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Abstract 

Mimicry is based on the interaction between a mimic, a model and a receiver. While 

there is increasing recognition of Batesian floral mimicry in plants, there are few 

confirmed cases where mimicry involves more than one model species.  

The Australian orchid genus Diuris has been long hypothesised to engage in guild 

mimicry of a range of co-occurring pea plants (Faboideae). Some clades of Diuris are 

superficially similar in both colour and shape to those of a guild of yellow and brown 

pea plants (Faboideae). Here, we test for pollination via mimicry of pea plants in Diuris 

(Orchidaceae). Additionally, we test for further ecological interactions (non-model 

plants, pollination limitation, habitat size and plant frequency) in order to assess the 

reproductive success of the orchids. For addressing these hypothesis we select two 

study species, occurring in different habitat: Diuris brumalis (Jarrah forest) and Diuris 

magnifica (Banksia woodland), the latter occurring in fragmented habitat. We test for 

floral mimicry criteria in both of the species. In order to frame the pollination ecology 

of the putative model plants, we verify the type of pollinator interactions (generalised 

vs specialized) occurring in four communities of pea plants in the southwestern 

Australian Floristic Region (SWAFR).  

D. brumalis, D. magnifica and the pea plants showed strong flower similarity and were 

likely to be perceived as the same by pollinators, native bees (Trichocolletes; 

Colletidae). However, in D. brumalis the orchid reproductive success increased with 

the local abundance of the model species (Daviesia spp.), while in D. magnifica the 

reproductive success wasn’t in relation to the putative models. Alternatively, D. 

magnifica reproductive success was influenced by a non-model pea plant 

(Hardenbergia) which is locally abundant and widespread in all the study sites. 

Additionally, habitat size and orchid plant frequency influenced the orchid 

reproductive success. 

Pea plant species were visited by between one and four genera of native bees, 

indicating variation in levels of specialisation of the pollination systems of Faboideae. 

Several pea plant species showed specialised interactions with bee genera attracted. 

Unexpectedly, some pea plant species frequently attracted beetles that may play an 

important role in pollination.  

Evidence for mimicry of multiple models suggests that D. brumalis and D. magnifica 

may be engaged in guild mimicry system. Interestingly, D. brumalis and D. magnifica 
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belongs to a complex of species with similar floral traits, suggesting that this represents 

a useful system for investigating speciation in lineages that employ mimicry of food 

plants. Furthermore, the study on pollination of Faboideae species of SWAFR, offers 

a pivotal research for next investigations on pollinator webs and syndromes of 

Australian pea plants scarcely documented until now. 
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General introduction 

 

The present work aims to investigate a case of floral mimicry in South Western 

Australia where multiple ecological plant-pollinator interactions occur, including 

between co-occurring flowering plants. An understanding of floral mimicry, focused 

on orchids and legumes, is vital for unravelling pollination processes relevant to 

restoration ecology. 

A restored ecosystem must be supported by a solid network of pollinators in order to 

ensure plant reproductive continuity (Memmot et al., 2007; Klein et al., 2007). 

However, re-activation of pollination network within a restored ecosystem is a 

complex dynamic that needs to be framed by previous pollination studies (Furup et al., 

2008). 

For example, in Australia the urban restoration programmes have neglected the 

inclusion of pollinator network due to the lack of knowledge of local pollination 

interactions (Dixon, 2009). 

 

To put this study of mimicry in Australian orchids of the genus Diuris (Orchidaceae) 

and co-occurring legumes in context, a general introduction to floral mimicry, 

pollination and diversity of the Australian pea plants is provided below. The study 

species / aims are presented, followed by the thesis outline. 

 

1. Floral mimicry  

Mimicry was first recognised in animals by Henry Walter Bates in 1862, who 

discovered that palatable butterflies were imitating the wing pattern of unpalatable 

butterflies in order to avoid predation. However, the discovery of floral mimicry 

predated Bate’s work on butterfly mimicry. Sprengel in 1793, interpreted the 

carrion odour emanated by the succulent South African plant Stapelia hirsuta, as 

a deceit pollination system to attract flies. 

 

Vane-Wright (1980) defined mimicry as a phenomenon in which the mimic, the 

model and the operator interact with each other, causing a cognitive 

misclassification and behavioural response by the operator that leads to a fitness 

benefit for the mimic. The mimicry can be achieved through various signals, 
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including visual, acoustic, chemical, tactile and possibly electrical (Norman et al., 

2001; de Jager and Peakall, 2016; Barbero et al., 2009; Schiestl and Johnson, 2013; 

Gaskett, 2011; Stoddard, 1999). Adaptive resemblance is a basal criterion 

occurring in all cases of mimicry (Johnson and Schiestl, 2016). 

 

While mimicry in animals has been well studied, in plants the phenomenon has 

rarely been reported and was largely controversial (Ruxton et al., 2004) for about 

200 years. During the last three decades, there has been an increase in floral 

mimicry studies, suggesting that the phenomena may be widespread in some plant 

families (Johnson and Schiestl, 2016). 

 

The general criteria for floral mimicry (Roy and Widmer, 1999; Johnson and 

Schiestl, 2016) are: I) mimic and models are sympatric, have overlapping 

phenologies and interact with the same operators; II) the mimic resembles the 

model, making difficult for the operator to distinguish between them; III) 

behaviour of the operator on the mimic depends on the experience with the model; 

IV) the fitness of the mimic is higher when the model occurs than it is absent; V) 

individuals where the resemblance with the model is more pronounced benefit in 

terms of fitness, than individuals less similar to their model; VI) mimic fitness is 

higher with model abundance. 

 

The target of mimicry in plants is to attract insects, rather than repel predators, as 

happens in animals (Little, 1983). It varies along a gradient from generalised 

deception to a specific resemblance towards a definite phenotype with specific 

floral traits (Batesian mimicry; Johnson and Schiestl, 2016). 

In food deception, which is the most common form of deception in non-rewarding 

plants, the receiver is attracted by a ‘general search imagine’ of surrounding 

rewarding plants, rather than by a given model with specific floral traits (Van der 

Cingel, 2001; Johnson and Schiestl, 2016).  

In Batesian food-source the mimic resembles a defined model phenotype (Peter 

and Johnson, 2008; Jersáková et al., 2012). There are only a few examples of 

Batesian food-source mimicry in plants that have fully tested the predictions above 

(Johnson and Schiestl, 2016). 
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Instead, ‘Guild mimicry’ consists of a mimic sharing pollinators with multiple 

model species (Brown and Brown, 1979; Dafni and Bernhardt, 1990). 

Generalised food deceptive systems (GFD) are distinguishable by specific food 

mimicry systems. Generalised food deceptive plants usually lack in floral traits 

that confer a similarity to a specific model plant (Dafni, 1984; Nilsson, 1992), and 

as a consequence of the general nature of signals they tend to have a wide group 

of pollinators (Nilsson, 1993, Cozzolino et al., 2005). Furthermore, general food 

deceptive orchids, such as the European orchid genera Dactylorhyza (Nilsson, 

1980; Lammi and Kuitunen, 1995) and Anacamptis (Nilsson, 1984; Johnson et al., 

2003; Johnson et al., 2004), are based on an innate pollinator behaviour rather than 

being conditioned by the mimic-model similarity. In fact, in GDF the innate 

preference of pollinators towards a 'general flower image', may independently 

occur by the conditioned effect of signals by the model (Schaefer and Ruxton, 

2009). 

 

2. Pollination and diversity of Australian pea plants 

The Leguminosae are the third largest Angiosperm family (Mabberley, 1997; 

Christenhusz et al., 2017), consisting of three subfamilies (Faboideae, 

Caesalpinioideae and Mimosoideae) with 730 genera and over 19 400 species 

(Lewis et al., 2005). Among the three subfamilies, the Faboideae (hereafter 

referred to as pea plants), exhibit a typical keel-flower floral form (Westerkamp, 

1997). With the exception of some members of the tribe Amorpheae, the flowers 

of the pea plants are characterised by zygomorphic symmetry, and a 

papilionaceous corolla formed by a standard petal (vexillum), two wing petals 

(alae) and two keel petals (carina).  

 

In the pea plants, pollinator pressure causes “tripping” (Arroyo, 1981; Galloni et 

al., 2006; Aronne et al., 2012) consisting with the stamens emerging from the keel 

and coming in contact with the pollinator abdomen. As this mechanism 

necessitates an appropriate pollinator size, and in some cases strength of the 

pollinator to pull down the petal wings and contact the stamens, some pea plants 

species may be specialised on particular pollinator types (Córdoba and Cocucci, 

2011).  

http://www.ildis.org/Leguminosae/#caesalpinioideae
http://www.ildis.org/Leguminosae/#mimosoideae
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The pea plants in Australia (approximately 1500 species and 136 genera; Crisp, 

2009) often are a dominant element of the understorey in many plant communities. 

Based on incidental records, often relating to specimens cited in bee taxonomic 

papers, the majority of Australian pea plants are likely to be pollinated primarily 

by bees (e.g. Rayment, 1936; Houston, 2000; Batley and Houston, 2012; Popic et 

al., 2013). Detailed studies of pollination of Australian pea plants are few but 

support these observations (Gross, 1992; 2001; Ogilvie et al., 2009).  

 

Over 540 species of pea plants occur in the southwestern Australian Floristic 

Region (SWAFR sensu Hopper and Gioia, 2004) but there have been no 

comprehensive pollination studies in this area (Phillips et al., 2010). However, 

observational studies (e.g. Hopper, 1981; Houston, 2000) suggest that bees are 

likely to play an important role in the pollination of many species of pea plants that 

display a wide range of floral colours (Barrett and Pin Tay, 2005). 

 

3. Evidence of likely mimicry in Diuris  

Predominantly consisting of mimetic species (Van der Pijl and Dodson 1966; 

Ackerman, 1986), orchids are an iconic and unusually deceptive group among 

flowering plants. Nearly one third of orchid species, between 6500 and 9000 

species, do not offer a reward and are believed to deceive their pollinators (Dafni 

1984, Ackerman, 1986). To attract pollinators, non-rewarding orchids utilise a 

diversity of mechanisms including food and sexual deception (Coleman, 1928; 

Schiestl et al., 1999; Schiestl et. Al., 2003), brood site mimicry (Van der Niet et 

al., 2011; Martos et al., 2015) and shelter site imitation (Dafni and Iveri, 1980). 

The predominance of deceptive orchids lure their operator by imitating floral 

rewards (Ackerman, 1996).  

After the pollination has being firstly documented by Rayment (1936), the 

Australian genus Diuris has long been hypothesised to engage in guild mimicry 

(Dafni and Bernhardt, 1990) and tends to be specialised in faboideae legumes 

(Edens-Meier and Bernhardt, 2014). While Diuris shows considerable 

interspecific variation in colour, including species that are predominantly yellow, 

white or pink (Jones, 2006; Hoffmann and Brown, 2011), some species groups 

exhibit a superficially similar colour and shape to those of a guild of yellow and 

brown ‘pea plants’ (Faboideae). The first study of floral mimicry by Diuris was on 
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the eastern Australian species Diuris maculata (Beardsell et al., 1986) where bees 

in the genera Leioproctus and Trichocolletes pollinated both the Diuris and pea 

plants in the genera Daviesia and Pultenaea scabra.  

Diuris alba represents a further pollination study within this genus in which 

generalist Exoneura bees, but also the wasps Eurys pulcher and a Paralastor 

species are involved (Indsto et al., 2007).  

Indsto et al. (2006) showed that not only do pea plants and D. maculata share 

pollinator species, but that both plants share similar floral colouration when it is 

quantified using reflectance spectrophotometry and analysed according to a bee 

visual model (Houston, 2000).  Whereas some records in Diuris show pollination 

evidence of genera like Leioproctus and Exoneura, they are polylectic bees 

foraging on a range flowers (Houston, 2000). Alternatively, Trichocolletes bees 

are observed to primarily forage on Faboideae flowers (Rayment, 1929, 1936; 

Houston, 2000). Currently, 25 species of Trichocolletes are known from south-

western Australia (Batley and Houston, 2012). Nectar production in Diuris has 

been firstly documented by Rayment (1936) and subsequentely disproved by 

Beardsell et al. (1986). Additional investigations on Diuris of eastern Australia 

spotted the presence of nectar in the studied species (Indsto et al., 2006; 2007). 

 

4. The study  

The main aim of the project is to resolve the mimicry system in the orchid species 

Diuris brumalis and D. magnifica that co-occur with pea plants, reputed putative 

models for the orchids. 

 

Diuris is an Australian genus comprising about 100 species, primarily widespread 

in South Australia, with 22 species occurring in outhern Western Australia. It 

includes species with different floral colors – (predominantly yellow with brown 

and purple notes, but also white and pink), distinguished by analogous floral 

morphology (Jones, 2006; Hoffmann and Brown, 2011). Diuris brumalis is a 

yellow-brown flowering orchid, flowering between July and August in South 

Western Australia (Brown et al., 2013), occurring with a range of Faboideae 

species with similar colour patterns. Diuris magnifica exhibits yellow, orange and 

purple flowers and flowers from August to September (Brown et al., 2013). It is 

distributed along the southern Western Australian coast and grows in Banksia and 
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Sheoak woodland (Brown et al., 2013) which are characterised by an abundance 

of co-flowering Faboideae species. 

 

Specific hypotheses for the two orchid study species match the criteria for floral 

mimicry (see Roy and Widmer, 1999; Johnson and Schiestl, 2016). We tested the 

following predictions: 

(1) that the colour and morphology overlap between models and mimic, but not 

with the remainder of the floral community;  

(2) that the flowering phenology of the proposed mimic overlaps with the models; 

(3) that the pollinator exhibits with the mimic a deceived behaviour normally only 

associated with the model;  

(4) that the fitness of the mimic is greater in the presence of the models; and 

(5) that the fitness of the mimic increases with the number of flowers of the 

model species. 

Additionally, for D. magnifica we tested if: 

(6) the reproductive success of D. magnifica increases with more non-model food 

plants;  

(7) the orchid’s reproductive success decreases with more orchid frequency; and 

(8) the orchid’s reproductive success is lower in small habitat remnants. 

 

Secondly, for 15 pea plants in the SWAFR the study tests if co-occurring pea plants 

in four regions (Perth hills, Perth costal plans, Margaret River-Augusta, Waroona) 

share pollinator species. The study species, flowering throughout July and 

December, were Bossiaea aquifolium, B. disticha, B. eriocarpa, B. linophylla, 

Daviesia decurrens, D. divaricata, D. horrida, D. rhombifolia, Hardenbergia 

comptoniana, Hovea chorizemifolia, H. pungens, Isotropis cuneifolia, Jacksonia 

sternbergiana, Mirbelia dilatata, Viminaria juncea. 

Specifically, we addressed the following questions: 

(1) do different species of pea plant have different species of potential pollinators?; 

(2) how do different visitors behave when foraging?;  

(3) is the length of the stamens related to the size of visiting bees?; and 

(4) does the nectar vary in sugar composition and volume between pea plants with 

different groups of potential pollinators? 
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Lastly, the work validated an effective methodology for enhancing the attraction 

of insects in deceptive orchids, testing if more insects were attracted by using 

arrays of orchid flowers, than by carrying out observations on orchid in their 

natural habitat. 

 

5. Thesis outline 

Chapter 1: ‘Masquerading as pea plants: behavioural and morphological 

evidence for mimicry of multiple models in an Australian orchid’ 

 

In this chapter, we tested for pollination via mimicry in Diuris brumalis 

(Orchidaceae),. Diuris is an australian genus hypothesised to attract pollinators via 

imitation of a range of co-occurring pea plants (Faboideae). We addressed the 

fundamental criteria for floral mimicry between the mimic orchid and the putative 

models (pea plants): sharing of pollinators, similarity of floral traits and colour 

reflectance, flowering period overlap and relation between the orchid reproductive 

success and the presence of co-occurring pea plants. We found that Diuris brumalis 

is pollinated via mimicry of co-occurring congeneric Faboideae species (Daviesia 

spp.), suggesting that this may represent a guild mimicry system. As D. brumalis 

belongs to a complex of species with similar floral traits, this case is an ideal 

system for investigating speciation in lineages that employ food-source mimicry. 

 

Chapter 2: ‘Pea plants in the southwestern Australia biodiversity hotspot: 

pronounced differences in potential pollinators between co-occurring species’ 

 

We selected 15 species of pea plants (Faboideae) from four communities in the 

SWAFR for investigating the pollination biology and a preliminary evidence of 

ecological specialisation between pea plants and their pollinators. In particular, we 

tested if co-occurring pea plants showed differences in pollinator species, in 

behaviour on the flower, and whether floral traits as stamen length or nectar 

composition indicated a sort of specialisation level with some genera of pollinators. 

Overall, pea plant species showed a variation in levels of specialisation of the 

pollination systems. In pea plant species with more specialised interactions, co-
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occurring pea plants showed pronounced differences in the bee genera attracted. 

Some pea plant species frequently attracted beetles, suggesting their involvement 

in the pollination of pea plants. The examined floral traits did not reveal any 

evidence of specialisation with pollinator type. We found that the introduced 

honeybee Apis mellifera visited all pea species studied, suggesting that honey bees 

may be both a pollinator and potential competitor for resources with native 

pollinators.  

 

Chapter 3: ‘A general pea flower image? Ecological factors affecting 

reproductive success in an orchid that exhibits imperfect floral mimicry 

 

In the course of this chapter, we tested the floral mimicry of Diuris magnifica 

(Orchidaceae) towards co-occurring pea plants. Additionally, we tested if the 

orchid success depended on other ecological interactions decoupled from the 

evolution of mimicry: surrounding food plants, pollinator occurrence, and habitat 

size. 

We found evidence of floral mimicry between D. magnifica and yellow-red co-

occurring pea plants, based on pollinator and behavioural observations, spectral 

reflectance, and superficial overlap of floral traits. 

However, we did not found any evidence that the orchid reproductive success was 

facilitated by the presence of putative model pea plants. Alternatively, the orchid 

reproductive success was enhanced by a food non-model pea plant and by bushland 

remnant size. Unexpectedly, D. magnifica reproductive success was independent 

by the primary pollinator occurrence, due to the likely contribution of sub-optimal 

pollinators (Apis and beetles). Concluding, the attention on the bushland remnant 

size, the presence of model and non-model pea plants may be essential for 

supporting the reproductive success in D. magnifica, offering new scenarios within 

conservation of orchid species in urban context. 

 

Chapter 4: Rotating arrays of orchid flowers: a simple and effective 

methodology for studying pollination in deceptive plants 

 

In this methodology chapter, we validated a novel methodology to assess pollination 

effectiveness in food deceptive orchids. We tested the methodology on the mimic 
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orchid, Diuris brumalis (Orchidaceae) and putative model plants belonging to the genus 

Daviesia (Faboideae), rotating arrays of orchid flowers in proximity to model plants. 

This simple method resulted in effective attraction of pollinators. The methodology has 

universal application to other food deceptive pollination syndromes in plants with 

relevance to developing more effective conservation assessments regarding 

pollinator capability.  

 

The thesis provides ecological insights into the floral food mimicry within two 

specialised orchid pollination systems. This work is also relevant for understanding 

pollinator-driven speciation in other similar deceptive systems. Furthermore, the study 

on pollination of Faboideae species of S-W Australia, offers a pivotal research for 

potential investigations on pollinator webs and on syndromes of Australian pea plants 

until now poorly explored. 
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Chapter 1 

Masquerading as pea plants: behavioural and morphological evidence for 

mimicry of multiple models in an Australian orchid 

 

ABSTRACT  

Background and Aims: While there is increasing recognition of Batesian floral 

mimicry in plants, there are few confirmed cases where mimicry involves more than 

one model species. Here, we test for pollination by mimicry in Diuris (Orchidaceae), 

a genus hypothesized to attract pollinators via mimicry of a range of co-occurring pea 

plants (Faboideae). 

Methods: Observations of pollinator behaviour were made for Diuris brumalis using 

arrays of orchid flowers. An analysis of floral traits in the co-flowering community 

and spectral reflectance measurements were undertaken to test if D. brumalis and the 

pea plants showed strong similarity and were likely to be perceived as the same by 

bees. Pollen removal and fruit set was recorded at 18 sites over two years to test if 

fitness of D. brumalis increased with the abundance of the model species. 

Key Results: Diuris brumalis shares the pollinator species Trichococolletes capillosus 

and T. leucogenys (Hymenoptera: Colletidae) with co-flowering Faboideae from the 

genus Daviesia. On D. brumalis, Trichocolletes exhibited the same stereotyped food-

foraging and mate-patrolling behaviour that they exhibit with Daviesia. Diuris and pea 

plants showed strong morphological similarity compared to the co-flowering plant 

community, while the spectral reflectance of Diuris was similar to Daviesia spp. Fruit 

set and pollen removal of D. brumalis was highest at sites with a greater number of 

Daviesia flowers. 

Conclusions: Diuris brumalis is pollinated by mimicry of co-occurring congeneric 

Faboideae species. Evidence for mimicry of multiple models, all of which share 

pollinator species, suggests that this may represent a guild mimicry system. 

Interestingly, D. brumalis belongs to a complex of species with similar floral traits, 

suggesting that this represents a useful system for investigating speciation in lineages 

that employ mimicry of food plants. 

 

Key words: Diuris brumalis, Daviesia, Faboideae, Colletidae, mimicry, food 

deception specialization, pollination, pollinator behaviour, plant fitness  
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INTRODUCTION  

Batesian mimicry represents an interaction between model, mimic and operator (the 

signal receiver), in which the operator mistakes the mimic for the model leading to a 

fitness benefit for the mimic (Vane-Wright, 1980). Mimicry can be achieved through 

a diversity of cues, including visual, acoustic, chemical, tactile and possibly electrical 

(Stoddard, 1999; Norman et al., 2001; Barbero et al., 2009; Schiestl and Johnson, 

2013; Bohman et al., 2018). Despite mimicry in animals being well supported in 

multiple systems, the phenomenon remained rarely confirmed and largely 

controversial in plants (Ruxton et al., 2004). Only in the last three decades has 

evidence been presented suggesting that floral mimicry may be widespread in some 

plant families (Johnson and Schiestl, 2016). 

 

Orchids (Orchidaceae) are an unusual group among flowering plants in that 

approximately one-third of known species (6500–9000 species) are believed to attract 

their pollinators via deception (Dafni 1984; Ackerman 1986). Non-rewarding orchids 

exhibit a range of mechanisms to attract pollinators, including sexual deception 

(Coleman, 1928; Schiestl et al., 1999; Schiestl et. al., 2003), brood site mimicry (Van 

der Niet et al., 2011; Martos et al., 2015) and alarm pheromone imitation (Brodmann 

et.al., 2009). However, the majority of deceptive orchids attract pollinators by falsely 

advertising floral rewards to pollinators (Ackerman, 1986), using traits such as 

inflorescence shape and architecture, flower color and brightness, scent, nectar guides 

and pollen marks (Kunze and Gumbert, 2001; Galizia et al., 2005; Jersáková et al., 

2012). The most common form of food-deception is generalised food deception, where 

food-seeking animals are attracted by general floral signals rather than the traits of any 

particular rewarding species (Van der Cingel, 1995, 2001; Jersáková et al., 2006). 

Alternatively, deceptive orchids that exhibit similar floral traits to those of a particular 

rewarding flower are predicted to be using Batesian mimicry to attract pollinators 

(Jersáková et al., 2006), where the mimic receives a benefit from co-flowering plant 

species through increased reproductive success (Jersáková et al., 2006).  

The most comprehensive evidence to date for Batesian mimicry in orchids comes from 

research undertaken on the South African flora. For example, Peter and Johnson (2008) 

employed UV-manipulation experiments to show that Eulophia zeyheriana mimics the 

floral colour of nectar rewarding Wahlenbergia cuspidata (Campanulaceae) to attract 
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Lipotriches (Halictidae) bees. Similarly, Jersáková et al. (2012) demonstrated that 

Disa pulchra attracts long-proboscid tabanid flies by mimicking the rewarding iris 

Watsonia lepida through closely matching the floral reflectance spectra of both 

species. In these cases, and most others where floral Batesian mimicry has been 

hypothesised, in any given population there is evidence for mimicry of a single model 

species (Dafni et.al., 1981; Nilsson, 1983; Johnson, 2000; Benitez-Vieyra et al., 2007). 

However, in orchids there is some evidence for guild mimicry, where a rewardless 

species mimics a range of model species that have similar floral traits and share the 

same pollinator species (Brown and Brown, 1979; Dafni and Bernhardt, 1990; Johnson 

and Schiestl, 2016). For example, the European orchid Traunsteinera globosa attracts 

pollinators by mimicking the colour and inflorescence shape of representatives of three 

morphologically similar co-occurring genera in the Dipsacaceae and Caprifoliaceae 

(Juillet et al., 2007; Jersáková et al., 2016). This strategy may be advantageous over 

other more specialized forms of Batesian mimicry as the mimic may receive a fitness 

benefit from co-flowering with a wider range of model plants. 

 

The Australian orchid genus Diuris has been long hypothesised to engage in guild 

mimicry (Dafni and Bernhardt, 1990).  Some clades of Diuris are superficially similar 

in both colour and shape to those of a guild of yellow and brown pea plants 

(Faboideae). Floral mimicry of Faboideae was first tested in the eastern Australian 

species D. maculata (Beardsell et al., 1986; Indsto et al., 2006), where it was shown 

that Diuris and some Faboideae share pollinators and have similar floral colouration 

according to a bee visual model. While Diuris encompasses a range of floral shapes 

and colourations, this yellow and brown Faboideae like flower has evolved at least 

twice within the genus (Indsto et al., 2009), suggesting that these traits could be 

adaptations to the mimicry of Faboideae (see argument of Johnson et al., 2003). 

However, to tease apart if this is truly a pollination strategy based on mimicry, or 

convergent evolution of floral signals that are attractive to bee pollinators, requires 

comparison with the floral traits of the broader plant community (de Jager et al., 2016), 

observations of pollinator behavior on model and mimic, and data on reproductive 

success of the orchid in relation to the abundance of the model (Roy and Widmer, 

1999; Peter and Johnson, 2008). Further, a compelling line of evidence for the 

existence of mimicry would be if the pollinator is deceived into engaging in the same 
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specific behaviours with the putative mimic that it typically exhibits only with the 

model species. Such behavioural evidence confirms that the orchid is functioning as a 

mimic, regardless of whether some of its floral traits originally evolved through 

selection for mimicry, or independently to exploit the foraging behaviour of the bee.    

We tested the mimicry hypothesis in Diuris brumalis, an orchid species that co-occurs 

with a range of Faboideae species that exhibit similar yellow-brown colour patterns. 

Having identified candidate model species based on the diet of the bee species 

involved in pollination of D. brumalis, we tested the following predictions: (1) that the 

colour and morphology overlap between models and mimic, but not with the remainder 

of the floral community (2) that the flowering phenology of the proposed mimic 

overlaps with the models (3) that the pollinator exhibits with the mimic a deceived 

behaviour normally only associated with the model (4) that fitness of the mimic is 

greater in the presence of the models and (5) that fitness of the mimic increases with 

the number of flowers of the model species.  Further, to investigate if this mimicry 

system operates with more than one model species, observations of pollinator behavior 

were undertaken in habitats that differed in the pea plant species present. 
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MATERIALS AND METHODS 

 

Study species 

Diuris is a primarily Australian genus comprising of approximately 100 species, with 

centers of diversity in south-western and south-eastern Australia (Jones, 2006). Diuris 

are terrestrial geophytes, with a solitary scape produced per plant in any given year 

(Jones, 2006). Most species of Diuris appear to be capable of clonal reproduction 

through vegetative multiplication of daughter tubers (Dixon, 1989). Diuris brumalis 

produces yellow-brown nectarless flowers during July and August, with between three 

and 15 flowers per inflorescence (Brown et al., 2013). A vector is required for 

pollination, and the flowers are self-compatible [Supplementary data, Appendix S1]. 

Pollination within a given flowering season is primarily pollen limited, with most or 

all flowers on a scape forming fruit after pollination by hand (Elliott & Ladd, 2002; 

Supplementary data, Appendix S1). Diuris brumalis occurs in a range of habitats, 

which differ in their community of winter flowering Faboideae species. Unlike D. 

brumalis, these Faboideae produce floral nectar [Supplementary data, Appendix S1]. 

 

Study sites 

Data were collected from D. brumalis populations in the Darling Range, near Perth, 

Western Australia during 2016 and 2017 (Fig. 1). The populations were selected across 

two different habitat types (Fig. 1; Supplementary data, Table S1): Jarrah forest 

(hereby referred to as ‘forest’; 15 sites) and heathland surrounding granite outcrops 

(hereby referred to as ‘outcrop’; 3 sites). No other species of Diuris was observed 

flowering at any site during the study period.  
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Fig. 1 Distribution of the 18 Diuris brumalis study sites in the Darling Range, Western 

Australia. Fifteen sites were in Jarrah forest and three in granite outcrops. 

 

Diuris brumalis frequently co-occurs with several species of Faboideae (Fabaceae; 

Marshall, 1995). Six species of flowering Faboideae, commonly referred to as pea 

plants, were identified at the study sites (Fig. 2, A-F), namely Daviesia decurrens, D. 

horrida, D. rhombifolia, Hovea chorizemifolia, H. pungens, and Bossiaea aquifolium 

[Supplementary data, Table S1]. While D. decurrens, D. rhombifolia, H. 

chorizemifolia, H. pungens and B. aquifolium were present at forest sites and only D. 

horrida and H. pungens were present at outcrop sites. Voucher specimens of all studied 

species were collected and accessioned at Herbarium of Western Australia in Perth 

[Supplementary data, Table S2].  
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Fig. 2 Fabaceae co-occurring with Diuris brumalis: A Daviesia horrida; B D. 

rhombifolia; C D. decurrens; D Bossiaea aquifolium; E Hovea pungens; F Hovea 

chorizemifolia; G Pea-like floral morphology of D. brumalis formed by two lateral 

petals, the dorsal sepal, labellum lateral lobe, labellum and two basal sepals (Hoffman 

and Brown, 2011).  
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Observation of pollinators on Diuris brumalis 

To identify the pollinators of D. brumalis and quantify their behaviour, observations of 

pollinator visitation to orchid flowers were undertaken at three sites (F1, F2 and O3) 

between 13 July to 15 August 2016 and 12 July to 13 August 2017. A total of 191, 15-

minutes observation periods were conducted (for a total of 2865 minutes observation), 

with insect behaviour recorded using an EOS M video camera (Canon, Tokyo, Japan) 

for subsequent viewing in slow motion. Observations were conducted between 10.00 

to 15.30 when temperatures were higher than 17°C (temperature ranged between 8 °C 

and 19 °C, as measured with a Smartsensor AR827, set 20 cm above the ground). 

Arrays of orchid flowers were designed to replicate the colony forming habit of D. 

brumalis and were comprised of multiple inflorescences that had been cut and placed in 

glass vials (two inflorescences per vial, each with 4–6 flowers). For each observation 

period, three vials were spaced 10–20 cm apart to create a conspicuous floral display, 

with vials placed 1–2 meters from flowering individuals of Daviesia decurrens, D. 

rhombifolia, or D. horrida. While artificial arrays of flowers were used as the basis for 

pollinator observations, naturally occurring D. brumalis were common at each of these 

three sites were observations were undertaken. 

 

For each individual insect visiting a flower of Diuris and pea plants, the behaviour was 

recorded and categorised as follows: (I) the insect approached the flower (II) the type 

of behaviour exhibited upon approaching the flower: zig-zag flight = moving side to 

side in flight as they approached the flowering plant; direct flight = flying in a straight 

line as they approached the flower; aligned = body of visitor aligned along the 

midpoint of the tri-lobed labellum/keel during attempts to forage; patrolling = 

appearing to inspect multiple flowers around the plant; searching = the bee approaches 

a flower closely (<5cm) but then chooses to alight on a different flower (III) the insect 

was carrying pollinaria of D. brumalis (IV) if the insect landed on the flower (V) length 

of time spent on the flower (if >1 second) (VI) if the insect attempted to forage on the 

flower, either attempting to manipulate the labellum/keel by opening the wings, or 

attempting to feed on nectar (Fig. 2, G) (VII) if the insect removed or deposited pollen 

of D. brumalis or pea plant (based on filament contact with the insect) (VIII) if the 

insect visited additional D. brumalis or pea plant flowers [Supplementary data, Table 

S3, S4]. Behaviour was only recorded for the first flower visited, as due to the very 
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rapid movement of pollinators, it was often impossible to accurately quantify visits to 

subsequent flowers.  

To determine whether pollinator behaviour differs in response to flowers of Diuris 

compared with Daviesia decurrens and Daviesia rhombifolia, we compared the 

proportion of floral visitors exhibiting food-foraging behaviours between pea plants 

and Diuris using a Generalised Linear Model with a Bernoulli distribution of the 

response variable. Plant species was the fixed effect and was treated as categorical 

variable. Specifically, we tested if between Diuris and pea plants (Daviesia decurrens 

and D. rhombifolia in the forest habitat) (i) there is a difference in the proportion of 

bees landing on the flower ii) among the bees landing on the flower, is there a 

difference in the proportion of bees that exhibit foraging behaviour, either by 

manipulating the labellum/keel or attempting to forage on nectar. 

 

Observation of pollinators on co-flowering plants  

To determine if Diuris brumalis shares pollinators with co-flowering pea plants, 

pollinator observations were undertaken at two forest sites (F1, F2) and one outcrop 

site from 13 July to 6 September in 2016 and from 11 July to 9 September 2017. 

Observations were made between 11.00 and 15.00 daily, with the same video camera 

set up as described above. A total of 32 observation periods were undertaken for B. 

aquifolium, D. decurrens, D. horrida, D. rhombifolia, H. chorizemifolia and H. pungens 

individuals, each of 15 minutes, yielding a total of 480 minutes of observation for each 

plant species. The pollinator behaviours recorded corresponded to those used for 

visitors to the Diuris (see above), to enable a formal behavioural comparison. To test 

if bees that visited D. brumalis also visited members of the plant community other than 

pea plants, additional ten minute observation periods were undertaken for other 

dominant co-flowering species: Acacia pulchella, Adenanthos barbiger, Calothamnus 

sanguineus, Hakea lissocarpha, Hibbertia hypericoides and Hypocalymna robustum 

(from four to five observation periods per species, for a total of 270 minutes). 

 

Identification of pollinators 

Pollinators observed on D. brumalis and pea plant flowers (particularly individuals 

carrying the distinctive white pollinaria of D. brumalis) were collected for 

identification. All collected insect pollinators were sent to the Western Australian 
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Museum as voucher specimens [Supplementary data, Table S5]. Native bee pollinators 

observed were sexed and identified according to Batley and Houston (2012) based on 

behavioural (patrolling – males; collecting pollen on the abdomen - females) and 

morphological features including differences in antennae length (generally longer in 

males), body size (larger in females), abdomen width (larger in females), and number 

of hairs on the head (more abundant on males).  

 

Quantification of pollen loads of floral visitors 

As a complementary approach to resolving the food plants of the floral visitors, pollen 

was identified from the bodies of bees caught [Supplementary data, Table S5] visiting 

D. brumalis and pea plants. Pollen observed on the tibiae or abdomen of pollinators 

during identification was removed by washing the insect with distilled water, 

acetolysed following the methods of Erdtmann (1960), and mounted on glass 

microscope slides. All pollen samples were identified under high magnification 

(Olympus-BX 51 microscope with Olympus–DP71 camera, Olympus, Tokyo, Japan) 

by comparison with acetolysed mounted pollen samples from herbarium specimens of 

D. brumalis, B. aquifolium, D. decurrens, D. horrida, D. rhombifolia, H. 

chorizemifolia, H. pungens, and other commonly co-flowering plant taxa.  

 

Morphological evaluation of floral traits and spectral reflectance 

To test if D. brumalis shows greater overlap in floral morphology with the candidate 

model species than the remainder of the plant community, a morphological evaluation 

of the floral traits of the dominant co-flowering plant species, including functional 

pollinators traits, was conducted at three forest sites (F1, F2 and F3). Morphological 

evaluation was conducted on D. brumalis and 20 co-flowering species from 11 

families in accordance with the descriptions in Marchant et al. (1987). The traits 

included were corolla symmetry (zygomorphic, actinomorphic), corolla shape (rotate, 

papillionaceous, bilabiate, ligulate), flower width and length (in mm), flower 

orientation (pendant, upright, horizontal), plant height (in centimetres), petal 

protrusion as a platform for pollinators (presence or absence), anther position (exposed 

or not exposed), and inflorescence type (umbel, raceme, spike, panicle, solitary) 

[Supplementary data, Table S6]. Morphological similarity of floral traits was evaluated 

using non-metric multi-dimensional scaling (NMDS) following the methodology of 

Jolles (2015).  
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To test if the floral colour of D. brumalis flowers is likely to be distinguishable by bees from 

the co-flowering pea plants species (D. decurrens, D. horrida, D. rhombifolia, H. 

chorizemifolia, H. pungens and B. aquifolium), we took spectral reflectance measurements 

and analysed them using the Chittka (1992) model of bee vision. In addition, spectral 

reflectance was also measured for two yellow-flowered species that occurred at all sites, 

Hibbertia hypericoides (Dilleniaceae) and Acacia pulchella (Fabaceae), to test if other 

yellow flowered species could also be part of the same guild as the pea plants. Spectral 

reflectance was measured on two flowers per plant for six randomly selected individuals of 

each species using a spectrometer (Jaz, DH-2000 UV-VIS-NIR Light source) with an 

integration time of 50 nm. For D. brumalis, measurements of spectral reflectance were 

taken from the outer lateral petals, the central dorsal sepal, the  labellum, and lateral labellum 

lobe; for pea plant species measurements were taken from the standard and wing petals  (Fig. 

2, G) and for H. hypericoides and A. pulchella from the most conspicuous part of the floral 

display (the corolla and stamens respectively). Spectral reflectance was analysed using 

the colour hexagon model, which is based on the sensitivities of photoreceptors of the 

bee Apis mellifera (Chittka, 1992; Chittka and Kevan, 2005). For quantifying similarity 

of spectral reflectance, the distance between colour loci coordinates was measured as the 

Euclidean distance.  

 

Comparative flowering phenology of Diuris brumalis and candidate model species 

To test the prediction that mimics overlap in flowering period with their proposed 

models, the extent of flowering across the study period was quantified for D. brumalis 

and the co-occurring pea plants (D. decurrens, D. horrida, D. rhombifolia, H. 

chorizemifolia, H. pungens, and B. aquifolium). For each species, weekly counts of 

open flowers were undertaken in 30 x 30 meter quadrats at intact forest sites (sites F1, 

F2 and F3) from 28 June to 11 October 2017. For pea plants, due to the high number 

of flowers, we scored the total number of flowers per quadrat as (binned category): (1) 

1-100, (2) 101-200, (3) 301-400, (4) 401-500 and so on, up to 2000 for a total of 19 

categories (1 - 19). However, in the case of H. chorizemifolia and D. brumalis, due to the 

paucity of flowers per inflorescence, the exact number of flowers on each plant was 

counted. The average number of flowers (or binned category) was calculated as the measure 

of flowering during any given week. 
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Reproductive success of the mimic in relation to the abundance of the model 

To test if the fitness of D. brumalis [Supplementary data, Table S7 A,B] increased with the 

number of flowers of the putative model species, the proportion of flowers with pollen 

removal and the proportion of flowers with fruit formation was quantified at 18 populations. 

In 2016 (15 sites) and 2017 (18 sites), we delimited a single 30 x 30 meter quadrat per site, 

and at the peak flowering period for D. brumalis we recorded: (i) the number of pea plants 

of each species within the quadrat; (ii) the estimated number of flowers for each pea plant 

species; (iii) how many D. brumalis plants and flowers were present (counted at the end of 

the flowering season in August). Variable (ii) was estimated by counting the number of 

flowers on ten stems per pea plant to enable calculation of a mean, then multiplying 

this value by the total number of stems on the plant. Following evidence that the 

pollinators of D. brumalis fed almost entirely on Daviesia, this variable was modified 

to be the estimated number of flowers of Daviesia. In both years, at the end of the 

flowering period of D. brumalis we collected data on the number of flowers without 

pollinaria and the number of fruits produced. The proportion of flowers with pollinaria 

removal was used as a proxy for male fitness, while the proportion of flowers setting 

fruit was used as a proxy for female fitness. 

 

Pollinaria removed and fruit set were analysed by Generalized Linear Mixed Models 

(GLMM) using the package glmmTMB in R Studio (Version 3.3.2). Firstly, we tested if 

pollinaria removal and fruit set were greater at sites where Daviesia was present. Secondly, 

we tested if pollinaria removal and fruit set increased when there were more Daviesia 

flowers.  In these latter models we included the abundance of Daviesia flowers, habitat, and 

year all as fixed effects. In each model, site was treated as a random effect, as pollinaria 

removal and fruit set was quantified at the same sites in two field seasons. Because pollinaria 

removal and fruit set were analysed as proportions of the total number of flowers, they were 

assumed to binomially distributed. However, when using a binomial distribution, the models 

for pollinaria removed showed overdispersion (overdispersion parameters: 5.833 for the 

model of presence-absence and 3.897 for the model testing the effect of Daviesia flowers 

abundance, habitat and year; see Zuur et al. 2013 for calculations) necessitating a switch to 

a betabinomial distribution. Evaluation of which model was most strongly supported by the 

data was undertaken using the AICc index, which dropped 120 and 57 points respectively 

for the two models by switching to the betabinomial distribution. Models testing the effect 

of the covariates (see above) on fruit set were not over-dispersed. Therefore, fruit set was 
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confirmed to be a binomially distributed response variable. The abundance of Daviesia 

flowers was log-transformed in order to improve the fit of the fruit set model. The 

improvement of the model following a log transformation was confirmed by the AICc index, 

which dropped 6.5 points, and verified using the “anova” R function, (χ2
33, 4 = 6.371, p < 

0.001).  For all models we undertook the checks suggested by Zuur et al. (2013) to confirm 

that the underlying assumptions of the model are not violated.   
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RESULTS 

Pollinators of Diuris brumalis  

During baiting experiments a total of 132 insects were observed visiting D. brumalis. Of 

these, 102 visits were by Trichocolletes spp. (Colletidae) and 25 by Apis mellifera (Apidae). 

Other visitors included Syrphidae (3) and Leioproctus sp. (2; Colletidae). Only 

Trichocolletes spp. and Apis mellifera were observed with orchid pollinaria attached, in each 

case to the frontal region of the head (Fig. 3). However, only in the case of Trichocolletes 

was deposition of pollinia observed, with parts of the pollinia deposited in visits to 

subsequent flowers.  

 

Fig. 3 Pollinators of Diuris brumalis and Daviesia spp.: A Inflorescence of D. brumalis 

(Orchidaceae). B Female of Trichocolletes leucogenys with pea plant pollen (orange 

in colour) on the abdomen and posterior legs, feeding on Daviesia rhombifolia by 

positioning the abdomen over the keel of the flower. C Male Trichocolletes capillosus 

carrying Diuris brumalis pollinaria on the head.  

 

A total of 32 insects were caught for identification during baiting experiments and 

observations of pea plants [Supplementary data, Table S5]. In 2016 a total of 14 T. 

capillosus, two T. leucogenys and one T. dives were caught, while seven T. leucogenys 

were caught in 2017. A total of 14 Trichocolletes were observed carrying pollen of D. 

brumalis, eight while visiting D. brumalis, and six while foraging on Daviesia spp. 

(see example in Supplementary video). Of the eight individuals observed carrying 

pollina while visiting D. brumalis, two arrived at the plant already carrying pollinaria, 

and six removed pollinaria while being observed. As the six individuals removing 

pollinaria were all captured for identification, the remaining bees must have all sourced 

pollinaria from wild D. brumalis, independent of our artificial arrays. The 

identification of captured visitors and/or pollinators shows that the Trichocolletes spp. 

individuals caught on D. brumalis and on pea plants with orchid pollinaria included 
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both females (4) and males (6). On two occasions Apis mellifera were collected with 

attached D. brumalis pollinaria. Of the Trichocolletes collected during the study, ten 

carried on their hind legs pollen of the same colour as seen in pea plants (yellow-

orange). Trichocolletes capillosus was recorded in 2016 in the habitat forest, whereas 

T. leucogenys was recorded both in 2016 and 2017 in the habitats forest and outcrop 

[Supplementary data, Table S5]. 

 

Pollinators of co-occurring pea plants 

Based on observations of contact with the reproductive structures, Daviesia decurrens and 

D. rhombifolia (occurring at only the forest sites) were pollinated by both Trichocolletes 

capillosus and T. leucogenys, while D. horrida (occurring only at the outcrop sites) was 

pollinated only by T. leucogenys. Apis mellifera was also observed to pollinate all three 

species as well as Hovea pungens and Bossiaea aquifolium [Supplementary data, Table S4]. 

No Trichocolletes species was observed visiting other pea plants or other plant species in 

the community. 

 

Quantification of pollinator behaviour 

Of the 102 Trichocollettes spp. visiting D. brumalis, 74.6% alighted on the flower. In each 

case the insect aligned along the labellum with its head facing the column. Those individuals 

that flew around the flowers without landing (25.6%) were mostly ‘patrolling’ and could be 

visually distinguished as males by longer antennas and smaller body size, suggesting mate-

searching behaviour (Barrows, 1976). Occasionally, males behaving in this fashion were 

observed mating with females that had been located while foraging on Daviesia spp. Both 

male and female of Trichocolletes spp. landed on the flowers of D. brumalis for 1–2 seconds. 

However, we weren’t able to record the behaviour of Trichocolletes that landed for less than 

one second due to the rapidity of visits. Of the bees alighting on the flower, 81.3% attempted 

to manipulate the labellum by articulations of the anterior legs and/or pushing of the 

abdomen onto the labellum, as seen when foraging on nectar and pollen from Daviesia spp 

(Fig. 4). On 50.8% of occasions, attempting to manipulate the labellum resulted in pollinaria 

removal, with 29.5 % attributable to females and 21.3 % males. After the visit, 19.3 % of 

insects extracting orchid pollinaria visited other orchid flowers within the clump, with the 

remaining 80.7% of bees going on to forage on Daviesia spp. flowers.  
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The behaviour exhibited by Trichocolletes spp. on D. brumalis is characterized by similar 

behaviour as seen when foraging on the flowers of Daviesia spp. in the forest habitat (D. 

decurrens and D. rhombifolia). However, significantly more visitors landed on the Daviesia 

spp. than on D. brumalis (D. brumalis 74.2%, n = 102 vs Daviesia rhombifolia 100%, n = 

43, p = 0.009; D. brumalis vs D. decurrens 91.3%, n = 74, p = 0.004), Alternatively, among 

the bees that landed, there was no difference in how frequently the bees attempted to forage 

on the flower (D. brumalis 81.3%, n = 75 vs D. rhombifolia 86%, n = 37, p = 0.513; D. 

brumalis vs Daviesia decurrens 86.4%, n = 64; p = 0.394). 

 

 

Fig. 4 Comparison of the foraging behavior of Trichocolletes spp. (Trichocolletes 

capillosus, T. leucogenys) on Diuris brumalis and Daviesia spp. (Daviesia decurrens, 

D. rhombifolia, D. horrida). Bars represent the proportion of individuals engaging in: 

1 Landing: flying directly to the flower and alighting on keel or labellum; 2 

Manipulation: attempted to manipulate the flower as part of foraging behaviour for 

either nectar or pollen. *: indicates a significant difference 
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Floral similarity of mimics and models 

A NMDS plot shows that all pea plants are morphologically similar, and formed a tight 

cluster, with a pronounced similarity of Daviesia spp. that overlap in the plot (Fig. 5). Diuris 

brumalis is more similar to pea plants than the remainder of the co-flowering plant 

community, but does not overlap with the morphology of peas in the NMDS plot (Fig. 5). 

Investigation of the species by trait matrix reveals that D. brumalis matches pea plants for 

all morphological traits except for height of plant and flower size. In the case of flower size, 

D. brumalis is much larger because of the prominently projecting lateral sepals (Fig. 5).  

 

 

 

Fig. 5 Non-metric multi-dimensional scaling plot of floral traits for Diuris brumalis and 

co-flowering species in the forest habitat. Diuris brumalis and co-occurring pea plants 

(Faboideae) form a distinct site cluster reflecting strong morphological similarity 

compared to the remainder of the plant community. 
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Analysis of spectral reflectance using the hexagon bee vision model (Chittka, 1992; 

Chittka and Kevan, 2005) showed that the average colour loci of D. brumalis, all three 

Daviesia spp. and Bossiaea aquifolium, corresponded to the UV-region. The colour loci for 

Hovea spp. fell in the UV-blue region (Fig. 6, A), and the colour loci Acacia pulchella and 

Hibbertia hypericoides were located in the UV-green and green region respectively. The 

mean distance of the colour loci measured on flower parts between D. brumalis and 

Daviesia decurrens, D. rhombifolia, D. horrida and Bossiaea aquifolium is 0.12, 0.05, 0.06 

and 0.1 respectively [Supplementary data, Table S9]. Colour loci for individual plants of 

Daviesia spp., distributed in the coordinates range y:[-0.39; -0.10] x: [-0.12;-0.40] overlap 

the visual space of D. brumalis individuals ranging across the positions y:[-0.34; -0.09] x: [-

0.33;-0.08] (Fig. 6, B).  In Bossiaea aquifolium the overlap of colour space of individual 

colour loci with D. brumalis is limited to the dorsal petals, as the keel is in the UV-blue 

region (Fig. 6, B).   

 

 

Fig. 6 (A) Mean values of colour loci calculated between floral parts for the species 

Daviesia decurrens, D. horrida, D. rhombifolia, Hovea chorizemifolia, H. pungens and 

Bossiaea aquifolium. In addition, colour loci are presented for two commonly occurring 

yellow-flowered species present at all sites, Hibbertia hypericoides (Dilleniaceae) and 

Acacia pulchella (Fabaceae), to test model similarity based on floral colour.  
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(B) Distribution of color loci most similar to the D. brumalis color signal. Measurements of 

spectral reflectance were taken for D. brumalis: LOP = lateral outer petal; DS = dorsal sepal; 

LL = labellum lateral lobe  L = labellum; for pea plant species (Faboideae): SP = standard 

petal; W = wing petals. The calculations were made using the Hexagon colour model of 

bee vision (Chittka, 1992). 

 

Quantification of the pollen load of floral visitors 

Pollen counts [Supplementary data, Table S8] showed that the pollen assemblage carried 

by four Trichocolletes specimens consisted of almost 100% Daviesia pollen with 

traces (<10 pollen grains in the scanned slide) of Myrtaceae spp. and Grevillea. One 

specimen of T. leucogenys from the outcrop habitat [Supplementary data, Table S8, no. 

2 ], which was caught on Daviesia horrida, contained 97.5% Daviesia pollen and 

traces of pollen of Myrtaceae (2%) and Hovea (0.5%). The amount of Daviesia pollen 

in samples from Apis mellifera specimens caught foraging on Daviesia plants was 

variable (80-98%), and also they contained pollen of Banksia, Acacia and Myrtaceae 

(1-20%). On the Apis mellifera specimen caught foraging on Bossiaea aquifolium 

[Supplementary data, Table S8, no. 10], Bossiaea pollen comprised 97.5% of the 

assemblage with 1.5% Banksia pollen, 1% Myrtaceae pollen and traces of Acacia 

pollen. 

 

Flowering phenology of target species 

There was pronounced variation in the overlap of the flowering periods of D. brumalis 

and the co-occurring pea plants [Supplementary data, Fig. S1]. Among the species that 

are frequently visited by Trichocolletes spp., flowering of Daviesia decurrens and D. 

rhombifolia peaked two weeks and 5 weeks respectively after the peak of D. brumalis. 

Flowering of H. chorizemifolia peaks two weeks before D. brumalis, while the peak 

of H. pungens corresponded to the peak of D. brumalis. Peak flowering for Bossiaea 

aquifolium occurred near the end of the D. brumalis flowering period. 

 

Reproductive success of the mimic in relation to the abundance of the model 

Pollinaria removed did not show any significant difference between sites where Daviesia 

spp. were present (marginal mean of 0.119 ± <0.001 S.E) or absent (0.1 ± <0.001, p = 
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0.592). However, fruit set was higher in the presence of Daviesia ssp. (0.027 ± 0.003) than 

in their absence (0.008 ± 0.001, p = 0.049).  

The proportion of pollinaria removed exhibited a positive relationship (m = 0.2982 ± 

0.1237, p = 0.016) with the abundance of Daviesia flowers (Fig. 7, A). Year also had a 

significant effect on the proportion of pollinaria removed from D. brumalis flowers (2017 = 

0.146 ± 0.013; 2016 = 0.069 ± 0.006, p = 0.019). The proportion of pollinaria removed 

was marginally higher in the jarrah forest (0.123 ± 0.011) compared to the outcrop 

habitat (0.057 ± 0.015, p = 0.068), though the difference was non-significant. Fruit set 

showed a positive relation with the number of Daviesia flowers (log-transformed m = 

0.21398 ± 0.08328, p = 0.01) (Fig. 7, B). Fruit set was significantly different between years 

(2016 = 0.031 ± 0.006; 2017 0.01± 0.002, p < 0.001), but did not differ between the 

forest (0.021 ± 0.004) and outcrop habitats (0.017 ± 0.006, p = 0.692). The relationship 

between the number of Daviesia flowers and both pollen removal and fruit set was 

influenced by several sites where Daviesia spp. did not occur, and there was very little or no 

reproductive success in D. brumalis. 
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Fig. 7 The proportion of flowers with pollen removal (A) and fruit set (B) of Diuris 

brumalis as a function of the number of flowers of Daviesia spp. 
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DISCUSSION 

 

Pollinator sharing between models and mimic 

One of the most fundamental criteria to assess the occurrence of floral mimicry is to 

establish whether the proposed model and mimic species share the same pollinators 

(Roy and Widmer, 1999; Johnson and Schiestl, 2016). Data from this study indicates 

that Diuris brumalis shares the same pollinators (the bees Trichocolletes capillosus and 

T. leucogenys) with Daviesia decurrens and D. rhombifolia in jarrah forest, and D. 

horrida in heathland with granite outcrops. Additionally, observations of pollinator 

foraging, and analysis of pollen collected from the bodies of pollinators, revealed that 

in the study areas both T. capillosus and T. leucogenys feed primarily on Daviesia 

decurrens, D. rhombifolia and D. horrida [Supplementary data, Table S8]. 

Trichocolletes capillosus individuals were observed and caught only in 2016 in forest 

sites, while T. leucogenys were observed and caught in both 2016 and 2017 in forest 

and outcrop sites. Previous observations suggest that depending on seasonal 

conditions, the numbers of Trichocolletes that emerge at particular sites can vary from 

year to year, and in some years none may emerge (T Houston, Western Australian 

Museum, AUS, ‘pers. comm.’) Apis mellifera and Trichocolletes dives are potential 

pollinators as they have been observed to extract orchid pollinaria, but they were not 

observed to deposit pollen on D. brumalis. However, given their ability to remove and 

carry pollen, they may be responsible for occasional pollination events. 

 

Behavioural evidence for mimicry 

Being deceived into exhibiting specific behaviours typically associated with the model 

species provides strong evidence that the proposed mimic has deceived the operator. 

In the present study, Trichocolletes capillosus and T. leucogenys exhibit very similar 

foraging behavior on D. brumalis and Daviesia spp. (Fig. 4) [Supplementary data, 

Video], suggesting that the orchid is sufficiently similar to the model to deceive 

pollinators. For all three Daviesia species observed, Trichocolletes spp. show abdomen 

bending around the keel when attempting to collect nectar/pollen on Daviesia. Further, 

female bees part the keel using their hind legs to collect pollen from the filaments. Our 

observations of T. capillosus and T. leucogenys individuals on D. brumalis flowers 

suggested that they attempt to use the same stereotyped foraging behavior. Both 

species landed along the midline of the labellum and push their abdomen upon it, 
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unsuccessfully attempting to open it using their anterior legs in a similar fashion to the 

pollen collecting behavior they exhibit on Daviesia [Supplementary data, Video]. 

Crucially, Trichocolletes have only been recorded exhibiting this keel-parting 

behavior on pea plants, meaning that this behavior indicates mimicry of Faboideae, 

not other plant groups. Interestingly, other insects observed visiting Daviesia 

(particularly Apis mellifera and Leioproctus spp.) that have broader foraging 

preferences beyond the Faboideae were seen to land on the flowers and probe the keel 

with the body oriented in different directions, not necessarily along the keel.  

 

When visiting D. brumalis flowers, some male T. capillosus and T. leucogenys 

individuals appeared to exhibit patrolling behavior, where the male searches for 

females in specific landmarks or rendezvous places that can be resourced-based (Haas, 

1960; Barrows, 1976; Paxton, 2005). In Trichocolletes landmarks are represented by 

flowering Daviesia bushes, where males often approach closely without landing, likely 

searching for females engaged in foraging behaviour. Males exhibiting this same 

apparent patrolling behaviour were observed occasionally to mate with females 

foraging on Daviesia plants. Exhibiting this ‘patrolling’ behavior provides evidence 

that male Trichocolletes confuse D. brumalis with Daviesia food sources, even though 

courtship or patrolling behavior is not directly involved in pollination.  

 

Physical similarity between the mimic and the models 

A multi-variate analysis of floral morphological traits indicated that D. brumalis is more 

similar to species of Faboideae than any other co-flowering species in the studied 

communities (Fig. 5). While D. brumalis did not overlap with the Fabaceae in the NMDS 

plot, all of the characters scored were matching between pea plants and D. brumalis except 

for plant height and overall flower size. Among the pea plants, the spectral reflectance of D. 

brumalis was most similar to that of the Daviesia species on which Trichocolletes feed (Fig. 

6, A, B). The similarity of colour loci between D. brumalis and Daviesia appeared 

particularly pronounced between the standard (model) and lateral outer petal /dorsal petal 

(mimic), and between the wing (model) and labellum lateral lobe (mimic), suggesting a level 

of colour matching between morphologically corresponding floral parts (Fig. 2, G; Fig 6, 

B). Between Daviesia species and D. brumalis the distances between mean colour loci 

(averaged across floral parts) ranged between 0.05 and 0.10. In some individuals, the 

coloration of Daviesia rhombifolia, D. decurrens and D. horrida overlapped in colour 
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space with D. brumalis, and was less than the 0.06 units whereby bumble bees and 

honey bees cannot distinguish colours (Dyer and Chittka 2004 a, b; Giurfa, 2004). 

However, due to only partial overlap of colour loci of individual plants in Daviesia 

and D. brumalis, colours of model species and mimic are likely to often be 

distinguishable by pollinators. Further, it is likely that precise colour patterns differ 

between D. brumalis and the Daviesia. Nonetheless, mimics do not have to be 

identical, as long as they are perceived as similar by the pollinator (Dalziell and 

Welbergen, 2016). Indeed, Diuris may benefit from an unspecific mimicry of a range 

of pea plants, rather than appearing identical to a single species, as this may enable 

them to function effectively with multiple model species.  

 

While the labellum, dorsal sepal/outer petals and labellum lateral lobe of D. brumalis appear 

respectively to replicate the keel, dorsal and wing petals of Daviesia, the prominently 

projecting external petals and the curved sepals in D. brumalis appear a component of floral 

architecture that is absent in Daviesia spp. (Fig 2, G). However, it may be possible that 

some floral parts are involved in the mimicry of pea plants while others are not 

essential for mimicry and are free to vary. For example, in some genera of sexual 

deceptive orchids, where the role of floral traits in pollinator attraction is well studied, 

mimicry of the sex pheromone of the pollinator is often precise (Peakall et al., 2010; 

Bohman et al., 2018), while colour is not a close match to the female (Gaskett et al., 

2016). Similarly, parts of the flower involved in positioning of the pollinator may be 

under stronger selection than morphologically inactive parts (Rakosy et al., 2017; de 

Jager & Peakall 2018). In Diuris flowers, selection may operate through a dual 

mechanism, where floral traits involved in mimicry, such as colour and shape of the 

labellum and column wings, have evolved to resemble pea plants whereas the 

projecting outer petals may have evolved exaggerated size to increase long distance 

attraction of pollinators. Indeed, there is a large body of supporting evidence 

suggesting that a greater floral display increases pollinator visitation rates (e.g. Peter and 

de Jong, 1990; Karron et al., 2004).  

 

Overlap between mimics and models in flowering phenology 

An overlap in flowering phenology between mimic and model is another key requirement 

of floral mimicry (Roy and Widmer, 1999; Johnson and Schiestl, 2016). Here, we have 

shown that the flowering periods of D. brumalis and Daviesia spp. overlap, but that the 
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flowering peak of D. brumalis precedes the peak of the model species (two weeks before D. 

decurrens and five weeks before D. rhombifolia) [Supplementary data, Fig. S1]. In 

Trichocolletes, males often emerge several days prior to females (observations by T 

Houston, Western Australian Museum, AUS, unpubl. res.), meaning that Diuris may 

take advantage of early emerging males that are searching for females and nectar on 

pea plants. This interpretation was supported in the present study, where most 

observations at the start of the flowering period were of males, but the number of 

females increased as the Daviesia came into flower. The exploitation of naïve 

pollinators appears to be a common characteristic of food-deception systems. Species 

that use generalized food deception often flower when naïve pollinators emerge (Pellisier 

et al., 2010) and are yet to learn that the orchid flowers are rewardless (Internicola and 

Harder, 2012). Alternatively, pollinators can exhibit an innate sensory bias to certain colours 

and shapes and, following emergence, automatically searching for food sources with these 

traits (Çakmak and Wells, 1995; Lanau and Maier, 1995). In the case of D. brumalis, 

pollinators may attempt to forage on the mimetic Diuris through either naivety or an innate 

preference for pea like flowers, even though flowering individuals of the model pea plants 

may be scarce at the time of emergence. 

 

Does fitness of the mimic increase in the presence of the model? 

Adaptive resemblance between mimic and model species is achieved when pollinators are 

not able to distinguish between them, and this ‘misclassification’ behaviour enhances the 

fitness of the mimic (Endler, 1981; Skelhorn and Ruxton, 2010). As such, it is expected that 

in mimicry systems the fitness of the mimic should be greater when the model is more 

abundant (Anderson & Johnson, 2006). However, in practice it is difficult to separate the 

effects on fitness of reduced pollinator learning in the presence of the more model flowers, 

and greater pollinator abundance in the presence of more model flowers. This challenge 

applies to D. brumalis, as the Trichocolletes species foraged primarily on the model flowers, 

making pollinator abundance likely to be highly correlated with abundance of the model. 

For example, fruit set was lowest at sites where Trichocolletes were not observed and 

Daviesia were almost absent. Further, fruit set increased with the number of Daviesia 

flowers, with this relationship likely to be influenced by sites where there were few or no 

Daviesia, and thus very low reproductive success of D. brumalis. As expected under 

pollinator learning, rates of pollinaria removal increased when there were greater numbers 

of Daviesia flowers, though this could also potentially be attributable to greater numbers of 
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pollinator at these sites. To resolve this issue, it would be of interest to compare the response 

of Trichocolletes to experimentally presented Diuris flowers in areas with and without 

natural populations of Diuris. 

Interestingly, even at sites where Trichocolletes were not observed and Daviesia were 

largely absent, occasional cases of pollen removal and deposition occurred. These events 

may be partly attributable to the introduced honey bee Apis mellifera, which was frequently 

observed foraging on co-occurring flowering plants in both habitats, including sites where 

Trichocolletes was not observed. However, forest sites without Daviesia exhibited a level 

of fruit set approaching zero, despite some level of pollen removal, suggesting that 

honeybees may fail to complete pollination through pollen deposition. At present, there is 

very little information on the potential negative or positive effects of A. mellifera on 

pollination of Australian orchids (e.g. Adams and Lawson, 1993; Phillips et al., 2009), 

though given the occasional visitation witnessed here, Diuris may represent an interesting 

study genus to tackle this issue. 

 

Is there evidence for guild mimicry in Diuris brumalis? 

While pollination via mimicry of flowering plants usually involves a particular model 

species, there is evidence that some plants mimic a guild of plant species rather than a 

specific model (Jersáková et al., 2016). Plant guilds are recognised by both sharing a 

particular pollinator (or group of related pollinators) and having very similar floral 

traits (Manning and Goldblatt, 1996), which are likely to represent adaptations to the 

particular pollinator(s) (Johnson, 2010). Based on some sharing of pollinators and their 

striking resemblance, Diuris have been hypothesised to mimic a guild of pea plants 

(Beardsell et al., 1986; Dafni and Bernhardt, 1990; Indsto et al., 2006). The present 

study shows that while Daviesia spp. share pollinators and may form the basis of a 

guild, this does not extend to all pea plant species in the community. However, based 

on behavioural observations and floral traits, we provide evidence that mimicry 

functions with different Daviesia species in different habitats (D. decurrens, D. 

rhombifolia in jarrah forest; D. horrida in the outcrop heath). As such, through the use 

of more than one model species the Diuris-Daviesia mimicry system may meet some 

of the conditions for guild mimicry.  
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While the guild mimicry hypothesis has received support from observational studies 

in orchids (e.g. Jersakova et al., 2016 and the present study), at present experimental 

tests are lacking. A complimentary approach to conducting field observations in 

different habitats would be to move experimental arrays of orchids between pea plant 

communities, thereby testing if any given population of D. brumalis can attract 

pollinators in the presence of other pea plant species. In addition, it would be of interest 

to investigate the breadth of phenotypes that can achieve mimicry through the use of 

models or manipulated Diuris flowers. Alternatively, experiments with bees 

conditioned on different species of pea plant could be used understand the full range 

of models that D. brumalis can mimic. However, the outcomes of such experiments 

would also be partly affected by whether the bees learn to associate rewards with 

particular pea plants, or if the attraction is innate. If the attraction is innate it is possible 

that D. brumalis may be attractive to pollinators regardless of prior experience with 

food plants. 

 

Conclusions 

Here we present evidence that D. brumalis achieves pollination by mimicking the 

flowers of multiple co-flowering species of Daviesia. In addition to meeting the 

criteria for sharing pollinators and flowering times, pollinators exhibited pea plant-

specific foraging behaviour on the Diuris, providing strong evidence that the mimic 

had successfully deceived the pollinator. This evidence was further supported by data 

on morphology and colour, showing that not only are Diuris and Daviesia spp. very 

similar compared to the remainder of the co-flowering community, but that based on 

bee vision models, in many cases the colour of Diuris and the proposed model species 

will not be readily distinguishable to pollinators. Fruit set and pollen removal of D. 

brumalis was more frequent in the presence of Daviesia, though evidence suggests that 

this is likely through some combination of both learning, and greater pollinator 

abundance at sites where the model is present. The diversity of species related to D. 

brumalis with pea-like floral traits (Diuris corymbosa complex) suggests that this may 

be an effective system for understanding diversification in lineages that use floral 

Batesian mimicry. 
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SUPPLEMENTARY DATA 

Supplementary data are available online at www.aob.oxfordjournals.org and consist 

of the following. Fig. S1: phenology of Diuris brumalis and co-occurring Faboideae, 

Table S1: habitat assigned with description; Table S2: plant species vouchered at the 

WA Herbarium; Table S3: observations of floral visitors to Diuris brumalis; Table S4: 

observations of floral visitors to Faboideae; Table S5: insects caught on Diuris 

brumalis and co-occurring Faboideae; Table S6: Floral traits of Diuris brumalis and 

the 20 most abundant co-flowering species; Table S7 A,B: Populations and 

reproductive data of Diuris brumalis; Table S8: composition of pollen loads; Table 

S9: Means and standard deviation of colour loci of D. brumalis and pea plants. 

Appendix S1: floral biology of Diuris brumalis and co-occurring Faboideae; Video on 

line https://doi-org.dbgw.lis.curtin.edu.au/10.1093/aob/mcy166 in Supplementary 

data: showing Trichocolletes behaviour on Daviesia decurrens (model) and Diuris 

brumalis (mimic). Key behaviours illustrated: ‘patrolling’, courtship behaviour by 

males looking for females, keel (model) or labellum (mimic) ‘manipulation’, 

‘foraging’ behaviour by females, including searching for sources without landing. All 

video is presented in slow motion. 
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SUPPLEMENTARY DATA, Fig. S1. Flowering phenology of Diuris brumalis and co-occurring Faboideae species at three sites in the forest habitat. 

Phenology data was collected in a single 30 x 30 metre quadrat per site. Due to the high number of flowers for Daviesia decurrens, D. horrida, D. 

rhombifolia, Hovea pungens and Bossiaea aquifolium, we estimated the total number of flowers and assigned categories (primary y axis): (1) 1-

100, (2) 101-200, (3) 301-400, (4) 401-500… to 2000  for a total of 19 categories. For H. chorizemifolia and D. brumalis the number of flowers per 

quadrat (secondary y axis) was directly scored.  
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SUPPLEMENTARY DATA, Appendix S1. Observations of the floral biology of Diuris brumalis and co-occurring Faboideae 

 

Background 

While Diuris brumalis produces no visible nectar, and the co-occurring pea plants (Faboideae) are all assumed to provide a nectar reward, this has not been 

tested. Further, it has not been tested if D. brumalis produces fruit by autogamy and if it is self-compatible. All of these issues needed to be addressed prior to 

undertaking a study of floral mimicry and its consequences for plant fitness. 

Methods 

Nectar production 

To test for nectar production in D. brumalis, and quantify nectar production in the proposed models (D. decurrens, D. horrida, D. rhombifolia, H. chorizemifolia, H. 

pungens and B. aquifolium), nectar content in flowers of each species was determined in July-August 2016. One inflorescence per individual was bagged for 10 randomly 

selected individuals of each species at three sites (F1, F2, O3). Inflorescences were bagged in the afternoon, with nectar collected the following day during the warmest 

hours (from 11.00 to 14.00) to ensure maximum nectar production (Corbet et al., 1995). Nectar was collected from two flowers on each inflorescence using a 2 µl 

microcapillary tube (Drummond Microcaps, Broomall; Pa., USA), with nectar volume calculated by measuring capillary length of the column of liquid (Corbet, 

2003) using a digital calliper. 

Testing for autogamy and self-compatibility in Diuris brumalis 

To test for autogamy, in July 2017, inflorescences with newly-opened flowers and no observed pollinia deposited on stigma were covered with a fine, insect proof nylon 

bag until floral senescence (ca. four weeks). To test for self-compatibility, one flower on each inflorescence was manually pollinated with pollinia from a different flower 

on the same inflorescence before the pollinated flower was covered with a fine, insect proof nylon bag until senescence or fruit formation (ca. four weeks). Six individuals 



58 
 

were randomly selected at each of the three largest populations (F4, F5 and F6) for each test, with one inflorescence selected per individual for a total of eighteen 

inflorescences tested. 

Results 

Nectar content 

Measurements of nectar content in species of pea plants revealed that the following average amount of nectar was produced by flower: Daviesia decurrens (0.15 µl ± 0.05 

s.d), D. rhombifolia (0.1 µl ± 0.04 s.d.), D. horrida (0.1 µl ± 0.05 s.d.), Hovea chorizemifolia (0.14 µl ± 0.06 s.d.), H. pungens (0.21 µl ± 0.15 s.d.) and Bossiaea aquifolium 

(0.14 µl ± 0.09 s.d.). No nectar was produced by any part of studied Diuris flowers. 

Testing for autogamy and self-compatibility in Diuris brumalis 

None of the bagged flowers produced fruits, demonstrating that D. brumalis requires a vector to achieve pollination. Experimental hand pollination revealed that 

D. brumalis is able to produce seed capsules through self-pollination, with 88% (n=18) of flowers forming a capsule.  

Conclusions 

As expected, D. brumalis is nectarless, while all of the pea plant species produced small amounts of nectar on the upper surface at the base of the standard. 

Diuris brumalis was shown to require a vector for pollination, and to be self-compatible. 
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SUPPLEMENTARY DATA, Table S1. General habitat assigned with detailed description. All the sites correspond with populations of Diuris 

brumalis, surveyed in both 2016 and 2017, except for the ones noted*, which were surveyed only in 2017. Each habitat is characterized by a 

variable range of pea plants (Faboideae). 

  

Habitat Vegetation description Sites surveyed Co-occuring faboideae 

Forest Jarrah forest on lateritic soils, with an overstorey of Eucalyptus 

marginata and Corymbia calophylla over a diverse understorey 

dominated by Acacia pulchella, Bossiaea aquifolium, Daviesia 

spp., Hibbertia hypericoides and Hovea spp. Banksia sessilis 

occurs discontinuously among sites. 

F1, F2, F3, F4, F5, F6, 

F7, F8*, F9*, F10*, 

F11, F12, F13, F14, 

F15 

Bossiaea aquifolium, Daviesia 

decurrens, D. rhombifolia, Hovea  

chorizemifolia, H. pungens  

Outcrop Open shrubland on granite outcropping and lateritic slopes, 

dominated by Trymalium ledifolium with  Grevillea spp., 

Hakea spp. and Petrophile spp. 

O1, O2, O3 Daviesia horrida, Hovea  pungens 

https://en.wikipedia.org/wiki/Eucalyptus_marginata
https://en.wikipedia.org/wiki/Eucalyptus_marginata
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SUPPLEMENTARY DATA, Table S2. List of the plant species per family collected in the field sites in different habitat, subsequently 

vouchered at the Herbarium of Western Australia, Perth. 

 

 

 

 

 

 

 

 

 

 

Number Family name Specimens collected in field and vouchered at Herbarium Voucher Habitat Latitude; Longitude 

1 Fabaceae Hovea chorizemifolia DS 1 forest 31°29′ 01.2″ S;  115° 57′ 55.0″ E 

2 Fabaceae Hovea pungens DS 7 forest 31°56′ 28.6″ S;  116° 02′ 52.7″ E 

3 Fabaceae Daviesia rhombifolia DS 3 forest 31°29′ 01.2″ S;  115° 57′ 55.0″ E 

4 Orchidaceae Diuris brumalis DS 4 forest 31°29′ 01.2″ S;  115° 57′ 55.0″ E 

5 Fabaceae Bossiaea aquifolium subsp. aquifolium DS 5 forest 31°29′ 01.2″ S;  115° 57′ 55.0″ E 

6 Fabaceae Daviesia decurrens subsp. decurrens DS 6 forest 31°29′ 01.2″ S;  115° 57′ 55.0″ E 

8 Fabaceae Daviesia horrida  DS 8 outcrop 31°56′ 28.6″ S;  116° 02′ 52.7″ E 

9 Orchidaceae Diuris brumalis DS 9 outcrop  32°00′ 56.1″ S;  116° 03′ 36.3″ E 

10 Orchidaceae Diuris brumalis DS 10 forest 32°00′ 56.1″ S;  116° 03′ 36.3″ E 
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SUPPLEMENTARY DATA, Table S3. Observations of floral visitors to Diuris brumalis. Eight behavioural categories were distinguished to 

reflect the pollination process. For Category (II), the types of behaviour for insects approaching the flower were: zig-zag flight = moving side to 

side in flight as they approach the flowering plant; direct flight = flying in a straight line as they approach the flower; aligned = body of visitor 

aligned along the midpoint of the labellum/keel during attempts to forage; patrolling = appearing to inspect multiple flowers around the plant; 

approach but choose another flower = the bee approaches a flower closely (<5cm) but then chooses to alight on a different flower. In addition, it 

was recorded if males were observed patrolling for females around the flower. M = male, F = female. 

 

 

  

  

 Bahaviour categories Syrphidae Leioproctus 

sp. 

Apis mellifera Trichocolletes capillosus Trichocolletes leucogenys Trichocolletes dives 

(Ӏ) 
N insects approaching the flower 3 2 25 39F, 41M 13F, 8M 1M 

(II) 
Behaviour when approaching the 

flower 

zig zag 
flight 

zig zag flight 
slow zig zag 
flight 

direct flight and aligned on labellum/ 

patrolling/searching 

direct flight and aligned on labellum/ 

patrolling/ searching 

direct flight and aligned on 

labellum 

(ӀӀI) 
N insects carrying orchid pollen on 
arrival 

0 0 0 7F, 5M 1F 
0 

(IV) N insects landing on the flower 
0 2 18 29F, 30M 10F, 5M 1M 

(V) Visiting time ≥ 1s 
0 0 18 28F, 22M 8F, 4M 1M 

(VI) 
N insects attempting labellum 

manipulation 
0 0 16 28F, 21M 8F, 3M 1M 

(VII a) N insects removing pollen 
0 0 4 14F, 10M 4F, 2M 1M 

(VII b) 
N insect depositing pollen 0 0 0 1 F, 1 M 1 F 0 

(VIII) 
N insects visiting another orchid 

flower 
0 0 4 2F, 3M 1M -0 
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SUPPLEMENTARY DATA, Table S4. Observations of floral visitors to pea plants (Faboideae; Bossiaea aquifolium, Daviesia decurrens, D. 

horrida, D. rhombifolia, Hovea pungens). Eight behaviour categories and descriptions were distinguished as for Diuris brumalis. M = male, F = 

female. 

Bossiaea aquifolium 

  Bahaviour categories Apis mellifera Trichocolletes sp. 

(Ӏ) N insects approaching the flower  85 1 F  

(II) Behaviour typology approaching the flower flying slowly zig zag flying straight on keel 

(ӀӀI) N insects carrying orchid pollen on arrival - - 

(IV) N insects landing on the flower 85 1 F 

(V) Visiting time ≥ 1s 85 1 F 

(VI) N insects attempting keel manipulation 68 1 F 

(VII) N insect collecting pollen 67 1 F 

(VIII) N insects visiting to another flower of pea plant 65 1 F 

 

Daviesia decurrens 

  Bahaviour categories Apis mellifera Trichocolletes capillosus Trichocolletes leucogenys 

(Ӏ) N insects approaching the flower  24 30 F, 26 M 14 F,11 M  

(II) Behaviour typology approaching the flower flying slowly zig zag 
flying straight and aligned on keel/ patrolling/ 

searching  

flying straight and aligned on keel/ 

patrolling/ 
searching 

(ӀӀI) N insects carrying orchid pollen on arrival 2 3 F, 1 M 2 F 

(IV) N insects landing on the flower 24 30 F, 22 M 14 F, 8 M 

(V) Visiting time ≥ 1s 24 30 F, 20 M 13 F, 4 M 

(VI) N insects attempting keel manipulation 14 30 F, 18 M 13 F, 3 M 

(VII) N insect collecting pollen 10 15 F 8 F 

(VIII) N insects visiting to another flower of pea plant 24 14 F 8 F 
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Daviesia horrida  

  Bahaviour categories Apis mellifera Trichocolletes leucogenys 

(Ӏ) N insects approaching the flower  81 55 F, 28 M  

(II) Behaviour typology approaching the flower flying slowly zig zag 
flying straight and aligned on keel/ patrolling/ 

searching 

(ӀӀI) N insects carrying orchid pollen on arrival 1 2 F 

(IV) N insects landing on the flower 81 55 F, 20 M 

(V) Visiting time ≥ 1s 81 50 F, 12 M 

(VI) N insects attempting keel manipulation 58 49 F, 15 M 

(VII) N insect collecting pollen 68 45 F 

(VIII) N insects visiting to another flower of pea plant 81 43 F 

 

Daviesia rhombifolia  

  Bahaviour categories Apis mellifera Trichocolletes capillosus Trichocolletes leucogenys 

(Ӏ) N insects approaching the flower  20 23 F, 5 M 10 F, 5 M  

(II) Behaviour typology approaching the flower flying slowly zig zag 
flying straight and aligned on keel/ patrolling/ 

searching  
flying straight and aligned on keel/ patrolling/ 

searching 

(ӀӀI) N insects carrying orchid pollen on arrival - 2 F, 1 M 1 F 

(IV) N insects landing on the flower 20 23 F, 5 M 10 F, 5 M 

(V) Visiting time ≥ 1s 20 21 F, 2 M 10 F, 4 M 

(VI) N insects attempting keel manipulation 11 21 F, 2 M 10 F, 4 M 

(VII) N insect collecting pollen 17 15 F 10 F 

(VIII) N insects visiting to another flower of pea plant 19 14 F 9 F 
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Hovea pungens  

 Bahaviour categories Apis mellifera 

(Ӏ) N insects approaching the flower 88 

(II) Behaviour typology approaching the flower flying slowly zig zag 

(ӀӀI) N insects carrying orchid pollen on arrival - 

(IV) N insects landing on the flower 88 

(V) Visiting time ≥ 1s 88 

(VI) N insects attempting keel manipulation 32 

(VII) N insect collecting pollen - 

(VIII) N insects visiting to another flower of pea plant 28 
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SUPPLEMENTARY DATA, Table S5. List of insects caught on Diuris brumalis above and co-occurring pea plants below. All the insects were 

sexed and identified at the Western Australia Museum, where possible at species level. Sex column: F: female; M: male; W: worker. Pollen column: 

o: carrying orchid pollinaria; p: pea plant pollen carried on legs and abdomen. *: Insect carrying orchid pollenia, arriving on orchids for depositing the pollen, 

coming from natural fashion 

Insects caught on Diuris brumalis (using artificial arrays)  

Number Code Plant species Date Area Habitat 
Genus 

(subgenus) 
Species (subspecies) Sex Pollen 

1 DB01-16 Diuris brumalis 14/07/2016 Lesmurdie Forest Tricochollettes capillosus M o 

2 DB02-16 Diuris brumalis 14/07/2016 Lesmurdie Forest Tricochollettes capillosus F o 

3 DB03-16 Diuris brumalis 18/07/2016 Lesmurdie Forest Tricochollettes capillosus M o 

4 DB04-16 Diuris brumalis 19/07/2916 Lesmurdie Forest Tricochollettes capillosus M o 

5 DB05-16 Diuris brumalis 19/07/2916 Lesmurdie Forest Tricochollettes capillosus F o 

6 DB06-16 Diuris brumalis 19/07/2916 Lesmurdie Forest Tricochollettes capillosus F o* 

7 DB07-16 Diuris brumalis 20/07/2016 Lesmurdie Forest Tricochollettes capillosus M o* 

8 DB08-16 Diuris brumalis 26/07/2016 Lesmurdie Forest Tricochollettes dives M o 
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Insects caught on pea plants with orchid pollinaria or pea plant pollen 

9 DC07-16 Daviesia decurrens 26/07/2016 Lesmurdie Forest Trichocolletes capillosus M o 

10 P09-17 Daviesia decurrens 18/08/2017 Lesmurdie Forest Apis mellifera W o 

11 P11-17 Daviesia rhombifolia 18/08/2017 Lesmurdie Forest Trichocolletes leucogenys F o 

12 P14-17 Daviesia rhombifolia 25/08/2017 Lesmurdie Forest Apis mellifera W o 

13 DC01-16 Daviesia decurrens 13/07/2016 Lesmurdie Forest Trichocolletes capillosus M - 

14 DC02-16 Daviesia decurrens 13/07/2016 Lesmurdie Forest Trichocolletes capillosus M - 

15 DC03-16 Daviesia decurrens 20/07/2016 Lesmurdie Forest Trichocolletes capillosus F - 

16 DC04-16 Daviesia decurrens 18/07/2016 Lesmurdie Forest Trichocolletes capillosus M - 

17 DC05-16 Daviesia decurrens 18/07/2016 Lesmurdie Forest Trichocolletes capillosus M - 

18 DC08-16 Daviesia decurrens 26/07/2016 Lesmurdie Forest Trichocolletes capillosus F p 

19 DH01-16 Daviesia horrida 02/08/2016 Kalamunda Outcrop Trichocolletes leucogenys M - 

20 DH02-16 Daviesia horrida 02/08/2016 Kalamunda Outcrop Apis  mellifera W p 

21 DH03-16 Daviesia horrida 02/08/2016 Kalamunda Outcrop Trichocolletes leucogenys F p 

22 HP01-16 Hovea pungens 03/08/2016 Lesmurdie Forest Apis  mellifera W - 

23 BA02-16 Bossiaea acquifolium 11/08/2016 Lesmurdie Woodland Apis mellifera W p 

24 P01-17 Daviesia decurrens 07/08/2017 Lesmurdie Forest Apis mellifera W p 

25 P02-17 Daviesia decurrens 08/08/2017 Lesmurdie Forest Apis mellifera W p 

26 P03-17 Daviesia decurrens 11/08/2017 Lesmurdie Forest Trichocolletes leucogenys F - 

27 P04-17 Daviesia rhombifolia 11/08/2017 Lesmurdie Forest Apis mellifera W p 

28 P05-17 Daviesia decurrens 11/08/2017 Lesmurdie Forest Trichocolletes leucogenys F p 

29 P06-17 Daviesia rhombifolia 11/08/2017 Lesmurdie Forest Trichocolletes leucogenys F - 

30 P10-17 Daviesia rhombifolia 18/08/2017 Lesmurdie Forest Trichocolletes leucogenys F - 

31 P12-17 Daviesia horrida 23/08/2017 Lesmurdie Forest Trichocolletes leucogenys F p 

32 P13-17 Daviesia rhombifolia 24/08/2017 Lesmurdie Forest Trichocolletes leucogenys F p 
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SUPPLEMENTARY DATA, Table S6. Principal floral traits of Diuris brumalis and the 20 most abundant co-flowering species in the habitat 

forest (F1, F2, F3 sites). The floral traits, following Marchant et al., (1987), represent potential traits for attracting pollinators. They are coded in 

each column as corolla symmetry: zygomorphic (z) actinomorphic (a); corolla shape: tubular (t); rotate (r); papillionaceous (p);  bilabiate (b); 

ligulate (l); flower width (mm); flower length (mm); flower orientation: pendant (p); upright(u); horizontal (h); maximum height (cm); petal 

projection as a platform for pollinators: yes or no; prominent parts of the flowers (a) anthers (t) tepals; anthers exposure:  enclosed (c); 

exposed (e); inflorescence:  umbel (u), raceme (r), spike (s), panicle (p), solitary (so). 

Number Family Species Corolla 

Symmetry 

 

Corolla 

shape 

 

Flower 

Width 

(mm) 

Flower 

Lenght 

(mm) 

Flower 

orientation 

 

Max 

Height 

(cm) 

Petal 

projection as 

platform for 

pollinators 

Prominent 

parts of 

flower 

Anthers 

exposure 

 

Inflorescence 

 

1 Ericaceae Astroloma 
foliosum 

a t 1 25 u 100 no t c r 

2 
Fabaceae 

Acacia 

pulchella 
a r 6.5 6.5 o 200 no a e r 

3 Proteaceae 
Adenanthos 
barbigera 

z t 12 25 u 100 no t e r 

4 Fabaceae 
Bossiaea 

aquifolium 
z p 18.25 19.2 o 250 yes t c r 

5 Colchicaceae 
Burchardia 

umbellata 
a r 25 25 u 44 no t e u 

6 Myrtaceae 
Calothamnus 
sanguineus 

z l 6.5 26.5 p 150 no t e r 

7 Fabaceae 
Daviesia 

decurrens 
z p 5.4 4.75 o 100 yes t c r 

8 Fabaceae 
Daviesia 

rhombifolia 
z p 5.6 4.7 o 80 yes t c r 

9 Orchidaceae 
Diuris 

brumalis 
z p 12.95 26 o 50 yes t e r 

10 Dilleniaceae 
Hibbertia 

hypericoides 
a r 20 20 o 70 no t e r 
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Number Family Species Corolla 

Symmetry 

Number Family Species Corolla 

Symmetry 

Number Family Species Corolla 

Symmetry 

Number 

11 Proteaceae 
Hakea 

lissocarpa 
z r 3.5 3.5 u 300 no t e u 

12 Fabaceae 
Hovea 

chorizemifolia 
z p 12.95 10.85 o 60 yes t c r 

13 Fabaceae Hovea pungens z p 13.05 12.25 o 150 yes t c r 

14 Myrtaceae 
Hypocalymma 

robustum 
a r 12.5 12.5 o 100 no t e r 

15 Proteaceae 
Isopogon 

dubius 
a r 22.5 22.5 u 120 no t e s 

16 Goodeniaceae 
Lechenaultia 

biloba 
z b 21 21 u 60 no t c r 

17 Asparagaceae 
Lomandra 

nigricans 
a r 2 2 o 70 no t e p 

18 Iridaceae 
Orthrosanthus 

laxus 
a r 55 55 u 60 no t e r 

19 Iridaceae 
Patersonia 

umbrosa 
a r 60 53.5 u 90 no t e so 

20 Rutaceae 
Philotheca 

spicata 
a r 3.75 3.75 o 60 no t e r 

21 Asparagaceae 
Sowerbaea 

laxiflora 
a r 11.5 11.5 o 45 no t e u 
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SUPPLEMENTARY DATA, Table S7, A Above list of the 15 populations sites of Diuris brumalis surveyed in 2016 with the population code 

indicating the habitat (F: forest; O: outcrop), as presented in Table 1. All the values are related to plants surveyed within 30 x 30 meter. B Below 

list of the 18 populations sites of Diuris brumalis surveyed in 2017. The populations surveyed only in 2017 were F8, F9, F10. 

  

Population 

number 

Pop 

code 
Site 

Latitude, 

longitude 

N plants of 

D. brumalis 

N flowers 

D. brumalis 

N flowers D. 

brumalis 

without 

pollinaria 

N pollinated 

flowers of  

D. brumalis 

D. brumalis 

Male Fitness 

(proxy) 

 

D. brumalis 

Female 

Fitness 

(proxy) 

N total 

flowers 

Daviesia spp. 

plants 

N ‘other pea 

plants' 

flowers 

1 F1 Lesmurdie - Canning Rd 
32°01'45.6'' °S, 

116°06'01.3'' °E 
8 36 10 3 0.28 0.08 300 0 

2 F2 Lesmurdie - Canning Rd 
32°01'41.9'' °S, 

116°05'41.7'' °E 
26 106 24 1 0.23 0.01 485 0 

3 F3 Lesmurdie - Canning Rd 
32°01'43.8'' °S, 
116°05'12.1'' °E 

33 138 19 9 0.14 0.07 484 0 

4 F4 Lesmurdie - Canning Rd 
32°01'43.2'' °S, 

116°04'51.9''° E 
48 268 10 3 0.04 0.01 1200 0 

5 F5 Lesmurdie - Canning Rd 
32°01'39.8'' °S, 

116°04'45.3'' °E 
24 99 6 7 0.06 0.07 1200 0 

6 F6 Lesmurdie - Canning Rd 
32°01'34.0'' °S, 

116°04'34.3'' °E 
8 42 10 2 0.24 0.05 90 18 

7 F7 Lesmurdie - Canning Rd 
32°01'39.1'' °S, 

116°04'42.8'' °E 
25 120 8 12 0.07 0.10 90 0 

8 O1 Kalamunda - Zig Zag Point 
31°56'35.3'' °S, 

116°02'46.5'' °E 
48 236 1 12 0.00 0.05 300 0 

9 O2 Kalamunda - Zig Zag Point 
31°56'30.4'' °S, 
116°02'37.4'' °E 

17 64 0 0 0.00 0.00 90 0 

10 O3 Kalamunda - Zig Zag Point 
31°56'28.6'' °S, 

116°02'54.5'' °E 
5 21 0 0 0.00 0.00 0 0 

11 F8 Lesmurdie - Pomeroy Rd 
32°00'33.3'' °S, 

116°04'47.0'' °E 
20 74 4 1 0.05 0.01 0 192 

12 F9 Lesmurdie - Pomeroy Rd 
32°00'48.6'' °S, 
116°03'15.0'' °E 

30 149 2 3 0.01 0.02 0 0 

13 F10 Lesmurdie - Pomeroy with Prutni Rd 
32°00'38.4'' °S, 

116°03'24.8'' °E 
40 162 0 1 0.00 0.01 10 801 

14 F11 Lesmurdie - Reid Rd 
32°00'48.8'' °S, 

116°03'01.0'' °E 
16 71 4 0 0.06 0.00 0 325 

15 F12 Lesmurdie - Moffet Rd 32°01'03.0'' °S, 
116°03'26.6'' °E 

18 73 4 0 0.05 0.00 0 124 
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Population 

number 

Pop code Site Latitude, 

longitude 

N plants of 

D. brumalis 

N flowers 

D. brumalis 

N flowers D. 

brumalis 

without 

pollinaria 

N pollinated 

flowers of 

D. brumalis 

D. brumalis 

Male 

Fitness 

(proxy) 

D. brumalis 

Female 

Fitness 

(proxy) 

N total flowers 

Daviesia spp. 

plants 

N ‘other pea 

plants' flowers 

1 F1 Lesmurdie - Canning Rd 32°01'45.6'' °S, 

116°06'01.3'' °E 

25 81 17 2 0.21 0.02 1700 100 

2 F2 Lesmurdie - Canning Rd 32°01'41.9'' °S, 
116°05'41.7'' °E 

25 83 7 1 0.08 0.01 400 24 

3 F3 Lesmurdie - Canning Rd 32°01'43.8'' °S, 

116°05'12.1'' °E 

5 12 0 0 0.00 0.00 100 0 

4 F4 Lesmurdie - Canning Rd 32°01'43.2'' °S, 

116°04'51.9''° E 

36 100 19 0 0.19 0.00 600 20 

5 F5 Lesmurdie - Canning Rd 32°01'39.8'' °S, 
116°04'45.3'' °E 

50 205 34 7 0.17 0.03 600 0 

6 F6 Lesmurdie - Canning Rd 32°01'34.0'' °S, 

116°04'34.3'' °E 

13 48 9 1 0.19 0.02 500 50 

7 F7 Lesmurdie - Canning Rd 32°01'39.1'' °S, 

116°04'42.8'' °E 

35 150 40 2 0.27 0.01 2000 7 

8 O1 Kalamunda - Zig Zag Point 31°56'35.3'' °S, 
116°02'46.5'' °E 

115 519 57 9 0.11 0.02 1600 0 

9 O2 Kalamunda - Zig Zag Point 31°56'30.4'' °S, 

116°02'37.4'' °E 

30 107 20 1 0.19 0.01 600 0 

10 O3 Kalamunda - Zig Zag Point 31°56'28.6'' °S, 

116°02'54.5'' °E 

0 0 0 0 0.00 0.00 0 0 

11 F11 Lesmurdie - Pomeroy Rd 32°00'33.3'' °S, 
116°04'47.0'' °E 

4 11 1 0 0.09 0.00 0 56 

12 F12 Lesmurdie - Pomeroy Rd 32°00'48.6'' °S, 

116°03'15.0'' °E 

23 74 16 2 0.22 0.03 0 0 

13 F13 Lesmurdie - Pomeroy with 

Prutni Rd 

32°00'38.4'' °S, 

116°03'24.8'' °E 

19 89 10 0 0.11 0.00 0 300 

14 F14 Lesmurdie - Reid Rd 32°00'48.8'' °S, 
116°03'01.0'' °E 

1 2 1 0 0.50 0.00 0 20 

15 F15 Lesmurdie - Moffet Rd 32°01'03.0'' °S, 

116°03'26.6'' °E 

9 32 3 0 0.09 0.00 0 20 

16 F8 Lesmurdie - Canning Rd 32°01'39.6'' °S, 

116°06'11.8'' °E 

44 177 40 2 0.23 0.01 1200 20 

17 F9 Lesmurdie - Walshpole Rd 32°00'58.9'' °S, 

116°03'47.6'' °E 

20 71 1 1 0.01 0.01 500 0 

18 F10 Lesmurdie - Walshpole Rd 32°00'56.1'' °S, 

116°03'36.3'' °E 

7 21 1 0 0.05 0.00 0 0 
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SUPPLEMENTARY DATA, Table S8. Composition of pollen loads of insect species that visit Diuris brumalis and co-flowering Faboideae. 

Pollen loads were collected from the tibiae or abdomen. Pollen percentages occurrence for each individual insect was calculated by scanning 200 

pollen grains. The remaining grains were then scanned for pollen in trace amounts (X = <10 pollens grains per slide). 

 

 

 

 

 

 

No. Insect species Habitat Where caught 
Pollen percent occurrence (%) 

Daviesia Bossiaea Acacia Banksia Grevillea Hovea Myrtaceae 

1 Trichocolletes capillosus forest Daviesia decurrens 100 - - - X X X 

2 T. leucogenys outcrop D. horrida 97.5 - - - - 0.5 2 

3 T. leucogenys forest D. decurrens 100 - - - - - X 

4 T. leucogenys outcrop D. horrida 100 - - - - - X 

5 T. leucogenys forest D. rhombifolia 100 - - - - - - 

6 Apis mellifera forest D. decurrens 98 - - 1 - - 1 

7 A. mellifera forest D. decurrens 98 - - 1 - - 1 

8 A. mellifera forest D. decurrens 96.5 - 1 1.5 - - 1 

9 A. mellifera forest D. rhombifolia 80 - - - - - 20 

10 A. mellifera forest Bossiaea aquifolium - 97.5 X 1.5 - - 1 
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SUPPLEMENTARY DATA, Table S9. Means (averages across flower parts) and standard deviation of colour loci coordinates for each plant 

species measured: Diuris brumalis, pea plants (Faboideae) species (Bossiaea aquifolium, Daviesia decurrens, D. rhombifolia, D. horrida, Hovea 

chorizemifolia and H. pungens) and other yellow-flowered species present at sites, Acacia pulchella and Hibbertia hypericoides. Means are based 

on colour measurements for six individuals. Colour loci were calculated using the Hexagon colour model of bee vision (Chittka, 1992). 

 

 

Species Mean (x) Mean (y) SD (x) SD (y) 

Acacia pulchella 0.46 -0.23 0.01 0.02 

Bossiaea aquifolium -0.21 -0.14 0.08 0.26 

Daviesia decurrens -0.31 -0.22 0.26 0.21 

Daviesia horrida -0.23 -0.28 0.08 0.08 

Daviesia rhombifolia -0.23 -0.21 0.06 0.04 

Diuris brumalis -0.18 -0.23 0.08 0,07 

Hibbertia hypericoides 0.03 -0.36 0.08 0.03 

Hovea chorizemifolia -0.34 0.23 0.07 0.05 

Hovea pungens -0.34 0.23 0.09 0.05 
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Chapter 2 

Pea plants in the southwestern Australia biodiversity hotspot: pronounced differences 

in potential pollinators between co-occurring species 

 

Abstract 

The Faboideae is a species-rich group of flowering plants, most of which exhibit the keel-

flower floral structure. In the south-western Australian Floristic Region (SWAFR), a 

recognised biodiversity hotspot, the Faboideae (pea plants) exhibit a range of floral colours and 

forms, which is suggestive of adaptation to different groups of pollinators. For four 

communities of pea plants in the SWAFR we tested if co-occurring pea plants share pollinator 

species, if they show differences in behaviour on the flower, and whether variation in stamen 

length or nectar composition is associated with pollinator type. With the aid of a video camera, 

we recorded which floral visitors contacted the reproductive structures of pea plants. We 

measured stamen length of pea plants, nectar volume by bagging flowers and nectar 

composition by gas chromatography-mass spectrometry.  Pea plant species were visited by 

between one and four genera of native bees, indicating variation in levels of specialisation of 

the pollination systems. In pea plant species with more specialised interactions, co-occurring 

pea plants showed pronounced differences in the bee genera attracted. Unexpectedly, some pea 

plant species frequently attracted beetles that may play an important role in pollination. There 

was no evidence for an association between stamen length and pollinator size, or sugar 

composition and pollinator type. In addition to native pollinators, the introduced honey bee 

Apis mellifera visited all pea species studied, suggesting that honey bees may be both a 

pollinator and potential competitor for resources with native pollinators. 

  

Key-words: Apis, bees, Faboideae, pollination, insect behaviour, Scarabaeidae  
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Introduction 

Among the Leguminosae, the Faboideae subfamily (hereafter referred to as pea plants) have 

the most morphologically specialised flowers, typically exhibiting the keel-flower floral form 

(Westerkamp 1997; Lewis et al. 2005; Fig. 1). Pollen deposition in pea plants occurs via a 

mechanism known as “tripping” (Arroyo 1981; Galloni et al. 2008; Aronne et al. 2012), where 

the pollinator alights on the wing petals, exerting pressure on the keel and causing the stamens 

to emerge from the keel and make contact with the ventral side of the pollinator (Fig. 1). Since 

this mechanism requires the appropriate size, behaviour, and in some cases strength of the 

pollinator to part the keel and contact the stamens, some pea plants species may be specialised 

on relatively few species of pollinator (Cordoba and Cocucci 2011).   

 

 

Fig. 1 a) Pea plant flower structure adapted from Woolcock (1989) and b) the reproductive 

structures enfolded between the keel petals. 

Most species of pea plant, particularly in the comparatively well-studied temperate regions of 

the northern hemisphere, appear to be pollinated primarily by bees, as they are the only floral 

visitors capable of routinely contacting the reproductive structures (Green and Bohart 1975; 

Frankie et al. 1976; Gross 1992; Navarro 2000; Aronne et al. 2012; Galloni et al. 2008; Carleial 

et al. 2015). However, some pea plant species with red flowers and highly elongated keels are 

pollinated by birds (Feinsinger et al. 1979; Bruneau 1997; Agostini et al. 2006), and others are 

even pollinated by mammals (Barker, 1970; Letten and Midgely 2009; Kobayashi et al. 2015). 

Interestingly, while insect-pollinated pea plants retain a similar overall floral morphology, the 

flowers exhibit considerable variation in colour, which could be associated with shifts in the 

group of pollinating insects. Further, while some pea plants attract a range of bees (e.g. Green 

and Bohart 1975; Frankie et al. 1976), in some species the precise distance between the anthers 
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and the nectar source means that a level of specialisation could also arise via a morphological 

fit. Given the potential for morphological specialisation and differences in pollinator attraction 

between species, pollination could potentially drive diversification in the pea plants, either 

through pollinator shifts facilitating speciation (Stebbins 1970; Van der Niet et al. 2014) or 

through aiding in the co-existence of diverse assemblages of pea plants (Pauw 2013). 

Pea plants are a conspicuous, widespread and highly diverse component of the Australian flora 

(approximately 1500 species and 136 genera; Crisp 2009). Despite their diversity and the 

potential for specialised pollination systems, pollination of Australian pea plants has received 

surprisingly little attention. Based on the few detailed studies of pollination of Australian pea 

plants (Gross 1992, 2001; Ogilvie et al. 2009; though see Popic et al. 2016), and incidental 

records of bees (e.g. Rayment 1936; Houston 2000; Batley and Houston 2012; Maynard 2014), 

the majority of Australian pea plants are probably pollinated primarily by bees (though see 

Popic et al. 2013). Ogilvie et al. (2009) showed that, while a diversity of insect species visited 

flowers of Pultanaea villosa, the pollinators were a range of solitary bee species. Alternatively, 

Gross (1992, 2001) found some Dillwynia and Pultanaea species to be somewhat specialised 

on the colletid bee genus Trichocolletes. As such, in the Australian pea plants there is some 

evidence for ecologically specialised pollination systems (where there are one or few pollinator 

species; sensu Armbruster 2017), but it remains unknown whether such specialisation plays 

any role in the origin or maintenance of diverse pea plants communities.  

The southwestern Australian Floristic Region (SWAFR sensu Hopper and Gioia 2004) is 

recognised as a biodiversity hotspot, primarily due to its diverse and threatened flora (Myers 

et al. 2000). There have been no detailed pollination studies of pea plants in the region (Phillips 

et al., 2010) despite the occurrence of over 540 species (Hopper and Gioia 2004). However, 

observational studies suggest that bees are likely to play an important role in the pollination of 

many species of pea plants (e.g. Hopper 1981; Houston 2000; Scaccabarozzi et al. 2018). In 

the SWAFR, pea plants often occur in communities with multiple co-flowering genera, 

encompassing a considerable range of floral colours such as violet, blue, yellows, red/yellow, 

orange and pink (e.g. Barrett and Pin Tay 2005). To test for differences in floral preference and 

behavioural patterns of potential pollinators, the present study focuses on 15 pea plant species 

in the SWAFR, occurring across four subregions with different plant communities. We address 

the following questions: (I) Do different species of pea plant have different species of potential 

pollinators? (II) How do different visitors behave when foraging? (III) Is the length of the 
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stamens related to the size of visiting bees? (IV) Does the nectar vary in sugar composition and 

volume between pea plants with different groups of potential pollinators? In addition, we 

quantify the proportion of visits contributed by the introduced bee Apis mellifera (Apidae) 

relative to native pollinators, as this species visits numerous species of native plant in south-

western Australia (Wills et al., 1990; Paton, 1993), and is known to pollinate at least some 

species of native Australian pea plants (Gross, 2011).  
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Materials and Methods 

 

We studied 15 species from eight genera of pea plants endemic to the SWAFR (Table 1, Table 

S1). All of the study species are common, and most are widely distributed in the SWAFR. 

Within the SWAFR, four study regions were selected, each with a different community of pea 

plants (PH: Perth hills; PC: Swan Coastal Plain; W: Waroona; MA: Margaret River-Augusta; 

Table 1, Fig. 2). For each species, pollinator observations were undertaken in either one or two 

sites (Table 1). All the study species in each region overlapped extensively in flowering period 

(Marshall 1995; Table 1). While most species are late winter to spring flowering (when 

observations were undertaken), one species, Jacksonia sternbergiana, flowers throughout the 

year.  

Species  Flowering time Region Co-occurring species 

Bossiaea 

aquifolium  

 

A-S PH 

H. chorizemifolia,  

H. pungens, 

D. decurrens,  

D. rhombifolia 

Bossiaea 

disticha  
 

S-N MA B. linophylla 

Bossiaea 

eriocarpa  

 

JL-O PC 

D. divaricata,  

I. cuneifolia,  

J. sternbergiana 

Bossiaea 

linophylla  

 

JL -D MA 
B. disticha,  

V. juncea 

Daviesia 

decurrens  

 

JN-A PH 

D. rhombifolia,  

B. aquifolium,  

H. chorizemifolia,  

H. pungens 

Daviesia 

divaricata  
 

JL-N PC 

B. eriocarpa,  

H. comptoniana,  

J. sternbergiana, 

I. cuneifolia 

Daviesia 

horrida  

 

JL-S PH H. pungens 

Daviesia 

rhombifolia  
 

J-A PH 

D. decurrens,  

B. aquifolium,  

H. chorizemifolia,  

H. pungens 

Isotropis 

cuneifolia  
 

A-O PC 

B. eriocarpa,  

H. comptoniana,  

J. sternbergiana 
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Species  Flowering time Region Co-occurring species 

Hardenbergia 

comptoniana  

 

JL-O PC 

B. eriocarpa,  

D. divaricata,  

I. cuneifolia,  

J. sternbergiana 

Hovea 

chorizemifolia  

 

JN-S PH 

H. pungens,  

D. decurrens,  

D. rhombifolia, 

B. aquifolium 

Hovea 

pungens  
 

J-N PH D. horrida 

Jacksonia 

sternbergiana  

 

J-D PC 

B. eriocarpa,  

D. divaricata,  

H. comptoniana,  

I. cuneifolia 

Mirbelia 

dilatata  
 

S-J W - 

Viminaria 

juncea 

 

O-J MA B. linophylla 

 

Table 1 A summary of the study species of pea plants with information on flowering time 

(information from Marchant et al. 1997), co-occurring species, and location of study sites. Four 

regions are represented: PH = Perth hills; PC = Swan Costal Plain; W = Waroona; MA = 

Margaret River-Augusta. Flowering time JL, JN, A, S, O, N, J: July, June, August, September, 

October, November, January 
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Fig. 2 Study site locations: Swan Coastal Plain (PC; blue circles), Margaret River / Augusta 

(MA; red circles), Perth Hills (PH; paler green circles), and Waroona (W; dark green circle). 

The irregular polygons represent Interim Bio regionalisation of Australia (IBRA) ecoregions 

described by Environment Australia (2000): SWA = Swan Coastal; WAR = Warren; JAF = 

Jarrah Forest 

Insect observations 

We undertook observations of floral visitors to test whether different species of pea plant were likely 

to be pollinated by different genera of native bees, and to quantify the frequency of visitation by Apis 

mellifera. Only floral visitors (grouped at genus level) that were observed to contact the floral 

reproductive structures were recorded. While further experiments are needed to confirm the role of 

any given floral visitor in pollination, species that contacted the reproductive structures and carried 

pollen (see below) were considered to be potential pollinators. Observations of floral visitors were 

carried out in the four study regions over different periods to cover slightly different peak flowering 

seasons. Observations in the PH were taken from 9th July until 6th September 2016 and from 8th July 

to 9th September 2017, on the PC from 26th August until 14th October 2015 and 29th August until 14th 

October 2016, at W from 22th to 23th November 2015, and in the MA region from 13th to 20th 

November 2015 and from 8th to 20th November 2016.  

We recorded the number of insects landing on the flowers of the focal pea species during 20-minute 

periods between 7.00 a.m. and 5.30 p.m. The air temperature was measured with a Smartsensor 



 81 
 

AR827 digital thermometer and hygrometer (Arco Electronics Ltd. Dongguan City, China) set 

20 cm above the ground. Pollinator observations were undertaken while the weather was sunny or 

partly cloudy, in all cases avoiding exceptionally windy conditions. During the observation periods 

the temperature varied from 11 °C to 30 °C, but most observations were undertaken when the 

temperature was higher than 17 °C. In total, across the four regions we conducted 176 observation 

periods of 20 minutes in 2015 and 140 in 2016 (6320 minutes of total observation). For each pea 

plant species, pollinator observations were conducted from two to ten days, covering between 320 

and 640 min, from 16 to 32 observation periods per species. Observations for any given species 

covered three to eight different plants (depending on availability), which were observed on rotation, 

with one individual plant observed per 20 minute trial. Observations were made over two years for 

all species with the exception of Mirbelia dilatata, for which observations were carried out only in 

2015. Visitation rates were calculated as mean (± SD) of total number of visiting insects on the 

number of observation periods. 

 

Comparative behaviour of potential pollinators 

To quantify the foraging behaviour of different insect genera, two behavioural categories were 

recorded for each potential pollinator: (I) foraging on nectar inferred by the insect repeatedly probing 

the area at the corolla base (tongue extension was not always obvious), and (II) whether the body of 

the insect contacted the reproductive structures of the plant. Further detailed description of the 

behaviour was made to identify distinctive behavioural traits displayed by different genera of 

potential pollinators. Quantification of insect behaviour was carried out through direct observation in 

the field and by watching slow-motion video records with an EOS M video camera (Canon, 

Tokyo, Japan). Observations of pollinator behaviour were carried out for the first flower on a 

given plant visited by the insect. We compared between genera the proportion of insect visitors 

feeding on nectar and contacting the reproductive structures using G-tests in GenAlEx 6.5 

(Peakall and Smouse 2006, 2012). To account for the effects of floral traits on insect behaviour, 

and that not all pollinator genera visited all pea plants, comparisons were only made between 

pollinator genera when they visited the same species of pea plant. Pollinator genera were only 

included for any given comparison if there were more than 40 observations on that particular 

pea plant species.  
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Identification of potential pollinators 

Of the insects observed visiting pea plant flowers (particularly females carrying pollen loads), 

110 were caught for identification (Table S2). The observations were supplemented with video 

(EOS M video camera; Canon, Tokyo, Japan) to aid in identifying the bees to genus. All 

collected insects were submitted as vouchers to the Western Australian Museum. Bees that 

were recorded visually or photographically, but not caught as a voucher specimen, were only 

identified to genus. 

 

Pollen loads on potential pollinators 

To test whether insects were carrying pollen of the pea plant that they were visiting, and 

therefore were likely to act as pollinators, pollen was identified from the bodies of potential 

pollinators (also including corbicular pollen in bees). For each pea plant species, between one 

and 12 observed insect specimens were caught and their pollen load analysed. Pollen observed 

on the tibiae or abdomen of pollinators during specimen identification was removed by washing 

the insect with distilled water, acetolysed following the methods of Erdtmann (1960), and 

permanently mounted on glass microscope slides. Pollen was identified under high 

magnification (Olympus-BX 51 microscope with Olympus–DP71 camera, Olympus, Tokyo, 

Japan) by comparison with acetolysed mounted pollen samples from herbarium specimens at 

the Curtin University Palynology Laboratory, Bentley (WA, Australia). 

 

Stamen length and bee size 

To test whether stamen length of pea plants was correlated with size of the visiting bees, for 

the PH and PC regions we measured the total body length of bees and the length of the filament-

stamens of each pea plant using digital callipers (Prowin, China). Due to the stamens overlap, 

the measurements were taken on a random filament-stamen included in the aggregation of 

stamens. We measured both male and female bees and calculated separate means to account 

for sexual dimorphism. Stamens of 10 individual flowers of different plants from 11 species 

were measured. Generally stamen length did not vary greatly within a flower, so a single 

measurement was taken per flower. However, for Jacksonia sternbergiana the stamen length 

showed pronounced variation within individual flowers, so the minimum and maximum stamen 

lengths were measured for each flower. The relationship between stamen length and bee size 

was assessed by Spearmans’s rank correlation coefficient (rho), using JMP statistical software. 

The value for bee body length was taken from all individuals, regardless of which pea species 
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that they were collected from. As such, this same value was used for each of the different pea 

plant species that a bee species visited.  

 

Nectar volume and composition 

We conducted a pollinator exclusion experiment to test the assumption that the study species produce 

nectar, and to enable comparison of nectar composition between species. Ten randomly selected 

individuals of each species of pea plants occurring in the regions PH and PC had one inflorescence 

covered with an organza bag to exclude pollinators. Inflorescences were bagged in the afternoon, 

with nectar collected the following day when the temperature exceeded 17°C between 11.00 a.m. to 

2 p.m. to ensure maximum nectar production (Corbet et al. 1995). Nectar was collected at the base 

of the corolla (Fig. 1) from two flowers on each inflorescence using a 2 µl microcapillary tube 

(Drummond Microcaps, Broomall; Pa., USA), and the volume of nectar estimated by measuring 

the length of the column of liquid along the microcapillary tube (Corbet 2003) using digital 

callipers. Gas chromatography-mass spectrometry (GC-MS) was used to determine the 

proportion of fructose, glucose, and sucrose in the nectar of each species (Reiter et al. 2018; 

Appendix S1). Kruskall-Wallis non-parametric comparisons were made to compare the nectar 

volumes and proportions of sugars (sucrose, glucose and fructose) between all species, with 

Wilcoxon post-hoc comparisons made for pairs of species within each community.  Both the analyses 

were run using JMP statistical software. 

 

 

 

  



 84 
 

Results 

 

Potential pollinators of pea plants 

Ten species of pea plants were predominantly visited by bees (B. disticha, D. decurrens, D. 

divaricata, D. horrida, D. rhombifolia, H. comptoniana, H. chorizemifolia, H. pungens, J. 

sternbergiana and M. dilatata), and three species were visited by a combination of bees, and 

Neophyllotocus (Scarabaeidae) and/or Colymbomorpha (Scarabaeidae) beetles: B. 

aquifolium, B. eriocarpa, B. linophylla. Both female and male bees were visitors, though based 

on the captured specimens there appears to be a bias towards visitation by females. Two species 

(I. cuneifolia and V. juncea) were visited principally by beetles, comprising more than 50 % of 

the total visits from native insects (Fig. 3; Table S3). Most species of pea plant were visited by 

two or three genera. In the PH region, the three Daviesia species were primarily visited by 

Trichocolletes (Colletidae), while Hovea was visited predominantly by Leioproctus 

(Colletidae), and Bossiaea by Leioproctus and Neophyllotocus beetles. In the PC region, 

Daviesia and Hardenbergia were frequently visited by Trichocolletes and Leioproctus. 

Jacksonia was unusual in that it had a large number of visits by Euhesma (Colletidae) and was 

also visited by native bees shared with other pea species. Unlike other pea plant species in the 

study, almost all potential pollinators of I. cuneifolia were Neophyllotocus beetles (97%). In 

the MA region, bees in the genus Exoneura (Apidae) were the main potential pollinators of all 

three pea plant species, but B. linophylla and V. juncea attracted both bees and beetles. In the 

W region, M. dilatata was visited predominantly by Trichocolletes bees. 
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Fig. 3 Proportions of visits by potential pollinators (i.e. those species where some individuals 

contact the reproductive structures) per each species of pea plant in a) the Perth Hills (PH), b) 
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the Swan Coastal Plain (PC), c) the Margaret River / Augusta (MA) and d) the Waroona (W). 

Grey bars indicate the proportion of visits by native Hymenoptera out of all native insect 

visitors, white bars indicate the proportion of visits by native beetles of all native insect visitors, 

and black bars represent the proportion of total insect visits (native and non-native insect 

visitors) by the introduced Apis mellifera. N is the total number of visits from native potential 

pollinators while NI is the number of visits from potential pollinators including native species 

and the introduced honey bees Apis mellifera 

 

Trichocolletes bees visited the greatest diversity of pea plant species in the PH, PC and W 

regions, and accounted for more than 50% of visits by native potential pollinators to seven 

species of pea plants. In the MA region, the greatest diversity of pea plant species was visited 

by Exoneura bees, which accounted for more than 30% of visits by native potential pollinators 

to three species of pea plants. In the W region, Exoneura bees account for 20% of native 

pollinator visits to M. dilatata. 

Across the entire set of study species, Apis mellifera was the most prolific potential pollinator, visiting 

all of the pea plant species studied in each region. In the PH region, for two Hovea spp. and D. 

horrida, more than 50% of the total visits were by A. mellifera. In the PC region B. eriocarpa was 

predominantly visited by A. mellifera rather than native insects, with A. mellifera accounting for 90% 

of all visits. In the W region, A. mellifera represented over 50% of total visits to M. dilatata. 

 

Pollen loads of potential pollinators 

Pollen analysis confirmed the presence of pea plant pollen on the body of bee specimens 

(including corbicular pollen), and therefore the potential role as pollinators for 10 bee taxa 

across 11 pea plants (Table S4). For 37 out of 40 individual bees, the most abundant pollen 

type on the bee matched the plant on which the bee was observed feeding. The only exceptions 

were specimens of Lipotriches australica and Trichocolletes sp. in the W region that mainly 

carried pollen from Myrtaceae, despite being caught on M. dilatata, and an A. mellifera caught 

on D. divaricata, but carrying predominantly pollen from Oxalis (Table S4). 

 

Comparative behaviour of potential pollinators 

All genera of potential native bee pollinators foraged on nectar and contacted the reproductive 

structures. For native bees, the frequency of individuals attempting to forage on nectar varied 

between 78% and 100%, while contact with the reproductive structures occurred on 49% - 69% of 
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the occasions (Fig. 4). Interestingly, while Exoneura bees visiting B. disticha, B. linophylla and 

V. juncea parted the keel during foraging, on M. dilatata they only opened the petal wings and 

contacted the anthers after they had been left exposed by other visitors. As with the native bees, 

all honeybees were observed foraging on nectar and contacting the reproductive structures. Contact 

with the reproductive structures was observed on nearly 55% of visits by A. mellifera, a frequency 

exceeded by all other insect genera except Euhesma  (Fig. 4; Table S5). 

 

Fig. 4 Frequency of behaviours displayed by insect visitors: (I) foraging on nectar, as inferred 

by the insect repeatedly probing the area at the corolla base (white bars); and (II) contacting the 

reproductive structures (grey bars).  beetle genera * introduced honeybee 

Unlike bees, beetles frequently entered inside the parted keel and were observed exiting the flower 

covered in pollen. While beetles of the genera Neophyllotocus and Colymbomorpha frequently 

foraged on nectar (Fig. 4), they were also observed consuming pollen once inside the keel. In addition 

to feeding, beetles were often seen mating while they visited pea plant flowers (Table 2). The visits 

often lasted several minutes and occurred on various parts of the flower, where the beetles sometimes 

made contact with the anthers. 
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Pollinator taxon Pollinator 

group 

Landing Time of visit Abdomen Additional behaviour 

Apis mellifera HB DD >2 s F - 

Colymbomorpha B DD >2 s - Mating, pollen eating  

Euhesma NB S >2 s F - 

Exoneura  NB S >2 s F - 

Lassioglossum NB S ≤2 s F - 

Leioproctus NB DD >2 s F, B - 

Megachile NB S ≥2 s U - 

Neophyllotocus B DD >2 s - Mating, pollen eating 

Trichocolletes NB S <2 s B, F - 

 

Table 2 Behaviour of genera of potential pollinators during visits to pea plants. “Landing” was 

categorised based on orientation relative to the keel: body straight (S), body not straight (DD). 

The abdomen position was categorised as: flexing (F), curving around the keel (B) and curving 

upward (U). ‘Time of visit’ refers to the approximate time spent on an individual flower based 

on video recordings. HB: honeybees; B: beetles; NB: native bees 

 

Comparison of the behaviour of pollinators visiting particular pea plants revealed significant 

differences in the frequency of nectar foraging and the frequency with which they contacted 

the reproductive structures (Table 3). In both comparisons involving beetles, they fed on nectar 

significantly less often than native bees, but in V. juncea the Collymbomorpha beetles contacted 

the reproductive structures more frequently. In the three comparisons involving Apis and native 

bees, on each occasion there was no difference in the frequency of visits in which they foraged 

on nectar. However, in both occasions involving Trichocolletes, A. mellifera contacted the 

reproductive structures less frequently, but in the case involving Leioproctus, there was no 

significant difference. 
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Pea plant Comparison Nectar foraging 

(Gdf, p)  

Contacting reproductive 

structures 

(Gdf, p)  

Bossiaea aquifolium Leioproctus >Neophyllotocus 11.681*** ns 

 Leioproctus - Apis ns ns 

Daviesia divaricata Leioproctus >Trichocolletes 6.891** 4.311* 

Daviesia horrida Trichocolletes < Apis ns 11.391*** 

Mirbelia dilatata Trichocolletes > Apis ns 13.161*** 

Viminaria juncea Exoneura > Colymbomorpha 

Exoneura < Colymbomorpha 
101.561*** 

- 

- 

10.551** 

 

Table 3 Results of G-tests comparing the frequency of nectar foraging behaviour and contact 

with reproductive structures of different pollinator genera when visiting the same species of 

pea plant. Significance values: * <0.05  **<0.01 ***<0.001. ns: not significant 

 

Stamen length and bee size 

Based on a clear disjunction in average stamen length between species, pea plants could be 

classified into two broad groups. The species with short stamens (< 2.1 mm) were: H. 

comptoniana, D. rhombifolia, D. horrida, D. divaricata, D. decurrens, H. chorizemifolia, and 

H. pungens. The species with the long stamens (> 4.8 mm) were B. aquifolium, B. eriocarpa, 

J. sternbergiana and I. cuneifolia (Table S6).  Spearmans’s rank correlation coefficient showed 

no relationship between stamen length of pea plants and the size of the visiting bees (ρ = 0.27; 

p = 0.109; Fig. 5; Table S7).  
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Fig. 5 The relationship between stamen length of pea plants (y) and the body length of bee 

pollinators (x). +: indicates males, females are represented by plain squares. Potential 

pollinators are reported by genus or subgenus (in brackets) and when possible by species. 

 

Nectar: volume and sugar ratio  

Nectar volumes ranged from 0.1 µl for D. rhombifolia and D. horrida to 0.36 µl for J. sternbergiana, 

varying significantly between species (Χ2
10 = 41.05; p < 0.0001; Table 4; Table S8). Sucrose, 

glucose and fructose were present in the nectar of each species of pea plant and relative proportions 

showed significant variation between species for fructose (Χ2
10 = 62.63; p <0.0001), glucose (Χ2

10 

=59.83; p <0.0001) and sucrose (Χ2
10 = 62.99; p <0.0001; Table 4). The proportion of sucrose 

ranged from 20% to 70%, with the remaining sugar comprised of similar proportions of glucose and 

fructose (Fig. 6).   
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Region Comparison Volume 
Sugar ratio 

Fructose Glucose Sucrose 

  Χ2
10 = 41.0 Χ2

10 = 62.63 Χ2
10 =59.83 Χ2

10 = 62.99 

 
DH-BA ­ DH<BA* ­ DH>BA* 

PH 

DH-DD DD>DH* DH<DD** DH<DD* DH>DD* 

DH-DR ­ ­ DH>DR* DH<DR* 

DR-BA ­ DR<BA** DR<BA** DR>BA** 

DR-DD DR<DD* DR<DD** DR<DD** DR>DD** 

HCH-BA ­ HCH<BA** HCH<BA** HCH>BA** 

HCH-DD ­ HCH<DD** ­ HCH>DD** 

HCH-DH ­ HCH<DH* HCH<DH* HCH>DH* 

HCH-DR ­ ­ HCH<DR* ­ 

HCH-HP ­ HCH<HP** ­ ­ 

HP-DH HP>DH* HP>DH** HP>DH* DH>HP* 

HP-DR HP>DR* HP>DR** HP>DR* HP<DR** 

HP-HCH ­ ­ HP<HCH** HP<HCH** 

PC 

DDI-BE ­ DDI>BE* DDI>BE* DDI<BE* 

DDI-IC ­ DDI>IC* DDI>IC* ­ 

DDI-HC DDI>HC* DDI>HC* DDI>HC** HC>DDI** 

IC-HC ­ IC>HC* ­ ­ 

IC-DDI IC<DDI* ­ ­ IC>DDI* 

IC-JS IC<JS* ­ ­ ­ 

 
JS-HC ­ JS>HC* JS>HC** HC>JS* 

 

Table 4 For nectar volume and sugar ratios, non-parametric comparison for each species pair within 

regions (PH and PC) using Kruskall-Wallis tests, reporting only the significant Wilcoxon 

comparisons. BA: Bossiaea aquifolium; DD: Daviesia decurrens; DH: D. horrida; DR: D. 

rhombifolia; HP: Hovea pungens; HCH: Hovea chorizemifolia; BE: Bossiaea eriocarpa; DDI: 

Daviesia divaricata; HC: Hardenbergia comptoniana; IC: Isotropis cuneifolia; JS: Jacksonia 

sternbergiana. p-value: *<0.05 **<0.001 ***<0.0001. 
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Fig. 6 Mean proportions (± SD) of sugars (black = fructose, grey = glucose, white = sucrose) 

in the nectar of pea plant species in the Perth hills (PH) and Swan Coastal Plain (PC)  
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Discussion 

 

Generalised versus specialised pollination systems in pea plants 

Based on the presence of pollen loads from pea plants, and observations of stigmatic contact, 

it is likely that all bee species observed in this study are pollinators of the pea plants on which 

they forage. Our observations showed that native bees are the main potential pollinators of at 

least 10 of the investigated species of pea plants (Table S4). However, B. aquifolium, B. 

eriocarpa and B. linophylla were visited frequently by both bees and beetles, while I. cuneifolia 

and V. juncea were visited predominantly by beetles. In these cases, to assess the relative 

effectiveness of the two different groups of potential pollinators requires direct tests of fruit 

formation after pollinator visits (e.g. Gross 2001; Etcheverry et. al. 2012).  

 

The apparent reliance on bees as the main potential pollinators conforms to expectations based 

on observations of other Australian pea plants with relatively short keels (Gross 1992, 2001; 

Ogilvie et al. 2009). Nevertheless, it is interesting that most pea plant species were visited by 

only a subset of bee genera (Fig. 7). Several studies of bee pollination of pea plants outside of 

Australia have found that multiple bee genera are generally involved (e.g. Green and Bohart 

1975; Frankie et al.1976; Wainwright 1978; Navarro 2000; Galloni et al. 2008; Aronne et al. 

2012; though see Carleial et al. 2015). As such, the Daviesia and Hovea species we observed, 

where pollination was mostly or entirely by a single genus, may exhibit unusually high levels 

of ecological specialisation in their pollination system compared with other pea plants visited 

by bees.  
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Fig. 7 A summary of pea plant-insect interactions at the level of pollinator genus. Pea plants 

species with more generalised pollination systems are in green, while in pink are pea plants 

that have more specialisaed pollination systems. The weight of the arrows indicates the strength 

of the relationship based on number of visits. Here, pea plants were only considered to have 

specialized interactions when a single potential pollinator genus represented over 50% of visits 

of the insect genera that contacted the reproductive structures. 

 

Behaviour of native bees foraging on pea plants 

All observed bees regularly foraged on both nectar and pollen. Interestingly, in Daviesia 

divaricata the two genera of native bee that frequently visited the plant showed differences in 

the frequency with which they foraged nectar and contacted the reproductive structures, 

indicating that native bee genera could vary in their effectiveness as pollinators. Additionally, 

there was the potential for different bee species to harvest pollen from pea plants with either short or 

long stamens. For example, genera such as Leioproctus and Lassioglossum collected pollen 

from pea plant species presenting various stamen lengths. While most bee species were able to 

part the keel of their own accord, when visiting M. dilatata, Exoneura bees were observed to 

only weakly manipulate the keel. These bees could open the petal wings with resultant contact 

with the reproductive structures only in flowers that had been previously manipulated by 

another visiting species (e.g. Lopez 1999; Aronne et al. 2012).  
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Mechanisms underpinning the apparent specialisation of bee pollination systems 

In the present study, several species of pea plant attracted a distinct subset of the community of bee 

genera. In general, the attraction of a specific group of pollinators can arise through visual or olfactory 

signals that may be particularly detectable or attractive (Jersáková et al. 2012; Peakall et al. 2010), a 

morphology that favours efficient foraging by only a particular pollinator species (Abrahamczyk and 

Kessler 2015), or a reward that is of value to only few species of potential pollinators (Houston et al. 

1993; Pauw 2006). In our study case, even though there was a significant variation of sugar 

composition between co-occurring pea plant species, the same pollinator genera (and species where 

identified) foraged on multiple pea plants with varied sugar composition, suggesting that the sugar 

composition is unlikely to represent an adaptation to particular pollinator species. Alternatively, given 

the wide range of floral colours within the pea plant community, it is possible that visual signals could 

be important in driving differences in the attraction of functional groups of visitors. Manipulating the 

colour of artificial flowers (e.g. Jersáková et al. 2012) would provide a tractable approach to 

experimentally test the role of colour in pollinator attraction in these systems.  

Is stamen length correlated with the size of the bee? 

While we predicted that stamen length would be positively correlated with the body length of 

the primary bee genus visiting each pea plant, such a relationship was not evident. Nonetheless, 

the generalist J. sternbergiana may represent an interesting example of adaptation in stamen 

length, with the stamens exhibiting a 3 mm variation in length within the same flower. 

Jacksonia sternbergiana was visited by a broad spectrum of bee species, ranging from small 

bees such as Euhesma (5.82 ± 0.01 mm body length) to the larger Leioproctus (9.72 ± 1.66 mm) 

and Megachile (8.98 ± 0 mm). Variation in stamen length may be useful for achieving 

pollination via a wide range of bee species, particularly as J. sternbergiana flowers throughout 

the year and will be encountered by bee species with a range of flight times (see Houston 2000). 

Due to the short spring observation period compared with the year-long flowering of J. 

sternbergiana, it is likely that our observations have underestimated the full range of bee 

species (with different body sizes) that pollinate this plant.  

 

The potential role of beetles as pollinators 

Beetles of the family Scarabeidae were found to be potential pollinators in five species of pea 

plants, making up between 40% and 98% of all visits by native pollinators. Unlike bees, beetles 

typically foraged primarily on pollen rather than on nectar, and often displayed prolonged 

mating behaviour within and outside the keel of any given flower. While the beetle species 
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appeared to consume pollen, they nonetheless had pollen on the body after visiting a flower, 

suggesting that they are likely to act as pollinators. Given that in the present study beetles 

frequently foraged on pollen, it remains to be tested whether they are as effective a pollinator 

as bees. In the particular case of Isotropis cuneifolia, Neophyllotocus represented 98% of the 

floral visitors, suggesting that beetles may be the primary pollinators for this species. 

 

While beetles are reported to visit pea plants in other regions, they generally fail to make 

contact with the reproductive structures and have been considered unlikely to readily achieve 

pollination (e.g. Galloni et al. 2008). Indeed, we are unaware of any specialised beetle 

pollination system in pea plants, suggesting that the relationship between I. cunefolia and 

Neophyllotocus spp. may be exceptional. As such, studying the mechanism of pollinator 

attraction in I. cunefolia may provide insight on how this strategy has arisen. In other plant 

families and geographic regions, beetle-pollinated plants often have brightly coloured, upward 

facing bowl-like flowers (Dafni et al. 1990; Goldblatt et al. 1998; Bernhardt 2000). Isotropis 

cunefolia fits this pattern with its unusual upward facing flowers with particularly large 

standard petals. Given that this orientation of the standard petals could increase beetle visitation 

while making bee foraging relatively inefficient, this floral trait could potentially represent an 

adaptation to beetle pollination.  

 

Apis mellifera and the pollination of Western Australian pea plants 

In this study, the feral honey bee A. mellifera was likely to be a pollinator of most species of 

pea plant, representing over 10% of total floral visitations for any given pea plant species. 

Indeed, for several species A. mellifera comprised over 50% of total visiting insects that 

contacted the reproductive structures. Apis mellifera exhibited similar foraging behaviour to 

native bees in terms of nectar and pollen foraging. However, the orientation of A. mellifera on 

the keel during foraging was very variable (Table 2), raising the possibility that less pollen may 

be deposited on the insect body during some visitations. The effectiveness of A. mellifera at 

pollinating Australian pea plants was tested by Gross (2001), who found that 14.5% of visits 

by A. mellifera to flowers of Dillwynia juniperia led to fruit set, a similar level to that resulting 

from visits by Trichocolletes bees. While further experiments are needed, A. mellifera may 

currently represent an important pollinator for several species of pea plant in the SWAFR. 

However, while A. mellifera is likely to be a pollinator of these pea plants, it may potentially 

compete with native pollinators, leading to reduced population sizes of some native bee species 
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(e.g. Paini and Roberts 2005). Given the high diversity of pea plants and bee species in the 

SWAFR, understanding the effects of A. mellifera on native bees and the pea plants they 

pollinate would be important from a conservation perspective. 
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Appendix 

Appendix S1, Table S1-S8: Examples of generalist and specialist interactions among pea 

plants towards their potential pollinators.  
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Appendix, S1 Protocol for nectar analysis adopted for measuring the proportions of sugars in pea plants species of PH and PC regions.  

 

Methodology 

The content of each microcapillary tube was extracted with 25 µl ribitol solution (0.20 mg/ml) and transferred to a GC vial (2 ml). For each of the extracts, the solvent was 

evaporated to dryness with a stream of nitrogen. Methoxyamine-HCl (20 µl of 20 mg/ml solution in pyridine; Sigma-Aldrich, St Louis, MI, USA) was added and the sealed 

vials were heated for 2 hours in a heating block at 37 °C. At the same temperature, the extracts were treated with N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA, 35 

µl; Sigma-Aldrich, St Louis, MI, USA) in the same sealed vials for 1 hour before GC-MS analysis (Lisec et al. 2006). GC-MS analysis was performed on an Agilent system 

(Agilent, Palo Alto, Ca, USA), consisting of a 5973 mass selective detector connected to an 6890 GC equipped with a BPX5 column [(5 % phenyl polysilphenylene-siloxane), 

30 m × 0.25 mm × 0.25 μm film thickness, SGE Australia], using helium as the carrier gas. An Agilent 7683 autoinjector was used to make 3 µl injections in split mode (1 to 

10). Tentative identification of trimethylsilylated sugars was based on the comparison of retention index and mass spectra with data from a mass spectral library (NIST-11). 

All tentative identifications were confirmed by co-injections with synthetic standards. Calculations of the ratios between glucose, fructose and sucrose were achieved by 

comparison of peak areas of the total ion chromatograms (TIC) of nectar samples. The response factors for respective carbohydrate sampled were measured and the calculated 

peak areas were adjusted accordingly. 
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Appendix, Table S1 List of the plant species studied per family collected in the field sites, subsequently vouchered at the Herbarium of Western Australia, Perth and relative 

list of field sites 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Family 

name 

Study species Voucher Collecting 

location  

Field sites Coordinates 

Fabaceae Hovea chorizemifolia DS 1 31°29′ 01.2″ S; 

115° 57′ 55.0″ E 

Canning Rd, Lesmurdie 32°01'45.6''S, 116°06'01.3''E; 

32°01'41.9''S, 116°05'41.7''E  

Fabaceae Hovea pungens DS 7 31°56′ 28.6″ S; 

116° 02′ 52.7″ E 

Canning Rd, Lesmurdie; 

The Zig Zag, Kalamunda 

32°01'45.6''S, 116°06'01.3''E;  

31°56'35.3''S, 116°02'46.5''E 

Fabaceae Daviesia rhombifolia DS 3 31°29′ 01.2″ S; 

115° 57′ 55.0″ E 

Canning Rd, Lesmurdie 32°01'45.6''S, 116°06'01.3''E; 

32°01'41.9''S, 116°05'41.7''E  

Fabaceae Bossiaea aquifolium subsp. 

aquifolium 

DS 5 31°29′ 01.2″ S; 

115° 57′ 55.0″ E 

Canning Rd, Lesmurdie 32°01'45.6''S, 116°06'01.3''E; 

32°01'41.9''S, 116°05'41.7''E  

Fabaceae Daviesia decurrens subsp. 

decurrens 

DS 6 31°29′ 01.2″ S; 

115° 57′ 55.0″ E 

Canning Rd, Lesmurdie 32°01'45.6''S, 116°06'01.3''E; 

32°01'41.9''S, 116°05'41.7''E  

Fabaceae Daviesia horrida  DS 8 31°56′ 28.6″ S; 

116° 02′ 52.7″ E 

Canning Rd, Lesmurdie; 

The Zig Zag, Kalamunda  

32°01'45.6''S, 116°06'01.3''E;  

31°56'35.3''S, 116°02'46.5''E 

Fabaceae Hardenbergia comptoniana DS12 31°50' 00.6″ S; 

115° 51' 13.8'' E 

Koondoola bushland; 

May Dr, Kings Park 

31°50'12.7"S 115°52'02.8"E; 

31°57'24.3"S 115°50'03.4"E 

Fabaceae Jacksonia sternbergiana DS14 31°50' 00.6″ S; 

115° 51' 13.8'' E 

Koondoola bushland; 

May Dr, Kings Park 

31°50'12.7"S 115°52'02.8"E; 

31°57'24.3"S 115°50'03.4"E 

Fabaceae Isotropis cuneifolia subsp. 

cuneifolia 

DS15 31°50' 00.6″ S; 

115° 51' 13.8'' E 

Koondoola bushland; 

May Dr, Kings Park 

31°50'12.7"S 115°52'02.8"E; 

31°57'24.3"S 115°50'03.4"E 

Fabaceae Bossiaea eriocarpa DS16 31°50' 00.6″ S; 

115° 51' 13.8'' E 

Koondoola bushland; 

May Dr, Kings Park 

31°50'12.7"S 115°52'02.8"E; 

31°57'24.3"S 115°50'03.4"E 

Fabaceae Daviesia divaricata subsp. 

divaricata 

DS17 31°50' 00.6″ S; 

115° 51' 13.8'' E 

Koondoola bushland; 

May Dr, Kings Park 

31°50'12.7"S 115°52'02.8"E; 

31°57'24.3"S 115°50'03.4"E 

Fabaceae Mirbelia dilatata DS19 32º47’ 38.9″ S; 

116º 00' 37.93″ E 

Waroona – in proximity Nanga 

Rd 

32º47'38.9"S 116°00'37.93"E 

Fabaceae Bossiaea linophylla DS20 33°57 '07.8″ S; 

115° 02' 28.6″ E; 

East Kevill Rd, Margaret River; 

Hillview Rd, Augusta 

33°57'07.8"S 115°02'28.6"E; 

34°18'51.3"S 115°07'30.7"E 

Fabaceae Bossiaea disticha DS21 34°05' 46.5″ S; 

115° 02' 51.6″ E; 

Boranup forest; Conto 

Campground, Augusta 

34°05'46.5"S 115°02'51.6"E; 

34°04'44.4"S 115°01'09.3"E 

Fabaceae  Viminaria juncea DS22 33°57' 07.8″ S; 

115° 02' 28.6″ E; 

East Kevill Rd, Margaret River; 

Hillview Rd, Augusta 

33°57'07.8"S 115°02'28.6"E 

34°18'51.3"S 115°07'30.7"E 
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Appendix, Table S2 Insects collected while foraging on pea plants. The identification is provided at genus, subgenus or species level, when 

possible. F: female; M: male 

Species Date Region Site Genus subgenus Sex 

Bossiaea aquifolium 11/8/2016 PH Lesmurdie - Pomeroy Rd Apis mellifera - 

Bossiaea disticha 14/11/2015 MA Boranup forest Apis mellifera - 

Bossiaea disticha 17/11/2015 MA Hillview Rd Apis mellifera - 

Bossiaea disticha 17/11/2016 MA Boranup forest Apis mellifera - 

Bossiaea disticha 17/11/2016 MA Boranup forest Apis mellifera - 

Bossiaea eriocarpa 13/09/2016 PC Koondoola Bushland Apis mellifera - 

Bossiaea eriocarpa 3/10/2017 PC Koondoola Bushland Apis mellifera - 

Bossiaea linophylla 8/11/2016 MA Kevil Rd East Apis mellifera - 

Bossiaea linophylla 11/11/2016 MA Kevil Rd East Apis mellifera - 

Daviesia decurrens 7/8/2017 PH Lesmurdie - Cannimg Rd Apis mellifera - 

Daviesia decurrens 8/8/2017 PH Lesmurdie - Cannimg Rd Apis mellifera - 

Daviesia decurrens 18/08/2017 PH Lesmurdie - Cannimg Rd Apis mellifera - 

Daviesia divaricata 27/09/2015 PC Koondoola Bushland Apis mellifera - 

Daviesia divaricata 27/09/2015 PC Koondoola Bushland Apis mellifera - 

Daviesia divaricata 27/09/2015 PC Koondoola Bushland Apis mellifera - 

Daviesia divaricata 27/09/2015 PC Koondoola Bushland Apis mellifera - 

Daviesia divaricata 24/08/2016 PC Koondoola Bushland Apis mellifera - 

Daviesia divaricata 24/08/2016 PC Koondoola Bushland Apis mellifera - 

Daviesia horrida 2/8/2016 PH Koondoola Bushland Apis mellifera - 

Daviesia rhombifolia 11/8/2017 PH Lesmurdie - Cannimg Rd Apis mellifera - 

Daviesia rhombifolia 25/08/2017 PH Lesmurdie - Cannimg Rd Apis mellifera - 

Hovea pungens 3/8/2016 PH Lesmurdie - Cannimg Rd Apis mellifera - 

Viminaria juncea 16/11/2015 MA Hillview Rd Apis mellifera - 

Viminaria juncea 20/11/2015 MA Hillview Rd Apis mellifera - 

Viminaria juncea 20/11/2015 MA Hillview Rd Apis mellifera - 

Viminaria juncea 20/11/2015 MA Hillview Rd Apis mellifera - 
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Species Date Region Site Genus subgenus Sex 

Bossiaea linophylla 8/11/2016 MA Kevil Rd East Colymbomorpha - 

Viminaria juncea 16/11/2015 MA Hillview Rd Colymbomorpha - 

Jacksonia sternbergiana 5/10/2016 PC Koondoola Bushland Euhesma sp. 1 F 

Jacksonia sternbergiana 5/10/2016 PC Koondoola Bushland Euhesma sp. 1 F 

Bossiaea disticha 13/11/2015 MA Yatch club Exoneura Exoneura sp. F 

Bossiaea disticha 17/11/2016 MA Boranup forest Exoneura Exoneura sp. F 

Bossiaea disticha 17/11/2016 MA Boranup forest Exoneura Exoneura sp. F 

Bossiaea disticha 17/11/2016 MA Boranup forest Exoneura Exoneura sp. F 

Bossiaea disticha 18/11/2016 MA Boranup forest Exoneura Exoneura sp. F 

Bossiaea linophylla 13/11/2015 MA Yatch club Exoneura Exoneura sp. F 

Bossiaea linophylla 8/11/2016 MA Kevil Rd East Exoneura Exoneura sp. F 

Bossiaea linophylla 8/11/2016 MA Kevil Rd East Exoneura Exoneura sp. F 

Bossiaea linophylla 8/11/2016 MA Kevil Rd East Exoneura Exoneura sp. F 

Bossiaea linophylla 13/11/2016 MA Kevil Rd East Exoneura Exoneura sp. F 

Bossiaea linophylla 13/11/2016 MA Kevil Rd East Exoneura Exoneura sp. F 

Mirbelia dilatata 23/11/2015 W East side of Nanga Rd Exoneura Exoneura sp. F 

Mirbelia dilatata 23/11/2015 W East side of Nanga Rd Exoneura Exoneura sp. F 

Mirbelia dilatata 23/11/2015 W East side of Nanga Rd Exoneura Exoneura sp. F 

Viminaria juncea 16/11/2015 MA Hillview Rd Exoneura Exoneura sp. F 

Viminaria juncea 20/11/2015 MA Hillview Rd Exoneura Exoneura sp. F 

Viminaria juncea 20/11/2015 MA Hillview Rd Exoneura Exoneura sp. F 

Viminaria juncea 20/11/2015 MA Hillview Rd Exoneura Exoneura sp. F 

Viminaria juncea 20/11/2015 MA Hillview Rd Exoneura Exoneura sp. F 

Isotropis cuneifolia 8/9/2015 PC Kings Park Lasioglossum sp. F 

Bossiaea disticha 18/11/2016 MA Boranup forest Lasioglossum Chilalictus sp. F 

Bossiaea linophylla 11/11/2016 MA Kevil Rd East Lasioglossum Chilalictus sp. F 

Hardenbergia comptoniana 11/11/2016 MA Kevil Rd East Lasioglossum Chilalictus sp. F 

Mirbelia dilatata 23/11/2015 W East side of Nanga Rd Leioproctus Cladocerapis sp. M 
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Species Date Region Site Genus subgenus Sex 

Daviesia divaricata 13/09/2016 PC Koondoola Bushland Leioproctus Euryglossidia sp. 1 F 

Jacksonia sternbergiana 5/10/2016 PC Koondoola Bushland Leioproctus Euryglossidia sp. 1 F 

Jacksonia sternbergiana 11/10/2016 PC Kings Park Leioproctus Euryglossidia sp. 1 F 

Jacksonia sternbergiana 11/10/2016 PC Kings Park Leioproctus Euryglossidia sp. 2 F 

Bossiaea aquifolium 5/9/2016 PH Lesmurdie -Cannimg Rd 
Leioproctus Leioproctus  WAM 
code F177 

F 

Bossiaea aquifolium 14/08/2016 PH Lesmurdie - Cannimg Rd Leioproctus Leioproctus sp. 1 F 

Bossiaea eriocarpa 13/09/2016 PC Koondoola Bushland 
Leioproctus Leioproctus WAM 
code F177 

F 

Daviesia decurrens 19/07/2016 PH Lesmurdie - Cannimg Rd Leioproctus Leioproctus sp. 1 F 

Daviesia decurrens 12/7/2017 PH Lesmurdie - Cannimg Rd Leioproctus Leioproctus sp. 1 F 

Daviesia decurrens 12/7/2017 PH Lesmurdie - Cannimg Rd Leioproctus Leioproctus sp. 1 M 

Daviesia divaricata 21/09/2015 PC Koondoola Bushland Leioproctus Leioproctus sp. 1 M 

Daviesia divaricata 22/09/2015 PC Koondoola Bushland Leioproctus Leioproctus sp. 1 F 

Hardenbergia comptoniana 14/10/2016 PC Kings Park Leioproctus Leioproctus sp. 1 F 

Hovea pungens 14/08/2016 PH Lesmurdie - Cannimg Rd Leioproctus Leioproctus sp. 1 M 

Mirbelia dilatata 23/11/2015 W East side of Nanga Rd Lipotriches  australica F 

Mirbelia dilatata 23/11/2015 W East side of Nanga Rd Lipotriches  australica F 

Mirbelia dilatata 23/11/2015 W East side of Nanga Rd Megachile Eutricharaea sp. 1 F 

Bossiaea eriocarpa 13/08/2016 PC Koondoola Bushland Megachile Hackeriapis sp. 1 F 

Isotropis cuneifolia 7/9/2015 PC Kings Park Neophyllotocus  sp. 1  

Bossiaea disticha 17/11/2015 MA Hillview Rd Syrphidae  

Hardenbergia comptoniana 14/10/2016 PC Kings Park Syrphidae  

Bossiaea eriocarpa 29/09/2016 PC Koondoola Bushland Trichocolletes gelasinus F 

Daviesia decurrens 26/07/2016 PH Lesmurdie - Cannimg Rd Trichocolletes capillosus M 

Daviesia decurrens 26/07/2016 PH Lesmurdie - Cannimg Rd Trichocolletes capillosus F 

Daviesia decurrens 11/8/2017 PH Lesmurdie - Cannimg Rd Trichocolletes leocogenys F 

Daviesia decurrens 11/8/2017 PH Lesmurdie - Cannimg Rd Trichocolletes leocogenys F 

Daviesia decurrens 13/07/2016 PH Lesmurdie - Cannimg Rd Trichocolletes capillosus M 

Daviesia decurrens 13/07/2016 PH Lesmurdie - Cannimg Rd Trichocolletes capillosus M 



109 
 

Species Date Region Site Genus subgenus Sex 

Daviesia decurrens 20/07/2016 PH Lesmurdie - Cannimg Rd Trichocolletes capillosus F 

Daviesia decurrens 18/07/2016 PH Lesmurdie - Cannimg Rd Trichocolletes capillosus M 

Daviesia decurrens 18/07/2016 PH Lesmurdie - Cannimg Rd Trichocolletes capillosus M 

Daviesia divaricata 6/9/2016 PC Koondoola Bushland Trichocolletes gelasinus F 

Daviesia divaricata 12/9/2016 PC Koondoola Bushland Trichocolletes gelasinus F 

Daviesia divaricata 11/9/2016 PC Koondoola Bushland Trichocolletes gelasinus F 

Daviesia divaricata 13/09/2016 PC Koondoola Bushland Trichocolletes gelasinus F 

Daviesia divaricata 5/9/2017 PC Koondoola Bushland Trichocolletes gelasinus F 

Daviesia divaricata 13/09/2017 PC Kings Park Trichocolletes gelasinus M 

Daviesia divaricata 22/09/2015 PC Koondoola Bushland Trichocolletes platyprosopis M 

Daviesia divaricata 22/09/2015 PC Koondoola Bushland Trichocolletes dives F 

Daviesia divaricata 26/09/2015 PC Koondoola Bushland Trichocolletes platyprosopis F 

Daviesia divaricata 26/09/2015 PC Koondoola Bushland Trichocolletes platyprosopis M 

Daviesia horrida 2/8/2016 PH Koondoola Bushland Trichocolletes leocogenys M 

Daviesia horrida 2/8/2016 PH Koondoola Bushland Trichocolletes leocogenys F 

Daviesia horrida 23/08/2017 PH Lesmurdie - Cannimg Rd Trichocolletes leocogenys F 

Daviesia rhombifolia 11/8/2017 PH Lesmurdie - Cannimg Rd Trichocolletes leocogenys F 

Daviesia rhombifolia 18/08/2017 PH Lesmurdie - Cannimg Rd Trichocolletes leocogenys F 

Daviesia rhombifolia 18/08/2017 PH Lesmurdie - Cannimg Rd Trichocolletes leocogenys F 

Daviesia rhombifolia 24/08/2017 PH Lesmurdie - Cannimg Rd Trichocolletes leocogenys F 

Hardenbergia comptoniana 3/10/2016 PC Kings Park Trichocolletes gelasinus F 

Hardenbergia comptoniana 11/10/2016 PC Kings Park Trichocolletes gelasinus F 

Hardenbergia comptoniana 14/10/2016 PC Kings Park Trichocolletes gelasinus F 

Jacksonia sternbergiana 11/10/2016 PC Kings Park Trichocolletes gelasinus F 

Jacksonia sternbergiana 12/9/2017 PC Kings Park Trichocolletes gelasinus F 

Mirbelia dilatata 23/11/2015 W East side of Nanga Rd Trichocolletes sp. F 

Mirbelia dilatata 23/11/2015 W East side of Nanga Rd Trichocolletes marginatus M 

Viminaria juncea 20/11/2015 MA Hillview Rd Trichocolletes sp. F 
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Appendix, Table S3 Genera of potential pollinators that contacted the reproductive structures of any given species of pea plants. ‘Mean’ is the 

average of insects landing per Trial (SD = standard deviation); ‘n’ is number of total insect landing per genus; ‘Total N’ is the total number of 

visits from native potential pollinators while ‘Total NI’ is the number of visits from potential pollinators including native species and the 

introduced honey bees Apis mellifera.  

  Native bees Beetles Introduced bees 

Total N Total NI 

      
PH 

Trials 
Trichocolletes  Leioproctus Neophyllotocus  Apis 

      
Mean (± SD) n Mean (± SD) n Mean (± SD) n Mean (± SD) n       

Hovea chorizemifolia 32 - - 0.3 ± 0.52 10 - - 0.4 ± 0.55 12 10 22       

Hovea pungens 32 - - 0.8 ± 1.07 25 - - 2.8 ± 1.39 88 25 113       

Daviesia decurrens 32 2.3 ± 1.54 74 0.0 0 - - 0.8 ± 0.95 24 74 98       

Daviesia rhombifolia 32 1.3 ± 1.17 43 0.3 ± 0.47 10 - - 0.6 ± 0.75 20 53 73       

Daviesia horrida 32 2.3 ± 1.38 75 0.0 0 - - 2.5 ± 1.17 81 75 156       

Bossiaea aquifolium 32 - - 1.3 ± 1.63 40 1.5 ± 1.25 49 2.7 ± 1.23 85 90 175       

 

  Native bees Beetles Introduced bees 

Total N Total NI 
PC Trials 

Trichocolletes Euhesma Lassioglossum Leioproctus Megachile Neophyllotocus Apis 

Mean (± SD) n Mean (± SD) n Mean (± SD) n Mean (± SD) n Mean (± SD) n Mean (± SD) n Mean (± SD) n 

Bossiaea eriocarpa 18 0.7 ± 0.0.46 12 - - - - 0.1 ± 0.32 2 - - 0.6 ± 0.85 10 10.1 ±4.18 182 24 206 

Hardenbergia comptoniana 19 2.5 ± 2.14 48 - - 0.5 ± 0.69 10 1.3 ± 0.88 25 - - - - 0.9 ± 0.84 18 83 101 

Daviesia divaricata 19 3.8 ± 1.34 72 - - - - 3.6 ± 1.29 69 - - - - 1.8 ± 0.89 35 141 176 

Isotropis cuneifolia 16 - - - - 0.1 ± 0.34 2 - - - - 3.1 ± 1.78 49 0.6 ± 0.71 10 51 61 

Jacksonia sternbergiana 16 1.6 ± 1.54 25 2.8±2.50 45 - - 2.0 ± 1.78 32 0.2 ± 0.44 3 - - 1.5 ± 1.36 24 105 129 
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  Native bees Beetles Introduced bees 

Total N 
 
Total NI 
 

    

MA Trials 
Trichocolletes Exoneura Lassioglossum Colymbomorpha Apis     

Mean (± SD) n Mean (± SD) n Mean (± SD) n Mean (± SD) n Mean (± SD) n     

Bossiaea linophylla 17 0.6 ± 0.49 10 3.4 ± 1.63 58 0.2 ± 0.44 4 4.2 ± 3.04 71 1.5 ± 1.09 26 143 169     

Bossiaea disticha 17 0.2 ± 0.57 4 4.2 ± 3.13 72.0 0.4 ± 0.61 6.0 - - 2.1 ± 1.93 36 82 118     

Viminaria juncea 16 0.3 ± 0.47 4 4.3 ± 2.24 68.0 0.0 0.0 9.0 ± 2.28 144.0 2.1 ± 40 34 216 250     

                  

  Native bees Introduced bees 

Total N Total NI 

    

W Trials 
Trichocolletes Exoneura Megachile Lipotriches Apis m     

Mean (± SD) n Mean (± SD) n Mean (± SD) n Mean (± SD) n Mean (± SD) n     

Mirbelia dilatata 18 2.5 ± 1.04 45 0.9 ± 0.50 16 0.7 ± 0-48 12 0.2 ± 0.42 4 3.6 ± 1.09 65 77 142     

  



Appendix, Table S4 Pollen occurrence (%) on the body of bees caught foraging on pea plants. The pollen has been identified to the lowest taxonomic level 

possible. X denotes traces of pollen grains 
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Apis mellifera PH Bossiaea aquifolium                 1   97.5         

Apis mellifera MA Bossiaea disticha                 7   93               

Apis mellifera MA Bossiaea disticha                 0.5   99.5               

Apis mellifera PC Bossiaea eriocarpa   X             X   100   X           

Apis mellifera PC Bossiaea eriocarpa     0.5   X       X   99               

Apis mellifera PH Daviesia decurrens                 1   98         

Apis mellifera PH Daviesia decurrens                 1   98         

Apis mellifera PH Daviesia decurrens                 1   96.5         

Apis mellifera PC Daviesia divaricata   0.5         4   1   2 92             

Apis mellifera PC Daviesia divaricata                 2.5     95             

Apis mellifera PC Daviesia divaricata                 1.5     98             

Apis mellifera PC Daviesia divaricata     8       1         90             

Apis mellifera PC Daviesia divaricata   1         1         45.5             

Apis mellifera PC Daviesia divaricata   X 0.5           X     98.5             

Apis mellifera PH Daviesia rhombifolia                 20   80         

Apis mellifera MA Viminaria juncea   1             X X               99 

Apis mellifera MA Viminaria juncea   1         X   1                 98 

Apis mellifera MA Viminaria juncea   1         X   X                 99 

Exeneura exeneura MA Bossiaea lynophylla                 2 0.5 97.5               

Exeneura exeneura MA Viminaria juncea                                   100 

Leioproctus (Euryglossidia) PC Jacksonia sternebergiana 0.5     0.5                       99     

Leioproctus leioproctus PC Daviesia divaricata               0.5 3 1.5   46       1     
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 FAMILY FABOIDEAE 

Insects  Site Caught on 
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Leioproctus leioproctus  PH Bossiaea aquifolium                     100               

Leioproctus leioproctus  PC Bossiaea eriocarpa   1 2.5           X   96.5               

Lipotriches australiaca W Mirbelia dilatata                 100                   

Megachile (Hackeriapis) PC Bossiaea eriocarpa       20         6 3 65               

Trichocolletes capillosus PH Daviesia decurrens                 X   100         

Trichocolletes gelasinus PC Bossiaea eriocarpa   X X               99         1     

Trichocolletes gelasinus PC Daviesia divaricata                       81 18.5           

Trichocolletes gelasinus PC Daviesia divaricata                     1 99             

Trichocolletes gelasinus PC Daviesia divaricata   X 1                 98 1           

Trichocolletes gelasinus PC Daviesia divaricata                       99       1     

Trichocolletes gelasinus PC Daviesia divaricata                       98.5             

Trichocolletes gelasinus PC Jacksonia sternbergiana   1               X     14     84     

Trichocolletes leucogenys PH Daviesia decurrens                 X   100        

Trichocolletes leucogenys PH Daviesia horrida                 2   97.5  0.5       

Trichocolletes leucogenys PH Daviesia horrida 
                

X   100     
  

  

Trichocolletes leucogenys PH Daviesia rhombifolia 
                

-   100     
  

  

Trichocolletes sp.  PC Daviesia divaricata 
                

X   
  

100 
          

  

Trichocolletes sp.  W Mirbelia dilatata 
          

1 
    

72   
            

27   
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 OTHER GENERA 

Insects  Site Caught on 
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Apis mellifera PH Bossiaea aquifolium X 1.5             

Apis mellifera MA Bossiaea disticha                         

Apis mellifera MA Bossiaea disticha                         

Apis mellifera PC Bossiaea eriocarpa X                   X   

Apis mellifera PC Bossiaea eriocarpa   0.5                     

Apis mellifera PH Daviesia decurrens  1             

Apis mellifera PH Daviesia decurrens  1             

Apis mellifera PH Daviesia decurrens 1 1.5             

Apis mellifera PC Daviesia divaricata 0.5                       

Apis mellifera PC Daviesia divaricata     2.5                   

Apis mellifera PC Daviesia divaricata 0.5                       

Apis mellifera PC Daviesia divaricata                         

Apis mellifera PC Daviesia divaricata               52.5         

Apis mellifera PC Daviesia divaricata   1           X         

Apis mellifera PH Daviesia rhombifolia             

Apis mellifera MA Viminaria juncea                         

Apis mellifera MA Viminaria juncea                         

Apis mellifera MA Viminaria juncea                         

Exeneura exeneura MA Bossiaea lynophylla                         

Exeneura exeneura MA Viminaria juncea                         

Leioproctus (Euryglossidia) PC Jacksonia sternebergiana                         

Leioproctus leioproctus PC Daviesia divaricata         3         25   20 

Leioproctus leioproctus  PH Bossiaea aquifolium                         
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Leioproctus leioproctus  PC Bossiaea eriocarpa                 X       

Lipotriches australiaca W Mirbelia dilatata                         

Megachile (Hackeriapis) PC Bossiaea eriocarpa   6                     

Trichocolletes capillosus PH Daviesia decurrens        X       

Trichocolletes gelasinus PC Bossiaea eriocarpa                         

Trichocolletes gelasinus PC Daviesia divaricata     X           0.5       

Trichocolletes gelasinus PC Daviesia divaricata                         

Trichocolletes gelasinus PC Daviesia divaricata X X                     

Trichocolletes gelasinus PC Daviesia divaricata                         

Trichocolletes gelasinus PC Daviesia divaricata       0.5         1       

Trichocolletes gelasinus PC Jacksonia sternbergiana                         

Trichocolletes leucogenys PH Daviesia decurrens             

Trichocolletes leucogenys PH Daviesia horrida             

Trichocolletes leucogenys PH Daviesia horrida   
  

 
 

 
 

  
 

 

Trichocolletes leucogenys PH Daviesia rhombifolia   
  

 
 

 
 

  
 

 

Trichocolletes sp.  PC Daviesia divaricata   
                    

  

Trichocolletes sp.  W Mirbelia dilatata   
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Appendix, Table S5 Behavioural categories displayed by different potential pollinators: foraging on nectar and evidence of contacting the 

reproductive structures. Numbers are the total number of individuals exhibiting each behaviour. 

Potential pollinator 

taxa 

Bossiaea 

aquifolium 

Bossiaea 

disticha 

Bossiaea 

eriocarpa 

Bossiaea 

linophylla 

Daviesia 

decurrens 

Daviesia 

divaricata 

Daviesia 

horrida 

Daviesia 

rhombifolia 

Hardenbergia 

comptoniana 

Hovea 

pungens 

Isotropis 

cuneifolia 

Jacksonia 

sternbergiana 

Mirbelia 

dilatata 

Viminaria 

juncea 
Total 

Apis mellifera                

N insect landing 85 36 182 26 24 35 81 20 18 88 10 24 65 34 607 

N insect foraging nectar 67 32 170 18 24 35 75 20 16 30 4 21 65 34 482 

N insect contacted 

reproductive structures 
67 18 120 15 10 18 68 17 10 4 1 10 18 24 315 

Colymbomorpha                

N insect landing    21          240 261 

N insect foraging nectar    15          97 112 

N insect contacted 

reproductive structures 
   18          138 156 

Euhesma                

N insect landing            45   45 

N insect foraging nectar            35   35 

N insect contacted 

reproductive structures 
           22   22 

Exoneura                 

N insect landing  72  58         16 68 142 

N insect foraging nectar  72  58         16 68 142 

N insect contacted 

reproductive structures 
 48  44         2 24 70 

Lassioglossum                

N insect landing  6       10  2    12 

N insect foraging nectar  6       10  2    12 

N insect contacted 

reproductive structures 
 4       10      10 

Leioproctus                

N insect landing 40  2   69   25 25  32   153 

N insect foraging nectar 35  2   69   19 25  26   116 

N insect contacted 

reproductive structures 
33  2   61   15 23  19   97 

Neophyllotocus                

N insect landing 49  10        49    59 

N insect foraging nectar 27  4        26    30 

N insect contacted 

reproductive structures 
32  6        34    40 

Megachile                

N insect landing            3 12  15 

N insect foraging nectar            3 12  15 

N insect contacted 

reproductive structures 
           3 12  15 

Trichocolletes                

N insect landing 1 4 12 10 74 72 75 43 48   25 45 4 408 

N insect foraging nectar 1 4 12 10 64 67 64 31 48   25 45 4 370 

N insect contacted 

reproductive structures 
1 4 7 10 23 54 45 25 20   16 28 2 230 
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Table S6 Average stamen lengths of pea plant species. Based on clear disjunction in average stamen length between species, pea plants could be 

classified into two broad groups: short and long stamens species. 

 

 

 

 

 

 

 

 

  

 

Pea plant species Stamen length (mm) ± SD 

S
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rt
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Hovea chorizemifolia 0.73 ± 0.37 

Hardenbergia comptoniana 1.29 ± 0.26 

Daviesia rhombifolia 1.42 ± 0.14 

Daviesia horrida 1.5 ± 0.22 

Daviesia divaricata 1.5 ± 0.25 

Daviesia decurrens 1.98 ± 0.28 

Hovea pungens 2.08 ± 0.44 

L
o
n

g
 

st
a
m

en
s 

 

Bossiaea eriocarpa 4.83 ± 0.67 

Jacksonia sternbergiana 5.44 ± 0.67 

Isotropis cuneifolia 6.9 ± 0.57 

Bossiaea aquifolium 8.38 ± 0.34 
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Appendix, Table S7 Stamen lengths (±SD) of pea plants from the PH and PC regions and body length of the visiting bees. For each bee the total 

length of the body is reported (± SD), except for the specimens represented by one individual. Names in parentheses are subgenera. F: female; M: 

male 

 

Pea species 

Stamen 

length 

(mm) 

(±) SD Bee taxa 

Bee body 

length  

(mm) 

(±) SD Sex 

Bossiaea aquifolium 8.38 0.34 Apis mellifera 11.01 0.63 - 

Bossiaea aquifolium 8.38 0.34 Leioproctus (Leioproctus) 9.82 1.94 F 

Bossiaea eriocarpa 4.83 0.67 Apis mellifera 11.01 0.63 - 

Bossiaea eriocarpa 4.83 0.67 Leioproctus (Leioproctus) 9.82 1.94 F 

Bossiaea eriocarpa 4.83 0.67 Megachile (Hackeriapis) 8.98 - F 

Bossiaea eriocarpa 4.83 0.67 Trichocolletes gelasinus 14.88 1.70 F 

Daviesia decurrens 1.98 0.44 Apis mellifera 11.01 0.63 - 

Daviesia decurrens 1.98 0.28 Leioproctus (Leioproctus) 9.82 1.94 F 

Daviesia decurrens 1.98 0.28 Trichocolletes capillosus 13.44 0.21 F 

Daviesia decurrens 1.98 0.28 Trichocolletes leucogenys 12.61 0.94 F 

Daviesia divaricata 1.50 0.25 Leioproctus (Euryglossidia) 9.55 1.28 F 

Daviesia divaricata 1.50 0.25 Leioproctus (Leioproctus) 9.82 1.94 F 

Daviesia divaricata 1.50 0.25 Trichocolletes dives 17.84 - F 

Daviesia divaricata 1.50 0.25 Trichocolletes gelasinus 14.88 1.70 F 

Daviesia divaricata 1.50 0.25 Trichocolletes platyprosopis 13.14 - F 

Daviesia horrida 1.50 0.22 Apis mellifera 11.01 0.63 - 

Daviesia horrida 1.50 0.22 Trichocolletes leucogenys 12.61 0.94 F 

Daviesia rhombifolia 1.42 0.14 Apis mellifera 11.01 0.63 - 

Daviesia rhombifolia 1.42 0.14 Trichocolletes leucogenys 12.61 0.94 F 

Hardenbergia comptoniana 1.29 0.26 Lassioglossum 7.69 0.77 F 
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Pea species 

Stamen 

length 

(mm) 

(±) SD Bee taxa 

Bee body 

length  

(mm) 

(±) SD Sex 

Hardenbergia comptoniana 1.29 0.26 Leioproctus (Leioproctus) 9.82 1.94 F 

Hardenbergia comptoniana 1.29 0.26 Trichocolletes gelasinus 14.88 1.70 F 

Hovea pungens 2.08 0.44 Apis mellifera 11.01 0.63 - 

Isotropis cuneifolia 6.90 0.57 Lassioglossum 7.69 0.77 F 

Jacksonia sternbergiana 5.44 0.57 Euhesma 5.82 0.01 F 

Jacksonia sternbergiana 5.44 0.67 Leioproctus (Euryglossidia) 9.55 1.28 F 

Jacksonia sternbergiana 5.44 0.67 Trichocolletes gelasinus 14.88 1.70 F 

Daviesia divaricata 1.50 0.25 Leioproctus (Leioproctus) 7.98 0.36 M 

Daviesia divaricata 1.50 0.25 Trichocolletes platyprosopis 12.64 0.35 M 

Daviesia rhombifolia 1.42 0.14 Trichocolletes capillosus 11.62 0.76 M 

Daviesia decurrens 1.98 0.28 Trichocolletes capillosus 11.62 0.76 M 

Daviesia horrida 1.5 0.22 Trichocolletes leucogenys 12.88 - M 

Hovea pungens 2.08 0.44 Leioproctus (Leioproctus) 7.98 0.36 M 

Daviesia decurrens 1.98 0.28 Leioproctus (Leioproctus) 7.98 0.36 M 

Hardenbergia comptoniana 1.29 0.26 Trichocolletes gelasinus 12.98 - M 
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Appendix, Table S8 Nectar volume of pea plant species, mean and standard deviation 

Pea plant species 
Nectar volume µl (Mean 

± SD) 

Bossiaea aquifolium 0.14 µl ± 0.10 

Bossiaea eriocarpa 0.28 µl ± 0.27 

Daviesia decurrens 0.15 µl ± 0.06 

Daviesia divaricata 0.25 µl ± 0.10 

Daviesia horrida 0.09 µl ± 0.04 

Daviesia rhombifolia 0.09 µl ± 0.04 

Hardenbergia comptoniana 0.16 µl ± 0.06 

Hovea chorizemifolia 0.14 µl ± 0.07 

Hovea pungens 0.21 µl ± 0.16 

Isotropis cuneifolia 0.15 µl ± 0.07 

Jacksonia sternbergiana 0.36 µl ± 0.25 
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Chapter 3 

This Chapter will be send to Botanical Journal of the Linnean Society. 
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Chapter 3 

A general pea flower image? Ecological factors affecting reproductive success in 

an orchid that exhibits imperfect floral mimicry 

 

ABSTRACT 

 

Co-occurring rewarding plants can enhance the reproductive success of plants that are 

pollinated by mimicry of rewerding flowers. However, is not always possible to readily 

discern between the effects of models and non model plants that can act as magnet to 

pollinators. Here we tested for mimicry of co-occurring pea plants (Faboideae) in 

Diuris magnifica (Orchidaceae) and  if other ecological factors, such as number of pea 

plant flowers, habitat remnant size and frequency of conspecifics influence 

reproductive success of D. magnifica.  

D. magnifica was pollinated by Trichocolletes bees (Colletidae) which displayed 

similar behaviours when attempting to feed at the labellum of the orchid and the keel 

of several co-occuring pea plants. Quantification of floral spectral reflectance 

suggested that the pea plants Bossiaea eriocarpa, Daviesia divaricata, Jacksonia 

sternbergiana were likely to represent model plats, while the pea plant  Hardenbergia 

comptoniana was likely a non model pea plant. Orchid reproductive success was not 

affected by the number of flowers of the model plants, but there was evidence that 

pollination rate is enhanced by the presence of flowering H. comptoniana. Pollination 

success of the orchid decreased with higher density of conspecifics, but was not related 

to Trichocolletes occurrence, possibly due to the likely contribution of sub-optimal 

pollinators (Apis and beetles). Lastly, there was evidence for higher fruit set for D. 

magnifica in larger habitat remnants. 

D. magnifica may reveal new ecological insights, especially on the definition of model 

and magnet plants, the role of the foraging behaviour and habitat size in food mimicry 

systems. 

 

Key words: Diuris magnifica, Faboideae, Colletidae, plant fitness, mimicry, plant 

frequency, pollinator behaviour, food deception 
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INTRODUCTION 

 

Rather than providing a reward to pollinators, it has been estimated that one third of 

orchid species attract their pollinators through deception (van der Pijl & Dodson, 1966; 

Dressler, 1981; Ackerman, 1986; Renner, 2006). A diversity of deceptive strategies 

are used, including mimicry of floral rewards (Ackerman, 1986), females of the 

pollinator species (Coleman, 1928; Schiestl et al., 1999, 2003), brood and shelter sites 

(Jones, 1960; Martos et al., 2015), and alarm pheromones (Brodmann et al., 2009). 

Among deceptive orchids, the most common pollination strategy is food deception, 

where the rewardless orchid displays floral signals typically associated with rewarding 

plants (Jersáková, Johnson, Kindlmann, 2006). Pollination by food deception ranges 

between generalised food deception, where the orchid uses floral signals that are 

attractive to pollinators but without closely resembling any specific model species 

(Jersáková et al., 2006), and floral mimicry, where the orchid closely mimics one or 

more species of model food plants (Brown & Kodric-Brown, 1979; Roy & Widmer, 

1999; Johnson, 1994; 2000). Aside from morphological and colour similarity to lure 

pollinators, in mimicry systems it is expected that pollinators will exhibit the same 

foraging behaviour on model and mimic (e.g. Scaccabarozzi et al., 2018; De Jager & 

Anderson, 2019), and that mimicry will be more effective with higher ratio of model 

to mimic flowers (Anderson & Johnson, 2006) through reduced opportunity for 

pollinator learning (Bierzychudek, 1981; Dafni & Ivri, 1981; Ruxton, Sherratt,  Speed, 

2004).  

 

While there is experimental evidence that mimic fitness is greater when they are scarce 

relative to the model (Johnson, 1994; Anderson & Johnson, 2006), or occur in 

populations at low density (Ackerman, Meléndez Ackerman, Salguero Faria, 1997, 

Ferdy et al., 1999; Smithson & Gigord, 2001, Pellegrino et al., 2005), other factors 

can also influence reproductive success in food deceptive systems. In particular, the 

presence of rewarding plant species can increase the pollination success of non–

rewarding or less rewarding co-flowering plant species in the floral community (i.e. 

the magnet effect species; Thomson, 1978; Feinsinger et al., 1986, Feinsinger, 1987; 

Laverty, 1992; Johnson, Alexandersson, Linder, 2003) through increasing the local 

abundance of pollinators (cf. Kunin, 1993). Several studies highlight that the vicinity 

to other rewarding plant species influences the frequency of pollination or foraging 
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behaviour (Thomson, 1978; Root, 1973; Holt & Lawton, 1994; Callaway, 1995; 

Hamba¨ck, Agren, Ericson, 2000).  For example, the pollination success of the orchid 

Anacamptis morio (L.) R.M. Bateman, Pridgeon & M.W. Chase is enhanced by the 

co-presence of the nectar producing plants Geum rivale L. (Rosaceae) and Allium 

schoenoprasum L. (Alliaceae) (Johnson et al., 2003). Alternatively, other studies have 

found evidence for competition, where neighbouring plants that provide a greater 

reward draw pollinators away from plants (Free, 1968; Waser, 1983; Lammi & 

Kuitunen, 1995) with no or meagre reward. In Dactylorhiza sambucina (L.) Soò, an 

orchid pollinated by generalised food deception, fitness was reduced by the abundance 

of the rewarding Muscari neglectum Ten. (Asparageceae) which displays dissimilar 

floral colour (Internicola et al., 2006). As such, deceptive orchids can be subject to 

both facilitation and competition from co-occurring plants, and the effect of magnet 

plants on the pollination success on non-rewarding plants is far from generalizable 

(Peter & Johnson, 2008). 

 

Habitat fragmentation, as one of the leading cause of biodiversity decline (Pimm & 

Raven, 2000; Goddard, Andrew, Benton., 2010), can cause to reduced abundance of 

pollinators in small and / or isolated habitat remnants (Cunningham, 2000), leading to 

reduced plant reproductive success via pollination limitation (Nayak & Davidar, 2010; 

Pauw & Bond, 2011).  The impact of habitat fragmentation may often be most severe 

on plants with specialised pollination systems (Newman et al., 2013), as they are 

vulnerable to loss of just a single pollinator species. For example, in a guild of orchids 

pollinated by oil-collecting bees, there has been a gradual extinction of species from 

urban remnants following decline of the pollinator species, with more clonal species 

showing greater persistence (Pauw & Bond, 2011; Pauw & Hawkins, 2011). 

Nonetheless, the ability of some species to persist in the face of pollinator decline 

(Murren, 2002) highlights that the full effects of habitat fragmentation on many orchid 

populations are yet to be witnessed (e.g. Phillips et al., 2015), and that more studies 

are needed to test the potential effect of habitat fragmentation on plant-pollination 

interactions, especially on the long-term (Xiao et al. 2016).  

In particular, there has been relatively little research on the response of orchids 

pollinated by food mimicry to habitat fragmentation, but given that these systems are 

often specialised on one or few pollinator species (Newman, Anderson, Johnson, 2012; 

Johnson & Schiestl, 2016), they are expected to be highly vulnerable. 

http://www.ipni.org/ipni/idPlantNameSearch.do?id=998308-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAnacamptis%2Bmorio%2B%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=725355-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DGeum%2Brivale%2B%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=725355-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DGeum%2Brivale%2B%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=68181-3&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DMuscari%2Bneglectum%2B%26output_format%3Dnormal
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Based on pronounced similarity in colour and morphology to co-occurring pea plants, 

several species in the primarily Australian orchid genus Diuris Sm.are predicted to be 

pollinated by floral mimicry of a guild (Beardsell et al., 1986; Dafni & Bernhardt, 

1990). The mimicry system tends to be specialised on faboideae legumes (Edens-

Meier & Bernhardt, 2014) which are primarily visited by Trichocolletes bees 

(Rayment, 1929, 1935; Houston, 2018). While this hypothesis has subsequently 

received support in the form of pollinator sharing between Diuris and pea plants, and 

similar patters of UV reflection (Beardsell et al., 1986; Indsto et al., 2006), mimicry 

in Diuris has only recently been tested in detail. In Diuris brumalis, it was shown that 

not only do models and mimic show overlap in floral colour and greater morphological 

similarity than the remainder of the plant community, but the bee pollinator exhibits 

the same stereotyped foraging behaviours on both model and mimic (Scaccabarozzi et 

al., 2018). In D. brumalis, fitness increased with frequency of model plants, though 

this is likely to be through a facilitation effect as the bee pollinator feeds almost 

exclusively on Daviesia Sm. pea-plants and was almost absent from sites where 

Daviesia  were rare or absent (Scaccabarozzi et al., 2018).   

 

Aims and hypotheses 

Here we investigate the pollination of Diuris magnifica D.L.Jones, a species 

hypothesised to be a putative pea flower mimic, on the basis of similarity in flower 

shape and colour of co-occurring pea plants. Based on morphology, D. magnifica is 

believed to be closely allied to D. brumalis (Brown et al., 2013), but it grows in areas 

with several co-flowering pea plant species, and much of its remaining habitat is now 

in habitat remnants within an urban environment. Firstly, we investigated the 

possibility of floral mimicry testing the following predictions: (i) D. magnifica shares 

a pollinator with co-occurring pea plants (ii) colour overlaps between putative models 

and mimic, but not with the remainder of the floral community; (iii) the flowering 

phenology of the proposed mimic overlaps with the models; (iv) the pollinator exhibits 

with the mimic the deceived behaviour normally only associated with the model. 

Subsequently, we tested whether the reproductive success of D. magnifica (i) increases 

with the frequency of model species (ii) increases with the frequency of non-model 

food plants (iii) decreases at higher orchid density and (iv) decreases in small habitat 

remnants. 

http://www.ipni.org/ipni/idPlantNameSearch.do?id=29318-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DDiuris%2B%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=101923-3&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DDaviesia%2B%26output_format%3Dnormal
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MATERIALS AND METHODS 

 

Study species 

Diuris magnifica is endemic to the Swan Coastal Plain in Western Australia, with its 

main distribution centered on what is now the Perth metropolitan area. Flowering 

occurs from late winter to early spring, with between three and nine yellow, orange 

and purple flowers flowers produced per inflorescence (Brown et al., 2013). The 

primary habitat of D. magnifica is mixed L.f., Allocasuarina L.A.S.Johnson  and 

Eucalyptus L'Her. woodland (Brown et al., 2013), where it co-occurs with a range of 

co-flowering Faboideae species (Fig. 1): Daviesia divaricata Benth. , Bossiaea 

eriocarpa Benth. Hardenbergia comptoniana (Andrews) Benth., Jacksonia 

sternbergiana Benth. and Isotropis cuneifolia (Sm.) Benth. ex Heynh. (Marshall, 

1995). These pea plants produce floral nectar, while D. magnifica does not [Newmann 

et al., 2013; Appendix, S1]. As for the related D. brumalis, a vector is required for 

pollination of D. magnifica (Scaccabarozzi et al., 2018), the flowers are self-

compatible [Supplementary data, Appendix S1] and pollen deposition is the primary 

limitation to reproduction in D. magnifica, as most or all flowers on a scape produce 

fruit when hand-pollinated (Newman et al., 2013). 

 

Fig. 1 A, Diuris magnifica (Orchidaceae) and co-flowering pea plants (Faboideae): B, 

Daviesia divaricata; C, Bossiaea, eriocarpa; D, Isotropis cuneifolia; E, Jacksonia 

sternbergiana; F, Hardenbergia comptoniana. 

http://www.ipni.org/ipni/idPlantNameSearch.do?id=148038-3&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DBanksia%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=102705-3&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAllocasuarina%2B%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=3674-3&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DEucalyptus%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=103438-3&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DDaviesia%2Bdivaricata%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=64255-3&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DBossiaea%2Beriocarpa%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=116780-3&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DHardenbergia%2Bcomptoniana%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=153690-3&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DJacksonia%2Bsternbergiana%2B%2B%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=141755-3&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DIsotropis%2Bcuneifolia%2B%26output_format%3Dnormal
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Study sites 

We surveyed populations of D. magnifica for reproductive success during 2015 and 

2017, while in 2015 and 2016 we carried out pollinator observations. The orchid 

populations were distributed across 10 bushland remnants within the metropolitan area 

of the city of Perth [Supplementary data, Table S1, A-B]. D. magnifica was the only 

Diuris species observed in flower in the study sites / period. All the study species were 

vouchered and identified at the Herbarium of Western Australia in Perth 

[Supplementary data, Table S2].  

 

Observation of pollinators on Diuris magnifica 

To identify the pollinators of D. magnifica and quantify their behaviour, observation periods 

of insects visiting orchid flowers were performed at two sites in Koondoola bushland (S 

31°50'06.8'' E 115°51'83.4'') and Kings Park (S 31°57'25.9'' E 115°49'89.9'') between 

26 August to 28 September 2015 and 24 August to 13 September 2016. These sites 

were selected as they are two of the largest woodland remnants within the study region, 

have relatively intact vegetation communities, and D. magnifica was common. We 

conducted 248, 15-minutes observation periods (for a total of 3720 minutes 

observation), recording the insect behavior with EOS M video camera (Canon, Tokyo, 

Japan) for a subsequent examination in slow motion. Observations were conducted 

between 9.00 to 17.30, with temperatures ranging between 14 °C to 30 °C, as measured 

with a Smartsensor AR827 set 20 cm above the ground. Observations were made using 

arrays of picked orchid flowers (two inflorescences per vial, each with 4–6 flowers, 

three vials per trial, 10-20 cm apart; Scaccabarozzi et al., 2018)  placed 1–2 meters 

from flowering individuals of D. divaricata, B. eriocarpa, J. sternbergiana and I. 

cuneifolia.  

 

For each insect visiting a flower of Diuris and pea plants, the behaviour was recorded 

for eight categories following Scaccabarozzi et al., 2018 [Supplementary data, Table 

S3]. Due to the very rapid approaches of pollinators, behaviour was only recorded for 

the first flower visited, as tracking accurately the subsequent visit, was often 

impossible.  

Insects pollinating D. magnifica and pea plant flowers, especially those bearing the 

visible white pollinaria of D. magnifica, were collected for identification. All collected 
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specimens were submitted as vouchers to the Western Australian Museum as voucher 

specimens [Supplementary data, Table S4].  To confirm the food plants of the floral 

visitors of D. magnifica and pea plants, pollen identification from the bodies of bees 

caught was previously done as part of a study of the pollination of communities of 

Faboideae.  

 

Pollinators of pea plants and behavioural comparison 

Observations of floral visitors at pea plants at the Koondola bushland and Kings Park 

sites were previously undertaken as part of a study of the pollination of communities 

of Faboideae (Scaccabarozzi et al., in review). Based on the previous observations, we 

calculated the Trichocolletes frequency (number of visits per hour) on the co-flowering 

pea plants. This dataset enables us to test if D. magnifica shares pollinators with co-

occurring Faboideae species and make comparisons of the behavior of bees when 

visiting D. magnifica and Faboideae. These observations were made between the 26th 

of August and the 28th of September 2015 and between the 24th August and 14th of 

October 2016 from 9.00 and 17.30. During 20-minute observation periods pollinator 

visits were recorded with the same video camera as described above. Two of the eight 

behavioural categories recorded, landing and manipulation, were selected for a formal 

comparison of pollinator behaviour on the orchid and pea plants. We used a 

Generalised Linear Model (GLM) assuming a Bernoulli distribution of the response 

variable (which is, presence-absence of the behaviour studied) in R Studio Version 

1.0.44. Pea plant species was treated as a fixed effect. We tested the difference between 

D. magnifica and co-occurring pea plants (B. eriocarpa, D. divaricata, H. 

comptoniana, J. sternbergiana) in the proportion of (1) bees landing on the flower (2) 

among landing insects, bees manipulating the tri-lobed labellum / keel, the latter 

category including attempts to forage nectar and pollen. Because of the multiple 

comparisons involving D. magnifica and different pea plant species (four comparisons 

in total), the threshold for the significance was considered to be 0.0125 through a 

Bonferroni correction. Isotropis cuneifolia was not included in the analysis because it 

was not visited by Trichcolletes. 
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Pollen analysis 

As a complementary approach to resolving the food plants of the floral visitors, pollen 

was identified from the bodies of insects caught during pollinating D. magnifica and 

pea plants. Pollen observed on the tibiae or abdomen of pollinators during 

identification was removed by washing the insect with distilled water, acetolysed 

following the methods of Erdtmann (1960), and mounted on glass microscope slides. 

All pollen samples were identified under high magnification (Olympus-BX 51 

microscope with Olympus–DP71 camera, Olympus, Tokyo, Japan) by comparison 

with acetolysed mounted pollen samples from herbarium specimens of Bossiaea. 

eriocarpa, Daviesia divaricata, Hardenbergia  comptoniana, Jacksonia sternbergiana  

and other commonly co-flowering plant taxa.  

 

Spectral reflectance 

To test if bees are likely to be able to discern the floral color of D. magnifica flowers from 

the co-flowering pea plants species (B. eriocarpa, D. divaricata, H. comptoniana, I. 

cuneifolia, J. sternbergiana), we measured and analyzed floral spectral reflectance. 

Spectral reflectance was analysed using the colour hexagon model, based on the 

sensitivities of photoreceptors of the bee Apis mellifera (Chittka, 1992; Chittka & 

Kevan, 2005). Additionally, spectral reflectance was also measured for other common 

yellow-flowered rewarding species occurring at all sites, i.e. Hibbertia hypericoides (DC.) 

Benth. (Dilleniaceae), Acacia pulchella R.Br.  (Fabaceae), Conostylis aculeata 

R.Br.  (Haemodoraceae) and the pink flowered Hypocalymma robustum 

Schauer  (Myrtaceae).  Two flowers per plant from six randomly chosen individuals of each 

species were selected for measuring spectral reflectance using a spectrometer (Jaz, DH-

2000 UV-VIS-NIR Light source) with an integration time of 50 milliseconds. In D. 

magnifica, spectral reflectance measurements were undertaken from the outer lateral petals 

(LOP), the center of the dorsal sepal (DS), the labellum (L), and the internal (LLI) and 

external (LLE) parts of the lateral labellum lobe. In pea plants measurements were taken 

from the standard (SP) and wing (W) petals (Fig. 2, A-B).  For the other co-occurring species 

measurements were taken from the corolla, or stamens in the case of A. pulchella. Distances 

between colour loci were quantified using Euclidean distance in the colour hexagon model.  

 

 

http://www.ipni.org/ipni/idPlantNameSearch.do?id=316975-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DHibbertia%2Bhypericoides%2B%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=316975-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DHibbertia%2Bhypericoides%2B%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=471259-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAcacia%2Bpulchella%2B%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=429610-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DConostylis%2Baculeata%2B%26output_format%3Dnormal
https://www.google.com/search?q=Haemodoraceae&stick=H4sIAAAAAAAAAONgVuLUz9U3MC7OrihYxMrrkZiam5-SX5SYnJqYCgDDTZBaHQAAAA&sa=X&ved=2ahUKEwjPrIyw-8TgAhXEdCsKHWWACxkQmxMoATAWegQIAhAN
http://www.ipni.org/ipni/idPlantNameSearch.do?id=596838-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DHypocalymma%2Brobustum%2B%26output_format%3Dnormal
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Fig. 2 A, Floral morphology of Diuris magnifica (Orchidaceae) based on the 

terminology from Hoffman and Brown (2011): LOP (lateral outer petal), DS (dorsal 

sepal), LLE (external labellum lateral lobe), LLI (internal labellum lateral lobe), L 

(labellum), S (sepal); B, a pea-like flower (Faboideae) morphology; C, Male of 

Trichocolletes gelasinus carrying orchid pollinaria on the head with three pair legs 

used for foraging nectar (foreleg and middle leg) and storing pollen (hind leg) on pea 

plants. 

 

Flowering phenology of study species 

To test if the flowering period of D. magnifica overlaps with the flowering period of 

the proposed models, flowering was quantified across the study period for D. 

magnifica and the co-occurring pea plants. For each species, weekly counts of open 

flowers were undertaken in 30 x 30 m quadrats at three sites (two in Koondola and one 

in Kings Park) from 28 June to 18 October 2017. For pea plants, due to the high number 

of flowers, we scored the total number of flowers per quadrat as binned categories 

from 1 (100 flowers) to 25 (2500 flowers) increasing in 100 flower increments. 

However, in the case of D. magnifica and I. cuneifolia, due to the small number of 

flowers per inflorescence, the total number of flowers on each plant was quantified.  

  

Reproductive success of D. magnifica in relation to the abundance of pea plant models 

In 2015 and 2017 the proportion of D. magnifica flowers with pollenaria removal and the 

proportion of fruit formation was quantified at 15 sites (populations) in a single 30 x 30 

meter quadrat. We focused on these large remnants in an attempt to minimize the effect of 

habitat fragmentation when attempting to understand the role of food plants on fitness of D. 

magnifica. At the peak flowering period for D.  magnifica we recorded: (i) the estimated 

number of flowers for each pea plant species; (ii) the number of D. magnifica plants and 
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flowers. For the pea plants, variable (iii) was estimated by averaging the number of 

flowers per stem for ten stems and then multiplying by the number of stems 

(Scaccabarozzi et al., 2018). In both years, at the end of the flowering period of D. 

magnifica we collected data on the number of flowers in the population with pollinariaria 

removal and the number of produced fruits.  

 

We analysed the relationship of proportion of pollinaria removal and proportion of 

fruit set with the following independent variables: i) number of flowers of putative 

model pea plants, ii) number of flowers of the non-model food plant H. comptoniana, 

iii) number of orchid plants per quadrat. Isotropis cuneifolia was excluded from the 

quantification of co-flowering plants because it is not visited by the primary pollinator 

of D.. magnifica. A test using a Pearson correlation coefficient confirmed that these 

variables were not collinear and were therefore included in the same model. Data was 

analysed using GLMM (Generalized Linear Mixed Effect Model) in R Studio Version 

1.0.44 through lme4 and nlme packages. The model was a two-way nested GLMM 

that included identity of the habitat remnant and population as random effects. The 

response variables (proportion of pollinaria removal and proportion of fruit set) were 

assumed to be binomially distributed.  

In the case of a binomial model we have that the average of the response variable is 

equal to e(intercept + BX)/1 + e(intercept + BX). Therefore the relation if significant, is shaped 

as an exponential, unless we provided a transformation in the independent variable but 

this is not the case.  Year was originally included as covariate but, due to a lack of 

significant effect and increasing the AIC, it was removed from the final model. 

However, the repeat surveys across sites (in 2015 and 2017) were accounted for by 

having site as a random effect. 

 

Pearson type residuals were extracted from the model and were tested as a response 

variable in a GAM (Generalized Additive Model) to check for any non-linear patterns. 

When testing the effect of the number of H. comptoniana flowers on residuals from 

the GLMM, for fruit set there was  34.2% of the deviance of the residuals from the 

model was explained by non-linear patterns of the number of H. comptoniana flowers. 

As such, we repeated the analysis using a GAMM (General Additive Mixed Effect 

Model) in R Studio version 1.0.44 by using gamm4 package. The GAMM approach 

provides the benefit when residuals from the linear model show clear non-linear 
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pattern, as seen here (Zuur, 2012). For the GAMM analysis, we considered the same 

covariates (with the addition of a smooth term only for the covariate number of H. 

comptoniana flowers) and random effects. The use of the GAMM rather than GLMM 

lead to a decrease in the AIC value of more than 11 points (from 128.8 to 117.42) 

suggesting a better fitting model.  

 

Pollinator occurrence, habitat remnant size, and orchid reproductive success 

To test if the habitat remnant size and the presence of Trichocolletes affected the 

reproductive success of D. magnifica, in 2017 we quantified plant reproductive success 

(pollen removal, fruit set) for additional five sites (over the 15 ones used in previous 

analysis on orchid reproductive success), with one in each of five small habitat 

remnants [Supplementary data, Table S1 B]. We carried out two observation transects 

for all 20 sites from the 5th of September to 15th of September 2017, recording the 

occurrence of Trichocolletes along a transect centered on the quadrats used to quantify 

reproductive success of D. magnifica. These transects were 100 m in length, and were 

positioned so that the quadrat where orchid fitness was measured included the central 

part of the transect. Each transect took 40 minutes to complete, with an average of 

approximately three minutes of observations per flowering plant in the understory. 

Transects were repeated a week after the initial survey, following the same route. For 

the analysis, Trichocolletes occurrence was expressed as presence/absence, to reflect 

that the survey may not have provided accurate quantification of their abundance. 

Sizes of habitat remnants were taken from those reported in Bush Forever (2000). For 

both the analysis of pollinaria removal and fruit set, to avoid collinearity separate 

GLMMs were undertaken for the variables Trichocolletes occurrence and remnant 

size. For both the analyses, bushland remnant was treated as a random effect to take 

into account the multiple sites within the larger remnants.  
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RESULTS 

 

Pollinators of Diuris magnifica 

In total 248 insects were observed visiting experimental arrays of D. magnifica. Of the total 

visits, 98 were by Trichocolletes spp. (Colletidae, Hymenoptera), 65 by the introduced 

honey bee Apis mellifera (Apidae; Hymenoptera), 19 by Neophyllotocus sp. (Scarabeideae; 

Coleoptera), 11 by Syrphidae (Diptera), 47 by Pollanisus sp. (Zygaeinidae; Lepidoptera), 7 

by Lassioglossum sp. (Halictidae; Hymenoptera) and 1 by Leioproctus sp. (Colletidae; 

Hymenoptera). Only Trichocolletes spp., Apis mellifera and Neophyllotocus sp. were 

observed carrying pollinaria of D. magnifica. In each case, pollinaria was attached to the 

frontal region of the head (Fig. 2, C). Twenty- five Trichocolletes were observed to remove 

the pollinaria, with two individuals observed carrying and depositing pollinia. Alternatively, 

A. mellifera and Neophyllotocus sp. were observed three times to extract and deposit orchid 

pollinia on the stigma of the same flower. 

 

During observations of floral visitors, fifteen Trichocolletes individuals were observed 

carrying pollinaria of D. magnifica, nine while visiting the orchid, and six while 

foraging on either D. divaricata, J. sternbergiana and H. comptoniana. No other insect 

species were observed carrying the pollen of D. magnifica when foraging on other 

plant species. A total of 15 insects (nine Trichocolletes gelasinus, two A. mellifera, 

two Neophyllotocus sp., one Pollanisus, one Syrphidae) were caught for identification 

during arrays of orchid flower experiments and 34 during observations of pea plants 

[Supplementary data, Table S4]. The individuals of Trichocolletes spp. caught on D. 

magnifica and on pea plants included both females (4) and males (7). Only one 

Trichocolletes platyprosopis was identified in 2015, whereas ten T. gelasinus were 

identified both in 2016 and 2017 [Supplementary data, Table S4]. It has previously been 

showed by Scaccabarozzi et al. (2018) that in this area Trichocolletes forage on the 

pea plants. Trichocolletes frequency (number of visits per hour) on pea plants revealed 

the pollinators visited primary D. Divaricata (~11), secondly H. comptoniana (~7), 

thirdly J. sternbergiana (~4) and lastly B. eriocarpa (~2). No Trichocolletes were 

observed on I. cuneifolia (Fig. 3). 
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Fig. 3 Number of Trichocolletes insects per hour on the co-flowering pea plants with 

Diuris magnifica.  

 

 

Description of pollinator behaviour 

Male and females of Trichocolletes spp. visited  individual flowers of D. magnifica for 1–2 

seconds. Visits included apparent patrolling behaviour by males, when they inspected 

multiple flowers without landing. Of the Trichcolletes visiting D. magnifica, 50 % landed 

on the flowers, with the body aligned along the centre of the labellum, with the head facing 

towards the column. Of the Trichocolletes that alighted (n = 98), 98% attempted to 

manipulate the labellum, with repeated movements of fore-middle legs as observed on pea 

plants, facing with the head at the base of the corolla when foraging nectar (Fig. 4). Due to 

the quick visits by Trichocolletes, we only recorded the behaviour of Trichocolletes that 

landed for more than one second. Of the insects attempting to manipulate the labellum (n = 

48), 52 % removed the pollinaria, 8.3% deposited the pollen on the stigma and 20.8% visited 

another orchid flower.  
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Fig. 4 Foraging activity of Trichocolletes gelasinus on different pea plant species: A, 

Daviesia divaricata; B, Hardenbergia comptoniana; C, Jacksonia sternbergiana. The 

arrays indicate the use of fore, middle and hide legs for manipulating the wing petals 

when foraging on pea plants.  

 

Significantly, more visitors landed on the pea plant species D. divaricata (n=88; β = 1.5 ± 

0.34 SE; p < 0.001), J. sternbergiana (n=30; β = 1.61 ± 0.53 SE; p = 0.002) and H. 

comptoniana (n=62; β = 1.23 ± 0.37 SE; p < 0.001) compared with D. magnifica but not 

on B. eriocarpa (n=14; β = 1.79 ± 0.79 SE; p = 0.023;  Fig 5). There was no significant 

difference in the frequency with which Tricocolletes attempted to manipulate the keel when 

foraging on D. magnifica and B. eriocarpa (n=12; β = 14.7 ± 1.82 SE; p = 0.994),  H. 

comptoniana (n=38; β = -2.54 ± 1.07 SE; p = 0.018), D. divaricata (n=70; β = -0.32 ± 

1.24 SE; p = 0.799) and J. sternbergiana (n=24; β = -0.69 ± 1.44 SE; p = 0.629; Fig. 5).  
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Fig. 5 Behavioural categories (Landing and Manipulation) comparison between Diuris 

magnifica (D) and the co-flowering pea plants visited by Trichocolletes: Daviesia 

divaricata (DV), Bossiaea eriocarpa (B), Jacksonia sternbergiana (J), Hardenbergia 

comptoniana (H). Landing: alight on the orchid or pea plant flower; Manipulation: 

attempt to manipulate the flower during the foraging behaviour for either nectar or 

pollen. *: indicates a significant difference between the pea plant species and the 

orchid of a given behavioural category. 

 

Spectral reflectance 

Based on the hexagon bee vision model (Chittka, 1992; Chittka & Kevan, 2005), the 

average colour loci of the spectral reflectance of D. magnifica, B. eriocarpa, D. divaricata 

and I. cuneifolia was in the UV-region. The average colour loci of H. comptoniana 

corresponded to the UV-blue region (Fig. 6, A). J. sternbergiana and H. hypericoides 

average colour loci were positioned in the UV-green, A. pulchella and C. aculeata were 

situated in the green region, while Hypocalymna robustum was in the blue region. Distances 

of the mean colour loci measured on flower parts between D. magnifica and B. eriocarpa, 
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D. divaricata, I. cuneifolia and J. sternbergiana were 0.07, 0.03, 0.10 and 0.16 respectively 

[Supplementary data, Table S4]. Single colour loci from flower parts of individuals of B. 

eriocarpa, D. divaricata, J. sternbergiana were distributed in the coordinates range y:[-0.36; 

-0.10] x: [-0.06;-0.41], overlapping the distribution of D. magnifica single colour loci, 

extending across the positions y:[0.02; -0.32] x: [-0.10;-0.40] (Fig.6, B).  In I. cuneifolia the 

colour loci from individuals didn’t overlap with the colour loci of D. magnifica for any 

individual plants (Fig. 6, B).   

Fig. 6 A) Mean values of colour loci were calculated for floral parts of Diuris 

magnifica, Bossiaea eriocarpa, Daviesia divaricata, Hardenbergia comptoniana, 

Isotropis cuneifolia, Jacksonia sternbergiana and additionally other yellow-flowered 

species present in all the sites, Acacia pulchella (Fabaceae), Conostylis aculeata 

(Haemodoraceae), Hibbertia hypericoides (Dilleniaceae), and a co-occurring pink 

species, Hypocalymna robustum (Myrtaceae) to test model similarity based on floral 

colour. B) Distribution of colour loci most similar to the colour of D. magnifica. 

Measurements of spectral reflectance were taken for D. magnifica: LOP = lateral outer 

petal; DS = dorsal sepal; LLE = external labellum lateral lobe; ; LLI = internal labellum 

lateral lobe; L = labellum; for pea plant species (Faboideae): SP = standard petal; W = 

wing petals. The calculations were made using the Hexagon colour model of bee vision 

(Chittka, 1992). 
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Compared flowering phenology of target species 

Diuris magnifica showed overlap in flowering period with all the co-occurring pea 

plants (Fig. 7). Species visited by Trichocolletes spp., showed flowering peaks in the 

following order: H. comptoniana (three weeks before D. magnifica peak), D. 

divaricata (two weeks before D. magnifica peak), B. eriocarpa (concurrently with D. 

magnifica peak), J. sternbergiana (one week later than the D. magnifica peak).  

 

Fig. 7  Flowering phenology of Diuris magnifica  and co-occurring Faboideae species 

at three sites the costal bushland remnants. Phenology data was collected in a single 

30 x 30 metre quadrat per site. Due to the high number of flowers for Bossiaea 

eriocarpa (red line), Daviesia divaricata (orange line), Hardenbergia comptoniana 

(violet line) and Jacksonia sternbergiana (yellow line), we estimated the total number 

of flowers and assigned categories (primary y axis): (1) 1-100, (2) 101-200, (3) 301-400, 

(4) 401-500… to 1100. For D. magnifica (green line) and Isotropis cuneifolia (purple 

line) the number of flowers per quadrat (secondary y axis) was directly scored. 

Trichocolletes were observed to appear in correspondence of the flowering start of H. 

comptoniana. 

 

Orchid fitness in relation to abundance of models and non-models 

Reproductive success of D. magnifica was generally low across both 2015 (Mean SE fruit 

set = 2.87 ± 0.18) and 2017 (Mean SE fruit =  2.00 ± 0.15). The propotion of D. magnifica 

with pollinaria removal did not show a significant relationship with the number of flowers 
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of yellow-red pea plants (B. eriocarpa, D. divaricata, J. sternbergiana), which were 

identified as putative models for D. magnifica (male fitness: β = 0,017± 0,078 SE; p = 

0,83). The proportion of  flowers with pollenaria removal showed no significant relationship 

with the number of flowers of the non-model H. comptoniana (pollinaria removal: β = 0.025 

± 0.081 SE; p = 0.756). The output from the GAMM showed a significant non-linear trend 

for the reproductive success as a function of the number of non-model H. comptoniana 

flowers (smoother term = 2.326; p = 0.004; Fig. 8, A). The best fitting model was a non -

linear curve, though the decrease at high values of model flowers was likely driven by two 

outlying points. The orchid reproductive success increased until approximately 700 H. 

comptoniana flowers, though the very large confidence intervals above 700 Hardenbergia 

comptoniana flowers. Finally, the proportion of pollinaria removal showed no relationship 

with the number of individuals per patch (β = -0.148 ± 0.106 SE; p = 0.162) while the 

proportion of fruit set show a significant negative relation with the number of orchids per 

quadrat (β = -0.366 ± 0.128 SE; p = 0.004; Fig. 8 B). 

 

Orchid fitness in relation to pollinator occurrence and patch size 

The proportion of pollinaria removed did not show any significant relationship with either 

the presence of Trichocolletes or size of the habitat remnant. Neither pollinaria removed (β 

= 0.136 ± 0.3 SE; p = 0.649)  or fruit set (β = -0.265 ± 0.7 SE; p = 0.705)  exhibited a 

significant relationship with the presence of Trichocolletes. The proportion of fruit set 

showed a significant positive relationship with bushland remnant size (β = 0.684 ± 0.296 

SE; p = 0.021; Fig. 8, C), while there was no significant relationship for the proportion of 

pollinaria removed (β = 0.306 ± 0.163 SE; p = 0.061).  
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Fig. 8 Female reproductive success (fruit set on number of flowers per square) over 

2016 and 2017 in function of A, number of flowers of Hardenbergia comptoniana 

(non-model) and B, number of orchid plants per plot (square). C, Proportion of fruit 

set in function of bushland remnant size in 2017. 
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DISCUSSION 

 

Pollination and behavioural evidence for mimicry in Diuris magnifica 

We present preliminar evidence of pollination by mimicry in D. magnifica by testing 

the fundamental criteria of floral mimicry such as sharing of pollinators, similar 

pollinator behaviour on model and mimic, overlap of flowering period and colour 

similarity (Roy & Widmer, 1999; Johnson & Schiestl, 2016). Based on pollinator 

visitation data and observations of wild bees carrying orchid pollen, D. magnifica 

appears to be primarily pollinated by the colletid bee T. gelasinus. This bee foraged on 

the sympatric yellow-red pea plants, B. eriocarpa, D. divaricata, J. sternbergiana, as 

well as the violet coloured H. comptoniana. Male and female Trichocolletes 

attempting to forage on D. magnifica exhibited the same keel-parting behaviour (Fig. 

4) as seen by bees of this genus when foraging both nectar and pollen on pea plants, 

where they attempt manipulation of the orchid labellum using the fore and middle legs 

(Fig. 2, C). As previously seen in D. brumalis (Scaccabarozzi et al., 2018), this 

behaviour is a distinctive aspect of mimicry towards pea plants, where the bees exhibit 

a behaviour with the orchid typically associated with pea plants. ‘Patrolling’ behaviour 

of Trichocolletes males (see Houston, 2018) was also observed occasionally in 

proximity to flowers of D. magnifica.  Given that in Trichocolletes this mate searching 

behaviour (see (Haas, 1960; Barrows, 1976; Paxton, 2005) is usually seen around pea 

plants, patrolling provides further behavioural evidence of effective mimicry of pea 

plants by D. magnifica.  

 

Evidence for mimicry based on floral traits  

As already found in Diuris brumalis (Scaccabarozzi et al., 2018), a species 

morphologically very similar to D. magnifica, the color of D. magnifica floral parts 

overlapped with the colour loci of three yellow-red pea plants that we identified as 

putative models, suggesting that the flowers of those pea plant species may not be 

consistently distinguishable by pollinators from D. magnifica based on colour alone. 

Experiments suggests that bees are unable to distinguish colour distances less than 

0.04 hexagon units, but colour distances between 0.04 and 0.11 can be distinguished 

with differential conditioning (Dyer, 2006; Dyer et al., 2012). While some individual 

orchids do overlap with the colour of these pea plants, the average colour loci 

differences between D. magnifica and D. divaricata (0.03), B. eriocarpa (0.07) and J. 
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sternbergiana (0.16), suggest that it will depend on the colour of individual plants as 

to how well the pollinators distinguish between them. While not directly addressed 

here, it is likely that the plants will exhibit some difference in colour pattern, which 

would likely enhance the ability of pollinators to distinguish between models and 

mimics.  

 

A potential role for secondary pollinators? 

While never observed carrying pollen of D. magnifica while feeding on co-occurring 

plants, a few observations of A. mellifera and Neophyllotocus beetles removing and 

depositing pollinia on the same flower suggests that other visitors may occasionally 

contribute to the pollination of D. magnifica. The introduced A. mellifera forage on an 

exceptionally wide range of plant species (Paton, 1993) and frequently visit all of these 

species of Faboideae (Scaccabarozzi et al., in review), so it is not surprising that they 

also visit D. magnifica. Neophyllotocus visit several species of brightly coloured 

understory plants in the study area, on which they both use as a food source and a site 

to congregate and mate (Keighery, 1975; Schatral, 1996). For both of these species it 

remains to be confirmed if they are effective pollinators of D. magnifica. Firstly, while 

the landing position of Trichocolletes was strictly aligned with the labellum as occurs 

when foraging on pea flowers, these other visitors more rarely moved into the correct 

position for pollen removal and deposition. Secondly, they were only seen removing 

and depositing pollinia on the same flower meaning that they may contribute towards 

fruit set via a level of self-pollination. A small number of visits were observed by two 

other species of native bee, but given the rarity of these visits, it seems likely that 

Trichocolletes are the primary native pollinators. 

 

Orchid fitness and co-occurring pea plants 

In mimicry systems it is expected that the fitness of the mimic should increase relative to the 

local abundance of the model (Anderson & Johnson, 2006). In D. magnifica fruit set 

declined with higher density of conspecifics, suggesting either pollinator learning or a 

limited number of pollinators relative to the number of orchids. However, we found that 

reproductive success of D. magnifica was not dependent on the total flower abundance of 

occurring yellow-red pea plants species, the putative models for this orchid. While this may 

in part be due to low levels of reproduction of the orchid (< 3% fruit set) increasing chance 

effects in the data, there are several possible ecological explanations why this expectation 
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was not fulfilled. Firstly, pea plants may vary in their importance as model species, but the 

relatively modest number of study sites compared with the diversity of species of pea plants 

did not allow for a test of the effect of single pea species on orchid fitness (as seen in 

Peter & Johnson 2008; Juillet et al., 2007; Jersáková et al., 2016).  Secondly, in 

multiple ecological factors could be important and interact with each other (e.g. 

putative model and non-model pea plants, habitat fragmentation, pollinator availability 

and habitat suitability, role of secondary pollinators), making it difficult to tease out 

trends. Thirdly, foraging behaviour towards pea plants and orchids may vary between 

sites depending on the relative abundance of pea plants species (Fig. 9) that vary in 

their similarity to the orchid. For example, floral constancy (Waser, 1985; Chittka, 

Tomson, Waser, 1999; Gegear & Terence, 2004), a selective foraging behaviour 

whereby pollinators may optimize their foraging activity on a given and abundant pea 

species at each site, could lead to changes in the effectiveness of orchid pollination 

systems depending on which species pollinators typically forage on. In order to unravel 

the fitness dependence of D. magnifica on yellow- red plants, it would be of interest 

to investigate with experimental arrays of orchid flowers the preference of pollinators 

between each of the putative models and the orchid. 

 

Fig. 9 Pea plant flower proportion per species on all the total number of flowers of pea 

plants at each of the 15 sites. B, Bossiaea eriocarpa; DD, Daviesia divaricata, J, 

Jacksonia sternbergiana, H, Hardenbergia comptoniana. 

 



144 
 

While the GLMM analysis found no significant relationships with orchid fitness, the 

GAMM analysis found evidence for a relationship between fruit set of D. magnifica 

and the number of flowers of the non-model pea plant H. comptoniana. Fruit set 

initially increased with increasing number of flower of H. comptoniana as expected 

under a magnet effect (Fig. 10), where the local aggregation of pollinators on food 

plants benefit the pollination success of other nearby plants (Thomson, 1978; Laverty, 

1992). At large numbers of flowers the relationship decreased, suggestive of a 

competition effect (i.e. Lammi & Kuitunen, 1995; Internicola et el., 2006), whereby co-

occurring rewarding species may affect negatively the success of the orchid. However, in 

D. magnifica the decrease in fitness with large numbers of food flowers appears to be driven 

by two outliers where there was one exceptionally large and prominently flowering 

individual of H. comptoniana. However, as cautionary note, it must be stressed that the 

decrease in fitness of D. magnifica at higher numbers of rewarding flowers appears to be 

driven by two outliers sites,  where there was one exceptionally large and prominently 

flowering individual of H. comptoniana. Further work is needed to test for a decreasing 

trend, preferably including experimental manipulation of the availability of H. comptoniana. 

Lastly, as expected in deceptive systems (Pellegrino, 2005), we found that the D. magnifica 

fruit set declined with higher density of conspecifics (Fig. 10). 

 

Fig. 10 A summary of the ecological interactions potentially driving the reproductive 

success in Diuris magnifica. The interactions are based on the imperfect mimicry 

towards model yellow-red pea plants (1, Bossiaea eriocarpa; 2, Daviesia divaricata; 
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3, Jacksonia sternbergiana) and on the reproductive facilitation leaded by 

Hardenbergia comptoniana, a non-model pea plant. As expected, when the orchid is 

more frequent a decline in the reproductive success has been observed, while with 

smaller bushland remnants comparing with bigger ones, the fruit set was lower. All 

these ecological interactions may be indirectly influenced by the pollinator occurrence 

and their foraging behaviour. 

 

Fitness and habitat fragmentation 

Given that Trichocolletes appear to be the primary pollinator of D. magnifica, it was 

expected that reproductive success of D. magnifica would be greater at sites where 

Trichocolletes were present. Interestingly, we detected no significant difference in 

either pollen removal or fruit set for the orchid. However, it should be noted that levels 

of fruit set were low across all populations (less than 3% in any given year). While 

Trichocolletes may have remained undetected at some sites in our survey, it is possible 

that sub-optimal pollinators such as A. mellifera and Neophyllotocus beetles may be 

contributing to the reproductive success of the orchid sufficiently to obscure any 

difference in reproductive success between sites due to the presence or absence of 

Trichocolletes. It would be of interest to investigate the fitness of seed originating from 

pollination events from Trichocolletes versus other pollinators, and if seeds from sites 

without Trichocolletes tended to be of lower fitness, potentially from more pollen 

transfer within clumps of D. magnifica.  

 

As predicted, the size of bushland remnants was positively related to fruit set of D. 

magnifica (Fig. 10), in accordance with previous research where habitat fragmentation 

causes lower fruit set through pollen limitation (Cunningham, 2000). However, it 

should be noted that the sites with high fruit set were mostly in Kings Park, the largest 

of the remnants. Lower fruit set in small remnants could be because habitat is less 

suitable for pollinators, or the remnants are too small to support viable populations of 

Trichocolletes, a remnant dependent genus. The proportion of flowers with pollen 

removal did not exhibit a significant relationship with any of the tested variables, 

though it is expected that pollen removal will be more effected by suboptimal 

pollinators removing but not transferring pollinia.  
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Imperfect mimicry by  exploitation of a ‘general pea flower image’ 

As found in the related species D. brumalis (Scaccabarozzi et al., 2018), D. magnifica 

may receive an advantage from a broad mimicry system that includes multiple yellow-

red pea plant species, rather than precisely mimic any one species. In fact, the orchid 

may benefit from the pollinator having a ‘general search image’ (Johnson & Schiestl, 

2016) that encompasses all of the co-occurring pea plant species of similar colouration. 

This would represent a form of imperfect mimicry deriving from the imitation of 

multiple models (Sherratt, 2002; Gilbert, 2005).  Interestingly, in D. magnifica 

flowering commenced well after the first of the model species and the emergence of 

the pollinator, which was first seen in around the first week of July (D. Scaccabarozzi 

pers. obs), four weeks prior the start of flowering in D. magnifica. This means that the 

pollinators could be already familiar with a ‘pea flower image’ when D. magnifica 

starts to flower, rather than the orchid being reliant on the exploitation of perceptional 

biases (Schaefer & Ruxton, 2009).  

However, the benefit by H. comptoniana (non-model) on the fitness of D. magnifica 

arises some questions on the broadness and accuracy of the mimicry system. 

Even though the pigmentation patterns were dissimilar and the colour reflectance 

didn’t match with the orchid, we wonder if they have a similar smell and in this case 

the bees are attracted by scent rather than visual cues. Further investigations based on 

scent, including the lateral curved sepals that might retain scent glands, would be 

interesting to define the role of Hardenbergia in the mimicry species. 

In generalized food deception, the plants lack floral traits that confer a similarity to a 

specific model plant (Dafni, 1984; Nilsson, 1992) and as consequence of general 

nature of signals they tend to have a wide group of pollinators (Nilsson, 1983, 

Cozzolino et al., 2001; 2005) instead of specialised pollinators (Newman et al., 2012). 

While an usual generalized food deception is not likely to occur, the impact on the 

fitness is due to the species most abundant across the sites (H. comptoniana). So, it 

would be of interest to test if Trichocolletes are dependent to the presence of the 

species most abundant rather than the model and non-model pea plants. In this sense, 

the use of resources by pollinators at spatial scale may be crucial for maintaining the 

orchid success. 
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Conclusions  

Based on similarity of floral traits and pollinator behaviour, D. magnifica is likely to 

be engaged in the generalised mimicry of multiple co-flowering pea plants, without 

closely resembling in any one species. However, it remains to be tested if there a 

specific model plant that is more important for supporting populations of the pollinator 

or increasing fitness for the orchid. We observed that the orchid fitness is affected by 

ecological interactions aside from floral mimicry. In particular, there was evidence that 

the abundance of the rewarding species H. comptoniana afftected orchid reproductive 

success. From a conservation perspective, pollination success was not significantly 

different in the absence of Trichocolletes, but A. mellifera and beetles may come into 

play in maintaining the orchid’s reproduction, especially in an urban fragmented 

habitat where D. magnifica occurs. However, whether these species are capable of 

maintaining populations of the orchid, or if their visits mostly lead to self-pollination, 

could be important for deciding the fate of D. magnifica in small habitat remnants.  

Due to the peculiarity of the study system based on model and non-model species in a 

fragmented habitat, D. magnifica may reveal new ecological insights, especially on the 

definition of model / non-model species, the impact of the foraging behaviour and 

habitat size in mimicry systems. 
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SUPPLEMENTARY DATA, Appendix S1. Observations of the floral biology of Diuris magnifica  

 

Introduction 

 

Before undertaking a study of floral mimicry and its consequences for plant reproductive success, it is necessary to address general questions on the floral 

biology of the species. Diuris magnifica has no visible nectar while the co-occurring pea plants (Faboideae) produces a nectar reward (Scaccabarozzi et al., 

2019, in review). However, it has not been tested if D. magnifica produces fruit by autogamy and if it is self-compatible.  

 

Methods 

 

Nectar production 

To test for nectar production in D. magnifica, nectar content in flowers of each species was measured in August 2016. One inflorescence per individual was bagged for 10 

randomly selected individuals at three sites (Shanton Park, Trigg bushland and Koondoola bushland). Inflorescences were bagged in the afternoon, with nectar collection 

predicted the following day during the warmest hours (from 11.00 to 14.00) to ensure maximum nectar production (Corbet, 1995; Corbet, 2003) using a 2 µl microcapillary 

tube (Drummond Microcaps, Broomall; Pa., USA). 

 

Testing for autogamy and self-compatibility in Diuris magnifica 

To test for autogamy, in August 2016, inflorescences with newly-opened flowers and no observed pollinia deposited on stigma were covered with a fine, insect proof nylon 

bag until floral senescence (ca. four weeks). To test for self-compatibility, one flower on each inflorescence was manually pollinated with pollinia from a different flower 

on the same inflorescence before the pollinated flower was covered with a fine, insect proof nylon bag until senescence or fruit formation (ca. four weeks). Six individuals 

were randomly selected at each of the three largest populations (Shanton Park, Trigg bushland and Koondoola bushland) for each test, with one inflorescence selected per 

individual for a total of eighteen inflorescences tested. 
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Results 

 

Nectar content 

No nectar was produced by any part of studied D. magnifica flowers, and any nectar was therefore collected. 

 

 

Testing for autogamy and self-compatibility in Diuris brumalis 

None of the bagged flowers produced fruits, demonstrating that D. magnifica requires a vector to achieve pollination. Experimental hand pollination revealed that 

D. brumalis is able to produce seed capsules through self-pollination, with 80% (n=18) of flowers forming a capsule.  

 

Conclusions 

 

As expected, D. magnifica is nectarless. Diuris magnifcia was shown to require a vector for pollination, and to be self-compatible. 
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SUPPLEMENTARY DATA, Table S1, A. List of the 15 populations sites of Diuris magnifica surveyed in 2015 above. All the values are related 

to plants surveyed within a 30 x 30 meter quadrat. DM: D. magnifica. Model pea plants: Bossiaea eriocarpa, Daviesia divaricata, Jacksonia 

sternbergiana. Non-model pea plants: Hardenbergia comptoniana. All co-occurring pea plants: model and non-model pea plants. B. Below, list 

of the 20 populations sites of Diuris magnifica surveyed in 2017. All the values are related to plants surveyed within 30 x 30 meter quadrat. DM: 

D. magnifica. The extra sites (number 16-20) in 2017 consist with small bushland remnants. 

 

 

Population 

number 

Site Latitude, longitude N plants of 

DM 

N flowers 

DM 

N flowers  

DM without 

pollinaria 

N pollinated 

flowers DM 

Proportio

n of 

pollinaria 

removal 

Proportion 

of fruit set 

 

N total flowers 

Model pea plants 

N total 

flowers non 

Model pea 

plants 

N total 

flowers all 

co-occurring 

pea plants 

1 Koondoola bushland A 
31°50'06.8'' °S, 

115°51'83.4'' °E 
56 241 13 7 0.28 0.08 315 0 315 

2 Koondoola bushland B 
31°50'12.6'' °S, 

115°51'94.2'' °E 
24 101 14 4 0.23 0.01 444 0 444 

3 Trigg bushland A 
31°52'07.9'' °S, 

115°45'63.2'' °E 
47 119 7 1 0.14 0.07 135 210 345 

4 Trigg bushland B 
31°52'20.1'' °S, 
115°45'64.7''° E 

53 127 20 6 0.04 0.01 300 360 660 

5 Shanton Park A 
31°57'50.8'' °S, 

115°47'90.8'' °E 
28 91 7 0 0.06 0.07 0 70 70 

6 Shanton Park B 
31°57'32.6'' °S, 

115°47'52.7'' °E 
84 219 17 2 0.24 0.05 0 0 0 

7 Shanton Park C 
31°57'37.0'' °S, 

115°48'00.8'' °E 
36 98 9 5 0.07 0.10 0 130 130 

8 Shanton Park D 
31°57'40.5'' °S, 

115°48'01.2'' °E 
40 113 7 2 0.00 0.05 250 60 310 

9 Wireless Reserve A 
31°01'71.7'' °S, 

115°49'83.7'' °E 
21 62 14 8 0.00 0.00 140 500 640 

10 Wireless Reserve B 
32°01'88.5'' °S, 

115°49'75.0'' °E 
91 259 20 0 0.00 0.00 35 2020 2055 

11 Wireless Reserve C 
32°01'97.8'' °S, 
115°49'88.7'' °E 

10 30 6 2 0.05 0.01 150 70 220 

12 Kings Park A 
31°57'20.9'' °S, 

115°50'08.2'' °E 
12 34 4 1 0.01 0.02 230 360 590 

13 Kings Park B 
31°57'38.2'' °S, 

115°50'13.2'' °E 
25 74 9 1 0.00 0.01 450 60 510 

14 Kings Park C 
31°57'33.8'' °S, 
115°49'55.8'' °E 

26 79 12 4 0.06 0.00 145 70 215 

15 Kings Park D 
31°57'29.06' °S, 

115°49'48.8'' °E 
22 65 4 0 0.05 0.00 30 40 70 
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Population 

number 

Site Latitude, 

longitude 

N plants 

of 

DM 

N flowers 

DM 

N flowers  

DM 

without 

pollinaria 

N 

pollinated 

flowers 

DM 

Proportion 

of 

pollinaria 

removal 

Proporti

on of 

fruit set 

N total 

flowers 

Model pea 

plants 

N total 

flowers non 

Model pea 

plants 

N total 

flowers all co-

occurring pea 

plants 

Trichocolletes 

occurrence 

Remnant 

size (ha) 

1 Koondoola bushland A 31°50'06.8'' °S, 
115°51'83.4'' °E 

80 286 32 2 0.11 0.01 1100 0 1100 1 136.48 

2 Koondoola bushland B 31°50'12.6'' °S, 

115°51'94.2'' °E 

10 32 3 1 0.09 0.03 1500 300 1800 1 136.48 

3 Trigg bushland A 31°52'07.9'' °S, 

115°45'63.2'' °E 

52 147 11 4 0.07 0.03 700 100 800 0 19.69 

4 Trigg bushland B 31°52'20.1'' °S, 
115°45'64.7''° E 

13 42 5 1 0.12 0.02 1700 900 2600 0 19.69 

5 Shanton Park A 31°57'50.8'' °S, 

115°47'90.8'' °E 

3 5 0 0 0.00 0.00 0 200 200 0 28.94 

6 Shanton Park B 31°57'32.6'' °S, 

115°47'52.7'' °E 

9 27 1 0 0.04 0.00 0 100 100 0 28.94 

7 Shanton Park C 31°57'37.0'' °S, 
115°48'00.8'' °E 

20 57 9 2 0.16 0.04 200 200 400 0 28.94 

8 Shanton Park D 31°57'40.5'' °S, 

115°48'01.2'' °E 

34 93 5 2 0.05 0.02 400 200 600 0 28.94 

9 Wireless Reserve A 31°01'71.7'' °S, 

115°49'83.7'' °E 

5 17 1 0 0.06 0.00 400 2500 2900 1 36.47 

10 Wireless Reserve B 32°01'88.5'' °S, 
115°49'75.0'' °E 

104 312 13 8 0.04 0.03 900 500 1400 1 36.47 

11 Wireless Reserve C 32°01'97.8'' °S, 

115°49'88.7'' °E 

2 8 0 0 0.00 0.00 100 200 300 0 36.47 

12 Kings Park A 31°57'20.9'' °S, 

115°50'08.2'' °E 

3 4 0 0 0.00 0.00 200 300 500 1 325.09 

13 Kings Park B 31°57'38.2'' °S, 
115°50'13.2'' °E 

13 49 5 4 0.10 0.08 600 500 1100 1 325.09 

14 Kings Park C 31°57'33.8'' °S, 

115°49'55.8'' °E 

7 23 2 2 0.09 0.09 300 200 500 1 325.09 

15 Kings Park D 31°57'29.06' °S, 

115°49'48.8'' °E 

5 22 2 4 0.09 0.18 300 300 600 1 325.09 

16 Apple Bossom 
Polyantha reserve 

31°57'50.06' °S, 
115°49'82.8'' °E 

104 315 22 0 0.07 0.00 400 0 400 1 1.5 

17 Shephards Reserve 31°57'38.20' °S, 

115°50'13.2'' °E 

26 82 4 0 0.05 0.00 600 200 800 0 15.3 

18 Paloma Park 31°57'25.90' °S, 

115°49'89.9'' °E 

54 199 8 3 0.04 0.02 800 100 900 1 5.05 

19 Alfreton Reserve 31°57'56.00' °S, 

115°49'92.2'' °E 

13 47 2 3 0.04 0.06 50 200 250 0 2.38 

20 Brekler Reserve 31°57'50.80' °S, 

115°47'90.8'' °E 

48 124 3 3 0.02 0.02 0 200 600 0 8.89 
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SUPPLEMENTARY DATA, Table S2. List of the plant species per family collected in the field sites, subsequently vouchered at the 

Herbarium of Western Australia, Perth. 

 

 

 

 

 

 

 

 

  

Number Family name Specimens collected in field and vouchered at Herbarium Voucher Latitude; Longitude 

1 Fabaceae Hardenbergia comptoniana DS 12 31°50′ 12.7″ S;  115° 52′ 02.8″ E 

2 Orchidaceae Diuris magnifica DS 13 31°50′ 00.6″ S;  115° 51′ 13.8″ E 

3 Fabaceae Jacksonia sternbergiana DS 14 31°50′ 12.7″ S;  115° 52′ 02.8″ E 

4 Orchidaceae Isotropis cuneifolia subsp. cuneifolia DS 15 31°57′ 24.3″ S;  115° 50′ 03.4″ E 

5 Fabaceae Bossiaea eriocarpa DS 16 31°50′ 12.7″ S;  115° 52′ 02.8″ E 

6 Fabaceae Daviesia divaricata subsp. divaricata DS 17 31°50' 00.6″ S;  115° 51' 13.8'' E 

8 Fabaceae Diuris magnifica DS 18 31°56′ 06.8″ S;  115° 51′ 83.4″ E 
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SUPPLEMENTARY DATA, Table S3. Observations of floral visitors to Diuris magnifica and co-flowering pea plants species (Bossiaea 

eriocarpa, Daviesia divaricata, Hardenbergia comptoniana, Isotropis cuneifolia, Jacksonia sternbergiana).  Eight behavioural categories as in 

Scaccabarozzi et al. (2018) were distinguished to reflect the pollination process. For Category (II), the types of behaviour for insects approaching 

the flower were: zig-zag flight = moving side to side in flight as they approach the flowering plant; direct flight = flying in a straight line as they 

approach the flower; aligned = body of visitor aligned along the midpoint of the labellum/keel during attempts to forage; patrolling = appearing to 

inspect multiple flowers around the plant; approach but choose another flower = the bee approaches a flower closely (<5cm) but then chooses to 

alight on a different flower. In addition, it was recorded if males were observed patrolling for females around the flower. Highlighted are the insect 

species observed depositing pollen on orchid stigma. 

 

 

 

 

 

 

 

 

 

 

 

 

Diuris magnifica 

 
Bahaviour categories Apis 

mellifera 

Lassioglossum  Leioproctu

s 

Neophyllotocu

s 

Pollanisus 

sp. 

Syrphida

e 

Trichocolletes 

gelasinus 

(Ӏ) N insects approaching the flower 65 7 1 19 47 11 98 

(II) Behaviour when approaching the flower 
zig-zag flight direct flight direct flight direct flight zig-zag flight 

zig-zag 
flight 

direct flight -aligned or  

patrolling 

(ӀӀI) N insects carrying orchid pollen on 
arrival 

0 0 0 0 0 0 1 

(IV) N insects landing on the flower 26 5 1 19 29 8 49 

(V) Visiting time ≥ 1s 3 2 3 2 3 4 1 

(VI) N insects attempting labellum 

manipulation 
19 5 1 15 6 2 48 

(VII a) N insects removing pollen 2 0 0 2 0 0 25 

(VII b) N insect depositing pollen 2 0 0 1 0 0 4 

(VIII) N insects visiting another orchid flower 8 2 0 2 0 0 10 
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Bossiaea eriocarpa    

 Bahaviour categories Apis mellifera Neophyllotocus Leioproctus Pollanisus sp. Trichocolletes gelasinus 

(Ӏ) N insects approaching the flower 182 10 4 20 14 

(II) Behaviour typology approaching the flower zig-zag flight direct flight   direct flight   zig-zag flight direct flight -aligned or  patrolling 

(III) N insects landing on the flower 182 10 2 20 12 

(IV) Visiting time ≥ 1s 4 38 4 3 2 

(V) N insects attempting keel manipulation 172 10 2 14 12 

(VI) N insects foraging nectar 170 4 2 14 12 

(VII) N insect collecting pollen 120 10 2 0 7 

(VIII) N insects visiting to another flower of pea plant 4 2 1 2 2 

 

Daviesia divaricata   

 Bahaviour categories Apis mellifera Syrphidae Leioproctus Trichocolletes gelasinus 

(Ӏ) N insects approaching the flower 35 48 69 81 

(II) Behaviour typology approaching the flower zig-zag flight zig-zag flight direct flight   direct flight -aligned or  patrolling 

(III) N insects landing on the flower 35 44 69 72 

(IV) Visiting time ≥ 1s 3 3 2 1.5 

(V) N insects attempting keel manipulation 35 25 69 72 

(VI) N insects foraging nectar 35 32 69 67 

(VII) N insect collecting pollen 18 0 61 54 

(VIII) N insects visiting to another flower of pea plant 6 2 2.5 22 
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Hardenbergia comptoniana    

 Bahaviour categories Apis mellifera Lassioglossum Leioproctus Trichocolletes gelasinus 

(Ӏ) N insects approaching the flower 35 48 69 62 

(II) Behaviour typology approaching the flower zig-zag flight direct flight direct flight   direct flight -aligned or  patrolling 

(III) N insects landing on the flower 35 44 69 48 

(IV) Visiting time ≥ 1s 3 3 2 1.5 

(V) N insects attempting keel manipulation 35 25 69 48 

(VI) N insects foraging nectar 35 32 69 48 

(VII) N insect collecting pollen 18 0 61 20 

(VIII) N insects visiting to another flower of pea plant 6 2 2.5 3 

 

 
  

 

Isotropis cuneifolia    

 Bahaviour categories Apis mellifera Lassioglossum Neophyllotocus  

(Ӏ) N insects approaching the flower 35 5 49  

(II) Behaviour typology approaching the flower zig-zag flight direct flight direct flight    

(III) N insects landing on the flower 10 5 49 
 

(IV) Visiting time ≥ 1s 3 1 240 
 

(V) N insects attempting keel manipulation 8 5 45 
 

(VI) N insects foraging nectar 4 5 31 
 

(VII) N insect collecting pollen 1 0 43 
 

(VIII) N insects visiting to another flower of pea plant 3 1 2 
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Jacksonia sternbergiana     

 Bahaviour categories Apis mellifera Euhesma Leioproctus Megachile Trichocolletes gelasinus 

(Ӏ) N insects approaching the flower 24 45 32 3 34 

(II) Behaviour typology approaching the flower zig-zag flight zig-zag flight direct flight   direct flight   direct flight -aligned or  patrolling 

(III) N insects landing on the flower 24 45 32 3 25 

(IV) Visiting time ≥ 1s 3 6.5 5 1.5 1.5 

(V) N insects attempting keel manipulation 21 34 26 3 25 

(VI) N insects foraging nectar 21 35 26 3 25 

(VII) N insect collecting pollen 10 22 19 3 16 

(VIII) N insects visiting to another flower of pea plant 4 10 6 5 3 
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SUPPLEMENTARY DATA, Table S4. List of insects caught on Diuris magnifica using arrays of orchid flowers above and co-occurring pea 

plants below. All the insects were sexed and identified at the Western Australia Museum, where possible at species level. Sex column: F: female; 

M: male; W: worker. Pollen: o: carrying orchid pollinaria; d: depositing orchid pollinia coming from natural fashion; p: pea plant pollen carried on 

legs and abdomen. *: insect taking off Diuris pollinaria and leaving on the stigma of the same flower 

 

 

 

 

  

Insects caught on Diuris magnifica 

Code Date Site Taxon Sex Pollen 

D01/15 9/7/2015 Shanton Park Apis mellifera F o * 

D02/15 9/7/2015 Shanton Park Scarabaeidae: Neophyllotocus sp. - o * 

D03/15 9/7/2015 Shanton Park Scarabaeidae: Neophyllotocus sp. - - 

D04/15 9/9/2015 Koondoola bushland Zygaenidae, Pollanisus sp. - - 

D05/15 9/21/2015 Koondoola bushland Syrphidae: Syrphidae - - 

D06/15 9/26/2015 Koondoola bushland Apis mellifera F o * 

DM01/16 8/24/2016 Koondoola bushland Trichocolletes gelasinus M o 

DM02/16 8/25/2016 Koondoola bushland Trichocolletes gelasinus F o 

DM03/16 8/26/2016 Koondoola bushland Trichocolletes gelasinus F o 

DM04/16 8/29/2016 Koondoola bushland Trichocolletes gelasinus M o 

DM05/16 8/29/2016 Koondoola bushland Trichocolletes gelasinus M o 

DM06/16 8/29/2016 Koondoola bushland Trichocolletes gelasinus M o 

DM07/16 8/29/2016 Koondoola bushland Trichocolletes gelasinus F d 

DM08/16 9/13/2016 Koondoola bushland Trichocolletes gelasinus F o 

DM09/16 8/24/2016 Koondoola bushland Trichocolletes gelasinus M d 
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SUPPLEMENTARY DATA, Table S5. Means (averages across flower parts) and standard deviation of colour loci coordinates for each plant 

species measured: Diuris magnifica, pea plants (Faboideae) species (Bossiaea eriocarpa, Daviesia divaricata, Hardenbergia comptoniana, 

Isotropis cuneifolia, Jacksonia sternbergiana), other yellow flowered species present at sites, Acacia pulchella, Conostylis aculeata and Hibbertia 

hypericoides, lastly a pink co-flowering species, Hypocalymna robustum. Means are based on colour measurements for six individuals. Colour loci 

were calculated using the Hexagon colour model of bee vision (Chittka, 1992). 

 

Species Mean (x) Mean (y) SD (x) SD (y) 

Acacia pulchella 0.46 -0.23 0.01 0.02 

Bossiaea eriocarpa -0.30 -0.18 0.09 0.06 

Conostylis aculeata 0.48 0.08 0.52 0.23 

Daviesia divaricata -0.23 -0.24 0.08 0.06 

Diuris magnifica -0.22 -0.19 0.09 0.10 

Hardenbergia comptoniana -0.16 0.21 0.06 0.03 

Hibbertia hypericoides 0.03 -0.36 0.08 0.03 

Hypocalymna robustum 0.01 0.22 0.16 0.15 

Isotropis cuneifolia -0.27 -0.14 0.13 0.13 

Jacksonia sternbergiana -0.12 -0.30 0.04 0.05 
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Chapter 4 

Rotating arrays of orchid flowers: a simple and effective methodology for 

studying pollination in deceptive orchids 

 

Abstract 

1. Pollination in deceptive plants is often difficult to assess and requires several 

hours of field observations. Here we describe a simple and novel approach to 

increase the effectiveness of pollination studies of food deceptive orchids 

where mimics are presented in rotating arrays near model plants. 

2. Using a mimic orchid, Diuris brumalis (Orchidaceae), and putative model plants 

belonging to the genus Daviesia (Faboideae), rotating arrays of orchid flowers were 

set and moved in proximity to model plants, resulting in effective and rapid 

attraction of the pollinators of D. brumalis. We validated the methodology 

recording the pollinaria removal as an indicator of reproductive success, i.e. 

comparing pollinaria removal in orchids in their natural habitat with pollinaria 

removal using rotating arrays of orchid flowers. 

3. The proposed method greatly enhances the pollinator attractiveness in the 

model-mimic system that otherwise can have false negative outcomes due to 

the low frequency of visitation.  

4. The methodology has universal applications to other food deceptive pollination 

syndromes and also has relevance for examining behavioral patterns and 

developing ecological assessments of pollinator capability. The methodology 

may be extended to all plants with very low pollinator visitation rates. 

 

Key words: bait orchids, floral mimicry, food deceptive plants, pollinator attraction, 

pollinator behavior, rotating arrays of orchid flowers, visitation rate 
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Introduction 

Lack of nectar in deceptive orchids leads to low visitation rates of pollinators (Gill, 

1989; Neiland & Wilcock, 1998; Tremblay, Ackerman, Zimmerman, & Calvo, 2005), 

so making the pollination strategies often difficult to assess. This is particularly 

frustrating after the first days of flowering as the pollinators quickly learn the fraud 

flowers and avoid the orchids (Gumbert, 2000; Internicola, Juillet, Smithson, & 

Gigord, 2006). 

For sexually deceptive orchids, Stoutamire (1974) and Peakall (1990) developed a 

method of floral presentation via baiting stations that has been deployed and revisited 

in other orchids showing sexual mimicry strategies (Gaskett, Winnick, & Herberstein, 

2008; Phillips et al., 2013; Whitehead & Peakall, 2013).  

In food mimicry orchids a similar ‘baiting station’ approach, based on a bifurcated 

stick presenting two inflorescences, has been developed with the aim to compare the 

insect visitation rate between the mimic orchid and its rewarding model plants (i.e. 

pollinator choice experiments) (Johnson & Midgley, 1997; Johnson, 2000; Johnson, 

Peter, Nilsson, & Ågren, 2003).   

During a study of the food deceptive orchid Diuris brumalis we needed a methodology 

to consistently attract pollinators which were extremely difficult to observe due to their 

low visitation rate and fleeting floral visitation times (often ≤ 1 sec.; Scaccabarozzi et 

al., 2018). Indeed, in Diuris brumalis there was evidence of visitation by a potential 

pollinator species (i.e., Trichocolletes spp., Hymenoptera: Colletidae) but, despite 

several hours of visual observations, the removal of pollen had never been assessed, 

resulting in failure of pollinator confirmation.  

Based on the mimicry pollination syndrome of multiple pea species in the genus 

Daviesia (Faboideae) (Fig. 1; Scaccabarozzi et al., 2018), we developed and validated 

a methodology using artificial arrays of the orchid D. brumalis to enhance 

attractiveness for insects and therefore, increase the number of pollinator observations 

to determine behavioral patterns. As D. brumalis grows in vegetative clusters of up to 

50 plants (Dixon, Buirchell, & Collins, 1989), we have adapted the sexual deceptive 

baiting method and modified the original approach to create artificial arrays or clumps 

of flowers (Scaccabarozzi et al., 2018).  By rotating these arrays position we were able 

to attract a larger number of effective pollinators (pollinaria removal) for D. brumalis. 

Rotation appears to provide a refreshed landscape of floral attractions to diminish the 

https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.2005.01592.x#b6
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.2005.01592.x#b6
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.2005.01592.x#b28
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.2005.01592.x#b29
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potential for floral avoidance due to the pollinators ‘learnt’ behavior when blooms are 

stationary. 

 

Fig. 1. (a),(c): The rewardless Diuris brumalis (Orchidaceae); (b),(d): Daviesia 

decurrens (Faboideae), one of the model species involved in the orchid floral mimicry. 
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Description of the methodology 

Arrays of orchid flowers were established at three study sites (in orchid-rich habitats in 

southwest Australia, 30 km east of Perth) with observations over six sunny days during the 

flowering period of orchids (12th, 18th, 25th July, 2nd, 9th, 15th August 2016) when 

pollinators were expected to be active. Experiments were conducted for two days per 

site, between 10.30 am to 3.30 pm when temperatures were higher than 17°C (around 

the optimum for pollinator activity, Scaccabarozzi et al., 2018), detected by an 

electronic thermometer, Smartsensor AR827, set 20 cm above the ground. Arrays of 

orchid flowers were placed to replicate the colony-forming pattern of D. brumalis and 

comprised multiple inflorescences that had been cut and placed in three glass vials with 

water on the bottom (two inflorescences per vial, with 4-6 flowers each; Fig. 2). All 

the flowers in the arrays had pollinaria at the beginning of the experiment. Vials were 

spaced 10–20 cm apart and positioned to create a conspicuous floral display, with vials 

placed 1–2 meters from flowering individuals of the model food pea-plant (Daviesia 

species). Each 15 minutes (including a minute for moving the arrays of orchid 

flowers), the vials were moved in proximity to another model plant. A total of four 

model plants randomly chosen per site were used for the experiment that was repeated 

hourly for 20 replicas (15 min each) per day, rotating the orchid arrays among the same 

four selected model plants (Fig. 3). Three experimental artificial arrays were 

employed. 

 

Fig. 2 Arrays of orchid flowers of D. brumalis, presenting two stems per each of the 

three vials. 
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Fig. 3. Representation of arrays of rotating orchid flowers used to establish pollinator 

effectiveness in Diuris brumalis. The rotation is repeated hourly in different locations 

with 15 minutes of observations on four pea plants. Filled red circles: model plants 

(Daviesia); arrays of flowers in the open blue circles (vials) with water, containing two 

inflorescences of the mimic orchid Diuris brumalis. 
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Validation of the methodology and discussion 

To test the effectiveness of artificial arrays, and to validate concurrence with natural 

pollinator activity, at the end of each day we scored pollinaria removal from intact 

clumps of flowering orchids and from arrays of orchid flowers rotating around the 

model plants. Experimental observations were conducted on the same day, selecting 

daily the natural orchid clump to score pollinaria removal.  

Floral abundance was standardised by selecting natural orchid clumps comprising at 

least the same number of flowers displayed by arrays of orchid inflorescences.  

A pairwise comparison was performed by using the G-test GenAlEx 6.5 (Peakall & 

Smouse, 2006, 2012), based on the total pollinaria removed in the three experimental 

artificial arrays and in a natural orchid clump in the same site. The test showed a 

significant difference between pollinaria removed (n=9) in natural orchid clumps 

(Ntotal flowers=200) and removal of pollinaria removed (n=31) in rotating arrays of orchid 

flowers (Ntotal flowers=180), with a higher and consistent outcome with the latter (16.731, 

p-value < 0.001). 

The effectiveness of using arrays of orchid flowers may be due to the periodical 

moving of bait orchids to various model plants. This results in reducing the ‘learning 

behaviour’ of visiting insects when static displays are present (Dyer, 1996), and the 

consequent avoidance of non-rewarding plants previously visited (Goulson, 1997).  

The current method provides a practical and quicker approach than traditional 

observational methods. This method can be applied to the study of other food deceptive 

orchid pollination, from generalised deception to specialised Batesian floral mimicry. 

The methodology also allows the behavior of the insect approaching to be observed in 

a quick and effective manner, ensuring sufficient replicas for data analysis. 

Furthermore, this methodology may also be applied to pollination studies on other 

plants with low insect visitation rates. In this case, arrays of flowers can be placed in 

proximity to magnet species (Thomson, 1978) that increase the local abundance of 

pollinators (cf. Kunin, 1993), or in sites characterised by an abundance of potential 

pollinators (as close to nest sites), so favoring more visits on the study plant.  

A final recommendation is provided for storing the inflorescences and re-using for 

more days: picked inflorescences can be maintained fresh up to 3-4 days in plastic or 

glass sample vials stored in a refrigerator at 4°C, with some water in the bottom, and 

covering the inflorescence with a plastic bag.  

 



174 
 

Conclusions 

The proposed methodology enhances the visitation rate of pollinators and shortens the 

time required for pollinator observations, particularly for time-consuming studies of 

food deceptive orchids. Further, this method can be used for any pollination study 

involving plants with low visitation rates.  
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Conclusions 

We have presented a comprehensive evaluation of the guild mimicry for the Diuris-

pea plants system. In addition to meeting the criteria for sharing pollinators and 

flowering times, pollinators exhibited pea plants-specific foraging behaviour on 

Diuris, providing strong evidence that the mimic had successfully deceived the 

pollinator. This evidence was further supported by data on morphology and colour, 

showing that not only Diuris and pea plants are very similar, but also that, based on 

bee vision model, the colour of Diuris and the proposed model species will not be 

readily distinguishable to pollinators. Reproductive success of D. brumalis was greater 

in the presence of Daviesia, though evidence suggests that this is likely through some 

combination of both learning and greater pollinator abundance at sites where the model 

is present. Alternatively, the reproductive success of D. magnifica was independent by 

the abundance of putative model species, while was influenced by the presence of a 

non-model species, Hardenbergia comptoniana.. The diversity of species of Diuris 

with pea-like floral traits (Diuris corymbosa complex) suggests that this may be an 

effective system for understanding diversification in lineages that use floral Batesian 

mimicry. 

 

The pea plant species that we investigated in the SWAFR were mostly bee-pollinated, 

although some species also attracted a large number of beetles that fed and mated on 

the flowers. If these beetles are proven to be effective pollinators, this would represent 

an unusual finding among the pea plants. Only two species of pea plants were visited 

by a broad spectrum of potential pollinators, while genera such as Daviesia and Hovea 

appear to be predominantly pollinated by just a single genus of bee. These findings 

suggest a level of specialisation and a potential role of pollinators in contributing to 

the diversity of the pea plants in the SWAFR. Experimental approaches are now 

needed to understand the basis of pollinator attraction in these specialised systems. 

While differences in nectar composition are unlikely to explain differences in 

visitation, the role of colour, odour, and foraging efficiency need to be investigated. In 

addition to native pollinators, the introduced bee A. mellifera visited all of the pea 

plants that we studied, sometimes in high frequency, and accessed both nectar and 

pollen. As such, A. mellifera could potentially both contribute to pollination and 

exclude the native pollinator species. Given the high diversity of pea plants and bee 
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species in the SWAFR, understanding the effects of A. mellifera on native bees and 

the pea plants they pollinate would be important from a conservation perspective. 

 

The work provides new insights in the pollination ecology of species of Australian 

Fabaceae. Revealing fundamental plant-pollinator dynamics, through understanding 

mimicry interactions, the work offers the bases for advanced ecological studies in the 

field of restoration ecology in SWAFR, with particular attention to pollinator niches 

and pollinator functional groups. 
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