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Introduction

The models of nuclear structure that describe reasonably well the proprieties of the

atomic nuclei which are located in the valley of stability and in the region close

to it provide unusual properties for nuclei far from this. Essentially these nuclei

may have properties that di�er signi�cantly from those of nuclei at the stability

valley and for this reason they are called exotic. Mass, radius, spin, magic numbers

follow trends very di�erent from those of stable nuclei. The various attempts to

extrapolate the properties related to the nuclear structure far from stable region lead

to predictions very di�erent depending on the theoretical models used. This aspect

becomes more apparent as we start to explore what is called the " terra incognita".

Typical characteristics of these nuclides such as low production cross sections and

relatively short lifetimes make complicated the production and study. Employing

stable ion beams and exploiting the characteristics of certain types of reactions it is

possible to explore speci�c areas of the nuclide chart. Transfer reactions for instance

allow to move a little away from the valley of stability, fusion-evaporation reactions

create proton-rich systems, while deep inelastic collisions, as �ssion, allow to produce

neutron-rich nuclei. One can also use beams consisting of unstable ions in order to

explore the properties of exotic nuclei both from the point of view of the structure

and the dynamics of reaction.
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The production of exotic nuclei, beam stable and unstable, however, needs a

preparatory study in order to predict cross sections and the kinematics of the reaction

products to optimize signi�cantly the rates of production. The exotic nuclei produced

are typically excited and their de-excitation occurs through the emission of light

particles and gamma rays. One of the tools used to study nuclear evaporation is

the Statistical Model of evaporation. However, the Statistical model, despite being

a powerful tool, is not always able to reproduce the physical observables of interest

in an optimal manner.

Numerous articles in the late 80s and early 90s have, in fact, highlighted some gaps

in the predictive power of the same in extreme conditions. In the case, for example,

of hot nuclei, it is sometimes necessary to use di�erent parametrizations to reproduce

the data of each speci�c emission channel investigated. Often the reproduction of

the data is only possible after the measurements are performed and with unrealistic

parametrizations.

The main objective of this work is therefore to try to make up for missing ingredi-

ents in the statistical model by introducing an element dependent on these extreme

conditions and apply the acquired knowledge to explore the region of the " terra

incognita" . We will then investigate the model of the nuclear stratosphere proposed

by Batko and Civitarese using it in the statistical model and analyzing the simulated

physical observables. In this way we can understand how the nuclear stratosphere

model in�uences the latter. Once this is done, we will use the knowledge acquired

to replicate some experimental data where the statistical model fails to verify the

goodness of the stratosphere model used.
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Chapter 1

Evaporation and Statistical Model

In the quest for the production of new elements, heavy-ion beam accelerators were de-

veloped starting from 1950. The use of these facilities made the discovery of elements

in the regions of the nuclear chart corresponding to the exotic nuclei. If properly

accelerated, a heavy-ions fuse with target nuclei and generate compound nuclei that

decay by the emission of light particles and gamma rays by populating new nuclei.

This process, called fusion-evaporation, is not only an excellent tool to e�ciently

produce new elements, but it is also the most productive reaction mechanisms to

discover new nuclides.

Under speci�c conditions, the interaction between projectile and target can fa-

vor faster processes in which the formation of the compound nucleus does not take

place, for which it is preferable to use more advanced models which are able to re-

produce the other competing reactions as well. However, in reactions involving light

ions, it is possible to simplify the problem, since the production of compound nuclei

are unin�uenced by the dynamics in the input channel. Models have been devel-

oped to predict the cross sections of the di�erent channels, the angular and energy
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distributions of the reactions products and the evaporated particles, as well as the

multiplicities of these latter. They generally o�er a good reproduction of the physical

observables. Although much work has been devoted to fusion-evaporation, there are

still open questions. They mainly refer to the limitation of the standard parametriza-

tion included in the statistical model to reproduce the behavior at high excitation

energies or at high angular momentum. In this chapter, we will brie�y recall the

basic physical concepts underlying compound nucleus formation and decay. Then

we will check several interesting works on fusion-evaporation performed with the SM

and we will end by addressing several open questions on the fusion-evaporation that

show the quest for new physics.

1.1 Fusion Reaction or CN formation

Reactions that involve heavy ions, with energy in the center of mass higher than the

Coulomb barrier, have the wavelength of DeBroglie associated to the relative motion

projectile-target smaller than the dimensions of the two colliding nuclei. So it is

possible to ignore the quantum aspects of the problem and examine the motion of

the colliding nuclei using a classic approach. Di�erent types of processes generated

under this condition can be classi�ed as function of the impact parameter b, i.e

depending on the orbital angular momentum l~ of the entrance channel. According

the semi-classical relation :

l~ = µP∞b
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where P∞ is the asymptotic linear momentum and µ is the reduced mass of the

system. The reaction cross section σR can be expressed in terms of l

σR =
π

k2

∞∑
l=0

(2l + 1)Tl

where Tl represents the probability that the reaction takes place and k is the wave

number of relative motion. Using the approximation of sharp cut o� for Tl , we

obtain the expression

σR =
π

k2
(l + 1)2

Di�erentiating with respect to l, we get

dσR
dl

≈
2π

k2
l

Within this formalism we can classify reaction using the orbital angular momentum.

Figure 1.1: Reaction cross section as a function of the orbital angular momentum.
The di�erent types of reactions can be classi�ed as function of l : from 0 up to lcrit
we have the fusion reactions , than deep inelastic collision and from lDIC to lgr the
Quasielastic reactions.
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Large values of l produce the most peripheral reactions such as the deep inelastic

or direct reactions while complete fusion reactions take place at l lower than lcr
1,

where the large overlap of density of nuclear matter of projectile and the subsequent

thermalization of the system produces the CN formation.

1.2 CN Decay or Evaporation Residue Channel

In fusion reactions the CN formation represents the intermediate step preceding the

de-excitation of the system and can be expressed as

x+ A→ CN∗

where x and A are the projectile and the target nuclei, respectively. The CN is

characterized by an excitation energy E∗ and by an angular momentum J . The

excitation energy E∗ of the system is given by the sum of the Q value for the formation

of compound nucleus Q = mxc
2 + mAc

2 − mCNc
2 where mx,mA and mCN are the

mass of projectile, target and compound nucleus, respectively, and Erel is the kinetic

energy of the relative motion in the center of mass

E∗ = Erel +Q

The entire kinetic energy of relative motion is dissipated through a series of nucleon-

nucleon interaction inside the system. The excited con�guration of the CN is not

stable due to the excitation energy and angular momentum, therefore it can survive

for timescales typically in order of 10−21s. The main decay processes are: particles

evaporation and �ssion. Accordingly to the Bohr'independence hypothesis of the CN,

1we de�ne lcr as the maximum value for complete fusion

10



we consider the decay of CN independent from its formation process; so the system

loses memory of his formation channel but it conserves energy, angular momentum

and parity. The CN decays mainly by the evaporation of light particles, �ssion and

gamma emission. The cross section of each reaction channel can be calculated as the

product of the fusion cross section of the colliding ions σfus and the probability of

the excited CN in a speci�c decay channel (b) Gev of the exit channel

σa→b = σfusGev

In the region of low excitation energy, where an isolated state is populated, this cross

section is described by the Breit-Wigner formula [Hog78]. At high energy, instead,

the spacing between the nuclear levels is reduced and at the same time their width

increase so it is not longer possible to use the Breit-Wigner formula because their

widths overlaps. Hence, it is necessary a treatment based on a statistical approach

in order to describe the decay of the CN.

1.2.1 Evaporation of light particles

In the �rst stages of the CN de-excitation mainly light particles, such as neutrons,

protons and α-particles are emitted. They remove larger amount of excitation energy

and angular momentum. When the excitation becomes lower and lower the emission

probability of γ- rays increases. In fact the emission probability depends on the

atomic number, excitation energy and angular momentum of the CN and on mass

and charge of the emitted particle. The excitation energy of the CN can be separated

in two terms:

E∗ = Eth + Erot (1.1)
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where Erot is the collective rotational energy and Eth is the thermal energy related

to the random motion of the nucleons. Rotational energy is related to the angular

momentum ~J by the following equation

Erot =
| ~J |2

2I
(1.2)

where I is the moment of inertia of the CN that, in the rigid sphere approximation,

can be calculated as

I =
2

5
MR2

Figure 1.2: E∗ − J plane. At the top of the graph is a schematic the triangular
distribution of angular momentum of the initial compound nucleus. The yrast line
is relative to a possible spherical rigid rotator as an evaporation residue.

The Yrast line, in Fig. 1.2, in the E∗ − J plane is a curve that represents a

cooled rigid rotator in which all the excitation energy is stored only in the collective

rotational motion. Under the yrast line the value of the excitation energy E∗ would
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be smaller of the rotational energy, hence no nucleus of a given angular momentum

can exist below the yrast line. Using the E∗ − J plane it is possible to draw a

schematic description of the decay of the CN from its formation to the ground state

of the residual nucleus. As it can seen in the Fig. 1.3 the nucleus is initially in an

excited state of energy E∗ in the continuum region and has an angular momentum

Ji.

Figure 1.3: Multistep evaporation (evaporation cascade) from the compound nu-
cleus 32S. The continuous horizontal lines indicate the maximum excitation energy
E∗max which could be reached in each daughter nucleus, and the n, p and α-particle
thresholds are shown as dashed horizontal lines. The cascade stops when the point
reached in the E∗�J plane lies below the lowest particle emission threshold, in which
case the evaporation residue 26Al decays by gamma rays to the ground state. For
heavy nuclei, gamma decay competes signi�cantly even above the particle emission
thresholds.

The CN decays preferably by emission of light particles rather than electromag-

netic radiation emission. Each particle carries away part of excitation energy and
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part of angular momentum moving in the E∗ − J plane bottom left. After each

emission the energy of the residual nucleus is given by

E∗f = E∗i −Qs − ε

and the angular momentum

~Jf = ~Ji −~l

where E∗f and E∗i are the �nal and initial excitation energy, respectively. Qs is the

separation energy of the emitted particle, ε is the kinetic energy of emitted particle

, Jf and Ji are the initial and �nal angular momentum while l is the angular mo-

mentum carried away by the emitted particle. The process continues with further

emissions until the excitation energy and angular momentum are enough for particle

emission. Electromagnetic transitions proceed towards the Yrast line through a sta-

tistical cascade and eventually with a sequence of Yrast states towards the ground

state. The �nal nucleus originated in this chain of processes is called Evaporation

Residue (ER).

1.2.2 Particle evaporation probability

In the statistical model the Bohr's independence hypothesis and the principle of

detailed balance are invoked in order to relate the transition probability from the

initial state to the �nal state with the transition probability of the inverse process,

namely from the �nal state to the initial state. It is possible to demonstrate that the

emission probability of a particle i with energy εi and angular momentum li from a
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CN with angular momentum J0 and excitation energy E0 is given by [Eri60, Dos77]

Pi(E0, J0, (εi, li), EER, JER) ∝ ρ(Ed, Jd)Tli(εi) (1.3)

where Ed and Jd are energy and angular momentum of the daughter nucleus after the

emission of the particle i; ρ(Ed, Jd) is the level density of the daughter nucleus and

Tli(εi) is the transmission coe�cient of the fusion of the particle i with the daughter

nucleus in order to create the compound nucleus (the inverse process). The equation

1.3 has to be normalized to the total emission probability:

Ptot(E0, J0) =
∑
i

∑
li

J1=J0+li∑
J1=J0−li

∫
Pi(E0, J0, (εi, li), Ei, Ji)dεi

Because the entire process of decay is governed by the 1.3 normalized, both trans-

mission coe�cients and level density acquire an essential role.

1.2.3 Level density

The level density ρ in the formula 1.3 accounts for all the single particle states acces-

sible with energy and angular momentum given A and Z of the nucleus. Considering

that the decay are considered for nuclei in the continuum region, this level density

can be calculated throughout di�erent ways in which the nucleons of the system

can be disposed in the states of single particle in order that the total energy of the

system is within the range E, E + dE. The determination of the states of single

particle can be resolved starting from the adoption of a nuclear model. In case of

high excitation energies, when spacing between the nuclear levels decrease and their

width increase, a statistical method is applied. We can use a grand partition function

that describes the statistical properties of a system in thermodynamic equilibrium.
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If the nucleus can be considered as a Fermi gas, or an ensemble of a large number

of non-interacting fermions, the energetic levels of single particle can be assumed

equally spaced. So, starting from the assumption that the compound nucleus is a

system of non-interacting fermions, it is possible to obtain the expression of level

density for the CN [Eri60] :

ρ(E∗, J) =
2J + 1

24

√
a(

~2

2I
)
3
2 (E∗ − ~J(J + 1)

2I
+4E)−2∗ (1.4)

∗exp

{
2

[
a

(
E∗ − ~J(J + 1)

2I
+4E

)] 1
2

}
where J is the angular momentum of the given nucleus, a is the level density parame-

ter and I is the moment of inertia of the nucleus. The parameter a, sometimes called

the " little a" can be chosen, approximately, in the range A
10
MeV −1 ≤ a ≤ A

7
MeV −1

for nuclei width mass A < 100 and in the range A
11
MeV −1 ≤ a ≤ A

8
MeV −1 for nu-

clei width A > 100. As we can see in the Fig.1.4 the trend of the a value as function

of the mass A follows a straight course except very speci�c case mainly due to shell

e�ects.
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Figure 1.4: a parameter values in fuction of mass number A. The dotted line repre-
sents A

8

1.2.4 Transmission coe�cient

The second term of 1.3 is the transmission coe�cient of the absorption of a light

particle from a residual nucleus. We known that in the interaction between nuclei

both repulsive and attractive forces compete with each other. The attractive forces

produce absorption e�ects that can be evaluated through the use of a complex po-

tential. In analogy to the complex formulation of the refractive index in optics, it is

possible to add an imaginary term to the nuclear potential in order to obtain what

is de�ned as optical potential

Vopt = V (r) + iW (r)

that once replaced in the Schrödinger equation gives

(− ~2

2µ
∇2 + Vopt(r))Ψ(r) = EΨ(r)
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At this point, the divergence of the probability density currents is calculated

∇ · j =
~

2µi
(Ψ∗∇2Ψ−Ψ∇2Ψ∗) (1.5)

The absorption cross section is de�ned as the ratio between the net probability

density current (that is the di�erence between the ingoing and outgoing current)

and the probability current of the incident wave

σabs =
4j
jin

(1.6)

we can rewrite this using 1.5 as :

σabs =
π

k2

∑
l

(2l + 1)(1− |Sl|2)

where 1−|Sl|2 are the transmission coe�cients usually indicated with Tl. Sl = ei2δl is

the scattering matrix and δl is the �phase shift� derived by the presence of a potential

V (r) . In the case of a real potential, δl is a real quantity, but if there is an imaginary

part of the potential also δl has an imaginary part. In this way it is easier to see

the transmission coe�cients as the probability that a particle i produces inelastic

process but above all we note the strong dependence of the transmission coe�cients

on the de�nition of the optical potential used. For the case of strong dominance of

the fusion process Tl represents with good approximation the transmission coe�cient

that has to be used in the equation 1.3.

The transmission coe�cients are extracted from several reactions involving the

incoming particle and the daughter nucleus by means of the optical model. However,

these reactions have been investigated experimentally for target nuclei in their ground

states and all parameters of the OM potentials are for cold nuclei at low spin. It

18



is expected that the deformation of the compound nucleus such as predicted by the

RLDM, modi�es the evaporation barrier (and therefore the TC).

1.3 The SM for the study of fusion-evaporation

Since decades from its �rst formulation [Hauser-Feschbach] the statistical model rep-

resents the most powerful tool to investigate the evaporative decay of excited nuclei.

This approach allows to provide a good reproduction of the physical observables char-

acterizing the process that are usually accessible in experiments, e.g. cross sections

and particle multiplicity, energy and angular distributions. The model prescriptions

commonly used are based on systematics collected in the surrounding of the val-

ley of stability. In fact, these nuclei are the most simple to access with existing

beam/target combinations. However, it is of large interest to provide more global

prescriptions able to predict the behavior of the more exotic nuclei rarely populated

or accessible with radioactive beam facilities under construction. A better knowledge

of these nuclei it is relevant not only to improve the knowledge of the nuclear matter

in extreme conditions but also to provide a more reliable description of the processes

relevant in the astrophysical environments. A good starting point in the direction of

this long-range plan requires to solve the discrepancies between data and predictions

observed in the last decades in the region around the valley of the beta-stability in

the region of relatively high excitation energies and angular momentum where the

�ssion decay contribution is still negligible.

In the following paragraphs, we will show three di�erent reactions whose observ-

ables cannot be reproduced by the well-established parametrizations considered in

the SM codes. In order to overcome these lacks, we propose the use of alternative

prescriptions for the distribution of nuclear matter in the CN that is based on the
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nuclear stratosphere model [Bat88]. Using this model new analyses of existing data

on three reactions were carried out and the very promising results are described in

the following chapters.

1.3.1 Appearance of non-spherical emission in light systems

(Single-step VS Multistep codes)

An early work by La Rana et al., using 40Ar + 27Al reaction at Elab= 190 MeV

[Lar87] evidenced the limits of the physical ingredients usually considered in the SM

for the description of the evaporation channel. They have measured energy spectra

and angular distribution of protons and α-particles. The composite system 67Ga∗

was formed at an excitation energy of 91 MeV, and the critical angular momentum

for fusion JER is v 46~ as derived from fusion cross-section data.

20



Figure 1.5: Energy spectra of α-particles (left) and protons (right) for various detec-
tion angles. The points are experimental data and the curves are statistical model
calculations for spherical nuclei (dash line) and deformed nuclei ( solid line).

From the experimental point of view, the study was based on the measurements

of the protons and α-particles. The authors evidenced experimental energy protons

and alpha particle spectra shifted at lower energy with narrow widths with respect

to those simulated by assuming the evaporation from a spherical nucleus, as shown

in Fig.1.5. At the same time also the angular distributions of both particles show

anisotropies much smaller than experimental ones, see Fig.1.6.
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Figure 1.6: Angular distributions of α-particles and protons in c.m system. The
points are experimental data and the curves are statistical model calculations for
spherical nuclei (dash line) and deformed nuclei ( solid line). The calculated curves
have been normalized to the data at 90° to illustrate the di�erence in anisotropies.

Therefore the experimental trends of this set of observables seems to indicate the

presence of deformations in emitting nuclei much larger than those predicted by the

RLDM [Coh74]. Therefore the reproduction of the experimental data required to

consider very large deformations. We have to note that emission from elongated nu-

clei requires to take into account not only the reduction of emission barriers but also

the increase of the moment of inertia. These e�ects are consistently implemented in

the computer code GANES based on the SM model [Aij86]. This model allows to

simulate the emission of light particles from nuclei with di�erent axially symmetric

shapes. The code uses the Cassinian ovals [Paschevic] to describe the charge dis-

tributions for di�erent nuclear shapes: prolate, oblate and pear-shaped as well as

spherical. Furthermore the TC can be modi�ed using di�erent barrier heights for

the light particle emission. Both these quantities modify the energy and spatial dis-

tribution of light charged emitters, therefore allow to put strong constraint on the
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nuclear shapes. Considering deformations corresponding to an axis ratio b
a

= 2.4 the

α particle spectra, at di�erent laboratory angles, as well as the proton and α particle

angular distributions were simultaneously reproduced, see Fig.1.5 and Fig.1.6. The

protons spectra were calculated with the same deformed shape and e�ective excita-

tion energy as were used for α-particles spectra but the predicted spectra are still at

signi�cantly of higher energies than those observed. Larger deformations are needed.

Hence, this behavior indicates that the emission of light charge particles occurs from

peripheral regions of the nuclei, but the simple assumption of large deformation is

unrealisitic. It seems to be lacking an ingredient that increases the average evapora-

tion radius but is not obtainable through symmetrical deformation. Probably some

basic features are missing in the statistical model description.

1.3.2 Con�rmation of nuclear deformation (Single-step VS

Multistep codes)

The indications emerging from the work of La Rana et al.[Lar87] were immediately

con�rmed the subsequent year by measuring the α-particles produced in the reac-

tion 120 MeV 30Si + 30Si[Lar88]. Also in this work a large discrepancy between the

measured α-particles spectra and the simulated ones, assuming spherical nuclei, were

observed. The measured α-particles energy spectra were much softer than the sim-

ulated one (shifted at higher energy and signi�cantly broader) when emission from

spherical nuclei with JER = 38 ~ and the emission barrier from the fusion system-

atics were assumed. To overcome the discrepancy with the experimental data much

smaller values of the emission barrier and much smaller values of the JER have been

used. Therefore the data suggested that the emission is mostly from deformed nuclei

and elongated shapes with a major to minor axes ration b
a
≈ 3 (the so called hy-
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perdeformation) were needed to reproduce the data. The presence of a similar e�ect

observed in the decay of a CN with di�erent asymmetry in the entrance channel

should exclude as origin e�ects due to direct reactions, i.e. processes taking place

before the complete thermalization of the composite system. Such conclusions are

also con�rmed by the comparison of the invariant di�erential cross sections measured

at forward and backward angles that did not evidence the presence of contributions

from reactions di�erent from fusion-evaporation, e.g. from preequilibrium emission.

A similar behavior has been associated to the population of doorway states [Din16].

However, it has been observed that this phenomenon occurs in α-like nuclei and dis-

appears in similar systems produced with non-like reactants [Apa06]. Therefore this

is not the most probable explanation for the observed behaviour.
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Figure 1.7: α-particle energy spectra at di�erent laboratory angles. The experimental
data (dots) are compared with the simulations assuming the emission from spherical
nuclei (dashed lines) and from highly deformed nuclei with a b

a
=3 (solid lines).

The data were investigated by means of comparisons with the SM prediction

assuming the evaporative decay from a CN. The possibility to take into account the

deformation in�uence during the multi-step cascade, was not possible at that time

due to the lack of a suitable model. Therefore calculations of energy spectra where

performed using the computer code GANES, which provides a detailed description
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of the coulomb e�ects on the charged particle trajectories. We have to note that

GANES, being a single-step, requires to be combined with multistep evaporative

code to de�ne the initial conditions for the emission of the particles when CN at high

excitation energies decay through long cascades. Hence, LILITA code was used to

calculate the equivalent one step emission conditions at which the particle emissions

take place (mean values of mass, excitation energies and angular momentum <A>,

<Ex> and <J>).

Figure 1.8: α-particle energy spectra at θlab = 52.5° and 107.5° and anagular distri-
butions calculated by the code GANES and LILITA assuming a �rst-step emission.

In order to exclude that the di�erences between the experimental and simulated
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data were depending on the length of the decay cascades, GANES results were vali-

dated by means of a comparison with LILITA ones. In Fig. 1.8 the resulting energy

spectra and angular distributions are compared. As you can see the distributions

obtained with LILITA di�er from the GANES ones only if the �rst step emission is

considered, but they are in good agreement if are assumed as initial conditions for

the α-particle emission from the equivalent one-step emission. Hence GANES repre-

sent a well suited tool for the interpretation of the data able to evidence the presence

of deformation e�ects. On this grounds the authors concluded that the deformation

predicted from the RLDM were not su�cient and a new physical model that e�ec-

tively increase the mean evaporation radius have to be included in the statistical

model. We have to note that even if a satisfying description of the energy spec-

tra and angular distributions can be achieved with a single-step model as GANES,

more sophisticated multi-step models are needed to provide a realistic description of

the whole decay process. In fact, GANES, which does not include the competitions

among di�erent evaporation channels (neutrons, protons, alpha-particles, etc.) or

di�erent decay processes (evaporation vs. �ssion), cannot calculate the comprehen-

sive observables as the particle multiplicities or the more exclusive observables such

as the particle-particle correlations, which are more sensitive to the evolution of the

nuclear shapes along the evaporative cascades. Therefore in order to progress it is

essential to consider larger set of observables and to introduce multi-step decay in

the codes.

1.3.3 660 MeV 60Ni + 100Mo

Large deformations e�ects were observed also in studies of heavier systems. The

experimental energy spectra of the α-particles, measured in the 660 MeV 60Ni +
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100Mo reaction [Gon90] are in fact shifted to lower energies with respect the ones

calculated assuming evaporation from a spherical emitters as you can see in Fig.1.9.

These e�ects are typical not only of the α-particles, but exist also in the other He

isotopes and in heavier ejectiles, whereas they are absent in the neutron spectra.

Hence, this behavior a�ecting only the charged particle should be connected with

the emission from peripheral region where the trajectories are driven by a coulomb

potential weaker than the spherical one.
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Figure 1.9: α, n, 3He, and 6He energy spectra. The dashed and solid lines indicate
the statistical model predictions obtained in simulations with spherical and deformed
compound systems, respectively. The dots are the experimental data. The simula-
tions were normalized to the experimental maximum value. The dotted line indicates
the particle spectra for spherical compound nuclei (from Ref.[Cha01]).
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Figure 1.10: Same as Fig.1.9 but for 6Li, 7Li, 7Be, and 8Be ejectiles. The dotted
curves are from calculations where the Coulomb barriers were lowered by increasing
the radius parameters of the nuclear potentials by a factor 1.25 (from Ref.[Cha01]).

In the work by Charity et al. [Cha01] the experimental data were compared with

simulations of the multistep code GEMINI [GEM]. As for the previous system, the

calculations give a better reproduction of the shape of the low-energy region by as-

suming deformations in the compound systems. In this shown calculation, transmis-

sion coe�cients and rotational energies were assumed appropriate for a �xed prolate

deformation with a major to minor axes ratio b
a
=1.6. At higher excitation ener-

gies, the transmission coe�cients were obtained by averaging spherical coe�cients
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over the surface area of the system equivalent sphere approximation [Hui89, Sto81].

Transmission coe�cients and rotational energies appropriate for b
a
=1.25 were set for

excitation energies below 100 MeV. This ansatz was chosen because it allows to re-

produce the experimental α-particle energy spectrum of 164Yb compound nuclei at

E∗ = 101 MeV measured in Ref.[Cha97]. This approach follows the idea that evapo-

ration is expected to commence before the equilibrium distribution of the shapes is

attained. In a such a way the nuclear shapes depend on the entrance channels and

larger elongations are expected for more symmetrical reactions in the initial stage.

However, measurements of α-particle spectra are in contradiction with this scenario

and moreover the simulations do not reproduce the low energy yields for 6Li, 7Li

and 7Be ejectiles that require Coulomb-barrier distribution larger than that associ-

ated with a single deformation, see Fig.1.10. Therefore, the assumption of a single

deformation is too simplistic and a new physics is needed to provide an interpreta-

tion of general validity. The di�erences observed in the energy spectra are directly

linked with the deformation of the nucleus at the emission stage. Heavier particles

which carry out large amount of energy and angular momenta are mainly emitted

at the early stages of the decay cascade, whereas lighter particles, as protons and

neutrons, are emitted also in the subsequent steps. Consequently, in order to provide

a complete description of the evaporation process it is mandatory to consider particle

multiplicities.

In the contest of this thesis, we will consider only protons, neutrons and α-

particles, because the heavier particles multiplicities are negligible being orders of

magnitude lower.
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Table 1.1: Light particles multiplicities for the 60Ni+100Mo reaction compared with
the GEMINI predictions [Cha01].

Mn Mp Mα

Exp. 10.2±0.7 4.8±0.8 1.9±0.1
Cal. 8.7 5.3 2.2

Unfortunately, the GEMINI simulations, whose parameters were tuned to well re-

produce the neutron and α-particle energy spectra in Fig. 1.9, largely underestimate

the neutron multiplicities shown in Table 1.1. Also, this latter discrepancy evidences

the inability of the model to provide a reliable description of the evaporation process

and the need to look for a missing key physical ingredient. Nuclear deformation

alone it is not enough to solve the evident discrepancies.

1.4 Open questions

In the previous paragraphs, spectra, angular distributions and multiplicities of the

light particles emitted in the purely evaporative channels, in a sample of reactions

from light to medium-heavy compound nuclei, have been shown compared with sta-

tistical model predictions. All the predictions, performed by adopting di�erent single-

step and multi-step codes, are unable to reproduce the experimental observables all

together. The role of multi-step particle emission and competition in the model cal-

culations have been considered and found to be inadequate to explain the observed

discrepancies. Furthermore, the discrepancies cannot be attributed to the limitation

due to the implementation of the model. In general, di�erent authors evidenced

signi�cant change in the behavior of the nuclear matter with increasing of the angu-

lar momenta and excitation energies involved with respect to the cold nuclei. The
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charged particles energy spectra shapes and angular distributions seem to suggest

that large deformations may occur independently from the mass of the compound nu-

clei and the symmetry/asymmetry in the entrance channels. However, calculations

that model statistically deformed nuclear emitters do not give satisfactory overall

pictures. In particular, a single set of deformation and reduced barriers does not

allow the simultaneous reproduction of the whole set of observables. Therefore, it

is crucial to consider large set of observables for a single system in order to avoid

controversial conclusions, as for instance in the work of La Rana et al. [Lar87] in

which, with a single set of observables, it is possible to reproduce α-particle energy

spectra and proton and α-particle multiplicities, but not the proton energy spec-

tra. Although this default of the standard statistical model has been known since

decades, at present a solution is still missing even if it is of large importance because

the studies of these reaction systems are a benchmark for studies of new frontiers

at high energy and spin. Eliminating the e�ects due deformations and variations of

the channel competition at extreme angular momentum, there must be a property of

the transition states that increases the radial distance between the emerging charged

particles and the residual nucleus. This element could be related to the super�cial

density, possibility having a tail that is more extended than it is imagined.

In this framework, this Ph.D. research has been devoted to the study of evapo-

ration channels in di�erent region of masses. The main goal was to investigate on

possible solutions to the above de�ciency of the model at high angular momentum

and excitation energies by adopting a non-standard statistical model approach. With

this aim the nuclear stratosphere model has been considered because it e�ectively

increases the mean evaporation radius in a manner unattainable by symmetric de-

formations and allows to achieve a nuclear density distribution depending on the

charged particles involved in the evaporation process.
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Several technical developments to reduce the computational time for large grid of

calculations with the new ingredients in the LILITA standard statistical model have

been introduced. The leading parameters for particle emission, e.g. the moment of

inertia and the transmission coe�cients, have been consistently modi�ed to reach a

global description of the emission process (independently for the excitation energies

and compound nuclei involved). A systematics analysis for validating the code pre-

dictions have been carried out by comparing di�erent data set available in literature.

The results obtained seem to provide a better understanding of the decay process.

Consequently, model predictions for larger mass system have been performed in or-

der to evaluate the impact of this innovative description on the evaporation process

observables for future experimental and theoretical studies.
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Chapter 2

Need for a new physics in statistical

model

As underlined with many examples in the previous chapter, over many years the sta-

tistical model has become the basis for the development of a series of codes dedicated

to the simulation of the nuclear evaporation process: neutron and light charged par-

ticle energy spectra, multiplicities, cross sections, residue velocities and yield, photon

distributions, etc are often computed by using a Monte Carlo approach. However, for

some extreme conditions such as high temperature or high angular momentum, the

statistical model shows discrepancies with the behavior of the real nuclei, especially

as regards the emission of proton and α-particles. Often, the emission barriers ap-

pear to be much smaller than the fusion barriers (the reverse process of evaporation

according to the detailed balance principle). To compensate for these discrepancies,

it is necessary to alter unreasonably the barriers from systematics by changing the

emission barriers and the moment of inertia of the compound nuclei. These problems

suggest that additional e�ects are needed in the models.
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This PhD work is based on a continuation of the studies so far carried out on

the statistical model and the Monte Carlo simulation codes of compound nuclei

deexcitation by evaporation of light particles. The main focus is on a possible missing

ingredient: the nuclear stratosphere [Lac88]. After the impact of projectile and

target in a fusion reaction many particles must be scattered into transitory orbits of

very high excitation. The density distribution of this hot composite nuclear system

might display a transient stratosphere of �high altitude orbits� that will relax quite

rapidly into the density pro�le of normal Fermi Gas with shape of a rotating liquid

drop at equilibrium. A hot very di�use nuclear surface is therefore formed and

promotes evaporative like emission prior to its relaxation. The study of this nuclear

stratosphere is carried out on a double path: on one hand, the implementation of

this model inside one the existing code on the statistical model; on the other, by

improving the computational e�ciency of the code and introducing a �exible and

easily accessible user interface.

2.1 Nuclear Stratosphere

The statistical model is often in disagreement with the behavior of real nuclei with

a temperature of only a few tens of MeV. These di�erences could lead to underesti-

mating or overestimating some important observables that are essential for the im-

plementation of an experiment. One, above all, is the multiplicity of decay channels:

small variations in the model or parameters can signi�cantly change the probabilities

of production of a given residual nucleus. This point is for instance of extreme im-

portance in the estimate of the production cross sections of exotic nuclei in di�erent

reaction mechanisms (i.e. �ssion, quasi�ssion, multinucleon transfers) or of super-

heavy nuclei. Typical discrepancies on measured observables obtained through the

36



use of the statistical model are shown for instance in Ref. [Lar87] where they have

measured both energy spectra and angular correlations of light charged particles.

These discrepancies between model and data have been widely observed in di�erent

region of mass and excitation energies and for di�erent probes [Gon90][Var10][Din18].

For these reasons this PhD work proposes the implementation of a new physical in-

gredient in the statistical model. Other similar evidences of the de�ciencies of the

statistical model are reported in a long series of articles between the late 80s and

early 90s.

2.1.1 Nuclear Stratosphere formation at �nite temperature

The comparison with the experimental data from many reactions grossly indicates

the presence of very low emission barriers, especially for protons, which are typically

associated with very large deformations of the emitter. However, such deformations

are larger than the predictions of the Rotating Liquid Drop Model. In other words,

the nucleus cannot sustain such large predicted deformations. An alternative expla-

nation was proposed by [Lac88] which assumes the presence of a nuclear stratosphere.

This concept have been developed in a model by Batko and Civitarese [Bat88].

The theoretical basis for the assumption of a nuclear stratosphere is reported in

the Ref.[Boz89]. The observed trends of the energy spectra and angular distributions

can be related to the occupation of high lying single-particle levels occurring with the

increase of the nuclear temperature and consequent to a change in the distribution of

nuclear density. This mechanism is controlled by the thermal response of the mean

�eld and can not be reproduced, for example, by changing the emission barrier or

by changing the deformation parameters of the nucleus itself. In Ref.[Boz89] it is

proposed to link the density of spatial distribution of nuclear matter as a function
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of temperature to the thermal response of the medium to the formation of a nuclear

stratosphere. In other words, the increase of the density at the surface region, with

increasing temperatures, leads to a decrease of density in the inner region. This

transformation determines the formation of a nuclear stratosphere. More generally, at

high temperatures, when the nucleus is more excited, a balance between the decrease

in the density distribution within and the increase in the density distribution outside

should be balanced. This balance is achieved by the contraction of the volume part,

which obviously can not contract inde�nitely and with the expansion of the part of

the surface with the employment of high single-particle orbits.

The increase in the average radius of the surface region, as a function of the

nuclear temperature, has as its direct consequence the formation of the stratosphere

with the consequent variation of the particle emission probability. If we consider

that the radial dependence of the optical model potential is derived from the nuclear

distribution function, it becomes clear that the e�ect of formation of a nuclear strato-

sphere on the statistical emission of particles must be investigated by incorporating

this radial dependence into the standard statistical model. This variation of the den-

sity distribution function simultaneously in�uences di�erent quantities such as the

moment of inertia and the transmission coe�cients. Therefore a correct evaluation

of the global e�ects requires the implementation of the function in the code so that

the overall e�ect can be assessed on the experimental observables competing with

each other. It should be noted that the model thus becomes temperature dependent

also in the transmission coe�cients because of the dependence of the nuclear radial

distribution function on the temperature.
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Figure 2.1: Density pro�les at various temperatures for 56Ni

In Figure 2.1 are shown the predicted density pro�le ρ(r) at di�erent tempera-

tures, from 0 to 6 MeV. The model well reproduces the experimental distribution

at T=0 of 56Ni where a double hump shape much higher in the inner region is

observed. With the increase of temperature these latter di�erences are smoothed.

The structure of light nuclei is well reproduced at zero temperature, and gradually

evolves towards systems with a more rounded shape at high temperatures T. Figure

2.2 shows the di�erences in density for various temperature values as a function of

the radial variable r .
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Figure 2.2: Density variation correspond to 56Ni

The evolution of the surface density determines the formation of the nuclear

stratosphere. In all cases, however, the internal region can be represented by a

Gaussian with a center near the root of the mean quadratic radius and this is the

starting point for the modeling of this phenomenon.

2.1.2 Radial dependence of potential

In order to introduce this element into the statistical model, the following approx-

imations of the radial dependence of the central potential were then used for the

calculation of the transmission coe�cients: contracted Woods-Saxon plus a surface

centered Gaussian (CSWG) and a contracted Woods-Saxon plus a tail at the surface

region (CWST). The function obtained is then replaced within the optical potential

that we remember to be de�ned as:
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V (r) = −Vofv(xv) + (
~
mc

)2VSO(s · l)1

l

d

dr
[fSO(xSO)] (2.1)

W (r) = −Wvfw(xw) + 4Ws
d

dxs
[fs(xs)]

where fi(xi) = 1
(1+exi )

with xi = (r−Ri)
ai

. In the case of CWSG approximation, the

function is:

fCWSG
i (xi) = fi(xi + 1) + hCWSGe[−(xi−1)

2]

both for the volume part Vv and WV of real and imaginary potential. Since the

presence of the stratosphere also changes the charge distribution within the nucleus,

the Coulomb potential must be adapted appropriately. In the uniform charge ap-

proximation of the Coulomb potential given as :

VC(r) =


Z1Z2

e2

r
(r ≥ Rc)

Z1Z2
e2

2Rc(3− r2

R2
c
)

(r ≤ Rc)
(2.2)

the radius RC is replaced by RCSWG
c given by RC − av, consistent with a contraction

of the volume region of the density distribution function as described in the previous

section. With this approximation of the radial dependence of the potential we can

describe the behavior by which, at the �nite temperature, the radial density distribu-

tion function is concentrated in its volume region and shows a cluster localization in

the surface region. Despite the good approximation achievable with CWSG potential

is preferable to use the CWST approximation.

The CWST is de�ned by the following radial dependence:
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fCWST
i (xi) =


1

(1+exi )
r ≤ rMi

h 0 ≤ r − rMi ≤ b

0 r ≥ rMi + b

where xi = (r − 0.8Ri)/a and r
M
i = 0.8Ri + ailn[ (1−h)

h
] for the part of both real and

imaginary volume of the optical potential. Within the same approximation we de�ne

the Coulomb radius as RCWST
c = 0.8RC .

We must remark that all the approximations proposed do not have explicit depen-

dence on the temperature, but the tuning of the parameters b and h, related with

the density function, can be used to probe their dependence on the temperature,

namely the excitation energy of the compound nucleus. The dependence of b and

h on the temperature has a direct e�ect on the transmission coe�cients because of

the radical change of the optical model potential. Therefore, in the following tests

of the statistical model, with the inclusion of the stratosphere concept, we will try

to �nd empirical relations of the type b(T ) and h(T ) from the best values of b and

h which reproduce the available set of data for a given compound system at a given

temperature. The identi�cation of such a relation would give the �rst evidence of

the existence of this stratosphere e�ect and would give further positive impact to the

use of this model as a broad predictive tool.

2.2 Parameterization of the optical potential

To use the potentials described above within the statistical model we have used the

following parametrizations: the one developed in 2003 by Koening and Delaroche

[Kon03], valid for neutrons and protons, and that was developed from valid for α-
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particles. Unlike other works in which local parametrizations valid for certain energy

and mass regions have been determined, the main work of Koning and Delaroche

was based on de�ning a global potential that reproduces the observed data in a wide

range of nuclides and energies. In fact, it is known that there are large di�erences

in behavior between stable and exotic nuclei. In order to try to include both types

of nuclei, in the parameterization of the global potential, the authors introduce a

dependence on isospin through the term N−Z
A

. In this way, the e�ects due to the

distance from the valley of stability are taken into account. Also in the case of

α-particles the work of Xin-Wu Su in 2015 [Xin15] improves the α-particle optical

model potential in the range 20 ≤ A ≤ 209. The use, for all three particles, of

a global potential for the calculation of the transmission coe�cients allows us to

comfortably extend the statistical model predictions also in areas far from the valley

of stability.

2.2.1 Protons and Neutrons

For neutrons, Koning's study was based on 800 angular distributions of elastic diusion

dσv dΩ and 140 sets of cross sections. The systematic takes into account nuclides with

24 ≤ A ≤ 148 e 194 ≤ A ≤ 209 . Nuclides outside these ranges are either too light

or too deformed. The di�erence observed is, for energies above 5 MeV, of 1% and

never more than 2%. It can be noted that the analysis is brought to energies equal

to 250 MeV but here the Optical Model deviates from the data in a meaningful

way; therefore, we set the maximum limit of this parameterization at 200 MeV. For

the protons, however, the study was based on 250 angular distributions of elastic

di�usion σ(θ)
σRuth

and a large collection of reaction cross sections σR. However, the

obtained �ts for the proton data are of lower quality compared to those relating to
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neutron di�usion, due e�ect, both at the ine�ciency of the angle σ(θ)
σRuth

at higher

energies of 150 MeV than at the loss of validity of the Saxon-Wood form factor.

Nevertheless, the di�erence between calculated and measured reaction cross sections

varies between 5% and 10%, so that the parameterization is still satisfactory.

2.2.2 α-particles

For α-particles we use a recent set of global phenomenological optical model poten-

tial parameters obtained by simultaneously �tting the experimental data of reaction

cross-sections and elastic scattering angular distributions in the mass range of target

nuclei 20 ≤ A ≤ 209 at incident energies below 386 MeV [Xin15]. This set of param-

eters reproduces satisfactorily the total reaction cross sections and elastic scattering

angular distributions, in a very wide region including nuclei not very close to the

valley of stability. Therefore it is more suited to make predictions in the region of

more exotic nuclei, with respect to the local parametrization usally adopted [Hod84].

The use of a global potential has the great advantage of not having to be changed

at every simulation carried out by reducing the number of variables between the

di�erent simulations considered.

2.3 Nuclear Stratosphere for a light nucleus

In order to evaluate the impact of the nuclear stratosphere model and the new trans-

mission coe�cients on the typical observables of the evaporative decay of the CN,

we have run the following calculations with the statistical model code LILITA. In

the �rst phase, the compound nucleus 67Ga∗, produced by the reaction 190MeV 40Ar

+ 27Al, was taken into consideration. The used code employs the transmission co-
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e�cients calculated using, for protons and neutrons, the optical potential through

the parameterization of Koning [Kon03] while for the α-particles that of Xin [Xin15].

The scope is to compare calculated observables such as energy spectra, angular dis-

tributions and multiplicity for di�erent parameters of the radial function given by

the classical Saxon Wood and the CSWG de�ned in the last section. In view of the

considerations reported in the article [Bat88] we expect to obtain di�erent values of

the observables in the two cases. We will then use the knowledge acquired from this

comparison to investigate reactions in extreme conditions.

2.3.1 Energy distributions

The �rst observables we considered are the energy spectra produced by the decay of

67Ga∗ at excitation energy of 91 MeV and JER = 46 ~. The energy spectra were

calculated by adopting di�erent descriptions of the nuclear density, namely, 1) the

radial function introduced by Batko and Civitarese [Bat88] for the nuclear strato-

sphere with di�erent values of b and h and 2) that obtained using the classical Saxon

Wood radial function so far indicated as No-Stratosphere(NS). The calculations have

been performed by considering the b = 1 and 3 fm and h = 0.05 and 0.15 in order

to evidence the in�uence of these parameters on the observables of interest. In the

Fig.2.3 are shown the energy spectra in the CM with and b = 1 fm , 3 fm and the

simulation NS.
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Figure 2.3: α-particles (top) and proton(bottom) energy spectra calculated by the
LILITA_N18 code for 67Ga∗ using the nuclear density distribution NS and the nu-
clear stratosphere with h = 0.05 and b = 1 fm and 3 fm.

By comparing the simulated spectra we observe a steeper slope in the higher

energy side when we introduce a distribution of the density according to the nuclear

stratosphere. The e�ect is a shift of the position of the maxima at higher or lower

energies depending on the speci�c b and h values, as you can see in Fig.2.3 and 2.4.
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The use of a larges extension of the stratoshpere distribution (b = 3 fm) produces

a shift of the spectra to lower energies and a steeper slope of the high energy side of

the α-spectra, whereas the high energy side of proton is the same. In 2.4 we show

the energies spectra produced by �xing the extension of the nuclear stratoshpere at

b = 3 fm for di�erent values of h. The main e�ect is a shift of the maximum of

the α−particles to higher energies increasing h and a swelled slope. Simultaneously

protons show a diametrically opposite behavior.

It is important to remark that the change in the transmission coe�cients in-

troduced with the stratosphere model has an impact on the competition between

particle emission probabilities at the di�erent step of the evaporative cascade. Us-

ing this stratosphere model the higher density in the most peripheral regions, given

the high value of h, modi�es the competition among the proton and alpha emission,

disfavoring the evaporation of the α-particles and favoring proton emission, whereas

the increase of the extension, given by b, leads to the lowering of emission barriers

and the increase in low-energy emissions. Therefore, the nuclear stratosphere model

introduces a large variability in the energy distributions of the evaporated protons

and α-particles. This feature is important for the case of 67Ga∗ as will be shown

later.
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Figure 2.4: As Fig.2.3, using the NS and nuclear stratosphere with b = 3 fm and
h = 0.05 and h = 0.15

2.3.2 Angular Distribution of emitted particles

Like the energy distributions, the angular distributions in Ref. [Lar87] also showed

a marked di�erence from those calculated using the statistical model. We begin, as

in the previous section, to examine the angular distribution in the center of mass
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keeping h = 0.05 and varying b.

Figure 2.5: α-particles (top) and proton(bottom) angular distribution in CM spectra
calculated by the LILITA_N18 code using the nuclear density distribution of (NS)
and the nuclear stratosphere with h = 0.05 and b = 1 fm and 3 fm .

In general, by observing Figg.2.5, 2.6, 2.7 and 2.8 the introduction of the strato-

sphere produces angular distributions that tend to be more anisotropic in the case

of α-particles while more isostropic in the case of protons than the distribution gen-

erated by the model without the stratosphere.

Higher values of b for both protons and α-particles produce more and more
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isotropic distributions. This trend is certainly due to the fact that a growing b

parameter increases the spatial extension of the density distribution, with a con-

sequential increase of the moment of inertia of the nucleus. Hence, the angular

distribution tends to become more isotropic. This e�ect, more evident in the case of

protons, is mitigated as h increases as can be seen in Fig. 2.6

Figure 2.6: As Fig.2.5 Angular distribution of α-particles(top) and protons(bottom)
emitted with h = 0.15

In Figs.2.7 and 2.8 the angular distributions are computed for b = 1 fm and two

values of h. In this case, the trend is the opposite of the one found by increasing b:
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the isotropy is reduced by increasing the h values. In other words, the anisotropy

increases with h and decreases with b.

Figure 2.7: Angular distribution of α-particles(top) and protons(bottom) emitted
with b = 1 fm
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Figure 2.8: Angular distribution of α-particles(top) and protons(bottom) emitted
with b = 3 fm

2.3.3 Multiplicity of decay channels

The multiplicities of the emitted particles (average number of particles of one type

per decay chain) are very sensitive observables to probe the statistical models be-

cause they include the competition between the di�erent decay channels, which in

turn depends on each particle emission probability computed by mixing transmission

coe�cients and level density. Therefore, the multiplicity values are closely connected
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both with the angular momentum and the excitation energy of the compound nucleus.

The study of these observables becomes even more e�ective when di�erent light par-

ticles, i.e. protons, neutrons, and α-particles, are emitted in su�cient amount to be

simultaneously measurable. For this reason, as it will be shown later, the comparison

with the data measured in the reaction 660 MeV 60Ni + 100Mo [Cha01] represents

an important test bench for assessing the impact of the transmission coe�cients

introduced from stratosphere model.

The competition between di�erent evaporation channels gives rise to a distribu-

tion the evaporation residues. Therefore, a possible way to test the calculation of the

particle multiplicities is to compare the calculated evaporation residues distribution

with the measure one if any. Tabs. 2.1 and 2.2 show the production cross section of

evaporation residues from 67Ga∗ for di�erent values of h and b. In the lack of any

previous knowledge on the e�ect of changes in the values of h and b on the evap-

oration residues distribution, we performed a grid of calculations with the hope of

�nding a pattern that allows to unambiguously de�ne the behavior of the production

cross sections with varying h and b.

Produced Nucleus
Cross section(mb)

h=0.05 h=0.1 h=0.15 NS

N=31 Z=28 164 164 164 117
N=30 Z=27 152 152 129 152
N=32 Z=28 105 105 117 47
N=30 Z=26 82 82 70 141
N=33 Z=29 70 70 58 35

Table 2.1: Cross sections of the main nuclei produced by 67Ga∗ and calculated with
b = 1 fm.
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Produced Nucleus
Cross section(mb)

b = 1 fm b = 2 fm b = 3 fm NS

N=31 Z=28 164 82 58 117
N=30 Z=27 152 129 70 152
N=32 Z=28 105 35 23 47
N=30 Z=26 82 129 141 141
N=33 Z=29 70 82 129 35

Table 2.2: Cross sections of the main nuclei produced by 67Ga∗ and calculated with
h = 0.05.

For b = 1 fm (Tab. 2.1), we do not appreciate signi�cant variations in the pro-

duction cross section for di�erent values of h. On the contrary, if h = 0.05 (Tab. 2.2),

the variation b induces important alterations. However a clear pattern does not come

out from these calculations as a function of h and / or b. Considering the scarcity

of data available (due to the high complexity required by the measurement of the

evaporation residues cross sections) it is more useful now to switch the calculations

to the particle multiplicities.

The calculated multiplicity of light particles from 67Ga∗ are shown in Fig. 2.9 for

the di�erent models.
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Figure 2.9: Particles emitted per event with �xed h = 0.05(top) e b = 1 fm(bottom)

The calculations indicate that proton and neutron multiplicities decrease as b

increases while they grow with h. Thus, the α-particles increase consistently in the

passage from b = 1 fm to b = 3 fm and decrease as h increases. With lower values of

h it seems therefore that a greater extension b of the stratosphere favors the emission

of α-particles at the expense of neutrons and protons.

A higher density and greater extension of the stratosphere shows a similar trend

to the previous one, as shown in Tabs. 2.4 and 2.3 for the production cross sections

of the evaporation residues.
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Produced Nucleus
Cross section(mb)

b=1 fm b=2 fm b=3 fm NS

N=31 Z=28 164 164 117 117
N=30 Z=27 152 129 94 152
N=32 Z=28 117 105 59 141
N=30 Z=26 47 59 94 59

Table 2.3: Multiplicity of some of the most populated emission channels with h =
0.15

Produced Nucleus
Cross section(mb)

h=0.05 h=0.1 h=0.15 NS

N=31 Z=28 59 105 117 117
N=30 Z=27 152 117 94 152
N=32 Z=28 141 141 141 141
N=30 Z=26 59 82 94 59

Table 2.4: Multiplicity of some of the most populated emission channels with b =
3 fm
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Figure 2.10: Particles emitted by event with h = 0.15 (top) and b = 3 fm (bottom)

In Fig. 2.10 we see that higher value of 67Ga∗, combined with a strong exten-

sion of the stratosphere b=3 fm, increases the probability of proton emission at the

expense of α-particles. The number of neutrons emitted remains, however, almost

unchanged. From the overall multiplicities pattern it is clear that the increase in

the extent of the stratosphere reduces the number of protons emitted, conversely it

grows with h.
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2.4 Nuclear Stratosphere for heavy Nuclei

Once the variations induced by the use of the nuclear stratosphere model on the

de-excitation of a light compound nucleus have been analyzed, it is essential to

evaluate the validity of the stratosphere model in the region of heavier mass nuclei.

The reaction considered for this purpose is 340 MeV 84Kr + 116Cd → 200Po∗ with

excitation energy equal to 43 MeV and JER=52~ [Han87].

In Fig. 2.11 the energy spectra of the α-particles present, albeit to a lesser

extent, a shift towards lower energies. For protons we observe an increase of the

particles emitted in the central region of the distribution with slight involvement of

the regions of tail and climb. The energy spectra therefore exhibit the same behavior

as the energy spectra obtained by simulating the decay of a light nucleus. However

the variations induced by b and h are more evident in the high-energy region while

less appreciable in the rising region of the distribution.
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Figure 2.11: α-particles(top) and proton(bottom) energy spectra calculated by the
LILITA_N18 code using the nuclear density distribution of (NS) and the nuclear
stratosphere with b = 3 fm varing h.
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Figure 2.12: Angular distribution of α-particles(top) and proton (bottom) emitted
with h = 0.05

Angular distributions in Fig. 2.12 show a slightly di�erent behavior from that

identi�ed in simulations concerning light nuclei. For α-particle, increasing b corre-

sponds to an increase in anisotropy. In Fig.2.13, on the contrary, for higher value of

h the behavior is that found in the case of the light nucleus but the tendency toward

higher anistropy in this case is mitigated by the larger moment of inertia.
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Figure 2.13: Angular distribution of α-particles(top) and proton (bottom) emitted
with b = 3 fm

As it concerns for the angular distribution of protons, the Figs. 2.12 e Fig.2.13

reiterate the behavior already observed in the emission of protons with an almost

�at distribution. No di�erence is observed between the three simulations carried

out, however we can underline a slight increase of anisotropy that we �nd for the

combination b = 3 and h =0.15 in Fig.2.14.
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Figure 2.14: Angular distribution of α-particles(top) and proton (bottom) emitted
with b = 3 fm

In Figs.2.15 and 2.16 the multiplicities of the evaporated particles are reported. In

the comparison between the multiplicities obtained through the use of the model with

statosphere and without, the number of neutrons emitted is always slightly higher

in the presence of the stratosphere independently of the parameters used, whereas

the variations on charged particles are strongly dependent on the parameters: the

increase of b leads to the increase in the number of charged particles, instead the

increase in density favors the emission of protons at the expense of the α−particles.
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Figure 2.15: Multiplicity using h = 0.05

In the case of high density in the outer region (h = 0.15) the increase of b

produces a lowering of the emission barriers both for protons and for α-particles,

with an increase of multiplicity more evident for the protons than for the α-particles

with respect to the case of low density (h = 0.05), cf. Figg.2.15 and 2.16.

Figure 2.16: Multiplicity using h = 0.15
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2.5 Final considerations on the calculated trends

We introduced this chapter by hypothesizing the possibility that the use of a strato-

sphere model would have �lled the di�erences, highlighted in a series of publications,

between the measured and the calculated physical observables using the standard

statistical model.

Regarding the multiplicity of evaporated particles, the introduction of the strato-

sphere model, both for light and heavy systems, produces similar results. In both

cases variations in density and extension of the stratosphere mainly in�uence the

multiplicity of protons and α-particles; the increase of the density, for example, fa-

vors the emission of protons while the increase of the extension of the stratosphere

favors the emission of the α-particles. A heavy system is, however, more sensitive to

variations than the light one. Such behavior could, in fact, explain the di�erences

found in Ref. [Cha01] between calculated and measured multiplicities.

Regarding the angular distributions, the heavy system is less exposed to the vari-

ations introduced by the stratosphere. This is because they are probably mitigated

by the contribution of the moment of inertia of the nucleus under examination. For

the light nucleus, on the other hand, the di�erences between the measured and cal-

culated angular distributions recall those highlighted in Ref. [Lar88] in support of

the thesis that the di�erences are due to the presence of an increase in the nuclear

radius. Instead, the energy distributions of the light evaporated particles show, both

for light and heavy systems, signi�cant variations; the presence of the stratosphere,

in fact, introduces important shift of the distribution or variations of its shape.

In summary, all the di�erences among the simulated observables, induced by the

use of the stratosphere model, are compatible with those highlighted in the Refs.

[Lar88, Cha01, Lar87]. We, therefore, continue in the next chapter with the use the
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stratosphere model just explored to reproduce the systems described at the beginning

of this chapter with particular attention to the measured observables that present a

gap with those obtained through the use of the Standard Statistical Model.
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Chapter 3

Using Nuclear Stratosphere Model

As showed in the �rst chapter, the standard SM does not provide a global description

of the evaporation process. Especially, it does not allow to predict precisely the

observables produced in the decay of compound nuclei at high angular momenta and

high excitation energies. The typical approach adopted so far has been to provide

an interpretation of the single experimental data set through the introduction of

very large deformed shapes, ad hoc modi�cations of the emission barriers and level

density parameters. However, these modi�cations do not provide a simultaneous and

satisfying reproduction of all the observables and do not represent a solid basis for

reliable predictions. Above all, by reviewing the literature, these modi�cations do

not bring out a pathway to follow to improve our knowledge of the evaporative decay.

Therefore, the need of new physics has been claimed.

In this framework, the aim of the present work is to make a step forward in

the understanding of these aspects, whose explanation is still missing. Therefore,

at �rst, we identify a series of experimental data set of fusion-evaporation reactions

at extreme conditions for the validity of the SM. The reactions considered are dis-

66



tributed over a wide nuclear mass range (A=60-160) with large di�erences in the

entrance channel asymmetries and/or the formation of doorway states. Therefore,

the inability in the data reproduction cannot be attributed to a speci�c mechanism

as in the case of alpha-clustering nuclei [Din16, Apa16], but they are most probably

due to the decay process itself. In order to provide a most general approach, the

same parametrization has been adopted for all the leading ingredients of the new

version of the evaporative code LILITA as it will be shown in details.

For the above reasons, a new physical ingredient, the nuclear stratosphere, and

non-local transmission coe�cients have been introduced. In particular, the nuclear

stratosphere provides a description of the nuclear matter distributions valid for an

extended mass range and does not require modi�cations depending form the ana-

lyzed observables; while the global transmission coe�cients for protons and neutrons

[Koe03] and α-particles [Xin15] are valid for a mass range of A=20-209 and an en-

ergy range covering of several orders of magnitude (1 keV-200 MeV). In a such way it

is possible to manage consistently the main aspects concerning the decay processes

occurring in a large variety of excited nuclei and the emission competition of the

di�erent light particles is treated consistently. In order to validate our approach and

to provide indications of the predicting power of the upgraded code we compared the

simulations with the exclusive observables collected in di�erent experiments.

In this chapter we present the analysis of the highly excited systems 60Ni, 67Ga,160Yb,

produced at Ex=75-93-280 MeV by the reactions 30Si + 30Si, 40Ar + 27Al, 60Ni +

100100Mo, respectively. The three analyses have been performed using a grid of

calculations, keeping a= A
8.0

costant and changing the two parameters of nuclear

stratosphere h and b only, in order to obtain the better reproduction of the whole

experimental data set. At the end of this chapter, in order to evaluate the predictive

power of the newer code with parameters b and h whose trend, with the excitation
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energy or temperature, is derived from the analysis on the above known reactions,

predictions for a heavier nucleus have been discusses in terms of changing of evap-

oration residues yields and multiplicities with h and b from the trends determined

from the analyzed systems.

3.1 190 MeV 40Ar + 27Al

The �rst reaction analyzed within the framework of the new LILITA code is 190 MeV

40Ar+27 Al, forming the compound nucleus 67Ga∗ with excitation energy of 91 MeV

and JER = 46 ~. As reported in Ref.[Lar87], and discussed in the �rst chapter, the

standard statistical model fails to reproduce both the proton and α−particle energy

spectra as well as the angular distributions. The authors attempted to reproduce

the experimental data by assuming very large deformations. However, a single com-

bination of parameters does not provide a satisfying reproduction of the full set of

observables.

In order to verify if the discrepancies observed can be attributed to the use

of parametrization valid only on a reduced interval of mass and excitation energy

ranges, as a �rst step, we performed a series of calculations with the standard sta-

tistical model in which parametrizations based on a wider systematics have been

implemented. As it will be shown in the next section, some improvements have been

noticed. However, the main discrepancies still persist and motivate the use of the

nuclear stratosphere model.

68



3.1.1 Analysis based on simulations with Standard Statistical

Model

In this section we compare the data with the calculations performed considering

the standard statistical model (SSM) implemented in the code LILITA with the

new parametrization for the transmission coe�cients. In Fig. 3.1 the proton and

α-particles energy spectra are shown.

The proton energy spectra are quite well reproduced as well as the low-energy side

of α-particles spectra. Discrepancies on the high-energy side of the α-particles energy

spectra still exist. The simulated energy spectra of α-particles show a less steeper

slope, which can indicate both an overestimation of the Coulomb force at emission

stage or a smaller nuclear temperature. However, the simultaneous reproduction of

the proton spectra seems to exclude the latter and indicates the deformation as the

most probable reason.

The consistent improvement in the reproduction of both energy spectra with

respect to the Statistical Model calculations reported in Ref.[Lar87] ( see Fig.1.5)

has to be attributed both to the use of a multistep code and the new TCs. It is well

known that the TCs are very e�ective on the low-energy side of the energy spectra.

Consequently, we can conclude that the parametrizations adopted in the new code

are much better suited for the reaction under analysis. We can expect a general

improvement also for other systems because we have used a global parametrization

instead of a local one of previous analyses. At the same time, the good reproduction

of the full proton spectrum indicates an improvement in the treatment of the particles

competition being managed by means of a multistep code. The discrepancies at the

high energy side remain for the α-particles.
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Figure 3.1: Evaporative energy spectra in the 190 MeV 40Ar + 27 Al reaction. The
α-particle (left) and proton (right) spectra at di�erent laboratory angles : 10 °,
30 ° and 45 ° from top to bottom, respectively. The red lines and dots represent
the calculations and the experimental data, respectively. All the spectra have been
normalized to the maximum.

In Fig. 3.2 the proton and α-particles angular distributions are compared with

the calculations. The calculations have been performed using the same parameters

as for the energy spectra but assuming a velocity of centre of mass egual to zero,

then the resulting angular distributions have been normalized to the experimental

ones at θcm = 90◦. This normalization has been perfomed in order to better evidence

the variation of the anisotropies due to rotational energy and moment of inertia
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characterizing the compound nucleus at di�erent stages of the evaporative cascades.

Irrespective of the charged particle considered, we observe larger anistropies in the

calculations. We have to notice that such e�ects are present in a similar manner also

in the proton distributions di�erently from what it has been observed for the energy

spectra. This indicates a smaller moment of inertia with respect to the experimental

one, and consequently the presence of a nuclear deformations. This conclusion is in

agreement with the observation made for the energy spectra and strongly motivates

our analysis in which we introduced the nuclear stratosphere.
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Figure 3.2: Angular distribution of the evaporative charged particles in the 1190 MeV
40Ar + 27 reaction: α-particles (top) and protons (bottom). Blue triangles represent
the experimental points and the red dots represent the results of calculations. The
calculated curves have been normalized to the data at 90° .

3.1.2 Nuclear Stratosphere and deformation

The analysis of experimental observables in the framework of SSM evidenced the

discrepancies produced by assuming the emission from spherical nuclei for the reac-

tion under investigation. La Rana and coll. [Lar87] tried to solve this problem by

introducing deformation e�ects. Unfortunately, the use of a single step code and TCs

based on local and unextended systematics limited the possibility to provide a real-
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istic description of the process and to reproduce simultaneusly full dataset. A more

detailed and �exible description of the nuclear shape which allows to make a step

forward can be reached by means of the nuclear stratosphere and global TCs. Thus,

a grid of calculation has been carried out to �nd the h and b parameters reproducing

the experimental data.

The h and b parameters have been varied in the range 0.01− 0.15 and 1− 4fm,

respectively. The best results has been achieved with the combination h = 0.077 and

b = 2.6 fm. In this calculation a deformation with a ratio b/a [Bec01, Vie88] ( ratio

major to minor axes) up to 1.7 at JER = 46 ~ has been included. This value can

be considered as normal deformation being in line with rotating liquid drop model

predictions for similar nuclei ( see Ref. [Pue77]).
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Figure 3.3: Evaporative energy spectra in the 190 MeV 40Ar + 27Al reaction. The
α-particle (left) and proton (right) spectra at di�erent laboratory angles : 10 °,
30 ° and 45 ° from top to bottom, respectively. The red lines and dots represent
the calculations and the experimental data, respectively. All the spectra have been
normalized to the maximum.

The use of the nuclear stratosphere solved the problem concerning the high energy

side of α-particle spectra and allows to obtain a good agreement with energy spectra

irrespective of the angle and particle type. The comparison with data is shown in
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Fig.3.3.

The most relevant results we achieve for this compound system are 1) the simul-

taneous reproduction of proton and α-particles energy spectra using a single set of

model parameters, 2) that the nuclear stratosphere is an essential ingredient and 3)

that the experimental data can be reproduced without having to rely on exceptionally

large deformations, which can be questionable.

Figure 3.4: Angular distribution of the evaporative charged particles in the 190 MeV
40Ar + 27Al reaction: α-particles (top) and protons (bottom). Blue triangles repre-
sent the experimental points and the red dots represent the results of calculations.
The calculated curves have been normalized to the data at 90° .

This new model improves also the reproduction of the α-particles angular dis-
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tribution and the di�erence is reduced to a factor 3, whereas the quality of the

agreement is unchanged for the protons. A larger deformation had to be excluded

because it would produce a general worsening for what it concerns the energy spectra

as well as for the angular distribution of proton.

Further improvements can be achieved by using a �ner step in the calculation grid.

However, the main conclusions about the substantial improvements do not change.

The evident step forward is to be ascribed exclusively to the implementation of the

nuclear stratosphere model.

In order to disentangle the interplay between the level density parameter � a � (the

so called little a) and the deformation contributions, both a�ecting the shapes of the

energy spectra, the di�erential multiplicity ratios between α-particles and protons

at di�erent polar angles (dMα(θ)/dMp(θ)) have been considered. This observable is

in�uenced by the protons and α-particles competition. Therefore, it represents an

observable which can provide a further constraint to the model parameters. This

quantity is di�erent from the angular distribution since it represents an absolute

and not relative datum, which provides a more quantitative indication of how much

energy is dissipated through the emission of the di�erent particles. The di�erence

between the calculations and the experimental data ranges from 25% to 40% in the

case of the standard statistical model, while it is strongly reduced when the model

with nuclear stratosphere is introduced, and becomes 17% less at 10 ° and 14% at

45 °.

Exp SSM Stratosphere

dMα(10◦)/dMp(10◦) 1.5 2 1.75
dMα(45◦)/dMp(45◦) 0.6 1 0.7

Table 3.1: Di�erential multiplicity ratios between α-particles and protons at di�erent
polar angles for θ = 10◦ − 45◦. Experimental data are compared, calculation with
Standard Statistical Model and Statistical Model with Stratosphere.
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On these grounds, we conclude that the nuclear stratosphere represents an es-

sential and well-suited model to describe the decay of the 67Ga∗ at high excitation

energy of 97 MeV.

3.2 The reaction 30Si + 30Si

To validate the successful approach described before for 67Ga∗, the 120 MeV 30Si

+ 30Si reaction, with similar mass has been analyzed. For this reaction, producing

the compound nucleus 60Ni at the excitation energy of 75 MeV, α-particles energy

spectra were measured only. The reproduction of experimental data was not achieved

by La Rana et al. within the framework of SSM but only by introducing even larger

deformations ( b
a

= 3)Ref.[Lar88]. In light of this we analyzed the same data using the

improved version of LILITA code and the two steps approach described before. Also

for this system a grid of calculations has been performed varying h and b parameters

in the range 0.01−0.15 and 1−4fm,respectively. Calculations considering spherical

shapes of emitters provided a well reproduction of the experimental data.

Results obtained using the standard statistical model are shown in Fig. 3.5.

We observed that the α-particles energy spectra are shifted at higher energies with

respect to the measured data. Accordingly to the previous discussion this behavior

suggests the presence of deformation in the emitting nucleus.
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Figure 3.5: Energy spectra of α-particles from the reaction 120 MeV 30Si + 30Si
compared with standard statistical model predictions. From top to bottom are the
spectra for angles 35 °, 55 ° and 75 °. The continuous red line represents the dis-
tribution obtained by the simulation whereas the empty dots are the experimental
data.

We then proceeded with a further simulation using the stratosphere model. A grid

of calculations has been used to �nd the best h and b parameters to simultaneously

reproduce the experimental data. The best result was obtained for h = 0.055 and
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b = 2 fm. In Fig.3.6 we can appreciate the good reproducibility of experimental

data.

Figure 3.6: Energy spectra of α-particles obtained by stratospheric model. From top
to bottom the spectra for angles 35 °, 55 ° and 75 °. The continuous red line represents
the distribution obtained by simulation while the empty dots are the experimental
data.

It is important to underline that the good agreement with the experimental data

has been achieved only with the introduction of the stratosphere model without any
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recourse to possible deformations. Therefore, this new version of LILITA seems to be

well suited to provide a more realistic description of the evaporation decay occurring

in nuclei with high excitation energy and high angular momenta.

3.3 655 MeV 60Ni + 100Mo

In order to further check the importance of the stratosphere model approach, we have

searched for a heavier compound system for which a large set of observables were

measured. We considered the reaction 655 MeV 60Ni + 100Mo forming the nucleus

160Y b∗ with excitation energy of about 280 MeV and JER = 63 ~ [Gon90, Cha01].

In our simulation we follow the same approach, namely �rst we start by using the

spherical statistical model (so called standard statistical model) and afterward we

check the e�ect of introducing deformation and stratosphere models.

3.3.1 Analysis based on simulations with Standard Statistical

Model

For the calculations of the available measured observables we used LILITA consid-

ering a spherical nucleus and imposing a = A
13.8

. This value of the little a is the one

used by Charity et al. We have to stress, however, that this value is not justi�ed

by the general systematics shown in the �rst chapter in Fig.1.4. It was used by the

authors with the only task to attempt to reproduce their data.

In Fig. 3.7 the energy spectra obtained with the standard statistical model im-

plemented in LILITA are shown.
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Figure 3.7: Energy spectra of α-particles, protons and neutrons. On the left at the
top the spectra of the α-particles, whereas on the right the protons. Neutrons are
below. The points indicate the measured data while the red continuous line show the
data obtained by the simulation. The value of little "a" chosen, much lower than the
systematics value, has the e�ect of increasing the higher energy emission of neutrons.
This e�ect is milder in the case of α-particles.

Unlike the work in Ref. [Cha01], in our calculation, we have not introduced any

deformation. The lower value of little " a" sensibly increases the emission of the

high energy neutrons. This e�ect is milder for the α-particles but the absence of

deformation means that the α-particles distribution is not adequately reproduced at

low energy while the neutrons diverges from the experimental data in the high energy

part of the distribution. This behavior con�rms that the use of the level density

parameter equal to A
13.8

has no actual physical meaning but is a mere expedient to

mock the nuclear deformation to reproduce the energy distributions.

81



This last statement is con�rmed by the comparison of the particle multiplicities

of the reaction we calculated and that are shown in the Tab. 3.2.

Table 3.2: Light particles measured multiplicities for the 60Ni + 100Mo reaction
[Cha01] compared with the LILITA SSM predictions .

Mn Mp Mα

Exp. 10.2±0.7 4.8±0.8 1.9±0.1
Cal.(LILITA) 8.3 4.7 2.9

The increase in the high-energy neutrons actually reduces their multiplicity and,

in the balance of particle emission competition, favors the emission of α-particles

which are in fact overestimated with respect to the experimental data. The good

reproduction of the proton energy distributions translates in this case also into a

good reproduction of their multiplicity.

3.3.2 Nuclear Stratosphere

By introducing the nuclear stratosphere model and �xing the only free parameters

hand b at h = 0.01 and b = 4.0 fm, we can reproduce exceptionally well the whole set

of data. Energy spetra are show in Fig.3.8. It is important to remark that this result

was obtained by using the systematics value a = A
8
. No form of nuclear deformation

was included.
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Figure 3.8: Energy spectra of α-particle, protons and neutrons. On the left at the
top the spectra of the α-particles;on the right the protons. Neutrons are below. Dots
indicate the measured data while the red continuous line shows the data obtained
by the simulation with h = 0.01 and b = 4.0 fm.

In Tab. 3.2 the multiplicity of the particles emitted are reported. With respect

to the calculations observed in Tab.1.1 there is a clear improvement, especially in the

prediction of the neutron multiplicity. In the case of the reaction under examination,

the use of the stratosphere model seems to compensate for the weak predictability

of the standard statistical model as what it concerns with the multiplicity of light

particles emitted.
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Table 3.3: Light particles multiplicities for the reaction 60Ni + 100Mo[Cha01] com-
pared with statistical model predictions including the stratosphere model.

Mn Mp Mα

Exp. 10.2±0.7 4.8±0.8 1.9±0.1
Cal. 10.8 5.3 1.7

A further con�rmation of the goodness of the model calculations is the comparison

with the experimental data regarding the multiplicity of the α-particles as a function

of the angle of detection of the residue. In Fig.3.9 we show that the di�erences never

exceed 20% while the di�erence with calculation obtained without stratosphere reach

up to 50%.

Figure 3.9: Experimental evaporative α-particles multiplicities extracted as a func-
tion of the detection angle of evaporation residue (in blue). The orange and yellow
points shows multiplicity predicted by using statistical model with stratosphere and
without stratosphere, respectively.
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3.4 Temperature vs Stratosphere: an empirical law

From the analyses discussed above we can conclude that with the statistical model

which includes the stratosphere model it is possible to reproduce, with very good

accuracy, many evaporative channel observables in three compound systems where

the SSM is known to fail. This default of the SSM has been a pending problem since

the 80's. From our analysis it seems that the stratosphere model might constitute

therefore an important missing ingredient. However, it is worth to note that none

of the two parameters h and b appearing in the Batko and Civitarese model has a

predicted dependence on the properties of the evaporating nucleus. In our simulations

they were treated as free parameters. The values indicated in the previous paragraphs

for h and b were in fact extracted through the use of a calculation grid and by

searching for the best agreement with the full set of data for each compound system.

In order to explore the predictive power of the model proposed by Batko and

Civitarese, and in the lack of a model for h and b, a possible strategy is to check

if there is a general trend, an empirical law that may link the parameters of the

stratosphere derived from the comparison with the available data to quantities such

as temperature and/ or other physical characteristics of the CN. Fig. 3.10 show

the trend lines obtained reporting h as function of the mass and b as function of

the initial temperature of the CN. The �lled points are the one extracted from the

analysis of the three reactions above. The �lled lines are a guess of a possible trend

in both plots.

85



Figure 3.10: Trend of the parameter h as a function of the mass number of the
compound nucleus (top) and trend of b as function of initial temperature of the CN
(bottom). The �lled points are the values extracted from the analysis of the CN
performed above. Lines are drawn as a possible empirical trend based only on those
three �lled points and serve to guide the eyes. The empty points refer to 200Po∗.

It is possible to deduce that h seems to decrease as the CN mass increases, whereas
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the value of b seems to grow exponentially as the initial CN temperature increases.

Clearly, tests on more systems should be continued to increase the number of points

on these plot.

To con�rm these trends we decided to analyze the reaction: 340−360 MeV 84Kr

+ 116Cd →200Po∗[Han87], which refers to a heavier system, at lower temperature,

and for which neutron multiplicities were measured only. From the trends drawn in

Fig.3.10 the values of h and b for 200Po at E∗ = 43 and 55 MeV are h = 0.001 and b

= 0.3, and b = 0.4 fm for the two excitation energies.

With these �xed values we performed the calculation of the evaporative cross sec-

tions for the channels 2n, 3n and 4n shown in Tab.3.4. Cross sections are normalized

to the most populated channel (3n channel at 43 MeV and 4n at 55 MeV) because

the fusion cross section was not measured and not available elsewhere.

E∗ = 43 MeV
Channel Exp. Calc.

2n 0.26±0.08 0.18
3n 1 1
4n 0.17±0.05 0.16
1n1p ? 0.01
2n1p ? 0.04
1n1α ? 0.004

E∗ = 55 MeV
Channel Exp. Calc.

2n 0.14 ±0.04 0.17
3n 0.61±0.11 0.78
4n 1 1
5n 0.08±0.01 0.09

2n1α ? 0.02
2n1p ? 0.06

Table 3.4: Cross sections of emission channels 2n, 3n and 4n measured in the reaction
84Kr + 116Cd→200Po∗ and computed by using the stratosphere model. Cross sections
are normalized to the most populated channel (3n channel at 43 MeV and 4n at 55
MeV) because fusion cross section was not measured and not available elsewhere.
(left) data for excitation energy equal to 43 MeV; (right) data for excitation energy
equal to 55 MeV.

It is possible to observe that the calculated cross sections obtained are extremely

close to the experimental data, for both excitation energies. This result supports the

fact that the empirical trend found on the basis of only three reactions represents
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already a good guess for the dependence of the stratosphere model parameters from

the CN temperature and mass. In addition, we note that the compound nucleus

200Po∗ represents a case far from the three reactions analyzed above and on which

the empirical trend is based, both in mass and temperature. Clearly, this analysis

would require additional simulation work with the code developed in this thesis

but it reasonably shows that the extraction of an empirical law is possible. This

conclusion would in principle trigger additional theoretical work on the subject and

experimental work as well to measure other unknown decay channels in the reactions

340− 360 MeV 84Kr + 116Cd →200Po∗.
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Summary and conclusions

In this work the e�ects of a possible description of a nuclear stratosphere on the

evaporation process has been studied. We �rst provided an overview of the stan-

dard statistical model and its main ingredients. Three di�erent evaporation fusion

reactions, characterized by high temperature and angular momentum values, were

examined. The inability of the standard statistical model to reproduce some physi-

cal observables was highlighted. The observed di�erences suggest the presence of a

distention of the nucleus not reproducible in any way by the standard model unless

forcing, only in some cases, the model itself in an unrealistic way. Using the model

suggested by Batko and Civitarese, we have therefore introduced the elements of the

nuclear stratosphere into the statistical model.

A quick analysis of the variations induced by the use of di�erent parameters of

the nuclear stratosphere on two system types (light and heavy masses) allowed us

to learn about the e�ects of the introduction of this model on the various calculated

observables. This exercise was very useful in order to acquire a knowledge that could

teach us about the use of this tool to overcome the defaults found in the standard

statistical model.

In the case of the reaction 190 MeV 40Ar + 27Al, the Standard Statistical model

was not able to reproduce the spectrum of protons and α−particles unless by forcing
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a straight reduction of the speci�c emission barriers for each charged particle consid-

ered. Also the simulated angular distributions showed evident di�erences with the

experimental data. The use of the stratosphere model improves both the reproduc-

tion of energy distributions and the angular distribution of charged particles without

having to resort to an unrealistic deformation of the nucleus or arti�cial reduction

of the barriers.

For the reaction 120 MeV 30Si + 30Si only energy spectra of the α−particles

were measured. Also in this case, in the original paper by La Rana et al., for a

close reproduction of the energy spectra it was necessary to resort to the use of an

unreasonable large deformation of the nucleus. The use of our LILITA evaporative

multistep code, with updated transmission coe�cients, reduced the gap between the

experimental data and the calculation, but did not compensate it completely. The

addition of the stratosphere led to full overlap of energy distributions at various

laboratory angles with the collected experimental data.

For the third reaction analyzed in Gonin et al., it was also reported that both

multiplicities and energy distributions could not be reproduced by the SSM. In this

case, which provides the largest number of measured observables than the other

two reactions, the use of the stratosphere model has produced calculated data much

more closer to the experimental ones without using, even in this case, any speci�c

customization of the parameters except for h and b stratosphere model parameters.

From the three reactions analyzed, it was in addition possible to derive an em-

pirical law for the parameters h and b which appears to be well suited to predict the

behavior of the stratosphere in other reactions. This case was demonstrated by the

reaction producing 200Po∗.

The use of the stratosphere model in the statistical model seems to be quite
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promising as it solves a long standing problem. Further work is however necessary

to verify the potential of the model to reproduce data from a larger set of reactions.

This process would further clarify if an empirical laws may exist for the parameters

b and h, and would hopefully trigger further experimental and theoretical work.
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Appendix

In this Appendix the new features of LILITA_N18 are described. The new version of

the evaporative multistep code LILITA [Gom81] used in this study does not include

only the nuclear stratosphere model and global transmission coe�cients for neutrons,

protons and alpha particles, described in details in the Chapter 2, but also many

technical developments.

A large e�ort was devoted to the construction of the graphical interface that

simpli�es the procedure to run calculations and o�ers new options such as the pos-

sibility to monitoring the results or to perform grid of calculations by selecting the

intervals of parameters to be chosen to scan. Another important aspect consists

in the parallelization of the code. This aspect is crucial because it can reduce the

computation time that sometimes can last weeks. The new version of the code can

share the calculations among the di�erent cores available on the existing machines.

This peculiarity paves the way for the future development of the code that can si-

multaneously run on machines connected in a standard network. This option has

been successfully tested and will be implanted in the �nal release of the code. This

solution can be very useful to calculate the observables produced in the rare decay

channels, as those usually of interest for the nuclear structure studies (e.g. [Hüy16]).

Future developments will be devoted to the implementation of the detection geome-
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try. With this aim a series of routines have been developed during this Ph.D. work

in order to realize a complete tool-box able to reproduce large set of observables by

taking into account the experimental conditions.

LILITA

LILITA [Gom81] is a computer code based on the Monte Carlo approach simulating

the particle emission in the evaporative cascades of the CN decay. The code calculates

the energy spectra and angular distributions of the particles providing an event-by-

event output. The particle emission probability, accordingly the Statistical Model

(see description in Chapter 1) is calculated using the transmission coe�cients and

the level density of the evaporation residue.

To run the code it is required to provide the number of stories to generate and

input parameters describing the reactants, the compound nucleus formed and the

reaction conditions:

� the mass and atomic numbers of projectile, target and compound nuclei (A0, Z0);

� the maximum angular momentum (J0) of the CN;

� the projectile energy in the laboratory system Elab and the compound nucleus

excitation energy (E∗);

� the fusion cross section. Several options that can modify the features of the CN

were already existing in the previous updated version LILITA_N11:

� di�erent parameters of the level density (�A/a�);

� di�erent radius parameter for the calculation of the moment of inertia with the

nuclear approximation of the nucleus to a rigid sphere;

� deformation parameters;
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� prescriptions for the transmission coe�cients based on the Optical Model, Fu-

sion Systematics [Vaz84] and Ingoing Wave IWBCM [Kil92].

Once these initial parameters are set, the code proceeds to calculate for each

step of the evaporative cascade the mass A, the charge Z, the excitation energy E∗

and the angular momentum J of the residual nucleus. If the residual nucleus has

su�cient amount of excitation energy to emit another particle, the code simulates

once again the emission of a particle. At each k-th step of the cascade the code

calculates the Ak, Zk, E
∗
k and Jk of the residual nucleus. The �rst two quantities

depend on the type of emitted particle, whereas the excitation energy and the total

angular momentum depend on the angular momentum lk and the kinetic energy εk

carried out by the emitted particle.

Ek−1 = Ek + Esep + εk

~Jk−1 = ~Jk + ~lk

Each step is controlled by the emission probability Pk(Ek−1, Jk−1, (εk, lk), Ek, Jk),

of a particle ik, with moment lk and energy εk from a nucleus with total angular

momentum ~Jk−1 and excitation energy Ek−1.

A0, Z0, E
∗
0 and J0 are the starting points for the simulation of the evaporative

cascade. They represent the mass, charge, excitation energy and momentum of the

CN. The A0, Z0 and E∗0 are �xed input parameter of LILITA, while direction and

modulus of J0 are randomly generated using the inverse transformation method. The

direction of ~J0 is perpendicular to the direction of the beam and its azimuth angle

is given by:

φ = 2πη
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where η is a pseudo-random number in the range [0,1]. The modulus of the ~J0 is

generated according to a triangular distribution using the following relation:

J0 =
1

2

√
1 + η[(2Jmax + 1)2 − 1]− 1 (3.1)

The next step of the code is the evaluation of the emission probability of a particle

i, of angular momentum li and energy εi, from the CN of energy E0 and angular

momentum J0. The emission probability distribution is given by the expression:

Pi(E0, J0) =
lmax∑
li

J1=J0+li∑
J1=J0−li

∫ εmax

εmin

Pi(E0,J0, (εi, li), E1, J1)

Ptot
dεi (3.2)

lmax , εmin and εmax are valuated in a de�ned range of values that depends on the

particle type.

The level density is evaluated using the Fermi gas expression given, by 1.4,

whereas the transmission coe�cients are evaluated using the optical model and a

set of parametrizations of the latter. Using 3.2 the code generates the emitted par-

ticle i, its angular momentum li, the kinetic energy in the center of mass εi, and

A1, Z1, ~J1 and E∗1 are determined. Afterwards the remaining excitation energy of

the residue is compared to the emission threshold energies for the di�erent type of

particles. If the energy is su�cient for the emission of a further particle code repeats

the same procedure as before with di�erent initial conditions for the next evapora-

tive step, otherwise the cascade calculation terminates and the event is stored on

the disk. All the information about the kinematics of particles (the three velocity

components, kinetic energy and angular momentum) and evaporation residues (the

velocity components and the excitation energy and angular momenta of the CN at

each step) are written in the event �le.
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Evolution of LILITA

LILITA_N18 gives access to all the options included in LILITA_N11 in the period

2006-2012. These options consist in the increase of maximum number of stories

per simulation, the possibility of mimic the decay of alpha-cluster nuclei produced

in correspondence of narrow resonances [Din16], level density dependence on the

isospin with the prescription from Ref. [Al-Q03], and minor ones. In LILITA_N11

the input and output �les that have to be managed by the users are formatted text

�les, where all the reaction conditions and the description of the output �les have

to be provided. This approach o�ers the possibility to store the results and save

the input �les. However, due to the absence of comments/description of the large

amount of input variables that have to be changed for each reaction the use of the

code is not user-friendly. Therefore, there is the risk to produce errors in the �lling of

the input cards, which are usually identi�ed later during the analysis of the output

�le or in worst cases after the �ltering of the event �le. In LILITA_N18 the main

changes can be summarized as:

1. Implementation of graphic interface developed for a simpli�ed inclusion of input

variables (for nuclear reaction and compound-nucleus decay descriptions);

2. A graphic on-line monitoring of the simulation results that include the con-

tinuous �lling of the histograms of the light-particle energy distributions, ER

production yields and light particle multiplicities;

3. Parallelization of the code;

4. Possibility to perform grid of calculations by varying the Stratosphere model

parameters.
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Con�guration interface

The �rst and second cards included in the graphic interface are devoted to the in-

clusion of the reaction variables, the parameter combinations to lead the evaporative

decay process of the compound nucleus, and the parameters to de�ne the information

included in the output �le. For each variable an explanation is given near the box to

�ll. The interface gives also the possibility to save the full set of input variables or

to load an existing one, in line with the previous version of the code, to make easier

the procedure in which only a single variables have to be changed or in case is of

interest to change only the reaction keeping the same combination of prescription to

describe the decay process.

Figure 3.11: Input tab for the reaction parameters in LILITA_N18. On the left are
listed the variables that have to be included, on the right the boxes to �ll.

In the �rst tab, shown in Fig. 3.11, are shown the reaction variables to be �lled
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(e.g. the projectile and target a mass and atomic numbers, the beam energy, the

level density parameter, etc.).

Figure 3.12: Input tab for parameter that characterize the output of LILITA_N18.
The input variables are distributed in two columns. On the left of each column are
listed the variables that have to be included, on the right the boxes to �ll. This card
is dedicated to the de�nition of the number of cascades to simulate; the excitation
energy and the maximum fusion cross-section and maximum angular momentum of
the CN, and other parameters to de�ne the information included in the output �les.

The tab Parametri, Fig.3.12, is dedicated to the description of the CN formed

(maximum angular momentum Jcr, excitation energy, nuclear deformation, and so

on) and to the speci�c details on the simulations as the total number of stories, the

center of mass velocity, the quantities to store in the event and in the output �les

and plots. If the nuclear stratosphere check box is clicked then it is possible to enter

the values of the two parameters h and b. The graphical appearance is the same as
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of the previous tab.

On-line monitoring

The LILITA_N18 tab 3 and 4 (DE e MOL, respectively) of the graphical interface

are dedicated to visualize a selected series of the observables. The histogram, the

values and the 2-D matrix of plot are continuously updated during the simulation.

The polar angular range used to build the α-particles, proton and neutron energy

spectra as well as the energy binning of these spectra can be modi�ed during the

simulations. This option was implemented being very convenient for the comparisons

performed in the present work where the experimental data have been collected with

detector of di�erent angular coverage in single mode. In Fig. 3.13 the histograms

produced by the 190 MeV 40Ar +27Al simulated reaction produced in the tab 3 are

shown.
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Figure 3.13: Tab DE for the on-line monitoring of the light particle energy distri-
butions histograms of the evaporated: α-particles (top-left), protons (top-right) and
neutrons (bottom-left).

The same interface simultaneously monitors on the tab 4 the light particles mul-

tiplicities and the Z,N distributions of evaporation residues on 2-D matrix plot and

the number of evaporation channels populated in the simulation. On the left side

a �lter to extract the relative cross-section based on the maximum number of light

particles of the channel has been implemented. This is very useful in the case where

very rare decay channel observables that require very time consuming simulations

that can last weeks or months and in which there is an interest to estimate at some

point the expected number of events produced at the end in the simulation. In Fig.

3.14 Tab 4 of the graphical interface is shown as example.
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Figure 3.14: Tab with graphical rappresentation the multiplicities, decay channels
and distribution matrix of the evaporation residues.

Fig. 3.15 shows Tab 5 that displays the angular distributions of protons, α-

particles, neutrons and evaporation residues. The interface allows to select the dis-

play ranges for the X and Y axes, and also allows the use a scale factor so that it

is possible to overlap the experimental data to determine the increase or decrease in

anisotropy.
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Figure 3.15: Tab with graphic rappresentation of angular distribution. User can
select the particle to be displayed and compare the calculated results with external
experimental data

The present graphical interface allows also to save the histograms displayed. They

can easily be exported in JPG format by pushing the button �Save Graph� included

in both tab 3 and 4. If the software is used to determine the better combination

of input parameters reproducing the experimental data, these tabs allow to import

the experimental data superimposed to the simulations results. This procedure was

extensively adopted in this works to produce the plots including the comparisons of

the experimental data and simulations reported in Chapter 3.

The Stratosphere Model tab

LILITA_N18 includes the Stratosphere Model in order to test it at low and high

nuclear temperature.
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Figure 3.16: Tab H-B included in the graphical interface. In this tab is possible to
provide the Stratosphere model combination of parameters describing the density
and the extension of the nuclear surface for a single simulation or the intervals of the
parameter combinations to run a grid of simulations. On the left the matrix of the
results show with various gradations of results obtained, on the right the numerical
result.

The tab H-B, shown in Fig. 3.16, is dedicated to the inclusion of the nuclear

Stratosphere model parameters h and b, related to the density of the nuclear surface

and its extension, respectively. The new interface not only allow to include a single

combination of parameters, but also to provide intervals to be scanned with a grid

of calculations according the steps de�ned by the user independently for both b

and h. For each b and h combination the code recalculates the TCs on the basis

of the nuclear stratosphere description of the nuclear shapes and density. When

the grid of calculations is completed, it is possible to use the routines implemented

to determine the combination of stratosphere parameters that describe at the best
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the experimental data. The experimental data can be superimposed to the on-

line monitor plots (series of histograms shown in tab DE). The values, reported in

arbitrary units, are the sum of all the di�erences among experimental and simulated

observables. With these values a matrix is �lled having h and b parameters on the

two axes the values that are used to determine the combinations providing the better

reproduction.

Code parallelization and scalability

The LILITA code calculates decay cascades one after the other, therefore it requires

large computational time to generate a large number of stories, especially for the

reaction in which compound nuclei at high excitation energies are produced. The

original code was optimized for the performances of single CPU machine available

in the last decades. An important innovation of LILITA_N18 has been the par-

allelization of the computational procedure for the generation of events. The code

automatically identi�es the number of cores available on the machine used. The user

can therefore choose the maximum number of cores used. The number of stories

is then distributed equally between the selected cores. Each run will be initialized

with a di�erent seed to generate random numbers, thus ensuring the generation of

independent events. To achieve this, the GNU Parallel library[Tan11] was used. The

software architecture is thus modi�ed as shown in Fig.3.17

104



Figure 3.17: Software architecture implemented in LILITA_N18. The interface man-
ages the parallel execution of the code. The calculations are shared on a number of
cores whose number is managed by the user. The events produced in the parallel
running are collected by the main process of interface that distribute the informa-
tion: all details are stored in the event �le and simultaneously the histograms for
the on-line monitoring are updated. At the end of the calculations, the results are
summarized in the formatted output �le.

The code uses a limited amount of the RAM, in the standard desktop machine, the

consumption is usually below 10%, whereas it uses all the available CPU computation

power of the single core. The slower procedure of this present version of the code

is in the storing procedure, when the results of simulations are written on the event

�le. The writing procedure on the present code taking place every certain number

of events that depends on the size of the bus. During the execution of the code

we observe that this process slightly increases the running time especially when the

number of core is increased, but there was no need to generate queues. A signi�cant
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improvement will be obtained in the next years, when the solid state drives (SSDs)

will replace the present conventional hard disk drives (HDDs). The SSDs faster than

HDDs in writing procedure up to 2 order of magnitude will provide the optimal

conditions to reduce the computational time and overcome the present bottleneck

without any further e�ort. In Fig.4.6 is shown a plot providing an idea about the

improvement accessed with the introduction of the parallelization: software execution

time vs the number of used cores for a �xed number of events. The trend evidences an

inverse proportionality between the execution time and the number of core. Using

two and four cores the times are reduced by about a factor 2 or 4, respectively.

However, passing from 4 to 8 cores the execution time passes from 5 minutes to 3.

In this step the reduction of the execution time is slightly lower than a factor 2,

thus the e�ects produced by the writing speed limit of the internal HDD start to be

signi�cant.

Figure 3.18: Execution time vs Number of cores used. In the 4 cases considered
before the same calculation (same reaction and same number of events) has been
carried out.
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The parallelization is a very useful resource to perform grid of calculations span-

ning wide intervals for the input parameters or to extract the observables relative

to very rare decay channels. The introduction of parallelization has been an essen-

tial development to exploit the performances of the actual commercial multi-core

machines. The parallelization option gives the opportunity to reduce the execution

time by a factor 10 and this number can even increase in the next years. The larger

�exibility and the shorter execution time made the new code very useful not only in

the phase of analysis, but mainly in the preparation phases of future experiments.

Future implementations

For the next future several developments of the code in stand-alone mode and in com-

bination with a dynamical model including the fusion-�ssion decay are planned. For

each of them as proof of principle several tests or real case have been already made.

The �rst development, successfully used, that we will be soon implemented in the

graphical interface consists in the share of the parallel processes on CPU'connected

in a local network, as in the case of the parallel running on the di�erent core of a

single CPU's. No problems were observed by operating LILITA_N18 on processors

with di�erent performances. The inclusion of this option paves the way to the use

of the code not only on a local network, but also to exploit the computing resources

of the computing centers, as those presently located in many research centers.

The second development in stand-alone mode consists in the inclusions of the

detection setup response. A subroutine for this kind of work has been already realized

during this Ph.D. work. This subroutine can calculate the energy loss of charged and

neutral particles. In Fig. 3.19 a detector made of several elements has been built

by means of this routine. The energy release produced by a 2 MeV neutron beam
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passing through the setup at the di�erent positions has been calculated and is shown

in Fig.3.19(left). The routine provides also detailed information on the scattered

beam trajectories exiting from the detection setup.
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Figure 3.19: Experimental conditions of measurement: a neutron beam of 2 MeV
imping on a detector made of several elements made of di�erent materials. Energy
response function obtained with the routine Move where the di�erent interaction of
neutrons on the Te�on and Argon material is evidenced by the di�erent colors which
indicate the amount of energy released crossing the detection system.

In the future LILITA_N18 will be coupled with a dynamical model to simulate

also the fusion-�ssion events. The coupling of the previous version of the code has

provided very promising results in the reproduction of the experimental data for the

intermediate mass systems [Var15] and further improvements in the reproduction of

the experimental data are expected.
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