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Abstract

Laser Plasma Accelerators (LPA) have been a technological breakthrough for the cre-

ation of compact accelerating machines. Due to its capability to support accelerating

fields many orders of magnitude bigger than the ones implied in the conventional

RF accelerators, plasma allows in principle to reach ultra-high energies in a very

reduced space.

The intrinsically strongly nonlinear dynamics of a plasma and of the coupled

electromagnetic fields still requires a lot of experimental and theoretical efforts to

be managed, so, nowadays, the bunch quality obtained by a plasma accelerator is

still too poor to allow a direct application. However, the recent production by the

Lawrence Berkeley National Laboratory of a 4.2GeV, 6% r.m.s energy spread, 6pC

charge and 0.3mrad r.m.s divergence beam in a 9cm capillary waveguide is an abso-

lutely astonishing result that leads to other steps forward in order to overcome the

conventional technology.

In this work, we present the theoretical and computational modelling of the non-

linear laser-plasma interaction in regimes relevant to the acceleration process. In

particular, due to the strongly limited computational speed that can be reached by a

standard fully kinetic Particle-In-Cell code, we addressed the problem of developing

some reduced numerical model. Our goal is in fact to boost the simulations without

losing the most important kinematic details. For this reason, we implemented in the

ALaDyn code an explicit integration of the so called laser envelope model in which,

assuming a broad laser pulse, only the relevant long scales are retained while the

short ones are averaged out, allowing to strongly reduce the resolution needed to

evolve the system. Also, we implied this numerical technique to validate a novel and

very promising acceleration scheme, based on the decoupling of the wakefield gen-

eration and of the particle ionization process. Due to the complexity of the model,
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a fully 3D kinetic simulation is unfeasible with the currently available computa-

tional resources, so we performed a stage-by-stage comparison making use of the

reduced model implemented in ALaDyn and of the hybrid, cylindrical, quasi-static

code QFluid, showing an excellent agreement.
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Introduction

The work of this thesis has been conceived in the promising context of the techno-

logical development of the new particle acceleration techniques. In the last years, in

fact, the physical limits of the so called conventional accelerators have been reached

because to accelerate particles to some TeV, a ∼ Km size machine is needed.

The study on the plasma nature led to the discovery of the plasma waves, that

can sustain ultra high electric fields, much above the breakdown electric field thresh-

old that characterizes the radiofrequency accelerators. Thus, new technologies are

shifting the focus of the research from increasing the accelerator size to obtaining

high controllable accelerating gradients. In fact, if on the one hand the maximum

field in a plasma can be up to 3 orders of magnitude bigger than the one in a con-

ventional system, on the other hand the intrinsic nonlinear dynamics governing the

plasma motion can be very challenging to deal with.

One of the acceleration techniques involving the plasma is the Laser Wakefield

Acceleration, in which a laser pulse is shot through a plasma and by the means of the

ponderomotive force, perturbs it to create suitable conditions to accelerate particle

bunches. Along with the development of the ultra-intense ultra-short laser pulse

technology (chirped pulse amplification) implied in the generation of intense plasma

electric fields, or wakefields, many theoretical and numerical study have become

necessary to address the problem of understanding the processes underlying the

acceleration mechanisms.

This thesis work aims to illustrate some of this techniques, developed and then

applied in many contexts, such as an innovative acceleration scheme that is cur-

rently being investigated to considerably improve the quality, that is the emittance

and energy spread, of an accelerated electron bunch. So, in Chapter 1, the general

theory of the collisionless cold plasma dynamics is reviewed, then, in Chapter 2,

the main equations are specialized to the interaction of an electronic plasma with an
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intense laser pulse travelling through it, and the concept of plasma acceleration is

introduced.

In Chapter 3, we illustrate the Particle-in-Cell (PIC) simulation technique, that

has been developed in the last tens of years to compute the evolution of a physi-

cal system in which the particle-particle interaction is substituted by a particle-field

interaction, which means that the unfeasible mani-body dynamics is evaluated via

the interaction of any particle with the surrounding field, which field is generated

by the particles themselves. Such a breakthrough allowed to face the evaluation of

nonlinear laser plasma interaction, which is analytically very challenging, and to de-

velope the new technologies that are currently being studied for the improvement

of the standard accelerating machines.

In Chapter 4, we present a novel algorithm that is integrated in the simulation

framework of Chap.3. We address the problem of speeding-up a typical PIC sim-

ulation by averaging the fast scales of the dynamics, in what has been called enve-

lope approximation. In this context, we propose a new computational scheme, that

evolves the laser pulse dynamics by the means of an explicit integration timestep

evolution that is demonstrated to be fast and stable. Also, the particle dynamics

evolution is properly modified, resulting in an accurate and fast simulation tool for

the laser-plasma interaction. As a second contribution, a finite difference second

order Adams-Bashfort time integrator, coupled with a Weighted Essentially Non

Oscillatory spatial derivative scheme evolves the plasma dynamics according to the

fluid equations. This represent further boost in the computational laser-plasma in-

teraction respect to the envelope approximation, but also entails many challenging

numerical effects, in particular when dealing with a strongly nonlinear regime.

In Chapter 5, we apply some of the techniques we have developed to a novel

and very promising injection and acceleration scheme. In fact, to mitigate the non-

linear effects that can degrade an accelerated bunch quality, an acceleration model

in a mildly nonlinear regime is proposed, based on the employment of a multi-pulse

laser configuration. In this framework, our numerical work finds many natural ap-

plications, because of the intrinsic difficulties in analytically solving the system dy-

namics. In particular, both a standard PIC and a PIC in the envelope approximation
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scheme have been used to validate the model towards an experimental implemen-

tation.
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Chapter 1

Fundamental plasma theory

1.1 Plasma description

A plasma, also usually referred to as, the fourth state of matter, is an ensemble of free

charged and neutral particles which exhibits collective behavior [1]. It constitutes

large part of the known universe, and it is involved in a number of phenomena,

ranging from the solar wind to the aurora borealis. It is encountered in very large

densities and temperatures range and with very different composition, so the devel-

opment of an all-embracing plasma theory is very challenging. Regardless the condi-

tions it is in, the interaction between the charged particles that compose it generates

very large electromagnetic fields that self-interact with the particles themselves. The

plasma dynamics is therefore always very complex, even though for some specific

descriptions some simplification can be made.

Here we deal with laboratory plasmas, suitable for applications such as laser-

plasma acceleration. In these configurations, some effects can be neglected, so the

interparticles collisions, quantum and strong magnetic field effects will not appear

in the description.

1.2 Debye length

In a plasma, where the Coulombian interaction is dominant, one has the problem of

determining a characteristic length on which the electromagnetic interaction takes

places. In fact, we know that Coulomb force decades as r−2, so there’s an infinite

interaction length between two charges. Despite this effect, in a plasma the collective



Chapter 1. Fundamental plasma theory 5

particle motion works as a screen between the particles themselves resulting in a

substantial change of the electric potential Φ.

Let us consider a neutral warm plasma in an homogeneous equilibrium state. If

we introduce a single charge q, the original equilibrium state is perturbed and a new

one is reached, where the new electric potential of the system satisfies the relation

nq(x)
n0

= exp
[
−qΦ(x)

kBT

]
, (1.1)

being nq, n0 and T respectively the perturbed and neutral densities and the temper-

ature, giving a plasma density

ρ(x) = qn0

(
1 − e−qΦ(x)/kBT

)
. (1.2)

Here, the charge insertion could create either a large or a small perturbation in

the system, depending on the conditions. In the former case, the plasma state un-

dergoes a drastic change and a specific model to describe the system characteristics

would be adequate. On the other hand, in the case of a small perturbation, the

plasma maintains the so-called quasi-neutral state. That means that it is non-neutral

on the shorter length scales, where the electromagnetic interaction is preponderant

and all the peculiar effects take place, while on the longer scales, the overall electro-

magnetic fields vanish, except for the statistical fluctuations. This allows to assume

that the densities of the positive and negative charges are equal, and so the system,

on that scales, is neutral. For a perturbation to be small, the energy of a single parti-

cle must be large enough that it can cross the area surrounding the inserted charge,

as it would have done in the equilibrium state. So, if the energy displacement due to

the charge introduction is much less than the thermal energy of the plasma, we can

expand the exponential and put the result into Poisson’s equation, obtaining

∇2Φ(x) = −4πq2n0

kBT
Φ(x)− 4πqδ(x). (1.3)
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Introducing

λD =

√
kBT

4πn0q2 , (1.4)

the Debye length, we write the general solution of Eq.(1.3) as

Φ(x) =
A
x

e−x/λD , (1.5)

where, from the boundary conditions for x → 0, we can fix A = q. Due to the

tendency of the plasma to maintain the charge neutrality, the free particles screen

each other’s charge so that every one of them can affect effectively the others only if

they are inside a sphere of radius λD.

1.3 Charge oscillations

The local charge violation can also be realized in a non-equilibrium configuration.

Let us consider, for simplicity, a simple neutral plasma formed by protons and elec-

trons, in which we displace a plane of the latter ones by a quantity ξ. Due to the

much larger mass, the protons don’t adapt to the new configuration, that therefore

results to be out of equilibrium. The restoring Coulombian force brings the electrons

back on their position, generating a plane oscillation.

We address the problem of writing the equation of motion of a thin charged

plane of transverse dimensions ∆W and ∆L and longitudinal thickness ξ, with ξ ≪

∆W, ∆L to neglect boundary effects. The total charge contained in the plane is

Q = −en0∆W∆Lξ, where n0 is the electrons (ions) number density, while M =

men0∆W∆Lξ is the total mass, where me is the electron mass. Since we are creating

a capacitor, we know from the Gauss law that the restoring electric field of the sys-

tem is E = −4πQ/(∆W∆L)ξ, i.e. E = 4πen0ξ. The Newton equation for the plane,

which is written as Mξ̈ = QE becomes so

(men0∆W∆Lξ) ξ̈ = −n0∆W∆Lξ4πe2n0ξ, (1.6)
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which, after the simplifications, can be finally written as

ξ̈ +
4πe2n0

me
ξ = 0. (1.7)

Eq.(1.7), represents the equation of an harmonic oscillator of frequency

ω2
p =

4πe2n0

me
, (1.8)

which therefore is related to the characteristic electron motion time in a plasma, and

is called electron plasma frequency.

1.4 Kinetic description: Klimontovich equation

To give an consistent statistical description of a plasma, some conditions are needed.

First of all, there must be enough particle in a Debye sphere (i.e. a sphere of radius

λD) that the collective effect of shielding can take place. The number of particle is

defined as

ND = n0
4
3

πλ3
D ∝

√
T3

n
, (1.9)

and the condition a plasma has to satisfy is ND ≫ 1 or, in other words, the plasma

density must be sufficiently low to assure that the collective effects take place.

Another necessary condition to distinguish a plasma from a neutral gas is that in

the first one, particle-particle interaction is dominated by the electromagnetic force

while, in the other case, collisions play the major role. Thus, if ωp is the frequency

of the electrostatic charge oscillations and τ is the mean time between collisions, we

must have

ωpτ > 1. (1.10)

Many procedures have been developed to construct a successful plasma kinetic

theory, any of them pointing out some important dynamics features. Even though

the most common approach is to start from the BBGKY hierarchy [2, 3], based on a

probabilistic interpretation, we would like to follow the Klimontovich method. This
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entails to start from a single-particle dynamics point of view generalizing it later

to an ensemble interpretation. This choice will be clear in the following Chapters,

where we will deal with the numerical macroparticle equations.

We consider the plasma particles density in the µ−space point (x, p) for each

species s of a plasma of N0 particles as

Ns(x, p, t) =
N0

∑
i=1

δ [x − Xi(t)] δ [p − Pi(t)] , (1.11)

that is the sum on all the particles, where any of them has a density which is a δ

function both in space and momentum. In this way, we are considering a set of

point-like particles centered in (Xi, Pi) that obey the equations of motion

Ẋi(t) =
Pi(t)
ms

,

Ṗi(t) = qs

[
Em (Xi(t), t) +

Pi(t)
msc

× Bm (Xi(t), t)
]

.
(1.12)

The superscript on the electric and magnetic fields indicates that those are the mi-

croscopic self-consistent fields, generated by the particle distribution itself. In par-

ticular, the particle density and current, defined as:

ρm(x, t) = ∑
s

qs

∫
Ns(x, p, t)dp, (1.13)

Jm(x, t) = ∑
s

qs

ms

∫
pNs(x, p, t)dp, (1.14)

are sources for the Maxwell equations

∇ · Em(x, t) = 4πρm(x, t), (1.15a)

∇ · Bm(x, t) = 0, (1.15b)

∇× Em(x, t) = −1
c

∂Bm(x, t)
∂t

, (1.15c)

∇× Bm(x, t) =
4π

c
Jm(x, t) +

1
c

∂Em(x, t)
∂t

. (1.15d)

Since we are dealing with plasma particles that cannot be created or destroyed,

we can think at the density as a fluid in the µ−space, hence the continuity equation
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must hold:

∂Ns(x, p, t)
∂t

+∇µ ·
(
V̂Ns(x, p, t)

)
= 0, (1.16)

in which we called V̂ the total 6D velocity vector (ẋ, ṗ/ms) and we are therefore

referring to the gradient in the µ−space. We can write explicitly Eq.(1.16) expanding

the derivatives

∂Ns(x, p, t)
∂t

+
p

ms
· ∇xNs(x, p, t)+

+ qs

[
Em(x, t) +

p
msc

× Bm(x, t)
]
· ∇pNs(x, p, t) = 0, (1.17)

so obtaining the Klimontovich equation [3].

1.5 Vlasov equation

Even though Klimontovich equation’s meaning is straightforward, it’s almost prac-

tically useless both from an analytical and a computational point of view, because

knowing every particle trajectory in the phase space is a very redundant informa-

tion. Instead, what we look for when we construct a statistical description, is some

object that can be easily related to the physical quantity we commonly deal with

(e.g. volume, average macroscopic velocity, macroscopic density, etc...). To do so,

we resort to the definition of a distribution function with a frequentist probabilistic

meaning. In fact, statistical mechanics provides the key in the macroscopic interpre-

tation of the function fs(x, p, t) which is the probability to find a particle in a given

phace space volume dµ = dxdp [2]. To have a consistent theory, a distribution func-

tion must be defined as

lim
∆µ→0

∫
∆µ

fs(x, p, t)dµ =
1

N0
Ns(x, p, t)∆µ, (1.18)

where the limit on the volume ∆µ = ∆x∆p has to be intended as sufficiently large

to contain a lot of particles, so that it make sense to perform an average, but a lot

smaller than a Debye sphere, not to lose the collective effects of the plasma: this is

possible thanks to the condition ND ≫ 1 explained before.
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Since we perform an average over a great number of particles, we expect the

fluctuations in the electric and magnetic fields due to the short range variations in

Eq.(1.15) to disappear, so that a set of averaged (i.e. long range) Maxwell equations

is coupled with the evolution equation for fs(x, p, t). So, we consider the stochastic

discrepancy from the average value

Ns(x, p, t)
N0

= fs(x, p, t) + δ f , (1.19a)

Em(x, t) = E(x, t) + δE, (1.19b)

Bm(x, t) = B(x, t) + δB, (1.19c)

with, ⟨δ f ⟩ = ⟨δE⟩ = ⟨δB⟩ = 0, and we insert this expansion in Eqs.(1.17) and (1.15)

to generate the system

∂ fs(x, p, t)
∂t

+
p

ms
· ∇x fs(x, p, t)+

+ qs

[
E(x, p, t) +

p
msc

× B(x, p, t)
]
· ∇p fs(x, p, t) = C (δ f , δE, δB)

(1.20)

and

∇ · E(x, t) = 4πρ(x, t), (1.21a)

∇ · B(x, t) = 0, (1.21b)

∇× E(x, t) = −1
c

∂B(x, t)
∂t

, (1.21c)

∇× B(x, t) =
4π

c
J(x, t) +

1
c

∂E(x, t)
∂t

. (1.21d)

Eq.(1.20) is called Vlasov equation and together with (1.21) form a fully self-consistent

system of equation describing the plasma dynamics coupled with its self generated

electromagnetic field. In particular, the r.h.s of Eq.(1.20) represents the contribution

of the binary collisions in the distribution function evolution; since the condition

ωpτ > 1, which will be valid in every application under consideration in this thesis,
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we neglect the collisions to obtain the so called collisionless Vlasov equation:

∂ fs(x, p, t)
∂t

+
p

ms
· ∇x fs(x, p, t)+

+ qs

[
E(x, p, t) +

p
msc

× B(x, p, t)
]
· ∇p fs(x, p, t) = 0. (1.22)

1.6 Fluid equations

The Vlasov equation formalism, even being able to represent the plasma dynamics

with a single equation, is still analytically really difficult to be dealt with. Physical

plasma parameters are in fact related to fs(x, p, t) via some integral formulas, such

as

ns(x, t) = N0

∫
fs(x, p, t)dp, (1.23a)

ns(x, t)vs(x, t) = N0

∫ p
ms

fs(x, p, t)dp, (1.23b)

where ns(x, t) and vs(x, t) are respectively the particle density and the fluid velocity;

solving the nonlinear Vlasov system in function of the variables in Eqs.(1.23) implies

the resolution of an integro-differential system. Besides, in the kinetic equations, all

the physics up to a Debye length scale is retained, which is still a lot of information.

Therefore, for a more suitable system of equations for the plasma evolution, a fluid

approach is often preferred.

Let us define, for the sake of compactness, the Vlasov operator

L̂ [ fs] ≡
(

∂

∂t
+

p
ms

· ∇x + qs

[
E(x, t) +

p
msc

× B(x, t)
]
· ∇p

)
fs, (1.24)

which allows to express Eq.(1.22) as

L̂ [ fs] = 0; (1.25)



Chapter 1. Fundamental plasma theory 12

we are able to construct a hierarchy of equations starting from the first moments of

L̂ [ fs] and fs(x, p, t), that are respectively

M0
[
L̂
]
=
∫

L̂ [ fs] dp,

M1
[
L̂
]
=
∫ p

ms
L̂ [ fs] dp,

(1.26)

and
I0(x, t) =

∫
fs(x, p, t)dp,

I1(x, t) =
∫ p

ms
fs(x, p, t)dp,

I2(x, t) =
1

m2
s

∫
(p ⊗ p) fs(x, p, t)dp.

(1.27)

As it is shown in Appendix A, the system of equations that comes out manipu-

lating Eqs.(1.26) and (1.27) is

∂

∂t
I0(x, t) +∇x · I1(x, t) = 0, (1.28a)

∂

∂t
I1(x, t) +∇x I2(x, t) = I0(x, t)

⟨F⟩
m

. (1.28b)

When describing a plasma with a system of fluid equations, one is implicitly

smoothing, i.e. averaging, the information present in the Vlasov-Maxwell equations.

In fact, it is of no interest knowing the exact trajectories of every plasma particle.

One would rather prefer to represent the plasma with some function directly related

to the macroscopic features. This is why we consider the characteristic length λ onto

which the physical quantities are varying being λ ≫ λD. The result of a smoothing

operation cancels out every random fluctuation in the microscopic particle motion,

returning only the streaming effect, which means that, after the average, we are able

to see only the net plasma flowing. To do so, we split the particle momentum in a

streaming and a random contribution, i.e.

p
ms

= vs + ṽ, (1.29)

with ⟨ṽ⟩ = 0.
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Now that we got the basic relations founding the fluid theory, we need to discuss

their physical meaning. In Eq.(1.27), we can interpret the three moments as

N0 I0(x, t) = N0

∫
fs(x, p, t)dp = ns(x, t), (1.30)

the fluid, averaged, plasma density in space, and

N0 I1(x, t) = N0

∫ p
ms

fs(x, p, t)dp =
1

ms

∫
p fs(x, p, t)dp∫
fs(x, p, t)dp

ns(x, t) = vs(x, t)ns(x, t),

(1.31)

where vs(x, t) stands for the Eulerian velocity field. In the end, we use Eq.(1.29) to

show that the second moment I2(x, t) can be rewritten as

N0 I2(x, t) =
1

m2
s

∫
(p ⊗ p) fs(x, p, t)dp∫

fs(x, p, t)dp
ns(x, t) = ns(x, t)

⟨
p

ms
⊗ p

ms

⟩
, (1.32)

and so, separating the streaming and the random effects as in Eq.(1.29)

N0 I2(x, t) = ns(x, t) ⟨vs(x, t)⊗ vs(x, t)⟩+ ns(x, t) ⟨ṽ ⊗ ṽ⟩ =

=ns(x, t) ⟨vs(x, t)⊗ vs(x, t)⟩+ Π̂s

ms
, (1.33)

where the square average contribution of the random fluctuation in the velocity is

what macroscopically determines the pressure of the system, that we call Π̂s.

We rewrite the system of equation Eqs.(1.28) as

∂ns(x, t)
∂t

+∇ · (ns(x, t)vs(x, t)) = 0, (1.34)[
∂

∂t
+ vs(x, t) · ∇

]
vs(x, t) =

qs

ms

(
E(x, t) +

vs(x, t)
c

× B(x, t)
)
− ∇ · Π̂s

msns(x, t)
, (1.35)

which are a continuity equation coupled with a Newton equation acting on the fluid

element. We now have the first two equations of the hierarchy of moments, but, as it

was clear, the evolution of In(x, t) depends both from the higher and lower order mo-

ments and so, we would need an infinite number of equations to describe the system.

This is also evident because we derived Eqs.(1.34) and (1.35) from Vlasov equation

Eq.(1.22), without really changing anything but the point of view: the complete set
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of evolution equations for In(x, t) is exactly the kinetic description presented before.

To introduce a simplification, we need a closure for this hierarchy, breaking the chain

of dependency of a given moment from the following one. We can do so with an

a priori assumption on the physics of the plasma we are dealing with. In Eq.(1.35),

the pressure tensor is where the dependence from I2(x, t) is hidden. Therefore, we

have to define a functional form of Π̂s making use of some thermodynamics rela-

tions. First of all, we notice that the short range collisions are negligible and there

is no dissipation in Eq.(1.35), so no error is made in considering the pressure tensor

isotropic, i.e. Π̂s = πsÎ, and then we can relate it to the temperature effects in the

plasma with

πs = ns(x, t)kBTs(x, t), (1.36)

where kB is the Boltzmann constant. The other approximation that can be made is to

consider the plasma as an ideal gas. In this way, we can close the hierarchy choosing

a state equation, such as the adiabatic or the isothermal one; we recall that they are

respectively

pVγ = constant ⇒ Tn1−γ = constant, (1.37)

and

T(x, t) ≡ T(x), (1.38)

which is similar to the previous one, evaluated with γ = 1. The last term in Eq.(1.35)

becomes so

kB∇ (ns(x, t)Ts(x, t))
msns(x, t)

=

⎧⎪⎪⎨⎪⎪⎩
γ

kBTs(x, t)
ms

∇n(x, t)
n(x, t)

if adiabatic

kBTs(x, t)
ms

∇n(x, t)
n(x, t)

if isothermal.
(1.39)

Many other consideration can be done on the closure of the hierarchy, but they are

well beyond the scope of this thesis. Just as a glimpse, we can say that the first three

moments equations represent respectively
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• zeroth order → density effects,

• first order → forces effects,

• second order → energy effects,

so, if for a particular phenomenon a different condition is more suitable than the

ideal gas equation, it is always possible to impose many different particular thermal

effects and energy transport features in the second order equation to find out the

best ansatz for the plasma equation.

In the continuation of this work, we will study the peculiarities and the applica-

tion of a cold plasma, so here and from now on, we will always refer to the fully self-

consistent fluid description, called Lorentz-Maxwell equations, written in the cold-

plasma approximation, namely

∂ns(x, t)
∂t

+∇ · (ns(x, t)vs(x, t)) = 0, (1.40a)[
∂

∂t
+ vs(x, t) · ∇

]
vs(x, t) =

qs

ms

(
E(x, t) +

vs(x, t)
c

× B(x, t)
)

, (1.40b)

coupled with the Maxwell equations

∇ · E(x, t) = 4π ∑
s

qsns(x, t), (1.41a)

∇ · B(x, t) = 0, (1.41b)

∇× E(x, t) = −1
c

∂B(x, t)
∂t

, (1.41c)

∇× B(x, t) =
4π

c ∑
s

qsvs(x, t)ns(x, t) +
1
c

∂E(x, t)
∂t

. (1.41d)

1.7 Waves propagation in a plasma

One of the most noteworthy plasma features is the so called collective motion. That

means that any perturbation applied on the system is never confined, but influences

the system itself in its totality. The most important example are plasma waves, also

called Langmuir waves. They are electrostatic perturbations that propagate (or not,

according if thermal effects are present) without net mass or charge transport with a
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characteristic frequency that depends on the particle charge and mass. This means

that, differently from the acoustic waves, also longitudinal waves, any particle-type

oscillations is different from the others and the plasma local neutrality is violated.

To better explain this effect, let us consider the Lorentz-Maxwell system of equa-

tions, Eqs.(1.40) and (1.41). It describes a plasma composed by different particle

species, any of them labelled with the subscript s, coexisting and interacting through

the self generated electromagnetic field. The most simple type of plasma is the

Hydrogen-like one, where we only have two species of particles: electrons and pro-

tons. For our scope, we will restrict our analysis to this type of plasma, hence the s

label can only be s = e, i, where e stands for electrons and i for the ions. For both of

them the particle charge is the electron charge, with the plus sign for the ions, and

the mass are respectively the electron mass me and the proton mass mi. The resulting

system is therefore

[
∂

∂t
+ ve(x, t) · ∇

]
ve(x, t) = − e

me

(
E(x, t) +

ve(x, t)
c

× B(x, t)
)

, (1.42)[
∂

∂t
+ vi(x, t) · ∇

]
vi(x, t) =

e
mi

(
E(x, t) +

vi(x, t)
c

× B(x, t)
)

, (1.43)

∂ne(x, t)
∂t

+∇ · (ne(x, t)ve(x, t)) = 0, (1.44)

∂ni(x, t)
∂t

+∇ · (ni(x, t)vi(x, t)) = 0, (1.45)

coupled with

∇ · E(x, t) = 4πe(ni(x, t)− ne(x, t)), (1.46a)

∇ · B(x, t) = 0, (1.46b)

∇× E(x, t) = −1
c

∂B(x, t)
∂t

, (1.46c)

∇× B(x, t) =
4π

c
e (vi(x, t)ni(x, t)− ve(x, t)ne(x, t)) +

1
c

∂E(x, t)
∂t

. (1.46d)

We look for a linear perturbation of the equilibrium solution of this system. At equi-

librium, the plasma is steady and both the species are not moving; moreover, both

the electric and magnetic fields are macroscopically zero and the electron and ions

densities must be the same. We perturb this solution to linearize the system of equa-

tions, expanding the variables up to the first order (we avoid to write the functional
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dependence in the fields):

ve = v1
e , vi = v1

i , E = E1, ne = n0 + n1
e , ni = n0 + n1

i , (1.47)

and we put them back into the system. We obtain

∂v1
e

∂t
= − e

me
E1,

∂v1
i

∂t
=

e
mi

E1,

∂n1
e

∂t
+ n0∇ · v1

e = 0,
∂n1

i
∂t

+ n0∇ · v1
i = 0,

∇ · E1 = 4πe(n1
i − n1

e );

now, since the equations are linear, we decompose the solution as a superposition of

Fourier mode, e.g.

n1
i,e ∼ v1

i,e ∼ E1 ∼ exp [i (k · x − ωt)] ,

and after some manipulations we get to the solution

ik · E1 =
4πe2n0

ω2 i
[

1
mi

+
1

me

]
k · E1. (1.48)

Eq.(1.48) tells that in a cold plasma, if E ∥ k, the only possible wave frequency is

ω2 = 4πe2n0

[
1

mi
+

1
me

]
= ω2

i + ω2
e , (1.49)

regardless the wave number k, which means that in a cold plasma there is no prop-

agation of charge. We defined an important plasma parameter, the plasma frequency

1 for an electron plasma

ωe =

√
4πe2n0

m
= ckp =

2πc
λp

, (1.50)

that is the frequency to which the electrons oscillate when they undergo an electric

field perturbation. Here and from now, we refer to the electron plasma frequency as

the generic plasma frequency, so we rename it as ωp. In particular, from Eq.(1.50),

1In the plasma literature, it is use to call frequency what it’s actually an angular velocity.
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plasma frequency is inversely proportional to the square root of the species mass,

which means that for the electrons and the ions

ωi ∼
√

me

mi
ωp, (1.51)

(if we consider a proton and an electron mi = 1836 me), and so it is not uncommon

to work under the immobile ions approximation.

We have now seen the consequences of a longitudinal, e.g. E ∥ k, perturbation

on an equilibrium state. Let us now study the propagation of a transverse pertur-

bation, i.e. the electromagnetic wave, in an immobile plasma. First of all, a typical

electromagnetic frequency is much greater than the ion plasma frequency, so we

suppose that their response will be negligible. This assumption causes the displace-

ment current in the fourth Maxwell equation, not to balance the conduction current

anymore, therefore, in the perturbation, a B1 term must be considered. After some

manipulation on the Lorentz-Maxwell equations, we get

1
c2

∂2E1

∂t2 −∇2E1 +
ω2

p

c2 E1 = 0, (1.52)

which, for a transverse perturbation E1 ⊥ k, presents the following dispersion rela-

tion

ω2 = c2|k|2 + ω2
p. (1.53)

1.8 Relativistic plasmas

When the plasma particle momentum increases, the relativistic effects cannot be ne-

glected anymore. The classical theory we presented above can be easily generalized

to the relativistic dynamics [4, 5].

When a particle speed approaches the speed of light, we know from the relativis-

tic theory that its mass is not constant. Instead, the so called Lorentz factor γ appears,
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FIGURE 1.1: Plot of the dispersion relation relative to the
propagation of an electromagnetic wave in a plasma. In red, the
asymptote shows that the group velocity tends to c for increasing
wavenumbers.

which is defined as

γ2 = 1 +
p2

m2c2 , (1.54)

and it multiplies the mass, so that the relativistic mass is given by m̂ = mγ. When in-

troducing the relativistic mechanics, one is limiting the velocity space |v| < c, there-

fore, for a more convenient definition of the phase space, the velocity is substituted

by the relativistic particle momentum pr = m̂v = mγv. The resulting phase space

has no upper limits for |p|, which results to be a more natural variable in which to

develop a relativistic dynamics.

In the previous sections, we never used the velocity v as a phase space variable

even though it is the common choice in the classical statistical mechanics. This al-

lows us to introduce straightforwardly the relativistic plasma equations, redefining

the classical momentum into the relativistic one, i.e. γpc = pr. We change the vari-

ables in the Lorentz-Maxwell system of equations Eqs.(1.40), obtaining the relativistic
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Lorentz-Maxwell system, which is

∂ns(x, t)
∂t

+∇ ·
(

ns(x, t)
ps(x, t)
msγs

)
= 0, (1.55a)[

∂

∂t
+

ps(x, t)
msγs

· ∇
]

ps(x, t) = qs

(
E(x, t) +

ps(x, t)
mscγs

× B(x, t)
)

, (1.55b)

coupled with

∇ · E(x, t) = 4π ∑
s

qsns(x, t), (1.56a)

∇ · B(x, t) = 0, (1.56b)

∇× E(x, t) = −1
c

∂B(x, t)
∂t

, (1.56c)

∇× B(x, t) =
4π

c ∑
s

qs
ps(x, t)

msγ
ns(x, t) +

1
c

∂E(x, t)
∂t

. (1.56d)

1.9 Ponderomotive force

The ponderomotive force, also known as the effect of the macroscopic radiation pres-

sure [1, 3], is a nonlinear force a charged particle experiences when it is immersed

in an inhomogeneous electromagnetic field. Before investigating the plasma motion

in details, let us write the Lorentz-Maxwell system introducing the vector potential

A(x, t), defined as

E(x, t) = −1
c

∂A(x, t)
∂t

−∇Φ(x, t), (1.57)

B(x, t) = ∇× A(x, t). (1.58)

The introduction of a vector potential requires to fix a specific gauge to eliminate

the redundant degrees of freedom in the system; we pick the Coulomb gauge, i.e.

∇ · A(x, t) = 0. This choice implies that a broad electromagnetic pulse is purely

transverse respect to the propagation direction. Also, since we want to study the

effects of a travelling wave on a test plasma particle, we neglect the scalar potential
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Φ(x, t) 2, that carries the information on the electrostatic field. The resulting equation

is

d
dt

(
p +

q
c

A
)
=

q
2c

∇
(

p
mγ

· A
)

, (1.59)

where the operator d/dt is the Eulerian derivative, i.e.

d
dt

≡ ∂

∂t
+

(
p

mγ
· ∇
)

. (1.60)

If an electromagnetic pulse formed by a broad envelope and an oscillating compo-

nent, where broad means that we can neglect its spatial derivative, A = A0 sin [ωt],

we can represent the plasma motion perturbation as a first order term, subject to the

fast oscillations, and a second order one, that feels the envelope effect or, in other

words

p = p0 + p1. (1.61)

We expand Eq.(1.59) to get

d
dt

(
p0 +

q
c

A
)
= 0,

d
dt

p1 =
q

2cγm
∇ (p0 · A) ,

(1.62)

that to the first order results in p0 = −q/cA, or the conservation of canonical momen-

tum, and so the second order solution is

d
dt

p1 = − q2

2mγc2∇ |A|2 . (1.63)

Eq.(1.63) is the ponderomotive force that acts on the plasma while an electromag-

netic wave is travelling through it. The most notable peculiarity is that it is a nonlin-

ear effect always pushing away charged particles from the high intensity to the low

intensity zones, exactly as if the radiation were exerting a pressure. This induces

an effect on the index of refraction, which determines nonlinear effects, such as the
2This is purely a simplification to highlight the effect we want to explain, for which the potential

presence is irrelevant.
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pulse self-focussing.

1.10 Wave breaking

The wave propagation in plasmas we studied in Sec.1.7 refers to small perturbations.

In fact, to derive the dispersion relation of a travelling wave, we linearized Lorentz-

Maxwell system (1.40) supposing a small deviation from the equilibrium solution.

What happens when the electrostatic field increases it’s in principle a difficult task

to deal with, because of the strong nonlinearities in the Lorentz force term of the

equation. This problem has been faced in some pioneering works [6, 7], in which

the cold wavebreaking limit has been defined. It has been noticed, in fact, that waves

with increasing amplitude do not maintain their sinusoidal shape, but they steepen

until they form a discontinuity. When this happens, particles are crossing each other

trajectory, so the fluid model is not suitable anymore to describe the system.

To roughly estimate the field limit for this phenomenon to appear, let us consider

the equation governing the electrostatic perturbation, i.e.

∇ · E = 4πqn1, (1.64)

Where n1 is the density displacement from the equilibrium. If we increase n1 enough

to get n1 ≃ n0, in Fourier space the previous equation becomes

ikp · Ewb = 4πqn0, (1.65)

where, given the previous analysis, a wavenumber kp for the electrostatic perturba-

tion has been assumed. Thus, Ewb = |Ewb| results to be

Ewb =
mωpc

q
, (1.66)

were the relation Eq.(1.50) has been used. In an Hydrogen-like plasma, a useful

expression for Ewb is

Ewb

[
V

cm

]
≃ 0.96

√
n0[cm−3]. (1.67)
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1.11 Conclusions

In this Chapter, the fundamental plasma theory has been reviewed, pointing out

the main differences between a conventional fluid and a plasma. The latter, in fact,

is dominated by the self-consistent electromagnetic effects, which produce many

types of waves, absent in the neutral fluids. Since positive and negative charges are

free to move within the plasma volume, their dynamics is governed by a collective

motion, generated by the long range Coulombian interaction. The propagation of an

electric field perturbation can therefore occur via a standard electromagnetic wave

or a longitudinal (electrostatic) plasma wave. After an initial kinetic approach, both

in the Klimontovich and in the Vlasov formalism, we derived a smoothed set of

equations that describe the plasma as the collection of many fluids, any of them

formed by all the particles of the same species. While approximating the equations,

one is forced to introduce a closure relation, that takes into account the information

of all the degrees of freedom that are lost in the process. We stressed how the most

convenient expression for the hierarchy closure comes from the thermodynamics,

as one can deal with adiabatic and isothermal plasma, but can also introduce more

complex relations (e.g. polytropic), as in the thermodynamics of conventional gases.

In the second part of the Chapter, we addressed the nonlinear interaction be-

tween an electromagnetic wave and the plasma. In particular, we focused on the

ponderomotive force, a net effect that accelerate particles oscillating in the electro-

magnetic field that depends on the slow varying envelope of the field itself, resem-

bling the effects of the radiation pressure. Also, the wave breaking limit has been

introduced as the maximum longitudinal electric field that can propagate into a cold

plasma, characterized by the steepening of the plasma wave profile.
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Chapter 2

Plasma wave excitation by intense

laser pulse

In this section, the laser-plasma interaction in regimes of interest of the Laser Wake-

field Acceleration will be reviewed.

Since the coupling mechanism between electromagnetic waves and a plasma are

intrinsically nonlinear, no analytical theory accounts for all the phenomena that such

a complex system generate. Thus, before to address the many aspects that concern

the laser propagation or the plasma behavior under certain specific condition, we

specialize the generic plasma equations presented in Chap.1 to the more constrained

situation of a laser pulse propagating in a uniform homogeneous plasma. The result-

ing equations are the baseline for all the works that concern the subject, because they

contain the essential properties of the system, still retaining the nonlinear effects.

2.1 Acceleration mechanism

The idea of accelerating particles with a plasma wave generated by a laser pulse

travelling into the plasma itself (Laser Wake Field Acceleration) [8] opened a lot of

possibilities about improving the particles accelerators performances shrinking their

size.

Tajima and Dawson, in fact, proposed to excite a plasma wave via the pondero-

motive force exerted by a laser pulse on the plasma to trap some particles in regions

where the electric field can reach values 3 orders of magnitude bigger than in a con-

ventional accelerator. The latter it is based on the generation of a radio-frequency
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electromagnetic field synchronized with the particle motion to increase their energy

up to some TeV. To do so, the entire machine has to be at least some kilometers big,

because, due to the breakdown of a material, i.e. the ionization of the atoms, the

accelerating field cannot be increased arbitrarily. The breakdown field is usually

Ebd ∼ 100
MV
m

. (2.1)

A plasma, thanks to its intrinsic nature, does not suffer for the breakdown, and so

the only limit to an accelerating (electrostatic) field is given by Eq.(1.66). For a typ-

ical acceleration plasma configuration, the particle density is n0 ∼ 1018cm−3, so the

wavebreaking limit is

Ewb ≃ 100
GV
m

, (2.2)

that is a thousand times bigger than the breakdown field. This means that, in princi-

ple, to get to the same energy of a conventional accelerator, a laser plasma accelerator

can be a thousand times smaller than the former.

Before to investigate in details the many processes involved in the plasma wave

formation and particle acceleration underlying the LWFA, let us express the Lorentz-

Maxwell system introducing the vector potential A(x, t). A standard configuration

employed in the acceleration considers an electron plasma and the corresponding

ionized atoms so that the only contribution to the dynamics comes from the electron

motion and the role of the ions is to balance the total charge. We drop the species

index s and specialize the charge to the electron charge e to get

∂n
∂t

+∇ ·
(

p
mγ

n
)
= 0, (2.3a)

d
dt

(
p − e

c
A
)
= − e

2c
∇
(

p
mγ

· A
)
+ e∇Φ, (2.3b)

∇2Φ = −4πρ, (2.3c)

∂2A
∂t2 − c2∇2A + c∇∂Φ

∂t
= 4πcJ, (2.3d)
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where we fixed the Coulomb gauge condition ∇ · A = 0. We introduce a convenient

set of normalized variables

a =
eA
mc2 =

ωpA
cEwb

, ϕ =
eΦ
mc2 =

ωpΦ
cEwb

, u =
p

mc
, n′ =

n
n0

, (2.4a)

neglecting, to lighten the notation, the superscript on n′, which is the density nor-

malized to its unperturbed value. System of equation Eqs.(2.3) becomes

1
c

∂n
∂t

+∇ ·
(

u
γ

n
)
= 0, (2.5a)

1
c

d
dt

(u − a) = −1
2
∇
(

u
γ
· a
)
+∇ϕ, (2.5b)

∇2ϕ = k2
pn, (2.5c)

1
c2

∂2a
∂t2 −∇2a +

1
c

∂∇ϕ

∂t
= −k2

pn
u
γ

. (2.5d)

2.2 Linear and nonlinear wakefield

Now, we analyze the laser-plasma dynamics concerning the acceleration mecha-

nism. A laser pulse is injected in a uniform unperturbed plasma in the z direction,

which will be taken as the propagation direction throughout all this work.

If the pulse amplitude is small, |a| = a0 ≪ 1, we linearly perturb the system

Eqs.(2.5) to compute the plasma response, that is [9]

∂2δn
∂t2 + ω2

pδn = −c∇ · Fp, (2.6)

∂2ϕ

∂t2 + ω2
pϕ = −ck2

pFp, (2.7)

where the forcing term is the normalized ponderomotive force Fp = −c∇|a|2/2 in

the linear approximation, which acts in the region where the laser pulse is nonzero.
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FIGURE 2.1: Example of a wakefield generation process. A weak
laser pulse is injected from the left to the right and, via the
ponderomotive mechanism, separates the plasma charges creating a
net electrostatic oscillation.

The linear wave generated by the passage of the pulse, that we call wakefield is

δn =
c

2kp

∫ t

0
sin
[
ωp(t − t′)

]
∇2a2dt′, (2.8)

E
Ewb

= − c
2

∫ t

0
sin
[
ωp(t − t′)

]
∇a2dt′. (2.9)
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FIGURE 2.2: Plasma density perturbation due to the ponderomotive
effect of a travelling pulse (pulse center z = 280µm).
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FIGURE 2.3: Color map of the longitudinal electric field of a weak
laser and a plasma when the laser is travelling from the left to the
right.

For a strong pulse, it’s not possible to give the analytical expression for the result-

ing wakefield. The dynamics, in fact, becomes nonlinear, so some approximation are

needed to approach the computation [10–13]. First of all, we consider the so called

broad pulse, which means that the characteristic transverse length L⊥ is much greater

than the characteristic longitudinal length Lz, or L⊥ ≫ Lz. Since the only source of

motion is the laser pulse, all the dynamics happens on a broad, i.e. 1D, scale. So, we

neglect every transverse derivative, having ∂x⊥ ≪ ∂z. Since we fixed the Coulomb

gauge, ∇ · a = 0, the 1D approximation implies

∇ · a =
∂az

∂z
= 0 ⇒ az = 0, (2.10)

which means that there is no longitudinal component, a = a⊥. The conservation of

canonical momentum derived before is readily rewritten in normalized units as

u⊥ = a⊥. (2.11)

This relation defines an important parameter in the evaluation of the nonlinearities

of the system. In fact, a⊥ ≪ 1, linear case, tells that the quiver motion of the electrons

is non relativistic, while with a⊥ ≃ 1 the relativistic effects are non negligible. This is

why the strength a0 = max |a| is usually referred as the discriminating factor between



Chapter 2. Plasma wave excitation by intense laser pulse 29

the linear and nonlinear dynamics.

In the laser acceleration regimes, time variations usually happen on long time

scales Tray = Zray/c, where Zray is the characteristic diffraction length of the laser

pulse. Non ultrarelativistic particles cross the laser field in a time τc ≪ Tray, so in

a reference frame moving with vp (laser phase velocity) the laser appears as quasi-

static. Therefore, we introduce the comoving variables

τ = t, (2.12a)

ξ = z − vpt, (2.12b)

and we express the derivatives respect to them

∂t = ∂τ − vp∂ξ (2.13)

∂z = ∂ξ . (2.14)

Thus, system Eqs.(2.5) becomes

1
c

∂n
∂τ

−
vp

c
∂n
∂ξ

+∇ ·
(

u
γ

n
)
= 0, (2.15a)

1
c

∂u
∂τ

−
vp

c
∂u
∂ξ

+

(
u
γ
· ∇
)

u +
u
γ
×∇× a⊥ =

1
c

∂a⊥
∂τ

−
vp

c
∂a⊥
∂ξ

+∇ϕ, (2.15b)

∇2ϕ = k2
pn, (2.15c)

1
c

∂

∂τ

[
∂a⊥
∂τ

− 2
∂a⊥
∂ξ

]
+

1
c

∂∇ϕ

∂τ
− ∂∇ϕ

∂ξ
= −k2

pn
u
γ

. (2.15d)

After some algebraic manipulation and making use of the quasi-static and 1D ap-

proximation, the following conservation laws are obtained

u⊥ = a⊥, (2.16a)

∂

∂ξ

[(
uz

γ
−

vp

c

)
n
]
= 0, (2.16b)

∂

∂ξ

(
γ −

vp

c
uz − ϕ

)
= 0, (2.16c)
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which are readily integrated as [10, 13–16]

(
uz

γ
−

vp

c

)
n + 1 = 0, (2.17a)

γ −
vp

c
uz − ϕ = 1, (2.17b)

u⊥ = a⊥. (2.17c)

The conservation laws presented in Eqs.(2.17) have been derived without any as-

sumption except for the quasi-staticity and onedimensionality. Therefore, they are

a useful set of algebraic equations that allow us to derive the plasma response to a

laser pulse travelling in it regardless the laser strength a0, coupled to the Poisson

equation, that becomes [11, 17, 18]:

k−2
p

∂ϕ

∂ξ2 =
1
2

[
1 + |a⊥|2

1 + ϕ2 − 1
]

. (2.18)

2.2.1 Plasma wavelength lengthening

Eq.(2.18) has been addressed in many works, in which the solution has been found

in terms of complete elliptic integrals of the second kind [10, 11, 13, 18, 19], and so,

the maximum and minimum potential have been found to be

ϕmax =
E2

max

2E2
wb

±
vp

c

√(1 +
E2

max

2E2
wb

)2

− 1, (2.19)

where Emax is the maximum longitudinal electric field, the plus sign stands for the

maximum field and the minus for the minimum one. Behind the laser pulse, the

electric field loses the linear sinusoidal shape while it steepens and acquires a more

“sawtooth” behavior, until the wavebreaking takes place.

Besides the explicit expressions for ϕmax,min, an interesting analysis arises from

the exact nonlinear, 1D solution. It can be seen, in fact, that the plasma wavelength

is not constant during the oscillations, but increases as the wakefield maximum is in-

creased. In particular, for low and high intensity regimes, the approximated plasma
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wavelength is given by

λNp = λp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 +

3
16

E2
max

E2
wb

if
Emax

Ewb
≪ 1,

2
π

(
Emax

Ewb
+

Ewb

Emax

)
if

Emax

Ewb
≫ 1.

(2.20)

The plasma wavelength lengthening entails a peculiar effect on the generated wake-

480 500 520 540 560 580 600
z[ m]

40

30

20

10

0

10

20

30

40

x[
m

]

Ez/EWB

1.0

0.5

0.0

0.5

1.0

FIGURE 2.4: Color map of a mildly nonlinear wakefield generated
by a laser. The U-shaped field due to the plasma wavelength
lengthening is evident.

field, which can be observed already in a mildly nonlinear regime, far from the

wavebreaking. On the laser propagation axis the strongest accelerating field is ex-

cited, therefore, given the dependance of λp from Emax, the strongest lengthening

happens, while, far from axis, the pulse tail are only able to create low intensity

fields, so the plasma wavelength results to be unperturbed. The total effect on the

plasma is the generation of a U-shaped wakefield, because the longitudinal wave

front curves from the axis to the side, introducing a weak or strong, respectively for

weak and strong laser intensities, coupling between the longitudinal and transverse

motion.

2.3 Bubble regime

Once the multi-TW laser systems have become available, an increasing interest arose

for their application in the LWFA. In fact, when a laser with a power P ∼ 1TW is
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focalized on an area of radius r0 ∼ 10µm, an intensity I0 ∼ 1019W/cm2 is achieved,

which corresponds to a laser strength

a2
0 ≃ 7.3 × 1019λ2

0
[
µm2] I0

[
W

cm2

]
> 1. (2.21)

This allows to produce accelerating fields close to the wavebreaking limit Eq.(1.67),

that is the maximum field a plasma can sustain.
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FIGURE 2.5: Plasma bubble generated by an ultra intense laser pulse
travelling into a uniform plasma. Laser parameters are a0 = 0.9,
r0 = 4µm, the plasma wavenumber is kp = 0.11µm−1.

If the laser is tightly focalized, the 1D approximation is not valid anymore and

the transverse dynamics plays an important role in the system evolution. In par-

ticular, the transverse ponderomotive force acts on the plasma particles, creating an

orthogonal oscillation respect to the propagation direction and so a negative charge

defect in the laser path. When this force overcomes the restoring electrostatic force

that tends to compensate the charge defects, a region with no electrons is created.

This is often called the blowout or bubble regime. Some estimations have been com-

puted to derive the critical laser strength for the bubble formation. For example,

some works have considered a Gaussian laser pulse
(
a2
⊥ = a2

0 exp(−2r2/r2
0)
)

in the

adiabatic limit [9, 20] to obtain the density profile resulting from the interaction,
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which can be expressed as

n = 1 + k−2
p ∇2

⊥
(
1 + a2

⊥
)1/2

. (2.22)

The condition to create an electron cavity is therefore, for a Gaussian pulse,

4a2
0(

1 + a2
0

)1/2 ≥ k2
pr2

0. (2.23)

Working in the complete blowout regime has multiple advantages: in addition to a

very strong accelerating field, once a cavitation region is formed, any particle trav-

elling in the bubble finds itself in an ions-only area, thus feeling the effect of a linear

focalizing force. Besides, one could construct many semi-analytical models consid-

ering the center of the laser pulse as it is moving in vacuum [15] simplifying the

description of the nonlinear effects that affect it. On the other hand, in the bubble

regime, Lorentz-Maxwell system of equations is not integrable, because no conser-

vation laws are present. The prediction of the dynamics of a given laser-plasma

interaction results to be really challenging and one can only rely on approximation

based on empirical observations. For example, a semianalytical description has been

presented under several approximation, where a test particle trajectory in the bubble

has been derived assuming a fixed profile for the plasma response [21, 22].

To study the highly nonlinear dynamics it is therefore necessary to make an in-

tense use of computer simulations. Many unpredicted behaviors have been discov-

ered numerically, such as the particle self-injection and the laser self-focussing. All of

them influence each other and the entire system evolution, often making very diffi-

cult to apply results of any simplified models in order to predict the system behavior

over long times.

2.4 Particle trapping

Particle trapping in the plasma wakefield is one of the relevant processes in order to

create accelerated particle bunches. A trapped particle finds itself near the bottom

(top, if its charge is negative) of the electrostatic potential well without sufficient en-

ergy to escape it, so it starts to move around the equilibrium position. For example,
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if it’s initial velocity is smaller that the speed of propagation of the wakefield it is

trapped in, it gains energy, accelerating and, eventually, overcoming the wakefield

itself.

There are many ways to produce such particles, from an externally injected bunch,

synchronized with the wakefield motion, to the self-trapped one, i.e. plasma parti-

cles with certain momentum and position suitable to not cross the electrostatic po-

tential bumps so they start to “surf” on it, increasing their energy.
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FIGURE 2.6: Wakefield potential generated in a mildly nonlinear
regime, in a quasi 1D laser-plasma system.

No 3D analytical theory is available to describe the particle trapping, but the

problem has been faced and solved for a cold plasma in a 1D quasi-static geometry

[19]. Let us consider a laser driver of frequency ω0 travelling through a uniform

plasma. In the linear regime, the phase speed of the plasma wave coincides with the

laser group velocity, which can be derived from the relativistic Lorentz factor γg =

ω0/ωp. Under the quasi-static approximation, all the dynamics depends from the

normalized longitudinal comoving coordinate ψ = kpξ = kp
(
z − vpt

)
. To derive the

Hamiltonian of a test particle moving within the quasi-static laser-plasma system,

we set ẑ = k−1
p z to be the independent time variable. From Eq.(2.17b), we obtain the

motion equation

dγ

dẑ
=

∂ϕ

∂ψ
, (2.24)
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and, from it’s definition, the motion equation for ψ

dψ

dẑ
= 1 −

βp

β
. (2.25)

Making use of the canonical formalism, we can construct the Hamiltonian from

which the particle motion equations can be derived, that is

H(γ, ψ) = γ
(
1 − ββp

)
− ϕ(ψ). (2.26)

Analyzing the Hamiltonian structure in the phase space (ψ, γ), it can be seen that

it presents stable and unstable fixed points. The area enclosed within the separatrix

trajectories crossing the unstable points, that surrounds the stable ones, represent

the necessary coordinates for a particles to be trapped. The maximum (minimum)

energy of a trapped particle is

γmax,min = γp
(
1 + γp∆ϕ

)
± γpβp

[(
1 + γp∆ϕ

)2 − 1
]1/2

, (2.27)

where ∆ϕ = ϕmax − ϕmin. Eq.(2.27) states that if the initial particle energy is below

the γmin threshold, the acceleration induced by the wakefield is not strong enough

to trap the particle and so, after a transient, it is lost. The γmax limit represents the

maximum energy the particle can have to maintain itself into the plasma wave or

from another point of view, the maximum energy a particle can reach through the

acceleration process.

As derived in [19], at the wavebreaking limit, the expression for γmax reduces to

γmax ≃ 4γ3
p − 3γp. (2.28)

The dephasing length Ld can also be estimated, by the rough approximation

eEmaxLd = mec2γmax, (2.29)
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which, in the relativistic regime, becomes

Ld ≃ 1
2

γ2
pλNp. (2.30)

Eq.(2.30) is an approximation that neglects many important effects in the derivation

of the total dephasing length. Nevertheless, in the usual LWFA application, it has

a fundamental consequence that can be seen by expressing the dephasing length

in function of the plasma density, that is Ld ∼ n−3/2
0 . This implies that, to reach

higher energies before the dephasing, an accelerator must operate in the low density

regime. At the present day, the lowest plasma densities that can be reached in a

plasma accelerators are of the order n0 ∼ 1016cm−3.

2.5 Plasma channel

The Rayleigh diffraction of a laser pulse can be a major drawback, in particular when

operating at ultra-low densities. In fact, for the typical pulse spot size w ∼ 10µm and

wavelength λ ∼ 1µm, the Rayleigh length ZRa = πw2/λ ∼ 1mm, while the total

acceleration length is L ∼ 1m, or even more. Given that, the laser driver has to

be guided along its path through the plasma in order to make it travel the longest

distance into it.

In the strongly nonlinear regime, the most notable effects influencing the laser

dynamics are the self-modulation and the self-focussing. When the pulse pondero-

motive force is intense, an high percentage of electron are expelled from the high

intensity areas, first producing high amplitude plasma waves and then, for strong

fields, a plasma bubble. For an electromagnetic wave travelling in a plasma, the

index of refraction depends on the plasma density according to

N2 =
c2

vph2 =
c2

ω2
0/k2

= 1 −
ω2

p

ω2
0
= 1 − n0

ncrit
, (2.31)

so, in regions with lower densities, N is higher. As it is well known from the clas-

sical electromagnetism, an electromagnetic wave tends to go towards higher index

of refraction so, a laser pulse lowering the plasma density around itself tends to be

focalized in contrast to the natural diffraction which it is subject to. For sufficiently
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strong intensity regimes, this effect slows down the pulse diffraction, allowing for a

long-distance plasma wave driving. However, the self-focalization process is often

out of control, in the sense that the more the pulse is tightened, the more it’s intensity

increases, the more it lowers the surrounding plasma density, the more it is focalized

and so on.

A more controllable approach is to construct a transverse plasma density profiles

that guarantees the pulse a focalizing force to exactly contrast the Rayleigh diffrac-

tion, without increasing it’s intensity. With this technique, referred to as a plasma

channel [23], the laser propagation happens in a parabolic transverse density profile,

n(r) = n0 + ∆n
r2

r0
; r = x2 + y2, (2.32)

where r0 defines the laser transverse profile (e.g. for a Gaussian pulse aT(r) ≃

exp
[
−2r2/r2

0
]
) and ∆n is the channel depth. It can be seen that taking a channel

depth ∆n = 1/(πrer2
0)

−1, where re is the classical electron radius, the propagation

is quasi-matched, that is the focalizing force balances almost perfectly the Rayleigh

diffraction. The focalizing-defocalizing compensation that acts on the laser enve-

lope, can be derived from a slice analysis of the pulse evolution, where each slice

diffracts according the paraxial envelope equation

[
∇2

⊥ + 2i
k0

kp

∂

∂t

]
â = ρâ, (2.33)

where ρ is the plasma density. Eq.(2.33) will be rigorously presented in Chap.4.

Imposing that each slice doesn’t broaden nor tighten during the propagation, one

obtains the matched channel depth ∆n = 1/(πrer2
0)

−1.

2.6 Conclusions

In this Chapter, the coupled dynamics of a laser pulse travelling into a plasma and

the plasma itself has been reviewed. We targeted the typical experimental configu-

ration implied in the Laser Wake Field Acceleration of high energy charged particles

beams to construct an analytical theory that describes the system. For a weak laser

pulse intensity, the only non negligible nonlinear effect is the ponderomotive force,
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which couples the laser envelope typical frequency, of the order of the plasma fre-

quency, with the plasma oscillations, producing plasma waves behind the laser trail,

which for this reason are called wakefield. In this case, the resulting dynamics can

be expressed analytically. The strong intensity regime is also investigated, i.e. when

the plasma feedback on the laser pulse is relevant and a number of processes, such

as self modulation and self focussing, take place. In this regime, no analytical theory

is available in the general case, but some approximated equations can be derived

assuming a quasi-static and one dimensional dynamics.

A particular interest is raised by the particle dynamics in the strongly nonlinear

laser plasma system for it is the typical regime for a particle accelerator. Therefore,

it is important to determine the conditions in which a particle can be trapped in the

plasma wave and increase its energy. When the transverse scales of evolution are

not much greater that the longitudinal ones, i.e. the laser is not broad, the analytical

model fails and one must resort to the numerical simulations. Those are a powerful

instrument that allow the investigation of dynamics that otherwise couldn’t be stud-

ied. A notable example of strongly three dimensional regime is the so called bubble

regime, that is when the transverse ponderomotive force is much stronger than the

electrostatic restoring one a depletion of electron occurs in the laser trail, creating

in fact a bubble of positive charge. This translates in the production of longitudinal

fields of the order of the wave breaking limit, which are the most favorable for the

particle bunch focussing and acceleration.
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Chapter 3

Particle-in-Cell simulations

Plasma equations are just one of the topics that in modern science require a numer-

ical investigation. In fact, as shown in the previous Chapter, the theory of laser-

plasma interaction is so complex that an analytical treatment of the governing equa-

tions is impossible. This is the reason why in the last tens of years, thanks to the

technology improvements, the branch of numerical simulations has been developed.

With that, researchers have been able to discovery a lot of features that had remained

unexplored because they weren’t able to deal with the full equations. One remark-

able example is the bubble regime or fully blowout regime. In particular, this regime is

related to a kinetic plasma behavior and so its discovery and analysis were achieved

thanks to the so called Particle-in-Cell (PIC) codes.

In this Chapter, an overview on the PIC code and its related numerical problems

will be given, showing the main features of this powerful instrument but also it’s

limitations and what are the open questions that characterize it.

3.1 From Vlasov equation to Particle-in-Cell

The idea of a kinetic simulation of the plasma particles came after a lot of struggles

were made to numerically solve Vlasov’s equation. In fact, even though it contains

all the physics of the plasma dynamics, its 6 dimensionality makes the equation itself

a really difficult computational problem to be solved [24]. Studying the interaction

of an electromagnetic field with a plasma in 6 dimensions implies that every com-

ponent of the field must be evaluated on every point of a 6 dimensional grid, so, if

the side size of the domain is ∆l, the complexity increases as ∆l6, becoming unfeasi-

ble even considering really localized problems. Moreover, the structure itself of the
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FIGURE 3.1: Representative figures that shows the discretization
process in a Vlasov code (left) and in a Particle-in-cell code [24]. As it
can be seen, in a Vlasov code, the grid is not optimized in empty
regions.

equation requires the field and the distribution function to be computed in every

point of the phase space, even in regions where there is no plasma, so we are car-

rying the computational cost of the full equation without being able to distinguish

if the result is trivial (e.g.where the field is zero and the plasma is absent) and so no

worth of the effort. Last, Maxwell’s equations must be solved coupled to Vlasov’s

one. In particular, one may notice that Poisson’s equation for the potential

∇2ϕ = −4πρ, (3.1)

is nonlocal so, every time the potential ϕ must be updated, all the domain must be

involved in the task. To give a more precise idea of the computational cost required

to solve a Vlasov-type problem, let us consider some standard parameters to see what

is their impact on the hardware. Tipically, the domain is divided in cells on every

dimensions so that their number Nα = Lα/∆α, α = x, y, z is inversely related to

the resolution ∆α. Same thing holds for the momentum space: the number of cells

increases as ∆pα decreases. In a typical wakefield acceleration problem in which a

laser λ0 ∼ 1µm is injected in a uniform plasma of density n0 ∼ 1018cm−3, the spatial

extent ∆L ∼ 100µm and the minimum resolution needed to solve the dynamics

correctly is ∆z ∼ λ0/20, ∆x = ∆y ∼ λp/20. The accelerated electrons will gain a

longitudinal momentum pz ∼ 103mc while the transverse one is px,y ∼ 10mc, so, if

the resolution in chosen to be ∆pα ∼ 0.1mc, the memory consumption to represent
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only the grid in double precision is M ∼ 200PBytes, which is an unmanageable

number even for a supercomputer.

3.2 Particle-in-Cell

A computationally smart way to deal with the plasma dynamics was introduced

around the 1960s, and the key idea is to describe the problem using only the phys-

ical three dimensional space. To do so, a Klimontovich-like statistical description

is developed [3]. Let’s start considering the particle distribution evolution equation

Eq.(1.22):

∂ f (x, p, t)
∂t

+
p

mγ
· ∇x f (x, p, t)+

+ q
[

E(x, p, t) +
p

mcγ
× B(x, p, t)

]
· ∇p f (x, p, t) = 0, (3.2)

where f (x, p, t) is

f (x, p, t) =
1
N ∑

k
g [x − xk(t)] δ [p − pk(t)] , (3.3)

the Klimontovich particle distribution function, with g [x − xk(t)] a delta-like shape

function. The role of g [x − xk(t)] will be explained in the next sections, however

it is important to spend a few words about it to justify its introduction. In fact,

the formalism we are now constructing takes into account both the discrete nature

and the finite number of particles present in a generic computational setup. The

delta-like function, also called shape functions, are the fundamental ingredients that

allow the transition from a continuous distribution function based model, such as

the Vlasov-Maxwell system of equations Eq.(1.20) and Eq.(1.21), to a particle based

(Klimontovich) one. In particular, g [x − xk(t)] defines how the particle is smoothed

in the spatial directions and, as a consequence, how it interacts with the surrounding

particles and fields. When one is dealing with a finite number of particles, a purely

Dirac-delta description would introduce a lot of noise and also would not guarantee

a correct interaction between every element, so it is necessary to imply some finite

width function. Clearly, these concepts are not only strictly related to simulations,

but are also deeply connected with the construction of a predictive and consistent



Chapter 3. Particle-in-Cell simulations 42

theory that describes a plasma. The shape functions are so chosen to depend from a

characteristic width parameter h, that must go to zero when the number of particles

is large, so that to keep a fixed particle volume, one obtains a collection of Dirac

deltas in space, as in Eq.(1.11).

As it was shown, the Hamiltonian equations underlying the distribution function

evolution are, Eq.(1.12),

ẋi(t) =
pi(t)
γm

,

ṗi(t) = q
[

E (xi(t)) +
pi(t)
mcγi

× B (xi(t))
]

,
(3.4)

where the electric and magnetic fields are computed via Maxwell’s equations Eq.(1.15)

∇ · E(x, t) = 4πρ(x, t), (3.5a)

∇ · B(x, t) = 0, (3.5b)

∇× E(x, t) = −1
c

∂B(x, t)
∂t

, (3.5c)

∇× B(x, t) =
4π

c
J(x, t) +

1
c

∂E(x, t)
∂t

, (3.5d)

and the selfconsistent density and current are, from Eq.(1.14)

ρ(x, t) = qN
∫

f (x, p, t)dp, (3.6)

J(x, t) = qN
∫ p

mγ
f (x, p, t)dp. (3.7)

We stress that equations (3.4) are only consistent with the collisionless Vlasov de-

scription, which, as we said, is generally considered really accurate for all the appli-

cations that will be described in this work. Introducing a particle-particle collision

in the Vlasov formalism, would mean the appearance of a stochastic fluctuation as a

forcing term in the dynamics equations of the single particle.

To compute the evolution of a plasma of given initial particle distribution, ex-

presed by f0(x, p, t), it is sufficient to sample the distribution function with a finite

number of computational particles so that their initial configuration in phase space

coincides with f0 and then derive their motion from Eq.(3.4). In this way, computer
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memory consumption is strongly reduced, because only a 3D grid for the electro-

magnetic fields has to be retained.

3.3 Computational macroparticles

The concept of computational particle previously introduced relies on the statistical

sampling of the initial particles distribution function f0(x, p, t). Any of them is there-

fore not a single particle, for which we don’t have any interest since knowing any

particle’s position and momentum is really an unnecessary information, but a sta-

tistically relevant ensemble of particles. For this reason, it is being always referred

to as a macroparticle. It must be small enough to well approximate the continuous

behavior of the distribution function, but big enough to contain a sufficient number

of particles. It’s not possible to define an a priori condition for a good sampling, be-

cause it strongly depends on the type of interaction that has to be simulated and on

the many techniques implemented to compute the evolution.

The foundation for the construction of a Particle-in-Cell code, is the relation be-

tween the macroparticle and the electromagnetic field. The former, in fact, is charac-

terized by a momentum and a position that, except for the machine precision, are de-

fined on a continuous space, while the latter is defined on a discrete lattice. To over-

come this problem, a finite spatial extension g(x) 1 is assigned to every macroparticle

so that, during it’s motion, it is constantly covering at least one lattice point, where

it can exchange information with the electromagnetic field, determining the selfcon-

sistency of the dynamics. This procedure is called particle weighting on the grid. It

is, in fact, calculated how much every electromagnetic grid point in the surround-

ing of the particle influences the particle motion itself (or vice-versa, i.e. how much

every particle contributes to the current and density in a given lattice node) via an

algorithm that assigns a weight to every particle according to its position. Since the

first property of the spline function g(x) is to be of compact support, only a finite

number of grid points take place in the weighting.

1For now, we consider only a 1D space, so we drop the vector notation. The extension to a 3D space
is straightforward, because the three dimensional shape function can be defined as the product of the
three one dimensional g(x), computed on the corresponding axis. We indicate this function with the
vector x notation.
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on the electro-
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Electromagnetic
field evolution

FIGURE 3.2: Particle-in-cell operations performed when advancing
at every timestep.

3.4 Particle-in-Cell advancement

To preserve the fully self-consistent particles-field evolution, a PIC code step is com-

posed of four substeps: i) Force weighting on the particle position; ii) Particle push

according to the Lorentz force; iii) Current “deposition” on the grid; iv) Electromag-

netic field evolution.

i) As we said before, while a macroparticle is defined in a continuous phase

space, the electromagnetic field is solved on a discrete lattice. The interaction be-

tween the two is defined through a smoothing procedure that, given a certain sys-

tem configuration, computes the force the external field acts on every particle. Even

though any kind of spline g(ζ) can be used to weight the particle on the grid, pro-

vided that is well behaved, normalized,

∫
g(ζ)dζ = 1, (3.8)

and, for simplicity, of compact support, it has been demonstrated that for some par-

ticular set of functions, the smoothing is particularly convenient[25, 26]. These are
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FIGURE 3.3: Example of the first three orders of b-splines.

called b-splines [27, 28], and are a set of polynomial functions recursively defined as

bl(ζ) =
∫ ∞

−∞
b0
(
ζ − ζ ′

)
bl−1

(
ζ ′
)

dζ ′, (3.9)

where the zeroth order function is

b0(ζ) =

⎧⎪⎨⎪⎩
1 if |ζ| ≤ 1

2

0 if |ζ| > 1
2

.
(3.10)

The Klimontovich distribution function can be written as

f (x, p, t) =
1
N ∑

k

1
h

bl

[
x − xk(t)

h

]
δ [p − pk(t)] , (3.11)

where h is the characteristic particle width. The electric field acting on a given parti-

cle can be written as

Ek =
1
h

∫
E(x)bl

[
x − xk

h

]
dx, (3.12)

and a similar formula holds for the magnetic field. As it can be seen, the zeroth or-

der spline b0(ζ), corresponds to assign a square shape to every particle, and to give

it a spatial extent sufficient to cover only one grid point at a time. This is therefore
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called Nearest Grid Point (NGP) spline, because every particle feels only the nearest

point of the electromagnetic grid. Obviously, this results to be a very rough ap-

proximation, despite being computationally fast. Increasing the spline order means

increasing the spatial extent of a particle, that can interact with more surroundings

nodes, and so evolves according to a more precise dynamics. Besides, in a many

particle description, with smoother spline function the total particle density results

to be also smoother. Once the spline has been fixed, it is possible to compute the

electric and magnetic fields Ek, Bk via Eq.(3.12) and to insert them in the Lorentz

force in Eq.(3.4).

ii) After the smoothing procedure of macroparticles to compute their interaction

with the electromagnetic field, it’s possible to advance their position and momentum

via the Lorentz force Eq.(3.4)

ẋi(t) =
pi(t)
mγ

,

ṗi(t) = q
[

E (xi(t)) +
pi(t)
mcγi

× B (xi(t))
]

.

One of the most simple and stable one-step methods for integration of motion

equations is commonly known as the leap-frog algorithm. Its peculiarity is the delay

between the timesteps in which particle momentum and position are computed. Di-

viding the total integration time in N timesteps, so that Ttot = N∆t, the discretized

particle motion equation for the n − th step is written as

xn = xn−1 + ẋn−1/2∆t

pn+1/2 = pn−1/2 + ṗn∆t,
(3.13)

where it’s clear that, differently from the position, particles momentum is evaluated

at every half time step. This results, when solving Eqs.(3.4), in an implicit depen-

dence of pn+1/2 from the momentum pn. It can be seen that both an implicit solver

or a straightforward expansion pn =
(
pn+1/2 + pn−1/2) /2, with a consequent inver-

sion in function of pn+1/2 don’t work properly. In fact, considering as an example the

particle rotation in a magnetic field (i.e. E(x) = 0) both the previous cases produce a

constant energy gain in the particle trajectory hence describing and unstable motion.

An elegant solution to this problem has been found and formalized by J. P. Boris [25,
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26, 29] in a scheme that now goes under the name of Boris pusher. Here, the particle

motion under the influence of the electromagnetic field is split in three phases: first,

it is moved in absence of the magnetic field for half timestep, then it is rotated in the

magnetic field neglecting the electric field. In the end, the remaining half timestep

in the electric field is computed. In this way, we get two advantages respect to the

previous methods: first, the motion is demonstrated to be stable and second, the al-

gorithm is fully explicit and so very fast. The details of the Boris scheme are reported

in Appendix B.

iii) The subsequent step is to compute the total density and current of the new

plasma configuration on every grid point in order to solve Maxwell’s Equations. Par-

ticles have to be weighted on the grid another time and their spatial extension plays

an important role. Even though in principle other splines can be used to perform the

interpolation, to avoid self forces one is obliged to use the same bl(ζ) chosen before

[25, 26]. Current and density are therefore computed as

ρ(x, t) = q ∑
k

1
h

bl

[
x − xk(t)

h

]
, (3.14)

J(x, t) = q ∑
k

pk(t)
mγk

1
h

bl

[
x − xk(t)

h

]
. (3.15)

Now, a problem of causality arises. In a Particle-in-Cell code, the temporal and the

spatial timesteps cannot be chosen arbitrarily, but they are related by the so called

Courant-Friedrichs-Lewy (CFL) condition. It can be expressed, for a cubic cell of size

∆z as

σ =

√
3c∆t
∆z

, (3.16)

where, depending on the problem, σ can take values up to a maximum σmax < 1 to

assure the numerical stability in the wave propagation [30]. Therefore, a macropar-

ticle interacting with far lattice nodes in a single timestep, is strictly related to the

propagation of the information on a speed greater that the speed of light. Thus,

if one wants to make use of high order splines (with an order l > 1), the sources

of Maxwell’s equations must be adapted to avoid superluminar propagation. The
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fastest solution to this problem has been proposed by Esirkepov [31] with an inno-

vative algorithm that computes ρ(x, t) and J(x, t) in such a way that the total charge

and signal propagation is always preserved regardless the spline order.

iv) The Finite difference time domain (FDTD), introduced by K.Yee [25, 32], is the

consistent way to write Maxwell’s equations in a finite difference framework, and it

is commonly used for its ease of implementation and numerical stability. It is based

FIGURE 3.4: Graphical representation of the staggered Yee cube.

on the definition of a staggered lattice onto which the electric and magnetic fields

are calculated, respectively on the edges and on the centers of the grid. This is the

main peculiarity of this method: it introduces this staggered grid where it places

the electric and magnetic field. This assures that the divergence free condition for

the magnetic field is preserved during the evolution provided that it was satisfied

in the initial conditions. The divergence of the electric displacement (D = ϵE) is not

conserved by the Yee method, but it can be obtained through the use of the Esirkepov

algorithm for the current deposition. So, the evolution equation are just Eqs.(3.5c)

and (3.5d), which mutually relate the electric and magnetic field. In the derivative

discretization, e.g.

∂E(x, y, z)
∂x

=
E(x + ∆x, y, z)− E(x, y, z)

∆x
, (3.17)
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is actually computed in (x + ∆x/2, y, z), so when one calculates the rotor of the two

fields, the final points don’t coincide with the initial ones. In particular, if we place

the electric field on the edges of the grid, it’s rotor results to be placed on the center

of the square faces of the cube. So, positioning the magnetic field exactly on those

points, instead that on the grid nodes, one can directly relate it’s temporal derivative

with the electric field rotor.

The temporal evolution of the FDTD is governed by a leap-frog algorithm, where

the electric and magnetic field are staggered in time. This combination of spatiotem-

poral staggering, shows itself to be a powerful tool in the numerical electrodynam-

ics, most of all for its ease of implementation and speed of computation. Moreover,

the employment of a leap-frog for the temporal evolution makes the results stable

also for long times. Last, differently from a lot of methods which approach the prob-

lem in the Fourier space, since the problem is solved in the temporal domain we are

able to evolve any wave-packet, provided that the temporal resolution is sufficiently

high.

3.5 Overcoming PIC limitations

What we described in the previous section was a standard implementation of a

Particle-in-cell code, that computes the charge particles dynamics evolving their col-

lective motion. A lot of aspects must be kept in mind when dealing with such a sys-

tem: any different choice of procedure when integrating the equation corresponds to

different effects in the simulation result. Therefore, we will briefly present the main

problems that one must face in the numerical integration, suggesting some of the

possible solutions that are commonly adopted.

3.5.1 Numerical dispersion relation

The most important limitation of an electromagnetic solver, i.e. of the Yee scheme,

is the truncation error it introduces in the dispersion relation of the waves. One, in

fact, can compute how the numerical phase velocity of the wave is influenced by the
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discrete centered derivative operators, defined as:

Dt,tψ =
ψn+1 − 2ψn + ψn−1

(∆t)2 , (3.18)

Dℓ,ℓψ =
ψj+1 − 2ψj + ψj−1

(∆ℓ)2 , ℓ = x, y, z (3.19)

where n is the temporal discretization index, i.e. t = n∆t, and j is the spatial equiv-

alent, L = j∆ℓ, referred to the specific coordinate we are considering. Substituting

Eqs.(3.18) and (3.19) into the wave equation

∂2
t ψ − c2∇2ψ = 0, (3.20)

and decomposing ψ into its fourier modes, ψ = ∑k ψ̃k exp [i (k · x − ω(k)t)], the dis-

crete dispersion relation comes out

sin2 (ω∆t/2)
∆t2 = c2 ∑

ℓ

sin2 (kℓ∆ℓ/2)
∆ℓ2 . (3.21)

It is only possible to invert the previous equation to find ω(k) in 1 dimension, in

which ℓ = z and so one obtains

ω(k) = ± 2
∆t

arcsin
[

c∆t
∆z

sin
(

k∆z
2

)]
. (3.22)

In 1D, there is an analytical upper limit for σ, σmax = 1, for which the wave phase

velocity is reproduced exactly. We report in Fig.3.5 the normalized phase velocity

of an electromagnetic wave propagating in 1 dimension versus the wavenumber

k/kmax, where kmax is the Nyquist wavenumber

kmax =
π

∆z
, (3.23)

i.e. the maximum wavenumber that can be reproduced in a grid with a spacing ∆z.

In 3D, no precise upper bound for σ is given, for which the only known condition

is σ < 1. The dispersion relation Eq.(3.21) is solvable perturbatively, assuming a

small deviation from the continuous limit ω2
0 = c2|k|2, that to the lowest order is
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FIGURE 3.5: Positive branch of the 1D numerical dispersion relations
for various values of σ.

ω ≃ ω0 + ω1. If the cell is a cube of side ∆z, we apply the CFL condition fixing

c∆t =
σ∆z√

3
, (3.24)

and we expand Eq.(3.21) for ∆z ≪ 1 to get, for one of the two propagation directions,

ω(k) = c|k| − 1
24|k|

(
k4

x + k4
y + k4

z

)
∆z2. (3.25)

As it can be seen from Eq.(3.25), the dispersive error induced by the finite grid

tends always to slow down the propagation of a wave. This is a known problem in

the PIC simulations, for the request for good resolution considerably increases the

computational cost.

A slower wave have many implications in the study of the laser-plasma interac-

tion and acceleration. First of all, incorrect description of the energy gain of an ac-

celerated bunch is provided [33], since a slower pulse results in a shorter dephasing

length. Then, numerical Cherenkov radiation is produced by a dispersive algorithm

[34], entailing a strong noise in the simulated system. This self interacts with an

accelerated bunch degrading its quality, i.e. increasing its emittance and its energy

spread.
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3.6 An example of a Vlasov-Maxwell solver: ALaDyn

ALaDyn (Acceleration by Laser and Dynamics of charged particles) is a state-of-the-

art Particle-in-cell code that solves the fully selfconsistent Vlasov-Maxwell system of

equations[35–37]. It is specifically designed to deal with Laser and Beam driven ac-

celeration problems, in addition to the Target Normal Sheath Acceleration (TNSA),

i.e. the ions acceleration process.

ALaDyn describes both the plasma and the electromagnetic fields in a 3D cartesian

geometry and it is fully parallelized using the MPI libraries to allow scalability and

high performances also on modern supercomputers.

The particles dynamics is computed either implying a second order Leap-Frog

algorithm or a fourth order Runge-Kutta [38]. Correspondingly, either a second or-

der Yee scheme or a fourth order electromagnetic solver are implemented to solve

Maxwell equations [39]. Given that a typical system consists on a travelling driver

(either a laser pulse or a particle bunch), the particle-fields interaction is solved in a

moving window, that follows the driver itself so keeping only the relevant informa-

tion throughout the simulation runs, to boost the code performances.

The programming language of ALaDyn is Fortran 90, because of it’s high speed in

dealing with long arrays, while some minor modules are written in C++.

Many improvement are currently under review of the ALaDyn collaboration, such

as the refinement of the algorithms already implemented or the addition of new

modules, either to introduce reduced simulation schemes, some of which will be pre-

sented in the next Chapters (i.e. envelope approximation, Lorentz-Maxwell solver),

or to rewrite the code structure to keep it up-to date according to the community

standards.

As the author is part of the ALaDyn collaboration, all the numerical results that

will be presented in this thesis, are produced running the ALaDyn code.

3.7 Conclusions

In this Chapter, we illustrated the Particle-In-Cell numerical approach. For a plasma

in which kinetic effects are relevant, such as the particle trapping, the Lorentz-Maxwell
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system of equations, based on the fluid approximate, are not sufficient to describe

the exact dynamics of the system. Instead, a Vlasov based approach is more conve-

nient, even though we have shown that a direct Vlasov-Maxwell simulation is un-

feasible. In this context, the PIC scheme, particle evolution according to the Klimon-

tovich statistics, is the only tool available to retain the kinetic effects in a computa-

tional addressable way. We reviewed the standard temporal loop on which every

code is constructed, with a particular remark on the main algorithms for the evolu-

tion of the electromagnetic field (Finite Difference Time Domain) and of the particle

motion (Boris Pusher based on the Leapfrog temporal integration). The computa-

tional particles, defined on a continuous phase space, and the discrete fields are

coupled via a smoothing procedure based on the spline functions, which provide

respectively the correct plasma currents to evolve the fields and the correct Lorentz

force felt by every plasma particle.

In the second part of the Chapter, we presented the main limitations of the PIC

schemes, which concern the discrete nature of the solver. In fact, the electromag-

netic wave phase velocity is affected by the resolution which introduces a dispersive

error that slows down the propagation. In the field-particle interaction, a slower

propagation speed can produce spurious Cherenkov radiation, because the particle

retains its speed that could become very close to the speed of light and overcomes

the speed-limited wave, so emitting unphysical radiation.
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Chapter 4

Numerical implementation of

envelope model for laser-plasma

dynamics

In laser-driven, plasma-based accelerators, when relevant scale lengths of the laser

envelope and of the driven plasma waves are well separated from the wavelength

and frequency of the laser fast oscillating component, a reduced physical model

(usually referred to as the envelope model) has been introduced allowing to formu-

late the laser-plasma equations in terms of laser-cycle averaged dynamical variables

with the laser Lorentz force only expressed by the laser-cycle averaged pondero-

motive component. The resolution needed to run a given PIC simulation can be so

strongly reduced, allowing a computational speed-up to some orders of magnitudes.

In this Chapter, we propose a computational framework characterized by two

previously unexplored numerical implementations of the envelope model [40]. The

first one is based on explicit second order leap-frog integration of the exact wave

equation for laser pulse propagation using a laboratory (Lab) coordinate system in

3D cartesian geometry. Since laser and driven wakefield wave equations formulated

in a non-comoving frame are advection dominated, we introduce a proper modifi-

cation of finite differences approximating space derivatives to minimize dispersive

numerical errors coming from the discretized advection operators. In this way, we

overcome one of the typical limitations of the electromagnetic solvers, which is the

incorrect reproduction of a wave phase velocity, as described in Chapter 3. The pro-

posed scheme, avoiding the semi-implicit procedures adopted when field solvers
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are implemented in comoving Eulerian frame, assures significant saving in com-

putational time and ease of implementation for parallel platforms. The associated

plasma particle equations of the model formulated in a Lagrangian PIC framework,

have been integrated using a proper modification of the classical Boris pusher (see

Appendix B).

As a second contribution, a novel numerical implementation, based on upwind

finite differences and on the second-order Adams-Bashforth time integrator, of the

plasma dynamic equations in the cold-fluid approximation, is presented. Since the

Adams-Bashforth scheme is equivalent to a leap-frog scheme with an added higher

order dissipative truncation error, the proposed implementation of Eulerian fluid

equations can be used either as a much faster alternative to the PIC implementa-

tion or even in a hybrid combination to the latter when kinetic effects and particle

injection have to be investigated.

4.1 Envelope model

In typical Laser Plasma Accelerators (LPAs) configurations, a polarized laser field

propagating along the z coordinate, when represented under the Coulomb gauge,

i.e. ∇ · a = 0, can be modeled by an envelope shape function modulated by a fast

oscillating monochromatic component of wavelength λ0,

a(x, t) = Re[â(x, t)eik0(z−ct)], (4.1)

where k0 = 2π/λ0, ω0 = ck0 is the carrier laser space-time frequency and the com-

plex envelope function â(x, t) depends on slower space-time scales, that is the spec-

tral modes of â(k, ω) have sizes ω/ω0 ∼ k/k0 = O (ϵ) where ϵ is a small number.

In numerical investigation of LPA regimes, the â(x, t) field is initialized in vac-

uum in the form â(x, t) = f (z − ct)g(x⊥) where g(x⊥) has a Gaussian shape in the

transverse direction coordinate, characterized by a waist w0 ≫ λ0 at the z = z f

focal point, and f (z − ct) is a Gaussian-like shape function with scale Lz ≫ λ0

along the comoving longitudinal coordinate, defined as ξ = z − ct, τ = t. In

this configuration, the small parameter measuring scale separation is defined by
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ϵ = λ0/(2πw0) = 1/(k0w0) ≃ 1/(k0Lz) ≪ 1 [41]. To the lowest order approxi-

mation, a Gaussian field has a O (1) field component ax ≡ a along the polarization

axis, whereas other components have smaller sizes, az = O (ϵ) 1, and ay = O
(
ϵ2).

Moreover, in a reference frame moving with the laser pulse, the characteristic time-

variations scale is given by the Rayleigh diffraction, i.e.

Tray = cZray = cπw2
0/λ0 → ∂τ ∼ O

(
ω0ϵ2) . (4.2)

Therefore, due to the dominance of the relativistic advection along the z coordinate,

∂τ = ∂t + c∂z → ω − ckz = O
(
ω0ϵ2) . (4.3)

On the assumption that scale separations set by initial conditions are preserved

in time during laser-plasma interaction, a two-scale perturbative analysis can then

be applied [41–45] to reformulate the Vlasov-Maxwell system in terms of laser-cycle

averaged dynamical variables depending only on slow space-time coordinates. If

one is not interested in the cycle-by-cycle details of the particles dynamics, the simu-

lation can be evolved with timesteps much longer than the laser characteristic vari-

ation time ω−1
0 , obtaining a computational speed-up of the order of ϵD, where D is

the dimensionality of the system.

4.2 The basic equations of the envelope model.

We here recall the general set of equations implemented in a PIC code as presented

in Eqs.(3.4), formally equivalent to the Vlasov-Maxwell system, that represent the

relativistic equation of motion of Np discrete plasma particles

1
c

dxi(t)
dt

=
ui(t)

γi
,

1
c

dui(t)
dt

=
q̃kp

m̃

[
E (xi(t), t) +

ui(t)
γi

× B (xi(t), t)
]

,
(4.4)

1Even though we are now referring to the fields in the comoving reference frame (x, y, ξ), we main-
tain the notation z for the subscript, which is equivalent to ξ except for a translation. This choice will
be clear in the next sections where we present the resolution algorithm in the Lab frame.
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i = 1, 2, .., Np , coupled to the Maxwell’s equations for the self-consistent electromag-

netic fields,
∂B
∂t

= −c∇× E,
∂E
∂t

= c∇× B − ωpJ. (4.5)

For computational convenience, we make use of the dimensionless set of variables

(as introduced in Eq.(2.4))

q̃
m̃

a =
qA
mc2 ,

q̃
m̃

ϕ =
qΦ
mc2 , u =

p
mc

, n′ =
n
n0

, (4.6)

and we normalize both the electric and magnetic fields to the wavebreaking limit

of an electrons plasma, Ewb = meωpc/e (see Eq.(1.66)). The factors q̃ = q/e and

m̃ = m/me represent respectively the macroparticle’s charge and mass normalized

to the electron charge and mass, while the current J is also expressed in dimension-

less units, that is J = q̃nu/γ, where u stands for the eulerian (fluid) plasma mo-

mentum, i.e. we perform a smoothing of J over the particles positions. We point out

that, for computational consistency, we normalize the fields to the electron mass and

charge, while the macroparticle’s momentum is normalized to the particle’s mass, to

carry the information about its own weight, which is fundamental for the particle-

field interaction as described in Chap.3. This choice introduces the factor q̃/m̃ in

the equations, which, as it should be, does not depend on the macroparticle compu-

tational features, but rather on the physical constants that characterize the particle

that is being simulated. Discrete particles and continuous fields are connected using

the Klimontovich formalism based on the delta-like shape functions introduced in

Chapter 3.

Under the assumptions of the envelope approximation, laser ponderomotive

force and the electromagnetic wakefield acting on a plasma particles contribute sep-

arately and distinctly in the Lorentz force. Despite this not being true in a general

laser-plasma interaction, the goal of the envelope model is to write two separate

equations for the two electromagnetic fields, making use of the linearity with re-

spect to the source terms of the Maxwell’s equations. The division can be performed

if the respective currents and densities sources of Maxwell’s equations are well sep-

arated in frequency, condition that has been studied in many works with different

approaches [42, 43]. Here, we briefly derive the final system of equations, that will be
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presented in Eq.(4.22) coupled with Eq.(4.21), underlining the key approximations

that lead to a motion equation in which the laser driver contribution is separated

from the wakefield one.

First, we notice that the relation ω − ckz = O
(
ω0ϵ2) is equivalent to assume

a quasi-static behavior for the system, i.e. the Hamiltonian of the single particle

depends only on ξ = z − ct. The general Hamiltonian for the particle motion in

an electromagnetic field can be written, in the Lab frame, as the total energy of the

particle itself,

H =

√
1 +

⏐⏐⏐⏐u +
q̃
m̃

a
⏐⏐⏐⏐2 − q̃

m̃
ϕ, (4.7)

where H is normalized to mc2, and U = u − a is the canonical momentum. Under

the quasi-static condition, the following conservation law can be obtained

dH
dt

=
∂H
∂t

= −c
∂H
∂ξ

=
dUz

dt
, (4.8)

where Uz is the z component of the canonical momentum of a particle in an elec-

tromagnetic field Uz = uz − q̃az/m̃. For an unperturbed plasma at infinity, we can

integrate Eq.(4.8), which, can be expressed in function of the momentum uz as

γ − uz = 1 +
q̃
m̃

(ϕ − az) . (4.9)

As it can be seen, Eq.(4.9) generalizes the conservation law Eq.(2.17b) found in the

quasi-static and 1D regime. In fact, the expansion we are performing for ϵ ≪ 1,

recovers the 1D condition assumed before only in the limit ϵ → 0, otherwise the

term az appears in the resulting equation.

Let us now substitute into Maxwell’s equation written in the Coulomb gauge,

namely

∂t,ta − c2∇2a +∇∂tϕ = − m̃
q̃

ω2
pJ, (4.10)
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the eikonal expression for a(x, t) Eq.(4.1), to get the evolution equation for the enve-

lope of the laser pulse

(
∂t,tâ − 2iω0(∂tâ + c∂zâ)− c2∇2â

)
eik0(z−ct) + c∇∂tϕ = − m̃

q̃
ω2

pJ. (4.11)

We express Eq.(4.11) in the fixed reference frame, given that the transformation of

variable z → ξ is a mathematical change of coordinates rather than a change of

reference frame. This implies that some considerations made using the ξ coordinate,

are also valid in the z one. We choose not to directly use the (ξ, τ) set of variables

because we want to present a numerical evolution algorithm for â in the Lab frame.

We point out that change of variables could be performed at any time during the

derivation without influencing its outcomes.

To explicit the contribution of the fast (laser oscillations) and slow (laser enve-

lope and plasma wakefield) dynamics, we introduce a multi-scale expansion in the

comoving reference frame of Eq.(2.12), where, for ωp ≪ ω0, vph → c, and we split

ξ = ξ0 + ξ1 into a fast ξ0 and a slow ξ1 variable, so that

∂

∂ξ0
∼ 1

λ0

∂

∂ξ1
∼ ϵ

λ0
. (4.12)

Considering normalized Poisson’s equation for the potential,

∇2
⊥ϕ +

∂2ϕ

∂ξ2 = − m̃
q̃

k2
pρ ∼ O

(
ϵ2k2

0
)

, (4.13)

we can see that to the lowest order, ϕ is a slow varying quantity, i.e. its derivative

scales as kp, thus it can be neglected when computing the evolution equation for â,

Eq. (4.11), that so becomes

(
∂t,tâ − 2iω0(∂tâ + c∂zâ)− c2∇2â

)
eik0(z−ct) = − m̃

q̃
ω2

pJ. (4.14)

Due to the dominant fast oscillatory motion on the transverse axis, the current J =

q̃nu/γ, that is proportional to the particles momentum, can be divided in a fast

oscillating term J̃ = q̃nũ⊥/γ and a negligible slow varying contribution. Such a

splitting determines a linear relation between the current and the vector potential a.
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In fact, to the lowest order (fast time scales), the conservation of transverse canonical

momentum entails the equality of the vector potential and the particle momentum,

so that the plasma current becomes

J =
q̃2

m̃
n
γ

a⊥. (4.15)

Specializing Eq.(4.14) to the O (1) vector potential component a, so neglecting the

higher order terms, along the polarization axis, we obtain

∂t,t â − 2iω0(∂t â + c∂z â)− c2∇2 â = −q̃ω2
p

n
γ

â, (4.16)

which is a self-consistent evolution equation for â.

With a similar procedure to what has been presented, it can be shown that the

ratio n/γ appearing on the r.h.s of Eq.(4.16), does not have a fast oscillating part, and

that its slow contribution can be replaced by the ratio respectively of the numerator’s

and denominator’s slow contributions n/γ = n/γ ≃ n/γ [42], where the overline

indicates a laser-cycle averaged quantity.

We now have to establish an expression for γ that only depends from other slow

varying variables.

To do so, we consider the Coulomb gauge condition ∇⊥a⊥ + ∂ξ az = 0, which

can be expressed to the lowest order as

∂az

∂ξ0
= 0, (4.17)

that means that the z component of the vector potential has no fast varying oscilla-

tions. This peculiarity, joined with the slow time dependence of ϕ, results in the l.h.s

of Eq.(4.9) to be also slow varying. This is a nontrivial relation that comes out from

the multi-scale perturbative approach, because it means is that despite uz and γ are

both fast oscillating quantities, their difference varies on a plasma wavelength scale.

We can write out this last consideration as

uz − γ = uz − γ. (4.18)
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Starting from the definition of the relativistic Lorentz factor, separating the fast and

slow perpendicular momentum and substituting Eq.(4.18), we get

γ2 = 1 + |u⊥|2 + |ũ⊥|2 + 2u⊥ · ũ⊥ + (γ − γ)2 + u2
z + 2 (γ − γ) uz, (4.19)

that after an averaging on both members becomes

γ2 = 1 + |u|2 + q̃2

m̃2 |a|
2 = 1 + |u|2 + q̃2

m̃2
|â|2
2

, (4.20)

where the definition of laser envelope has been substituted and the average on the

fast time scale has been performed, which is |Re [eik0ξ ]|2 = 1/2.

The newly defined Lorentz factor is corrected in such a way that the pondero-

motive potential is explicitly appearing in the equation, while the particle momen-

tum only refers to the plasma slow motion. Therefore, if the envelope requirements

are satisfied, the introduction of the corrected Lorenz factor Eq.(4.20) instead of the

standard one, is the means through which the fast and slow particle dynamics are

completely separated and one is allowed to evolve â through Eq.(4.16), in which

we collect the plasma response to the laser passage into it in a χ(x, t, |â|) = q̃2n/γ

prefactor, i.e.

[
∂t,t − 2iω0(∂t + c∂z)− c2∇2] â(x, t) = −ω2

pχ(x, t, |â|)â(x, t). (4.21)

As a further consequence, the particles motion equations, Eq.(4.4), have to be mod-

ified according to this separation, that we highlight referring to the background

(driven wakefield) electric and magnetic fields as (Ew, Bw), while the ponderomo-

tive force due to the laser pulse is FL,

1
c

dui

dt
=

q̃kp

m̃

[
Ew(xi, t) +

ui

γi
× Bw(xi, t)

]
+ FL(xi, t),

FL = − q̃2

4m̃2γi
∇|â|2, γ2

i = 1 + |ui|2 +
q̃2|â|2
2m̃2 ,

1
c

dxi

dt
=

ui

γi
.

(4.22)

For a Vlasov-Maxwell system formulated in the cold-fluid approximation, the

envelope model can be expressed in Eulerian form by the equations for plasma
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u(x, t) momentum and density n(x, t) (see also Eq.(1.40))

[
1
c

∂

∂t
+

(
u
γ
· ∇
)]

u =
q̃kp

m̃

[
Ew(x, t) +

u
γ
× Bw(x, t)

]
+ FL(x, t),

FL = − q̃2

4m̃2γ
∇|â|2, γ2 = 1 + |u|2 + q̃2|â|2

2m̃2 ,

1
c

∂

∂t
n(x, t) +∇ · Q(x, t) = 0, Q ≡

[
nu
γ

]
.

(4.23)

We remark that the system of equations we derived in the envelope (pondero-

motive) approximation, Eqs.(4.22) and Eqs,(4.23), are completely self-consistent that

is they are only expressed in function of slow varying quantities. This is the most

important goal towards a numerical implementation of the envelope model. It is in

fact of fundamental importance that the space-time framework is the same for ev-

ery variable, so that it is possible to introduce a reduced computational grid which

consents the strong time gains we are aiming to.

The dispersion relation for Fourier modes (k, ω) of the Eq.(4.21) in linear approx-

imation (χ ≃ 1), is expressed by

ω2 + 2ω0ω = c2(2k0kz + |k|2 + k2
p). (4.24)

Since ω − ckz = O
(
ω0ϵ2), this relation can be approximated by

ω = ckz +
c
2
|k⊥|2 + k2

p

k0 + kz
+O

(
k0ϵ4

)
, (4.25)

giving a group velocity for right propagating modes kz > 0, ω > 0

vg

c
=

1
c

∂ω

∂kz
= 1 − 1

2
|k⊥|2 + k2

p

(k0 + kz)2 . (4.26)

Eq.(4.26) coincides with the usual result obtained studying the propagation of a laser

pulse in a linear plasma, when the laser envelope is broad. By setting the conditions

k0 ≫ k⊥, kz (broad envelope), k0 ≫ kp (typical configuration in LPAs that guaran-

tees that the nonlinear plasma feedback on the laser propagation is reduced), and

k⊥, kz ≤ kp (usually taken for optimum wakefield generation), the previous relation
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becomes

vg

c
≈ 1 − 1

2
k2

p

k2
0

. (4.27)

The associated Maxwell equations for the wakefield (Ew, Bw) have the same form

as in the general system Eq.(4.5),

∂Bw

∂t
= −c∇× Ew,

∂Ew

∂t
= c∇× Bw − ωpJ. (4.28)

with source term J(x, t) now expressed by averaged plasma density and velocity.

We remark that Eq.(4.28) can only written if the envelope model assumptions are

fulfilled, i.e. if the request of a spatiotemporal scale separation between the sources

of the laser pulse equation Eq.(4.21) and of (4.28) respectively is satisfied. We also

stress that this is a strong assumption that cannot be verified a priori for a generic

laser-plasma interaction.

In Fourier space (k, ω) one has a corresponding dispersion relation

ω2 = c2(k2
z + |k⊥|2 + k2

p), (4.29)

giving a group velocity along the propagation z−coordinate

v(w)
g =

∂ω

∂kz
=

ckz√
k2

z + |k⊥|2 + k2
p

. (4.30)

4.3 Envelope field solver in the laboratory coordinate system

By using the comoving coordinates (τ, ξ) defined as

ξ = z − ct, τ = t, ∂t = ∂τ − c∂ξ , ∂z = ∂ξ , (4.31)

the laser envelope Eq.(4.21), in the time ordering where ∂τ = O
(
ω0ϵ2) allowing to

neglect the second derivative ∂τ,τ, reduces to

[
ik0 + ∂ξ

]
∂τ â = −1

2

[
∇2

⊥ − ω2
pχ
]

â (4.32)
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which is the usually quoted form considered in analytical and numerical investiga-

tions, see [43, 46–48] and references therein. This coordinate transformation induces

a frequency shift ω → ω̃ = ω − ckz in the â(k, ω) spectral shape thus removing

the highest frequency ω = ckz. A numerical integration of the envelope field solver

Eq.(4.32) is then expected to be free of dispersive effects related to the pulse advec-

tion. However, to solve Eq.(4.32) for time derivative, the M̂ ≡
[
ik0 + ∂ξ

]
operator on

the left hand side has to be inverted and this poses limitations on implementation

based on finite differences. In fact, the inverse operator

[
M̂
]−1

= −
ik0 − ∂ξ

k2
0 + ∂ξ,ξ

, (4.33)

once discretized on a grid with cell size ∆ξ, is singular at the Nyquist frequency

kmax = π/∆ξ ≃ k0. As a consequence, grid resolution and Courant number must

be severely bounded to assure stability in explicit integration. To overcome these

limitations, in published works so far a semi-implicit integration scheme, typically a

Crank-Nicholson integrator for the linear part of Eq.(4.32), has been applied. These

procedures require inverting a fully 3D Laplacian numerical operator at each time

step, with significant increase of computational complexity, preventing an efficient

parallel implementation.

It is then of some interest, from a computational point of view, to integrate the

envelope wave equation directely on a Lab coordinate system as expressed in (4.21)

with second time derivative operator retained. In this form, it can be integrated us-

ing stable explicit leap-frog schemes with no artificial restriction on CFL condition

and on the grid resolution, allowing then a significant improvement in efficiency and

simplicity in the implementation procedures. Also consistency arguments favoring

this choice have to be considered, since Eq.(4.21) retains the basic (hyperbolic) struc-

ture of the Maxwell wave equations for scalar fields and of the associated Maxwell

equations for the laser driven wakefields. This entails, in particular, that the compos-

ite system of envelope, wakefields and particle motion equations can be integrated

on a same unitary numerical framework using a second-order leap-frog explicit in-

tegrator both for particles and fields, under the standard Courant number condition

σ ≤ 1.
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To integrate Eq.(4.21) on a grid we use centered first and second finite differences

operators to approximate time derivatives, namely

Dt â =
ân+1 − ân−1

2∆t
,

Dt,t â =
ân+1 − 2ân + ân−1

(∆t)2 ,
(4.34)

where the index n denotes the discretized time tn = n∆t and ∆t denotes the time

step. Centered first and second finite difference on a grid xg = (xi, yj, zk) with cell

sizes (∆x, ∆y, ∆z) approximate space derivatives of the field â(xi, yj, zk) discretized

at integer index grid points:

Dz â =
âk+1 − âk−1

2∆z
, Dz,z â =

âk+1 − 2âk + âk−1

(∆z)2 ,

Dy,y â =
âj+1 − 2âj + âj−1

(∆y)2 , Dx,x =
âi+1 − 2âi + âi−1

(∆x)2 .
(4.35)

The Courant number σ ≤ 1, relating ∆t to the grid cells is defined, as already pre-

sented in Chapter 3, by

σ =
c∆t
h∆z

, h =
r√

2 + r2
, (4.36)

where r = ∆x/∆z = ∆y/∆z is the ratio of the transverse to the longitudinal cell sizes

(h = 1/
√

3 for a uniform 3D grid).

By taking into account that in the envelope model forward advection is charac-

terized by the fastest time scale for the laser-wakefield wave equations, dominant

dispersive numerical errors come necessarily from the Dt + cDz discretized wave

operator. These dispersive errors can be strongly reduced by a proper modification

of the finite difference operators along the z coordinate using enlarged stencils of

grid points [34, 36]. In this way, still second-order, optimized numerical derivatives

can be obtained
D(o)

z = Dz[1 + δ1∆z2Dz,z],

D(o)
z,z = Dz,z[1 + δ2∆z2Dz,z].

(4.37)

Let us consider, as an example, the reduction of the dispersive error in the advection

operator Dt + cDz. As we have shown in Chapter 3, the discrete differentiation
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operator can be written in Fourier domain as

Dt = − i sin (ω∆t)
∆t

, Dz =
i sin (kz∆z)

∆z
, Dz,z = −4 sin2 (kz∆z/2)

(∆z)2 . (4.38)

Expanding the operators for small ∆t and ∆z, and inserting them in Dt + cD(o)
z , it

results

Dt + cD(o)
z = ω − ckz −

ω3∆t2

6
+ ck3

z∆z2
(

δ1 +
1
6

)
+O

(
∆t4
)

. (4.39)

To reduce the dispersive error coming from the wave advection, we have to cancel

out the second order dispersive term. Making use of the CFL condition relating ∆t

and ∆z and considering the O (1) relation ω = ckz, we notice that the dispersive

term is equal to zero if δ1 = (ν2 − 1)/6 < 0, with ν = hσ = c∆t/∆z < 1. By

performing the same expansion on the second order wave operator Dt,t − c2D(o)
z,z ,

the expression δ2 = (ν2 − 1)/12 < 0 is derived.

We clarify that this optimized derivatives cancel out the dispersive error along

the propagation coordinate, dominant in a laser-plasma interaction simulation. It is

not possible to address a general numerical electromagnetic anisotropy propagation

error with this technique, due to the difficulties to analytically solve a 3D numerical

dispersion relation.

Using optimized finite differences, the discretized Eq.(4.21) is then finally ex-

pressed by

[
Dt,t − 2iω0

(
Dt + cD(o)

z

)
− c2D(o)

z,z − c2 ∑
s=x,y

Ds,s

]
ân(xg) = −ω2

pχ(xg, tn)ân(xg).

(4.40)

For given [ân(xg), ân−1(xg)] field data at time level tn = n∆t and tn−1 = tn − ∆t the

one step update of Eq.(4.40) is implemented by first evaluating at the current time

level tn the source term

Ŝ [â] =

[
2ik0D(o)

z + c2D(o)
z,z + c2 ∑

s=x,y
Ds,s − ω2

pχ(xg, tn)

]
ân(xg), (4.41)
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and then by expressing Eq.(4.40) in the solvable form

ân+1 − iαân+1 = F̃[â],

F̃[â] = ∆t2Ŝ[â] + 2ân − ân−1 − iαân−1,
(4.42)

where α = ω0∆t. By separating real and immaginary components â = (aR, aI), a

linear system is obtained,

an+1
R + αan+1

I = F̃R, an+1
I − αan+1

R = F̃I , (4.43)

with source term components given by

F̃R = ∆t2ŜR + 2an
R − an−1

R + αan−1
I , F̃I = ∆t2ŜI + 2an

I − an−1
I − αan−1

R . (4.44)

Finally, the solution for the updated variables (aR, aI)
n+1 is then evaluated by [40]

an+1
R =

FR − αFI

1 + α2 , an+1
I =

FI + αFR

1 + α2 . (4.45)

4.4 Leap-frog Maxwell integrator for driven wakefield

By representing the (E, B, J) fields on the standard staggered Yee grid, the leap-frog

integrator of Maxwell equations for wakefield Eq.(4.28) (subscript w omitted) is ex-

pressed by

[DtB]n = −cD × En,

[DtE]n+1/2 = cD × Bn+1/2 − ωpJn+1/2,
(4.46)

where, as usual in FDTD framework, for conjugate (u, v) variables:

[Dtu]n+1/2 =
un+1 − un

∆t
, [Dtv]n =

vn+1/2 − vn−1/2

∆t
, (4.47)

and in a similar way for space differentiating operators along the s = x, y, z cartesian

components

[Dsu]i+1/2 =
ui+1 − ui

∆s
, [Dsv]i =

vi+1/2 − vi−1/2

∆s
. (4.48)
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Since driven wakefields are advection dominated, dispersive numerical errors in-

duced by the discretized propagation operator can be reduced following the same

procedure adopted for the envelope field solver. In the Yee staggered grid the opti-

mized numerical derivative is defined by

D(o)
z = Dz

[
1 + δ3∆z2Dz,z

]
, δ3 = (ν2 − 1)/24, (4.49)

to be applied to the proper components of both the (E, B) vector fields.

Since Lorentz force is expressed by (E, B)n fields discretized at equal time level,

it is convenient to set Bn = (Bn+1/2 + Bn−1/2)/2, so that, to the same accuracy, leap-

frog integration of wake fields can be expressed by the tn → tn+1 update

Bn+1/2 = Bn − c∆t
2

D × En,

En+1 = En + c∆t[D × Bn+1/2 − ωpJn+1/2],

Bn+1 = Bn+1/2 − c∆t
2

D × En+1.

(4.50)

4.5 Leap-frog integration of equation of motion of PIC parti-

cles

The leap-frog time integration of the system (4.22) using a PIC technique, requires

a proper modification of the classical Boris push essentially because the particle rel-

ativistic factor γi(|ui|, |â|) function now depends also on the laser ponderomotive

envelope field Φ(xi) = q̃2|â(xi)|2/2m̃2 evaluated at the particle position xi. This

entails, that for both the particle momentum and the position update, a specific pro-

cedure is needed to solve the consequent implicit equations that come out when

solving Eqs.(4.22).

4.5.1 Momentum update

First, grid defined fields
[
En(xg), Bn(xg)

]
and

[
Φn(xg),∇Φn(xg)

]
, evaluated in the

tn−1 → tn one-step move of (4.50) and (4.45), are assigned to each particle position

xn
i using splines bl [xg − xi] of some order, as routinely done in PIC schemes (i.e.

Eq.(3.12) for the electric field).
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The particle momentum time stepping un−1/2
i → un+1/2

i can then be evaluated

by

un+1/2
i = un−1/2

i + c∆t
[

q̃kp

m̃
(En +

un
i

γ
× Bn)− 1

2γn ∇Φn
]

,

γn
i =

[
1 + |un

i |2 + Φn]1/2
, un

i =
un+1/2

i + un−1/2
i

2
,

(4.51)

where we have omitted the spatial dependence of Φn. In terms of the ui ≡ un
i and

γi ≡ γn
i unknowns, one has then to solve the implicit algebraic system

ui = un−1/2
i + Ẽ +

1
γi

[
ui × B̃ − C

]
,

γ2
i = 1 + Φn + un−1/2

i · ui +

(
Ẽ − C

γ

)
· ui,

(4.52)

with O (∆t) coefficients given by

Ẽ ≡
c∆tq̃kp

2m̃
En, B̃ ≡

c∆tq̃kp

2m̃
Bn, C =

c∆t
4

∇Φn. (4.53)

By substituting once again ui = un−1/2
i +O (∆t) in the expression for γ2

i , and retain-

ing terms up to the first order in ∆t, i.e. by setting

Ẽ · ui ≈ Ẽ · un−1/2
i , C · ui ≈ C · un−1/2

i , un−1/2
i ·

(
ui × B̃

)
≈ 0, (4.54)

the implicit γi = γi(|ui|, |â|) relation can be reduced to a solvable form. Thus, we

obtain an approximated γi = γ̃i + O
(
∆t2) value as solution of the explicit cubic

equation:

γ̃3
i = γ̃iγ

2
0 + 2

(
γ̃Ẽ − C

)
· un−1/2, γ2

0 =
(

1 + Φn + un−1/2
i · un−1/2

i

)
, (4.55)

which can be expressed in a closed form by a Taylor expansion γ̃ = γ0 + ∆γ

γ̃ = γ0 +
1

γ2
0

(
γ0Ẽ − C

)
· un−1/2

i . (4.56)

By inserting the approximated γ̃ value in the momentum equation Eq.(4.52), after
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the replacements Ẽ → Ẽ + un−1/2
i − C/γ̃, and B̃ → B̃/γ̃, the update of particle mo-

mentum can be evaluated in explicit form using the standard Boris pusher method:

un
i

(
1 + |B̃|2

)
= Ẽ + Ẽ × B̃ + B̃

(
Ẽ · B̃

)
, un+1/2

i = 2un
i − un−1/2

i . (4.57)

At the end of this first step, the source term χn (xg
)

needed in Eq.(4.45) for the ensu-

ing tn → tn+1 update of the envelope field, can now be evaluated using the inverse

of the γ̃(xn
i ) function in Eq.(4.56), namely

χn(xg) = ∑
α

Ŝ
(
xg − xn

i
)
[γ̃ (xn

i )]
−1 . (4.58)

4.5.2 Position update

To update the particle position (particle index i omitted for brevity), using un+1/2

momentum:

xn+1 = xn + c∆t
un+1/2

γn+1/2 ,(
γn+1/2

)2
= 1 +

⏐⏐⏐un+1/2
⏐⏐⏐2 + Φn+1/2

(
xn+1/2

)
,

(4.59)

it is first required to evolve the envelope field [ân−1, ân] → [ân, ân+1] to evaluate the

ponderomotive potential Φn+1/2 = q̃2|ân+1/2|2/2m̃2 using mid-point rule ân+1/2 =

(ân + ân+1)/2.

In the shorthand notation u ≡ un+1/2, Φ ≡ Φn+1/2, γ ≡ γn+1/2 and x = xn+1/2,

to solve the implicit system (4.59), the ponderomotive potential Φ(x) is linearized

by a first order Taylor expansion around xn, namely

Φ(x) = Φ (xn) + δx · ∇Φ (xn) , δx = xn+1/2 − xn =
xn+1 − xn

2
. (4.60)

The expansion xn+1 = xn + c∆tu/γ inserted in the definition of δx appearing in γ, al-

lows the function to be expressed by a second order approximated γ = γ̃ +O
(
∆t2),

γ̃3 = γ̃γ2
0 +

c∆t
2

(u · ∇Φ (xn)) , γ2
0 = 1 + |u|2 + Φ (xn) , (4.61)

where now all the quantities in the equation are consistent with the particle motion

integration framework. By setting γ̃ = γ0 +∆γ where ∆γ = O (∆t), to second order
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approximation one has

γ̃−1 =
1

γ0

[
1 − c∆t

4γ3
0
(u · ∇Φ)

]
, (4.62)

and the update of the particle position takes finally the explicit solvable form:

xn+1 = xn + γ̃−1c∆tun+1/2. (4.63)

In the following, the numerical procedure encoding this integration scheme, cou-

pled to field solvers (4.45) and (4.50), will be denoted as ENV/PIC [40].

4.6 Eulerian integration of laser-plasma dynamics in enve-

lope model

A direct numerical integration of Eulerian plasma momentum-density Eq.(4.23), cou-

pled to Eq.(4.45) and Eq.(4.50) wave solvers, can offer a promising alternative to

the ENV/PIC schemes, since it guarantees significant saving of computational re-

sources. In fact, the computational complexity of a discretized fluid model can be

evaluated to be roughly equivalent to the corresponding PIC model containing one

particle per cell. The reason is that here, the set of numerical equation is not based

on the macroparticle description that characterize a PIC code anymore, but we deal

with a plasma under the fluid approximation, so we describe it numerically by the

means of a eulerian variable.

Eq.(4.23), describing a relativistic, pressure-less Euler equation with forcing given

by self-consistent field Lorentz force, is clearly challenging since no rigorous numer-

ical analysis results are available to date. However, accurate and stable integration

schemes can still be constructed [40] by taking into account the computational expe-

rience in the ordinary Eulerian system for collisional gas-dynamics.

A straightforward application of a leap-frog scheme to the system (4.23) using

centered numerical derivatives in space and time fails to preserve monotonicity in

wave profile (Gibbs pathology) even for modest non-linear steepening, finally lead-

ing to numerical instabilities. To prevent or limit this pathology, non-oscillatory

(or shock-capturing) upwind scheme for space derivatives combined to multi stage
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Runge-Kutta (RK) time integration schemes are state-of-the-art in ordinary com-

pressible fluid dynamics [49] and, hopefully, could also apply to system (4.23).

The numerical procedure here proposed is based on the second order, one-step

Adams-Bashforth (AB) time integration scheme and on second-order Weighted Es-

sentially non-oscillatory (WENO2) upwind scheme [50] for space derivatives. We

have chosen AB scheme essentially because it is one step, and then faster, than the

equivalent RK2 integrator and because it works as a “modified” leap-frog scheme.

By expressing the plasma fluid-dynamic system (4.23) in the form of continuity

equations, i.e. in terms of the four-dimensional arrays of fluid variables v ≡ [u, n]T,

representing respectively the Eulerian velocity and the plasma density and the cur-

rents determining their net flux out from a given volume L ≡ [Lu, Ln]T, one has

1
c

∂v(x, t)
∂t

= L[u, x, t],

Lu = −(
u
γ
· ∇u) + Ftot,

Ln = −∇ ·
(

nu
γ

)
,

(4.64)

where the total Lorentz force acting on a fluid element is given by

Ftot[x, u, t] =
q̃kp

m̃

[
E +

u
γ
× B

]
− 1

2γ
∇Φ, Φ =

q̃2|â|2
2m̃2 , (4.65)

with γ(u, x, t) =
[
1 + |u|2 + Φ

]1/2.

Once discretized on a time-space
[
xg, tn] grid, the AB update of momentum-

density variable vn(xg) is expressed by

vn+1 = vn +
∆t
2

[
3Ln − Ln−1

]
, (4.66)

where Ln ≡ L
[
vn, xg, tn]. Since the Lorentz force Ftot is evaluated at the same grid

points as the vn(xg), the (E, B) fields being collocated on the staggered Yee grid have

then to be properly interpolated. We notice that the update in Eq.(4.66) is in fact

one-step, since Ln−1 can be evaluated only once at a previous tn−1 → tn integration

step and then stored.
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For linear system, the resulting AB approximation for time derivative results to

be

Dtu =
un+1 − un

∆t
=

du
dt

+ c1∆t2
[

d3u
dt3

]
+ c2∆t3

[
d4u
dt4

]
(4.67)

showing that the leading order approximation has a dispersive character, as in the

associated leap-frog integrator for the envelope and wake field equations, plus a

weakly O
(
∆t3) dissipative error to balance dissipative numerical errors of upwind

space derivatives.

The numerical procedure encoding the composite [AB − WENO2] integration

scheme of Eq.(4.64) coupled to field solvers in Eq.(4.45) and Eq.(4.50) is here denoted

as ENV/Fluid. It turns out to be stable and accurate even for modest grid resolution,

for a wide class of problems, covering linear and weakly non-linear conditions. For

strongly non-linear regimes, specific investigations have still to be carried out, of

course, but preliminary tests, as documented below show, encouraging results.

The ENV/Fluid scheme, where it applies, can fully replace ENV/PIC scheme

only in the study of time evolution of structure and propagation properties of the

laser-wakefield system. When kinetic effects are of interest, like injection and ac-

celeration of electron bunches in the driven wake field, the ENV/Fluid is no longer

appropriate. However, it can still be used in association with the ENV/PIC scheme

in a composite hybrid fluid-kinetic computational framework.

4.7 Benchmark of the simulation results

In this Section, some tests will be presented to validate the computational schemes

introduced in this work.

Here, we consider a laser pulse with a Gaussian transverse profile (w0 being

the laser waist), and a Gaussian longitudinal profile, where its Full Width at Half

Maximum (FWHM), or temporal duration, is defined as τFWHM. We therefore define

â(x) = aT(x)aL(x). In particular, the transverse profile is

âT(z, x, y) =
a0√

1 + z̃2
exp(iφ) exp

[
− x2 + y2

w(z)2

]
(4.68)
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where w(z) is the usual expression for a waist of a Gaussian pulse focalized in z = z f

with a Rayleigh length Zray = πw2
0/λ0, which is w(z) = w0

√
1 + z̃2 and z̃ = (z −

z f )/ZRay, and the longitudinal one is

âL(z, r) = exp

[
−
(z − z f )

2

L2
z

]
, (4.69)

where, following [41], φ = arctan (z̃)− z̃r2/w(z)2 and Lz is related to the character-

istic length cτf whm via Lz = cτf whm/
√

2 log(2).

From now on, our simulations will refer to a laser pulse with wavelength λ0 =

0.8µm propagating in a 3D cartesian geometry.

4.7.1 Numerical tests on a laser pulse propagating in vacuum

To perform some robust test, we benchmark our code, where possible, with the an-

alytical theory, starting from the laser pulse diffraction in vacuum. In this way we

can check the accuracy of the laser envelope solver presented in Sec.4.3, without

introducing possible errors due to the coupling with the plasma bulk.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
z/ZRa
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0

Theory
Measured

FIGURE 4.1: We show (red circles) the simulated peak amplitude as a
function of the propagation distance, for a laser propagating in
vacuum for a distance of 3000µm. The solid black line represent the
theoretical result

(
1 + z̃2)−1/2.

In Fig.(4.1), we study the peak amplitude of a τf whm = 75fs and w0 = 15µm

laser pulse starting in its focus and propagating for 3000µm, which correspond to
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3.5Zray, In black, we report the paraxial analytical function, while the red circles

represent a sample of the simulated maximum amplitude. In Figs.(4.2), (4.3a) and

(4.3b), the same laser pulse is focalized and then defocalized in order to recover

the initial condition, i.e. to verify the time reversibility. In fact, the evolution of an

electromagnetic field before and after the focal point is symmetric. This entails that,

if the laser pulse is focalized, its transverse envelope profile will shrink and then

broaden again, recovering, after it travels the same distance before and after the

focal point, its initial shape. This, of course, is true within the algorithm numerical

precision, i.e. the numerical dispersion and dissipation must be low enough to show

this symmetric behavior in simulated pulses.

As it can be seen, the initial shape of both the transverse and longitudinal profile

is recovered. In particular, the overlapping of the transverse initial and final profiles

means a sufficiently low dissipation in the envelope solver, while the matching of the

longitudinal profiles means that the dispersion relation derived from the envelope

propagation equation is well reproduced.
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FIGURE 4.2: A laser pulse in vacuum focalizes and then defocalizes
so it can be seen that the error is low enough for the initial condition
to be recovered.

These simulations were run with a resolution of λ0/∆z = 12.5, with ∆y = ∆x =

8.99∆z and a CFL σ = 0.7.

Next, we study the envelope solver dispersive error convergence in function of

the resolution for a laser pulse with τf whm = 75fs, w0 = 30µm, a0 = 1 propagating
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FIGURE 4.3: Superposition of the longitudinal (Fig.(a)) and
transverse (Fig.(b)) laser profile at the beginning and at the end of
the simulation.
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FIGURE 4.4: Comparison between the phase velocity of the laser
pulse centroid when it’s propagating in vacuum in various
computational configurations. In particular, in the ENV/PIC
optimized case, the measured centroid βc is closer to 1 that the
measurement error for every resolution we considered.

in vacuum. We define the centroid position all along the simulation run as

zc(t) =
∫

z|â(x, t)|2dx∫
|â(x, t)|2dx

=
∑xg

zi ân
i,j,k

∑xg
ân

i,j,k
, (4.70)

where the sum is extended on all the computational grid, then we numerically derive

zc(t) to get the local velocity. We compare the results to fully PIC simulations, i.e.

to the electromagnetic propagation evolved through the FDTD, in which the laser

wavelength has to be well resolved to allow the algorithm to reproduce the physical
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behavior. For the two computational frameworks considered (PIC and ENV/PIC),

the results for two differentiation schemes are represented, respectively the standard

centered and the optimized one, as presented in Sec.4.3. In this runs, we fixed the

transverse grid to be ∆y = ∆x = ∆z and σ = 0.8. The latter shows a really fast

convergence to the exact value resulting, in the envelope case, in a 1− βc ≃ δ, where

δ ∼ 10−5 is comparable to the discretization error introduced in the definition of

zc(t) in the low resolution case. The time-saving property of the envelope scheme we

have presented in the previous sections, is well supported by the results of this test.

In fact, the envelope solver would be of no use if it needed resolutions comparable

to the PIC ones to be able to reproduce the correct laser propagation.

Nonlinear laser-plasma interaction (a0 ≈ 1) may require some more specific con-

vergence test, since the physics becomes more difficult to be dealt with, due to many

different effects, such as particle trapping or bubble formation. They feed the laser

propagation back, so that there is no analytical expression for the propagation ve-

locity. To check the convergence of the scheme, one could increase the resolution up

to when no significant changes in the results are seen. We do not present here such

test, even though, facing mildly nonlinear problems, we noticed that the outcome

convergence test in vacuum holds .

4.7.2 Laser plasma interaction in the envelope approximation

After verifying that the laser envelope solver propagates the laser pulse in vacuum

correctly and with a fast convergence in resolution, we show the particle dynamics

evolved via the particle pusher presented in Sec.4.5.

For a robust test, we followed the work [47] where it shows the “Test 3”, a

comparison of the wakefield generated by INF&RNO/Fluid (a fluid 2D cylindri-

cal code based on the envelope description, see [47, 51]) and the 1D (broad pulse)

analytical nonlinear theory. So, we simulated the propagation of a laser pulse with

a0 = 1, wy = 20.4µm, τf whm = 20fs in a uniform plasma of density n0 = 4.25 ×

1018cm−3, using λ0/∆z = 15. Then, in Fig.(4.5) we overlapped our result, where

the propagation distance has been normalized to the plasma wavenumber, with the

INF&RNO/Fluid and the analytical value.
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ALaDyn

FIGURE 4.5: Wakefield generated by a 1D configuration. We
compare it with the theoretical result given by the 1D quasi-static
nonlinear theory (black) and the one obtained by INF&RNO/Fluid.
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FIGURE 4.6: Relativistic factor γc concerning the propagation of a
Gaussian laser pulse in a matched plasma channel in function of the
resolution. The semianalytical value is shown in red.

As a further check for the validity of the proposed scheme, we studied the role of

the dispersive error in the propagation of a pulse in a plasma channel in the quasi-

linear regime. As known, a Gaussian pulse can be matched in a parabolic density

plasma channel, when the Rayleigh diffraction is balanced with the focalizing effect

due to the medium, and therefore no significant changes in the longitudinal and



Chapter 4. Numerical implementation of envelope model for laser-plasma

dynamics
79

transverse profile are present for propagation for distances z ≫ ZRay. In [48, 52], a

semianalytical model is developed to compute the exact propagation velocity of a

laser pulse in a matched plasma channel of given density profile, with a0 < 1. As

before, we compare the results of the optimized derivative scheme with the centered

derivative one. A laser pulse with a0 = 0.1, w0 = 8.9µm and τf whm = 21.3fs is shot

through a matched plasma channel with a density on axis n0 = 4.25 × 1018cm−3.

From the semianalytical calculations, we have γc = 9.63, where γc is the relativistic

factor associated with the laser centroid. The optimized algorithm shows a really

fast convergence to the exact value even for low resolutions.

Density

Ez

FIGURE 4.7: We show a comparison after ct = 150µm of propagation
between an ENV/PIC and an ENV/Fluid simulation in a mildly
nonlinear regime, where we expect the fluid model to hold.

In Fig.(4.7), we report the comparison between an ENV/PIC and an ENV/Fluid

simulation when considering a nonlinear laser plasma interaction. In fact, it is ex-

pected that the fluid model must precisely reproduce the same fields as the PIC

scheme away from the plasma bubble regime, where wavebreaking happens and

the Lorentz-Maxwell system of equations does not provide an adequate description.

Moreover, to deal with the appearance of discontinuities in the fluid quantities, one

should implement more specific integration schemes to avoid instabilities. For this

reason, simulation of an extremely nonlinear regime with a fluid code is still a the-

oretical and computational open problem, even though some work has been done

[53, 54] that shows some disagreements in the wakefield generation respect to a fully

kinetic code.
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FIGURE 4.8: Dissipation effects in density relative to the AB-WENO2
scheme after ct = 200µm of laser propagation in a uniform plasma.

To avoid spikes generated by a shock-capturing algorithm, we simulated a a0 =

2.5, w0 = 12.7µm and τf whm = 20fs laser pulse propagating in a uniform plasma of

density n0 = 4.25 × 1018cm−3. The ENV/PIC simulation was run with a resolution

λ0/∆z = 10, while in this configuration we needed λ0/∆z = 18.75 with σ = 0.4 in

the ENV/Fluid to reach the perfect agreement. Lower resolutions showed an high
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FIGURE 4.9: Log density maps relative to the simulation presented
in Fig.(4.7) obtained in the ENV/PIC (left) and in the ENV/Fluid
(right).

dissipation that created some discrepancy in the results after 200µm of propagation.

In Fig.(4.8), we show this effect for the same ENV/Fluid configuration run with a



Chapter 4. Numerical implementation of envelope model for laser-plasma

dynamics
81

resolution λ0/∆z = 10. Fig.(4.9) shows the 2D density map relative to the compari-

son of the ENV/PIC and the ENV/Fluid in Fig.(4.7). The agreement is good also at

the edges of the generated plasma wakefield.

4.8 Conclusions

We have presented in detail the integration schemes and algorithmic implementa-

tion of the laser solver and the particle pusher for the laser-plasma interaction rep-

resented in the envelope approximation. The model equations reported in Sec.4.2,

have been implemented using the Lab coordinate system in 3D cartesian geometry.

This unconventional approach allows, in particular, to integrate the exact (within

the model) wave equation for the envelope field by an explicit leap-frog scheme

working under the same CFL stability conditions as the related Maxwell solver for

wakefield and PIC particles motion. Since in the physical regimes under consider-

ation, laser-wakefield propagation is advection dominated, that is time evolution is

slow, quasi-static in the limit, in a comoving system finite difference of field solvers

in Lab system have been properly designed to reduce dispersion errors coming from

numerical wave propagation operators. This strongly improves grid convergence to

the envelope model theoretical predictions for wave propagation speeds, as docu-

mented in tests shown in Sec.4.7. Besides the ENV/PIC implementation, using La-

grangian particles to describe plasma dynamics, a second integration scheme, EN-

V/Fluid, for plasma fluid-dynamical equations, has been presented and tested.

ENV/PIC and ENV/Fluid have been designed on a unitary, self-consistent com-

putational framework. The resulting set of all numerical procedures has been en-

coded in ALaDyn-v2 package [37]. The code runs in parallel platforms using standard

domain decomposition and MPI procedures. As a preliminary estimate to evaluate

the cpu computational resources needed for numerical simulations of realistic LPA

regimes, we take under consideration the simulation run presented in Figs.(4.7) and

(4.9) to quote a value of τe ∼ 20h/mm (run with P = 20 particles per cell) for EN-

V/PIC code and τf ∼ 2.5h/mm for ENV/Fluid, where both cases were run on 1156

cores on MARCONI (CINECA).
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We are already working on some improvement for the ENV/PIC and ENV/Fluid

schemes. In fact, is of fundamental importance to understand the numerical and

analytical limit of the ponderomotive approximation, due to the requests for long

simulations of laser pulses in strong intensity regimes. First, one has to define the

correctness of the model for ultra short or narrow laser pulses, possibly recovering

some parameter to measure the deviation from the actual physics. Then, for very

high intensities, it is possible that the particle dynamics, for example when a bubble

is created or when a plasma particle is suddenly expelled from the laser, does not

allow the definition of a laser-cycle average. A detailed study to describe the laser-

plasma interaction in this configurations is therefore needed.

The ENV/Fluid scheme showed encouraging results even in the mildly nonlin-

ear regime. Some work may be done to reduce dissipation effects in low resolution

simulations and to approach more nonlinear regimes, blowout ones in the limit.

Also, the hybrid fluid-kinetic framework is currently being tested, to allow shorter

run times respect to the ENV/PIC algorithm, still being able do describe kinetic

based phenomena such as the particle trapping and acceleration, evolving the bulk

plasma within a fluid framework.
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Chapter 5

An injection scheme for high

quality laser plasma acceleration

In this Chapter, a novel injection scheme for high quality laser plasma acceleration

is presented. Also, we show the numerical analysis of the model that validated the

theoretical predictions.

The REsonant Multi-Pulse Ionization injection scheme has been proposed for the

generation of ultra low emittance and energy spread accelerated electron bunch in

an experimental setup based on the present day laser technology. In particular, a

250TW-class Ti:Sa laser system is implied for the acceleration.

The most important mechanisms acting in the scheme are the resonant wakefield

generation by a train of laser pulses and the ionization of atoms via another properly

calibrated laser pulse. Such decoupling allows a precise control over the problem

parameters, so that it is possible to easily tune the injected total charge and its final

energy. Also, the bunch emittance and energy spread are kept to very low values by

the near threshold ionization pulse amplitude.

The complexity of the model requires a deep numerical analysis, performed with

different codes in many regimes. First, a benchmark of the single stages (wakefield

generation and particles ionization) that occur through the process is carried out,

validating the outcomes by the means of 2D and 3D simulations performed with the

ALaDyn code, both in a fully PIC and in an ENV/PIC framework. Then, a start-to-

end simulation is run in QFluid, a quasi-static, cylindrical and fluid code in envelope

approximation that confirms the predictions on the bunch energy, showing a final

outstanding quality.
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Before to present the details of the model, the wakefield generation and ioniza-

tion process are reviewed.

5.1 Wakefield generated by a train of pulses

One of the key aspects in the wakefield generation aimed to plasma acceleration is

the realization of high longitudinal electric fields.

Obviously, this can be achieved by constantly increasing the driver intensity,

which has become possible as a result of the availability of new petawatts laser

systems. A major drawback of this approach, is that the intrinsically nonlinear laser-

plasma interaction generate a number of undesired effects when some critical power

is overcome. In fact, in a strongly nonlinear regime, the laser pulse self-focusses and

self-modulates so that it’s easy to lose the control on all the acceleration process and

the resulting particle bunch.

So, before to increase the intensity, one would rather optimize the wakefield gen-

eration properly modifying the laser longitudinal (temporal) shape. For the sake of

clarity, let us consider the linear wakefield generation process, described in Eq.(2.9),

namely

E = − c
2

∫ t

0
sin
[
ωp(t − t′)

]
∇a2dt′. (5.1)

The wakefield E(x, t), normalized to Ewb = meωpc/e, is a function of the laser profile

a(x, t) which is convolved with the linear equation kernel sin
[
ωp(t − t′)

]
, showing

that in the linear regime, the longitudinal and transverse motion are decoupled. The

integral can be explicitly solved for some particular profiles, such as the Gaussian

pulse [12],

âL = a0 exp
[
− (z − ct)2

2L2
z

]
, (5.2)

giving an axial longitudinal maximum wakefield,

Emax =

√
πa2

0kpLz

2
exp

[
−

k2
pL2

z

4

]
. (5.3)
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Maximizing Emax in function of Lz, we obtain the optimal length for a Gaussian laser

pulse

kpLz =
√

2, (5.4)

for which Emax ≈ 0.76a2
0. The laser pulse optimization is the first step towards a

large wakefield generation.

As we have shown in Section 2.2.1, the plasma wavelength is influenced by the

accelerating field itself, with a dependance from its amplitude that has been pre-

sented in Eq.(2.20). When one is tuning the laser pulse characteristic length, this ef-

fect must be taken into account, because the duration derived in Eq.(5.4) was found

out assuming a linear regime. In a nonlinear regime, as the pulse excites the wake-

field, it’s wavelength increases, so the condition as in Eq.(5.4) may be lost. For this

reason a multi pulse wakefield excitation has been proposed. A laser pulse of given

energy is temporally reshaped into a train of equal pulses in which the delay be-

tween every of them may be properly tuned. To maintain the total energy, in a train

of N pulses, every pulse amplitude is at = a0/
√

N, where a0 is the initial laser am-

plitude.

The advantage of a multi pulse driver is that one can recover the resonant con-

dition by delaying one pulse from the previous one, being able to achieve higher

accelerating fields respect to a same energy single laser. Roughly speaking, one can

think to the excitation process as it is mostly happening in the inflection point of

the longitudinal profile. From the ponderomotive force analysis, we know that the

front of the pulse pushes the electrons forward, while the tail pushes them back-

wards. When the driver is optimally shaped, this processes are synchronized, so the

electrons that were pushed forward by the laser front, encounter its tail when they

posses the maximum negative speed in the density restoring motion, so the second

(backward) push is favored. Making use of a train of pulses, this synchronization can

be maintained also for higher intensities, because the plasma wavelength lengthen-

ing can be compensated by the right choice of the pulse-to-pulse delay.

Another important advantage in separating a single driver in multiple ones, is

that every resulting pulse can be weak enough not to trigger undesired effects in the
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plasma such as atomic ionization and the selfmodulation can be kept under control.

5.2 Atomic ionization

The atomic ionization is becoming popular as an injection method for plasma accel-

erators. In fact, it permits to extract electrons from the background atoms, whose

momentum and position depend on the ionization laser pulse, which are suitable to

be easily injected.

The first atomic tunnelling ionization model were proposed by L. D. Landau and

E. Lifshitz [55], and then improved by Keldysh to include the small ionization laser

perturbation [56]. In his model, Keldysh showed that the tunnelling ionization (TI)

and the multi-photons ionization (MPI) are actually the same process happening in

different regimes. The latter takes place when the single incident ionizing photon

has not enough energy to directly extract the electron from the atom, neither it is

able to make it tunnel through the potential barrier. Even though the probability of

multi-photon interaction is low, it can be seen that as the laser intensity is increased,

it becomes not negligible, so it may happen that many photons combine their en-

ergy to extract a single electron from its ground state. Increasing the laser field and

lowering the photons frequency, the ionization process changes and the tunnelling

ionization takes place. The higher laser intensity, in fact, perturbs the atomic po-

tential barrier significantly, lowering and increasing it every half laser cycle. If the

perturbation frequency is low enough, an electron has the time to tunnel through

the potential barrier during the low phases. Keldysh distinguished the two differ-

ent regimes by the means of the so called Keldysh parameter, namely γK = ω/ωt,

which is the ratio between the incident laser frequency ω and the tunnel frequency

ωt = 2π/Tt, where Tt is the characteristic tunnelling time through a potential bar-

rier and ωt = eE/
√

2meUI , where E is the maximum laser electric field amplitude

and UI is the ionization potential. In particular, he stated

γK =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

2UI√
mec2a0

≪ 1 TI,
√

2UI√
mec2a0

≫ 1 MPI,
(5.5)
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which has been rewritten to explicitly include the vector potential a0 ∼ eE/mc2ω.

Keldysh’s theory is also able to describe the γK ∼ 1 range, which is an intermediate

regime, because it is based on the transition probability between an atomic bound

state and a free Volkov1 state.

The model hereby described reveals itself to be a poor approximation for any

atom different from Hydrogen. In fact, it considers only slow momentum states,

which cannot be applied to a generic high atomic number atom and once the parti-

cle is extracted, it neglects the Coulombian atomic field. Based on Keldysh’s work,

a more precise and applicable model has been proposed by Ammosov, Deloine and

Krainov, which name is in fact ADK approximation[57]. Here, they kept under consid-

eration a generic initial state, i.e. an atomic state of generic quantum numbers n∗, l∗,

and m. Also, the principal quantum number n∗ is corrected according to the Rydberg

prescription, n∗ = Z
√

UH/UI , to take into account the quantum defect, l∗ = n∗
0 − 1,

where n∗
0 is the effective quantum number n∗ when the atom is in the ground state

and UH = 13.6eV is the Hydrogen ionization potential. The ADK model describes

the ionization in a DC electric field, deriving an expression for the tunnelling rate in

a static field WDC. To compute the ionization rate WAC due to the interaction with

an AC electric field, such as a laser pulse, they proposed an average over the single

oscillation, obtaining the relation

WAC =

[
3
π

E
Ea

(
UH

UI

)3/2
]1/2

WDC, (5.6)

where we introduce the atomic units, so we normalize the electric field to Ea =

0.514TV/m. In this units, the ADK ionization rate is expressed as

WDC = Cn,m,l

[
3
2

E
Ea

(
UH

UI

)3/2
]−2n∗+|m|+1

exp

[
−2

3
Ea

E

(
UI

UH

)3/2
]

, (5.7)

Cn,m,l =
1

4π

(
UI

UH

)3/2

32n∗−|m|−1
[

4e2

n∗2 − l∗2

]n∗ [
n∗ − l∗

n∗ + l∗

]l∗+1/2

.

To complete the picture, one can notice that the ADK approximation, which

refers to the tunnelling ionization, cannot deal with very high intensity fields, when

1 A Volkov state is the quantum state of a free electron interacting with an electromagnetic (laser)
field.
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the extraction process is purely classical. When the energy of the external fields over-

comes the binding energy of the electron to the nucleus, the Barrier Suppression Ion-

ization (BSI) regime appears. Here the ADK ionization rate has an unphysical drop,

because, as we said, it is not a valid model anymore. It has been therefore proposed

to link the two models by adding the BSI contribution to the ADK formula (5.7),

setting a critical external field Ec which corresponds to the field that equalizes the

binding atomic field [58]. Thus, the resulting combined model has the expression

WBSI =
1

4πZ

(
UI

UH

)3/2 (
1 − U2

I Ea

16ZU2
HE

)
, (5.8)

Wtot = WBSI + WADK (Ec) , if E > Ec, (5.9)

where Ec = U2
I /(16U2

HZ) and Z is the charge of the ionized atom.

In the following, for laser and atomic parameters under consideration, UI ∼

102eV and a0 ∼ 1, the Keldysh parameter γ =
√

2UI/mec2/a0 ∼ 10−2, so we will

always refer to the tunnelling ionization process.

5.3 The resonant multi-pulse ionization injection

We proposed a innovative injection and acceleration model, based on the resonant

multi-pulse wakefield generation and atomic ionization, that aims at producing high

quality accelerated electron bunches, suitable for several applications, such as parti-

cle colliders for High Energy Physics, X/γ sources or Free Electron Lasers (FEL) [59,

60].

The REsonant Multi-Pulse Ionization injection (REMPI) scheme, is based on the

decoupling of the wakefield generation process and the ionization mechanism, in

order to properly combine them, aiming to an high quality accelerated bunch.

A similar scheme, has already been proposed as the “Two Colors Ionization In-

jection” [61–64], in which a long wavelength intense laser pulse, λS = 5µm and

aS = 1, was travelling in a Kr gas, ionizing it up the Kr8+ level and generating a

large wakefield. Due to the large wavelength, the laser electric field E ∼ aS/λS was

not large enough to significantly ionize the 9-th Kr level. Therefore, a second short

wavelength weak pulse, λw = 0.4µm and aw = 0.135, was shot behind the first
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FIGURE 5.1: Schematic representation of the REMPI injection
scheme. A Ti:Sa pulse is divided in two fraction, the first one is time
reshaped into a train of pulses the other is frequency doubled.

driver. Now, due to the low amplitude, it wasn’t able to modify the plasma wake-

field, but it possessed a large electric field, ionizing a certain percentage of Kr8+

atoms to Kr9+. The produced electrons were suitable to be injected into the wake-

field, so the creation of an electron bunch was observed. The main drawback of the

proposal, is the lack of short 100TW-class lasers operating at such long wavelengths.

Here, we introduce a new configuration, based on a state-of-the-art 250TW, sin-

gle Ti:Sa laser pulse (λ0 = 0.8µm) travelling in a low ionization potential dopant

gas, which allows a feasible decoupling between wakefield generation and particle

ionization. Separating the laser pulse in two fractions (respectively an high and low

amplitude one), we can temporally reshape the first one into a train of pulses, as it

has been demonstrated by recent techniques [65, 66], that will excite a large plasma

wave, and then frequency double the second weak fraction, to obtain the ionizing

pulse.

5.3.1 Main mechanisms underlying the REMPI scheme

When an electron is extracted from a laser pulse with an amplitude near the ioniza-

tion threshold, it’s escaping energy is practically zero, because all the laser energy

has been spent in the tunnelling process, so, up to a first approximation, it does not

possess any residual initial momentum. Also, we have already seen in Eq.(2.11) that

an electron oscillating in a laser field possesses a transverse momentum u⊥ = a⊥,

that comes from the conservation of canonical momentum. This entails, that if the

electron is not extracted where the electric field is maximum, i.e. where the vector
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potential is zero, the total escaping momentum of the ionized particle is u⊥ ∼ ae

where ae is the vector potential in the extraction point. To obtain a small emittance

accelerated bunch, it is therefore necessary to imply the lowest possible amplitude,

to be sure that only few electrons are extracted away from the maximum field. After

an analysis on many dopant atoms, we have chosen to introduce Argon and to set

the train of pulse amplitude so that the 8-th atomic level is completely ionized, then

the ionizing pulse is chosen to be at the threshold of the Ar8+ → Ar9+. Since the

ionization potential for the 9-th level of Argon is U9th
I = 422.5eV, we can see that

the probability to extract the electron that derives from Eq.(5.7), starts to be different

from zero when a0 = 0.8 for λ0 = 0.8µm or a1 = 0.4 for λ1 = 0.4µm. Thus, picking

a train amplitude a0 < 0.8 for every pulse, we ensure the full ionization of all the

atomic levels below 8th, while the subsequent ionizing pulse is set with an ampli-

tude a1 ∼ 0.4. In this way, since its electric field is around the ionization threshold,

we can easily tune the parameters to select the (small) percentage of ionized atoms

whose extracted electrons will form the accelerated bunch.

Another important characteristic of an high quality beam is a monochromatic

energy spectrum. To be able to minimize the particle energy spread, we localized

their extraction in a reduced spatial zone, both by shortening the space occupied by

the dopant atoms and by implying a narrow near-threshold ionizing pulse. Since the

Rayleigh length of a narrow pulse is small, it diffracts very quickly, so it is effectively

able to ionize atoms only very near its focal point.

To sum up the novelties and the reasons of the REMPI scheme, we list the nodal

points of the proposed model

i) A train of 8 pulses is used (the original amplitude is lowered a0 → a0/
√

8) to

be able to optimize the wakefield generation respect to the original pulse and

to ensure the full ionization of the Ar8+ atoms, without extracting any further

electron,

ii) the second pulse is frequency doubled λ1 = 0.4µm without adjusting the am-

plitude a1, therefore also its electric field results to be doubled and so capable

of ionizing a small fraction of Ar9+,
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iii) particle initial transverse momentum is proportional to the a⊥ amplitude in

the ionization point, so we have chosen Argon because of its low extraction

potential,

iv) we obtain a low energy spread by localizing the Ar9+ ionization process in

space.

5.4 Simulation of the REMPI scheme

We performed some simulation runs to demonstrate the capabilities of the proposed

scheme. Due to it’s complex nature, the REMPI model is very demanding in terms

of computational resources, implying a set of 8 laser pulses to generate the plasma

wakefield and a frequency doubled ionizing pulse. Besides needing a longer nu-

merical box respect to a standard laser-plasma interaction simulation, the frequency

doubled pulse requires the resolution to be also doubled, making a 3D simulation

at least ∼ 10 times slower respect to a non-doubled pulse. Such situation made

unfeasible a start-to-end simulation with the ALaDyn PIC code, so we divided our

study in two phases: first, a proof-of-principle simulation (RUN2) was provided by

ALaDyn, to grasp if the wakefield dynamics and the produced electron bunch were

behaving as expected from our theory, then we extended the results to a start-to-end

simulation (RUN1) making use of the hybrid (fluid bulk plasma with kinetic bunch),

quasi-static, cylindrical code QFluid [67], which describes a laser pulse in the enve-

lope approximation. The considerably higher running speed provided by QFluid,

allowed to produce the final simulations that showed the production of a 255MeV

electron bunch with an energy spread σE/E = 0.65% and a normalized emittance

ϵn = 0.08mm × mrad.

5.4.1 System set up

As we said, the laser driver is composed by a set of 8 equal pulses, each of them with

a0 = 0.64, a FWHM duration τ0 = 30fs and a waist at focus w0 = 45µm. We recall
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some useful relations for a biGaussian laser pulse

a2
0 ≈ 7.3 × 10−19 (λ0 [µm])2 I0

[
W/cm2] , (5.10)

P [W] =
πw2

0
2

I0
[
W/cm2] , (5.11)

E [J] = P [W] τ [s]
√

π

log (16)
, (5.12)

which relate its energy E , power P and intensity I0; from this formulas, we can see

that every driver pulse carries E = 0.89J. The delay between each driver has been set

to be Tdelay ≈ 158fs (the center-center distance is d = 47.5µm) while the unperturbed

uniform density is n0 = 5× 1017cm−3, so it can be seen that the center-center distance

is d = 1.015λp. The final distance has been found according to the plasma wave

lengthening theory Eq.(2.20), applied to the longitudinal field created by the train of

pulse, namely Ez ≈ 0.5 (we recall that the electric field is normalized to Ewb).

The ionizing frequency doubled pulse has a1 = 0.41, τ1 = 38fs and w1 = 3.5µm.

Setting a delay from the last pulse of the train is not trivial, because one must con-

sider the trapping process that involves the ionized electrons. In particular, as it

has been reviewed in Sec.2.4, an electron is trapped in the wakefield if, whenever it

enters the potential well, it does not posses enough energy to escape it. Implying

sufficiently broad pulses and working away from the bubble regime, which is de-

scribed in Eq.(2.23), i.e. a2
0 ≪ k2

pw2
0, with a good approximation we can apply the 1D

nonlinear trapping theory [19], to estimate that an ionized electron (γ0 ≈ 1), must

be extracted where the potential has the value

ϕe ≥
γph − 1

γph
+ ϕmin, (5.13)

where γph =
(

1 + v2
ph/c2

)−1/2
is the Lorentz relativistic factor associated to the

phase wave velocity, ϕmin is the minimum value of the potential experienced by the

electrons, Eq.(2.19), and ϕe is the potential in the extraction point.

We identify two limit cases in the particle trapping process: first, a particle could

be injected in the wakefield with the exact necessary energy to reach the minimum
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FIGURE 5.2: Left: weak (blue line) and strong (red line) trapping
condition on the normalized maximum longitudinal electric field
and the working points we implied in RUN1 and RUN2. Right: scan
of maximum accelerating normalized fields as in the RUN 1 setup as
a function of pulse amplitude and the number of pulses in the train.
The cases of a single pulse and two, four and eight-pulses trains with
three different delivered energies of 2.5J, 5.0J and 7.5J have been
considered. A numerical scan with QFluid of the pulse-to-pulse
delay has been performed to obtain the resonance condition for each
number of pules.

potential2 comoving with the plasma wave. In this case, the electron cannot accel-

erate any further and its maximum speed will be the wakefield propagation speed.

We name this condition “weak trapping”. Substituting the expression for the mini-

mum and maximum potential Eq.(2.19) into Eq.(5.13), we get the same condition in

function of the normalized maximum wakefield Ez

2
vph

c

√(
1 +

E2
z

2

)2

− 1 ≥
γph − 1

γph
. (5.14)

An equivalent “strong trapping” condition can be defined, that is an electron is ex-

tracted so that it reaches the wakefield propagation speed together with the maxi-

mum accelerating field: that particle can be accelerated until it overcomes the zero

electric field, when it begins to decelerate. So, the particle has to experience the

maximum potential field, reaching a minimum one that is ϕmin = 0. Substituting in

Eq.(5.13), we obtain

E2
z

2
+

vph

c

√(
1 +

E2
z

2

)2

− 1 ≥
γph − 1

γph
. (5.15)

2 We point out that since we are dealing with electrons, the considerations about the dynamics must
be reversed, taking into account the negative charge
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5.5 Ionization algorithm in ALaDyn

To implement the numerical ionization dynamics, we followed many works in the

literature [58, 68, 69]. We enabled and used, for this purpose, only a one-level ion-

FIGURE 5.3: ADK ionization probability for various
Arz+ → Ar(z+1)+, where z = 8, 9, 10, in function of the ionizing
electric field. We recall that E [TV/m] ≈ 9.2a1.

ization, which means that only one electron can be extracted from a single atom at

every time step. This simplification entails that the ionization algorithm cannot be

implied whenever the electric field is too high. In most of the simulation we per-

formed the multi-level ionization have never been object of our study, since we have

always assumed a pre-ionized plasma. However, a multi-level ionization method

has been described in [69].

At every time step, the electric field is interpolated on every atom that can be

ionized and then the ionization rate Wi is derived considering the atomic species and

the initial atomic charge (quantum numbers of the most external electron). Since the

governing equation for the number of particles in a given level Ni is

dNi

dt
= −WiNi, (5.16)
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we can evaluate the ionization probability as P = 1 − exp [−Wi∆t]. Then, a random

number p ∈ [0, 1] is extracted and if p < P, the particle is ionized and the new

electron is injected with a zero momentum.

When a simulation is run in the envelope approximation, as we described in

Sec.4.2, some precautions have to be taken. In fact, the typical timestep that charac-

terizes an envelope simulation is bigger than the laser period ∆t > Tlas, so it is im-

portant that a model based on a cycle-averaged ionization rate, WAC from Eq.(5.6), is

used. On the other hand, in PIC simulations the laser period has to be well resolved

so, since in a single timestep the change in electric field is small, Eq.(5.7) represent

the right ionization rate to be used.

Also, when an electron is extracted, it naturally acquires a transverse momen-

tum due to the electromagnetic oscillations. In the envelope model, oscillations are

averaged out, so they must be inserted back manually. It can be computed the r.m.s

of the oscillating momenta of all the electrons extracted near the electric field peak

[70]. It results that

σp ≃

√
a3

e
ac

, (5.17)

where ac is the critical amplitude ac = 0.107 (UI/UH)
3/2 λ1 and ae is the normalized

amplitude in the extraction point. Therefore, in the envelope approximation, once a

new electron is injected into the system, we assign it a Gaussian initial momentum

along the laser polarization direction, where the variance is σ2
p .

In ALaDyn, four algorithms have been tested for the particle ionization:

i) WDC ionization rate, for standard PIC simulations,

ii) WAC ionization rate, for ENV/PIC simulations,

iii) WAC\WDC+BSI ionization rate [58], as in Eq.(5.8),

iv) Wm
AC, where an average on all the possible quantum numbers m, usually as-

sumed m = 0, is proposed by [68].

After some tests, we noticed that in our case, both algorithms iii) and iv) were

not returning significant differences respect to the standard ones, either because the
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working regime is too far from the BSI critical field or because in the Ar8+ gas, we

measured a negligible contribution from the m ̸= 0 quantum numbers in the ioniza-

tion rates.

Regardless the ionization model one chooses to imply, the general algorithm is

structured as in the following, in a schematic form, where the routine that checks if

the electron is ionized, stores all the information about the atom to be ionized and

the rate of ionization Wi.

!This is the F90 ionization algorithm

subroutine electron_ionization(E_field)

call compute_ionization_probability(W_i ,E_field)

!Starting from the Electric field E_field

!interpolated on every ion , the ionization

!probability can be computed as

!P=1-exp(-dt*W_i)

n_ele=0

do i=1,n_ions

call generate_random_number(p)

! Pseudorandom number p in [0,1]

call electron_inject(p,i)

!if p<P, the electron is ionized

!and is allocated.

if(electron_is_ionized)n_ele=n_ele+1

!The initial momentum is zero

for the standard PIC.

!In ENV/PIC , on the polarization axis is

!p(0)=\ sigma_p * u,

!u is a gaussian random number

end do

end subroutine
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After an electron is injected in the system, it appears in the total electron depositing

current on the grid for the self consistent PIC dynamics. However, it’s computational

weight will be generally different from the one of a background electron, because it

takes into account the atomic (dopant) density and initial state, in addition to the

simulation resolution.

5.6 Simulation benchmarks

First, we benchmarked a short ALaDyn ENV/PIC 3D simulation with QFluid’s out-

comes, to check our predictions on the wakefield optimized generation by the means

of the train of pulses. As a matter of fact, it is important to check if the approxima-

tion underlying QFluid’s simulations influence in some way the resulting dynamics.

In particular, the dissipation induced by the fluid equation integration can lead to

an underestimation of the accelerating fields. As it can be seen in Fig.(5.4), the com-

FIGURE 5.4: Comparison between ALaDyn and QFluid generated
wakefield in the train of pulses configuration. Left: on axis
longitudinal wakefield. Right: longitudinal electric field 2D map on
the y=0 plane.

parison shows no differences in the two cases after that the laser propagated 1mm

inside the plasma. Since we are working in a mildly nonlinear regime, a stressing

one for a fluid integration scheme, this test shows a good stability of the algorithm

implemented in QFluid.

Once we established the validity of the wakefield generation, we performed a re-

duced (proof-of-principle) test on the full ionization injection model, to understand

how well the bunch generation and acceleration is modeled by QFluid. Clearly, in



Chapter 5. An injection scheme for high quality laser plasma acceleration 98

FIGURE 5.5: We overlap the results of the RUN2 configuration of the
2D slice ALaDyn and QFluid. The particle longitudinal phase space
(black and blue dots) is plotted at it shows a very good agreement.
between the two codes. Longitudinal on-axis wakefields are also
overlapped (red solid line QFluid, blue solid line ALaDyn). Right:
map of the longitudinal wakefield.

this kind of numerical comparisons, many major and minor effects play important

role in defining the final result, so it is often difficult to identify the origin of eventual

differences that may appear. We present some benchmarks that allow us to validate

the outcomes of the RUN1 start to end simulation. However, since an improve-

ment of the REMPI scheme is currently in progress, we are working on some more

validation tests performed in a 3D regime, comparing both ALaDyn’s ENV/PIC and

ENV/Fluid schemes on the cm length scale.

In Fig.(5.5) a 2D slice ALaDyn simulation is compared with QFluid’s one, hav-

ing enabled the ionization and trapping processes. The configuration (RUN2) has

been properly lightened to allow a fully PIC investigation. In particular, to shorten

the characteristic lengths, the unperturbed density has been increased to n0 = 5 ×

1018cm−3 (λp = 14.76µm), while every pulse of the train has w0 = 25µm, a0 = 0.589

and τ0 = 10fs with a center to center distance d0 = λp. The ionizing pulse is in-

jected at a distance d1 = 1.5λp from the last pulse of the train and it has a1 = 0.41,

w1 = 3.5µm and τ1 = 38fs. QFluid simulation was run with a longitudinal resolu-

tion of 70 points per λp (p.p.l.) and a transverse one of 35 p.p.l.. ALaDyn simulation

has a longitudinal resolution of 40 p.p.l. and a transverse one of 10 p.p.l.. The image

shows the results of the two simulations after 300µm of propagation, overlapping

the corresponding longitudinal electric fields and the particle phase spaces. There

are not significant differences in the generated bunch which, at that time, is still
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undergoing the formation process. Here, the quasi-static approximation is being

checked. In fact, it states that time variations of the fields must be very slow respect

to the particle motion in the comoving reference frame, but during its formation pro-

cess, the accelerated bunch may influence the field on shorter time scales. We notice

that the quasi-static approximation holds also during the charging of the particle

bunch, since no differences are visible both in the particle phase space and the fields

produced by the two codes.

5.7 Outcomes of the REMPI scheme

After the benchmark, a start-to-end simulation (6.5mm inside the plasma) in RUN1

configuration has been performed with QFluid. The results obtained are very promis-

ing for the generation of an ultra high quality electron bunch. In Fig.(5.6) is shown

FIGURE 5.6: snapshot of a QFluid simulation after 100µm laser
propagation in plasma. Left: accelerating field (blue line), laser
pulses (red and purple lines), plasma fluid momenum (green line).
The ionized particles are being injected and their longitudinal
momentum (y axis) is being increased. Right: 2D map of the laser
train of pulses on the early stages and on the end of the simulation.

the combination of the train of pulses and the ionizing pulse, which respectively gen-

erate a resonant wakefield and ionize the particle bunch in the early stages (100µm)

of acceleration. In particular, it can be seen that the injected particles move back-

wards until they reach the maximum accelerating field (strong trapping condition).

We also notice that the small percentage of electrons extracted from the Ar8+ → Ar9+

ionization process due to the train of pulses passage, is not injected because it doesn’t

comply with the trapping condition Eq.(5.13). In fact, all the electrons are extracted
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in exact phase with the plasma bulk motion, whose particle longitudinal momen-

tum, represented by the solid green line, is not suitable to trap the electron. The

electron bunch particles, instead, are ionized (injected in the system with zero mo-

mentum) circa when the plasma bulk possesses the minimum momentum and are

therefore trapped in the subsequent wakefield peak and accelerated.

FIGURE 5.7: Left: accelerating field (blue line) and laser field (red
line) at the end of the simulation. The final accelerated electron
bunch is shown and zoomed in the inset. Right: normalized
emittance ϵn on the polarization axis (red line) and on the transverse
one (blue line). The inset is the final transverse phase space.

In Fig.(5.7), we show the final snapshot of the system, when the laser has trav-

elled 6.5mm. The bunch has been accelerated to 255MeV and, as it can be seen, is

well localized in the phase space. It is also clear that the laser pulses on the rear

of the train felt the most nonlinear interaction among all the pulses, thus they have

been strongly depleted. Also, both the emittance along the polarization axis and the

transverse one are shown and their value is maintained very low throughout the

simulation. After a first phase (200µm) in which they are increased by the bunch

injection process, the beam is fully charged, the r.m.s bunch length is 0.56µm and

the normalized emittance on the polarization and on the transverse axis are respec-

tively ϵn,x = 0.070mm × mrad and ϵn,y = 0.016mm × mrad. During its transport,

the bunch experiences some betatron oscillations, so the final beam normalized emit-

tance and energy spread are ϵn,x = 0.076mm × mrad, ϵn,y = 0.018mm × mrad and

σE/E = 0.65%. In Fig.(5.8), the generated bunch is shown, where its total charge is

3.8pC, well localized in the phase space.

One of the problems one has to deal with during an acceleration process is the

beam loading. A charged bunch, in fact, generates its own electrostatic field, that

counteracts and modifies the electrostatic wakefield designated for the acceleration.
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FIGURE 5.8: Longitudinal phase space showing the final electron
bunch. The red dashed line is the longitudinal charge distribution,
the blue solid line is the unperturbed wakefield and the dashed blue
line is the final wakefield showing the beam loading effect, which
decreases the accelerating field of 1% at most.

The REMPI scheme allows for low bunch charging, so the beam loading effect is

around 1% of the field value and the final accelerated bunch quality is not degraded.

The simulations here presented have been prolonged in a subsequent work [60]

for a 3.7cm run, which, with some minor adjustment to the parameters and thanks

to the introduction of a matched plasma channel for the laser pulse transport, has

shown the production of a 4.3pC, 1.3GeV electron bunch, with an energy spread

σE/E = 0.49% and a normalized emittance ϵn,x = 0.08mm × mrad and ϵn,y =

0.04mm × mrad.

5.8 Conclusions

In this Chapter, we presented the numerical analysis we developed and performed

on the feasible injection and acceleration scheme based on a state-of-the-art 250TW

Ti:Sa laser system. It is in fact necessary, before to address the problem experimen-

tally, to check the theoretical predictions of the model via a set of different simulation

runs. Instruments such as the algorithm we presented in Chap.4, are therefore pow-

erful tools that can boost the research on theoretical and technological topics.
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After an initial work devoted to the implementation of an efficient particle ion-

ization algorithm in the PIC code ALaDyn, we tested our scheme in it’s different as-

pects. We showed an efficient wakefield generation obtained by a properly tuned

train of pulses, and we also tested the atomic ionization to inject the particles in the

so formed wakefield. The decoupling of the two processes allowed to generate an

ultra low emittance electron bunch, which has been trapped in the wakefield and

therefore accelerated up to 1.3GeV in a 3.7cm plasma channel. The final measured

emittance and energy spread were ϵn,x = 0.08mm × mrad, ϵn,y = 0.04mm × mrad

and σE/E = 0.49%.

The dopant atom, Ar, and the laser parameters has been carefully chosen to ful-

fill the highest accelerating force without degrading the bunch quality, and to have

some tuning margins that allowed a controlled bunch charging, to avoid a strong

beam loading. Most importantly, the laser parameters were aligned with the 250TW

laser system, to guarantee the applicability of the scheme with the present time tech-

nology.

We are currently working on an improvement of the REMPI scheme, to produce

a 5GeV ultra-high quality electron bunch in a 25cm acceleration plasma channel.

The development of the numerical tools will address the many effects that have to

be deeply understood. In particular, a start-to-end run is still out of the reach of

the current computational resources, so we expect a multi-stage simulation in which

many different problems will be faced. Then, many techniques that allow to lower

the needed resolution and number of particles are being studied. On long runs, in

fact, the numerical errors a PIC code accumulates can degrade the final results, thus

the request for an higher precision may slow down all the simulation process.
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Conclusions

In the present work we illustrated the promising plasma-based acceleration tech-

nique, focussing in particular on the fundamental numerical methods and on some

present and future applications.

After a review of the general plasma dynamics and its nonlinear and collective

behavior, we specialized the discussion on the laser-plasma interaction, in the case of

an intense laser pulse that travels through a plasma. At the high intensities achiev-

able with the current days laser technology (I ∼ 1019−21W/cm2), the ponderomotive

force of the laser envelope plays a major role in the dynamics, coupling to the plasma

oscillations and therefore generating ultra-high accelerating fields. In fact, a plasma

does not suffer for the breakdown, which is common in the radiofrequency acceler-

ators, so it can sustain electric fields up to three orders of magnitude larger than the

ones previously produced. In this framework, the acceleration mechanism becomes

particularly favorable, so a lot of efforts it’s being put into this research fields, mostly

thanks to the many applications that could benefit from an high quality accelerated

particle bunch. Apart from the high energy physics, some of the use of such a bunch

are the radiation generation in the Free Electron Lasers and the medical application

in the Hadrontherapy. A direct consequence of the ultra high-accelerating gradients

is that a plasma accelerator would reduce to a tabletop item, easy to manage and

much cheaper respect to the conventional ones, bringing a number of advantages

for the mentioned applications.

As we shown, the laser-plasma interaction is very nonlinear and no analytical

theory is available to describe the fully selfconsistent dynamics. Given that, in the

last decades very powerful numerical tools have been developed, to give new in-

sights on the topic and to overcome the limitations provided by a strongly nonlin-

ear dynamics. The most implied numerical approach in the plasma acceleration is

called Particle-In-Cell (PIC), and it consists in reducing the many-body problem of
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the particle-particle interaction to a particle interacting with a surrounding field,

generated by the rest of the plasma, thus strongly reducing the computational re-

sources needed (unavailable also in principle) to address an N-body problem, still

retaining most of the peculiarities that characterize the dynamics. Thanks to this in-

struments, it is now possible to analyze the strongly nonlinear dynamics allowing a

much greater control on the physics of the system, that finally led to the production

of accelerated particle bunch, whose quality is still improving.

A step forward in the numerical methods is now necessary, for the complexity

of the phenomena of interest is becoming more stringent and the computational re-

sources are being pushed to their limit. Since the PIC codes are now robust, the cur-

rent numerical research is concentrating on the construction of new approximated

models that could lighten the simulation load, only retaining the necessary effects.

An example of this methods is the envelope approximation, which we implemented

in the ALaDyn code in the novel framework of a fully explicit integration. If all the

relevant length scales are much greater than the laser wavelength, it is clear that a

standard PIC code becomes very inefficient, since it is constrained to solve both the

long and the short scales. Instead, an averaged set of equations have been proposed,

allowing to eliminate the direct contribution of the laser wavelength, which is now

one of the equation parameters rather than a character in the dynamics evolution.

To further speed up the computation, we also implemented a solver for the plasma

equations expressed in the fluid approximation, therefore neglecting the kinetic ef-

fects. As it has been explained, the set of fluid equations drastically decrease the

degrees of freedom of the system, which also means a strong reduction of the simu-

lation time. On the other hand, the smoothing introduced is not adequate to describe

certain regimes at ultra-high intensities, that so become very challenging to be dealt

with and are still an open research target.

In the last part of the work, we presented a novel acceleration scheme aimed to

produce high energy accelerated particle bunches maintaining a low emittance and

energy spread, undeniable requirement for the production of coherent radiation in a

Free Electron Laser. The REsonant Multi Pulse Ionization injection scheme (REMPI),

can be a feasible solution to overcome the limitations of the bunches produced in the

bubble regime, which usually present a poor quality. Implying two different laser
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pulses, one for the wakefield generation and the other one for the particles injec-

tion, the proper synchronization between these two allows the particle bunch to be

trapped in the most efficient way, strongly reducing the emittance and energy spread

growth. Such a complex model requires a lot of computational effort to be studied,

therefore it has been conceived making use of the hybrid, cylindrical, quasi-static

code QFluid, which predicted an outstanding final bunch quality, with simulations

that have been run on a personal computer. To check the consistency of the approx-

imations adopted by QFluid, an intense comparison with ALaDyn is being carried

on and is showing an excellent agreement, which is an important step towards the

experimental realization of the REMPI scheme.

A lot of efforts are still necessary to allow a full comprehension of the laser-

plasma interaction for particle acceleration both from the theoretical and from the

numerical point of view. In particular, new effects are to be considered in the system

modelling (e.g. the radiation reaction and the slow ion motion) and many known

problems are to be addressed to optimize the computational resources needed in the

evolution of the dynamics. Numerical Cherenkov radiation, numerical heating and

efficient solvers are only some of the many topics that are currently being studied

in order to increase the quality and the predictivity of the numerical results. This

would certainly improve our knowledge of the laser-plasma interaction in regimes

relevant to the acceleration processes and lead to the construction of a cheap, stable

and small particle accelerator.
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Appendix A

Derivation of the fluid equations

In this appendix, we present the extended calculation in the derivation of the fluid

theory, starting from Vlasov equation Eq.(1.22). Fluid theory is obtained after the

construction of a hierarchy of equations that, in its full series, it’s totally equivalent

to the kinetic theory.

For the sake of simplicity, we recall the definition of the first three moments of

the distribution function that we express in function of the velocity v = p/mγ

I0(x, t) =
∫

f (x, p, t)dp, (A.1a)

I1(x, t) =
∫ p

m
f (x, p, t)dp, (A.1b)

I2(x, t) =
1

m2

∫
(p ⊗ p) f (x, p, t)dp. (A.1c)

Let us compute the zeroth moment of the Vlasov equation L̂ [ f ] = 0, namely

M0
[
L̂
]
=
∫

L̂ [ f ] dp, (A.2)

which is the marginal distribution of particles, evolved according to Eq.(1.22), in the

configuration space. Eq.(A.2) is composed by three terms, that we evaluate sepa-

rately as

∫
∂ f (x, p, t)

∂t
dp+

∫ p
m

· ∇x f (x, p, t)dp+

+
∫

q
[
E(x, t) +

p
mc

× B(x, t)
]
· ∇p f (x, p, t)dp = 0. (A.3)
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The first one is simply

∫
∂ f (x, p, t)

∂t
dp =

∂

∂t

∫
f (x, p, t)dp =

∂

∂t
I0(x, t), (A.4)

the derivative in time of the zeroth moment of the distribution function. Secondly,

there is

1
m

∫
p · ∇x f (x, p, t)dp = ∇x · I1(x, t), (A.5)

while, making use of the divergence theorem, it can be seen that the third term is

identically zero because of the boundary conditions on f (x, p, t) when |p| → ∞. The

equation so obtained is

∂

∂t
I0(x, t) +∇x · I1(x, t) = 0. (A.6)

The calculation of the second moment is carried on in a way similar to the previ-

ous one. The first term in the expansion is by definition

∫ p
m

∂ f (x, p, t)
∂t

dp =
∂

∂t

∫ p
m

f (x, p, t)dp =
∂

∂t
I1(x, t). (A.7)

Let us express the second term with a tensorial notation

1
m2

∫
p (p · ∇x f (x, p, t)) dp

⏐⏐⏐⏐
ij
=

1
m2

∫
pi pj

∂ f (x, p, t)
∂xj

dp, (A.8)

so we can rewrite the prevoius expression as

1
m2

∫
pi pj

∂ f (x, p, t)
∂xj

dp =
1

m2

∫
∇x (p ⊗ p) f (x, p, t)dp

⏐⏐⏐⏐
ij
= ∇x I2(x, t)|ij . (A.9)

Before to evaluate the last term, for the sake of compactness, we define

F = q
[
E(x, v, t) +

v
c
× B(x, v, t)

]
, (A.10)
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the total Lorentz force, and we derive a useful identity starting from

1
m

∫
∂

∂pj

(
piFj f (x, p, t)

)
dp = 0, (A.11)

which is true because of the null flux of f (x, p, t) at infinity. Performing the deriva-

tive of the product we have

1
m

∫
pi

∂Fj

∂pj
f (x, p, t)dp +

1
m

∫
piFj

∂ f (x, p, t)
∂pj

dp +
1
m

∫
δijFj f (x, p, t)dp = 0, (A.12)

but, since the Lorentz force is divergence-free, we can write the operator identity

piFj
∂ f (x, p, t)

∂pj
= −δijFj f (x, p, t)dv. (A.13)

So, the last term in the expansion of M1
[
L̂
]

is

1
m

∫
p
(
F · ∇p f (x, p, t)

)
dp = − 1

m

∫
F f (x, p t)dp =

=
1
m

∫
F f (x, v t)dv∫
f (x, v t)dv

∫
f (x, v t)dv = I0(x, t)

⟨F⟩
m

(A.14)

and we can express our final equation as

∂

∂t
I1(x, t) +∇x I2(x, t) = I0(x, t)

⟨F⟩
m

. (A.15)

This equation can be easily generalized in the presence of an external force Fext as

∂

∂t
I1(x, t) +∇x I2(x, t) = I0(x, t)

⟨F⟩
m

+ I0(x, t)
⟨Fext⟩

m
. (A.16)

As it can be seen, system formed by Eqs.(A.6) and (A.15)

∂

∂t
I0(x, t) +∇x · I1(x, t) = 0,

∂

∂t
I1(x, t) +∇x I2(x, t) = I0(x, t)

⟨F⟩
m

,
(A.17)

is a hierarchy of equations because to evolve the n − th moment In(x, t), at least the

(n + 1)− th one is needed, and the infinite series return the exact kinetic theory we
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started from. To operate a simplification, we truncate the hierarchy to the first mo-

ment equation, imposing some closure relation on I2(x, t), depending on the problem

we are dealing with.
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Appendix B

Boris Pusher

In this Appendix, we will present the Boris pusher, i.e. the algorithm to integrate

the macroparticles Hamilton equations Eqs.(1.12), which we rewrite here for the

reader’s convenience in the normalized units presented in Eqs.(2.4)

ẋi(t) =
cui(t)

γi
,

u̇i(t) = ωp

[
Ẽ (xi(t), t) +

ui(t)
γi

× B̃ (xi(t), t)
]

,
(B.1)

where the electric and magnetic field are both normalized to the cold wavebreaking

limit, Ẽ = E/Ewb and B̃ = B/Ewb. For the sake of brevity, we now drop the tilde

above the normalized fields.

The unitary leap-frog timestep is given by the temporally staggered relation

xn+1 − xn

∆t
=

cun+1/2

γn+1/2 , (B.2a)

un+1/2 − un−1/2

∆t
= ωp

[
En +

un

γn × Bn
]

. (B.2b)

Eq.(B.2b), prevents a direct implementation due to the implicit dependence of the

momentum from itself. Moreover, the leap-frog requires that the Lorentz force is

expressed at the integer timestep, while we only know it at every integer and a half

ones. Since ∆t is small, we can interpolate the value un by

un =
un+1/2 + un−1/2

2
, (B.3)
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that we substitute in Eq.(B.2b), obtaining

un+1/2 − un−1/2

∆t
= ωp

[
En +

un+1/2 + un−1/2

2γn × Bn
]

. (B.4)

It has been seen that the inversion of Eq.(B.4), results in an unstable particle orbit

around the magnetic field, which can either collapse on the field lines or explode.

Boris [25, 29], solved this problem via a multi-step approach, that preserves the

particle energy, is fully explicit and converges with ∆t2, like a standard leap-frog.

The particle motion is split in three parts: half step under the action of the electric

field only, the rotation due to the magnetic field and the remaining half electric field

step. To do so, a new couple of variables is introduced

un−1/2 = u− −
ωp∆t

2
En, (B.5)

un+1/2 = u+ +
ωp∆t

2
En, (B.6)

which put in Eq.(B.4) give

u+ − u−

∆t
= ωp

u+ + u−

2γn × Bn. (B.7)

The rotation in the magnetic field is once again split in two parts, by means of some

kind of predictive-corrective method. In fact, via some geometric consideration, it

can be computed

t = tan
(

θ

2

)
B̂ =

ωp

2γn Bn, (B.8)

where θ is the angle travelled a time ∆t, γn can be approximated as γn =
√

1 + (u−)2

and the following system of equation describes the total rotation:

u′ = u− + u− × t, (B.9a)

u+ = u− + u′ × s, (B.9b)

s =
2t

1 + t2 . (B.9c)
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The novelty introduced by this method is that by construction |u−| = |u+|, so the

orbit is perfectly stable.
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