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Preface 

Surfactants are among the chemical compounds more exploited in industry. They are 

used in the more different fields, ranging from the production of inks, paints and 

varnishes to pharmaceutics, from processes of extraction/recovery of oil to 

detergency. Indeed, surfactants are the basic ingredients of all detergent 

formulations. Therefore, it should not surprise that research aiming at understand 

surfactant behavior as well as developing new surfactants has always been very rich 

and lively, in spite of the fact that surfactant catalogs already list hundreds if not 

thousands of molecules of all types: anionic, cationic, and nonionic, including 

zwitterionic.  

The world production of surfactants is probably close to million tons per year and is 

worth is very high. Any new surfactant with novel properties or improved 

performances or capable of improving the economics of a given process would 

translate into savings of millions of dollars. In addition, new surfactants with lower 

toxicity or environmental friendly features have a promising future, since the 

widespread sensibility to environmental issues is resulting in new regulations 

requiring the surfactants used in formulations to have lower toxicity and less impact 

on environment, and to be more easily produced by processes with a low 

environmental impact and degraded by aerobic and anaerobic processes.  
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In the last decade, highly concentrated liquid detergent formulations have gained a 

prominent role in the market of detergents [1,2], as highlighted by the increasing 

number of patents [3-5]. The low water content reduces the ecological footprint of 

the product, as less plastic packaging is used, and significantly decreases the 

transport costs [6]. However, the formulations based on concentrated surfactant 

mixtures have shown serious issues related to the high viscosity that hampers their 

processability during production and kinetically limits their water dissolution during 

use [7]. This drives the researchers towards the molecular design of surfactants able 

to form highly concentrated liquid mixtures with relatively low viscosity. 

A possible strategy to tune the surfactant aggregation properties is the introduction 

of alkyl chain branching in the molecular architecture. Tail branching affects the 

surfactant-water as well as the surfactant-surfactant interactions [8], thus leading to 

the formation of self-aggregates different from those formed by the linear analogues 

[9-13]. The features of branched surfactants depend on both the length of the 

branched chain and its position along the main hydrocarbon chain [9,10,14-17]. In 

most cases, it is found that branches disfavour surfactant self-aggregation by 

disrupting the packing of hydrophobic tails [18-21] and reducing the attractive tail-

tail interactions [16,22,23]. In concentrated surfactant mixtures, the stability of 

hydrated solid crystals is reduced, while lyotropic liquid crystalline (LLC) phases 

form, low-viscosity lamellar structures predominating over high-viscosity hexagonal 

arrangements [10,14-16]. From this perspective, branched surfactants appear as 
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suitable components of highly concentrated formulations. However, some opposite 

results have been also reported, indicating the stabilization of more compact 

aggregates with increased size [8,24]. These discrepancies suggest that a fine 

interplay among possible inter- and intramolecular interactions has to be considered 

in these mixtures. As an example, the head group nature determines the effect of tail 

branching on packing and ordering of the molecules at the aggregate interfaces [25]. 

Further research is needed to fully elucidate these points, in order to build a reliable 

scientific basis for the rational molecular design of new surfactants. 

Currently, in home fabric and personal care formulations, because of the ease and 

low cost of synthesis and their low environmental impact, amine oxide and alkyl 

ethoxysulfate surfactants have become the most used. Specifically, amine oxide 

surfactants control the foaming and cleaning properties of the final product, while 

ethoxysulfate ones control the emulsifiability and the wettability properties. Both 

classes of surfactants have been, and are still, widely studied.  

Among N-oxide surfactants, N,N-dimethylalkylamine oxides (CH3(CH2)n-

1N
+(CH3)2O

-) are the most common. In aqueous mixtures, these surfactants present 

an equilibrium between the protonated and the non-protonated form. 

CH3(CH2)n-1N
+(CH3)2O

- + H+ = CH3(CH2)n-1N
+(CH3)2OH. 

At pH lower than the surfactant pKa, they are protonated and behave as cationic 

surfactants, while in mixtures with a pH value higher than their pKa, they are in the 

non-protonated form and behave as amphoteric surfactants. 
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Unfortunately, the presence of extended stability regions for highly viscous liquid 

lyotropic crystalline phases, which form already at low surfactant content (0.32 

w/w), in the case of amino oxide surfactants with either a long alkyl chain or a short 

chain, tend to limit the functionality of their detergent formulations, including those 

of N,N-dimethyldodecyl-1-amine oxide (C12DAO-linear), at the moment the most 

investigated and used among amine oxide surfactants, because of its very low cost 

production. 

For this reason, the interest of formulation scientists, in both academic and industrial 

contexts, is moving towards the class of branched amine oxide surfactants, which 

have been proposed, for their superior properties and special performances, in 

formulating more effective products for wetting, solubilizing, foam-boosting, drug 

delivery and other industrial uses. Indeed, branched amine oxide surfactants present 

several advantages with respect to their linear counterpart: 1) they have a higher 

critical micelle concentration (cmc); 2) they are more effective at increasing the 

surface tension of water and interfacial area at the air-water interface; 3) their 

aqueous solutions may present new interesting rheological features, at the same 

concentration of linear analogues; 4) their structure may result in formation of 

unexpected micellar shapes.  

The present Ph.D. project, born by a collaboration between the University of Naples 

“Federico II” and the Procter and Gamble (P&G) company, falls in this context and 

aims at designing a new branched amine oxide surfactant able to overcome 
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limitations of the currently used C12DAO-linear, by forming, because of steric 

hindrance, isotropic micellar aggregates in a wide range of conditions, and especially 

of surfactant concentration, at the expenses of lyotropic liquid crystalline 

arrangements. The brand-new branched amine oxide surfactant reported in Figure 1, 

N,N-dimethyl-2-propylheptan-1-amine oxide, bearing a tail branched at position 2 

and hereafter named C10DAO-branched, has been synthesized and thoroughly 

characterized.  

 

Figure 1: N,N-dimethyl-2-propylheptan-1-amine oxide (C10DAO-branched) 

 

An investigation on the structural and dynamical properties of its highly concentrated 

aqueous mixtures is presented. Moreover its aggregation and physico-chemical 

properties have been compared with those of its linear isomer N,N-dimethyldecyl-1-

amine oxide named (C10DAO-linear). Polarized Optical Microscopy (POM), Small 

Angle Neutron and X-ray Scattering (SANS and SAXS, respectively) experiments 

are used to investigate the structure of the supramolecular aggregates. The results are 

confirmed by Humidity Scan Quartz Crystal Microbalance Dissipation (HS QCM-

D) measurements, which have been recently proposed as a reliable approach for a 
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rapid scrutiny of surfactant phase behavior [26]. Rheology is used to investigate the 

viscosity of the mixtures. Analysis of the results offers the opportunity to highlight 

differences and similarities between supramolecular organization of the branched 

and linear amine oxide isomers, opening new perspectives for their exploitation in 

formulative chemistry. 

Upon synthesis and characterization of this molecule, we focus on formulation and 

characterization of innovative surfactant mixtures, based on co-formulation of the 

new branched amino oxide surfactant and a very commonly employed anionic alkyl 

ethoxy sulfate surfactant, sodium lauryl ether sulfate or SLES, characterized by 

higher active concentration, still maintaining the feature to be ship-able, flow-able 

and stable. 

Thus, in the framework of the fast-growing field of formulation science and 

technology, this study represents a precious example, in which a detailed physical-

chemical investigation gives a reliable basis to link the functional behavior of a 

surfactant-based formulation to its microstructure and dynamics. 
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1) Introduction  

The largest market for surfactant use is that of home, fabric and personal care 

cleaning, such as household and industrial laundry detergents, dishwashing products, 

cleaners for hard surfaces, hand and body soaps, shampoos, etc. Because of their 

importance, these products have been and continue to be the focus of research and 

development aiming at achieving improved performances, reduced production costs 

and lower environmental impact in production, consumption and disposal phases. 

Particularly, in the last decade, both economic and environmental reasons have 

driven the producer and consumer preference for concentrated liquid detergent 

formulations [27,28], as well highlighted by the increasing number of patents 

concerning these formulations [29-31]. Indeed, a low water content reduces the 

ecological footprint of the product, as less plastic packaging is needed, and 

economically it is convenient because of the reduced transport costs [32]. However, 

formulations based on concentrated surfactant mixtures have shown serious issues 

related to their high viscosity, which hampers their processability during the 

production phase and kinetically limits their water dissolution when used [8]. These 

drawbacks have wakened a research line devoted to the design of new surfactants 

and formulations able to form highly concentrated liquid mixtures with relatively 

low viscosity.  
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1.1) Anionic Surfactant 

Surfactants are molecules consisting of a water soluble polar head, which can be 

positively (cationic surfactants) or negatively (anionic surfactants) charged or even 

uncharged (nonionic surfactants), and a hydrophobic hydrocarbon tails [33] and are 

designed to have mainly cleaning or solubilizing properties [34].  

Among surfactants, anionic ones represent a heterogeneous group of chemicals that 

are currently used in a wide set of commercial products. In the last 30 years, anionic 

surfactants have been extensively used as detergents for hard surfaces, particularly 

for domestic uses [35], household cleaning and personal care products, such as 

laundry and liquid dishwashing detergents, shampoos, hair conditioners and liquid 

soap. They are also successfully employed in pharmaceutical, agricultural, pesticide 

formulations, oil recovery, etc. It has been estimated that anionic surfactants are 

about 60% of worldwide surfactant production [36]. 

Anionic surfactants are constituted by a predominantly linear aliphatic hydrocarbon 

chain, whose length ranges between 8 and 18 carbon atoms, and the polar negative 

head neutralized by a counter ion, such as Na+, K+, NH4
+, or by an alkanolamine 

cation [37, 38].  

The variety of anionic surfactant available arises primarily from the many types of 

hydrophobic groups that can be modified by the addition of the proper anionic 

species. With respect to the polar head, the main subgroups are alkyl carboxylates or 

soaps, sulfates, sulfonates and, to a lesser degree, phosphates. Alkyl ethoxy sulfates 
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(AES) represent the second class of anionic surfactants in terms of application fields 

[39-42]. They are composed of several homologues, in which the composition and 

length of both the hydrocarbon and the ethoxy tails can differ. 

One of the most important parameter that determines the behavior of surfactants is 

the Hydrophilic-Lipophilic Balance (HLB). The HLB is an empirical expression of 

the equilibrium of dimensions and resistance of the hydrophobic part and the 

hydrophilic part of an emulsifier and is useful to identify the solubility of the 

surfactant, i.e. if it will create an oil emulsion in water (O/W) or a water emulsion in 

oil (W/O). The HLB value can be calculated with the following formula: 

20*HLB =
M

M h
                                                                                                                           (1) 

where Mh is the molecular mass of the hydrophilic portion and M is the molecular 

mass of the whole molecule.  

A surfactant that is characterized by lipophilic character will have a low value of 

HLB whereas a hydrophilic one a high HLB value. The following table shows the 

correlation between the HLB factor and the emulsifier properties (Table 1)[43].  
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HLB Emulsifying properties 

4-6 Emulsifier W/O 

7-9 Wetting agent 

8-18 Emulsifier O/W 

13-15 Detergent 

 

Table 1. Correlation of HLB factor and emulsifying properties. 

Molecules that fall at the extreme of the range are the most effective detergent.  

1.1.1) Sodium lauryl ethoxy sulphate 

One of the most widespread alkyl ethoxy sulfates, is sodium lauryl ethoxy sulphate, 

SLES, (Figure 2) which consists of a linear carbon chain (C12 to C14) and a number 

n of oxyethylene units varying between 2 and 3[44]. SLES has an HLB~15, 

indicating it is a strong detergent, and SLES is indeed one of the most used and 

ductile surfactants. It is present in the formulation of many commercial detergents 

and personal care products [45].  

 

Figure 2. Sodium lauryl ethoxy sulphate structure. 
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SLES can be more easily biodegraded compared to other surfactants [46], both in 

aerobic [47, 48] and anaerobic conditions[49]. Aerobic degradation of linear AES, 

and SLES in particular, may occur by ether or ester cleavage. The former mechanism 

[50-51], proceeds with the formation of an intermediate that it is further degraded 

with release of the sulfate group (Scheme 1). According to the ester cleavage 

mechanism, the sulfate group is directly split off with formation of the intermediate, 

followed by degradation of the carbon tail [52]. Thus, the presence of sulfate can be 

used as an indication of SLES degradation in both cases. 

 

 

Scheme 1. Scheme of possible SLES cleavage mechanisms for complete degradation to CO2 and 

biomass formation. The general molecular structure of SLES is shown, where n is the mean of 
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ethoxy units (2<n<3 in commercial products), and R is the alkyl group (the linear alkyl chain of 

AES surfactants can have 12 to 18 carbons) [53]. 

1.2) Amphoteric surfactants 

The family of surfactants commonly referred to as “amphotheres” are surface-active 

materials that contain, or have the potential to form, both a positive and a negative 

functional group under specified conditions [54, 55]. Their definition as a separate 

class of surfactants has been somewhat controversial historically, since they may be 

electrically neutral and their general properties under many conditions make them 

functionally similar to some nonionic surfactants [56, 57].  

Although amphoteres represent only a small portion of the total worldwide surfactant 

production, their market position is increasing significantly, because of the unique 

properties that such molecules can impart to a formulation [58, 59]; for example, 

they often show considerable synergism when employed with other classes of 

surfactants [60-63]. Coformulation of amphoteric and anionic surfactants has 

supplanted cationic surfactants in several fields, such as home and personal care 

detergents to increase the viscosity of washing products [64]. Moreover, amphoteric 

surfactants are commonly used for home-fabric and personal care formulations [65, 

66], and because of their amphoteric nature, that makes their behavior pH-dependent, 

have been proved especially useful in personal care formulation, such as shampoos 

[67, 68].  
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Amphoteric surfactant systems show a pH-dependent behavior related to the pKa 

values of their substituent groups [69-71]: at pH lower than the pKa, they behave as 

cationic surfactants, while at pH higher than the pKa the net charge is zero and they 

behave as pure non-ionic surfactants [72-74]. Thus properties of amphoteric 

surfactants strongly depend on the pH and pH sensitivity varies according to the 

specific structure of the molecule [75-77]. In particular, the CMC, whose typical 

values are 10−5–10−1 M for amphoteric surfactants at room temperature, 

significantly change with the pH [78-82], as well as the aggregate size and 

morphology, a consequence of the change of the ionization degree induced by pH 

variation [83-90]. 

Although a rather large group of organic functionalities with the potential for 

producing amphoteric surfactants exists, only four classes of materials are most often 

encountered: i) imidazoline derivatives, ii) betaines and sulfobetaines, iii) amino acid 

derivatives, and iv) lecithin and related phosphatides [91-93]. Beyond organic 

amphoteres, also charge-separated compounds, such as amine-oxides and sulfoxides, 

could be easily included among amphoteric surfactants [94, 95]. Particularly, in the 

last decades, amine oxide-based surfactants have been increasingly exploited in a 

variety of applications, e.g., as cleaning, emulsifying, antistatic and/or antibacterial 

agents [96-99].  
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1.2.1) Linear amine oxide surfactants.  

Amine-oxide surfactants are characterized by a polar head with a nitrogen-oxygen 

group where the net charge is zero, but the strong dipolar moment existing between 

the two atoms almost leads to a positive charge on the nitrogen and a negative one 

on the oxygen atom. At low pH, the oxygen atom protonates and the surfactant 

behaves as a cationic one [100-102].  

In recent years, amine-oxide surfactants have found increasing uses in different 

fields, thanks to their low toxicity and ready biodegradability under both aerobic and 

anaerobic conditions [103-106]. As a general feature, amine-oxide surfactants are 

excellent foam-boosters and foam-stabilizer in blends including other anionic or 

amphoteric surfactants and are extensively used in highly concentrated hand 

washing-up liquids, detergents and antistatic preparations [98, 99]. However, it is 

well known that surfactant properties strongly depend on the molecular structure, 

and even small modifications of the polar head or of the alkyl chain may result in 

completely different aggregation properties, in terms of either critical concentrations 

or architecture of supramolecular assemblies. These changes in turn affect the 

physical-chemical, rheological and functional properties of the surfactant mixtures, 

finally reflecting in their potential applications. So, field of application of amino-

oxide surfactants depends also on their molecular structure and in particular on the 

length of the alkyl chain and on the substituents on the nitrogen atom of the head 

[107, 108]. Various linear alkyl substituents of nitrogen have been tested and the 
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frequency by which some substituents are employed depends on the application field. 

The most effective and versatile combination found in detergency field is two methyl 

groups plus one long alkyl chain [109, 110].  

1.2.2) Synthesis of Amine Oxide Surfactants 

The most frequent synthetic approach for production of amino oxides is based on the 

oxidation of a tertiary amine [111-113] and well apply to production of amino oxide 

surfactants too. Hydrogen peroxide is generally used as oxidant and ammonium 

peroxide forms as the reaction intermediate, in a reversible step, followed by 

formation of the desired amino-oxide by splitting off of water [114]. The proposed 

reaction mechanism is reported below: 

1 3

2

.

3 2 2 3 2 2 3 2( )*
k k

k
R N H O R N H O R NO H O    

The rate of formation of the amine-oxide surfactant can be derived by the “steady- 

state approximation”: 

.
3 2 2

.

3 3 2 2( )
[ ]*

R N H O
k R N H O   (1) 

then 

.
3 2 2

. . .

1 3 2 2 2 3 2 2 3 3 2 2( )*
[ ] [ ]* [ ]*

R N H O
k R N H O k N kR H O R N H O                        (2) 

and assuming .
3 2 2( )*

0
R N H O

                                                                                               (3) 

we obtain combining equations (1), (2), and (3) 
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3

1 3 3 2 2
( )

2 3

[ ][ ]
R N

k k R N H O

k k
 


 

Or 

3( ) 3 2 2[ ][ ]R N k R N H O                                                                                                                                           (4) 

Where k is the overall rate constant  

1 3

2 3( )

k k
k

k k



 

From equation (4) it clearly emerges that the overall order of reaction for amine oxide 

formation is 2, in complete agreement with experimental data [115]. 

For what concerns the degree of conversion of tertiary amines to the corresponding 

amine-oxide, it has been observed that it depends on the purity of the starting amine. 

With freshly redistilled tertiary amine, and with 10% molar excess hydrogen 

peroxide, the yield reaches 99% [115].  

Several successful examples of synthesis of amine oxide surfactants through 

oxidation of the corresponding tertiary ammine are reported in the literature, slightly 

differing for experimental conditions. For example 2-Alkoxy-N,N-

dimethylethylamine N-Oxides [116] is synthesized at room temperature, while  

aromatic amine oxides in mild conditions at 65° C [117].  
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An alternative interesting method for synthesis of linear amine oxide was developed 

by Rathman and Kust. They investigated the synthesis of N,N-dimethyldodecyl-1-

amine oxide in aqueous solutions by micellar autocatalysis [118]. The lipophilic 

reactant, N,N-dimethyldodecyl-1-amine was initially solubilized in micellar 

solutions of the amine oxide surfactant, resulting in substantially higher reaction 

rates with a conversions of 90-100% within 2h at 70° C.  

This method is important for two main reasons: i) micellar auto catalysis provides a 

method for synthesizing surfactants without employing volatile organic solvents in 

the reaction medium, with potential economic and environmental benefits; ii) deep 

knowledge of micellar auto catalytic reactions may refine and extend the 

understanding of other types of reactions in aqueous surfactant solutions.  

1.2.3) Physical-chemical and aggregation properties of amine oxide surfactants 

Many authors have reported studies on the physical-chemistry properties of amine 

oxide surfactants, such as critical micelle concentration, aggregate size, morphology 

and supramolecular organization, [118] and have pointed out how these properties 

are affected by both physical-chemical (pH, temperature, ionic strength) and 

molecular (length of the alkyl chain, substituents on the polar head) parameters.  

The effect pH has on the amino oxide surfactant aggregation properties is one of the 

most studied. In aqueous mixtures, an equilibrium between the protonated and the 

non-protonated form exists; at pH lower than the surfactant pKa, the oxygen atom 

protonates and amine oxide surfactants behave as a cationic surfactant; at pH higher 
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than the pKa, they are non-protonated and behave as nonionic, more precisely, 

zwitterionic, surfactants [54, 101, 102, 119]. When the amine oxide surfactant 

become positively charged (pH<pKa), repulsive electrostatic interactions between 

interfacial head groups become significant with a resulting increase of the CMC. On 

the contrary, when the surfactant is a pure zwitterion (pH>pKa), repulsive 

interactions between polar heads, only due to dipole moments, are lower and the 

interaction between the hydrophobic tails favors the micellization process [120]. 

Thus, the critical micelle concentration is always higher in the case of the protonated 

form than in the case of the zwitterionic form, independently of molecular features, 

such as the length of the alkyl chain. This behavior is due to the positively charged 

hydrophilic head that on the one hand favors the monomer solubilization in water 

while on the other disfavors close packing of molecules in micellar aggregates 

because of electrostatic repulsion [121, 122]. 

Similar considerations stand for micelle size. A net charge on an ionic micelle 

induces formation of small aggregates, so micelle size at pH<pKa, when the 

surfactant is cationic, is definitely smaller than that at pH>pKa. [123]. Moreover, 

formation of hydrogen bonds involving the oxygen of the head group may favor self-

aggregation in micelles with a wide set of different morphologies [124].  

Solution pH, and consequently protonation of surfactant heads, do not affect only 

formation and features of isotropic micellar phases, but also those of liquid lyotropic 

crystalline (LLC) phases, in dependence on molecular features of the surfactant. For 



24 
 

example, when protonated these surfactants tend to form concentrated isotropic 

micellar phases more effectively than in zwitterionic form. This is due mainly to the 

strong repulsive electrostatic interactions between their hydrophilic heads of 

surfactants and secondly to their interaction with the water in the hydration process. 

As in the case of general aggregation processes, even in the case of LLC formation, 

the repulsive interaction between heads group disfavors efficient packing and 

supramolecular organization, thus phase diagrams of cationic surfactants, and 

similarly phase diagram of amphoteric surfactants in protonated form, are composed 

of large isotropic micellar stability regions. On the contrary, formation of 

supramolecular structures is more favored for amine oxide when they are in 

zwitterionic form.  

Since the electrostatic repulsion between charged head groups is a main limiting 

factor in both micelle formation and supramolecular aggregation, an increase of ionic 

strength has a shielding effect that favors aggregation, both in the non-ionic and 

cationic form. 

Another important physical-chemical parameter, capable of altering the interactions 

between the molecules and, consequently, their aggregation and supramolecular 

organization is the temperature. Especially as regards surfactants the temperature 

effects are well-highlighted by built-up and analysis of phase diagrams. Depending 

on their structural features and surfactant-surfactant interactions, several organized 

supramolecular structures may be thermodynamically stable in a certain temperature 
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range and form a mesophase. The mesophases obtained by heating a crystalline solid, 

or cooling an isotropic liquid, are called thermotropic, as the phase transition is 

induced by temperature. What happens is that by increasing the temperature, the 

normal crystal order changes, the thermal motion of the molecules within the lattice 

increases until vibrations become so intense they destroy the previous arrangement, 

thus giving rise to a completely disordered phase. The temperature at which this 

occurs is called melting temperature, however in thermotropic liquid crystals, the 

melting process occurs through one or more intermediate phases, thus giving rise to 

further phase transitions [125]. This totally general argument also apply to amino 

oxide surfactants, for example the N,N-dimethyldodecil-1-amine oxide (C12DAO-

linear or DDAO) phase diagram, built by means of sorption calorimetric and DSC 

by Kocherbitov et al.[126], is reported in figure 3well highlights stability regions of 

the different mesophases and transition temperatures.  
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Figure 3. N,N-dimethyldodecyl-1-amine oxide water phase diagram 

Aggregation properties of amine oxide surfactants depend strongly on their 

molecular structure: even small modifications of the polar head or of the alkyl chain 

length may result in completely different critical micelle concentrations or 

architecture of supramolecular assemblies. In particular, longer aliphatic tails result 

in higher tendency toward micelle formation. In other words, the longer the chain 

the lower the CMC (figure 4) [127].  
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Figure 4. CMC versus alkyl chain length of N,N-dimethylalkylamine oxides.  

The chain length also affects the molecular arrangement within the aggregates and 

consequently their morphology. For example, amine oxide surfactants with short 

chains (C8-C10) [128] form spherical micelles, whereas in the case of those with 

longer tails (C12-C16) either rod-like or ellipsoidal morphologies are preferred over 

spherical ones [108, 129]. 

The presence of insaturations along the alkyl chain also affects the morphologies of 

supramolecular aggregates formed by amino oxide surfactants. For example, in the 

case of alkyldimethylamine oxides with saturated hydrocarbon chains (CnDMAO, 

chain length: n=4, 16, and 18), the phase sequence of lyotropic liquid crystals is 

hardly affected by the protonation. Only in the case of the half-ionized C14DMAO, 
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i.e. when a mixture of non-ionic and protonated amino oxide surfactant is present, it 

is observed an elongation of the cylinders of the hexagonal phase. On the other hand, 

the phase diagram of half-ionized oleyl-N,N-dimethylamine oxide (OlDMAO) [(Z)-

N,N-dimethyloctadec-9-en-1-amine oxide] looks quite similar to those of double-

chained ionic surfactants, with a marked preference for bilayer structures over other 

LLC, which has been was interpreted in terms of dimers stabilized by hydrogen 

bonds between the nonionic and the protonated surfactants. It can be inferred that the 

predominant bilayer formation by the half-ionized OlDMAO is due to the combined 

effect of the hydrogen-bonded dimer formation and the cis-double-bond 

configuration of the alkyl chain [130, 131].  

Various linear alkyl substituents of nitrogen have been tested and used to tune the 

functional properties of amino oxide surfactants, because of their effects on physical-

chemical properties of these systems [109, 119, 132]. The introduction of hydrophilic 

head substituent alters the repulsion interactions between the polar heads and 

consequently the interactions between the hydrophobic tails.  

Finally, a crucial parameter underlying all surfactant aggregation properties is 

hydration, or more generally, interaction of these amphiphilic molecules with the 

solvent. When water is added to a system, two general processes may occur: i) water 

uptake by a single phase where the phase gradually swells as a result of the 

incorporation of water molecules and ii) water uptake involving a phase change 

where the addition of water molecules causes a transition from one phase to another. 
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During both types of hydration processes, several properties of the system may 

change, such as structural parameters, molecular mobility, viscosity, density, 

reactivity, permeability, and so forth. For surfactant-based systems, used in, for 

example, industrial applications, it is mandatory to characterize and understand 

hydration-induced phase transitions to enable control of the phase structure required 

for successful application. Hydration-induced phase transitions have been 

extensively characterized in the case, for example, of N,N-dimethyldodecyl-1-amine 

oxide, both in bulk and in thin films and a good agreement between results was 

obtained, with main transitions (reported in Table 2) occurring at almost the same 

water activity with only slight effects on the transition kinetics.  

Phase Water activity 

Liquid micellar phase ~1 

Hexagonal phase ~0.8-1 

Cubic phase ~0.7-0.8 

Lamellar phase ~0.2-0.7 

Solid phases ~0-0.2 

 

Table 2. Phase transition of N,N-dimethyldodecyl-1-amine oxide induced by hydration process. 

1.2.4) Safety of the amine oxide surfactants  

Amine oxides surfactants are nonvolatile compounds that show low bioaccumulation 

in aquatic tissues and, as a consequence, bio-concentration in terrestrial organisms. 
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All available information on amine oxides demonstrates they have low-to-moderate 

level of toxicity in water [133].  

Amine oxides surfactants are generally readily biodegradable under both aerobic and 

anaerobic conditions; however, in anaerobic conditions, they are less biodegradable 

than in aerobic ones. In particular, in the case of aerobic biodegradation, a 

relationship between pH/biodegradability exists: at neutral pH amine oxide 

surfactants are readily biodegradable. The main biodegradation pathway consists of 

-oxidation of the terminal methyl group to obtain an -amino fatty acid, followed 

by deamination, providing an amine and an -oxo fatty acid. Conversely, their 

biodegradability is much lower at acid pH, because protonation affects the first step 

of -oxidation [134]. 

1.2.5) Applications of amine oxide surfactants 

Amine oxide surfactants find use in a wide and various range of fields, from 

detergency to personal care, from antimicrobial to pharmaceutical applications, 

depending on the length of the main alkyl chain and the substituents on the nitrogen 

atom.  

For example, the N,N-dimethylamidoalkyl amine oxide serve as a very effective 

foam boosters in light duty detergents and shampoos[135], while the higher stearyl 

amine oxides can be used as hair conditioners [136]. By simply changing the length 

of the hydrophobic tail, Tomah company of Milton, WI developed a whole series of 
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amine N,N-diethanol-1-amine oxide surfactants with decreasing efficiency as foam 

boasters, namely C9DEHAO-branched, C10DEHAO-branched, C11DEHAO-

branched and C12DEHAO-branched, having property of high foaming, moderate 

foaming, low foaming and extremely low foaming respectively, getting application 

in various types of cleaners.  

Interestingly, alkyldimethyl amine oxides have been shown to exert pronounced anti-

microbial activity when used individually or in combination with alkyl betaines. 

Although several studies have been performed with these compounds in 

combinations, only equimolar concentrations of the C12/C12 and C16/C14 chain 

lengths for the betaine and the amine oxide, respectively, have been investigated. 

Birnie et al. investigated the anti-microbial activity of a wide range of chain lengths 

(C8 to C18) for both the amine oxide and the betaine and also attempted to correlate 

their micelle-forming capabilities with their biological activity [127]. Anti-microbial 

activity was found to increase with increasing chain length for both homologous 

series up to a point, exhibiting a cut off effect at chain lengths of approximately 14 

for amine oxide and 16 for betaine. Additionally, the C18 oleyl derivative of both 

compounds exhibited activity in the same range as the peak alkyl compounds. Like 

most other surfactants, they are believed to be membrane perturbants, disrupting the 

cell membrane of the microorganism.  
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1.2.6) Amine oxide surfactants used in home care formulations. 

Amine oxide surfactants have already been described as components of certain 

formulations, comprising detergents, dishwashing liquids, antistatic preparations, 

shampoos, hair conditioners and shaving foams [137-139]. Particularly, they are 

effective mild multifunctional surfactants, for their low cost, they are used also in 

mixtures for very specific requirements, such as hard-surface cleaners, laundry and 

dish detergents and other washing product. Because of their efficiency and chemical 

versatility, amine oxide surfactants are the most used in liquid detergents 

formulation. 

The amine oxide surfactant most used in home-care formulations is the N,N-

dimethyldodecyl-1-amine oxide (C12DAO-linear) because of it presents a low cmc 

and low chemical instability up at high temperature, has low production cost, and 

low toxicity. In Figure 5 the phase behavior of C12DAO-linear in water by POM and 

SAXS is reported. 
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. 

Figure 5. Phase diagram (weight fraction versus temperature) of C12DAO-linear/water system. The 

following notation is used for the various region: L1=isotropic phase, H1=hexagonal LLC phase, 

L=lamellar LLC phase, C=crystalline phase. 

The phase diagram shows an extended micellar phase; however, liquid lyotropic 

crystalline phases are stable above around 0.3 mole fraction. The presence of these 

phases already at relatively low surfactant concentration has the detrimental effect 

of limiting the functionality of detergent formulations, because of their low 

processability. For this reason, during formulate production, a large amount of water 

must be added to assure mixture flowability and processability. 

A very effective modification aimed at tuning the surfactant behavior is either the 

shortening or the insertion of branches in the alkyl chain. Indeed, branching is likely 
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to disrupt tail-tail interaction and their effective packing, affecting aggregation 

tendency as well as supramolecular organization of surfactants.  

1.3) Branched surfactants 

Many of the surfactants used in new home fabric and personal care formulations 

have branched hydrocarbon tails [140, 141], irrespective of their polar head. 

Branched surfactants have the capability to modify the interactions between both the 

hydrophobic tails and the hydrophilic heads, thus modifying the physical-chemical 

properties of their systems with respect to those of their linear analogues. 

1.3.1) Physical-Chemical properties of branched surfactants 

Branched surfactants are classified by Wormuth et. al. as: i) methyl branched, ii) 

double tailed, iii) highly branched.  

i) Methyl-branched surfactants consist of a single hydrocarbon chain with 

one or more small pendant groups (methyl or ethyl groups) attached at 

any position along the main chain.  

ii) Double-tail surfactants consist of a main hydrocarbon chain with one 

pendant chain. The pendant chain was unbranched, contains three or more 

carbon atoms, and is attached at or near the hydrophilic group (at the  

or  carbon).  

iii) Highly branched surfactants consist of a hydrocarbon chain with more 

pendant chains. The pedant chains are one or two carbon atoms long, are 
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branched and are attached either close or far away from the hydrophilic 

group. 

A general examples of methyl branched, double tail and highly branched zwitterionic 

surfactants are reported in the figure 6. 

 

 

 

Figure 6. (a) The methyl-branched 5-ethyl-N,N-2-trimethylheptan-1-amine oxide; (b) The double-

tail surfactants N,N-dimethyl-2-propylheptan-1-amine oxide; (c) The highly branched surfactants 

N,N-3,4-tetramethyl-2-propylpentan-1-amine oxide). 

Most of the branched surfactants analyzed in the literature belong to the double-tail 

group.  

By moving the attachment point of the hydrophilic group incrementally along a 

linear hydrocarbon chain, a series of surfactant isomers of constant carbon number 
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is created, in which the surfactant evolves from single-tail (hydrophilic group at the 

end of the hydrocarbon chain), to double tails of unequal length (hydrophilic group 

between the end and the center of the hydrocarbon chain), to double tails of equal 

length (hydrophilic group at the center of the hydrocarbon chain) [20]. An example 

for amino oxide surfactants is reported in the figure 7. 

 

Figure 7. (a) Linear amine oxide surfactant (N,N-dimethylundecan-1-amine oxide); (b) Branched 

amine oxide surfactant (N,N-dimethylundecan-5-amine oxide); (c) Symmetrical branched amine 

oxide surfactant (N,N-dimethylundecan-6-amine oxide). 

As the surfactant tails become equal in length, the Kraft point decreases [142] the 

critical micelle concentration increases [143], the surfactant becomes more effective 
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at reducing the air-water surface tension [144] and stability domains of its LLC 

phases change [145]. 

One of the most interesting effects of insertion of branching on the linear 

hydrocarbon chain of surfactants is the modification of their micellization processes. 

In particular, these effects arise from both a different disposal of molecules at the 

water-air interface with respect to linear analogues (surface effects) and a different 

capability to assemble in discrete aggregates in solution (bulk effects). 

For amphiphiles with a single straight-chain aliphatic tail, the polar or electrostatic 

repulsion between head groups overcomes the hydrophobic interactions between 

aliphatic tails that should pull molecules together, hindering a surfactant disposal 

with hydrophobic tails perpendicular to the water surface, even at concentrations 

higher than the interfacial saturation adsorption. As a consequence of the tilted 

surfactant orientation on the water surface, the terminal CH3 groups are not able to 

cover the solution surface sufficiently, leaving part of CH2 groups (with higher free 

energy than CH3) and polar water molecules partially exposed to the air. In contrast, 

in the presence of branching along the surfactant aliphatic tail, the density of 

hydrocarbon chains on the solution surface increases, as a result of a more tightly 

packed arrangement of hydrophobic tails, held together perpendicularly to the 

surface by a stronger hydrophobic interaction (figure 8), thus creating a liquid 

hydrocarbon surface.  
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Figure 8. Schematic illustration of aggregation pattern of branched cationic surfactant molecules in 

solution–air interface and bulk phase. 

This justifies why branched surfactants are more effective at decreasing surface 

tension that their linear counterparts. So surface effects of branching include a lower 

γcmc while bulk effects a higher CMC value, i.e. adsorption on aqueous solution 

surface is enhanced, while micellization in bulk phase is hindered because of steric 

hindrance, respectively. Analysis of interfacial tension of branched surfactants 

systems indicated that critical micelle concentration increases with the branching 

degree, in the order highly branched > double tail > methyl branched > linear, while 

surface tension at the cmc decreases with the same trend [146].  

All branched surfactants are much more “hydrophobic” than corresponding linear 

(single-tail) surfactants [11, 13, 15, 22].  

Surfactant aggregation properties are determined by a fine balance between their 

hydrophobic and hydrophilic regions, thus any structural modification, such as the 
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insertion of one or more branches in the hydrophobic tail, can alter their 

supramolecular aggregation and liquid lyotropic crystalline phase formation, with 

consequences in their possible applications. This depends on both different 

intramolecular (surfactant-surfactant) and intermolecular (surfactant-water) 

interactions. [19].  

Relative length of the branch and the main chain affects formation of LLC phases: 

branches that are longer than the main hydrophobic chain reduce stability regions of 

liquid lyotropic crystalline phases, in particular of the hexagonal one; on the other 

hand, symmetric (same length) branches and alkyl tails, determine a phase behavior 

of the branched surfactant very similar to that of the linear analogue [24]. 

 

1.3.1) Biodegradability of branched surfactants 

Biodegradability of branched surfactants with respect to their linear analogues 

depends on the class of surfactants. Nonetheless, some general trend exists: i) their 

biodegradability in both aerobic and anaerobic conditions depends on the number of 

branches on the main surfactant hydrocarbon chain, as well as on their length [147]; 

ii) the lower the number of branches and carbon atoms that make up the branch, the 

more the surfactant is biodegradable, with the most biodegradable surfactants being 

those bearing only one methyl long branch, irrespective of the surfactant class [148]. 

A thorough comparison of biodegradability of linear and branched non-ionic 

surfactants well proves the second point, in particular showing how surfactants with 
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only one methyl branch are as biodegradable as their linear analogues in both aerobic 

and anaerobic conditions. 

Biodegradability of cationic surfactants both in aerobic and anaerobic has been 

studied. In particular, the branching effect has been investigated on the 

biodegradation process of cationic surfactants. Even in the case of cationic 

surfactants their biodegradability has been evaluated in relation to the -oxidation 

reaction. This reaction involves a reaction of the C-N bond (deamination which in 

the case of cationic surfactants) is more facilitated as there is the presence of a 

positively charged nitrogen atom [149, 150].  

Biodegradability of anionic surfactants has been thoroughly analyzed both in aerobic 

and anaerobic aquatic environments and branching has been found to cause a lower 

biodegradability in both conditions. In particular, in the case of sulfonate surfactants 

the last step of the biodegradation mechanism is a desulphonation reaction, which 

requires a large amount of both water and heat to take place with subsequent 

production of sulfuric acid, and this step is mostly affected by branching making 

branched sulfonate surfactants the less biodegradable surfactants [151]. 

1.3.2) Application of branched surfactants 

In the last ten years, the number of patents and papers related to the employment of 

branched surfactants in home, fabric and personal-care formulations is doubled, 

approximately. 
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As already anticipated, phase behavior of branched surfactants depends on the 

number of branches, their length and their position on the main hydrocarbon chain, 

since branching affects the interactions between both hydrophobic tails and 

hydrophilic heads of surfactant, but mainly modifies the surfactant-water 

interactions. Thus, branching can completely change features of surfactant mixtures, 

leading to formulations characterized by higher performances, including cleaning, 

foaming, wetting and other properties that last over time, and active concentrations, 

two aims strongly pursued by formulative industry. 

However, many authors have shown that the complete substitution of linear 

surfactants with branched ones does not always lead to better performances, which 

have been shown can be obtained using mixtures of linear and branched surfactants. 

In this way, the performances of the final formulations can be improved up to 50% 

[152]. 

Detergent performances of home-fabrics and personal care formulations can be 

improved by tuning the number of branches and the water content.  As regards the 

branches, highly branched surfactants usually present higher foaming propensity, 

but, as seen above, are less biodegradable and additionally are likely to by poor 

wetting agents [153]. For these reasons, double-tail surfactants, which present well 

balanced synthesis ease, significant biodegradability and high performances, are the 

most used branched surfactants.  
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In the last ten years, branched surfactants have been also widely used in oil recovery 

[40], because of their higher effectiveness in reducing interfacial tension, which is 

the principle at the basis of Enhanced Oil Recovery (EOR) with chemicals, already 

at low concentrations and without requiring addition of alkaline agents or co-

surfactants with respect to linear ones. Indeed. EOR involves the use of surfactants 

dispersed in water (surfactant flooding), in order to reduce the interfacial tension of 

the oil at values of the order of 10-5-10-4 N/m2, in such a way to zero the capillary 

pressure value and favor the escape of the oil from the pores of the rock, behind the 

thrust of water [154].  

1.4) New branched amine oxide surfactant  

In this context, we present the synthesis and characterization of a new amine-oxide 

surfactant, N,N-dimethyl-2-propylheptan-1-amine oxide, bearing a C10 tail 

branched at position 2 and hereafter named C10DAO-branched. The protonation 

equilibrium in dilute solution was monitored using potentiometry. Due to the 

peculiar features of the polar head of this class of surfactants, we analyzed the 

surfactant behavior under both acidic and basic conditions, by means of tensiometric 

titration and dynamic light scattering (DLS) measurements. The same techniques 

were used to investigate the aggregation behavior of the C10DAO-linear analog, N,N-

dimethyldecyl-1-amine oxide. Finally, we tested and compared the foamability of 

the two surfactants.  
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Hereafter, the phase behavior of C10DAO-branched in water is studied as a function 

of both concentration and temperature and compared with that of C10DAO-linear, 

which is also investigated as a reference. Polarized Optical Microscopy (POM), 

Small Angle Neutron and X-ray Scattering (SANS and SAXS, respectively) 

experiments are used to investigate the structure of the supramolecular aggregates. 

The results are confirmed by Humidity Scan Quartz Crystal Microbalance 

Dissipation (HS QCM-D) measurements, which have been recently proposed as a 

reliable approach for a rapid scrutiny of surfactant phase behavior [155]. Rheology 

is used to investigate the viscosity of the mixtures. The phase behavior of the ternary 

systems of C10DAO-branched/AES/water and C10DAO-branched/AES/water system 

were built by using the same procedure adopted for the binary phase diagrams 

Analysis of the results offers the opportunity to highlight differences and similarities 

between supramolecular organization of the branched and linear amine oxide 

isomers, first in water and then in co-formulation with one of the most used anionic 

surfactants (SLES), opening new perspectives in their exploitation in formulative 

chemistry. 
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2) Materials and methods 

Hydrobromic acid (48 % v/v), sulfuric acid (purity 96 %), ethanol (96 %) and starch 

paper iodide were purchased from Carlo Erba (Italy). N,N-dimethylamine (40 % w/w 

aqueous solution), hydrogen peroxide (50 % w/w), sodium sulfate anhydrous, 

chloroform (99 %), toluene (99.8 %), diethyl ether (99.8 %), CDCl3 (99 %), active 

carbon (DARCO®, 4-12 mesh particle size, granular) D2O (isotropic enrichment 

>99.8%) and lithium cloride (99.99%) were purchased from Sigma Aldrich (Milan, 

Italy). 2-propylheptan-1-ol was kindly supplied by Procter and Gamble (Belgium). 

All aqueous solutions were prepared by using double distilled water. Sodium lauryl 

ethoxy sulphate kindly furnished by Procter and Gamble (Batch 16-155-1), Brussels, 

Belgium.  

2.1) N,N-dimethyl-2-propylheptan-1-amine oxide synthesis 

N,N-dimethyl-2-propylheptan-1-amine oxide (C10DAO-branched) was synthetized 

through a synthetic approach [156] including three steps, as reported in Scheme 2: 

1) bimolecular nucleophilic substitution (SN2) converting 2-propylheptan-1-ol in 4-

(bromomethyl)nonane; 2) unimolecular nucleophilic substitution (SN1) on 4-

(bromomethyl)nonane leading to N,N-dimethyl-2-propylheptan-1-amine; 3) final 

oxidation of N,N-dimethyl-2-propylheptan-1-amine in N,N-dimethyl-2-

propylheptan-1-amine oxide (C10DAO-branched).  
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Scheme 2. Reaction scheme for the synthesis of C10DAO-branched. 

 

The product of each synthetic step was characterized by 1H NMR in CDCl3 solution. 

NMR spectra were collected on a Bruker DRX-400 instrument (Rheinstetten, 

Germany; 1H: 400 MHz) at 298 K. Heteronuclear single quantum correlation-

distortionless enhancement by polarization transfer (HSQC-DEPT) experiments 

were measured in the 1H-detected mode via single quantum coherence with proton 

decoupling in the 13C domain. In the case of the newly synthesized C10DAO-

branched surfactant, a further characterization was performed by means of HSQC-

DEPT 2D-NMR, using a Bruker DRX-600 (1H: 600 MHz) spectrometer. 
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In the first reaction step, 2-propylheptan-1-ol reacted with an excess of hydrobromic 

acid (1:7.22 molar ratio) and sulfuric acid (1:1.65 molar ratio) at 383 K under reflux 

conditions [156]. After 3.5 h the reaction was quenched by cooling the mixture to 

room temperature. Then it was washed with diethyl ether and water in order to 

remove hydrobromic acid excess. The organic phase was purified from water traces 

using anhydrous sodium sulfate that was filtered afterwards. The resulting solution 

was further purified with active carbon and then vacuum-dried, in order to remove 

diethyl ether, so obtaining 4-(bromomethyl)nonane [157, 158], as a brown viscous 

liquid (see inset of Scheme 2) with yield ≥ 95 %. The obtainment of 4-

(bromomethyl)nonane was confirmed by analysis of 1H-NMR spectrum (see 

supplementary material). In particular, the diagnostic peaks are a triplet at δ 1.60 due 

the proton of the ternary carbon (CH), and a doublet at δ 3.45 due to the deshielded 

protons of the ((CH2)Br) group. 

The second reaction step between 4-bromomethylnonane and N,N-dimethylamine 

(1:7.31 molar ratio) was carried out at 353 K in ethanol under reflux conditions [159]. 

After 24 hours the reaction was quenched by cooling to room temperature, the 

reaction mixture was washed with chloroform and water to remove excess N,N-

dimethylamine, and the organic phase dehydrated with anhydrous sodium sulfate and 

filtered. The liquid mixture was vacuum-dried to remove chloroform, so obtaining 

N,N-dimethyl-2-propylheptan-1-amine, which after purification with active carbon 

appeared as a light yellow viscous liquid (inset of Scheme 2). The yield of the second 

reaction step was ≥ 95%, and the chemical identity of the product was confirmed by 
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1H-NMR analysis (see supplementary material), in particular by the presence of a 

diagnostic triplet at δ 1.48, due to the (CH) group, together with a doublet at δ 2.01 

and a singlet at δ 2.12, due to ((CH2)N(CH3)2 and ((CH2)N(CH3)2, respectively. 

Finally, oxidation of N,N-dimethyl-2-propylheptan-1-amine was carried out with 

hydrogen peroxide (1:5.2 molar ratio) at 343 K in water for 3.5 hours under reflux 

conditions in a jacketed glass reactor. Then the reaction was quenched by cooling to 

room temperature, the absence of residual traces of H2O2 was checked with starch 

paper iodide, and the resulting mixture was concentrated by co-evaporation with 

toluene (three times). The product (C10DAO-branched) was obtained as a light 

yellow viscous liquid (inset of Scheme 2), with a yield≥95 %. The NMR spectrum 

shows the presence of a triplet at δ 1.97, due to the (CH) proton, much more 

deshielded than the corresponding atom in intermediate products, a doublet at δ 3.22, 

due to ((CH2)N
+O-) and a singlet at δ 3.24 ((CH3)2N

+O-), which confirm the presence 

of the N+O- group. 

2.2) Mass Spectrometry measurements 

C10DAO-branched and C10DAO-linear were analyzed by means of electrospray mass 

spectrometry (ESI-MS) in the positive ion mode, using an Agilent 6230 TOF mass 

spectrometer coupled to an Agilent HPLC system (1260 Series) with a reverse-phase 

C18 column (Poroshell 120 EC-C18, 2.1 x 100 mm, 2.7 μm; Agilent Life Sciences, 

Santa Clara, CA, USA). The ESI-MS source operated with capillary voltage of 3000 

V, gas temperature of 598 K, dry gas (N2) flow of 5 L min−1 and nebulizer at 35 psi. 
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MS spectra were acquired in a range of 150-1000 m/z with a rate of 1 spectrum s−1, 

time of 1000 ms per spectrum and transient per spectrum of 9961 ms.  

2.3) Potentiometric measurements 

The protonation constant of C10DAO-branched in monomeric (unmicellized) form 

was conducted at 298 K at various NaCl concentrations (I), by measuring [H+] in a 

series of surfactant solutions. The measurements were carried out as potentiometric 

titrations where the hydrogen ion concentration was determined by the e.m.f. of cell 

(A) [160]: 

(−) RE/Test Solution/GE (+)     (A) 

in which GE symbolizes the glass electrode and RE is the reference half−cell: R =I 

M NaCl// I M NaCl /AgCl(s) /Ag(s). Surfactant concentration was varied in the range 

3×10-3 - 1×10-2 M, i.e. well below the CMC (see below). During the measurements, 

the cell assembly, automatic burette, and gas washing bottles were placed in an air 

thermostat kept at (25.0 ± 0.02) °C. Glass electrodes manufactured by Metrohm Ltd. 

(Switzerland) were employed. Potentiometric titrations were carried out with a 

programmable computer-controlled data acquisition unit 34970A, Agilent 

Technologies (USA). 

2.4) Tensiometric titration 

The surface tension, γ, of the C10DAO-branched or C10DAO-linear aqueous mixtures 

in both acidic and basic conditions was measured with a Sigma 70 tensiometer (KSV, 
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Stockholm, Sweden) using the Du Noüy ring method as described elsewhere [161]. 

γ was correlated to the force required to raise the ring from the surface of the 

air/liquid interface. Successive aliquots of a stock surfactant mixture, freshly 

prepared in Millipore water and previously filtered with a 0.22 µm filter, were added 

to the vessel with a known volume of water. After each addition the sample was 

mixed using a magnetic stirrer and three minutes were waited to attain equilibrium; 

γ was then measured.  

2.5) Dynamic Light Scattering (DLS)  

DLS measurements were performed with a home-made instrument composed of a 

Photocor compact goniometer, a SMD 6000 Laser Quantum 50 mW light source 

operating at 5325 Å, a photomultiplier (PMT-120-OP/B) and a correlator (Flex02-

01D) from Correlator.com. The experiments were carried out at room temperature at 

a scattering angle θ=90°. The scattered intensity correlation function was analyzed 

using a regularization algorithm [162, 163]. The diffusion coefficient of each 

population of diffusing particles was calculated as the z-average of the diffusion 

coefficients of the corresponding distributions [164]. Considering that the mixtures 

are diluted, the Stokes–Einstein equation has been used to evaluate the 

hydrodynamic radius, RH, of the aggregates from their translation diffusion 

coefficient, D. 
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2.6) Foaming properties 

Foaming assay was performed with a custom-made foam preparation apparatus 

described elsewhere [165]. The apparatus consisted of a 500 mL graduated cylinder 

(4.8 cm i.d.). Decarbonated air was pumped (flux of 100 mL/min for 5 min) into 250 

mL of sample solution (1 % w/w) through a gas diffuser positioned at the cylinder 

bottom at 25 °C. The foam height was measured soon after the pump stop and 

monitored over a time course of 10 min. 

2.7) Sample preparation of the binary systems 

Samples for phase diagram determination, POM, SAXS, QCM-D and rheology 

measurements were prepared by weighing appropriate amounts of C10DAO-

branched or C10DAO-linear and doubly distilled and degassed water in screw-cap 

glass vials, followed by a Vortex mixing. Samples for SANS measurements were 

prepared using D2O as solvent. Liquid crystalline samples were mixed by repeated 

centrifugation for 3 days. Thoroughly mixed samples were kept at 25 °C for 2 weeks 

and checked at regular intervals by ocular inspection with the help of cross-

polarizers. No variation was observed after this equilibration period. 

 

2.8) Phase diagram determination  

In order to build the phase diagrams of the systems (C10DAO-branched)-water and 

(C10DAO-linear)-water, 20-25 samples were prepared for each of them, spanning the 

whole concentration range (Figures S1 a-b). Preliminarily, a visual inspection of all 

samples through cross-polarizers was carried out, checking for homogeneity and 

birefringency. Ocular inspection was first done at 25 °C; the temperature was then 

raised up to 70 °C, for C10DAO-branched, and to 110 °C, in the case of C10DAO-

linear, by steps of 5 °C through a thermostat. Birefringent samples, containing 

optically anisotropic LLCs, were further analyzed by POM in order to discriminate 
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the different surfactant supramolecular arrangements. Confirmation of LLCs 

morphology was obtained by SAXS diffraction patterns, which also furnished a 

wealth of structural details. Isotropic (no birefringent) samples were analyzed by 

SANS measurements. 

The surfactants’ phase diagrams were also investigated by an alternative approach, 

based on HS QCM-D, which allows a fast screening of LLC phase transitions as a 

function of the water content in the mixtures. 

2.9) Sample preparation of the ternary system 

Samples for phase diagram determination, POM, SAXS, QCM-D and rheology 

measurements were prepared by weighing appropriate amounts of C10DAO-

branched or C10DAO-linear, AES and doubly distilled and degassed water in screw-

cap glass vials, followed by a Vortex mixing. Liquid crystalline samples were mixed 

by repeated centrifugation for 3 days. Thoroughly mixed samples were kept at 25 °C 

for 2 weeks and checked at regular intervals by ocular inspection with the help of 

cross-polarizers. No variation was observed after this equilibration period. 

 

2.10) Phase diagram determination of the ternary system  

In order to build the phase diagrams of the systems (C10DAO-branched)-AES-water 

and (C10DAO-linear)-AES-water at 25 °C, 100-150 samples were prepared for each 

of them, exploring the whole concentration range (Figures S9 a-b). Preliminarily, a 

visual inspection of all samples through cross-polarizers was carried out, checking 

for homogeneity and birefringency. Afterwards, birefringent samples, containing 

optically anisotropic LLCs, were analyzed by POM in order to discriminate the 

different surfactant supramolecular organizations. Confirmation of LLCs 

morphology was obtained by SAXS diffraction patterns, which also provided a 

quantitative structural characterization of the surfactants’ supramolecular 

aggregates. The phase diagrams were also investigated by an alternative approach, 
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based on HS QCM-D, which allows a fast screening of LLC phase transitions as a 

function of the water content in the mixtures. In particular, the samples with and 

equal weight fraction of C10DAO-branched (or C10DAO-linear) and AES (
10C DAOw =

0.50AESw  ) were investigated. 

2.11) Polarized Optical Microscopy 

The polarized optical microscopy images were collected using a Laser Scanning 

Confocal Microscope (LSM) 5 Pascal (Carl Zeiss Advanced Imaging Microscopy, 

Jena, Germany). The instrument is equipped with an Axiovert 200 M light 

microscope coupled with an AxioCam HRm high resolution digital camera (Carl 

Zeiss Light Microscopy, Göttingen, Germany). The microscope is also equipped 

with a home-made incubator capable of keeping the sample temperature at (25.0 ± 

0.1) °C. 

 

2.12) Small-angle X-ray scattering 

Small-angle X-ray scattering patterns were recorded with a S3-MICRO SWAXS 

camera system (HECUS X-ray Systems, Graz, Austria) employing Cu K radiation 

of wavelength 1.542 Å provided by a GeniX X-ray generator, operating at 50 kV and 

1 mA. The scattered X-rays in the small-angle region were detected by a 1D-PSD-

50 M system containing 1024 channels of width 54.0 m. The working q-range (Å−

1) was 0.02≤q≤0.4, where q=4πsin(θ)-1 is the modulus of the scattering wave vector. 

A stainless steel sample holder with thin polymeric sheet (Kapton X-ray film roll 

TF-475, FluXana GmbH & Co. KG, Bedburg-Hau, Germany) was used. I(q) was 

denoted as the intensity of scattering. Silver Behenate, CH3-(CH2)20-COOAg, was 

used as a standard for the calibration of the angular scale. 

Structural parameters of lamellar and hexagonal phases were calculated according to 

the following equations: 
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𝑎𝑙𝑎𝑚 = 𝑑 ∙ ℎ          

 (1a) 

𝑑𝑊 = 𝑎(1 − 𝜙)         

 (1b) 

𝑑𝐿 = 𝑎 − 𝑑𝑊          

 (1c) 

𝑎ℎ𝑒𝑥 = 𝑑 ∙
2

√3
∙ √(ℎ2 + 𝑘2 + ℎ𝑘)       

 (2) 

where d=2π/q, a is the lattice parameter, dW is the water layer thickness, dL is the 

bilayer thickness, h and k are the Miller indices. In equation 1b ϕ is the surfactant 

volume fraction, calculated as follows: 

𝜙 =

𝑤𝑠𝑢𝑟𝑓

𝜌𝑠𝑢𝑟𝑓
𝑤𝑠𝑢𝑟𝑓

𝜌𝑠𝑢𝑟𝑓
+
𝑤𝑊
𝜌𝑊

         (3) 

where wsurf, ρsurf, wW, and ρW are weight and density of, respectively, the surfactant 

and the water. Errors on the lattice parameters were always less than 2% (standard 

deviation). 

 

2.13) Small-angle neutron scattering 

Small angle neutron scattering measurements were performed at the KWS2 

instrument located at the FRJ-2 reactor of the Forschungszentrum Jülich, Germany, 

and at the LOQ instrument sited at the ISIS facility of the Rutherford Appleton 

Laboratory of Chilton, United Kingdom. In the first case, neutrons with an average 

wavelength () of 7 Å and a wavelength spread of  ≤ 0.2 were used. A two 

dimensional area detector at three different sample-to-detector distances (2, 8, and 

20 m) measured neutrons scattered from the samples. These configurations allowed 

the collection of scattering cross sections in an interval of transferred momentum q 

= 4π/ sin(θ/2) between 0.002 Å–1 and 0.45 Å–1, where 2θ is the scattering angle. The 
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samples were contained in a closed quartz cell, in order toprevent the solvent 

evaporation, and all measurements were per-formed at 25 °C. Each measurement 

lasted for a period sufficient to obtain ~1.5 million counts. The raw data were 

corrected for background and empty cell scattering. Detector efficiency correction, 

radial average and transformation to absolute scattering cross sections (d/dΩ) were 

made with a secondary plexiglass standard [166, 167]. Scattering profile were 

collected for C10DAO-linear ws=0.15 at Forschungszentrum Jülich, Germany. 

At the ISIS pulsed neutron source, the LOQ instrument uses neutrons of wavelengths 

ranging between 2.2 and 10 Å detected by a time-of-flight analysis on a 64 cm2 two-

dimensional detector placed 4 m from the sample giving a q range of 0.008-0.279 Å-

1. The raw data were corrected for background and empty cell scattering, and detector 

efficiency and then put into absolute scattering cross sections (d/dΩ) by comparison 

with scattering from a partially deuterated polystyrene standard. Scattering profile 

were collected for C10DAO-branched ws=0.15 and ws=0.40 at ISIS pulsed neutron 

source, Didcot (UK).  

The cross-section (d/dΩ) were plotted as function of scattering vector (q). The 

dependence of (d/dΩ) from the scattering vector was analyzed according to Eq. (4): 

 

( ) ( )P

fract inch

d d d
n P q S q

d d d

     
     

     
                                                   (4) 

where nP is the number density of crystallites, P(q) is the form factore, S(q) is the 

interparticle structure factor of the equivalent sphere that can be calculated by 

solving the Ornstein-Zernike equation [168] using the closure relation given by the 

rescaled mean spherical approximation (RMSA)[169-171] and (d/dΩ)inch is the 

incoherent contribution to the scattering cross section.  
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2.14) Humidity Scanning (HS) Quartz Crystal Microbalance Dissipation (QCM-D) 

A q-sense QCM-D E4 instrument equipped with humidity module QHM 401 and 

AT-cut SiO2 sensors (QSX 303, 5 MHz) from Biolin Scientific AB (Västra Frölunda, 

Sweden) was used. New sensors were washed with water and ethanol before use. 

Reused sensors were cleaned by the procedures described in the q-sense guidelines 

manual (cleaning protocol B for QSX 303).  

The QCM-D is an ultrasensitive method for the mass determination of materials 

adsorbed on a piezoelectric quartz sensor. The QCM-D technique monitors the 

frequency of the oscillating shear motion of the quartz sensor, which is stimulated 

by an applied potential. The mass of the adsorbed materials can be calculated using 

the Sauerbrey equation [172], which describes the linear relationship between mass 

addition and frequency shift  

2

02 f

q

f mf

n Z


                                                                                                    (5) 

where Δf/n is the frequency change normalized to the overtone number n, Zq = 8.8 × 

106 kg m-2 s-1 is the acoustic or mechanical impedance of quartz, f0 is the fundamental 

frequency (5 MHz), and mf is the mass in kg m-2. In addition to the frequency change, 

the QCM-D technique also monitors the dissipation D, which is related to the decay 

time of the oscillating resonator when the alternating potential is turned off. The 

decay time is related to the viscoelastic properties of the film that coats the sensor. 

Thus, the dissipation in combination with the frequecy gives a whole information on 

phase transitions during the hydration process [172] 

 

2.15) Rheology 

Rheology measurements were performed with a DHR-3 rheometer (TA instruments, 

New Castle, DE, USA). A cone-plate sensor was used, with a diameter of 40 mm 

and the cone angle of 2°. The measuring temperature was maintained at 25.0 ± 0.1 
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°C. Each sample was gently inserted onto the top of the cone-plate. The excess 

sample squeezed out from the sensor system was gently removed. To allow for the 

stress relaxation, measurements were carried out after 10 min. 

 

3) Results and discussion 

3.1) Synthesis of N,N-dimethyl-2-propylheptan-1-amine oxide (C10DAO-branched) 

The synthesis proposed in this work was inspired by that employed for production 

of the analogue linear surfactant [173] because it can be easily scaled up to large 

volumes, and was purposely modified in order to avoid expensive reactants and/or 

procedures, as well as toxic and/or dangerous chemicals. The starting reactant was 

the alcohol 2-propylheptan-1-ol, which was converted to the corresponding bromide 

through a SN2 reaction, thus obtaining 4-bromomethylnonane. Bromide was 

preferred to other halides, because of its higher selectivity [174]. Differently from 

previously reported procedures [11], we employed a diluted hydrobromic acid 

solution, which is handled more easily and safely. With the aim at retaining high 

reaction conversion, despite the lower HBr concentration, we performed the first step 

of the reaction at 110 °C under reflux conditions. The same considerations prompted 

us to use a 40 % dimethylamine in water solution in the second step of reaction and 

to perform the substitution reaction of bromide at 80 °C under reflux conditions, 

obtaining N,N-dimethyl-2-propylheptan-1-amine [159]. The final oxidation step 

aimed at producing N,N-dimethyl-2-propylheptan-1-amine oxide (C10DAO-

branched) was performed with a stoichiometric amount of H2O2, with no need of 

expensive catalysts [175]. Residual water was removed by the formation of a 

minimum azeotrope with toluene at 30 °C, thus avoiding dehydration in oven at high 

temperature, conditions in which the amine oxides could degrade to form the alkene 

[176] or the recrystallization with acetone, which also needs high temperature for 

complete solvent removal [116]. 
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The bi-dimensional HSQC-DEPT NMR spectrum of the final product was acquired 

(Figure 9) in order to definitely assess the molecular structure of the synthesized 

compound, and highlight possible contaminations, thanks to the high resolution of 

the technique [177]. In the 2D-NMR HSQC-DEPT spectra 1H signals are reported 

on the abscissa while 13C ones on the ordinate axis.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. 2D NMR HSQC-DEPT spectrum of C10DAO -branched in CDCl3 

In the figure, methyl and methine group are reported in blue while ethyl groups are 

in red. In particular, at δC 14.2 the CH3 terminal groups generate a single signal 

because the carbons are equivalents and correspond to two triplets at δH 0.84-0.90 on 

the 1H axis. At δC 18.1-35.8 the typical signals of CH2 groups of both the main alkyl 

chain and the branch are visible, corresponding to multiplets at δH 1.25-1.42 on the 

1H axis. It is possible to highlight the diagnostic signal for C10DAO-branched at δC 

33.8 in the typical region of CH in β with respect to the N+O- group, corresponding 
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to a triplet at δH 1.94 on the 1H axis; at δC 76.1 the typical signal of CH2 in α with 

respect to N+O- is present, corresponding to a doublet at δH 3.20; at δC 58.7 the typical 

signal of CH3 group in α with respect to N+O- is detected due to the presence of the 

two equivalent carbons bonded to N+O-, corresponding to six equivalent protons at 

δH 3.22 on the 1H axis. Thus, the 2D NMR HSQC-DEPT confirms the exclusive 

presence of C10DAO-branched in the final product, ruling out the presence of 

unreacted tertiary amine or undesired by-products.  

 

Finally, both C10DAO-branched and C10DAO-linear have been analyzed by ESI-MS. 

MS spectra of the two surfactants are similar (Figure 10), showing a main signal at 

m/z 202.2, due to the mono-protonated surfactant, and a second one at m/z 403.4, an 

artefact probably due to non-covalent dimeric species easily formed by amino-oxide 

surfactants at the liquid-gas interface [178], like the extended one of the aerosol 

generated in the ESI source.  

 

 

 

 

 

 

Figure 10. ESI-MS spectra of C10DAO-branched (A) and C10DAO-linear (B) 

Remarkably, MS spectra of the newly synthesized C10DAO-branched are fully 
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product, thus confirming that the final product of our synthesis presents high purity 

levels. 

3.2) Acid-base properties of C10DAO-branched 

The determination of acidity constant of C10DAO-branched was carried out by 

potentiometric titration in dilute solutions, in which only monomers are present. The 

surfactant was considered as a simple base [179] and the logarithm of acidity 

constant (pKa) of the monomer was evaluated by: 

pKa = pH + log(α0/(1-α0)) 

where α0 represents the protonated fraction of the surfactant. pKa values determined 

in NaCl ionic medium at various concentration (I) are reported in Figure 11. The 

presence of an inert electrolyte (the ionic medium method) of sufficiently high 

concentration (0.1 to 3 M) ensures that activity coefficients of the reacting species 

remain reasonably invariable. 

 

Figure 11. The dependence of pKa of N,N-dimethyl-2-propylheptan-1-amine oxide on NaCl 

concentration (I). 
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The constants at known ionic strengths are equally valid as thermodynamic 

equilibrium constants provided that the background salt solution is defined as the 

standard state. The extrapolated value at infinite dilution is pKa°=5.0±0.1 that is 

comparable with pKa=4.9±0.1 reported in the literature for C10DAO-linear [122].  

3.3) Aggregation behavior of C10DAO-branched and C10DAO-linear in water 

At acid pH amine-oxide surfactants are fully protonated and behave as cationic 

surfactants, while at basic pH they are non-protonated and behave as non-ionic 

(zwitterionic, actually) surfactants[100, 122, 180]. We studied the aggregation 

behavior of C10DAO-branched and C10DAO-linear at pH=3 and pH=8. The pH value 

was carefully adjusted by adding proper amounts of either HCl or NaOH, 

respectively, to the surfactant aqueous solutions. This procedure was preferred to the 

use of buffers to avoid undesired effects of added salts. 

We employed tensiometric titration experiments to determine the CMC. Surface 

tension measurements for C10DAO-branched and C10DAO-linear at both considered 

pH values are reported in Figure 12.  

 

 

 

 

 

 

Figure 12. Surface tension vs. total surfactant concentration for C10DAO -branched (a) and 

C10DAO-linear (b) at pH 3 (red diamonds,  ) and pH 8 (blue circles,  ) 
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In all cases, γ decreases with increasing surfactant concentration up to a critical value 

above which its value remains nearly constant. The abrupt slope change corresponds 

to the micellization onset. CMC values, evaluated as the concentrations 

corresponding at the intersection between two straight lines fitting the data in the 

premicellar and micellar concentration range, respectively, are reported in Table 3.  

 

 

CMC (mol kg-1) γmic (mN m-1) Amin (Å2) RH (nm) 

pH 3 pH 8 pH 3 pH 8 pH 3 pH 8 pH 3 pH 8 

C10DAO-

branched 
0.17±0.02 0.15±0.02 25.3±0.2 22.2±0.2 180±12 77±3 

2.0±0.5 

17±1 
2.0±0.5 

C10DAO-

linear 
0.029±0.005 0.009±0.003 27.7±0.2 31.6±0.3 126±6 32±3 3.0±0.5 2.0±0.5 

 

Table 3. Aggregation properties of C10DAO-branched and C10DAO-linear at pH 3 and 8 

Inspection of table shows that at both pH=3 and pH=8 C10DAO-branched is 

characterized by a higher CMC with respect to C10DAO-linear, indicating that tail 

branching effectively hampers surfactant aggregation. In the case of C10DAO-linear 

when the pH decreases from pH=8 to pH=3, the CMC shows a three-fold increase 

due to the positively charged hydrophilic head that favors the monomer 

solubilization in water and, at the same time, disfavors close packing of molecules 

in micellar aggregates, because of electrostatic repulsion. Interestingly, this effect is 

much less marked for C10DAO-branched, for which the CMC only slightly changes. 
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The plot of the surface tension versus the logarithm of the surfactant concentration 

also allows the area per adsorbed surfactant molecule at the solution-air interface 

(Amin) to be calculated. Amin was calculated by means of the Gibbs isotherm 

1

min

1 1

lnA

A
N nRT c



   
      

      (5) 

where NA is Avogadro number, R is the gas constant, T is the absolute temperature 

and 
∂𝛾

∂ln𝐶
 is the slope of the γ trend in the premicellar area, close to the CMC. n is the 

coefficient taking into account the dissociation of ionic surfactants; its value, which 

is 2 for completely dissociated species, decreases in the presence of added salts, 

going down to 1 which is the value expected for nonionic surfactants [181]. We used 

n=1 at pH 8 and n=2 at pH 3. Indeed, Amin values computed for our surfactants using 

n=2 are likely to be upper estimates, considering the high CMC values and the 

consequent high ionic strength of the solutions due to surfactant monomers. 

Resulting values are reported in Table 3, in which the constant γ values observed 

above the CMC in all the considered systems, γmic, are also collected. It clearly 

emerges that the branched surfactant occupies a larger area per molecule compared 

to the linear analogue, because of the steric hindrance between the bulkier 

hydrophobic moieties and their lower tendency to cooperatively align perpendicular 

to the air/water interface. As reported for other branched surfactants, this result in a 

more disordered monolayer [182]. C10DAO-branched also presents a lower γmic, 

since the higher CMC increases adsorption at the air/water interface. These results 

are in good agreement with those reported in the literature for branched nonionic 

ethoxylated surfactants [22]. 

Our data show that for both surfactants Amin is sensitive to the pH value, in that it 

increases at acidic pH, while the opposite trend is observed for γmic. These evidences 

indicate that the surfactants form a more compact monolayer in the zwitterionic 

form. The percent variation is much lower for the branched surfactant than for the 
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linear isomer. Moreover, similarly to what observed for the CMC and Amin, the γmic 

variations are much less evident for C10DAO-branched than for C10DAO-linear. 

C10DAO-branched and C10DAO-linear samples with surfactant concentrations ten 

times above the CMC value were monitored at room temperature by means of DLS 

(Figure 13).  

 

 

 

 

 

 

Figure 13. Intensity weighed hydrodynamic radius distributions of C10DAO-branched (a) and 

C10DAO-linear (b) at pH 3 (in red) and pH 8 (in blue) at surfactant concentration 10 times the CMC. 

DLS analysis shows that at pH=3, C10DAO-branched present two populations 

centered at RH =2 and 17 nm, possibly related to the co-existence of small micelles 

with larger aggregates. In the case of C10DAO-linear there is one micelle population 

centered at RH = 2 nm. At pH=8, only one population at 3 nm is observed for 

C10DAO-branched, while no significant difference is observed for C10DAO-linear 

with respect to pH=3. Thus, chain branching results in the tendency to form larger 

aggregates, the effect being more evident in acidic pH. 
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3.4) Foamability and foam stability of C10DAO-branched and C10DAO-linear 

aqueous solution 

The foam volumes obtained from the C10DAO-branched and, as a comparison, from 

C10DAO-linear aqueous solution at pH=3 and pH=8 are shown in Fig. 6. At both pH 

values C10DAO-branched produces a higher foam volume than the linear analogue. 

This results are in contrast with those recently reported by Wang et al. concerning 

anionic sulfonate surfactants [183], thus highlighting that the effect of tail branches 

on surfactant foamability is hardly predictable from the molecular structure, being 

determined by a complex interplay of intermolecular interactions. On the other hand, 

from a phenomenological viewpoint, a lower surface tension is expected to increase 

the foamability of a solution from the perspective of surface energy [184]. This is 

fully confirmed by our data: the increased foamability C10DAO-branched positively 

correlates with its higher effectiveness in reducing the surface tension (see the γmic 

values). This holds even when data collected at different pH are compared: C10DAO-

branched foamability significantly increases at basic pH, i.e., in the conditions in 

which the lowest γmic has been observed.  

Inspection of Figure 14 shows that, while the foam formed by the zwitterionic form 

of the branched surfactant occupies a larger volume, its stability is poorer.  
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Figure 14. Foaming properties of C10DAO-branched and C10DAO-linear at pH 3 and 8. 

This is in line with the results reported for other branched surfactants [184], and is 

interpreted in terms of weaker intermolecular cohesive forces at the air/water 

interface among branched tails with respect to linear ones. Interestingly, data 

collected at pH=3 show longer foam stability for the branched surfactant, which 

suggests a synergy between hydrophobic and electrostatic interactions in stabilizing 

the surfactant monolayer. 

3.5) Phase behavior: POM and SAXS  

The phase behaviour C10DAO-branched and C10DAO-linear in aqueous mixtures 

was initially identified by visual inspection, POM, and SAXS, across the entire 

composition range. Particularly, the phase behaviour of C10DAO-branched was 

investigated in a temperature range between 25 and 70 °C, while for the linear isomer 

the investigation was extended up to 110 °C. Above these thresholds both surfactants 

are chemically unstable, a typical feature of amine oxide surfactants. Thus, C10DAO-

branched degrades at a temperature lower than C10DAO-linear [176]. The branching 

in position 2 promotes the thermal decomposition since, upon the elimination of 

N,N-dimethylhydroxylamine, a disubstituted alkene is obtained (Scheme S2 Figure 
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1H NMR S2), which is more stable than the mono-substituted one obtained from the 

linear surfactant. 

The phase diagram of the (C10DAO-branched)-water binary system is shown in 

Figure 15. 
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Figure 15. Phase diagram (weight fraction versus temperature) of C10DAO-branched/water system. 

The following notation is used for the various region: L1=isotropic phase, L=lamellar LLC phase. 

 

Samples prepared in the ws range 0.62-0.80 at 25 °C were found very viscous (as 

judged by naked eyes) and birefringent (when seen through polarized glasses). 

Moreover, under the polarized optical microscope, these samples showed the texture 

dominated by Maltese crosses characteristic of a lamellar LLC phase (Lα, Figure 16 

a). The Lα arrangement of the surfactant molecules was found to be stable below 53 

°C. At C10DAO-branched weight percent lower than 0.62 and higher than 0.80, and 

at a temperature higher than 53 °C, isotropic mixtures formed, which easily flowed 

under their own weight.  
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Figure 16. Optical microscopy images corresponding to the systems: (a) L lamellar phase of 

C10DAO-branched at ws=0.70; (b) H1 hexagonal phase (fan-like texture) of C10DAO-linear at 

ws=0.40; (c) H1+L hexagonal and lamellar co-exsistence of C10DAO-linear at ws=0.51; (d) L 

Lamellar phase of C10DAO-linear at ws=0.70. 

 

The phase diagram of the (C10DAO-linear)-water binary system is shown in Figure 

17.  

 

 

 

 

(a) (b) 

(c) (d) 
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Figure 17. Phase diagram (weight fraction versus temperature) of C10DAO-linear/water system. The 

following notation is used for the various region: L1=isotropic phase, H1=hexagonal LLC phase, 

L=lamellar LLC phase, C=crystalline phase. 

 

In this case, four different phases were observed with increasing surfactant 

concentration. At low surfactant concentration, a L1 phase (isotropic water-rich 

solution) is found. Above ws=0.32, at 25 °C, samples were found viscous and 

birefringent. Particularly, in the composition range from ws=0.32 to ws=0.50 POM 

analysis revealed the typical fan-like texture of a direct hexagonal LLC phase (H1, 

Figure 15 b). Such attribution was definitely confirmed by SAXS experiments (see 

below). By increasing the surfactant concentration, Maltese crosses start to appear in 

the POM micrographs. They coexist with the fan-like texture up to ws=0.52, 

highlighting the existence of a narrow H1+Lα biphasic region. Above this 

concentration threshold, only Maltese crosses were detectable. The Lα is stable in the 

ws range 0.52-0.80. Upon further surfactant addition, hydrated solid crystals (C) 

started to form. A Lα+C biphasic region was initially found, which above ws=0.84 
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turned to a C phase. The stability domains of all the LLC and solid phases are 

scarcely affected by temperature, being the phase boundaries almost vertical. Only 

at high temperature, above 100 °C, all of them melt to an isotropic liquid phase. 

The slope of the phase boundaries depends on the driving forces of the phase 

transition: a negative slope indicates that the transition is driven by entropy, while a 

positive slope indicates that the driving force is of enthalpic nature [126]. Vertical 

phase boundaries mean that the driving forces are close to zero. The last is the case 

of the transition from L1 to H1 in the (C10DAO-linear)-water diagram. In this 

transition, only a small curvature changes in going from finite C10DAO-linear 

micelles to the infinite cylinders of the hexagonal phase occurs, resulting in a small 

increase of the entropy due to confinement of the hydrocarbon tails in a less restricted 

environment. This small entropy increase is balanced by the reduction of motional 

freedom of the cylinders in the hexagonal array with respect to freely diffusing 

micelles. From the enthalpic viewpoint, it is to be considered that many properties 

of the cylinders in the hexagonal and the micellar phases are very similar. On the 

other hand, the positive slope of the phase boundary between the Lαand C stability 

domains highlights that the dehydration-induced transition from C10DAO-linear 

lamellae to the solid phase is driven by enthalpy, being crystallization exothermic. 

This evidences are similar to those found for the longer-chain alkyl amine oxide 

surfactant C12DAO [126, 185]. 

Inspection of the (C10DAO-linear)-water phase diagram reveals that the transition 

from H1 to Lα also presents an almost vertical phase boundary. In the case of C12DAO 

the boundaries between the stability domains of different LLC phases present a 

negative slope, indicating that the transitions from structures with higher curvature 

(such as hexagonally arrayed cylinders) to the phases with lower curvature (e.g., 

stacked lamellae) are driven by entropy, since the number of microstates available 

for the tails in a less confined structure increases. The almost vertical boundaries in 

the (C10DAO-linear)-water phase diagram points to a reduction of this effect, which 

could be connected to the minor mobility freedom constraints in the aggregates 
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formed by the shorter surfactant. The reduction of the entropic driving force could 

be also the reason for the absence of the cubic phase interposing between the H1 and 

the Lα stability domains, which is found for C12DAO [126, 185] and is not detected 

for the shorter analogue. 

Some structural details of the LLC phases formed by C10DAO-branched and 

C10DAO-linear in aqueous mixtures were obtained by a SAXS investigation. For 

some SAXS diffractogram of the (C10DAO-branched)-water binary sample acquired 

at 25 °C is characterized by a single, strong reflection at q=0.18 Å−1 (Figure 18 a).  

Taking into account results from POM analysis, and recalling here that for diluted 

samples second (or higher) order Bragg peak of the Lα phase is not always detectable 

[185], this reflection without any doubt represents the first order Bragg peak of the 

Lα phase. Under this assumption, the diffractogram allows an estimation of the 

structural parameters, i.e. the lattice parameter (alam), the water layer thickness (dW), 

and the bilayer thickness (dL). The values of these parameters, estimated at various 

temperatures, are collected in Table 4. Upon increasing the temperature, the Bragg 

peak slightly shifts to high q values (see Figure 18), indicating a decrease of the 

lattice parameter, probably due to a dehydration of the surfactant headgroup. 

According to equations reported in the SAXS section, also dL and dW follow the same 

trend. As can be seen in Figure 18 a, the second order Bragg peak appears at 40 °C 

at the q value expected for a lamellar arrangement, corroborating the correct 

attribution of the single reflection observed at lower temperatures.  
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Figure 18. SAXS diffractogram of: (a) C10DAO-branched/water ws=0.70 at 40 °C and (c); C10DAO-

branched/water ws=0.67 (b), C10DAO-linear/water ws=0.40 at 25 °C; C10DAO-linear/water ws=0.75 

at 25 °C. 

 

The SAXS diffractograms obtained for a more concentrated (C10DAO-branched)-

water binary sample (ws=0.67) show a similar behavior (Figure 18 a): even in this 

case a single peak is observed at low temperature, the second order Bragg peak 

becoming detectable only at 35 °C (Figure 18 b). Structural parameters of this 

lamellar sample are reported in Table 1, and show an increment of dL and a reduction 

of dW, a reflection of the higher surfactant concentration in the mixture. 

The SAXS analysis was also performed on the (C10DAO-linear)-water binary 

samples at ws equal to 0.40 and 0.75. The diffractogram obtained for the former 

sample at 25 °C, reported in Figure 18 c, shows two Bragg peaks in the ratio 1:√3 

corresponding to the first (hk=10) and second (hk=11) order reflections. From these 

data a lattice parameter ahex=46.3 Å was calculated. 
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The latter sample is in the lamellar phase. Similarly, to what observed for the lamellar 

(C10DAO-branched)-water mixtures, a single peak can be observed at 25 °C. 

Analysis of the diffrattogram reveals that binary C10DAO-linear lamellae are 

characterized by a lattice parameter smaller (Table 4) than that found for C10DAO-

branched.  

 

C10DAO-branched (ws = 0.67) 

T (°C) 25 30 35 40 45 50 

a (Å) 36.4 35.9 34.7 33.7 --- --- 

dW (Å) 12.0 11.9 11.5 11.1 --- --- 

dL(Å) 24.4 24.1 23.3 22.6 --- --- 

C10DAO-branched (ws = 0.78) 

T (°C) 25 30 35 40 45 50 

a (Å) 35.9 35.7 34.0 --- --- --- 

dW (Å) 7.9 7.9 7.5 --- --- --- 

dL(Å) 28.0 27.9 26.5 --- --- --- 

C10DAO-linear (ws = 0.75) 

T (°C) 25 30 35 40 45 50 

a (Å) 27.2 27.1 26.9 26.7 26.6 26.7 

dW (Å) 6.5 6.5 6.5 6.4 6.4 6.4 

dL(Å) 20.7 20.6 20.4 20.3 20.2 20.3 

 

Table 4. Structural parameters at different temperature and ws of C10DAO-branched and C10DAO-

linear. 

 

In addition, apart from a tiny shift of the Bragg peak to higher q values, such a 

lamellar phase remains nearly unaltered up to 35 °C (Figure 19), the highest 

temperature investigated by SAXS, indicating that the Lα phase obtained using the 

linear surfactant is more stable than the same LLC phase obtained using its branched 

isomer. 
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Figure 19. SAXS diffractogram versus T: (a) C10DAO-branched ws=0.67; (b) C10DAO-branched 

ws=0.78. 

 

3.6) Phase behavior: validation of the HS QCM-D method 

The determination of the phase behavior in aqueous mixtures is fundamental for the 

comprehension and, potentially, for the prediction of the functional properties of new 

surfactants. However, the experimental construction of phase diagrams is difficult, 

time-consuming, and costly. For these reasons new approaches, fast and reliable at 

the same time, are of great interest in formulation science and technology [186, 187]. 

Recently, HS QCM-D was shown to be a fast and easy technique able to detect 

surfactant or lipid phase transitions induced by hydration using a very low amount 

of substance [155, 188]. 

In the present study, HS QCM-D was used as an alternative method to investigate 

the phase behavior of both C10DAO-branched and C10DAO-linear in water. The 

measurements were performed as a function of time during continuous hydration at 

25 °C (Figure S4 a-b). The prominent changes in resonance frequency Δf/n and 

dissipation ΔD/n were related to hydration-induced transitions between different 

LLC phases of the (C10DAO-branched)-water and (C10DAO-linear)-water binary 

systems. In general, experiments started by measuring the uncoated sensor in a dry 

N2 atmosphere. Afterwards, the sensor was spin-coated with 20 μL of an aqueous 

surfactant solution with ws=0.05, at rps=32 for 30 s. The coated sensor was then dried 
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in the oven for 10 min at 50 °C under a flow of N2 gas, until a stable baseline of 

frequency was obtained. The film thickness was determined by comparing data 

obtained for uncoated and coated sensor, and was found to increase with the number 

of spin-coating depositions (Figure S6). For the HS QCM-D measurements, the 

surfactant solution was deposited ten times, leading to a film thickness of 180 and 

160 nm for C10DAO-branched and C10DAO-linear, respectively. Finally, the 

humidity scanning experiment was initiated with the same procedure used by 

Björklund and Kocherbitov [155]. 

In the QCM-D humidity module used for the measurements, the measurement 

chamber in which the sensor is located is separated from a flowing LiCl aqueous 

solution by a Gore® membrane. The membrane is permeable only to water vapor, 

which diffuses from the solution into the gas phase above the sensor and thus 

regulates the RH (Relative Humidity) above the film coated on the sensor. In 

equilibrium conditions, which are easily reached because of the small amount of 

sample used, the water chemical potential in the hydrated surfactant layers’ equals 

that in the gas phase above the sensor, which in turn, equals that in the LiCl solution. 

Thus, the water activity in the LiCl solution (aw) is directly proportional to RH 

(aw=RH/100). The HS QCM-D experiment was carried out under controlled dilution 

of a saturated LiCl solution (aw=0.12 [188]) to continuously regulate RH in the 

QCM-D chamber.  

The Δf/n and ΔD/n values for the different overtones were measured as a function of 

time during dilution of the LiCl solution flowing in the humidity module (Figure S4). 

From the knowledge of the dilution ramp, time was converted to aw [26]. Variations 

of Δf/n and ΔD/n curve profiles of the initially dry C10DAO-branched and C10DAO-

linear films were provoked by the continuous increase in RH, leading to the LLC 

phase transitions detected. 

Figure 20 reports (a) Δf/n and (b) ΔD/n as a function of aw for the binary system 

(C10DAO-branched)-water.  
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Figure 20. Frequency shift Δf/n and dissipation ΔD/n as a function of water activity aw (a and b) for 

C10DAO-branched. Arrows indicate water activity levels where phase transition in Δf/n and ΔD/n 

was detected as a result of hydration-induced phase transitions. Abbreviations: L1=micellar phase; 

L=lamellar phase. 

 

It has to be stressed that, differently from all the other data reported in the literature, 

in this case measurements starts not from a solid but from a dry viscous liquid. With 

increasing aw, Δf/n smoothly decreases, indicating that the surfactant film absorbs 

water. As the water activity level reaches about aw≈0.25, a phase transition from the 

viscous liquid to a LLC phase was clearly seen as an abrupt slope change. Above 

this aw value, Δf/n steeply decreases. From the comparison with the POM and SAXS 

data, these HS QCM-D results can be confidently interpreted in terms of the system 

transition to a Lα arrangement. Interestingly, in the viscous liquid phase the 

normalized frequency shifts are independent of overtone number, as predicted by the 

Sauerbrey model, while their absolute values decrease with increasing n in the 

lamellar phase. This behavior has been already reported for LLC phases and shows 

that they are plastic materials characterized by extensive energy dissipation. 

Consistently, the transition is also detected in the ΔD/n trend, which shows an initial 

increment indicating that the viscous liquid film becomes less rigid with increasing 
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the water content. A further increase is observed upon the transition to the Lα phase, 

deriving from the high relative mobility and deformability of locally stacked 

lamellae. Above aw≈0.25, ΔD/n also decrease with increasing n, consistent with the 

Δf/n results.  

No evident discontinuity in both the Δf/n and ΔD/n trends was found at higher aw 

values, where the transition from the transition from Lα to the surfactant-water 

isotropic mixture was found to occur by POM data. A closer scrutiny of the curves 

reveals only a small peak at aw≈0.5 (see the insets in Figure 19). Reasons for the 

poorly marked transition can be proposed to reside in the disordered and defective 

organization of the C10DAO-branched molecules in the lamellae, which does not 

change much as micelles (see below) are formed. 

Also the phase behavior of the (C10DAO-linear)-water system was investigated by 

HS QCM-D, using the same procedure adopted for C10DAO-branched. Results are 

reported in Figure 21.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Frequency shift Δf/n and dissipation ΔD/n as a function of water activity aw (a and b) for 

C10DAO-linear. Arrows indicate water activity levels where phase transition in Δf/n and ΔD/n was 

detected as a result of hydration-induced phase transitions. Abbreviations: L1=micellar phase; 

H1=hexagonal phase; L=lamellar phase; L+C=lamellar and crystal phase; C=crystal phase. 
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The measurements start from aw=0.12 which is the lowest value achievable using the 

LiCl solution. With increasing aw, Δf/n decreases, which is not expected for solid 

surfactants. This evidence suggests that measurements start from a sample in which 

C10DAO-linear crystals already co-exist with a Lα phase. The presence of lamellae 

in the hydrated surfactant film is confirmed by the evidence that Δf/n absolute value 

decreases with increasing n. A clear slope change is observed at aw≈0.3; on the basis 

of the POM and SAXS results, this can be identified as the threshold above which 

only lamellae exist. At aw≈0.3 an abrupt Δf/n drop is observed, which is interpreted 

as the transition from the Lα to the H1 phase. No evidence of cubic phase, whose 

stability region is generally delimited by evident peaks, is observed between the Lα 

to the H1 phases, confirming the POM evidences. A small but well-detectable peak 

at aw ≈ 0.65 marks the transition from the H1 phase to the isotropic L1 mixture. The 

L1 phase is expected to persist up to the highest aw value examined; the maximum 

observed in the Δf/n trend at aw ≈ 0.65, consequently, has not to be ascribed to a 

phase transition but rather could hypothetically derive from a morphological change 

of the surfactant aggregates in solution, or to a change in the inter-aggregate 

interactions. Further investigation is definitely needed to clarify this point. 

The ΔD/n trends, show in Figure 20 b, show the same transitions observed in the 

Δf/n graph. In the stability domain of the H1 phase, ΔD/n does not depend on n. This 

indicates the hexagonal arrangement of surfactant cylinders to be more rigid and less 

able to dissipate energy than stacked lamellae. 

Overall, the phase behaviors of C10DAO-branched and C10DAO-linear observed 

using POM and SAXS on the one hand and HS QCM-D on the other are remarkably 

consistent. This supports HS QCM-D as a fast method to obtain reliable information 

on surfactant phase diagrams. It clearly detects transitions between solid and a LLC 

phase as well as between different LLC phases. Transitions to isotropic mixtures are 

also detectable, even though less evident. As possible drawback, one could argue 

that HS QCM-D is not able to discriminate between different LLC phases, whose 

structure has to be identified by different techniques. For this reason, it can be 



78 
 

proposed a method for a fast screening of how the phase behavior of a certain 

surfactant, already known, is affected by the presence of other components (e.g., co-

surfactants, polymers, additives). Under this viewpoint, HS QCM-D is a precious 

tool in surfactant formulation technology. 

 

3.7) Isotropic surfactant aqueous solutions: SANS results. 

C10DAO-linear micelles. SANS curve profile reported in the figure 21 b clearly 

shows the presence of the peak in the 0.102<q<0.154 due to electrostatic interparticle 

interaction. SANS from C10DAO micelles in D2O (ws=0.15) was modeled with 

ellipsoid with mild polydispersity, following the with factor structure of Hayter and 

Penfold. The ellipsoid equation used to fit the experimental data is reported in 

supplementary material EqS1 The remainder of the C10H21 tails and their terminal-

CH3 groups are placed inside of the ellipsoid. Fitting parameters, volume fraction, 

the charge aggregates. The radii of the ellipsoidal is Ra and Rb, typical of a prolate 

ellipsoid in Table 5 are reported. C10DAO headgroup volume was taken from the 

partial-specific volume measurements of Benjamin [190] and was confirmed by 

reflectivity data at an air-water interface [191] Fitting the micellar SANS data as 

either monodisperse or polydisperse spheres would require core radii greater than 

the fully extended length of a surfactant tail, implying either a physically 

unreasonable “hole” at the center of the micelle, or that possibly wet headgroups are 

pulled into the micelle interior. In this latter case a spherical model simply does not 

fit.  

C10DAO-branched. SANS from C10DAO micelles in D2O (ws=0.15) was modeled 

assuming monodisperse, hard sphere micelles following the methodology of Hayter 

and Penfold and reporte din the figure 22 a. Sphere micelle equation used to fit the 

experimental data is reported in the supplementary material EqS2. SANS profile does 

not show the presence of a peak due to electrostatic interparticle interaction but with 

the Hayther and Penfold strcture factor the fitting was enhanced, this means that a 
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small but not high charge was considered. The contribution of a factor structure was 

taken into account, in addition to the form factor, to fit the data. The ellipsoidal model 

has been initially, tried to fit the experimental data unfortunately without success. 

Then, the experimental data has been fitted with the hard sphere model with Hayter 

and Penfold structure factor and the experimental data were perfectly fitted. 

For what concern the C10DAO-branched (ws=0.40) was modeled assuming a mild 

polydisperse cylinder micelles with the factor structure of Hayter and Penfold and in 

the figure 22 c is reported. The equation used to fit the experimental data in the 

supplementary materiali s reported EqS3. All features in Table 5 are reported. 

Particularly the SANS curve profile shows a presences of the peak due to an 

electrostatic interparticle interactions.  

In the case of C10DAO-branched a morphology transition from spherical to 

cylindrical micelles between 0.15<ws<0.40 was detected. Particularly, the cylinder 

micelles are not organized into a supramolecular structure to generate hexagonal 

phases as is possible to see from the rheology data (see figures below). 
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Figure 22. SANS curve profiles for (a) C10DAO-branched/D2O and (b) C10DAO-linear/D2O ws=0.15 

and C10DAO-branched/D2O ws=0.40. 
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SANS parameters 

 SLDx106 [Å2] Charge 

[e] 

R[Å] Vol [Å3] Radius_a 

 

Radius_b Na Length 

[Å] 

C10-branched 

ws=0.15 

-0.145 1.39 13 416.49 / / 22 / 

C10-linear 

ws=0.15 

-0. 155 9.27 / 389.49 13.85 20.29 61 / 

C10-branched 

ws =0.40 

-0.145 6.89 13 416.49 / / 51 40 

 

Table 5. SANS parameters for C10DAO-branched/D2O and C10DAO-linear/D2O systems. 

 

From the aggregation numbers for C10DAO-branched and C10DAO-linear even at 

different concentrations it is clear that the branching generates the formation of more 

thick micelles with respect to the linear surfactant 

 

3.8) Rheological behavior investigation 

The viscoelastic properties of C10DAO-branched and C10DAO-linear aqueous 

mixtures were investigated by rheological measurements [192]. 

The viscosities of (C10DAO-branched)-water samples with different surfactant 

content are reported in Figure 23 as a function of the shear rate at 25 °C.  
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Figure 23. Viscosity versus shear rate diagram for the C10DAO-branched/water system. 

 

Viscosities of samples with ws equal to 0.15 and 0.40 were very low and only weakly 

dependent on the shear rate. This behavior is expected for these L1 samples, which 

contain spherical or cylindrical micelles, as demonstrated by SANS experiments. 

Viscosity increases with increasing surfactant concentration but remains, overall, 

quite low. The Lα sample with ws=0.70 presents a much higher viscosity over the 

whole investigated shear rate range, and behaves as a shear-thinning fluid, whose 

viscosity decreases with increasing the shear rate. 

The same procedures were than applied to investigate the rheological properties of 

C10DAO-linear aqueous mixtures at the same concentration used for C10DAO-

branched. The viscosity versus shear rate data are shown in Figure 24.  
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Figure 24. Viscosity versus shear rate diagram for the C10DAO-linear/water system 

 

The sample with ws=0.15 presents a low viscosity which remains nearly constant at 

high shear rate. This is consistent with the SANS results indicating the sample to be 

a liquid solution containing small-size micellar aggregates (L1 sample). Samples 

with ws equal to 0.40 and 0.70 are much more viscous and present a shear-thinning 

behavior, an evidence of their liquid crystalline organization. Particularly, the sample 

with ws = 0.70, which according to the SAXS results is in the Lα phase, shows a 

viscosity lower than the sample with ws = 0.40, which is in the H1 phase. Thus H1 

samples are macroscopically stiffer than Lα ones, suggesting the hexagonal arrays of 

long (infinite) cylinders to be microscopically less dynamic than stacked lamellae 

[84]. Thus, the viscosity results reflect strong interactions among rod-structured 

aggregates, favoring the formation of the compact rod-like network in the hexagonal 

phase [78]. On the other hand, the lamellar liquid crystals consist of surfactant 

bilayers, separated by an aqueous medium and for this reason the elastic and the 

viscous component are lower than the hexagonal liquid crystals [193]. 
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The viscoelastic properties of the same samples were then checked by oscillatory 

experiments. The storage (or elastic) modulus, G', and the loss (or viscous) modulus, 

G'', are reported in Figure 25 as a function of the angular frequency, .  
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Figure 25. Storage modulus G’ and loss modulus G’’ versus angular frequency of the C10DAO-

branched/water and C10DAO-linear/water systems at different ws overlapped. 

 

In the case of the sample with ws=0.15, the oscillation experiment furnished 

negligible G' values as compared to G'', thus indicating that the L1 sample containing 

spherical micelles presents a Newtonian behavior. A different viscoelastic behavior 

was observed for the sample with ws=0.40, for which both G' and G'' were detectable 

and were found to increase with increasing . Particularly, at low frequency the 

viscous response dominates (G''>G'), a typical behavior for viscous fluid. As ω 

increases, G'' becomes approximately equal to G', and the so-called crossover 

frequency is detected. At high frequency, G'>G'' and a behavior similar to that of an 

elastic solid is observed. Thus, the change of the C10DAO-branched micelle 

morphology from spherical to cylindrical, as highlighted by SANS measurements, 

along with the increased concentration which leads to increased interparticle 

interaction, convert the system rheology from that typical of a Newtonian fluid (at 

ws = 0.15) to that expected for a pseudoplastic material (at ws=0.40).  

Figure 24 shows the G' and G'' trends upon variation at 25 °C for the C10DAO-

branched aqueous mixture with ws=0.70, which presents a Lα structure. As can be 

seen, G' dominates and remains basically constant over a large frequency spectrum, 

(b) (c) 
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while G'' smoothly increases. This behavior, typical on non-Newtonian fluids, [194] 

corresponds to a rubbery plateau. 

The results of the oscillatory experiments for the same samples are shown in Figure 

15. For the sample with ws=0.15 only the loss modulus could be measured, similarly 

to what found for the branched surfactant. A close similarity between the two 

surfactants was also found for the sample with ws=0.70, for which almost constant 

moduli (with G'>G'') were found in the whole explored frequency range. These 

results are consistent with the dilute samples (ws=0.15) being in the micellar L1 phase 

and the concentrated ones (ws=0.70) in the Lα phase for both the C10DAO-branched 

and the C10DAO-linear surfactants. The oscillatory experiments for the C10DAO-

linear sample with ws=0.40, which is in the H1 phase, show high values for both 

moduli, as expected for LLC phases. The values are even higher than those observed 

for the lamellar sample (ws=0.70), supporting what inferred from shear viscosity 

experiments. G' is higher than G'' for most of the explored frequencies. Interestingly, 

at low frequency a sort of crossover is observed, similar to that found for the 

(C10DAO-branched)-water sample with the same concentration, which however is 

micellar solution of elongated micelles. 

 

3.9) Phase behavior of the (C10DAO-branched)-AES-water system: POM results. 

The phase behavior of the (C10DAO-branched)-AES-water system is presented in 

Figure 26.  
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Figure 26. Phase diagram of the C10DAO-branched/AES/H2O. The following notation is used for 

the various regions: L1 = isotropic water-rich solution phase, H1 = Hexagonal LLC phase, L = 

Lamellar LLC phase. 

 

Dashed lines indicate that the composition values delimiting two different phase 

regions. Five different phases were observed: two isotropic liquid mixtures (a water-

rich solution, L1, and a surfactant-rich solution, L2), a hexagonal (H1) and a lamellar 

LLC phases (L) and a crystalline solid (C). Identification of optically anisotropic 

samples was done by visual inspection through cross-polarizers, while the different 

liquid-crystalline supramolecular organizations where discriminated according to the 

texture shown by POM images (Figure 27). 
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Figure 27. Photographs of the textures of different phases at different concentrations with crossed 

polarises at 25 °C. (a) Maltese crosses typical of the lamellar phase 
10

0.35C DAO AESw w 

0.30waterw  ; (b) fan-like texture typical of the hexagonal phase 
10

0.015 0.50C DAO AESw w 

0.485waterw  . 

 

To present in a profitable way the results, it is worthy to start from the phase behavior 

of the two binary systems AES-water (reported on the horizontal axis) and (C10DAO-

branched)-water (reported on the right-hand side oblique axis). AES-water mixtures 

are isotropic water-rich solutions up to 0.27AESw  . In the concentration range 0.27<

AESw  <0.50 hexagonal structures are detected. Above 0.27AESw  a wide stability 

range of lamellae is found, while in extremely concentrated mixtures ( AESw >0.90) 

only hydrated surfactant crystals form. In the case of (C10DAO-branched)-water 

mixtures the isotropic water-rich solution stability domain is much more extended 

(up to 
10C DAOw  =0.60). No hexagonal phase is detected the only LLC structure found 

is the lamellar one, which is stable for 0.60<
10C DAOw  <0.80. More concentrated 

mixtures are surfactant-rich liquid solution (C10DAO-branched itself, as pure 

substance, is a liquid). 

Concerning the ternary system (C10DAO-branched)-AES-water, inspection of 

Figure 26 shows that the isotropic L1 solution is stable at low concentration of two 
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surfactants and extends at high surfactant concentration in mixtures in which 

C10DAO-branched prevails. The H1 phase is stable in a small domain along the 

Figure 26 AES-water binary axis. The Lstability occupies most of phase diagram. 

In order to rationalize the behavior of the (C10DAO-branched)-AES-water system, 

the phase stability moving from one surfactant-water axis to the other (at constant

10s AES C DAOw w w  , see the red line in Figure 27 can be analyzed. At 0.50AESw   a H1 

phase is stable; however, substitution of a small amount (less than 0.10) of AES with 

C10DAO-branched converts the hexagonal structure to a lamellar one. This is 

connected with the low tendency of branched surfactants to form H1 phase due to the 

relatively high critical packing parameter. With further increasing the C10DAO-

branched percent, the Lphase remains stable up to almost 70%. Above this value, 

isotropic solutions form, favored by the branched surfactant, which disrupt the 

packing of the hydrophobic tails and reduce the attractive tail-tail interactions. 

 

3.10) Phase behavior of the (C10DAO-linear)-AES-water system: POM and SAXS 

results 

The phase behavior of the ternary system (C10DAO-linear)-AES-water was analyzed 

by the same procedure adopted for the system (C10DAO-branched)-AES-water. The 

phase stability domains were identified by POM and SAXS experiments. The ternary 

phase diagram composed of (C10DAO-linear)-AES-water in the figure 28 is reported. 
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Figure 28. Phase diagram of the (C10DAO-linear)-AES-H2O. The following notation is used for the 

various regions: L1 = isotropic water-rich solution phase, H1 = Hexagonal LLC phase, 

H1+LHexagonal+Lamellar phasesL = Lamellar LLC phase. 

 

Four different phases were observed: L1, H1, L and C. The LLC phases made up 

most of the phase diagram. Differently from the other cases in which biphasic regions 

were too narrow to be detected, a wide domain of H1+L co-existence was found. As 

examples, POM images collected in Figure 29 show the typical texture of hexagonal 

phases (Figure 29 a), the Maltese cross pattern typical of a lamellar phase (Figure 29 

b), and the co-existence of Maltese crosses and non-geometric stripes structures 

indicating the presence of both hexagonal and lamellar structures (Figure 29 c).  
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Figure 29. Photographs of the textures of different phases at different concentrations with crossed 

polarises at 25 °C.; (a) hexagonal phase 
10

0.15C DAO AESw w   0.70waterw  ; (b) lamellar phase

10
0.40C DAO AESw w   0.20waterw  ; (c) hexagonal+lamellar phases 

10
0.25C DAO AESw w 

0.50waterw  . 

The phase behavior of the (C10DAO-linear)-water system, shown on the right-hand 

side oblique axis, present a L1H1LC sequence identical to that of found for 

the AES-water binary system, the transition concentrations being almost identical. 

Thus, analysis of the ternary system behavior enhances synergism/antagonism 

between the two surfactant, straight phase boundaries parallel to the left-hand side 

oblique axis being expected for an ideal mixing. At low ws, isotropic water-rich 
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solutions form, which convert in hexagonally structured samples with increasing 

total surfactant content. Surfactant mixing favors this transition: samples containing 

only AES or only C10DAO-linear form H1 LLCs at ws≈0.3, while in mixtures 

containing the same weight fraction of the two surfactants (i.e., along the black line 

in Figure 28), the same transition is observed at ws≈0.2. The synergistic behavior 

between the two surfactants could be related to the fact that intercalation of C10DAO-

linear between AES molecules in the aggregates decreases the steric repulsion 

among the ethoxylic headgroups, while intercalation of AES between C10DAO-

linear molecules decreases the electrostatic repulsion among zwitterionic 

headgroups. 

The H1L transition occurs at ws≈0.5 in the two binary systems. In this case, 

mixtures with the same weight fraction of the two surfactants, present this transition 

at almost the same ws. In samples in which both surfactants are present but one of 

the two prevails, the hexagonal structures are stable up to ws≈0.8. In other words, the 

prevalence of the two surfactants destabilizes lamellar structure.  

Comparison between (C10DAO-branched)-AES-water and (C10DAO-linear)-AES-

water phase diagrams clearly shows the ability of the branched surfactant to 

destabilize LLC phases in favor of isotropic liquid mixtures. This feature was already 

found in the binary system (C10DAO-branched)-water. The results reported in the 

present work demonstrate that this capability is maintained even in surfactant 

mixtures. 

3.11) LLC phases analysis of the ternary C10DAO-branched/AES/water and 

C10DAO-linear/AES/water systems: SAXS results. 

Structural details of the LLC phases formed by (C10DAO-branched)-AES and 

(C10DAO-linear)-AES mixtures in water at 25 °C were obtained by a SAXS 

investigation. The compositions of the analyzed samples are reported in table 1-2, 

together with the obtained parameters, while the most significant SAXS 
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diffractograms are shown in Figure 30. Concerning the (C10DAO-branched)-AES-

water system, the first four samples align along the diagram bisector (i.e., 

10C DAO AESw w ). The SAXS diffractogram of the sample with 
10

0.40C DAO AESw w   and 

2
0.20H Ow   is characterized by two peaks, a strong reflection at q=0.14 Å−1 and a 

second small reflection at q=0.28 Å-1 (Figure 30 a); thus, Bragg peaks show the 1:2 

ratio typical of Lα phases, allowing a lattice parameter alam = 43.7 to be estimated. In 

Table 6, the results obtained for the other samples analyzed along the same bisector; 

all of them clearly shows the features of the lamellar arrangement. The lattice 

parameter tends to increase with the amount of water, consistent with a swelling of 

the water layer between stacked lamellae. Only the datum with 
10C DAO AESw w =0.25 

shows remarkably lower lattice parameter. This evidence is not straightforward to be 

interpreted, but could be somehow related to the closeness of the sample composition 

to the phase transition from Lα to L1. 

 

The small portion of H1 phase present in the (C10DAO-branched)-AES-water phase 

diagram was also investigated. The diffractogram obtained for the sample with 

10
0.015 0.50C DAO AESw w   and 

2
0.485H Ow  , shown in Figure 30 b, also presents two 

Bragg peaks. The first strong reflection is detected at q=0.16 Å−1, while the second 

small reflection is positioned at q=0.27 Å-1. These peaks show the ratio 1:√3 typical 

of hexagonal phases, and the lattice parameter ahex=45.7 Å was calculated. Inspection 

of table 6 reveals that a reduction of the branched surfactant amount leads to a smaller 

lattice parameter. 



94 
 

 

Figure 30. SAXS diffractogram of the ternary phase diagram system composed of C10DAO-

branched/AES/water at different ws. 

 

SAXS measurements on (C10DAO-linear)-AES aqueous mixtures were performed 

according to the same protocol. A first group of analyzed samples presents the same 

amount of the two surfactants. The SAXS diffractogram of the sample with 

10
0.40C DAO AESw w 

2
0.20H Ow   is characterized by a two Bragg peaks at q=0.18 Å−1 

and q=0.36 Å−1 (Figure 31 a). Thus, the peaks show the ratio 1:2 expected for a 

lamellar phase, and the lattice parameter was estimated to be alam =33.8 Å. Inspection 

of Table 7 shows that the lattice parameter of of lamellar samples increases close to 

the transition to the hexagonal phase. 

For the sample with 
10

0.25C DAO AESw w 
2

0.50H Ow  the diffractogram, shown in Figure 

31 b, presents two strong reflections at q=0.14 Å−1 and q=0.16 Å−1, a third reflection 

at q=0.25 Å−1, and a fourth small reflection at q=0.32 Å−1. The first and third are 

related each other by the ratio 1:√3, and the second and fourth are related each other 

by the ratio 1:2, Thus, the results are consistent with the co-existence of hexagonal 

and lamellar structures (H1+L). The lattice parameter for the hexagonal phase was 

estimated to be ahex = 50.8 Å, while that for the lamellar phase was alam= 39.4 Å. 
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The diffractogram of the sample with 
10

0.15C DAO AESw w 
2

0.70H Ow  , reported in 

Figure 31 c, is characterized by a two Bragg peaks, at q=0.17 Å−1 and q=0.29 Å−1, 

in the ratio expected for the hexagonal phase. From this data, and the lattice 

parameter ahex = 43.1 Å was calculated.  

 

 

Figure 31. SAXS diffractogram of the ternary phase diagrm system composed of C10DAO-

branched/AES/water at different ws. 

 

SAXS PARAMETERS 

10C DAO branchedw   
AESw  waterw  Lattice parameter [Å] Phases 

0.4 0.4 0.2 43.77 L 

0.35 0.35 0.3 56.92 L 

0.3 0.3 0.4 63.61 L 

0.25 0.25 0.5 32.65 L 
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0.025 0.5 0.475 52.99 H1 

0.015 0.5 0.485 45.78 H1 
 

Table 6. Lattice parameters obtained by SAXS for the Compositions of C10DAO-branched/AES/water 

system. 

SAXS PARAMETERS 

10C DAO linearw   
AESw  waterw  Lattice parameter [Å] Phases 

0.475 0.475 0.05 35.59 L 

0.45 0.45 0.1 34.12 L 

0.4 0.4 0.2 33.82 L 

0.35 0.35 0.3 39.86 L 

0.3 0.3 0.4 65.82 L 

0.26 0.24 0.5 52.83+41.38 H1+L 

0.25 0.5 0.25 50.83+39.44 H1+L 

0.2 0.6 0.2 54.3+43.02 H1+L 

0.15 0.7 0.15 43.08 H1 
 

Table 7. Lattice parameters obtained by SAXS for the Compositions of C10DAO-linear/AES/water 

system. 

Overall, the SAXS investigation fully confirms the phase identification based on the 

POM images. Interestingly, abrupt variations of the lattice parameters are found 

close to phase boundaries. 

 

3.12) A newly ternary phase behavior determination by HS QCMD 

An alternative, inexpensive and fast method to investigate the surfactants phase 

behavior is the HS QCM-D, which is able to detect surfactant phase transitions 

induced by hydration using a very low amount of substance [26]. 

In the present study, HS QCM-D was used to investigate the phase behavior of 

(C10DAO-branched)-AES and (C10DAO-linear)-AES mixtures with the same 

amount of the two surfactants present in each mixture (i.e., along the black lines 

shown in Figure 25 and 27). The measurements were performed as a function of time 

during continuous hydration of the surfactants’ mixture sample at 25 °C (Figures S8). 
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The prominent changes in resonance frequency Δf/n and dissipation ΔD/n were 

related to hydration-induced transitions between different structural organization of 

the surfactants in the sample. Experiments started by measuring the uncoated sensor 

in a dry N2 atmosphere. Subsequently, the sensor was spin-coated with 20 μL of an 

aqueous surfactant solution with ws = 0.05, at rps=32 for 30 s. The coated sensor was 

then dried in the oven for 10 min at 50 °C under a flow of N2 gas, until a stable 

baseline of frequency was obtained. The film thickness was determined by analyzing 

data obtained for uncoated and coated sensor, obtaining a film thickness of 105 and 

100 nm (Figures S13-S14) for the (C10DAO-branched)-AES and (C10DAO-linear)-

AES mixtures, respectively. 

The Δf/n and ΔD/n values for the different overtones were measured as a function of 

time during dilution of the LiCl solution flowing in the humidity module (Figures 

S8). Conversion from time to aw was achieved by knowing the dilution time [155]. 

Variations of Δf/n and ΔD/n curve profiles of the initially dry (C10DAO-branched)-

AES and (C10DAO-linear)-AES films were generated by the continuous increase in 

RH, leading to the LLC phase transitions detected.  

In the figure 32 the Δf/n and ΔD/n as a function of aw curves profiles for the diagonal 

of the ternary system (C10DAO-branched)-AES-water containing an equal amount 

of the two surfactants are reported.  
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Figure 32. (a) Frequency shift Δf/n and dissipation (b) ΔD/n as a function of water activity aw for 

C10DAO-branched/AES/water (
10

0.50C DAO AESw w  ). Arrows indicate water activity levels where 

abrupt changes in Δf/n and ΔD/n occur as a result of hydration-induced phase transitions. 

Abbreviations: C+ L=crystal+lamellar phase; L=lamellar phase; L1=micellar phase. 

 

The measurements start from aw=0.12. With increasing aw, Δf/n decreases, which is 

not expected for solid surfactants. Moreover, the normalized frequency shifts are 

independent of the overtone number. This behavior, predicted by the Sauerbrey 

model, shows that the sample behave as plastic materials characterized by extensive 

energy dissipation, as typical of LLC phases. This evidence suggests that 

measurements start from a sample in which an LLC phase is present. In the same aw 

range, ΔD/n is constant, as expected for solids. Thus the measurement starts froma 

sample in which the solid and an LLC phase co-exist. A first transition with 

increasing surfactants hydration is observed at aw≈0.25. From the comparison with 

the POM and SAXS data, this transition detected by HS QCM-D can be confidently 

interpreted in terms of the system changing from a C+Lα to a Lα stability range. This 

phase transition is also detected in the ΔD/n trend, which shows an abrupt slope 

change from the initial constant value to a steep increase. 

With increasing water content along the black line in Figure 26, POM data show the 

transition from Lα to a surfactant-water isotropic mixture, which occurs at ws≈0.4. 

However, no dramatic discontinuity in both the Δf/n and ΔD/n trends was found for 
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aw values higher than 0.25. Perusal of Figure 32 only reveals a small step in the Δf/n 

graph and a broad shoulder in the ΔD/n graph at about aw≈0.55 (see the insets in the 

figure), which could be probably ascribed at the Lα to L1 transition. Indeed, HS 

QCM-D was already found to be poorly sensitive to transitions involving isotropic 

liquid phases. 

The ternary phase diagram (C10DAO-linear)-AES-water was investigated along the 

bisector at equal amounts of the two surfactant by HS QCM-D, using the same 

procedure adopted for (C10DAO-branched)-AES aqueous mixtures (see, the black 

line in Figure 28). Variations of Δf/n and ΔD/n during sample hydration are reported 

in the Figure 33.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 33. Frequency shift (a) Δf/n and dissipation (b) ΔD/n as a function of water activity aw for 

C10DAO-linear/AES/water (
10

0.50C DAO AESw w  ). Arrows indicate water activity levels where 

abrupt changes in Δf/n and ΔD/n occur as a result of hydration-induced phase transitions. 

Abbreviations: C+L=crystal+lamellar phase; L=lamellar phase; phase; =hexagonal phase; 

L1=micellar phase. 
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Even in this case the curves shows the C+LL transition, corresponding to a clear 

slope change in both the Δf/n and ΔD/n trends at aw≈0.2. The presence of lamellae 

in the hydrated surfactant film is confirmed by the evidence that Δf/n absolute value 

decreases with increasing n. A further slight, but still detectable, discontinuity is 

observed at aw≈0.5 (see the insets in the figure 33 a). It is more evident in the ΔD/n 

trend in which a sharp peak is observed, than in the Δf/n trend. On the basis of the 

POM and SAXS results, this can be identified as the transition from a lamellar to a 

hexagonal structure. At aw≈0.8 a shoulder is detected in the ΔD/n trend, which could 

be ascribed to the H1L1 transition. No evident discontinuity is observed in the Δf/n 

trend, which confirms to be poorly sensitive to transitions involving isotropic liquid 

phases. The L1 phase is expected to persist up to the highest aw value examined. 

Overall, the HS QCM-D results are in fair agreement with POM and SAXS data. 

This confirms that the HS QCM-D is a fast and inexpensive method to detect phase 

transitions in surfactant aqueous mixtures. However, since it does not allow an 

unequivocal and absolute assignment of the phase structure, it could be proposed as 

a method for a rapid screening of the effect of new components (e.g., co-surfactants, 

additives, a second surfactant) on the structural preferences of a surfactants whose 

phase behavior is already known. From this viewpoint, our results demonstrate, for 

the first time, HS QCM-D to be suitable to characterize the behavior of surfactant 

mixtures. 

 

3.13) Rheological behavior investigation of the C10DAO-branched/AES/water and 

C10DAO-linear/AES/water systems. 

The viscoelastic properties of the (C10DAO-branched)-AES-water and (C10DAO-

linear)-AES-water aqueous mixtures were investigated by rheological measurements 

[12]. For both systems, samples containing the same amount of C10DAO-branched 

(or C10DAO-linear) and AES were considered. 
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First, the viscosities were measured as a function of the shear rate at 25 °C, see 

Figures 33 a and b for samples including the branched and the linear amine-oxide, 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32. Viscosity versus shear rate diagram for the (a) C10DAO-branched/AES/ water and (b) 

C10DAO-linear/AES/ water systems. 

 

The viscosity of the (C10DAO-branched)-AES aqueous mixture with ws=0.2 (

10
0.20C DAO AESw w  ) and 0.80waterw   is low and weakly dependent on the shear 

rate, the sample behaving as a shear-thinning fluid, whose viscosity decreases with 

increasing the shear rate. Interestingly, at the same surfactant concentration the 

binary (C10DAO-branched)-water mixture, which contains almost spherical micellar 

aggregates, presents a much lower and shear-independent viscosity. Thus, different 

behavior shown in Figure 32 indicates that in the ternary the L1 phase contains 

different aggregates, presumably worm-like micelles [195].  

(a) (b) 
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The Lα sample with 
10

0.40C DAO AESw w   and 0.20waterw 
 

presents a higher 

viscosity than the L1 samples; moreover, the shear-thinning behavior is more 

marked.  

Concerning the (C10DAO-linear)-AES aqueous mixtures, the sample with  

10
0.20C DAO AESw w 

 
and 0.80waterw   presents a typical shear-thinning behavior 

similar to that observed for the (C10DAO-branched)-AES mixture at the same 

concentration. Thus, the sample is likely to contain worm-like micelles [195], whose 

formation can be concluded to be induced by the surfactant mixing, quite 

independently of the branching of the tails. 

The Lα sample with 
10

0.40C DAO AESw w   and 0.20waterw   also behaves as a shear-

thinning fluid, but presents a viscosity higher than L1 samples and very close to that 

observed for the (C10DAO-branched)-AES mixture at the same concentration. Thus, 

the viscosity of the lamellar phase seems to be poorly affected by the surfactant 

branching. 

The sample with 
10

0.20C DAO AESw w   and 0.60waterw  , and that 
10

0.25C DAO AESw w   

and 0.50waterw   are much more viscous, an evidence of their different liquid 

crystalline organization. Particularly, the sample with 
10

0.25C DAO AESw w  , which 

according to the SAXS is the H1+Lα biphasic domain, shows a viscosity lower than 

the sample with
10

0.20C DAO AESw w  , which is in the H1 phase. Thus, H1+Lα samples 

are less rigid than H1, suggesting that the co-existing LLC phases create a network 

of entangled structures, giving a higher microscopic dynamism than the hexagonal 

structures.  

Thus, the viscosity results reflect for the H1 phase a strong interaction among rod-

structured aggregates, generating a compact rod-like network formation [78]. At the 

same time, the lamellar liquid crystals are composed of a surfactant bilayer, separated 

by an aqueous medium and this gives higher dynamism than the hexagonal liquid 

crystals [193]. 
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The viscoelastic properties of the same samples were then investigated by oscillatory 

experiments. The storage (or elastic) modulus, G', and the loss (or viscous) modulus, 

G'', are reported as a function of the angular frequency, . In the figure 34 (a) the 

results obtained for the samples with 
10

0.10C DAO AESw w   in the (C10DAO-

branched)-AES and in the (C10DAO-linear)-AES aqueous mixtures are compared; 

figure 34 (b) shows the same comparison for the samples with
10

0.40C DAO AESw w 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34. Storage modulus G’ and loss modulus G’’ versus angular frequency of C10DAO-

branched/AES and C10DAO-linear/AES at equal ws; (a) L1 phase; (b) L phase. 

 

In the case of dilute samples, G' and G'' values were found to increase with . 

Particularly, at low frequency the viscous response dominates (G''>G'), a typical 

behavior of viscous fluid. As ω increases, G'' becomes equal to G', and the so-called 

crossover frequency is detected. At high frequency, G'>G'' and a behavior similar to 

that of an elastic solid is observed. This behavior indicates that the L1 samples present 

a non-Newtonian behavior, thus supporting the hypothesis that these samples contain 

elongated surfactant aggregates (probably worm-like micelles) able to overlap and 

(a) (b) 



104 
 

10
-1

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

G' w
s
=0.25 C

10
DAO-linear/0.25 AES/0.5 water

G'' w
s
=0.25 C

10
DAO-linear/0.25 AES/0.5 water

G
',

 G
''

 (
P

a
 s

)

(rad s-1)

10
-1

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

 G' w
s
=0.175 C

10
DAO-linear/0.175 AES/0.65 water

 G'' w
s
=0.175 C

10
DAO-linear/0.175 AES/0.65 water

G
',

 G
''

 (
P

a
 s

)

(rad s-1)

form entangled structures [194]. The comparison between the two dilute samples 

shows that the sample containing C10DAO-branched presents a higher elasticity and 

viscosity than that containing C10DAO-linear in the whole  range. 

For what concern the samples with
10

0.40C DAO AESw w  , which present a Lα 

structure, both G' and G'' remain basically constant over a large frequency spectrum, 

the elastic modulus dominating with respect to the viscous one. This behavior, 

typical on non-Newtonian fluids, [194] corresponds to a gel-like behavior.  

In Figure 35 (a and b) the G' and G'' of (C10DAO-linear)-AES-water samples with 

10
0.25C DAO AESw w   and

10
0.175C DAO AESw w  , which are in the H1 and H1+L 

stability domains, respectively, are shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. Storage modulus G’ and loss modulus G’’ versus angular frequency of C10DAO-

linear/AES at different ws; (a) H1 phase; (b) H1+L phase. 

 

For the former sample, the two moduli present very similar values, perusal of the 

figure reveals that at low frequency the viscous response dominates (G''>G'), a 

(a) (b) 
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typical behavior of viscous fluid. As ω increases, above the so-called crossover 

frequency, G'>G'' and a behavior similar to that of an elastic solid is observed. 

For what concern the sample with
10

0.25C DAO AESw w  , which presents a H1+Lα 

structure, Figure 35 b shows that G' dominates and remains basically constant over 

a large frequency spectrum, while G'' smoothly increases. This behavior is typical of 

gel-like samples, and is similar to that observed for the lamellar samples. 

 

3.14) Effect of the amine oxide architecture in the ternary phase diagram systems  

The comparison between the properties of the ternary systems (C10DAO-branched)-

AES-water and (C10DAO-linear)-AES-water allows the effect of the tail branching 

on the mixed surfactants’ self-aggregation to be studied. The phase diagram of the 

ternary system including the linear surfactant is dominated by hexagonal and 

lamellar LLC phases, while the isotropic micellar phase presents only a small 

stability domain. The highly viscous hexagonal phase could compromise the 

processability of a formulation based on this surfactant mixture. For this reason, a 

very effective strategy aimed at enlarging the stability domain of isotropic liquid 

mixtures and at reducing the hexagonal phase region, is based on the surfactant 

architecture [196, 197]. The tail branching is able to interrupt the intermolecular 

interaction and the effective packaging of the aliphatic tails, influencing the tendency 

to aggregate and the surfactants supramolecular organization [198-200]. Indeed, the 

phase diagram of the ternary system including C10DAO-branched presents a large 

isotropic liquid region; the rest of the diagram is dominated by an extended lamellar 

region. Thus tail branching causes an almost complete destabilization of the 

hexagonal phases. 
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4) Conclusions 

The molecular design of new surfactants offers the opportunity for the fine tuning of 

their aggregation properties, which reflects in their functional behavior. In this thesis, 

a new dimethylalkylamine oxide surfactant presenting a branched alkyl chain, 

C10DAO-branched, was successfully synthetized and purified using simple and 

easily scalable procedures. The alkyl chain branching does not affect the protonation 

equilibrium of the amino-oxide headgroup. Thus, the protonated cationic form of 

C10DAO-branched is present at acidic pH, while the zwitterionic form dominates in 

basic solutions. However, the aggregation behavior of the surfactant is much less 

pH-sensitive, with respect to the analogue bearing a linear alkyl chain, C10DAO-

linear. Micellization of the branched surfactant occurs at higher concentration and 

larger micellar aggregates form. C10DAO-branched micellar solutions present lower 

surface tension than C10DAO-linear ones. This clearly reflects in a higher 

foamability (particularly in the zwitterionic form) and in a longer foam stability 

(particularly in the cationic form). 

The self-assembly behavior in water of the two amine oxide surfactant isomers, 

C10DAO-branched and C10DAO-linear, has been explored over the whole 

concentration range and for temperature ranging between 20 and 70 °C for C10DAO-

branched and between 20 and 110 °C for C10DAO-linear. Investigation at higher 

temperature was hampered by the amine oxide degradation, with formation of an 

alkene and of hydroxylamine. From this viewpoint, the branched surfactant is 

weaker, because to lower energy required to form a bi-substituted alkene promotes 

the chemical degradation at a lower temperature than that required for the linear 

isomer. However, since the temperature in use for most of home-care formulations 

varies in the 15-50 °C range, the chemical instability seems a minor drawback of 

C10DAO-branched, not precluding its application for practical purposes. 
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In aqueous mixtures, the two surfactants present a different phase behavior: 

C10DAO-branched does not form any LLC structures below ws=0.62; in contrast, the 

isotropic domain is limited to ws=0.32 in the case of C10DAO-linear. The LLC phases 

formed of C10DAO-branched and C10DAO-linear have been investigated by POM, 

SAXS, HS QCMD and rheology. Experimental results show that the formation of 

LLC phases is poorly affected by the temperature, but strongly depends on the 

surfactant molecular architecture.  

The isotropic liquid phases formed by C10DAO-branched at low concentration in 

aqueous mixture (ws=0.15 and ws=0.40) were studied by SANS, highlighting a 

morphological transition from ellipsoid to rod-like micelles. In contrast, C10DAO-

linear only forms spherical aggregates. The isotropic liquid phase formed by 

C10DAO-branched at high concentration (ws=0.15, 0.40) was supported by rheology 

measurements. 

POM and SAXS results on LLC phases show that branching totally removes the 

hexagonal phase, just leaving a small stability domain on a lamellar phase. 

Rheological investigation demonstrates that the latter is much less viscous than the 

former one, indicating that hexagonally arrayed cylinders are more tightly and rigidly 

packed than stacked lamellae. These results support the hypothesis that the use of 

branched surfactants is a suitable strategy to increase the active (surfactant) 

concentration in detergent formulations 

Industrial formulations are usually based on surfactant mixtures; for this reason, to 

validate the application of branched surfactants, in this thesis the phase behavior of 

the ternary systems (C10DAO-branched)-AES-water and (C10DAO-linear)-AES-

water have been built by the same procedure used for the binary phase diagrams and 

investigated over the whole surfactant concentration range 25 °C. AES (alkyl ethoxy 

sulphate) is an anionic surfactant widely used in house-hold detergent formulations. 

The different architecture between C10DAO-branched and C10DAO-linear lead to the 



108 
 

formation of the different LLC phases in AES-containing aqueous mixtures. 

Concerning the mixture containing the branched surfactant five different liquid 

crystalline phases (L1, H1, L, C, L2) were observed. The L1 and L phases cover 

most of the phase diagram. The domain of the H1, C, L2, phases are much narrower. 

The mixtures containing C10DAO-linear four different liquid crystalline phases (L1, 

H1, L, C,) and one biphasic domain (H1+L were observed. The L, H1 and C 

phases cover most of the phase diagram, while the L1 region is relatively small.  

Thus, experimental results showed that, even in the presence of the AES, the phase 

behaviour is strongly affected by the C10DAO molecular architecture. As discussed 

for the binary systems, the hexagonal phase, whose stability domain is quite extended 

in the (C10DAO-linear)-AES-water ternary system, could compromise the 

processability of a formulation based on this surfactant mixture. From this viewpoint 

tail branching appears to be a very effective modification aimed at increasing the 

micellar phases, reducing at the same time the hexagonal phase. Indeed, in the 

ternary phase diagram of the system (C10DAO-branched)-AES-water the hexagonal 

phase is almost abolished and the stability domain of isotropic liquid mixture is much 

wider. 

Form a molecular viewpoint, the results reported in this thesis show that the 

branching is able to interrupt the interaction and the effective packaging of the 

aliphatic tails, influencing the tendency to aggregate and the surfactants 

supramolecular organization. Therefore, the branching in the alkyl chain represent a 

possible strategy for altering the aggregation properties of the amino oxides 

surfactant both in the binary system and in the ternary system. Indeed, the branching 

effect alters the surfactant-surfactant and water-surfactant interaction, favoring the 

formation of concentrated isotropic micellar phases with low viscosity and 

disfavoring the formation of high viscosity lyotropic liquid crystalline phases. 
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To summarize, our results point to alkyl chain branching as a successful strategy to 

regulate the surfactant aggregation and functional behavior. Specifically, branched 

N,N-dimethylalkylamino oxide can be proposed in applications based on surfactant 

mixtures (e.g., in the formulation of wetting agents and/or foam booster). 
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6) Supplementary materials 

 

1) Phase behaviour of C10DAO-branched/water and C10DAO-linear water systems. 

In Figure 1-2 the surfactant composition prepared for ocular inspection and SANS (

); POM and SAXS( ), HS QCM-D ( , )and rheology for C10DAO-

branched/water and C10DAO-linear water systems are reported, respectively. 

 

 

Figure S1. (A) Binary compositions prepared for ocular inspection, POM, SAXS, SANS, HS QCM-

D and rheology analysis for C10DAO-branched/water system; (B) Binary compositions prepared for 

ocular inspection, POM, SAXS, SANS, HS QCM-D and rheology analysis for C10DAO-linear/water 

system. 

 

2) Nuclear Magnetic Resonance (NMR) analysis 

In Figure S2 the -elimination mechanism of the N,N-dimethyl-2-propylheptan-1-

amine oxide is reported. In general, at high temperature the linear amine oxide tends 
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to form an alkene and hydroxylamine [1]. The -elimination mechanism is more 

favored for branched surfactants. Indeed, at high temperature (70 °C) the treatment 

of the N,N-dimethyl-2-propylheptan-1-amine oxide leads to the formation of a more 

stable alkene, 4-methylenenonane and N,N-dimethylhydroxylamine. In the figure S2 

the 1H NMR spectrum of the N,N-dimethyl-2-propylheptan-1-amine oxide, 4-

methylenenonane and N,N-dimethylhydroxylamine is reported. 

 

 

Scheme S2. -elimination mechanism of the N,N-dimethyl-2-propylheptan-1-amine oxide. 

 

At δ=0.88-0.93 ppm, multiplet signals of terminal CH3 groups are registered. At 

δ=1.28-1.43 ppm, multiplet signals of CH2 groups are detected. At δ=1.96 ppm, 

singlet signal of terminal CH in β respect to the N+O- group is registered. At δ=2.47 

ppm, singlet signal of terminal CH3 groups of the N,N-dimethylhydroxylamine is 

registered. At δ=3.14-3.22 ppm, signals of CH2 in a to N+O- group and CH3 bond to 

N+O- group. At δ=4.68-5.10 ppm signals of the CH of the alkene are registered.  

 



135 
 

 

Figure S2. 1H NMR spectrum of N,N-dimethyl-2-propylheptan-1-amine -elimination mechanism of 

in CDCl3 

 

3.2 Phase behavior: validation of the HS QCM-D method f/n and D/n versus 

hydration time. 

In the Figure S4 the f/n and D/n curve profiles as a function of time during 

continuous hydration at 25 °C for the system C10DAO-branched/water and C10DAO-

linearwater are reported, respectively.  

 



136 
 

 

Figure S4. (A)The f/n and D/n curve profiles for the system C10DAO-branched/water as a function 

of time during continuous hydration at 25 °C. (B) The f/n and D/n curve profiles for the system 

C10DAO-linear/water as a function of time during continuous hydration at 25 °C. 

 

In the Figure S5 the film thickness by comparing data obtained for uncoated and 

coated sensor was determined. For the HS QCM-D measurements, the surfactant 

solution was deposited ten times, leading to a film thickness of 180 and 160 nm for 

C10DAO-branched and C10DAO-linear, respectively. 

 

Figure S5. The film thickness of 180 and 160 nm for (A) C10DAO-branched and (B) C10DAO-linear, 

was reported, respectively. 
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In the figure S6 the film thickness, determined by comparing data obtained for 

uncoated and coated sensor was reported. Particularly, the film thickness was found 

to increase with the number of spin-coating deposition.  

 

Figure S6 the film thickness variation versus the deposition number 

 

In the Figure S7 the film thickness by comparing data obtained for uncoated and 

coated sensor was determined. For the HS QCM-D measurements, the surfactant 

solution was deposited ten times, leading to a film thickness of 105 and 100 nm for 

C10DAO-branched/AES and C10DAO-linear/AES, respectively. 
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Figure S7. The film thickness of 105 and 100 nm for (A) C10DAO-branched/AES, (B) C10DAO-

linear/AES 
10

0.50C DAOw   0.50AESw  was reported, respectively. 

 

In the Figure S4 the f/n and D/n curve profiles as a function of time during 

continuous hydration at 25 °C for the system C10DAO-branched/AES and C10DAO-

linear/AES are reported, respectively.  
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Figure S8. (A)The f/n and D/n curve profiles for the system C10DAO-branched/water as a function 

of time during continuous hydration at 25 °C. (B) The f/n and D/n curve profiles for the system 

C10DAO-linear/water as a function of time during continuous hydration 
10

0.50C DAOw   0.50AESw   

at 25 °C. 
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Figure S9. Ternary compositions of C10DAO-branched/AES/water and C10DAO-linearAES/water 

systems prepared for ocular inspection, POM, SAXS, Rheology analysis. 

 

Equation EqS1 used to fitt the SANS data of C10DAO-linear ws=0.15 with an 

ellipsoidal model.  

The output of the 2D scattering intensity function for oriented ellipsoids is given by 

(Feigin, 1987) 

 
Where 

 
And  

 
α is the angle between the axis of the ellipsoid and ⃗q→, V=(4/3)πRpR2

e is the 

volume of the ellipsoid , Rp is the polar radius along the rotational axis of the 

ellipsoid, Re is the equatorial radius perpendicular to the rotational axis of the 

ellipsoid and Δρ (contrast) is the scattering length density difference between the 

scatterer and the solvent. 

 

Equation EqS2 used to fitt the SANS data of C10DAO-branched ws=0.15 with an 

hardsphere model.  

 
where scale is a volume fraction, V is the volume of the scatterer, rr is the radius of 

the sphere and background is the background level. sld and sld_solvent are the 

scattering length densities (SLDs) of the scatterer and the solvent respectively, whose 

difference is Δρ. 

 

Equation EqS3 used to fitt the SANS data of C10DAO-branched ws=0.40 with an 

cylinder model.  
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Where 

 
and αα is the angle between the axis of the cylinder and ⃗q, V=πR2L is the volume 

of the cylinder, L is the length of the cylinder, R is the radius of the cylinder, and Δρ 

(contrast) is the scattering length density difference between the scatterer and the 

solvent. J1 is the first order Bessel function. 

 

 

CURRICULUM VITAE ET STUDIORUM 

 

INTERNATIONAL CONGRESS AND SCHOOLS PARTECIPATION 

 

4/4-5/2016 Title:’’Advanced training course on emerging biothecnologies for 

sustainable waste management and bioraffinery development’’. Naples, (Italy).  

6/12-20/2016 Title:’’Introduction to neutronic techniques for the macroscopic study 

of matter, with application to physics, chemistry, biology and geology’’. Valle 

Aurina (Italy) and Grenoble (France).  

9/20-23/2016 ‘’Italian Chemistry Society XLIV Congress Physical Chemistry 

section’’. Naples, (Italy).  

Poster contribution Title: ‘’Physico-chemical characterization of the N,N-

dimethylalkylamine-N-oxides micellization process’’.  

2016/10/4-8 Title: International Summer school 2016 ‘’Bio-Leaching and Metal 

Extraction Processes for Urban Mining: From Fundamental Principles to Practical 

Applications’’. At Technische Universitat Dresden. Dresden, (Germany).  

2016/12/16 Title: ‘’Bioinformatics and Computational Biology Conference’’. 

Naples, (Italy).  

6/19-22/2017 Title: ‘’16th European Student Colloid Conference (ESC)’’. Florence 

(Italy).  

Oral contribution Title: ‘’Salt-free catanionic surfactant mixtures: effect of the alkyl 

chain asymmetry on the self-aggregation processes’’.  

7/2-7/2017 Title: ‘’International School of Physical Chemistry. Materials for 

Biomedical Applications’’. San Servolo, Venice (Italy). 

9/4-7/2017 Title: ‘’9th International Symposium on Nano & Supramolecular 

Chemistry’’. Naples, (Italy).  

Poster contribution title: ‘’Polyfunctional ligands for supramolecular assemblies of 

Mn(II) catalysts in aqueous systems’’. 



142 
 

6/25-28/2018 ‘’Italian Chemistry Society XLVI Congress Physical Chemistry 

section’’. Bologna, (Italy).  

Oral contribution Title: ‘’Salt-free catanionic surfactant mixtures: effect of the alkyl 

chain asymmetry on the self-aggregation processes’’.  

9/2-5/2018 ‘’Italian Chemistry Society XX Industrial Chemistry section’’. Milan, 

(Italy).  

Oral contribution Title:”Design, formulation and characterizationof 

anhydrous/highly concentrated surfactants mixtures”. 

 

Publications 

 

A. Laezza, A. Casillo, S. Cosconati, C. I. Biggs, A. Fabozzi, L. Paduano, A. Iadonisi, 

E. Novellino, M. I. Gibson, A. Randazzo, M, M. Corsaro. E. Bedini. Decoration of 

chondroitin polysaccharide with threonine: synthesis, conformational study and 

antifreeze activity, Biomacromolecules 2017, 18, 2267-2276 

C. O. Rossi, P. Caputo, S. Ashimova, A. Fabozzi, G. D’Errico, R. Angelico. Effects 

of Natural Antioxidant Agents on the Bitumen: Aging Process: An EPR and 

Rheological Investigation. Appl. Sci. 2018, 8(8), 1405. 

M. Pallach, R. Marchetti, F. Di Lorenzo, A. Fabozzi, E. Giraud, D. Gully, L. 

Paduano, A. Molinaro, G. D’Errico, A. Silipo. Zymomonas mobilis 

exopolysaccharide structure and role in high ethanol tolerance. Carbohydrate 

Polymers. 201,2018, 293-299. 

A. Fabozzi, R. Vitiello, I. Russo Krauss, M. Iuliano, G. De Tommaso, A. 

Amoresano, G. Pinto, L. Paduano, C. Jones, M. Di Serio, G. D’Errico. Synthesis, 

Surface Properties, and Self-Aggregation Behaviorof a Branched N,N-

Dimethylalkylamine Oxide Surfactant. J Surfact Deterg (2018) DOI 

10.1002/jsde.12205 

 

Ph.D Courses 

 

Organic Reaction in Biological system (20/9/2017) (Prof Alfonso Iadonisi)  

 

Glycoscience (12/7/2016) (Dr. Emiliano Bedini) 

 

Addressing renewable energy technologies with quantum chemistry (10/3/2017) 

(Prof Michele Pavone)  

 

Small Angle Neutron Scattering snd Reflectometry for soft matter (13/11/2015) 

(Yuri Gerelli)  



143 
 

Tecniche di estrazione solido-liquido impiegate nella preparazione del campione per 

l’analisi chimica e nella produzione di estratti per usi industriali (3/3/16) (Dr. Daniele 

Naviglio).  

 

Development of the FluidFM and its applications for 2D pattering as well as 3D 

microprinting (17/10/2016) (Dr. Zambelli) 

 

Supramolecular chemistry of chiral callixarenes: interactions with protein and crystal 

surfaces. (13/10/2017) (Dr. Mauro Mocerino) 


