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Abstract 

 

The development of the  aircraft with the use of composite materials involves the 

mechanical characterization of these  materials that  have the  suitable  properties to be 

used in the design phases. The characterization of these materials is made  in the mono 

axial field. However, research activities in recent years are focusing  the attention on  the 

study of biaxial tests to get more information to use during the design for the  best  use of 

materials. 

My  thesis  has been mainly focused on the development of a new biaxial equipment about   

composite and polymeric materials. It will try to show that the equipment is able to 

correctly load the specimens in two perpendicular directions.  Then the selected test setup 

was applied experimentally for biaxial tests on a general aviation carbon resin. The thesis 

is divided into four sections. 

In the first one, the machines and equipment for biaxial tests present in the literature are  

only presented. Then the forms of biaxial test specimens most used by researchers in the 

last years for both metallic, composite and polymeric materials have been described. 

In the second section, the agreement  that led to the creation of a new test rig,  with which 

the tests have been  described,   are in the fourth section. The third part deals with the choice 

and optimization of a specimen shape  through the use of finite element analysis. In the 

fourth section, the new equipment  and the shape of the specimen chosen in the previous 

section have been  used to carry out tests on a composite material in carbon resin.  Here, 

the materials and the methods used to perform  the experimental exercise  are described. 

The used material is provided within the  Tabasco 

project promoted by the Campania DAC.  This project concerns the technologies and the 

production processes of low-cost components for general aviation.  

Conclusive remarks, where the main results are summarized, close this work.
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Chapter 1 

 

State of art 

 

1.1 Monoaxial and biaxial tests for characterization of materials 

When we select a material to make a component of a structure, a machine or any 

product, the main objective is to ensure that its properties are suitable for the 

operating conditions of the component. 

Through the evaluation of physical and mechanical properties, it is possible to 

distinguish different  types of materials. 

Among the properties that characterize a material,  it  can be found: density, 

melting point, optical properties, thermal conductivity, electrical conductivity, and 

magnetic properties. 

Some of these could be of primary importance, but very often the properties that 

describe how a material reacts when led,  have  a fundamental role in the choice of 

the same. 

In particular, these are: the elastic modulus, the ductility, the hardness. 

The mechanical properties are very important because the function and the 

performance of a product depend on its ability to withstand the stresses that it must  

face  during this  operation. 

 When the selection of the material is required,  the engineer must not only look at 

its properties but also understand what  values and  limits are relevant.  Mostly,  

how they are measured. 

For these reasons, the engineer must have  familiarity with the different   

procedures used during the tests on materials, and,  at the same time, it must  

consider  that the mechanical tests are carried out on specimens. But, these,   

although, the laboratory conditions are respected, rarely,  correspond to the  real  

life application. 

When the load  is applied to a component, the material deforms, and,  in particular, 

it can be subject to three types of load: traction, compression and cutting. 

The tensile load tends to stretch the material;  the compression  tends to crush it 
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while the cutting   causes the sliding of the surfaces. 

These three types of loads are described through the stress-strain curves. 

The most used in mechanical tests are the monoaxial ones. 

The mechanical properties of materials under single-axle loading are used to 

estimate the strength and the strain of components during the design of a machine, 

a structure or a product. 

Knowing  that loads only act in one direction, it  is a simplification that is  acceptable   

for analysing a single point or common materials,  like metals.  

It must be remembered that during the  operation, the  conditions the loads are 

applied simultaneously in different directions, produce  a stress that is not directed 

in  a particular direction. 

For example, during the  operation, the mechanical components obtained by 

forming,  are loaded in different directions at the same time,  and, in particular, 

they are loaded into  two axes. 

Many aeronautic and aerospace components are also often subject  to multi-axial 

loads. 

In general, multiaxial stresses and strains in components that work  at high 

temperatures cannot be described by monoaxial data. 

It has been recognized that evaluating the characteristics of a material through a 

monoaxial test, we  can have  a wrong evaluation of the material behaviour. 

The monoaxial tensile test is used to classify the workability of  several metallic  

alloys. 

However, the actual strain of the breaking zone, observed in the monoaxial case, is 

much lower than the corresponding value found in the biaxial case. For this reason, 

into  the monoaxial tensile test,    the deformability,  during the  real training  

process, can be underestimated. 

By using more realistic loads, and,  in particular,  introducing biaxial loading 

conditions, a more accurate representation of the operating behaviour of a 

structure is obtained. 

In general,  the stresses acting on a component are multiaxial.  For the mentioned 

reasons, it is necessary to identify the mechanical properties not only under 
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monoaxial load states but also under multiaxial ones. 

Nowadays, the tests are designed in order to reproduce forces that strongly reflect 

those that  act on the material during the  training  process with specific  

instructions. 

Biaxial tensile tests can be used to simulate forces acting in two directions at the 

same time. Thanks to this type of test, the σ-ε curves can be obtained from different 

load directions. There are numerous methods to produce a biaxial stress state in 

the material  made up  of many  types of specimens: for example, the test with 

combined torsion-stress.  The first one with flexion and flat stress and the swelling 

test [1]. 

Furthermore, the ever-increasing use of polymeric materials, fiber-reinforced 

composites and metal laminates have underlined the importance of carrying out 

tests through  multiaxial loading conditions, unless  they are  biaxially or 

multiaxially stressed during the  operation. 

Biaxial tests, ready  to use  different  types of cruciform specimens, represent the 

most suitable method to evaluate  several  biaxial stress conditions by  reversing  

the value of the load or displacement along the two axes. 

Furthermore, the single-axis standard test is accurate only for isotropic materials, 

while thin sheets, composite materials and polymeric materials show anisotropic 

properties. 

1.2 Machine and devices for biaxial mechanical tests 

To perform biaxial mechanical tests in order to characterize composite and 

polymeric materials, machines and devices have been developed to be  able to 

reproduce multiaxial loads. 

In particular, they have some features: 

• "Stand alone" biaxial test machines 

• Test rig that connects to pre-existing single-axis machines to produce biaxial 

loads. 

1.2.1 Stand alone machines 

An example about this topic  is the biaxial testing machine designed by 

Makinde et al. (1992) shown in figure 2.1. The device consists of two main 

parts: the loading system and the control system. The loading system is 
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configured as shown in the figure. The frame has been oversized to reduce 

strains, as it is subject to great stress. On the chassis, along with the two axles, 

two hydraulic actuators have been constructed with a nominal capacity of 250 

kN. The presence of the actuators on both axes ensures that the centre of the 

specimen does not move during the test, anyway, they are constructed  in 

opposite ways and connected to the same hydraulic circuit  to reproduce equal 

and opposite forces. 

 

 
Figure 1.1 Biaxial testing machine for cruciform specimens (Makinde et al.) 

 

The load cells constructed on each actuator are used to measure the force in 

both directions. Once grabs have been designed, they can be preloaded and 

can block the specimen before the start of the test. This machine was used to 

test many  types of cruciform specimens. The results of these tests were used 

to develop a specific specimen for low strains [3]. 

 The researchers used the machine to evaluate the degree of non-uniformity 

of the strain within the useful part of  different  cruciform specimens proposed 

by other researchers as shown in figure 2.2. 
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Figure 1.2 Non-uniformity degree estimation of the strain  within the useful length of three 
cruciform specimens  

Another type of biaxial machine was made by Boehler et al. (1994).It was  

composed  of four double action screw-driven pistons constructed  on an 

octagonal vertical frame. The four double action pistons assured the locking 

of the specimen centre during the tests; the screws were activated by two 

engines. For the tests, a variable DC motor was used, while for the initial 

positioning an AC motor was used for large displacements. Both engines had 

a clutch to prevent simultaneous joints. The  speedy test could be varied 

between 0.003 and 0.3 [mm / min]. The maximum load that could be reached 

is 100 [kN] in both directions. The advantage of using a vertical frame is to 

have easy access from both sides to construct  the specimen, and,  it is, also,  

possible to have a good photographic analysis  to analyze the strain field with 

the laser or other video methods. 

This configuration, however, involves a disadvantage. In fact, the weight of 

each  pincer and of the assembly devices must be kept under control to 

minimize bending on thin specimens. 

This machine was used to test  a lot of  types of cruciform specimens in order 

to develop an optimal shape of the specimen. 
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Figure 1.3 Specimen shape of Boheler et al. 

  

The form of the specimen considered by Boheler et al is shown in Fig. 1.3. 

Researchers used the analysis  of finite elements to optimize and comparing  

the specimen with previously designed specimens. Both  rigid grippers and 

the axes were calibrated on the specimen optimized for an anisotropic elastic 

material. The numerical model was used to detect the field of shear stresses 

in the useful area of the specimen. An example  of the isostress lines within 

the test section of the optimized specimen is shown in figure 1.4. 

 

 

 

 

Figure 1.4 The isostress lines  within the test section of the optimized specimen 

 
The value at the centre of the section is σxy ≈5.8 [MPa]. 

For this reason, it was concluded that when the test was focused on 

anisotropic materials with rigid clamps, the information obtained could not 

be used to derive the constitutive bond because the main axes of the biaxial 

stress field obtained could not be determined. 

Kuwabara et al (1998) completed a study to clarify the behaviour of elastic and 

plastic strain of a low-carbon cold-rolled steel under biaxial load. 
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To complete this experiment a new device for biaxial tests was built. 

The configuration of this servomechanism is shown in figure 1.5. 

 

 

Figure 1.5 Horizontal test rig of Kuwabara et al. 

The opposing hydraulic cylinders were connected to a single hydraulic circuit 

in a way  that the same pressure was applied to both. Each  hydraulic circuit  

was controlled independently using a server  control. As for  the two previous 

devices, it was essential to keep the centre of the specimen locked during the 

test. This was achieved using a type of articulated pantograph like the one 

shown in figure 1.5. 

This method was very effective and reduced, with relevance,  the costs of the 

apparatus. In each direction, a load cell was used to calculate the load acting 

on the specimen. The strain was measured using a strain gauges, which was 

positioned at the specified section of the specimen. The output of both  cells 

and the strain gauges were analyzed using a calculator. This device was used 

to test a cruciform specimen of very low carbon steel (SPECEN) and, then, to 

compare the results obtained with other existing yield criteria as shown in fig. 

1.6 (Kuwabara and Ikeda, 2002 a, b). 
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Figure 1.6 σ-ε curve for a SPECEN steel (Kuwabara and Ikeda, 2002a, b) 

 
It was observed that the curve detected corresponded  to  the Hosford yield 

criterion. 

Shimamoto et al. in 2003  developed and validated a bench device for the 

realization of  lots of  types of biaxial tests. This device had the ability to 

perform both static and dynamic tests at controlled temperatures. This biaxial 

machine presented a vertical configuration. 

The applied load was measured with a load cell in each direction and strain 

gauges were used to measure the strain. Hydraulic actuators were used to 

perform the test, which meant that the hydraulic circuit included both a static 

and a dynamic part. The hydraulic actuators were used  to provide both the 

pressure for static tests and  that   pressure for dynamic tests. A programmed  

controller was used to monitor  the circuit. This device had characteristics that 

exceeded the limits of the previous devices: a) The test device had a vertical 

configuration. The developed biaxial machine consisted of 4 actuators, which 

were oriented at 90 °. The four cylinders operated independently and the 

centre of gravity was always held in its initial position. (b) Different types of 

tests, uniaxial traction and compression tests, biaxial traction and 

compression tests, static and dynamic, biaxial tests under the same biaxial 

load of bars or plates, changing only the type of grip. (c) It was possible to 

compare   tests under different loads (load ratios from 1: 1 to 1:4) biaxial, static 

and dynamic under combined loads, biaxial dynamics cutting tests and other 

load combinations. In addition, the machine was equipped with a cooling 

liquid (Argon) and an electric heating system, which allowed to perform the  

dynamic test at a controlled temperature. With this machine, different  

aluminium specimens were tested at the rate of 0.02 [mm / s] for each axis. 
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It was confirmed that there was a relationship of proportionality between load 

and strain  “ ε = 1.7%” as shown in figure 1.7. 

 

Figure 1.7 Relationship between load and strain during  uniaxial and biaxial tests. (Shimamoto 
et al., 2003). 

Shimamoto et al. also used the  device to perform dynamic tests useful for 

studying   the propagation of a crack. 

In particular,  a cruciform aluminium alloy test  took place (A7075-T6) at a 

speed of 1000 [mm / s]. It  contained a 30 [mm] long crack put  at 45°  from  

the centre. The failure of the above specimen after the biaxial dynamic test is 

shown in fig. 1.8. 

 

  

Figure 1.8 Failure of the specimen after the biaxial dynamic test (Shimamoto et al., 2003) 

It is evident that the crack propagation has a  bilateral symmetry. 

The researchers concluded that the device was suitable for both monoaxial 

and biaxial tests. Test specimen broke after the  dynamic biaxial test 

(Shimamoto et al., 2003). 

Another machine was designed by Gozzi et al. to study the behaviour of a high-

strength steel under biaxial load. It consisted of two actuators constructed  
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perpendicularly  to each other and four arms hinged to the lower end of the 

device. The two actuators were self-aligning, while the main disadvantage, 

deriving from the use of articulated arms, was that the grippers moved along 

an arched profile. The actuators were controlled by an Instron control unit 

that could control two actuators independently. 

All tests were examined  under load control, with a nominal load of 2.7 [MPa 

/ s]. 

The results from the monoaxial  and  the biaxial tests  were compared,  as 

shown in figure 1.9. 

 

Figure 1.9 σ-ε curve in uniaxial and biaxial test (Shimamoto et al., 2003) 

 
From figure 1.9 it can be concluded that the stress in the biaxial specimen 

during the initial stress can be determined by  an accurate  monoaxial test. 

Granlund studied the effect of a bending force on a cruciform specimen during 

a biaxial test and found that when a bending force was introduced,  it was very 

small and could also be neglected.(Granlund, 1995, Granlund and Olsson, 

1998). These researchers also designed a lateral  support  plate to prevent 

buckling during compression tests. The support plates were clamped around 

the specimen and the clamping force was measured to keep friction losses 

under control. Furthermore, particular attention was paid to the design of a 

cross-shaped specimen that allowed the stress in the specific  area  

determined by the external load. Two different grades of steel were tested, one 

with high and  yield strength of 690 [MPa] and one structural mild steel with 

a yield strength of 275 [MPa]. 

The results showed that the initial yield criterion  between the criterion of Von 
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Mises and that of Tresca  corresponded to previous observations. The 

following yield criterion was characterized by the  Bauschinger effect and a 

more gradual transition  into  plastic . So,  a new constitutive model was 

proposed;  as shown in figure 1.10, which took into  the gradual change under  

loading conditions [1].  

 

 

Figure 1.10 σ-ε curve for high-strength steel 

 
1.2.2 Test rig connected to pre-existing single-axis machines 

In order to reduce the costs of manufacturing stand-alone test          machines,   

an    alternative way to run double-axes tests is the use of auxiliary  devices  

designed for existing machines used for tensile and   compressive tests. 

Usually, to perform a biaxial test, the operation consists in the conversion  into 

a standard machine for traction. This is achieved by adding a further actuator 

to the pre-existing system. For example, an  horizontal piston can be 

connected to the vertical traction machine. The existing machine is used to 

apply the load in the vertical direction, while the removable mechanism is 

used to put on  the load in the horizontal direction. The  device was designed 

by Hoferline et al (2000). It consisted of a removable hydraulic actuator 

linked to a standard traction machine. 

 Both  horizontal and vertical directions  had a load cell and an alignment 

device. The horizontal device was constructed  on a low-friction bearing to 

ensure that the horizontal structure stayed  aligned to  the centre of the 

specimen during the test. 

Another biaxial  device test was developed at the Fraunhofer Institute in 

Germany, converting in a compressing  machine, through a series of links.  

(Fraunhofer, 2005). This device is shown in figure 1.11.  
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Figure 1.11  Test rig (Fraunhofer, 2005) 

 
As we can see from the above figure, the operation of this system is based on 

the use of four elements added  to the load across the compressing machine. 

When the loading element of the machine moves downwards, the four rods 

convert the vertical movement into a bidirectional horizontal movement. 

This movement was used to apply the  biaxial force into the cruciform 

specimen. 

As in the cases previously seen,  a load cell was used in each direction to 

measure the applied force, while a camera was used to detect the lengthening 

of the specimen. 

 

Mohr and Mulalo (2004) used a test on the compressing  machine  to verify  

the  honeycomb structure under a multi-axial load. 

This universal testing device (UBTD) was employed to join  large compression 

displacements combined with those of shear at the edges of the specimen. 

 

A further approach  to  transform a tensile testing machine into a biaxial 

testing machine is the method that  exploits connecting parts. It   was studied 

and  developed by Ferron and Makinde (1998). Through the use of  eight parts 

connected to each other, there was  the possibility  to convert the vertical 

movement of the machine crosshead into a bidirectional movement of the 

grippers. This mechanism is shown in figure 1.12. 
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Figure 1.12 Pantograph mechanism for the biaxial test (Ferron and Makinde, 1988) 

 

After constructing  the specimen on the device, the complete system is linked 

up to the testing machine through the head crosspieces H1 and H2, through 

which the specimen is stressed. During the test, the displacement of the 

vertical frame, consisting of four arms Av, has ensured a decrease in terms of  

distance between the connected elements C1 and C2, which have produced  an 

adequate displacement of the horizontal frame made by the four arms Ah. For 

this reason, there is a greater  distance between the two heads H3 and H4. 

Studying this configuration, we can say that this  distance between H3 and H4 

was equal than the distance between H1 and H2. The specimen, connected to 

the four heads H1, H2, H3 and H4, was subject to an equi-biaxial strain 

through the main connecting plates. When a tensile load was applied to the 

two heads H1 and H2, the vertical arms were subject  to a tensile load whereas 

the horizontal ones were subject  to a compressing load. It can be said that the 

balance  of the specimen strain is true if  the elastic strain of the mechanism 

is negligible. The load on the specimen was measured by two load cells, which 

were positioned on the H1 and H4 heads. 

This mechanism was also used by Terriault et al (2003) to test different  alloys 

at different degrees of temperature. The main difference with this apparatus 

was that the device used a compressing   machine. Here, a compressing force 

was applied to head C1 and C2, which applied the same movement to the grips 

as in the previous configuration. The pantograph apparatus converted a 
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compressing load applied to two cruciform membranes into a biaxial traction 

across eight articulated arms. The strain was measured using a video 

extensometer. In this process of study, the aim was to examine whether the 

beginning of the transformation could be described by the Von Mises’ 

criterion. To achieve this, a test was performed on a Ti-Ni alloy at different 

degrees of temperature. During the experiment at high temperatures, it was 

observed that the thickness of a portion of the specimen caused the breakage  

outside the section. Subsequently, the minimal plastic strain was observed in 

the  section of the specimen which resulted  an incomplete stress-strain curve. 

Makinde et al. (1992b) developed a biaxial strain gauge to measure the strain 

in the cruciform specimen. The strain gauge allowed both control and strain 

measurement along two orthogonal directions. The measure of strain in one 

direction was completely independent from  the others. Tests were carried out 

using the strain gauge on metal sheets and it was delivered  to be an excellent 

method to measure  medium-low strains [1]. 

 

 

1.2.3 Test devices for composite and polymeric materials 

Unlike metals, only recently, scholars have begun to understand the 

breakdown of composites under multi-axial loads. 

Because of the anisotropic structure of the material, the  resistance under 

biaxial load strongly depends on  the direction of the fibers of the material 

during the test,  addressed to the conduct of the  load.  If the load and the 

fibers  are correctly oriented, the biaxial strength can exceed the value that 

could  be found by a simple uniaxial tensile or compressing  test. Otherwise, 

the resistance can be even much lower. Some researchers believe that the only 

way to overcome many of these problems is to carry out long-term studies 

aimed to confirm  numerical results through reliable experimental 

information. 

Among these, the biaxial tests, which allow to have results in the space σ1-σ2 

and give essential design parameters for the breakdown of the composites, are 

the most difficult and expensive to realize. 

To produce a biaxial stress state, several   experimental techniques and types 

of specimens were used. 

These techniques can be classified into two categories: 

(i) Tests using a single loading system 
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(ii) Tests using two or more independent loading systems. 

In the first category, the value of the biaxial stress depends on the geometry 

of the specimen or on the configuration of the loading device, instead of,  in 

the second category it depends on the value of the applied load. 

An example of the tests belonging to the first category are the  bending tests 

on cantilever beams and tests using special devices. 

Especially,  for composites, single-axis specimen tests that have fibers 

oriented on different axes produce a complex state of stress in the material 

reference system, also consisting of two or three components in the stress 

tensor plane. 

The respective stress values, however, depends on the angle of orientation of 

the fibers. 

Examples of the second category are a torsion-twisted round bar, thin-walled 

tubes subjected to a combination of tensile / compression and torsion or 

internal/external pressure and cruciform specimens under planar biaxial 

loads. 

The most realistic technique, then,  is to create a biaxial stress state by 

applying loads in the same plane along the two arms of a cruciform specimen. 

Nowadays, it is trying to establish a procedure for biaxial tests and to develop 

an accurate failure criterion. 

The biaxial planar test device by Smits et al. (2006), as shown in fig. 1.13, is a 

machine that  uses four independent hydraulic servo actuators with a special 

control unit and load cells.  This is a  very expensive equipment. 

 

 

Figure 1.13 Equipment for the biaxial test (Smits et al. 2006) 

 
The use of polymeric adhesives like  a replacement to traditional riveted 

structures allows the construction of joints in which there are great 



 
 
Chapter1                                                                                                           STATE OF ART 

 

- 16 - 
 

advantages compared to mechanical clamping. In fact, they allow the 

development of larger structures and more uniform load distributions, unless 

the gluing area is larger. In addition, the glued structures are more rigid, given 

the continuity of the gluing itself, and do not show variations on the surface 

and on the structure of the combined materials. So,  the need arises to perform 

biaxial characterizations also on this type of material. 

The types of adhesives can be divided into two categories: 

• Structural adhesives 

• Flexible adhesives 

The former has an elastic behaviour up to break with low strain volumes.  The 

latter is  characterized by a high breaking strain and low elastic modules. 

Structural adhesives are used to make   rigid joints. The base material is 

generally a resin with a fairly high modulus of elasticity (3-4 GPa). The 

material, thanks to its cure process at particular  temperatures, creates 

chemical bonds between molecules, generating a high density and therefore a 

high rigidity. 

Very often the structural adhesives are made by adding to the base resin 

rubber particles that allow to increase their stiffness and consequently the 

amount of strain before breaking. 

The behaviour of structural adhesives with low strains can be modelled 

through a linear elastic function that in FEM software is extremely simple to 

implement as a material of this kind. It  is completely described by an elastic 

modulus and Poisson coefficient, obtained through experimental methods, 

such as,  by tensile  test. 

In 2004 Cognard, Davies et al. [5] developed a system useful to study the 

behaviour of an adhesive joint subject to tensile and compressive stresses 

combined with shear stresses. The study started with a machine developed by 

Arcan in 1987 to understand the fracture behaviour of composite materials. 

Cognard and al.  hypothesized that, with the appropriate modifications, the 

machine was ideal to generate  a load in several directions aimed at the study 

of adhesives. 
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Figure 1.14 Types of Arcan systems: (a) classic type, (b) modified type 

 
 

 

 

  

Figure 1.15 Photographs of the Arcan plant and instrumental assembly 

 

          For hyperelastic materials, such as adhesives and rubbers, the biaxial 

load test is performed in order to validate the analytical model used to 

represent the behaviour of the material. 

 

In the literature, there are a lot of  examples of biaxial testing systems or 

conversion of monoaxial traction machines in biaxial machines to perform 

tests on hyperelastic materials and composite materials 

In general, these machines are classified into two large families: 

• Separate Load 

• Single load 

The systems that provide as many load cells as the actuators are available in 

the first family and are all independently manageable. These machines can be 

used to reproduce different multi-axial tension states with extreme precision, 

with the disadvantage that investment costs are very high. 
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The second family includes the machines and conversion systems of a single-

axis test machine that use only one actuator and only one load cell. The cost 

of such  device is lower than that with multiple load cells.  Moreover,  a 

machine of this kind can also be used for single-axis tests. 

 

Brieu, Diani and Bhatnagar in 2007 [12] proposed a new type of machine 

capable of producing equi-biaxial and non-equibiaxial stresses on each plane 

of the specimen. 

 

  

 
Figure 1.16 Biaxial test machine (Brieu et al.) 

 
The system has been designed to perform cyclic biaxial stress tests with wide 

strains, with an elongation in the two tension  directions and with different 

load ratio values. The authors Brieu, Diani and Bhatnagar have demonstrated, 

through their new test machine, that the unit of measure will not be a pure 

biaxial  measurement, but the result of a biaxial traction with an "r" ratio 

between the variable elongations during the test. 

 

 

1.3 Types of shape specimen for biaxial test  

 

1.3.1 Shape for composite materials 

 

The characterization of composite materials subjected to uniaxial loads is 

not able to evaluate the actual behaviour of an engineering component. In 

fact, many structural components are subject to multiaxial loads [4]. 
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Therefore,  biaxial and multiaxial tests were made to perfect the mechanical 

behaviour of these complex materials, necessarily.  Recent years many 

different   set-up tests have been used to produce biaxial stress state, for 

example, cruciform specimens under in-plane biaxial loading;  torsion and 

internal/external pressure;  bending tests on rhomboidal composite plates 

and  tubes subject to a combination of axial loading. Although in theory these 

tests should have  given  an advance of composite knowledge, practically,  

they did not give reliable results [5]. 

In particular, in the field of composite materials  different shapes of 

cruciform specimens subject to biaxial load were studied with FEM. analysis 

and tested, but not  successfully completed according to the following 

requirements: 

- maximisation of the region of strain uniformity into  the biaxial loaded 

zone; 

- minimization of the global shear strains in the biaxial loaded test zone; 

- minimization of the strain concentration/failure outside the test zone of 

interest; 

- specimen failure in the biaxial loaded test zone; 

- repeatable results. [4-8]. 

 

In 1992 Makinde, Thibodeau and Neale [2], referring to the previous studies 

by Monch et al. [9] have begun to lay the groundwork for carrying out biaxial 

tests on carbon resin laminated,  as precisely as possible. The study dealt 

with the search for a better geometry that allowed the birth of a larger biaxial 

stress state in the centre  of the specimen. There are two different geometries 

to  consider  thanks to  their study: 

 

1) specimens for tests subject to small strains which have a circular section 

in the centre where the thickness is reduced (fig. 1.17) 

 

2) specimens for large strains that have a central rectangular section 

with notches in the arms (fig. 1.18) 
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Figure 1.17 Cross-shaped specimen with a circular and reduced central section 

 

 

Figure 1.18 Cruciform specimen with notches 

 

 
From a study by Monch of 1963 [9] it was understood that  removing  the 

disturbances produced by the lateral stress of the edges of the specimen it was 

necessary to insert the notches on the arms of the same. Moreover, it was 

possible,  thanks to them,  to produce any two-dimensional load by moving 

the biaxially specimen. 

The notches also allow reducing the rigidity of the arms which could reduce 

the maximum strains obtained  at the centre of the specimen and also 

restricting   the homogeneous stress region. 

Among the problems that the authors have found, we can understand that 
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there is  the concentration of the stress  between  the arms and the central 

section,  in the transition zones,  as well as,  the concentration of stress in the 

notches near the  measurement  area that leads to premature breaking of the 

specimen. 

As we have seen, there are several geometric parameters that cause the 

variation of the results from test to test. Makinde et all. they have studied a 

series of geometric variables that influence the distribution of stress and 

strain. 

A specimen used for low strains has seven geometric variables that most 

influence the test: 

1) Width of the arms (2Wa) 

2) Length of the specimen outside the grips (2L) 

3) Connecting  radius between the arms (Rf) 

4) Radius of the circular measuring region (Rc) 

5) Passing radius (Rt) 

6) Arm thickness (Ta) 

7) Ratio between the thickness of the arm and that of the measuring section 

(Ta / Tg) 

For a specimen used for large strains, with the notches, there are five other 

variables to consider: 

8) Width of the central section (2Wc) 

9) Diameter of the carvings (Dslot) 

10) Number of carvings (Nslot) 

11) Length of the carvings (Lslot) 

12) Location of the carvings (Xslot). 

The problem is how to determine an optimal combination of the variables to 

obtain the desired results, as a uniform distribution of stresses and strains for 

both geometries. The traditional method of changing one variable on time 

could not work because of the interactions between two or more of them. 

Makinde has decided to adopt a design on a statistical basis able to combine 

the change  of several variables. For each combination, the measured effects 

were the width of the measurement area, where stress and strain did not have 

to be moved more than 5% away from the central values of the specimen, nor 

that maximum elongation obtained in the centre of the specimen before 

breaking. 

In 2002 Welsh and Adams [10], starting from previous works and previous 
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forms of specimens (fig.1.19), focused the attention on the improvement of the 

same (especially about  the measurement area that is made with a smaller 

thickness) , they carried  out tests on a laminate AS4 / 3501- 6 cross-ply 

carbon/epoxy. 

 

 

Figure 1.19 Schematic drawing of a specimen for biaxial tests used by Welsh et al. 

 
The first improvement consisted of removing the internal hole, to align the 

specimen with the grips, from each arm. This is because the position  near the 

edge of the arm is the one with the lowest stress and therefore,  the 

concentration of stresses near the holes is greater.  Eliminating the  zone with 

greater stress, on the arms of the specimen,  there will remain only a low 

concentration of themselves. This prevents possible unwanted breakage of the 

arms. 

Another change involves the variability of  the geometry of the loaded arm. In 

fact, it is possible to increase the thickness of the arms in such a way that the 

uniaxial stress state is lower in each arm and this can avoid  undesired 

breakages. In addition, the reduction of the width of each arm could be 

gradual in the region between the end of the wedge handle and the  unit of 

measure(fig.1.20). This variation  has different  consequences including the 

fact that depending on the amount of the reduction of  the measured size  

could be significant. Among the advantages, of course, there  is the fact that 
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the maximum amount of force required to break the specimen is shut down. 

  

 

 

Figure 1.20 Schematic drawing of a modified specimen for biaxial tests used by Welsh et al. 

 
In addition to these changes, Welsh and Adams investigated two other 

essential aspects of the form of an audition: 

• The radius of connection at the intersection of two arms 

• The shape of the measuring process. 

 

 

Figure 1.21 Detail of the round and square measuring section for a cross-shaped specimen with a 
tapered thickness 

 
 

A series of tests with different tension  ratios between the x-axis and the y-axis 

have shown that the difference, when   the connecting radius varies, is very 

low. It was, therefore,  arbitrarily deduced that, the largest fitting can be used 
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to carry out a series of characterizing tests. 

According to  the shape of the measurement area, the two authors have 

considered two types of sections: square and circular(fig. 1.21). 

To understand which one was the best, they confronted  the tests on both types 

and compared the experimental results. The tests were performed at three 

different load ratios and at the same connection the radius between the arms 

and the unit  of measure. 

 

It is inferred that the shape of the measure  influences the biaxial force and it 

has been observed, moreover, that the applied load can be increasingly  

transferred through the section if the latter has a wide and round shape (about 

98% of the load). The use of a small and square geometry, instead, indicates 

that 30% of the applied load circumvents the unit of measure  during the  

biaxial test. 

 

So,  the primary objective of the different  tests is to investigate the effects of 

stress concentration.  The highest measure of biaxial efforts is generally 

considered as indicator of the  best  geometry. Considering, therefore, that at 

high concentration of the tensions  near the  measurement area,  always 

corresponds  a lower value of the measured resistance, it is deduced that,  

there must be in this case,  a low concentration of the tensions.  These 

evaluations lead to define the best geometry for the specimen, for example, 

the one with the small and square measured required  and the other,  with a 

large radius of connection between the arms. 

 

Later  Smits, Van Hemelrijck, Philippidis and Cardon in 2005 [11] analyzed 

the previous work by Welsh and Adams. Carrying out  the analysis about a 

finite element  that consisted  of different types of specimens and comparing   

the results with experimental tests where the strains were acquired with an 

extensometer and an optical system, they defined a stacking sequence 

[( 45/0)4−
+ / 45]𝐴−

+   used as the  standard for all samples. 

 

In the figures 1.22-1.23 there are the results of the analysis for the main strains 

and the shear strains. 
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Figure 1.22 Strain  along the  main direction in the four cruciform geometries [11] 

 

 
Figure 1.23 Shear strains in the four cruciform geometries[11] 
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The geometry test piece A is the constant thickness and has a connection 

between the arms. For this reason, the main strains are lower in the centre  

area than in the arms, with consequent breaking in the latter. This is because 

the area that absorbs the load is greater in the centre. Scholars have thus 

reshaped both the thickness of the central area and the connecting rays at the 

intersection of the arms. In this figure C,  we see  these  leads to the geometry  

where the strains are high in the biaxial loading zone and the breakage will 

occur in the centre  of the specimen. Also the geometry D like that C has a 

presence of strains in the biaxial loading zone and will ensure a break into the 

centre  of the specimen, but the second has more constant strains and a lower 

decrease of the same. In addition, we can say that because of  the lower shear 

strain, therefore, this kind of phenomenon  it is chosen as the best geometry. 

This confirms the hypothesis that for fibre-reinforced laminates the best 

solution is to reduce the central thickness. 

 

1.3.2 Shape for polymeric materials 

 

Using the Arcan machine,  the number of loading directions is given by the 

number of holes on the device, but the loading domain is discrete.  So the 

researchers N. Arnaud et al. in 2014 [13], starting from this device have 

studied  a way to apply, continuously,   load spectra on specimens. To carry 

out  this,  they used a tubular specimen. 

 

 

Figure 1.24  Types of specimens for the biaxial tests of Arnaud. 3D CAD model and axisymmetric 
2D model: (a) straight edge, (b) cleaned edge, (c) pecking with a cleaned edge, (d) chamfered 

edge with polished edge, (e) bevelling with a cleaned edge and pecking 
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The study was based on 5 different geometries,  all related to the tubular 

specimen (fig. 1.24). FEM tests have shown that the geometries C and E prove 

to be the best to determine a biaxial stress state. 

In 2015 Chowdhury and Wang [14] studied the effects of biaxial stresses on a 

specimen in adhesive material, specifically FM355 (a particular type of epoxy 

adhesive). The aim was to find a particular geometry of the specimen that 

respected the criteria of the biaxial tests. The researchers  did experimental 

tests on three different sample configurations, comparing the results with 

those obtained from FEM tests. 

 

 
Figure 1.25 Typologies A, B and C of specimens analyzed by Chwdhury 

 
In 2016 Zarouchas and Nijssen [15] performed biaxial tests on a new specimen 

geometry, made of EPIKPTE MGS Paste 135 / G adhesive, in order to 

understand how best to adapt the adhesive material to create junctions on the 

leading edge of the turbine blade. 
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The geometric configuration was a  tubular type with a reduced measured 

thickness. 

The tests were carried out at controlled load and at biaxial tension  ratio (ratio 

between normal tension  and cutting tension in the measure  indicated) 

constant for each individual test. 

Measurements of the strains were made  with strain gauges oriented at 0 °,  

45 ° and 90 ° respect to the longitudinal axis of the specimen. 

The comparison obtained between experimental data and the FEM model 

shows that the latter provides a very precise point  of the break.  In fact,  it can 

be seen from figure 1.26 the position of the break obtained  experimenting 

through  numerical forecasts.  

 

 
Figure 1.26 Comparison between numerical results and experimental observations of Zarouchas 

and Nijssen 

 
 

As for the hyperelastic adhesives, the specimen used in 1999 Dunkan has 

defined a specimen of HKL material, with each  square of 45mm and a 

thickness of 1.6mm. Once that it was put  on his test machine, the measure 

became 28mm. 

 Two types of tests were experimented: one consisted of the square-shaped 

specimen and the other of the same shape, but with the corners removed in 

order to alleviate any concentration of stress. 

 

 
 



 
 
Chapter1                                                                                                           STATE OF ART 

 

- 29 - 
 

 
 
 

 
Figure 1.27 Schematic diagram of a biaxial specimen according to Duncan. The dotted part 

shows how the corners have been removed for some analysis 

 
During this experiment  of  Brieu and Diani [12], the specimen, in order to 

validate the biaxial test, must be uniformly grasped during the test. The 

dimensions of the specimen, in this case, are related to the radius of 

connection between the arm and the measured area, which must be provided 

in such a way  to guarantee the biaxial load in the centre  of the specimen (fig. 

1.28). Obviously, it can be noted that the variation of R will also vary the 

behaviour of the specimen submitted to the test. 

 

 
Figure 1.28 Specimen dimensions of Brieu et al. 

 
Hollenstein, Helfenstein,and Mazza in 2009 [17] tested a cruciform 

specimen, with 5 notches on each arm (see fig. 1.29). 
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Figure 1.29 Hollenstein et al. specimen 

 
Thanks to the notches, the influence of the transition from uniaxial stress in 

the arms to the biaxial ones in the measured area is reduced. 

The objective  of the FEM analysis has reached. In fact, to maximize the area 

in which a biaxial load acts homogeneously, a series of deductions  are made 

and  parameterized in this way : 

• Width w 

• Length l 

• Distance from the loaded edge u 

• Distance between the centre of two consecutive notches d 

 

 

Figure 1.30 Boundary conditions of Hollenstein specimen 
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Hollenstein, Helfenstein, and Mazza [17] used these parameters as variables 

of an optimization algorithm. So,  starting from the results of a FEM code, to 

maximizes the size of the square region in  which a uniform stress state acts. 

 

This  is based on two conditions: 

• the main stresses acting at each point must differ from each other by 5% 

• the main stress  acting at each point must not differ more than 1% from that 

acting in the centre of the specimen. 

The study, thanks to the symmetry, was performed on a quarter of the 

specimen and the stress state was considered plane. The final solution 

envisaged the area of the test specimen by comparing a geometry with 4 

notches on the specimen arms with the one previously studied by Mazza. 

 

The  tests about Finite Elements were aimed at finding which model was the 

most extended  into the biaxial area. The numerical models have been 

discretized  Quad elements,  whose membranous type of freedom, is the 

translational one in the plane. Making sure that the only thing to vary in the 

two models was the geometry,  you could make a comparison between the two 

types of specimens. 

When  carrying out studies at the FEM,  it is always necessary to define the 

constitutive models of the material that define their  laws. For this kind of   

material the laws of the stress -strain curve are always based on elastic 

models, but with a high non-linear behaviour. 

 

There are different patterns of hyperelastic behaviour and they are all linked 

to coefficients that are defined by experimental tests. 

The model assumed prevalently in all the studies seen previously takes the 

model name of Mooney-Rivlin and assumes the trend of the curve with the 

help of coefficients whose values were found by Chevalier and Marco in a work 

of 2002 [16], through a series of experimental data collected on uniaxial and 

biaxial tests. The same scholars have validated a second behaviour model that 

takes the name of Ogdeon and that was used in the study by Hollenstein, 

Helfenstein and Mazza in order to understand what statistical results are 

correct for the two geometric models and for the two material models.  We are 

closer to the limits imposed for biaxial behaviour. 
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In 2011 Schmidt, Bergamini, Kovacs and Mazza [18], starting from 

Helfenstein's study on the form of the specimen, developed a series of biaxial 

tests on an elastomer material for the study of Elastomeric Dielectric 

Actuators.  

These actuators are nothing more than a combination of polymer membranes 

coated with layers of conductive material which act as electrodes and, if 

subject to voltage, contract in the thickness direction and expand into the 

plane generating a biaxial stress state.  

Nonlinear dependence allows modelling this type of materials with 

hyperelastic strend.  

The author's study is aimed at carrying out a series of biaxial tests in order to 

find the best function to define  the strain energy density.  

The instrumentation used for the tests is that of the ETH Zurich and allows a 

separated control of forces and displacements on the four actuators. It has 

been widely demonstrated that the specimen must be used   for the presence 

of five notches on each side  to reduce the influence of the transition from the 

uniaxial stress state in the arms into  the equibiale zone in the centre. 

 

 

Figure 1.31 Test machine and specimen of Smidt et al. [18] 
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Chapter 2 

 

The study of a new equipment for biaxial tests 

 

 

2.1  Technical characteristics and components of the equipment 

All the equipments described in the state of the art are not able to pursue the main 

objective of the thesis that is to create equipment that can be mounted on a universal 

test machine, so with vertical positioning, and which allows to modify the force 

between the two traction axles simply by changing some mechanical elements. 

This work  concerns  the realization of  capable equipment to transmit the input from 

a single direction along both the X and Y axes, in order to characterize composite or 

polymeric materials (figure 2.1) according to a biaxial scheme. 

 

 

 

Figure 2.1  New equipment 

 

The equipment is designed in order to distribute the force in both directions 

symmetrically. 

The technical design specifications  of the biaxial testing equipment are: 

- Maximum tensile load capacity for each specimen arm 10,000 [N] 

- Frequency not lower than 5 [Hz] 

 The main components of the equipment are: 
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- Load group consisting of: 

• Hydraulic clamps 

• Spiral washers 

• Locking slider for grippers 

- Chassis group consisting of: 

• Support box 

• Eight support arms 

• Connection axes 

- Group for the transmission of movement  consisting of: 

• Connecting rods 

• V-shaped cranks 

The individual components that reach  the equipment through their CAD drawings 

will be illustrated below. 

 

2.1.1     Loading  group 

The load group refers to the system of components (hydraulic clamps, spiral 

washers and sliders) useful  to grasp the specimen and to apply it  to biaxial 

load. 

 

o             Hydraulic clamps    (MTS model 647) [1] 

The hydraulic clamps have the function  of  locking and holding   the specimen 

in the same way  in  the test area, so that  the  tests   have more  precision and 

repetitiveness.  Thanks to their  large clamping and  alignment ability, 

deflection strains are reduced. Specimen slippage can invalidate test, especially 

during tensile and compression cycles. In addition, the hydraulic pressure  of 

the  external circuit   allows  testing on several  types of materials. 

 

 

Figure  2.2   Clamps properties 
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Table 2.1 Grip specifications 

 
 
 

 
Figure 2.3  CAD modelHydraulic Wedge Grip MTS 647 

 
 
 

The used wedges have the useful saw teeth surfaces. It makes  possible   the 

clamping capacity of the specimens’ increase  during the tests. 

The grippers are linked  to the slider through the spiral washers as shown in the 

following figure 2.4.  
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Figure 32.4 CAD model of connection between Hydraulic Wedge Grip MTS 647, spiral washers 

and relative slider   

 
o         Spiral washers (MTS model  601) [2] 

These accessories are used to connect the different  elements of the thrust  to 

compensate  the  possible presence of clearance. 

If the preload between the elements of the assembly  has  to be changed the 

spiral washers can be fixed up. 

They are placed on  the top of connection  pins called connector studs. 

 

 
Figure 2.5 CAD model  SPIRAL WASHERS model 601 

 

 
o        Sliders 

  The slider is the element that allows the gripper to be fixed in the right position 

by the spiral washer through a special threaded central hole. 
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During the test, these sliders  are transported  into   the box where there are 

holes. 

Along the slider, there are channels that have the function of housing    metal 

spheres,  which allow obtaining  the rolling friction rather than  the sliding 

friction, with a consequential increase in accuracy  and lower  friction losses. 

At the end,  there are  some seats where the basic arms will be added  to the  

movement  of the equipment  through the pins. 

 

 

 

 

 

 

Figure 2.6  CAD model of the slider 

 
 

2.1.2  The frame assembly 

The frame assembly is the set of all the  components of the machine.  These  

elements are  supported  so that the deviation of the movement  can be carried 

out  into   two orthogonal directions,  X and Y. 

This is  illustrated below by according to the  CAD representation. 

 

o  Box  

It is the real support  of the structure on which all the   components are 

constructed. It has the important  function  to resist  the weight of the 

components, and,  the forces that are discharged by   kinematics. 

It  is provided with   holes that  allow both  movement  of the slider, and the 

locking, by  the  special threaded element related  to the monoaxial traction 

machine chosen to  perform  the tests. 
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Made of aluminium, it  has the important  feature  of combining  requirements  

and lightness  of the material required. 

 

Figure 2.7 CAD model of box 

o Support arms and axles 

The  support arms are those structural elements used   to   connect  the 

kinematic support axles to the body. They  have  minimized rigid  strains  of  

hundredths of millimeters. 

They are locked to the box  with M10 x 1,25  snapped  screws. 

The axles  are constructed   by rolling bearings.  Thanks to their  form  they can  

obtain the rotation required. 

   

 
Figure 2.8 CAD model of the Support Arm coupled to the Axles 

 

 
2.1.3   Group  for   the transmission of motion 
 
This group  is the main element   of the whole equipment,  because it contains  

the  parts  that actually allow the transmission of the movement  from the input 

to  four hydraulic clamps. 
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o        V-shaped cranks 

The cranks are the elements that are constructed   on the axles by bearings. 

 

Thanks to their rotation, it is possible to obtain the translation  required of the 

grippers and  the success  of the test, consequently.  Their shape was designed 

to realize the same  displacements   to all  four sliders. For this reason,  there 

are the seats through which rods will be linked to suitable pins. 

 
  

 
 

 
Figure 2.9 CAD model of a crank 

 
o        Connecting    rods 

The connection  rods are the elements that allow the connection, through 

special pins, located between the sliders and the cranks. 

Their dimensions and shapes have been designed  according  to their  size.  They 

can  correct  the cruciform   and the  success  of the test. 

These dimensions were then verified with the consequential  dynamic analysis 

performed   through  the Msc_Adams simulation software. 

 

 

 

Figure 2.10 CAD model of a connecting rod 
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The dimensions of  these  rods and cranks are  constructed  to  get  a 25mm 

stroke for  each slide, according to the known formula  which regulates the 

displacements in a centred  thrust crank: 

 

)coscos1( 
r

L

r

L
rs −+−=  

 

With r=62mm,α=45°, L=141mm, β=20°. 
 

 

 

2.2    Multibody analysis:  MSC_Adams 

 

Msc_Adams  is one of the most  widespread  multibody  analysis  software known in    

the  world for the study of body dynamics and movements. 

 

Thanks to this software it is possible to study the dynamics of  all parts of the body; 

and how   the loads and the acting forces  are distributed in the body through the 

connecting  joints. 

 

Depending on the type of  the relative  movement  that the parts of the body can  

have, we can understand  the best  kind   of  specific  connecting joint   to  choose for 

the purpose. 

 

The biggest advantage of using such software lies in the possibility of avoiding the 

traditional "build and head" process. 

 

 This type of approach, especially during experimentation, inevitably leads to a waste 

of time and money. 

 

On the contrary, thanks to the use of a software of this type, starting from the  CAD 

model of assembly  it is possible to simulate the movement  of the whole mechanism 

and check  if it responds to expectations or not. 

 

These virtual prototypes allow to consider all the aspects of the interaction between 

the parts,  such as frictions  or  possible interpenetrations. 
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2.2.1  Model construction in Adams 

Once   the complete CAD model is generated, it is possible to create the model 

in Msc_Adams. 

 

The first operation that needs to be done is to correctly set the global 

parameters of the system and in particular the reference units for the 

fundamental quantities: 

 

 

 

 

Figure 2.11 Units settings in Adams 

 

The next step is to import to the Adams environment every single part from  the 

CAD assembly, made, for example by CATIA V5, but paying great attention to 

respect  the mutual positions that every single part has within the assembly 

itself. 

 
 

 

Figure 2.12 File import setting 
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Among the options  to import CAD files,  there are  all the type of file.  In our 

case, we chose to use a neutral file format, such as STEP,  in order to allow the 

best possible communication between the software reducing the risk of losing 

information  during  the  translation. 

The program in order to correctly import the part requires the user to specify 

the names of the parts and the orientation they must have according  to the   

coordinated system. 

 

 

 

 

Figure 2.13 Part name setting 

 

In this way, the program proceeds to  correctly import the parts  in the 

assembly. 

 

Figure 2.14 Detail of slider with clamp imported into Adams 

 

Once a  part has been imported, it is necessary to specify the material of the 

component. 
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Figure 2.14 Setting of the material characteristics  

This operation must be done with all the  different  components of the assembly. 

Once the important  of all  the parts is completed, the model in the Adams 

environment can be created. 

 

Figure 2.15 Complete model in Adams 

After that,  it is necessary to connect the  several  parts of the equipment  by 

assigning the constraints chosen to describe the movement  of the mechanism 

and then calculate the forces applied within the body. 

The possible constraints that can be assigned are listed in table 2.1.  There,  the 

degrees of freedom, also, will be  subtracted  from  the  single specified part. 
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 Translation Translation Translation Rotation Rotation Rotation  
 along x along y along z about x about y about z TOTAL 

FIXED   ✓   ✓   ✓   ✓   ✓   ✓ 6 

REVOLUTE   ✓   ✓   ✓   ✓   ✓  5 

TRANSLATIONAL   ✓   ✓    ✓   ✓   ✓ 5 

CYLINDRICAL   ✓   ✓    ✓   ✓  4 

UNIVERSAL/HOOKE   ✓   ✓   ✓     ✓ 4 

SPHERICAL   ✓   ✓   ✓    3 

PLANAR     ✓   ✓   ✓  3 
Table 2.2 Possible constraints 

 
Each  part is treated  as  a rigid body,  provided with  6 degrees of freedom. 
 

 

 

 

 

Figure 2.1336 Degrees of freedom 

 

As said, the constraints must be assigned considering   the real movement of 

the part within the mechanism and in compliance with the Gruebler formula 

that  provides  the number of degrees of freedom of a mechanism placed in the 

plane. 

This formula can be expressed as follows: 

212)1(3 CCmgdl −−−=  

Where : 

• 3 is the maximum number of degrees of freedom that the mechanism has in 

the plane:  two translations and one rotation. 

• m: number of members into  the mechanism. 

• C1: number of elementary kinematic pairs of the mechanism. 

• C2: number of   II degree  upper kinematic pairs. 

The constraints  assigned to the components are therefore fundamental for the 
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analysis related to the program  to get  positive results. In the first instance, the 

"FIXED" constraint has been given to the box, based on the assumption that 

the Box is  a load-bearing element of the structure and will be the element that 

will be constructed  on the traction machine. The "FIXED"  assigned constraint  

requires the  specific   bodies  according to  this type of constraint. It has to  be 

valid. 

 

Figure 2.17 “Fixed” constraint assignment 

 
Consequently, the same type of constraint is linked  to the support  arms and 

the  axles   stationary during this movement. 

 

 

Figure 2.18 Assignment of fixed constraint to the box 

 

In the case of the box, the constraint is referred to the "Ground". In the case of 

the support arms, this type of constraint is  referred  to the box; while in the 

case of the axles it is  referred  to the support arms. 

The cranks have been given the "REVOLUTE" constraint with the same 
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principle  before  expressed. 

 

 

 

 

 

 

Figure 2.19 Revolute constraint between crank and axle 

 

This type of constraint was given between the cranks and the axles. This 

constraint was considered the most suitable to rotate   around its z-axis. 

Once the degrees of freedom guaranteed for the crank  have been defined, it is 

necessary to give a constraint that allows the connecting rods to rotate around 

the axis of the pins  that links them to the cranks. But at the same time  there is 

the  transitory movement of the slider.  Because of  this, a "SPHERICAL" 

constraint was chosen. 

 

                                  Figure 2.20 Spherical constraint between cranks and connecting rods 

 
The constraints that are in Adams, in addition to  the effective movement that 
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the parts will have inside the mechanism,  it does not  have to be redundancy 

with  those already assigned. 

Considering  what it has just been said, a "HOOKE" constraint has been added  

between the connecting rods and the sliders. 

 
 

 
           Figure 2.21 Hooke constraint 

 
In the final analysis, "TRANSLATIONAL" type constraints were linked  to 3 of 

the 4 sliders, while the last of these was related to  a "CYLINDRICAL" 

constraint. 

 

 
Figure 2.22 Translational constraint between slider and box 

 
 
Compared to the "Translational" constraint which allows only the movement  

of translation between two bodies along an appropriately  predetermined 

direction;  the "Cylindrical" constraint allows, in addition to the before 

mentioned translation, also a rotation around a predetermined axis. 
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This type of choice was made because, in the mechanism to be studied, it is also 

necessary to give a "MOVEMENT CONSTRAINT". 

This "movement constraint" will also be able to "eliminate" this further degree 

of freedom that we have left free and to avoid  that there are redundancies or 

movements  in the model that   do  not occur, really. 

 

 

Figure 2.23 Motion constraint assignment 

 

In order to correctly simulate the movement that is thought to be  occurred 

during a traction test of this type, a "STEP" type   has been set, whose 

parameters of interest are the time and the displacement of the sliders. 

The time has been chosen  in four  seconds and the slat displacement  in  25 

mm. 

 

 

Figure 2.24 Motion constraint assignment of parameters 

 
During the test, it is important to be able to simulate also the limits  that the 

equipment must get through  during the  progress  of this test. 
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Therefore,  it is important to consider at the ends of the four clamps, the  force 

that opposes the movement,  same as the previous  defined, or higher than 

10000 N,  in the equipment specifications. 

 

 

 

 

Figure 2.25 Force assignment 

 
Before  the simulation test,  it is necessary to check if the model has been 

correctly created and if the software identifies degrees of redundancy or 

anomalies that prevent the  success of the test. 

 

 

Figure 2.26 Model check 
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The check of the model shows how the model has been successfully created  and 

how  the feedback has been provided on the presence of redundant constraints.  

Gruebler's formula results in a 0 output. This was desirable in the same way as  

the "Movement constraint" is counted as a degree of freedom. 

 

 

To start the analysis,  it is necessary to set the timer of the simulation and the 

number of integrated  steps. 

 

 

Figure 2.27 Time and step integration parameters 

 
Practical experience suggests that reliable results can be obtained when the  

ratio between the duration of the simulation and the number of integration 

steps. So, this result is 1:100  

 

2.2.2 Simulation results 

The results of the simulation were important for the consequential  structural 

check  with the FEM Patran / Nastran analysis software. Thanks to the 

simulation it was possible to evaluate the actual displacement of each slider;  

the pliers that tighten the specimen, and in addition to this, it was possible to 

evaluate the forces that the elements of the equipment exchange with each 

other by the connecting pins. 
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Figure 2.28 Displacement law of sliders 

This result highlighted that all the traverses have  the same magnitude of 

displacement and this is very important. It means  that the test is carried out in 

the right way, and, during the test the centre of the cruciform  is  locked. 

The following image (fig. 2.29) allows evaluating the forces that the cranks 

transfer to  the machine axles by bearings. 

 

 

Figure 2.29 Forces between cranks and axles 

 
In particular, it is possible to highlight the double symmetry that exists in the 

movements of the forces that can be explained by the fact that there are not four 

"Translational" constraints into  the "Movement constraint". 

Through  the consequential  check  with the FEM software, we  can see that the 

largest  forces will be transmitted  to  the module. 

From the same principle, it is also possible to evaluate the forces  exchanged 

between the crank and the connecting rods  linked  to it (fig. 2.30). 
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Figure 2.30 Forces between cranks and connecting rods 

These forces are also very important for the  choice that has been made for the 

most suitable rolling bearings.  In this way,   the  forces are  downloaded  during 

the  movement. 

 As soon as the bodies are rigid, the forces are transmitted through the body to 

the sliders connected to them  by the pins. 

Based on  the same principle, the forces previously seen between the cranks and 

the axles are transferred  to  the support arms. 

 These forces will be divided equally between the two arms that support the 

single  axles and so  the same forces will  be discharged on  the body. 

 

2.2.3.Choice of the  bearings 

The results obtained through the simulation carried out with the Msc_Adams 

Software it has been possible to identify and select the most suitable bearings  

for the equipment. 

The choice of a bearing depends on the type of application for which the 

equipment is used, but at the same time a series of further parameters must be  

considered according to: 

• Free space 

• Project loads 

• System stiffness 

• Accuracy 

The characteristics listed above are  fundamental for  the equipment which has  

to be able to perform biaxial traction tests. 

One of the characteristics required  to  our equipment is the  compactness and 

the smallest   bulk.  Because of this, it was considered suitable  to choose the 

type of radial bearing with little rolls and without inner ring, in particular, we 

know  that the  initials of the Skf bearing are HN1816 [4]. 
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Figure 2.31 Bearing data sheet 

Their small footprint makes it possible to withstand the loads that have been 

evaluated in the Adams Software and which  stimulate the junctions of the 

different parts   of  the equipment. 

The magnitude of the load is one of the factors that usually determine the size 

of the bearing to be used. Generally, roll bearings are able to withstand 

substantial loads and  the size that  increases with the diameter of the shaft. The 

loads are  considered really  radial. 

For this reason, especially in the case of equipment,  for testing machines, the  

main issue of everything is  the misalignment between the shaft and  the  

bearing housing. 

This misalignment is due, for example, to the deflection of the shaft due to the 

load or to incorrect machining of the bearing seats. This misalignment is to be 

avoided or made with modesty. 

 

The precision required  to the bearing, in this particular type of application, and 

its stiffness are both key factors. The type of bearing chosen ensures high 

rotation accuracy and low friction 

In order to guarantee  the correct axial locking and in particular to put the 

bearing  in the condition to stop and to work correctly, the use of internal Seeger 

stop rings have been foreseen. 

For the type of use expected for this type of equipment, the criterion used for 

choosing the type and size of the bearing is the  load capacity rather than 

duration. This type of approach is possible  according to  the following 

conditions :  
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- the loads are an example  of an intermittent type, they can be considered 

not applied continuously over  the time. 

- the bearing rotates under load at a very low speed (n <10 rpm) 

When it is found, as in the case discussed here, in one of these conditions,  the 

admissible load is not determined by the work  of the material as much as by 

the number of permanent strains on the races caused by the load. Loads acting 

on a stationary bearing, produce facets on the rolling elements and imprints on 

the races. If the magnitude of such strains is considerable, they can lead to 

vibrations, noise, greater friction and loss of the precision. These characteristics 

chosen  are guaranteed. The parameter of interest, in this case, is the static load 

factor. The static load factor is evaluated starting from a static safety factor and 

the equivalent static load. 

The equivalent static load can be evaluated by the general formula: 

𝑃0 = 𝑋𝑜𝐹𝑟 + 𝑌0𝐹𝑎 

Here,  the effects of radial and axial loads acting on the bearing are weighed. 

In this case 𝑃0 = 30000 N  

These  values  can be found  in the literature, at a room  temperature conditions.  

A  safety factor of 1 has been chosen for the static safety factor. For  the most 

applications operating under normal conditions, grease lubrication is certainly 

the best. Compared to an oil lubrication, grease does not  have  problems to go 

away  from the system and at the same time helps to protect from moisture. 

These lubricating greases consist of mineral oils combined with thickeners, and 

have a fundamental variable from 1 to 3 according to the NLGI scale, in the case 

of rolling bearings. For applications like this, it seemed advisable to use a  

grease normal solidity, that has  the  value of  two. 

 

 

2.3 Creation of the model for finite element analysis 

It has been chosen to perform Pre-Processing and Post-Processing with one of the 

most common software on the market, called Msc_Patran; while for the Processing 

phase the software of the same manufacturer was chosen Msc_ Nastrum. This 

software can easily  compared with the MSC Adams software that was introduced 

into the dynamic study of the system. In particular, they allow performing the 

dynamic simulation of the whole mechanism  by introducing the deformability of 

some components, and correct the law of movement  provided by the rigid-body 

analysis with the implementation of  the  strains  generated  into those components. 
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This type of analysis is of particular interest because it  allows a more realistic view 

of the behaviour of the  equipment  when working. 

The first step is to create a geometric model that is as much representative as possible 

of  the object to be  analyzed. When the program is started, it is necessary to set the 

type of analysis to be carried out, the code chosen for the analysis, the approximate 

dimensions of the component or of the assembly that will be modelled. In this case, 

it was decided to carry out a structural analysis with the MD Nastran code. The 

dimensions are variable and depending on the type of component. 

 

Figure 2.32 New model assignment 

The geometry of each component can be created in the Patran environment or 

imported into a neutral file format such as the Step file from a CAD software. The 

Patran environment offers  many  types of geometries (based on points, curves, 

surfaces, solids) thanks to these  combinations it is also possible to create  models of 

high complexity. Here it was decided to import a  suitable flat geometry  modified in 

Step format by the CATIA V5 software. This choice was essentially dictated by the 

need to be able to exercise  higher control during discretization  of the structural 

dominance in the most stressed areas in which the mesh would have had to be 

denser. Also, in this case, it is very important to keep  consistence between the units 

of measures used in the CAD modelling phase and those of the model in Patran. 

When  we  talk  about suitable  modified geometry  plane, we mean a geometry made 

up of a set of lines connected to each other, also internally, which  will be used in the 

Patran environment to create Surfaces. For the creation of these surfaces, the Patran 

software offers several tools; in this case, the "Edge" method was used to create a 

surface by choosing the lines that delimit it. Repeating the operation for each  trait 

of interest we obtain  the outcome  as in figure 2.33. 
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Figure 2.33 Surfaces for the creation of connecting rod model 

Then, we  move on to creating the Mesh. To create a Mesh that is thick at the points 

of greatest interest, it is necessary to use the so-called “Mesh Seed”, which represents 

the "guide points" to which the program refers when the mesh will   be created 

afterwards. 

 

Figure 2.34 Mesh of connecting rod 

 

The “Mesh seed” should be chosen in a way  to have  the same ratio of the length in 

several  parts of the element.  In this way,  the elements are not excessively deformed. 

The next step is to realize the Mesh. 

To do this, the program provides a  special menu within which you can choose the 

type of algorithm to be used and the type of elements that best suits the analysis.  In 

this case, the Isomesh algorithm and the Quad4 elements have been  chosen. Once 

the plane Mesh has been created, it has been  put inside  a  perpendicular direction  

through  the reference plane, from which   the solid  Hexa8 elements [5] Mesh is 

obtained. 

 

Figure 2.35 Complete mesh of the connecting rod 

Following the elimination of the flat elements, the model is composed  of 32400 solid 

elements. Once the discretization of the structural domain has been completed it is 

necessary to set the boundary  conditions : external loads and constraints. 

The values of the loads,  through  which the individual parts of the equipment will be 
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checked,  are those outgoing from the dynamic analysis  directed  to  Adams. 

A very useful technique to simulate the pressure of the indoor  connecting pins,  of 

the connecting rods and other components of the equipment is to use the Multipoint 

Constraint (MPCs). The Multipoint Constraint is a constraint condition that relates 

the degrees of freedom of one or more nodes, called “independent”, to the degrees of 

freedom of the nodes called “dependent”. In this case, was chosen RBE2. The RBE2 

are characterized by having 1 independent node and several dependent nodes that 

are constrained to move  in the same way than  independent nodes. 

 

Figure 2.36 RBE2 constraints 

 
In particular, as an independent node, a dummy node has been created in the centre 

of the hole, where the pin will be positioned and   all those nodes  in contact with the 

plug itself will be selected. Once these RBE2 have been created for both the 

connecting rod holes, previously,  assessed loads can be applied.  These forces will 

be applied to the independent nodes of the Constraint Multipoint which  will coincide 

with the central node located on the pin axis. 

In order to simulate the behaviour of the element, it is necessary to constrain the 

component in the space. For this  component, a joint and a support constraint were 

assigned to the independent nodes used for the Multipoint Constraint. In this way, 

the component is allowed to be constrained and at the same time be able to simulate 

its movement inside the equipment. 

The last operation to  carry is that of assigning the material; in the case tape  there is 

a construction steel like the 39NiCrMo3, with the properties shown in table 2.2. 

 

Table 2.3 Mechanical properties of 39NiCrMo3 

The choice on this type of steel has  good workability and excellent mechanical 

characteristics. The program needs to have Young's module, the Poisson module and 
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the density. These characteristics of the material are  shown in figure 2.37. 

 

Figure 2.37 Material parameters 

 

Repeating the procedure described above for each component of the equipment, the 

following numerical models have been obtained. 

In the case of the slider, the model was created by inserting a further Multipoint 

Constraint with a  50 N  force to simulate the weight of the hydraulic clamp and a 

joint along the sliding tracks inside the box (fig.2.38). 

 

Figure 2.38 Slider fem model 

 
For the support structures, two joints were  fixed  at the ends where the connection 

to the box is envisaged and the force is  applied to the Multipoint Constraint to 

simulate the connection with the axis. 

 

Figure 2.39 Support structure fem model 

 
For the V-shaped crank, the only constraint is that of interlocking  the central hole 
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where the bearing will be housed while the loads that  have been applied to the centre 

of the holes along the crank arms. 

 

 

Figure 2.40 V-shaped crank fem model 

In the case of the box, a joint constraint  is  placed in the lower part where it will be 

integrated with the lower crosspiece of the testing machine; while the load is  applied 

with the methods previously illustrated. 

 

 
Figure 2.41 Box fem model 

 
2.3.1.  Linear static analysis  

The type of analysis envisaged for the components is the Linear Static which in 

Nastran is named  “Sol 101”. 

The parameters considered  are the strain  deriving  from   the applied  loads 

axes, evaluated according to the Von Mises criterion. 

In the case of the connecting rod, the strains and the stresses are within the 

parameters that can be considered a  limit(see fig. 2.42 and 2.43). 

In particular, it has been verified that in each component the maximum strains 

are always less than one-tenth of a millimetre and the maximum stresses are  

at  the yield limit of the chosen material. The results have been reported using  

a 0.3 scale of factors for graphic reasons.  So that strains and stresses  can be 

appreciated. 
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Figure 2.42 Connecting rod strains 

 

Figure 2.43 Connecting rod stresses 

 
Figures 2.44 and 2.45 show the results related to the crank analysis. It is one of 

the components of great  interest because its rotation allows the effective 

deviation of the input movement  of the system. 

 

 

Figure 2.44 Crank strains 
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Figure 2.45 Crank stresses 

 
The results of the analysis on the sliders and the support arms are shown below: 

 

 

Figure 2.46 Slider strains 

 

 
Figure 2.47 Slider stresses 
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Figure 2.48 Support arm strains 

 
Figure 2.49 Support arm stresses 

Another component of great  interest is the axle on which the cranks rest on  

the bearings. In this case, the force that is exchanged has been represented not 

as a punctual load, but as "Total Load".  A load that is distributed along the 

contact surface and it  has been chosen to reproduce the action of the bearing. 

 

 

Figure 2.50 Axle strains 
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Figure 2.51 Axle stresses 

In the case of the box, the first analysis with a 50 mm thickness has highlighted 

the strains.  So,  for  this type of  equipment  it cannot be considered tolerable.  

Because of this it was decided to make  increase the thickness of the component 

about  80 mm. According to the reported strain  values analysis done again in  

the  order of hundredths of a millimetre, the  situation  was acceptable,  finally. 

 

Figure 2.52 Box strains in case of thickness 50 mm 

 
Figure 2.53 Box strains in case of thickness 80 mm 
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Figure 2.54 Box stresses in case of thickness 80 mm 

As in the previous cases, the results of the analysis are comforting due  to the 

correct size of each component. 

This type of approach, based on the use of the Multipoint Constraint, has, 

within,  a limit that must be mentioned. With this type of instrument, a rigid 

displacement of all dependent nodes is  added to  the independent one. 

In fact, this hole does not rigidly follow the pin. The contact is  only along a 

circumferential arc.  Along which the exchanged action is  distributed  through  

a non-linear trend. It is deduced  that during the contact the hole does not move 

deformed but tends to be  oval. This load condition can be  precautionary 

considered  in relation to  the estimate of the displacements, which represent 

the most important aspect  because of  rigidity. On the other hand, a greater 

degree of approximation is instead permitted  thanks to the computation of the 

stresses that  act.  These  virtues of the strength of the acting elements, are 

widely contained within the yield strength limits of the material. 

 

2.3.2 Flex analysis in Adams/Nastran environment 

The hypothesis on which the previous analysis was based was that of the perfect 

rigidity of the components under examination.  But, a hypothesis of this type 

can only be considered true in part: the  element of the equipment can be 

deformed by virtue of the material  whose it  is made and by  amount of load  to  

which  it  is subject during the movement.  This eventuality can be appropriately 

evaluated by importing the results of the deformation  analysis (Patran / 

Nastran) in Adams. This type of analysis is therefore required when the 

flexibility of the bodies can influence the kinematics of the mechanism we are 

talking about  or when the precision required is particularly high. The logic 
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followed in this type of procedure is  provided for the reintroduction within the 

Adams environment, and in particular, in the model.  It was  previously created 

with Nastran. Its name  is the ”MNF” file (Modal Neutral File). 

 

 

Figure 2.55 Rationale  behind the deformability analysis 

 
This type of file is the key element to put in  the two software in communication 

and is the result of an appropriate modal analysis that is prepared in Patran 

and performed in Nastran SOL 103. With this type of analysis, it is, therefore, 

possible to evaluate the actual deformation of the several  components, all 

inserted within the frame considered rigid .In this way, we can evaluate the 

error that could  be made in the measurement of the strain of a sample  with 

the  test. The first step is to create a bdf file containing the information that the 

solver needs to perform the modal analysis. To do this you can take advantage 

from the  models previously created for static analysis with SOL 101.  However,  

they will   be modified according to  this new solution. First, the so-called DOFs 

must be created, that is, the degrees of freedom that are  assigned to the 

dependent nodes of each MPC created.  This is an algorithm implemented in 

the current versions of Patran that allows reducing the number of vibrating 

modes   to reproduce the model of the movements of the flexible body.  These 

elements not only have the function of creating the connection nodes of the 

flexible element with the rigid bodies of the whole system, but they constitute 

the essential element for generating the constrained vibrating means according 

to the Grag-Bamptons method. 

The analysis  requires to set a modal analysis (solution number 103). Before 

doing  the analysis it is necessary to set  correctly the parameters which will 

then allow the communication between the  two programs. This can be done 

within the "Solution Parameters" submenu by entering the appropriate section 

called "Adams Preparation" in which the units of measurement must be aligned 

to  that  done in Adams.  The program is asked to generate the output file. MNF. 
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By carrying out these simple operations, it is possible to correctly launch a 

modal analysis that will generate  a file containing the discretized model with 

the relative vibrating modes.  

After opening the program and loading the model previously created in the 

Adams environment, you can replace the rigid component with a flexible one  

within the model. 

 

 

Figure 2.56 Importation of a flex component in Adams 

 
The new flexible part, imported into the environment Adams,  provides its own 

menu  which  can be directed into  different  ways of vibrating, and if necessary, 

allows you to eliminate  elements  that cannot compete with  the strain.  

 

 

 

Figure 2.57 Setting of flex component properties 
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The flexible body, once introduced into the system, inherits not only the 

position but also the constraints  assigned to the corresponding rigid bodies. 

The components that have been considered deformable  inside the equipment 

are: 

• Connecting rods 

• Sliders 

• Support arms 

• V-shaped cranks 

• Axles 

 

 

Figure 2.58 Detail of flexible cranks 

 
This procedure can be repeated for all the components present in the 

equipment   to evaluate the impact on the displacement of the hydraulic clamps 

of the deformation  of the components. 

Once all the deformable components have been inserted inside the equipment, 

it is possible to do the analysis and evaluate how the deformation of the bodies 

has influenced the displacement of the hydraulic clamps. 

 

Figure 2.59 Equipment with all flexible components during the analysis 
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In order to evaluate the actual displacement of each hydraulic clamp, it was 

necessary to insert within the model of the appropriate "Markers",  one 

integrated  with the hydraulic clamp and one integrated  with the Ground, 

positioned at the same point at the moment. In this way, it is possible to 

evaluate how, during the simulation, the  integrated mark  with the slider moves 

away from that integrated with the Ground.  Therefore, the actual displacement 

of the hydraulic clamp,  is  integrated  with the slider, now.  The results obtained 

from the analysis can be evaluated in Fig 5.43 and clearly show how the 

deformation  of the bodies has had an influence on the displacement of the 

hydraulic clamps integrated  with the slider. 

 

 

Figure 2.60 Comparison of the law of motions in both cases: rigid and flexible components  

 
These results, also,  show how the law of the displacements of the hydraulic 

clamps is  changed over the time, as in  the case of the  completely rigid 

equipment. In a steady state, the maximum imposed  about the  25 mm 

displacement  has  reached the average error.  Evaluating it  on the 4  hydraulic 

clamps, the result is  0.0363 mm. 

 

 Rigid case 

max stroke [mm] 

Flex case 

max stroke [mm] 

Difference 

Slider 1 
25 24,976 0,024 

Slider 2 
-25 -25,014 0,014 

Slider 3 
25 24,9578 0,0422 

Slider 4 
-25 -25,065 0,065 

Average 
     0,0363 

Table 2.3Comparison between rigid and flex analysis results 

 
 



 
 
Chapter2                                         STUDY OF A NEW EQUIPMENT FOR BIAXIAL TEST 
 

- 71 - 
 

This means that, according to the ideal case, the position of the centre of the 

specimen will  have the  maximum value of 0.0363 mm and it is an acceptable 

value. So,   the test was successful. 
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Chapter 3 

 

Study of specimen shape for biaxial tests on composite and 

polymer materials 

 

3.1 Optimization of shape for composite materials 

One of the aims of this work was to achieve an improvement in the shape of the 

specimen in order to more clearly define the region subjected to a biaxial load, as 

that is the type of load to which many aeronautical structures are subject.  

The optimization of this shape was made with the help of fem simulations. 

In the first simulations, carried out in Ansys, it was considered a material consisting 

of an epoxy resin matrix and carbon fibers and was considered a stacking sequence 

shown in figure 3.1 (-45 °, + 45 °, + 45 °, -45 °). 

The thickness used for the specimen is 0.6 mm. 

About the boundary conditions, having to generate a type of biaxial load, a modeling 

was carried out in which two sides are loaded with a force of 500 N (this value is the 

applicable limit in the following experiments). 

 

 

Figure 3.1 Stacking sequence 

 

Many geometries have been investigated: in figure 3.2 only three are reported for 
brevity. 
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Figure 3.2 Investigated shapes 

 
The first and the second shapes derive from the studies of Smits et al. [1], the third 

by Guelho et al. [2]. The third was chosen but with some modifications.  

In figure 3.3 there are the original dimensions investigated by Guelho.  

 

        

                                        Figure 3.3 Guelho et al. specimen shape and dimensions [2] 

           

For this work, it has considered this form of specimen maintaining the constant 

thickness over the whole specimen and imposing, to the variable dimensions 

indicated by Guelho, the lower values shown in the table. 

 

 The new specimen with his dimensions is shown in figure 3.4.  
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Figure 3.4 Modified shape  

 

Referring to the studies previously analyzed, it was noted that all investigated shapes 

present fittings that allowed the reduction of a concentration of stresses in the 

corners of the specimen itself. This prevents cracks and breakages in the connecting 

part between the specimen arms and the biaxial load zone.  

Given the geometry of the specimens, it was decided to manually construct the mesh. 

Moreover, the type of element used is SOLID SHELL [3], shown in figure 3.5. It is a 

three-dimensional finished element with 8 nodes, suitable for simulating structures 

with different thicknesses (from thin to moderately thick). It is particularly suitable 

for modeling composite laminates, as the formulation of this element is based on the 

Mindlin-Reissner theory. Each node has three degrees of freedom: the three 

translations in x, y and z directions. 
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Figure 3.5 Solid shell element [3] 

 
For simplicity, only the results of the fem analysis on the third type of specimen of 

figure 3.2 are reported, which in the end is the one that showed a better behavior. 

The figure 3.6 shows the mesh built on the specimen, consisting of 15728 finished 

elements. 

 

 

Figure 3.6 Solid shell mesh  
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About the load conditions, perfect clamping was hypothesized, and consequently, the 

modeling on the fem software was made using the MPC (Multi Point Constraint) 

option. The unloaded ends were constrained by interlocking. The constraint and load 

conditions are shown in figure 3.7. 

 

 

Figure 3.7 Boundary conditions 

 
 

 

Figure 3.8 Deformed of the fem model 
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The figure 3.9 shows the distribution of the main strains. 

 

 

Figure 3.9 Main strains a) I and b) II for layer1; main strains c) I and d) II for the layer2 

 

As regards the distribution of stresses, given the stacking sequence shown in figure 

3.1, it was considered useful to construct a reference system rotated by 45 ° with 

respect to the global reference system (abscissa and ordinate respectively horizontal 

and vertical with respect to the graphic window). 

 This system was called CSYS11. The aim is to match the x and y-direction with the 

fibers direction, for each considered layer, obtaining more easily interpretable 

graphs.  

 

The figure 3.10 shows the stresses along x and y in the CSYS11 reference system for 

the specimen. Given the symmetry of the specimen, only the results relative to layers 

1 and 2 are shown, indicated in the legend to the left of the graph. 
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Figure 3.10 Stresses in the direction a) x and b) y in the CSYS11 reference system for Layer1; 
Stresses in direction c) x and d) y in the CSYS11 reference system for Layer2 

 

From these results it is clear that this shape of the specimen is more suitable in case 

it is desired to investigate the characteristics of the strength of the material, since the 

priming of the break should occur in the central area of the biaxial load section, 

subjected to higher stresses. Moreover, the figure3.10 shows that stresses are 

minimal in regions far from the central one. 

 

Later the same sample geometry was modeled on Patran software, for pre and post 

processing, and Nastran software for analysis. 

As far as  the boundary conditions is concerned,  in order  to generate a type of biaxial 

load, it  was carried out through  two sides  loaded with  a 463 N force (this value is 

the limit applicable in the following experiments) and it was  hypothesized  to be  a 

perfect grasp modelled by two joints along the other two sides. The load is also set by   

the  Master system  and by Slave nodes (Multi Point Constraint) that allow the 

application of the same on a single node the consequent transmission to the whole 

side of the specimen. For the simulation, it was decided to model the geometry with 
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2D shell elements [2]. This allowed to have a lower computational burden for the 

software and to obtain the results for every single ply. 

The geometric model has a 110mm x 110mm total dimension, a [0/90]S symmetrical 

stacking sequence. The considered material is a composite laminate of carbon fiber  

and epoxy resin.  The solution executed is the linear Sol 101 [3]. 

 

Figure 3.11  2D shell mesh 

In order to obtain a symmetrical distribution of the loads, the load  is applied to all 

the arms of the specimen, constraining the latter to be only in its central point. 

 
Figure 3.12  Boundary conditions and loads 

 

The resulting distribution of the von Mises strains is shown in fig. 3.13 for the ply a 

90°.  
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Figure 3.13 Von Mises strains 

 
The result is the same for the 0 ° ply because the laminate is symmetrical.  

The presence of a central area with uniform strains is evident. 

 

 

3.2 Optimization of  the shape for polymeric materials 

 

In the case of polymeric materials, from the studies of Helfenstein, Hollenstein and 

Mazza [4], it appears that the type of specimen that tends to maximize the biaxial 

loading zone is that which has a cruciform shape and in which there are some 

notches.  

They also defined a link between the increase  of notches on the specimen arms and 

the relative increase into  the biaxial loading area. 

For the optimization of the test form for biaxial tests about  polymeric materials, it  

started from that of Helfenstein et al., modifying some things.  

 

While the Helfenstein specimen has five notches on each arm, the form proposed in 

this thesis   six notches, as shown in figure 3.14. 
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Figure 3.14  New shape proposed for polymeric materials 

 
This solution not only allows the biaxial load area to be totally maximized,  but, also,  

to prevent   any breakage  between the  specimen arms. 

Two fem simulations were performed with two types of polymeric material [5]. The 

first was made of SG-20 Sikasil, a silicone adhesive, with high structural strength, 

which exhibits hyper-elastic behaviour; the second one was instead made of Versilok, 

a two-component acrylic adhesive with an elastoplastic behaviour. These specimens 

were made with a 3mm thickness   and modelled with chexa-like elements. These are  

shown in fig. 3.15  [3]. 

 
 

 

Figure 3.15 Chexa element 

 

 

The boundary conditions of these specimens foresee a variation in the load 

conditions. This  is imposed by  a different  speedy. The specimens, in fact, were 



 
 
Chapter3                                            STUDY OF SPECIMEN SHAPE FOR BIAXIAL TESTS 

ON COMPOSITE AND POLYMERIC MATERIALS 
 

- 83 - 
 

loaded imposing a displacement at the free edges along the two main load directions 

whose values are about   5 mm/min  and are jammed along the other two edges. The 

symmetry of the problem was also studied to pay  attention on only a quarter of the 

sample and to reduce the computational costs of the operation. The solution 

implemented is the implicit non-linear Sol 600. 

The  3.16 and 3.17 figures show the results of the fem analysis for the two materials 

considered.  

 

Figure 3.16  Main stresses on Versilok  specimen 

 
 

 

Figure 3.17  Main stresses on Sikasil specimen 
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The geometry with the notches of variable size maximizes the movement  of  the load 

to the measured section and allows to increase the dimensions of the latter. 
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Chapter 4 

 

Experimental activity 

 

 

4.1 Introduction 

 

The experimental activity has  the  main  purpose to  validate  the  biaxial test using 

the equipment and the specimens studied, through the comparison with fem results. 

The experimental tests, in a limited number, were made  within the Tabasco project,  

promoted by the DAC (Campania Aeronautical District). 

Tabasco is the Italian acronym of "Low Cost Production Technologies and Processes 

for Composite Structures for Advanced Aircraft of the General Aviation".  

 

4.2  Materials and method 

 

4.2.1 Materials 

As part of  the Tabasco project, the material considered for the construction of 

aircraft is a compound laminate in carbon fiber and epoxy resin. This is a 

laminate composed  of 2 pleis of pre-waterlog  0/90 ° fabric, obtained with 

technological "vacuum bag".  The specimens has a (0/90) stacking sequence 

and 0.5 mm thick.  They were made from panels by performing a laser cut. 

The characteristics of the fibers made of   fabric are shown in fig. 4.1. 

 

In order to compare the experimental results with those of the fem analysis, we 

understand that monoaxial tests were performed to produce  the mechanical 

characteristics of the laminate material.  Three tests were performed following 

the ASTM D638 standard [1] with a universal machine for tensile test MTS 

RT50. 
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Figure 4.1  Fibre Data Sheet 

 

The results of monoaxial tests on this type of material, acquired through  

three different methods, are shown in fig. 4.2. 

 

 
Figure 4.2  σ-ε curve 

 
The elastic modules obtained to create  the laminate material are: with DIC E 

=57100 MPa, with extensometer E = 60467 MPa, with strain gage E = 63526 

MPa.  

Starting from these results, the  value of the elastic module  for the carbon fiber 

of the specimen has been defined: it is the same than  the  120'000 MPA used 

for all the following fem simulations. 
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The material considered in the tests with 2 pleis specimen did not show great 

success.  It was  considered a material consisting of two pleis and with a 0/90 ° 

stacking sequence. The specimen is therefore not symmetrical. 

For this reason another starting material was considered, in order to continue 

the experimental activity in the future: a symmetrical laminate consisting of 

four pleis with  a [±45 °] stacking sequence as well as that considered in the 

study of the optimization of the specimen shape illustrated in chapter 3. 

 

4.2.2  Test setup 

Starting from the study carried out on the equipment described in the second 

chapter, after some modifications, the equipment was built, finally.  As can be 

seen from figure 4.3,  the  modification has been made on  the shape of the 

sliders. 

 

Figure 4.3  CAD model of definitive equipment 

 
It must be remembered that the equipment consists of a fixed part   included   

into  the  uniaxial test machine and  in a mobile part connected to the mobile 

crosshead of the testing machine. The maximum length  of the four slides is 

about  32mm and is due to the rotation of the cranks.  The ratios of the crank 

mechanisms are equal to each other, and equally distributed along  the 

incoming load  to allow a biaxial  test.  The interface with the specimen has been 

realized with four mechanical clamps;  the couplings between the connecting 

rods and the cranks.  These  have been realized with roller bearings, while the 

cylindrical guide slides  inside with  linear ball bearings. 

Figure 4.4 shows the equipment  created  on the test machine. 
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Figure 4.4  New equipment for biaxial tests 

 
This equipment was designed  for   specimen tests  that require a  less than 

32mm stroke,  with a  6mm maximum thickness and a  50mm maximum width. 

 

 
Figure 4.534 Details of cranks and clamps 

 
The load transferred to each branch of the specimen is measured with  a 5kN 

Kistler  load cell, which was  appropriately calibrated. 

The camera used for the digital image correlation  is a 36.3 megapixel Nikon 

D810, able to collect  images at the rate of 5 frames per second. The correlation 
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between the images is done with the VIC2D software [2]. 

The material test machine used for biaxial tests is a MTS 810. 

 

4.2.3  Specimen preparation for DIC  

According to the DIC (Digital Image Correlation) and  exploiting the  

correlation  between the  algorithms and the  Fourier’s  transformations, 

through an optical method,  has been  provided  a map of the strain state of the 

specimen. 

From the knowledge of some parameters, the images recorded by the camera 

are compared, pixel by pixel, using  the correlation of  algorithms. 

One of the basic steps is the preparation of the specimen that consists of 

painting this last one with a layer of paint of negligible thickness that does not 

change its mechanical characteristics. The speckle pattern was applied with a 

spray technique. A layer of opaque white varnish was applied, first of all,  in 

order to have a homogeneous base on which a black opaque speckle pattern was  

made (see fig. 4.6 and 4.7) [3]. 

 

 

Figure 4.6 35 Speckle pattern on specimen 
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Figure 4.7 Detail of speckle pattern in the biaxial zone 

 
Two lenses have been used, respectively 4x and 1x, which joined together  to 

obtain  a 5x  focal zoom. Then the way of  using this type of lens was found,  and 

it was therefore necessary to position the camera as close as possible to the 

specimen (see fig. 4.8). 

 

 

Figure 4.8 Camera positioning 

 

4.2.4 Biaxial tests and digital correlation of images 

Before starting the tests it was necessary to lubricate the equipment over and 

over again to minimize internal friction. This is an  important  phase to ensure 

that the applied load goes all over the specimen and is not absorbed in large 

part by the equipment itself. 
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Figure 4.936 Biaxial test performing 

Once five biaxial tests have  been performed,  the images of the specimens  are 

acquired   in all the tests.  So,  the illustrated tests  deal  with the specimens  at   

0/90° stacking sequence 

A   2mm / min speedy test value  was set on  the test machine. The test was 

blocked when the force value reached 2000 N (or 500 N on each arm). 

The software VIC2D, through correlation of algorithms, allows  the  control of  

the length of the specimen,   analyzing, image by image, the variation of the 

distance between the  two points defined in the initial calibration (see fig. 4.10). 

The operation has used the speckle pattern put in  on the specimen. 

 

 
Figure 4.1037 Image calibration 

 
The next step  defines an area of interest (AOI) (see fig. 4.11), which allows to 

narrow the field of analysis  on  a single portion of the specimen, in order to 
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avoid,  analyzing unnecessary parts of the images created during the test,  

blurred areas or an undefined pattern in the analysis. It is important to obtain 

a symmetrical AOI  to subsequently have a distribution of the deformations 

which, also, are  symmetrical. 

 

 
Figure 4.1138 Area of interest  

 
In order to perform the correlation it is important to define the "Subset" and 

"Step" quantities. The first definitions  about  dimensions of the sub-images, or  

the number of sub-images are  created in the area of interest. The value of Step, 

instead, considers the calculation steps, making the calculation more precise, 

but also heavier, therefore,  longer, as soon as  it decreases.  In the figure 4.12 

the chosen values are shown. 

 

 
Figure 4.1239 DIC analysis settings 

 
 

4.3 Results and fem validation 

The average of the results  of biaxial tests was compared with the results of the fem 

analysis (carried out with Patran/Nastran software) in terms of strain.  Subsequently 

it was considered a reference point on the specimen. The same point was then 

identified on the model fem and its evolution during the test was observed. 
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The analysis is focused on the 0 ° ply because it is the one that has been treated with 

the speckle pattern and analyzed with the VIC-2D. It is compared therefore with the 

0° ply in the fem analysis. The fact that the specimen is not symmetrically balanced 

influences the graphic results and therefore, the two plies will produce different 

graphic results. The biaxial loading area has a very homogeneous distribution of the 

strains in both cases, except for the central area which,  obviously, on Patran, is 

constrained to obtain a symmetric distribution of the strains. The two strain 

distributions are shown in the figure 4.13 and 4.14. 

 

 

 

 

Figure 4.13 Distribution  of maximum strain in the main direction with DIC  
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Figure 4.14 Distribution of maximum strain in the main direction with fem 

 

A more precise analysis of the individual values  was made on  a single point of the 

specimen analyzed with the VIC-2D software and compared with the corresponding 

element of Patran.  

Specifically, the reference element is the 18577 placed at 44.3 mm from the right edge 

of the specimen and at 52.3 mm from the upper edge of the specimen. 

The values of the latter will turn out to be 0.00087464 and 0.00095179 regarding 

the strain of Von Mises on the ply at 0 °  in the directions y and x respectively and 

0.0011495 for the maximum strain in the main direction. 

In the figure 4.15 are shown these values for the finite element identified. 
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Figure 4.15 Values for identified element on Patran model 

 

In the figure 4.16 it is shown the same point   identified on the specimen.  It is also 

shown the maximum strain distribution in the main direction, resulting from the  

DIC analysis. 
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Figure 4.16 Maximum strain distribution in the main direction 

 

 
In the figure 4.17 and 4.18  it is shown the Von Mises strains in y and x directions. 

 

 
Figure 4.17  Strain in y direction 
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Figure 4.18  Strain in x direction 

 
At the end, a summary table can be created  on  the values analyzed in the point. 

 

 VIC-2D  PATRAN 

Maximum strain in the 
main direction 
 

0.00174968 
 

0.0011495 

Strain in y direction 
 

0.000897933 
 

0.00087464 

Strain in the x-
direction 

0.00105405 0.00095179 

Table 4.4 Comparison between DIC and fem values 

 
4.4 Conclusions 

The experimental activity allowed to verify the operation of the experimental 

equipment,  for the execution of biaxial traction tests. The tests have highlighted the 

possibility of making tests on the materials, tests that would be reliable, but that 

anyway changes must be made to the equipment to increase its reliability before 

undertaking extensive experimental campaigns on materials. Indeed this work 

focused on setting up the equipment. 

The tests were carried out using a new digital image through an  acquisition system 

and a related analysis software in order to determine the deformed maps. 

The specimens were extracted from available  panels   as part of the TABASCO project 

of the DAC and were prepared according to the indications provided for the use of 

the DIC. 
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The comparisons between the experimental and numerical data have made it 

possible to  check  that the equipment is  applied  to  the load  on the four arms 

correctly and it has also been verified how the area, in which the deformation stays  

constant,  is becoming  wide. 

However, it was noted that  the value of the applied load increases as much  as  the 

equipment showed an abnormal behaviour.  So,  the two transversal sliders  were too 

strongly and therefore not acceptable. 

The problem is due to the high presence of junctions which load the internal friction 

equipment.  This  causes  a lack of symmetry in the movement of the branches,  

between the fixed-mobile structures near the  connecting  areas. This, as before 

mentioned,  generates limitations in the test when high forces are reached. This 

particular situation doesn’t  characterize the material  during  the  break and limits  

itself to  about 4 minutes  maximum duration  test  and about 500 N per arm.  If the 

load  keep  increasing,  it would  tested the steel of the  test  rig only, instead of the 

specimen one. 

 

 

Figure 4.19 Slider inclination 
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The horizontal arms tend to flex under their own weight (see Fig. 4.20) 

 

Figure 4.20 Flexion of the arms 

 

It is now possible to suggest future modifications to the equipment. 

The first change to be made will be the creation of larger diameter guides for the two 

horizontal arms; in addition, the shaft that runs in the guide must be replaced by a 

drawn and chromed shaft coupled with two Teflon-type sliding bearings. 

 

The cranks must be lightened especially in the areas where they could come in 

contact with the support arms. In figures 4.21 and 4.22  it is possible to see in detail 

the areas in which the cranks will be lightened. 
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Figure 4.21 Detail of cranks 

 
 
 

 
Figure 4.22 Areas of possible crank contact 

 

 

 

 

Another problem is that the lower jaw must win the weight of the moving part of the 

mechanism and recover the games before the test.  

The solution to this problem could be the insertion of some tension springs which 
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would support the weight of the mobile part of the equipment. The position of the 

springs is shown in red in fig. 4.23. 

 

 

 

 

Figure 4.23 Position of the springs 

 
 
 
 
 
Each L-rib (support arms) will be replaced with two parallel plates, one on each side. 

These support arms will be laser-shaped and drilled in a CNC in a single operation 

to ensure correct positioning of the rotation axes. The draft of the new plates is shown 

in the figure 4.24. 
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Figure 4.24 New plate  
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