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Introduction

In this thesis we mainly address some isoperimetric problems and our interest is focused on
the ones which involve the spectrum of some boundary value problems for second order
elliptic operators. The study of them needs different fields of mathematics as spectral
theory, partial differential equations, calculus of variations and shape optimization.

An important question on the optimization of eigenvalues was asked by Lord Rayleigh
in his book “The theory of Sound” (1894). He conjectured that the disk minimizes the
first Dirichlet Laplacian eigenvalue (the first frequency of the fixed membrane) among all
planar sets with given area. In the 20s of the XX Century, Faber in [47] and Krahn in
[62] gave a positive answer to the above conjecture, proving that, if 2 is a bounded open
subset of R", the following inequality holds

2 2
A (Q) 19" > AP (B) Bl

where )\f) is the first Dirichlet eigenvalue of the Laplace operator and B is any ball
of R™. When we consider the eigenvalues of the Laplacian with Neumann boundary
conditions, we know that the first eigenvalue is equal to zero for every open bounded
set with Lipschitz boundary. For this reason we have to consider the first nontrivial
eigenvalue, that we denote by ué\f . Contrary to the Dirichlet case, the relevant inequality
for Y is a maximization result, proved by Szegd in [76] in the two dimensional case and
by Weinberger in higher dimension in [81]. In particular, they proved that, if Q is a
bounded open set with Lipschitz boundary, it holds the following inequality

2 2
py () 19] < wd (B) B .

In other words this inequality states that, among all bounded open set with Lipschitz
boundary and fixed measure, the ball maximizes the first nontrivial Neumann-Laplacian
eigenvalue.

Yet another important boundary condition is the Robin one. Let {2 be a bounded open
set with Lipschitz boundary, the Robin-Laplacian eigenvalue problem is the following

—Au = \u in €

1
8fu—l-ozu:O on 0f) (L)
ov

where % is the outer normal derivative and « is a real number. The spectrum of this

problem is discrete and it forms a sequence
)\1(&,9) < )\Q(OC,Q) <...< )\k(a,Q) <... M4

Moreover, the first eigenvalue has the following variational characterization

/|Vv\2 dx+a/ v? dH"
M(a, Q)= inf 22 o0

veHL(Q) / o2 d
vZ0 Q




where H"~1 is the (n — 1)-dimensional Hausdorff measure in R™. Tt is clear that Dirichlet
and Neumann boundary conditions are special cases of the Robin boundary conditions.
Indeed, if & = 0 the first Robin eigenvalue coincides with the first trivial Neumann
eigenvalue, while in the case @ = +oo the first Robin eigenvalue coincides with the first
Dirichlet eigenvalue. When « is positive, for any bounded open set §2 with Lipschitz
boundary, it holds

A, Q) > \i(a, By), (2)

where B, is a ball of radius r such that |B,| = |©2|. The inequality (2) was proved by
Bossel in [16] in the two dimensional case and by Daners in [35] in higher dimension and
by Bucur and Giacomini in [26] for non smooth domains.

In the case @ < 0 the framework completely changes. In 1977 Bareket in [11] proved
that the ball is the maximum within a class of nearly circular domains and for a range of
boundary parameter «. This result suggested to her to conjecture that the ball maximizes
the first Robin-Laplacian eigenvalue among all the bounded smooth domains of given
measure for any negative value of a.

After the appearance of the Bareket’s paper, in 2015 Ferone, Nitsch and Trombetti in [48]
proved that the ball is a local maximizer among all the bounded open Lipschitz set with
[50] disproved the Bareket’s conjecture showing that the first Robin-Laplacian eigenvalue
on a spherical shell is greater than the one on a ball with the same measure for a suitable
large negative . This is quite surprising because, to the best of our knowledge, the first
eigenvalue of the problem (1) with a suitable large negative « is the first one for which the
ball is not a maximum or minimum with fixed measure. However, in the same paper, they
proved that, among all the bounded planar domains of class C? and fixed area, the ball
is a maximum for the first Robin-Laplacian eigenvalue for a negative sufficiently small.
Moreover, the problem of maximizing the first Robin-Laplacian eigenvalue for a negative
and for n > 3 is still open.

If, instead of the measure, the perimeter of sets is fixed, in 2017 Antunes, Freitas and
maximum for the first Robin-Laplacian eigenvalue for any negative value of a. Moreover,
in 2018 Bucur, Ferone, Nitsch and Trombetti in [24] have shown that, among all bounded,
open and convex sets with given perimeter the ball is still a maximizer for the first Robin-
Laplacian eigenvalue for any negative value of a and for all dimensions.

Other interesting questions arise in the case of Steklov eigenvalue problem. Let € be a
bounded, open and connected subset of R™ with Lipschitz boundary and let us consider
the following problem

Au=0 in
0
8—Z:au on 0.

It is well-known (see, for instance [8, 19, 58]) that the spectrum is discrete and that there
exists a sequence of eigenvalues

0:0'1(9)<O’2(Q)§...<0k(§2)§...§/‘+00

called Steklov eigenvalues of €). The first Steklov eigenvalue is zero,while the first non-
trivial has the following variational characterization

/|Vv|2 dx

2= ol T e

veH (Q2)\{0 2 n—1
Joquarr=i=o [ Y i
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If we take Q = B, (0), where B,(0) is the ball of radius r centered at the origin, then we
have

Moreover, we know that o2(B,-(0)) has multiplicity n and the corresponding eigenfunctions
are u;t1(x) = z;, with ¢ = 1,...,n. In 1954 Weinstock in [82, 83] considered the problem
of maximizing o2(€2) in the plane, keeping fixed the perimeter of Q2. More precisely, he
proved that, if € is a bounded, open and simply connected subset of R? with Lipschitz
boundary, the following inequality holds

02(Q)P(Q) < 02(B)P(B), (3)

where P(Q) is the Euclidean perimeter of the set 2. The inequality (3) states that, among
all planar bounded, open, Lipschitz and simply connected sets with prescribed perimeter,
02(2) is maximum for the disk. In 2017 Bucur, Ferone, Nitsch and Trombetti in [25]
generalized the Weinstock inequality (3) in any dimension, when the set 2 is in the class
of the convex sets. More precisely, they proved that, if 2 is a bounded open convex subset
of R™ then ) .

02(QP(Q)7T < 0p(B)P(B)7 (4)

and the equality holds if and only if Q is a ball. We observe that (4) and the classical
isoperimetric inequality implies the following result for convex sets

02(Q) Q] < 0o(B) |B| " . (5)

Actually, in 2001 Brock in [22] proved that (5) holds for any bounded open set with
Lipschitz boundary. More precisely he proved the following inequality

n+1 1
; ) > nr, (6)

where 0;(Q) is the i-th Steklov eigenvalue of the Laplacian and r is the radius of a ball
with the same measure as 2. We stress that the inequality (6) is weaker than (4) because
it contains the measure but it is stronger because it holds without geometric restrictions
and it concerns the sum of first nontrivial Steklov eigenvalues of €. Recently, Brasco, De
Philippis and Ruffini in [19] have proved the following quantitative version of inequality
(6)
1 n+1 1

>

2 o

Q= = o

[1 + CnA]:(Q)Z] ,

§:\H‘ S

where wy, is the measure of the n-dimensional unit ball, Ax(€2) is the Fraenkel asymmetry
of the set €2 and ¢, is an explicit constant which depends only on the dimension.

All the results listed before are the background of this work of thesis, that is mainly
focused on the study of some isoperimetric problems related to Robin and Steklov eigen-
values.

The Chapter 1 is devoted to recall some definitions and to state some useful propo-
sitions for this thesis. We introduce the definitions of Finsler norm, Wulff shape and
anisotropic perimeter, we recall the first variation of Euclidean and anisotropic perimeter
[2, 5, 10, 12, 38, 65, 75]. Moreover we recall some definitions and results concerning the
quermassintegrals [75]. Finally we introduce the Hausdorff distance and the concept of
nearly spherical sets [4, 18, 46, 52, 53, 75].

In Chapter 2 we consider the Robin eigenvalue problem with negative boundary param-
eter for the Laplacian and for its anisotropic version, which is called Finsler-Laplacian.
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Section 2.1 is devoted to the study of problem (1), when a < 0, and contains all the
results obtained in [78]. Using a shape optimization technique we obtain a monotonicity
property for the first Robin-Laplacian eigenvalue for spherical shells in R?: more precisely
we get that, if ro < 75 then

)\1(0[, AT1,T2) < )\1(057 ATLTNQ)

where A, r, = By, \ By,. Moreover, if 2 is a bounded open subset of R™ with Lipschitz
boundary, we observe that, when the parameter o = — {/w,,/ || = —1/r, problem (1) on
a ball B, is equivalent to the following problem

Au =0 in B,

% = 1u in 0B,
ov r

where B, is a ball such that |B,| = |Q2|. In this setting, we obtain that

AQ (_17Q> S )\2 <_17B7‘> =0
T r

where Ay (r, ) is the second Robin-Laplacian eigenvalue. This last result is generalized
by Freitas and Laugesen in [51] for any o € [—”n—tl, 0], where 7 is the radius of a ball with
the same measure as (2.

Section 2.2 collects the results contained in [70]. We generalize what is contained in [7, 50]
to the anisotropic case, using a method which is inspired by the parallel coordinates
technique of Payne and Weinberger explained in [71] (this method was introduced by
Makai in [66] and Pdélya in [72]). Let F' be a Finsler norm (see Section 1.2) and let €2
be an open bounded connected set of R? with C? boundary. We consider the anisotropic
version of problem (1), that is

—div (F(Vu)VF(Vu)) = A p(a, Qu  in o
(F(Vu)VF(Vu),v) + aF(v)u =0 on 09,

where at the left hand side of the first equation there is the so-called Finsler-Laplacian
and v is the usual outward unit normal to 9. The first eigenvalue of problem (7) has
the following variational characterization

/Q FY(Vv) dx + / V2 F(v) dH!

AMp(o, Q)= inf o0
veH(Q) U2 dax
vZ0 Q

Recalling that, in the plane, a Wulff shape of radius r centered at xq is defined as

Wi(z0) = {£ €R? : FO(§ —z0) <71}

we prove the following two results. In the first one we state that, for all bounded open
connected planar set 2 of class C?, there exists a negative constant a, = au(|Q|) such
that for all @ € [av, 0]

At p(es ) < A p(a, W),

where W, is a Wulff shape with the same are as €. In the second one we have that, for
all bounded open connected planar set Q of class C2? and for any o < 0

A p(a, Q) < A p(a, W),

8



where 17\79 is a Wulff shape with the same anisotropic perimeter as 2.
In Chapter 3 we study some geometric properties of the eigenvalues associated to the
p-Laplace operator

Apu = div (|vu\p*2 Vu)

and to the anisotropic p-Laplace operator
(1
Qpu = div (pV[Fp](Vu)> ;

where F' is a Finsler norm and 1 < p < 400, with Robin boundary conditions.
In Section 3.1, the results obtained in [56] are discussed. We consider the following
eigenvalue problem

~Qpu =L |uf"u in Q 5
8
FP=Y(Vu) (VF(Vu),v) + B(x)F(v)[ulP~2u =0 on 95,

where ) is a bounded open connected set with C1'® boundary, a €]0,1[ and 3 : 9Q —
[0, +-00[ such that 8 € LY(99) and verifies

B(z)F(v) dH" 1 > 0.
0N

The first eigenvalue of Q) has the following variational characterization

/ FPVo) de+ | Blx) o F(v) dim?
06(8,Q) = inf % 0%

e ; (9)
V20 [P dx
Q

and the minimizers of (9) are weak solution to problem (8). When 3 = 3 is a positive
constant and F' is the Euclidean norm, this problem is studied in [23, 32] and it is ad-
dressed to a generic Finsler norm in [37]. A first result that we obtain in this section is
a monotonicity property for £1(f3,-): if Q1 and s are two bounded open connected sets
with C1® boundary, with Qs convex, for which there exists a Wulff shape W, such that
Q1 C W, C Qo then

01(8,92) < 01(8,0).

This result is proved for F(§) = |£| and p = 2 in [57]. Then we prove a representation
formula for ¢1(3,Q) and finally we prove a Faber-Krahn type inequality and a Cheeger
type inequality. Precisely we get

61(679) Z el(ﬁawr)a

where Q is a bounded open connected set with C® boundary, W, is a Wulff shape such
that W, | = |Q| and S(z) = w(F°(x)), with w a suitable function such that

w(t) > C(r)t

for some constant C(r). On the other hand, we obtain the following anisotropic weighted
Cheeger inequality

0(8,9Q) > h@F(Q) —(p—1) ‘ /Bsé

)

L>=(9Q)

9



where (g is a function defined in the whole 2 whose trace on 02 is the function S and
hg r(€2) is the anisotropic weighted Cheeger constant defined in the Paragraph 3.1.5. The
same inequality is proved in the Euclidean case in [61] for p = 2 and 8 = 3 positive
constant.

In Section 3.2 we collect the results described in [68] and we study some properties of the
first eigenvalue of the p-Laplacian on a convex set (2 of R™, that contains holes, with Robin
conditions on the external boundary and Neumann conditions on the internal boundary.
If we denote by I'y the external boundary and by I'; the internal boundary, we deal with
the following eigenvalue problem

—Apu = NN |y [p=2y in
ou
|Vu|P~ 2 —|— BlulP~2u =0 on Ty (10)
]Vu|p_2g =0 on I'y,
v

where § € R\ {0}. The case = 0, which coincides with the Neumann case, is trivial,
since the first eigenvalue is identically zero and the relative eigenfunctions are constant.
The first eigenvalue of problem (10), i.e. the lowest eigenvalue, is variationally character-
ized by

/ywp detp [l e
RN - . Q
Ay (B,Q2) = inf

veEWLP(Q) » ’ (11)
V20 ]U| dx

As we have stress before, Makai in [66] and Pdlya in [72] introduced the method of interior
parallels, used by Payne and Weinberger in [71], to study the Laplacian eigenvalue problem
with external Robin boundary condition and with Neumann internal boundary condition
in the plane. Here, we generalize these tools to show that the annulus maximizes the first
p-Laplacian eigenvalue (11) among convex sets €2 with holes, with fixed measure and fixed
external perimeter. Precisely, we get

)‘]]J%N(/Ba Q) S )‘]]J%N(/Ba AT’l,T2)7

where A, ,, is an annulus with the same measure and external perimeter as €.

When = +o00, this gives an answer to the open problem 5 in [58, Chap. 3], restricted
to convex sets with holes. More precisely, our proof is based on the use of particular test
functions, called web functions, used e.g. in [17, 24, 30], and on the study of their level
sets. Similarly, but only for positive value of 3, we also study the p-torsional rigidity type

problem:
/|Vv|p d:z:+ﬁ/ ofP dHr!
S S inf Q Lo )
TRN 9 _v . p ’
P D e e [vas
Q

in particular, this problem leads to, up to a suitable normalization,
—Apu=1 in Q
ou
!Vu|p_26f + 5|u]p_2u =0 only

0
|Vul[P=2 _— g on I'y.
ov

It is known that the ball maximizes the torsional rigidity with Robin boundary conditions
(see, for instance [27]) among all bounded open set with Lipschitz boundary and given

10



measure. Here we show that the annulus minimizes the torsional rigidity Tf‘N (5,9)
among convex sets having holes, where the measure and the external perimeter are fixed.
Precisely, we obtain

TEN(3,Q) > TEN(8, Ary ),

where A, ,, is an annulus with the same measure and external perimeter as €.
In Chapter 4 we extend the results obtained in [25] where the authors prove that, if {2 is
a bounded open convex subset of R"

/ |$|2 dan—l B
JoQ 000 > on

P) Wn' (12)
P(Q) [Qf»

where the equality holds if and only if € is a ball centered at the origin.In order to prove
(12) the authors use the notion of shape derivative and the inverse mean curvature flow.
In Section 4.1, which contains the results obtained in [69], we prove an anisotropic version
of (12). More precisely, we consider the following scale invariant functional

/ Fo()/PF (v) dH™!
9]

(/m Fv) d?—[”1> b

where p > 1, v is the outward unit normal to 92 and F' is a Finsler norm with its dual
norm F°. We show that

F(Q) =

F(Q) > rm ",

where k, is the measure a Wulff shape of unitary radius and the equality holds if and
only if Q is a Wulff shape centered at the origin. To prove the above inequality, we
adapt the arguments of proof in [25]. We investigate the first variation of F(€2) and
thanks to an approximation argument, we can compute it assuming the smoothness of
the boundary of the sets. A fundamental tool is the inverse anisotropic mean curvature
flow, which is studied in [44, 84]. Roughly speaking, the smooth boundary 92 of an open
set = Q(0) flows by anisotropic inverse mean curvature if there exists a time dependent
family (9€X(¢)),cp0,r) of smooth boundaries such that the anisotropic normal velocity at
any point z € 9€Q(t) is equal to the inverse of the anisotropic mean curvature of 9€(t)
at z. We give the exact definition of anisotropic mean curvature, that we denote by Hp
and anisotropic normal in Paragraph 1.2.2. We make also use of the following anisotropic
version of the Heintze-Karcher inequality

F(v) 1 n
g s 0

which is proved for the Euclidean case in [73] and for the anisotropic case in [85].

The aim of Section 4.2, which presents the results obtained in [55], is to get a quantitative
version of the inequality (4), that holds for convex sets. More precisely, denoting by
B, (z) the ball of radius r with center at the origin, considering the following asymmetry

functional P— {(CZH(Q,BT(CU))> : P(Q) = P(Br(x))} ;

TER™? T

we obtain that there exists 0 >0 such that for any bounded, open and convex set
Q of R™ with o9(B,) < (1 + 0)o2(R2), where B, is a ball with same perimeter as €,

11



it holds

19 (A ()} if n =2
A (Q)\? .
o9(By) — 02(Q) 2ﬁg< " > ifn=3
ZOEE ( AB(Q)> ) "
(nwn) 7T H TN
() T ez

where [ and (3, are suitable constants and ¢ is the inverse function of
f(t) = tlog (%), for 0 < t < e”!. The key role in the proof of (13) is played by a
quantitative version of the following weighted inequality for convex sets

/ 2 aHn
990 > n

1

QPQ)TT  (nw,) T

For n > 3 it is obtained by means of a Fuglede’s approach (see [52]). However, the planar
case is treated in a different way, indeed we use the representation of a two dimensional
bounded, open and convex set via support function.
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for his valuable support during my PhD studies. My genuine appreciation also goes
to Professor Cristina Trombetti, Professor Carlo Nitsch, Professor Nunzia Gavitone and
Professor Francesco Della Pietra, for their professional guidance during the preparation of
the present thesis. I would also like to acknowledge my colleagues, Gianpaolo Piscitelli and
Gloria Paoli, for their assistance and moral support during this experience. In addition,
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Chapter 1

Preliminaries

1.1 Notations

In this thesis we denote by B, a ball of R™ of radius r and by B,(z¢) the ball of radius
r centered at xg. Moreover, we denote by w, the Lebesgue measure of a ball B; and we
define the annulus A, ,, = By, \ By, where the balls are centered at the same point.

1.2 The Finsler norm and the anisotropic perimeter

Let F be a convex, even, 1-homogeneous and non negative function defined in R™. Then
F' is a convex function such that

F(tg) = [t|F(£), teR,§eR", (1.1)

and such that
alg] < F(§) <b¢l, £eR", (1.2)

for some constants 0 < a < b. Moreover, throughout this thesis we will assume that

F e C*Rm™\ {0}), and
V2[FP] is positive definite in R"™ \ {0}, (1.3)

with 1 < p < +o0.
The polar function F°: R™ — [0, 400 of F' is defined as

o — su <£,’U>
Flo) = g;ég F(&)

It is easy to verify that also F is a convex function which satisfies properties (1.1) and
(1.2). Furthermore,
F(v) = sup (£, v)

" ep0 FO(6)
The above equality implies the following anisotropic version of the Cauchy Schwarz in-
equality

(& ml < F(OF(n),  vEneR™

The set
W={eR": F°(&) <1}

is the so-called Wulff shape centered at the origin. We put «,, = [WW|, where |[W)| denotes
the Lebesgue measure of WW. More generally, we denote by W, (zg) the set rW+x¢, that is
the Wulff shape of radius r centered at zy with measure x,,r", and W,.(0) = W,.. Moreover,

13



in Section 4.1, we assume that WV is uniformly convex, i.e. there exists a constant ¢ > 0
such that the principal curvatures k;(W) > ¢, for every i = 1,...,n — 1.
The following properties of F' and F° hold true:

(VF(),8) = F(§), (VF°(§),8) =F(&),  VvEeR"\{0},
F(VE*(€)) = F°(VF(E)) = 1, Vf € R\ {0},
FUOVE(VF(E)) = F(VE® (VF(E)) = vE e R\ {0}.

We recall the definition of anisotropic perimeter for a bounded, Lipschitz open set:

Definition 1.1. Let Q be a bounded open subset of R™ with Lipschitz boundary. The
anisotropic perimeter of § is

Pr(Q) = /8 . F(v)dH" !

where v denotes the Euclidean unit outer normal to 02 and H" ' is the (n—1)-dimensional
Hausdorff measure.

We can also define the anisotropic perimeter in a more general way as in [2, 3]. Let
be a bounded open set and let E' be a measurable subset of R"”: the anisotropic perimeter
of E'in Q is

Pr(E;Q) = sup{/ divedr @ o € CF(Q;R™), F°(p) < 1}.
E

It is clear that the anisotropic perimeter of E in € is finite if and only if the Euclidean
perimeter of F in

P(E;Q) = sup {/ divedr @ ¢ € C(;R™), |o] < 1}.
E
and, by the aforementioned properties of F' we obtain that
aP(E;Q) < Pp(E;Q) <bP(E;0Q).

Furthermore, the anisotropic perimeter of a measurable subset  of R™ is Prp(2) =
Pp(©;R™) and it holds an isoperimetric inequality for the anisotropic perimeter (see
for instance [2, 28, 33, 40, 49]).

Theorem 1.2. Let Q2 be a subset of R™ with finite perimeter. Then, denoting with |Q]
the n-dimensional Lebesgue measure of €2,

1
Pp(Q) > nkg Q) n

and equality holds if and only if Q is homothetic to a Wulff shape.

Let © be a bounded and open set of R™, the anisotropic distance of a point = € € to
the boundary 052 is defined as

dp(xz,00) = ylenf Fo(z —y).

By the properties of the Finsler norm F', the distance function satisfies
F(Vdp(z)) =1 ae. inQ

14



For the properties of the anisotropic distance function we refer, for instance, to [31].
We can define also the anisotropic inradius of €2 as

rr(Q) = sup{dp(z,00), z € Q}. (1.4)

We recall the following so-called weighted anisotropic isoperimetric inequality (see for
instance [15] and [20])

FFo(2))F(v)dH" ™ > F(Fe(2)F(v)dH" ™" = f(R)Pr(Wr), (1.5)
o0N OWr

where Wg is a Wulff shape such that || = [Wg| and f: [0, +oo[— [0, +00[ is a nonde-
creasing function such that

g(z) = f(zm)z""w,  0<z<R",

is convex with respect to z.
Let © C R™ be a bounded open set with Lipschitz boundary, the anisotropic Cheeger
constant of €2 is defined as follows

_ o PrU)
hF(Q)—l}Ig2 U (1.6)
In [36] the authors prove that
1 n
< hp(Q) < , 1.7
@ = S @) o

where 7p(Q2) is the anisotropic inradius defined in (1.4).

1.2.1 The first variation of euclidean perimeter

For the content of this paragraph we refer, for instance, to Chapter 2 in [10] and Section
17.3 in [65]. We start from recalling the definition of tangential gradient.

Definition 1.3. Let ) be an open, bounded subset of R™ with C*° boundary and let
u : R™ = R be a Lipschitz function. We can define the tangential gradient of u for almost
every x € 0N) as follows:

Vru(z) = Vu(z) = (Vu(z), v(z))v(z),
whenever Vu exists at x, where v(x) is the Fuclidean unit outer normal vector to 0S2.

If we consider a vector field T € C1(R™; R"™), we can also define the tangential diver-
gence of T on 9N by the formula

div,T = divT — (VT v, v).

The following theorem is an extension to hypersurfaces in R” of Gauss-Green theorem
(see in [65] Theorem 11.8 combined with Remark 17.6).

Theorem 1.4. Let Q be a bounded open subset of R™ with C? boundary. Then there
exists a continuous scalar function Hpq : 0 — R such that for every ¢ € CL(R™)

Vop(z) dH" ! = / o(x)Hpq(x)v(x) dH™ L.

o0 o0

The scalar function Hyq : 02 — R is the so-called mean curvature.
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Remark 1.5. Using the definition of tangential divergence, the Gauss-Green theorem
can be reformulated in the following way:

div,T(z) dH" ' = Hayq(z)(T(x),v(x)) dH" L,
oN oN
for every T € CL(R™; R™).
A 1—parameter family of diffeomorphisms of R™ is a smooth function
(z,t) € R" x (—€,€) — ¢(x,1),

for € > 0 such that, for each fixed [t| < €, ¢(-,t) is a diffeomorphism. We consider
here a particular class of 1—parameter family of diffeomorphisms such that ¢(z,t) =
x+tT(x) + O(t?), with T € C}(R";R"). In [65, Theorem 17.5] the following theorem is
proved.

Theorem 1.6. Let (2 be a bounded open subset of R™ with C> boundary and let {$(-, 1) } <.
be a 1—parameter family of diffeomorphisms as previously defined. We denote by Q(t) the
image of Q through ¢(-,t). Then,

PQ(t) = P(Q) + ¢ /8 diveT(a) A"+ o(t).

Using now the Gauss-Green theorem and this last theorem, we obtain the following
expression for the first variation of the perimeter of an open set with C'* boundary:
d

SPO) =0 = | Hoola)(T(x), v(w)) dH" .
o0

1.2.2 The first variation of anisotropic perimeter
We give now the following definitions.
Definition 1.7. Let Q) be a bounded open subset of R™ with C*° boundary. At each point
of 9 we define the F-normal vector
v (z) = VF(v()),
sometimes called the Cahn-Hoffman field.

Definition 1.8. Let Q2 be a bounded open subset of R™ with C*° boundary. For every
x € 02, we define the F-mean curvature

HEo(z) = div, (VF(a:)) .

In [12, Theorem 3.6] we find the computation of the first variation of the anisotropic
perimeter. We report its statement; in the proof is used the first variation of the euclidean
perimeter.

Theorem 1.9. Let 2 be a bounded open subset of R™ with C*° boundary. Fort € R, let
o(-,t) : R® — R™ be a family of diffeomorphisms such that ¢(-,0) = Id and ¢(-,t) — Id
has compact support in R™, for t in a neighborhood of 0. Set Q(t) the image of Q through
¢(-,t). Then

SRR = | Hp(e)wta). gla)ar (1.8)

0p(z,t
where g(x) := (Z)gz)h:o.

For more details on this part the reader is referred to [84] and [12].
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1.3 Quermassintegrals: definition and some properties

For the content of this section we refer, for instance, to [75]. Let 0 # Q¢ C R™ be a
compact and convex set. We define the outer parallel body of 2y at distance p as the
Minkowski sum

Qo +pBl(0) = {l’ + py € R™ | x €y, y € 31(0)}.

The Steiner formula asserts that

n

9+ pBi ()] =Y (") W00 (1.9)

=0

The coefficients W;(2y) are known as quermassintegrals and some of them have an easy
interpretation:

o Wo(Q0) = |Ql;
° nWl(Qo) = P(QQ),
o Wi,() = wh.

Let us assume now that Qg is also of class C2, i.e. Qg has boundary of class C? and has
non-vanishing Gaussian curvature.

We give now some definitions and recall some basic properties that we will use in
the following. We introduce, for j = 1,---,(n — 1), H; the j-th normalized elementary
symmetric function of the principal curvatures ki, --- , k,_1 of 9Q:

n—1\"!

1<iy <--<ij<n—1

and we put Hy = 1. We have that
Wi(Q) = / Hi  dH™Y, i=1,---,n,
0Qo
and a Steiner formula for the quermassintegrals holds:

n—m
Won(Q0 + pB1(0) = Y Wipi(Q0)p', m=0,-- ,n—1,
=0

that gives back (1.9) in the case m = 0. Moreover, we have that

lim P(Qo + pBi1(0)) — P()
p—07F P

= n(n — 1)W2(Q())

and, in the case ) of class C_ZH from the last equality, we obtain

P(Q B — P(Q
p—0+ 4 Qo

We recall also the Aleksandrov-Fenchel inequalities

(meylj . (W)n”, (1.10)

Wn Wn,
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for 0 < i < j < n, with equality if and only if g is a ball. If we put in the last inequality
i =0 and 7 = 1 we obtain the classical isoperimetric inequality, that is

n n _1
P(Q0)"T > noTwi T [l

We will also need the case in (1.10) when i =1 and j = 2:

—2

n— L n
Wa(Q0) = n wtwy ' P(Qp) . (1.11)

We denote by d.(x) the distance function from the boundary of Qy. We use the following
notations:
Qo ={z € Qo : de(z) > t}, t €[0,7(Q0)],

where by r(€9) we denote the Euclidean inradius of Q9. We state now the following two
lemmas, whose proofs can be found in [17] and [24].

Lemma 1.10. Let Qg be a bounded, convex, open set in R™. Then, for almost every
t € (0,7rq,), we have

d
—%P(Qo,t) 2 n(n — 1)W2(Qo7t)

and equality holds if Qg is a ball.

By simply applying the chain rule formula and recalling that |Vd.(z)| = 1 almost
everywhere, it remains proved the following.

Lemma 1.11. Let f : [0,+00) — [0,4+00) be a non decreasing C' function and let
f 1 [0,400) = [0,400) a non increasing C' function. We define u(z) = f(de(x)),
(x) := f(de(x)) and

Eop:={x € Qo : u(z) > t},

Eoy:={z € Qo : a(x) < t}.

Then,
d Wa(Eo.)
— 2 P(Eyy) > n(n — 1)~ 1.12
o P (Bot) = n(n )|W|u:t, (1.12)
and _
d - Wo(E,
—P(Eo4) >n(n—1) 2(Eo.) (1.13)

dt |Va|g=t

1.4 Hausdorff distance and nearly spherical sets

Let E be a bounded open set with Lipschitz boundary, we define the boundary momentum
of F as

W(E) = /8E |z dH" L (1.14)

Moreover, we recall the definition of Hausdorff distance between two non-empty compact
sets E,G C R", that is (see for instance [75]):

dy(E,G)=inf{e >0 : ECG+ B:(0), GC E+ B.(0)}.

Note that, in the case E and G are convex sets, we have dy (F, G) = dy(0F, 0G) and the
following rescaling property holds

dy(tEtG) =tdy(E,G), t>0.
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Let E C R™ be a bounded, open, convex set, we need to consider the following asymmetry
functional related to E:

Ay (E) = min {(W) , P(Q) = P(BR(x))} . (1.15)

TzeR™
We introduce the definition of convergence in measure.

Definition 1.12. Let Q C R" be a bounded, open set, let (E;) be a sequence of measurable
subsets of R™ and let E C R™ be a measurable set. We say that (Ej) converges in
measure in ) to E, and we write E; — E, if Xg;, = Xg in LY(2), or in other words, if

We recall also that the perimeter is lower semicontinuous with respect to the local
convergence in measure, that means, if the sequence of sets (E};) converges in measure in
Q to E, then

P(E;Q) <liminf P(E;; Q).
]—>OO
As a consequence of the Rellich-Kondrachov theorem, the following compactness result
holds; for a reference see for instance [4, Theorem 3.39).

Proposition 1.13. Let Q C R" be a bounded, open set and let (E;) be a sequence of
measurable sets of R™, such that sup; P(Ej;Q) < oo. Then, there exists a subsequence
(Ej,) converging in measure in S to a set E, such that

P(E;Q) <liminf P(E;_; Q).

k—o0 Tk

Another useful property concerning the sets of finite perimeter is stated in the next
approximation result, see [4, Theorem 3.42].

Proposition 1.14. Let 2 C R" be a bounded, open set and let EZ be a set of finite perime-

ter in 2. Then, there exists a sequence of smooth, bounded open sets (E;) converging in
measure in ) and such that lim;_,o P(Ej; Q) = P(E; Q).

In the particular case of convex sets, the following lemma holds.

Lemma 1.15. Let (E;) be a sequence of convex subsets of R" such that E; — B in
measure, then lim;_,o, P(E;) = P(B1).

Proof. Since, in the case of convex sets, the convergence in measure implies the Hausdorff
convergence, we have that lim;_, dy(E;, B1) = 0 (see for instance [46]). Thus, for j
large enough, there exists ¢, such that

(1—¢j)B1 C E; C (1+¢5)B;.
Being the perimeter monotone with respect to the inclusion of convex sets then
(1 —¢)" 'P(By) < P(Ej) < (1 +¢;)" 'P(By).
When j goes to infinity, we have the claim. O

Moreover, it holds this lemma, which states a bound for the diameter of a convex set
(see [46]).

Lemma 1.16. Let E C R" be a bounded, open, convex set. There exists a positive
constant C(n) such that
P(E)nfl

diam(E) < C(n) BT

(1.16)
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In this section we give also the definition of nearly spherical sets and we recall some
of their basic properties (see for instance [18, 48, 52, 53]). In the following we denote by
S"! the boundary of the unit ball centered at the origin.

Definition 1.17. Let n > 2. An open, bounded set E C R" is said a nearly spherical set
parameterized by v, if there exists v € W1 (S"~1) such that

OE ={yeR": y=a(l+v(z)), z€S" '},
wzth ||’L)le,oo(gn—1) S %

Note also that [[v]|pec(gn-1) = d3(F, B1(0)). The perimeter, the volume and the
boundary momentum of a nearly spherical set are given by

PB) = [ (0@ 0 o@) + VP o )
_ l o)™ n—1

\E|_n/Sn_1 (14 ()" dH", (1.18)

W(E) = /S (1+ 0(@))" /(1 + 0(@))* + [Vy0(@)2 i, (1.19)

Finally, we recall two lemmas that we will use later. The first one is an interpolation
result; for its proof we refer for instance to [52, 53].

Lemma 1.18. Ifv € Who(S1) and/ vdH"! =0, then
S§n—1

T([Vrol L2t n=2
8¢| |V rl[7 o g2y

n—1

Loo(Sn—l) n = 3

|[v] < 4||VT'U||%2(S2) log

‘|V7UH%2(§2)
Cn”v‘rv||%2(Sn—1)||va||z;o3(gn—l) n>4
For this second lemma see for instance [53].

Lemma 1.19. Let n > 2. There exists an universal €9 < % such that, if E is a conver,
nearly spherical set with |E| = [B1| and ||v|[y1,00(gn-1) < €0, then

101 gy < Sllolleenny. (1.20)
Finally, we prove the following

Lemma 1.20. Let n > 2 and let E C R™ be a bounded, convex, nearly spherical set with
HUHWLOO(SW*I) < eg, then

dn(E,E*) < (16 (Z>n+n+1> dy(E, EY), (1.21)

where E* and E* are the balls centered at the origin having the same perimeter and the
same volume as E respectively.

Proof. By the properties of the Hausdorff distance, we get

dy(E, E*) < dy(F, E*) + dy(E*, E*) = dy(E, E*) + (];(CUE)>M _ (L}E|)"

P(E)

1 n—1
nwyy |E| n

—1]. (1.22)

|
QU
=
&
5
+
T
=
N—
3
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We stress that, in the square brackets, we have the isoperimetric deficit of E, which is
scaling invariant. Let G C R™ be a convex, nearly spherical set parameterized by vg, with
llvgllwieesn-1y < €0 and |G| = | By|. Being G nearly spherical and |[vg||yy1.00(gn-1) < €0,
from the isoperimetric inequality, (1.17), Lemma 1.19, and recalling that gy < % we get

_PG) “_1§P(G)_1
nwyy |G\nT_1 nwy,
- mlun /Sn1 <(1 + UG(x))TFQ \/(1 + vg(ac))2 +|Vrvg(a)]? — 1>

9 n 9 n—2
2
<(n+8(3) ) Mool + () IVl
9 n

As a consequence, recalling that [|vg||pec(gn-1) = dy (G, B1(0)),

1

1 n—1
B\~ P(E "
) ) 1| = (1(3) +n) dute. 2
w = n—1 8
n nwy |E| n

Using this inequality in (1.22), we get the claim. O
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Chapter 2

Euclidean and anisotropic
eigenvalue problems involving
Robin boundary conditions with
negative parameter

In this chapter we deal with Robin eigenvalue problems with negative parameter of the
Laplacian and of its anisotropic version, the so-called Finsler Laplacian, which is defined
as

Qou = div (F(Vu)VF(Vu)),

where I is a Finsler norm of R” as is defined in the Section 1.2.

2.1 Some remarks on the Robin-Laplacian eigenvalues

In this section we consider the following eigenvalue problem

—Au = \u in

du

ov

(2.1)
+au=0 on dN

where 2 is a bounded open set of R™ with Lipschitz boundary, % is the normal derivative
and a < 0.

We provide, in dimension n = 2, a monotonicity result for the first eigenvalue of the
problem (2.1) among all the annuli when we fix the inner radius. Moreover, in any
dimension, we get an isoperimetric inequality for the second eigenvalue of the problem
(2.1) for a particular value of the parameter a.

2.1.1 Preliminary Results

We recall some properties of the eigenvalues of problem (2.1). They form a sequence
M, Q) < A, Q) < .o < A, Q) < ... such that Ay, (a, Q) — oo, and they can be
characterized with min-max formulation, that is

/|Vv|2dx+oz/ v2dH" !
Am(a, ) = inf max * o0 . (2.2)

EnCHY(Q) | v€EEm 2
dim Epp=m \ v#0 QU dx
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In particular, the first one is given by

/\W\2dx+a/ v2dH" !
M(a,Q) = inf 29 0% .

cHY(Q 2
UU;_ES ) /QU dz

Using the constant as test function in the Rayleigh quotient (2.3), we obtain the following
inequality, which allows to see that \j(a, Q) < 0:

(2.3)

H=1(09)

)\l(aag) S « )
€2

where H"~1(Q) stands for the (n—1)-dimensional Hausdorff measure of 92 and || stands
for the Lebesgue measure of ). The above inequality implies that the first eigenvalue is
not bounded from below when the volume is fixed. If 2 is connected, as in [63] , one can
see that the first eigenvalue is simple and has a positive associated eigenfunction.
Having in mind this fact, we obtain that the associated eigenfunction to problem (2.1) on
the annulus, defined as A;, ,, = By, \ By, is radial, and then we can write problem (2.1)
as follows

L [P ()] = Ml Ay y)o(r), T <7 <7

—(r1) +ad(r) =0 (2.4)

@' (r2) + ap(ra) =0

where u;(z) = ¢(|z|) is the first eigenfunction in A,, ,,. The solutions of (2.4) are given
by

o(r)=r"" [Cle ( (o, Ary ) r) + Cal, ( M(a, Ary ) r)} ) (2.5)

where C and Cy are implicitly defined by the boundary conditions as in [50], and where
the functions I, and K, are modified Bessel functions of order p, see for instance [1], and

_n—2
P=

For a long time, it was conjectured that balls maximize A\; among bounded open Lipschitz
sets with given volume. In [50], the authors disprove such conjecture by showing that
there exists an annulus, for which |A,, ,,| = |B,| such that

A1 (aa Aﬁﬂ”z) > A1 (aa BT)
for a negative big enough. More precisely, they prove the following asymptotics for A1 as
a— —00
(n—1)a
T2

—1
M(a, By) = —a? + 210

M(a, Ary ) = —a?+ + o(a) (2.6)

. + o(a).

In order to prove Theorem 2.3 in the next subsection, we use the classical Hadamard
formula, see for instance [9] , and in order to compute dA;(a, 2; V) we have

dM\ (o, V) = / (|Vu1|2 — M (Quf — 207 + ozHu%) (V,vydH* (2.7)
o0

where Q C R? is smooth, H is the mean curvature at a point = of 9, v is the unit
outward normal vector of boundary 02 and V is a smooth vector field defined on 0.
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Before proceeding, we recall that an area preserving vector field is a smooth vector field
V : Q c R? = R? such that

/ (V,v)dH' =0,
o0

and applying (2.7) to A,, r,, we obtain the following stationary condition:

Proposition 2.1. Let A, ,, be an annulus of R? and let V be an area preserving vector
field in Ay, ry, if

¢*(12) (k2 —a’+ f‘) — ¢*(r1) <k2 —a® - f‘) =0 then d\i(o, Ayy ;3 V) = 0. (2.8)
2 1

Here ¢ is the function given in (2.5), k* = —\1(, Ap, rp) and o is the negative parameter
in the Robin boundary conditions.

Proof. By (2.7), we get

d\i (o, Ary s V) = / (|Vu|2 + E2u? — 202u? + aHu2> (V,v) dH*
OAr g

_ 2 2, @) 9 1
_ (k o +r2>¢ (m)/aBTQ (V,v) dH

2 2 2 1
+ (k: — —Tl>¢)(r1)/aBTl<V,u>d’H,

and, having in mind that the vectorial field V is volume preserving, or equivalently

/ (V,v)dH' = 0= <V,y>d7-[1:—/ (V,v) dH?
a14"‘17"‘2

8By, 9B,

and then
di(a, Apy s V) = [¢>2(r2) <k2 —a?+ O‘)
r2
— ¢*(r) (m —a® - O‘)] / (V,v)dH',
1 9By,

which implies (2.8). O
Let

T2

Glra) = () (1 = o+ 2 ) = () (12— a2 2.,

using the area constraint ro2 — 12 = C, the boundary conditions in (2.4) and assuming
that 71 and 7o are as in (2.8), we obtain

o - _9 k2 — s, -
i (r2) ap” (r2) < a” + o + 51y
2002 1

2097 (1) 12 <k2—a2—a+ 2)_
T1 T1 27”1

Using the asymptotics (2.6), we have
dG 1 20¢? 1
——(rg) = —2a¢*(r2) (272 + o(a)> _ 2097(r)ry <_a SN 0(a)>

drg 5

and %(rg) is positive for o smaller than a negative critical value, said a.
In order to prove the Theorem 2.4, we need the following weighted isoperimetric inequality
from [15] :
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Theorem 2.2. Let € be a bounded open subset of R™ with Lipschitz boundary, B, a ball
of radius r centered at the origin, such that |Q| = |By|, and ¢ : [0,4+00) — [0,+00) a
non-decreasing function such that

(b)) = () =

s convex for every t > 0

/ B(l)dHmt > / bl dHm L, (2.9)
o0 OB,

Another important remark, in order to prove the Theorem 2.4 in the next subsection,
concerns the eigenvalues of the Steklov-Laplacian problem,

—Au=0 inQ

(2.10)
@ =cou on 0f)

ov

where () is a bounded open connected set with Lipschitz boundary. The eigenvalues
of (2.10) form a sequence 0 = 01(2) < 02(2) < ... < () < ... and they can be
characterized, like in [58], with the variational formulation

/!VUIde
om(Q) = min { XL

HY(Q
UEU?_é(g) / vido
o0

where (; is the eigenfunction associated to the eigenvalue o;(£2).

It is known that o9(B,) = 03(B;) = ... = ont1(By) = % and the associated eigenfunctions
are (j(z) = x;—1 with ¢ = 2,...,n + 1. For that reason, choosing in problem (2.1)
a = 0y(By) = 2, we obtain A\o(B;) = 0

:/v(ida—(),i—l,...,m—l ,
o0

2.1.2 Main Results

First, we investigate a monotonicity property for A\i(a, A4,, r,) with respect to r2, when
Apy o CR? using (2.7) as in [9].

Theorem 2.3. Let Vi be the following vectorial field in R?

Vi) = {V if |x| =7

0 otherwise
where v is the unit outward normal vector of 0B,,, then
dAi (o, Ary 703 V1) > 0.

where d\1 (o, Ay, ry; V1) is the shape derivative of Ai(c,-) given in (2.7). In particular, if
r9 < 1y than
A1 (aa Arl,r2) < A\ (O‘,Arl,r}) .

Proof. When n = 2 (2.4) becomes

o)+ L0 o) =0
¢'(r1) = ad(r) (2.11)
¢'(ra) = —ap(ra)
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where A\ = )\1(OZ7 Arl,rz)'
From (2.7) we obtain

A\ (@, Apy 3 V1) = 271967 (179) <—>\ —ao?+ :‘) (2.12)
2

and using (2.12) we can prove the statement by proving that

<)\+a2—a> <0.
T2
/

Setting z = Q; (having in mind that ¢ > 0), using (2.11), we obtain that z satisfies

dz z .
%+z2+;+)\:01n (ri,m2) (2.13)
and then p
z et
—(ry)=— (A +a®——).
dr (r2) ( e 7’2)
From the boundary conditions in (2.11) we have z(r1) = a and z(r3) = —«. Then defining
& =sup{p € (r1,r2) : z(p) <0}, (2.14)

we have that £ < rg and z(§) = 0, and using (2.13) we obtain that

dz
dr
Our aim is to prove that Z—j(m) > 0. Let & be defined by

(&) =—-Xx>0.

a—sw{pe € Fi) >0, 215

by (2.14), we have z(£;) > 0, moreover, if £; < 72, by (2.15) we have

2 &) =0
Differentiating (2.13) we get

d*z

W(&) >0,

which gives a contradiction. Then necessarily £ = ro and by continuity %(7‘2) >0. If

%(7’2) = 0, differentiating (2.13), we obtain again

d’z

W(TQ) > 07
but this is a contradiction to ro = &;. This implies Z—j(rg) > 0 and hence the theorem is
proved. ]

The second result that we want to prove is an isoperimetric inequality for the second
eigenvalue of the problem (2.1), which is defined in the equation (2.2), for a particular

value of the parameter «. First of all we observe that, when the parameter « = — ¢ /ﬁ,

where .
T2
Wp, =
1

I'(

+
|3

7
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is the measure of the unit ball, the problem (2.1) on the ball is equivalent to the following
Steklov-Laplacian problem

—Au=0 1in B,
@ = 1u on 0B,
ov r

where B, is the ball such that |B,| = [©].

Theorem 2.4. Let Q2 be a bounded open subset of R™ with Lipschitz boundary and let B,
Lﬂ.When a = —% the following

n

Ao (—1,Q> < (—1,BT> 0.
r r
Proof. The min-max formulation (2.2) for the second eigenvalue of problem (2.1) allows
to write
1 /VU’2d1I—1/ v2dH" !
Ao <—T,Q> < max 2 T Jo0 (2.16)

vE Ko / U2d.%'
Q

where F is a 2-dimensional space of the H'(2). We choose Fj as the subspace spanned
by the coordinate function x; and a constant function, and then, denoting by a; € R the
constant achieving the maximum in (2.16), we have

1
1 [ V@ aPde = [ (@i apanet
)\2 <—’Q> Q " Joq
r /(xi—l—ai)2d:c
Q

Q| — 1/ (z; 4+ a;)?dH™ !
00

be the ball with the same measure as €2, that is r =
inequality holds

(2.17)

r

/ (z; + a;)?dx
Q

From (2.17), adding for every index, from 1 to n, we obtain the following inequality

1
n|Q — / |z + a2dH™ !
As <—Q> < o :
" /x+a!2dx
Q

and from that, by means of inequality (2.9), using a simple change of variables, we have

1
n|Q) - / @ + a2dH !
T JoB,(—a)

1 1
)\2 <_7Q> < :O:)‘Q <_aB’r'> ;
" / |z + al?dx "
Q

and this completes the proof. ]

2.1.3 What happens to A\; when we pinch the ball?

We know that, if u; is the eigenfunction of problem associated to Ai(«, B;), we have

/\Vu12dx+oz/ uldo /]Vuﬂ%x%—nawnu%(r)rn_l
M, By) = 22 OB = oo

/ uldz / utda

28




Let € > 0, we consider the annulus A, ,/, with 7" > 7 such that |A,/| = |B,| and let u;
be the function in H'(B,/) defined by the following statement

{ul(x) itz e B,

w(z) = wi(r) ifz e By\ B,

We have

/ \Vw|?dz + a/ w?dH" !
A 0A, v
At(a, Aepr) < — =
/ wdx
A

€,

/ |Vfw|2dx+/ |Vw|?dz — / deH”1+/ w?dH" !
Bl B. OB,/ OB,

/ w2d:c—/ wdx

B Be

\Vdea:—/ |Vuq|?de,
B,

(2.18)

’l‘/

We have

J

r!

/ |Vw|?dz = o(e"),
Be

« (/ w?dH" ! +/ deH”_1> = naw, " i (r) — O(" 1),
8BT/ OB

J

From (2.18) and the above equations, we have

wdz —/ w?dzx :/ uldz 4+ O(e").
Be r

r!

O(En_l)

)\1 (Oé, BT’) - )\1 (Od, Ae,?"’) 2
/ uidr + O(e")

then, for € small enough, we have A\i (o, B,) > Ai(a, Ac ).
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2.2 Two estimates for the first Robin eigenvalue of the
Finsler Laplacian with negative boundary parameter

Let © be a bounded open connected subset of R? of class C2?. In this section we are
interested to the following variational problem

/(F(Vv))2 dm—i—a/ 2 F(v) dH!
/\17F(04,Q): min Q EY:

H(Q ’
veH(©) /Q [of? da

where F' is a Finsler norm as defined in Section 1.2, « is a negative constant and v is the
Euclidean outward unit normal vector to 0f2.
Using a constant as test function, we obtain the following inequality

(2.19)

Pr(Q)
€]

AMp(a, Q) <a < 0. (2.20)

The minimizers u of problem (2.19) satisfy the following problem

—div (F(Vu)VF(Vu)) = A\ (o, Q)u  in Q
(F(Vu)VF(Vu),v) +aF(v)u =0 on 0f)

that is, in the weak sense

/Q F(Vu) (VF(Va), V) do + a /

wpF (v) dH' = M\ p(a, Q)/ up dx, (2.21)
o0N

Q

for all p € HL().

Here we prove two isoperimetric inequalities for A; p(ca, 2): in the first one we prove that
the Wulff shape maximizes A\; p(a, 2) when we fix the volume for certain values of a and
in the second one we show that the Wulff Shape maximizes A\ p(«,€2) when we fix the
anisotropic perimeter for all negative parameter .

2.2.1 Isoperimetric Estimates with an Area Constraint

In this part of the chapter we are interested to find an estimate for A p(c, Q) when is
given a volume constraint

Theorem 2.5. For bounded planar domains of class C? and fized area, there exists a
negative number cu, depending only on the area, such that the following inequality holds
Vo € [ow, 0]:

Arr(a, Q) < Ay p(a, W),

where W¢, is the Wulff shape of the same area as §Q.

In order to prove Theorem 2.5, we adapt in the anisotropic case the proof of Freitas

vvvvv

coordinates, developed for the Euclidean case in [71] and for the Riemannian case in [74].
We assume that 92 is composed by a finite union of C? Jordan curves I'y, ..., 'y, where
Iy is the outer boundary of 2, i.e. 2 lies in the interior €y of I'y. We observe that, if
N =0, then € is simply connected and 2 = 5. We denote by

LY = Pp(Qo)
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the outer anisotropic perimeter. Therefore, by the anisotropic isoperimetric inequality in
Theorem 1.2, denoting by s the measure of the unit Wulff shape in dimension 2 we have

(LE)? > 4k Ao,

where Ag = || denotes the area of Q (not of ).
We now introduce the anisotropic parallel coordinate method based at the outer
boundary T'y. Let pp : Q¢ — |0, 00[ be the anisotropic distance function from the outer
boundary I'y:
pr(x) = dp(z,Ty).
Let
Ap(t) = {o € Q ¢ 0< () < 1}

denote the area of Q; = {x € Q : 0 < pp(x) <t} and let
Li(t) = / F ) dn.
PR (H)NQ

Remark 2.6. We obtain that, as in [50], using [39, Lemma 3.1], for almost every t €

[0,7r(Q0)],
Alp() = Li(). (2.22)

Step 1: Use of the Anisotropic Parallel Coordinates
Let ¢ : [0,]€2]] = R be a smooth function and consider the test function
u=¢oAropr,

which is Lipschitz in . Using the anisotropic parallel coordinates, the coarea formula
and the fact that F'(Vpp) = 1, we obtain the following relations:

lull72(0) = /QUQ(Q?) dr = /Q (poApopp(x)) de =

rr(Q) 1
= oApo C—— T |
/ </{pF<x>zt} (odre ) g, @) ) t

rr(Q)
— / (AR (8)? Pr({pr() < t}) dt =

0

rr(Q)
- /0 S(AR(£))? Ap(t) di;

/ (F? (Vu(z))) dz = / F2 (¢ (Ap o pr (2)) A (pr () Vor (2)) do =
@ Q
- /Q (¢' (Aropr (ar:)))2 (A% (pr (@))2 de

r(Q) ; 2, . 3
- /0 (¢ (Ar (1)) (A (1) dts

/ |u(x)|2F(V) dH' = / (poApopp (m))2 F(v) dH' =
o0

o
= (¢ 0 Ap (0)* Pr(©2) = ¢*(0) L§.
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Therefore we have that

re(©) / 2 / 3 2 F
o tA (6 (Ar ()% (A% (1) dt + a 62(0) L
ALF a,Q S .

rr(Q)
A S(AR(D)? Al(t) dt

Step 2: from Domains to Annuli

We adapt in the anisotropic case the idea contained in [71]. We consider the following
change of variables:

2 _ 4
R(t) = V(6) %4 Ar(t) (2.23)

on the interval [rq, 2], where

(LF)2 — 4!6140 LF
r = R(rp (Q)) = 0 . roi=R(0) = i

o (2.24)

Remark 2.7. Thanks to Theorem 1.2, the transformation (2.23) is well defined on the
set [0,7p(Q2)].

We introduce now the function

()
W(r) -—qﬁ( . —m2>

K

and we obtain the following expressions:

/QUQ(x) dr =2k /T2 ((r))*r dr;

1

/ (F? (Vu(x))) de = 2w / P W) (R0)r drs
Q

téﬂwmﬂﬁﬁwdHl>L5¢Wﬂ?

Remark  2.8. The radii in (2.24) are such that the F-annulus
AE =W, \W,, has the same area Ay as the original domain . We observe that

71,72 -
the transformation (2.23) maps the internal part of 92 into the Wulff shape of radius
R(t); so Iy 1s mapped into the boundary of a Wulff shape of equal anisotropic perimeter.
Moreover, ; is mapped in the anisotropic annulus of area Ap(t).

Proposition 2.9. Let Q be a bounded planar domain of class C?, then
IRt <1,
where R is defined in (2.23).
Proof. From (2.22) follows that, for almost every ¢ € [0,7r(Q2)] we have
Lp(t)
VEE)? — axar(t)
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In the convex case, using the Steiner formulas
Q4+ W] = Q| + Pp(Q)t + kt?;
PF(Q + tW) = PF(Q) + 2kt
we obtain for almost every ¢ € [0,77(€)]
Lp(t) < L — 2xt;
t
Ap(t) = / Lp(v) dv < L{'t — kt?.
0
Nevertheless, these inequalities hold for bounded domains with C? boundary. Therefore,
Le(t)? < (LE) = 4rAp(t),
and putting this in (2.25) the thesis follows. O

We obtain this upper bound

2
/ W ()2r dr + o (ra)?
)\17F(06,Q) S inf 1

T2
V70 / 1,/}(7")27" dr
T1
F

so the infimum is attained for the first eigenfunction of the Finsler Laplacian in A; .,
with anisotropic Robin boundary condition on W, and anisotropic Neumann boundary
conditions on 0W;. Therefore we have proved the following proposition.

= p(a, AL ),

71,72

Proposition 2.10. Let o < 0. For any bounded planar domain Q of class C?,
Ar(es Q) < pla, AR ),

71,72

where Afhrz is the anisotropic annulus of the same area as ) with radii (2.24).

Step 3: from Annuli to Disks

Let W, r, be the Wulff shape of the same area as the anisotropic annulus Aﬂw, which
has the same area Ag as ). So, we have that

Ap

r3 = -
K

where 73 is the radius of W, ,,. In [50] we find the following asymptotics as o — 0:

Ap (0 Why ) = 205 4+ 0(a?)  (Robin Wulff); (2.26)
T3
(e, Afl ) = 204% +0(a?)  (Neumann-Robin annulus). (2.27)
K /'n3
Using them we can prove that, for o < 0 small enough,
:U’(av Ai,m) < )\17F(O{, er,rg)a (228)

where W, ,, is the Wulff shape of the same area as the anisotropic annulus Afmz‘ Thus,
we have proved the following theorem.

Proposition 2.11. For any bounded domain ) of class C?, there exists a negative number
ap = ap(Ay, Lg) such that

/\17F(OA, Q) S )\17F(Oé, W;z)
holds Ve € [, 0], where W¢ is the Wulff shape of the same area as .

Remark 2.12. Using the above asymptotics we can show that
Pp(€2)
]

d
—A Q)|a=0 =
M (0 Do
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Step 4: Uniform Behavior and Conclusion

In order to complete the proof of the Theorem 2.5, it remains only to show the following
fact.

Proposition 2.13. The constant ag of Proposition 2.11 is independent of Lg.

Following [50], we need to show that the neighbourhood of zero in which (2.28) does
not degenerate in both cases when r; — 0 and r9 — +00. So, we are going to prove that
g remains bounded away from 0 uniformly in this two instances. We fix ¢ > 0 and we

consider
1 = \/(2er3 + €2), ro =13 +e,

where r3 is fixed and equal to y/Ap/k. In an analogous way to the one reported in [50], it
can be proved that there exists a* < 0 such that the curve I'y : o — p(a, Aflm) stays
below the curve I'p : o — Aj p(a, W,,) for all € > 0 and Vo € ]a*,0[. Because of the
simplicity of the eigenvalues, both the curves are analytic. Moreover, taking into account

the asymptotics (2.26) and (2.27) we have that

d F
%lu’(a7w7"177"2) S @)\LF(O[?ATLTQ)'
Remark 2.14. We prove that the curves I'4 are concave in a. Let € > 0 and let ¥ be
the first eigenfunction p(a + e, Agm) of the Laplacian in the anisotropic annulus: we can
choose 1) such that kuL2(AF )= 1, so we have
71,72

:u(a + ¢ Af;,rz) - /T2 '(/1/(7“)2’/“ dr + (a + 6) T2 ¢(T2)2'

Let ¢ be the first eigenfunction p(a, AL ) with H(pHLQ(AF )= 1:
’ T1,72

T2
wlo, AT ) = / & (r)2r dr + oy $(r2)>.
T1

F

1) We obtain

Now, putting ¢ as a test function in the variational formula of pu(a + €, A

T2
pla+e Al ) < / ¢'(r)?r dr + (o4 €) 2 ¢(r2)* = p(a, AL L) + €2 d(r2)*.
T1
In order to prove our claim, we need only to show that

d
e, AL L) = 2 o)
We prove the following more general result.

Lemma 2.15. Let Q be a bounded domain of R? with C? boundary and let u,, be an eigen-
function associated to the eigenvalue A1 r(a, ), solution to (2.21), such that ||ual/2(q) = 1.

Then,
Q
L (0, Q) = Durla Q) / uZ F(v)dH'. (2.29)
’ do 90

Proof. From the variational characterization (2.19) and wusing the fact that
[uallz2(@) = 1 we have

A r(o, Q) :/

F?(Vug) dx + a/ ulF(v) dH . (2.30)
Q

o0N
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Deriving both sides of (2.30) with respect to «, we obtain

Mfmxn=2/

F(Vua) (VF(Vua), Vu,) dz + / wrF(v) di?
Q

o0
—|—2a/ ugup, F(v) dH'. (2.31)
onN

Using the weak formulation (2.21) of the problem in the equation (2.31), remembering
that u), is the derivative with respect to « and it is in the set of the test functions by
standard elliptic regularity theory, we obtain

ﬁfWJD=2MfMJD/

uqul, dx +/ ulF(v) dH?, (2.32)
Q o0

and, having in mind that, from the condition |lua|[z2(0) = 1,

/uauix dz =0
Q

we get, from (2.32), the equation (2.29). O

Therefore, since the 'y are concave in « and their derivative with respect to « are
increasing with €, we have that the tangent to the curve corresponding to a specific
anisotropic annulus intersects I'p at one and only one point, «y, to the left of zero.
Thanks to the concavity we can say that, for larger value of ¢, any I' 4 that intersects I'p
must do so to the left of ag.

As far as the case when e is small, we follow closely the proof presented in [50]. We
study the intersection points of the two curves I'4 and I'g, comparing the following two
equations; the first equation is the equation of the Wulff shape

kI (krs) + ado(krs) = 0;
the second equation is the one of the Neumann-Robin anisotropic annulus
K (k/2ers + ) [k (K (75 + €)) + alo (k (rs + )] —
I (k\/2ers + €2) [kK1 (k (rs + €)) — aKo (k (rs +€))] = 0.

We denote here with I, and K, the modified Bessel functions (for their properties we
refer to [1]). The solution in « of the intersection is given by

_ Il(]ﬁ"g)
B kfo(lﬂ":a)

The proof that there are no intersections between I'y and I'g for « close to zero is the
same as the one presented in [50]. In this way we have proved Proposition 2.13.

2.2.2 Isoperimetric Estimates with a Perimeter Constraint

Now we deal with problem of maximizing A\; r(c, ) under anisotropic perimeter con-
straint.
Using the method of parallel coordinates we are able to prove also the following theorem.

Theorem 2.16. Let o < 0 and let Q C R? a bounded domain of class C?. Then
Ar(a, Q) < A r(a, W),

where WQ is the Wulff shape with the same anisotropic perimeter as ).
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The crucial step in order to prove this theorem is given by the following proposition.

Proposition 2.17. Let a < 0. For any 0 < r; < ro we have
M(O[7 Arl,r‘z) S )\17F(O[7 WT2)~

Proof. By symmetry, A1 p(a, W, ) is the smallest eigenvalue of the following one-dimensional
problem

—r= @=Ly (1)) = Ay p(a, Wyy) (7)), 7 € [0,79)]
#(0) 0 (2.33)
¢'(r2) + ag(ra) = 0.

We can choose the associated function ¢; to be positive and normalized to 1 and this
eigenfunction can be used as a test function. Integrating by parts, we obtain

e, Ary ) < Ap(0, Wey) — 11(r1) ¢ (r1). (2.34)

Since ¢, satisfies (2.33), we have for all r € [0, rq]

[ré1 (1) ()] = =M1 7 (0, Wiy )1 ()% + 18, () > 0.

and the inequality is due to (2.20). From the above inequality the function
g(r) :=r¢(r)¢'(r) is non-decreasing and using (2.34), we obtain the desired result.  [J

Remark 2.18. The following monotonicity result holds true. Let be Wg be a Wulff
shape of radius R. If a < 0, then

R~ )\17F(O¢, WR)
is strictly increasing. The above result is proven for the disks in [7].

Proof of Theorem 2.16. Firstly, we observe that the measure of W,, is greater than the

measure of Afl r, and the anisotropic perimeter of W,,, which is equal to LE is less than
F

T1,72°
the thesis for simply connected domains, i.e. when LY = Pr(£2). Concerning the general
case, when there are multiple connected domains, thanks to Remark 2.18, we have that

the anisotropic perimeter of A Using Theorem 2.10 and Proposition 2.17 we obtain

A F (e, W) < A1E(a, Why),

where r3 = Pr(Q2)/2k for all a <0. O
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Chapter 3

Eigenvalue problems for
p-Laplacian type operators with
Robin boundary conditions

In this chapter we study some Robin eigenvalue problems for the classical p-Laplacian
Ayu = div (|vu\f’—2 Vu)
and its anisotropic version, defined a (3.2).
3.1 On the first Robin eigenvalue of a class of anisotropic
operators

3.1.1 The Robin eigenvalue problem of Q,

In this section we study the following eigenvalue problem

—Qpu = lulP~ 2y in Q 51)
FP=1(Vu) (VF(Vu), v) + B(z)F(v)|[ulP~2u =0 on 9, '
where
S -
Qpu :=div <pV[F (Vv )) (3.2)

is the anisotropic p-Laplacian,  is a bounded open connected subset of R" with O
boundary, F'is a Finsler as in Section 1.2, v is the Euclidean unit outward normal to 0f2
and the function 3 : 9Q — [0, +oo[ belongs to L*(9S2) and verifies

B(z)F(v)dH"™ ' =m > 0. (3.3)
o0

We get a mononicity result for the first eigenvalue of the problem (3.1), that we denote
by ¢1(5,-), when § is a constant, among bounded open connected sets €1 and Q9, with
convex {29 such that 1 C Wg C o, where Wg is a Wulff shape. Furthermore, we
prove a representation formula for ¢1(3,2) and from that we obtain a Faber-Krahn type
inequality and a Cheeger type inequality.
Firstly, we stress that, the assumption (1.3) on F' ensures that the operator Q,, is elliptic,
hence there exists a positive constant v such that

1 n
» D Vi [FPIm&& > vl (¢,

,j=1
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for any n € R™\ {0} and for any £ € R™. For p = 2, Qs is the so-called Finsler Laplacian,
and when F(&) = [¢] = /> i, #7 is the Euclidean norm, Q) reduces to the well known

p-Laplace operator (see, for instance [64]).
From now on in this section we will write 8 instead of S when ( is a positive constant.

Definition 3.1. A function u € WHP(Q), u # 0 is an eigenfunction to (3.1) if B(-)|ulP €
LY(092) and

/ FP=Y(Vuv) (VF(Vv), V) d:v+/ B(z) |ulP2upF (v)dH ™ = E/ lulP"2updz  (3.4)
Q onN Q

for any test function o € WHP(Q)NL>¥(0RQ). The corresponding number £, is called Robin
etgenvalue.

The smallest eigenvalue of (3.1), ¢1(/3,€2) has the following variational characterization

6(8,Q2)= inf J[B,v]

veWbP(Q)
vZ0
/Fp(vv)da:+/ B(xz)|v|PF(v)dH"™ !
= inf 9 o0 (3.5)
e JRERE
Q

By definition we have
6(B,9) < Ap(9),

where Ap(2) is the first Dirichlet eigenvalue of Q,. Indeed choosing as test function in
(3.5), the first Dirichlet eigenfunction up of Ap(2) in the Rayleigh quotient, we get

/[F(Vv)]pd:v+/ Blv|PF(v)dH™ !
(8,9 = min =% 0%

whr(Q
ve #O( ) /Q|vpdx

/ F(Vup)Pdz + / Blup|PF(v)dH™! / F(Vup)Pde
< 0 o0 = L0 :)\D(Q)

i [ upps [ b s
Q Q

The following existence result holds.

Proposition 3.2. Let 3 € L'(0Q), 8 > 0 be such that (3.3) holds. Then there exists
a positive minimizer u € CH(Q) N L>(Q) of (3.5) which is a weak solution to (3.1) in
Q with £ = 0,(8,2). Moreover £1(8,8) is positive and it is simple, that is the relative
etgenfunction u is unique up to a multiplicative constant.

Proof. Let uy € WHP(Q) be a minimizing sequence of (3.5) such that [[ug| ey = 1.
Then, being u;, bounded in W1P(Q) there exists a subsequence, still denoted by u; and a
function v € W'P(Q) with [Jul|»() = 1, such that up — u strongly in LP(Q) and Vuy —
Vu weakly in LP(€2). Then uj converges to u in LP(02) and then almost everywhere on
0f) to u up to subsequences. Then by weak lower semicontinuity and Fatou’s lemma we
get

k——+o0
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then B(-)|ulP € L1(99) and u is an eigenfunction related to ¢1(3,2) by definition. More-
over u € L>(Q). To see that, we can argue exactly as in [37] to get that u € L*>°(Q2). Now
the L*-estimate, the assumption (1.3) and the properties of F' allow to apply standard
regularity results (see [45], [77]), and obtain that v € C1%(2). In order to prove that
01(8,€) > 0, we proceed by contradiction supposing that there exists (, which verifies
(3.3) and such that ¢1(53,,Q) = 0. Then there exists ug, € C»*(Q) N L>°(2) such that
ug, = 0, HuﬁoHLP(Q) =1 and

0= 01(B,Q) = /QFP(Vuﬁo)dx + /m Bouh, F(v)dH" .

Then ug, has to be constant in Q and then up BoF(v) = ujy m = 0. Being m > 0,
o0

then ug, =0 in €, and this is not true. Hence ¢1(53,,$) > 0.

Finally to prove the simplicity of the eigenfunctions we can proceed exactly as in
[37]. For completeness we recall the main steps. Let u,w be positive minimizers of the
functional J[f, ] defined in (3.5) such that |lul[zr) = ||w]|Lr() = 1, and let us consider
the function 7; = (tu? + (1 — t)wP)'/?, with t € [0,1]. Obviously, 7l zp () = 1. Clearly
it holds:

In order to compute J[f3, 1] we observe that by using the homogeneity and the convexity
of F it is not hard to prove that (see for instance [14, 21, 37| for the precise computation)

FP(Vn) < tFP(Vv) + (1 — ) FP(Vw). (3.7)
Hence recalling (3.6), we obtain

S8, ne] < tJ[B,ul + (1 =) J[B, w] = &(8,Q),

and then 7, is a minimizer for J. This implies that the equality holds in (3.7). Thence,
uniqueness follows, arguing e.g. as in [37]. O

The following result characterizes the first eigenfunctions.

Proposition 3.3. Let 8 € L'(9Q), B > 0 be such that (3.3) holds. Letn > 0 and
v e WLP(Q), v #0 and v > 0 in Q such that

—Qpu = nuP~1 in 2
FPY(Vv) (VF(Vv),v) + BE(v)vP~L =0 on 0Q
in the sense of Definition 3.1. Then v is a first eigenfunction of (3.1), and n = £1(5,).

Proof. Let v € W'P(Q) be a positive eigenfunction related to ¢1(3,Q). Choosing
uP/(v + ¢)P~!, with ¢ > 0, as test function in the Definition 3.1 for the solution v,
and arguing exactly as in [37], we get the claim. O

Remark 3.4. We observe that Propositions 3.2 and 3.3 generalize the results proved
respectively in [42] for the Euclidean norm and in [37] when f(x) = f is a positive
constant.

Theorem 3.5. Let 3 € L'(09), 3 > 0 and such that (3.3) holds. The following properties
hold for £1(f,2)

(i) Yt >0, £(B(5),1Q) = tP0, (P71 8(y),Q), € A(tQ),y € 0Q ;
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(ii) 02(5,9) < 2

(iii) aPle(a'=PB,Q) < 1(B,Q) < bPLe(b17PB,Q),
where a,b are defined in (1.2) and le(a'=PB,Q), Le(b17PB,Q) are the first Robin
eigenvalue for the FEuclidean p-Laplacian corresponding respectively to the function
a'"PB and b'7PB;

(iv) If B(x) > B >0, for almost x € O, then

sup fl(ﬂvg) = +o00
Q=K

Proof. By the homogeneity of F', we have:

0 (5(3) 1) -

/tQ ety /a(m) ’ @) (@) P F(v(x))dH" ™ ()

mlin —
P (1Q
P | le@)Pda
—p D r r TN p r n—1
t /tQF (Vv<t))dy+/a(m)*8(t)|v(t>|F(”(t»dﬂ ()
’UEI}ani’g(Q) p
v " /Q o(y)|Pdy
- / FP(Vo(y))dy + " / B o) PF(v()dH™ (y)
_ : Q 00 _
e " /Q lo(y)Pdy

PO B(y), Q).

In order to obtain the second property, it is sufficient to consider a non-zero constant
as test function in (3.5).

Now we prove the inequality in the right-hand side in (ii7). The proof of the other
inequality is similar. By using (3.5) and (1.2), we obtain that

FP(Vv)dz + | B(x)|wPF(v)dH" !
0(6,Q) = inf /ﬂ /39

wlr(Q
S [ s

<

/|Vv|pd$+b1_p/ B(z)|[vPdH™ !
inf P2 o =

whr(Q
ve U;_EO( ) /Q]v|pdx

/ IVlPdz + / b1P B () o] dH"
Wwooinf 79 ey

Wl (Q
ve v?éo( ) /QMpdx

= bl (b1 P8, ),

where last equality follows, by definition of £¢(b' =3, Q).
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Finally we give the proof of (iv). Clearly ¢1(3,2) > ¢1(3,2), then by [37, Proposition
3.1], we know that

0(5,9) > <p_ ! B (3.8)

P > rp(Q) (14 B7Trp(0))

where 7 () is the anisotropic inradius of the subset 2 . The claim follows constructing
a sequence of convex sets € with || = 1 and such that rp(Q) — 0, for &k — oo.
Let k& > 0, proceeding as in [36, 41], it is possible to consider the n—rectangles Q) =

1 1 n—1
A1 fn-T 1 .
]_ﬁﬂ ﬁ[ x } —k 3 -,k 5 - [ and suppose that rp(Qy) = ﬂFO(q). Then we obtain

— 400 for k — oo.

€1(ﬁ_,9k)2 <p—1)p 4k2?1
P ) Fo(e) (2k+5ﬁFo(el))

3.1.2 The anisotropic radial case

In this paragraph we recall some properties of the first eigenvalue of Q, with Robin
boundary condition when €2 is a Wulff shape. We suppose that § = [ is a positive
constant then we consider

0 (B,Wg)= min J[B,v] =

vEWLP(WR)
vZ£0
/ [F(Vv)Pdx + 3 lo|PF(v)dH" !
min Wr Wr , (3.9)
W ) | lepds
Wr

where Wp = RW = {x: F°(x) < R}, with R > 0, and W is the Wulff shape centered at
the origin.
By Proposition 3.2, the minimizers of (3.9) solve the following problem:

{ —Qpu = 1 (B, Wr) [v[P~?v n W, (3.10)

FP=1(Vv) (VF(Vv),v) + BF)|v[P~2v =0 on OWg.
In [23, 35, 37] the authors prove the following result

Theorem 3.6. Let v, € C1*(Wg) N C(Wg) be a positive solution to problem (3.10).
Then vy(x) = p,(F°(x)), with x € Wg, where py(r), r € [0, R], is a decreasing function
such that p, € C>(0, R) N C([0, R]) and it verifies

n—1 _
—(p = V(=P ()0 () +——(=pp(r))P~ = (B, Wrpp(r)"~, 7 €]0, B[,
p,(0) =0, (3.11)
—(=p(R))P~ + Blpp(R)P~ = 0.
Remark 3.7. We observe that the first eigenvalue in the Wulff Wg = {F°(z) < R} is
the same for any norm F'. In particular it coincides with the first Robin eigenvalue in the

Euclidean ball B for the p-Laplace operator. Finally we emphasize that in this case the
eigenfunctions have more regularity because 3 is a positive constant.
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Theorem 3.6, as in [23, 37], suggests to consider , for every = € Wk, the following
function

o) [F(Vep@)]" [F(Vu(@)]” T (VE (Vo)) v)
flr=) = (pp(re))P=t v/p(ac)p_1 - vp(x)p_lF(y) » (312)

where
ry = F°(x), 0<r; <R.
0

Let us observe that f is nonnegative, f(0) =

(R [F(Vup(@)]”  [F(Vop(@)]" (VE (Vup(a),v) 5
(pp(R))P—1 B

vp()P ! vp(z)P F(v)
where x € OWg.

The following result proved in the Euclidean case in [23] and in [37] in the anisotropic
case, states that the first Robin eigenvalue is monotone decreasing with respect the set
inclusion in the class of Wulff shapes.

f(R) =

Lemma 3.8. The function r — £ (B, Wr) is strictly decreasing in ]0, 0ol

In [23] and [37] the authors prove also the following monotonicity property for the
function f defined in (3.12).

Lemma 3.9. Let f be the function defined in (3.12). Then f(r) is strictly increasing in
[0, B].

In the next result we prove a convex property for the function f.

Theorem 3.10. Let f be the function defined in (3.12). Then the function
9(z) = f(z0)z' "%, 0<z<RY

18 convexr with respect to z.

Proof. We first observe that by (3.11) it holds

flr) = d% (;Pp%(»g))p—l —(p—1)fr1 (_pip N (ZZ)?)

0w~ "V -0t o Rl (313)
Then
/ 1, 1 —1 n
9 =2 few) + D IED
= (6w - P 4 - ppren )+ BRI
zn zn
(B — P 1
_ 1(B7WR) + (p 1)fp71 (Z;),
n n
which is increasing and this implies the thesis. O

Finally the following comparison result for f holds
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Theorem 3.11. Let f be the function defined in (3.12). Then there exists a positive
constant C = C(R) such that

f(r)<rC(R), for 0<r<R

Proof. By (3.13) and by Lemma 3.9 we obtain that f verifies the following equation

- n—1 p_ n—1
) =6@wn - "+ - nptie <o - ") @
where B , B .
C(R) = (B, Wr) + (p = 1) f(R)7=T = £1(8, Wr) + (p — 1) 3771 (3.15)
Then by (3.14) multiplying both sides by 7"~! we get
Fiy ™t (n =12 f(r) < C(R)r™ ™,
and p
& (n—1 < n—1
= ("L () < C(Ryr
Then the claim follows integrating both sides between 0 and 7. O

Remark 3.12. The results contained in Lemma 3.9 and Theorem 3.10 ensures that f(r)
is an admissible weight for the weighted anisotropic isoperimetric inequality quoted in
(1.5)

3.1.3 A monotonicity property for ¢, (B, Q)

In this paragraph we assume that 8 = 3 is a positive constant. The first Robin eigen-
value £1(3, ) has not, in general, a monotonicity property with respect the set inclusion.
For instance in [34] in the Euclidean case, for the Laplace operator, the authors give a
counterexample. More precisely, they construct a suitable sequence of sets {2 such that
P(Q) — 00, B1(0) C Qi C B14:(0) which verify

le(B, ) > Le(B, B1(0)) > Le (B, B2(0)).

Here B, (xg) denotes the Euclidean ball with radius r and centered at the point xy and
(B, By (x0)) is the Euclidean first Robin eigenvalue of the Laplacian of the ball B, (zo).
In what follows we prove a monotonicity type property for the first Robin eigenvalue of
the operator Q, with respect the set inclusion. In the Euclidean case for the Laplace
operator we refer the reader for instance to [57].

Theorem 3.13. Let @ C R™ be a bounded open connected set with CY® boundary, o €
10,1[. Let Wg be a Wulff shape such that Q@ C Wg and 8 a positive constant. Then

0(B,Wg) < £1(3,9).

Proof. Let v, be the positive eigenfunction associated to ¢4 (3,Wg) and let Q be a subset
of Wg.

Then for every x € 92, we can consider f(r;) as in (3.12) in order to get that the
following Robin boundary condition on 92 holds

[F (Vo (2)) ]~ (VF(Vup(2)),v) + f(re)vp(z)P " F(v) = 0. (3.16)

Having in mind that € C Wg and using (3.16), we have that v, solves the following
problem

—Qpup = 51(5, WR)Ugil in

(3.17)
[F (Vo) P~ (VE(V,),v) + f(re)u ' F(v) =0 on 0Q
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Using (3.17) and Lemma 3.9

/[F(va)]pdx—i—/ f(Tx)|Up|pF(V)dHn_1
Q2 o0

/ |vp|Pd
Q

/ (F(Vu)Pdz + / Fra) [ufP B () dHn—!
Q [2J9]

(B, Wr) =

= inf

ueW2(2)\{0} / lulPda

Q
/[F(Vu)]pdx+/ BlulPF(v)dH™ 1
inf Q o

< n

ueW 2 (2)\{0} / lulPdz

Q

261(579)

When €2 contains a Wulff shape we have the following result

Theorem 3.14. Let Q C R” be a bounded and convex open set with C* boundary,
a €]0,1[. Let Wg be a Wulff shape such that Wgr C Q, then

61(379) < El(B,WR)-

Proof. First of all, we take the positive eigenfunction v, associated to /1 (B,Wr). By
Theorem 3.6 vy(z) = o,(F°(x)), and by (3.11) we can extend g, up to +oo and then v,
in R™. Let us consider the super-level set

Wi ={xz € R": vy(z) > 0}.

By the property of v,, W, is a Wulff shape and clearly Wr C W,..
Moreover, v, solves the following equation

—Qpv, = 01(B, WR)vgfl in Wy.

To prove the theorem we consider the set Q = QN W,. Being Q convex and due to the
radially decreasing of the eigenfunction, three possible cases can occur.

Case 1. 9Q = 9. Then in this case Wgr € Q € W, and Q = Q. Then for z € 90
we put r, = F°(x) and we can compute

Then arguing as in the proof of Theorem 3.13 and recalling that by Lemma 3.9, f(r;) > 3,
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for any = € 02 we get

/[F(va)]de—l—/ f(rx)|1fp|pF(I/)dH”_1
L 090

/ |vp|Pd
Q

/ (F(Va)Pda + / Fra) [uP Fv)dH
Q [2J9]

(B, Wr) =

= inf
ueW2(2)\{0} / lufPda
Q
/ (F(Vu)Pda + / Blul? F(v)dH"
> inf L
uEleP(Q)\{O} / |u|pd.'];
261(679)

and the first case is proved.

Case 2. 90NN # () and QNN # 982. Then QN W, #£ (. Moreover, on 92NN
the eigenfunction v, is positive, while on 9 N OW, it is equal to zero. In particular, for
every x € 02N I we still have that f(r,) > 5 as in the Case 1. We define the following

test function p € W1P(Q)
vy(z) in Q
w@z{“).

0 in Q\ Q.
Then
) / F(Vo)Pdz+ [ Fra)obF(v)dH !
El(ﬁwa) — (9] 0QNON
vPdx
X
[Eapas [ je)e e
_Jo 99NoQ
vPdx
Q
/ F(Vo)Pde+ | BPF)dH !
2 9] 0QNON
vPdx
Q
/[F(Vv)]pdm—i— BPF(v)dH™ !
_Jo o9
/vpdw
Q
/[ (Vu) pdm—l—/ Bl F(v)dH™
> inf £
ueWL» (Q)\{0} / lu[Pdz
:gl(BaQ)

and the second case is proved.
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Case 3. 0QNJN = (. Then Q@ = W, C Q. Using the monotonicity result in
Lemma 3.8 we obtain that ¢(3, Wg) > £1(3, W, ). Denoting with U,(,l) the eigenfunction
associated to £1(5, Wy) and defining Q) = QN {v,(jl)(x) > 0} and repeating the division
in three possible cases, after a finite number of steps we could be either in Case 1 or in
Case 2. O

By Theorems 3.13 and 3.14 we get the following monotonicity property for ¢; for
constant f5.

Corollary 3.15. Let Q1,5 C R™ be two bounded open connected set with C® boundary
and let Q9 be a conver set. Let Wgr be a Wulff shape such that Q1 C Wgr C Qo. Then

61(57 92) < £1(6_7Q1).

3.1.4 A representation formula for ¢,(3, Q)

We are interested to prove a level set representation formula for the first eigenvalue
01(B, ) of the following problem

—Qpu = u[P~ v in Q
(3.18)
FP=Y(Vu) (VF(Vv),v) + BF () [v|P~2v =0 on 0N.

When B = j is a nonnegative constant, a similar result can be found in [23] in the
Euclidean case and in [37] for the anisotropic case. Our aim is to extend the known
results assuming that 3 is in general a nonnegative function defined on 0f2. In the next
we will use the following notation. Let 7, be the first positive eigenfunction such that
max U, = 1. Then, for ¢ € [0, 1],

U ={x € Q:a, >t}

St:{:re(l:ﬂp:t},

'y ={x €0Q: a, > t}.
Theorem 3.16. Let Q C R™ be a bounded open connected set with C1® boundary and let
a €]0,1[. Let B be a function belonging to L*(9S2), B > 0 and such that (3.3) holds. Let

i, € CH*(Q) N L>®(Q) be a positive minimizer of (3.5) with |4, = 1. Then for a.e.
t €]0, 1] the following representation formula holds

06(8,9Q) = Fa (Ut, W) , (3.19)

p—1
Up

where Fq is defined as

Fa(U, ) = \Ult| (—(p -1) /Ut o dx + /St OF(v)dH" ! + N BF(v) d?—["_1> . (3.20)

Proof. Let 0 < e <t <1 and we define

¢ v~
0 if u, <t
U, —t 1 . .
Ve = —— ift<a,<t+e
g ug
1 p
T if up, >t+e.
Up
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The functions . belong to W1P(Q) and their pointwise limit as ¢ — 0 is @, (p 71)XUt-
Moreover, it can be proved that

0 if u, <t
1 t Vi
Vip. = ((p1)~+2p)~l_bﬁ ift<a,<t+e
£ Up ug
Vi
—(p—1)~p2 if i, > t+e.
Up

Then choosing 1. as test function in (3.4), we get that the first integral is

—(p— 1)/ 7[F(V~§p)]pdx + 1/Ut\Ut+E L(Z?f)]p <(p )2 p) dx

Ut+e Up € Up Up
1) P
— _(p- 1)/ AL
Ut+5 Up
1t ' F(Vii,)]!
+ / <(p —1)l 4o p) / (V)7 N;‘ﬂ] F(o)dH™ !,
g Jt T - up

where last equality follows by the coarea formula. Then, reasoning as in [23] and [37] we
get that

'3 .- )P
/ [F(Vii,)|P~ (VF(Vii), Vi) de ==% —(p — 1) / M ot
“ U Up
= Np—1
/ MP(V)({H”_I,
~p
St ’LLp
As regards the other two integrals in (3.4), we have
/ Bl . F(v) dH" ! =
o
BE(v)dH"™! + / 522 =" p(y) apn!
Tite Ft\rt+s €
e—0 BF(V) d/Hn_l,
Iy

by dominated convergence theorem and by monotone convergence theorem and the defi-
nition of 1,

6(6.9) [ s =5 65U
Q
Summing the three limits, we get (3.19). O
When we consider a generic test function we have

Theorem 3.17. Let Q C R" be a bounded open connected set with CY* boundary and
let oo €]0,1[. Let ¢ be a nonnegative function in Q such that ¢ € LV (Q), where p/ = %.
If o # [F(V&p)]p_l/ﬂgfl, where U, is the eigenfunction given in Theorem 3.16, and Fq
is the functional defined in (3.20), then there exists a set S CJ0, 1] with positive measure
such that for every t € S it holds that

6(8,9) > Fa(Ut, ¢). (3.21)
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The proof is similar to that obtained in [23] and [37], and we only sketch it here. It can
be divided in two main steps. First, we claim that, if

ap) P i
w(z) == — [F(Vappz]’ I(t) ::/U wF(pr) dz,

then the function I :]0, 1[— R is locally absolutely continuous and

FalUn ) < 669~ s (5 1) (3.22)

for almost every ¢ €]0, 1[. Second, we show that the derivative % (tPI(t)) is positive in a
subset of ]0, 1] with nonzero measure.
In order to prove (3.22), using the representation formula (3.19) we obtain that, for a.e.

t €]0,1],
(o - [F<73p>1p>dx>

1
FalUi9) = 68,0 + 7 </S

t

wF(v)dH" ! = (p — 1)/

Uy

1 n—1 F(Vip)
§€1(6,9)+w</5th(V)dH —p/Utwﬂpda:>

= 1 wkF (v n-l
(3.23)

where the inequality in (3.23) follows from the inequality
o > P + plo? " — v), with ¢, v > 0. Proceeding as in [37] and using the coarea
formula we, obtain for a.e. ¢t €]0, 1]

—%(tpl(t)) = </S wF(v)dH" ! — pI(t)> : (3.24)

Substituting (3.24) in (3.23) we obtain (3.22). We can conclude the proof, arguing by
contradiction exactly as in [23, Theorem 3.2], indeed is possible to see that the function
tP1(t) has positive derivative in a set of positive measure. This fact with (3.22) give us
the inequality (3.21).

3.1.5 Applications
In this section we use the representation formula given in Theorem 3.16 in order to get
some estimates for ¢1(3,Q).

A Faber-Krahn type inequality

Let 2 C R™ be a bounded open connected set with C1'® boundary, « €]0, 1[ and let Wx
be the Wulff shape centered at the origin with radius R such that |Q| = [Wg|. Let 3 be
a positive constant and let us consider the following Robin eigenvalue problem in Wg for
Q, (3.10). Let w(t), t € [0,400[, be a non negative continuous function such that

w(t) > C(R)t, (3.25)

where C(R) = {1(8, Wr)+(p— 1)5% is the constant appearing in (3.15). Let us consider
the following Robin eigenvalue problem

{ —Qpu = li(B, DulP?u in €,

- , (3.26)
FP=H(Vu)(VF(Vu),v) + (z)F(v)|[uP"?u =0 on 09,
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where

B(z) =w(F°(x)), =z oN. (3.27)

As a consequence of the representation formula (3.16) for ¢;(3,Q2) we get the following
Faber-Krahn inequality.

Theorem 3.18. Let Q C R” be a bounded open connected set with C boundary, let
a €]0,1[ and let Wg be the Wulff shape such that || = [Wg|. Let w(t), t € [0,+o0],
be a mon negative continuous function which verifies (3.25) and let 3(x) be the function
defined in (3.27). Then,

01(B, Wr) < £1(B,Q). (3.28)
where = w(R).

Proof. We construct a suitable test function in € for (3.21). Let v, be a positive eigen-
function of the radial problem (3.10) in Wg. By Theorem 3.6, v, is a function depending
only by F°(x), v, = pp(F°(x)), and then we can argue as in Paragraph 3.1.2 defining the
function

oty ET0@)]" T (VE (V@) v) (o)
f(rz) = pu(x) = vp(x)ple(l/) = (Pp(Tx))p_l )

where r, = F°(z) € [0, R]
Denoted by Wy = {z € Wg: vp(z) > s}, 0 < s < R, clearly Ws is a Wulfl shape
centered at the origin and by Theorem 3.16 we get

EI(B(R)’WR) =
FWR(Wsa(P*) - Wls| <_(p_ 1)/ <P€,d$ +/

(p*F(V)dH”_1> (3.29)
OWs

Let @, be the first eigenfunction of (3.26) in Q such that ||4,| = 1. For z € Q we
set Up(z) =t, 0 <t < 1. Then we consider the Wulff shape Wi(t), centered at the origin,
where 7(t) is the positive number such that [U;| = [W,)|. Then, we define the following
test function

p(x) = [fr(t)) = fF(F°(2)).

We stress that clearly r(t) < R. Our aim is to compare Fq(Uy, ) with Fyyp (W, (), 0x)-
Then by (3.29) with s = r(t) we have to show that

1 /
Fallig) > o <—<p—1> [ s w*F(V)d’H"1>
’ T(t)‘ Wr(t) aW’r(t)

= Fwr Wr(t)» ¢+)-

We first observe that by [67, Section 1.2.3], being |U| = [W,(y| for all t €]0, 1]

/ gop/dac:/ (pfldx.
Ut WT(t)

Moreover, from the weighted isoperimetric inequality quoted in Remark 3.12, Theorem
3.11 and the assumption (3.27) on 5 we get
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/ oo F(v)do = / FrE) @) < [ F(F@) F@)dH!
W, (1)

6WT<0 oU

=/ FOFO(2)) F(v)dH" ™" + g FFO () F(v)dH" ™

_ /S PR+ [ J @) P

n—1 ) n—1
< /St eF(v)dH" " + C(R) /n F°(x)F(v)dH
n—1 o n—1
< /St oF(v)dH +/Ftw(F () F(v)dH

and this concludes the proof. O
Remark 3.19. When 3 = 3 is a nonnegative constant (3.28) is proved in [37] in the
anisotropic case and in [23, 32] in the Euclidean case.

A Cheeger type inequality for ¢;(3,Q)

In this part we introduce the anisotropic weighted Cheeger constant and, using the rep-
resentation formula, we prove an anisotropic weighted Cheeger inequality for ¢1(3, ().
Following [29] we give

Definition 3.20. Let g: Q —]0,00[ be a continuous function the weighted anisotropic
Cheeger constant is defined as follows

/ gF (v)dH™ !
ou

. PF(g> U)
he () = inf = inf
or () = b, U] vea  |U|
We observe that when g(x) = ¢ is a constant then
_ e PrU)
hg,r(Q2) = C(}Iclfsz T chp(92),

where hp(€2) is the anisotropic Cheeger constant defined in (1.6) . In [29] it is proved
that actually hg #(£2) is a minimum that is there exists a set C' C 2 such that

Pr(g,C
b = 5,

and we refer to C as a weighted Cheeger set.
We observe that for suitable weight g the constant hg () verifies an anisotropic
isoperimetric inequality

Theorem 3.21. Let g(z) = w(F°(x)) = w(r), r > 0 with w a non negative and nonde-
creasing function such that

-

w(rﬁ)rk%, 0<r<R"
18 convexr with respect to r. Then

nw(R)
R

where Wg is a Wulff shape with the same measure as €.

hgr(2) > hg r(Wr) =
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Proof. The proof follows immediately from Remark 3.12. O

When 8 = [ is a nonnegative constant and p = 2 in [61] the following Cheeger
inequality is proved in the Robin eigenvalue Euclidean case

h(Q)3 — 3% always
65 (57 Q) Z 1 _ 1
TP if B> Sh(@)
4 2
In the next result we extend (3.30) to the anisotropic case for any 1 < p < oo considering
B not in general constant.

Theorem 3.22. Let us consider problem (3.18) with § € C (ﬁ) such that 5 > 0. Then
the following weighted anisotropic Cheeger inequality holds

0(8,92) = hg p(2) = (p = DB | 1o @y (3.31)

(3.30)

p
p—1°

Proof. Using [ as test function in (3.21) we obtain

where p' =

L (—(p —1) | plde+ | BF()dH" '+ BF(y)d’H”_1>
Uy St I':

B BF(V)d’H”‘l) > (p— D17 [l + har ().
]

Remark 3.23. We observe that the previous result continues to hold if we take 5 €
C(09). Indeed in this case from a classical result, see for instance [54, Theorem 4.I],
we know that the function [ is the trace of a nonnegative function o € C (ﬁ) Then
inequality (3.31) holds with 8 = Sq.

We emphasize the inequality (3.31) in the particular case of 5 = ( is a nonnegative
constant.

Corollary 3.24. The first eigenvalue {1(53,2) of (3.18) on a fived bounded open connected
set Q C R™ with CY boundary, with o €]0, 1], satisfies

he(Q)B - (p— 1)61’%1 always
1 (3.32)
()P

_ p it 3

5 (@) 82 o
Proof. From the Theorem 3.22 we obtain, using the constant function 3 as test, we obtain
the first part of the inequality. For the second part, is suitable using as test function in the
functional Fq(Uy, -), the constant 1% [he(Q)]P~ " under the assumption that the constant

B> [hr(QPF O

pp~1

Remark 3.25. From the anisotropic Cheeger inequality for constant 3 we obtain imme-
diately a lower bound for ¢1(/3,2) in terms of the anisotropic inradius of €2 different from
(3.8) by using (1.7).

Remark 3.26. By (ii) Theorem 3.5 and Corollary 3.24 we obtain for 3 > ]ﬁ [he(Q))P
the anisotropic Cheeger inequality (3.32) for the first Dirichlet eigenvalue of Q,,

Ap(Q) > 44(3,9) > plp (@)
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3.2 Sharp estimates for the first p-Laplacian eigenvalue and
for the p-torsional rigidity on convex sets with holes

Throughout this section, we denote by  a set such that Q@ = Qg \ ©, where Q¢ C R"
is an open bounded and convex set and © CC () is a finite union of sets, each of one
homeomorphic to a ball of R™ and with Lipschitz boundary. We define I'y := 0y and
Fl = 8@

3.2.1 Eigenvalue problems

Let 1 < p < 400, we deal with the following p-Laplacian eigenvalue problem:

—Apu = NN (B, Q)|uff?u in Q

ou
]Vu|p*2$ + BlulP2u =0 on I'y (3.33)
’VU|p_2@ =0 on I'y.

ov

We denote by du/0dv the outer normal derivative of u on the boundary and by g € R\ {0}
the Robin boundary parameter, observing that the case 5 = +o0o gives asimptotically the
Dirichlet boundary condition. Now we give the definition of eigenvalue and eigenfunction
of problem (3.33).

Definition 3.27. The real number X is an eigenvalue of (3.33) if and only if there exists
a function u € WiP(Q), not identically zero, such that

/ |VulP~2 (Vu, V) dz+ 8 | |uP 2up dH" 1 = )\/ lu[P~2uep dx
Q To Q

for every o € WHP(Q). The function u is called eigenfunction associated to \.

In order to compute the first eigenvalue we use the variational characterization, that
is
MNB,Q) = min Jo[B,w] (3.34)
weWbP(Q)
wZ0

where

/ Vw|P de+ 6 | |wP dH" !
_ Jo I

/ |lwl? dx
Q

We observe that €y is convex and hence it has Lipschitz boundary; this ensures the
existence of minimizers of the analyzed problems.

J0[67w]

Proposition 3.28. Let B € R\ {0}. There exists a minimizer u € WP(Q) of (3.34),
which is a weak solution to (3.33).

Proof. First we consider the case 8 > 0. Let uxy € WHP(Q) be a minimizing sequence
of (3.34) such that |Jug||ie) = 1. Then, being u) bounded in W'?(Q), there exist a
subsequence, still denoted by ug, and a function uw € W?(Q) with [|u1») = 1, such
that uyp — w strongly in LP and almost everywhere and Vu, — Vu weakly in LP. As a
consequence, uy converges strongly to u in LP(9€2) and so almost everywhere on 92 to wu.
Then, by weak lower semicontinuity:

kEIJPoo JO[B)“k] > Jo[ﬁ,U]

52



We consider now the case 3 < 0. Let ux € WHP(2) be a minimizing sequence of (3.34)
such that [|ug||z»(a0) = 1. Now, since 3 is negative, we have the equi-boundness of the
functional Jy[f, ], i.e. there exists a constant C' < 0 such that Jy[3,ur] < C for every
k € N. As a consequence

HvukHI[),P(Q) - CHukHip(Q) < -pB,

and so

||U‘|€V1,p(g) <L,
where L := —(3/min{1, —C'}. Then, there exist a subsequence, still denoted by uy, and a
function u € W1P(Q) such that uj — u strongly in LP and Vu, — Vu weakly in LP. So
ug, converges strongly to w in LP(92), and so

Jo[B,u] <liminf Jo[B,ur] =  inf  Jo[B,v].
k—o0 veEWLP(Q)
vZ0

Finally, u is strictly positive in © by the Harnack inequality (see [79]).
O

Now we state some basic properties on the sign and the monotonicity of the first
eigenvalue.

Proposition 3.29. If 8 > 0, then )\Z?N(B, Q) is positive and if B < 0, then )\fN(B,Q)
is negative. Moreover, for all € R\ {0}, A]?N(B, Q) is simple, that is all the associated
etgenfunctions are scalar multiple of each other and can be taken to be positive.

Proof. Let 8 > 0, then trivially AV (Q) > 0. We prove that A (€2) > 0 by contradiction,
assuming that /\fN () = 0. Thus, we consider a non-negative minimizer u such that
l[ullLr(@) = 1 and

0=\"(Q,B) = / |VulP do + 5/ lulP dH" L.
Q o

So, u has to be constant in 2 and consequently u is 0 in €2, which contradicts the fact
that the norm of u is unitary.
If 8 < 0, choosing the constant as test function in (3.34), we obtain

AEN (5,0 < gL (Sf) <0.

Let u € WHP() be a function that achieves the infimum in (3.34). First of all we observe
that

JolB,ul = Jo[B, [ul],

and this fact implies that any eigenfunction must have constant sign on {2 and so we can
assume that u > 0. In order to prove the simplicity of the eigenvalue, we proceed as in
[14, 37]. We give here a sketch of the proof. Let u,w be positive minimizers of the func-
tional Jo[f3, -], such that ||u||rr) = |[w|[zr) = 1. We define n; = (tuP + (1 — t)wp)l/p,
with ¢ € [0,1] and we have that ||n:||z»q) = 1. It holds that

o[B8, u] = AN (8, 9) = Jo[B,w). (3.35)
Moreover by convexity the following inequality holds true:
VP < ¢ VulP 4+ (1 — )| Vw|P. (3.36)
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Using now (3.35), we obtain

and then 7; is a minimizer for Jy[53,]; so we have equality in (3.36), and the uniqueness
follows. H

Proposition 3.30. The map B — )\ﬁN(ﬁ, Q) is Lipschitz continuous and non-decreasing
with respect to B € R. Moreover )\fN(B, Q) is concave in (.

Proof. Let B1,2 € R such that 81 < B2 and let w € WP(Q) be not identically 0. We
observe that

/vayp de+p1 | |wP dH"! g/ Vwl? do+ By [ |w? dH"1.
Q FO Q F0

Now, passing to the infimum on w and taking into account the variational characterization,
we obtain )\ﬁN(ﬁl, Q) < )\fN(Bg, Q).

We prove that )\fN (8,9) is concave in . Indeed, for fixed By € R, we have to show
that

AN (3,0) < AN (80, ) + (AENY (85, 9) (B — Bo) » (3.37)

for every 8 € R. Let ug the eigenfunction associated to )\ﬁN (Bo, ) and normalized such
that [, ug dz = 1. Hence, we have

AEN(5,0) < / Vol dz+ 8 | Juol? dHm L. (3.38)
Q To

Now, summing and subtracting to the left hand side of (3.38) the quantity Sy fFo lug|PAH™ 1,
taking into account that

AV (B, Q) :/ Vg |P dx+ﬂo/ lug|P dH™ 1,
Q To
and the fact that
Y (B0, = [ Juol? ar,
To
we obtain the desired result (3.37). O
Now we state a result relative to the eigenfunctions of problem (3.33) on the annulus.

Proposition 3.31. Let ri,75 € R such that ro > r1 > 0, and let u be the minimizer of
problem (3.34) on the annulus A, ,,. Then u is strictly positive and radially symmetric,
in the sense that u(x) =: ¥(|z|). Moreover, if B > 0, then ¢'(r) < 0 and if 5 < 0, then

P'(r) > 0.

Proof. The first claim follows from the simplicity of )\ZIfN (B8, Ay, r,) and from the rotational
invariance of problem (3.33). For the second claim, we consider the problem (3.33) with
the boundary parameter 5 > 0. The associated radial problem is:

Tnl,l (I () [P=20" () 1) = ABN(B, Ay o )P () if 7 € (r1,72),
P (r1)|Y! (r1) P2 =0,
! (r9) [P~24! (ra) + BYP(ra) = 0.
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We observe that for every r € (r1,72)

(I ()P~ 20/ (r)r" =) = AN (B, )P~ (r) > 0, (3.39)

1
rn—1
and, as a consequence,

(/)P0 () <.
Taking into account the boundary conditions ¢'(r1) = 0, it follows that ¢’(r) < 0, since

W2 ) <o,

If 8 < 0, by Remark 3.29, A;,%N(B,Arl,rz) < 0 and consequently the left side of the
equation (3.39) is negative, and hence ¢’'(r) > 0.
[

3.2.2 Torsional rigidity

Let 8 > 0, we consider the torsion problem for the p—Laplacian. More precisely we are
interested in

1
T — 1 K, A
TEN(B.Q) — wettino 010! (3.40)
wZ0

where

/ |Vw|P de+ 6 | |wP dH" !
Q To

/wdm
Q

Problem (3.40), up to a suitable normalization, leads to

Ko[ﬁ,’u)] =

p

—Apu=1 in
0
|Du]p_2—u + BlulP2u=0 on Iy (3.41)
ov
0
|Du]p_2—u =0 on I';.
ov

In the following, we state some results for the torsion rigidity problems analogous to the
ones stated in the previous paragraph for the eigenvalue problems. The proofs can be
easily adapted.

Proposition 3.32. Let 5 > 0, then the following properties hold.

e There exists a positive minimizer u € WLP(Q) of (3.40) which is a weak solution
to (3.41) in Q2.

o Let ri,m9 € R such that ro > r1 > 0, and ¢ be the relative solution to (3.40)
on the annulus Ay, ,,. Then 1 is strictly positive, radially symmetric and strictly
decreasing.

e The map B +— 1s positive, Lipschitz continuous, non-increasing and

1
TN (B, )

concave with respect to 3.
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3.2.3 Main results

In this paragraph we state and prove the main results. In the first theorem, we study the
problem (3.34), in the second one the problem (3.40). We consider a set €2 as defined at
the beginning of this section.

Theorem 3.33. Let B € R\ {0} and let Q be such that Q = Qy \ O, where Qg C R"™
is an open bounded and convex set and © CC )y is a finite union of sets, each of one
homeomorphic to a ball of R™ and with Lipschitz boundary. Let A = A, ,, be the annulus
having the same measure of Q and such that P(By,) = P(). Then,

NIV (5,9) < ANV (5, 4).

Proof. We divide the proof in two cases, distinguishing the sign of the Robin boundary
parameter.

Case 1: 3 > 0. We start by considering problem (3.34) with positive value of the Robin
parameter. The solution v to (3.34) is a radial function by Proposition 3.31 and we denote
by vy, and vys the minimum and the maximum of v on A. We construct the following
test function defined in Qg:

u(z) = {G(de(:v)) it d(z) < 19 — 1

, (3.42)
UM if de(m) Z ro — T,

where G is defined as

gy [T
¢ (“‘/vmgmd’

with g(t) = |Vv|y=¢, defined for v, <t < vy, and de(-) denotes the distance from 0.
We observe that v(x) = G(r2 — |z|) and u satisfy the following properties: u € WP (Qy),

]Vu|u:t = |V’U|U:t

Uy, = minu = v, = G(0)
Qo

Uy = maxu < V.
Qo

We need now to define the following sets:

Eoi :={z € Qy : u(x) >t}
Ap:={x € A : v(x) > t}, (3.43)
A(),t =A; UETI.

For simplicity of notation, we will denote by Ag the set Ag o, i.e. the ball B,.,. Since Fy;
and Ao, are convex sets, inequalities (1.12) and (1.11) imply

n—2

i (P(Eor)) 1

d W2(E0,t) Z TL(TL - 1)”7:7:%(4};;7 ,
g(t)

——P(E > -1
dt ( O,t) = n(n ) g(t)
for u,, <t < up;. Moreover, it holds

n—2

d _n=2 —i (P(A()t))nfl

—*PA = —1 n— ;Z 17”
(Aag) = nin — Do~ Ft T T

dt
for v, < t < wp. Since, by hypothesis, P(y) = P(B,,), using a comparison type
theorem, we obtain

P(Eop:) < P(Aoy),
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for v, <t < ujps. Let us also observe that
H" Y OEy; N Q) < P(Fos) < P(Agy). (3.44)
Using now the coarea formula and (3.44):
jQ|VuW<h7:‘/ﬂMgﬂwp_l?ﬂ“J(ﬁﬂhtﬁfDdt

Un VM
g/ mw4m%@ﬁg/ mw*m%gﬁ:/wmm;@%)
Um Um, A

Since, by construction, u(z) = u,;, = vy, on Iy, then

/ uP dH" ™ = uP, P(Qo) = vF, P(Ap) = / vP dH™ L (3.46)
T'o 80
Now, we define p(t) = |Eos N Q| and n(t) = |A;| and using again coarea formula, we

obtain, for v,, <t < uyy,

o 1 w1 H'U(0Ey,NQ) _ P(Eoy)
KD = /{}Q u(@) M O
_P(Ao,t) _ 1 n—1 o
) /{M} @) =T

This inequality holds true also if 0 < ¢ < wps. Since p(0) = 1(0) (indeed |Q2| = |A|), by
integrating from 0 to ¢, we have:

u(t) > n(t), (3.47)

for 0 <t < wp. If we consider the eigenvalue problem (3.34), we have

UM UM
/ uP dx :/ ptP L p(t)dt > / ptP~n(t) dt = / P dx. (3.48)
Q 0 0 A
Using (3.45)-(3.46)-(3.48), we achieve

/ \VulP dz+ 8 | uP dH"
Q Io

/upd:r
Q

/ |VolP dox + 3 oP dH™ !
< A 0Ag _ )\fN(B7A)

/’Updx
A

Case 2: § < 0. We consider now the problem (3.34) with negative Robin external
boundary parameter. By Proposition 3.29 the first p-Laplacian eigenvalue is negative. We
observe that v is a radial function. We construct now the following test function defined
in Qoi

AN (8,Q) <

U(l’) — G(de(x)) if de(x) <19 —1
: Um if de(x) > 19 — 11,

where G is defined as

iy ML
“ (t)_/t g(T)d’
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with g(t) = |Vv|y=¢, defined for v, <t < vy with vy, := ming v and vy := max4v. We
observe that u satisfies the following properties: u € WP (Qq), |Vu|y—t = |Vv|y—¢ and

Uy = MINU > Uy}
Q
UM 1= MAXU = V.
We need now to define the following sets:

Eoy={z€Q : u(z) <t}
Ay ={z e A : v(x) <t}
AO,t :At U Erl .

For simplicity of notation, we will denote by Ay the set /1070, i.e. the ball B,,. Since E’(),t
and Ao, are now convex sets, by inequalities (1.13) and (1.11), we obtain

n—2
~ - n—1
d o Wa(Eo,t) ne2 %1<P(Eo,t)>
L P(Eoy) > n(n—1)220 > pn — Nn~ntwi L
ar"F0) 2l = gy 2l = Rl
Moreover, it holds
NG
a s o (P(Aon)™

%P(Aoi) =n(n— l)nfﬁwﬁ

Since, by hypothesis, P(Qy) = P(B,,), using a comparison type theorem, we obtain
P(Eoy) < P(Agy),
for u,, <t < wvp. Moreover, we have
H" L (0Ey; N Q) < P(Eoy) < P(Agy). (3.49)

Using the coarea formula and (3.49),

up ~
/ \Vul|P dz = / gt)P L H Y OFEy; N Q) dt
Q Um,

wys 3 ons 3 (3.50)
< / (B P(Eo,) dt < / GO P( o) dt = / Vol? da.
Um Um A
Since, by construction, u(z) = up; = vps on I'g, it holds
/ u? dH" ! = b P(Qg) = 8, P(Ag) = / vP dH™ L (3.51)
To 0Ap

We define now fi(t) = |Eo; N Q| and 7(t) = |A| and using coarea formula, we obtain, for
U <t < vV,

o 1 w1 _ M (OB N Q) _ P(Eoy)
Ao = /{u:tm V()] O )
P(‘iogt) _ 1 n—1 _ =~/
ST /{v:t} Vo) =T
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Hence ¢/ (t) < n/(t) for v, <t <wys. Then, by integrating from ¢ and vy:

€ = A(t) < |A[—n(),

for v, <t < vy and consequently f(t) > 7(t).
Let us consider the eigenvalue problem (3.34). We have that

UM M
/Qup dx = uf,|Q —/ ptP L at)dt < o | Al —/ ptP i (t) dt = /Avp dzx. (3.52)

By (3.50)-(3.51)-(3.52), we have

/|vuyp dx+5/ uP dH" !
Q To <

/upd:c -
Q

/ |VolP dx + 8 o dH" !
<=4 o =, (8,4).

p
/vpdx
A

Theorem 3.34. Let B > 0 and let 2 be such that Q = Qg \ ©, where Qg C R™ is an open
bounded and convez set and © CC g is a finite union of sets, each of one homeomorphic
to a ball of R™ and with Lipschitz boundary. Let A = A, ,, be the annulus having the
same measure of Q and such that P(B,,) = P(Qg). Then,

AN (3,Q) <

TIN(8,Q) > TN (8, A).

Proof. Let v be the function that achieves the minimum in (3.40) on the annulus A. We
consider the test function as in (3.42) and the superlevel sets as in (3.43). By (3.47) we

have - -
/ udr = / w(t)dt > / n(t) dt = / v dx (3.53)
Q 0 0 A

In this way, using (3.45)-(3.46)-(3.53), we conclude

/ |Vul? d:lc—l—ﬁ/ u? dH" !
1 < J9 T'o
RN = Z
(3.9 [oa
Q

/\wyp d:c+ﬁ/ vP dH™ !
A 1) _ 1

p ~ 7TRN :
/ v du TN (B, A)
A

<

We conclude with some remarks.

Remark 3.35. In [6] the authors prove that the annulus maximezes the first eigenvalue
of the p-Laplacian with Neumann condition on internal boundary and Dirichlet condition

99



on external boundary, among sets of R with holes and having a sphere as outer boundary.
We explicitly observe that our result include this case, since

Jlim A (8,0) = (@),

where with )‘z]? N(Q) we denote the first eigenvalue of the p-Laplacian endowed with Dirich-
let condition on external boundary and Neumann condition on internal boundary.

Remark 3.36. Let us remark that in the case p = 2, we know explicitly the expression
of the solution of the problems described in this section on the annulus A = A, ,.
The function that achieves the minimum in A = A]}J{N (8,A) is

v(r) = Yg,z(\f)\rg)rl_%(}%,l(\f)\r) — Jg,2(\f)\rg)r1_%Y%,1(\f)\r),

where Y, and J, are the Bessel functions of order o (for their properties we refer to
[1, 80]), with the condition

Y%_g(\/XTl)[T;_%J%_Q(\/XT‘Q)\/X + BT‘;_%J%_l(\/X’I“Q)]*
o o(VAr)lry 2Ya_o(VAro)VA + Bry 2 Ye _(vVAra)] = 0.
The function that achieves the minimum 1/7 =1/ TfN (B,A) is

1 (1—n)

_ 2
v(r) = g’ et o,
with . .
7 -1
c2 = —n%r?.
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Chapter 4

Isoperimetric inequalities and
stability issue of the Weinstock
inequality for convex sets

In this chapter we extend the results obtained [25] in two ways. Let € be a bounded open
convex set: in the Section 4.1 we generalize the isoperimetric inequality

/ ’.’L"Q dHn_l »
S ———— (4.1)
P(Q) [Q»

to a functional involving the anisotropic p-momentum, the anisotropic perimeter and the
volume; in the Section 4.2 we get a stability result for the inequality

/ |22 dH™ !
99 > n

QP (nw,) 7T

that is obtained easily from the (4.1), and then we obtain a stability result for the Wein-
stock inequality for convex sets

)

02(Q)P(Q)7 < 03(Br())P(Br(x))™1 (4.2)

where o9 is the first nontrivial eigenvalue of the Steklov-Laplacian problem (2.10).

4.1 Anisotropic isoperimetric inequalities involving bound-
ary momentum, perimeter and volume

Let Q2 be a bounded, open set of R™ with Lipschitz boundary. Let 1 < p < 400, we
consider the following scale invariant functional:

/ Fo()P F(w(x)) i
F(Q) = 222

)
b

[ Pt @] ot

where vgq(z) is the Euclidean unit outer normal at x € 9€2. We define the anisotropic
p-boundary momentum of 2 as

Mp(Q) = /d @ Fu() dH L

The main result of this section is the following.
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Theorem 4.1. Let 2 be a bounded, open, convex set of R™. The following inequality
holds true:

iS]

F(Q) > kp"
and equality holds only for Wulff shapes centered at the origin.

Remark 4.2. We observe that from this last theorem follows a particular case of (2.9).
If we take F'(z) = |z|, we obtain

n
</ |z |P d’H"1> > plwl TP Qe
o0

In what follows we will need the following definitions:
o rk (Q) :=max {F°(z) | z € Q}.
o zl' (Q) € 09 is such that F°(xf, (Q)) =7k, (Q);

_ Mgp(2)

e the anisotropic p-excess function Ex(Q2) := (rf  (Q))P~! Sl
n

In order to prove our main theorem, we need some intermediate results that we are now

going to illustrate. The general way of proceeding is analogous to the one presented in
[25].

4.1.1 The first variation of the p-momentum in the smooth case

Let 2 be a subset of R” with C"*° boundary. We consider the following transformations:
¢z, t) =z + tp(z)v’ (2), (4.3)
where ¢ € C2°(R") and v¥'(z) = VF(v(z)) is the anisotropic normal. We recall that
Qt) == {z + to(z) v (z) | z € Q).

From (1.8), we have that

GRo = [ @) v(e) oo (@) aH @) =

=/ Hjo(a)p(2){v(2), VF(v(x))) dH" H(z) = | Hig(z)p()F(v(z)) dH"(x),
o0 o0

where the last equality holds true because of the properties of a Finsler norm. We recall
also the variation of the volume of a set:

Z100o = [ p@P@) d(a).

Proposition 4.3. Let Q and Q(t) be the subsets of R™ previously defined. Then

SME(O(0)) o =
—p [ (@) (TF ), o) @) F(v(a) dH (o) +
o0
" / [F(@))? F(v(x)) Hig(2)p(x) dH* 1 (z).
o0
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Proof. Considering the change of variables given by (4.3), i.e. y = ¢(z,t), we have that

M@)o =

= [ Pl ) F (6. 0)) a0, 0) ot
o0

o p d n—1
+ [ (o) G [Fo@.0) a0 66.0)]

We observe that

[ 5 (Pl t)P) (e ) dH" (00, 0) s
[2/9)

= /8Q p (F((a, )"~ {VE (@, 1), o) (@) F(v(¢(x,t)) dH" (@2, 1)) li=0-

Moreover, from the first variation of the perimeter (1.8), we can say that

&P, 1) (6, 1)] im0 = Hep(@)p(a) P (0(@)aH ()

The thesis follows. O

Considering now the derivative of the quotient, we obtain

d

%f((fl(t))lt:o =
1

= it e e o)
F n

—MF(Q) vz T n=l(p
L0 o) i)

’ P — MF(Q) L x vix T n—1 x
+/m [(F (=) PF(Q)] Hpyg(z) F(v(z))e(z) dH"( )}.

Let be T' > 0; we choose, as in [85],

p(z) = !
Hgﬂ(xy
and we have that
0 vF ()
- t) = —~2L
1000 = gr

for every t € [0,7]. This one parameter family of diffecomorphisms gives rise to the so
called inverse anisotropic mean curvature flow (IAMCF). Concerning this family of flows,
local and global existence and uniqueness have been studied in [85, 60, 73].

Remark 4.4. Let 0 C R™ be a bounded convex set of class C°°. € is called F-mean
convex if its anisotropic mean curvature is strictly positive and, in this case, we say that
Qe C%O’Jr. In [85] is proved that, if Q(0) = Q € Cf,o’+, then there exists an unique smooth
solution ¢(-,t) of the inverse mean curvature flow in [0, +o00]. Moreover the surface 9€(¢),

for every t > 0, is the boundary of a smooth convex set in C?’JF that asymptotically
converges to a Wulff shape as t — +oo.
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Substituting this ¢ in the derivative of the quotient and taking into account the fact
that

/ [(Fo(x))p - M) F(v(z)) dH"H(z) =0,
o0

Pr(Q)
we obtain
d
4 F(QUlim0 = (1.4)
S °(z))P~t °(2), v (z v(z —MF(Q) v(x 7(1’}-[”_1(:6) =
B E L [P T @@ )~ S| T
oy ot oot Py ME@] F0@) oy
—PFW‘Q,Z/BQ (@) (F) ) - S ),

4.1.2 Existence of a minimizer

Proposition 4.5. There exists a convex set minimizing F(-).

Proof. Given a convex set {2, we can take a minimizing sequence (£;);, having the same

volume of . By Blaschke selection Theorem in [75, Theorem 1.8.7], it is enough to

show that the €2;’s are all contained in the same Wulff. For the sake of simplicity, we

suppose that ;| = K, and, since any Wulff WV with centered at the origin is such that
p

F(W) = Kk, ™, we have that

]

lim F() < kn ",

1——+o00

and consequently
im r($k) <1
i—+o00 PF(Ql) -

Arguing by contradiction, if we assume that lim;_, ., diamp(€;) = 400, from convexity
follows easily that lim; 4o Pp(€;) = +00. Thereafter, if Wy is the Wulff of anisotropic
radius 2 centered at the origin, it is enough to observe that

Joouoom, Fv(@)) " (x)

lim =0
400 fam\wz F(v(z)) dH™1(x)
and Mp(Q 2P
lim G > lim = 2P,

faﬂiﬁWQ F(v(z)) dH™1(x)
fani\wg F(V(m)) d?—[”L*l(x)

i—+00 PF(Q’L) T i—+oo 1+

which gives a contradiction. So the diameters of the €);’s are equibounded. Moreover,
arguing as before, we can show that Q; N Wy # () definitely. Therefore we have the
claim. 0

4.1.3 A minimizer cannot have negative Excess

Remark 4.6. There exist sets with negative anisotropic p-Excess. We prove this fact in
dimension 2 and for p = 2. We consider the elliptic metric

2 oy

we know that its polar is this elliptic norm
F°(z,y) = \/a?z? + b%y2.
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We consider now the following convex domain:
9 1
Re: (xay)eR : ’x‘gfa ’y‘SG .
€

From the computations we obtain that |Re| = 4, rf_ (R.) = a/e + O(e?) and Mp(R.) =
(4a2/3b)(1/€®) + 4a/e + O(e).

Lemma 4.7. Let Q be a bounded, open convex set of R"™. Then

Me®©) _ o). (4.5)

(Fo(@)P~ (VF(x),v" (z)) — R

Proof. We observe that
(VF°(z), v (2)) = (VF°(2), VF (v(2))) < F(VF°(2))F*(VF(v(x))) = 1,
for the properties of the Finsler norm F'. ]

We prove now a fact, that is an analogous of a property holding in the Euclidean case
(see [25, Remark 2]).

Remark 4.8. Let 2 be a bounded, open convex set of R™. Then

/ [(F%x»p—l<VF0<x>,uF<x>>—MF(Q)}F@(@) @) <0 (46)
o0 ”’Q\

Proof. In order to prove (4.6), we observe that

/ [(FO(w))p—l (VE°(2), v (@) F(v(a)) — MF(”F(u(az))] M (2) =
a0 n|Q|

 Mp(Q)
n|Q|

/ [(F"(ﬂﬂ))p—1 (VE(z), VE(v(2))) F(v(x))
oN

Io) p—1 n— _MF(Q)
< | [yt Fow))] awtw) - SEELPe@

B Mp () Pr(52)
Joo FO(@)F(v(z)) dH™ (x)

F(u(x»] ()

< / [(FO ()"~ F(v(x))] dH" ()
onN
and the last inequality holds since

= z. v(x n=1(y °(x v(x n=lip
nrm—/mu (2)) dH <>s/mF<>F<<>>dH ().

for the properties of the Finsler norms. Using now Holder inequality, we obtain
| @y Puw) an @
o0

< [ /89 [ ) dﬂnlm} T (Pe(@))

p—1

P

- [/89 (F2(x))” F(v(z)) d’i—tnl] (PF(Q))%

and

/ FO(x)F(v(m))dH“<x>sU <F°<x>>pF<v<x>>dH“<w>} (Pr() "
o0 1o}

Q
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Finally, from these last two inequalities follows that

(ot rea ae o) ( [ oot a0 o)) < s @ee)

O]

We recall now this lemma (see [85]), which will be used in the next proofs. This is the
anisotropic version of the Heintze-Karcher inequality, whose proof in the Euclidean case
can be found in [73].

Lemma 4.9. Let Q be a bounded, open convex set of R™ with C? boundary, then

/ Fr(@) yymt gy > FW) gyt )
1o}

o Hjqo(x) ~ Jowy Hiyy, (2)

where Wg is a Wulff such that Wg| = |Q].

Proposition 4.10. Let € be a bounded, open convex set of R™ such that
Er(Q2) <0,

then Q2 is not a minimizer of F(-).

Proof. We firstly assume that ) € C?’f Since Ep(Q2) # 0, Q is not a Wulff shape
centered at the origin. Then, from (4.5) and (4.4), we have

F(Q) < PF(Q)QIQ‘%EF(Q) /m 2T o) <.

We suppose now that ¢ C’;O’J“ and we assume by contradiction that {2 minimizes the
functional F(-). We can find a decreasing (in the sense of inclusion) sequence of sets
(%) ey C C;O’+ that converges to 2 in the Hausdorff sense. We have that

lim |Q] = |Q; lim Pp(Q) = Pr(Q);
Jm [l =101 lim Pp(Q) = Pr(€);

: _ . : F _F
kggloo MF(Qk) - MF(Q)ﬂ kEIJPOO Tmax(Qk’) - rmaX(Q)'

We now consider the IAMCF for every Q; and we denote by Q(t), for ¢ > 0, the family
generated in this way. We let (0) = Q. Using Hadamard formula (see [59]), we obtain:

Fv(z))

d
L 10(1) = / aH (),
dt o0t Hig,

© pp((t)) = Pr(Qu(t).

dt
We have also that p (%))
d F 'r'max Qk t
— < - 7 .
dtrmax(Qk(t)) = n_1 (4.7)

We prove now this last inequality. From definition of X, (Q(¢)) and (4.3) in the IAMCF
case, we have that
Pmax (A1) = FO (210 (1))

tvt

P (H0)) = () + T o

max max
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Then

d p d

l/F JJF
T (O0) = 5Pl 000) = (T2, g ) <

< F(VF(aE, (1) FO(F (2F () oo e =

max

max

- Hjg(aha() = n—1"7

1 < rk ()

since F' is a Finsler norm and therefore it is true that F(VF°(z)) = F°(VF(z)) =1. We
can then repeat this last inequality for every Q. From (4.7) follows that

rE (1) < riaX(Qk)eWil), for t > 0.

max
Analogous computations to the ones reported in [25, Proposition 2.4] lead to a contradic-
tion with the minimality of Q and therefore to the claim. O
4.1.4 A minimizer cannot have positive Excess

We start observing that there exist sets with positive excess.

Remark 4.11. We consider the case n = 2 and p = 2. The norm that we take into
consideration is
22 2

F°(z,y) = \/ax? + b%y2.

and its polar is:

We define
E={(z,y) € R? | a2(1 — 6)23:2 + b2(1 + e)2y2}.

We have that
rflax(é’e) =14 ¢+ o(e)

and .
=—(1+¢ :
£ = T+ &+ ole)

Computing the momentum, we find that

2 T 2
Mrp(&) = b1 =21 o2 <7r + 6/0 cos(2t) dt> +o(e) = b1 — 21T o2 (m+o(e))

and so it results that Ep(E) = € + o(e).

In the following, we will use the notations: 0 € R*~! and 2’ = (x1,...,2,_1).
We consider the halfspace T, that has outer Euclidean normal pointing in the direction
given by the outer Euclidean normal to € in the point zf, () and intersecting Q at a
distance ¢ from zf_ (€2). We define the sets:

Q. =QnNnT,,
A= 00.NOT,,
Ce:=00NTE,
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where T¢ is the complement of T, in R", and we define the following quantities, that
vanish as € goes to 0:

AMp = MF(QE) — MF(Q),
AV = |Qe’ - ’Q‘v
APy = Pu(2) — Pr(9).

Considering Remark 2.2 in [43], we can choose the coordinate in such a way that the
z, axis lies in the direction of the outer normal to 7. and we denote the coordinates of
xk () by zF (Q) =: (2}, y0) € R"! x R. Moreover, we call AL C R"~! the projection
of Ac onto {z, = 0}.

Let g : AL — R the concave function describing C.. Since the class of open and bounded
convex set with positive mean curvature is dense in the class of open and bounded convex
set, we can assume, in particular, that  is strictly convex and, consequently, that ¢
is a function of class C'(A’), for € > 0 small enough. Let h : AL — R defined by
h(z") = g(z') — (yo — €), so h is equal to 0 on OA..

We observe that g : AL — R is such that for any z = (2/, z,,) € C, we have x,, = g(z’). We
call G(z) := x, — g(2') and, as a consequence, C¢ is the level set G(z) = 0; the Euclidean
outer unit normal to C. in a point x = (2, ) € C¢ is given by VG(2')/||VG(2')]|, i.e.

(=Vy(@'),1)

ve (z) = T+ V@)

Since Vg(xj) = 0, we have that
APy = / [F(-Vg(a), 1) - F(0,1)] da'.
Lemma 4.12. We claim that

/,<Vx'F(0, 1),—Vg(z'))dz' =0

€

Proof. Since

[, FF0., Vot Zjiwl D2 @) da'

it is enough to prove that, for every i = 1,...(n — 1),
oF ag , ,. ,, OF dg
0,1 der' = —(0,1 dx’ = 0.
[ GG = S [ Shen

Using the divergence theorem and the fact that h is equal to 0 on DAL,

99 (2') da’ = Oh

(2) d2’ = // div (h(z')e;) da' = /(M/ (h(x")es, voar (")) dH"*(2") = 0,

Al 858, Al 8%
where e; is the vector having all zero coordinates, except the i-coordinate equal to 1. [

Lemma 4.13. There exists a positive constant C () such that for all e > 0 small enough,
we have that

AV] < C(Q)AP]. (48)
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Proof. There exists a Wulff shape centered in the origin, that we denote with Wyax, that
contains {2 and that it is tangent to € in the point xf, = (zh, yo), with zf, € R*1
and 39 € R. Moreover, since W is uniformly convex, there exists a ball B that contains
Whinax and that is tangent to Wyax in $§13X(Q) Let ¢ > 0 be the positive constant such
that , for all ¢ = 1,--- ;n — 1, k;(W) > ¢, with k;(W) principal curvature of W. If we
denote by R the radius of B, that is centered at a point (z{, y.) € R ! x R, we have that
R=rE(@)/e ) )

We have that Ac C BN OT, and we denote by R the radius of the (n — 1)-dimensional
ball BN OT. . Now, we have that

diam(A.) < diam(BNAT,) = 2R < 2V/ 2¢R. (4.9)
We observe that Sy
—AV —/ h(z")dz' > eﬁi(f). (4.10)
AL n

Using (4.10), (4.9) and the Sobolev Poincaré inequality

_AV:/Aleh(:v’)das’g (/A

(En—1(A2))2/(n—1

€

n

2
/ /
- <
M) d:c) eLn—1(AL) —

)
/|Vh||2dx'§C(n)ZR(wn_l)Q/(”_l)/ ||Vh||2dz’
AL AL

/
€

< C(n)

We now consider the function, 2/ € R"~! — F(a/,1). Using the Taylor expansion
with the Lagrange reminder:

F(=Vg(a'),1) = F(0,1) = (Vo F(0,1), =Vg(z)) + %(—Vg(x’))TDZF(% 1)(=Vg(a')) =
> (Vo F(0,1), =Vg(x)) + ¢l[Vg(a')||*.

Integrating the last chain of inequalities and using the result in Lemma 4.12, we can
conclude

_APr > C(Q) / 1V g(a)||? da'.
AL
We point out that, with the last inequality, we have also proved that
—APr > 0. O

Lemma 4.14. Let Q) be a bounded, open convex set of R™, then

()" AV + (r]

max

AMp Sp(rF

max

()" APp + o(APF) + o(AV). (4.11)

Proof.

— AMp = /C (F°(z))? F(voq(z)) dH" (z) — /A (F°(z))? F(0,1) dH" }(z) =

-/,

= /A [(Fo(a', g(2')))" = (F°(«, 30 — €))7] F(~Vg(2'), 1) da'+

’
€

(F°(2', g(z")))" F(=Vg(2'),1) da’ — F(0, 1)/A (F° (2,90 —€))" da’ =

/
€

+ / [P(-Va('), 1) PO, )] (F(a',yo — )" da’ = i + I

€
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Firstly, we take into consideration Is.

Claim 1:
FO(2' yo — €) = rhax(Q) + 0(1),

where we use the following notation: g(e) =: o(€") if lime_0 g(€)/€e" = 0.
Using Taylor

Fo(a!,yo — €) = F°(xp, yo) + (VF(x0, yo), (2 — x5, =€) + o([[(z" — 2, —)]) =
= Tinax () + (VF° (0, 90), (' — 2, —€)) + o(||(z" — 25, —€)]).

For the Cauchy-Schwarz inequality:

[(VF (20, 90), (¢ — @0, —€))| < [[VF°(x, yo)l[V/[|2" — wol > + €2 <

< IVE? (g, yo)ll, [ max {[[a — zp[[} + € = o(1).

z'e

So we have the claim.
Using Claim 1, we have that

I, = // [F(_vg(xl), ]_) — F(Q, 1)] (Tglax(Q) + 0(1))1’ de' —

€

- /A [F(=Vg(@),1) = FO 1] () +0(1)) da’ = (riras( ) APE(Q) + 0(1)APF =

= (rF ()" AP + o(APF).

max

We study now 1.
From the convexity inequality we have

(Fo(x’,g(x')))p — (Fo(x’,yo — e))p >p (Fo(x', Yo — e))pil (VF(x' yo — €), (Q, h(x’))>

Using the last convexity inequality we have

L = /A [(Fo(x/’g(gj/)))p _ (Fo(xl’ Yo — 6))10] F(—Vg(:v'), 1) da’ >

/
€

> [ p(E = ) (TP w0 - 0. 0,h(a) F(-Vgla)). 1) da’ =

= // p (F°(2,yo — 6))p_1 gf: (2", 90 — e)h(z")F(—=Vg(2'),1) da’.

€

Claim 2
oF° , , ~ F(x(,90)
Oy, @30 =€) = (yo —€)

Using Taylor and the property (VF?(&),£) = F°(§), we have that

+o(1).

FO(x,y0 — €) = FO(a, 50 — €) + o(1) = (VF(a, 50 — €), (2, 30 — €)) + o(1) =

oF
- <VI’FO(x,7 Yo — 6)7‘73/) + (yO - 6) 7<$/7y0 - 6) + 0(1)7

oxy,
and consequently
oF° Fo(xy,yo — € 1 o
(= = ) D (- 0. o). (412)
n
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Considering the fact that VF°(z(, yo) = (0,1), we have that

ol N~ OF° = (0F°,, B
(VarF(a' o — ©),a') = D wig—(asyo =€) = i (5 —(2,90) +0(1) ) = o(1).
i=1 ¢ i=1 v

So, from (4.12) and Claim 1, we obtain the claim
or° / F"(a:6,y0)
il )= 0 ),
8$n($’y0 6) (yo—ﬁ) +O( )
Claim 3
F(-Vg(2'),1) = F(0,1) + o(1).
Using Taylor and the facts that Vg = Vh is continuous and Vh(z() = 0, we obtain
F(=Vh(z'),1) = F(0,1) + (VF(0, 1), (=Vh(a'),0)) + o(|| = Vi(a")|]) = F(0,1) + o(1),

Using Claim 1, Claim 2 and Claim 3:

L > // P (Pmax($2) + 0(1))p—1 (fm +0(1)> h(a') (F(0,1) + o(1)) da’
_ / p(rE ()" mh(y)F(O, 1) dy + o(—AV) >

> / D (rha ()" 2 h(a!) da' + o(—AV) > p (rE ()" (~AV) + o(~AV),
A Yo €

/
€

where we have used the fact that

F(Q’ 1)F0(‘T6’y0) > |<(Q7 1)7 (336,y0)>| = Yo.

Lemma 4.15. Let Q) be a bounded, open convex set of R™. Then,
Mp(2) F P
< Q
PF(Q) — (rmax( ))
and equality holds if and only if Q) is a Wulff shape centered at the origin.
Proof. If Q is a Wulff shape, then

ME©@) o PR e o
PF(Q) - ( max(Q)) PF(Q) - ( max(Q)) .

If © is not a Wulff shape, consider the set
S:={xed: Fo(x) <rE ()}

Since F° is a continuous function, H"71(S) > 0 and, by definition of r%, (Q), we have
that
OO\ S ={reca : Fo(z) =rk (]}

Thus, we obtain

/S[F “@)] Fv()) W™ (2) + / @)l F(v(x)) dH" ()

Mp(S) _ o0\S
Pe(©) Pr(9)
[ @) Fo@) @)+ [ (@) Fo)
o Js BO\S _ (rF (Q))p
Pr(Q) max
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Proposition 4.16. Let  be a bounded, open convex set of R™ such that

Er(©2) >0, (4.13)
then 2 is not a minimizer of F(-).
Proof. Using (4.11), we have that
__ 1 _ AP pAV 0 o(AV) =
~ E ) (AMF PF(Q)MF(Q) ] MF(Q)> + o(APp) + o(AV)
(4.14)
1 TF p—
S ’Q‘% PF(Q) |:p <( max(Q>) ’Q| ) AV+
((rﬁlax( P - P ) Pe |+ o(8Pe) +oaV) =
B 1 p_ Mr(®) o 0
= 7|Q|% o) [pEF(Q)AV + <( ()P — Pr() ) AP, ] + o(APp) 4+ o(AV)

Since (4.13) holds, Q cannot be a ball centered at the origin. From Lemma 4.15, follows

that
Mp(€2)

F P _
(@)Y — By

> 0.
Considering also that AV < 0 and APp < 0, we can conclude that
AF <0.
O

4.1.5 Waulff shapes are the unique minimizers having vanishing Excess
Proposition 4.17. Let Q be a bounded, open convex set of R™ such that

Ep(Q2) =0, (4.15)
then either Q0 is the Wulff shape centered at the origin or it is not a minimizer of F(-).

Proof. From (4.8), (4.15), (4.14), we obtain the following expression

1 Mp(Q
AF = —5—— [((rflax(ﬁ))p — £ )> APF] + o(APp).
Q" Pp(Q) Pp($)
If Mp()
F F
Tmax (£2 b= )
(e ()" = 5 ®
then  is a Wulff shape centered at the origin. If AF < 0, then  is not a minimizer.
Thus, we have proved the desired claim. ]
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4.2 A quantitative Weinstock inequality for convex sets

4.2.1 An isoperimetric inequality

In [15] the authors proved a weighted isoperimetric inequality, which has as a consequence
the following inequality involving the boundary momentum W (FE') defined in (1.14). More
precisely, it is proved that, if £ C R" is a bounded open with Lipschitz boundary, then

W(E
(nﬁ > nwy, /™, (4.16)

Bl

and equality holds for any ball centered at the origin. The inequality (4.16) implies that,
among sets with fixed volume, the boundary momentum is minimal on balls centered at
the origin.

An isoperimetric inequality for a functional involving the quantities P(E), W (E) and |E|
is proved in [82] in the planar case and then in [25] in any dimension, restricting to the
class of convex sets. More precisely, if £ C R" is a bounded, open, convex set, it is proved

that
gmy = YE S g5 (4.17)
P(E) |E|n

where equality holds only on balls centered at the origin.
In the same spirit, we define the following functional
W(E)

I(B) = ——— .
|E| P(E)1

(4.18)

The following isoperimetric inequality holds.

Proposition 4.18. Let n > 2. For every bounded, open, convex set E C R"™, it holds

I(B) > — " = I(B.(0)). (4.19)

(nwy)n=T
Equality holds only for balls centered at the origin.

Proof. The proof follows easily by using inequality (4.17), the standard isoperimetric
inequality and observing that

n—2
P(E) n—1
el )

I(E)ZJ(E)<

O

Our aim is to prove a quantitative version of (4.19). From now on, we will use the
following notation

D(E) = I(B) - —"—— = I(E) - I(B.(0)). (4.20)

(nwp) =1

4.2.2 Stability for nearly spherical sets

Following Fuglede’s approach (see [52]), we first prove a quantitative version of (4.19) for
nearly spherical sets as in Definition 1.17, when n > 3.
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Theorem 4.19. Let n > 3. There exists ¢ = (n) > 0, such that if E C R™ is a nearly
spherical set with P(E) = P(B1) and [[v||y1,00sn-1y < €, then

3" n—2 9
MHUHWM(S”—U >D(E) > m”v”wl,Z(Sn—l)- (4.21)

Proof. Setting v = tu, with ||ul|y1,c = 1/2, we have ||[v||y1.00 = t||ul|y1.0 = t/2. Thus,
using the expressions of P(E) and W (F) given in (1.17) and (1.19), we get

/Sn1 (1 + tu(@))" V1 + tu(@))2 + 2|V u(z)2 dH" !

D(E) = — »
PlBy= /g,nl(l + tu(w))" dH !
(4.22)
n /Sn1 (1 + tu(z))™ (\/(1 + tu(2))? + 2|V, u(z)]2 — 1) a1
P(By)71 n|E|

Now we prove the lower bound in (4.21). Firstly we take into account the numerator
in (4.22). Let fx(t) = (1 + tu)*\/(1 + tu)? + 2|V, ul?. An elementary calculation shows
that

fr0) =1,  fL0)=(k+1Du,  f0)=(k+1ku®+ |V ul?
F(r) < 2(k + 2)(k + D)k (Ju’ + [ul|V-ul?) (4.23)
for any 7 € (0,¢). Thus, since the numerator of (4.22) is given by f,,(t) — (1 +tu)", using

the Lagrange expression of the remainder term, we can Taylor expand up to the third
order, obtaining

/ (1 + tu(z))" (\/(1 +tu(z)? + 2V u(@) — 1) dH
Snfl
>t / udH" ' 4 nt? / W2dH 4 L2 / |V ul2dH™ !
S§n—1 S§n—1 2 S§n—1
-4 (n)th/ (v + |Voul?) dH" . (4.24)
Sn—l
Since P(E) = P(B;), we have

/ (1 + tu(2))" 2/ (1 + tu(z))? + 2|V yu(z)2dH" L = / 1dH™
sn—1 §n—1

Using (4.23) for f,—2, we infer

t/ udH™ > —Ht2/ wrdH ! —tQ/ |V u2dH !
Sn—l - 2 Sn—l 2(n - 1) Sn—l T

— Cy(n)et? / (u? + |Voul?) dH . (4.25)
Sn—l

Since n > 3 , using inequality (4.25) in (4.24), we get

/Sn_l 1+ tu(@))" (VO F (@) + BV @ - 1) i

n+ 2 9 9 1mm—1 n—2 2/ 2 1 m—1
> — t I — -
< 5 C’g(n)5> /Snl u“dH + (2(71 0 Cg(ﬂ)«E)t - |V ul“dH

n—2 2 2 2 19 m—1
> ——mM8M — — .
> (2(n Y Cg(n)s) t /S"l u” + |Vyul“dH" ™", (4.26)
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where C3(n) = C1(n) 4+ C2(n). Choosing ¢ = #ﬁl), we obtain

2

n — 2 o n— 2
D(E) > mHtunw(Sn—l) = m”””wlﬂ(S“‘l)’

which is the lower bound in (4.21). Then, recalling that ||v]|s < & we have

/Snl 1+ o@)” <\/<1 +v(2))? + | Vru(2)|? - 1> dH

WE) |
n|E| e
<i(3>"hénl<wk1+v@ﬂ)2+vfmm)2]> dn!
Sz B
" \/( [o(2)] + |Vro(2)])* — n-1
< (2) /s< bt ;; 1) aH

< (3)” /Sn1 (lo(@)| + [Vro(@)) a™™

5 7’L|E’ < nw ||U||W1’1(S"*1)a

n

where last inequality follows from the following estimate

1 n
n|E| = /Sn—1 (1+v(x)" dH" ! > nw, <2> .
O

Remark 4.20. Observe that the proof of the lower bound in (4.21) does not seem to
work in the planar case. The reason is that for n = 2 the coefficient of HVTUH%Q (sn-1) in

(4.26) could be negative.

4.2.3 Stability for convex sets

Before completing the proof of the quantitative version of the inequality (4.19), we need
the following useful technical lemmas.

Lemma 4.21. Letn > 2. There exists M > 0 such that, if K C R™ is an open, conver set

2
with finite perimeter and I(K) < % , then K C Qpr, where Qs is the hypercube

(nwy ) n—1
centered at the origin with edge M.

Proof. Since the functional is scale invariant, we can assume |K| = 1. Let L > 1, we have

W(K):/ |x]2d7{”_1:/ |1:]2d7-[”_1+/ P dH"
oK (OK)NQL OK\Qr

> [ s PP CQu),
OKNQy,

where by C(Qr) we denote the complementary set of Q7 in R™. Since K is convex, also
K NQyp is convex and then

P(K) < P(K;C(QL)) + P(K;Qp) < P(K;C(QL)) + 2nL" ", (4.27)
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by the monotonicity of the perimeter. Suppose P(K) > L"; then, equation (4.27) gives
P(K;C(Qr)) > L™ — 2nL™ ! and, as a consequence,

2dqH" ' + L2P(K; C
L, (K:C@Q) s o

I(K) >

(P(K;C(Qr)) + 2nLn—1)w1 LT

The previous inequality leads to a contradiction for L large enough, since we are assuming

I(K) < 7?21’ while the last term of the above inequality diverges when L — oo.

(newy ) »=1

2n
Thus, there exists Ly such that, for every convex set K with I(K) < —————, we have

(nwy, )71
P(K) < Ly. Since |K| =1 and P(K) < Ly, using (1.16), we get

diam(K) < C(n)Lg(n_l).

The last inequality proves (4.27), if we choose M = C(n) Lg(n_l),

Lemma 4.22. Let (K;) C R", n > 2, be a sequence of convex sets such that I(K;) <

2
7711 and P(K;) = P(B1). Then, there ezists a conver set K C R™ with P(K) =

(nwp ) n—T
P(B1) and such that, up to a subsequence,

|K;AK| =0 and I(K) <liminf I(Kj). (4.28)

Proof. The existence of the limit set K comes from the proof of Lemma 4.21: since
2
I(K;) < %, there exists M > 0 such that K; C Qu and P(K;) = P(By) for

(nwy ) 7T
every i € N. Thus, the sequence {xk; }jen is precompact in BV (Qys) and so there exists
a subsequence and a set K such that |[KAK;| — 0. Moreover, from Lemma 1.15, we have
that P(K) = P(B1). Note that we can write

W(K) = sup {/K div (|a:]2¢(x)) de, ¢€ C(}(QM,IR{”), [|16]]00 < 1}.

Observing that
/ div (|226(2)) |dz < M]|dive o + M,
K

using the dominate convergence theorem, we have that the functional
K —>/ div(|x|2¢(x)) dx
K

is continuous with respect to the L' convergence. Hence, since W (K) is obtained by taking
the supremum of continuous functionals, it is lower semicontinuous. As a consequence,
we obtain the inequality (4.28). O

The next result allows us to reduce the study of the stability issue to nearly spherical
sets.

Lemma 4.23. Let n > 2. For every ¢ > 0, there exists §; > 0 such that, if E C R" is
a bounded, open, conver set with P(E) = P(By) and D(FE) < 6., with D(E) defined as
in (4.20), then there exists a Lipschitz function v € W1°(S"™1) such that E is a nearly
spherical set parameterized by v and ||v]|y1,0 < €.
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Proof. Firstly, we prove that dy (E, B1(0)) < e. Suppose by contradiction that there exists

n 1
€0 > 0 such that, for every j € N, there exists a convex set E; with I(E;) - ———— < =,

nwp)n-1J
dy(E;, B1(0)) > €9 and P(E;) = P(B;). By Lemma 4.22, we have that there exists a

convex set E such that F; converges to £ in measure and P(E) = P(Bj). From the
semicontinuity of W(E), we have that I(F) < liminf I(E;) < Ll Since Bj1(0)

Nwnp, n—1
is the only minimizer of the functional I, we obtain the contradiction. Then, since F
is convex and dy(E, B1(0)) < ¢, E contains the origin and so there exists a Lipschitz
function v € L>®°(S" 1), with ||v||s < €, such that

OF = {z(1 + v(z)), z € S '}

Now, in order to complete the proof, we have only to show that [[v]|y1,00(gn-1) is small
when D(F) is small. This is a consequence of Lemma 1.19. O

Now we can prove the stability result for the inequality (4.19). We first consider the
case n > 3. The two dimensional case will be discussed separately in the next section.

Theorem 4.24. Let n > 3. There exists 6 > 0 such that if E CR"™ is a bounded, open,
convex set with D(E) < 0, then

1/(n—1) D(E)log 5t n=3
<”“’” ) (.5 < { VPP s (4.29)
P(E) B. (D(E)™T  n>4,

where D(E) is defined in (4.20) and E* is the ball centered at the origin with P(E*) =
P(E) and

2
29 n+1

2% —2 . n -1
B="0 Bu= |2t (16 <2> +n+ 1) (4.30)
4(n—1)Cp~"

Remark 4.25. We observe that inequality (4.29) implies the following

\/ og =L~ =
Ay(E) < Py PE) 08 iz ; (4.31)

- 2

Bn (D(E))n+1 n >4,

where Ay (F) is the asymmetry defined in (1.15). We emphasize that (4.29) and (4.31)
are not equivalent, because Ay (F) is in general different from dy (E, E*), since one does
not know where is centered the optimal ball for (1.15). For instance, if E is a ball not
centered at the origin, we have that Ay (E) = 0, but dy(E, E*) > 0. On the other hand,
since the functional I(-) is not translational invariant, it admits a very unique minimizer
once a value of the perimeter is fixed, that is the ball centered at the origin and with the
right radius. Thus, it seems more reasonable to use dy (F, E*) in (4.29), since it measures
how different is the set E from the minimizer of I(-).

Proof. Since the functional I is scaling invariant, we can suppose that E is a convex set
with P(E) = P(B;). We fix now € > 0. Using Lemma 4.23, we can suppose that there
exists v € W2°(S"™1) with |[v]|yy1.00gn-1y < € such that

OF = {z(1+v(z)), z € S" 1}
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Then, if we take £ small enough, by Theorem 4.19, we obtain

D(E) > huvnwm S

Let K = AE, with A such that |K| = |B;|. From the isoperimetric inequality, it follows
that A > 1. Since the quantity I(F) is scaling invariant, we have that I(K) = I(F) and,
from the definition of K, that

OK = {Mx(1 +v(x)),z € S" '} = {z(1+ (A =1+ Iv(z))),z € S 1L

Using the definition of A , we obtain

n n k k—

B k=1 (k)/S LY !
ANM—l=""F—-1= -
£ |E|

and, as a consequence,
S [ o
_ Sn—1
B35 A '

Let now h(z) = A — 1 + Av(z). Note that ||A[|y1eogn-1y < 2"[[v|[jp1,00(gn-1) and that
A" € (1,2). Moreover, using Holder inequality, it is easy to check that

1Bl F2@n-1y < 22 0lFagn-1y  and  [[Voh[Faga-1y < 27|V [F2ignory-
Thus,

o n—2 2 n—1 -
D(K) = D(E) > mllvllwwgn—l) =27 m\lhllwwsn -

Let g = (1+ h)" — 1. Then, since |K| = |Bj|, we have [y,_, gdH"" ' = 0 and, from the
smallness assumption on u, we immediately have 1|h| < |g| < 2|h| and 3|V h| < |V,g| <
2|V h|. Now we have to distinguish the cases n = 3 and n > 4 , since we are going to
apply the interpolation Lemma 1.18 to ¢g. In the case n > 4, recalling that C, is the
constant given by the Sobolev embedding in Lemma 1.18, we get

n—3

_2 n—
HhHLoo(sn—l < 2/[gl|Loe g1y < 20|Vl 2 (gn1y IV rdllfocgnn)
< Gal[V7 hHLQ sV hHLoo g1y < 87 0 Gy ||V hHLz gn1 HhHEiZ@L_l),
where in the last inequality we use (1.20). From the above chain of inequalities we deduce

n+1

nl ns L
||h||LZo(§n71) <872 (Cy 1||v7h||%2(§,n71)

and finally, recalling that K = AE and |K| = |B1|, we get

S
D(E) Z 2 17)“V hHL2 Sn— 1) - PythHLOO(S” 1)

4(n
1 Hy *
= Yndy (K, Bl(o))i =T (dH<Ej1E)> )

-2 n—
where v,, = n—1275727.

4(n —1)Cp~t
So, using (1.21) and the isoperimetric inequality, we obtain the desired result (4.29) in
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the case n > 4. We proceed in an analogous way in the case n = 3. Firstly we observe
that, by definition of h it is quickly checked that [[v|[y1.1(s2y < [|A]|y11(s2). Then, the
upper bound in (4.29) in terms of h, can be written as follows

D(E)=D(K) < C’||h||W1,1(Sz), (4.32)

with C positive constant depending on the dimension. Applying Lemma 1.18 to g and
using Lemma 1.19, we obtain:

1Al (s2) < Allgl T (g2) < 1611 V20l 72 (s2) log

8e||v79||%oo(§2)
HVTQH%2(SQ)

210 |UHL°°(SQ)]

Vol o

27e|]VTh|]200(SQ)

VA

< 64|Vl 72(s2) log

] < 64(|V-hl[72(52) log

Choosing now |[h|[ze(s2y small enough, from the upper bound in (4.21), we have

A1 2y < SVl o | (1.33)

!

and, as a consquence, using (4.21) and (4.33),

D(E)log <D(1E)> > éHVTUH%Q(SZ’) log <D(1E)>

i Gr)

s (o)

29 _29
223 HhH%OO(SQ) =23 HhH%oo(Szy

4.2.4 Optimality issue

In this section we will show the sharpness of inequality (4.29) and, as a consequence, the
sharpness for the exponent in inequality (4.29). We start by taking into exam the case
n=3.

Theorem 4.26. Let n = 3. There exists a family of convez sets {Eqy}a>0 such that for
every o
D(E,) — 0, whena —0

and

dy(Ea, EX) = C\/D(Ea) log (4.34)

1
D(Ea)
where C' is a suitable positive constant independent of a.

Proof. We follow the idea contained in [52, Example 3.1] and recall it here for the con-
venience of the reader. Let o € (0,7/2) and consider the following function w = w(yp)
defined over S? and depending only on the spherical distance ¢, with ¢ € [0, 7], from a
prescribed north pole £* € S

—sin? alog (sin @) + sina (sina — sin ) for sinp < sina
w=w(p) =

—sin?(a) log (sin ) for siny > sina.
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Let g := w — @, with @ the mean value of w, i.e.

w/2
W= / w(p)sinp dp = (1 —log2) a® + O(a?),
0
when a goes to 0, and let
R:=(1+39) =1+n.

The C! function R = R(yp) determines in polar coordinates (R,¢) a planar curve. We
rotate this curve about the line £*R, determining in this way the boundary of a convex
and bounded set, that we call E,. We can observe that h and g are the same functions
contained in the proof of Theorem 4.24. The set E,, is indeed a nearly spherical set, which
has h as a representative function and with |E,| = |B1|. Therefore, taking into account
the computations contained in the proof of Theorem 4.24 relative to the functions h and
g and the ones contained in [52] combined with (4.21), we have

1
lgll oo (s2) = o* log P 0(c?),

hllg ey > 3lgl e ey = 50 log ~ + O(a?), (435)
and
IV = 1Vl ey = o (1) + Ol
Using (4.32), we obtain:
D(E,) =0 <a4 log i)

Consequently

D(E,)lo ! —0(a210g X 2 (4.36)
So, we have that D(E,) — 0 as « goes to 0 and, combining (4.35) with (4.36), we have
the validity of (4.34). O

We show now the sharpness of the quantitative Weinstock inequality in dimension
n > 4.

Theorem 4.27. Let n > 4. There exists a family of convex sets {Py}a>0 such that
D(P,) — 0, when a—0

and
dyy (P, PY) > C(n) (D(P,)Y Y

where C'(n) is a suitable positive constant.

Proof. In this proof we follow the construction given in [52, Example 3.2]. Let o €]0,7/2[
and let P, be the convex hull of B;(0) U {—p,p}, where p € R" is given by

1
lp| = :
cos
We have that 5
|Po| = wn + nt 1)wn_1a”+1 + O(O/H'S)

and



We provide here the computation of the boundary momentum, that is

2wn_1 (sin(a))™ Y
n(n+1)  cos(a)

W(P,) = (n2 +n+2 tan2(a))

n—1

ﬁr( ) —/Oa sin™"2(6) df

T (3)

+2(n—1)

Since n > 2, we have

() PTV ()PP PTD(P) = ()77 22 (122

anJrl + O(an+3).

2

Since dy(P,, PY) behaves asimptotically as o, we have proved the desired claim. ]

4.2.5 The planar case

In this section we discuss the stability of the isoperimetric inequality (4.19) in the plane.
This case is treated in a different way since the proof given in Section 3 does not seem to
be adapted to the planar case, as explained in Remark 4.20. Moreover, we observe that,
in two dimension, the inequality (4.17) contained in [25] and the inequality (4.19) are
proved by Weinstock in [82], using the representation of a two dimensional convex set via
its support function. We recall here the definition of support function (see for instance

[75]).

Definition 4.28. Let E C R? be a closed convex set with ) # E # R2. The support
function of E is defined by

h(6) := sup{(x,0) : z € E} for § €S,
where (-,-) denotes the scalar product in R?.

Let £ C R? be an open, convex set in the plane containing the origin and let h(6)
be the support function of E with 6 € [0,27]. Weinstock proved in [82] the following
inequality (see also [25] for details)

P(E) [*"
ww () - P(8) B > ) | reraw=o (4.37)
0
where, for every 0 € [0, 27|, p(x) is defined by
_ P(E)
h(0) = — = +p(0).

By the definition of support function, it holds

2m
/ h(0) dd = P(E).
0
Moreover, since F is convex, we have
h() + h"(6) > 0,
where h” has to be understood in the distributional sense. Then, the function p verifies

27
| weydo=o.
0
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and

P(E
Q(W) +p(9) +p" () > 0. (4.38)
We observe that
1Pl oo ([0,24)) = du(E, E¥), (4.39)

where E* is the disc centered at the origin having the same perimeter as E. Consider
to € [0, 27] such that |[p|| e ([0,2x]) = P(6o). By using property (4.38), it is not difficult to
prove the following result.

Proposition 4.29. Let p be as above, then

p(0) > ~(0),

1 (PE
where v(0) = p(6y) — 3 (2(7r) +p(90)> (0 — 09)? is a parabola which vanishes at the

following points
2p(6o)

% +p(6o)

)

Proof. By property (4.38), we obtain
0 0 rt
p0) = p(00) + [ $Odt=p60)+ [ [ p'(s)ds
90 00 90

ZP(00)+/9:/9:— <P2<f) +p(5)> ds dt

P(E) (0 — 65)

> o) — (g 4 i) ) ES0

which is the claim. Then, p is above the parabola «, that attains its zeros at the following
points:
2p(6o)

% +p(6o)

012 =00+

This concludes the proof. ]

Inequality (4.37) implies Weinstock inequality but it hides also a stability result. In-
deed, by using the previous Proposition, we get the following quantitative Weinstock
inequality in the plane.

Theorem 4.30. There exists 6 > 0 such that, if E C R? is a bounded, open, convex set
with D(E) < 4§, then
5
16 dy(E,E*)\?2
— | 2r 2| <D
972 < P(FE) < D(E),

where D(E) is defined in (4.20). Moreover, the exponent 3 is sharp.

Proof. Since the functional D is scaling invariant, we can assume that E is a convex set
of finite measure with P(F) = 27. From Lemma 4.23, if we take a sufficiently small ¢,
there exists § > 0 such that, if D(E) < §, then F contains the origin, its boundary can
be parametrized as above by means of the support function and, by (4.39),

d = |Ipllpoe (j0,24]) < €.
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Under these assumptions, since in particular |d| < %, Proposition 4.29 gives

14+d 0 — 0,)2
p(0) = d— (;) (0 — 60)* > d - (40> (4.40)
Denoting by 612 the zeros of the parabola d — 7(6_460)2, that are
012 = 6y £ 2Vd,

by using (4.37), the isoperimetric inequality, Holder inequality and (4.40), we get

W(E) 1 aW(E)-P(E)|E| 1o

A el S > 2
DE) = BE)E = TPEVE]  Cam ), PO
1% 1 62 16 s
_ > - — d=.
> g || PO > 5o </H p(@)d@) > ol

By (4.39) and (1.15), being P(E) = 27, we get the claim. In order to conclude the proof,
we have to show the sharpness of the exponent. We construct a family of convex sets F,
with P(E;) = 2m, such that

D(E;) = 0 for e — 0,

and ,
1Pl oo (0,24]) = € + 0 (65)

Let us consider the convex set F having the following support function:
h(6) = 1+p(6), 0 € [0,27],

where the function p is the following

b if 0 € [0,7 — qf
p0) =3 c— =" ifhe[r—a,r+a
b if 0 € [ + o, 27].

Here the parameters «, b and ¢ are

e

4 3 4
=2 b=——¢2 =¢— —e2.
a = 24/¢, 563 C=e— ¢
By construction, we have that
2m
P(E.) =27 and / p(0)do = 0.
0

We recall that (see for instance [82, 83, 25])

Ed=5 [ 020+ now' ) ds

2w 1
W(E.) = / <h3(9) + 2h2(9)h”(0)> do.
0
Arguing as in the proof of Weinstock inequality, a simple calculation gives
2w 1
AW(E) - PE) B =7 [ 20) (24500 + 30710))
0

2m 2m 2
— 27r/ p*(0) do + 7r/ p3(6) db + g/ P2(0)p"(0)dO = Ces + O(%),
0 0 0
where C is a positive constant. This concludes the proof. O
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4.2.6 Main Theorem

In this paragraph we state and prove the main theorem of this section, which is a stability
result for the Weinstock inequality (4.2) in the convex sets case.

Theorem 4.31. Let n > 2. There exists § > 0 such that for every Q C R"™ bounded,
convex open set with o2(Bgr) < (1 + §)02(R?), where Br is a ball with P(Bg) = P(Q),
then

(16 (Ay(0))3 ifn=2
2
0a(Br) — 02(2) _ ) 2/7g (A”ﬁm)) ) ifn=3
o2(92) B ) 41
\ () 7T <“47Zim> T >4,

where 8 and By, are defined in (4.30) and g is the inverse function of f(t) = tlog (%), for
0<t<el

Proof. The proof is a consequence of Theorems 4.24 and 4.30. Since all the quanti-
ties involved are invariant under translations, we can assume that 02 has the origin as
barycenter. Under this assumption in [25] it is proved that

n Q|
w(Q)

02(2) <

It holds

1)
os(Br) = 1 _ [nwn}

R | P(Q)

then, using the previous inequality and (4.18), we have

02(Br) —02(Q)  0a(Br) . _ W(Q) [ nw, \VV (o)
O ORI (P(Q)) 1= p

Let 0 be as in Theorem 4.24. Then if Q is such that o2(Br) < (1 + 6)o2(f2), with

1

5= %6 then D(Q) < § and, for n > 4 from (4.29) in Theorem 4.24, we get

1 n+1

02(Br) — 02(8)) _ (nwn)"t (AH(Q)> 2
02(9) n /Bn

Y

If n = 3, we can conclude a similar way, observing that f(¢) = tlog (%) is invertible for
0 <t < e~ !. Thus, being D(Q) small, we can explicit it in (4.29), obtaining the thesis.
The result in two dimension follows from Theorem 4.30. O
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