

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

PH.D. THESIS
IN

INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

NETWORK TRAFFIC CONTROL DESIGN AND
EVALUATION

PASQUALE IMPUTATO

TUTOR: STEFANO AVALLONE

XXXI CICLO

SCUOLA POLITECNICA E DELLE SCIENZE DI BASE
DIPARTIMENTO DI INGEGNERIA ELETTRICA E TECNOLOGIE DELL’INFORMAZIONE

ii

Abstract

Recently, the term bufferbloat has been coined to indicate the uncontrolled growth
of the network queueing time. A number of network traffic control strategies have
been proposed to control network queueing delay. Active Queue Management (AQM)
algorithms such as RED, CoDel and PIE have been proposed to drop packets before
the network queues become full and to notify upper layers, e.g., transport protocols,
about possible congestion status. Innovative packet schedulers such as FQ-CoDel,
have been introduced to prioritize flows which do not build queues. Strategies to
reduce device buffering, e.g., BQL, have been proposed to increase the effectiveness
of packet schedulers.

Network experimentation through simulators such as ns-3, one of the most used
network simulators, allows the study of bufferbloat and to evaluate solutions in a
controlled environment. In this work, we aligned the ns-3 queueing system to the
Linux one, one of the most used networking stacks. We introduced in ns-3 a traffic
control module modelled after the Linux one. Our design allowed the introduc-
tion in ns-3 of schedulers such as FQ-CoDel and of algorithms to dynamically size
the buffers such as BQL. Also, we devised a new emulation methodology to over-
come some limitations and increase the emulation fidelity. Then, by using the new
emulation methodology, we validated the traffic control module with its AQM al-
gorithms (RED, CoDel, FQ-CoDel and PIE). Our experiments prove the high fidelity
of network emulation and the high accuracy of the traffic control module and AQM
algorithms.

Then, we show two proposals of design and evaluation of traffic control strate-
gies by using ns-3. Firstly, we designed and evaluated a traffic control layer for
the backlog management in 3GPP stacks. The approach improves significantly the
flows performance in LTE networks. Secondly, we highlighted possible design flaws
in rate based AQM algorithms and proposed an alternative flow control approach.
The approach allows the improvement of the effectiveness of AQM algorithms.

Our work will allow researchers to design and evaluate in a more accurate man-
ner traffic control strategies through ns-3 based simulation and emulation and to
evaluate the accuracy of other modules implemented in ns-3.

iii

Papers published or under review

• Design and implementation of traffic-control module in ns-3, P. Imputato and
S. Avallone, Workshop on ns-3 (WNS3), 2016

• Traffic differentiation and multiqueue networking in ns-3, P. Imputato and S.
Avallone, Workshop on ns-3 (WNS3), 2017

• Network emulation support in ns-3 through kernel bypass techniques, P. Im-
putato, S. Avallone and T. Pecorella, International Conference on Performance
Evaluation Methodologies and Tools (VALUETOOLS), 2017

• An analysis of the impact of network device buffers on packet schedulers
through experiments and simulations, P. Imputato and S. Avallone, Simula-
tion Modelling Practice and Theory (SIMPAT), 2018

• Smart backlog management to fight bufferbloat in 3GPP stacks, P. Imputato, N.
Patriciello, S. Avallone, J. Mangues-Bafalluy, accepted for publication in Con-
sumer Communications & Networking Conference (CCNC), 2019

• Enhancing the fidelity of network emulation through direct access to device
buffers, P. Imputato, S. Avallone, under review in Journal of Networks and
Computer Applications (JNCA)

• Avoiding potential design flaws in queue disciplines: the PIE case, P. Imputato,
S. Avallone, M. Tahiliani and S. Patil, under review in IEEE Network Magazine
(NETMAG)

iv

Contents

Abstract ii

1 Introduction 1
1.1 Context . 1

1.1.1 Network traffic control . 2
1.1.2 Network experimentation . 3

1.2 Motivation . 5
1.3 Contribution . 5
1.4 Thesis structure . 6

2 An experimental characterization of the impact of device buffer on packet
schedulers 7
2.1 Introduction . 7
2.2 Background . 9
2.3 Dynamic Queue Limits . 11
2.4 Experimental results . 21
2.5 Conclusions . 26

3 Design and implementation of the traffic control module in ns-3 28
3.1 Introduction . 28
3.2 Background . 29

3.2.1 Linux traffic control . 29
3.2.2 ns-3 queue system . 30

3.3 Design and implementation . 31
3.3.1 Module description . 31
3.3.2 Design . 32
3.3.3 Implementation Issues . 35

3.4 Results . 37
3.4.1 Simulation Settings . 37
3.4.2 First Scenario . 38
3.4.3 Second Scenario . 39

3.5 Conclusions . 40

4 Enanching the network emulation fidelity to support simulated modules
validation 41
4.1 Introduction . 41

v

4.2 Background . 44
4.2.1 The Linux TC infrastructure and the ns-3 traffic-control module 44
4.2.2 The ns-3 network emulation approach based on packet sockets

and its limitations . 46
4.2.3 The netmap framework for high speed packet I/O through di-

rect NIC access . 49
4.3 Exploiting netmap to enhance the fidelity of network emulation 51
4.4 Experimental results . 55

4.4.1 Assessing the accuracy of network emulation techniques 55
4.4.2 Validation of the ns-3 implementation of AQM algorithms . . . 60
4.4.3 Analysis of the maximum achievable data rates 62

4.5 Conclusions . 63

5 Proposals of design and evaluation of traffic control strategies 64
5.1 Introduction . 64
5.2 A software traffic control in 3GPP stack 65

5.2.1 Related Work . 66
5.2.2 Background . 67
5.2.3 Adding TC on top of the 3GPP stack 68
5.2.4 Results . 69

Single UE scenario . 73
Multiple UEs scenario . 73

5.2.5 Conclusions . 74
5.3 Flow control aware AQM algorithms . 75

5.3.1 The PIE departure rate estimator 77
5.3.2 Considering the impact of flow control on AQM design 78
5.3.3 Results . 79
5.3.4 Conclusions . 80

5.4 Conclusions . 80

6 Conclusion 82

vi

List of Figures

2.1 Pseudo-code of the function of the DQL library 12
2.2 Limit re-calculation done by the dql_completed function. Starvation

occurs in the cases of the top two rows, where the limit is conse-
quently increased. The last row shows instead two cases where the
limit is too high and is consequently decreased. 14

2.3 Throughput loss with small transmission rings 18
2.4 Results with a pfifo-fast queue disc. Figures on the first row (from (a)

to (d)) show the results with TCP Small Queues and Segmentation Of-
fload disabled (router scenario), while figures on the second row (from
(e) to (h) show the results with TCP Small Queues and Segmentation
Offload enabled (host scenario). 18

2.5 Results with a pfifo-fast queue disc and a prioritized flow. Figures
on the first row (from (a) to (d)) show the results with TCP Small
Queues and Segmentation Offload disabled (router scenario), while
figures on the second row (from (e) to (h) show the results with TCP
Small Queues and Segmentation Offload enabled (host scenario). . . . 19

2.6 Results with an FQ-CoDel queue disc. Figures on the first row (from
(a) to (d)) show the results with TCP Small Queues and Segmentation
Offload disabled (router scenario), while figures on the second row
(from (e) to (h) show the results with TCP Small Queues and Segmen-
tation Offload enabled (host scenario). 20

2.7 Latency variation with message size . 25
2.8 Impact of CPU load on the BQL limit . 25

3.1 The send and receive path on internet enabled nodes after the intro-
duction of the traffic control layer (IPv4 case). 32

3.2 Queue discs in Traffic Control. 34
3.3 The network topology used for the validation tests. 36
3.4 Plots of the first scenario. 36
3.5 Plots of the second scenario. 37

vii

4.1 (a) In environment emulation, multiple Virtual Machines or contain-
ers running on a physical host communicate through a simulated chan-
nel. (b) In network emulation, nodes created within simulations can
communicate, both between them and with real hosts, through a real
network. 42

4.2 Schematic representation of the network stack of: (a) a Linux host
equipped with a single network interface card; (b) an ns-3 node with
one NetDevice using a simulated channel. 44

4.3 Schematic representation of the network stack in the emulated sce-
nario with: (a) packet socket; (b) packet socket with the PACKET_QDISC_BYPASS
option enabled. 46

4.4 Representation of the three different parts in which the netmap ring
can be divided. 49

4.5 Schematic representation of the network stack in the emulated sce-
nario with: (a) netmap in native mode; (b) netmap in generic mode. . . 52

4.6 The testbed used for experiments is comprised of three physical hosts.
(a) In the real scenario, the Linux network stack is used. (b) In the em-
ulated scenario, an ns-3 simulation runs on the intermediate host. The
simulation scenario includes a single node with two EmuFdNetDe-
vices or two NetmapNetDevices, connected each to one of the NICs
of the physical host. 54

4.7 Comparison between the Linux stack and the network emulation tech-
niques under test: in flight bytes . 55

4.8 Comparison between the Linux stack and the network emulation tech-
niques under test: throughput, packet drops and round-trip time. . . . 57

4.9 Round-trip time of every TCP segment acknowledged by the receiver
in a single test run (with BQL enabled). 58

4.10 Backlog of the AQM algorithms in the validation experiments. 60
4.11 Cumulative number of packets dropped by the AQM algorithms in

the validation experiments. 61
4.12 Round-trip time of every TCP segment acknowledged by the receiver

in a single test run (with BQL enabled). 62
4.13 Throughput achieved with different packet sizes. 62

5.1 LTE-EPC data plane protocol stack with the introduction of TC on top
of the LTE model. 68

5.2 Evaluation of the impact of flow control and TC on LTE performance
in single UE scenario. 70

5.3 Evaluation of the impact of flow control and TC on LTE performance
of one UE in a multiple UEs scenario. Other UEs present very similar
results. 71

5.4 The network topology used for the validation tests. 72

viii

5.5 Performance comparison of PIE in testbed and emulated scenario. . . . 75
5.6 Hisograms of number of packets dequeued from PIE and ECDF of

dtime for e1000e network adapter in testbed scenario. 76
5.7 Hisograms of number of packets dequeued from PIE and ECDF of

dtime for tg3 network adapter in testbed scenario. 77
5.8 Effectiveness of push based approach to reduce the device queue us-

able buffer. 81
5.9 PIE performance. 81

ix

1

Chapter 1

Introduction

In recent years, the network research community paid more attention to the uncon-
trolled growth of network queueing time. The term bufferbloat has been coined to
indicate the presence of unnecessary network delay. The bufferbloat is due to higher
network layers, e.g., transport layers, which try to keep high network utilization by
sending as much data as possible. Network flow should be transmitted over the
network with the minimum delay required at the rate of the bottleneck link over
the path. However, network elements have been developed with buffers to absorb
packet bursts. Such buffers are usually oversized and the availability of low-cost
memory has increased their dimension further. Unfortunately, unmanaged network
buffers lead to higher than necessary delays and increase the occurrence of network
congestion events. Network experimentation in controlled environments with sim-
ulation, emulation or testbed is the first approach to better understanding the prob-
lem and to design solutions. With the increasing number of wireless links in todays
networks, simulation is particularly useful to study the bufferbloat.

In this work, we first analyzed the networking stack of the Linux kernel, one of
the most used networking stack, and experimentally characterize its traffic control
infrastructure. Then, we introduced in ns-3, one of the most used network simu-
lators, a traffic control module modeled after the Linux one. We explored possible
approaches to perform traffic control module validation and to this aim, we devised
an alternative technique to support network emulation in simulators. Finally, we
presented two study cases in which we designed a new traffic control layer in LTE
networks and we gained insights on the design and evaluation of AQM algorithms.

In the following, we provide context information about i) network traffic control
to reduce the network queueing delay, ii) network experimentation approaches to
design and evaluate traffic control solutions. Then we state the motivation for this
work and highlight the contribution. Finally, we provide an outline of the thesis.

1.1 Context

In the following sections, we provide an overview about network traffic control and
of the approaches to network experimentation to design and evaluate traffic control
strategies.

Chapter 1. Introduction 2

1.1.1 Network traffic control

Network traffic control includes activities to increase network resources utilization
and to increase traffic flows delivery efficiency. In terms of network performance
parameters, traffic control activities aim to provide i) high network throughput and
ii) low flow delay [1]. The condition of high network throughput allows the use of
all transmission resources while the condition of low flow delay allows to achieve
packets transport with the minimum requested network delay. A packet should be
ideally delivered to the receiver at the rate of the bottleneck link along the network
path and with packet delay composed of transmission delay plus processing delay
of the intermediate elements [2].

Network transport protocols, e.g., TCP, achieve the transport level communica-
tion between end nodes and exploit all the bandwidth available. The TCP Conges-
tion Avoidance (CA) mechanism tries to avoid network congestion while sharing
the bandwidth in a fair manner among different flows. Basically, the CA mechanism
tries to discover network congestion status since the network lost a packet. As a
consequence of lack of notification of lost packet, the sender will reduce its sending
rate to relieve the network congestion status. A congestion notification occurs since
a full FIFO buffer drops a packet.

Indeed, network elements, e.g., routers or access points, usually are designed
with FIFO per-interface buffers in order to absorb packets burst. The ability to ab-
sorb bursts allows to keep packets waiting for transmission avoiding network device
starvation intervals, i.e., time intervals in which the device is ready to transmit other
packets but there are no packets. Then, the network delay has an important contribu-
tion in the queueing delay, i.e., waiting time in the queues, contributes the most to the
network delay. Network buffers are usually sized according to the BDP (Bandwidth
Delay Product) rule. The presence of low-cost memory has in practice increased their
dimension. The term bufferbloat has been coined to indicate the uncontrolled growth
of network queueing time due, among others, to the general attitude of higher lay-
ers to send as much data as possible to exploit the network bandwidth. Unmanaged
buffers exacerbate the bufferbloat problem [2]. Such a phenomenon occurs in each
network segment where packet queueing occurs.

A number of strategies called Active Queue Management (AQM) algorithms,
such as RED [3], CoDel [4] and PIE [5] have been designed to contrast the uncon-
trolled growth of the queueing time. The idea is that an AQM algorithm drops some
packets to notify upper layers of possible congestion status. Algorithms such as RED
uses the queue length as metric of congestion status, while algorithms such as CoDel
and PIE use the estimated queueing time as metric of network congestion. These al-
gorithms can be used in different levels of the network stack, to manage device level
buffers or network level buffers.

Network elements rely on packet schedulers to regulate the flows in the outgoing
path. Basically, a network scheduler is in charge of choosing the next packet to trans-
mit to the device. Packet schedulers have been proposed to provide prioritization

Chapter 1. Introduction 3

to flows which do not build queues while controlling the queueing delay through
AQM algorithms. The most promising ones are FQ-CoDel [6] and CAKE [7]. In FQ-
CoDel, the scheduler separates the flows (by five-tuple hashing) and regulates the
queueing delay of each flow by using CoDel. The idea is to separate good flows, i.e.,
which do not build queues, from bad flows, i.e., which build queues and prioritize
good flows over bad flows. CAKE adds a traffic shaper to an idea of flow separation
similar to that in FQ-CoDel. In CAKE the shaper aims to reduce the out of control
buffering, i.e., device buffering.

From a practical point of view, network elements are often implemented within
the Linux kernel. For instance, Android-based systems rely on Linux kernel and
use its networking subsystem for network interfaces such as LTE and WiFi. The
Linux kernel has the traffic control infrastructure to provide support for quality of
service [1]. This layer sits between the IP layer and the device layer. A number of
elements, such as packet filters and shapers have been introduced in Linux traffic
control. The most important component is the queueing discipline (qdisc) which has
the role of keeping the packets waiting for transmission to the device. In Linux,
AQM algorithms and packet schedulers have been implemented as qdisc. Then,
traffic control sends packets from the qdisc to the device to enqueue packets in its
queue.

The network device queues, called device rings, are managed by the device
driver. Each device has at least one ring for packet transmission and one for packet
reception. In the incoming path, received packets are passed to the upper layer
which processes them. In the outgoing path, there is a flow control between the de-
vice and the upper layer. Basically, the device driver stops the transmission ring
when there is no more space for packets, i.e., the device queue is full. This mecha-
nism slows down the upper layer to send more packets to the device. A qdisc can
manage packets waiting for a queue restart event from the device. After the trans-
mission of a number of packets, the device will notify the upper layer restarting the
queue. Recently, an algorithm called BQL has been introduced in the Linux kernel to
dynamically determine the size of the device transmission ring. The idea is to reduce
the device buffer size keeping the same level of network utilization. Unfortunately,
a number of devices, and in particular WiFi and LTE devices, lack proper support
to a mechanism such as BQL to reduce the impact of device buffer. Also, the impact
of device ring reduction on device such as WiFi and LTE is not clear. Indeed, such
devices adapt the link layer bandwidth based on the queued data.

1.1.2 Network experimentation

Network research relies on different options to design and to evaluate solutions.
Controlled environments through simulation, emulation and testbed are possible
approaches to understand the bufferbloat, to prototype and to evaluate solutions [8].
With the increasing number of wireless links in nowadays networks, the simulation
is gaining growing interest.

Chapter 1. Introduction 4

Indeed, simulation offers numerous benefits, including reproducibility of wire-
less scenarios or to recreate scenario with a large number of systems and the ability
to isolate the effects of undesired factors. Another important aspect is the experi-
mentation flexibility. The simulation has a low level of complexity and allows re-
searchers to quickly prototype and experiment with innovative technologies, e.g.,
not available (or expensive) in real testbed [9]. However, the simulation challenge
is the credibility [8]. A simulator should reproduce as much accurately as possible
the real networking stack under evaluation in order to draw credible conclusions.
Also, the simulated modules should be validated through comparison with real im-
plementations when available. Moving from simulation towards network emulation
and testbed increases experimentation credibility reducing the experimentation flex-
ibility.

Experimentation on testbed allows the researcher to asses the performance of real
protocols or algorithms in real networking scenarios. However, the experimentation
flexibility is limited to the technologies available and to specific implementation lim-
itations. For instance, in the bufferbloat context, manufacturers introduce queues
in-firmware unaccessible to software implementations. In these cases, researchers
have limited possibilities to isolate the firmware contribution in an evaluation of the
effectiveness of bufferbloat countermeasures.

Emulation, as an intermediate strategy to network experimentation, typically in-
cludes network emulation and environment emulation. In environment emulation,
the real implementations of protocols at the higher layers of the network stack are
used, while the channel access function and the transmission through a channel are
simulated. Various tools can be used to simulate specific features of a transmission
channel, including Netem [10], Dummynet [11], network simulators supporting the
injection of traffic from the real world (such as ns-3 [12] and OMNet++ [13]). In
network emulation, instead, simulated components interact with real hosts through
a real network. This approach exploits the ability of simulators such as ns-3 and
OMNet++ to exchange packets with real network devices and schedule events in
real-time. The ability of a simulator, e.g., ns-3, to support network emulation is a
fundamental ability. Indeed, in an emulation scenario, simulator can be integrated
to explore other interesting scenarios. Basically, the simulation allows more flexibil-
ity to study simulated networks or simulated applications.

In this work, we targeted the ns-3 network simulator as a tool to evaluate the
bufferbloat countermeasures [12]. The design of ns-3 is inspired by Linux kernel
networking stack which is one of the most used networking kernel. Also, ns-3 is the
most used network simulator in research centers and academia to evaluate the ef-
fectiveness of proposed solutions. ns-3 allows full stack simulation and has support
for network emulation. ns-3 allows the simulation of wired and wireless communi-
cation technologies, e.g., Ethernet and WiFi, and offers support for the simulation of
technologies in the 5G context, e.g., LTA-A, LTE-NR, mmWawe, 802.11ax.

Chapter 1. Introduction 5

1.2 Motivation

Designing traffic control strategies often relies on network simulation. Then, it is
important to have accurate tools to accurately evaluate packet schedulers, AQM al-
gorithms and dynamic queue sizing algorithms.

Unfortunately, ns-3 lacked a Linux equivalent traffic control infrastructure. The
measured parameters of network delay, throughput and packet loss were strongly
affected by this aspect. Some design limitations, i.e., a single queue level at device
level with network header encapsulated into the transport header [14], denied the
introduction of modern schedulers such as FQ-CoDel, and algorithms to dynami-
cally size buffers such as BQL.

In order to asses the effectiveness of AQM algorithms and to design new al-
gorithms, it is important to rely on tools able to recreate the most realistic network
stack scenarios. A number of AQM algorithms have been initially proposed with the
support of network simulation in ns-2 and ns-3 [3]–[5]. However, such algorithms
were evaluated at device layer, i.e., neglecting the impact of device buffer, which
is not what occurs in a real system. In literature there are studies which try to un-
derstand the effectiveness of AQM algorithms in real systems using experiments on
testbeds [15], [16]. However, the experimentation is limited to available technologies
which support the use of optimization strategies such as BQL.

The implementations of AQM algorithms and packet schedulers available in ns-
3 was not validated against real implementations. This was due to some emulation
support limitations implemented in ns-3, i.e., the device queue status was not acces-
sible to the ns-3 process. The emulation limitations did not allow to setup a proper
scenario to compare in a fair manner real and simulated implementations.

1.3 Contribution

This work analyzes the network stack of the Linux kernel and experimentally char-
acterizes the impact of the device buffer on network packet schedulers. Then, we
present the design of the ns-3 traffic control module, which was modeled after the
Linux one. In order to validate the introduced module, we devised a new method-
ology to perform network emulation and used it to validate traffic control, AQM
algorithms and schedulers implemented in ns-3. Finally, we move on design and
evaluation of traffic control strategies. More specifically the work contribution con-
sists of:

• an analysis of the impact of device buffer on packet schedulers in general and
on AQM algorithms in particular;

• the design and implementation of the traffic control module in ns-3 modeled
after the Linux one;

Chapter 1. Introduction 6

• the design and implementation of a methodology to improve the emulation
fidelity and to allow ns-3 modules validation;

• a software traffic control layer for backlog management in 3GPP stacks;

• insights on AQM design flaws and design of flow control aware AQM algo-
rithms.

1.4 Thesis structure

The rest of this work is structured as follows:

• in chapter 2 we analyze the Linux networking stack with a focus on the queue-
ing system and experimentally prove the impact of the device buffer on the
effectiveness of packets schedulers in general and of AQM algorithms in par-
ticular;

• in chapter 3 we present the design and implementation of the traffic control
module in the ns-3 network simulator and a preliminary performance evalua-
tion which compares the previous and the proposed stack;

• in chapter 4 we present a new methodology to support network emulation and
its implementation in ns-3. Then we use the new methodology to validate the
traffic control module and AQM algorithms;

• in chapter 5 we present two proposals on design and evaluation of new net-
work traffic control strategies;

• finally, in chapter 6 we draw the conclusions of this work.

7

Chapter 2

An experimental characterization
of the impact of device buffer on
packet schedulers

Most of the packet delay can be usually ascribed to the time spent in the many
queues encountered by the packet. In this chapter, we focus on the queues employed
by the traffic control infrastructure and by the network device drivers. Reducing the
queuing time due to the former is the objective of a plethora of scheduling algo-
rithms developed in the past years and referred to as AQM algorithms. Conversely,
the impact of the additional queuing in the buffer of the network device driver on
performance and on the effectiveness of AQM algorithms has instead received much
less attention. In this chapter, we report the results of an experimental analysis we
conducted to gain a better insight into the impact that network device buffers (and
their size) have on performance. We also provide insights of the effectiveness of Dy-
namic Queue Limits (DQL), an algorithm recently introduced in the Linux kernel to
dynamically adapt the size of the buffers held by network device drivers. The exper-
iments we conducted show that DQL not only enables to reduce the queuing time
in the network device buffers, which is essential to ensure the effectiveness of AQM
algorithms, but also enables to keep latency stable, which is important to reduce the
jitter.

2.1 Introduction

Network devices make a wide use of buffers to temporarily store packets waiting
to be transmitted. The size of such buffers heavily influences network performance,
primarily packet delay and loss probability. The buffer size should be large enough
to accommodate packet bursts, but it should not be excessively large, in order to
avoid that the latency experienced by packets grows in an uncontrolled manner,
a problem which is commonly referred to as bufferbloat [2]. A common rule-of-
thumb is to make the buffer size proportional to the link bandwidth (i.e., the so
called Bandwidth-Delay Product). However, the use of such a rule has been ques-
tioned, e.g., in [17], where authors claim that much smaller buffers can be employed.

Chapter 2. An experimental characterization of the impact of device buffer on
packet schedulers

8

In practice, the availability of memory chips at low cost often leads to the use of over-
sized buffers.

Limiting the queuing delay resulting from the use of large buffers has been the
objective of a plethora of Active Queue Management (AQM) algorithms that have
been defined by the research community in the last decades. RED (Random Early
Drop) [3] has been one of the first AQM algorithms to be proposed and has been
followed by a number of variants, such as Adaptive RED [18], Gentle RED [19] and
Nonlinear RED [20]. RED and its derivatives can be classified [21] as queue-based
schemes, since they aim to maintain the queue length at a target level. Other algo-
rithms, such as BLUE [22] and AVQ (Adaptive Virtual Queue) [23] use instead the
packet arrival rate as a congestion measure and hence can be classified as rate-based
schemes. A combination of the two approaches is proposed by algorithms such as
REM (Random Exponential Marking) [24]. More recently, CoDel (Controlled De-
lay) [4] has been proposed to specifically address the bufferbloat problem. CoDel
aims to keep the queuing delay below a target value and drops packets that exceed
such threshold after they have been dequeued. Furthermore, a few AQM algorithms,
such as SFB (Stochastic Fair Blue) [25], AFCD (Approximated-Fair and Controlled
Delay) [26] and FQ-CoDel [6], were proposed with the aim of additionally provid-
ing fairness among different flows.

The interaction with the TCP congestion control mechanism has been taken into
account in the design of some AQM algorithms. The PI (Proportional Integral) [27]
controller is among the earliest of such approaches and is based on a linearized
dynamic model for a TCP/AQM system. PIE (Proportional Integral controller En-
hanced) [5] computes the drop probability based on both the departure rate and
the queue length. The stability of PIE is demonstrated by using a TCP fluid model.
PI2 [28] extends PIE with the objective to improve the coexistence between classic
congestion controls (TCP Reno, Cubic, etc.) and scalable congestion controls (Data
Center TCP). In [29], authors evaluate the interaction among AQM algorithms (such
as CoDel) and low-priority congestion control techniques (such as LEDBAT [30])
through both experiments and simulations. A theoretical analysis is instead pre-
sented in [31] to study the interaction between Compound TCP and REM.

AQM algorithms have been implemented in real systems such as the Linux oper-
ating system as queuing disciplines within the Traffic Control (TC) infrastructure [1].
As such, AQM algorithms manage packets before they are handed to the device
driver. The latter employs its own buffer, usually called transmission ring, to avoid
the starvation of the network interface. Thus, packets are enqueued again after being
scheduled by the queuing discipline. Also, a flow control strategy is implemented
to regulate the passing of packets from the queuing discipline to the transmission
ring. While the interactions between TCP congestion control and AQM algorithms
have been addressed by a number of works, the impact of such additional queuing
and the related flow control remains largely unexplored. To the best of our knowl-
edge, only [32] recognizes the presence of the transmission rings, but authors just

Chapter 2. An experimental characterization of the impact of device buffer on
packet schedulers

9

model them as FIFO queues to evaluate their impact on the service guarantees of
fair-queuing schedulers.

The goal of this chapter is to fill this gap by evaluating the impact of transmission
rings and flow control on network performance, in general, and on the effectiveness
of AQM algorithms, in particular. We conducted a thorough experimental campaign
which provided us with a number of insights. For instance, if the queuing discipline
does not differentiate among traffic flows and its capacity is not saturated, the size
of the transmission ring has no impact on network performance; when the queuing
discipline assigns different priority levels to flows, the latency experienced by prior-
itized flows increases with the size of the transmission ring. It turns out, however,
that sizing the transmission ring is not trivial: a too small ring causes a throughput
loss, a too large ring causes a high packet delay. To complicate things further, for
a given transmission ring size, the packet delay is affected by multiple factors, in-
cluding packet size and CPU load. Also, rather unexpectedly, latency may exhibit a
large variance and exceed by far the waiting time in the queuing discipline and in
the transmission ring.

Another contribution of this chapter is an experimental evaluation of Dynamic
Queue Limits (DQL), a mechanism that has been recently introduced in the Linux
kernel with the goal of dynamically computing the number of packets to store in
the transmission ring in order to prevent starvation. Our experiments showed that
DQL is effective in keeping latency low when AQM algorithms or priority packet
schedulers are used, while it has no impact when a queuing discipline that enqueues
all the packets in a single queue is used below its capacity. Also, when DQL is used,
latency turns out to be rather stable and equal to the waiting time in the queuing
discipline and in the transmission ring.

The rest of this chapter is structured as follows. Section 2 provides some back-
ground information about how queuing works in Linux, while Section 3 presents
an in-depth description of DQL Section 4 presents the results of our experimental
campaign. Finally, Section 5 concludes the chapter.

2.2 Background

Applications write data in the buffer of their sockets to have it delivered to the des-
tination. On Linux systems, the size of a socket buffer is kept small by a mechanism
called TCP Small Queues (TSQ). Basically, an application is prevented to write data
in a socket buffer if there are already (approximately) two packets not yet trans-
ferred to the network interface card, for that socket. The goal of this mechanism is to
reduce round-trip times and hence mitigate the bufferbloat issue. Data is then pro-
cessed by the transport layer protocol. In case of TCP, data is segmented into packets
and passed to the network layer when the congestion control engine determines that
new packets can be sent. A technique that is often enabled on Linux systems is TCP
Segmentation Offload (TSO), which allows large data segments (even larger than the

Chapter 2. An experimental characterization of the impact of device buffer on
packet schedulers

10

Maximum Transmission Unit of the underlying network) to be sent to the network
interface card, provided that the latter is able to perform segmentation and hard-
ware checksumming. Using TSO relieves the CPU of the task of segmenting data
and allows to deal with a smaller number of packets.

Once the network layer has determined the outgoing network interface for a
packet (based on the routes available in the routing table), the packet is passed to
the TC infrastructure, which hands the packet to the queuing discipline (hence-
forth, queue disc) installed on the outgoing device. A queue disc can enqueue the
packet, mark the packet (e.g., in case it supports Explicit Congestion Notification)
or drop the packet (either when the packet is enqueued or later, when the packet
is dequeued). The queue disc is in charge of scheduling the enqueued packets and
therefore can be employed to enforce traffic prioritization strategies. Enqueuing a
packet in a queue disc triggers a call to the __qdisc_run function, which requests
to dequeue at most a configurable (through the dev_weight parameter of the proc
filesystem) number of packets from the same queue disc.

Each packet dequeued by a queue disc is handed to the network device driver
through the ndo_start_xmit callback implemented by the driver. Such routine en-
queues the received packet in a transmission ring and requests the DMA (Direct
Memory Access) to transfer the packet to the network device. Given that the device
may not be ready to receive packets and the DMA has to acquire the system bus,
multiple such requests may queue up. The ndo_start_xmit callback also takes some
actions to perform flow control. To this end, a struct netdev_queue element is asso-
ciated with each transmission ring (e.g., 802.11 drivers use four rings for Quality of
Service support, while Ethernet drivers use multiple rings to increase performance
in case multiple processor cores are available). When the ndo_start_xmit callback en-
queues a packet in one of the rings, it checks whether such ring can accommodate an-
other packet. If not, it changes the status of the corresponding struct netdev_queue
element to stopped, so that the queue disc refrains from sending further packets.

When a transfer of packets is completed, the network device raises an interrupt
and the corresponding handler (provided by the device driver) is then executed.
Such handler moves the packets transferred to the device to a list of completed pack-
ets (so as to make room in the transmission ring), which are actually freed when the
software interrupt of type NET_TX_SOFTIRQ is executed. Freeing the memory is
a time consuming operation and therefore is not performed by the interrupt han-
dler, which should be executed in the least possible time. The interrupt handler also
participates in the flow control. If there is enough room in the transmission ring,
the netif_tx_wake_queue function is called, which ensures that the corresponding
struct netdev_queue element is not stopped and, if it was stopped, adds the cor-
responding queue disc to the list of queue discs that will be served the next time
the software interrupt of type NET_TX_SOFTIRQ is executed. Serving a queue disc
means requesting it to dequeue packets by calling the __qdisc_run function. Such
technique allows to ensure that packets are pulled from the queue disc if there is

Chapter 2. An experimental characterization of the impact of device buffer on
packet schedulers

11

available space in the device transmission ring.
A transmission ring is made of a configurable number of descriptors, each of

which can hold a pointer to a memory region. A single packet may require multiple
descriptors, especially if scatter/gather I/O is available. Scatter/gather I/O allows the
system to perform DMA I/O operations with non contiguous blocks of data. Given
that the various protocols of the network stack allocate their own buffer to store
their data (e.g., the protocol header), exploiting scatter/gather I/O allows the kernel
to avoid copying all such buffers into a single block of data. Finally, we mention
that some interrupt mitigation techniques are often employed. Indeed, high speed
networking can generate thousands of interrupts per seconds, which may lead the
CPU to spend most of its time serving such interrupt requests. Some network in-
terface cards implement interrupt coalescence mechanisms [33] to reduce the rate
at which interrupts are generated. The Linux kernel includes NAPI (New API), an
infrastructure which disables interrupts and enforces polling when the traffic load
is high, while enables interrupts when the traffic load is low. Most of the newer
network device drivers in the Linux kernel support NAPI.

2.3 Dynamic Queue Limits

Dynamic Queue Limits is a mechanism that has been recently introduced in the
Linux kernel to dynamically determine the maximum amount of bytes (denoted
as “limit”) that shall be stored in the transmission ring of a device. The goal is to
keep such amount around the minimum value that guarantees to avoid starvation.
The computed limit is enforced by exploiting the existing flow control mechanism.
Given that the limit is computed in bytes, the algorithm is also known as BQL (Byte
Queue Limits). Computing the limit in bytes rather than packets enables to more
precisely estimate the queuing time, given that the transmission time of a packet is
not constant, but it is directly proportional to the packet size. The introduction of
DQL in the Linux kernel consisted in the addition of the library implementing the
algorithm and in a few changes to the network stack.

The DQL library introduces the struct dql type to store information needed by
the DQL algorithm and provides five functions:

• dql_init, which initializes the information stored in a struct dql element;

• dql_reset, which resets the information stored in a struct dql element;

• dql_queued, which updates the total amount of bytes ever enqueued in the
transmission ring;

• dql_avail, which returns the difference between the current limit and the amount
of bytes queued in the transmission ring (can be negative);

• dql_completed, which records the size of the packets whose transmission to
the device has been completed and recalculates the limit.

Chapter 2. An experimental characterization of the impact of device buffer on
packet schedulers

12

DQL_QUEUED(queuedObjects)
1 lastObjCnt← queuedObjects
2 numQueued← numQueued + queuedObject

DQL_AVAIL()
1 return adjLimit− numQueued

POS(a, b)
return max((a− b), 0)

DQL_COMPLETED(completedObjects)
1 completed← numCompleted + completedObjects
2 limit← currLimit
3 ovlimit← POS(numQueued− numCompleted, limit)
4 inProgress← numQueued− completed
5 prevInProgress← prevNumQueued− numCompleted
6 allPrevCompleted← (completed− prevNumQueued ≥ 0)
7 if ((ovlimit AND inProgress) OR (prevOvlimit AND allPrevCompleted))

then� The queue is starved
8 limit+ = POS(completed, prevNumQueued) + prevOvlimit
9 slackStartTime← current time

10 lowestSlack← UINTMAX
11 else if (inProgress AND prevInProgress AND allPrevCompleted)

then� The current limit may be too high
12 slack← POS(limit + prevOvlimit, 2 ∗ completedObjects)
13 if (prevOvlimit)
14 then slackLastObjs← POS(prevLastObjCnt, prevOvlimit)
15 else slackLastObjs← 0
16 slack← max(slack, slackLastObjs)
17 if (slack < lowestSlack)
18 then lowestSlack← slack
19 if (current time > slackStartTime + slackHoldTime)
20 then limit← POS(limit, lowestSlack)
21 slackStartTime← current time
22 lowestSlack← UINTMAX
23 limit← min(max(limit, minLimit), maxLimit)
24 if (limit 6= currLimit)
25 then currLimit← limit
26 ovlimit← 0
27 adjLimit← limit + completed
28 prevOvlimit← ovlimit
29 prevLastObjCnt← lastObjCnt
30 numCompleted← completed
31 prevNumQueued← numQueued

FIGURE 2.1: Pseudo-code of the function of the DQL library

Chapter 2. An experimental characterization of the impact of device buffer on
packet schedulers

13

The dql_queued function (Fig. 2.1) is meant to be called everytime new pack-
ets are enqueued in the transmission ring to communicate the size of the packets
that have been just enqueued. The dql_queued function records this value in the
lastObjCnt variable and updates the numQueued variable storing the total amount of
bytes ever enqueued in the transmission ring.

The dql_avail function (Fig. 2.1) returns the difference between the current limit
and the amount of bytes stored in the transmission ring. Indeed, adjLimit is set by
the dql_completed function to the sum of the limit and the total amount of bytes
ever dequeued from the transmission ring. As described later, the device queue is
stopped if this difference is negative, i.e., if the amount of bytes in the queue exceeds
the limit. When the queue is stopped, no packets are sent from the upper layers.
Hence, DQL keeps the amount of bytes stored in the transmission ring around the
computed limit.

A key role is played by the dql_completed function (Fig. 2.1), which is meant to
be called when the device driver is notified that the transmission of some packets
to the device has been completed, to communicate the size of such packets (which
are dequeued from the transmission ring). The dql_completed function recalculates
the DQL limit based on the amount of bytes enqueued/completed in the last inter-
vals. To the purpose of illustrating the operation of the dql_completed function, we
denote by:

• tc
i the time when the i-th call to dql_completed is made;

• tq
i the time when the last call to dql_queued prior to the i-th call to dql_completed

is made;

• Q(t) the total amount of bytes ever enqueued in the transmission ring at time
t;

• C(t) the total amount of bytes ever dequeued from the transmission ring at
time t;

• ∆(t) = Q(t)−C(t) the amount of in-flight bytes, i.e., those bytes that are in the
transmission ring waiting for their transmission to the device to start or to be
completed, at time t;

• q(tq
i−1, tq

i) = Q(tq
i)−Q(tq

i−1) the amount of bytes enqueued in the time interval
(tq

i−1, tq
i]. Note that there may be multiple calls to dql_queued in such time

interval;

• c(tc
i) = C(tc

i)− C(tc
i−1) the amount of bytes dequeued from the transmission

ring at time tc
i ;

• limiti the limit computed by the i-th call to dql_completed.

Chapter 2. An experimental characterization of the impact of device buffer on
packet schedulers

14

Q
U

E
U

E
D

C
O

M
P

LE
T

E
D

ti
c

Q
U

E
U

E
D

C
O

M
P

LE
T

E
D

Q
U

E
U

E
D

ti−2
c

C
O

M
P

L
E

T
E

D

C
O

M
P

L
E

T
E

D

ti
q

ovlimit i−1=max {Δ (ti−1
q)−limiti−2 ,0} ovlimiti=max {Δ (t i

q)−limit i−1 ,0 }

ti−1
ct i−1

q ti−1
c ti

cti−1
q

=ti
q

ovlimit i−1=max {Δ (ti−1
q)− limiti−2 ,0} ovlimiti=max {Δ (t i−1

c)−limiti−1 ,0}

C
O

M
P

L
E

T
E

D

(a ') (a ' ')

Q
U

E
U

E
D

C
O

M
P

LE
T

E
D

ti
c

Q
U

E
U

E
D

C
O

M
P

LE
T

E
D

Q
U

E
U

E
D

ti−2
c

C
O

M
P

LE
T

E
D

C
O

M
P

LE
T

E
D

ti
qti−1

cti−1
q ti−1

c ti
cti−1

q
=ti

q

C
O

M
P

LE
T

E
D

(b ') (b ' ')

Q
U

E
U

E
D

C
O

M
P

L
E

T
E

D

ti
c

Q
U

E
U

E
D

C
O

M
P

L
E

T
E

D

Q
U

E
U

E
D

ti−2
c

C
O

M
P

LE
T

E
D

C
O

M
P

LE
T

E
D

t i
qti−1

cti−1
q ti−1

c ti
cti−1

q
=ti

q

C
O

M
P

LE
T

E
D

(c ') (c ' ')

FIGURE 2.2: Limit re-calculation done by the dql_completed function.
Starvation occurs in the cases of the top two rows, where the limit is
consequently increased. The last row shows instead two cases where

the limit is too high and is consequently decreased.

It follows that, when the i-th call to dql_completed is made, parameters are com-
puted as follows:

ovlimiti = max
{

Q(tq
i)− C(tc

i−1)− limiti−1, 0
}

(2.1)

inProgressi = Q(tq
i)− C(tc

i) = ∆(tc
i) (2.2)

prevInProgressi = Q(tq
i−1)− C(tc

i−1) = ∆(tc
i−1) (2.3)

allPrevCompletedi = (C(tc
i)−Q(tq

i−1) > 0) (2.4)

prevOvlimiti =


0 if the (i− 1)-th call

updated the limit

ovlimiti−1 otherwise

(2.5)

Equations (2.2) and (2.3) are obtained by considering that Q(tq
i) = Q(tc

i), as, by
definition, there are no other calls to dql_queued in between tq

i and tc
i .

Figure 2.2 illustrates the operation of dql_completed in some scenarios. We de-
note by COMPLETED the event of calling the dql_completed function and by QUEUED

the event of calling the dql_queued function. We consider the case where a COM-
PLETED event is preceded by a QUEUED event and the case where it is preceded
by another COMPLETED event. In particular, we consider two sequences of events:
QUEUED-COMPLETED-QUEUED-COMPLETED (left column) and COMPLETED-QUEUED-
COMPLETED-COMPLETED (right column). At the top of the figure is indicated how
eq. (2.1) can be written for each of such cases. The goal is to show how the limit is ad-
justed after the last COMPLETED event depending on what happened in the previous
events. The various cases analyzed are described hereinafter.

Chapter 2. An experimental characterization of the impact of device buffer on
packet schedulers

15

(a’) When dql_completed is called at time tc
i , ovlimit is computed as the difference

between the amount of bytes in the queue at time tq
i (∆(tq

i)) and the current
limit. If, as is in this case, ovlimit is positive and the queue is empty at time tc

i

(hence inProgress is null), the queue is considered starved (line 7 of the pseudo-
code) and the limit is increased. The rationale is that, if after the last event (a
QUEUED event, in this case) there is an amount of bytes in the queue larger than
the limit and now the queue is empty, it means that the limit has to be increased
(recall that DQL keeps the amount of bytes stored in the transmission ring
around the computed limit). The limit is then increased (line 8 of the pseudo-
code) by:

max
{

C(tc
i)−Q(tq

i−1), 0
}
+ prevOvlimiti (2.6)

which can be written as

max
{

q(tq
i−1, tq

i)− ∆(tc
i), 0

}
+ prevOvlimiti (2.7)

or
max

{
c(tc

i)− ∆(tc
i−1), 0

}
+ prevOvlimiti (2.8)

Given that in this case the queue is empty at time tc
i , from eq. (2.7) it follows

that the limit is increased by the amount of bytes enqueued at time tq
i plus the

difference between the amount of bytes in the queue and the limit at time tq
i−1,

if such a difference is positive and the (i− 1)-th call to dql_completed did not
update the limit. Finally, we note that, if ovlimit is null, i.e., the amount of
bytes stored in the queue is less than the limit at time tq

i , then the limit is not
increased. Indeed, it might be that the upper layers are not generating heavy
traffic and hence there is no point in increasing the limit.

(a”) This case differs from the previous one in that the i-th call to the dql_completed
function is preceded by a COMPLETED event. Consequently, ovlimit is com-
puted as the difference between the amount of bytes in the queue at time tc

i−1

(∆(tc
i−1)) and the current limit. Thus, the rationale is the same as case (a′): if af-

ter the last event (a COMPLETED event, in this case) there is an amount of bytes
in the queue larger than the limit and now the queue is empty, it means that
the limit is too low. Given that C(tc

i) = Q(tq
i−1) in this case, from eq. (2.6) it fol-

lows that the limit is increased by prevOvlimit, i.e., by the difference between
the amount of bytes in the queue and the limit at time tq

i−1, if such a difference
is positive and the (i− 1)-th call to dql_completed did not update the limit.

(b’) This case shows the other situation where the queue is considered starved, i.e.,
when prevOvlimit is positive and allPrevCompleted is true. For prevOvlimit to
be positive, the (i − 1)-th call to dql_completed must have not updated the
limit and the amount of bytes in the queue must exceed the limit at time tq

i−1.
Also, allPrevCompleted must be true, i.e., the transmission to the device of all
the bytes in the queue at time tq

i−1 must have been completed by the time the

Chapter 2. An experimental characterization of the impact of device buffer on
packet schedulers

16

i-th call to dql_completed is made. Thus, the queue is considered starved if the
amount of bytes in the queue exceeds the limit at time tq

i−1 and the amount of
bytes completed since the last COMPLETED event is higher than the amount of
bytes in the queue after the last COMPLETED event (C(tc

i)− Q(tq
i−1) = c(tc

i)−
∆(tc

i−1) > 0), or, equivalently, the amount of bytes left in the queue is less
than the amount of bytes enqueued since the last COMPLETED event (C(tc

i)−
Q(tq

i−1) = q(tq
i−1, tq

i)− ∆(tc
i) > 0). In this case, the limit is increased (eq. (2.7))

by the sum of the difference between the amount of bytes in the queue and the
limit at time tq

i−1 (which is certainly positive) and the difference between the
amount of bytes enqueued since the last COMPLETED event and the amount of
bytes left in the queue at time tc

i (which is certainly non-negative).

(b”) This case differs from the previous one in that the i-th call to the dql_completed
function is preceded by a COMPLETED event. Like case (b′), in order for prevOvlimit
to be positive, the (i− 1)-th call to dql_completed must have not updated the
limit and the amount of bytes in the queue must exceed the limit after the
last QUEUED event. However, unlike case (b′), the queue must be empty at
time tc

i in order for allPrevCompleted to be true (in this case, C(tc
i)− Q(tq

i−1) =

C(tc
i)− Q(tc

i), which cannot be positive). In this case, from eq. (2.6) it follows
that the limit is increased by prevOvlimit, i.e., by the difference between the
amount of bytes in the queue and the limit at time tq

i−1 (which is certainly pos-
itive). Finally, we note that this case differs from case (a′′) because the amount
of bytes in the queue does not have to exceed the limit at time tc

i−1. If it does
not, the condition (ovlimit AND inProgress) is false and hence it is not sufficient
to detect the starvation described in this scenario.

(c’) This case shows a situation where the limit is considered too high and is there-
fore decreased. According to line 11 of the pseudo-code, the limit is consid-
ered too high if the queue is not empty now, it was not empty after the last
COMPLETED event and the transmission to the device of all the bytes that
were in the queue after the last COMPLETED event has not been completed
yet (C(tc

i)− Q(tq
i−1) = c(tc

i)− ∆(tc
i−1) < 0). Then, the slack, i.e., the amount

of excess data, is computed as the maximum between (i) the difference be-
tween the limit plus prevOvlimit (in the case of figure, ∆(tq

i−1)) and two times
the amount of bytes completed since the last COMPLETED event (c(tc

i)) and
(ii) the difference between the amount of bytes enqueued at time tq

i−1 and
prevOvlimit, if prevOvlimit is positive and such a difference is positive, or 0,
otherwise. The limit is then decreased by the lowest of the slack values com-
puted since the last time the limit was updated, only if a minimum amount
of time has elapsed since such update. Finally, we note that cases (b′) and (c′)
only differ in the amount of bytes dequeued from the transmission ring at time
tc
i (c(tc

i)). These amounts differ for few bytes. Nonetheless, this difference is

Chapter 2. An experimental characterization of the impact of device buffer on
packet schedulers

17

such that allPrevCompleted is true for case (b′) and false for case (c′). As a con-
sequence, the limit is increased for case (b′) and decreased for case (c′). We
believe that such an observation deserves further investigation.

(c”) This case differs from the previous one in that the i-th call to the dql_completed
function is preceded by a COMPLETED event. The condition tested to determine
whether the limit is too high (line 11 of the pseudo-code) is now satisfied if the
queue is not empty now and it was not empty after the last COMPLETED event.
Indeed, in this case allPrevCompleted is false iff the queue is not empty at time
tc
i . The limit is then decreased according to the procedure described for the

previous case.

Finally, the limit computed as described above is adjusted in order to be not less
than a configurable minimum value and not greater than a configurable maximum
value (line 23 of the pseudo-code).

The introduction of DQL also required a few changes to the network stack. Firstly,
an element of type struct dql has been added to the struct netdev_queue element
associated with the transmission ring of a device to store the variables used by DQL.
Secondly, device drivers do not directly call the functions of the DQL library, but
they call two newly introduced functions which also take care of starting and stop-
ping the device queues:

• netdev_tx_sent_queue, which is intended to be called by the network device
driver when a packet is received from the network stack (i.e., in the ndo_start_xmit
callback). This function first calls dql_queued and then, if the value returned
by dql_avail is negative, the device queue is stopped. Thus, if the amount of
bytes in the queue exceeds the current limit after a call to dql_queued, then the
device queue is stopped and no more packets are sent from the upper layers.

• netdev_tx_completed_queue, which is intended to be called by the network
device driver when a transfer of packets to the device is completed (i.e., in the
interrupt handler or the polling callback provided by the device driver). This
function first calls dql_completed and then, if the value returned by dql_avail

is non negative, the device queue is started. Also, if the device queue was
stopped, the corresponding queue disc is added to the list of queue discs that
will be served the next time the software interrupt of type NET_TX_SOFTIRQ
is executed. Thus, if the device queue was stopped and now the amount of
bytes in the queue is below the limit, then we start pulling packets again from
the upper layers.

Finally, we note that it suffices to (properly) call the above two functions for a
device driver to support DQL.

Chapter 2. An experimental characterization of the impact of device buffer on
packet schedulers

18

FIGURE 2.3: Throughput loss with small transmission rings

128 128 256 256 512 512

tx ring (number of descriptors)

0

5

10

15

20

25

p
in

g
 l
a
te

n
c
y
 (

m
s
)

no BQL

BQL

(A) Latency

128 128 256 256 512 512

tx ring (number of descriptors)

0

100

200

300

400

500

600

700

800

900

1000

in
fl
ig

h
t

in
 t

x
 r

in
g

 (
K

B
)

no BQL

BQL

(B) TX ring occu-
pancy

128 128 256 256 512 512

tx ring (number of descriptors)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

q
u

e
u

e
 d

is
c
 b

a
c
k
lo

g
 (

K
B

)

no BQL

BQL

(C) Queue disc back-
log (bytes)

128 128 256 256 512 512

tx ring (number of descriptors)

0

200

400

600

800

1000

1200

q
u

e
u

e
 d

is
c
 b

a
c
k
lo

g
 (

p
a

c
k
e

ts
)

no BQL

BQL

(D) Queue disc back-
log (pkts)

128 128 256 256 512 512

tx ring (number of descriptors)

0

5

10

15

p
in

g
 l
a
te

n
c
y
 (

m
s
)

no BQL

BQL

(E) Latency

128 128 256 256 512 512

tx ring (number of descriptors)

0

100

200

300

400

500

600

700

800

900

1000

in
fl
ig

h
t

in
 t

x
 r

in
g

 (
K

B
)

no BQL

BQL

(F) TX ring occu-
pancy

128 128 256 256 512 512

tx ring (number of descriptors)

0

100

200

300

400

500

600

700

800

900

1000

q
u

e
u

e
 d

is
c
 b

a
c
k
lo

g
 (

K
B

)

no BQL

BQL

(G) Queue disc back-
log (bytes)

128 128 256 256 512 512

tx ring (number of descriptors)

0

50

100

150

200

250

q
u

e
u

e
 d

is
c
 b

a
c
k
lo

g
 (

p
a

c
k
e

ts
)

no BQL

BQL

(H) Queue disc back-
log (pkts)

FIGURE 2.4: Results with a pfifo-fast queue disc. Figures on the first
row (from (a) to (d)) show the results with TCP Small Queues and
Segmentation Offload disabled (router scenario), while figures on the
second row (from (e) to (h) show the results with TCP Small Queues

and Segmentation Offload enabled (host scenario).

Chapter 2. An experimental characterization of the impact of device buffer on
packet schedulers

19

128 128 256 256 512 512

tx ring (number of descriptors)

0

5

10

15

20

25

p
in

g
 l
a
te

n
c
y
 (

m
s
)

no BQL

BQL

(A) Latency

128 128 256 256 512 512

tx ring (number of descriptors)

0

100

200

300

400

500

600

700

800

900

1000

in
fl
ig

h
t

in
 t

x
 r

in
g

 (
K

B
)

no BQL

BQL

(B) TX ring occu-
pancy

128 128 256 256 512 512

tx ring (number of descriptors)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

q
u

e
u

e
 d

is
c
 b

a
c
k
lo

g
 (

K
B

)

no BQL

BQL

(C) Queue disc back-
log (bytes)

128 128 256 256 512 512

tx ring (number of descriptors)

0

200

400

600

800

1000

1200

q
u

e
u

e
 d

is
c
 b

a
c
k
lo

g
 (

p
a

c
k
e

ts
)

no BQL

BQL

(D) Queue disc back-
log (pkts)

128 128 256 256 512 512

tx ring (number of descriptors)

0

5

10

15

p
in

g
 l
a
te

n
c
y
 (

m
s
)

no BQL

BQL

(E) Latency

128 128 256 256 512 512

tx ring (number of descriptors)

0

100

200

300

400

500

600

700

800

900

1000

in
fl
ig

h
t

in
 t

x
 r

in
g

 (
K

B
)

no BQL

BQL

(F) TX ring occu-
pancy

128 128 256 256 512 512

tx ring (number of descriptors)

0

100

200

300

400

500

600

700

800

900

1000

q
u

e
u

e
 d

is
c
 b

a
c
k
lo

g
 (

K
B

)

no BQL

BQL

(G) Queue disc back-
log (bytes)

128 128 256 256 512 512

tx ring (number of descriptors)

0

50

100

150

200

250
q

u
e

u
e

 d
is

c
 b

a
c
k
lo

g
 (

p
a

c
k
e

ts
)

no BQL

BQL

(H) Queue disc back-
log (pkts)

FIGURE 2.5: Results with a pfifo-fast queue disc and a prioritized
flow. Figures on the first row (from (a) to (d)) show the results with
TCP Small Queues and Segmentation Offload disabled (router sce-
nario), while figures on the second row (from (e) to (h) show the re-
sults with TCP Small Queues and Segmentation Offload enabled (host

scenario).

Chapter 2. An experimental characterization of the impact of device buffer on
packet schedulers

20

128 128 256 256 512 512

tx ring (number of descriptors)

0

5

10

15

20

25

30

35

40

45

50

p
in

g
 l
a
te

n
c
y
 (

m
s
)

no BQL

BQL

(A) Latency

128 128 256 256 512 512

tx ring (number of descriptors)

0

100

200

300

400

500

600

700

800

900

1000

in
fl
ig

h
t

in
 t

x
 r

in
g

 (
K

B
)

no BQL

BQL

(B) TX ring occu-
pancy

128 128 256 256 512 512

tx ring (number of descriptors)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

q
u

e
u

e
 d

is
c
 b

a
c
k
lo

g
 (

K
B

)

no BQL

BQL

(C) Queue disc back-
log (bytes)

128 128 256 256 512 512

tx ring (number of descriptors)

0

500

1000

1500

2000

2500

3000

3500

q
u

e
u

e
 d

is
c
 b

a
c
k
lo

g
 (

p
a

c
k
e

ts
)

no BQL

BQL

(D) Queue disc back-
log (pkts)

128 128 256 256 512 512

tx ring (number of descriptors)

0

5

10

15

p
in

g
 l
a
te

n
c
y
 (

m
s
)

no BQL

BQL

(E) Latency

128 128 256 256 512 512

tx ring (number of descriptors)

0

100

200

300

400

500

600

700

800

900

1000

in
fl
ig

h
t

in
 t

x
 r

in
g

 (
K

B
)

no BQL

BQL

(F) TX ring occu-
pancy

128 128 256 256 512 512

tx ring (number of descriptors)

0

100

200

300

400

500

600

700

800

900

1000

q
u

e
u

e
 d

is
c
 b

a
c
k
lo

g
 (

K
B

)

no BQL

BQL

(G) Queue disc back-
log (bytes)

128 128 256 256 512 512

tx ring (number of descriptors)

0

50

100

150

200

250

300

q
u

e
u

e
 d

is
c
 b

a
c
k
lo

g
 (

p
a

c
k
e

ts
)

no BQL

BQL

(H) Queue disc back-
log (pkts)

FIGURE 2.6: Results with an FQ-CoDel queue disc. Figures on the
first row (from (a) to (d)) show the results with TCP Small Queues and
Segmentation Offload disabled (router scenario), while figures on the
second row (from (e) to (h) show the results with TCP Small Queues

and Segmentation Offload enabled (host scenario).

Chapter 2. An experimental characterization of the impact of device buffer on
packet schedulers

21

2.4 Experimental results

We used two desktop computers running the Linux 4.11 kernel and equipped each
with an Intel 1Gbps Ethernet network interface card using the Linux e1000 driver.
The default size for the transmission ring, as set by the driver, is 256 descriptors.
The two computers are connected back to back with an Ethernet cross cable. One
of the computers acts as traffic sender, the other as traffic receiver. Netperf is used
to generate network traffic. In the following, we present the insights that we gained
by running a thorough experimental campaign aiming at assessing the impact that
various configurations of the network stack have on network performance. In all
the experiments, the configuration is only changed on the sender node, while the re-
ceiver node is left with the default configuration. We considered two scenarios, one
where TCP Small Queues (TSQ) and Segmentation Offload (TSO) are both disabled
and another one where TSQ and TSO are both enabled. The former aims to repro-
duce the case of an intermediate bottleneck router, while the latter aims to reproduce
the case of a host, e.g., a server.

A small transmission ring causes a throughput loss.

We generated 100 simultaneous TCP flows by concurrently running 100 TCP_STREAM
tests in order to saturate the link capacity despite the limit imposed by TCP Small
Queues (both TSQ and TSO were enabled). Experiments were conducted with three
distinct transmission ring sizes: 64, 96 and 128 descriptors. The default pfifo_fast
queue disc was used. The duration of each experiment was set to 30 seconds and
the average throughput over the whole duration of the experiment was measured.
Each experiment was repeated 5 times. Results of these experiments (Fig. 2.3) clearly
show a considerable throughput loss when the size of the transmission ring is too
small. As stated earlier, it has to be noted that a single packet may require multiple
descriptors, especially when scatter/gather I/O and TSO are enabled, thus a trans-
mission ring with 64 descriptors may contain as few as 4 packets. The throughput
loss is likely due to the starvation of the network device, which occurs when the
device is ready to receive packets from the device driver but the transmission ring
is entirely occupied by packets that have been transferred to the device but have not
been freed yet. We recall that packets stay in the transmission ring until the CPU
is able to serve the interrupt request generated by the network device (or is able to
poll the device). Thus, the probability of starvation increases with smaller trans-
mission rings and is exacerbated by the adoption of interrupt mitigation techniques.
The outcome of these experiments is therefore that the transmission ring should be
sufficiently large to avoid incurring throughput losses.

Chapter 2. An experimental characterization of the impact of device buffer on
packet schedulers

22

With the default pfifo_fast queue disc, latency is unaffected by the trans-
mission ring size or by the adoption of BQL if the queue disc is not full.

In addition to the 100 one-way TCP flows used to saturate the link capacity, an ICMP
Echo Request message is generated every 0.5 seconds by using the ping application.
These messages were used as probes to measure the latency experienced by packets.
We considered sufficiently large transmission rings (128, 256 and 512 descriptors) to
avoid incurring throughput losses. In fact, the throughput achieved in all the ex-
periments was around 890 Mbps. The default pfifo_fast queue disc was used. Each
experiment lasted 30 seconds and was repeated 5 times. For each experiment, we
collected: i) the round trip time of every ICMP Echo Request/Reply exchange; ii) the
amount of bytes in-flight, i.e. queued in the transmission ring, at the sender, every
0.5 seconds; and iii) the backlog of the queue disc, in terms of both bytes and packets,
every 0.5 seconds. Both in the router scenario (Fig. 2.4a) and host scenario (Fig. 2.4e),
the latency is not affected by the transmission ring size when BQL is enabled. This
result is rather expected, given that BQL autonomously limits the amount of bytes in
the transmission ring and thus is unaffected by the transmission ring size (provided
that the latter is sufficiently large). Two other observations can be made by looking
at Fig. 2.4e (host scenario): i) when BQL is disabled, the latency is not affected by the
transmission ring size, too; ii) the latency experienced with or without BQL is the
same. These two results are less intuitive and have a common explanation: given
that the pfifo_fast queue disc does not drop packets if there is room in its queues,
the number of packets queued in the whole system (queue disc and transmission
ring) is the same in all the cases. Indeed, as Fig. 2.4h shows, there are no more than
200 packets in the queue disc, which is therefore not full (by default, the capacity of
pfifo_fast is 1000 packets). Such a limit can be explained by considering that packets
are generated by 100 processes, each of which is allowed by TCP Small Queues to
have about two packets in flight (i.e., queued in the queue disc or in the transmis-
sion ring). We can generalize this result by stating that BQL has no effect on the
packet latency if the queue disc enqueues all the packets in the same queue and is
not full. In this scenario, despite the latency is the same with or without BQL, there
is a difference in how packets are distributed between the queue disc and the trans-
mission ring, as shown by Figs. 2.4f and 2.4g. It can be seen that BQL keeps both the
queue disc backlog and the amount of bytes in the transmission ring constant. With
BQL disabled, instead, the amount of bytes in the transmission ring grows with the
ring size, while the queue disc backlog decreases. Thus, BQL has no effect on the
packet latency, but helps keep the amount of bytes in the transmission ring low and
the queue disc backlog high, independently of the transmission ring size. We will
highlight hereinafter the benefits brought by BQL thanks to such a behavior.

In the router scenario, where TSQ is disabled, the queue disc is filled up to its
capacity in all the cases (Fig. 2.4d). Hence, differences in latency (Fig. 2.4a) are due to
the different amount of bytes queued in the transmission ring (Fig. 2.4b). Therefore,
latency grows with the transmission ring size when BQL is disabled. Instead, BQL

Chapter 2. An experimental characterization of the impact of device buffer on
packet schedulers

23

limits the amount of bytes queued in the transmission ring and therefore allows to
reduce the latency.

Measuring the backlog in terms of both bytes and packets allows us to determine
the average packet size. In the router scenario, the average packet size is 1500 bytes
(equal to the Ethernet MTU), while in the host scenario it is about 4 KB (it is allowed
to be greater than the MTU because TCP Segmentation Offload is enabled). Despite
the different average packet size, we observe that the transmission ring occupancy is
similar in the router and host scenarios (Figs. 2.4b and 2.4f). The reason is likely that
the big packets queued in the home scenario take more descriptors than the regular
packets in the router scenario.

BQL allows to keep the latency of prioritized flows low; without BQL, the
latency is higher and affected by the transmission ring size.

The pfifo_fast queue disc offers three priority bands. We considered the same set-
tings as in the previous experiment, except that the ICMP Echo Request messages
used as probes to measure latency carry the Assured Forwarding AF42 DiffServ
Code Point (DSCP), so that they are enqueued in the highest priority band (band
0) of the pfifo_fast queue disc. The 100 one-way TCP flows used to saturate the link
capacity have a normal priority and are enqueued in band 1 of the queue disc. Given
that the traffic load and the queue disc are the same as in the previous experiment,
we get the same results in terms of throughput (not shown), queue disc backlog and
transmission ring occupancy, for both the router and host scenarios. Different re-
sults in terms of latency are instead obtained, due to the fact that probe packets have
a higher priority in this experiment. We can observe (Figs. 2.5a and 2.5e) that BQL
allows to keep the latency of the prioritized packets very low (about 1 ms), while in
the absence of BQL the latency is significantly higher (median values range from 4
to 13 ms) and is affected by the transmission ring size. This result can be explained
by considering that probe packets experience no delay in the queue disc because
only probe packets are enqueued in the highest priority band and their rate is rather
low (2 messages per second). Hence, probe packets only accumulate delay in the
transmission ring. Without BQL, the amount of bytes queued in the transmission
ring increases with the transmission ring size (Figs. 2.5b and 2.5f), and so does the
latency. Instead, BQL limits the amount of bytes queued in the transmission ring
and therefore the latency is lower than without BQL.

Chapter 2. An experimental characterization of the impact of device buffer on
packet schedulers

24

BQL allows AQM algorithms to bring the expected benefit, i.e., to reduce
latency; without BQL, the latency is higher and grows with the transmis-
sion ring size.

As in the previous experiments, we considered 100 one-way TCP flows and a round-
trip probe flow (with the same priority as the TCP flows). However, in order to as-
sess the impact of BQL on the effectiveness of AQM algorithms, we installed an FQ-
CoDel queue disc instead of the default pfifo_fast queue disc. FQ-CoDel attempts to
direct flows to distinct queues, which are served in a round robin-like fashion in or-
der to ensure fairness among flows. Each queue is managed according to the CoDel
algorithm, which aims to limit the latency experienced by packets by dropping pack-
ets whose sojourn time within the queue is above a certain threshold. Given that, by
default, FQ-CoDel creates 1024 queues, it is very likely that each of the flows we gen-
erate, including the ICMP Echo Request messages, is enqueued in a distinct queue.
Moreover, the data rate of probe packets (about 1.5 Kbps) is likely such that the flow
of probe packets is always treated as a “new” flow by FQ-CoDel and hence gets
priority over the other flows. Therefore, again, probe packets experience little to
no delay in the queue disc, while they accumulate delay in the transmission ring.
As shown by Figs. 2.6a and 2.6e, BQL allows to keep the latency very low (about
1 ms), while in the absence of BQL the latency is significantly higher (median val-
ues range from 7 to 17 ms) and grows with the transmission ring size. This result
can be again explained by considering that BQL keeps the amount of bytes queued
in the transmission ring rather low, while the amount of in-flight bytes grows with
the transmission ring size when BQL is disabled (Figs. 2.6b and 2.6f). Consequently,
when BQL is enabled, AQM algorithms work well because little delay is added to
the time spent in the queue disc, which AQM algorithms aim to control. Without
BQL, instead, packets experience an additional amount of time, which grows with
the transmission ring size, after they have been dequeued by the queue disc. Such
an additional delay, therefore, ends up eliminating the benefits brought by AQM al-
gorithms. Finally, we mention that the measured throughput (not shown) is around
890 Mbps in all the experiments.

BQL allows to keep the queue disc backlog, and hence the latency, very
stable, thus reducing the jitter.

By observing the figures reporting the queue disc backlog (in terms of both bytes
and packets) for all of the previous experiments, it can be noted that the queue disc
backlog is rather stable when BQL is enabled, while it widely oscillates (between
a few kilobytes and hundreds or thousands of kilobytes) when BQL is disabled.
These results, along with the observation that the transmission ring occupancy is
very stable (with or without BQL), suggest that, when BQL is enabled, CPU cycles
are (approximately) equally devoted to enqueuing and dequeuing packets from the
queue disc over short time intervals. Instead, when BQL is disabled, CPU cycles are

Chapter 2. An experimental characterization of the impact of device buffer on
packet schedulers

25

FIGURE 2.7: Latency
variation with message

size

FIGURE 2.8: Impact of
CPU load on the BQL

limit

no longer equally shared over short time intervals (we measure the backlog every 0.5
seconds). When the CPU cycles devoted to dequeuing (enqueuing) packets prevail,
the backlog decreases (increases). Such a behavior, observed when BQL is disabled,
might be due to the network device driver aggressively waking up the queue disc
as soon as some space is freed in the transmission ring when the transmission queue
is stopped (which is often the case because the transmission ring is filled up to its
capacity when BQL is disabled). As we described earlier, waking up a queue disc
means that the queue disc is added to the list of queue discs that will be served the
next time the software interrupt is executed. Serving a queue disc means requesting
it to dequeue (at most) a predefined number of packets. Therefore, waking up the
queue disc repeatedly may lead to a situation where more packets are dequeued
than enqueued, thus causing the observed decrease in the queue disc backlog.

The explanation above is supported by the analysis of the measured latency. We
consider, as an example, the case of pfifo_fast with high priority probe packets and
transmission ring size equal to 512, in the router scenario. The amount of bytes
queued in the transmission ring is rather stable (about 725 KB, Fig. 2.5b), hence a
packet entering the transmission ring waits in the queue for about 725 KB / 890
Mbps = 6.5 ms. However, Fig. 2.5a shows that some probe packets experience larger
delays (the 75th percentile is about 19 ms), despite probe packets have high priority
and therefore do not stand in the queue disc. A possible explanation is that probe
packets accumulate delay before being enqueued in the queue disc, due to the CPU
being busy dequeuing packets. Thus, probe packets that manage to be quickly en-
queued in the queue disc experience a latency close to the waiting time in the trans-
mission ring (the 25th percentile of the latency is around 7ms). Other probe packets
wait to be enqueued in the queue disc for a longer time (up to the time needed to
dequeue all the packets). Assuming that a probe packet arrives when the queue disc
backlog is 1500KB (i.e., the 75th percentile according to Fig. 2.5c) and the enqueue
operation is deferred until the queue disc is empty, the probe packet would wait
for 1500KB / 890 Mbps = 13 ms in order to be enqueued in the queue disc and 6.5
ms in the transmission ring, for a total of 19.5 ms (which is approximately the 75th
percentile of the latency).

Chapter 2. An experimental characterization of the impact of device buffer on
packet schedulers

26

BQL allows to keep the latency independent of the packet size; without
BQL, latency increases with the packet size.

We considered one round-trip high priority TCP flow used as a probe to measure
packet latencies and 200 one-way TCP flows with variable message size (700, 1400
and 2800 bytes) to saturate the link capacity. We used the default pfifo_fast queue
disc and the default size for the transmission ring (256 descriptors). Figure 2.7 shows
that BQL is able to keep the latency experienced by packets constant, independently
of the packet size. Without BQL, instead, latency increases with the packet size. This
result can be explained by considering that the latency experienced by the packets
of a prioritized flow is mainly due to the time spent in the transmission ring, as dis-
cussed earlier. Also, the transmission time for a packet is directly proportional to its
size. Without BQL, every descriptor in the transmission ring can point to a (fragment
of a) packet, thus the amount of bytes queued in the transmission ring (and hence
the time required to transmit them) depends on the packet size (and to the adoption
of techniques such as TSO and scatter/gather I/O). BQL, instead, enforces a limit on
the amount of bytes queued in the transmission ring, which makes its performance
independent of the size of the packets.

BQL adapts the amount of bytes stored in the transmission ring based on
the current CPU load, too.

We repeated the previous experiments while keeping all the CPU cores busy (their
utilization was close to 100%) with the compilation of ns-3. We measured the limit
computed by BQL and compared it to that achieved during the previous experi-
ments (when the CPU load was low). Figure 2.8 reports the results of such compar-
ison when an FQ-CoDel queue disc is used (very similar results are obtained in the
other cases). It can be observed that the limit computed by BQL is generally higher
and more variable when the CPU load is high. This result is consistent with the fact
that, when the CPU load is low, the software interrupt of type NET_TX_SOFTIRQ
(which frees the packets transferred to the device and requests the queue disc to
dequeue packets) is executed rather regularly and hence there is no need to store a
large amount of bytes in the transmission ring. When the CPU load is high, instead,
the software interrupt is executed less frequently, hence there is the need to store a
larger amount of bytes in the transmission ring to avoid starvation.

2.5 Conclusions

In this chapter, we reported the results of a thorough experimental campaign we
conducted to evaluate the performance of various schedulers, including a simple
FIFO scheduler, a priority scheduler and an AQM algorithm, when DQL is enabled
or disabled and with varying transmission ring size. Experimental results indicated

Chapter 2. An experimental characterization of the impact of device buffer on
packet schedulers

27

that DQL generally allows to reduce latency, which instead increases with the trans-
mission ring size when DQL is disabled. Such a result is particularly important to
preserve the effectiveness of AQM algorithms, which aim to control the latency ex-
perienced by packets. DQL does not enable a latency reduction when a queue disc
that enqueues all the packets in a single queue is used below its capacity. Further-
more, latency is rather stable when DQL is used, while it oscillates widely when
DQL is disabled.

28

Chapter 3

Design and implementation of the
traffic control module in ns-3

The Linux networking subsystem relies on the traffic control infrastructure to pro-
cess both the incoming and the outgoing packets. One of the most important com-
ponents of the traffic control is the queueing discipline, whose role is to store packets
waiting for transmission and select the next packet to pass to the network interface.
The Linux traffic control enables to perform scheduling, shaping of the egress traffic,
policing of the ingress traffic, and dropping of both ingress and egress traffic.

In this chapter, we present the design and implementation of the traffic control
layer as an additional module in ns-3. This layer sits in between the netdevices
and the network layer. We also present the design and implementation of the base
class introduced to model a queueing discipline. Finally, we report a preliminary
evaluation of our work, consisting in a number of tests that properly compare the
new stack to the previous one.

3.1 Introduction

The Traffic Control infrastructure [1] of the Linux kernel enables to perform a num-
ber of actions on both outgoing packets, before they are handed to the netdevice for
transmission, and incoming packets, before they are processed by the network layer
protocols. In this work, we focus on the transmission path taken by packets. Once
the output interface and the next hop for an outgoing packet have been selected,
the packet is enqueued into a queueing discipline (queue disc), which determines
how the packet will be treated. A number of queue discs have been implemented
in the Linux kernel, including simple FIFO (First In First Out) schedulers, such as
pfifo_fast, fair-queuing schedulers, such as Deficit Round Robin (DRR) [34], Stochas-
tic Fairness Queuing (SFQ) [35] and Quick Fair Queuing (QFQ+) [36], and Active
Queue Management (AQM) algorithms, such as Random Early Drop (RED) [3] and
Controlled Delay (CoDel) [4]. A queue disc stores the packets waiting for transmis-
sion and decides which packet to pass to the network interface when it is requested
to dequeue a packet.

Chapter 3. Design and implementation of the traffic control module in ns-3 29

When a queue disc is requested to dequeue a packet depends on the imple-
mented flow control mechanisms. Basically, enqueuing a packet into a queue disc
triggers a number of consecutive requests of dequeuing a packet. This process can
be halted by the netdevice driver (or by the network stack itself) by putting its net-
device queue into a stop state. The netdevice driver usually stops its transmission
queue when it is full or its occupancy is above a given threshold. When the net-
device is able to receive packets again, the driver can start its transmission queue.
Additionally, the netdevice driver can wake a queue disc, i.e., request it to dequeue
a packet, when its transmission queue is empty or its occupancy is below a given
threshold.

Currently, ns-3 is lacking an equivalent of the Linux Traffic Control infrastruc-
ture. No flow control mechanism is implemented and packets are only stored in the
netdevice transmission queues. Consequently, AQM algorithms such as RED and
CoDel can only manage the packets stored in the netdevice queues, which is not
what happens in Linux. This chapter presents the work done to introduce an equiv-
alent of the Linux Traffic Control infrastructure into ns-3. We believe that our work
will allow researchers to carry out more realistic simulations and to evaluate AQM
algorithms more precisely.

The rest of this chapter is organised as follows. In section 2 we provide an
overview of the Linux Traffic Control and of the current status of ns-3. Section 3
describes the model and design of the proposed Traffic Control module for ns-3.
Section 4 describes the experiments we performed with the new architecture and
the results we obtained. In section 5 we draw the conclusions.

3.2 Background

In this section, we describe the Linux Traffic Control infrastructure and the ns-3
queue system.

3.2.1 Linux traffic control

The Traffic Control is a component of the network subsystem of the Linux kernel.
This component supports multiple operations needed to provide Quality of Service
(QoS), including shaping and scheduling of egress traffic, policing of ingress traffic,
dropping of both ingress and egress traffic.

The Traffic Control relies on three fundamental components to perform the above
mentioned operations, i) queue discs, ii) classes, iii) filters. A queue disc can be
added to every network interface in the Linux kernel and determines how packets
outgoing from the interface are treated. A simple queue disc is fifo, which does no
processing and is a pure FIFO queue with queue limit expressed in packets or bytes.
It stores a packet when the network interface cannot handle it immediately. The de-
fault queue disc in Linux is pfifo_fast, which consists of a three band queue acting

Chapter 3. Design and implementation of the traffic control module in ns-3 30

as a priority queue. The priority assigned to each packet may depend on the Type of
Service (ToS) value or Diffserv Codepoint (DSCP) carried by the packet. More com-
plex queue discs are available in the Traffic Control component. A typical taxonomy
divides queue discs in classful (i.e., support classes) and classless (i.e., do not sup-
port classes). A classful queue disc can contain multiple classes, each of which has a
child queue disc attached. Each class can be configured with distinct parameter val-
ues, so as to reserve a distinct treatment to different traffic classes. For instance, the
prio queue disc is a container for a configurable number of classes which are served
in order of priority. A packet filter can be used by a classful queue disc to classify
packets based on different criteria. The most advanced filter available is u32 that can
use anything in the header for classification. Recently, after the appearance of multi-
queue netdevices (such as Wifi), some multi-queue aware queue discs have been
introduced. Multi-queue aware queue discs handle as many queues (or queue discs
– without using classes) as the number of transmission queues used by the netde-
vice on which the queue disc is installed. An attempt is made, also, to enqueue each
packet in the “same” queue both within the queue disc and within the netdevice.

3.2.2 ns-3 queue system

In this section, we analyze ns-3 for what concerns the queuing system adopted at
the network and netdevice layers.

The network layer has no queuing system. In case the IPv4 stack is employed (the
same holds for the IPv6 stack), packets generated from the upper layers are passed
to the Ipv4L3Protocol, which determines the right Ipv4Interface for packet forward-
ing. Then, the Ipv4Interface passes the packet to the corresponding netdevice. Thus,
it is not possible to differentiate traffic at this layer and hold packets whose trans-
mission to the netdevice failed (and are therefore dropped). Netdevices store the
packets waiting for transmission in a queue. Such a queue contains packets with
the data link header already added and is modelled through the base class Queue.
Derived classes are DropTailQueue, RedQueue and CoDelQueue. DropTailQueue is
a classical first in first out limited queue. The two models of AQM, RedQueue and
CoDelQueue, both presently derive from class Queue and can be only installed on
the Csma and PointToPoint netdevices but not on Wifi and LTE netdevices. The rea-
son is that Wifi and LTE do not use subclasses of the base class Queue to implement
their netdevice queues.

The ns-3 netdevices do not support any form of flow control between the net-
work and netdevice layers. Indeed, netdevices have no means to request the net-
work layer to stop sending packets and all the packets passed to the netdevices when
their queues are full are inevitably lost.

The base class Queue does not provide easy visibility of the IP and transport
headers. The non trivial access or modification of the IP header have hindered the
addition of the Explicit Congestion Notification (ECN) support in ns-3 [14]. The ns-3

Chapter 3. Design and implementation of the traffic control module in ns-3 31

ECN support should remove the L2 header (of different length for a different net-
device) then remove the L3 header and apply the ECN policy. Also, the non simple
access to the transport header, e.g. TCP, has hindered the ns-3 support to the recent
internet aware queue discs such as FlowQueue-CoDel (FQ-CoDel). Those queue
discs need access to the 5-tuple of IP protocol, source and destination IP addresses
and port numbers.

3.3 Design and implementation

In this section, we describe the traffic control module and its design.

3.3.1 Module description

In order to add support for the features described in the previous section, we decided
to introduce a new layer that sits above the netdevice and below the IP forwarding
layer. The main consequence is that it requires flow control between the new layer
and each of the netdevice queues. For each netdevice queue, it is necessary to keep
a status bit which indicates if further packets can be passed to the netdevice for the
transmission. The netdevice (or the network layer) can stop the passing of further
packets when a resource becomes unavailable (e.g. the netdevice queue is full) and
wake up the upper layer when the resource becomes available again.

Packets received by the traffic control layer for transmission to a netdevice can
be passed to a queue disc to perform scheduling and policing. A netdevice can have
a single (root) queue disc installed on it. Installing a queue disc on a netdevice is
not mandatory. If a netdevice does not have a queue disc installed on it, the traffic
control layer sends the packets directly to the netdevice.

As in Linux, a queue disc may contain distinct elements:

• queues, which actually store the packets waiting for transmission;

• classes, which allow to reserve a different treatment to different packets;

• filters, which determine the queue or class which a packet is destined to.

Notice that a child queue disc must be attached to every class and a packet filter
is only able to classify packets of a single protocol.

The traffic control layer interacts with a queue disc in a simple manner: after
requesting to enqueue a packet, the traffic control layer requests the queue disc to
“run”, i.e., to dequeue a set of packets, until a predefined number (“quota”) of pack-
ets is dequeued or the netdevice stops the queue disc. A netdevice may stop the
queue disc when its transmission queue(s) is/are (almost) full. Also, a netdevice
may wake the queue disc when its transmission queue(s) is/are (almost) empty.
Waking a queue disc is equivalent to make it run.

Chapter 3. Design and implementation of the traffic control module in ns-3 32

FIGURE 3.1: The send and receive path on internet enabled nodes
after the introduction of the traffic control layer (IPv4 case).

3.3.2 Design

The new internet enabled node stack with Traffic Control is illustrated in Figure 3.1
(for the IPv4 case, the IPv6 case is similar). A TrafficControlLayer object is aggre-
gated to every internet enabled node. The new layer intercepts packets that transit
both in the input and output directions. Currently, scheduling of outgoing packets is
supported, while policing of incoming packets is not supported (since the equivalent
of the Linux ingress queue disc has not been implemented yet). The IPv{4,6} inter-
faces uses the aggregated TrafficControlLayer object to send packets down, instead
of calling NetDevice::Send() directly. After the analysis and the process of the packet,
when the flow control mechanism allows it, TrafficControlLayer will call the Send()
method on the right netdevice. The IPv{4,6} interfaces call the NetDevice::Send()
directly only in the case of packets destined to the loopback interface. To receive
packets, instead, the callback chain, that (in the past) involved the node protocol
handlers and the netdevice, is extended to involve TrafficControlLayer.

A TrafficControlLayer object holds a reference (smart pointer) to the objects rep-
resenting the queue discs installed on each netdevice of the node. An abstract base
class, class QueueDisc, is subclassed to implement specific queue discs. A subclass
is required to implement the following methods:

• bool DoEnqueue (Ptr<QueueDiscItem> item): enqueue a packet;

• Ptr<QueueDiscItem> DoDequeue (void): dequeue a packet;

• Ptr<const QueueDiscItem> DoPeek (void) const: peek a packet;

Chapter 3. Design and implementation of the traffic control module in ns-3 33

• bool CheckConfig (void) const: check if the configuration is correct.

The base class QueueDisc implements:

• methods to add/get a single queue, class or filter and methods to get the num-
ber of installed queues, classes or filters;

• a Classify method which classifies a packet by processing the list of filters until
a filter able to classify the packet is found;

• methods to extract multiple packets from the queue disc, while handling trans-
mission (to the netdevice) failures by requeuing packets.

The base class QueueDisc holds the list of attached queues, classes and filter by
means of three vectors accessible through attributes (InternalQueueList, QueueDis-
cClassList and PacketFilterList).

Internal queues are implemented as (subclasses of) Queue objects. A Queue
stores QueueItem objects, which consist of just a Ptr<Packet>. Since a queue disc has
to store at least the destination address and the protocol number for each enqueued
packet, a new class, QueueDiscItem, is derived from QueueItem to store such addi-
tional information for each packet. Thus, internal queues are implemented as Queue
objects storing QueueDiscItem objects. Also, there could be the need to store further
information depending on the network layer protocol of the packet. For instance,
for IPv4 and IPv6 packets it is needed to separately store the header and the pay-
load, so that header fields can be manipulated, e.g., to support ECN. To this end,
Ipv4QueueDiscItem and Ipv6QueueDiscItem are derived from QueueDiscItem to
additionally store the packet header and provide protocol specific operations such
as ECN marking.

Classes are implemented via the QueueDiscClass class,
which just consists of a pointer to the attached queue disc. Such a pointer is accessi-
ble through the queue disc attribute. Classful queue discs needing to set parameters
for their classes can subclass QueueDiscClass and add the required parameters as
attributes.

An abstract base class, PacketFilter, is subclassed to implement specific filters.
Subclasses are required to implement two virtual private pure methods:

• bool CheckProtocol (Ptr<QueueDiscItem> item) const:
check whether the filter is able to classify packets of the same protocol as the
given packet;

• int32_t DoClassify (Ptr<QueueDiscItem> item) const:
actually classify the packet.

PacketFilter provides a public method, Classify, which first calls CheckProtocol
to check that the protocol of the packet matches the protocol of the filter and then
calls DoClassify. Specific filters subclassed from PacketFilter should not be placed

Chapter 3. Design and implementation of the traffic control module in ns-3 34

(A) Classful queue disc (B) Multi-queue aware queue disc

FIGURE 3.2: Queue discs in Traffic Control.

in the Traffic Control module but in the module corresponding to the protocol of the
classified packets.

In Linux, information about the status of a transmission queue of a netdevice is
stored in the struct netdev_queue, which includes a qdisc field that is mainly used
to solve the following problems:

• if a netdevice transmission queue is (almost) empty, identify the queue disc to
wake;

• if a packet will be enqueued in a given netdevice transmission queue, identify
the queue disc which the packet must be enqueued into.

The latter problem arises because Linux attempts to determine the netdevice
transmission queue which a packet will be enqueued into before passing the packet
to a queue disc. This is done by calling a specific function of the netdevice driver,
if implemented, or by employing fallback mechanisms (such as hashing of the ad-
dresses) otherwise. The identifier of the selected netdevice transmission queue is
stored in the queue_mapping field of the struct sk_buff, so that both the queue disc
and the netdevice driver can get the same information. In ns-3, such identifier is
stored in the m_txq member of the QueueDiscItem class.

Concerning the qdisc field of the struct netdev_queue in Linux, such a field can-
not be similarly stored in a object NetDeviceQueue, because it would make the net-
work module depend on the Traffic Control module. Instead, this information is
stored in the TrafficControlLayer object aggregated to each node. In particular, a
TrafficControlLayer object holds a map which stores, for each netdevice, a vector
of Ptr<QueueDisc>. The size of such a vector is the number of netdevice transmis-
sion queues and each element of this vector is a pointer to the queue disc to activate
when the above problems occur. The SetRootQueueDiscOnDevice method takes
care of configuring such a map, based on the wake mode of the root queue disc.
If the wake mode of the root queue disc is WAKE_ROOT, then all the elements of
the vector are pointers to the root queue disc. If the wake mode of the root queue

Chapter 3. Design and implementation of the traffic control module in ns-3 35

disc is WAKE_CHILD, then each element of the vector is a pointer to a distinct child
queue disc. This requires that the number of child queue discs matches the number
of netdevice queues. It follows that the wake mode of a classless queue disc must
necessarily be WAKE_ROOT. These two configurations are illustrated in Figure 3.2.

Finally, we mention that the queue disc installed on a netdevice, along with the
associated packet filters, classes and internal queues, can be removed by calling the
method DeleteRootQueueDiscOnDevice of the TrafficControlLayer class.

3.3.3 Implementation Issues

The Ipv{4,6} Interface add the IP header to the packet before passing the packet to
the underlying layer. Receving a packet with the IP header already attached makes
it inefficient for the Traffic Control layer to manipulate the header, e.g., to perform
ECN markings. For this reason, we changed the behavior of the internet stack so
that the IP header and the IP payload of a packet are sent separately to the Traffic
Control layer. This required modifications both to IPv4 (L3 protocol, ARP cache,
ARP L3 protocol) and IPv6 (L3 protocol, extensions, ICMPv6, NDisc cache). The IP
header is now added to the packet after the packet is dequeued from the queue disc.

The Traffic Control module cannot depend on the internet module, in order to
avoid that future, alternative to internet, L3 modules have to depend on internet
(through the dependency on Traffic Control) and to avoid a circular dependency
(given that internet depends on Traffic Control). As a consequence, the Traffic Con-
trol layer cannot manipulate IP headers, which is necessary, e.g., to perform ECN
marking, or filter packets based on the content of the IP header. As described earlier,
this problem has been solved by enqueuing packets as (pointer to) QueueDiscItem
objects which are actually either Ipv4QueueDiscItem or Ipv6QueueDiscItem objects.
Likewise, using an abstract PacketFilter class allowed us to define protocol specific
packet filters in the respective modules instead of in the Traffic Control module.

Other minor issues needed to be addressed. For instance, incorrect packet drops
may be traced because the queue discs requeues packets whose transmission to the
netdevice failed. Thus, if a netdevice drops a packet because, e.g., its queue is full,
such a packet is traced as lost while it is actually requeued by the queue disc and re-
transmitted as soon as the netdevice is ready to receive packets again. A workaround
for this issue is to compute the number of packets that have been actually dropped as
the difference between the number of dropped packets as reported by the netdevice
drop trace and the number of requeued packets.

Chapter 3. Design and implementation of the traffic control module in ns-3 36

FIGURE 3.3: The network topology used for the validation tests.

(A) Dropping (TCP) (B) RTT (TCP) (C) Goodput (TCP)

(D) Dropping (UDP) (E) RTT (UDP) (F) Goodput (UDP)

FIGURE 3.4: Plots of the first scenario.

Chapter 3. Design and implementation of the traffic control module in ns-3 37

(A) Dropping (TCP) (B) RTT (TCP) (C) Goodput (TCP)

(D) Dropping (UDP) (E) RTT (UDP) (F) Goodput (UDP)

FIGURE 3.5: Plots of the second scenario.

3.4 Results

3.4.1 Simulation Settings

For all of the experiments described hereinafter, the simple three node topology re-
ported in Figure 3.3 was used. Nodes A and B are connected by means of a point-to-
point link having a data rate of 100 Mb/s and a delay of 0.1 ms. Nodes B and C are
connected by means of a point-to-point bottleneck link having a data rate of 10 Mb/s
and a delay of 5 ms. Two scenarios have been considered, each of which compares
the current ns-3 stack with the new stack featuring the Traffic Control layer:

• the first scenario aims, to some extent, to validate the proposed Traffic Control
layer by comparing the results obtained with the current and the new stacks
in similar configurations. In particular, the current stack is evaluated by using
netdevice queues having a size of 1000 packets, while the new stack is evalu-
ated by using queue discs having a size of 1000 packets and netdevice queues
having a size of 1 packet;

• the second scenario aims to highlight that queuing at the netdevice layer has
a non negligible impact on the performance of AQM algorithms like RED and
CoDel and that such an effect cannot be observed with the current ns-3 stack.
The current stack is evaluated by using netdevice queues having a size of 100

Chapter 3. Design and implementation of the traffic control module in ns-3 38

packets, while the new stack is evaluated by using queue discs having a size
of 1000 packets and netdevice queues having a size of 100 packets.

An OnOff traffic generator is installed on node A, while a packet sink is installed
on node C. The OnOff data rate is 100 Mb/s in the TCP simulations and 10 Mb/s in
the UDP simulations. The TCP version is New Reno. The packets size is 1458 bytes.
The generated traffic is not marked with any QoS information. Three configurations
are compared. For the current stack, we consider DropTail, RED and CoDel as the
types of netdevice queues. For the new stack, we consider PfifoFast, RED and CoDel
as the types of queue discs and DropTail as the type of netdevice queues. RED and
CoDel are configured with the same parameter values when comparing the current
and the new stack. RED is configured by setting the LinkBandwidth and LinkDelay
attributes to the corresponding values of the bottleneck link, MeanPacketSize to the
packet size, MinTh to 5 packets, MaxTh to 15 packets, the Gentle parameter to true.
CoDel is configured by setting Interval to 100 ms and Target to 5 ms.

3.4.2 First Scenario

To evaluate the effects of the introduction of the Traffic Control module, the cur-
rent stack (with a netdevice queue size of 1000 packets) is compared to the new
stack (with a netdevice queue size of 1 packet and a queue disc size of 1000 pack-
ets). When evaluating the new stack, the netdevice queue size is set to 1 packet in
order to reduce the netdevice queueing delay, which is outside the control of the
AQM algorithm, while focusing on the effectiveness of the AQM algorithm and the
interactions between the Traffic Control layer and the netdevice. Note that this is
equivalent to turn off the hardware offload feature and set the kernel Byte Queue
Limits (BQL) to a maximum of one packet in a real system [15]. This case, occurring
in a real system, could not be currently modeled in ns-3.

The results are reported in Figure 3.4. As noted below, when evaluating the new
stack, the queue discs take advantage of the opportunity to deliver two packets to the
netdevices, one immediately transmitted and another queued in netdevice queue.

In the case of TCP, the presence of the netdevice queue leads to a minor drop-
ping activity in the queue discs in the cases of RED and CoDel (Figure 3.4a). We also
noticed that the time elapsed between two consecutive packet droppings is higher
when using the new stack and the difference between these values for the current
and the new stack grows with the progress of the simulation. The dropping appears
smoother in the new stack. Also, the Round Trip Time (RTT), which takes into ac-
count the netdevice queueing delay, is slightly greater when adding the Traffic Con-
trol layer, in the cases of RED and CoDel (Figure 3.4b). The minor dropping activity
with the Traffic Control layer enables to achieve higher goodput than the current
stack, in the cases of RED and CoDel (Figure 3.4c). When using PfifoFast/Droptail,
there is no noticeable difference between the current and the new stacks.

Chapter 3. Design and implementation of the traffic control module in ns-3 39

In the case of UDP, the presence of the netdevice queue being able to accom-
modate one additional packet makes no difference, because, contrarily to TCP, UDP
does not adapt its sending rate based on the estimated RTT. The dropping activity
remains substantially unchanged in all three cases (Figure 3.4d). We note that no
dropping activity occurs due to the netdevice queue (current stack) or the queue
disc (new stack) being full, because the dropping is null in the PfifoFast/DropTail
case. The delay also remains substantially unchanged in all three cases (Figure 3.4e).
When using RED, the delay remains unchanged and is equal to about 20 ms; when
using CoDel, the delay remains unchanged, too, and is equal to about 10 ms. The
goodput remains constant in all three cases (Figure 3.4f).

The obtained results show that the new stack, in this scenario, behaves very sim-
ilarly to the current one.

3.4.3 Second Scenario

The second scenario aims to evaluate the effectiveness of some AQM algorithms in
the common scenario in which a netdevice queue introduces a non negligible delay.
The queue management algorithm is unaware of the time spent in the underlying
netdevice queue, which can limit the effectiveness of the AQM algorithm. This is
the case of all the netdevices for which BQL is not available and the sizing of the
netdevice queue is difficult. For instance, this is the case of Wifi netdevices [15]. This
case could not be evaluated in the current ns-3 stack.

The results are reported in Figure 3.5. In this case, the queue disc can send down-
wards 100 packets (queued in the netdevice queue) in addition to the packet being
transmitted.

In the case of TCP, the netdevice queue limits the benefits of using an AQM al-
gorithm. The dropping activity reflects the ability to deliver 100 packets to the net-
device. With the new stack, the dropping activity of the AQM algorithms (RED and
CoDel) is reduced with respect to the current stack (Figure 3.5a). Consequently, the
limited effectiveness of the AQM algorithms leads to a higher RTT, with respect to
the current stack, in the cases of RED and CoDel (Figure 3.5b). In these cases, the
RTT is about 50 ms. Given the reduced dropping compared to the current stack, the
goodput improves and it is slightly greater than that achieved by PfifoFast/Drop-
Tail (Figure 3.5c). When using PfifoFast/Droptail, there is no noticeable difference
between the current and the new stacks.

In the case of UDP, the dropping activity tends to be slightly less and more
smooth with the new stack, in the cases of RED and CoDel, while remains un-
changed in the PfifoFast/DropTail case (Figure 3.5d). We note that no dropping
activity occurs due to the netdevice queue (current stack) or the queue disc (new
stack) being full. The delay is affected by queueing in the netdevice (Figure 3.5e). In
this scenario, the netdevice queue introduces a non negligible delay. With the new
stack, the delay is about 140 ms and 130 ms when using RED and CoDel, respec-
tively. The goodput remains substantially unchanged in all three cases (Figure 3.5f)

Chapter 3. Design and implementation of the traffic control module in ns-3 40

The results obtained, in this scenario, show a behavior which cannot be observed
with the current ns-3 stack. Such behavior is encountered in real systems where the
netdevice queue introduces a non negligible delay that limit the effectiveness of the
AQM algorithms.

3.5 Conclusions

In this chapter, we presented the design, implementation and a preliminary evalu-
ation of a traffic control module for ns-3. Our code has been integrated into ns-3
starting from the ns-3.25 release. We believe that our work will allow researchers to
carry out more realistic simulations and to evaluate AQM schemes more precisely.
One of the advantages of our traffic control infrastructure is that AQM schemes can
now be tested on any netdevice, including, e.g., Wifi and LTE.

The proposed stack allows to introduce in ns-3 Internet aware schedulers such
as FQ-CoDel. Indeed, a queue disc is now able to access to five tuple to separate
the flows. Also, the isolation of the device queue allows to study the effect of its
dimension on the effectiveness of packets schedulers and AQM algorithms. Finally,
the device queue can be sized dynamically by using strategies such as BQL.

41

Chapter 4

Enanching the network emulation
fidelity to support simulated
modules validation

Researchers from academia, industry and research centers often resort to emulation
to overcome the drawbacks associated with network simulation and experimental
evaluation. Emulation is broadly classified in environment emulation, usually car-
ried out by running real code in Virtual Machines (VMs) or containers, and network
emulation, typically involving network simulators that exchange packets with the
real world. In this chapter, we focus on network emulation, which is often exploited
for rapid prototyping and testing of network protocols and algorithms. We iden-
tify the limitations of the approach currently used by various network simulators to
provide network emulation and design an alternative solution based on netmap, a
framework for high speed packet I/O which is available on multiple operating sys-
tems. We argue that the proposed solution to network emulation provides extremely
accurate results in terms of packet latency and packet drops and prove our claim by
means of an extensive experimental campaign. We also show that by building upon
an accurate network emulation mechanism it is possible to validate the implemen-
tation of protocols found in network simulators against their implementation in real
network stacks. We present the results of the experiments we conducted to validate
the ns-3 implementation of various packet schedulers against their Linux counter-
part.

4.1 Introduction

Researchers have multiple options to evaluate the performance of both newly de-
signed and existing network protocols. Simulation is certainly a widely adopted
instrument. In fact, simulation offers numerous benefits, including repeatability of
tests, possibility to recreate scenarios with a large number of systems, ability to iso-
late the effects of undesired factors. However, simulators only provide reliable and
realistic results if the network stack is accurately implemented and all the relevant

Chapter 4. Enanching the network emulation fidelity to support simulated
modules validation

42

Simulated channel
(Netem, Dummynet, ns-3, ...)

VM /
container

physical
host

VM /
container

VM /
container

(A)

Simulation

physical
host

node

NIC

Real network

Real
stack

physical
host

NIC

Simulation

physical
host

node

NIC

(B)

FIGURE 4.1: (a) In environment emulation, multiple Virtual Machines
or containers running on a physical host communicate through a sim-
ulated channel. (b) In network emulation, nodes created within sim-
ulations can communicate, both between them and with real hosts,

through a real network.

interactions among the various protocols are properly modeled. Contrarily, per-
forming experiments in a real testbed allows to reliably test how a protocol will
behave in the real world. However, setting up a testbed of meaningful size requires
resources and expertise. A third option available to evaluate the performance of
network protocols is emulation. Emulation can be seen as a hybrid approach, in
the sense that it combines the usage of real implementations for some components
with the simulation of some others. Depending on what components are simulated,
emulation approaches can be broadly classified into two categories: environment em-
ulation and network emulation [37].

In environment emulation, the real implementations of protocols at the higher
layers of the network stack are used, while the channel access function and the trans-
mission through a channel are simulated. Such an approach is usually implemented
by having real code run in Virtual Machines (VMs) [38] or containers [39] and hav-
ing them communicate through a simulated channel (Fig. 4.1a). Various tools can be
used to simulate specific features of a transmission channel, including Netem [10],
Dummynet [11], DEMU [40], network simulators supporting the injection of traffic
from the real world (such as ns-3 [12] and OMNet++ [13]) and the mac80211_hwsim
virtual driver, which is a Linux kernel module emulating transmissions over a Wi-Fi
channel. Alternatively, some network simulators, including ns-3 (through the Direct
Code Execution framework [41]) and NCTUns [42], offer the possibility of executing
real code directly from within a simulation, thus eliminating the need of setting up
VMs or containers. The environment emulation approach is typically used when
the communication network is difficult to set up, either because the communication
technology is not available [43] or because a testbed of the required size cannot be
set up [44], or when it is desired to create a controllable environment eliminating the
impact of external factors [45], [46].

In network emulation, instead, simulated components interact with real hosts

Chapter 4. Enanching the network emulation fidelity to support simulated
modules validation

43

through a real network (Fig. 4.1b). This approach exploits the ability of simula-
tors such as ns-3 and OMNet++ to exchange packets with real network devices and
schedule events in real-time. Network emulation requires that a real communication
network is available. This requirement may also be met [47] by exploiting large scale
testbeds such as ORBIT, Emulab and PlanetLab. When a real network infrastructure
is available, network emulation may be preferred to real experiments in order to
take advantage of the rapid prototyping enabled by simulators [9]. Implementing a
new protocol is usually easier within a simulator rather than a real network stack,
hence researchers often use network emulation to evaluate their proposals under
real world conditions [48], [49]. Additionally, network emulation can be used to val-
idate the implementation of protocols within a simulator against the implementation
included in a real network stack.

The work presented in this chapter is motivated by the limitations of the network
emulation capabilities of simulators such as ns-3 and OMNeT++ in terms of accu-
racy of fundamental performance indicators such as packet loss and latency. Such
limitations stem from the techniques used to exchange packets with real network
devices. Network emulation in ns-3 is only available for Linux, because it relies on
the packet socket mechanism, which is a feature specific to Linux. OMNeT++ uses
instead libpcap, a C/C++ library for network traffic capture available for multiple
operating systems. However, libpcap uses the packet socket mechanism on Linux
systems, hence OMNeT++ ultimately exploits the same mechanism as ns-3 on Linux
systems.

In this chapter, we focus on Linux systems and illustrate the relevant interac-
tions between the network stack and the network device drivers in order to explain
the drawbacks of using a packet socket to exchange packets with a network de-
vice. Then, we describe the design of a new ns-3 NetDevice aiming to overcome such
drawbacks. The main reason for focusing on ns-3 is that it accurately models the
interactions between the network stack and the network devices, thanks to the in-
troduction of the traffic-control module that precisely reproduces the behavior of the
Traffic Control (TC) infrastructure of the Linux kernel. The proposed ns-3 NetDevi-
ceis based on the use of netmap, a framework for high speed packet I/O [50], and
hence is named NetmapNetDevice. As a valuable side effect, our NetmapNetDe-
vice enables ns-3 to gain network emulation support on all the operating systems
supported by netmap, i.e., FreeBSD and Windows, in addition to Linux.

We present the results of experimental tests we conducted to demonstrate that
the network emulation approach based on our NetmapNetDevice provides results
in terms of throughput, latency and packet dropping rate that are extremely similar
to those obtained by using the real Linux stack. Conversely, the current network
emulation approach based on the packet socket mechanism fails to provide accurate
results. Additionally, we show that the use of netmap allows to reduce the per-
packet processing cost in terms of CPU usage, which opens up the possibility of
increasing the throughput achievable in network emulation scenarios.

Chapter 4. Enanching the network emulation fidelity to support simulated
modules validation

44

physical
host

IP

packet filter TC

qdisc

stop / wake

Network device driver

tx
ring

transfer completed

NIC

(A)

ns-3
node

physical
host

Ip
v{

4,
6}

L3
P

ro
to

co
l

packet filter traffic-control

qdisc

stop / wake

NetDevice

channel

(B)

FIGURE 4.2: Schematic representation of the network stack of: (a) a
Linux host equipped with a single network interface card; (b) an ns-3

node with one NetDevice using a simulated channel.

Another contribution in this chapter is the validation of various Active Queue
Management (AQM) algorithms that are available as queuing disciplines both in Linux
and ns-3 (RED [3], CoDel [4] and FQ-CoDel [6]), which, as shown hereinafter, is
made possible by the availability of an accurate network emulation mechanism.
Showing that ns-3 packet schedulers behave the same as their Linux counterpart
is an important result, because it ensures researchers that the simulation results they
get accurately reproduce real world results. In fact, packet schedulers heavily impact
performance measures such as throughput, latency and packet loss.

In the remainder of this chapter, after providing some background information
on the Linux TC infrastructure, the packet socket mechanism and netmap (Sec-
tion 4.2), we present the design of the ns-3 NetDevice based on netmap (Section 4.3).
The results of our experimental campaign are illustrated in Section 4.4. Finally, we
conclude the chapter in Section 4.5.

4.2 Background

4.2.1 The Linux TC infrastructure and the ns-3 traffic-control module

We first provide some background information about the Linux TC infrastructure [1].
Based on the routes available in the routing table, the IP layer determines the out-
going network interface for each packet that needs to be sent over the network and
passes it to the TC infrastructure (by calling the dev_queue_xmit function), where
the packet is handled by the queuing discipline (henceforth, qdisc) associated with
the outgoing device (Fig. 4.2a). A qdisc can enqueue the packet, mark the packet
(e.g., in case it supports Explicit Congestion Notification) or drop the packet (either
before the packet is enqueued or later, after the packet is dequeued). The qdisc is in
charge of scheduling the queued packets and therefore can be employed to enforce
traffic prioritization strategies.

Chapter 4. Enanching the network emulation fidelity to support simulated
modules validation

45

Immediately after passing a packet to a qdisc, the TC infrastructure requests the
same qdisc to dequeue at most a configurable number of packets. Dequeued pack-
ets are handed to the network device driver, which stores them in a circular queue,
named transmission ring, established in memory shared with the network device (or
NIC – Network Interface Card). Each slot in the ring (descriptor) stores some informa-
tion about a packet (or a fragment of a packet), including its length and the address
of the physical memory where it is stored. Packets are usually transferred asyn-
chronously to the network device through DMA (Direct Memory Access). When the
transfer is completed, the network device updates the head of the circular queue and
notifies the device driver by raising an interrupt.

If the rate at which packets are passed to the transmission ring is higher than
the rate at which packets are transmitted over the network, the number of packets
queued in the ring grows until the ring becomes full. In such a situation, there is
no room for further packets dequeued from the qdisc, which would therefore be
dropped. In order to avoid dropping packets, Linux defines the following flow con-
trol strategy. When the transmission ring has not enough room for another packet,
the network device driver stops the transmission ring, so that the TC infrastructure
refrains from sending further packets down to the network device driver. Clearly,
the transmission ring needs to be restarted as soon as there is available room, so that
the TC infrastructure can resume sending packets down the stack. To this end, ev-
ery time the network device driver is notified that some packets have been removed
from the transmission ring, it checks whether a driver-specific number of descrip-
tors are available in the ring. If so, and the transmission ring is stopped, the network
device driver restarts the transmission ring and wakes the qdisc, i.e., it requests the
qdisc to perform multiple dequeue operations, until either a configurable number of
packets have been dequeued or the transmission ring is stopped, whichever occurs
first. This flow control strategy, therefore, ensures that no packet is passed to the
network device driver when the transmission ring is full and that packets are pulled
from the qdisc if there is available space in the transmission ring.

It is worth to point out that the time spent by packets waiting in the transmis-
sion ring adds to the time spent in the qdisc, which is what AQM algorithms aim
to control. Therefore, in order to preserve the effectiveness of AQM algorithms, the
waiting time in the transmission ring should be minimized. We note that the size of
the transmission ring, in terms of number of descriptors, can be configured via soft-
ware tools. The size of the transmission ring should allow to minimize the waiting
time, while ensuring that starvation does not occur (i.e., the NIC is ready to trans-
mit a packet over the network but the ring is empty). Unfortunately, the minimum
amount of packets to store in the transmission ring to avoid starvation is not a fixed
value, but depends on multiple factors, including packet size and CPU load [51]. The
Linux kernel includes an algorithm named BQL (Byte Queue Limits), whose aim is
to adaptively determine a limit indicating the minimum amount of bytes to store in
the transmission ring to avoid starvation. Network device drivers supporting BQL

Chapter 4. Enanching the network emulation fidelity to support simulated
modules validation

46

ns-3
node

physical
host

Ip
v{

4,
6}

L3
P

ro
to

co
l

packet filter traffic-control

qdisc packet
socket

 TC

host qdisc

stop / wake

Network device driver

tx
ring

send buffer

stop / wake
drop if amount of bytes

in flight exceeds
 send buffer size

E
m

uF
dN

et
D

ev
ic

e

transfer completed

NIC

(A)

ns-3
node

physical
host

Ip
v{

4,
6}

L3
P

ro
to

co
l

packet filter traffic-control

qdisc packet
socket

Network device driver

tx
ring

send buffer

stop / wake
drop if amount of bytes

in flight exceeds
 send buffer size

E
m

uF
dN

et
D

ev
ic

e

drop if tx ring
is stopped

transfer completed

NIC

(B)

FIGURE 4.3: Schematic representation of the network stack in the em-
ulated scenario with: (a) packet socket; (b) packet socket with the

PACKET_QDISC_BYPASS option enabled.

notify the BQL library every time packets are enqueued or dequeued from the trans-
mission ring. Such information allows BQL to update its limit, stop the transmission
ring if the amount of queued bytes exceeds the limit and restart the transmission
ring if it was stopped and the amount of queued bytes is below the limit.

In order to enhance adherence of the ns-3 network stack to a real network stack,
we introduced the traffic-control module in ns-3.25 [52], [53]. The traffic-control
module adds a new layer (Fig. 4.2b), sitting between IP (Integrated Protocol) and
the NetDevices (i.e., the objects representing network devices), that reproduces the
Linux TC infrastructure as accurately as possible. The traffic-control module hosts
queuing disciplines and packet filters. Proper infrastructure is in place to enable
NetDevices to perform flow control. Indeed, a NetDevice can stop its queues (which
are the analogous of the transmission rings) when there is not enough room for an-
other packet and restart them when a packet can be accommodated. We introduced
the BQL library in ns-3 as well [51]. We added flow control and BQL support to
a number of NetDevices, which start and stop their queues in much the same way
Linux network device drivers do.

4.2.2 The ns-3 network emulation approach based on packet sockets and
its limitations

The FdNetDevice is an ns-3 NetDevice able to read and write from a file descriptor.
Network emulation capability is provided by ns-3 through the EmuFdNetDevice,

Chapter 4. Enanching the network emulation fidelity to support simulated
modules validation

47

which is a specialization of the FdNetDevice that creates a packet socket to an un-
derlying physical device and uses the returned file descriptor. In such a way, ns-
3 simulations can send/receive packets to/from a real network device. Indeed, a
packet socket injects packets at some point along the normal transmission path. By
default, packets are enqueued in the qdisc installed on the network device bound to
the packet socket (Fig. 4.3a). If the PACKET_QDISC_BYPASS socket option is enabled,
packets are sent to the network device if its transmission ring is not stopped and
dropped otherwise (Fig. 4.3b).

As described earlier, network emulation is typically used to test a prototype im-
plementation of a higher layer (application, transport or network) protocol or algo-
rithm in real world conditions. To actually test the proposed solution in real world
conditions, however, it is necessary that in the emulated scenario (Fig. 4.3) packets
experience the same delay and the same dropping probability as they would in the
real scenario (Fig. 4.2a). Indeed, for instance, the behavior of transport layer proto-
cols such as TCP is highly affected by such measures. Given that the main source of
delay in the real stack is the queuing time, it is necessary that the overall amount of
packets queued in the various buffers between the traffic control (included) and the
network device is similar in the two scenarios. However, this is not enough to ensure
an accurate network emulation. Indeed, qdiscs implementing AQM algorithms take
decisions about dropping packets based on the qdisc backlog or the packet queuing
time within the qdisc. Therefore, it is also required that the backlog of the ns-3 qdisc
in the emulated scenario is kept similar to the backlog of the Linux qdisc in the real
scenario.

Given that packets accumulate in the Linux (ns-3) qdisc when the transmis-
sion ring (EmuFdNetDevice queue1) is stopped, the requirement above is met if the
EmuFdNetDevice queue is stopped (restarted) in the emulated scenario when the
transmission ring would be stopped (restarted) in the real scenario. To this end, we
distinguish between two cases:

1. when not using BQL, it is the device driver that stops the transmission ring
when there are no descriptors available in the transmission ring and restarts
it when some descriptors are freed. Therefore, the EmuFdNetDevice must be
capable to detect that the overall amount of packets queued in the host qdisc
(if present) and in the transmission ring equals the transmission ring size, so
as it can properly stop and restart its queue.

2. when BQL is enabled, it is the BQL library that stops the transmission ring

1An EmuFdNetDevice does not really use any queue, since every received packet is immediately
sent through the socket; however, it may declare that its queue is stopped for the purpose of preventing
the qdisc from sending further packets

Chapter 4. Enanching the network emulation fidelity to support simulated
modules validation

48

when the amount of bytes queued in the transmission ring exceeds the com-
puted BQL limit and restarts it when the amount of bytes queued in the trans-
mission ring goes down below the computed BQL limit. Hence, the transmis-
sion ring can be stopped even if it is not full. To compute the limit, the BQL li-
brary requires to be periodically notified of the amount of bytes enqueued and
dequeued from the transmission ring. In the emulated scenario, given that
the EmuFdNetDevice has no means to get the limit computed by the Linux
BQL library and hence cannot stop its queue when the overall amount of bytes
queued in the host qdisc (if present) and in the transmission ring exceeds such
limit, it is necessary to enable the ns-3 BQL library. However, the ns-3 BQL li-
brary needs to be notified by the EmuFdNetDevice about the amount of bytes
the EmuFdNetDevice sends to the host qdisc (or directly to the transmission
ring) and the amount of bytes that are removed from the transmission ring
because they have been transferred to the device.

Unfortunately, the EmuFdNetDevice cannot satisfy the two requirements above
due to some limitations of the packet sockets. Like all the types of sockets, the packet
socket uses a send buffer to limit the amount of bytes in flight. The send buffer is not
really a buffer, but rather a counter that is incremented (by the packet size) when a
packet is sent (to the host qdisc or directly to the transmission ring) and decremented
when the destructor of a packet is called by the device driver (upon notification that
the transfer of the packet to the device has been completed). When the socket has
to send a packet and the counter exceeds the send buffer size, the packet is dropped
(unless the socket is in blocking mode). It follows that:

• The send buffer size is an upper bound on the overall amount of bytes that
can be queued in the host qdisc (if present) and in the transmission ring in
the emulated scenario. To meet the first of the requirements above, we would
need the send buffer size to be such that the number of packets in flight cannot
exceed the transmission ring size. However, the fundamental issue here is that
the transmission ring size is measured in terms of number of packets, while the
send buffer size is measured in bytes. Given that packets have variable sizes,
it is not possible to find a value for the send buffer size that ensures that the
number of packets in flight does not exceed the number of packets that can be
stored in the transmission ring.

• The EmuFdNetDevice sends data over the packet socket by calling the write
function, which returns the number of bytes written. Hence, the EmuFdNet-
Device is able to notify the ns-3 BQL library about the amount of bytes sent to
the host qdisc (or directly to the transmission ring). However, the EmuFdNet-
Device has no means to determine the amount of bytes transferred to the net-
work device. The EmuFdNetDevice could infer such value from the counter
of the packet socket that keeps track of the inflight bytes, but this value is not

Chapter 4. Enanching the network emulation fidelity to support simulated
modules validation

49

head

free slots
user application
writes here

hwtail

sent downstream
TXSYNC ioctl tries
to free these slots

hwcur

to be sent downstream
TXSYNC ioctl sends the
packets in these slots
downstream

FIGURE 4.4: Representation of the three different parts in which the
netmap ring can be divided.

accessible from the user space. Hence, the second of the requirements above
cannot be met.

The analysis above led us to conclude that the packet socket is not suitable for
the purpose of achieving an accurate network emulation mechanism. Therefore,
we looked at alternative tools. The analysis above shows that a key requirement is
the ability for user space applications (in our case, ns-3) to detect how many pack-
ets/bytes are in flight, i.e., queued in the various buffers of the networking stack
waiting to be transferred to the network device.

4.2.3 The netmap framework for high speed packet I/O through direct
NIC access

A number of software frameworks, such as netmap, DPDK [54] and PF_RING ZC [55],
aim to reduce the I/O cost of processing network packets. The main applications of
these frameworks fall in the high rate packet generation and packet capture. Such
frameworks employ a number of common techniques (bypass of the default net-
work stack, preallocation of packet buffers, usage of memory mapped in user space
to avoid packet copy, processing batch of packets to reduce the number of syscalls) to
decrease the number of CPU cycles required to transmit/receive packets [56]. How-
ever, the reason why we looked at these frameworks in the attempt to improve the
accuracy of network emulation is not because of the reduced I/O cost of packet pro-
cessing they ensure. Rather, we were looking for alternative techniques allowing
an application to send packets to a network device, given that the packet socket, as
shown in the previous section, is not suited for our purposes. Among the mentioned
frameworks, we selected netmap because it is open source, is available on multiple
operating systems (Linux, FreeBSD and Windows) and serves our purposes even
without having to patch the network device drivers.

Chapter 4. Enanching the network emulation fidelity to support simulated
modules validation

50

Two operation modes are provided by netmap: native and generic. The native
mode is faster, but requires modified kernel drivers. The generic mode is consid-
ered as a fallback mode because it is slightly slower (there is an extra copy for each
packet), but it does not require to modify the kernel drivers. In order to use netmap,
it is necessary to load the netmap kernel module and the modified kernel driver for
the network device, if the native mode is to be used. At this point, the network de-
vice can still be used by any application through the kernel network stack. When an
application opens a file descriptor on /dev/netmap and uses it to switch the device to
netmap mode, that application only can use the network device (through the netmap
stack). The kernel network stack will be used again when the user application closes
the file descriptor.

When a network device is switched to netmap mode, a distinct netmap ring is al-
located for each transmission (receiver) ring used by the device driver and mapped
in the user process memory area. Each netmap ring has the same size, in terms of
slots, as the corresponding transmission (receiver) ring (Fig. 4.4). The user appli-
cation can use the usual primitives that operate on file descriptors to write pack-
ets to the netmap ring (e.g., write) and to check the availability of free slots (e.g.,
select and poll). Packets written to the netmap ring are not automatically sent
to the downstream buffer (i.e., the qdisc or the transmission ring, as described here-
inafter). It is the responsibility of the user application to periodically invoke a system
call, an ioctl request of type TXSYNC, which sends to the downstream buffer all the
packets queued in the netmap ring that have not been sent yet. In this way, a single
system call is invoked to transfer a batch of packets. It is to be noted that packets sent
to the downstream buffer stay in the netmap ring until the downstream buffer has
“consumed” (i.e., dequeued) them. Indeed, given that the netmap ring has the same
size as the downstream buffer, removing packets that have not been consumed by
the downstream buffer would free some slots in the netmap ring. Such slots could
be filled by new packets written by the user application, which could not be ac-
commodated by the downstream buffer when the TXSYNC ioctl request is made.
Freeing the netmap ring slots occupied by packets that have been consumed by the
downstream buffer is the main other task performed by the TXSYNC ioctl request.

To allow netmap to operate in native mode, the device driver needs to be modi-
fied to provide a function serving the TXSYNC ioctl request. Such function inserts
the packets queued in the netmap ring directly in the transmission ring of the de-
vice driver (packets are not copied, pointers only are copied). Also, it frees the slots
occupied in the netmap ring by the packets that have been removed from the trans-
mission ring (because the device has notified the driver that the transfer has been
completed). Additionally, netmap overrides the interrupt service routines handling
the interrupts raised by the device to signal the transmission or reception of packets
by replacing them with a function that notifies such events to the user application.
It is worth to note that the modified drivers lack proper calls to the BQL library,
hence BQL is not available when using netmap in native mode. Currently, a number

Chapter 4. Enanching the network emulation fidelity to support simulated
modules validation

51

of device drivers have been modified to support netmap, ranging from drivers for
common 1Gbps adapters (e.g., the Intel e1000 driver) to drivers for specialized high
performance 10Gbps adapters (e.g., the Intel ixgbe driver).

The generic mode of netmap allows it to work with unmodified kernel drivers.
On Linux, packets in the netmap ring are sent to the kernel network stack by calling
the dev_queue_xmit function, which, as described earlier, hands packets to the TC
infrastructure. Two alternatives are available here. By default, a netmap-aware qdisc
called netmap_generic is automatically installed on the device operating in netmap
mode. This qdisc has the same size as the transmission ring, and hence of the
netmap ring. In this case, the TXSYNC ioctl frees the packets in the netmap ring
that have been dequeued from the netmap_generic qdisc. It turns out that the maxi-
mum amount of packets in flight is twice the size of the transmission ring: both the
netmap_generic qdisc and the transmission ring can be full, and the netmap ring
contains the packets queued in the netmap_generic qdisc.

The other option available in generic mode can be selected by configuring a pa-
rameter accessible via the sysfs virtual filesystem. In this case, the netmap_generic
qdisc is not installed, hence the qdisc previously installed on the device operating in
netmap mode is used. From the point of view of freeing the packets in the netmap
ring, netmap behaves like when it is used on other operating systems, where pack-
ets written to the netmap ring are directly copied into slots of the transmission ring.
This means that the TXSYNC ioctl frees the packets in the netmap ring that have
been removed from the transmission ring (because the device notified the driver
that it retrieved those packets). Therefore, the overall amount of packets stored in
the qdisc and in the transmission ring cannot exceed the transmission ring size.

4.3 Exploiting netmap to enhance the fidelity of network em-
ulation

We now present the design of a new ns-3 NetDevice, named NetmapNetDevice, that
exploits netmap to provide accurate network emulation. Since netmap uses file de-
scriptor based communication to interact with the real device, the straightforward
approach to design the new NetDevice is to have it inherit from the existing FdNet-
Device and implement a specialized version of the operations specific to netmap.
The operations that require a specialized implementation are the initialization, be-
cause the NIC has to be put in netmap mode, and the read/write methods, which
have to make use of the netmap API to coordinate the exchange of packets with the
netmap rings.

In the initialization stage, the network device is switched to netmap mode, so that
the user application (ns-3, in our case) is able to send/receive packets to/from the
real network device by writing/reading them to/from the netmap rings. Following
the design of the FdNetDevice, a separate reading thread is started during the ini-
tialization. The task of the reading thread is to wait for new incoming packets in

Chapter 4. Enanching the network emulation fidelity to support simulated
modules validation

52

ns-3
node

physical
host

Ip
v{

4,
6}

L3
P

ro
to

co
l

packet filter traffic-control

qdisc
netmap

Network device driver

tx
ring

stop / wake

transfer completed N
et

m
ap

N
et

D
ev

ic
e

Netmap tx ring

NIC

(A)

ns-3
node

physical
host

Ip
v{

4,
6}

L3
P

ro
to

co
l

packet filter traffic-control

qdisc
netmap

 TC

host qdisc

stop / wake

Network device driver

tx
ring

stop / wake

transfer completed N
et

m
ap

N
et

D
ev

ic
e

Netmap tx ring

NIC

(B)

FIGURE 4.5: Schematic representation of the network stack in the
emulated scenario with: (a) netmap in native mode; (b) netmap in

generic mode.

the netmap receiver rings, in order to schedule the events of packet reception. In
the initialization of the NetmapNetDevice, an additional thread, the sync thread, is
started. The sync thread is required because, in order to reduce the cost of the system
calls, netmap does not automatically transfer a packet written to a slot of the netmap
ring to the transmission ring or to the installed qdisc. It is up to the user process to
periodically request a synchronization of the netmap ring. Therefore, the purpose
of the sync thread is to periodically make a TXSYNC ioctl request, so that pend-
ing packets in the netmap ring are transferred to the transmission ring, if in native
mode, or to the installed qdisc, if in generic mode. Also, as described hereinafter, the
sync thread is exploited to perform flow control and notify the BQL library about the
amount of bytes that have been transferred to the network device.

The read method is called by the reading thread to retrieve new incoming packets
stored in the netmap receiver ring and pass them to the appropriate ns-3 protocol
handler for further processing within the simulator’s network stack. After retrieving
packets, the reading thread also synchronizes the netmap receiver ring, so that the
retrieved packets can be removed from the netmap receiver ring.

The NetmapNetDevice also specializes the write method, i.e., the method used
to transmit a packet received from the upper layer (i.e., the ns-3 traffic control layer).
The write method uses the netmap API to write the packet to a free slot in the netmap
transmission ring. After writing a packet, the write method checks whether there
is enough room in the netmap transmission ring for another packet. If not, the

Chapter 4. Enanching the network emulation fidelity to support simulated
modules validation

53

NetmapNetDevice stops its queue2, so that the ns-3 traffic control layer does not
attempt to send a packet that could not be stored in the netmap transmission ring.
A stopped NetmapNetDevice queue needs to be restarted as soon as some room is
made in the netmap transmission ring. The sync thread can be exploited for this
purpose, given that it periodically synchronizes the netmap transmission ring. In
particular, the sync thread also checks the number of free slots in the netmap trans-
mission ring in case the NetmapNetDevice queue is stopped. If the number of free
slots exceeds a configurable value, the sync thread restarts the NetmapNetDevice
queue and wakes the associated ns-3 qdisc. The NetmapNetDevice also supports
BQL: the write method notifies the BQL library of the amount of bytes that have been
written to the netmap transmission ring, while the sync thread notifies the BQL li-
brary of the amount of bytes that have been removed from the netmap transmission
ring and transferred to the NIC since the previous notification.

We now discuss how accurate the network emulation provided by the Netmap-
NetDevice is, both in native and generic mode, by checking whether the Netmap-
NetDevice queue is stopped (restarted) in the emulated scenario when the transmis-
sion ring would be stopped (restarted) in the real scenario. Again, we distinguish
between two cases:

• when BQL is not enabled, the NetmapNetDevice should be able to stop its
queue as soon as the transmission ring is stopped. When netmap operates in
native mode (Fig. 4.5a), the netmap ring contains the same packets stored in the
transmission ring (after a synchronization). Given that the NetmapNetDevice
is able to query the status of the netmap ring, the NetmapNetDevice is able to
stop its queue when the transmission ring is full and restart it when enough
room is made. When netmap operates in generic mode (Fig. 4.5b), the default
configuration including the netmap_generic qdisc is not suited, because the
amount of packets in flight is twice the size of the transmission ring. Hence,
the NetmapNetDevice would not stop its queue as soon as the transmission
ring is full. Instead, when the netmap_generic qdisc is not used, the amount
of packets in flight equals the size of the transmission ring. In this case, the
NetmapNetDevice is able to properly stop and restart its queue.

• when BQL is enabled, the ns-3 BQL library needs to be notified of the amount
of bytes enqueued into the transmission ring and dequeued from it. As ex-
plained earlier, such information is provided by the write method and the sync
thread both in native mode and in generic mode without the netmap_generic
qdisc. In generic mode with the netmap_generic qdisc, instead, the sync thread
can return less accurate information, because slots in the netmap ring are freed
when packets are dequeued from the qdisc instead of when packets are re-
moved from the transmission ring.

2A NetmapNetDevice does not really use any queue, since every received packet is immediately
written to the netmap ring; however, it may declare that its queue is stopped for the purpose of pre-
venting the qdisc from sending further packets

Chapter 4. Enanching the network emulation fidelity to support simulated
modules validation

54

Sender

NIC

Receiver

iPerf3 server

TCP

IP

TC (pfifo_fast)

device driver

NIC

Intermediate host

IP

TC (pfifo_fast)

device driver

NIC1

TC (various)

device driver

NIC2
1 Gbps 100 Mbps

iPerf3 client

TCP

IP

TC (pfifo_fast)

device driver

(A)

Intermediate host
ns-3 Simulation

Sender

iPerf3 client

TCP

IP

TC (pfifo_fast)

device driver

NIC

Receiver

NIC

traffic-control
(pfifo_fast)

NIC1

Netmap
NetDevice

NIC2

traffic-control
(various)

Node

1 Gbps 100 Mbps

IP

netmap

iPerf3 server

TCP

IP

TC (pfifo_fast)

device driver

EmuFd
NetDevice

Netmap
NetDevice

EmuFd
NetDevice

packet
socket

netmap packet
socket

(B)

FIGURE 4.6: The testbed used for experiments is comprised of three
physical hosts. (a) In the real scenario, the Linux network stack is
used. (b) In the emulated scenario, an ns-3 simulation runs on the
intermediate host. The simulation scenario includes a single node
with two EmuFdNetDevices or two NetmapNetDevices, connected

each to one of the NICs of the physical host.

Therefore, we expect that the NetmapNetDevice ensures an accurate network
emulation when netmap operates in native mode and in generic mode without the
netmap_generic qdisc. Instead, accuracy may be lower when netmap operates in
generic mode with the default netmap_generic qdisc.

The NetmapNetDevice can operate with netmap in both native and generic mode.
In particular, if the modified kernel driver for the NIC has been loaded, the native
mode is used. Otherwise, the generic mode is used. Finally, we mention that the
NetmapNetDevice has three parameters:

• a boolean value indicating whether or not to install the netmap_generic qdisc
when operating in generic mode. Given that the main usage of the Netmap-
NetDevice is to perform network emulation experiments and, as shown in this
work, network emulation is more accurate when the netmap_generic qdisc is
not installed, this value defaults to false.

• the sync thread sleep time. The default value is 200 us, which is the same as
the interrupt coalescence timer used by device drivers like tg3 or e1000e. This
value is a good compromise between the need of keeping the netmap ring in
sync with the transmission ring and the need of reducing the number of system
calls.

• the predefined number of slots in the netmap ring that need to be freed before
restarting the NetmapNetDevice queue. This value defaults to 32, which is the
same as the value used by device drivers like tg3 or e1000e.

Chapter 4. Enanching the network emulation fidelity to support simulated
modules validation

55

256 128 BQL

tx ring size

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200
q

d
is

c
 b

a
c
k
lo

g
 (

K
B

)

linux

nm generic

nm generic pfifo

nm native

sk

sk bypass

(A) qdisc backlog

256 128 BQL

tx ring size

0

50

100

150

200

250

300

350

h
o

s
t

q
d

is
c
 b

a
c
k
lo

g
 (

K
B

)

nm generic

nm generic pfifo

sk

(B) host qdisc backlog

256 128 BQL

tx ring size

0

50

100

150

200

250

300

350

tx
 r

in
g

 b
a

c
k
lo

g
 (

K
B

)

linux

nm generic

nm generic pfifo

nm native

sk

sk bypass

(C) transmission ring back-
log

FIGURE 4.7: Comparison between the Linux stack and the network
emulation techniques under test: in flight bytes

4.4 Experimental results

4.4.1 Assessing the accuracy of network emulation techniques

We conducted a thorough experimental campaign to compare the results achieved
by the real Linux network stack (labelled as linux in the following figures) to dif-
ferent network emulation techniques: packet socket with (sk bypass) and without
(sk) the PACKET_QDISC_BYPASS option enabled, netmap in native mode (nm native),
netmap in generic mode with the netmap_generic qdisc (nm generic) and with the
default pfifo_fast qdisc (nm generic pfifo), which is a simple First-In First-Out packet
scheduler. For a fair comparison, it is necessary that the EmuFdNetDevice and the
NetmapNetDevice are passed the same traffic pattern as the Linux network device
driver in the real scenario. To this end, we devised a setup with three nodes con-
nected back to back through Ethernet cross cables (Fig. 4.6). The intermediate host
acts as a router between the sender and the receiver and is configured to use the
Linux stack in the real scenario (Fig. 4.6a) and the ns-3 stack in the emulated scenario
(Fig. 4.6b). Sender and receiver nodes use instead the Linux stack in both scenarios.
In this way, the traffic is generated by the same application running on a Linux host
both in the real scenario and in the emulated scenario. Also, the Linux implementa-
tion of TCP is used in both scenarios, thus avoiding that possible differences in the
Linux and ns-3 implementations of TCP may affect the results of our tests.

In order to compare the Linux stack and the ns-3 stack under meaningful test
conditions, the rate of the link between the sender and the intermediate host is 1
Gbps, while the rate of the link between the intermediate host and the receiver is 100
Mbps. In this way, some backlog accumulates in the compared network stacks, so as
to better highlight discrepancies in their behavior. The focus is thus on the network
stack associated with NIC2 (an Intel 1 Gbps Ethernet adapter using the Linux e1000e
driver), which is where packets accumulate and hence contributes the most to the
resulting latency and packet drops (the return path is lightly loaded because only
traversed by Echo Reply messages and TCP acknowledgments). We evaluated the
network emulation techniques in three different test conditions:

Chapter 4. Enanching the network emulation fidelity to support simulated
modules validation

56

• the size of the transmission ring of NIC2 is set to the default value for the Linux
e1000e driver (256 descriptors) and BQL is disabled (both in Linux and ns-3);

• the size of the transmission ring of NIC2 is set to half the default value for the
Linux e1000e driver (128 descriptors) and BQL is disabled (both in Linux and
ns-3);

• the size of the transmission ring of NIC2 is set to the default value for the Linux
e1000e driver (256 descriptors) and the Linux (ns-3) implementation of BQL is
enabled in the real scenario (emulated scenario).

Each of the three hosts is equipped with an Intel i7-6700 CPU and a 16GB RAM,
and runs the Linux 4.11 kernel. TCP traffic is generated by an iPerf3 client running
on the sender node and destined to the iPerf3 server running on the receiver node.
iPerf3 is a tool for active measurements of the maximum achievable bandwidth on
IP networks. For the experiments in the emulated scenario (Fig. 4.6b), we use ns-
3.28 compiled in optimized mode. We run an ns-3 simulation on the intermediate
host where one ns-3 node has two NetDevices (both of type EmuFdNetDevice or
NetmapNetDevice), each of which is associated with one of the real NICs. Proper
routes are installed in the routing table of the ns-3 node, so that packets received by
the NetDevice associated with NIC1 are forwarded to the NetDevice associated with
NIC2 (and viceversa). In this set of experiments, all the qdiscs (but the host qdisc
when netmap is used in generic mode with the default netmap_generic qdisc) are
of type pfifo_fast. For the experiments requiring to disable BQL, we set the mini-
mum value for the BQL limit to a value higher than the transmission ring capacity,
obtained by multiplying the number of descriptors by the packet size (1500 bytes).

For each experiment, we performed 5 consecutive tests, each of which lasting 30
seconds. The transient state during which queues build up lasts for about a couple
of seconds, thus we believe that 30 seconds are enough to capture the steady-state
evolution of the quantities we measure. Also, results are rather similar from one test
to another, so we believe that repeating an experiment 5 times is enough to minimize
the impact of undesired factors. For each experiment, we take samples of a number
of quantities (throughput, latency, packet drops, qdisc backlog and transmission ring
backlog) to compare the Linux stack to the various network emulation techniques.
The empirical distribution of the set of samples collected for each quantity in each
experiment is summarized by means of box plots. On each box, the central mark
indicates the median, and the bottom and top edges of the box indicate the 25th and
75th percentiles, respectively. The whiskers extend to the most extreme data points
not considered outliers.

In the following, we first analyze the amount of bytes buffered in the network
stack (below the IP layer) by looking at the backlog of the qdiscs and of the trans-
mission ring on NIC2. Then, we show the results in terms of user visible metrics
such as throughput, packet drops and round-trip time.

Chapter 4. Enanching the network emulation fidelity to support simulated
modules validation

57

256 128 BQL

tx ring size

70

75

80

85

90

95

100

105

110

115

120
th

ro
u

g
h

p
u

t
(M

b
p

s
)

linux

nm generic

nm generic pfifo

nm native

sk

sk bypass

(A) throughput

256 128 BQL

tx ring size

0

100

200

300

400

500

600

d
ro

p
p

e
d

 (
n

u
m

b
e

r
o

f
p

a
c
k
e

ts
)

linux

nm generic

nm generic pfifo

nm native

sk

sk bypass

(B) packet dropped by the
qdisc

256 128 BQL

tx ring size

0

50

100

150

200

250

300

p
in

g
 R

T
T

 (
m

s
)

linux

nm generic

nm generic pfifo

nm native

sk

sk bypass

(C) ping round-trip time

FIGURE 4.8: Comparison between the Linux stack and the net-
work emulation techniques under test: throughput, packet drops and

round-trip time.

Transmission ring backlog

For each experiment, we collected the amount of bytes queued in the transmission
ring of NIC2 every millisecond by reading the inflight variable (accessible via sysfs)
that is updated by the BQL library. Figure 4.7c shows the distribution of the collected
samples in the real scenario and in the emulated scenarios. Given that the traffic
generator attempts to saturate the channel capacity, we expect that the transmission
ring is full most of the time when BQL is not enabled. Figure 4.7c shows that this
is actually the case for the Linux stack and for all the emulated scenarios based on
netmap3. In the emulated scenarios based on the packet socket, the backlog of the
transmission ring is constantly equal to a value which is smaller than the capacity of
the transmission ring, independently of its size (256 or 128 descriptors). Such result
is explained by considering that the amount of bytes that the socket send buffer size
allows to be in flight is not enough to saturate the transmission ring. When BQL
is enabled, the backlog in the transmission ring does not exceed the limit that is
dynamically computed by the BQL library. Given that such limit is typically smaller
than the socket send buffer size, the backlog measured when the packet socket is
used is similar to that achieved in the real scenario. When the PACKET_QDISC_BYPASS
option is enabled, however, the transmission ring still contains as many bytes as
allowed by the socket send buffer size. The reason is that, in such a case, the packet
socket routine that sends packets to the transmission ring only checks whether the
transmission ring has been stopped by the device driver, thus ignoring the situations
where the transmission ring has been stopped by the BQL library.

3The backlog of the transmission ring when using netmap in native mode is not collected by reading
the inflight variable because the modified network device driver does not notify the BQL library of the
amount of bytes enqueued and dequeued from the transmission ring. Instead, the backlog of the
netmap ring is collected.

Chapter 4. Enanching the network emulation fidelity to support simulated
modules validation

58

Round Trip Time for 10.0.1.1:60310 → 10.0.2.2:7000

0 4 8 12 16 20 24 28
Time (s)

45

60

75

90

105

120

R
o

un
d

 T
ri

p
 T

im
e

(m
s)

exp-1-capture.pcap

(A) Linux

Round Trip Time for 10.0.1.1:35680 → 10.0.2.2:7000

4 8 12 16 20 24 28
Time (s)

50

60

70

80

90

100

110

120

130

R
o

un
d

 T
ri

p
 T

im
e

(m
s)

exp-2-capture.pcap

(B) netmap, native mode

Round Trip Time for 10.0.1.1:33472 → 10.0.2.2:7000

0 4 8 12 16 20 24 28
Time (s)

50

60

70

80

90

100

110

120

130

R
o

un
d

 T
ri

p
 T

im
e

(m
s)

exp-1-capture.pcap

(C) netmap, generic mode
with netmap_generic qdisc

Round Trip Time for 10.0.1.1:33920 → 10.0.2.2:7000

0 4 8 12 16 20 24 28
Time (s)

45

60

75

90

105

120

135

R
o

un
d

 T
ri

p
 T

im
e

(m
s)

exp-2-capture.pcap

(D) netmap, generic mode
with pfifo_fast qdisc

Round Trip Time for 10.0.1.1:60668 → 10.0.2.2:7000

0 4 8 12 16 20 24 28
Time (s)

30

60

90

120

150

180

210

R
o

un
d

 T
ri

p
 T

im
e

(m
s)

exp-1-capture.pcap

(E) packet socket

Round Trip Time for 10.0.1.1:33108 → 10.0.2.2:7000

0 4.5 9 13.5 18 22.5 27
Time (s)

50

75

100

125

150

175

200

R
o

un
d

 T
ri

p
 T

im
e

(m
s)

exp-3-capture.pcap

(F) packet socket with
PACKET_QDISC_BYPASS

enabled

FIGURE 4.9: Round-trip time of every TCP segment acknowledged
by the receiver in a single test run (with BQL enabled).

Qdisc backlog

For each experiment, we collected the amount of bytes stored by the various qdiscs
involved every millisecond. In particular, Fig. 4.7a shows the distribution of the col-
lected samples for the Linux qdisc installed on NIC2 in the real scenario (Fig. 4.2a)
and for the ns-3 qdisc installed on the NetDevice associated with NIC2 in the em-
ulated scenarios. Figure 4.7b, instead, shows the distribution of the collected sam-
ples for the additional host qdisc installed on NIC2 in the emulated scenarios with
netmap in generic mode (Fig. 4.5b) and with the packet socket with the PACKET_QDISC_BYPASS
option disabled (Fig. 4.3a). From these figures, it can be observed that:

• when using netmap in native mode, the backlog of the ns-3 qdisc is very sim-
ilar to that of the Linux qdisc (Fig. 4.7a). This result proves that the Netmap-
NetDevice queue is stopped (restarted), either by the NetmapNetDevice it-
self or by the ns-3 BQL library, when the transmission ring would be stopped
(restarted), if netmap operates in native mode;

• when using netmap in generic mode with the default
netmap_generic qdisc and BQL is disabled, the backlog of the host qdisc is
similar to the backlog of the transmission ring (Figs. 4.7b and 4.7c). This re-
sult is expected because, as discussed earlier, the strategy used to free the slots
in the netmap ring allows twice as many packets in flight as the transmission
ring size. The backlog of the ns-3 qdisc is smaller than that of the Linux qdisc.
The reason is that the NetmapNetDevice queue is stopped less frequently than
the transmission ring in the real scenario and therefore less packets accumu-
late in the qdisc. As discussed earlier, when BQL is enabled, the ns-3 BQL
library receives inaccurate information about the amount of bytes transmitted

Chapter 4. Enanching the network emulation fidelity to support simulated
modules validation

59

by the device (the BQL library sees a device that is able to transmit more bytes
than it actually does, just because packets sent to the driver are removed from
the netmap ring). Indeed, when BQL is enabled, the host qdisc has a non-
negligible backlog and the backlog of the ns-3 qdisc is different than that of the
Linux qdisc;

• when using netmap in generic mode with the pfifo_fast qdisc, the backlog of
the ns-3 qdisc is very similar to that of the Linux qdisc (Fig. 4.7a). The host
qdisc has a negligible backlog when BQL is disabled (likely due to the fact that,
when enough room is made in the transmission ring after it has been stopped,
the qdisc is awaken; however, in the meantime the qdisc is actually served,
netmap may transmit packets that therefore accumulate in the host qdisc). This
result proves that netmap is able to provide accurate network emulation also
when operating in generic mode without the default netmap_generic qdisc.

• when using the packet socket and BQL is disabled, we already observed that
the socket send buffer size prevents the transmission ring from being full. Con-
sequently, the transmission ring is never stopped and the qdisc backlog is null.
When BQL is enabled, there is some backlog in the host qdisc because the pack-
ets that are sent over the packet socket when the transmission ring is stopped
by the BQL library are buffered in the host qdisc.

These results show that the backlog of the ns-3 qdisc is similar to that of the Linux
qdisc only when using netmap in native mode or netmap in generic mode without
the default netmap_generic qdisc. We recall that the qdisc backlog is an important
parameter, because AQM algorithms usually decide to drop packets based on the
qdisc backlog or the waiting time in the qdisc.

Throughput

For each experiment, we collected the average throughput over time intervals of 100
milliseconds, as measured by the iPerf3 server. Figure 4.8a shows that the through-
put is very stable across the whole duration of every experiment, for both the real
and the emulated scenarios, and the stable value is about 94 Mbps in all the experi-
ments. This result shows that the EmuFdNetDevice and the NetmapNetDevice are
able to sustain transmission rates close to 100 Mbps.

Packet drops

For each test, we measured the cumulative number of packets dropped by the Linux
qdisc installed on NIC2 (in the real scenario) or by the ns-3 qdisc installed on the
NetDevice associated with NIC2 (in the emulated scenarios), every millisecond. Fig-
ure 4.8b shows that in all the cases the qdiscs do not drop packets. This result is ex-
pected because we showed earlier that the qdiscs are not full (the default capacity of
a pfifo_fast qdisc is 1000 packets). However, it is to be mentioned that packets may

Chapter 4. Enanching the network emulation fidelity to support simulated
modules validation

60

256 128 BQL

tx ring size

0

50

100

150

200

250

q
d

is
c
 b

a
c
k
lo

g
 (

K
B

)

linux

nm generic pfifo

(A) CoDel

256 128 BQL

tx ring size

0

50

100

150

200

250

300

350

q
d

is
c
 b

a
c
k
lo

g
 (

K
B

)

linux

nm generic pfifo

(B) FQ-CoDel

256 128 BQL

tx ring size

0

50

100

150

200

q
d

is
c
 b

a
c
k
lo

g
 (

K
B

)

linux

nm generic pfifo

(C) RED

FIGURE 4.10: Backlog of the AQM algorithms in the validation ex-
periments.

be dropped elsewhere, e.g., when using the packet socket and the amount of bytes
in flight exceeds the socket send buffer size.

Round-trip time

For each experiment, we collected the round trip time of ICMP Echo Request/Reply
messages sent by the sender host every 5 milliseconds and destined to the receiver
host. Figure 4.8c shows that the results obtained by using netmap are very similar
to those obtained with Linux for all the experiments. We observe that in the case
of netmap operating in generic mode with the default netmap_generic qdisc, the la-
tency is the same as in the other cases because the sum of the backlog of the ns-3
qdisc and the host qdisc roughly equals the backlog of the ns-3 qdisc in the other
cases (Figs. 4.7). However, if the ns-3 qdisc implemented an AQM algorithm, the
results would have been different because of the different backlog of the ns-3 qdisc.
Figure 4.8c also shows that the latency experienced when the packet socket mecha-
nism is used is rather different than that achieved with the real stack.

In order to have a more in-depth look at the results in terms of latency, we also
captured, for every test, the trace of the packets sent/received by the sender host by
using wireshark. Then, we used the same tool to plot the round-trip time of every
single TCP segment acknowledged by the receiver. Figure 4.9 shows the resulting
plots for a single test run with BQL enabled (all the other test runs show a very
similar behavior). These plots confirm that the NetmapNetDevice is able to provide
a very accurate network emulation, given that packets experience a latency that is
extremely similar to that experienced with the real stack. Contrarily, it appears clear
that the EmuFdNetDevice using the packet socket mechanism is not able to provide
a similar level of accuracy.

4.4.2 Validation of the ns-3 implementation of AQM algorithms

The experiments presented in the previous subsection prove that the NetmapNet-
Device is able to guarantee an accurate network emulation, even when netmap is
used in generic mode (with the pfifo_fast qdisc). The backlog of the ns-3 qdisc is

Chapter 4. Enanching the network emulation fidelity to support simulated
modules validation

61

256 128 BQL

tx ring size

0

20

40

60

80

100

d
ro

p
p

e
d

 (
n

u
m

b
e

r
o

f
p

a
c
k
e

ts
)

linux

nm generic pfifo

(A) CoDel

256 128 BQL

tx ring size

0

20

40

60

80

100

120

d
ro

p
p

e
d

 (
n

u
m

b
e

r
o

f
p

a
c
k
e

ts
)

linux

nm generic pfifo

(B) FQ-CoDel

256 128 BQL

tx ring size

0

20

40

60

80

100

120

d
ro

p
p

e
d

 (
n

u
m

b
e

r
o

f
p

a
c
k
e

ts
)

linux

nm generic pfifo

(C) RED

FIGURE 4.11: Cumulative number of packets dropped by the AQM
algorithms in the validation experiments.

very similar to that of the Linux qdisc in the real scenario and it is just like if the ns-3
qdisc was running on a real device. We can build upon such result to validate the
ns-3 implementation of some AQM algorithms (RED, CoDel and FQ-CoDel) against
their Linux implementation. The same setup as in Fig. 4.6 can still be used, with
the only difference that the AQM algorithm under test is installed on NIC2 (on the
NetmapNetDevice associated with NIC2) in the real (emulated) scenario. For these
experiments, netmap operating in generic mode with the pfifo_fast qdisc is used.

We omit the figures regarding the throughput (because it is constantly equal to
about 94 Mbps in all the tests) and the transmission ring backlog (because it is in-
fluenced by the emulation mechanism rather than the qdisc) and focus on the met-
rics that are mainly affected by AQM algorithms: qdisc backlog, number of packets
dropped by the qdisc and latency. Figure 4.10 shows that the backlog of the ns-3
qdisc is very similar to that of the Linux qdisc for all the experiments. A bit of an
exception is the case of RED when BQL is enabled, because the backlog of the Linux
qdisc is higher. Figure 4.11 shows that the cumulative number of packets dropped
by the ns-3 qdisc is very similar to that of the Linux qdisc for all the experiments.
Again, there is a small discrepancy in the case of RED when BQL is enabled, because
the ns-3 qdisc drops more packets. This result is consistent with the previous one:
the ns-3 implementation of RED drops more packets than the Linux one when the
backlog is high and hence the resulting backlog is lower than that of the Linux qdisc.

The comparison in terms of latency is again shown by taking one test run with
BQL enabled and reporting the plots of the round-trip time of the acknowledged
TCP segments as produced by wireshark. Figure 4.12 shows that the ns-3 version
of CoDel and FQ-CoDel behave extremely similarly to their Linux counterpart. As
highlighted above, some slight discrepancy can be instead observed in the behav-
ior of RED when the qdisc backlog is high. With this caveat, we can state that the
experiments we conducted prove the validity of the ns-3 implementation of CoDel,
FQ-CoDel and RED.

Chapter 4. Enanching the network emulation fidelity to support simulated
modules validation

62

Round Trip Time for 10.0.1.1:33040 → 10.0.2.2:7000

0 4 8 12 16 20 24 28
Time (s)

0

8

16

24

32

40

48

R
o

un
d

 T
ri

p
 T

im
e

(m
s)

exp-1-capture.pcap

(A) CoDel on Linux

Round Trip Time for 10.0.1.1:34236 → 10.0.2.2:7000

0 4 8 12 16 20 24 28
Time (s)

5

7.5

10

12.5

15

17.5

20

R
o

un
d

 T
ri

p
 T

im
e

(m
s)

exp-3-capture.pcap

(B) FQ-CoDel on Linux

Round Trip Time for 10.0.1.1:35260 → 10.0.2.2:7000

0 4 8 12 16 20 24 28
Time (s)

3

6

9

12

15

18

21

R
o

un
d

 T
ri

p
 T

im
e

(m
s)

exp-2-capture.pcap

(C) RED on Linux
Round Trip Time for 10.0.1.1:34312 → 10.0.2.2:7000

0 4 8 12 16 20 24 28
Time (s)

0

8

16

24

32

40

48

56

R
o

un
d

 T
ri

p
 T

im
e

(m
s)

exp-1-capture.pcap

(D) CoDel on ns-3

Round Trip Time for 10.0.1.1:34840 → 10.0.2.2:7000

0 4 8 12 16 20 24 28
Time (s)

5

7.5

10

12.5

15

17.5

20

R
o

un
d

 T
ri

p
 T

im
e

(m
s)

exp-2-capture.pcap

(E) FQ-CoDel on ns-3

Round Trip Time for 10.0.1.1:35316 → 10.0.2.2:7000

0 4 8 12 16 20 24 28
Time (s)

3.5

7

10.5

14

17.5

21

R
o

un
d

 T
ri

p
 T

im
e

(m
s)

exp-4-capture.pcap

(F) RED on ns-3

FIGURE 4.12: Round-trip time of every TCP segment acknowledged
by the receiver in a single test run (with BQL enabled).

1 2 3 4 5 6

emulation mode

0

100

200

300

400

500

600

700

800

900

1000

th
ro

u
g

h
p

u
t

(M
b

p
s
)

linux

nm generic

nm generic pfifo

nm native

sk

sk bypass

(A) Packet size: 1000B
1 2 3 4 5 6

emulation mode

0

50

100

150

200

250

300

th
ro

u
g

h
p

u
t

(M
b

p
s
)

linux

nm generic

nm generic pfifo

nm native

sk

sk bypass

(B) Packet size: 100B

FIGURE 4.13: Throughput achieved with different packet sizes.

4.4.3 Analysis of the maximum achievable data rates

We conclude our experiments by analyzing the maximum data rates achievable by
ns-3 when using the network emulation mechanisms studied in this work. We con-
tinue using the setup illustrated in Fig. 4.6, with the only difference that the capacity
of the link between the intermediate host and the receiver is 1 Gbps. When evaluat-
ing the ability of a network stack to transmit packets, it is appropriate to measure the
number of packets transmitted per second, given that there is a cost associated to the
processing of every single transmitted packet. In our emulated scenarios, both ns-3
and the network emulation mechanism (i.e., the packet socket or netmap) contribute
to the per packet processing cost4. We conducted a first test by generating packets
of 1000 bytes. In this case, a 1Gbps link is saturated by transmitting 125 kpps (kilo
packets per second). Figure 4.13a shows that the ns-3 stack with any of the consid-
ered network emulation mechanisms is able to achieve the same throughput as the

4In the considered setup, the ns-3 processing consists of routing packets from one NetDevice to
another. The ns-3 processing cost may be different in other scenarios (e.g., packets generated by ns-3
that traverse the whole ns-3 stack).

Chapter 4. Enanching the network emulation fidelity to support simulated
modules validation

63

Linux stack (about 900Mbps). Hence, both the EmuFdNetDevice and the Netmap-
NetDevice are able to route 125 kpps. Then, we conducted another test by gener-
ating packets of 100 bytes. In this case, a 1Gbps link is saturated by transmitting
1.25 Mpps. Fig. 4.13b shows that the Linux stack achieves 240 Mbps (corresponding
to 300 kpps), while the ns-3 stack achieves about 120 Mbps (corresponding to 150
kpps) when using the NetmapNetDevice and about 100 Mbps (corresponding to 125
kpps) when using the EmuFdNetDevice. Thus, the optimizations implemented by
netmap enable a throughput increase of about 20% with respect to the packet socket
in this scenario. Therefore, the NetmapNetDevice allows to reduce the per packet
processing cost with respect to the EmuFdNetDevice, which translates in a higher
throughput when the maximum packet rate is bounded by the CPU usage.

4.5 Conclusions

In this chapter we presented the work carried out to enhance the network emulation
capabilities of network simulators such as ns-3. We first described the limitations of
the current approach based on packet sockets, which is adopted by various network
simulators. Then, we introduced netmap as an alternative technique and presented
the design of the new NetmapNetDevice for ns-3. We conducted a thorough ex-
perimental campaign to show the accuracy of the network emulation mechanism
based on netmap. We considered two different NIC ring sizes and the usage of
BQL, in order to perform the tests under different backlog conditions. Building upon
the accurate network emulation provided by the NetmapNetDevice, we performed
other experiments to validate the ns-3 implementation of various AQM algorithms
(CoDel, FQ-CoDel, RED) against the Linux implementation. The experimental re-
sults showed the accuracy of the ns-3 implementation of such qdiscs, except for a
slight discrepancy in the case of RED when the qdisc backlog is high.

64

Chapter 5

Proposals of design and evaluation
of traffic control strategies

In this chapter, we move on to the design and evaluation of traffic control strategies
in communication networks. The examples exploit simulation and, when possible,
results comparison with emulation and testbed. We show two examples, the first
in the context of 3GPP stacks while the second in the context of AQM algorithms.
In the first case, we designed and evaluated a traffic control strategy on top of LTE
stack by using simulation with ns-3. In the second case we prove design flaws in
rate based AQM algorithms through comparison of emulation and testbed results,
then we propose possible solutions.

5.1 Introduction

In this chapter we rely on simulation, emulation and testbed approaches to design
and evaluate traffic control strategies. In these examples, we exploit the ns-3 traffic
control module and its AQM algorithms implemented and validated in this work.
More specifically, we exploited ns-3 based simulation to design a traffic control layer
in LTE networks while we rely on comparison of ns-3 based emulation and testbed
results to highlight design flaws in rate based AQM algorithms and to propose pos-
sible alternative solutions.

In the first example, we present the introduction of traffic control module on
3GPP stacks. We rely on ns-3 simulation to design a new software layer in 3GPP
stack which aims to improve the traffic performance. The proposed layer aims to
relieve the network operator management overhead while controlling the queueing
delay of traffic flows on RLC queues of 3GPP stacks.

In the second example, we prove some design flaws in rate based AQM algo-
rithms through comparison of ns-3 based emulation and testbed results, then we
propose possible solutions. Indeed, we prove that the rates estimated from such
algorithms depends on the specific flow control implemented by the device. Then,
we propose a timestamp approach to improve the accuracy and an alternative flow
control to consider it by design.

Chapter 5. Proposals of design and evaluation of traffic control strategies 65

The rest of this chapter is structured as follows. Section 2 presents the design and
evaluation of a software traffic control in 3GPP stacks. Section 3 proves design flaws
in rate based AQM algorithms and propose possible different approaches. Finally,
Section 4 concludes the chapter.

5.2 A software traffic control in 3GPP stack

The word bufferbloat entered the dictionary of scientists and researchers since 2011
when Jim Gettys first discovered it in residential settings. It is a term to define the
existence of unreasonably large and full buffers inside any network. Over the years,
technology standards have not kept up with research on this matter. Buffering poli-
cies are considered implementation-specific, and the designers’ efforts went instead
towards defining different cooperating layers in the 3GPP standard to provide a
guaranteed Quality of Service (QoS) for paying customer. Different flow require-
ments are reflected in various bearer (a virtual transport pipe) properties, that so are
served differently from the network.

Every User Equipment (UE) device has an “always on” default bearer activated
at the time of device initialization. Other dedicated bearers, to serve flows with dif-
ferent priorities, are left for particular customers (such as public safety operators, or
companies with significant contracts). Moreover, an Evolved Node B (eNB) encapsu-
lates an end-to-end data bearer over a radio bearer for the over-the-air transmission.
Unfortunately, opening and closing a bearer is not straightforward, and requires sig-
naling between the network user and the network operator, increasing the network
management effort. Then, the operator is prone to keep a fixed number of opened
bearers to relieve the network management overhead. From our investigation in An-
droid devices, and according to [57], the operator uses a single bearer for a regular
user where all the user applications data (such as HTTPS video transfer, PUT/GET
HTTPS request, a Skype call, a WhatsApp message) pass through. Therefore, in the
rest of this case study, we assume this typical model in which all the user data goes
into the default bearer.

In this case study, we present a novel way to solve bufferbloat problem in 3GPP
mobile networks, hopefully shedding some light on this problem for the current
standardization process of 5G New Radio (NR). In this proposal, we connect the
Linux Traffic Control infrastructure on top of the 3GPP stack, employing a cross-
layer approach to fight bufferbloat. In practice, the 3GPP and the IP level apply a
mild form of flow-control, which will allow packets to be stored for a while inside
the IP layer itself. The flow control is managed by the Byte Queue Limits (BQL)
algorithm [51]. We present a preliminary evaluation of BQL in LTE as a means for
keeping the size of the Radio Link Control (RLC) buffers at the minimum value
that ensures that throughput is not impacted due to starvation. In this way, IP can
do packet scheduling between different flows directed to the same bearer, priori-
tizing interactive traffic over bulk traffic by reusing existing packet schedulers and

Chapter 5. Proposals of design and evaluation of traffic control strategies 66

Active Queue Management (AQM) algorithms, such as FQ-Codel [6]. The result is
the possibility of performing QoS-based decisions even with a single bearer. We ana-
lyze our architectural proposal with ns-3 simulations, comparing in different scenar-
ios the performance obtained with and without flow control, testing both BQL and
DynRLC (one of the most promising proposals already present in the literature to
dynamically sizing the RLC buffer size on the eNB). The ns-3 network simulator has
an advanced Long Term Evolution (LTE) model (LENA) [58] and a complete repre-
sentation of the traffic control layer at IP level, designed by taking inspiration from
the Linux kernel [52]. In this way, we can show that by having a limited amount of
buffering inside the LTE devices, the latency and the throughput performance im-
proves dramatically, as well as providing fair scheduling between different flows.
Being tied with the reality allows, in a line of principle, a device vendor to port our
findings to existing Android devices with a minimum effort.

The rest is organized as follows: in Section 5.2.1 we present the related work, and
why our proposal differs. In Section 5.2.2 we briefly explain part of the 3GPP stack
affected by our proposal. In Section 5.2.3 we detail the core of our proposal and ex-
plain how we have implemented it in the ns-3 network simulator. In Section 5.2.4 we
present the simulation results, and then in Section 5.2.5 we present our conclusions.

5.2.1 Related Work

In [57], authors characterize the traffic of the LTE networks to estimate the bufferbloat-
inducted latency on the UEs. Trying to mitigate the problem, the authors introduced
a flow control to limit the amount of data injected into the device firmware and pro-
pose a differentiation scheme in the Android Traffic Control (TC). The work does
not consider the use of fairness scheme or the cross effect of their flow control on the
AQM. Indeed, they study the poor performance of CoDel on the Android stack.

In [59], the authors propose an algorithm to dynamic sizing the RLC buffer for
the eNBs, i.e., DynRLC, and introduce a per-flow fair queueing strategy at PDCP
layer. A proposed flow control regulates the passing of packets between the two
layers. They tune the proposed algorithm to reduce over queueing at RLC layer.
The work does not consider either the use of AQM in their PDCP queueing scheme
or the use of advanced fair queueing algorithms such as FQ-CoDel. Also, they do
not consider and evaluate BQL.

Another attractive way to try to reduce the bufferbloat phenomena is to insert,
at various levels in the stack, pure AQM algorithms to manage queues [60], [61].
However, employing an AQM (that can decide to drop packets if the algorithm has
the perception that the amount of data stored in the buffer is not appropriate) can
lead to issues when coupled with the MAC layer decisions. First, the AQM algo-
rithms have to be modified to avoid the possibility of dropping a partial piece of
a packet. In fact, at RLC level the packet can be segmented: what would happen
with an algorithm such as CoDel, when the head is segmented and a piece transmit-
ted, while the other portion (the new head) has to be dropped because its waiting

Chapter 5. Proposals of design and evaluation of traffic control strategies 67

time is higher than the threshold? This issue is investigated in details in [62], with
a modification to the CoDel algorithm proposed (and implemented) to avoid such
effect. However, another question arises: in the uplink, the amount of data stored
in the buffer is passed through Buffer Status Report (BSR) to the eNodeB. A similar
message is exchanged between MAC and RLC (inside the eNodeB) in the downlink
case. Therefore, dropping entire packets inside the radio stack is problematic for the
MAC scheduler. Given the reported buffer status, some space may be reserved for
a particular data radio bearer. Due to the unexpected drops, at the moment of the
transmission, the bearer could have less than the previously reported data, leading
to an under-usage of the resources, and therefore to degraded performance. For this
reasons, we perform any necessary drop at a higher level.

In [63], the authors propose a dynamic adjustment of the TCP receiver window to
reduce the excess of bytes in flight, that in turn is helping the network to buffer less
overall data. The problem of this widespread idea (limiting the receiver window
to restrict the sender is used successfully in many other fields) is that until all the
devices are updated, network-level bufferbloat created by non-patched terminals
will continue to impact flows coming from updated devices. Nevertheless, limiting
the receiver window still has the potential issue to limit the overall transmission rate
in case something is not such as the receiver is guessing.

Our proposal is to introduce a flow control similar to the one in [59] for both
UE and eNB, on top of the LTE/NR protocol stack, that uses the BQL algorithm
(already available in the Linux kernel) to dynamically size the RLC buffers. On this
flow control, for both UE and eNB, we exploit a consolidated IP TC infrastructure,
conversely to what in [57], [59] and [62]. Our strategy allows to avoid changes in the
AQM algorithms, conversely to what in [62], since we keep a FIFO RLC buffer size
regulated with BQL. Indeed, our approach avoids interference on the control plane
of LTE and its mechanism of BSR. Finally, our proposal works regardless of the TCP
receiver and sender windows and its congestion avoidance algorithms, conversely
to what in [63].

5.2.2 Background

In the 3GPP model, the layer responsible for storing the data waiting for transmis-
sion over the air is RLC, with one buffer for each bearer. The RLC layer, to which
Data Radio Bearer (DRB)s belong, provides that data fragmentation and reassembly
feature. There are various modes for the RLC layer. For instance, there is the un-
acknowledged mode (UM), that will not perform retransmissions, and the acknowl-
edged mode (AM), which contains retransmission buffers (per-DRB) in case the data
is not ACKed by the receiver.

The algorithm that determines what data goes into the air is called Radio Data
Scheduler (RDS), and is inside the eNB MAC layer. It decides how to fill in time and
frequency each slot, according to some policy (e.g., round-robin or proportional fair).
It uses as input the BSR messages that come from the RLC layer of each connected

Chapter 5. Proposals of design and evaluation of traffic control strategies 68

UE to prepare the part of the frame that will be used by a UE to transmit uplink data.
The eNodeB MAC layer uses similar messages (transmission opportunity, TxOpp)
from its own RLC layer to prepare the frequency/time blocks that will be used to
send downlink (from the UE perspective) data.

This model discourages the usage of AQM algorithms, as we argued in the Sec-
tion 5.2.1, because dropping one or more packets at RLC layer with AQM algorithms
invalidates the BSR information that the MAC uses to do the appropriate schedul-
ing. So, in the majority of cases a FIFO queue is used: as the networking community
knows since RFC 2308, uncontrolled FIFO queues lead to problems such as flow
lockout and a difficult sizing process, which induce increasing latency. Recently an
algorithm named DynRLC has been proposed [59] to dynamically control the RLC
buffer size on the eNB. The idea is to define an RLC queueing time target, i.e., a
DeLay Threshold (DLT), and sizing the RLC buffer to keep the queueing delay un-
der DLT. DynRLC periodically estimates the average queueing time and defines the
current size of the RLC buffer according to DLT.

5.2.3 Adding TC on top of the 3GPP stack

PHY

MAC

RLC

PDCP

PHY

MAC

RLC

PDCP

IP

GTP

UDP

IP

GTP

UDP

IP TC

TCP/UDP

APP

IP

TCP/UDP

APP

UE SGW/PGWeNB remote host

S1-U protocol stackLTE Radio Protocol stack

IP

end-to-end application

end-to-end TCP/UDP socket connection

end-to-end IP connection
IP TC

FIGURE 5.1: LTE-EPC data plane protocol stack with the introduction
of TC on top of the LTE model.

In this section, we present our approach to fighting bufferbloat in LTE, which
consists in placing the IP TC infrastructure on top of the LTE stack and adequately
handling the flow control between the two. On most UE implementation, the 3GPP
model for the Radio Access Network (RAN) stays inside the Link layer of the TCP/IP
stack. Therefore, the implementation is limited to the flow control between the oper-
ating system and the LTE firmware, a practice that has already been proposed in the
literature, as we reviewed in Section 5.2.1. For what regards eNB, to manage down-
link flows, the infrastructure can be added as an independent application, following
the recent trend on Multi-access Edge Computing [64].

As shown by Figure 5.1, the TC is introduced both on UEs and eNBs. On the
UE side, IP packets generated by a local application are sent to TC and enqueued

Chapter 5. Proposals of design and evaluation of traffic control strategies 69

into the (single) qdisc virtually linked to the LTE device. Android devices, having a
Linux kernel, already include the traffic control infrastructure, as shown in [57].

On the eNB side, instead, the approach we use to introduce TC is rather distinc-
tive. We think about the TC layer as a standalone application, which receives GTP
decapsulated packets and then enqueues them into the qdisc corresponding to their
destination UE. Over a single LTE device on the eNB, there are multiple schedul-
ing qdiscs installed, one for each UE attached to the eNB. In the Linux kernel, this
is possible by using a classifier qdisc (i.e., multi-queue aware qdisc) that can differ-
entiate the packets based on their RTNI, enqueuing them in the appropriate child
scheduling qdisc. Each child qdisc manages the packets destined to a particular
transmission queue on the device, which is represented by the RLC buffer. We note
that our approach exploits and extends the use of in-kernel, already existing, multi-
queue aware qdiscs. The proposed method also requires the introduction of a flow
control mechanism between the traffic control and the RLC buffers. In particular,
we apply the flow control mechanism between each pair of RLC buffer and its con-
nected qdisc. The flow control involves a soft-stopping mechanism (the qdisc do not
move packets to the RLC queue based on the dynamic quota defined by BQL algo-
rithm), as we explained in Section 4.2. We have also implemented the hard-stopping
mechanism (the RLC buffer stops the qdisc when it can not enqueue more bytes), but
in all our simulations it did not come into play. Indeed, the BQL quota was always
less than the RLC buffer size.

We evaluated the proposed approach by using ns-3 simulations [52], [53]. To this
purpose, we implemented the necessary changes to allow RLC to notify the traffic
control and the BQL library when a packet is enqueued or dequeued, to support
flow control and BQL. We have implemented the wake, stop, NotifyEnq, NotifyDeq
notifications. In our implementation, we assume the cooperation of the LTE device
for both UE and eNB. Such an approach has been followed in [59] for the eNB.

If this cooperation is not feasible, for instance in a UE with closed firmware or
other issues, implementing this flow control is still possible by exploiting informa-
tion about the number of bytes enqueued and transmitted by the device firmware,
such as in [57].

Finally, it is important to note that the support for BQL allows keeping a backlog
in TC regardless of the actual physical RLC buffer size. Also, our approach allows
exploring the use of different strategies tailored to the LTE/NR cases.

5.2.4 Results

For all the experiments described from now on, the simple LTE topology reported in
Figure 5.4 was used. A number of UEs are attached to the eNB which is connected
to the EPC with a point-to-point link having a data rate of 10 Gbps and a delay of 10
ms. The basic idea is to evaluate the effects on the RAN performance due to reduced
queueing at the RLC layer and to the introduction of flow-control and traffic-control
in LTE.

Chapter 5. Proposals of design and evaluation of traffic control strategies 70

bulk UL small UL bulk DL small DL

flows

0

1

2

3

4

5

6

7

d
ro

p
p
e
d
 (

N
u
m

b
e
r

o
f
p
a
c
k
e
ts

/s
)

RLC 500 KB

RLC 500 KB with BQL + FqCoDel

RLC 500 KB with dynRLC (DLT 40 ms) + Fq

RLC 500 KB with dynRLC (DLT 20 ms) + Fq

RLC 500 KB with dynRLC (DLT 40 ms) + FqCoDel

RLC 500 KB with dynRLC (DLT 20 ms) + FqCoDel

(A) Dropped

bulk UL small UL bulk DL small DL

flows

10

20

30

40

50

60

70

80

90

100

d
e
la

y
 (

m
s
)

RLC 500 KB

RLC 500 KB with BQL + FqCoDel

RLC 500 KB with dynRLC (DLT 40 ms) + Fq

RLC 500 KB with dynRLC (DLT 20 ms) + Fq

RLC 500 KB with dynRLC (DLT 40 ms) + FqCoDel

RLC 500 KB with dynRLC (DLT 20 ms) + FqCoDel

(B) Delay

bulk UL small UL bulk DL small DL

flows

0

5

10

15

20

25

th
ro

u
g
h
p
u
t
(M

b
p
s
)

RLC 500 KB

RLC 500 KB with BQL + FqCoDel

RLC 500 KB with dynRLC (DLT 40 ms) + Fq

RLC 500 KB with dynRLC (DLT 20 ms) + Fq

RLC 500 KB with dynRLC (DLT 40 ms) + FqCoDel

RLC 500 KB with dynRLC (DLT 20 ms) + FqCoDel

(C) Throughput

FIGURE 5.2: Evaluation of the impact of flow control and TC on LTE
performance in single UE scenario.

Chapter 5. Proposals of design and evaluation of traffic control strategies 71

bulk UL small UL bulk DL small DL

flows

0

5

10

15

20

25
d
ro

p
p
e
d
 (

N
u
m

b
e
r

o
f
p
a
c
k
e
ts

/s
)

RLC 500 KB

RLC 500 KB with BQL + FqCoDel

RLC 500 KB with dynRLC (DLT 40 ms) + Fq

RLC 500 KB with dynRLC (DLT 20 ms) + Fq

RLC 500 KB with dynRLC (DLT 40 ms) + FqCoDel

RLC 500 KB with dynRLC (DLT 20 ms) + FqCoDel

(A) Dropped

bulk UL small UL bulk DL small DL

flows

0

500

1000

1500

d
e
la

y
 (

m
s
)

RLC 500 KB

RLC 500 KB with BQL + FqCoDel

RLC 500 KB with dynRLC (DLT 40 ms) + Fq

RLC 500 KB with dynRLC (DLT 20 ms) + Fq

RLC 500 KB with dynRLC (DLT 40 ms) + FqCoDel

RLC 500 KB with dynRLC (DLT 20 ms) + FqCoDel

(B) Delay

bulk UL small UL bulk DL small DL

flows

0

1

2

3

4

5

6

7

8

9

10

th
ro

u
g
h
p
u
t
(M

b
p
s
)

RLC 500 KB

RLC 500 KB with BQL + FqCoDel

RLC 500 KB with dynRLC (DLT 40 ms) + Fq

RLC 500 KB with dynRLC (DLT 20 ms) + Fq

RLC 500 KB with dynRLC (DLT 40 ms) + FqCoDel

RLC 500 KB with dynRLC (DLT 20 ms) + FqCoDel

(C) Throughput

FIGURE 5.3: Evaluation of the impact of flow control and TC on LTE
performance of one UE in a multiple UEs scenario. Other UEs present

very similar results.

Chapter 5. Proposals of design and evaluation of traffic control strategies 72

UE

LTE

model

S1-U interface
internet

eNB

SGW/PGW

EPC model

FIGURE 5.4: The network topology used for the validation tests.

We evaluate two scenarios. In the first one, a single UE is connected to the eNB;
in the second one, ten UEs are connected to the eNB. UEs are in a fixed position. The
RAN is configured with 25 Resource Blocks (5 MHz), and the maximum expected
throughput of both UL and DL is approximately 16 Mbps in a single UE scenario.
The default bearer is configured with RLC in UM mode.

In both scenarios, each UE manages four TCP flows. The basic idea is to satu-
rate the UL and DL paths with two bulk streams (labelled as “bulk UL” and “bulk
DL”) while evaluating the performance of two interactive UL and DL small flows
(labelled as “small UL” and “small DL”). The bulk streams generate constant traf-
fic load able to saturate the network paths. The small flows are generated by on-off
traffic sources that create application data at a rate of 500 Kbps in both scenarios.
The traffic patterns are defined according to [57], [65], in particular for the number
of concurrent TCP connections and the proportion between UL and DL traffic. The
TCP version used is New Reno and the TCP segment size is 1400 bytes. The gen-
erated traffic is not marked with any IP QoS information, nor distributed through
different LTE bearers.

We compare four approaches:

• In the first one, there is no flow control and all the data is queued at the RLC
layer. The RLC buffer has a physical size of 500 KB according to [66] and [57].

• In the second approach, we evaluate our proposal. The flow control is regu-
lated by BQL. The traffic control layer is configured with an FQ-CoDel qdisc
on the UEs and the eNB. On the eNB, there is one instance of FQ-CoDel for
each UE attached. The RLC buffer has a physical size of 500 KB.

• In the third approach, we evaluate the proposal in [59]. The flow control is
regulated by DynRLC algorithm. TC is configured with an FQ qdisc on the
UEs and the eNB. On the eNB, there is one instance of FQ for each UE attached.
The RLC buffer has a physical size of 500 KB.

• In the fourth approach, we evaluate the case of flow control regulated by Dyn-
RLC and TC configured with FQ-CoDel. The traffic control layer is configured
with an FQ-CoDel qdisc on the UEs and the eNB. On the eNB, there is one in-
stance of FQ-CoDel for each UE attached. The RLC buffer has a physical size
of 500 KB.

Chapter 5. Proposals of design and evaluation of traffic control strategies 73

The parameters of BQL and FQ-CoDel are set to their default values. DynRLC is
evaluated with two values of DLT defined according to [59].

Single UE scenario

In this scenario, we compare the four approaches listed above in the case only one
UE is attached to the eNB. We aim to show that adding flow control allows better
backlog management. Indeed, the TC packet scheduler can manage the backlog in
order to reduce experienced delay as well as differentiate between small and bulk
flows carried by the same bearer.

Results are reported in Figure 5.2. The presence of an AQM-based queue disc
at the traffic-control level causes some packet drops in the bulk UL and bulk DL
flows. The dropping is more consistent when the flow control is regulated by BQL
(Figure 5.2a).

The one-way delay is reported in Figure 5.2b. In case of flow control regulated by
BQL, all the flows have a reduced delay (median values reduced of 50% for the UL
flows and of 60% for the DL flows) and FQ-CoDel provides a differentiation among
flows with slightly reduced and constant delay for the small UL and small DL flows.
DynRLC performs as expected in the DL path providing differentiation between
bulk DL and small DL flows.However, in case DLT is 40 ms there is an increase in
the bulk DL delay. In the UL path, there is differentiation among the flows in case
DLT is 20 ms (with an increase in the bulk UL delay) while no differentiation in case
DLT is 40 ms. The addition of FQ-CoDel induces further delay reduction among the
flows in particular in case DLT is 20 ms. However, the experienced delays are highly
variable.

The throughput (Figure 5.2c) is slightly reduced for the bulk UL and bulk DL
when FQ-CoDel is used, according to the performance of AQMs with TCP flows,
while the throughput is preserved for the small UL and small DL flows.

Multiple UEs scenario

This scenario aims to evaluate the effect of the introduction of TC when multiple
UEs compete for the resources. Indeed, the eNB scheduler in this scenario divides
the available bandwidth between ten UEs.

The results for the first UE are reported in Figure 5.3. The other UEs have no
significant differences in performance. The presence of TC helps differentiate and
manage the different IP flows on the UEs (UL path), and for each UE on the eNB
(DL path).

The FQ-CoDel qdiscs on both UE and eNB drop some packets in particular of
the bulk UL and bulk DL flows to control their sending rate (Figure 5.3a). Since
the per-UE expected throughput is smaller than in the single UE scenario, the small
flows can now contribute significantly to network congestion. Indeed, occasionally

Chapter 5. Proposals of design and evaluation of traffic control strategies 74

dropping occurs in case of small UL and small DL flow, more consistent in case of
flow control regulate by BQL, due to FQ-CoDel which try to keep reduced latency.

The one-way delay is reported in Figure 5.3b. In case of flow control regulated
by BQL, all the flows have a reduced delay (median values reduced of 70%), and the
qdiscs provide differentiation for the small flows in a similar way as the single UE
scenario. We observe that the delay of all the flows for all the UEs is just slightly
higher than the value of the single UE scenario. Conversely, without flow-control,
the delay is twice higher for the UL flows and almost twice higher for the DL flows
compared to those of the single UE scenario. The fact that the flows delay remains
rather stable even in presence of a competing UEs is due to the FQ-CoDel scheduling
algorithm which manages the queues based on the actual queueing time. DynRLC
performs as expected in the DL path providing differentiation between bulk DL and
small DL in all cases. The addition of FQ-CoDel induces further improvements and
in case DLT 20 ms DynRLC perform as BQL. In the UL path, in this scenario, Dyn-
RLC shows worsening of the experienced delay in all cases. Indeed, DynRLC is de-
signed for the DL path based on timeout triggered notifications of the BSR from the
UE to eNB. This approach shows worsening of UL performance since the algorithm
is not able to cut the UL RLC buffer size.

The throughput is reduced for the bulk UL and bulk DL flows in cases FQ-CoDel
(a more significative reduction in case DL flows with DynRLC), while the through-
put is preserved and more stable for the small UL and small DL flows (Figure 5.3c).

5.2.5 Conclusions

In this work, we investigate the bufferbloat problem in 3GPP protocol stacks propos-
ing an innovative approach to keep stable and reduced network latency. The ap-
proach relieves the network operator from network management to open/close bear-
ers. The idea is to connect the IP TC infrastructure on top of the 3GPP model and
define a form of flow control between the layers. For the first time, we evaluate an
algorithm, called BQL, as a means to dynamically move the flow control threshold
(i.e., the amount of data that can be stored in RLC) in both UE and eNB. We com-
pared the performance of BQL to another algorithm, called DynRLC, designed and
presented in literature for dynamically sizing the RLC buffer on the eNB, as a means
to reduce the RLC buffer size. We evaluated DynRLC also at the UE side, and tested
it for the first time in a multiple UEs scenario.

In our evaluation, performed with the ns-3 simulator, BQL overcomes DynRLC.
BQL efficacy leads to a significant performance increase of TC, which can perform
packet scheduling on flows directed on the same bearer, preserving small flows over
bulk streams.

Future works include the evaluation of the effectiveness of TC with BQL (or any
other innovative algorithm to dynamically define a quota of suitable RLC buffer)
in more dynamic scenarios, with variable channel conditions as well as handoff be-
tween base stations.

Chapter 5. Proposals of design and evaluation of traffic control strategies 75

5.3 Flow control aware AQM algorithms

256 128 BQL

tx ring size

0

200

400

600

800

1000

1200

q
d

is
c
 b

a
c
k
lo

g
 (

K
B

)

linux

nm generic pfifo

(A) Backlog

256 128 BQL

tx ring size

0

20

40

60

80

100

120

140

160

180

200

d
ro

p
p
e

d
 (

n
u
m

b
e

r
o
f

p
a

c
k
e

ts
)

linux

nm generic pfifo

(B) Dropped

256 128 BQL

tx ring size

0

20

40

60

80

100

120

p
in

g
 R

T
T

 (
m

s
)

linux

nm generic pfifo

(C) RTT

FIGURE 5.5: Performance comparison of PIE in testbed and emulated
scenario.

AQM algorithms have been proposed to keep the delay experienced in a queue
under control. Basically, an AQM algorithm takes a decision to drop a packet when
it recognizes a congestion status.

The first generation of AQM algorithms, i.e., RED [3], take the decision on drop-
ping based on the queue lenght. The idea in RED is to control the queue length to
keep reduced queueing delay. Then, the algorithm drops an incoming packet when
the queue length is over a threshold. Unfortunately, such algorithms require tun-
ing. Indeed, different network bandwidth requires different target queue length to
keep the experienced delay under a threshold. This aspect has limited their deploy-
ments in communication networks. In recent years, AQM algorithms have been
introduced which aim to overcome the limitation of the first generation. Algorithms
such as CoDel and PIE have been proposed to keep the network queueing delay
stable without requiring any tuning of the parameters.

CoDel [4] introduced the idea to keep the queueing time stable by directly mea-
suring it. Basically, CoDel attaches the timestamp of enqueue when a packet comes in
its queue. Then, at dequeue time, CoDel evaluates the packet queueing time. If the
time exceeds a given target, CoDel drops an outgoing packet to signal the congestion
status to the upper layer.

PIE has been proposed to overcome the timestamp based approach [5]. It has
been proposed by Cisco, standardized by IETF and used as a base for DOCSIS-
PIE [67], [68]. The basic idea in PIE is to estimate the actual departure rate. Then,
PIE estimates the queueing time based on the estimated departure rate. The algo-
rithm decides if the next incoming packet should be dropped or not based on the
queueing time and the desired target value.

The design of AQM algorithms usually entrusts on simulated environments such
as ns-3. RED, CoDel and PIE have been proposed with the support of ns-2 simula-
tions. Then, their effectiveness by design is proved in simulated environments. Un-
fortunately, a number of further factors in real systems, which are not considered in
the design phase, can heavily restrict the effectiveness of these strategies. Some of

Chapter 5. Proposals of design and evaluation of traffic control strategies 76

tx-ring size 256

0 20 40 60 80 100 120

time (ms)

0

10

20

30

40

d
e
q
u
e
u
e
d
 p

a
c
k
e
ts

 (
n
u
m

b
e
r)

tx-ring size 128

0 20 40 60 80 100 120

time (ms)

0

10

20

30

40

d
e
q
u
e
u
e
d
 p

a
c
k
e
ts

 (
n
u
m

b
e
r)

tx-ring size BQL

0 20 40 60 80 100 120

time (ms)

0

2

4

6

8

10

d
e
q
u
e
u
e
d
 p

a
c
k
e
ts

 (
n
u
m

b
e
r)

(A) Histograms of number of dequeued packets

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

dtime (ns)

0

0.2

0.4

0.6

0.8

1

F
(x

)

tx-ring size 256

kernel default

PIE dequeue threshold 32KB

PIE dequeue threshold 64KB

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

dtime (ns)

0

0.2

0.4

0.6

0.8

1

F
(x

)

tx-ring size 128

kernel default

PIE dequeue threshold 32KB

PIE dequeue threshold 64KB

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

dtime (ns)

0

0.2

0.4

0.6

0.8

1

F
(x

)

tx-ring size BQL

kernel default

PIE dequeue threshold 32KB

PIE dequeue threshold 64KB

(B) ECDF of dtime

FIGURE 5.6: Hisograms of number of packets dequeued from PIE and
ECDF of dtime for e1000e network adapter in testbed scenario.

them can require re-design of some parts of the algorithms. Our focus is on the im-
pact of flow control, i.e., how the device starts/stops its queue, between the device
and the AQM algorithm.

In this work we target PIE, a rate based AQM algorithm, to highlight the impact
of flow control on its performance. We extensively test PIE in emulation through
ns-3 [69] and testbed scenario following the RFC suggestions. We prove some PIE
limitations due to design flaws. PIE has a critical parameter in its departure rate
estimator and our work suggest the use of a timestamp based approach to improve
its performance. Also, we propose an alternative approach to take explicitly into
account the impact of flow control by design.

Chapter 5. Proposals of design and evaluation of traffic control strategies 77

tx-ring size 256

0 20 40 60 80 100 120

time (ms)

0

10

20

30

40

d
e
q
u
e
u
e
d
 p

a
c
k
e
ts

 (
n
u
m

b
e
r)

tx-ring size 128

0 20 40 60 80 100 120

time (ms)

0

10

20

30

40

d
e
q
u
e
u
e
d
 p

a
c
k
e
ts

 (
n
u
m

b
e
r)

tx-ring size BQL

0 20 40 60 80 100 120

time (ms)

0

2

4

6

8

10

d
e
q
u
e
u
e
d
 p

a
c
k
e
ts

 (
n
u
m

b
e
r)

(A) Histograms of number of dequeued packets

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

dtime (ns)

0

0.2

0.4

0.6

0.8

1

F
(x

)

tx-ring size 256

kernel default

PIE dequeue threshold 32KB

PIE dequeue threshold 64KB

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

dtime (ns)

0

0.2

0.4

0.6

0.8

1

F
(x

)

tx-ring size 128

kernel default

PIE dequeue threshold 32KB

PIE dequeue threshold 64KB

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

dtime (ns)

0

0.2

0.4

0.6

0.8

1

F
(x

)

tx-ring size BQL

kernel default

PIE dequeue threshold 32KB

PIE dequeue threshold 64KB

(B) ECDF of dtime

FIGURE 5.7: Hisograms of number of packets dequeued from PIE and
ECDF of dtime for tg3 network adapter in testbed scenario.

In the following, in Section 5.3.1 we provide details on PIE departure rate estima-
tor and its possible effects due to different flow control implementations. Then, in
Section 5.3.2 we propose a possible alternative flow control relation to reduce the im-
pact of flow control by design. In Section 5.3.3 we prove the inaccurate evaluations
of PIE and its flow control specific performance, then we outline the performance of
PIE considering the flow control by design.

5.3.1 The PIE departure rate estimator

The dequeue rate estimation method employed by PIE is based on measurement
cycles. After dequeuing a packet, if no measurement cycle is running and the current
qdisc backlog exceeds a given queue threshold, a new measurement cycle is started.

Chapter 5. Proposals of design and evaluation of traffic control strategies 78

The RFC propose a queue threshold from 10 KB to 64 KB. Given that a meaningful
estimate of the dequeue rate can only be obtained starting from a certain number of
packets dequeued, the idea is to avoid starting a new measurement cycle when the
qdisc backlog is low. A counter keeps track of the amount of bytes dequeued since
the beginning of the current measurement cycle. When such counter exceeds the
queue threshold, the measurement cycle ends. The dequeue rate in the measurement
cycle is then computed as the ratio of the amount of bytes dequeued (provided by
the counter) to the duration of the cycle, i.e., dtime. The average dequeue rate is then
derived as a weighted average of the last dequeue rate sample and the previous
average dequeue rate value. The average dequeue rate is then used to determine the
probability of dropping newly enqueued packets. Basically, the idea is to derive the
dropping probability based on the comparison between the time it takes to dequeue
the current qdisc backlog at the current estimated average dequeue rate and the
target delay, which is a PIE configuration parameter.

The device buffer and flow control strategy can change the evaluated departure
rate. Indeed, the PIE departure rate will evaluate the rate of writing in the device
buffer when the measurements cycle starts and ends in a single burst. Indeed, the
flow control mechanism usually reclaims further packets after the transmission of a
number of packets, i.e., a batch of packets.

5.3.2 Considering the impact of flow control on AQM design

The traditional relation between device and AQM is inspired to pull based approach.
Indeed, the device stops the upper layer when its queue is full and reclaims other
packets when some space is made in its queue after the transmission over the medium.
We explore the possibility to realize a push based approach in which the upper layer,
i.e., the AQM, stops itself in order to avoid device overqueueing and effects due to
device specific flow control implementations. In a congestion status, the idea is to es-
timate the actual available bandwidth at the device layer and then enforce a dequeue
rate (from the upper layer) slightly higher than the available bandwidth.

In a fluid model, if we indicate with Cavl(t) the available bandwidth at time t,
with Cdeq(t) the enforced dequeue rate at time t, with in f light(t) the number of bytes
inflight in the device buffer and with desiredIn f light(t) a target of desired inflight
avoiding overqueueing it is:

Cdeq(t) = Cavl(t− τ) + k · [desiredIn f ligth(t)− in f light(t)] (5.1)

The dequeue rate should be equal to the estimated available bandwidth, esti-
mated with a delay τ, plus a contribution which follows the difference between the
desired and actual inflight. The idea is to design scheduling disciplines in general
and AQM algorithms in particular that are aware of device queue and then able to
self-enforce the dequeue rate to avoid both overqueueing and starvation.

Chapter 5. Proposals of design and evaluation of traffic control strategies 79

5.3.3 Results

In order to accurately evaluate the effectiveness of PIE and highlight possible flaws
in its departure rate estimator, we compare the PIE performance in testbed scenario
with the one in the emulated scenario through ns-3. For the comparison, we used
the framework presented in chapter 4 based on e1000e bottleneck device. The results
are reported in Figure 5.5. The expected PIE behavior is its ability to keep stable the
backlog, thanks to dropping activity, and to control the experienced RTT. According
to what we argue in chapter 2, the effectiveness of PIE should be more evident when
the device buffer size is controlled by BQL.

The results in the emulated scenario show that PIE drops some packet (5.5b) in all
the configurations aiming to control the backlog (5.5a) and keep the RTT stable (5.5c).
PIE is more effective when BQL is enabled than when it is not. The estimated de-
parture rate was about 12 MBps in 128 and 256 cases and of about 11 MBps in BQL
case.

In the testbed scenario, the effectiveness of PIE is limited to BQL case. Indeed, in
the other cases, PIE does not drop packets and the backlog is out of control. Hence,
the experienced delay in cases 128 and 256 is higher than the one in BQL case. We
note that when BQL is enable the accuracy of the PIE implemented in ns-3 is high.

In order to understand the unexpected behavior of PIE in the testbed scenario
when BQL is not enabled, we evaluate how PIE works in that scenario. The results
are reported in Figure 5.6. We evaluated the number of packets dequeued from
PIE (5.6a) in a period of time corresponding to time requested to transmit an MTU
in our testbed (120 µs for 1500 B at 100 Mbps) and the ECDF of the dtime parameter
of PIE (5.6b). The results show that in cases 128 and 256 packets are dequeued in
bursts of about 20 packets from PIE and enqueued to the device queue. Hence,
since the default kernel queue threshold is of 10 KB, the evaluation of the departure
rate starts and ends in a single burst. Since the burst requires few nanoseconds to
conclude its transfer to the device (just the packet pointer is copied), the estimated
data rate is very high. Conversely, in BQL cases, the number of dequeued packets
is more smooth and of about 2 packets (in this cases are requested more dequeue
events to trigger an evaluation). In order to estimate the departure rate, we traced
the dtime parameter of PIE. The ECDF in Figure 5.6b shows that with a probability
of 80% the estimated dtime is of about 600 ns in cases 128 and 256 and then the
estimated departure rate is of 16 GB ps. In case of BQL, the estimated rate is of 10
MB ps. We experimented with queue threshold of 32 and 64 KB according to what
defined in the RFC. The results show that the PIE estimator works in BQL cases
while it has a limited effectiveness in the other cases also for threshold up to 64 KB.
Indeed, just the 40% of the sampled dtime have a reasonable value (over 2 ms).

We evaluated the same metrics performance in testbed scenario on another net-
work adapter. We target the tg3 adapter since it differs from e1000e adapter in the
implemented flow control mechanism. The results are reported in Figure 5.7. The
idea was to generalize our findings and highlight design guidelines. With tg3, packet

Chapter 5. Proposals of design and evaluation of traffic control strategies 80

bursts of about 10 packets are dequeued in all cases. Hence the estimated departure
rates are higher than expected since 70% of sampled dtime are under 1 ms for the
kernel default case (queue threshold of 10 KB). In cases 128 and 256 the estimated
data rate is higher than expected for 32 and 64 KB cases (50% of samples dtime under
2 ms), while is reasonable for BQL case with threshold of 32 and 64 KB.

Then, we evaluated by numeric simulation the performance of the proposed flow
control strategy. We used the models reported in [5] for TCP and PIE dynamics. We
added the device queue (with a physical dimension of 500 packets) and modeled
two versions of flow control. The flow control push based has been modeled ac-
cording to 5.1, i.e., PIE self-enforces a dequeue rate close to the available bandwidth
estimated at device queue. The flow control pull based has been modeled to exploit
all the device queue capacity, i.e., the device reclaims other packets when some space
is available in its queue.

The push based flow control is able to reduce the usable device buffer avoiding
overqueueing and starvation (Figure 5.8). Indeed, the device queue occupancy in
the push based approach is of about 15 packets while it is always full (500 packets)
in case of pull based approach. The PIE performance in term of dropping probabil-
ity and queueing delay in its queue (without the additional queueing delay in the
device queue) is reported in Figure 5.9. PIE is able to drop some packets during the
simulation period in order to keep the delay under control. The PIE performance is
the same in both flow control cases. However, the push based flow control reduces
the device queueing delay reducing the overall delay.

5.3.4 Conclusions

The experiments show that the PIE departure rate estimator is a critical component.
Indeed, it estimates higher than physically feasible data rate and its estimations de-
pend from the specific implementation of flow control. Hence, we suggest the use
of timestamp based approach to estimate the queueing time in PIE (applying the
CoDel idea in PIE). We highlight that rate based algorithms designed mainly with
simulation and emulation approaches can have flaws in their estimator. Then, we
propose an alternative approach to flow control in order to take into account the im-
pact of flow control by design. Future works include the evaluation of the proposed
flow control in emulation and tesbed scenario.

5.4 Conclusions

In this chapter, we presented two proposals of design and evaluation of network
traffic control strategies. We presented the design of a traffic control strategy for
3GPP stacks by introducing the traffic control module on top of LTE. Then we tested
the effectiveness of FQ-CoDel and BQL in LTE context. Also, we targeted rate based

Chapter 5. Proposals of design and evaluation of traffic control strategies 81

(A) Occupancy of device
queue in pull based ap-

proach

(B) Occupancy of device
queue in push based ap-

proach

FIGURE 5.8: Effectiveness of push based approach to reduce the de-
vice queue usable buffer.

(A) Dropping probability (B) Queueing delay

FIGURE 5.9: PIE performance.

AQM algorithms to highlight possible flaws. We show design flaws in rate esti-
mation procedures of algorithms such as PIE and propose to use timestamp based
approach.

82

Chapter 6

Conclusion

Network traffic control includes activities to increase the traffic flows delivery effi-
ciency and to increase the network resources utilization. The activities include the
use of network protocols and algorithms to control the performance of network traf-
fic flows. Recently, the term bufferbloat has been coined to indicate the uncontrolled
growth of the queueing time in communication networks. The bufferbloat depends,
among others, on the general attitude of TCP, the most used transport protocol, to
increase its sending rate until a packet is lost. Network elements usually are de-
signed with per interface buffer in order to absorb packets burst. Such buffers are
usually oversized and the presence of low-cost memory elements has increased fur-
ther their dimension. In the context of traffic control, mitigation strategies has been
proposed at various networking stack layers to reduce the queueing time. For in-
stance, an algorithm called BQL has been proposed in the Linux kernel to reduce
the device queueing time without impact on throughput. Linux relies on a traffic
control infrastructure to perform flows regulation. The infrastructure includes pack-
ets schedulers which aim to choose the next packet to be transmitted to device. The
most promising components in traffic control to fight bufferbloat are the AQM algo-
rithms. The AQM algorithms aim to drop packets before the queue become full, i.e.,
when they recognize a possible congestion status, to notify the upper layer about
a possible congestion status. Then, upper protocols responsive to packet dropping
reduce their sending rate.

The first step to understanding the bufferbloat, to design and validate traffic
control solutions, is the network experimentation in controlled environments. For
instance, experimentation in testbed allows isolating external factors to focus the re-
searchers’ attention on the main causes of bufferbloat. With the increasing number
of wireless networks, the simulation is gaining growing attention. Indeed, the simu-
lation allows high flexibility in network experimentation, reproducing scenario with
very large number of network elements and with early-stage communication tech-
nologies. However, the simulation challenge is the credibility. Indeed, the simulator
should reproduce the real networking stack under test and the relation among the
layers. One of the most used network simulators in academia and in research center
is ns-3. ns-3 allows full stack and multi-protocols networks simulation. ns-3 has em-
ulation support for the integration in testbeds. The design of the ns-3 simulator is

Chapter 6. Conclusion 83

inspired to Linux networking stack. Unfortunately, ns-3 lacked a Linux equivalent
traffic control layer. Hence, just a reduced number of traffic control strategies, e.g.,
RED, was available in the simulator and their use was allowed at the device layer,
which is not what happens in Linux networking stack. Some design limitations did
not allow the introduction of recent strategies such as FQ-CoDel. Also, in ns-3 was
not possible to evaluate the impact of device buffer on AQM and packet schedulers.
The available modules, e.g., RED, was not validated against real implementations.
Indeed, some emulation limitations in ns-3 did not allow to realize a proper com-
parison scenario. Hence, bufferbloat study, design and evaluation of traffic control
strategies based on simulation and emulation through ns-3 in technologies such as
LTE and WiFi was inaccurate.

We analyzed the Linux networking stack with a focus on traffic control and de-
vice buffer and their relations. Then, we experimentally characterized the impact
of device buffer on traffic control strategies such as packet schedulers and AQM
algorithms. We designed and introduced in ns-3 a Linux equivalent traffic control
module and the flow control between traffic control and the device buffer. Our de-
sign allowed the introduction of modern packets schedulers such as FQ-CoDel and
the introduction of algorithms to dynamically size the device buffer such as BQL in
ns-3. In order to validate the introduced modules against real implementations, we
devised a new emulation methodology. We designed a new device in ns-3 which
gain direct access to device buffers to increase the fidelity of emulation. We evalu-
ated the new device and prove its emulation accuracy. Then, we validated, by using
the new device, the traffic control module and RED, CoDel, PIE and FQ-CoDel. ns-3
has now the ability to accurately evaluate the effectiveness of traffic control on top
of all the devices.

By using the validated modules, we designed a traffic control layer on 3GPP
stacks and we highlight design flaws in rate based AQM algorithms. In the first
case, we designed a software traffic control layer on top of LTE stack and evaluated
its performance by using ns-3. The approach is inspired to Linux stack and we evalu-
ated the performance of BQL and DynRLC, an algorithm proposed in LTE context to
sizing the RLC buffer, to keep traffic control effective. We evaluated the performance
in multiple UEs scenario and observed the invariance of the experienced delay of a
single UE regardless of the number of connected UEs thanks to FQ-CoDel (which
limit the queueing time based on the actual departure rate). In the second case, we
prove some design flaws in rate based AQM algorithms due to the impact of flow
control between the device and traffic control. Then we propose to use timestamp-
based approach (to estimate the queueing time) and an alternative flow control to
take into account its effects by design. The idea is to enforce a traffic control sending
rate close to the estimated available bandwidth.

In this work, we improved the adherence of the ns-3 simulator stack to Linux net-
working stack. The stack adherence allows to reproduce behaviors occurring in real
systems, e.g., allow to reproduce the impact of device buffer on AQM algorithms,

Chapter 6. Conclusion 84

and to experiments in a more accurate manner, e.g., experiments of the effectiveness
of traffic control in wireless networks. The new emulation methodology we devised
in this work is quite general and improve the emulation credibility. The methodol-
ogy applies to simulators and emulators which rely on standard socket mechanisms
to communicate with real networks. The new device implemented in ns-3 allows to
validate the simulated stack up to the traffic control module. This outcome increase
the simulation credibility with ns-3 since traffic control has not a negligible impact
on performance parameters usually evaluated such as packet loss, throughput, and
delay. Also, the validation of AQM algorithms allows increasing their credibility in
simulated and emulated scenarios with ns-3. Hence, the use of AQM algorithms,
e.g., CoDel, in any queue of the stack can now be considered reliable.

The ns-3 simulator is now a reliable tool to design and evaluate traffic control
strategies to guarantee high network utilization and low delay. Other AQM algo-
rithms can now be designed and tested through ns-3. For instance, AQM algorithms
based on different congestion measures can now be introduced and evaluated accu-
rately in ns-3. Also, the interaction between AQM algorithms and MAC strategies
to improve the network utilization, e.g., frame aggregation in WiFi, LTE BSR mecha-
nism, BQL or other dynamic sizing algorithms, can be now explored and character-
ized. Alternative form of flow control can be proposed and evaluated through ns-3,
e.g., TCP small queue alternatives, to reduce the in node buffering. We highlight
that the proposed validation methodology applies to simulators which use standard
socket mechanism to communicate with real networks. Finally, the device imple-
mented in ns-3 to increase the emulation credibility can be used to validate other
modules, e.g., TCP congestion mechanism such as BBR, to increase the transport
layer simulation credibility, or to asses the accuracy of other ns-3 algorithms.

85

Bibliography

[1] W. Almesberger, J. Salim, and A. Kuznetsov, “Differentiated services on Linux”,
in Proceedings of the Global Telecommunications Conference (Globecom), vol. 1B,
IEEE, 1999, pp. 831–836. DOI: 10.1109/GLOCOM.1999.830189.

[2] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet”, Commun.
ACM, vol. 55, no. 1, pp. 57–65, Jan. 2012, ISSN: 0001-0782. DOI: 10 . 1145 /
2063176 . 2063196. [Online]. Available: http : / / doi . acm . org / 10 . 1145 /
2063176.2063196.

[3] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion
Avoidance”, IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397–413,
1993, ISSN: 1063-6692. DOI: 10.1109/90.251892. [Online]. Available: http:
//dx.doi.org/10.1109/90.251892.

[4] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar, “Controlled Delay Active
Queue Management”, IETF, draft-ietf-aqm-codel-07, 2017.

[5] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian, F. Baker, and B.
VerSteeg, “PIE: A lightweight control scheme to address the bufferbloat prob-
lem”, in Proceedings of HPSR), 2013, pp. 148–155. DOI: 10.1109/HPSR.2013.
6602305.

[6] T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys, and E. Dumazet, “The
FlowQueue-CoDel Packet Scheduler and Active Queue Management Algo-
rithm”, IETF, draft-ietf-aqm-fq-codel-06, 2016.

[7] T. Høiland-Jørgensen, D. Täht, and J. Morton, “Piece of CAKE: A comprehen-
sive queue management solution for home gateways”, CoRR, vol. abs/1804.07617,
2018. arXiv: 1804.07617. [Online]. Available: http://arxiv.org/abs/1804.
07617.

[8] T. Henderson. (2009). Network simulation and emulation in a testbed era, [On-
line]. Available: https://slideplayer.com/slide/2524318/.

[9] G. Carneiro, H. Fontes, and M. Ricardo, “Fast prototyping of network proto-
cols through ns-3 simulation model reuse”, Simulation Modelling Practice and
Theory, vol. 19, no. 9, pp. 2063–2075, 2011, ISSN: 1569-190X. DOI: https://doi.
org/10.1016/j.simpat.2011.06.002.

[10] S. Hemminger, “Network emulation with NetEm”, in Proceedings of Australia’s
6th National Linux Conference (LCA), 2005, pp. 1–9.

https://doi.org/10.1109/GLOCOM.1999.830189
https://doi.org/10.1145/2063176.2063196
https://doi.org/10.1145/2063176.2063196
http://doi.acm.org/10.1145/2063176.2063196
http://doi.acm.org/10.1145/2063176.2063196
https://doi.org/10.1109/90.251892
http://dx.doi.org/10.1109/90.251892
http://dx.doi.org/10.1109/90.251892
https://doi.org/10.1109/HPSR.2013.6602305
https://doi.org/10.1109/HPSR.2013.6602305
http://arxiv.org/abs/1804.07617
http://arxiv.org/abs/1804.07617
http://arxiv.org/abs/1804.07617
https://slideplayer.com/slide/2524318/
https://doi.org/https://doi.org/10.1016/j.simpat.2011.06.002
https://doi.org/https://doi.org/10.1016/j.simpat.2011.06.002

BIBLIOGRAPHY 86

[11] L. Rizzo, “Dummynet: A Simple Approach to the Evaluation of Network Pro-
tocols”, SIGCOMM Comput. Commun. Rev., vol. 27, no. 1, pp. 31–41, 1997, ISSN:
0146-4833. DOI: 10.1145/251007.251012. [Online]. Available: http://doi.
acm.org/10.1145/251007.251012.

[12] G. F. Riley and T. R. Henderson, “The ns-3 Network Simulator”, in Model-
ing and Tools for Network Simulation, K. Wehrle, M. Gunes, and J. Gross, Eds.,
Springer, Berlin, Heidelberg, 2010, pp. 15–34. DOI: 10 . 1007 / 978 - 3 - 642 -
12331-3_2.

[13] A. Varga, “OMNet++”, in Modeling and Tools for Network Simulation, K. Wehrle,
M. Gunes, and J. Gross, Eds., Springer, Berlin, Heidelberg, 2010, pp. 35–59.
DOI: 10.1007/978-3-642-12331-3_3.

[14] B. P. Swenson and G. F. Riley, “Implementing explicit congestion notification
in ns-3”, in Proceedings of the 2014 Workshop on ns-3, ser. WNS3 ’14, Atlanta,
Georgia, USA: ACM, 2014, pp. 1–8, ISBN: 978-1-4503-3003-9. DOI: 10.1145/
2630777 . 2630782. [Online]. Available: http : / / doi . acm . org / 10 . 1145 /
2630777.2630782.

[15] T. Høiland-Jørgensen, P. Hurtig, and A. Brunstrom, “The good, the bad and
the wifi: Modern aqms in a residential setting”, Computer Networks, vol. 89,
pp. 90–106, 2015. DOI: 10.1016/j.comnet.2015.07.014. [Online]. Available:
http://www.scopus.com/inward/record.url?eid=2-s2.0-84940377644&

partnerID=40&md5=38873e7f2234bd6dd6326c3c0a85292d.

[16] Y. Guo, F. Qian, Q. A. Chen, Z. M. Mao, and S. Sen, “Understanding on-device
bufferbloat for cellular upload”, in Proceedings of the 2016 Internet Measurement
Conference, ser. IMC ’16, Santa Monica, California, USA: ACM, 2016, pp. 303–
317, ISBN: 978-1-4503-4526-2. DOI: 10.1145/2987443.2987490. [Online]. Avail-
able: http://doi.acm.org/10.1145/2987443.2987490.

[17] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing Router Buffers”, SIG-
COMM Comput. Commun. Rev., vol. 34, no. 4, pp. 281–292, 2004, ISSN: 0146-
4833. DOI: 10.1145/1030194.1015499.

[18] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An Algorithm for
Increasing the Robustness of RED Active Queue Management”, Tech. Rep.,
2001.

[19] V. Rosolen, O. Bonaventure, and G. Leduc, “A RED Discard Strategy for ATM
Networks and Its Performance Evaluation with TCP/IP Traffic”, SIGCOMM
Comput. Commun. Rev., vol. 29, no. 3, pp. 23–43, 1999, ISSN: 0146-4833. DOI:
10.1145/505724.505728.

[20] K. Zhou, K. L. Yeung, and V. O. Li, “Nonlinear RED: A simple yet efficient ac-
tive queue management scheme”, Computer Networks, vol. 50, no. 18, pp. 3784
–3794, 2006, ISSN: 1389-1286. DOI: http://dx.doi.org/10.1016/j.comnet.
2006.04.007.

https://doi.org/10.1145/251007.251012
http://doi.acm.org/10.1145/251007.251012
http://doi.acm.org/10.1145/251007.251012
https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1007/978-3-642-12331-3_3
https://doi.org/10.1145/2630777.2630782
https://doi.org/10.1145/2630777.2630782
http://doi.acm.org/10.1145/2630777.2630782
http://doi.acm.org/10.1145/2630777.2630782
https://doi.org/10.1016/j.comnet.2015.07.014
http://www.scopus.com/inward/record.url?eid=2-s2.0-84940377644&partnerID=40&md5=38873e7f2234bd6dd6326c3c0a85292d
http://www.scopus.com/inward/record.url?eid=2-s2.0-84940377644&partnerID=40&md5=38873e7f2234bd6dd6326c3c0a85292d
https://doi.org/10.1145/2987443.2987490
http://doi.acm.org/10.1145/2987443.2987490
https://doi.org/10.1145/1030194.1015499
https://doi.org/10.1145/505724.505728
https://doi.org/http://dx.doi.org/10.1016/j.comnet.2006.04.007
https://doi.org/http://dx.doi.org/10.1016/j.comnet.2006.04.007

BIBLIOGRAPHY 87

[21] G. Abbas, Z. Halim, and Z. H. Abbas, “Fairness-Driven Queue Management:
A Survey and Taxonomy”, IEEE Communications Surveys Tutorials, vol. 18, no. 1,
pp. 324–367, 2016, ISSN: 1553-877X. DOI: 10.1109/COMST.2015.2463121.

[22] W. chang Feng, K. G. Shin, D. D. Kandlur, and D. Saha, “The BLUE active
queue management algorithms”, IEEE/ACM Transactions on Networking, vol. 10,
no. 4, pp. 513–528, 2002, ISSN: 1063-6692. DOI: 10.1109/TNET.2002.801399.

[23] S. Kunniyur and R. Srikant, “Analysis and Design of an Adaptive Virtual
Queue (AVQ) Algorithm for Active Queue Management”, SIGCOMM Com-
put. Commun. Rev., vol. 31, no. 4, pp. 123–134, 2001, ISSN: 0146-4833. DOI: 10.
1145/964723.383069.

[24] S. Athuraliya, S. H. Low, V. H. Li, and Q. Yin, “REM: active queue manage-
ment”, IEEE Network, vol. 15, no. 3, pp. 48–53, 2001, ISSN: 0890-8044. DOI:
10.1109/65.923940.

[25] W.-C. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “Stochastic fair blue: A
queue management algorithm for enforcing fairness”, in Proceedings of IEEE
INFOCOM, vol. 3, 2001, pp. 1520–1529. DOI: 10.1109/INFCOM.2001.916648.

[26] L. Xue, S. Kumar, C. Cui, P. Kondikoppa, C.-H. Chiu, and S.-J. Park, “Towards
fair and low latency next generation high speed networks: {afcd} queuing”,
Journal of Network and Computer Applications, vol. 70, pp. 183 –193, 2016, ISSN:
1084-8045. DOI: http://dx.doi.org/10.1016/j.jnca.2016.03.021.

[27] C. V. Hollot, V. Misra, D. Towsley, and W.-B. Gong, “On designing improved
controllers for AQM routers supporting TCP flows”, in Proceedings of IEEE
INFOCOM, vol. 3, 2001, pp. 1726–1734. DOI: 10.1109/INFCOM.2001.916670.

[28] K. De Schepper, O. Bondarenko, I.-J. Tsang, and B. Briscoe, “PI2: A Linearized
AQM for Both Classic and Scalable TCP”, in Proceedings of CoNEXT, Irvine,
California, USA: ACM, 2016, pp. 105–119, ISBN: 978-1-4503-4292-6. DOI: 10.
1145/2999572.2999578.

[29] Y. Gong, D. Rossi, C. Testa, S. Valenti, and M. Taht, “Fighting the bufferbloat:
On the coexistence of AQM and low priority congestion control”, Computer
Networks, vol. 65, pp. 255 –267, 2014, ISSN: 1389-1286. DOI: http://dx.doi.
org/10.1016/j.bjp.2014.01.009.

[30] M. Kuehlewind, G. Hazel, S. Shalunov, and J. Iyengar, “Low Extra Delay Back-
ground Transport (LEDBAT)”, Internet Engineering Task Force (IETF), RFC
6817, 2012.

[31] G. Raina, S. Manjunath, S. Prasad, and K. Giridhar, “Stability and Performance
Analysis of Compound TCP With REM and Drop-Tail Queue Management”,
IEEE/ACM Transactions on Networking, vol. 24, no. 4, pp. 1961–1974, 2016, ISSN:
1063-6692. DOI: 10.1109/TNET.2015.2448591.

https://doi.org/10.1109/COMST.2015.2463121
https://doi.org/10.1109/TNET.2002.801399
https://doi.org/10.1145/964723.383069
https://doi.org/10.1145/964723.383069
https://doi.org/10.1109/65.923940
https://doi.org/10.1109/INFCOM.2001.916648
https://doi.org/http://dx.doi.org/10.1016/j.jnca.2016.03.021
https://doi.org/10.1109/INFCOM.2001.916670
https://doi.org/10.1145/2999572.2999578
https://doi.org/10.1145/2999572.2999578
https://doi.org/http://dx.doi.org/10.1016/j.bjp.2014.01.009
https://doi.org/http://dx.doi.org/10.1016/j.bjp.2014.01.009
https://doi.org/10.1109/TNET.2015.2448591

BIBLIOGRAPHY 88

[32] L. Rizzo and P. Valente, “On service guarantees of fair-queueing schedulers in
real systems”, Computer Communications, vol. 67, pp. 34 –44, 2015, ISSN: 0140-
3664. DOI: http://dx.doi.org/10.1016/j.comcom.2015.06.009.

[33] R. Prasad, M. Jain, and C. Dovrolis, “Effects of interrupt coalescence on net-
work measurements”, in Proceedings of PAM, Springer Berlin Heidelberg, 2004,
pp. 247–256, ISBN: 978-3-540-24668-8. DOI: 10.1007/978-3-540-24668-8_25.

[34] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round-
robin”, IEEE/ACM Transactions on Networking, vol. 4, no. 3, pp. 375–385, 1996,
ISSN: 1063-6692. DOI: 10.1109/90.502236. [Online]. Available: http://dx.
doi.org/10.1109/90.502236.

[35] P. McKenney, “Stochastic fairness queueing”, in Proceedings of the Ninth Annual
Joint Conference of the IEEE Computer and Communication Societies (INFOCOM),
IEEE, 1990, pp. 733–740. DOI: 10.1109/INFCOM.1990.91316.

[36] F. Checconi, L. Rizzo, and P. Valente, “Qfq: Efficient packet scheduling with
tight guarantees”, IEEE/ACM Transactions on Networking, vol. 21, no. 3, pp. 802–
816, 2013, ISSN: 1063-6692. DOI: 10.1109/TNET.2012.2215881. [Online]. Avail-
able: http://dx.doi.org/10.1109/TNET.2012.2215881.

[37] K. Fall, “Network emulation in the VINT/NS simulator”, in Proceedings IEEE
International Symposium on Computers and Communications, 1999, pp. 244–250.
DOI: 10.1109/ISCC.1999.780820.

[38] J. Ahrenholz, C. Danilov, T. R. Henderson, and J. H. Kim, “CORE: A real-time
network emulator”, in IEEE Military Communications Conference, 2008, pp. 1–7.
DOI: 10.1109/MILCOM.2008.4753614.

[39] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown, “Repro-
ducible Network Experiments Using Container-based Emulation”, in Proceed-
ings of the 8th International Conference on Emerging Networking Experiments and
Technologies, ser. CoNEXT ’12, Nice, France: ACM, 2012, pp. 253–264, ISBN:
978-1-4503-1775-7. DOI: 10.1145/2413176.2413206. [Online]. Available: http:
//doi.acm.org/10.1145/2413176.2413206.

[40] S. Aketa, T. Hirofuchi, and R. Takano, “DEMU: A DPDK-based network la-
tency emulator”, in IEEE International Symposium on Local and Metropolitan Area
Networks (LANMAN), 2017, pp. 1–6. DOI: 10.1109/LANMAN.2017.7972145.

[41] D. Camara, H. Tazaki, E. Mancini, T. Turletti, W. Dabbous, and M. Lacage,
“DCE: Test the real code of your protocols and applications over simulated
networks”, IEEE Communications Magazine, vol. 52, no. 3, pp. 104–110, 2014,
ISSN: 0163-6804. DOI: 10.1109/MCOM.2014.6766093.

[42] S. Y. Wang and C. C. Lin, “NCTUns 6.0: A Simulator for Advanced Wireless Ve-
hicular Network Research”, in IEEE 71st Vehicular Technology Conference, 2010,
pp. 1–2. DOI: 10.1109/VETECS.2010.5494212.

https://doi.org/http://dx.doi.org/10.1016/j.comcom.2015.06.009
https://doi.org/10.1007/978-3-540-24668-8_25
https://doi.org/10.1109/90.502236
http://dx.doi.org/10.1109/90.502236
http://dx.doi.org/10.1109/90.502236
https://doi.org/10.1109/INFCOM.1990.91316
https://doi.org/10.1109/TNET.2012.2215881
http://dx.doi.org/10.1109/TNET.2012.2215881
https://doi.org/10.1109/ISCC.1999.780820
https://doi.org/10.1109/MILCOM.2008.4753614
https://doi.org/10.1145/2413176.2413206
http://doi.acm.org/10.1145/2413176.2413206
http://doi.acm.org/10.1145/2413176.2413206
https://doi.org/10.1109/LANMAN.2017.7972145
https://doi.org/10.1109/MCOM.2014.6766093
https://doi.org/10.1109/VETECS.2010.5494212

BIBLIOGRAPHY 89

[43] M. Pieska and A. Kassler, “TCP performance over 5G mmWave links - Trade-
off between capacity and latency”, in 13th International Conference on Wireless
and Mobile Computing, Networking and Communications (WiMob), 2017, pp. 385–
394. DOI: 10.1109/WiMOB.2017.8115776.

[44] A. Flammini, E. Sisinni, and F. Tramarin, “IEEE 802.11s performance assess-
ment: From simulations to real-world experiments”, in IEEE International In-
strumentation and Measurement Technology Conference (I2MTC), 2017, pp. 1–6.
DOI: 10.1109/I2MTC.2017.7969752.

[45] E. Weingartner, H. Vom Lehn, and K. Wehrle, “Device driver-enabled wireless
network emulation”, in 4th International ICST Conference on Simulation Tools and
Techniques (SIMUTools), 2011, pp. 188–197. DOI: 10.4108/icst.simutools.
2011.245584.

[46] T. Kawai, S. Kaneda, M. Takai, and H. Mineno, “A Virtual WLAN Device
Model for High-Fidelity Wireless Network Emulation”, ACM Transactions on
Modeling and Computer Simulation, vol. 27, no. 3, pp. 1–24, 2017, ISSN: 1049-
3301. DOI: 10.1145/3067664.

[47] S. Yadav, M. S. Gaur, and V. Laxmi, “Ns-3 emulation on ORBIT testbed”, in In-
ternational Conference on Advances in Computing, Communications and Informatics
(ICACCI), 2013, pp. 616–619. DOI: 10.1109/ICACCI.2013.6637243.

[48] J. Núñez-Martínez, J. Baranda, and J. Mangues-Bafalluy, “Experimental eval-
uation of self-organized backpressure routing in a wireless mesh backhaul of
small cells”, Ad Hoc Networks, vol. 24, pp. 103 –114, 2015, ISSN: 1570-8705. DOI:
https://doi.org/10.1016/j.adhoc.2014.07.021.

[49] H. Fontes, R. Campos, and M. Ricardo, “Improving ns-3 Emulation Support
in Real-World Networking Scenarios”, EAI Endorsed Transactions on Industrial
Networks and Intelligent Systems, vol. 16, no. 9, Aug. 2015. DOI: 10.4108/eai.
24-8-2015.2261074.

[50] L. Rizzo, “Netmap: A Novel Framework for Fast Packet I/O”, in Proceedings
of the 2012 USENIX Conference on Annual Technical Conference, ser. USENIX
ATC’12, Boston, MA: USENIX Association, 2012, pp. 1–9. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2342821.2342830.

[51] P. Imputato and S. Avallone, “An analysis of the impact of network device
buffers on packet schedulers through experiments and simulations”, Simula-
tion Modelling Practice and Theory, vol. 80, no. Supplement C, pp. 1–18, 2018,
ISSN: 1569-190X. DOI: https://doi.org/10.1016/j.simpat.2017.09.008.

[52] P. Imputato and S. Avallone, “Design and implementation of the traffic control
module in ns-3”, in Proceedings of the Workshop on Ns-3, ser. WNS3 ’16, Seat-
tle, WA, USA: ACM, 2016, pp. 1–8, ISBN: 978-1-4503-4216-2. DOI: 10.1145/
2915371 . 2915382. [Online]. Available: http : / / doi . acm . org / 10 . 1145 /
2915371.2915382.

https://doi.org/10.1109/WiMOB.2017.8115776
https://doi.org/10.1109/I2MTC.2017.7969752
https://doi.org/10.4108/icst.simutools.2011.245584
https://doi.org/10.4108/icst.simutools.2011.245584
https://doi.org/10.1145/3067664
https://doi.org/10.1109/ICACCI.2013.6637243
https://doi.org/https://doi.org/10.1016/j.adhoc.2014.07.021
https://doi.org/10.4108/eai.24-8-2015.2261074
https://doi.org/10.4108/eai.24-8-2015.2261074
http://dl.acm.org/citation.cfm?id=2342821.2342830
https://doi.org/https://doi.org/10.1016/j.simpat.2017.09.008
https://doi.org/10.1145/2915371.2915382
https://doi.org/10.1145/2915371.2915382
http://doi.acm.org/10.1145/2915371.2915382
http://doi.acm.org/10.1145/2915371.2915382

BIBLIOGRAPHY 90

[53] P. Imputato and S. Avallone, “Traffic differentiation and multiqueue network-
ing in ns-3”, in Proceedings of the Workshop on Ns-3, ser. WNS3 ’17, Porto, Por-
tugal: ACM, 2017, pp. 79–86, ISBN: 978-1-4503-5219-2. DOI: 10.1145/3067665.
3067677. [Online]. Available: http : / / doi . acm . org / 10 . 1145 / 3067665 .
3067677.

[54] Intel Corporation. (2013). Impressive Packet Processing Performance Enables
Greater Workload Consolidation. White paper.

[55] PF_RING ZC, http://www.ntop.org/products/pf_ring/pf_ring-zc-zero-
copy/, Accessed: 2018-06-11.

[56] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle, “Compar-
ison of frameworks for high-performance packet IO”, in ACM/IEEE Sympo-
sium on Architectures for Networking and Communications Systems (ANCS), 2015,
pp. 29–38. DOI: 10.1109/ANCS.2015.7110118.

[57] Y. Guo, F. Qian, Q. A. Chen, Z. M. Mao, and S. Sen, “Understanding On-device
Bufferbloat for Cellular Upload”, in Proceedings of the 2016 Internet Measurement
Conference, ser. IMC ’16, Santa Monica, California, USA: ACM, 2016, pp. 303–
317, ISBN: 978-1-4503-4526-2. DOI: 10.1145/2987443.2987490. [Online]. Avail-
able: http://doi.acm.org/10.1145/2987443.2987490.

[58] G. Piro, N. Baldo, and M. Miozzo, “An LTE module for the Ns-3 Network Sim-
ulator”, in Proceedings of the 4th International ICST Conference on Simulation Tools
and Techniques, ser. SIMUTools ’11, Barcelona, Spain: ICST, 2011, pp. 415–422,
ISBN: 978-1-936968-00-8. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2151054.2151129.

[59] R. Kumar, A. Francini, S. Panwar, and S. Sharma, “Dynamic control of rlc
buffer size for latency minimization in mobile ran”, in 2018 IEEE Wireless Com-
munications and Networking Conference (WCNC), 2018, pp. 1–6. DOI: 10.1109/
WCNC.2018.8377190.

[60] T. Høiland-Jørgensen, MichałKazior, D. Täht, P. Hurtig, and A. Brunstrom,
“Ending the Anomaly: Achieving Low Latency and Airtime Fairness in WiFi”,
in 2017 USENIX Annual Technical Conference (USENIX ATC 17), Santa Clara,
CA: USENIX Association, 2017, pp. 139–151, ISBN: 978-1-931971-38-6. [On-
line]. Available: https://www.usenix.org/conference/atc17/technical-
sessions/presentation/hoilan-jorgesen.

[61] M. Zhang, M. Mezzavilla, J. Zhu, S. Rangan, and S. S. Panwar, “The bufferbloat
problem over intermittent multi-gbps mmwave links”, CoRR, vol. abs/1611.02117,
2016. arXiv: 1611.02117. [Online]. Available: http://arxiv.org/abs/1611.
02117.

https://doi.org/10.1145/3067665.3067677
https://doi.org/10.1145/3067665.3067677
http://doi.acm.org/10.1145/3067665.3067677
http://doi.acm.org/10.1145/3067665.3067677
http://www.ntop.org/products/pf_ring/pf_ring-zc-zero-copy/
http://www.ntop.org/products/pf_ring/pf_ring-zc-zero-copy/
https://doi.org/10.1109/ANCS.2015.7110118
https://doi.org/10.1145/2987443.2987490
http://doi.acm.org/10.1145/2987443.2987490
http://dl.acm.org/citation.cfm?id=2151054.2151129
http://dl.acm.org/citation.cfm?id=2151054.2151129
https://doi.org/10.1109/WCNC.2018.8377190
https://doi.org/10.1109/WCNC.2018.8377190
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hoilan-jorgesen
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hoilan-jorgesen
http://arxiv.org/abs/1611.02117
http://arxiv.org/abs/1611.02117
http://arxiv.org/abs/1611.02117

BIBLIOGRAPHY 91

[62] Y. Dai, V. Wijeratne, Y. Chen, and J. Schormans, “Channel Quality Aware Ac-
tive Queue Management in Cellular Networks”, in 2017 9th Computer Science
and Electronic Engineering (CEEC), 2017, pp. 183–188. DOI: 10 . 1109 / CEEC .
2017.8101622.

[63] H. Jiang, Y. Wang, K. Lee, and I. Rhee, “Tackling Bufferbloat in 3g/4g Net-
works”, in Proceedings of the 2012 Internet Measurement Conference, ser. IMC ’12,
Boston, Massachusetts, USA: ACM, 2012, pp. 329–342, ISBN: 978-1-4503-1705-
4. DOI: 10.1145/2398776.2398810. [Online]. Available: http://doi.acm.org/
10.1145/2398776.2398810.

[64] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge com-
puting - A key technology towards 5G”, ETSI White Paper.

[65] X. Zhang, Y. Xu, H. Hu, Y. Liu, Z. Guo, and Y. Wang, “Profiling Skype video
calls: Rate control and video quality”, 2012 Proceedings IEEE INFOCOM, pp. 621–
629, 2012.

[66] R. Bestak, P. Godlewski, and P. Martins, “RLC buffer occupancy when using
a TCP connection over UMTS”, in The 13th IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications, vol. 3, 2002, 1161–1165 vol.3.
DOI: 10.1109/PIMRC.2002.1045210.

[67] B. Prisco. (2015). Review: Proportional integral controller enhanced (pie) active
queue management (aqm), [Online]. Available: http://www.bobbriscoe.net/
projects/latency/piervw_tr.pdf.

[68] CableLabs. (2014). Active queue managements in docsis 3.x cable modems,
[Online]. Available: https://www.cablelabs.com/wp- content/uploads/
2014/06/DOCSIS-AQM_May2014.pdf.

[69] P. Imputato, S. Avallone, and T. Pecorella, “Network emulation support in ns-
3 through kernel bypass techniques”, in Proceedings of the 11th EAI Interna-
tional Conference on Performance Evaluation Methodologies and Tools, ser. VALUE-
TOOLS 2017, Venice, Italy: ACM, 2017, pp. 259–260, ISBN: 978-1-4503-6346-4.
DOI: 10.1145/3150928.3150966. [Online]. Available: http://doi.acm.org/
10.1145/3150928.3150966.

https://doi.org/10.1109/CEEC.2017.8101622
https://doi.org/10.1109/CEEC.2017.8101622
https://doi.org/10.1145/2398776.2398810
http://doi.acm.org/10.1145/2398776.2398810
http://doi.acm.org/10.1145/2398776.2398810
https://doi.org/10.1109/PIMRC.2002.1045210
http://www.bobbriscoe.net/projects/latency/piervw_tr.pdf
http://www.bobbriscoe.net/projects/latency/piervw_tr.pdf
https://www.cablelabs.com/wp-content/uploads/2014/06/DOCSIS-AQM_May2014.pdf
https://www.cablelabs.com/wp-content/uploads/2014/06/DOCSIS-AQM_May2014.pdf
https://doi.org/10.1145/3150928.3150966
http://doi.acm.org/10.1145/3150928.3150966
http://doi.acm.org/10.1145/3150928.3150966

	Abstract
	Introduction
	Context
	Network traffic control
	Network experimentation

	Motivation
	Contribution
	Thesis structure

	An experimental characterization of the impact of device buffer on packet schedulers
	Introduction
	Background
	Dynamic Queue Limits
	Experimental results
	Conclusions

	Design and implementation of the traffic control module in ns-3
	Introduction
	Background
	Linux traffic control
	ns-3 queue system

	Design and implementation
	Module description
	Design
	Implementation Issues

	Results
	Simulation Settings
	First Scenario
	Second Scenario

	Conclusions

	Enanching the network emulation fidelity to support simulated modules validation
	Introduction
	Background
	The Linux TC infrastructure and the ns-3 traffic-control module
	The ns-3 network emulation approach based on packet sockets and its limitations
	The netmap framework for high speed packet I/O through direct NIC access

	Exploiting netmap to enhance the fidelity of network emulation
	Experimental results
	Assessing the accuracy of network emulation techniques
	Validation of the ns-3 implementation of AQM algorithms
	Analysis of the maximum achievable data rates

	Conclusions

	Proposals of design and evaluation of traffic control strategies
	Introduction
	A software traffic control in 3GPP stack
	Related Work
	Background
	Adding TC on top of the 3GPP stack
	Results
	Single UE scenario
	Multiple UEs scenario

	Conclusions

	Flow control aware AQM algorithms
	The PIE departure rate estimator
	Considering the impact of flow control on AQM design
	Results
	Conclusions

	Conclusions

	Conclusion

