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Introduction

The present work set itself in the recent debate about the paradigm shift in
statistical learning. Such new paradim is, in the last years, developed mainly
from the birth of Big Data. Big Data re-framed the way in which scientific
research and the constitution of knowledge itself is performed, changing also
the nature of the information categorization process (Boyd and Crawford,
2012). According to recent estimates, data scientists claim that the volume
of data would roughly double every two years thus reaching the 40 zettabytes
(ZB) point by year 2020, considering that a zettabyte is a unit of measure,
that amounts to one sextillion of bytes, or equivalently to one trillion of gy-
gabytes, used in digital information system. Including in such estimate also
the Internet of things (IoT) impact, it is likely that the data amount will
reach 44 ZB by 2020. Big Data is not simply denoted by volume, but also
from the variety and the complex nature of such data. The three defining
characteristics of Big Data, as a matter of fact, are often assumed to be the
three V : volume (the data growth and the constant increase of the run rates),
variety (data come now from various and heterogeneous sources, and assume
several natures), and velocity (the source speed of data flows is increased to
the point that real-time data are available) (Zikopoulos, Eaton, et al., 2011).
If taking under consideration only the amount of data, a particularly wide
dataset made up by simple data points, can be considered as well as a Big
Data case. More interesting, and at the same time more challenging, is the
recent and common context in which data are retrieved from sources that
are specifically suited for data with a more complex structure. Methodologi-
cal and technical difficulties are a common problem in using statistical tools
when facing increasing complexity in data. To give some examples, data
from most used Social Networks (Facebook, Twitter, Instagram and so on)
present various types of nature and attributes: associated with each post,
there is the text contained in the post itself, the author, the hashtags, the
date and the hour related to the post, the geographical location of the author,
and even pictures or videos are allowed to be included in the posted content.
Conceiving statistical tools able to properly analyze and interpret data so
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complex and heterogenous, is a tough task. But the information potentially
included in that composite data is often large enough to be advantageous, in
terms of statistical learning, to design and to develop techniques adequate
for Big, and complex, Data. For these reasons a recurring theme associated
to the new paradigm is Big Data opportunities (Labrinidis and Jagadish,
2012): more data are constantly available, and these kind of data have not
been easily analyzed before, opening a wide space of research and innovation
ahead. This leads to propose new methods for the treatment of this type of
data. The core of the contribution of this thesis goes to such direction.
Several domains have been deeply transformed by the arrival of Big Data,
and some of them, like social network platforms (Facebook, Twitter, Insta-
gram) could be seen as the perfect workshops in which new data structures
are developed. Other domains, like Business Analytics (BA) or Information
Technology (IT), have obtained great advantage from the wide use of Big
Data. For some other fields, on the other hand, the connection with Big
Data issues seems to be less obvious and less expected. With respect to
such assertion, among more unexpected domains, it comes out as a partic-
ularly interesting case the Big Data radical shift in education (D. M. West,
2012). The onset of Big Data has affected both the pupils’ learning pro-
cess itself and the evaluation process of the educational system. For the
former, many of the typical traditional tests provide just little immediate
feedback to students, whom often fail to take full advantage of digital re-
sources, so the improvement of the learning process is not as good as it
could be. For the latter, most common way to evaluate school system is to
assess pupils’ skills and performances for what concerns several domains; tra-
ditional school evaluation can suffer from several limitations if disregarding
Big Data opportunities. In the following, the focus will be on this particular
aspect. At International level, the Programme for International Students As-
sessment (OECD-PISA), https://www.oecd.org/pisa/, is the organization
that analyses, in a comparative fashion, pupil’s skills in many Countries. In
Italy, the school system evaluation is responsibility of the Istituto nazionale
per la valutazione del sistema educativo di istruzione e di formazione (IN-
VALSI), http://www.invalsi.it/invalsi/index.php. These, and other
similar organizations, are able to gather a huge amount of information and
data of different nature; most of the time, in a trade-off between complexity
and analysis capability, the choice is to analyze data reduced to a simpler
form. For example, several tests related to the same domain are reduced
to their mean values for more advanced analysis, and the same happens in
comparing school performances, losing so the internal variation of the phe-
nomena. It is clear, therefore, that complexity is an opportunity but also a
threat. Consistently, most of the statistical learning techniques used in this
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context are aimed to reduce such complexity, finding salient units and/or
clusters of units that can be properly described.
In the wide set of unsupervised statistical learning techniques, a specific role
is played by Archetypal Analysis (Cutler and Breiman, 1994). Archetypes
result as very useful salient units especially in account of their properties
and location. They are extreme units, belonging to the convex hull of data
cloud, defined as a linear combination of data units, meanwhile each data
unit can be expressed as a linear combination of the identified archetypes.
Therefore, they act as well separated units with extreme/peculiar behavior,
suited for benchmarking purpose, as already proposed in (Porzio, Ragozini,
and Vistocco, 2006, 2008). This techinque have been used as a statistical
tool to achieve a benchmarking analysi,s in a quantitative internal perspec-
tive (Kelly, 2004; Smith, 1990), given that the aim, in the school system
assessment, is to find excellence standards and worst performances in a pub-
lic sector. Archetypes have been already proposed and discussed for complex
data, especially in Symbolic Data Analysis framework (SDA) (Billard and
Diday, 2006). Within this approach, the symbolic data table is an aggrega-
tion of simple points into hypercubes (broadly defined). This more complex
data-matrix structure leads to define the intent as the set of characteristic
descriptions, in the symbolic object, that defines a concept. Given the intent,
the extent is the set of units in the data belonging to the concept accord-
ing to the description (set of characteristics) and with respect to a rule of
association. For this reason, in SDA, the core of the analysis is on the unit
of second level (categories, classes or concepts) where units of the first level
are aggregated into units of higher level. So, for example, based on given
characterisics that are the intent, birds (individual units) can be grouped,
using extent association, in species of birds (second level units). This ap-
proach allows to retain much more information from original data, allowing
for complex unit to present an internal variation and structure. Several on-
tologies have been proposed for Symbolic Data (Noirhomme-Fraiture and
Brito, 2011), and within this classification the focus will be, in this context,
on Histogram Symbolic Object, and on the relationship between Histogram-
valued data and Interval-valued data. In such SDA perspective, the proposed
methodological approach refers to statistical learning techniques. The aim
is to describe the aggregation of individual pupils’ scores to an higher level,
obtaining scores distributions rather than mean values for each school, and
then analyze them by means of Histogram Archetypes, under the assumption
that the loss of information to simplify data structure for further analysis is
not always necessary and worthy in this case. Keeping the natural complex-
ity of data is, from the viewpoint of this work, a potential added value to the
interpretative power of the analysis.
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A review about archetypal analysis with a focus on archetypes for complex
data will be presented, for a proper discussion about the analytical develop-
ment of the techniques. A particular emphasis will be given to the derivation
of prototypes and archetypoids from archetypes. The methodological inno-
vation, and the definition of the archetypes for histogram-valued data, will
be presented after this section. Histogram-valued data have been already
widely discussed and analysed in literature, especially for what concerns how
to measure distance and/or dissimilarity among them. For this reason, a
wide review about histogram distances/dissimilarities measures is presented
in 2.1.2. Once a distance is defined and choosen, it is possible to develop
and then perform clustering procedures for histogram-valued data, and a re-
view about this topic is given in 2.2. Among all the available functions to
calculate distance between histograms, particular emphasis will be given to
the distances derived from the Wasserstein distance, that uses a function of
centers and radii of histogram bins, in a similar way in which interval-valued
data are expressed within SDA approach. This allows to exploit the inti-
mate connection, between histogram-valued data and interval-valued data.
The new proposed technique will be tested first on a toy example. In the
following, the real data application is presented, using histogram archetypes
identification as a tool to analyze data retrieved from INVALSI test. The
archetypes identified will act as initial intents in the Symbolic Data Anal-
ysis approach, and the categorization of school-units in the space spanned
by the archetypes will be the way in which extent allocation is performed.
This work, seeks, first of all, to accomplish a task of practical nature: to
create a space in which is possible to categorize Italian schools according to
their reading/writing and mathematics skills using a distribution of pupils’
scores rather than mean values. Then, for what concerns the methodological
task, the aim is to to develop an extension of archetypal analysis (Cutler and
Breiman, 1994) to deal with histogram-valued data as defined in Symbolic
Data Analysis, creating so a proper tool to face the former real-data issue.
The work is structured as follows: in the first chapter an overview over sta-
tistical learning and its last changes in the Big Data era will be discussed,
deepening the new role of educational assessment in recent years given the
increasing data complexity. In the second chapter histogram-valued data
will be reviewed in a SDA perspective, with particular emphasis on the wide
set of available dissimilarity measures and on several unsupervised statistical
learning techniques. The role of archetypes is analyzed and discussed in the
third chapter, highlighting the usefulness of archetypal analysis is an use-
ful tool in benchmarking evaluation. The extension of archetypal analysis
to histogram-valued data is derived in the fourth chapter, presenting results
based on a toy example to discuss properties, location and algorithm issues.
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Data structure and data building procedure from INVALSI test is presented
in the last chapter. Archetypes for histogram-valued data are so identified
and then used as benchmarking tool for schools, based on distribution scores.
In the Conclusions section, some hints about further developments, in partic-
ular for what concerns symbolic data archetypes, are proposed to deal with
unanswered questions that this work still has left open.
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Chapter 1

Statistical learning: challenges
and perspectives in Big Data
era

1.1 Statistical learning: definition and aim

The development of new statistical tools, as well as the improvement of tech-
nical/technological instruments, has brought growing interest in last years.
Statistical Learning plays a main role in such scenario. It is at the intersec-
tion of statistics with other sciences in a multidisciplinary approach, since
concepts, procedures and definitions are coming from several domains, even
if converging somehow to similar results. This has lead to a very heteroge-
neous and diverse theoretical foundations in terms of thorough formalization.
However, what all the Statistical Learning topics have in common is, for sure,
the well-defined 4 phases (Berk, 2016) that can be assumed as the standard
framework in which researchers perform their steps of analysis in order to
extract useful information from data by means of statistical tools:

1 Data collection
It includes all the possible procedures in order to retrieve data. It is
possible to collect new data with an ad-hoc survey, re-use old data,
purchase data from other sources and so on.

2 Data management Often called also ”Data wrangling”. It consists of a
series of actions or steps performed on data to organize, verify, trans-
form, integrate, and extract even new data in an appropriate output
format in order to perform the analysis (Singleton et al., 2005).
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3 Data analysis it is the main core of the procedure, and aims to extract
advantageous patterns from data, in terms of knowledge.

4 Interpretation of results It is related to the explanation, both from an
analytic and from a substantial perspective, of the detected patterns,

These four steps are widely formalized in quantitative approaches broadly
speaking, even if researchers belong to different fields. Researchers adopting
different theoretical background have, likely, used divergent terminology for
each part of each phase. Further, certain developments has been proposed by
scientists working in industrial framework and business environment. They,
in general, use terms that are not the same of the ones used by academics.
This issue is an additional element that increases the heterogeneity into re-
search phases definition and standardization. For the purpose of this work
the first task is, due to this troublesome and somehow confusing framework,
to define what is Statistical Learning in a quite accurate way and, as
a consequence, to decide to what extent statistical techniques will be dis-
cussed in next sections and to understand the dynamic role of Statistical
Learning in Big Data era. It will be defined mainly for its role in quantita-
tive research and will be compared to the concepts of Data Mining and
Machine Learning .

� Statistical Learning
As pointed out by several authors (e.g. Vapnik, 2000), a great revolu-
tion in statistics has happened starting from the 1960s. The Fisher’s
paradigm, developed in the 1920s, has the focus on the parameters
estimation: the researcher has to know the exact number of these pa-
rameters to carry out a proper statistical analysis. The analysis about
causal - effect relationships between variables can be faced, in this
framework, by means of parameters estimation; parametric statistics
is the way in which the effect size is calculated, given that predictors-
responses relationship is assumed to be known. As a general idea,
classic statistics, both frequentist and Bayesian, was considered first of
all a branch of mathematics, that evolved as a sub-topic using as main
theoretical framework the theory of probability, and as tool various
optimization algorithms. Scientific community agrees about the most
important proposals that reasonably started an innovation in statistics
field:

i Tikhonov Phillips regularization (Phillips, 1962) or, after the work
of Arthur E. Hoerl (Hoerl and Kennard, 1970), ridge regression.
It is the most commonly used method of regularization of ill-posed
problems.

12



Statistical learning: definition and aim

ii Development of non-parametric statistics methods (Conover, 1999),
introduced by Parzen, Rosenblatt, and Chentsov. Inference pro-
cedures whose validity do not rely on a specific model for the
theoretical population distribution are called distribution-free in-
ference procedures. Non-parametric refers to the properties of the
inference problem itself. The term distribution-free applies to the
methodological properties that are involved in solving inference
problem.

iii Formalization of the law of large numbers in functional space and
its relation to the learning processes by Vapnik and Chervonenkis
(1971).

iv Development of algorithmic complexity and its relationship with
inductive statistical inference, mainly proposed by Kolmogorov,
Solomonoff, and Chaitin (M. Li and Vitanyi, 2008).

New concepts and new techniques came out from these ideas, and the
combination of the statistic domain with other fields created new ap-
proaches. But the main core of the statistical learning is unquestionably
the following: What can we learn from data? What do data tell us?.
As conclusive remark, moving from the classic paradigm to the mod-
ern approach to face statistic issues, a recent definition of Statistical
Learning that summarizes its aims and its development as an analytical
procedure, is proposed by Bousquet (2004):

”The main goal of statistical learning theory is to provide
a framework for studying the problem of inference, that is
of gaining knowledge, making predictions, making decisions
or constructing models from a set of data. This is studied
in a statistical framework, that is there are assumptions of
statistical nature about the underlying phenomena (in the
way the data is generated).”

� Data Mining
Data Minin aims to extract useful information from large data sets
or databases (Hand, Mannila, and P. Smyth, 2001). It is a general
and rough definition, therefore it includes elements from statistics, ma-
chine learning, data management and databases, pattern recognition,
artificial intelligence, and other areas. Lying at the intersection of all
the previous domains, it has developed is own methods and working
tools, but preserving some features from all the mentioned fields. Data
Mining approach has been conceived to be used when the data set is

13



Statistical learning: definition and aim

massive, complicated, and/or may have problematic issues (for example
in case of more variables than observations). Sometimes, the acronym
KDD (Knowledge Discovery in Database) is used as synonym of Data
Mining. Often, Data Mining is associated with the so-called big data
(Han, Pei, and Kamber, 2011). The term big data, used for the first
time in 1941 according to the Oxford English Dictionary, was preceded
by very large databases (VLDBs) which were managed using database
management systems (DBMS). During the 1990s, it was proofed that
digital storage was by far more cost-effective than paper storage (Morris
and Truskowski, 2003). Since then, year by year, the storage capacity of
electronic devices has increased quickly and sharply, big data have be-
come more accessible and widespread, and Data Mining has established
itself has a key role paradigm. In this sense, a first difference can be
highlighted from Statistical Learning: while Data Mining is consistent
and suitable almost exclusively when dealing with big data, Statistical
Learning is a more flexible approach for what concerns data size, cause
it is designed to extract usefull patterns from data even when dealing
with a small dataset. Data that can be considered ”small” due to their
size, are indeed suited to be analyzed by means of classic statistical in-
ference. Also the steps to carry out in order to perform an exhaustive
analysis are different in their definition, even if they can be somehow
interchangeable from a content point of view. According to a general
and validated standard of the middle 90s (Fayyad, Piatetsky-Shapiro,
and P. Smyth, 1996), these phases can be summarized in 5 big steps:

1 Data Selection

2 Pre-processing

3 Transformation

4 Proper Data Mining Analysis

5 Interpretation/evaluation

A more recent formalization (Han, Pei, and Kamber, 2011) is even more
focused about the term data, giving it the maximum emphasis:

1 Data Cleaning

2 Data Integration

3 Data Selection

4 Data Transformation

5 Data Mining

14
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6 Pattern Evaluation

7 Knowledge Presentation

Making a comparison between these Data Mining steps and the Sta-
tistical Learning ones, sum differences arise. In Data Mining steps no
theoretical formalization or analytical hypothesis to be confirmed/dis-
confirmed are made. Data Mining analysis is, explicitly, approaching
data with no previous formalized hypothesis from an analytical point
of view, giving to this analysis an exclusively exploratory nature, while
Statistical Learning can be both exploratory or confirmatory. On the
other hand, the phase of data collection in Statistical Learning, is de-
signed also taking into account the concepts of target population and,
if necessary, several explicit research questions.

� Machine Learning
Machine learning has been born as a field of computer science that gives
computer systems the ability to ”learn”; therefore, computers are able
progressively to improve performance on a specific task or to achieve a
given goal. It is done by means of an efficient utilization of data and
without being explicitly programmed for these purpose (Samuel, 1959),
but allowing computers to learn, gradually but automatically, without
constant human interaction. Most of the time, the crucial part is to As
well as for Statistical Learning and for Data Mining, also for Machine
Learning there are some essential components that can be expressed
explicitly as 3 main steps to carry out a Machine Learning procedure
(Domingos, 2012):

1 Representation
A classifier, that is a function that transforms input data into
output category, must be represented in a formal language that the
computer system can handle properly. Formalize a set of classifiers
that the learner (computer system) can learn is crucial. Usually,
a classifier makes use of some sort of ”training data”, on which
it trains its skills to figure out the best rule of classification. The
representation space is also known as basically the space of allowed
models (the hypothesis space).

2 Evaluation
An Evaluation function has the role to make an objective com-
parison between classifiers, in order to figure out which ones are
good and which are performing poorly, and possibly to establish a
ranking between them. This function is named, when discussed in
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different contexts, as utility function, loss function, scoring func-
tion, or fitness function. Evaluation allows to test a chosen model
even against data that has never been used for training. In this
phase, at the end of the evaluation, additional hyper - parame-
ters can be estimated. These hyper - parameters estimation is
often called tuning, and it refers to some aspects of the procedure
that are considered to be known in advance, in order to start the
representation phase. A few parameters are so usually implicitly
assumed fixed when machine learning procedure has started, and
at this stage is a worthy to go back to the beginning and test those
assumptions, and eventually try other values.

3 Optimization
This last step is the phase when one can searches for the space
of represented models to obtain better evaluations. The choice of
optimization technique is crucial to the efficiency of the algorithm;
it is the strategy how it is expected to reach the best model.

Given these features, Machine Learning approach is able to elaborate
several powerful and useful tools to improve performances of computer
systems overall. Therefore, several findings coming from machine learn-
ing field can be exploited also by researchers using a different approach,
like Statistical Learning or Data Mining.
Traditionally, there have been two fundamentally different types of
tasks in Machine Learning (Chapelle, Schölkopf, and Zien, 2009). The
first one is supervised learning. Within this approach, given a set of
input variables, the aim is to use such variables to obtain a good previ-
sion about a set of output variables. The utopian goal to be achieved is
to approximate the mapping function so well that once input variables
are given, no errors occur in finding output variables values. Output
variables are often called also targets or labels. It is called supervised
learning because the whole process of the algorithm learning directly
from the training set is made in a similar way in which teacher super-
vises a learning process. He knows the right answer (output), so the
algorithm iteratively makes predictions based on the input using train-
ing data, and it is corrected by the teacher. Learning process stops
definitively when the algorithm achieves a level performance that suits
with a predetermined threshold. When the output is a set of continuous
observations, the task leads to an analysis that falls in the regression
family; when the output is a set of discrete - categorical observations,
the task is solved as a classification problem.
On the other hand, in unsupervised learning, no output is provided
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as intended in supervised learning. Thus, the goal for unsupervised
learning is to explicitly understand and model the underlying struc-
ture (in terms of distribution or patterns) in data. All the observations
are considered to be input, and no learning process is carried out to
improve algorithm performance, given that there no teacher interfer-
ence in suggesting the correct output. Computational procedures are
left to their own to extract useful information and interesting struc-
ture to interpret from data. Some authors put the emphasis on the
opportunity to exploit this kind of approach to figure out the random
variables that has likely generated the observed data. Other techniques
are quantile estimation, clustering, outlier detection, and dimensional-
ity reduction. As last remark, is important to point out a pretty recent
branch; Semi-Supervised Learning (SSL) (X. Zhu, 2006). It is, very
intuitively, half-way between Supervised Learning and Unsupervised
Learning. In this case, the algorithm faces some observation with no
labels, usually in a pretty large dataset, while some others are target
units provided with labels. Data matrix is therefore divided into two
parts: a certain number of observations providing output labels, and
certain observations where examples are without labels. So, SSL can
be assumed to be a mixture of both approaches. A good example of
real data scenario, is a images archive in which only few of the pictures
provide a label, (e.g. mouse, cat, bird, dog) and a large part of them
are not labelled. Due to this data structure, a mixture of supervised
and unsupervised techniques can be used in this case.

Table 1.1 summarizes the most important features of the three previously
described frameworks, stressing out similarities, differences and interconnec-
tions.

The tool proposed in this work, can be framed in the wide family of
Statistical Learning. Since it does not require labelled units, it will be com-
pared to other methods in the groups of Unsupervised Statistical Learning.
Therefore we will focus, in the following, only on techniques belonging to
this group, in order to make an exhaustive comparison with Archetypical
Analysis for Histogram Data. Therefore, a section aimed to describe and
introduce what are distributional data 2, as particular case of symbolic data
analysis (SDA), is presented in the following section 1.4. Further, it will be
deepen the relationship between interval-valued data and histogram-valued
data within SDA approach, to exploit their intimate connection to discuss
the statistical development of archetypal analysis.
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Table 1.1 Comparison between Statistical Learning, Data Mining and Ma-
chine Learning

Analysis Main Aims
Data Size and

Approach
Steps Subgroups

Statistical
Learning

Provide a
framework for

studying
problem as in

classical
inferential

perspective but
no only, with the

aim of extract
knowledge from

a set of data

Both small and
Big data - Both

confirmatory
and exploratory

Data collection,
data

management,
data analysis,
interpretation

Frequentist,
Bayesian

Data Mining

Extract useful
information from
large datasets or

databases

Only big data -
Only exploratory

(extract
knowledge from

data)

Data cleaning,
data integration,
data selection,

data
transformation,

data mining,
pattern

evaluation,
knowledge

presentation

No real
subgroups, but

several
techniques, such
as Text Mining,
Web Mining etc.

Machine
Learning

Give computer
systems ability

to ”learn”;
develop

algorithms;
recently going
closer to SL

Only big data -
Exploratory (no

theoretical
background)

Representation,
Evaluation,

Optimization

Supervised,
Unsupervised,

Semi-Supervised
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1.2 Statistical learning methodological chal-

lenges for Big Data

The development of the data-driven decision-making (DDDM) (Provost and
Fawcett, 2013) approach involves making decisions that are based on ob-
jective data analyses, in the sense that business governance decisions are
undertaken only if backed up with verifiable data. This approach excludes so
the influence of intuitive decisions or decisions based on observation alone.
Big Data are the core of several DDDM analyses, increasing the size and the
heterogeneity of available data to be used in such analyses. With such vast
amounts of data now available, and estimating an exponential increase of
that amount in the next years, companies in almost every sector are deepen-
ing techniques and methodologies to exploit data information for competitive
advantage (Mallinger and Stefl, 2015). So, bbbb the paradigm shift in sta-
tistical learning has been encouraged not only by academics and researchers,
but also by the expectation of businessmen and entrepreneurs, that have been
involved in this fast and radical change, and are facing this increasing amount
of data playing an active role. In literature, the wide use of big data analysis
in order to obtain predictive power and so gaining advantages in terms of
revenues, is often called as Big Data Predictive Analytics (BDPA) (Dubey
et al., 2017). To deal with the recent availability of big data, new perspec-
tives about data analysis have been inspired from several fields, leading to
the development of new (or modified) statistical techniques. Therefore, new
theoretical framework has been developed, as well as new ways to accomplish
practical analyses. Thus, both innovations, theoretical and practical, have
lead to a paradigm shift in data analytics. As pointed out by Sinan Aral in
Cukier, 2010.

”Revolutions in science have often been preceded by revolutions
in measurement.”

Therefore, it is reasonable to assume that the creation of new ways to store,
measure, analyse, interpret (in one word, conceive) data is the basis that
stays at the foundations of a new paradigm (Kitchin, 2014). Some authors
have claimed that this new paradigm is the establishment of “the end of the
theory” (Anderson, 2008). This debate is centered around the data-driven
approach as a result of big data era, with a reborn of an empiricism that does
allow researchers to mine and retrieve information from data without making
explicit theoretical hypotheses. This is an epistemological controversial, that
points out how statistics as a whole has to face a new paradigm. According
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to Kitchin, 2014, the strong emphasis on big-data-driven analyses has sev-
eral properties, or features, that help to overcome several shortcomings of
traditional deductive approach:

� Given that n→∞, in big data framework it is possible to represent a
whole domain and, consistently, obtain results belonging to the entire
population.

� There is less space for a priori hypothesis, and statistical models are
less useful in this context.

� Analysis is without sampling design and/or questionnaire design po-
tential biases. Data are able to have a meaningful and truthful trait
by themselves.

� To the extreme, data meaning transcends context or domain-specific
knowledge, thus anyone familiar with statistics and visualization could
be able to interpret them in an exhaustive way. If the analysis is
carried out taking into account mainly information included in data
and retrieved directly from them, it means that context knowledge
takes second place.

Thus, given all these factors, some questions come out about the role and the
validity of the techniques embedded in the original inductive statistics tool-
box. A major case is the wide discussion over the validity of the p-value in
big data scenario. Proper ad-hoc developments and possible solutions can be
found in Hofmann, 2015. Null hypothesis significance testing (NHST) is the
classical way in which inductive statistics confirms or disconfirms underlying
hypothesis. The controversy around it, and as a result around p-value issues,
has been broadly discussed already in Nickerson, 2000. In case of n → ∞,
in the new paradigm some authors suggest to move from classical NHST in-
terpretation of confidence interval and significance in general into confidence
intervals for effect sizes, which are considered presumably the measures of
maximum information density (Howell, 2011). Classical statistical inference,
in such paradigm, seems so to have lost the predominant role with its tradi-
tional tools. Generally speaking, the interest has moved towards techniques
that are able to reduce the data complexity, rather than found significant
relationships or differences. This is mainly due to the fact that in ase of
big data analysis the following conditions are true: target population is not
defined in advance as in the traditional way, sampling theory has lost its
dominant role as in classical inference procedures, p-value and NHST have
to be used carefully ( due to the fact that when n → ∞ and so even very
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small discrepancies should be significant), data sources and data nature are
numerous and heterogeneous. As also pointed out in Franke et al., 2016,
it is almost obvious that in such scenario the focus of statistical analyses is
on dimensionality reduction and in finding salient units to summarize main
patterns. This work tries to give a contribution in such direction.

1.3 Big Data: a very brief history

As claimed by Zikopoulos, Eaton, et al., 2011:

“In short, the term Big Data applies to information that cant be
processed or analyzed using traditional processes or tools. In-
creasingly, organizations today are facing more and more Big
Data challenges.”

Which kind of organizations are we talking about? Who was the first com-
pany to make aware use of big data? Who was the first scholar to come
out with a formal definition of big data? The answers to these questions
are neither obvious nor easy. Probably, not even so useful. As said, the
paradigm shift has been pretty fast and driven by a key development of
available technology, which has affected everybody, academy and companies.
A brief history of big data is useful to figure out the general path, and to
understand what are the new challenges in terms of fields of application.
According to some authors, for example Barnes, 2013, the issues related to
modern big data framework and paradigm shift are, overall, a prosecution of
past debates around several statistical themes. He has framed its specula-
tions in his own geographic field research. By the way, given that big data
are usually generated continuously, quickly and in large numbers, some fields
can be considered as the most important natural sources of big data. In the
following, 5 of the most relevant sources for big data are summarized:

� Media technology. Data are complex (images, videos, sounds) and are
generated very fast by electronic devices. A key role is played by social
media platforms (Facebook, Twitter, Instagram and so on).

� Cloud platforms. These platforms are designed for storing massive
amount of data. Cloud platforms can be private, public or third party.

� Web in general. This is probably the most obvious, still the most
important. Most of the data available in the net are free and retrievable.

� Internet of Things (IoT). Data generated from the IoT devices and their
interconnections. IoT is a system of interrelated computing devices,

21



Big Data: a very brief history

mechanical and digital machines, that are provided with the ability
to transfer data over a network without requiring human-to-human or
human-to-computer interaction.

� Databases. In traditional form and in recent form. Structured or un-
structured. For the most part, structured data are related to infor-
mation with a very high degree of organization, whereas unstructured
data is essentially the opposite.

In general, electronic devices like phones or IoT devices, produce massive,
dynamic flows of heterogeneous, fine-grained, relational data. From a gen-
eral perspective, it has been natural for companies acting in these fields to
experiment an initial connection with big data analytics; academics involved
in researches in that fields, as well, have conceived the new paradigm way
earlier than others. Big data have, from that moment on, moved and influ-
enced more fields year by year. Experts familiar with big data analytics have
been able to apply the big data opportunities to new domains of application.
For example, studies to improve benchmarking in medical sector have been
proposed in Jee and G.-H. Kim, 2013. The main purpose of the study is to
explore how and when use big data in order to effectively reduce healthcare
concerns; especially for what concerns the selection of appropriate treatment
paths, improvement of healthcare systems, and so on. For other public sec-
tors, a wide review can be found in (G.-H. Kim, Trimi, and Chung, 2014),
with a particular emphasis on enhancing government transparency and bal-
ancing social communities. Governments and official institutions have avail-
ability of a huge amount of data, especially collected in traditional forms,
i.e. census data collection, but also an increasing capability to collect and
analyze data that come from more recent sources, such as administrative
sources. Data of different form (traditional, structured, unstructured, semi-
structured, complex and so on), even if gathered from different sources, can
belong to the same public sector, and their simultaneous analysis in order to
obtain an exhaustive information retrieve process, is a hard challenge to face.
The efficient use of big data analytics could provide sustainable solutions for
the present state of art, and suggest future decisions to undertake, making
a more aware use of information from policy makers. In the next section,
challenges of the use of big data in educational sector will be deepen.

1.3.1 Big data in education and massive testing

In the contemporary era of big data, authors interested about the relation-
ships between the paradigm shift regarding innovative data analytics and
educational system, often refers to the the concept of big educational data.
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In Macfadyen, Dawson, et al., 2014, Learning Analytics (LA) is defined as
the possibility of implementing assessments and feedbacks in real-time evalu-
ation systems. Learning analytics provides higher education helpful insights
that could advice strategic decision-making regarding resources distribution
to obtain educational best-performances. Further, the aim in this context is
to process data at scale that are focused mainly on improvement of pupils’
learning and to the development of self regulated learning skills, under
the assumption that to improve cognitive skills it is necessary to customize
learning process with respect to teachers and students needs and require-
ments.However, also in this field, to accomplish these kinds of aims, a shift
in culture is needed: from assessment - for - accountability to assessment
for learning (Hui, G. T. Brown, and S. W. M. Chan, 2017). In the former,
the evaluation is made because it is just a duty to accomplish, also because
there is a law that makes it mandatory, and so people involved in a given
system are aware that they have to carry out a process of evaluation. In the
latter, efforts are made to use evaluation findings to undertake new policies,
with the aim to improve future learning processes in school system. The
new possibility to make use of big data analytics tools has become the major
innovation in order to reach that cultural change. In Manyika et al., 2011 it
has been outlined how data in general expands the capacity and ability of
organizations, even public sectors, to make sense of complex environments,
and educational system belongs without any doubt to the group of complex
environments. Due to budget restrictions and increasing heterogeneity in
learners, scholastic programmes and teachers’ background, several authors
has claimed that using Learning Analytics in big data era is not a potential
advantageous option but indeed an imperative that each organization has to
pursue (Macfadyen and Dawson, 2012). This kind of approach will lead to
optimize educational systems, making an efficient use of funds allocated for
schools, highlighting good and bad practices mining information from data
(Mining, 2012). A key role in that sense is played by Learning Management
Systems (LMSs) (M. Brown, 2011). Several researchers and technical reports
corroborates how learning management systems have the ability to increase
student sense of community (both at scholastic and university level). Fur-
ther, they can help to provide support in learning communities and enhance
student engagement and success.
One of the most important and well-known source of big data in educa-
tion is worldwide the PISA assessment in OECD organization framework 1.
Its main aim is to assess, by means of standardized and comparable tests,
pupils’ learning/cognitive skills across the world. The core of PISA tasks can

1https://www.oecd.org/pisa/
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be summarized with the words of OECD secretary-general Angel Gurra 2:

”Quality education is the most valuable asset for present and
future generations. Achieving it requires a strong commitment
from everyone, including governments, teachers, parents and stu-
dents themselves. The OECD is contributing to this goal through
PISA, which monitors results in education within an agreed frame-
work, allowing for valid international comparisons. By showing
that some countries succeed in providing both high quality and
equitable learning outcomes, PISA sets ambitious goals for oth-
ers.”

These ambitious goals can be seen as benchmarking best-performances to
look forward. As well as scholastic performances in terms of proficiency by
itself, PISA tests data are also addressed to figure out how specific sociolog-
ical, cultural, economical and demographic variables are able to affect the
overall pupils’ results.
From all these hints and previous researches, it is clear that:

i Big data are available also in educational system, both from official
institutions (such data from Minister of Education) as well as from
tests to assess pupils’ skills.

ii New statistical learning paradigms go in parallel with new cultural
framework in education: from assessment - for - accountability to as-
sessment - for - learning.

iii It is becoming crucial to adopt decisions based on big data analytics,
and expectations are that policy makers use findings from big data in
conscious way. From policy makers perspective, it is not only advanta-
geous to use such findings, but somehow mandatory nowadays.

iv Learning processes can be improved if results are correctly used and
interpreted, leading to a customization in learning processes.

v Proficiency tests like PISA, the one carried out by OECD, but many
others all around the world, are crucial sources of big data in education,
and proper tools should be created and checked to analyze such tests.

This work aims to address the last item since it presents a new tool to study
complex data in education, showing it in action on real data and in particular
to the Italian case of proficiency scores grouped by school.

2https://www.oecd.org/pisa/pisaproducts/37474503.pdf

24

https://www.oecd.org/pisa/pisaproducts/37474503.pdf


Introduction to Symbolic Data Analysis

1.4 Introduction to Symbolic Data Analysis

If data are made up by n objects or individuals, where each generic unit
i is defined by a set of collected values from different variables of size k,
with a generic variable j, data matrix has the classic structure X(n,k) (1.1).
In contrast, symbolic data with measurements on k random variables are
k-dimensional hypercubes (or hyperrectangles) in Rk, or a Cartesian prod-
uct of k distributions, broadly defined (Billard and Diday, 2006). A single
point unit is therefore a special, and the simplest, case of symbolic data, that
leads to the described classic form of matrix (1.1) SDA provides a framework
for the representation and interpretation of data that comprehends inherent
variability. Units under analysis in this approach, usually called entities, are
therefore not single elements, but groups (or clusters, or set of units) gathered
taking into account some given criteria. This leads to consider that there is
an internal variation within each variable for each group. Furthermore, when
dealing with concepts, such as animal species, pathologies description, ath-
letes types, and so on, data involve an intrinsic variability that can not be
neglected.
Each observation in SDA has, thus, a more complex structure, with this
internal variation that has to be taken into account; while dealing with sim-
ple points, only variation between observations is the core of the analysis.
In SDA approach, the intrisic and comprehensive structure of observations
leads to deal with within variation, as additional source of variability. From
an interpretative point of view, symbolic objects plays a key role in statis-
tics for complex data, cause they are suited to model concepts. This is a
notion that has been developed inside Formal Concept Analysis (FCA), that
is a framework laying mainly on the borders of Ontology and Information
Systems, of which the first founder is considered Rudolf Wille in the early
80s (Wille, 1982). The original motivation of FCA was the aim to find for
real-world situations and contexts a confirm of mathematical order theory.
FCA deals with structured data which describe relationship between units
and a peculiar set of attributes/characteristics. FCA aims to produce two
different kinds of output from the input data. One is a concept lattice, that
is an agglomeration of concepts described in formal way contained in the
data, usually hierarchically ordered using subconcept-superconcept relation
(Belohlavek, 2008). Such formal concepts are intended as representation of,
basically, natural concepts that human beings have in mind in an intuitively
way, such as “mammal organism”, “electric car”, “number divisible by 2 and
5”, and so on. The second finding of FCA is the attribute implications,
that describes the way in which a particular dependency, included in data,
comes from formal concepts; e.g., “respondent with age under 15 are at high
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schools”, “all mammals in data have 4 feet”, and so on. Many authors tried
to figure out a valide hierarchical structure for the framework (i.e. Priss,
2006); to be more precise, in FCA formal concepts are defined to be a pair
(E, I), where E is a set of objects (called the extent) and I is a set of at-
tributes (the intent). A category is a specific value assumed by a categorical
variables, that so defines a group of units belonging to the same kind (such as
birds of the same species). A class is a set of units, that are analyzed in the
same context and once merged together form an unique dataset. Concepts
are therefore the more complex structure in this theoretical thinking, and
that’s where the significant role of Symbolic Objects come from.
From a pure philosophical and ontological point of view, authors claim (Bock
and Diday, 2000), that a great advantage of symbolic data analysis is that
symbolic objects thus defined are able to make a synthesis of the following
different theoretical tendencies that are cornerstones in the ontological tra-
dition:

� Aristotelian Tradition
The link is in the fact that symbolic concepts can have the explana-
tory power of logical descriptions of the concepts that they represent,
given that concepts are characterised by logical conjunction of several
properties.

� Adansonian Tradition
Since the units of all the extension of a symbolic object are similar in
the sense that they satisfy the same properties as much as possible,
even if not necessarily Boolean ones. In that sense, the concepts that
they represent are polythetic, so they cannot be defined by only a
conjunction of properties, but members of same group will share most
of the properties. This because in Adansonian Tradition a concept is
characterised by a set of similar individual.

� Rosch prototypes
Cause their membership function is able to provide prototypical in-
stances characterized by the most representative attributes and individ-
uals. So, prototypes will be the typical-type inside a given community,
according to its features able to represent the category.

� Wille property (FCA)
This property refers to the fact that an object is wholly described by
means of a Galois lattice (Ganter and Wille, 1996) Given that SDA is
derived directly from FCA, the so - called “complete symbolic objects”
of SDA can be proved to be a Galois lattice, so this property is satisfied.
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Symbolic data can be of different natures: intervals, histograms, distribu-
tions, lists of values, taxonomies and so on. According to the given na-
ture of the data, different techniques and approaches are developed in order
to analyze them, and some examples of well - known symbolic data are in
(1.2), showing different kind of visual representation. A formal definition
of symbolic variable in presented in Bock and Diday, 2000. A comprehen-
sive ontology of the different nature of symbolic variables is proposed by
Noirhomme-Fraiture and Brito, 2011, where variables are first of all divided
between numerical and categorical, and then hierarchically partitioned due
to their nature, as depicted in 1.1.

Figure 1.1: Ontology of symbolic variables, taken from Noirhomme-Fraiture
and Brito, 2011.

In case of interval data, i.e. data expressed by interval of R, a pair
of numbers [a, b] represents all the numbers a ≤ x ≤ b. One of the first
proposed formalization to deal with such data was the interval arithmetic
(Moore, Kearfott, and Cloud, 1979), that has introduced and defined al-
gebraic properties and has proposed metric for such data. In particular,
authors have started to conceive the fuzzy set theory (Moore and Lodwick,
2003) linked to the analysis of interval data. In case of categorical data,
a remarkable approach is the one related to compositional data (Aitchison,
1982). A compositional data point is a representation of a part of a whole,
like percentages, probabilities or proportions. Usually it is represented by a
positive real vector with as many parts as considered. For example, if we look
at the elements that compose the Planet Earth structure, we see that in first
place there is iron (32.1% ), followed by oxygen (30.1% ), silicon (15.1% ),
magnesium (13.9% ), while all the others elements account for 8.8% . There-
fore, a compositional way to represent the data point ”Earth” is vector of 5
elements: [0.321, 0.301, 0.151, 0.139, 0.08]. A dataset of compositional data,
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(a) ZoomStar for different kind of Symbolic data (9 interval data, 3 multinomial or

distributional data) in cars dataset. Credits to the R package symbolicDA

(b) Histogram-value data of some countries by age and gender, represented by means

of Histogram. Credits to the R package HistDAWass

Figure 1.2: Various patterns for symbolic data and their representation
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in this example, will be made up by a different in each row , resulting then
in a vector of length 5 as observed value .
In the following section, the algebra and the features of distributional/his-
togram valued data will be deepen.

29



Introduction to Symbolic Data Analysis

30



Chapter 2

Elements of Distributional and
Histogram-valued Data

2.1 Distributional Data and Histogram-valued

data in SDA

Distributional Data are a specific kind of data embedded in SDA. Each ob-
servation is defined by a distribution, in the wide sense of the term. It can
be a frequency distribution, a density, a histogram-valued data or a quantile
function. Such data are assumed to be a realization of a numeric modal
symbolic variable. In particular, modal variables can model the description
of an individual, of a group, or of a concept, by probability distributions,
frequencies or, in general, by random variables (Irpino and Verde, 2015).
For example, data retrieved from official statistics as macrodata, are usually
described by means of basic statistics. When estimating a parameter, the
estimation is presented under the distribution of such estimation in several
samples. In these cases, even if we are observing a single variable, the proper
expression of such variable is not a single value but instead a multi-valued
quantity.
According to the literature (Bock and Diday, 2000, Noirhomme-Fraiture and
Brito, 2011), for histogram symbolic data we consider the situation in which
the support is continuous and finite, and each observed value is an histogram
developed over such continuous finite support, as in 1.2. To deepen the
structure of numerical nature of symbolic variables, each quantitative vari-
able, from a general perspective, may then be single-valued (real or integer)
as in the in classical framework, if it exspresses one single value per observa-
tion. Moving to the proper domain of SDA, a variable is multi-valued if its
values are a finite vector of numbers belonging to a finite numerical support.
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Further, interval variable occurs if its values are intervals (Moore, Kearfott,
and Cloud, 1979). Usually, when dealing with an empirical distribution over
a set of subintervals, the variable is called a histogram-valued variable.
Let’s define X as the variable, D as its underlying domain and R as its range,
i.e. where is theoretically possible to express its values. Given a set of statis-
tical units of size n, S = (s1, s2, ..., sn), in SDA framework, is possible to sum
up the information contained in S by means of an application, leading to the
symbolic variable X made up by p different variables, and with i = 1, ..., n:

X : S → D such that si → X(si) = α (2.1)

where α is the single numeric result of the application and D ⊆ R. It
means that, with such application to S, all the values of the range R are still
plausible, and are equal to the entire domain D. This is, given that only
one α is the outcome, the simplest case of SDA, when it becomes a single
standard numeric variable with only one realization for each observation.
When, on the other hand, values of X(si) are finite sets of αi, (2.1) becomes:

X : S → R such that si → X(si) = (α(1i), α(2i), ..., α(pi)) (2.2)

leading to a finite set of realization for each observation i. The defined vari-
able deriving from (2.2) is a multi-valued ones, so. The application creates
a finite set of values that describe the statistical unit.
In case of interval-valued data, the application leads to:

X : S → R such that si → X(si) = [li, ui] (2.3)

I is in this case a (n× p) matrix containing the values of p interval variables
on S. Therefore, each p-tuple of intervals Ii = (I(i,1), I(i,2), ..., I(i,p)) defines
a specific si ∈ S. Lastly, histogram-valued data are in this approach made
up by aggregating microdata in several intervals (or bins) inside lower bound
and upper bound [li, ui], providing more information than interval data about
data distribution.

X : S → R such that si → X(si) = [Ii1(p1), Ii2(p2), ..., Iik(pk)] (2.4)

In this context, [Ii1, Ii2, ..., Iik] are the set of sub-intervals, associated with the
observed frequencies (p1, p2, ..., pk). Therefore, it could be deepen the analy-
sis of internal variation between the maximum and the minimum value of the
distribution, while in interval data in (2.3) is not possible to make specific
assumption about frequency distribution, but only about general distribution
between boundaries. Further, the usually hypothesis made for in histogram-
valued data, is that in each subinterval data are uniformly distributed. Of
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course, if there is only one bin in the histogram structure, (2.4) simplifies
in (2.3), and therefore interval-valued data are a special case of histogram-
valued data.

2.1.1 Main statistics for histogram-valued data

The issue of histogram-valued data, and symbolic data in general, when try-
ing to calculate basic descriptive statistics, is the nature itself of such data
(Irpino and Verde, 2015). Each descriptive statistic has to take into account
the degree of internal variation that exists inside observations, while in single-
valued data only between observations variation is considered. So, questions
arise about to the extent to which classical formalization and classical con-
cepts of descriptive statistics can be adopted in case of distributional data.
The central core of the different approach is, then, the dispersion evaluation
inside each observation. As introduced in 2.1 and formalized in (2.4), inside
each bin (sub-interval) of the histogram data are considered to be distributed
as an uniform random variable. So data are equally spread from lower bound
of the bin to the upper bound of such bin. Formally, for each h interval where
h : (I1, I2, ..., Ih, ..., Ik):

φiX =
∑
j<h

pji + phi ·
x− lji
uji − lji

where (j = 1, ..., k) (2.5)

where φi is the density distribution for the variable X calculated in i. We,
thereafter, consider the definition proposed in (ibid.) for distributional sym-
bolic variable:

Definition 2.1.1. A modal variable is called a distributional symbolic vari-
able if for all i the measure φi has a given density φi, and so is possible to
simplify the relationship as: Xi = φi.

The debate about univariate and bivariate statistics for histogram-valued
data is a consequence of the starting approach and the theorized paradigm
that is behind the formalization of such distributional data. In SDA a com-
mon groundwork is that there are two different level of real data collection
(Bock and Diday, 2000). First level, the lowest one, is related to elementary
units. Aggregating together micro-data from basic units leads to obtain up-
per level data. This kind of histogram-data are so considered a generalization
of observed values in a group of lower-level units. The analysis procedure
that moves the computation from first level to second level has been deepen
mainly by (Bertrand and Goupil, 2012; Billard and Diday, 2003). Most of the
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assumptions are expressed about a generic set N formed by a number n of
elementary units. It can be fully described by a distribution-valued variable
X, with Xi = φi. Going straightforward to the statistics, it implies that the
mean, the variance and the standard deviation are the result of such statis-
tics computed on a mixture of n density functions, one for each observation
in the set N containing 1-level units. Usually, if all units are equally likely
to be present in N , weights used to create the mixture are all equal to 1

n
.

As presented in (Frühwirth-Schnatter, 2006), resulting mean of the mixture∑n
i=1

1
n
φi = φ is:

E(X) = µ =
n∑
i=1

1

n
µi (2.6)

Further, variance is defined as:

E[(X − µ)2] = σ2 =
n∑
i=1

1

n
(µ2

i + σ2
i )− µ2 (2.7)

In this approach, symbolic distributional data are suited to represent real
situation in which group of individuals are the basis to form an upper level
entity (employees nested in companies, pupils nested in schools and so on).
It is, of course, a context that happen pretty often, therefore the 2-level
paradigm has a wide range of possible application in real life, cause data
that are naturally organized in hierarchical order are not uncommon. Fur-
ther, if previous knowledge are available, is possible to change the weights to
calculate the φ mixture giving more importance to groups that are known,
for example, to be larger. Anyway, univariate statistics thus conceived are
implicitly assuming that there is no significant difference between individuals
inside the same group, or, at least, this kind of paradigm is not able to catch
such heterogeneity. Indeed, switching values assigned to different individuals
belonging to the same group, overall means and variance don’t change. This
framework does not allow to compare individuals aside from their groups.
In descriptive statistics context, mean (as expected value) can assume sev-
eral definition and formalization to extend straightforward its properties and
formalization to different kind of data. If we take into account recent develop-
ments and formalization of Frechet mean (Ginestet, Simmons, and Kolaczyk,
2012; Nielsen and Bhatia, 2013) such that:

Definition 2.1.2. with n elements described by the variable X, a di distance
between two descriptions and a set of n real numbers Z = (z1, ..., zn), a
Frechet type mean (known as barycenter) MFr is the argmin of the following
function:

MFr = arg min
x

n∑
i=1

zidi
2(xi, X) (2.8)
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The minimization problem in 2.8, is a generalization problem of finding
an entity of central tendency in a cluster of points (also called centroid).
Other kind of means, such as harmonic or geometric means, are just the ex-
tension of the 2.1.2 using different kind of distance di.
Chisini mean (Graziani and Veronese, 2009) applies another approach to
the definition of a mean. Often authors refers to the Chisini mean as rep-
resentative or substitutive mean (Dodd, 1940), due to its definition that is
considered to be useful in practical context. Formally:

Definition 2.1.3. a Chisini mean of single-valued variable X and a function
F such that F (x1, ..., xi, ...xn) applied to a set of n object, the mean is defined
as:

F (x1, ..., xi, ...xn) = F (Mchisini, ...,Mchisini, ...,Mchisini) (2.9)

where (Mchisini, ...,Mchisini, ...,Mchisini) is a vector that is the mere repetition
of the Chisini mean n times.

Due to some analytical issues, the equation in (2.9), could not have a
finite solution, and further the Chisini mean could be external to the interval
of observations [xmin, ..., xmax]. Consequently, usually some constraints are
imposed to the function F in order to obtain an unique final solution to the
minimization problem.
It has to be pointed out that, to extend both Chisini and Frechet means
to distributional variables, first step is to define a proper distance measure
between distribution (as histogram-valued data). Several dissimilarity and
distance measures between such symbolic data have been proposed (J. Kim,
2009) and compared to each other by several authors. The underlying idea
about the overall comparison of two histogram-valued data in SDA is that
the comparison has to take into account way more statistical aspects than
in the comparison between two single-valued data. For example, given the
different internal variation inside each distributional observation, two his-
tograms could share even same mean and/or median, but nevertheless have
a dissimilarity (or a distance) > 0. This can be due to a different degree
of dispersion, in terms of variation, around a fixed central tendency index.
Therefore, the basic idea behind distributional distances is that they should
be able to compare much part of distributions as possible.
Some of such dissimilarity measures come from the extension of a given dis-
similarity measure suited for interval-valued data, and then developed to
deal with histogram-valued data. The underline assumption is that is pos-
sible moving from (2.3) and extend that formalization to (2.4), and so that
if a measure is valid to compare two intervals, it is as well a proper choice
to compare two groups of intervals (each of them being an histogram). To
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formalize such kind of measures embedded in this approach, in the following
we define intersection and union between histogram objects taking into ac-
count their relative frequencies p linked to the nb number of bins. For this
formalization, histograms are assumed to be adequately transformed in order
to have exactly same sub-intervals.

Definition 2.1.4. For two different histogram objectHist1 andHist2, where
for each bin there are relative frequencies such thatHist1 → (p(1,1), p(1,2), ..., p(1,nb))
and Hist2 → (p(2,1), p(2,2), ..., p(2,nb)), intersection between them is defined as:

Hist1 ∩Hist2 = p1,i ∩ p2,i,with i = 1, ..., nb (2.10)

where each p1,i ∩ p2,i = min
1,...,i,...,nb

(p1,i, p2,i) (2.11)

Therefore, from (2.11) we formalize the concept of intersection as a com-
parison, bin by bin, of their respective density, and considering only the
amount of shared density. From a graphical point of view, such shared den-
sity is the only part in which histograms bins overlap 2.1.
Further, union between histogram objects is defined consequently as:

Definition 2.1.5. For two different histogram objectHist1 andHist2, where
for each bin there are relative frequencies such thatHist1 → (p(1,1), p(1,2), ..., p(1,nb))
and Hist2 → (p(2,1), p(2,2), ..., p(2,nb)), union between them is defined as:

Hist1 ∪Hist2 = p1,i ∪ p2,i,with i = 1, ..., nb (2.12)

where each p1,i ∪ p2,i = max
1,...,i,...,nb

(p1,i, p2,i) (2.13)

So, union thus defined leads to compare as well bins densities one by one
of both histogram, but the result is the maximum value that such density
shows. It is worthy to note that the sum of across bins densities in case
of union is ≥ 1, while on the other hand sum of such densities in case of
intersection is ≤ 1.

2.1.2 Main dissimilarity/distance measures for histogram-
valued data

Some dissimilarity measures take into account, in their calculation, elements
from both intersection and union between histograms, and that’s why is use-
ful to introduce them as part of histogram algebra. Further, some extensions
of dissimilarity measures that developed from interval to continuous data,
include concept of mean and standard deviation derived from formalization
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Figure 2.1: Two histograms and their overlapping densities. Intersection as
defined in (2.1.4) is the purple part where they overlap, union as defined in
(2.1.5) is the maximum height of each bin (red or blue)
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of Billard and Diday (2003). It starts from the general assumption of uni-
form distribution in each sub-interval. So, to compute the mean inside each
of them it has to be applied a simple arithmetic mean between boundaries li
and ui. Formally:

Definition 2.1.6. Given an histogram object Hist that is made up by nb
number of bins and as in 2.3 with li the lower bound of such bins and ui the
upper bound, mean according to Billard is defined as:

MHist =
nb∑
i=1

li + li+1

2
pi (2.14)

Therefore, as mentioned, mean in (2.14) is a weighted mean (using ob-
served density) of central values across bins. Standard deviation start from
same assumption, and as formalized in (J. Kim, 2009):

Definition 2.1.7.

SDH. =

√√√√ nb∑
i=1

(li −MH.)2 + (li −MH.)(ui −MH.) + (ui −MH.)2

3
pi (2.15)

These formalization are valid in case of natural histogram-valued data.
When dealing with objects coming instead from a previous procedure of union
or intersection of histogram objects, such definitions need a correction due
to the fact that, as mentioned, (2.6) has to hold that

∑nb
i=1 pi = 1. In case of

union as defined in (2.1.5) such sum is
∑nb

i=1 pi > 1 and in case of intersection

from (2.1.4),
∑nb

i=1 pi < 1. Therefore, we introduce the quantity p∗ that is

the normalization of such sum in order to obtain
∑nb

i=1 pi = 1.

p∗(Hist1∪Hist2)i =
p(Hist1∪Hist2)i∑nb
i=1 p(Hist1∪Hist2)i

(2.16)

p∗(Hist1∩Hist2)i =
p(Hist1∩Hist2)i∑nb
i=1 p(Hist1∩Hist2)i

(2.17)

Therefore, mean and standard deviation of objects derived from union or
intersection of histograms will take into account definitions in 2.16 and 2.17 to
have estimation of such univariate statistics consistent with usual properties.

Definition 2.1.8. Mean for an histogram-valued object derived from union
or intersection of simple histogram-valued objects are computed as:

M∗
(Hist1∪Hist2) =

nb∑
i=1

li + li+1

2
p∗(Hist1∪Hist2)i (2.18)
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M∗
(Hist1∩Hist2) =

nb∑
i=1

li + li+1

2
p∗(Hist1∩Hist2)i (2.19)

Definition 2.1.9. Standard deviation for an histogram-valued object de-
rived from union or intersection of simple histogram-valued objects are com-
puted as:

(2.20)SD∗(H.1∪H.2)

=

√√√√ nb∑
i=1

(li −M∗
(H.1∪H.2))

2 + (li −M∗
(H.1∪H.2))(ui −M

∗
(H.1∪H.2)) + (ui −M∗

(H.1∪H.2))
2

3
p(H.1∪H.2)i

(2.21)SD∗(H.1∩H.2)

=

√√√√ nb∑
i=1

(li −M∗
(H.1∩H.2))

2 + (li −M∗
(H.1∩H.2))(ui −M

∗
(H.1∩H.2)) + (ui −M∗

(H.1∩H.2))
2

3
p(H.1∩H.2)i

From this moment on, for reason of brevity, M∗
(Hist1∩Hist2) will be M∗

∩
and M∗

(Hist1∪Hist2) will be M∗
∪. These measures will be embedded, in the

following, in several distance/dissimilarity measures for distributional data
that will take into account union and intersection between histograms. Some
measures that will compute an outcome about the diversity between two
symbolic objects are formalized as distance measures, while others are in the
family of dissimilarity measures. The concepts of similarity, dissimilarity and
distance extended to probability functions or histogram-valued data has been
largely addressed in the literature (Cha, 2007; L. Lee, 1999). Similarity is
formalized as:

Definition 2.1.10. Given two generic different objects a and b belonging to
the same space Ω such that are comparable, a similarity measure S holds the
following properties:

� S(a; b) = S(b; a)

� S(a; a) = S(b; b) > S(a; b) for all a 6= b

First property is a formalization of symmetry that exists in any similarity
measures, and second property stresses out as the maximum allowed value
for such measure is the similarity between an object and itself. From the
definition in 2.1.10, dissimilarity is derived as follows:

Definition 2.1.11. Given two generic different objects a and b belonging to
the same space Ω such that are comparable, a dissimilarity measure D holds
the following properties:
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� D(a; b) = D(b; a)

� D(a; a) = D(b; b) < D(a; b) for all a 6= b

� D(a; a) = 0 for all a ∈ Ω

As for similarity, dissimilarity concept is formalized as symmetric one. A
measure of dissimilarity such defined is always positive and is equal to zero
any time that the measure is computed between an object and itself. Most
of the time, is possible to transform a dissimilarity measure to a similarity
measure (by means of simple mathematical tools) cause one is defined as
inverse functional of the other. Usually, when dealing with traditional data
point such single-valued data, the dissimilarity can be measured by distance
measures. When dealing with symbolic data, on the other hand, further
properties have to be satisfied by a proper distance measure to calculate a
dissimilarity matrix between symbolic data (Nieddu and Rizzi, 2007) :

Definition 2.1.12. Given 3 generic different objects a, b and c, belonging to
the same space Ω such that are comparable, a distance measure D holds all
the properties of a dissimilarity measure as in 2.1.11, and further satisfies:

� D(a; b) = 0→ a = b

� D(a; b) ≤ D(a; c) +D(b; c) for all a, b, c ∈ Ω

Therefore, a distance measure in 2.1.12 satisfies the so-called triangle in-
equality (Khamsi and Kirk, 2011). As mentioned, several measures derived
as an extension of similarity, dissimilarity and distance measures for interval
data to histogram data. One of these is the Gowda-Diday similarity/dissim-
ilarity measure (Diday and Esposito, 2003; Gowda and Diday, 1991a,b) for
interval-valued data.
Authors defined 3 different quantities, normalized to be between 0 and 1, that
are necessary to calculate such Gowda-Diday similarity (SGD) and Gowda-
Diday dissimilarity (DGD)measures.

Definition 2.1.13. First part of the SGD measures the relative sizes of two
interval-objects (X1, X2) in general. nb is the number of intervals, and i =
1, · · · , nb. This part does not refer to the common parts between them:

S1(X1, X2) =
|ui1 − li1|+|ui2 − li2|

2
∣∣max(ui1, ui2)−min(li1, li2)

∣∣ (2.22)
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Definition 2.1.14. Given that:

(2.23)Γ(i1,i2) =
∣∣max(li1, li2)−min(ui1, ui2)

∣∣ if max(li1, li2)

< min(ui1, ui2) or = 0 otherwise

Second part of the SGD measures the common parts between the two interval
objects, similarly to 2.1.4:

S2(X1, X2) =
Γ(i1,i2)∣∣max(ui1, ui2)−min(li1, li2)

∣∣ (2.24)

Definition 2.1.15. Lastly, third part is related to the relative position of
the two objects in the space, cause denominator is equal to the range, as
the total length (from minimum value to maximum value) showed by the
variable:

S3(X1, X2) = 1− |li1 − li2|
maxi(ui)−mini(li)

(2.25)

Merging together the three different components, Gowda-Diday similarity
SGD is:

SGD(Xi1, Xi2) =
nb∑
i=1

(S1(Xi1, Xi2) + S2(X1i, Xi2) + S3(Xi1, Xi2)) (2.26)

In case of multivariate contest in which there are present p interval-valued
variables with j = 1, · · · , p, and objects (X1, X2) are multi-interval objects,
(2.26) extents to:

SGD(Xi1, Xi2) =
nb∑
i=1

p∑
j=1

(S1(Xi1j, Xi2j) + S2(X1ij, Xi2j) + S3(Xi1j, Xi2j))

(2.27)
The similarity measure (2.27) has been extended to accomplish the dissim-
ilarity measure DGD that is made up, in an analogue way to the similarity
measure, in 3 different components:

Definition 2.1.16. DGD is defined by 3 components: Diss1 is due to po-
sition, Diss2 due to spanning shared quota, Diss3 is related to the content
(relative position).

DissGD(Xi1, Xi2) =
nb∑
i=1

p∑
j=1

(Diss1(Xi1j, Xi2j)+Diss2(X1ij, Xi2j)+Diss3(Xi1j, Xi2j))

(2.28)
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The measure in (2.27) and its related dissimilarity measure in 2.1.16 has
been deepen by authors in the following years after 1991, and it was argued
that such measures considered together suffered from several shortcomings:

� If there is no overlapping parts among two interval-valued data, the
dissimilarity measure is greater than the similarity measure.

� In case of identical length of the two intervals, the similarity measure
is greater than the dissimilarity measure.

� Switching from (2.27) to the dissimilarity measure, the third component
of the former is just another way to reproduce the latter.

According to (Gowda and Ravi, 1995), a new measure has been proposed as
a sine-function of only 2 components to overcome such shortcomings:

Definition 2.1.17. S∗GD is defined by 2 components, both sine functions:

S∗1(Xi1j, Xi2j) = sine

[
90

(
|ui1j−li1j|+|ui2j−li2j|

2|max(ui1j ,ui2j)−min(li1j ,li2j)|

)]
and

S∗2(Xi1j, Xi2j) = sine

[
90

(
1− |ai1j−ai1j|

maxi(uij)−mini(lij)

)]

SGR(Xi1, Xi2) =
nb∑
i=1

p∑
j=1

(S∗1(Xi1j, Xi2j) + S∗2(X1ij, Xi2j)). (2.29)

The simple development from 2.1.17 in order to create the dissimilarity
measure led to switch from the sine-function to the cosine-function, due to
their complementary nature.

Definition 2.1.18. Diss∗GD is defined by 2 components, both sine functions:

D∗1(Xi1j, Xi2j) = cos

[
90

(
|ui1j−li1j|+|ui2j−li2j|

2|max(ui1j ,ui2j)−min(li1j ,li2j)|

)]
and

D∗2(Xi1j, Xi2j) = cos

[
90

(
1− |ai1j−ai1j|

maxi(uij)−mini(lij)

)]

DissGR(Xi1, Xi2) =
nb∑
i=1

p∑
j=1

(D∗1(Xi1j, Xi2j) +D∗2(X1ij, Xi2j)). (2.30)

While dealing with multi-valued histograms Xi1j and Xi2j, the proposed
extension of Gowda-Diday dissimilarity measure is:
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Definition 2.1.19. DissHGD is defined by 3 components:

DH
1j(Xi1j, Xi2j) =

∣∣SDi1j − SDi2j

∣∣
SDi1j + SDi2j

DH
2j(Xi1j, Xi2j) =

SDi1j + SDi2j − 2SD(iHist1∩iHist2)j

SDi1j + SDi2j

and

DH
3j(Xi1j, Xi2j) =

∣∣Mi1j −Mi2j

∣∣
uj,nbj+1 − uj1

and so at the end the final dissimilarity mea-

sure is:

DissHGD(Xi1, Xi2) =
nb∑
i=1

p∑
j=1

[DH
1j(Xi1j, Xi2j)+(DH

2j(Xi1j, Xi2j)+(DH
3j(Xi1j, Xi2j)]

(2.31)

Such components have similar meaning to the components defined for
interval-valued data 2.1.16: DH

1j(Xi1j, Xi2j) is a measure of relative size,
DH

2j(Xi1j, Xi2j) is related to the relative content, and the last partDH
3j(Xi1j, Xi2j)

indicates the relative position. But, obviously, these relative features are com-
puted using means and standard deviations related to the nature of data, that
are switched from intervals to histograms. Therefore, in this way more in-
formation about dispersion around the mean will be taken into account for
each components. For each variable j, each component 0 < DH

j < 1.
Another largely addressed measure that was created originally for interval
data in 1994 (Ichino and Yaguchi, 1994) is the Ichino-Yaguchi dissimilarity.
The more recent formalization of this dissimilarity measure for histogram-
valued data is proposed in (J. Kim and Billard, 2013). The original Ichino-
Yaguchi dissimilarity proposed for interval-valued data is:

Definition 2.1.20. Given two interval-valued sets Xi1,Xi2 for a variable j,
by means of cartesian operators join that is ⊕ and meet that is ⊗ such that
their meaning is:

Xi1 ⊕Xi2 = [min(li1j, li2j),max(ui1j, ui2j)] (2.32)

(2.33)Xi1 ⊗Xi2 = [max(li1j, li2j),min(ui1j, ui2j)] if max(li1j, li2j)

< min(ui1, ui2) or = 0 otherwise

And defining γIY as a constant such that 0 < γIY < 0.5, complete formula
for Ichino-Yaguchi dissimilarity is:

Φ(Xi1j, Xi2j) =
∣∣(Xi1j ⊕Xi2j

∣∣−∣∣(Xi1j ⊗Xi2j

∣∣+γIY (2
∣∣Xi1j ⊗Xi2j

∣∣−∣∣Xi1j

∣∣−∣∣Xi2j

∣∣)
(2.34)
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Also in this case, as for Gowda-Diday dissimilarity, the (2.34) is not a
normalized measure, and needs to be divided by it’s theoretical maximum
value in order to have a dissimilarity measure between 0 and 1:

Definition 2.1.21. Normalized Ichino-Yaguchi dissimilarity measure is given
by:

Φ∗(Xi1j, Xi2j) =
Φ(Xi1j, Xi2j)

maxi(uij)−mini(lij)
(2.35)

Starting from this approach, DeCarvalho (deCarvalho, 1994, 1998) ex-
tended Ichino-Yaguchi measure in (2.1.21) to each kinf of constrained Boolean
objects, broadly speaking. Boolean symbolic objects (BSO), are objects that
take into account into account simultaneously the variability , as range of
values observed, and some kinds of logical dependencies between variables;
these objects are therefore multi-valued. A BSO is properly defined by means
of logical conjunction of properties. In DeCarvalho, a comparison function
and an aggregation functions are the ground of the formalization to assess
proximity level of BSO. A comparison function is defined in this approach
as a proximity index based on a measure that is always ≥ 0, kwnown as
description potential of a Boolean elementary event. It is cardinal of the
disjunction of values on a variable of a BSO. Authors have proposed, to for-
malize comparison functions, indexes related to agreement and disagreement.
Given two interval-valued variables (Xi1j, Xi2j), a quantity c(Xij) that is the
complementary part of the variable Xij given its domain set, agreement-
disagreement indexes are summarized in the following table:

Table 2.1 Disagreement and Agreement formalization in comparison of 2
Boolean interval objects, proposed by DeCarvalho

Agreement Disagreement Marg. Total

Agreement AA =
∣∣Xi1j ∪Xi2j

∣∣ AD =
∣∣Xi1j ∪ c(Xi2j)

∣∣ ∣∣Xi1j

∣∣
Disagreement DA =

∣∣c(Xi1j ∪Xi2j)
∣∣ DD =

∣∣c(Xi1j) ∪ c(Xi2j)
∣∣ ∣∣c(Xi1j)

∣∣
Marg. Total

∣∣Xi2j

∣∣ ∣∣c(Xi2j)
∣∣ Dom.(Xj)

The total of the right-below corner of the table 2.1, Dom.(Xj), is the
global domain of the variable j.
From such table, DeCarvalho proposed five different similarity measure (known
as comparison functions) to compare two BSO.

f1 =
AA

AA+ AD +DA
(2.36)
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f2 =
2AA

2AA+ AD +DA
(2.37)

f3 =
AA

AA+ 2(AD +DA)
(2.38)

f4 =
1

2

[
AA

AA+ AD
+

AA

AA+DA

]
(2.39)

f5 =
AA√

(AA+ +AD)(AA+DA)
(2.40)

In these comparisons, the related dissimilarity function is dDCl = 1−flwith =
(1, · · · , 5). Both similarities and dissimilarities functions thus defined are
between 0 and 1. Analogously, for an observed variable j, an aggrega-
tion function is a proximity index, and authors proposed to start from the
Minkowski distance. From a general perspective, Minkowski distance be-
tween two interval-valued objects for variable j is defined as:

Dq
M(Xi1j, Xi2j) =

 nb∑
i=1

φ(Xi1j, Xi2j)
q

1/q

(2.41)

This equation in (2.41) is defined using as φ the one proposed by 2.1.21
and as q a positive number. As q changes, different measures will make
the comparison between the two BSO. While dealing with several variables,
(2.41) becomes:

Dq
M(Xi1, Xi2) =

 nb∑
i=1

p∑
j=1

φ(Xi1j, Xi2j)
q

1/q

(2.42)

Therefore, final DeCarvalho dissimilarity measure takes into account both
dissimilarity functions and aggregation functions. Given a set of weights W
of length j such that each wj > 0 and

∑
j wj = 1, such proposed dissimilarity

measure for multi-variable histogram data is:

Dq
dDCl

(Xi1, Xi2) =

 nb∑
i=1

p∑
j=1

wjdDCl(Xi1j, Xi2j)
q

1/q

(2.43)

While ichino-Yaguchi, Gowda-Diday and DeCarvalho dissimilarities have
been developed originally for interval-valued data and then extended to
histogram-valued data, others measure have born directly as a tool to evalu-
ate the degree of distance between probability density functions. It is likely
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that the most exhaustive survey on such distances can be found in (Cha,
2007). Author has proposed a classification of such measures in several fam-
ilies, according to both theoretical assumptions behind the computation and
according to a hierarchical clustering based on empirical correlation of a sim-
ulation study. Syntactic similarity, implementation aspects and semantics
closeness are the most important features that are analysed to assess similar-
ity between these measures. Particular emphasis is made on an entire family
of distances that has come out from the concept, conceived in information
theory field, of Shennon’s metric for Entropy (Shannon, Weaver, and Burks,
1951). The entropy of a variable, in broad way, is the amount of informa-
tion contained in a specific variable, in terms of innovative knowledge that
its observed values are able to provide. Shannons entropy quantifies such
amount of information, leading to theoretical and practical buildings around
the information conception. Starting from definition of Shannons entropy
derived from Boltzmann’s -theorem as:

H(X) = −
n∑
i=1

P(xi)logbP(xi) (2.44)

In 2.44, X is a variable where P(xi) is the assumed probability to observe the
symbol i and b is a generic value as base of the logarithm. Common values
are b = (2, e, 10). One well-known proposed measure is KullbackLeibler
divergence (Kullback and Leibler, 1951), that is an asymmetric measure that
takes into account relative entropy between one density function Pi and the
reference distribution Qi.

dKL =
nb∑
i=1

Pilogb
Pi

Qi

(2.45)

In the 2.45 the implicit assumption is that one distribution Qi is considered
as reference one, therefore the measure is able to catch how Pi is far, in terms
of relative entropy, from the reference. That’s where the asymmetric nature
of 2.45 comes from. A symmetric version of such divergence is known as
Jeffreys Divergence (Jeffreys, 1998).

dKL =
nb∑
i=1

(Pi −Qi)logb
Pi

Qi

(2.46)

In the case of 2.46, neither Pi nor Qi are assumed to be a reference of any
kind, so the comparison between them is calculated in a symmetric fashion.
K-divergence is instead given by:

dKL =
nb∑
i=1

Pilogb
2Pi

Qi + Pi

(2.47)
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This divergence, as 2.45, follows an asymmetric rationale in the comparison.
Its symmetric measure is defined as:

dT =
nb∑
i=1

[
Pilogb

(
2Pi

Qi + Pi

)
+ Qilogb

(
2Qi

Qi + Pi

)]
(2.48)

Divergence in 2.48 is named Topsøe (M.-M. Deza and E. Deza, 2006), or in-
formation statistics (Gavin et al., 2003). Topsøe divergence could be halved,
leading to a new distance measure called Jensen-Shannon divergence measure
(Lin, 1991):

dJS = frac12
nb∑
i=1

[
Pilogb

(
2Pi

Qi + Pi

)
+ Qilogb

(
2Qi

Qi + Pi

)]
(2.49)

It is also known as information radius(IRad)(Manning and Schütze, 1999) or
total divergence to the average (Dagan, L. Lee, and Pereira, 1997). As well
as being symmetric, this measure is able to overcome another shortcoming.
Kullback-Leiber measure 2.45 is theoretically allowed to not be a finite value,
while 2.49 is always a finite value.
Jensen difference (Taneja, 2001) comes from the analysis about the rela-
tionship between idea of information radius and the concavity property of
Shannon’s entropy. Therefore, Jensen difference is defined as:

dJD =
nb∑
i=1

[
PilogbPi + QilogbQi

2
−
(

Pi + Qi

2

)
logb

(
Pi + Qi

2

)]
(2.50)

Another measure that is worthy to introduce is Jaccard Similarity (Jaccard,
1901), that is derived from the normalization of the inner product between
two probability functions:

SJaccard =

∑nb
i=1 PiQi∑nb

i=1 P2
i +

∑nb
i=1 Q2

i −
∑nb

i=1 PiQi

(2.51)

Irpino and Verde (Irpino and Verde, 2006) have proposed in 2006 a measure
that starts from a different approach. Starting from a wide review about
probability metrics that can be found mainly in (Gibbs and Su, 2002), au-
thors adopt and extend a l2 Wasserstein distance (Rüschendorf, 2001). A
generic lp Wasserstein distance (Givens, Shortt, et al., 1984) expresses the
distance between two observed densities φ1 and φ2 using the inverse of such
density function, namely the quantile functions φ−11 and φ−12 :

Wp =

(∫ 1

0

[
φ−11 (t)− φ−12 (t)

]p
dt

) 1
p

(2.52)
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In case of p = 2, Wasserstein distance lp becomes l2 and its definition sim-
plifies as:

W2 =

√∫ 1

0

[
φ−11 (t)− φ−12 (t)

]2
dt (2.53)

As pointed out by the authors, equation (2.52) is one of the possible exten-
sion of another distance for quantile functions, the classical Lp Minkowski
distance, and therefore (2.53) is the extension of L2 Minkowski distance.
Quantile functions are known to have several statistical properties that can
be useful in many contexts (Gilchrist, 2000). First of all, quantile functions
are in univocal and unique relationship with their original density functions.
Quantile functions are also always non-decreasing in the interval of their do-
main, that is between [0 : 1]. Further, it is left-continuos (Pfeiffer, 1990).
In case of (2.53), so when p = 2, the Frchet mean defined in (2.1.2) and its
objective function (2.8) of a generic distribution variable X, with respect to
Wasserstein distance under the assumption of equal weights zi, is the den-
sity function, corresponding to the quantile function that shows an average
behaviour. This mean quantile is the solution of the optimization problem,
analogously to (2.8):

MW (X) = arg min
x

n∑
i=1

d2W (φi, X) (2.54)

The minimum value that solves (2.54) is equal to the probability density
function having as quantile function x−1:

x−1(t) =
1

n

n∑
i=1

Φ−1i (t)→ Φ̄−1(t), ∀ t ∈ [0, 1] (2.55)

Therefore, as final remark, is possible to compute the Frechet mean distribu-
tion as barycenter of the distributions; calculation start from the relationship
one-to-one between distribution and its quantile, such that:

MFr(X) = Φ̄ =
d
(
Φ̄−1

)−1
dx

→ dΦ̄

dx
(2.56)

2.2 Clustering methods for histogram-valued

data

In statistical context, cluster analysis (Hartigan, 1975; Jain and Dubes, 1988)
is a family of procedure able to achieve the task to group a number of object
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together, based on their characteristics. Therefore, these elements are merged
together according to their level of similarity. Cluster analysis does not define
one specific algorithm, but it is instead the general task to be solved. It can
be pursued by means of several different algorithms and the choose of the
proper distance measure (to assess the level of similarity between statistical
units) plays a key role. Of course, analytical choices are derived, first of
all, from the nature itself of the data. For what concerns histogram-valued
data, we will introduce in the following three different kind of clustering:
hierchical clustering, k-means clustering and fuzzy k-means clustering. First
two methods, hierarchical clustering (Rokach and Maimon, 2005) and k-
means clustering (Hartigan, 1975; Na, Xumin, and Yong, 2010) are defined
as hard-clustering techniques. In hard clustering, each data point either
belongs to a cluster completely or not. Formally (J. Kim, 2009):

Definition 2.2.1. If we have p random variables (Xj, j = 1, · · · , p), with
symbolic objects, (xi, i = 1, · · · , n) and with xi ∈ Ω → (x1, · · · , xn), a parti-
tion Pr of Ω is a finite set of subsets such that (Cu, u = 1, · · · , r) that also
satisfies:

� Cu ∩ Cv = φ,∀u 6= v = 1, · · · , r

�

⋃r
u=1Cu = Ω

It means that all the subsets (C1, · · · , Cr) of a given r partition Pr are
disjoint, and exhaustive of the entire set Ω. Further, these subsets are con-
sidered to be non-empty in such a way that every element is included in one
and only one of the subsets (Halmos, 2017).

2.2.1 Hierarchical clustering for histogram-valued data

In data mining and statistics in general, hierarchical clustering (also known as
hierarchical cluster analysis or HCA) is a consolidated method of clustering
objects starting from the idea that is possible to build a hierarchy of clusters.
Formally (J. Kim, 2009):

Definition 2.2.2. A hierarchical structure on the space Ω is a finite set of
subsets H → (Cu, · · · , Cr) such that:

� Ω ∈ H

� ∀ xi in Ω, single objects xi ∈ Ω
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� ∀ Cu, Cv ∈ H ∀ v 6= u → (v, u) = 1, · · · , n and Cu ∩ Cu ∈
(Φ, Cu, Cv).
This property points out that each pair of clusters is disjoint, or one
subset is contained into the other.

Several different strategies have been developed in order to obtain opti-
mal hierarchical clustering, and it is possible to split them into two major
big families. First one is agglomerative. The rationale is that in the begin-
ning each elements xi is considered as a cluster by itself, and then, step by
step, units are merged in the same cluster according to their similarity. At
the end, all units belonging to Ω are grouped in the same cluster. On the
other hand, the divisive approach starts where the agglomerative approach
ends. All units, as starting points, belong to only one cluster, and then are
recursively assigned to several groups. The former is a bottom-up approach,
while the latter is a top down. These two different approach have different
properties and shortcomings. As claimed by several authors (Wilks, 2011),
the agglomerative clustering method is more widely used than the divisive
clustering method. This is mainly due to some computational issues related
to the number of possible bi-partitions that are theoretically present when
performing a divisive algorithm (2n−1 − 1). On the other hand, divisive al-
gorithm is considered to be a better choice if is possible to overcome such
complexity, cause is able to face in a better way first steps of the procedure.
It also guarantees a better representation of the main structure that is be-
hind the data
Further distinction is made between polythetic and monothetic algorithms
(Wiggerts, 1997). A distinguishing feature of a polythetic algorithm is that
the criteria that is consistently used to perform the cluster is based on all
variables at the same time, in a simultaneous fashion. On the other hand,
monothetic algorithms work independently on one variable per time. There-
fore, the goal behind the analysis is different: monothetic clustering leads
to have groups which elements share some properties, while polythetic clus-
tering merges together units that are close (in terms of similarity) but not
necessarily show same values of some variables. Furthermore, in polythetic
analysis, observations are not ordered according to some specific features,
but the algorithm identifies a splitting observation, or splinter cluster (that
is an entity, an unit or a group, that is clearly different and separated from
the rest of the data) considering all variables. Then the remaining observa-
tions, one at a time, are moved into such group if enough similar according
to the given dissimilarity distance, and not moved if such similarity is not
achieved. In the following, two different approach for hierarchical clustering
will be presented and briefly discussed:
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1 A divisive polythetic algorithm using both Euclidean extended Ichino
Yaguchi dissimilarity and cumulative density functions extensions (Bil-
lard and J. Kim, 2017; J. Kim and Billard, 2011).

2 An agglomerative hierarchical clustering using a Wasserstein based
metric proposed in (2.52, 2.53) based on the Ward criterion (Irpino
and Verde, 2006).

For what concerns first proposal, author were interested in the clustering of
histogram data considering the construction of hierarchical trees by using a
polythetic clustering algorithm. The algorithm they have proposed is based
on dissimilarity matrices that contain dissimilarity measures between obser-
vations. Authors, after a brief review about distance-dissimilarity measures
and univariate statistics about histogram-valued data, introduce the analyt-
ical aim of their analysis. Main task is to obtain a divisive clustering of the
complete set of observations Ω, where each group is internally as homoge-
neous as possible, while comparing clustering, they have to be externally as
heterogeneous as possible. Given a pre-assigned stopping rule R, in each it-
eration, the algorithm determines which Cu has to be divided into (C1

u, C
2
u).

It means that in each iteration, until the end, clusters are recursively divided
and units moved into a new group just created. Given that w = (1, 2), that
Ω = Pr = (C1, · · · , Cr), that mv is the size in terms of number of elements
of the cluster Cv and that λ =

∑mv

u1
wu authors have proposed the average

weighted dissimilarity such that:

Dv(X
v
u) =

1

λ− wu

mv∑
u1 6=u=1

wuwu1d
(
Xv
u, X

v
u1

)
, (u = 1, · · · ,mv) (2.57)

In this equation, d
(
Xv
u, X

v
u1

)
is the dissimilarity between the two observations

inside the brackets, (Xv
u, X

v
u1

). Index u1 shifts in the summation, therefore
such dissimilarity is between Xv

u and all the other elements belonging to the
same cluster. From this, authors propose the maximum average weighted
dissimilarity (MAWD):

MAWD = max
u,v

(Dv(X
v
u)) (u = 1, · · · ,mv; v = 1, · · · , r) (2.58)

If an observation maximizes (2.58), so that its dissimilarity is the biggest
calculated in the data, such observation will be moved in the cluster in the
next iteration, and so its original cluster C will be split into two clusters. The
open question is the calculation of the new units rearrangement across the two
new clusters from the original one. Let’s say that the two sub-clusters are now
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(C∗1 , C
∗
2). Then, each observation is moved from C∗1 to C∗2 and the within-

cluster variations between the two sub-clusters is calculated. When such
variation is negative, the units keep staying in the original cluster C∗1 , and
when such variation is positive units move to C∗2 (J. Kim and Billard, 2011).
Further, to perform divisive hierarchical cluster, has also been proposed the
within- cluster variance as a criterion partitioning a cluster (Chavent, 1998,
2000):

I(Cu) =
1

2τ

nu∑
i1=1

nu∑
i2=1

wi1wi2D
2(Xi1 , Xi2) (2.59)

Authors have shown main results of this technique using both simulated
data and real data about diabetes disease (downloaded from stanford.edu/

hastie/Papers/LARS/). Main findings are that, as expected, running the
same algorithm while changing the measure that is used to compute the dis-
similarity matrix will slightly change the final result of the hierarchical clus-
tering; further, as widely pointed out, using histogram-valued data instead
of classical data will lead to have a better understanding of the underlying
variation of the phenomena while with classical data-points, taking into ac-
count only between data variation, a portion of information is lost.
The other procedure to perform hierarchical-clustering has been proposed
by (Irpino and Verde, 2006). . The distance they introduce, discussed in
(2.52, 2.53), holds interesting properties with respect to hierarchical clus-
tering. It indeed allows to define a measure of inertia of data related to a
barycenter that satisfies the Huygens theorem of decomposition of inertia
(Haas, 1925). The core idea is that, according to (Billard and Diday, 2003)
histogram data can be considered as a special case of compositional data.
Compositional data (Aitchison, 1982), as introduced in 1.4, are made up by
vectors of non-negative real components having a constant sum. Usually,
when components are conceived as part or percentage of the whole, their
sum is equal to one. In this case, histogram data (which components sum,
as any probability function, is equal to 1) can be considered as a special case
of compositional data. As introduced by (Mallows, 1972a), this metric, that
evolved from the L2 Kantorovich metric, can be considered as the expected
value of the distance between homologous points of the supports of the two
distributions, considering as measure the squared Euclidean one. As pre-
sented in 2.4, let’s say that an histogram description of i by means of ni is
made up by intervals with density πui (while in 2.4 it was denoted by p) as
follows:

Xi → [(I1i, π1i), · · · , (I2i, π2i), · · · , (Iui, πu,i), · · · , (Inii, πnii)] (2.60)

The following function in defined as the cumulative weights associated with
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the elementary intervals of Xi in case of l = 1, · · · , ni:

wi =
l∑

h=1

πhi (2.61)

On the other hand, for l = 0, all the elements wi = 0. Under the assumption
of uniformity distribution in each interval, from density function φi is possible
to define distribution function Φi:

Φi(z) = wi + (z − zli)
wli − wl−1i
zli − z̄li

(2.62)

In this case, z is lower bound of interval and z̄ is upper bound, with z < z < z̄.
Its inverse function is a step function that assumes different values such that:

Φ−1i (t) =


z1i +

t

w1i

(z̄1i − zli), for 0 ≤ t < w1i

z1i +
t− wl−1i
wli − wl−1i

(z̄li − zli), for wl−1i ≤ t ≤ w1i

znii
+
t− wni−1i

1− wni−1i
(z̄nii − znii

), for wni−1i ≤ t < 1

From this, authors evaluate that each couple (wl1, wl), starting from distance
in 2.53, permits to identify two uniformly dense intervals, one for i and one
for j, such that:

Ili = [Phi−1i (wl−1;Phi
−1
i (wl)] Ilj = [Phi−1j (wl−1;Phi

−1
j (wl)] (2.63)

Assumption independence still holds as in SDA framework, so is possible to
express each interval in ”radius and center” form; therefore, these intervals
are defined as follows:

I = [a, b]←→ I(t)←→ c+ r(2t− 1) if 0 ≤ t ≤ 1

where c =
a+ b

2
and r =

b− a
2

(2.64)

By means of a vector of m weights p = (π1, · · · , πl, · · · , πm), and solving
the minimization problem of the barycentric histogram, Given p histogram
variables for the description of i and j, it is possible to express a multivariate
version of 2.53:

d2w(Xi, Xj)←→
p∑

k=1

mk∑
l=1

π
(k)
1

[(
c
(k)
li − c

(k)
lj

)2
+

1

3

(
(r

(k)
li − r

(k)
lj

)2]
(2.65)
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From this, is possible to figure out a second property of this distance em-
bedded in this approach. Starting from a barycenter histogram Xb able to
describe n histogram data, is possible to express a measure of inertia of data
by means of the measure d2w. The total inertia, let’s say (TI), with respect
a barycentric description Xb of a set of n histogram data, is given by :

TI =
n∑
i=1

d2w(Xi, Xb) (2.66)

Total Inertia, as a kind of deviation from the barycenter histogram Xb, may
be assumed to be a measure of variation of histogram around their ”center”.
In case of clusters, it can be decomposed as a sum of within cluster Inertia,
WI, and between cluster inertia, BI:

TI = WI +BI ↔
k∑
i=1

∑
i∈Ch1

d2w(Xi, Xbh) +
k∑

h=1

|Ch|d2w(Xbh , Xb) (2.67)

In this formulation, |Ch| is the cardinality of cluster Ch. As concluding
remark, while performing a hierarchical clustering agglomerative procedure,
in order to pass from n to n1 clusters, the two clusters corresponding to the
minimum dWard (Ward, 1963) are joined:

TI(Cs ∪ Ct) = TI(Cs) + TI(Cs) +
|Cs||Ct|
|Cs|+ |Ct|

d2w(Xbs , Xbt) (2.68)

dWard(Cs, Ct) =
|Cs||Ct|
|Cs|+ |Ct|

d2w(Xbs , Xbt) (2.69)

The implementation of such procedure, including the d2w up to the visualiza-
tion of the dendrogram, that is a consolidated way to visualize the result of
a hirarchical clustering analysis (Langfelder, B. Zhang, and Horvath, 2007),
is present in the R package HistDAWass (Irpino, 2018). The following is an
example of the application of such analysis on simulated data. After generat-
ing 1000 random observations from 10 different random variables, they have
been transformed in 10 histogram-valued data using their empirical bins and
pi, as well as their empirical mean and standard deviation. First and second
histograms are generated from a random variable with mean = 2, X3 and
X4 with mean = 4, and histograms from X6 up to X10 are created from
a random variable with mean = 10. Even with slightly different variation
around such mean, we expect that histograms generated from random vari-
ables with same mean are more likely to be clustered together in the early
steps of the procedure. Empirical descriptions are summed up 2.2. In the
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Table 2.2 10 different histogram-valued data described by their empirical
means and their empirical standard deviations. Simulated data.

Histograms Mean S.D.
X˙1 1.890 2.021
X˙2 2.172 3.113
X˙3 5.566 2.035
X˙4 4.048 2.023
X˙5 3.979 2.971
X˙6 6.981 3.032
X˙7 7.045 3.869
X˙8 7.003 4.105
X˙9 7.165 4.097
X˙10 7.279 4.082

beginning, each histogram is considered as a cluster by itself, and then, in
agglomerative fashion, they are merged together at different height, accord-
ing to their similarity measured by means of d2w. Such eight is the calculated
distance between clusters, and histograms X7 and X9 are merged in the 1st

step cause are the closest ones, with a distance (height) of 0.24.

2.2.2 K-means clustering for histogram-valued data

The aim of clustering is basically to find structure in data and is therefore
exploratory in nature. One of the most popular and simple clustering algo-
rithms, K-means, was first conceived in 1957, and then published later on
(S. Lloyd, 1982). K-means is still widely used in many scientific fields, even
if from its creation thousands of clustering algorithms have been developed
as well. It is build as a method of vector quantization, originally from signal
processing. K-means clustering aims to perform a partition of n observa-
tions into k clusters. In each of the k cluster, nk observations belong to the
cluster with the nearest mean k, that is a centroid of such cluster. Data
space is so divided into k ”cells”, analogously to what happens in a Vonoroi
diagram representation (Reddy, Jana, and Member, 2012) of a partitioned
region. The standard implementation of K-means clustering is an iterative
process named Lloyds algorithm (Drake and Hamerly, 2012). In the follow-
ing, it will be introduced a procedure to perform a dynamic clustering of
histogram-valued data introduced by (Irpino, Verde, and DeCarvalho, 2014)
and implemented in the R package HistDAWass (Irpino, 2018).
This method is build on the concept of Dynamic Clustering (DC) (Diday,
1971; Diday and Simon, 1976). DC, as other clustering methods, needs first
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Figure 2.2: Dendrogram of hierarchical agglomerative cluster on 10 his-
tograms. Different colors indicate different level of agglomeration at different
height.

of all to define a proximity-similarity function, in order to assign the units to
the clusters. Then, it has to be choosen a proper way to sum up the informa-
tion contained in the units belonging to the same group; in other words, to
identify each cluster with an individual inside it that optimizes a given crite-
rion function. It is common to call that unit a prototype. For what concern
the issue related to the choose of a proximity function, the use of standard
distances allows to find spherical groups that share same size of variability,
but one great advantage of clustering using adaptive distances is the possi-
bility of identifying clusters that have a different level of variation and does
not constrain them to have the exactly same orientation in the space (as
directions of variables). The algorithm is suited to deal, at the same time,
with both the best partition into k clusters and their best representation in
terms of prototypes.
Authors in (Irpino, Verde, and DeCarvalho, 2014) start in their procedure
defining, as distance between histograms and clusters, the standard d2w (squared)
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Wasserstein distance between the histogram xi and the prototype gk:

d(Xi, gk) =

p∑
j=1

d2w(xij, gkj) (2.70)

In this case, no system of weights is defined and the general criterion to be
satisfied is the minimization problem:

∆(G, P ) =
K∑
k=1

∑
i∈Ck

d2w(Xi, Gk) (2.71)

where all the prototypes of the cluster Ck : (k = 1, · · · , k) are contained in
the vector Gk = (gk1, · · · , gkp). Further , P = (C1,···,Ck

) is the partition to
be found by means of the DC, and its corresponding set of prototypes is
G = (G1, · · · , Gk).
Further, authors propose a modification of (2.71) implementing two vectors
of coefficients that assign weights for each component of each variables (the

mean and the dispersion). Such vectors are: Λmeanx =

(
λ

1

x
, · · · , λp

x

)
and

ΛDisp =
(
λ1Disp, · · · , λ

p
Disp

)
. This leads to obtain a 2nd distance measure,

the so-called Globally Component-wise Adaptive Wassertein Distance (GC-
AWD):

∆(G, P,Λ) =
K∑
k=1

∑
i∈Ck

p∑
j=1

λjmeanx
(x̄ij − x̄gkj)2 +

K∑
k=1

∑
i∈Ck

p∑
j=1

λjDispd
2
w(Xc

ij, g
c
kj)

(2.72)
The last distance that has been proposed, the 3rd one, is given by the Cluster
Dependent Component-wise Adaptive Wassertein Distance(CDC-AWD). It
is:

∆(G, P,Λ) =
K∑
k=1

∑
i∈Ck

p∑
j=1

λj(k,meanx)
(x̄ij−x̄gkj)2+

K∑
k=1

∑
i∈Ck

p∑
j=1

λj(k,Disp)d
2
w(Xc

ij, g
c
kj)

(2.73)
where the two new vectors to be applied to mean value and dispersion are

Λ(k,meanx) =

(
λ

1

(k,meanx)
, · · · , λ p

(k,meanx)

)
and

ΛDisp =
(
λ1(k,Disp), · · · , λ

p
(k,Disp)

)
. The starting solution, at step zero, is

(G0,Λ0, P ), and then the dynamic clustering algorithm, based on one of
the 3 different schemas of adaptive distances (2.71, 2.72, 2.73), alternates
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the solution to 3 different criterion. In the first two steps, the algorithms
give the solution G for the best prototype (to best represent each cluster) of
all the cluster, as well as the solution for the best adaptive distance (locally
for each cluster) identified by Λ. In the last step, the algorithm gives the
solution for the best partition P . When a step does not change in a signifi-
cant way the solution already found in the previous step, the algorithm stops
finding a stationary point that represents a local minimum in terms of within
cluster sum of squares. To assess the quality of partition and clustering in
terms of within homogeneity of clusters and external heterogeneity, holding
the decomposition of inertia for the Wasserstein distance (2.66) a measure
called QPI (Quality Partition Index):

QPI = 1− WSS

TSS
↔ BSS

TSS
(2.74)

Given the simulated histograms presented earlier and their statistics in 2.2,
the k-means algorithm was performed with different number of cluster (k =
1, k = 2, · · · , k = 9). Then QPI was calculated for each clustering partition.
Given that the starting solution (G0,Λ0, P ) is going to influence the final
result (that is still theoretically allowed to be only a local minimum and not
a global optimum), 100 repetition of the algorithm are performed for each k
and the best solution in terms of QPI is kept. A good number of clusters
according to 2.3 is 4. For a review about how to compare two partitions, the
remind is to ??.

2.2.3 Fuzzy k-means clustering for histogram-valued
data

A Fuzzy k-means clustering analysis (Dunn, 1973) is part of the clustering
family called soft partition. It allows an object to be part of a cluster but
not in a deterministic way. So it does not strictly belong to it, but every
object belongs to a cluster in a determined degree, that represents an un-
certainty level in the units allocation. On the other hand, hard partition
(like k-means) is a crisp clustering, in the sense that objects belong or not
to a cluster without uncertainty (or probabilistic evaluation) of such results.
More specifically, in soft clustering, divisions allow statistical units to be-
long to multiple clusters, and does not force an object to participate in only
one cluster or even construct hierarchical trees on group relationships. The
original algorithm was developed in Bezdek, Ehrlich, and Full, 1984, using
the Euclidean, Diagonal, or Mahalonobis distance, and then implemented
for other distances as well (Hathaway and Bezdek, 1994). The clustering
criterion used to aggregate subsets is a generalized least-squares objective
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Figure 2.3: Quality Partition Index (QPI) for different number of cluster k,
from 2 to 9. According to elbow rule, best number of cluster seems to be
either 3 or 4.

function. The degree to which each units belongs to the different k clusters
that has been identified, is usually called (membership) (Zadeh, 1968). This
concept measures to what extent a unit is likely to belong a given cluster, and
it is expressed with a number in [0, 1]. Although this, given that such number
does not express a likelihood of belonging to a set, it is not a probability from
a statistical point of view. Additionally, the sum of the memberships for each
sample point has to be 1. From this, it is known that a crisp allocation is just
a special case of fuzzy membership function. The fuzzy algorithm proposed
by (Hathaway and Bezdek, 1994) follows the following steps:

1 For data matrix X, initial values for k (number of clusters), m (weight-
ing positive exponent ), A (positive defined matrix of weights) are fixed
and the adequate norm chosen. Then, algorithms starts with an initial
matrix of fuzzy k-partition U (0).

2 Means of k-clusters are contained in a vector v(t) in each step with
t(1, · · · , Tmax) with formula:

vi =

∑Tmax

T=1 (uit)
mxt∑Tmax

T=1 (uit)m
(2.75)
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Figure 2.4: Histograms densities. According to the best partition with k = 4
clusters, different colors highlight different groups.

3 Analogously, it uses (2.75) to update U :

uit =


k∑
j=1

(
dit
djt

) 2

m− 1


−1

(2.76)

4 If the distance between ut+1 − ut < ε, algorithm stops. If not, it keep
updating solution starting from 2nd step.

When dealing with distributional data, as histogram-valued data, a large part
of the application that can be found in literature refers to image segmentation
and classification and color image retrieval field (Küçüktunç, Güdükbay, and
Ulusoy, 2010; Qing, Hua, Qiang, et al., 1992; Vertan and Boujemaa, 2000.
This is mainly due to a known shortcoming of fuzzy analysis, that is an
high computational cost (S. Chen and D. Zhang, 2004; Krinidis and Chatzis,
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Figure 2.5: Histograms described by equal quantiles, in this case with 10
quantile (deciles). According to the best partition with k = 4 clusters, dif-
ferent colors highlight different groups. Same as in 2.4

2010). Therefore, in practical application (for example about colors spec-
trum), most time is efficient to reduce data-size grouping single observations
in histogram-valued data, in an advantageous trade-off between computa-
tional cost and lost of information. Formally, steps performed in 2.2.3 still
holds, but formalization about distances between histogram objects need to
be added. It leads, so, to satisfy the three criterion ∆(G, P,Λ), so best parti-
tion, best cluster and best weights, but with a partition P that is not binary,
but allowed to present values pi[0 : 1]. In the example of simulated data
proposed in 2.2, membership values are presented in table 2.3.In each row is
present one value that is very high (higher than 0.9), and it is consistent with
the crisp k-means performed in previous section, leading to similar results
but with a different approach.

Prototypes, as centroids of each cluster, are slightly different between
the two different approaches, even if same ”schema” of distances is adopted.
It has to be taken under consideration that histograms are generated to
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Table 2.3 Membership values, 4 clusters and 10 histograms. Each row sum
to 1.

Cluster1 Cluster2 Cluster3 Cluster4
1 0.000606 0.015945 0.980850 0.002600
2 0.000774 0.016783 0.980077 0.002366
3 0.000000 0.000001 0.000000 0.999999
4 0.001619 0.957179 0.011886 0.029316
5 0.002338 0.970522 0.011762 0.015378
6 0.907619 0.013766 0.002976 0.075639
7 0.999525 0.000120 0.000029 0.000326
8 0.999205 0.000208 0.000055 0.000532
9 0.998396 0.000427 0.000117 0.001060

10 0.999378 0.000158 0.000038 0.000426

Table 2.4 Prototypes (centroids) of the 4 clusters for the 10 histograms.
They are just slightly different for crisp and fuzzy k-means

Prototypes Crisp k-means Fuzzy k-means
P1 [m= 2.0814 ,sd= 2.5716 ] [m= 2.0796 ,sd= 2.572 ]
P2 [m= 6.9742 ,sd= 3.877 ] [m= 6.9777 ,sd= 3.8517 ]
P3 [m= 3.9559 ,sd= 2.4928 ] [m= 3.9568 ,sd= 2.4865 ]
P4 [m= 5.4486 ,sd= 2.0274 ] [m= 5.4299 ,sd= 2.0109 ]

be rather easy to allocate in clusters. On real data, is pretty common to
have objects that, for 2 or more clusters, present very close values of the
membership function.
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Chapter 3

Archetypes, prototypes and
archetypoids in statistical
learning

The term archetype has been widely adopted as a common word with the
conceived meaning of ”original pattern from which copies are made”. It
derives from the Latin noun ”archetypum”, latinisation of the Greek noun
archetupon (with adjective form archtupos), which means ”first-molded”, in
sense of ”who was molded as first” (George et al., 1996). The term, nowa-
days, is used in a lot of different fields, and its meaning slightly change due
to referring context. However, the basic concept is that an archetype is a
pure-type: therefore, the term can be used to indicate a standard example,
an ideal type, a symbol of perfection and so on. Indeed, the word is an union
between the two terms arch, that means ”beginning, origin, start” and tupos,
which can mean, amongst other things, ”pattern, model, type”. Archetypes
have been develop, likely, first in philosophy, where Platonic philosophical
ideas referring to pure forms, archetypes, which embody the fundamental
and essential characteristics of a concept or an element. Archetypes were
then adopted in literary analysis, psychology and anthropology.
For what concerns statistics and categorization through statistical learning
(Robert, 2005), human brain tends to build, in a process that is some-
how instinctive but still based on the knowledge, complex relationships be-
tween complex items. These objects that can be described by several fea-
tures, but humans tend to categorize them in no more then 4-5 categories
(Cowan, 2010), and categories are stored in our long-term memory, and it has
been proofed that we refer to the categories and recall them in the working
memory, developing connections and bridges among them that improve our
overall knowledge (Towse et al., 2008). The intimate relationship between
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archetypes and categorization while learning, by the way, lies on the geo-
metrical structure of concepts in a conceptual space framework (Gärdenfors,
2004) and the mathematical property and characteristics of archetypes.
From the point of view of the comparison betweem AA and other well-
established techniques for dimensionality reduction and/or clustering, as
pointed out by (Bauckhage and Thurau, 2009), one great advantage is the
definition of archetypes as sparse mixture of data-points (and then each point
is defined as convex combination of archetypes). This leads to overcome the
shortcomings of some techniques such PCA and kernel PCA (Jolliffe, 2011;
Schölkopf, Smola, and Müller, 1998) where the final components, as basis
elements, lack of mathematical-physical meaning. Further, tecniques based
on non-negative matrix factorization, (Finesso and Spreij, 2004; D. D. Lee
and Seung, 1999) and its alternating least squares solution, leads to obtain
characteristics parts, AA is able to produce archetypal that are composites.
Given that the coefficient vectors of a data-points convex combination lays in
a simple, AA is a technique that can provide subsequent probabilistic rank-
ing, clustering (especially soft), and latent class models n order to classify
units.
Application of AA on real data, and so on real problems, have of course al-
ready been promoted. It has been demonstrated as it can be an useful tool in
benchmarking (Mittas, Karpenisi, and Angelis, 2014; Porzio, Ragozini, and
Vistocco, 2006, 2008), how it can be used to analyse market segmentation
(Elder and Pinnel, 2003; S. Li et al., 2003). Results were found using AA in
spatio-temporal dynamics and cellular flames (Stone, 2002; Stone and Cutler,
1996). Studies were performed on cystic fibrosis airways (Thøgersen et al.,
2013). In astronomy, it was used to explore and clusterize galaxy spectra
(B. H. Chan, Mitchell, and Cram, 2003) and it was promoted as a tool for
what concerns sensory analysis (D’Esposito, Palumbo, and Ragozini, 2011).
Following sections are organized as follows. In 3.1 the main formulation
and definition of Archetypal Analysis will be introduced and discussed. In
3.2 elements of Prototypical analysis, derived from AA, will be explored.
Archetypoids will be discussed in 3.3, while approaches of AA for Symbolic
Data will be deepen in 3.4.1, especially for interval-valued data 3.4.1.

3.1 Archetypal Analysis (AA)

Archetypal analysis (Cutler and Breiman, 1994) is a method of unsupervised
learning that aims to represent each object in a data set as a mixture of
individuals of pure type, known as archetypes. These archetypes are build
and defined to be a linear combination of data points (a ”mixture of individ-
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uals” James et al., 2013). Archetypes are selected in a minimization fashion,
reaching optimum when the squared error is minimum in representing each
individual as a mixture of archetypes.
Archetypes are defined as the p points contained in archetype matrix Z that
satisfy:

x′i = α′iZ (3.1)

The calculation and computation of such archetypes is a non-linear least
squares problem, which is solved using an alternating minimizing algorithm.
In the original formulation, given a X(n×m) data matrix, with so n individuals
and m variables, let’s define a group of p vectors zk =

∑
j βkjxj as a linear

combination of original data. Further, constraints are introduced: βkj ≥ 0
and

∑
j βki = 1. Therefore, αik solutions of minimization problem, satisfies:

∑
i

∥∥∥∥∥∥xi −
p∑

k=1

αikzk

∥∥∥∥∥∥
2

(3.2)

The minimum value reached by (3.2) is called Residual Sum of Squares RSSp.
Archetypes are useful in unsupervised learning also due to their location
properties. Given a Convex Hull (CH) of original data points, in case of
p = 1, so only one archetypes is identified, the sample mean is the solution
to minimize RSS. If 1 < p < N , all the zk vectors of archetypes lie on the
boundary of CH to minimize RSS. if number of archetypes is equal to N ,
RSS = 0. For all the proofs behind these results, the reference is (Cutler
and Breiman, 1994). To introduce the algorithm to accomplish alternating
least square, let’s first discuss the constraints that define archetype problem.

� αik ≥ 0 and βkj ≥ 0

�

∑p
i=1 αik = 1 and

∑n
j=1 βkj = 1

The coefficients of the archetypes are alpha’s and the coefficients of the data
set are beta’s. From this, minimization problem in (3.2), to find best alpha’s
and best beta’s, can be written as:

RSS =
n∑
i=1

∥∥∥∥∥∥xi −
p∑

k=1

αik

n∑
j=1

βkjxj

∥∥∥∥∥∥
2

(3.3)

This could be solved using a general-purpose constrained non-linear least
squares algorithm, but to overcome most computational issues, authors pro-
posed an alternating constrained least squares algorithm. It solves first for

65



Archetypal Analysis (AA)

α’s given the mixture βkjxj, that is a combination of original data-points.
Then, it solves the mixture given the α’s. In each step, algorithm solves a
convex least squares problem.

1 Solve for α’s →
∥∥xi −∑p

k=1 αikzk
∥∥2

2 Let’s define vi =

(
xi −

∑p
k 6=l αikzk

)
αil

and the quantity v̄ =

∑n
1=l α

2
ilvi∑n

1=l α
2
il

.

Minimization problem becomes now RSS =
∑n

1=l α
2
il ‖vi − zl‖

2 ↔∑n
1=l α

2
il ‖vi − v̄‖

2 +
∑n

1=l α
2
il ‖vi − zl‖

2.

3 In each step, α’s and β’s are updated, and algorithm keep solving
iteratively for both. If improving in RSS is negligible, algorithm stops.

The proposal computational procedure to solve this minimization problem
can be found also in (Lawson and Hanson, 1995), and it is a Constraint Non-
Negative Least Squares. Other developments in the convergence criterion
and in the problem formulation can be found in (Eugster and Leisch, 2009a),
that developed the R package archetypes. Authors start from the concept
of ”approximation”, and state the data are best approximated by convex
combinations of the archetypes. From this, definition of RSS and the relative
minimization problem is the following:

RSS =
∥∥∥X−AZT

∥∥∥
2

(3.4)

In this matrix notation, X is matrix with data points of dimension (n×m), A
is the matrix with coefficients of archetypes of dimensions (n×k) and Z is the
matrix containing the k dimensional archetypes for m variables. Analogously
to Cutler and Breiman, 1994, constraints 3.1 apply here to A and B, that is
the matrix with data coefficients (n× k). Archetypes are defined as convex
combinations of data point Z = XTB, and algorithm solves iteratively for
A for given archetypes Z, and vice-versa it finds best archetypes Z given
coefficients A. The algorithm they propose is build in the following steps:

1 Data initialization and preparation. Constraints 3.1 are applied and
data are scaled.

2 Find best α for given Z, solving n convex least squares problems:

minαi

1

2
‖Xi − Zαi‖2.

3 Recalculate archetypes Z∗, solving linear equations X = AZ∗T
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4 Find best B for given Z∗, that is equal to solve k convex least squares

problems minβj
1

2

∥∥∥Z∗j −Xβj

∥∥∥
2

5 Recalculate archetypes Z = XB and RSS

6 Post processing phase, rescaling results (archetypes)

Authors, instead of a (Cutler and Breiman, 1994; Lawson and Hanson, 1995)
Constraint Non-Negative Least Squares solution for Z∗ = A−1X, have pro-
posed the application of Moore-Penrose pseudoinverse, able to provide an
approximation of the unique solution by a least square approach (Courrieu,
2008), and a QR decomposition with A = QR where R is an upper triangular
matrix and Q is orthogonal. Lastly, calculation of RSS is made by means
of spectral norm (Golub and Van Loan, 1996): ‖X‖2spect. =

√
λmax(X ∗X).

As pointed out by (James et al., 2013, Page 554), while each part of the
minimization function is solved as a convex problem, the problem overall is
not convex, and this leads to obtain a local minimum as result of the conver-
gence. As last remark, it is worth to note that is possible to write down in a
more synthetic way in matrix notation the overall minimization problem to
find the k archetypes having as objective function (in Frobenius norm):

min
Ak,Bk

RSSk = min
Ak,Bk

∥∥∥X−AkB
T
kX
∥∥∥
F

(3.5)

3.2 Prototypes in statistical learning

The term Prototype was first defined, in a scientific fashion, by Rosch (Rosch,
1973) in the field of cognitive sciences. It was defined as exemplars being
made to be ideal, in the sense that a prototype contains the most represen-
tative features and characteristics inside a certain category in a space. As
general meaning, apart from cognitive sciences, it is used to indicate an early
sample, model, that stands out for its representativeness and, therefore, other
tend to imitate. It is a term used in a variety of contexts and fields, includ-
ing semantics, design, electronics, programming, informatics and philosophy.
In some design work-flow models, e.g., creating a prototype (this process is
often known as materialization) is an intermediate step between the theo-
retical formalization and the evaluation of an idea. Other authors (Medin
and Schaffer, 1978; Rocha, 1999) have pointed out as prototypes can be ob-
served or unobserved (i.e. abstract, not physical) entities: not necessarily as
real elements of the category. However, the degree or representativeness of
a data-point for a given category can be measured using a proper distance
measure from the prototype, taking into account the data nature (Timm

67



Prototypes in statistical learning

et al., 2004). From a statistical point of view, prototypes are considered
useful in supervised and unsupervised learning framework to perform classi-
fication and clustering (Borgelt, 2006). Prototypes are considered so crucial
cause they are able to captures peculiar characteristics of the data distribu-
tion (like location, size, and shape). Specifically, in recent years, their role
have increased for what concerns cluster analysis (Ragozini, Palumbo, and
D’Esposito, 2017) leading to a strand of prototype-based clustering method,
given that the identification of a prototype allows to represent a cluster by
a single data-point. A candidate, to be a prototype, has to satisfy an ad-
equacy criterion to be chosen as most representative of its group. Further,
it has been claimed that there is an inherent value of having a set of pro-
totypical elements in data-points (Bien and Tibshirani, 2011a,b). Several
procedure (and, so, several criteria) have been proposed to find a consistent
approach to identify prototypes. According to (John Lu, 2010; Tan et al.,
2007), it is common to accomplish such identification using a constant ra-
dius method, g.e. the k-means algorithm (2.70, 2.71, 2.72, 2.73), and the
related moving center methods. In the following section 3.2.1 it will be in-
troduced how prototypes will be, on the other hand, identified starting from
Archetypal Analysis.

3.2.1 Prototype identification from Archetypal Analy-
sis

The basic idea, that is the cornerstone of the prototypes identification from
archetypal analysis, is that a prototype has to satisfy, in terms of maximi-
nation, the so-called typicality-prototypicality degree (Rifqi, 1996). This con-
cept derives from prototypes definition in cognitive science (Rosch and B. B.
Lloyd, 1978) for which resemblance family is the ground that is the origin of
the construction of categories (Tversky, 1977). Further, is has been shown
how the typicality-prototypicality degree degree combines two different com-
plementary components (Lesot and Kruse, 2007): internal resemblance and
external dissimilarity. The former starts from the assumption that each ob-
ject shares different common features with other members of the category,
but no globally shared feature can be identified (Lesot, Rifqi, and Bouchon-
Meunier, 2008). The latter measures the total dissimilarity to objects of
other classes. Therefore, the steps in order to perform the identification of
prototypes in this approach, are 1 Compute the internal resemblance degree
and the external dissimilarity. 2 Aggregate together both (internal resem-
blance and the external dissimilarity) to obtain an overall typicality degree.
3 Choose prototypes according to overall typicality degree and a predefined
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threshold.
Analogously to these steps formalized as a general procedure that lies be-
tween clustering and categorization in cognitive sciences framework, the three
steps procedure proposed in (Ragozini, Palumbo, and D’Esposito, 2017) is
as follows:

Step 1

� Performing AA, first step is to maximize a proper external dissimi-
larity criterion. For this, archetypes act as first stage well-separated
prototypes.

Step 2

� Data can be now clustered around each archetype, leading to a max-
imization of an internal resemblance criterion. From this, prototypes
are identified. In such a step, prototypes are figured out in the space
spanned by the archetypes, cause in such space compositional distances
properties can be exploited (Aitchison, 1982; Aitchison et al., 2000).

Step 3

� From the space spanned by archetypes, prototypes are reverted to the
original space of data-points, to get their final versions.

When aggregation operator is applied, it yields a compromise between these
to instances of Step 1 and Step 2. In this case the partition is not known in
advance, so AA is also able to identify the proper number of clusters (and,
therefore, of prototypes). This means that the approach is data-driven, and
in each step information from data are extracted incrementally, to obtain at
the end of Step 3 a class of prototypes that maximize the interpretation and
comprehension of data-points patterns and structure.
Formally, let’s assume a set of n objects Ω and the possible partitions C =
(C1, · · · , CK) of Ω in K groups. If measures (ρ and δ) are defined for re-
semblance and dissimilarity (R and D), the prototipicality index T can be
written as follows:

T (x,Ck) = f(R(x, Ck), D(x, Ck)) (3.6)

where function f is a function able to combine together resemblance and
dissimilarity. Resemblance R(x, Ck) = P (ρ(x,xi)) is a function that mea-
sures similarity between the object x with xi ∈ Ck. The second part of the
equation (3.6) refers to the dissimilarity D(x, Ck) = ∆(δ(x,xi)). It is a way
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to evaluate the dissimilarity between x and all the xi /∈ Ck. From this, the
set of prototypes P = (p1, . . . ,pK) is then defined as:

P = {pk ∈ <p|pk = arg max
xi

T (x,Ck), k = 1, . . . , K}. (3.7)

Let’s denote prototypes in Step 1 P1, in Step 2 P2 and in Step 3 P3. As men-
tioned, the K prototypes in first Step P1

K are equal to the K archetypes, let’s
say, AK . In this stage of the procedure prototypes are extreme points with
respect to data cloud, they lie far from each other, characterize the data struc-
ture and are able to recover the global variability (Ragozini, Palumbo, and
D’Esposito, 2017). Let’s recall that the number K of prototypes/archetype-
sis still unknown but, in this data-driven approach, are assumed to be de-
termined by the data cloud structure. Moving from 1st Step to 2nd Step,
archetypes AK are used as basis vectors to create a space that is spanned by
them, as formulated in (3.1). In that space, each original point is represented
by a combination of archetypes, using α’s coefficients to reconstruct original
data matrix. Here the space is a K-dimensional simplex where archetypes
are the vertices. In this space, is possible to obtain a partition by means of
a clustering procedure around such archetypes. As classifiers, is possible to
adopt both a crisp or a fuzzy rule. The former is:

Ck = {xi : arg max
j
αij = k}, k = 1, . . . , K. (3.8)

While the latter is:

Cτ
k = {xi : αik > τ}, 0 < τ < 1, k = 1, . . . , K. (3.9)

In both cases, to maximize internal resemblance in each group of the parti-
tion, centroids of such partition are selected as prototypes in 2nd Step:

min
(c1,...,cK)

∑
x′i∈Ck

d(αi, ck)∀k (3.10)

with d(·, ·) an appropriate dissimilarity measure in the space SK . These
centroids are P2. Last step is to revert P2 to the original space from the
space spanned by archetypes, to obtain P3:

P3 = ckA(k) (3.11)

After this last step, the procedure is accomplished and P3 final version of
prototypes are identified.
Further, starting from identification of P3, categorization is possible by means
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of Voronoi Tessellation (Azrieli and Lehrer, 2007; Palumbo and Ragozini,
n.d.). The approach is embedded in the Conceptual Space Theory (Gärdenfors,
2004). If is possible to assume that the metric inside conceptual space is
the Euclidean one, the categories c(pk), related to the partition, obtained
through the 3 steps, correspond to cells derived from a Voronoi tessellation
(Edelsbrunner and Seidel, 1986) based on the prototypes P3. Thus, the pro-
totypes are able to identify categories in a thorough way, and categories are
convex regions of the conceptual space as defined by Gardenfors. Is possible
then to classify all the other points belonging to such the conceptual space.

3.3 Archetypoids

The concept of Archetypoid has been introduced in the statistical literature
by (Guillermo Vinué, Epifanio, and Alemany, 2015). One of the biggest short-
coming of archetypes and prototypes as defined and calculated in previous
sections, is that, even though they are able to hold many useful mathematical-
geometrical properties (for example archetypes from AA are a convex com-
bination of the sampled individuals), they are not necessarily observed in-
dividuals. And, in many real cases and in real data analysis, this can be
a strong ”contra”. Indeed, in certain problems, it is crucial that the data
are summarized by means of real subjects, that is, observations of the sam-
ple. From an interpretative point of view, if archetypes or prototypes are
”artificial”, no one individual can fit it 100%. Thus, to counter-face this
problem, archetypoid are developed as real (observed) archetypes. Real ap-
plications where only real units are interesting and useful have been proposed
in several academic publications, as well as in company and business field.
For example, a robust version of archetypoids has been used to analyze hy-
perspectral imagery (Sun et al., 2017) and to evaluate and interpret sports
performances (Guillermo Vinué and Epifanio, 2017). Several extensions of
archetypoids have been developed for more complex data, such functional
data archetypoids (Epifanio, 2016) and applied to financial time series (Mo-
liner and Epifanio, 2018).
Formally, starting from definition of archetypes given in (3.1), (3.1) and (3.2),
archetypoids are derived from such formulation just by adding a further con-
straint. It is that the results of AA zk have to be a real data-points. This is
a mixed-integer optimization problem to be solved. Authors in (Guillermo
Vinué, Epifanio, and Alemany, 2015) developed an algorithm ad hoc to over-
come the computational costs of two well-known algorithms to face this op-
timization problem: branch and bound algorithms and genetic algorithms.
Another problem is that the results provided by the genetic algorithm did
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not hold the constraints of the archetypoids. The true solution, however,
can be found only with a combinatory approach, trying one by one all the
data-points and searching for the one able to minimize the objective func-
tion. Still, with a real data large datasets, the computational cost is too high
to consider this an efficient procedure. Authors decided so to develop an
algorithm based on the Partitioning Around Medoids (PAM) clustering al-
gorithm (Kaufman and Rousseeuw, 2009; Van der Laan, Pollard, and Bryan,
2003). Let’s recall that the medoid is that real object of the cluster that is
able to minimize the average dissimilarity to all the units of the cluster. The
archetypoid algorithm is presented in 4 steps as follows:

1 BUILD phase. In this step is important to choose good initial units
from the set of n data-points that act as first-step k archetypoids.

2 SWAP phase. Calculate RSS for both archetypoids and points that
are not archetypoids, switching them iteratively. It is based on α’s
coefficients.

3 SELECT Select the configuration with lower RSS

4 REPEAT Repeat from step 2 to 4 until there is no change at all in
archetypoids

5 END.

How to choose the initial archetypoids of 1st step is, at this stage, the open
question still on the table to start the algorithm. In the following, the most
used (according to the literature) 5 criteria will be introduced:

� It is possible to initialise randomly with a simple sample random proce-
dure (with no replacements allowed) of n units belonging to the original
dataset to be the k starting archetypoids.

� Another approach is to compute the Euclidean distance (or a proper
distance for such space) between the k archetypes from AA and the
n individuals and choosing the nearest ones (as proposed in Epifanio,
Vinué, and Alemany, 2013).

� Further, procedure can start identifying the individuals with the max-
imum α value for each archetype from AA, i.e. the data-point with
the largest relative share for the respective archetype. It has been used
in Eugster, 2012 and Seiler and Wohlrabe, 2013, given that α’s rep-
resent how much each archetype contributes to the approximation of
each individual.
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� The fourth choice works, on the other hand, on β’s instead of α’s. It
identifies archetypoids with maximum value of β, so it chooses units
that are used the most in contributing in the generation of the archetypes.

� Last possibility consists of using FURTHESTSUM initialization (Mørup
and Hansen, 2010, 2012), that is a way to select archetypes in a stepwise
fashion.

The algorithm above presented is intended to act in a similar way as a PAM,
with a BUILD and a SWAP phases. The idea behind the SWAP phase of
the presented algorithm is similar to PAM analysis, and it yields to compu-
tational costs much higher than BUILD phase. What changes, from PAM to
archetypoids identification, is the objective function that here is RSS. PAM,
indeed, is suited to clustering around k central points (medoids) and archety-
poids identification is aimed at finding k units able to describe, characterize
and represent the extreme types in the data cloud. The SWAP phase, in this
case, aims to improve the original chosen set of archetypoids at step 1 by
exchanging iteratively selected and unselected individuals, checking if such
replacements are able to reduce the RSS, so if the original data represen-
tation by means of combination of such extreme points is improved. In the
inner loop, new α’s are calculated in order to evalute new RSS, and if there
is an improvement algorithm restarts at the end of step 1 using new archety-
poids as initial values. Then, 2nd phase is repeated until no changes occur
in any of the archetypoids. Given that all the theoretically allowed swaps
are considered, the final results is just a function of the new recalculation
of RSS and α’s, no matter the objects order in data. It is worth to note
that the coefficients used to construct archetype from original data, β’s, are
not update in the same way as in archetypes 3.1. In this algorithm, β’s are
just binary: 1 for the individual chosen to be archetypoid, 0 for the others.
The RSS is calculated using a spectral 2-norm Eugster and Leisch, 2009b, or
with the Frobenius Norm. Archetypoids, given that are real observation and
not artificial points, have different locations with respect to archetypes and
prototypes. If the number of archetypoids is K = 1, it is the medoid of data
cloud with one cluster (according to the Euclidean distance as dissimilarity).
For what concerns archetypes, if K = 1 the solution is the sample mean.
In case of K = N , the archetypoids are equal to the set of vertices of the
convex hull of X and RSS = 0. If 1 < K < N , it’s not possible to state that
the archetypoids lie on the boundary of the convex hull of X. On the other
hand, it is possible to state that for archetypes. Usually archetypoids lie on
such boundary if they have a normal distribution, but overall it depends on
the distribution of the observations.
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3.4 Archetypes, Prototypes and Archetypoids

for Complex data

Archetypal analysis was developed, in its original form, to deal with simple
data-points. And, then, even prototypes and archetypoids have been origi-
nally formalized in the simplest case of a data matrix containing observations
that are multivariate points. But, as discussed above, in SDA as well as in
others approach, the nature of data could present a more complex structure
than simple points. One example is about relational data embedded in So-
cial Network Analysis approach (Scott, 2017). This approach is a statistical
extension of mathematical graph theory (D. B. West et al., 2001) and it aims
to describe patterns and structure behind relationships (usually called links
or edges) between units (usually called vertices). The data nature is so more
complex, cause it does not express a simple value but is a relational data,
representing the degree and the direction of such relationship. In Ragozini
and D’Esposito, 2015 authors use the archetypal analysis to analyze a group
of networks, with the aim of classifying them (and to summarise them) by
using a small number of networks from the original 36. The aim is to find a
small number of representative networks that can be used as a benchmark for
the other networks, as well as an useful tool to condense the most important
information and features of the data set. For what concerns Social Networks
Analysis, in (Ragozini, De Stefano, and D’Esposito, 2017) a 3 steps proce-
dure has been developed to figure out prototypes of networks. In first step
authors describe a network through a mixture of features referring to differ-
ent scale network structures, then they find prototypes in the space spanned
by such features, and lastly by reverting to the original networks space they
figure out the final prototypes. For the case of functional data (Ramsay,
2005), where functional data are such data for which each observation is a
whole function, archetipal analysis have been first proposed in (Costantini
et al., 2012). Functions, in this work, were expressed in a functional basis,
and the standard multivariate procedure to find archetypes was applied to
the coefficients in this orthonormal basis. Analogously to what happens in
Functional PCA (Manteiga and Vieu, 2007), this method holds only in case
of orthonormal vectors as basis. On the other hand, in (Epifanio, 2016) the
proposed methodology is developed to figure out functional archetypes and
archetypoids without the orthonormal constraints, and it is valid whatever
the basis used for approximating the functions.
In this section, a brief literature review about archetypes, prototypes and
archetypoids for complex data have been presented. In the following, it will
be deepen how these statistical learning techniques apply to interval data,
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due to the clear link between interval-data and histogram-data.

3.4.1 Archetypes and Prototypes for interval-valued
data

The formalization of interval data has already been presented in 2.4, defining
briefly what interval data represent in a Symbolic Data Analysis approach.
The first comprehensive wide formalization of Interval Algebra is considered
Moore, 1962, and another crucial review about Interval arithmetic is for sure
Kearfott, 1996, while Miller and Yang, 1997 focuses specifically on association
rules for interval data. Let’s first of all introduce, for the purpose of describe
different proposal of statistical learning suited for interval data, the four
elementary operations rationale when dealing with a set of intervals. Let’s
assume two interval objects, x and y, both defined between a lower and an
upper bound: x→ [xl;xu] and y → [yl; yu]. The four elementary operations
work in the following way:

x+ y = [xl + yl;xu + yu] (3.12)

x− y = [xl − yl;xu − yu] (3.13)

x× y =
[
min (xl, yl); max (xu, yu)

]
(3.14)

x÷ y = x× 1

y
↔ [xl, xu] ·

[
1/, yu; 1/, yl

]
(3.15)

Further, given a number n of intervals [xil;xiu], with i = 1, · · · , n, the mean
between xi intervals is computed as follows: 1

n

n∑
i=1

xil;
1

n

n∑
i=1

xiu

 (3.16)

From these concepts, a proper distance between two intervals x and y:

q : (x, y) ∈ R× R↔ q(x, y) ∈ R+
0 (3.17)

as defined in Corsaro and Marino, 2010 is:

q(x, y) = sup
[
|xl − yl|, |xu − yu|

]
= |xc − yc|+ |∆x−∆y| (3.18)

where each interval valued data x is described as an interval of real numbers
such that:

x = [xl, xu] = [xc −∆x, xc + ∆x] (3.19)
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Let A be a matrix such that:

A = [Al, Au] = [A ∈ Rm×n] with Al ≤ A ≤ Au (3.20)

with Al and Au two rectangular matrices ∈ Rm×n. The defined A, that is
a set of matrices, is called interval matrix of dimension Rm×n. Further, two
crucial elements of interval matrix need to be introduced in order to describe,
likewise in (3.19), interval objects. Let’s define center as:

Ac =
1

2
(Al + Au) (3.21)

and the radius of an interval matrix as:

∆A =
1

2
(Au − Al) (3.22)

Therefore, matrix A can be expressed as a function of both center and radius
as follows:

A = [Al, Au] = [Ac −∆A,Ac + ∆A] (3.23)

In D’Esposito, Palumbo, and Ragozini, 2006, a single interval matrix X is for-
mally proposed as composed by two different matrices: Xc that contains all
the midpoints (center matrix) and Xr including all the ranges (range matrix).
Further, authors point out in this work the geometrical properties of such
interval matrices, according to the number of columns (variables) included
in the matrix. In one dimension cartesian space, each interval observations
is a segment; in two-dimensions, it is a rectangle; in three-dimensions, it is
a parallelepiped. When number of variables for each interval unit is higher
than 3, each unit is configurable as a parallelotope.
However, algebraic operations between interval matrices such A, are for-
malized analogously to operations with matrices containing simple single-
valued data. The pointwise algebraic operations follow the rules introduced
in ((3.12), (3.13), (3.14) and (3.15)). A distance matrix between two inter-
val matrices, let’s say X and Y, is the non-negative matrix representing the
pointwise distance as in (3.17) between all the elements (i, j) in X and Y:

q(X,Y)→ q(Xij,Yij) (3.24)

The extension of archetypal analysis to interval-valued data starts from a
similar non-convex minimization problem as in (3.5), but when dealing with
interval matrices such as X and Y, is possible to formalize them using center
as in (3.21) and radius as in (3.22). According to (3.24), indeed, is possible
to obtain a metric on the set Rm×n using center and radius:

||q(X,Y)||F = || |Xc − Yc|+ |∆X −∆Y | ||F (3.25)
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From this Frobenius Norm is possible to formalize the objective function in
Interval Archetypal Analysis (IAA). The advantage of this metric is that is
able to handle both the distance between the centers, for the aim of localiza-
tion, and the radius of intervals, that are a way to summarize the accuracy.
The IAA problem, for the interval matrices X and Y, and with A and B the
matrices including the α’s and β’s, is therefore as follows:

min
A,B
||q(X, A ·B ·X)||F = || |Xc−(A ·B ·X)c|+ |∆X−∆(A ·B ·X)| ||F (3.26)

Under the usual constraints about α’s and β’s in (3.1), archetypes for IIA
can be written as:

Z = B ·X (3.27)

Further, as proposed in ibid., another approach is to relax the formula in
(3.27), to split the matrix Z into Zc and Zr. The former is an archetypal
midpoints matrix, the latter is an archetypal ranges matrix:

Zc = Bc ·Xc ∆Z = Br ·∆X (3.28)

In this approach, thus, centers of the final interval archetypes lie on the
convex hull of the centers, and radii of the final interval archetypes belong
to convex hull of the radii. So, Bc and Br satisfy independently 3.1. Overall
archetypes don’t lie, considering at the same time center and range, on the
convex hull of interval data units. Let’s underline that α’s are the same
for both matrices of centers and radii. To solve the minimization problem,
authors in this work have proposed a modification of the Hausdorff distance
(Rockafellar and Wets, 2009, Page 117), that is a norm between pairs of closed
sets, suited for interval data, consistent with results found in (Neumaier,
1990; Palumbo and Irpino, 2005).

3.5 On the use of AA as benchmarking tool

Benchmarking plays a relevant role in performance analysis, and it a com-
mon practice that is adopted in several domains. Important reviews and
discussion about benchmarking practices in general, with a wide overview
on real data applications, can be found in Camp, 1989; Spendolini, 1992;
J. Zhu, 2014. Most of the time benchmarking analysis make use of several
statistical techniques and methods. This happens, of course, when quantita-
tive benchmarking is the framework in which performance analysis is carried
out. There are, on the other hand, contexts in which only a qualitative
benchmarking is performed, without considering the additional contribution
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of quantitative analysis. However, the standard definition of benchmarking
is that it is a measurement, in a qualitative and/or quantitative perspective,
of the quality of an organization’s policies, products, programs, strategies.
Special emphasis is on the comparison with standard measurements (best
or worst performances), or similar measurements of its peers (similar com-
panies). Further, is important to assess how close are the units to such
good/bad standards, in order to evaluate the state of art of the overall per-
formances, and to figure out if some specific groups are under-performing. In
the quantitative framework, a simple method to benchmarking is gap analy-
sis suited for single measures (single-valued data points), that is comparing
performances through both analytical and graphical tools. In management
and business literature, gap analysis is about the comparison of real esti-
mated performance with potential or desired performance, usually linking
the outcome to several input resources in a regression-wise fashion (S. W.
Brown and Swartz, 1989). Therefore, if an organization does not make the
best use of current resources in terms of efficiency, it may produce or per-
form below an idealized potential. Identifying gaps between the optimized
allocation, from the theoretical point of view, of the inputs, and the real
observed allocation-level of such resources, can reveal specific areas of under-
performances. If indicators are needed starting from multivariate data, more
sophisticated techniques are needed, in order to assess in a meaningful way
the performance level of each unit, without leave out important features,
but instead creating complex set of indicators highlighting several aspects
of the performances as in Camp, 1995. In literature, it has been proposed
to use multi-factor gap analysis (Eyrich, 1991) and the analytic hierarchy
process (Saaty, 1990). Let recall that the former hypothesis the complete
absence of relationships between different indicators (independent indicators
assumption), and the latter performs the analysis based on subjective, and
hardly measurable, opinions. In Smith, 1990 more sophisticated, complete
and exhaustive and statistical techniques were used and discussed, mainly
clustering analysis, multivariate regression and frontier analysis. When a
clustering procedure is performed, homogeneous groups are determined based
on several features, mainly in multivariate context, and so units belonging
to the same cluster can be assumed to be ”similar”, and groups are het-
erogeneous if compared to each others. These concepts and properties of
clusters are exploited in benchmarking, so that attainable targets can be
defined (Binder, Clegg, and Egel-Hess, 2006; Koh, Gunasekaran, and Saad,
2005; Talluri, 2000). Further, most clustering analysis are able to identify
abstract entities (centroids, mediods and so on) that are able to stress out
a resume of the information contained in each group, allowing for simpler
comparisons. Regression analysis has instead an other aim, that is trying to
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explain in a causal fashion the link between inputs and the outcome, that
is the performance; an application of multilevel regression model to evaluate
educational performances can be found in Goldstein, Bonnet, and Rocher,
2007. In the recent years, also sentiment analysis has been exploited in or-
der to make assessment about different domains. An application of several
techniques of sentiment analysis applied to twitter data has been performed
in Abbasi, Hassan, and Dhar, 2014
These are just some of the statistical techniques that have been proposed as
tools for quantitative benchmarking, while a pretty recent debate has turned
out about the role of archetypes in benchmarking area. First works focused
to point out and discuss AA in such direction and for this use, have been
Porzio, Ragozini, and Vistocco, 2006 and Porzio, Ragozini, and Vistocco,
2008. The aim of using AA in benchmarking is to adopt an exploratory and
graphical approach, in order to consider AA as a basis for a data driven
benchmarking procedure. Identified archetypes will play the role of reference
performers, so that it will be possible to analyse their features, and real units’
performances will be compared to the archetypes’ ones. As discussed earlier,
archetypes are extreme points with external location, and for this reasons
they are suited to be reference abstract units in a benchmarking perspective,
using as extreme reference the external part of data-cloud that lies on the
convex hull.
The proposal, for the next section, is to apply AA in case of histogram data
to evaluate and discuss some features of Italian School System performances.
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Chapter 4

Archetypes for
Histogram-valued data

When the data are histogram-valued data, we are taking under consideration
a dataset made up by several observations, each of them being a univariate
histogram for each variable. In this section the aim is, in the first instance, to
develop the archetypal analysis for such kind of data starting from the Resid-
ual Sum of Squares as objective function, exploiting a proper formalization
of distances based on histogram descriptions based on radii and centers, con-
sidering also previous formalized constraints about coefficients.

4.1 Formal definition of histogram-valued data

archetypes

Let’s denote with X a symbolic data table, with n observation for p his-
togram variables. In this context, let recall the general archetypes problem
(as formalized in matrix notation in (3.5)) to be solved to find K archetypes:

min
AK ,BK

RSSK = min
AK ,BK

∥∥∥X −AKBT
KX

∥∥∥2 (4.1)

under the usual constraints about elements of matrices AK and BK analo-
gously to 3.1:

� αik ≥ 0 and
∑p

i=1 αik = 1

� βkj ≥ 0 and
∑n

j=1 βkj = 1

where αik is the generic element of the matrix A and βkj is the generic
element of the matrix B. They have the same role as in previous defined for-
mulation: A contains all the elements that express the contribution of each
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archetypes to represent each observation from original data, and B includes
all the coefficients to represent individual contribution in the generation of
the K archetypes from original data X . At this stage, the issue is to find a
proper function to measure the ”distance” (in terms of dissimilarity or diver-
gence) between the original matrix of histograms X and the ”reconstructed”
data matrix of histograms, let’s say X̃ = AKBT

KX , given so the estimation
of A and B.
One approach, to better deal with archetypal problem, is to give an oper-
ational description of histogram objects and their distances starting from
centers and radii perspective. Let recall the definition of Wasserstein dis-
tance (Irpino and Verde, 2006; Rüschendorf, 2001), derived mainly from
Gibbs’ work (Gibbs and Su, 2002), as formalized in 2.52 and 2.53. Given a
generic lp Wasserstein distance (Givens, Shortt, et al., 1984), it expresses the
distance between two observed densities φ1 and φ2 using the inverse of such
density function, namely the quantile functions φ−11 and φ−12 :

Wp =

(∫ 1

0

[
φ−11 (t)− φ−12 (t)

]p
dt

) 1
p

(4.2)

Let recall that if p = 2, Wasserstein distance lp becomes l2 and its definition
simplifies as:

W2 =

√∫ 1

0

[
φ−11 (t)− φ−12 (t)

]2
dt (4.3)

This equation (2.53) is a way to express the extension of L2 Minkowski dis-
tance. Similar to this concept of distance between quantile functions, let
define the Mallows Distance dM (Mallows, 1972b) between two histogram
objects X1 and X2, given a generic set of weights w, as follows:

dM(X1,X2) =

√∫ 1

0

[
ψ−11 (w)− ψ−12 (w)

]2
dw (4.4)

In this context, ψ1 is the distribution function of the first histogram object
X1 and ψ2 is the distribution function of the second histogram object X2.
So, ψ−1 is the inverse of such distribution function, and as pointed out by
(Irpino, Verde, and DeCarvalho, 2014) it can be a drawback for its high
computational cost. As defined in 2.4, deriving from 2.3, histogram-valued
data can be written as an extension of interval-valued data, cause each bin
is assumed to be an interval variable, and the union of such bins made up
an histogram itself. Let consider an histogram description of an histogram
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variable X, with H number of sub-intevals (bins) with observed empirical
frequencies πu such that:

X = [I1(π1), I2(π2), · · · , Iu(πu), · · · , IH(πH)] (4.5)

From this, the weights wu are defined as cumulative weights associated with
wu:

∑H
u=1 πu. Each πu is also defined as difference between weights, so each

πu = wu − wu−1. Under the assumption of uniform distribution in each
interval Iu between lower and upper bounds, empirical distribution ψu(X)
can be written as:

ψu(X) = wu + (x− xLu)
wu − wu−1
xUu − xLu

(4.6)

where capital letters in the subscript of x indicates lower bound of u interval
(xL) and upper bound of u interval (xU). Therefore, the inverse distribution
function (quantile) can be expressed as a piecewise function:

ψ−1t (X) = xLu +
t− wu−1
wu − wu−1

(xUu − xLu) (4.7)

After ordering ascendently weights, without repetitions, to identify a set of
uniformly dense intervals (as proposed by ibid.):

w = (w0, · · · , wu, · · · , wm) (4.8)

where weights are such that:

w0 = 0, wm = 1 max(H1, H2) ≤ m ≤ (H1 +H2 − 1) (4.9)

given that the objects to compare are X1 and X2, and their weights have
been merged together in only one vector w. From (4.8) and (4.9), the squared
distance from 4.4 between histogram objects X1 and X2 becomes as follows:

d2M(X1,X2) =
m∑
u=1

∫ wu

wu−1

[
ψ−11 (t)− ψ−12 (t)

]2
dt (4.10)

For each couple (wu−1, wu), it allows to identify two uniformly dense intervals,
with respect to X1 and X2. These are defined inside the bounds Iu1 =
[ψ−11 (wu−1); ψ

−1
1 (wu)] for X1 and Iu2 = [ψ−12 (wu−1); ψ

−1
2 (wu)] for X2. For

each interval, the proposal is to obtain the computation of center and radius
from the inverse of the distribution function. Centers, for an histogram object
X1 and its sub-intervals, are defined as:

cu1 =
(ψ−11 (wu−1)) + ψ−11 (wu)

2
(4.11)
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Radii, for an histogram object X1 and its sub-intervals, are defined as:

ru1 =
(ψ−11 (wu−1))− ψ−11 (wu)

2
(4.12)

Again, under the assumption of uniformly distribution within each interval,
it is possible to write intervals as a function of center and radius, exploiting
the relationships between quantile function and centers-radii elements: Iu =
cu+ru(2t−1) for 0 ≤ t ≤ 1. From this, Mallows’ distance in 4.10 between
X1 and X2 can be rewritten as:

d2M(X1,X2) =
m∑
u=1

πu

∫ 1

0

[
(cu1 + ru1(2t− 1))− (cu2 + ru2(2t− 1))

]2
dt

(4.13)
it simplifies in a function of differences between centers and radii as follows:

d2M(X1,X2) =
m∑
u=1

πu

[
(cu1 − cu2)2 +

1

3
(ru1 − ru2)2

]
(4.14)

Equation in 4.14 is the univariate case of the multivariate general case with p
variables, as in 2.65, already presented when discussing dynamic clustering:

d2M(X1,X2) =

p∑
j=1

m∑
u=1

π(j)
u

[
(c

(j)
u1 − c

(j)
u2 )2 +

1

3
(r

(j)
u1 − r

(j)
u2 )2

]
(4.15)

It means that the overall distance (in terms of Mallows distance defined by
centers and radii) between two multivariate histogram objects, is the sum of
such Mallows difference computed for each variable, under the assumption of
independence between variables. After this crucial assumption, it is possible
to rewrite the general archetypes problem for the histogram symbolic data
table X , in a similar way as proposed in D’Esposito, Palumbo, and Ragozini,
2006, (Page 351). Let consider the matrix including the centers of X , let say
X̌ , and the matrix containing the radii of the symbolic data table X , let say
∆X . Let assume that as mentioned, K is the total number of archetypes to
be found, with k in (1, · · · , k, · · · , K), the RSSK problem as proposed in 4.1,
using centers and radii notation and exploiting interval arithmetic properties
from Mallows and Wasserstein perspective, becomes:

n∑
i=1

p∑
j=1

m∑
u=1

πu


ciju − K∑

k=1

αc,ikβ
ᵀ
c,kiX̌

2

+
1

3

riju − K∑
k=1

αr,ikβ
ᵀ
r,ki∆X

2


(4.16)
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So, the overall minimization problem is to find best α’s and best β’s to
minimize the RSSK given the identified number K of archetypes, taking
into account both the distance between centers and the distance between
radii and the weights. General weights are related to the frequencies πu, and

specific weights for radii are the constant
1

3
. In both part of equation 4.16,

coefficients α’s and β’s belonging to the matrices AK and BK are considered
to be the same. This constraint implies the algebraic linkage between centers
space and radii space. The overall minimization problem, given the vector
P including all the π weights, and recalling that X̃ is the symbolic data
table containing the reconstruction of original histograms in the symbolic
data table X , is therefore defined as follows:

min
AK ,BK

RSSK = min
AK ,BK

∥∥∥X −AKBT
KX

∥∥∥2 → min
AK ,BK

∥∥∥∥d(X , X̃
)∥∥∥∥2

= min
AK ,BK

P

[(
X̌ −AKBT

KX̌
)2

+
1

3

(
∆X −AKBT

K∆X
)2]

(4.17)

As for simple data points as well for interval-value data, archetypes identifi-
cation for histogram-valued data produces K archetypes that share the same
nature of the original data, therefore in this case archetypes are proper his-
tograms, with their bins and their quantile associated to each sub-interval,
holding the same properties of classical histograms. Plus, other matrices to
be found, AK and BK , include coefficients that are single-valued, so these
matrices are single-valued matrices. As already have been discussed in 3.1,
archetypes are useful in finding interesting patterns in data structure above
all for their location. For what concerns histogram archetypes, this point
will discussed in the following section.

4.2 On the location of archetypes for Histogram-

valued data

Let consider the simplest case in which AA is performed on single-valued
data points. In this context, it is known that if only one archetypes is identi-
fied, it coincides with the sample mean of data. This result has been showed
in Cutler and Breiman, 1994 and has been discussed in Eugster and Leisch,
2009b. On the other hand, the most common and useful case is when the
number K of archetypes is 1 < K < N , with N being the overall number
of data points that fully define the boundary of the convex hull. In this
case, archetypes lie on such convex hull, as in fig 4.1. When the number N
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Figure 4.1: Location of 4 archetypes, extreme points lying on the convex
hull, compared to 4 centroids of fuzzy k-means, that represent barycenter of
their own group and so are located in more central positions of data cloud.
Example Data from Invalsi Test 2015-2016 for Italian and Math domains.

of elements of the boundary of the convex hull are the same number of K
archetypes, so when K = N , the objective function RSS decreases to its
minimum, and at the end RSS = 0. The archetypes thus identified coincide
with all the points that define the convex hull. So, usually a meaninful upper
bound in the number of allowed archetypes is N . These theoretical results,
as pointed out in Eugster and Leisch, 2009b and Bauckhage and Thurau,
2009 among others, are not always reached, according to some convergences
issues and computational difficulties.
In case of histogram-valued data, a discussion about location can start from
a similar problem of identifying archetypes in case of interval-valued data. In
that case, in Corsaro and Marino, 2010 is recalled a result that has already
been found in D’Esposito, Palumbo, and Ragozini, 2006 about relationships
between convex hull in a centers-radii perspective. At the end, is has been
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proofed that centers and radii of the archetypes respectively belong to convex
hull of the centers and the radii of the data.
To get into the mechanism of the histogram-valued data archetypes identi-
fication in order to better discuss their location, let’s introduce a real data
example.
Data are retrieved from HistDAWass, and we consider 19 France regions
with the distributions of marginal costs of farms. It contains two histogram
variables: ”Y˙TSC” (Total costs of a farm), ”X˙Wheat” (Costs for Wheat).
The matrix of distribution is, so, made up by 19 observations (rows) and
2 variables (columns), for a total of 38 histogram-valued objects. Further,
regions can be divided into South, Center and North according to their posi-
tion in France. Most important descriptive statistics for such histograms are
presented in 4.1.

Table 4.1 Main descriptive statistics for histogram-valued objects with re-
spect to 19 different France regions, about Farm and Wheat costs

Mean — Median — Min — Max — St.Dev. — Skeweness — Kurtosis
Region Farm Wheat Farm Wheat Farm Wheat Farm Wheat Farm Wheat Farm Wheat Farm Wheat
Ile-de-France 39206.90 40708.11 38579.09 40936.70 15101.78 0.00 66067.46 85712.46 13320.35 21232.91 0.15 0.10 2.02 2.20
Champagne-Ardenne 27809.90 16264.45 24375.91 13234.38 2298.01 0.00 71493.21 52334.79 19200.88 15807.18 0.52 0.58 2.20 2.09
Picardie 51505.53 36590.05 49513.34 32382.43 17590.67 8249.86 101260.37 78105.15 21225.37 19628.74 0.42 0.47 2.34 2.07
Haute-Normandie 34783.63 20430.56 31633.47 16595.58 11500.32 1993.09 72321.28 63881.53 16582.96 15094.71 0.45 0.97 2.11 3.24
Centre 32800.69 24312.89 29638.70 21555.85 9021.08 0.00 69930.23 65976.32 15824.75 17743.12 0.54 0.49 2.32 2.24
Basse-Normandie 30563.84 6205.59 27009.09 3407.05 7557.68 0.00 70557.57 28597.22 16707.12 7010.48 0.62 1.49 2.37 4.41
Bourgogne 29227.60 11502.43 25095.33 5581.26 6526.54 0.00 67128.45 47199.18 16045.79 13342.92 0.62 1.08 2.37 2.99
Nord-Pas-de-Calais 39700.86 19037.06 37133.65 16845.54 15989.00 3803.65 81271.21 45862.94 16879.63 10473.71 0.64 0.73 2.46 2.68
Lorraine 42035.00 18691.11 39705.14 16140.41 15372.60 1018.54 83318.66 52682.15 18629.02 13191.63 0.43 0.74 2.12 2.70
Alsace 21441.74 3804.42 17231.75 3340.37 3949.95 0.00 56199.29 13271.32 13490.40 3680.48 0.83 0.77 2.75 2.62
Franche-Comte 28852.49 3883.17 25616.55 2062.21 11294.17 0.00 64517.21 17692.13 12789.81 4458.26 0.95 1.38 3.17 4.07
Pays de la Loire 31911.27 5361.55 26009.39 4581.86 9794.71 0.00 86776.96 16225.09 19111.77 4453.67 1.14 0.63 3.47 2.44
Bretagne 40957.75 4463.18 28831.50 3689.93 10033.73 0.00 158739.07 14344.58 32832.51 3965.28 1.88 0.69 5.90 2.47
Poitou-Charentes 25139.94 7281.20 22925.15 5241.36 8397.97 0.00 53483.60 25965.88 11509.42 6850.35 0.65 0.95 2.52 3.00
Aquitaine 18764.01 319.01 15318.80 0.00 3959.19 0.00 48919.34 3474.00 11364.52 757.92 0.87 2.62 2.87 8.93
Midi-Pyrenees 16663.50 2362.43 14952.22 923.36 5897.12 0.00 37476.51 12583.55 7869.31 3163.08 0.74 1.52 2.75 4.45
Limousin 15286.13 543.76 14179.89 0.00 5833.37 0.00 31710.67 3319.51 6325.19 824.62 0.71 1.68 2.76 4.98
Rhone-Alpes 16573.55 1350.32 14006.74 0.00 4329.28 0.00 44556.14 7913.45 10040.80 2032.99 1.00 1.59 3.17 4.56
Auvergne 16803.60 1640.82 14814.14 471.58 5689.51 0.00 40160.15 11047.90 8512.10 2567.20 0.92 1.98 3.06 6.21

Density approximations of such distribution are presented in 4.2. From
such visual displays it is clear that some of the regions present heavy tails; i.e.
Bretagne for Farm costs and Champagne-Ardenne for Wheat costs. One of
the most important aim of the AA is to find a way to sum up these ”extreme
behaviour” by means of few salient abstract entities, that are precisely the
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Figure 4.2: Density approximation of Farm and Wheat cost for 19 France
Regions.

archetypes. First step, in performing AA, is to decide how many archetypes
have to be found, to make AA advantageous in terms of statistical learning.
As said, RSS is the objective function of the AA problem, so it is usually
used, in relationship with the number K of archetypes, as a benchmarking
function to take the decision about the proper number of archetypes to in-
clude in the analysis. One of the most common rule is, simply, the elbow
method rule, used often in many clustering procedures to have a good proxy
of the best choice of number of clusters. The idea is that, when from the
graphic displays there is a negligible gain in terms of objective function RSS
adding one more archetypes to the previous solution, it is not worthy to add
such additional archetype to the final solution. So, K will be decided with
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respect to the last significant gain in RSS as visualized in 4.3; it seems that
when K = 3 the best trade-off between number of entities (archetypes) and
quality of representation (RSS) is achieved. Archetypes are identified us-

Figure 4.3: Residual sum of squares for different number of Archetypes (from
1 to 7). According to elbow method rule, best choice is K=3

ing mathematical optimization in Matlab, by means of fmincon non-linear
programming solver, starting from elaboration developed for interval-valued
archetypes as in Corsaro and Marino, 2010. In order to perform the esti-
mation of the archetypes, the first stage of the data preparation phase is to
express each histogram as a function of centers and radii. To improve the
algorithm speed, as proposed for other clustering techniques for histogram-
valued data (like k-means, fuzzy k-means and so on), histograms are regis-
tered to share the same number of bins, in this case 8, and so to have the
same proportion of the distribution in each sub-interval (each πu is equal
to 0.125 and the 8 bins have the same area). From this, these histograms
objects are expressed in the symbolic data-table as follows:

[
C1,1.1 · · · C1,8.1 C1,2.1 · · · C1,8.1 R1,1.1 · · · R1,8.1 R1,2.1 · · · R1,8.1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C19,1.1 · · · C19,8.1 C19,2.1 · · · C19,8.1 R19,1.1 · · · R19,8.1 R19,2.1 · · · R19,8.1

]
Where the rows are 19, one for each France region, divided into centers (16
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centers each row, 8 for each variable) and radii (16 radii each row, 8 for each
variable). Therefore, matrix data-table has dimensions (19, 32). Archetypes
are identified after 444 iterations, when a local minimum that satisfies the
constraints is found. It means that the optimization is completed because
the objective function is non-decreasing in feasible directions, given both the
selected values of the optimality and constraints tolerances.

Optimization completed: The relative first-order optimality measure, 3.680873e-07,

is less than options.OptimalityTolerance = 1.000000e-06, and the relative

maximum constraint violation, 2.381247e-17, is less than options.

ConstraintTolerance = 1.000000e-06.

Optimization Metric Options

relative first-order optimality = 3.68e-07 OptimalityTolerance = 1e-06 (selected)

relative max(constraint violation) = 2.38e-17 ConstraintTolerance = 1e-06 (selected)

Given that archetypes estimation has a similar flavour to the identifi-
cation of centroids in k-means analysis (both analysis figure out abstract
entities useful to point out some patterns in data), results thus obtained in
AA will be compared to centroids obtained after performing k-means algo-
rithm for histogram-valued data. The basic idea is that it is likely that, as for
single-valued AA, archetypes are ”more extreme” compared to the centroids,
leading to represent some different aspects with respect to overall data struc-
ture.
As can be seen in 4.5, centroids seem to follow some general trends inside

the 19 regions, acting like an abstract barycenter of a group of regions. Let
recall that both analysis (k-means and AA) are performed considering at
the same time both variables (farming cost and cost of wheat), so centroids
and archetypes have to be considered as bivariate abstract entities, and their
location have to be discussed taking also into account this. As well as from
distributions presented in 4.5, median values showed in 4.2 highlights how
the highest median is found for first archetype (extreme behaviour in terms
of both high cost, farming and wheat) while lowest median for farming cost
is found for the second archetypes and so on. Overall, according to both his-
tograms visual displays and median comparison, archetypes such identified
look more ”extreme” with respect to centroids.

Furthermore, an other element to compare relative position between archetypes
and centroids, is to perform a Principal Component Analysis (PCA) between
all the variables involved and project archetypes and centroids as supple-
mentary individuals. In this context, PCA takes into account 32 numerical
variables (2 histogram variables made up by 8 bins, therefore 16 centers and
16 radii).
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Table 4.2 Median values for histogram-valued objects with respect to 19
different France regions, about Farm and Wheat costs, and about centroids
and archetypes.

Y TSC X Wheat
Ile-de-France 38579.09 40936.70

Champagne-Ardenne 24375.91 13234.38
Picardie 49513.34 32382.43

Haute-Normandie 31633.47 16595.58
Centre 29638.70 21555.85

Basse-Normandie 27009.09 3407.05
Bourgogne 25095.33 5581.26

Nord-Pas-de-Calais 37133.65 16845.54
Lorraine 39705.14 16140.41

Alsace 17231.75 3340.37
Franche-Comte 25616.55 2062.21

Pays de la Loire 26009.39 4581.86
Bretagne 28831.50 3689.93

Poitou-Charentes 22925.15 5241.36
Aquitaine 15318.80 0.00

Midi-Pyrenees 14952.22 923.36
Limousin 14179.89 0.00

Rhone-Alpes 14006.74 0.00
Auvergne 14814.14 471.58

Cl.1 37700.57 24076.08
Cl.2 25694.70 5399.72
Cl.3 15083.92 789.22

Archetipo1 42313.85 28348.93
Archetipo2 1567.90 5402.29
Archetipo3 29108.18 13117.25

From 4.4, it comes out that there is some connection between geograph-
ical location (South, Center and North) and position in factorial map; it
means that regions located in same area share some patterns in their costs
about farming and wheat. Most of the South regions (light blue) are in the
below-right part of the factorial map, most of the North regions (green) are
in the right-top, while on the left part (negative coordinates for first axis)
there is a cluster of regions from different area. First two axes, combined,
explain a high amount of variation of the original data, about 81%, so it is
worthy to analyse where archetypes and centroids are located in the factorial
map, assuming that their position can be considered a good proxy of their
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Figure 4.4: PCA with 19 regions, coloured according to geographical position.
Three Centroids from k-means and 3 archetypes act as 6 supplementary rows.

real position with respect to each others and to the 19 regions in the original
multidimensional space. First archetype and third centroid are very close,
almost overlapped, and pretty close are as well second archetype and first
centroid. It is understandable so that these 4 abstract entities, while figured
out by means of different functions, represent a similar way to describe some
patterns in data. Though, a significant difference is found for what concerns
third archetypes and second centroid, with the former being way more ex-
treme with respect to the factorial map than the latter. Looking at the two
different lines connecting centroids (black line) and archetypes (red line), the
red triangle is able to cover a bigger surface than the black triangle; it is
about 35% larger. It means that, on the average, archetypes are more ex-
treme with respect to centroids, covering a bigger part of the factorial map.
It is interesting to analyze the trend in terms of archetypes location when
the K number of archetypes increases from the allowed minimum, K = 1, to
a bigger number, let say K = 7. Let first look at the factorial map in 4.6.
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Figure 4.5: Density approximation of Farm and Wheat cost for 19 France
Regions in 8 equi-frequent bins. Centroids from k-means and 3 archetypes
highlight different patterns, with archetypes that seems to represent more
extreme behaviour.

When only one archetype is identified, so when K = 1, it is located in the
middle of the factorial map, very close to the origin of axes. It is a similar
concept to what happens in archetypal analysis for simple data points, when
the quantity that minimizes RSS in case of only one archetype is the sample
mean. When 2 archetypes are identified, one is located to the right-upper
part, the other one is in the left-bottom in an intermediate position. With
K = 3, the archetypes in the right-upper part of the map is very close the
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one archetype identified with K = 2. Combining the 3 archetypes locations,
we have an interpretation of the salient patterns in data already discussed in
4.4. If an additional archetypes is identified, the 4 salient entities are divided
one for each quadrant, describing so, each of them, a very specific pattern
in data structure. Furthermore, there is an increase of the number of units
contained in an hypothetical line joining 4 archetypes.

Figure 4.6: PCA of centers and radii with 19 regions in black and archetypes
as supplementary rows in red. Different number of archetypes are identified
and visualized in this plot: 1 ≤ K ≤ 4.

Even if a solution including more than 4 archetypes is likely redundant to
describe 19 units, in 4.7 it is proposed the identified location on the factorial
map in case of 5, 6 and 7 archetypes, always as supplementary rows. It is
made just with the purpose to discuss such location. In case of K = 5, in
clockwise order, archetypes are located extreme left-up, extreme right-up,
extreme right, extreme bottom, extreme left. Is seems that their location
is becoming more extreme every time that an additional archetype is added
to the analysis, and this is consistent with the general idea and purpose
of the traditional archetypal analysis. In case of K = 6, 4 out of 5 pre-
vious discovered archetypes are basically still there with the same coordi-
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nates, with only the left-extreme archetype ”Arch5.2” that is now split into
”Arch.6.5”, left-bottom, and ”Arch.6.5”, extreme-left. Some small changes
happen moving from 6 archetypes to 7, but the general principle holds. The
first archetype, ”Arch1” in 4.6, is a sort of centroid, in the wide sense of
the term, of the matrix including histogram-valued objects in centers and
radii notation. As more archetypes are identified, more extreme behaviour
are caught, to the point that identifying additional archetypes (for example,
moving from 6 to 7 in 4.7), is not adding real interpretative power in terms
of patterns. Archetypes as presented in 4.5, are built using centers and radii

Figure 4.7: PCA of centers and radii with 19 regions in black and archetypes
as supplementary rows in red. Different number of archetypes are identified
and visualized in this plot: 5 ≤ K ≤ 7.

notation, given that the algorithm estimates a 16 centers and 16 radii for each
archetype, finding archetypes that are 32-dimensional, treating each center
and each radius as a variable itself. Further, it is possible to ”reconstruct”
original observations using archetypes and α’s coefficients, expressing each
histogram as a linear combination of archetypes, using elements in the ma-
trix of AK . As already discussed, α’s are share same properties, given the
constraints, of compositional data, and it is possible to exploit such com-
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Figure 4.8: A ternary plot, to visualize space spanned by 3 archetypes. It
highlighting alpha’s coefficients with respect to corners (archetypes).

positional data properties to make further assessments about relationships
between observations in the space spanned by archetypes. Ternary plot is
a common way to visualize such space, in which coordinates of points (19
France regions) are given by α’s coefficients and the vertices of the triangle
are the 3 archetypes.
In the first ternary representation in 4.8, points are displayed highlighting

the amount of each of the 3 archetypes in each units, that reflect the coor-
dinates assumed by each point. Therefore, points very close to one corner
of such triangle has coordinates, with respect to that archetypes, close to 1,
and very close to 0 for the other two archetypes; while points in the mid-
dle have likely coordinates similar for all the three archetypes, and so they
are represented as a weighted mixture of all three archetypes with weights
pretty similar to each others. In this sense, this representation recall the
idea of a fuzzy-clustering using vertices of ternary plots, the archetypes, are
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Figure 4.9: A ternary plot, to visualize space spanned by 3 archetypes. it
uses different colors for different regions area, as in PCA in 4.4

barycenters. In the second ternary plot, in 4.9, points are coloured with
respect to their geographical area, and it is a way to evaluate if archetypes
space produces similar results compared to PCA in 4.4. Starting from the
second archetype (bottom-left in 4.9), it can be pointed out that the closest
points are green points (North regions), as in the PCA. Third archetypes is,
on the other hand, closer to one Center region (red) and 3 Southern regions
(blue), as well as in PCA. Let recall that PCA is unable to explain a certain
amount of variation, so in the ternary plots some patterns are slightly differ-
ent from the factorial map, but overall they seem to highlight similar data
structure, and , most important, archetypes play an analogue role in both
representation. Last ternary plot is made to stress out the results of a clus-
tering analysis (k-means) performed in the compositional space spanned by
archetypes, using the Aitchinson distance and figuring out 4 well-separated
clusters. Points have different colors according to the the cluster they are
assigned to. Green points are closer to 2nd archetype, blue points are closer
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Figure 4.10: A ternary plot, to visualize space spanned by 3 archetypes. It
uses different colors according to different groups identified by clustering in
compositional space using Aitchinson distance, with 4 clusters identified

to 1st archetype and purple points are closer to 3rd archetype. There is a
further group, the red one, that is made up by points lying somehow be-
tween top part, 1st archetype, and right part, 3rd archetypes. It explains
how is possible to exploit compositional properties in the space spanned by
archetypes, leading also to the definition of clusters inside this space. In the
following sections it will be deepen how AA for histogram-valued data are
an useful tool for benchmarking analysis, and, in particular, an application
to Italian school system will be proposed
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4.3 On the algorithm for the histogram archetypes

identification

The algorithm for histogram-valued data archetypes identification is build in
3 different components:

1 Constraints for the optimization.

2 Function to be optimized.

3 Archetypes function optimization procedure given constraints and the
function.

The whole algorithmic procedure is developed, in Matlab environment,
using the routine fmincon, that is a non-linear programming solver of Mat-
lab Optimization Toolbox. The optimization routine is made by means of
an implemented method that is a sequential quadratic programming method.
General idea behind this kind of implementation can be found in Fletcher,
2013 and in Gill, Murray, and Wright, 1981. The application is similar to
the one developed for interval archetypes in Corsaro and Marino, 2010. It is
an iterative method, and in each iteration a quadratic programming problem
is solved, using a quadratic Lagrangian function approximation with respect
to the optimization problem. The algorithm is based on a line search strat-
egy (Wächter and Biegler, 2006). In the line search strategy, the algorithm
chooses a search direction, and tries to solve a one-dimensional minimization
problem, and then it calculates the gain. At each iteration the algorithm
follows a criteria to choose such direction and searches along this direction
for a new best solution in the new iteration. For this implementation, the
algorithm chooses direction based on Quasi-Newton approach (D. Kim, Sra,
and Dhillon, 2010). Quasi-Newton Methods (QNMs) are a wide class of op-
timization methods that are used in Non-Linear Programming context when
the traditional full Newtons Methods are: (i) too time consuming (ii) too
difficult or complex to use. Methods belonging to this group allow to find
the global minimum of a generic function that is at least twice-differentiable.
The advantage is that an approximation of the Hessian is used. Some pos-
sible shortcoming are related as well to the fact that an approximation is
included and not the analytically computed Hessian, but most of the time
for this kind of problem the trade-off in terms of time and complexity is pos-
itive in using a QNM method. Such Hessian is updated adding the gained
information of each iteration. The following pseudocode, in two parts (first
part in 1 and second part in 2), describes the initialisation of constraints, the
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Algorithm 1 Archetypes for histogram data - preparation

procedure Constraints initialisation(X,m,K, v) . Inputs of the
constraints

v(2∗K∗m,1) ← matrix of random values between 0 and 1
X ← data matrix
K ← number of archetypes

5: m← number of variables
ceqα← 0(1,m) . Matrix of zeros
ceqβ ← 0(1,K) . Matrix of zeros
for i in 1 : m do

ceqα(i) = ceqα(i) + v(i+ j ∗m)

10: for j in 0 : K − 1 do
ceqβ(i) = ceqβ(i) + v(K ∗m+ i+ j ∗K))

ceq=merge[(ceqα)ᵀ; (ceqβ)ᵀ]
return ceq . output, starting values for constraints

procedure Archetypes function(v,X,m, n,K) . Inputs of the
archetypes function

15: n← number of observation
for i in 1 : m do

for j in 1 : K do
α(i, j) = v(i+ (j − 1) ∗m) . Update α’s

for i in 1 : K do
20: for j in 1 : m do

β(i, j) = v(K ∗m+ i+ (j − 1) ∗K) . Update β’s

A = α
B = β
XBAr = abs(A ∗B) ∗X(:, n+ 1 : 2 ∗ n) . Archetypes radii

25: XBAc = A ∗B ∗X(:, 1 : n) . Archetypes centers
XBA = merge[XBAc;XBAr] . Archetypes radii and centers
funct = (X(:, 1 : n)−XBAc).2+(1/3)∗(X(:, n+1 : 2∗n)−XBAr).2
RSS: definition of function to minimize according to 4.1
f = Frobenius Norm(funct) . Final function to optimize

30: procedure Optimization options(Maxiter, Maxfuneval,Tolerances)
. Options for constrained optimization

maximum number of function evaluations ← 1000000
maximum number of iteration ← 100000
constraint level tolerance ← e−6

function level tolerance ← e−6 . Options fixed
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Algorithm 2 Archetypes for histogram data - Optimization

procedure Optimization through fmincon(Optimization Options,
Function, Constraints)

lb = 0(2∗K∗m,1) . Vector of zeros
ub = 1(2∗K∗m,1) . Vector of ones
optimization result =fmincon(v)Archetypes func-

tion(v,X,m,n,K),v0,...lb,ub,...
5: under constraints ceq and optimization options

for i = 1 : m do
for j = 1 : K do

α(i, j) = v(i+ (j − 1) ∗m) . Update α’s

for i = 1 : K do
10: for j = 1 : m do

β(i, j) = v(K ∗m+ i+ (j − 1) ∗K) . Update β’s

if both: (i) ”TolCon” constraints tolerance satisfied (ii) ”TolFun”
tolerance about function satisfied then

Archetypes centers ← β ∗X(:, 1 : n) . Building archetypes centers
using β’s

Archetypes radii ← β ∗X(:, n+ 1 : 2 ∗ n). Building archetypes radii
using β’s

15: Data centers rec. ← α ∗Archetypes centers. Reconstructing original
data cent. using α’s

Data radii rec. ← α ∗ Archetypes radii . Reconstructing original
data radii using α’s

Figure 4.11: Pseucocode for histogram archetypes identification. Constraints
initialisation, archetypes function and Optimization Options are in Algo-
rithm 1 (in 1). Optimization through fmincon is in Algorithm 2 (in 2)
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definition of the function to optimize, the choice of the optimization options
and lastly the output.

The pseudocode in 2 describe the algorithm procedure using the fmincon

optimization. It follows a reasoning to search the new step to do in each
iteration; it is explained in the ongoing flowchart for Line Search Strategy:

Run fmincon starting from
initial values.

Trivial starting points according to v˙0
and using initial constraints.

Stage 1: run best local solution for RSS
among the first pints; decide direction.

Stage 2: loop switching between trial
points, and then run fmincon if a point
satisfies both constraints given the tol-
erances and improves the function score,
calculate distance.

Create a vector with local optimum so-
lution, given chosen direction and calcu-
lated distance

Figure 4.12: Flowchart for line search strategy in fmincon routine for each
iteration.
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Chapter 5

Italian School System
benchmarking by means of
Histogram AA

The evaluation of the performance of the educational system using several
quantitative methods is becoming, year by year, increasingly important. For
what concerns school system, the evaluation is performed in an quantitative
internal benchmarking perspective (Binder, Clegg, and Egel-Hess, 2006; J.
Zhu, 2014). The definition of such analysis referes to the fact that bench-
marking process has been applied also into contexts that are supposed to by
apart from the logic of profit. For that reason, it has been adopted not only
in private companies, but also in public sectors (Kouzmin et al., 1999). This
new field of application has lead to establish the self-assessment concept, that
is the core of internal quantitative benchmarking in public sector. The idea
is that a public sector is able to manage a huge amount of data regarding its
sub-entities, and it aims to evaluate their performances with respect to each
others and with respect to the overall sector tasks to be achieved, defining
standard of excellence to face challenges. On the other hand, when private
companies perform benchmarking analysis, they are interested in comparing
themselves with peers, in order to adopt best practices of competitors to
increase profitability. Therefore, in this context the assumption is that all
the information regarding sub-entities are available and collected, while in
external benchmarking information about competitors are usually hard to
get.
In literature, several authors have exploited statistical methods to make
assessments about educational system evaluation in an internal quantita-
tive benchmarking perspective, as Kelly, 2004 and Goldstein, Bonnet, and
Rocher, 2007 among others. For what concerns Italian School System sce-
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nario, the evaluation is in charge of the Italian national institute for the eval-
uation of the school system INVALSI, whose main aim is to gather data from
various sources and provide tools and comprehensive analyses for the evalu-
ation of the school system as a whole. Data that are treated and made avail-
able by INVALSI, would enable policy makers, politicians, administrators in
general, but also citizens, to assess if the Italian school system is achieving
its objectives. Usually, INVALSI institute publishes itself most important re-
sults of their own analyses, and also several publications or technical reports
are available in its own website http://www.invalsi.it/invalsi/index.

php.
According to Fondazione Giovanni Agnelli, 2014, several intermediate steps
have been necessary to reach to the actual INVALSI system, and the path
have not been always linear. Following the chronological order, most impor-
tant steps have been:

i Centro Europeo dell’Educazione (CEDE) has been estabilished in the
May of 1974 and has become fully operative in 1982, with a public
selection of teachers to involve in the organization administration task.
Main aim of CEDE was to put Italian education assessment to an
European standard in terms of methodology.

ii Embedded in CEDE framework, the Servizio Nazionale per la Qualitad̀ell’Istruzione
(SNQI) has been founded as a temporary institution, waiting for a de-
cisive reform in Italian education system.

iii Two years later, in 1999, CEDE is definitely transformed into Istituto
nazionale per la valutazione del sistema dell’istruzione (INVALSI).

iv Five year later, in 2004, the organization has changed its full name in Is-
tituto Nazionale per la Valutazione del Sistema educativo dell’Istruzione
e della formazione, but the acronym remains still INVALSI

Through the years, the terminology used, as well as the long term objectives
of the institution, has changed. Looking at the terms involved in the defini-
tion, institutes has moved from ”educazione”, to ”istruzione” and lastly to
”formazione”. These terms are not so different in Italian (all of them could
be translated with education), but are highlighting different aspects of the
pupils’ scholastic experience. This is consistent with the changes in the con-
cept of what Italian school system represents in terms of sector aims, from
the 70’s up to the recent years. The word ”educazione” refers to what is
needed to provide a proper process of adaptability for the next generations;
”istruzione” refers to what is needed to provide a proper process of adaptabil-
ity for the next generations by means of acquiring new specific knowledge;
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”formazione” refers to what is needed to provide a proper process of adapt-
ability for the next generations by means of acquiring new specific skills useful
to the future recruitment to get a job. Even the shift from ”Qualita”̀ (qual-
ity) to ”Valutazione” (evaluation or assessment) underlines how the whole
conception of the system has been affected by the social, political, cultural
and economic dynamic environment. It is possible to assume as key year
the 1990, cause from that moment on the concept of ”Assessment culture”
has been introduced in Italian public system. In that year a National School
Conference was opened to discuss scientific and political issues, in order to
build a reform design to give a different direction to the education system
and its autonomy. The idea was to align Italy to other western Countries
that already had an effective system of evaluation of public sectors.
INVALSI institute makes use of a set of standardized tests to evaluate the
proficiency of students attending different schools at different years. Several
domains are tested, and main domains are mathematical skills and italian
language proficiency, in terms of both reading and writing skills (often this
domain is simply called ”Italian”). For what concerns overall state of art
about INVALSI tests and about the debate of INVALSI role in providing
tools to improve scholastic performances, a thorough discussion can be found
in Trinchero, 2014. But many authors have focused their works directly on
the analysis of pupils’ proficiency. Several contribution have been made us-
ing multilevel models to analyze data from primary school INVALSI tests to
evaluate, in a regression perspective, the profiency and the skills variability
of pupils (Grilli and Sani, 2010; Sani and Grilli, 2011). Multilevel model,
given the natural hierarchical structure of pupils (pupils nested in classes, in
turn nested in schools, in turn nested in provinces and so on) seems to be a
proper methodological choice to evaluate patterns in such data. In Petracco-
Giudici, Vidoni, and Rosati, 2010 it has been deepen the state of art for what
concerns primary school as a whole, while in Capperucci, 2017 the focus has
been on pupils’ mathematical skills. Among the diverse set of quantitative,
and statistical in particular, techniques that have been proposed and imple-
mented for INVALSI tests, we assume that there is opportunity to conceive
and experiment a new technique able to preserve more information than tra-
ditional techniques.
The main aim of this section is, therefore, to use an innovative statistical
tool, archetypal analysis for histogram-valued data, to provide a data-driven
benchmarking analysis of a part of INVALSI tests data. As a consequence,
taking as references previous known results and patterns already available
mainly from the mentioned works, but also from international literature
about scholastic proficiency, it will be possible to discuss findings from ex-
ploratory archetypal analysis with respect to such previously known theses.
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Data under consideration refers to INVALSI standardized tests for the aca-
demic year 2015-2016. with respect to two domains, italian (reading and
writing) and mathematics, for pupils attending the 2nd year of high school.
These standardized scores range from 0 to 100. The total number of math-
ematics test observations is 383, 255, while for italian test the total number
of observations is 378, 802. Overall, data length is 762, 057. INVALSI tests

Figure 5.1: Two Kernel density estimations, for both domains if INVALSI
tests, pupils’ level. Mathematical domain has lower scores distribution and
higher variation. It is highlighted also, consistently, by most common de-
scriptive statistics computed for such distributions.

are provided in a census-like fashion, so all the pupils belonging to the pop-
ulation target are involved in the test. Pupils population is made up by:2nd

year of primary school, 5th year of primary school, 3nd year of secondary
school first grade, 2nd year of high school. Given the census survey collec-
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tion strategy, let consider that some schools, classes and then pupils are also
included in a sampling procedure. The sample is extracted in two stages: in
the first one schools are extracted,and in the second one, usually, two entire
classes belonging to each sampled school are included in the final sample.
Schoolchildren included in the sample have to carry out the same identical
tests, but the difference is that an external official observer is present during
the test progress. The aim of the sample is, thus, to ensure the regularity of
the test and an higher degree of reliability of final scores. For this reason,
some INVALSI official reports are based only on data collected in this sam-
pling framework. Moreover, several other variables are collected with respect
to pupils and for what concerns classes and schools, other than proficiency
scores. Demographic and social background variables are collected for pupils
(gender, nationality, parents’ educational level, residence and so on). For the
class and the school collected variables are related to size, in terms of number
of pupils, and about program typology (general for school, specific for class).
Moving to data proposed in 5.1, Italian proficiency has, considering all pupils
togheter, higher mean value, higher median and higher quartiles, compared
to mathematical proficiency. It has also lower variability (as showed by co-
efficient of variation in 5.1), and one of the aim of educational system is to
allow for equal skills among pupils, so a high values in variation measures
shows a challenge that has to be faced. As mentioned also in some works such
as Costanzo and Desimoni, 2017, that have proposed a quantile approach to
analyze scores distribution, the interest in other quantiles of the proficiency
level other than the average or the median value is increasing,and this is an
hint that tools able to retain a larger part of the original information could
be more useful in the next future, going into the direction of an approach
like SDA or others with similar logic. In the following, rather than analysing
scores with respect to pupils, in this section the focus will be on the distribu-
tion of scores with respect to both domains in each school, merging together
pupils nested in same school creating an histogram object. Therefore, from
762, 057 different scores, final data-set is made up by 3, 882 schools, and each
school is defined by a bivariate histogram-object, with a distribution for each
domain.
Given this data structure, working hypothesis to be discussed by means of
histogram-valued archetypal analysis, in an internal quantitative benchmark-
ing perspective, can be summarised as follows:

1 Is it possible to identify abstract entities (archetypes) that act as bench-
mark units, in terms of good, bad or unusual performances?

2 Is it possible to perform a categorization of units (schools) using these
benchmark units as reference points?
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3 Are these identified categories consistent or not, and to what extent,
with respect to previous studies?

5.1 Archetypes identification

Given the high computational cost of the archetypes identification for histogram-
valued data, in this context the analysis that is presented takes into account
a simple random sample of 200 schools out of the original 3, 882. As men-
tioned, the objective function of the archetypal analysis takes into account
a distance between histogram objects that is a function of centers and radii
notation. Each histogram object is expressed in deciles. Deciles are chosen

Figure 5.2: Definition of a unit (histogram) of a symbolic data-table in centers
and radii notation. Each bin is defined by its center (mean value, the vertical
line in the middle) and by its radius (half-width, each red arrow)

cause they are a good trade-off between computational complexity (the more
bins in each histogram, the more complex is the optimization) and interpre-
tative power. The final symbolic data table has the following dimensions:
200 rows, 40 columns. Columns are: 10 centers for Italian scores deciles, 10
centers for Mathematics scores deciles, 10 radii for Italian scores deciles, 10
radii for Mathematics scores deciles.
Optimization procedure as presented in 4.2 is successfully achieved, and con-
straints are satisfied within the tolerance level. Given some exploratory anal-
yses, a good choice for the number of K archetypes seems to be either 3, 4
or 5, and so in the following findings refer to these 3 different cases. Let
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Table 5.1 First 6 entries (schools) of symbolic data table and some columns:
40 columns, 20 centers and 20 radii, 2 variables in total. In this table, I. is
Italian scores, M. is Mathematics scores, C. stays for Centers, R. for Radii

I.C.1 I.C.2 I.C.10 M.C.1 M.C.10I.R.1 I.R.2 I.R.10 M.R.1 M.R.10
1 18.2 29.0 74.7 5.0 55.0 5.9 4.9 9.0 5.0 17.5
2 51.6 65.9 85.0 48.8 87.1 12.9 1.4 2.8 11.2 7.9
3 30.6 43.9 80.6 20.0 77.5 10.2 3.1 3.1 10.0 7.5
4 22.9 32.9 74.3 6.0 65.0 6.5 3.5 3.3 1.0 10.0
5 68.2 70.4 76.7 22.0 58.0 0.8 1.4 0.8 2.0 7.0
6 27.6 37.8 79.6 11.2 65.0 9.2 1.0 4.1 1.2 7.5

start with K = 4. Using centers and radii estimated by the procedure in
Matlab, by means of fmincon non-linear programming solver, is possible
to consistently reconstruct the 4 archetypes. As can be seen in 5.2, the

Table 5.2 Mean, Median, Standard Deviation, Skewness and Kurtosis for
the four histogram archetypes

It.Mean Mat.Mean It.Med Mat.Med It.Std Mat.Std It.Skw Mat.Skw It.Kur Mat.Kur
Archetype1 75.68 77.55 75.77 77.55 3.70 9.43 -0.96 -0.00 4.30 1.80
Archetype2 91.45 31.25 92.85 31.25 5.06 13.71 -1.24 0.00 4.34 1.80
Archetype3 18.87 58.22 11.48 58.61 14.22 20.59 0.50 -0.52 1.82 2.58
Archetype4 11.53 48.80 7.21 48.58 10.19 24.16 1.04 -0.00 3.01 2.08

four archetypes are able to sum up different behaviour in terms of italian
scores and mathematics scores. Linking this to the graphical displays of the
archetypes as densities estimation in 5.3, it is possible to drawn some con-
clusions about their role and about what they represent.
The 1st archetype has a mean value for italian score, as well as for mathemat-
ics score, higher than the average, and very low standard deviations for both
domains. It is an exceptional distribution for math domain, pretty good for
italian domain. We can call this archetypes the good performer all around;
best in mathematics. The 2nd archetype has even better scores for italian
domain, while mathematics domain has a distribution below the average,
and mathematics standard deviation is increasing as well if compared to the
previous archetypes. We can call this archetype the best in italian; bad in
mathematics. The 3rd archetype shows a bad performance for what concerns
italian scores, but a mathematics proficiency above the average, with a neg-
ative skewness as well; the left tail is longer and most of the distribution is
at the right, with respect to the median. We can call this archetypes the
bad in italian; good in mathematics but with long negative tail. The last, 4rt
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archetype, the is similar to the previous, but with lower values for both ital-
ian and mathematics. It is just average for mathematics, and the worst for
italian. We can call this archetypes the worst in italian; average in mathe-
matics. For the complexity of the problem and for the fact that the algorithm

Figure 5.3: The four bivariate histogram valued archetypes

is pretty time demanding, it is not trivial to figure out the proper number
of archetypes to better describe and summarize the whole information con-
tained in the original histograms. Other reasonable choices, as mentioned,
are 3 or 5, as well as 4. Let first discuss the case in which only 3 archetypes
are identified. Archetypes are shown in 5.4. In this case there is no one real
archetype that can be assumed as excellence standard overall, neither one is
the worst performer. First one and second one are marked by better scores
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distribution for writing/reading proficiency, with the second one showing a
lower calculated value for both the mean and the median for both domains,
with respect to the first archetype (as can be seen in 5.3). Third archetype
represents, on the other hand, a very good performance for math score and
very poor performance for reading/writing proficiency. As can be seen in

Table 5.3 Mean, Median, Standard Deviation, Skewness and Kurtosis for
the three histogram archetypes

It.Mean Mat.Mean It.Med Mat.Med It.Std Mat.Std It.Skw Mat.Skw It.Kur Mat.Kur
Archetype1 63.83 16.95 67.25 17.48 18.19 9.58 -0.82 0.05 3.04 2.21
Archetype2 47.42 9.35 46.81 10.47 22.97 4.89 0.03 -0.35 2.20 1.85
Archetype3 20.91 66.90 14.40 70.22 13.76 18.55 0.66 -1.29 2.26 4.61

the table 5.3 and from graphic displays of the kernel density estimation of
the archetypes in 5.4, differences among archetypes are not only marked by
central tendency indexes like the mean or the median, but also by different
behaviour in terms of variation, skewness and kurtosis. First archetype has
a long left tail (negative skewness) for ”italiano” domain, while second one
is almost perfectly symmetric for that domain. Therefore, it is an additional
element that highlights different behaviour in terms of distribution. It comes
out as a more interesting analysis, especially in terms of interpretation, the
archetypal analysis when 5 salient units are identified. In this case, visualiz-
ing the kernel density estimation of the archetypes in 5.5, the 4th archetype
is the one with very high score distribution in both domains. According
to the mean value, the best in mathematics is the 5th, while the best in
reading/writing is the 3rd. Other important differences between archetypes
behaviour, and so about the distributions they represent, arise from the table
5.4. Also in this case, no one can be considered as the absolute archetype of
very bad performances overall in both domains. The 4th can be considered
as good distribution above the average for both domains, but is it not the
best neither in reading/writing nor in mathematics.

Table 5.4 Mean, Median, Standard Deviation, Skewness and Kurtosis for
the five histogram archetypes

It.Mean Mat.Mean It.Med Mat.Med It.Std Mat.Std It.Skw Mat.Skw It.Kur Mat.Kur
Archetype1 9.88 58.33 5.03 62.50 9.77 24.46 1.13 -0.47 3.11 2.41
Archetype2 80.41 28.02 80.25 19.25 2.28 25.28 -0.25 0.49 2.65 1.88
Archetype3 82.08 18.94 82.74 9.14 3.69 22.44 0.65 1.3 2.76 3.75
Archetype4 77.55 74.83 77.55 74.49 9.43 1.35 -0.00 0.50 1.80 1.80
Archetype5 31.25 97.07 31.25 97.49 13.71 1.81 0.00 0.81 1.80 2.98
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Figure 5.4: The three bivariate histogram valued archetypes

5.2 Archetypes as benchmarking units

To better understand the role of such archetypes, according to their relative
positions and with respect to the real observed 200 units (schools), two dif-
ferent analysis will be proposed: the first one, as in 4.4, is a PCA that has
been performed on the 200 units while archetypes act as supplementary in-
dividuals, and the second one is compositional analysis in the space spanned
by archetypes, using α’s coefficients as coordinates, visualizing it by means
of a quaternary plot.
Principal Component Analysis has been achieved using all the 40 variables:
10 centers for Italian scores deciles, 10 centers for Mathematics scores deciles,
10 radii for Italian scores deciles, 10 radii for Mathematics scores deciles. As
can be seen in the bi-plot 5.6, the patterns of the variable, in clock-wise order,
starts with radii of italian scores (that are usually smaller), then mathemat-
ics radii, then all the centers that are pretty close each others without a clear
order between italian and mathematics. By the way, both radii and centers,
follow the trajectory from the last ( 10nt center or radius) to the first ( 1st

center or radius). From the factorial map coordinates, three archetypes (1st,
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Figure 5.5: The three bivariate histogram valued archetypes

2nd and 4th) have external position with respect to the data-cloud, while the
3rd archetype, even if not so close to a cluster of points, is located in a more
central position. Let recall that also here, as in 4.4, PCA is able to explain
a considerable amount of overall original variation (in this case about 60%),
but it is still an approximation of the first two dimension, in terms of ex-
planatory power, of a problem with way more variables; so, the position of
archetypes is a good hint about their real location, even if the conclusion to
be drawn could be slightly different.
As said, it is possible to look at the archetypes as vertices of a new com-
positional space. Each school, in this space, is a point having 4 different
coordinates, each of them being a number between 0 and 1, that represent
the ”percentage” of that archetype that is used to reconstruct the original
bivariate histogram. The four α’s of each school will always sum to 1. In
this case, the plot is a quaternary plot instead of a ternary plot, but the
interpretation is similar. In this compositional space, most of the points are
pretty close to 4rt archetype and to the 2nd, while areas close to the top
(1st archetype) and to the right (3rd) are sparser. To better understand the
pattern of points inside that quaternary plot, it is possible to exploit the com-
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Figure 5.6: Biplot of PCA estimated on 200 schools, 4 archetypes as supple-
mentary rows.

positional space properties, and finding clusters according to the Aitchinson
distances. In this context, 5 clusters are identified, as can be seen in the
quaternary plot 5.8. These groups are clusters of school sharing similar per-
centage of archetypes in their reconstruction. As shown in 5.9, analysing
their centers, some of them are built for the most part as function of only
one archetype, while others are a mixture of several archetypes in a more
equal fashion, with similar weights among archetypes. Schools belonging to
the 1st group (black colour), for example, are a mixture of the 2nd, the 3rd

and the 4rt archetypes, with no contribution at all of the 1st archetype. It
is possible to look at the previous PCA including the information retrieved
from clustering in the space spanned by archetypes. Are the patterns of the
compositional space somehow in line with what can be viewed in the factorial
maps?
As shown in 5.10, even the PCA factorial map follows similar patterns that

have been already highlighted in compositional space. The 1st groups, in red
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Figure 5.7: Quaternary plot representing the compositional space spanned
by 4 archetypes. Points are located and coloured according to coordinates
α’s.

dots, is made by schools that are closer to the origin of axis, lying between
three archetypes and very far only from the 1st archetype. It is consistent
with the results shown in the barplot in 5.9.
As said, the right number K of archetypes to be involved in the analysis is
not an easy task. For this purpose, let consider the factorial map in which
archetypes deriving from archetypal analysis with K = 3, K = 4 and K = 5
act as supplementary rows. In 5.11, 5.12 and 5.13 is possible to visualize
how archetypes tend to be always at the external part of data cloud. Adding
the 5th archetypes, it lies in the first quadrant in clockwise order, in the
upper-left part. This is an other hint that suggest to keep the additional in-
formation provided by additional archetype. Two archetypes, ”Arch5” and
”Arch4.2”, looks on the first 2 dimensions of the PCA in 5.11, to be somehow
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Figure 5.8: Quaternary plot representing the compositional space spanned by
4 archetypes. Points are located according to coordinates α’s, and coloured
according to clusters found by means of Aitchinson distance.

internal. Looking at their behaviour on the third dimension, so looking at
5.12 and 5.13, they assume a more extreme location. PCA is just a visual
tool to have a flavour of the ”real position/location” of the archetypes, but
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Figure 5.9: Centers of 5 groups identified in space spanned by archetypes.
Barplot and real values.

as in the toy example, also in this context they seem to be proper entities to
describe extreme patterns in data, cause they are naturally inclined to be at
the edges of the cloud, given a pair of dimensions. Given all these reasoning
about archetypes role in this context and in this kind of analysis, and given
all these different tools, both graphical and analytic, is possible to assume
that:

1 Archetypes are well separated and gain informative power, showing
peculiar behaviour in histograms’ distribution; therefore, they can be
used as benchmarking abstract entities.

2 It is possible to consistently using them as reference points to make
categorization by means of clustering procedures. The consistency be-
tween the space spanned by archetypes and the PCA factorial map is
a strong connection that goes in such direction.
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Figure 5.10: PCA with archetypes as supplementary rows: 5 groups of schools
according to clusters in space spanned by archetypes

5.3 Working Hypotheses about INVALSI Test:

using archetypes

In this last section, the aim is to try to, first of all, understand if some patterns
about school characteristics, already discussed in literature, are confirmed or
not by the archetypal analysis, and if it is possible to link clusters identified
in the compositional space spanned by archetypes to some specific features
with respect to schools. Results refer to the case of 3 archetypes identified, as
summed up in the table 5.3 with their main descriptive statistics and in their
histogram representation in 5.4. In this compositional space, is possible to
perform, as said, a clustering, identifying group of schools that are similar in
terms of both domains proficiency. The cluster procedure is performed using
8 number of cluster, using the Aitchinson distance as distance measure and
without scaling data before the procedure. The size of the identified cluster
is presented in the table 5.5. The teal is the bigger, with 43 schools inside it,
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Figure 5.11: PCA with archetypes as supplementary rows: K = 3, K = 4
and K = 5. First 2 dimensions

while black and gray are the smaller, with only 14 schools each. The position

Table 5.5 Clusters size in compositional space spanned by archetypes, 8
clusters identified

Black Red Green Blue Teal Purple Yellow Gray
14 15 30 22 43 29 33 14

of clusters in the ternary plot follows clearly the pattern highlighted by the
cluster membership. Some groups of schools are very close to the corner of
the triangle, and so they are grouped accordingly. They will likely share with
the respective archetypes a good amount of similarity in their distributions
scores, both for writing/reading and for mathematics. Other clusters are
somehow in an intermediate positions with respect to the corners; others are
lying at the middle of one external line, and so they have one α that is ba-
sically zero, being located between only 2 archetypes, without contribution
at all of one archetype. The ternary plot, with schools coloured according to
the cluster they belong to, is in 5.14.
Using archetypal coefficients α’s as weights, and the 3 archetypes as vari-
ables, it is possible to exploit the properties of the Wasserstein distance to
reconstruct, as a weighted mean of the archetypes, the centroid of each clus-
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Figure 5.12: PCA with archetypes as supplementary rows: K = 3, K = 4
and K = 5. Dimensions 1 and 3.

ter, in order to better understand what they represent in terms of bivariate
histogram. Centroids of the clusters, as presented in 5.15, are related to
very different behaviour. To the extreme, we have the teal group (best per-
formances in both domains) and yellow group (worst performances in both
domains). In the middle, a wide range of different distributions.
Moving on to some interesting aspects of INVALSI data and about scholas-

tic achievement literature in general, let’s introduce the working hypothesis
that will be discussed, trying to answer to what extent is possible to proof
or disconfirm them using histogram archetypes analysis in this sample of 200
schools. The strategy is to use information retrieved from original data as an
explanatory tool, so that it could be possible to explain why schools sharing
a number of factors belong, or not, to the same cluster. To sum up, we will
try to deepen the following issues:

� (i) Geographical gap, especially the comparison between South and
North.

� (ii) Gender gap.

� (iii) Difference in the type of school (Liceo, Professionale and so on).
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Figure 5.13: PCA with archetypes as supplementary rows: K = 3, K = 4
and K = 5. Dimensions 2 and 3.

� (iv) The impact of school size, in terms of number of classes, to the
proficiency.

Therefore, first item is to discuss if the regional environment, in terms of
macro-area, has an influence on the scholastic proficiency. As pointed out
by several authors, there is a gap between North and South in proficiency
with respect to several domains. While the gap is not significant in early
age, it increases showing a peak in the difference around 15 years, when
usually students from North outperform students from South, in particu-
lar for what concerns mathematics. However, it is possible to classify in
a different fashion the Italian 20 Regions. Most common are: in 3 macro-
area (North, Center and South) and in 5 (North-West, North-East, Center,
South, Islands). Other have proposed to divide it still into 5 classes, but
moving Calabria region to the ”Islands” group, modifying this group into
what is possible to rename ”Extreme South”, cause not only the big islands
of Sicily and Sardinia are included. Crossing this information with the
cluster membership of the schools, using 3 macroareas (5.6) and then using
5 macro-areas (5.7),it is possible to state some patterns. Looking at the 3
macroareas, schools from the North are the most present in the ”best” group,
the teal, while schools from South are the most present in the ”worst” group,
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Figure 5.14: Ternary plot representation of space spanned by K = 3
archetypes. Two hundreds schools with different colours consistently with
the clusters as in the table 5.5

Table 5.6 Contingency table crossing clusters with 3 macro-areas.

Black Red Green Blue Teal Purple Yellow Gray
North 3 5 15 6 24 18 7 9

Center 2 3 4 6 8 4 5 2
South 9 7 11 10 11 7 21 3

Table 5.7 Contingency table crossing clusters with 5 macro-areas.

Black Red Green Blue Teal Purple Yellow Gray
N-West 1 3 7 2 15 8 3 4
N-East 2 2 8 4 9 10 4 5
Center 2 3 4 6 8 4 5 2
South 3 6 8 5 6 6 7 0

Ex.South 6 1 3 5 5 1 14 3
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Figure 5.15: Centroid of the 8 clusters identified in the compositional space
spanned by the K = 3 archetypes in 5.4. Each of them is a weighted mean,
using alpha’s as weights, of such archetypes.

the yellow. Furthermore, southern schools are way more present in the black
group, compared to Center and North, that is the second worst performable
in both domains. Schools from Center seem to act in an intermediate role
with respect to South and North, being almost equifrequent in the 8 groups.
But what happens if we analyze the table in 5.7, so using a higher level of
geographical detail? Yellow group is now a prerogative of Sardinia, Sicily
and Calabria, being 3 out of 20 regions but accounting for almost the half
of the schools in that cluster. Same happens in black group. North-West is
outperforming North-East, according to the relative frequency in teal group.
South shows a very similar behaviour to the Center in terms of distribution
among clusters. Green cluster, characterized by a strong gap between read-
ing/writing (average) and mathematics (below the average), has 8 schools
from South and 8 schools from North-East, highlighting that mathematics
skills are likely the most dangerous threat to achieve overall good proficien-
cies.
For what concerns gender gap, given that we are deepening schools and not
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Figure 5.16: Ternary plot representation of space spanned by K = 3
archetypes. Two hundreds schools with different colours, according to the 5
macro-areas. Teal, extreme South, mostly close to the worst archetype (the
second). Black schools, North-West, in the ”optimal external line” between
first and third archetype.

individuals, what is possible to do is to use an index, computed for each
school, that is the proportion of female on the total. So, school with a value
over 0.5 have more females than males, and school with a value below 0.5
have more males than females. Several studies have discussed the discrep-
ancy in proficiencies between females, doing better in reading/writing, and
males, doing better in mathematics.
From the ternary plot in 5.17, schools with a majority of males are pretty

close to the worst performable corner, the second archetypes, and on the
”optimal external line” between first and third archetype. This behaviour
likely means that most of the average performances are achieved in schools
with an equal proportion of males and females or with a majority of females,
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Figure 5.17: Ternary plot representation of space spanned by K = 3
archetypes. Two hundreds schools with different colours, from blue to red,
according to the percentage of females in that school (the more red, the more
females).

and schools with more males are or very good or very bad. As shown in
the table with the mean values of the female proportion (5.8), the highest
relative number of females are in the green cluster, that is not a bad per-
former but with a very high gap between reading/writing and mathematics,
highlighting how the gap in this domain is somehow confirmed. However,
overall, the mean proportion in the best group, the teal, is of 52% females
and 48% males, and in the worst group, the yellow, males are 55% of the
total on the average. For what concerns different type of schools, some issues
arise in the definition of what is the proper classification of Italian high-
schools. Some schools have all the classes attending the same programme,
but others, often called ”Istituti Comprensivi”, are able to provide different
programmes for different pupils in several classes. For the purpose of this
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Table 5.8 Mean value of female proportion for each cluster.

Clusters ProportionFemale
Black 0.50

Red 0.48
Green 0.54

Blue 0.45
Teal 0.52

Purple 0.51
Yellow 0.45

Gray 0.42

work, the following distinction between school types will be made. ”Liceo”,
where the education received is mostly theoretical and not aimed to people
who wants to get a job just after the high school. There is a specialization
in a specific field of studies (humanities, science, or art), and the general aim
is to prepare students to university and higher education rather than intro-
duce them into a professional position. ”Liceo” can be seen as the Italian
equivalent of University-preparatory school. ”Istituto Tecnico” that provide
some theoretical education but mostly a highly qualified technical special-
ization in a specific field of studies (e.g.: economy, technology, humanities,
law, accountancy, administration, tourism, information). Most of the time,
it is aimed to give a few months intern-ship in a company, association or
university, during the last year or the second last year of study. ”Istituto
Professionale” is specifically structured only for practical activities. It is not
aimed to theoretical knowledge, but rather to facilitate the direct entry of
the pupil to the labour market. When more than one programme is avail-
able, in the following we will assume that the schools is ”Mixed”. As can be
seen in 5.18, most of the black schools (Licei) are on the ”optimal external
line” between first and third archetype. Most of the schools lying somehow
close to the second archetypes are Green, so Professionali; and Tecnici, in
Blue, are spread all over the ternary plot. Even if Mixed schools, in Red, are
not defined as schools with a clear and unambiguous programme, they are
located as a cluster in the left-down side corner. From the graphic display
and from the contingency table 5.9, some patterns are clear. The best per-
former, teal group, are basically all Liceo-type school. Mixed-type schools
are basically restricted to the Blue and the Purple groups, clusters with an
average behaviour. So, the red cluster of mixed schools in the ternary plot
in 5.18, highlights how this type of schools are in an intermediate position
between Licei and Professionali, the worst performer. More than half of the
Professionali are located, indeed, in the Yellow cluster. Most of the Tecnici
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Figure 5.18: Ternary plot representation of space spanned by K = 3
archetypes. Two hundreds schools with different colours, according to the
different type of programme. Licei in black, Professionali in green, Tecnici
in blue, Mixed in red.

are in the Green cluster, the one with a very high difference between writ-
ing/reading and mathematics.
Last issue is related to the school size. A good proxy is the number of classes
involved in the analysis. As said, the standard procedure of INVALSI is to
test all the classes belonging to the school, so on the average this information
is a valid approximation of the school size. Are big schools better than small
schools? Many studies involve statements about school population. Some
authors proof that having a daily and deeper touch with teachers, as it hap-
pens in Small schools, improve student’s skills, while other says that only big
schools with heterogeneity in terms of pupils and teachers is able to provide
good proficiencies. Looking at the ternary plot in 5.19, most of the schools
on the ”optimal external line” between first and third archetype are either
Green or Red, so they are Medium sized or Big sized. A lot of Small-sized
schools are, on the other hand, located to the right corner, close to the second
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Table 5.9 Contingency table of type of school and clusters.

Black Red Green Blue Teal Purple Yellow Gray
LICEO 2 10 11 6 39 9 9 5
MISTO 5 0 5 12 3 16 2 3

PROFESSIONALE 4 2 2 1 1 0 13 0
TECNICO 3 3 12 3 0 4 9 6

archetype. Looking at the contingency table in 5.10, it is notable that Small

Figure 5.19: Ternary plot representation of space spanned by K = 3
archetypes. Two hundreds schools with different colours, according to the
different school size. Small schools in black, Medium size schools in red, Big
schools in green.

schools are split in only 3 groups: Red, Green and Yellow. Worst performers
are so small schools, while the Teal group, with the best schools, is made
up Medium and Big schools for the majority. Red clusters, only made up
by 15 Small schools, is a group of schools with similar distribution scores for
both domains, and so it is just average for reading/writing domain but is the
second best performer for what concerns mathematics. It seems that Small
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schools are not the best, but are at least suffering not so dramatically by the
mathematics threat. Coming back to the four original research questions,

Table 5.10 Contingency table of school sizes and clusters.

Black Red Green Blue Teal Purple Yellow Gray
Small 1 15 10 2 5 1 17 5

Medium 8 0 17 11 21 20 10 6
Big 5 0 3 9 17 8 6 3

main findings are:

� (i) Geographical gap is still an issue. But North is not so homoge-
neous. North-West is able to reach better peak than Nort-East. In
the South, we can observe two completely different behaviour: one for
”Extreme South”, and one for the ”South”, that is very similar to the
performances in Center Italy.

� (ii) Gender gap is still an issue, and mathematics is a threat for females.
By the way, the pattern is not so clear, given that the worst performers
are for the majority schools with more males than females.

� (iii) Difference in the type of school. Licei are by far the best, followed
by Mixed schools. Tecnici have issues with mathematics skills, while
Professionali are the worst overall.

� (iv) The impact of school size: small schools are more likely to be in
the worst performers group, but compared to other ”weak categories”,
such as Professionali or females or Southern schools, Small schools tend
less to be involved in very poor scores for what concerns mathematics.
Medium and Big schools don’t show an high level of differentiation.

To sum up, to profile the pure type of schools in both cases of best and worst
scenario, the best schools are big-sized Licei, especially from North-West,
while worst are Professionali from Extreme South with a majority of males.
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Conclusions and further
developments

In this work it has been presented a first, at least to the best of our knowledge,
attempt to define archetypes for histogram-valued data. Defining archetypes
for complex data has always been a non-trivial operation. While for sim-
pler data, like points, most of the properties can be pretty easily proofed
by means of analytical/mathematical tools, for complex data this procedure
becomes harder and harder. For this reason, in this context, the focus has
been indeed on the definition of the archetypes for histogram-valued data
and on the algorithm developed to figure out them given the constraints and
the function to be optimized. Thus, most of the findings and of the discus-
sion are derived directly from empirical evidences rather than mathematical
proofs. In 4 section, as well as in 5, notions about the algorithm structure,
the pseudocode and its outcomes have been shown. Histogram archetypes,
consistently with archetypes identified for data of different natures, seem to
act as entities with an extreme/peculiar behaviour. This is confirmed using
different tools of graphic displays, and exploiting properties of other statis-
tical techniques in comparison with archetypes.
Reconstructing archetypes, as for the toy data about France regions pro-
posed in 4.2, is the first way to visualize what they represent in terms of
histogram object. In the histograms plots drawn in 4.5, for example, the 2nd

archetype represents two distributions shifted to the minimum cost for both
variables; the 1st archetype represent a distribution with a very unusual long
right-tail for the second variable, and this is an other sign that this histogram
archetype is external to the data cloud. It should be recalled that, with this
kind of data, one of the aim is to deal with units that are made up by a com-
plex internal structure and to exploit analyses able to keep such structure.
The assumption is that it is not worthy to reduce the units’ description using
only one index, like the mean value or the median value, for each complex
unit. Therefore, describing what histogram archetypes represent, should be
made taking in account the relative outcoming distribution in all its aspect,
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using even several indexes to summarise it, like kurtosis, skewness and so on.
If the aim is to not reduce complexity but to keep it, the results have to be
deepen consistently with this reasoning.
Statistical learning techniques able to identify salient entities found, at the
end, abstract units that share the same nature of the original data, and
this is the case of histogram archetypes. While from empirical evidences
the technique seems to work properly and to keep the promises about usual
archetypes location and functionality, more issues are related to the algo-
rithm. Giving it enough time, it is able to solidly identify archetypes, with-
out shifting their position in an unstable fashion, and achieving the tolerance
about constraints. The full algorithm, presented as pseudocode in 4.11 and
as Matlab code in the appendix A, is satisfying in terms of both flexibility
(different number of data and of archetypes) and ability to accomplish the
final results (constraints about α’s and β’s are always fullfilled, in the exper-
iments presented in this work).
The shortcomings are about the computational cost, that is much higher in
comparison with other similar techniques for histogram-valued data, like k-
means proposed in 2.70. The required time to accomplish the algorithm
increases according to several conditions: if the number of quantiles in-
creases, if the overall number of observations increases and if the K number
of archetypes increases.
A future development will be, to solve this issue, first of all the implementa-
tion of an algorithm in a simpler programming language, given that Matlab
is still a meta-language, and this increases the computational cost. Most of
the commands used in the code of Matlab, roughly around 90%, are writ-
ten in C++ (if they are not written directly in Matlab). Some Perl and
Java functions are used as well, but the best choice is likely to use C++ cod-
ing to improve computational cost of the algorithm. It has to be underlined
that the whole procedure is nested inside the BigData approach framework,
so it is reasonable that this technique could be applied to large dataset and
finding a way to improve the algorithm speed is a crucial step in the next
contributions, to make full use of the histogram archetypes analysis results.
Other possible ways to improve such speed could be implementing a different
design, using for example ”Monte Carlo” techniques, introducing so a sam-
pling step in the data rather than slavishly using every available data point.
Some improvements should be mad in the algorithm choice itself.
One of the core concept in this work is that the complexity of the data is, in
this approach, also an opportunity in terms of findings interpretation, as well
as a challenge in terms of algorithmic procedure. For this reasons, the SDA
paradigm allows to better deal with non-standard units and preserve such
complexity. In the presented implementation, the insight has been to use
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the relationships between interval-valued data and histogram-valued data in
SDA, extending so some proofed findings with respect to interval-valued data
to histogram-valued data case. This is consistent with the choice of distances
derived from Wasserstein distance, and the general conceive of histogram ob-
jects in terms of centers and radii notation. But, in the next, a development
could be to implement of a more complex and structured symbolic notation.
These idea come straight from the application of the techniques to the real
case of benchmarking in Italian school system. Therefore, in that context, a
full description of the units could be made adding several school fixed factors,
alongside its analytical part that has already lead to the presented histogram
objects description. In this new approach, that could be exhaustive, even if
particularly sophisticated, a unit is described by its score histogram, as well
as by several additional features, such as its geographic location, its pro-
gramme, its dimension/size and so on.
The advantage to work in SDA framework is that it allows to use much more
many elements to describe units and category, in comparison with traditional
approach. Schools seem to be notably suited to be described and analyzed
using as many factors as possible, given the complex and hierarchical struc-
ture that is at the ground of their nature. Due to the nested structure they
always show (pupils nested in classes, classes nested in school complexes,
school complexes nested in schools, schools nested and in municipalities and
so on), an other future focus could be likely to think about a SDA specific
approach, able to identify archetypes linked to this hierarchical structure.
This analysis could lead to define ”multilevel archetypes”, as abstract en-
tities acting at different level of the same data, highlighting in each level
extreme behaviours, but allowing for eventual interaction effects between
layers, keeping so a sort of algebraic linkage between levels belonging to the
same context of interest.
These new opportunities are a clue that the technique of histogram-valued
data archetypes identification has still some open space ahead, given the wide
range of options embedded in symbolic objects definition and the increasing
number of fields of application of innovative methodologies linked to a Big
Data framework.
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Appendix A

Appendix - Matlab Code

% initial constraints

function [c,ceq] = constr(v,X,m,K)

ceqalpha = zeros(1,m);

for i=1:m

for j=0:p-1

ceqalpha(i)= ceqalpha(i)+v(i+j*m);

end

ceqalpha(i)= ceqalpha(i) -1;

end

ceqbeta = zeros(1,K);

for i=1:K

for j=0:m-1

ceqbeta(i)= ceqbeta(i)+v(K*m+i+j*K);

end

ceqbeta(i)= ceqbeta(i) -1;

end

ceq=[ ceqalpha ' ; ceqbeta '];

% for i=1:K

% for j=1:m

% alpha(i,j)=v(i+(j-1)*K);

% end

% end
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% for i=1:m

% for j=1:K

% beta(i,j)=v(K*m+i+(j-1)*m);

% end

% end

%definition of the histogram archetypes function

function f = hist_fun(v,X,m,n,K)

%starting from v and reconstruct alpha and beta

matrices

for i=1:m

for j=1:K

alpha(i,j)=v(i+(j-1)*m);

end

end

for i=1:p

for j=1:m

beta(i,j)=v(K*m+i+(j-1)*K);

end

end

A = alpha;

B = beta;

XBAr = abs(A*B)*X(:,n+1:2*n);

XBAc = A*B*X(:,1:n);

XBA = [XBAc XBAr];

%defining function to optimize

mat = (X(:,1:n)-XBAc).^2+(1/3) *(X(:,n+1:2*n)-XBAr)

.^2;

% frobenius norm

f = norm(mat ,'fro');

function [alphas ,betas ,Xric_c ,Xric_r ,fvalue ,

Archetypes_c ,Archetypes_r ]= Archetypes_hist(X,K)
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%

% [alphas ,betas ,Xric_c ,Xric_r ,fvalue ,Archetypes ,

Archetypes_r ]= Archetypes_hist(X,K)

%

%

% INPUT

% X = data matrix , units * variables , of dimension

m * n;

% in first n/2 columns there are bins centers ,

% in last n/2 columns there are bins radii

%

% K=fixed number of archetypes

%

% OUTPUT

% alpha 's and beta 's coefficients , archetypes

centers and radii ,

% reconstruction of original X centers and radii

given archetypes , fvalue is %objective function

final result

m = size(X,1);

n2 = size(X,2);

n = n2/2;

v0=rand (2*p*m,1);

lb=zeros (2*p*m,1);

ub=ones (2*p*m,1);

options=optimset('MaxFunEvals ', 1000000 , 'MaxIter ',

100000 ,'TolCon ',1e-6,'TolFun ',1e-6,'Display ','

iter');

% 'Display ','iter ' used to see iterations , not

necessary

% constrained optimization

[v,fval ,~,~] =fmincon (@(v)hist_fun(v,X,m,n,p),v0

,[],[],[],[],lb ,ub,...

@(v)constr(v,X,m,K),options);
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for i=1:m

for j=1:K

alpha(i,j)=v(i+(j-1)*m);

end

end

sum_alpha=sum(alpha);

for i=1:K

for j=1:m

beta(i,j)=v(K*m+i+(j-1)*K);

end

end

% beta 's used to build archetypes centers and radii ,

alpha 's to build original data

Archetypes_c = beta*X(:,1:n);

Archetypes_r = beta*X(:,n+1:2*n);

Xric_c = alpha*Archetypes_c;

Xric_r = alpha*Archetypes_r;

end
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