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RESEARCH AIMS AND OUTLINE 

The overall objective of this research is to contribute to the evidences supporting the application 

of different biological, enzymatic and physical approaches for the reduction of mycotoxins from 

the cereals and their derivatives.  

This general aim has been addressed through the accomplishment of three main research topics 

such as i) the in vitro studies for the degradation of mycotoxins; ii) the evaluation of the physical 

treatments (UVC and heat) for reduction of mycotoxins and iii) the investigation of physical 

treatments on the technological performance of semolina, through pasta production and bread 

baking, attributed to application on industrial scale.  

New approaches are needed to reduce or eliminate the mycotoxin from food and feed chain. 

These objectives were achieved making use of a research plan structured according to the 

following thesis outline. 

In vitro study of enrichment cultures was conducted for the exploration and characterization of 

novel bacterial taxa that biotransform DON. Enrichment cultures were developed from the soil 

samples in minimal media containing chitin and DON 50µg/mL and incubated for longer period 

of time. DON content was analyzed by gas chromatography mass spectrometer (GC/MS) DON. 

After three weeks complete transformation of DON was observed in cultures. Microbiome 

profiling was performed to reveal the reduction in microbial complexity from week 1 to 8 and 

the screening of pure strains from the cultures were carried out to identify the organism 

responsible for DON conversion. Such organisms may serve as a source of enzymes or genes 

involved in detoxification of mycotoxins, which could be useful for decontaminating agricultural 

commodities (Chapter 2) 
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Another in vitro study of laccase mediated reactions was performed for DON degradation 

activity in different combinations, in order to find the most appropriate combination. Laccase 

from Trametes veriscolor mediated by TEMPO was found most interesting to explore. The 

reactions were performed with enzyme, mediator and DON in Mcllvaine‟s buffer solution. 

GC/MS analysis has revealed the complete transformation of DON into two other metabolites, 

which were isolated and purified by column chromatography. Characterization of DON 

metabolites was performed by gas chromatography mass spectrometery (GC/MS), and liquid 

chromatography mass spectrometery (LC/MS) (Chapter 3). 

Chapter 4 analyzed some strategies that could be integrated in semolina-based products chains, 

with the aim of reducing mycotoxin contamination. Thermal treatment and UVC irradiation are 

selected fotr this research since they are known to be cost-effective techniques, combining a high 

thermal efficiency with simplicity of application. The effects of heating at 100, 150 and 200°C 

and UVC irradiation at 254 nm for 15, 30, 60, 120 min applied on semolina for the reduction of 

mycotoxins and their impact on technological semolina properties was studied. The impact of the 

most efficient treatments (150°C for 30 min and UVC irradiation for 120 min) were evaluated 

both on semolina and dough technological properties, such as color, hydration and gluten 

indices, farinograph and calorimetric parameters and microstructure. Thermal treatment 

significantly increased hydration of semolina and swelling power; farinograph analyses revealed 

a marked increase in water absorption and dough development time, and a reduction of dough 

stability, degree of softening and elasticity compared to the control. Calorimetric analyses 

showed a significant reduction of both temperature peaks and enthalpy of starch gelatinization, 

and a decrease of enthalpy for melting of lipids with starch. Scanning electron micrograph 
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images representing the dough microstructure confirmed the occurrence of these changes; UVC-

treated samples showed less pronounced changes comparing to the control.  

The impact of heat and UVC treatments applied for the reduction of mycotoxins was evaluated 

for technological performance by pasta and bread production. Pasta quality parameters and their 

micrographs by SEM analysis revealed no significant changes after the studied treatments 

compared to the control, in particular after UV treatment of semolina, so this treatment can be 

applied for reduction of mycotoxins without affecting the technological performance of the 

product, while the impact after heating was marked for some parameters. Technological 

parameters of bread baking were investigated by the dough consistency at the end of mixing, 

leavening behaviour of dough and the bread loaf characteristics revealing that until 120°C for 30 

min no significant changes were observed in bread quality, while at 150°C a marked reduction of 

bread  performance was shown (Chapter 5). Results from this study could be useful to food 

companies for the realization of safer semolina-based products such as for baby-food where the 

limit of mycotoxins fixed by European Commission is lower. In particular, the treatments at 

120°C for 30 min can be applied without loss of technogical performance, while the treatment at 

150°C could be applied for different types of cereal products, where the process of leavening is 

not required.  

.  
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STATE OF ART FOR ANALYSIS AND REDUCTION OF MYCOTOXINS 

1.1 MYCOTOXINS 

Mycotoxins are basically secondary fungal metabolites, which are extensively produced by many 

different fungal species that may contaminate a wide range of agricultural food products 

(Bennett and Klich, 2003). Most countries respond to food safety threat by establishing and 

enforcing maximum regulatory limits of mycotoxins (van Egmond et al, 2007). Despite the 

development of several measures to control fungal contamination, toxigenic fungi exist 

everywhere in the environment and can contaminate a wide range of agricultural products, both 

in the field before harvest and in warehouses after harvest. High levels of contamination in raw 

materials are usually more tolerated compared to a finished product intended for direct human 

consumption. 

Thousands of different kinds of mycotoxins exist, but only a few of them have considerable food 

safety concerns. Among all fungal flora, the most studied fungal genera are Aspergillus, 

Penicillium and Fusarium, which are very well known for mycotoxin production in food. The 

most prominent mycotoxins are aflatoxins produced by Aspergillus niger, (Iqbal et al, 2015) 

deoxynivalenol (DON), zearalenone (ZEN) and fumonisins produced by Fusarium species, and 

patulin (PAT), produced by Penicillium species (Audenaert et al, 2014). 

These compounds have adverse health effects such as carcinogenic, teratogenic, mutagenic and 

birth defects, which may result in varying levels of symptoms from skin irritation and 

neurotoxicity to immune suppression and death (Wu et al, 2014). Mycotoxins represent a serious 

health risk to humans, especially in low-income countries, where prolonged exposure, even in 

low quantities, may cause immune disorders as well as liver damage and cancer (Prietto et al, 

2015). In children, aflatoxin contamination of milk can lead to delay in growth, (Raiola et al, 
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2015) while Fumonisins have been reported to be responsible for esophageal cancer, and 

ochratoxin can induce nephropathy. Prolonged DON exposure is reported to cause 

immunotoxicity (Hassan et al, 2015). Moreover, mycotoxin contamination adversely affects crop 

and animal production, significantly reducing market value. These issues require the application 

of control strategies to limit the health risks associated with the production of these 

contaminants. 

Effective measures should be taken to avoid mycotoxin contamination in food. The first and 

foremost priority is prevention of mycotoxin production in the field before harvest and after 

harvesting in storage (Schmidt-Heydt et al, 2013). A number of different agricultural practices, 

e.g. crop rotation, growing resistant varieties, soil tillage, insect control, and biological and 

chemical control of plant diseases, have been developed to inhibit the growth of mycotoxin-

producing fungi in the field, which ultimately lowers their production in foodstuffs (Munkvold, 

2014; Alberts et al, 2016). Post-harvest measures are also crucial to avoid mycotoxin production 

during storage; in particular, humidity and temperature are the two main factors affecting mould 

growth during storage (Jacobsen, 2014). Several post-harvest methods can be used for the 

detoxification of food materials during food production (Zhu et al, 2016).  

Food processing can also have a valuable impact on mycotoxin level (Santini, 2016) by: 

(i) Physical removal 

(ii) Chemical transformation to less toxic compounds 

(iii) Enzymatic detoxification 

(iv) Microbial degradation by adsorption on their surfaces 

The accurate quantitative and qualitative analysis of mycotoxins is crucial for food safety 

measures. All the analytical procedures being used for estimation and determination of 
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mycotoxins include three basic steps: (i) extraction, (ii) purification and clean-up, and (iii) 

identification and quantification (Rahmani et al, 2009). In order to detect the lower level of 

mycotoxins in food commodities, it is necessary to develop sensitive, rapid and accurate assays. 

Several analytical techniques have been developed for different purposes, having different 

accuracy and sensitivity. 

Most commonly used methods are chromatographic techniques and bioassays. Among the 

chromatographic methods, high-performance liquid chromatography (HPLC) is the most 

popular, with two different types of detectors, such as UV or fluorescence detectors. Recently, 

liquid chromatography–mass spectrometry (LC–MS) and gas chromatography–mass 

spectrometry (GC–MS) have become more feasible for qualitative and quantitative determination 

of mycotoxins (Sulyok et al, 2010). 

1.2 ANALYSIS OF MYCOTOXINS 

1.2.1 Sampling 

The purpose of sampling is to obtain a portion for the analysis and estimation of attributes of a 

specific lot. Sampling methods are crucial in obtaining representative samples, owing to the high 

heterogeneity of contamination by mycotoxins (Wagner, 2015). The small percentages of 

extremely contaminated portions are randomly distributed in a lot. Thus, due to the high 

heterogeneity of mycotoxin concentration in samples, traditional methods of sampling are not 

good enough for mycotoxin estimation in agricultural foodstuff (Johansson et al, 2000).  

To follow a correct procedure, the substance to be tested, the analytical method, the numbers of 

replicates, the numbers of measurements per each replicate and the sampling method must be 

defined. A good sampling is of primary importance for the management actions to implement 
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with lots that may be contaminated by mycotoxins (Wagner, 2015). A general criterion is that the 

whole primary sample must be ground and mixed to obtain the same concentration of toxin as 

the original sample, which is fundamental in raw cereals, since some mycotoxins, such as DON, 

are mainly present in the pericarp of grain (Vidal et al, 2013). 

1.2.2 Extraction Methods 

The physicochemical properties of sample material and type of toxin to analyze determine the 

method of extraction to be used. Generally, the sample is ground, homogenized in extraction 

solvent and filtered for the purification step. During the extraction procedure, the analyte will 

move in the extraction solvent and, in this way, the desired compound from the sample matrix is 

removed for analysis. The selection of extraction solvent is made wisely by considering that 

there is no specific solvent which can remove only the desired mycotoxins; thus, solvents are 

selected which can remove as many mycotoxins as possible (Capriotti et al, 2012). 

Solid–liquid extraction: Most of the mycotoxins are soluble in polar solvents and insoluble in 

nonpolar solvents (Ridgway, 2012). The most common solvents that have been used in different 

studies for the extraction of mycotoxins from cereals are polar or relatively polar solvents, such 

as water, acetone, acetonitrile, (Raiola et al, 2012; Tolosa et al, 2017) methanol, (Juan et al, 

2014) chloroform (Venkataramana et al, 2015) or a mixture of them (Lai et al, 2014; Skendi et 

al, 2016). Innovative approaches for extraction: The classic procedure adopted to favour the 

extraction of mycotoxins is carried out by using mechanical shaking or ultrasound, but in the last 

few years several new methods have been developed for extraction from cereals, including 

supercritical fluid extraction (SFE), accelerated solvent extraction (ASE) and microwave-assisted 

extraction (MAE), having the advantage of needing lower amounts of extraction solvent to 

optimize the performance. The SFE method for isolation and clean-up of macrocyclic lactone 
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mycotoxins, such as ZEN, from maize flour was carried out (Zougagh and Ríos, 2008). Several 

experimental conditions, e.g. CO2, time of extraction, temperature and flow rate, were optimized. 

The use of methanol as solvent allowed 100% recovery for all mycotoxins. This technique is fast 

but requires expensive equipment.  

The ASE method uses a low amount of solvent and requires extraction under high pressure (1500 

psi for ASE 300) and high temperatures (50–200 ∘C); the sample is kept under these conditions 

for a short time, using compressed gas to remove the sample extract from the container; thus, fast 

extraction can be established. The ASE method was used in maize flour for the analysis of ZEN 

and its derivatives, (Zougagh and Ríos, 2008) and in rice and maize for the analysis of aflatoxins 

(Li et al, 2014). A MAE technique for OTA extraction in bread was reported, with optimized 

extraction conditions based on an orthogonal composite design coupled with response surface 

methodology (Paíga et al, 2012). An innovative method for the extraction of aflatoxins from 

grains and grain products, based on the combination of MAE and solid phase extraction (SPE) 

techniques, was also performed (Chen and Zhang, 2013). 

1.2.3 Clean-up Methods 

Prior to analysis of the target molecule, sample extracts are cleaned up to remove the co-

extracted materials, which may interfere with the analyte during instrumental analysis.  

SPE is generally based on molecularly imprinted polymers, which represent one of the most 

significant improvements in the purification procedure. There are several column packings 

commercially available with different sorbents, and the choice is function of matrix, analytes and 

interferences. The most common materials are silica gel, Florisil and cyano for determination of 

trichothecenes, while strong anion-exchange is used for fumonisins (Lattanzio et al, 2013). In 



Chapter 1                                                                          State of Art for Analysis and Reduction of Mycotoxins 

20 
 

SPE, synthetic receptors are adopted for the extraction of the main mycotoxins. This method 

allows the complete removal of interfering compounds from the sample matrix by reducing the 

sample preparation time and increasing the sample output, since washing, conditioning and 

elution can be performed automatically (Stecher et al, 2007). Some authors optimized the 

purification step by SPE cartridges for the clean-up of 23 mycotoxins from sorghum (Njumbe 

Ediage et al, 2015). 

Immunoaffinity columns (IAC) are often utilized in mycotoxin analysis, for their high 

specificity, since they contain an activated solid phase support with antibodies that bind a single 

mycotoxin, removing interfering substances; after that, the mycotoxins are eluted with a solvent 

or by antibody denaturation. The scientific literature provides examples of the application of IAC 

columns for the analysis of aflatoxin and ochratoxin in wines, (Di Stefano et al, 2015) animal 

feedstuff, (Di Stefano et al, 2015) pasta, (Keller Bol, 2016) infant formula and baby foods (Juan 

et al, 2014).  

Another strategy for clean-up is represented by Mycosep and Multisep columns, which are filled 

by adsorbents such as ion-exchange resins, celite charcoal and other packed materials: the 

purified extracts seep through the column, while proteins, fats and pigments are held in the solid 

phase. This method is simple and quick, but the efficiency of purification depends on the matrix. 

(Montes et al, 2012). 

The QuEChERS (quick, easy, cheap, effective, rugged and safe) sample preparation method has 

been widely described for several analytes and, in last few years, it was also reported for the 

analysis of mycotoxins. This approach is favourable for its simplicity, low volumes of consumed 

solvents, good recovery, repeatability, within- and inter-laboratory reproducibility, linearity and 
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low analytical limit of detection (LOD) and limit of quantitation (LOQ), but it cannot be easily 

automated (Tolosa et al, 2017) 

Moreno et al. (2016) reported the application of hybrid nanoparticles for the extraction of ZEN 

and its metabolites from maize samples. This method, based on magnetic separation technology, 

presents advantages since it simplifies sample treatment; in fact, the sorbent does not need to be 

packed into the cartridge, the separation can be carried out by an external magnetic field, and 

nanomaterials could be used six times with sensitivity and recovery. Moreover, the method could 

be improved by combining the on-line use of magnetic nanoparticles with more sensitive 

detectors, such as tandem mass spectrometry (MS/MS). 

1.2.4 Quantitative and Qualitative Analysis 

Mycotoxin analysis methods should be accurate, rapid, simple, robust and selective to enable 

determination. Different methods for quantitative and qualitative analysis of mycotoxins have 

eased the surveillance of foods for contamination of mycotoxins. The analytical method should 

be selected according to the purpose of analysis, and sensitive methods are required for low 

tolerance levels in food commodities. The determination of mycotoxins is usually achieved by 

different chromatographic techniques or immunochemical methods, as shown in Table 1.  
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Table 1: Comparison of different qualitative and quantitative techniques for mycotoxins analysis 

Method Advantages Disadvantages Reference 

HPLC 

high sensitivity 

good selectivity 

precise identification 

short analysis time 

automated (autosampler) 

expensive equipment 

specialist expertise 

required 

derivatisations may 

be required 

Kong et, al., 2014 

Juan et, al., 2016 

Zhang et, al., 2016 

LC/MS 

selective and sensitive 

detection 

ability to generate structural 

information of analyte 

low detection limits 

simultaneous analysis of 

multiple mycotoxins 

minimum requirements for 

sample preparation 

very expensive 

equipment 

specialist expertise 

required 

sensitivity depends 

on ionization 

techniques 

Spanjer et al., 2008 

Silva et al., 2009 

Leon et al., 2016 

Tolosa et al., 2017  

ELISA 

convenient and sensitive 

detection 

ease of operation 

rapid means of screening the 

sample 

limited use of organic 

solvents 

matrix interference 

problems 

cross reactivity with 

related mycotoxins 

semi- quantitative 

narrow operating 

range 

Krska & Molinelli, 2007 

Wang et al., 2014 

Urusov et al., 2015 

Spectral 

analysis 

technology 

rapid screening of large 

number of samples 

qualitative and quantitative 

information about the 

structure of mycotoxins 

complicated 

interpretation of 

spectral data 

spectra overlapping 

Lee et al., 2014 

Aiko et al., 2015 
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Among chromatographic techniques of analysis, HPLC, coupled with fluorescence derivatization 

(FLD) and MS/MS, is the most popular method for the detection of mycotoxins in cereals (Kong 

et al, 2014; Juan et al, 2016). The analytical tool LC/MS/MS has many advantages over other 

chromatographic techniques, such as selective and sensitive detection, ability to generate the 

structural information of the analyte, low detection limits, minimum requirements for sample 

preparation, the possibility to identify the wide range of analytes at different polarities and the 

use of general detectors, which are not dependent on chemical characteristics (Spanjer et al, 

2008). Mass spectrometry is capable of separating mass fragments to the fourth or fifth decimal 

place (exact mass), where previous instrumentation was limited to single-digit mass units 

(integer mass). 

The introduction of high-resolution mass spectrometry (HRMS) offers the possibility to analyse 

multiple contaminants with a single extraction, including ergot alkaloids, pesticides and 

veterinary drugs (León et al, 2016). High-resolution LC/Orbitrap mass spectrometry allowed the 

detection of masked mycotoxins derived from type A trichothecenes in corn, identified as 

neosolaniol–glucoside (NESGlc) and diacetoxyscirpenol–glucoside (DASGlc) on the basis of 

accurate mass measurements of characteristic ions and fragmentation (Nakagawa et al, 2012). 

LC Coupled to quadrupole Orbitrap MS was also adopted for the analyses of 17mycotoxins in 27 

samples of durum wheat pasta and two samples of baby food (Tolosa et al, 2017).  

Some researchers showed the use of GC technique for the analysis of mycotoxins such as ZEN, 

Fusarenon X, DON and derivatives, in breakfast cereals and flour (maize, wheat and cassava) 

(Cunha and Fernandes, 2010). This technique is convenient since it combines superior separation 

on the capillary columns with a variety of general or specific detectors such as MS. A two-

dimensional separation using Deans switch heart-cutting or comprehensive systems have also 
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been carried out, improving separation power. Briefly, in heart-cutting a part of the sample from 

the first column is transferred to a second column by an interface such as Deans switch (Seeley, 

2012). This approach requires a derivatization phase, such as silylation and acylation, since most 

mycotoxins are characterized by low volatility. 

In general, the physicochemical detection methods of mycotoxins require a lengthy preparation 

of the sample, as well as an unstable chromatographic trend of mycotoxins. Therefore, bioassays 

have become widespread for mycotoxin detection. In these methods, mycotoxin specific 

antibody (at fixed concentration) is mixed with a sample containing a known amount of 

mycotoxin. A complex is formed, and responses are generated over a range of standard 

mycotoxin concentrations, which are used to generate a calibration curve and table and, finally, 

unknown samples are determined by referring to the calibration curve. Advances in research 

have made it possible to develop highly specific antibody-based tests; several kits are 

commercially available, which can be used to identify and measure the mycotoxins in food 

commodities, sometimes in less than 10min. Bioassays are generally based on the affinities of 

monoclonal and polyclonal antibodies, and three different types of immunochemical methods are 

distinguished: (i) radioimmunoassay (RIA); (ii) enzyme-linked immunosorbent assay (ELISA); 

and (iii) immuno-affinity column assay (ICA). By the late 1960s, RIA was introduced to the 

diagnostic market and subsequently ELISA began to replace RIA. A solid-phase RIA for 

detecting AFB1 in corn and wheat was developed (Jacobs et al, 1972). RIA was also adopted for 

detecting nivalenol in barley (Teshima et al, 1990).  

ELISA is the most widespread immunoassay technique used in OTA analysis for its simplicity 

and capability for parallel analysis of multiple samples. Bioassay methods have several 

advantages over other methods, such as rapid means of sample screening, convenient and 
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sensitive detection, ease of operation, high output, and quick and reliable results with limited 

sensitivity. However, like other methods, it also has some demerits, such as cross-reactivity and 

matrix dependence (Krska and Molinelli, 2007). 

Finally, the introduction of spectral analysis technology for mycotoxin detection can ensure rapid 

screening of many samples. These techniques include near-infrared reflectance (NIR), Fourier 

transform infrared spectroscopy (FTIR) and Raman spectroscopy, which can provide qualitative 

and quantitative information about the structure of mycotoxins (Hernandez-Hierro et al, 2008). 

Some examples of Raman spectroscopy application have been reported for qualitative and 

quantitative analysis of aflatoxins in ground maize (Lee et al, 2014). On the other side, 

spectroscopic technology has been limited owing to the difficult interpretation of spectral data 

and overlapping of spectra. 

1.3 DETOXIFICATION/INACTIVATION OF MYCOTOXINS 

1.3.1 Physical Processing 

Sorting: Mycotoxin contamination is higher in broken and damaged kernels; unprocessed cereals 

often contain admixtures and dust particles (Johansson et al, 2006; Juan et al, 2012). Sorting, 

dehulling or washing is usually applied before processing methods or after harvesting, which 

removes admixtures from the cereals (Table 2). Sorting is generally a technique to separate 

substandard particles from the food to maintain quality. In the case of cereal grains, it can be 

carried out based on different physical properties like shape, colour, size and density, as well as 

the identification of broken grains with fungal growth. Mycotoxin contamination is 

heterogeneously distributed among the grains; therefore, separating the damaged grains can 

effectively reduce the contamination level. Grain sorting for aflatoxin reduction using UV light is 
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also common. Ergot alkaloids are even more heterogeneously distributed than the aflatoxins; 

sclerotia loaded with alkaloids can be efficiently removed from the rye by opto-electronic sorting 

(Miedaner and Geiger, 2015). In spite of all this, sorting is basically an inefficient, laborious and 

impractical method. 

Table 2: Physical approaches for detoxification of mycotoxins during food processing 

 

Detoxification  

method 

Product Mycotoxin 

Reduction 

(%) 

Reference 

Sorting 

pistachio nut 

rye 

Aflatoxins 

Ergot alkaloid 

95 

70-80 

Shakerardekani et al., 2012 

Miedaner and Geiger, 2015 

Dehulling Maize Aflatoxins 46.6 Kilonzo et al., 2014 

Milling 

Wheat 

Maize 

Aflatoxins 

DON 

ZEN 

40-50 

Schwake-Anduschus et al., 2015 

Tibola et al., 2015 

Extrusion 

Cereal 

Maize 

Aflatoxins 

Fumonisins 

50-80 

34-95 

Oliveira et al., 2013 

Hahn et al., 2015 

Irradiations 

Maize 

red chili 

cereal 

cereal 

Aflatoxins 

Aflatoxins 

Aflatoxins 

DON 

95 

85 

75 

40 

Markov et al., 2015 

Iqbal et al., 2013 

Herzallah et al., 2008 

Vearasilp et al., 2015 

Cold Plasma 

Nuts 

palm fruits 

Aflatoxins 

Aflatoxins 

50 

All spores 

Basaran et al., 2008 

Ouf et al., 2015 
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An innovative application based on image processing is represented by near-infrared 

spectroscopy (NIRS), which is very effective for screening of fungal growth on a large scale 

from cereal grains and other agricultural products (Udomkun et al, 2017). Hyperspectral imaging 

(HSI) is another innovative technique to produce the complete NIR spectrum and localize 

contamination in food samples, especially in grains. In a recent study on maize kernels 

inoculated with Aspergillus flavus spores, the contamination level of aflatoxins was estimated 

using hyperspectral imaging (Wang et al, 2015). 

Processing: Removal of the outer layers of the grains is known as dehulling, a basic processing 

step prior to the grinding of grains. The level of mycotoxin contamination can be decreased by 

dehulling, since fungal colonization accumulates on the surface of grains, and so this method has 

been reported to reduce the fungal load from the bulk (Vučković et al, 2013). A study carried out 

on maize in Kenya has shown the reduction of aflatoxins by dehulling, during the preparation of 

muthokoi, which is a traditional dehulled dish of maize. Aflatoxin content was significantly 

reduced, leading to lower exposure in muthokoi as compared to entire maize kernels (Kilonzo et 

al, 2014). Spatial distribution of mycotoxins was studied in wheat milling fractions, after the 

milling process of cereals. Finished flour was found to be less contaminated, while high 

mycotoxin levels were found in bran (Tibola et al, 2015).Temperature and time are important 

parameters for industrial food processing, which can affect the mycotoxin content in the finished 

product. Although mycotoxins are thermally very stable compounds, some conventional food 

preparation methods, or temperatures above 100 ∘C, can affect some mycotoxins. High-

temperature methods such as toasting, roasting, frying and extrusion can reduce mycotoxin 

contamination (Oliveira et al, 2013).  
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Radiation: Irradiation such as ionizing (gamma) and non-ionizing (UV, solar, microwave) can 

partly remove mycotoxins from foods, by eliminating or reducing pathogenic microorganisms. 

Hence irradiation may be an industrial approach to remove contamination from foods by 

providing energy to both food constituents and contaminants. Gamma radiation generates very-

high-energy photons, which directly damage the DNA of microorganisms in the cell (Da Silva 

Aquino, 2012). Several studies have reported the efficacy of the application of gamma radiation 

for the reduction of aflatoxins. In a study on naturally infected maize, AFB1 was found to be 

reduced by 95% when exposed to a dose of 10 kGy gamma radiation (Markov et al, 2015). In the 

literature, the application of UV irradiation was also reported to be effective as a non-thermal 

and economic strategy for the destruction of mycotoxins. Further alternative methods of 

irradiation for the detoxification of food commodities are the microwave and dielectric processes 

of radio frequency (Vearasilp et al, 2015). Microwave heat treatment was found to be less 

successful for lowering mycotoxin levels in food commodities (Numanoglu et al, 2012). Another 

innovative and recent application for mycotoxin reduction is pulsed light (PL), which generates 

short, high-intensity broad-spectrum white light. PL was reported to be efficient in reducing 

toxicity from Aspergillus flavus in rice (Wang et al, 2016). 

Cold plasma: The use of cold plasma technique in food processing to eliminate pathogens is 

reported to be a valid method. A recent review of this technique highlighted the potential of its 

strong antimicrobial effects, which can be used for the sterilization of temperature-sensitive 

surfaces, such as food products. (106) Cold plasma is basically created by atmospheric dielectric 

discharge, with synthetic air as working gas; in a case study, the concentrations of ZEN and 

DON were found to be reduced from 100 μgmL−1 to a few μgmL−1 (ten Bosch et al, 2017). 



Chapter 1                                                                          State of Art for Analysis and Reduction of Mycotoxins 

29 
 

Food products treated by plasma need to be assessed for the formation of any toxic compound 

during the process, since no investigations have yet been conducted using this technique.  

1.3.2 Chemical Treatments 

Chemical processing of food for decontamination or detoxification of mycotoxins is not 

authorized within the EU for human food commodities; therefore, chemical processing requires 

regulatory approval. Many studies have been conducted to investigate the suitability of chemical 

processing to inactivate or destroy mycotoxins. Chemicals may change the structure of 

mycotoxins into other compounds; therefore, the toxicity level must be assessed after chemical 

treatment. Furthermore, it is known that chemical processing also impairs the nutritional quality 

of the food product by affecting texture, taste or flavour. Recently, defined criteria for chemical 

detoxification of feed may be used as a model for corresponding developments in food 

regulations (European Commission, 2015).These chemical processing methods involve the use 

of acids, bases, reducing agents or oxidizing agents. Usually these chemicals are applied to 

mycotoxin reduction by packing, immersion or fumigation (Bender et al, 2012; Guzmán and 

Hernández, 2014).  

Codex Alimentarius General Standards for Food Additives and general food legislation provide a 

list of chemicals that can be used. Several studies have demonstrated the effect of different food 

additives on the detoxification of mycotoxins. For example, glycerol is a general-purpose non-

toxic food additive; thus, a powerful detoxification effect was observed when combined with 

calcium hydroxide (Venter, 2014). In a more recent study, aflatoxins were treated with acetic, 

lactic and citric acids under conditions simulating cooking, and lactic acid showed the highest 

efficiency (Aiko et al, 2016). Therefore, they can be used as a preservative in different food 

commodities. In the oxidation process of aflatoxins, primarily phenol formation occurs, by an 
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addition reaction towards the double bond of the furan ring, destroying the structure of aflatoxin. 

It is well understood that compounds which have a terminal double bond, such as aflatoxins G1, 

B1, and M2, are more susceptible to reaction with oxidizing agents such as ozone, which remove 

their double bond (Inan et al, 2007). 

1.3.3 Effects of Medical Plants and Food Ingredients 

To overcome the residual toxicity of synthetic additives and resistance of fungal species against 

them, there are certain natural plant materials such as some spices, plant-based additives, herbs 

or other food ingredients that are used during food processing or home cooking for their 

detoxification ability against mycotoxins. The effect of isothiocyanates was evaluated for 

reduction of aflatoxins present in oriental mustard flour as an effect of reduced Aspergillus 

parasiticus growth: aflatoxins were reduced from83.1% to 87.2% (Hontanaya et al, 2015). In 

Asian cooking, ajwain spice (carom) is used in some foods; therefore, the potential effect of 

reducing aflatoxins after incubation with ajwain extract was studied (Velazhahan et al, 2010). In 

another study on medicinal plants, an extract of Ocimum tenuiflorum was evaluated as an 

aflatoxin detoxifier, even at room temperature; (Panda and Mehta, 2013) also, aqueous extracts 

of Adhatoda vasicawere found to completely degrade AFB1 after 24 h at 37 ∘C (Vijayanandraj 

et al, 2014).  

Generally, essential oils originating from different aromatic plants have also been used as food 

preservatives because of their antimicrobial properties. For example, the antifungal activity of 

eugenol (a compound derived fromessential oils) was determined against aflatoxin production in 

sorghum grains (Komala et al, 2012). In another similar study, the antimicrobial potential of 

thyme (essential oil from Thymus vulgaris) was reported to inhibit fungal growth (Kohiyama et 

al, 2015). Detoxification of mycotoxins by herbs and spices has been recently reviewed (Aiko 
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and Mehta, 2015). In a study of plant material as detoxifier, neem (Azadirachta indica) leaves 

were found to have strong fungicidal and anti-aflatoxigenic properties. The application of 20% 

neem powder completely inhibited all types of fungal growth when used during the storage of 

wheat, rice andmaize (Sultana et al, 2015). Among the other food ingredients, reducing sugars 

have also been found to be detoxifiers; for example, D-fructose and D-glucose reduced the level 

of fumonisins by blocking the primary amino group in their structure, hence preventing their 

toxicity in food commodities (Fernandez-Surumay et al, 2005). 

1.3.4 Enzymatic Detoxification  

A distinguishing feature of detoxification using enzymes is its specificity to food commodities, 

among all the potentially suitable detoxification techniques, since enzymatic catalysis has a 

unique position (Wang et al, 2011). Enzymes have evolved as important catalytic agents used for 

different industrial processing methods, because of recent developments in protein engineering 

and recombinant DNA technology (Pfliegler et al, 2015). Some notable exceptions were found 

during studies of enzymatic detoxification: peroxidases and laccases can also modify the 

substrate and may destroy valuable food components. It is reported that the laccase from 

Trametes versicolor can degrade AFB1 (Scarpari et al, 2014). The potential for mycotoxin 

detoxification by enzymatic activities has been recently reviewed (Vanhoutte et al, 2016). 

Another distinguishing feature of enzymatic detoxification is that enzymes are basically proteins, 

which can cause allergies when used during food processing. Thus investigation of the allergenic 

potential of enzymes is also required for approval as processing aids (European Food Safety 

Authory, 2009). Enzymes possess an unexplored profile to detoxify contaminants in food, 

because of their favourable toxicology and specificity. In the EU, so far, no enzyme has been 

authorized for the removal of mycotoxin contamination from foods. 
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Enzymes are used in the food industry as processing aids; for example, in the manufacturing of 

cheese the aspartic protease chymosin is used as an alternative to rennet, and other industrial 

enzymes are also used in bread making (Whitehurst and van Oort, 2010). Some other food 

production processes that can also benefit from the use of enzymes in the detoxification of 

mycotoxins are malting and brewing. Enzymes for the detoxification of DON may also have 

desirable effects on wheat flour during the baking, and some enzymes can also be added to flour 

with other commonly used enzymes during the baking process, such as amylases, proteases and 

xylanases. Unfortunately, for irreversible detoxification of DON, no suitable enzymes are 

available yet. New detoxification activities for industrial production have been identified, but 

whether the enzymes responsible for these activities are suitable for food production remains to 

be evaluated (He et al, 2015). A bacterium belonging to Sphingomonas spp. has been 

characterized as fumonisin detoxifying, since it was able to produce the enzyme for 

decontamination of fumonisins (Heinl et al, 2010). ZEN degrading ability has been found in the 

fungus Clonostachys rosea, producing some enzymes for decontamination. 

In addition, enzymatic detoxifying activities have been found in bacteria (Tan et al, 2014), yeast 

(Vekiru et al, 2010) and fungi (Popiel et al, 2014). Many peptidases are able to hydrolyse OTA, 

exerting their detoxifying activity by hydrolyzing the amide (Abrunhosa et al, 2010). Enzymatic 

detoxification appears to be a conceivable approach for mycotoxin decontamination in food 

processing. 

1.3.5 Biological Control Agents 

Different physical and chemical methods have many disadvantages as well as many undesirable 

effects on the quality of food products. However, biological methods have been reported as the 

most promising approach to degrade mycotoxins and also to prevent exposure of the human body 
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to them (Table 3) (Ahlberg et al, 2015). Fermentation is a common food process, based on the 

use of microorganisms widely used in the food industry. Bacteria and fungi are used for the 

fermentation process; the activities of these microorganisms are responsible for required 

transformations in food components.  

However, many additional metabolic enzymes also work in their cells, which are released into 

the food matrix after the autolysis or disintegration of cells. Transformation of mycotoxins into 

non-toxic compounds can occur as a consequence of these activities of microbes (Saladino et al, 

2016). For targeting mycotoxin decontamination, so far no strain of any microorganism has been 

authorized. Brewing and malting are major examples of fermentation processing which can 

significantly benefit from such technologies to remove mycotoxins (Moss and Long, 2002). 

Fermentation with lactic acid bacteria (LAB) is also used in the manufacture of many dairy 

products. Detoxification by LAB has been studied for a long time against aflatoxin M1, the 

major aflatoxin in milk. LAB known as Lactobacillus, Propionibacterium, Lactococcus and 

Bifidobacterium have been reported as very good binders of aflatoxins, which can ultimately 

degrade aflatoxins from the food product (Popiel et al, 2014). More recently, in another study the 

effect of LAB against aflatoxin development was investigated during bread processing, which 

resulted in reduction of aflatoxins (Saladino et al, 2016). 

Other microorganisms have also been reported as mycotoxin binders or detoxifiers, such as 

cultures of Saccharomyces cerevisiae, a yeast used in the brewery and in sourdough production, 

able to detoxify OTA (Petruzzi et al, 2014) and aflatoxins, (Topcu et al, 2010) thus reducing the 

contamination level in fermented food products. In the 1960s, the US Department of Agriculture 

carried out the first screening for mycotoxin-degrading microbes, especially targeting the 

aflatoxins (Ciegler et al, 1966). Many screening studies were reported but rarely confirmed that 
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degradation was a result of enzymatic activity rather than physical adsorption of 

microorganisms. Numerous bacterial and fungal species were screened for detoxification 

purposes, but progress in elucidating the mechanism of action was very slow. After almost three 

decades of research it was found that the detoxification of aflatoxins by Flavobacterium 

aurantiacum involved enzymatic activities (Smiley and Draughon, 2000). The fungal species 

Rhodococcuserythropolis was also able to detoxify aflatoxins, (Alberts et al, 2006) and the 

degradation of thesemycotoxins by Rhizopus oryzae and Tricoderma reesei was recently studied 

(Hackbart et al, 2014). In some molecular-level studies, for the detoxification ofmycotoxins, it 

has been revealed that these activities are not feasible for food processing, particularly for the 

degradation of AFB1 by Actinomycetes spp (Alberts et al, 2006). White-rot fungus 

(Phanerochaete sordid) was reported to produce peroxidase, responsible for degradation of 

aflatoxins (Wang et al, 2011). However, in most of cases the mechanism of action remained 

undefined. The number of microorganisms reported for detoxification of mycotoxins from food 

commodities is high (He et al, 2015; He et al, 2016) and their use for decontamination of food 

commodities during food process ing requires regulatory approval. 
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Table 3: Application of biological agents for detoxification in food commodities 

Biological agent Product Mycotoxin Reference 

Lactic acid bacteria Milk Aflatoxin M1 Ahlberg et al., 2015 

Saccharomyces cerevisiae fermented food OTA, Aflatoxin Petruzzi et al., 2014 

Lactobacillus spp. Bread Aflatoxins Saladino et al., 2016 

Rhodosporidium paludigenum Fruits PAT Zhu et al., 2015 

Bacillus strain animal feed Trichothecene Zhou et al., 2014 

Rhizopus oryzae food processing Aflatoxins Hackbart et al., 2014 

 

 

 

 

 

 

 

 

 

 



Chapter 1                                                                          State of Art for Analysis and Reduction of Mycotoxins 

36 
 

1.4 TECHNOLOGICAL PARAMETERS OF FOOD PROCESSING 

Many physical approaches such as, dehulling, milling, extrusion, irradiation and cold plasma are 

being applied during food processing. Temperature and time are important parameters for 

industrial food processing, which can affect the food quality by damaging the nutritional value. 

For example, during bread baking, starch molecules play a significant role. Starch granules have 

the ability of gelatinization and to trap the air bubbles, facilitating the process of fermentation by 

gas retention (Hug-Iten et al, 2001).  

During processing, the foods undergo many physical, physiochemical and sensory changes 

(Robertson, 1993), Such as heating at a very high temperature can affect the gluten content 

present in cereal‟s derivatives. Gluten is a complex of protein, composed of two main groups:  

gliadins, which is responsible for the viscosity of the dough, and glutenins, ensures the dough 

elasticity (Becker et al, 2007). However, dough produced in the absence of gluten presents poor 

rheological properties, affecting the final quality. 

These complex physical and chemical processes can significantly affect the bread technological 

parameters during baking such as dough volume during bread leavening, crumb firmness and gas 

bubble area fraction in bread loaf, a consequence of the starch granules gelatinized during 

baking. Different technologies are being used to access the food quality parameters such as 

differential scanning calorimetry (DSC) to evaluate the impact of treatments on starch 

gelatinization, while a Brabender Farinograph is used to test the behaviors of doughs (Hager et 

al, 2012; Therdthai et al, 2016). 
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PROSPECTING FOR MICROBES ABLE TO TRANSFORM DEOXYNIVALENOL 

2.1 INTRODUCTION 

The plant pathogens Fusarium graminearum and several other Fusarium species infect many 

crops and cause the destructive disease Fusarium Head Blight (FHB) in wheat, barley, and other 

small grain cereals (Goswami et al., 2006; Yoshida & Nakajima, 2010). These pathogens can 

contaminate grains with trichothecene mycotoxins such as deoxynivalenol (DON), 15-acetyl 

deoxynivalenol (15-ADON), 3-acetyl deoxynivalenol (3-ADON), and nivalenol (NIV), causing 

significant reduction in grain yield and quality (Ito, et al, 2012).  

Biological detoxification is a promising approach to mitigate mycotoxin contamination, which 

involves the use of microorganisms for the biotransformation of mycotoxins into less toxic 

compounds (Saladino et al, 2016). Mycotoxin degrading microorganisms are promising 

alternatives to chemical or physical strategies for mitigating mycotoxin contamination 

(Karlovsky, 2011).  

Several efforts have been reported for the isolation of bacterial strains with the ability to degrade 

or transform DON, and resulting by-products have been sometimes been identified and 

characterized (Zhou et al, 2008; He et al, 2010). Bacterial detoxification of DON has been 

reported by two main transformations: 1) de-epoxidation of DON to form the de-epoxy-DON(3-

epi-DOM-1), generally accomplished by anaerobic bacteria isolated from the digestive tract of 

various animals (He et al., 2010; Karlovsky, 2011); and 2) oxidation of DON to form 3-keto 

DON, which sometimes progresses to isomerization forming 3-epi DON (3-β-hydroxy), 

transformations that have been reported by aerobic bacteria in the genera Nocardioides and 
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Devosia (Ikunaga et al. 2011; Sato et al. 2012). Deoxynivalenol is 55 times more toxic than the 

de-epoxy form, DOM-1 (Eriksen et al. 2004). 

In some cases, transformation of DON has been described by consortia of microbes, with no 

clear linkage of the activity to a single community member. For instance, a study under aerobic 

conditions showed the conversion of DON to DOM-1, by a mixed community of Enterobacteria, 

including Serratia, Clostridium, Citrobacter, and Enterococcus, originating in an agricultural 

soil. There is a great interest in cloning de-epoxidase genes from these microorganisms to 

engineer trichothecene detoxification into cereal plants (Islam et al, 2012). 

The exploration and characterization of novel bacterial taxa that biotransform DON will lead to a 

better understanding of the pathways involved in detoxification and the diversity of organisms 

with the ability to transform DON. These efforts may provide us with more specific choices of 

the bacterial isolates and the methods to be used in screening for the biotransformation of DON. 

However, these microbial sources might be limited in their utility for detoxifying contaminated 

cereals. 

The objective of this part of the thesis was to isolate microbes from soil that are capable of bio-

transforming DON to less-toxic products. Such organisms may serve as a source of enzymes or 

genes involved in detoxification of mycotoxins, which could be useful for decontaminating 

agricultural commodities.. 
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2.2 MATERIALS AND METHODS 

2.2.1 Materials 

We used long-term incubations in a minimal medium containing DON and chitin, in order to 

enrich for taxa capable of metabolizing DON. 

2.2.2 Enrichment Media 

The minimal medium (MM) used for the enrichment procedure of microbes with slight 

modifications is that of Kirimura et al. (1999). The medium consisted of (per liter) 1.6 g of 

Na2HPO4, 1 g of KH2PO4, 0.5 g of NaNO3, 0.5 g of MgSO4⋅7H2O, 0.5 g of (NH)2SO4, 0.025 g 

of CaCl2⋅2H2O, 1 mL of trace metals solution (TekNova; per L: 1.5 g of FeCl2⋅4H2O, 0.190 g of 

CoCl2⋅6H2O, 0.1 g of MnCl2⋅4H2O, 0.07 g of ZnCl2, 0.062 g of H3BO3, 0.036 g of 

Na2MoO4⋅2H2O, 0.024 g of NiCl2⋅6H2O, 0.017 g of CuCl2⋅2H2O, and 0.01 g of 

AlK(SO4)2⋅12H2O), 1 mL of vitamin solution (ATCC; per L: 0.02 g of biotin, 0.02 g of folic 

acid, 0.05 g of thiamine-HCl, 0.05 g of riboflavin, 0.010 mg of pyridoxine-HCl, 0.050 g of 

cyanocobalamin, 0.05 g of niacin, 0.05 g of Ca-pantothenate, 0.05 g of p-aminobenzoate, and 

0.05 g of thiolactic acid), and supplemented with 1% (w/v) chitin flakes. After autoclaving, DON 

(50mg/L) was added into the media. 

2.2.3 Development of Enrichment Cultures for DON Degradation 

 The source of microorganisms for initiating enrichment cultures was a soil sample collected 

from an experimental wheat field at the National Center for Agricultural Utilization Research in 

Peoria, Illinois, USA. A 100-fold dilution was prepared by suspending 20 g of soil in 180 mL of 

water and then further diluting 1 mL of this suspension in 9 mL of water. 
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Enrichment cultures were established in two different culture vessels and with an initial selection 

by one of two different antibiotics. Two cultures were established in flat bottomed spinner flasks 

(ChemGlass Life Sciences; 100 mL volume) and were incubated on stir plates at room 

temperature (fluctuating between 20-23 °C) (fig. 1a). Two additional cultures were established in 

baffled culture flasks (50 mL culture in 125 mL capacity flasks) and incubated on a shaker table 

(200 RPM, 28 °C) (fig. 1b). Spinner flask cultures were seeded with 1 mL of soil dilution and 

initial selection was imposed with 0.5 mL of a 1% solution of either aztreonam (activity against 

Gram-negative bacteria) or vancomycin (activity against Gram-positive bacteria). Baffled flask 

cultures received equivalent doses, adjusted for culture size (i.e., 0.5 mL soil dilution and 0.25 

mL antibiotic solution). 

Enrichment cultures were sampled every 7 days for analysis of DON content and for microbiome 

profiling. At each sampling, duplicate 1.5 mL subsamples were collected to microcentrifuge 

tubes and cells plus chitin flakes were pelleted. Supernatant (1.4 mL) was withdrawn for DON 

analysis, while the pellets were frozen for microbiome analysis. Additional aliquots were 

collected to cryovials containing glycerol, and were stored at -80 °C. Fresh media (MM + chitin 

+ DON; no additional antibiotics) was added to replace the volume withdrawn during sampling. 

Immediately after mixing of cultures with replacement media, duplicate 1.4 mL aliquots (as 

above) were collected,  representing the reference concentration against which reduction in DON 

content over the next 7 day incubation period was assessed. This process of sampling, incubation 

and analysis was carried out for eight weeks. 
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Fig. 1: Enrichment cultures established in a) baffled flasks (50 mL culture in 125 mL capacity 

flasks) and b) flat bottomed spinner flasks (100 mL volume) 

2.2.4 Extraction and Analysis of DON  

Deoxynivalenol (DON) was extracted from 1.4 mL aliquots of culture supernatant with 8.6 mL 

of acetonitrile and mixed on vortexer for 5 s. The samples were centrifuged at 4000 rpm for 5 

min and 2 mL of the resultant extract was transferred to 1 dram vial to dry down completely 

under a stream of nitrogen on a heating block (55 
o
C). Trimethylsilyl (TMS) derivitization was 

carried out by preparing TMS reagent N-trimethylsilylimadazole and trimethylchorosilane 

(100:1; Sigma-Aldrich) and 100 µL of it was added in each 1-dram vial containing the sample. 

The samples were vortexed to mix and allowed to incubate at room temperature for 30 min. 900 

µL of isooctane was added in each sample, followed by 1 mL of distilled water. Vials were 

gently vortexed until the top, organic layer became clear. The organic layer was transferred into 

GC vials and TMS-derivatized DON was analyzed by gas chromatography-mass spectrometry 

(GC-MS).  

a) Baffled flask b) Spin flask 
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The gas chromatograph (Agilent 7890) was fitted with a HP-5MS column (30 m length x 0.25 

mm internal diameter x 0.25 µm film thickness) and was connected to quadrupole mass 

spectrometer (Agilent 5977). The column was held at 250 
o
C at injection and the column flow 

rate was 1mL/min. The initial temperature of 150 
o
C was held for 1 min and then increased to 

280 
o
C at a rate of 30 

o
C/min and held for 3.5 min. Selective ion monitoring (SIM) was applied 

to detect the characteristic ions of tri TMS-DON with fragments ion (m/z value) of 235.1 as the 

target ion and 259.1, 295.1, 392.2, 422.2, and 512.2 as reference ions. The detection limit with 

this method was 0.025 µg DON. 

2.2.5 Microbial population diversity in enrichment cultures 

DNA was extracted from enrichment culture cell pellets using the Quick-DNA Fungal/Bacterial 

96 Kit (Zymo Research).  To profile the community composition of enrichment cultures, 

amplicon libraries were prepared for sequencing. The V4 region of the bacterial 16S-rRNA gene 

was amplified using primers 515F and 806R (Caporaso et al. 2011). The second internal 

transcribed spacer (ITS2) region of fungal rRNA genes was amplified using primers 

ITS3_KYO2 and ITS4_KYO3 (Toju et al. 2012). Primers were modified with 5‟ overhangs for 

the compatibility with the MiSeq workflow, and to create a frameshifted mixture of oligos to 

provide signal diversity within each cycle of sequencing through the primer regions. 

The reaction mixture for amplicon generation consisted of 0.5 U Phusion High Fidelity DNA 

polymerase with associated Phusion Green HF reaction buffer (Thermo Fisher), dNTPs at 200 

µM final concentration, 0.5 µM of each forward and reverse primers, 2.5 µL DNA template and 

nuclease free water to a total volume of 25 µL per reaction. Thermocycling consisted of 98 
o
C 

for 30 s, 25 cycles of (98 
o
C for 10 s, 57 

o
C for 30 s, 72 

o
C for 15 sec), final extension at 72 

o
C 

for 5 min. PCR products were cleaned using the SequalPrep Normalization Plate Kit (Thermo 
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Fisher) and amplicons were sent for sequencing. Amplicon sequences and resulting taxon 

abundance tables were processes with Mothur v.1.40.5, and R v. 3.4. 

2.2.6 Isolation of Individual DON Degrading Microbes  

1 mL of growing enrichment culture (8
th

 week of incubation) was taken and transferred into a 

flask containing 100 mL of fresh minimal media containing DON, chitin, and serial dilutions of 

enrichment cultures were prepared and incubated under same conditions to produce secondary 

enrichment cultures. After 14 days of incubation, the cultures were assessed for reduction in 

DON content. The most dilute culture showing complete loss of DON was selected. The same 

dilution procedure was repeated, in an attempt to reduce the microbial diversity, resulting in 

tertiary enrichment cultures. The most dilute tertiary enrichment culture showing loss of DON 

was selected for isolations. One hundred µL of culture broth was spread on TGY (tryptone-

glucose-yeast extract) agar plates, and incubated for two days. Morphologically different 

colonies were picked and re-inoculated on TGYA media. Purified single colonies were tested for 

DON degradation activity, by culturing in 5 mL of minimal media containing the 50 µg/mL of 

DON (28
o
C, 14 days). All pure cultures that demonstrated a reduction in concentration of DON 

were selected for identification and stored as glycerol stocks at -80
o
C. 

2.2.7 Phylogenetic Identification of Isolated Microbes 

Individual microbes that demonstrated decreased levels of DON were selected and genomic 

DNA was extracted using the DNEasy UltraClean Microbial kit (Qiagen). To obtain 16S-rRNA 

marker gene sequences, universal bacterial primers 27f (5‟-GAGTTTGATCCTGGCTCAG) and 

1492r (5‟-AGAAAGGAGGTGATCCAGCC) were used. Amplification was carried out in a 

Gene-Amp PCR System (Applied Biosystems). PCR was performed in a total reaction volume of 
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25 µl, which contained 2 µl of each reverse and forward primer (10 µM stock concentration), 

12.5 µl of GoTaq Master Mix (2x) (Promega) and 2 µl of DNA template. The PCR program 

included the following steps: 94
o
C (5 min); 30 cycles of 94

o
C (30 s), 56

o
C (1 min), 72

o
C (1 min 

30 s); and 72
o
C (5 min) extension step. After purification of the PCR products using ExoSAP-IT 

(Affymetrix) PCR purification kit, the purified PCR product was subjected to sequencing 

reaction using each primer and BDV 3.1 dye terminator kit (ThermoFisher Scientific). The 

nucleotide sequences were determined with a sequencer (Applied Biosystems 3730 DNA 

Analyzer). The nucleotide sequence similarities of the amplified region were performed with 

BLAST program available at the National Centre for Biotechnology Information website 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi).   
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2.3 RESULTS AND DISCUSSION 

2.3.1 Enrichment of DON Degrading Cultures from Soil 

The application of different enrichment strategies is being adopted due to the complexity of 

microbial communities in the environmental samples (Zhu et al, 2017). Enrichment strategies 

differ based on mycotoxins to be studied, possible transformation pathway and microbiota 

source. The aim of our enrichment cultures was to create conditions in which organisms able to 

metabolize DON could increase in abundance, which assists in achieving further isolations (He 

et al, 2016). Successful transformation of DON by our enrichment cultures demonstrates that the 

ability to metabolize DON exists within the soil microbial community that was used to inoculate 

our cultures. 

Given the complexity of soil microbial communities, however, the next challenge is to identify 

the particular community member(s) that carry the ability to metabolize DON. Exposure to 

combinations of different or individual antibiotics has been reported in many studies as a useful 

approach for screening of functional microorganisms based on different antimicrobial spectra 

(Benedetti et al, 2006; Islaam et al, 2012). In one study of DON biotransformation by a bacterial 

consortium, selection was imposed through many combinations of ten different antibiotics at 

varying concentrations. This study demonstrated the combination of three antibiotics 

(salinomycin, virginiamycin, and lincomycin) were able to significantly reduce microbial 

community complexity without a loss of the DON degradation activity (He et al, 2010). 

Similarly, our study also suggests the utility of applying different antibiotics for screening of 

potentially functional microbiota from the soil.   
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2.3.2 Analysis of DON Degradation Ability of Enrichment Cultures 

GC-MS analysis of enrichment culture broth revealed complete transformation of DON after 

three weeks of incubation in either a baffled flask (fig. 2) or a spinner flask (fig. 3), for cultures 

that had been treated with the antibiotic aztreonam. However, DON degradation activity was not 

observed in samples that had been exposed to vancomycin (data not shown). These results 

demonstrated the possibility of utilizing antibiotics for screening of potentially functional 

bacterial strains involved in biotransformation of DON into new metabolites. 

Enrichment culture broths were analyzed weekly for DON content and the presence of potential 

metabolites of DON. Each week, a portion of the culture media was consistently replaced by 

fresh minimal media containing 50 µg/mL of DON. Weekly GC-MS analysis demonstrated a 

consistent transformation of DON under both conditions, baffled flask (fig. 4a) and spinner flask 

(fig. 4b). 

DON is a chemically very stable compound, yet it does not show much accumulation in 

agricultural soils, suggesting that DON is being degraded by soil microorganisms (Karlovsky, 

2011). Strategies are needed to eliminate or detoxify DON in animal feed and the human food 

chain. Several reports have been made of DON modification by anaerobic organisms (He et al., 

2010; Karlovsky, 2011). However, anaerobic activity restricts the variety of potential uses of 

these microbes for industrial applications. Discovery of aerobic detoxification reactions would be 

useful for a different set of applications. Various studies have been done to isolate 

microorganisms from the soil that possess DON degradation activity. For instance, conversion of 

DON to de-epoxy DON has been investigated (He et al, 2016). In this study, we have extended 

the previous studies by developing enrichment cultures for DON biotransformation and 

characterizing the microbes involved in DON degradation. 
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We also characterize the DON degradation activity of Gram-positive and Gram-negative 

bacteria; it is interesting that the Gram-negative bacteria exhibited no DON degradation activity. 

We assume that the Gram-negative bacteria are not responsible for the DON degradation 

activity, suggesting Gram-positive bacteria may have some regulatory system for DON 

degradation. All previously studied anaerobic DON degrading bacteria belong to Gram-positive 

genera (Bacillus, Eubacteria, Anaerofilum, Cllinsella) (Yu et al, 2010). 

GC-MS profiling suggested that different pathways may be involved in the degradation of DON 

under different incubation conditions. GC-MS scans from the baffled flask enrichment culture 

showed the appearance of one peak with a similar mass/charge ratio as DON, but a different 

retention time (6.451 vs. 6.294 for DON) (fig. 2), suggesting some modification to the structure 

of the molecule that altered its behavior within the GC column. On the other hand, GC-MS 

profiles of the spinner flask enrichment culture demonstrated two peaks, one with a retention 

time of 6.451 and another peak at 6.305 (fig.3). The formation of an additional transformation 

product by the spinner flaks enrichment culture, which was not observed in the baffled flask 

enrichment culture, suggests either a change in gene expression by the community member(s) 

responsible for DON transformation, or a different community structure under the two 

incubation conditions. In a previous study, it has been reported that 3-keto-DON may be further 

reduced to 3-epi-DON (Karlovsky, 2011). Our work extends the previous studies that have 

highlighted the changes in microbial assemblages before, during and after DON degradation in 

enrichment cultures.  
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Fig. 2: GC-MS chromatograms (week 1-8) of extracts from culture broth for an enrichment 

culture growing in a baffled flask. DON (week 1-2, retention time of 6.294 min) was 

biotransformed to a DON derivative (week 3-8, retention time of 6.451 min). 
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Fig. 3: GC-MS chromatograms (week 1-8) of extracts from culture broth for an enrichment 

culture growing in a spinner flask, showing a different mechanism of biotransformation. DON 

(week 1-2, retention time of 6.294 min) was biotransformed to two different DON derivatives 

(week 3-4, retention time of 6.451 min; and week 5-8, retention time of 6.305 min). 
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Fig. 4: Transformation of DON by enrichment cultures; a) baffled flask, b) spinner flask. 
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DON transformation was observed by the second week of incubation and complete 

transformation was observed after three weeks of incubation. Transformation activity persisted 

through week 8. The graphical representation of GC-MS data illustrates that enrichment cultures 

remained consistent for their biotransformation activity. 

2.3.3 Microbiome Profiling of Enrichment Cultures 

Results from microbiome profiling of enrichment cultures that consistently modified DON 

indicated a progressive simplification of the microbial communities over time (week 1 to 8). 

Microbiome profile from week one cultures (fig. 5a), indicated the presence of mostly members 

of Chitinophaga, followed by Reyranella, Rhizobiaceae, Bosea, and Pseudomonadaceae. 

Bacterial communities could be clearly differentiated by time of incubation, as by week 8 

Chitinophaga (99%) were found to be most abundant member of the bacterial community, nearly 

eliminating all other community members which were initially present in enrichment cultures 

(fig. 5b).  

To our knowledge, Chitinophaga have not been reported previously for DON degradation in 

cultures. Strains of Pseudomonas have been reported for modification of different mycotoxins 

such as aflatoxin degradation by Pseudomonas aeruginosa (Sangare et al, 2014) and 

biotransformation of DON to de-epoxy-DON (He et al, 2016). However, there is also the 

possibility that co-metabolism by several microorganisms may be required for the conversion of 

DON into other metabolites.  
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Fig. 5: Taxonomic summary of bacteria in enrichment cultures a) after one week of incubation, 

and b) after 8 weeks of incubation. Different colors represent different taxa, with divisions 

towards the perimeter reflecting more narrowly defined taxonomic ranks. 
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2.3.4 Isolation of Individual DON Modifying DON Modifying Microbes 

Once an enrichment culture containing the DON degrading microflora was obtained, further 

screening to isolate single pure bacterial colonies was performed. Microbiome profiling of the 

enrichment cultures had indicated the presence of Chitinophaga (99%), followed by 

Proteobacteria. We were able to isolate the members of the Chitinophaga (Chitinophaga 

rhizosphaerae, Chitinophaga eiseniae), Proteobacteria (Acidovorax sp, Stenotrophomonas 

maltophilia), Dyadobacter (Dyadobacter fermentans), Bacillaceae (Bacillus oceanisediminis, 

Bacillus firmus) and Actinobacteria (Arthrobacter sp, Microbacterium sp, and Rothia terrae).  

We evaluated the DON transformation activity of isolated pure cultures in minimal media 

containing the 50 µg/mL of DON (28
o
C, 14 days). Among all the tested pure strains, we were 

unable to isolate a pure culture that transformed the DON completely in culture media. However, 

five isolated pure strains have shown their activity for DON degradation. Chitinophaga 

rhizosphaerae andArthrobacter aurescens have indicated the highest degradation of DON 

(shown by reduction in DON peak area) as compared to other three strains (Arthrobacter sp, 

Microbacterium sp, and Acidovorax sp) (fig. 6). 

In this study, the enrichment cultures were successfully developed from the soil samples for the 

complete DON transformation. From the initial screening of these enrichment cultures, we were 

able to isolate few bacterial strains, which were consistent in reducing the DON from the culture 

media, but none of them was found to show complete conversion. Völkl et al, (2004) were also 

unable to isolate a pure strain from the enrichment cultures that was consistently involved in 

transformation of DON.  
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Screening of DON modifying microbes is very critical; as multiple microorganisms could be 

responsible for the transformation of DON, or due to growth restrictions since some microbes 

could be inhibited by others (Yu et al, 2010).   

Isolation of a pure strain from the enrichment cultures always remains challenging. Additional 

work needs to be done on the physiological characteristics of the culture media to improve the 

culturability of DON modifying strains (Ikunaga et al, 2011; Ito et al, 2012). Efforts such as 

choosing media with different carbon sources, extending the incubation time for slow growing 

bacteria and changing the media-solidifying agent, as reported, that rather than agar, gellan gum 

is better for soil based bacteria (Janssen et al, 2002). Additional testing and analysis by adopting 

different strategies of screening can increase the probability of identifying the pure strain that 

was responsible for DON transformation, or thepossibility of co-metabolism in the enrichment 

cultures.  
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Fig.6: Reduction in DON peak area by individual bacterial colonies isolated from the enrichment 

cultures (8
th

 week), measured by GC/MS after 14 days of incubation in culture media containing 

DON. 
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2.4 CONCLUSION 

Microbial detoxification is an important strategy to eliminate the mycotoxins from the food and 

feed chain. Microoragasims that can biotransform mycotoxins to less toxic metabolities serve as 

biological control agents in agricultural commodities. Enrichment cultures from the soil samples 

were successfully developed for DON transformation activity. Due to the complexity of 

microbial communities in the environmental samples, we adopted the application of different 

enrichment strategies such as the treatment with different antibiotics. GC-MS scans from the 

enrichment culture showed the complete transformation of DON into other metabolities after the 

3
rd

 week of inoculation. 

The enrichment cultures were incubated for longer period of time (8
th

 week) and analysed for 

their consistent DON transforming activity. As expected, the reduction in microbial complexity 

was observed from 1
st
 to 8

th
 week of incubation, revealed by microbiome profiling. Screening of 

single pure isolate from the enrichment culture is always challenging, we were unable to isolate a 

pure strain responsible for the complete conversion of DON in culture media. However, some of 

the isolated pure strains have shown their partial activity for DON degradation. 

Our work extends previous studies that have demonstrated the potential to use mixed cultures to 

detoxify the mycotoxins. However, additional work needs to be done for the screening of 

specific microoragasims that are unable to grow under examined conditions. As future 

perspective; it could be interesting to apply different stratagies to increase the probability of 

isolating an organism that is responsible for DON transformation. Finally, a better understanding 

of co-metabolism of different microbes in the enrichment culture could be fascinating to explore. 
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TRANSFORMATION OF DEOXYNIVALENOL BY LACCASE-MEDIATED SYSTEM 

3.1 INTRODUCTION 

Enzymatic degradation is potentially suitable for individual mycotoxins, due to expected 

catalytic specificity of enzymes. However, some enzymes such as laccases (LCs) have broader 

spectrum activities that may be attributable to the formation of reactive intermediates with strong 

oxidoreductive properties. Such enzymes may be useful for the simultaneous degradation of 

multiple mycotoxins. Enzymatic bioremediation of mycotoxins has been recently reviewed (Loi 

et al 2017). 

Laccases (LCs) are a family of multicopper oxidases that typically contain four cupric ions, and 

are classified into three distinct spectroscopic types (T1, T2, and T3) (Pardo and Camarero, 

2015; Mate and Alcalde, 2016). Laccases have been shown to catalyze aromatic amines, 

oxidation of phenols, and other non-phenolic compounds by means of reduction of molecular 

oxygen into water. The activity of laccases in reacting with a range of different substrates can be 

extended by forming a Laccase Mediator System (LMS) in which the enzyme is combined with a 

redox mediator (Zucca, 2015). In LMS, several compounds have been widely used as redox 

mediators in many biocatalytic processes. These include 2,2,6,6-tetramethylpiperidine-N-oxyl 

(TEMPO), 1-hydroxybenzotriazole (HBT), and 2,2-azino-bis-[3-ethylbenzo-thiazolin-sulfonate] 

(ABTS) (Camarero et al, 2005;  Moldes et al, 2008).  

LCs are being used in food industries (i.e., baking, fermentation, dairy processing) for multiple 

purposes, such as improvement in the techno-functional properties during food processing, 

modification of food sensory parameters and to improve product shelf-life (Pezzella, 2015). 

Moreover, laccases have also been applied in industries for purposes of bioremediation, chemical 
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synthesis, pharmaceutical and cosmetic manufacturing (Zucca P, 2015). The degradation of some 

mycotoxins, such as aflatoxins (AFM1, AFB1), and zearalenone (ZEN), by laccases has been 

reported (Banu et al, 2013; Loi et al, 2016, 2017). 

Trichothecenes are a group of sesquiterpenoid mycotoxins, produced by several different fungi 

belonging to the genus Fusarium (Scott, PM 1990). One of the most economically devastating 

trichothecenes in wheat, barley and maize production is deoxynivalenol (DON) (McCormick, 

2011). DON, also known as vomitoxin, causes diarrhea, abdominal pain, vomiting, skin irritation 

(Pestka, 2010) and immunosuppressive effects (Sobrova, 2010), depending on the time and dose 

of exposure. DON is generally characterized by a keto functional group on C-8 (Kimura M, 

2007; McCormick et al., 2011; Alizadeh, 2016), and is commonly produced by Fusarium 

graminearum and Fusarium culmorum (Desjardins AE, 2006). These fungal pathogens are the 

casual agents of the destructive disease Fusarium head blight (FHB) (McMullen et al., 2012), 

which leads to tremendous loss in yield and quality of cereal grains and ultimately poses a great 

threat to food safety and public health (Wagacha and Muthomi, 2008). DON contamination is a 

crucial issue in major cereal crops, so proper control strategies are required to mitigate economic 

losses and to ensure food safety. 

In this part of the thesis, the application of a commercially available laccase for the chemical 

modification of deoxynivalenol (DON) is studied, by testing tested a range of enzymes and 

mediators to develop a Laccase Mediated System (LMS). Laccase from Trametes versicolor, 

coupled with 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) as a mediator, achieves complete 

transformation of DON. Two transformation products were generated by this LMS, and were 

assessed by gas chromatography mass spectrometry (GC/MS) and liquid chromatography mass 

spectrometry (LC/MS). 
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3.2 MATERIALS AND METHODS 

3.2.1 Chemicals and Reagents 

TEMPO free radical (TEMPO) and phenolphthalein (PPt) were obtained from Aldrich 

(Steinheim, Germany), syringaldazine (SYRaz) and 3-hydroxyanthranilic acid (HAA) were 

obtained from SAFC (St. Louis, MO), 2,2-azino-bis (3-ethylbenzothiazoline-6- sulfonic acid) 

diammonium salt (ABTS) and laccase from Trametes versicolor 53739 were obtained from 

Fluka (Switzerland). Column chromatography used Silica gel 70-230 mesh, 60 Å for column 

chromatography (Sigma-Aldrich, St. Louis, MO), methylene chloride (Fischer, Fair Lawn, NJ), 

and methanol (Millipore, Billerica MA).  

3.2.2 Determination of Optimum Conditions for Laccase Activity 

The optimum pH for laccase preparation was measured by using a Sigma enzymatic assay for 

Laccase procedure EC 1.10.3.2 with some modifications. Assays were performed in triplicate 

100 µL volumes in polystyrene assay plates (96-well). Assays consisted of an appropriate 

amount of enzyme, 10 % (v/v) methanol, McIlvaine buffer (sodium phosphate dibasic 0.2 M and 

citric acid monohydrate 0.1 M) constituted to yield different pH values, and 0.02 mM 

syringaldazine. Laccase activity was assessed as oxidation of syringaldazine, and measured using 

a plate reader (Molecular Devices, Sunnyvale, CA) at 530 nm for 5 minutes. Oxidation of 

syringaldazine was evident as an increase in absorbance.  

Laccase activity was also evaluated using ABTS, with the reaction mixture prepared in 

McIlvaine buffer at the optimum pH, with 180 µL of ABTS (1 mM) and 20 µL of enzyme 

solution. Oxidation of ABTS was assessed as an increase in absorbance at 420 nm. The optimum 
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temperature for enzyme activity was assessed using 1 mL of ABTS (1 mM) and McIlvaine 

buffer under a temperature range of 25-80 °C (Larson et al, 2012). 

3.2.3 Degradation of Deoxynivalenol in the Laccase Mediator System 

Assays for laccase-mediated transformation of deoxynivalenol (DON) were performed in 

triplicate in 1.5 mL microfuge tubes. Reaction mixtures consisted of 10 mg/mL laccase, 6.5 mM 

TEMPO dissolved in McIlvaine buffer at pH 5 (optimum pH), and 5 mg/mL DON. Reactions 

were set up by adding 30 µl of DON (5 mg/ml) into tubes followed by the addition of 150 µl of 

TEMPO (6.5 mM) and 20 µl of laccase (10 mg/ml) and incubated at 28 °C, 200 rpm for 72 h. 

Control samples containing DON but no laccase or no mediator were incubated under the same 

conditions. Reactions were stopped by the addition of an equal volume (200 µL) of acetonitrile, 

and were transferred to 1 dram vials. The reactions were dried under nitrogen gas (N2) at 55 °C. 

Samples were analyzed by GC/MS after 24, 48, and 72 h of incubation. In some cases, 15-acetyl-

deoxynivalenol (15-ADON) or 3-acetyl-deoxynivalenol (3-ADON) was substituted for DON. 

3.2.4 GC/MS Analysis of Deoxynivalenol and its Transformation Products  

Deoxynivalenol and its transformation products were recovered by adding 500 µL of methanol to 

each vial, mixing vigorously and transferring into GC vials. GC-MS analyses were performed 

with a gas chromatograph (Hewlett Packard 6890) fitted with a HP-5MS column (30 m length × 

0.25 mm internal diameter × 0.25 μm film thickness) and a mass detector (HP 5973). The carrier 

gas was helium with 20:1 split ratio and a flow rate of 20 mL/min. Samples were injected at 120 

°C, the temperature was held for 1 min and then the column was heated to 260 °C at a rate of 20 

°C/min and held for 15 min. The presence of DON and its transformation products was 

examined by their individual peaks on chromatograms, with the corresponding mass spectra.  
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3.2.5 LC/MS Analysis of Deoxynivalenol 

Deoxynivalenol and its metabolities were recovered by adding 500 µL of methanol-water (86:14, 

mixed vigorously and transferred into LC vials for analysis.  Analyses were performed with a 

LC-MS instrument (Dionex UltiMate 3000 UPLC) attached to a Thermo QExactive mass 

spectrometer. The MS was operated utilizing electrospray ionization and set to detect ions in full 

scan high resolution mode (resolution = 70,000) over the mass range 100-1000. For each sample 

two different LC-MS experiments were performed. Both methods involved separation of 

compounds on a Phenomenex Kinetex F5 column (150 mm L x 2.1 mm dia, 1.7 uM particle size, 

100A pore dia.) with gradient elution using water / methanol (0.2 mL/min, 15-95% methanol 

over 15 min) containing 5 mM ammonium acetate. The first method was done with the MS set to 

detect negativelycharged ions, while the second method was done with the MS set to detect 

positively charged ions. 

3.2.6 Collection and Characterization of DON Transformation Products 

To isolate sufficient quantities of the DON transformation products for further characterization, 

we scaled up the enzymatic reactions under the same conditions. Specifically, 90 µL of DON (5 

mg/ml) was added into microfuge tubes, followed by the addition of 450 µL of TEMPO (6.5 

mM) and 60 µL of laccase (10 mg/ml) in McIlvaine buffer at pH 5. Reactions were incubated at 

28°C, 200 rpm for 72 h. Reactions were stopped by the addition of an equal volume (600 µL) of 

acetonitrile. Individual reactions were combined and concentrated under nitrogen gas (N2). The 

dried product was dissolved in methanol and collected into new vials, leaving behind insoluble 

components. Constituents were separated on a silica gel column (2.54 cm diameter; 22 cm long) 

and eluted with methanol-dichloromethane (5:95). Fractions (15 mL) were collected and 

monitored by GC-MS. Fractions 4-6 contained (metabolite 1) and fractions 7-9 contained 
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(metabolite 2). Fractions carrying the same compound were combined and further purified on a 

Sephadex LH-2 (Sigma, St. Louis MO) column (2.54 cm diameter, 22 cm long) and eluted with 

methanol.  
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3.3 RESULTS AND DISCUSSION 

3.3.1  Optimization of Conditions for Enzyme Assays 

The optimum conditions for enzyme activity were examined at a varying range of pH (pH 2.5-

8.0) and temperature (25-80 °C). The optimum pH of the enzymes was determined by the 

oxidation of syringaldazine in Mcllvaine‟s buffer. All of the enzymes tested were found to be 

consistent in the pH range of 4.5 to 5.5 (Table 1).  

The optimum temperature for enzyme activity was assessed using ABTS. The initial activity of 

all the tested enzymes was retained over a wide range of temperatures, as reported by another 

study (Larson et al, 2012).  Among the tested enzymes, ATCC 11235 and ATCC 20869 had an 

optimum temperature at 55
o
C, while the remaining enzymes were still active at 60

o
C. Enzyme 

activity was found to be decreased upon a longer time of incubation at higher temperature. 

Decreasing the reaction temperature from 60
o
C to 30

o
C extended the duration of enzyme 

activity, while a further decrease to 25
o
C resulted in a slightly lower initial reaction rate.  

Generally, we found that Mcllvaine‟s buffer was suitable for activity of all the enzymes tested. 

Therefore, we selected Mcllvaine‟s buffer as a solvent for the reaction mixture, with pH 5.0 at 

28
o
C as the standard conditions for subsequent enzymatic reactions. 
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Table 1: Optimum pH and temperature (
o
C) activity assays for enzymes from fungal cell extracts 

and commercial sources. 

Enzyme Source Organism Preparation pHopt Topt (
o
C) 

ATCC 11235 Trametes versicolor  

ATCC 11235 

Cell extract 4.5 55 

ATCC 200478 Pycnoporus cinnabarinus  

ATCC 200478 

Cell extract 4.5 60 

ATCC 20869 Trametes versicolor 

ATCC 20869 

Cell extract 4.5 55 

Fluka 38429 Trametes versicolor Commercial 5.5 60 

Fluka 53739 Trametes versicolor Commercial 4.6 60 

ASA LacC Trametes sp. Commercial 5.4 60 
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3.3.2 Activity of Various Laccase-Mediator Combinations 

Laccase-mediated reactions were performed for the degradation of deoxynivalenol (DON), in a 

combinatorial fashion with 4 known mediators to evaluate the activity of 6 laccase enzymes, 

including three fungal crude extracts and three commercial laccases (Table 1). Enzymes were 

also tested for DON degradation ability without adding any mediator in the reaction. The choice 

of the mediator is very critical for the success of reaction; all of the tested chemicals have been 

previously reported as the mediators in many enzyme-mediated reactions (Riva et al, 2006; 

Larson et al, 2012). 

Among reactions without a mediator, only enzymes Fluka 38429 and ASA Laccase C modified 

appreciable amounts of DON (Fig. 1). Among the tested mediators, TEMPO was found to be the 

most effective mediator, increasing the activity of all of the tested enzymes. The largest 

transformation rates (up to 70% reduction in DON peak area as compared to control) were 

observed in the combinations of Fluka 38429 + TEMPO and ASA Laccase C + TEMPO. PPt did 

not show considerable activity with any of the tested enzymes, while HAA and ABTS were 

found to be considerably effective with only one enzyme (Fig. 1). TEMPO and its derivatives 

have been studied in a series of reactions as a mediator in many biotransformation reactions by 

laccases from Trametes versicolor (IWCE Arends et al, 2006; Kobakhidze et al, 2018), and 

turned out to be the most effective mediator for our laccase assays.  

Although each of the four mediators have been previously reported as laccase-mediators, it is 

necessary to investigate a variety of laccase-mediated combinations for the optimization of 

required results. We successfully screened our one of the top reactions with TEMPO as a 

mediator for further studies with the aim of achieving 100% biotransformation of 

deoxynivalenol.  
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Fig. 1: Evaluation of DON degradation activity of different laccase mediated assays from 

commercial sources (Fluka 38429, Fluka 53739, and ASA LacC) and fungal cell extracts (ATCC 

11235, ATCC 200478, and ATCC 20869) coupled with four different mediators (ABTS, HAA, 

PPt and TEMPO). 
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3.3.3 Evaluation of Laccase-Mediator Activity Across a pH Range 

We have examined the effect of pH in the reaction mixture to proceed for a more comprehensive 

study on the complete biotransformation of DON. Specifically, we evaluated the DON-

transforming activity of all six enzymes, in combination with TEMPO, at a varying range of pH 

4.5, 5.0 and 6.0. We found that across all laccases, DON transformation was most effective at pH 

5.0, whereas the reactions at pH 4.5 and 6.0 displayed a slightly lower activity (Fig. 2). 

Therefore, we selected pH 5.0 for subsequent studies of DON biotransformation. 
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Fig. 2: Evaluation of DON degradation activity of different laccase mediated reactions coupled 

with TEMPO at varying range of pH 4.5, 5.0 and 6.0 
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3.3.4 Achieving complete transformation of DON  

Although we had seen up to 80 % reduction in DON peak area, none of the conditions tested so 

far had provided 100 % biotransformation of DON. Initial studies were carried out in enzyme-

mediated assays containing 10 mg/mL of DON, which may have exceeded the available enzyme 

capacity. Thus, we evaluated the DON degradation activity of all the laccase-mediator 

combinations with different concentrations of DON (1 mg/mL, 5 mg/mL and 10 mg/mL) in the 

reaction mixture. 

Three of the combinations (TEMPO+200478, TEMPO+38429 and TEMPO+53739) 

demonstrated consistent DON transformation across initial DON concentrations (Fig. 3). We had 

expected that lowering the DON concentration in the reaction would facilitate the complete 

biotransformation of deoxynivalenol; hence, 100% biotransformation with 1 mg/mL and 5 

mg/mL of DON was observed in these assays (Fig. 3). 
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Fig. 3: Evaluation of DON degradation activity of different laccase mediated reactions coupled 

with TEMPO against a varying concentration of DON, 1 mg/mL, 5 mg/mL and 10 mg/mL. 
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3.3.5 Characterizing DON Transformation Products  

With a laccase-mediator system providing complete transformation of DON, we were ready to 

identify the transformation products. GC/MS analysis revealed the combination of laccase 53739 

with TEMPO as the most interesting combination to examine further because of its metabolities. 

Thus, a stepwise procedure was investigated with TEMPO+53739 to explore the products of 

biotransformation. 

3.3.5.1 Gas Chromatography and Mass Spectroscopy 

GC/MS analysis of the laccase-mediator reaction with DON indicated the loss of DON peak 

completely and the appearance of 2 new peaks (Fig. 4) 

The obtained GC/MS profiles revealed clear and different retention times of the newly formed 

two different metabolites. The typical peak corresponding to DON (retention time 6.29 min) 

disappeared, and was replaced by peaks at 6.92 min (metabolite 1) and at 5.91 min (metabolite 

2). A shift in retention time results from interactions with the packing material in the GC column, 

and indicates that the parent compound has undergone a chemical change. 
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Fig. 4: Gas chromatograms showing A) DON and B) the replacement of DON by 2 new 

compounds following incubation with laccase ATCC 53739 + TEMPO. 
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Mass spectra for these two metabolites were consistent with the oxidation of a hydroxyl group to 

a keto group (forming metabolite 1), followed by a second oxidation of another hydroxyl group 

to a keto group (forming metabolite 2); the molecular ion decreased by 2 atomic mass units at 

each step. DON has a molecular ion at 296, whereas the two new peaks had molecular ions at 

294 (metabolite 1) and 292 (metabolite 2).  

DON has available hydroxyl groups at positions C3, C7, and C15. Mass spectra indicated a very 

good match for both metabolite 1 and metabolite 2 to a prior report of chemically-derived DON 

transformation products. Specifically, ions at m/z 55, 77, 108, 124, 136, 175, 204 and 231 

observed for metabolite 1 match ions reported for 3-keto DON, while ions at m/z 123, 124, 175, 

204, 221, 231, 245, 263, and 292 for metabolite 2 match ions reported for 3,15-diketo DON (Fig. 

5; Savard et al. 1987). 

Thus, an initial identification by mass spectroscopy suggests the transformation of DON into 3-

keto DON and 3,15-diketo DON. Further analyses were performed on the LC/MS for better 

understanding of the transformation products. 
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Fig. 5: GC/MS chromatographic analysis of DON metabolities. Mass spectra for A) metabolite 1 

(3-keto DON) and B) metabolite 2 (3,15-diketo DON)  
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3.3.5.2 Liquid Chromatography and Mass Spectroscopy 

The strategy for the identification of unknown biotransformation products is always challenging 

due to the unknown properties of the products. Thus, the sample needs to be subjected to 

different conditions for better understanding of the transformation products.  

Consistent with the indication by GC/MS of the formation of two transformation products of 

DON by the activity of laccase 53739 + TEMPO, LC/MS profiling also indicated two 

transformation products with altered retention times relative to DON (Fig. 6; major peak at 15.8 

min and minor peak at 17.26 min).  

We viewed these two transformation products with a mass detector, in both negative and positive 

mode. The molecular ions for the two transformation products differed by two atomic mass units 

(in positive mode, m/z for M+H = 450 for the peak at 15.89 min, and m/z for M+H = 448 for the 

peak at 17.26 min), which is consistent with the difference between metabolite 1 and metabolite 

2 as indicated by GC/MS.  

When viewed in negative mode, the main product (retention time 15.89 min) yielded a mass 

spectrum with dominant ions at 508 and 308 m/z. Tandem mass spectroscopy demonstrated that 

the 308 ion was a fragmentation product of the 508 ion ESI-MS/MS; data not shown). 

Interpretation of this observed molecular mass is not entirely certain, but it appears likely that we 

were observing a conjugate of 3-keto DON (m.w. = 294) with TEMPO (m.w. = 156) plus an 

additional acetyl group (m.w. = 59). It was unexpected that TEMPO might continue to be 

associated with DON even after purification of the reaction products. The specific interaction 

among the putative DON, TEMPO, and acetyl moieties is unclear. However, when a DON 

standard was run under these LC/MS conditions, we also observed DON at a larger than 
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expected mass (m/z = 355), which when fragmented produced an ion with m/z = 59, which is 

consistent with liberation of an acetyl group (data not shown).   

 

 

 

Fig. 6: LC/MS chromatogram showing the presence of two transformation products after 

incubating DON with laccase 53739 + TEMPO: metabolite 1 as a major peak at a retention time 

of 15.89 min, and metabolite 2 as a minor peak at a retention time of 17.26 min. 
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When viewed in positive mode, the main product (retention time 15.89 min) yielded a molecular 

ion at m/z = 450, which is consistent with a 3-keto DON-TEMPO conjugate (294 + 156). The 

minor product (retention time 17.26 min) yielded a molecular ion at m/z = 448, which is 

consistent with a 3,15-diketo DON-TEMPO conjugate (292 + 156; Fig. 7). 

 Fragmentation of both metabolites by the electrospray ionization mass spectrometry (ESI-

MS/MS) was performed for the better understanding of the transformation products (Fig 7). The 

MS/MS spectra for the transformation products has some fragment masses that are similar to 

those seen in the DON MS/MS spectra (Fig. 8), indicating a shared core structure between the 

parent compound (DON) and the transformation products.  
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Fig. 7: LC/MS chromatographic analyses of A) DON metabolite 1and B) DON metabolite 2 are 

shown. Electrospray ionization mass spectrometry (ESI-MS/MS) of the DON metabolities are 

illustrated as a small chart within the chromatogra 
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Fig. 8: LC/MS chromatographic analysis of DON is shown. Electrospray ionization mass 

spectrometry (ESI-MS/MS) of the DON is illustrated as a small chart within the chromatograph. 
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3.3.5.3. DON Precursors for Protection of Transformed Groups 

To further validate the structure of the observed DON transformation products, we repeated the 

enzyme assays using two trichothecene variants (15-ADON and 3-ADON), each of which are 

differently substituted (acetyl group in place of hydroxyl group) at one of the positions that was 

modified by laccase 53739 + TEMPO. 

 the presence of the acetyl group at C15 in 15-ADON limited transformation products to 

just the 3-keto form (Fig. 9) 

 the presence of the acetyl group at C3 in 3-ADON limited transformation products to just 

the 15-keto form (Fig. 10) 

Conversion of 3-ADON to 15-keto-3-ADON was incomplete (Fig. 10); this is consistent with the 

incomplete conversion of DON at the C15 position (i.e., the formation of 2 products rather than 

going all the way to a single product). It appears that the C15 position is more difficult to 

transform, compared to the C3 position, perhaps due to steric hindrance. 
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Fig. 9:  Gas chromatograms showing A) 15-ADON and B) the formation of 1 new compound 

following incubation of 15-ADON with laccase 53739 + TEMPO. 
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Fig. 10: Gas chromatograms showing A) 3-ADON and B) the formation of 1 new compound 

following incubation of 3-ADON with laccase 53739 + TEMPO. 
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Fig. 11: Representation of observed DON transformation products. The inset figure shows the 

conventional numbering of atom positions for trichothecenes such as DON. 
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Taken together, the results of GC/MS and LC/MS analyses indicate that our laccase-mediator 

system completely transformed DON into two metabolites. One of them is 3-keto DON, which 

constituted the majority of the product (75%) and the other is 3,15-diketo DON, produced in a 

smaller quantity (25%). 

 The microbial detoxification of DON by various species involving different enzymes has been 

widely reviewed. Previous studies on the mechanism of DON transformation have focused on 

complete mineralization of DON or transformation at the C-3 position (Karlovsky, 2015; Zhu et 

al, 2016). Devosia sp has been reported to epimerize the DON into 3-epi DON (He et al, 2015-

16). Epimerization at the C-3 position of DON is a two step process, involving two different 

enzymes: the first step is the oxidation of DON into 3-keto DON, while in a second step 3-keto 

DON is reduced to 3-epi DON (Hassan et al, 2017; Carere et al, 2018). The oxidation of DON 

into 3-keto DON reduces the toxicity (He et al, 2015). 

In our study, we have reported a new mechanism of DON transformation in laccase-mediated 

system involving the transformation of DON into two metabolites, 3-keto DON (75%) which has 

been reported previously as a part of microbial transformations of DON (He et al, 2016) and 

another 3,15-diketo DON (25%). To our knowledge, 3,15-diketo DON has not been reported 

before as a product of enzymatic transformation. Only in one study, 3,15-diketo DON was 

analyzed as a part of a set of synthetic  trichothecenes generated through chemical reactions 

(Savard et al, 1987). Further studies are needed to explore the toxicity of this product. 
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3.4 CONCLUSION  

 The enzymatic detoxification of mycotoxins represents a promising approach for remediating 

contamination of cereals by mycotoxins. In this work, a laccase-mediator system was 

successfully developed for the enzymatic transformation of deoxynivalenol. Different 

combinations of laccase enzymes with chemical mediators were evaluated for DON 

transformation; the most interesting combination of laccase from Trametes versicolor 53739 

with TEMPO as a mediator was investigated in detail. GC-MS and LC-MS analyses were 

performed for the identification of DON metabolities and mechanism involved in this system.   

 The GC/MS and LC/MS profiling has revealed the complete transformation of DON into two 

metabolites, 3-keto DON (75%) and 3,15-diketo DON (25%). We have explored a new 

mechanism of DON transformation in laccase-mediated system involving 3-keto DON and 3,15-

diketo DON. Among these two metabolites, 3-keto DON has been reported before as the 

intermediate of epimerization of DON at the C-3 position by biological transformation, whereas, 

3,15-diketo DON has not been reported before as a product of enzymatic transformation. 

However, additional analysis on nuclear magnetic resonanace (NMR) needs to be done for the 

better understanding of mechanism involved and to explore the toxicity of 3,15-diketo DON.  

The identification of an enzyme that can oxidize DON to 3-keto DON is a significant step 

towards the detoxification of DON. The capability to transform the DON to less toxic 3-keto 

DON has important industrial applications, including fuel ethanol production, livestock 

production by incorporating the enzymes in their feed, and detoxification of contaminated seeds. 
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REDUCTION OF MYCOTOXINS BY HEAT AND UVC IRRADATIONS 

4.1 INTRODUCTION 

It is widely documented that although many mycotoxins are  thermally stable compounds, some 

food processing, such as applying temperatures above 100°C, can reduce their amount (Raiola & 

Ritieni, 2014; Vidal, Sanchis,Ramos&Marín; Santini, Raiola, Meca & Ritieni, 2015; Raiola et 

al., 2015; Shanakhat et al., 2018). Among the known thermal processing techniques, variations 

on fluidized bed drying are extensively applied for particulate drying at industrial scales in both 

traditional and innovative processed products, since it is a cost-effective technique providing a 

high thermal efficiency (Jangam, 2011). Dry processing is reported in wheat flour to modify the 

functional properties of some constituents, affecting technological properties. For instance, dry 

heating of wheat flour at 120°C for 30 min increased the volume of Kasutera cake (Nakamura, 

Koshikawa & Seguchi, 2008). The use of heat treated flour increased the viscosity of cake batters 

compared with batter made with untreated flour, and the gel network in emulsions obtained from 

heat treated flours is reported to be stronger than that prepared from untreated wheat flour (Meza 

et al., 2011). Wheat flour treated in a fluidized bed drier in order to generate products with longer 

shelf life, finer texture, moist crumb and sweeter taste, showed a decrease of gluten extensibility 

with positive effects on baking quality as the gluten appeared to retain its moisture, whereas base 

flour gluten retained its extensibility and cohesion (Neill, Al Muhtaseb & Magee 2012). 

In the literature, the application of ultraviolet (UV) irradiation has also been reported to be an 

efficient strategy for the destruction of mycotoxins in different agricultural products such as 

pistachio, groundnut and almond (Shanakhat et al., 2018; Jubeen, Bhatti, Khan, Zahoor-Ul-

Hassan & Shahid, 2012; García-Cela, Marin, Sanchis, Crespo-Sempere & Ramos, 

2015).Furthermore, due to its low cost and simplicity of application, UVC irradiation is already 

https://www.sciencedirect.com/science/article/pii/S0308814615001120#!
https://www.sciencedirect.com/science/article/pii/S0308814615001120#!
https://www.sciencedirect.com/science/article/pii/S0308814615001120#!
https://www.sciencedirect.com/science/article/pii/S0308814615001120#!
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/sensation-of-taste
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used in the food industry for disinfection of the air, control of contamination on the surface of 

packaging (Begum, Hocking & Miskelly, 2009) and the destruction of mould spores in baked 

products (Magan & Aldred, 2006).  

This part of the thesis project aims to explore the impact of heating and UVC irradiation on 

semolina and dough properties, after confirming the effectiveness of these methods for reducing 

mycotoxin contamination. In particular, colorimetric analysis, water absorption parameters and 

gluten yield were analyzed. Furthermore, differential scanning calorimetry (DSC) was adopted to 

evaluate the effect of treatments on starch gelatinization, while a Brabender Farinograph was 

used to test the behaviors of obtained doughs. Finally, microstructure of doughs was observed by 

scanning electron microscopy (SEM) to evaluate potential changes in the structure of starch and 

proteins after the physical treatments.  

This is the first study that investigates technological changes and structural features in a cereal 

derivative after the application of physical methods for mycotoxin reduction. 
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4.2 MATERIALS AND METHODS 

4.2.1 Materials 

Durum wheat semolina was purchased at a supermarket in Naples (Italy); different lots were 

mixed together and placed into closed plastic containers during storage. Semolina particle size 

dimensions ranged between 100 and 300 µm. 

4.2.2  Thermal and UVC Treatments 

The first physical treatment applied for mycotoxin detoxification was the heating of 300 g of 

semolina at high temperatures (100, 150 or 200
°
C) for different durations (15, 30 or 60 min) 

using a fluidized bed dryer (Sherwood Scientific Model MK11, UK). The temperature was 

adjusted controlling the front of the dryer and the air flow speed was set at level 4. Temperature 

and air velocity were verified before each experimental test by a digital thermometer (range -50 -

300°C±1°C) and a hot wire anemometer (range 0.4-30 m/s ±3%) respectively.  

The second treatment consisted of UVC irradiation (254 nm), applied for 15, 30, 60 or 120 min. 

A germicidal UV Lamp, with 30 W (G30T8) power providing UVC radiation at 254 nm, was 

obtained from Sankyo Denki, Japan. Semolina (100 g) was spread in two different trays (50x30 

cm) to form a layer not more than 1 cm thick that was exposed to UV radiations at a distance of 

15 cm. For each treatment, moisture content analyses were carried out according to ISO Standard 

No. 712.  

4.2.3  Chemical and Reagents 

All the standards and chemical reagents were purchased from Sigma Aldrich (Milan, Italy); 

HPLC grade organic solvents were from Merck (Darmstadt, Germany). The individual stock 

solutions of mycotoxins were prepared by diluting 1 mg of each mycotoxin in 1 mL of 
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acetonitrile. Individual stock standards were diluted to obtain working solutions at different 

concentration levels and stored at -20
◦
C until the analysis.  

4.2.4 Mycotoxin Extraction and LC/MS Analysis  

QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction was based on that 

reported by Tolosa, Font, Mañes&Ferrer (2017). A C17:0 standard was added to the samples 

prior to extraction, to perform reliable quantification of analytes with correction of errors due to 

the presence of other chemicals that co-extracted from the matrix. Samples from each treatment 

were extracted in triplicate.  

Separation was carried out using an HPLC system (Agilent 1200 Infinity) coupled to a mass 

spectrometer (Agilent G6420 Triple Quadrupole) equipped with an Agilent API-Electrospray 

ionization source. Agilent MassHunter Workstation B.07.00 software was used for data 

acquisition and analysis. The LC/MS conditions were as reported by Sobolev et al. (2018). With 

this method the following mycotoxins were analysed simultaneously: trichothecenes (DON; 3-

acetyl-deoxynivalenol (3-ADON), nivalenol (NIV); T-2 toxin; and HT-2 toxin), aflatoxins 

(AFB1, AFB2, AFG1, AFG2), fumonisins (FB1, FB2), OTA, and enniatin B (ENB). Quantification 

was performed with authentic standards where the transition of each compound was monitored 

on calibration curves with at least 5 points. The ratios of the MRM transition of each compound 

at each concentration on the Fumonisin B1-
13

C34 (Clearsynth, UK) MRM transition were used to 

draw the calibration curves. 

The lower limit of detection (LOD) and lower limit of quantification (LOQ) were respectively 

assessed as the 3 and 10 folds the ratio between the standard error of the intercept and the slope 

of the calibration curve. The results were expressed as mean value (µg mycotoxin/kg semolina) ± 

standard deviation. 

https://www.sciencedirect.com/science/article/pii/S0278691516305002#!
https://www.sciencedirect.com/science/article/pii/S0278691516305002#!
https://www.sciencedirect.com/science/article/pii/S0278691516305002#!
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4.2.5 Technological Properties of Semolina 

4.2.5.1 Color 

The reflectance colorimeter was the Chroma Meter CR-200 (Minolta) equipped with a pulsed 

xenon arc lamp. Absolute measurements in L*, a*, b* (CIE 1986) coordinates in the Munsell 

color system were taken using D65 lightning. Samples to be analyzed were placed into a granular 

material attachment. Results were the average of three determinations. The colorimeter 

calibration parameters L*, a*, and b* were L=97.07, 0.27 and 1.83, respectively.  

4.2.5.2 Total Phenols Determination and Antioxidant Power 

For those physical treatments that successfully reduced mycotoxin content, total phenols amount 

was estimated and potential oxidative effects were examined by ABTS [2,2 azinobis (3-

ethylbenzothiazoline-6 sulfonic acid)] radical scavenging test and FRAP (Ferric Reducing 

Ability of Plasma) test. 

Extraction from samples and ABTS analysis were carried out as reported by Pellegrini et al 

(2006), while FRAP test and total phenols determination were performed as Benzie & Strain 

(1996) and Singleton et al (1965) respectively. 

4.2.5.3 Hydration Indices 

Water absorption index (WAI), water solubility index (WSI) and swelling power (SP) of control 

and treated semolina samples were determined following the method of Anderson, Conway, 

Pfiefer & Griffin (1969).  

According this procedure, WAI, was determined as: 

𝑊𝐴𝐼 =
𝑤𝑒𝑖𝑔𝑡 𝑜𝑓 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡

𝑤𝑒𝑖𝑔𝑡 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒
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While, WSI was calculated as: 

𝑊𝑆𝐼 =
𝑤𝑒𝑖𝑔𝑡 𝑜𝑓 𝑠𝑜𝑙𝑢𝑏𝑙𝑒 𝑠𝑜𝑙𝑖𝑑𝑠

𝑤𝑒𝑖𝑔𝑡 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒
 

and SP was calculated as: 

𝑆𝑃 =
𝑤𝑒𝑖𝑔𝑡 𝑜𝑓 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡

𝑤𝑒𝑖𝑔𝑡 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 ×
(1−𝑊𝑆𝐼)

100

 

 

4.2.5.4 Water Sorption Isotherm 

The sorption characteristics of semolina have been determined by a gravimetric method using a 

Surface Measurement SystemsR automated Dynamic Vapour Sorption (DVS1000) which is a 

controlled atmosphere microbalance. The mass variation durum wheat semolina was measured as 

a function of time over a range of values of relative humidity by mixing dry and saturated vapour 

gas flows. The mass variation of the sample and the time are recorded.  

Water adsorption isotherms were determined at the constant temperature of 30°C at a nitrogen 

flow of 375 standard cm3. Samples (8.32-9.75 mg) were loaded and pre-equilibrated at 0% 

equilibrium relative humidity of the air by a continuous flow of dry air. Samples were then 

equilibrated at successive levels of relative humidity (from 10% to 95% in 11 steps). For each 

equilibrium relative humidity level, the equilibrium conditions were defined when the change in 

sample mass as a function of time was lower than 0.002% min-1 (Hebrard et al, 2003).  
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4.2.6 Gluten Parameters 

The gluten extraction was carried out according to the AACC method38-12.02 (2005). Briefly, 

doughs were prepared by using a Farinograph-AT Brabender (Duisburg, Germany). Obtained 

doughs were held in water for 40 min and successively washed under stream of running water 

until starch was washedout and the water was clear. The obtained mass was wet gluten. The wet 

gluten yield (WGY) was calculated as (Kaushik, Kumar, Sihag & Ray, 2015): 

𝑊𝐺𝑌 =
𝑤𝑒𝑖𝑔𝑡 𝑜𝑓 𝑤𝑒𝑡 𝑔𝑙𝑢𝑡𝑒𝑛

𝑤𝑒𝑖𝑔𝑡 𝑜𝑓 𝑠𝑒𝑚𝑜𝑙𝑖𝑛𝑎
× 100 

The dry gluten yield (DGY) was determined by drying the wet gluten into freeze dryer (ALPHA 

1-2 LD plus-Fisher Bioblock Scientific) as (Kaushik, Kumar, Sihag& Ray, 2015): 

𝐷𝐺𝑌 =
𝑤𝑒𝑖𝑔𝑡 𝑜𝑓 𝑑𝑟𝑦 𝑔𝑙𝑢𝑡𝑒𝑛

𝑤𝑒𝑖𝑔𝑡 𝑜𝑓 𝑠𝑒𝑚𝑜𝑙𝑖𝑛𝑎
× 100 

The moisture content of wet gluten was determined by drying the wet gluten into an oven at 

105°C until the constant weight was achieved (Kaushik, Kumar, Sihag& Ray, 2015).  

The water absorption capacity (WAC) of dried gluten was determined according to the method 

described by AACC (2005). Gluten sample (500 mg) was immersed in water (10 mL), mixed, 

kept for 60 min in continuous shacking and centrifuged at 2000×g for 30 min. The supernatant 

was discarded and sediment was weighed. WAC was determined as (Kaushik, Kumar, Sihag& 

Ray, 2015): 

𝑊𝐴𝐶 =
𝑤𝑒𝑖𝑔𝑡 𝑜𝑓 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡

𝑤𝑒𝑖𝑔𝑡 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒
× 100 
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4.2.7 Farinograph Analysis 

Farinograph curves of both control and treated semolina, were acquired using a farinograph fitted 

with 50 g mixing bowl, according to the AACCmethod 54-21.02 (2000) methods. Water 

absorption (WA), dough development time (DDT), dough stability (DS), degree of softening 

(DOS) and elasticity (E) were determined from farinograms and the results were expressed as the 

average value of three replicates for each sample (Singh, Singh & MacRitchie, 2011). At the end 

of each test, the moisture content of the obtained dough was determined according to ISO 

Standard No. 712. 

4.2.8 Differential Scanning Calorimetry Analysis 

Thermal transitions of starch and/or proteins of each dough sample, both at the development time 

and after 30 min of mixing, were studied using DSC TA Instrument Q 200 (New Castle, DE). 

Dough samples (10 mg) were equilibrated at 30°C for 5 min, and then heated at 5°C/min up to 

150°C. All the samples were placed into a steel hermetic DSC pan that was covered with a lid, 

crimped together with the pan. Four replicates were scanned for each condition and temperature 

of onset (To), temperature of peak (Tp) and the enthalpy H), associated to each phase 

transition were determined.  

4.2.9 Microstructure 

Scanning electron microscopy (SEM) was carried out for doughs obtained at the development 

time and after 30 minutes of mixing in the farinograph. Lyophilized samples were dissected and 

mounted on specimen stubs and Au-coated by DC sputtering (AGAR B7340) in order to make 

the specimen conductive. The coated specimens were then observed using a LEO EVO 40 
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scanning electron microscope (Zeiss, Germany), with a 20kV acceleration voltage. 

Representative micrographs from all the samples were selected. 

4.2.10 Statistical Analyses 

All the parameters evaluated in three trials and three analytical replicates were expressed as 

mean value ± standard deviation. Differences among control and treated samples were 

determined by Anova (Duncan‟s test) at a significance level of 0.05, using SPSS (Statistical 

Package for Social Sciences) Package 6, version 15.0 (SSPS Inc., Chicago, IL, USA). 
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4.3 RESULTS AND DISCUSSION 

4.3.1 Degradation of Myctoxins 

Several mycotoxins were detected in the semolina used for this study (Table 1). In particular, the 

most abundant mycotoxin was represented by enniatin B (ENB) (1002.91±23.53 µg/kg) followed 

by NIV (763.96±49.05µg/kg) and DON (121.55±10.00µg/kg). Mean levels of T-2 and HT-2 

were 4.20±0.80 and 19.10±1.50 µg/kg respectively, while AFB1, AFG1 and OTA mean values 

ranged between 1.20±0.30 and 2.18±0.92 µg/kg. Furthermore, mean level of contamination for 

FB1 and FB2 were 3.45±1.21 and 2.60±1.03 µg/kg respectively (Table 1).  

 

Table 1: Level of detected mycotoxins in control semolina. 

 
µg/kg 

DON 121.55±10.00 

3-ADON n.d. 

NIV 763.96±49.05 

T-2 4.20±0.80 

HT-2 19.10±1.50 

AFB1 2.18±0.92 

AFB2 n.d. 

AFG1 1.20±0.30 

AFG2 n.d. 

OTA 1.95±0.26 

FB1 3.45±1.21 

FB2 2.60±1.03 

ENB 1002.90±23.53 

 

Mean (n=3) ± standard deviation; n.d.= not detectable. 
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After heat treatments under different temperature and duration, we found that among the ten 

mycotoxins detected in control semolina, about half declined in concentration after heating (Fig. 

1) while for the rest of the molecules (NIV, T2, HT-2, AFB1, AFG1, and FB2) no significant 

reduction of contamination after treatments was observed (data not shown). In particular, heating 

at 200°C for 15 min was the most efficient treatment for ENB, DON, OTA, and FB1, with mean 

reductions equal to 70.82±1.18, 68.07±6.79, 56.52±17.02, and 59.09±0.75% respectively. 

For ENB (Fig. 1-a), a significant reduction ranging between 28.36±2.42% and 31.73±13.45% 

was found after treatment at 100°C for 15 and 30 min respectively, and no further reduction was 

observed after 60 min. With heat treatment at 150°C, a mean degradation of ENB from 

60.63±3.53% to 65.73±5.48% at 15 and 60 min respectively was obtained. Therefore, for this 

mycotoxin, the effect of degradation seemed to be related mainly to the temperature instead of 

processing time. Previously, Serrano, Meca, Font & Ferrer (2013) investigated the stability of 

enniatins by simulating the processing of pasta cooking and found a high percentages of thermal 

degradation (from 82 to 100%). The reduction of ENB, which was present at high levels in the 

analyzed semolina, is of particular importance since there are still no legal limits for this 

mycotoxin, though its toxic effects are widely documented in the literature (Meca, Font & Ruiz, 

2011). Indeed, several research groups have been working for several years to reduce ENB levels 

(Serrano, Meca, Font, Ferrer, 2013; Manzini, Rodriguez-Estrada, Meca&Mañes, 2013;  Tolosa, 

Font, Mañes&Ferrer, 2013).  

No significant contamination reductions were observed for DON after treatment at 100°C or 

150°C (Fig. 1-b). This accords with previous studies that have found DON to be stable at 120°C, 

moderately stable at 180°C and degraded at 210°C (Milani & Maleki, 2014).  

https://www.sciencedirect.com/science/article/pii/S0956713514003922#!
https://www.sciencedirect.com/science/article/pii/S0956713514003922#!
https://www.sciencedirect.com/science/article/pii/S0956713514003922#!
https://www.sciencedirect.com/science/article/pii/S0956713514003922#!
https://www.sciencedirect.com/science/article/pii/S0278691516305002#!
https://www.sciencedirect.com/science/article/pii/S0278691516305002#!
https://www.sciencedirect.com/science/article/pii/S0278691516305002#!
https://www.sciencedirect.com/science/article/pii/S0278691516305002#!
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Treatment at 100°C for 15 or 30 min did not show any significant effect on OTA degradation, 

while a slight reduction was found when the heating was prolonged until 60 min (20.46±1.51%). 

At 150°C, a further detoxification was observed, until OTA content was reduced by 61.18±5.04% 

after 60 min of heating, which was not significantly different from the reduction reached after 30 

min (Fig. 1-c). In a previous work, a 23.5% loss in OTA was found at 136°C, while at 196°C the 

average loss was 31%, and degradation increased up to 40% by extending the time dough was 

retained in the extruder (Scudamore, Banks & Guy, 2004).  

A significant reduction until the mean value of 69.97±18.51%, was observed for FB1 after 

treatment at 100°C for 30 and 60 min. Some degradation was observed at 150°C for 15 min 

(22.80±6.96%) (Fig. 1-d), and a further reduction was observed when the treatment was 

prolonged to 30 min (60.21±11.33%). Therefore, for FB1, the time of processing appears to be as 

important as the temperature of treatment, but after 30 min of treatment no further reduction was 

observed. Also in this case, our data confirm results reported in literature: extrusion cooking was 

reported to be able to reduce FB1 up to 66.6% at 160°C in the presence of glucose (Milani & 

Maleki, 2014).  
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Fig. 1: Impact of thermal treatment on ENB (a), DON (b), OTA (c) and FB1 (d) levels (μg/kg). 
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The application of UVC irradiation for 15 min was sufficient to completely degrade AFB1, OTA 

and FB2 while for NIV, reductions of 8.87%, 11.91%, 17.36% and 24.57% were observed with 

treatment durations of 15, 30, 60 and 120 min, respectively (Table 2). Our results confirm the 

report of Jubeen, Bhatti, Khan, Zahoor-Ul-Hassan & Shahid (2012), who investigated the effect 

of UV irradiation on aflatoxins in ground nuts and found a complete AFG1 degradation in some 

samples and an AFB1 reduction up to 96.5%. For the other detected mycotoxins, no significant 

changes were observed after the UVC treatment (data not shown). 

Table 2: Effect of UVC treatment on mycotoxins level. 

Time (min) 
AFB1 OTA FB2 NIV 

µg/kg 

15 n.d n.d n.d 696.19±22.43
b
 

30 n.d n.d n.d 672.94±35.47
b
 

“60 n.d n.d n.d 631.27±15.11
ab

 

120 n.d n.d n.d 576.22±8.11
a
 

 

Mean (n=3) ± standard deviation; n.d. = not detectable. Different letters in the same column 

indicate significant differences (p<0.05). 
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It is worth noting that, as for ENB, current European legislation does not place limits on NIV 

contamination in food stuffs, despite the reporting of toxic effects (Minervini et al, 2004), and 

that the issue of NIV contamination has been understood for some time (Bretz, Knecht, 

Göckler&Humpf, 2005). Moreover, the combined effect of mycotoxins may result in a greater 

toxicity than that found for individual compounds (Tammer, Lehmann, Nieber&Altenburger 

2007). This issue is particularly relevant in Italy, given the high daily consumption of products 

based on semolina such as pasta and bread. Therefore, the degradation of multiple mycotoxins in 

a mixture could be interesting for the reduction of food safety risk.  

However, for the evaluation of the effectiveness of physical treatments in detoxification of 

mycotoxins, the degradation products should be investigated. Given that this aspect is outside the 

aim of this work, a preliminary identification of DON degradation products revealed the 

presence of the norDON A, norDON B, norDON C, norDON D, norDON F and 9-

hydroxymethyl DON lactone, in agreement with Bretz, Beyer, Cramer, Knecht & Humpf (2006). 

It is known from literature that the products derived from physical treatments of mycotoxins 

allowed an effective detoxification, such as in the case of fumonisins (Hahn et al., 2015), OTA 

(Bittner, Cramer, Harrer & Humpf, 2015) and AFB1 (Wang et al, 2016).  

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Bretz%20M%5BAuthor%5D&cauthor=true&cauthor_uid=15744714
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bretz%20M%5BAuthor%5D&cauthor=true&cauthor_uid=15744714
https://www.ncbi.nlm.nih.gov/pubmed/?term=G%C3%B6ckler%20S%5BAuthor%5D&cauthor=true&cauthor_uid=15744714
https://www.ncbi.nlm.nih.gov/pubmed/?term=Humpf%20HU%5BAuthor%5D&cauthor=true&cauthor_uid=15744714
https://www.ncbi.nlm.nih.gov/pubmed/?term=Tammer%20B%5BAuthor%5D&cauthor=true&cauthor_uid=17400410
https://www.ncbi.nlm.nih.gov/pubmed/?term=Tammer%20B%5BAuthor%5D&cauthor=true&cauthor_uid=17400410
https://www.ncbi.nlm.nih.gov/pubmed/?term=Nieber%20K%5BAuthor%5D&cauthor=true&cauthor_uid=17400410
https://www.ncbi.nlm.nih.gov/pubmed/?term=Altenburger%20R%5BAuthor%5D&cauthor=true&cauthor_uid=17400410
https://www.ncbi.nlm.nih.gov/pubmed/?term=Altenburger%20R%5BAuthor%5D&cauthor=true&cauthor_uid=17400410
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4.3.2 Technological Properties of Semolina 

4.3.2.1 Color 

The color plays an important role in the definition of semolina and pasta quality. In food 

industries, the most common color measurement techniques are based on the color-space system 

L*, a*, b* as defined by the Commission Internationale de l‟Eclairage (CIE). 

Table 3 shows the colorimetric indices (L*, a*, b*) determined in control and treated semolina 

samples. L* values ranged from 82.76±0.20, for semolina treated at 200°C for 15 min, to 90.20 

±0.05 in the sample treated at 100°C for 15 min. In general, after the thermal treatments, no 

burned particles are present in semolina with the exception of treatment at 200°C for 15 min. The 

lower L* value, which quantifies the lightness of the product, is the result of the browning due to 

the intense thermal treatment, as confirmed by the higher value of red index (a*) that is strictly 

linked to the Maillard reaction (Cavazza et al., 2013; Pasqualone et al., 2014). Therefore, despite 

this treatment being highly efficient for the reduction of some mycotoxins, it is not suitable at an 

industrial level. Semolina yellowness is determined by the b* value, and is closely related to the 

carotenoid pigments. A lower b* value, equal to 19.51±0.37, was observed in semolina treated at 

150°C for 60 min. Both L* and b* values are similar with those reported by previous studies 

(Cavazza et al., 2013), while, in our study a* values are significantly lower; this dissimilarity 

could be attributable to the different varieties of semolina used for these investigations. 
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Table 3: Colorimeter results of control and treated semolina. 

 

Treatment 
Time 

(min) 
L

*
 a

*
 b

*
 

Control 
 

88.89±1.17
bc

 -4.45±0.01
c
 24.68±0.78

ef
 

100°C 

15 90.20±0.05
d
 -3.89±0.04

d
 23.33±0.41

de
 

30 89.25±0.22
d
 -4.34±0.05

c
 26.32±0.34

g
 

60 88.61±0.66
cd

 -4.06±0.13
d
 22.44±0.63

cd
 

150°C 

15 90.09±0.05
d
 -3.15±0.03

f
 21.41±0.16

b
 

30 88.82±0.46
cd

 -3.60±0.27
e
 21.56±0.41

bc
 

60 89.48±0.09
d
 -2.62±0.22

g
 19.51±0.37

a
 

200°C 15 82.76±0.20
a
 0.19±0.08

h
 24.80±0.42

f
 

UVC 

15 88.26±0.26
cd

 -5.14±0.13
b
 28.40±0.53

h
 

30 86.41±0.48
b
 -5.61±0.19

a
 28.92±0.40

h
 

60 85.82±0.54
b
 -5.60±0.04

a
 27.95±0.90

h
 

120 89.29±0.27
d
 -3.79±0.06

d
 23.22±0.18

f
 

 

Mean (n=3) ± standard deviation; Different letters in the same column indicate significant 

differences (p<0.05). 
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4.3.2.2 Total Phenols Determination and Antioxidant Power 

For those physical treatments that successfully reduced mycotoxin content, potential oxidative 

effects were examined, by analyses of total phenols and antioxidant activity using FRAP (Ferric 

Reducing Ability of Plasma) and ABTS (2,2 azinobis (3-ethylbenzothiazoline-6 sulfonic acid)). 

Phenol content did not show a significant change after all the studied treatments. Nevertheless, 

the FRAP test showed an increase of antioxidant capacity from 13% to 32% in UVC treated 

samples, which could be attributed to the breaking of chemical bonds, and the consequent release 

of antioxidant molecules from matrix after the UVC treatment; on the other hand, a FRAP 

reduction by 37.19% after the 150°C/30 min treatment was also observed. A similar trend was 

shown from ABTS results (Table 4).  
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  Table 4: Antioxidant activity of semolina 

 

Mean (n=3) ± standard deviation; Different letters in the same column indicate significant 

differences (p<0.05). 

 

 

 

 

 

 

 

 

 

 

 

Samples Phenols 

(mg/100g) 

FRAP 

(µmol TE/100g) 

ABTS 

(µmol TE/100g) 

Control 10.64±0.66
a
 86.08±8.18

b
 75.66±2.02

b
 

UV 15 min. 11.52±0.24
b
 100.45±16.97

bcd
 89.59±14.39

c
 

UV 30 min. 10.42±0.30
a
 97.47±8.47

bcd
 95.66±6.04

c
 

UV 60 min. 11.99±0.61
b
 107.77±19.32

cd
 86.35±7.98

c
 

UV 120 min. 10.66±0.66
a
 113.39±11.74

d
 86.89±4.76

c
 

150
o
C/60 min. 10.72±0.70

a
 54.06±6.05

a
 64.45±7.52

a
 



Chapter 4                                                                       Reduction of mycotoxins by Heat and UVC irradiations 

129 
 

 

On the basis of degradation data of mycotoxins and colorimetric results, samples of semolina 

treated at 150°C for 30 min and by UVC for 120 min were selected for the subsequent analyses. 

4.3.2.3 Hydration and Gluten Indices 

Both control and UVC treated semolina showed mean moisture content equal to 11.0±0.11%, 

while thermally treated sample at 150°C for 30 min was totally dried.  

Table 5 shows the hydration and gluten indices of semolina before and after UV and heat 

treatments. WAI in control semolina was equal to 2.17±0.08, which was comparable to the value 

in UVC treated semolina, while a significant increase of 18.89% was observed in the thermally 

treated sample. Since WAI indicates the amount of water absorbed by starch, the observed 

increase in WAI in the thermally treated sample could indicate that the starch absorbed more 

water as a consequence of damage to the structure of starch granules during the high temperature 

treatment. The increase of SP (18.72%) after the treatment, from the initial value of 232.76±8.90, 

also supports this hypothesis. In fact, SP reflects the uptake of water in starch granules by 

amylopectin, which is considered to contribute to water absorption and swelling (Blazek & 

Copeland, 2008). WSI is often adopted as an indicator of degradation of molecular components 

and it is a measurement of the amount of soluble components released from the starch 

(Anderson, Conway, Pfiefer & Griffin, 1969). Contrary to previous evaluated parameters, WSI 

value was not significantly different in treated samples from the initial value of 0.068±0.001 

found in the control. 

Moisture content of gluten was not significantly changed by UVC and temperature treatments 

compared to the control (66.18%±0.49), while WAC of gluten was slightly increased in UVC 
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treated (319.56±6.23%) compared to the control (302.97%±0.21), and no significant changes 

were observed in thermally treated sample. The increase of WAC in UVC treated gluten sample 

could be explained by hypothesizing an increased reactivity of the protein fraction, absorbing a 

higher amount of water in the network. Moreover, values obtained for WAC in gluten samples 

confirm that the increase of WAI and SP in thermally treated semolina was attributable to the 

higher retention of water by presumably damaged starch, since we have not observed an increase 

of water absorption in the gluten fraction, but rather a slight, non-significant reduction.  

WGY was comparable in control and thermally treated samples (38.61±1.67% and 40.78%, 

respectively) with a slight decrease in UVC treated samples (34.36±0.20%), while DGY was 

slightly increased in thermally treated samples (14.66±0.30%) compared to the control 

(13.04±0.38%) and UVC treated samples (12.09±0.89%). This result can be explained by 

assuming that, after the treatment, gluten became easier to wash and retained less starch, 

according with evidences reported by Neill, Al-Muhtaseb & Magee (2012) on heat treated base 

flour processed by fluidized bed drier. 
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Table 5: Hydration and gluten indices for control and treated semolina 

 
Control 150°C/30 min UVC/120 min 

WAI 2.17±0.08
a
 2.58±0.13

b
 2.06±0.03

a
 

WSI 0.068±0.001
a
 0.066±0.003

a
 0.069±0.006

a
 

SP 232.76±8.90
a
 276.34±15.19

b
 221.88±1.87

a
 

Moisture of gluten (%) 66.18±0.49
a
 64.25±0.36

a
 66.24±2.8

a
 

WAC (%) 302.97±0.21
a
 295.88±2.66

a
 319.56±6.23

b
 

WGY (%) 38.61±1.67
b
 40.78±0.95

b
 34.36±0.20

a
 

DGY (%) 13.04±0.38
ab

 14.66±0.30
b
 12.09±0.89

a
 

 

Mean (n=3)±standard deviation. Different letters in the same row indicate significant differences 

(p<0.05). 

WAI: Water Absorption Index; WSI: Water Solubility Index; SP: Swelling Power; WAC: Water 

Absorption Capacity; WGY: Wet Gluten Yield (WGY); DGY: Dry Gluten Yield; 
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4.3.2.4 Water Sorption Isotherm 

The water soption isotherm can give informations about the nature, the structure of the matrix, 

and the mechanisms of physiosorption, since sorption properties can be influenced by 

biochemical factors and/or physicochemical properties of particles that could affect the aptitude 

of semolina to be extruded. It is reported that the hydration of semolina particles is mainly a 

physical phenomenon and, at the first step, water cannot penetrate into particles through pores, 

while after adsorption of water on the surface of the semolina particles, water molecules 

penetrate inside the particle by diffusion (Hèbrard et al (2003).  

Fig 2 shows the sorption isotherms of control (untreated) and thermally treated (150°C for 1h) 

semolina. Our profiles are very similar to those reported by previous study on durum wheat, 

although only a few publications studied sorption isotherms of semolina (Hèbrard et al (2003), 

Murrieta-Pazos et al, 2014).  

Analyzed samples present type II sorption isotherm curves with the shape of a “S”, according to 

the IUPAC classification which is typical of finely divided non-porous solids or macro-porous 

materials (Zeng et al, 2011; Murrieta-Pazos et al, 2014). As reported by Murrieta-Pazos et al, 

2014, the curves can be divided in three different parts: from 0 to 20% RH  the monolayer 

formation is represented, from 20 to 80% there is a linear portion, that represents the formation 

of binds among water and semolina components, and from 80 to 95% water presents weak 

binding. The curves of treated samples are almost perfectly coicident with the control, so the 

analyzed physical treatments seem to have no effect on the water content of semolina for each 

equilibrium relative humidity of the air, since they did not affect the ability of semolina 

components to establish interactions with water.  
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Fig. 2:  Water sorption isotherms of semolina: a) control (untreated), and b) thermally treated 

(150°C for 1h) 
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4.3.3 Farinograph Analysis 

Fig. 3 and Table 6 show data obtained from Brabender farinograph. Water absorption (WA) is a 

common farinograph parameter that allows one to quantify the exact content of water necessary 

to obtain a specific value of dough consistency (by convention, corresponding to 500 Brabender 

Units (BU)). In accordance with reports by other authors (AbuHammad, Elias, Manthey, Alamri 

& Mergoum, 2012), in control semolina this value was 55.5%, while for semolina treated at 

150°C for 30 min, and at UVC for 120 min we found that the water amount was equal to 87.2% 

and 58.0% respectively (Table 6). 

Mean moisture content of dough obtained from control semolina was equal to 43.65±0.21%, 

which was comparable to the value found in UVC treated samples (44.00±0.12%), while in 

samples treated at 150°C for 30 min, the mean value was significantly different (45.33±0.21%).  

These data strongly indicate a high impact of thermal treatment on the structure and properties of 

semolina dough.  

Dough development time (DDT) increased significantly in thermal treated semolina (8.98±0.66 

min) compared to the control (3.93±1.07 min), while in UVC treated semolina this DDT was 

equal to 2.45±0.11 min. DDT values observed for control semolina are similar to those reported 

by a previous characterization study of sixteen durum wheat cultivars carried out by 

AbuHammad, Elias, Manthey, Alamri & Mergoum (2012) that found values ranging between 2.9 

and 5.7 min. The increase of DDT in heat treated semolina might be explained considering the 

lack of gluten network formation. Other authors also found an extension of DDT in dough from 

flour heated at 100°C for 5 h, which did not develop within a mixing time of 8 min (Van 

Steertegem, Pareyt, Brijs & Delcour, 2013). In addition, the cross-linked protein network 
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surrounding the starch granules can reduce their water uptake with significant consequences on 

the total structure. 

Dough stability was significantly reduced after both heating (11.32±1.07 min) and UVC 

treatment (7.35±0.21 min) compared to the control (18.19±2.53 min). The dough softening was 

not significantly different between control (9.66±1.52 BU) and thermally treated semolina 

(9.00±2.82 BU) while it was higher in UVC treated semolina (43.50±2.12 BU).  
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Table 6: Farinograph parameters of control and treated semolina 

Treatment 
WA 

(%) 

DDT 

(min) 

DS 

(min) 

DOS 

 (BU) 

E  

(BU) 

Control 55.5%±0.05
a
 3.93±1.07

b
 18.19±2.53

c
 9.66±1.52

a
 113.00±4.00

c
 

150°C/30 min 87.2%±0.07
c
 8.98±0.66

c
 11.32±1.07

b
 9.00±2.82

a
 82.00±4.36

a
 

UVC/120 min 58.0%±0.03
b
 2.45±0.11

a
 7.35±0.21

a
 43.5±2.12

b
 101.33±6.65

b
 

 

Mean (n=3)±standard deviation; Different letters in the same column indicate significant 

differences (p<0.05). 

WA: Water Absorption; DDT: Dough Development Time; DS: Dough Stability; DOS: Degree 

Of Softening; E: Elasticity 
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The elasticity values showed significant differences among three analyzed doughs, with the 

highest level in the control (113±4.00 BU), followed by UVC treated samples (101.33±6.65 BU) 

and thermally treated samples (82.00±4.36 BU). 

Taken together, these data demonstrate that thermally treated semolina required more time to 

develop into dough, but this dough was more stable compared to that obtained from UVC treated 

semolina. In addition, the observed increase of the WA value is related to the higher water uptake 

of starch granules, as a consequence of the cross-linked protein network loss surrounding them. 

Protein aggregation and starch surface modifications after heat treatment lead to changes in 

starch-protein and starch-starch interactions, also affecting the rheological properties of doughs 

(Mann, Schiedt, Baumann, Conde-Petit & Vilgis, 2014). 

Moreover, we observed the lowest DDT, also compared to the control, in the UVC exposed 

sample, which may be attributable to increased reactivity of protein components after the 

treatment; on the other hand, the protein network that formed during the mixing was less stable, 

as indicated from the lower stability time and the high degree of softening.  

The protein content and composition of durum wheat have a major impact on dough rheological 

properties and pasta cooking quality. In particular a highly significant inverse relationship 

between semolina protein content and DDT has been demonstrated (Aalami, Rao & Leelavathi, 

2007). The properties of dough are widely related to the quantity and quality of gluten including 

glutenin, responsible for the elastic properties, and gliadin, which contributes to the extensibility: 

higher glutenin content is related to greater gluten strength. In fact, when semolina is mixed with 

water, the glutenin and gliadin proteins start modifying their shape and trigger several complex 

phenomena: water molecules become linked to the protein molecules, breaking the pre-existing 
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bonds between them and forming new bonds. Consequently, the protein molecules start 

stretching out in a disorderly manner, to form filaments.  

The significant differences of farinograph parameters after the thermal treatment could reflect the 

chemical changes as a consequence of heating, since most proteins denature at a temperature 

range of 50 to 80°C (Mann, Schiedt, Baumann, Conde-Petit & Vilgis, 2014), reducing their 

solubility in water. In addition, heating leads to disulfide bond linked aggregates and 

conformational changes affecting gliadins and low molecular weight albumins and globulins 

(Guerrieri, Alberti, Lavelli & Cerletti, 1996), as evidenced by the loss of elasticity (equal to 

about 27.43%) and by the reduced dough stability in thermal treated samples compared to the 

control. 

Furthermore, mixograph studies confirmed that the heat treatments significantly affected gluten 

hydration and likewise, dough development, indicating that flour particles hydrated more slowly, 

probably as a consequence of a more rigid structure as formed by the cross-linked gluten protein 

for the decreased level of free SH groups after the treatment (Van Steertegem, Pareyt, Brijs & 

Delcour, 2013).  
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Fig. 3: Farinograms of doughs obtained from control (a), thermally treated at 150°C/30 min (b) 

and UVC treated/120 min (c) semolina. 
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4.3.4 Differential Scanning Calorimetry Analysis 

DSC is a thermal analysis that measures the thermodynamic transitions of a material during heat 

treatment. This technique was applied in order to explain the changes associated to the major 

dough components that can affect the macroscopic properties as observed from farinograms after 

exposure to UVC and temperature treatments.  

Table 7 reports the temperatures and enthalpy values observed during DSC analyses of dough 

prepared with control and treated semolina. All the samples showed the typical endothermal 

transition due to the gelatinization of amilopectin that appears at temperatures between 61.18 and 

63.41°C for thermally treated and control samples respectively, while the enthalpy ranged 

between 0.84 and 1.11 J/g dried semolina and was not significantly different among the three 

analyzed samples. Gelatinization is partly shifted to higher temperature due to the melting of the 

remaining amylopectin crystallites (Moreira, Chenlo & Arufe, 2015), giving as result a second 

peak at a temperature between 85.53 and 88.73°C for thermally treated samples and the control, 

respectively. Enthalpy values ranged from 1.27J/g dried semolina in thermally treated samples to 1.60 

J/g dried semolina in the control, with statistically significant difference. Another transition at higher 

temperature was observed in all three dough samples, at 114.12 and 116.03°C for thermally 

treated samples and the control respectively; this corresponds to the melting of amylose-lipid 

complexes (Moreira, Chenlo & Arufe, 2015). Also for this transition we observed a significant 

reduction of enthalpy in thermally treated samples; in fact, the energy required for the melting of 

amylose-lipid complexes depends on microstructural properties of both polymers. The 

temperatures and enthalpies we measured were comparable to those reported by Agyare, Xiong, 

Addo & Akoh (2006), who also observed three transitions. No additional information were 

obtained from semolina samples and no distinct DSC peaks were observed for dried and wet 
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gluten at 43% moisture when heated from 30 to 150°C (data not shown), which is consistent with 

results previously reported by other authors (Agyare, Xiong, Addo & Akoh, 2006). 
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Table 7: Temperatures (To and Tp) and enthalpies (H) from DSC analyses of dough at DDT obtained from control and treated 

semolina. 

Treatment 

StarchGelatinization 
Melting of lipids with starch 

Step I Step II 

To Tp ΔH To Tp ΔH To Tp ΔH 

(
o
C) 

(J/g dried 

semolina) 
(
o
C) 

(J/g dried 

semolina ) 
(
o
C) 

(J/g dried 

semolina) 

Control 55.87±1.06
ab

 63.41±0.72
b
 1.11±0.36

a
 75.54±0.87

b
 88.73±1.09

b
 1.60±0.27

a
 105.63±1.0

a
 116.03±0.38

a
 1.96±0.25

b
 

150
o
C/30 

min 
54.76±0.16

a
 61.18±0.13

a
 1.08±0.18

a
 73.27±0.48

a
 85.53±0.58

a
 1.27±0.14

a
 103.12±0.97

a
 114.12±0.99

a
 1.43±0.15

a
 

UVC/120 

min 
56.55±0.15

b
 62.68±0.36

b
 0.84±0.20

a
 75.26±1.02

b
 87.60±1.13

b
 1.26±0.10

a
 104.58±1.72

a
 115.85±1.4

a
 2.19±0.08

b
 

 

Mean (n=3)±standard deviation; Different letters in the same column indicate significant differences (p<0.05). 
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2.3.5 Microstructure 

To evaluate the impact of both physical treatments and mixing on the microstructure, SEM 

analyses were conducted on doughs obtained from control, thermally treated and UVC treated 

semolina, at both the time of development and with overmixing. Fig. 4 shows the micrographs 

taken at 2000× magnifications. Dough from control semolina displayed an evident network 

attributable to the protein fraction connecting starch granules of heterogeneous dimensions, that 

are similar to those reported for wheat dough in literature (Fig 4-a; Ding & Yang, 2013). Similar 

microstructure was also shown in dough obtained from UVC treated semolina (Fig 4-b), 

although the gluten network appeared less continuous compared to the control. A further 

reduction of gluten continuity was revealed in dough obtained from thermally treated semolina 

(Fig.4-c), confirming the strong impact of heat application on the protein, such as was revealed 

by the change of dough mixing properties.  

We also observed an effect of dough mixing time on the microstructure. The impact of 

overmixing was observed for all three treatments that were analyzed, since a reduction of 

interconnection among starch granules was evident as a consequence of the loss of gluten 

network continuity. In particular, this effect was more marked after overmixing of dough 

obtained from UVC treated semolina, confirming the mixing results, since this sample revealed 

the major DOS as previously described. In fact, the microstructure of this sample (Fig.4-d) 

shows an evident loss of protein network among starch granules as a consequence of the 

overmixing. In addition, damage to starch granules was more evident in thermally treated 

samples, confirming the previous considerations.  
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Fig. 4: Micrographs at 2000× of doughs from control (a-b), thermally treated at 150°C/30 min 

(c-d) and UVC treated/120 min (e-f) semolina, Obtained at DDT (left) and after 30 min of 

mixing (right). 
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4.4 CONCLUSION 

Analysed semolina contained 10 different mycotoxins, among which the most abundant were the 

unregulated ones, ENB and NIV, whose toxic effects are documented. For these two mycotoxins 

we obtained a significant reduction after thermal treatment (ENB) and UV irradiation (NIV). 

Other considered mycotoxins (OTA, AFB1, FB1, FB2) were also reduced as a consequence of 

physical treatments, confirming prior reports.  

Treatment of semolina with heat and with UVC exerted a significant impact on dough properties, 

as revealed from some farinograph parameters, showing significant changes in DDT, WA, time 

of stability, degree of softening and elasticity. These data correlated well with some measures of 

semolina performance as well as WAI, SP, WAC of gluten, some parameters from thermograms 

and modifications in microstructure observed by SEM. As future perspective, it could be 

interesting to apply heating and UVC irradiation together and to study if changes observed in 

doughs significantly impact on industrial processing such as pasta making or baking, affecting 

the nutritional and technological properties of the final products. Since analyses of thermally 

treated semolina suggest a high degree of damage to the gluten network, remediating mycotoxin 

contamination via thermal treatment may be more suitable for derivative foodstuffs that do not 

need a strong gluten network, such as some types of biscuits characterized by a high 

crumbliness. 
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IMPACT OF HEAT AND UVC TREATED SEMOLINA ON PASTA AND BREAD 

MAKING 

5.1 INTRODUCTION 

Traditionally, Triticum turgidum, subsp. durum is being used for semolina production which is 

the raw material for pasta making, since dough made from this type of wheat shows ideal 

structural properties for manufacturing parameters of the product. In southern Italy, durum wheat 

is used not only for pasta production, but also for bread making. In particular, in 2003, the bread 

of Altamura, thoroughly widespread, was recognized as a Protected Denomination of Origin 

(PDO) product, that is attributed to the foodstuffs originated and totally produced in a specific 

geographical area (Raffo et al, 2003). This product is obtained from re-milled semolina of single 

or combined Appulo, Arcangelo, Simeto and Duilio durum wheat cultivars from Altamura in 

Apulia, Southern Italy.  

The semolina properties for pasta production are determined by the additive effects of protein 

content and gluten network in the semolina, therefore, durum wheat verities are in high demand 

because of its enhanced protein content and gluten quality (Mariani et al, 1995). 

Re-milled semolina is characterized by smaller size of particles (70% below 180 µm) and a 

higher hydration rate than semolina, while the main properties of Altamura bread are a long shelf 

life, linked to the higher water binding capacity of durum wheat flour, and a low loaf volume. In 

addition this product is appreciated by consumers for its typical sensory features and nutritional 

attributes due to the presence of higher protein content (Raffo et al, 2003) and carotenoid 

pigments with provitamin A activity (Pasqualone 2017).  

 



Chapter 5                                            Impact of Heat and UVC Treated Semolina on Pasta and Bread Making 

155 
 

The sensory features include a thick brown crust with a typical toasted odor, coupled to a yellow 

and dense structure of crumb showing a high firmness and a coarse grain, accompanied by a 

marked sour taste and odor. The network structures and their behavior during the process depend 

on both proteins and state of flour starch and widely affect the physicochemical features of 

baking products. The texture of this type of products is associated to gas-retention ability during 

leavened and cooking, proportional to the number size and distribution of generated bubbles 

(Shibata et al, 2011). Therefore, changes consequent to pre-treatments under specific physico-

chemical conditions could produce technological variations interesting to investigate. About that, 

the most widely used procedure is the heat and UV treatment of flours at different time and 

temperatures.  

These treatments can be applied to flours to reduce the moisture with a change of bacteriological 

properties, to prolong the shelf life or to decrease the risk of moulds development, to degrade 

some mycotoxins (Shanakhat et al 2019). In parallel, it is reported that these treatments on wheat 

flour could improve cake and bread quality, since they allow to obtain a slowed retrogradation of 

amylopectin, a finer texture, moist crumb and sweeter taste (Purhagen et al. 2011; Neill, Al-

Muhtaseb, & Magee, 2012). Interestingly, denaturation of the proteins and enzymes in the 

treated flour increases batter expansion, preventing the collapse during baking and conferring 

higher volume and stability to the product (Sahin et al, 2008).  

Dry heating of wheat flour at 120°C for 30 min increased batters viscosity, due to the formation 

of a stronger gel network (Meza et al., 2011) and the volume of Kasutera cake (Nakamura, 

Koshikawa & Seguchi, 2008). In addition, a positive effect on baking quality was found after 

treatment by fluid bed dryer, as a consequence of batter viscosity increase, linked to denatured 

gluten with reduced extensibility and a partial starch granule gelatinisation. (Neill, Al Muhtaseb 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/sensation-of-taste
https://www.sciencedirect.com/science/article/pii/S0023643815301572#bib21
https://www.sciencedirect.com/science/article/pii/S0023643815301572#bib21
https://www.sciencedirect.com/topics/food-science/batter
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& Magee 2012). In a recent study, Shanakhat et al (2019) found a high impact of fluid bed 

drying treatment on semolina dough properties as revealed from some farinograph indices, well 

correlated with parameters obtained from calorimetric analysis and modifications in 

microstructure observed by SEM. 

Although several studies were published about the effect of irradiations and heat treatments on 

flour, no information concerning the effect of these processing techniques on re-milled durum 

wheat and its technological properties during pasta and bread making are available. 

This spart of the thesis project aims to investigate the technological performance of re-milled 

durum wheat from Altamura submitted to UVC irradiation and fluidized bed drying, applied at 

different time and temperature. In particular, the treated semolina has been used for pasta and 

bread processing. In the first case, the effects of the physical treatments were evaluated 

monitoring spaghetti quality parameters and microstructure. In the second case, the effects of the 

physical treatments of the semolina were analyzed both on the mixing and leavening phases, and 

on the characteristics of the bread. 
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5.2 MATERIALS AND METHODS 

5.2.1 Materials 

Durum wheat semolina purchased at a supermarket in Naples (Italy) was used for pasta making; 

re-milled durum wheat was purchased from a company in Altamura (Bari, Italy) for bread-

making. Both types of semolina were placed into plastic containers at room temperature until the 

analyses. 

5.2.2 Thermal and UVC Treatments 

The thermal treatments were applied by heating 300 g of re-milled durum wheat at 90, 120, and 

150°C for different time (5, 15, 30 min), using a fluidized bed dryer (Sherwood Scientific Model 

MK11, UK). The temperature was adjusted controlling the front of the dryer and the air flow 

speed was set at level 4. Temperature and air velocity were verified before each experimental test 

by a digital thermometer (range -50 -300°C±1°C) and a hot wire anemometer (range 0.4-30 m/s 

±3%) respectively. For each treatment, moisture content analyses were performed according to 

ISO Standard No. 712.  

The second treatment consisted of UVC irradiation (254 nm), applied for 120 min. A germicidal 

UV Lamp, with 30 W (G30T8) power providing UVC radiation at 254 nm, was obtained from 

Sankyo Denki, Japan. 100 g of re-milled durum wheat semolina, spread in trays 50x30 cm, were 

exposed to radiations at a distance of 15 cm. For each treatment, moisture content analyses were 

carried out according to ISO Standard No. 712.  
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5.2.3 Pasta Processing 

For pasta processing, we selected two treatments (UVC for 120 min; heating at 150°C for 30 

min) which have shown the reduction in mycotoxins (as reported in chapter 4). In order to obtain 

a semolina dough with 32% wet content, 1500 g of untreated and treated semolina (UVC for 120 

min; heating at 150°C for 30 min) were put in a batch mixer (Kitchen Aid Inc.) for 15 min with 

warm water at the temperature of 45°C according to a protocol previously optimized in our 

laboratory. Semolina dough was processed into spaghetti using a laboratory single-screw 

extruder (Sercom-provided by Nestlè R&D Centre of Kemptthal) equipped with a screw of 350 

mm length and 35 mm diameter. The mixture was placed into the feed section of the extrusion 

unit and feed into the extrusion barrel with regularity by a paddle mixer. The paddle speed 

during extrusion was set at 100 rpm and kept constant during process as such as dough 

composition and moisture level. Water hailing from an external thermostatic bath (Regoplas 

P140S, St. Gallen, CH) circulated in the external jacket of the extruder channel and kept barrel 

temperature constant (45°C). The bath was set to 54°C to have a die temperature of 45°C, since 

heat dispersion through the pipes system occurred. The selected die geometry was for the 

spaghetti production. Successively, spaghetti samples were collected and analyzed for quality 

performance.  

5.2.4 Pasta Quality  

Quality performance evaluations were carried out on produced pasta (dried down at room 

temperature for 48 h). Effect of both thermal and UVC treatments were evaluated by the analysis 

of pasta quality parameters such as: increase of weight after immersion (g), increase of length 

(%), increase of diameter (%) moisture (%), increase of weight after cooking (%) starch loss 

(fresh) from cooked pasta and loss of soluble solids (g). 
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The water absorption was evaluated by immersing 100 g of pasta in 2 L of cold water. After 3 

min of immersion, spaghetti were dried on paper and weighted: the amount of absorbed water 

was calculated as differences between initial and final weight. Similarly, the % increase in length 

and diameter of spaghetti was also measured as the difference of initial and final (after 3 min of 

immersion in cold water) length and diameter respectively. Starch analysis of pasta was 

evaluated by cooking test. Spaghetti (100 g) were cooked for 7 min (time necessary for the 

disappearance of the core), in 0.5 L of boiling water. The % increase in weight after cooking was 

calculated immediately as the difference between weight before and after cooking. For starch 

measurement, 100 mL of the water (in which pasta was cooked), taken and centrifuged at 10000 

rotations for 35 min. The pellet obtained after centrifugation was evaluated as starch loss (fresh) 

from the pasta during cooking. The supernatant was separated, weighted and dried in an oven in 

vacuum at 50°C, until a constant weight was achieved to calculate the soluble solids. Three 

replicates for each measurement were carried out.  

5.2.5 Pasta Microstructure 

Scanning electron microscopy (SEM) was carried to investigate the microstructure of spaghetti, 

prepared with both treated and untreated semolina. Lyophilized samples were mounted on 

specimen stubs and Au-coated by DC sputtering (AGAR B7340) in order to make the specimen 

conductive. Spaghetti were cut and oriented in both longitudinal and transverse directions before 

the Au-coating. The coated specimens were then observed by using a LEO EVO 40 scanning 

electron microscope (Zeiss, Germany), with a 20kV acceleration voltage. The representative 

micrographs from all the samples were selected. 
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5.2.6 Bread Dough Mixing  

Bread doughs, prepared with both heat treated and untreated semolina, were prepared by using a 

Farinograph-AT Brabender (Duisburg, Germany), fitted with 50 g mixing bowl. Re-milled wheat 

grain, 50 g; water, 36 g; NaCl, 0.65 g; yeast, 0.37 g were taken for dough preparation. Moisture 

content of doughs from treated semolina was adjusted at 47%, in comparison with control 

samples. For each blend, the farinographic development time was used as the mixing time. 

Doughs from treated and untreated semolina were prepared in triplicate and the consistency at 

the end of mixing, (the time of dough development+2 min)was measured. At the end of each test, 

the moisture content of the obtained dough was determined according to ISO Standard No. 712. 

Water activity of the dough samples was measured at 25 °C in an AquaLab (Decagon Devices, 

Inc, Pullman andEUA) 

5.2.7 Bread Dough Leavening 

62 g of dough were taken just after mixing and placed on a flat surface where it could expand in 

every directions without constrains during a leavening stage. The dough was incubated at 36 ± 

1°C, 70 % U.R for 180 min. The following parameters were continuously and automatically 

recorded: 

 internal humidity and  temperature by means of data logger (Logger Escort mod. 10D8, 

Gamma Instrument s.r.l., Naples, Italy) 

 Volume expansion by means of a camera Olympus


 C-7070Wide ZOOM camera 

(Olympus, Milan, Italy) mounted on a photographic bench. 

Dough evolution during leavening phase was studied by measuring the variation in time of the 

total volume of the sample by means of Image Analysis software (Image Pro Plus 6.1 for 
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Windows
®
, Media Cybernetics Inc.). The volume V of dough was calculated as reported by 

Romano et al. (2013). Each average value represents the mean of 3 - 7 independent 

measurements. 

5.2.8 Bread quality  

Bread samples were prepared considering the treated semolina dough which had shown the best 

(120°C for 30 min) and the worst (150° for 30 min) behavior during leavening. A control bread 

sample was also prepared with untreated semolina. 2500 g of dough were prepared according to 

the recipe reported in the precedent paragraph. The dough was prepared in a mixer, using the 

farinographic development time as the mixing time. 800 g of dough prepared from each 

treatment was aliquoted in aluminum molds (25x15 cm) and the leavening was carried out 

according the conditions previously described for the measurements of volume dough expansion. 

The time of leavening for control and dough from thermally (120°C 30 min) treated semolina 

was the same (100 min). Whereas, time of leavening for dough obtained from semolina treated at 

150°C 30 min was 70 min.  

Baking was carried out in a conventional electric oven (Moretti Forni S.p.A., Pesaro, Italy) at 

180°C for 110 min. Three lots were produced for each selected treatment and three bread loafs 

were obtained for each lot. 

5.2.8.1 Moisture Content  

The moisture content ofboth the crust and the crumb of bread samples, weredetermined in 

triplicate for each loaf by the AACC method (number 44-15.02, 1999). The results were 

calculated as percentage of water per sample weight (%). 
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5.2.8.2 Water Activity  

Water Activity of both the crust and the crumb the bread samples were measured at 25 °C in an 

AquaLab (Decagon Devices, Inc, Pullman andEUA), in triplicate for each bread loaf. 

5.2.8.3 Bubble Structure of the Loaf 

Bread samples were cut into 20 mm thick slices using an electrical knife. Six samples were 

taken from the middle of the loaf. 2 D loaf slices images were analysed using an image analysis 

protocol as reported by Romano et al. (2013) with some modifications. Subsequent to cell 

detection feature extraction was performed for each sample analysed. Average gas bubble area 

fraction (AF) was calculated using the following equation: 

AF (%) = 
∑   
 
 
  

         (1) 

Where n, was number of bubbles counted; Ad was area loaf section and Ai was bubble area.  

Each result is the average of three different test bread production runs. 

5.2.8.4 Bread Hardness 

Six slices 20 mm thick from each loaf were subjected to a compression test by means of an 

Instron Universal Testing Machine (Instron Ltd., mod. 4467, High Wycombe, GB), equipped 

with a 1 kN load cell. Cylindrical samples (diameter 16 mm, height 16 mm) were placed between 

parallel plates and compressed to a final deformation of 80%, at a crosshead speed of 60 

mm/min. For each loaf, five measurements were performed. True stress–Hencky strain 

relationships were derived from load-displacement curves.  
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5.2.9 Data Analysis 

All the parameters were evaluated in three trials and three analytical replicates and expressed as 

mean value ± standard deviation. Differences among control and treated samples were 

determined by using SPSS (Statistical Package for Social Sciences) Package 6, version 15.0 

(SSPS Inc., Chicago, IL, USA). Significance was determined by Anova (Duncan‟s test) at a 

significance level of 0.05.  (for me it is bettet to eliminate this space) 
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5.3 RESULTS AND DISCUSSION 

5.3.1 Pasta Quality  

Table 1 shows the data about pasta quality obtained from untreated and treated (UVC and 

thermal) semolina. Water absorption after immersion in cold water for 3 min determined an 

increase of weight equal to 10.00±2.55%, 12.22±0.68% and 20.41±0.02 in spaghetti obtained 

from control and those obtained from UVC and heat treated semolina respectively. The increase 

in weight after immersion was not significantly different between the analysed samples of 

control and UVC treated, while for thermally treated semolina it was significantly higher than 

the control that could be attributed to damnaged structure of the starch after application of high 

temperature causing the increase of water absorption. We did not found a significant change in 

the % increase of length after the immersion in cold water for control (1.53±0.50), UVC 

(1.15±0.83), and thermally (0.87±0.12) treated samples. Whereas, the % increase in diameter 

after immersion was significantly higher for the spaghettis obtained from the UVC 

(10.33±4.53%) and thermally (12.84±2.04) treated semolina as compared to control (4.92±0.52) 

samples. 

The moisture content of pasta (after dried down at room temperature for 48 h) was not 

significantly different for UVC treated (16.17±0.06%) and control (17.68±0.09%), whereas for 

thermally treated the moisture content was higher to 21.38±1.24%. A decreasing trend was 

observed in % increase of weight after cooking, 121.23±12.69% and 111.98±4.05 for pasta from 

UVC and thermally treated semolina respectively compared to the control (128.30±3.26%),  

while the increase of the length was not different in all samples. The soluble solids in boiling 

water and fresh starch loss found in UVC treated sample was equal to 0.61±0.21% and 

7.33±0.51% compared to the control (0.46±0.18% and 7.44±1.51% respectively). While, in 
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thermally treated semolina the soluble solids (0.81±0.02%) and strach loss from fresh pasta 

(9.02±0.76) was significantly higher than control.  

Hydration of the pasta is verified as an effect of diffusion-controlled process, and the 

temperature-moisture conditions induce the gelatinization of starch, with an increase of starch 

solubilisation. Starch morphological changes range from a strong swelling and partial 

disintegration in the outer layer of the strand to a slight swelling in the centre (Sozer et al, 2010 

in Kalnina 2015). From a macromolecular point of view, pasta can be assimilated to a large 

protein network with protein–protein crosslinks containing starch granules. Therefore, the 

differences of some quality values after immersion in water and cooking could be explained by a 

likely modification of protein-starch network after the UVC irradiation with a consequent release 

of starch from gluten network and the loss of moisture from thermally treated semolina. 

The quality of the pasta obtained from the semolina treated at UVC was not significantly 

different from the control, as we have observed by the analysis of different quality parameters. 

Therefore, this treatment can be applied for the reduction of mycotoxins and enhancing the shelf 

life of semolina without having negative impact on the pasta processing and performance.  
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Table 1: Quality parameters of spaghetti prepared with untreated (Control), UVC (120 min) and 

heat (150°C 30 min) treated semolina. 

Parameters Control UVC 120 min 150°C 30 min 

Weight increase  

after immersion (g) 

10.00±2.55
a
 12.22±0.68

a
 20.41±1.52

b
 

Increase of length 

(%) 

1.53±0.50
a
 1.15±0.83

a
 0.87±0.12

a
 

Increase of diameter 

(%) 

4.92±0.52
a
 10.33±4.53

ab
 12.84±2.04

b
 

Moisture (%) 17.68±0.09
a
 16.17±0.06

a
 21.38±1.24

b
 

Increase of weight 

after cooking (%) 

128.30±3.26
a
 121.23±12.69

a
 111.98±4.05

a
 

Starch loss (fresh) 

from cooked pasta 

7.44±1.51
a
 7.33±0.51

a
 9.02±0.76

b
 

Loss of Soluble 

solids (g) 

0.46±0.18
a
 0.61±0.21

ab
 0.81±0.02

b
 

 

Mean (n=3) ± standard deviation; Different letters in the same column indicate significant 

differences (p<0.05). 
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5.3.1.2 Pasta Microstructure  

In Fig 1  the micrographs  of uncooked spaghetti were shown in both longitudinal (fig.1 a-c) and 

transverse (fig.1 e-f) sections, obtained from control, UVC treated and thermally treated (150°C 

for 30 min) semolina, taken at 1900X magnifications. Pasta microstructure was the result of all 

the changes occurred during the making process, mainly affected by the protein and starch 

fraction. During extrusion, glutenins and gliadins molecules reorganize by stretching and 

straightening, because of the mechanical energy provided, forming a gluten network that trapped 

the starch granules.In fig 1 starch granules are well recognized from proteins, since all samples 

are characterized by starch granules embedded in a dense protein network.   

In Fig 2 the micrographs of spaghetti cooked for 7 min (optimal time) were shown in both 

longitudinal (fig.2 a-c) and transverse (fig.2 e-f) sections, obtained from control, UVC treated 

and thermally treated (150°C for 30 min) semolina, taken at 1900X magnifications. The main 

phenomena involved during cooking are starch gelatinization and protein coagulation. The 

modifications after the cooking are expressed as the deformation of granules and the resulting 

discontinuities in the gluten net. This type of structure was observed both in the surface and in 

transverse section, as observed by Stuknyte et al, 2013. Same of the samples (Fig.2 a,b,c,d) 

shown a pronounced morphological modification of starch granules, that presented a shape of a 

flatted disk, also observed by Cocci et al. (2008), probably due to a greater degree of starch 

gelatinization. For other samples (Fig.2 e, f) it is not possible to distinguish between starch 

granules and protein network, the structure is compact enough. In both uncooked and cooked 

spaghetti, apparent differences of the sample structures are not evidenced between pasta obtained 

from semolina control and UVC treated semolina. 
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Fig 1: Microstructure of uncooked spaghetti in longitudinal section (on the left) and transverse 

section (on the right) obtained from control (a and d); UVC treated (b and e) and thermally 

treated (c and f) semolina, taken at 1900X magnifications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Control Spaghetti (longitudinal)1900 X 

(b) UVC treated Spaghetti(longitudinal) 1900 X 

(c) Heat treatedSpaghetti (longitudinal)1900 X 

(d) Control Spaghetti (transverse)1900 X 

(e) UVC treated Spaghetti(transverse) 1900 X 

(f) Heat treatedSpaghetti (transverse)1900 X 
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(b) UVC treated Spaghetti(longitudinal) 1900 X 

(c) Heat treatedSpaghetti (longitudinal)1900 X 

(a) Control Spaghetti (longitudinal)1900 X 

(f) Heat treatedSpaghetti (transverse)1900 X 

(e) UVC treated Spaghetti(transverse) 1900 X 

(d) Control Spaghetti (transverse)1900 X 

Fig 2: Microstructure of cooked spaghetti in longitudinal section (on the left a-c) and transverse 

section (on the right d-f) obtained from control; UVC treated and thermally treated (150°C for 30 

min) semolina, taken at 1900X magnifications. 
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5.3.2 Bread Dough Mixing  

Table 2 represents the moisture content (%), water activity (Aw) and consistency of the bread 

dough at the end of mixing obtained from the control and thermally treated semolina.. The 

moisture content of the dough obtained from control semolina was equal to 47.56±0.11%, which 

was comparable to the values of all other treated doughs. The amount of water used for the 

preparation of dough from the thermally treated semolina was adjusted to reach the same 

moisture content in doughs;therefore, when the treatments were more sever (120°C and 150°C), 

a higher amount of water in dough preparation was necessary to reach the same moisture content.   

Another trend was observed for the water activity (Aw) of dough, from the level of 0.908±0.016 

in control, increased, after heating treatment, at 90°C, to the values of 0.926, 0.929, 0.945 after 5, 

15, 30 min; at 120°C to the values of 0.929, 0.951 and 0.930 after 5, 15, 30 min; and at 150°C to 

the values of 0.918, 0.984 and 0.936. The consistency at the end of mixing of dough obtained 

from Brabender farinograph, indicating a high impact of thermal treatment on the structure and 

properties of durum wheat doughs. The increase of dough consistency at the end of mixing of  

was directly proportional to the intensity of thermal treatment; mean value was equal to 

244.66±2.51 BU in control, and increased from 307.00±18.33 to 328.40±63.35 BU in doughs 

obtained from samples treated at 90°C from 5 to 30 min respectively,  the mean value 

incrreased260.15±25.31 to 429.5±26.16 BU in doughs obtained from re-milled durum wheat 

treated at 120°C from 5 to 30 min respectively, and from 351.66±19.62 to 465.66±26.40 BU in 

doughs obtained from samples treated at 150°C from 5 to 30 min respectively. 

Mixing behaviour of dough reveals that flour particles hydrated more slowly as a consequence of 

a more rigid structure formed by the cross-linked gluten protein for the decreased amount of free 

SH groups after the treatment. The significant differences of dough consistency after the thermal 
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treatments are due, in particular, to the proteins denaturation starting at a temperature range of 50 

to 80°C, with a consequent reduction of their solubility in water (Mann, Schiedt, Baumann, 

Conde-Petit & Vilgis, 2014).  

 

Table 2: Moisture, water activity, consistency of bread doughs prepared with untreated and heat 

treated semolina 

 

Mean (n=3) ± standard deviation; Different letters in the same column indicate significant 

differences (p<0.05). 

 

Sample Moisture Content 

(%) 

Water activity  Consistency  

(UB) 

Control 47.56±0.11
b
 0.908±0.016

a
 244.66±2.51

a
 

90°C 5 min 46.20±0.01
ab

 0.926±0.007
abc

 307.00±18.33
abc

 

90°C 15 min 47.51±0.38
b
 0.929±0.006b

cd
 328.40.5±63.35

bc
 

90°C 30 min 47.41±0.49
b
 0.945±0.029

cde
 325.5±31.81

abc
 

120°C 5min 47.57±0.10
b
 0.930±0.008b

cde
 264.00.33±60.50

ab
 

120°C 15 min 47.31±0.55
b
 0.951±0.023

e
 260.15±25.31

ab
 

120°C 30 min 46.66±0.29
ab

 0.929±0.05
bcd

 429.5±26.16
de

 

150°C 5 min 47.27±0.25
b
 0.936±0.004b

cde
 351.66±19.62

bcd
 

150°C 15 min 46.45±0.42
ab

 0.984±0.004
f
 359.50±13.43

cd
 

150°C 30 min 47.69±0.04
b
 0.918±0.002

ab
 465.66±26.40

e
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5.3.3 Bread Dough Leavening 

The most apparent physical change related to the development of leavening in the dough is the 

increase of its volume (Romano et al., 2013). The volume expansion ratio of the dough was 

investigated by means of Image Analysis protocol at the end of leavening times. Fig. 3 represents 

the volume expansion ratio of semolina dough obtained from control and thermally treated 

semolina at the end of leavening. Significant increase in volume of doughs was observed from 

semolina treated at 90°C (5 min) and 120°C (5, 15, 30 min) as compared to control. While, 

decrease in volume for the doughs produced from the semolina treated at 150°C (5, 15, 30 min).  

Although it is assumed that mainly starch properties are affected during heat treatment (Keppler 

et al., 2018), it does affect gluten extensibility (Neill and Al-Muhtaseb, 2012). Van Steertegem et 

al. (2013) reported crosslinking of protein in flour particles as a result of flour heat treatment. 

Therefore the effect of different heat treatments evaluated on the bread doughs during the 

leavening could be explained by the formation of gluten aggregates in the flour treated at a very 

higher temperature at 150°C (5, 15, 30 min), resulting in decreased protein contents and lower 

network strength in dough as reported in a study of Mann et al (2014) that heat treatment can 

modify the interactions between gluten and starch network of dough.Gluten is a complex 

molecule consisted of glutenin (polymeric), which plays a role in dough‟s elasticity and strength 

(Khatkar, 2006) and gliadin (monomeric), which is responsible for dough extensibility and 

viscosity (Wieser et al, 2006). The volume expansion in dough depends on an appropriate 

balance of glutenina and gliadin (Khatkar et al, 1995). The insufficient gluten elasticity can result 

in decreased volume of dough, while increase in elastic gluten leads to higher volume (Hoseney, 

1994). The effects of low volume expansion were more pronounced in the doughs obtained from 

the semolina treated at very high temperature (150°C), while for treatments at lower 
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temperatures has shown an increase in volume expansion. These changings were marked by the 

modifications in gluten starch network due to heat treatments. 

 

Fig. 3: Effects of heat treatments (90°C, 120°C, 150°C for 5, 15 and 30 min)onvolume expansion 

ratio of semolina dough at the end of leavening 
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5.3.4 Bread quality 

Table 3 shows the quality parameters of bread such as moisture content and water activity of 

crumb and crust of bread obtained from control durum wheat and from treated sample at 120°C 

and 150°C for 30 min. We selected these two treatments of longer time (30 min) because it is 

known from literature and our study (chapter 4) that longer time of treatment have better effect 

on mycotoxins degradation  and meanwhile they have shown the same improvement of 

leavening like similar treatments of shorter time (fig. 3)  

The mean moisture values in crumb are similar for all the samples (from 47.00% in bread from 

treated sample at 150°C for 30 min to 47.66% in control), as well as moisture in crust (from 

22.82% in control to 23.77% in bread from treated sample at 120°C for 30 min). Also the 

activity water in both crumb and crust was not significantly different in bread from treated 

samples compared to the control, where the values were 0.957 and 0.881 respectively.  

The moisture levels reported in baked wheat soft flour bread were 43.48% in crumb and 18.16% 

in crust (Gao et al, 2015). These differences are associated to the higher water binding capacity 

of durum wheat flour, known to be responsible of the prolonged shelf life of the product and a 

softer crumb. This feature, due to the presence of damaged starch after the re-milling and to the 

high amount of proteins, is associated to higher productive yield for bread production: it is 

reported that from a quintal of re-milling durum wheat about 130 kg of bread are obtained. This 

property can also be due to the high content of ferulic acids, known for its antioxidant, 

antimicrobial, anti-inflammatory, and anti-cancer activities, that is twice compared to that 

present in soft flour (Quaglia et al 2001).  
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Table 3: Moisture content and water activity of the bread (crumb and crust) from control 

(untreated) and thermally treated semolina at 120°C 30 min and 150°C 30 min  

 

 

Mean (n=3) ± standard deviation; Different letters in the same column indicate significant 

differences (p<0.05). 

 

Image analysis was carried out to examine the effect of heat treatment on gas bubble area 

fraction (AF) in bread crumb. In figure 4 characteristic images of central slices of breads made 

with: a) untreated semolina (control), b) treated semolina at 120 °C (B) for 30 min, c) treated 

semolina at 150 °C (C) for 30 min are reported. 

  

Sample Moisture of 

crumb (%) 

Moisture of crust 

(%) 

Aw crumb Aw crust 

Control 47.66±0.82
b
 22.82±2.16

a
 0.957±0.006

a
 0.881±0.187

a
 

120°C 30 min 47.63±0.40
b
 23.77±2.67

a
 0.957±0.004

a
 0.864±0.483

a
 

150°C 30 min 47.00±0.32
a
 23.02±2.12

a
 0.954±0.006

a
 0.869±0.188

a
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Fig. 4: Characteristic images of central slices of breads made with: a) untreated semolina 

(control), b) treated semolina at 120 °C (B) for 30 min, c) treated semolina at 150 °C (C) for 30 

min 
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A statistically representative sample of bubbles can be identified from the images by using an 

image analysis procedure. This approach is simple, direct and often the easiest way to get 

reliable quantitative information based on digital images. Results of the object analysis of breads 

are illustrated in Table 4.The bread quality was evaluated by gas bubble area fraction (AF) and 

the crumb firmness measurements in the bread loaf. 

Table 4 shows AF (gas bubble area fraction) and the hardness of bread from control (untreated) 

and thermally treated semolina at 120°C 30 min and 150°C 30 min. The gas bubble area fraction 

in control bread had a mean value of 29.6±1.4 %, showing a significant difference from the 

treated samples. A decrease to a value of 26.7±0.3 % and 17.7±1.5% in gas bubble area was 

observed in bread slices obtained from semolina treated at 120°C 30 min and 150°C 30 min 

respectively. A significant decrease in the gas bubble area as compared to control can be 

explained as the negative effect of higher temperature (150
o
C for 30 min), which has lower the 

ability of gluten network in thermally treated semolina, to retain the carbon dioxide produced 

during the process of fermentation (Barak et al, 2013). Baking properties are affected by the 

quantity of the gluten present in the flour (Gomez et al, 2011), which plays an important role in 

determining both, the crumb appearance and firmness of cereal-based products (Demirkesen et 

al, 2010). 

Hardness was measured as the stress required to deform the bread of 30 %; hardness of the 

control bread had a mean value of 0.004±0.00N/mm
2
, significantly increased to 0.005±0.001 and 

0.020±0.007 N/mm
2 

for bread produced from the semolina treated at 120°C 30 min and 150°C 

30 min respectively.  

These results were well correlated to the data obtained from image analysis, since the crumb 

hardness was also significantly increased in the bread obtained from the thermally treated 
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semolina, thus, lowering the bread quality. The reasons of higher crumb firmness could be 

explained due to poor gluten quality and lower loaf volume. Previous studies have reported the 

negative impact of heat treatment on the gluten proteins (Barak et al, 2013), and that the bread 

quality can also be influenced by the rheological properties of the doughs (Gras et al, 2000) as 

well as other components present in the wheat flour (Dowell et al, 2008; Edward et al, 2007). 

The quality of the bread obtained from the semolina treated at 120
o
C for 30 min was not 

significantly different (p< 0.005)from the control, as we have observed by the bubble area 

fraction and hardness. Therefore, this treatment can be applied for reduction of mycotoxins and 

the improvement in shelf life of semolina based products without having any negative impact on 

the technological properties. 
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Table 4: Gas bubble area fraction (AF%) and hardness of the bread  from control (untreated) and 

thermally treated semolina at 120°C 30 min and 150°C 30 min. 

 

 

 

 

 

 

 

 

Mean (n=3) ± standard deviation; Different letters in the same column indicate significant 

differences (p<0.05). 

 

 

 

  

Sample AF (%) Hardness 

 (N/mm
2
) 

Control 29.6±1.4
c
 0.004±0.001

a
 

120°C 30 min 26.7±0.3
b
 0.005±0.001

a
 

150°C 30 min 17.7±1.5
a
 0.020±0.007

b
 



Chapter 5 

180 
 

5.4 CONCLUSIONS 

Technological performance of semolina submitted to heat and UVC irradiation at different time 

and temperature was analysed. In particular, the impact of these treatments was investigated 

during pasta and bread processing. For pasta production, we examined the impact of heat and 

UVC irradiations on its quality parameters and no significant change in pasta quality was 

observed for UVC treatment. We did not found any apparent differences of the sample structures 

of both uncooked and cooked spaghetti obtained from control; heat and UVC treated semolina, 

as evidenced by microstructures obsevered through SEM analysis. 

The impact of heat treatment on the technological parameters of bread baking was studied, by 

investigating the dough consistency at the end of mixing, leavening behaviour of dough and the 

bread loaf characteristics. We found an improvement in the leavening phase of dough obtained 

from the thermally treated semolina at 120°C for 30 min.  The treatments of higher temperature 

and longer time were investigated for bread baking characteristics due to their potential role in 

mycotoxins degradation, confirming our prior study. The quality of the bread obtained from the 

semolina treated at 150
o
C for 30 min was impaired by high temperature, as a consequence of 

damage of the starch and gluten network. We did not found any significant change in the quality 

of bread obtained from the semolina treated at 120
o
C for 30 min, as revealed by the moisture 

content, water activity of bread crumb, bubble area fraction and Instron analysis.  

Therefore this treatment can be applied for reduction of mycotoxins and in the improvement of 

shelf life of semolina based products without having any negative impact on the technological 

properties. 
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