Cerminara, Armando (2019) Lefschetz Properties in Algebra, Geometry and Combinatorics. [Tesi di dottorato]

[img]
Preview
Text
PhD_Thesis.pdf

Download (935kB) | Preview
[error in script] [error in script]
Item Type: Tesi di dottorato
Lingua: English
Title: Lefschetz Properties in Algebra, Geometry and Combinatorics.
Creators:
CreatorsEmail
Cerminara, Armandoarmando.cerminara@unina.it
Date: 7 December 2019
Number of Pages: 57
Institution: Università degli Studi di Napoli Federico II
Department: Matematica e Applicazioni "Renato Caccioppoli"
Dottorato: Scienze matematiche e informatiche
Ciclo di dottorato: 32
Coordinatore del Corso di dottorato:
nomeemail
De Giovanni, Francescodegiovan@unina.it
Tutor:
nomeemail
Durante, NicolaUNSPECIFIED
Ilardi, GiovannaUNSPECIFIED
Date: 7 December 2019
Number of Pages: 57
Uncontrolled Keywords: Lefschetz Properties, m-sygygy curves, Artinian Gorenstein Algebras, Hilbert function.
Settori scientifico-disciplinari del MIUR: Area 01 - Scienze matematiche e informatiche > MAT/03 - Geometria
Date Deposited: 13 Jan 2020 13:05
Last Modified: 17 Nov 2021 12:23
URI: http://www.fedoa.unina.it/id/eprint/12953

Abstract

We study the Lefschetz properties for higher order Nagata idealizations and we describe the associated algebras in the monomial square free. Moreover we study the asymptotic behaviour of the Hilbert function. Finally we give a description of the Jacobian module of the 3-syzygy curves, the maximal Tjurina curves and the nodal curves, having only rational irreducible components.

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item