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Abstract 

Recent years have brought significant advances in the design capabilities 

and construction practices of steel structures. These were partially caused by 

technological development and a direct effect of the research community 

efforts towards the mitigation of the earthquake induced damage. Making the 

traditional structural systems more resilient is one of the directions taken but, 

more and more, solutions with reduced post-earthquake repair costs are 

preferred. Steel structures are particularly malleable in the modern spirit of 

integrating devices which render the structure as “low-damage” or “easily 

repairable”. The recent earthquakes of Japan and New Zealand have 

demonstrated the feasibility and the advantages of such structural typologies. 

The current work presents an investigation on two steel structural 

solutions, including thus both moment resisting and braced frames, which 

have the potential of being easily used in practice, with minimal alteration of 

the design and erection procedures and improved post-earthquake economic 

benefits. The thesis focuses on (i) bolted connections of detachable short links 

for eccentrically braced frame and on (ii) bolted friction connections for 

moment resisting frames. The main objective is to facilitate the application of 

these structural solutions in practice by enhancing the knowledge of their 

relevant bolted connection design and behavior.  
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1 INTRODUCTION 

The capacity-based design methodology applied for traditional steel 

structures like moment resisting frames or braced frames has been successful 

for many years now, yielding solutions capable to withstand severe 

earthquakes with diminishing casualties and economic losses. Proper design 

rules implemented at all levels (from global to the material) combined with 

advances in the design and analysis tools and the construction technologies 

available, led to structures with safe, predictable response under catastrophic 

events. 

However, the last couple decades have seen severe earthquakes like the 

ones in Northridge (US, 1994), Kobe (Japan, 1995) or Christchurch (New 

Zealand, 2011) during which not only old, but also relatively new structures 

collapsed. Consequently, large research ventures took the direction of 

addressing the critical aspects related to the traditional systems (the SAC 

project - for the qualification of steel joints for moment frames in the US) 

while other research groups focused on proposing innovative solutions for 

seismic resistant structures. Many of the surfaced solutions, like the base 

isolation, the buckling restrained braces, viscous dampers and the friction 

connections (to name some), are being codified and implemented in practice 

in seismic areas around the world and have shown good performance in recent 

earthquakes (Bruneau & McRae, 2017). 
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Emerging innovative seismic devices enhance the seismic safety of 

buildings, represent sustainable alternatives by lowering the life-cycle costs 

and thus rendering steel structures more appealing compared with other 

materials. The new structural typologies also contribute to the number of code-

compliant steel solutions, making the material more competitive. 

The advantages are numerous for all the solutions which are already 

gaining popularity and most likely they will continue to be used, especially as 

they get tested in real-life in active seismic areas like New Zealand, Japan, 

California or central Italy. Nevertheless, some of the proposed devices are 

expensive and/or represent special patented devices, needing qualified 

workers and working by modifying the structural components or introducing 

significant changes in the design process. 

Solutions that modify minimally the conventional structural systems 

(MRFs, EBFs, CBFs) are better understood and accepted by the environment 

of construction industry. The ideal solutions would therefore be based on 

existing structural configurations, would minimally modify the structure and 

its design and most importantly would render the building easily-repairable in 

the earthquake aftermath. 

From the point of view of structural configuration suitability, there is no 

universally accepted superior solution – different types of structures adequate 

differently to different seismic zones.  For example, braces naturally buckle at 

low forces and therefore, braced frames are not ideal for seismic areas with 

low intensity and frequent events and, moment resisting frames (MRFs) being 

more adequate owing to their high ductility. On the contrary, seismic areas 

where high intensity, seldom earthquakes occur, the higher stiffness of 

centrically braced frames (CBF) is an advantage. Eccentrically braced frames 

(EBFs) represent an intermediary solution, as function of the link length, 

different levels of ductility can be attained relative to the same stiffness. 
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The key aspect of MRFs (and of all steel structures actually) are the 

connections. The general practice is focused on designing and using either full 

strength, rigid or nominally pinned connections. In literature it has been 

proved that most connections are somewhere in between. Although accounting 

for this in the structural analysis might be more tedious, it is possible to design 

partial strength connections that have sufficient ductility and lead to lighter 

structural solutions (D’Aniello et al., 2017). However, significant plastic 

damage is expected in the connection and therefore the structural repair costs 

once the structure undergoes severe earthquake events, are high.  

In the framework of steel structures, it is easy to obtain easily-repairable 

structures starting from any of the consecrated systems. The key for 

sustainable seismic design is low-damage, localized in easily replaceable 

elements of the structure. In the recent years many reliable solutions have 

surfaced, devices which render the structure easily repairable or with low 

damage. However not all solutions are equal and although many provide the 

desired results, costs, requirements for specialized workmanship, design 

complexity as well as comparative performance must be accounted for. 

The use of innovative structural devices which effectively replace the 

traditional ones undoubtedly reduce the post-earthquake repair costs. 

Selecting one solution depends on various constraints like the ability of the 

designer to implement it (some devices are patented or require complex design 

techniques), the availability of specialized workers for installation, the 

physical and design related changes to the structure, the initial and life-cycle 

costs or the social confidence in the solution 

Most of the innovative devices render the structures repairable in the 

earthquake aftermath. However, viscous and hysteretic dampers, as well as 

BRBs tend to be expensive, protected by patents, require special design 

methodologies and qualified workers in most of the cases. The most suitable 
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solutions are the friction connections for MRFs and CBFs and the replaceable 

links for EBFs.  

As a comprehensive complete study of easily repairable steel structures 

for different seismicity areas, it was deemed necessary to focus on a braced 

system (EBF) and MRF. In the framework of these two structures, the most 

effective innovative solutions were investigated: replaceable links for EBFs 

and friction connections for MRFs. 

Converting traditional EBFs to an easily repairable solution was proved 

to be feasible by simply introducing a connection that separates the link (the 

dissipative element) from the beam containing it (Stratan et al. 2004). In this 

case the re-centrability of the EBF can be enhanced by combining it with MR 

bays leading thus to a D-EBF (Ioan et al., 2016). 

A friction connection is a type of partial strength connection designed in 

a way that disconnects the strength and stiffness of the moment resisting joint, 

changing the energy dissipation mechanism that eliminates most of the plastic 

deformation (being that localized in easily replaceable friction plates). The 

structure equipped with such connections could have significant inherent re-

centrability because the framed members and the non-dissipative connections 

remain elastic and the residual drifts could be minimized by smartly replacing 

the friction devices. 

The focus of this work is on these two types of connections that transform 

traditional structural systems with significant plastic damage concentrated in 

the members into structures that either have low damage (MRFs with friction 

devices) or into structures that have the damaged elements removable (EBFs 

with detachable links). Practically, the work will focus on traditional end-plate 

connections used in a special application and on innovative friction connection 

applied in typical MRFs. 
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* 

1.1 MOTIVATION 

The main motivation for the current work is to contribute to the general 

effort of the research community towards rendering low-damage, cost 

effective and easily repairable structural solutions more readily available and 

closer to being codified.  

Although the idea has been around for a while and replaceable links have 

been studied in the last years (Stratan et al., 2003 and 2004, Dubina et al., 2007 

and 2008, Fussell et al., 2014, Ioan et al,. 2016, Ji et al., 2016b, Tan & 

Christopoulos, 2016), it’s not clear yet how the seismic links and the adjoining 

connections are to be designed. The research does not offer a definitive answer 

concerning the design forces (the shear overstrength, axial force) and there are 

no specific rules for the seismic design of the connection. In particular, the 

question needing an answer is whether the methodology available for the 

design of steel connections under static loads (EN1993 1-8) can be extended 

for the design of the seismic link’s connection and if not, how to adapt it. 

In what regards the friction connections, due to their relative novelty much 

more aspects need to be addressed. To start, the principal parameters that can 

be assumed to influence the friction response are the friction coefficient of the 

sliding interfaces and the normal force applied (Marsh & Pall 1981, 

Butterworth & Clifton, 2000, Latour et al., 2011b). While the latter is an issue 

that is common in steel industry (issues related to applying the correct force 

and the losses of preload are often studied), the friction properties of surfaces 

to be selected for the proposed friction device need to be investigated in depth 

for a representative range of materials and the best solution should be selected. 

Subsequently, it can be guessed that due to the newly proposed joint 

geometries, there are effects that need to be investigated (contact area, shear 
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capacity, cyclic behavior etc.) and the best joint solution is to be selected for 

ulterior developments. A comprehensive study of the devices developed is 

needed in order to confirm the validity of the concept, looking at all key factors 

and the seismic performance of frames equipped with friction devices will 

complete the assessment of the proposed solution. 

The aim of the current work is to give an answer to questions raised for 

the two solutions and offer therefore a basis for the future codification. A 

correct connection design in the case of these two systems (the link connection 

for the D-EBF and the friction connection for MRFs) is key in attaining the 

goal of structural solutions that are easily repairable in the aftermath of severe 

seismic events. 

* 

1.2 OBJECTIVES 

The main objective of the research is to perform an in-depth analysis of 

the two solutions and provide insight into the mechanism of the solutions and 

recommendations for the design. The set goals are achieved especially by 

using advanced finite element (FE) software to develop experimentally 

calibrated models able to accurately depict the steel connection response. 

Analytical methods for the design of connections and/or frames are discussed 

where it was the case. The work investigated both the local and global 

response (connections and structure – in the case of the friction devices). 

A summary of the thesis, by chapters is hereinafter presented. 

Chapter 1. Introduction 

Chapter 2. State of the Art 

Chapter 3. Bolted connections for detachable links 

3.1 – Introduction and objectives 
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3.2 – DUAREM Research Project experimental campaign 

This chapter briefly describes the DUAREM research project which 

focused on a full-scale test on a dual eccentrically braced frame equipped with 

detachable short links. The results of the experimental tests were used to 

calibrate the numerical models for the numerical study. 

3.3 – European design of bolted moment-resisting connections 

A general overview of the Component Method basic assumptions and 

methodology is described, as the main design procedure used in the European 

constructional steel practice. The chapter discusses the concepts of basic 

component, series and parallel component assembling, the T-stub, the 

connection moment-rotation characteristic and the design algorithm as 

implemented in the Eurocode. 

3.4 – FE model assumptions and Validation 

All the numerical modelling assumptions, general throughout the 

numerical analyses performed and presented in this first part of the thesis are 

summarized. The main aspects related to material modelling, boundary 

conditions and loading as well as meshing technique are discussed. The link-

connection assemblies of the DUAREM mock-up frame were modelled in a 

manner simulating closely the real testing conditions, and the results were 

compared against the experimental results (in terms of shear-rotation response 

and deformed shape and plastic damage). 

3.5 – Parametric study for the evaluation of the link connection design forces 

This chapter presents the results of a large parametric study on short links 

(the models considering the link profile alone) in order to assess the actual 

design forces necessary for the design of the link end connections. Given that 
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the connection design forces are derived based on the links’ capacity, the 

actual values of the shear overstrength and the axial force must be evaluated. 

3.6 –Design and verification of bolted connection for links 

The link end connection is special due to its location and type of loading 

it has to withstand. Therefore, the design methodology implemented in 

EN1993 1-8 must be tweaked in order to fit this particular case. In order to 

take into account the potential development of catenary action, two 

verification methods were presented and the results were discussed by 

comparing them with the results of the design method. 

3.7 – Assessment of the bolted link connections response 

Finally, the last chapter presents the result of numerical analyses on link-

connection assemblies, looking at the shear overstrength and axial force in the 

link and the effect the connection mechanical parameters (strength and 

stiffness) have on them. The chapter introduces proposals for the evaluation 

of design forces and design recommendations in the case of link-connection 

assemblies. 

Chapter 4. Bolted friction connections for MRFs 

4.1 – Basic concepts of friction 

As an introduction to the study of friction devices, this chapter presents a 

brief description of general tribology notions, 

4.2 –Definition of friction device properties 

Prior to the study of full-scale devices, the investigation of the main sub-

component was performed. The experimental and numerical campaigns were 

aimed at the study of a number of friction materials and the impact of several 

parameters (normal force, contact area, distribution of the normal force, speed 

of load application) on the sliding behavior of sub-components. 
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4.3 – The FREEDAM Device 

The answers obtained from the investigations on the sub-components 

were subsequently used for the beam-to-column joints. This chapter presents 

the response of full-size beam-to-column assemblies equipped with friction 

connections. The chapter is divided in two main parts: the first dealing with 

the experimental tests and the second presenting the results of numerical 

investigations on the influence of certain parameters on the device response as 

well as the mechanism of shear force transfer. 

4.4 – Full scale test on Frame equipped with the FREEDAM friction device 

In this chapter are presented the results of preliminary FE analyses of full-

scale structures tested considering traditional partial strength connections, 

reduced beam section, and friction connections. The analyses are performed 

using both simplified and advanced numerical approaches in order to assess 

the capacity of the software to model the structural response. 

4.5 – Design and Analysis of Frames equipped with Friction Devices 

In order to be used in practice, the structures equipped with friction 

connections require a ready-to-use design procedure. Two methodologies are 

proposed and assessed in this chapter by designing two sets of structures and 

comparing their performance in terms of static and dynamic nonlinear 

response. 

Chapter 5. Conclusions 

Each of the two main parts have summaries of the research and they are 

reiterated in this final chapter, together with the general conclusions 

concerning easily repairable seismic resistant steel structures 
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2 STATE OF THE ART 

Seismic resistant design 

Structural design of buildings can be directed in three ways function of 

the destination and the architectural demands. The structures that are strategic 

for the society (nuclear power plants, hospitals, etc.) need to withstand 

earthquakes with high return periods remaining elastic. These structures fall 

within the first category of structural control i.e. hyper-resistant structures. 

The second category is comprised of active control systems which work by 

modifying the structural response at the occurrence of the seismic events. This 

kind of devices are effective however, the high cost is justified just in case of 

special structures (high-rise buildings, bridges etc.). The last category is the 

passive control systems which work by directing the seismic energy input into 

specific elements of the structure possessing enough capacity to dissipate it. 

Given that the first two categories of seismic structural control are devoted 

to design of structures that represent a low percentage of the construction 

market and typically the design is not a strict code-compliant one, most of the 

efforts in improving and/or developing performant structural systems are 

focused on the third category. 

The seismic base isolation systems studied in works like the ones by Kelly 

(1979), Aiken et al (1993) Christopoulos & Filiatrault (2000) Roy & 
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Chakraborty (2015) Cancellara & De Angelis (2017) are a special type of 

passive control systems that work as a barrier in between the soil and the 

superstructure, preventing the transfer of the seismic input and therefore 

limiting the demand on the structure. Although effectively used in practice, it 

constitutes a costly solution that has limitations. 

The research conducted in the 20th century led to some, now consecrated, 

structural systems considering the largely favorite construction materials 

(reinforced concrete, masonr and steel). All the classical systems (being them 

frames or walls) assume that the seismic action is dissipated by plastic 

deformation of elements designed following the principles of the capacity 

design.  

Capacity-based design 

The capacity-based design principle is now at the base of all modern 

seismic design codes (EN 1998-1, ASCE 7-10, NZS 1170.5, BSLJ). The 

incorporation of the concept, as shown by Beatie et al. (2008) and Fardis 

(2018), followed several preliminary steps to seismic design regulations. 

The first reference to the concept can be tracked back to the book by 

Blume, Newmark, and Corning, Design of Multistory Reinforced Concrete 

Buildings for Earthquake Motions, published in 1961. Mete Sozen contributed 

heavily to the work and the concept was included in the 1967 to 1968 revision 

of the Structural Engineers Association of California (SEAOC) 

recommendations. With the introduction of the new SEAOC rules in the 1968 

New Zealand design code for public buildings, the term “capacity design” was 

born in the team surrounding Otto Glogau. 

In New Zealand the concept was explained by Hollings (1969a and 1969b) 

for concrete structures (Figure 1) and as it gained attention and it was 

experimentally and theoretically developed, it was more comprehensively 
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explained in “Reinforced Concrete Structures” the book by Park and Paulay 

(1975). The principle was continually improved upon with ever extending 

applications. Works like the book by Paulay and Priestley (1992), containing 

detailing rules for reinforced concrete and masonry helped facilitate its 

implementation in practice.  

a) 

 

b) 

 

Figure 1 Plastic mechanisms, Hollings 1969a 

The principle proposes the design of certain elements (so called 

dissipative or ductile elements) of the structure for lower design forces, 
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rendering them purposely weaker (Hollings, 1968). The amount by which the 

forces are reduced for the design of these elements depends of the reserve of 

ductility available (structural typology, material). On the other hand, the non-

ductile elements must be designed with an overstrength with respect to the 

dissipative element, in order to allow the formation of the desired global 

plastic mechanism. 

Damage in past earthquakes 

The extent of the post-earthquake losses throughout the last century in 

Japan (Y. Ishiyama, 2011), and looking at recent seismic events like the one 

in Christchurch, New Zealand (Clifton et al., 2011 and 2012, Kam and 

Pampanin, 2011) is sufficient proof to argue that there is always space for 

improvements in the seismic design and construction of structures. 

The main causes for the extensive losses in terms of human lives and 

financial are not the same comparing the events at the beginning and the end 

of the past century. Moreover, tt stands to no doubt that the newer structures, 

designed according to modern regulations based on capacity design, have a 

better performance. During the events at the beginning of the century, the main 

culprit for the losses was the lack of knowledge with respect to seismic design, 

the poor constructional materials (timber, bricks) and the fires started by the 

earthquake and feeding onto the widely used timber structures (Kanto and San 

Francisco earthquakes). The events of the last decades surfaced problems of 

structural collapse related to detailing or poor implementation of the 

guidelines (Tremblay et al., 1995, Youssef et al., 1995, Nakashima et al., 

1995, Watanabe et al., 1998). The basis for seismic design as well as the 

structural typologies are good, however, improvements are required at 

different levels (design rules, detailing rules, construction rules, etc.). 

Therefore, some of the collapse causes can be addressed without significantly 

altering the current design procedures. 



Chapter 2 

45 

 

Current design methodology 

There is no doubt that the current practice is accustomed with the concept 

of capacity design but also to the specific types of structures that are by now 

consecrated systems i.e. MRFs, CBFs, EBFs, walls, etc., and when rationally 

applied the code guidelines lead to relatively economical solutions if only the 

initial cost is considered. The downside comes with the repair costs in the 

design-level earthquake aftermath. The ductile dissipative elements are 

usually structural members which undergo significant plastic damage, as 

intended, and must be replaced. In many cases this is no easy task, the repair 

costs being even larger than the complete replacement of the structure. 

Traditional structural typologies 

The simplest steel structures are composed of members connected in 

nodes which work together to transfer the vertical and horizontal forces. 

Several structural typologies can be identified for lateral resisting systems for 

seismic areas. The steel structural typologies are identified depending on the 

behavior of their primary resisting structure under seismic actions. In moment-

resisting frames (MRF) members act primarily in flexure, concentrically-

braced frames (CBF) have diagonal braces that act in tension and 

eccentrically-braced frame (EBF) transfer the forces by bending and/or shear 

deformation of links. 

Each structural typology has its own structural features and applications, 

but the seismic design must adhere to two basic criteria: (1) sufficient stiffness 

to satisfy the serviceability limits and avoid damage to non-structural elements 

during events of low seismicity and (2) sufficient ductility to prevent collapse 

in the case of major seismic events.  

MRFs and CBFs have been the default solutions for decades but they have 

widely opposite characteristics in terms of ductility and stiffness. It is not 
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relevant to compare the MRFs and any of the braced frames typologies, 

however EBFs represent a compromise solution. Khademi and Rezaie (2017) 

recently performed a comparison study of CBFs and EBFs bracing in steel 

structures using nonlinear Timehistory analysis. The EBF shows good seismic 

behavior in terms of lateral displacements and not surprisingly, almost double 

the energy absorption capacity compared to the other systems. Although CBFs 

are often used in areas with moderate seismicity, due to their simplicity in 

design and erection, Han (2008) made the case for the use of EBFs as a better 

alternative given its comparable stiffness but increased ductility 

The seismic performance of MRFs is hugely influenced by the beam to 

column joints. As a matter of fact, many steel welded moment-frames 

exhibited a very poor behavior (brittle fracture of the welds) during the 

Northridge earthquake (Tremblay et al., 1995, Youssef et al., 1995, Yang and 

Popov, 1995) and owing to this, an extensive campaign for the pre-

qualification of bolted beam to column joints was launched in the US (Sumner 

& Murray 2000 and 2002, Murray and Sumner 2004). A similar venture was 

recently concluded in Europe as the Equaljoints RFCS research project 

(RFSR-CT-2013-00021) (D’Aniello et al. 2017, Tartaglia et al. 2018a and 

2018b). 

The latter research project was aimed at the investigation of traditional 

moment-resisting connections typically used in the European constructional 

practice in seismic areas. The current design practice for steel joints is based 

on the Component method codified in Part 1-8 of EC3. The principle 

developed by Zoetemeier (1974) and refined by Jaspart (1991) works very 

well for static loading conditions (Bursi & Jaspart 1997a and 1997b, Jaspart 

et al., 2007 and 2008). Several research groups across Europe tested the typical 

moment-resisting joint configurations under cyclic loading (Dubina et al., 

2001, Nogueiro et al., 2006 and 2007, Diaz et al. 2011) and tried to fully 
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characterize their response and the one of the T-stub (Piluso et al., 2001a and 

2001b), the major component of the bolted steel connections.  

In brief, the Equaljoints project (RFSR-CT-2013-00021) brought together 

some of the research groups that carried out research in this direction and, 

focusing on selected joint typologies, aimed at fully describing their seismic 

behavior, proposing improved design rules and pre-qualification charts for the 

design practitioners. Part of the project was also the investigation of partial 

strength and semi-rigid joints. 

The partial-strength and semi-rigid behavior of joints and their effect on 

the frame response can be significant and must not be ignored in practice 

(Faella C., Piluso V. and Rizzano G. “Structural steel semirigid connections: 

theory design and software”). As it was highlighted in several studies 

(Elnashai & Elghazouli 1994 and 1998), the majority of steel joints are 

somewhere in between a fully-rigid and a pinned joint. The modelling of the 

joint semi-rigidity in practical applications is tedious, but many studies have 

proved that in many cases it is necessary, and it can be beneficial, from a 

design stand point (De Matteis et al., 1999 and 2000, Calado et al., 2000a, 

Della Corte et al., 2000 and 2002). 

The seismic design of steel MRFs according to EC8 leads to ineffective 

solutions due to the very stringent limitations in terms of drift and P-Δ effects. 

The Eurocodes are a relatively new set of design guidelines and owing to the 

complexity of the task of writing them and the continuous evolution of the 

available resources and information, it is obvious that improvements might be 

needed. As a matter of fact, the entire set of European codes is currently under 

revision in order to bring improvements and adjust the lacks, all based on the 

research and the experiences of designers from the last decades. As an 

alternative to the code Nastri et al. (2015) and Montuori et al. (2016), proposed 
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a design procedure based on the plastic mechanism theory, which shows 

potential in avoiding the code-related issues. 

The Eurocode 8 revision made by Bosco et al., (2014 and 2015) for the 

design of EBFs revealed additional issues regarding this structural typology. 

The problems are related mostly with the use of lateral force method in highly 

ductile EBF which leads to errors in the evaluation of the overstrength factor 

in links, the neglection of the structural overstrength in considering the P-Δ 

effects and the lack of a reliable control over the dissipative behavior of the 

structure, Furthermore, the authors emphasize that the link overstrength factor 

is discontinuous at a value of the mechanical length of links, the code neglects 

the presence of gravity loads does not seem adequate for structures with 

intermediate or long links. The rules for the application of the capacity design 

principles to braces, columns, and beam segments outside links are 

unconservative because of the underestimated bending moment 

One of the major lacks regarding EC8 is that it does not cover innovative 

structural systems, outside of the consecrated typologies, although a larger 

variety of solutions are studied, and even implemented, and other international 

codes already codified them. 

The argument for traditional structural systems stands, as they represent 

solutions which have been widely investigated and their response is known 

and predictable to a large extent. However, it is not difficult to imagine that 

by bringing small modifications to the structure, the seismic resilience can be 

improved, and the life-cycle cost mitigated. 

Innovative structural solutions for seismic areas 

The past couple decades have seen the tide change towards the use of 

passive structural controls that either localize the plastic damage in easily 
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replaceable elements or completely replace the dissipation mechanism. Anti-

seismic devices have been around for much longer though. 

Seismic damping devices are additional elements inserted into the 

structure with the task of absorbing the induced kinetic energy. The strategy 

of using such devices, as described by Kelly et al. (1972), is aimed at 

separating the load bearing capacity from the energy dissipation function of 

the structure. The 3 devices proposed and tested by the Authors were all based 

on steel plates working under different loading states (flexure, torsion) and 

performed well, demonstrating thus the effectiveness of steel plastic 

deformation in dissipating energy. Skinner et al. (1980) studied steel and lead 

hysteretic dampers for use in bridges and base-isolated structures. 

More recently, triangular steel plate damping devices were proposed for 

steel MRFs (Saeedi et al. 2016). As it was shown by the Authors, the structural 

performance of MRFs has been significantly improved, in terms of stiffness 

and seismic performance. 

Significant research has been performed in addressing detachable short 

links for EBFs, many of the results highlighting the combined benefits of high 

ductility and stiffness of the EBFs with the replaceable link solution (can be 

compared to a steel fuse) which rendered the structural system an easily 

repairable one (Stratan et al., 2004, Dubina et al., 2007, 2008, Mansour et al., 

2008, Fusell et al., 2014, Ji et al., 2016b, and Tan & Christopoulos, 2016),  

Yet another dissipating mechanism that takes advantage of both high-

strength steel and the plastic deformation capacity of mild steel are the reduced 

beam sections (RBS) used for MRFs with energy dissipation bays (EDBs) Ke 

& Chen (2016). Combining ductile bays, designed to undergo plastic damage 

in the RBS regions and MR bays of high strength steel members, the system 

has an adequate ductility, with reduced residual drift. However, the system is 
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not easily repairable as the damage is still distributed throughout the large part 

of the structure 

Buckling restrained braces (BRBs) are devices which work like typical 

centrically braced frames (in tension) with the addition that the buckling is 

prevented when the element undergoes compression. This is managed by 

either additional steel profiles bolted to the brace or by encasing in RC (see 

Figure 2). Bosco & Marino (2013) studied and proposed a design method for 

frames equipped with BRBs, investigating also the behavior factor. Jian et al. 

(2015) used numerical methods to study the influence of design parameters on 

the performance of BRBs, concluding with recommendations for the core 

width-to-thickness ratio and the maximum gap. On the European market there 

are readily available, device-like patented BRBs, for example BRAD® 

produced by FIP Industriale S.r.l. 

 

 

Figure 2 “Schematic diagram of BRB” Jiang et al. (2015) 

 

As it does not rely on the dissipation of traditional connections or 

members, a type of seismic devices are the partial strength post-tensioned 

connections (see Figure 3). In a comparison between welded and post-

tensioned connections, Reyes Salazar et al. (2016) demonstrated that the force 

reduction factors are larger and the ductility demands is smaller for the latter, 

concluding that the solution has a better seismic performance. 
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Figure 3 “Post-tensioned semi-rigid connection (PC). a No deformed, b Deformed” Reyes Salazar  et 

al. (2016) 

The introduction of the friction-based energy dissipation joint was made 

by Pall & Marsh (1979), like for most of the dissipative devices not for steel 

structures, but for concrete structures - for this case - large RC panels. The 

steel research community eventually caught up, and the solution which 

basically replaces the typical plastic deformation energy dissipation 

mechanism with a friction based one is now implemented successfully in 

practice (Butterworth & Clifton, 2000, Bruneau & McRae, 2017) 

At an international level, many studies investigated the viscous dampers 

and their various applications (Symans et al., 2008). Amongst them Climent 

(2006) and Guneyisi & Altay (2008) investigated the effectiveness of viscous 

dampers in RC buildings, while application of the same devices for steel MRF 

were investigated by Dong (2010), Abdi et al. (2015) Tsimas et al. (2016). 

The studies show marked improvements in MRF structural response but 

highlight also the need of an adjusted capacity design in order to avoid hinging 

of the columns (Karavasilis, 2016). In order to make the special devices usable 

in the US design practice, Whittaker et al. (2003) developed an equivalent 

lateral force and modal analysis methodologies for dissipative structures with 

damping devices. 
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The applicability of innovative seismic devices extends also to seismic 

upgrading of structures. Most of the devices previously discussed can be 

implemented successfully in both RC and steel structures, not only for frames 

but also for wall systems. De Matteis et al. (2005) showed the excellent energy 

dissipation capacity of low-yield metal shear panels while Formisano et al. 

(2010) gave insight into the behavior of RC structure upgraded with steel and 

aluminum shear panels. Other retrofitting solutions include hysteretic dampers 

(Oviedo-Amezquita et al., 2010), friction dampers Guneyisi et al., (2014), 

Taghi Nikoukalam et al. (2015), passive energy dissipation systems 

(Constantinou et al., 1998). Comparative to the use of regular steel braces for 

structural upgrading (CBFs: Mazzolani et al., 2009, EBFs: Barecchia et al., 

2006, D’Aniello et al., 2006) BRBs are much more versatile and integrate 

better with the demands of the structures to be upgraded (D’Aniello et al., 

2008, Guneyisi, 2012, Della Corte et al., 2014).  

Several research projects at European level have been focusing on some 

of the specific devices previously mentioned or similar ones: INERD  – Two 

innovations for Earthquake resistant design (2001-2004 CEC Agreement 

No7210-PR-316); FUSEIS – Dissipative devices for seismic resistant steel 

frames (2008-2011 RFSR-CT-2008-00032); DUAREM – Full-scale 

experimental validation of dual eccentrically braced frame with removable 

links (FP7 2007-2013 SERIES Agreement No 227887); STEELRETRO. 

STEEL solutions for seismic RETROfit and upgrade of existing constructions 

(2007-2010 RFSR-CT2007-00050); FREEDAM – FREE from DAMage 

connections (2015-2018, RFCS (RFSR-CT-2015-00022) etc. INNOSEIS – 

Valorization of innovative anti-seismic devices (RFCS number) was a 

dissemination project which brought together several research groups that 

studied 12 devices, in an effort to circulate the acquired knowledge and to 

advance the new lateral-load resisting systems a step closer to being code-

approved. 
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* 

There is no doubt of the wide applications for innovative structural devices 

which can replace the traditional energy dissipation mechanism that leads to 

so large structural losses in the earthquake aftermath. However, there are some 

crucial aspects to be considered in the selection of the seismic device: 

✓ The ability of the designer to implement it (whether it is a patented 

device or if it requires complex design techniques) 

✓ The requirements in terms of specialized workers for installation 

✓ The physical and design related changes it brings to conventional 

structural typologies (MRFs, CBFs, EBFs in the case of steel 

structures) 

✓ The initial and life-cycle cost (including maintenance) 

✓ The overall social confidence in the solution 

Considering all of the above, it is not difficult to discern that there are few 

innovative seismic devices that simultaneously meet these requirements at the 

moment. To simplify matters, the discussion can be sub-divide in categories 

for the three main types of steel structural systems: 

[1] MRFs can be designed with viscous dampers, hysteretic dampers, 

base isolation, shear panels, post-tensioned partial strength 

connections and friction connections. 

[2] CBFs can be nowadays designed with BRBs, with dampers on the 

braces, friction connection between the brace and the beam 

(inverted V configuration)  

[3] EBFs detailed with replaceable links or hysteretic dampers. 

Most of the innovative devices render the structures repairable in the 

earthquake aftermath. However, viscous and hysteretic dampers, as well as 
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BRBs tend to be expensive, protected by patents, require special design 

methodologies and qualified workers in most of the cases. The most suitable 

solutions are the friction connections for MRFs and CBFs and the replaceable 

links for EBFs. 

In the beginning of the section it was highlighted how the CBFs have a 

poor ductility and EBFs on the contrary, preserve the characteristic stiffness 

while having improved ductility. Also, the braced frames are not convenient 

in seismic areas with frequent low-intensity earthquake (premature buckling 

of braces) and rather MRFs are better choices.  

Therefore, as a comprehensive complete study of easily repairable steel 

structures for different seismicity areas, it was deemed necessary to focus on 

EBF and MRF. In the framework of these two structures, the most effective 

innovative solution was investigated: replaceable links for EBFs and friction 

connections for MRFs. Due to the different research advances with regards to 

the two types of devices, a thorough review of the relative state of the art will 

hereby be presented separately.  

Traditional EBFs and shear links 

Ever since it surfaced in the 70s, the eccentrically braced frame (EBF) 

structural system has proved time and time again its feasibility. Amongst the 

many advantages, highlighted from the very beginning by its promoters 

(Roeder & Popov, 1978) are the almost ideal combination of stiffness of a 

braced frame with the superior energy dissipation capacity of a moment-

resisting frame. 

The EBFs with its diagonal bracing connected eccentrically to the beam 

leads to the isolation of a ductile fuse element called link. Function of the link 

length ratio, it will yield either in shear, moment or a combination of the two. 

The interaction of bending and shear was observed from the very beginning 
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as a negative effect, and the predominantly shear-based response short links 

have been favored. In 1984 Kasai and Popov proposed rules to design 

eccentrically braced frames under static loading and set limits for the link 

length in order to limit bending-shear interactions.  

The initial studies in the 80s were very comprehensive and highlighted 

most of the critical points like the effect of web stiffening on preventing the 

web buckling and therefore enhancing the link ductility (Hjelmstad & Popov, 

1983). Kasai and Popov (1986) subsequently brought more light into the 

influence of the compressive axial force, the interaction between bending 

moment and shear as well as the strain hardening and limits for short link 

length. Malley & Popov (1984) and Popov et al. (1987) highlighted the 

necessity for a proper lateral restraining of the link ends, as well as the 

problems that can occur in the beam containing the link, and even the benefits 

of combining EBFs and MRFs obtaining thus a dual system.  

Practical applications, which did not fail to arise, provided further 

confirmation of the concept validity, indicating that the EBFs perform well 

exhibiting a theoretically predictable behavior during earthquakes. However, 

as brought to attention by Popov et al. (1992), the design must be correctly 

implemented, with attention also to the distribution of the links’ strength on 

the height of the structure (very strong links on the higher levels induce large 

demands in the lower floors and limit frame ductility). 

Applications of the system extended beyond buildings also to structures 

(McDaniel et al., 2003). Recent studies by Dusicka et al (2010) underlined the 

fact that the shear overstrength exhibited by shear links is larger than the code 

recommended value, results confirmed by Ji et al. (2016a) in its summary of 

past tests on shear links (see Figure 4). 
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Figure 4. “Overstrength factors of link test data” Ji et al., (2016a) 

The impact the RC slab, designed for most buildings, has on the steel 

frames was emphasized ever since Kasai & Popov (1984). In this regard, 

Ciutina et al. (2013) and Danku et al (2013) carried out both an experimental 

and numerical campaign to investigate the influence the slab would have on 

the dissipative link. The results demonstrated that simply disconnecting the 

slab from the dissipative zones (links) in D-EBFs does not lead to a response 

governed solely by the steel element, on the contrary, the overall strength and 

stiffness are improved while the ductility is preserved. 

Further analyses on the effect of transverse web stiffeners were performed 

by Vataman et al., (2016) using numerical analyses calibrated on experimental 

tests. In a very comprehensive review of the research on EBFs and links, Azad 

& Topkaya (2017) considered also the observations made in the past on the 

web stiffeners and highlighted the unfavorable effect of improper stiffening 

but emphasizing the issue for intermediate links.  

Azad & Topkaya (2017) brought up many of the lacks in the research 

concerning the topic: the link lateral bracing, lack of proper design rules for 

link-beam or link-column connections, the effect of tensile forces on the shear 

overstrength, a reliable way of accounting for the shear overstrength without 

under or over-estimating it, the progressive collapse capabilities etc. One of 

the largest and most urgent gaps that the Authors highlight is the need for 
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conclusive research towards the codification of design guidelines for link-to-

beam connections, with the aim of proposing prequalified connections for 

replaceable links.  

Replaceable links for EBFs 

The design philosophy of eccentrically braced frames assumes the shear 

link as part of the same floor beam. In the design process the links are 

oversized because the beam outside the braces must resist the larger forces 

developed. Consequently, the whole chain of the capacity design is affected 

resulting in a more expensive solution. Mansour et al., (2008) highlighted that 

by detaching the link, more control is gained in the design on the strength, 

stiffness and ductility, resulting in more cost-effective structures. The Authors 

investigated various details for replaceable shear links, out of which the bolted 

extended end-plate configuration displayed high ductility and stable behaviour 

making it suitable for practical applications. 

The concept of EBFs with bolted short horizontal links which can be 

replaced after an earthquake was initially promoted by Stratan et al. (2003 and 

2004), although the idea was not completely new (Yang, 1982, Seki et al., 

1988, McDaniel et al., 2003). The preliminary investigations on the bolted 

flush end-plate connection revealed pinching and in order to obtain a stable 

cyclic response 80% of the link length ratio was proposed. Dinu et al (2010), 

Dubina et al. (2008 and 2011) further confirmed the solution’s applicability 

highlighted its significant re-centering capabilities.  

The DUAREM project was started with the aim of testing a full-scale D-

EBF with replaceable short links. The pseudo-dynamic testing campaign, 

carried out at the Joint Research Center laboratory in Ispra, Italy, had the 

purpose of proving the re-centering capabilities of the proposed structural 

typology in the aftermath of design level earthquake events, as well as the 
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feasibility of the link replacement procedure tested by Ioan et al., (2013). In 

the paper summarizing most of the results, Ioan et al,. (2016) concluded that 

the D-EBFs with detachable links has significant potential as it exhibited 

optimal seismic performance while being easily repairable after the seismic 

event. 

 

Figure 5 Free-body diagram of link-beam connections (a) CB1; (b) CB2; (c) CB3 (d) CB4 Ji et al., 

(2016b) 

As a confirmation of the proper response of the D-EBF system with 

replaceable links stands the overview on the performance of structures during 

the Christchurch 2010 – 2011 series of earthquakes Clifton et al. (2012) 

More recently, Ji et al., (2016b) analyzed several types of link-end 

connections. They observed that specimen CB1 (see Figure 5) representing the 

extended end plate connection with a shear key revealed a very stable and 

symmetric hysteretic response even for large values of inelastic rotation, while 

the other specimens exhibited pinching due to bolt slippage (CB2 and CB3) 

and premature brittle failure of connection (CB4). The shear key was designed 

to withstand the shear while the bolts and end-plate were designed for flexure. 

An interesting investigation presented by Tan & Christopoulos (2016), 

focused on the response of four steel cast replaceable links and the global 

performance of EBF structures equipped with the best concept. Results show 

that the proposed links reach larger rotations and have better low-cycle fatigue 

life by distributing the flexural yielding uniformly and minimizing stress 
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concentrations. This result renders them a potential substitute for classical link 

profiles. 

Past investigation on the axial force level and shear overstrength in the 

shear links (Della Corte et al., 2007 and 2013) and the influence of the flange 

width/thickness ratio (Richards & Uang, 2005) are relevant also for the 

replaceable links. In fact, the presence of the end-connection makes the issue 

of establishing correct shear overstrength values and axial forces in the link 

even more pressing. 

The link end-plate connections must remain elastic under the design level 

earthquake in order to facilitate the link replacement process. This is no easy 

task as the design forces derived based on the hierarchy of elements are very 

high. Connections for links which are very short can be more easily designed, 

as the bending is reduced, but the aspect that should not be forgotten is that 

the shear overstrength increases.  

Limited research is available on the behavior of link end connections, as 

highlighted by Azad & Topkaya (2016). Zarsav et al., (2016) carried out an 

investigation on the effect of stiffeners on the hysteretic behavior of the link-

to-column connection, highlighting the benefits of trapezoidal stiffeners on the 

ductility and the beneficial effect of positioning the stiffeners close to the beam 

end. 

Due to the lack of specific background research on the links’ connections 

the aim is to analyze how bolted connections behave under loading conditions 

like what is expected in the link-beam splice. Flush end-plate (FEP) 

connections have gathered a solid reputation throughout the years, with 

applications mostly in non-seismic areas owing to their limited stiffness and 

strength (Aceti et al., 2004, Aribert et al., 2004, Atael et al., 2014, Mohamadi-

shooreh & Mofid (2013). The cyclic performance of such connections, when 
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compared to its monotonic level, was not very far of, showed Broderick et al., 

(2002). Although the connection exhibited significant rotational capacity, the 

severe pinching, low stiffness and strength makes it not the ideal solution for 

beam-to-column joints in seismic areas. The methodology for the assessment 

of the performance of FEP under seismic loading, results interesting when 

applied to FEP designed for gravity loading in the past and the structure is in 

an area that has an increased seismicity nowadays Cassiano et al., (2018). 

Owing t the expected high levels of axial force developing in the link, the 

analysis of FEP under column loss scenario is useful for the assessment of the 

connection (Guo et al., 2015, Cassiano et al., 2017, Oosterhof & Driver, 2015 

and Stylianidis et al., 2015a, 2015b and 2016). Another loading situation 

which induces large catenary actions is the fire, and therefore the behavior of 

FEP at elevated temperatures is an important aspect (Yu et al., 2011, Haremza 

et al., 2016) 

Although the solution concerns shear links, the bending moment, although 

limited is present. And even if present in a limited extent, its effect combined 

with axial force can cause unwanted phenomena due to M-N interaction 

Chenaglou et al., (2015a and 2015b). This effect was studied exhaustively for 

both FEP and extended end-plate (EEP) connections by Da Silva & Coelho 

(2001), Jaspart and Cerfontaine (2002), Da Silva et al., (2004), Urbonas et al., 

(2006), Nunes et al., (2007), Del Savio et al., (2009), Goudarzi et al. (2012), 

Shaker et al., (2014). 

As highlighted by Azad & Topkaya (2017), there is an urgent need for 

conclusive research towards the codification of design guidelines for link-to-

beam connections, with the aim of proposing prequalified connections for 

replaceable links. 
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The work carried out and presented in the first part of this thesis (Chapter 

3. Bolted connections for detachable links) is aimed at filling the gaps 

related to the actual forces in the link and the link-connection behavior, which 

will render this structural solution easily repairable and safe for application in 

practice. 

Friction connections for MRFs 

The idea of low or free from damage structures has become very appealing 

in the last decades (Marsh & Pall, 1981, Butterworth & Clifton, 2000, Soong 

& Spencer, 2002, Muala & Belev 2002, Christopoulos & Filiatrault 2006, Sato 

et al., 2009). The use of friction connections is a viable and promising strategy 

to achieve this objective for steel structures and it has been studied and 

implemented in practice in New Zealand (Ono et al., 1996, Clifton et al., 2007, 

Khoo et al., 2012a, 2012b, 2013 and 2014, Yeung et al., 2013, Guneyisi et al., 

2014, Borzouie et al., 2015a and 2015b). 

In the framework of Eurocodes, this type of connections can be classified 

as partial strength according to EN1993:1-8 because their design resistance 

should be lower than the strength of the connected members to prevent any 

damage into the primary structural members. EN1998-1 allows the use of 

partial strength connections provided that their rotational capacity is properly 

demonstrated.  

In the case of conventional partial strength joints the ductility can be 

designed by imposing local hierarchy rules among the components 

constituting the joints (Faella et al., 1998 and 2000, Mazzolani 2000, Iannone 

et al., 2011, Latour et al., 2011a and 2012, D’Aniello et al., 2017). Typical 

bolted joint configurations have been experimentally tested and verified by 

means of pre-qualification tests both in US and more recently in Europe 

(Murray 1990, Sumner and Murray 2000, 2002 Murray and Sumner 2004, Guo 
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et al. 2006, Shi et al. 2007a and 2007b, Abidelah et al. 2012, D’Aniello et al., 

2018, Tartaglia et al., 2018a and 2018b). However, the classical partial 

strength connections are characterized by severe plastic damage concentrated 

in the connection which needs to be replaced, process which might be cost-

wise inefficient. 

Partial strength moment resisting friction connections are conceived to 

develop the dissipation mechanism by means of the relative slip into ad-hoc 

devices located between the lower beam flange and the outer cap plate 

connected to the column flange, while the upper flange of the beam is 

connected to a plate either bolted or welded to the column (Butterworth & 

Clifton 2000, Clifton et al., 2007). The cover plate connecting the upper beam 

flange may be subjected to some moderate plastic bending deformations to 

accommodate the joint rotation following the sliding of the device, thus 

enforcing the formation of an ideal center of rotation that prevents the damage 

of the slab.  

The friction device is composed of a stack of steel plates that are clamped 

together by means of tightened high strength bolts, which are inserted in the 

slotted holes of the plates to allow the relative sliding (Figure 6). To increase 

the moment capacity, friction devices can be also adopted for the beam web 

(Khoo et al., 2013). In addition, the resistance of the joint can be modulated 

keeping the same assembly but varying the friction resistance that changes 

with the clamping force used for the bolts (Butterworth & Clifton, 2000). 

Except for the friction coefficient and the bolt preload, another way of 

controlling the friction connection flexural capacity is by adding a haunch 

(Latour at al., 2018b) 
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a) Symmetric sliding hinge joint b) Asymmetric sliding hinge joint 

Figure 6 “Basic sliding hinge connection” (Butterworth & Clifton, 2000) 

Butterworth & Clifton (2000) highlighted the economical and behavioral 

advantages which can be obtained by implementing friction devices in K or 

X-braced frames. The idea for such applications initially presented in the 

works like the ones of Pall & Marsh 1982 and Popov et al., 1995 for different 

interfaces (brake lining and steel/brass, respectively) proved to be promising 

and a similar assembly was subsequently tested by Clifton et al. (1998). 

The nonlinear response of these connections depends on the type of 

friction mechanism, which can be either asymmetric or symmetric. The 

asymmetric friction connection (AFC) has been thoroughly investigated 

(Butterworth et al., 2000, Yeung et al., 2013, Khoo et al., 2014, Borzouie et 

al., 2015a) and even successfully implemented in recent practice (Bruneau et 

al., 2017). In this configuration the force is transferred by an external plate 

and resisted by the internal plate (Butterworth et al., 2000). Figure 6b depicts 

a classical AFC example given by Butterworth et al. (2000).  However, the 

bolts that clamp the friction pad of AFCs can experience yielding due to large 

bending moment, shear and axial force interaction, which can induce clamping 

loss of the bolts and consequently pinching and loss of strength of the 

connections.  

On the contrary, these phenomena can be mitigated with the use of a 

symmetric friction connection (SFC) (Latour et al., 2011b, 2013, 2014a, 

2014b, 2015 and 2018). For this configuration the inner plate represents the 

mobile part detailed with slotted holes and the outer parts are both fixed to the 

column. The geometrical particularities make the response more stable. The 
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resulting hysteretic loops are ideally rectangular; however, this is relative to 

the material used for the siding interfaces. 

Experimental investigations performed in the past for both asymmetric 

and symmetric friction sub-assemblies (Khoo et al., 2012 and Latour et al., 

2014b, respectively) highlight the importance of the relative material hardness 

of the surfaces in contact. 

Latour et al. (2018b) recently carried out an experimental study on SFCs 

with the friction damper applied by means of an additional haunch welded to 

the lower flange of the beam. The friction pad was located at the interface 

between the haunch and L-stubs that are connected to the column flange. It 

was composed by a steel plate coated with a thin layer of sprayed of aluminum 

to improve the friction resistance with low cost of the raw material, as also 

shown by Ferrante-Cavallaro et al. (2017).  

The tests showed that this solution is very effective, because the allowable 

flexural strength of the connection at column face is greater than the plastic 

resistance of the connected beam. Hence, full-strength connections can be also 

obtained without requiring any damage to the beam. In addition, the use of a 

haunch increases the stiffness of the connection, since its internal lever arm is 

larger than the beam cross section depth, thus obtaining rigid connections prior 

the sliding of the device. These features are very important from design point 

of view because the structural models adopted for the seismic analysis do not 

need to account for the deformability of the joints. 

The geometry of these connections is similar with a split tee connection 

with the particularity of the friction pads needed in order to ensure specific 

friction properties. The resistance of the connection is dictated by the friction 

damper but, once the design resistance is established, the design of such 

connection can be carried out entirely according to EC3 Part 1-8. In addition, 
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the constructional costs for such connection are marginally different compared 

to traditional steel bolted connections.  

The economic advantages of the MRFs equipped with friction connections 

include also the limited extent of the damage that is localized at the level of 

the joint components, this further simplifying the rehabilitation work in the 

earthquake aftermath. Although the friction connections themselves do not 

particularly enhance re-centering, the fact that the beams and columns of the 

MRF remains elastic, they can re-establish verticality when the bolts of the 

friction connections are untightened (Khoo et al. 2012, Piluso et al., 2014). 

However, after severe seismic events the friction pad and bolts require 

substitution, and the surface of the haunch should be treated to restore its initial 

roughness. These types of interventions can arise some operational difficulties 

especially concerning the tightening of the bolts that clamp the friction device. 

Indeed, as shown by Latour et al., 2018b and Ferrante Cavallaro et al., 2017 

it is crucial to control and guarantee the level of bolt pre-loading to ensure the 

design value of friction resistance. An excessively large clamping force may 

lead to the failure of the hierarchy of resistance among the connection and the 

adjacent members. On the contrary, lower preloading may either anticipate the 

sliding of the connections under serviceability non-seismic loading or weaken 

the global structural capacity under the design earthquake that may induce 

disproportionate rotation demand of the connections. 

A viable solution to solve these issues can be the use of removable friction 

dampers that can be easily detached from both the lower beam flange and the 

column face by means of bolted connections, thus simplifying the reparability 

of the friction device. By conceiveing the whole friction damper as a 

demountable kit containing both the friction pad and the relevant steel 

supports, this option allows tightening the bolts in the shop with the reliable 

control of the applied torque. In addition, the friction kit can be entirely 
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substituted in the aftermath of severe earthquake without the need to perform 

superficial treatments of the beam flange on site.  

These considerations motivated the research activity presented in the 

second part of this work (Chapter 4. Bolted friction connections), which is 

devoted at completely developing easily repairable friction connections for 

MRFs.  
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3 BOLTED CONNECTIONS FOR DETACHABLE 

LINKS 

Introduction 

Detachable short links require special attention in design due to the key 

role they pay in the response of the eccentrically braced frames (EBFs) and 

even much more so the end connections (Azad & Topkaya, 2017). EC8 

specifies design rules for the design of EBFs, but with no mention for 

replaceable links. Furthermore, the code has been shown to have gaps while it 

ignores certain aspects. In particular, the code gives a unique value for the 

shear overstrength of short links, which can lead to either over-conservative 

or un-conservative results. In addition, there is no mention of the presence of 

axial force which has been shown to develop in short links under large 

deformation demands. 

On the other hand, the design of end-plate connections is covered by the 

EN1993 1-8, but these rules are tailored for design under static loads only. It 

is assumed however that the connection of the link will undergo severe cyclic 

actions, at the occurrence of the design seismic events. The connections must 

be designed to remain elastic to facilitate the link replacement and therefore, 

an evaluation of the code design rules for the specific case of link end 

connections is necessary 
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Equation Chapter 3 Section 3 

Objectives 

Within this Chapter the work carried out and presented was aimed at 

resolving some of the issues highlighted above and for the attainment of this 

goal, the following objectives were set: 

1. Discuss possible design approaches and their validity 

(Component Method, way of accounting for the shear overstrength, 

disregarding the axial force) 

2. Check the validity of the shear overstrength coefficient 

proposed in EN1998-1 and the level of axial force developed in short links 

under varying boundary conditions 

3. Propose more accurate evaluation of design forces for the 

capacity design, based on the shear overstrength obtained numerically and 

considering the axial force 

4. Asses the performance of the link-connection assemblies 

designed in accordance with the methods and using the design forces 

obtained as proposed  

5. Propose empirical curves/equations for the evaluation of the 

design axial force and shear overstrength function of the link/connection 

utilization factor (mj) and other mechanical characteristics of the 

assemblies. 

6. Propose design guidelines for both the detachable link and its 

connection 
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3.1 DUAREM RESEARCH PROJECT 

EXPERIMENTAL CAMPAIGN 

1.1.1 Scope and Objectives 

The research project was aimed at investigating and validating the re-

centering capabilities of a dual-eccentrically braced frame (D-EBF) with 

replaceable links. The dual solution combines the stiffness and energy 

dissipation capacity of eccentrically braced frames (which will engage at the 

occurrence of design seismic events) with the flexibility of moment resisting 

frames (which will provide the necessary elastic re-centering force once the 

damaged links are removed) in order to obtain a performant structural system 

that mitigates the life-cycle cost of the building. 

  
a) Full-scale test building b) Link and end connections 

Figure 7 The tested structure (Ioan et al. 2016) 

The research objectives set prior to the experimental campaign were, as 

presented by Ioan et al. (2016) to validate the re-centering capability of dual 

structures with removable links, to investigate the interaction between the 

concrete slab and steel link and to assess the seismic performance of D-EBFs 

with removable links, including the replacement of damaged links. 

To attain the desired goals, full-scale tests on a D-EBF structure have been 

performed at the JRC (Joint Research Center) Laboratory in Ispra, Italy. All 
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relevant information and results were presented in detail in the final report of 

the project (DUAREM Final Report, 2016) and journal articles (Ioan et al. 

2016), hence only a summary will be presented hereinafter. 

3.1.1 Tested structure 

The tested structure consisted in two perimetral frames (see Figure 7), 

extracted from a larger structure, reducing thus the total cost and simplifying 

the test procedure. The fundamental difference between the two frames 

(identified as the North and South frame) is represented by the link-slab 

interaction. In particular, the North frame was detailed with the reinforced 

concrete slab cast over the beam and link (the beam being connected to the 

slab with shear studs), while the South frame had the link and beam separated 

from the slab. 

The structural design followed the Eurocode recommendations 

considering the basic design assumptions presented in Table 1. The masses 

assigned to the test specimen correspond to the entire prototype structure, as 

computed from the load combination: 

Table 1 Structural design assumptions  

Dead 

load Gk 

Live 

load Qk 

Soil 

type 
PGA 

Ductility 

class 

Behaviour 

factor q 

Return period δadm 

ULS (SD) SLS (DL)  

[kN/m2] [kN/m2] [-] [g] [-] [-] [years] [years] [-] 

4.9 3 C 0.19 M 4 475 95 0.0075 hstorey 

 

, 2, ,k i i k iG Q+     (3.1) 

Where Gk,i represents the permanent load, Qk,i represents the variable load, 

and ψ2,i is the factor for the quasi-permanent value of the variable action 

(considered to be 0.3). 

The dual characteristic of the structure was obtained by allowing the 

MRFs to resist at least 25% of the total seismic force, as recommended by 
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seismic design codes (FEMA 450, P100). The plastic engagement of MRFs 

prior to the achievement of the ultimate deformation capacity in the EBFs was 

restricted by checking that the ultimate displacement of the EBFs was smaller 

than the yield displacement of the MRFs (Ioan et al. 2016). 

The EBFs were detailed with short links, characterized by a predominantly 

shear energy dissipation mechanism. The links were stiffened considering 

high ductility demands and the added flexibility of the detachable links was 

accounted for in the global analysis (Stratan et al. 2004). The link-beam flush 

end-plate connections were designed to remain elastic under ULS conditions 

to facilitate the link replacement. The link and other frame elements sections 

and materials are detailed in Table 2. 

Table 2 Structural members details 

Member Material Profile type Dimensions 

Beams MRFs S355 Hot rolled IPE240 

Beams EBFs S355 Hot rolled HE 240A 

Columns S460 Welded 230x240x12x8 

Braces S355 Hot rolled HE 200B 

Links (1st and 2nd floor) DOMEX 240 YP B 

(S235 equivalent) 

Welded 230x170x12x8 

Links (3rd floor) Welded 230x120x12x4 

 

The feasibility of the replacement procedure was verified using numerical 

methods prior to the tests and solutions regarding the order in which the bolted 

links would be replaced were proposed (Ioan et al. 2013). 

3.1.2 Experimental campaign 

Pseudo-dynamic tests were performed to evaluate the structural 

performance of the structure. The ground motions used throughout the 

experimental campaign were selected using preliminary numerical 

simulations on planar models, starting from a set of 7 records selected from 

the RESORCE database (Akkar et al. 2014) scaled to match the elastic 

response spectrum for soil Type C and a peak ground acceleration of 0.19g. 
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Four seismic intensity levels were considered: Damage Limitation limit 

state (DL) corresponding to 95 years return period, Significant Damage limit 

state (SD) corresponding to 475 years return period and Near Collapse limit 

state (NC) –2475 years return period. The fourth limit state, Fully Operation 

(FO), corresponds to a very weak earthquake that would leave the structure 

elastic.  

The first two seismic intensity levels correspond to limit states used in the 

design (Dl corresponds to SLS and SD to ULS), therefore they are highly 

relevant to assess the performance of the building globally and locally, as well 

as the link replacement process and the re-centering capabilities. The NC test 

was considered for the verification of the structural safety under a very 

destructive seismic event. 

Three sets of pseudo-dynamic tests were performed, starting with the less 

damaging to the most damaging limit state. For each of the three limit states 

(DL, SD and NC) a FO (ag = 0.02 g) test was performed in order to calibrate 

the numerical model and assess the elastic response of the structure. After each 

set of tests, the links were replaced: 

Damage Limitation (DL) tests: 

▪ Full-operation (FO1) earthquake 

▪ DL earthquake (ag = 0.191 g)  

Significant Damage (SD) tests: 

▪ Full-operation (FO2) earthquake 

▪ SD earthquake (ag = 0.324 g) 

▪ Pushover (PO1) test (displacement of 55 mm) 

Near Collapse (NC) tests: 

▪ Full-operation (FO3) earthquake (ag = 0.02 g) 

▪ NC earthquake (ag = 0.557 g) 
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The structural behavior of the two frames was monitored by means of 

local transducers (which monitored the link and the slip in the relevant 

connections), global displacement transducers (for the monitoring of global 

structural displacements), inclinometers (to monitor the beam to column and 

column base-joints rotations) and strain gages (tor the yield at the middle of 

the braces and at the end of the MRF beams). 

3.1.3 Results 

A brief summary of the tests are hereby described. The main results in 

terms of maximum link rotations and residual drifts of the tests are depicted in 

Table 3. 

3.1.3.1 The damage limitation (DL) test 

During this test, no yielding was observed in the elements outside the links 

(which had only limited plastic deformations as showed in Figure 9a), all the 

other elements remaining elastic while the beam to column and column base 

joint zones exhibited small rotations (see Table 3). 

3.1.3.2 The significant damage (SD) test 

No plastic deformations were observed in the structural elements during 

this test, except for the links which suffered moderate damage (see Figure 9b). 

The beam to column and column base joints exhibited, as expected, slightly 

larger rotations and moderate cracks were observed in the concrete slab (see 

Figure 9b). The links developed stable cyclic loops during the SD test (Figure 

8), reaching the maximum and residual deformation demands in Table 3. 

Given that after the SD test the residual displacements were still small, a 

monotonic pushover test (PO1) was proposed and performed in order to get 

larger values, required for the validation of the link replacement procedure. 

All the structural elements remained elastic throughout the test, except for the 
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links and the concrete slab which underwent higher damage levels (see Figure 

9c). All the deformation values are presented in Table 3.  

3.1.3.3 The near collapse (NC) test 

This pseudo-dynamic test had to be stopped prematurely because of the 

insufficient actuator capacity. Another cyclic pushover test (PO2) was 

performed with a maximum displacement amplitude of 150 mm, followed by 

a final cyclic pushover test (PO3) with a maximum displacement amplitude of 

400 mm (Ioan et al. 2016). 

The last three tests produced extensive plastic deformation throughout the 

entire structure. Very large plastic deformations occurred in the links, with the 

complete failure of the links-to-end-plates welds and the ones between the link 

webs and flanges, the column bases zones and at the MRF beams ends. The 

concrete slab was heavily compromised in the north frame (see Figure 9d). 

Table 3 Summary of experimentally obtained values 

Test 

γmax γres δres,storey Δres,top θ 

Maximum link 

rotation 

Maximum 

residual link 

rotation 

Maximum 

residual 

interstorey drift 

Residual 

top drift 

Beam-column and 

column base rotation 

 [rad] [rad] [%] [%] [mrad] 

DL 0.032 0.014 0.10 0.05 9 

SD 0.061 0.022 0.14 0.12 13 

SD (PO1) 0.075 0.066 0.50 0.43 20 

NC (PO3) 0.38 - - - 90 

3.1.3.4 Validation of re-centering capacity 

The links were replaced twice, first after the damage DL test and the 

second time, after the PO1 test. The limited residual top displacement after the 

DL test and low residual drift allowed for the damaged links to be replaced by 

simply removing the bolts. With the link removal, the residual drifts were 

significantly reduced, and additional re-centering was observed during the 

replacement of the links, leading to residual drifts smaller than the limit H/300. 
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a) ULS test b) SLS tests 

Figure 8 Shear force – link rotation for ULS and SLS tests (Ioan et al. 2016). 
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a) Link plastic deformation and  slab crack distribution after DL test 

 

 

b) Link plastic deformation and  slab crack distribution after SD test 

 

 

c) Link plastic deformation and slab crack distribution after SD(PO1) test 

 

    

d) Link and slab after NC(PO3) test 

 

Figure 9 Link and slab deformations after each test set (Ioan et al. 2016) 
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Larger drifts were obtained after the SD(PO1) test (see Table 3); therefore 

the links were flame-cut in order to be removed. Again, better re-centering 

was observed in the south frame. Although it was not necessary to use a 

hydraulic jack to remove the links, it was needed to place the new set of links 

in the structure. An additional small re-centering was also observed after the 

replacement of the links. In Figure 10, it can be observed that at the end of the 

second replacement procedure only very small residual drifts were measured, 

H/5250 for the south and H/1750 for the north frame - lower than erection 

tolerances H/300. Based on this it was concluded that the structure has re-

centering capabilities. 

 

Figure 10 Top displacement time history for south frame during second link removal process (Ioan et 

al. 2016) 

3.1.3.5 Influence of concrete slab 

The test results showed that the concrete slab increases the link’s shear 

capacity however, considering that with larger link deformations the damage 

in the concrete slab increases, this goes against the idea of localizing the 

damage in the replaceable link only. 

Another downside in having the slab over the links, like in the case of the 

north frame, is the higher stiffness and larger capacity which makes re-

centering more difficult compared to the south frame (Figure 8). The presence 

of the slab (in the North frame) leads to a 7%, increase of yield force, a 5% 
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initial stiffness increase and the most important, a significant increase of the 

post-yield stiffness with 24%. 

Nevertheless, for the SD seismic input level and the subsequent PO1 test 

(corresponding to design level events), only minor to moderate cracking of the 

concrete slab was observed. Keeping in mind that the cracks in the slab can be 

repaired locally, and assuming that the reinforcement and corrugated steel 

sheet retain their integrity, the solution is still feasible given that the residual 

drift after the link replacement was lower than the erection tolerances. 

3.1.4 Summary 

The DUAREM research project confirmed that the Dual frames with 

removable links represent a structure with re-centring capability and can 

greatly reduce the costs and manpower required for post-earthquake repair. 

The tests showed that the structure exhibited excellent performance when 

subjected to DL and SD earthquakes. Small permanent deformations were 

recorded for both seismic intensity levels, and after the link replacement the 

residual deformations were almost completely removed (within the erection 

tolerance limits defined in EN 1090). This means that the structure is self-

centering to a certain degree, and that it can be easily repaired in the 

earthquake aftermath. 

Very good re-centering of the frame for which the links are not connected 

to the slab was observed after the DL earthquake. Provided the permanent 

plastic deformation after an earthquake is small, the shear links can be 

removed simply by unbolting. If a larger permanent drift occurs, flame cutting 

of links is recommended. The damage in the slab zone above the link of the 

north frame was limited for both DL and SD tests and it could potentially be 

repaired, rendering also this solution feasible for practice.  
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3.2 EUROPEAN DESIGN OF BOLTED MOMENT-

RESISTING CONNECTIONS 

3.2.1 Basic principles of the Component Method 

The current European practice used for the design of joints in steel 

constructions is based on the Component Method. Although Part 1-8 of the 

steel Eurocode provides a limited number of components, it is possible to 

design any joint typologies following the basic principles of the above-named 

method. 

 The Component method calculation procedure starts with the 

identification of the joint basic components and the description of their 

behavior. On a theoretical level, the components are considered as linear 

springs whose behavior is completely defined by a Force – Deformation curve 

(F – Δ). The following step requires the assemblage of the components. 

Finally, the characterization is complete once the joint capacity in terms of 

resistance, stiffness and deformation is defined. A brief description of the 

Component Method will be discussed in the first part of this chapter. 

Flush and extended end-plate connections, like the ones used for the 

replaceable links, are designed for shear and bending, neglecting the influence 

of the axial force. It was observed however that for large link rotations, large 

tensile force can occur due to catenary effect. A revision of the design 

methodology is therefore due. 

3.2.1.1 Basis of Component Method 

Steel connections are subjected to various loading conditions, i.e. axial 

force (N), shear (V), bending moment (M) or their combinations. The 

Component Method used in design of joints involves an iterative procedure 
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that requires an initial joint geometry that will be adjusted such that the safety 

criteria will be satisfied. 

The evaluation of the joint characteristics (strength, stiffness and 

deformation capacity) begins with the identification of the load transfer 

mechanisms. Flush end-plate connections are most often designed to transfer 

uniaxial bending and shear forces. In general, the design for the two is 

conducted independently. The bending moment is transferred like a couple of 

forces that act in the center of tension zone and compression zone, 

respectively. The shear is transferred by the bolts’ shank. 

Some of the main components of an end-plate connection identified 

according to EC3 1-8 are presented in Table 4. Each component is 

characterized by a nonlinear F – Δ response which can be analytically or 

experimentally obtained. All the components are afterwards assembled 

together (in series or in parallel) in order to obtain one equivalent component 

that will give the Moment – Rotation (M – φ) characteristic of the joint. 

3.2.1.2 Characteristics of the component 

The basic components are modelled by means of linear springs with an 

elastic-plastic behavior (Figure 11a). Basically, the complex response of such 

spring can be described by a bilinear elastic-perfectly-plastic relationship like 

in Figure 11b. The two characteristics allow for the spring to be modelled as 

a function of the axial stiffness K and the plastic resistance FRd, respectively. 

According to the model adopted in EN 1993 1 – 8, the hardening and the 

effects due to geometrical nonlinearities are neglected. With regards to the 

ductility of the component (length of the plastic range), the code provides only 

quantitative measures, with only basic principles for most of the components. 

For example, the beam web in tension is considered ductile, while the bolts in 

tension are considered fragile elements so no plastic deformation is assumed. 
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a) Model of an axially loaded component b) The equivalent spring response 

Figure 11 Component idealization and tensile response curve 

3.2.1.3 Assembling the components 

First step in finding the components of a joint is the identification of the 

group of elements connected in series/parallel. The stiffness, resistance and 

plastic deformation capacity are considered separately and obtained by 

assembling the characteristics of all components (Figure 13 and Figure 14). 

The flexural resistance is evaluated considering a plastic distribution of 

the tension forces (allowed by EN 1993 1-8) corresponding to the bolt rows in 

tension and is obtained by summing the products between these forces and 

their respective lever arm calculated from the center of compression (for 

simplicity it’s assumed in the center of the bottom flange for unstiffened end 

plate connections). 

 

Figure 12 Computation of the bending resistance 
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Figure 13 Linear series assembling 
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\  

Figure 14 Linear parallel assembling 
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, ,Rd t i Rd iM F h=    (3.2) 

In order to achieve equilibrium at the joint level, the sum of tension forces 

FT,Rd has to be smaller than the resistance of the compressed region FC,Rd. If 

this condition is satisfied for bolt row i, then the contribution of the lower rows 

to the bending moment resistance is neglected. 

Detailed computation of some basic components that appear in a common 

beam to column bolted end-plate joint are presented in Table 4. 

Table 4 Strength evaluation for basic components according to EN 1993 1-8 

Component Strength evaluation 

5. End plate in 

bending 

 

The design resistance and failure mode of an end-plate in 

bending, together with the associated bolts n tension, should be 

taken as equal to those of an equivalent T-stub flange for: 

- each individual bolt-row required to resist tension; 

- each group of bolt-rows required to resist tension. 

7. Flange and web 

of beam or column 

in compression 

,

, ,

b Rd

c fb Rd

fb

M
F

h t
=

−
 

Mb,Rd – is the design moment resistance of the beam cross-

section, reduced if necessary to allow for shear, see EN 1993-

1-1. For a haunched beam Mb,Rd may be calculated neglecting 

the intermediate flange, h – is the depth of the connected beam, 

tfb – is the beam flange thickness 

8. Beam web in 

tension 
, , ,

, ,

0

eff t wb wb y wb

t wb Rd

M

b t f
F


=

 

beff,t,wb is the effective width of the beam web in tension; 

should be taken as equal to the effective length of the equivalent 

T-stub representing the end-plate in bending, for an individual 

bolt-row or a bolt row-group, twb – is the beam web thickness. 
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For steel joints the initial stiffness is determined by combining the 

stiffnesses of each component. Provided that the axial force is not higher than 

10% of the plastic resistance of the cross section, the initial stiffness of the 

joint Sj,ini is computed using the following formula: 

2

, 1j ini

i i

Ez
S

k

=


  (3.3) 

Where E is Young’s modulus for steel, ki is the stiffness coefficient 

associated to component i (Table 6.11 from EN 1993 1-8); and z is the lever 

arm of the components from the center of compression. 

For the bolt rows in tension the stiffness coefficients can be grouped by 

considering a series assembling, resulting in the end only one equivalent 

coefficient: 

,

,

1

1eff r

i i r

k

k

=


  (3.4) 

Where ki,r are the stiffness coefficients of the components i of bolt row r. 

For each bolt row in tension, in a stiffened joint, there are the following 

stiffness coefficients to be combined using formula (3.4): 

• stiffness coefficient of the end-plate in bending: 

3

5 3

0,9 eff pl t
k

m
=   (3.5) 

Where: leff is the smallest of the effective lengths (individually or as part 

of bolt rows); m is generally as defined in Figure 6.11 (EN1993 1 – 8) but for 

bolt rows outside the tension flange m = mx, where mx is defined in Figure 6.10 

(EN1993 1 – 8); tp is the thickness of the end-plate. 
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• stiffness coefficient of bolts in tension 

10

1,6 s

b

A
k

L
=   (3.6) 

Where As is the nominal area of the bolt cross section and Lb is the 

tightening length. 

When in a joint two or more bolt rows are in tension, the stiffnesses of all 

the named bolt rows are assembled in parallel. This leads to the introduction 

of keq which is used for the evaluation of the initial stiffness. The equivalent 

lever arm zeq, used for Sj,ini instead of z, is computed function of the lever arms 

of the components in tension. 

r r

eq

eq

k h
k

z
=

   (3.7) 

2

i i

eq

i i

k z
z

k z
=




  (3.8) 

Where kr is the effective stiffness of bolt row r and hr is the lever arm of 

the same bolt row r. 

 

3.2.1.4 Design moment-rotation characteristic (EN 1993 1-8 6.1.2) 

In the end, using the value of the bending resistance and initial stiffness 

computed above the design moment – rotation characteristic of the joint can 

be put together (see Figure 15). This can further be used in the global analysis 

of the structure, where the joints can be approximated with rotational springs, 

having the characteristics described above. 
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Figure 15 Design moment-rotation of a joint 

For a given value of Mj,Sd applied on the joint, lower or equal than the 

flexural resistance Mj,Rd, the stiffness is given by: 

,j j iniS S=   for  , ,

2

3
j Sd j RdM M      (3.9) 

,j ini

j

S
S


=  for  , , ,

2

3
j Rd j Sd j RdM M M      (3.10) 

2.7

,

,

1,5
j Sd

j Rd

M

M


 
=   

 
 (3.11) 

The design of a joint using the component method must consider the 

following: 

- the joint resistance is determined by the weakest component. It is 

advisable for this component to have a ductile behavior, to allow stress 

redistribution in the connection. Usually, the bolts and the welds exhibit brittle 

failure modes that are to be avoided by providing these components with 

sufficient overstrength with respect to the more ductile components. 

- the stiffness is given by a weighted average of the components, some 

of them having a larger contribution than others; 
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- the rotation capacity of the joint is dependent on the capacity of the 

weakest component. On the other hand, the deformability of different 

components can generate stress concentration that should be avoided (for 

example large stress concentration in the welds) 

 

3.2.1.5 Behavior of the T – stub and evaluation of its resistance 

In order to define all the components above mentioned (especially end 

plate in bending) one of the fundamental things to be clarified is the T–stub 

behavior and the way its resistance is obtained starting from the yielding 

patterns. A T–stub represents the assembly of two rigidly connected plates 

(see Figure 16), out of which one is called the flange of the T-stub and is 

characterized by the fact that it’s connected with another member through one 

or more bolt rows. 

The resistance of a bolt row is the minimum of all the components that 

develop at the level of the given bolt row and the parameter influencing these 

components is the effective length (leff) of the T-stub. The resistance of each 

T – stub is given by the minimum of the three possible failure modes described 

in Figure 17. 

 

Figure 16 T-stub examples for the flush end-plate connection of detachable links 
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Mode 1 – considered a very ductile failure mode; occurs by complete 

plasticization of the flange and the bolts are not involved in the failure 

mechanism. 

Mode 2 – the failure is characterized by a combined mechanism of flange 

plasticization and failure of the bolts. 

Mode 3 - represents the brittle failure of the bolts and it doesn’t involve 

any plastic engagement of the T-stub flange. 

  

Figure 17 T-stub failure modes 

In order to obtain the effective length for the first two failure modes, all 

the possible yielding cases must be considered. Figure 18 shows the most 

common types of circular and non-circular yield patterns for individual bolt 

rows while Figure 19 depicts the same patterns, for bolt rows as groups. The 

minimum length obtained is to be considered for further calculations, i.e. the 

resistance and stiffness of the components. The effective length for Mode 1 

will be the minimum of leff,cp and leff,nc and for Mode 2 it will be leff,nc. 
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Figure 18 Typical examples of effective lengths for bolt rows acting alone 

 

 

Figure 19 Typical examples of effective lengths for bolt rows acting in combination 

 

Depending on the position of the bolt row relative to existing stiffeners 

and the component considered there are different values to be considered. 

Examples of evaluation formulas for the bolt row effective lengths are 

illustrated in Figure 18 (considering a single bolt row) and Figure 19 

(considering bolt rows acting in combination). 

 

3.2.2 Design of link end connections according to EC3 1-8 

The design forces are estimated based on the capacity design principle, 

namely the connection must withstand the link ultimate plastic rotation 

(assumed as 0.08rad for short links). According to EN1998-1, the link strength 

associated to this condition are the following: 
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, ,1.1 1.5j Ed ov pl linkV V=           (3.12) 

, ,
2

link
j Ed Ed j

e
M V=        (3.13) 

Where: Vj,Ed and Mj,Ed are the design shear force and bending moment, 

respectively; 1.1 is the coefficient accounting for additional source of 

overstrength (N.B. this factor is questionable); γov is the coefficient accounting 

for the material yield strength variability, which has been assumed equal to 

1.25 in this study; Vpl,link is the plastic shear strength calculated according to 

EC8 and e is the geometrical length of the link. 

The links adopted in the DUAREM mock-up were very compact, thus the 

corresponding bending demand on the connection is significantly low. On the 

contrary, when the length of the links is close to the limit length of short links 

(es) the flexural demand increases, especially for links with thick web (higher 

shear capacity). This issue makes designing flush end plate connections nearly 

impossible. Therefore, under such conditions extended end-plate connections 

are considered as well (see Figure 20) 

Table 5 Characteristics of experimental links 

Link 
Vpl,link Mpl,link e es e/es 

[kN] [kNm] [mm] [mm] [-] 

S1 303 154 350 814 0.43 

S2 303 154 350 814 0.43 

S3 152 109 350 1146 0.31 

, ( )
3

y
pl link fl w

f
V d t t= −        (3.14) 

, ( )pl link fl fl fl yM b t d t f= −       (3.15) 

,

,

1.6
pl link

s

pl link

M
e

V
=         (3.16) 

Figure 20a depicts the flush end plate connection that can be used for very 

short links (i.e. e < 0.5es) while Figure 20b shows the layout of an extended 
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end-plate connection applicable for most short links. The case of narrow 

flange profiles (IPE) accommodates the solution of flush end-plate connection 

also for links with lengths up to es while wide flange profiles like HE A and 

HE B do not (in these cases only extended end-plate connections can be 

designed). 

 
a) 

 
b) 

Figure 20 Connection layout: a) Flush end-plate connection, b) Extended end plate connection  

 

3.2.2.1 Main components and their evaluation 

The capacity of the connection is determined based on the component 

method as recommended by EC3 1-8. For the evaluation of the bending 

resistance, the joint is considered as composed of two parts: the link side and 

the beam side connection. A summary of the components in tension and 

compression is presented in Table 6. 

Table 6 Link connection components 

 Link side Beam side 

Flush end-plate 

connection 

End plate in bending End-plate bending 

Beam web in tension 

Beam flange and web in compression 

Extended end-plate 

connection 

End plate in bending End plate in bending 

Beam web in tension 

Beam flange and web in compression 
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The components accounted for the two connection typologies are similar, 

with the difference that the extended end-plate connection has an additional 

bolt row outside the flanges of the link and/or beam respectively. The link web 

in tension and link web and flange in compression are disregarded as they are 

involved in the plastic dissipation mechanism (yielding is expected in the link 

web and flange). The compression resistance assumed to verify the internal 

equilibrium is the compression strength of beam web and flange. The 

evaluation of the effective T-stub length was conducted based on Table 7. 

In both joint typologies the last bolt row in between the flanges is 

considered as a bolt row adjacent to a stiffener and has the effective length 

calculated as for the first bolt row below the tension flange. The resistance of 

the T-stub was evaluated considering the 3 possible failure modes, with no 

backing plates and Method 1 for the evaluation of FT,1,Rd. 

In both joint typologies the last bolt row in between the flanges is 

considered as a bolt row adjacent to a stiffener and has the effective length 

calculated as for the first bolt row below the tension flange. The resistance of 

the T-stub was evaluated considering the 3 possible failure modes, with no 

backing plates and Method 1 for the evaluation of FT,1,Rd. 

Table 7 Effective length of the T-stub 

 Bolt row considered individually Bolt row as part of a group 

 leff,cp leff,ncp leff,ncp leff,ncp 

Bolt row outside 

tension flange 

Smallest of: 

2πmx 

πmx + w 

πmx + 2e 

 

Smallest of: 

4mx + 1.25ex 

e + 2mx + 0.625ex 

0.5bp 

0.5w + 2mx + 

0.625ex 

- - 

First bolt row 

below tension 

flange 

2πm αm πm + p 0.5p + αm – (2m 

+ 0.625e) 

Other inner bolt 

row 

2πm 4m + 1.25e 2p p 



Bolted connections for detachable links 

94 

 

 

Figure 21 Definition of values for the T-stub effective length evaluation 

Table 8 Formulas for the calculation of the three failure modes 

 Prying forces may develop, i.e. Lb ≤ Lb* No prying forces 

Mode 1 
,1,

,1,

4 pl Rd

T Rd

M
F

m
=  

,1,

,1 2,

2 pl Rd

T Rd

M
F

m
− =  

Mode 2 ,2, ,

,2,

2 pl Rd t Rd

T Rd

M n F
F

m n

+
=

+


 

Mode 3 ,3, ,T Rd t RdF F=   

 

Where: 

3
*

3

,1

8.8 s
b

eff f

m A
L

l t
=


        (3.17) 

2

,1

,1,

0

0.25 eff f y

pl Rd

M

l t f
M


=


      (3.18) 

2

,2

,2,

0

0.25 eff f y

pl Rd

M

l t f
M


=


      (3.19) 
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bL  is the bolt elongation taken equal to the grip length (total thickness of 

material and washers), plus half the sum of the height of the bolt head and the 

height of the nut, sA  is the bolt tensile area, effl  is the effective length of 

the T-stub, ft  is the thickness of the T-stub flange, ,T RdF  is the resistance of 

the T-stub ,t RdF is the total tensile resistance of the bolts in the T-stub, n is 

the minimum between mine   and 1.25m . Additionally, there is: 

Table 9 Formulas for the evaluation of the components 

End-plate in bending , ,1, ,2, ,3,min( , , )T Rd T Rd T Rd T RdF F F F=   

Beam web in tension 
, , ,

, ,

0

eff t wb wb y wb

t wb Rd

M

b t f
F


=

 

Beam flange and web in 

compression 

,

, ,

b Rd

c fb Rd

fb

M
F

h t
=

−
 

The individual components are evaluated as given in Table 9. For the link 

side the only component considered is the end-plate in bending, thus the 

resistance of the connection is given by the named component. On the beam 

side, the minimum between the end-plate in bending and the beam web in 

tension will give the resistance of the bolt rows and connection, respectively. 

 

3.2.2.2 The strength and stiffness assembly 

The flexural resistance (Mj,Rd) and initial stiffness (Sj,ini) of the connection 

are evaluated based on the steps previously discussed. The flexural stiffness is 

calculated considering 5k , the stiffness of the end-plate in bending (both for 

link and beam side) and 10k , the stiffness of the bolt. 
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In general, flush end-plate and extended end-plate connections will result 

to be semi-rigid and full-strength joints i.e. the Moment-rotation curve will 

fall in between the limits for rigid and pinned joints (as detailed in Figure 22). 

 

Figure 22 Analytical moment-rotation curve 

The shear strength is evaluated considering the full shear capacity of the 

bolts in compression and a percentage (28.5%) of the ones in tension. 

, ,

0.4

1.4
Rd c v Rd t v RdV n F n F= +       (3.20) 

Where: cn is the number of bolts in compression; tn is the number of bolts 

in tension; ,v RdF  is the shear strength of a single bolt. 

In order to design a set of case study connections for the investigation on 

the link-connetion assembly behavior, the numerical model assumptions as 

well as its calibration are presented. 
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3.3 FE MODEL: ASSUMPTIONS AND VALIDATION 

3.3.1 Numerical assumptions 

In order to obtain accurate results using a FE software, validation against 

experimental results is compulsory. Based on the results of the full-scale test 

performed within the DUAREM research project (FP7 2007-2013 SERIES 

Agreement No 227887), the numerical model hereby presented was calibrated 

using Abaqus. In the following paragraphs the modelling details and basic 

assumptions considered for the numerical analyses are presented. 

  
a HR model b) HV model 

Figure 23 Link assembly models with the two bolt typologies 

 

3.3.1.1 Model Geometry and Materials 

The ABAQUS model represents the link with both side flush end-plate 

connections. The link assembly elements (link, stiffeners and end-plates) were 

modelled as solid parts depicting the respective nominal geometry. Two 

possible modelling solutions were considered for the bolts, in accordance with 

the bolt assemblies available and their respective failure mechanisms (see 

Figure 23). The HR British/French system (HR is the acronym for ‘High 

Resistance’) and the German system HV (German acronym of ‘Hochfeste 

Bolzen mit Vorspannung’, which in English is ‘high resistance bolts for 

pretension’) are characterized by different failure i.e. the former by necking 

of the shank while the latter by thread plastic deformation and nut stripping. 
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The HR bolt modelling consists of a unique solid part that combines the bolt 

and nut while in the case of HV bolts a combination of solid and beam 

elements is used. The solid parts of the HV bolts (head and shank) are 

modelled separately from the nut and they are connected by the beam element. 

Simplified cylindrical shapes for the bolt’s shank, head and nut are used in all 

cases and the nominal dimensions are considered. 

The parametric study on the links was carried out considering only the 

profile and stiffeners while the assessment of the link connection assemblies 

was performed on models like the DUAREM links used for the FE model 

calibration. 

 

3.3.1.2 Units 

The units used throughout the numerical study were chosen such that no 

inconsistencies occur. The units for the main measures used for the input 

procedure are presented in Table 10. 

Table 10 Units for ABAQUS 

 Length Force Stress Density Elastic Modulus 

Unit mm N N/mm2 Ton/mm3 N/mm2 

 

3.3.1.3 Material property 

The experimental program of DUAREM included material tests on most 

elements of the structure, therefore the true stress-strain curves used in the FE 

models were obtained from the tensile test results. The ready to use material 

curves were derived from the engineering curves using the following 

relationships: 

ln(1 )true eng = +        (3.21) 

(1 )true

true eng eng enge
   =  = +      (3.22) 
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The plastic stress-strain material properties are introduced using the  

“Half-cycle” input method. Combined Isotropic and Kinematic hardening 

model is used. The material properties for the steel elements and bolts present 

certain particularities that must be considered individually. 

  
a) Steel elements b) Bolts 

Figure 24 Modelled materials 

 

Figure 25 Ductile Damage model 

 

3.3.1.4 Steel material property 

The elastic domain of the steel constitutive law is defined by the nominal 

Young’s modulus (E = 210 GPa) and the Poisson ratio (ν = 0.3). As for the 

plastic range, apart from the true stress – plastic strain curve (showed in Figure 

24a), the steel fracture was modeled using the ‘Ductile Damage’ input method 

(from Damage for Ductile Metals). This method allows the user to provide the 

fracture strain 0( )pl  as function of the stress triaxiality ( )H EQ  =  and strain 

rate. The ductile damage failure model by Lemaitre (1992) leads to the curve 
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in Figure 25 i.e. for pure tension the stress triaxiality is equal with 1/3, 

therefore the plastic strain is equal with the necking plastic strain ( )pl

n

measured experimentally during the tensile test. 

3.3.1.5 Bolt material property 

As previously specified, two bolt typologies were considered, HR and HV. 

The resistance and stiffness of the HR bolt assemblies is corrected by altering 

the shank’s material strength and elastic modulus. The effective resistance was 

obtained starting from the grade 10.9 plastic stress-strain material curve in 

Figure 24b which was scaled by the ratio of nominal to net area of the shank 

(Anom/As) in accordance with the bolt diameter (see Figure 26). As for the 

stiffness, an effective Young’s modulus had to be used, calculated based on 

the elastic stiffness of the bolt kb evaluated according to the equation proposed 

by Swanson and Leon (2001). 

 

Figure 26 The nominal/net area for typical range of bolt diameters 

 
1 tgb s b

b b b eb be

Lf d L f d

k A E A E A E A E

 
= + + +

   
    (3.23) 

Where f is the stiffness correlation factor taken as 0.55; db is the nominal 

diameter of the bolt; Ab is the nominal area of the bolt shank; Abe is the 

effective area of the threads; Ls is the shank length of the bolt; Ltg is the length 

of the threaded portion included in the bolt's grip; and E is the modulus of 

elasticity. 



Chapter 3 

101 

 

 

 
HR bolt 

 

 
HV bolt 

Figure 27 HV vs. HR constitutive law model 

The HV bolts were modelled following the procedure described by 

Cassiano et al. (2017), who modelled the thread stripping by defining a wire 

element characterized by the real failure mechanism of the bolt-nut assembly. 

The non-linear law describing the wire response is presented in Figure 5. 

The ductile damage was considered also for the bolts. The adopted 

equivalent plastic strain at damage onset curve as a function of triaxial stress 

state was defined according to Pavlovic et al. (2015) and assumed independent 

from strain rate. 

The parametric study and the link assessment were performed considering 

similar material definition, with the distinction that the link had the same 

material for the web and flanges, as the profiles were hot rolled. The material 

properties used for design and the numerical investigation are the average 

curve of S355 steel, and the gr.10.9 and 12.9 for bolts. 

 

3.3.1.6 Step setting 

Dynamic Implicit analysis was employed. A two-step procedure was used, 

in order to separate the clamping of the bolts from the loading protocol 

applied. The load application method is "Quasi-Static" and the nonlinear 

effects of large displacements are included. The maximum increment was 

limited to the minimum value of the loading history. 
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Figure 28 Bolt interaction definition 

3.3.1.7 Interaction 

The contact between various surfaces, such as bolt to end-plates or 

between the end-plates, was defined considering an interaction property that 

accurately describes the frictional behavior of the respective surfaces. 

‘Coulomb friction’ was used for the tangential behavior, with a friction 

coefficient equal to 0.4, and ‘Hard contact’, to characterize the normal 

behavior of the surfaces. This was the case for the models with HR bolts 

(Figure 28). 

In the case of HV bolts, the contacts between the end-plates, and the bolt-

nut assembly with the adjacent surfaces was treated separately. The former 

was modeled as previously seen (considering both tangential and normal 

behavior) while the latter was modelled considering just the normal behavior. 

This was necessary in order to allow the wire to transfer the loads while the 

solid parts provide stable supports and shear resistance. 

 

3.3.1.8 Boundary Conditions and Loads 

Appropriate boundary conditions were used at the link ends. Coupling 

restraints with a ‘Structural distribution’ were used to simulate the beam 

section at the connection face. In the case of HV model, the wires were 

connected to the solid bolt head and nut using MPC Tie constraints. 

The axial and flexural stiffness of the frame was calculated, based on the 

static scheme in Figure 29 and applied as extensional and rotational springs at 

the connection-beam interface. The DOFs along which the deformation was 
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allowed were selected in accordance with the global coordinates system of the 

model (DOF 1 for axial deformation and DOF 5 for flexure about y axis). 

 

Figure 29 Static scheme for the evaluation of the frame stiffness 

The bolts are preloaded using the ‘Bolt Force’ option in Abaqus. The 

pretension force was calculated according to EN 1993 1-8, considering 70% 

of the bolt ultimate strength. 

, 70.7p Cd s ub MF A f =        (3.24)  

Where Fp,Cd is the preload force for a bolt, fub is the ultimate strength of 

the bolt material, As is the tensile stress area, and γM7 is the partial safety 

coefficient for preloading. 

The analyses were carried out in displacement control considering the 

cyclic protocols derived from the experimental tests for the calibration, and 

monotonically increasing displacement up to 10% link rotation for the 

parametric studies performed. 

 

3.3.1.9 Element type 

The model was meshed using 3D solid elements. The finite element type 

C3D8R (an 8-node linear brick, reduced integration, hourglass control) is 

adopted for all the solid parts of the model. A minimum of wo elements per 

plate thickness were enforced in order to prevent shear locking. 

 



Bolted connections for detachable links 

104 

 

3.3.1.10 ABAQUS Output 

To calibrate the response of a numerical model based on the experimental 

tests, the most important results were the shear vs. link rotation curves at the 

beam side interface of the connection. The desired results are obtained from 

the reaction force along z (reaction force 3 - RF3) and the displacement along 

the same direction (U3) in the reference point where the loading history was 

applied. Other results include the equivalent plastic strain (PEEQ), rotation of 

the nonlinear spring (UR) and the axial force (obtained as integration of the 

normal stress in the section), for the parametric studies. 

 

3.3.2 Calibration of the FE input method on experimental 

tests 

3.3.2.1 General 

The input numerical method is calibrated based on the detachable links of 

the south frame of the DUAREM structure. Details of the test sequence were 

presented in the project description at the beginning of the chapter. 

Table 11 DUAREM experimental links geometry details (South Frame) 

Specimen 
Link length  

(elink) 

Assembly length  

(Lassembly) 

Height 

(h) 

Width 

(bfl) 

Flange thickness  

(tfl) 

Web thickness 

(tw) 

 mm mm mm mm mm mm 

S-1 350 450 230 170 12 8 

S-2 350 450 230 170 12 8 

S-3 350 450 230 120 12 4 

Table 12 DUAREM links connection geometry details 

Specimen Bolts hEP-link/beam tEP-link/beam bEP-link bEP-beam e1 p1 e2-link e2-beam p2 

  mm mm mm mm mm mm mm mm mm 

S-1 M27 230 25 220 240 45 70 50 60 120 

S-2 M27 230 25 220 240 45 70 50 60 120 

S-3 M27 230 25 220 240 45 70 50 60 120 
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The joint configuration is that of a classical flush end-plate connection for 

splices. The detailed geometry of the link assembly and joint are described in 

Figure 30, Table 11 and Table 12. To be noted that the geometry of the link 

on 1st and 2nd floor (S1 and S2) is identical but the loading protocol applied 

is different. The stiffness of the frame was evaluated as previously shown in 

Figure 29 and modelled by means of nonlinear flexural and axial springs. The 

values modelled are presented in Table 13 

 

Figure 30 DUAREM links and connections to beam 
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Table 13 Evaluation of the frame flexural and axial stiffness 

 Section A Iy L E α Krotational Kaxial 

  mm2 mm4 mm N/mm2  Nmm/rad Nmm/rad 

Column HEA240 7680 7.76E+07 3500 210000 

51.54 

 4.61E+05 

Beam HEA240 7680 7.76E+07 2780 210000 2.35E+10 5.80E+05 

Brace HEB220 9100 8.09E+07 4469.7 210000 1.52E+10 4.28E+05 

Assembly      3.87E+10 7.46E+05 

 

 

Figure 31 Cyclic loading protocol for DUAREM south frame links (Ioan et al., 2016) 

The cyclic protocol was derived from the experimental curves, for the 

links at each level, by multiplying the rotation with the link length. The 

displacement histories for all three links are plotted in Figure 31. All the other 

assumptions made above were applied in the modelling phase. The materials 

were properly defined accounting for the damage and cyclic hardening. The 

surface interactions and the boundary conditions were carefully attributed, so 

that the fidelity of the FE model to the real link is as good as possible. Finally, 

the mesh was properly defined using the solid 3D finite elements described 

above. 

 

3.3.2.2 Results  

The comparison of the numerical and experimental cyclic response is 

presented in Figure 32. The shear force – total rotation cures for the 

simulations considering the HR bolts give an accurate approximation of the 

experimentally measured results. 
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S1 S2 S3 

Figure 32 Experimental vs Numerical Shear Force-Rotation Curves 

 

   
S1 S2 S3 

Figure 33 Experimental vs Numerical ShearForce-Rotation Curves 

Modelling the bolts using the wire element (with HV bolt model) gives a 

more realistic approximation of the link assembly response. However, the 

differences between HR and HV models is not significant (see Figure 33), as 

the connection does not undergo serious plastic damage and the bolts remain 

elastic. 

In terms of plastic damage, the results can be compared only qualitatively 

based on the pictures in Figure 34 which depicts the links of the south frame 

of the structure tested at JRC, in Ispra (the DUAEM Research project) and the 

screenshots of the equivalent plastic strain (PEEQ) for the corresponding 

models, considering the HR bolts. The areas of concentration of damage are 

similar as well as the residual deformation. 
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S1 

 
 

S2 

 
 

S3 

Figure 34 Comparison of the cumulative plastic damage in the links of the tested structure and the 

PEEQ for the numerical models 
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3.4 PARAMETRIC STUDY FOR THE EVALUATION 

OF THE LINK CONNECTION DESIGN FORCES 

The link end connections should be designed to remain elastic under 

Ultimate Limit State earthquake levels. According to EN1998-1, this can be 

achieved by making sure the connection can withstand the link ultimate plastic 

rotation by overdesigning it with respect to the link plastic shear and bending 

capacity (Vpl link and Mpl,link) as defined in the equations below). 

, ( )
3

y
pl link fl w

f
V d t t= −

       (3.25) 

, ( )pl link fl fl fl yM b t d t f= −
       (3.26) 

,

,

1.6
pl link

s

pl link

M
e

V
=

        (3.27) 

Where d is the link section depth, tfl is the flange thickness, tw is the web 

thickness, fy is the yield strength of the steel and bfl is the flange width. The 

design values for Vj,Ed and Mj,Ed according to EC8 are given by Eq. 1.3 and 1.4. 

, ,1.1 1.5j Ed ov pl linkV V=   
      (3.28) 

, ,
2

j Ed j Ed

e
M V=

        (3.29) 

Where: Vj,Ed and Mj,Ed are the design shear force and bending moment, 

respectively; 1.1 is the coefficient accounting for additional sources of 

overstrength; γov is the coefficient accounting for the material yield strength 

variability; Vpl,link is the plastic shear strength calculated according to EC8 and 

e is the geometrical length of the link. 

As it can be noted, the design shear force Vj,Ed is significantly higher than 

the link plastic capacity Vpl,link owing to the material strength uncertainty 
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(coefficient γov), the additional sources of overstrength (the 1.1 factor) but 

mainly due to the shear overstrength that has a recommended value of 1.5. 

The link shear overstrength depends on a variety of factors like the link 

length, boundary conditions, section compactness, stiffening or axial forces 

(Azad and Topkaya, 2017) 

According to the provisions of EN1993 1-8 the axial force can be 

disregarded in the connection design as long as it amounts for less than 5% of 

the member tensile capacity (Npl,Rd). It was proved in past research (Della 

Corte et al. (2007 and 2013) that axial forces can develop in the very short 

links under large deformations. Therefore, the level of axial forces developing 

in the link must be assessed for a correct connection design. 

A parametric study on the most commonly used hot rolled steel profiles 

has been carried out. The main parameters of the study are hereinafter 

presented. 

 

3.4.1 Parametric study 

The numerical models analyzed under monotonic loading, consisted only 

in the link profile itself and the stiffeners (spaced in accordance with the EC8 

recommendations). The parameters selected for the numerical investigation 

are the profile type (narrow or wide flange), the section depth, the link length 

(function of the limit for short links es) and the boundary conditions.  

The detailed parameters are: 

1. Type of hot-rolled profile: IPE, HE A and HE B 

2. Depth of the profile: 200, 300, 400, 500 and 600 mm 

3. Link length: es, 0.75es and 0.50es 
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The boundary conditions considered:  

1. Fully restrained (all six degrees of freedom are blocked); 

2. Axial release at one end (all degrees of freedom are blocked apart 

from the axial deformation at one end); 

3. Deformable restraints (axial and in plane flexural stiffness of the 

frame and connection are modelled while all other DOF are 

blocked). 

 

 

 

a) Link profile sections b) Length definition 

Figure 35 Hot-rolled profiles investigated 

 

Figure 36 Deformable restraints (DR) boundary conditions definition 

The symbols in Figure 36 represent as it follows: Kflexural is the flexural 

stiffness of the braced bay, Kaxial is the axial stiffness of the braced frame, Sj,ini 

is the joint initial stiffness and Kj,ax is the joint axial stiffness. The values were 

evaluated as presented in the chapter describing the numerical model (for the 

frame stiffness) and in the chapter describing the design of connections, 

respectively. Table 14 presents the values for the 0.50es set of links. 
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Table 14 Frame and connection stiffness for 0.50es set of links 

 Length 

0.50es 

Kflexural Kaxial Sj,ini Kj,ax 

[Nmm/rad] [Nmm/mm] [Nmm/rad] [Nmm/mm] 

IPE 200 1.9E+10 5.0E+05 3.3E+10 3.0E+06 

IPE 300 9.0E+10 1.0E+06 7.3E+10 2.8E+06 

IPE 400 1.3E+11 1.1E+06 3.2E+11 6.8E+06 

IPE 500 2.6E+11 1.4E+06 5.0E+11 6.7E+06 

IPE 600 3.7E+11 1.6E+06 1.2E+12 8.6E+06 

HE 200 A 2.5E+10 6.6E+05 3.8E+10 3.8E+06 

HE 300 A 1.1E+11 1.3E+06 1.1E+11 4.8E+06 

HE 400 A 1.6E+11 1.3E+06 2.6E+11 5.8E+06 

HE 500 A 3.1E+11 1.7E+06 5.3E+11 7.4E+06 

HE 600 A 4.4E+11 1.8E+06 9.9E+11 9.5E+06 

HE 200 B 7.1E+10 1.1E+06 3.2E+10 3.0E+06 

HE 300 B 2.0E+11 2.3E+06 1.5E+11 6.0E+06 

HE 400 B 2.5E+11 2.0E+06 3.5E+11 8.0E+06 

HE 500 B 4.2E+11 2.2E+06 6.6E+11 8.5E+06 

HE 600 B 5.8E+11 2.3E+06 1.1E+12 1.1E+07 

 

The links are designed with intermediate web stiffeners to guarantee 

ductility and prevent buckling or fracture of the web prior to the plasticization 

of the link. EN 1998-1 6.8.2(10) provides the following guidelines in 

designing intermediate web stiffeners for short links: 

▪ for a link rotation of 0.08rad, the maximum interval of the stiffeners 

should not exceed (30tw – d/5) 

▪ intermediate web stiffeners should be full depth. For links that are less 

than 600mm in depth, stiffeners are required on only one side of the 

link web. For links that are 600mm deep or greater, the stiffeners 

should be placed on both sides of the web 

▪ the thickness of one-sided stiffeners should not be less than tw or 10 

mm, whichever is larger 

▪ the width of the stiffener should not be less than b/2 – tw 
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3.4.2 Shear Overstrength 

The shear overstrength represents the ratio between the shear force V and 

the plastic shear resistance Vpl,link evaluated according to EC8, at a link rotation 

equal to 0.08 radians.  

  
a)  b)  

Figure 37 Shear overstrength for fully restrained (FR) links 

The type of profile used for the link has proved to greatly influence its 

shear overstrength. As shown in Figure 37 the wide flange profiles (HE A and 

HE B) exhibit significantly larger values of shear overstrength with respect to 

the narrow flange profiles (IPE) and this is true regardless of the web 

thickness. Indeed, even though both the HE A and IPE have comparable web 

thicknesses for the same depth, the difference is compelling. 

Furthermore, regarding the wide flange HE profiles, it is to be noted that 

the differences between same depth profiles is negligible, except for very 

shallow sections for which small variations are visible. This is so because both 

the flange and web areas proportionally increase from HE A to HE B profiles. 

The curves in Figure 37 are plotted for the fully restrained links, but the 

previous observations are valid also for links modelled considering the frame 

and connection stiffness, as depicted in Figure 38c and d. 
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a) Fully restrained (FR) b) Fully restrained (FR) 

  
c) Deformable restraints (DR) d) Deformable restraints (DR) 

  
e) Fully restrained with axial release f) Fully restrained with axial release 

Figure 38 Shear overstrength 
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The influence of the section depth is also shown in Figure 37 , where the 

difference between the ranges of profiles are highlighted. Indeed, at both 

section groups (wide and narrow flange), it can be observed that the trend is 

very similar, namely the small and more compact sections exhibit the higher 

overstrength. Conversely, the shear overstrength reduces appreciably with the 

depth increase. 

Moreover, the boundary conditions of the profiles have a significant 

impact as well. In Figure 38 it can be noted that fully axial restrained links 

(Figure 38a and b) exhibit overstrength 10% higher with respect to the models 

with deformable restraints in which the flexural and axial stiffness of the frame 

and connection was considered (Figure 38c and d). For the links without axial 

restraints (Figure 38e and f), the shear overstrength is the lowest because no 

catenary action can be developed and, therefore, no second order shear and 

bending moment can occur. 

For what concerns the length of the link, it can be observed that for the 

same profile, the shorter links (0.50es) have the highest shear overstrength and 

the values decrease with the length increase. This is because the shorter is the 

link, the larger are the nonlinear effects developing at the same rotation 

demand. Comparing the obtained values with the shear overstrength V/Vp,link 

equal to 1.5 as recommended by EC8, it can be observed that this value can be 

significantly non-conservative. 

Based on the results obtained from finite element analyses, polynomial 

regressions have been developed to estimate the shear overstrength as function 

of both link length and type of profile. Figure 39a shows the relationship 

between V/Vp,link and link depth/length (d/e) ratio for each link length (es, 

0.75es and 0.5es). The regressions satisfactorily match the numerical data, with 

R2 indexes close to 1. Regressions have been made also with respect to the 

flange area/web area (Afl/Aw) ratio and even in this case very good dependency 
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can be observed (see Figure 39b). It is worth mentioning that the results for 

HE A and HE B overlap in both curves and that there is a clear difference 

between the trends of the IPE and HE sections. 

  
a) Link depth/length ratio b) Section flange/web area ratio 

Figure 39 Dependency between the shear overstrength and geometrical parameters (FR) 

The evaluation of the shear overstrength at 0.08rad link rotation for the 

fully restrained (FR) boundary conditions (v0.08,FR) can be obtained using a 

linear regression function of the depth/length ratio d/e and of the flange/web 

area ratio Afl/Aw. The equations are the following: 

0.08, 1 2 3

fl

FR

w

Ad
v p p p

e A

  
= + +  

   
      (3.30) 

Table 15 Polynomial regression coefficients 

Profile type Length  p1 p2 p3 R2 

IPE 

0.50es 0.70 0.77 -0.47 0.94 

0.75es 0.30 0.31 0.67 0.99 

1.0es 0.63 0.37 0.41 0.97 

HE 

0.50es 0.23 0.22 0.82 0.95 

0.75es 0.68 0.22 0.58 0.93 

1.0es 0.76 0.17 0.65 0.91 
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3.4.3 Axial force  

The results in terms of axial force are presented as the values at 0.08rad 

link rotation, normalized with respect to the axial capacity of the flange Npl,fl 

evaluated as: 

, ,2pl fl fl y flN b t f=     (3) 

Where b is the width of the link flange, tfl is the thickness of the link flange 

and fy,fl is the strength of the flange steel. 

From the plots in Figure 40 it can be observed that the level of axial force 

developed in the link is mostly independent with respect to the type of profile, 

only small differences can be observed for HE B profiles. The same results 

can be noted varying the section depth, namely the normalized axial force is 

constant for all section depths. As a matter of fact, no correlation between the 

axial force and any geometrical parameters (e.g. d/e, Afl/Aw) can be recognized. 

The boundary conditions play a fundamental role in the level of axial force 

of the replaceable links. As possible to see in Figure 40, the fully restrained 

links show axial forces up to 50% larger than the links with deformable 

restraints. Another consequence of using DR is the loss of dependency 

between the axial force and the link length. This suggests that modelling the 

connection will lead to lower axial forces developing in the assembly. 

Figure 41 presents the full curve for the axial force evolution with the link 

plastic rotation for the HE A links. It is trivial to observe that relaxing the axial 

stiffness of the restraints leads to the reduction of the axial force developed in 

the link. Indeed, although there is a clear difference between the different 

groups of link lengths at 8% rotation for the fully restrained links, this 

difference shades off for the models with deformable restraints. 

The values of nfl,T max at 0.08rad link rotation are presented in Table 16. 
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a) Fully restraints (FR) 

  
b) Deformable restraints (DR) 

Figure 40 Axial force in the link 

  
a) Fully restrained (FR) b) Deformable restraints (DR) 

Figure 41 Normalized axial force curves for HE A links 
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Table 16 Links normalized tensile forces at 0.08rad link rotation  

FR N/Npl,fl 

Section/Length 0.50es 0.75es es 

IPE200 0.678 0.624 0.469 

IPE300 0.712 0.618 0.456 

IPE400 0.720 0.639 0.483 

IPE500 0.693 0.613 0.455 

IPE600 0.696 0.620 0.459 

HE 200 A 0.745 0.614 0.446 

HE 300 A 0.782 0.634 0.469 

HE 400 A 0.742 0.615 0.449 

HE 500 A 0.728 0.596 0.438 

HE 600 A 0.716 0.593 0.434 

HE 200 B 0.737 0.662 0.501 

HE 300 B 0.741 0.609 0.442 

HE 400 B 0.722 0.590 0.434 

HE 500 B 0.702 0.587 0.424 

HE 600 B 0.705 0.586 0.428 

 

Given the lack of correlation between the level of axial force with other 

geometrical parameters, constant values can be assumed for varying link 

lengths. Table 17 presents the mean and standard deviation for the IPE and HE 

profiles separately, as well as the global values for all profiles. These values 

can be used as a design value for regular links in EBFs and as a starting point 

for the evaluation of the actual axial force in the link-connection assemblies 

Table 17 Tensile force at 0.08rad link rotation for links only and FR boundary conditions (nfl,T max) 

Section Value 
0.5es 0.75es es 

[-] [-] [-] 

IPE 
Mean: 0.70 0.62 0.46 

St. Dev: 0.017 0.010 0.012 

HE 
Mean: 0.73 0.61 0.45 

St. Dev: 0.023 0.024 0.023 

All 
Mean: 0.72 0.61 0.45 

St. Dev: 0.024 0.022 0.022 
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3.5 DESIGN AND VERIFICATION OF BOLTED 

CONNECTIONS FOR LINKS 

The regular design according to EC3 1-8 is mostly concerned with static 

loading conditions. Although the link connection is a typical bolted connection 

it requires additional considerations, the main concerns being: 

1. Regular design for M and V ignores the presence of axial force 

(which can be larger than 5% of the link tensile capacity, the limit below 

which it can be ignored according to EC3 1-8). However, significant 

axial forces can develop in short links under large deformation (Della 

Corte et al., 2013) 

2. The design shear force and bending moment are severely 

amplified for the local hierarchy, however the shear overstrength is 

assumed with a constant value which could be over or under-

conservative (function of link length, type of section, connection etc.). 

3. The design methods for connections need not further 

complicate the design process, but this should not go against the safety 

requirements. 

Three methods are used to design and/or check the link connections. Each 

link connection is designed to satisfy Method 1 (design according to EN1993 

1-8), and the obtained connections are checked for Methods 2 and 3. 

3.5.1 Considered design and verification methods 

3.5.1.1.1 Method 1 – Design for M and V, disregarding N 

In terms of bending resistance, this method neglects the influence of axial 

force. For the evaluation of the shear resistance, the contribution of the bolts 

in tension are reduced to 28% while those in compression are considered with 

100% of their shear capacity. 
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The joint is designed to satisfy the following condition, according to EC3 

Part 1-8: 

, , ,1.1 1.5
2

link
j Ed ov pl link j Rd

e
M V M=          (3.31) 

Where Mj,Ed is the design bending moment of the connection and Mj,Rd is 

the bending resistance of the connection according to EN1993 Part 1-8 

The shear resistance is then checked to be above the demand 

, , , , ,

0.4
1.1 1.5

1.4
j Ed ov pl link j Rd c v Rd t v RdV V V n F n F=     = +   (3.32) 

Where Vj,Ed is the design shear force of the connection, Vj,Rd is the 

connection shear capacity, nc is the number of bolts in compression, nt, is the 

number of bolts in tension and Fv,Rd is the shear resistance of a single bolt. 

The tensile force developed within the link is ignored and models designed 

for M+V will be created in order to observe the behavior of the connection 

under the M - V - N loading conditions. 

 

3.5.1.1.2 Method 2 – Check for combined M – N and ulterior V check 

The calculation of the resistance considers the combined influence of 

bending and axial force. For the shear resistance, all bolts are assumed to be 

in tension). 

For this method, the M-N combined resistance is checked according to the 

EN 3 Part 1-8 for cases when the axial force in the connected beam NEd is 

larger than 5% of the design plastic resistance Npl,Rd. 

, ,

, ,

1
j Ed j Ed

j Rd j Rd

M N

M N
+         (3.33) 
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Where Mj,Rd is the design moment resistance of the joint, assuming no 

axial force and Nj,Rd is the design tensile resistance of the joint, assuming no 

applied bending moment. Nj,Ed in this case would be the tensile force in the 

link at 8% link rotation from analyses already performed, considering fully 

restrained BCs. 

The shear capacity of the connection is then checked assuming that all 

bolts are in tension. 

, , , ,

0.4
1.1 1.5

1.4
j Ed ov pl link j Rd v Rd

t

V V V F=     =     (3.34) 

 

3.5.1.1.3 Method 3 – Check using the M-N interaction curve 

The third method of verification requires building the M-N interaction 

curve and checking the actual (Mj,Ed, Nj,Ed) position with respect to the capacity 

curve. The shear capacity is then checked assuming that all the bolts are in 

tension as shown for Method 2. 

 

Figure 42 M-N Interaction curve for the link EEP connection 
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3.5.2 Verification of bolted link connections 

3.5.2.1 Flush end-plate connections (FEP) 

From the link profiles investigated in the parametric study on the link 

profiles, only the ones highlighted in Table 18 were selected and flush end-

plate (FEP) and extended end-plate (EEP) connections were designed.   

Table 18 Summary of designed and analyzed connections 

Connection: Flush End-Plate 

connection (FEP) 

Extended End-Plate 

connection (EEP) 

Relative length 0.50es 0.75es 1.00es 0.50es 0.75es 1.00es 

IPE 

200 x x x x x x 

300 x x x x x x 

400 x x x x x x 

500 x x x x x x 

600 x x x x x x 

HE A 

200 x      

300 x      

400 x      

500 x      

600 x      

HE B 

200 x      

300 x      

400 x      

500 x      

600 x      

 

As previously mentioned, the first method was used for the design of the 

connections. The design of FEP connections proved to be difficult as the 

design forces were significant, especially for HE profiles. In effect, the FEP 

connections were designed only for the very short HE links (0.50es), and even 

in these cases, the connections for the HE B links do not meet the design 

requirements and are investigated as partial strength connections. Table 19 

presents all the results for Method 1. 

The verification of the connection according to Method 2 (considering the 

combined effect of M and N) using the values of axial force obtained in the 

previous chapter (Table 16), it is possible to observe that none of the 

connections satisfies the requirement (Table 20). This is trivial given that most 

of the connections are designed close to their flexural capacity limit and they 
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are all subjected to significant tensile forces. Considering this method and 

assuming that indeed the level of axial force is the one previously derived, 

Figure 43 shows that the connections are severely above the limit of 1, and 

therefore are very weak, contrary to the design method which ignores the 

tensile forces and gives a reasonable utilization factor.  

Table 19. Design force to resistance ratio according to Method 1 (FEP) 

Link e/es=1.0 e/es=0.75 e/es=0.5 
𝑀𝑗,𝐸𝑑

𝑀𝑗𝑅𝑑

 
𝑉𝑗,𝐸𝑑

𝑉𝑗𝑅𝑑
 

𝑀𝑗,𝐸𝑑
𝑀𝑗𝑅𝑑

 
𝑉𝑗,𝐸𝑑

𝑉𝑗𝑅𝑑
 

𝑀𝑗,𝐸𝑑

𝑀𝑗𝑅𝑑

 
𝑉𝑗,𝐸𝑑

𝑉𝑗𝑅𝑑
 

IPE200 0.92 0.65 0.78 0.65 0.88 0.45 

IPE300 0.95 0.85 0.92 0.32 0.96 0.46 

IPE400 0.99 0.76 0.89 0.91 0.59 0.91 

IPE500 0.95 0.80 0.75 0.80 0.67 0.81 

IPE600 0.98 0.85 0.89 0.87 0.62 0.87 

HEA200     0.97 0.59 

HEA300     0.93 0.97 

HEA400     0.97 0.78 

HEA500     0.98 0.91 

HEA600     0.97 0.74 

HEB200     1.10 1.22 

HEB300     0.99 1.28 

HEB400     1.11 0.84 

HEB500     1.09 0.96 

HEB600     1.18 0.90 

Table 20. Design force to resistance ratio according to Method 2 (FEP) 

Link e/es=1.0 e/es=0.75 e/es=0.5 

𝑀𝑗,𝐸𝑑

𝑀𝑗,𝑅𝑑

+
𝑁𝑗,𝐸𝑑

𝑁𝑗,𝑅𝑑
 

𝑉𝑗,𝐸𝑑

𝑉𝑗,𝑅𝑑
 

𝑀𝑗,𝐸𝑑

𝑀𝑗,𝑅𝑑

+
𝑁𝑗,𝐸𝑑

𝑁𝑗,𝑅𝑑
 

𝑉𝑗,𝐸𝑑

𝑉𝑗,𝑅𝑑
 

𝑀𝑗,𝐸𝑑

𝑀𝑗,𝑅𝑑

+
𝑁𝑗,𝐸𝑑

𝑁𝑗,𝑅𝑑
 

𝑉𝑗,𝐸𝑑

𝑉𝑗,𝑅𝑑
 

IPE200 1.30 1.49 1.41 1.49 1.54 1.49 

IPE300 1.22 1.06 1.36 1.06 1.74 1.54 

IPE400 1.47 1.51 1.60 1.87 1.39 1.87 

IPE500 1.41 1.60 1.41 1.60 1.42 2.25 

IPE600 1.46 1.57 1.53 2.16 1.36 2.16 

HEA200     2.22 1.40 

HEA300     1.76 1.21 

HEA400     2.22 1.76 

HEA500     2.32 1.82 

HEA600     2.10 2.07 

HEB200     1.92 1.25 

HEB300     2.13 1.33 

HEB400     2.26 1.91 

HEB500     2.21 1.94 

HEB600     2.15 1.99 
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Figure 43. Design ratios for FEP assemblies 

Given that it would be very difficult to design anew the connections (to 

consider also the presence of the axial force) a different approach was 

considered and the original design according to Method I was preserved. It is 

assumed that the response of the connections designed for bending moment 

and shear (method I) could be assessed by means of FEAs and based on the 

results obtained, the design procedure can be adjusted. Furthermore, the 

results obtained using Method II are very conservative and in order to better 

assess the resistance of the link connection under combined flexure and axial 

force, the third method is deemed more appropriate. 

Method 3 implies the derivation of the M-N interaction curve for each link 

connection. The evaluation process is exemplified for IPE400 0.75es.(Figure 

44 and Table 21). The curve is obtained by evaluating the (Mj,Rd, Nj,Rd) pairs 

considering a sequential shift of the neutral axis (NA) with respect to the axis 

of the components resistance (the bolt rows in tension and the beam flange and 

web in compression). Figure 45 details the M-N curve and the points obtained 

considering the variation of the position of the neutral axis (NA). 
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Figure 44 Distribution of forces in the bolt rowsfor FEP connection IPE400 0.75es 

Table 21 Component information (force and lever arm) for the beam and link side for IPE400 0.75es 

 Fbeam  zbeam Flink zlink 

 [kN] [mm] [kN] [mm] 

Fc,fb,Rd 2452 193 2452 193 

FT,1 985.6 130 925.6 130 

FT,2 494.3 43 494.3 43 

FT,3 344.2 43 309.2 43 

FT,4 925.6 130 925.6 130 

 

The first point of the curve (a) represents the maximum negative axial 

force on the joint associated to zero bending moment, which occurs when the 

NA is at the top edge, therefore both beam flanges are in compression. At point 

(b), only the bottom flange is in compression so the axial force is  given by the 

its compressive resistance while the corresponding bending moment is 

obtained by multiplying it with its lever arm. Point (c) is obtained when the 

NA is below the first bolt row (BR) which is now in tension so the axial force 

is given by imposing the translation equilibrium equation. The corresponding 

bending moment capacity is given by imposing the rotation equilibrium 

equation relative to the NA. The remaining points are obtained by considering 

the resistance of the succeeding bolt rows. For bolt rows in compression in 

which the resultant force is negative, the minimum positive resistance is used. 

The same process is done on the beam side and the results are plotted below. 
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a – NA at the top edge (top and bottom flanges 

in compression) 

b – NA between top flange and BR1 (bottom 

flange in compression) 

c – NA between BR1 and BR2 (bottom flange 

in compression and BR1 in tension) 

d – NA between BR2 and BR3 (bottom flange 

in compression, BR1 and BR2 in tension) 

e – NA between BR3 and BR4 (bottom flange 

in compression, BR1, BR2 and  BR3 in 

tension) 

f – NA between bottom flange and BR4 

(bottom flange in compression) 

g –NA at top flange (all BR in tension) 

Figure 45 M-N interaction curve for IPE400 0.75es  

Table 22 M-N curve points for FEP connection IPE400 0.75es 

Link a b c d e f g 

N (kN) -4902.6 -2451.3 -1525.6 -1030.8 -721.6 204.4 2655 

M (kNm) 0.00 473.7 594.1 615.3 601.7 480.4 0 

        

Beam a b c d e f g 

N(kN) -4902.6 -2451.3 -1465.72 -974.4 -629.8 356.2 2807 

M (kNm) 0.00 454.7 582.9 604 588.8 459.6 0 
 

In order to get the relative position of the design bending moment axial 

force pair (Mj,Ed, Nj,Ed) with respect to the M - N curve derived, the deviation 

is evaluated based on Figure 46. Two intersecting lines are considered: (1) the 

line where the design forces will intersect with the curve upon its projection 

from the origin (2) the line formed by the two relevant points in the M - N 

interaction curve. The intersection points of these two lines are calculated 

based on the equations of the line. 

 
Figure 46 Deviation of design forces from the resistance curve 
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Table 23 Design ratios for FEP connections 

e/es = 1.0 

Section 

 FR DR 

Mj,Ed/Mj,Rd Nj,Ed/Nj,Rd (R+R*)/R Nj,Ed/Nj,Rd (R+R*)/R 

IPE200 0.92 0.38 0.99 0.32 0.94 

IPE300 0.95 0.27 0.80 0.20 0.77 

IPE400 0.99 0.47 1.08 0.35 1.04 

IPE500 0.95 0.46 1.08 0.35 1.04 

IPE600 0.98 0.47 1.09 0.36 1.05 

      

e/es = 0.75 

Section 

 FR DR 

Mj,Ed/Mj,Rd Nj,Ed/Nj,Rd (R+R*)/R Nj,Ed/Nj,Rd (R+R*)/R 

IPE200 0.78 0.63 0.92 0.2859 0.80 

IPE300 0.83 0.45 0.79 0.2398 0.70 

IPE400 0.89 0.71 1.10 0.4168 0.95 

IPE500 0.75 0.66 0.97 0.4172 0.87 

IPE600 0.90 0.63 1.07 0.3889 0.93 

      

e/es = 0.5 

Section 

 FR DR 

Mj,Ed/Mj,Rd Nj,Ed/Nj,Rd (R+R*)/R Nj,Ed/Nj,Rd (R+R*)/R 

IPE200 0.88 0.66 0.76 0.19 0.56 

IPE300 0.96 0.78 0.98 0.27 0.72 

IPE400 0.59 0.80 0.90 0.33 0.67 

IPE500 0.67 0.75 0.90 0.34 0.68 

IPE600 0.62 0.75 0.91 0.33 0.68 

HEA200 0.97 1.25 1.39 0.39 0.92 

HEA300 0.93 0.83 1.64 0.34 1.14 

HEA400 0.97 1.25 1.39 0.50 1.03 

HEA500 0.98 1.33 1.51 0.62 1.13 

HEA600 0.97 1.13 1.34 0.41 0.96 

HEB200 0.99 0.92 1.80 0.35 1.17 

HEB300 0.92 1.21 1.33 0.58 0.99 

HEB400 0.99 1.27 1.45 0.61 1.10 

HEB500 0.98 1.23 1.50 0.61 1.15 

HEB600 0.98 1.17 1.48 0.61 1.21 
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Figure 47 The deviation from the M-N interaction curve considering the axial force obtained using FR 

and DR boundary conditions 

As presented in Table 23 and Figure 47, for longer links (e/es = 1.0), the 

deviation of the design forces when considering the NEd from the analyses on 

links considering fully-restrained (FR) boundary conditions are limited to 1.09 

when the MEd/Mj,Rd ratios are as close to 1.0 as possible. Higher axial forces 

develop in shorter links hence, links with e/es = 0.5 have the highest deviation, 

reaching 1.8 for MEd/Mj,Rd of 0.99. Most of the  IPE links with e/es = 0.5 have 

design forces within the M - N curve while HE A and HE B profiles have ratios 

significantly higher than 1.0. Comparing the results from the fully rigid (FR) 

boundary conditions analyses with the ones with deformable restraints (DR), 

there is a significant reduction in the axial force and consequently, in the 

deviation of the design forces from the M-N curve (Table 23 and Figure 47). 

 

3.5.2.2 Extended end-plate connections 

The design of extended end-plate connections proved to be simpler due to 

the more relaxed geometrical limitations. Or the current study only the IPE 

link-connections are presented. All assemblies are designed to satisfy Method 

1 with the design ratios shown in Table 24. The assemblies are then checked 

according to Method 2 (results summarized in Table 25) and the results are 

comparatively presented for the first two methods in Figure 48. 
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Table 24. Design force to resistance ratio according to Method 1 (EEP) 

Section 

e/es=1.0 e/es=0.75 e/es=0.5 

𝑀𝑗,𝐸𝑑

𝑀𝑗,𝑅𝑑

 
𝑉𝑗,𝐸𝑑

𝑉𝑗,𝑅𝑑
 

𝑀𝑗,𝐸𝑑

𝑀𝑗,𝑅𝑑

 
𝑉𝑗,𝐸𝑑

𝑉𝑗,𝑅𝑑
 

𝑀𝑗,𝐸𝑑

𝑀𝑗,𝑅𝑑

 
𝑉𝑗,𝐸𝑑

𝑉𝑗,𝑅𝑑
 

IPE200 0.82 0.56 0.91 0.81 0.82 0.56 

IPE300 0.99 0.85 0.96 0.85 0.81 0.85 

IPE400 0.87 0.85 0.89 0.85 0.59 0.85 

IPE500 0.93 0.94 0.90 0.94 0.80 0.94 

IPE600 0.93 0.88 0.69 0.88 0.47 0.88 

Table 25. Design force to resistance ratio according to Method 2 (EEP) 

Section 

e/es=1.0 e/es=0.75 e/es=0.5 

𝑀𝑗,𝐸𝑑

𝑀𝑗,𝑅𝑑

+
𝑁𝑗,𝐸𝑑

𝑁𝑗,𝑅𝑑
 

𝑉𝑗,𝐸𝑑

𝑉𝑗,𝑅𝑑
 

𝑀𝑗,𝐸𝑑

𝑀𝑗,𝑅𝑑

+
𝑁𝑗,𝐸𝑑

𝑁𝑗,𝑅𝑑
 

𝑉𝑗,𝐸𝑑

𝑉𝑗,𝑅𝑑
 

𝑀𝑗,𝐸𝑑

𝑀𝑗,𝑅𝑑

+
𝑁𝑗,𝐸𝑑

𝑁𝑗,𝑅𝑑
 

𝑉𝑗,𝐸𝑑

𝑉𝑗,𝑅𝑑
 

IPE200 1.21 1.17 1.71 1.69 2.07 1.17 

IPE300 1.50 1.72 1.78 1.72 1.94 1.72 

IPE400 1.24 1.52 1.53 1.52 1.32 1.52 

IPE500 1.27 1.57 1.48 1.57 1.74 1.57 

IPE600 1.44 1.88 1.38 1.88 1.29 1.88 

           

Figure 48. Design ratios for EEP assemblies according to Method 1 and Method 2 

 

Figure 49. Deviation of design forces from M-N curves of EEP assemblies 
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Similar to the cases of flush end-plate connections, the EEP connections 

were designed close to the limit. Owing to this and the important tensile forces 

resulting from the FEAs on the links, the limits for Method II, in terms of shear 

and combined bending-axial force, are not satisfied (Figure 48). It is deemed 

however that the second method is highly conservative, and as proved by the 

analyses on links considering the links with deformable restraints, modelling 

the connection response, leads to significantly axial force reduction. It is 

expected that when the connection is modelled, a further reduction will occur 

due to the compressive arch, which cannot be observed in the models without 

the physical connection modelled. 

With regards to the third method (M - N interaction curves), a less severe 

effect on the verification is obtained, compared to Method II. Figure 49 shows 

that the limit is reached only for the longer links (e/es = 1.0) and especially 

when the axial force is based on the very conservative case of fully restrained 

(FR) links. 

The connection design according to Method I will be preserved, and the 

assessment of the connection will be performed using numerical models which 

were calibrated, as shown in the previous chapters. 
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3.6 ASSESSMENT OF THE BOLTED LINK 

CONNECTIONS RESPONSE 

This chapter discusses the results of numerical analyses on the link-

connection assemblies (Figure 50c and d). The link profiles are the same as 

those defined in the “Parametric Study for the evaluation of the link 

connection design forces” chapter (Figure 50a and b)  and the connections 

designed according to the methodology presented in the chapter “Design and 

verification of end-plate connections for links” (Figure 50e and f). 

Link profiles 

  
a) Fully restrained (FR) b) Deformable restraints (DR) 

Link-connection assemblies 

  
c) Fully restrained (FR) d) Deformable restraints (DR) 

Connections 

  
e) Flush end-plate connection (FEP) f) Extended end-plate connection (EEP) 

Figure 50 The boundary conditions (BC) for all analyzed models 

Two types of connections modelled are:  

• Flush end-plate (FEP - Figure 50e) 

• Extended end-plate (EEP - Figure 50f) 

All IPE profiles are modelled considering the two types of connections 

and the three lengths proposed, namely 0.5es, 0.75es, and 1.0es while HEA and 

HEB profiles are only modelled with flush-end plate connections, 0.5es. In 
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addition, all models are analyzed with two boundary conditions: the first 

neglecting the deformation of the frame (Figure 50c) by imposing fully-rigid 

restraints at the face of the connection, hereafter referred to as fully-restrained 

or FR, and the second one considering the frame’s deformability by imposing 

springs with axial and rotational stiffness i.e. deformable restraints or DR 

(Figure 50d). 

Table 26. Models used for parametric analysis of seismic links 

 Flush-end-plate Extended-end-plate 

Link length IPE HE A HE B IPE 

0.5es     
0.75es     

es     
 

The results are presented in contrast to the link profiles analyses 

considering FR boundary conditions, which represent the case of links in 

traditional EBFs where the link is continuous with the beam and the link 

profiles considering DR which represent a simplified modelling strategy for 

the actual link-connection assemblies representing the focus point of this 

chapter. 

The curves hereby presented are in terms of normalized forces: 

▪ Normalized shear force: 

,pl link

V
v

V
=         (3.35) 

, ( )
3

y
pl link fl w

f
V d t t= −        (3.36) 

▪ Normalized axial force: 

,

fl

fl link

N
n

N
=         (3.37) 

, 2fl link fl yN bt f=         (3.38) 
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Where V and N are the shear and axial force in the link numerically 

obtained, Vpl,link is the link plastic capacity according to EC8, d is the profile 

depth, tfl is the thickness of the flange, tw is the thickness of the web fy is the 

material strength, Nfl,link is the link axial capacity considering only the flanges 

and b is the flanges width.  

The evaluation of the link rotation is based on the diagonal springs defined 

from one end of the link to the other (see L1 and L2 in Figure 51a). The 

following equations is used to determine the link rotation: 

( )
2 2

1 2
2

link

d e
L L

de


+
= −       (3.39) 

The connection rotation is evaluated as the gap-opening rotation (Figure 

51b), based on the following equation: 

gap

connection

u

z
 =         (3.40) 

 

 
a) Link rotation b) Connection rotation 

Figure 51 Rotation evaluation measurements 

Other values of interest for the current chapter are the link-connection 

relative strength and stiffness ratios defined as: 
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K K
k e

K EA
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Where Mj,Ed is the joint design bending moment evaluated based on the 

link shear plastic capacity Vpl,link (also defined in the chapter “Design and 

Verification of Bolted connections for links”) , Mj,Rd is the joint bending 

resistance, Vj,Ed is the joint design shear force (defined as well in the previous 

chapter function of Vpl,link), Vj,Rd is the joint shear resistance, Sj,ini is the joint 

initial stiffness, Kfl,link is the link flexural stiffness, Iy,link is the link second 

moment of inertia, E is Young’s modulus, e is the link length, Kj,ax is the joint 

axial stiffness and Kax,link is the link axial stiffness, A is the section area. 

 

 
a) Flush-end-plate (FEP) connection link 

assembly 

b) Extended end-plate (EEP) connection link 

assembly 

Figure 52 Assembly typology 
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The chapter is subdivided into two main parts. First, the results of the 

numerical models with the flush end-plate connections (Figure 52a) will be 

presented, followed by the ones of the extended end-plate (Figure 52b). For a 

clearer discussion, the behavior of the link in terms of shear overstrength and 

the axial force developed is separated, but the two aspects and their 

interconnectivity will be treated in the final section. 

 

3.6.1 The flush-end plate connections (FEP) 

3.6.1.1 Shear overstrength 

From the graphs in Figure 53, Figure 54 and Figure 55, it can be seen that 

different seismic links have very close response in the elastic region. All link 

assemblies reach their full plastic capacity and significant overstrength for 

large rotational levels (all web stiffeners are designed as prescribed by the 

Eurocode with a maximum tolerance of 6 mm). Figure 53 and Figure 54 show 

the results for the IPE link assemblies for all lengths and both boundary 

conditions. 

The shear response of the link is independent from boundary conditions, 

at a first glance. Comparing the results for FR and DR for the same assembly, 

all links have similar responses, as exemplified in Figure 56. 

   
a) 0.5 es b) 0.75 es c) 1.0 es 

Figure 53 Normalized shear force curves for IPE link assemblies with FR boundary conditions 
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a) 0.5 es b) 0.75 es c)1 es 

Figure 54 Normalized shear force curves for IPE link assemblies with DR boundary conditions 

F
R

 

  

D
R

 

  
 HE A HE B 

Figure 55 Normalized shear force curves for 0.5es HE A and HE B link assemblies 

  
IPE link assembly HE assembly 

Figure 56. Shear response considering different boundary conditions 
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a) Link only (FR) b) Link only (DR) c) Link assembly (DR) 

Figure 57 Shear overstrength at 8% link rotation vs. link depth/length ratio for the 0.5es links 

In the case of the link-connection assemblies (Figure 50c and d) it is 

difficult to distinguish a clear correlation between the shear overstrength and 

the d/e ratio. Comparing the values obtained previously for the link profile 

investigation (Figure 57a and b) with the values obtained considering the link 

assemblies (Figure 57c), lower values can be observed and the previous trend 

is lost. 

From the characteristics of the model, it is believed that the connection 

strength and stiffness might play a role in the link response. 

In order to investigate this aspect, a set of analyses was performed by 

varying the ratio between the connection design bending moment (Mj,Ed) 

which is a function of the link strength, and the connection flexural resistance 

(Mj,Rd). As the design of connection results complex, the variation in relative 

strength was obtained by scaling the link material. The ratio (identified as mj  

was defined with values ranging from 0.1 to 2 with a step of 0.1 up to 1.4, and 

0.2 beyond 1.4. The values larger than 1.0 were used to observe the behavior 

of the assembly in case of a partial strength joint. 

Figure 58 and Figure 59 show the normalized shear – link rotation curves 

(a) and the value of the shear overstrength at 0.08rad (b) for the analyses 

considering the specified mj values for the 400mm IPE and HE assemblies, 
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respectively. All the analyses were performed considering fully-restrained 

(FR) boundary conditions for the assemblies (see Figure 50c). 

In the left side (a) the curves depict evident variation of the shear at the 

variation of the link/connection strength ratio. The lower mj, the higher the 

stiffness and the shear overstrength achieved at higher rotational levels.  

  

  

  
a) b) 

Figure 58. Shear response for 400 mm, IPE assemblies considering the variation of mj 
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Considering only the shear overstrength of interest in design (at 0.08rad 

link rotation) the graphs in the right side of Figure 58 and Figure 59 (b) show 

an evident decrease of the overstrength the closer the connection resistance 

gets to the limit design value (mj = 1.0). The difference between the shear 

overstrength for mj = 0.10 and mj = 1.0 ranges from 13% to 18% function of 

the type of section and the link length ratio (in less of a measure). The very 

small ratios (mj = 0.1 … 0.3) give results which are very close to the FR case 

which represents the case of the fully restrained link profile (Figure 50a). For 

values larger than 1.0, the reduction in shear overstrength is more pronounced, 

reaching at limit values of 1.0 (no shear overstrength). 

 

  

  
a) b) 

Figure 59. Shear response 400 mm HE assemblies considering the variation of mj 
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a) 0.01rad link rotation b) 0.08rad link rotation 

Figure 60 PEEQ in the link assembly IPE400 0.75es FR 

 

Figure 61 Areas selected for the level of PEEQ 

The reduction in connection strength leads to a reduced stiffness due to 

early onset of plastic damage. Figure 60 shows the equivalent plastic strain 

(PEEQ) in the assembly components defined in Figure 61. In particular, by 

“Welds” it is intended the link-to-end-plate welds and the heat affected area 

around them. In Figure 60 a is evident that even at small rotational levels 

(0.01rad link rotation) the level of cumulative plastic damage (PEEQ) in the 

connection components is ever increasing for larger mj values. The plastic 

involvement of the connection at link rotations corresponding to the 

achievement of Vpl,link, explains the reduction of the assembly stiffness. 

Another trend, observed also for larger rotation levels (Figure 60 b), is the 

decrease in the link web PEEQ while larger values are observed for the welds, 
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end plate on the link side (EP link) and beam side (EP beam) and bolts. 

Therefore, the larger plastic contribution of the connection leads to a limitation 

in the capacity of the link to develop the maximum shear overstrength. The 

connection rotation increases at a faster rate for mj ratios larger than 1.0 for 

IPE profiles, especially for the longer ones (Figure 62 a). The short link 

assemblies exhibit very similar trends regardless of the section type (Figure 

62b). 

Overlapping the curves for the same IPE400 profile considering the 

various lengths (Figure 62 c) it can be observed that the decrease is quite 

proportional and more interesting, the similarity of values is correlated to the 

similarity of connection rotation. A clear distinction between the IPE and HE 

assemblies is highlighted in Figure 62 d, the HE A and HE B models having 

very similar responses. 

 

  
a) b)  

  

c)  d) 

Figure 62 Connection rotation contribution at 0.08rad link rotation 
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a) Variation of shear overstrength b) Variation of connection rotation 

Figure 63 Influence of FR and DR boundary conditions for IPE400 0.75es 

 

Using only one model (IPE400 0.75es), the previous analyses were 

repeated considering the DR boundary conditions (see Figure 50d). This was 

done so due to the timely and computationally demanding process required to 

perform the analyses and extract the desired results. Figure 63a shows that the 

differences are insignificant for all the analyses performed in terms of shear 

overstrength. 

Based on these observations it can be concluded that the shear 

overstrength not only depends on the link length and type of profile, as shown 

in the previous investigation on the link only, but also on the relative 

connection/link strength. Using the information from the performed analyses, 

both on link profiles and link assemblies, equations can be proposed for the 

accurate definition of the shear overstrength. 

 

3.6.1.2 Axial force 

In the previous investigation (on the link profile only - Figure 50a) the 

axial forces were always positive i.e. tensile forces, as the physical 

connections were missing. The models in which the connection and frame 

deformability were modelled by means of axial and flexural springs (DR - 

Figure 50b) were characterized by a reduced magnitude of the tensile forces. 
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Figure 64 Variation of axial force in the link with the boundary conditions 

 

However, based on the numerical results of the three links used for the FE 

model calibration, it was expected that modelling the connection would lead 

to the occurrence of the so-called compressive arch in the link and a 

consequential reduction of the tensile axial force at 0.08rad link reduction. 

The compressive arch refers to the compressive stresses developing in the 

axially restrained link assembly at low levels of rotation when displacement is 

applied at both ends in order to induce a uniform shear force. 

Figure 64 shows the clear distinction between the three cases, namely the 

large tensile forces developed when assuming fully-restrained boundary 

conditions, the reduction in tensile forces when modelling the connection by 

means of nonlinear springs and the occurrence of compressive arch only when 

the connection is modelled. 

The level of axial force, normalized with respect to the axial capacity of 

the link considering only the area of the flanges, up to 10% of link rotation is 

plotted in Figure 65 to Figure 67 for all the FEP assemblies investigated.  It 

can be observed that the compressive arch is larger than presumed and that the 

tensile forces develop only at levels of rotation greater than 10%. 
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a) 0.5 es b) 0.75 es c) 1.0 es 

Figure 65 Normalized axial force curves for IPE link assemblies with FR boundary conditions 

   
a) 0.5 es b) 0.75 es c)1.0 es 

Figure 66 Normalized axial force curves for IPE link assemblies with DR boundary conditions 

F
R

 

  

D
R

 

  
 HE A HE B 

Figure 67 Normalized axial force curves for 0.5es HE A and HE B link assemblies 
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a) Just link (DR) b) Link-Connection assembly  

Figure 68 The normal stress for IPE400 0.75es  

 

In effect, when looking at the normal stresses in the link of the two types 

of models (the link and the link-connection assembly) presented in Figure 68 

for a sample case, it is evident that at the same rotational level, the first is 

undergoing tensile forces while the latter  compression. Therefore, while the 

models with only the link profiles have ever increasing tensile forces and the 

tension force at 0.08rad can be assumed as the maximum axial force (Nmax = 

N0.08), in the case of the link-connection models, Nmax corresponds to the 

maximum compressive force developing at lower rotations. 

In Figure 64 it can be clearly noted for the links of the South frame (S1, 

S2 and S3) that the analysis of only links with fully restrained (FR) boundary 

conditions leads to severe over-estimation of the tensile forces. This case is 

representative for the link in a traditional EBF, which is continuous with the 

beam and therefore can be assumed to have fixed ends. Modelling the flexural 

and axial stiffness of the connection and frame, imposing thus deformable 

restraints (DR), reduces the obtained values and when compared to the 

complete link-connection assembly model, it offers a closer approximation. 

Nevertheless, the DR link profile model cannot capture the initial compressive 

arch and leads to significant force over-estimation in most cases. 

The link-connection assembly model combined with restraints modelling 

the frame deformability (the model which calibrates well the cyclic response 
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of the experimental results Figure 50d), gives the best approximation of the 

axial force, including the compressive arch and a realistic level of tensile 

forces at 8% link rotation. However, as it can be observed in Figure 65 and 

Figure 66 for all IPE link lengths and in Figure 67 for the 0.50es HE compact 

links, modelling the deformable support conditions reduces the compressive 

arch in terms of maximum compressive force, but not in terms of the extent 

(the tensile forces appear after more or less the same rotation level).  

Looking on the S1, S2 and S3 calibrated models with FR and DR (ignoring 

or accounting the frame deformability, respectively) in Figure 69, the same is 

observed – reduction of the maximum forces with the introduction of the 

deformable BC, but no change in the rotation level at which the link goes in 

tension.  

A clear discrepancy between the values of the tensile force at 0.08rad link 

rotation is observed for the two link assemblies. Looking at the geometrical 

and mechanical characteristics of the two assemblies, it was observed that the 

main difference between the S1/S2 and S3 links was the connection design 

ratios. Namely, the connection was identical for the 3 storeys but the link on 

the third storey had a smaller section. 

As it was shown in the chapter dedicated to the calibration of the 

numerical model, the section of the links on the first two floors (S1 and S2) 

were wide flange sections close to a HEA 240 profile and the link on the last 

floor was a slenderer section, close to an IPE240 profile. This difference leads 

to different levels of connection overstrength, and as depicted in Table 27, the 

connection for the S3 link has a larger strength margin and is more rigid with 

respect to the link, which allows for the development of tensile forces in the 

link at lower rotation levels. 
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a) Link assemblies S1/S2 b) Link assemblies S3 

Figure 69 Normalized axial force curves for 0.5es links comparison of FR vs DR boundary conditions 

Table 27 Design forces and resistance in the links of the tested frame (Ioan et al 2016) 

 
e/es VEd,j MEd,j VRd,j MRd,j Sj,ini Kfl, link vj mj kj,fl 

 
[-] [kN] [kNm] [kN] [kNm] [kNm/rad] [kNm/rad] [-] [-] [-] 

S1/S2 0.43 625 125 931 166.8 15022 92512 0.67 0.75 0.16 

S3 0.31 313 63 931 166.8 14643 58702 0.34 0.38 0.25 

 

It can be summarized that the level of axial force at 0.08rad link rotation, 

as well as the trend of the axial force – link rotation curve is directly correlated 

with the following parameters: 

- Boundary conditions (full-rigid vs. deformable restraints) 

- Link profile geometry (wide/narrow flange section, d/e ratio) 

- Connection/Link strength and stiffness ratio (flexural/ shear/ axial) 

The following sections are dedicated to the investigation of these 

parameters on the axial force development in the link-connection assembly. 

 

3.6.1.2.1 Influence of the boundary conditions on the axial force 

Considering the same assembly, the difference in boundary conditions 

only causes a change in the area of the compressive arch due to the increase in 

maximum compression, the link rotation at which tension is reached 

remaining the same. Figure 70 depicts an example for the 0.5es 200mm deep 

profiles.  
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Figure 70 Normalized axial force curves for 0.5es links comparison of FR vs DR boundary conditions 

There is an average decrease of 47% in maximum compressive force 

(Figure 71) when the same model is analyzed using FR and DR. This decrease 

is more significant for shallow links, and it decreases with depth and the same 

is true also for the link length i.e. shorter links exhibit a larger decrease in 

compression force when the DR are applied (see Figure 72). 

Considering the deformability of the frame to which the link is connected 

greatly influences the compressive arch, and therefore, the axial demand on 

link connections and the adjoining beam. However, assuming FR boundary 

conditions leads to a conservative evaluation of the design forces, which is 

beneficial especially for the beam side components (beam web and flange in 

compression). Moreover, a larger compression force in the joint is not as 

detrimental for the bending resistance compared with tensile forces. 

 

Figure 71 Maximum compression force for the investigated link assemblies 
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Figure 72 Difference between the maximum compression force for models with FR and DR 

Referring to Method 3 of link verification, the M-N curves generated are 

not perfectly symmetrical along the moment axis (y-axis) but are slightly 

translated to the left. This means that for the same magnitude of axial force 

the corresponding bending resistance under the presence of a tensile force is 

significantly lower than the bending resistance for a compressive force. 

Caution must be used as the difference between the case with FR and DR leads 

to a scaling of the entire curve, so tensile forces the same as compressive forces 

will be larger when assuming fully rigid BCs. 

 

3.6.1.2.2 Influence of the profile geometry on the axial force 

The section compactness seems to have no influence on the axial force 

developed in the link assemblies. In the previous chapter it was shown that the 

axial force for the link profiles was identical for same depth IPE and HE 

profiles, as it can be seen also in Figure 73a and b. 

The shallower (200 and 300mm) IPE link-connection assemblies exhibit 

larger axial forces compared to the wider HEA counterparts (FR assemblies in 

Figure 73c and DR assemblies in Figure 73d). However, because the change 

from the models of the link profiles to the link assemblies is the connection, it 

can be assumed that this difference is related to the different relative 

connection strength and stiffness, aspect which will be discussed more in 

depth in the subsequent section. 
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a) Link profiles fully restrained (FR) and b) considering deformable restraints (DR) 

 
c) Link assemblies fully restrained (FR) 

 

d) Link assemblies considering deformable restraints (DR) 

 

Figure 73 Influence of section compactness 

Figure 74 shows the difference in terms of mj ratios and kj,fl (parameters 

defined at the beginning of the chapter) for the two types of sections (IPE and 

HEA) of link-connection assemblies. Indeed, while for the HEA assemblies 

mj is close to 1 for all profile depths, for the IPE, the ratio is significantly lower 

for the 400, 500 and 600 mm. The kj,fl is different for the 200 and 300 mm 

profiles due to significant difference of the joints’ Sj,ini (the link stiffness is 

similar – the HEA tend to have larger e while the IPE larger Iy, effects 
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compensating each other). These two connection-link related parameters have 

already been shown to influence the magnitude of the compressive arch and 

they will further be discussed. 

  
a) Resistance b) Stiffness 

Figure 74 Connection/Link ratios for IPE and HEA 0.50es assemblies 

The link length seemed to play a very significant role in the magnitude of 

the axial force in the link profiles for the FR boundary conditions (Figure 75 

a) but less for DR boundary conditions (Figure 75 b). However, the link 

assemblies do not preserve the order (Figure 75 c and d), and as observed in 

the comparison between IPE and HEA, the shallow profiles (200 and 300 mm) 

exhibit different axial force distribution (larger compression for the shorter 

0.50es link assemblies).  

When comparing the connection strength, expressed as mj in Figure 76a, 

for the same-depth IPE links for the 3 considered lengths, the trend is identical 

to the one in Figure 74a. The sets of longer IPE links, namely 0.75es and 1.0es 

have similar values of mj while, as already shown, the 0.50es set has varying 

values (closer to 0.9 for shallow sections and approximately 0.6 for the other). 

Figure 76b shows that the shorter set has the least rigid connections, especially 

for the shallow links. However, as the difference between the kj,fl for varying 

link lengths, remains practically constant, it is assumed that it’s the larger 

connection resistance which leads to the reduction in compressive arch for the 

IPE400, 500 and 600 0.50es.  
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a) IPE link profiles fully restrained (FR) 

 
b) IPE links profiles considering deformable restraints (DR) 

 

c) Links assemblies fully restrained (FR) 

 

d) Link assemblies considering deformable restraints (DR) 

 

Figure 75 Influence of depth and length 
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Indeed, different compared to the comparison between IPE and HEA, the 

strength and stiffness are separated, and it can be highlighted that both 

parameters influence the axial response. 

  
a) Resistance b) Stiffness 

Figure 76 Connection/Link ratios for IPE assemblies 

 

3.6.1.2.3 Influence of the connection/link strength and stiffness ratio 

The remarks based on the axial response of the calibrated links (Figure 

69) relative to the connection properties (Table 27) and the ones from the 

previous paragraphs (Figure 74 and Figure 76) highlight how, aside from the 

assembly boundary conditions (FR or DR) which alter the magnitude of the 

compressive arch, another significant contribution to the axial force in the link 

is the connection, in particular its strength and stiffness. 

The influence of the connection strength and stiffness was verified 

separately by designing different connections for one of the link-connection 

assemblies, starting from the original one. Table 28 summarizes two cases: (i) 

Case I: strength is reduced, and stiffness is kept constant, (ii) Case II: stiffness 

is increased while strength is kept constant. 

The choices made for the strength and stiffness variation was based on the 

limiting geometrical constraints. It was simpler to reduce the strength rather 

than increase it and this was achieved by changing the bolt grade. Similarly, 

the stiffness was increased by  adjusting the bolt spacing. 
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Table 28 Strength and stiffness ratios for the IPE200 0.75es 

 
Original joint 

(FR, DR) 

Modified joint 

(FR*, DR*) 
Difference 

Case I. Strength influence 

mj 0.78 0.89 ~15% reduction 

vj 0.65 0.99 ~35% reduction 

Case I. Stiffness influence 

kj,fl 1.02 0.87 ~15% increase 

kj,ax 1.85 1.75 ~6% increase 

 

  
a) Strength b) Stiffness 

Figure 77 Influence of joint properties variation on link forces (example for IPE200 0.75es) 

The IPE200 0.50es link-connection assembly was used as a base and for 

the simple check of these 2 parameters’ influence, the resistance was reduced 

with 15% (Case I) while the stiffness was increased by 15% (Case II). The 

results are eloquent, showing that indeed a lower connection resistance leads 

to an increased axial force (Figure 77a). Similarly, increasing the stiffness, 

leads to a reduction in the compression developed (Figure 77b) 

To verify these results by re-designing all the link FEP connections to 

have a larger overstrength is tedious, if not impossible, owing to the important 

design forces and the limiting geometrical constraints i.e. bolt spacing, depth 

of the end-plate etc. A reversed strategy can be adopted by reducing the link 

capacity (and therefore the design forces), using a material with a reduced 



Bolted connections for detachable links 

156 

 

yield strength i.e. a S235 steel instead of the S355 used. As a result, the same 

connection has a relative larger strength (Figure 78) for the same elastic 

stiffness (the reduction in mj is 30%). During the design process it was not 

possible to design full-strength connections for some of the HE B links (Figure 

78a), and by using a lower grade material for the link, the mj ratios for these 

connections are reduced sufficiently (less than 1 – see Figure 78b). 

  
a) Links S355 b) Links S235 

Figure 78 Connection/Link strength ratios for all FEP assemblies 

 

The results are comparatively presented in Figure 79, Figure 80 and Figure 

81. As it can be observed, the reduction of the mj ratio leads to the transition 

from compression to tension at a lower link rotation (in all cases), but the 

maximum compressive force is not significantly affected.  

This could be a confirmation that the shape of the axial force curve could 

be predicted based on the link geometrical properties, the relative 

link/connection strength and stiffness and, the boundary conditions. However, 

with regards to the connection influence, more analyses are needed for each 

assembly in order to get the extent to which the mj ratio influences the 

assembly response. 

The same set of analyses previously presented for the shear overstrength 

are used to attain this goal. The plots for the 400mm deep profiles are depicted 

in a similar style.  
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Figure 79 Normalized axial force curves for IPE link assemblies with DR boundary conditions 

 

Figure 80 Normalized axial force curves for0.5es HEA link assemblies with DR boundary conditions 

 

Figure 81 Normalized axial force curves for 0.5es HE B link assemblies with DR boundary conditions 

 

On the left of Figure 82 and Figure 83 (a) are the normalized curves in 

terms of axial force – link rotation, which  show a clear dependence to the 

connection’s relative strength. At the superior limit (denoted as FR) is the 
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curve representing the case of the link profile assuming FR boundary 

conditions (Figure 50a) and with ever decreasing tensile forces, below are the 

curves considering higher values of mj. The maximum compression force is 

achieved at low levels of link rotation and this is not significantly dependent 

on the mj. 

 

  

  

  
a) b) 

Figure 82. Axial force for 400 mm, IPE assemblies considering the variation of mj 
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a) b) 

Figure 83. Axial force for 400 mm HE assemblies considering the variation of mj 

On the righthand side of Figure 82 and Figure 83 (b) is depicted the 

normalized axial force at 0.08rad link rotation function of mj. Very significant 

correlation can be observed. For lower values of mj the link is able to develop 

significant tensile forces, comparable to the ones of the fully-restrained 

isolated link profile. For a medium range of values (mj = 0.4 … 1.0) the axial 

forces are reduced and tend to shift towards compression as mj gets closer to 

1.0. For values larger than 1.0 (partial strength connections), the link 

assemblies remain in compression as the connection develops significant 

plastic damage. 

A very expressive way of depicting the difference between the extreme 

cases analyzed is the distribution of the normal stress in the link as depicted in 

Figure 84. The two pictures show the clear difference between the analyses 



Bolted connections for detachable links 

160 

 

considering mj = 0.1 and mj = 2.0, the former being in tension while the latter 

is under extensive levels of compressive stresses. 

   

a) mj = 0.10 b) mj = 2.00  

Figure 84 The normal stress for IPE400 0.50es considering varying mj values 

  
a) BC influence for IPE400 0.75es b) Depth influence for IPE 0.50es 

Figure 85 Comparison of the plots for varying boundary conditions (a) and varying section depth (b) 

  
a) b) 

Figure 86 Comparison of the plots for varying link length (a) and varying section tyoe (b) 
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In the case of axial force as well, the boundary conditions have an impact. 

Figure 85a shows the clear distinction between the case of IPE400 0.75es 

assembly analyzed considering FR and DR. The less conservative deformable 

BCs lead to values roughly 25% smaller for the entire range of mj. 

Comparing the trends of the curves separately, first function of length 

(Figure 86a) and then function of the section type (Figure 86b), the 

conclusions of the parametric study on links presented in the previous chapter 

are confirmed. Namely, for conditions close to the fully restrained one i.e. very 

strong connections, the axial force for same depth link, with varying length 

will be highest for the very short link and lowest for the longer. At the same 

time, the section type is not relevant (same relative level of tension is reached 

for IPE, HEA and HEB profile). Based on these plots it can be noticed that the 

trends for varying lengths of the same link are shifted both parallel to the 

abscise and the ordinate axis. For varying section type, the curve shifts only 

relative to the vertical axis. 
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3.6.2 The extended end-plate connections (EEP) 

3.6.2.1 Parametric study results 

In terms of shear overstrength, the observations made for the FEP link 

assemblies are still valid for links with extended end-plate (EEP) connections 

– the seismic links have identical response in the elastic regions and there are 

small differences in the shear overstrength at 0.08 rad of link rotation (see 

Figure 87 and Figure 88). 

The shear overstrength developed in the link models with EEPs is also 

independent from the boundary conditions as shown by the comparative 

graphs in Figure 87 and Figure 88, for the IPE profiles. Figure 89 a shows the 

sample comparative response of the IPE200 for fully-rigid and deformable 

boundary conditions, the curves being overlapped.  

   
a) 0.5 es b) 0.75 es c) 1.0 es 

Figure 87 Normalized shear force curves for IPE link assemblies with FR boundary conditions 

   
a) 0.5 es b) 0.75 es c)1.0 es 

Figure 88 Normalized shear force curves for IPE link assemblies with DR boundary conditions 
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a) Link assembly FR vs DR b) Just link vs Link assembly 

Figure 89. Shear response considering different boundary conditions 

   
a) Link only (FR) b) Link only (DR) c) EEP Link assemblies (DR) 

Figure 90 Shear overstrength at 8% link rotation vs. depth-link length ratio for the IPE links 

Comparing the curve with the previous analyses of only the link having 

FR and DR (modelling frame and connection deformability) boundary 

conditions the shear overstrength is lower (Figure 89 b), meaning that the DR 

cannot accurately depict the effect the connection has on the shear hardening. 

Plotting the shear overstrength at 0.08rad link rotation with respect to the 

ratio of profile depth d to link length e, Figure 90 shows that the decreasing 

trends (individual for each link length and section type) observed for full-rigid 

link-only models become less evident and in Figure 90c, an almost constant 

trend can be observed for IPE links with varying length ratios.  

The impact the connection strength and stiffness have on the shear 

overstrength will be discussed in detail in subsequent sections, as it influences 

also the axial force developed. 
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a) 0.5 es b) 0.75 es c) 1.0 es 

Figure 91 Normalized axial force curves for IPE link assemblies with FR boundary conditions 

   
a) 0.5 es b) 0.75 es c)1.0 es 

Figure 92 Normalized axial force curves for IPE link assemblies with DR boundary conditions 

The level of axial force developed in the links detailed with EEP is 

different compared to the assemblies previously discussed (FEP) Unlike FEP 

connection assemblies that mostly remain in compression up to large plastic 

rotation levels, most EEP assemblies, especially those with longer links, 

reached tension before 0.08 rad. All assemblies showed significant increase 

in axial forces in both the compression and tension sides of the curve when 

fully rigid boundary conditions are imposed instead of deformable springs 

(Figure 91 and Figure 92). 

The values presented in Figure 93 are the axial forces at 0.08 rad, which 

in most cases are in significant tension. There is an average decrease of 37% 

in tensile forces when the same model with initially fully rigid restraints is 

analyzed considering deformable springs. The decrease is more significant for 

shorter links with an average of 50% for 0.5es, 33% for 0.75es and 30% for es. 
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Therefore, it remains valid for EEP that considering the deformability of the 

frame to which the link is connected reduces the axial demand on links. 

   
a) 0.5 es b) 0.75 es c)1.0 es 

Figure 93 Normalized axial force for IPE link assemblies 

 

3.6.2.2 Influence of the connection on the link response 

Analyzing the link assemblies with EEP connections considering a 

variation of the connection strength ratio mj, similar observations can be drawn 

(compared to the case of FEP). 

  
a) b) 

  
c) d) 

Figure 94 Results of analyses considering the variation of mj for IPE400 0.50es EEP assembly 



Bolted connections for detachable links 

166 

 

  
a) b) 

  
c) d) 

Figure 95 Results of analyses considering the variation of mj for IPE400 0.75es EEP assembly 

  
a) b) 

  
c) d) 

Figure 96 Results of analyses considering the variation of mj for IPE400 1.00es EEP assembly 
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Figure 94, Figure 95 and Figure 96 a and b show the same trend of the 

normalized shear force and axial force curves in relation to the variation of the 

connection strength i.e. a decrease in the stiffness with the increase of the mj 

ratio, a reduction of the shear overstrength and of the tensile forces, arriving 

at compression for very significant values of mj (basically when the connection 

becomes a partial strength one).  

IPE400 0.50es 

  
a) b) 

IPE400 0.75es 

  
c) d) 

IPE400 1.00es 

  
e) f) 

Figure 97 Comparative results of FEP and EEP assemblies considering the variation of mj 
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Plotting the values of the shear overstrength at 0.08rad link rotation 

(Figure 94c, Figure 95c and Figure 96c) it can be noticed that the reduction of 

the shear overstrength is less severe compared to the equivalent FEP 

connection. In Figure 94d, Figure 95d and Figure 96d, a similar trend is 

observed, namely the reduction in terms of tensile forces, with the consequent 

achievement of compression is not so abrupt. 

Indeed, comparing the results for the EEP with the corresponding flush 

end-plate connection (Figure 97) it is clear that the connection type, in terms 

of stiffness, and not only strength, influences both the shear overstrength and 

axial force developed. This indicates the importance of the connection 

stiffness in the determination of the two parameters. As a matter of fact, Figure 

98 shows an almost double connection rotation of FEP for the same link 

assembly. 

  
a) IPE400 0.50es b) IPE400 0.75es 

  
b) IPE400 1.00es 

Figure 98 Connection rotation at 0.08rad link rotation 
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a) mj = 0.10 b) mj = 0.40 

 
 

c) mj = 0.80 d) mj = 2.0 e) Legend 

Figure 99 The normal stress for IPE400 0.75es considering varying mj values 

  

 
 

a)  b)  

 
 

c)  d) 

Figure 100 Overlapped curves for varying length (a and b) and varying depth (c and d) 
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The images of the axial force distribution in the link assuming varying 

levels of mj are presented in Figure 99. Like in the comparison between the 

link and the link-connection assembly, it can be observed that for small values 

of mj the link is in tension while for increasingly weaker connections, the 

compressive stresses become predominant. 

The summary of the overlapped curves in terms of shear overstrength and 

axial force presented in Figure 100, reveals that the curves depend little on the 

sectiondepth and much more on the link assembly length. 
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3.6.3 Proposal for the evaluation of design forces and 

Design recommendations 

The proper design of detachable links is largely dependent on the design 

of the connections and the way the capacity design rules are applied. The 

results presented in the previous paragraphs lead to the conclusion that 

important considerations are to be made with regards to the link shear 

overstrength at global level (i.e. for the capacity design of the structure) and 

local level (i.e. both shear overstrength and axial force to be considered to 

design the connections). 

 

Figure 101 Shear overstrength vs. mj curves 

 

Figure 102 Normalized axial force vs. mj curves 
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3.6.3.1 Proposed evaluation for the Design Shear force 

The dependency of shear overstrength (v0.08) with geometrical and 

mechanical parameters has been already demonstrated, even by the simple link 

models analyzed with rotational and axial springs. Looking at the overstrength 

v0.08 – mj curves in Figure 101 it can observed that for small mj values, the 

shear overstrength is constant and close to the one of the link-only assuming 

FR boundary conditions (see Figure 103a). However, the mj,limit value changes 

function of the connection type and link length. Table 29 presents the mj,limit 

values observed for the cases investigated. 

Table 29 The mj limit of the constant shear overstrength range 

 Flush EP connection Extended EP connection 

 0.50es 0.75es 1.0es 0.50es 0.75es 1.0es 

IPE 0.2 0.3 0.4 0.3 0.5 0.8 

HE 0.3      

 

 The trend of the data beyond mj,limit has been fitted with various functions 

(linear, polynomial, logarithmic) and the best fit of the v0.08 – mj data was 

obtained with the following function: 

( ) ln( )y x x = +        (3.45) 

( )0.08 ln( )j jv m m = +        (3.46) 

 
 

a) b) 

Figure 103 Shape of the function used to fit the v0.08 – mj data 
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Table 30 Values for α 

 HE IPE 

  0.50es 0.50es 0.75es 1.0es 

AVG -0.25 -0.13 -0.15 -0.16 

ST.dev 0.0781 0.011 0.0001 0.0052 

 

Comparing the α values for the investigated cases, it was observed that it 

has constant values function of the link length and section type (IPE or HE). 

The average values and standard deviation are presented in Table 30. For the 

evaluation of β a linear regression function of the connection/link stiffness 

ratio (kj,fl) is needed, separately for IPE and HE profiles and for Flush EP and 

Extended EP connections. 

1. IPE links with Flush EP connections: 

,

,

0.017 1.205
j ini

y link

S
e

EI
 = −  +       (3.47) 

2. IPE links with Extended EP connections: 

,

,

0.012 1.25
j ini

y link

S
e

EI
 = −  +       (3.48) 

   
a) Flush EP connections b) Extended end-plate connections 

Figure 104 Values of β for IPE profiles 
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3.6.3.2 The evaluation of the axial force in the link 

The data in terms of normalized axial force (nfl,0.08) and connection 

relative strength (mj) is very nonlinear but the trend is evident (see Figure 102). 

The function below offers the best fit of the nfl,0.08 – mj data considering the 

parameters a, b, c and k dependent on the link and connection geometrical and 

mechanical parameters. 

( )
ka x by x e c−  += +         (3.49) 

( ),0.08

k
ja m b

fl jn m e c
−  +

= +        (3.50) 

 

Figure 105 Shape of the function used to fit the nfl,0.08 – mj data 

The parameters a, k, b and c were evaluated based on linear regressions as 

function of the link assemblies’ properties, as depicted in Figure 106. The 

relative regression equations are given in Eq. [REF]. The respective R2 values 

are given together with the plots and have values in the range of 0.75 – 0.85, 

considered good, given their proximity to 1.0. 

Table 31 Tensile force in the links considering the link profile and FR boundary conditions (nfl,T max) 

Section Value 
0.5es 0.75es es 

[-] [-] [-] 

IPE 
Mean: 0.70 0.62 0.46 

St. Dev: 0.017 0.010 0.012 

HE 
Mean: 0.73 0.61 0.45 

St. Dev: 0.023 0.024 0.023 

All 
Mean: 0.72 0.61 0.45 

St. Dev: 0.024 0.022 0.022 
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a) b) 

  
c) d) 

Figure 106 Regressions for the nfl(mj) equation parameters a, k, b and c 

The equations for the four parameters are as follows: 

,
106.7 0.07

y linki
a

e
= −        (3.51) 

,

,

0.23 1.24
j ini

y link

S
k e

EI
=  +        (3.52) 

, ,max0.69 0.53fl Tb n= +        (3.53) 

, ,max0.86 0.027fl Cc n= −       (3.54) 

Where: iy,link is the radius of gyration of the link section about y-y axis, e 

is the link length, Sj,ini is the initial stiffness of the joint evaluated based on 

EC3 1-8. E is the Elastic modulus of steel (assumed equal to 210GPa), Iy,link is 

the moment of inertia of the link section about y-y axis, nfl,T,max is the maximum 

tensile force developed by the link flanges at 0.08rad link rotation evaluated 

based on the link profile, assuming fully-restrained boundary conditions, 

nfl,C,max is the maximum compression force developed by one link flange at 

0.08rad link rotation. 
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3.6.3.3 Recommendations for the design of detachable links 

The current version of EC8 gives no recommendations regarding the 

design of detachable links. Matters such as the effect of the connection 

strength and stiffness on the assembly response has not been addressed. Even 

the design of links in regular EBFs is based on the use of a universal value for 

the shear overstrength for short links (1.5), although it has been proved in the 

literature that, function of the link length, section compactness and boundary 

conditions, the value varies widely (Della Corte et al., 2013). Furthermore, the 

issues related to the catenary action and its impact is ignored. The need for 

improvements in the design process is evident. 

In the light of the previous remarks, the following algorithm can be used 

for a more accurate design: 

1. Based on the link length and section type, evaluate the design forces 

assuming fully-restrained (FR) boundary conditions i.e. use v0.08,FR. 

2. Design the connection according to EN1993 Part 1-8 (ignoring the 

axial force) and determine the connection mechanical characteristics 

(Mj,Rd, Vj,Rd, Sj,ini). 

3. Using the mj* obtained as the ratio of the previously determined 

values, the actual v0.08 can be obtained. 

4. The actual design forces (Vj,Ed, Mj,Ed) can be evaluated. 

5. Based on the actualized value of mj the magnitude of the axial force 

developed in the connection can be determined. 

6. Further checks of the connection can be performed, if needed (in the 

case when significant tensile forces develop). 
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3.7 SUMMARY 

In the last decades, the use of eccentrically braced frames in seismic areas 

has continually increased, supported by the continual effort of the research 

community in the direction of rendering the solution safer and more 

economical. In this context, EBFs with detachable links come as a natural step 

forward towards the improvement of the existing system by rendering it easily 

repairable in the earthquake aftermath. 

However, newly revealed issues related to the connection and older 

observations related to short links, make the solution not quite ready for 

implementation in day to day constructional practice. The end-plate 

connections designed for replaceable links are critical because they need to 

remain elastic in order to ensure the link removal and replacement and the end-

plate on the beam side needs to be undamaged as it cannot be replaced.  

An issue previously brought up in literature, which has a direct impact on 

the link connection design, is the unsatisfactory evaluation of the link shear 

overstrength. It was hereby shown that the shorter and the more compact the 

link, the larger the shear overstrength. This goes both ways, in the way that 

slenderer links have lower shear overstrength. Therefore, the unique value 

currently provided by the Eurocode 8 can lead to either unsafe or 

uneconomical results. A more accurate way for determining the shear 

overstrength at 0.08rad link rotation was proposed, as a function of the link 

depth, length and flange/web area ratio. 

The values thus determined do not consider the connection in the case of 

detachable links and are useful only for links in traditional EBFs. Indeed, it 

was demonstrated that the shear overstrength decreases with the decrease of 

the connection strength and stiffness. Equations which allow the consideration 

of the connection mechanical parameters are proposed. 
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Although typically assumed as too low to require accounting for, axial 

forces can develop in short links under large deformation demands. The 

current work showed that indeed, links which are fully restrained develop 

significant tensile force at 0.08rad link rotation, values almost constant for 

varying depth or profile compactness, but varying with link length. 

In the case of detachable links, the axial force is dependent also with the 

connection strength and stiffness. Large tensile forces are being developed 

only when very strong connections are used, while if the connection is closer 

to a partial strength one, compressive forces will be predominant. The level of 

axial force for a link-connection assembly could be determined based on the 

proposed empirical equations. 

Although further work is needed in order to render the equations more 

accurate, by using more data obtained numerically and experimentally, the 

results hereby presented shed light on some of the critical aspects related to 

the link and connection design for easily repairable EBFs. 
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4 BOLTED FRICTION CONNECTIONS 

Introduction Equation Chapter 4 Section 4 

In the framework of FREDAM (RFSR-CT-2015-00022) “Free from 

damage connections” research project, the innovative friction connection is a 

typical solution of Symmetric Friction Connection which is able to replace the 

plastic dissipation mechanism consecrated for MRFs with the “low-damage” 

alternative of friction based dissipation (Buttermore &McRae, 2000, Latour et 

al., 2011 ).  

The connection which can be considered also a device, was proposed in 

two configurations, one with horizontal and another with vertical sliding plates 

added below the bottom flange of the beam in the form of a haunch and a rib, 

respectively. The dissipation occurs by the relative movement of these plates 

with respect to the friction pads clamped by means of high-strength bolts. The 

friction pad-steel plate interface is characterized by a certain friction 

coefficient and function of the level of preload applied by the bolts, the slip 

resistance can be easily evaluated. The bending resistance of the connection 

described is given by the product of the slip resistance and the lever arm. 

Therefore, in this case, the dissipative element is the friction device and, the 

beam, column and connection need to be designed as non-ductile elements 

with an overstrength given by the characteristics of the friction connection 

(static and dynamic friction coefficient, level of preload). 
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However, many aspects related to this structural solution need to be 

investigated, starting from the friction materials used to the response of 

structures equipped with such devices. 

The current chapter presents the results of experimental and numerical 

investigations performed in the framework of the FREEDAM project. The 

main goal is to fully characterize the solution by introducing the fundamental 

concepts related to friction joints, their design and design of structures 

equipped with friction connections. It is desired that this will make the concept 

readily available in the constructional practice by offering fully qualified 

solutions which are easy to implement. 

Objectives 

The work carried out ranged over all levels, starting from sub-component 

to structural hence, the objectives are related to each of the investigation 

stages: 

1. Characterization of the parameters influencing the friction 

response by means of sub-component experimental tests and FEAs 

performed with calibrated models 

2. Assessment of the beam-to column joint response under cyclic 

loading for the selected friction parameters (material and clamping 

force level). 

3. Evaluation of the influence of the variation of key parameters on 

the response of the joint 

4. To propose design procedure and evaluate the seismic 

performance of structures equipped with friction devices 

5. Based on the tests on joints and the investigated structures, 

propose a catalogue of friction devices to cover the practice 

requirements  
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4.1 BASIC CONCEPTS OF FRICTION 

Latour et al. (2014) summarize in their work some basic concepts related 

to tribology. The authors describe two types of friction interactions occurring 

at the level of surfaces in contact: adhesion and ploughing. The adhesion 

component occurs due to the pressure applied to keep the surfaces in contact, 

all the rough asperities yield and practically the ‘‘cold-weld’’ is developed. 

Because of the intimate contact of these junctions, the shearing of the adhesive 

ties requires a certain sliding load. The ploughing is related to the relative out 

of plane displacement of the surfaces in contact for one of the elements to lift 

over the other.  

The mathematical theory states that the adhesion must be proportional to 

the real contact area which, for metals with ideal elastic–plastic behavior can 

be assumed equal to A = N/σ0, where A is the real area of contact, σ0 is the 

material penetration hardness and N is the normal force. The adhesion friction 

force is given by: 

0

A

N
F A s s


=  =         (4.1) 

Where s is the force per unit area 

The ploughing contribution, as defined by Bowden and Tabor (1950) is 

0PF n r h =           (4.2) 

Where n is the number of asperities, r is the half width of the asperity, h 

is the height of the asperity. 

The total friction force is: 

0

0

A P

N
F F F s n r h 


= + =  +         (4.3) 
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The ploughing is negligible compared to adhesion, in the case of metals. 

Hence, it can be observed based on the previous equation that the relationship 

between the friction force and the normal force is a constant that is 

independent on the contact area. Indeed, Bowden and Tabor (1950 and 1953) 

theory explains two of the three postulates of the classical theory of dry 

friction, which states: 

1. “The total frictional force is independent of the apparent surface area 

of contact. 

2. The total frictional force that can be developed is proportional to the 

normal applied action. 

3. In case of slow sliding velocities, the total frictional force is 

independent on the sliding velocity.” (Latou et al., 2014) 

The first two are called Amonton’s laws while the third one, is due to 

Coulomb (Halling, 1978 and Person, 2000). The tangential force acting 

opposite to the motion direction can be evaluated based on the well-known 

Coulomb friction equation: 

F N=          (4.4) 

Where F is the sliding force, N is the normal action and µ is the friction 

coefficient. 

Friction connections, like those proposed in the framework of 

FREEDAM, have a dissipation mechanism characterized by the sliding of the 

inferior haunch flange or rib, which has slotted holes, with respect to the 

friction pads. The sliding occurs when the couple of forces given by the 

bending moment applied on the joint, reaches the design slip force Fslip. This 

slip force is evaluated, based on the Coulomb friction equation previously 

described. 
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slip s b bF n n N=          (4.5) 

Where μ is the friction coefficient of the slipping surface, ns is the number 

of slipping surfaces, nb is the number of bolts and Nb is the pretension force in 

the bolts clamping the plates together. 

The friction coefficient μ is the parameter that singlehandedly influences 

the most the friction behavior of the joint. Indeed, μ is a material coefficient 

that depends on the material properties and surface mechanical preparation, 

which has a static and kinematic value Latour et al., (2014). On the other hand, 

the tightening of the bolts is a sensitive process that introduces uncertainties, 

both in the construction phase and during the life time of the structure (due to 

relaxation). The difference between the static and the dynamic friction 

coefficient and the randomness of the two variables must be accounted for, 

especially for the hierarchy of the elements. The simplest way to do this is to 

consider the overstrength coefficient Ωμ. 

.95% .95%

.5% .5%

st b

dyn b

N

N





 =        (4.6) 

Where: 

▪ .5% .5%,dyn bN  lower-bound values of dynamic friction coefficient 

and tightening force 

▪ .95% .95%,st bN  upper-bound values of static friction coefficient and 

tightening force 

The overstrength coefficient Ωμ is essential for the implementation of the 

capacity design rules, because in the case of friction connections, the 

dissipative element is the friction damper hence, the sources of overstrength 

are related to the parameters controlling the sliding force.   
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4.2 DEFINITION OF FRICTION PROPERTIES 

The first part of the FREEDAM experimental campaign was dedicated to 

the investigation of the frictional characteristics of selected materials by 

isolating the damper component out of the joint configuration and performing 

uniaxial lap-shear tests. The component tests are devoted to the selection of 

the fittest material for the friction interface and to understand other key factors 

that impact the overall response (clamping level, loss of preload, preloading 

strategy, effectiveness of the disc spring washers, creep effect, response under 

impact, etc.). 

 

 
a) Mechanism b) Main components 

Figure 107 Friction joint layout 

The large bunk of the experimental campaign on lap-shear tests for the 

assessment of the friction materials, preload levels as well as the preloading 

strategy, took place at the STRENGTH laboratory of University of Salerno: 

Experimental tests on the same type of sub-components, concerning other 

issues like creep, impact loading, high velocity tests were performed in the 

laboratories of the FREEDAM project partners; however, these are not 

referred in the current work. The task of the University of Naples’ involved 

researchers was to calibrate a numerical model based on the experimental 

results and perform additional investigations and measurements which could 

not be performed in the laboratory. 
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4.2.1 Preliminary FEAs on friction sub-assemblies 

Prior to the commencement of the experimental campaign on lap-shear 

tests within FREEDAM, a numerical investigation was performed based on 

models with the geometry of the specimens tested in the past by Latour et al. 

(2014).  

 

Figure 108 The experimental set-up of preliminary investigations by Latour et al. (2014) 

Latour et al. (2014) carried out an experimental campaign to investigate 

effects of six different friction materials on supplemental damping devices. 

Six interfaces have been tested: steel–steel, brass–steel, sprayed aluminum–

steel and three different rubber-based friction materials used in automotive 

applications, electrical machines and applications requiring low wearing, 

respectively. In the conclusions the authors of Latour et al. (2014) highlighted 

that the sprayed aluminum exhibits the most stable and predictable hysteretic 

response.  

Based on this, the preliminary analyses presented hereinafter are carried 

out for sprayed aluminum–steel interfaces. The following paragraphs present 

the numerical assumptions (which were partially applied also for the lap-shear 

tests presented afterwards) and the obtained results. 
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4.2.1.1 FE modelling assumptions  

The Finite element models were developed in ABAQUS v.6.14. The 

geometries of the numerical models were nominally identical with those of the 

tested specimens (Latour et al., 2014) and reported in Figure 108 and Figure 

109. The coating layer was modelled as an individual element.  The model 

used solid finite element type C3D8I (an 8-node linear brick, incompatible 

mode) for all steel plates and high strength bolts. The element choice was 

based on its capacity to avoid the shear-locking, which can significantly affect 

the initial stiffness of connection.  

   
a) External plate b) Friction shim c) Coating layer 

  

 

d) Inner plate (slotted holes) e) Inner plate (regular holes) f) Bolts 

 
g) Meshed assembly 

Figure 109 Meshed FE model 
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The steel properties for plates were modelled considering the nominal 

elastic properties, while the non-linear behavior was modelled by means of the 

von Mises yield criteria. Plastic hardening was represented using a nonlinear 

kinematic and isotropic hardening. Metal plasticity was considered for the 

coating layer as well. The true stress-true strain curves adopted for plates are 

given in Figure 110  

  
a) Coating material b) Steel 

Figure 110 Plastic true-stress – true strain curves 

The bolts were modelled by meshing a solid cylinder having the nominal 

circular gross area of the bolt and the true stress – true strain curves were 

derived from D’Aniello et al. (2016 and 2017).  

All possible interactions (bolt head to outer plate, bolt shank to 

corresponding bolt hole, plates in contact) are modelled by means of “Surface 

to Surface contact” with finite sliding formulation. Both tangential and normal 

behavior are considered, the former using a “Penalty” friction formulation 

together with “slip-rate-dependent data”, while the latter using the “Hard-

Contact” formulation. “Tie” constraints were used to model the bond between 

the M4 coating layer and the steel shim. 

The bolt clamping was modelled using the “Bolt load” feature available 

in the FE software and the design preload value was imposed. The clamping 

was applied in an individual step prior to the application of the loading 

protocol. 
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The external restraints were simulated by attaching to reference points 

(RP) the nodes belonging to the end portion of the internal plate of the device. 

The displacement history was imposed on the RP located at one end of the 

device. 

In order to reproduce the temperature variation and propagation due to 

heating induced by friction, the thermal properties were also taken into 

account. The Specific Heat c was set equal to 4.52E+8 mJ/ton/oC, the Thermal 

Expansion αL was assumed equal to 1.26E-5 mm/mm/ oC and the Thermal 

Conductivity k equal to 48 mW/mm/ oC.. 

To investigate the computational efficiency and accuracy of the types of 

analysis, both dynamic implicit and explicit analyses have been carried out. 

The results show that both FE solvers are effective to simulate the overall 

behavior of the friction connections. Generally, implicit analyses provide 

more steady results than explicit ones. On the other hand, explicit analyses 

show more accurate force-displacement curves (Figure 111) which may be 

perceived as more evocative of the experiment as “slip-rate-dependent data” 

was used. Another advantage of explicit analyses is the significantly lower 

computational time (up to four times lower compared to the equivalent 

Implicit analyses in this investigation). However, this comes at the cost of 

uncertainty with regards to the correctness of the results, the explicit analyses 

being very sensitive to inertial effects. 

 

Figure 111 Comparison of Implicit and Explicit analyses for same experimental test 
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4.2.1.2 Results of preliminary analyses 

The calibrated numerical model was used to investigate several 

parameters: 

- The effect of reverse loading,  

- Preload magnitudes,  

- Number and arrangements of preloaded bolts 

- Slip-rate and pressure dependency of friction coefficient 

Figure 113 explains the meaning of the labelling used for the finite 

element analyses. Additional symbols added at the name end represent: R- 

reversed loading, SRF – strain rate dependent friction coefficient. Table 32 

summarizes the features of the investigated models, while. Figure 113 depicts 

the difference between a square (SQ) and a straight (ST) distribution of the 

preloaded bolts. 

 
Figure 112 Labelling for the analyses performed  

Table 32 The set values of the parameters 

FEA 
Number of Bolts preloaded Preload 

Magnitude 

Total 

Magnitude Slotted Non-Slotted 

Implicit 

4 0 50 kN 200 kN 

4 4 50 kN 200 kN 

4 0 75 kN 300 kN 

4 4 75 kN 300 kN 

4 0 100 kN 400 kN 

4 4 100 kN 400 kN 

Explicit 

4 0 50 kN 200 kN 

4 4 50 kN 200 kN 

4 0 75 kN 300 kN 

4 4 75 kN 300 kN 

4 0 100 kN 400 kN 

4 4 100 kN 400 kN 
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It is important to highlight that, for this parametric study, the bolts were 

assumed elastic and their diameter was kept constant while increasing the 

preloading magnitude. 

The results obtained from the parametric study are discussed hereinafter 

in terms of 

i) sliding force – displacement;  

ii) total bolt preload – displacement;  

iii) friction coefficient – displacement;  

iv) pressure dependency of friction coefficients. 

 

  
a) Square (SQ) distribution of preloaded bolts b) Straight (ST) distribution of preloaded bolts 

Figure 113 Preloaded bolts distribution in assembly 

 

4.2.1.2.1 Sliding force vs. displacement 

Figure 114a shows the numerical response curve of model ST-4-0-50-I. 

In this model only one row of bolts at the level of the slotted inner plate are 

preloaded with 50 kN each and the rest are preloaded with 1 kN in order to 

increase the model stability. 

  
a) ST-4-0-5-I (one bolt row pretensioned) b) ST-4-4-5-I (two bolt row pretensioned) 

Figure 114: sliding force vs displacement from implicit analysis 
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This kind of arrangement leads to “elbows” in the force-displacement plot. 

This effect indicates that when the uniaxial loading changes direction, there is 

a rigid body motion until the bolt shanks in non-slotted holes reach the facing 

hole surface. This rigid body motion gives a hint about the structures post-

earthquake re-entering. Namely, the bolts in the normal holes of the friction 

connections, preloaded with smaller clamping forces, lead to smaller sliding 

forces. In this way the stiffness of the adjacent elastic frames can 

counterbalance the residual deformation, and therefore the re-cantering of the 

structure is facilitated. When both bolt rows (slotted inner plate and normal 

inner plate) are preloaded (see Figure 114b), there is no rigid body movement 

which is as expected.  

Implicit analyses were proved not suitable for this set of analyses, as the 

degradation of the strength with the cycles was not captured (Figure 114). 

  
a) SQ-4-4-50-E-SRF b) SQ-4-4-75-E-SRF 

 
c) SQ-4-4-100-E-SRF 

Figure 115: Sliding force vs displacement from explicit analysis. 

The response from explicit analyses is shown in Figure 115. The plots 

have been obtained using slip-rate dependent friction coefficients. These 

curves show the stick-slip friction phenomenon in the upper right and lower 
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left corners of the hysteretic curves. During the first sliding, the shear force is 

higher due to the static friction. Subsequently, the dynamic friction mechanism 

is activated, and the sliding force decreases with the cumulative displacement. 

Moreover, during direction changes, the friction coefficient turns back to static 

for a moment, and this mechanism is repeated for each cyclic loop. 

 

4.2.1.2.2 Total bolt preload vs. displacement 

The bolts clamping force vs. the imposed slip of two distinctive models 

(i.e. SQ-4-4-50-E-SRF and SQ-4-4-75-E-SRF) are reported in Figure 116, 

where a ±2~3% fluctuation can be observed together with slight decrease of 

total preload force for each cycle. However, again this was not very noticeable 

in sliding force-displacement and friction coefficient-displacement plots. 

 

 
a) SQ-4-4-50-E-SRF 

 
b) SQ-4-4-75-E-SRF 

Figure 116: bolt preload vs. displacement from explicit analysis. 
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4.2.1.2.3 Friction coefficient vs. displacement 

The small fluctuations of preloading forces don’t reflect in the 

displacement plots vs. friction coefficients and sliding forces. Apart from 

small differences at direction changes due to modelling with and without slip-

rate friction coefficient in explicit analyses, cyclic shape of the friction 

coefficient-displacement plots of the analyses are almost the same.  The 

friction coefficient μ is determined as follows. The obtained results are 

summarized in Table 33 and Table 34. 

slip

s b b

F

n n N
 =

 
       (4.7) 

Where ns is the number of surfaces in contact, nb is the number of bolts, 

Fslip is the sliding force and Nb is the bolt preloading force from the output 

history of analyses. 

Table 33 Given and obtained friction coefficients 

 ST-4-

0-50-I 

ST-4-

4-50-I 

ST-4-

0-75-I 

ST-4-

4-75-I 

ST-4-

0-100-I 

ST-4-

4-100-I 

ST-4-

4-125-I 

ST-4-

4-200-I 

ST-4-

0-375-I 

Given 0,51 0,51 0,45 0,45 0,35 0,35 0,35 0,3 0,3 

Max Avg. 0,519 0,508 0,454 0,448 0,353 0,354 0,357 0,297 0,292 

Min Avg. -0,517 -0,507 -0,452 -0,447 -0,347 -0,348 -0,347 -0,296 -0,299 

 

 ST-4-4-

375-I 

ST-4-0-

500-I 

ST-4-4-

500-I 

ST-8-8-

200-I 

ST-4-4-

50-E 

ST-4-4-

50-E-K 

ST-4-4-

75-E 

ST-4-4-

100-E 

Given 0,3 0,3 0,3 0,3 0,51 0,51 0,45 0,35 

Max Avg. 0,298 0,299 0,305 0,298 0,508 0,484 0,447 0,349 

Min Avg. -0,292 -0,296 -0,299 -0,288 -0,503 -0,481 -0,445 -0,347 

 

Table 34 Given and obtained friction coefficients and slip rate data 

  
ST-4-4-75-E-

SRF 

SQ-4-4-50-E-

SRF 

SQ-4-4-75-E-

SRF 

SQ-4-4-100-E-

SRF 

SQ-4-4-50-E-

SRF-R 

Given friction  

& Slip rates  

0,5 
0 

mm/s 
0,54 

0 

mm/s 
0,5 

0 

mm/s 
0,4 

0 

mm/s 
0,54 

0 

mm/s 

0,44 
1100 

mm/s 
0,5 

1100 

mm/s 
0,44 

1100 

mm/s 
0,35 

1100 

mm/s 
0,5 

1100 

mm/s 

Max Avg. 0,447 0,484 0,431 0,353 0,493 

Min Avg. -0,445 -0,49 -0,457 0,363 0,5 
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4.2.1.2.4 Pressure Dependency of Friction Coefficients 

In order to investigate the pressure dependency of friction coefficients, 

contact area information and normal forces due to contacts for each interaction 

are recovered from the FEAs. It is possible thus to establish a relation between 

the measured frictional force from experiments, the contact pressure and its 

associated area of contact by means the following expression: 

( ) ( ) ( ) ( )f pre pre i i i N
A

i

F F F P P dA P P A F F   =           (4.8) 

Where Ff is the friction force measured during experimental tests, Fpre is 

the normal force measured during experimental test (pretension), FN is the 

normal force obtained from FE simulation, P is the contact pressure obtained 

from FE simulation, A is the contact area obtained from FE simulation, μ(Fpre) 

is the friction coefficient calculated from experimental results and μ(FN) is the 

friction coefficient generated from relationship between experimental results 

and FE simulation  

As it can be seen in Figure 117 regardless of the load application direction 

(pulling or pushing), the contact area is slightly decreasing while contact 

pressure is increasing.  

In addition to this, no matter the preloading magnitude (and therefore 

contact pressure), the measured contact areas are always following the same 

trend in the simulations of uniaxial experiments of friction devices, as it can 

be seen in Figure 118. This situation also shows that materials are rigid enough 

not to be affected by contact pressure. The slight decreasing of contact area 

might be a consequence of elastic/plastic strain of the surfaces or bending of 

plates in a small extent. 
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Figure 117: Contact area vs. Pressure. 

 

Figure 118: Contact Area Percentages of Slotted Inner Plate for Different Preload Torques. 

 

Figure 119: Contact Pressures of Slotted Inner Plate for Different Preload Torques. 

However, the experiments indicated that higher preload magnitudes result 

in lower friction coefficients due to the tribological characteristic of the 

coating layer. In addition, with the continuous motion, very slight degradation 

of friction was observable, which might be due to the loss of contact area and 

the increase of pressure, which is also seen during analyses. 
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Figure 120: Friction coefficients generated from relation between experiment of 200 Nm and FE 

simulation μ(FN) vs μ(Fpre)μ(Fpre) 

As it can be seen in Figure 120, the branches of positive friction 

coefficients, namely, during pulling phase, are perfectly matching each other. 

However, during pushing phase, μ(FN) < μ(Fpre) this slight difference might 

be due to lack of real-time measuring of preload magnitude during the 

experiment. There was a ±2~3% alteration of total preload force in the 

simulations, which made μ(FN) smaller. The situation on the reverse analysis, 

where the inner plate is initially pushed instead of pulled, compared with the 

normal experiment, supports the explanation made i.e. μ(FN) becomes smaller 

than μ(Fpre) while pushing, and larger while pulling. 

 

Figure 121: Friction coefficients generated from relation between experiment of 300 Nm and FE 

simulation μ(FN) μ(FN) vs that calculated from experiment μ(Fpre)  
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Overall, the friction coefficients μ(Fpre) calculated from only experimental 

outputs and μ(FN), the ones generated from the relation between experiment 

and FE simulation are in good agreement. This situation supports the 

reliability of the obtained contact area and contact pressure values from 

simulations. 

In addition, it is found that contact pressure ratios of different preloaded 

analyses and contact pressure ratios at the beginning and ending of the 

analyses, fit with the decrease of friction coefficients observed from 

experiments. Therefore, the pressure information obtained from simulations 

can be considered reliable enough to corelate contact pressure and friction 

coefficients. In this way, the effect of preload magnitude together with slight 

degradation of friction with motion can be modelled by implementing 

pressure-dependent friction coefficients along with rate-dependent ones. 

 

4.2.2 The lap-shear testing program 

Based on the preliminary experimental investigations performed in the 

past (Latour et al., 2014) and on the numerical simulations previously 

presented, some conclusions could be drawn on the response of lap-shear sub-

assemblies and some materials (the importance of the relative material 

hardness, the contact pressure/area dependency, preload distribution, etc.). 

However, for the purpose of selecting the optimal friction material, the 

preload application technique and assessment of the influence of several 

parameters (preload magnitude, washer type, etc.,) a new set of experimental 

and numerical investigations were due within the framework of the 

FREEDAM research project. Only a summary of the relevant parts of the 

experimental campaign will be presented hereinafter, as this work was carried 

out with only a small contribution from the part of the author. These results 
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were published, together with the numerical investigation presented in the 

following chapter, in Zimbru et al. (2018). 

4.2.2.1 Tested friction interfaces 

The tested sub-assemblies regard, as explained in higher detail in the next 

section, elementary lap-shear friction connections with two bolts which, 

similarly to the dampers of a Symmetrical Friction Connection (SFC), are 

realized combining a slotted steel plate with friction shims made of mild steel 

coated with one of the materials subsequently described. The materials 

employed to coat the shims are selected in order to provide to the interface 

high values of the friction coefficient, with minimum deterioration, 

guaranteeing contemporarily the durability.  

Pursuing this objective, the selected materials must be corrosion resistant 

and, based on previous experience (Ramhormozian et al. 2014, Latour et al., 

2014, EN1090), they should be characterized by a superficial hardness 

strongly different from that of the internal steel plate.  Indeed, a difference of 

superficial hardness of the plates in contact, as already demonstrated in 

technical literature by many authors, is for metals, a fundamental feature. 

In fact, the friction coefficient, from a theoretical point of view, due to 

reasons of superficial interaction, tends to be governed by the ratio between 

the shear resistance of the weakest material (s0) and the superficial hardness 

of the softest material (σ0) (Latour et al., 2014, Bowden & Tabor 1950) namely 

 = s0/0. Consequently, in order to obtain a high value of the sliding force, a 

high value of the shear resistance of the weakest material and/or a very low 

value of the superficial hardness of the softest material are needed.  

If the internal plate of the friction damper is made of stainless steel AISI 

304, which is characterized by a superficial hardness of about 130 HV, then 

the coating of the friction shims must be characterized by a much lower or 
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much higher value of the superficial hardness. In order to achieve this scope, 

the selection of the material for the friction shims has been carried out 

considering alternative possibilities, in which stainless steel has been 

combined with five “soft” materials labelled as M1 to M5 and three “hard” 

materials labelled as M6 to M8. 

The “soft” materials are non-ferrous metals with hardness ranging from 

about 5 to 30 HV, while the “hard” materials in two cases (M6 and M7) are 

carbide alloys produced as powder blends and in the other case is nickel and 

diamond. The three hard coatings have a superficial hardness ranging from 

about 550 to 1200 HV. All the materials are applied on the steel plates by 

means of Thermal spray techniques, except for material M8 which was applied 

using chemical bonding. 

 
a) Stick-slip phenomena (material M7) 

 

 
b) Strain hardening (material M8) 

Figure 122 Undesired response of friction materials 
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It is useful to note that when stainless steel is combined with harder 

materials, the consumption of the steel plate is promoted and, therefore, the 

friction coefficient obtained is mainly governed by the ratio between the shear 

resistance and superficial hardness of the steel plate. Conversely, when steel 

is combined with a softer material, the wearing of the interface is due 

essentially to the consumption of the friction shims and the friction coefficient 

mainly depends on the ratio between the shear resistance and the superficial 

hardness of the material employed to coat the friction shim. 

A number of 13 tests have been performed to preliminary assess the 

performance of the materials. Based on these tests five materials have been 

excluded due to their poor response. The materials M2, M3, M5 and M7 

exhibited significant stick-slip phenomena, characterized by the sea-saw teeth 

hysteretic response (like depicted in Figure 122 a for M7) and the results of 

the test on the M8 showed severe strength degradation due to strain hardening 

in the initial cycles (Figure 122 b). For the subsequent tests only the three 

remaining materials (M1, M4 and M6) were considered, given their stable 

hysteretic response. 

4.2.2.2 Adopted coating techniques 

In the present experimental program seven out of eight materials have 

been applied on friction shims by means of thermal spray, while the remaining 

material, as above said, has been applied through electroless nickel plating. In 

general, thermal spraying is an industrial procedure to apply coatings by 

means of special devices/systems through which molten metals are propelled 

at high speed on cleaned and prepared surfaces. 

In this procedure the coating material is melted by a heat source and then 

it is propelled by means of gases on a base material, where it solidifies forming 

a solid layer. For this experimental program, all the specimens coated with 

thermal spray have been realized following one of the following techniques:  
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a) . Schematic drawing of the AWS process; b) Schematic diagram of the APS process 

Figure 123 Different spray processes (Zimbru et al., 2018) 

▪ Arc wire spray (AWS) used for ‘soft’ materials. The electric 

arc wire process is based on the development of heat used to melt the 

coating feedstock (Figure 123a). The two wires are electrically 

charged with opposed polarities and are fed into the arc gun at a 

controlled speed. When the wires are at the contact point, the opposing 

charges on the wires create an arc that melts the tips of the wires. 

Compressed air is used to atomize the molten material in order to shoot 

it on a properly prepared workpiece surface. Prior to the coating 

application, the surfaces need to go through mechanical treatments of 

blasting and grinding and an adhesion layer is applied. 

▪ Atmospheric plasma spray (APS) used for hard materials. 

This process can melt most powder coating materials. The plasma gun 

uses a chamber with one or more cathodes and an anode (Figure 123b). 

With this process gases flowing through the chamber are ionized such 

that a plasma plume develops. Afterwards, the feedstock material is 

injected into the hot gas plume, where it is melted and propelled 

towards the target substrate to form the coating. This is a more precise 

process as many of the parameters of application can be controlled (the 

gas flows, the applied current, the shape and bare size of the nozzle, 

the point and angle that the material is injected into the plume, the 

distance of the gun to the target surface. 
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▪ Electroless nickel plating (3M Gmbh). Electroless nickel 

plating is a process for depositing a nickel alloy from aqueous 

solutions onto a substrate without the use of electric current. It differs, 

therefore, from electroplating which depends on an external source of 

direct current to reduce nickel ions in the electrolyte to nickel metal 

on the substrate. In the case of the coating produced by 3M Gmbh, 

diamond powder is added to the bath obtaining a high hardness friction 

material. 

4.2.2.3 Test layout 

The typical specimen tested within the current experimental activity is 

composed by a group of steel plates assembled in order to test the uniaxial 

behavior of friction interfaces resulting from the coupling of a stainless-steel 

plate with friction shims coated with one of the eight materials previously 

mentioned. The tested subassembly is inspired from the specimen layout 

recommended by EN1090-2 for slip tests. In particular, it is constituted by a 

slotted steel plate realized in 1.4301 Stainless Steel (EN10088-1, 2005) 

equivalent to AISI 304 steel, a steel plate with normal holes used to connect 

the specimen to the testing machine and external steel plates and friction shims 

pre-stressed with M20 class 10.9 HV bolts (Figure 124a).  

The tested specimen aims to simulate the same conditions that are 

expected in the friction damper of a symmetrical friction beam-to-column 

connection, like the one proposed in the FREEDAM project. The stainless-

steel plate with slotted holes simulates the haunch flange or rib, while the 

external steel plates simulate the webs of the L-stubs used to fasten the friction 

damper to the face of the column.  
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a) General geometry b) Specimen in the set-up 

Figure 124 Lap shear specimen (Zimbru et al., 2018) 

The loading protocol is that suggested by EN 15129, with variable 

displacement amplitudes ranging from a minimum of 6.25 mm to a maximum 

of 25 mm. The maximum amplitude has been defined providing a realistic 

estimate of the displacement demand arising at the friction damper level in 

current applications. The cycles were executed at increasing values of the 

speed, defined in order to remain in a quasi-static range and within the 

capabilities of the equipment. The cycles’ velocity varied from 1 mm/s for the 

first 10 cycles to 5 mm/s for the cycles at the maximum amplitude.  

In each test, both the upper and lower M20 high strength bolts have been 

tightened by means of a torque wrench, in order to reach the proof load equal 

to 171.5 kN (calculated in accordance with EC3 1-8). 

All the tests have been carried out employing a universal testing machine 

Schenck Hydropuls S56 (Figure 124b). Different sensors have been used 

before and during the test to control continuously the bolt force, the slippage 

load, the tightening torque and the displacement. The axial displacements of 
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the device have been read directly from the transducer of the testing machine 

and, in the same way, the slippage force has been controlled directly exploiting 

the load cell of the machine. Before the test, the tightening torque has been 

applied through a hand torque wrench and monitored by means of a torque 

sensor and the pretension applied to the bolts has been monitored before and 

during the test by means of donut load cells installed in the connection under 

the nuts of the bolts used to pre-stress the friction interface. 

4.2.2.4 Experimental results 

4.2.2.4.1 Behavior of “hard” materials 

A synthesis of the results of the tests on the interfaces coupling stainless 

steel with friction shims coated with the “hard” coatings M6, M7 and M8 are 

delivered in Figure 125, where the hysteretic curves of one of the two identical 

tests performed on each material are reported. In case of M6 carbide coating, 

the cyclic response has been characterized by the development of an initial 

value of the slip force equal to about 350 kN, followed by a progressive 

degradation that, at the end of the test amounted about 20%. 

 

Figure 125 Hysteretic behavior of hard materials: a) M6 b) M8 c) M7 
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The hysteretic curve was affected by an initial stick-slip phase with the 

development of a first unstable cycle characterized by jumps of the force and 

sudden releases of energy. Nevertheless, after this first cycle, that probably 

allows to break the initial interatomic attraction between the surfaces in 

contact (adhesion component of friction), the slippage occurred regularly 

leading to a very stable response up to the end of the test.  

In case of M7 carbide coating, globally, a similar response was observed. 

The behaviour, in this case, was characterized by an initial slip force equal to 

about 250 kN, that after few cycles increased slightly, stabilizing at a value of 

about 300 kN. Nevertheless, in this case a stronger stick and slip behavior was 

observed and it was necessary to reduce the velocity to perform the test. 

Material M8, was characterized by a response that, as already observed in past 

tests performed in the laboratory, with other materials such as brass or some 

types of phenolic rubbers (Tokoyama & Oki, 2010), with two different phases. 

A first phase where the interface provided a strain hardening behavior 

characterized by an increase of the slippage resistance of about 60% and a 

second phase characterized by a reduction of the slippage force which, at the 

end of the degradation returned to the initial value. In addition, in this case no 

stick and slip response was observed and all the cycles were characterized by 

a stable value of the slippage force. The initial value of the slippage force has 

been of about 400 kN. After the tests, the specimens have been opened in order 

to evaluate the damage of the interfaces, observing that, as expected, due to 

the higher hardness of the coating layer with respect to stainless steel, the 

greatest part of the damage was concentrated on the internal plate which at the 

end of the test had many scratches in the zone located underneath the bolt 

head. In Figure 126 is reported, for the specimen with friction pads coated with 

M6 carbide, a diagram of the bolt forces and of the friction coefficient, 

obtained dividing the slip force by the bolt forces read continuously during the 

test through the annular load cells, versus the cumulative travel done by the 
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damper. From such a figure it is possible to observe that both bolts, which are 

initially tightened in order to reach the proof load equal to 171.5 kN, after the 

first cycle of the loading history lose about the 7% of the initial pre-load and 

afterwards they uniformly loosen during the test reaching at the end a total loss 

of about 20%.  

 

Figure 126 Bolt forces and friction coefficient vs cumulative travel Zimbru et al (2018) 

Clearly, this initial loss, that seems to occur just after the first sliding of 

the connection, should be properly accounted for in the design of the damper. 

From the comparison between Figure 125 and Figure 126 it is possible to note 

also that the degradation of the sliding force observed during the test is 

essentially due to the degradation of the bolts’ forces. In fact, they both 

degrade of about 20% while the friction coefficient remains constant. Even 

though, for the sake of simplicity, detailed graphs representing the behavior of 

the bolts and the degradation of the friction coefficient for the other materials 

are not reported, analogous results have been obtained for all the other “hard” 

interfaces. Therefore, also for the other interfaces a correspondence between 

the bolts’ loosening and degradation of the sliding force has been observed. 

4.2.2.4.2 Behavior of “soft” materials 

Similar to M7, also some of the soft materials exhibited a behavior 

characterized by the stick-slip phenomenon. This is the case of three of the 

selected non-ferrous metals, namely M2, M3 and M5, whose response was 

characterized by alternate stops and starts of the motion with strong and 



Bolted friction connections 

208 

 

sudden releases of energy (Figure 127a and Figure 127b). Therefore, in all 

these cases the tests have been stopped prematurely in order to prevent damage 

to the testing equipment. For these materials, as reported in Figure 127a and 

b, the initial slippage force was equal to about 200 kN and was followed by an 

increase of the slippage resistance up to about 400 kN which corresponds to a 

value of the friction coefficient equal to about 0.58. Obviously, their cyclic 

behavior is not appropriate for seismic applications.  

 

Figure 127 Hysteretic behavior of soft materials. a) M2, b) M3, c) M1, d) M4 

Conversely, M1 and M4 metals have exhibited a very similar behavior 

(Figure 127c and d). Their hysteretic response has been characterized by a 

value of the slippage force higher than the corresponding obtained with the 

“hard” materials but, on the other hand, they have also provided a more 

significant degradation due to both bolt loosening and damage occurring in 

the friction pads.  

In Figure 128 are represented the results expressed in terms of friction 

coefficient and bolt forces versus the cumulative sliding, for the two tests on 

the specimens with M4 friction pads. From these graphs, even though the 
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actual value of the friction coefficient does not vary in the two tests, the bolts 

provide a significantly different behavior leading, consequently, to a different 

hysteretic response.  

 

Figure 128 a) Actual friction coefficient- M4; b) Bolt forces – M4 

In one of the two tests, after the first sliding, a sudden loss of bolt 

pretension of about 15% led to a proportional loss of the sliding force. Such a 

different response of the specimens can be probably due to the imperfections 

of the coating applied on the friction shims, which for soft coatings is 

completely manual and leads to a non-uniform spreading of the coating metal. 

Material M1 has a degradation of the slippage force at the end of the tests of 

45%, while for M4 it was of about 50%. Nevertheless, both materials provided 

very high values of the friction coefficient and, the initial friction coefficient 

of materials M1 and M4 were equal to about 0.55/0.65 and 0.7/0.9, 

respectively. 

As in the previous cases, also the specimens realized with soft materials 

were opened after the test, in order to evaluate the damage of the interfaces. 

As expected, in these cases the damage was mainly concentrated on the 

friction shims, while the stainless-steel plates were practically undamaged 

after the test. 
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4.2.3 Numerical analyses on the tested specimens 

Very conclusive results were achieved from the extended testing 

campaign, of which only a small part was previously presented, and most of 

the questions regarding issues like the friction coefficient, preload level, 

preloading technique etc., were addressed. Therefore, there was no point in 

addressing them using also numerical methods.  

However, aspects which were not clarified by means of experiments were 

investigated using FE software. The main points investigated are the 

contribution of the disc springs function of their number and the effect of 

temperature observed during the experimental tests. These further FE analyses 

were performed considering only two of the most performant materials: M4 

(‘soft material’) and M6 (‘hard material’) 

The FE models created have the geometry of the experimentally tested 

specimen (Figure 124a) and use the numerical assumptions presented in the 

previous section. The geometry of the fixed part was disregarded in order to 

decrease computational demand, as it has no influence on the results (see 

Figure 129).Table 35 reports the name of the experimental specimens with the 

corresponding number of disc springs (DS). 

The numerical results are discussed based on the following outputs: 

- Sliding Force [kN] - Displacement [mm] / Time [s] 

- Total Preload Magnitude [kN] - Displacement [mm] 

- Temperature [kN] - Displacement [mm] / Time [s]. 

Table 35 ID of specimens with disk springs 

No. of DS M4 M6 

9 DS NV 17 NV 21 

6 DS NV 18 NV 22 

3 DS NV 19 NV 23 

0 DS NV 20 NV 24 
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a) Model without disc springs 

  
b) Model with disc springs 

Figure 129. Geometry of Uniaxial FREEDAM sub-assembly with different number of disc springs 

4.2.3.1 The influence of DS in lap shear joints with M4 

Calibrating the models for each experiment with different number of 

springs is done in the way of manipulating preloading magnitude and friction 

coefficient to match the sliding force-displacement curves of experiments. 

As observed during the experimental tests, material M4 exhibits 

significant degradation during the slip, resulting in a more difficult modelling. 

No significant differences in terms of loss of preload or degradation of friction 

coefficient was observed between the models with varying number of DS (see 

Figure 130b). However, as temperature increases because of continuous 

sliding of plates, friction coefficient decreases according to given temperature-

dependent input data (see Figure 130a). The sliding force – displacement 

curves are depicted in Figure 131), where it can be recognized the distinct 

degradation of the slip capacity cycle by cycle. 
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NV-17 NV-18 

  
NV-19 NV-20 

Figure 130 Lap shear joints with material M4: Sliding Force [kN] - Displacement [mm] 

 

 

a) Temperature dependent friction coefficient b) Friction coefficient – displacement curves 

Figure 131 The friction coefficient curves for lap shear joints with material M4 

 

4.2.3.2 The influence of DS in lap shear joints with M6 

Figure 132a shows for model NV-21 that the temperature in the assembly 

elements (bolts and plates) increases with cumulative sliding. As expected, the 

energy dissipated by friction is converted to thermal energy. It was observed 

that after 3000mm of cumulative slip, the average temperature difference 

between plate surface and bolt is about 15 to 20oC for all models. Even though 

thermal properties are modelled as mentioned before, it seems that the preload 
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forces have not been affected significantly and they remain constant in the 

models (see Figure 132b), mostly because the thermal expansion occurs in 

both the plates and bolts.  

  
a) Temperature in the model elements b) Total preload variation 

  
c) Temperature dependent friction coefficient d) Friction coefficient variation 

Figure 132. Model NV-21: Sliding Force [kN] - Displacement [mm]  

  
NV-21 NV-22 

  
NV-23 NV-24 

Figure 133 Lap shear joints with material M6: Sliding Force [kN] – Displacement [mm] 
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The partial loss of friction coefficient was modelled in the FE models 

using temperature-dependent friction laws calibrated based on experimental 

results (see Figure 132c). As temperature increases because of continuous 

sliding of plates, friction coefficient decreases accordingly, and as possible to 

observe in Figure 132d, the model can predict this phenomenon. Figure 133 

shows the comparison between the experimental and numerical curves in 

terms of sliding force and displacement. As it can be observed, the FE model 

can provide accurate results. 
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4.3 THE FREEDAM FRICTION CONNECTION 

The central part of the FREEDAM project are the friction connections 

(devices) which will be presented in this chapter. The general configuration as 

well as the design of the two friction connections tested was established at 

University of Salerno. The experimental tests were carried out as a 

collaborative work between the Department of Structures for Architecture and 

Engineering of University of Naples “Federico II” and the Department of Civil 

Engineering at University of Salerno. The numerical simulations presented 

were performed at the former institution. 

The proposed moment resisting friction connections are conceived to 

develop the dissipation mechanism by means of the relative slip into devices 

located between the lower beam flange and the L-stubs connecting it to the 

column flange, while the upper flange of the beam is connected to a T-stub 

bolted to the column. The friction damper is basically composed of a stack of 

steel plates that are clamped together by means of tightened high strength 

bolts, which are inserted in the slotted holes of the plates to allow the relative 

sliding. The web of the T-stub connecting the upper beam flange may be 

subjected to some moderate plastic bending deformations to accommodate the 

joint rotation following the sliding of the device, thus enforcing the formation 

of an ideal center of rotation that prevents the damage of the slab. All other 

details relative to the investigated connections will be presented hereinafter. 

In the aftermath of the numerical and experimental campaigns on the lap-

shear sub-assemblies, the following remarks are relevant to the investigation 

on friction connections: 

1. The materials that passed the adequacy criteria by exhibiting a 

stable behavior, appropriate value of µ, degradation, stick-slip 

phenomena, etc., are M4 and M6. However, due to the impossibility to 
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find a reliable provider for friction pads made of M6, the solution deemed 

as optimal remained M4. This solution was agreed to be also the best in 

terms of costs and ease of application. 

2. The level of preloading applied at the level of the friction 

damper should be within the limits of 30 – 60% of Fp,C. Larger values lead 

to potential damage in undesired areas while lower values are unfeasible 

due to limited slip resistance. 

3. It is possible to model numerically the friction material as a 

contact interaction which accounts for slip-rate, temperature or pressure 

dependent data. instead of the actual layer. This allows for faster analyses 

with the preservation of the accuracy. 

This chapter will present the results of the experimental campaign, the 

numerical validation of advanced FE models as well as the parametric study 

on the friction configurations designed. The results hereby presented are 

published in two articles: D’Aniello et al., 2017 and Latour et al., 2018. 

 

4.3.1 Features of joints with removable friction dampers 

The examined joints are similar to double split-T connections, where the 

bottom tee element is replaced by detachable friction dampers, as depicted in 

Figure 134. The main mechanical difference of the two investigated types of 

devices is the direction of the friction plane that is horizontal in the case of 

bolted haunch (hereinafter also identified as ‘Configuration 1’) in Figure 

134a, and vertical in the case of the bolted rib plate (hereinafter also identified 

as ‘Configuration 2’) in Figure 134b. In both cases the friction pads are made 

of stainless steel covered by the coating material M4 selected based on the 

studies on lap-shear tests. 
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a) Configuration 1 b) Configuration 2 

  
c) Components of the friction damper for 

configuration 1 

c) Components of the friction damper for 

configuration 2 

Figure 134: Geometric configurations of the two friction devices 

The friction device of the configuration 1 is made of four main 

components (see Figure 134c), namely the L-stubs, the friction pads, the pre-

loadable grade 10.9 HV bolts and the removable haunch, which is detailed 

with slotted holes on the lower side to facilitate the sliding at the interface with 

the friction pad, while clearance fit bolts are considered for the upper part of 

the haunch to prevent its relative sliding as respect to the lower beam flange. 

The L-stubs are welded built-up and have the role of (i) transferring the bolt 

forces, (ii) clamping together the friction pads and the haunch, and (iii) 

connecting the assembly to the column flange. 

The friction damper of configuration 2 (see Figure 134d) has vertical 

sliding surfaces. Hence, to allow the relative slip both the mobile part (the rib 

plate) and the fixed parts i.e. L-stubs and friction pads are detailed with slotted 

holes. 

4.3.1.1 The principle of the friction connections design 

The moment resistance of the friction connections (Mslip,Rd) is assumed 

equal to the design moment (MEd), which can be set equal to either the value 
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obtained from the structural analysis under seismic condition (MEd,E) or the 

factored resistance of the beam cross section (Mpl,b,Rd).  

In the first case the beam-to-column assembly should have moment 

resistance larger than the moment induced by non-seismic loads at ultimate 

limit state of non-seismic conditions and behave as a full rigid and partial 

strength joint, while full-rigid, full strength in the second case. In this study 

the experimental specimens were designed according to the second approach 

in order to exploit the maximum resistance of the assembly. Imposing Mpl,b,Rd 

as the starting value for the joint design bending moment MEd leads to an 

iterative design process. Indeed, a reduction of MEd is needed because when 

the local hierarchy is imposed using Ωμ, the bending moment at the haunch/rib 

tip has to be limited to Mpl,b,Rd. 

Whichever design option is chosen to set MEd i.e. the design bending 

moment of the connection, the required slip resistance of the device is: 

, = Ed
slip req

t

M
F

h
       (4.9) 

Where ht is the lever arm of the connection, namely the distance between 

the center of rotation and the axis of sliding. 

In the present study, to exploit the larger flexural strength of the 

connection keeping elastic the spanning beam, the design moment demand of 

the connection was set equal to the factored plastic resistance of the beam, 

namely as following: 
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Where sh is the distance from the tip of the haunch/rib plate to the column 

face and, being Lh the free span length of the beam from tip to tip of the 

haunches and VEd,G is the shear force due to gravity loads. In the cases of the 

experimental specimens of this study VEd,G was set equal to zero. 

The number of friction interfaces (ns), the mechanical characteristics of 

the friction material (μdyn,5%), the number (nb) of bolts and their diameter (d) 

are fixed a-priori. Subsequently, by imposing that the effective slip force 

Fslip,eff has to be larger or equal to the required value (see equation below), the 

necessary level of bolt preloading (Nb) can be easily determine as follows: 

,

, ,5% ,

,5%

slip req

slip Rd dyn s b b slip req b

dyn s b

F
F n n N F N

n n



=     → 

 
  (4.12) 

In order to limit the relaxation of pre-loading due to creep phenomena and 

to prevent the yielding of the bolt shank under bending, on the basis of 

previous experimental studies (results presented in detail in Ferrante Cavallaro 

et al., 2017 and 2018b) the optimal values of the clamping force should range 

within 30% to 60% of preloading force ,p CdF  recommended by EN1993:1-8. 

The design values for Nb are given inTable 41 while the friction material 

properties are given in Table 42 

The non-yielding components of the joints are designed according to 

EN1993:1-8 to resist the slip force and the associated moment magnified by 

the overstrength factor Ωμ , which is defined as follows: 

.95% .95%

.5% .5%

1.97 2.0




 =  =st b

dyn b

N

N
     (4.13)  

Where μdyn,5%, Nb,5% are the lower-bound values of the dynamic friction 

coefficient and tightening force, respectively; μst,95%, Nb,95% are the upper-

bound values of the static friction coefficient and tightening force, 

respectively.  
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The values of both static and dynamic friction coefficients as well as the 

tightening forces were derived based on previous experimental studies (lap shear 

tests). 

4.3.1.2 Check for Shear Force 

The shear check of the column face connection and column web panel was 

made based on the EN1993 1-8 and assuming the design shear force VEd 

evaluated based on the equation below i.e. the ratio between twice the capacity 

design bending moment (MCD) and the distance between the column face 

connections (L). Both the T-stub and the L-stubs’ webs were checked for the 

full value of the VEd, although it was assumed that the L-stubs will carry most 

of the vertical force, as the shear capacity of the T-stub is very much reduced 

by the tensile component.  

2 CD
Ed

M
V

L


=        (4.14) 

CD EdM M=         (4.15) 

 

4.3.2 Experimental campaign 

4.3.2.1 Test Setup 

The experimental campaign consisted of 4 tests on friction joints that were 

performed in the laboratory of the Department of Civil Engineering at 

University of Salerno in collaboration with researchers from University of 

Naples “Federico II”. 

The test setup is shown in Figure 135 The columns were pinned in the 

bending plane of the joint with a cylindrical hinge at one end and a roller at 

the opposite tip. The beam was laterally restrained by means of a braced frame 

to prevent its lateral-torsional buckling. Two MTS 243 actuators were used for 
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the tests. The top actuator (load capacity of ±250 kN and stroke range equal to 

±500 mm) was used to apply the displacement history at the beam tip that was 

set according to the loading protocol recommended by AISC341. The second 

actuator (load capacity of ±1000 kN and stroke range equal to ±125 mm) was 

used to apply a constant compression force equal to 30% of the column squash 

load that was kept constant throughout the duration of each test. 

 

 

Figure 135 Experimental setup 

 

4.3.2.2 Investigated joints and monitored parameters 

As previously discussed, two types of friction dampers were investigated, 

and their main geometrical features are depicted in Figure 136 a to g. In 

addition, two beam-column assemblies per joint type were tested to cover the 

cases of both small- and large-scale structures ( IPE270 – HE 220M and 

IPE450 - HE 500B, respectively). In all tested joints the bolts of the friction 

devices were equipped with disc spring (DS) washers which are believed to 

limit the loss of preloading under cumulated slip. These non-flat washers 

(Figure 136h) with a slight conical shape are commonly used to solve 

vibration, thermal expansion, relaxation and bolt creep problems. 
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a) T-stub b) L-stub (Confiuration 1) c) Haunch (Confiuration 1) 

 

 

d) L-stub (Confiuration 2) e) Rib (Confiuration 2) 

  

f) Friction pads (Configuration 1) g) Friction pads (Configuration 2) 

 

 

h) Adopted stacking of Disk Springs 

Figure 136 Geometrical details of the tested friction devices  
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Table 40 Haunch geometry details 

Specimen Ltop Lbot tfl tw Bolts e1 p1 e2 p2 

  mm mm mm mm   mm mm mm mm 

FD-1-1 419 234 15 10 M18 35.5 67 25.8 83.4 

FD-1-2 590 365 20 15 M24 40.4 81 40.5 109 

FD-2-1 520 245 15 15 M20 72.1 72.1 25.8 83.4 

FD-2-2 756 356 20 20 M24 91.7 91.7 40.5 109 

Table 41 Pretension levels in the bolts of the tested specimens 

Model Nb Nb/Fp,c 

 [kN] [%] 

FD-1-1 58 34% 

FD-1-2 98 57% 

FD-2-1 64 37% 

FD-2-2 105 61% 

 

The DS were stacked both in parallel and in series to increase the strength 

and the deformability, respectively as shown in Figure 136g. This arrangement 

was established based on the findings of the former experimental campaign on 

lap-shear connections. In addition, preloadable HV bolts were adopted to 

clamp the friction surfaces. 

The overall geometrical features of the tested beam-to-column assemblies 

are depicted in Figure 136 and the corresponding values are also reported in 

Table 36 to Table 40. A label code is used to identify each assembly as 

follows: ‘FD’ stands for Friction Device; the first number is related to the joint 

configuration (1 or 2) and the second number refers to the size of the assembly 

(1 for small and 2 for large). The additional term “DS” identifies the use of 

disc springs. As example, FD-1-1-DS corresponds to the small assembly 

equipped with the device configuration 1 (i.e. horizontal friction surface) and 

disc springs.  
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Both global and local response parameters were monitored during the 

tests. At global level, the displacements at the tip of the beam and the relevant 

reaction forces of both actuators were measured (see Figure 137a). Namely, 

the bending moment in column axis was evaluated based on the reaction force 

in the actuator (F) and the corresponding lever arm (L – the distance between 

the actuator and the column axis). The displacement (u) at level of the actuator 

applying the displacement history is used to obtain the chord rotation (θchord) 

by dividing it with L. 

Regarding the local response parameters, the relative displacements 

among the components of the connections were monitored by means of 

LVDTs and the forces into the bolts were measured throughout the 

experiments by means of torsional loading cells. The relative sliding of the 

friction damper with respect to the fixed parts (L-stubs) were measured by 

means of the LVDT-07 (for the configuration 1) and LVDT-02 and LVDT-07 

(for the configuration 2), as depicted in Figure 138. 

a)  

b)  

c)  

Figure 137 Monitored parameters: global (a) and local response (b, c) 

Center of rotation

z

Fslip

Center of rotation

z

Fslip
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a) Joint FD-1-1 b) Joint FD-2-1 

Figure 138 Layout of displacement transducers to measure the local response of joints 

 

Figure 139 AISC 341-10 loading protocol up to 5% sorey drift 

 

The obtained values were used to evaluate the friction damper rotation 

(θdevice), which is obtained by dividing the displacement δ with the connection 

lever arm z measured from the mid-thickness of the T-stub web to the 

geometrical center of the friction device as detailed in Figure 137 b and c. In 

addition, LVDT-03 was used to evaluate the opening of the cap T-stub 

connection, while LVDT-04 (for the configuration 1) and LVDT-05 (for the 

configuration 2) were used to monitor the gap opening of the lower L-stub 

connections. 
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4.3.2.3 Results 

All performed tests showed an overall satisfactory response with stable 

hysteretic behavior and similar features, as depicted in Figure 140. Indeed, 

both types of connections performed as rigid up to the static friction resistance 

of the devices. Following the activation of the sliding, a loss of strength was 

observed but negligible stick-slip phenomena were observed under load 

reversal. Both friction assemblies lead to an asymmetric response of the joint, 

however the difference between the sagging and hogging resistance is larger 

in the case of the configuration 1 (i.e. horizontal friction surface), which also 

experienced the more pronounced degradation of the cyclic resistance, 

especially for the large assembly FD-1-2-DS. 

  

a) Small assemblies b) Large assemblies 

Figure 140 Comparison between the response of the 2 device configurations 

The different flexural resistance experienced under sagging and hogging 

can be explained by analyzing the local deformation demand in the upper T-

Stub (which connects the top flange of the beam to the column) and the lower 

L-Stubs (which connect the device to the column). The upper Tee was the 

same for the same beam-column assembly of both joint types, thus the 

differences can be explained by considering the different deformability of the 

L-Stub arrangements that differ with the friction connection configurations.  
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As depicted in Figure 141, the deformation of the Tee has values in the 

same ranges for the 2 pairs of tested joint assemblies i.e. the small assemblies 

(i.e. FD-1-1-DS and FD-2-1-DS) and the large assemblies (i.e. FD-1-2-DS and 

FD-2-2-DS) present T-stub flange opening of maximum 0.5mm and 1.0mm, 

respectively. On the other hand, Figure 142 shows that the L-stub flange 

opening is substantially larger in the joint assemblies detailed with the 

horizontal friction damper configuration (i.e. FD-1-1-DS and FD-1-2-DS) 

than the values measured for the joints with the vertical damper (i.e. FD-2-1-

DS and FD-2-2-DS). It is worth noting that the difference in terms of gap 

opening corresponds to the difference in terms of flexural strength under 

sagging loading.  

In line with the findings of the numerical study carried out, the difference 

between sagging and hogging bending resistance for the first configuration 

can vary up to 25%, while the second configuration has a lower difference 

(about 15%). As shown in Figure 140, the larger beam-column assemblies 

exhibited the larger degradation of the strength for increasing levels of 

rotation.  

  
a) FD-1-1-DS b) FD-1-2-DS 

  
c) FD-2-1-DS d) FD-2-2-DS 

Figure 141 T-stub opening versus damper rotation 
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a) FD-1-1-DS b) FD-1-2-DS 

  

c) FD-2-1-DS d) FD-2-2-DS 

Figure 142 L-stub opening versus damper rotation 

This was caused by two effects: first, the use of longer bolts (with the same 

diameter of those used for smaller specimens) and secondly, the bolt clamping 

was larger as seen in Table 41 that reports the average tightening forces for 

the tested specimens. 

The larger flexibility of the bolts corresponds to larger bending demand in 

the shank as well as rotation of head and nut. This in turn leads to a 

consequential reduction in clamping force that translates into a reduction of 

the connection bending capacity. The larger preload directly affected the 

threshold and the evolution of the connection flexural strength, because larger 

clamping levels (e.g. closer to the EC3 1-8 recommended value) correspond 

to a reduced strength margin of the bolt shank relative to plastic damage, 

which can occur at lower slip displacements of the device.  

Furthermore, the horizontal and vertical damper configurations induce 

different bearing forces on the bolts’ shank, which leads to different patterns 

of local plastic strain (detailed in the numerical calibration section) and 

strength degradation when the rotation demand increases. 
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a) FD-1-1-DS b) FD-1-2-DS 

  

c) FD-2-1-DS d) FD-2-2-DS 

Figure 143 Deformed shape of the tested specimens at chord rotation equal to 0.05 rad 

The experimental tests showed negligible plastic deformation in the beam 

or the T and L-stubs up to 0.04rad of chord rotation. Increasing the imposed 

rotation up to 0.05rad, which was set as the limit of the allowable displacement 

capacity of the friction devices, the overall response of the joints was still 

satisfactory, as shown in Figure 143, without appreciable damage except for 

the unique case of FD-1-2-DS where the instability of the beam web occurred. 

This phenomenon occurred due to the activation of a strut mechanism between 

the theoretical center of rotation around the T-stub web connecting the upper 

beam flange and the device. However, it is worth noting that this phenomenon 

is relevant solely for deep beams and it can be easily prevented by using 

transverse web stiffeners at the tip of the beam. 

After the tests, it was observed that the friction pads underwent significant 

erosion of the superficial friction coatings and signs of plastic deformation in 

the bolts were also spotted. 
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4.3.3 Finite Element Analysis of friction joints 

4.3.3.1 Geometry and modelling assumptions 

Many of the numerical assumptions are like the ones previously presented 

for the case of lap-shear models, but given the significant differences, it was 

deemed necessary to reiterate them. 

The two external joint configurations tested in the experimental campaign 

are presented in Figure 134. For each of the two configurations, two 

assemblies were tested: 

• Assembly 1: Beam IPE270 – Column HE 220 M 

• Assembly 2: Beam IPE450 – Column HE 500 B 

The models, as well as the specimens tested, can be identified based on 

the scheme below (see Figure 144) i.e. the first number gives the joint 

configuration while the second denotes the beam-column assembly. 

 

Figure 144: Definition of the model labeling 

 
 

FD 1-1 FD 2-1 

Figure 145: The FE model for Assembly 1 
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Abaqus v6.14.4 is used to carry out the finite element simulations. The 

geometrical features of the examined joints are reported in Figure 134. 

Structured mesh and the finite element type C3D8R (a 8-node linear brick with 

reduced integration) is adopted for steel beams, columns and high strength 

bolts. Figure 145 depicts as an example the FE models (basic and meshed 

view) for assembly 1. 

For the larger beam-to column assembly 2, it was observed that the initial 

model, which neglected the connection of the column to the set-up, does not 

accurately describes the actual experimental response. To this end, a second 

set of more detailed models were created.  The geometry of these joints is 

depicted in Figure 146. 

In terms of material, the plastic true stress-true strain properties of S355 

steel grade are assumed (Figure 147a). These materials were obtained by 

testing coupons cut from the investigated joints’ elements, like the case of the 

beams and columns exemplified in Figure 147a. The yielding is modelled by 

means of the von Mises yield criteria. Plastic hardening is represented using a 

combined isotropic and kinematic hardening. HR 10.9 grade pre-loadable 

bolts are considered Figure 147b). 

 

 

 

FD 1-2* FD 2-2* 

Figure 146: Updated models for Assembly 2 
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Bolts were modelled by meshing a solid cylinder having the nominal 

circular gross area of the bolt. The true stress - true strain curve of the bolts 

was derived based on the tests carried out by D’Aniello et al (2016). 

  

a) b) 

Figure 147 Materials used for the preliminary FEAs 

In order to simulate the bolt strength using its nominal shank area, the 

material stress has been scaled as it follows: 

s
effective actual

nom

A
f f

A
=       (4.16) 

Where feffective is the effective stress, factual is the actual stress, As is the 

tensile area of the bolt and Anom is the nominal area of the shank. 

This assumption is necessary because the bolt shank strength is governed 

by the threaded part of the shank, which has an effective bolt area that is 

smaller than the nominal gross area.  

As the strength, the elastic stiffness of the shank is also affected by the 

threaded part. Therefore, the elastic model of the equivalent material 

constituting the shank was scaled in order to obtain the equivalent stiffness 

calculated according to Swanson and Leon (2001) as follows: 

1 tgb s b

b b b eb be

Lf d L f d

k A E A E A E A E

 
= + + +

   
    (4.17) 
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Where f is the stiffness correlation factor assumed equal to 0.55; db is the 

nominal diameter of the bolt; Ab is the nominal area of the bolt shank; Abe is 

the effective area of the threads; Ls is the shank length of the bolt; Ltg is the 

length of the threaded portion included in the bolt's grip; and E is the actual 

modulus of elasticity of steel. 

The interactions between the surfaces in contact (e.g. bolt-to-plates, plate-

to-plate) are modelled considering both “Normal” and “Tangential” 

behaviour. The former is implemented considering “Hard Contact”, while the 

latter is modelled differently for the steel–to-steel interfaces and for the 

friction pad-to-steel interfaces. The main difference between the two types of 

contacts is the definition of the friction coefficient. For the steel-to-steel 

surfaces a constant value equal to 0.3 is considered, while the dynamic friction 

coefficients obtained from lap-shear tests with the friction material considered 

are used for the friction damper (see Table 42). 

Table 42: Friction coefficients for material M-4 

 μdyn 5% μavg μdyn 95% 

Friction Material M-4 0.53 0.59 0.64 

 

The clamping of the bolts is modelled by means of the “Bolt load” option 

available in the FE software. For the bolts belonging to the friction device, the 

values from Table 41 were used, in order to be consistent with the design and 

experimental assumptions. All other bolts were fully preloaded, as 

recommended by EN1993 1-8. 

The boundary conditions are modelled to be representative of those 

adopted for the experimental set-up (see Figure 135a). Both column ends have 

translational and rotational degrees of freedom restrained, except for the in-

plane rotation, and the beam is restrained to prevent lateral-torsional buckling. 

The loads are applied in the section corresponding to the actual position of the 
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actuator 1. Both monotonic and cyclic displacement histories are alternatively 

applied. The AISC 341-10 loading protocol (Figure 139) used for the 

experimental tests is applied also for the cyclic numerical analyses. 

 

4.3.3.2 Validations and discussion of results 

The adopted modelling assumptions effectively simulate both the global 

and the local response of the tested joints, as it can be observed Figure 148 

and Figure 149 respectively. The response of the joint during the initial cycles 

are not accurately replicated by the numerical model due to the use of the 

dynamic 5% percentile of the friction coefficient. Disregarding the higher 

static friction coefficient, which is initially activated given the test typology 

(quasi-static), leads to this difference in response, negligible given the real 

seismic loading conditions 

During the experimental campaign no damage was observed in the steel 

elements. However, the numerical analyses show some concentrations of 

plastic damage, depicted in terms of equivalent plastic strain (PEEQ) in Figure 

149 at the base of the web of the upper T-stub (where the center of rotation is 

located), and either at the bases of the L-stubs, at the top web-flange area of 

the beam underneath the T-stub and in the shear bolts of the device. 

Furthermore, plastic deformations can be observed in the shanks of the bolts 

in the friction device.  

The horizontal damper configuration induces shear type bending effects 

in the shanks with two bearing contacts in all bolts of the device. On the 

contrary, the bolts in the vertical damper have one bearing zone at mid-length 

of the clamped shank, which leads to larger local plastic strain (Figure 151) In 

addition, in this second case the bolts close to the column face do not exhibit 

plastic strains. 
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a) FD-1-1-DS b) FD-1-2-DS 

  
c) FD-2-1-DS d) FD-2-2-DS 

Figure 148 Experimental vs numerical results in terms of Bending Moment – Connection rotation 

  
a) Experimental joint FD 1-1 b) Experimental joint FD 2-1 

  
c) PEEQ distribution for model FD 1-1 d) PEEQ distribution for model FD 2-1 

Figure 149 Experimental vs. numerical models after cyclic test up to 5% 
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In the analyses performed on the models depicting the experimental tests 

it was observed that small concentration of damage is located in the base of 

the T-stub, the L-stubs (in the case of Configuration 1), the bolts of the friction 

damper and in a reduced extent in the beam (the web-flange junction at the 

beam end immediately below the T-stub and in the slotted holes at the end of 

the beam-haunch connection). These results are presented in Figure 152 in 

terms of PEEQ (equivalent plastic strain) distribution on the large beam to 

column assemblies. As it can be observed in the legend of PEEQ that are 

evaluated at the rotation equal to 0.05rad, the horizontal friction damper 

configuration leads to larger plastic deformations in the joint elements. As a 

matter of fact, this result can also be observed in terms of dissipated energy, 

presented in Figure 150.  

Indeed, the friction energy normalized with respect to the total dissipated 

energy for the first configuration is smaller compared to the second 

configuration and the opposite is true in terms of normalized plastic energy. 

Although the second damper configuration leads to lower plastic damage, it is 

worth noting that the plastic damage is limited for both configuration, 

maximum plastic energy dissipation is less than 5% of the total energy 

dissipated at 0.05 rad. 

  

a) b) 

Figure 150 Normalised dissipated energy a) Friction energy and b) Plastic energy 
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a) FD-1-1 b) FD-1-2 

  
c) FD-2-1 d) FD-2-2 

Figure 151 Equivalent plastic damage (PEEQ) in the damper bolts 

  
a) FD-1-2 

   
b) FD-2-2 

Figure 152 PEEQ Distribution at the end of the cyclic analysis for large joint assemblies 
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4.3.4 Parametric investigation: the clamping force and 

friction coefficient 

The experimental tests confirmed the importance of the clamping force 

applied to the bolts into the device as well as the key role of the friction 

coefficient between the sliding surfaces. Therefore, the influence of the 

variation of these parameters on the response of the two tested joint 

configurations has been further investigated by means of finite element 

analyses based on the validated models previously described.  

The range of variation for the parameters was based on the possibility that 

the parameter will reach that value. The preloading is a sensitive process, 

prone to errors due to the specific conditions required for a precise load 

application (straightness of plates to be tightened, number of plates tightened, 

bolt quality, wrench precision, etc.). The friction coefficient of the sliding 

interfaces has been statistically characterised and therefore it is assumed that 

the actual friction coefficient for a specific material will vary within the range 

of statistically representative values. Thus, the clamping force was varied by 

increasing and reducing the design value with 50%, assumed as a sufficiently 

large range because it goes beyond the limits recommended (30-60%Fp,Cd), 

while the statistical values were assumed for the friction coefficient. 

The examined parameters have been varied as follows: 

• In addition to the pre-loading force adopted in the tests, namely Nb 

(Table 41) a value 50% smaller (0.5 Nb) and a value 50% larger (1.5 

Nb) have been considered. It should be noted that in all cases 1.5 Nb is 

smaller than Fp,Cd (which is equal to 172kN for M20 gr.10.9 bolts). 

• Three values of the dynamic friction coefficient μ are considered, 

namely the 5% percentile (μ5%), the average value (μavg) set equal to 

0.59, and the 95% percentile (μ95%) see Table 42 
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The equations below clarify the meaning of the mechanical parameter 

reported in the results summarising tables in the following paragraphs: 

( ) ( )

0.5( )

( )
1 b b

b

N N

N

M M

M

+ +

+

+

−
 = +       (4.18) 
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1 b b
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N N
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M M
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− −
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−
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 = +       (4.19) 

( ) ( )
( / ) ( )

( )
/

M M
M M

M

− +
+ − −

−

−
 =      (4.20) 

Where Γ(+) and Γ(-) represent the variation of the hogging and sagging 

bending moment capacity, respectively, considering alternatively the change 

in the clamping force from the design value Nb to 0.5 Nb and 1.5 Nb; M (+) and 

M (-) are the sagging and hogging bending moments. The subscripts depict the 

analysis from which the bending moment is taken, e.g. with clamping force 

equal to either 1.5 Nb or 0.5 Nb; ΔM (+/-)/M (-) represents the difference between 

the hogging and sagging bending moment for each respective analysis 

(considering the three values for Nb). 

 

4.3.4.1 Influence of clamping force 

Figure 153 shows the comparison of the response curves for the four joints 

(i.e. the two joint configurations and two assemblies) and Table 43 and Table 

44 report the numerically measured mechanical properties of the joints. The 

bending moments reported, M (+) and M (-), represent the bending moment at 

the occurrence of the sliding under sagging and hogging, respectively.  

As expected, the variation of the bending moment (Γ(+) and Γ(-)) is 

proportional with the bolt pretension variation i.e. the increase/decrease under 

both sagging and hogging is of 50%.  
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ΔM (+/-)/M (-) reported in Table 43 and Table 44 shows the difference 

between sagging and hogging, which seems to be related to the joint 

configuration and constant with the beam depths, clamping force, or friction 

coefficient. The difference is about 24% for Configuration 1 and 14% for 

configuration 2. 

Further observation that can be made based on Figure 153 is that the post-

yield response of joint configuration 1 differs with the level of preloading 

which is relative to the maximum preloading force. In particular, the joints 

with lower relative preloading exhibits hardening (i.e. positive post-yield 

stiffness), while the joint with higher relative preloading shows softening (i.e. 

negative post-yield stiffness), the latter is evident for the larger beam These 

phenomena are more pronounced under hogging bending moment. The second 

configuration exhibits a more linear behaviour in both examined assemblies. 

The stiffness of the joint is not affected by the variation of clamping force, 

since it is determined by the stiffness of the other components of the joint (the 

connection at column face, the column web panel, etc.). 

 

4.3.4.2 Influence of Friction Coefficient  

Figure 154 depicts the numerical curves, in terms of bending moment vs. 

chord rotation, of all the models analysed with larger values of friction 

coefficient (μavg and μ95%) with respect to the design value (μ5%) under 

hogging (M (-)) and sagging (M (+)) loading conditions. It is possible to observe 

that the higher percentile of the friction coefficient values, the larger is the 

joint capacity. This observation confirms the need to account for the variability 

of the friction properties of the friction pads to design the non-yielding 

structural members. 
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Figure 153 Influence of the clamping force on the bending moment capacity 

Table 43 Bending moments for model FD 1-2-DS considering the variation of clamping force 

Clamping force 
M (+) M (-) Γ (+) Γ (-) ΔM (+/-)/M (-) 

[kNm] [kNm] [-] [-] [-] 

Nb 453 602 - - 25% 

0.5Nb 230 298 51% 50% 23% 

1.5Nb 690 902 152% 150% 24% 

Table 44 Bending moments for model FD 2-2-DS considering the variation of clamping force 

Clamping force 
M (+) M (-) Γ (+) Γ (-) ΔM (+/-)/M (-) 

[kNm] [kNm] [-] [-] [-] 

Nb 484 564 - - 14% 

0.5Nb 250 290 52% 51% 14% 

1.5Nb 714 838 148% 149% 15% 
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Figure 154 The influence of the friction coefficient on the bending moment resistance 

Table 45 Bending moments for model FD 1-2 considering the friction coefficient variation 

Friction coefficient 
Δμ M (+) M (-) Γ (+) Γ (-) ΔM (+/-)/M (-) 

[-] [kNm] [kNm] [-] [-] [-] 

μ5% - 446 593 - - 25% 

μavg 110% 521 670 117% 113% 22% 

μ95% 117% 535 733 120% 124% 27% 

Table 46 Bending moments for model FD 2-2 considering the friction coefficient variation 

Friction coefficient 
Δμ M (+) M (-) Γ(+) Γ (-) ΔM (+/-)/M (-) 

[-] [kNm] [kNm] [-] [-] [-] 

μ5% - 484 564 - - 14% 

μavg 110% 529 627 109% 111% 16% 

μ95% 117% 568 679 117% 120% 16% 
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Similar hardening/softening behaviour can be observed for both joint 

configurations, however, the models of Configuration 1 revealed the same 

response observed in the investigation of the clamping force i.e. a more 

significant hardening with the decrease of µ and a more pronounced softening 

when µ is increased. In the case of the second configuration, the response 

curves seem scaled proportionality with the friction coefficient.  

Table 45 and Table 46 depict the variation of the bending capacity (Γ(+) 

and Γ(-)) and the difference between sagging and hogging (ΔM (+/-)/M (-)). The 

variation for configuration1 differs with respect to the variation of the friction 

coefficient, they are not proportional like in the case of the clamping force 

variation. A larger increase of bending moment can be observed for the same 

increase of friction coefficient. On the other side, the analyses of the second 

configuration show a closer dependency of the bending capacity with the 

friction property randomness. 

The difference between sagging and hogging (ΔM (+/-)/M (-)) is very similar 

to the cases investigated under clamping force variation (25% and 17% 

respectively). This result indicates that the sagging/hogging resistance 

difference is a parameter depending on the joint configuration, related to the 

column face connection dissymmetry shown also experimentally. 

4.3.5 The friction connection shear transfer mechanism 

A crucial aspect related to the design of the connections at column face is 

the shear check, because the T-stub and L-stubs should guarantee the 

resistance to combined tensile and shear forces to avoid premature failure. 

Figure 155 shows the distribution of shear forces at the level of the T-stub 

and L-stubs as well as the total shear force in the section at the column face. 

In both tested friction device configurations, the cumulated shear in the two 

components (i.e. the sum of the relevant absolute values) is larger than the 
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overall shear force (see Figure 155a and c for configuration 1 and Figure 155b 

and d for configuration 2).In order to investigate the evolution of the shear 

force with the connection rotation, monotonic analyses under both hogging 

and sagging loading conditions were alternatively performed.  

The results presented in Figure 156 confirm the previous observations and 

offer insight into the magnitude of the shear transferred by each component. 

Indeed, for the investigated cases, the L-stubs transfer larger shear force 

compared to the T-stub. Configuration 1 joints are characterized by levels of 

maximum shear force transferred by the Tee of about 50% of the total shear, 

while the L stubs reach values close to 100% of the total shear (Figure 156 a 

and c).  

However, while Configuration 1 components transfer shear of up to 

maximum total shear, Configuration 2 assemblies (Figure 156 b and d) exhibit 

the same behavior observed cyclically i.e. the shear in the components reach 

values larger than the total shear, with the shear transferred by the L-stubs 

reaching values almost 2 times larger than the total shear for rotation values 

close to 0.06 rad.   

The differences of shear force distributions between the 2 components is 

mainly due to the larger stiffness provided by the L-stubs in the vertical plane 

and the vertical sliding force component. Looking at the distribution of shear 

forces amongst the components of the connection (Figure 157) it can be 

remarked that the shear transfer mechanism is highly complex and 

configuration dependent. The type 1 joint (FD 1-1-DS) is characterized by 

same sign shear forces transferred by the L-stubs and in a smaller measure by 

the T-stub. On the contrary, the T-stub of FD 2-1-DS carries an opposite sign 

shear force, owing to the heightened level of shear force transferred by the L-

stubs, in order to preserve the equilibrium at the column face. The 

hogging/sagging loading conditions lead to the same distribution of forces 

between the components for the same configuration, with a smoother transfer 

of the forces under positive bending.   
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a) FD-1-1 b) FD-2-1 

           

c) FD-1-2 d) FD-2-2 

Figure 155 Shear force transferred by different components  
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Figure 156 Shear force at the connection face 
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Figure 157 Distribution of shear in the connected elements at 0.04 rad damper rotation (Hogging) 
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Figure 158 Distribution of shear in the connected elements at 0.04 rad damper rotation (Sagging) 
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4.4 FULL SCALE TESTS ON FRAME EQUIPPED 

WITH THE FREEDAM FRICTION DEVICE 

4.4.1 Investigated structures 

In order to assess the behavior of frames equipped with friction device a 

part of the FREEDAM Project experimental campaign will be dedicated to the 

investigation of a full-scale frame (Figure 159) equipped with friction devices. 

As a basis for comparison, initially a test on a frame with the same geometrical 

configuration but detailed with conventional reduced beam section (RBS) and 

extended end-plate connection will be performed (Figure 160a).  

 

Figure 159 General mock-up test layout 
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The full-scale dynamic tests can provide significant insight on the real 

response of structures equipped with friction devices. However, due to the 

complexity of the task at hand, it is useful to perform numerical blind 

predictions of the mock-up frame in order to have an idea about the potential 

response of the structures to be tested. 

The models were developed in advanced FE software Abaqus. The 

investigation was focused on planar frames depicting half the structure to be 

tested and account was made for the loads, masses and boundary conditions 

such that the experimental conditions were simulated correctly. Nonlinear 

static pushover, cyclic quasi-static and dynamic nonlinear (Timehistory) 

analyses were performed and the main parameters monitored were the base 

shear, interstorey drift and the floor reactions. Both the structure detailed with 

traditional steel joints (reduced beam section - RBS) and friction joints (FD) 

were investigated. As the subsequent step in the research was the investigation 

of a large number of structures, a simplified model  of the mock-up structure 

was also developed in SAP2000 and the results were compared with the 

advanced FE model The comparison between the results provided by different 

software allowed to highlight the main parameters which govern the prediction 

of the structural response and the critical aspects of the numerical simulation. 

 

 

RBS joint detail FD joint detail 

Figure 160 Joint details of the 2 tested frames 
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4.4.2 Assumptions for preliminary FE investigations 

4.4.2.1 The advanced FE model 

The full-scale tests consist in the testing of 2 frames:  

1. Frame equipped with traditional joint – reduced beam section (RBS) 

2. Frame equipped with innovative joints - friction devices (FD) 

In both cases the structure consists of a one bay – one span – two floors 

structure. The numerical simulations were made on planar models consisting 

in one of the MRFs. 

 
RBS model 

 
FD model 

Figure 161 The frame models 
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Figure 160 depicts the geometry of the nodes for the 2 types of joints while 

Figure 161 depicts the experimental (left) and advanced numerical model 

(right) geometrical configuration of the frames. As it can be observed, the 

numerical model was detailed using solid C3D8R finite element (8 node linear 

brick reduced integration) in the node regions, and wire elements (B31 - a 2-

node linear beam in space) for the beams and columns outside the areas of 

interest (joint). 

4.4.2.1.1 Modelling assumptions 

Abaqus v6.14.4 is used to carry out the finite element simulations. For the 

definition of the elastic domain of the material properties the nominal values 

were used (Young’s modulus is 210 GPa and Poisson coefficient is 0.3). The 

nonlinear material properties used for the modelling of the steel parts were 

obtained by means of tensile tests performed at University of Salerno (see 

Figure 162a). 

  

Steel properties Bolts properties 

Figure 162 Material properties 

This assumption for the modelling of bolts are the same as presented in 

Section 3.8.3 Finite Element Analysis of friction joints and therefore it’s 

deemed unnecessary to repeat them. 

To simulate the geometrical and mechanical imperfections, a buckling 

analysis was performed, and four buckling modes were selected as the most 

representative of the expected damage to occur during testing (see Figure 163). 
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Different scaling factors were used to magnify the deformed shapes and give 

the adequate value for the out of square imperfections. Figure 164 shows the 

effect of the imperfections on the bending moment capacity of the RBS. The 

buckling modes were scaled in order to achieve a level of degradation of 20%, 

at 0.05rad joint rotation, similarly to the results of experimental tests 

performed by Latour et al. (2011a) on similar joints. 

 

    
Mode 15 Mode 16 Mode 21 Mode 22 

Figure 163 Buckling modes for modelling imperfections 

 

  
a) SF = 0.1 b) SF = 4 

Figure 164 Imperfection effect on the bending capacity of the RBS 

Interaction properties were defined for all the steel parts in contact (plates 

and bolts). The contact properties were defined both in terms of Normal 

Behavior (considering the “Hard contact” option) and Tangential Behavior 

(considering the “Penalty” option). The friction device interaction was defined 

considering the properties of the friction material in Section 3.8.3 Finite 

element analysis of friction joints (Table 42) 
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a) AISC 341(10) loading protocol b) The 14 records for nonlinear dynamic 

analyses 

Figure 165 Loading actions 

The boundary conditions are modelled to be representative of those 

adopted for the experiments. The column bases were fully restrained, and the 

beams had lateral torsional restraints in the points of intersection with the 

secondary beams. The permanent loads were applied in the first step, together 

with the clamping of the bolts (applied using the “Bolt load” option in the 

software), while the lateral loads were applied in the last step, at the level of 

the beam to column joint, on the column external face, as a simplification with 

respect to the experimental setup. The Dynamic Implicit solver was used for 

all the analyses. Three types of analyses were performed: 

• Static pushover analysis (considering a modal lateral force 

distribution) 

• Quasi-static cyclic analysis (considering the AISC341-10 loading 

protocol in Figure 165a) 

• Timehistory analysis (considering the 14 accelerograms in Figure 

165b, which were used in the large investigation on MRFs) 

 

4.4.2.1.2 Monitored parameters 

Throughout the numerical investigations, the following parameters were 

monitored: Base shear, floor reaction, interstorey drift, the joint bending 

moment and the equivalent plastic strain (PEEQ). 
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4.4.2.2 The simplified FE model 

The simplified planar models of the frames were created in SAP2000 

considering identical geometrical configuration with the experimental frame. 

The mass was defined by setting the software to consider the lumped masses 

assigned for each floor (m1 = 34.86t and m2 = 25.68t) and the weight of the 

structural members. The gravity loads were applied as concentrated forces in 

the points of intersection of the secondary beams.  

The material properties for the beams and columns were defined in 

accordance with the results of the coupon tests presented in Figure 162a. This 

was crucial for the RBS model, as the definition of the plastic hinge properties 

is highly correlated with the material definition.  The hinges are assigned to 

the RBS section in the appropriate position (relative to the intersection of the 

beam and column axis see Figure 166a) and in a similar manner, automatic P-

M plastic hinge properties were assumed for the columns. 

  

                   
a) RBS model b) FD model 

Figure 166 Schematic representation of SAP2000 models 
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For the definition of the FD model hinges corresponding to the friction 

joint, a similar hinge property was used (Figure 166b), but the yield bending 

moment was defined explicitly (evaluated based on the design slip force). The 

post-yield hardening was neglected, and an asymmetric response was 

assumed, with the hogging bending resistance 15% larger compared to the one 

under sagging loading (as observed experimentally and numerically). 

 Another important aspect of the modelling are the rigid offsets at both 

beam ends, at the column-beam intersection and column base. The members 

are modelled by means of “beam” finite elements and so, the actual size of the 

node area is not modelled explicitly. Therefore, these very rigid zones are 

simulated fictitiously by means of rigid offsets. 

Two types of analyses were performed using this model: (i) Static 

Pushover Analysis (considering a modal lateral force distribution) and (ii) 

Timehistory Analysis (considering the same accelerograms as the advanced 

ABAQUS FE model). 

 

4.4.3 Results of the preliminary numerical investigation 

4.4.3.1 Advanced FE model (ABAQUS) 

The results presented in Figure 167 and Figure 168 are relative to the 

model of the RBS frame. The frame response depicted in Figure 167 shows 

that the maximum base shear for the planar frame is approximately 390kN, 

while the floor reactions are 224kN for the first and 183kN for the second. 

This result is consistent between the static pushover and cyclic quasi-static 

analyses. 

As observable from Figure 168, the RBS exhibits the expected cyclic and 

monotonic response, when compared with the analytically evaluated bending 

capacity. A more significant cyclic strength degradation in the beam on the 
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first floor is observable, like observable also from the PEEQ distribution in 

Figure 170.  
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Figure 167 Abaqus results of SPO Analysis and cyclic quasi static analysis for the RBS model 

  
First floor Second floor 

Figure 168 Bending moment in the RBS 
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Figure 169 shows the results of the static pushover and cyclic quasi-static 

analysis on the FD frame model. In this case the first floor has a lower 

contribution (150kN) while the contribution of the second floor is increased 

(239kN).  

Figure 171 depicts the PEEQ in the FD frame, and as visible from the 

images, the damage is concentrated only at the base of the columns, with a 

similar value to the RBS frame. The plastic strain concentration at the column 

level are due to the local effects caused by the application of the loads and 

therefore can be overlooked. 
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Figure 169 Abaqus results of SPO Analysis and cyclic quasi static analysis for the FD model 
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Figure 170 Plastic deformation in the RBS frame (cyclic analysis) 

 

Figure 171 Plastic deformation in the FD frame (cyclic analysis) 
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4.4.3.2 Comparison between the RBS and FD frame model 

As evident from Figure 172, the maximum base shear of the RBS and FD 

frame are very close, the capacity curves being almost overlapped. The FD 

frame however exhibits a slightly more rigid response, which is easily 

explained by the more rigid joint, and lower strength. 

In terms of the joint response, the results show similarities although the 

general shape of the cycles is different i.e. a smooth shape for the RBS and a 

jerkier one (after the initiation of the sliding) for the FD. Nevertheless, both 

configurations reach the design bending resistance and exhibit similar energy 

dissipation capacities with minimal degradation in strength up to 5% 

interstorey drift.  

The most significant difference in the response is the plastic damage 

distribution. As it was expected, the RBS, as the dissipative zone, suffered 

large plastic deformations, while the FD joint dissipated the energy by mans 

of relative sliding of the vertical rib with respect to the friction pads. This is 

detailed in Figure 170 and Figure 171 which show  the PEEQ distribution for 

the two structures. 

 

  
SPO analysis Cyclic quasi-static analysis 

Figure 172 Comparison of RBS and FD frame response 
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a) RBS b) FD 

Figure 173 Comparison of RBS and FD joint response 

 

4.4.3.3 Comparison of Simplified (SAP2000) and Advanced (ABAQUS) 

model 

As presented in Figure 174, the simplified model gives a very good 

approximation of the response of the more detailed ABAQUS model in terms 

of static nonlinear analyses. Reasonable results are reached also in the case of 

the nonlinear dynamic analysis, considering the significant simplifications 

made. However, it is clear that in terms of peak base shear force and residual 

drift, the SAP2000 model is lacking, leading to underestimations of both 

measurements.  

 

  
Static pushover analysis Time history analysis 

Figure 174 Comparison between advanced and simplified RBS frame model 
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Static pushover analysis Time history analysis 

Figure 175 Comparison between advanced and simplified FD frame model  

Therefore, with regards to both models (RBS and FD) it can be concluded 

that the simplified model can be used to perform more computationally 

demanding analyses, or for large number of structures, when the desired result 

is a general idea of the global response. The advanced FE model is more 

adapted for the detailed investigation of the local effects within the framework 

of the entire structure (distribution of plastic damage, structures tested in 

laboratories, etc.). 

 

4.4.3.4 Nonlinear dynamic response of RBS frame under natural records 

Prior to the full-scale experimental test on the RBS structure, it was 

necessary to select a ground motion which would be a balanced solution 

between sufficient demand on the structure and the safety considerations of 

the setup and laboratory.  

Table 47 Ground motions details 

Epicenter Date Details 

Coalinga, 

USA 
02 May 1983 

6.5 ML 16:43:00 PDT 36.25N 120.30W Depth 

9.0 km 

Spitak, 

Armenia 
07 December 1988 

6.8 ML  10:41:25 GMT 40.94N 44.29E Depth 

10 km 

Imperial Valley, 

USA 
15 October 1979 

6.6 ML 16:16:00 PDT 32.67N 115.36W Depth 

15.0 km 
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From the large number of preliminary selected ground motions (GM), 

three of them were considered appropriate: Coalinga, Spitak and Imperial 

Valley. Table 47 and Figure 176 show details of the three selected ground 

motions. The accelerograms were scaled based on the design seismic action. 

The advanced numerical RBS model was used for the assessment of the 

structure’s response. The most relevant results are the maximum horizontal 

floor reactions and base shear, the maximum storey drift and the residual drift. 

The forces are of particular importance for the check of the actuator capacity.  

 

 

 

Figure 176 Ground motions accelerograms 

Table 48 Summary of the FEAs results 

GM F1st,max F2nd,max Vb,max θ1st,max θ2nd,max θ res 

 [kN] [kN] [kN] [-] [-] [-] 

Coalinga 283 215 393 3.61% 3.54% 1.73 

Spitak 332 224 415 3.95% 3.43% 0.66% 

Imperial Valley 314 200 403 3.57% 3.40% 0.81% 
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a) Coalinga GM 

  
b) Spitak GM 

  
c) Imperial Valley GM 

Figure 177 Floor reactions and drift histories for the considered ground motions 

 

   
a) Coalinga b) Spitak c) Imperial Valley 

Figure 178 PEEQ in the RBS on the 1st floor 
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The largest values in terms of horizontal forces and transient storey drifts 

were obtained for the Spitak GM, with the lowest residual drift, as depicted in 

Table 48 and Figure 177. The largest residual drift (θ res = 1.73%) was obtained 

for Coalinga GM and this is reflected also in the equivalent plastic strain 

distribution (PEEQ) in Figure 178. 

For all the ground motions the reaction resulting forces were within the 

limits set due to the actuators capacity and the lateral relative displacements 

were below te 4% limit agreed upon for safety reasons.  

The Imperial Valley GM gives intermediate results in terms of forces and 

transient storey drifts, as well as residual drift. The balanced damage 

distribution (Figure 178c) and the large number of cycles which are expected 

to be particularly demanding on the structure, confirm that the Imperial Valley 

GM is a good option for the pseudo-dynamic tests. 
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4.5 DESIGN AND ANALYSIS OF FRAMES EQUIPPED 

WITH FRICTION DEVICES 

4.5.1 General description of the EC8 compliant design 

methodologies 

The fundamental difference between the traditional MRFs and the FD-

MRFs (moment resisting frames equipped with friction devices) is the 

dissipative element i.e. the beam for the former, while the friction connection 

(or damper) for the latter. 

 

Figure 179 Design algorithm 

As depicted in Figure 179, the initial steps are naturally identical with the 

design of traditional moment resisting frames, as the friction devices do not 

bring substantial alterations of the MRFs. However, the design requirements 

differ consistently, due to the special application of the capacity design rules. 

Within the current work, two possible approaches were initially assumed for 

the design of the MRFs equipped with friction devices. The main difference 

between the proposed approaches is the establishment of the friction device 

design bending moment (MFD). Detailed explanations are hereinafter 

presented for both methodologies. 
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4.5.1.1 FD-A 

The first design approach (proposed by the partners of University of 

Salerno) defines the design forces for the dissipative element (friction damper) 

function of the capacity of the connected beam (Mpl,bRd). Initially, it is assumed 

that the forces to be carried by the damper correspond to the formation of the 

plastic hinge at the beam end, out of the protruding part of the connection. 

Figure 180a depicts the schematic distribution of bending moment at the beam 

end, in the joint area for the FD-A design methodology. The reference points 

A, B and C are detailed in Figure 181 together with the explanation of the 

distances.  

The procedure starts by assuming the bending moment at point C as equal 

to Mpl,b,Rd and the subsequent evaluation of 
*

,slip reqF , the initial required slip 

resistance (see equation below) and the effective slip resistance (
*

,slip RdF ) which 

is detailed in Section 4.3.1.1 “The principle of the friction connections 

design”. 

, ,*

,

pl b Rd

slip req

t

M
F

h
=

       (4.21) 

Where Mpl,b,Rd is the beam plastic bending resistance and ht is the 

connection lever arm (distance from the middle of the Tee web to the middle 

of the haunch bottom flange). 

In the next step, the capacity design bending moment (
*

CDM ) for the non-

dissipative elements is evaluated based on the design slip force (
*

,slip RdF  

previously defined) and considering the overstrength coefficient Ωμ as defined 

in equation (4.22). 

* *

,CD slip Rd tM F h=    (4.22) 
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a) Scheme for FD-A b) Scheme for FD-B 

Figure 180 Details for the joint design force 

 

A – the ideal node 

B - the column face 

C – the end of the protruding part of 

the connection 

L – span length measured as distance 

between column axes 

Lcf – span length measured in-between 

column faces 

LFD – span length measured in-between 

friction device ends 

Figure 181 Points of reference for the design forces 

The forces obtained have to satisfy the initial assumption i.e. that the 

maximum bending moment in point C is not larger than Mpl,b,Rd.  

*

, ,FD CD pl b Rd

L a
M M M

L

−
=    (4.23) 

2

cf FDL L
a

−
=   (4.24) 

This implies a reduction of both the damper slip resistance (and bending 

resistance MFD) and the forces for the capacity design (MCD). 
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, , ,CD slip Rd tot pl b Rd

L
M F h M

L a
=   

−
  (4.25) 

, ,

,

pl b Rd

slip Rd

tot

ML
F

L a h 

 
− 

  (4.26) 

,FD slip Rd totM F h=  (4.27) 

The resistance of the friction device is thus set based on the beam capacity 

and, given the current Eurocode 8 rules, this in turn will lead to large member 

section and friction connections with corresponding significant capacities. 

4.5.1.2 FD-B 

In this design approach, the dissipative element (friction damper) is 

designed for the forces from the seismic combination (considering the seismic 

forces reduced by q) obtained from the elastic analysis. Figure 180b details 

the distribution of the bending moment in the joint zone for the current design 

methodology. The values are obtained as follows: 

,
FD

slip req

t

M
F

h
=   (4.28) 

, ,FD Ed Ed G Ed EM M M M = +  (4.29) 

Where MFD is the design bending moment for the dissipative element, MEd 

is the design bending moment from the seismic combination, MEd,G is the 

contribution of the gravitational loads to the design bending moment and MEd,E 

represents the contribution of the exceptional loads (reduced by q) to the 

design bending moment. 

The non-dissipative elements (column-face connections, beams, columns) 

are designed considering the overstrength factor Ωμ 
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, ,cf Ed G Ed EM M M= +     (4.30) 

Where MEd,G  and MEd,E represent the same as above, but in the column 

face section and Ωμ is the overstrength coefficient defined in the following 

Section. 

 

4.5.1.3 The overstrength coefficient Ωμ 

In both proposed methodologies, the Ωμ is of crucial importance, and it is 

defined as: 

.95% .95%

.5% .5%

st b

dyn b

N

N





 = 

      (4.31) 

Where: 

− 
.5% .5%,dyn bN  (lower-bound values) for the design of the dissipative 

connection 

− .95% .95%,st bN  (upper-bound values) for the design of the other non-

dissipative elements 

Considering the friction coefficient values obtained from lap shear test (

.5% 0.53dyn =  and
.95% 0.84st = ) and the ratio .95% .5% 1.20b bN N = , it results 

that 1.9  . 

4.5.2 Design Assumptions for the Case Study 

In order to assess the performance of the new structural system, a set of 

traditional MRFs were designed according to EC8. Starting from these frames, 

identical sets were designed following the new proposed strategies for the 

design of free from damage moment resisting frames (FD-MRFs). 

The geometrical features of the examined frames selected are shown in 

Figure 182, where the parameters chosen for variation i.e. number of storeys 
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(3 or 6), number of spans (3 or 5) and the span length (6 or 8m) are also 

depicted. The structures had a square in-plane configuration and the MRFs to 

be designed were considered the 2 outer-most frames (assuming all bays as 

lateral resisting bays). The secondary beams were assumed parallel with the 

MRF and at a constant space of 2 m, allowing the 6 and 8 m span frames to 

have the same distributed load on the MRF beam. 

The combination for the evaluation of the design vertical forces is defined 

by the following equation: 

2, ," "k i k iG Q+        (4.32) 

Where Gk,i represent the characteristic permanent loads, Qk,i represent the 

characteristic variable loads and 
2,i  is the combination coefficient for the 

quasi-permanent value of the variable action i, which is a function of the 

destination of use of the building. 

 

 

Figure 182 Frame configuration 
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Figure 183 The tributary area for masses, additional gravity loads for P-Δ effects and the vertical 

loads directly assigned to the MRF 

The seismic masses were evaluated considering the gravitational loads 

from the combination in equation below and the self-weight of the frame 

members. The tributary area for the gravity loads is considered as in Figure 

183. 

, ," "k E i k iG Q+        (4.33) 

Where 
, 2,E i i  =   is the combination coefficient for variable action i, 

which takes into account the likelihood of the loads Qk,i to be not present over 

the entire structure during the earthquake, as well as a reduced participation in 

the motion of the structure due to a non-rigid connection with the structure. 

The combination coefficients are defined in Table 49. 

Table 49 The combination coefficients 

 2,i
 


 ,E i

 
Intermediate floor 0.30 0.50 0.15 

Roof 0.30 0.80 0.24 
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The permanent and live loads considered for design were chosen within a 

practical range (4.5 kN/m2 and 2 kN/m2 respectively). As for the combinations, 

there will be two of significance, namely: 

The seismic combination for dissipative elements (i.e. damper): 

2, ," " " "dissip k i k i EdULS S G Q A− = + +      (4.34) 

And the seismic combination for non-dissipative elements: 

2, ," " " "non dissip k i k i EdULS S G Q A−− = + +      (4.35) 

The seismic action was modelled assuming a response spectrum Type 1 

and soil Type C. As depicted in Figure 184, three seismicity levels were 

considered for the design of the structures: Medium (MH), High Hazard (HH) 

and Very High Hazard, with PGAs equal to 0.25g 0.35g and 0.45g, 

respectively, The maximum behavior factor q = 6.5 was adopted for the design 

spectrum. 

 

Figure 184 Design spectra 

4.5.2.1 Imperfections 

The unfavourable effects of construction errors (within the allowable 

tolerances) are considered as an equivalent imperfection in the form of an initial 

sway imperfection. 
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The procedure given in EN1993 1-1 allows modelling the global sway 

imperfections as equivaent horizontal forces evaluated based on: 

,i d dH p=
        (4.36) 

Where  is the global initial deformastion assumed) and pd represents the 

total design vertical loads defined by the following equations: 

0 m h   =
       (4.37) 

1.35 1.50d k kp g q= +
      (4.38) 

Where 
0  has the basic value 1/200 and 

m  is the reduction factor for the 

number of columns in a row m and 
h  is a reduction factor for height h 

applicable to columns. The two coefficeints are defined in the equations: 

1
0.5 1m

m


 
= + 

        (4.39) 

2
h

h
 =

        (4.40) 

The forces above are applied at each storey and considered in all 

combinations. 

4.5.2.2 Torsional effects 

Accidental torsional effects must be accounted for in accordance with the 

Eurocode design rules. However, in case of the planar design of frames the value 

is reduced to 1.3 (from 1.6) in order to avoid an over conservative design. 

4.5.2.3 The P-Δ effects 

In order to avoid overdesigning the structures due to the very restrictive code 

limitations for the P – Δ effects, it was assumed that the interstorey drift sensitivity 

coefficient (θ) should be in between 0.1 and 0.2, and the lateral force to be 
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amplified accordingly with 1 (1 ) = − . According to EC8 Part 1 the interstorey 

drift sensitivity coefficient is evaluated as: 

tot t

tot storey

P d

V h
 =

       (4.41) 

Where
totP  is the total gravity load at and above the storey considered in the 

seismic design situation,
td  is the design interstorey drift, evaluated as the 

difference of the average lateral displacements ds at the top and bottom of the 

storey under consideration, 
totV  is the total seismic storey shear and h storey is the 

interstorey height. 

4.5.2.4 Material Properties and Member sections 

The steel members were assumed with typical I European profiles. The beams 

were modelled considering IPE profiles, while for the columns HE B, HE M and 

HD sections were used. All members in the investigated structures were 

considered made of a S355 steel. 

4.5.2.5 SLS check 

The verification for drift considerations was made according to EC8, 

considering: 

0.010r storeyh  
       (4.42) 

Where
r  is the design inter-storey drift,  is the reduction factor which 

takes into account the lower return period of the seismic action associated with 

the damage limitation requirement (considered 0.5) and h storey is the storey 

height. 

4.5.2.6 ULS checks 

Since the dissipative element of this structural configuration is the friction 

damper and not the beam ends, both the beam and column will be treated as 

non-dissipative elements. 
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The strength and stability checks according to EC3 Part 1-1 need to be 

performed for both beam and column. The internal forces for the named 

checks (
EdM ,

EdV , and 
EdN ) are evaluated based on the seismic combination 

for non-dissipative elements 
non dissipULS S −− , as depicted in: 

, ,Ed Ed G Ed EM M M= + 
      (4.43) 

, ,Ed Ed G Ed EV V V= + 
      (4.44) 

, ,Ed Ed G Ed EN N N= + 
      (4.45) 

In the case of columns, it is required that the shear force to be limited at 

50% of the shear plastic capacity of the column, as defined: 

,

0.50Ed

pl Rd

V

V


       (4.46) 

EC8 regulations do not allow the formation of soft storey plastic 

mechanisms, as this kind of mechanism calls for high local ductility demands 

in the columns of the soft storey. In order to prevent the development of such 

mechanism, the local check must be satisfied at all nodes, except for the last 

floor. 

1.3Rc RbM M        (4.47) 

Where: RcM is the sum of the moment of resistance of the columns 

framing the node and RbM  - is the sum of the moments at the face of the 

column and is evaluated as: 

, ,Rb j Rd h Ed GM M s V=  +        (4.48) 

Where sh is the distance from the tip of the haunch/rib plate to the column 

face and VEd,G is the shear force due to gravity loads. 
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4.6 ANALYSIS ASSUMPTIONS FOR THE CASE 

STUDY 

4.6.1 Material, elements and general modelling 

assumptions 

The nonlinear static (Pushover) and dynamic (Timehistory) analyses were 

performed in SeismoStruct 2016. 

The S355 steel was modelled considering a Menegotto-Pinto material 

model. The mean yield strength is determined as shown in the equation below 

and the modulus of elasticity was assumed with a value of 210GPa. 

, 1.25 355 443ov y kf MPa  =  =
     (4.49) 

  
a) Material properties b) Sample curve 

Figure 185 Menegotto-Pinto material model implemented in SeismoStruct 

For all steel members an inelastic force-based frame element was used 

(infrmFB), considering 5 integration sections and 150 section fibers.  
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In the beam to column nodes, rigid links were modeled in order to simulate 

the higher stiffness of the joint (column web panel, haunched connection). 

These members were modelled considering a material with a very high 

Young’s modulus and resistance, allowing thus no elastic or plastic 

deformation. The elements of the leaning column have been defined as Truss 

elements i.e. elements that have no rotational DOF. 

The nodes of the structure have been defined in accordance with the actual 

geometry of the member sections, allowing the physical dimensions of the 

connection to be defined (see Figure 186). 

Both Eurocode 8 compliant (EC8-MRFs) and the models of the frames 

with friction devices (FD-MRFs) were detailed with rotational springs at the 

column face. These elements were used in order to model the bending capacity 

of the full-strength haunch joint and the friction device, respectively. 

  
a) Node modelling for EC8-MRFs b) Node modelling for FD-MRFs 

Figure 186 Node modelling 
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a) Calibration of smooth model b) Calibration of multilinear model 

Figure 187 Spring calibration for FREEDAM Frames 

The response of the traditional full-strength joint was modelled based on 

the experimental tests performed within the EQUALJoints  RFCS Research 

Project (RFSR-CT-2013-00021) using a smooth model (Figure 187a). 

Given that the two design approaches (FD-A and FD-B) define differently 

the joint resistance, the bending resistance of the rotational spring was also 

defined differently, as given by: 

, | ,0.80j Rd FD A pl bM M− =
      (4.50) 

, | ,j Rd FD B pl bM m M− = 
      (4.51) 

Where m is the utilization factor of the FREEDAM devices necessary for 

the obtained frame members. Practically, m is a rounded value of the 

, ,Ed pl b RdM M ratio obtained from the analysis, being 
EdM  the bending 

moment from the seismic combination considering an elastic analysis. 

From the stiffness point of view, the joints were assumed as full rigid, as 

the experimental and numerical tests on both small and large joint 

subassemblies showed that the stiffness of the column face connection exceeds 

25 times the beam stiffness (see Figure 188). The characteristics of the springs 
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were modelled considering a multilinear model that was calibrated based on 

the experimental results on joints (Figure 187b). 

  

a) IPE270 - HE 220M b) IPE450 – HE 500B 

Figure 188 The stiffness of the experimentally tested connections  

4.6.2 Boundary conditions and Loads 

The column bases have been fully restrained, in accordance with the 

design assumptions. All nodes, for each level have been constrained by 

horizontal rigid diaphragms and the out of plane displacement and rotation 

have been restrained (rx+y+rz). 

The seismic masses evaluated considering the tributary area detailed in 

Figure 183, have been modelled as lumped masses in the leaning column 

nodes. Therefore, the settings were set for the software to define the masses 

from the element self-weight and the lumped masses. 

The vertical loads corresponding to the tributary area of the beams (half 

of a secondary beam span) have been modelled as distributed forces. The 

additional vertical forces corresponding to the MRF tributary area (the 

remaining gravity forces for half the structure, necessary for the P-Δ effects) 

have been modelled as concentrated forces on the leaning column (see Figure 
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183). In consequence, the loads were entirely defined, and the settings of the 

software were set to not evaluate loads from masses. 

4.6.3 Analyses performed  

4.6.3.1 Static Pushover Analysis 

Nonlinear static analyses have been performed considering triangular and 

uniform lateral force distribution based on the distribution on the frame height 

of the design base shear function of the floor mass and height. 

 

Figure 189 Lateral force distribution 

In terms of monitored output the following results have been deemed of 

importance: 

• The frame overdesign: 
1 dV V  - α1 according to EC8 i.e. design base 

shear multiplier in order to attain first plastic hinge 

• The frame redundancy: 1yV V  - αu / α1 according to EC8 

• The frame overall overstrength: 
y dV V  - αu according to EC8 i.e. 

design base shear multiplier in order to attain the collapse mechanism 



Chapter 4 

283 

 

The values of
1V , 

dV  and 
yV  are as defined in Figure 190. The design base 

shear 
dV was evaluated based on the fundamental period T1 obtainedby means 

of Eigenvalue analysis in Seismostruct. 

 

Figure 190 The base shear – top displacement curve 

4.6.3.2 Nonlinear Dynamic Analyses 

The Timehistory analyses have been performed considering a set of 14 

natural earthquake acceleration records (Table 50). The signals were obtained 

from the RESORCE ground motion database in order to match 1.3 (due to 

torsional effects) times the elastic acceleration spectrum provided by EN 

1998-1 (see Figure 191). The Timehistory analyses were performed 

considering the 0.59, 1.00 and 1.73 multipliers corresponding to the three limit 

states defined by EN1998-1, i.e. damage limitation (DL), significant damage 

(SD) and near collapse (NC), respectively. 

The following parameters have been monitored: 

− Peak Transient inter-storey drift – also referred to as PTID 

− Residual interstorey drift (PRID) - for the Timehistory analyses, the 

records have been extended in order to allow the assessment of this 

result 
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Figure 191 Comparison between natural signals and EC8 design spectrum 

Table 50 Basic data of the selected ground motions 

Earthquake 

name 

Date Station Name Station 

Country 

Magnitude 

Mw 

Fault 

mechanism 

Alkion 24.02.1981 Xylokastro-O.T.E. Greece 6.6 Normal 

Montenegro 24.05.1979 Bar-Skupstina 

Opstine 

Montenegro 6.2 Reverse 

Izmit 13.09.1999 Yarimca (Eri) Turkey 5.8 Strike-Slip 

Izmit 13.09.1999 Usgs Golden 

Station Kor 

Turkey 5.8 Strike-Slip 

Faial 09.07.1998 Horta Portugal 6.1 Strike-Slip 

L'Aquila 06.04.2009 L'Aquila - V. 

Aterno - Aquila 

Park In 

Italy 6.3 Normal 

Aigion 15.06.1995 Aigio-OTE Greece 6.5 Normal 

Alkion 24.02.1981 Korinthos-OTE 

Building 

Greece 6.6 Normal 

Umbria-

Marche 

26.09.1997 Castelnuovo-Assisi Italy 6.0 Normal 

Izmit 17.08.1999 Heybeliada-

Senatoryum 

Turkey 7.4 Strike-Slip 

Izmit 17.08.1999 Istanbul-Zeytinburnu Turkey 7.4 Strike-Slip 

Ishakli 03.02.2002 Afyon-Bayindirlik ve 

Iskan 

Turkey 5.8 Normal 

Olfus 29.05.2008 Ljosafoss-

Hydroelectric Power 

Iceland 6.3 Strike-Slip 

Olfus 29.05.2008 Selfoss-City Hall Iceland 6.3 Strike-Slip 
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4.7 RESULTS OF THE NUMERICAL ANALYSES 

The steel frame weight quantified and compared in Figure 192 shows that 

frames designed with the FD-A approach require a higher material 

consumption than those designed with EC8 and FD-B. This result is ascribable 

to the need to provide adequate lateral stiffness and fulfil the stronger 

requirements for local and global hierarchy criteria. The comparison between 

the three methodologies shows that the lowest material consumption obtained 

for all frames is for FD-B frames and that from an economical point of view, 

the latter solution turns out to be more effective. 

 

Figure 192 The designed MRF weight 

4.7.1 Static nonlinear (Pushover) analyses 

The static nonlinear analyses were performed considering both a modal 

and uniform force distribution (to consider higher vibration modes) and the 

results of the two are presented. 

The pushover curves presented in Figure 193 for a sample structure (MRF 

6-3-6) for all three design criteria (EC8, FD-A and FD-B) offer a first 
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understanding of the level of overstrength that EC8 compliant frames have, 

especially the frames designed considering medium high seismic hazard level 

(0.25g).  

 

Figure 193 Normalized Pushover curves for MRF 6-3-6 

Basically, the EC8 structures exhibit values of the collapse multiplier α 

(V/Vd) comparable to the reduction factor q, meaning in fact that the structures 

remain elastic under design level seismic events. This was expected, as during 

the design process, the effect of the seismic action had to be severely amplified 

due to the P – Δ effects and the interstorey drift limitations were governing in 

most of the cases (even for FD-MRFs). The EC8 compliant frames designed 
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for larger seismic hazards have lower α, however still not very far of the value 

of q adopted for the design (i.e. 6.5). 

In the case of FD-A approach, the strength and the stiffness of the frames 

are not effectively decoupled, since the bending strength of the friction joints 

are set equal to the strength of the connected beams (Mj,Rd ≈ Mpl,b,Rd). This 

leads to large column cross sections needed in order to satisfy the local 

resistance hierarchy and, in combination with the structural overdesigned 

caused by the deformability limitations, to large values of overdesign.  

 

 

 

Figure 194 Average overdesign between modal and uniform lateral loading case 
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On the contrary, for the FD-B set of frames, the friction joints are designed 

to match the seismically induced forces (Mj,Rd ≈ MEd), while the required 

lateral stiffness is guaranteed by the inertia of the girders, thus allowing to 

decouple the strength and the stiffness of the frames. This in turn leads to 

smaller overstrength and lower consumption of steel compared to the FD-A 

set of frames.  

A more interesting way to look at the results is in terms of the different 

ratios between Vy, V1 and Vd. The average of the modal and uniform lateral 

force distribution analyses is plotted in the following diagrams. In order to 

assess the efficiency of the new design methodologies (FD-A and FD-B) it is 

interesting to look at the comparative diagrams in Figure 194 which show the 

V1/Vd ratio (a measure of the overdesign of the frame). 

As expected, the EC8 compliant frames are heavily overdesigned due to 

the large overstrength factor that results from the need to satisfy the design 

drift limits imposed for the serviceability limit state (SLS). The frames 

designed with the FD-A approach exhibit overdesign coefficients not so far 

away from the EC8 ones i.e. the average is 2.80 with respect to 3.93. Although 

the new methodology introduced has lower overstrength coefficients and 

reduces the demand in terms of design interstorey drift, the local ductility 

requirement i.e. the hierarchy criterion at the level of the beam to column node, 

leads to further increase of sections.  

Applying the FD-B design approach leads to very reasonable overdesign 

values averaging about 1.3. The low values are easily explained by the way 

the design and the critical requirements for the verifications proceeded. 

Similar with the EC8, the FD-B models are mostly designed for SLS, but 

different from the code compliant frames, the non-dissipative members are 

checked for lower forces obtained using a smaller overstrength factor Ωµ. This 

is a significant advantage because in this way it is possible to calibrate the 
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design resistance of the connection to the design bending and shear demand, 

also allowing a more effective application of hierarchy rules without the need 

of overdesigning excessively the columns compared to the traditional EC8 and 

FD-A approaches. 

 

 

 

Figure 195 Average redundancy between modal and uniform lateral loading case 

Figure 195 shows the comparison of the Vy/V1 ratio that is a representative 

factor for the redundancy of the structures and can be found in the EN 1998-1 

as the αu/α1 ratio. For the design of multi-storey multi-bay frames a value of 

1.3 is recommended but allowance is made for values up to 1.6, provided that 
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they are justified by means of pushover analyses. As it can be seen from the 

plot, the EC8 and FD-A structures reach the same average values of 1.49, 

respectively but with frames having ratios larger than 1.6. However, for the 

FD-B set, all the frames exceed the maximum factor of 1.6, averaging around 

1.7. This means that the MRF typology allows activating a large number of 

friction connections but not simultaneously, thus resulting a large redundancy. 

Such a result suggests the necessity to provide large slip capacity to the FD 

connections in order to guarantee adequate rotation capacity. 

 

 

 

Figure 196 Average overall overstrength between modal and uniform lateral loading case 
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The overall overstrength of the three sets of frames presented in Figure 

196 summarizes the aspects already discussed and reveals that the EC8 and 

FD-A set of frames have a great amount of inherent overstrength i.e. on 

average 5.8 and 4.2 of the design capacity, respectively. On the other side, the 

FD-B frames present more reasonable levels, averaging at 2.2. 

Due to the un-desirable response of the frames designed according to the 

design methodology FD-A, the nonlinear dynamic analyses have not been 

performed for these structures. Therefore, from this point on only the results 

of EC8 compliant frames and the FD-B methodology frames will be discussed. 

To simplify matters, the FD-B set of frames will be addresses simply as FD. 

4.7.2 The dynamic performance at the code-set levels (DL, 

SD and CP) 

The assessment of the structural response at the three limit states imposed 

by EC8 is made based on the peak transient interstorey drift (PTID) and peak 

residual interstorey drift (PRID). The three limit states have the failure criteria 

defined in Table 51. 

Table 51 Failure criteria for the EC8 limit states 

Limit state 
Return period 

[years] 
Scaling factor Failure criteria 

Damage limitation 

(DL) 
225 0.59 0.75% TID ratio 

Significant damage 

(SD) 
475 1.0 

2.5% TID ratio 

1% RID ratio 

Near collapse (NC) 2475 1.73 
5% TID ratio 

5& RID ratio 

 

For the sample frame MRF 6-3-6 (66 storey, 3 bays of 6m) the PTID at 

the Dl limit state (Figure 197) shows that both the EC8 compliant and the FD 

frames cross the limit of 0.75%, with values closer to 0.8% and 0.9% 

respectively as expected, owing to the deformability guided design for which 

the admissible value used was 1.0%. 
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Figure 197 Transient interstorey drift for MRF 6-3-6 at DL (SF = 0.59) 

 

Figure 198 Peak transient interstorey drift for MRF 6-3-6 at SD (SF = 1.00) 

 

At the significant damage limit state (SF - 1) the maximum PTID were 

within the limit (for example maximum 1.2 and 1.4, 8 respectively for the two 

design methodologies, considering the MRF 6-3-6 HH). An interesting 

observation drawn from the shape of the PTID in Figure 197 and Figure 198 
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is that the EC8 set of frames exhibit more of a cantilever deformation type, 

while the FD frames develop a drift distribution typical of a shear type 

mechanism.  

The shape is lost for the CP limit state due to the plastic incursions. Figure 

199 shows that the proportions between the PTID of the EC8 compliant frames 

and the FD frames continue in the same direction. Maximum values of 1.8% 

and 2.2% (well within the limit) are attained respectively for the MRF 6-3-6 

HH, the values being proportional also for the frames designed in the other 

seismic hazard levels 

The residual drifts (PRID) diagrams in Figure 200 show first of all, very 

low values for all frames (both design sets have the maximum residual drift 

below 0.5% for SD and below 1% for CP). Secondly, it can be observed that 

the FD set of frames has larger levels of residual drifts, almost double the one 

of EC8 compliant frames. This difference is caused by the severely 

overdesigned solutions, especially for the EC8 compliant frames.  

As a matter of fact, for the frames designed for very high hazard (PGA 

0.45g – VHH), as the ULS strength and stability requirements became more 

important, both solutions provide closer values for CP limit state. The same 

cantilever (for EC8) and shear type (for FD) deformed shape can be 

recognized.  

The consideration which can be drawn from these analyses is that the FD 

frames exhibit an adequate seismic response at the code limit levels, not very 

far from the one of the EC8 compliant frames, but slightly more flexible. 

However, the severe deformability design code requirements limited the 

solutions for the frames which were very similar in terms of members, with 

the difference in terms of the dissipation mechanism and the force level at 

which the nonlinear events occur (being them plastic deformation or sliding). 
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Figure 199 Transient interstorey drift for MRF 6-3-6 at CP (SF = 1.73) 

 

Figure 200 Peak transient interstorey drift for MRF 6-3-6 
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4.8 SUMMARY 

The part of the thesis presenting the friction connections investigated in 

the framework of the FREEDAM project was structured in accordance with 

the three levels at which both experimental and numerical investigations were 

performed i.e. (i) sub-component level, (ii) beam-to-column assembly level 

and (iii) structural level. Each level led to a set of conclusive remarks which 

influenced the subsequent stages of the investigation and in the end a set of 

friction devices which can be used for MRFs with IPE beam profiles was 

defined. In this way the goal of fully characterizing the solution was achieved 

and the concept is readily available, being a fully qualified solution, which is 

easy to implement into practical applications. 

The preliminary FE analyses carried out on very detailed models of 

friction dampers tested in the past by Latour et al. (2014) were useful in 

determining the influence of parameters such as the preload sequence, slip-

rate influence, pressure and contact area influence. It was highlighted that the 

explicit modelling of the coating (friction material) is not mandatory if the 

interaction at the sliding interface level is properly implemented. The second 

set of numerical models, calibrated based on experimental tests carried out at 

University of Salerno within the framework of the project, confirmed the lack 

of effectiveness of disc spring washers in preventing preload loss. 

The experimental campaign on the beam-to-column assemblies proved the 

stable and predictable response of friction connections under cyclic loading. 

Both investigated configurations (with horizontal and vertical sliding 

interfaces) had a rigid elastic response and reached the design level bending 

resistance. The connections did not exhibit significant degradation of strength 

and negligble plastic deformations were observed in the beam and the column. 

The FE models were able to accurately replicate the experimental results and 

provide further insight into the friction connection behavior. The numerical 
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investigations focused on the influence of friction coefficient and clamping 

force variability and the shear force transfer mechanism. The first parametric 

study highlighted the correlation between the two parameters and the bending 

resistance, but also strengthened the observation coming from the lap-shear 

tests that the clamping force must be kept in an optimal range (30 to 60% of 

Fp,Cd – the clamping force according to EN1993 1-8) in order to avoid 

unwanted softening or hardening behavior. 

The larger asymmetry of the horizontal friction damper (about 25%) as 

well as the undesired hardening/softening behavior (observed in the 

parametric study results) and the degradation in strength for the large assembly 

(observed during the experimental tests) rendered the second solution 

preferable for subsequent development. The friction connection with vertical 

damper has a lower asymmetry (about 15%) and exhibits less pronounced 

hardening/softening behavior hence, this was the configuration considered for 

the analysis of frames and the development of the final friction devices. 

Preliminary analyses on advanced and simplified numerical models of 

full-scale structures equipped with traditional partial strength connections 

(reduced beam section - RBS) and the investigated friction devices, show that 

the two have similar nonlinear behavior with the difference that the latter is a 

low-damage easily repairable solution. 

 Starting from the current design procedure of MRFs in the European 

framework, two strategies were proposed for the design of frames equipped 

with friction devices. The investigated frames showed that in order to 

efficiently implement the solution, the device needs to have a capacity based 

on the design seismic forces (FD-B methodology) and not based on the beam 

capacity (FD-A methodology). This aspect is particularly important as MRFs 

need to meet very restrictive deformability limitations hence, disconnecting 
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the strength and stiffness of the frame (FD-B) is the only way to allow the 

activation of sliding under design level earthquake. 

Among the aims of the FREEDAM research project there was the 

definition of design catalogue for easy-to-use selection of the friction 

connections. The catalogue was set with reference to 5 devices, which were 

designed in such a manner that most of the IPE profile depths were covered. 

Indeed, by setting the beam section type and the utilization factor m from the 

structural analysis (m = MEd/MRd) it is possible to select the required friction 

device and no additional column-face connection checks are required as the 

device is prequalified.  

This activity was carried out in collaboration with the industrial partners 

of the project (FIP Industriale) with the aim at offering the device on the 

constructional steel market as a readily available low-damage and easily 

repairable solution. Figure 201 shows a draft of the brochure presented by the 

company at the final workshop of the project. 

 

Figure 201 Catalogue developed by FIP Industriale 
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5 CONCLUSIONS 

5.1 GENERAL REMARKS 

The thesis presents the investigation on bolted connections for resilient 

steel structural systems characterized by ease of repairability in the earthquake 

aftermath. The international experiences of recent earthquakes highlight the 

need to implement structural solutions which mitigate the post-earthquake 

repair costs. Among the large number of potential solutions (e.g. viscous 

dampers, hysteretic dampers, base isolation, BRBs, replaceable links, shear 

panels, friction connections, etc.) the most suitable solutions are the friction 

connections for moment resisting frames (MRFs) and concentrically braced 

frames (CBFs) and the replaceable links for eccentrically braced frames 

(EBFs) as they minimally change the design and construction processes while 

bringing life-cycle cost mitigation. 

In this study the focus was on EBFs and MRFs. In the framework of these 

two structures, the most effective innovative solution were investigated: 

replaceable links for EBFs and friction connections for MRFs.  

Although conceptually similar, the two solutions address the problem 

differently: 

1. The solutions concern different lateral resisting system i.e. 

detachable links for eccentrically braced frames and the friction 

connections for moment resisting frames. In the first case the solution 
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is easily repairable because the dissipative ductile element (the link) 

can be replaced owing to the end-plate connections, while in the case 

of the moment resisting frames, the plastic energy dissipation 

mechanism provided by the plastic hinges at the beam ends is replaced 

by the friction dissipation provided by the connection  

2. The connections for the detachable links represent traditional 

end-plate solutions while the connections for the MRFs are novel 

friction connections which have a different dissipation mechanism.  

3. In the case of detachable links, the connections must be 

designed to remain elastic, in order to facilitate the link replacement, 

while the friction connection is a special type of partial strength 

connection, therefore it is expected that the damage (even if minimal) 

would be localized in its components. 

Considering the conceptual differences and the level at which the state of 

the art is for the two solutions, it is evident that in investigating the two 

structural typologies, different issues need to be addressed. Therefore, the 

main conclusions drawn from the hereby presented work will be presented 

separately for the two parts and in the end common remarks for the easy-

repairable innovative structural systems will be highlighted. 

 

5.2 BOLTED CONNECTIONS FOR DETACHABLE 

LINKS 

The most important issues regarding the detachable links are as follows: 

(i) the actual level of shear overstrength at 0.08rad link rotation; 

(ii) the development of axial force in the link; 

(iii) the design of end-plate connections; 



Chapter 5 

301 

 

Using experimentally validated numerical models two parametric studies 

were performed: one considering the link profiles only (Figure 202a and b) 

and a second one considering link-connection assemblies (Figure 202c and d). 

Link profiles 

  
a) Fully restrained (FR) b) Deformable restraints (DR) 

Link-connection assemblies 

  
c) Fully restrained (FR) d) Deformable restraints (DR) 

Connections 

Figure 202 Analyzed models geometrical features 

 

5.2.1 Numerical investigation on the links 

The first parametric study investigated both the shear overstrength and the 

axial force in links assuming fully restrained boundary conditions (practically 

the case of links in traditional EBFs) and deformable restraints (the frame and 

connection deformability were modelled). The main conclusions drawn are: 

▪ The shear overstrength in the case of fully restrained boundary 

conditions is dependent on the link profile type (narrow or wide flange), 

on the link depth (d) and length (e). Namely, the universal value proposed 

in the EC8 is leading to either unconservative or overconservative 

approximations of the design force. 

▪ Using a multi-linear regression, it is possible to derive an 

equation function of d/e and Afl/Aw, that can be used in determining a more 

accurate value of the shear overstrength. 

▪ The analyses considering deformable restraints lead to a 

reduction of the shear overstrength and a loss of correlation with the link 
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geometrical features. This gives a hint into the dependency between the 

shear overstrength and the connection mechanical characteristics 

(stiffness, strength).  

▪ When the link models were investigated with fully-restrained 

BCs and axial release at one end (no acial force can develop) the shear 

iverstrength was significantly reduced, the result hinting at the effect the 

axial force has in inducing second-order shear in the link. 

▪ The analyses performed considering only the link revealed in 

fact that significant tensile forces develop when fully restrained boundary 

conditions are assumed. As mentioned before, this is the case for links in 

traditional EBFs and the axial force may affect the design, its presence 

leading to an increase in the shear overstrength due to the induced second 

order shear. 

▪ No correlation between the level of axial strength and any 

geometrical properties of the links can be observed and the tensile force at 

0.08rad is constant for same length links (1.0es, 0.75es, and 0.50es). 

 

5.2.2 Numerical investigation on the detachable links 

(link-connection assemblies) 

The second parametric study was aimed at assessing the link-connection 

assemblies considering the flush and extended end-plate connections designed 

according to the code compliant methodology and verified considering two 

alternative methods. The results led to the following conclusions: 

▪ Coherent with the analyses on the links and the simplified 

connection modelled as nonlinear spring, the correlation between the shear 

overstrength and the link geometrical characteristics is lost for the link-

connection assemblies. It was demonstrated that this is directly dependent 
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on the connection utilization ratio mj (the ratio between the connection 

design bending moment, Mj,Ed, and the connection bending resistance 

Mj,Rd). Indeed, as the connection gets weaker, the shear overstrength gets 

smaller. The stiffness of the connection plays a significant role as well, as 

it was shown that the stiffer extended end-plate connections develop larger 

shear overstrength compared to flush end-plate connections, for the same 

mj. 

▪ The significant values of tensile force observed in the case of 

fully restrained links was either severely reduced or changed sign, 

becoming compression, as a result of the significant compressive arch 

developing in the links. It became clear that the stronger connections were 

prone to develop tensile forces, while the connections with an mj closer to 

the limit of 1.0 were likely to remain in compression. This is explained by 

the fact that the closer to the fully restrained boundary conditions, the 

closer the tensile force is to the value obtained from the analyses on the 

link only. Similar to the shear overstrength, the axial force in the links of 

the link-connection assemblies is function of the connection strength and 

stiffness and an exponential function can be used to fit the obtained data. 

* 
The conclusions resulting from the parametric studies are useful to 

propose recommendations for the design of the link connections and EBFs 

equipped with detachable short links. A step-by-step methodology was 

proposed at the end of Chapter 3. By following the recommendations, it is 

possible to accurately account for the shear overstrength and axial force both 

in the connection design and at a global level. 
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5.3 BOLTED FRICTION CONNECTIONS 

Moment resisting friction connections are a relatively recent concept. In 

Europe there are no existing applications on actual constructions. However, 

the concept has been studied, tested and successfully implemented in New 

Zealand (Clifton et al., 2011 and 2012).  

“Free from damage connections” (FREEDAM) Research project was born 

as a research partnership between 4 universities (University of Salerno, 

University of Naples in Italy, University of Liege in Belgium and University 

of Coimbra in Portugal) and 2 private companies (OFELIZ and FIP 

Industriale) aiming at investigating friction connections and make the solution 

of MRFs equipped with such devices ready for practical applications in 

Europe. 

Within the framework of this project, the solution was investigated at all 

levels (sub-component, beam-to column assembly, frames with friction 

connections) and considering most of the issues affecting the friction 

connection i.e. friction material, bolt, clamping, durability, impact loading, 

high slip rate, post-slippage behavior, etc. 

The thesis presents some experimental results obtained from the tests 

performed at the laboratory of the Department of Civil Engineering of 

University of Salerno in partnership with the researchers of University of 

Naples ‘Federico II’ and the numerical investigations performed at the latter 

institution. The following paragraphs summarize the main conclusions of each 

research stage. 
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5.3.1 Investigation on the friction damper sub-component 

The lap-shear tests performed at University of Salerno have been 

conducted in order to give insight on the friction behavior of various materials 

considered as potential solutions for the friction damper. The results of the 

experimental campaign have been further used to calibrate FE models.  

▪ Preliminary numerical investigation on friction subassemblies 

tested in the past by Latour et al. (2014) show that the roughness of the 

clamped surfaces does not have to be micro-modelled. Indeed, it is 

sufficient to properly set the gross average frictional properties (pressure 

dependency, slip-rate dependency) 

▪ The experimental campaign showed that both hard and soft 

friction materials can be used in combination with stainless steel obtaining 

satisfactory performance under cyclic loads. 

▪ FEA results confirm the significant variability of the bolt forces 

during sliding which needs to be accounted for in design. The analyses also 

confirm that the presence and the number of disc springs does not 

significantly influence the response in terms of bolt preload loss. 

▪ At high slip velocities, large temperatures are developed within 

the specimen. When modelling temperature-dependent friction 

coefficients calibrated on experimental results, good agreement can be 

obtained by the FE models. Modelling this effect is crucial as it causes 

reduction in the slip force capacity. This is due to the transverse dilatation 

that initially increase the pressure, while bolt tightening reduces due to 

elongation of the shank. However, in the case of beam-to-column 

experimental tests, the temperatures stayed low, therefore they were 

neglected in the subsequent analyses. 
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5.3.2 Investigation on friction connections 

The seismic response of steel beam-to-column assemblies equipped with 

two types of friction dampers has been investigated by means of both 

experimental tests and finite element simulations. Based on the obtained 

outcomes, the following remarks can be drawn: 

▪ Both types of friction joints provided satisfactory overall 

performance with stable and predictable hysteretic response, as well as 

preventing from damage the non-yielding members. However, asymmetric 

response under sagging and hogging was observed. 

▪ The joint configuration dictates the level of the response 

symmetry under sagging and hogging bending. The configuration with 

vertical friction surface exhibited slightly better response, showing lower 

degradation under cumulated rotation demand with smaller difference 

between hogging and sagging bending. Indeed, the different resistance 

under sagging and hogging conditions ranges about 25% for the 

configuration with horizontal friction surface and 15% for that with 

vertical friction surface.  

▪ The FE models accurately predict the response of experimental 

tests. The models allowed characterizing the local response of the joints, 

which exhibit some plastic deformations in the bolts and in the connecting 

L-stubs and T-Stubs. The FE analyses also showed that the joints equipped 

with the vertical friction damper exhibit plastic deformations lower than 

the corresponding device with horizontal friction surface. 

▪ The variation of the bending capacity of both joint 

configurations is directly proportional with the bolt pretension force. 

Therefore, the bolt tightening process needs to be very well controlled 

because either larger or smaller tightening forces can impair the proper 

dissipative mechanisms. Indeed, the upper bound values lead to the 
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development of larger forces in the damper, situation that hinders the 

hierarchy in the joint, while lower clamping forces can lead to sliding in 

the damper under serviceability conditions. 

▪ The randomness of the friction properties must be accounted 

for in the design phase, because this variability can inflict in the joint 

response and, consequently, the global behavior of the structure. 

▪ The shear capacity of the column face connection needs to be 

properly designed. The FEA show that the L-stub of thevertical friction 

connection transfers shear force almost double the design shear force. 

5.3.3 Investigation of full-scale mock-up 

The investigation was focused on numerical analysis of the full-scale 

frame models equipped with traditional (RBS) and innovative (friction 

devices) connections which were tested within the framework of the project. 

The investigations include the static and dynamic analyses using the advanced 

(Abaqus) and commercial software (SAP2000). Based on the obtained results, 

the following considerations can be drawn: 

▪ When comparing the RBS and FD frames, similar response was 

observed, with small difference in terms of initial stiffness (larger for the 

FD frame owing to the more rigid connections). 

▪ The simplified model in SAP2000 offers results sufficiently 

close to the more realistic ones obtained from the ABAQUS model hence, 

it can be used to perform more demanding nonlinear dynamic analyses, 

while the advanced model is useful for the understanding of the local 

effects. 

▪ The preliminary FEAs allowed to estimate the values of the 

horizontal seismic forces and displacement demand in order to verify the 

capacity of the actuators. 
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5.3.4 Investigation of MRFs equipped with friction 

connections 

A parametric study based on both nonlinear static and dynamic analyses 

was carried out with the aim of investigating the seismic performance of 

moment-resisting frames (MRFs) equipped with friction beam-to-column 

connections. These frames have been designed according to two modified 

Eurocode compliant approaches (FD-A and FD-B) and the results were 

compared with a set of traditional EC8 compliant MRFs. Based on the 

obtained results the following remarks can be made: 

▪ The FD-A set of frames has significantly larger column 

sections (for the same beam profiles as the FD-B) resulting from the local 

ductility check at the node level. Indeed, the FD-A approach leads to 

structures heavier even than the EC8 set. Conversely, although the beam 

and column sections are mostly set based on the serviceability and global 

stability limitations, the designed structures are lighter owing to the lower 

demands at the node level. These results confirm the need for 

improvements on the way to account for the P-Δ effects in the design based 

on the EC8. 

▪ The FD-B led to frames that possess the lowest overstrength 

for all seismic hazard levels, due to the way the connection was designed 

for the forces coming from the seismic combination. On the other hand, 

the FD-A approach had frames with much larger overstrength closer to the 

traditional EC8-MRFs. Therefore, frames equipped with friction dampers 

exhibit enough overstrength and redundancy when appropriately designed, 

while being cost effective due to the reduction in member size. 

▪ Based on the nonlinear dynamic analyses, it is clear that the FD 

frames exhibit an adequate seismic response at the code limit levels, 

similar to the EC8 compliant frames, but slightly more flexible. However, 
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the severe deformability design code requirements limited the solutions for 

the frames which were very similar in terms of members, with the 

difference in terms of the dissipation mechanism and the force level at 

which the nonlinear events occur (being them plastic deformation or 

sliding). 

▪ The residual interstorey drifts are very small (bellow the limit 

states allowable limits) for both FD frames and traditional ones, with 

particularly low values for the latter. The results are easily explained, as 

the traditional frames are severely overdesigned and therefore remain 

elastic even under destructive seismic events. On the other hand, MRFs 

equipped with friction devices are slightly more flexible and in addition, 

the sliding mechanism gets activated when the design seismic intensity is 

reached. 

* 
The friction connections represent a solution with great potential for the 

replacement of the plastic hinge dissipation mechanism characteristic of 

moment resisting frames. This thesis, within the framework of the FREEDAM 

European research project, presented conclusive results confirming the 

effectiveness of such connections. 
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5.4 FUTURE RESEARCH 

The Author believes that the current work is a contribution to the 

advancement of knowledge with regards to the two solutions presented. The 

research ventures (DUAREM, INNOSEIS and FREEDAM) and the partners 

involved making their most to solve doubts, develop design rules and promote 

the application in practice.  

Nevertheless, several aspects require further investigation, especially the 

less traditional friction devices. The main future research points are: 

• Codification of actual shear overstrength and accounting for axial 

force effect on link connection 

• Assessment of the 5 friction devices proposed for use with IPE 

beam profiles 

• Influence of the column face connection on the asymmetry under 

hogging and sagging loading conditions 

• Shear design of column face connection 

• More rational code methodology to account for the second order 

effects 

• Performing full scale tests on structures equipped with friction 

connections (the full scale tests on the FREEDAM mock-uo) 

• Development of low-damage column base solutions  
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