evaluations
stable over time and consistent over rating scales are accounted for.
The Monte Carlo simulation results, conducted for studying the performances
of the index — in terms of percent bias and relative standard deviation —
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and those of its inferential procedure — in terms of statistical significance and
power —, show that their performance is satisfactory in distinguishing even
between adjacent categories of precision.

The usefulness and the effectively applicability in many industrial contexts
of both the new RRep index and the proposed inferential benchmarking pro-
cedure are worthy to note; as a matter of fact, they were proved to be valid
tools for characterizing the extent of agreement and precision, for selecting
inspectors able to provide precise diagnosis as well as raters providing precise
subjective evaluations, but especially for testing the efficacy of rater training
programs.
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Abstract In several context ranging from medical to social sciences, rater 
reliability is assessed in terms of intra (-inter) rater agreement. The extent of rater 
agreement is commonly characterized by comparing the value of the adopted 
agreement coefficient against a benchmark scale. This deterministic approach has 
been widely criticized since it neglects the influence of experimental conditions on 
the estimated agreement coefficient. In order to overcome this criticism, in this 
paper a statistical procedure for benchmarking is presented. The proposed procedure 
is based on non parametric bootstrap confidence intervals. The statistical properties 
of the proposed procedure have been studied via a Monte Carlo simulation. 

Abstract In numerosi contesti applicativi, dal medico al sociale, di
un valutatore è valutata in funzione del grado di accordo intra (-inter) valutatore. 
La caratterizzazione del grado di accordo è tipicamente effettuata confrontando la 
stima del coefficiente di accordo adottato con una scala di riferimento (benchmark). 

stato spesso criticato in letteratura in quanto 
non tiene in conto In
questo lavoro è presentata una procedura di benchmark basata su intervalli di 
confidenza bootstrap. Le proprietà statistiche della procedura proposta sono state 
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1. Introduction 

In many context of research (e.g., cognitive and behavioural science, quality 
science, clinical epidemiology, diagnostic imaging, content analysis), there is 
frequently a need to assess the performance of human instruments (i.e., raters) 
providing subjective measurements, expressed on a dichotomous, nominal or ordinal 
rating scale. Rater reliability is often evaluated in terms of the extent of agreement 
between two or more series of ratings provided by two or more raters (inter-rater 
agreement) or by the same rater in two or more occasions (intra-rater agreement). 
Specifically, inter-rater agreement is concerned about the reproducibility of 
measurements provided by different raters, whereas intra-rater agreement is 
concerned about self-reproducibility (also known as repeatability).  

The easiest way of measuring agreement between ratings is to calculate the 
overall percentage of agreement; nevertheless, this measure does not take into 
account the agreement that would be expected by chance alone [11]. A reasonable 
alternative is to adopt the widespread kappa-type index that was introduced by 
Cohen in 1960 as a rescaled measure of the probability of observed agreement 
corrected with the probability of agreement expected by chance alone. A main issue 
for the correct definition of a kappa-type index regards the notion of expected 
proportion of agreement: chance measurements are conceived as blind (that is, 
uninformative about the rated items) and any distributional assumption for them is 
likely to be arbitrary. A solution is to adopt the notion of uniform chance 
measurement [2] that given a certain rating scale can be assumed as a 
reasonable model for the maximally non-informative measurement system. This 
uniform version of Kappa is often referred to as Brennan-Prediger coefficient [3]. 

The extent of a kappa-type index is generally qualified through a benchmark 
scale [e.g. 1, 8, 10]: threshold values against which compare the estimated 
agreement coefficient for deciding whether the extent of agreement is good or poor. 
Although commonly adopted, this deterministic benchmarking approach does not 
consider that the value of the information provided by an agreement coefficient is 
unknown since, being computed on a sample of items, its estimate is subject to 
sampling error. In order to identify a suitable neighbourhood of the truth (i.e., the 
true population value), sampling error has always to be considered.  

In this paper a benchmarking procedure based on bootstrap resampling is 
proposed in order to take into account the sampling uncertainty when characterizing 
the extent of rater agreement. The main statistical properties of the proposed 
procedure have been assessed via a Monte Carlo simulation study.  

The remainder of this paper is organized as follows: in Section 2 the weighted 
Brennan-Prediger coefficient is introduced; Sections 3 is devoted to coefficient 
estimation and inference; in Section 4 the simulation design is described and the 
main results are discussed; finally, conclusions are summarized in Section 5. 
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2. Weighted Brennan-Prediger Coefficient 

Let n  be the number of items rated twice (i.e., two replications) on an ordinal k -
points rating scale (with 2k ), i jn  the number of items classified into thi  category in 

the first replication and into thj  category in the second replication and ijw  the 
corresponding symmetrically weight (i.e., ij jiw w ) introduced in order to consider 
that on an ordinal rating scale, some disagreements are more serious than others (i.e.,
disagreement on two distant categories are more relevant than disagreement on 
neighbouring categories).  

The weighted Brennan-Prediger coefficient [9] is defined as:  

                                        | |( ) (1 )U U U
W a a c a cK p p p          

where 
1 1

k K
a ij iji j

p w n n  and 2
| 1 1

1 k kU
a c ijI j

p k w .

The U
WK  coefficient ranges from -1 to +1 and it can be assumed asymptotically 

normal distributed [9] with mean U
WK  and variance 2

U
WK

 given by: 

                                   22 2
|

1

1 1
1U

W

n

h a cK
l

a p
n n

(2)

where h  refers to the generic rated item and ( )
, 1

( )k h
h ij ij iji j

a w p  with ( ) 1h
ij

if the rater rated item h  into thi  and thj  category in the first and second replication, 
respectively, and ( ) 0h

ij  otherwise. 

3. Characterization of rater agreement  

The approach currently adopted to characterize the extent of agreement is based 
upon a straight comparison between the estimated coefficient and an adopted 
benchmark scale. The most widespread benchmark scale for interpreting the 
magnitude of agreement coefficients was proposed by Landis and Koch [10]. 
According to this scale, there are 5 categories of agreement corresponding to as many 
ranges of coefficient values: slight, fair, moderate, substantial and almost perfect 
agreement for coefficient values ranging between 0 and 0.2, 0.21 and 0.4, 0.41 and 
0.6, 0.61 and 0.8 and 0.81 and 1.0, respectively. 

Although benchmark scales are widely adopted for relating the magnitude of the 
coefficient to the notion of extent of agreement, some researchers question their 
validity and give advice that their uncritical application may lead to practically 
questionable decisions [11]. Actually, as argued in [9] the choice of the benchmark 
scale is less important than the way it is used for characterizing the extent of 
agreement. 
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A deterministic approach to benchmarking does not account for the influence of 

experimental conditions on the estimated coefficient and, thus, it does not allow for a 
statistical characterization of the extent of rater agreement. This criticism may be 
overcame by benchmarking the lower bound of the confidence interval of the 
agreement coefficient rather than its point estimate. 

Assuming the asymptotic normal approximation, the lower and upper bound of a 
two-sided (1 )%  confidence interval for U

WK  are given by: 

                                          2 U
W

U
W K

K z

The accuracy of the above confidence interval depends on the asymptotic 
normality of U

WK  and on the asymptotic solution for 2
U
WK

 which are both questionable 

for small sample sizes.  
Resampling, which is generally considered the approach of choice when the 

assumptions of classical statistical methods are not met, may yield more accurate 
confidence limits and thus it can be usefully adopted to characterize the extent of rater 
agreement.  

Among the available methods to build bootstrap confidence intervals, the 
percentile bootstrap (hereafter, p) is the simplest and the most popular one. The lower 
and upper bounds of the (1 )%  two-sided p confidence interval are, respectively, 
the ( 2)  and (1 2)  percentiles of the cumulative distribution function G  of the 

bootstrap replications of U
WK . On the other hand the Bias-Corrected and Accelerated 

bootstrap (hereafter, BCa) confidence interval is recommended for severely non 
normal data [4, 6]. Despite the high computational complexity needed, BCa 
confidence intervals have generally smaller coverage errors than the others. The lower 
and upper bounds of the (1 )%   two-sided BCa confidence interval are defined as: 

1
/2 /2G 1b z b a z b        (4) 

being  the cumulative distribution function of the normal distribution, 2z  the 2
percentile of the standard normal distribution, b  the bias correction parameter and a
the acceleration parameter. 

4. Simulation study 

In order to analyse the statistical properties of the proposed benchmarking 
procedure in terms of Type I error and statistical power, a Monte Carlo simulation 
study has been developed considering one rater who classifies n  items into one of k
possible ordinal rating categories. The simulation has been conducted by sampling 

2000r  Monte Carlo data sets from a multinomial distribution with parameters n
and 11( ,..., ,.., )ij kkp ; the ij  values have been chosen so as to obtain nine true 

population values of U
WK  (viz., 0,  0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 1.0 ),
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assuming a linear weighting scheme [4]. The BCa confidence interval for each U
WK

has been built on 1500 bootstrap replications. The statistical properties of the 
benchmarking procedure have been studied for a 4k  points rating scale and for 

20, 30, 40, 50n  which are the most affordable sample sizes in many experimental 
contexts and also the most critical ones for statistical inference.  

Simulation results in terms of statistical significance and power are reported in 
Table 1, organized in four distinct sections each corresponding to a null hypothesis of 
rater agreement, which is tested against several specific alternative hypotheses. 

Table 1: Statistical significance (in bold) and power for different true population values of U
WK

n=20 n=30 n=40 n=50 
p BCa p BCa p BCa p BCa

0.00U
WK

U
WK 0.00 0.046 0.046 0.038 0.029 0.028 0.027 0.030 0.027 

0.50U
WK 0.645 0.622 0.813 0.768 0.887 0.878 0.950 0.940 

0.60U
WK 0.870 0.852 0.972 0.956 0.991 0.991 0.998 0.997 

0.70U
WK 0.958 0.946 0.994 0.992 1.000 0.999 1.000 1.000 

0.80U
WK 0.997 0.996 0.999 0.999 1.000 1.000 1.000 1.000 

0.90U
WK 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.40U
WK

U
WK 0.40 0.043 0.034 0.045 0.034 0.039 0.032 0.033 0.023 

0.50U
WK 0.091 0.087 0.124 0.117 0.131 0.123 0.156 0.132 

0.60U
WK 0.242 0.233 0.358 0.344 0.379 0.357 0.468 0.407 

0.70U
WK 0.460 0.427 0.636 0.612 0.721 0.705 0.828 0.781 

0.80U
WK 0.774 0.749 0.915 0.906 0.966 0.958 0.987 0.987 

0.90U
WK 0.958 0.933 0.993 0.993 0.999 0.999 1.000 1.000 

0.60U
WK

U
WK 0.60 0.058 0.055 0.045 0.043 0.043 0.037 0.033 0.032 

0.70U
WK 0.172 0.166 0.184 0.180 0.221 0.189 0.243 0.218 

0.80U
WK 0.407 0.393 0.484 0.460 0.573 0.533 0.648 0.648 

0.85U
WK 0.694 0.681 0.823 0.806 0.914 0.890 0.953 0.953 

0.90U
WK 0.747 0.735 0.870 0.854 0.941 0.916 0.974 0.969 

0.95U
WK 0.932 0.936 0.979 0.980 0.995 0.988 1.000 1.000 

0.80U
WK

U
WK 0.80 0.140 0.125 0.069 0.078 0.064 0.060 0.061 0.055 

0.85U
WK 0.329 0.346 0.246 0.254 0.312 0.241 0.291 0.253 

0.90U
WK 0.425 0.452 0.380 0.363 0.451 0.394 0.452 0.405 

0.95U
WK 0.716 0.747 0.714 0.682 0.801 0.799 0.834 0.761 

1.00U
WK 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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As foreseen, the statistical properties of the proposed benchmarking procedure 

improve as the sample size increases being satisfactory even for relatively small 
sample size. Specifically, the significance level is generally slightly better for BCa
bootstrap confidence interval; it decreases with increasing sample size but it grows 
up for increasing true population value of U

WK ; it is close to the nominal level 
( 0.025)  only in the case of null rater agreement for 40n ; however, it is 
always less than 0.10 except for 20n  when testing an high rater agreement level. 
The statistical power, instead, is generally slightly better for p bootstrap confidence 
interval; for 30n , it is less than 80% only in testing hypotheses referring to 
adjacent agreement categories (e.g., poor vs slight, moderate vs substantial). 

5. Conclusions 

The proposed benchmarking procedure can be suitably applied for the 
characterization of the extent of agreement over a small or moderate number of 
subjective ratings provided by one or more raters. The procedure shows satisfactory 
statistical properties in testing both null and non-null cases of rater agreement, being 
adequately powered in detecting differences in the extent of rater agreement that are 
of practical interest for agreement studies (i.e., differences of at least 0.2).  

It is worthwhile to note that the proposed benchmarking procedure can be also 
adopted to characterize the extent of inter-rater agreement which, in the case of more 
than two raters, could be estimated using a suitable variant of kappa coefficient, 

 kappa. 
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In several industries strategic and operational decisions rely on subjective evaluations 
provided by raters who are asked to score and/or classify group of items in terms of some 
technical properties (e.g. classification of faulty material by defect type) and/or perception 
aspects (e.g. comfort, quality, pain, pleasure, aesthetics). Because of the lack of a gold 
standard for classifying subjective evaluations as “true” or “false”, rater reliability is 
generally measured by assessing her/his precision via inter/intra-rater agreement 
coefficients. Agreement coefficients are useful only if their magnitude can be easily 
interpreted. A common practice is to apply a straightforward procedure to translate the 
magnitude of the adopted agreement coefficient into an extent of agreement via a 
benchmark scale. Many criticisms have been attached to this practice and in order to solve 
some of them, the adoption of a probabilistic approach to characterize the extent of 
agreement is recommended. In this study some probabilistic benchmarking procedures are 
discussed and compared via a wide Monte Carlo simulation study. 

Keywords: rater agreement, kappa-type coefficient, probabilistic benchmarking 
procedures, Monte Carlo simulation  

1.   Introduction 

Agreement coefficients are widely adopted for assessing the precision of 
subjective evaluations provided by human raters to support strategic and 
operational decisions in several contexts (e.g. manufacturing and service 
industries, food, healthcare, safety, among many others).  
Subjective evaluations are typically provided on categorical rating scale for which 
the common statistical tools, that work readily for continuous data, are not 
applicable. For this reason, rater precision is generally assessed in terms of the 
extent of agreement between two or more series of evaluations on the same sample 
of items (subjects or objects) provided by two or more raters (inter-rater 
agreement) or by the same rater in two or more occasions (intra-rater agreement). 
Specifically, inter-rater agreement is concerned about the reproducibility of 
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measurements by different raters, whereas intra-rater agreement is concerned 
about self-reproducibility (also known as repeatability). 

The degree of inter/intra-rater agreement for categorical rating scale is 
commonly assessed using kappa-type agreement coefficients that, originally 
introduced by Cohen [1], are rescaled measures of agreement corrected with the 
probability of agreement expected by chance alone. It is common practice to 
qualify the magnitude of a kappa-type agreement coefficient by comparing it 
against an arbitrary benchmark scale; by applying this straightforward 
benchmarking, practitioners relate the magnitude of the coefficient to an extent of 
agreement and then decide whether it is good or poor. Although widely adopted, 
the straightforward benchmarking has some drawbacks. As demonstrated for 
example by Thompson and Walter [2] and Gwet [3], the magnitude of an 
agreement coefficient may strongly depend on some experimental factors such as 
the number of rated items, rating scale dimension, trait prevalence and marginal 
probabilities. Thus, interpretation based on the straightforward benchmarking 
should be treated with caution especially for comparison across studies when the 
experimental conditions are not the same.  

A proper characterization of the extent of rater agreement should rely upon a 
probabilistic benchmarking procedure that allows to identify a suitable 
neighborhood of the truth (i.e. the true value of rater agreement) by taking into 
account sampling uncertainty.  

The most simple and intuitive way to accomplish this task is by building a 
confidence interval of the agreement coefficient and comparing its lower bound 
against an adopted benchmark scale. 

A different approach to probabilistic benchmarking is the one recently 
proposed by Gwet [3] which, under the assumption of asymptotically normal 
distribution, evaluates the likelihood that the estimated agreement coefficient 
belongs to any given benchmark level.  

The above benchmarking approaches will be in the following fully discussed 
and their performances will be evaluated and compared via a Monte Carlo 
simulation study with respect to the ability to correctly interpreting the magnitude 
of the agreement coefficient in terms of weighted misclassification rate. 

The paper focuses on agreement on ordinal rating scale, thus in the following 
we will deal with weighted kappa-type coefficients that allow to consider that 
disagreement on two distant categories are more serious than disagreement on 
neighboring categories. 

The remainder of the paper is organized as follows: in Section 2 two well-
known paradox-resistant kappa-type agreement coefficients are discussed; the 
commonly adopted benchmark scales are presented in Section 3; four 



 3 

characterization procedures based on a probabilistic approach to benchmarking 
are discussed in Section 4; in Section 5 the simulation design is described and the 
main results are fully discussed; finally, conclusions are summarized in Section 
6. 

2.   Weighted Kappa-type agreement coefficients  

Let n be the number of items rated by two raters on an ordinal k-points rating 
scale (with k > 2), nij the number of items classified into ith category by the first 
rater but into jth category by the second rater and wij the corresponding 
symmetrical weight, ni· be the total number of items classified into ith category by 
the first rater and n·i be the total number of items classified into ith category by the 
second rater. The weighted Cohen’s Kappa coefficient [4] can be computed as: 

    | |
ˆ 1W a a c a cK p p p         (1) 

where  

          |1 1 1 1
;

k k k k

aw ij ij a c ij i ji j i j
p w n n p w n n n n    

        (2)  

Despite its popularity, researchers have pointed out two main criticisms with 
Cohen’s Kappa: it is affected by the degree to which raters disagree (bias 
problem); moreover, for a fixed value of observed agreement, tables with 
marginal asymmetry produce lower values of Kappa than tables with 
homogeneous marginal (prevalence problem). These criticisms were firstly 
observed by Brennan and Prediger [5] although they are widely known as “Kappa 
paradoxes” as referred to by Feinstein and Cicchetti [6]. 

A solution to face the above paradoxes is to adopt the uniform distribution 
for chance measurements, which — given a certain rating scale — can be 
defended as representing the maximally non-informative measurement system. 
The obtained weighted uniform kappa, referred to as Brennan-Prediger coefficient 
(although proposed also by several other authors [5, 7, 8, 9, 10]), is formulated as:  

                                          | |BP 1U U
w aw a c a cp p p      (3)  

where awp  is defined as in equation (2) and , being  the sum 

over all weight values wij. 

Another well-known paradox-resistant agreement coefficient alternative to 
Cohen’s Kappa is the AC coefficient (proposed by Gwet [11]), whose weighted 
version (AC2) is formulated as: 

2
|

U
a c wp T k wT
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                                      2 | |AC 1G G
aw a c a cp p p    (4) 

where awp  is defined as in equation (2) and the probability of chance agreement 
is defined as the probability of the simultaneous occurrence of random rating (R) 
by one of the raters and rater agreement (G): ( ) ( | ) ( )P G R P G R P R   . 
Specifically, P(R) is approximated with a normalized measure of randomness 
defined by the ratio of the observed variance 1 (1 )k

i ii p p   to the variance 
expected under the assumption of totally random rating 1 ( 1)k  ; whereas the 
conditional probabilities of agreement P(G|R) is given by 2( | ) wP G R T k : 

                                | 1
( 1) (1 )

kG
a c w i ii

p T k k p p


        (5) 

being pi=(ni·+n·i)/2n the estimate of the propensity that a rater classifies an item 
into ith category.  

3.   Aid to the characterization of the extent of agreement: 
benchmark scales 

After computing an agreement coefficient, a common question is ‘how good 
is the agreement?’ 

In order to provide an aid to qualify the magnitude of kappa-type coefficients, 
a number of benchmark scales have been proposed mainly in social and medical 
sciences over the years. The best known benchmark scales are reviewed below 
and reported in Table 1.  

According to Hartmann [12], acceptable values for kappa should exceed 0.6. 
The most widely adopted benchmark scale is the one with six ranges of values 
proposed by Landis and Koch [13], which was simplified by Fleiss [14] and 
Altman [15], with three and five ranges, respectively, and by Shrout [16] who 
collapsed the first three ranges of values into two agreement categories. Munoz 
and Bangdiwala [17], instead, proposed guidelines for interpreting the values of a 
kappa-type agreement coefficient with respect to the raw proportion of agreement.  

Whatever the adopted scale, the benchmarking procedure is generally 
straightforward since the coefficient magnitude is qualified as the extent of 
agreement (e.g. good) associated to the range of values where the estimated 
agreement coefficient falls. 



 5 

Table 1. Benchmark scales for kappa-type coefficients. 

Hartmann (1977) Landis and Koch (1977) Fleiss (1981) 

Kappa 
coefficient 

Strength of 
agreement 

Kappa 
coefficient 

Strength of 
agreement 

Kappa 
coefficient 

Strength of 
agreement 

> 0.6 Good < 0.0 Poor < 0.4 Poor 

  0.0 to 0.20 Slight 0.40 to 0.75 Intermediate to Good 

  0.21 to 0.40 Fair > 0.75 Excellent 

  0.41 to 0.60 Moderate   

  0.61 to 0.80 Substantial   

  0.81 to 1.00 Almost perfect   

 
Altman (1991) Shrout (1998) Munoz and Bengdiwala (1997) 

Kappa 
coefficient 

Strength of 
agreement 

Kappa 
coefficient 

Strength of 
agreement 

Kappa 
coefficient 

Strength of 
agreement 

< 0.2 Poor 0.00 to 0.10 Virtually none < 0.00 Poor 

0.21 to 0.40 Fair 0.11 to 0.40 Slight 0.00 to 0.20 Fair 

0.41 to 0.60 Moderate 0.41 to 0.60 Fair 0.21 to 0.45 Moderate 

0.61 to 0.80 Good 0.61 to 0.80 Moderate 0.46 to 0.75 Substantial 

0.81 to 1.00 Very good 0.81 to 1.00 Substantial 0.76 to 0.99 Almost perfect 

    1.00 Perfect 

 

4.   Probabilistic benchmarking procedures 

Despite its popularity, the straightforward benchmarking procedure can be 
misleading for two main reasons: 

 it does not associate the interpretation of the coefficient magnitude with 
a degree of certainty failing to consider that an agreement coefficient, as 
any other sampling estimate, is exposed to statistical uncertainty; 

 it does not allow to compare the extent of agreement across different 
studies, unless they are carried out under the same experimental 
conditions (i.e.  the number of observed items, the number of categories 
or the distribution of items among the categories).   

In order to have a fair characterization of the extent of rater agreement, the 
benchmarking procedure should be probabilistic so as to associate a degree of 
certainty to the interpretation of the kappa coefficient [18].  
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Under asymptotic conditions, the magnitude of the kappa type coefficient can 
be related to the notion of extent of agreement by benchmarking the lower bound 
of its asymptotic normal (1 − 2α)% CI:   

                                             ˆ ˆLB ( )N K z se K      (6) 

where  is the estimated kappa coefficient, ˆ( )se K  its standard error and zα the 
α percentile of the standard normal distribution. 

Recently, Gwet [3] proposed a probabilistic benchmarking procedure based 
on the Interval Membership Probability (IMP). Gwet’s procedure characterizes 
the magnitude of agreement by benchmarking the lowest value LK  such that the 
probability that K exceeds LK  is equal to 1–2α. 

The above two benchmarking procedures rely on the asymptotically normal 
distribution assumption and thus they can work well only for reasonable large 
sample sizes. Vice-versa, under non-asymptotic conditions, bootstrap resampling 
can be adopted for building approximated as well as exact non-parametric CIs 
[19, 20]. 

Among the available bootstrap methods, in this study we focus on percentile 
CI and Bias-Corrected and Accelerated (BCa) CI [21]. The former is by far the 
easiest and most widespread method, the latter is recommended for severely 
skewed distribution. 

Being G the cumulative distribution function of the bootstrap replications of 
the kappa-type coefficient, the lower bound of the (1–2α)% percentile CI is: 

       1LB Gp    (7) 

whereas, being  the standard normal CDF, b the bias correction parameter and 
a the acceleration parameter, the lower bound of the (1–2α)% BCa bootstrap CI 
is: 

  
 

1
BCaLB G

1

z b
b

a z b





  

         
 (8) 

5.   Simulation study  

The statistical properties of the above-discussed probabilistic benchmarking 
procedures have been investigated via a Monte Carlo simulation study across 72 
different settings defined by varying three parameters: number of rated items (i.e. 
n = 10, 30, 50, 100), number of categories (i.e. k = 2, 3, 4) and strength of 

K̂





 7 

agreement (low, moderate and high), represented by six levels of agreement 
ranging from 0.4 to 0.9, computed assuming a linear weighting scheme [22]: 

                                       | |
1

1ij

i j
w

k


 


   (9) 

Specifically, the simulation study has been developed considering two raters 
classifying n items into one of k possible ordinal rating categories. The data have 
been simulated by sampling r = 2000 Monte Carlo data sets from a multinomial 
distribution with parameters n and p = (π11,…, πij,… πik), being πij the probability 
that an item is classified into category ith by the first rater and into jth category by 
the second rater. For each rating scale dimension and assuming a linear weighting 
scheme, the values of the joint probabilities πij have been chosen so as to obtain 
the six true population values of agreement (viz. 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) for a 
total of 18 different vectors p for each sample size; for example p = (0.22, 0.06, 
0.05, 0.06, 0.22, 0.06, 0.05, 0.06, 0.22) for obtaining an agreement level equal to 
0.5 with k = 3 rating categories. The four probabilistic benchmark procedures have 
been applied to characterize the simulated AC2 and BPw agreement coefficients 
across all different settings and their performances have been evaluated in terms 
of the weighted proportion of misclassified benchmarks (weighted 
misclassification rate, Mw). 

The simulation results obtained for each coefficient and each combination of 
n and k values are represented in the bubble chart in Figure 1, where the size of 
each bubble expresses the Mw value. Since the parametric benchmarking 
procedures apply only under asymptotic conditions, the Figure 1 is divided into 2 
sections by a dashed line: on the left side only the non-parametric procedure are 
compared each other (i.e. two overlapping bubbles for LBBCa and LBp, 
respectively), whereas the right side refers to all the benchmarking procedures 
under comparison (i.e. four overlapping bubbles for LBBCa, LBp, KL and LBN, 
respectively). The bubble chart displays all the 24 analyzed comparisons: for each 
of them, the foreground bubble represents the benchmarking procedure with the 
best performance (i.e. the one with the smallest Mw), whereas the background 
bubble represents the procedure with the worst performance (i.e. the one with the 
highest Mw, whose value is reported in the label).  

For small sample sizes Mw slightly differs across non-parametric 
benchmarking procedures — with a difference no more than 5% — and agreement 
coefficients. The results seem to suggest that the best choice is benchmarking the  
lower bound of the percentile CI for AC2 and benchmarking the lower bound of   
the BCa CI for BPw. For large sample sizes, instead, Mw is comparable across 
benchmarking procedures and agreement coefficients. 
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Specifically, it is worthwhile to pinpoint that the differences in Mw across 
non-parametric benchmarking procedures and agreement coefficients get smaller 
as n increases because of the decreasing skewness in the distributions of the 
agreement coefficients: if the distribution is symmetric, the BCa and percentile 
CIs agree. 

 

Fig. 1. Mw for BPw and AC2, for different benchmarking procedures, n and k values 

6.   Conclusions  

One of the main issues related to the widely adopted agreement coefficients 
regards the characterization of the extent of agreement.  

Most research studies characterize the extent of agreement by comparing the 
obtained agreement coefficient against well-known threshold values, like 0.5 or 
0.75, whereas only few research studies adopt probabilistic approaches, 
overcoming the straightforward comparison. Anyway, the probabilistic 
approaches commonly adopted in the literature are generally based on parametric 
asymptotic CIs that, by definition, are only applicable for large sample sizes so 
that small sample sizes become the most critical for statistical inference, although 
the most affordable in many experimental contexts. 
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The conducted Monte Carlo simulation study suggests that the non-
parametric probabilistic benchmarking procedures based on bootstrap resampling 
have satisfactory and comparable (with a difference up to 5%) properties for 
moderate or small number of rated items. Specifically, with n = 30 the 
performances of the procedures based on bootstrap CIs differ from each other at 
most for 2%, therefore benchmarking the lower bound of the percentile bootstrap 
CI could be suggested because of the less computation burden. Otherwise, with 
large sample sizes, being the performances indistinguishable across all 
benchmarking procedures, parametric procedures should be preferred because of 
their lower computational complexity. 
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A comparative study of benchmarking
procedures for interrater and intrarater
agreement studies
Valutazione comparativa di procedure di benchmarking
per l’analisi dell’accordo inter e intra valutatore

Amalia Vanacore1 and Maria Sole Pellegrino2

Abstract Decision making processes typically rely on subjective evaluations pro-
vided by human raters. In the absence of a gold standard against which check evalua-
tion trueness, the magnitude of inter/intra-rater agreement coefficients is commonly
interpreted as a measure of the rater’s evaluative performance. In this study some
benchmarking procedures for characterizing the extent of agreement are discussed
and compared via a Monte Carlo simulation.
Abstract In numerosi contesti, le decisioni strategiche sono affidate a valutazioni
soggettive, fornite da valutatori umani, per le quali non esiste un gold standard
che permetta di valutarne la veridicita’. L’affidabilita’ del valutatore viene quindi
spesso misurata in termini di precisione attraverso coefficienti di accordo inter- e
intra-valutatore, che risultanto utili se interpretabili. Nel lavoro proponiamo uno
studio Monte Carlo per analizzare e confrontare le prestazioni di alcune procedure
di benchmarking.

Key words: rater agreement, kappa-type coefficient, benchmarking procedures,
Monte Carlo simulation

1 Introduction

Agreement coefficients are widely adopted for assessing the precision of subjective
evaluations provided by human raters to support strategic and operational decisions
in several fields (e.g. manufacturing and service industries, food, healthcare and
risk management). Specifically, the agreement between the evaluations provided on
the same sample of items by two or more raters (i.e. inter-rater agreement) or by

1Dept. of Industrial Engineering, University of Naples ”Federico II”, p.le Tecchio 80, 80125
Naples; email: amalia.vanacore@unina.it
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the same rater in two or more occasions (i.e. intra-rater agreement) is commonly
measured using a kappa-type agreement coefficient.

In order to qualify the extent of agreement as good or poor the computed coeffi-
cient is compared against an arbitrary benchmark scale. However, the magnitude of
an agreement coefficient may strongly depend on some experimental factors such as
number of rated items, rating scale dimension, trait prevalence and marginal prob-
abilities [13, 9]. Thus, interpretation based on the straightforward benchmarking
should be treated with caution especially for comparison across studies when exper-
imental conditions are not the same.

A proper characterization of the extent of rater agreement should rely upon a
benchmarking procedure that allows to identify a suitable neighborhood of the true
value of rater agreement by taking into account sampling uncertainty. The most sim-
ple and intuitive way to accomplish this task is by building a confidence interval of
the agreement coefficient and comparing its lower bound against an adopted bench-
mark scale. A different approach is the one recently proposed by Gwet [9] which,
under the assumption of asymptotically normal distribution, evaluates the likelihood
that the estimated agreement coefficient belongs to each benchmark category.

The above benchmarking approaches will be in the following discussed and their
performances will be evaluated and compared in terms of weighted misclassification
rate via a Monte Carlo simulation study.

The remainder of the paper is organized as follows: in Section 2 two well-known
paradox-resistant kappa-type agreement coefficients are discussed; the commonly
adopted benchmark scales and some characterization procedures based on paramet-
ric and non-parametric approaches to benchmarking are presented and discussed in
Section 3; in Section 4 the simulation design is described and the main simulation
results are fully discussed; finally, conclusions are summarized in Section 5.

2 Paradox-resistant agreement coefficients

The kappa-type agreement coefficients are rescaled measures of the observed agree-
ment corrected with the probability of agreement expected by chance. The most
common kappa-type coefficient is that proposed by Cohen [5]. Despite its popu-
larity, it is affected by two paradoxes [4]: the degree to which raters disagree (bias
problem) and the marginal distribution of the evaluations independently provided by
each rater (prevalence problem). A solution to face the above paradoxes is to adopt
the uniform distribution for chance measurements, which given a certain rating
scale can be defended as representing the maximally non-informative measurement
system [6].

Specifically, let n be the number of items rated by two raters on an ordinal k-
point rating scale (with k > 2), ni j the number of items classified into ith category
by the first rater and into jth category by the second rater and wi j the corresponding
symmetrical weight, introduced in order to consider that, on an ordinal rating scale,
disagreement on two distant categories is more serious than disagreement on neigh-
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boring categories. The weighted version of the uniform kappa, often referred to as
Brennan-Prediger coefficient [9], is formulated as:

B̂Pw =
paw − pBPw

a|c
1− pBPw

a|c
(1)

where paw , the weighted observed proportion of agreement, and pBPw
a|c , the weighted

proportion of agreement expected under the assumption of uniform chance mea-
surements, are respectively given by:

paw =
k

∑
i=1

k

∑
j=1

wi j
ni j

n
; pBPw

a|c =
Tw

k2 (2)

being Tw the sum over all weight values wi j.
Another well-known paradox-resistant agreement coefficient alternative to Co-

hen’s Kappa is the AC1 coefficient proposed by Gwet [8], whose weighted version
AC2 [9] is formulated as:

ÂC2 =
paw − pAC2

a|c

1− pAC2
a|c

(3)

where the probability of chance agreement pAC2
a|c is given by:

pAC2
a|c =

Tw

k(k−1)
·

k

∑
i=1

πi(1−πi) (4)

Specifically, pAC2
a|c is defined as the probability of the simultaneous occurrence of

two events, one rater provides random rating (R) and the two raters agree (G):

pAC2
a|c = P(G∩R) = P(G|R) ·P(R) (5)

where P(G|R) = Tw/k2 and P(R) is approximated with a normalized measure of
randomness defined by the ratio of the observed variance to the variance expected
under the assumption of totally random ratings:

P(R) =
∑k

i=1 pi(1− pi)

(k−1)/k
(6)

with pi denoting the propensity that a rater assigns score i to an item which is esti-
mated by pi = (ni·+n·i)/2n being ni· (resp. n·i) the total number of items classified
into ith category by the first (resp. second) rater.
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3 Benchmarking procedures for characterizing the extent of
agreement

After computing an agreement coefficient, a common question is ”how good is the
extent of agreement?” As a general rule kappa values greater than 0.6 are generally
considered acceptable [10]. In order to provide an aid to qualify the magnitude of
kappa-type coefficients, a number of benchmark scales have been proposed mainly
in social and medical sciences over the years. The scale proposed by Landis and
Koch [11] is by far the most widely adopted benchmark scale; it consists of six
ranges of values corresponding to as many categories of agreement: poor, slight, fair,
moderate, substantial and almost perfect agreement for coefficient values ranging
between -1 and 0, 0 and 0.2, 0.21 and 0.4, 0.41 and 0.6, 0.61 and 0.8 and 0.81 and
1.0, respectively. This scale was then simplified by Fleiss [7] and Altman [1], with
three and five ranges, respectively, and by Shrout [12] who collapsed the first three
ranges of values into two agreement categories.

Despite its popularity, the straightforward benchmarking can be misleading be-
cause it does not associate the interpretation of the extent of agreement with a degree
of uncertainty and it does not allow to compare the extent of agreement across dif-
ferent studies, unless they are carried out under the same experimental conditions. In
order to have a fair characterization of the extent of rater agreement, it is necessary
to associate a degree of uncertainty to the interpretation of the coefficient.

Under asymptotic conditions, the magnitude of the kappa type coefficient can
be related to the notion of extent of agreement by benchmarking the lower bound
of its asymptotic (1−2α)% confidence interval (CI). Recently, Gwet [9] proposed
a parametric benchmarking procedure based on Interval Membership Probability
(IMP) that is the probability that the coefficient falls into each benchmark category.

Under non-asymptotic conditions, two non-parametric CIs based on bootstrap
resampling are the percentile (p) CI and, for severely skewed distribution, the Bias-
Corrected and Accelerated (BCa) CI [2]. Being free from distributional assump-
tions, the benchmarking procedure based on bootstrap CIs fits also the cases of
moderate and small sample sizes.

4 Simulation study

The above-discussed benchmarking procedures have been applied to characterize
the extent of both BPw and AC2 across 72 different settings. Their statistical prop-
erties have been investigated via a Monte Carlo simulation study developed consid-
ering two raters classifying n = 10,30,50,100 items into one of k = 2,5,7 possi-
ble ordinal rating categories. The data have been simulated by sampling r = 2000
Monte Carlo data sets from a multinomial distribution with parameters n and
p = (π11, . . . ,πi j, . . . ,πik); the πi j values have been set so as to obtain six true popu-
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lation values of agreement (viz. 0.4, 0.5, 0.6, 0.7, 0.8, 0.9), assuming a linear weight-
ing scheme [3].

The performances of the benchmarking procedures under comparison have been
evaluated in terms of weighted misclassification rate (hereafter, Mw). Specifically,
let {Xh;r} be a Monte Carlo data set containing r benchmarks Xh obtained for a
population value taken as reference for a specific agreement category ω . Mw is
evaluated as the weighted proportion of misclassified Xh:

Mw =
1
r ∑

ω=1,Ω
wωω ′ · I

[
Xh|ω ∈ ω ′

]
; ω ′ 6= ω (7)

where I[·] is an indicator taking value 1 if the argument is true and 0 otherwise
and wωω ′ is a linear misclassification weight adopted to account that on an ordinal
benchmarking scale some misclassifications are more serious than others. The best
and worst values of Mw obtained across the analysed benchmarking procedures for
BPw and AC2 are reported in Table 1 for each combination of n and k values. Specif-
ically, while the benchmarking procedure based on bootstrap CIs are suitable for all
the analysed sample sizes, the parametric procedures work only under asymptotic
conditions being thus applied only to large samples of n ≥ 50; therefore the para-
metric and non-parametric procedures are compared each other only for n ≥ 50.

Table 1 Best and worst Mw across the four benchmarking procedures (Standard: Parametric CI;
Underlined: IMP; Italics: p CI; Bold: BCa CI) for BPw and AC2 for different n and k values

(a) Best Mw for BPw

n = 10 n = 30 n = 50 n = 100

k = 2 0.102 0.096 0.068 0.049

k = 5 0.123 0.081 0.056 0.034

k = 7 0.087 0.066 0.048 0.027

(b) Worst Mw for BPw

n = 10 n = 30 n = 50 n = 100

k = 2 0.160 0.118 0.080 0.058

k = 5 0.131 0.088 0.072 0.051

k = 7 0.089 0.072 0.060 0.044

(c) Best Mw for AC2

n = 10 n = 30 n = 50 n = 100

k = 2 0.159 0.098 0.072 0.046

k = 5 0.111 0.073 0.051 0.030

k = 7 0.085 0.031 0.044 0.026

(d) Worst Mw for AC2

n = 10 n = 30 n = 50 n = 100

k = 2 0.193 0.099 0.084 0.055
k = 5 0.130 0.092 0.066 0.046

k = 7 0.092 0.058 0.056 0.042

For small and moderate samples (i.e. n ≤ 30), Mw slightly differs across non-
parametric benchmarking procedures and agreement coefficients: specifically, the
highest difference in Mw is 9%, observed for n = 10 and k = 2. Moreover, for in-
creasing sample sizes, Mw becomes quite indistinguishable across procedures and
coefficients with a difference always no more than 2%. It is worthwhile to pin-
point that the differences in Mw across non-parametric benchmarking procedures
and agreement coefficients get smaller as n increases because of the decreasing
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skewness in the distributions of the coefficients: if the distribution is symmetric,
the BCa and p CIs agree.

5 Conclusions

The results of the Monte Carlo simulation suggest that for small samples the non-
parametric benchmarking procedures based on bootstrap resampling have satisfac-
tory and comparable properties in terms of weighted misclassification rate. More-
over, with n≥ 30 the performances of the procedures based on bootstrap CIs differ
from each other at most for 2%, therefore benchmarking the lower bound of the
percentile bootstrap confidence interval could be suggested — because of its less
computational burden — for characterizing the extent of rater agreement, both for
BPw and AC2. For large samples, the performances are indistinguishable across all
benchmarking procedures, thus benchmarking the lower bound of the parametric
confidence interval would be preferred being the easiest method to implement.
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Abstract 

Students’ Evaluations of Teaching (SETs) are the most common way to 

measure teaching quality in Higher Education: they are assuming a strategic 

role in monitoring teaching quality, becoming helpful in taking the major 

formative and summative academic decisions. The majority of studies 

investigating SETs reliability focus on the instruments and the procedures 

adopted to collect students' evaluations rather than on the capability of the 

students as teaching quality assessors. In order to overcome this lack, a study 

has been carried out with the aim of measuring SETs reliability in terms of 

inter-student agreement and intra-student agreement. The results of our study 

show that the majority of students provided substantially repeatable 

evaluations whereas only a few students provided almost perfectly repeatable 

evaluations; the evaluations provided by different students generally slightly 

agreed, which means that the students did not share the same opinions and 

beliefs on teaching quality. 

Keywords: teaching quality assessment; reliability; inter-student agreement; 

intra-student agreement. 
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1. Introduction 

Measuring the student experience is assuming increasingly importance in Higher Education 

(hereafter, HE) representing a widespread method for evaluating teaching quality whose 

importance is relevant for taking the major formative and summative academic decisions 

(Berk, 2005; Gravestock & Gregor-Greenleaf, 2008; Onwuegbuzie et al., 2009). 

Student ratings, also known as Student Evaluations of Teaching (SETs), have dominated as 

the primary measure of teaching quality over the past 40 years (e.g., Centra, 1979; Seldin, 

1999; Emery at al., 2003; Gaertner, 2014) forming the basis for the rankings of HE 

institutions. Although widely used, SETs are one of the most controversial and highly-

debated measures of teaching quality: many researchers argue that there is no better option 

that provides the same sort of quantifiable and comparable data on teaching quality 

(McKeachie, 1997; Abrami, 2001) but, on the opposite, others point out significant biasing 

factors for SETs.  

The fear that students cannot provide reliable teaching quality evaluations is, by far, one of 

the primary concerns about SETs. As a matter of fact, even highly motivated students can 

base their current evaluations on their past teaching experience, which can substantially 

vary depending on the college or university attended and/or on the student individual belief 

toward the degree (Ackerman et al., 2009). Students who are generally satisfied/dissatisfied 

with the course and/or the instruction can bias the results upward/downward (Sliusarenko et 

al., 2013). In addition, it is known that demographic (e.g., gender and age; Thorpe, 2002; 

Fidelman, 2007; Kherfi, 2011) as well as logistic (e.g., class size; Kuo, 2007) factors can 

influence SETs. The above considerations call into question the opportunity to consider the 

students as able to provide reliable evaluations on teaching quality. For this reason, 

differently from the majority of available studies, which rather focus on the instruments and 

the procedures adopted to collect SETs, our study aims at investigating the peculiar abilities 

of the students as teaching quality assessors by measuring SETs reliability in terms of inter-

student and intra-student agreement. Particularly, the former allows evaluating the students’ 

ability to provide the same score, on average, as the other students whereas the latter, also 

known as repeatability, allows evaluating the students’ ability to score consistently a given 

quality item in different occasions. 

2. Measuring inter-student and intra-student agreement: kappa-type indexes 

The easiest approach for assessing the degree of agreement among repeated evaluations 

would be to simply calculate the observed agreement. This approach, however, provides a 

biased measure of agreement, especially when a rating scale with a few categories is 

adopted. In order to avoid this problem, inter-student and intra-student agreement will be 

assessed using the well-known kappa-type indexes, where the observed agreement is 

corrected for the agreement expected by chance. Specifically, the degree of inter-student 
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agreement is assessed by calculating the  statistic proposed by Marasini et al. (2014), that 

is a rescaled measure of the probability of observed agreement 
s

ap  corrected with the 

probability of agreement expected by chance alone |

s

a cp : 

 
| |( ) (1 )s s s

a a c a cs p p p     (1) 

Being r  the number of students who rated twice (i.e. replications) the same n  quality 

items on a 3k   points ordinal scale, hir  and hjr  the number of students who assigned the 

th
h  quality item into th

i  and thj  category during first and second replication, respectively; 

ijw  the corresponding weight, introduced in order to account that some disagreements (i.e. 

on categories that are at least two steps apart) are more serious than others (i.e. on 

neighboring categories), the observed proportion of agreement and the proportion of 

agreement expected by chance alone can be obtained as: 

 
1

| 2
1 1 1

1 1 1
ˆ ˆ ;

n k k
s s

a h a c ij

h i j i

p p p w
n k k



   

      (2) 

where ˆ
hp  is the proportion of agreement on 

th
h quality item given by: 

      
1

1 1 1
ˆ 1 2 1

k k k

h hi hi ij hi hji i j i
p r r w r r r r



   
        (3) 

The degree of intra-student agreement, instead, is assessed using the weighted version of 

Brennan-Prediger coefficient (1981) proposed by Gwet (2014), that is a rescaled measure of 

the probability of observed agreement ap  corrected with the probability of agreement 

expected by chance alone |a cp : 

 
| |( ) (1 )U

W a a c a cK p p p     (4) 

The chance measurement system adopted in Brennan-Prediger coefficient is the uniform 

one. Being n  the number of quality items rated twice on a 3k   points ordinal scale by the 

same student, ijn  the number of quality items classified into 
th

i  category in the first 

replication and into thj  category in the second replication, the observed proportion of 

agreement ˆ
ap  and the proportion of agreement expected by chance alone |a cp  are: 

  1 1 2

|1 1 1 1
ˆ ;

k k

a ij ij a c iji j i j
p n w p w k

   
      (5) 

The values of kappa-type indexes range between -1 and 1, with negative values meaning 

disagreement. The index magnitude can be interpreted by adopting the Landis and Koch 

(1977) benchmark scale. According to this scale, there are 5 categories of agreement 

s
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corresponding to as many ranges of coefficient values: slight, fair, moderate, substantial 

and almost perfect agreement for coefficient values ranging between 0 and 0.2, 0.21 and 

0.4, and 0.41 and 0.6, 0.61 and 0.8 and 0.81 and 1.0, respectively. 

3. Case Study 

The case study was conducted at the Department of Industrial Engineering of University of 

Naples “Federico II” and consisted of 3 supervised experiments (hereafter, E.1, E.2, E.3) 

carried out on classes of students attending the course of Statistical Quality Control (SQC) 

in 3 successive academic years. All three involved classes included more than 20 students; 

all of them obtained the first level degree in Management Engineering from the University 

of Naples “Federico II” and thus they can be reasonably assumed homogeneous in 

curriculum and instruction. 

Students were asked to fill two evaluation sheets (each with a specific rating scale) in order 

to collect their quality evaluation for a set of  items (regarding, for example, 

organization, workload and readings) of the SQC course they were attending. The first 

evaluation sheet used a Numeric Rating Scale (NRS) with scores ranging from 0 to 10 

whereas the other used a Verbal Rating Scale (VRS) with agreement grades: “strongly 

disagreeing with the statement”, “slightly agreeing with the statement”, “quite agreeing 

with the statement” and “strongly agreeing with the statement”. For comparability 

purposes, students' evaluations on the NRS were rescaled to the 4-points VRS using the 

following cut-off ranges: 0 to 2, 3 to 5, 6 to 8 and 9 to 10. 

Each experiment consisted of two sessions: the first evaluation session (i.e., S.I) took place 

at mid-term course and the second evaluation session (i.e., S.II) took place the following 

lesson. Between S.I and S.II there was no new lesson and no interaction with the teacher, 

therefore no change in quality evaluation was expected. In order to guarantee evaluation 

traceability while preserving anonymity, each student signed her/his evaluation sheets with 

a nickname, which enabled to match student’s ratings provided in the two evaluation 

sessions in order to estimate intra-student agreement. Only those students who rated all 

quality items in both experimental sessions were retained as participants in the study (viz. 

17 students in E.1, 18 students in E.2 and 17 students in E.3).  

The collected data were used to estimate the inter-student and intra-student agreement on 

NRS (hereafter, 
NRSŝ  and , respectively) and the inter-student and intra-student 

agreement on VRS (hereafter, VRSŝ  and ); the intra-student agreement coefficients 

were both computed adopting the linear weighing scheme (Cicchetti & Allison, 1971). 

20n 

|NRS
ˆ U

WK

|VRS
ˆ U

WK

1289



Vanacore, A.; Pellegrino, M. S. 

  

  

3.1. Study results  

The value of NRSŝ  and VRSŝ  for E.1, E.2 and E.3 are reported in Table 1.  

Table 1.  Inter-student agreement on NRS and VRS 

Experiment E.1 E.2 E.3 

 0.395 0.300 0.600 

 0.380 0.528 0.277 

 

The results for intra-student agreement for each student participating in E.1, E.2 and E.3, 

are reported in Table 2 and plotted in Figures 1 against the 5 regions of intra-student 

agreement on NRS and intra-student agreement on VRS identified according to the Landis 

and Koch’s benchmark scale.  

Results in Table 1 highlight that the inter-student agreement is at most moderate, so that it 

is not possible to assume that the involved students shared the same opinions about 

teaching quality; the difference between the two rating scales is irrelevant only for students 

of E.1, however results do not allow preferring a rating scale over the other.  

The intra-student agreement was generally higher than the inter-student agreement: 73% of 

students were at least substantially repeatable on both NRS and VRS whereas 19% of them 

were even almost perfectly repeatable on both NRS and VRS. In addition, the majority of 

students show over the years values of 
|VRS

ˆ U

WK  higher than those of 
|NRS

ˆ U

WK  although for 

about half of them the repeatability on the two rating scales belong to the same agreement 

categories and only for few (i.e., 10) students  and belong to no-adjacent 

categories of agreement. 

     

Figure 1. Intra-student agreement on NRS (as abscissa) and VRS (as ordinate) for each student participating in 

E.1. (on the left), E.2. (in the middle) and E.3. (on the right) 

NRSŝ

VRSŝ

|NRS
ˆ U

WK
|VRS

ˆ U

WK
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Table 2.  Intra-student agreement on NRS (
|NRS

ˆ U

WK ) and VRS (
|VRS

ˆ U

WK ) 

 E.1 E.2 E.3 

Student       

1 0.76 0.80 0.56 0.76 0.92 0.56 

2 0.88 0.72 0.80 0.92 0.56 0.96 

3 0.68 0.96 0.48 0.80 0.72 0.84 

4 1.00 0.40 0.84 0.80 0.60 0.96 

5 0.68 0.84 0.52 0.92 0.84 0.76 

6 0.76 0.84 1.00 0.96 0.88 0.72 

7 0.92 0.92 0.64 0.92 0.68 0.68 

8 0.96 0.96 0.76 0.80 0.68 0.84 

9 0.64 0.72 0.60 0.96 0.60 0.84 

10 0.44 0.56 1.00 0.96 0.76 0.60 

11 0.72 0.76 0.56 0.60 0.48 0.92 

12 0.84 0.60 0.92 0.96 0.92 0.64 

13 0.76 0.84 0.80 1.00 0.72 0.84 

14 0.56 0.80 0.72 0.64 0.76 0.56 

15 0.68 0.56 0.80 0.88 1.00 0.84 

16 0.52 0.60 0.68 0.80 1.00 0.92 

17 0.88 0.92 0.40 1.00 1.00 0.92 

18   0.76 0.96   

 

|NRS
ˆU

WK |VRS
ˆU

WK |NRS
ˆU

WK |VRS
ˆU

WK |NRS
ˆU

WK |VRS
ˆU

WK
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4. Conclusions 

This research aimed at investigating the reliability of Students’ Evaluations of Teaching by 

evaluating intra- and inter-student agreement.  

With respect to intra-rater agreement, the results of our study highlight that, on average, the 

65% of involved students could be considered repeatable assessors of teaching quality, 

since they provided quality evaluations that were consistent over time. Specifically, for 

NRS, the percentage of at least substantially repeatable students ranges, across the three 

experiments, between 66% and 82%, whereas, for VRS, the percentage of at least 

substantially repeatable students ranges between 71% and 94%. These results seem to 

suggest that even if the NRS is the most common rating scale, the students were able to 

express their opinion more consistently using a verbal rather than a numeric rating scale. 

On the other hand, focusing on inter-student agreement, results seem to suggest that the 

whole class of students could not be considered homogeneous in terms of beliefs and/or 

opinions and/or knowledge about teaching quality, being the inter-student agreement at 

most moderate, independently of the specific class of students and the adopted rating scale.  

The obtained results cannot of course be generalized since, although the experiments were 

repeated over three academic years, they involved only students attending the same course. 

In order to overcome this weakness, an interesting development could be to conduct the 

same experiment on different university courses. 
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Checking quality of sensory data by assessing 

intra/inter panelist agreement  
Amalia Vanacore1 and Maria Sole Pellegrino2 

Abstract This study aims at checking the quality of sensory data by evaluating and 

testing both panelist precision and panel reproducibility via an agreement index-based 

approach which has been already adopted for the assessment of rater reliability but is 

almost unexplored in the field of sensory analysis. The approach has been applied to 

a case study concerning the assessment of sensory characteristics induced by different 

food and beverages. 

 

Key words: panelist precision, panel reproducibility, agreement coefficient 

1 Introduction 

In many contexts (e.g., food and beverage, cosmetics, service) product 

development and quality improvement processes rely on sensory data provided by a 

panel of (expert or novice) assessors. Testing panelist/panel reliability is a common 

methodological requirement in order to guarantee the quality of sensory data.  

Different methodologies, based on univariate or multivariate analysis, have been 

proposed in the specialized literature to assess panel/panelist reliability in terms of 

consonance [7], sensitivity and discrimination ability [1, 4] or inconsistency [10, 12]. 

A quite different approach evaluates panel/panelist reliability in terms of repeatability 

and reproducibility measures defined through variability indexes [11] or correlational 

(or ANOVA) reliability indexes — such as the ICC [2] — or agreement coefficients 

[6, 9].  

Following the index-based approach, this study aims at checking the quality of 

sensory data by evaluating and testing both panelist precision and panel 

reproducibility. Specifically, the former is measured as the degree of agreement within 

evaluations provided by the panelist in different occasions, whereas the latter is 
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measured as the degree of agreement across the evaluations provided by the whole 

panel. The usefulness of the above measures of precision and reproducibility is 

illustrated through a case study concerning the assessment of sensory dimensions 

induced by similar food and beverage products.  

2 Method 

The weighted Brennan-Prediger coefficient [3] is a rescaled measure of the 

proportion of observed agreement corrected for the agreement expected under the 

assumption of uniform chance measurements.  

Using the appropriate formulation for observed agreement, the weighted Brennan-

Prediger coefficient can be adopted as a measure of panelist precision as well as panel 

reproducibility. Specifically, for panelist precision: 

 

  (1) 

whereas for panel reproducibility: 

                

  (2)

 
being n the number of items rated twice (i.e., two replications) on an ordinal k-points 

rating scale (with k > 2) by each panelist, nij the number of items classified into ith 

category in the first replication and into jth category in the second replication, wij the 

corresponding symmetrically weight (i.e., wij= wji), r the number of panelists, rli the 

number of panelists who rated items l into category i. 

In order to account for sampling uncertainty, a reliable characterization of the 

extent of panelist precision and panel reproducibility can be obtained by building a 

Bias-Corrected and Accelerated bootstrap confidence interval (hereafter, BCa CI) for 

 and  [5, 13]. The lower and upper bounds of the (1-α)% two-sided BCa 

confidence interval are defined as:  

                     1

2 21G b z b a z b 

      
 

                        (3) 

being Φ the cumulative distribution function of the normal distribution, zα/2 the α/2 

percentile of the standard normal distribution, b the bias correction parameter and a 

the acceleration parameter. 
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3 Case Study 

The data refer to a discrimination test conducted on different food and beverage 

products, involving a panel of untrained consumers who were asked to evaluate in two 

different occasions 5 sensory dimensions (viz., appearance, taste, smell, texture and 

general impression) on an ordinal rating scale.  

Panelist precision and panel reproducibility were characterized by calculating 

 and  for every dimension together with their BCa CIs, all represented in 

Figure 1. 

  

Figure 1: Point estimates and BCa CIs of  (left side) and  (right side) for each sensory 

dimension 

In order to test for panelist precision and panel reproducibility, the lower bound of 

BCa CIs of  and , were benchmarked against the well-known Landis and 

Koch scale [8]. Figure 1 shows the benchmark results: the 53% of panelists can be 

reasonably assumed as substantially precise assessors for Appearance (i.e., the lower 

bound of BCa CI of  is greater than the threshold value 0.60 represented in the 

diagram by the dashed line) whereas only the 24% of them can be reasonably assumed 

as substantially precise in assessing Taste. On the other hand, the panel is always 

moderately reproducible because the BCa CIs of  — built for all dimensions and 

both replications — always belong to moderate agreement category.  

The Cochran's Q test uncovered significant differences among the proportions of 

substantially precise panelists for the five sensory dimensions (Q = 17.176, d.f. = 4, p 

= 0.001786). Pairwise comparisons using continuity-corrected McNemar's tests with 

Bonferroni correction revealed that significantly more panelists resulted substantially 

precise for Appearance than for Taste (p-adjusted = 0.005202). Specifically, the 
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effect-size, measured by an approximate 95% confidence interval for the difference 

between marginal proportions, highlighted that the proportion of substantially precise 

panelists for Appearance may be up to 33% higher than for Taste. 

4 Conclusions 

The agreement index-based approach supported by a non-parametric inferential 

procedure can be usefully adopted as an effective strategy for checking the quality of 

sensory data. Indeed it provides useful information in order to decide whether a 

panelist can be assumed as a substantially precise assessor and, moreover, it allows to 

pinpoint the sensory dimension(s), if any, for which panelists need to be trained.  
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Abstract
Sensory evaluations are adopted in many fields for measuring and comparing sensory prop-
erties of products and improving their quality. The selection of panelists able to provide 
precise evaluations is a crucial issue to perform reliable sensory analysis. An agreement-
based approach is here suggested in order to assess the quality of sensory data in terms 
of both panelist repeatability and panel reproducibility. The approach has been applied to 
two case studies involving untrained sensory panelists and trained teaching quality asses-
sors, respectively. The results of the case studies show that although reproducibility can be 
assumed moderate for both groups of raters, repeatability is generally higher for the group 
of trained raters.

Keywords Panelist repeatability · Panel reproducibility · Kappa-type coefficient · Quality 
assessment of sensory data

1 Introduction

Sensory data are obtained by collecting with a scientific method humans perceptions 
expressed with respect to some product characteristics. The expressed perception is the 
result of a human decision, reasonable assumed as the outcome of complex interactions 
conditioned by personal history, environmental variables, subjective factors (or covariates), 
product characteristics and also survey conditions (e.g. survey design and format adopted 
for data collection) (Manisera et al. 2011).

The evaluative abilities of the sensory panel are of paramount importance in order to 
guarantee the quality and thus the validity of the provided sensory evaluations (Bi 2003; 
Kermit and Lengard 2005; Latreille et al. 2006; Iannario et al. 2012): only a good sensory 
panel provides accurate, precise and discriminating data that reflect some intrinsic and true 
values associated with the products (Piggott 1995; King et al. 2001; Kermit and Lengard 
2005; Pinto et al. 2014). In sensory analysis accuracy refers to panel ability to score prod-
ucts the same, on average, as the other panel members (i.e. reproducibility, Rossi 2001); 
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precision refers to panelist ability to provide consistent ratings for the same product during 
different replications over time (i.e. repeatability, Rossi 2001; Pinto et al. 2014); whereas 
discrimination ability refers to panelist ability to recognize very small (i.e. just noticeable) 
differences between products (Pinto et al. 2014).

Different approaches have been proposed over the years to check the quality of sensory 
data by monitoring individual panelist performance as well as the panel as a whole. The 
most widespread approach uses standard analysis of variance (ANOVA) to investigate pan-
elist accuracy, precision and discrimination ability (Næs and Solheim 1991; Schlich 1994; 
Lea et al. 1995; Brockhoff 2003) or to evaluate panel inconsistency (Lundahl and McDan-
iel 1990, 1991).

Despite its popularity, standard ANOVA is not suitable for sensory evaluations which—
because of their “qualitative” nature—are mainly expressed on nominal or ordinal rating 
scales; however ANOVA approach could take great advantage from a recently proposed 
unifying approach for assessing variation over every scale of measurement (Gadrich and 
Bashkansky 2012; Gadrich et al. 2015).

A quite different approach for the assessment of the quality of sensory data is adopted 
in the Repeatability and Reproducibility (R&R) study proposed by Rossi (2001) which, 
exploiting the analogy between analytical laboratory measures and sensory panelist evalu-
ations, assesses the performance of sensory panelist in terms of accuracy and precision 
through descriptive statistics.

Starting from the definition of repeatability and reproducibility proposed by Rossi 
(2001), this paper follows an agreement-based approach (Cohen 1960; Ludbrook 2002; 
Vanbelle 2009) to assess and characterize panelist performance in providing sensory evalu-
ations on ordinal rating scales.

The choice of assessing panelist repeatability and panel reproducibility in terms of 
agreement is coherent with the definitions of precision and accuracy provided by Interna-
tional Organization for Standardization and with those adopted in sensory science. Specifi-
cally, ISO 5725 (1994) defines precision as the closeness between independent test results 
obtained under stipulated conditions and accuracy as the closeness between the new meas-
urement and the truth or true value. Therefore the precision of sensory data can be assessed 
as the degree of agreement between replicated (i.e. over different times) evaluations pro-
vided by the same panelist under the same conditions, where “same conditions” means that 
nothing changed other than the times of the evaluations. Vice-versa, the common concept 
of accuracy cannot be straightforward operationalized for sensory data because panelists’ 
evaluations, being subjective, lack a gold-standard against which to check their trueness. 
In such circumstances, the gold-standard is replaced by the whole panel perception and the 
accuracy can be thus assessed as the degree of agreement among the evaluations simulta-
neously provided by the whole panel under the same conditions.

Though widespread in many fields of research (e.g. medicine, psychological and educa-
tional measurement), the agreement-based approach is still almost unexplored in sensory 
analysis. This approach estimates repeatability and reproducibility via kappa-type agree-
ment coefficients, which are rescaled measures of the observed proportion of agreement 
corrected with the agreement expected by chance alone.

Several kappa-type agreement coefficients have been proposed in the literature differ-
ring from each other only in the definition, and thus formulation, of the agreement expected 
by chance alone. This paper adopts the Brennan–Prediger agreement coefficient (Brennan 
and Prediger 1981) which formulates the agreement expected by chance alone assuming a 
uniform distribution for chance measurement, that is the most non-informative measure-
ment system given a certain rating scale (Mast 2007; Erdmann et al. 2015).
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The magnitude of agreement is commonly qualified by comparing the estimated coef-
ficient against an arbitrary benchmark scale. However, this straightforward benchmarking 
procedure does not consider estimate uncertainty and, moreover, it should be treated with 
caution for comparison across studies when the experimental conditions are not the same 
(Gwet 2014).

The proposed agreement-based approach is fully exploited through a case study aimed 
at evaluating the quality of a sensory panel, in terms of panelist repeatability and panel 
reproducibility, assessing five sensory dimensions of eight food products. Moreover, in 
order to demonstrate the applicability of the proposed approach to different evaluation con-
texts involving human raters, a second case study, concerning the assessment of service 
quality by trained assessors, is also discussed.

The remainder of this paper is organized as follows: two linear weighted Brennan–Pre-
diger agreement coefficients—one for estimating panelist repeatability and the other for 
panel reproducibility—and a statistical benchmarking procedure for both the adopted coef-
ficients are introduced in Sect. 2; Section 3 is devoted to the discussion of the two case 
studies aimed at illustrating the usefulness of the proposed procedure; finally, conclusions 
are summarized in Sect. 4.

2  Methods

2.1  Assessment of panelist repeatability and panel reproducibility via linear 
weighted Brennan–Prediger coefficient

Let n be the number of products rated two or more times (i.e. replications) by a panelist 
on an ordinal k-point rating scales, with k > 2 . Panelist’s ratings are denoted Yhr , with 
h = 1,… , n indexing products and r indexing replications. Of interest for the assessment 
of panelist repeatability is the joint distribution of the Yhr , which in the special case of 
two replications can be cross-classified into a k × k contingency table (nij)k×k , where the 
generic (i, j) cell contains the joint frequency nij that counts the number of products classi-
fied into ith category over the first replication and into jth category over the second replica-
tion (Table 1).

It is clear that the cells along the main diagonal represent the perfect match between 
the evaluations provided in the two replications, whereas the off-diagonal cells represent 
mismatch. The introduction of a distance metric or of a weighting scheme enables to 

Table 1  k × k table for classifying the ratings of a panelist in two replications
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account that in the case of ordinal rating scale some disagreements are more serious than 
others, that is disagreement on two distant categories should be considered more impor-
tant than disagreement on neighbouring categories. Different kinds of distance metrics 
and weighting schemes, appropriate for various practical situations, have been proposed 
and discussed in the literature. Typically, these metrics are expressed as non decreasing 
functions of |i − j| when assessing the degree of disagreement among the provided evalua-
tions [e.g. loss matrix (Bashkansky et al. 2008)] or, vice-versa, as nonincreasing function 
of |i − j| when assessing the degree of agreement [e.g. linear agreeing weights (Cicchetti 
and Allison 1971), quadratic agreeing weights (Fleiss et  al. 2013)]. Adopting the linear 
weighting scheme, panelist repeatability will be assessed using the weighted Brennan–Pre-
diger agreement coefficient (Brennan and Prediger 1981) which formulates the weighted 
observed proportion of agreement paw as:

where wij is the symmetrical ( wij = wji ) agreement weight a priori assigned to each pair (i, 
j) of ratings. Specifically, wij ranges between 0 and 1: the minimum value 0 is assigned to 
maximally disagreeing pairs of ratings (i.e. classified in cells (1, k) and (k, 1) in Table 1); 
the maximum value 1 is assigned to pairs of coincident ratings (i.e. classified in cells (i, i) 
along the main diagonal in Table 1). It is worthwhile to pinpoint that although the weights 
can be arbitrary defined, the linear and quadratic weights are the most commonly used 
weighting schemes for kappa-type coefficients and are formulated as follows:

It is worthy to note that when the classification provided by a human rater is compared 
against a gold-standard, the observed proportion of agreement (Eq. 1) corresponds to the 
weighted percentage of correct classification, which is a common measure of prediction 
success (Veall and Zimmermann 1992).

The weighted agreement expected by chance alone pa|cw , formulated assuming a uni-
form distribution for chance measurement, is given by:

Panelist repeatability can be thus assessed adopting the following formulation:

Adopting the agreement-based approach, panel reproducibility is assessed in terms of the 
agreement across the evaluations provided by the whole panel via a proper multiple-raters’ 
version of the linear weighted Brennan–Prediger coefficient (Gwet 2014).

Let r be the total number of panelists who rated the n products over the same k-point 
ordinal rating scale. Of interest for the assessment of panel reproducibility are the propor-
tions of pairwise agreement, which can be obtained by classifying the Yhr into a n × k table 
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(rli)n×k , where the generic (l, i) cell contains the number of panelists rli who classified prod-
uct l into category i (Table 2).

The weighted observed proportion of agreement among multiple panelists is thus for-
mulated as follows:

where

whereas the weighted agreement expected by chance alone is still formulated as in Eq. 3, 
since it depends only on the adopted weighting scheme and on the rating scale dimension.

Panel reproducibility can be thus assessed adopting the following formulation:

2.2  A statistical benchmarking procedure for characterizing the extent of panelist 
repeatability and panel reproducibility

The magnitude of agreement coefficient is most commonly related to the notion of extent 
of agreement by a straightforward comparison with a benchmark scale. A number of 
benchmarking scales have been proposed mainly in social and medical sciences over the 
years (e.g. Landis and Koch 1977; Altman 1990; Fleiss et al. 2013); among them the most 
widely adopted is the six range scale proposed by Landis and Koch (Table 3).

The straightforward procedure is commonly adopted for benchmarking purpose, never-
theless it can be misleading for two main reasons:

• it fails to consider that an agreement coefficient, as any other sampling estimate, is 
imprecise (i.e. the sample statistic is affected by sampling uncertainty): almost certainly 
a different agreement estimate will be obtained if the survey is repeated under identical 
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Table 2  n × k table for classifying the ratings provided by the whole panel in one replication
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conditions on different samples drawn from the same population of items (Gardner and 
Altman 1986);

• it does not allow to compare the extent of agreement across different studies, unless 
they are carried out under the same experimental conditions (i.e. number of rated prod-
ucts, number of categories or distribution of products across the categories).

In order to overcome these criticisms, a statistical benchmarking procedure is recom-
mended. The simplest and intuitive way to accomplish this task is by building a confidence 
interval of the agreement coefficient and comparing its lower bound against an adopted 
benchmark scale (Vanacore and Pellegrino 2017). A confidence interval suitable for both 
small (the most affordable size in many sensory experiments) and large samples can be 
obtained via bootstrap resampling. Among the available methods to build bootstrap con-
fidence intervals (Carpenter and Bithell 2000), the percentile bootstrap is the simplest 
and the most popular one. On the other hand, the Bias-Corrected and Accelerated boot-
strap (hereafter, BCa) confidence interval is recommended for severely skewed distribu-
tion. Despite the higher computational complexity, BCa confidence intervals have gener-
ally smaller coverage errors. The lower bound of the ( 1 − 2� )% two-sided BCa confidence 
interval is defined as:

being G the cumulative distribution function of the bootstrap replications of the kappa-type 
coefficient, � the standard normal CDF, b the bias correction parameter and a the accelera-
tion parameter.

3  Two illustrative case studies

Two case studies are hereafter presented involving untrained as well as trained raters. Spe-
cifically, in the first case study untrained consumers provided sensory evaluations about 
some food and beverage products, whereas in the second case study a class of university 
students, trained in evaluating teaching quality, rated a university teaching course.

3.1  Case study 1: consumers as sensory panelists

The first case study is aimed at checking the quality of sensory data by assessing panelist 
repeatability and panel reproducibility via the proposed procedure. The analyzed data have 

(8)LBBCa = G−1

(
�

(
b −

z� − b

1 + a(z� − b)

))

Table 3  Landis and Koch 
benchmark scale for kappa-type 
coefficients

Coefficient Magnitude Strength of agreement

≤ 0.00 Poor
0.01–0.20 Slight
0.21–0.40 Fair
0.41–0.60 Moderate
0.61–0.80 Substantial
0.81–1.00 Almost perfect
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been published by Geier et al. (2016) and were obtained by performing some experiments 
of consumer sensory evaluation according to German standard DIN 10974.

Specifically, the data refer to a hedonic test involving a panel of r = 62 untrained con-
sumers who were asked to evaluate in two different evaluation sessions 5 sensory dimen-
sions (viz. appearance, taste, smell, texture and general impression) on a hedonic k = 7

-points rating scale (1: very bad–7: excellent). The panelists rated n = 8 different food and 
beverage products (i.e. four pairs of water, milk, bread, sugar) in identical product condi-
tions (viz. means, temperature, dishes, portion sizes, and test-booth conditions).

For each sensory dimension panelist repeatability is assessed via B̂Pw (Eq. 4) whereas 
panel reproducibility is assessed for each evaluation session and sensory dimension via 
B̂P

r

w
 (Eq. 7); the extent of both panelist repeatability and panel reproducibility is then char-

acterized by benchmarking the lower bound of each 95% BCa confidence interval (i.e. 
BPw|l and BPr

w|l ) against the Landis and Koch scale (Table 3).
The B̂Pw estimates together with their BCa confidence interval are plotted in Fig. 1 for 

each panelist and sensory dimension, where the dashed lines represent the threshold value 
for substantial agreement.

The results show that benchmarking the lower bound of the BCa confidence interval for 
BPw , the percentage of at least substantially repeatable panelists (i.e. BPw|l > 0.6 ) ranges, 
across the 5 sensory dimensions, between 24 and 49%; the sensory dimensions with the 
best and worst panelist performance are Appearance and Taste, respectively. Specifically, 
the null hypothesis of substantial repeatability for Appearance and Taste can be rejected 
(with � = 0.025 ) for 32 and 48 panelists, respectively.

Regarding panel reproducibility, B̂P
r

w
 estimates and their 95% BCa confidence intervals 

for each sensory dimension and each evaluation session are plotted in Fig. 2 against the 5 
categories of positive agreement of Landis and Koch scale (Table 3).

The results suggest that the panel is moderately reproducible, indeed, for every sensory 
dimension, the 95% BCa confidence intervals of panel reproducibility belong to the cat-
egory of moderate agreement for both evaluation sessions.

It is worthy to note that in the first evaluation session the panel reproducibility is com-
parable across sensory dimensions; vice-versa, in the second session Appearance shows a 
significantly higher panel reproducibility than Taste.

3.2  Case study 2: students as teaching quality assessors

The second case study describes the results of an evaluation experiment involving a class 
of r = 18 university students homogeneous in curriculum and instruction, who assessed 
the quality of a teaching course scheduled at the last year of their carrier path. The students 
rated n = 20 teaching quality items using a verbal rating scale (VRS) with k = 4 grades 
“strong disagreement”, “disagreement”, “agreement” and “strong agreement”. Each stu-
dent rated the same items twice, during two lessons, one week apart.

According to the purpose of the case study, the evaluations provided by each student 
during the two lessons are used to assess student’s repeatability via B̂Pw (Eq. 4), whereas 
those collected during each lesson by the whole class of students are used to assess stu-
dents reproducibility via B̂P

r

w
 (Eq. 7); the extents of repeatability and reproducibility are 

then characterized by benchmarking the lower bound of the 95% BCa confidence interval 
(i.e. BPw|l and BPr

w|l ; Eq. 8) against the Landis and Koch scale (Table 3).
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Fig. 1  Point estimates and 95% BCa confidence intervals of panelist repeatability ( ̂BP
w
 ) for each sensory 

dimension

Fig. 2  Point estimates and 95% 
BCa confidence intervals of 
panel reproducibility ( ̂BP

r

w
 ) for 

each sensory dimension and each 
evaluation session
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In the top of Fig. 3 the B̂Pw estimates and their 95% BCa confidence intervals are plotted 
for each student participating in the experiment; in the bottom of Fig. 3, instead, the 95% 
BCa confidence intervals for students reproducibility and the B̂P

r

w
 estimates for both repli-

cations over time are graphically represented against the 5 categories of positive agreement 
of Landis and Koch scale (Table 3).

Assuming � = 0.025 , the hypothesis that the student repeatability is at least moderate can 
be rejected only for the student #11 whose BPw|l is lower than 0.4, whereas the hypothesis of at 
least substantial repeatability cannot be rejected for 14 out of 18 involved students (i.e. the 78% 
of students participating in the case study) since they have a BPw|l lying in the range 0.4–0.6.

Regarding the reproducibility level, the 95% BCa confidence intervals of BPr
w
 belong 

to the category of moderate agreement, thus the analysed class of students can be assumed 
moderately reproducible.

3.3  Power analysis results

The results of both case studies achieve an adequate power as confirmed by the power anal-
ysis obtained via a Monte Carlo simulation study. Specifically, the simulation study has 
been developed considering one rater classifying n = 8 items into one of k = 7 possible 
ordinal rating categories and n = 20 items into k = 4 ordinal categories during two replica-
tions. The data have been simulated by sampling r = 2000 Monte Carlo data sets from a 
multinomial distribution with parameters n and � = (�11,… ,�ij,… ,�kk) , with the �ij val-
ues set so as to obtain six true population values of agreement (viz. 0.4, 0.5, 0.6, 0.7, 0.8, 
0.9), assuming a linear weighting scheme (i.e. wL

ij
 in Eq. 2).

Fig. 3  Point estimates ( ̂BP
w
 and B̂P

r

w
 ) and 95% BCa confidence intervals for repeatability of each student 

(on the top) and for reproducibility of each replication (on the bottom)
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The statistical power has been computed for three different hypothesis statements refer-
ring to null inference of at least slight agreement (i.e. H1 ∶ BPw > 0 ), non-null inference 
of at least moderate agreement (i.e. H1 ∶ BPw > 0.40 ) and non-null inference of at least 
substantial agreement (i.e. H1 ∶ BPw > 0.60 ). All the hypothesis tests have been conducted 
assuming a significance level � = 0.025.

The Monte Carlo estimate of the statistical power is given by:

being I [ ⋅ ] an indicator taking value 1 if the argument is true and 0 otherwise, BPh
w|l the 

lower bound of the 95% BCa confidence interval obtained from the hth Monte Carlo data 
set and BPC

w
 the tested critical value of panelist repeatability under the stated hypothesis.

The power curves obtained in the null inference and non-null inference cases of at least 
moderate and substantial agreement for both the analysed scenarios (i.e. n = 8 , k = 7 ; 
n = 20 , k = 4 ) are reported in Fig. 4. The power curves show that the statistical power of 
80% is obtained when testing an agreement level at least substantial (i.e. H1 ∶ BPw > 0.60 ) 
against the null hypothesis of poor agreement (i.e. H0 ∶ BPw = 0 ), when testing an almost 
perfect agreement level (i.e. H1 ∶ BPw > 0.80 ) against the null hypothesis of no more than 
fair agreement (i.e. H0 ∶ BPw ≤ 0.40 ) and, finally, when testing a very high agreement 
level of BPw > 0.90 against the null hypothesis of no more than moderate agreement (i.e. 
H0 ∶ BPw ≤ 0.60).

4  Conclusions

This study suggests the adoption of an agreement-based approach for the assessment of 
panelist repeatability and panel reproducibility. In order to demonstrate the applicability of 
the proposed approach to different evaluation contexts involving human raters, two illustra-
tive case studies have been presented: the first case study analyses sensory evaluations pro-
vided by untrained consumers, instead the second case study deals with quality evaluations 
provided by trained assessors.

(9)1 − 𝛽 =
1

r

r∑

h=1

I
[
BPh

w|l > BPC
w
| H1

]

Fig. 4  Statistical power curves obtained benchmarking the lower bound of the BCa confidence interval in null 
and non-null inference conditions (solid curves for n = 8 and k = 7 , dashed curves for n = 20 and k = 4)
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The results of both case studies seem to suggest to be not completely confident in the 
accuracy of human raters’ evaluations, being the reproducibility level always no more than 
moderate.

Differences between the two case studies concern rater precision, evaluated in terms of 
her/his repeatability. Specifically, the results of the first case study show that consumer’s 
repeatability changes across the sensory dimensions being better for Appearance and worse 
for Taste; less than 50% of the consumers were able to provide substantially repeatable 
evaluations for at least one sensory dimension and only 9 of them provided substantially 
repeatable evaluations for all sensory dimensions. The results of the second case study 
would suggest that the higher expertise of students as quality assessors—achieved through 
their frequent involvement in evaluation processes on teaching quality—makes the major-
ity of them at least substantially repeatable raters.

The different results obtained in terms of repeatability for untrained and trained raters 
highlight the effectiveness of the proposed approach in discriminating the performances 
of trained and untrained raters and its usefulness in identifying the most critical sensory 
dimension(s), if any, to which the training effort should be addressed.

Acknowledgements The authors deeply thank the two anonymous referees for their careful reading of the 
manuscript and helpful suggestions.

References

Altman, D.G.: Practical Statistics for Medical Research. CRC Press, Boca Raton (1990)
Bashkansky, E., Dror, S., Ravid, R., Grabov, P.: Effectiveness of a product quality classifier. Qual. Control 

Appl. Stat. 53(3), 291–292 (2008)
Bi, J.: Agreement and reliability assessments for performance of sensory descriptive panel. J. Sens. Stud. 

18(1), 61–76 (2003)
Brennan, R.L., Prediger, D.J.: Coefficient kappa: some uses, misuses, and alternatives. Educ. Psychol. Meas. 

41(3), 687–699 (1981)
Brockhoff, P.B.: Statistical testing of individual differences in sensory profiling. Food Qual. Prefer. 14(5–6), 

425–434 (2003)
Carpenter, J., Bithell, J.: Bootstrap confidence intervals: when, which, what? A practical guide for medical 

statisticians. Stat. Med. 19(9), 1141–1164 (2000)
Cicchetti, D.V., Allison, T.: A new procedure for assessing reliability of scoring eeg sleep recordings. Am. J. 

EEG Technol. 11(3), 101–110 (1971)
Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1), 37–46 (1960)
De Mast, J.: Agreement and kappa-type indices. Am. Stat. 61(2), 148–153 (2007)
Erdmann, T.P., De Mast, J., Warrens, M.J.: Some common errors of experimental design, interpretation and 

inference in agreement studies. Stat. Methods Med. Res. 24(6), 920–935 (2015)
Fleiss, J.L., Levin, B., Paik, M.C.: Statistical methods for rates and proportions. Wiley (2013)
Gadrich, T., Bashkansky, E.: Ordanova: analysis of ordinal variation. J. Stat. Plan. Inference 142(12), 3174–

3188 (2012)
Gadrich, T., Bashkansky, E., Zitikis, R.: Assessing variation: a unifying approach for all scales of measure-

ment. Qual. Quant. 49(3), 1145–1167 (2015)
Gardner, M.J., Altman, D.G.: Confidence intervals rather than P values: estimation rather than hypothesis 

testing. Br. Med. J. (Clin Res Ed) 292(6522), 746–750 (1986)
Geier, U., Büssing, A., Kruse, P., Greiner, R., Buchecker, K.: Development and application of a test for 

food-induced emotions. PLoS ONE 11(11), 1–17 (2016)
Gwet, K.L.: Handbook of Inter-Rater Reliability: The Definitive Guide to Measuring the Extent of Agree-

ment Among Raters. Advanced Analytics, LLC, Gaithersburg (2014)
Iannario, M., Manisera, M., Piccolo, D., Zuccolotto, P.: Sensory analysis in the food industry as a tool for 

marketing decisions. Adv. Data Anal. Classif. 6(4), 303–321 (2012)
International Organization for Standardization (ISO). Accuracy (Trueness and Precision) of Measurement 

Methods and Results Part 1: General Principles and Definitions (5725-1). Geneva: ISO (1994)



 A. Vanacore, M. S. Pellegrino 

1 3

Kermit, M., Lengard, V.: Assessing the performance of a sensory panel–panellist monitoring and tracking. 
J. Chemom. 19(3), 154–161 (2005)

King, M.C., Hall, J., Cliff, M.A.: A comparison of methods for evaluating the performance of a trained sen-
sory panel. J. Sens. Stud. 16(6), 567–581 (2001)

Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33(1), 
159–174 (1977)

Latreille, J., Mauger, E., Ambroisine, L., Tenenhaus, M., Vincent, M., Navarro, S., Guinot, C.: Measure-
ment of the reliability of sensory panel performances. Food Qual. Prefer. 17(5), 369–375 (2006)

Lea, P., Rødbotten, M., Næs, T.: Measuring validity in sensory analysis. Food Qual. Prefer. 6(4), 321–326 
(1995)

Ludbrook, J.: Statistical techniques for comparing measurers and methods of measurement: a critical review. 
Clin. Exp. Pharmacol. Physiol. 29(7), 527–536 (2002)

Lundahl, D.S., McDaniel, M.R.: Use of contrasts for the evaluation of panel inconsistency. J. Sens. Stud. 
5(4), 265–277 (1990)

Lundahl, D.S., McDaniel, M.R.: Influence of panel inconsistency on the outcome of sensory evaluations 
from descriptive panels. J. Sens. Stud. 6(3), 145–157 (1991)

Manisera, M., Piccolo, D., Zuccolotto, P.: Analyzing and modelling rating data for sensory analysis in food 
industry. Quad. Stat. 13, 68–81 (2011)

Næs, T., Solheim, R.: Detection and interpretation of variation within and between assessors in sensory pro-
filing. J. Sens. Stud. 6(3), 159–177 (1991)

Piggott, J.R.: Design questions in sensory and consumer science. Food Qual. Prefer. 6(4), 217–220 (1995)
Pinto, F.S.T., Fogliatto, F.S., Qannari, E.M.: A method for panelists consistency assessment in sensory eval-

uations based on the cronbachs alpha coefficient. Food Qual. Prefer. 32, 41–47 (2014)
Rossi, F.: Assessing sensory panelist performance using repeatability and reproducibility measures. Food 

Qual. Prefer. 12(5), 467–479 (2001)
Schlich, P.: Grapes: a method and a sas® program for graphical representations of assessor performances. J. 

Sens. Stud. 9(2), 157–169 (1994)
Vanacore, A., Pellegrino, M.S.: Characterizing the extent of rater agreement via a non-parametric bench-

marking procedure. In: Proceedings of the Conference of the Italian Statistical Society, pp. 999–1004. 
Italian Statistical Society (2017)

Vanbelle, S.: Agreement between raters and groups of raters. Ph.D. thesis, Université de Liège, Belgique 
(2009)

Veall, M.R., Zimmermann, K.F.: Performance measures from prediction–realization tables. Econ. Lett. 
39(2), 129–134 (1992)



Received: 22 December 2017 Revised: 27 April 2018 Accepted: 1 May 2018

DOI: 10.1002/qre.2334

S P E C I A L I S S U E A R T I C L E

RRep: A composite index to assess and test rater precision

Amalia Vanacore Maria Sole Pellegrino

Department of Industrial Engineering,
University of Naples “Federico II”, Naples,
Italy

Correspondence
Amalia Vanacore, Department of
Industrial Engineering, University of
Naples “Federico II”, Naples, Italy.
Email: amalia.vanacore@unina.it

Abstract

In subjective evaluation systems, raters act as measurement instruments pro-
viding useful evaluations for taking strategic and/or operational decisions. The
assessment of rater evaluative ability in terms of accuracy and precision is of
critical importance since rater unreliability may compromise the quality of the
decision-making process. The focus of this paper is on rater precision: we pro-
pose a novel composite index to assess the rater ability to provide evaluations
repeatable over time and reproducible over scales. The extent of rater precision is
qualified via a nonparametric benchmarking procedure. The properties of both
proposed index and benchmarking procedure have been analysed via a Monte
Carlo simulation study.

KEYWORDS
rater precision, rater repeatability and reproducibility index, subjective evaluations

1 INTRODUCTION

In several business and industrial systems, as well as in
many medical, social and behavioural contexts, diagnos-
tic assessment relies on subjective evaluations provided by
small groups of human raters, who may be —depending
on the specific context— field experts (eg, physicians,1,2

sensory panelists,3,4 risk assessors5) or trained operators
(eg, mystery shoppers, visual inspectors6-8). In subjective
evaluation systems, human raters act as measurement
instruments9-12 and they can be a main source of epistemic
uncertainty.13 Indeed, differently from aleatory uncer-
tainty, epistemic uncertainty does not pertain the inherent
variability of the phenomenon under study since it arises
from imperfect knowledge and/or incomplete informa-
tion. Epistemic uncertainty can be reduced by selecting the
right raters, able to provide accurate and precise evalua-
tions.

Being subjective, rater evaluations lack a gold standard
against which to check their accuracy. As a matter of fact,
the reliability of subjective evaluations is related only to
precision, assessed as the degree of agreement between

repeated evaluations provided under the same conditions,
where “same conditions” means that nothing changed
other than the times of the evaluations.

In order to assess the precision of the evaluations pro-
vided by the same rater in different occasions, a number
of theoretical and methodological approaches have been
proposed over the years. Among them, the most widely
adopted is the Intraclass Correlation Coefficient (ICC).14

Although ICC is accepted as a universal reliability index,15

it can properly evaluate reliability between quantitative
measurements provided on continuum scale rather than
on categorical (ie, nominal or ordinal) scales, the ones
typically adopted in subjective evaluations.

A widely applied method to assess the precision of cate-
gorical measurements consists in quantifying (intra/inter)
rater agreement16,17 via a kappa-type coefficient, that is
a rescaled measure of the observed proportion of agree-
ment corrected with the proportion of agreement expected
by chance alone. The kappa-type coefficients proposed in
the literature (eg, Fleiss' kappa,18 Conger's kappa,19 Scott's
pi,20 Cohen's kappa,21 Gwet's AC22 and Brennan-Prediger
coefficient—23-26 also known as uniform kappa) differ from

Qual Reliab Engng Int. 2018;1–11. wileyonlinelibrary.com/journal/qre © 2018 John Wiley & Sons, Ltd. 1
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each other in the definition, and thus formulation, of
agreement expected by chance alone. Among the available
kappa-type coefficients, De Mast and VanWieringen27 sug-
gest to prefer the uniform kappa as a precision index since
it separates precision from issues related to the accuracy of
measurement system, while these issues are confounded
in other kappa-type coefficients (eg, Fleiss' kappa18 and
Conger's kappa19).

This paper suggests (1) to estimate rater precision in
terms of rater repeatability and reproducibility and (2)
to characterise the extent of precision via a nonparamet-
ric inferential procedure, taking into account sampling
uncertainty. Specifically, rater precision is defined as the
rater ability of consistently score the same set of items
not only in different occasions —as commonly done in
the majority of applications— but also under different
experimental conditions that, in the case of subjective
evaluations, can be obtained by collecting rater evalua-
tions using different rating scales. These rater abilities,
referred to as repeatability over time and reproducibility
over scales, are then properly combined in a synthetic
index. In agreement studies, the magnitude of agreement
is commonly qualified by a straightforward comparison
of the calculated kappa-type coefficient against an arbi-
trary benchmark scale. The interpretation based on the
straightforward benchmarking should be treated with cau-
tion, especially for comparison across studies when the
experimental conditions are not the same. A proper char-
acterization of the extent of precision should rely upon
a benchmarking procedure that allows to identify a suit-
able neighbourhood of the truth by taking into account
sampling uncertainty.

The main statistical properties of the proposed RRep
index and those of the recommended benchmarking pro-
cedure have been assessed via a Monte Carlo simulation
study.

The remainder of this paper is organised as follows:
the linear weighted uniform kappa, the RRep index, and
the benchmarking procedure are introduced in Section 2;
design and results of the Monte Carlo simulation study are
reported in Section 3; in Section 4, a real application aimed
at illustrating the applicability and usefulness of the pro-
posed procedure is fully described; finally, conclusions are
summarised in Section 5.

2 METHODS

2.1 Measuring rater precision via
agreement coefficients
Let n be the number of items rated 2 or more times
(ie, replications) by a rater on an ordinal k-point rating
scales, with k>2. Rater evaluations are denoted Yhr, with

TABLE 1 k × k contingency table

Second Replication
Category 1 … j … k Total

Fi
rs

tr
ep

lic
at

io
n 1 n11 … n1j … n1k n1·

⋮ ⋮ … ⋮ … ⋮ ⋮

i ni1 … nij … nik ni·

⋮ ⋮ … ⋮ … ⋮ ⋮

k nk1 … nkj … nkk nk·

Total n·1 … n·j … n·k n

h = 1,…,n indexing items and r indexing replications.
Of interest for the evaluation of rater repeatability and
reproducibility is the joint distribution of the Yhr.

In the simplest case of 2 replications (ie, r=1, 2), the
data can be arranged in a k × k contingency table (nij)k× k
(Table 1), where the generic (i, j) cell contains the joint fre-
quency nTij (nSij) that counts the number of items classified
into ith category in the first replication over time (over rat-
ing scales) and into jth category in the second replication
over time (over rating scales). Specifically, the cells along
the main diagonal represent the perfect match between the
evaluations provided in different replications, whereas the
off-diagonal cells represent mismatch.

The degree of agreement between the series of ratings
Yh1 and Yh2 is here estimated adopting the uniform kappa
coefficient.

The uniform kappa formulates the agreement expected
by chance alone adopting the notion of uniform chance
measurement,25 which assigns equal probability to any
rating category and thus is the most noninformative mea-
surement system given a certain rating scale.27,28 The pro-
portion of agreement expected by chance alone, pa|c, under
the assumption of uniform chance measurement is formu-
lated as follows:

𝑝U
a|c =

k∑
i=1

1
k2 = 1

k
, (1)

whereas the observed proportion of agreement, common
to all kappa-type coefficients, is given by

𝑝a =
k∑

i=1

nii

n
. (2)

Although the generic kappa treats all disagreements as
homogeneous, it is undoubtful that for ordinal rating scale
some disagreements are more serious than others. In this
case, the introduction of either a distance metric or a
weighting scheme enables to account that disagreement
on distant categories should be considered more relevant
than disagreement on neighbouring categories. Different
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kinds of distance metrics and weighting schemes appro-
priate for various practical situations have been proposed
and discussed in the literature. Typically, these metrics
are expressed as nondecreasing functions of |i − j| when
assessing the degree of disagreement among the provided
evaluations (eg, loss matrix29) or, vice versa, as nonincreas-
ing function of |i − j| when assessing the degree of agree-
ment (eg, linear agreeing weights30 and quadratic agree-
ing weights31). A weighted version of the uniform kappa,
KU

W , including symmetric weights (ie, wij = wji) a priori
assigned to each pair (i, j) of ratings, has been proposed
by Gwet,32 and its statistical properties have been studied
by Warrens.33 The weighted uniform kappa is formulated
as follows:

KU
W =

𝑝aW − 𝑝U
a|cW

1 − 𝑝U
a|cW

, (3)

where 𝑝aW is the weighted observed proportion of agree-
ment and is given by

𝑝aW =
k∑

i=1

k∑
𝑗=1

wi𝑗
ni𝑗

n
. (4)

𝑝U
a|cW

is the weighted proportion of agreement expected
under the assumption of uniform chance measurement
and is given by

𝑝U
a|cW

= 1
k2

k∑
i=1

k∑
𝑗=1

wi𝑗 , (5)

and wij is the symmetrical agreement weight ranging
between 0 and 1, with the minimum value 0 assigned to
maximally disagreeing pairs of ratings, (1, k) and (k, 1),
and the maximum value 1 assigned to pairs of coincident
ratings (i, i). It is worthwhile to pinpoint that although
the weights can be arbitrary defined, the linear30 (wL

i𝑗)
and quadratic31 (wQ

i𝑗) weights are the most commonly used
weighting schemes for kappa-type coefficients and are for-
mulated as follows:

wL
i𝑗 = 1 − |i − 𝑗|

k − 1
; wQ

i𝑗 = 1 − (i − 𝑗)2

(k − 1)2 . (6)

The weighted uniform kappa can be assumed asymptot-
ically normally distributed with mean 𝜇KU

W
and variance

𝜎2
KU

W

32 estimated as follows:

�̂�2
KU

W
= 1 − 𝑓

n(1 − 𝑝a|c)2

( k∑
i=1

k∑
𝑗=1

w2
i𝑗

ni𝑗

n
− 𝑝2

aW

)
, (7)

where f = n∕N is the fraction of the sampled target pop-
ulation which in many studies is set equal to 0 being the
size N of the item population unknown.

All kappa-type coefficients range from −1 to +1: when
the observed proportion of agreement equals chance
agreement, the coefficient is null; when the observed
agreement is greater than chance agreement, the coeffi-
cients is positive; when the observed agreement is lower
than chance agreement, the coefficient is negative and can
be interpreted as disagreement. Being KU

W used as a mea-
sure of agreement, the region of interest is KU

W > 0,16 thus
in the following KU

W will be coherently truncated at the
lower limit KU

W = 0 so as to obtain nonnegative measures of
rater repeatability and reproducibility, defined as follows:

K+
WT = max

(
0,KU

WT
)
; K+

WS = max
(
0,KU

WS
)
, (8)

being

KU
WT =

𝑝aWT − 𝑝U
a|cW

1 − 𝑝U
a|cW

; KU
WS =

𝑝aWS − 𝑝U
a|cW

1 − 𝑝U
a|cW

, (9)

where 𝑝aWT and 𝑝aWS are given by

𝑝aWT =
k∑

i=1

k∑
𝑗=1

wi𝑗
nTi𝑗

n
; 𝑝aWS =

k∑
i=1

k∑
𝑗=1

wi𝑗
nSi𝑗

n
. (10)

In order to assess rater precision, we introduce a com-
posite index of rater repeatability and reproducibility
(hereafter, RRep). Specifically, because these rater abili-
ties may be reasonably assimilated to the rings of a chain,
where the weakest ring dictates the strength of the chain,
a measure of rater precision can be defined as follows:

RRep = K+
WT · K+

WS. (11)

The formulation in Equation 11 links the components
K+

WT and K+
WS of the RRep index by a series logical struc-

ture implying that RRep is null when the rater is either not
repeatable or not reproducible or both. Since K+

WT and K+
WS

range between 0 and 1, RRep too ranges between 0 and
1 and its value is always no more than the smallest of its
components:

RRep ≤ min
(

K+
WT , K+

WS

)
, (12)

meaning that the overall rater precision cannot be higher
than the worst performance achieved on repeatability or
reproducibility.

2.2 A nonparametric confidence interval
for RRep index
As for any point estimate, the meaning of RRep index alone
is limited; it is thus recommended to build a (1−2𝛼)%
confidence interval (CI) in order to provide a clearer under-
standing of sampling uncertainty and to test for signifi-
cance the magnitude of the RRep index against a desirable
level of precision.
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Being defined as the product of 2 left truncated normal
distributions, the RRep index is not normally distributed
and, being the RRep bounded by 1, its sampling distribu-
tion (Figure 1) can be highly skewed. In such cases, the
bias-corrected and accelerated (BCa) bootstrap CI is gener-
ally considered the method of choice to make inference.34

The lower (RRepl) and upper (RRepu) bounds of the
2-sided (1−2𝛼)% BCa bootstrap CI are defined in terms of
the cumulative distribution function G of B bootstrap repli-
cations and 2 numerical parameters: the bias correction b
and the acceleration a. By definition, RRepl and RRepu are
equal to

RRepl = G−1
(
Φ
(

b − z𝛼 − b
1 + a (z𝛼 − b)

))
;

RRepu = G−1
(
Φ
(

b + z𝛼 + b
1 + a (−z𝛼 − b)

))
,

(13)

beingΦ the cumulative distribution function of the normal
distribution and z𝛼 the 𝛼 percentile of the standard normal
distribution.

Specifically, let T=
{(

𝑦T
h1, 𝑦

T
h2

)
,n
}

be the sample of pairs
of ratings provided by the rater during 2 replica-
tions over time with the same rating scale and
S =

{(
𝑦S

h1, 𝑦
S
h2

)
,n
}

the sample of pairs of ratings pro-
vided by the rater over 2 rating scales, the detailed
algorithm for building the (1−2𝛼)% BCa bootstrap CI for
RRep works as follows:

1. sample n pairs of rating randomly with replacement
from T to obtain a bootstrap data set, denoted T∗; in
the same way sample n pairs of rating randomly with
replacement from S to obtain a bootstrap data set,
denoted S∗;

2. for each bootstrap data set, compute K+
WS(S

∗) and
K+

WT(T
∗) according to Equation 8 and then, accord-

ing to Equation 11, calculate RRep (T∗, S∗), hereafter
denoted as RRep∗;

3. repeat B times steps 1 and 2 in order to obtain B esti-
mates RRep∗; count the number of bootstrap estimates
RRep∗ that are less than RRep calculated from the orig-
inal data set. Call this number p and set b = Φ−1 (𝑝∕B),
being Φ−1 the inverse cumulative distribution function
of the normal distribution;

4. calculate the parameter a using the jackknife RRep
estimates, RRep𝑗

i

a =

n∑
i=1

(
RRep𝑗 − RRep𝑗

i

)3

6

[ n∑
i=1

(
RRep𝑗 − RRep𝑗

i

)2
]3∕2 , (14)

being RRep𝑗 the average out of all n jackknife estimates
RRep𝑗

i ;
5. estimate the lower (RRepl) and upper (RRepu) bounds

of the 2-sided (1−2𝛼)% BCa bootstrap CI for RRep using
Equation 13.

FIGURE 1 Some example of RRep bootstrap distribution. Abbreviation: RRep, rater repeatability and reproducibility
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TABLE 2 Most common benchmark scales for kappa-type coefficients
Landis and Koch (1977) Fleiss (1981) Altman (1981)

Kappa Agreement Kappa Agreement Kappa Agreement

< 0.0 Poor < 0.4 Poor < 0.20 Poor
0.00 to 0.20 Slight 0.40 to 0.75 Intermediate to Good 0.21 to 0.40 Fair
0.21 to 0.40 Fair > 0.75 Excellent 0.41 to 0.60 Moderate
0.41 to 0.60 Moderate 0.61 to 0.80 Good
0.61 to 0.80 Substantial 0.81 to 1.00 Very good
0.81 to 1.00 Almost perfect

2.3 A benchmarking procedure
for interpreting the extent of rater precision
Any coefficient is useful only if its magnitude can be inter-
preted. Various benchmark scales have been proposed in
the literature over the years for interpreting the magnitude
of kappa-type coefficients. The most common benchmark
scale is the one proposed by Landis and Koch,35 which was
simplified by Fleiss36 and Altman37 collapsing the 6 ranges
into 3 and 5 ranges, respectively (Table 2).

Although some researchers question the validity of
benchmark scales and give advice that their uncrit-
ical applications may lead to practically questionable
decisions,38 these scales are widely adopted for the inter-
pretation of results from agreement studies (see, eg,
Everitt,39 Guillemin et al,40 Blackman and Koval,16 Altaye
et al,41 Klar et al,42 Kraemer et al,43 Hallgren,44 Watson
and Petrie45). As argued by Gwet,32 the choice of a bench-
mark scale is less important than the way it is used for
characterizing the extent of agreement. The approach cur-
rently adopted to characterise the extent of agreement is
based upon a straight comparison between the estimated
coefficient and the adopted benchmark scale. However,
this straightforward benchmarking procedure does not
account for uncertainty due to statistical error. To over-
come this criticism, we characterise the extent of rater
precision by comparing the lower bound of the RRep CI
(RRepl) against a benchmark scale adapted from that pro-
vided by Landis and Koch (Figure 2).

Figure 2 displays the 3 isoprecision curves, which are
contour lines drawn through the set of points correspond-
ing to the same precision level obtained by changing the
levels of K+

WT and K+
WS. The isoprecision curves divide the

domain space of the RRep index into 4 regions each cor-
responding to a specific rater precision level, as labelled in
Figure 2.

According to the proposed benchmarking procedure,
if the aim is to check for Perfect rater precision at a
significance level 𝛼=0.025, the lower bound of the 2-sided
0.95% CI (RRepl) has to be above 0.75; if a Slight precision
is to be proven, RRepl has to be below 0.25; all the other
intermediate values assumed by RRepl represent Moderate

FIGURE 2 Benchmark scale for rater precision and isoprecision
curves. Abbreviation: RRep, rater repeatability and reproducibility
[Colour figure can be viewed at wileyonlinelibrary.com]

(0.25<RRepl < 0.50) and Substantial (0.5<RRepl < 0.75)
precision, respectively.

3 MONTE CARLO SIMULATION
STUDY

3.1 Simulation design
An extensive Monte Carlo simulation study has been
conducted in order to investigate the statistical proper-
ties of RRep and those of the adopted benchmarking
procedure. In the simulation design we have consid-
ered one rater who classifies n items into one of the k
possible rating categories and we have assumed 7 differ-
ent repeatability and reproducibility levels (ie, K+

WT,WS =
0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 1.00) resulting in a total of 28
possible scenarios (ie, distinct couples of K+

WT and K+
WS)

corresponding to as many different levels of rater
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precision. We simulated and analysed the statistical
behaviour of RRep for 14 scenarios (Table 3), chosen
in order to balance the number of those belonging to
the categories of Substantial and Almost perfect/Perfect
precision.

The precision in the estimate of RRep has been eval-
uated in terms of percent bias (Δ) and relative standard
deviation (RSD), whereas the performance of the bench-
marking procedure has been evaluated in terms of statisti-
cal significance (�̂�) and statistical power (1−𝛽). Statistical
significance and power have been computed for 2 differ-
ent hypothesis statements. The first statement consists in
testing the hypothesis that the rater precision at the pop-
ulation level is at least Substantial (ie, H1∶RRep>0.50)
against the null hypothesis of no more than Moderate
rater precision (ie, H0∶RRep≤0.50); the second hypothe-
sis statement consists in testing that the rater precision
is Almost perfect/Perfect (ie, H1∶RRep>0.75) against the
null hypothesis of no more than Substantial rater preci-
sion (ie, H0∶RRep≤ 0.75). The sampling distributions of
RRep under the null hypotheses of Moderate and Substan-
tial rater precision correspond to the scenarios reported
in Table 3 as #1 and #7, respectively. All the hypothesis
tests have been conducted assuming a significance level
𝛼=0.025.

Specifically, let RRep be the true population value of rater
precision, r be the number of Monte Carlo data sets and
RReph be the hth Monte Carlo estimate for the index, the
Monte Carlo estimate of the percent bias is given by

Δ = 1
r

r∑
h=1

RReph − RRe𝑝
RRe𝑝

· 100. (15)

The Monte Carlo estimate of the RSD is given by

RSD = 1
RRep

·

√√√√√√
r∑

h=1
RRep2

h − r RRep
2

r
· 100 (16)

where RRep is the average out of all r Monte Carlo esti-
mates RReph.

Let I [·] be an indicator taking value 1 if the argument
is true and 0 otherwise, RRepl|h be the lower bound of
the (1−2𝛼)% BCa bootstrap CI obtained from the hth spe-
cific Monte Carlo data set and RRepC be the tested critical
value of rater precision. The Monte Carlo estimate of the
statistical significance is

�̂� = 1
r

r∑
h=1

I
[
RRepl|h > RRepC| H0

]
. (17)

The Monte Carlo estimate of the statistical power is
given by

1 − 𝛽 = 1
r

r∑
h=1

I
[
RRepl|h > RRepC| H1

]
. (18)

For each scenario, r=2000 Monte Carlo data sets have
been generated and for each data set the 95% BCa bootstrap
CI has been computed on B=1500 bootstrap replications.

Accordingly to the definition of RRep (Equation 11),
the Monte Carlo data sets used to obtain K+

WT and those
used to obtain K+

WS have been independently drawn
from multinomial distributions with parameters n and
𝜋=

(
𝜋11, · · ·, 𝜋1k, · · ·, 𝜋i𝑗 , · · ·, 𝜋k1, · · ·, 𝜋kk

)
, with the𝜋ij values

set according to the desired levels of repeatability and/or
reproducibility. For illustrative purpose, the 𝜋ij values used

TABLE 3 True population values of K+
WT , K+

WS and RRep defining the simulated
scenarios.

Scenario # K+
WT (WS) K+

WS (WT) RRep Rater Precision

1 ≃0.70 ≃0.70 ≃0.49 Moderate
2 ≃ 0.60 ≃ 0.90 ≃ 0.54 Substantial
3 ≃ 0.70 ≃ 0.80 ≃ 0.56 Substantial
4 ≃ 0.60 ≃ 1.00 ≃ 0.60 Substantial
5 ≃ 0.70 ≃ 0.90 ≃ 0.64 Substantial
6 ≃ 0.70 ≃ 1.00 ≃ 0.70 Substantial
7 ≃0.85 ≃0.85 ≃0.72 Substantial
8 ≃ 0.85 ≃ 0.90 ≃ 0.76 Almost perfect/Perfect
9 ≃ 0.80 ≃ 1.00 ≃ 0.80 Almost perfect/Perfect
10 ≃ 0.85 ≃ 0.95 ≃ 0.81 Almost perfect/Perfect
11 ≃ 0.90 ≃ 0.95 ≃ 0.85 Almost perfect/Perfect
12 ≃ 0.85 ≃ 1.00 ≃ 0.85 Almost perfect/Perfect
13 ≃ 0.90 ≃ 1.00 ≃ 0.90 Almost perfect/Perfect
14 ≃ 0.95 ≃ 1.00 ≃ 0.95 Almost perfect/Perfect

Abbreviation: RRep, rater repeatability and reproducibility.
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for the simulation with k=4 rating categories are reported
in Table 4. The statistical properties of the RRep index and
those of the benchmarking procedure have been studied
for k=2, 4, 5, 7 rating categories and for n=10, 30, 50 items,
which are the most affordable sample sizes in many exper-
imental contexts and also the most critical ones for statis-
tical inference.

3.2 Simulation results

For each sample size and each rating scale dimension sim-
ulation results in terms of percent bias and relative stan-
dard deviation are reported in Tables 5 and 6, respectively.
The statistical significance and power for the first and
second hypothesis statement are represented in Figure 3.

TABLE 4 Patterns of joint probabilities assumed to simulate different levels of repeatability
and/or reproducibility with k = 4 rating categories
(a)KU

W =𝟎 (b)KU
W =𝟎.𝟔

Category 1 2 3 4 Category 1 2 3 4
1 0.180 0.020 0.020 0.040 1 0.200 0.013 0.014 0.030
2 0.030 0.180 0.020 0.020 2 0.015 0.200 0.013 0.014
3 0.020 0.020 0.180 0.020 3 0.013 0.014 0.205 0.015
4 0.030 0.020 0.020 0.180 4 0.027 0.014 0.013 0.200

(c)KU
W =𝟎.𝟕 (d)KU

W =𝟎.𝟖
Category 1 2 3 4 Category 1 2 3 4
1 0.210 0.014 0.015 0.009 1 0.220 0.014 0.010 0.001
2 0.014 0.210 0.014 0.014 2 0.011 0.220 0.010 0.010
3 0.014 0.015 0.210 0.014 3 0.010 0.012 0.220 0.016
4 0.009 0.014 0.014 0.210 4 0.002 0.010 0.014 0.220

(e)KU
W = 𝟎.𝟖𝟓 (f)KU

W =𝟎.𝟗
Category 1 2 3 4 Category 1 2 3 4
1 0.230 0.007 0.007 0.005 1 0.240 0.005 0.000 0.000
2 0.007 0.230 0.007 0.007 2 0.000 0.240 0.010 0.000
3 0.007 0.007 0.230 0.007 3 0.010 0.005 0.235 0.000
4 0.005 0.007 0.007 0.230 4 0.005 0.000 0.010 0.240

(g)KU
W =𝟎.𝟗𝟓 (h)KU

W =𝟏.𝟎𝟎
Category 1 2 3 4 Category 1 2 3 4
1 0.240 0.010 0.000 0.000 1 0.245 0.002 0.000 0.000
2 0.000 0.240 0.010 0.000 2 0.000 0.250 0.000 0.000
3 0.010 0.000 0.235 0.000 3 0.000 0.005 0.250 0.000
4 0.005 0.000 0.010 0.240 4 0.005 0.000 0.003 0.245

TABLE 5 Percent bias (Δ) for different rater precision levels with k= 2-, 4-, 5-, and 7-point scales and n= 10, 30, 50
items

n= 10 n= 30 n= 50
Scenario # k= 2 k= 4 k= 5 k= 7 k= 2 k= 4 k= 5 k= 7 k= 2 k= 4 k= 5 k= 7

1 5.67 5.58 7.47 1.35 0.26 5.58 −0.56 −1.70 1.56 1.60 1.47 0.38
2 1.06 −0.83 −1.65 0.83 0.86 −0.83 v0.11 0.18 0.21 −0.34 −0.12 −0.07
3 3.64 −1.17 −2.42 −0.86 0.68 −0.78 −0.27 −1.14 0.88 0.00 0.37 −0.03
4 −1.35 −0.63 −2.48 −0.35 −0.42 −0.63 −0.60 −0.60 −0.33 −0.33 −0.08 −0.19
5 −1.19 −0.84 −1.83 −0.80 −0.93 −0.84 −1.00 −1.29 0.06 −0.06 0.12 −0.18
6 −2.65 −0.59 −2.87 −1.95 −1.88 −0.59 −1.71 −2.09 −0.33 −0.08 0.13 −0.29
7 2.14 2.36 1.97 2.24 2.13 2.36 2.15 1.77 1.59 0.44 6.13 6.24
8 2.00 1.69 2.11 2.20 2.44 2.20 2.74 v2.36 2.15 −0.02 4.08 4.03
9 −6.40 −3.14 −4.94 −8.60 −8.27 −3.14 −7.93 −9.51 −8.98 0.04 −8.26 −9.33
10 −2.46 −1.31 −2.57 −1.95 −1.86 −1.31 −1.42 −2.30 −0.19 0.10 0.23 −0.44
11 −0.12 −0.87 0.53 0.55 0.37 −0.87 0.51 0.11 −0.10 −0.01 0.02 −0.17
12 −2.56 −0.73 −2.96 −2.44 −2.18 −0.73 −2.11 −2.71 −0.13 0.04 0.23 −0.25
13 −0.27 −0.41 0.07 0.01 0.04 −0.41 −0.21 −0.30 −0.04 −0.07 0.02 0.02
14 −0.20 −0.52 −0.51 −0.64 −0.02 −0.52 −0.17 −0.70 −0.08 0.07 0.05 −0.29
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The Monte Carlo simulation results exhibit good statis-
tical properties for RRep, being the percent bias always no
more than 9% and the relative standard deviation generally
less than 30%. Specifically, they decrease as sample size,
rating scale dimension and precision level increase; with
small samples of n = 10 items, the relative standard devi-
ation is less than 30% only for precision level higher than
0.7.

Regarding the performance of the benchmarking pro-
cedure, simulation results suggest that the statistical sig-

nificance is closer to its nominal value 𝛼= 0.025 when
testing a level of rater precision at least Substantial, while it
moves away from it when testing the highest level of rater
precision especially with small samples (for n = 10 items,
�̂� = 0.20).

The statistical power (see Figure 3) increases with
increasing rater precision level and rating scale dimen-
sion. It is satisfactory (ie, at least 80%) when referring to
nonadjacent levels of rater precision (eg, Moderate against

TABLE 6 Relative standard deviation for different rater precision levels with k= 2-, 4-, 5-, and 7-point
scales and n=10, 30, 50 items

n= 10 n= 30 n= 50
Scenario # k= 2 k= 4 k= 5 k= 7 k= 2 k= 4 k= 5 k= 7 k= 2 k= 4 k= 5 k= 7

1 0.55 0.59 0.55 0.38 0.58 0.59 0.27 0.23 0.28 0.26 0.22 0.18
2 0.48 0.59 0.46 0.30 0.29 0.59 0.18 0.18 0.22 0.18 0.14 0.14
3 0.48 0.47 0.41 0.25 0.30 0.43 0.19 0.14 0.24 0.17 0.15 0.11
4 0.44 0.54 0.42 0.29 0.25 0.54 0.17 0.18 0.19 0.17 0.13 0.14
5 0.39 0.47 0.41 0.22 0.23 0.47 0.16 0.13 0.18 0.15 0.13 0.10
6 0.33 0.41 0.36 0.21 0.19 0.41 0.14 0.12 0.15 0.13 0.11 0.09
7 0.28 0.27 0.29 0.12 0.16 0.24 0.12 0.07 0.13 0.12 0.10 0.07
8 0.24 0.28 0.30 0.11 0.14 0.28 0.12 0.07 0.11 0.09 0.09 0.05
9 0.35 0.21 0.21 0.15 0.22 0.12 0.12 0.08 0.18 0.09 0.10 0.07
10 0.23 0.25 0.27 0.10 0.13 0.25 0.11 0.06 0.10 0.07 0.08 0.05
11 0.19 0.24 0.21 0.10 0.11 0.24 0.08 0.06 0.08 0.07 0.06 0.05
12 0.20 0.21 0.25 0.09 0.12 0.21 0.10 0.05 0.09 0.06 0.07 0.04
13 0.16 0.20 0.17 0.09 0.09 0.20 0.07 0.05 0.07 0.06 0.06 0.04
14 0.11 0.14 0.11 0.06 0.06 0.14 0.04 0.04 0.05 0.04 0.03 0.03

FIGURE 3 Statistical significance and power for different sample sizes and rating scale dimensions. (Thin lines for H0∶RRep< 0.50 and in
bold for H0∶RRep< 0.75). Abbreviation: RRep, rater repeatability and reproducibility
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Almost perfect) for samples of n=50 items and 2-, 4-, and
5-point scales and also for n≥10 items with 7-point scale.
Moreover, in the first hypothesis statement, it is less than
80% when testing a precision level between 0.50 and 0.85
with 2-, 4-, and 5-point scales and n=10 items or when
testing a precision level between 0.50 and 0.75 with 4- and
5-point scales and n=50 items; for a 7-point scale, n=10
items are enough for reaching 80% power when testing a
precision level greater than 0.70. In the second hypothesis
statement, instead, the statistical power reaches 80% only
when testing a precision level greater than 0.90 with 5- and
7-point scales.

4 EMPIRICAL ILLUSTRATION: A
REAL CASE STUDY

In the following, a detailed walk-through example is pre-
sented showing step-by-step real application of the pro-
posed procedure to test rater precision.

The data comes from an intrarater agreement study
involving a class of university students who evaluated the
teaching quality of the same university course. The whole
experiment consisted of 3 evaluation sessions. During the
first session, the students rated 20 quality statements about
the teaching course using a 4-point verbal rating scale
(VRS) with grades: strong disagreement, disagreement,
agreement, strong agreement; during the second session
(1 lesson after, 1 week apart), they rated the same uni-
versity course using the same VRS; finally, during the
third session (4 lessons after, 2 weeks apart), they rated
again the course using the 4-point VRS and a visual ana-
logue scale (VAS), with left anchor point labelled NO,
right anchor point labelled YES, and 3 unlabelled thicks in
between.

The evaluations collected during the first and second
sessions on VRS have been used to assess student's repeata-
bility, whereas those collected during the third session on
VRS and VAS have been used to assess student's repro-
ducibility. For practical purpose, the implementation pro-
cedure is fully exploited only for 2 students, labelled as #1
and #2.

The ratings provided on VRS during the first and sec-
ond sessions and those provided on VRS and VAS during
the third session have been classified in 2 different 4 × 4
contingency tables, as shown in Table 7.

Students' repeatability and reproducibility have been
estimated via Equation 9 adopting the linear weighting
scheme (Equation 6), RRep and RRepl have been calcu-
lated according to Equation 11 and Equation 13, respec-
tively (Table 8).

The RRepl for student #1 belongs to the region ranging
from 0.25 to 0.50 whereas the RRepl for student #2 belongs

TABLE 7 4 × 4 contingency tables of students' ratings over
different occasions (a and b) and with different rating scales (c and d)
(a)KWT|1 (b)KWT|2

Category 1 2 3 4 Total Category 1 2 3 4
1 0 0 0 0 0 1 0 0 0 0 0
2 0 0 0 0 0 2 0 2 0 0 2
3 0 5 7 6 18 3 2 1 1 5 9
4 0 0 1 1 2 4 0 0 1 8 9
Total 0 5 8 7 20 Total 2 3 2 13 20

(c)KWS|1 (d)KWS|2

Category 1 2 3 4 Total Category 1 2 3 4
1 0 0 0 0 0 1 0 0 0 0 0
2 0 0 0 0 0 2 2 0 0 0 2
3 0 0 7 6 13 3 2 0 1 5 8
4 0 0 1 6 7 4 0 0 0 10 10
Total 0 0 8 12 20 Total 4 0 1 15 20

TABLE 8 KWT , KWS, rater repeatability and reproducibility
(RRep) and its 95% BCa CI for students #1 and #2

Student KWT KWS RRep 95% BCa CI

#1 0.52 0.72 0.374 [0.282, 0.512]
#2 0.56 0.56 0.314 [0.102, 0.608]

to the region ranging from 0.00 to 0.25. Thus, according
to the proposed benchmarking procedure (Figure 3), with
a significance level 𝛼 = 0.025, the levels of precision can
be assumed Moderate and Slight for student #1 and #2,
respectively. It is worthwhile to pinpoint that the inter-
pretation of the rater precision could be overestimated
if the RRep values were straightly compared against the
benchmark scale. Indeed, adopting this latter approach
the extent of precision for student #2 would be Moder-
ate rather than Slight because RRep=0.314 belongs to the
range of Moderate rater precision.

5 CONCLUSIONS

In this paper the problem of assessing the precision of
subjective evaluations has been explored and new tools
to estimate and characterise rater precision have been
proposed.

Rater precision is commonly assessed as the rater ability
of providing repeatable evaluations over different occa-
sions under the same conditions. In this paper, instead, the
concept of rater precision has been extended to the ability
of providing reproducible evaluations in the same occasion
under different settings (ie, with different rating scales).

The rater precision is thus coherently estimated via
a novel composite index, RRep, formulated in such a
way that both rater repeatability and reproducibility are
accounted for; the characterization of the extent of rater
precision is obtained via a nonparametric benchmarking
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procedure testing for significance RRep magnitude against
desirable levels of precision.

The Monte Carlo simulation results show that the per-
formance —in terms of percent bias, relative standard
deviation, statistical significance and power— of the pro-
posed tools are satisfactory.

Specifically, even with small sample sizes and rating
scales with few categories, the benchmarking procedure
shows satisfactory power in distinguishing between cate-
gories of precision that are at least 1-step apart, the ones
of greater practical interest with differences of at least 0.25
(eg, when testing Almost perfect/Perfect precision level
against the null hypothesis of no more than Moderate
precision).

The proposed procedure can be effectively applied to
characterise the extent of precision and selecting inspec-
tors/raters able to provide precise subjective evaluations
and/or diagnosis as well as for testing the efficacy of rater
training programs.
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