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Summary

We developed two different approaches of inversion of
potential fields:

- A method for 1D inversion of potential fields.

- A method for 2D and 3D self-constrained depth weighted
inversion of inhomogeneous potential fields.

Both methods are based on a multiscale approach, that is they
involve use of data at different scales or altitudes. These
particular approaches bring some benefits.

About the 1D method, the main benefit lies in a greater
computationally simplicity, compared to 3D algorithms.

Apart the strong 1D assumption, we can say that it requires
less a priori information to constrain the inversion, compared
to other algorithms. (see Chapter 3).

The second method is both 2D and 3D. It is based on two steps,
the first being the search in the 3D domain of the homogenous
degree of the field, and the second being the inversion of the
data using a power-law weighting function with a 3D variable
exponent. So, differently from the previous method it does not
involve directly data at different altitudes, but it is heavily
conditioned by a multiscale search of the homogeneity degree.

The main difference between the present approach and the one
proposed by Li and Oldenburg algorithm (1996) and Cella and Fedi
(2012) is therefore about the depth weighting function, whose
exponent is a constant through the whole space in the original
Li and Oldenburg and Cella and Fedi approaches, while it is a
3D function in the method which we will discuss here.

Magnetic and gravity anomalies due to simple sources have
been synthetically generated to test the proposed approaches;
then, data caused by more complex sources have been analyzed.
Finally, two real dataset, from the Vredefort impact site and
Mt. Vulture area, have been examined to have a further
confirmation of the effectiveness of the methods.

Both tests on synthetic and real data showed that using source

information retrieved by a multiscale analysis of the data has
a great potential to improve the solution.

Introduction
Even if reflection seismic is still the primary exploration

method of exploring for reservoir (i.e. oil, ore or gas deposits,
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or energy and environmental resources in general), potential
field methods are continuously expanding, thanks to their
successful contribution in deeper and more challenging
environments, such as sub-salt structures and deep sea, to their
smaller cost and to new powerful methods of analysis and
modelling, which are indeed related to high-quality and high-
resolution data.

The final goal, is, obviously, to obtain a good estimate of
the in-place volume. Moreover, information provided by inverting
3D sets of potential field data can help to refine the targets
and so to efficiently define and focus projects early on, 1in
order to minimize the risk of investigation before the actual
potential is defined. These methods are used also to investigate
areas that could be contaminated by pollution and modelling the
system to prevent future environmental and engineering critical
situations.

One of the principal difficulties with the inversion of the
potential field data is the inherent non-uniqueness. In fact,
by Gauss' theorem we know that there are infinitely many
equivalent source distributions that can produce a measured
field (Blakely, 1996). When the number of model parameters M is
greater than the number of observations N, the problem is called
underdetermined and a unique solution for the inverse problem
does not exist. This represents the most common problem in
inversion of potential fields. To solve an undetermined problem
and obtain a unique solution we need to add a priori information.
Prior information takes numerous forms (geological, geophysical
or mathematical) and a good inversion algorithm is able to
incorporate this information into the inversion. One of the most
important and common prior information is a reference model that
might be a uniform half space and for some problems just the
zero model.

The origin of inversion methods goes back to 1967, when Bott
(1967) used this approach to interpret marine magnetic
anomalies. Since then many different algorithms were proposed,
each one characterized by a different type of a priori
information and then to provide different solutions. Green
(1975) searched for a density model that minimizes its weighted
norm to some reference model. Safon at al. (1977) used the method
of linear programming to compute moments of the density
distribution. Fisher and Howard (1980) solved a linear least-
squares problem constrained for upper and lower density bounds.
Last and Kubik (1983) introduced a ‘'compact' inversion
minimizing the body wvolume. Guillen and Menichetti (1984)
assumed as a constraint the minimum momentum of inertia. Barbosa
and Silva (1994) suggested allowing compactness along given
directions using a priori information. Li and Oldenburg (1996,
1998) introduced model weighting as a function of depth using a
subspace algorithm. Pilkington (1997, 2002) used preconditioned
Conjugate Gradients (CG) method to solve the system of linear
equations. Portniaguine and Zhdanov (1999, 2002) introduced



regularized CG method and focusing using a reweighted least
squares algorithm with different focusing functional. Li and
Oldenburg (2003) use wavelet compression of the kernel with
logarithmic barrier and conjugate gradient iteration. Pilkington
(2009) used data space inversion in Fourier domain.

Other relevant ways to introduce a priori information involve
"soft constraints", such as positivity constraint for density
and magnetization, or "hard constraints", such as empirical
laws, constraints for upper and lower density bounds and for a
density monotonically increasing with depth (Fisher and Howard,
1980) and external information from well-logs, geological
studies and other geophysical investigations.

Obviously, the solution is highly dependent on the prior
information and for this reason, an algorithm that solve every
geological context does not cannot exist. So, it 1s very
important to choose the correct algorithm according to the
geological context of the studied area and according to the
available a priori information.

However, even 1f the literature is filled by 2D and 3D
algorithms for inversion of potential field, there are no 1D
algorithms equivalent to those applicable to seismic or
electromagnetic methods. From a general point of view, this is
not surprising, because 1D problems involve a forward problem
referring to set of infinitely extended layers, each one
homogeneous in the source property. Indeed, in the gravity case,
such an assumed model would produce nothing more than a spatially
constant field and, therefore, could not explain any gravity
anomalies.

To our knowledge, only a single work (Fedi and Rapolla, 1995)
regards the inversion of "vertical gravity soundings”, that is
a 1D inversion method, using a forward problem consisting of a
finite volume of layers, each of them with its own density and
horizontally finite. The authors first formed a gravity vertical
profile, Dby upward continuation of the data above an area
including the sounding and then showed how the inversion of such
vertical profile could yield a 1D estimation of the density
through the volume.

In this work, we generalize the method to the inversion for
a source distribution which is inhomogeneous either laterally
or vertically. In practice, we will solve a set of linear inverse
problems at many locations on the measurement area, inverting
for a density model relative to a set of finite and homogeneous
layers at each location. Assuming a large number of layers, we
so solve an underdetermined problem, since the data number is
less than that of the unknown parameters. Density bounds may be
applied, in order to constrain the physical property to 1lie
within a geologically reasonable interval. Because all the 1D
inversions are independent of each other, we may finally produce
a 2D or 3D model of the physical property joining the results
obtained for each vertical sounding. The main disadvantage 1is
that 2D and 3D model models are not built by direct



multidimensional inversion, but by approximation from a multi
set of 1D models.

Moreover, in this thesis we have studied a different approach
for 2D and 3D potential field inversion. It mathematically
starts from the algorithm proposed by Li and Oldenburg (2003)
but it is optimized very differently: our logic is that the
weighting used in the inversion is directly deduced from the
field, in order to obtain a better solution of the physical
property distribution in the subsurface.

This information, derived from a multiscale analysis which
precedes the inversion itself, will be used to setup a particular
depth weighting function that could physically account for a
source property, the homogeneity degree, which is transferred
to the field by the Poisson equation. So, the main difference
between our depth weighting function and those proposed by Li
and Oldenburg (2003) resides: a) in being not a feature of the
block shape but of the source property; b) in its exponent, that
in our case 1is spatially variable instead of being a constant
value for the entire model volume. This last feature reflects
the fact that a complex source distribution is characterized by
a variable homogeneity degree and that a constant value could
yield only average source-model distributions.

1. Elements of Potential fields theory

Gravitational and magnetic fields are both potential fields.
In the mass-free space, potential fields obey Laplace’s
equation, which states that the sum of the rates of change of
the field gradient 1in three orthogonal directions 1is =zero
(Kearey et al., 2002).

In Cartesian coordinates, Laplace’s equation is:

0%¢p 0%¢p 0%¢
6x2+6y2+622 =0 )

where ¢ refers to a gravitational or magnetic field and is a
function of (x, vy, z).

Any function satisfying the Laplace’s equation, has
continuous, single-valued derivatives and has second derivatives
(Blakely, 1996). If a function is harmonic in a region R has its
maxima and minima on boundaries of the region. Gravity and
magnetic fields, are both potential fields and obey all the
physical laws mentioned above.

1.1. Gravity field

The gravitational acceleration due to a point of mass m is:



m
gP)=-y5r (2)

where Yy is the Gravitational Constant and r is a unity vector
that point from mass m to the observation point P. This
gravitational attraction is a conservative field so it can be
expressed as the gradient of a scalar potential U

U(P)=y? (3)

The gradient of U represents the gravity g, and the first-
order directional derivatives of U are the components of gravity
in the corresponding direction (Kearey et al., 2002) and it is
defined as:

g=VU=—i+—yj+—k (4)

where i, Jj and k are the unit vectors in the positive
direction of x, y and z axes respectively. Being a harmonic
function, at all the points outside of the mass, FRU = 0, but in
the space occupied by masses:

ViU = —4myp (5)

where p is the density of the mass distribution at a given
point. Equation (5) 1s the Poisson’s equation describing the
potential at all points of the mass distribution.

In geophysical exploration, gravimeters measure only the
vertical component of the gravity, as given by:

ou

= (6)
gZ aZ

Before the results of a gravity survey can be analyzed and
interpreted it is necessary to correct for all variation in the
Earth’s gravitational field which do not result from the
differences of density in the underlying rocks.

The observed gravity is the sum of the following components
(Blakely, 1996):

- Theoretical gravity, referred to the reference
ellipsoid,

- Free air effect, due to the elevation above the sea
level,



- Bouguer slab and terrain effects, the normal mass
above the sea,

- Tidal and instrumental drift effects, time-dependent
variations,

- Eotvos effect, due to moving platform (airborne and
shipborne surveys),

- Isostatic effects, accounting for the effects of
masses supporting topographic loads,

- Effect of crust and upper mantle density variations.

Isolating the last quantity is the goal of the gravity
reductions.

The mean value of gravity at the Earth’s surface is about 9.8
ms~l. Variations in gravity caused by density variations in the
subsurface are of the order of 100 um s7'. The cgs unit of
acceleration due to gravity (1 cm s7!) is the Gal, in honor of
Galileo, and its sub-unit milliGal is common in gravity survey
(Kearey et al., 2002).

1.2. Magnetic field

The magnetic scalar potential V(r) of a dipole source whose
magnetic moment is m, can be written as:

V(r)z—m-V(%) (7)

where r is the distance modulus.

The magnetic field may also be defined in terms of a force
field produced by electric currents. If an electric current I,
is flowing in a loop of radius r, the magnetic strength at the
center of the loop is H = I/2r.

Materials can be magnetized by acquiring the component of
magnetization in the presence of an external magnetic field and
it 1s called induced magnetization which is in the same (or
reverse) direction of the external magnetic field as:

M = yH (8)

The constant x in the equation (8) is called the magnetic
susceptibility.

Susceptibility is a dimensionless quantity but differs in
magnitude if expressed in emu or in SI units. Its definition
involves the magnetic permeability u:



B = po(H + M)

= po(H + yH)

= uo(1 + Y)H (9)
:MH

p=po(1+x)

The relationship between M and H is not necessarily linear
because the magnetic susceptibility x may vary with the field
intensity, may be negative, and may be represented more
accurately in some materials as a tensor (Blakely, 1996).
Susceptibility is a measure of how susceptible a material is to
become magnetized (Reynolds, 1997). There are many kinds of
magnetizations and their understanding is important to
understand how the variations of magnetic properties produce the
magnetic anomalies (Hinze et al., 2013). These properties can
be defined as:

Diamagnetism, for example, is an inherent property of all
matter. In the presence of external magnetic field, the orbital
path of the electron rotates in a way that induced magnetization
is small and in the opposite sense to the applied field.
Consequently, diamagnetic susceptibility is negative.

Paramagnetism, is a property of those solids that have atomic
magnetic moments because in this substance, the electron shells
are incomplete, so the unpaired electrons produce a magnetic
field. When it 1is placed in an external magnetic field, the
atomic moments or unpaired electrons partially align parallel
to the applied field thereby producing a net magnetization in
the direction of the applied field. This is still, however a
relatively weak effect. However, all minerals are diamagnetic,
and some are paramagnetic or ferromagnetic but, in both cases,
their magnetizations do not have significant contributors to the
geomagnetic field.

Though, there 1is a class of magnetism that have great
importance on geomagnetic studies. Certain materials not only
have atomic moments, but neighbouring moments interact strongly
with each other. This interaction is a result of a quantum
mechanical effect called exchange energy. Suffice is to say that
the exchange energy causes a spontaneous magnetization that is
many times greater than paramagnetic or diamagnetic effects
(Blakely, 1996) . These types of materials are called
ferromagnetic. There are several types of ferromagnetic
materials, depending on the alignment of their atomic moments.
If the atomic moment aligned parallel to one another, results
ferromagnetism; i1if the atomic moments are aligned antiparallel
to one another and total moment is neutralized, results anti-
ferromagnetism; and the last is the ferrimagnetism, in which
atomic moments are antiparallel Dbut, having different
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magnitudes, do not cancel. The strength of the magnetization of
ferromagnetic and ferrimagnetic materials decreases with
temperature and disappears at the Curie temperature (Kearey et
al., 2002).

The spontaneous magnetization of ferromagnetic materials can
be very large at the scale of individual mineral grain but, due
to their random orientation, the net magnetization may be
negligible at outcrop scale. Due to the presence of
ferromagnetic minerals, rocks will acquire a magnetization M,
called induced magnetization in the direction of applied field
H can be denoted as:

M; = xH (10)

If the rock is placed in a field-free environment, the induced
magnetization falls to  zero (Blakely, 1996) . However,
ferromagnetic materials have a special ability to retain a
permanent magnetization even in the absence of external magnetic
fields and it is called remanent magnetization, may be denoted
by Mr. The remanent magnetization of crustal rock depends not
only on their atomic structure, crystallographic and chemical
composition, but also on their geological, tectonic and thermal
history. In geophysical studies, it is usual to consider the
total magnetization M of the rock as the vector summation of
induced and remanent magnetization, that is:

M=M,+M, =yH+M, (11)

The ratio between remanent magnetization and induced
magnetization is expressed by the Koenigsberger ratio as the
following:

Ml Ml
M, ~ TH]

m
Q g(P) = Y3t (12)

These magnetizations may be oriented in different directions
and may differ significantly in magnitude. The magnetic effects
of a rock arise from the resultant M of the two magnetization
vectors. Magnetic anomalies caused by the rocks are superposed
to the geomagnetic field similar to gravity anomalies which are
superposed to the gravitational field. However, the magnetic
field is more complex, due to the variation in amplitude and in
direction of the geomagnetic field. Consequently, knowledge of
the behavior of the magnetic field is necessary both in the
reduction of magnetic data to a suitable datum and in the
interpretation of the resulting anomalies. The magnetic field
is geometrically more complex than the gravity field of the
FEarth and exhibits irregular variation in both orientation and
magnitude with latitude, longitude and time (Kearey et al.,
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2002) . Total-field magnetometers are usually the instrument of

choice for airborne and shipborne magnetic surveys. As the name

implies, total-field magnetometers measure the magnitude of the

total magnetic field without regard to its magnetic direction.
The total field T is given by:

T =F+ AF (13)

where F 1s the geomagnetic field and AF represents the
perturbation of F due to some crustal magnetic sources. The
total-field anomaly is calculated from total-field measurements
by subtracting the magnitude of a suitable regional field,
usually the IGRF model appropriate for the date of the survey.
If T represents the total field at any point, and F is the
regional field at the same point, then the total-field anomaly
is given by (Blakely, 1996):

AT = |T| — |F| (14)

If |F| >> |AF|, the total field AT can be considered as the
component of the anomalous field AF in the direction of F and
thus it can be considered a harmonic function (e.g., Blakely,
1996) . This condition is usually verified in crustal magnetic
studies.

The SI unit of magnetic field strength is the tesla (T). For
the magnetic variation due to rock, a sub-unit, the nanotesla
(nT), is commonly used; 1 nT=10"°2 T. The strength of F varies
from about 25000 nT in equatorial regions to about 70000 nT at
the poles (Kearey et al., 2002).

1.3. Scaled field and homogeneity law

As described in Fedi et al. (2015), scaling laws allow
modelling the Earth as a scaling medium and are important to
describe its degree of complexity. If one tries to classify
physical source-distributions in terms of their complexity,
statistical models of growing complexity have Dbeen used,
following scaling laws either monofractal, in which the scaling
is expressed by a power law valid globally, or multifractal, in
which the scaling is expressed by a local power law, changing
at each position/scale. For instance, fractal models of both the
types have been used in geophysics to describe the well logs of
susceptibility, seismic wave speed and other physical properties
of the FEarth’s rocks (e.g. Pilkington & Todoeschuck 1993;
Hermann 1997; Marsan & Bewan 1999).

Other classes of source distributions have been used in
applied geophysics to deal with a simplified medium, and so
describe the source distribution at different levels of
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complexity. We will here refer to fields following one specific
kind of scaling-law, called homogeneity law.

The source-distributions of such fields may be generated by
restricting the solutions of the integral equations of the
gravity and magnetic fields (or of their derivatives) to a set
of homogeneous density distributions with very simple
geometrical shapes, such as spheres and infinitely extended
cylindrical or planar distributions of density or
susceptibility. Some of these simple source distributions are
called one-point sources, Dbecause their field f can be
represented as a field generated by a source distribution having
its support in just one-point ro(xo, yo, Zzo0)

The most important property of the fields of one-point
sources 1s that they are homogeneous functions of degree n,
meaning that they satisfy the following scaling law, called
homogeneity equation, in the region R at any observation points
r(x, y, z) and ri(xt, yec, ZzZt):

f(tx, ty, tz) =t"f(x,y,2) (15)

where t > 0 and n is the homogeneity degree.

Based on this equation, Euler’s theorem (e.g. Olmsted 1991)
shows that if £ is continuously differentiable and homogeneous
of degree n in R, the homogeneity of the field may be expressed
by the differential equation:

V() r=-nf(r) (16)
When the source position is ro(xo, yo, zo), egq. (16) assumes

the form:

V() (r—rp) = —nf(r) (17)

The differential form of Euler equation is important because
it assesses the homogeneity properties 1in a local sense.
Thompson (1982) and then Reid et al. (1990) introduced a popular
algorithm based on eq. (17), namely the Euler deconvolution,
allowing the computation of the unknown source-coordinates ro(xo,
yvo, zo) from the field values within a moving window W(r) on the
measurement plane.

This innovation was important because it opened the way to
automated methods of source depth estimation, which have been
used especially in industry to process massive data sets in a
short computation time. Many other ‘Euler deconvolution’
algorithms were since then proposed, applying it to different
fields (field derivatives, modulus of the analytic signal,
Hilbert transforms) and the unknowns were extended to include
other parameters, e.g. a constant background term B and to the
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so called structural index, N, usually defined as the opposite
of the homogeneity degree (n) for the magnetic field of ideal
sources. A summary of many of the main Euler algorithms can be
found in Fitzgerald et al. (2004). Euler deconvolution was also
reformulated in a multiscale framework by Florio & Fedi (2006,
2014) and Fedi et al. (2009).

The most obvious one-point sources are the pole-source in the
gravity case and the dipole-source in the magnetic case. As is
well known, such sources generate homogeneous fields of
homogeneity degrees equal to -2 and -3, in the gravity and
magnetic case, respectively. Other ideal sources have Dbeen
however considered, all characterized by the degree of
homogeneity of their homogeneous

fields, which, 1in the magnetic case, corresponds to an
integer ranging from -3 to 0. In fact, the ideal sources
considered in the Euler deconvolution are the infinite line of
dipoles (n = -2), the semi-infinite thin sheet (n = -1) and the
bottomless contact (n = 0).

Besides these cases, all characterized by a global kind of
scaling law, homogeneous fields may be used as suitable models
to approximate the behavior of any real field even when the
potential fields are not homogeneous in the sense of eq. (1),
meaning that homogeneity equation is not wvalid in the whole
harmonic region, while holding on in selected sub-areas of the
harmonic region. This 1is 1likely to happen when the source
distribution is more complex than any of the ideal sources. For
instance, Florio et al. (2014) recently analyzed the behavior
of the magnetic field of a cube.

Steenland (1968) was probably the first to show that, for the
most realistic cases of inhomogeneous potential fields, n can
be fractional and is varying with the distance to the source,
being dependent on the depth and kind of source distribution.

It was empirically shown that when the sources are different
from the one-point sources and the estimated n is not integer,
the estimated depth is not relative to the source top or center,
but to a point somewhere positioned between the top and the
center of the source (Keating & Pilkington 2004; Gerovska et al.
2005) . However, 1t 1s important to stress that it has been
recently shown that homogeneous sources and corresponding fields
may exist, whose homogeneity degree may be fractional as well
(Fedi et al. 2012; Fedi et al. 2015). They are characterized by
having some intermediate properties between those corresponding
to two subsequent one-point sources of integer n, as shown in
Fig. 1, where the gravity anomalies are drawn for a pole (Fig.
la), its fractional integration of order o = -0.5 (Fig. 1b) and
for a bottomless vertical line mass (Fig. 1lc). Basing on that,
we may so extend the range of allowed homogeneity degrees to any
real value within the range: -3 < n < 0.

12
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Figure 1: The gravity anomalies due to a pole source (a), to a fractional order
a = -0.5 integration of a pole source (b) and to a bottomless vertical line mass (c).

(from Fedi, 2016)

Following strictly Fedi (2016) we may say that, similar to
what happens for random source models, where the fractal
scaling-law has been generalized into a multifractal law, the
homogeneity law could be generalized into the following
multihomogeneity law:

f(ax,ay,az) = a®"*YAf(x,y,z) (18)

so that the differential Euler equation becomes:

VF(r) - (r—rp) = —n(r)f (r) (19)

and n may now assume fractional or integer values as well.
This generalization takes into account that real fields are
essentially inhomogeneous and typically present a fractional and
spatially varying homogeneity-degree.

Starting from this law, we will see in chapter 4 that this
varying homogeneity-degree may be 1s used directly in the
inversion of potential fields, as an exponent of a specifically
designed weighting function.

13



2. Elements of Inversion Theory

If N measurements are performed in a particular experiment,
one might consider their values as the elements of a vector d
of length N. Similarly, the model can be represented as a vector
m of length M, whose elements are the source strength in
specified sub-volumes of the source volume.

data: d=[d,..,dy]"
(20)

model: m = [my,..,my]"

The basic statement of an inverse problem is that the model
and the data are in some way related. Usually the relationship
takes the form of one or more formulas that the data and model
are expected to follow.

The simplest and best-understood inverse problems are the
linear ones, that can be represented with the explicit equation:

Am=d (21)

The matrix A (with N x M dimension) is called kernel. This
is the basic equation of discrete inverse theory. Many important
inverse problems that arise in the physical sciences involve
precisely this equation.

Others, while involving more complicated equations, can often
be solved through linear and iterative approximations (Menke,
1989) .

When the number of the data (N) is lower than the number of
model elements (M) the problem in equation (21) is an
underdetermined problem. For these problems it is possible to
find more than one solution for which the prediction error E is
zero. A priori information helps us in this task.

The first kind of a priori assumption we shall consider is
the expectation that the solution to the inverse problem 1is
simple, where the notion of simplicity is quantified by some
measure of the length of the solution. One such measure is simply
the Euclidean length of the solution:

l,=1nTn1=£§:nﬁ (22)

A solution is therefore defined to be simple if it is small
when measured under the L? norm. We pose the following problem:
find the solution mest that minimizes equation (22) subject to
the constraint that e = d - Am = 0 and we obtain the minimum
length solution:

14



m = AT[AAT]"1d (23)

There are many instances in which L = m' m is not a very good
measure of solution simplicity. One may not want to find a
solution that is smallest in the sense of closest to zero but
one that is smallest in the sense that it is closest to some
known model mo. The obvious generalization of equation (22) 1is
then (Menke, 1989):

L=m-mgy)"(m—m,) (24)

Where mo is the a priori value of the model parameters.

Often, the whole idea of length as a measure of simplicity
is inappropriate and then we can introduce a weighting matrix
Wn that may introduce a priori information. So, equation (24)
becomes:

L=m-—mgy)"W,(m—m,) (25)

Frequently some observations are made with more accuracy than
others. In this case one would like the prediction error e, of
the more accurate observations to have a greater weight in the
quantification of the overall error E than the inaccurate
observations. To accomplish this weighting, we define a
generalized prediction error:

E=e"We (26)

where the matrix Wa defines the relative contribution of each
individual error to the total prediction error (Menke, 1989).

When the problem is affected by numerical instability and by
inherent ambiguity, it is called 'ill-posed'. This problem needs
to be regularized to be solved. The most common and well-known
form of regularization is the one known as Tikhonov
regularization (Tikhonov and Arsenin, 1977)

m,, = argmin{||Am — d||3 + x*|lm]|3} (27)

where the regularization parameter, u controls the weight
given to minimization of the side constraint relative to
minimization of the residual norm. Clearly, a large value of p,
(equivalent to a large amount of regularization) favours a small
solution semi-norm at the cost of a large residual norm, while
a small, (i.e., a small amount of regularization) has the
opposite effect. This parameter also controls the sensitivity
of the regularized solution m to perturbations in A and d, and
the perturbation bound is proportional to wu-l.
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Other two methods to solve the inverse problem for
underdetermined cases involve QR factorization and Lagrange
multipliers.

QR factorization is based on the decomposition of the matrix
AT into the product of two different matrices, Q and R, where Q
is an orthogonal matrix and R is an upper triangular matrix.

The QR factorization (if implemented properly) allows the
construction of stable solutions of the system Am=d. However,
it is costly in terms of speed but can also be applied to
rectangular systems.

The Lagrange multipliers method is instead a particular tool
to solve an inverse problem with a priori constraints, including
the constraint equations (of the form Fm=h) as row in Am=d,
forcing the prediction error to zero at the expense of increasing
the prediction error of the other equations.

In this case the objective function is:

N

M 2 p M
j=1 i=1 j=1

i=1

Where p is the number of constraints and 2A: are the Lagrange
multipliers (Menke, 2006).

2.1. Depth Weighting Function

As we have just said in the previous paragraph, the minimum
length solution can Dbe defined as the solution for the
underdetermined problem. This hypothesis on the solution is the
first and the most common a priori information that can be used.

This kind of minimization, without other constraints,
provides solutions with model elements of low value near the
surface, because in this case the solution is the shortest, as
we required in the minimum length formulation. This because the
kernel decays with distance and so the simplest (minimum length)
solution will be that being the most concentrated, this implying
that having the lowest values in a smaller volume. This obviously
means that such solution cannot be deep (in this case higher
values and larger volume would be involved) and it will be
instead near the surface (Figure 2b).
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NRMSE = 2.0569e-15
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Figure 2: (a) Magnetic field due to a dipole horizontal line shown 1in (c) by the
white dot. Blue solid line 1is the observed data and the red asterisks are the
calculated data of (b) the Minimum Length solution.

We repeat that this kind of density distribution does not
depend on the characteristics of the observed data, but it is a
direct consequence of the supplied a priori information.

To avoid this too strong influence of the minimum length
hypothesis, we need to introduce more a priori information. Li
and Oldenburg (1996) were the first that studied this problem
and introduced a depth-weighting function:

1

Wz_(Z_I_ZO)ﬁ/Z (29)

where z is the depth of each layer in the 3D model and the
value of zo depends upon the observation height and cell size
(Oldenburg and Li, 2005). Li and Oldenburg propose to use for f
a value equal to 3 in the magnetic case (Li and Oldenburg, 1996)
and equal to 2 in the gravity case (Li and Oldenburg, 1998),
assuming 3 and 2 as the rate decay of the magnetic or gravity
field of a single, small, roughly cubic cell.

Oldenburg and Li (2005) later suggested that the exponent
value used in a particular inversion could be chosen, by finding
the best performance of different exponent values applied to
trial inversions of synthetic data from forward models similar
to the expected solution.

Cella and Fedi (2012) showed instead that the appropriate
value of B must be related to N, the structural index of the
source (Table 1), rather than to the power-law decay of the
field generated by a single cell.

17



Source N (grav) N (maqg)
Point mass or dipole sources, spheres 2+k 3+k
Line or masses of dipoles infinite 1+k 2+k
Semi-infinite plane, thin dike, sill O0+k 1+k
Contact -1+k O+k
Table 1 - Structural Index (k = order of differentiation)
Moreover, Ialongo et al. (2014) have shown the connection

between the depth weighting exponent [ and the regularization
parameter pu, where this last one 1s chosen by wusing the
generalized cross-validation method (GCV).

The structural index may be estimated with standard methods
such as Euler Deconvolution or the study of the scaling function
(Fedi, 2007; Florio et al., 2009; Barbosa et al., 1999; Fedi and
Florio, 2006). We will see in detail chapter 4, how to estimate
the structural index by the scaling function method.

For all the inversion performed in this work we will use the
Li and Oldenburg (2003) algorithm, which allows solving
underdetermined problems, with the number of cells significantly
larger than the amount of available data. The related objective
function is satisfied by many different solution models that
generate practically the same data. This goal is reached using
appropriate weighting functions whose parameters are empirically
selected, based on numerical modeling and qualitative analysis
of typical gravity or magnetic anomalies.

The solution 1is obtained by the following minimization
problem (Oldenburg and Li, 2005):

minimize @ = @4 + UPnm
(30)
subject to Mmnin £ m < Mpax

where mnin and mmax are vectors containing the lower and upper
bounds on the model values, and m is the vector containing model
values. Besides that and the weighting function, other prior
information that this algorithm allows to introduce might be:
knowledge of a background or reference model and a general
assumption that the structures should be smooth or,
alternatively, that they have sharp edges at least 1locally
(Oldenburg and Li, 2005).

The algorithm uses the logarithmic barrier method with the
conjugate gradient technique (CG) as the central solver. In the
logarithmic barrier method, the bound constraints are
implemented as a logarithmic barrier term.

The objective function is given by (Gill et al. 1991):

M
oN) = @4 + up, — ZAZ[ln(mj — m}”in) + ln(m}nax - mj)] (31)
=1
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where pu is the regularization parameter, A is the Dbarrier
parameter, @4 is the weighted data misfit and ¢m is the model
objective function. The weighted data misfit is given by:

®aq = IWa(d — dgps) I (32)

where d are the predicted data, dops are the observed data-
vector and Wg is the inverse data-covariance matrix.

Pm(m) = as.f waw?(z)(m — mg)%dv

vol

2
+ axf Wy <6W(Z)(m — m0)> dv + -
vol

0x , (33)
+a f w. <6W(Z)(m_m0)> dv + -
Y vol Y ay 5
0 _
+azf WZ< W(Z)(anzl m0)> dv
vol

where m is the unknown model, mg is a reference model and
w(z) 1is the depth-weighting function (29).

The terms ws, Wwx, Wy, Wz are spatially dependent weighting
functions to input additional prior information about density
or susceptibility model. In particular, the weights wx, wy, wz,
with or without a reference model, control the degree of
smoothness of the solution along the three directions (Oldenburg
and Li, 2005); finally, os, ox, oy and oz are coefficients
controlling the importance of each term.

The logarithmic barrier term forms a barrier along the
boundary of the feasible domain and prevents the minimization
from crossing over to the infeasible region. The method solves
a sequence of nonlinear minimizations with decreasing A and, as
A approaches zero, the sequence of solutions approaches the
solution of equation (30).Further details on how a numerical
solution is obtained discretizing the model objective function
can be found in Oldenburg and Li (1994) .Instead of carrying out
the full minimization at each iteration, it is common to take a
Newton step for each wvalue of A and adjust the step length so
that the updated model remains positive (Gill et al. 1991). The
step length is also used to determine the decreased value of the
barrier parameter A for the next iteration (Li and Oldenburg,
2003) .

The barrier iteration continues until the wvalue of A 1is
sufficiently small such that barrier term has a negligible
contribution to the total objective function (31) and the
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iteration stops when the objective function is changing less
than 1%.

Looking at the equation of the objective model function (33),
it is easy to understand the key role of the depth weighting
function w(z), where, accordingly to Cella and Fedi (2012), the
exponent [ must be related to N.

For this reason, we decided to create a 8 function, estimating
N in every single point of our source-domain. In this way the
equation (29) will be:

1

We will call the equation (34) inhomogeneous depth weighting
function.

In order to build this function, we need to estimate [ in
every point of our domain. We decided to use an approach based
on the scaling function method (Fedi et al 2006), which will be
described in Chapter 4.
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3. [Papers] Methods for 1D inversion of potential field

In this chapter we show two papers published in international
scientific journals that describe the 1D method developed under
this thesis project, for the inversion of potential fields.

The first one describes the theoretical aspects of this new
method, with applications on synthetic and real gravity data,
in the Frenchman Flat (Nevada) sedimentary basis, where the
obtained density model is in good agreement with the results of
density log.

The second one shows the application on magnetic real data,
under a joint interpretation with other information from TDEM.
One relevant result is that our joint cooperative interpretation
allows a significant interpretation of the Drybones kymberlites,
Canada, with an improved modelling either laterally or in depth.
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A method for inversion of 1D vertical soundings of gravity anocmalies

Andrea Vitale!, Domenico Di Massa', Maurizio Fedi', and Giovanni Florio'

ABSTRACT

We have developed a method to mterpret potential fields,
which obtains 1D medels by inverting vertical sowndings of po-
tenfial field data. The vertical soundings are budlt through up-
ward continuation of pofential field data, measured on either a
profile or a surface. The method assumes a forward problem
congisting of a volume partitioned in layers, each of them homo-
geneous and honzontally finife, but with the density changing
versus depth. The continuation errors, increasing with the alti-
tude, are antomatically handled by determining the coefficients
of a third-crder polynomial function of the altitade. Due to the
finite size of the source vohane, ‘we need a prion information
about the total horizontal extent of the volume, which is esti-
mated by boundary analysis and optimized by a Markov chain
process. For each sounding, a 1D inverse problem is independ-
ently solved by a nonnegative least-squares algorithm. Merging
of the several inverted models finally vields approximate 2D or
3D models that are, however, shown to generate a good fit to the
measured data. The method 1s apphed to synthefic models, pro-
ducing good results for either perfect or confinued data. Even
for real data, 1.e., the gravity data of a sedimentary basim in Ne-
vada, the results are inferesting, and they are consistent with
previous interpretation, based on 3D gravity mversion con-
stramed by two gamma-gamma dengity logs.

INTRODUCTION

The purpose of this work is to develop a 1D method for analyzing
anomalies of potential fields.

The scientific literature is extraordinarily rich in algorithms concemn-
ng 2D and 3D potential field data mversion (e.g., Last and Kubik,
1983; Guillen and Menchett, 1984; Litinsky, 1989; Li and Oldenbug,
1096; Barbosa and Silva 1994; Silva and Barbosa, 2004, 2006; Cella
and Fedh, 2012; Paoletti et al, 2014; Silva Dias et al., 2009; Wijns and

Kowalezyk 2007). However, there are ne 1D algorithms equivalent to
those applicable to seismic or electromagnetic methods. From a general
point of view, this is not swwprising because 1D problems invalve a for-
ward problem referring to a sef of infinitely extended layers, each one
homogeneous n the source property. Indeed, in the gravity case, such
an assumed model would produce nothing more than a spatially con-
stant field and, therefore, it could not explam any gravity ancmalies.

Ta our knowledge, only a single work (Fech and Rapolla, 1995)
regards the mversion of “vertical gravity soundings,” that 15, 4 1D
mversion method, using a forward problem consisting of a finite
volume of layers, each of them with its own density and horizon-
tally finite. The authors first form a gravity vertical profile, by up-
ward continuation of the data above an area including the sounding
and then show how the inversion of such a vertical profile could
yield a 1D estimation of the density through the volume.

In this work, we generalize the method to the mversion for a sowrce
distribution, which is inhomogeneous either laterally or vertically.
In practice, we will solve a set of linear inverse problems at many
locations on the measwrement ares, inverting for a density model
relative to a set of fimte and homogeneous layers at each location.
Agsuming a large number of layers, we, therefore, selve an under-
determined problem because the data number is less than that of
the unknown parameters. Density bounds may be applied to constrain
the physical property to lie within a geologically reasonable interval.
Because all the 1D inversions are independent of each other, we may
finally produce a 2D or 3D model of the physical property joming
the results obtained for each vertical sounding. The main disadvant-
ageis that 2D and 3D models are not built by direct multidimensional
nversion but by approximation from a multiset of 1D models.

We tested our method by analyzing either synthetic or real data.
To make realistic simulations, we also mterpreted synthetic cases
with data generated by upward continned data

1D VERTICAL SOUNDINGS

The basic idea of the verfical gravity soundings (Fedi and
Rapolla, 1995) was that the verfical distribution of density could
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be deduced by the gravitational field known at different
altitudes.

Following Fedi and Rapolla (1995), we start from the relation
that defines the gravitational field generated at the point of coordi-
nates r = {x,y, z) by a distribution of mass density p{r’) in a vol-
ume V'

glr) = Y/p(r’)ﬁdv’, oh;
i

where y is the gravitational constant and

r=r| ==V -+ -2V @

If the density varies just vertically (1D model),
plr') = p(2). €Y

Consider now a vertical sounding with NV measurements at
7i(%, 3,21, - - -» 2w ), where the altitudes vary as zy, ..., zy, with
j=1,...,N, and the horizontal coordinates {X,¥) arc fixed.

Vitale et al.

Then, equation | becomes
' z - < '
glry) =v [ plz )mdﬂ : “)
i

v

where

|r;— 7| :\/(J'c—x’)2+()')—y’)2+(zj—z')2. (5)

This equation describes the 1D forward problem of a continuous

unknown function p(z), linearly related to the measured gravity

data. If we now assume a discrete number M of layers in each of

them, the density is homogeneous, we have

M
glry) = ZﬂiGij’ 6)
1

where

z'—z;
Gy(r;) = }’/de, )
j
v,

a) CaseA b) c)
0 0 &0 and {p;}, {V,} are, respectively, the densities and
B 70 the volumes of the M layers withi =1, ..., M.
50 To better understand if the field at different
4 70 t altitudes allows information about the sources,
6 £ 50 we now analyze two simple cases. The first one
s § 40 (case A in Figure la) is relative to a prismatic
60 - 230 source built by two layers with the upper one
100 5 = being denser; the second one (case B in Fig-
5 0 20 .
ure [a) has instead the upper layer less dense.
M, = 1g/cm’ N 50 - 10 The two models have the same geometry and di-
B, =05 glom T 0 mensions (the upper layer is 5x 5 X 3 km, and
£ 06 07 08 09 ihe pottom layer is 5% 37 km). Consider
5 40 - Density (g/cm”~) now two profiles built at the center of the two
2 blocks. Figure 1b shows that the field from the
Case B = 11 . .
I 80 model A (solid line) is stronger at low altitudes
30 - 70 —--Case B i than that from the model B (dashed line), at 8 km
—Avgvalue| ! .

i they are equal, and so also the corresponding ap-
. 50 ! parent densitics (Figure Lc), at altitudes higher
20b é 50 '! than 8 km, the field from model B has the highest

2 40 !' values.
=2 I Following Fedi and Rapolla (1995), we may
5 10 g 30 ’.I have another way to distinguish the effects from
0 50 20 / the two sources, by introducing a quantity called

10 /,/ the apparent density (p(z;)}
1 o "/ ’
10° 102 06 07 08 09 JopR S

Gravity (mGal) Density (g/cm?) plz)) =——-2——  (®

Figure 1. Vertical variations of the gravity field and the apparent density of a two-lay-

—;
fV [r,=r'F dv

ered source. We study two cases {a): a denser upper layer at the top (case A) or a denser

bottom layer {case B). (b) Model A (solid line) is stronger at lower altitudes than 8 km
compared with model B (the dashed line). At 8 km, they are equal, and at altitudes
higher than 8 km, the field from model B has the highest values. (¢) Apparent density.
The solid vertical lines indicate the average density of the bodies, weighted by the thick-

nesses of the layers of each body.

The apparent density is a normalized gravity
that has the physical dimension of density. It is,
in fact, obtained through the division of the field
by a gravity field relative to the same volume,
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where the density is homogeneous and equal to | g/cm’. Apparent
density is really meaningful in distinguishing between the two
cases: In fact, at low altitudes, in the cases A (solid line) and B
(dashed line), it has a close value to each one’s own true density
of the top (Figure Lc). On the contrary, at high altitudes, it asymp-
totically tends to the respective weighted average of the two layers’
densities, the weighting being the thicknesses of the two layers.

This example clearly shows that there is information about
the source property distribution within a vertical gravity sounding.
However, it is not easy to handle this quantity because we need to
know exactly the normalizing volume. In addition, as shown by
Fedi and Rapolla (1995), a linear system involving the equivalent
density (equation 8) is equivalent to that formed by that related to
the 1D gravity problem (equation 6) because the gravity data and
the kernel are divided by the same quantity, that is, the normalizing
factor in equation 8.

Therefore, we turn to the original 1D gravity problem, based on
equation 6:

g=Gm, &

where g represents the vector of dimensions N formed by the data,
m represents the density vector of dimensions M refers to the vol-
ume, and G represents the matrix of the theoretical kernel of dimen-
sions (M X N) defined in equation 7.

The presence of experimental errors (Ad) implies that the fitting
between experimental data and theoretical data (Gm) is searched
according to

g—Ag<Gm<g+Ag 10

Besides, to reduce the number of possible models that are the
solution to our problem, we may constrain the solution by a priori
information about the density of each layer

8pr, = 8p; < Opn. an

‘With these inequalities, the solution may be found by solving the
optimization problem of minimizing ||m||, subject to inequality
constraints (Menke [1989], pp. 130-131).

The problem 9 is transformed into

Gm' =g/, (12

where

T
G — ﬁT]; = m a3

The matrix F contains both the kemel G, of dimensions (M X N),
relative to the vertical sounding data g of dimensions N and the
matrices associated with additional constraints. Similarly, the vector
h of dimensions (2N + 2M) contains the data vector g and the val-
ues of the constraints (m; = 8p; and my = 8py) as

G g-Ag
_ |-G _ | —(g+Ag)
F—| | h- o , (14)
-1 —my

where M is the number of layers in the model volume and A is the
number of altitudes of each sounding. The functions F and h may be
used to solve the problem in particular conditions, such as those
relating to mitigate the effect of a trend or noisy data (we will dis-
cuss that later with equation 18 and system 19).

Our problem is solved (Menke, 1989) by searching for the sol-

ution m’ that minimizes
e’ =|g'-G'm’|;, subjecttom’>0,  (15)

noting that if the prediction error e’ # 0, the constraints Fm > h are
consistent and the solution of the problem is

7

m;=——1 withi=1,...,M. (16}
€y

It is intuitive to understand that inequalities 10 and 11 allow for
managing the overall tolerance of this technique. Refer to Menke
(1989, pp. 130-131, equations 7.52-7.58) for the complete descrip-
tion of the algorithm.

To generate a synthetic data set, we used an algorithm to generate
gravity data of a prism-like source at different altitudes (Plouff, 1976).
For each synthetic model, a map of gravity anomalies is generated at
each altitude, related to a density distribution synthetically defined.
From each map, a profile is extracted, passing through the center
of the anomaly, each consisting of X measurement stations. The
kth measurement station along the horizontal profile (1 < & £ K) will
indicate the spatial position of the kth vertical sounding Py, formed by
the N measurements related to that station at different ¥ altitudes
(Figure 2). The altitudes are chosen following the rationale that
the solution does not change adding the field at altitudes greater than
some level.

™~  Mlayers

Figure 2. Generic theoretical volume of M layers for a set of K
vertical soundings (P;). The measurement level is taken as the zero
level, in which the measured anomaly field is shown.
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In this paper, we will invert a set of vertical soundings, such as
those in Figure 2, to the end of producing approximated models of
the density distributions of 2D or 3D complex bodies.

‘We use a procedure similar to other kinds of 1D modeling in geo-
physics, such as resistivity vertical electric sounding, for which a set
of infinitely extended horizontal layers is assumed at each sounding
and the result 13 assigned just at the sounding location.

In our case, for each sounding, we assume that the source volume
is made of a set of homogeneous layers: They are not infinitely
extended, but they are as large as the boundary analysis defines
(Figure 2). Then, the depth-density model found is assigned to
the corresponding sounding position. Therefore, we refer to a single
vertical sounding, say Py in Figure 2. After inverting for the layer
densities in the source, the result is attributed to a set of layers sized
AX, i.e., the step size of the vertical soundings along the profile, and
centered at the profile position. Repeating this procedure for all the
soundings, we obtain an approximate 2D model of the source
distribution along the profile.

Forming and inverting a set of vertical soundings

As shown in Figure 2, the theoretical volume is composed of
M layers of constant thickness. The total thickness 7 and the hori-
zontal extension must be fixed by a priori information. Boundary
analysis can be used for this task (e.g., Bott, 1962; Blakely and
Simpson, 1986). We applied here the enhanced horizontal derivative

(EHD) method (Fedi and Florio, 2001) that is based on the total
horizontal derivative of the weighted sum of the vertical derivatives
of increasing order. Appropriate weighting helps to define accurate
boundaries of the source. In complex cases, with sources lying at
different depths, EHD provides the best edge definition among edge
estimators, as shown in Cella et al. (2009). The source boundaries
can be outlined by considering the locations of the maxima of the
EHD function, as shown in Figure 3b (the red-contoured area high-
lighted by dots) for the gravity anomaly in Figure 3a. In this case,
the series consider the terms from the field to the fourth derivative,
using a weighting factor of one for each of the five terms. The
maxima are represented by the white dots, and they were calculated
using a Canny edge detection function in MATLAB. The source is a
prism with a 50 m depth to the top, a 250 m depth to the bottom, and
a 0.5 gfem® density contrast. Its horizontal dimensions are 110 m
along the x-axis and 130 m along the y-axis.

‘We have now specified the vertical and horizontal size of the
source volume. Therefore, we can proceed to form the vertical sound-
ings for each profile, according to equations 6 and 7. This means that
at the kth sounding position, we will form the system

Gy 2 — Ag
-G, _ | (g + A

o me = | AR an
-1 —my

where 1 is the identity matrix of dimensions
(M X M), G is the kemel of the kth sounding

a) 700 . 2 0.4- ' ' ] of dimensions (M X N), and g, is the data vector
650 of dimension N. In this way, we built the matrix
oi0 F of dimensions [{2N + 2A£) X M] and the vector

0.35- i h of dimensions 2N + 2M):
E. 550
3 500 G; g, — Ag
03 1 _ | G _ | (g + A
F = 1 , h= (gkmL g)
-1 —my

_ 025 (18)

&

8

3 02 1 The system 17 takes into account all the con-

b) x10° = straints, errors (Ag), and density bounds (my
700 a5« and my).

650 3 0.15 1 However, data are hardly measured at varying
altitudes, so that we will calculate the data at a set

500 28 of altitudes by upward continuation of the data
£ 550 2 0.1 1  from the measurement level (e.g., Baranov

T 500 s [1975], pp. 48-56; Blakely [1996], pp. 313—
450 319). Upward continuation strictly holds for an
200 1 0.05- 1 infinitely extended measurement region § and

05 for data known there continuously. Therefore,

350 in areal case, ie., that of a finite region and dis-
400 500 600 700 mGDaIIms oo 012 0:4 crete data sets, the continuation formulas do not

X (m) Gravity (mGal) hold exactly, but only approximately, so that the

Figure 3. Boundary analysis for estimating the source size. (a) Gravity map produced
by a synthetic buried body (see text). (b) EHD considering the series from the field to the
fourth order of the vertical derivatives and weighting factor of one for each of the five
terms (the white dots highlight the maxima). {¢) Vertical gravity sounding at the position
marked in (a) by the white star.

upward-continued data must be regarded as
being affected by some errors, due to imperfect
continuation. For further details, we remind the
reader of a previous paper in which this issue was
specifically discussed by Fedi et al. {2012). In

25



Downloaded 07/18/18 to 143.225.47.3. Redistribution subject to SEG license or copyright; see Terms of Use at http:/library.seg.org/

Vertical gravity soundings inversion G19

particular, we follow Castaldo et al. (2014), which approximated the
continuation error by a third-order polynomial:

H(z) = c; + cyz + 322 + 42’ (19)

where cy, ¢;, ¢y, and ¢4 are unknown coefficients to be estimated
during the inversion process. This polynomial can account for errors
due to the upward continuation operator and errors due to trends of
no interest in our analysis, such as that caused, for example, by a
deeper source.

At this point, our system 17 must be changed to add the con-
straints due to the polynomial, which results in increasing the num-
ber of unknowns:

Se g, — Ag

=S | |Mew | _ | —(g +Ag)

i il B I Pt A ReY
-1, —y

where ¢ is the vector formed by the third-order polynomial coeffi-
clents in equation 19, Sy of dimensions [(M + 4) X N] X [(M +4) X
N] is Gy phus the four polynomial coefficients, and I, is the identity
matrix of dimensions {M +4) x (M +4).

SYNTHETIC EXAMPLES

Let us now describe the multisounding inversion for a synthetic
case related to a single buried body as described in the previous
section (Figure 3). We begin with a prism having a 50 m depth to
the top, 2 250 m depth to the bottom, and a 0.5 g/cm® density con-
trast. Let us assume a gravity profile, extracted from the anomaly
shown in Figure 3a at y = 510 m, and assume the y-axis as the
strike direction.

The altitudes for the vertical soundings range from I to 401 m
with an 8.2 m step. We will consider 33 vertical soundings, spaced
horizontally 10 m along the x-axis. For each sounding, we assume a
set of 100 layers, each 5 m thick, to have a satisfactory depth res-
olution and a 500 m model depth limit for the source thickness.

The last important parameter to set is the horizontal extent of
the source volume that we retrieved quite precisely using the EHD
method (the white dots in Figure 3b). As aleady said, the series

consider the terms from the field to the fourth derivative, using a
weighting factor of one for each of the five terms.

‘We now consider two cases: The first is relative to perfect data,
which is of profiles built with data generated at the various altitudes
by Plouff’s formula and using strong constraints (0 < ép <
0.5 g/cm?®) (Figure 4a) or weaker constraints (0 < 8p < Lg/em®).
The second case is that of profiles built from upward continued
of the map data shown in Figure 3a. We fixed the experimental error
on the data to Ag = 2 X 1072 mGal because we are simulating a
perfect data case. We show the results for only weak constraints
(Figure 4c).

The results are consistent with the true model (the white box
in Figure 4a—4c). The density contrast is consistent with the true
model. Moreover, the obtained density distribution allows for an
unambiguous estimation of the depth to the top of the structure in
all three cases. The source bottom could be very well estimated
in the perfect data case (Figure 44 and 4b), whereas there is some
resolution loss in the case of upward-continued data (Figure 4c).

‘We have above obtained for a simple source a good estimate
of the horizontal source extension (Figure 3b). However, in a real
case, this task could not be so easy and some estimation errors are
possible, not only considering errors in estimates of the edges but
also possible estimation issues due to the particular geometry of the
source. However, we may improve the quality of our estimates by
using a Markov chain approach.

The Markov chain is a stochastic process in which the conditional
distribution at any future time ¢+ 1 for a given past state and a
present state depends only on the present state:

Pylt+1) = P{X(t+ 1) = jIX(1) =
X(t=1) =iy, ..., X(0) = ig)
= P{X(r + 1) = jIX(1) - i}, @

where i is the outcome of the kth trial of the process X{k) when k =
tand Py;(z + 1) is the probability that the outcome of the stochastic
process will be j at the trial £ = ¢+ 1 (Sen and Stoffa, 2013). From
equation 21, we can easily understand that the probability of the
outcome of a given trial depends only on the cutcome of the pre-
vious trial. This statistical approach is used in several research fields
(e.g., Bengio et al., 2017; Didelot et al., 2017; Hartemink et al.,
2017) with the purpose of optimizing the parameters of a study.

a) 05 b) 05 c¢) 0.5
100 04 100 04 100 0.4
E 200 03 E 200 03 E 200 0.3
£= £z =
£ 300 02 B 300 0.2 B 300 0.2
[=] [=] [=]
400 0.1 400 0.1 400 0.1
500 0 500 0 500
200 300 gem® 200 300 g/em® 200 300 glem?
X (m) X (m) X (m)

Figure 4. Source reconstructed after inversion for 33 chcal soundings rclatlvc for a prismatic source (scc the text). (a) Model after mversion

with perfect data and constraints 0 < f) < 0.5 g/em® and Ag=2x 107!
mGal. {¢) Model after inversion with upward-continued data and constraints 0 < 8p < 1 g/em’® and

0<8p <1 gfem® and Ag=2x 107"
Ag =2x 1072 mGal. The white box outlines the true body.

2 mGal. (b) Model after inversion with perfecl data and constraints
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Let us now describe the workflow that we used in this paper.
Starting from the data map at the lowest altitude, we first perform
a boundary analysis using the EHD to have an initial estimation of
the source horizontal dimension. In general, the form of the source
is not regular, so we can approximate its shape by subdividing the
source into a set of thin prisms, as shown in Figure Sc. This gives
different estimates for the north-south sizes, moving, for instance,
along a west-east profile. Consequently, the system in equation 20
will now become relative to a set of layers of complex shape, ac-
cording to the results of the boundary analysis. Because we may
expect that the estimates of the prism size are affected by error,
we may optimize the north-south size of each thin prism, at each
iteration of the Markov chain (equation 21), in such a way as to
improve the fiting among observed and calculated data. We assume
increments or decrements comparing the observed and the calcu-
lated data. If the calculated data underestimate the observed data,
the prism size should be bigger. If the calculated data overestimate
the observed data, the prism size should be smaller. This logic was
used for a positive anomaly, whereas an inverse logic was used for a
negative anomaly (such as a sedimentary basin). To this end, we
may assume increments or decrements of a small fixed quantity

per each iteration step. We obtained good results assuming this
quantity is equal to the data spacing AX.

At this point, the model volume was changed according to this
procedure and the inversion process proceeds to the next iteration.
During the inversion, when inverting for prism £, the obtained den-
sity model is assigned only to prism ¢. In the match between the
observed and calculated fields, we consider the densities computed
for each gth inversion, respectively, related to the gth prism. The
final model is the sum of the effects of the whole set of ¢ prisms.
After the inversion, the misfit is calculated again, and if needed the
sizes of the prisms are changed. The cycle of iterations will end
when a prefixed misfit error is reached.

‘We used the same setup of the source of the synthetic example
described above, with perfect data, but subdivide the model volume
into 11 prismatic sources. To test this approach, we decided to
use for each of the L1 prismatic sources horizontal dimensions
randomly distributed between 150 and 90 m and obtained the
results shown in Figure 6 for three iterations of the entire process,
namely, at the 1st, 5th, and 10th steps. About the constraints, we
used the strong constraints on densities that we mention above
(0 £ 8p £0.5 g/cm’). The function Ag s set initially to a relatively
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0.1 = . . 500 0
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d) 0.5 e) 0.5
rme error = 5.9332e-05 2.5
= 100 0.4
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8 02 e
g —e—Observed data 400 0.5
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Figure 5. Markov chain process for estimating the optimal size of the source. First iteration: (a) observed (blue solid line) and calculated (red dots)
gravity anomalies. (b) Inverted model and (c) estimated boundary (the white boxes highlight the dimensions used for the different prisms). (d-f)
and (g-i) are the same as (a-¢) for, respectively, 5th iteration and 10th iteration.

27



Downloaded 07/18/18 to 143.225.47.3. Redistribution subject to SEG license or copyright; see Terms of Use at http:/library.seg.org/

Vertical gravity soundings inversion G21

high value, say, 10~ mGal, because the initial model is rough. As
the iterations proceed, Ag can be reduced to improve the fit. The
results are relative to the modeled anomaly (the red points in Fig-
ure 6a, 6d, and 6g), the inverted source density (Figure 6b, 6e, and
6h), and the estimated sizes of the 13 prisms (Figure 6¢, 6f, and 61).
In particular, we may see that the results at the first iteration (Fig-
ure 6a—6¢) are the worst, as expected, whereas they undoubtedly
improve at the fifth iteration (iteration, Figure 6d-6f), and they be-
come very good at the last iteration (Figure 6g—61). The root-mean-
square errors are 2 x 107, 5x 107, and 1 x 10~15, respectively, at
the first, fifth, and at the last iteration.

The estimates of the density contrast and the depths to the top and
the bottom obtained at the last iteration are very well consistent with
the synthetic model (Figure 4a).

CASE HISTORY

‘We will now discuss the application of this method to real
data, related to the sedimentary basin of Frenchman Flat, Nevada
Test Site (NTS), USA. Fedi and Rapolla (1995) have already ana-
lyzed a single vertical sounding of a synthetic sedimentary basin,
obtaining good results about its vertical density distribution (their
Figure 9). However, they notice that a model volume with horizon-
tal dimensions a bit smaller than what detected by boundary analy-
sis is needed. Here, we apply our multisoundings method to a real
data case following this advice.

The Frenchman Flat is a Cenozoic Basin located within the
southeastern edge of the NTS. It is filled with
Quaternary and Tertiary volcanic and sedimen-
tary deposits that lie unconformably on faulted ~ a) 25
and folded Palacozoic and pre-Cambrian strata.
Phelps and Graham (2002) have estimated the
depth of the basin in Frenchman Flat using a
gravity inversion model, constrained by two -
gamma-gamma density logs. E

According to Phelps and Graham (2002), the N
basin bottom is located at 2.4 km depth in the
northeast sector of the basin, as shown in Fig-
ure 6a. We digitized the gravity isostatic map in
Figure 2 of Phelps and Graham (2002).

Figure 6 shows the isostatic gravity map (Fig-
ure 6a) and its EHD (Figure 6b), which consider
the terms from the field to the fourth derivative, b) 25
using a weighting factor of one for each of the five
terms. The vertical soundings will be made along
the line as shown in Figure 6a (the white dots).

Our first step was defining the shape of the
basin through a boundary analysis. The EHD T
analysis led to a complex shape, as shown in Fig- =
ure 6b by white dots, with an average extension -
of approximately 10 km along north-south direc-
tion and approximately 12.5 km in the west-east
direction. Note that we ignored the EHD maxima
at y > 20 km, according to the geology of the
area, which links the northwestern portion of
the gravity anomaly to a different basin, the
Yucca Flat.

To build the vertical soundings, we upward
continued the zero-level data set to altitudes from
1 mto 9 km with a L12.5 m step. Then, we con-

5

10
X (km)

sidered 50 vertical soundings, spaced 0.5 km, along the profile in
Figure 7a.

Phelps and Graham (2002) interpret the gravity data with a
0.4 g/cm® density contrast, based on previous geologic knowledge
and two gamma-gamma density logs. Therefore, about the density
contrast bounds, we preferred to use a wide range, from —0.8 to
0.1 g/ cm?, in order not to constrain the density model too much,
and Ag = 0.2 mGal.

‘We then performed the 1D inversion for all the vertical soundings
according to the system 20 and to the source parameters described
as in the following. To account for such a complex shape, we de-
cided to subdivide along the west—east direction the source volume
in 22 thin prisms of variable north-south length, each one 0.5 km
thick. Because it regards the total thickness, in the synthetic cases,
we showed that the total thickness of the model volume should be
greater than the source thickness (Figure 3). Therefore, considering
that Phelps and Graham interpreted the basin with a model reaching
the deepest depth of 2.4 km, we decided to assume the bottom depth
of the volume to be equal to a 5 km depth. The source volume was
then subdivided in a set of 200 layers.

Similar to the synthetic case described in the previcus section, a
Markov chain algorithm was used to select the best north-south size
extent for the assumed 22 thin prisms. At the first step, we used the
estimates provided by the boundary analysis, shown in Figure 7a.
The inverted densities for each sounding were then merged to build
a 2D model at each iteration of the Markov chain. For each of them,
the resulting field was compared with the true data along the profile
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Figure 6. (a) Isostatic gravity map of the Frenchman Flat sedimentary basin and vertical
sounding positions (white dots). (b) EHD of the gravity map in (a), using terms from the
field to the fourth derivative and unit weights; the basin boundary is marked by the white
dots. (¢) Vertical gravity sounding at the position marked in (a) by the purple star.
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in Figure 6a, and the relative misfit was computed. After 20 itera-
tions, we stopped the Markov chain iterations and obtained the best
misfit error, corresponding to the north-south size extents shown in
Figure 7b.

‘We can find the final 2D model in Figure 8d. It may be seen that
the fit with the original data (solid blue line) and the interpreted
model (red dots) is very good (Figure 8a). In this figure, the poly-
nomial trend recovered during the inversion of each vertical sound-
ing, shown in Figure 8b, is added back to the model data. The
interpreted basin model extends mainly from the zero-level toward
a maximum depth of approximately 2.5 km, as indicated by the
black solid line, below which weaker density contrasts less than
0.1 gfcm’® are estimated. This broadening somewhat of the density
model versus depth is an unavoidable feature of this method and
was also observed for the synthetic case (Figure 4c). However, it
is important to see that the estimated density model well agrees with
the model proposed by Phelps and Graham (2002), as illustrated in
Figure 8d, in which the red line is the estimated density contrast
highlighted by the black line A — A’ in Figure 8c and the blue line
is the model proposed by the authors.
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CONCLUSION

‘We have described a 1D method for inverting gravity data, which
has several aspects of interest.

One relevant feature is that it 13, to our knowledge, one of the few
algorithms allowing 1D inversion of potential fields. As any 1D al-
gorithms in geophysics, it is a flexible tool: it can be used for pro-
ducing a local image of the source distribution, as our real-data case
shows in the case of a density log, or to produce sections and even
volumes of source distribution, as our synthetic and real cases dem-
onstrate. In this last case, the method will obviously produce only
an approximate characterization of the underground source distri-
bution, which should be better interpreted with more refined 2D/
3D algorithms. However, our examples show the usefulness of pro-
ducing this kind of source distribution model

The main difficulty is to have a good estimate of the dimensions
of the source, necessary for building a reasonable model volume.
Regarding the thickness and the depth of this volume, we can adopt
a thickness much larger than expected from a priori information, so
that it does not appear a difficult parameter to estimate, or, in other

words, it is a problem not too different than that

in any inverse algorithm. The horizontal dimen-
40 sion of the source volume is instead a critical
parameter of this inversion, and we tried to out-
line a valid strategy for its estimation based on
two steps:

1) boundary analysis, to have our first estimate
10 of the source extent, and
2) a Markov chain approach, to search for the
optimal value of the horizontal extent along
the strike-length direction, which yields the
best data misfit for each sounding.

Figure 7. EHD of the gravity map in Figure 64; the basin was subdivided in 22 prisms (the
white boxes). (a) The white boxes show the sizes (a) at the Ist iteration and (b) at the 20th
iteration of the Markov chain process for the 22 prisms. See the text for further details.
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Figure 8. Inversion of the anomaly in the Frenchman Flat basin (Nevada, USA).
(a) Gravity anomaly (blue line) versus estimated gravity anomaly by the inversion model
(red dots). (b) Polynomial trend as recovered during the inversion. (¢) Our depth model
after inversion, which well reconstructs the basin geometry, as compared with the base-
ment estimated by Phelps and Graham (2002) (the black line). (d) Estimated density con-
trast (the red line) versus depth, referred to the part highlighted by the black line 4 — A’ in
(c), compared with the density model (the blue line) by Phelps and Graham (2002).

A good feature of this algorithm is that once
conditions (1 and 2) are relatively well satisfied,
bounds for the density constraints are not critical
and wide bounds may be safely adopted.

The second problem is that these soundings
are built through upward-continued data; that is,
they contain some continuation error, increasing
versus the altitude. In this case, we provide a rather
good solution by subtracting for each sounding a
third-order polynomial function of the altitude.
Synthetic cases of a single buried body provided
good results for either the geometry and the den-
sity contrast of the source, even if we use upward-
continued data and relatively wide bounds for the
density.

About the computational requirements of oural-
gorithm, on a Mac Pro (early 2009), when all the
starting parameters are chosen, the elapsed time for
the first iteration was approximately five minutes.

The method is automatic, provided some trials
for the weights are made, so the interpreter is called
to choose the best setting for EHD transformation
giving the best continuity of the boundaries.

‘We tested this new method on a real case of
a sedimentary basm in the USA (Frenchman
Flat basin, Nevada). Also using wide bounds
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for the density contrast, we obtained a fairly good result, compa-
rable with that obtained by others using a gravity inversion model
constrained by two gamma-gamma density well-log results.

Extension of the method to the magnetic case is possible and will
be discussed in a future paper.
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We present the joint interpretation of airborne electromagnetic and aeromagnetic data, acquired to study
kimberlite pipes. We analyse the data surveyed in 2005 over Drybones Bay, Archean Slave Province of the
Norlhwest Territories, northern Canada. This area hosts a recently discovered kimberlile province with =150
kimberlite pipes.

Magnetic and electremagnetic data were each one modelled by 1D inversion. For magnetic data we inverted
vertical soundings built through upward continuations of the measured data at various altitudes. The validity
ol the melhod was prior verified by lests on synthelic dala. Electromagnelic dala were processed and inverled
using the modified AarhusINV code, with Cole-Cole modelling, in order to take into account induced polarization
effects, consisting in negative voltages and otherwise skewed transients.

The inlegrated study ol the two kinds of dala has led (o a beller understanding of the structures at depth, even
though the comparison between the magnetic and the electromagnetic models shows the different sensitivity
of the two methods with respect to the geclogical structure at Drybenes Bay.

© 2018 Elsevier BV, All rights reserved.

1. Introduction

Time domain electromagnetic (TDEM) and magnetic surveys are
often performed simultaneously, by a single airborne system carrying
both the electromagnetic equipment and the magnetic sensor.

The opportunity of having twa distinct datasets over the same area,
obeying to different physical principles and thus reflecting the distribu-
tion of different physical properties within the Earth is, in principle, of
great value, In fact, it makes possible an integrated study of the two
types of data with a potentially strong improvement of the final inter-
pretation model.

In this paper, we focused on modelling airborne electromagnetic
(AEM) and aeromagnetic data acquired during the same survey in
Canada, at Drybones Bay in the Archean Slave Province of the Northwest
Territories, northern Canada. In this area, in 1994, a completely under-
water kimberlite structure was discovered.

The application of geophysical methods to exploration for kimber-
lites and their associated diamonds began over 50 years ago with the
use of magnetic and gravity measurements. Within a decade, electrical
resistivity and, later, induced polarization methods were also applied

* Corresponding author.
E-rnait address: d.dimassa@dimms.it (D. Di Massa).

hittps:/fdoiorg/10.1016/jjappgen2018.07.004
0926-9851,/< 2018 Elsevier B.V. All rights reserved.

to the same case, Since 1970's, both ground and airborne methods
included magnetic and electromagnetic measurements {Reed and
Witherly, 2007).

Kimberlite is an alkali ultramafic igneous rock, formed from the
cooling of molten magma that arises from the melt of peridotite in the
mantle at depth of 150-200 km. Kimberlite is composed of at least
35% olivine, together with other minerals such as mica, serpentine,
and calcite (Kjaarsgard, 1996). During its upward rise into the upper
mantle and overlying crust, minerals start to crystallize while the
volatile gases expand and exert increasingly higher pressures on the
surrounding rocks, eventually breaking some of the surrounding rock
and incorporating it into the magma, The kimberlite magma may
produce explosive volcanic events. [n the Slave Craton and adjacent
areas, these eruptions occurred from subaerial to shallow subaqueous
environments; consequently, many of the resulting vent systems are
vertical or steeply dipping carrot-shaped bodies, equidimensional in a
plan section and tapering gradually with depth. Kimberlite intrusions
tend to occur in clusters or fields, with the large-scale distribution
possibly controlled by deep-seated structural features and local
emplacement controlled by shallow zones of weakness, such as faults
or the margins of diabase dykes (Power and Hildes, 2007).

The accepted pipe model includes three different zones from top to
bottom, each with distinctive morphology and texture: the crater,
diatreme and hypabyssal zones (Scott Smith, 1996).
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Crater kimberlites are usually basin shaped excavations formed at
the surface by explosive volcanic eruptions. Crater facies kimberlites
are a mixture of tuffaceous kimberlite, surrounding country rock and
overlying sediments. Two main categories of rocks are found in facies
of crater kimberlites: pyroclastic, deposited by eruptive forces, and
epiclastic, which are the same rocks after the interaction with water.
In much of the Slave Craton, crater-facies kimberlites include a signifi-
cant component of shale and mudstone, sometimes with a significant
component of entrained organic material. Large blocks of surrounding
country rock (xenoliths} shattered from the volcanic vent margins are
present in some pipes. A crater-facies kimberlite is often deeply weath-
ered and serpentinized (Kjarsgaard, 1996).

Kimberlite diatremes are cone-shaped bodies with vertical axes and
steeply inward dipping margins. Diatreme facies describe an explosive
kimberlite breccia composed of fine-grained kimberlite, mantle nodules
and angular fragments of the surrounding country rocks. Diatreme
facies rocks are generally confined to a central breccia pipe and are
generally less altered than crater facies rocks.

Hypabyssal kimberlites consist of unaltered fine-grained kimberlite
with mantle nodules and rare fragments of country rocl. Hypabyssal
kimberlite bodies include dykes, blind intrusions and the root zones of
kimberlite pipes.

In each kimberlite field, all three facies may be present at surface
because of differential glacial abrasion and quarrying, and because of
blind intrusions. The depth of erosion can vary over distances of a few
tens of kilometres or less. Qur ability to detect a kimberlite deposit by
geophysical methods depends on its physical property contrasts with
the host rocks. In the Slave Craton region (Canada}, magneticanomalies
are commonly associated with kimberlite intrusions, having a higher
magnetic susceptibility than surrounding gneisses and granites. In fact,
diatreme and hypabyssal facies are readily detected. In addition, they
can be affected by remanent magnetization. Instead, for crater facies,
the associated magnetic anomalies can be subtle, due to the low
magnetic contrast with the swrrounding rocks, which in turn depends
on the proportion of the non-susceptible sediments present (Power
and Hildes, 2007).

In general, the electrical resistivity of kimberlites increases with
depth, from crater facies through hypabyssal facies. Consequently,
crater facies display the greatest contrast in electrical properties with
respect to country rocks, so being well detectable with electromagnetic
(EM} methods. In fact, during weathering, a highly conductive clay-rich
zone forms in the top of the pipe (Macnae, 1979). Moreover, this top
layer can produce a measurable induced polarization (IP} effect, which
is related to ability of the material to retain electrical charges.

However, the existence of fine grained glacial-fluvial and lake
sediments in the shield regions of northern Canada, with an electrical
resistivity and an electrical chargeability comparable to that of the
crater facies, makes the discrimination between these sources compli-
cated. When the resistivity contrast is negligible, a potential crater facies
of kimberlite target can be still identified indirectly, by assessing if the
conductor persists at depth below the overburden thickness (Power
and Hildes, 2007). Diatreme and hypabyssal kimberlites have usually
low electrical properties contrast with respect to the country rocks.
For this reason, they are almost indistinguishable from granitic or
gneissic country rocks, as based on the study of the electrical resistivity
ot electrical chargeability distribution at depth.

In conclusion, a cooperative modelling of magnetic and electromag-
netic data is expected to yield a comprehensive information on the
whole kimberlite structure, improved with respect to the analysis of
just one of the two datasets.

2. Inversion of magnetic data
In this paper, we performed the inversion of magnetic data along

vertical profiles. This 1D method has been proposed for gravity data
(Fedi and Rapolla, 1995; Vitale et al., 2016} and it is here adapted to

the magnetic case, as described below. 1D methods mainly have the
advantage of a low computational complexity (Auken and
Christiansen, 2004; Lane et al,, 2004}. The inversion of electromagnetic
data (next section) is, on the other hand, commonly performed with 1D
models, so our common 1D approach to the inversion of the two differ-
ent datasets should warrant an easy comparison between the inverted
magnetic and EM models. As a matter of fact, 2D and 3D models are
built by joining the results from the whole set of independent 1D inver-
sions, resulting in an approximate 3D model.

The basic idea of the 1D algorithm for potential fields is that the
physical property distribution can be deduced from the field known at
different altitudes (Fedi and Rapolla, 1995}. For a set of N magnetic
data along a vertical direction (vertical sounding) [Pz, ..., Prj ..., Pini],
assuming that the magnetization could vary only along the vertical
direction (1D assumption), the forward problem for a continuous
magnetization [, linearly related to the magnetic data B, is expressed
by (Blakely, 1996}:

g M

Ho ¢

B(Pry) =72 F‘V/VJ(T)‘VW v
where F is the unit-vector along the inducing field direction, k is an
index accounting for the horizontal position of the vertical soundings
and j =1, ...,N refer to the data positions along each k™ vertical
sounding.

If the source volume is subdivided in M layers, where in each of them
the magnetization is homogeneous, we have:

M
B(Py) =" JGy(P) 3]
=1
where
Ho / 1
Cilpy) =2y [ v dv 3
/) = 1 v |l e

is the unit magnetization intensity contribution due to the i
prismatic layer; [f;, ..., Ji ..., Ju] and [V}, ..., V}, ..., V)] are respectively
the magnetizations and the volumes of the M layers.

Eq. (2} may be rewritten in vectorial notation as:

B=G] @

where B represents the data vector (with dimensions Nx1) of the
vertical sounding, ] represents the unknown vector (with dimension
Mx1) in the source volume and G represents the matrix of the theoret-
ical kernel (with dimension Nx/\M}, defined by the eq. 3.

Since the number of layers is usually greater than the data number,
eq. (4) leads to solve an indeterminate linear problem.

In particular, we search the solution having the minimum Euclidean
length:

M
= Zjiz = Jl5* = minimum )
=

which satisfies some linear inequality constraints:

B—dB<GJ<B + dB ()
Jistisiy, i=1,..M (7
where dB is the vector of the experimental data error, j; and jy; are the
lower and the upper bounds of the model parameters.

The inequality constraints are defined based on the following
strategy:
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1 the unknown parameters vector must satisfy the forward model, but
taking into account experimental data errors dB;

2 the unknown parameters vector is bounded to avoid unrealistic
estimates based on a priori knowledge about the subsurface geclogy.

This is an indeterminate problem with inequality constraints, which
may be posed as:

Fzh 8
where:
1 I
F= |7 é h= B_—J(‘Li]B 9
-G —(B + 6B}

The F matrix, containing the identity matrix 1 (MxM) and the kernel
G (NxM), has dimension {2 M + 2 N) x M; the vector h, containing the
lower and the upper bounds of model parameters and the data with
the experimental errors, has dimension {2 M + 2 N) x 1.

According to Menke ( 1989), the problem 8 may be transformed into:

F 4]
Eu_f_’[h"l;u_[l} (10
Thus, the inversion problem reduces to find the vector u that
minimizes:

e — | F—Eu| , subject to : uz0 (11

It can be shown (Menke, 1989) that if the prediction error, e, is null
then the constraints FJ = h are inconsistent, butif e # 0, constraints Fj=h
are consistent and the solution of the problem is:

e’y . i
ji=7ET 1w1t11'=l:M. (12}

M

Before applying the inversion methed to real cases, we tested it on
synthetic magnetic dataset.

The multilevel dataset, representing the vertical soundings, were
built by first computing the magnetic response of a prismatic source
on a large surface at a single height, and then at a set of altitudes by
upward continuation (e.g., Baranov, 1976; Blakely, 1996) of these data.

However, the upward continuation operator introduces some errors
in the calculated data. This because we approximate the continuous
problem with a finite and discrete set of data, on a finite region. Follow-
ing Castaldo et al. {2014), the effects of this error can be mitigated by
using a third-order polynomial:

H{z} = ¢ + 67+ 32 + ¢47° (13)

where ¢y, ¢, ¢a and ¢4 are unknown coefficients that should be
estimated during the inversion process.

For this test, we used a single prismatic source with horizontal
dimensions equal to (250, 150) m and extending at depth from 100 m
to 300 m. The magnetization contrast with the surrounding volume is
3 A/m. We considered in this case only that the magnetization is purely
induced, with 60° inclination and 0° declination. The magnetic anomaly
generated by this source and calculated at the ground surface is shown
inFig. 1.

The vertical soundings consist of magnetic data continued at 20
different altitudes from the first level at 5 m up to the last level atr 100
m, with a 5 m constant vertical step. The horizontal positions of the
vertical soundings are shown in Fig. 1 by the green points, while the
magnetic anomalies along the profile and at different heights, are
shown in Fig. 2.
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Fig. 1. Magnetic anomaly generated by a single buried prismatic source. The green dots
represent the horizontal positions of the vertical soundings

For the calculation of the kernel, a source volume has been defined
with horizontal dimensions and the directions of the magnetization
that agree with those of the true source. The vertical dimension of this
volume is defined in such a way to completely contain the source of
anomaly and it is discretized with 100 layers having an equal thickness
of 10 m (Fig. 3).

To perform the inversion, for each vertical sounding, we computed,
at its position along the selected profile, the kernel Gy.

In this way, each vertical sounding is inverted independent of each
other.

The procedure may be described as follows. Let us first consider a
single vertical sounding, in Fig. 3. After inverting for the magnetization
of the source layers, the result is then attributed to a set of layers sized
as AX, i.e, the step size of the vertical soundings along the profile, and
centred at the sounding position. Repeating this procedure for all the
soundings we are finally allowed reconstructing an approximate 2D
model of the source distribution along the profile.

For this test, we used the correct magnetization contrasts for the
lower and the upper bounds, setting the lower bound equal to 0 and
the upper bound equal to 3 A/m. The experimental error is set to a
low value, equal to 5- 102 nT,

As shown in Fig. 4, the Vertical Soundings inversion can correctly re-
cover the depth to the top of the source, and the magnetization contrast
is properly estimated (the black rectangle in figure identifies the exact
location of the buried body).

However, the model presents a gradual decreasing of the magnetiza-
tion with the depth, so that an accurate estimation of the depth of the
bottom is difficult.

From the model of Fig. 4, we calculated the estimated data along the
profile, at a single altitude (in this case the first height, 5 m), and we
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Fig. 2. Magnetic profiles at different altitudes: 5 m up to 100 m, with a 5 m constant
vertical step, along the profile in Fig. 1.
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Fig. 3. Schematic picture of the finite layers forming the source volume. Dashed arrows
indicate the horizontal positions of the vertical soundings. The single kernels, Gy (i=1..
N}, are computed according to the spatial coordinales of Uhe relative sounding.

compared them with the observed data (Fig. 5). The observed data are
very well reproduced all along the profile.

The good quality of this result is noteworthy, if we consider that the
2D model is built by simply joining and interpolating the 1D inverted
models obtained by independent vertical soundings.

3. VTEM survey over Drybones kimberlite

We now analyse the EM and magnetic data related to the Versatile
Time Domain Electromagnetic (VIEM) survey flown in 2005 over
Drybones kimberlite (Kaminski et al., 2010; Kaminski and Oldenburg,
2012).

In 1991, in the Archean Slave Province of the Northwest Territories
(NWT), northern Canada, a significant new kimberlite province, hosting
=150 kimberlite pipes was discovered (Kretchmar, 1995).

The Slave Province is an Archean segment of the North American
Craton, composed of granites, gneisses and supracrustal rocks. Sialic
bkasement remnants, well documented in this province, include some
of the oldest rocks in the world as the Acasta gneisses in the western
part of the province, which have been dated at 3.96 Ga (Bowring and
Housch, 1995). Metasedimentary and metavolcanic rocks of the Yellow-
knife Supergroup, deposited mainly between 2.71 Ga and 2.61 Ga, are
the most abundant rocks of the crustal sequences. At least five swarms
of Proterozoic diabase dykes cut the older units in the central Slave
Province (Le Cheminant and van Breemen, 1994; Le Cheminant et al.,
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Fig. 4. Vertical Soundings inversion of the magnelic data produced by a single buried
prismatic source and continued at 20 different altitudes. The black rectangle identifies
the horizontal and vertical positions of the anomaly source.
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Fig. 5. Comiparison between observed and compulted data.

1996). The Slave Province is a classic setting for diamondiferous kimber-
lites: a stable Archean craton with a cool mantle root, which is necessary
for the development of the diamond stability field {Haggerty, 1986;
Janse, 1993). Kimberlite intrudes granites, metasedimentary rocks
and, in some cases, diabase dykes. After the kimberlite emplacement,
the area was covered by Laurentide ice during the Late Wisconsinan
glaciation (Pell, 1995).

Middle Jurassic-, Late Grdovician-, and Cambrian-aged kimberlites
have been discovered, some of which have good economic potential.
Most of the kimberlites in the Slave Province do not crop out at surface;
they have been identified using a combination of heavy mineral
sampling, geophysical techniques and drilling. Many of the pipes are
characterized by either high or low magnetic anomalies and low resis-
tivity values.

The Drybones kimberlite is in Drybones Bay, situated approximately
45 km SE from the town of Yellowknife (NWT, Canada; Fig. 6a). The
kimberlite was discovered in 1994 with a single drill hole and lies
completely under the water of the Great Slave lake, at an average
depth of 35-40 m; a thickness of 65-75 m of lake sediments (clay, till
and sand), further covers the kimberlite (Kretchmar, 1995). The
morphology of the pipe, in Fig. 6b, shows a spatially elongated intrusion
(900 m by 400 m), consisting of crater, pyroclastic and diatreme facies
(Kretchmar, 1995).

A geological cross-section {Fig. 6¢), along the profile AA', has been
drawn based on drilling information (Kretchmar, 1995).

The bedrock geology in Drybones area consists of Archean granite,
grancdiorite and tonalite (Kretchmar, 1995). Metasediments of Yellow-
knife supergroup are alsc present (Dunn et al., 2001). In addition, there
are several known faults near the kimberlite area while a diabase dike in
the northern part crosses the area from E to W {Dunn et al., 2001).

The helicopter borne geophysical survey used the VIEM system for
the EM data and a caesium magnetometer for the aeromagnetic data
(Witherly et al., 2004). The EM system is concentric and oriented
along the vertical direction. The receiver coils were towed at a mean
distance of 45 m below the aircraft. The VIEM decay was sampled
using 25 time-measurement gates in the range from 0.130 to 6.340 ms
after the time-off. The strength of magnetic field is measured by a
magnetic sensor mounted in a separate bird, 20 m below the helicopter.
The VTEM survey was carried out in 2005 along 9 flight lines spaced
100 m, on average, with orientation approximately N—S (Fig. 7). The
EM data, as shown in Fig. 7, display an evident IP effect in the central
part of the profiles above Drybones Bay, where the kimberlite is located.
This IP effect has been identified across all flight lines, showing the
existence of negative voltage data in transients.

EM data were inverted using a 1D Spatially Constrained [nversion
(SCI) approach {Viezzoli et al., 2008) implemented in a modified
AarhusINV code, with capability of Cole-Cole modelling {Cole and
Cole, 1942; Fiandaca et al., 2012). In fact, it is common to ignore the IP
effects in VIEM data by simply removing negative voltage data before
the inversion. This operation can however cause a loss of resolution at
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Fig. 6. (a) Geographic location of Drybones bay { Google Earth); {h) Schematic geology of the Drybones pipe below lake sediments and the locations of 1994-95 drilled wells {adapted from
Kretchmar, 1995); {c) Geological cross-sections along the profile AN based on drilling (adapted from Kretchmar, 1995).

depth and a reduction of the investigation depth. We refer to Appendix
A for a brief description of the used algorithm.

The following starting model was used for the Cole-Cole inversion:
p = 300 Ohm-m; my = 100 mV/V; 7= 10 *s5; C = 0.5, where p is
the resistivity (Ohm-m), my is the chargeability (mV/V), 7 is the relaxa-
tion time (s) and C is the frequency parameter {dimensionless).

The algorithm converged in 14 iterations with an average misfit of
1.29 (dimensionless, normalized by standard deviation), showing

good overall data fit and so producing a model of electrical resistivity,
chargeability, time constant and frequency parameter.

The inversion of VTEM data over Drybones kimberlite, carried out
using Cole-Cole model is in better agreement with ZIEM inversions
{Kaminski and Oldenburg, 2012, Fig. 8), than the inversion of VTEM
data carried out without Cole-Cole modelling.

The comparison between the inversion results and previous inverse
models recovered without considering the IP effects in TDEM data

1e-05 1e-04 1e-03

_Time (s)
I

le-02 le-01

Fig. 7. evidence for IP effects in VIEM data, occurring in correspendence of the kimberlite.
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Fig. 8. Total field anomalies above the kimberlite of Drybones bay.

(Kaminski and Oldenburg, 2012, Fig. 6 and Fig. 8), confirmed the impor-
tance of modelling the IP effects. Conversely, in our case, where we have
modelled the IP effects, retaining the negative voltage data, a significant
increase of the recoverability of the resistivity distribution at depth is
now achieved.

About magnetic data (Fig. 8), we have performed the inversion of
the vertical soundings along the AA’ profile located over the kimberlite.
Each vertical sounding consists of magnetic data upward continued to
15 different altitudes, from the first level at 170 m above the ground
up to the highest level at 240 m above the ground, with a 5 m constant
vertical step (Fig. 9a).

For the calculation of the matrix kernel, we have defined a model
volume with average horizontal dimensions estimated by the total
horizontal derivative method {Cordell and Grauch, 1985). The total
horizontal derivative method applied on the magnetic data of Fig. 8
shows complex edges for the magnetic sources {Fig. 9b). The maximum
NW and SE estimated dimensions agree with what argued by
Kretchmar (1995) for an elongated intrusion of 300 m by 400 m.

The vertical dimension of the model volume is defined to completely
contain the source of anomaly by a maximum-depth rule (Fedi and
Florio, 2013). In fact, no matter the kind of source distribution, Smith
rules {Smith, 1959) or the recent method proposed by {Fedi and Florio,
2013), are very useful in determining the maximum possible depth to
the source for a given anomaly.

The volume is then discretized with 100 layers of 10 m thickness to
have a satisfactory depth resolution. Susceptibility constraints (0 <j <

Magnetic Field (nT)
UTM Y (m)

1%532 3534 353 3538 354 3582 35M
UTH X (m) < 10°

10~2) and a constraint on experimental data error (0 <dB <0,5 nT)
are added to regularize the inversion.

The resistivity, the chargeability and the susceptibility models (Fig.
10) were verified against the known geology along the cross-section
AA’ (Fig. 6c).

The resistivity section {Fig. 10a) appears rather consistent with the
outline of the different layers as determined by wells information. The
yellow-red zone reflects the presence of water-saturated fine-grained
sediments below the lake water, at the bottom of the bay, with low
values of resistivity (< 100 &m). Below these formations, a lateral
contact is marked between the kimberlite {yellow-green zone below
the sediments, with resistivity values in the interval between 100 and
500 Om) and granodiorite (high values of resistivity, > 500 {m).

Thus, the resistivity section, obtained by modelling airborne IP
produces results consistent with the available geological information.
A good correlation with the shallowest part of the geological model is
found, especially considering that the first time-gate of the system has
a central time of 130 us after the end of ramp, and therefore the near-
surface resolution was expected to be limited.

The chargeability section (Fig. 10b) shows a high chargeable layer in
correspondence to the lake sediments that, in fact, are expected to be
very chargeable for the presence of fine-grained products {clay), The
effect of these sediments does not allow an easy detection of the crater
facies of the kimberlite that, usually, can produce an IP effect because of
weathering, {Macnae, 1979).

The Vertical Soundings inversion of the magnetic data along the AA’
profile allows recovering a model with high susceptibilities, possibly
associated with the kimberlite body (Fig. 10c). In fact, the estimated
depths (top of the kimberlite at about 50 m above sea level) are consis-
tentwith the geological information derived by the available drill holes,
from which the top of the kimberlite was detected at depth of 100-110
m from the surface. The susceptibility model shows that the magnetized
body is clearly separated from the overlying non-magnetic sediments
and lake water.

The most magnetized material should mark the shallowest portion
of the kimberlite that is subject to geochemical alteration (Kaminski
and Oldenburg, 2012). In fact, the mineralogical analysis of the
Drybones kimberlite samples revealed signs of alteration due to
elevated contents of Cr and Nb, as well as due to low totals of Ti0, in
ilmenites {Dunn et al., 2001), This geochemical alteration may have a
strong influence on the magnetic properties of the kimberlite, causing
an increase of the magnetization (Dunn et al, 2001).

The comparison between the EM and the magnetic models revealed,
in this case, the different sensitivity of the twe methods with respect to
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Fig. 9. {4) Behaviour of the magnetic data at different altitudes, along the AA’ profile. The green dots represent, for cachaltitude, the horizontal positions of the data and then the individual

wertical soundings; (b) total horizontal derivative of magnetic data above the kimberlite.
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Fig. 10. (a) Resistivity section and {b) chargeability section recovered by SCI inversion using Cole-Cole model along the AA' profile; (c) susceptibility section recovered by Vertical

Soundings inversion of aeromagnetic data along the AA' profile.

the investigated geological structures. This allowed a complete charac-
terization of the studied area at Drybones kimberlite but, at same
time, it could imply greater difficulty in setting up a true joint inversion,
where the physical properties need to be linked in some way by means
of petrophysical or empirical relationships (Dell’Aversana, 2014},

4. Conclusions

We showed and discussed the modelling of TDEM and aeromagnetic
data related to a helicopter-borne survey flown in 2005 over Drybones
Bay, Northwest Territories, Canada, where in 1994 a completely under-
water kimberlite structure was discovered.

The evidence of [P effects in the measured EM data, mainly resulting
in negative values of the voltage, leaded us using a modified Aarhusinv
code for their inversion, implementing a Cole-Cole modelling. The
presented results suggest a correct hydrogeological interpretation of
the cross-section, with lake water and clay-sediment thicknesses
supported by drilling results. Clay material appears in our model as con-
ductive and chargeable, while the lake water does not show any charge-
able properties. The results presented in this paper appear to be more
interpretable and provide better data fit than previous inversion
attempts, where the inversion was carried cut without considering
the IP effects in the TDEM data. The inversions of TDEM data, including
the Cole-Cole modelling, can provide an improved recovery of electrical
resistivity and chargeability at depth. The extraction of chargeability
may be a powerful tool in kimberlite exploration for its key role in map-
ping crater facies of kimberlites and clay alteration zones, which may be
associated with kimberlites.

To better compare the results from magnetic inversion to that of EM
data, usually performed on the basis of 1D inversion, the aecromagnetic
data were also modelled by a new 1D method allowing the inversion
of vertical data soundings. The vertical soundings consisted of magnetic
data at different alticudes while the forward problem consisted in
assuming a volume of layers of different magnetizations. The volume
is finite vertically and horizontally. The inversion of the vertical sound-
ings was performed including inequality constraints on the model

parameters, well reflecting the a-priori knowledge on the studied
area. This method presents a reduced computation complexity and
even if the algorithm is dealing with a mono-dimensional vertical inver-
sion and the 2D model is built approximating multi-set of 1D models,
we obtained a good fitting between the measured and the estimated
data along all the profiles.

The integrated study of the results obtained by separately inversion
of the TDEM and the aeromagnetic data shows that the two methods
have not the same sensitivity with respect to the geological structures
in this area. In fact, while the most conductive/chargeable structures
are found in correspondence of the water lake and the uppermost lake
sediments, the most magnetized structure coincides with the depths
to the top of the kimberlite sequence, showing susceptibility values
much higher of the poorly-to-not magnetic overlying structures.

Nevertheless, their ability in characterizing sources at different
depth ranges of the Drybones Bay, is definitely useful to improve the
final interpretation model. All the geological structures at Drybones
Bay are well retrieved by the inversion processes and are in very good
agreement with the drill hole information available for this area.
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Appendix A. Laterally constrained inversion for IP parameters

The induced polarization (IP) effects in TDEM data is usually
observed in the data derived from coincident-loop systems, showing
abnormal fast EM decay with the existence of negative values of the
voltage. This phenomenon can significantly alter the shape of the tran-
sient and, if not considered, may lead to recover false structure, with
incorrect conductivity-thickness parameters (Viezzoli et al., 2015).

Over the years, the handling of the IP effects in TDEM data has kept
its relevance with a further interest from ground to airborne data
{Smith and Klein, 1996; Kratzer and Macnae, 2012). For airborne data
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the appearance of IP effects is closely related to the flight height and to
the waveform shape (Viezzoli et al, 2013). The increase of flight height
causes a delay in the appearance of the [P effects, which can also disap-
pear if the transition occurs below the noise level. The duration of turn-
off controls the injection time of the induced currents in the ground that
in turn controls its effective charging. Therefore, a slower turn-off
current causes the [P effects to dominate over the induced currents at
earlier times,

Viezzoli et al,, 2013 have also investigated the dependence of the IP
effects in the AEM systems, varying the Cole-Cole parameters and they
concluded that the values of resistivity and chargeability are positively
correlated with an increase of [P effects, i.e. the IP effects appear at
earlier times, while for C and 7 they did not observe a similar behavior.
The increase of their values is not always followed by an appearance of
the IP effects at earlier times.

The possibility of extracting chargeability information from transient
EM data, that can have a significant impact to mineral exploration, has
provided several suggestions to handle the IP effect with Cole-Cole
model.

A polarizable earth may be described using an impedance model
derived from the empirical Cole-Cole model (Cole and Cole, 1942):

. My 1
Zwy=pll——|1——— (A1
B [ 103( 14 (imnfﬂ b

Eq. A.1introduces a complex impedance relationship, as a function
of four parameters: p ({dm) is the electrical resistivity, my (mV/V) is
the chargeability, C {dimensionless) is the frequency parameter, de-
scribing the variation of phase with frequency and 7 (s is the relaxation
time.

Fiandaca et al., 2012) have introduced a 1D algorithm allowing to
solve for complex impedance model; here the Cole-Cole model
(eq. A.1) represents the forward mapping kernel, The four Cole-Cole
parameters are the unknowns of the inverse problem which are simul-
taneously obtained in a unique inversion process, where the relation-
ship between parameters is maintained at all times. The inversion has
been implemented using the 1D laterally constrained inversion {LCI)
scheme (Auken et al,, 2005): a set of vertical and lateral constraints,
tied together the parameters of the neighboring soundings along the
flight lines for LCI, retrieving 2D sections in quasi-layered environments
(Fig, A.1).

Model n

Model n+1
Model n-1
Layer 1 pmy
4 I v
Layer2 « « « ¢ thk
Layer 3

Fig. A.1. Model parameters with lateral constraints {adapted from Fiandaca et al,, 2012).

The LCI inversion algorithm is described in detail in Auken and
Christiansen (2004). It allows performing the inversion of large data
set, where the parameters of the earth model for each sounding are con-
nected laterally by means of lateral constraints, defining a specified var-
iance of the model parameters. The lateral constraints can be considered
as a-prieri information on the geological variability in the area of mea-
surements. In LCl, the connection of the soundings occurs along a pro-
file, producing quasi-2D images of the subsurface with smooth lateral
transitions, The constraints allow the migration of information from

one model to neighboring models, helping to resolve areas with poorly
constrained parameters or soundings particularly noisy.

The LCl is a full non-linear damped least squares inversion based on
an exact forward solution, modelling the instrumentation's system
transfer function (STF). The solutions developed by Ward and Hohmann
(1988) are used as the basis for the forward modelling algorithm.
Modelling the STF also includes low-pass filters (Efferse et al., 1999),
and turn-on/turn-off ramps (Fitterman and Anderson, 1987).

The inversion problem can be written:,

ome -] 2]

where dDobs denotes the observed data, ecbs is the error on the
observed data, G is the Jacobian and contains all partial derivatives of
the mapping, dr are the constraints, er is the error on the constraints
with 0 as expected value and R is the roughening matrix, containing
1's and — 1's for the constrained parameters, and 0 in all other places.

The covariance matrix for the joint observation error, which it is
assumed to be a diagonal matrix, becomes:.

s [Cons O
c*[ 0 ck]

(A2}

(A3)

if any a-priori information on model parameters, allowing to reduce
the ambiguity on the inverse models, are available, they can be added,
following Jackson (1979), as an extra row (M) to the system A2
and the a-priori model variance (Cprior) is described in covariance
matrix.

In a compact form, Eq. A.2 is rewritten as:.

G dmyye = dD’ + €& (A4}
the model estimate is (Menke, 1984):
=1 oy "Lt =1 e o
dMe = (G (s G) ¢"c'dp (A5
that minimizes the objective function:
Q (L anc | ' (A6)
=l57R! !

The algorithm inverts all the soundings simultaneously, considering
all the data and the lateral constraints, A common objective function is
thus minimized. The output model, including all the 1D soundings, is
balanced between the constraints, the physics and the data.

Following this approach, some experiments on synthetic AEM data
were presented by Viezzoli et al. {2013), showing how 1D inversion is
able to recover the unknown parameters and which is their standard
deviation, for a chargeable half-space. These tests have highlighted
that, in general, the resistivity and chargeability parameters are well-re-
solved, displaying also some degree of coupling. Low standard devia-
tions are usually associated to the frequency parameter C, for which a
low value of starting model is preferable to obtain better convergence
and sensitivity. © parameter is the worst resolved and in addition it
has been noted that a starting value close to real value is needed to
avoid a negative influence on all the other parameters.
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4. IMAGING METHODS: the scaling function

This paragraph shows the theoretical background of the
scaling function method, following the demonstration given by
Fedi (2007) for the gravity field of a pole source. These
quantities are important to understand the homogeneous
properties of potential fields. Let us assume a cartesian
coordinate system with the z-axis negative downward.

The gravity field f(r) due to a homogeneous sphere at
Yo (X0, Yo, Zzo) with density M=1 and normalized by the gravity
constant k, can be expressed as:

f(r)=ﬂ (35)

lIr = roll3

If the source is at 1r0(0,0, z9) and the field is measured at
X=X0, y=yo we have:

1
f(@zm (36)

The scaling function can be defined as the derivative of the
logarithm of the field f with respect to log(z):

(z) = dloglf (2)]
~ dlog(2)

For the above-mentioned example of the gravity field, the
scaling function 1 is:

2z

Z— 2

(2) = — (38)

We note that the scaling function has the important property
of not being dependent on the source property, such as density
or magnetization intensity. If we now consider a kth order of
derivation for the field f we can express the scaling function
as:

_dloglfi(2)]  (k+2)z
(2) = dlog(2) T z-— Z (39)
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From the equation 38 we can see that 1(z) is singular at z=z¢
in the source region, but at z=-z¢ we have that 1(z) = -1, and
it follows that:

d{log[f (2)] + log(2)}
0z

_ozf
0z

=0 (40)

z=—2,

z=—2,

From equation 40 we can understand that the function zf has
a maximum at z=-zg. This means that, scaling the gravity field
with a power law of the altitude z and exponent equal to 1, we
can have a scaled gravity field, Wwy:

W, = fz (41)

having a maximum at x=xo9, y=yo and z=-zg. Obviously, the
maximum is due to the fact that we have assumed a positive
density contrast. If we choose a negative density contrast we
will have a minimum at the point r(x=xo, y=yo, z=-2zo). Moreover,
instead to express the function Wy as function of r, we can
express Wg as function of (xo, yo, zo) .

We can generalize the scaling function formula to any ktk
order vertical derivative of the field fx, and to any kind of
homogeneous source; in fact, starting from the kth order
derivative of the gravity field, of homogeneity degree n,

1
fk(x:xo,J’:J’o,Z):m (42)

Where N=-n, we get:

_Ologlfe(@)] _ (k+N)z

= = 43
(%) dlog(2) Z— 2z (43)
At z=-z0 we will have:
k+ N
Tk(—Zo)=—% (44)

Hence, the general scaled function, Wx, which we call DEXP
transformation, has an extreme point at the source position x=xo,
y=yo and z=-zo and it can be expressed as:

k+N

Wy =fiz 2 (45)
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We have described the DEXP transform for the field and its
derivatives of a simple pole source. Obviously real sources
generate a field that cannot be explained by something like a
simple pole source, unless the field is measured at a great
distance. So, we could define real sources as source
distributions within finite volumes with arbitrary shapes (Fedi,
2007) .

But, in the majority of the cases, the source complexity can
be simplified to semi-infinite volume-less shapes. For example,
we can see pipes, ridges, valleys, tunnels, volcanic necks as
infinite cylinders. These simple shape bodies are generally
defined as one-point sources, meaning that we need the
coordinates of Jjust one singular point, i.e. the center or the
edge, to define them (Stavrev, 1997; Fedi, 2007).

4.1. Estimating the inhomogeneous depth weighting
exponent f

Our main goal was to build an inhomogeneous depth weighting
function (eq. 34). The key point is to estimate the depth
weighting exponent [ for every single point of our domain.

The insight from Cella and Fedi (2012), that links B to the
homogeneity degree n and the scaling function method, will help

Assuming again, for the moment, an ideal source, it is easy
to show that the scaling function 71 (equation 37) could be
written, in scalar notation, as:

dlogfx dlogfi dlogf
+ +
dlog(x —&*) ~ dlog(y —n*) ~ dlog(z — {*)
1 dfy 1 dfy 1 df; i}

T (1, p*) =7 ox X—f*)‘l‘]TkE(J’—U*)‘l'——Z(Z—C)

Tk(r! p*) =

where r(x,y,z)and p*(&{*,n*,{*)are the positions of
observation point P and source S.
Equation 46 could be written in a different form, as:

i dlogf, . dlogf,
7e(r,p*) = Vlog(fi) 1 = — =& ———=

i alogfk(*
n — =

=a—bé—cn—d{

Where;
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_ . _ Ologfk _ dlogfk _ 0logfk
a = Vlog(fy) r, b=—"-, c=— d=—".

Now, we can define the differential scaling function as the
gradient XY of the scaling function r:

X =V1 (48)
with components:

ot da 0b i dc i ad

2T T ax ot ax! ok

*

y

__61__6a db dc ad

—_— __n _—

279z 0z o0z 0z

Or 1n matrix notation:

J=a+Tp" (50)
Where:
a=Va
rdb  dc  dd
dx 0x Ox
L_[ob oc od (51)
|y dy oy
db dc dd
Lz 0z 0z

Since that for homogeneous fields we have:

T (r,p") = —n (52)
it will Dbe:

2r(r,pH) =0 (53)

For this reason, we can solve the system deduced from equation
50 at every point r of our field domain, to estimate the source
parameters &%, n*, (*. For every position in the space =r;
(Xi,vi,z1i) we will assume ¢*=x; and n*=yi, assuming that we are
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estimating the homogeneity degree n due to a one-point source.
Knowing them and substituting them in equation 52, we may
estimate the degree of homogeneity n and f, according to Cella
and Fedi (2012) who established the relationship of B(x,v,z)
with the structural index N as:

B(x,v,z) = N(x,y,z) = —n(x,y, —2z) (54) .

So, we can form a fB(x,y,z) function, to be used to create a
inhomogeneous depth weighting function w(x,y,z), according to
equation 34:

1
W(X,y,2) =~ -

For a given k-order field derivative of the magnetic field we
will estimate the exponent of the weighting function B as

.B(x;)’»z): N(X»Y»Z):—(n(x,y,—z)'i‘k) (55)

Similar formulas occur in the gravity case, replacing the
magnetic field and its k-order derivatives by the wvertical (or
horizontal) gradient of the gravity field and its k-order
derivatives, respectively.

The flowchart below summarizes the whole new approach
proposed.

Upward

continuation of
the field

Estimation of
n(r)
Building an
inhomogeneous
depth weithging

exponent

> Inversion
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5. 2D Inversion with inhomogeneous depth weighting
function

To test the effect of the inhomogeneous depth weighting
function we started by running some 2D synthetic models.

Moreover, to be sure that the estimation of the homogeneity
degree 1n every single point of our domain was correct, we
started by using an analytical approach and then we moved to a
numerical approach.

We considered the magnetic field, but we had same results by
using gravity field.

The idea of using an inhomogeneous depth weighting function
was, for the very first time, explored by Daniela Mastellone in
her PhD thesis.

Our work started on replicate some of those 2D cases, while
improving the estimates of B(x,y,z), and then using the new
approach to 3D domain.

5.1. 2D horizontal line of dipoles

We started by using a homogeneous 2D source: a horizontal
line of dipoles. From now on, for the sake of graphical
simplicity, we assume the z-axis positive downward.

The analytical formula that express the magnetic field due
to this kind of source is well known (Telford, 1990, pg.92).

So, knowing a formula, is easier to calculate derivatives and
the scaled field at several level.

According to the discussed workflow we calculated the scaling
function in a 2D domain as:

* —i% _Tx* l% _ 7
Tk(r,p)—fkax(x €)+fkaz(z ) (56)

In the same way, equation 51 becomes:

_y __aa_kaa
a=Ve =Tz
db 0dd (57)
_|0x O0x
=13 od
dz 0z
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In this 2D case we will get B(x,z) that is used to create a
inhomogeneous depth weighting function w(x,z) for a 2D domain.

The analytical example was built by a line of dipoles located

at &* = 100 m and ¢* = -15 m, with unitary magnetization
intensity. Inclination and declination of the main and induced
fields are the same (Inc = 90°; Dec = 0°). The 2D domain along

x, goes from 1 to 200 m with 1 m step size and along z from 1
to 31 m.

The highest altitude was chosen according to the maximum
depth that we want to investigate in the inversion process.

a %102 nT
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E ‘20 g
-10 2
0
50 100 150 200
m
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-30f - ' - 2.002
I ", e :
E-ZD -, # 2
-10¢ 1.998
50 100 150 200
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Figure 3: (a) Magnetic Field due to a line of dipoles, scaled at different
altitudes, from 1 to 31 m. (b) B(x,z) function estimated for the entire domain.

In figure 3b, it is possible to notice some instability in
the estimates of B(x,z), along two lines. Even if the difference
from those instabilities and the expected value is really small,
these phenomena could be larger in numerical cases.

Anyway, looking at the estimates of the [ values within our
domain we can say that the approach is working properly, because
we expected a constant value of 2 due to the homogeneity property
of this particular field.

Obviously, in this case, we do not expect any difference in
the inversion results by using homogeneous or inhomogeneous
approach. In fact, as we can see from figure 4, the two different
approaches lead to the same result.
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Figure 4: (a)Inversion model result by using f = 2. (b) Inversion model result

by using B(x,z), shown in figure 1lb. White dot highlight the true source position.

5.2. 2D Single buried body (prismatic source)

At this point we can move to numerical cases, applying the
same procedure to a single buried body model. In this case we
have no more a homogeneous field, so that n and therefore g
values are expected to generally vary with the position of each
point in our domain.

The source was built by a prism located along x between 95
and 105 m and along z between 5 and 10 m depth, with unitary
magnetization. Inclination and declination of the main and
induced fields are the same (Inc = 90°; Dec = 0°). The 2D domain
along x, goes from 1 to 200 m with 1 m step size and along z
from 1 to 41 m. In figure 5a is shown the field at 0 level.

The highest altitude was chosen according to the maximum
depth that we want to investigate in the inversion process.
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Figure 5: (a) Magnetic field due to a prismatic source. (b) p(x,z) function
estimated for the entire domain with instabilities due to numerical errors. (c) B(x,z)
function corrected by a ‘brute force’ approach considering a reasonable range of
values from 0 to 2.1

Considering that in this case our field is not homogeneous,
we can expect a not constant value of B within our domain.

As we expected, looking at figure 5b it is however plausible
that the numerical process produces some instabilities. To
reduce it, we used a ‘brute force’ approach on the estimates of
B values, setting automatically those values outside a
reasonable range to the limits of that range.

In particular, because we are considering a magnetic 2D
field, we set this range from 0 to 2.1.

So, if the estimate of [ at a position (x,z) is lower than
0.1, that B value is modified as 0; if the estimate of [ in a
position (x,z) is higher than 2.1, that B value is modified as
2.1.

We, then, performed the inversion using an inhomogeneous
depth weighting function built with the estimated pfp(x,z)
function shown in figure b5c.

We ran two inversions for both approaches, homogeneous and
inhomogeneous, with and without positivity constraint, meaning
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that when we are using it, we are rejecting negative solutions
of the model.
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Figure 6: (a) Model obtained by using a homogeneous depth weighting function with
B = 2. without positivity constraint(b) Model obtained by using an inhomogeneous
depth weighting function (figure 4c) without positivity constraint (c) Model obtained
by using a homogeneous depth weighting function with = 2. with positivity constraint
(d) Model obtained by using an inhomogeneous depth weighting function (figure 4c)
with positivity constraint. White box highlights the true source limits.
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Looking at the models obtained in figure 6a and figure 6b,
with no positivity constraint and with an inhomogeneous depth
weighting function, it 1is ©possible to recover a Dbetter
information regards the magnetization distribution in depth,
while the homogeneous approach 1s too smooth and the
magnetization is highly underestimated.

Using positivity constraints, the main difference between the
homogeneous (figure 6c¢) and the inhomogeneous (figure 6d)
approach 1is that with a constant weighting exponent, the
magnetization of the source is underestimated by a 31%, while
in the other case it is underestimated by a 19% only.

Note also that, with our approach the NRMSE, with or without
using positivity constraints, is lower.

The percentage 1is referred at the maximum wvalue 1in the
obtained model, so another advantage of using an inhomogeneous
approach is that the model 1is representing better the whole
source extent along x and z.

From now on, we will perform inversions with positivity, to
compare the Dbest homogeneous approach solution against our
approach.

5.3. Two-body sources

The next step is to test the efficiency of the inhomogeneous
approach in presence of two bodies.

The two prismatic sources are located along x between 55-65
m and 135-145 m, while along z between 5-15 m depth and between
10-20 m depth, with unitary magnetization both. Inclination and
declination of the main and induced fields are the same (Inc =
90°; Dec = 0°) for both sources. The 2D domain along x, goes
from 1 to 200 m with 1 m step size and along z from 1 to 41 m.
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Figure 7: (a) Magnetic field due to two prismatic sources at different depth (see
text for details). (b) pB(x,z) function corrected by a ‘brute force’ approach
considering a reasonable range of values from 0 to 2.1

Once again, the instabilities were treated with a brute force
approach, so from the original estimates we can recover a B(x,z)
function with wvalues within a range physically acceptable
(figure 7b).

Considering the estimates due to one of the two sources, we
can recover some similarities with the estimates in figure 5,
while the difference 1in the <central part is due to the
interference between the two anomalies.

Positivity constrain is used to reject negative wvalues of
magnetization for both approaches.
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Figure 8: (a) Model obtained by using a homogeneous depth weighting function with
B = 2. (b) Model obtained by using an inhomogeneous depth weighting function (figure
7b) . White boxes highlight the true source limits.

The main difference between the homogeneous and the
inhomogeneous approach is again linked to the under estimation
of the magnetization of both sources.

Using a homogeneous depth weighting function with g = 2
(figure 8a) we confirm for the shallowest source the result of
the previous <case, 1in fact the magnetization 1s again
underestimated Dby a 31%. However, the deepest source
magnetization is underestimated by a 60%.

Instead, with our approach (figure 8b) both sources have a
good position in depth and a magnetization close to the true
value. The underestimation of the deepest source magnetization
is reduced to 12%.

This case was also tested adding to the initial data a 5%
random noise. This should affect also the estimation of beta
values, especially because derivatives will enhance high
frequencies.
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Figure 9: (a) Magnetic field due to two prismatic sources at different depth with
a 5% random noise added (see text for details). (b) B(x,z) function corrected by a
‘brute force’ approach considering a reasonable range of values from 0 to 2.1

If we compare figure 9b and figure 7b is easy to spot some
differences in the estimates of beta values, mainly at low
altitudes, but the whole trend is pretty similar.

Positivity constraints are used to reject negative values of
magnetization for both approaches.
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Figure 10: (a) Model obtained by using a homogeneous depth weighting function
with B = 2. (b) Model obtained by using an inhomogeneous depth weighting function
(figure 9b). White boxes highlight the true source limits.
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However, the models obtained adding random noise to the
original data are not so different from those in figure 8, and
the main differences between the different approaches are still
present. In fact, we recover a better estimate of the true
magnetization wvalue by the inhomogeneous approach, and the
deepest source is more compact even if its magnetization is
underestimated. By the way, 1f we compare the two solutions,
using an inhomogeneous depth weighting function is helping to
better recover the two body features.

We have seen here the case of two prism sources; we will see
in the next section how different-homogeneity sources respond
to the two different kinds of inversion.
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6. 3D Inversion with inhomogeneous depth weighting
function

In this section we will show the application of the same
procedure that we used in 2D cases, to 3D synthetic cases, and
then to 3D real data.

Obviously, the -equations wused to estimate the B(x,y,z)
function, are those expressed in the paragraph 4.1.

6.1. Polygonal source

A 3D polyhedral source (Tsoulis, 2012) was built and then we
computed the first wvertical derivative of its gravity field
(Figure 11).

The maximum extent of the source is 20 km along x direction,
15 km along y direction and 10 km along z direction. Density
contrast is 1 g/cm?®. We considered a source volume of 50 km by
50 km by 20 km, along x, y and z respectively, with cells sized
1 km3. The dataset was formed computing the field on a 50 km by
50 km map, with a 1 km step size along both the horizontal
directions. The data were then upward continued at altitudes
from 1 km to 20 km, with 1 km step size.

Positivity was used in both inversion processes.

We then solved the system (45) and computed [ (x,y,z) and the
inhomogeneous weighting function w(x,y,z).
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Figure 11: First vertical derivative of the gravity field of a polygonal body
source along the zero-level plane. Square, triangle and circle symbols indicate the
horizontal positions of the [ estimates shown in Figure 12

To have an idea of the estimated wvalues of (3, we show in
Figure 12 its values along vertical profiles corresponding to
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the three positions described, by the same markers, in Figure
11.

We ran two inversion setups, by using a homogeneous and
inhomogeneous depth weighting function, respectively.

Figures 13c and 13f show the model obtained by using a
homogeneous depth weighting function, with B8 = 3, while figures
13b and 13e show the model obtained by using an inhomogeneous
depth weighting function, with a variable exponent B(x,y,z).

It is glaring, looking at the slices of both the models, that
the inhomogeneous approach leads to a quite good definition of
the body source, for either the top or the bottom, while the
model obtained by using B = 3 produce a deeper source with a
really bad definition of the bottom surface. Note that no other
local constraints were used in the inversion process, except
positivity.
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Figure 12: Estimated B values, using the scaling function method, along vertical
profiles at the positions shown in Figure 11.
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Moreover, the density range of the inhomogeneous case is much
better than that of the homogeneous inversion. Normalized RMSE
are similar also in this case: 1.18*10°!! for the homogeneous
approach and 5.02*10-1% for the inhomogeneous approach.

This case was also tested adding a 5% of random noise to the
initial data (figure 14).
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Figure 14: First vertical derivative of the gravity field of a polygonal body

source along the zero-level plane. Square, triangle and circle symbols indicate the
horizontal positions of the [ estimates shown in Figure 15

As we expected, the presence of noise is not seriously
affecting the estimates of beta (figure 14), because the upward
continuation 1is acting like a low-pass filter, removing the
effect of it, and even if the first one or two level of [ are
affected by this kind of noise, the estimates are almost the
same as those presented in Figure 12.
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Figure 15: Estimated [ values, using the scaling function method, along vertical
profiles at the positions shown in Figure 14.
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Figure 16.2: W-E slices of the model using (c) an inhomogeneous depth weighting
function with B(x,y,z) and (d) homogeneous depth weighting function with S = 3.

The source-models obtained adding random noise to the
original data (figure 16) are not so different from those in
figure 13, and the main differences between the different
approaches are still present.

Again, the inhomogeneous approach recovers better both the
true density value and the geometry of the body.

Normalized RMSE are similar also in this case: 7.73*10°!! for
the homogeneous approach and 5.02*10°!'! for the inhomogeneous
approach.

6.2. Two buried bodies: a prismatic source and a
source like a vertical intrusion

The last synthetic 3D case that we discuss in this thesis is
that of two sources: one prismatic body and the other one like
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a vertical intrusion. This choice was made because, considering
table 1, we expect different values of beta for the two sources.

The two prismatic sources are located along x between 11-14
km and 36-39 km, while along y between 24-26 km and along z
between 4-6 km and 3-20 km depth. The magnetization is 1 A/m and
inclination and declination of the main and induced fields are
the same (Inc = 90°; Dec = 0°) for both sources. The 3D domain
along x and y, goes from 1 to 50 km with 1 km step size and
along z from 1 to 10 km. Figure 17 shown the observed field due
to the two sources.
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Figure 17: Magnetic field due to a prismatic source and a source like a vertical
intrusion along the zero-level plane.
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Figure 18: Slices at several altitudes of the B(x,y,z) function estimated for the
entire domain.

In figure 18 we show the estimates of [ at several altitudes.
The [ estimates in the area between the sources are not so
strongly different. However, we have to consider that the
intrusion-like source is finite in depth. Moreover, looking at
figure 18 it 1is glaring that some information regarding the
difference between the two sources is still present.

Positivity constraints are used to reject negative values of
magnetization for both approaches.

63



z="1km z=2 km

1
0.5 [105
0 0
20
Z=3km Zz=4 km
50 i
40
E 30 0.5
20
10
0
20
Z=5km Zz=6km
1 1
0.5 [105
0 0
20
z=T km z=8 km
i 1
0.5 [105
0 0
20
Z=9km Z= 1ﬂkm
1 1
0.5 [105
0 0
20 40 20
km ki
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Figure 21: (a) Central section of the model using a homogeneous depth weighting
function. (b) Central section of the model using an inhomogeneous depth weighting

function. White boxes highlight the true source limits.

Figures 19, 20 and 21 clearly show that the results obtained
by using the inhomogeneous approach are once more significantly
improved. Comparing the two sections in figure 21, it is easy
to understand that the main advantage in using an inhomogeneous
depth weighting function 1s to obtain more concentrated
magnetization distributions with values poorly underestimated.
Moreover, the inhomogeneous approach leads to a better
definition of both sources’ shapes. The center of the prismatic
source 1is very well recovered compared to the homogeneous
approach, and the source like the vertical intrusion 1is more
compact an elongated in depth, while in the other case it seems
more like a thicker finite body.

Considering the results obtained by 2D and 3D cases, we can
confirm that the inhomogeneous approach could give better
information about the distribution of the sources parameters in
the inversion of potential fields.

6.3. Real case: Vredefort impact site

The Vredefort structure is located within the Witwatersrand
basin, South Africa. Boon & Albritton (1937) were the first to
suggest an impact origin. In the early 1960s, Dietz (1961) and
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Hargraves (1961) cited the occurrence of shatter cones at
Vredefort as evidence of an impact origin. After nearly a century
of debate, the ca. 80-km wide Vredefort Dome 1is now widely
accepted as the central uplift of a much larger impact structure
(Gibson and Reimold, 2001).

Kamo et al. (1996) dated the impact event at 2.023+£0.004 Ga
based on the estimated age of pseudotachylite in the core region.

The original diameter of this impact structure was in excess
of 250 km (Reimold and Gibson, 1996; Gibson and Reimold, 2000,
2001) and the Vredefort crater is one of the largest and oldest
impact structures on Earth.

Reimold and Gibson (1996) reported a synthesis of the
geologic knowledge about the Vredefort dome. Following these
authors, the near circular Vredefort Dome, 70 km in diameter,
located about 120 km to the southwest of Johannesburg, consists
of Archaean granitoids in a 40-km-wide central core and of
metasediments and metavolcanics in an outer collar belonging to
the 2.9-2.72 Ga Witwatersrand, the ca. 2.7 Ga Ventersdorp, and
2.5-2.25 Ga Transvaal Supergroups (Fig. 21). Locally, along the
outer margin of the Witwatersrand Basin, felsic metasediments
occur and mafic metavolcanics of the 3.074 Ga Dominion Group and
3.1-2.8 Ga basement granitoids. The crystalline core of the dome
consists of an outer annulus of heterogeneous amphibolite-facies
migmatites of the Outer Granite Gneiss (0OGG) around the central
Inlandsee Leucogranofels (ILG). The southeastern part of the
Vredefort Dome is covered by Karoo (250-180 Ma) sediments and
dolerites (Reimold and Gibson, 1996).

In 1990, McCarthy et al. mapped the presence of series of
anticlines and synclines from the center to a radial distance
of 150 km, arranged as concentric rings and clearly related to
the formation of the Vredefort impact structure.

Dikes of the so-called Vredefort granophyre occur both in the
central core and distal collar areas. In the core area, the
dikes are radial with respect to the structure and are up to 20
m wide and 4-5 km long. In the collar, the dikes are concentric
with respect to the structure and can be > 50 m wide and about
10 km long (Grieve and Therriault, 2000).

An integrated geophysical model of the Vredefort structure,
based on refraction and reflection seismic, gravity, magnetic,
and petrophysical data, was published by Henkel and Reimold
(1996, 1998). This model demonstrated that the central uplift
of this large impact structure, the Vredefort Dome, is deeply
eroded, about 80 km wide, and still represents a structural
uplift of about 12 km, at the present erosion 1level. This
structural uplift is best illustrated by the rise of the lower
parts of the upper crust (layers 3 and 4, Fig. 22).

The total uplift may originally have amounted to as much as
20 km (Henkel and Reimold, 1998).
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Figure 22: (a) Geophysical model of the SSW-NNE section (see Figure 22b) through
the Vredefort impact structure (from Henkel and Reimold, 1996, 1998).

Hart et al. (1995) analyze the magnetic anomaly of the
Vredefort area and claim that the data in the Vredefort basement
are consistent with impact-related thermal remanent
magnetization.

The aeromagnetic data over the structure (Corner et al.,
1990) show strong, well-defined concentric patterns. In the
outer rim, the pattern reflects the different sedimentary
strata. About halfway between the outer collar structures and
the central uplift there is a prominent negative magnetic
anomaly that extends in a broad semi-circular belt; 2 to 4 km
wide around most of the basement core. This anomaly is attributed
to the contact of the ILG and OGG, the so-called Vredefort
discontinuity (Hart et al., 1990).

Beiki and Pedersen (2010) analyzed the Tzz component of the
GGT data of the Vredefort dome area using an eigenvector analysis
to estimate the depth and a dimensionality (I) parameter of the
source. The dimensionality is a parameter that lies between zero
and unity for any potential field (Beiki and Pedersen, 2010).
If the causative body is strictly 2D, then I is equal to zero
and approaches unity when the causative body is 3D-like. Using
this method, the authors show that quasi 2D geologic bodies are
dominant specially in the outer rim, with depth to sources
between 1000-1500 m or more than 1500, but in the central part
of the dome the dimensionality approaches unity and the depth
exceeds 1500 m. (Fig. 23).

Wilson et al., (2011) developed massively parallel software
for inversion of gravity and gravity gradiometry data. They
inverted simultaneously all components of GGT and used a very
large number of cubic cells of just 25m side. These authors
extended their model only to 2400 m depth and obtained results
very similar to Beiki and Pedersen (2010).
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Martinez and Li (2011) inverted the single component Tzz of
the gravity gradient tensor (GGT) and performed a Jjoint
inversion of three components of the GGT tensor data: the two
observed component (Tuv and Txy) and the calculated component
Tzz.

They showed that the joint inversion of these three components
improves the model resolution, providing a more focused central
high-density structure. Their model shows the presence of dense
rocks corresponding the central uplift at a depth of about 6000
m depth and also corresponding to the gravity highs in the outer
collar at depths of about 2000 m.

Talongo (2014) inverted the single component Tzz of the gravity
gradient tensor (GGT) with two different setups, estimating
before the homogeneity degrees for the main core of the impact
site and for the distal ring structure, respectively. Then two
homogeneous inversions were made using in turn such estimated
homogeneity degrees.

His model shows the maximum depth for the distal ring structure,
running an inversion with a depth weighting exponent of 1.4,
around 10 km, while the maximum depth for the distal ring
structure, running an inversion with a depth weighting exponent
of 3, was around 16 km.
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Figure 23 Location and depth to the center of mass of gravity sources as estimated
by Beiki and Pedersen (2010)
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According to our method the first step 1is building the
inhomogeneous depth weighting function. We decided to estimated
n from the vertical gradient of the field (figure 24b) instead
than from the gravity field (figure 24a), in order to reduce the
regional field effect.

The model volume reaches 20 km in depth, while along x and y
its extension is respectively 41 by 63 km.
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Figure 24 (a) Gravity map and (b) Tzz component of the Vredefort impact site
area.

Estimates of [ presents instabilities that are treated like
the synthetic cases discussed before, considering a reasonable
range between 0 and 3.1. These instabilities are probably due
to the presence of several sources that, at higher altitudes,
are interfering generating numerical singularities and on being
some anomalies of the analyzed map truncated laterally.

However, looking at figure 25, we can see that at low and
middle altitudes the [ linked to the distal ring structure is
lower than 2, while the values related to the core is higher,
so confirming the results obtained by Ialongo (2014). At higher
altitudes, the trend of B is however smoother. This difference
is probably due to lack of resolution at higher altitudes,
because the low frequency effects are the dominant contributes.
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Figure 25: Slices of the B(x,y,z) function estimated for the entire domain at 1,

5, 10, 15 and 20 km.

trend at low and middle altitudes of the

However, the
structures 1is fitting the

estimated B related to the main
expectations because the results relate to two main structures,

which are geometrically different: the core is like a spheroid
body (B =~ 3) and the distal rings are like horizontal pipes or

dykes (1 < B < 2).
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Figure 16: Density-model obtained by using a homogeneous depth weighting function

(B = 3).
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With a homogeneous depth weighting function (figure 26) we
recover a smooth solution and both the main sources, the main
core and the rings of the impact, are still visible at the bottom
of the model (20 km). This is not in agreement with the result
by Henkel and Reimold (1996, 1998), which, based on gravity and
magnetic inversion supported by seismic data, proposed a model
where the bottom of the rings is around 10 km and the density
contrast effect due to the core structure loses its
effectiveness around 15 km.

Instead, using an inhomogeneous depth weighting function
(figure 27) we can retrieve information regarding the position
at depth of both core and distal ring structures that better
fits the above model. In fact, the bottom of the distal ring
structure, that should be around 10 km according to Henkel and
Reimold (19960, 1998), is recovered very well using an
inhomogeneous depth weighting function, while in the homogeneous
case we saw that the interpreted structure was still visible at
large depths.

In addition, also the core structure is shallower compared
to the homogeneous approach and seems more reliable if we compare
it with the model of Henkel and Reimold (1996, 1998).

Note that the NRMSE are pretty similar in both cases (that
are 1.6*1073 for the homogeneous case and 1.9%10°3 for the
inhomogeneous case) .

If we compare our results with those obtained by Ialongo
(2013) we note that the position at depth of both core and distal
ring structures are in agreement. But we must note that this the
main structures have different structural indexes N (as we said
before,3 for the core and between 1 and 2 for the distal rings),
so it 1s not possible to have good estimations of both sources
running a single inversion with a constant depth weighting
exponent only. For this reason, Ialongo (2013) ran two separated
inversion with two estimated N, to joint interpret the solutions
for each source.

Instead, the inhomogeneous approach presented in this paper
leads naturally us to a better solution because it takes into
account during the same inversion process of the inhomogeneous
nature of the structural index within the entire domain.

6.4. Real case: Mt. Vulture (Southern Italy)

The magnetic field of the volcanic district of Mt. Vulture
(Southern 1Italy) 1is mainly characterized by two dipolar
anomalies, one of shorter wavelength, possibly related to the
edifice Mt. Vulture, and the other of greater extent, which
should originate by a deeper source distribution. The field was
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already analyzed by Cella and Fedi (2012) wusing first a
homogeneous approach, with B = 3. But the resulting model was
not able to account for the two sources and resulted in a non-
realistic and too deep source model, concentrating, by the way,
the magnetization not on the volcanic edifice but at a greater
depth. Then they improved the quality of the solution by using
B = 0.25 for the shallowest source and B = 2 for the deepest
one. In practice, their final source-model was estimated by
analyzing two filtered maps, using a method based on the discrete
wavelet transform to separate the field in two main components
at respectively a small-scale and a large-scale. So, the depth
weighting exponent was not varying in the whole wvolume but
assumed constant specific values in two different regions of the
source volume.

It is clear that the interpretation of the data in this area
is an intriguing task, because the shallowest source (the high
amplitude anomaly about 140 nT, in correspondence of the Mt.
Vulture volcano), and the deepest source anomaly are strongly
overlapping one each other (Figure 28Db).

The aeromagnetic dataset sized 74 km by 74 km (Figure 28b),
with a step size along both the horizontal directions of 2 km
and an acquisition elevation of 2.5 km a.s.l. Inclination and
declination of both inducing field and total magnetization were
estimated by Cella and Fedi (2012) as equal respectively to 57°
and 15°.

The model volume dimensions are 76 km by 76 km by 30 km, with
a step size of 1 km along x and y directions and 1 km along z
direction.

As we did Dbefore, we performed two inversions, using a
homogeneous depth weighting function with B = 3 and then using
an inhomogeneous depth weighting with [ values estimated from
the field.
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Figure 28: (a) Aeromagnetic map of the Mt. Vulture area. A white box outlines the
analyzed area, whose data are shown also in (b). (c) Slices of B at 1, 8, 15, 22 and
30 km height, estimated using the scaling function method.

We show in Figure 30c the estimated B at several altitudes
from 1 km to 30 km. We used downward continuation to level the
dataset at the maximum high of the topography (around 1400
a.s.l.) and then upward continued it from that level to form the
system (45).

Positivity constraints are used to reject negative values of
magnetization for both approaches.
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Figure 29.1: Model obtained (a and b) by using a homogeneous depth weighting

function with B = 3, and (¢ and d) by using an inhomogeneous depth weighting function,
with B(x,y,z) as shown in Figure 28c.

The slices are referred to the black dashed
lines in Figure 28b
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Figure 29.2: Model obtained (a and b) by using a homogeneous depth weighting
function with B = 3, and (¢ and d) by using an inhomogeneous depth weighting function,
with B(x,y,z) as shown in Figure 28c. The slices are referred to the black dashed
lines in Figure 28b

Figure 29 shows the source model obtained by using the two
different approaches; the wvertical slice corresponds to the
black dashed line in Figure 28Db.

The results of both models are in good agreement with those
obtained by Cella and Fedi (2012). The main difference is that
we did not apply any filter to the original data to obtain
estimates of B of the two main sources, as they did.

Moreover, it is glaring that using an inhomogeneous depth
weighting it is possible to collect more solid information about
the distribution in the subsurface of the magnetization (or
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density in the gravity case). In fact, looking at the vertical
section in figure 29.2 the two sources are described very well
and they are both collocated at reasonable depths, as it results
surely for the shallow source which now realistically
characterizes the Mt. Vulture volcano. On the contrary, using a
constant value of 3 for the depth weighting exponent (figure
29.1), we are not obtaining a very good information about the
deepest source and the shallower source 1is surely too deep,
being the mt. Vulture an outcropping volcanic structure.

We can conclude that this new approach brings two main
advantages on inversion of potential fields:

1) there is no need to filter the dataset in order to
separate different wavelength component and analyse those
separately, instead it is possible to retrieve information about
the different sources directly at the same time by performing
only one inhomogeneous depth weighted inversion;

2) sources with different geometry, that should have
different structural indices, are treated at the same time
without the need of performing separated inversion processes
with different constant depth weighting exponent.
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7. Conclusions

We developed two different inversion methods of potential
fields, based on a multiscale approach, that is they involve the
inversion of data at different scales or altitudes. This 1is a
not common approach in inversion of potential fields, but we
proof that the insight of multiscale fields could help to
retrieve better information about the distribution of physical
properties in the subsurface.

We have described a 1D method for inverting potential field
data, which has several aspects of interest. One relevant
feature is that it is, to my knowledge, the only one allowing
1D inversion of potential fields.

At the moment the method will produce an approximate
characterization of the underground source distribution, which
should be better interpreted with more refined 2D/3D algorithms.
However, our examples show the usefulness of producing this kind
of source distribution model. The main difficulty is to have a
good estimate of the horizontal dimensions of the source,
necessary for building a reasonable model volume and we tried
to outline a valid strategy for its estimation based on two

steps:

1) boundary analysis, to have our first estimate of the
source extent;

2) a Markov chain approach, to search for the optimal

value of the horizontal extent along the strike-length
direction, which yields the best data misfit for each sounding.

Once both conditions are relatively well satisfied for the
whole depth extent of the source, bounds for the density
constraints are not critical and wide bounds may be safely
adopted.

Considering that these soundings are built through upward-
continued data, the second problem is due to continuation
errors, which increase versus the altitude. A rather good
strategy to alleviate this error is subtracting to each sounding
a third-order polynomial function of the altitude. Synthetic
cases of a single buried body provided good results for either
the geometry and the density contrast of the source, even if we
use upward-continued data and relatively wide bounds for the
density.

We tested this new method on synthetic case of a single buried
body and a real case of a sedimentary basin in the USA (Frenchman
Flat basin, Nevada), obtaining good results, also having used
wide bounds for the density contrast.

The same 1D method was tested on two magnetic real cases for
a Jjoint interpretation. The integrated study of the results

obtained by inverting the TDEM and the magnetic data separately
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showed that not always the two methods have the same sensitivity
with respect to the geological structures. In the case of the
Broken Evil prospect (Ontario) the 1D inversion method solution
fits the results conducted by another method with other dataset.

The inversion model is also in agreement with the information
derived from a drill hole which confirms that the magnetic
anomaly 1is due by graphitic sediments with seams and heavy
disseminations of pyrrhotite. So, in this case, the use of the
1D method helps in increasing the confidence in the geophysical
models.

About the Drybones kimberlite case (Northwest Territories),
the 1D method revealed a different sensitivity to the geological
structures. In this case the integration of the inverse models
improved the interpretation of the area. All the geological
structures at Drybones bay are well retrieved by the inversion
processes and are 1in good agreement with the drill hole
information available for this area.

About the 2D/3D inversion method developed in the second part
of my PhD, it can certainly be said that the inhomogeneous
approach improves the modelling of potential fields, adding a
constraint that is entirely deducible from the data and not from
a priori information.

This 1s a significant step forward, -especially 1in the
analysis of areas where there is no other information. It is a
method that could be even more improved in the future, especially
to adopt even more efficient mathematical/numerical tools for
reducing the various instabilities during the estimation of the
B.

The main difference compared to standard and standard
(homogeneous) method resides in using a depth weighting function
variable in its exponent, while in the homogeneous case it
assumes a single constant value for the exponent in the whole
subsurface volume. Our approach reflects the inhomogeneous
nature of the homogeneity degree, for source distributions of
potential fields, which cannot be characterized by a single
value. Also, either integer or fractional wvalues of the
homogeneity degree are accepted, according to recent research
(Fedi et al., 2015).

The approach was tested on 2D and 3D sinthetic data, for
perfect or noisy data, showing a better respose compared to
standard methods that are wusing a homogeneous approach:
density/magnetization estimates and the depth resolution are
more consistent compared to the standard approach.

Then two 3D real cases were studied, shown the advantage of
using an inhomogeneous approach to recover a realistic
information of the subsurface density and magnetization
distributions.

For the gravity case of an impact site (Vredefort), the
inhomogeneous depth weighting function helps us to recover a
better estimates of the bottom for both the sources, the inner
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core of the stucture and the distal rings, that are consistent
with the available geological and other geophysics information
of the area.

Also for the Mt. Vulture magnetic anomaly, this new approach
allows us obtaining a valid and realistic information on the
source distribution, starting directly from the original data,
that 1is without needing any kind of filtering to separate the
components. This is clearly shown comparing our result with
those of the standard inversion, which, for example, lead to the
absurd result of a non-magnetized volcanic edifice. The
distribution at large depth confirms the one obtaine by previous
research, but in that case it was necessary to perform the
inversion on low-pass filtered data.

Regards the computational time involved with this method, we
did not find any sensitive difference between the two
approaches, but it should be taken into account that in addiction
to the inversion algorithm time, the estimation time of B should
be added. However, the (8 estimation is not time consuming, 1if
compared to that due to the inverison algorithm, especially when
big dataset are involved.

Future prospectives for both methods could be:

1) optimization of the 1D method, using different solvers for
the inversion process, with a possible deep learning
adaptation.

2) optimization of the estimates of [ by finding tools
allowing even more stable results.

3) Probably, the most important feature of the method is that
the constraints used to perform an inhomogeneous depth
weighted inversion, i.e. the homogeneity degree n and the
consequent inhomogeneous depth-weighting function, are
estimated directly from the dataset and not obtained from
other sources. This feature could be used to improve also
algorithms of Jjoint inversion of different geophysical
quantities
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APPENDIX A

We ran a sensitivity test on the 3D synthetic model described
in paragraph 6.1.

Since the analytical expression of sensitivity is hard to be
obtained, we turned to a numerical approach. So, we decided to
study the model perturbations caused by applying a random
perturbation to the estimates of (. We used the case of a
polyhedron previously illustrated in Figure 13. So, we compared
it against the model obtained by using a depth weighting function
built with the perturbed values of (.
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Figure A.1: (a) W-E slice and (b) N-S slice of the model using an inhomogeneous depth
weighting function with B(x,y,z) perturbed by a random Gaussian noise with u = 0.2
and o = 1.
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The perturbation was performed by adding to every estimate a
Gaussian random noise with g = 0.2 and o = 1; then the obtained
values of B were adjusted according to fit the allowed range of

0 - 3. So, B lower then 0 were assigned to 0 and B higher then
3 were assigned to 3.

The new model obtained by the inversion process using the
perturbed depth weighting exponent is giving the same
information about the source, even if the solution seems to be
a little bit noisy, compared to that described in paragraph 6.1.

Considering that the perturbation applied is pretty high, we
can conclude that our approach is quite robust.
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