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Summary 

 

 

We developed two different approaches of inversion of 

potential fields: 

 

- A method for 1D inversion of potential fields. 
 

- A method for 2D and 3D self-constrained depth weighted 
inversion of inhomogeneous potential fields. 

 

Both methods are based on a multiscale approach, that is they 

involve use of data at different scales or altitudes. These 

particular approaches bring some benefits. 

About the 1D method, the main benefit lies in a greater 

computationally simplicity, compared to 3D algorithms. 

Apart the strong 1D assumption, we can say that it requires 

less a priori information to constrain the inversion, compared 

to other algorithms. (see Chapter 3). 

 

The second method is both 2D and 3D. It is based on two steps, 

the first being the search in the 3D domain of the homogenous 

degree of the field, and the second being the inversion of the 

data using a power-law weighting function with a 3D variable 

exponent. So, differently from the previous method it does not 

involve directly data at different altitudes, but it is heavily 

conditioned by a multiscale search of the homogeneity degree.  

The main difference between the present approach and the one 

proposed by Li and Oldenburg algorithm (1996) and Cella and Fedi 

(2012) is therefore about the depth weighting function, whose 

exponent is a constant through the whole space in the original 

Li and Oldenburg and Cella and Fedi approaches, while it is a 

3D function in the method which we will discuss here. 

 

Magnetic and gravity anomalies due to simple sources have 

been synthetically generated to test the proposed approaches; 

then, data caused by more complex sources have been analyzed. 

Finally, two real dataset, from the Vredefort impact site and 

Mt. Vulture area, have been examined to have a further 

confirmation of the effectiveness of the methods. 

 

Both tests on synthetic and real data showed that using source 

information retrieved by a multiscale analysis of the data has 

a great potential to improve the solution. 

 

 

Introduction 

 

 

Even if reflection seismic is still the primary exploration 

method of exploring for reservoir (i.e. oil, ore or gas deposits, 
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or energy and environmental resources in general), potential 

field methods are continuously expanding, thanks to their 

successful contribution in deeper and more challenging 

environments, such as sub-salt structures and deep sea, to their 

smaller cost and to new powerful methods of analysis and 

modelling, which are indeed related to high-quality and high-

resolution data. 

The final goal, is, obviously, to obtain a good estimate of 

the in-place volume. Moreover, information provided by inverting 

3D sets of potential field data can help to refine the targets 

and so to efficiently define and focus projects early on, in 

order to minimize the risk of investigation before the actual 

potential is defined. These methods are used also to investigate 

areas that could be contaminated by pollution and modelling the 

system to prevent future environmental and engineering critical 

situations. 

One of the principal difficulties with the inversion of the 

potential field data is the inherent non-uniqueness. In fact, 

by Gauss' theorem we know that there are infinitely many 

equivalent source distributions that can produce a measured 

field (Blakely, 1996). When the number of model parameters M is 

greater than the number of observations N, the problem is called 

underdetermined and a unique solution for the inverse problem 

does not exist. This represents the most common problem in 

inversion of potential fields. To solve an undetermined problem 

and obtain a unique solution we need to add a priori information. 

Prior information takes numerous forms (geological, geophysical 

or mathematical) and a good inversion algorithm is able to 

incorporate this information into the inversion. One of the most 

important and common prior information is a reference model that 

might be a uniform half space and for some problems just the 

zero model.  

The origin of inversion methods goes back to 1967, when Bott 

(1967) used this approach to interpret marine magnetic 

anomalies. Since then many different algorithms were proposed, 

each one characterized by a different type of a priori 

information and then to provide different solutions. Green 

(1975) searched for a density model that minimizes its weighted 

norm to some reference model. Safon at al. (1977) used the method 

of linear programming to compute moments of the density 

distribution. Fisher and Howard (1980) solved a linear least-

squares problem constrained for upper and lower density bounds. 

Last and Kubik (1983) introduced a 'compact' inversion 

minimizing the body volume. Guillen and Menichetti (1984) 

assumed as a constraint the minimum momentum of inertia. Barbosa 

and Silva (1994) suggested allowing compactness along given 

directions using a priori information. Li and Oldenburg (1996, 

1998) introduced model weighting as a function of depth using a 

subspace algorithm. Pilkington (1997, 2002) used preconditioned 

Conjugate Gradients (CG) method to solve the system of linear 

equations. Portniaguine and Zhdanov (1999, 2002) introduced 
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regularized CG method and focusing using a reweighted least 

squares algorithm with different focusing functional. Li and 

Oldenburg (2003) use wavelet compression of the kernel with 

logarithmic barrier and conjugate gradient iteration. Pilkington 

(2009) used data space inversion in Fourier domain.  

Other relevant ways to introduce a priori information involve 

"soft constraints", such as positivity constraint for density 

and magnetization, or "hard constraints", such as empirical 

laws, constraints for upper and lower density bounds and for a 

density monotonically increasing with depth (Fisher and Howard, 

1980) and external information from well-logs, geological 

studies and other geophysical investigations.  

Obviously, the solution is highly dependent on the prior 

information and for this reason, an algorithm that solve every 

geological context does not cannot exist. So, it is very 

important to choose the correct algorithm according to the 

geological context of the studied area and according to the 

available a priori information.  

However, even if the literature is filled by 2D and 3D 

algorithms for inversion of potential field, there are no 1D 

algorithms equivalent to those applicable to seismic or 

electromagnetic methods. From a general point of view, this is 

not surprising, because 1D problems involve a forward problem 

referring to set of infinitely extended layers, each one 

homogeneous in the source property. Indeed, in the gravity case, 

such an assumed model would produce nothing more than a spatially 

constant field and, therefore, could not explain any gravity 

anomalies. 

To our knowledge, only a single work (Fedi and Rapolla, 1995) 

regards the inversion of "vertical gravity soundings”, that is 

a 1D inversion method, using a forward problem consisting of a 

finite volume of layers, each of them with its own density and 

horizontally finite. The authors first formed a gravity vertical 

profile, by upward continuation of the data above an area 

including the sounding and then showed how the inversion of such 

vertical profile could yield a 1D estimation of the density 

through the volume. 

In this work, we generalize the method to the inversion for 

a source distribution which is inhomogeneous either laterally 

or vertically. In practice, we will solve a set of linear inverse 

problems at many locations on the measurement area, inverting 

for a density model relative to a set of finite and homogeneous 

layers at each location. Assuming a large number of layers, we 

so solve an underdetermined problem, since the data number is 

less than that of the unknown parameters. Density bounds may be 

applied, in order to constrain the physical property to lie 

within a geologically reasonable interval. Because all the 1D 

inversions are independent of each other, we may finally produce 

a 2D or 3D model of the physical property joining the results 

obtained for each vertical sounding. The main disadvantage is 

that 2D and 3D model models are not built by direct 
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multidimensional inversion, but by approximation from a multi 

set of 1D models. 

Moreover, in this thesis we have studied a different approach 

for 2D and 3D potential field inversion. It mathematically 

starts from the algorithm proposed by Li and Oldenburg (2003) 

but it is optimized very differently: our logic is that the 

weighting used in the inversion is directly deduced from the 

field, in order to obtain a better solution of the physical 

property distribution in the subsurface. 

This information, derived from a multiscale analysis which 

precedes the inversion itself, will be used to setup a particular 

depth weighting function that could physically account for a 

source property, the homogeneity degree, which is transferred 

to the field by the Poisson equation. So, the main difference 

between our depth weighting function and those proposed by Li 

and Oldenburg (2003) resides: a) in being not a feature of the 

block shape but of the source property; b) in its exponent, that 

in our case is spatially variable instead of being a constant 

value for the entire model volume. This last feature reflects 

the fact that a complex source distribution is characterized by 

a variable homogeneity degree and that a constant value could 

yield only average source-model distributions. 

 

 

1. Elements of Potential fields theory 

 

 

Gravitational and magnetic fields are both potential fields. 

In the mass-free space, potential fields obey Laplace’s 

equation, which states that the sum of the rates of change of 

the field gradient in three orthogonal directions is zero 

(Kearey et al., 2002). 

In Cartesian coordinates, Laplace’s equation is: 

 

𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑦2
+

𝜕2𝜙

𝜕𝑧2
 = 0  (1) 

 

where ϕ refers to a gravitational or magnetic field and is a 

function of (x, y, z). 

Any function satisfying the Laplace’s equation, has 

continuous, single-valued derivatives and has second derivatives 

(Blakely, 1996). If a function is harmonic in a region R has its 

maxima and minima on boundaries of the region. Gravity and 

magnetic fields, are both potential fields and obey all the 

physical laws mentioned above. 

 

 

1.1. Gravity field 
 

The gravitational acceleration due to a point of mass m is: 
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𝒈(𝑃) = −𝛾
𝑚

𝑟2
𝒓 (2) 

 

where 𝛾 is the Gravitational Constant and r is a unity vector 
that point from mass m to the observation point P. This 

gravitational attraction is a conservative field so it can be 

expressed as the gradient of a scalar potential U 

 

𝑈(𝑃) = 𝛾
𝑚

𝑟
   (3) 

 

The gradient of U represents the gravity g, and the first-

order directional derivatives of U are the components of gravity 

in the corresponding direction (Kearey et al., 2002) and it is 

defined as: 

 

𝒈 = ∇𝑈 =
𝜕𝑈

𝜕𝑥
𝒊 +

𝜕𝑈

𝜕𝑦
𝒋 +

𝜕𝑈

𝜕𝑧
𝒌 (4) 

 

where i, j and k are the unit vectors in the positive 

direction of x, y and z axes respectively. Being a harmonic 

function, at all the points outside of the mass, ∇2U = 0, but in 

the space occupied by masses: 

 

∇2𝑈 = −4𝜋𝛾𝜌 (5) 

 

where ρ is the density of the mass distribution at a given 

point. Equation (5) is the Poisson’s equation describing the 

potential at all points of the mass distribution.  

In geophysical exploration, gravimeters measure only the 

vertical component of the gravity, as given by: 

 

𝑔𝑧 =
𝜕𝑈

𝜕𝑧
 (6) 

 

Before the results of a gravity survey can be analyzed and 

interpreted it is necessary to correct for all variation in the 

Earth’s gravitational field which do not result from the 

differences of density in the underlying rocks.  

The observed gravity is the sum of the following components 

(Blakely, 1996): 

 

- Theoretical gravity, referred to the reference 

ellipsoid, 

- Free air effect, due to the elevation above the sea 
level, 
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- Bouguer slab and terrain effects, the normal mass 

above the sea, 

- Tidal and instrumental drift effects, time-dependent 
variations, 

- Eötvös effect, due to moving platform (airborne and 
shipborne surveys), 

- Isostatic effects, accounting for the effects of 

masses supporting topographic loads, 

- Effect of crust and upper mantle density variations. 
 

Isolating the last quantity is the goal of the gravity 

reductions. 

The mean value of gravity at the Earth’s surface is about 9.8 

ms-1. Variations in gravity caused by density variations in the 

subsurface are of the order of 100 μm s-1. The cgs unit of 

acceleration due to gravity (1 cm s-1) is the Gal, in honor of 

Galileo, and its sub-unit milliGal is common in gravity survey 

(Kearey et al., 2002). 

 

 

1.2. Magnetic field 
 

 

The magnetic scalar potential V(r) of a dipole source whose 

magnetic moment is m, can be written as: 

 

𝑉(𝑟) = −𝐦 ∙ ∇ (
1

𝑟
) (7) 

 

where r is the distance modulus. 

The magnetic field may also be defined in terms of a force 

field produced by electric currents. If an electric current I, 

is flowing in a loop of radius r, the magnetic strength at the 

center of the loop is H = I/2r. 

Materials can be magnetized by acquiring the component of 

magnetization in the presence of an external magnetic field and 

it is called induced magnetization which is in the same (or 

reverse) direction of the external magnetic field as: 

 

𝐌 = 𝜒𝐇 (8) 

 

The constant χ in the equation (8) is called the magnetic 

susceptibility. 

Susceptibility is a dimensionless quantity but differs in 

magnitude if expressed in emu or in SI units. Its definition 

involves the magnetic permeability µ: 
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𝐁 = 𝜇0(𝐇 + 𝐌) 
= 𝜇0(𝐇 + 𝜒𝐇) 
= 𝜇0(1 + 𝜒)𝐇 
= 𝜇𝐇 
𝜇 = 𝜇0(1 + 𝜒) 

(9) 

 

The relationship between M and H is not necessarily linear 

because the magnetic susceptibility χ may vary with the field 

intensity, may be negative, and may be represented more 

accurately in some materials as a tensor (Blakely, 1996). 

Susceptibility is a measure of how susceptible a material is to 

become magnetized (Reynolds, 1997). There are many kinds of 

magnetizations and their understanding is important to 

understand how the variations of magnetic properties produce the 

magnetic anomalies (Hinze et al., 2013). These properties can 

be defined as: 

 

Diamagnetism, for example, is an inherent property of all 

matter. In the presence of external magnetic field, the orbital 

path of the electron rotates in a way that induced magnetization 

is small and in the opposite sense to the applied field. 

Consequently, diamagnetic susceptibility is negative. 

 

Paramagnetism, is a property of those solids that have atomic 

magnetic moments because in this substance, the electron shells 

are incomplete, so the unpaired electrons produce a magnetic 

field. When it is placed in an external magnetic field, the 

atomic moments or unpaired electrons partially align parallel 

to the applied field thereby producing a net magnetization in 

the direction of the applied field. This is still, however a 

relatively weak effect. However, all minerals are diamagnetic, 

and some are paramagnetic or ferromagnetic but, in both cases, 

their magnetizations do not have significant contributors to the 

geomagnetic field. 

 

Though, there is a class of magnetism that have great 

importance on geomagnetic studies. Certain materials not only 

have atomic moments, but neighbouring moments interact strongly 

with each other. This interaction is a result of a quantum 

mechanical effect called exchange energy. Suffice is to say that 

the exchange energy causes a spontaneous magnetization that is 

many times greater than paramagnetic or diamagnetic effects 

(Blakely, 1996). These types of materials are called 

ferromagnetic. There are several types of ferromagnetic 

materials, depending on the alignment of their atomic moments. 

If the atomic moment aligned parallel to one another, results 

ferromagnetism; if the atomic moments are aligned antiparallel 

to one another and total moment is neutralized, results anti-

ferromagnetism; and the last is the ferrimagnetism, in which 

atomic moments are antiparallel but, having different 
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magnitudes, do not cancel. The strength of the magnetization of 

ferromagnetic and ferrimagnetic materials decreases with 

temperature and disappears at the Curie temperature (Kearey et 

al., 2002). 

The spontaneous magnetization of ferromagnetic materials can 

be very large at the scale of individual mineral grain but, due 

to their random orientation, the net magnetization may be 

negligible at outcrop scale. Due to the presence of 

ferromagnetic minerals, rocks will acquire a magnetization Mi, 

called induced magnetization in the direction of applied field 

H can be denoted as: 

 

𝐌𝐢 = 𝜒𝐇 (10) 

 

If the rock is placed in a field-free environment, the induced 

magnetization falls to zero (Blakely, 1996). However, 

ferromagnetic materials have a special ability to retain a 

permanent magnetization even in the absence of external magnetic 

fields and it is called remanent magnetization, may be denoted 

by Mr. The remanent magnetization of crustal rock depends not 

only on their atomic structure, crystallographic and chemical 

composition, but also on their geological, tectonic and thermal 

history. In geophysical studies, it is usual to consider the 

total magnetization M of the rock as the vector summation of 

induced and remanent magnetization, that is: 

 

𝐌 = 𝐌𝐢 + 𝐌𝐫 = 𝜒𝐇 + 𝐌𝐫 (11) 

 

The ratio between remanent magnetization and induced 

magnetization is expressed by the Koenigsberger ratio as the 

following: 

 

𝑄 =
|𝐌𝐫|

|𝐌𝐢|
=

|𝐌𝐫|

|𝜒𝐇|
𝐠(𝑃) = −𝛾

𝑚

𝑟2
𝐫 (12) 

 

These magnetizations may be oriented in different directions 

and may differ significantly in magnitude. The magnetic effects 

of a rock arise from the resultant M of the two magnetization 

vectors. Magnetic anomalies caused by the rocks are superposed 

to the geomagnetic field similar to gravity anomalies which are 

superposed to the gravitational field. However, the magnetic 

field is more complex, due to the variation in amplitude and in 

direction of the geomagnetic field. Consequently, knowledge of 

the behavior of the magnetic field is necessary both in the 

reduction of magnetic data to a suitable datum and in the 

interpretation of the resulting anomalies. The magnetic field 

is geometrically more complex than the gravity field of the 

Earth and exhibits irregular variation in both orientation and 

magnitude with latitude, longitude and time (Kearey et al., 
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2002). Total-field magnetometers are usually the instrument of 

choice for airborne and shipborne magnetic surveys. As the name 

implies, total-field magnetometers measure the magnitude of the 

total magnetic field without regard to its magnetic direction. 

The total field T is given by: 

 

𝐓 = 𝐅 + Δ𝐅 (13) 

 

where F is the geomagnetic field and ∆F represents the 

perturbation of F due to some crustal magnetic sources. The 

total-field anomaly is calculated from total-field measurements 

by subtracting the magnitude of a suitable regional field, 

usually the IGRF model appropriate for the date of the survey. 

If T represents the total field at any point, and F is the 

regional field at the same point, then the total-field anomaly 

is given by (Blakely, 1996): 

 

Δ𝐓 = |𝐓| − |𝐅| (14) 

 

If |F| >> |∆F|, the total field ∆T can be considered as the 

component of the anomalous field ∆F in the direction of F and 

thus it can be considered a harmonic function (e.g., Blakely, 

1996). This condition is usually verified in crustal magnetic 

studies. 

The SI unit of magnetic field strength is the tesla (T). For 

the magnetic variation due to rock, a sub-unit, the nanotesla 

(nT), is commonly used; 1 nT=10-9 T. The strength of F varies 

from about 25000 nT in equatorial regions to about 70000 nT at 

the poles (Kearey et al., 2002). 

 

 

1.3. Scaled field and homogeneity law 
 

 

As described in Fedi et al. (2015), scaling laws allow 

modelling the Earth as a scaling medium and are important to 

describe its degree of complexity. If one tries to classify 

physical source-distributions in terms of their complexity, 

statistical models of growing complexity have been used, 

following scaling laws either monofractal, in which the scaling 

is expressed by a power law valid globally, or multifractal, in 

which the scaling is expressed by a local power law, changing 

at each position/scale. For instance, fractal models of both the 

types have been used in geophysics to describe the well logs of 

susceptibility, seismic wave speed and other physical properties 

of the Earth’s rocks (e.g. Pilkington & Todoeschuck 1993; 

Hermann 1997; Marsan & Bewan 1999). 

Other classes of source distributions have been used in 

applied geophysics to deal with a simplified medium, and so 

describe the source distribution at different levels of 
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complexity. We will here refer to fields following one specific 

kind of scaling-law, called homogeneity law.  

The source-distributions of such fields may be generated by 

restricting the solutions of the integral equations of the 

gravity and magnetic fields (or of their derivatives) to a set 

of homogeneous density distributions with very simple 

geometrical shapes, such as spheres and infinitely extended 

cylindrical or planar distributions of density or 

susceptibility. Some of these simple source distributions are 

called one-point sources, because their field f can be 

represented as a field generated by a source distribution having 

its support in just one-point r0(x0, y0, z0) 

The most important property of the fields of one-point 

sources is that they are homogeneous functions of degree n, 

meaning that they satisfy the following scaling law, called 

homogeneity equation, in the region R at any observation points 

r(x, y, z) and rt(xt, yt, zt): 

 

𝑓(𝑡𝑥, 𝑡𝑦, 𝑡𝑧) = 𝑡𝑛𝑓(𝑥, 𝑦, 𝑧) (15) 

 

where t > 0 and n is the homogeneity degree. 

Based on this equation, Euler’s theorem (e.g. Olmsted 1991) 

shows that if f is continuously differentiable and homogeneous 

of degree n in R, the homogeneity of the field may be expressed 

by the differential equation: 

 

∇𝑓(𝐫) ∙ 𝐫 = −𝑛𝑓(𝐫) (16) 

 

When the source position is r0(x0, y0, z0), eq. (16) assumes 

the form: 

 

∇𝑓(𝐫) ∙ (𝐫 − 𝐫𝟎) = −𝑛𝑓(𝐫) (17) 

 

The differential form of Euler equation is important because 

it assesses the homogeneity properties in a local sense. 

Thompson (1982) and then Reid et al. (1990) introduced a popular 

algorithm based on eq. (17), namely the Euler deconvolution, 

allowing the computation of the unknown source-coordinates r0(x0, 

y0, z0) from the field values within a moving window W(r) on the 

measurement plane. 

This innovation was important because it opened the way to 

automated methods of source depth estimation, which have been 

used especially in industry to process massive data sets in a 

short computation time. Many other ‘Euler deconvolution’ 

algorithms were since then proposed, applying it to different 

fields (field derivatives, modulus of the analytic signal, 

Hilbert transforms) and the unknowns were extended to include 

other parameters, e.g. a constant background term B and to the 
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so called structural index, N, usually defined as the opposite 

of the homogeneity degree (n) for the magnetic field of ideal 

sources. A summary of many of the main Euler algorithms can be 

found in Fitzgerald et al. (2004). Euler deconvolution was also 

reformulated in a multiscale framework by Florio & Fedi (2006, 

2014) and Fedi et al. (2009). 

The most obvious one-point sources are the pole-source in the 

gravity case and the dipole-source in the magnetic case. As is 

well known, such sources generate homogeneous fields of 

homogeneity degrees equal to −2 and −3, in the gravity and 

magnetic case, respectively. Other ideal sources have been 

however considered, all characterized by the degree of 

homogeneity of their homogeneous 

fields, which, in the magnetic case, corresponds to an 

integer ranging from −3 to 0. In fact, the ideal sources 

considered in the Euler deconvolution are the infinite line of 

dipoles (n = −2), the semi-infinite thin sheet (n = −1) and the 

bottomless contact (n = 0). 

Besides these cases, all characterized by a global kind of 

scaling law, homogeneous fields may be used as suitable models 

to approximate the behavior of any real field even when the 

potential fields are not homogeneous in the sense of eq. (1), 

meaning that homogeneity equation is not valid in the whole 

harmonic region, while holding on in selected sub-areas of the 

harmonic region. This is likely to happen when the source 

distribution is more complex than any of the ideal sources. For 

instance, Florio et al. (2014) recently analyzed the behavior 

of the magnetic field of a cube.  

Steenland (1968) was probably the first to show that, for the 

most realistic cases of inhomogeneous potential fields, n can 

be fractional and is varying with the distance to the source, 

being dependent on the depth and kind of source distribution. 

 

It was empirically shown that when the sources are different 

from the one-point sources and the estimated n is not integer, 

the estimated depth is not relative to the source top or center, 

but to a point somewhere positioned between the top and the 

center of the source (Keating & Pilkington 2004; Gerovska et al. 

2005). However, it is important to stress that it has been 

recently shown that homogeneous sources and corresponding fields 

may exist, whose homogeneity degree may be fractional as well 

(Fedi et al. 2012; Fedi et al. 2015). They are characterized by 

having some intermediate properties between those corresponding 

to two subsequent one-point sources of integer n, as shown in 

Fig. 1, where the gravity anomalies are drawn for a pole (Fig. 

1a), its fractional integration of order α = −0.5 (Fig. 1b) and 

for a bottomless vertical line mass (Fig. 1c). Basing on that, 

we may so extend the range of allowed homogeneity degrees to any 

real value within the range: −3 ≤ n ≤ 0. 
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Figure 1: The gravity anomalies due to a pole source (a), to a fractional order 

α = −0.5 integration of a pole source (b) and to a bottomless vertical line mass (c). 

(from Fedi, 2016) 

 

Following strictly Fedi (2016) we may say that, similar to 

what happens for random source models, where the fractal 

scaling-law has been generalized into a multifractal law, the 

homogeneity law could be generalized into the following 

multihomogeneity law: 

 

𝑓(𝑎𝑥, 𝑎𝑦, 𝑎𝑧) = 𝑎𝑛(𝑥,𝑦,𝑧)𝑓(𝑥, 𝑦, 𝑧) (18) 

 

so that the differential Euler equation becomes: 

 

∇𝑓(𝐫) ∙ (𝐫 − 𝐫𝟎) = −𝑛(𝐫)𝑓(𝐫) (19) 

 

and n may now assume fractional or integer values as well. 

This generalization takes into account that real fields are 

essentially inhomogeneous and typically present a fractional and 

spatially varying homogeneity-degree.  

Starting from this law, we will see in chapter 4 that this 

varying homogeneity-degree may be is used directly in the 

inversion of potential fields, as an exponent of a specifically 

designed weighting function. 
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2. Elements of Inversion Theory 

 

 

If N measurements are performed in a particular experiment, 

one might consider their values as the elements of a vector d 

of length N. Similarly, the model can be represented as a vector 

m of length M, whose elements are the source strength in 

specified sub-volumes of the source volume.  

 

𝑑𝑎𝑡𝑎:                          𝐝 = [𝑑1, … , 𝑑𝑁]𝑇 
 

𝑚𝑜𝑑𝑒𝑙:                      𝐦 = [𝑚1, … ,𝑚𝑀]𝑇 

(20) 

 

The basic statement of an inverse problem is that the model 

and the data are in some way related. Usually the relationship 

takes the form of one or more formulas that the data and model 

are expected to follow. 

The simplest and best-understood inverse problems are the 

linear ones, that can be represented with the explicit equation: 

 

𝐀𝐦 = 𝐝 (21) 

 

The matrix A (with N × M dimension) is called kernel. This 

is the basic equation of discrete inverse theory. Many important 

inverse problems that arise in the physical sciences involve 

precisely this equation. 

Others, while involving more complicated equations, can often 

be solved through linear and iterative approximations (Menke, 

1989). 

When the number of the data (N) is lower than the number of 

model elements (M) the problem in equation (21) is an 

underdetermined problem. For these problems it is possible to 

find more than one solution for which the prediction error E is 

zero. A priori information helps us in this task.   

The first kind of a priori assumption we shall consider is 

the expectation that the solution to the inverse problem is 

simple, where the notion of simplicity is quantified by some 

measure of the length of the solution. One such measure is simply 

the Euclidean length of the solution: 

 

𝐿 = 𝐦𝐓𝐦 = ∑𝑚𝑙
2 (22) 

 

A solution is therefore defined to be simple if it is small 

when measured under the L2 norm. We pose the following problem: 

find the solution mest that minimizes equation (22) subject to 

the constraint that e = d - Am = 0 and we obtain the minimum 

length solution: 
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𝐦 = 𝐀𝐓[𝐀𝐀𝐓]−1𝐝 (23) 

 

There are many instances in which L = mT m is not a very good 

measure of solution simplicity. One may not want to find a 

solution that is smallest in the sense of closest to zero but 

one that is smallest in the sense that it is closest to some 

known model m0. The obvious generalization of equation (22) is 

then (Menke, 1989): 

 

𝐿 = (𝐦 − 𝐦𝟎)
𝑇(𝐦 − 𝐦𝟎) (24) 

 

Where m0 is the a priori value of the model parameters. 

Often, the whole idea of length as a measure of simplicity 

is inappropriate and then we can introduce a weighting matrix 

Wm that may introduce a priori information. So, equation (24) 

becomes: 

 

𝐿 = (𝐦 − 𝐦𝟎)
𝑇𝐖𝐦(𝐦 − 𝐦𝟎) (25) 

 

Frequently some observations are made with more accuracy than 

others. In this case one would like the prediction error e, of 

the more accurate observations to have a greater weight in the 

quantification of the overall error E than the inaccurate 

observations. To accomplish this weighting, we define a 

generalized prediction error: 

 

𝐸 = 𝐞T𝐖𝐝𝐞 (26) 

 

where the matrix Wd defines the relative contribution of each 

individual error to the total prediction error (Menke, 1989). 

When the problem is affected by numerical instability and by 

inherent ambiguity, it is called 'ill-posed'. This problem needs 

to be regularized to be solved. The most common and well-known 

form of regularization is the one known as Tikhonov 

regularization (Tikhonov and Arsenin, 1977) 

 

𝐦𝜇 = argmin{‖𝐀𝐦 − 𝐝‖2
2 + 𝜇2‖𝐦‖2

2} (27) 

 

where the regularization parameter, μ controls the weight 

given to minimization of the side constraint relative to 

minimization of the residual norm. Clearly, a large value of μ, 

(equivalent to a large amount of regularization) favours a small 

solution semi-norm at the cost of a large residual norm, while 

a small, (i.e., a small amount of regularization) has the 

opposite effect. This parameter also controls the sensitivity 

of the regularized solution m to perturbations in A and d, and 

the perturbation bound is proportional to μ-1. 
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Other two methods to solve the inverse problem for 

underdetermined cases involve QR factorization and Lagrange 

multipliers. 

QR factorization is based on the decomposition of the matrix 

AT into the product of two different matrices, Q and R, where Q 

is an orthogonal matrix and R is an upper triangular matrix.  

The QR factorization (if implemented properly) allows the 

construction of stable solutions of the system Am=d. However, 

it is costly in terms of speed but can also be applied to 

rectangular systems. 

The Lagrange multipliers method is instead a particular tool 

to solve an inverse problem with a priori constraints, including 

the constraint equations (of the form Fm=h) as row in Am=d, 

forcing the prediction error to zero at the expense of increasing 

the prediction error of the other equations.  

In this case the objective function is: 

 

𝜑(𝐦) = ∑[∑𝐴𝑖𝑗𝑚𝑗 − 𝑑𝑖

𝑀

𝑗=1

]

2
𝑁

𝑖=1

+ 2∑𝜆𝑖 [∑𝐹𝑖𝑗𝑚𝑗 − ℎ𝑖

𝑀

𝑗=1

]

𝑝

𝑖=1

 (28) 

 

Where p is the number of constraints and 2λi are the Lagrange 

multipliers (Menke, 2006). 

 

 

2.1. Depth Weighting Function 
 

 

As we have just said in the previous paragraph, the minimum 

length solution can be defined as the solution for the 

underdetermined problem. This hypothesis on the solution is the 

first and the most common a priori information that can be used. 

This kind of minimization, without other constraints, 

provides solutions with model elements of low value near the 

surface, because in this case the solution is the shortest, as 

we required in the minimum length formulation. This because the 

kernel decays with distance and so the simplest (minimum length) 

solution will be that being the most concentrated, this implying 

that having the lowest values in a smaller volume. This obviously 

means that such solution cannot be deep (in this case higher 

values and larger volume would be involved) and it will be 

instead near the surface (Figure 2b). 
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Figure 2: (a) Magnetic field due to a dipole horizontal line shown in (c) by the 

white dot. Blue solid line is the observed data and the red asterisks are the 

calculated data of (b) the Minimum Length solution. 

 

We repeat that this kind of density distribution does not 

depend on the characteristics of the observed data, but it is a 

direct consequence of the supplied a priori information. 

To avoid this too strong influence of the minimum length 

hypothesis, we need to introduce more a priori information. Li 

and Oldenburg (1996) were the first that studied this problem 

and introduced a depth-weighting function: 

 

𝑤𝑧 =
1

(𝑧 + 𝑧0)𝛽/2
 (29) 

 

where z is the depth of each layer in the 3D model and the 

value of z0 depends upon the observation height and cell size 

(Oldenburg and Li, 2005). Li and Oldenburg propose to use for β 

a value equal to 3 in the magnetic case (Li and Oldenburg, 1996) 

and equal to 2 in the gravity case (Li and Oldenburg, 1998), 

assuming 3 and 2 as the rate decay of the magnetic or gravity 

field of a single, small, roughly cubic cell. 

Oldenburg and Li (2005) later suggested that the exponent 

value used in a particular inversion could be chosen, by finding 

the best performance of different exponent values applied to 

trial inversions of synthetic data from forward models similar 

to the expected solution. 

Cella and Fedi (2012) showed instead that the appropriate 

value of β must be related to N, the structural index of the 

source (Table 1), rather than to the power-law decay of the 

field generated by a single cell. 
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Source N(grav) N(mag) 

Point mass or dipole sources, spheres 2+k 3+k 

Line or masses of dipoles infinite 

cylinder 

1+k 2+k 

Semi-infinite plane, thin dike, sill 0+k 1+k 

Contact -1+k 0+k 

Table 1 – Structural Index (k = order of differentiation) 

 

Moreover, Ialongo et al. (2014) have shown the connection 

between the depth weighting exponent β and the regularization 

parameter μ, where this last one is chosen by using the 

generalized cross-validation method (GCV). 

The structural index may be estimated with standard methods 

such as Euler Deconvolution or the study of the scaling function 

(Fedi, 2007; Florio et al., 2009; Barbosa et al., 1999; Fedi and 

Florio, 2006). We will see in detail chapter 4, how to estimate 

the structural index by the scaling function method. 

 

For all the inversion performed in this work we will use the 

Li and Oldenburg (2003) algorithm, which allows solving 

underdetermined problems, with the number of cells significantly 

larger than the amount of available data. The related objective 

function is satisfied by many different solution models that 

generate practically the same data. This goal is reached using 

appropriate weighting functions whose parameters are empirically 

selected, based on numerical modeling and qualitative analysis 

of typical gravity or magnetic anomalies. 

The solution is obtained by the following minimization 

problem (Oldenburg and Li, 2005): 

 

minimize φ = φd + μφm 

 

subject to mmin ≤ m ≤ mmax 

(30) 

 

where mmin and mmax are vectors containing the lower and upper 

bounds on the model values, and m is the vector containing model 

values. Besides that and the weighting function, other prior 

information that this algorithm allows to introduce might be: 

knowledge of a background or reference model and a general 

assumption that the structures should be smooth or, 

alternatively, that they have sharp edges at least locally 

(Oldenburg and Li, 2005). 

The algorithm uses the logarithmic barrier method with the 

conjugate gradient technique (CG) as the central solver. In the 

logarithmic barrier method, the bound constraints are 

implemented as a logarithmic barrier term. 

The objective function is given by (Gill et al. 1991): 

 

𝜑(𝜆) = 𝜑𝑑 + 𝜇𝜑𝑚 − 2𝜆 ∑[𝑙𝑛(𝑚𝑗 − 𝑚𝑗
𝑚𝑖𝑛) + 𝑙𝑛(𝑚𝑗

𝑚𝑎𝑥 − 𝑚𝑗)]

𝑀

𝑗=1

 (31) 
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where μ is the regularization parameter, λ is the barrier 

parameter, φd is the weighted data misfit and φm is the model 

objective function. The weighted data misfit is given by: 

 

𝜑𝑑 = ‖𝐖𝐝(𝐝 − 𝐝𝐨𝐛𝐬)‖
2 (32) 

 

where d are the predicted data, dobs are the observed data-

vector and Wd is the inverse data-covariance matrix. 

 

𝜑𝑚(𝑚) = 𝛼𝑠 ∫ 𝑤𝑠𝑤
2(𝑧)(𝐦 − 𝐦𝟎)

2𝑑𝑣
𝑣𝑜𝑙

+ 𝛼𝑥 ∫ 𝑤𝑥
𝑣𝑜𝑙

(
𝜕𝑤(𝑧)(𝐦 − 𝐦𝟎)

𝜕𝑥
)

2

𝑑𝑣 + ⋯

+ 𝛼𝑦 ∫ 𝑤𝑦
𝑣𝑜𝑙

(
𝜕𝑤(𝑧)(𝐦 − 𝐦𝟎)

𝜕𝑦
)

2

𝑑𝑣 + ⋯

+ 𝛼𝑧 ∫ 𝑤𝑧
𝑣𝑜𝑙

(
𝜕𝑤(𝑧)(𝐦 − 𝐦𝟎)

𝜕𝑧
)

2

𝑑𝑣 

(33) 

 

where m is the unknown model, m0 is a reference model and 

w(z) is the depth-weighting function (29). 

 

The terms ws, wx, wy, wz are spatially dependent weighting 

functions to input additional prior information about density 

or susceptibility model. In particular, the weights wx, wy, wz, 

with or without a reference model, control the degree of 

smoothness of the solution along the three directions (Oldenburg 

and Li, 2005); finally, αs, αx, αy and αz are coefficients 

controlling the importance of each term. 

The logarithmic barrier term forms a barrier along the 

boundary of the feasible domain and prevents the minimization 

from crossing over to the infeasible region. The method solves 

a sequence of nonlinear minimizations with decreasing λ and, as 

λ approaches zero, the sequence of solutions approaches the 

solution of equation (30).Further details on how a numerical 

solution is obtained discretizing the model objective function 

can be found in Oldenburg and Li (1994).Instead of carrying out 

the full minimization at each iteration, it is common to take a 

Newton step for each value of λ and adjust the step length so 

that the updated model remains positive (Gill et al. 1991). The 

step length is also used to determine the decreased value of the 

barrier parameter λ for the next iteration (Li and Oldenburg, 

2003). 

The barrier iteration continues until the value of λ is 

sufficiently small such that barrier term has a negligible 

contribution to the total objective function (31) and the 
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iteration stops when the objective function is changing less 

than 1%. 

 

Looking at the equation of the objective model function (33), 

it is easy to understand the key role of the depth weighting 

function w(z), where, accordingly to Cella and Fedi (2012), the 

exponent β must be related to N. 

For this reason, we decided to create a β function, estimating 

N in every single point of our source-domain. In this way the 

equation (29) will be: 

 

𝑤(𝑥, 𝑦, 𝑧) =
1

𝑧𝛽(𝑥,𝑦,𝑧)/2
 (34) 

 

We will call the equation (34) inhomogeneous depth weighting 

function. 

 

In order to build this function, we need to estimate β in 

every point of our domain. We decided to use an approach based 

on the scaling function method (Fedi et al 2006), which will be 

described in Chapter 4. 
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3. [Papers] Methods for 1D inversion of potential field 

 

 

In this chapter we show two papers published in international 

scientific journals that describe the 1D method developed under 

this thesis project, for the inversion of potential fields. 

The first one describes the theoretical aspects of this new 

method, with applications on synthetic and real gravity data, 

in the Frenchman Flat (Nevada) sedimentary basis, where the 

obtained density model is in good agreement with the results of 

density log.  

The second one shows the application on magnetic real data, 

under a joint interpretation with other information from TDEM. 

One relevant result is that our joint cooperative interpretation 

allows a significant interpretation of the Drybones kymberlites, 

Canada, with an improved modelling either laterally or in depth. 
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4. IMAGING METHODS: the scaling function 

 

 

This paragraph shows the theoretical background of the 

scaling function method, following the demonstration given by 

Fedi (2007) for the gravity field of a pole source. These 

quantities are important to understand the homogeneous 

properties of potential fields. Let us assume a cartesian 

coordinate system with the z-axis negative downward. 

The gravity field f(r) due to a homogeneous sphere at 

r0(x0,y0,z0) with density M=1 and normalized by the gravity 

constant k, can be expressed as: 

 

𝑓(𝐫) =
(𝑧 − 𝑧0)

‖𝐫 − 𝐫0‖2
3 (35) 

 

If the source is at r0(0,0,z0) and the field is measured at 

x=x0, y=y0 we have: 

 

𝑓(𝑧) =
1

(𝑧 − 𝑧0)2
 (36) 

 

The scaling function can be defined as the derivative of the 

logarithm of the field f with respect to log(z): 

 

𝜏(𝑧) =
𝜕𝑙𝑜𝑔[𝑓(𝑧)]

𝜕log (𝑧)
 (37) 

 

For the above-mentioned example of the gravity field, the 

scaling function τ is: 

 

𝜏(𝑧) = −
2𝑧

𝑧 − 𝑧0
 (38) 

 

We note that the scaling function has the important property 

of not being dependent on the source property, such as density 

or magnetization intensity. If we now consider a kth order of 

derivation for the field f we can express the scaling function 

as: 

 

𝜏𝑘(𝑧) =
𝜕𝑙𝑜𝑔[𝑓𝑘(𝑧)]

𝜕log (𝑧)
= −

(𝑘 + 2)𝑧

𝑧 − 𝑧0
 (39) 
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From the equation 38 we can see that τ(z) is singular at z=z0 

in the source region, but at z=-z0 we have that τ(z) = -1, and 

it follows that: 

 

𝜕{𝑙𝑜𝑔[𝑓(𝑧)] + log (𝑧)}

𝜕𝑧
|
𝑧=−𝑧𝑜

= 
𝜕𝑧𝑓

𝜕𝑧
|
𝑧=−𝑧𝑜

= 0 (40) 

 

From equation 40 we can understand that the function zf has 

a maximum at z=-z0. This means that, scaling the gravity field 

with a power law of the altitude z and exponent equal to 1, we 

can have a scaled gravity field, Wg: 

 

𝑊𝑔 = 𝑓𝑧 (41) 

 

having a maximum at x=x0, y=y0 and z=-z0. Obviously, the 

maximum is due to the fact that we have assumed a positive 

density contrast. If we choose a negative density contrast we 

will have a minimum at the point r(x=x0,y=y0,z=-z0). Moreover, 

instead to express the function Wg as function of r, we can 

express Wg as function of (x0,y0,z0). 

We can generalize the scaling function formula to any kth 

order vertical derivative of the field fk, and to any kind of 

homogeneous source; in fact, starting from the kth order 

derivative of the gravity field, of homogeneity degree n, 

 

𝑓𝑘(𝑥 = 𝑥0, 𝑦 = 𝑦0, 𝑧) =
1

(𝑧 − 𝑧0)𝑁+𝑘
 (42) 

 

Where N=-n, we get: 

 

𝜏𝑘(𝑧) =
𝜕𝑙𝑜𝑔[𝑓𝑘(𝑧)]

𝜕log (𝑧)
= −

(𝑘 + 𝑁)𝑧

𝑧 − 𝑧0
 (43) 

 

At z=-z0 we will have: 

 

𝜏𝑘(−𝑧0) = −
(𝑘 + 𝑁)

2
 (44) 

 

Hence, the general scaled function, Wk, which we call DEXP 

transformation, has an extreme point at the source position x=x0, 

y=y0 and z=-z0 and it can be expressed as: 

 

𝑊𝑘 = 𝑓𝑘𝑧
𝑘+𝑁

2  (45) 
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We have described the DEXP transform for the field and its 

derivatives of a simple pole source. Obviously real sources 

generate a field that cannot be explained by something like a 

simple pole source, unless the field is measured at a great 

distance. So, we could define real sources as source 

distributions within finite volumes with arbitrary shapes (Fedi, 

2007). 

But, in the majority of the cases, the source complexity can 

be simplified to semi-infinite volume-less shapes. For example, 

we can see pipes, ridges, valleys, tunnels, volcanic necks as 

infinite cylinders. These simple shape bodies are generally 

defined as one-point sources, meaning that we need the 

coordinates of just one singular point, i.e. the center or the 

edge, to define them (Stavrev, 1997; Fedi, 2007). 

 

 

4.1. Estimating the inhomogeneous depth weighting 

exponent β 

 

 

Our main goal was to build an inhomogeneous depth weighting 

function (eq. 34). The key point is to estimate the depth 

weighting exponent β for every single point of our domain. 

The insight from Cella and Fedi (2012), that links β to the 

homogeneity degree n and the scaling function method, will help  

 

Assuming again, for the moment, an ideal source, it is easy 

to show that the scaling function τ (equation 37) could be 

written, in scalar notation, as: 

 

𝜏𝑘(𝐫, 𝛒
∗) =

𝜕𝑙𝑜𝑔𝑓𝑘
𝜕log (𝑥 − 𝜉∗)

+
𝜕𝑙𝑜𝑔𝑓𝑘

𝜕log (𝑦 − 𝜂∗)
+

𝜕𝑙𝑜𝑔𝑓𝑘
𝜕log (𝑧 − 𝜁∗)

 

 

𝜏𝑘(𝐫, 𝛒
∗) =

1

𝑓𝑘

𝜕𝑓𝑘
𝜕𝑥

 (𝑥 − 𝜉∗) +
1

𝑓𝑘

𝜕𝑓𝑘
𝜕𝑦

(𝑦 − 𝜂∗) +
1

𝑓𝑘

𝜕𝑓𝑘
𝜕𝑧

(𝑧 − 𝜁∗) 

(46) 

 

where r(x,y,z)and ρ*(ξ*,η*,ζ*)are the positions of 

observation point P and source S. 

Equation 46 could be written in a different form, as: 

 

𝜏𝑘(𝐫, 𝛒
∗) = 𝛁 log(𝑓𝑘) ∙ 𝐫 −

𝜕𝑙𝑜𝑔𝑓𝑘
𝜕𝑥

𝜉∗ −
𝜕𝑙𝑜𝑔𝑓𝑘

𝜕𝑦
𝜂∗ −

𝜕𝑙𝑜𝑔𝑓𝑘
𝜕𝑧

𝜁∗ = 

 

= 𝑎 − 𝑏𝜉 − 𝑐𝜂 − 𝑑𝜁 

(47) 

 

Where; 
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𝑎 = 𝛁 log(𝑓𝑘) ∙ 𝐫, 𝑏 =
𝜕𝑙𝑜𝑔𝑓𝑘

𝜕𝑥
, 𝑐 =

𝜕𝑙𝑜𝑔𝑓𝑘

𝜕𝑦
, 𝑑 =

𝜕𝑙𝑜𝑔𝑓𝑘

𝜕𝑧
. 

 

Now, we can define the differential scaling function as the 

gradient 𝛴 of the scaling function τ: 
 

𝛴 = 𝛁𝜏 (48) 

 

with components: 

 

𝛴𝑥 =
𝜕𝜏

𝜕𝑥
=

𝜕𝑎

𝜕𝑥
−

𝜕𝑏

𝜕𝑥
𝜉∗ −

𝜕𝑐

𝜕𝑥
𝜂∗ −

𝜕𝑑

𝜕𝑥
𝜁∗ 

 

𝛴𝑦 =
𝜕𝜏

𝜕𝑦
=

𝜕𝑎

𝜕𝑦
−

𝜕𝑏

𝜕𝑦
𝜉∗ −

𝜕𝑐

𝜕𝑦
𝜂∗ −

𝜕𝑑

𝜕𝑦
𝜁∗ 

 

𝛴𝑧 =
𝜕𝜏

𝜕𝑧
=

𝜕𝑎

𝜕𝑧
−

𝜕𝑏

𝜕𝑧
𝜉∗ −

𝜕𝑐

𝜕𝑧
𝜂∗ −

𝜕𝑑

𝜕𝑧
𝜁∗ 

(49) 

 

Or in matrix notation: 

 

𝛴 = 𝛂 + 𝚪𝛒∗ (50) 

 

Where: 

 

𝛂 = 𝛁𝑎 
 

𝚪 =

[
 
 
 
 
 
 
𝜕𝑏

𝜕𝑥

𝜕𝑐

𝜕𝑥

𝜕𝑑

𝜕𝑥
𝜕𝑏

𝜕𝑦

𝜕𝑐

𝜕𝑦

𝜕𝑑

𝜕𝑦
𝜕𝑏

𝜕𝑧

𝜕𝑐

𝜕𝑧

𝜕𝑑

𝜕𝑧]
 
 
 
 
 
 

 

(51) 

 

Since that for homogeneous fields we have:  

 

𝜏𝑘(𝐫, 𝛒
∗) =  −𝑛 (52) 

 

it will be: 

 

𝛴𝑘(𝐫, 𝛒
∗) = 0 (53) 

 

For this reason, we can solve the system deduced from equation 

50 at every point r of our field domain, to estimate the source 

parameters ξ*, η*, ζ*. For every position in the space ri 

(xi,yi,zi) we will assume ξ*=xi and η*=yi, assuming that we are 
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estimating the homogeneity degree n due to a one-point source. 

Knowing them and substituting them in equation 52, we may 

estimate the degree of homogeneity n and 𝛽, according to Cella 
and Fedi (2012) who established the relationship of  β(x,y,z) 

with the structural index N as: 

 

𝛽(𝑥, 𝑦, 𝑧) =  𝑁(𝑥, 𝑦, 𝑧) = −𝑛(𝑥, 𝑦, −𝑧) (54). 

 

So, we can form a β(x,y,z) function, to be used to create a 

inhomogeneous depth weighting function w(x,y,z), according to 

equation 34: 

 

𝑤(𝑥, 𝑦, 𝑧) =
1

z𝛽(𝑥,𝑦,𝑧)/2.  

 

For a given k-order field derivative of the magnetic field we 

will estimate the exponent of the weighting function β as 

 

𝛽(𝑥, 𝑦, 𝑧) =  𝑁(𝑥, 𝑦, 𝑧) = −(𝑛(𝑥, 𝑦, −𝑧) + 𝑘) (55) 

 

Similar formulas occur in the gravity case, replacing the 

magnetic field and its k-order derivatives by the vertical (or 

horizontal) gradient of the gravity field and its k-order 

derivatives, respectively. 

 

The flowchart below summarizes the whole new approach 

proposed. 
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5. 2D Inversion with inhomogeneous depth weighting 

function 

 

 

To test the effect of the inhomogeneous depth weighting 

function we started by running some 2D synthetic models. 

Moreover, to be sure that the estimation of the homogeneity 

degree in every single point of our domain was correct, we 

started by using an analytical approach and then we moved to a 

numerical approach. 

We considered the magnetic field, but we had same results by 

using gravity field. 

The idea of using an inhomogeneous depth weighting function 

was, for the very first time, explored by Daniela Mastellone in 

her PhD thesis. 

Our work started on replicate some of those 2D cases, while 

improving the estimates of β(x,y,z), and then using the new 

approach to 3D domain. 

 

 

5.1. 2D horizontal line of dipoles 
 

 

We started by using a homogeneous 2D source: a horizontal 

line of dipoles. From now on, for the sake of graphical 

simplicity, we assume the z-axis positive downward.  

The analytical formula that express the magnetic field due 

to this kind of source is well known (Telford, 1990, pg.92). 

So, knowing a formula, is easier to calculate derivatives and 

the scaled field at several level. 

According to the discussed workflow we calculated the scaling 

function in a 2D domain as: 

 

𝜏𝑘(𝐫, 𝛒
∗) =

1

𝑓𝑘

𝜕𝑓𝑘
𝜕𝑥

 (𝑥 − 𝜉∗) +
1

𝑓𝑘

𝜕𝑓𝑘
𝜕𝑧

(𝑧 − 𝜁∗) (56) 

 

In the same way, equation 51 becomes: 

 

𝛂 = 𝛁𝑎 =
𝜕𝑎

𝜕𝑥
+

𝜕𝑎

𝜕𝑧
 

 

𝚪 = [

𝜕𝑏

𝜕𝑥

𝜕𝑑

𝜕𝑥
𝜕𝑏

𝜕𝑧

𝜕𝑑

𝜕𝑧

] 

(57) 

 



46 

 

In this 2D case we will get β(x,z) that is used to create a 

inhomogeneous depth weighting function w(x,z) for a 2D domain. 

 

The analytical example was built by a line of dipoles located 

at ξ* = 100 m and ζ* = -15 m, with unitary magnetization 

intensity. Inclination and declination of the main and induced 

fields are the same (Inc = 90°; Dec = 0°). The 2D domain along 

x, goes from 1 to 200 m with 1 m step size and along z from 1 

to 31 m. 

The highest altitude was chosen according to the maximum 

depth that we want to investigate in the inversion process. 

 

 
Figure 3: (a) Magnetic Field due to a line of dipoles, scaled at different 

altitudes, from 1 to 31 m. (b) β(x,z) function estimated for the entire domain.  

 

In figure 3b, it is possible to notice some instability in 

the estimates of β(x,z), along two lines. Even if the difference 

from those instabilities and the expected value is really small, 

these phenomena could be larger in numerical cases. 

Anyway, looking at the estimates of the β values within our 

domain we can say that the approach is working properly, because 

we expected a constant value of 2 due to the homogeneity property 

of this particular field. 

Obviously, in this case, we do not expect any difference in 

the inversion results by using homogeneous or inhomogeneous 

approach. In fact, as we can see from figure 4, the two different 

approaches lead to the same result. 
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Figure 4: (a)Inversion model result by using β = 2. (b) Inversion model result 

by using β(x,z), shown in figure 1b. White dot highlight the true source position.  

 

 

5.2. 2D Single buried body (prismatic source) 
 

 

At this point we can move to numerical cases, applying the 

same procedure to a single buried body model. In this case we 

have no more a homogeneous field, so that n and therefore β 

values are expected to generally vary with the position of each 

point in our domain. 

 

The source was built by a prism located along x between 95 

and 105 m and along z between 5 and 10 m depth, with unitary 

magnetization. Inclination and declination of the main and 

induced fields are the same (Inc = 90°; Dec = 0°). The 2D domain 

along x, goes from 1 to 200 m with 1 m step size and along z 

from 1 to 41 m. In figure 5a is shown the field at 0 level. 

The highest altitude was chosen according to the maximum 

depth that we want to investigate in the inversion process. 
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Figure 5: (a) Magnetic field due to a prismatic source. (b) β(x,z) function 

estimated for the entire domain with instabilities due to numerical errors. (c) β(x,z) 

function corrected by a ‘brute force’ approach considering a reasonable range of 

values from 0 to 2.1 

 

Considering that in this case our field is not homogeneous, 

we can expect a not constant value of β within our domain. 

As we expected, looking at figure 5b it is however plausible 

that the numerical process produces some instabilities. To 

reduce it, we used a ‘brute force’ approach on the estimates of 

β values, setting automatically those values outside a 

reasonable range to the limits of that range. 

In particular, because we are considering a magnetic 2D 

field, we set this range from 0 to 2.1. 

So, if the estimate of β at a position (x,z) is lower than 

0.1, that β value is modified as 0; if the estimate of β in a 

position (x,z) is higher than 2.1, that β value is modified as 

2.1. 

We, then, performed the inversion using an inhomogeneous 

depth weighting function built with the estimated β(x,z) 

function shown in figure 5c. 

We ran two inversions for both approaches, homogeneous and 

inhomogeneous, with and without positivity constraint, meaning 
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that when we are using it, we are rejecting negative solutions 

of the model. 

 
Figure 6: (a) Model obtained by using a homogeneous depth weighting function with 

β = 2. without positivity constraint(b) Model obtained by using an inhomogeneous 

depth weighting function (figure 4c) without positivity constraint (c) Model obtained 

by using a homogeneous depth weighting function with β = 2. with positivity constraint 

(d) Model obtained by using an inhomogeneous depth weighting function (figure 4c) 

with positivity constraint. White box highlights the true source limits. 
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Looking at the models obtained in figure 6a and figure 6b, 

with no positivity constraint and with an inhomogeneous depth 

weighting function, it is possible to recover a better 

information regards the magnetization distribution in depth, 

while the homogeneous approach is too smooth and the 

magnetization is highly underestimated.  

Using positivity constraints, the main difference between the 

homogeneous (figure 6c) and the inhomogeneous (figure 6d) 

approach is that with a constant weighting exponent, the 

magnetization of the source is underestimated by a 31%, while 

in the other case it is underestimated by a 19% only. 

Note also that, with our approach the NRMSE, with or without 

using positivity constraints, is lower. 

The percentage is referred at the maximum value in the 

obtained model, so another advantage of using an inhomogeneous 

approach is that the model is representing better the whole 

source extent along x and z. 

From now on, we will perform inversions with positivity, to 

compare the best homogeneous approach solution against our 

approach. 

 

 

5.3. Two-body sources 
 

 

The next step is to test the efficiency of the inhomogeneous 

approach in presence of two bodies. 

The two prismatic sources are located along x between 55-65 

m and 135-145 m, while along z between 5-15 m depth and between 

10-20 m depth, with unitary magnetization both. Inclination and 

declination of the main and induced fields are the same (Inc = 

90°; Dec = 0°) for both sources. The 2D domain along x, goes 

from 1 to 200 m with 1 m step size and along z from 1 to 41 m.  
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Figure 7: (a) Magnetic field due to two prismatic sources at different depth (see 

text for details). (b) β(x,z) function corrected by a ‘brute force’ approach 

considering a reasonable range of values from 0 to 2.1 

Once again, the instabilities were treated with a brute force 

approach, so from the original estimates we can recover a β(x,z) 

function with values within a range physically acceptable 

(figure 7b). 

Considering the estimates due to one of the two sources, we 

can recover some similarities with the estimates in figure 5, 

while the difference in the central part is due to the 

interference between the two anomalies. 

Positivity constrain is used to reject negative values of 

magnetization for both approaches. 
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Figure 8: (a) Model obtained by using a homogeneous depth weighting function with 

β = 2. (b) Model obtained by using an inhomogeneous depth weighting function (figure 

7b). White boxes highlight the true source limits. 

 

The main difference between the homogeneous and the 

inhomogeneous approach is again linked to the under estimation 

of the magnetization of both sources. 

Using a homogeneous depth weighting function with β = 2 

(figure 8a) we confirm for the shallowest source the result of 

the previous case, in fact the magnetization is again 

underestimated by a 31%. However, the deepest source 

magnetization is underestimated by a 60%. 

Instead, with our approach (figure 8b) both sources have a 

good position in depth and a magnetization close to the true 

value. The underestimation of the deepest source magnetization 

is reduced to 12%. 

 

This case was also tested adding to the initial data a 5% 

random noise. This should affect also the estimation of beta 

values, especially because derivatives will enhance high 

frequencies. 
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Figure 9: (a) Magnetic field due to two prismatic sources at different depth with 

a 5% random noise added (see text for details). (b) β(x,z) function corrected by a 

‘brute force’ approach considering a reasonable range of values from 0 to 2.1 

 

If we compare figure 9b and figure 7b is easy to spot some 

differences in the estimates of beta values, mainly at low 

altitudes, but the whole trend is pretty similar. 

Positivity constraints are used to reject negative values of 

magnetization for both approaches. 

 

 
Figure 10: (a) Model obtained by using a homogeneous depth weighting function 

with β = 2. (b) Model obtained by using an inhomogeneous depth weighting function 

(figure 9b). White boxes highlight the true source limits.  
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However, the models obtained adding random noise to the 

original data are not so different from those in figure 8, and 

the main differences between the different approaches are still 

present. In fact, we recover a better estimate of the true 

magnetization value by the inhomogeneous approach, and the 

deepest source is more compact even if its magnetization is 

underestimated. By the way, if we compare the two solutions, 

using an inhomogeneous depth weighting function is helping to 

better recover the two body features.  

We have seen here the case of two prism sources; we will see 

in the next section how different-homogeneity sources respond 

to the two different kinds of inversion. 
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6. 3D Inversion with inhomogeneous depth weighting 

function 

 

 

In this section we will show the application of the same 

procedure that we used in 2D cases, to 3D synthetic cases, and 

then to 3D real data. 

Obviously, the equations used to estimate the β(x,y,z) 

function, are those expressed in the paragraph 4.1. 

 

 

6.1. Polygonal source 
 

 

A 3D polyhedral source (Tsoulis, 2012) was built and then we 

computed the first vertical derivative of its gravity field 

(Figure 11). 

The maximum extent of the source is 20 km along x direction, 

15 km along y direction and 10 km along z direction. Density 

contrast is 1 g/cm3. We considered a source volume of 50 km by 

50 km by 20 km, along x, y and z respectively, with cells sized 

1 km3. The dataset was formed computing the field on a 50 km by 

50 km map, with a 1 km step size along both the horizontal 

directions. The data were then upward continued at altitudes 

from 1 km to 20 km, with 1 km step size. 

Positivity was used in both inversion processes. 

We then solved the system (45) and computed β(x,y,z) and the 

inhomogeneous weighting function w(x,y,z). 

 

 
Figure 11: First vertical derivative of the gravity field of a polygonal body 

source along the zero-level plane. Square, triangle and circle symbols indicate the 

horizontal positions of the β estimates shown in Figure 12 

 

To have an idea of the estimated values of β, we show in 

Figure 12 its values along vertical profiles corresponding to 
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the three positions described, by the same markers, in Figure 

11. 

We ran two inversion setups, by using a homogeneous and 

inhomogeneous depth weighting function, respectively. 

Figures 13c and 13f show the model obtained by using a 

homogeneous depth weighting function, with β = 3, while figures 

13b and 13e show the model obtained by using an inhomogeneous 

depth weighting function, with a variable exponent β(x,y,z). 

It is glaring, looking at the slices of both the models, that  

the inhomogeneous approach leads to a quite good definition of 

the body source, for either the top or the bottom, while the 

model obtained by using β = 3 produce a deeper source with a 

really bad definition of the bottom surface. Note that no other 

local constraints were used in the inversion process, except 

positivity.  

 

 
Figure 12: Estimated β values, using the scaling function method, along vertical 

profiles at the positions shown in Figure 11. 
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Figure 13.1: (a) W-E view of the true body (b) W-E slice of the model using an 

inhomogeneous depth weighting function β(x,y,z) and (c) using a homogeneous depth 

weighting function with  β = 3. 
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Figure 13.2: (d) N-S view of the true body (e) N-S slice of the model using an 

inhomogeneous depth weighting function β(x,y,z) and (f) using a homogeneous depth 

weighting function with  β = 3. 
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Moreover, the density range of the inhomogeneous case is much 

better than that of the homogeneous inversion. Normalized RMSE 

are similar also in this case: 1.18*10-11 for the homogeneous 

approach and 5.02*10-10 for the inhomogeneous approach. 

This case was also tested adding a 5% of random noise to the 

initial data (figure 14). 

 

 
Figure 14: First vertical derivative of the gravity field of a polygonal body 

source along the zero-level plane. Square, triangle and circle symbols indicate the 

horizontal positions of the β estimates shown in Figure 15 

 

 

As we expected, the presence of noise is not seriously 

affecting the estimates of beta (figure 14), because the upward 

continuation is acting like a low-pass filter, removing the 

effect of it, and even if the first one or two level of β are 

affected by this kind of noise, the estimates are almost the 

same as those presented in Figure 12. 

 

 
Figure 15: Estimated β values, using the scaling function method, along vertical 

profiles at the positions shown in Figure 14. 
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Figure 16.1: (a) N-S slice of the model using an inhomogeneous depth weighting 

function with β(x,y,z) and (b) using a homogeneous depth weighting function with  β 

= 3. 
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Figure 16.2: W-E slices of the model using (c) an inhomogeneous depth weighting 

function with β(x,y,z) and (d) homogeneous depth weighting function with  β = 3. 

 

The source-models obtained adding random noise to the 

original data (figure 16) are not so different from those in 

figure 13, and the main differences between the different 

approaches are still present. 

Again, the inhomogeneous approach recovers better both the 

true density value and the geometry of the body. 

Normalized RMSE are similar also in this case: 7.73*10-11 for 

the homogeneous approach and 5.02*10-11 for the inhomogeneous 

approach. 

 

 

6.2. Two buried bodies: a prismatic source and a 
source like a vertical intrusion 

 

 

The last synthetic 3D case that we discuss in this thesis is 

that of two sources: one prismatic body and the other one like 
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a vertical intrusion. This choice was made because, considering 

table 1, we expect different values of beta for the two sources. 

The two prismatic sources are located along x between 11-14 

km and 36-39 km, while along y between 24-26 km and along z 

between 4-6 km and 3-20 km depth. The magnetization is 1 A/m and 

inclination and declination of the main and induced fields are 

the same (Inc = 90°; Dec = 0°) for both sources. The 3D domain 

along x and y, goes from 1 to 50 km with 1 km step size and 

along z from 1 to 10 km. Figure 17 shown the observed field due 

to the two sources. 

 

 
Figure 17: Magnetic field due to a prismatic source and a source like a vertical 

intrusion along the zero-level plane. 
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Figure 18: Slices at several altitudes of the β(x,y,z) function estimated for the 

entire domain. 

In figure 18 we show the estimates of β at several altitudes. 

The β estimates in the area between the sources are not so 

strongly different. However, we have to consider that the 

intrusion-like source is finite in depth. Moreover, looking at 

figure 18 it is glaring that some information regarding the 

difference between the two sources is still present. 

Positivity constraints are used to reject negative values of 

magnetization for both approaches. 
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Figure 19: Slices of the model obtained by using a homogeneous depth weighting 

function with β = 3. 
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Figure 20: Slices of the model obtained by using an inhomogeneous depth weighting 

function (figure 18). 
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Figure 21: (a) Central section of the model using a homogeneous depth weighting 

function. (b) Central section of the model using an inhomogeneous depth weighting 

function. White boxes highlight the true source limits. 

 

Figures 19, 20 and 21 clearly show that the results obtained 

by using the inhomogeneous approach are once more significantly 

improved. Comparing the two sections in figure 21, it is easy 

to understand that the main advantage in using an inhomogeneous 

depth weighting function is to obtain more concentrated 

magnetization distributions with values poorly underestimated. 

Moreover, the inhomogeneous approach leads to a better 

definition of both sources’ shapes. The center of the prismatic 

source is very well recovered compared to the homogeneous 

approach, and the source like the vertical intrusion is more 

compact an elongated in depth, while in the other case it seems 

more like a thicker finite body. 

 

Considering the results obtained by 2D and 3D cases, we can 

confirm that the inhomogeneous approach could give better 

information about the distribution of the sources parameters in 

the inversion of potential fields. 

 

 

6.3. Real case: Vredefort impact site 
 

 

The Vredefort structure is located within the Witwatersrand 

basin, South Africa. Boon & Albritton (1937) were the first to 

suggest an impact origin. In the early 1960s, Dietz (1961) and 
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Hargraves (1961) cited the occurrence of shatter cones at 

Vredefort as evidence of an impact origin. After nearly a century 

of debate, the ca. 80-km wide Vredefort Dome is now widely 

accepted as the central uplift of a much larger impact structure 

(Gibson and Reimold, 2001). 

Kamo et al. (1996) dated the impact event at 2.023±0.004 Ga 

based on the estimated age of pseudotachylite in the core region. 

The original diameter of this impact structure was in excess 

of 250 km (Reimold and Gibson, 1996; Gibson and Reimold, 2000, 

2001) and the Vredefort crater is one of the largest and oldest 

impact structures on Earth. 

 

Reimold and Gibson (1996) reported a synthesis of the 

geologic knowledge about the Vredefort dome. Following these 

authors, the near circular Vredefort Dome, 70 km in diameter, 

located about 120 km to the southwest of Johannesburg, consists 

of Archaean granitoids in a 40-km-wide central core and of 

metasediments and metavolcanics in an outer collar belonging to 

the 2.9-2.72 Ga Witwatersrand, the ca. 2.7 Ga Ventersdorp, and 

2.5-2.25 Ga Transvaal Supergroups (Fig. 21). Locally, along the 

outer margin of the Witwatersrand Basin, felsic metasediments 

occur and mafic metavolcanics of the 3.074 Ga Dominion Group and 

3.1-2.8 Ga basement granitoids. The crystalline core of the dome 

consists of an outer annulus of heterogeneous amphibolite-facies 

migmatites of the Outer Granite Gneiss (OGG) around the central 

Inlandsee Leucogranofels (ILG). The southeastern part of the 

Vredefort Dome is covered by Karoo (250-180 Ma) sediments and 

dolerites (Reimold and Gibson, 1996). 

In 1990, McCarthy et al. mapped the presence of series of 

anticlines and synclines from the center to a radial distance 

of 150 km, arranged as concentric rings and clearly related to 

the formation of the Vredefort impact structure. 

Dikes of the so-called Vredefort granophyre occur both in the 

central core and distal collar areas. In the core area, the 

dikes are radial with respect to the structure and are up to 20 

m wide and 4–5 km long. In the collar, the dikes are concentric 

with respect to the structure and can be > 50 m wide and about 

10 km long (Grieve and Therriault, 2000). 

An integrated geophysical model of the Vredefort structure, 

based on refraction and reflection seismic, gravity, magnetic, 

and petrophysical data, was published by Henkel and Reimold 

(1996, 1998). This model demonstrated that the central uplift 

of this large impact structure, the Vredefort Dome, is deeply 

eroded, about 80 km wide, and still represents a structural 

uplift of about 12 km, at the present erosion level. This 

structural uplift is best illustrated by the rise of the lower 

parts of the upper crust (layers 3 and 4, Fig. 22). 

The total uplift may originally have amounted to as much as 

20 km (Henkel and Reimold, 1998). 
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Figure 22: (a) Geophysical model of the SSW–NNE section (see Figure 22b) through 

the Vredefort impact structure (from Henkel and Reimold, 1996, 1998). 

 

Hart et al. (1995) analyze the magnetic anomaly of the 

Vredefort area and claim that the data in the Vredefort basement 

are consistent with impact-related thermal remanent 

magnetization. 

The aeromagnetic data over the structure (Corner et al., 

1990) show strong, well-defined concentric patterns. In the 

outer rim, the pattern reflects the different sedimentary 

strata. About halfway between the outer collar structures and 

the central uplift there is a prominent negative magnetic 

anomaly that extends in a broad semi-circular belt; 2 to 4 km 

wide around most of the basement core. This anomaly is attributed 

to the contact of the ILG and OGG, the so-called Vredefort 

discontinuity (Hart et al., 1990). 

Beiki and Pedersen (2010) analyzed the Tzz component of the 

GGT data of the Vredefort dome area using an eigenvector analysis 

to estimate the depth and a dimensionality (I) parameter of the 

source. The dimensionality is a parameter that lies between zero 

and unity for any potential field (Beiki and Pedersen, 2010). 

If the causative body is strictly 2D, then I is equal to zero 

and approaches unity when the causative body is 3D-like. Using 

this method, the authors show that quasi 2D geologic bodies are 

dominant specially in the outer rim, with depth to sources 

between 1000-1500 m or more than 1500, but in the central part 

of the dome the dimensionality approaches unity and the depth 

exceeds 1500 m. (Fig. 23). 

Wilson et al., (2011) developed massively parallel software 

for inversion of gravity and gravity gradiometry data. They 

inverted simultaneously all components of GGT and used a very 

large number of cubic cells of just 25m side. These authors 

extended their model only to 2400 m depth and obtained results 

very similar to Beiki and Pedersen (2010). 
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Martinez and Li (2011) inverted the single component Tzz of 

the gravity gradient tensor (GGT) and performed a joint 

inversion of three components of the GGT tensor data: the two 

observed component (Tuv and Txy) and the calculated component 

Tzz. 

They showed that the joint inversion of these three components 

improves the model resolution, providing a more focused central 

high-density structure. Their model shows the presence of dense 

rocks corresponding the central uplift at a depth of about 6000 

m depth and also corresponding to the gravity highs in the outer 

collar at depths of about 2000 m.  

Ialongo (2014) inverted the single component Tzz of the gravity 

gradient tensor (GGT) with two different setups, estimating 

before the homogeneity degrees for the main core of the impact 

site and for the distal ring structure, respectively. Then two 

homogeneous inversions were made using in turn such estimated 

homogeneity degrees. 

His model shows the maximum depth for the distal ring structure, 

running an inversion with a depth weighting exponent of 1.4, 

around 10 km, while the maximum depth for the distal ring 

structure, running an inversion with a depth weighting exponent 

of 3, was around 16 km. 

 

 

 
Figure 23 Location and depth to the center of mass of gravity sources as estimated 

by Beiki and Pedersen (2010) 
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According to our method the first step is building the 

inhomogeneous depth weighting function. We decided to estimated 

n from the vertical gradient of the field (figure 24b) instead 

than from the gravity field (figure 24a), in order to reduce the 

regional field effect.  

 

The model volume reaches 20 km in depth, while along x and y 

its extension is respectively 41 by 63 km. 

 

 
Figure 24 (a) Gravity map and (b) Tzz component of the Vredefort impact site 

area. 

 

Estimates of β presents instabilities that are treated like 

the synthetic cases discussed before, considering a reasonable 

range between 0 and 3.1. These instabilities are probably due 

to the presence of several sources that, at higher altitudes, 

are interfering generating numerical singularities and on being 

some anomalies of the analyzed map truncated laterally. 

However, looking at figure 25, we can see that at low and 

middle altitudes the β linked to the distal ring structure is 

lower than 2, while the values related to the core is higher, 

so confirming the results obtained by Ialongo (2014). At higher 

altitudes, the trend of β is however smoother. This difference 

is probably due to lack of resolution at higher altitudes, 

because the low frequency effects are the dominant contributes. 
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Figure 25: Slices of the β(x,y,z) function estimated for the entire domain at 1, 

5, 10, 15 and 20 km. 

 

However, the trend at low and middle altitudes of the 

estimated β related to the main structures is fitting the 

expectations because the results relate to two main structures, 

which are geometrically different: the core is like a spheroid 

body (β ≈ 3) and the distal rings are like horizontal pipes or 

dykes (1 < β < 2). 
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Figure 16: Density-model obtained by using a homogeneous depth weighting function 

(β = 3). 
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Figure 27: Density-model obtained by using an inhomogeneous depth weighting 

function (figure 25) 
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With a homogeneous depth weighting function (figure 26) we 

recover a smooth solution and both the main sources, the main 

core and the rings of the impact, are still visible at the bottom 

of the model (20 km). This is not in agreement with the result 

by Henkel and Reimold (1996, 1998), which, based on gravity and 

magnetic inversion supported by seismic data, proposed a model 

where the bottom of the rings is around 10 km and the density 

contrast effect due to the core structure loses its 

effectiveness around 15 km. 

Instead, using an inhomogeneous depth weighting function 

(figure 27) we can retrieve information regarding the position 

at depth of both core and distal ring structures that better 

fits the above model. In fact, the bottom of the distal ring 

structure, that should be around 10 km according to Henkel and 

Reimold (1996, 1998), is recovered very well using an 

inhomogeneous depth weighting function, while in the homogeneous 

case we saw that the interpreted structure was still visible at 

large depths.  

In addition, also the core structure is shallower compared 

to the homogeneous approach and seems more reliable if we compare 

it with the model of Henkel and Reimold (1996, 1998). 

Note that the NRMSE are pretty similar in both cases (that 

are 1.6*10-3 for the homogeneous case and 1.9*10-3 for the 

inhomogeneous case). 

 

If we compare our results with those obtained by Ialongo 

(2013) we note that the position at depth of both core and distal 

ring structures are in agreement. But we must note that this the 

main structures have different structural indexes N (as we said 

before,3 for the core and between 1 and 2 for the distal rings), 

so it is not possible to have good estimations of both sources 

running a single inversion with a constant depth weighting 

exponent only. For this reason, Ialongo (2013) ran two separated 

inversion with two estimated N, to joint interpret the solutions 

for each source.  

Instead, the inhomogeneous approach presented in this paper 

leads naturally us to a better solution because it takes into 

account during the same inversion process of the inhomogeneous 

nature of the structural index within the entire domain. 

 

 

6.4. Real case: Mt. Vulture (Southern Italy) 
 

 

The magnetic field of the volcanic district of Mt. Vulture 

(Southern Italy) is mainly characterized by two dipolar 

anomalies, one of shorter wavelength, possibly related to the 

edifice Mt. Vulture, and the other of greater extent, which 

should originate by a deeper source distribution.  The field was 
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already analyzed by Cella and Fedi (2012) using first a 

homogeneous approach, with β = 3. But the resulting model was 

not able to account for the two sources and resulted in a non-

realistic and too deep source model, concentrating, by the way, 

the magnetization not on the volcanic edifice but at a greater 

depth. Then they improved the quality of the solution by using 

β = 0.25 for the shallowest source and β = 2 for the deepest 

one. In practice, their final source-model was estimated by 

analyzing two filtered maps, using a method based on the discrete 

wavelet transform to separate the field in two main components 

at respectively a small-scale and a large-scale. So, the depth 

weighting exponent was not varying in the whole volume but 

assumed constant specific values in two different regions of the 

source volume. 

It is clear that the interpretation of the data in this area 

is an intriguing task, because the shallowest source (the high 

amplitude anomaly about 140 nT, in correspondence of the Mt. 

Vulture volcano), and the deepest source anomaly are strongly 

overlapping one each other (Figure 28b). 

The aeromagnetic dataset sized 74 km by 74 km (Figure 28b), 

with a step size along both the horizontal directions of 2 km 

and an acquisition elevation of 2.5 km a.s.l. Inclination and 

declination of both inducing field and total magnetization were 

estimated by Cella and Fedi (2012) as equal respectively to 57° 

and 15°. 

The model volume dimensions are 76 km by 76 km by 30 km, with 

a step size of 1 km along x and y directions and 1 km along z 

direction. 

As we did before, we performed two inversions, using a 

homogeneous depth weighting function with β = 3 and then using 

an inhomogeneous depth weighting with β values estimated from 

the field. 
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Figure 28: (a) Aeromagnetic map of the Mt. Vulture area. A white box outlines the 

analyzed area, whose data are shown also in (b). (c) Slices of β at 1, 8, 15, 22 and 

30 km height, estimated using the scaling function method. 

 

We show in Figure 30c the estimated β at several altitudes 

from 1 km to 30 km. We used downward continuation to level the 

dataset at the maximum high of the topography (around 1400 

a.s.l.) and then upward continued it from that level to form the 

system (45).  

Positivity constraints are used to reject negative values of 

magnetization for both approaches. 
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Figure 29.1: Model obtained (a and b) by using a homogeneous depth weighting 

function with β = 3, and (c and d) by using an inhomogeneous depth weighting function, 

with β(x,y,z) as shown in Figure 28c. The slices are referred to the black dashed 

lines in Figure 28b 
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 Figure 29.2: Model obtained (a and b) by using a homogeneous depth weighting 

function with β = 3, and (c and d) by using an inhomogeneous depth weighting function, 

with β(x,y,z) as shown in Figure 28c. The slices are referred to the black dashed 

lines in Figure 28b 

 

Figure 29 shows the source model obtained by using the two 

different approaches; the vertical slice corresponds to the 

black dashed line in Figure 28b. 

The results of both models are in good agreement with those 

obtained by Cella and Fedi (2012). The main difference is that 

we did not apply any filter to the original data to obtain 

estimates of β of the two main sources, as they did. 

Moreover, it is glaring that using an inhomogeneous depth 

weighting it is possible to collect more solid information about 

the distribution in the subsurface of the magnetization (or 
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density in the gravity case). In fact, looking at the vertical 

section in figure 29.2 the two sources are described very well 

and they are both collocated at reasonable depths, as it results 

surely for the shallow source which now realistically 

characterizes the Mt. Vulture volcano. On the contrary, using a 

constant value of 3 for the depth weighting exponent (figure 

29.1), we are not obtaining a very good information about the 

deepest source and the shallower source is surely too deep, 

being the mt. Vulture an outcropping volcanic structure. 

 

We can conclude that this new approach brings two main 

advantages on inversion of potential fields: 

1) there is no need to filter the dataset in order to 

separate different wavelength component and analyse those 

separately, instead it is possible to retrieve information about 

the different sources directly at the same time by performing 

only one inhomogeneous depth weighted inversion; 

2) sources with different geometry, that should have 

different structural indices, are treated at the same time 

without the need of performing separated inversion processes 

with different constant depth weighting exponent. 
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7. Conclusions 

 

 

We developed two different inversion methods of potential 

fields, based on a multiscale approach, that is they involve the 

inversion of data at different scales or altitudes. This is a 

not common approach in inversion of potential fields, but we 

proof that the insight of multiscale fields could help to 

retrieve better information about the distribution of physical 

properties in the subsurface.   

 

We have described a 1D method for inverting potential field 

data, which has several aspects of interest. One relevant 

feature is that it is, to my knowledge, the only one allowing 

1D inversion of potential fields.  

At the moment the method will produce an approximate 

characterization of the underground source distribution, which 

should be better interpreted with more refined 2D/3D algorithms.   

However, our examples show the usefulness of producing this kind 

of source distribution model. The main difficulty is to have a 

good estimate of the horizontal dimensions of the source, 

necessary for building a reasonable model volume and we tried 

to outline a valid strategy for its estimation based on two 

steps: 

1) boundary analysis, to have our first estimate of the 

source extent; 

2) a Markov chain approach, to search for the optimal 

value of the horizontal extent along the strike-length 

direction, which yields the best data misfit for each sounding. 

Once both conditions are relatively well satisfied for the 

whole depth extent of the source, bounds for the density 

constraints are not critical and wide bounds may be safely 

adopted.  

Considering that these soundings are built through upward-

continued data, the second problem is due to continuation 

errors, which increase versus the altitude. A rather good 

strategy to alleviate this error is subtracting to each sounding 

a third-order polynomial function of the altitude. Synthetic 

cases of a single buried body provided good results for either 

the geometry and the density contrast of the source, even if we 

use upward-continued data and relatively wide bounds for the 

density. 

We tested this new method on synthetic case of a single buried 

body and a real case of a sedimentary basin in the USA (Frenchman 

Flat basin, Nevada), obtaining good results, also having used 

wide bounds for the density contrast. 

 

The same 1D method was tested on two magnetic real cases for 

a joint interpretation. The integrated study of the results 

obtained by inverting the TDEM and the magnetic data separately 
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showed that not always the two methods have the same sensitivity 

with respect to the geological structures. In the case of the 

Broken Evil prospect (Ontario) the 1D inversion method solution 

fits the results conducted by another method with other dataset. 

The inversion model is also in agreement with the information 

derived from a drill hole which confirms that the magnetic 

anomaly is due by graphitic sediments with seams and heavy 

disseminations of pyrrhotite. So, in this case, the use of the 

1D method helps in increasing the confidence in the geophysical 

models. 

About the Drybones kimberlite case (Northwest Territories), 

the 1D method revealed a different sensitivity to the geological 

structures. In this case the integration of the inverse models 

improved the interpretation of the area. All the geological 

structures at Drybones bay are well retrieved by the inversion 

processes and are in good agreement with the drill hole 

information available for this area. 

 

About the 2D/3D inversion method developed in the second part 

of my PhD, it can certainly be said that the inhomogeneous 

approach improves the modelling of potential fields, adding a 

constraint that is entirely deducible from the data and not from 

a priori information. 

This is a significant step forward, especially in the 

analysis of areas where there is no other information. It is a 

method that could be even more improved in the future, especially 

to adopt even more efficient mathematical/numerical tools for 

reducing the various instabilities during the estimation of the 

β. 

The main difference compared to standard and standard 

(homogeneous) method resides in using a depth weighting function 

variable in its exponent, while in the homogeneous case it 

assumes a single constant value for the exponent in the whole 

subsurface volume. Our approach reflects the inhomogeneous 

nature of the homogeneity degree, for source distributions of 

potential fields, which cannot be characterized by a single 

value. Also, either integer or fractional values of the 

homogeneity degree are accepted, according to recent research 

(Fedi et al., 2015). 

The approach was tested on 2D and 3D sinthetic data, for 

perfect or noisy data, showing a better respose compared to 

standard methods that are using a homogeneous approach:  

density/magnetization estimates and the depth resolution are 

more consistent compared to the standard approach.  

Then two 3D real cases were studied, shown the advantage of 

using an inhomogeneous approach to recover a realistic  

information of the subsurface density and magnetization 

distributions. 

For the gravity case of an impact site (Vredefort), the 

inhomogeneous depth weighting function helps us to recover a 

better estimates of the bottom for both the sources, the inner 
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core of the stucture and the distal rings, that are consistent 

with the available geological and other geophysics information 

of the area.  

Also for the Mt. Vulture magnetic anomaly, this new approach 

allows us obtaining a valid and realistic information on the 

source distribution, starting directly from the original data, 

that is without needing any kind of filtering to separate the  

components. This is clearly shown comparing our result with 

those of the standard inversion, which, for example, lead to the 

absurd result of a non-magnetized volcanic edifice. The 

distribution at large depth confirms the one obtaine by previous 

research, but in that case it was necessary to perform the 

inversion on low-pass filtered data.  

 

Regards the computational time involved with this method, we 

did not find any sensitive difference between the two 

approaches, but it should be taken into account that in addiction 

to the inversion algorithm time, the estimation time of β should 

be added. However, the β estimation is not time consuming, if 

compared to that due to the inverison algorithm, especially when  

big dataset are involved. 

 

Future prospectives for both methods could be: 

 

1) optimization of the 1D method, using different solvers for 
the inversion process, with a possible deep learning 

adaptation. 

 

2) optimization of the estimates of β  by finding tools 

allowing even more stable results.  

 

3) Probably, the most important feature of the method is that 
the constraints used to perform an inhomogeneous depth 

weighted inversion, i.e. the homogeneity degree n and the 

consequent inhomogeneous depth-weighting function, are 

estimated directly from the dataset and not obtained from 

other sources. This feature could be used to improve also 

algorithms of joint inversion of different geophysical 

quantities 
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APPENDIX A 

 

 

We ran a sensitivity test on the 3D synthetic model described 

in paragraph 6.1. 

Since the analytical expression of sensitivity is hard to be 

obtained, we turned to a numerical approach. So, we decided to 

study the model perturbations caused by applying a random 

perturbation to the estimates of β. We used the case of a 

polyhedron previously illustrated in Figure 13. So, we compared 

it against the model obtained by using a depth weighting function 

built with the perturbed values of β. 

 

 

Figure A.1: (a) W-E slice and (b) N-S slice of the model using an inhomogeneous depth 

weighting function with β(x,y,z) perturbed by a random Gaussian noise with  = 0.2 

and  = 1. 
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The perturbation was performed by adding to every estimate a 

Gaussian random noise with  = 0.2 and  = 1; then the obtained 

values of β were adjusted according to fit the allowed range of 

0 - 3. So, β lower then 0 were assigned to 0 and β higher then 

3 were assigned to 3. 

The new model obtained by the inversion process using the 

perturbed depth weighting exponent is giving the same 

information about the source, even if the solution seems to be 

a little bit noisy, compared to that described in paragraph 6.1. 

Considering that the perturbation applied is pretty high, we 

can conclude that our approach is quite robust. 
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