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Introduction and Historical Note

The Lefschetz properties are algebraic abstractions inspired by the so called Hard Lef-
schetz Theorem about the cohomology rings of smooth projective algebraic varieties over
the complex number field indowed with the Euclidean topology, or, more generally, com-
pact complex Khäler manifolds (see [49, 62]). The Hard Lefschetz Theorem was first
stated by S. Lefschetz in [50], but his proof was not entirely rigorous. The first complete
proof was given by Hodge in [43], using his theory of harmonic integrals. Today the
standard proof uses the representation theory of the Lie algebra sl2(C) and it is due
to Chern [11]. Lefschetz’s original proof was made rigorous by Deligne (see [53]), who
extended it to characteristic p.

For one hand, the Lefschetz theory for projective manifolds began by S. Lefschetz, and
it was well established by the late 1950s, but, for the other hand, the investigation of the
Lefschetz properties of Artinian algebras was started in the mid 1980s. Although there
were limited developments on this topic in the 20-th century, in the last years this topic
has attracted the attention of mathematicians from different areas. In fact, nowadays
the Lefschetz properties are considered in a number of distinct contexts, such as Khäler
manifolds, solvmanifolds (see [46]), arithmetic hyperbolic manifolds (see [4]), Shimura
varieties (see [40]), convex polytopes (see [48]), Coxeter groups (see [59]), matroids,
simplicial complexes (see [2, 34, 48, 68, 69]) among others. In these new contexts the
Lefschetz properties showed to have intersections with the algebra itself, the geometry
and the combinatorics.

The cornerstone of the algebraic theory of Lefschetz properties were the original pa-
pers of Stanley (see [68, 69, 71]) and the works of Watanabe, summarized in (see [39]).
Watanabe’s book is the first book on this subject, it combines techniques from algebraic
geometry and from combinatorics to give a detailed account about Lefschetz properties.

A very important construction that appears many times in these works is the so called
Nagata idealization also called trivial extension. In general, Nagata idealization is a
useful tool, developed by Nagata, to convert any R-module M in a ideal of another ring,
A⋉M . In our perspective the starting point is a very interesting isomorphism between
the Nagata idealization of an ideal I = (g0, . . . , gn) ⊂ K[u1, . . . , um] and the level algebra
given by the annihilator of the I, in such way that the new ring is an Artinian Gorenstein
algebra and we get an explicit formula for the Macaulay generator f (see [39, Proposition
2.77])

f = x0g0 + · · ·+ xngn ∈ K[x0, . . . , xn, u1, . . . , um](1,d−1). (0.1)

This bigraded polynomial is closely related with Gordan-Noether and Perazzo construc-
tions of forms with vanishing Hessian (see [12, 31, 33, 35, 61]). It is not a coincidence
since in [51] the authors present a Hessian criterion for the SLP saying that the vanishing
of a (higher) Hessian implies the failure of SLP. This criterion was generalized in [32]
also for the WLP using mixed Hessians. Following the original ideas of Gordan-Noether
and Perazzo, the authors in [31] constructed families of polynomials whose k-th Hessian
is zero.

A natural generalization of (0.1) should be the so called Nagata polynomial of order
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d1 (see Definition (1.4.1)). We study the Lefschetz properties for the algebras associated
to Nagata polynomials of order d1, the geometry of the Nagata hypersurfaces of order
d1 and the interaction between the combinatorics of f and the algebraic structure of
A in the case that the gi are square free monomials. We use a simplicial complex to
study this case. Our first result is that the geometry of Nagata hypersurfaces is very
similar to the geometry of the known hypersurfaces with vanishing Hessian. Hence these
are hypersurfaces, satisfying at least a Laplace equation (see [13, 14]) and they are
scroll hypersurfaces (see Theorem (1.3.9) and Corollary (1.3.10)). From the algebraic
viewpoint, we studied the Lefschetz properties for higher order Nagata idealizations. In
fact, our second main result is about the Lefschetz properties. We split the result in two
cases:

d1 < d2: in this case we give examples with small numbers of summands where the SLP
holds and we recall a result proved in [31] (see Proposition (1.3.5));

d1 ≥ d2: in this case A has the WLP as proved in Proposition (1.3.7).

Finally our third main result is the Theorem (1.4.5) that gives a complete description of
the structure of the algebra A, including the Hilbert vector and its ideal of presentation,
in the case which the gi are square free monomials.

For a standard graded Artinian Gorenstein algebra in general it is natural to try to
understand its Hilbert function. When the codimension of the algebra is less than or
equal to 3, all its Hilbert vector have been characterized (see [68] and [76]); in particular,
they are unimodal, i.e. they never strictly increase after a strict decrease. While it is
known that non unimodal Gorenstein h-vectors exist in every codimension greater than
or equal to 5 (see [5, 6, 7]), it is open whether non unimodal Gorenstein h-vectors of
codimension 4 exist. Historically, the first such example of a non unimodal Gorenstein
h-vector was given by Stanley (see [68, Example 4.3]). He showed that the h-vector
(1, 13, 12, 13, 1) is indeed a Gorenstein h-vector and the non unimodality occurs here
in degree 2. In [73] the authors showed that Stanley’s example is optimal and for our
purposes we call it minimal. Our main result is a generalization of this result. We study
special Gorenstein h-vectors of type (1, r, h2, r, 1). Fixing the codimension r and denoting
the least possible value that h2 may assume by f(r), we study the asymptotic behavior
of f(r). Stanley in [70] conjectured the existence of the following limit

lim
r→∞

f(r)

r
2
3

and he gives a precise value that is 6
2
3 . Bounds were given by Stanley in [72] and

by Kleinschmidt in [47], but the precise limit was only proved in 2006 (see [58]). We
construct a family of Gorenstein algebras called Full Perazzo algebras, related to the
classical work of U. Perazzo about hypersurfaces with vanishing Hessian that are not
cones (see [33, 61]). Our main result is that the Hilbert vectors of Full Perazzo algebras
are always minimal (see Theorem (2.3.5)). Proving two Lemmas (Lemma (2.3.2) and
Lemma (2.3.3)) about the monotonicity of the functions µ(r) = f(r) and δ(r) = r−f(r),
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we are able to give a simple proof of Stanley’s conjecture (see Corollary (2.3.6)). We
pointed out that the h-vector of the Stanley’s example is a special case of a Full Perazzo
algebra. Finally we introduce another family of Artinian Gorenstein algebras having non
unimodal Gorenstein h-vectors: the Turan algebras that are Artinian Gorestein algebra
presented by quadrics (see [34]). We have a conjecture about the asymptotic behaviour
of Artinian Gorenstein algebra presented by quadric, (see Conjecture (2.4.5)).

Instead the focus of the last part of the thesis is the analysis of a particular class of
curves: m-syzygy curves, i.e. reduced complex projective plane curves, whose Jacobian
syzygy module has 3 generators (see Definition (3.2.2)). Some Dimca’s papers have been
of great inspiration, since they give us a detailed overview of this topic, classifying them
carefully and highlighting their properties. Two topics, related to m-syzygy curves, have
been argued: the Milnor algebras (see Definition (3.2.1)) and the Jacobian module (see
Definition (3.3.1)). It is natural to wonder if the properties of Lefschetz type can hold for
these algebras. In [45] the author proves that the Milnor algebra of a singular hypersur-
face of degree d in Pn, with its singular locus of dimension at most n−3, has the WLP in
degree d−2 (see [45, Proposition 3.1]), the SLP in degree d−k−1 at range k, for k < d−1
(see [45, Proposition 3.3]) and more generally, for a general hypersurface, SLP holds (see
[45, Theorem 3.5]). About the Jacobian module, the speech is more complex; the authors
in [19] have proved that the Jacobian module has some property of Lefschetz type. The
minimal resolutions are the important tool for describe the Hilbert vector of the Milnor
algebras and the Jacobian module of a m-syzygy curves. In [42], the authors describe the
minimal resolution of an ideal, generated by 3 generators, and of its saturation, hence it
allows to determine the Hilbert vector of a Milnor algebra and the Jacobian module of a
m-syzygy curve respectively. Our main result has been to determine the Hilbert vector
of the Jacobian module of a 3-syzygy curve (see Theorem (3.4.3)). Moreover we find the
Hilbert vector of the maximal Tjurina curves (see Proposition (3.5.1)), and of the nodal
curves, having only rational irreducible components (see Theorem (3.5.2)). A result due
to Hartshorne, on the cohomology of some rank 2 vector bundles on P2, is used to get
a sharp lower bound for the initial degree of the Jacobian module, under a semistability
condition.

I would thank the Prof. Giovanna Ilardi that has followed me throughout the PhD
course. I would thank the Prof. Pietro De Poi for his suggestions. I would thank the
prof. Rodrigo Gondim and Alexandru Dimca for their collaboration.

4



Contents

1 Lefschetz Properties for higher order Nagata idealization 7
1.1 Artinian Gorenstein algebras . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Weak and Strong Lesfchetz Property . . . . . . . . . . . . . . . . . . . . . 10
1.3 Nagata polynomial of order d1 . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Simplicial Nagata idealization of order k . . . . . . . . . . . . . . . . . . . 16

2 Asymptotic behaviour of lenght five Gorenstein Hilbert function 25
2.1 Classical Bounds of Hilbert function . . . . . . . . . . . . . . . . . . . . . 25
2.2 Construction of non unimodal Hilbert vectors . . . . . . . . . . . . . . . . 26
2.3 A conjecture of R. Stanley . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 A new conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 The Hilbert vector of the Jacobian module of a plane curve 35
3.1 The minimal resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 m-syzygy curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Minimal resolution of the Jacobian module . . . . . . . . . . . . . . . . . . 41
3.4 Results on the Hilbert vector of N(f) for 3-syzygy curves . . . . . . . . . 44
3.5 Maximal Tjurina curves and nodal curves . . . . . . . . . . . . . . . . . . 49
3.6 Relation to a result by Hartshorne . . . . . . . . . . . . . . . . . . . . . . 50

5





Chapter 1
Lefschetz Properties for higher order
Nagata idealization

1.1 Artinian Gorenstein algebras

We recall some basic facts about Artinian Gorenstein algebras. For a more detailed
account, see [31, 39, 51, 56, 62].

In all the chapter K denotes a field of characteristic zero, unless any clarifications.

Definition 1.1.1. Let R = K[x0, . . . , xn] be the polynomial ring in n+ 1 variables and
I ⊂ R be a homogeneous Artinian ideal such that I1 = 0. A graded Artinian K-algebra
A = R/I = ⊕d

i=0Ai is a standard graded Artinian K-algebra if it is generated in degree
1 as an algebra.

Setting hi = dimAi, the Hilbert vector is the vector Hilb(A) = (1, h1, . . . , hd). If
I1 = 0, then h1 is called the codimension of A. The Hilbert vector is said to be unimodal
if there exixts an integer t ≥ 1 such that:

1 ≤ . . . ≤ ht−1 ≤ ht ≥ ht+1 ≥ . . . ≥ hd.

Moreover the Hilbert vector is said to be symmetric if

hi = hd−i ∀i = 0, . . . , ⌊d
2
⌋.

Definition 1.1.2. A standard graded Artinian K-algebra, A = ⊕d
i=0Ai, is Gorenstein

if and only if dimAd = 1 and the restriction of the multiplication of the algebra in
complementary degree, that is, Ak × Ad−k → Ad is a perfect paring for k = 0, 1, . . . , d
(see [51]).
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1 Lefschetz Properties for higher order Nagata idealization

If Aj = 0 for j > d, then d is called the socle degree of A.

Remark 1.1.3. Since Ak ×Ad−k → Ad is a perfect paring for k = 0, 1, . . . , d, it induces
two K−linear maps, Ad−k → A∗

k, with A∗
k := Hom(Ak, Ad) and Ak → A∗

d−k, with
A∗
d−k := Hom(Ad−k, Ad), that are two isomorphisms.

Definition 1.1.4. Let K be a field and let A =

d⨁
i=0

Ai be a graded Artinian K-algebra

with A0 = K and Ad ̸= 0. Let

• : Ai ×Ad−i → Ad

such that •(α, β) := αβ, be the restriction of the multiplication in A. The Artinian
graded K-algebra A satisfies the Poincaré duality property if:

1. dimKAd = 1;

2. • : Ai ×Ad−i → Ad is no degenerate for every i = 0, . . . , ⌊d2⌋.

It is clear that, by definition, a standard graded Artinian Gorenstein K-algebra, A =
⊕d
i=0Ai, satisfies the Poicaré duality property. In fact we have the following Proposition:

Proposition 1.1.5. ([30],[51, Proposition 1.4], [54, Proposition 2.1]) Let A = ⊕d
i=0Ai

be a graded Artinian K-algebra. Then A satisfies the Poincaré duality property if and
only if it is Gorenstein.

All graded Artinian K-algebras satisfying the Poincaré duality property have the sym-
metric Hilbert vector, hence, by Proposition (1.1.5), the Hilbert vector of a standard
graded Artinian Gorenstein K-algebra is symmetric. Moreover let’s specify that, given
a standard graded Artinian Gorenstein K-algebra, its Hilbert vector is not always uni-
modal; infact in [5] we can find examples of standard graded Artinian Gorenstein K-
algebras which the Hilbert vector is not unimodal (see also the next sections).

Let R = K[x0, . . . , xn] be the polynomial ring in n + 1 variables. we denote by Rd =
K[x0, . . . , xn]d the K-vector space of homogeneous polynomials of degree d. We denote by
Q = K[X0, . . . , Xn] the ring of differential operators of R, whereXi =

∂
∂xi

for i = 0, . . . , n.
We denote by Qk = K[X0, . . . , Xn]k the K-vector space of homogeneous differential
operators of R of degree k.
For each d ≥ k ≥ 0 there exist natural K-bilinear maps Rd × Qk → Rd−k defined by
differentiation:

(f, α) → fα := α(f).

Let f ∈ R be a homogeneous polynomial of degree deg f = d ≥ 1, we define:

Ann(f) := {α ∈ Q|α(f) = 0} ⊂ Q.

This is called the annihilator of f . Since Ann(f) is a homogeneous ideal of Q, we can
define A = Q/Ann(f).
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1.1 Artinian Gorenstein algebras

Remark 1.1.6. V : f = 0 ⊂ Pn is a cone if and only if Ann(f)1 ̸= 0. We know that
V : f = 0 in Pn is a cone if and only if the partial derivatives of the first order are linearly
dependent. In fact the Ann(f)1 ̸= 0 if and only if exists a linear differential operator
F ∈ Q1 such that F (f) = 0. The annihilator of f is contained in the the maximal ideal,
(X0, . . . , Xn), of Q. Thence we get:

F =
n∑
i=0

αiXi ⇔ F (f) =
n∑
i=0

αiXi(f) ⇔ 0 =
n∑
i=0

αi
∂f

∂xi

with coefficients α0, . . . , αn are not all zero. We have a linear combination of partial
derivatives of the first order, with coefficients not all zero, hence they are linearly depen-
dent.

From now on, we assume that Ann(f)1 = 0, so that the hypersurface V : f = 0 ⊂ Pn
is not a cone. Moreover, by Definition (1.1.1) and Definition (1.1.2), A = Q/Ann(f)
is a standard graded Artinian Gorenstein K-algebra. Conversely, by theory of inverse
systems, we get the following characterization of standard graded Artinian Gorenstein
K-algebras:

Theorem 1.1.7 (Double annihilator theorem of Macaulay). Let R = K[x0, . . . , xn] and
let Q = K[X0, . . . , Xn] be the ring of differential operators. Let A = ⊕d

i=0Ai = Q/I,
with I ⊂ Q homogeneous ideal, be a standard graded Artinian K-algebra. Then A is
Gorenstein if and only if there exists f ∈ Rd such that A ≃ Q/Ann(f).

A proof of this result can be found in [51, Theorem 2.1].

Remark 1.1.8. With the previous notation, let A =
d⨁
i=0

Ai = Q/I be a standard graded

Artinian K-algebra. The socle degree of A coincides with the degree of the form f .

Now we can deal with standard bigraded Artinian Gorenstein algebras, i.e. Artinian
Gorenstein algebras, A = ⊕d

i=0Ai, such that⎧⎪⎨⎪⎩
Ad ̸= 0

Ak =

k⨁
i=0

A(i,k−i) for k < d.

The pair (d1, d2), such that A(d1,d2) ̸= 0 and d1 + d2 = d, is said the socle bidegree of A.

Remark 1.1.9. Since A∗
k ≃ Ad−k and since duality is compatible with direct sum, we

get A∗
(i,j) ≃ A(d1−1,d2−j).

By abuse notation, we denote the polynomial ring viewed as standard bigraded ring
in the set of variables {x0, . . . , xn} and {u1, . . . , um} by R = K[x0, . . . , xn, u1, . . . , um].
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1 Lefschetz Properties for higher order Nagata idealization

Definition 1.1.10. A homogeneous polynomial f ∈ R(d1,d2) is said to be a bihomoge-
neous polynomial of total degree deg f = d = d1+d2, if f can be written in the following
way:

f =
s∑
i=1

figi, (1.1)

where fi ∈ K[x0, . . . , xn]d1 and gi ∈ K[u1, . . . , um]d2 , ∀i ≤ s

Definition 1.1.11. A homogeneous ideal I ⊂ R is a bihomogeneous ideal if

I =

∞⨁
i,j=0

I(i,j)

where I(i,j) = I ∩R(i,j) ∀i, j.

Let Q = K[X0, . . . , Xn, U1, . . . , Um] be the associated ring of differential operators
and let f ∈ R(d1,d2) be a bihomogeneous polynomial of total degree d = d1 + d2, then
I = Ann(f) ⊂ Q is a bihomogeneous ideal and A = Q/I is a standard bigraded Artinian
Gorenstein algebra of socle bidegree (d1, d2) and codimension N = n+m+ 1.

Remark 1.1.12. Let f ∈ R(d1,d2) be a bihomogeneous polynomial of degree (d1, d2) and
let A be the associated bigraded algebra of socle bidegree (d1, d2), then for i > d1 or
i > d2:

I(i,j) = Q(i,j).

In fact for all α ∈ Q(i,j) with i > d1 or j > d2 we get α(f) = 0, so Q(i,j) = I(i,j). As
consequence, we have the following decomposition for all Ak:

Ak =
⨁

i≤d1,j≤d2,i+j=k
A(i,j).

Furthermore for i < d1 and j < d2, the evaluation map Q(i,j) → A(d1−i,d2−j) given by
α→ α(f) provides the following short exact sequence:

0 −−−−→ I(i,j) −−−−→ Q(i,j) −−−−→ A(d1−i,d2−j) −−−−→ 0.

1.2 Weak and Strong Lesfchetz Property

Definition 1.2.1. Let A = ⊕d
i=0Ai, Ad ̸= 0, be a graded Artinian algebra. A has the

weak Lefschetz property (for short WLP) if there exists an element L ∈ A1 such that the
multiplication map

×L : Ai → Ai+1

has full rank for all 0 ≤ i ≤ d− 1.

The element L ∈ A1 with this property, is said to be weak Lefschetz element.
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1.2 Weak and Strong Lesfchetz Property

Proposition 1.2.2. [39, Proposition 3.2] Let A = ⊕d
i=0Ai, Ad ̸= 0 be a standard graded

Artinian K−algebra. If A has the WLP, then A has a unimodal Hilbert vector.

Definition 1.2.3. Let A =

d⨁
i=0

Ai, Ad ̸= 0, be a graded Artinian algebra. A has the

strong Lefschetz property (for short SLP ), if there exists an element L ∈ A1 such that
the multiplication map

•Lk : Ai → Ai+k

has full rank for all 0 ≤ i ≤ d and 1 ≤ k ≤ d− i.

The element L ∈ A1, with this property, is said to be strong Lefschetz element.
Let A = ⊕d

i=0Ai, Ad ̸= 0 be a graded Artinian K-algebra. If A has the SLP, then, for
k = 1, A has the WLP. Hence, by Proposition (1.2.2), A has a unimodal Hilbert vector.

Definition 1.2.4. Let A =
d⨁
i=0

Ai, Ad ̸= 0, be a graded Artinian K−algebra. A has

the strong Lefschetz property in the narrow sense if there exists an element L ∈ A1 such
that the multiplication map •Ld−2i : Ai → Ad−i is bijective for i = 0, . . . , ⌊d2⌋.

If a graded Artinian K−algebra A has the strong Lefschetz property in the narrow
sense, then the Hilbert vector of A is unimodal and symmetric as the following Theorem
shows:

Theorem 1.2.5. [39] Let A =

d⨁
i=0

Ai, Ad ̸= 0, be a graded Artinian K−algebra. A has

the SLP and the Hilbert vector is symmetric if and only if A has the SLP in the narrow
sense.

Corollary 1.2.6. Let A =
d⨁
i=0

Ai, Ad ̸= 0 be a standard graded Artinian Gorenstein

algebra the two condition SLP and SLP in the narrow sense are equivalent.

Proof. Since A is a standard graded Artinian Gorenstein algebra, hence the Hilbert vector
is symmetric. Thence A has the SLP if and only if A has the SLP in the narrow sense,
by Theorem (1.2.5).

The Lefschtez properties are linked to the concept of the complete intersection ideals
and almost complete intersection ideals. Let K be a field of characteristic zero and let
R = K[x1, . . . , xn] be a polynomial ring.

Definition 1.2.7. An artinian ideal I ⊂ R is called monomial complete intersection
ideal if

I = (xα0
0 , . . . , xαn

n ).

The graded, Artinian K-algebra, R/I, is said monomial complete intersection.
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1 Lefschetz Properties for higher order Nagata idealization

Theorem 1.2.8. Every monomial complete intersection R/(xα1
1 , . . . , xαn

n ) has the SLP
with

∑n
i=0 xi as strong Lefschetz element.

Proof. See [56, Theorem 1.1].

Remark 1.2.9. By [39, Theorem 2.23], a graded, Artinian, complete intersection K-
algebra is a Gorenstein K-algebra.

Definition 1.2.10. An ideal I ⊂ R is said to be almost complete intersection ideal, if it
is generated by one more homogeneous form than codimension of R, i.e.

I = (f1, . . . , fn+1)

where deg fi = di, di ≤ di+1 and dn+1 ≤
n∑
i=1

di − n.

In recent years, many authors have worked with the goal to find conditions for which a
graded Artinian K-algebra can satisfy the Lefschetz properties (WLP or SLP). Certainly
a very important criterion is due to J. Watanabe, called criterion Hessian, linking the
study of the Lefschetz properties to the higher Hessians.

Definition 1.2.11. Let f ∈ Rd be a homogeneous polynomial, let A =
d⨁
i=0

Ai =
Q

Ann(f)

be the associated Artinian Gorenstein algebra and let B = {αj |j = 1, . . . , σk} ⊂ Ak be
an ordered K-basis of Ak. The k-th Hessian matrix of f with respect to is

Hesskf := (αiαj(f))
σk
i,j=1 .

The k-th Hessian of f with respect to is

hesskf := det(Hesskf ).

Remark 1.2.12. If k = 0, the Hessian is just hess0f = f . Instead the Hessian of order
k = 1 with respect to the standard basis is just the classical Hessian.

Theorem 1.2.13. [51, 75] Let notation be as above. An element L = a1X1+. . .+anXn ∈
A1 is a strong Lefschetz element of A = Q/Ann(f) if and only if

hesskf (a1, . . . , an) ̸= 0

for all k = 0, . . . , ⌊d/2⌋. In particular, if for some k ≤ ⌊d2⌋ we have hesskf = 0, then A
does not have the SLP.
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1.3 Nagata polynomial of order d1

1.3 Nagata polynomial of order d1

Definition 1.3.1. Let A be a ring and M be a A-module. The idealization of M , A⋉M ,
is the product set A×M in which addition and multiplication are defined as follows:

(a,m) + (b, n) = (a+ b,m+ n) and (a,m).(b, n) = (ab, bm+ an).

The following is a known result whose proof can be found in [39, Theorem 2.77].

Theorem 1.3.2. Let R = K[u1, . . . , un] and R′ = K[u1, . . . , un, x0, . . . , xn] be polynomial
rings and let Q = K[∂1, . . . , ∂n] and Q′ = K[∂1, . . . , ∂n, δ0, . . . , δn] the associated ring of
differential operators. Let I = (g1, . . . , gm) ⊂ Q be an ideal generated by forms of degree
d and let A = Q/Ann(g1, . . . , gm) be the associated level algebra. Let f = x0g0 + . . . +
xmgm ∈ R′ be a bihomogeneous polynomial and let A′ = Q′/Ann(f) be the associated
algebra. Considering I as an A-module, we have

A⋉ I ≃ A′

Definition 1.3.3. A bihomogeneous polynomial f =∈ K[x0, . . . , xn, u1, . . . , um](d1,d2)
such that:

f =
s∑
i=0

xd1i gi (1.2)

where gi polynomials in the u1, . . . , um variables, of degree d1, is called a Nagata polyno-
mial of order d1, if the polynomials gi are linearly independent and they depend on all
variables.

By Theorem (1.3.2), the algebra A = Q/Ann(f) can be realized as a trivial extension
and it is said Nagata idealization of order d1, socle degree d1 + d2 and codimension
n+m+ 1.

Let R = K[x0, . . . , xn, u1, . . . , um] be the polynomial ring and f ∈ R(d1,d2), with d1 ≥ 1,

be a polynomial of type f =
n∑
i=0

xd1i gi, where gi is a polynomial in u1, . . . , um variables,

for all i = 0, . . . ,m. We denote by Q = K[X0, . . . , Xn, U1, . . . , Um] the ring of differential
operators of R, where Xi =

∂
∂xi

, for i = 0, . . . , n and Uj = ∂
∂uj

, for j = 1, . . . ,m. Let

A = Q
Ann(f) the associated algebra.

In the case d1 < d2, we have an example such that A has the SLP, hence A has the
WLP:

Example 1.3.4. Let f = x2u3 + y2v3 be a bihomogeneous polynomial. Hence A has
bidegree (2, 3), Hilbert vector (1, 4, 6, 6, 4, 1) and A has the SLP. By the Hessian criterion,
Theorem 1.2.13, there are two Hessians to control, hess1f ̸= 0 and hess2f ̸= 0.

If the number of summands in f is great enough, we get the following proposition:
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1 Lefschetz Properties for higher order Nagata idealization

Proposition 1.3.5. [31, Proposition 2.5] Let x0, . . . , xn and u1, . . . , um be independent
sets of indeterminates with n ≥ m ≥ 2. For j = 1, . . . , s, let fj ∈ K[x0, . . . , xn]d1 and
gj ∈ K[u1, . . . , um]d2 be linearly independent forms with 1 ≤ d1 < d2. If s >

(
m−1+d1

d1

)
,

then the form of degree d1 + d2 given by

f = f1g1 + · · ·+ fsgs

satisfies
hesskf = 0

Corollary 1.3.6. Let A be a Nagata idealization of order d1 < d2, then A fails SLP.

If we consider d1 ≥ d2, we have the following Proposition:

Proposition 1.3.7. With the same notations, if d1 ≥ d2, then A has the WLP and

L =
n∑
i=0

Xi is a weak Lefschetz element.

Proof. (The idea of this result was shared by the work group in Banff ).
We denote by k = ⌊d1+d22 ⌋. We note that d1 ≥ k. In fact, by hypothesis d1 ≥ d2, hence:

d1 + d1 ≥ d1 + d2 ⇒
2d1
2

≥ d1 + d2
2

⇒ d1 ≥
d1 + d2

2
≥ ⌊d1 + d2

2
⌋ = k.

We have:
Ak = A(k,0) ⊕A(k−1,1) ⊕ · · · ⊕A(k−d2,d2).

We want to prove that for L = X0 + . . .+Xn ∈ Q[X0, . . . , Xn]1

•L : A(k−i,i) → A(k−i+1,i)

has maximal rank for all i = 0, . . . , d2. Since A is a standard graded Artinian Gorenstein
algebra it is enough to check it in the middle (see [55, Proposition 2.1]).
We denote ωj = Xk−i

j αj , where αj ∈ Q[U1, . . . , Um]i, for j = 0, . . . , n and we suppose
that {ωj} is a basis for A(k−i,i). Hence we get∑

j

bjωj = 0 ⇒ bj = 0.

It implies that the αj(gj) are linear independent in K(x1, . . . , xn).
Let Ωj = Xk−i+1

j αj = •L(ωj), we want to prove that {Ω0, . . . ,Ωn} is a linear independent

system for A(k−i+1,i). We consider the following linear combination
∑
j

cjΩj = 0. By

definition, we get:

0 =
∑
j

cjΩj(f) =
∑
j

cjΩj

(∑
i

xd1i gi

)
=
∑
j

cjx
d1−k+i−1
j αj(gj).

14



1.3 Nagata polynomial of order d1

Since αj(gj) are linear independent in K(x1, . . . , xn), for all j = 0, . . . , n, we have

cjx
d1−k+i−1
j = 0 ⇒ cj = 0.

The result follows.

For this case, there is nothing we are able to say about the SLP.
In relation to Nagata polynomial of order d1, from the point of view of the geometry,

we can introduce a particular class of hypersurface in PN determinated by a polinomial
of the type (1.2) and decribe their geometry.

Definition 1.3.8. Let R = K[x0, . . . , xn, u1, . . . , um] be the polynomial ring, with K an
algebraically closed field. Let f ∈ R be a Nagata polynomial of order d1 and degree
deg f = d = d1 + d2. The hypersurface X = V (f) ⊂ PN is called a Nagata hypersurface
of order d1.

Let X = V (f) ⊂ PN be a Nagata hypersurface of order d1. We can consider two
linear space respectively Pm−1 with coordinates u1, . . . , um and Pn with coordinates
x0, x1, . . . , xn. Let pα ∈ Pm−1 be a point and we consider the following linear space
of dimension n+ 1:

Lα := ⟨pα,Pn⟩ = {⟨pα, q⟩ : q ∈ Pn} .

If we consider the intersection Lα with X, we obtain a variety Yα. Yα is reducible whose
irreducible components are the linear space Pn and a variety, called residue and denoted
by Ỹα. Ỹα is a cone of vertex pα over a (n− 1)−dimensional basis.

Theorem 1.3.9. A Nagata hypersurface X = V (f) ⊂ PN of order e consists of the
union of the residue parts Ỹα, i.e.

X = ∪αỸα.

Proof. Fixed a point pα = (0 : . . . : 0 : a1 : . . . : am) ∈ Pm−1 and let p = (x0 : . . . : xn :
0 : . . . : 0) be a point in Pn. We consider the line that joins the points pα and p :

Lα :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = λx0

· · · · · · · · ·
xn = λxn

u1 = µa1

· · · · · · · · ·
um = µam

with λ, µ ∈ K.
Since X = V (f) is a Nagata hypersurface of order d1, we have:

f = xd10 g0 + . . .+ xd1n gn.

15



1 Lefschetz Properties for higher order Nagata idealization

If we consider the intersection between the line Lα and the Nagata hypersurface X,
we get:

fLα = λd1x0
d1g0(µa1, . . . , µam) + . . .+ λd1xn

d1gn(µa1, . . . , µam) = λd1µd2
n∑
i=0

xi
d1gi(a)

where a is the vector (a1, . . . , am).

Since pα and p are points of X, then
n∑
i=0

xi
d1gi(a) = 0. Therefore

Ỹα = V

(
n∑
i=0

xi
d1gi(a)

)

and, by arbitrariness of the points pα ∈ Pm−1 and p ∈ Pn, we have ∪αỸα = X.

As consequence of the above theorem, we can say how many linear spaces there are in
a Nagata hypersurface of order e. We note that Pm−1 and Pn are linear spaces on X.
Thus we have:

Corollary 1.3.10. Let X = V (f) ⊂ PN be a Nagata hypersurface of order d1. There is
a family of lines of dimension m+ n− 1 on X.

Proof. Let pα ∈ Pm−1 be a point, then there is a family of lines of dimension n that joins
pα and the linear space Pn, for all pα ∈ Pm−1. This family covers Ỹα. Then we have a
family of lines of dimension (n) + (m − 1) = n +m − 1 on X. The singular locus of X
contains Pm−1.

Conversely, let p ∈ Pn be a point, then there is a family of lines of dimension m − 1
that joins p and all points q in the linear space Pm−1. So the proof follows.

1.4 Simplicial Nagata idealization of order k

Definition 1.4.1. A bihomogeneous polynomial

f =
n∑
i=0

xki gi ∈ K[x0, . . . , xn, u1, . . . , um](k,d−k) (1.3)

is called a simplicial Nagata polynomial of order k if all gi are square free monomials.

The following combinatorial constructions were inspired by [34].

Definition 1.4.2. Let V = {u1, . . . , um} be a finite set. A simplicial complex ∆ with
vertex set V is a collection of subsets of V , i.e. a subset of the power set 2V , such that
for all A ∈ ∆ and for all subset B ⊂ A, we have B ∈ ∆.
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1.4 Simplicial Nagata idealization of order k

We say that ∆ is a simplex if ∆ = 2V .
The members of ∆ are referred as faces and the maximal faces (respect to the inclusion)
are the facets. The vertex set of ∆ is also called 0−skeleton. If A ∈ ∆ and |A| = k, it is
called a (k − 1)−face, or a face of dimension k − 1: the 0−faces are the vertices and the
1−faces are called edges.

Definition 1.4.3. If all the facets have the same dimension d > 0, the complex is said
to be pure.

Let ∆ be a pure simplicial complex of dimension d > 0 with vertex set V = {u1, . . . , um},
we denote by fk the number of (k − 1)-faces, hence f0 = 1, f1 = m, fd+1 is the number
of facets of ∆ and fj = 0, for j > d+ 1.

Remark 1.4.4. There is a natural bijection between the square free monomials, of
degree r, in the variables u1, . . . , um, and the (r−1)-faces of the simplex 2V , with vertex
set V = {u1, . . . , um}. In fact, a square free monomial g = ui1 · · ·uir , in the variables
u1, . . . , um, corresponds to the finite subset of 2V given by {ui1 , . . . , uir} . To any finite
subset F of 2V , we associate the monomial mF =

∏
ui∈F

ui of square free type.

An important result about simplicial Nagata idealization can be found in [34, Theorem
3.2].

Let f ∈ K[x0, . . . , xn, u1, . . . , um](k,k+1) be a simplicial Nagata polynomial of order k:

f =
n∑
r=0

xkrgr (1.4)

with gr monomials in variables u1, . . . , um of degree k + 1.
We want to characterize the Hilbert vector of the algebras associated to the Nagata

polynomial of type (1.4).
Let ∆ be a pure simplicial complex of dimension k, with vertex set V = {u1, . . . , um}.
We denote by fk the number of (k − 1)-faces, hence f0 = 1, f1 = m, fk+1 is the number
of the facets of ∆ and fj = 0 for j > k + 1.

The facets of ∆, associated to f , corresponding to the monomials gi, will be labeled by
gi. The associated algebra is A∆ = Q/Ann(f∆). By abuse of notation, we will always
denote f∆ with f and A∆ with A.

If p ∈ K[u1, . . . , um] is a square free monomial, we denote by P ∈ K[U1, . . . , Um] the
dual differential operator P = p(U1, . . . , Um).

Theorem 1.4.5. [10, Theorem 3.5] Let f ∈ K[x0, . . . , xn, u1, . . . , um](k,k+1) be a simpli-
cial Nagata polynomial of order k:

f =
n∑
r=1

xkrgr
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1 Lefschetz Properties for higher order Nagata idealization

with gr monomials in variables u1, . . . , um of degree k + 1. Let ∆ be a pure simplicial
complex of dimension k and let A = Q/Ann(f). Then

A =
d=2k+1⨁
i=0

Ai where Ai = A(i,0) ⊕A(i−1,1) ⊕ · · · ⊕A(0,i), Ad = A(k,k+1)

1. for all j = 1, . . . , k + 1 :

dimA(i,j) =

⎧⎪⎨⎪⎩
fj for i = 0

(n+ 1) · fj for 1 ≤ i < k

fk+1−j for i = k

where fj is the number of the subfaces, of dimension j − 1, of the facet, gi, of ∆.

2. I = Ann(f) is generated by

(a) ⟨X0, . . . , Xn⟩k+1 and U2
1 , . . . , U

2
m;

(b) the monomials in I representing the minimal faces of the complement of ∆,
∆c;

(c) the monomials Xi
rPr, for i = 1, . . . , k, such that, fixed the facet Mr of ∆,

corresponding to the monomial gr, Pr is the dual differential operator of pr;
pr is a monomial in the variables u1, . . . , um, corresponding to a face M ′ of
∆ s.t. M ′ ∩Mr = ∅;

(d) the binomials Xk
r G̃r−Xk

s G̃s where gr = g̃rgrs and gs = g̃sgrs and grs represents
a common subface of gr, gs.

Proof. 1. Let f be of type (1.4) associated to the pure simplicial complex ∆ of di-
mension k. The variables u1, . . . , um represent the vertices of ∆.

We consider the following cases:

• for i = 0 and j = 1, . . . , k + 1, A(0,j) is generated by the only monomials
of degree j, in the variables U1, . . . , Uk+1, that do not annihilate f. These
monomials represent (j − 1)− faces of ∆. We need to show that they are
linearly independent over K.
Consider {Ω1, . . . ,Ων} a system of monomials of Q(0,j), where Ωs, for s =
1, . . . , ν, is associated to any (j − 1)-face ω. We take any linear combination:

0 =

ν∑
r=0

crΩr(f) =

ν∑
r=0

cr

n∑
s=0

xksΩr(gs) =

n∑
s=0

xs

ν∑
r=0

Ωr(gs).

Therefore we get
ν∑
r=0

crΩr(gs) = 0, for all s = 0, . . . , n. For each r = 0, . . . , ν,

there is a s = 0, . . . , n, such that if Ωr(gs) ̸= 0, then cr = 0 for all r. Hence
dimA(0,j) = fj , where fj is the number of (j − 1)−faces of ∆.
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1.4 Simplicial Nagata idealization of order k

• for 1 ≤ i < k and j = 1, . . . , k+1, the generators of A(i,j) are the monomials of
typeXi

sUr1Ur2 · · ·Urj for s = 0, . . . , n, for all j. Fix s = 0, . . . , n, and letMs be
the facet of ∆, corresponding to the monomial gs, the monomial Ur1Ur2 · · ·Urj
of Q(0,j) is the dual differential operator of the monomial ur1ur2 · · ·urj , that
gives the (j−1)−dimensional subfaces ofMs. The monomialsXi

sUr1Ur2 · · ·Urj
for s = 0, . . . , n, for all j are linearly independent. In fact, denoting by Ωis the
monomial Xi

sUr1Ur2 · · ·Urj , for s = 0, . . . , n, we note that:

Ωis(f) = cxk−is (Ur1 · · ·Urj )(gs) ̸= 0

since (Ur1 · · ·Urj )(gs) identifies the vertices of the (j − 1)−dimensional face.
We get:

n∑
s=0

csΩ
i
s(f) = 0 ⇔ cs = 0 ∀s.

For s = 0, . . . , n, in correspondence of Ωis(f), we can get a number of (j −
1)−dimensional faces of ∆. Denoting such number by f j , we have dimA(i,j) =

(n+ 1) · fj .
• for i = k and j = 1, . . . , k, by duality A∗

(0,k+1−j) ≃ A(k,j), thence we have:

dimA(k,j) = dimA∗
(0,k+1−j) = fk+1−j .

2. Let I = Ann(f) be the annihilator. We consider the following exact sequence:

0 −−−−→ I(i,j) −−−−→ Q(i,j) −−−−→ A(k−i,k+1−j) −−−−→ 0. (1.5)

we have the following cases:

• for i = 0 and 1 ≤ j ≤ k + 1, we have by (1.5)

dimA(0,j) = fj ⇒ dim I(0,j) = dimQ(0,j) − fj .

Since A(0,j) has a basis given by the (j−1)−faces of ∆, then I(0,j) is generated
by monomials representing all the (j − 1)−faces of the complement of ∆. In
I, it is enough to consider the minimal faces of ∆c, by definition of ideal.
We note that in I(0,2) there are also the monomials U2

1 , . . . , U
2
m, since the

monomials gi, in the variables u1, . . . , um are square free.

• for 1 ≤ i < k and 1 ≤ j ≤ k + 1, fix the facet Mr of ∆, corresponding to
gr, since A(i,j) has a basis given by the (j − 1)−dimensional subfaces of Mr,
then I(i,j) is generated by monomials Xi

rPr where Pr is the dual differential
operator of pr; pr is a monomial in the variables u1, . . . , um, corresponding to
a (j − 1)−dimensional face M r s.t. M r ∈ ∆c or M r ∈ ∆ and M r ∩Mr = ∅.

• for i = k and 1 ≤ j ≤ k+1, we fix two facets of ∆, Mr and Ms, corresponding
to the monomials gr and gs, and such that Mr ∩Ms ̸= ∅. Let Mrs = Mr ∩
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1 Lefschetz Properties for higher order Nagata idealization

Ms; we denote the monomial corresponding to it by grs. We consider M̃r =
Mr\Mrs and M̃s =Ms\Mrs. Let g̃r and g̃s be the monomials corresponding to
M̃r and M̃s. We note that M̃r∩M̃s = ∅. Hence the binomials, Xk

r G̃r−Xk
s G̃s,

are in I(k,j), where G̃r and G̃s are the dual differential operators of g̃r and g̃s
respectively.
Let us consider the following exact sequence:

0 −−−−→ I(k,j) −−−−→ Q(k,j) −−−−→ A(0,k+1−j) −−−−→ 0,

we get dim I(k,j) = dimQ(k,j)−fk+1−j . Let Q̃(k,j) be the K−space spanned by
all the monomials Xk

r G̃r, where G̃r is the dual differential operator of gr that
is a monomial in the variables u1, . . . , um, corresponding to a subface of Mr.
Let I(k,j) ⊂ I(k,j) be the K-vector space spanned by the monomials Xk

r Pr,
where Pr is the dual differential operator of the monomial, in the variables
u1, . . . , um, pr, not corresponding to a subface of Mr. They are two K−vector
spaces s.t. Q(k,j) = Q̃(k,j) ⊕ I(k,j). We consider the ideal Ĩ(k,j) ⊂ Q̃(k,j). The
exact sequence given by evaluation restricted to Q̃(k,j) becomes:

0 −−−−→ Ĩ(k,j) −−−−→ Q̃(k,j) −−−−→ A(0,k+1−j) −−−−→ 0.

We note:

dim I(k,j) = dimQ(k,j) − fk+1−j = dim Q̃(k,j) + dim I(k,j) − fk+1−j =

= dim Ĩ(k,j) + fk+1−j + dim I(k,j) − fk+1−j = dim Ĩ(k,j) + dim I(k,j).

Hence I(k,j) = Ĩ(k,j)⊕ I(k,j). The generators of Ĩ(k,j) are the binomial Xk
r G̃r−

Xk
s G̃s precisely. The result follows.

Moreover for i = k + 1 and j = 0, it is clear that I(k+1,0) = (X0, . . . , Xn)
k+1. In

fact Xk+1
i (f) = 0, for i = 0, . . . , n, since the monomials in x0, . . . , xn of f have

degree k, by Remark (1.1.12).

We discuss the following example:

Example 1.4.6. Let V = {u1, . . . , u6} be a finite set. We have:

2V = {∅, {u1}, . . . , {u6}, . . . , {u1, . . . , u6}}

Let ∆ be the following simplicial complex:

∆ = {∅, {u1}, . . . , {u6}  
vertices

, {u1, u2}, . . . , {u5, u6}  
edges

, {u1, u2, u3}, . . . , {u2, u3, u6}  
2−faces

}

It is given by two pyramids, with the common basis, of vertices u1, . . . u5 and u6 and
faces labeled by g0, . . . , g6 and g7:
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1.4 Simplicial Nagata idealization of order k

u1

u2

u3

u4

u5

u6

g0

g1

g2 g3

g4

g5

g6

g7

The 2−faces are the facets of ∆, then ∆ is pure of dimension 2.
Let

f = f∆ = x20u1u2u3 + x21u1u2u4 + x22u1u4u5 + x23u1u3u5+

+ x24u2u3u6 + x25u2u4u6 + x26u4u5u6 + x27u3u5u6

be the bihomogeneous polynomial of degree 5. It is a Nagata polynomial of order 2 and
the monomials g0 = u1u2u3, g1 = u1u2u4, g2 = u1u4u5, g3 = u1u3u5, g4 = u2u3u6,
g5 = u2u4u6, g6 = u4u5u6 and g7 = u3u5u6 are of square free type.

We have
A = A0 ⊕A1 ⊕A2 ⊕A3 ⊕A4 ⊕A5

and the Hilbert vector is given by:

h0 = 1 = h5 and h1 = 14 = h4.

We calculate h2 = dimA2 and h3 = dimA3.
By Theorem (1.4.5), we have

h2 = dimA2 = dimA(2,0) + dimA(1,1) + dimA(0,2) =

= f3 + 8 · f1 + f2 = 8 + 8 · 3 + 12 = 44

h3 = dimA3 = dimA(3,0) + dimA(2,1) + dimA(1,2) + dimA(0,3) =

= 0 + f2 + 8 · f2 + f3 = 12 + 8 · 3 + 8 = 44

Hence the Hilbert vector is (1, 14, 44, 44, 14, 1).

By Theorem (1.4.5), I = Ann(f) is generated by:

• ⟨X0, . . . , X7⟩3 and U2
1 , . . . , U

2
m, by the part (2a);
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1 Lefschetz Properties for higher order Nagata idealization

• since the complement of ∆ is:

∆c = {{u1, u6} , . . . , {u2, u5}  
diagonals

, {u1, u2, u6} , . . . , {u1, u5, u6}  
2−faces

,

{u1, u2, u3, u5} , . . . , {u2, u3, u5, u6}  
3−faces

, . . . , {u1, . . . , u6}}

and since diagonals are the minimal faces of ∆c, then the monomials U1U6, U3U4

and U2U5 are in I = Ann(f), by the part (2b).

• For i = 1, 2, fix the facet M0 = {u1, u2, u3} ∈ ∆, corresponding to the monomial
g0, we have that the monomial p0 represents:

– one of the remaining vertices, for example u4:
u1

u2

u3

u4

u5

u6

g0

g1

g2 g3

g4

g5

g6

g7

and finally we get: P0 = p0(U1, . . . , U8) = U4. Thence the monomial of degree
i+ 1, Xi

0U4 is in I = Ann(f). The other monomials of this type are obtained
with the same procedure.

– one of the remaining edges, for example the edge that joins the vertices u5
and u6:

u1

u2

u3

u4

u5

u6

g0

g1

g2 g3

g4

g5

g6

g7

We get:
P0 = p0(U1, . . . , U8) = U5U6
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1.4 Simplicial Nagata idealization of order k

and the monomial of degree i + 2, Xi
0U5U6, is in I = Ann(f), by part (2c).

The other monomials of this type are obtained by the same way.

• The faces g0 and g3 have the common edge that joins the vertices u1u3 :

u1

u2

u3u5

u6

g0

g1

g2 g3

g4

g5

g6

g7

g1,3 represents the edge that joins the vertices u1 and u3. g̃0 and g̃3 represent the
vertices u2 and u5 respectively. We have:

G̃0 = g̃0(U1, . . . , U6) = U2 and G̃3 = g̃3(U1, . . . , U6) = U5.

The binomial, of degree 3, X2
0U2 − X2

3U5, is in I = Ann(f) by the part (2d).
The other binomials of degree 3 of this type are obtained by the same procedure.
We note that the faces g0 and g2 have the common vertex u1, hence, in the ideal
I = Ann(f) there is the binomial, of degree 4, X2

0U2U3 − X2
2U4U5; the other

binomials, of degree 4, are obtained by the same procedure.
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Chapter 2
Asymptotic behaviour of lenght five
Gorenstein Hilbert function

2.1 Classical Bounds of Hilbert function

We recall some classical bounds for the growth of the Hilbert function of Artinian K-
algebras. For a more detailed account, see [73]. The following three basic results are due
to Macaulay, Gotzmann and Green; before stating them, we need to recall the following
definition:

Definition 2.1.1. Let n and i be positive integers. The i-binomial expansion of n,
denoted by n(i), is

n(i) =

(
ni
i

)
+

(
ni−1

i− 1

)
+ · · ·+

(
nj
j

)
(2.1)

where ni > ni−1 > . . . > nj ≥ j ≥ 1.

An expansion of type (2.1) always exists and is unique (see, e.g., [8, Lemma 4.2.6]).
Following [8], we define for any integers a and b,

(n(i))
b
a =

(
ni + b

i+ a

)
+

(
ni−1 + b

i− 1 + a

)
+ · · ·+

(
nj + b

j + a

)
where we set

(
m
c

)
= 0 whenever m < c or c < 0.

Theorem 2.1.2. Let A = R/I be a standard graded K-algebra, and L ∈ A a general
linear form (according to the Zariski topology). Denote by hd the degree d entry of the
Hilbert function of A and by h′d the degree d entry of the Hilbert function of A/(L). Then:

(Macaulay)
hd+1 ≤ ((hd)(d))

+1
+1.
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2 Asymptotic behaviour of lenght five Gorenstein Hilbert function

(Gotzmann) If hd+1 = ((hd)(d))
+1
+1 and I is generated in degrees ≤ d+ 1, then

hd+s = ((hd)(d))
s
s for all s ≥ 1

.

(Green)
h′d ≤ ((hd)(d))

−1
0 .

Proof. For Macaulay, see [8, Theorem 4.2.10]. For Gotzmann, see [8, Theorem 4.3.3] or
[36]. For Green, see [37, Theorem 1].

Definition 2.1.3. A sequence of nonnegative integers h = (1, h1, h2, . . . , hi, . . .) is said
to be an O-sequence if it satisfies Macaulay’s Theorem (2.1.2) for all i.

Recall that when A is artinian and Gorenstein, then its Hilbert function is a finite,
symmetric O-sequence. We recall a useful theorem proved in [77, Theorem 3.5].

Theorem 2.1.4. Let hd−1, hd and hd+1 be three integers such that ((hd)(d))
−1
−1 = hd−1

and ((hd)(d))
+1
+1 = hd+1. Suppose that hd−1 + α, hd and hd+1, for some integer α > 0,

are the entries of degree d− 1, d and d+ 1 of the h-vector of an algebra A. Then A has
depth zero and an α-dimensional socle in degree d− 1.

2.2 Construction of non unimodal Hilbert vectors

We recall that the Artinian Gorenstein K-algebras of codimension 3 have the Hilbert
vector always unimodal (see [68] and [76]), for codimension 4 it is an open question if
there is a non unimodal Gorenstein Hilbert vector. The first example of a non unimodal
Gorenstein Hilbert vector in codimension 5 was given in [5]. A way to construct non
unimodal Hilbert vector in codimension ≥ 5 is to consider the idealization of a generic
level algebra of type 2, (see [44]). Prof. Ricardo Machado, from UFRPE, created a routine
using Macaulay2 to choose two polynomials in random way and find the Hilbert function
of the associated Nagata idealization. By Macaulay duality we consider a bihomogeneous
polynomial of degree d in K[x1, x2, u1, u2, u3] of this type

f = x1g1 + x2g2

with gi ∈ K[u1, u2, u3]d−1 for i = 1, 2. Using this construction in codimension 5 the first
socle degree where we find a non unimodal Hilbert vector is d = 16, moreover, in this
case we get:

(1, 5, 12, 22, 35, 51, 70, 91, 90, 91, 70, 51, 35, 22, 12, 5, 1)

that is exactly the Iarrobino’s Example. Moreover in socle degree 18 we have the following
non unimodal Hilbert vector:

(1, 5, 12, 22, 35, 51, 70, 92, 111, 110, 111, 92, 70, 51, 35, 22, 12, 5, 1).
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2.2 Construction of non unimodal Hilbert vectors

In socle degree 20, we have:

(1, 5, 12, 22, 35, 51, 70, 92, 117, 133, 132, 133, 117, 92, 70, 51, 35, 22, 12, 5, 1)

and finally in socle degree 21 we have:

(1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 144, 144, 145, 117, 92, 70, 51, 35, 22, 12, 5, 1).

From a historic viewpoint the first example of a non unimodal Gorenstein Hilbert
vector was given by Stanley, it is (1, 13, 12, 13, 1). The following construction generalizes
Stanley example. This construction will be very useful in the sequel.

Definition 2.2.1. Let K[x1, . . . , xn, u1, . . . , um] be the polynomial ring in the n + 1
variables x0, . . . , xn and in the m variables u1, . . . , um. A Perazzo polynomial is a
reduced bihomogeneous polynomial f ∈ K[x1, . . . , xn, u1, . . . , um](1,d−1), of degree d, of
type

f =
n∑
i=1

xigi (2.2)

with gi ∈ K[u1, . . . , um]d−1, for i = 0, . . . , n, linearly independent and algebraically
dependent polynomials in the variables u1, . . . , um.

Remark 2.2.2. By Definition (1.4.1), a Perazzo polynomial f ∈ K[x1, . . . , xn, u1, . . . , um](1,d−1)

of degree d is a Nagata polynomial, hence, by Theorem (1.3.2), the algebraA = Q/Ann(f),
associated to f , where Q = K[X1, . . . , Xn, U1, . . . , Um] is the ring of the differential oper-
ators, can be realized as a Nagata idealization of order 1, socle degree d and codimension
n+m.

By above Remark (2.2.2), we can give the following definition:

Definition 2.2.3. Let f ∈ K[x1, . . . , xn, u1, . . . , um](1,d−1) be a Perazzo polynomial of
degree d. The algebra A = Q/Ann(f) associated to f is called Perazzo algebra and it
is a begraded algebra of socle degree d and codimension n+m.

Now we fix m ≥ 2 and we consider the m variables u1, . . . , um. Let us consider

Mj = u
αj1
j1

· · ·uαjm
jm

for j = 1, . . . , τm

where τm :=
(
m+d−2
d−1

)
and αj1 + · · ·+ αjm = d− 1.

Definition 2.2.4. A bihomogeneous polynomial f ∈ K[x1, . . . , xτm, u1, . . . , um](1,d−1) of
degree d of type:

f =

τm∑
j=1

xjMj (2.3)

is called Full Perazzo polynomial of type m.
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2 Asymptotic behaviour of lenght five Gorenstein Hilbert function

Remark 2.2.5. As in Remark (2.2.2), let f ∈ K[x1, . . . , xτm , u1, . . . , um](1,d−1) be a Full
Perazzo polynomial of type m and of degree d, the algebra A = Q/Ann(f), associated
to f , where Q = K[X1, . . . , Xτm , U1, . . . , Um] is the ring of the differential operators, can
be realized as a Nagata idealization of order 1, socle degree d and codimension m+ τm.

By above Remark (2.2.5), we can give the following definition:

Definition 2.2.6. Let f ∈ K[x1, . . . , xτ , u1, . . . , um](1,d−1) be a Full Perazzo polynomial
of degree d. The algebra A = Q/Ann(f) associated to f is called Full Perazzo algebra
and it is a begraded algebra of socle degree d and codimension m+ τm.

Proposition 2.2.7. Let A be a Full Perazzo algebra of type m ≥ 2 an socle degree d.
Then for k = 0, . . . , ⌊d2⌋

hk = dimAk =

(
m+ k − 1

k

)
+

(
m+ d− k − 1

d− k

)
Proof. Using the bigrading of A and considering that the polynomial f has degree 1 in
tha all variables x1, . . . , xτm , fixed k = 0, . . . , ⌊d2⌋, we have the following decomposition:

Ak = A(0,k) ⊕A(1,k−1).

for A(0,k); it is clear that A(0,k) = Q(0,k), hence dimA(0,k) = dimQ(0,k) =
(
m+k−1

k

)
;

for A(1,k−1); by Remark (1.1.9), we have A∗
(1,k−1) ≃ A(0,d−k) and A(0,d−k) = Q(0,d−k),

hence dimA(1,k−1) = dimQ(0,d−k) =
(
m+d−k−1

d−k
)
.

2.3 A conjecture of R. Stanley

Let K be a field of characteristic zero. Let R = K[x1, . . . , xn] be the graded polynomial
ring and let Q = K[X1, . . . , Xn] be the differenzial ring, with Xi =

∂
∂xi

, for i = 1, . . . , n.
Moreover let Ann(f) ⊂ Q be the annihilator of a homogeneous polinomial f ∈ R. Let n
and d be two integers, we consider the following set:

G(n, d) :=
{
A : A ≃ Q

Ann(f)

}
with some f ∈ K[x1, . . . , xn]d homogeneous polynomial of degree d, i.e. it is the family
of standard graded artinian Gorenstein K-algebras of codimension n and socle degree d.

Moreover, let 0 < k < d be a integer, we can define the following functions:

µk(n, d) = min
A∈G

{dimAk} δk(n, d) = n− µk(n, d).
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2.3 A conjecture of R. Stanley

Fixed d, we can consider the above functions without dependence by d, hence µk(n, d) =
µk(n) and δk(n, d) = δk(d).

Stanley in [70] conjectured that

lim
n

f(n)

n
2
3

= 6
2
3

where in our notation f(r) = µ2(r). He guessed the precise value of the limit even if he
was not able to prove the existence of the limit. Bounds were given by Stanley in [72]
and by Kleinschmidt in [47], but the precise limit was only proved in 2006 (see [58]). We
will give a new proof of this result studing a family of algebras that actually reach the
limit, asymptotically.

First of all we prove some introductory lemmas about the monotonicity of the functions
µk and δk.

Lemma 2.3.1.
µk(n+ 1) ≤ µk(n) + 1 ∀k = 0, 1, . . . , d

Proof. Let f ∈ Rd be a homogeneous polynomial of degree d such that A = R/Ann(f)
is a standard graded Artinian Gorenstein K−algebra, for which µk(n) = dimAk. We
denote by R′ the polynomials ring in n+1 variables K[x1, . . . , xn, xn+1]. We take f ′ ∈ R′

d,
s.t. f ′ = f + xdn+1, and we denote by A′ = R′/Ann(f ′) the standard graded Artinian
Gorenstein K−algebra. Hence A′

k = Ak⊕ < xkn+1 >. Therefore

µk(n+ 1) ≤ dimA′
k = dimAk + 1 = µk(n) + 1.

As consequence of the Lemma (2.3.1), we have the following:

Lemma 2.3.2. The function δk(n) is non-decreasing in n.

Proof. It’s enought to show that δk(n+ 1) ≥ δk(n). Since By Lemma (2.3.1), we have:

δk(n+ 1) = n+ 1− µk(n+ 1) ≥ n+ 1− µk(n)− 1 = δk(n).

Lemma 2.3.3. The function µk(n) is non-decreasing in n.

Proof. Let A ∈ G(n + 1, d) be an algebra such that dimAk = µk(n + 1). Hence
A ≃ Q′/Ann(f) with f ∈ K[x1, . . . , xn, xn+1]d and Q′ = K[X1, . . . , Xn+1]. Since A ≃
Q/Ann(f) is a standard, graded, Artinian and Gorenstein algebra, hence Ann(f)1 = 0
and the hypersurfaceX = V (f) ⊂ Pn is not a cone, by Remark (1.1.6). Up to a projective
transformation, we can take a homogeneous polynomial of this type:

g(x1, . . . , xn) = f(x1, . . . , xn, 0) ∈ K[x1, . . . , xn]
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2 Asymptotic behaviour of lenght five Gorenstein Hilbert function

and it defines a hypersurpace Y = V (g) ⊂ H = Pn−1 where H = V (xn+1). In particular
we have V (g) = V (f) ∩ V (xn+1), i.e. H = X ∩H and it is not a cone. By Proposition
(1.1.6), Ann(g)1 = 0 and B ≃ Q/Ann(g) is a standard graded Artinian Gorenstein
algebra, i.e B ∈ G(n, d). Considering that dimBk ≤ dimAk, by definition of the function
µk(n), we have:

µk(n) ≤ dimBk ≤ dimAk = µk(n+ 1).

Remark 2.3.4. Notice that from the previows lemmas it is easy to see that both func-
tions µk and δk satisfy the following monotic behaviour for each n.

µk(n+ 1) = µk(n) or µk(n+ 1) = µk(n) + 1.

δk(n+ 1) = δk(n) or δk(n+ 1) = δk(n) + 1.

The study of the function µk(n) is very important for our purposes; fixed k = ⌊d2⌋, for
every A ∈ G(n, d), we can have different Hilbert vectors that are non unimodal, and the
study of the asymptotic behavior of the function µk(n) gives us informations about the
“depth" of the Hibert function in the middle part:

h0 = 1

⌊d2⌋

hd = 1

The first problem we have is to find a way to construct Hilbert vectors that are non
unimodal.

Now we want to analyze the case d = 4, i.e. we consider G(n, 4) the family of all
Gorenstein algebras in codimension n and socle degree 4. By abuse of notation, we
denote G(n, 4) by G(n). For every A ∈ G(n), the Hilbert vector will always be of type

(1, n, µ(n), n, 1)

denoting µ2(n) by µ(n). The following result is a generalization of the main result of [73].

Theorem 2.3.5. Let A ∈ G(r) be a Gorenstein K-algebra of codimension r, with r =
m+

(
m+2
3

)
. Then µ(r) = m(m+ 1).

Proof. We want to show that the following Gorenstein Hilbert vector(
1,m+

(
m+ 2

3

)
,m(m+ 1),m+

(
m+ 2

3

)
, 1

)
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2.3 A conjecture of R. Stanley

is minimal for r = m+
(
m+2
3

)
. It is enough to prove that the following Hilbert vector

H =

(
1,m+

(
m+ 2

3

)
− 1,m(m+ 1)− 1,m+

(
m+ 2

3

)
− 1, 1

)
is not a Gorenstein Hilbert vector. By contradiction, we assume that the Hilbert vector
H is Gorenstein, i.e. exists A ≃ Q/I, with f a homogeneous polynomial of degree 4 and
I = Ann(f), such that its Hilbert vector is exactly the Hilbert vector H. Let ℓ ∈ Q be a
generic linear form and S = Q/(ℓ). We get the following exact sequence:

0 −−−−→ Q/(I : ℓ)(−1) −−−−→ Q/I −−−−→ S/I −−−−→ 0

with I = (I,ℓ)
ℓ . Notice that the conductor (I : ℓ) is also a Gorenstein ideal since (I : ℓ) =

{α ∈ Q|α.L(f) = 0} = {α ∈ Q|α(∂f∂ℓ )} = Ann(∂f∂ℓ ).
The following diagram represents the only possible values for the Hilbert functions of

Q/I, Q/(I : ℓ)(−1) and S/I respectively:

1 m+
(
m+2
3

)
− 1 m(m+ 1)− 1 m+

(
m+2
3

)
− 1 1

1 a a 1

1 m+
(
m+2
3

)
− 2 b c

with
b := m(m+ 1)− 1− a c := m+

(
m+ 2

3

)
− 1− a.

We note that c− b =
(
m
3

)
. By Green’s Theorem (2.1.2) and Macaulay’s Theorem (2.1.2),

we get:

b =

(
m

2

)
=

(
m

m− 2

)
c =

(
m+ 1

3

)
=

(
m+ 1

m− 2

)
a =

(
m

2

)
+

(
m− 1

1

)
.

Let J be the ideal generated by the components of I in degrees 2 and 3 and J = (J,ℓ)
(ℓ) . In

degree ≤ 3, if we replace I by J we get the same table of Hilbert functions. Since S/J
has maximal growth from degree 2 to degree 3 and J has no new generators in degree
≥ 4, then by Gotzmann’s Theorem (2.1.2) we get

hS/J(t) =

(
m− 2 + t

m− 2

)
for t ≥ 2. In Pm+(m+2

3 )−3, we consider τ = m+
(
m+2
3

)
− 2, then J is the saturated ideal

of X ⊂ Pτ−1 for all t ≥ 2. Therefore, up to saturation, J is the ideal of a union of
X = Pm−1 ⊂ Pτ and a finite number, say s, of points, {P1, . . . , Ps} in Pτ . We want to
determine the upper and lower bound for hQ/J(4).
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2 Asymptotic behaviour of lenght five Gorenstein Hilbert function

Upper bound: we use Macaulay’s Theorem (2.1.2), since hQ/J(3) =
(
m+2
3

)
+
(
m−1
1

)
, then

hQ/J(4) ≤
(
(hQ/J(3))(3)

)+1

+1
⇒ hQ/J(4) ≤

(
m+ 3

4

)
+

(
m

2

)
.

Lower bound: we use the fact hQ/J(4) ≥ hQ/Jsat(4) = s+
(
m+3
4

)
Therefore

s+

(
m+ 3

4

)
≤ hQ/J(4) ≤

(
m+ 3

4

)
+

(
m

2

)
in particular 0 ≤ s ≤

(
m
2

)
. Hence all the various cases remain to be discussed as in the

proof of [73, Proposition 3.1].

The following is a new short proof of the Theorem in [58] solving Stanley’s conjecture.

Corollary 2.3.6. Let A ∈ G(n) be a Gorenstein algebra of codimension r. Then

lim
r→∞

[µ(r)]

r2/3
= 62/3.

Proof. Fixed the integer Pk = k +
(
k+2
3

)
, it is clear that:

Pk ≤ r ≤ Pk+1. (2.4)

Applying the function µ(r), we have by Theorem (2.3.3):

µ(Pk) ≤ µ(r) ≤ µ(Pk+1).

By Theorem (2.3.5), we get:

k(k + 1) ≤ µ(r) ≤ (k + 1)(k + 2).

In particular:
k2 + o(k) ≤ µ(r) ≤ k2 + o(k)

with o(k) all terms of lower degree in k. Hence we get:

k6 + o(k) ≤ [µ(r)]3 ≤ k6 + o(k). (2.5)

Since it holds (2.4), then:

k3

6
+ o(k) ≤ r ≤ k3

6
+ o(k)

k6

62
+ o(k) ≤ r2 ≤ k6

62
+ o(k)

1
k6

62
+ o(k)

≤ 1

r2
≤ 1

k6

62
+ o(k)
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Multiplying, we get:
k6 + o(k)
k6

62
+ o(k)

≤ [µ(r)]3

r2
≤ k6 + o(k)

k6

62
+ o(k)

.

Since in both sides the limit exists and are the same, therefore lim
r→∞

[µ(r)]3

r2
= 6 and the

result follows.

2.4 A new conjecture

A standard graded K-algebra A = R/I with R = K[x1, . . . , xn] is called presented by
quadrics if the homogeneous ideal I is generated by quadratic forms. These quadrics are
important in many areas, see [34, 57].

In [57] the authors conjectured that all Artinian Gorenstein algebras presented by
quadrics shoud have the Weak Lefschetz property, but it is false. In [34] the authors
found a family of Artinian Gorenstein algebras presented by quadrics whose Hilbert
vectors were non unimodal.

A family of Artinian Gorestein algebra, presented by quadrics, having non unimodal
Hilbert function, is the Turan algebra, introduced in [34] and inspired by the famous
Turan’s Graph Theorem.

Definition 2.4.1. Let 2 ≤ a1 ≤ · · · ≤ ad−1 be integers. The Turan complex of order
a1, . . . , ad−1, K = T K(a1, . . . , ad−1) is the homogeneous simplicial complex whose facets
set is the cartesian product

π =
d−1∏
i=1

{1, 2, . . . , ai}.

The associated algebra is called the Turan algebra of order (a1, . . . , ad−1) and denoted
by TA(a1, . . . , ad−1).

The following Theorem characterizes the Hilbert function of a Turan algebra:

Theorem 2.4.2. [34, Theorem 3.7] Every Turan algebra TA(a1, . . . , ad−1) is presented
by quadrics. Its Hilbert vector is given by hk = sk + sd−k where sk = sk(a1, . . . , ad−1) is
the elementary symmetric polynomial of order k.

The following corollary is very important, since it ensure the non unimodality of the
Hilbert function of these algebras:

Corollary 2.4.3. [34, Corollary 3.8] Let A = TA(a1, . . . , ad−1) be the Turan algebra
of order (a1, . . . , ad−1) with a1 ≈ . . . ≈ ad−1 large enough. Then Hilb(A) is totally non
unimodal, that is

dimA1 > dimA2 > . . . > dimA⌊ d
2
⌋.
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2 Asymptotic behaviour of lenght five Gorenstein Hilbert function

Remark 2.4.4. Notice that if we take a ≤ b ≤ c in such way that |x − y| ≤ 1 for all
x, y ∈ {a, b, c}, then we can define r = 3a + s with s ∈ {0, 1, 2} and the Turan algebra
TA(r) associated to the Turan complex with respect to a, b, c. For this family of algebras
it is easy to verify that

lim
r→∞

[dimTAk(r)]

r2/3
= 6.

Let QG(r) be the family of Artinian Gorenstein algebras presented by quadrics with
socle degree 4 and codimension r. Let us call ν(r) = min

A∈QG(r)
{dimA2}.

Conjecture 2.4.5. Let A ∈ QG(r) be a Gorenstein algebra of codimension r. Then

lim
r→∞

[ν(r)]

r2/3
= 6.
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Chapter 3
The Hilbert vector of the Jacobian
module of a plane curve

3.1 The minimal resolutions

Let A be a ring and let M be a finitely generated A-module. Let f1, . . . , fn be elements
of M , a syzygy between the fi, i = 1, . . . , n, is a n-uple, a1, . . . , an ∈ A, such that

n∑
i=1

aifi = 0.

The set of the syzygies of f1, . . . , fn is a A-module. Moreover if A is a notherian ring
then every A-module is finitely generated, in particular the A-module of the syzygies of
f1, . . . , fn, denoted by Syz(f1, . . . , fn), is finitely generated.

Proposition 3.1.1. For any A-module M exists a exact sequence

As
ψ−−−−→ At

φ−−−−→ M −−−−→ 0 (3.1)

with s and t positive integers.

A sequence of type (3.1) is called presentation of M . If {f1, . . . , ft} is the set of
generators of M and {g1, . . . , gs} os the set of generators of Syz(f1, . . . , ft), we can get
a presentation of M setting φ(ei) = fi, for i = 1, . . . , t with ei element of the canonical
basis of At and ψ(ej) = gj , for j = 1, . . . , s with ej element of the canonical basis of As.
Hence it is possible to extend to left the exact sequence of type (3.1) to a exact sequence
having the module of the second syzygies, the module of the third syzygies and so on.
By above Proposition, we can give the following definition:
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3 The Hilbert vector of the Jacobian module of a plane curve

Definition 3.1.2. A free resolution of a A-module M is a exact sequence

· · · −−−−→ F2
φ2−−−−→ F1

φ1−−−−→ F0
φ0−−−−→ M −−−−→ 0

where Fi ∼= Adi for every i. If exists a positive integer l such that Fl+1 = Fl+2 = · · · = 0,
but Fl ̸= 0, then the resolution is said to be finite of length l and it is written in the
following way:

0 −−−−→ Fl −−−−→ Fl−1 −−−−→ · · · −−−−→ F1 −−−−→ F0 −−−−→ M −−−−→ 0.

Theorem 3.1.3 (Hilbert’s syzygy theorem). Every finitely generated module over a poly-
nomial ring K[x0, . . . , xn], in n + 1 indeterminates, over a field K has a free resolution
of length at most n+ 1.

Let A =
⨁
i≥0

Ai be a graded ring. A graded A−module is an A-module M with a

decomposition

M =
+∞⨁
−∞

Mi

as abelian group such that AiMj ⊂Mi+j for all i ≥ 0 and j ∈ Z.

Remark 3.1.4. Let A =
⨁
i≥0

Ai be a graded ring and let M be a finitely generated

graded A-module. Then Mi, for all i, is a K-vector subspace of M of finite dimension.

By above Remark, given a finitely generated graded A-module M , we can give the
following definitions of Hilbert function of M , n-shift of M and graded morphism of any
degree between two graded A-modules:

Definition 3.1.5. Let A =
⨁
i≥0

Ai be a graded ring and let M be a finitely generated

graded A−module, the Hilbert function of M is a function:

HM : Z → N

such that HM (t) := dimKMt, for all t ∈ Z.

Definition 3.1.6. Let A =
⨁
i≥0

Ai be a graded ring and let M be a graded A-module.

The n-shift of M , denoted by M(n), where n ∈ Z, is a graded A-module such that
M(n)d :=Mn+d.

The module (Am)(n) is the same module (A(n))m and they are graded free A-modules
called twisted. The elements ei are a basis of A(n)m amd they are homogeneous elements
of degree −n.

Definition 3.1.7. Let M and N be graded A-modules. A morphism φ : M → N is said
to be a graded morphism of degree d if φ(Mt) ⊂ Nt+d for any t ∈ Z.
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3.2 m-syzygy curves

Let A =
⨁
i≥0

Ai be a graded ring and let M be a finitely generated graded A-module.

Given {r1, . . . , rm} a set of homogeneous elements ofM , of degree d1, . . . , dm respectively,
that generate M as A-module, we can define the following graded morphism of degree 0:

F0 =

m⨁
i=1

A(−di)
φ0−−−−→ M

such that it associates the i-th element, ei, of the basis of F0, to ri, for i = 1, . . . ,m. We
note that it is necessary the twist in F0, since the graded morphism preserves the degree.
Now we can consider the ker(φ0), denoted by M1 ⊆ F0, that is finitely generated and it
is the set of syzygies of M . Choosing a finite number of homogeneous generators for M1,
we can define a morphism

F1
φ1−−−−→ F0

φ0−−−−→ M

such that im(φ1) =M1 = ker(φ0). So we can construct a resolution of M . In particular
we can give the following definition:

Definition 3.1.8. Let A =
⨁
i≥0

Ai be a graded ring and let M be a graded A-module.

A graded resolution of M is a resolution

· · · −−−−→ F1
φ1−−−−→ F0 −−−−→ M −−−−→ 0

where every Fi is a free, graded, twisted A-module of type A(−d1)⊕ · · · ⊕ A(−dm) and
every morphism φi is graded of degree 0.
Moreover a graded resolution is minimal if for all i ≥ 1 the elements no zero of the matrix
of φi have positive degree.

Moreover the Theorem (3.1.3) holds in the graded case:

Theorem 3.1.9. Every finitely generated graded module over a polynomial ring K[x0, . . . , xn],
in n+1 indeterminates, over a field K has a free graded resolution of length at most n+1.

Proposition 3.1.10. Let A =
⨁
i≥0

Ai be a graded ring and let M be a finitely generated

graded A−module. For all finite graded resolution of M

0 −−−−→ Fl −−−−→ Fl−1 −−−−→ · · · −−−−→ F1 −−−−→ F0 −−−−→ M −−−−→ 0

we have

HM (t) = dimKMt =

l∑
j=0

(−1)j dimK(Fj)t.
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3 The Hilbert vector of the Jacobian module of a plane curve

3.2 m-syzygy curves

Let S = C[x, y, z] be the polynomial ring in three variables x, y, z with complex coeffi-
cients and let f ∈ S be a homogeneous polynomial of degree d > 0. We denote by Jf
the Jacobian ideal of f , i.e. the homogeneous ideal in S spanned by partial derivatives
fx, fy and fz of f . The graded S-module AR(f) ⊂ S3 of all Jacobian relations for f is
defined by

AR(f) :=
{
(a, b, c) ∈ S3 : afx + bfy + cfz = 0

}
and it called Jacobian syzygies of f . The minimal degree of a Jacobian relation
for the polynomial f is the positive integer mdr(f) defined to be the smallest integer
m ≥ 0 such that AR(f)m ̸= (0). Let C : f = 0 be a reduce curve of degree d in the
complex projective plane P2, then AR(f) = AR(C) and we assume mdr(f) ≥ 1, since,
when mdr(f) = 0, C is a pencil of lines.

Definition 3.2.1. The Milnor (or Jacobian) algebra of the curve C : f = 0 is the
corresponding graded quotient ring, denoted by M(f), S/Jf .

By Hilbert Syzygy Theorem (3.1.9), the graded Jacobian algebra M(f) has a free
graded resolution of length 3; in fact we can consider the following graded morphism of
degree 0:

F1 = S3(1− d)
(fx,fy ,fz)−−−−−−→ F0 = S

given by (a, b, c) → afx + bfy + cfz. It is clear that AR(f) is the kernel of the above
morphism and it has the following minimal resolution

0 −−−−→ F3(d− 1) −−−−→ F2(d− 1).

Definition 3.2.2. The curve C : f = 0 is said to be a m-syzygy curve if the mod-
ule F2 has rank m, i.e. the module AR(f) is generated by m homogeneous syzygies,
{r1, . . . , rm}, of degrees di = deg ri ordered such that

1 ≤ d1 ≤ . . . ≤ dm.

The multiset (d1, . . . , dm) is called exponent of the curve C and the set {r1, . . . , rm} is
called minimal set of generators for the module AR(f).

It is clear that d1 = mdr(f). Moreover when AR(f) is a free module of rank 2, the
curve C : f = 0 is said to be a free 2-syzygy curve, see [3, 17, 22, 65, 66, 67].

Example 3.2.3. All curves C : f = 0 in P2 of type:

f = yd−1z + xd + ax2yd−2 + bxyd−1 + cyd

of degree d ≥ 5 and a ̸= 0 are a family of free curves. They are given by A. Simis and
A. Tohăneanu and they are cuspidal rational curves.

The m-syzygy curves have been carefully classified and studied in these last years. In
particular our study is about the m-syzygy curves with m ≥ 3.
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3.2 m-syzygy curves

Definition 3.2.4. A 3-syzygy curve C : f = 0 is said to be nearly free if the graded
S-module AR(f) has a minimal generator system of syzygies r1, r2, r3, such that their
degree, d1, d2 and d3 respectively, satisfy d3 = d2 and d1 + d2 = d.

Example 3.2.5. The sextic C : f = (x3+y3+z3)(x+y)(x+z)(y+z) in P2, that is union of
3 lines and an elliptic curve, is a nearly free curve, with exponents (d1, d2, d3) = (2, 4, 4).
Moreover it is a smooth curve.

The nearly free 3-syzygy curves have been introduced in [23] and studied in [1, 3, 17,
18, 52].

Definition 3.2.6. A 3-syzygy line arrangement C : f = 0 is said to be plus-one
generated line arrangement of level d3 when d1+d2 = d and d3 > d2. By extension, a
3−syzygy curve C is said to be a plus-one generated curve of level d3 when d1+d2 = d
and d3 > d2.

Example 3.2.7. The curve C : f = (x2+ y2− 2xz)2− (x2+ y2)z2 in P2, called limaçon,
is a plus one generated curve with exponents (d1, d2, d3) = (2, 2, 3). Moreover it has 3
singularities: one of type A1 located at p1 = (0 : 0 : 1) and two of type A2 located at
(1 : ±i : 0).

The exponents of the curves of the Examples (3.2.5) and (3.2.7) are determined by a
computer algebra software, called Singular, see [15].

Remark 3.2.8. The nearly free curves and the plus-one generated curves satisfymdr(f) =
d1 ≤ d

2 .

Mainly the interest of the free, nearly free and one-plus generated curves comes from
the analysis the following problem:

Problem. It it true that a reduced plane curve C : f = 0 which is rational cuspidal is
either free or nearly free?

This problem is known to be true when the degree of C is even and in particular for
all odd degree d ≤ 33. In the other cases the problem is assumed as conjecture, i.e. a
reduced plane curve C : f = 0 which is rational cuspidal is either free or nearly free.

Moreover it is possible to consider a weak condition respect to be a reduced, rational
and cuspidal plane and we have a particular class of rational curves called nearly cuspidal :

Definition 3.2.9. A nearly cuspidal curve is a reduced plane curve C : f = 0, having
only cusps (i.e. unibranch singularities) except for one singular point which has two
branches.

Example 3.2.10. The curve C of the Example (3.2.7) is a rational and nearly cuspidal
curve, with the point p1 = (0 : 0 : 1) having two branches.

About to the reduced plane and nearly cuspidal curves, we can show the following
theorem:
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3 The Hilbert vector of the Jacobian module of a plane curve

Theorem 3.2.11. Let C : f = 0 be a plane, rational and nearly cuspidal curve of even
degree d ≥ 2. Then C is a free curve or a nearly free or a plus-one generated curve.

The following result is important, since we can know the minimal resolution for the
Milnor algebra M(f), where C : f = 0 is a m-syzygy curve:

Lemma 3.2.12. [42, Lemma 1.1] Let (R,m) be a positively graded Noetherian local ring
and let I ⊂ m be a 3-generated homogeneous ideal, the graded minimal free resolution

0 −−−−→
r−2⨁
m=1

R(−Dm)
φ3−−−−→

r⨁
i=1

R(−di)
φ2−−−−→

3⨁
i=1

R(−ai)
φ1−−−−→ R −−−−→ R/I −−−−→ 0.

Assume D1 ≥ · · · ≥ Dr−2 and d1 ≥ · · · ≥ dr. Then Dm ≥ dm + 1 for all 1 ≤ m ≤ r − 2.

By Lemma (3.2.12), since the Jacobian ideal Jf is generated by three elements, we
can consider the general form of the minimal resolution for the Milnor algebra M(f) of
a m-syzygy curve C : f = 0 that is assumed to be not free, namely

0 −−−−→
m−2⨁
i=1

S(−ei) −−−−→
m⨁
i=1

S(1− d− di) −−−−→ S3(1− d) −−−−→ S (3.2)

with e1 ≤ . . . ≤ em−2, d1 ≤ . . . ≤ dm and

ei = d+ di+2 − 1 + ϵi

for i = 1, . . . ,m− 2 and some integers ϵi ≥ 1.

Remark 3.2.13. When the curve C : f = 0 in P2 is a free curve, hence m = 2, the
minimal resolution of M(f) is:

0 −−−−→ S(1− d− d1)⊕ S(1− d− d2) −−−−→ S3(1− d) −−−−→ S

With the above notation, for a 3-syzygy curve C : f = 0, the minimal resolution
become

0 −−−−→ S(−e) −−−−→
3⨁
i=1

S(1− d− di) −−−−→ S3(1− d) −−−−→ S

and, by lemma (3.2.12), we have e ≥ d+d3. Moreover, for k ≥ e−2, one has the obvious
formula:

dimM(f)k =

(
k + 2

2

)
− 3

(
k − d+ 3

2

)
+

3∑
i=1

(
k − d+ 3 + di

2

)
−
(
k − e+ 2

2

)
that give us a formula for calculation of the Hilbert vector of M(f), when C : f = 0 is
a 3-syzygy curve, assumed to be not free. In particular, given a curve C : f = 0 in P2,
it is possible to determine its corresponding Hilbert vector of M(f), considering various
cases.

It follows the definition of some invariants associated with a Milnor algebra M(f) that
will be useful in next sections.
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3.3 Minimal resolution of the Jacobian module

Definition 3.2.14. For a reduce plane curve C : f = 0 of degree d, two integers are
defined as follows:

• the coincidence threshold

ct(f) := max {q : dimM(f)k = dimM(fs)k ∀k ≤ q}

with fs a homogeneous polynomial in S of degree d such that Cs : fs = 0 is a
smooth curve in P2.

• the stability threshold

st(f) = min {q : dimM(f)k = τ(C) ∀k ≥ q}

with τ(C) Tjiurina number of the curve C.

3.3 Minimal resolution of the Jacobian module

Let C : f = 0 be a reduced complex plane curve of P2 and consider the jacobian ideal
Jf = (fx, fy, fz). Let Ĵf be the saturation of the ideal Jf with respect to the maximal
ideal m = (x, y, z) in S = C[x, y, z].

Definition 3.3.1. The Jacobian module is the quotient module N(f) = Ĵf/Jf .

The graded S-module N(f) of a plane curve C : f = 0 of degree d, is an artinian

algebra N(f) =

3(d−2)⨁
i=0

N(f)i. Denoting n(f)i = dimN(f)i, for all i, our interest is to

study the Hilbert vector of N(f). We can define the following invariants for a curve
C : f = 0:

σ(C) := min {j : n(f)j ̸= 0} = indeg(N(f)), ν(C) := max {n(f)j}j .

Setting T = 3(d−2), the Jacobian module N(f) enjoys a weak Lefschetz type property,
see [19] for this result and [38, 39, 45] for Lefschetz properties of Artinian algebras. In
fact it is important the following theorem:

Theorem 3.3.2. [19, Theorem 4.1] Let J = (f0, f1, f2) be a dimension one almost
complete intersection and let N = H0

m(S/J) = I/Jf be the 0-degree local cohomology
of the corresponding algebra M = S/J . Then there exists a Lefschetz element for N .
More precisely, for a generic linear form l ∈ S1, the multiplication by l induces injective
morphisms Ni → Ni+1 for i < (d0+ d1+ d2− 3)/2 and surjective morphisms Ni → Ni+1

for i ≥ i0 = (d0 + d1 + d2 − 3)/2.
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3 The Hilbert vector of the Jacobian module of a plane curve

Since the Jacobian ideal Jf = (fx, fy, fz) of a smooth complex plane curve C : f = 0 ⊂
P2 is a complete intersection, and deg fx = deg fy = deg fz = d − 1, then, by Theorem
(3.3.2), we have that for a generic linear form ℓ ∈ S1 the morphism N(f)i → N(f)i+1 is
injective for i < ⌊T2 ⌋ and Ni → Ni+1 surjective for i ≥ ⌊T2 ⌋.

Hence, by Proposition (1.2.2), the Hilbert vector of N(f) is unimodal:

n(f)0 ≤ n(f)1 ≤ . . . ≤ n(f)⌊T
2
⌋−1 ≤ n(f)⌊T

2
⌋ ≥ n(f)⌊T

2
⌋+1 ≥ . . . ≥ n(f)T (3.3)

and ν(C) = n(f)⌊T
2
⌋. Moreover the self duality of the graded S-module N(f), see [42,

64, 74], implies that
n(f)j = n(f)T−j , (3.4)

for any integer j, in particular n(f)k ̸= 0 exactly for k = σ(C), . . . , T − σ(C).

We recall an important result:

Proposition 3.3.3. [42, Proposition 1.3] Let S = K[x0, x1, x2] and let I ⊂ S be an ideal
of codimension 2 generated by 3 linearly independent forms of degree d ≥ 1 with minimal
graded free resolution

0 −−−−→
r−2⨁
i=1

S(−Di) −−−−→
r⨁
i=1

S(−di) −−−−→

S3(−d) −−−−→ R −−−−→ R/I −−−−→ 0

(3.5)

with r ≥ 3. Then:

• the minimal free resolution of Î/I as an S-module has the form

0 −−−−→
r−2⨁
i=1

S(−Di) −−−−→
r⨁
i=1

S(−di) −−−−→
r⨁
i=1

S(di − 3d) −−−−→

r−2⨁
i=1

S(Di − 3d) −−−−→ Î/I −−−−→ 0

where the leftmost map is the same as that of (3.5);

• if in addition Îd = Id and Îi = 0 for i < d, then the resolution of Î is

0 −−−−→
r⨁
i=1

S(−(3d− di)) −−−−→ S3(−d)
r−2⨁
i=1

S(−(3d−Di)) −−−−→ Î −−−−→ 0

Thence the minimal resolution of N(f), obtained from (3.2) and by Proposition (3.3.3),
is

0 → ⊕m−2
i=1 S(−ei) → ⊕m

i=1S(1− d− di) → ⊕m
i=1S(di−2(d−1)) → ⊕m−2

i=1 S(ei − 3(d− 1)).
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3.3 Minimal resolution of the Jacobian module

It follows that

σ(C) = 3(d− 1)− em−2 = 2(d− 1)− dm − ϵm−2. (3.6)

since em−2 = d+ dm − 1 + ϵm−2, with some integer ϵm−2 ≥ 1.
Let C : f = 0 be a reduced curve of degree d in P2. We recall that the sheafification of
AR(f), denoted by EC := ÃR(f), is a rank two vector bundle on P2, see [1, 63, 64]. We
set:

ar(f)m = dimAR(f)m = dimH0(P2, EC(m))

for any integer m. Associated to the vector bundle EC there is the normalized vector
bundle EC , which is the twist of EC such that c1(EC) ∈ {−1, 0}. More precisely,

when d = 2d′ + 1 is odd

EC = EC(d
′) c1(EC) = 0 c2(EC) = 3(d′)2 − τ(C); (3.7)

and

when d = 2d′ is even

EC = EC(d
′ − 1) c1(EC) = −1 c2(EC) = 3(d′)2 − 3d′ + 1− τ(C), (3.8)

see [26, Section 2].

Remark 3.3.4. The vector bundle EC is stable if and only if EC has no sections, see [60,
Lemma 1.2.5]. This is equivalent to r = mdr(f) ≥ d

2 , see [64, Proposition 2.4]. Moreover
by [26, Theorem 2.2] and using the formulas (3.7) and (3.8), we have that for a stable
vector EC , c2(EC) = ν(C). Moreover, the vector bundle EC is semistable if and only if
r = mdr(f) ≥ (d − 1)/2, see again [60, Lemma 1.2.5], a condition that occurs in our
Theorem (3.6.1) below.

The important key point is the identification

H1(C,EC(k)) = N(f)k+d−1

for any integer k, see [64, Proposition 2.1]. Hence the study of the dimension of the
Jacobian module N(f) is equivalent to the study of the dimension of H1(C,EC(k)).

Theorem 3.3.5. Let C : f = 0 be a reduced, non free curve of degree d and set r =
mdr(f). Then one has the following.

• if r ≥ d
2 , then, for 2d− 4− r ≤ k ≤ d− 2 + r

n(f)k =

{
3(d′)2 − (j − 3d′ + 2)(j − 3d′ + 1)− τ(C) for d = 2d′ + 1

3(d′)2 − 3d′ + 1− (j − 3d′ + 3)2 − τ(C) for d = 2d′
(3.9)

• if r < d
2 , then n(f)k = ν(C), for d+ r−3 ≤ k ≤ 2d− r−3. Moreover n(f)d+r−4 =

n(f)2d−r−2 = ν(C)− 1.

43



3 The Hilbert vector of the Jacobian module of a plane curve

Proof. See [26, Theorem 3.1 and Theorem 3.2].

By Theorem 3.3.5, in the stable situation of the vector bundle EC , the points (k, n(f)k)
lie on an upward pointing parabola. Moreover, using the formulas (3.7) and (3.8), the
claim (3.9) can be written:

n(f)k =

{
ν(C)− (j − ⌊T2 ⌋)(j − ⌈T2 ⌉) for d = 2d′ + 1

ν(C)− (j − T
2 ) for d = 2d′

with T = 3(d− 2).
On the other hand, in the unstable situation of the vector bundle EC , assuming C is

not free, the points (k, n(f)k) lie on a horizontal line segment, with a one-unit drop at
the extremities:

d+ r − 4 2d− r − 2

3.4 Results on the Hilbert vector of N(f) for 3-syzygy curves

It is known that C : f = 0 is a free curve if and only if ν(C) = 0, hence N(f) = 0. It
follows that the Jacobian ideal is satured, i.e. Ĵf = Jf , (see [20, 67]). The first nontrivial
case is that of nearly free curves; indeed, by [23, Corollary 2.17], we have that for a nearly
free curve C : f = 0 one has N(f) ̸= 0 and ν(C) = 1. Moreover σ(C) = d + d1 − 3
and this describes completely the Hilbert vector of the Jacobian module of a nearly free
curve. In particular it has the following shape.

σ(C) T − σ(C)T
2

For the case of the 3−syzygy curves, we recall the following two results.

Theorem 3.4.1. [27, Theorem 3.9] Let C : f = 0 be a 3−syzygy curve with exponents
(d1, d2, d3) and set e = d1 + d2 + d3. Then the minimal free resolution of N(f) as a
graded S−module has the form

0 → S(−e) → ⊕3
i=1S(1− d− di) → ⊕3

i=1S(di + 2− 2d) → S(e+ 3− 3d), (3.10)

where the leftmost map is the same as in the resolution (3.2), when m = 3. In particular,

σ(C) = 3(d− 1)− (d1 + d2 + d3).
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3.4 Results on the Hilbert vector of N(f) for 3-syzygy curves

Corollary 3.4.2. [27, Corollary 3.10] Let C : f = 0 be a plus-one generated curve of
degree d ≥ 3 with (d1, d2, d3), which is not nearly free, i.e. d2 < d3. Set kj = 2d− dj − 3
for j = 1, 2, 3. Then one has the following minimal free resolution of N(f) as a graded
S−module:

0 → S(−d− d3) → S(−d− d3 + 1)⊕ S(−k1 − 2)⊕ S(−k2 − 2) →
→ S(−k1 − 1)⊕ S(−k2 − 1)⊕ S(−k3 − 1) → S(−k3).

In particular σ(C) = k3 and the Hilbert vector of N(f) is given by following formulas:

1. n(f)j = 0 for j < k3 and k3 < T
2 ;

2. n(f)j = j − k3 + 1 for k3 ≤ j ≤ k2, and k2 = d+ d1 − 3 ≤ T
2 ;

3. n(f)j = d3 − d2 + 1 = ν(C) for k2 ≤ j ≤ T
2 .

By above corollary, the Hilbert vector of the Jacobian module of a plus-one generated
curve of degree d and level d3 has the following shape, where we have drawn only the part
corresponding to j ≤ T/2, due to the symmetry (3.4).

σ(C) = k3

π
4

k2
T
2

d3 − d2 + 1 = ν(C)

As an example, let C : f = 0 be a smooth curve of degree d, another class of 3-syzygy
curves, where d1 = d2 = d3 = d− 1. It is known that the Hilbert function of the Milnor
algebra M(f) is in this case (1−t

d−1

1−t )3. For a smooth curve we have N(f) = M(f),
hence n(f)j = dimM(f)j and the Hilbert vector of the Jacobian module N(f) has the
following shape. It is interesting to notice the change in convexity when we pass through
the value j = d− 1.

d− 1

1

0 ⌊T2 ⌋
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3 The Hilbert vector of the Jacobian module of a plane curve

For a general 3−syzygy curve, we have the following result (see [9]).

Theorem 3.4.3. Let C : f = 0 be a 3−syzygy curve of degree d, not plus-one generated,
and exponents d1 ≤ d2 ≤ d3. Setting e = d1 + d2 + d3 and ki = 2(d− 1)− di, i = 1, 2, 3,
then the following hold:

n(f)k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for k < σ(
k−σ+2

2

)
for σ ≤ k < k3(

k−σ+2
2

)
−
(
k−k3+2

2

)
for k3 ≤ k < k2(

k−σ+2
2

)
−
(
k−k3+2

2

)
−
(
k−k2+2

2

)
for k2 ≤ k < T0,

where σ = σ(C) = 3(d− 1)− e and

T0 =

{
k1 − 2 if d1 ≥ d

2

d+ d1 − 4 if d1 < d
2 .

Note that n(f)k is known for T0 ≤ k ≤ T
2 in view of Theorem (3.3.5), hence the

information on the Hilbert vector is complete.

Proof. Let σ ≥ 0, since, by theorem [27, Theorem 2.3], d1 + d2 > d > d− 1, we have:

σ = 3(d− 1)− (d1 + d2 + d3) < 3(d− 1)− (d− 1)− d3 = 2(d− 1)− d3 = k3.

Moreover if 2d2 ≤ d, one has
d1 + d2 ≤ 2d2 ≤ d,

but it is not true by theorem [27, Theorem 2.3], hence it holds 2d2 ≥ d+ 1. Thence

2d2 ≥ d+ 1 ⇒ 2d2 > d+ 2 ⇒ −2d2 < −d− 2

⇒ 4(d− 1)− 2d2 < 4(d− 1)− d− 2 ⇒ 2k2 < 3(d− 2) ⇒ k2 <
T

2
.

By Theorem (3.4.1), the minimal resolution of N(f) is

0 → S(−e) → ⊕3
i=1S(ki − 3(d− 1)) → ⊕3

i=1S(−ki) → S(e− 3(d− 1)).

We note that k3 ≤ k2 ≤ k1. Moreover fixed σ ≤ k < k3, we have −ki + k < 0 for any i.
Hence we get:

n(f)k = dimS(e− 3(d− 1))k = dimSe−3(d−1)+k = dimSk−σ =

(
k − σ + 2

2

)
.

Now we consider when k3 ≤ k < k2 ≤ k1. We have −ki + k < 0, for i = 1, 2. We note
that k2 < d1+d−1, in fact, since C is a 3−syzygy curve not plus-one generated, it holds
d1 + d2 > d, by Theorem [27, Theorem 2.3]. Thence:

d1 > d− d2 ⇒ d1 + d > 2d− d2 ⇒ d1 + d− 1 > 2(d− 1) + 1− d2 > k2.
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We can say that 1− d− di + k < 0 for any i = 1, 2, 3. Hence

n(f)k = dimS(e+ 3− 3d)k − dimS(−k3)k =
= dimSe+3−3d+k − dimS−k3+k =

=

(
k − σ + 2

2

)
−
(
k − k3 + 2

2

)
=

By calculations, we get:

4(d− 1)− 2d3 − 3− (2σ − 3)

2
k + · · · = (k3 − σ)k + · · ·

The coefficient k3 − σ = 2(d− 1)− d3 − 3(d− 1) + e = d1 + d2 − (d− 1) ≥ 2. In fact, if
we consider δ = (d+ d1 − 4)− k2, we get:

(d1 + d2 − d)− 2 ≥ −1 ⇒ d1 + d2 − d ≥ 1

since d1 + d2 > d. Hence d1 + d2 − (d− 1) = d1 + d2 − d+ 1 ≥ 2.
Now we consider two cases:

k1 ≤ T
2 : we note that

k1 ≤
T

2
⇔ d1 >

d

2
.

By Theorem (3.3.5), n(f)k is known for k ∈ [2d − 4 − d1, d − 2 + d1]. Setting
T0 = 2d−4−d1 = 2(d−1)−d1−2 = k1−2, we can say that, for k2 ≤ k < T0 = k1−2,

n(f)k =

(
k − σ + 2

2

)
−
(
k − k3 + 2

2

)
−
(
k − k2 + 2

2

)
considering that −k1 + k < 0.

k1 >
T
2 : we note that

k1 >
T

2
⇔ d1 ≤

d

2
.

By Theorem (3.3.5), n(f)k = ν(C) is known for k ∈ [d+d1−4, 2d−2−d2]. setting
T0 = d+ d1 − 4, we can say that for k2 ≤ k < T0,

n(f)k =

(
k − σ + 2

2

)
−
(
k − k3 + 2

2

)
−
(
k − k2 + 2

2

)
considering that −k1 + k < 0.

Example 3.4.4. Let C : f = (x9 + y4z5)7 + xz62 be a singular curve of degree d = 63.
It is a 3−syzygy curve not plus-one generated; in fact d1 = 9 < d2 = 56 < d3 = 62 and
d1 + d2 = 65 > 63. We have:

e =

3∑
i=1

di = 127 σ = 59 k3 = 62 k2 = 68 .
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Since d1 < d
2 , T0 = d+ d1 − 4 = 68 = k2. Then we get:

n(f) = (0 . . . 0 1 3 6 9 12 15 18 21 24 26 27 27 27 . . .)
↑ ↑ ↑

σ = 59 k3 = 62 k2 = 68

• • • • • • • •

•

•

•

•

•

• •

ν(C) = 27

26

24

96

1

σ k3 k2 T0
T
2

Example 3.4.5. Let C : f = (x+ y)2(x− y)2(x+ 2y)2(x− 2y)2(x+ 3y)2(x− 3y)2(x+
4y)2(x−4y)2(x+5y)2(x−5y)2+z20 be a singular curve of degree d = 20. It is a 3−syzygy
curve not plus-one generated; in fact d1 = 9 < d2 = d3 = 19 and d1 + d2 = 28 > 20. We
have:

e =

3∑
i=1

di = 47 σ = 10 k3 = k2 = 19.

Since d1 < d
2 , T0 = d+ d1 − 4 = 25. Then we get:

n(f) = (0 . . . 0 1 3 6 10 15 21 28 36 45 53 60 66 71 75 78 80 . . .)
↑ ↑

σ = 10 k3 = 19
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•

•

•

•

•

• •

ν(C) = 81

80

5345

1

σ k3 T0
T
2

We note that in this example the linear part in the middle is missing.

3.5 Maximal Tjurina curves and nodal curves

We assume in this section that r = d1 ≥ d/2.
A reduced plane curve C : f = 0 of degree d is called a maximal Tjurina curve if the
global Tjurina number τ(C) equals the du Plessis-Wall upper bound, namely if

τ(C) = (d− 1)(d− r − 1) + r2 −
(
2r − d+ 2

2

)
, (3.11)

(see [24, 28, 29]). We know that a reduced plane curve C : f = 0 of degree d is a maximal
Tjurina curve if and only if one has d1 = d2 = · · · = dm = r, e1 = e2 = · · · = em−2 = d+r
and m = 2r − d+ 3, see [24, Theorem 3.1]. Using now the equality (3.6), it follows that
in this case

σ(C) = 2d− r − 3. (3.12)

Theorem (3.3.5) yields then the following result.

Proposition 3.5.1. Let C : f = 0 be a maximal Tjurina curve of degree d with r = d1 ≥
d
2 . Then the Hilbert vector of the Jacobian module N(f) is given by the following

n(f)k =

{
3(d′)2 − (j − 3d′ + 2)(j − 3d′ + 1)− τ(C) for d = 2d′ + 1

3(d′)2 − 3d′ + 1− (j − 3d′ + 3)2 − τ(C) for d = 2d′

for 2d− 3− r ≤ k ≤ d− 3 + r and n(f)k = 0 otherwise.

Consider now an arbitrary reduced curve C : f = 0 of degree d, satisfying r = d1 ≥ d
2 .

Then we clearly have
n(f)k = m(f)k − d(f)k
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where m(f)k = dimM(f)k and d(f)k = dimSk/(Ĵf )k. Since we have to determine n(f)k
only for k ≤ T

2 by symmetry, and since ct(f) ≥ d− 2 + r > T
2 , it follows that

n(f)k = m(fs)k − d(f)k,

with fs a homogeneous polynomial in S of degree d such that Cs : fs = 0 is a smooth
curve in P2 and k ≤ T

2 . In particular, we have to determine only the values d(f)k for
k ≤ T

2 . On the other hand, we know that

d(f)k = τ(C),

for k ≥ T − ct(C), see [16, Proposition 2]. In particular, this equality holds for k ≥
3(d − 2) − (d − 2 + r) = 2d − 4 − r, see also the proof of [26, Theorem 3.1]. Assume
now that C : f = 0 is a nodal curve in P2. Then r = d1 ≥ d − 2 ≥ d

2 for d ≥ 4, (see
[20, Example 2.2 (i)]). Let N denote the set of nodes of the curve C and let def Sk(N )
denote the defect of the set N with respect to the linear system Sk. Then it is known
that

d(f)k = |N | − def Sk(N ),

(see [16]). Then [21, Corollary 1.6] implies that def Sk(N ) = 0 for k > d − 3 and
def Sk(N ) = n(C) − 1 for k = d − 3, where n(C) denotes the number of irreducible
components of C. If all the irreducible components of C are rational, then [25, Theorem
2.7] shows that n(f)k = 0 for k ≤ d− 3. These facts imply the following.

Theorem 3.5.2. Let C : f = 0 is a nodal curve in P2 of degree d ≥ 4. Then one has
the following, with fs a homogeneous polynomial in S of degree d such that Cs : fs = 0
is a smooth curve in P2..

n(f)k =

{
m(fs)k − |N | for d− 3 < k ≤ T/2

m(fs)k − |N |+ n(C)− 1 for k = d− 3.

Moreover, when all the irreducible components of C are rational, one has in addition
n(f)k = 0 for k ≤ d− 3.

3.6 Relation to a result by Hartshorne

Let C : f = 0 be a curve of degree d, and let r = mdr(f) be the minimal degree of a
Jacobian syzygy for f , we can give some informations about the invariant σ(C), using a
result by Hartshorne, namely [41, Theorem 7.4].

Theorem 3.6.1. Let C : f = 0 be a curve of degree d, and let r = mdr(f) be the minimal
degree of a Jacobian syzygy for f . Assume that r ≥ (d − 1)/2, in other words that the
rank 2 vector bundle EC is semistable. Then we have the following.

1. If d = 2d′ + 1 is odd, then

σ(C) ≥ τ(C)− 2(d′)2 − 2rd′ + r2 + 3d′ − 1.
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2. If d = 2d′ is even, then

σ(C) ≥ τ(C)− 2(d′)2 − 2rd′ + r2 + 5d′ + r − 3.

The above inequalities are sharp, in particular they are equalities when C is a maximal
Tjurina curve with r ≥ d

2 .

Proof. We discuss only the case d = 2d′ + 1, the other case being completely similar.
One has

n(f)k = h1(P2, EC(k − 3d′)).

Moreover h0(P2, EC(t)) = h0(P2, EC(t + d′)) ̸= 0 if and only if t + d′ ≥ r. Hence the
minimal t satisfying this condition is tm = r − d′ ≥ 0. Then [41, Theorem 7.4] implies
that n(f)k = 0 when

k − 3d′ ≤ −c2(E) + t2m − 2.

Using the formula for tm above, and the formula for c2(E) given in the equations (3.7),
we get that n(f)k = 0 when

k ≤ τ(C)− 2(d′)2 − 2rd′ + r2 + 3d′ − 2,

which clearly implies our claim (1). The fact that the inequality in (1) is in fact an
equality when C is a maximal Tjurina curve with r ≥ d

2 follows by a direct computation.
Indeed, using the above definition of a maximal Tjurina curve of degree d = 2d′ + 1,
namely the equality (3.11), we see that

τ(C) = 2(d′)2 + 2rd′ − r2 − r + d′.

Hence
τ(C)− 2(d′)2 − 2rd′ + r2 + 3d′ − 1 = 2d− r − 3 = σ(C),

where the lasy equality follows from (3.12).

Example 3.6.2. Let C : f = 0 be a curve of degree d = 2d′ + 1, having a unique node
as singularities. Then it is known that r = d − 1 = 2d′, and τ(C) = σ(C) = 1. The
inequality in Theorem (3.6.1 (1)) is in this case

1 ≥ d′(3− 2d′),

hence the two terms in this inequality can be far apart in some cases.
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