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Abstract

Mobile software applications ("apps") are used by billions of smartphone owners
worldwide. The demand for quality to these apps has grown together with their
spread. Therefore, effective techniques and tools are being requested to support
developers in mobile app quality engineering activities.

Automation tools can facilitate these activities since they can save humans from
routine, time consuming and error prone manual tasks. Automated GUI exploration
techniques are widely adopted by researchers and practitioners in the context of mo-
bile apps for supporting critical engineering tasks such as reverse engineering, test-
ing, and network traffic signature generation. These techniques iteratively exercise a
running app by exploiting the information that the app exposes at runtime through
its GUI to derive the set of input events to be fired.

Although several automated GUI exploration techniques have been proposed
in the literature, they suffer from some limitations that may hinder them from a
thorough app exploration.

This dissertation proposes two novel solutions that contribute to the literature
in Software Engineering towards improving existing automated GUI exploration
techniques for mobile software applications.

The former is a fully automated GUI exploration technique that aims to detect
issues tied to the app instances lifecycle, a mobile-specific feature that allows users
to smoothly navigate through an app and switch between apps. In particular, this
technique addresses the issues of crashes and GUI failures, that consists in the mani-
festation of unexpected GUI states. This work includes two exploratory studies that
prove that GUI failures are a widespread problem in the context of mobile apps.

The latter solution is a hybrid exploration technique that combines automated
GUI exploration with capture and replay through machine learning. It exploits app-
specific knowledge that only human users can provide in order to explore relevant
parts of the application that can be reached only by firing complex sequences of
input events on specific GUIs and by choosing specific input values.

Both the techniques have been implemented in tools that target the Android Op-
erating System, that is today the world’s most popular mobile operating system.
The effectiveness of the proposed techniques is demonstrated through experimental
evaluations performed on real mobile apps.
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Chapter 1

Introduction

1.1 Motivation

Over the last decade, the number of smartphone users has considerably increased.
This number is steadily growing and is forecast to surpass 2.5 billion in 20191. This
is causing a constant demand for new software applications running on mobile de-
vices, commonly referred to as mobile apps. As of the month of March 2018, both
Android and iOS users had the opportunity to choose from more than 2 million
apps2.

Mobile technology has radically changed the lifestyle of billions of people around
the world. More and more people are using mobile apps for several hours every
day, entrusting them their sensitive data and carrying out a large variety of activities
through them, including critical tasks. Thus, the demand for quality to mobile apps
has grown together with their spread. End users require mobile apps to be reliable,
robust, efficient, secure and usable. Failures exposed by an app may have a negative
impact on the user experience and lead users to look for another app that offers the
same features. As a consequence, software developers should give proper consid-
eration to the quality of their mobile apps by adopting suitable quality assurance
solutions, such as testing.

Several techniques and tools are currently available for testing a mobile app be-
fore it is placed on the market [1]. Test automation tools can facilitate mobile app
testing activities since they save humans from routine, time consuming and error
prone manual tasks [2].

The research community has devoted great interest to the mobile app testing
field in the last years. Several testing approaches have been proposed to assess dif-
ferent quality aspects of mobile applications [3], such as functionality [4, 5, 6, 7, 8, 9],
performance [10, 11], security [12, 13, 14, 15], responsiveness [16], accessibility [17],
and energy consumption [18, 19, 20].

For testing a mobile app, it is possible to extend and adapt existing testing tech-
niques designed for Event-Driven Systems (EDSs). In event-based testing of EDSs,
the behaviour of the system under test is checked with input consisting of specific

1https://www.statista.com/statistics/330695/
2https://www.statista.com/statistics/276623/

https://www.statista.com/statistics/330695/
https://www.statista.com/statistics/276623/


Chapter 1. Introduction 2

sequences of events, i.e. significant state changes [21], that sample its input space
[22, 23].

Mobile apps can be considered as EDSs, since they are able to analyze and react to
different types of events. Those event types include events triggered on the Graph-
ical User Interface (GUI), events related to the external environment and sensed by
device sensors (such as temperature, GPS, accelerometer, gyroscope), events gener-
ated by the device hardware platform (such as battery and other external peripheral
ports, like USB and headphones), and events generated by other apps running on
the mobile device [24].

Existing techniques for automated analysis of mobile apps behavior implement
exploration strategies that usually exploit an iterative approach that is based on
sending input events to a running app through its User Interface (UI) until a ter-
mination criterion is satisfied [25]. These techniques use the information that an
app exposes at runtime through its GUI to derive the set of input events to be fired;
events may be chosen either randomly [26, 27, 28, 29] or according to a more system-
atic GUI exploration strategy [30, 31, 32, 33, 34].

In the following, these techniques are referred to as Automated GUI Exploration
Techniques (AGETs) [35]. Automated approaches for exploring the behavior of event-
driven software applications showed to be extremely useful in several other con-
texts besides testing, such as reverse engineering [36] and network traffic generation
and analysis [37, 38]. Even some major cloud services providers like Amazon3 and
Google4 are currently offering testing services that exploit AGETs to mobile app de-
velopers.

Although AGETs provide a viable approach for automatically exercising mobile
apps, they suffer from some limitations that may hinder them from a thorough app
exploration.

A limitation intrinsic in the automated exploration approaches consists of not
being able to replicate human-like interaction behaviors. In fact, some app features
need to be exercised by exploiting app-specific knowledge that only human users
can provide. As a consequence, these techniques often fail in exploring relevant
parts of the application that can be reached only by firing complex sequences of
input events on specific GUIs and by choosing specific input values [39, 40].

Another challenge for AGETs applied to the mobile domain is to target mobile-
specific features. Mobile apps have several peculiarities compared to traditional
software applications that have to be taken into account by testing techniques and
tools, e.g. new interaction gestures, limited resources, new development concepts
(e.g. context awareness), the diversity of devices and their characteristics [41].

In particular, the small size of mobile devices introduced the need to have on the
screen one single focused app at a time. Mobile OSs define a peculiar lifecycle for
app instances in order to manage them transparently to the users who can navigate

3https://aws.amazon.com/it/device-farm/
4https://console.firebase.google.com/

https://aws.amazon.com/it/device-farm/
https://console.firebase.google.com/
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through an app and switch between apps without losing their progress and data; at
the same time, it allows not to waste the limited resources of mobile devices, such as
memory and battery.

As pointed out by recent work, this feature is often overlooked by mobile app
developers and testers, causing several app issues, e.g. crashes if the user receives
a phone call while using the app, huge consumption of system resources such as
memory or energy when the user is not actively using the app, loss of progress and
data if the user leaves the app and returns to it at a later time or simply changes the
device orientation while using the app [4, 42, 43, 6, 28, 44, 45, 7, 46, 47, 48, 49, 50].
Therefore, AGETs and testing processes should devote particular attention to verify
the correct runtime app state change management by exercising the apps through
mobile-specific events, such as sending an application to the background and re-
suming it, receiving a call, or changing the orientation of the device. In particular,
this thesis pays special attention to crashes and GUI failures that consist in the man-
ifestation of unexpected GUI states [51, 52].

This dissertation aims to contribute to the Software Engineering literature by pro-
viding solutions to overcome these limitations of AGETs in the mobile domain. The
proposed solutions target Android, the world’s most popular mobile Operating Sys-
tem (OS). The Android OS commercial success along with its open-source nature, led
the researchers to focus on this mobile platform. Thus, most of the techniques and
tools presented in literature are implemented and evaluated in the Android context.

1.2 Thesis Contributions

This Thesis work contributes to the literature in Software Engineering towards im-
proving the automated GUI exploration techniques for mobile software applications.
More specifically, it includes the following contributions:

• Two exploratory studies that aim at investigating the diffusion of GUI fail-
ures due to the mobile-specific event of changing the screen orientation, their
key characteristics, and the faults causing them. The former study addresses
the context of open-source Android apps, while the latter one considers very
popular Android apps from Google Play Store. The studies exploit a novel
classification framework that distinguishes three main classes of GUI failures.
All the failures reported in the studies have been classified and made available
in publicly shared documents.

• A fully automated event-based testing technique that explores Android apps
for detecting issues tied to the Android Activity lifecycle, i.e. GUI failures and
crashes. The technique has been implemented in a tool whose binaries has
been made available for free download.

• A hybrid GUI exploration technique that combines automated GUI exploration
with capture and replay to manage GUIs that need to be solicited by specific
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user input event sequences to allow the exploration of parts of the app that
cannot be reached otherwise. These GUIs are automatically detected by ex-
ploiting a machine learning approach and exercised by leveraging input event
sequences provided by the user.

This dissertation includes material from the following research papers already
published in peer-reviewed journals or conferences:

• Domenico Amalfitano, Vincenzo Riccio, Ana Cristina Ramada Paiva, and Anna
Rita Fasolino (2018). Why does the orientation change mess up my Android
application? From GUI failures to code faults. Software Testing, Verification and
Reliability, 28(1). Wiley. doi:10.1002/stvr.1654. [53]

• Domenico Amalfitano, Vincenzo Riccio, Nicola Amatucci, Vincenzo De Si-
mone, and Anna Rita Fasolino (2019) Combining Automated GUI Exploration
of Android apps with Capture and Replay through Machine Learning. Infor-
mation and Software Technology, 105(1). Elsevier. doi:10.1016/j.infsof.2018.08.007.
[35]

• Vincenzo Riccio, Domenico Amalfitano, and Anna Rita Fasolino (2018). Is This
the Lifecycle We Really Want? An Automated Black-Box Testing Approach for
Android Activities. (In press) In the Proceedings of The Joint Workshop of 4th
Workshop on UI Test Automation and 8th Workshop on TESting Techniques for event
BasED Software (INTUITESTBEDS 2018). ACM. [54]

1.3 Thesis Outline

The remainder of this dissertation is organized as follows:

• Chapter 2 reports the background of this work. It provides an overview of
the Android platform. Moreover, it introduces the automated GUI exploration
techniques for Android apps;

• Chapter 3 describes two exploratory studies that investigate the GUI failures
exposed in Android apps by the mobile-specific event of changing the screen
orientation. I carried out these studies with the support of my research group
and of Prof. Ana C. R Paiva from the University of Porto (FEUP). The studies
involved both open-source and apps from Google Play that were specifically
tested exposing them to orientation change events;

• Chapter 4 shows the automated GUI exploration technique I designed with
the support of some members of my research group to detect issues tied to
the Android Activity lifecycle. The chapter includes an experimental evalua-
tion involving real Android apps that shows the effectiveness of the proposed
approach in finding GUI failures and crashes tied to the Activity lifecycle;
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• Chapter 5 proposes a novel hybrid GUI exploration technique I designed and
implemented in collaboration with my research group. It combines automated
GUI exploration with capture and replay and leverages machine learning to
pragmatically integrate these two approaches. The chapter includes an exper-
imental evaluation showing the benefits introduced the hybridization in the
app exploration.

• Chapter 6 reports conclusive remarks and possible future work.
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Chapter 2

Background

2.1 The Android Platform

Mobile platforms introduced innovative features compared to traditional software
applications, e.g., new interaction gestures, new development concepts such as con-
text awareness, the ability to target multiple devices with different characteristics
[41]. These features made mobile apps successful but introduced new challenges to
software developers and testers.

Introduced by Google in 2007, Android is today the world’s most popular mobile
operating system (OS). Suffice it to say that Android accounted for around 88 percent
of all smartphone sales to end users worldwide in the second quarter of 20185.

In this Section, I will introduce the Android platform and some of its features
that are relevant for this disseration.

2.1.1 The Android Platform Architecture

Android platform architecture is designed as a stack of components. The stack lay-
out, as defined by the official Android Developer Guide6, is shown in figure 2.1.

The foundation of the Android platform is a modified version of the Linux Ker-
nel that is responsible of providing the core services of the system. This kernel has
been in widespread use for years, and is used in millions of security-sensitive en-
vironments. It has been adopted by Android to take advantage of key security fea-
tures such as process isolation and the user-based permissions model7. Moreover, it
allows device manufacturers to develop hardware drivers for a well-known kernel.

The layered architecture allows the developers to build portable apps by simply
reusing core, modular system components and services. This happens thanks to the
abstraction of the inner mechanisms and of the hardware details through standard
interfaces.

5https://www.statista.com/statistics/266136/
6https://developer.android.com/guide/platform/
7https://source.android.com/security/overview/kernel-security.html

https://www.statista.com/statistics/266136/
https://developer.android.com/guide/platform/
https://source.android.com/security/overview/kernel-security.html
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FIGURE 2.1: The Android Platform Architecture

2.1.2 Android App Components

Unlike traditional applications, Android apps do not contain any particular “main”
method. An Android app can have multiple app components that are the entry
points through which the system or a user can enter an app. Therefore, app compo-
nents are the essential building blocks of Android apps.

There are four different types of app components: Activities, Services, Broadcast
receivers, and Content providers. Each type serves a distinct purpose and has a
distinct lifecycle that defines how the component is created and destroyed.

Activities, Services, and Broadcast Receivers are activated by asynchronous mes-
sages called Intents sent at runtime. This allows an app component to request actions
from other components, whether they belong to the same app or another one.

In the following, I describe the four types of app components.
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2.1.2.1 Activity

Activities are the entry points for interacting with the user. An Activity can be seen
as a single GUI through which the users can access the features offered by the app.

An app has a launcher Activity that is the Activity that is shown to the user when
the app is started.

Each Activity in an app is independent from the others. However, any of the
Activities of an app can be started by other Activities that can even belong to a
different app, if allowed. This enables a cohesive user experience by allowing user
flows also between different apps.

2.1.2.2 Service

A Service is a general-purpose entry point that keeps an app running in the back-
ground to perform long-running operations or to perform work for remote pro-
cesses. Therefore, it does not provide a user interface.

Another app component can thus start and interact with a Service without block-
ing the user interaction with computationally intensive operations.

2.1.2.3 Broadcast Receiver

A Broadcast Receiver is a component that allows an app to respond to system-wide
broadcast announcements. They are another entry into the app outside of a regular
user flow. Therefore, the system can deliver broadcasts to registered apps even if
they aren’t currently running.

Broadcasts can be initiated either by the system (e.g. a broadcast announcing
that the battery is low) or by apps, for example, to let other apps know that some
data has been downloaded to the device and is available to them.

Although broadcast receivers don’t display a user interface, they may create a
status bar notification to alert the user when a broadcast event occurs.

2.1.2.4 Content Provider

A Content Provider is a component that provides a standard interface to manage
app data stored in a persistent storage location, such as a local SQL database or a
remote repository.

The provided data can be shared among different apps or private to a specific
one. The Android system offers a set of Content Providers such as for Contacts and
Messages.

To access an app data, apps must have the needed permissions and the URI of
the Content Provider. Therefore, the data of an app can be queried or modified by
other apps through the content provider, if the content provider allows it.
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2.1.3 Android Activity Lifecycle

An Activity is implemented as a subclass of the Activity class, defined in the An-
droid Framework. The Activity instances exercised by the user are managed as an
Activity stack by the Android OS. A user usually navigates through, out of, and back
to an app but only the Activity at the top of the stack is active in the foreground of
the screen. To ensure a smooth transition between the screens, the other Activities
are kept in the stack. This allows the user to navigate to a previously exercised Ac-
tivity without losing its progress and information. The system can decide to get rid
of an Activity in background to free up memory space.

To provide this rich user experience, Android Activities have a proper lifecycle,
transitioning through different states. Figure 2.2 shows the Activity lifecycle as it is
illustrated in the official Android Developer Guide8. The rounded rectangles rep-
resent all the states an Activity can be in; the edges are labeled with the callback
methods that are invoked by the Android platform when an Activity transits be-
tween states.

FIGURE 2.2: The Android Activity Lifecycle

The Activity visible in the foreground of the screen and interacting with the user
is in the Resumed state, either it is created for the first time or resumed from the
Paused or Stopped states.

When an Activity has lost focus but is still visible (e.g., a system modal dialog
has focus on top of the Activity), it is in the Paused state; in this state, the app usually
maintains all the user progress and information.

When the user navigates to a new Activity, the previous one is put in the Stopped
state; it still retains all the user information but it is no longer visible to the user.

However, when an Activity is in Paused or Stopped states, the system can drop
it from memory if the system resources are needed by other apps and therefore the
Activity transits to the Destroyed state.

When it is displayed again to the user, the Activity is restarted and its saved state
must be restored.

8https://developer.android.com/reference/android/app/Activity.html

https://developer.android.com/reference/android/app/Activity.html
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The Android framework provides 7 callback methods that are automatically in-
voked as an Activity transits to a new state. They can be overridden by the developer
to allow the app to perform specific work each time a given change of the Activity
state is triggered. These callbacks are:

• onCreate(): is called when the Activity is created for the first time. It is used
by the programmer to perform the fundamental setup of the Activity such as
binding data to lists and instantiating class-scope variables.

• onStart(): makes the Activity visible to the user. This method is where the app
initializes the code that maintains the UI.

• onRestart(): is called if the Activity was stopped and is being re-displayed to
the user, i.e. the user has navigated back to it.

• onResume(): is called right before the Activity starts to interact with the user. It
can be used by the programmer to begin animations or open exclusive-access
devices, such as the camera.

• onPause(): is called when the user is leaving the Activity, i.e. the Activity is
going in the background. The programmer can override this method to pause
or adjust operations that should not continue while the Activity is paused but
are expected to resume shortly.

• onStop(): is called when the Activity is no longer visible to the user. In this
method, the programmer should release or adjust resources that are not needed
while the app is not visible to the user, e.g. pause animations or switch from
fine-grained to coarse-grained location updates. Moreover, the programmer
should override this method to perform relatively CPU-intensive shutdown
operations such as saving information to a database.

• onDestroy(): is called before the Activity is destroyed, either because the user
explicitly dismisses it or it is being destroyed by the system because more re-
sources are needed by Activities with an higher priority or the system is tem-
porarily destroying the Activity due to a configuration change (such as device
rotation). The programmer should override this method to release all resources
that have not yet been released by earlier callbacks.

When an Activity is destroyed due to normal app behavior, such as when the
user presses the Back button, the Activity instance is lost; this behavior matches the
user’s expectations. However, if the system destroys the Activity due to a configu-
ration change or the lack of memory, the user expects to preserve progress and data.
Therefore, although the actual Activity instance is gone, the system remembers that
it existed. In this case, when the user navigates back to the Activity, the system cre-
ates a new instance of that Activity using a set of saved data that describes the state
of the Activity when it was destroyed. The saved data that the system uses to restore
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the previous state is called the instance state and is a collection of key-value pairs
stored in a Bundle object. When the Activity instance is destroyed and then recre-
ated, the state of the layout is restored to its previous state with no code required
by the programmer. However, the Activity might have more state information that
should be restored, such as member variables that track the user’s progress in the
Activity. To this aim, the programmer can override the following callback methods:

• onSaveInstanceState: is called as the Activity begins to stop, so the Activity can
save state information to an instance state bundle. The default implementation
of this method saves transient information about the state of the Activity’s
layout, such as the text in an editable field or the scroll position of a list. To
save additional instance state information for the Activity, the programmer
must override this callback method and add key-value pairs to the Bundle
object that is saved in the event that the Activity is destroyed unexpectedly.

• onRestoreInstanceState(): is called right after the onStart() method. This method
allows to recover the saved instance state from the Bundle that the system
passes to an Activity that is recreated after it was previously destroyed.

The awareness of Android Framework features can help the programmers to de-
velop dependable apps that behave the way users expect. Instead, if the developers
do not take into proper account the lifecycle of the Activity components, their apps
may show several issues, e.g. crashes if the user receives a phone call while using
the app, huge consumption of system resources such as memory or energy when the
user is not actively using it, loss of progress and data if the user leaves the app and
returns to it at a later time or changes the device orientation while using the app.

The official Android Developer Guide stresses the relevance of the Activity life-
cycle feature and warns the developers of the threats it introduces in several sections;
therefore, it provides recommendations and guidelines to help programmers in the
correct handling of the Activity lifecycle9.

Despite this, several works in the literature have pointed out that mobile apps,
including industrial-strength ones, suffer from issues that can be attributed to Ac-
tivity lifecycle mishandling [4, 42, 43, 6, 28, 44, 45, 7, 46, 47, 48, 49, 50]. Zein et al. [3]
performed a systematic mapping study of mobile application testing techniques in-
volving 79 papers and identified possible areas that require further research. Among
them, they emphasized the need for specific testing techniques targeting Activity
lifecycle conformance.

For this reason, in this dissertation I will study the issues introduced by the Ac-
tivity lifecycle mishandling and propose testing techniques and tools able to detect
them.

9https://developer.android.com/guide/

https://developer.android.com/guide/
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2.1.4 Android Graphical User Interface

The GUI state rendered by an app is particularly relevant to this dissertation. In fact,
automated GUI exploration techniques usually exploit the information that an app
exposes at runtime through its GUI to derive the set of possible input events that can
be fired. Moreover, I will address the issue of GUI failures, i.e. the manifestation of
unexpected GUI states, exposed by events that exercise the Activity lifecycle.

In Android, the structure of an app GUI is defined as a UI Layout. The Android
framework provides a variety of pre-built UI components such as structured layout
objects and UI controls that allow the developers to build the GUI for their apps10.

All of the views in a app screen are arranged in a single hierarchy of View and
ViewGroup objects. The Android View Hierarchy, as described in the official Android
Developer Guide11, is depicted in figure 2.3.

FIGURE 2.3: The Android View Hierarchy

A View object usually draws on screen an interactive object. Android defines
a number of specialized subclasses of views that act as controls or are capable of
displaying text, images, or other content. Therefore, View objects can be one of many
predefined subclasses, such as Button or TextView. Moreover, a user can implement
a custom View by overriding some of the View standard methods defined by the
framework12.

Instead a ViewGroup is an invisible container that defines the UI layout struc-
ture. It can contain View and other ViewGroup objects. The ViewGroup objects may
present different layout structure and can be one of many predefined types, such as
LinearLayout or ConstraintLayout, or be customized by developers.

A layout can be declared:

• in XML files. UI elements can be declared in XML language by using the XML
vocabulary provided by Android that corresponds to the predefined View
classes and subclasses. Declaring the UI layout in XML allows to separate the
presentation of the app from the code that controls its behavior. Using XML

10https://developer.android.com/guide/topics/ui/
11https://developer.android.com/guide/topics/ui/declaring-layout
12https://developer.android.com/reference/android/view/View

https://developer.android.com/guide/topics/ui/
https://developer.android.com/guide/topics/ui/declaring-layout
https://developer.android.com/reference/android/view/View


Chapter 2. Background 13

files also eases the definition of different layouts for different screen sizes and
orientations.

• in the app code. The View and ViewGroup objects can be defined programati-
cally and the layout will be instantiated at runtime. However, the app’s default
layouts can be declared in XML, but their features can be modified programat-
ically.

2.2 Automated GUI Exploration of Android Apps

Event-Driven Architecture is a software architectural pattern that is usually applied
to design and implement applications where loosely coupled software components
and services are able to notify of and to react to significant state changes (events) [21].

Mobile apps can be considered as Event-Driven Systems that are able to analyze
and react to different types of events. Those event types include events triggered
on the Graphical User Interface (GUI), events related to the external environment
and sensed by device sensors, events generated by the device hardware platform
(such as battery, USB, headphones and other external peripheral ports), and events
generated by other apps running on the mobile device [24].

For assessing the quality of mobile apps, it is possible to extend and adapt exist-
ing automated techniques designed for GUI-based Event-Driven Systems, such as
Automated GUI Exploration Techniques (AGETs). These techniques have been al-
ready adopted to automatically assess the quality of GUI-based desktop applications
[55, 56, 57] and Web applications [58, 59]. AGETs iteratively explore the behavior
of the running application by exploiting the information that it exposes at runtime
through its GUI to derive the input events to be fired.

2.2.1 Generic GUI Exploration Algorithm for Android Apps

In an earlier work [25], my research group analyzed a set of 13 Android testing
techniques implementing AGETs and abstracted in a general framework the char-
acteristics of the different GUI exploration approaches. They presented a unified
algorithm that abstracts the workflow of existing automated GUI exploration tech-
niques. The novel exploration techniques I will propose in Chapters 4 and 5 extend
this algorithm.

The unified GUI exploration algorithm foresees the iterative execution of the se-
quential activities of Current GUI Description, Input Event Sequence Planning, In-
put Event Sequence Execution and Termination Condition Evaluation until a pre-
defined Termination Condition is met. The workflow of the automated GUI ex-
ploration is described by the UML Activity diagram shown in Fig. 2.4 where the
Activity states describe the steps of the algorithm.

Each app exploration is started by the App Launch step that installs and launches
the app on an Android device.
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FIGURE 2.4: The Automated GUI Exploration

In the Current GUI Description step, a representation of the GUI state currently
exposed by the app is inferred according to an abstraction criterion [60].

The Input Event Sequence Planning step selects the next input event sequence to
fire among all the ones triggerable on the current GUI. The selection of the input
event sequence to run is done according to a scheduling strategy. This strategy de-
fines how the GUI is explored and spans from pure random exploration [26, 27, 28,
29] to systematic exploration strategies that rely on an app model [30, 31, 32, 33, 34].

In the Input Event Sequence Execution step the next planned input event sequence
is actually executed.

Finally, the Termination Condition Evaluation step evaluates whether the termina-
tion condition is met and the exploration can be stopped. The termination condition
may be based on aspects of the exploration process, such as the number of events
that have been fired or the amount of time spent testing, or it may be based on some
adequacy measurement that determines whether the app has been sufficiently ex-
plored, e.g. statement coverage criterion [61].

2.2.2 Challenges to Automated GUI Exploration of Android Apps

AGETs have been successfully adopted in the context of mobile apps for supporting
critical engineering tasks such as testing [2], reverse engineering [36], network traffic
generation and analysis [37, 38], performance and energy consumption analysis [18].

Although AGETs provide a viable approach for automatically exercising An-
droid mobile apps, they suffer from some limitations that may hinder them from
a thorough app exploration.
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Some AGETs have been presented in the literature to address the issues that can
be attributed to Activity lifecycle mishandling such as crashes [6, 7] or resource leaks
[46]. Only one of them [28] addressed GUI failures, that consist in the manifestation
of an unexpected GUI state. However, their authors only considered the issues tied
to the orientation change event, potentially neglecting the ones tied to other events
that exercise the Activity lifecycle. GUI failures tied to the Activity lifecycle are cur-
rently a widespread problem in the context of mobile apps, as evidenced by the ex-
ploratory studies I will describe in Chapter 3. Therefore, in Chapter 4 I will present a
novel fully-automated testing technique that adopts a GUI exploration strategy that
systematically exercises the lifecycle of app Activities to expose GUI failures and
crashes.

Another limitation intrinsic in automated exploration approaches consists of not
being able to replicate human-like interaction behaviors. In fact, some app features
need to be exercised by exploiting app-specific knowledge that only human users
can provide. As an example, these techniques often fail in exploring relevant parts
of the applications that can be reached only by firing complex sequences of input
events on specific GUIs and by choosing specific input values [39, 40]. In this disser-
tation, I refer to these GUIs as Gate GUIs. There may be several types of Gate GUIs in
real apps, such as GUIs in which the users need to enter their credentials in order to
create a new account or to access to functionality offered by the app to authenticated
users only, GUIs that require the users to correctly configure the settings of services
they intend to use through the app, or GUIs that request the users to scan a valid
QR code through the device camera to access to particular app features. In Chapter
5, I will present a novel hybrid GUI exploration technique that exploits the human
involvement in the automated exploration process to overcome the limitations in-
troduced by Gate GUIs.
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Chapter 3

Exploring GUI Failures due to
Orientation Changes

In this Chapter, I investigate the failures exposed in mobile apps by the mobile-
specific event of changing the screen orientation. I focus on GUI failures that consist
in unexpected GUI states rendered by the apps. These failures should be avoided
in order to improve the apps quality and to ensure better user experience. I pro-
pose a classification framework that distinguishes three main classes of GUI fail-
ures due to orientation changes and exploit it in two studies that investigate the im-
pact of such failures in Android apps. The studies involved both open-source and
industrial-strength apps that were specifically tested exposing them to orientation
change events. The results showed that more than 88% of these apps were affected
by GUI failures, some classes of GUI failures were more common than others, and
some GUI objects were more frequently involved. The app source code analysis
allowed me to identify 6 classes of common faults causing specific GUI failures.

3.1 Introduction

Mobile apps are event-driven systems able to analyze and react to events additional
to those available for traditional desktop or Web applications, such as receiving a
phone call, changing the state of the network connections or changing the orienta-
tion of the device. Therefore, mobile app developers should devote particular atten-
tion to verify the behavior of their apps when subjected to mobile-specific events.

Among these types of events, the orientation change deserves special attention.
It is a peculiar event in mobile platforms that results in the switch of the running app
between portrait and landscape layout configurations. Moreover, it causes the Activ-
ity instance currently on screen to be destroyed and then recreated in the new config-
uration according to the Activity lifecycle described in Section 2.1.3. Android guide-
lines recommend that, when the orientation change event occurs, the app adapts
itself to the new layout, avoiding memory leaks, and preserving its state and any
significant stateful transaction that was pending. Unfortunately, the implementa-
tion of these recommendations is not straightforward and introduces programming
challenges to Android programmers. Several works in the literature have pointed
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out that many mobile apps actually crash or show failures that can be attributed to
orientation change mishandling [4, 42, 43, 6, 28, 44, 45, 7, 46, 47, 48, 49, 50].

GUI failures are a relevant class of failures that may disrupt the user experience.
They consist in the manifestation of an unexpected GUI state [51, 52]. If an Android
app does not correctly handle orientation change events, it may expose several types
of GUI failures, e.g. unexpected GUI objects may appear in wrong positions, objects
may be rendered with wrong properties, or important objects may be missing from
the GUI. A GUI failure may involve different types of GUI objects and there may be
object types that are more likely to be involved than others. These failures may be
caused either by application logic errors, or by faults in the code that uses Android-
specific programming features. As a consequence, studying this type of GUI failures
and classifying them according to their characteristics may be useful both for defin-
ing testing techniques able to detect them, and for preventing the introduction of
code faults causing them.

In this Chapter, I propose a novel framework for classifying GUI failures. This
classification framework is exploited by two different exploratory studies that aimed
at investigating their diffusion, the key characteristics, and possible faults causing
them. I carried out these studies with the support of members of my research group
and of Prof. Ana C.R. Paiva from the University of Porto (FEUP). The former study
addressed the context of open-source Android apps, while the latter one considered
popular Android apps belonging to the Google Play Store. In both studies, the apps
testing led to the detection of a considerable number of GUI failures due to the ori-
entation change. These failures were validated, classified, and made available in
publicly shared documents. In the former study, we also analyzed the source code
of a subset of applications exposing the most frequent types of failure and thus dis-
covered six classes of common faults causing them made by Android developers.

This work contributes to the Android community in several ways. It may help in
the definition of a fault model specific to Android apps in order to develop testing
techniques that can allow developers to find faults in apps before release, especially
in the parts of the code that use new programming features [62]. Moreover, it can
enable the definition of additional mutation operators specific to Android apps and,
possibly, of static analysis techniques suitable for early bug detection. Lastly, the
descriptions of GUI failures provided by the exploratory studies may be exploited
to evaluate and compare the effectiveness of different testing techniques and tools.

The remainder of the Chapter is structured as follows. Section 3.2 presents some
examples of real GUI failures due to orientation changes that motivated us to explore
this issue. Section 3.3 illustrates the framework we defined for characterizing GUI
failures due to orientation changes. Section 3.4 presents the first exploratory study
we performed for finding GUI failures in real Android open source applications,
classifying them, and discovering common faults causing some of these failures.
Section 3.5 reports a second exploratory study that aimed at finding and classifying
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DOC GUI failure in popular Android apps from Google Play Store. Section 3.6 dis-
cusses the threats that could affect the validity of the exploratory studies. Section 3.7
provides related work. Section 3.8 finally draws the conclusions and presents future
work.

3.2 Motivating Examples

In this section, I present 4 examples of GUI failures due to screen orientation changes
in mobile apps. I found these failures by manually testing 4 different real mo-
bile applications. In particular, I solicited the apps by using the Double Orienta-
tion Change (DOC) event that consists in a sequence of two consecutive orientation
change events. To detect a GUI failure, I compared the GUIs before and after this
event. I used the DOC event because the application of a single orientation change
may not be sufficient to detect GUI failures, as some minor differences in GUI con-
tent or views are indeed acceptable between landscape and portrait orientations13,
and the GUI state of the app may differ after a single orientation change event. After
a second consecutive orientation change, the GUI content and layout should be the
same as before the first orientation change, otherwise there is a GUI failure [42, 43].

The first example of GUI failure occurs in the digital note-taking application
OneNote running on Windows 10 Mobile OS. Figure 3.1 shows this failure. In this
case, when the user performs a long press on a notebook in the list, a contextual
menu appears displaying the actions that can be performed on the selected docu-
ment such as syncing it, as shown in Figure 3.1(a). After the DOC, the contextual
menu disappears as reported in Figure 3.1(b). In this case the application does no
longer provide the features for managing the selected notebook.

The second failure occurs on the Gmail app version 6.8.130963407 running on a
device equipped with Android 6.0. This failure is shown in Figure 3.2. If the user
performs a long press on a mail in the list and selects "Other Options" in the applica-
tion bar, then an action overflow menu appears. The menu displays the actions that
can be performed on the selected mail such as moving it or reporting it as spam, see
Figure 3.2(a). After a double orientation change of the device the menu disappears
from the user interface, as shown in Figure 3.2(b)).

This kind of failures also occur in lesser-known apps such as Agram, an Android
application that displays anagrams in English. Figure 3.3 shows a failure exposed by
Agram version 1.4.1. If the user chooses to create random words, a Dialog appears
prompting the number of words he wants to generate (see Figure 3.3(a)). When the
user changes the orientation of the device twice, the dialog disappears and a list of
random words is rendered on the screen as shown in Figure 3.3(b).

The last example regards a failure exposed by the mail client application pre-
installed in iOS version 9.3.1. This failure is shown in Figure 3.4. The user can select
one or more incoming messages he wants to manage, as reported in Figure 3.4(a).

13https://developer.android.com/docs/quality-guidelines/core-app-quality

https://developer.android.com/docs/quality-guidelines/core-app-quality
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(a) GUI before the two orien-
tation changes

(b) GUI after the two orienta-
tion changes

FIGURE 3.1: GUI failure exposed by OneNote running on Windows
10 Mobile OS

(a) GUI before the two orien-
tation changes

(b) GUI after the two orienta-
tion changes

FIGURE 3.2: GUI failure exposed by Gmail running on Android OS

After the double orientation change of the device, the application does not preserve
the mail selection made by the user, as shown in Figure 3.4(b). As a consequence,
the UI widgets allowing to handle the selected mails (i.e., Cancel, Mark, Move and
Delete) disappear and different ones appear on the user interface.

As these examples show, the observed GUI failures concerned apps from all the
major mobile platforms, i.e., Android, iOS, and Windows. They affected even popu-
lar applications and applications usually bundled in mobile devices as pre-installed
software. Even if such failures may not be considered as critical as app crashes,
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(a) GUI before the two orien-
tation changes

(b) GUI after the two orienta-
tion changes

FIGURE 3.3: GUI failure exposed by Agram running on Android OS

(a) GUI before the two orien-
tation changes

(b) GUI after the two orienta-
tion changes

FIGURE 3.4: GUI failure exposed by the iOS mail client app

their effects may have a negative impact on the user experience and contribute to
poor user ratings. These examples suggest that this problem may be relevant and
widespread and worth to be further investigated.

3.3 The DOC GUI Failure Classification Framework

In GUI testing, a GUI failure can be defined as a runtime manifestation of an un-
expected GUI state [52]. When an app is exercised by a DOC, the expected GUI
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state should be the same as before the DOC, unless the GUI specifications prescribe
a different behavior.

As a consequence, any discrepancy we observe between the GUI state before the
DOC (referred to as start state) and the GUI state after the DOC (referred to as end
state) may represent the manifestation of a GUI failure.

As the examples in Section 3.2 showed, GUI failures may involve different types
of GUI objects and may manifest themselves in diverse ways. Hence, we decided
to classify these failures in terms of 2 attributes called scope and mode, respectively.
The scope attribute represents the type of GUI object involved in the manifested GUI
failure. More precisely, the scope of a failure can be one of the types of GUI objects
used to implement the app GUI in the considered mobile platform P. For instance,
the GUI object types offered by the Android platform include Button, ContextMenu,
Dialog, TextView, etc.. More in general, S(P) indicates the set of possible GUI object
types offered by the platform P.

The mode attribute indicates how the failure manifested itself in the GUI end
state. In accordance with the IEEE Standard Classification for Software Anomalies
[63] and other GUI failure classification models proposed in the literature [64], this
attribute can assume one of the 3 following values:

• Extra: Some GUI Objects are present that should not be. In this case, there are
one or more objects appearing in the end state of the GUI that were not present
in the start state;

• Missing: Some GUI Objects are absent that should be present. This failure
happens when there are one or more objects contained in the start state that are
no longer present in the end state;

• Wrong: Some GUI Objects are displayed in an incorrect state. This failure hap-
pens when one or more objects of the start state are contained in the end state
but look different.

Using these 2 attributes, any DOC GUI failure can be characterized by a couple
(mode, scope), where:

• mode ∈ M = {Extra, Missing, Wrong}.

• scope ∈ S(P).

Figure 3.1 provides an example of a GUI implemented in the Windows Phone
Toolkit platform. This GUI presents a failure that can be characterized by the couple
(Missing, Context Menu), because the GUI after the DOC misses the Context Menu
shown in the former GUI.

Figure 3.2 and Figure 3.3 show two examples of DOC GUI failures I observed in
the Android context. Figure 3.2 provides another example of Missing mode GUI fail-
ure involving an ActionOverflowMenu object, whereas Figure 3.3 presents a more
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complex case where the same DOC event triggered two distinct failures, i.e., a Miss-
ing failure and an Extra failure. The GUI after the DOC event presents indeed an
extra ListView object and, at the same time, it misses the Dialog object that was ren-
dered on the former GUI.

Figure 3.4 provides an example of 3 DOC GUI failures I observed in the iOS
context. In accordance with the proposed classification framework, these failures
can be characterized by the couple (Wrong, UITableView), since the selected property
of the items in the UITableView changes state after the double orientation change.

In the following, I provide a set of definitions that can be used to formalize the
DOC GUI failures and to classify them with respect to their mode and scope attributes.

3.3.1 GUI Objects

DOC GUI failures involve one or more GUI objects. A GUI object is a graphical el-
ement of the User Interface that is characterized by a set of properties, such as its
type, position, size, background color, etc., which vary with the type of the consid-
ered object.

Each object property assumes values that are drawn from a predefined set of
values associated with that property. The set of properties of each object and the set
of values each property may assume depend on the specific development framework
used for implementing GUIs in the considered mobile platform.

When needed, the dot notation will be used for referring to the values assumed
by the properties of a GUI object, i.e., the notation o.pi indicates the value vj assumed
by the property pi of the object o.

Definition 1
P is the set of properties of all the GUI objects provided by a given mobile develop-
ment framework (i.e., Android SDK, iOS UIKit, Windows Mobile WPToolkit).

Definition 2
∀ pi ∈ P ∃! Vpi , where Vpi is the set of all the possible values that pi can assume.

Definition 3
A GUI object o is defined as:

o , {(pi, vj) : pi ∈ P, vj ∈ Vpi}

Among all the properties of an object, the focus is on a subset that is crucial for
identifying the object and defining its layout i.e., its type, position, and size. On the
basis of the values assumed by these 3 properties, a GUI object is of a given type, is
located on a precise position on the screen and occupies a specific area of the GUI.
In the following, this subset is referred to as fundamental GUI object properties and
indicated with P∗.
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Definition 4
The set of fundamental GUI object properties P∗ is defined as:

P∗ , {type, position, size} ⊂ P

3.3.2 GUI State and State Transition

The GUI state is formally described as the set of GUI objects that it contains. In
mobile applications, like in any other EDS, single events or event sequences may
cause state transitions. The transition between two states, triggered by one or more
events, is defined as a function that associates two states. The double orientation
change is a sequence of two consecutive orientation change events. These concepts
are explained by the following definitions:

Definition 5
GUI State S is defined by the set of GUI objects it contains.

S , {o1, o2, ..., on}.

Definition 6
Given an Application Under Test (AUT), the set of its Application States (ASAUT) is
defined by all the GUI States the AUT can render to the user:

ASAUT , {S1, S2, ..., Sn}

Definition 7
An event e is a function that associates two GUI States of an AUT.

e : ASAUT → ASAUT

Definition 8
An event sequence es is a ordered sequence es =< e1, . . . , en > of n events, n ≥ 1.
Formally, an event sequence is a function that associates two GUI states of an AUT,
since it is sequentially triggered starting from an initial GUI state of the AUT and
reaches a final GUI state of the AUT.

es : ASAUT → ASAUT

Definition 9
The DOC is an event sequence consisting in 2 consecutive orientationChange events.

DOC ,< orientationChange, orientationChange >
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3.3.3 Equivalence and Similarity between GUI Objects

The formal definition of DOC GUI failures relies on the equivalence and similarity
relations between GUI states. These relations in turn depend on the equivalence and
similarity relations between GUI component objects.

Two objects are considered similar if and only if their type, position, and size
properties assume exactly the same values. Two objects are considered equivalent if
and only if all their properties assume exactly the same values.

Two GUI states are considered equivalent if and only if for each object of the for-
mer GUI state there is exactly one equivalent object in the latter state, and at the
same time for each object of the latter GUI state there is exactly one equivalent object
in the former state.

Figure 3.5(a) and Figure 3.5(b) report two GUIs states exposed by the Bookworm
app. They have two pairs of similar TextView objects since their 3 fundamental GUI
object properties assume the same values, but these objects differ for their textual
values, i.e. the TextViews of the GUI state in Figure 3.5(a) assume the textual value
"The Storymakers" and "Canadian Children’s Book Centre", whereas the equivalent
objects in the GUI state in Figure 3.5(b) assume the value "The Prince" and "Niccolò
Machiavelli", respectively.

Analogously, the ImageView objects in the two GUI states differ for the source
value they assume, as it is evident from the different cover images they display.
Instead, the Button object is equivalent among the two GUIs.

As a result, the considered GUI states are not equivalent since they include 3 not
equivalent objects.

(a) (b)

FIGURE 3.5: Example of two GUI states that are similar but not equiv-
alent according to the proposed classification framework
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Definition 10
Two GUI objects oi and oj are similar when their fundamental properties values co-
incide, while the values of other properties may differ.

oi ∼ oj ⇐⇒

∀(pu, vt) ∈ oi : pu ∈ P∗, ∃!(pq, vk) ∈ oj : pu = pq, vt = vk,

∀(pq, vk) ∈ oj : pq ∈ P∗, ∃!(pu, vt) ∈ oi : pu = pq, vt = vk

Definition 11
Two GUI objects oi and oj are equivalent when they have the same set of properties
and each property assumes the same value in both objects.

oi
∼= oj ⇐⇒

∀(pu, vt) ∈ oi, ∃!(pq, vk) ∈ oj : pu = pq, vt = vk,

∀(pq, vk) ∈ oj, ∃!(pu, vt) ∈ oi : pu = pq, vt = vk

Definition 12
The equivalence between two GUI States Si and Sj is defined as follows:

Si
∼= Sj ⇐⇒

∀ot ∈ Si, ∃!ok ∈ Sj : ot ∼= ok,

∀ok ∈ Sj, ∃!ot ∈ Si : ok
∼= ot

3.3.4 DOC GUI Failures

The definitions presented so far can be exploited to formalize the different types of
DOC GUI failures. Given the GUI start state S and the GUI end state DOC(S) reached
after a DOC event, there is a DOC GUI failure if and only if S and DOC(S) are not
equivalent.

Definition 13
Given a GUI State S ∈ ASAUT, the double orientation change causes a DOC GUI
failure if :

S � DOC(S)

The definitions given in this Section are used to define the properties that can be
checked to characterize a DOC GUI failure in terms of its mode and scope.

Definition 14
The GUI property that must be checked to assess the presence of an Extra GUI failure
due to a DOC fDOC is defined as follows:

∃ oj ∈DOC(S):oj�oi ,
∀ oi∈S =⇒ ∃ fDOC : fDOC .mode=Extra,

fDOC .scope=oj.type)
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Considering the GUI state in Figure 3.6(a) and the one in Figure 3.6(b) obtained
after a DOC event, it can be noticed that there is a Dialog object appearing in the end
state that is not present in the start state; thus, there is a DOC GUI failure having
Extra mode and Dialog scope.

Definition 15
The GUI property that must be checked for assessing the presence of a Missing GUI
failure due to a DOC fDOC is defined as follows:

∃ oj ∈ S:oj�oi ,
∀ oi∈DOC(S) =⇒ ∃ fDOC : fDOC .mode=Missing,

fDOC .scope=oj.type)

Considering the GUI state in Figure 3.6(a) and the one in Figure 3.6(c) obtained
after a DOC event, there are two Button objects in the start state that are no longer
present in the end state; thus, there are 2 DOC GUI failures having Missing mode
and Button scope.

Definition 16
The GUI property that must be checked for assessing the presence of a Wrong GUI
failure due to a DOC fDOC is defined as follows:

∃ oj ∈ S : ∃ o(i)∈DOC(S),
o(j)∼o(i) , o(j)�o(i)

=⇒ ∃ fDOC : fDOC .mode=Wrong,
fDOC .scope=oj.type)

Considering the GUI state in Figure 3.6(a) and the one in Figure 3.6(d) obtained
after a DOC event, there are 2 EditText objects in the start state that are still contained
in the end state but have a different text value; thus, there are 2 DOC GUI failures
having Wrong mode and EditText scope.

3.4 Exploratory Study of Open-Source Apps

The examples in Section 3.2 showed that DOC GUI failures affect mobile apps of all
the major mobile platforms. This work investigates such failures in the context of
Android apps due to the great success of this platform and to the large availability
of apps in markets and open-source repositories.

The first study aims at exploring and classifying DOC GUI failures occurring in
real Android apps. In this study, we considered open source apps, which allow the
access to their source code. The study aimed at achieving the following goals:

G1 - to verify the spread of DOC GUI failures among real Android mobile apps.
G2 - to characterize the detected DOC GUI failures.
G3 - to find possible common faults causing DOC GUI failures.
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(a) Start GUI state (b) End GUI state showing
Extra failure

(c) End GUI state showing
Missing failure

(d) End GUI state showing
Wrong failure

FIGURE 3.6: Example of Extra, Missing and Wrong GUI failures

To carry out this study, we followed an experimental procedure based on 5 steps:
Objects selection, Apps testing, DOC GUI failures validation, DOC GUI failures clas-
sification, Common faults Identification.

3.4.1 Objects Selection

In this step, we selected a sample of apps from a repository of open source Android
apps. We chose to consider F-Droid14, a well-known repository of Free and Open

14https://f-droid.org/

https://f-droid.org/
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Source Software (FOSS) applications for the Android platform. F-Droid offers direct
access to apps’ source code and to their developers through code repository and
issue tracker. It has been used in many other studies on Android testing proposed
in the literature [2, 9, 8] and contains a growing number of applications belonging to
different categories.

In the selection activity, we required the apps to be candidate to expose a DOC
GUI failure by allowing the orientation change of the screen. We also required the
availability of the app developers, in order to contact them and receive their feed-
back about the DOC GUI failures detected in the study. Finally, we needed their
opinion to discard the detected DOC GUI failures that were instead a manifestation
of an expected GUI behavior, i.e. a feature of the analyzed application. To this aim,
we used the three inclusion criteria listed below to select an object application from
F-Droid:

1. Issue tracker availability: the app should be linked to its issue tracker;

2. Active developers: the app should have been updated in the last 12 months
since the study started. In this way I, felt confident that the selected application
was still maintained by its developers;

3. Orientation change enabled: the app should have at least one activity that
provides both portrait and landscape screen layouts.

Table 3.1 shows how the dataset was built. When the study was performed, the
F-Droid repository contained 2, 030 apps, but only 1, 807 of them provided an issue
tracker. Among these 1, 807 apps, 762 were updated in the last 12 months. Of the 762
apps, 685 allowed orientation changes. Finally, the dataset was built by randomly
selecting the 10% of the 685 that met the inclusion criteria. Table 3.2 lists name,
version and category of the 68 apps in the dataset that cover 14 of the 17 categories
provided by F-Droid.

TABLE 3.1: Dataset 1 construction

Criteria # apps
Apps in F-Droid 2030
Provide an issue tracker 1807
Updated in the last 12 months 762
Allow Orientation Change 685
Dataset 68

3.4.2 Apps Testing

The apps in the dataset were tested to find DOC GUI failures. To this aim, we ex-
ploited a test amplification strategy in which new test cases were obtained starting
from an initial set of existing test cases. The approach of enhancing existing test
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TABLE 3.2: Dataset 1

App Version Category App Version Category
A Time Tracker 0.21 Time Odyssey 1.1.0 Multimedia
A2DP Volume 2.11.11 Multimedia OpenFood 0.4 Sports & Health
AFWall+ 2.8.0 Security ownCloud News 0.9.9.2 Internet
agram 1.4.1 Reading Padland 1.3.2 Writing
Alarm Klock 2.2 Time PassAndroid 3.3.2 Reading
Amaze File Manager 3.1.1 System Periodical 0.3 Science & Education
AntennaPod 1.5.2.0 Multimedia Pinpoi 1.4.3 Navigation
BankDroid 1.9.10.6 Money Port Knocker 1.0.9 Security
BeeCount 2.4.1 Writing Prayer Times 3.6.3 Time
Berlin-Vegan 2.0.7 Navigation Primary 0.1 Science & Education
Blitzmail 0.6 Internet ReGex 1.3.1 Games
Cache Cleaner 2.2.0 System Ruler 1.0.1 Multimedia
Calendar Notifications Plus 1.3.21 System Shorty 1.06 Multimedia
Chibe 1 Time Sieben 1.9 Sports & Health
Colorpicker 1 System Silectric 1.2.01 Money
Currency 1.04 Money Simple Dilbert 4.2 Reading
DNS66 0.2.1 Internet Simple Solitaire 2.0.1 Games
DroidShows 7.3.1 Multimedia Slide 5.5.4 Reading
Etar 1.0.8 Time SpaRSS 1.11.8 Reading
ExprEval 1 Science & Education StageFever 1.0.9 Multimedia
File Manager 1.24 System SteamGifts 1.5.2 Internet
FOSDEM companion 1.4.2 Time Step and Height counter 1.2 Sports & Health
Gallery 1.48 Multimedia Stringlate 0.9.3 Development
ImapNotes2 4.9 Internet SyncThing 0.9.1 Internet
Iven News Reader 3.0.2 Reading Tap’n’Turn 2.0.0 System
LeafPic 0.5.2 Multimedia Taskbar 3.0.2 System
Legeappen 3 Sports & Health Transdroid Torrent Search 3.7 Internet
Loop Habit Tracker 1.6.2 Sports & Health Transistor 2.1.7 Multimedia
Lyrically 0.5 Multimedia Unit Converter Ultimate 4.2 Science & Education
Malp 1.1.1 Multimedia uNote 1.1.4 Writing
Mather 0.3.0 Science & Education Weather 3.4 Internet
Network Monitor 1.28.10 Connectivity Who Has My Stuff? 1.0.25 Money
NewPipe 0.8.7 Multimedia WiFi Analyzer 1.6.5 Connectivity
NewsBlur 5.0.0b3 Reading World Clock & Weather 1.8.5 Time

cases in the domain of Android mobile applications has been used by Zhang and
Elbaum [65] and by Adamsen et al. [43].

12 master students from the University of Naples were involved to obtain the
initial set of test cases. The students had been trained about automatic testing of
GUI based software applications by techniques of Capture & Replay. Each student
was asked to record a number of test cases sufficient to cover the features provided
by four or five applications of the Dataset so that each application was tested by
a single student. The students had one semester to accomplish their tasks. The
students exploited the Robotium Recorder tool15 for recording GUI test cases.

I automatically amplified the test cases recorded by the students by injecting af-
ter each user event a snippet of Robotium code that fires a double orientation change
and checks the presence of the three DOC GUI failure modes through appropriate
assertions. These assertions are based on the definitions given in 3.3.4. The code
reported in the Listing 3.1 shows an example of an amplified test case for the A Time
Tracker app. After each event recorded by the users, such as EVENT 1 and EVENT 2,
the test case is amplified by adding the code that describes the start GUI state (Get
GUI state before DOC), fires the double orientation (DOUBLE ORIENTATION), de-
scribes the end GUI state (Get GUI state after DOC) and matches the two descriptions
(CHECK ASSERTIONS).

15https://robotium.com/products/robotium-recorder

https://robotium.com/products/robotium-recorder
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After this activity, the amplified test cases were replayed for testing the apps on
a real LG G4 H815 device equipped with Android 6.0. We collected the GUI failures
automatically detected by these test cases.

LISTING 3.1: Example of amplified test case

package com.markuspage.android.atimetracker.test;

import android.test.ActivityInstrumentationTestCase2;

import com.robotium.solo.*;

import com.markuspage.android.atimetracker.Tasks;

public class AmplifiedTest extends ActivityInstrumentationTestCase2<Tasks> {

private Solo solo;

...

public void testRun() {

//EVENT 0: Wait for the main activity

solo.waitForActivity(com.markuspage.android.atimetracker.Tasks.class, 2000);

//Get GUI state before DOC

GUIbefore=describeGUI();

//DOUBLE ORIENTATION

solo.setActivityOrientation(Solo.LANDSCAPE);

solo.sleep(5000);

solo.setActivityOrientation(Solo.PORTRAIT);

solo.sleep(5000);

//Get GUI state after DOC

GUIafter=describeGUI();

//CHECK ASSERTIONS

Missing.add(disappearing(GUIbefore,GUIafter))

Extra.add(appearing(GUIbefore,GUIafter))

Wrong.add(changingState(GUIbefore,GUIafter))

//EVENT 1: Click on "OK"

solo.clickOnText("OK");

//Get GUI state before DOC

GUIbefore=describeGUI();

//DOUBLE ORIENTATION

solo.setActivityOrientation(Solo.LANDSCAPE);

solo.sleep(5000);

solo.setActivityOrientation(Solo.PORTRAIT);

solo.sleep(5000);

//Get GUI state after DOC

GUIafter=describeGUI();

//CHECK ASSERTIONS

Missing.add(disappearing(GUIbefore,GUIafter))

Extra.add(appearing(GUIbefore,GUIafter))

Wrong.add(changingState(GUIbefore,GUIafter))

//EVENT 2: Open the Action Overflow Menu
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solo.sendKey(Solo.MENU);

//Get GUI state before DOC

GUIbefore=describeGUI();

//DOUBLE ORIENTATION

solo.setActivityOrientation(Solo.LANDSCAPE);

solo.sleep(5000);

solo.setActivityOrientation(Solo.PORTRAIT);

solo.sleep(5000);

//Get GUI state after DOC

GUIafter=describeGUI();

//CHECK ASSERTIONS

Missing.add(disappearing(GUIbefore,GUIafter))

Extra.add(appearing(GUIbefore,GUIafter))

Wrong.add(changingState(GUIbefore,GUIafter))

...

}

3.4.3 DOC GUI Failure Validation

This step was performed with the aim of obtaining a set of unique and validated
DOC GUI failures.

I analyzed with the collaboration of a research fellow the collected GUI failures
in order to remove the duplicate ones and obtain a list of unique DOC GUI failures.
Two GUI failures are assumed as duplicate GUI failures when they are characterized
by the same scope and mode, have equivalent start states and equivalent end states,
and affect the same app. As an alternative, all the detected GUI failures could have
been reported to developers, giving them the responsibility to decide whether or not
two or more failures were actually duplicate GUI failures. However, the former way
of counting has been preferred to not annoy the developers by flooding them with
multiple similar (if not identical) requests.

Then, we assessed whether each failure was actually the manifestation of an in-
correct GUI state rather than an intended behavior of the application. To this aim,
I consulted the developer of the apps and opened an issue for each failure on the
F-Droid issue tracker. Each issue contained a description of the observed DOC GUI
failure and a sequence of events leading to it. The developers’ answers received by
the end of the study were analyzed in order to have the evidence about the issues
that were accepted or rejected. The failures whose issues had been accepted by the
developers were considered as validated.

Table 3.3 reports the data collected at the end of the validation activity. For each
application are reported the number of the detected unique DOC GUI Failures, the
number of accepted issues (giving the number of validated failures), the number
of the issues that were not accepted by the developers, and the number of issues
for which the developers did not provide any answer. As data show, a total of 439
unique GUI failures were detected in 59 open source applications, whereas 9 out of
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68 applications did not show any DOC GUI failure. Altogether 298 issues over 439
were accepted by the developers. 61 issues were not accepted by the developers as
failures, whereas 80 issues did not receive any answer and remained as pending.
Among the 298 accepted failures, only 7 were already known to their developers.

The answers given by developers who refused the issues were analyzed. In many
cases, the developers claimed that there was no way to avoid the reported issues,
since they were due to the default behavior of the Android framework. A few de-
velopers’ answers were ambiguous and did not clearly state whether the issue was
accepted or not. In these borderline cases, the failures were not counted as accepted
failures in order to avoid that the experimental results were biased by a personal and
possibly misleading interpretations of the developers’ answers.

As a result, the data reported in Table 3.3 can be considered as a lower bound.

3.4.4 DOC GUI Failure Classification

In this step, each validated GUI failure has been characterized on the basis of its
mode and scope, thus obtaining different classes of GUI failures. For each class of
DOC GUI failure, we evaluated how many times it occurred and the number of
applications that exposed it. Table 3.4 reports the results of this classification.

As the Table shows, the study revealed 13 classes of Missing GUI failures that
involved 13 different types of GUI objects. It found 19 classes of Wrong GUI failures,
involving 19 different types of GUI objects, and just 3 classes of Extra GUI failures.

The Missing and Wrong classes of failures were the most frequent ones, with
overall 192 and 101 occurrences of failures respectively, whereas the Extra failures
occurred fewer times, i.e. only 5 times over 298.

Considering the types of GUI objects involved in failures, it can be observed that
there are GUI object types more involved in failures than other ones, i.e., Dialog (146
occurrences), ListView (28 occurrences), ScrollView (21 occurrences), and TextView
(14 occurrences).

As to the number of affected apps, some failure classes such as (Missing, Dialog),
(Wrong, ListView), and (Wrong, ScrollView) affected more applications than others,
since each of them recurred in more than 10 different apps. The (Missing, Dialog)
failure type occurred 141 times over 298 in 34 applications. The (Wrong, ListView)
failure appeared 27 times in 16 apps, whereas the (Wrong, ScrollView) involved 13
applications with 19 occurrences.

Details about the dataset and the detected GUI failures have been made publicly
available16; each reported GUI failure is provided with a link to the issue opened in
the app bug tracker.

16
https://docs.google.com/spreadsheets/d/1k8IbndKH9K-9kmTGI9Wnc-FPlrOOEJ2dCRd8Uqu9JGk/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1k8IbndKH9K-9kmTGI9Wnc-FPlrOOEJ2dCRd8Uqu9JGk/edit?usp=sharing


Chapter 3. Exploring GUI Failures due to Orientation Changes 33

TABLE 3.3: DOC GUI Failures found in open source apps

App #DOC GUI Failures #Accepted Issues #Not Accepted #Not Answered
A Time Tracker 10 10 0 0
A2DP Volume 10 10 0 0
AFWall+ 8 8 0 0
agram 9 9 0 0
Alarm Klock 2 2 0 0
Amaze File Manager 18 0 18 0
AntennaPod 20 20 0 0
BankDroid 4 0 0 4
Bee Count 7 7 0 0
Berlin-Vegan 0 0 0 0
Blitzmail 0 0 0 0
Cache Cleaner 0 0 0 0
Calendar Notifications Plus 10 0 0 10
Chibe 2 0 0 2
Colorpicker 2 2 0 0
Currency 10 9 1 0
DNS66 1 1 0 0
DroidShows 0 0 0 0
Etar 18 3 0 15
ExprEval 1 1 0 0
File Manager 9 9 0 0
FOSDEM companion 5 4 1 0
Gallery 8 8 0 0
ImapNotes2 3 0 0 3
Iven News Reader 1 0 0 1
LeafPic 9 9 0 0
Legeappen 13 13 0 0
Loop Habit Tracker 8 8 0 0
Lyrically 3 1 0 2
Malp 5 4 1 0
Mather 1 1 0 0
Network Monitor 0 0 0 0
NewPipe 12 0 0 12
NewsBlur 16 15 1 0
Odyssey 9 3 6 0
OpenFood 0 0 0 0
ownCloud News 7 7 0 0
Padland 8 8 0 0
PassAndroid 12 0 0 12
Periodical 4 4 0 0
Pinpoi 5 5 0 0
Port Knocker 5 1 0 4
Prayer Times 13 13 0 0
Primary 19 19 0 0
ReGex 4 3 1 0
Ruler 4 4 0 0
Shorty 1 1 0 0
Sieben 5 0 5 0
Silectric 4 2 0 2
Simple Dilbert 6 2 4 0
Simple Solitaire 2 2 0 0
Slide 0 0 0 0
SpaRSS 7 0 0 7
StageFever 1 1 0 0
SteamGifts 7 7 0 0
Step and Height counter 9 9 0 0
Stringlate 7 7 0 0
SyncThing 7 7 0 0
Tap’n’Turn 0 0 0 0
Taskbar 17 17 0 0
Transdroid Torrent Search 12 0 12 0
Transistor 0 0 0 0
Unit Converter Ultimate 2 2 0 0
uNote 9 9 0 0
Weather 11 0 11 0
Who Has My Stuff 6 0 0 6
WifiAnalyzer 10 10 0 0
World Clock & Weather 1 1 0 0
Total 439 298 61 80
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TABLE 3.4: Classification of the DOC GUI failures found in open
source apps

Failure Mode Failure Scope # Occurrences # Involved Apps

Missing

Dialog 141 34
Context Menu 11 6
Action Overflow Menu 8 5
Search View 7 6
Text View 5 4
Contextual Action Bar 5 4
Button 4 3
Edit Text 4 3
OptionsMenu 2 2
Spinner 2 1
Toolbar 1 1
List View 1 1
Checkbox 1 1

Wrong

ListView 27 16
ScrollView 19 13
TextView 9 7
Spinner 6 4
Edit Text 6 4
Number Picker 5 3
Recycler View 4 3
User Defined Widget 4 3
Web View 4 3
Dialog 4 2
ActionMenuItem View 4 2
Image View 2 2
Time Picker 1 1
Checkbox 1 1
Button 1 1
Date Picker 1 1
HorizontalScrollView 1 1
Navigation View 1 1
TabHost 1 1

Extra

Button 2 1
Scroll View 2 1
Dialog 1 1

3.4.5 Common Faults Identification

In the previous step, 3 classes of DOC GUI failures, i.e. (Missing, Dialog), (Wrong
ListView), and (Wrong, ScrollView) occurred most times and affected more than 10
apps.

• Missing Dialog: This failure consists in the disappearance of a Dialog object
after a DOC event. A Dialog is a small window that prompts the user to make
a decision or enter additional information. It does not fill the screen and is
normally used for modal events that require users to take an action before they
can proceed;

• Wrong ScrollView: This failure consists in the loss of the current state of a
ScrollView object. A ScrollView contains and shows a list of GUI objects. Users
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can scroll the list and see the items contained in it;

• Wrong ListView: This failure consists in the loss of the current state of a
ListView object. A ListView shows a list of UI objects that can be vertically
scrolled by the user, allowing it to be larger than the physical display. A
ListView is filled using an adapter that pulls content from a source such as
an array or database query and converts each item result into a view that’s
placed into the list.

Since the study resulted in a significant sample of failures of these 3 types, they
have been investigated in order to assess whether the occurrences of the same types
of failure had similar causes.

The source code of the Android apps exposing these failures was analyzed to
detect the faults causing them. In this analysis, particular attention was paid to the
mechanisms used by Android to manage the orientation changes. When an orienta-
tion change occurs, Android destroys the running Activity and then restarts it. The
Activity lifecycle callback method onDestroy() is called, followed by onCreate().
The restart behavior is designed to adapt the app to the new layout configuration,
without loss of user data or without disrupting the user experience.

This Android-specific feature must be taken into account by developers who
should use the APIs provided by Android and follow the guidelines that describe the
correct usage of the Android framework components. Analogously, testers should
verify that the application handles properly the orientation change events.

As an example, Android guidelines prescribe that the control of a dialog GUI
object (deciding when to show, hide, dismiss it) should be done through the API,
not with direct calls on the dialog instances. Any violation of such guidelines may
result in inconsistencies in the app behavior.

This analysis allowed to identify 6 classes of common faults that could be consid-
ered as errors in the usage of Android programming features, rather than mistakes
related to the logic of a specific application.

These faults occurred multiple times, even in different apps, were often localized
in the same category of Android code components, had the same characteristics, and
could be solved by similar code fixes.

Hence, it is possible to describe each class of fault using a template made of the
following characteristics:

• Id: an identifier used to refer to the common fault;

• Associated failure: the failures that are found to be caused by a fault that can
be traced back to the described common fault;

• Location: Information about the Android app component where the fault can
be detected;

• Background: this section contains general background information that is use-
ful or interesting to better understand the common fault;
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• Description: general characteristics of the considered common fault;

• A possible fix: this section explains an alternative solution that implement the
same features intended by the developer but prevent the failures listed in the
associated failure section;

• Example: an excerpt of code from a real app that contains an instance of the
considered fault and a possible code fix.

In the following, I report the descriptions of the six fault classes.

3.4.5.1 Show method called on Dialog or its Builder

Id: SDB;
Associated failure: Missing Dialog;
Location: an object calling the static show method of the Dialog or the AlertDialog

Builder classes;
Background: Android provides a specific guideline to deal with Dialog objects17; it
states that Dialogs should be managed by the DialogFragment class, which ensures
a correct handling of lifecycle events, such as when the user presses the Back button
or changes the orientation of the screen18;
Description: The app code contains calls to the public methods offered by the dialog
object or its builder to show a dialog. This will correctly pop up the dialog on the
screen but the dialog will disappear when the activity is destroyed and recreated
due to orientation changes;
A possible fix: The developers can implement a class that extends DialogFragment
and create the desired dialog in its onCreateDialog() callback method. They create
an instance of this class and call show() on that object. The dialog appears but it
will not disappear when the activity is destroyed and recreated due to orientation
changes;
Example:
An example of this fault can be found in the MainActivity class of the app Periodi-
cal. When the user clicks on the Restore option in the action overflow menu, a dialog
pops up but it disappears on orientation changes.

Listing 3.2 shows the relevant code. I highlighted in red the call to the show()

method of the AlertDialog builder instance.
The green highlighted code shows a possible and effective fix; the same dialog is
constructed in the DialogFragment.onCreateDialog() callback method.

17https://developer.android.com/guide/topics/ui/dialogs.html
18https://developer.android.com/reference/android/app/DialogFragment.html

https://developer.android.com/guide/topics/ui/dialogs.html
https://developer.android.com/reference/android/app/DialogFragment.html
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LISTING 3.2: Example of a SDB Fault and a fix in the app Periodical

private void doBackup(){

...

- final AlertDialog.Builder builder = new AlertDialog.Builder(this);

- // The Builder class is used for convenient dialog construction...

- builder.show()

+ DialogFragment backupAlert = new doBackupDialogFragment();

+ backupAlert.show(getSupportFragmentManager(), "backup");

}

...

+ public class doBackupDialogFragment extends DialogFragment {

+ @Override

+ public Dialog onCreateDialog(Bundle savedInstanceState){

+ AlertDialog.Builder builder = new AlertDialog.Builder(getActivity());

+ // The Builder class is used for convenient dialog construction...

+ return builder.create(); } }

3.4.5.2 Fragment created Twice on Activity restart

Id: FTA;
Associated failure: Missing Dialog, Wrong ListView;
Location: onCreate callback method of a class that extends PreferenceActivity or
PreferenceFragment classes;
Background: To provide settings for the app, Android recommends to use the Pref-
erence API. Instead of using View objects to build the user interface, settings are built
using various subclasses of the Preference class declared in an XML file. To load the
preferences, the developer should call the method addPreferencesFromResource()

during the onCreate() callback of a PreferenceActivity or, preferably, a Prefer-

enceFragment;
Description: In the official tutorial on how to instantiate a PreferenceFragment

within an activity, there is a faulty code snippet that creates a new PreferenceFrag-

ment each time the host activity is created. It results in a loss of state of the set-
tings screen when the device is rotated. Our study detected that this code snippet is
widely used among Android developers;
A possible fix: One simple solution is to add a check that determines whether the
settings screen has already been created;
Example:
Listing 3.3 shows an example of this fault found in the SettingsActivity class of
the app StageFever. When the user clicks on the Font Size of Notes options in the
app settings, a dialog pops up. But it disappears on orientation changes. I added
and highlighted in green a simple control that prevents the fragment PrefsFragment
from being recreated if it has not been created for the first time but its state has been
restored from the savedInstanceState bundle.
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LISTING 3.3: Example of a FTA Fault and a fix in the app StageFever

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

prefs = PreferenceManager.getDefaultSharedPreferences(this);

+ if (savedInstanceState == null){

getFragmentManager().beginTransaction()

.replace(android.R.id.content, new PrefsFragment())

.commit();

+ }

}

3.4.5.3 Missing Id in XML Layout

Id: MIXL;
Associated failure: Wrong ScrollView;
Location: ScrollView element in layout XML files;
Background: In order for the Android system to restore the state of the views con-
tained in an activity, each view must have a unique ID, supplied by the android:id

attribute. Developers often rely heavily on visual editors to build layouts for their
apps. The visual Layout Editor offered by Android Studio19, the official IDE for
Android platform development, allows the developers to build layouts by dragging
widgets into a visual design editor instead of manually writing the layout XML.
However, a ScrollView added to a layout via visual editor will miss the id attribute.
Description: The presence of a ScrollView element in the XML file describing the
activity layout with no id attribute set can cause the loss of the ScrollView state, e.g.
scroll position, when the user rotates the device;
A possible fix: To set an id attribute for the ScrollView element in the XML file
describing the activity layout;
Example:
The XML code in Listing 3.4 defines the presence of a ScrollView in the layout of the
event details fragment. When the user scrolls down the text that describes an event
and then changes the orientation, the scroll position goes back to the top losing the
effect of the user interaction. The green highlighted code is the fix of the developer
that solved the bug and closed our issue20 adding an id to the scrollview.

LISTING 3.4: Example of a MIXL Fault and a fix in the app FOSDEM

<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"

xmlns:tools="http://schemas.android.com/tools"

+ android:id="@+id/scrollview"

android:layout_width="match_parent"

android:layout_height="match_parent">

19https://developer.android.com/studio/index.html
20https://github.com/cbeyls/fosdem-companion-android/commit/

b2e50f8e4dea7739f776373f1c3669ce70c2deb5

https://developer.android.com/studio/index.html
https://github.com/cbeyls/fosdem-companion-android/commit/b2e50f8e4dea7739f776373f1c3669ce70c2deb5
https://github.com/cbeyls/fosdem-companion-android/commit/b2e50f8e4dea7739f776373f1c3669ce70c2deb5
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3.4.5.4 Aged Target SDK Version

Id: ATSDKV
Associated failure: Wrong ScrollView;
Location: android:targetSdkVersion attribute of uses-sdk element in the XML
manifest file, i.e. AndroidManifest.xml;
Background: Every Android app must have a manifest XML file that provides es-
sential information about the app itself to the Android system. The element uses-sdk
has the android:targetSdkVersion attribute that is used to designate the API Level
that the application targets;
Description: In the manifest file, the element uses-sdk has the android:targetSdk-
Version value lower than 19. In this case, the app loses the ScrollView position on
orientation change caused by a limitation of the framework version lower than 19.
These limitations that have been fixed in the later versions of the Android SDK;
A possible fix: To set the android:targetSdkVersion value to 19 or higher in the
manifest;
Example:
Listing 3.5 shows an excerpt from the Currency app manifest file that targets the
version 17 of the Sdk. The implementation of onSaveInstanceState method of the
ScrollView class in API versions lower than 19 does not retain the ScrollView po-
sition on configuration changes. Setting an API level to 19 or higher, as shown in
the green highlighted code, fixes the issue as the ScrollView position is saved and
restored directly by the system.

LISTING 3.5: Example of a ATSDKV Fault and a fix in the app Cur-
rency

<manifest

...

package="org.billthefarmer.currency"

...>

<uses-sdk

android:minSdkVersion="14"

- android:targetSdkVersion="17"

+ android:targetSdkVersion="19"

/>

3.4.5.5 List Adapter Not Set in onCreate Method

Id: LANSCM;
Associated failure: Wrong ListView;
Location: a class extending the Activity class where the list adapter setter method
is called in a lifecycle callback method different from onCreate();
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Background: The ListView adapter binds source data to its layout. The adapter
setter should be called in the onCreate() callback method that is responsible for
retrieving and restoring the state of the list every time the activity is started or re-
sumed;
Description: The adapter setter is called in a lifecycle method different from on-

Create() and the developer does not explicitly restore the state of the list. The list
state will be lost on orientation change, e.g. the position of the scrollable list is not
preserved;
A possible fix: To call the adapter setter inside the onCreate() method;
Example:
An example of this fault can be found in the ListProjectActivity class of the app
BeeCount. When the user scrolls down the list of projects and then changes the
orientation, the scroll position goes back to the top loosing the effect of the user in-
teraction. As shown in Listing 3.6, the showData method that sets the list adapter is
called by the overridden onResume method.
To fix this issue, I simply moved the call to showData in the onResume method.

LISTING 3.6: Example of a LANSCM Fault and a fix in the app
BeeCount

@Override

protected void onCreate(Bundle savedInstanceState){

...

+ showData();

}

...

@Override

protected void onResume()

{

super.onResume();

- showData();

}

...

private void showData()

{

projects = projectDataSource.getAllProjects(prefs);

adapter = new ProjectListAdapter(this, R.layout.listview_project_row, projects);

setListAdapter(adapter);

}

3.4.5.6 List Filled Through Background Thread

Id: LFTBT;
Associated failure: Wrong ListView;
Location: class that extends the helper class AsyncTask and calls the list adapter
setter method;
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Background: To fetch large data in the main UI thread can cause poor UI responsive-
ness or even Application Not Responding (ANR) errors. Thus, developers should
fetch the data in another thread21;
Description: Extending the helper class AsyncTask allows the developer to per-
form data fetching operations on a background thread and publish results on the
main UI thread, i.e. setting the ListView adapter, without having to manipulate
threads and/or handlers22. Still the developer is responsible for managing both the
background thread and the UI thread through various activity or fragment lifecycle
events, such as onDestroy() and configurations changes;
A possible fix: To use a Loader class, such as an AsyncTaskLoader, to load data
from a data source for display in an Activity or Fragment. Loaders persist and cache
results across configuration changes to prevent duplicate queries23;
Example:
Listing 3.7 shows an example of this fault detected in the lcd10Activity class of the
app LegenAppen. Each time the activity is created a getChapterTask asynchronous
task is instantiated and executed to fetch the data and fill the ListView. This results
in a loss of the ListView state, e.g. scroll position, on orientation changes.

LISTING 3.7: Example of a LFTBT Fault and a fix in the app Lege-
nApp

public class Icd10Activity extends AppCompatActivity

+ implements LoaderManager.LoaderCallbacks<List<Item�

{

@Override

protected void onCreate(Bundle savedInstanceState){

super.onCreate(savedInstanceState);

...

mListView = (ListView) findViewById(R.id.icd10_list);

...

- // Get chapters

- GetChaptersTask getChaptersTask = new GetChaptersTask();

- getChaptersTask.execute();

+ // Prepare the loader. Either re-connect with an existing one,

+ // or start a new one.

+ getLoaderManager().initLoader(0, null, this);

}...

- private class GetChaptersTask

- extends AsyncTask<Void, Void, SimpleCursorAdapter>{

- @Override

- protected SimpleCursorAdapter doInBackground(Void... voids){

- //the background thread performs a query and returns the results...

- return new SimpleCursorAdapter(

- mContext, R.layout.activity_icd10_list_item,

- mCursor, fromColumns, toViews, 0);

- }

21https://developer.android.com/guide/components/processes-and-threads.html
22https://developer.android.com/reference/android/os/AsyncTask.html
23https://developer.android.com/guide/components/loaders.html

https://developer.android.com/guide/components/processes-and-threads.html
https://developer.android.com/reference/android/os/AsyncTask.html
https://developer.android.com/guide/components/loaders.html
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- ...

- @Override

- protected void onPostExecute(final SimpleCursorAdapter adapter){

- //This method is invoked on the UI thread

- //after the background computation finishes. It takes

- //the result of the background computation as a parameter.

- mListView.setAdapter(adapter);

- }

...

+ public Loader<List<Item� onCreateLoader(int id, Bundle args) {

+ // This LoaderManager callback is called

+ // when a new Loader needs to be created.

+ }

+ public void onLoadFinished(Loader<List<Item� loader, List<Item> data) {

+ // This callback method is called when a previously

+ // created loader has finished its load.

+ }

+ public void onLoaderReset(Loader<Cursor> loader) {

+ //This callback is called when a previously created loader is being reset

+ //(when you call destroyLoader(int) or when the activity or fragment

+ // is destroyed, and thus making its data unavailable.

+ }

3.4.5.7 Common Faults Summary

Table 3.5 summarizes the six classes of common faults found in this study and re-
ports the Fault Acronym and the Name of each fault class.

Table 3.6 reports the relation among the 3 specific types of failures considered in
the fault study and the 6 inferred fault classes.

Each element of the table reports the number of apps where the failure type oc-
curred due to a common fault over the total number of apps affected by that failure
type. As the Table shows, the SDB fault is the one that occurred mostly, since it in-
volved the largest number (23) of apps. MIXL is particularly relevant since it caused
(Wrong, ScrollView) failures in 77% (10/13) of the apps affected by this failure.

As Table 3.6 shows, the DOC GUI Failures were not always caused by the same
fault. Different faults caused the same failure type in different apps. Moreover, the
FTA fault originated two different failures type in different apps.

TABLE 3.5: Classes of common faults

Fault Acronym Fault Name
SDB Show method called on Dialog or its Builder
FTA Fragment created Twice on Activity restart
MIXL Missing Id in XML Layout
ATSDKV Aged Target SDK Version
LANSCM List Adapter Not Set in onCreate Method
LFTBT List Filled Through Background Thread
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TABLE 3.6: Relationships between DOC GUI failures and common
faults

SDB FTA MIXL ATSDKV LANSCM LFTBT
Missing Dialog 23/34 10/34
Wrong ScrollView 10/13 3/13
Wrong ListView 10/16 3/16 4/16

3.4.6 Study Conclusion

At the end of the exploratory study, several interesting results were obtained allow-
ing to reach the three goals of the study.

As for the first goal G1 of the study, the experimental results show that GUI
failures due to orientation changes of the device are widespread among real Android
apps. In fact, more than the 86% of the analyzed app sample exposed at least one
DOC GUI failure. This datum suggests that the likelihood for app users to encounter
these failures is very high, at least when they use open source apps.

It cannot be excluded that other testing techniques, different from the one used
in this study, could expose even more failures. However, the percentage of apps
affected by this problem is high enough to confirm the relevance of this topic to the
community of Android developers and testers.

Regarding the second goal G2, the classification of GUI failures on the basis of
their mode and scope show that most of the failures belong to the category of Miss-
ing objects and Wrong objects, with 64% and 34% of apps affected by them, respec-
tively.

As for the scope of the failures, there are 4 types of GUI object that occurred more
than 10 times and involved the 70% of the failures.

Lastly, it emerges that 3 types of failure, i.e., (Missing, Dialog), (Wrong, ListView),
and (Wrong, ScrollView), are more widespread among the apps than the other ones,
since each one of them affects more than 10 applications. This result provides a
subset of failures worth to be further investigated.

As for the goal G3, the results show that a subset of observed types of failures
were due to the same classes of faults that occurred in several different applications.
The deeper analysis of the faults suggests that these classes of faults can be consid-
ered specific of Android apps, rather than isolated programming errors.

3.5 Exploratory Study of Industrial-Strength Apps

The first exploratory study presented in Section 3.4 provides evidence about the
widespread diffusion of DOC GUI failures of different types in real Android apps
coming from the open source world. Since I do not want to limit the validity of the
conclusions solely to the context of open source apps, which are usually less mature
than the ones available through the official app market, I present a second study.
In this further study, the analysis is extended to the context of industrial-strength
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apps selected from the official Android app market, Google Play24, with the aim of
reaching the same two goals G1 and G2 of the previous study. The study does not
have the G3 goal of the former study, since it was not possible to access the source
code of the considered apps.

In this study, it has been followed an experimental procedure very similar to the
one performed in the previous study. Here, we executed 4 steps: Objects selection,
Apps testing, DOC GUI failures validation, and DOC GUI failures classification.

3.5.1 Objects Selection

The objects of the study are Android apps belonging to the official Google Play Store
that satisfied the following inclusion criteria. The app had to:

1. have more than 50 M installs;

2. have an average rating above 4 stars;

3. allow orientation change.

We used these requirements in order to select the most popular apps allowing
the orientation change of the screen and having the best quality perceived by the
users. We randomly selected 10 apps which met the proposed inclusion criteria.
Table 3.7 lists name, version, number of installs and average rating of each selected
app. These data are related to the period in which the study was performed.

TABLE 3.7: Dataset 2

App Version Category Installs Rating
App Lock 2.22.1 Tools 100 M 4.34
Dropbox 27.1.2 Productivity 500 M 4.40
Duolingo 3.39.1 Education 50 M 4.69
Gmail 6.11.27.141872707 Communication 1000 M 4.32
Pinterest 6.5.0 Social 100 M 4.57
Spotify Music 7.0.0.1369 Music & Audio 100 M 4.53
Twitter 6.27.1 News & Magazines 500 M 4.23
Waze 4.17.0.0 Maps & Navigation 100 M 4.56
Whatsapp 2.16.396 Communication 1000 M 4.42
Youtube 11.47.57 Video Players & Editors 1000 M 4.18

3.5.2 Apps testing

In this step, the object apps are tested by exploiting the same amplification technique
used in the former study for testing the open source apps. 5 master students not in-
volved in the previous study have been selected to obtain the initial set of test cases.
The students recorded through the Robotium Recorder tool a number of test cases
able to cover the features provided by the 10 applications under test. The test cases
collected by the students were amplified in order to fire a double orientation change

24https://play.google.com/store/apps

https://play.google.com/store/apps
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and then to check the presence of the three DOC GUI failure modes through appro-
priate assertions after each recorded event, according to the approach presented in
Section 3.4. The amplified test cases were launched on a real LG G4 H815 device
with Android 6.0. Finally, the GUI failures automatically detected by these test cases
have been collected.

3.5.3 DOC GUI failures validation

I manually analyzed the DOC GUI failures found in the previous step to remove
the duplicate ones. Then the unique failures were reported to the Android customer
support team offered by each app provider. In this case, there was no direct contact
with the app developers so I had to interpret and answer the emails auto-generated
by the app providers in order to validate the reported failures. I obtained a final
answer only from the Dropbox and Pinterest support teams; both of them accepted
the reported issues as failures.

Therefore, for validating the remaining DOC GUI failures I along with my re-
search group decided to refer to the GUI Consistency Design Principle stating that:
"in a GUI, the same action should always yield the same result" [66]. According to this
principle, we checked the app behavior exhibited after the double orientation change
in different points of the app, to verify whether it was inconsistent across the differ-
ent parts of its GUI. If a GUI exposed a potential failure after the DOC event, such
as a missing dialog, and we did not find the same behavior on different parts of the
app GUI, then we deduced that the observed failure was a true positive, since it was
a violation of the consistency principle.

Table 3.8 shows the DOC GUI failures found in the analyzed apps. The data show
that all the 10 apps exposed more than one failure. Overall 140 DOC GUI failures
were found. Waze and Pinterest are the applications where most of the failures were
found.

TABLE 3.8: DOC GUI Failures found in popular Google Play apps

App
#Detected DOC

GUI Failures
App Lock 2
Dropbox 7
Duolingo 11
Gmail 4
Pinterest 31
Spotify Music 12
Twitter 11
Waze 45
WhatsApp 3
Youtube 14
Total 140
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3.5.4 DOC GUI failures classification

In this step, the failures were classified in terms of their mode and scope according
to the proposed classification framework. Table 3.9 reports for each app the number
of occurrences of the failure types they exposed.

Table 3.10 shows how many times each type of DOC GUI failure occurred and
the number of applications that exposed it. The results obtained by this study are
very similar to the ones of the former study; the Missing and Wrong mode fail-
ures were the most common types even in the most popular apps with 76 and 63
occurrences, respectively. Analogously, as for the involved object types, Dialogs,
ListViews, ScrollViews and TextViews were the most frequent ones.

Details about the second dataset and the detected GUI failures have been made
publicly available25. This document reports for each app its analyzed version, its
Google Play Category, the failure types it exposed along with their occurrences, and
a sequence of events able to trigger a specific failure type.

3.5.5 Study Conclusion

This second study obtained results very similar to the ones achieved by the former
study.

As to the first goal G1, the experimental results confirmed that GUI failures due
to orientation change are very frequent even in Android apps that are distributed
through the official Android app market. As a consequence, it is possible to con-
clude that this problem is widespread in the field of Android apps and impact also
industrial-strength applications.

Regarding the goal G2, the study indicated that Missing and Wrong are the most
common DOC GUI failure modes also for the most popular Android applications.
Considering the scope of the detected GUI failures, there are some types of GUI ob-
jects that occurred more frequently than others; more precisely, Dialogs, ListViews,
ScrollViews and TextViews are the most involved types of GUI objects even among
the most popular apps of the official Android market.

3.6 Threats to Validity

This section discusses the threats that could affect the validity of the results obtained
in the exploratory studies.

3.6.1 Construct Validity

This aspect of validity reflects to what extent the operational measures that are stud-
ied really represent what the researcher has in mind and what is investigated ac-
cording to the research question [67].

25https://docs.google.com/spreadsheets/d/1xhOudp3FBJq4MTHeRK4LWeqwRA9s_

ltuh6PwkaIi-ZA/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1xhOudp3FBJq4MTHeRK4LWeqwRA9s_ltuh6PwkaIi-ZA/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1xhOudp3FBJq4MTHeRK4LWeqwRA9s_ltuh6PwkaIi-ZA/edit?usp=sharing
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TABLE 3.9: Classification of the DOC GUI failures found in popular
Google Play apps

App Failure Mode Failure Scope Occurrences
App Lock Missing Action Overflow Menu 2

Dropbox
Wrong ListView 1
Missing Modal Bottom Sheet 4
Missing Action Overflow Menu 2

Duolingo

Wrong List View 3
Wrong Radio Button 1
Wrong Spinner 1
Missing Dialog 5
Missing Popup Menu 1

Gmail
Wrong ListView 1
Missing Action Overflow Menu 2
Missing Context Menu 1

Pinterest

Wrong ListView 1
Extra Tooltip 1
Wrong Dialog 1
Wrong Edit Text 8
Wrong GridView 1
Wrong RecyclerView 7
Wrong Spinner 1
Wrong Switch 2
Wrong Text View 3
Missing Dialog 3
Missing Image View 1
Missing Text View 1
Missing Sliding Up Panel 1

Spotify

Missing Context Menu 5
Missing Action Overflow Menu 1
Wrong ListView 3
Wrong View Pager 1
Wrong Spinner 1
Wrong Web View 1

Twitter

Wrong Search Widget 2
Missing Text View 1
Missing Action Overflow Menu 5
Missing Context Menu 1
Wrong Spinner 1
Missing Side Drawer 1

Waze

Missing Modal Bottom Sheet 1
Wrong ImageView 1
Wrong List View 4
Wrong Scroll View 7
Wrong Time Picker 1
Wrong Web View 3
Missing Dialog 25
Missing Modal Bottom Sheet 2
Missing Time Picker Dialog 1

Whatsapp
Wrong ScrollView 1
Wrong ListView 1
Wrong Image View 1

Youtube

Missing Popup Menu 6
Missing Dialog 4
Wrong List View 3
Wrong Spinner 1
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TABLE 3.10: Number of occurences of different DOC GUI failure
types

Failure Mode Failure Scope # Occurrences # Involved Apps

Missing

Dialog 37 4
Action Overflow Menu 12 5
Context Menu 7 3
Modal Bottom Sheet 7 3
Popup Menu 7 2
Text View 2 2
Image View 1 1
List View 1 1
Sliding Up Panel 1 1
Time Picker 1 1

Wrong

ListView 17 8
ScrollView 8 2
EditText 8 1
Recycler View 7 1
Spinner 5 5
Web View 4 2
Text View 3 1
Image View 2 2
Search Widget 2 1
Switch 2 1
Dialog 1 1
Grid View 1 1
Radio Button 1 1
Time Picker 1 1
View Pager 1 1

Extra Tooltip 1 1

In the studies we performed, since we did not have access to the requirements
of each app, there was the risk that the GUI failures we detected could be not actual
failures, but the manifestation of apps’ expected behavior. This may be a possible
threat to the construct validity of the studies. We mitigated this threat by exploiting
GUI failures validation procedures.

In the first study, we relied on the developers’ feedback. We opened an issue for
each potential GUI failure and considered it a failure only when the app developers
accepted that issue. This procedure makes me confident that all the GUI failures
reported in the first study were actually failures.

In the second study, we used the violation of the UI Consistency Design Principle
for validating the detected GUI failures. Although this procedure cannot definitely
assure that they were aberrant app behaviors, it gave me additional evidence to
assume it.

3.6.2 Internal Validity

This aspect of validity assesses that there are no uncontrolled variables of the exper-
iment that had an effect on the outcome [67]. Such threats typically do not affect
exploratory studies like the ones reported in this Chapter [68].
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However, it cannot be excluded con-causes besides DOC events that triggered
the observed GUI failures, e.g. the execution platform or the timing between con-
secutive events. A controlled experiment involving different Android OS versions,
types of device, and time intervals between events should be carried out to further
investigate this aspect.

3.6.3 External Validity

This aspect of validity is concerned with to what extent it is possible to generalize
the findings to other contexts [67].

A possible threat to the generalizability of the experimental results could be the
representativeness of the sample of Android apps.

In the first Study, we mitigated this threat by randomly selecting 68 open-source
apps that had the orientation change enabled, active developers, and a issue tracker.

We did not limit the analysis to the open-source world and confirmed and strength-
ened our findings by considering industrial-strength apps in the second Study. In
this second study, we randomly selected 10 apps from the official Google app mar-
ket that allowed the orientation change, had more than 50 M installs, and had an
average rating above 4 stars.

I cannot claim that these results generalize beyond the inclusion criteria we ap-
plied. Moreover, I cannot exclude that specific characteristics of the analyzed apps
(such as the types of GUI widget they rely on, or their category) may have influenced
the experimental results.

To further extend the validity of the study, a controlled experiment involving a
larger set of apps with selected characteristics should be performed.

3.7 Related Work

In this work, I explored GUI failures in Android apps triggered by the orientation
change mobile-specific event and analyzed source code bugs that cause them. There
are many works in the literature that address event-based testing and mobile fault
classification. In this Section, some of the most related ones are discussed.

3.7.1 Event-based mobile testing

Since mobile apps are event-driven systems, their behavior can be verified through
inputs consisting in specific event sequences as stated by Belli et al. [22].

Several event-based testing techniques have been proposed in the literature to
test mobile apps. These techniques span from random testing [8, 27, 61], to symbolic-
execution-based test case generation [69, 70], ripping based [71, 30, 72], pattern-
based testing [73, 74], model-based testing [4, 75] and combinations of model-based
and combinatorial testing [76, 77].
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Unlike the presented work, the main goal of most of these techniques is to maxi-
mize the code coverage or to find crashes in the apps under test. Other works instead
aim at assessing specific quality aspects of mobile applications [3], such as perfor-
mance [10], accessibility [17], security [14, 15], responsiveness [16], and energy con-
sumption [19].

3.7.2 Testing apps through mobile specific events

Some recent works address the problem of testing a mobile application by mobile-
specific events.

The work of Zaeem et al. [42] is based on the intuition that different mobile apps
and platforms share a set of features referred to as User-Interaction Features and
that there is a “general, common sense of expectation of how the application should
respond to a given feature”. The authors propose a technique for testing and gen-
erating oracles focusing on a subset of features, i.e. Double rotation, Killing and
Restarting, Pausing and Resuming, Back button. They present QUANTUM, a frame-
work that automatically generates a test suite to test the user-interaction features
of a given app leveraging application agnostic test oracles. QUANTUM requires a
user-generated GUI model of the app under test as input and provides as output a
JUnit-Robotium test suite that exercises interaction features. Their initial experimen-
tation of QUANTUM exposed a total of 22 real failures in 6 open-source Android apps,
including 12 GUI failures due to orientation change.

Adamsen et al. [43] aim to improve the quality of apps by testing them under
adverse conditions. They propose a technique and a tool named THOR that ampli-
fies existing test cases injecting "neutral" event sequences that should not affect the
functionality of the app under test and the output of the original test case. They fo-
cus on event sequences that are usually neglected in traditional testing approaches,
including double orientation change events. Moreover, they provide a classification
of the failures and bugs their technique is able to find. Among the four categories
proposed in their classification, there are failures related to the GUI, i.e., Unexpected
Screen and Element disappears, that are similar to the ones I dealt with. They per-
formed an experiment involving 4 real Android apps and the results showed that
THOR was able to detect 66 distinct problems, the majority of which are due to events
that cause a transition of the activity through the states Pause-Stop-Destroy-Create
such as orientation change. Most of the failures detected by THOR belong to GUI
category.

The results achieved both by [42] and [43] gave me a hint about the relevance
of the problem addressed in this work, since several failures discovered by their
techniques were GUI-related and exposed by the orientation change. While their
work focused only on failure detection and classification, we also investigated the
faults that cause a relevant part of these failures.
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3.7.3 Android-specific fault classification

Several works in the literature aimed at defining Android-specific fault classes.
One of the first attempts at classifying Android faults is due to Hu and Neamtiu

[27] that proposed 8 bug types by analyzing the faults they found in 10 open source
Android apps. Their fault classification is based on bug report analysis, whereas we
abstract Android fault classes by analyzing the causes of GUI failures observed by
testing 68 real apps. Moreover, their fault categories are described at an high level
of abstraction and are not supplemented by code-related information. Instead, we
provide a more structured description of each class of fault, made of 7 characteristics
that also contains the Android app component where the fault may be detected and
a possible code fix.

Shan, Azim and Neamtiu [45] focused on a specific fault class due to the incorrect
handling of the data that should be preserved when an app is resumed or restarted.
They named KR errors the failures caused by these faults. These authors proposed
a technique for finding KR errors and performed an experiment where they found
49 KR errors in 37 real Android apps. Most of these errors manifested themselves
on the GUI, similarly to the GUI failures we dealt with in this work. But, unlike this
work that distinguishes among different types of GUI failures, their paper generi-
cally classifies them as KR errors.

Banerjee et al. [78, 79] focused on another type of problem in Android apps i.e.
abnormal energy consumption, called energy hotspots. These authors proposed an
automated test generation framework aimed at detecting energy hotspots. Like this
work, they also explored the causes of these failures in the Android app code and
defined four fault classes (Resource Leak, Wakelock Bug, Vacuous Background Ser-
vices, Immortality Bug), each one corresponding to a different energy hotspot cat-
egory. Similarly to this work, they propose a structured description of each defect
type made of Affected components, Defect pattern, Patch suggestion, and a Real-
world example.

Deng et al. [80, 62] also dealt with Android bugs but with the different aim
of defining novel operators to mutate the source code of Android apps. Part of
their operators are designed on the basis of unique technical features of the Android
framework. Another part is based on common faults in real apps obtained by inves-
tigating bug reports and code change history logs on Github repositories. This work
instead introduces 6 classes of faults discovered by testing real Android apps rather
than by mining bug tracking repositories. The majority of the considered bugs were
not already present in issue trackers since we focused on problems often overlooked
by developers and testers. The work of these authors shares one piece of common
ground with this work, since they designed a specific operator to force testing of ori-
entation changes. We focused on this specific issue and provided a comprehensive
analysis that spans from GUI failures to code faults.
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3.8 Conclusions and Future Work

In this Chapter, I addressed the problem of GUI failures in Android mobile applica-
tions that are caused by the screen orientation changes. I proposed a classification of
these failures based on 2 attributes named scope and mode.

In order to investigate the impact of these failures in the context of Android,
we performed 2 exploratory studies that involved both open source apps and apps
distributed by the official Android Google Play market. The studies exploited am-
plification based black-box testing techniques for analyzing 78 apps. The results
showed that more than 88% of the analyzed apps were affected by these failures and
thus highlighted that this problem is widespread in the context of Android mobile
apps. This study is the first one to point out the relevance of this issue in mobile
apps context.

Almost all the failures detected by this study were novel and not already present
in issue trackers. We made available the set of collected GUI failures as open-source;
it provides the largest currently available dataset of this kind of failures and may be
exploited to evaluate and compare the effectiveness of different testing techniques
and tools.

The study also showed that some failure modes were more frequent than others
and some GUI object types were more frequently involved. This suggests that de-
velopers should be aware and more careful about specific features of the Android
framework. The management of some GUI object types may be critical and error-
prone in Android app code because of deficiencies in Android framework and its
documentation. However, I cannot exclude that we found more failures of certain
types because the GUIs of the considered apps mostly used these objects. A con-
trolled study would be necessary in order to verify this hypothesis.

The study also highlighted 3 types of failures that were more common than oth-
ers among mobile apps and provided a relevant sample of failure instances of these
types. We analyzed the source code of the apps affected by these failures and dis-
covered 6 classes of common faults that cause them. These classes abstract common
errors that should be avoided by developers in order to improve the app quality and
to ensure better user experience.

In future work, we plan to exploit these Android-specific fault classes to develop
new mutation operators for testing of Android apps and to define fault localization
techniques focused on source code bugs that may cause the observed failures.

This work addressed GUI failures in the context of Android. However, the pre-
liminary investigation presented in Section 3.2 shows that the addressed problem
affects other mobile platforms. Thus, we plan to extend this work by considering
other mobile operating systems, such as iOS and Windows10.

This work targeted GUI failures triggered by the orientation change event. In the
next Chapter, I consider other mobile-specific events which may cause GUI failures.
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Chapter 4

An Automated Black-Box Testing
Approach for Android Activities

In this Chapter I propose ALARic, a fully automated black-box event based testing
technique that explores an app under test for detecting issues tied to the Android
Activity lifecycle. ALARic has been implemented in a tool. An experiment involv-
ing 15 real Android apps showed the effectiveness of ALARic in finding GUI failures
and crashes tied to the Activity lifecycle. Moreover, ALARic proved to be more effec-
tive in detecting crashes than Monkey, the state-of-the practice automated Android
testing tool.

4.1 Introduction

As introduced in Section 2.1.3, an Activity is a fundamental Android app component
which represents a single GUI that allows the user to interact with the app. The
Android Framework defines a peculiar lifecycle for Activity instances to guarantee
a smooth user experience.

The official Android Developer Guide stresses the relevance of the Activity life-
cycle feature and warns the developers of the threats it introduces in several sections;
therefore it provides recommendations and guidelines to help programmers in the
correct handling of this feature.

Despite this, several works in the literature have pointed out that mobile apps,
including industrial-strength ones, suffer from issues that can be attributed to Ac-
tivity lifecycle mishandling [4, 42, 43, 6, 28, 44, 45, 7, 46, 47, 48, 49, 50]. Zein et al. [3]
performed a systematic mapping study of mobile application testing techniques in-
volving 79 papers and emphasized the need for specific testing techniques targeting
Activity lifecycle conformance.

Some solutions have been presented in the literature to address this problem. A
part of them proposed testing techniques that rely on existing testing artifacts [43,
81] or GUI models [42] to automatically generate test cases able to properly exercise
the Activity lifecycle. Another work [45] uses static analysis to detect bugs that may
cause a corrupt state when an app is paused, stopped, or killed. Their solution can
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also automatically generate test cases to reproduce bugs but it needs to modify the
app code in order to verify the statically detected issues.

Another group of approaches leverages AGETs to find issues tied to the Activity
lifecycle. These dynamic techniques mostly focus on finding a specific type of fail-
ure, such as crashes [6, 7] or resource leaks [46]. Only one of them [28] addressed GUI
failures but their authors only considered the issues tied to the orientation change
event, potentially neglecting the ones tied to other events that exercise the Activity
lifecycle.

As pointed out by the exploratory studies presented in Chapter 3, GUI failures
tied to the Activity lifecycle represent a widespread category of issues in Android
apps and there is the need to define effective testing techniques to detect them.

To overcome these limitations, I propose ALARic (Activity Lifecycle Android
Ripper), a fully automated black-box event-based dynamic testing technique that I
realized with the support of my research group.

ALARic is able to detect both GUI failures and app crashes related to the lifecycle
of the Activities of an app by systematically testing each Activity GUI state encoun-
tered during the automated app GUI exploration. To this aim, it leverages mobile-
specific events able to exercise the Activity lifecycle and specifically designed testing
oracles. This solution does not require any prior knowledge of the app under test,
app modification or manual intervention.

The effectiveness of ALARic in detecting issues tied to the Activity lifecycle was
demonstrated in an experiment involving 15 real Android apps. The experiment
also showed that ALARic was more effective in detecting crashes tied to the Activity
lifecycle than the state-of-the practice automated Android testing tool, i.e. Monkey,
the most widely used tool of this category in industrial settings.

This work improves the literature on automated GUI testing with the following
contributions:

• a novel automated GUI testing technique to detect GUI failures and crashes
tied to the Android Activity lifecycle;

• an experiment involving real Android apps showing the validity of the pro-
posed technique.

The remainder of the Chapter is structured as follows. Section 4.2 describes the
background and Section 4.3 provides an overview of the proposed testing approach.
Section 4.4 presents design and implementation details about the tool while Section
4.5 reports the experimental evaluation. Section 4.6 provides related work. Finally,
Section 4.7 draws the conclusions and presents future work.
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4.2 Background

4.2.1 Activity Lifecycle Loops

According to the Android Developer Guide, the Android Activity lifecycle presents
3 key loops that are named Entire Loop, Visible Loop, and Foreground Loop, respectively.

In the following, I briefly describe these loops. Moreover, for each key loop I
provide a descriptive diagram in which the edges represent the callback methods
that are invoked by the Android platform when an Activity transits between states
during the execution of the loop:

• The Entire Loop (EL), shown in Figure 4.1, consists in the Resumed-Paused-
Stopped-Destroyed-Created-Started-Resumed sequence of states. There are
different ways of exercising this loop that produce different behaviors of the
Activity. It can be exercised by events that cause a configuration change, e.g.
an orientation change of the screen, that destroys the Activity instance and
then recreates it according to the new configuration26; in this case, the system
is expected to retain the Activity instance state. Instead, if an Activity instance
is in the foreground, and the user taps the Back button and then he returns
to the Activity, this loop is still exercised but the Activity instance is destroyed
and also removed from the back stack since there is no expectation of returning
to the same instance of the Activity;

FIGURE 4.1: The Entire Loop

• The Visible Loop (VL), shown in Figure 4.2, corresponds to the Resumed-Paused-
Stopped-Started-Resumed sequence of states during which the Activity is hid-
den and then made visible again. There are several event sequences able to
stop and restart an Activity, e.g. turning off and on the screen or putting the
app in background and then in foreground again through the Overview or
Home buttons;

26https://developer.android.com/guide/components/activities/state-changes.html

https://developer.android.com/guide/components/activities/state-changes.html
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FIGURE 4.2: The Visible Loop

• The Foreground Loop (FL), shown in Figure 4.3, involves the Resumed-Paused-
Resumed state sequence. The transition Resumed-Paused can be triggered by
opening non full-sized elements such as modal dialogs or semi-transparent
activities that occupy the foreground while the Activity is still visible in back-
ground. To trigger the transition Paused-Resumed the user should discard
this element. Therefore, this loop can be exercised by the event sequence that
consists in opening and closing a non full-sized element.

FIGURE 4.3: The Foreground Loop

4.2.2 Issues Tied to the Activity Lifecycle

Android App developers should correctly implement Activities, taking into account
their lifecycle. This ensures the app works the way users expect and does not ex-
hibit aberrant behaviors as it transitions through different lifecycle states at runtime.
Good implementation of the lifecycle callbacks and the awareness of the Android
Framework features can help the programmer to develop apps that behave as ex-
pected and prevent a number of issues. In this work, I will focus on Crashes and
GUI failures.
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(a) GUI state before exer-
cising the Entire Loop

(b) GUI state after exercising the Entire
Loop

FIGURE 4.4: Crash exposed by the Dropbox app

4.2.2.1 Crashes

A crash occurs when an app stops functioning properly and exits unexpectedly.
When an app crashes, Android terminates its process and displays a dialog to let
the user know that the app has stopped27. It is a very undesirable app behavior and,
indeed, the most blatant one. Therefore, a number of testing tools has been pro-
posed in the literature to expose Android crashes [2, 71, 7, 9]. This work will focus
on crashes tied to the Activity lifecycle, i.e. crashes triggered by events that exercise
the Activity lifecycle. I report an example of crash that we detected in Dropbox ver-
sion 27.1.228, the Android client app offered by the popular file hosting service. If
the user selects the third item of the Camera Uploads settings, a modal dialog appears
(see Figure 4.4(a)). When the user changes the orientation of the device, the app
suddenly stops working, as shown in Figure 4.4(b).

4.2.2.2 GUI Failures

GUI failures are a relevant class of failures that may disrupt the user experience and
consist in the manifestation of an unexpected GUI state [52]. In particular, there
may be a GUI failure tied with the Activity lifecycle when the GUI state before the
Activity is stopped, paused or destroyed is different from the GUI state displayed
after the user returns to the Activity [42, 43, 45, 82, 53].

The studies I presented in Chapter 3 pointed out that GUI failures triggered
by exercising the Entire Loop, i.e. changing the orientation of the screen, are a
widespread problem that affect both open source and industrial-strength apps. The
work presented in this Chapter will focus instead on GUI failures triggered by exer-
cising all the 3 Activity lifecycle key loops.

27https://developer.android.com/topic/performance/vitals/crash.html
28https://dropbox.zendesk.com, Dropbox Support request ID #5199918

https://developer.android.com/topic/performance/vitals/crash.html
https://dropbox.zendesk.com
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As an example, I report a GUI failure triggered by exercising the Visible Loop
that we found in version 1.1.2 of Anecdote, an Android application that displays
quotes and that is available for free on the Google Play Store. The users can select
from a list their favorite websites by checking the corresponding checkboxes (see
Figure 4.5(a)). When the users put the app in background by tapping the Home
button and then push it back in foreground, they naturally expect that the GUI state
will remain the same. Instead, the app will exhibit an unexpected GUI state, i.e. the
previously checked boxes are unchecked and different websites appear selected as
shown in Figure 4.5(b).

(a) GUI state before exer-
cising the Visible Loop

(b) GUI state after exercis-
ing the Visible Loop

FIGURE 4.5: GUI Failure exposed by the Anecdote app

4.2.3 Lifecycle Event Sequences

Android apps are EDS that can react to several types of events. Some specific event
sequences are able to cause transitions between Activity states.

In particular, I will refer to sequences of events able to trigger one of the key loops
of the Activity lifecycle as Lifecycle Event Sequences. Table 4.1 reports the Lifecycle
Event Sequences we elicited from the Android Developer Guide, their description
and the key loops they are able to trigger.

4.3 The ALARic Approach

In this section, I present the approach I proposed in collaboration with my research
group to test the Activity lifecycle of Android apps, named ALARic.

ALARic implements a fully automated online testing technique since it explores
the application under test (AUT) and at the same time detects aberrant behaviors
tied to the Activity lifecycle, i.e. Crashes and GUI failures.
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TABLE 4.1: Lifecycle Event Sequences

Triggered Activity
Lifecycle Loops

Lifecycle Event
Sequence Description EL VL FL

Orientation Change (OC) Change the orientation of the device 3

Back and Reopen Activity (BRA) The back button is pressed then the Activity is started again 3

Turn Off screen
Turn On screen (TOTO)

The Screen is turned off and then it is turned on by pressing the
power button 3

Background Foreground (BF)
The app is brought into the background opening the Task manager
and then is brought back into foreground selecting it from the
active tasks.

3

Receive phone call
Close phone call (RC) A phone call is received and then is hanged up 3

Semi-Transparent Activity
Intent (STAI)

A Semi-transparent Activity is invoked by an intent and then it is
closed pressing the back button 3

Dialog Open
Dialog Close (DODC) A Dialog is shown and then it is closed by pressing the back button 3

ALARic exercises the AUT through input event sequences, being Android apps
event-driven software systems [22]. The exploration strategy adopted by ALARic
sends random input events to the AUT and systematically executes an input event
sequence able to exercise one of the 3 key Activity lifecycle loops each time a new
GUI is encountered for the first time during the app exploration. After the Activ-
ity lifecycle loop is exercised, ALARic evaluates whether the app exposes any issue
related to the Activity lifecycle. The absence of issues tied to the Activity lifecycle
after the Activity Lifecycle is exercised is a necessary property of the target Android
apps that can be seen as a kind of metamorphic relation [83]. This relation is ex-
ploited by ALARic to verify the correctness of the apps under test even when their
requirements are not available.

To exercise the 3 key lifecycle loops, we leverage 3 Lifecycle Event Sequences, i.e.,
the Double Orientation Change (DOC), the Background Foreground (BF) and the Semi-
Transparent Activity Intent (STAI) event sequences. We chose these Lifecycle Event
Sequences for 2 main reasons. The former reason is that each of these event se-
quences is able to exercise a different lifecycle loop. The latter reason is that the GUI
state of the Activity should be retained after the execution of these event sequences
[42] and, therefore, they are suitable for detecting GUI failures.

The Double Orientation Change (DOC) event sequence exercises twice the EL loop
and consists in a sequence of 2 consecutive orientation change events. As in the
studies presented in Chapter 3, we used the DOC event sequence to detect GUI fail-
ures. Figure 4.6 reports an example that explains why applying a single orientation
change may not be sufficient to detect GUI failures. It shows a DOC event sequence
triggered on an Activity of the Tomdroid app starting from the GUI state in Figure
4.6(a). After a single orientation change event, the Activity is rendered in landscape
mode (see Figure 4.6(b)) and differs from the starting state since the Action Overflow
Menu does not have the Search option anymore but presents a magnifier icon. These
minor differences in GUI content are indeed acceptable because the app provides the
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same functionality in both landscape and portrait orientations. After a second con-
secutive orientation change (see Figure 4.6(c)), the GUI content and layout is the
same as before the first orientation change.

(a) (b) (c)

FIGURE 4.6: The Double Orientation Change Lifecycle Event Se-
quence

The Background Foreground (BF) sequence puts the app in background through
the tap of the Home button and then pushes the app again in foreground. It exercises
the VL loop. Figure 4.7 shows a BF event sequence triggered on an Activity of the A
Time Tracker app.

As regards the FL loop, it is exercised by the Semi-Transparent Activity Intent (STAI)
event sequence. It consists in starting a semi-transparent Activity that pauses the
current foreground Activity and then returning to it by tapping the Back Button.
Figure 4.8 shows a STAI event sequence triggered on an Activity of the Amaze app.

The ALARic approach is configurable and allows the tester to set up one type of
Lifecycle Event Sequence to apply in order to exercise the Activity lifecycle in all the
GUI states exposed by an Activity that are encountered during the app exploration.

Figure 4.9 shows a real example of how ALARic works. In this example, I use the
DOC Lifecycle Event Sequence to test the Amaze app version 3.1.2 RC4. The snap-
shots represent the GUI states encountered during the automated GUI exploration.

(a) (b) (c)

FIGURE 4.7: The Background Foreground Lifecycle Event Sequence
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(a) (b) (c)

FIGURE 4.8: The Semi-Transparent Activity Intent Lifecycle Event Se-
quence

The red edges represent Lifecycle Event Sequences, whereas the black edges are ran-
dom planned events. At each exploration iteration, ALARic describes the current
GUI state and verifies whether it has been explored before during the exploration.
The GUI states encountered for the first time, i.e. A, C, E, H, L, are exercised by a
DOC. Whereas, the GUI states already encountered, i.e. D, F, G, J, K, are exercised
by random planned events. The tool compares the GUI states before and after the
DOC event and checks whether they are equivalent. ALARic found 3 GUI failures in
this exploration, i.e. after the 3th, 5th and 8th iteration. Moreover, the app crashed
after the triggering of the 12th event. When a crash occurs, ALARic starts the app
from scratch. The exploration terminates either after the triggering of a predefined
number of events or after a given testing time.

FIGURE 4.9: ALARic testing example
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4.4 The ALARic Tool

The ALARic approach has been implemented in the ALARic Tool29. Fig. 4.10 shows
the tool architecture that consists of 2 components: the ALARic Engine and the Test
Executor.

The ALARic Engine component is responsible for implementing the business logic
of the testing approach. It analyzes the GUI currently rendered by the AUT, plans
the next input event sequence to be fired and checks the presence of failures. It does
not interact directly with the AUT but delegates this task to the Test Executor compo-
nent that is able to fire input event sequences on the AUT and to fetch the description
of the current GUI in terms of its composing widgets and their attribute values.

The tool takes as input a Configuration File that is needed to set up the testing
process. In this file, the user specifies the Lifecycle Event Sequence to be triggered
and the termination condition. As for the termination condition, it is possible to set
either a maximum execution time or the number of input event sequence to be fired.
The ALARic Engine fetches the AUT by exploiting its .apk or its source code and then
installs it on the Test Executor.

During the automatic app exploration, ALARic is able to save the descriptions
of the encountered GUIs. At each exploration iteration, it compares the GUI cur-
rently rendered on the screen against the descriptions of the GUI states already en-
countered during the exploration. When the current GUI state does not match any
stored GUI description, ALARic saves it and test it by applying the specified Life-
cycle Event Sequence and evaluating the test oracle. In this way, the proposed tool
tests only the GUI states encountered for the first time.

The tool produces a Report File about the detected crashes and GUI Failures. The
report contains for each GUI failure: (1) the app name, (2) the Activity name where
the failure was detected, (3) the sequence of events that led to the failure and (4)
the executed Lifecycle Event Sequence type. Moreover, for the GUI Failures, it also
contains the description and the screenshot of the GUI states before and after the
application of the Lifecycle Event Sequence. As for the crashes, it contains the un-
handled exception type and its stack trace.

4.4.1 ALARic Engine

The online testing process implemented by the ALARic tool is described by the UML
Activity diagram shown in the ALARic Engine component of Figure 4.10. It extends
the generic online testing algorithm presented in the framework proposed by Amal-
fitano et al. [25]. The steps belonging to the original algorithm are reported in white,
whereas the ones introduced by the ALARic approach are colored in gray.

The ALARic Engine performs an iterative process of automatic GUI exploration
where sequential steps are executed until a given termination condition is reached.

29The ALARic tool is available for download at the following link https://goo.gl/ypTMVs.

https://goo.gl/ypTMVs
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FIGURE 4.10: The ALARic tool architecture

In the Describe Current GUI step, a description of the current GUI state is inferred,
according to a GUI description abstraction criterion. The description of a GUI state
includes the (attribute, value) pairs assumed by its components at runtime. The de-
scription of the current GUI state is compared with the ones previously encountered
to evaluate whether it has ever been met before during the exploration. The Ex-
ercise Activity Lifecycle and Evaluate Oracles steps are executed when a GUI state is
encountered for the first time. Otherwise, the Plan Events and Run Events steps are
executed.

In the Exercise Activity Lifecycle step, one predefined Lifecycle Event Sequence
is triggered. The Evaluate Oracles step allows the verification of oracles appositely
crafted to detect the presence of specific types of Activity lifecycle issues. The current
ALARic implementation is able to evaluate 2 oracles, i.e. GUI failures and crashes.
As for GUI failures, similarly to [42, 43, 45, 82, 53], the tool is able to recognize
failures that occur when the GUI states before and after the application of a Lifecycle
Event Sequence are not equivalent. As for the crashes, ALARic checks whether an
unhandled exception occurs after the execution of a Lifecycle Event Sequence.

The Plan Events step plans the input event sequences that will be fired on the
current GUI according to a uniform random scheduling strategy. In the Run Events
step, the planned input event sequence is actually executed.

Finally, in the Update Termination Condition step, it is evaluated whether a maxi-
mum testing time or a maximum number of fired input events, defined by the tester,
is reached.

The Engine requires the REST APIs provided by the Test Executor component to
carry out its activities. It calls the Init Testing Session and Stop Testing Session APIs
at the begin and at the end of the testing process for installing and uninstalling the
application under test, respectively. The Fire Events API is used for triggering events,
whereas the Get GUI Description one is exploited for retrieving the description of the
current GUI.
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4.4.2 Test Executor

The Test Executor component is in charge of executing the testing activities of the
ALARic Engine on the AUT. It is able to interact with both a physical device and a
Android Virtual Device (AVD)30. It is made of 2 components, i.e. Robot and Driver
that interact through Java socket technology.

The Driver component is in charge to decouple the business logic implemented
in the ALARic Engine from the device where the AUT is installed. The Robot should
run on the same device where the AUT is installed and interacts with it by firing
events and describing the GUIs rendered at runtime. This component exploits the
APIs provided by the Robotium library31 and the Android Debug Bridge (ADB)32.

4.5 Experimental Evaluation

In this section, I report the study I carried out with the collaboration of my research
group to investigate the ability of the ALARic tool in detecting issues tied to the
Activity lifecycle. We consider as tied to the the Activity lifecycle the issues that are
exposed by Lifecycle Event Sequences. The study aimed at answering the following
research questions:

RQ1 How effective is the ALARic tool in detecting issues tied to the Activity lifecy-
cle in real Android apps?

RQ2 How does the effectiveness of the ALARic tool in detecting issues tied to the
Activity lifecycle in real Android apps compare to the state-of-the-practice tool
Monkey?

Some tools have been proposed in literature that exploit dynamic analysis and
can find crashes tied to the Activity lifecycle [6, 7]. However, we were unable to
compare the ALARic tool against them, since they are either no longer available, or
are not supported anymore and are unable to target the latest Android OS and SDK
versions. Therefore, we considered the Monkey33 tool since it is regarded as the
current state-of-practice for automated Android app testing [84, 9], being the most
widely used tool of this category in industrial settings [39, 85].

4.5.1 Objects

As objects of the evaluation, we selected 15 apps that were distributed by the official
Google app store whose source code was available in the F-Droid repository. In
this way, we selected apps that were representative of the typical apps available to
Android users. The availability of the source code allowed us to better analyze the

30https://developer.android.com/studio/run/emulator.html
31https://github.com/RobotiumTech/robotium
32https://developer.android.com/studio/command-line/adb.html
33https://developer.android.com/studio/test/monkey.html

https://developer.android.com/studio/run/emulator.html
https://github.com/RobotiumTech/robotium
https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/studio/test/monkey.html
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detected failures. We chose F-Droid since it is a well-known repository of Free and
Open Source Software (FOSS) applications for the Android platform that has been
widely used in other studies on Android testing proposed in literature [2, 7, 9, 82,
84]. Table 4.2 reports for each selected app its name, the considered version, its size
and the number of its Activities.

TABLE 4.2: Object Apps

App Name Version Apk Size (kB) #Activities
A1 A Time Tracker 0.21 115 5
A2 Port Knocker 1.0.9 2,200 6
A3 Who Has My Stuff? 1.0.27 104,3 4
A4 Agram 1.4.1 723 5
A5 Alarm Klock 1.9 640 5
A6 Padland 1.3 2,000 10
A7 Syncthing 0.9.1 19,300 12
A8 Anecdote 1.1.2 1,800 3
A9 Amaze File Manager 3.1.2 RC4 5,900 5
A10 Google Authenticator 2.21 708 5
A11 BeeCount 2.3.9 3,200 8
A12 FOSDEM companion 1.4.6 1,300 8
A13 Periodical 0.30 925 6
A14 Taskbar 3.0.2 1,600 23
A15 SpaRSS 1.11.8 1,400 8

4.5.2 Metrics

To evaluate the effectiveness of ALARic in detecting GUI failures, we considered the
following metrics:

• #DGFDOC: number of distinct GUI Failures triggered by the DOC event se-
quence;

• #DGFBF: number of distinct GUI Failures triggered by the BF event sequence;

• #DGFSTAI : number of distinct GUI Failures triggered by the STAI event se-
quence;

• #DGFTotal : number of distinct GUI Failures tied to the Activity lifecycle trig-
gered by either DOC, BF, or STAI.

Analogously, to evaluate the effectiveness of the tools in finding crashes, we consid-
ered the following metrics:

• #DCDOC: number of distinct Crashes triggered by the DOC event sequence;

• #DCBF: number of distinct Crashes triggered by the BF event sequence;

• #DCSTAI : number of distinct Crashes triggered by the STAI event sequence;
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FIGURE 4.11: Overview of the Experimental Procedure

• #DCTotal : number of distinct Crashes tied to the Activity lifecycle triggered by
either DOC, BF, or STAI.

Since the same issue may be exposed multiple times during a testing process, we
decided to count only the occurrences of distinct issues. We made these assump-
tions:

• GUI failures are distinct if they involved not equivalent start states and not
equivalent end states given the notion of equivalence between GUI states in-
troduced in Section 3.3.3;

• crashes are distinct if they do not refer to the same type of unhandled exception
and do not have the same stack trace [6, 7].

4.5.3 Experimental Procedure

The experimental procedure we followed is shown in Figure 4.11. It was organized
in two steps, namely (1) App Testing and (2) Data Collection & Validation.

4.5.3.1 App Testing

This step was conducted in two phases. In the former phase, all the objects were
tested using the ALARic tool. We used 3 configurations of the tool. Each configu-
ration allows ALARic to plan and execute only one of the Lifecycle Event Sequence
types, i.e. DOC, BF, and STAI. We performed 3 runs for each configuration to mit-
igate the non determinism of the apps and of the random exploration techniques
[2]. Each run lasted 1 hour. A total of 9 one-hour testing runs for each app were
performed.

In the latter phase, we tested the object apps using the Monkey tool, in order to
compare the tools effectiveness. Monkey is an automated testing tool for Android
apps, belonging to the Android SDK. This tool adopts a random testing approach,
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which sends a random stream of UI and system-level events to the app under test.
We performed a testing process where 9 one-hour Monkey testing runs were exe-
cuted for each app. We executed 9 Monkey runs as with ALARic in order to ensure
a fair comparison among the tools. In this phase, we set the maximum verbosity
level of the Monkey tool in order to produce a more accurate and rich output con-
taining information about the seeded events and the detected crashes.

All the testing processes have been performed on the same testing infrastructure
which consists of a desktop PC having an Intel(R) Core(TM) i7 4790@3.60GHz pro-
cessor and 8 GB of RAM, running a standard Nexus 5 AVD with Android 6 (API 23).
The host PC was equipped with the Ubuntu OS, version 16.04. All the runs were
executed on AVDs created from scratch to assure that each run was executed in the
same conditions.

4.5.3.2 Data Collection & Validation

At the end of the testing processes, all the reports produced by the considered tools
were gathered. A team composed by me, another Ph.D. students and a Postdoc-
toral Researcher having knowledge on Software Debugging and Android Testing
was asked to analyze the failures exposed by the tools and to validate them. To this
aim, the team examined the reports produced by the considered tools to identify
the distinct failures exposed by each tool. Unlike ALARic, Monkey does not offer a
detailed description of each failure exposed at runtime [7]. To extract the crashes de-
tected by Monkey from the output it generated, the team manually inspected these
files to find the exception stack traces instances and the events that led to them.
Then they exploited the information contained in the issue reports to reproduce all
the distinct failures. To this aim they manually tried to reproduce the reported issues
on a real LG G4 H815 device equipped with Android 6.0. In this way we are able
to consider only real failures caused by an incorrect application logic and discard
the ones caused by issues tied to the testing infrastructure and the virtual device.
As regards the GUI failures, the team also assessed whether each failure was actu-
ally the manifestation of an incorrect GUI state rather than an intended behavior of
the application, e.g. a timer that continues to count down or a news feed that adds
new elements may cause the GUI state to be different after the execution of a Life-
cycle Event Sequence. To guarantee that the issues were actually tied to the Activity
lifecycle, the team performed a debugging activity to verify that the issues were a
manifestation of faults that are exercised by executing the Activity lifecycle.

4.5.4 Results and Analysis

The validated distinct failures have been used to calculate the values of the metrics.
Table 4.3 reports, for each app, the total number of GUI failures and crashes that
have been found by ALARic and validated by the team, grouped by the Lifecycle
Event Sequence type that triggered them. Table 4.4 shows for each app the number
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of total crashes tied to Lifecycle Event Sequences detected by ALARic and Monkey,
respectively. We did not compare the results regarding GUI failures since Monkey is
not able to detect them.

TABLE 4.3: Experimental Results

GUI Failures Crashes

App #DGFTotal #DGFDOC #DGFBF #DGFSTAI #DCTotal #DCDOC #DCBF #DCSTAI

A1 12 9 5 1 0 0 0 0
A2 5 5 0 0 0 0 0 0
A3 5 4 3 0 0 0 0 0
A4 8 8 0 0 1 1 0 0
A5 4 3 2 1 0 0 0 0
A6 8 8 0 0 1 1 0 0
A7 7 7 0 0 1 1 0 0
A8 2 1 1 1 0 0 0 0
A9 17 17 3 3 2 2 2 2
A10 5 4 2 0 0 0 0 0
A11 8 6 4 3 1 0 1 1
A12 3 3 1 0 0 0 0 0
A13 4 3 1 0 0 0 0 0
A14 13 13 0 0 0 0 0 0
A15 5 5 0 0 2 2 0 0
Total 106 96 22 9 8 7 3 3

Overall, ALARic found 111 distinct GUI failures and 8 crashes. The team vali-
dated as true positives 106 GUI failures and all the crashes. All the apps exposed
at least 2 GUI failures and 6 apps exhibited at least one crash. The DOC triggered
the highest number (96) of GUI failures and it was able to expose GUI failures in
all the considered apps. A total of 22 GUI failures tied to BF were found in 9 apps.
STAI triggered 9 GUI failures in 5 apps. As concerns the crashes, the DOC triggered
the highest number of crashes (7) in 5 apps. A total of 3 crashes related to the BF
sequence were found in 2 apps, whereas STAI triggered 3 crashes in 2 apps.

We analyzed the relations among the sets of issues exposed by each of the 3
considered Lifecycle Event Sequences. As shown by the Venn Diagrams reported
in Fig. 4.12, in some cases the same issue was exposed by more than one type of
Lifecycle Event Sequence, whereas other issues were triggered by only one Lifecycle
Event Sequence type.

As Figure 4.12(a) shows, 7 out of the 106 GUI failures detected by ALARic were
found by all the three considered Lifecycle Event Sequences. Among the 96 GUI fail-
ures triggered by DOC, 84 were not found by BF and STAI. 8 GUI failures have been
triggered only by BF. 5 GUI failures triggered by BF were also caused by DOC but
not by STAI. 7 out of 9 GUI failures triggered by STAI, are also detected exploiting
both the other 2 Lifecycle Event Sequences. The remaining 2 GUI failures triggered
by STAI were also caused by BF but not by DOC.

Fig. 4.12(b) illustrates that only the 2 crashes exposed by A9 were triggered by all
the 3 considered Lifecycle Event Sequences. 5 out of 8 crashes were triggered only
by DOC. Instead, the crash exposed by A11 was triggered by BF and STAI but not
by DOC.
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(a) GUI Failures triggered by the
Lifecycle Events

(b) Crashes triggered by the Life-
cycle Events

FIGURE 4.12: Issues detected by ALARic

In conclusion, these results suggest that DOC is more likely to expose issues tied
to the Activity lifecycle since it has been the most effective in revealing GUI failures
and crashes in the experiment. However, BF doesn’t have to be neglected since it
has shown the capability to discover issues that the other Lifecycle Event Sequences
missed. Also STAI that exercises the FL and has a limited impact on the Activity
lifecycle, led to the detection of 9 GUI failures and 3 crashes.

On the basis of the obtained results, it is possible to answer the first research
question RQ1 and conclude that:

ALARic detected issues tied to the Activity lifecycle in all the analyzed apps. It exposed
both GUI failures and crashes. Lifecycle Event Sequences that exercise diverse key lifecycle
loops showed different capabilities in exposing app issues.

TABLE 4.4: Experimental Comparison

App #DCALARic #DCMonkey
A1 0 0
A2 0 0
A3 0 0
A4 1 1
A5 0 0
A6 1 0
A7 1 0
A8 0 0
A9 2 0
A10 0 0
A11 1 0
A12 0 0
A13 0 0
A14 0 0
A15 2 1
Total 8 2

Regarding the comparison between ALARic and Monkey, the data in Table 4.4
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shows that for 6 out of 7 apps ALARic was able to find more crashes tied to the Ac-
tivity lifecycle than Monkey. In A4 both the tools exposed the same crash. Moreover,
both the tools detected an additional crash in A9 that was not tied to the Activity life-
cycle. To better understand this result we analyzed in detail the reports produced
by Monkey. Monkey was able to seed events that exercise the Activity lifecycle, e.g.
orientation changes, back button, but it applied them without a proper strategy, fail-
ing in discovering several issues tied to the Activity lifecycle that were found by
ALARic, instead. On the basis of this data it is possible to answer to RQ2 concluding
that:

ALARic outperformed the state-of-the-practice tool Monkey in the ability to detect issues
tied to the Activity lifecycle. In total, ALARic triggered more crashes than Monkey.

4.5.5 Lesson Learned

The experimental results showed that Lifecycle Event Sequences are able to exercise
the Activity lifecycle and to expose failures. The debugging activity performed in
the failure validation step showed that the faults causing the failures were mostly
located outside the code that overrides the lifecycle callback methods.

As an example, the crash found in A11 occurs when the onSaveInstanceState()
callback method of the EditProjectActivity is called, but its cause is located inside
the LinkEditWidget class that defines a custom GUI object. The programmer in-
deed overrode the onSaveInstanceState() callback method to save at runtime the
instance state information of the Activity, as introduced in Section 2.1.3, i.e. the state
of the LinkEditWidget custom GUI object contained in the EditProjectActivity

Activity. To this aim, the programmer correctly serialized the LinkEditWidget ob-
jects and properly implemented the Serializable interface in the class that defines
the LinkEditWidget object. However, the user-defined LinkEditWidget contains
android.widget.SpinnerGUI components that do not implement the Serializable
interface. Therefore a java.io.NotSerializableException is thrown at runtime
when the lifecycle of the EditProjectActivity Activity is exercised.

Another example is related to a failure that regarded 57 out of the 106 GUI fail-
ures detected by ALARic. It involved Dialog objects disappearing from the GUI
after the execution of a Lifecycle Event Sequence. This failure affected most of the
considered apps since 12 out of 15 apps exposed it. A Dialog is a small window that
does not fill the screen and is normally used for modal events that require users to
take an action before they can proceed. In most cases, the fault causing these fail-
ures has been localized in objects calling directly the public show method offered by
the Dialog or the AlertDialog Builder classes to display a Dialog on screen. This
will correctly pop up the dialog on the screen but the dialog will disappear when
the Activity is destroyed and recreated in its lifecycle. Instead, Android guidelines
explicitly prescribe that the control of a dialog GUI object (deciding when to show,
hide, dismiss it) should be managed by the DialogFragment class, which ensures a
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correct handling of Lifecycle Event Sequences. This fault resulted to be a common
cause of this kind of failures also in the study presented in Section 3.4 that focuses
on GUI failures due to orientation changes.

This analysis taught me 2 lessons that could be useful for Android developers
and testers. The former lesson is that the Android framework components should
be correctly used since they may cause inconsistencies in the app behavior at runtime
when Lifecycle Event Sequences occur. The latter is that they should look for faults
that may affect the lifecycle of the Activities also outside the methods that override
the lifecycle callbacks.

4.5.6 Threats to Validity

This section discusses the threats that could affect the validity of the results obtained
in the study [67].

4.5.6.1 Internal Validity

I know that the observed failures might not be caused exclusively by Lifecycle Event
Sequences, but also by alternative factors, such as the execution platform or the tim-
ing between consecutive events. To mitigate this threat, during the validation step
every detected failure was manually reproduced on a real device to exclude that they
were tied to the testing infrastructure. A controlled experiment involving different
Android OS versions, types of device, and time intervals between events should be
carried out to further investigate this aspect.

4.5.6.2 External validity

I am aware that the small sample of considered Android apps may affect the gener-
alizability of the experimental results and we intend to confirm these findings in the
future by performing a wider experimentation involving a larger number of apps.

4.6 Related Work

Activity lifecycle has been identified as a major source of issues for Android apps
by different works in the literature. Therefore, testing techniques aimed at exposing
those issues have been proposed.

Franke et al. [81] presented a unit testing approach for verifying the app lifecycle
conformance. Their approach considers Activities as units to be tested. Lifecycle-
dependent properties have to be manually extracted from functional requirement
specification and the Activity lifecycle methods are used to test such properties
exploiting assertions. Unlike the fully-automated black-box technique I proposed,
their approach heavily relies on manual effort to extract requirements and to define
assertion-based unit test cases and requires the availability of the app source code.
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The work of Zaeem et al. [42] is based on the intuition that different mobile apps
and platforms share a set of features referred to as User-Interaction Features and that
there is a common sense of expectation of how an app should respond to these fea-
tures. Among these features they considered also the triggering of the key lifecycle
loops. They propose an automated model-driven test suite generation approach and
implement it in QUANTUM, a framework that automatically generates a test suite
to test the user-interaction features of a given app by leveraging app agnostic test
oracles. Differently from ALARic, QUANTUM needs a prior knowledge of the app
under test since it requires a user-generated app GUI model as input.

Adamsen et al. [43] proposed a tool named THOR that systematically amplifies
test cases by injecting neutral event sequences that should not affect the functional-
ity of the app under test and the output of the original test cases. They focus on
event sequences that are usually neglected in traditional testing approaches, includ-
ing the ones that exercise the key lifecycle loops. THOR leverages existing test cases.
Instead, ALARic does not require existing testing artifacts.

Shan et al. [45] focused on a specific fault class due to the incorrect handling of
the data that should be preserved when the key Activity loops are exercised. They
named KR errors the failures caused by these faults. These authors proposed an
automated static analysis technique for finding KR errors. They also designed a tool
that generates a sequence of input events that lead to the app state where the KR
error manifests. Unlike ALARic, their solution needs app modification to verify the
failures tied to Activity lifecycle by tracking app fields and dumping GUI states in
the Activity lifecycle callback methods.

G. Hu et al. [6] introduced AppDoctor, a testing system able to perform a quick
dynamic analysis of the app under test that aims at revealing app crashes. ALARic
is able to detect also GUI failures. Their proposed app analysis, called approximate
execution, is faster than real execution since it exercises an app by invoking directly
event handlers rather than actually performing the corresponding events. ALARic
instead triggers real events because they represent better real user interactions. Ap-
pDoctor automatically tries to verify the detected bugs by reproducing them us-
ing real events since its approximation may introduce several false positives. Like
this work, they pointed out the relevance of exercising the Activity lifecycle in mo-
bile testing. Therefore they introduced approximations of lifecycle event sequences
among the events supported by AppDoctor.

Moran el al. [7] designed Crashscope, a fully automated testing approach for
discovering, reporting, and reproducing Android app crashes. They also propose a
fully automated black-box testing approach but they focus only on a specific failure
type, i.e. app crashes, whereas ALARic is able to find also GUI failures. They iden-
tify the double orientation change lifecycle event as a major source of crashes and
thus their automated app exploration performs a double rotation each time they en-
counter a rotatable Activity. Whereas, our approach is able to perform 3 different
types of lifecycle events able to cover the 3 key Activity lifecycle loops. Moreover,
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the ALARic exploration strategy performs a lifecycle event each time it encounters
a GUI state never encountered before during the exploration.

Jun et al. [46] proposed LeakDAF, a fully automated testing approach for de-
tecting memory leaks. Like this work, they propose a testing technique targeting
Android app components lifecycle conformance that exploits an automated app
exploration technique and does not need app modification or manual interaction.
They test the apps with 2 lifecycle events that exercise only the Entire Lifecycle loop.
Whereas, our work studies the effect of events that exercise also the Visible Lifecycle
and Foreground Lifecycle loops. They aim at detecting a specific memory leak type,
i.e. the leakage of Activity and Fragment Android app components. Instead, we aim
at proposing a testing technique able to detect different types of issues related to the
lifecycle of Android app Activities.

IC. Morgado and ACR. Paiva [28] presented the iMPAcT tool, a testing technique
based on the presence of recurring behavior in mobile apps, referred to as UI Pat-
terns. Like this work, they propose an automated GUI testing technique targeting
Android apps. When iMPAcT detects the occurrence of a UI Pattern during the
app exploration, it tests the correct implementation of the pattern by applying the
corresponding test strategy. They include in their catalog of UI Patterns a pattern
that checks the occurrence of GUI failures due to a single orientation change event.
Whereas, our work studies the effect of events that exercise also the VL and FL loops.

4.7 Conclusions and Future Work

In this Chapter, I presented ALARic, an Android automated testing technique that
combines the traditional testing approaches based on dynamic app exploration with
a strategy that fires mobile-specific events able to expose issues tied to peculiar An-
droid platform features. I focused with my research group on the Android Activ-
ity lifecycle management and designed a technique that systematically exercises the
lifecycle of app Activities, to detect GUI failures and crashes.

The technique has been implemented in a tool and validated in a study involving
15 real world apps that showed the ability of the tool to automatically detect issues
tied to the Activity lifecycle. The study also showed that ALARic is more effective
in detecting crashes than standard random tools, such as Monkey, and allowed me
to learn some lessons useful for both Android app testers and developers.

As a future work, we plan to extend the ALARic tool by adding other Lifecycle
Event Sequences in addition to the 3 already implemented. We intend to propose
and implement a set of oracles able to detect other issues tied to the Activity lifecy-
cle, such as memory leaks and threading issues. To better prove the effectiveness of
ALARic, we plan to conduct a wider experimentation involving a larger set of An-
droid apps and considering different configurations of the tool. Finally, we plan to
extend this approach to test the lifecycle of other app components, such as services,
fragments and content providers.
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Chapter 5

Combining Automated GUI
Exploration of Android apps with
Capture and Replay through
Machine Learning

In this Chapter I propose juGULAR, a hybrid GUI exploration technique that com-
bines automated GUI exploration with capture and replay. It exploits the human
involvement in the automated process to overcome the limitations introduced by
classes of GUIs that prevent the exploration of relevant parts of applications if they
are not exercised with particular and complex input event sequences. This approach
is able to automatically detect these GUI classes during the app exploration by ex-
ploiting a Machine Learning approach and to effectively exercise them by leveraging
input event sequences provided by the user. juGULAR has been implemented in a
modular software architecture that targets the Android mobile platform. An exper-
iment involving 14 real Android apps showed that the hybridization introduced by
juGULAR improves the exploration capabilities at a reasonable manual interven-
tion cost. Moreover, the experimental results also proved that juGULAR is able to
outperform the state-of-the-practice tool Monkey.

5.1 Introduction

Automated GUI Exploration Techniques (AGETs) have been widely adopted in the
context of mobile apps for supporting critical engineering tasks such as testing [2],
reverse engineering [36], network traffic generation and analysis [37, 38], perfor-
mance and energy consumption analysis [18].

Although these techniques provide a viable approach for automatically exercis-
ing mobile apps, they suffer from the intrinsic limitation of not being able to replicate
human-like interaction behaviors. In fact, some app features need to be exercised by
exploiting app-specific knowledge that only human users can provide. As a conse-
quence, these techniques often fail in exploring relevant parts of the application that
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can be reached only by firing complex input event sequences on specific GUIs and
by choosing specific input values [39, 40].

In the following, I will refer as Gate GUIs to the GUIs that need to be solicited
by specific user input event sequences to allow the exploration of parts of the app
that cannot be reached otherwise. Moreover, I will refer to the action of providing
the specific input event sequence needed to effectively exercise a Gate GUI as to the
activity of unlocking the Gate GUI.

There may be several types of Gate GUIs in real apps, such as Login Gate GUIs
in which the users need to enter their credentials in order to access to functionality
offered by the app to authenticated users only, Settings Gate GUIs that require the
users to correctly configure the settings of services they intend to use through the
app, or QR code Gate GUIs that request the users to scan a valid QR code through
the device camera to access to particular app features.

The challenges posed by Gate GUIs to the app automated exploration processes
are well-known not only in the field of software testing, but also in that of app net-
work traffic signature generation [37] where dynamic analysis is used by large net-
work vendors (e.g. Palo Alto Networks, Dell, HP, Sophos, MobileIron) to trigger app
networking activities.

Although most of the automated GUI exploration techniques proposed in the
literature do not explicitly address the issues tied to Gate GUIs, some of them offer
solutions for unlocking Gate GUIs. Part of these solutions leverages on predefined
input event generation rules embedded in the technique [12, 7, 9]. These approaches
may not be able to exercise Gate GUIs that need app-specific knowledge. Other
solutions require programming skills to understand the app-specific GUI structure
and/or configure the AGET to properly manage each distinct Gate GUI [71, 72, 86,
6, 38]. These approaches are indeed labor intensive and may not extend to different
applications. Finally, there are solutions that exploit manual user intervention. They
suffer from the drawback of requiring an extensive human involvement throughout
the entire exploration since the users have to recognize the Gate GUI and intervene
in the process to properly exercise it [8, 87].

To address the limitations of existing automated GUI exploration techniques, I
realized in collaboration with my research group a novel approach named juGU-
LAR (Gate gui UnLocking for AndRoid). Unlike other approaches, it does not require
programming skills, mobile framework knowledge, and app comprehension for un-
locking Gate GUIs. juGULAR automatically detects the occurrence of a Gate GUI
and exploits human intervention to unlock it at runtime. However, the human inter-
vention to unlock a specific Gate GUI is limited only to the first time that the GUI is
encountered. Once the human intervention to unlock a specific Gate GUI is recorded
by juGULAR, it can be replayed when the same GUI is detected again during the ex-
ploration. The result is a hybrid exploration technique that combines automated
GUI exploration with Capture and Replay [88].

A key aspect of our approach is its ability to automatically detect the occurrence
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of a Gate GUI. This can be considered as a GUI classification problem that we de-
cided to solve with Machine Learning (ML). We adopted ML techniques to train
classifiers to recognize given classes of Gate GUIs and exploited these classifiers to
automatically detect Gate GUIs during the exploration.

We implemented the juGULAR hybrid exploration approach in a modular soft-
ware architecture targeting Android apps and validated it by performing an experi-
ment involving 14 real Android apps. The experiment showed that combining Cap-
ture and Replay with automated exploration improves the effectiveness of the ex-
ploration. juGULAR covered more source code and Activities and generated more
network traffic than the purely automated exploration, thanks to the automatic de-
tection of two classes of Gate GUIs, i.e. Login and Network Settings. The additional
time for the manual intervention required by juGULAR was reasonable, being on av-
erage lower than 3% of the entire exploration time for all the considered apps. More-
over, the experiment showed that juGULAR outperformed the state-of-the-practice
tool Monkey in terms of exploration effectiveness.

This work improves the literature on automated GUI exploration with the fol-
lowing contributions:

• a novel Hybrid GUI Exploration Technique that combines Capture and Replay
with automated exploration, named juGULAR;

• a Machine Learning approach for the automatic detection of Gate GUIs;

• an experiment involving real Android apps showing the validity of the pro-
posed hybrid technique.

The remainder of the Chapter is organized as follows. Section 5.2 presents a
motivating example. Section 5.3 illustrates the Machine Learning-based approach
designed for obtaining the Gate GUI classifiers that are used to automatically detect
Gate GUIs. Section 5.4 describes the juGULAR approach and how it has been imple-
mented in a software platform. Section 5.5 presents the experiment evaluation and
its results. Section 5.6 reports related work. Finally, Section 5.7 reports conclusions
and future work.

5.2 Motivating Example

In this section, I present a motivating example to show how the exploration of two
real Android apps improves when their Gate GUIs are unlocked. This work focuses
on two classes of Gate GUIs: Login and Network Settings.

Login Gate GUIs offer the login feature to registered users. These GUIs require
the users to provide the credentials they used to register themselves to the app
provider in order to be authenticated. The login feature usually allows to gain access
to app functionality restricted to registered users only. Only through the insertion of
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valid and previously registered account credentials the exploration of the remaining
parts of the application is allowed.

Network Settings Gate GUIs are GUIs exposing Settings features to configure
network parameters, such as: URLs, server address, port numbers, channels. This
feature is necessary to configure the app access to remote resources.

We selected two publicly available Android mobile apps that expose Gate GUIs,
e.g., Twitter34 and Transistor35. Twitter renders the Login Gate GUI shown in Figure
5.1(a), whereas Transistor exhibits the Network Settings Gate GUI reported in Figure
5.1(b).

The Twitter Login Gate GUI requires valid and registered account credentials,
without which the access to the app features that are available only to authenticated
users is restricted. A purely automated exploration approach could be able to gen-
erate syntactically valid login and password, but it cannot be able to automatically
generate text strings actually corresponding to a valid Twitter user account. This in-
formation should be necessarily defined by a human tester. The Transistor Network
Settings Gate GUI requires the user to specify a valid audio stream URL to be repro-
duced. This scenario is very difficult to be managed by a fully automated approach;
even if it is able to automatically generate syntactically valid URLs, it may not be
able to generate any correct URL actually corresponding to an audio stream.

First, these apps were explored by the current state-of-the-practice AGET, Mon-
key, in its default configuration. Both explorations lasted one hour and were per-
formed on an Android Virtual Device (AVD). We monitored the explorations of
Monkey and noticed that it did not unlock the two Gate GUIs, being unable to pro-
vide correct credentials for the Twitter authentication, or a valid streaming URL to
configure Transistor.

Then, the Gate GUIs were manually unlocked and Monkey was ran again on
both apps. Also in this case, Monkey was executed in its default configuration for
the duration of an hour. To unlock the Gate GUIs, we interacted manually with the
AVD where the apps were installed to provide proper input event sequences able to
unlock them.

At the end of each exploration, we evaluated the covered Activities and inferred
the Dynamic Activity Transition Graph (DATG) model [30]. It is a graph whose
nodes represent the explored Activities and the edges render the transitions trig-
gered at runtime. We enriched this model by adding weights on each edge that
indicate the number of times the transition has been traversed.

We inferred the DATG model from the analysis of the system message log dumped
by the Android Logcat36 tool. This did not require any app code instrumentation.
We parsed the system message log to extract the sequence of the names of the Activ-
ities that were created during the app exploration. Activities having different names

34Version 6.40.0 - https://play.google.com/store/apps/details?id=com.twitter.android
35Version 2.2.0 - https://f-droid.org/repository/browse/?fdid=org.y20k.transistor
36https://developer.android.com/studio/command-line/logcat.html

https://play.google.com/store/apps/details?id=com.twitter.android
https://f-droid.org/repository/browse/?fdid=org.y20k.transistor
https://developer.android.com/studio/command-line/logcat.html
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(a) Twitter - Login Gate GUI (b) Transistor - Network Settings Gate
GUI

FIGURE 5.1: Gate GUIs exhibited by the considered Android apps

have been considered different nodes of the DATG. Each edge of the DATG links
two consecutive Activities in the sequence. Android may not create an Activity ev-
ery time it is encountered during the exploration but it could reuse a previously
created instance of the same Activity. Therefore, we had to enable the on-device
"Don't keep activities" developer option that destroys every Activity as soon as
the user leaves it. In this way, we were sure that each explored Activity was created
and thus logged. Of course, this option may change the app behavior, introducing
additional invocations of Android framework callback methods. However, a similar
behavior may be observed also when the app is exposed to other common events,
such as the orientation change event [53]. Since this option was enabled in all the
Monkey runs, I believe that the comparison is fair and the usage of the "Don't keep

activities" option is acceptable for our purposes.
Figure 5.2 shows the DATGs inferred after the two explorations of Twitter. As it

can be noticed from the DATG shown in Figure 5.2(a), Monkey was able to discover
only 4 different app Activities in the first run, in which the Login Gate GUI was not
unlocked. After the Gate GUI was unlocked, Monkey explored up to the 14 previ-
ously unreached Activities that are highlighted in white in Figure 5.2(b). These new
Activities expose functionality exclusively available to authenticated users, such as
showing the user timeline, posting a new tweet or sending a private message to a
another Twitter user. We evaluated also the network traffic produced by the app. To



Chapter 5. Combining AGETs with C&R through ML 79

(a) DATG inferred without unlocking

(b) DATG inferred with unlocking

FIGURE 5.2: Twitter App: the DATGs inferred by Monkey explo-
rations without (a) and with (b) Gate GUI unlocking
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this aim, we counted the number of bytes transmitted over the network during the
app explorations. To obtain this data, We used the TCPdump37 command-line packet
analyzer. The unlocking brought improvements also in network traffic generation.
Without unlocking, Monkey generated around 1 MBytes of network traffic that in-
creased up to 380 MBytes when valid login credentials were provided.

We were not able to measure the code coverage achieved during the Twitter app
exploration, since this app provided compiled and obfuscated code.

Instead, the Transistor app source code is open. Therefore, besides the generated
network traffic and the covered Activities, it was also possible to measure the source
code coverage. To this aim, we had to preliminarily instrument the app source code
by exploiting the JaCoCo38 code coverage library.

As Figure 5.3(a) shows, the exploration of the Transistor app was limited to 2
Activities, when no valid URL was provided in the Main Activity. Instead, Monkey
was able to reach a further Activity when a valid audio stream URL was provided,
as shown in Figure 5.3(b). This additional Activity offered features for controlling
and reproducing the audio stream located at the URL provided to unlock the Gate
GUI. Without unlocking, Monkey was able to cover just 9.51% of app LOCs (Lines
Of executable Code) and did not generate network traffic, whereas it executed the
58.25% of LOCs and transmitted more than 27 MBytes over the network when a
valid audio stream URL was provided.

The same two apps were also explored by three state-of-the-art automated GUI
exploration tools, i.e., Sapienz39, AndroidRipper40 and Dynodroid41. Each tool is
representative of one the three AGET types reported in Section 5.6, respectively. We
analyzed how they dealt with the considered Gate GUIs during the exploration.

Sapienz implements an AGET relying on predefined input generation rules. It
did not unlock autonomously the two Gate GUIs, producing unsatisfactory results
in terms of covered Activities, LOCs, and generated network traffic.

As for AndroidRipper and Dynodroid, it was possible to unlock the Gate GUIs
and to obtain exploration improvements similar to the ones achieved by Monkey.
However, these improvements required a considerable manual effort in both cases.

AndroidRipper provides configuration APIs that enable the tool to fire user-
defined event sequences on GUI objects belonging to given app GUIs. We exploited
these APIs to unlock the Gate GUIs of the considered apps but the tool configuration
required a considerable manual effort. In fact, we had to analyze the properties of
the specific Gate GUIs and extract the ones needed to detect them at runtime. More-
over, we had to identify the GUI objects to be exercised and define the corresponding
events.

37http://www.tcpdump.org/
38http://www.eclemma.org/jacoco/
39https://github.com/Rhapsod/sapienz
40https://github.com/reverse-unina/AndroidRipper
41http://www.seas.upenn.edu/~mhnaik/dynodroid.html

http://www.tcpdump.org/
http://www.eclemma.org/jacoco/
https://github.com/Rhapsod/sapienz
https://github.com/reverse-unina/AndroidRipper
http://www.seas.upenn.edu/~mhnaik/dynodroid.html
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(a) DATG inferred
without Gate GUI
unlocking

(b) DATG inferred
with Gate GUI
unlocking

FIGURE 5.3: Transistor App: the DATGs inferred by the Monkey ex-
plorations without (a) and with (b) Gate GUI unlocking

Dynodroid implements instead an AGET that can exploit manual intervention at
runtime. Therefore, a human tester was actively involved for the entire duration of
the explorations to supervise the Dynodroid execution and to manually unlock the
Gate GUIs. He had to monitor the Activities that were encountered by Dynodroid
and to promptly stop the exploration each time he recognized a Gate GUI. After the
human stopped Dynodroid, he manually unlocked the GUI by providing a valid
input event sequence and then restarted the automatic exploration.

These experiences exposed the limitations of currently available techniques for
automated app exploration and motivated us to investigate novel and more effective
solutions.

5.3 A Machine Learning-based approach for detecting Gate
GUIs

To define juGULAR, it was necessary to preliminarily define an approach for au-
tomatically recognizing whether the GUIs that are encountered during the app ex-
ploration belong to a Gate GUI class. To solve this kind of classification problems,
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FIGURE 5.4: Supervised Classification framework. The upper part
of the figure (a) represents the Training phase. The lower part of the

figure (b) shows the Prediction phase.

rule-based or machine learning techniques are commonly employed in the literature
[89].

Rule-based approaches exploit expert knowledge to make decisions. Rules are
obtained from experts who encode their conditional beliefs into heuristics manually
crafted for each specific class. These rules are usually elicited by error-prone and
time-consuming processes that require a strong expertise about the considered do-
main [90]. Moreover, these rules work effectively only if all the possible situations
under which decisions can be made are known ahead of time.

Instead, Machine Learning approaches aim to learn how to classify automatically
through experience [91]. Therefore, they do not require expert involvement and are
more effective at deriving general rules for classification problems, finding insights
in data that may be underestimated by a human.

In this work, I with the collaboration of my research group defined a Machine
Learning (ML) approach that trains a supervised classifier to determine the class
a given GUI belongs to. Figure 5.4 shows the general framework used for the su-
pervised classification42. According to this framework, the supervised classification
foresees 2 main phases: Training and Prediction. During the Training phase, a fea-
ture extractor is used to convert each input item instance to an abstract representa-
tion. This representation consists in a Feature Vector that captures the basic informa-
tion about each input that should be used to classify it. In this phase, each input item
is provided with a label that identifies the class the item belongs to. Pairs of feature
vectors and labels are fed into a machine learning algorithm to generate a classifier
model. The trained classifier can be used to predict the class of unseen input item
instances. During the Prediction phase, the same feature extractor is used to convert
unseen inputs to feature vectors. These feature vectors are then fed into the classifier
model, which generates predicted labels.

42http://www.nltk.org/book/ch06.html

http://www.nltk.org/book/ch06.html
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FIGURE 5.5: A GUI (left) and an excerpt of its XML Description (right)

To obtain the feature vector associated to a GUI, our approach relies on a compo-
nent-based GUI description model that abstracts the GUI in terms of its component
objects and their properties [53, 59, 92]. In particular, this GUI description leverages
the XML GUI representation provided by UI Automator43. Among all the compo-
nent object properties, we consider the ones that contain textual information, i.e. id,
text, hint, and content description. Figure 5.5 shows an example of a GUI and an
excerpt of its XML description.

We assume that the descriptions of GUIs belonging to the same Gate GUI class
are likely to share common textual information that we refer to as keywords. We select
as features the presence or absence of such keywords in the values assumed by the
considered properties.

In our approach, we did not want to arbitrarily predefine the keywords to be
considered in the classification problem, but we wanted to empirically infer them
for each considered Gate GUI class. For this purpose, we chose as keywords the
most frequent terms among the GUIs belonging to the same Gate GUI class.

Figure 5.6 presents our intuition about how a GUI can be characterized by the
presence of a set of keywords. The Figure reports 4 keywords that should char-
acterize Login Gate GUI descriptions and shows whether they are present in 3 GUI
descriptions belonging to different Android apps. The GUI instances in Figure 5.6(a)
and in Figure 5.6(b) are actually Login screens and their descriptions present at least
3 out of the 4 distinctive keywords. Instead, the GUI instance in Figure 5.6(c) is not
a Login screen and its description does not contain any of the considered keywords.

43https://developer.android.com/training/testing/ui-automator.html

https://developer.android.com/training/testing/ui-automator.html
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FIGURE 5.6: GUI Textual Information Content. The table in the lower
part of the figure reports the presence (3) or absence (7) of the "for-
got", "login", "password", "facebook" keywords in the description of
the Instagram (a), PicsArt (b), and Snapchat (c) GUIs shown in the

upper part of the figure.

In the following, I describe the process we designed to select the keywords and
for training the classifiers. This process is depicted in Figure 5.7 and consists of
3 main activities: Dataset Construction, Keyword Extraction and Classifier Training. I
implemented it with the collaboration of my research group by using the features
provided by the Natural Language Toolkit 3.2.544 platform.

This process is based on Information Retrieval approaches that solve the prob-
lem of classifying documents into a set of known categories, given a set of doc-
uments along with the classes they belong to [91]. More specifically, we adopted
semi-structured retrieval since we consider the XML representation of GUIs. This
kind of approaches is well-known and is used to solve several classification prob-
lems, such as detection of spam pages, unwanted content, and sentiments, or email
sorting [91] and app reviews’ content classification [93]. To the best of my knowl-
edge, we have been the first to use these techniques to solve the mobile app GUI
classification problem and to improve the app automated exploration.

The process is general and it has been exploited for the 2 specific Gate GUI classes
considered in this study: Login and Network Settings. The same process can be
reused to build new classifiers for automatically detecting other GUI classes.

5.3.1 Dataset Construction

Since there was no existing base of knowledge to be used for our purposes, we built
our own dataset consisting of GUI descriptions belonging to real Android apps and

44http://www.nltk.org/

http://www.nltk.org/
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Labeled
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FIGURE 5.7: The Machine Learning based process for selecting the
keywords and training Gate GUI classifiers. It is composed of three
activities: Dataset Construction, Keyword Extraction and Classifier

training.

labeled them according to our needs.
To this aim, we randomly picked 5, 000 real Android apps that were distributed

by the official Google Play store45 and recruited 100 Computer Engineering M.Sc.
students to obtain a set of labeled descriptions of GUIs belonging to these apps.
Each student was asked to manually explore 50 of the selected apps and label their
GUI interfaces by assigning them one of three possible labels: Login Gate GUI, Net-
work Settings Gate GUI, Other (i.e. a GUI that can not be classified as one of the 2
considered Gate GUI classes). The students were provided with a GUI Labeler desk-
top application we developed to support the GUIs labeling task. The tool allows to
select a label and assign it to the description of the GUI currently rendered on the
device screen connected to the host PC. The tool was developed in Python and relied
on the Android Debug Bridge (adb)46. The tool produces as output an image file of
the captured screen in PNG format and the UI Automator GUI hierarchy in XML
format with the chosen label. Figure 5.8 shows the interface of the GUI Labeler tool.

We provided each student with a device equipped with Android 6, that was
reset to the factory settings to ensure that each capture was executed in the same
conditions. Moreover, the system language was set to English in order to avoid in-
consistencies among the captures. Each student was asked to complete the assigned
task within a month and to spend at least 15 minutes and not more than 30 minutes
for exploring each app.

45https://play.google.com/store/apps
46https://developer.android.com/studio/command-line/adb.html

https://play.google.com/store/apps
https://developer.android.com/studio/command-line/adb.html
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FIGURE 5.8: An example of GUI Labeler tool interface. In this case
the user captured a Dropbox GUI and assigned it the "Login" label.

Upon the completion of the GUI Labeling task by all the recruited students, I
with other 2 Ph.D. students and a Postdoctoral Researcher belonging to the research
group and having knowledge of Android development, reviewed the labeled XML
descriptions aided by the correspondent screen captures in order to validate them.

At the end of this step, we selected 400 XML descriptions for each of the 3 con-
sidered labels and stored the resulting 1200 descriptions in a repository of labeled
GUIs.

5.3.2 Keyword Extraction

This activity allows to obtain a set of distinctive keywords for each Gate GUI class
starting from GUI descriptions belonging to that class. Therefore, it has to be re-
peated for each considered Gate GUI class.

To this aim, for each Gate GUI class we partitioned the set of 400 XML descrip-
tions labeled as belonging to the considered class in 2 subsets of 200 XML descrip-
tions that I hereafter refer to as G1 and G2, respectively. The G1 subset was sub-
mitted to a keyword extraction process including linguistic preprocessing steps [91].
The G2 subset was instead exploited for training the classifier.

The keyword extraction process consisted of 5 steps:

1. XML Nodes Extraction: in this step, each XML GUI description belonging to
G1 was filtered to obtain the XML nodes related to its Android View objects47.
These objects represent the elements composing the GUI. We considered the

47https://developer.android.com/reference/android/view/View.html

https://developer.android.com/reference/android/view/View.html
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values of the XML node attributes containing textual information, i.e resource-
id, hint, text, content-desc. These values provided us a set of strings associated
with each GUI description.

2. Text Normalization: in this step, special symbols and punctuation marks were
removed from all the strings and each string was split into its constituent
words. If a word was an identifier using the camel-case convention, it was
split into the composing words (e.g., "processFile" is split into "process" and
"File"). Finally, we converted each resulting word to lowercase.

3. Stop words Removal: in this step, we removed English stop words (like and, a,
to, do, of) from the normalized strings. These stop words frequently appear
in many GUI description and do not help much in differentiating one GUI de-
scription from another. We also removed terms specifically related to the An-
droid SDK that are general and are not discriminating to identify Gate GUIs,
e.g. View, Toolbar, Button.

4. Stemming: in this step, words were transformed to their root forms exploiting
the Porter Stemming Algorithm48. For example, localization, localized,
localize, and locally were all simplified to local.

5. Term Frequency Evaluation: in this step, the words obtained from the XML GUI
descriptions belonging to G1 were gathered in a single set of terms, named T1.
For each term of T1, the term frequency (tf ) value was calculated producing a
rank. The tf value of a term is equal to the number of occurrences of the term
in the document or a corpus of documents [91]. In our study, we considered
as corpus the set of terms T1. As an example, if a term term1 occurs 40 times
in T1, then its tf value will be 40. The terms having a tf greater or equal to a
given threshold were selected and used to define a keyword set. We used more
threshold values to define different keyword sets. We built 7 sets of keywords,
using threshold values varying from 5 to 35, with a step of 5. Each set of terms
obtained at the end of this process provided a candidate set of keywords.

In the following, I present a simple example to illustrate the Keyword Extraction
process. In this example, I submit to the Keyword Extraction process the description
of a GUI with a button having "Click here if you have problems logging in!"

as textual label and "login_troubleshooting_button" as identifier.
In the XML Nodes Extraction step, the Button View object is identified and the

values of its XML node attributes resource-id, hint, text, content-desc are returned. The
output of this step is the following set of strings {Click, here, if, you, have, problems,
logging, in!, loginTroubleshooting_button}.

In the Text Normalization step, the "!" and "_" special symbols are removed from
the set. Moreover, the "loginTroubleshooting" string is split into "login" and "Trou-
bleshooting" strings. Finally, all the words are converted to lowercase. As a result,

48https://tartarus.org/martin/PorterStemmer/

https://tartarus.org/martin/PorterStemmer/
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the following set of strings is obtained {click, here, if, you, have, problems, logging,
in, login, troubleshooting, button}.

In the Stop words Removal step, the English stop words "here", "if", "you" and
"in" along with the generic Android SDK term "button" are removed from the set.
The output of this step is the following set of strings {click, problems, logging, login,
troubleshooting}.

In the Stemming step, the words in the latter set are transformed in their root
form, obtaining the final set of terms {click, problem, log, login, troubleshoot}.

This set of terms will be gathered with the ones obtained from the other XML
GUI descriptions belonging to the considered corpus. The resulting set of terms
will be submitted to the Term Frequency Evaluation step, in which the tf value is
calculated for each term and compared against the considered threshold. The terms
having a tf value greater than the threshold will finally provide the set of keywords.

5.3.3 GUI Classifier Training

For each considered Gate GUI class, a distinct Binary classifier [94, 95] had to be
trained. Binary classification is a type of supervised learning in which a classifier
is used to distinguish between a pair of classes. It is trained by using examples
of objects belonging to both classes. We train a Login Gate GUI Binary classifier
to predict whether a GUI belongs to the Login Gate GUI class or not. Moreover, we
train a Network Settings Gate GUI Binary classifier to predict whether a GUI belongs
to the Network Settings Gate GUI class or not. To train each classifier, we used 2 sets,
the former consisting of 200 XML GUI descriptions labeled as belonging to each
considered Gate GUI class (and different from the ones exploited in the Keyword
Extraction step) I previously referred to as G2. The latter, that I hereafter refer to as
G3, made of 200 XML GUI descriptions labeled as not belonging to the considered
class.

Each labeled GUI description belonging to G1∪G2 was automatically processed
by executing the XML Nodes Extraction, Text Normalization, Stop Words Removal,
and Stemming steps. Then, it was associated to a Feature Vector of binary values in
which the ith element represents the presence (1) or absence (0) of the ith keyword in
the GUI description. This step was repeated 7 times, each one considering a different
candidate set of features, thus obtaining 7 distinct classifiers.

We decided to use Naïve Bayesian (NB) classifiers as Binary classifiers. An NB
classifier is a statistical classifier based on the Bayes‘theorem that implements a sim-
ple, computationally efficient classification algorithm. NB classifiers are widely em-
ployed in several areas, including text classification, with comparable results to de-
cision trees and artificial neural networks [96].

We trained and validated each classifier using a 10-*fold cross-validation pro-
cess. In this process, an original dataset is randomly divided into 10 equal-sized
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subsamples that are exploited for 10 validation steps. At each validation step, a sin-
gle subsample is used for validation and the other nine subsamples are utilized for
training.

Finally, we compared the accuracies obtained by the 7 classifiers and chose the
one achieving the best F-measure value [91]. For both Gate GUI classes, the selected
classifier was obtained using the set of keywords corresponding to the tf threshold
of 20.

Table 5.1 reports for both the considered Gate GUI classes the average values of
precision, recall and F-measure the selected classifiers obtained over the 10 valida-
tion steps.

TABLE 5.1: Performance in terms of average values of precision, recall
and F-measure of the Login Gate GUI and Network Settings Gate GUI

classifiers

Login
Gate GUI

Network Settings
Gate GUI

Precision 0.814 0.751
Recall 0.807 0.900
F-measure 0.807 0.813

5.4 The proposed Hybrid GUI Exploration Technique

In this Section, I present our hybrid GUI exploration technique named juGULAR
that targets Android mobile apps. Since Android apps are event-based software
systems [22, 97], juGULAR explores the analyzed apps by automatically sending
events to them. Our technique explores mobile apps regardless of whether they run
completely on the Android device, or they belong to more complex and distributed
systems. Indeed, juGULAR aims to explore the client-side Android app of such
systems and can interact with their remote side by events that are fired on the UI of
the Android client app.

Unlike other event-based exploration techniques reported in the literature [25,
92], juGULAR implements a novel approach that pragmatically combines fully au-
tomated GUI exploration with Capture and Replay, in order to enhance the app ex-
ploration and to minimize the human involvement. It is able to automatically detect
Gate GUIs during the app exploration by exploiting classifiers that can be obtained
through the Machine Learning approach introduced in Section 5.3. Moreover, it can
unlock Gate GUIs by leveraging input event sequences provided by the user through
a Capture and Replay technique.

The exploration implemented by juGULAR extends the automated GUI explo-
ration algorithm presented in [25]. The workflow of juGULAR is described by the
UML Activity diagram shown in Fig. 5.9. The Activity states describing the steps
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FIGURE 5.9: UML Activity Diagram describing the juGULAR work-
flow

of the original algorithm are reported in white, whereas the ones introduced by our
approach are in gray.

Each app exploration is started by the App Launch step that installs and launches
the app on an Android device. In the Current GUI Description step, a represen-
tation of the GUI state currently exposed by the app is inferred. It includes the
(attribute, value) pairs assumed by GUI components at runtime. The GUI descrip-
tion is analyzed in the Gate GUI Detection step to evaluate whether it is an instance
of a Gate GUI.

If the current GUI is not a Gate GUI, the Input Event Sequence Planning and Input
Event Sequence Execution steps are executed. In these steps, an event is chosen among
all the ones triggerable on the current GUI and then it is executed.

juGULAR considers as triggerable the predefined sets of events that can be fired
on GUI objects having the properties clickable, enabled, and visible set to true

in the current GUI description. The value of the type attribute of the GUI object de-
termines the set of possible events that can be triggered on it. As an example, events
like click and longclick can be fired on Button and ImageView objects, whereas
selectItem and scroll events can be sent to ListView objects.

Otherwise, if juGULAR detects a Gate GUI, the Gate GUI Unlocking step is exe-
cuted. In this step, either an input event sequence will be captured for unlocking a
Gate GUI or a recorded input event sequence will be replayed.

The Termination Condition Evaluation step evaluates whether the termination con-
dition is met and the exploration can be stopped.

The UML Statechart diagram in Figure 5.10 provides an overview of how juGU-
LAR combines automated app exploration with Capture and Replay.

In the App Exploring state, juGULAR iteratively fires input event sequences to
the subject app according to a given input event generation strategy until it detects
a Gate GUI, or a predefined termination condition is met. When juGULAR detects
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a Gate GUI, it evaluates whether it has been previously encountered or not. To this
aim, it compares the current GUI description with the ones of the Gate GUIs already
encountered during the app exploration. Two GUI descriptions are considered as
equivalent if they include the same set of objects and the same values of the objects’
attributes [25].

If juGULAR detects a Gate GUI for the first time, it stores its GUI description
and transits to the Unlocking Input Event Sequence Capturing state, where it captures
an unlocking input event sequence that is manually provided by the user.

Unlocking Input

Sequence Replaying

Unlocking Input

Event Sequence

Capturing

App Exploring

FIGURE 5.10: UML Statechart Diagram describing how juGULAR
combines automated app exploration and C&R techniques

When the capturing ends, juGULAR returns to the App Exploring state. In this
state, if juGULAR detects a Gate GUI that was previously encountered, it either
will continue the automated app exploration, or will transit into the Unlocking Input
Event Sequence Replaying state in which the corresponding input event sequence is
replayed. The choice of the next state will depend on the value of a ReplayCondition
random boolean variable that assumes the true value with a predefined probability
ptrue. The usage of this variable prevents the exploration process from being biased
by the user’s choice for unlocking a given Gate GUI.

At the end of the replaying, juGULAR returns to the App Exploring state.
It is worth pointing out that, in the Replay step, non-determinisms of the app may

cause the app to expose a GUI that is different from the one exercised in the Capture,
or to behave differently from the recorded behavior. In these cases, the recorded
event sequence replay does not guarantee that the Gate GUI will be correctly un-
locked. This is a known weakness of Capture and Replay approaches [40] and poses
a limitation to juGULAR. In fact, juGULAR returns in the App Exploring state after
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each Replay, regardless of whether the recorded event sequence has successfully un-
locked a Gate GUI. In case of app non-deterministic behavior, there is the risk that
juGULAR indefinitely encounters the same Gate GUI and tries to unlock it with the
same recorded event sequence. The ReplayCondition random boolean variable mit-
igates this risk since it allows juGULAR to fire also event sequences different from
the recorded Unlocking Input Event Sequence when it re-encounters a Gate GUI.

5.4.1 The juGULAR Platform

We implemented juGULAR in a software platform which targets Android mobile
apps. An overview of the platform architecture is reported in Figure 5.11.
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juGULAR

<<component>>

Bridge
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Gate GUI Detector

<<component>>

App Explorer

<<component>>

Gate GUI Unlocker

<<Device>>

Android Device

<<CUI>>

User Terminal

Get GUI

Description

Trigger

Event Capture Replay

Detect Unlock

User

Interacts with juGULARUnlocks Gate GUI

GUI descriptions and captured events juGULAR commands

Gate GUI noti�cationADB commands

FIGURE 5.11: UML Component diagram describing the juGULAR
platform architecture

The core of this architecture is the juGULAR component that embeds four inner
components, namely App Explorer, Gate GUI Detector, Gate GUI Unlocker, and Bridge.

The App Explorer implements the app exploration logic. The Gate GUI Detector
has the responsibility to automatically infer whether a GUI belongs to a Gate GUI
class. The Gate GUI Unlocker offers the feature to unlock a Gate GUI. The Bridge
allows the juGULAR components to interact both with a User Terminal and with an
Android Device where the app being explored is installed and executed.
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The User Terminal allows the users to launch juGULAR and to receive notifica-
tions when a Gate GUI is detected for the first time and should be unlocked. Thanks
to this feature, the users do not have to monitor the app exploration waiting for a
Gate GUI detection, but juGULAR notifies them when their intervention is needed
for unlocking a Gate GUI. When the users have accomplished the capture activity,
they resume the app exploration via the User Terminal.

The juGULAR components and the User Terminal are deployed on a host PC
running either Windows or Linux operating system and equipped with the Android
SDK49. The PC must be connected through the Android Debug Bridge (adb)50 with
an Android virtual device (avd)51 hosted on the host machine, or a real Android
device connected to the host machine via a USB connection.

Our platform can be used to explore an Android app for reaching different goals.
Depending on the specific goal, additional tools can be exploited for capturing rele-
vant information about the performed exploration. As an example, in the study that
I present in Section 5.5, we aimed at evaluating the app coverage and the network
traffic generated by the exploration. To reach this goal, we instrumented the app
source code using the jaCoCo library52 and ran tcpdump53 on the host machine to
get the network packets capture file in pcap format.

Additional implementation details about the platform components are reported
in the following.

5.4.1.1 App Explorer Component

This component can be configured to explore an app using different exploration
strategies, such as the Random or Active Learning ones [25]. The strategy deter-
mines the next event to be triggered on the app. The App Explorer uses the Trigger
Event and Get GUI Description APIs offered by the Bridge component to send events
to the app and to retrieve the description of the current GUI rendered by the device,
respectively.

Moreover, it uses the Detect API offered by the Gate GUI Detector to assess whether
the current GUI can be classified as a Gate GUI. When a Gate GUI is detected, the
App Explorer uses the Unlock API provided by Gate GUI Unlocker component for
unlocking it.

5.4.1.2 Gate GUI Detector Component

This component offers the Detect API that is exploited by the AppExplorer to assess
whether a GUI can be classified as a Gate GUI. Its architecture is represented in
Figure 5.12 by a UML Component diagram.

49Available for free download at https://developer.android.com/studio/index.html
50https://developer.android.com/studio/command-line/adb.html
51https://developer.android.com/studio/run/managing-avds.html
52http://www.eclemma.org/jacoco/
53http://www.tcpdump.org/tcpdump_man.html

https://developer.android.com/studio/index.html
https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/studio/run/managing-avds.html
http://www.eclemma.org/jacoco/
http://www.tcpdump.org/tcpdump_man.html
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FIGURE 5.12: UML Component diagram describing the Gate GUI De-
tector architecture

The Gate GUI Detector comprises 3 components, i.e. the Gate GUI Detector Man-
ager, the Login Gate GUI Detector and the Network Settings Gate GUI Detector. Each
inner detector is able to detect a different Gate GUI class, i.e. Login and Network
Settings.

The Gate GUI Detector Manager takes as input a GUI description in XML format,
forwards it to the inner Gate GUI Detectors and gathers their outputs. According
to these outputs, the Gate GUI Detector Manager returns a boolean value indicating
whether a Login Gate GUI or a Network Settings Gate GUI have been detected.

The Login Gate GUI Detector and the Network Settings Gate GUI Detector exploit
the Binary classifiers and the set of keywords obtained by the approach proposed in
Section 5.3. Each of these components is in turn composed by a Feature Extractor and
a Classifier component.

The Feature Extractor takes as input the GUI description and represents it as a
feature vector. To this aim, it elaborates the GUI description through the preprocess-
ing steps introduced in Section 5.3, i.e. XML Nodes Extraction, Text Normalization,
Stop Words Removal, and Stemming. Then, it associates the GUI description to a
vector of binary values, where the ith element represents the presence (1) or absence
(0) of the ith keyword. Finally, it forwards the feature vector to the corresponding
Classifier.

The Gate GUI Detector is a modular ensemble of Binary classifiers and thus it can
be easily extended by introducing additional Gate GUI identifiers for other classes
of Gate GUIs.

5.4.1.3 Gate GUI Unlocker Component

The Gate GUI Unlocker component provides the Unlock API that requires as input
a GUI description in XML format. It stores in a local repository the descriptions
of the Gate GUIs encountered during the app exploration. Moreover, it stores for
each GUI description the sequence of user events that was recorded to unlock the
corresponding GUI.
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When the Unlock API is invoked, the component checks whether the input de-
scription matches with one of the descriptions stored in the repository.

If the Unlocker does not find any matching GUI description, it requires to capture
a sequence of user events using the Capture API provided by the Bridge. Upon com-
pletion of the capturing, the input GUI description along with the captured sequence
of user events will be stored in the repository.

Otherwise, the Unlocker either will invoke the Replay API to replay the related
sequence of user events, or will return the control to the App Explorer, on the basis of
the value assumed by the random boolean variable ReplayCondition.

The Gate GUI Unlocker can be configured by setting the ptrue value the ReplayCondi-
tion relies on. The default value of ptrue is 0.9.

5.4.1.4 Bridge Component

The Bridge component allows juGULAR to interact with the device where the app
runs and with the User Command Prompt. It provides the Trigger Event and Get GUI
Description APIs that are used by the App Explorer to send events to the app and to
retrieve the XML description of the current GUI rendered by the device, respectively.
These APIs are realized exploiting the UIAutomator framework54.

The Bridge provides also the Capture and Replay APIs that are used by the Gate
GUI Unlocker component. The Capture API sends a notification on the User Terminal
to the user about the occurrence of a Gate GUI and records the event sequence the
user performs to unlock it. The Replay API is used for replaying the recorded user
event sequence that unlocks a specific Gate GUI.

Android encodes each user input event (e.g. Tap, Long Tap, Scroll, Hardware
Button Press) into a large group of kernel-level events. I will refer to the former ones
as high-level user events to distinguish them from kernel-level events.

The Capture and Replay APIs have been developed exploiting the getevent and
sendevent tools, respectively55. These tools, shipped within the Android SDK, are
able to capture and replay the kernel-level event stream produced by the user inter-
action.

The getevent tool provides a live dump of kernel-level input events. The cap-
tured stream contains information about the input events, such as their timestamps,
input device names, event types, and screen coordinates. The sendevent tool allows
developers to send kernel-level events to the device.

As already reported in other works [88], the sendevent command does not allow
to set the timing between consecutive sent events. Therefore, we had to develop an
ad-hoc solution to replay the kernel-level events with a proper timing. This solution
is intended both to avoid a too quick replay of high-level events and to faithfully re-
play them. To this aim, we implemented in the Bridge a pipeline that post-processes
the input event stream captured by getevent and transforms it into an output stream

54https://developer.android.com/training/testing/ui-automator.html
55https://source.android.com/devices/input/getevent

https://developer.android.com/training/testing/ui-automator.html
https://source.android.com/devices/input/getevent
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suitable to be replayed by sendevent. The pipeline groups meaningful chunks of
kernel-level events representing high-level events, inserts delays between them, and
translates the stream in the format supported by sendevent.

The stream chunks are isolated using a set of clustering rules that are based
on timestamps and event encoding patterns that Android exploits for transforming
high-level user events into kernel-level ones. We inferred these patterns by analyz-
ing streams of kernel-level events produced by triggering user events. The pipeline
uses these rules to decompose each high-level event into a sequence of lower level
events, e.g. Press, Release, Move. For clarity, I refer to these as low-level events. Each
low-level event is in turn composed by a sequence of kernel-level events having the
same timestamp and that is ended by a SYN code made of a sequence of zero values.

Figure 5.13 shows an example of a kernel-level event stream captured by getevent
and how the clustering rules abstract from it 4 types of high-level events, i.e., Tap,
LongTap, Scroll, and Key Home Press. The columns in the Figure report the times-
tamp between square brackets, the input device id followed by a colon, and an
hexadecimal string representing the encoding of the kernel-level events. The left-
most brace groups consecutive kernel-level events into low-level events, whereas
the rightmost brace groups low-level events into high-level user events.

The figure illustrates that a Tap event is composed by the sequence of Press and
Release low-level events between which there is a delay less than 500 ms. A Long
Tap is composed by a sequence of Press and Release between which there is a delay
greater or equal to 500 ms. A Swipe is made by a sequence of a Press and a Release
interspersed with one or more Move low-level events. A Key Home Press event
is composed by a sequence of a Key Home Down and a Key Home Up low-level
events.

Finally, the pipeline processes the captured stream composed by kernel-level
events and produces an unlocking sequence description file. This file will be pro-
vided to the Gate GUI Unlocker component and it will be interpreted by the Bridge
Replay API to unlock the corresponding Gate GUI by sending the kernel-level events
with the proper timing.

Figure 5.14 reports the unlocking sequence description file corresponding to the
stream shown in Figure 5.13. An unlocking sequence description file includes se-
quences of kernel-level events supported by sendevent along with specific commands,
i.e. #Start, #End, #SendEvents, and #Sleep. The kernel-level events in this file are
obtained from the corresponding ones in the captured event stream by removing the
timestamps and the colons and by translating the hexadecimal values in decimal for-
mat. The #Sleep command is used to introduce delays between events. The Bridge
adds delays of 1500 milliseconds between kernel-level event chunks, each one rep-
resenting a single high-level event. This is intended to mitigate the risk of failures
in the replay step due to a time not long enough to complete a requested UI task,
e.g. UI updating, Web resource fetching. We found that a delay of 1500 milliseconds
is long enough to complete mobile UI tasks in our benchmark apps. Moreover, a
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delay of 600 milliseconds is introduced between the Press and the Release of Long
Tap events to not mistake them for simple Tap events.

The event stream stored in the unlocking sequence description file allows the Re-
play API to execute the events on the same screen coordinates of the corresponding
event stream acquired through the Capture API. We chose to stick to the same coordi-
nates since the juGULAR architecture has the limitation that the same device is used
both for capturing and replaying user event sequences. I am aware that if different
devices want to be used in the Capture and Replay steps, our solution should be
enhanced.

FIGURE 5.13: A sequence of kernel-level events captured by getevent.
Each line reports a kernel-level event characterized by its times-
tamp, input device id, and the corresponding hexadecimal code. The
leftmost brace groups consecutive kernel-level events into low-level
events, whereas the rightmost brace groups low-level events into

high-level user events.
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FIGURE 5.14: An Unlocking Sequence Description File. The sequence
is contained within #Start and #End commands and includes five
#SendEvents commands, followed each by a sequence of kernel-level
events to be provided to the sendevent tool. The #Sleep commands

are used to introduce delays between consecutive events.
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5.5 Experiment

In this section, I describe the study I conducted with my research group to evaluate
the performance of juGULAR. The exploration technique implemented by juGULAR
can be exploited in different contexts and for reaching different objectives. Thus, in
this study, we considered two usage scenarios of juGULAR: software testing and
mobile app network traffic signatures generation.

Our goal was to understand how the hybridization proposed by juGULAR does
impact the ability of fully automated GUI exploration techniques in analyzing apps
and at what cost. Moreover, we were interested in evaluating how juGULAR com-
pares with other state-of-the-practice AGETs. More precisely, the study aimed at
answering the following three research questions:

RQ1 How does the hybridization introduced by juGULAR affect the effectiveness
of an automated exploration technique?

RQ2 How does the manual intervention required by juGULAR affect the costs of
the hybrid exploration approach?

RQ3 How does the exploration effectiveness of juGULAR compare to the effective-
ness of the AGET implemented by the state-of-the-practice Monkey tool?

5.5.1 Objects Selection

The presence of Gate GUIs in the object Android apps was a requirement for car-
rying out this study. Therefore, we needed to select apps that exposed at least one
GUI belonging to the considered Gate GUI classes. To this aim, we chose a subset of
apps from the official Google Play store whose GUIs belong to the dataset we built in
the process described in Section 5.3 and that were not used in the Keyword Extrac-
tion and Classifier Training activities. In addition, since we wanted to evaluate also
the code coverage reached due to the app exploration, we required that the selected
apps belonged also to F-Droid.

Among the apps that satisfied these criteria, we randomly chose a sample made
of 14 apps. Table 5.2 reports for each app its ID, the app name, the name of the
Android app package, the considered app version, and a brief description of the
app functionality. Table 5.3 instead shows for each app the app ID, the total number
of Activities, the number of LOCs, the number of classes, the number of methods,
and the presence of GUIs belonging to the considered Gate GUI classes.

We considered only the Java classes that contain the app code, i.e. we took into
account neither the Java classes belonging to third party libraries nor the code writ-
ten in native C/C++ used to develop the app.

As it emerges from the data shown in the tables, the selected apps are sufficiently
diverse since they offer different functionality and have a variable size both in terms
of Activity number and LOCs.
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TABLE 5.2: Android apps involved in the study

App ID App Name Package Name Version App Description

A1 Flym News Reader net.fred.feedex 1.9.0 Simple, modern and totally free RSS reader.
A2 Conversations eu.siacs.conversations 1.19.5 Jabber/XMPP client for Android.
A3 DAVdroid at.bitfire.davdroid 1.5.0.3-ose Calendar synchronization app.
A4 Transistor Radio org.y20k.transistor 2.2.0 App for listening to radio over internet.
A5 k9-Mail com.fsck.k9 5.206 Email client supporting multiple accounts.
A6 mGit com.manichord.mgit 1.5.0 Git client and text editor.
A7 Muspy com.danielme.muspyforandroid 3.4.48 Client for Muspy.com.
A8 OpenRedmine jp.redmine.redmineclient 3.20 Android Redmine client.
A9 OwnCloud com.owncloud.android 2.3.0 Android client for private ownCloud Server.
A10 PortKnocker com.xargsgrep.portknocker 1.0.11 App that pings a specific TCP/UDP port.
A11 LibreTorrent org.proninyaroslav.libretorrent 1.4 Original Free torrent client.
A12 Connectbot org.connectbot 1.9.2-oss Powerful open-source Secure Shell (SSH) client.
A13 PodListen com.einmalfel.podlisten 1.3.6 Free Podcast app.

A14 ServeStream net.sourceforge.servestream 0.7.3
Open source HTTP streaming media
player and media server browser.

App ID: unique identifier of the app.
App Name: name of the app.
Package Name: name of the application package.
Version: version of the app.
App Description: description of the main functionality offered by the app.

TABLE 5.3: Characteristics of the Android apps involved in the study

App ID
# App

Activities
# App
LOC

# App
Classes

# App
Methods

Presence of
Gate GUIs

Login
Network
Settings

A1 8 4,487 195 762 7

A2 20 23,548 634 3,675 7

A3 10 4,498 284 850 7 7

A4 3 2,313 135 424 7

A5 27 29,829 919 5,249 7 7

A6 10 4,394 232 921 7 7

A7 10 3,671 258 1,035 7

A8 16 9,638 495 2,716 7 7

A9 22 18,840 481 2,973 7 7

A10 5 1,272 97 321 7

A11 9 8,436 247 1,436 7

A12 12 7,256 236 1,198 7 7

A13 4 3,904 210 681 7

A14 13 7,256 200 1,079 7

App ID: unique identifier of the app.
# App Activities: number of Activity classes of the app.
# App LOC: overall number of executable Lines Of Code of the app.
# App Classes: overall number of classes of the app.
#App Methods: overall number of methods exposed by the classes of the
app.
Presence of Gate GUIs: the 7 marker indicates the type of Gate GUI ex-
posed by the app.
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5.5.2 Subjects Selection

Since the juGULAR approach requires manual intervention of an end user to unlock
the encountered Gate GUIs, we recruited 14 M.Sc. Software Engineering students.
The selected subjects were involved in the study for providing the Unlocking In-
put Event Sequences, when needed, during the automated exploration of the object
apps. They had a background on software testing and on network traffic analysis
matured during their studies. They were selected by an interview. They had no
prior in-depth knowledge about the selected apps nor a thorough knowledge about
the underlying concepts of the Android Framework.

5.5.3 Metrics Definition

In this section, I describe the metrics we chose to answer the proposed research ques-
tions.

5.5.3.1 Effectiveness Metrics

Since in the study we focused on software testing and network signatures generation
scenarios, we decided to evaluate the effectiveness of juGULAR as the ability to: (1)
cover app Activities, (2) cover app Lines of Code (LOC), and (3) generate network
traffic. To this aim we defined the following set of metrics:

• The Covered Activities percentage (CA%) reports the percentage of the Activi-
ties covered during the exploration on the total number of App Activities; it
can be measured according to the following formula:

CA% =
# Covered Activities

# App Activities
∗ 100

• the Covered Lines of Code percentage (CLOC%) defines the percentage of the
app LOC exercised during the automated exploration on the total number of
the App LOC. It is expressed by:

CLOC% =
# Covered LOCs

# App LOCs
∗ 100

• the Network Traffic Bytes (NTB) metric responds to the need to evaluate the
ability of the technique to trigger the generation of network traffic; it measures
the number of bytes received or sent on the network by the app during the
exploration and it is expressed by the following formula:

NTB = # App Sent Bytes + # App Received Bytes
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5.5.3.2 Manual Intervention Cost Metric

To evaluate the cost of the manual intervention required by juGULAR, we consid-
ered for each app exploration process, the time spent in each capture activity, i.e.
CaptureTimei, and the Total Exploration Time of the technique. Therefore, we used
the:

• Manual Intervention Time Percentage (MIT%) that defines the percentage of time
spent in the human interventions required for unlocking the encountered Gate
GUIs on the total exploration time. It is expressed by:

MIT% =
∑i CaptureTimei

TotalExplorationTime
∗ 100

5.5.4 Experimental Procedure

The experimental procedure we designed for carrying out the study consisted of
three sequential steps: Training, Apps Exploration, Data Collection and Analysis.

In the Training step, the researchers involved in the definition of juGULAR ex-
plained its approach to the selected subjects. The training was carried out through
examples, where the researchers illustrated how the technique works, the type of
Gate GUIs it is able to detect and the features it provides for unlocking them. In
order to verify that all the subjects had correctly understood the approach and how
to provide Unlocking Input Sequences when needed, in the last part of the Training,
the subjects were asked to perform an exploration process on a sample Android app
we appositely developed. The sample app exposed both a Login and a Network
Settings Gate GUIs. Each subject was asked to provide Unlocking Input Sequences
when needed. We did not instruct the subjects on the Unlocking Input Sequence to
provide, they were free to insert the sequence they considered the most appropriate.
At the end of this process, we analyzed the results of the exploration sessions. All
the subjects were able to correctly adopt juGULAR and to provide the Unlocking
Input Event Sequences. The entire Training step lasted 8 hours.

In the Apps Exploration step, we executed 3 different exploration processes. In the
first process we used juGULAR, in the second one we exploited juGULAR with the
Hybridization Disabled, and in the third we employed Monkey. JHD is an ad hoc
juGULAR configuration that performs the automated app exploration without ex-
ploiting the hybrid features, i.e. detection and capture and replay. In the following,
we name JHE the actual implementation of juGULAR. Since Monkey implements
a random app exploration and we wanted to implement a fair comparison among
the considered tools, we configured also JHE and JHD to explore the apps using a
random exploration strategy. Regarding the process involving JHE, we decided to
repeat each app exploration with different subjects, in order to mitigate the depen-
dence of the exploration effectiveness on a specific subject’s judgment. We divided
the selected subjects in 2 groups made of 7 students, namely G1 and G2. We gave the
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TABLE 5.4: The Android apps assigned to each group of students

GROUP APP IDs
G1 A3, A4, A7, A9, A11, A12, A13
G2 A1, A2, A5, A6, A8, A10, A14

subjects of each group the task of exploring 7 of the object apps, that were randomly
assigned to each group. Table 5.4 reports the object apps assigned to the groups.
To carry out the exploration tasks with JHE, we provided each student with a PC
equipped with the tool. The students had to launch the app explorations and to in-
tervene in the process only when a Gate GUI was encountered for the first time. For
each app, since the explorations were random, 3 runs lasting 60 minutes had to be
executed by each subject. We configured the ReplayCondition to assume the true

value with a probability ptrue = 0.8 so that the recorded Unlocking Input Event Se-
quences were not the only ones to be executed when a Gate GUI was detected. At
the end of the Exploration step, we obtained 21 exploration runs for each app. A re-
searcher controlled that subject performed the experiment according to the instruc-
tions provided in the Training step. The experiment was conducted under "exam
conditions", i.e., subjects were not allowed to communicate with others for not bi-
asing the experimental findings. As to the processes involving JHD and Monkey,
we launched 21 exploration runs lasting 60 minutes for each app. In this way we
obtained the same number of explorations as JHE. All the explorations were carried
out on desktop PCs having an Intel(R) Core(TM) i7 4790@3.60GHz processor and 8
GB of RAM, running a standard Nexus 5 Android Virtual Device (AVD)56 with An-
droid API 19; the host PC was equipped with the Ubuntu OS, version 16.04. Each
experiment was executed on a newly created AVD.

In the Data Collection and Analysis step, we analyzed the reports produced by JHE,
JHD, and Monkey to obtain the number of Activities and LOC covered during the
explorations, as well as the generated network traffic bytes for the three exploration
processes. As for the explorations with JHE, we also evaluated the capture times
spent by each subject during the three exploration runs performed on each app.

5.5.5 Experimental Results

Table 5.5 reports the average effectiveness values we measured for the explorations
carried out with JHE, JHD and Monkey, respectively. The average values have been
obtained with respect to the 21 exploration runs for each app. The Table also reports
the average values of all the metrics calculated considering all the selected apps.

The same results are shown by the histograms in Figure 5.15 that provide a
graphical visualization and allow the comparison among the average values of CA%,
CLOC% and NTB obtained with JHD, JHE and Monkey.

As emerged from the analysis of the reports produced by the JHE explorations,
juGULAR successfully detected all the Gate GUIs we identified in the object apps.

56https://developer.android.com/studio/run/managing-avds.html

https://developer.android.com/studio/run/managing-avds.html
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TABLE 5.5: Effectiveness results of the app explorations performed
by JHD, JHE, and Monkey

JHD - juGULAR
Hybridization Disabled

JHE - juGULAR
Hybridization Enabled

Monkey

App ID CA% CLOC% NTB CA% CLOC% NTB CA% CLOC% NTB

A1 50 20.25 11,128 75 49.19 3,170,055 20 24.49 0
A2 30 8.33 0 50 18.64 352,196,871 30 5.65 0
A3 40 10 2,256,788 60 28.63 5,450,397 40 12.09 2,055,974
A4 66.7 12.21 0 100 62.73 38,894,905 66.6 10.18 0
A5 7.4 4.22 0 25.93 37.14 93,987,389 7.4 4.9 0
A6 30 14.43 16,890 80 46.61 3,259,397 40 19.18 15,404
A7 10 15.41 33,722 50 49.09 6,295,654 10 18.63 30,462
A8 25 4.96 0 31.25 16.09 74,088 25 6.01 0
A9 4.5 8.11 854,033 22.73 23.90 6,376,599 4.5 9.43 787,737
A10 60 53.62 0 60 60.53 2,275 60 44.65 0
A11 12.63 22.22 2,834,611 44.4 39.4 670,369,445 33.3 25.83 4,947,046
A12 33.3 14.25 103,550 58.3 41.21 15,987,272 33.3 17.24 0
A13 91.6 41.8 6,758 100 43.34 241,584 75 38.4 9,978
A14 30.76 9.61 11,243,538 53.9 30.65 30,496,185 30.7 11.28 1,679,895

Avg 35.13 17.10 1,240,072 57.96 39.08 87,628,722 33.98 17.71 680,464

App ID: unique app identifier.
CA%: average percentage of covered Activities.
CLOC%: average percentage of covered executable lines of code.
NTB: average number of Bytes sent and received on the network by the app.

These data also showed that each subject spent different amounts of capture time to
unlock each Gate GUI.

In order to answer RQ1, we compared the average effectiveness values obtained
using JHE and JHD.

As regards the Activities exploration capability, the CA% data values reported
in Table 5.5 show that JHE covered a greater percentage of Activities than JHD in 13
out of the 14 object apps. Only for A10 (PortKnocker), juGULAR achieved the same
results covering 3 out of 5 Activities either with or without the hybridization. How-
ever, the 2 unexplored Activities of this app could not have been reached otherwise,
since one of them is rendered only for older Android versions and the other one is
accessible only from the app external widget. The average CA% increment with JHE
was of 23%, while the minimum and maximum increment values were of 6.25% in
A8 and up to 50% in A6, respectively.

In the case of A8 (OpenRedmine), the reduced increment in Activities coverage
was essentially due to the choice of the input event sequences values provided by the
subjects to unlock the Login Gate GUI. We observed that all the app features regard-
ing the project management could not be exercised even after the unlocking. This
happened since all the credentials they provided were associated to Redmine repos-
itory accounts having no associated projects. On the contrary, as to the A6 (mGit)
app, we obtained a considerable Activity coverage increment with JHE, because at
least one subject provided Login credentials associated with accounts having non-
empty project repositories.

As for the Source Code exploration capability, the CLOC% data values reported
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(a) Average CA% values obtained by JHD, JHE, and Monkey

(b) Average CLOC% values obtained by JHD, JHE, and Monkey

(c) Average NTB values obtained by JHD, JHE, and Monkey

FIGURE 5.15: Average effectiveness results of the explorations exe-
cuted by JHD, JHE, and Monkey
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in Table 5.5 show that JHE always covered a wider percentage of source code than
JHD, with an increment of 22%, on average. The minimum increment of code cov-
erage percentage was of 1.54%, and was observed in A13 (PodListen). The Net-
work Settings Gate GUI exposed by the app was unlocked even without hybridiza-
tion since PodListen allows the user to subscribe to a podcast not only by adding a
podcast URL but also selecting a predefined podcast provided by the internal pod-
cast database. The maximum increment of code coverage percentage was instead of
50.52%, and was observed in A4 (Transtistor). This app exposed a Network Settings
Gate GUI that should be unlocked to execute the code that implements the features
for controlling and reproducing audio streams. The only way to unlock this Gate
GUI was to provide a valid audio stream URL as had been done by the subjects.

Regarding the ability of generating network traffic, the hybridization allowed
juGULAR to obtain impressive results. JHD was not able to produce any network
traffic in 5 out of the 14 object apps. Considering all the apps, JHD was able to pro-
duce 1 MByte of network traffic, on average. Instead, JHE produced more traffic than
JHD in all the object apps, with about 88 MBytes of generated traffic, on average.

As for A10, JHE had the minimum increment of Network Traffic Bytes over JHD
of 2275 Bytes. This happened since the app exposed a Network Settings Gate GUI
that required a valid and reachable IP address along with a valid Port number that
were never provided without hybridization. However, even the amount of network
traffic the app generated by unlocking this Gate GUI was still small since it consisted
only in a few TCP or UDP network packets used to ping the specified ports.

In the A11 app, i.e. LibreTorrent, it was measured the maximum NTB increment
that consisted of over 667 MByte. This was obtained since the subjects unlocked the
Network Settings Gate GUI providing valid Torrent URL that pointed to large files.

On the basis of these results it is possible to answer the first research questionRQ1

and conclude that:

The hybridization introduced by juGULAR had a positive impact on the exploration
effectiveness in both the considered scenarios. It allowed to obtain better results in
terms of Covered Activities, Covered LOC and Generated Network Traffic.

In order to address RQ2, we considered the cost of the manual interventions
required by the hybridization introduced by juGULAR. Figure 5.16(a) reports the
average MIT% value for each app. The histogram and the table reported in Fig-
ure 5.16(b) show, for each app, the time spent for the manual intervention and for
the automated exploration during the 180 minutes session time, averaged on all the
subjects.

As Figure shows, the time for the manual intervention required by JHE was on
average lower than 3% of the entire exploration time for all the considered apps.
All the subjects were able to define the Unlocking Input Event Sequence in less than
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(a) MIT%: Average percentage of time spent in the human interventions for unlocking the en-
countered Gate GUIs on the total exploration time, with the JHE approach in the 180 minutes
sessions, averaged on all the subjects.

(b) Average Time (in minutes) spent for the Manual Intervention and for the Automated Explo-
ration with the JHE approach in the 180 minutes sessions, averaged on all the subjects.

FIGURE 5.16: Costs of the manual interventions required by the hy-
bridization introduced by juGULAR
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about 5 minutes on average. For the A10 app, it took the subjects less than 40 sec-
onds, on average, to define the Unlocking Input Event Sequence since the app ex-
posed a simple form in which the subjects mostly inserted well-known IP addresses,
e.g. the localhost or the Google DNS addresses.

As for A2 (Conversations), the subjects had to unlock a Login Gate GUI in which
the user had to provide valid credentials of an account registered to an existing Jab-
ber/XMPP service. Since most of the subjects did not own such an account, they
spent time to create it before unlocking the Gate GUI.

According to these results, it is possible to answer the second research question
RQ2 concluding that:

The manual intervention required by juGULAR has a limited impact on the cost of
the exploration technique, being always lower than 3%.

In order to answer the RQ3, we compared the effectiveness of JHE and Monkey.
The data in Table 5.5 shows that JHE was always more effective than the Monkey
tool. On average, JHE was able to cover 24% more Activities, 21% more LOCs and
to generate 86 network traffic MBytes more than Monkey.

The reported data allow to answer the third research question RQ3:

jUGULAR is more effective than the state-of-the-practice tool Monkey in exploring
real Android apps.

5.5.6 Study Conclusion

The experimental results showed that the hybridization of the automated explo-
ration approach proposed by juGULAR produced in average a considerable im-
provement of the exploration effectiveness. They confirmed the usefulness of our
approach that allows the user to provide knowledge at runtime rather than using
pre-configured and generic input event sequences. This is consistent with other
work that point out the complementarity between automated machine-generated
tests and human tests [98, 99].

The fact that juGULAR was always able to outperform the other tools in terms
of generated network traffic suggests that this approach may be especially useful
in scenarios that leverage on realistic generated network traffic, such as ground-
truth generation of mobile app traffic [100] or mobile app network traffic signatures
generation [37].

5.5.7 Threats to validity

The following threats affect the validity of this experimental study [67].
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5.5.7.1 Internal Validity

In this study, a possible threat to the internal validity could have been the assignment
of the subjects to the objects. To mitigate the possible bias, the objects were randomly
assigned to the subjects. A possible factor that could have influenced the outcome
was the subject experience. To mitigate this threat, each app was explored multiple
times with different subjects.

The outcome could be also influenced by the Gate GUI classes we considered. A
further experimentation considering a wider sample of Gate GUI classes should be
carried out to mitigate this threat.

Another possible threat to the internal validity is that the effectiveness improve-
ments that we observed in the experiment were not actually due to the hybridiza-
tion, but rather to other factors, such as the randomness of the explorations. We tried
to mitigate this threat by executing 21 random explorations and involving 7 different
subjects for each app and by performing the validation task of the Data Collection
and Analysis step.

5.5.7.2 External Validity

I am aware that the choice of object apps is a possible threat to the external valid-
ity. The diversity of the selected apps can mitigate this threat. However, to ex-
tend the validity of our results, a wider sample of real Android apps including also
industrial-strength apps from Google Play store should be considered.

Also choosing students as subjects of the study may have affected its external
validity. However, they present characteristics that make them representative of
possible future users of automated exploration techniques. To further mitigate this
threat, case studies in real industrial settings should be carried out to assess the
validity of the approach on the field.

In the study, we measured the manual intervention costs required by juGULAR
by the MIT% metric. Since this metric depends on the total exploration time, the
measured manual intervention costs are influenced by the choice of the app run
length and our conclusions may not generalize beyond the considered experimental
settings. We tried to mitigate this threat using in our experiments the value of the
app run length that is adopted in state of the art works in Android app automated
exploration. Indeed we set one hour as exploration time for each app run, following
the experimental setup used in the previous thorough benchmark assessment study
by Choudhary et al. [2] and in the experiment performed by Mao et al. [9].

I cannot claim that our results generalize to other Gate GUI classes. To further
extend the validity of our study, an experiment involving a wider set of Gate GUI
classifiers trained and integrated in the juGULAR platform should be carried out.
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5.6 Related Work

5.6.1 Automated GUI Exploration Techniques for Android apps

A widely used automated GUI exploration tool for Android apps is Monkey, that is
part of the Android SDK. This tool adopts a quite simple exploration approach by
sending pseudo-random events to the app under test. It is mainly used for a quick
and repeatable robustness testing of Android apps, revealing crashes, unhandled
exceptions and Application Not Responding (ANR) errors. This tool is regarded as
the current state-of-practice for automated Android app testing [84, 9], being the
most widely used tool of this category in industrial settings [39, 101].

In recent years several smarter automated GUI exploration techniques for An-
droid apps have been proposed in the literature, especially in the context of online
testing [102]. Each technique adopts its own strategy to define input event sequences
to explore the app behavior.

Amalfitano et al. [25] analyzed a set of 13 testing techniques implementing AGETs
and abstracted, in a general framework, the characteristics of the different GUI ex-
ploration approaches.

Choudhary et al. [2] presented a comparative study of the main existing tool-
supported test input generation techniques for Android, including 7 tools exploiting
an AGET. They concluded that Monkey outperforms the considered tools; however,
they highlighted that each tool shows perks that can be leveraged and combined in
order to achieve significant overall improvements.

Zeng et al. [39] investigated the limitations of the Monkey tool in an industrial
setting in which the apps can be far more complex than the open-source ones con-
sidered by Choudhary et al. [2]. One of the solutions they suggested to enhance the
capabilities of Monkey consists in manually constructing and performing sequences
of events based on the user knowledge when the app requires the user to login,
provide valid address information or scan a valid QR code.

In the following, I describe the related work reporting their contribution and pro-
viding details about how and to what extent they dealt with exploration limitations
related to the ones discussed in this Chapter. These contributions have been orga-
nized in 3 main groups on the basis of how they generate input event sequences that
may be useful to interact with Gate GUIs.

5.6.2 AGETs that rely on predefined input event generation rules

A first group of AGETs leverages on predefined input event generation rules em-
bedded in the technique such as textual input generation rules or rules to exercise
specific GUI object types.

Karami et al. [12] proposed a software inspection framework for the identifica-
tion of malicious apps. Like our approach, they exploit an AGET to send random
sequences of GUI events to the app. It is able to generate significant input data for
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text fields, by applying rules predefined in the tool based on the detected text field
type. The text length can also be tuned by the user before the exploration. How-
ever, their automated input data generation strategy fails to unlock Gate GUIs that
need app-specific knowledge. Instead, juGULAR leverages input event sequences
provided by the user to unlock Gate GUIs.

A3E [30] implements a model-based automated GUI exploration strategy for An-
droid apps. Like our approach, it automatically detects Activities related to special
responsibilities, such as login, using a rule-based classification approach. Instead,
we adopt a Machine Learning approach since it does not require a strong expert
involvement to define rules for each specific Gate GUI class. Their approach ex-
ercises these Activities with input events predefined in the tool. The authors have
also raised the need for complex interactions to reproduce certain apps functional-
ity. They have not addressed this limitation but planned to do it through Record
and Replay as future work. Our approach successfully combines automated GUI
exploration with Capture and Replay to exercise GUIs that require particular and
complex input event sequences.

CrashScope [7] is a tool that explores Android apps using systematic input gen-
eration and exploiting several strategies with the aim of triggering crashes. It detects
the type of text expected by an app field and automatically generates text input data
to exercise it by applying rules predefined in the tool. Unlike our approach, these
rules do not aim at exercising Gate GUIs to unlock them. Instead, CrashScope fills
textual fields with expected and unexpected data inputs to trigger crashes due to
input data not correctly handled in the code.

Sapienz [9] is a multi-objective search-based automated Android app exploratory
testing approach; it is based on a preliminary exploration performed by an AGET.
Like our approach, Sapienz adopts strategies to explore parts of the apps that can be
reached only by exercising specific GUIs with particular and complex input event
sequences. Its dynamic exploration technique exploits information retrieved by a
static analysis of the app resources to fill the textual fields. Its authors addressed the
need for complex interactions by using predefined patterns, referred to as motif genes,
that capture testers’ experience and allow to reach higher coverage when combined
with atomic events. Our approach exploits neither static analysis nor predefined
patterns to unlock Gate GUIs. Instead, we capture the human knowledge necessary
to unlock a Gate GUI by recording input event sequences provided by the user at
runtime.

The approaches belonging to this group may suffer from limitations in exercising
Gate GUIs that need app-specific knowledge or contextual information that is avail-
able only at runtime and thus results hardly predictable before the app exploration.



Chapter 5. Combining AGETs with C&R through ML 112

5.6.3 Configurable AGETs that exploit input event sequences predefined
by the user

The solutions belonging to this group also rely on input event sequences defined
before the app exploration. But they allow the user himself to define ad-hoc rules in
order to enhance the exploration by app-specific knowledge.

Amalfitano et al. [71], propose a configurable tool that implements both random
and systematic GUI exploration strategies and has been exploited also for model-
based testing [4]. Their work points out that the ability of the tool to cover the app
source code and to discover faults depends on several factors including the tim-
ing between consecutive input events and input values provided to the GUI input
fields. To this aim, the user can provide an ad-hoc and app-specific configuration
of the tool before the exploration. Unlike AndroidRipper, our approach does not
require human effort to preliminarily configure the exploration technique. Instead,
juGULAR detects Gate GUIs during the app exploration by exploiting a Machine
Learning approach, without any previous app-specific knowledge. Moreover, our
approach unlock the Gate GUIs by using the input event sequences provided by the
user during the exploration.

Choi et al. [72] designed an automated technique, named SwiftHand, that uses
active learning to reconstruct a model of the app during testing. The AGET imple-
mented by SwiftHand uses the learned app model in order to select at each iteration
the next input event to be executed; it is chosen among the input events enabled at
the current state. This technique can detect EditText GUI objects and fill them with
significant input strings defined by the user before the exploration with the aim to
improve the exploration. Also our approach aims at improving the app exploration.
However, we do not need to predefine app-specific input and we are not limited
to textual inputs. Instead, juGULAR exploits the input events provided by the user
during the exploration. Moreover, we do not aim at detecting only EditText GUI ob-
jects, but we automatically detect GUIs that require to be exercised with particular
input event sequences by exploiting a Machine Learning approach.

PUMA [86] is a programmable framework that can be exploited to dynamically
analyze several app properties, such as correctness, performance and security. It
provides a generic AGET that can be extensively configured to guide the app explo-
ration. It can generate a textual input when it is needed according to a policy coded
by the user. Moreover, the user can also specify app-specific events to be applied
when the exploration reaches a codepoint, i.e. a precise point of the app binary. Also
juGULAR uses app-specific events when the exploration reaches a certain state, i.e. a
Gate GUI. However, our approach requires neither human effort to code ad-hoc poli-
cies nor the knowledge of the app binary to preliminarily configure the exploration
technique. Instead, juGULAR detects Gate GUIs during the app exploration by ex-
ploiting a Machine Learning approach without any previous app-specific knowl-
edge. Moreover, a juGULAR user does not have to code before the exploration the
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app-specific events needed to exercise the detected Gate GUI. Instead, we leverage
input event sequences provided by the user during the exploration.

Gang Hu et al. [6] proposed Appdoctor, a testing tool able to perform a quick
exploration, called approximate execution. Their exploration strategy is faster than
real execution since it exercises an app by invoking directly event handlers. Our
technique instead triggers real events because they represent better real user inter-
actions. Appdoctor presents a component for the generation of proper input for text
fields, number pickers, lists and seekbars in order to improve code coverage. It de-
tects the type of text expected by a text field and applies input data drawn from
dictionaries predefined in the tool. Alternatively, it can exploit rules defined by the
user before the exploration to generate the input for a specific GUI object. We also
aim at improving the code coverage reached by the app exploration. Unlike App-
doctor, our approach does not need app-specific inputs defined by the user before
the exploration. Instead, we exploit input event sequences provided by the manual
user intervention during the exploration.

AndroGenerator [38] generates network traffic through automated exploration
of Android apps. Its authors pointed out the limitations of their adopted technique
since it is not able to provide right inputs to trigger the app code that generates
network traffic. Therefore, their approach exploits also input event sequences de-
fined by the user before the app exploration. Instead, in our approach input event
sequences are provided during the exploration by the manual user intervention.
Therefore, a juGULAR user does not need any previous app-specific knowledge.

The main limitation of these approaches is that they require programming skills
to understand the app-specific GUI structure and/or configure the AGET to prop-
erly manage each distinct Gate GUI. These approaches are indeed human-intensive
and may not extend to different applications.

5.6.4 AGETs exploiting manual user intervention

These AGETs combine automatically generated input event sequences with manual
user intervention. In this way, they obtain human knowledge necessary to achieve a
meaningful app exploration at runtime.

Dynodroid, proposed by Machiry et al. [8], is a system that generates relevant
input sequences to Android apps. They clearly expressed the need to introduce
human intelligence for exercising some app functionality that can not be exercised
otherwise by an AGET. Like us, their technique allows the user to generate arbitrary
events directly on the app UI. To this aim, a Dynodroid user must first stop man-
ually the automated exploration. Instead, our approach can automatically stop the
automated event generation when a Gate GUI is detected.

NetworkProfiler [87], is a tool that implements a technique for inferring finger-
prints of Android apps from the traffic they generate. It allows to perform complex
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input event sequences by fuzzing and replaying manual user traces captured be-
fore the exploration. Also juGULAR exploits Capture and Replay but, unlike Net-
workProfiler, it captures manual user traces during the exploration.

Another work that combines automated GUI exploration with captured user
event sequences through machine learning has been proposed by Ermuth and Pradel
[40] in the field of Web apps testing. This work defines a macro-based test genera-
tion approach for client-side Web applications. It aims at augmenting automated
test generation techniques with complex sequences of events that represent realistic
user interactions. A macro event abstracts a single logical step that users commonly
perform to interact with real apps. This approach exploits machine learning tech-
niques to cluster multiple similar event sequences belonging to different recorded
usage traces and to infer from them single macro events. Instead, in our work we
use machine learning to achieve a different goal, i.e. to train a classifier to detect
Gate GUIs by providing it GUIs belonging to real Android apps. Both approaches
require recorded usage traces to augment the automated GUI exploration. However,
juGULAR captures usage traces only when a Gate GUI is detected for the first time
during the app exploration. Instead, the macro-based technique requires adequate
sets of traces to be preliminary recorded for each analyzed app.

These approaches are promising since they obtain human knowledge directly
from manual intervention without needing programming skills or ad-hoc tool con-
figurations, but they still suffer from some limitations. In fact, a Dynodroid user
has to be constantly involved in the automated exploration in order to recognize a
Gate GUI and intervene to properly exercise it. The other approaches belonging to
this group, instead, require adequate sets of manual traces that exploit app-specific
knowledge and need to be recorded before the app exploration.

5.7 Conclusions and Future Work

Automated GUI exploration techniques are becoming widespread in mobile app de-
velopment processes, due to their capability to execute time-consuming tasks. How-
ever, one of their critical issues is the limited capability of exploring the behavior of
apps that require meaningful sequences of input events on specific GUIs, i.e. Gate
GUIs, in order to exercise some of their functionality.

In this Chapter, I addressed this issue by proposing juGULAR, a hybrid auto-
mated GUI exploration technique I designed with my research group that pragmat-
ically combines fully automated GUI exploration with Capture and Replay in order
to improve the Android app exploration and minimize the human intervention. We
leverage Machine Learning to train classifiers that are exploited by juGULAR to au-
tomatically detect the occurrence of Gate GUI instances during the exploration. In
this work, we focused on 2 specific classes of Gate GUIs: Login and Network Settings.

Our technique has been implemented in a software platform and validated with
an experiment involving 14 real Android apps. The experiment showed that the app
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exploration can improve thanks to the hybridization in terms of Covered Activities,
Covered LOC and Generated Network Traffic. The manual intervention required by
the technique had a limited impact on the entire exploration costs. The experiment
also showed that juGULAR was more effective in app exploration than the state-of-
the practice automated Android GUI exploration tool.

I am aware that juGULAR may suffer from the limitation introduced by app
non-determinisms. As future work, I and my research group intend to address the
issues of non-deterministic Gate GUI, such as those exposed by Games or containing
CAPTCHAs, by investigating effective solutions to handle them. We plan to extend
juGULAR by considering more Gate GUI classes besides the ones we have dealt
with.

Finally, we plan to extend the validity of our experimental results by carrying
out an industrial case study involving real practitioners and a wider set of Android
apps. In addition, we would like to consider further performance indicators, such
as the diversity of generated network traffic. This aspect is critical for assessing how
realistic such traffic is and it can be exploited in several areas, e.g. mobile app traffic
ground-truth generation and network traffic signatures generation. To this aim, we
intend to investigate suitable measurement approaches and metrics for evaluating
such diversity, since it is still an open issue in the literature.
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Chapter 6

Conclusions and Future Work

Mobile apps are today an essential component in the everyday life of billions of
people. These apps should guarantee a high level of quality to meet the users expec-
tations and thus be successful. Automation tools help to ease the burden of quality
engineering activities on mobile developers. In particular, automated GUI explo-
ration techniques are widely adopted by researchers and practitioners in the context
of mobile apps for supporting critical engineering tasks such as reverse engineering,
testing, and network traffic signature generation.

The Software Engineering community has been devoting a great effort to pro-
pose methodologies, approaches and tools for automatically exploring mobile apps,
but there are challenges and issues still open. Therefore there is the need for new so-
lutions that can be actually applied to improve the existing techniques and to adapt
them to the specific characteristics of the mobile platforms. In this work I focus on
Android, since it is today the world’s most popular mobile operating system.

In this dissertation, I stressed the relevance of the issues exposed by Android
apps when the lifecycle of their Activity components is exercised through mobile-
specific events. In particular, I investigated the problem of GUI failures due to orien-
tation change events and proposed a framework for detecting and classifying them.
I explored the impact of such failures on both open-source and industrial-strength
apps showing that more than 88% of the considered apps are affected by GUI fail-
ures, some classes of GUI failures are more common than others, and some GUI
objects are more frequently involved. Almost all the failures detected by these stud-
ies were novel since they were not already reported in issue trackers. The set of
collected GUI failures is available as open source and provides the largest currently
available dataset of this kind of failures. It may be exploited by future work to eval-
uate and compare the effectiveness of different testing techniques and tools. I ana-
lyzed the source code of the apps affected by these failures and point out six classes
of common faults that should be avoided by developers to improve the app quality.
These Android-specific fault classes could be exploited in future work to develop
new mutation operators for testing of Android apps and to define fault localization
techniques focused on source code bugs that may cause the observed failures.

As another contribution of this work, I proposed ALARic, a fully-automated test-
ing technique that adopts a GUI exploration strategy that systematically exercises
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the lifecycle of app Activities to expose GUI failures and crashes. As future work, I
intend to propose and implement a set of oracles able to detect other issues tied to
the Activity lifecycle besides GUI failures and crashes, such as memory leaks and
threading issues. Moreover, I plan to extend the ALARic approach to test the lifecy-
cle of other app components, such as services, fragments and content providers.

Finally, I addressed the limitations introduced by classes of GUIs that may pre-
vent the exploration of relevant parts of applications if they are not exercised with
app-specific and complex input event sequences that only human knowledge can
provide. In this dissertation, I referred to these GUIs as Gate GUIs.

I proposed juGULAR, a novel hybrid automated GUI exploration technique that
pragmatically combines automated GUI exploration with Capture and Replay in or-
der to effectively exercise Gate GUIs and minimize the human intervention. juGU-
LAR can automatically detect the occurrences of Gate GUI instances during the ex-
ploration by exploiting a machine learning approach and exercise them by lever-
aging input event sequences provided by the user. In this work, I focused on two
specific classes of Gate GUIs, i.e. Login and Network Settings, but I plan to ex-
tend juGULAR by considering additional Gate GUI classes. I am aware that juGU-
LAR may suffer from the limitation introduced by app non-determinisms. As future
work, I intend to address the issues of non-deterministic GUIs, such as those ex-
posed by Games or containing CAPTCHAs, by investigating effective solutions to
handle them.

The effectiveness of all the proposed solutions has been demonstrated through
experimental evaluations performed on real mobile apps. To further extend the gen-
eralizability of the results, I plan to conduct a wider experimentation involving a
larger set of Android apps and considering different Android platform versions and
configurations of the tools.

The contributions described in this thesis target the Android Operating System,
but can be extended to other software platforms. Although the process of testing
with the specifics of the Activity lifecycle implemented in ALARic may seem rather
specific to the Android environment and thus quite narrow, it can be seen as an
instance of metamorphic testing that aims to alleviate the test oracle problem that is
general in software testing. The app lifecycle management is a critical feature also
in other mobile platforms. Therefore, I plan to extend the analysis and the solution
presented in this work by considering other mobile operating systems, such as iOS
and Windows 10 Mobile. Moreover, the combination of automated GUI exploration
with capture and replay through machine learning implemented in juGULAR could
be adapted to other GUI-based software platforms in addition to mobile ones, e.g.
Web applications.

For all these reasons, I expect this thesis will provide a solid foundation for future
research in the Android context and beyond. I also believe the proposed solutions
can effectively aid researchers and developers with their mobile app analysis tasks.
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