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Chapter 0

Introduction

Heisenberg’s uncertainty principle bounds the precisions with which one can mea-
sure the position and the momentum of a particle simultaneously, but puts no
bounds on each of them separately. A fundamental bound on the precision of
position measurements is expected to arise in any consistent quantum theory
of gravitation, whatever it will be; this bound is of the order of 10−33cm, the
socalled Planck length. As first suggested by Heisenberg1, a fundamental length
might also play a role as a parameter regularizing the divergences arising in quan-
tum field theory (even on Minkowski spacetime); and a more commonly adopted
regularization parameter is an energy cutoff. Such lengths may also help to unify
fundamental interactions (see e.g. [3, 4, 5, 6, 7]) and they might naturally arise
from small but non-vanishing commutators between different coordinates.

These are some physical motivations of Non-Commutative Geometry [8, 9],
whose program is to develop the analog of differential geometry after replacing
the commutative algebra of functions on a manifold by a noncommutative one,
e.g. generated by a set of non-commutative coordinates (the quantization of the
phase space of a particle in nonrelativistic quantum mechanics can be seen as the
first example of non-commutative geometry).

Often one deals with a one (or more) parameter family of noncommutative
geometries which become commutative when the parameter(s) go to some limit
(e.g. ~→ 0 in the previous example).

Fuzzy Spaces are particular examples parametrized by a positive integer n,
such that the noncommutative algebra An (playing the role of ‘algebra of func-
tions’) has a finite dimension increasing and diverging with n and An

n→∞−→ A,
which is the algebra of regular functions on an ordinary manifold.

The first and seminal fuzzy space is the Fuzzy 2-Sphere (FS) of Madore and

1Heisenberg proposed it in a letter to Peierls [1] to solve the problem of divergent integrals
in relativistic quantum field theory. The idea propagated via Pauli to Oppenheimer. In 1947
Snyder, a student of Oppenheimer, published the first proposal of a quantum theory built on a
noncommutative space [2].
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Hoppe [10, 11], it is a sequence of SO(3)-equivariant2 [SO(D) is the rotation
group in D dimensions], finite noncommutative algebras An isomorphic to Mn

(the algebra of n × n matrices); each matrix represents the expansion in spher-
ical harmonics of an element of C(S2) truncated at level n. The algebra An is
generated by coordinate operators {xi}3

i=1 fulfilling

[xi, xj] =
2i√
n2−1

εijkxk and
3∑
i=1

xixi ≡ 1, (1)

with n ∈ N \ {1}. In fact, these operators are obtained by the rescaling

xi =
2Li√
n2−1

, i = 1, 2, 3 (2)

of the elements Li of the standard basis of so(3) in the irrep (πl, Vl,3) characterized
by L2 :=

∑3
i=1 LiLi ≡ l(l+1)I, or equivalently the one of dimension n = 2l+1.

In this thesis we propose and study a new class of fuzzy spaces: for every
dimension D ≥ 2 we propose an O(D)-equivariant [O(D) is the orthogonal group
in D dimensions] fuzzy hypersphere SdΛ, where d := D − 1. The relations (1)
are covariant under SO(3), but not under the whole O(3), in particular not
under parity xi 7→ −xi; this is in contrast with the O(3)-covariance of both
the ordinary sphere S2 [where the right-hand side of (1)1 is zero] and the new
O(3)-equivariant fuzzy 2-sphere S2

Λ [where the right-hand side of (1)1 depends on
the angular momentum components, as in Snyder [2] commutation relations]; the
coordinate operators {xi}Di=1 of these new fuzzy spaces generate the whole algebra
of observablesAΛ,D, as for the FS. Moreover, while the Hilbert space Vl,3 of the FS
carries an irreducible representation of SO(3), that L2(Sd) of a quantum particle
on Sd decomposes as the direct sum of all the vector irreducible representations
of SO(D):

L2(Sd) =
∞⊕
l=0

Vl,D. (3)

It turns out that the one HΛ,D of SdΛ decomposes as the direct sum HΛ,D =⊕Λ
l=0 Vl,D, and therefore also in this aspect SdΛ better approximates the config-

uration space Sd in the limit Λ → ∞, so the Madore FS algebra An should be
seen simply as the spin phase space algebra, not as a fuzzyfication of the algebra
of configuration space observables on S2.

According to this, we believe that this framework is an improvement of Madore
fuzzy approximation of the sphere because

2The concept of equivariance (or covariance) is very relevant in Physics: given a map f from
an algebraM to an algebra N (not necessarily distinct fromM) one says that it is equivariant
with respect to an abstract group G (which acts onM and N ) if applying a G transformation
and then computing the function produces the same result as computing the function and then
applying the G transformation.
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1. We obtainO(D)-equivariant algebraic relations between the operators, while
the Madore’s ones are covariant with respect to a smaller group.

2. In the commutative limit, our Hilbert space of admitted states coincides
with L2(Sd), and this is not true for the FS.

3. We are able to fuzzy approximate, in every dimension D ≥ 2, all the co-
ordinate operators and also all the quantum angular momentum operator
components of RD; and this is not true for the FS.

The commutation relations among our coordinates xi are similar to the ones
among the coordinates in Snyder’s quantized spacetime algebra [2]. The latter
is generated by 4 coordinate operators {x̂µ}µ=0,1,2,3, and 4 momentum operators
{p̂µ}µ=0,1,2,3; they fulfill (here α is a suitable constant)

[p̂µ, p̂ν ] = 0, [x̂µ, p̂ν ] = i~(δµν − αp̂µp̂ν), [x̂µ, x̂ν ] = −i~αLµν , (4)

where we have set Lµν = x̂µp̂ν − x̂ν p̂µ and we raise and lower indices by the
Minkowski metric η = diag(1,−1,−1,−1) = η−1: vµ = ηµνvν , vµ = ηµνv

ν . These
relations are invariant under inversion of the axes, in particular under parity.
The Lµν span the Lorentz Lie algebra, and their commutation relations with the
4-vectors p̂µ, x̂µ are as on the Minkowski space.

This thesis can be divided in four parts. The readers that are familiar with Lie
groups, Lie algebras representations, root vectors, weights and noncommutative
spaces can skip the first part (chapter 1), which is based on [12] and contains
a short introduction to the above topics, and to noncommutative geometries;
group representations are applied in the second part (which is partially based on
an unpublished article) to construct new noncommutative-geometry toy-models
SdΛ (chapter 2), which may be useful in some modern applications to condensed
matter physics and quantum field theory; the readers that want to give a first
look to the simplest elements of our new class of fuzzy spaces, i.e. the fuzzy
low-dimensional spheres S1

Λ, S2
Λ, S3

Λ and S4
Λ, can firstly read chapter 3. Finally,

in the third (chapter 4) and fourth (chapter 5) parts we study further aspects of
these new noncommutative spaces.

First of all, in section 1.1 the notion of group representation is introduced,
that is a homomorphism between the group and a group of operators over a vector
space. Then reducible and irreducible representations are introduced and charac-
terized; these characterizations are necessary since one cannot always recognize
if a representation is irreducible only by the use of a matrix realization.

Then we do the proof of the Schur’s lemma, which is very useful in group
representations, for example when there are operators of a Lie algebra which
commute with all the others; section 1.2 contains a summary about semisimple
Lie algebras, root vectors, weights and weight spaces. Sections 1.3 and 1.4, which
are about the algebra so(D).
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In this thesis we construct a fuzzy approximation of the unit d-sphere Sd ob-
tained as the hypersurface of RD Sd =

{
x ∈ RD : ‖x‖2 = 1

}
. An alternative way

to obtain Sd would be as the coset space Sd = SO(D)/SO(d). For completeness,
in section 1.5 we give a short review on coset space geometry and systematic
harmonic analysis on coset spaces.

A simple mechanism to modify a quantum mechanical model with commuting
coordinates into one with non-commuting coordinates is illustrated by the well-
known Landau model, which describes a charged quantum particle interacting
only with an uniform magnetic field (in the z direction) B. The separation

between the levels of energy is ‖eB‖
mc

; if B := ‖B‖ is strong (or, equivalently, m

is small) and the energy is constrained to be below a cutoff E, then the Hilbert
space of states is projected to the subspace of lowest energy, and e

c
Bx, y become

canonically conjugates, i.e. have a non-zero (but constant) commutator.

Inspired by the Landau model, in chapter 2 a quantum particle is considered
in every dimension D ≥ 2, where the Hamiltonians consist of the standard kinetic
terms and rotation invariant potential energies V (r) with a very deep minimum
(well) on the d-dimensional sphere of unit radius. The imposition of an energy
cutoff makes only a finite-dimensional Hilbert subspace H′ accessible and the
coordinates become noncommutative on H′; they also generate the whole algebra
of observables of H′. On H′ the distance from the origin is not strictly 1, but its
spectrum collapses to 1 (with the exception of highest square angular momentum
eigenvalue) in the limit of an infinitely narrow and deep well; the latter can be
considered as a quantum version of the constraint r = 1.

In other words, in that chapter, the procedure used in [13, 14] is applied to
the generic D-dimensional case; in this way the fuzzy spheres constructed are
equivariant not only under SO(D), but under the full orthogonal group O(D),
obtaining then an O(D)−equivariant fuzzy sphere, for every dimension D. Fur-
thermore, the algebra of observables AΛ,D is realized through a suitable irre-
ducible vector representation of Uso (D + 1) (the universal enveloping algebra of
so (D + 1); see definition 1.1.11), and then we do the proof of the convergence
(in a certain sense) of this new fuzzy sphere to ordinary quantum mechanics on
the sphere Sd.

The aforementioned procedure does not strictly depend on the dimension of
the carrier space, but one has to replace all the 2-dimensional and 3-dimensional
objects by the correspondingD-dimensional ones; for instance, theD-dimensional
spherical harmonics are needed, together with the action on them of the D-
dimensional angular momentum operator components.

For this reason, let

Lh,j :=
1

i

(
xh

∂

∂xj
− xj

∂

∂xh

)
with h, j ∈ {1, 2, · · · , D} (5)
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be a component of the quantum angular momentum in RD, and

Cp :=
∑

1≤h<j≤p

L2
h,j with p ∈ {2, 3, · · · , D} (6)

be the realization of the quadratic Casimir of Uso(p); in particular, CD ≡ L2 is
the opposite of the Laplace-Beltrami operator ∆Sd on the sphere Sd. This and
the fact that the action of CD̃ in SD̃−1 coincides with the one in Sd (see section
7.0.1) imply that Cp is the opposite of the Laplace-Beltrami operator ∆Sp−1 on
the sphere Sp−1 in every dimension D ≥ p ≥ 2, and its eigenvalues (see [15], p.
169, theorem 22.1) are

lp−1(lp−1 + p− 2), with l1 ∈ Z and lp−1 ∈ N0 ∀p > 2. (7)

Following [13, 14], start with a quantum particle in RD subject to a confining
potential well V (r), which has a very deep minimum in r = 1 [⇒ V ′(1) = 0,
V ′(1) =: 4kD, with kD � 0]; assume that, when r ≈ 1, it can be approximated
with the potential of a one-dimensional harmonic oscillator, in symbols V (r) '
V0+2kD(r−1)2, where V0 := V (1) and kD plays the role of a confining parameter.

This choice of V (r) ensures that, in the limit kD → +∞, the quantum particle
is forced to stay on the unit d-dimensional sphere Sd, and this leads to prove also
the convergence of this new fuzzy space to ordinary quantum mechanics on the
sphere, in that limit.

Once introduced this V (r), one has to study the eigenvalue equation

Hψ =

[
−1

2
∆ + V (r)

]
ψ = Eψ, (8)

which is a PDE in the unknowns ψ, E and its resolution provides a basis of the
Hilbert space of quantum states HD; in addition, from

[H,Li,j] = 0 ∀1 ≤ i < j ≤ D,

[L1,2, Cp2 ] = [Cp1 , Cp2 ] = 0, ∀p1, p2 ∈ {2, 3, · · · , D}
(9)

it follows that H, L1,2 and all these Cp operators can be simultaneously diago-
nalized in the resolution of (8).

In order to do this, let’s look for an eigenfunction ψ in the form

ψ = f(r)Y (θd, θd−1, · · · , θ1), (10)

where Y is a common eigenfunction of the CSCO (Complete set of commuting
observables, i.e. a set of commuting operators whose set of eigenvalues completely
specify the state of a system) L1,2, C2, · · · , Cd and L2; while r, θd, θd−1, · · · , θ1 are
polar coordinates. It is obvious that, in order to have ψ ∈ L2

(
RD
)
, it is necessary

that rdf ∈ L2 (R+) and Y ∈ L2
(
Sd
)
.
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The Ansatz (10) transforms the PDE Hψ = Eψ into an ODE in the unknown
f , which is solved in section 2.1.1; while in section 2.1.2 an orthonormal basis
of L2

(
Sd
)

of eigenfunctions of L2 is determined, in particular we prove that
every basis-function Y is uniquely determined by a collection of d indices l :=
(ld, · · · , l2, l1), fulfilling

CpYl = lp−1(lp−1 + p− 2)Yl , ld ≥ · · · ≥ l2 ≥ |l1| and li ∈ Z ∀i.

Then, it turns out that an orthonormal basis BD of the space of quantum states
HD is (here and later on l := ld)

BD = {fn,l,D(r)Yl(θd, θd−1, · · · , θ1)|n ∈ N0, l ≥ ld−1 ≥ · · · ≥ l2 ≥ |l1|, li ∈ Z∀i} .

Furthermore, the consequence of the imposition of a sufficiently low energy cutoff
E ≤ E (see section 2.2) is that the Hilbert space of ‘admitted’ states HE,D ⊂ HD

becomes finite-dimensional and spanned by all the H-eigenstates having eigenval-
ues E ≤ E. We also replace every observable A by the corresponding projected
one A := PE,DAPE,D (here and later on PE,D is the projection on HE,D) and we

give to A the same physical interpretation; in this way we have only states and
operators that are ‘physical’.

The condition E < 2
√

2kD implies that the Hamiltonian operator H can be
seen, in a first approximation, as the square angular momentum operator L2 (in
other words radial excitations are ‘frozen’), while two crucial steps, necessary to
obtain a fuzzy space, are the choice of a Λ-dependent energy cutoff E := E (Λ)
so that E (Λ) diverges with Λ ∈ N, and the assumption that also kD depends on
Λ in a way such that E (Λ) < 2

√
2kD (Λ). This implies that the Hilbert space

of admitted states can be definitively re-labeled as HΛ,D, and the corresponding
algebra of observables End (HΛ,D) as AΛ,D; then the sequence {AΛ,D}Λ∈N is made
of finite-dimensional algebras, which become infinite dimensional in the limit
Λ→ +∞.

In order to calculate the algebraic relations between the generators of AΛ,D

we need to determine the action of every Lh,j ≡ Lh,j and xh on a basis of HΛ,D.
Because of (10), it is possible to use the knowledge of the action of Lh,j on the
spherical harmonics Yl obtained from the above CSCO, to recover the one on
ψl,D; since we have not found the action of this in the literature when D > 3,
we have explicitely calculated it in 2.3.1, while in section 2.3.2 we compute the
action of coordinate operators xh.

As in [13, 14], in section 2.3.3 it is shown that xh, xj fulfill Snyder commutation
relations, in other words their commutator is proportional to the component
Lh,j of the D-dimensional angular momentum operator, up to a scalar operator
depending on L2. Then there is a list of all the relations involving the projectors
of AΛ,D which show that the xs generate the whole algebra of observables, for
instance every component of the angular momentum operator can be written as
a ordered polynomial in the xh. The square distance from the origin operator
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x2 :=
∑

h xhxh is not identically 1, but a function of L2 such that nevertheless
its spectrum is very close to 1 and collapses to 1 in the kD →∞ limit.

Furthermore, in section 2.4 some tools of Lie algebra theory are used in order
to realize the algebra of observables AΛ,D through a suitable irreducible vector
representation πΛ,D+1 of Uso (D + 1); this is suggested by the fact that the di-
mension of HΛ,D coincides with the one of the representation space VΛ,D+1 of
πΛ,D+1; then (up to isomorphisms)

HΛ,D =
Λ⊕
l=0

Vl,D = VΛ,D+1.

That realization is O(D)-equivariant and the algebra isomorphism Φ fulfills

[Φ (A)]† = Φ
(
A†
)
. (11)

The proof of the aforementioned convergence is a sort of certification of the
goodness of this approximation of quantum mechanics on the sphere Sd, and this
job is done in section 2.5; this is inspired by the behavior of the potential V (r) in
the limit kD → +∞, where it forces the quantum particle to stay on the unit d-
dimensional sphere Sd. The ‘projected’ spherical harmonics are firstly identified
as a basis of a space of all spherical harmonics, AΛ,D as a subalgebra of B

(
Sd
)
,

the algebra of bounded functions on Sd [or C
(
Sd
)
, the algebra of polynomial

functions on Sd], and then we prove the convergence (in a certain sense) of the
operators in AΛ,D to the corresponding ones in B

(
Sd
)

[C
(
Sd
)
, respectively];

furthermore, we use a kD(Λ) growing faster with Λ ∈ N to prove this result.
It is possible to see the explicit constructions of SdΛ for d = 1, 2, 3, 4 in chapter

3, while in Appendix A (chapter 7) there are lengthy computations and proofs of
that chapter.

For a coordinate operator xi (from now later on we identify xi ≡ xi) to
approximate well and in an O(D)-equivariant way the corresponding coordinate
of a quantum particle forced to stay on the unit sphere Sd, its spectrum Σxi should
fulfill at least the following properties, which are fulfilled also by the Madore FS:

1. The spectrum Σxi of each xi, for all choices of the orthogonal axes, is the
same.

2. If α is an eigenvalue of xi, then also −α is.

3. In the commutative limit the spectrum Σxi becomes uniformly dense in
[−1, 1], in particular the maximal and the minimal eigenvalues converge to
1 and −1, respectively.

Then, in chapter 4 we present the study of the xi-eigenvalue equation on SdΛ,
based on [16], in particular to show that Σxi fulfills these and other properties.
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Figure 1: The vectors x, 〈x〉, x− 〈x〉, the region σ and the tangent plane TuS
d

at u.

Among the latter one, not shared by the FS, justifies why (see chapter 6) the
S2

Λ can be interpreted as a fuzzy configuration space, while the FS should be
interpreted only as a fuzzy spin phase space: namely that the eigenstate of x3

with maximal eigenvalue (this is very localized around the North pole of S2) is
an eigenstate of L3 with zero eigenvalue. In section 4.1 we do a summary about
the diagonalization of a Toeplitz tridiagonal matrix; the xi-eigenvalue equation
on S1

Λ, S
2
Λ and SdΛ when d > 2 is studied in sections 4.2, 4.3 and 4.4, respectively;

then in chapter 6 we do a comparison between the results on S2
Λ and FS, while

in Appendix B (chapter 8) there are lengthy computations and proofs of that
chapter.

The xi-eigenvalue problem is strictly linked to the one of finding the most
localized (and therefore closest to ‘classical’) states of this new fuzzy spaces: first
of all, as a measure of localization of a state in configuration space its spacial
dispersion is here adopted, i.e. the expectation value

(∆x)2 :=
D∑
i=1

(∆xi)
2 ≡

〈
(x−〈x〉)2〉 =

〈
x 2
〉
− 〈x〉2 (12)

on the state; here x ≡ (x1, ..., xn), 〈x〉 ≡ (〈x1〉 , ..., 〈xn〉) pinpoints the average
position of the particle in the ambient Euclidean space RD, the scalar observable
x2 :=

∑D
i=1 xixi measures the square distance from the origin, the vector observ-

able x−〈x〉 measures the displacement from the average position, and expression
(12) is the average of the square of the latter. This choice is motivated by the
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fact that it is manifestly O(D)-invariant and that if the state is localized in a
small region σ ⊂ Sd around a point u ≡ 〈x〉 ∈ Sd then (∆x)2 essentially reduces
to the average square displacement in the tangent plane at u, and the metric on
the sphere is induced by the one in the ambient Euclidean space, as wished.

The above O(D)-symmetry means (∆x)2
ψ = (∆Rx)2

ψ for every state ψ ∈ HΛ

and O(D)-transformation R. This implies that one can equivalently try to mini-
mize (∆x)2 = 〈x2〉− 〈xi〉2 with a fixed i ∈ {1, · · · , D}. On the other hand, since
x2 ' 1 on the new fuzzy spheres, the most localized states are obtained once one
determines the xi-eigenstates corresponding to the maximal eigenvalues. The
knowledge of the xi-eigenvectors and most localized states will be essential for
investigating the quantum metric aspects of these new fuzzy spheres, in particu-
lar for studying the ‘distance’ (either the spectral distance of Connes [8, 17, 18],
or alternative ones, see e.g. [19, 20]) between two such pure states. Moreover,
most localized states, especially when arranged in systems of coherent states
[21, 22, 23, 24], are an extremely useful tool for a number of purposes (see e.g.
[25, 26]), notably for studying path integrals (partition and correlation functions)
in quantum field theory (QFT) both with a finite and with an infinite number of
degrees of freedom. In particular, they may decisively simplify the computation
of path integrals representing propagators, correlation functions and their gen-
erating functionals; this has applications in nuclear, atomic, condensed matter
physics, as well as in QFT and elementary particle physics (see e.g. [27, 28, 29]).
From a more foundation-minded viewpoint, the Berezin quantization procedure
itself [30] on Kähler manifolds is based on the existence of sets of coherent states
(see e.g. chpt. 16 in [31]). The ‘cutoff’ n (Λ in these new models) works as
a regularizing parameter of ultraviolet divergences on all fuzzy spaces, so that
integration over fields amounts to integration over matrices (see e.g. [4, 32] for
the first QFT on the FS, and [33, 34, 35, 36] for examples of QFT on fuzzy
spheres of higher dimensions); it has been recently proposed [5] that it may also
parametrize the large (but finite) amount of information hidden in a black hole;
finally, if spacetime M is enlarged to a higher-dimensional one M ′ = M × Sn
- where Sn is a fuzzy space, instead of a compact manifold S - it reduces the
number of massive Kaluza-Klein modes of a field theory on M ′ to a finite value
[7]. According to this, the main aim of chapter 5, which is based on [37], is to in-
troduce on SdΛ (d = 1, 2) various systems of coherent states (SCS) and study their
different localization properties in configuration as well as (angular) momentum
space, which are respectively expressed in terms of the uncertainties ∆xi,∆Lij;
for equivariance reasons it is convenient to adopt O(D) or - when this is redun-
dant - Sd = SO(D)/SO(d) as a label space parametrizing the elements of the
SCS. Then, the SCS are considered both in the strong sense, i.e. providing a res-
olution of the identity, and in the weak sense, i.e. making up an (over)complete
set in HΛ. ∆xi,∆Lij must fulfill a number of uncertainty relations and other
inequalities following from the algebraic relations (commutation, etc.) among
the xi, Lij. Neither on the commutative nor on the fuzzy spheres is it possible
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to saturate all of these inequalities (and their consequences, a fortiori), and for
this reason in chapter 5 there is a preliminary discussion about the saturation of
suitable O(D)-equivariant inequalities first on Sd, then on SdΛ; we privilege the
latter because they have a physical meaning independent of the particular chosen
reference frame, and because a state saturating them is automatically mapped
into another one by the unitary transformation U(g) corresponding to any or-
thogonal transformation g ∈ O(D) [by definition gijxj = U−1(g)xi U(g), etc.].
Eq. (12) can be seen as a generalization of the square dispersion (∆L)2 of the
spin L as introduced by Perelomov [31], to which it reduces upon replacing x by
L. In fact, (∆L)2 is adopted as a measure of localization of the state in (angular)
momentum space. Given a state, consider an orthogonal transformation g∈O(D)
such that g〈x〉=(|〈x〉|,0,...,0); then the state is mapped by U(g) into a new one
with the same 〈x2〉, 〈x1〉 = |〈x〉|, 〈xi〉 = 0 for i>1 (of course one obtains the
same result replacing x1 by any other xi, or by the Li). If x2 is central in the al-
gebra of observables and the representation of the latter is irreducible, then 〈x2〉
is state-independent, and (12) is minimal on the state(s) that are eigenvectors
of x1 with the highest (in absolute value) eigenvalue. In particular, in Madore’s
FS it is xi ∝ Li, x2 ≡ 1, and the spacial uncertainty (12) coincides up to a
factor with the aforementioned (∆L)2; hence on the representation space Vl it is
minimized by the same SCS, on which it amounts to

(∆x)2
min =

2

n+ 1
=

1

l + 1
. (13)

Using the results of chapter 4, it is possible to show that on the new fuzzy spheres
SdΛ

(∆x)2
min <

Cd
(Λ + 1)2

, where Cd =

{
3.5 if d = 1,

11 if d = 2,
(14)

and that the states minimizing (∆x)2 make up a weak SCS. Its elements can be
considered as the closest [31] states to pure classical states - i.e. points - of Sd ,
because they are in one-to-one correspondence with points of Sd, are optimally lo-
calized around the latter and are mapped into each other by the symmetry group
O(D). In the case d = 2 the right-hand side goes to zero as Λ→∞ much faster
than the uncertainty (13) for all irreducible components appearing in the decom-
position HΛ =

⊕Λ
l=0 Vl, including the one (∆x)2

min = 1/(Λ + 1) corresponding
to the highest l. In this sense the optimally localized states on the new S2

Λ have
a sharper spacial localization than the CS on Madore FS3. It is also possible to
determine various strong SCS, in particular one with (∆x)2 < 1/(Λ + 1); the
elements of the latter SCS are eigenvectors of a suitable component of the angular
momentum, so that the corresponding states (rays or equivalently 1-dim projec-
tions) are in one-to-one correspondence with points of Sd, and the resolution

3Of course a future, more precise determination of (∆x)2
min will indicate an even sharper

localization.
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of the identity holds also integrating just over the coset space Sd; furthermore,
in Appendix C (chapter 9) there are lengthy computations and proofs of that
chapter. In view of potential physical applications to a quantum particle moving
within a very thin domain with the shape of a sphere (like e.g. an electron in
fullerene), the three-dimensional model is more useful than the FS because in
this new model the restriction to the unit sphere is obtained ‘a posteriori’ from
the dynamics. Beside their theoretical interest as toy-models of fuzzy geometries
in quantum gravity, these models may thus have some application to one- and
two-dimensional quantum systems, which are a very ‘hot’ topic of research in con-
densed matter physics (quantum waveguides or nanotubes; fullerene, graphene4,
quantum Hall-effect, etc.). In all cases there are very thin layers of matter where
electrons are confined by potential energies with very deep minima there and
steep gradients in the normal direction.

4Graphene is an allotrope of carbon in the form of a two-dimensional layer of carbon atoms
and it has the resistance of diamond and the flexibility of plastic.



Chapter 1

Theoretical framework

1.1 Lie Group and Lie algebra representations

1.1.1 Basics notions about Lie groups and Lie algebras

1.1.1.1 Definition of a Matrix Lie Group

We begin with a very important class of groups, the general linear groups.

Definition 1.1.1 The general linear group over the real numbers, denoted GL(n;R)
is the group of all n× n invertible matrices with real entries. The general linear
group over the complex numbers, denoted GL(n;C), is the group of all n × n
invertible matrices with complex entries.

The general linear groups are indeed groups under the operation of matrix
multiplication: The product of two invertible matrices is invertible, the identity
matrix is an identity for the group, an invertible matrix has (by definition) an
inverse, and matrix multiplication is associative.

Definition 1.1.2 LetMn(C) denote the space of all n×n matrices with complex
entries.

Definition 1.1.3 Let Am be a sequence of complex matrices in Mn(C). We say
that Am converges to a matrix A if each entry of Am converges (as m→ +∞) to
the corresponding entry of A [i.e., if (Am)kl converges to Akl for all 1 ≤ k, n ≤ n].

Definition 1.1.4 A matrix Lie group is any subgroup G of GL(n;C) with the
following property: If Am is any sequence of matrices in G, and Am converges to
some matrix A then either A ∈ G, or A is not invertible.

The condition on G amounts to saying that G is a closed subset of GL(n;C)
[this does not necessarily mean that G is closed inMn(C)]. Thus, definition 1.1.4
is equivalent to saying that a matrix Lie group is a closed subgroup of GL(n;C).

15
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The condition that G be a closed subgroup, as opposed to merely a subgroup,
should be regarded as a technicality, in that most of the interesting subgroups of
GL(n;C) have this property. Most of the matrix Lie groups G we will consider
have the stronger property that if Am is any sequence of matrices in G, and Am
converges to some matrix A, then A ∈ G [i.e., that G is closed in Mn(C)].

1.1.1.2 The orthogonal and special orthogonal groups, O(n) and SO(n)

A n × n real matrix A is said to be orthogonal if the column vectors that make
up A are orthonormal, that is, if

n∑
l=1

AljAlk = δjk, 1 ≤ j, k ≤ n,

where δjk is the Kronecker delta, equal to 1 if j = k and equal to zero if j 6=
k. Equivalently, A is orthogonal if it preserves the inner product, namely if
〈x, y〉 = 〈Ax,Ay〉 for all vectors x, y ∈ Rn (angled brackets denote the usual
inner product on Rn, 〈x, y〉 =

∑
k xkyk. Still another equivalent definition is that

A is orthogonal if ATA = I, i.e. if AT = A−1 (here, AT is the transpose of A,
(AT )kl = Alk).

Since detAT = detA, we see that if A is orthogonal, then det(ATA) =
(detA)2 = det I = 1. Hence, detA = ±1, for all orthogonal matrices A.

This formula tells us in particular that every orthogonal matrix must be in-
vertible. However, if A is an orthogonal matrix, then〈

A−1x,A−1y
〉

=
〈
A
(
A−1x

)
, A
(
A−1y

)〉
= 〈x, y〉.

Thus, the inverse of an orthogonal matrix is orthogonal. Furthermore, the prod-
uct of two orthogonal matrices is orthogonal, since if A and B both preserve inner
products, then so does AB. Thus, the set of orthogonal matrices forms a group.

The set of all n×n real orthogonal matrices is the orthogonal group O(n), and
it is a subgroup of GL(n;C). The limit of a sequence of orthogonal matrices is
orthogonal, because the relation ATA = I is preserved under taking limits. Thus,
O(n) is a matrix Lie group. The set of n×n orthogonal matrices with determinant
one is the special orthogonal group SO(n). Clearly, this is a subgroup of O(n),
and hence of GL(n;C). Moreover, both orthogonality and the property of having
determinant one are preserved under limits, and so SO(n) is a matrix Lie group.
Since elements of O(n) already have determinant ±1, SO(n) is ‘half’ of O(n).

Geometrically, elements of O(n) are either rotations or combinations of rota-
tions and reflections. The elements of SO(n) are just the rotations.

1.1.1.3 Homomorphisms and Isomorphisms

Definition 1.1.5 Let G and H be matrix Lie groups. A map Φ from G to H is
called a Lie group homomorphism if
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1. Φ is a group homomorphism,

2. Φ is continuous.

If, in addition, Φ is one-to-one and onto and the inverse map Φ−1 is continuous,
then Φ is called a Lie group isomorphism.

Note that the inverse of a Lie group isomorphism is continuous (by definition)
and a group homomorphism (by elementary group theory), and thus a Lie group
isomorphism. If G and H are matrix Lie groups and there exists a Lie group
isomorphism from G to H, then G and H are said to be isomorphic, and we
write G ' H. Two matrix Lie groups which are isomorphic should be thought of
as being essentially the same group.

The simplest interesting example of a Lie group homomorphism is the deter-
minant, which is a homomorphism of GL(n;C) into C. Another simple example
is the map Φ : R→ SO(2) given by

Φ(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

1.1.1.4 Lie Groups

A Lie group is something that is simultaneously a smooth manifold and a group.
As the terminology suggests, every matrix Lie group is a Lie group. The reverse
is not true: Not every Lie group is isomorphic to a matrix Lie group.

Definition 1.1.6 A Lie group is a differentiable manifold G which is also a group
and such that the group product

G×G→ G

and the inverse map g → g−1 are differentiable.

Now let us think about the question of whether every matrix Lie group is
a Lie group. This is certainly not obvious, since nothing in our definition of a
matrix Lie group says anything about its being a manifold (indeed, the whole
point of considering matrix Lie groups is that one can define and study them
without having to go through manifold theory first!. Nevertheless, it is true that
every matrix Lie group is a Lie group, and it would be a particularly misleading
choice of terminology if this were not so.

Theorem 1.1.1 Every matrix Lie group is a smooth embedded submanifold of
Mn(C) and is thus a Lie group.

It is customary to call a map Φ between two Lie groups a Lie group homo-
morphism if Φ is a group homomorphism and Φ is smooth, whereas we have
(in definition 1.1.5) required only that Φ be continuous. However, the following
proposition shows that our definition is equivalent to the more standard one.
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Proposition 1.1.1 Let G and H be Lie groups and let Φ be a group homomor-
phism from G to H. If Φ is continuous, it is also smooth.

1.1.1.5 The Matrix Exponential

The exponential of a matrix plays a crucial role in the theory of Lie groups.
The exponential enters into the definition of the Lie algebra of a matrix Lie

group and is the mechanism for passing information from the Lie algebra to the
Lie group. Since many computations are done much more easily at the level of
the Lie algebra, the exponential is indispensable in studying (matrix) Lie groups.

Let X be an n×n real or complex matrix. We wish to define the exponential
of X, denoted eX or expX, by the usual power series

eX =
+∞∑
m=0

Xm

m!
. (1.1)

We will follow the convention of using letters such as X and Y for the variable
in the matrix exponential.

Proposition 1.1.2 For any n × n real or complex matrix X, the series (1.1)
converges. The matrix exponential eX is a continuous function of X.

1.1.1.6 The Lie Algebra of a Matrix Lie Group

The Lie algebra is an indispensable tool in studying matrix Lie groups. On the
one hand, Lie algebras are simpler than matrix Lie groups, because (as we will
see) the Lie algebra is a linear space. Thus, we can understand much about Lie
algebras just by doing linear algebra. On the other hand, the Lie algebra of
a matrix Lie group contains much information about that group. Thus, many
questions about matrix Lie groups can be answered by considering a similar but
easier problem for the Lie algebra.

Definition 1.1.7 Let G be a matrix Lie group. The Lie algebra of G, denoted
g, is the set of all matrices X such that etX is in G for all real numbers t.

This means that X is in g if and only if the one-parameter subgroup generated
by X lies in G. Note that even though G is a subgroup of GL(n;C) [and not
necessarily of GL(n;R)], we do not require that etX be in G for all complex
numbers t, but only for all real numbers t. Also, it is definitely not enough to
have just eX in G. That is, it is easy to give an example of an X and a G such
that eX ∈ G but such that etX 6∈ G for some real values of t. Such an X is not
in the Lie algebra of G.

It is customary to use lowercase characters such as g to refer to Lie algebras.
It is possible to show that every matrix Lie group is an embedded submanifold

of GL(n;C), and then that g is the tangent space to G at the identity. This means
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that g can alternatively be defined as the set of all derivatives of smooth curves
through the identity in G.

The following ones are basic properties of the Lie algebra of a matrix Lie
group.

Proposition 1.1.3 Let G be a matrix Lie group, with Lie algebra g. Let X be
an element of g, and A an element of G. Then, AXA−1 is in g.

Theorem 1.1.2 Let G be a matrix Lie group, g its Lie algebra, and X and Y
elements of g. Then

1. sX ∈ g for all numbers s,

2. X + Y ∈ g,

3. XY − Y X ∈ g.

Definition 1.1.8 Given two n×n matrices A and B, the bracket (or commutator)
of A and B, denoted [A,B] , is defined to be

[A,B] = AB −BA.

According to last theorem, the Lie algebra of any matrix Lie group is closed
under brackets.

We return now to the setting of general, not necessarily complex, matrix
Lie groups. The following very important theorem tells us that a Lie group
homomorphism between two Lie groups gives rise in a natural way to a map
between the corresponding Lie algebras. In particular, this will tell us that two
isomorphic Lie groups have ‘the same’ Lie algebras (i.e., the Lie algebras are
isomorphic).

Theorem 1.1.3 Let G and H be matrix Lie groups, with Lie algebras g and h,
respectively. Suppose that Φ : G → H is a Lie group homomorphism. Then,
there exists a unique real linear map φ : g → h such that

Φ
(
eX
)

= eφ(X)

for all X ∈ g. The map φ has following additional properties:

1. φ (AXA−1) = Φ (A)φ (X) Φ (A)−1, for all X ∈ g, A ∈ G,

2. φ ([X, Y ]) = [φ (X) , φ (Y )], for all X, Y ∈ g,

3. φ(X) = d
dt

Φ
(
etX
)
|t=0, for all X ∈ g.

Suppose that G, H, and K are matrix Lie groups and Φ : H → K and Ψ : G→ H
are Lie group homomorphisms. Let Λ : G→ K be the composition of Φ and Ψ,
Λ(A) = Φ(Ψ(A)). Let φ, ψ, and λ be the associated Lie algebra maps. Then,

λ(X) = φ(ψ(X)).
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In practice, given a Lie group homomorphism Φ, the way one goes about
computing φ is by using Property 3. Of course, since φ is (real) linear, it suffices to
compute φ on a basis for g. In the language of differentiable manifolds, Property
3 says that φ is the derivative (or differential) of Φ at the identity, which is the
standard definition of φ.

A linear map with Property 2 is called a Lie algebra homomorphism. This
theorem says that every Lie group homomorphism gives rise to a Lie algebra
homomorphism. The converse is true under certain circumstances. Specifically,
suppose that G and H are Lie groups and that φ : g → h is a Lie algebra
homomorphism. If G is simply connected, then there exists a unique Lie group
homomorphism Φ : G→ H such that Φ and φ are related as in the last theorem.

1.1.1.7 Lie Algebras

We now consider the abstract notion of a Lie algebra, not necessarily given to us
as the Lie algebra of a matrix Lie group.

Definition 1.1.9 A finite-dimensional real or complex Lie algebra is a finite-
dimensional real or complex vector space g, together with a map [·, ·] from g × g
into g, with the following properties:

1. [·, ·] is bilinear.

2. [X, Y ] = −[Y,X] for all X, Y ∈ g.

3. [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 for all X, Y, Z ∈ g.

Condition 2 is called ‘skew symmetry’. Condition 3 is called the Jacobi iden-
tity. Note also that Condition 2 implies that [X,X] = 0 for all X ∈ g.

We will deal only with finite-dimensional Lie algebras and will from now on
interpret ‘Lie algebra’ as ‘finite-dimensional Lie algebra’.

It should be emphasized here that g can be any vector space (not necessarily
a space of matrices) and that the ‘bracket’ operation [·, ·] can be any bilinear,
skew-symmetric map that satisfies the Jacobi identity. In particular, [X, Y ] is
not necessarily equal to XY − Y X; indeed, the expression XY − Y X does not
even make sense in general, since g does not necessarily have a product operation
defined on it.

Although the bracket operation in a Lie algebra does not have to be given to
us as [X, Y ] = XY − Y X, it is possible to construct Lie algebras in this way.

That is to say, if A is an associative algebra and we define [·, ·] : A×A → A
by [X, Y ] = XY − Y X, then this operation does, indeed, make A into a Lie
algebra. This operation is clearly bilinear and skew-symmetric, and it is a simple
computation to check, using the associativity of A, the Jacobi identity. For any
Lie algebra, the Jacobi identity means that the bracket operation behaves as if
it were XY − Y X, even if it is not actually defined this way. Indeed, it can be
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shown that every Lie algebra g can be embedded into some associative algebra
A in such a way that the bracket on g corresponds to the operation XY − Y X
in A.

If g is a Lie algebra, we can think of the bracket operation as making g into
an algebra in the general sense. This algebra, however, is not associative. The
Jacobi identity is to be thought of as a substitute for associativity.

Proposition 1.1.4 The space Mn(R) of all n × n real matrices is a real Lie
algebra with respect to the bracket operation [A,B] = AB − BA. The space
Mn(C) of all n×n complex matrices is a complex Lie algebra with respect to the
same bracket operation.

Let V be a finite-dimensional real or complex vector space, and let gl(V )
denote the space of linear maps of V into itself. Then, gl(V ) becomes a real or
complex Lie algebra with the bracket operation [A,B] = AB −BA.

The last proposition shows that the Lie algebra of a matrix Lie group is indeed
a Lie algebra in the abstract sense.

Definition 1.1.10 A subalgebra of a real or complex Lie algebra g is a subspace
h of g such that [H1, H2] ∈ h for all H1 and H2 ∈ h. If g is a complex Lie
algebra and h is a real subspace of g which is closed under brackets, then h is
said to be a real subalgebra of g.

If g and h are Lie algebras, then a linear map φ : g → h is called a Lie
algebra homomorphism if φ ([X, Y ]) = [φ(X), φ(Y )] for all X, Y ∈ g.

If, in addition, φ is one-to-one and onto, then φ is called a Lie algebra iso-
morphism. A Lie algebra isomorphism of a Lie algebra with itself is called a Lie
algebra automorphism.

A subalgebra of a Lie algebra is, again, a Lie algebra. The inverse of a Lie
algebra isomorphism is, again, a Lie algebra isomorphism.

Proposition 1.1.5 The Lie algebra g of a matrix Lie group G is a real Lie
algebra.

Proof. By Theorem 1.1.2, g is a real subalgebra of the spaceMn (C) of all com-
plex matrices and is, thus, a real Lie algebra.

We end this section with the following

Definition 1.1.11 (Universal enveloping algebra)
Let g be a Lie algebra over a field K. The universal enveloping algebra of g is a
pair (Ug; i), satisfying the following:

1. Ug is an associative algebra with unit over K.

2. i : g → Ug is linear and i(X)i(Y )− i(Y )i(X) = i([X, Y ]), for all X, Y ∈ g.
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3. For any associative algebra A with unit over K and for any linear map
j : g → A satisfying j(X)j(Y )− j(Y )j(X) = j([X, Y ]) for each X, Y ∈ g,
there exists a unique homomorphism of algebras φ : Ug → A such that
φ ◦ i = j.

1.1.1.8 Structure constants

Let g be a finite-dimensional real or complex Lie algebra, and let X1, · · · , Xn be
a basis for g (as a vector space). Then, for each i and j, [Xi, Xj] can be written
uniquely in the form

[Xi, Xj] =
n∑
k=1

cijkXk

The constants cijk are called the structure constants of g (with respect to the
chosen basis). Clearly, the structure constants determine the bracket operation
on g. The structure constants satisfy the following two conditions:

cijk + cjik = 0,∑
m

(cijmcmkl + cjkmcmil + ckimcmjl) = 0

for all i, j, k, l. The first of these conditions comes from the skew symmetry of
the bracket, and the second comes from the Jacobi identity.

1.1.2 The Complexification of a Real Lie Algebra

Definition 1.1.12 If V is a finite-dimensional real vector space, then the com-
plexification of V , denoted VC, is the space of formal linear combinations

v1 + iv2

with v1, v2 ∈ V . This becomes a real vector space in the obvious way and becomes
a complex vector space if we define

i(v1 + iv2) = −v2 + iv1.

We will regard V as a real subspace of VC in the obvious way.

Proposition 1.1.6 Let g be a finite-dimensional real Lie algebra and gC its
complexification (as a real vector space). Then, the bracket operation on g has a
unique extension to gC which makes gC into a complex Lie algebra. The complex
Lie algebra gC is called the complexification of the real Lie algebra g.
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1.1.3 Representations

Definition 1.1.13 Let G be a matrix Lie group. Then, a finite-dimensional
complex representation of G is a Lie group homomorphism

Π : G→ GL (n;C)

(n ≥ 1) or, more generally, a Lie group homomorphism

Π : G→ GL (V )

where V is a finite-dimensional complex vector space (with dimV ≥ 1). A finite-
dimensional real representation of G is a Lie group homomorphism Π of G into
GL(n;R) or into GL(V ), where V is a finite-dimensional real vector space. If g
is a real or complex Lie algebra, then a finite-dimensional complex representation
of g is a Lie algebra homomorphism π of g into gl(n;C) or into gl(V ), where
V is a finite-dimensional complex vector space. If g is a real Lie algebra, then a
finite-dimensional real representation of g is a Lie algebra homomorphism π of
g into gl(n;R) or into gl(V ).

If Π or π is a one-to-one homomorphism, then the representation is called
faithful.

One should think of a representation as a linear action of a group or Lie algebra
on a vector space [since, say, to every g ∈ G, there is associated an operator Π(g),
which acts on the vector space V ]. In fact, we will use terminology such as ‘Let
Π be a representation of G acting on the space V ’.

Even if g is a real Lie algebra, we will consider mainly complex representations
of g.

Definition 1.1.14 Let Π be a finite-dimensional real or complex representation
of a matrix Lie group G, acting on a space V . A subspace W of V is called
invariant if Π(A)w ∈ W for all w ∈ W and all A ∈ G. An invariant subspace W
is called nontrivial if W 6= {0} and W 6= V . A representation with no nontrivial
invariant subspaces is called irreducible. The terms invariant, nontrivial, and
irreducible are defined analogously for representations of Lie algebras.

Definition 1.1.15 Let G be a matrix Lie group, let Π be a representation of G
acting on the space V , and let Σ be a representation of G acting on the space W .
A linear map φ : V → W is called an intertwining map of representations if

φ (Π(A)v) = Σ(A)φ(v)

for all A ∈ G and all v ∈ V . The analogous property defines intertwining maps
of representations of a Lie algebra.

If φ is an intertwining map of representations and, in addition, φ is invertible,
then φ is said to be an equivalence of representations. If there exists an isomor-
phism between V and W , then the representations are said to be equivalent.
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Two equivalent representations should be regarded as being ‘the same’ rep-
resentation. A typical problem in representation theory is to determine, up to
equivalence, all of the irreducible representations of a particular group or Lie
algebra.

Proposition 1.1.7 Let G be a matrix Lie group with Lie algebra g and let Π be
a (finite-dimensional real or complex) representation of G acting on the space V .
Then, there is a unique representation π of g acting on the same space such that

Π(eX) = eπ(X)

for all X ∈ g. The representation π can be computed as

π(X) =
d

dt
Π
(
etX
)
|t=0

and satisfies
π
(
AXA−1

)
= Π(A)π(X)Π(A)−1

for all X ∈ g and A ∈ G.

Proposition 1.1.8

1. Let G be a connected matrix Lie group with Lie algebra g. Let Π be a
representation of G and π the associated representation of g. Then, Π is
irreducible if and only if π is irreducible.

2. Let G be a connected matrix group, let H1 and H2 be representations of G,
and let π1 and π2 be the associated Lie algebra representations. Then, π1

and π2 are equivalent if and only if Π1 and Π2 are equivalent.

Definition 1.1.16 Let G be a matrix Lie group, let H be a Hilbert space, and
let U(H) denote the group of unitary operators on H. Then, a homomorphism
Π : G→ U(H) is called a unitary representation of G if Π satisfies the following
continuity condition: If An, A ∈ G and An → A, then

Π(An)v → Π(A)v

for all v ∈ H. A unitary representation with no nontrivial closed invariant sub-
spaces and such that Π(A−1) = [Π(A)]† is called irreducible.

1.1.3.1 Schur’s Lemma

Let Π and Σ be representations of a matrix Lie group G, acting on spaces V
and W . Schur’s Lemma is an extremely important result which tells us about
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intertwining maps of irreducible representations. Part of Schur’s Lemma applies
to both real and complex representations, but part of it applies only to complex
representations.

It is desirable to be able to state Schur’s Lemma simultaneously for groups
and Lie algebras. In order to do so, we need to indulge in a common abuse of
notation. If, say, Π is a representation of G acting on a space V , we will refer to
V as the representation, without explicit reference to Π.

Lemma 1.1.1 (Schur’s Lemma) 1. Let V and W be irreducible real or com-
plex representations of a group or Lie algebra and let φ : V → W be an
intertwining map. Then, either φ = 0 or φ is an isomorphism.

2. Let V be an irreducible complex representation of a group or Lie algebra
and let φ : V → V be an intertwining map of V with itself. Then, φ = λI,
for some λ ∈ C.

3. Let V and W be irreducible complex representations of a group or Lie alge-
bra and let φ1, φ2 : V → W be nonzero intertwining maps. Then, φ1 = λφ2

for some λ ∈ C.

1.1.3.2 Adjoint representation of an algebra

Let A be an algebra and X ∈ A, one can consider the linear transformation

ad(X) : Z ∈ A→ [Z,X] ∈ A

If Y, Z,K ∈ A, then (according to the Jacobi identity)

[ad(Y ), ad(Z)]K = ad(Y )ad(Z)K − ad(Z)ad(Y )K = ad(Y )[Z,K]− ad(Z)[Y,K]

= [Y, [Z,K]]− [Z, [Y,K]] = [[Y, Z], K] = ad ([Y, Z])K.

So the map ad provides a representation of the algebra, which is called ‘adjoint
representation’.

1.2 Semisimple Lie Algebras

In this section, we will consider a class of Lie algebras (the complex semisimple
ones) that their representations can be described by a ‘theorem of the highest
weight’.

Definition 1.2.1 If g is a complex Lie algebra, then an ideal in g is a complex
subalgebra h of g with the property that for all X in g and H in h, we have
[X,H] in h.
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Note that the definition of an ideal is stronger than that of a subalgebra. For
a subalgebra, we require only that the bracket of two elements of the subalgebra
remain in the subalgebra. For an ideal, we require that the bracket of an element
of the ideal with any element of g be, again, in the ideal. Any Lie algebra g has
two ‘trivial’ examples of ideals: g itself and the zero ideal h = {0}.

Definition 1.2.2 A complex Lie algebra g is called indecomposable if the only
ideals in g are g and {0} . A complex Lie algebra g is called simple if g is
indecomposable and dim g > 2.

Definition 1.2.3 A complex Lie algebra is called reductive if it is isomorphic
to a direct sum of indecomposable Lie algebras. A complex Lie algebra is called
semisimple if it isomorphic to a direct sum of simple Lie algebras.

Definition 1.2.4 If g is a complex semisimple Lie algebra, then a compact real
form of g is a real subalgebra p of g with the property that every X in g can be
written uniquely as X = X1 + iX2 with X1 and X2 in p and such that there is a
compact simply-connected matrix Lie group P1 such that the Lie algebra p1 of P1

is isomorphic to p.

One can prove that every complex semisimple Lie algebra has a compact real
form. The compact real form is not unique, but it is ‘unique up to conjugation’.

1.2.1 Cartan Subalgebras

We now begin to develop the structure that we will use in describing the repre-
sentations of complex semisimple Lie algebras. These same structures are used
to give a classification of semisimple Lie algebras.

Definition 1.2.5 If g is a complex semisimple Lie algebra, then a Cartan sub-
algebra of g is a complex subspace h of g with the following properties:

1. For all H1 and H2 in h, [H1, H2] = 0.

2. For all X in g, if [H,X] = 0 for all H in h, then X is in h.

3. For all H in h, adH is diagonalizable, where adH(Y ) = [H,Y ], for all Y in
g.

Condition 1 says that h is a commutative subalgebra of g. Condition 2
says that h is a maximal commutative subalgebra (i.e., not contained in any
larger commutative subalgebra). Condition 3 says that each adH is diagonaliz-
able. Since the Hs in h commute, the adH ’s also commute, and thus they are
simultaneously diagonalizable.

Of course, the definition of a Cartan subalgebra makes sense in any Lie al-
gebra, semisimple or not. However, if g is not semisimple, then g may not have
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any Cartan subalgebras. In fact, one can prove that every semisimple Lie algebra
has a Cartan subalgebra, and all Cartan subalgebras of a given complex semisim-
ple Lie algebra have the same dimension. In light of this result, the following
definition makes sense.

Definition 1.2.6 If g is a complex semisimple Lie algebra, then the rank of g is
the dimension of any its Cartan subalgebra.

1.2.2 Roots and Root Spaces

From now on we assume that we have chosen (and one can show that these choices
are always possible if g is a complex semisimple Lie algebra) a compact real form
p of g and a maximal commutative subalgebra t of p, the Cartan subalgebra
h = t + it and an inner product on g that is invariant under the adjoint action
of P (P is the subgroup of G whose Lie algebra is p) and that takes real values
on p.

Definition 1.2.7 A root of g (relative to the Cartan subalgebra h) is a nonzero
linear functional α on h such that there exists a nonzero element X of g with

[H,X] = α(H)X

for all H in h.
The set of all roots is denoted R.

The condition on X says that X is an eigenvector for each adH , with eigen-
value α(H). Note that if X is actually an eigenvector for each adH with H in h,
then the eigenvalues must depend linearly on H. That is why we insist that α be
a linear functional on h. So, a root is just a (nonzero) collection of simultaneous
eigenvalues for the adH ’s. Note that any element of h is a simultaneous eigen-
vector for all the adH ’s, with all eigenvalues equal to zero, but we only call α a
root if α is nonzero. Of course, for any root α, some of the α(H)’s may be equal
to zero; we just require that not all of them be zero.

Definition 1.2.8 If α is a root, then the root space gα is the space of all X in
g for which [H,X] = α(H)X for all H in h. An element of gα is called a root
vector (for the root α).

More generally, if α is any element h∗, the space of real-valued linear func-
tionals on h, we define gα to be the space of all X in g for which [H,X] = α(H)X
for all H in h (but we do not call gα a root space unless α is actually a root).

Taking α = 0, we see that g0 is the set of all elements of g that commute with
every element of h. Since h is a maximal commutative subalgebra, we conclude
that g0 = h. If α is not zero and not a root, then gα = {0}.
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Now, since h is commutative, the operators adH , H ∈ h, all commute. Fur-
thermore, by the definition of a Cartan subalgebra, each adH , H ∈ h, is diago-
nalizable. It follows that the adH ’s, H ∈ H, are simultaneously diagonalizable.
As a result, g can be decomposed as the direct sum of h and the root spaces gα.

Thus, we have established the following.

Proposition 1.2.1 The Lie algebra g can be decomposed as a direct sum as
follows:

g = h⊕
⊕
α∈R

gα

This means that every element of g can be written uniquely as a sum of an
element of h and one element from each root space gα.

In addition,

Proposition 1.2.2 1. If α ∈ h∗ is a root, then so is −α.

2. The roots span h∗.

And

Theorem 1.2.1 1. If α is a root, then the only multiples of α that are roots
are α and −α.

2. If α is a root, then the root space gα is one dimensional.

3. For each root α, we can find nonzero elements Xα in gα, Yα in g−α and Hα

in h such that

[Hα, Xα] = 2Xα,

[Hα, Yα] = −2Yα,

[Xα, Yα] = Hα.

The element Hα is unique (i.e., independent of the choice of Xα and Yα).

Point 3 of the theorem tells us that Xα, Yα, and Hα span a subalgebra of g.
The elements Hα of h given in Point 3 of the theorem are called the co-roots.
Their properties are closely related to the properties of the roots themselves.

Theorem 1.2.2 The roots form a finite set of nonzero elements of a real inner-
product space E and have the following properties (we denote the inner product
by 〈·, ·〉):

1. The roots span E.

2. If α is a root, then −α is a root and the only multiples of α that are roots
are α and −α.
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3. If α is a root, let wα denote the linear transformation of E given by

wα[β] = β − 2
〈α, β〉
〈α, α〉

α.

Then, for all roots α and β, wα[β] is also a root.

4. If α and β are roots, then the quantity

2
〈α, β〉
〈α, α〉

is an integer.

Any collection of vectors in a finite-dimensional real inner-product space hav-
ing these properties is called a root system.

1.2.3 Positive Roots

What we need now is simply some consistent notion of higher and lower that
will allow us to divide the root vectors Xα into ‘raising operators’ and ‘lowering
operators’. This should be done in such a way that the commutator of two raising
operators is, again, a raising operator and not a lowering operator. This means
that we want to divide the roots into two groups, one of which will be called
‘positive’ and the other ‘negative’. This should be done is such a way that if
the sum of positive roots is again a root, that root should be positive. There is
no unique way to make the division into positive and negative; any consistent
division will do.

Definition 1.2.9 Suppose that E is a finite-dimensional real inner-product space
and that R ⊂ E is a root system. Then, a base for R is a subset ∆ = {α1, · · · , αr}
of R such that ∆ forms a basis for E as a vector space and such that for each
α ∈ R, we have

α = n1α1 + n2α2 + · · ·+ nrαr,

where the nj’s are integers and either all greater than or equal to zero or all less
than or equal to zero.

Once a base ∆ has been chosen, the α’s for which nj ≥ 0 are called the positive
roots (with respect to the given choice of ∆) and the α’s with nj ≤ 0 are called
the negative roots. The elements of ∆ are called the positive simple roots.

Therefore, to be a base (in the sense of root systems), ∆ ⊂ R must, in
particular, be a basis for E in the vector space sense. In addition, the expansion
of any α ∈ R in terms of the elements of ∆ must have integer coefficients and all
of the nonzero coefficients (for a given α) must be of the same sign.

Theorem 1.2.3 For any root system, a base exists.
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Definition 1.2.10 An element µ ∈ h is called a dominant integral element if
〈µ,Hα〉 is a non-negative integer for each positive simple root α. Equivalently µ
is a dominant integral element if

2
〈µ, α〉
〈α, α〉

is a non-negative integer for each positive simple root α.

If µ is dominant integral, then 〈µ,Hα〉 will automatically be a non-negative
integer for each positive root α, not just the positive simple ones.

1.2.4 The Theorem of the Highest Weight

We begin with elementary properties of the representations of g.

Definition 1.2.11 Suppose π is a finite-dimensional representation of g on a
vector space V . Then, µ ∈ h is called a weight for π if there exists a nonzero
vector v in V such that

π(H)v = 〈µ,H〉v (1.2)

for all H ∈ h. A nonzero vector v satisfying (1.2) is called a weight vector for
the weight µ, and the set of all vectors satisfying (1.2) (zero or nonzero) is called
the weight space with weight µ. The dimension of the weight space is called the
multiplicity of the weight.

To understand this definition, suppose that v ∈ V is a simultaneous eigenvec-
tor for each π(H), H ∈ h. This means that for each H ∈ h, there is a number
λH such that π(H)v = λHv. Since the representation π(H) is linear in H, the
λH ’s must depend linearly on H as well; that is, the map H → λH is a linear
functional on h. Then, there is a unique element µ of h such that λH = 〈µ,H〉.
Thus, a weight vector is nothing but a simultaneous eigenvector for all the π(H)’s
and the vector µ is simply a convenient way of encoding the eigenvalues.

Definition 1.2.12 Let µ1 and µ2 be two elements of h. Then, µ1 is higher than
µ2 (or, equivalently, µ2 is lower than µ1) if there exist non-negative real numbers
a1, · · · , ar ar such that

µ1 − µ2 = a1α1 + a2α2 + · · ·+ arαr

where {α1, · · · , αr} = ∆ is the set of positive simple roots. This relationship is
written as µ1 � µ2 or µ2 � µ1.

If π is a representation of g, then a weight µ0 for π is said to be a highest
weight if for all weights µ of π, µ � µ0.

Theorem 1.2.4 (Theorem of the Highest Weight)
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1. Every irreducible representation has a highest weight.

2. Two irreducible representations with the same highest weight are equivalent.

3. The highest weight of every irreducible representation is a dominant integral
element.

4. Every dominant integral element occurs as the highest weight of an irre-
ducible representation.

1.3 The orthogonal algebras so (2n,C)

The root system for so (2n,C) is denoted Dn. We consider so (2n,C), the space
of 2n × 2n skew-symmetric complex matrices, with compact real form so (2n),
the space of 2n × 2n skew-symmetric real matrices. We consider in so (2n) the
maximal commutative subalgebra t consisting of 2 × 2 block-diagonal matrices
in which the kth diagonal block is of the form(

0 ak
−ak 0

)
(1.3)

for some ak ∈ R. We then consider the Cartan subalgebra h = t+it of so (2n,C),
which consists of 2× 2 block-diagonal matrices in which the kth diagonal block is
of the form (1.3) with ak ∈ C [The calculations in the next two paragraphs show
that so (2n,C) decomposes as a direct sum of h and root spaces gα corresponding
to (nonzero) elements α ∈ h∗. It follows from this that t is actually a maximal
commutative subalgebra of so (2n), which is not obvious from the definition of
t]. The root vectors are now 2 × 2 block matrices having a 2 × 2 matrix C in
the (k, l) block (k < l), the matrix −CT in the (l, k) block, and zero in all other
blocks, where C is one of the four matrices

C1 =

(
1 i
i −1

)
, C2 =

(
1 −i
−i −1

)
, C3 =

(
1 −i
i 1

)
, C4 =

(
1 i
−i 1

)
.

A little calculation shows that these are, indeed, root vectors and that the cor-
responding roots are the linear functionals on h given by i(ak + al), −i(ak + al),
i(ak − al), and −i(ak − al), respectively.

We may consider the inner product 〈X, Y 〉 := trace(X∗Y ) on so (2n,C) which
is invariant under the adjoint action of SO (2n). If we use this inner product to
identify h∗ with h, then the roots are thought of as elements of h instead of h∗.
Let Θk denote the 2× 2 block-diagonal matrix whose kth diagonal block is(

0 1
−1 0

)
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and whose other diagonal blocks are zero. The roots (as elements of h) are then
the matrices

i

2
(±Θk ±Θl) ,

with 1 ≤ k < l ≤ n. Each of the roots has length 1 with respect to the given inner
product. The inner product of i

2
(±Θk ±Θl) with i

2
(±Θk′ ±Θl′) is zero if the

set {k, l} is disjoint from {k′, l′}, and the inner product is ±1
2

if the intersection
of {k, l} and {k′, l′} has one element. The root i

2
(Θk −Θl) is orthogonal to the

root i
2

(Θk + Θl).
As a base, we may take the n− 1 roots

i

2
(Θ1 −Θ2) ,

i

2
(Θ2 −Θ3) , · · · , i

2
(Θn−2 −Θn−1) ,

i

2
(Θn−1 −Θn) (1.4)

together with the one additional root,

i

2
(Θn−1 + Θn) (1.5)

Note that for 1 ≤ k < l ≤ n, we have the following formulas:

Θk −Θl = (Θk −Θk+1) + (Θk+1 −Θk+2) + · · ·+ (Θl−1 −Θl) ,

Θk + Θn = (Θk −Θn−1) + (Θn−1 + Θn) ,

Θk + Θl (Θk + Θn) + (Θl −Θn) .

This shows that every root of the form i
2

(Θk −Θl) or i
2

(Θk + Θl) can be written
as a linear combination of the base in (1.4) and (1.5) with non-negative integer
coefficients. The roots of this form are then positive and the remaining roots are
negative.

1.4 The orthogonal algebras so (2n + 1,C)

The root system for so (2n+ 1,C) is denoted Bn. We consider so (2n+ 1,C), the
space of (2n+1)× (2n+1) skew-symmetric complex matrices, with compact real
form so (2n+ 1), the space of (2n+ 1)× (2n+ 1) skew-symmetric real matrices.
We consider in so (2n+ 1) the maximal commutative subalgebra t consisting of
block diagonal matrices with n blocks of size 2× 2 followed by one block of size
1× 1. We take the 2× 2 blocks to be of the same form as in so (2n) and we take
the 1× 1 block to be zero. The associated Cartan subalgebra h of so (2n+ 1,C)
is then matrices of the same form as in t except that the off-diagonal elements of
the 2× 2 blocks are permitted to be complex.

The Cartan subalgebra in so (2n+ 1,C) is identifiable in an obvious way
with the Cartan subalgebra in so (2n,C). In particular, both so (2n,C) and
so (2n+ 1,C) have rank n. With this identification of the Cartan subalgebras,
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every root for so (2n,C) is also a root for so (2n+ 1,C). There are 2n additional
roots for so (2n+ 1,C). The root vectors for these additional roots are as follows.
First, the matrices having

B1 =

(
1
i

)
in entries (2k, 2n+ 1) and (2k+ 1, 2n+ 1) and having −BT

1 in entries (2n+ 1, 2k)
and (2n+ 1, 2k + 1). Second, the matrices having

B2 =

(
1
−i

)
in entries (2k, 2n+ 1) and (2k+ 1, 2n+ 1) and having −BT

2 in entries (2n+ 1, 2k)
and (2n+1, 2k+1). The corresponding roots, viewed as elements of h∗, are given
by iak and −iak.

Let Θk have the same meaning as in the previous subsection, except that now
Θk is a (2n+1)×(2n+1) matrix. We use the inner product 〈X, Y 〉 = trace(X∗Y ),
which is invariant under the adjoint action of SO(2n+ 1), to identify h∗ with h.
In that case, the additional roots for the so (2n+ 1,C) case are given by

± i
2

Θk.

These additional roots have length 1√
2

with respect to the given inner product,

whereas the roots that are the same as for so (2n,C) have length 1.
As a base for our root system, we may take the n− 1 roots

i

2
(Θ1 −Θ2) ,

i

2
(Θ2 −Θ3) , · · · , i

2
(Θn−2 −Θn−1) ,

i

2
(Θn−1 −Θn) (1.6)

[exactly as in the so (2n,C) case] together with the one additional root,

i

2
Θn.

The positive roots are those of the form i
2

(Θk −Θl) or i
2

(Θk + Θl) (k < l) and
those of the form i

2
Θk (1 ≤ k ≤ n).

1.5 Coset spaces

1.5.1 Coset spaces geometry

We give now a short review, based on [38] (pag. 190-195), of coset space geometry,
beginning with a few definitions.

First of all
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Definition 1.5.1 (Transitive action of a group on a metric space)
Let G be a group, M be a metric space and ϕ : G×M →M be an action of G on
M . The action ϕ is said transitive if any two points of the space are connected
through the group action.

Definition 1.5.2 (Homogeneous space)
Let G be a group, M be a metric space and ϕ : G×M →M be a transitive action
of G on M . The metric space G is said to be homogeneous if ϕ is an isometry.

In addition, the subgroup H of G which leaves a point X fixed is called the
isotropy subgroup, so any other point X ′ = gX(g ∈ G, g 6∈ H) is invariant under
a subgroup gHg−1 of G isomorphic to H.

Example 1.5.1 The unit sphere S2 in R3 is isometric under the transitive action
of SO(3), and any point remains fixed under SO(2) rotations around the axis
passing through that point, so that SO(2) is the isotropy subgroup.

The points X of a homogeneous space will be labeled, in the next lines, using
the parameters which identify the G-group element which transform a fixed X0

(the origin) into X. These parameters are redundant and there are infinitely
many group elements g such that X = gX0, because of H-isotropy. According to
this, it is natural to characterize the points of a homogeneous space by the cosets
gH, and a further action of another g′ ∈ G on the coset gH is g′gH.

A homogeneous space is then a coset space G/H and, according to example
1.5.1, the two-sphere S2 can be considered as the coset space SO(3)/SO(2); one
can show that, in general, for a d-sphere Sd = SO(D)/SO(d).

In the case of a Lie group G, one obtains coset manifolds, endowed with a
Riemannian structure. The Lie algebra of G can be split as:

g = h⊕ k (1.7)

where h is the Lie algebra of H and k contains the remaining generators, called
‘coset generators’, and the commutation relations

[Hi, Hj] = ckijHk Hi ∈ h
[Hi, Ka] = cjiaHj + cbiaKb Ka ∈ k
[Ka, Kb] = cjabHj + ccabKc

(1.8)

define the structure constants of G.
One can show that, if H is compact or semisimple, it is always possible to

determine a set of Ka such that all the cjia = 0, and the cbia are antisymmetric in
a, b.

In a generic exponential

g = exp(yaKa)exp(x
iHi). (1.9)
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the G coordinates are ya, xi, and it is easy to see that is clear that the dimG −
dimH parameters ya corresponding to the Ka generators characterize the cosets
gH.

So, each coset (which is labeled by the y parameters) can be mapped into an
element L(y) of G, the coset representative. For instance

L(y) = exp(yaKa), (1.10)

and this means that the whole geometry of G/H can be constructed in terms of
coset representatives.

A left multiplication by a generic element g of G, sends L(y) to L(y′) = L(y′)h

gL(y) = L(y′)h, h ∈ H, (1.11)

and in general it belongs to another equivalence class, while y′ and h depend on
y and g, and on the way of choosing representatives.

1.5.2 H-Analysis on Coset Spaces

In this section we want to give a short review on harmonic analysis on G/H,
based on [39] (pag. 1175 - 1182).

It is well known how to write the Fourier expansion of a sufficiently regular
function on S1, and in the next lines we generalize this to arbitrary G/H mani-
folds, where G is a compact group manifold. In this case a complete functional
basis is given by the matrix elements D of the unitary irreps of G. So, if φ is a
function on G, it can be expanded as

φ(g) =
∑
(µ)

dim (µ)∑
m,n=1

c(µ)
mnD

(µ)
mn(g) (1.12)

m,n being indices in the unitary irrep labeled by (µ), and dim (µ) the dimension
of the (µ)-irrep. In addition, the matrix elements fulfill the following∫

G

D(µ)
mn(g)D(ν)

sr

(
g−1
)
dg =

vol(G)

dim (µ)
δmrδnsδ

µν ,∑
(µ)

D(µ)
mn(g)D(ν)

nm

(
g′−1

)
dim (µ) = δ (g − g′) vol(G).

(1.13)

where the G-invariant measure dg fulfills∫
G

dg = vol(G),

so, from (1.12) (1.13), it follows.

c(µ)
mn =

dim (µ)

vol(G)

∫
G

D(µ)
nm

(
g−1
)
φ(g)dg.
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In addition, if the given function φ(g) transforms under right G-multiplication as

φ(µ)
m (gg′) = φ(µ)

n (g)D(µ)
nm (g′) , (1.14)

then it turns out that

φ(µ)
m (g) = c(µ)

n D(µ)
nm(g) [no sum on (µ)] (1.15)

with

c(µ)
n =

1

vol(G)

∫
G

D(µ)
mn

(
g−1
)
φ(µ)
m (g)dg [no sum on (µ)]. (1.16)

Condition (1.15) substantially means that

D(µ)
nm µ, n fixed (1.17)

is a complete basis for functions φ
(µ)
m (g) fulfilling (1.14), and it is the subset of

the complete functional basis which transforms as in (1.14).
The expansion (1.15) always exists because choosing g = e (the identity in G)

in (1.14) yields (1.15) with c
(µ)
n = φ

(µ)
n (e); while (1.16) follows fromD

(µ)
mn (g−1)φ(µ)(g) =

φ(µ)(e).

If φ(y) is a function on G/H, then the matrix elements D
(µ)
mn |L(y)| are still a

complete functional basis: they can be seen as vectors and the dimension of their
vector is vol(G/H).

All the above formulas continue to hold, but one has to replace vol(G) with
vol(G/H) = vol(G)/vol(H) and also dg with dµ(y) = invariant measure on G/H
.

Assume that a function φ(L(y)) [here φ(L(y)) is considered as a function of
L(y) ∈ G rather than of the coset coordinate y] in an irrep (α) of the subgroup
H, fulfills

φ
(α)
i (L(y)h) = D

(α)
ji (h)φ

(α)
j (L(y)); (1.18)

then φα is not constant over the points of a coset gH but varies linearly under
right action of H. In [39] it is shown that

• Every Da
b (h) is generated by the structure constants caib, i.e.

Da
b (h) = [exp(ci)]

a
b ,

• In the expansion (1.15) one has to include all the G-irreps containing (α)
under reduction to H, this means

φ
(α)
i (L(y)) =

∑
(ν)

∑
n

c(ν)
n D

(ν)
ni (L(y)) (1.19)

where the sum on (ν) is restricted because of

(ν)
H−→ · · ·+ (α) + · · ·
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• The
D

(ν)
ni i fixed, (ν) contains (α) (1.20)

form a complete basis for coset functions φ(α)(y) fulfilling (1.18).

Indeed, out of the complete set D
(ν)
mn, the particular subset (1.20) transforms as

in (1.18).
In order to invert (1.19), one needs to calculate

∫
D

(µ)
mk(L(y))D

(ν)
kr

(
L(y)−1

)
dµ

m : (µ) − irrep index
r : (ν) − irrep index
k : (α) − irrep index contained in both

(µ) and (ν) irreps

and, from (1.13)1, it follows

vol(G)

dim (µ)
δmrδijδ

µν =

∫
G

D
(µ)
mi (g)D

(ν)
jr

(
g−1
)
dg

=

∫
H

dh

∫
G/H

D
(µ)
mi (L(g)h)D

(ν)
jr

(
h−1L−1(g)

)
dµ

=

∫
H

D
(α)
ki (h)D

(α)
jl

(
h−1
)
dh

∫
G/H

D
(µ)
mk(L(y))D

(ν)
lr

(
L−1(y)

)
dµ

=
vol(H)

dim (α)
δij

∫
G/H

D
(µ)
mk(L(y))D

(ν)
kr

(
L−1(y)

)
dµ,

and therefore∫
G/H

D
(µ)
mk(L(y))D

(ν)
kr

(
L−1(y)

)
dµ =

dim (α)

dim (µ)
vol

(
G

H

)
δmrδ

µν .

So, the c
(ν)
n in (1.19) are

c(ν)
n =

1

vol(G/H)

dim (µ)

dim (α)

∫
G/H

D
(ν)
in (L(y))φi

(
L(y)−1

)
.

The coset functions D
(ν)
in (L(y)) are called the H-harmonics on G/H.

Using the action of the covariant Lie derivative LK on L(y) (we use the sim-
plified notation LA ≡ LKA),

LAL(y) = KAL(y)− L(y)TiW
i
A(y) = TAL(y),

one can prove the following

Theorem 1.5.1 The H-harmonics are eigenfunctions of the covariant Laplace-
Beltrami operators:

gA1A′1gA2A′2 · · · gAnA′nTr[cA1cA2 · · · cAn ]LA′1LA′2 · · ·LA′n ,

with
gAB = G-group metric, cCAB = G-structure constants.
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We end this section with some useful results on Laplace-Beltrami operators

1. If � is a differential operator on G/H and

[�, LA] = 0 for every A (1.21)

� is called an invariant operator on G/H, and is diagonal on the harmonics.
The Laplace-Beltrami operators are a complete set of invariant operators:
every � satisfying (1.21) is a function of them.

2. There are r = rank(G/H) independent Laplace-Beltrami operators. The
rank of G/H can be defined to be the maximal number of mutually com-
muting generators in the ‘coset algebra’ k.

3. In a coset space of rank r, the first r Laplace-Beltrami operators can be
chosen as a complete basis of invariant operators. The remaining higher-
order Laplace-Beltrami operators are functionally dependent on the first r
Laplace-Beltrami operators.

Points 1. and 2. generalize the well known fact that a group of rank r has r
independent Casimir operators.

1.6 Non commutative geometry and Fuzzy Spaces

1.6.1 Introduction to non-commutative geometries

In a broad sense, the first example of a non-commutative geometry is the non-
commutative version of phase space at the basis of quantum mechanics; in fact,
according to this definition

Definition 1.6.1 (C∗-algebra)
A C∗-algebra A is

1. a linear associative algebra over the field C of complex numbers, i.e. a
vector space over C with an associative product linear in both factors,

2. a normed space, i.e. a norm ‖‖ is defined on A:

‖A‖ ≥ 0, ‖A‖ = 0⇔ A = 0, ∀A ∈ A,

‖λA‖ = |λ|‖A‖, ∀λ ∈ C,∀A ∈ A
‖A+B‖ ≤ ‖A‖+ ‖B‖, ∀A,B ∈ A,

with respect to which the product is continuous:

‖AB‖ ≤ ‖A‖‖B‖,

and A is a complete space with respect to the topology defined by the norm
(thus A is a Banach algebra),
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3. a ∗-(Banach) algebra, i.e. there is an involution ∗ : A → A,

(A+B)∗ = A∗ +B∗, (λA)∗ = λA∗, (AB)∗ = B∗A∗, (A∗)∗ = A,

4. with the property (C∗-condition)

‖A∗A‖ = ‖A‖2.

it turns out that the algebra of observables of a classical system is an abelian
C∗-algebra, but this is no longer true when one deals with atomic or other mi-
croscopic systems.

C∗-algebras are now an important tool in the theory of unitary representations
of locally compact groups, and are also used in algebraic formulations of quantum
mechanics; moreover, the C∗-algebraic formulation of Quantum Mechanics, which
has unquestionable advantages for logic and conceptual economy, especially for
a mathematically oriented audience, and has played a crucial role for the recent
non-commutative extensions of Calculus, Geometry, Probability etc. , has not
yet become standard in quantum mechanics textbooks.

They were first considered primarily for their use in quantum mechanics to
model algebras of physical observables. This line of research began with Werner
Heisenberg’s matrix mechanics and in a more mathematically developed form
with Pascual Jordan around 1933. Subsequently, John von Neumann attempted
to establish a general framework for these algebras which culminated in a series
of papers on rings of operators. These papers considered a special class of C∗-
algebras which are now known as von Neumann algebras.

Around 1943, the work of Israel Gelfand and Mark Naimark yielded an ab-
stract characterisation of C∗-algebras making no reference to operators on a
Hilbert space.

The measurement of the position of a particle requires an experimental appa-
ratus which distinguishes points at very small scales and in macroscopic systems,
it is enough to identify the position with a precision of a few orders of magnitude
smaller than the size of the body, than for the realizability of the measurements
one needs a control of the physics at scales which are still macroscopic. The
situation changes if one wants to localize the position of an atomic particle of
size 10−8cm or of a nucleus of size 10−13cm, in fact there are intrinsic limitations.
Heisenberg showed that any attempt to localize an atomic particle with sharp
precision will produce a large disturbance on the microscopic system, with the
result that the mean square deviation of the measurements of the momentum
becomes larger and larger. For example, a precise localization of the particle can
be obtained by taking a photograph, which requires sending light on the particle;
the picture is the result of a reflection of light by the particle and, since light rays
carry energy and momentum, the reflection of light changes the momentum of
the particle. The result of these analysis led Heisenberg to the conclusion that for
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any state there is an intrinsic limitation in the relative precision by which x (the
position) and p (the momentum) can be measured, independently of the state.
The Heisenberg bound indicates that for all the states, if xj and pj denote the
cartesian coordinates and the components of the momentum of the the particle,
then

∆xj∆pj ≥
h

4π
, where h is the Planck’s constant.

The above relations, called the Heisenberg uncertainty relations, should be re-
garded as unavoidable limitations for the preparation of states with sharper and
sharper values of position or momentum. Clearly, since h is very small, the above
inequality is relevant only for microscopic systems and this is the crucial point
where atomic physics departs from classical physics. Heisenberg’s idea is that
the uncertainty relations arise as direct consequences of the following Heisenberg
commutation relations

[xj, pk] = i~δjkI, where ~ =
h

2π
.

Thus, the position and momentum of an atomic particle cannot be described by
a commutative algebra, and, in a broad sense, the phase space of quantum me-
chanics is an example of non-commutative geometry. Planck’s constant h plays
the role of a continuous deformation parameter, i.e. a parameter that controls the
noncommutativity, and h → 0 is the commutative limit, i.e. the limit in which
noncommutativity disappears [Technically speaking, xj, pj do not belong to a C∗-

algebra, but using their exponentials ei(a
jxj+b

jpj) one can construct a C∗-algebra
containing all the observables]. In a stricter sense, in noncommutative geometry
also the subalgebra generated by the space(time) coordinates alone is noncom-
mutative. By the Gelfand-Naimark Theorem, every C∗−algebra is isomorphic to
an algebra of bounded operators in a Hilbert space, the vectors of which describe
a full set of states; such a general Hilbert space description is equivalent to a
representation in terms of continuous functions and probability measures only if
the algebra of observables is abelian. The Gelfand-Naimark Theorem is therefore
very important for the mathematical description of a physical system, because it
settles the basic difference between classical and quantum physics.

Theorem 1.6.1 (Gelfand-Naimark) Every C∗−algebra A is isomorphic to an
algebra of (bounded) operators on a Hilbert space.

One can get the Gelfand-Naimark characterization of abelian C∗-algebras
from the above theorem; in fact it is possible to show that the irreducible repre-
sentations πω are defined by pure states, which for abelian C∗−algebras are mul-
tiplicative, so that the corresponding representation are one-dimensional πω(A) =
ω(A)I. Then the family F of all inequivalent irreducible representations coincides
with the Gelfand spectrum and the faithful representation π(A) = ⊕ω∈Fπω(A)
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is given by the collection {ω(A), ω ∈ F}, that is by the function Ã(ω) = ω(A).
Furthermore,

‖Ã‖∞ = sup
ω
|Ã(ω)| =

∑
ω

|ω(A)| = ‖A‖.

With the weak∗ topology one can show that F is a compact Hausdorff topological
space and the functions Ã are continuous; this approach shows one basic difference
between the abelian and the non-abelian case. In the first case, the set of pure
states defines a ‘classical’ space; in the second case, the set of pure states defines
a ‘quantum’ or ‘non-commutative’ space, whose points are rays in Hilbert spaces.

Another example is the Tannaka-Krein Theorem which is a generalization of
the Gelfand-Naimark Theorem for compact groups.

1.6.2 The Fuzzy Sphere of Madore

This is a noncommutative model of a curved 2-dimensional space, more precisely
of a sphere S2; it is based on the algebra of n×n complex matrices which replaces
the one of functions on S2. The former looks like the latter above the length
scale k ≈ r

n
, where r is the radius of the sphere; n plays the role of a discrete

deformation parameter, and n → ∞ the role of classical limit. In general, fuzzy
spaces are noncommutative geometries based on a sequence of finite-dimensional
algebras which become infinite-dimensional and commutative in the limit n→∞.
The fuzzy sphere was proposed by Madore also to construct on it a toy-model of
a quantum field theory on a (Wick-rotated) spacetime and investigate whether
the ultraviolet divergences due to local field interactions could be regularized
by a finite n. In fact, in the classical formulation of the quantum fields theory
on Minkowski spacetime there are ultraviolet divergences which are corrections
coming from perturbative methods applied to point-like field interactions. It was
an idea of Heisenberg [1] to avoid this problem replacing the notion of points by
some alternative structure which makes the infinitely precise measurements of
position impossible. For example one can suppose that with length less than k
the coordinates of a point are non-commuting operators and the position of the
particle does not have an exact meaning. For instance, one can choose k less than
the Compton wavelength, that is λc = h

m0c
with m0 the mass of the particle; then

the internal structure gives an uncertainty to the point less than the quantum
uncertainty of the position of the particle.

The geometry of a manifold can be described using the algebra of functions
defined on it, the coordinates are the generators of the algebra and the vector
fields are the derivations; but one can describe the differential geometry using
the operators over an algebra of functions and it is natural try to develop a new
non-commutative version of the differential geometry replacing the algebra of
functions C with a non-commutative one A. It is possible to use a lattice struc-
ture, which eliminates the ultraviolet divergences since the associated algebra
of functions is finite-dimensional. The finiteness of the algebra is linked to its
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non-commutativity and the algebra of matrices which will be used recalls finite
versions of the algebra of observables on a phase space. The matricial geometries
recall classical phase spaces where they have a symplectic form and they recall a
quantum phase space since their algebra is not commutative.

Consider R3 with coordinates x̃a, 1 ≤ a ≤ 3, the Euclidean metric ga,b = δa,b,
the sphere

ga,bx̃ax̃b = r2, (1.22)

and then the algebra C(S2) of complex-valued polynomial functions f(x̃a) on S2

f(x̃a) = f0 + fax̃a +
1

2
fa,bx̃ax̃b + · · · (1.23)

This is an algebra which separates points and it is dense in the algebra of smooth
functions. Madore constructs a sequence of non-commutative approximations of
C(S2).

A truncation of all functions to the constant term implies that the algebra
C(S2) is reduced to A1 = C of complex numbers and the geometry of S2 is
reduced to that of a point.

Keeping the term linear in the x̃a, the output is a four-dimensional vector
space A2. It is possible to define a new product in the x̃a, so that A2 becomes
an algebra.

If we require that the radical of A2 is equal to zero then there are two ways.
We can define the product so that A2 becomes equal to the direct sum of four
copies of C, then the resulting algebra is commutative, the sphere looks like a set
of four points and this would be a lattice approximation. The second possibility
is to define the product so that A2 becomes equal to the algebraM2, of complex
2 × 2 matrices. That is, we replace x̃a with xa = κσa, where σa are Pauli’s
matrix and κ is such that r2 = 3κ2. The sphere is not well described and one can
distinguish only two points, because all xa admit only two, opposite eigenvalues;
the eigenvectors of e.g. x3 can be identified with the north and the south pole.

Suppose next that we keep the term quadratic in the x̃a, then the resulting
vector space A3 has dimension 9 and one can introduce in it a product such that
it becomes equal to the algebra M3 of complex and square matrices of order 3;
the x̃a can be replaced with xa = κJa, where the Ja form the three-dimensional
and irreducible representation of SU(2), that is [Ja, J b] = 2iεabcJ

c, with κ such
that r2 = 8κ2. The sphere is now less fuzzy and one can distinguish the equator
and the poles, corresponding to the three eigenvalues of x3.

In general suppose that we suppress the terms of degree larger than n in the
x̃a. The resulting set is a vector space An. Let Nl =

(
2+l
2

)
be the number of

components of a completely symmetric tensor fa1,··· ,al . Because of the constraint
(1.22) for l ≥ 2, Nl−2 of these components would not contribute to the expansion
(1.23). Therefore there are Nl −Nl−2 = 2l + 1 independent monomials of degree
l and

∑n−1
l=0 (2l + 1) = n2 components in all. So An is of dimension n2 and we
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can introduce a new product in the x̃a which will make it into the algebra Mn

of complex n× n matrices. That is, one makes the replacement

x̃a 7→ xa = κJa (1.24)

but where the Ja form the n-dimensional irreducible representation of the Lie
algebra of SU(2), and the parameter n is related to r by the equation r2 =
(n2 − 1)κ. For large n we have

κ ' r

n

and so κ→ 0 as n→ +∞. Introduce the constant

k = 4πκr

It has the dimension of (length)2 and plays here a role analogous to that played
by Planck’s constant in quantum mechanics. The commutative limit is given by
k → 0. It is convenient also to define k̄ := k

2π
= 2κr.

The generators xa of the algebra Mn, satisfy the commutation relations

[xa, xb] = ik̄Cc
abxc Cabc = r−1εabc.

So in the limit they commute and all of the points of the sphere can be distin-
guished.

We shall be more interested in the mapping φn, of Mn into C (S2) given by
the inverse of (1.24) on the generators xa. Every element f ∈ Mn has a unique
expansion

f =
n−1∑
l=0

1

l!
fa1···alxa1 · · ·xal

where fa1···al is a symmetric trace-free tensor. Let f̃ be the element of C (S2)

obtained from f by replacing xa by x̃a in this expansion. Then f 7→ f̃ defines a
linear mapping φn ofMn into C (S2). The range of φn is the subspace of functions
on S2 which are polynomials in the x̃a of degree up to and including n− 1. If we
consider the vector space Wl of elements in Mn which possess an expansion of
degree at most l ≤ n− 1 then we have for f, g ∈ Wl

φn(fg)− φn(f)φn(g) ∼ o

(
l

n

)
(1.25)

To see this consider first the case l = 1. Then f = f0 + faxa and g = g0 + gaxa
and

φn(fg)− φn(f)φn(g) =
1

2
ik̄fagbC

abcx̃c.

If l > 1 then each monomial except the first will contribute in general a term
containing a factor k̄. This yields l − 1 terms each of which will vanish in the
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limit n → +∞. If l = n − 1 then (1.25) is an empty assertion. In the limit of
very large n however φn can be considered as a morphism between the algebra
of polynomials in xa and the algebra of polynomials in x̃a. As the order of the
polynomials involved approaches n − 1, the error involved in considering φn an
algebra morphism becomes more and more important.

One wishes to approximate a commutative algebra C (S2) by a sequence of
noncommutative approximations Mn. To see in which sense this can be done
one can define a norm on Mn and show that in the limit n → +∞ the algebra
C (S2) can be considered as the image of the diagonal matrices in Mn. For each
element f ∈Mn one sets

‖f‖2
n =

1

n
Tr (f ∗f) . (1.26)

The generators xa have a norm given by

‖xa‖2
n =

1

3
r2.

This is independent of n. If we define the norm of an element f̃ ∈ C (S2) by∥∥∥f̃∥∥∥2

=
1

4πr2

∫ ∣∣∣f̃ ∣∣∣2
then ‖xa‖n = ‖x̃a‖. Let f ∈Mn and set f̃ = φn(f). Then we have

1

n
Tr(f) 7→ 1

4πr2

∫
f̃

as n→ +∞. Indeed the left-hand side tends to an SO(3)-invariant integral over
S2.

The normalization is fixed by considering the case f = 1. In particular

‖f‖n →
∥∥∥f̃∥∥∥ .

A general element f ∈ Mn with entries O(1) will have a norm ‖f‖n = O(n).
A diagonal matrix with entries O(1) or a matrix with only a number O(1) of
off-diagonal terms will on the other hand have a norm ‖f‖n = O(1). For large
n then bounded functions will be the image of near-diagonal matrices, that is of
matrices which commute with each other to within order k̄.

We cannot speak of the position of a particle because of the absence of lo-
calization but the state of a particle on the sphere is described as in quantum
mechanics by a state vector ψ, which we shall assume to be normalized. For the
matrix algebra Mn then a particle is described by a vector ψ, which we shall
assume to be normalized. For the matrix algebraMn then a particle is described
by a vector ψ ∈ Cn with ψ∗ψ = 1. An observable associated to the particle is a
Hermitian element of Mn and the value of an observable f is given by the real
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number ψ∗fψ. For example, what corresponds to the position of the particle is
given by two of the three numbers ψ∗xaψ. When n→ +∞, these must converge
to well defined values of the coordinates x̃a if the particle is to be considered as
localized. The state vectors lie in Pn−1 (C), a space of complex dimension n− 1.
So the ψ∗xaψ do not determine a state. The additional 2n − 4 real numbers
needed to fix a point in Pn−1 (C) give information about the dispersion of the
particle. If we measure one generator, say x3, then after the measurement ψ
becomes its eigenvector and is completely determined. The expectation values of
the other two generators then vanish since there is equal probability of a positive
and negative value. The most general state vector can be written in terms of the
eigenvectors of x3. The matrix which takes the latter to the former corresponds
to what in quantum mechanics would be the Schrödinger wavefunction. As k̄ → 0
it becomes more and more dilficult to distinguish a vector uniquely using x3. In
the limit the eigenvalues of one of the other two generators must be used as well.
In the limit the function ψ̃ (x̃a) gives the (purely classical) probability of finding
the particle at the point with coordinates x̃a.

The analogue of a general coordinate transformation is a change of generators

xa 7→ x′a

of the algebra Mn. This mapping does not necessarily respect the relations of
the algebra and it does not necessarily possess an extension to an automorphism
of Mn.

As an example we shall briefly consider a second set of generators (u, v) of the
algebra Mn which are in no way related to the group SU(2) and which satisfy
the relations

un = 1, vn = 1, uv = e
2πi
n vu. (1.27)

This describes a particular case of the two-dimensional quantum plane, and the
relations (1.27) are invariant under the transformations

u 7→ u′ = exp (2πip/n)u, v 7→ v′ = exp (2πiq/n) v,

for (p, q) in the discrete group Z × Z. So in the limit n → +∞ the sequence of
matrices (u, v) tends to generators (ũ, ṽ) of an algebra of functions defined on the
torus

ũ = exp (2πix/r) , ṽ = exp (2πiy/r) ,

where 0 ≤ x, y ≤ r. Abbreviating q := exp (2πi/n), a concrete realization of u, v
fulfilling (1.27) is provided by the socalled clock and shift matrices

u =


1

q
q2

...
qn−1

 , v =


0 0 ... 1
1 0 ...
0 1 0 ...

...

... 1 0

 .
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For any matrix in Mn, in particular for the xa, there exist matrix polynomials
xa = xa(u, v) and their inverses u = u(xa) and v = v(xa), for each value of n.
However if the limit exists when n → +∞ the corresponding functions would
have to be discontinuous since they would otherwise define a homeomorphism of
the sphere with the torus. Identify the torus as the region of the real plane (x, y)
with 0 ≤ x, y ≤ r defined by an algebra of functions which are periodic at the
two boundaries and the sphere as the same region but defined by an algebra of
functions which have a constant value around the boundary. Then there is an
embedding of the set of continuous functions on the sphere into the continuous
functions on the torus. We can consider however the algebras of all functions on
the two manifolds to be identical. They are both the limit of the sequence of
matrix algebrasMn. The generators ofMn which we have used above have two
different symmetries and these symmetries are to be found in the manifold which
is defined in the limit. The SO(3) symmetry defines an S2 geometry; the Z× Z
defines the torus.

A diffeomorphism of S2 defines and is defined by an automorphism of the al-
gebra of smooth functions on S2. Let φ be a diffeomorphism of S2. Then φ has an
extension φa to R3 and we can set x̃′a = φa(x̃b). This defines an automorphism of
C(S2) which is independent of the extension. Conversely such an automorphism
φa restricted to the generators x̃a defines a coordinate transformation of R3 and
by restriction a diffeomorphism of S2. The non-commutative analogue of a dif-
feomorphism of S2 is therefore an automorphism of Mn. Since Mn is a simple
algebra all of its automorphims are of the form f 7→ f ′ = g−1fg where g is a
fixed arbitrary element ofMn which has an inverse. We have considered complex-
valued functions on S2 and the algebra C(S2) has a ∗-operation f̃ 7→ f̃ ∗ obtained

by taking the complex conjugate of f̃ . A diffeomorphism of S2 will define an auto-
morphism of C(S2) which respects this ∗-operation: f̃ ′∗ = f̃ ∗′. We must therefore
require the same condition on the automorphisms of Mn:(g−1fg)∗ = g−1f ∗g.
This means that g∗ = g−1 and therefore that

x′a = g−1xag, g ∈ SU(N). (1.28)

A different choice of x′a not related to xa by this formula would be equivalent to
a different choice of differential or topological structure. An element f ∈Mn has
an expansion f = f(xa) in the basis xa and an expansion f = f ′(x′a) in the basis
x′a. If (1.28) is considered as an automorphism then f 7→ g−1fg. If it is to be
regarded as a change of generators then f 7→ f and f ′(ya) is determined in terms
of f(ya) by the identity f ′(x′a) = f(xa).

A smooth global vector field on S2 defines and is defined by a derivation of
the algebra C(S2). The non-commutative analogue of a global vector field on
S2 is therefore a derivation of the algebra Mn, that is, a linear map X of Mn

into itself which satisfies Leibnitz’s rule: X(fg) = X(f)g + fX(g). Since Mn

is a simple algebra all of its derivations are of the form X = ad(h) where h is
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a fixed arbitrary element of Mn. Since we wish also to have (X(f))∗ = X(f ∗)
we shall require that h be antiHermitian. A diffeomorphism of S2 leaves the
set of smooth global vector fields invariant. The change of generators (1.28)
takes X into X ′ = ad(g−1hg) and so all automorphisms of Mn are analogues of
diffeomorphisms of S2.

Let x̃′a be the limit of the sequence {x′a} defined above. Then the map x̃a 7→ x̃′a
is a coordinate transformation of R3. If g is near to the identity we can write

x′a ' xa − [h, xa] , g = 1 + h.

An important special case is given by

h =
1

ik̄
haxa. (1.29)

In this case x′a ' xa + Ca
bch

bxc and therefore in the limit it corresponds to an
infinitesimal rotation about the axis ha in R3. The formula (1.28) with h small
and given by (1.29) yields the adjoint action of the Lie algebra of SO(3) onMn.
On the algebra Mn, we have a representation of SO(3) which contains exactly
once the irreducible representation of dim 2j + 1 for 0 ≤ j ≤ n− 1.

1.6.3 Fuzzy spaces through energy cutoff and confining
potentials

As known, in classical mechanics a charged particle (e.g. an electron) in the plane
z = 0 subject to a magnetic field B pointing along the z direction moves with
constant speed v along a circle of radius r = mvc/‖eB‖ (the cyclotron radius),
where m, e are the mass and the charge of the particle and v := ‖v‖, B := |B‖.
The Lorentz force causes the electron to spiral around and the centrifugal force
must balance the Lorentz force, that is

mv2

r
=
|e|
c
vB;

then it is possible to calculate the cyclotron radius

r =
mcv

|e|B

and the angular frequency of the cyclotron motion is

ω = 2π
v

2πr
=
|e|B
mc

.

In quantum mechanics the energy levels of this system (the socalled Landau
model) are quantized and the x, y coordinates from the center of the circle do not
commute.
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The literature is very rich of works about this topic; in particular, Peierls [40]
firstly studied the one band Hamiltonian for a Bloch electron in a magnetic field,
while in [41, 42] R. Jackiw and G. Magro analyze the Landau Hamiltonian and
show that the x, y coordinates of the particle themselves become noncommuting
if one imposes an energy cut-off, namely projects down all the observables to
the subspace of the Hilbert space of states characterized by and energy below a
certain quantity (the cut-off). Thus this mechanism can provide an example of
non-commutative geometry. The Hamiltonian of this system is

H =
1

2m

(
p− eA

c

)2

,

where A is the electromagnetic vector potential, that is B = ∇×A. Choosing a
suitable gauge, one has A = (0, Bx, 0) and the Hamiltonian is

H =
p2
x

2m
+

1

2m

(
py −

qBx

c

)2

.

The operator y is not into this Hamiltonian, then py commutes with H, so this
operator can be replaced by its eigenvalue ~ky, and using the cyclotron frequency
one has

H =
p2
x

2m
+

1

2
mω2

(
x− ~ky

mω

)2

.

The eigenvalue equation of the Hamiltonian is the same of the quantum harmonic
oscillator; then there is a quantization of energies:

En = ~ω
(
n+

1

2

)
n ∈ N0.

These values of the energy increase with n and correspond to the so-called Landau
levels, they have infinite degeneration. Let H be the Hilbert space of all quantum
states, the imposition of an energy cut-off E means that one assumes to make
only low-energy measurements; the consequence is that the space of physical
states is reduced from H to the subspace HE spanned by the eigenfunctions
with En ≤ E. In this situation (as for the new fuzzy hyperspheres that are
introduced in the next chapter) some commutation relations become non trivial
after the projection on HE. In particular if one confines the particle in a bounded
region of the plane imposing some boundary conditions (or an infinite barrier of
potential) the flux of B through the surface must be quantized and this value
determines the degeneration which is finite; alternatively, one can consider the
same problem on a torus and impose that the wavefunction is periodic up to a
phase factor, and this yields a finite degeneration. In these situations one has a
finite-dimensional subspace ofH and, through the use of a projector, any operator
can be transformed into an endomorphism of HE.
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More generally, if the Hamiltonian has a confining potential, then classically
the position of the particle can be only in a compact region, and also p is compact
because Ek ≤ E. The quantization ensures thatHE has finite dimension (that can
be estimated even without solving the eigenvalue problem). In this way one can
construct a non-commutative fuzzy geometry if the original coordinates projected
on HE do not commute and generate (through non-ordered polynomials1) the
algebra AE of all endomorphisms of HE.

1If one wants to use only generators with a pre-determined order some more generators may
be necessary.



Chapter 2

The general construction of SdΛ
with d ∈ N

2.1 General setting

As mentioned before, consider a quantum particle in RD, with a Hamiltonian
operator

H := −1

2
∆ + V (r)

such that the potential V (r) has a very sharp minimum at r = 1 with a very
large kD := V ′(1)/4 > 0, and fix V0 := V (1) so that the ground state has zero
energy, i.e. E0 = 0. In addition, impose here that the energy cutoff E is chosen
so that

V (r) ' V0 + 2kD(r − 1)2 if r fulfills V (r) ≤ E, (2.1)

then one can neglect terms of order higher than 2 in the Taylor expansion of V (r)
around r = 1 and approximate the potential with a harmonic one in the classical
region bE ⊂ RD compatible with the energy cutoff V (r) ≤ E. The equality
L2Y (θd, θd−1, · · · , θ1) = l(l + D − 2)Y (θd, θd−1, · · · , θ1) and the Ansatz (10) are
used to simplify the resolution of the PDE Hψ = Eψ, in fact this problem is
consequently split in two:

1. Solve the corresponding ODE for f(r);

2. Determine all the eigenfunctions of L2, which will be also square-integrable
because S2 is compact and L2 is regular.

In addition, it is also necessary to verify if H is a self-adjoint operator on the
Hilbert space HD of pure quantum states.

50
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Figure 2.1: Three-dimensional plot of V (r)

2.1.1 Resolution of Hψ = Eψ − Step 1

The ODE for f(r) turns out to be equivalent to equation (9) in [13, 14]; this
means that one has to solve[

−∂2
r − (D − 1)

1

r
∂r +

1

r2
l (l +D − 2) + V (r)

]
f(r) = Ef(r). (2.2)

In section 7.0.2 it is shown that the hypothesis r2V (r)
r→0+

−→ T ∈ R+ [which is
obviously compatible with (2.1)] and the request that ψ ∈ D(H) ≡ D(H∗) (self-
adjointness of H) imply that f(r) is regular at r = 0, and then the same applies

to the function g(r) := f(r)r
D−1

2 . Consequently, (2.2) becomes

−g′′(r) + g(r)
[D2 − 4D + 3 + 4l(l +D − 2)]

4r2
+ V (r)g(r) = Eg(r). (2.3)

For the purposes of this thesis, the solution of this last equation is interesting
only around r = 1; this means that one can use the equalities (at leading order)

1

r2
= 1− 2(r − 1) + 3(r − 1)2, V (r) = V0 + 2kD(r − 1)2,

which lead to this 1-dimensional harmonic oscillator equation

−g′′(r) + g(r)kl,D (r − r̃l,D)2 = Ẽl,Dg(r), (2.4)



52 CHAPTER 2. THE GENERAL CONSTRUCTION OF SDΛ WITH D ∈ N

where

b(l, D) :=
D2 − 4D + 3 + 4l(l +D − 2)

4
, kl,D := 3b(l, D) + 2kD,

r̃l,D :=
4b(l, D) + 2kD
3b(l, D) + 2kD

, Ẽl,D := E − V0 −
2b(l, D) [kD + b(l, D)]

3b(l, D) + 2kD
;

(2.5)

so at leading order the lowest eigenvalues E are those of the 1-dimensional har-
monic oscillator approximation of (2.3).

The (Hermite) square-integrable solutions of (2.4) are (Mn,l,D is a suitable
normalization constant)

gn,l,D(r) = Mn,l,D e−
√

kl,D

2 (r−r̃l,D)
2

·Hn

(
(r − r̃l,D) 4

√
kl,D

)
with n ∈ N0, (2.6)

implying

fn,l,D(r) =
Mn,l,D

r
D−1

2

e−
√

kl,D

2 (r−r̃l,D)
2

·Hn

(
(r − r̃l,D) 4

√
kl,D

)
with n ∈ N0. (2.7)

The corresponding ‘eigenvalues’ in (2.4) are Ẽn,l,D = (2n+1)
√
kl,D and this leads

to energies

En,l,D = (2n+ 1)
√
kl,D + V0 +

2b(l, D)[kD + b(l, D)]

3b(l, D) + 2kD
. (2.8)

As mentioned before, V0 is fixed requiring that the lowest energy level, which
corresponds to n = l = 0, is E0,0,D = 0; this implies

V0 = −
√
k0,D −

2b(0, D) [kD + b(0, D)]

3b(0, D) + 2kD
; (2.9)

while the expansions of r̃l,D and En,l,D at leading order in kD are the following
ones:

r̃l,D = 1 +
b(l, D)

2kD
− 3b(l, D)2

4k2
D

+O
(
k−3
D

)
,

V0 = −
√

2kD − b(0, D)− 3b(0, D)

2
√

2kD
+
b(0, D)2

2kD
+

9b(0, D)2

8 (2kD)
3
2

− 3b(0, D)3

4k2
D

+O
(
k
− 5

2
D

)
,

En,l,D = (2n+ 1)
√

2kD + V0 + b(l, D) + (2n+ 1)
3b(l, D)

2
√

2kD

− b(l, D)2

2kD
− (2n+ 1)

9b(l, D)2

16k
√

2kD
+

3b(l, D)3

4k2
D

+O
(
k
− 5

2
D

)
= 2n

√
2kD + l(l +D − 2) +

1√
2kD

[
3nb(l, D) +

3

2
l(l +D − 2)

]
+

1

2kD
[−l(l +D − 2)]

[
2D2 − 8D + 6 + 4l(l +D − 2)

4

]
+O

(
k
− 3

2
D

)
.

(2.10)
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2.1.2 Resolution of Hψ = Eψ − Step 2

In section 7.0.3 it is shown that an orthonormal basis of L2(Sd), made up of
L2-eigenfunctions, is the collection of all the

Y = Yl(θd, · · · , θ2, θ1) =
eil1θ1√

2π

[
d∏

n=2

nP
ln−1

ln (θn)

]
, l = (ld, · · · , l2, l1), (2.11)

where

jP
M

L (θ) :=

√
2L+ j − 1

2

√
(L+M + j − 2)!

(L−M)!
[sin θ]

2−j
2 P

−(M+ j−2
2 )

L+ j−2
2

(cos θ), (2.12)

ld ≥ · · · ≥ l2 ≥ |l1|, li ∈ Z ∀i and Pm
l is the associated Legendre function of first

kind (see [43] for a summary about these special functions).
They fulfill

L1,2Yl = l1Yl ⇒ C2Yl = l21Yl, CpYl = lp−1(lp−1 + p− 2)Yl,

and

∫
Sd
YlY

∗
l′dα = δl

′

l ,
(2.13)

where dα is the usual measure on Sd,

dα =
[
sind−1 (θd) sind−2 (θd−1) · · · sin (θ2)

]
dθ1dθ2 · · · dθd.

According to these last equations, every l ∈ N0 identifies a

Vl,D := span
{
Yl : l :=

(
l, ld−1, · · · , l2, l1

)
, l ≥ ld−1 ≥ · · · ≥ l2 ≥ |l1|, li ∈ Z∀i

}
,

(2.14)
which is the representation space of an irrep of Uso(D), and {L1,2, C2, · · · , CD}
is a CSCO of this irrep, where CSCO stands for complete set of commuting
observables, i.e. a set of commuting operators whose set of eigenvalues completely
specify elements of a basis of HΛ,D.

In addition, in section 7.0.3.4 it is shown that

Vl,D is isomorphic to
l⊕

m=0

Vm,d if D > 3,

while Vl,3 is isomorphic to
l⊕

m=−l

Vm,2;

this decomposition can be also applied to HΛ,D, up to isomorphisms, and this job
is done in section 2.4.

So, the pure quantum states (the elements of an orthonormal basis of HD)
are the following ones:

ψn,l,D(r, θd, · · · , θ2, θ1) := fn,l,D(r)Yl(θd, · · · , θ2, θ1), (2.15)

with n ∈ N0, l ≡ ld ≥ · · · ≥ l2 ≥ |l1|, li ∈ Z ∀i.
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2.2 The imposition of the cutoff

As mentioned before, a low enough energy cutoff E ≤ E is imposed in a way
such that it excludes all the states with n > 0; according to this, it must be
E < 2

√
2kD, which (from the physical point of view) means that radial oscillations

are ‘frozen’ (⇒ n = 0, as wanted), so that all corresponding classical trajectories
are circles; the energies E below E will therefore depend only on l and D, and
are consequently denoted by El,D.

Figure 2.2: Two-dimensional plot of V (r) including the energy-cutoff

The Hilbert space of ‘admitted’ states is HE,D ⊂ H, it is finite-dimensional
and spanned by the states ψ fulfilling the cutoff condition; on the other hand,
one has also to replace every observable A by A := PE,DAPE,D, where PE,D is

the projection on HE,D, and we give to A the same physical interpretation.

Then, at leading orders in 1/
√
kD,

H = El,D = l(l +D − 2) +O

(
1√
kD

)
;

ψl,D(r, θD−1, · · · , θ1) =
Ml,D

r
D−1

2

e−
√

kl,D

2 (r−r̃l,D)
2

Yl (θd, · · · , θ1) ,

(2.16)
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where the normalization factor Ml,D is fixed so that Ml,D > 0 and all ψl,D have
unit norm in L2

(
RD
)

(see section 7.0.5).

The choice of a Λ-dependent energy cutoff E = E (Λ) := Λ(Λ + D − 2),
implies that the condition E ≤ E becomes equivalent to the projection of the
theory onto the Hilbert subspace HΛ,D ≡ HE,D spanned by all the states ψl,D
with l(l +D − 2) ≤ Λ(Λ +D − 2)⇔ l ≤ Λ. For consistency it must be

Λ(Λ +D − 2) < 2
√

2kD, (2.17)

and for instance one can define kD (Λ) ≥ [Λ(Λ +D − 2)]2, while in section 7.0.12
a larger kD(Λ) is used in order to prove the convergence to ordinary quantum
mechanics on Sd. According to this first choice of kD(Λ), all El,D are smaller than
the energy levels corresponding to n > 0; this is also sufficient to guarantee that
kl,D � 1 for all l ≤ Λ [by the way, kl,D > 0 is a necessary condition for (2.4) to
be the eigenvalue equation of a harmonic oscillator]; furthermore, the spectrum
of H becomes the whole spectrum {l(l + D − 2)}l∈N0 of L2 in the commutative
limit, i.e. Λ→∞.

2.3 The algebra AΛ,D

2.3.1 The action of angular momentum components on Yl

In the next lines there are the R coefficients, they are determined in section 7.0.6
and used in the following definition (which is given by induction) of the action of
a generic Lh,j on a spherical harmonic Yl.

Definition 2.3.1 For D = 2 there is only one angular momentum component,
L1,2, and its action is L1,2Yl1 = l1Yl1. For D > 2, let

dL,l,D :=
√

(L+ 1)(L+D − 3)− l(l +D − 4) =
√

(L− l + 1)(L+ l +D − 3)

and
Rh,D (l, l′) := 〈Yl′ , thYl〉 ;

the action of the angular momentum operators is defined in this way:

Lν,DYl :=
1

i

∑
l′j :|lj−l′j |=1

for j=ν−1,··· ,d−1

{
dl,ld−1,DRν,d

(
l, l̃′ν

)
Yl̃′ν − dl,ld−1+1,DRν,d

(
l, l̂′ν

)
Yl̂′ν

}
,

(2.18)
where

l̃′ν :=
(
l, ld−1 − 1, l′d−2, · · · , l′ν−1, lν−2, · · · , l1

)
,

l̂′ν :=
(
l, ld−1 + 1, l′d−2, · · · , l′ν−1, lν−2, · · · , l1

)
,
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for ν ∈ {1, · · · , d− 2}, l0 ≡ l1 and

l̃′d−1 := (l, ld−1 − 1, ld−2, · · · , l1) , l̂′d−1 := (l, ld−1 + 1, ld−2, · · · , l1) .

Furthermore,

LD,j := −Lj,D , L±,ν :=
L2,ν ∓ iL1,ν√

2
∀ν ≥ 3

and the action of Lh,D̃ on a D-dimensional spherical harmonic, when h < D̃ < D,

is defined as the same of Lh,D̃ on a D̃-spherical harmonic in RD̃; then it, when

acts in RD, does not ‘affect’ the indices l, ld−1, · · · lD̃−1.

Summarizing,

• In section 7.0.6 the action in RD of the coordinate operators tν := xν
r

on the
D-dimensional spherical harmonics Yl is calculated, this action essentially
defines the aforementioned Rν,D coefficients;

• This implies that one can easily derive the action in RD−1 of coordinate
operators th on a generic (D− 1)-dimensional spherical harmonic Yld−1,··· ,l1 ,
which consequently uses the Rh,d coefficients;

• So, in definition 2.3.1 the action of Lν,D on Yl is the same, up to the
dl,ld−1,D

i

and −dl,ld−1+1,D

i
coefficients, of tν on Yld−1,··· ,l1 ; this is also in agreement with

the Wigner-Eckart theorem, because

〈Yl′ , Lν,DYl〉 =


1
i
dl,ld−1,DRν,d

(
l, l̃′ν

)
if l′d−1 = ld−1 − 1,

−1
i
dl,ld−1+1,DRν,d

(
l, l̃′ν

)
if l′d−1 = ld−1 + 1,

0 otherwise,

where the first factor depends only on the index ld−1, which identifies the
SO(d) irrep, while the second one is a Clebsch-Gordan coefficient.

In sections 7.0.7 and 7.0.8 the following relations are explicitly checked for the
reader’s convenience:

L2Yl =
∑

1≤h<j≤D

L2
h,jYl = l (l +D − 2)Yl,

[Lh,j, Lp,s] = i (δh,pLj,s + δj,sLh,p − δh,sLj,p − δj,pLh,s) .
(2.19)
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2.3.2 The action of ‘projected’ operators on HΛ,D

The Hilbert space of admitted states HΛ,D, constructed in section 2.2, is spanned
by all the states ψl,D fulfilling l ≤ Λ. In the following lines we do a complete
study of the action of the ‘projected’ angular momentum operators Lh,j and of the
‘projected’ coordinate operators xh on the pure quantum states. The definition
2.3.1 implies Lh,jψl,D = Lh,jψl,D, which is a consequence of the invariance of H
(and therefore PE,D) with respect to rotations (i.e. they commute with every
Lh,j); from this and the fact that the action of every Lh,j does not ‘affect’ the
index l it follows that the action of Lh,j on a ψl,D essentially coincides with the
one of Yl. Then

Lν,Dψl,D :=
1

i

∑
l′j :|lj−l′j |=1

for j=ν−1,··· ,d−1

{
dl,ld−1,DRν,d

(
l, l̃′ν

)
ψl̃′ν ,D − dl,ld−1+1,DRν,d

(
l, l̂′ν

)
ψl̂′ν ,D

}
;

(2.20)
LD,jψl,D := −Lj,Dψl,D , L±,νψl,D := (L2,ν ∓ iL1,ν)ψl,D ∀ν ≥ 3,

and the action of Lh,D̃ on a ψl,D, when D̃ < D, is essentially the same of Lh,D̃
on a D̃-spherical harmonic in RD̃, as for (2.18) and (2.20).

On the other hand, the action of xh on a state ψl,D can be obtained from the
one of the multiplication operator th· on a D-dimensional spherical harmonic Yl
(see section 7.0.6), while sometimes it is useful to consider the operators

x± := x1 ± ix2.

It is easy to see that the action of projected coordinate operators ‘affect’ the
index l, for this reason further calculations are needed, because in this case the
integral ∫ +∞

0

rfl,D(r)fl′,D(r)dr

is not trivial, unlike what happens for the action of Lh,j.
According to this,

xhψl,D =
∑

|lj−l′j |=1
j∈{h−1,··· ,d−1}

[
cl,DRh,D

(
l,
˜̃
l′h

)
ψ˜̃
l′h,D

+ cl+1,DRh,D

(
l,
̂̂
l′h

)
ψ̂̂
l′h,D

]
,

(2.21)
where˜̃
l′h := (l − 1, l′d−1, · · · , l′h−1, lh−2 · · · , l1),

̂̂
l′h := (l + 1, l′d−1, · · · , l′h−1, lh−2 · · · , l1) ,

cl,D :=

∫ +∞

0

rfl,D(r)fl−1,D(r)dr, cl+1,D :=

∫ +∞

0

rfl,D(r)fl+1,D(r)dr,

c−Λ,2 = cΛ+1,2 := 0 and c0,D = cΛ+1,D := 0 ∀D ≥ 3;

(2.22)
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the explicit values of cl,D are calculated in section 7.0.9 and

cl,D
(7.76)
=

√
1 +

[b(l, D) + b(l − 1, D)]

2kD
up to terms O

(
1

(kD)
3
2

)
. (2.23)

2.3.3 The commutation relations and the action of x2

The calculations of section 7.0.8.1 can be used to determine the action of [xh, xj]
on HΛ,D, this because the action of xh on ψl,D is essentially the same of Lh,D+1

on YlD,l; the only difference is the replacement of −1
i
dlD,l+1,D+1 with cl+1,D and

1
i
dlD,l,D+1 with cl,D, respectively. These arguments and (7.77) are sufficient to

prove that (see section 7.0.10.1 for explicit calculations)

[xh, xj] =

[
− I

kD
+

(
1

kD
+

(cΛ,D)2

2Λ +D − 2

)
P̂Λ,D

]
Lh,j, (2.24)

where P̂Λ,D is the projector on the Λ(Λ +D − 2)-eigenspace of L2.

On the other hand, it is obvious that P̂Λ,D := P̂E,D commutes with Lh,j, for
all 1 ≤ h < j ≤ D; this and

[
Lh,s, x

j
] (5)

=
1

i

(
δsjx

h − δhj xs
)

(2.25)

imply [
Lh,s, xj

]
= P̂Λ,DLh,sP̂Λ,DP̂Λ,DxjP̂Λ,D − P̂Λ,DxhP̂Λ,DP̂Λ,DLh,sP̂Λ,D

= P̂Λ,DLh,sxjP̂Λ,D − P̂Λ,DxjLh,sP̂Λ,D

= P̂Λ,D [Lh,s, xj] P̂Λ,D

=
1

i

(
δsjxh − δhj xs

)
.

Furthermore, if one defines x2 :=
∑

h xhxh, then the calculations of section 7.0.7
can be used to prove that [see section 7.0.10.2 for the explicit calculations, while
here the b(l, D) coefficients are the ones defined in (2.5)]

x2ψl,D =

{
1 +

b(l, D) + [b(l + 1, D)] l+D−2
2l+D−2

+ [b(l − 1, D)] l
2l+D−2

2kD(Λ)

−
[(

1 +
b(Λ, D) + b(Λ + 1, D)

2kD(Λ)

)
Λ +D − 2

2Λ +D − 2

]
P̂Λ,D

}
ψl,D.

(2.26)

In addition (here P̃h,j is the projector on the eigenspace of CD−h corresponding
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to lD−h ≡ j),

Λ∏
l=0

[
L2 − l(l +D − 2)I

]
= 0 ,

l∏
ld−1=0

[CD−1 − ld−1(ld−1 +D − 3)I] P̃1,l = 0,

· · · ,

l2∏
l1=−l2

[L1,2 − l1I] P̃D−2,l2 = 0, (x±)2Λ+1 = 0, and (Lν,±)2Λ+1 = 0,∀ν ≥ 3

(2.27)

The relations (2.24)-(2.27) imply that the coordinate operators generate the whole
algebra of observables AΛ,D, in fact every Lh,j can be written in terms of [xh, xj]

and therefore every projector P̃h,j can be written as a non-ordered polynomial in
the xp.

2.4 Realization of AΛ,D through Uso(D + 1)

Let Λ ∈ N, πΛ,D+1 be the irreducible representation of Uso(D+1) having lD ≡ Λ
and VΛ,D+1 be the corresponding representation space [see (2.14)]. First of all,
in section 7.0.3.4 it is shown that dimHΛ,D = dimVΛ,D+1, and if one identifies
ψl,D ≡ YΛ,l ∈ VΛ,D+1, then the operators on HΛ,D, in particular Lh,j and xh, are
naturally realized in πΛ,D+1[Uso(D + 1)].

In fact one has [here the Lh,js are seen as basis elements of so(D + 1)]

Lh,j = Lh,j if h < j < D + 1 and xh = p∗D (λ)Lh,D+1pD (λ) ,

where λ :=
2−D +

√
(D − 2)2 + 4L2

2
.

(2.28)

It turns out that the function pD has to fulfill

p∗D (l + 1) pD (l) =
1

i

cl+1,D

dΛ,l+1,D+1

=
1

i

√
1 + b(l,D)+b(l+1,D)

4kD(Λ)√
(Λ− l)(Λ + l +D − 1)

,

p∗D (l − 1) pD (l) = i
cl,D

dΛ,l,D+1

= i

√
1 + b(l,D)+b(l−1,D)

4kD(Λ)√
(Λ− l + 1)(Λ + l +D − 2)

;

(2.29)

it can be determined recursively, starting from pD(0) := 1 and then using the last
formulas.

This means that

Theorem 2.4.1 Formulas (2.28), (2.29) and section define an O(D)-equivariant
∗-algebra isomorphism between the algebra AΛ = End(HΛ) of observables (endo-
morphisms) on HΛ and the CD+1 = Λ [Λ + (D + 1)− 2] irreducible representation
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πΛ,D+1 of Uso(D + 1):

AΛ := End(HΛ) 'MN(C) ' πΛ[Uso(D + 1)],

where dimHΛ,D ≡ N :
(7.20)
=

(
Λ +D − 2

Λ− 1

)
2Λ +D − 1

Λ
.

(2.30)

As already recalled, the group of ∗-automorphisms of MN(C) ' AΛ is inner
and isomorphic to SU(N), i.e. of the type

a 7→ g a g−1, a ∈ AΛ,

with g an unitary N ×N matrix with unit determinant. A special role is played
by the subgroup SO(D+1) acting in the representation πΛ, namely g = πΛ [eiα],
where α ∈ so(D + 1). In particular, choosing α = αh,jLh,j (αh,j ∈ R and
h < j ≤ D) the automorphism amounts to a SO(D) ⊂ SO(D+1) transformation
(a rotation in D-dimensional space). Parity (Lh,j, Lp,D+1) 7→ (Lh,j,−Lp,D+1), is
an O(D) ⊂ SO(D+ 1) transformation with determinant −1 in the Lp,D+1 space,
and therefore also in the x̄p space. This shows that (2.28) is equivariant under
O(D), which plays the role of isometry group of this fuzzy sphere.

2.5 Convergence to O(D)-equivariant quantum

mechanics on Sd

Here it is explained how this new fuzzy space converges to O(D)-equivariant
quantum mechanics on the sphere Sd as Λ→∞.

The fuzzy analogs of the vector spaces B(Sd), C(Sd) are defined as [see (7.88)

for the explicit definition of Ŷl]

CΛ,D := spanC

{
Ŷl : 2Λ ≥ l ≡ ld ≥ · · · ≥ l2 ≥ |l1|, li ∈ Z∀i

}
⊂ AΛ,D ⊂ B[L2(Sd)],

(2.31)

and here the highest l is 2Λ because Ŷ2Λ,2Λ,··· ,2Λ is the ‘highest’ multiplying oper-
ator acting nontrivially on HΛ,D (it does not annihilate ψΛ,Λ,··· ,−Λ,D).

So

CΛ,D =
2Λ⊕
l=0

Vl,D (2.32)

is the decomposition of CΛ,D into irreducible components under O(D); further-
more, Vl,D is trace-free for all l > 0, i.e. its projection on the single compo-
nent V0,D is zero and it is easy to see that (2.32) becomes the decomposition of
B(Sd), C(Sd) in the limit Λ→∞.
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In addition, the fuzzy analog of f ∈ B(Sd) is

f̂Λ :=
2Λ∑
l=0

∑
ld−1≤l

lh−1≤lh for h=d−1,··· ,3
|l1|≤l2

flŶl ∈ AΛ,D ⊂ B[L2(S2)]; (2.33)

while the ψl,D ∈ HΛ,D are the fuzzy analogs of the spherical harmonics Yl con-
sidered just as elements of an orthonormal basis of the Hilbert space L2(Sd); for
this reason, consider the O(D)-covariant embedding I : HΛ,D ↪→ L2(Sd) defined
by

I


Λ∑
l=0

∑
ld−1≤l

lj−1≤lj for j=d−1,··· ,3
|l1|≤l2

φlψl,D

 =
Λ∑
l=0

∑
ld−1≤l

lj−1≤lj for j=d−1,··· ,3
|l1|≤l2

φlYl,

and below the symbol I is dropped and then simply identified ψl,D ≡ Yl.
The decomposition of HΛ,D into irreducible components under O(D) reads

HΛ,D =
Λ⊕
l=0

Vl, Vl :=


∑
ld−1≤l

lj−1≤lj for j=d−1,··· ,3
|l1|≤l2

φlψl,D : φl ∈ C


, (2.34)

and (2.34)1 becomes the decomposition of L2(Sd) in the limit Λ→∞.
For all φ ∈ L2(Sd) let

φΛ :=
Λ∑
l=0

∑
ld−1≤l

lj−1≤lj for j=d−1,··· ,3
|l1|≤l2

φlψl,D,

where φl are the coefficients of the decomposition of φ in the orthonormal basis
of spherical harmonics; clearly φΛ → φ in the L2(Sd)-norm ‖ ‖, and in this sense
HΛ,D invades L2(Sd) as Λ→∞.

Let B
[
L2
(
Sd
)]

be the algebra of bounded operators on L2
(
Sd
)
, the em-

bedding I induces the one J : AΛ,D ↪→ B
[
L2
(
Sd
)]

and by construction AΛ,D

annihilates H⊥Λ,D; the operators Lh,j, Lh,j coincide on HΛ,D, while one can easily

check that Lh,j → Lh,j strongly as Λ → ∞ on the domain D (Lh,j) ⊂ L2
(
Sd
)

1 and, similarly, f(Lh,j) → f(Lh,j) strongly on D[f(Lh,j)] for all measurable
function f(s).

1The strict inclusion it follows from the fact that Lh,j is unbounded; for example φ ∈ D(L1,2)

only if
∑+∞

l=0

∑
ld−1≤l,··· |l1|

2|φl|2 < +∞.
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Bounded (in particular, continuous) functions f on the sphere Sd, acting as
multiplication operators f · : φ ∈ L2(Sd) 7→ fφ ∈ L2(Sd), make up a subalgebra
B(Sd) [resp. C(Sd)] of B

[
L2(Sd)

]
. An element of B(Sd) is actually an equiva-

lence class [f ] of bounded functions differing from f only on a set of zero measure,
because this ensures that for any f1, f2 ∈ [f ], and φ ∈ L2(Sd), f1φ and f2φ differ
only on a set of zero measure, and therefore are two equivalent representatives of
the same element of L2(Sd). Since f belongs also to L2(Sd), then

fN(θd, · · · , θ1) :=
N∑
l=0

∑
ld−1≤l

lj−1≤lj for j=d−1,··· ,3
|l1|≤l2

flYl (θd, · · · , θ1)

converges to f(θd, · · · , θ1) in the L2(Sd) norm as N →∞.
In section 7.0.12 it is shown that every projected coordinate operator xh con-

verges strongly to the corresponding th as Λ→∞ if

kD (Λ) ≥ Λ [dimHΛ,D]2 b(Λ, D).

Again, since for all Λ>0 the operator xh annihilates H⊥Λ,D, xh does not converge
to th in operator norm. It is possible to prove also this more general result:

Theorem 2.5.1 Choosing

kD (Λ) ≥ Λ2[dimH2Λ,D]3 [(2Λ)!]D 2ΛD [(2Λ + 1)!!]2D b(Λ, D)
√

dimHΛ,D, (2.35)

then for all f, g ∈ B(Sd) the following strong limits as Λ → ∞ hold: f̂Λ →
f ·, (̂fg)Λ → fg· and f̂ΛĝΛ → fg·.

In other words, the product in AΛ,D between the approximations f̂Λ and ĝΛ goes

to the product in B
[
L2(Sd)

]
between f · and g· [although

(
f̂ g
)

Λ
6= f̂ΛĝΛ].



Chapter 3

The cases 2 ≤ D ≤ 5

3.1 S1
Λ

When D = 2 the choices E = E(Λ) := Λ2 and k2 = k2(Λ) ≥ Λ4 imply that
the Hilbert space of admitted states HΛ,2 is generated by all the functions (see
sections 2.1.1 and 2.1.2)

ψl,2 = ψl,2(r, θ) := fl,1(r)Yl(θ) = fl,1(r)
eilθ√
2π
, |l| ≤ Λ

hence

dimHΛ,2
(7.20)
=

(
Λ

Λ− 1

)
2Λ + 1

Λ
= 2Λ + 1.

The only one angular momentum component is L := L1,2 and it acts as follows
(see definition 2.3.1 in section 2.3.1):

Lψl =lψl;

with

L2ψl = l2ψl.

The coordinate operators are x1, x2, x± := x1 ± ix2, and they act on HΛ,2 as
follows (see section 2.3.2):

x1ψl =
cl+1,2

2
ψl+1 +

cl,2
2
ψl−1 , x2ψl =

cl+1,2

2i
ψl+1 −

cl,2
2i
ψl−1,

x+ψl = cl+1,2ψl+1 , x−ψl = cl,2ψl−1,

where

cl,2
(2.23)
=

{√
1 +

l2−l+ 3
4

k2
if − Λ + 1 ≤ l ≤ Λ,

0 otherwise.

63
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They fulfill (see section 2.3.3)

[x1, x2] =
1

i

[
− I

k2

+

(
1

k2

+
(c−Λ+1,2)2

2Λ

)
P̂−Λ,2 +

(
1

k2

− (cΛ,2)2

2Λ

)
P̂Λ,2

]
L1,2,

[L, x2] =
1

i
x1, [L, x1] = −1

i
x2, [L, x+] = x+, [L, x−] = −x−,

(3.1)

x2 :=
2∑

h=1

xhxh =

{
1 +

2L2 + 1

2k2(Λ)
−
[

1

2

(
1 +

4Λ2 + 4Λ + 3

4k2(Λ)

)](
P̂Λ,2 + P̂−Λ,2

)}
(3.2)

and

l2∏
l1=−l2

[L1,2 − l1I] = 0 , (x±)2Λ+1 = 0. (3.3)

According to this, the algebra of observables is generated by the coordinate
operators, in fact every projector can be written as a ordered polynomial in the
xν .

Furthermore, the SO(3)-irrep πΛ,3, the one characterized by C3 ≡ Λ(Λ + 1)I
with representation space

VΛ,3 := span {YΛ,l(θ2, θ1) : Λ ≥ |l|; Λ, l ∈ Z} ,

can be used to identify ψl ≡ YΛ,l, and also the operators

Lh,j ≡ Lh,j for 1 ≤ h < j ≤ 2 and xs ≡ p2(λ)Ls,3p2(λ), (3.4)

where
λ :=

√
L2,

while p2(λ) is an analytic function and the values p2(l), when l ∈ N0, can be
obtained recursively from (2.29) starting from p2(0) := 1.

Furthermore, in order to prove the convergence of S1
Λ to ordinary quantum

mechanics on S1, it is convenient to identify ψl ≡ Yl and then to consider their
fuzzy counterparts Ŷl [see (7.88)], which can be used to approximate a generic
f ∈ B(S1) or f ∈ C(S1); this is possible because the Yl are an orthonormal basis
of L2(S1), and also homogeneous polynomials in the th := xh/r variables. Then,

f̂Λ :=
2Λ∑

l=−2Λ

flŶl, where fl := 〈Yl, f〉 ,

is an approximation of f because of the following two theorems (see section 2.5)



3.2. S2
Λ 65

Theorem 3.1.1 Every projected coordinate operator xh converges strongly to the
corresponding th as Λ→∞ if

k2 (Λ) ≥ Λ (2Λ + 1)2

(
4Λ2 − 1

4

)
.

Theorem 3.1.2 Choosing k2 (Λ) fulfilling (2.35) for D = 2, then for all f, g ∈
B(S1) the following strong limits as Λ → ∞ hold: f̂Λ → f ·, (̂fg)Λ → fg· and

f̂ΛĝΛ → fg·.

3.2 S2
Λ

When D = 3 the choices E = E(Λ) := Λ(Λ + 1) and

k3 = k3(Λ) ≥ [Λ(Λ + 1)]2 (3.5)

imply that the Hilbert space of admitted states HΛ,3 is generated by all the
functions (see sections 2.1.1 and 2.1.2)

ψl,l1,3 = ψl,l1,4(r, θ1, θ2) := fl,3(r)Yl,l1(θ1, θ2), l ≤ Λ

hence

dimHΛ,3
(7.20)
=

(
Λ + 1

Λ− 1

)
2Λ + 2

Λ
= (Λ + 1)2 .

The angular momentum components are L1,2 =: L0 = L3 = Lz, L1,3 =: −L2 =
−Ly, L2,3 =: L1 = Lx, L± := Lx ± iLy and they act as follows (see definition
2.3.1 in section 2.3.1):

Lzψl,l1 =l1ψl,l,l1 ,

Lyψl,l1 =
1

i

[
−dl,l1,3

2
ψl,l1−1 +

dl,l1+1,3

2
ψl,l1+1

]
,

Lxψl,l1 =
1

i

[
−dl,l1,3

2i
ψl,l1−1 −

dl,l1+1,3

2i
ψl,l1+1

]
,

L+ψl,l1 =dl,l1+1,3ψl,l1+1,

L−ψl,l1 =dl,l1,3ψl,l1−1,

(3.6)

where dl,l1,3 =
√

(l − l1 + 1)(l + l1).

They fulfill

[Li, Lj] = iεijhLh, L2ψl,l1 = l(l + 1)ψl,l1 and C2ψl,l1 = l21ψl,l1 .
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The coordinate operators are x1, x2, x3 =: x0, x± = x1± ix2 and they act on HΛ,3

as follows (see section 2.3.2):

x1ψl,l1 =

[
cl,3A

−,l1
l

2
ψl−1,l1−1 +

cl,3A
+,l1
l

2
ψl−1,l1+1

+
cl+1,3B

−,l1
l

2
ψl+1,l1−1 +

cl+1,3B
+,l1
l

2
ψl+1,l1+1

]
,

x2ψl,l1 =

[
−cl,3A

−,l1
l

2i
ψl−1,l1−1 +

cl,3A
+,l1
l

2i
ψl−1,l1+1

−cl+1,3B
−,l1
l

2i
ψl+1,l1−1 +

cl+1,3B
+,l1
l

2i
ψl+1,l1+1

]
,

x3ψl,l1 =cl,3A
0,l1
l ψl−1,l1 + cl+1,3B

0,l1
l ψl+1,l1 .

(3.7)

x+ψl,l1 = cl,3A
+,l1
l ψl−1,l1+1 + cl+1,3B

+,l1
l ψl+1,l1+1,

x−ψl,l1 = cl,3A
−,l1
l ψl−1,l1−1 + cl+1,3B

−,l1
l ψl+1,l1−1,

where

cl,3
(2.23)
=

{√
1 + l2

k3
if 1 ≤ l ≤ Λ,

0 otherwise,

and, according to (7.32),

B+,l1
l := A(l, l1, 2) =

√
(l + l1 + 1)(l + l1 + 2)

(2l + 1)(2l + 3)
,

A+,l1
l := B(l, l1, 2) = −

√
(l − l1 − 1)(l − l1)

(2l + 1)(2l − 1)
,

B−,l1l := C(l, l1, 2) = −

√
(l − l1 + 2)(l − l1 + 1)

(2l + 1)(2l + 3)
,

A−,l1l := D(l, l1, 2) =

√
(l + l1)(l + l1 − 1)

(2l + 1)(2l − 1)
,

B0,l1
l := F (l, l1, 2) =

√
(l + l1 + 1)(l − l1 + 1)

(2l + 1)(2l + 3)
,

A0,l1
l := G(l, l1, 2) =

√
(l − l1)(l + l1)

(2l + 1)(2l − 1)
.
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They fulfill (see section 2.3.3)

[xh, xj] =

[
− I

k3

+

(
1

k3

+
(cΛ,3)2

2Λ + 1

)
P̂Λ,3

]
Lh,j, [Lh,s, xj] =

1

i

(
δsjxh − δhj xs

)
,

(3.8)

x2 :=
3∑

h=1

xhxh =

{
1 +

L2 + 1

k3(Λ)
−
[(

1 +
(Λ + 1)2

k3(Λ)

)
Λ + 1

2Λ + 1

]
P̂Λ,3

}
(3.9)

and

Λ∏
l=0

[
L2 − l(l + 1)I

]
= 0 ,

l2∏
l1=−l2

[L1,2 − l1I] P̃1,l = 0,

(x±)2Λ+1 = 0, and (L±)2Λ+1 = 0,

(3.10)

where P̃h,j is the projector on the eigenspace of C3−h corresponding to l3−h ≡ j.
According to this, the algebra of observables is generated by the coordinate

operators, in fact every projector can be written as a ordered polynomial in the
xν .

Furthermore, the SO(4)-irrep πΛ,4, the one characterized by C4 ≡ Λ(Λ + 2)I
with representation space

VΛ,4 := span {YΛ,l,l1(θ3, θ2, θ1) : Λ ≥ l ≥ |l1|, li ∈ Z∀i} ,

can be used to identify ψl,l1 ≡ YΛ,l,l1 , and also the operators

Lh,j ≡ Lh,j for 1 ≤ h < j ≤ 3 and xs ≡ p3(λ)Ls,4p3(λ), (3.11)

where

λ :=
−1 +

√
1 + 4L2

2
,

while p3(λ) is an analytic function and the values p3(l), when l ∈ N0, can be
obtained recursively from (2.29) starting from p3(0) := 1.

Furthermore, in order to prove the convergence of S2
Λ to ordinary quantum

mechanics on S2, it is convenient to identify ψl,l1 ≡ Yl,l1 and then to consider their

fuzzy counterparts Ŷl,l1 [see (7.88)], which can be used to approximate a generic
f ∈ B(S2) or f ∈ C(S2); this is possible because the Yl,l1 are an orthonormal
basis of L2(S2), and also homogeneous polynomials in the th := xh/r variables.
Then,

f̂Λ :=
2Λ∑
l=0

l∑
l1=−l

fl,l1Ŷl,l1 , where fl,l1 := 〈Yl,l1 , f〉 ,

is an approximation of f because of the following two theorems (see section 2.5)
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Theorem 3.2.1 Every projected coordinate operator xh converges strongly to the
corresponding th as Λ→∞ if

k3 (Λ) ≥ Λ2 (Λ + 1)5 .

Theorem 3.2.2 Choosing k3 (Λ) fulfilling (2.35) for D = 3, then for all f, g ∈
B(S2) the following strong limits as Λ → ∞ hold: f̂Λ → f ·, (̂fg)Λ → fg· and

f̂ΛĝΛ → fg·.

3.3 S3
Λ

When D = 4 the choices E = E(Λ) := Λ(Λ + 2) and k4 = k4(Λ) ≥ [Λ(Λ + 2)]2

imply that the Hilbert space of admitted states HΛ,4 is generated by all the
functions (see sections 2.1.1 and 2.1.2)

ψl,l2,l1,4 = ψl,l2,l1,4(r, θ1, θ2, θ3) := fl,4(r)Yl,l2,l1(θ1, θ2, θ3), l ≤ Λ

hence

dimHΛ,4
(7.20)
=

(
Λ + 2

Λ− 1

)
2Λ + 3

Λ
=

2Λ3 + 9Λ2 + 13Λ + 6

6
=

1

3
(Λ+1)(Λ+2)

(
Λ +

3

2

)
.

The angular momentum components are {Lh,j : 1 ≤ h < j ≤ 4}, L±,4 :=
L2,4 ∓ iL1,4 and they act as follows (see definition 2.3.1 in section 2.3.1):

L1,2ψl,l2,l1 =l1ψl,l2,l1 ,

L1,3ψl,l2,l1 =
1

i

[
dl2,l1,3

2
ψl,l2,l1−1 −

dl2,l1+1,3

2
ψl,l2,l1+1

]
,

L2,3ψl,l2,l1 =
1

i

[
−dl2,l1,3

2i
ψl,l2,l1−1 −

dl2,l1+1,3

2i
ψl,l2,l1+1

]
,

L1,4ψl,l2,l1 =
1

i

[
dl,l2,4B(l2, l1, 2)

2
ψl,l2−1,l1+1 +

dl,l2,4D(l2, l1, 2)

2
ψl,l2−1,l1−1

−dl,l2+1,4A(l2, l1, 2)

2
ψl,l2+1,l1+1 −

dl,l2+1,4C(l2, l1, 2)

2
ψl,l2+1,l1−1

]
,

L2,4ψl,l2,l1 =
1

i

[
dl,l2,4B(l2, l1, 2)

2i
ψl,l2−1,l1+1 −

dl,l2,4D(l2, l1, 2)

2i
ψl,l2−1,l1−1

−dl,l2+1,4A(l2, l1, 2)

2i
ψl,l2+1,l1+1 +

dl,l2+1,4C(l2, l1, 2)

2i
ψl,l2+1,l1−1

]
,

L3,4ψl,l2,l1 =
1

i
[dl,l2,4G(l2, l1, 2)ψl,l2−1,l1 − dl,l2+1,4F (l2, l1, 2)ψl,l2+1,l1 ] ,

L+,4ψl,l2,l1 =− dl,l2,4B(l2, l1, 2)ψl,l2−1,l1+1 + dl,l2+1,4A(l2, l1, 2)ψl,l2+1,l1+1,

L−,4ψl,l2,l1 =dl,l2,4D(l2, l1, 2)ψl,l2−1,l1−1 − dl,l2+1,4C(l2, l1, 2)ψl,l2+1,l1−1,
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where dl,l2,4 =
√

(l − l2 + 1)(l + l2 + 1).

They fulfill

[Lh,j, Lp,s]ψl,l2,l1 = i (δh,pLj,s + δj,sLh,p − δh,sLj,p − δj,pLh,s)ψl,l2,l1 ,

L2ψl,l2,l1 = l(l+2)ψl,l2,l1 , C3ψl,l2,l1 = l2(l2+1)ψl,l2,l1 and C2ψl,l2,l1 = l21ψl,l2,l1 .

The coordinate operators are x1, x2, x3, x4 x± := x1 ± ix2, and they act on HΛ,4

as follows (see section 2.3.2):

x1ψl,l2,l1 =

[
cl,4D(l, l2, 3)D(l2, l1, 2)

2
ψl−1,l2−1,l1−1 +

cl,4D(l, l2, 3)B(l2, l1, 2)

2
ψl−1,l2−1,l1+1

+
cl,4B(l, l2, 3)C(l2, l1, 2)

2
ψl−1,l2+1,l1−1 +

cl,4B(l, l2, 3)A(l2, l1, 2)

2
ψl−1,l2+1,l1+1

+
cl+1,4C(l, l2, 3)D(l2, l1, 2)

2
ψl+1,l2−1,l1−1 +

cl+1,4C(l, l2, 3)B(l2, l1, 2)

2
ψl+1,l2−1,l1+1

+
cl+1,4A(l, l2, 3)C(l2, l1, 2)

2
ψl+1,l2+1,l1−1 +

cl+1,4A(l, l2, 3)A(l2, l1, 2)

2
ψl+1,l2+1,l1+1

]
,

x2ψl,l2,l1 =

[
cl,4D(l, l2, 3)D(l2, l1, 2)

2i
ψl−1,l2−1,l1−1 −

cl,4D(l, l2, 3)B(l2, l1, 2)

2i
ψl−1,l2−1,l1+1

+
cl,4B(l, l2, 3)C(l2, l1, 2)

2i
ψl−1,l2+1,l1−1 −

cl,4B(l, l2, 3)A(l2, l1, 2)

2i
ψl−1,l2+1,l1+1

+
cl+1,4C(l, l2, 3)D(l2, l1, 2)

2i
ψl+1,l2−1,l1−1 −

cl+1,4C(l, l2, 3)B(l2, l1, 2)

2i
ψl+1,l2−1,l1+1

+
cl+1,4A(l, l2, 3)C(l2, l1, 2)

2i
ψl+1,l2+1,l1−1 −

cl+1,4A(l, l2, 3)A(l2, l1, 2)

2i
ψl+1,l2+1,l1+1

]
,

x3ψl,l2,l1 = [cl,4D(l, l2, 3)G(l2, l1, 2)ψl−1,l2−1,l1 + cl,4B(l, l2, 3)F (l2, l1, 2)ψl−1,l2+1,l1

+cl+1,4C(l, l2, 3)G(l2, l1, 2)ψl+1,l2−1,l1 + cl+1,4A(l, l2, 3)F (l2, l1, 2)ψl+1,l2+1,l1 ] ,

x4ψl,l2,l1 =cl,4G(l, l2, 3)ψl−1,l2,l1 + cl+1,4F (l, l2, 3)ψl+1,l2,l1 ,

x+ψl,l2,l1 = [cl,4D(l, l2, 3)B(l2, l1, 2)ψl−1,l2−1,l1+1 + cl,4B(l, l2, 3)A(l2, l1, 2)ψl−1,l2+1,l1+1

+cl+1,4C(l, l2, 3)B(l2, l1, 2)ψl+1,l2−1,l1+1 + cl+1,4A(l, l2, 3)A(l2, l1, 2)ψl+1,l2+1,l1+1] ,

x−ψl,l2,l1 = [cl,4D(l, l2, 3)D(l2, l1, 2)ψl−1,l2−1,l1−1 + cl,4B(l, l2, 3)C(l2, l1, 2)ψl−1,l2+1,l1−1

+cl+1,4C(l, l2, 3)D(l2, l1, 2)ψl+1,l2−1,l1−1 + cl+1,4A(l, l2, 3)C(l2, l1, 2)ψl+1,l2+1,l1−1] ,

where

cl,4
(2.23)
=

{√
1 +

l2+l+ 1
4

k4
if 1 ≤ l ≤ Λ,

0 otherwise,
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and, according to (7.32),

A(l, l2, 3) =

√
(l + l2 + 2)(l + l2 + 3)

(2l + 2)(2l + 4)
,

B(l, l2, 3) = −

√
(l − l2 − 1)(l − l2)

(2l + 2)(2l)
,

C(l, l2, 3) = −

√
(l − l2 + 2)(l − l2 + 1)

(2l + 2)(2l + 4)
,

D(l, l2, 3) =

√
(l + l2 + 1)(l + l2)

(2l + 2)(2l)
,

F (l, l2, 3) =

√
(l + l2 + 2)(l − l2 + 1)

(2l + 2)(2l + 4)
,

G(l, l2, 3) =

√
(l − l2)(l + l2 + 1)

(2l + 2)(2l)
.

They fulfill (see section 2.3.3)

[xh, xj] =

[
− I

k4

+

(
1

k4

+
(cΛ,4)2

2Λ + 2

)
P̂Λ,4

]
Lh,j, [Lh,s, xj] =

1

i

(
δsjxh − δhj xs

)
,

x2 :=
4∑

h=1

xhxh =

{
1 +

4L2 + 9

4k4(Λ)
−
[(

1 +
4Λ2 + 12Λ + 9

4k4(Λ)

)
Λ + 2

2Λ + 2

]
P̂Λ,4

}
and

Λ∏
l=0

[
L2 − l(l + 2)I

]
= 0 ,

l∏
l2=0

[C3 − l2(l2 + 1)I] P̃1,l = 0,

l2∏
l1=−l2

[L1,2 − l1I] P̃2,l2 = 0, (x±)2Λ+1 = 0, and (Lν,±)2Λ+1 = 0,∀ν ≥ 3,

(3.12)

where P̃h,j is the projector on the eigenspace of C4−h corresponding to l4−h ≡ j.
According to this, the algebra of observables is generated by the coordinate

operators, in fact every projector can be written as a ordered polynomial in the
xν .

Furthermore, the SO(5)-irrep πΛ,5, the one characterized by C5 ≡ Λ(Λ + 3)I
with representation space

VΛ,5 := span {YΛ,l,l2,l1(θ4, θ3, θ2, θ1) : Λ ≥ l ≥ l2 ≥ |l1|, li ∈ Z∀i} ,
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can be used to identify ψl,l2,l1 ≡ YΛ,l,l2,l1 , and also the operators

Lh,j ≡ Lh,j for 1 ≤ h < j ≤ 4 and xs ≡ p4(λ)Ls,5p4(λ), (3.13)

where

λ :=
−2 +

√
4 + 4L2

2
=
√

1 +L2 − 1,

while p4(λ) is an analytic function and the values p4(l), when l ∈ N0, can be
obtained recursively from (2.29) starting from p4(0) := 1.

Furthermore, in order to prove the convergence of S3
Λ to ordinary quantum

mechanics on S3, it is convenient to identify ψl,l2,l1 ≡ Yl,l2,l1 and then to consider

their fuzzy counterparts Ŷl,l2,l1 [see (7.88)], which can be used to approximate
a generic f ∈ B(S3) or f ∈ C(S3); this is possible because the Yl,l2,l1 are an
orthonormal basis of L2(S3), and also homogeneous polynomials in the th := xh/r
variables. Then,

f̂Λ :=
2Λ∑
l=0

l∑
l2=0

l2∑
l1=−l2

fl,l2,l1Ŷl,l2,l1 , where fl,l2,l1 := 〈Yl,l2,l1 , f〉 ,

is an approximation of f because of the following two theorems (see section 2.5)

Theorem 3.3.1 Every projected coordinate operator xh converges strongly to the
corresponding th as Λ→∞ if

k4 (Λ) ≥ Λ
1

9
(Λ + 1)2(Λ + 2)2

(
Λ +

3

2

)2
4Λ(Λ + 2) + 3

4

Λ
1

9
(Λ + 1)2(Λ + 2)2

(
Λ +

3

2

)3(
Λ +

1

2

)
.

Theorem 3.3.2 Choosing k4 (Λ) fulfilling (2.35) for D = 4, then for all f, g ∈
B(S3) the following strong limits as Λ → ∞ hold: f̂Λ → f ·, (̂fg)Λ → fg· and

f̂ΛĝΛ → fg·.

3.4 S4
Λ

When D = 5 the choices E = E(Λ) := Λ(Λ + 3) and k5 = k5(Λ) ≥ [Λ(Λ + 3)]2

imply that the Hilbert space of admitted states HΛ,5 is generated by all the
functions

ψl,l3,l2,l1,5 = ψl,l3,l2,l1,4(r, θ1, θ2, θ3, θ4) := fl,5(r)Yl,l3,l2,l1(θ1, θ2, θ3, θ4), l ≤ Λ

hence

dimHΛ,5 =

(
Λ + 3

Λ− 1

)
2Λ + 4

Λ
=

1

12
(Λ + 1)(Λ + 2)2(Λ + 3).
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The angular momentum components are {Lh,j : 1 ≤ h < j ≤ 5}, L±,5 :=
L2,5 ∓ iL1,5 and they act as follows:

L1,2ψl,l3,l2,l1 =l1ψl,l3,l2,l1 ,

L1,3ψl,l3,l2,l1 =
1

i

[
dl2,l1,3

2
ψl,l3,l2,l1−1 −

dl2,l1+1,3

2
ψl,l3,l2,l1+1

]
,

L2,3ψl,l3,l2,l1 =
1

i

[
−dl2,l1,3

2i
ψl,l3,l2,l1−1 −

dl2,l1+1,3

2i
ψl,l3,l2,l1+1

]
,

L1,4ψl,l3,l2,l1 =
1

i

[
dl3,l2,4B(l2, l1, 2)

2
ψl,l3,l2−1,l1+1 +

dl3,l2,4D(l2, l1, 2)

2
ψl,l3,l2−1,l1−1

−dl3,l2+1,4A(l2, l1, 2)

2
ψl,l3,l2+1,l1+1 −

dl3,l2+1,4C(l2, l1, 2)

2
ψl,l3,l2+1,l1−1

]
,

L2,4ψl,l3,l2,l1 =
1

i

[
dl3,l2,4B(l2, l1, 2)

2i
ψl,l3,l2−1,l1+1 −

dl3,l2,4D(l2, l1, 2)

2i
ψl,l3,l2−1,l1−1

−dl3,l2+1,4A(l2, l1, 2)

2i
ψl,l3,l2+1,l1+1 +

dl3,l2+1,4C(l2, l1, 2)

2i
ψl,l3,l2+1,l1−1

]
,

L3,4ψl,l3,l2,l1 =
1

i
[dl3,l2,4G(l2, l1, 2)ψl,l3,l2−1,l1 − dl3,l2+1,4F (l2, l1, 2)ψl,l3,l2+1,l1 ] ,

L1,5ψl,l3,l2,l1 =
1

i

[
dl,l3,5D(l3, l2, 3)D(l2, l1, 2)

2
ψl,l3−1,l2−1,l1−1

+
dl,l3,5D(l3, l2, 3)B(l2, l1, 2)

2
ψl,l3−1,l2−1,l1+1

+
dl,l3,5B(l3, l2, 3)C(l2, l1, 2)

2
ψl,l3−1,l2+1,l1−1

+
dl,l3,5B(l3, l2, 3)A(l2, l1, 2)

2
ψl,l3−1,l2+1,l1+1

− dl,l3+1,5C(l3, l2, 3)D(l2, l1, 2)

2
ψl,l3+1,l2−1,l1−1

− dl,l3+1,5C(l3, l2, 3)B(l2, l1, 2)

2
ψl,l3+1,l2−1,l1+1

− dl,l3+1,5A(l3, l2, 3)C(l2, l1, 2)

2
ψl,l3+1,l2+1,l1−1

−dl,l3+1,5A(l3, l2, 3)A(l2, l1, 2)

2
ψl,l3+1,l2+1,l1+1

]
,
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L2,5ψl,l3,l2,l1 =
1

i

[
dl,l3,5D(l3, l2, 3)D(l2, l1, 2)

2i
ψl,l3−1,l2−1,l1−1

− dl,l3,5D(l3, l2, 3)B(l2, l1, 2)

2i
ψl,l3−1,l2−1,l1+1

+
dl,l3,5B(l3, l2, 3)C(l2, l1, 2)

2i
ψl,l3−1,l2+1,l1−1

− dl,l3,5B(l3, l2, 3)A(l2, l1, 2)

2i
ψl,l3−1,l2+1,l1+1

− dl,l3+1,5C(l3, l2, 3)D(l2, l1, 2)

2i
ψl,l3+1,l2−1,l1−1

+
dl,l3+1,5C(l3, l2, 3)B(l2, l1, 2)

2i
ψl,l3+1,l2−1,l1+1

− dl,l3+1,5A(l3, l2, 3)C(l2, l1, 2)

2i
ψl,l3+1,l2+1,l1−1

+
dl,l3+1,5A(l3, l2, 3)A(l2, l1, 2)

2i
ψl,l3+1,l2+1,l1+1

]
,

L3,5ψl,l3,l2,l1 =
1

i
[dl,l3,5D(l3, l2, 3)G(l2, l1, 2)ψl,l3−1,l2−1,l1

+ dl,l3,5B(l3, l2, 3)F (l2, l1, 2)ψl,l3−1,l2+1,l1

− dl,l3+1,5C(l3, l2, 3)G(l2, l1, 2)ψl,l3+1,l2−1,l1

−dl,l3+1,5B(l3, l2, 3)A(l2, l1, 2)ψl,l3+1,l2+1,l1 ] ,

L4,5ψl,l3l2,l1 =
1

i
[dl,l3,5G(l3, l2, 3)ψl,l3−1,l2,l1 − dl,l3+1,5F (l3, l2, 3)ψl,l3+1,l2,l1 ] ,

L+,5ψl,l3,l2,l1 =dl,l3,5D(l3, l2, 3)B(l2, l1, 2)ψl,l3−1,l2−1,l1+1

+ dl,l3,5B(l3, l2, 3)A(l2, l1, 2)ψl,l3−1,l2+1,l1+1

− dl,l3+1,5C(l3, l2, 3)B(l2, l1, 2)ψl,l3+1,l2−1,l1+1

− dl,l3+1,5A(l3, l2, 3)A(l2, l1, 2)ψl,l3+1,l2+1,l1+1,

L−,5ψl,l3,l2,l1 =− dl,l3,5D(l3, l2, 3)D(l2, l1, 2)ψl,l3−1,l2−1,l1−1

− dl,l3,5B(l3, l2, 3)C(l2, l1, 2)ψl,l3−1,l2+1,l1−1

+ dl,l3+1,5C(l3, l2, 3)D(l2, l1, 2)ψl,l3+1,l2−1,l1−1

+ dl,l3+1,5A(l3, l2, 3)C(l2, l1, 2)ψl,l3+1,l2+1,l1−1,

where dl,l3,5 =
√

(l − l3 + 1)(l + l3 + 2).
They fulfill

[Lh,j, Lp,s]ψl,l3,l2,l1 = i (δh,pLj,s + δj,sLh,p − δh,sLj,p − δj,pLh,s)ψl,l3,l2,l1 ,

L2ψl,l3,l2,l1 = l(l + 3)ψl,l3,l2,l1 , C4ψl,l3,l2,l1 = l3(l3 + 2)ψl,l3,l2,l1 ,

C3ψl,l3,l2,l1 = l2(l2 + 1)ψl,l3,l2,l1 and C2ψl,l3,l2,l1 = l21ψl,l3,l2,l1 .
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The coordinate operators are x1, x2, x3, x4, x5, x± := x1 ± ix2, and they act on
HΛ,5 as follows:

x1ψl,l3,l2,l1 =
cl,5D(l, l3, 4)D(l3, l2, 3)D(l2, l1, 2)

2
ψl−1,l3−1,l2−1,l1−1

+
cl+1,5C(l, l3, 4)D(l3, l2, 3)D(l2, l1, 2)

2
ψl+1,l3−1,l2−1,l1−1

+
cl,5B(l, l3, 4)C(l3, l2, 3)D(l2, l1, 2)

2
ψl−1,l3+1,l2−1,l1−1

+
cl+1,5A(l, l3, 4)C(l3, l2, 3)D(l2, l1, 2)

2
ψl+1,l3+1,l2−1,l1−1

+
cl,5D(l, l3, 4)B(l3, l2, 3)C(l2, l1, 2)

2
ψl−1,l3−1,l2+1,l1−1

+
cl+1,5C(l, l3, 4)B(l3, l2, 3)C(l2, l1, 2)

2
ψl+1,l3−1,l2+1,l1−1

+
cl,5B(l, l3, 4)A(l3, l2, 3)C(l2, l1, 2)

2
ψl−1,l3+1,l2+1,l1−1

+
cl+1,5A(l, l3, 4)A(l3, l2, 3)C(l2, l1, 2)

2
ψl+1,l3+1,l2+1,l1−1

+
cl,5D(l, l3, 4)D(l3, l2, 3)B(l2, l1, 2)

2
ψl−1,l3−1,l2−1,l1+1

+
cl+1,5C(l, l3, 4)D(l3, l2, 3)B(l2, l1, 2)

2
ψl+1,l3−1,l2−1,l1+1

+
cl,5B(l, l3, 4)C(l3, l2, 3)B(l2, l1, 2)

2
ψl−1,l3+1,l2−1,l1+1

+
cl+1,5A(l, l3, 4)C(l3, l2, 3)B(l2, l1, 2)

2
ψl+1,l3+1,l2−1,l1+1

+
cl,5D(l, l3, 4)B(l3, l2, 3)A(l2, l1, 2)

2
ψl−1,l3−1,l2+1,l1+1

+
cl+1,5C(l, l3, 4)B(l3, l2, 3)A(l2, l1, 2)

2
ψl+1,l3−1,l2+1,l1+1

+
cl,5B(l, l3, 4)A(l3, l2, 3)A(l2, l1, 2)

2
ψl−1,l3+1,l2+1,l1+1

+
cl+1,5A(l, l3, 4)A(l3, l2, 3)A(l2, l1, 2)

2
ψl+1,l3+1,l2+1,l1+1,

x2ψl,l3,l2,l1 =
cl,5D(l, l3, 4)D(l3, l2, 3)D(l2, l1, 2)

2i
ψl−1,l3−1,l2−1,l1−1

+
cl+1,5C(l, l3, 4)D(l3, l2, 3)D(l2, l1, 2)

2i
ψl+1,l3−1,l2−1,l1−1

+
cl,5B(l, l3, 4)C(l3, l2, 3)D(l2, l1, 2)

2i
ψl−1,l3+1,l2−1,l1−1

+
cl+1,5A(l, l3, 4)C(l3, l2, 3)D(l2, l1, 2)

2i
ψl+1,l3+1,l2−1,l1−1
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+
cl,5D(l, l3, 4)B(l3, l2, 3)C(l2, l1, 2)

2i
ψl−1,l3−1,l2+1,l1−1

+
cl+1,5C(l, l3, 4)B(l3, l2, 3)C(l2, l1, 2)

2i
ψl+1,l3−1,l2+1,l1−1

+
cl,5B(l, l3, 4)A(l3, l2, 3)C(l2, l1, 2)

2i
ψl−1,l3+1,l2+1,l1−1

+
cl+1,5A(l, l3, 4)A(l3, l2, 3)C(l2, l1, 2)

2i
ψl+1,l3+1,l2+1,l1−1

− cl,5D(l, l3, 4)D(l3, l2, 3)B(l2, l1, 2)

2i
ψl−1,l3−1,l2−1,l1+1

− cl+1,5C(l, l3, 4)D(l3, l2, 3)B(l2, l1, 2)

2i
ψl+1,l3−1,l2−1,l1+1

− cl,5B(l, l3, 4)C(l3, l2, 3)B(l2, l1, 2)

2i
ψl−1,l3+1,l2−1,l1+1

− cl+1,5A(l, l3, 4)C(l3, l2, 3)B(l2, l1, 2)

2i
ψl+1,l3+1,l2−1,l1+1

− cl,5D(l, l3, 4)B(l3, l2, 3)A(l2, l1, 2)

2i
ψl−1,l3−1,l2+1,l1+1

− cl+1,5C(l, l3, 4)B(l3, l2, 3)A(l2, l1, 2)

2i
ψl+1,l3−1,l2+1,l1+1

− cl,5B(l, l3, 4)A(l3, l2, 3)A(l2, l1, 2)

2i
ψl−1,l3+1,l2+1,l1+1

− cl+1,5A(l, l3, 4)A(l3, l2, 3)A(l2, l1, 2)

2i
ψl+1,l3+1,l2+1,l1+1,

x3ψl,l3,l2,l1 =cl,5D(l, l3, 4)D(l3, l2, 3)G(l2, l1, 2)ψl−1,l3−1,l2−1,l1

+ cl+1,5C(l, l3, 4)D(l3, l2, 3)G(l2, l1, 2)ψl+1,l3−1,l2−1,l1

+ cl,5B(l, l3, 4)C(l3, l2, 3)G(l2, l1, 2)ψl−1,l3+1,l2−1,l1

+ cl+1,5A(l, l3, 4)C(l3, l2, 3)G(l2, l1, 2)ψl+1,l3+1,l2−1,l1

+ cl,5D(l, l3, 4)B(l3, l2, 3)F (l2, l1, 2)ψl−1,l3−1,l2+1,l1

+ cl+1,5C(l, l3, 4)B(l3, l2, 3)F (l2, l1, 2)ψl+1,l3−1,l2+1,l1

+ cl,5B(l, l3, 4)A(l3, l2, 3)F (l2, l1, 2)ψl−1,l3+1,l2+1,l1

+ cl+1,5A(l, l3, 4)A(l3, l2, 3)F (l2, l1, 2)ψl+1,l3+1,l2+1,l1 ,

x4ψl,l3,l2,l1 =cl,5D(l, l3, 4)G(l3, l2, 3)ψl−1,l3−1,l2,l1 + cl,5B(l, l3, 4)F (l3, l2, 3)ψl−1,l3+1,l2,l1

+cl+1,5C(l, l3, 4)G(l3, l2, 3)ψl+1,l3−1,l2,l1 + cl+1,5A(l, l3, 4)F (l3, l2, 3)ψl+1,l3+1,l2,l1 ,

x5ψl,l3,l2,l1 =cl,5G(l, l3, 4)ψl−1,l3,l2,l1 + cl+1,5F (l, l3, 4)ψl+1,l3,l2,l1 ,
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x+ψl,l3,l2,l1 =cl,5D(l, l3, 4)D(l3, l2, 3)B(l2, l1, 2)ψl−1,l3−1,l2−1,l1+1

+ cl+1,5C(l, l3, 4)D(l3, l2, 3)B(l2, l1, 2)ψl+1,l3−1,l2−1,l1+1

+ cl,5B(l, l3, 4)C(l3, l2, 3)B(l2, l1, 2)ψl−1,l3+1,l2−1,l1+1

+ cl+1,5A(l, l3, 4)C(l3, l2, 3)B(l2, l1, 2)ψl+1,l3+1,l2−1,l1+1

+ cl,5D(l, l3, 4)B(l3, l2, 3)A(l2, l1, 2)ψl−1,l3−1,l2+1,l1+1

+ cl+1,5C(l, l3, 4)B(l3, l2, 3)A(l2, l1, 2)ψl+1,l3−1,l2+1,l1+1

+ cl,5B(l, l3, 4)A(l3, l2, 3)A(l2, l1, 2)ψl−1,l3+1,l2+1,l1+1

+ cl+1,5A(l, l3, 4)A(l3, l2, 3)A(l2, l1, 2)ψl+1,l3+1,l2+1,l1+1,

x−ψl,l3,l2,l1 =cl,5D(l, l3, 4)D(l3, l2, 3)D(l2, l1, 2)ψl−1,l3−1,l2−1,l1−1

+ cl+1,5C(l, l3, 4)D(l3, l2, 3)D(l2, l1, 2)ψl+1,l3−1,l2−1,l1−1

+ cl,5B(l, l3, 4)C(l3, l2, 3)D(l2, l1, 2)ψl−1,l3+1,l2−1,l1−1

+ cl+1,5A(l, l3, 4)C(l3, l2, 3)D(l2, l1, 2)ψl+1,l3+1,l2−1,l1−1

+ cl,5D(l, l3, 4)B(l3, l2, 3)C(l2, l1, 2)ψl−1,l3−1,l2+1,l1−1

+ cl+1,5C(l, l3, 4)B(l3, l2, 3)C(l2, l1, 2)ψl+1,l3−1,l2+1,l1−1

+ cl,5B(l, l3, 4)A(l3, l2, 3)C(l2, l1, 2)ψl−1,l3+1,l2+1,l1−1

+ cl+1,5A(l, l3, 4)A(l3, l2, 3)C(l2, l1, 2)ψl+1,l3+1,l2+1,l1−1,

where

cl,5
(2.23)
=

{√
1 + l2+2l+1

k5
if 1 ≤ l ≤ Λ,

0 otherwise,

and, according to (7.32),

A(l, l3, 4) =

√
(l + l3 + 3)(l + l3 + 4)

(2l + 3)(2l + 5)
,

B(l, l3, 4) = −

√
(l − l3 − 1)(l − l3)

(2l + 3)(2l + 1)
,

C(l, l3, 4) = −

√
(l − l3 + 2)(l − l3 + 1)

(2l + 3)(2l + 5)
,

D(l, l3, 4) =

√
(l + l3 + 2)(l + l3 + 1)

(2l + 3)(2l + 1)
,

F (l, l3, 4) =

√
(l + l3 + 3)(l − l3 + 1)

(2l + 3)(2l + 5)
,

G(l, l3, 4) =

√
(l − l3)(l + l3 + 2)

(2l + 3)(2l + 1)
.
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They fulfill (see section 2.3.3)

[xh, xj] =

[
− I

k5

+

(
1

k5

+
(cΛ,5)2

2Λ + 3

)
P̂Λ,5

]
Lh,j, [Lh,s, xj] =

1

i

(
δsjxh − δhj xs

)
,

x2 :=
5∑

h=1

xhxh =

{
1 +

2L2 + 8

4k5(Λ)
−
[(

1 +
2Λ2 + 8Λ + 8

4k5(Λ)

)
Λ + 3

2Λ + 3

]
P̂Λ,4

}
and

Λ∏
l=0

[
L2 − l(l + 2)I

]
= 0 ,

l∏
l2=0

[C3 − l2(l2 + 1)I] P̃1,l = 0,

l2∏
l1=−l2

[L1,2 − l1I] P̃2,l2 = 0, (x±)2Λ+1 = 0, and (Lν,±)2Λ+1 = 0,∀ν ≥ 3,

(3.14)

where P̃h,j is the projector on the eigenspace of C5−h corresponding to l5−h ≡ j.
According to this, the algebra of observables is generated by the coordinate

operators, in fact every projector can be written as a ordered polynomial in the
xν .

Furthermore, the SO(6)-irrep πΛ,6, the one characterized by C6 ≡ Λ(Λ + 4)I
with representation space

VΛ,6 := span {YΛ,l,l3,l2,l1(θ5, θ4, θ3, θ2, θ1) : Λ ≥ l ≥ l3 ≥ l2 ≥ |l1|, li ∈ Z∀i} ,

can be used to identify ψl,l3,l2,l1 ≡ YΛ,l,l3,l2,l1 , and also the operators

Lh,j ≡ Lh,j for 1 ≤ h < j ≤ 5 and xs ≡ p5(λ)Ls,6p5(λ), (3.15)

where

λ :=
−3 +

√
9 + 4L2

2
,

while p5(λ) is an analytic function and the values p5(l), when l ∈ N0, can be
obtained recursively from (2.29) starting from p5(0) := 1.

Furthermore, in order to prove the convergence of S4
Λ to ordinary quantum

mechanics on S4, it is convenient to identify ψl,l3,l2,l1 ≡ Yl,l3,l2,l1 and then to

consider their fuzzy counterparts Ŷl,l3,l2,l1 , which can be used to approximate
a generic f ∈ B(S4) or f ∈ C(S4); this is possible because the Yl,l3,l2,l1 are an
orthonormal basis of L2(S4), and also homogeneous polynomials in the th := xh/r
variables. Then,

f̂Λ :=
2Λ∑
l=0

l∑
l3=0

l3∑
l2=0

l2∑
l1=−l2

fl,l3,l2,l1Ŷl,l3,l2,l1 , where fl,l3,l2,l1 := 〈Yl,l3,l2,l1 , f〉 ,

is an approximation of f because of the following two theorems (see section 2.5)
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Theorem 3.4.1 Every projected coordinate operator xh converges strongly to the
corresponding th as Λ→∞ if

k5 (Λ) ≥ Λ
1

144
(Λ+1)2(Λ+2)4(Λ+3)2 4Λ(Λ + 3) + 8

4
=

1

144
(Λ+1)3(Λ+2)5(Λ+3)2.

Theorem 3.4.2 Choosing k5 (Λ) fulfilling (2.35) for D = 5, then for all f, g ∈
B(S4) and C(S4) the following strong limits as Λ→∞ hold: f̂Λ → f ·, (̂fg)Λ →
fg· and f̂ΛĝΛ → fg·.



Chapter 4

The xi-eigenvalue problem

4.1 Diagonalization of Toeplitz tridiagonal ma-

trices

A real Toeplitz tri-diagonal matrix is a n× n matrix

Pn (a, b, c) :=



a b 0 0 0 0 0 0
c a b 0 0 0 0 0
0 c a b 0 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · a b 0
0 0 0 0 · · · c a b
0 0 0 0 · · · 0 c a


where a, b, c ∈ R. (4.1)

Its eigenvalues are (see e.g. [44] p. 2-3)

λh = a+ 2
√
bc cos

(
hπ

n+ 1

)
, h = 1, · · · , n (4.2)

and the corresponding eigenvectors χh are columns with the following components

χh,kD =
(c
b

) kD
2

sin

(
hkπ

n+ 1

)
, h, kD = 1, 2, · · · , n, (4.3)

up to normalization. In the symmetric case (b = c) all eigenvalues are real and
the highest one is clearly λ1; the norm of χ1 is easily computed:

∥∥χ1
∥∥

2
=

n∑
kD=1

sin2

(
kDπ

n+ 1

)
=
n+ 1

2
. (4.4)

79
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4.2 Spectrum of xi in the O(2)-equivariant fuzzy

circle

In this subsection the spectrum of x1 is studied. This is not a restriction because
the algebraic relations (3.1-3.3) are covariant under O(2) transformations x 7→
x′ = Rx, L is covariant under 2-dimensional rotations, L → −L under x1-
inversion and the same applies under x2-inversion; this implies that the spectra
Σxi (Λ) of all coordinate operators xi are equal, and for this reason it is reasonable
to focus the attention only to x1. The spectrum Σx1 for Λ = 1, 2 is presented in
formulae (8.2-8.3) of the appendix.

More generally, on the basis B of HΛ the operator x1 is represented by the
(2Λ+1)× (2Λ+1) symmetric tri-diagonal matrix [cf. (4.1)]

XΛ =
1

2



0 bΛ 0 0 0 0 0 0
bΛ 0 bΛ−1 0 0 0 0 0
0 bΛ−1 0 bΛ−2 0 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · b2−Λ 0 b1−Λ

0 0 0 0 · · · 0 b1−Λ 0


= XΛ

0 +O

(
1

Λ2

)
,

where XΛ
0 := 1

2
P (0, 1, 1), and it is obvious that all the eigenvalues of XΛ are real.

Let ΣΛ
0 := {α̃h(Λ)}2Λ+1

h=1 be the set of the eigenvalues of XΛ
0 arranged in de-

scending order; according to (4.2) one has

α̃h(Λ) = cos

(
hπ

2Λ + 2

)
, h = 1, 2, · · · , 2Λ + 1. (4.5)

It is easy to see that α ∈ ΣΛ
0 ⇒ −α ∈ ΣΛ

0 , all the eigenvalues of ΣΛ
0 are simple,

α̃1(Λ + 1) > α̃1(Λ) and ΣΛ
0 becomes uniformly dense in [−1, 1] as Λ→∞.

In section 8.2 it is shown that the same holds true also for the spectrum ΣΛ

of xΛ, in particular one has

Theorem 4.2.1 (A) If α is an eigenvalue of XΛ, then also −α is.

(B) For all Λ, all eigenvalues of XΛ are simple; they are denoted as α1(Λ), α2(Λ),
..., α2Λ+1(Λ), in decreasing order.

(C) Let kD(Λ) ≥ Λ(Λ− 1)(2Λ + 3)2(2Λ + 4)4/4π4, then

α1 (Λ + 1) > α1 (Λ) ∀Λ ∈ N. (4.6)

(D) ΣΛ becomes uniformly dense in [−1, 1] as Λ→∞, in particular

lim
Λ→+∞

α1 (Λ) = 1 and α1 (Λ) ≥ 1− π2

8(Λ + 1)2
∀Λ ∈ N. (4.7)
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Let χ :=
∑Λ

n=−Λ χnψn, the eigenvalue equation x1χ = αχ amounts to

bΛ

2
χ±(Λ−1) = αχ±Λ,

bnχn−1 + bn+1χn+1

2
= αχn if |n| < Λ; (4.8)

on the other hand, bn → 1 in the commutative limit and in section 8.2.4 it is
shown that αh (Λ) ' cos

(
hπ

2Λ+2

)
in the limit Λ→ +∞, so (4.3) and (4.4) imply

x1χh (Λ) = αh (Λ)χh (Λ) =⇒ χh,n (Λ) '
√

2

2Λ + 2
sin

(
hnπ

2Λ + 2

)
.

4.3 Spectrum of xi in the O(3)-equivariant fuzzy

sphere

The spectrum of x0 is studied in the following lines, this is not a restriction
since the covariance of the algebra under O(3) transformations x 7→ x′ = Rx,
L 7→ L′ = RL implies that the spectra Σxi (Λ) of all coordinate operators xi of
the new fuzzy space are equal; on the other hand, because of [x0, L0] = 0, it is
possible to simultaneously diagonalize x0 and L0.

Eq. (3.6)1 and {
L0χ

β
α = βχβα

x0χ
β
α = αχβα

, (4.9)

implies

β = m ∈ {−Λ,−Λ + 1, · · · ,Λ− 1,Λ} and χmα =
Λ∑

l=|m|

χmα,lψ
m
l ; (4.10)

so x0χ
m
α = αχmα can be re-written as

χmα,|m|+1c|m|+1G(|m|+ 1,m, 2) = αχmα,|m|

χmα,|m|c|m|+1F (|m|,m, 2) + χmα,|m|+2c|m|+2G(|m|+ 2,m, 2) = αχmα,|m|+1

χmα,|m|+1c|m|+2F (|m|+ 1,m, 2) + χmα,|m|+3c|m|+3G(|m|+ 3,m, 2) = αχmα,|m|+2

...
...

...
...

...
...

...
...

χmα,Λ−2cΛ−1,3F (Λ− 2,m, 2) + χmα,ΛcΛ,3G(Λ,m, 2) = αχmα,Λ−1

cΛ,3F (Λ− 1,m, 2)χmα,Λ−1 = αχmα,Λ
(4.11)

which in turn can be rewritten in the matrix form Bm(Λ)χ = αχ, where χ =(
χmα,|m|, χ

m
α,|m|+1, . . . , χ

m
α,Λ

)T
and Bm(Λ) is the following n(Λ;m) × n(Λ;m) sym-
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metric tridiagonal matrix

Bm(Λ) =



0 c|m|+1G(|m|+ 1,m, 2)
... 0

c|m|+1G(|m|+ 1,m, 2) 0
... 0

0 c|m|+2G(|m|+ 2,m, 2)
... 0

...
...

...
...

0 0
... cΛ,3G(Λ,m, 2)

0 0
... 0


,

or equivalently Mm(Λ;α)χ = 0, where 0 here is the null vector, with

n = n(Λ;m) := Λ− |m|+ 1, Mm(Λ;α) := Bm(Λ)− αIn(Λ;m).

It is well known that the problem of determining analytically the eigenvalues of a
square matrix of large rank is absolutely not trivial, but the Bm(Λ) have several
good properties (for example they are symmetric and tri-diagonal) which will
help in studying their spectra. First of all,

Remark 1 All the eigenvalues of Bm (Λ) are real, and Bm (Λ) ≡ B−m (Λ) implies
that it is reasonable to focus the attention to the cases β = m ∈ {0, 1, · · · ,Λ}.

As for the fuzzy circle,

Theorem 4.3.1 (A) If α is an eigenvalue of Bm (Λ), then also −α is.

(B) For all Λ,m, all eigenvalues of Bm (Λ) are simple; they are denoted with
α1(Λ;m), α2(Λ;m), ..., αn(Λ;m)(Λ;m), in decreasing order.

(C) Let α1 (Λ;m) be the highest eigenvalue of Bm (Λ), then

α1 (Λ; 0) > α1 (Λ; 1) > · · · > α1 (Λ; Λ) , (4.12)

and

α1 (Λ + 1; 0) > α1 (Λ; 0) definitively, if kD(Λ) ≥ Λ6. (4.13)

(D) ΣB0(Λ) becomes uniformly dense in [−1, 1] as Λ→∞, in particular

lim
Λ→+∞

α1 (Λ; 0) = 1 and α1 (Λ; 0) ≥ 1− π2

2(Λ + 2)2
∀Λ ≥ 2. (4.14)

Item (C) of last theorem allows also to make a connection between these new
localized states and the classical ones because the α1 (Λ; 0)-eigenstate approxi-
mates a quantum particle on S2 concentrated (because of the above equivalence
between the α1 (Λ; 0)-eigenstate and the most localized state of the new fuzzy
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space (see chapter 5) on the North pole and rotating around the x3-axis; on the
other hand, taking a classical particle forced to stay on S2 and in the position
(0, 0, 1) then it must be

L3 = (L)3 =
(
r × p

)
3

= 0,

as for this new case.
Note that, the spectrum ΣB0(Λ) contains exactly Λ + 1 eigenvalues and the

highest one fulfills (4.12), for this reason the attention is focused only on that
matrix.

It is important to point out that the proof of item (D) can be trivially re-
arranged in order to prove that it holds for ΣBm(Λ) and α1 (Λ;m) also if m > 0 is
any other fixed integer.

Let m ∈ N0 and assume that χmα :=
∑Λ

l=m χ
m
α,lψ

m
l is a common eigenstate of

x0 and L0; let {α̃h (Λ;m)}Λ−m+1
h=1 be the set of the eigenvalues of PΛ−m+1

(
0, 1

2
, 1

2

)
arranged in descending order; according to (4.2) one has

α̃h(Λ,m) = cos

(
hπ

Λ−m+ 2

)
, h = 1, 2, · · · ,Λ−m+ 1.

One can prove (as for section 8.2.4) that αh (Λ;m) ' cos
(

hπ
Λ−m+2

)
in the limit

Λ → +∞, although in this case cl,3G(l,m, 2) 9 1
2
. On the other hand, when

|m| � l, it is possible to approximate well cl,3G(l,m, 2) ' 1
2

in the commutative
limit, for this reason it is expected that

χmαh(Λ;m),l '
√

2

Λ−m+ 2
sin

(
hlπ

Λ−m+ 2

)
,

as for the D = 2 case.

4.4 Spectrum of xi in the O(D)-equivariant fuzzy

hypersphere when D > 3

In this section (which is based on an unpublished article) we do the analysis of
the spectrum of xD, this is not a restriction since the covariance of the algebra
under O(D) transformations x 7→ x′ = Rx, L 7→ L′ = RL implies that the
spectra Σxi (Λ) of all coordinate operators xi of the new fuzzy space are equal;
on the other hand, because of

[xD, L1,2] = [xD, C3] = · · · = [xD, Cd] = 0,

it is possible to simultaneously diagonalize xD and L1,2, · · · , Cd.
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Eq. (2.13) and 

xDχα = α1χα

L1,2χα = α2χα

C3χα = α3χα

· · ·
Cdχα = αdχα

, (4.15)

imply

αd = ld−1 ∈ {0, 1, · · · ,Λ− 1,Λ}
· · ·

α3 = l2 ∈ {0, 1, · · · , l3 − 1, l3}
α2 = l1 ∈ {−l2,−l2 + 1, · · · , l2 − 1, l2}

and χα,dl =
Λ∑

l=ld−1

χα,l,dlψl,dl
;

(4.16)

so xDχα,dl = αχα,dl can be re-written as

χα,ld−1+1,dlcld−1+1,DG(ld−1 + 1, ld−1, d) = αχα,ld−1,dl

χα,ld−1,dlcld−1+1,DF (ld−1, ld−1, d) + χα,ld−1+2,dlcld−1+2,DG(ld−1 + 2, ld−1, d) = αχα,ld−1+1,dl

χα,ld−1+1,dlcld−1+2,DF (ld−1 + 1, ld−1, d) + χα,ld−1+3,dlcld−1+3,DG(ld−1 + 3, ld−1, d) = αχα,ld−1+2,dl

...
...

...
...

...
...

...
...

χα,Λ−2,dlcΛ−1,DF (Λ− 2, ld−1, d) + χα,Λ,dlcΛ,DG(Λ, ld−1, d) = αχα,Λ−1,dl

cΛ,DF (Λ− 1, ld−1, d)χα,Λ−1,dl = αχα,Λ,dl
(4.17)

which in turn can be rewritten in the matrix form Θld−1
(Λ)χ = αχ, where

χ =
(
χα,ld−1,dl, χα,ld−1+1,dl, . . . , χα,Λ,dl

)T
and Θld−1

(Λ) is the following N(Λ; ld−1)×
N(Λ; ld−1) symmetric tridiagonal matrix

Θld−1
(Λ) =



0 vld−1+1,ld−1,D 0 0
vld−1+1,ld−1,D 0 vld−1+2,ld−1,D 0

0 vld−1+2,ld−1,D 0 0
...

...
...

...
0 0 0 vΛ,ld−1,D

0 0 vΛ,ld−1,D 0


,

or equivalently Ξld−1
(Λ;α)χ = 0, where 0 here is the null vector, with

n = n(Λ; ld−1) := Λ− ld−1 + 1, Ξld−1
(Λ;α) := Θld−1

(Λ)− αIn(Λ;ld−1),

and vl,ld−1,D := cl,DG(l, ld−1, d).
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It is well known that the problem of determining analytically the eigenvalues of
a square matrix of large rank is absolutely not trivial, but the Bld−1

(Λ) have
several good properties (for example they are symmetric and tri-diagonal) which
will help in studying their spectra. First of all,

Remark 2 All the eigenvalues of Bld−1
(Λ) are real.

Then, as for the dimensions D = 2, 3, one has

Theorem 4.4.1 (A) If α is an eigenvalue of Bld−1
(Λ), then also −α is.

(B) For all Λ, ld−1, all eigenvalues of Bld−1
(Λ) are simple; they are denoted with

α1(Λ; ld−1), α2(Λ; ld−1), ..., αn(Λ;ld−1)(Λ; ld−1), in decreasing order.

(C) Let α1 (Λ;m) be the highest eigenvalue of Bm (Λ), then

α1 (Λ; 0) > α1 (Λ; 1) > · · · > α1 (Λ; Λ) . (4.18)

(D) ΣB0(Λ) becomes uniformly dense in [−1, 1] as Λ→∞, in particular

lim
Λ→+∞

α1 (Λ; 0) = 1. (4.19)



Chapter 5

Coherent states

5.1 Preliminaries

5.1.1 Basics about Coherent States

Coherent states (CS) were originally introduced in quantum mechanics on R3

as states [21, 22, 23] saturating the Heisenberg uncertainty relations (HUR)
∆xi∆pi ≥ ~/2 and mapped into each other by the Heisenberg-Weyl group; they
make up an overcomplete set yielding a nice resolution of the identity. The lat-
ter properties are usually taken as minimal requirements [27] for defining CS in
general: a set of CS {φl}l∈Ω is a particular set of vectors of a Hilbert space H,
where l is an element of an appropriate (topological) label space Ω, such that the
following properties hold:

1. Continuity: the vector φl is a strongly continuous function of the label l.

2. Resolution of the identity: there exists on Ω an integration measure
such that

I =

∫
Ω

Pl dl, Pl := φl〈φl, ·〉 ≡ |φl〉〈φl|; (5.1)

3. or, at least, Completeness: Span {φl : l ∈ Ω} = H;

the first two properties characterize a strong SCS, while the first and third a weak
SCS.

A. M. Perelomov and R. Gilmore develop [24, 45] the concept of CS when Ω is a
Lie group G acting on a Hilbert space H via an unitary irreducible representation
T (see e.g. Perelomov’s book [31]). Actually, most arguments hold also if the
group G is not Lie. Fixed φ0 ∈ H Perelomov defines φg := T (g)φ0 and the
coherent-state system {T,φ0} as

{T,φ0} := {φg := T (g)φ0 | g ∈ G}. (5.2)

86
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Clearly {T,φ0} = {T,φg} for all g ∈ G. The maximal subgroup H of G formed
by elements h fulfilling

φh = exp [iα(h)]φ0,

with some function α : H → R, is called the isotropy subgroup for φ0. Clearly,
g′ = gh implies

φg′ = T (g)T (h)φ0 = T (g) exp [iα(h)]φ0 = exp [iα(h)]φg,

i.e. φg′ ,φg belong to the same ray. Therefore equivalence classes x(g) := {g′ =
gh | h ∈ H}, i.e. elements of the coset space X := G/H, are in one-to-one
correspondence with coherent rays, or equivalently with coherent 1-dimensional
projections (states): hence one shall denote Pg := φg〈φg, ·〉 = Pg′ also as Px. A
left-invariant measure dµ(g) on G induces an invariant measure dx on X. T is
said square-integrable if IT ≡

∫
X
|〈φ0, T [g(x)]φ0〉|2 dx <∞ (this is automatically

true if G, or at least X, is compact, because then the volume of X is finite);
here g(x) is any (smooth) map from X to G such that g(x) ∈ x [the result does
not depend on the representative element in x because it is invariant under the
replacement g 7→ gh; g(x) can be seen as a section of a U(1)-fiber bundle on X].
If T is square-integrable then the integral defining the operator B :=

∫
X
Px dx

is automatically convergent. From the identities T (g′)PxT (g′−1) = Px′ (with
x′ := g′x) and the invariance of dx it follows that T (g′)B T (g′−1) = B, and
therefore B is central; then by Schur lemma there is b ∈ R+ such that B = bI.
One can determine b taking the mean value of both sides on φ0; one easily finds
b〈φ0, φ0〉 = IT . In general the set {φg(x)}x∈X is overcomplete (this is certainly
the case if X is a continuum); one can extract a basis out of it in many different
ways. Introducing the normalized integration measure dν(x) := dx/b one finds
the first resolution of the identity in

I =

∫
X

Px dν(x), I =

∫
G

Pg dµ
′(g); (5.3)

the second holds if H has a finite volume h, with dµ′(g) := dµ(g)/bh, so {T,φ0}
is a strong SCS. In particular, Perelomov applies (chpt. 4 in [31]) these notions
to the irreducible representation (πl, Vl) of G = SU(2) selecting a vector φ0 that
minimizes the square dispersion (∆L)2. As explained in the introduction, one
possible such φ0 is the highest weight vector |l, l〉 ∈ Vl, i.e. the eigenvector of
L3 with the highest eigenvalue l (L3|l,m〉 = m|l,m〉 with |m| ≤ l, in standard
ket notation), whereby 〈L1〉 = 〈L2〉 = 0, (∆L)2 = (∆L)2

min = l. Therefore these
CS coincide with the socalled coherent spin [46] or Bloch states. By the SU(2)
invariance of (∆L)2, all elements φg ∈ {πl,φ0 = |l, l〉} - including |l,−l〉 ∼
T (eiπL1)|l, l〉 - have the same minimal dispersion. As the isotropy subgroup H is
that SO(2) of rotations eiϕL3 around the ~z-axis, the states associated with this
system are in one-to-one correspondence with the points of SO(3)/SO(2) = S2.
The latter sphere can be considered as the phase manifold for spin (angular
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momentum); these coherent states are the closest to the classical ones on such a
sphere. Applying the rescaling (2) one immediately finds that also in the Madore
FS the space uncertainty is minimal on the |φg〉’s and equal to (13).

Out of the φg’s only the vectors proportional to |l,±l〉 saturate (i.e. satisfy
as equalities) for all i, j the uncertainty relations ∆Li ∆Lj ≥ |εijk〈Lk〉|/2, which
follow from the commutation relation [Li, Lj] = iεijkLk (on them one has in addi-

tion 〈L1〉 = 〈L2〉 = 0 = ∆L3, |〈L3〉| = l, ∆L1 = ∆L2 =
√
l/2). Incidentally, the

authors in Ref. [47] consider also two alternative definitions of sets of optimally
localized states: the set of ‘intelligent states’, that saturate the uncertainty rela-
tion ∆L1 ∆L2 ≥ |〈L3〉|/2, and the set of ‘minimum uncertainty states’, for which
∆L1 ∆L2 has a local minimum (note that then in general ∆L1 ∆L3, ∆L2 ∆L3 are
not minimized). But neither one is invariant under arbitrary rotation, in contrast
with the definition of Perelomov and of the present thesis; one can easily show
(see e.g. [22] pp. 27-28) that these states are ‘fewer’ than the points of S2, i.e
cannot be put in one-to-one correspondence with the points of S2, but just of a
finite number of lines on S2.

5.1.2 Uncertainty relations and coherent states on com-
mutative S1

Let x1, x2 be Cartesian coordinates on R2, ∂i ≡ ∂/∂xi, L = −i(x1∂2 − x2∂1) be
the angular momentum operator up to ~ . From [L, x1] = ix2, [L, x2] = −ix1 one
derives in the standard way the uncertainty relations (UR)

(∆L)2(∆x1)2 ≥ 1

4
〈x2〉2, (∆L)2(∆x2)2 ≥ 1

4
〈x1〉2, (∆L)2(∆x)2 ≥ 1

4
〈x〉2;(5.4)

the third inequality is obtained summing the first two. These commutation rela-
tions and UR hold not only for the operators on H = L2(R2), but also for those
on H = L2(S1). In the latter case the xi fulfill the constraint x2 ≡ x2

1 + x2
2 = 1,

or equivalently x+x− = 1, where x± := x1± ix2, whence (x+)−n = (x−)n, and the
third inequality represents a lower bound for the dispersion ∆L |∆x| in phase
space; L is the momentum along the circle. The inequalities (5.4) are therefore
the analog [48] on the circle of the Heisenberg UR (it is important to underline
that adopting the azimuthal angle ϕ as the observable canonically conjugate to
L, [ϕ,L] = i, would be inconsistent). The orthonormal basis B := {ψn}n∈Z of
L2(S1),

√
2πψn := einϕ = (x+)n consists of eigenvectors of L, Lψn = nψn, while

x± acta as ladder operators: x±ψn = ψn±1. These relations characterize the
basic1 unitary irreducible representation T of the ∗-algebra A of observables gen-
erated by L, x± fulfilling [L, x±] = ±x±, x+x− = x−x+ = 1, L† = L, x†+ = x−.
The ψn saturate the inequalities (5.4), because on them (∆L)2 = 〈x1〉 = 〈x2〉 = 0,

1The inequivalent unitary irreducible representation of A are parametrized by α ∈ [0, 2π[,
entering Lψn = (n+ α)ψn.
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while (∆xi)
2 = 1/2; in appendix 9.3 it is shown that in fact these are the only

states saturating (5.4). The decomposition of the identity associated to B (first
equality)

I =
∑
n

Pn =

∫
G/H

Px dµ(x), Pn = ψn〈ψn, ·〉 (5.5)

thus involves all and only the states saturating (5.4), i.e. is of the type (5.1) with
labels n ∈ Ω ≡ Z; the second equality is explained once noted that H = L2(S1)
carries a unitary irreducible representation of the group

G := {(x+)nei(aL+b) | (a, b, n) ∈ R2 × Z} ' U(1)× U(1)×Z (5.6)

(consisting of ∗-automorphisms of the algebra of observables) with product rule

(x+)nei(aL+b) (x+)n
′
ei(a

′L+b′) = (x+)n+n′ei[(a+a′)L+(b+b′+an′)];

eiaLψ(ϕ) = ψ(ϕ + a), i.e. eiaL is the translation operator along the circle (it
rotates ϕ by an angle a), while x±ψm = ψm±1, i.e. x± act as discretized boost
operators in the (anti)clockwise direction. G acts transitively on the set of states
saturating the HUR (5.4), i.e. the eigenvectors of L. H = {ei(aL+b)} ' [U(1)]2 is
the isotropy subgroup of ψ0 (and of all other ψn), and G/H = {(x+)n |n ∈ Z},
hence integrating over G/H amounts to summing over n ∈ Z. In this broader
sense {T,ψ0} is a strong SCS.

5.1.3 Uncertainty relations and coherent states on com-
mutative S2

From the commutation relation [Li, Lj] = iεijkLk (for all i, j), valid on L2(R3)
and L2(S2), one derives in the standard way the UR

∆L1 ∆L2 ≥
1

2
|〈L3〉|, ∆L2 ∆L3 ≥

1

2
|〈L1〉|, ∆L3 ∆L1 ≥

1

2
|〈L2〉|. (5.7)

As already said, the set of coherent spin states within H = Vl is the subset of
states minimizing (∆L)2. Among them only |l, l〉, |l,−l〉 saturate (5.7). Is there
some UR which is saturated by all coherent spin states? In appendix 9.1 it is
shown not only that the answer is affirmative, but that such a UR is actually
l-independent and valid on all of L2(S2):

Theorem 5.1.1 The following uncertainty relation holds on L2(S2) =
⊕∞

l=0 Vl

(∆L)2 ≥ |〈L〉| ⇔ 〈L2〉 ≥ |〈L〉| (|〈L〉|+ 1) , (5.8)

and is saturated by the spin coherent states φl,g = πl(g)|l, l〉 ∈ Vl ⊂ L2(S2),
g∈SO(3), l ∈ N0.
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Remarks:

1. The theorem seems to be new, albeit the proof is very simple. One cannot
obtain inequality (5.19) directly from (5.7) or the Robertson inqualities2.

2. Summing Perelomov’s resolutions of the identities for all Vl, the result is
the resolution of the identity for L2(S2)

I =
∞∑
l=0

Cl

∫
SO(3)

dµ(g)Pl,g, Pl,g = φl,g〈φl,g, ·〉, Cl =
2l+1

8π2
, φl,g := T (g)Y l

l ;

(5.9)
this holds also integrating over S2 [instead of SO(3)] and replacing Cl 7→
2πCl.

From the commutation relation [Li, xj] = iεijkxk (for all i, j), valid on L2(R3),
and L2(S2), one derives in the standard way the UR

∆L1 ∆x2 ≥
1

2
|〈x3〉|, ∆L1 ∆x3 ≥

1

2
|〈x2〉|,

∆L2 ∆x1 ≥
1

2
|〈x3〉|, ∆L2 ∆x3 ≥

1

2
|〈x1〉|, (5.10)

∆L3 ∆x1 ≥
1

2
|〈x2〉|, ∆L3 ∆x2 ≥

1

2
|〈x1〉|.

Relations (5.10) are analogs of the Heisenberg UR (HUR), as the Li are the
‘momentum’ components along the sphere. Alternative ones can be found e.g. in
[49]. In the literature it is not easy to find works investigating whether they can
be saturated.

5.2 Coherent and localized states on the fuzzy

circle S1
Λ

5.2.1 O(2)-invariant UR and CS systems on S1
Λ

First of all, since relations (3.3)-(3.1) are as in the commutative case, the ‘Heisen-
berg’ UR (5.4) hold, the eigenvectors ψn of L make up again a set of states
saturating (5.4), because on them (∆L)2 = 〈x1〉 = 〈x2〉 = 0, while

(∆xi)
2 =


1
2

(
1 + n2

kD

)
,

1
4

[
1 + Λ(Λ−1)

kD

]
,

(∆x)2 =

1 + n2

kD
if |n| < Λ,

1
2

[
1 + Λ(Λ−1)

kD

]
if |n| = Λ.

2Using (5.7) one can obtain the weaker inequality (∆L)2 ≥ |〈L〉|
√

3/4: (5.7) implies the
inequalities 2∆L2

1 ∆L2
2 ≥ 〈L3〉2/2, (∆L4

1 + ∆L4
2)/2 ≥ 〈L3〉2/4 and the ones obtained permuting

1, 2, 3 cyclically; summing all of them, one has (∆L)4 ≥ 〈L〉2|3/4.
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The first resolution of the identity in (5.5) still holds,

I =
∑
n

Pn =

∫
G/H

Px dµ(x), Pn = ψn〈ψn, ·〉, (5.11)

provided n runs over Ω ≡ {−Λ, 1−Λ, ...,Λ} instead of Z. For the second one to be
valid one should replace Z by Z2Λ+1 in the definition (5.6) of G, more precisely
replace (x+)n by un, where the unitary operator u is defined by uψΛ = ψ−Λ,
uψn = ψn+1 otherwise. Such a G is a subgroup of the group of ∗-automorphisms
of AΛ. In appendix 9.3 it is shown that in HΛ again only the ψn saturate all
of the inequalities of (5.4). Nevertheless, there is a whole family (parametrized
by µ ∈ R) of complete sets of states saturating (5.4)1 alone. These states are
eigenvectors of aµ1 := L−iµx1 (They are explicitly determined for Λ = 1), and the
family interpolates between the set of eigenvectors of L and the set of eigenvectors
of x1.

In the commutative case the spacial uncertainties ∆x1,∆x2 can be simulta-
neously as small as one wishes. In the fuzzy case even the Robertson UR

4 (∆x1)2 (∆x2)2 ≥ 〈L′〉2+〈x1x2+x2x1〉2, L′ := −L
k D

+

[
1+

Λ(Λ+1)

k D

]
P̃Λ−P̃−Λ

2
,

which follow from (3.1)1 and is slightly stronger than the Schrödinger UR, is
not particularly stringent, in that the right-hand side vanishes on a large class
of states3, hence does not exclude that either ∆x1 or ∆x2 vanish. However, the
latter cannot vanish simultaneously, because (∆x)2 is bounded from below (see
section 5.2.2).

In the following lines (5.2) is applied adopting T =πΛ and as a G not SO(3)
(the largest Λ-independent subgroup of the group of ∗-automorphism of AΛ), but
its subgroup G = SO(2); hence HΛ carries a reducible representation of G, so
that completeness and resolution of the identity are not automatic. Consider a
generic unit vector ω =

∑Λ
m=−Λ ωmψm and let

ωα := eiαLω =
Λ∑

m=−Λ

eiαmωmψm, Pα := ωα〈ωα, ·〉,

(ω0 ≡ ω). The system A := {ωα}α∈[0,2π[ is complete provided ωm 6= 0 for all m

(then it is also overcomplete). Defining B :=
∫ 2π

0
dαPα one finds

Bψn = ωn

∫ 2π

0

ωαe
−iαn dα = ωn

Λ∑
m=−Λ

ωmψm

∫ 2π

0

eiα(m−n) dα = 2π|ωn|2ψn,

3In fact, on the generic vector χ =
∑Λ

m=−Λ χmψm one finds 〈L′〉χ =
∑Λ−1

m=1[|χ−m|2−
|χm|2]m/kD + [|χΛ|2−|χ−Λ|2][1/2+Λ(Λ−1)/2kD], which vanishes e.g. if |χ−m|= |χm| for all
m, and 〈x1x2 + x2x1〉 = 〈x2

+ − x2
−〉/2i. which vanishes if e.g. all χm ∈ R, so that 〈x2

+〉 is real.
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implying B =
∑Λ

n=−Λ 2π|ωn|2P̃n; this is proportional to the identity only if |ωn|2
is independent of n and therefore (since ω is normalized) if |ωn|2 = 1/(2Λ+1).
Setting ωn = eiβn/

√
2Λ+1 one finds the following resolutions of the identity,

parametrized by β ∈ (R/2πZ)2Λ+1:

I =
2Λ+1

2π

∫ 2π

0

dαP β
α , P β

α := ωβα〈ωβα, ·〉, ωβα :=
Λ∑

m=−Λ

ei(αm+βm)

√
2Λ+1

ψm.

(5.12)
By choosing β−m = βm the strong SCS {ωβα} is fully O(2)-equivariant, be-
cause is mapped into itself also by the unitary transformation ψm 7→ ψ−m
that corresponds to the transformation of the coordinates (with determinant -
1) (x1, x2) 7→ (x1,−x2). What is the β minimizing (∆x)2? In appendix 9.2 it
is shown that on the states ωβα

〈L〉 = 0, (∆L)2 = 〈L2〉 =
Λ(Λ+1)

3
for all α, β, (5.13)

〈x2〉 ≤ 2Λ

2Λ+1
+

2(Λ−1)Λ(Λ+1)

3(2Λ+1)kD
, 〈x+〉 =

e−iα

2Λ+1

Λ∑
m=1−Λ

ei(βm−1−βm)bm. (5.14)

Therefore 〈x 〉2 = |〈x+〉|2 is maximal, and (∆x)2 = 〈x2〉 − 〈x 〉2 is minimal, if
β = 0; then

〈x+〉φα =
2 e−iα

2Λ+1

Λ∑
m=1

bm, (∆x)2 <
1

Λ + 1

(
1

2
+

1

3Λ

)
Λ≥2

≤ 2

3(Λ + 1)
(5.15)

where φα := ω0
α; in particular 〈x2〉φ = 0, 〈x1〉φ = 〈x+〉φ ∈ R, where φ := φ0 =

ω0
0. The corresponding strong SCS is denoted with S1 := {φα}α∈[0,2π[.

The ωβα have no limit in L2(S1) as Λ → ∞, since all their components in
the canonical basis {ψn}n∈Z go to zero; the renormalized

√
2Λ+1φα/2π have at

least a limit in the space of distributions, more precisely go to δα, where δα is the
Dirac δ on the circle centered at angle ϕ = α.

5.2.2 O(2)-invariant overcomplete set of states minimizing
(∆x)2

As (∆x)2 is O(2)-invariant, so is the set W1 of states on S1
Λ minimizing (∆x)2.

Therefore one can first look for a state χ ∈ W1 such that 〈x2〉 = 0, and then

recover the whole W1 as W1 = {χ
α

:= eiαLχ̂ |α ∈ [0, 2π[}. This is an O(2)-
invariant, overcomplete set of states (i.e. a weak SCS) in one-to-one correspon-
dence with the points of the circle. The determination in closed form of χ,W1

for general Λ is presumably not possible. Since it is x2 = 1 +O(1/Λ2) (except on
ψ±Λ), it is reasonable to think that the eigenstate χ̂ of x1 with highest eigenvalue
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(or the eigenstate with opposite eigenvalue) approximates χ at order O(1/Λ2).
But also the determination in closed form of such an eigenvector is presumably
not possible. Here χ, χ̂ are explicitely determined for Λ = 1, while for general
Λ it is calculated a set of states having a smaller (∆x)2 than that of the φα of
the previous subsection, more precisely going to zero as 1/Λ2; this is done with
the help of the results of chapter 4, where a detailed study of the xi-eigenvalue
problem is carried out.

When Λ = 1 normalized eigenvectors and eigenvalues of x1 are given by

χ0 =
ψ−1−ψ1√

2
, x1χ0 = 0, χ± =

ψ−1±
√

2ψ0+ψ1

2
, x1χ± = ±

√
2

2
χ±.(5.16)

One easily checks that on χ̂ ≡ χ+ it is 〈x2〉 = 3/4, 〈x+〉 =
√

2/2, and therefore
(∆x)2 = 1/4. On the other hand in section 9.2 it is shown that (∆x)2 is slightly
smaller on χ:

χ =

√
5

4
[ψ−1+ψ1] +

√
3√
8
ψ0 ⇒ (∆x)2 = (∆x)2

min =
7

32
. (5.17)

For general Λ, on the basis BΛ of HΛ the operator x1 is represented by the
(2Λ+1)× (2Λ+1) matrix

xΛ =
1

2



0 bΛ 0 0 0 0 0 0
bΛ 0 bΛ−1 0 0 0 0 0
0 bΛ−1 0 bΛ−2 0 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · b2−Λ 0 b1−Λ

0 0 0 0 · · · 0 b1−Λ 0


= XΛ

0 +O

(
1

Λ2

)
,

where XΛ
0 := 1

2
P2Λ+1(0, 1, 1) [see (4.1)]. The spectrum ΣΛ

0 of XΛ
0 is {cos[πn/(2Λ+

2)]}n=1,2,...,2Λ+1 (see section 4.1); ΣΛ+1
0 , ΣΛ

0 interlace, i.e. between any two subse-
quent eigenvalues in ΣΛ+1

0 there is exactly one in ΣΛ
0 , and ΣΛ

0 becomes uniformly
dense in [−1, 1] as Λ→∞. In chapter 4 it is shown that the same properties hold
true also for xΛ ' x1, by studying its spectrum. Here as a first good estimate
of χ̂ the eigenvector χ of the Toeplitz matrix XΛ

0 with the maximal eigenvalue
λM = cos [π/(2Λ+2)] is taken. The associated (∆x)2

χ, which is a first good
estimate of (∆x)2

min and goes to zero as 1/Λ2, fulfills (see appendix 9.2)

(∆x)2
χ <

3.5

(Λ + 1)2
. (5.18)
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5.3 Coherent and localized states on the fuzzy

sphere S2
Λ

5.3.1 O(3)-invariant UR and CS systems on S2
Λ

First of all, since the commutation relations [Li, Lj] = iεijkLk are as on S2, then
not only the UR (5.7), but also Theorem 5.3.1 and the resolution of the identity
(5.9) hold, provided l runs over {0, 1, ...,Λ} instead of N0:

Theorem 5.3.1 The uncertainty relation

(∆L)2 ≥ |〈L〉| ⇔ 〈L2〉 ≥ |〈L〉| (|〈L〉|+ 1) (5.19)

holds on HΛ = ⊕Λ
l=0Vl and is saturated by the spin coherent states φl,g :=

πΛ(g)ψl
l ∈ Vl, l ∈ {0, 1, ...,Λ}, g ∈ SO(3). Moreover on HΛ the following

resolution of identity holds:

I =
Λ∑
l=0

Cl

∫
SO(3)

dµ(g)Pl,g, Cl =
2l+1

8π2
, Pl,g = φl,g〈φl,g, ·〉. (5.20)

It is possible to parametrize g ∈ SO(3), the invariant measure and the integral
over SO(3) through the Euler angles ϕ, θ,ψ:

g = eϕI3eθI2eψI3 where I3 :=

 0 1 0
−1 0 0
0 0 0

, I2 :=

0 0 −1
0 0 0
1 0 0

 ⇒(5.21)

πΛ(g) = eiϕL3eiθL2eiψL3 ,

∫
SO(3)

dµ(g) =

2π∫
0

dϕ

π∫
0

dθ sin θ

2π∫
0

dψ = 8π2. (5.22)

Since the commutation relations [Li, xj] = iεijkxk hold also on S2
Λ, so do the

UR (5.10). However here it is not investigatd whether they (or some alternative
ones) can be saturated, because seems to be this is not known even for the
commutative S2.

In the commutative case the spacial uncertainties ∆x1,∆x2,∆x3 can be si-
multaneously as small as one wishes, because [xi, xj] = 0. In the fuzzy case even
the Robertson UR

4 (∆x1)2 (∆x2)2 ≥ 〈L′3〉
2

+ 〈x1x2 + x2x1〉2, L′3 :=

(
I

kD
− kDP̃Λ

)
L3,



5.3. COHERENT AND LOCALIZED STATES ON THE FUZZY SPHERE S2
Λ95

and its permutations, which follow from (3.8) and are slightly stronger than the
Schrödinger UR, are not particularly stringent, in that the right-hand side van-
ishes on a large class of states4, hence does not exclude that either ∆x1,∆x2 or
∆x3 vanish. However, in the next lines it is shown that they cannot vanish simul-
taneously, because (∆x)2 is bounded from below (see section 5.3.2). Summing
the Schrödinger UR

(∆x1)4+(∆x2)4

2
≥ (∆x1)2 (∆x2)2 ≥ 〈L

′
3〉2

4

⇒ (∆x1)4+(∆x2)4

2
+ 2 (∆x1)2 (∆x2)2 ≥ 3

4
〈L′3〉2,

and the ones with permuted indices 1, 2, 3 one finds the O(3)-invariant UR

(∆x)4 ≥ 3

4
〈L′〉2. (5.23)

Note that on the eigenstates of x0, L0 ≡ L3, with L0 = m it is 〈L′±〉 = 0 and

|〈L′〉| = |〈L′3〉| = |m|
(
1/kD−kD〈P̃Λ〉

)
; in particular for m = 0 the right-hand

side of (5.23) is zero. It is left for possible future investigation to determine the
states, if any, saturating the UR (5.23); clearly there can be no saturation on a
state such that 〈L′3〉 = 0, because as said (∆x)2 has a positive minimum.

In the nest lines (5.2) is applied adopting as a G not SO(4) (the largest Λ-
independent subgroup of the group of ∗-automorphism of AΛ), but its subgroup
G = SO(3) with Lie algebra spanned by the Li, and T =πΛ. By (2.34), (HΛ,πΛ)
is a reducible representation of G, more precisely the direct sum of the irreducible
representations (Vl, πl), l = 0, ...,Λ; therefore completeness and resolution of the
identity are not automatic. Fixed a normalized vector ω ∈ HΛ, for g ∈ G let

ωg := πΛ(g)ω, Pg := ωg〈ωg, ·〉. (5.24)

The system A := {ωg}g∈G is complete provided that for all l there exists at least
one h such that ωhl 6= 0 (then it is also overcomplete). In appendix 9.4 we do the
proof of the following

Theorem 5.3.2 If ω =
Λ∑
l=0

l∑
h=−l

ωhl ψ
h
l fulfills

l∑
h=−l

|ωhl |2 =
2l+1

(Λ + 1)2
, l=0, 1, ...,Λ, (5.25)

4In fact, on the generic vector χ =
Λ∑

l=0

l∑
m=−l

χm
l ψ

m
l one finds 〈L′3〉χ =

Λ−1∑
l=0

l∑
m=1

[|χ−ml |2−

|χm
l |2]mk +

1+ Λ2

kD

2Λ+1

Λ∑
m=1

[|χ−mΛ |2−|χm
Λ |2], which vanishes e.g. if |χ−ml | = |χm

l | for all l,m, and

〈x1x2 + x2x1〉 = 〈x2
+ − x2

−〉/2i, which vanishes if e.g. all χm
l ∈ R, so that 〈x2

+〉 is real.
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then the following resolution of the identity on HΛ holds:

I =
(Λ + 1)2

8π2

∫
SO(3)

dµ(g)Pg, Pg := ωg〈ωg, ·〉, ωg := πΛ(g)ω. (5.26)

If ωhl = ω−hl the strong SCS {ωg}g∈SO(3) is fully O(3)-equivariant.

In particular, choosing ω = ωβ :=
∑Λ

l=0ψ
l
le
iβl
√

2l+1/(Λ + 1) one finds
a family of strong SCS {ωβg }g∈SO(3) and associated resolutions of the identity
parametrized by β ≡ (β0, ..., βΛ) ∈ (R/2πZ)Λ+1. In appendix 9.6 the uncertain-
ties (∆L)2, (∆x)2 are calculated on this strong SCS; the first is independent of
β, g, the second is minimal if β = 0. Then they are given by

(∆L)2 =
Λ(2Λ3+32Λ2+65Λ+36)

36(Λ+1)2
, (∆x)2 <

3

Λ + 1
. (5.27)

It is possible to construct a strong SCS with a larger (∆L)2 and a smaller (∆x)2.
Choosing ω = φβ =

∑Λ
l=0ψ

0
l e
iβl
√

2l+1/(Λ+1) [this is suggested by the arguments
following (5.23) and the ones of next subsection] one again finds a family of strong
SCS and associated resolutions of the identity parametrized by β ≡ (β0, ..., βΛ) ∈
(R/2πZ)Λ+1. This SCS is fully O(3)-equivariant. Since φβ are eigenvectors of
L3 (actually with zero eigenvalue), the isotropy group H = {eiψL3 |ψ ∈ R} '
SO(2) is nontrivial, and the resolution of the identity holds also with the integral
extended over just the coset space S2 ' SO(3)/SO(2) 3 g = eϕI3eiθI2 :

I =
(Λ + 1)2

4π

∫ 2π

0

dϕ

∫ π

0

dθ sin θ P β
g , P β

g = φβg 〈φβg , ·〉,

φβg =
Λ∑
l=0

eiβl
√

2l+1

Λ+1
πΛ(g)ψ0

l .

(5.28)

In the appendix the uncertainties (∆L)2, (∆x)2 are calculated on the SCS {φβg}g∈G;
this is the analog of the SCS (5.12-5.15). Again (∆x)2 is smallest if β = 0. Cor-
respondingly, one finds

(∆L)2 =
Λ(Λ+2)

2
, (∆x)2 <

1

Λ + 1
. (5.29)

5.3.2 O(3)-invariant overcomplete set of states minimizing
(∆x)2

As (∆x)2 is O(3)-invariant, so is the set W2 of states on S2
Λ minimizing (∆x)2.

Arguing as in the introduction, one can first look for the states χ ∈ W2 on which
〈x0〉 = |〈x〉| [whence 〈x±〉 = 0, (∆x)2 = 〈x2〉 − 〈x0〉2], and then recover the
whole W2 as W2 = {χ

g
:= πΛ(g)χ | g ∈ SO(3)}. Presumably it is not possible
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to determine the most localized state χ2 in closed form for general Λ. Since eq.

(3.9) implies that x2 ≥ 1
2

on the L2 = Λ(Λ+1) eigenspace and x2 = 1+O(1/Λ2)
on the orthogonal complement, (∆x)2 = 〈x2〉 − 〈x0〉2 on the eigenvector χ̂ of x0

with highest eigenvalue exceeds (∆x)2
min at most by a term O(1/Λ2). Presumably

it is not possible to determine χ̂ in closed form for general Λ either; determining
analytically the eigenvalues and eigenvectors of a square matrix of large rank is an
absolutely nontrivial problem. Nevertheless in chapter 4 we do a detailed study of
their properties. In particular, since [x0, L0] = 0, it is possible to simultaneously
diagonalize x0 and L0. By (3.6)1 the eigenvalues of L0 are m ∈ {−Λ, 1−Λ, ...,Λ};
let Hm

Λ be the corresponding eigenspaces. One can look for eigenvectors of both
x0, L0 in the form (4.9).

Note that L0χ = mχ (with any m) implies 〈x±〉χ = 0, | 〈x〉χ | = | 〈x0〉χ |.
The second equation in (4.9) turns out to be an eigenvalue equation for a real,
symmetric and tri-diagonal square matrix Bm(Λ) having dimension Λ − |m| +
1. It is easy to see that it is possible to focus the attention only to the cases
m ∈ {0, 1, · · · ,Λ}; by (4.12), the eigenvector χ̂ of x0 with the highest eigenvalue
α1 (Λ; 0) belongs to H0

Λ. The matrix representing x0 in the basis {ψ0
l }l=0,...,Λ of

H0
Λ is

B0 = B0 (Λ) =



0 a1 0 0 0 0 0 0
a1 0 a2 0 0 0 0 0
0 a2 0 a3 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 0 aΛ−1 0 aΛ

0 0 0 0 0 0 aΛ 0


, (5.30)

where

al := cl,3G(l, 0, 2) =

√
1 +

l2

kD

√
l2

4l2 − 1
>

1

2
∀l ≤ Λ, ∀Λ ∈ N,

and this implies (see proposition 8.1.2)

‖B0χ‖2 >

∥∥∥∥1

2
PΛ+1(0, 1, 1)χ

∥∥∥∥
2

∀χ ∈ RΛ+1
+ . (5.31)

The normalized vector χ̃ ≡ (χ̃0, ..., χ̃l) ∈ RΛ+1
+ maximizing the right-hand side is

the eigenvector of 1
2
PΛ+1(0, 1, 1) with highest eigenvalue λ1 = cos[π/(Λ+2)]:

χ̃l =

√
2

Λ + 2
sin

[
(l + 1)π

Λ + 2

]
, 0 ≤ l ≤ Λ;

Hence as the highest lower bound for
∣∣∣〈x〉χ̂∣∣∣ = 〈x0〉χ̂ = α1 (Λ; 0) = ‖B0χ̂‖2 / ‖χ̂‖

one finds

α1 (Λ; 0) ≥ 〈x0〉χ̃ = ‖B0χ̃‖2 >

∥∥∥∥PΛ+1

(
0,

1

2
,
1

2

)
χ̃

∥∥∥∥
2

= cos

(
π

Λ+2

)
. (5.32)
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This finally suggests that a quite stringent upper bound for (∆x)2
min should be

(∆x)2 on χ̃ =
∑Λ

l=0 χ̃lψ
0
l ∈ H0

Λ. In fact, in the appendix it is shown that

(∆x)2
χ̃

Λ≥3
<

π2

(Λ + 2)2
+

1

(Λ + 1)2
<

11

(Λ + 1)2
. (5.33)

This leads to the important result mentioned in the introduction: the smallest
space dispersion on the new fuzzy sphere is smaller than the one (13) on the
Madore’s FS when l = Λ, i.e. the cutoffs of the two fuzzy spaces are the same;
in formulas,

(∆x)2
min ≤ (∆x)2

χ̃ < (∆x)2
minMadore ≡

1

Λ + 1
. (5.34)

Replacing χ by χ̂, χ̃ in the definition of W2 one respectively obtains fully O(3)-

invariant weak SCS Ŵ2, W̃2 approximating W2. Since χ̂, χ̃ are eigenvectors
of L0, the corresponding isotropy subgroup of SO(3) is isomorphic to SO(2),
and the rays of the elements of χ̂, χ̃ are in one-to-one correspondence with the
points of the sphere S2 ' SO(3)/SO(2). The fact that the eigenvalue is zero is
in agreement with the classical picture of the particle: the angular momentum
L = r ∧ p is orthogonal to the position vector r, hence if r ' kD (i.e. the
particle is located concentrated around the north pole) then L is approximately
orthogonal to the x3 ≡ x0-axis, and L3 ≡ L0 ' 0.



Chapter 6

Conclusions, outlook and
comparison with literature

The construction of the O(D)-equivariant fuzzy sphere in the second section has
been done through the imposition of a sufficiently low (and Λ-dependent, with
Λ ∈ N) energy cutoff E := Λ (Λ +D − 2) on the quantum mechanics of a particle
subject to a rotation-invariant potential V (r) having a very deep minimum in
r = 1, and regulated by a confining parameter k(Λ) ≥ [Λ(Λ +D − 2)]2, which
expresses the sharpness of that minimum.

The output is a sequence {AΛ,D}Λ∈N of finite-dimensional algebras. Every
operator A ∈ AΛ,D acts on the corresponding Hilbert space of admitted states
HΛ,D, which is also finite-dimensional and can be realized using an irreducible
representation of Uso(D + 1) (the one having lD ≡ Λ), but also a reducible
representation of Uso(D); in fact it can be decomposed through the irreps of
Uso(D) having 0 ≤ l ≤ Λ.

The algebraic relations involving Lh,j, xp are invariant under parity, as well
as under any O(D)-transformation of the coordinates, and this was expected
because of the application of a rotation-invariant energy-cutoff to a theory having
the same covariance; then, as shown, the projected theory has inherited that
symmetry. It is also important to underline that these relations are nothing but
the generalizations, to the D-dimensional case, of the ones calculated for D = 2
and D = 3.

The focal point is the definition 2.3.1. It is inspired by the action of a generic
coordinate th on a spherical harmonic, and it allowed to repeat (in the generic
D-dimensional case) what was done in [13, 14]; in fact, in almost all the proof it
was fundamental that the action of Lh,D on Yl coincides, more or less, with the
one of the coordinate th on Yld−1,··· ,l1 this is also in agreement with the Wigner-
Eckart theorem, and this is also in agreement with the Wigner-Eckart theorem,
because both th and Lh,D transform in the same way under SO(d).

Another crucial point of this section is the research of all the eigenfunctions
of L2 (section 7.0.3) on Sd, for this reason the goal was the determination of

99
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an orthonormal basis of eigenfunctions {Yl}l for L2 in L2
(
Sd
)
; this returned

an orthonormal basis of HΛ,D and then the subsequent possibility of calculating
explicitely the action of xp and Lh,j on every state ψ (section 2.3.2).

On the other hand, every space (here l is a fixed number of N0)

span
{
Yl(θd, · · · , θ1) : l ≡ ld ≥ · · · ≥ l2 ≥ |l1|, li ∈ Z∀i

}
is the representation space of an irrep of so(D), the one corresponding to L2 ≡
l
(
l +D − 2

)
I; it is important to underline that the Cartan subalgebra is too

small to be a CSCO, which means that the sets of their eigenvalues do not
univocally identify all spherical harmonics; then, in this case, one is not able
to write down explicitely an orthonormal basis of L2-eigenfunctions in L2

(
Sd
)

[as for (2.15)] and, consequently, to calculate the action of xh and Lh,j on every
quantum state ψ.

The aforementioned definition of the components Lh,j of the D-dimensional
angular momentum operator was also fundamental to realize the algebra of ob-
servables AΛ,D with a suitable irreducible representation of Uso(D+ 1). In fact,
in that realization the ‘projected’ coordinate operator xh is identified with Lh,D+1

up to some scalar left and right factors.

Finally, we do the proof of the convergence of this new fuzzy hypersphere
to quantum mechanics on Sd in the commutative limit Λ → +∞, this was also
expected because in that limit the potential V (r) forces the particle to stay on
the unit sphere, which (from the mathematical point of view) is represented by
cl,D → 1, and then that every operator xh converges to the corresponding th·.

We now compare our fuzzy spheres with with other ones appeared in the
literature; in [50] the authors build their two fuzzy versions of S3:

• In the first case, from CP 3
F they firstly obtain a fuzzy S4

F using the fact
that CP 3 is a S2 bundle over S4 and that there is a well defined matrix
approximation of CP 3 ' SU(4)

U(3)
, then they construct S3

F from this S4
F .

• In the second case, they obtain S3
F starting from the orthogonal Grass-

manian SO(5)
SO(3)×SO(3)

and then using the existence of a well defined matrix
approximation of the algebra of functions on this Grassmanian, in other
words they consider fuzzy orthogonal Grassmanians.

A well-known fuzzy 4-sphere is built in [34], and it essentially coincides
with [51]; there the author considers the Dirac Γ matrices, which form the 4-
dimensional spin representation of so(5), and are used in the n-fold symmetric
tensor representation of Γ (here Sym means the restriction to the completely
symmetrized tensor product space)

G
(n)
i := (Γi ⊗ I⊗ · · · ⊗ I + I⊗ Γi ⊗ · · · ⊗ I + · · ·+ I⊗ · · · ⊗ I⊗ Γi)Sym ,
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for i = 1, · · · , 5. The G
(n)
i defined above are N ×N matrices, with

N =
(n+ 1)(n+ 2)(n+ 3)

6
,

and they fulfill ∑
i

[
G

(n)
i

]2

= n(n+ 4)IN .

Then, from

Xi :=
r

n
G

(n)
i it follows

∑
i

X2
i = r2IN +O

(
1

n

)
.

The representations of Spin(5) [or equivalently Sp(2)] are considered in [52]
in order to build another fuzzy S4; in particular, the irrep

(
L
2
, L

2

)
contains the 5

Dirac matrices Ja, a = 1, · · · , 5, which can be realized as the symmetrization of
L copies of the Γ matrices in the Spin(5) fundamental representation:

Ja := (Γa ⊗ I⊗ · · · ⊗ I + I⊗ Γa ⊗ · · · ⊗ I + · · ·+ I⊗ · · · ⊗ I⊗ Γa)Sym ,

where Sym means the projection in the totally symmetrized irreducible repre-
sentation.

The Ja fulfill JaJa = L(L+4)I, then from Xa := R√
L(L+4)

Ja, it follows XaXA =

R2I and that in the limit L→ +∞ the algebra becomes commutative.
In [35] the authors approximate the sphere SN ∼= SO(N+1)

SO(N)
starting from the

cartesian co-coordinates Xa, the angular momentum components La,b in RN+1,
with a, b ∈ {1, 2, · · · , N + 1}, and then also the LA,B in RN+2, with A,B ∈
{1, 2, · · · , N + 2}. The definition Xa := µLa,N+2, with µ ∈ R, returns Snyder-
type commutation relations [

Xa, Xb
]

= −iµ2La,b,

and also that (here CN ′
2 is the square angular momentum in RN ′)

XaXa = µ2
[
CN+2

2 − CN+1
2

]
,

which is central in the fundamental spinor representation of Spin(N + 2)

XaXa =
µ2(N + 1)

2
I.

In agreement with the above construction, Sperling and Steinacker [36, 53] build
their approximation S4

N of S4 with a reducible representation of Uso(5) (as for
the above S4

Λ) on a Hilbert space V obtained decomposing an irreducible repre-
sentation π of Uso(6) characterized by a triple of highest weights (n1, n2, N); so
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End(V ) ' π[Uso(6)], in analogy with our scheme. The elements Xa := rMa6

play the role of noncommutative cartesian coordinates and they fulfill Snyder -
type commutation relations (as for the above S4

Λ). As a consequence the O(5)-
scalar R2 = XaXa is no longer central, but its spectrum is still very close to
1 if N � n1, n2 [because then the decomposition of V contains few irreducible
representations under SO(5)].

On the other hand, if n1 = n2 = 0, the representation of Uso(5) turns out
to be irreducible (unlike the above S4

Λ) [the highest weight is (0, 0, N)], and one
obtain the basic fuzzy 4-sphere S4

N , which is essentially the same of [34, 35], but
in the case N ≡ 4:

XaXa = R2 =
1

4
N(N + 4)I,

so the coordinates can be trivially ‘normalized’; furthermore, from su(4) ' so(6)
it follows

HΛ = (0, 0, N)su(4) = (0, N)so(5).

The authors fuzzy approximate the quantum mechanics on the 4-sphere with the
algebra End (HN), and it fulfills

End (HN) = (0, 0, N)⊗ (N, 0, 0) =
N⊕
n=0

(n, 0, n),

which is its decomposition in the su(4) harmonics.
In turn, every (n, 0, n) decomposes in this way in the so(5) harmonics:

(n, 0, n) =
n⊕

m=0

(n−m, 2m).

So, in End (HN), there are
N⊕
n=0

(n, 0),

which corresponds to the algebra AN,D when D = 5, but there are also ‘further
modes’, i.e. the representations (n, 2s) with s ≥ 1, that can be seen as higher
spin algebras in the Vasiliev theory.

Their physical interpretation of End(V ) is that it represents a fuzzy approx-
imation of some fiber bundle on a sphere S4 (rather than of the algebra of ob-
servables of a quantum particle on a S4).

In addition, in the analysis of the spectra Σxi (Λ) of the new fuzzy spaces
(chapter 4) it has been shown the following:

1. O(D)-equivariance: the spectrum Σxi of each xi, for all choices of the or-
thogonal axes, is the same.
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2. Parity property:
α ∈ Σxi (Λ)⇒ −α ∈ Σxi (Λ) .

3. Monotonicity of the maximal eigenvalue with respect to Λ:

max Σxi (Λ) < max Σxi (Λ + 1) and lim
Λ→+∞

[max Σxi (Λ)] = 1.

4. Density property

Σxi (Λ) becomes uniformly dense in [−1, 1] when Λ→ +∞.

5. On the new fuzzy sphere S2
Λ the state χ most localized around the North

pole fulfills the property L3χ = 0 (item (C) of theorem 4.3.1), as the gener-
alized quantum state (distribution) 2δ(θ)/ sin θ ' δ(x1)δ(x2) on S2 concen-
trated on the North pole (here θ is the colatitude); the classical counterpart
of this property is that the classical particle on S2 in the position (0, 0, 1)
has zero L3 (z-component of the angular momentum).

It is important to underline that these are welcome properties for a xi-operator
which is required to approximate well, in the commutative limit, the xi-coordinate
of a quantum particle forced to stay on the unit sphere S2.

Moreover, the spectrum of Li is ΣLi (Λ) = {−Λ, 1−Λ, ...,Λ} for all i = 1, 2, 3,
by the SO(3)-covariance, and fulfills properties 1,2 (the multiplicity of the eigen-
value m is Λ−|m|+1).

In the Madore fuzzy sphere, since the xi are obtained by the rescaling (2) of
angular momentum operators acting in an irreducible representation, then all xi
have again the same spectrum as x3, by SO(3)-covariance, and this is obtained
by the rescaling of the spectrum of L3; this leads to the eigenvalues (all simple)
and eigenvectors

x3ϕm =
m√

Λ2 + Λ
ϕm with m ∈ {−Λ, · · · ,Λ} ,

where Λ:=(n−1)/2. Hence also in this case properties 1-4 are fulfilled. However,
for this reason there is no longer room for independent observables playing the
role of angular momentum operators on the carrier Hilbert space VΛ, and property
5 is lost.

For this reason, and the other ones mentioned in the introduction, it is more
natural to interpret the Li in the irreducible representation (πΛ, VΛ) still as the
inthrinsic angular momentum components of a particle of spin Λ, and the states
(rays) in VΛ as states on the corresponding spin phase manifold. Then, since the
spin degrees of freedom have no classical limit, it is not possible to define also
position observables or see any state ϕ ∈ VΛ as an approximation of a classical
point in S2-configuration space; the algebra An should be seen simply as the spin
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phase space algebra, not as a fuzzyfication of the algebra of configuration space
observables on S2.

In chapter 5 various strong and weak systems of coherent states (SCS)1 have
been introduced on the fuzzy spheres S1

Λ, S
2
Λ, and we do also a study of their

localizations in configuration as well as (angular) momentum space. As on
the commutative spheres Sd (d = 1, 2), these localizations can be respectively
expressed in terms of the uncertainties ∆xi,∆Lij, or in terms of their O(D)-
invariant (D≡d+1) quadratic polynomials (∆x)2, (∆L)2 (sums of the variances
of the xi and Lij, respectively); as a consequence, the localizations expressed
through (∆x)2, (∆L)2 are preferable because reference-frame independent. Gen-
eral bounds (e.g. uncertainty relations following from commutation relations)
for ∆xi,∆Lij, (∆x)2, (∆L)2 are determined, it is estimated the latter on these
SCS, and then it is partly investigated which SCS may saturate these bounds.
Preliminarly we do a discussion about these issues for the commutative circle S1

and sphere S2, because the literature for the latter seems incomplete.

In particular, after the derivation of the O(3)-invariant uncertainty relation
(5.19) (both on S2 and on S2

Λ), we do a discussion about its virtues compared
to the ∆Li∆Lj uncertainty relations (5.7), and then it is shown that the system
of spin coherent states saturates it (see theorems 5.3.1 and 5.3.1); also for the
commutative S2 this result is new. Moreover, we do a discussion about the
Heisenberg (i.e. ∆x∆L) type uncertainty relations (HUR) (5.4), which hold both
on S1 and on S1

Λ, and the states saturating them: it has been shown that only the
eigenvectors2 ψn of L saturate both (5.4)1−2, or equivalently the O(2)-invariant
inequality (5.4)3, while there is a complete family (parametrized by µ ∈ R) of
states saturating (5.4)1 alone (these states are eigenvectors of aµ1 := L−iµx1); the
family interpolates between the set of eigenvectors of L and the set of eigenvectors
of x1.

Moreover, for d = 1, 2 a large class of strong SCSs is built on SdΛ applying
SO(D)-transformations on suitable initial states ω ∈ HΛ, see eq. (5.12) and
Theorem 5.3.2; in particular, the SCS have been chosen so that they minimize
(within the class) either (∆L)2, or (∆x)2; the SCS Sd minimizing (∆x)2 is fully
O(D)-equivariant, its states (rays) are actually in one-to-one correspondence with
points of Sd ' SO(D)/SO(d), and their (∆x)2 is smaller than the uncertainty
(13) in Madore FS, i.e. satisfies (∆x)2 < 1/(Λ + 1) - see (5.15), (5.29) [more
careful computations will lead to lower upper bounds for (∆x)2].

For both d = 1, 2 a fullyO(D)-equivariant, weak SCSWd = {χ
g

:= πΛ(g)χ | g ∈
SO(D)} have been introduced; it consists of states minimizing (∆x)2 within the
whole Hilbert space HΛ; the states (rays) of Wd are actually again in one-to-one

1A strong SCS yields a resolution of the identity; a weak SCS is just (over)complete.
2The ψn make an orthonormal basis of the Hilbert space; in a broad (but rather unconven-

tional) sense this basis can be considered the system of coherent states associated to the group
(5.6), semidirect product of a Lie group times a discrete one.
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correspondence with the points of Sd ' SO(D)/SO(d). They are determined up
to order O(1/Λ2), with the help of the results of chapter 4 the vector χ is ap-
proximated as the eigenvector χ̃ with maximal eigenvalue of a suitable Toeplitz
tridiagonal matrix, and denoted as W̃d the corresponding SCS; this eigenvec-
tor is in turn very close to the eigenvector with maximal eigenvalue of x1 (resp.
x0 ≡ x3), because numerical computations suggest that

∥∥XΛ
∥∥

2
and ‖B0(Λ)‖2

both converge with order 2 to 1.
For these reasons the strong SCS Sd (or alternatively the weak one Wd, if a

resolution of the identity is not needed) can be considered the system of quantum
states that is the ‘closest’ approximation to Sd.

It is important to underline that the states of the strong SCS S2 (resp. of

the weak SCS W2, W̃2) are better localized than the most localized states of the
Madore fuzzy sphere with the same cutoff (l = Λ) by a factor smaller than 1, see
(5.29) [resp. by a power of 1/Λ, see (5.34)]. On S2

Λ the state χ ∈ S2 centered
around the North pole (i.e. with 〈x1〉 = 〈x2〉 = 0, 〈x3〉 > 0) fulfills the property
L3χ = 0; the classical counterpart of this property is that a classical particle at
the North pole of S2 has zero L3 (z-component of the angular momentum), see
section 5.3.2. As noted in chapter 4, such a property is impossible to realize on
the Madore-Hoppe FS. For these reasons, and the other ones mentioned in the
introduction, it is reasonable to see the fuzzy sphere S2

Λ as a much more realistic
fuzzy approximation of a classical S2 configuration space.

Finally, the construction of various systems of coherent states on the new
fuzzy circle and fuzzy sphere will be very useful to study quantum mechanics and
above all quantum field theory on these fuzzy spaces.



Chapter 7

Appendix A

7.0.1 The action of CD̃ in RD and in RD̃, when 2 ≤ D̃ < D

Let (x1, · · · , xD) be the rectangular coordinates in RD and (r, θd, · · · , θ1) the
spherical ones:

x1 = r sin θd sin θd−1 · · · sin θ2 cos θ1,

x2 = r sin θd sin θd−1 · · · sin θ2 sin θ1,

x3 = r sin θd sin θd−1 · · · cos θ2,

...

xd = r sin θd cos θd−1,

xD = r cos θd,

(7.1)

with r ≥ 0, θ1 ∈ [0, 2π[ and θ2, · · · , θd ∈ [0, π].

First of all, in both RD̃ and RD the equality

CD̃
(6)
=

∑
1≤j<h≤D̃

L2
j,h

holds, but the crucial difference is that the expression of xp in polar coordinates

(7.1) changes when one passes from RD̃

x̂p := r′ sin θD̃−1 · · · sin θp cos θp−1,

to RD

xp := r sin θd · · · sin θD̃ sin θD̃−1 · · · sin θp cos θp−1 =
r

r′
sin θd · · · sin θD̃x̂p,

where

r′ :=

√√√√ D̃∑
p=1

x̂2
p and r :=

√√√√ D∑
p=1

x2
p.
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This means that, in order to understand the difference between the action of the
operator CD̃ in the two ambient spaces, one can focus the attention only on the

differences between the action (♣) of Lj,h in RD̃ and the one (♠) in RD.
According to this, if f(xD, · · · , x1) is a differentiable function on RD and

r′ = r, then

x̂j
∂

∂x̂h
f(xD, · · · , x1) = x̂j sin θd · · · sin θD̃

∂f

∂xh
(xD, · · · , x1) = xj

∂f

∂xh
(xD, · · · , x1);

which implies that the action ♣ on the sphere SD̃−1
r coincides with the one ♠ on

Sdr , in particular they coincide on the corresponding unit spheres.

7.0.2 About the regularity of f(r) in (2.2)

In the case of a second order linear ODE

y′(z) + P (z)y′(z) +Q(z)y(z) = 0, (7.2)

a point z0 ∈ C is singular for the equation if P (z) and Q(z) have an isolated
singularity at z = z0; z0 is a fuchsian point if P (z) has a pole of order at most 1
in z = z0 and Q(z) has a pole of order at most 2 in z = z0.

Fuchs theorem states that in the neighborhood of a fuchsian point every so-
lution of (7.2) is a combination of the two independent ones having the following
behavior:

y1(z) = (z − z0)α1w1(z) and y2(z) = (z − z0)α2w2(z),

where αi are the solutions of the algebraic equation

x2 + (p0 − 1)x+ q0 = 0,

wi(z) are holomorphic functions which do not vanish in z = z0,

p0 = lim
z→z0

(z − z0)P (z) and q0 = lim
z→z0

(z − z0)2Q(z).

From this last theorem, applied to (2.2) under the hypothesis

lim
r→0+

r2V (r) = T ∈ R+, (7.3)

it follows
p0 = D − 1 and q0 = − [l(l +D − 2) + T ] ,

then

α1 =
2−D +

√
(D − 2)2 + 4 [l(l +D − 2) + T ]

2

T>0

≥
2−D +

√
(D − 2)2

2
= 0,

α2 =
2−D −

√
(D − 2)2 + 4 [l(l +D − 2) + T ]

2

T>0
< 0.



108 CHAPTER 7. APPENDIX A

Hence
f(r) = γrα1w1(r) + δrα2w2(r) when r → 0;

in addition, according to the self-adjointness of H, it must be

ψ ∈ D(H) ≡ D(H∗) =
{
ψ ∈ L2

(
RD
)

: ψ is twice differentiable and Hψ ∈ L2
(
RD
)}
,

which implies δ ≡ 0 and then f(0) = 0.

7.0.3 The D-dimensional spherical harmonics

In this section it is explained how to determine an orthonormal basis of L2
(
Sd
)

made up of eigenfunctions Y of L2 in RD.

7.0.3.1 The resolution of L2Y = l(l+D−2)Y by separation of variables

First of all, from (9) it follows that L1,2 and all these Cp operators can be si-
multaneously diagonalized; in addition, in section 7.0.1 we do the proof that Cp
coincides with the opposite of the Laplace-Beltrami operator ∆Sp−1 on the sphere
Sp−1 in every dimension D, then from [54] p. 21, it follows

∆ =
∂2

∂r2
+ (D − 1)

1

r

∂

∂r
− 1

r2
L2,

L2 =− (1− t2)
∂2

∂t2
+ (D − 1)t

∂

∂t
+

1

1− t2
Cd,

(7.4)

where t = cos θd.
Furthermore, when θ ∈ [0, π],

∂

∂ cos θ
=

∂θ

∂ cos θ

∂

∂θ
= − 1

sin θ

∂

∂θ

and

∂2

∂ cos2 θ
= − 1

sin θ

∂

∂θ

(
− 1

sin θ

∂

∂θ

)
=

1

sin θ

(
− cos θ

sin2 θ

∂

∂θ
+

1

sin θ

∂2

∂θ2

)
= − cos θ

sin3 θ

∂

∂θ
+

1

sin2 θ

∂2

∂θ2
.

According to this,

CD = L2 = −(1− t2)
∂2

∂t2
+ (D − 1)t

∂

∂t
+

1

1− t2
Cd

= − ∂2

∂θ2
d

+
cos θd
sin θd

∂

∂θd
− (D − 1)

cos θd
sin θd

∂

∂θd
+

1

sin2 θd
Cd

= − ∂2

∂θ2
d

− (D − 2)
cos θd
sin θd

∂

∂θd
+

1

sin2 θd
Cd

= − 1

sind−1 θd

∂

∂θd

(
sind−1 θd

∂

∂θd

)
+

1

sin2 θd
Cd.

(7.5)
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The aforementioned proof of (7.4)2 and also (7.5) can be trivially generalized to
every dimension, which means that, when n ∈ {3, · · · , D},

Cn = − 1

sinn−2 θn−1

∂

∂θn−1

(
sinn−2 θn−1

∂

∂θn−1

)
+

1

sin2 θn−1

Cn−1,

while L1,2 =
1

i

∂

∂θ1

⇒ C2 = − ∂2

∂θ2
1

.

(7.6)

Section 7.0.1 and (7.6) suggest to apply a separation of variables in the resolu-
tion of CpY = lp−1(lp−1 + p− 2)Y for p = 2, · · ·D; then Y = Y1(θd, · · · , θ2)g1(θ1),
(7), (7.6)2 and C2Y = L2

1,2Y = l21Y with l1 ∈ Z imply g1(θ1) = Ceil1θ1 , with
l1 ∈ Z.

The constant C can be fixed by requiring that∫ 2π

0

g1g
∗
1dθ1 = 1,

which implies C = 1√
2π

.
Furthermore

C3 = − 1

sin θ2

∂

∂θ2

(
sin θ2

∂

∂θ2

)
+

1

sin2 θ2

C2 and C3Y
(7)
= l2(l2 + 1)Y,

while L†h,j = Lh,j and the fact that every operatorB := A†A has positive spectrum
imply

〈Y,C3Y 〉 ≥ 〈Y,C2Y 〉 ⇐⇒ l22 + l2 − l21 ≥ 0 with l1, l2 ∈ Z,
and this is possible if and only if l2 ≥ |l1|.

The separation of variables

Y1(θD−1, · · · , θ2) = Y2(θD−1, · · · , θ3)g2(θ2),

returns

l2(l2 + 1)g2 = − 1

sin θ2

∂

∂θ2

(
sin θ2

∂g2

∂θ2

)
+

1

sin2 θ2

l21g2,

and setting z = cos θ2, then

∂

∂θ2

=
∂z

∂θ2

∂

∂z
= −
√

1− z2
∂

∂z
,

so one has to solve

l2(l2 + 1)g2 =
∂

∂z

(
−(1− z2)

∂g2

∂z

)
+

l21
1− z2

g2,

which is equivalent to[
(1− z2)

∂2

∂z2
− 2z

∂

∂z
+ l2(l2 + 1)− l21

1− z2

]
g2 = 0.
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This last equation is the general Legendre differential equation (see [55] formula
8.1.1 p. 332) and the solution is the associated Legendre function of first kind:

g2(z) = CP l1
l2

(z) =⇒ g2(θ2) = CP l1
l2

(cos θ2).

The constant C can be determined by requiring that

|C|2
∫ π

0

P l1
l2

(cos θ2)
[
P
l′1
l′2

(cos θ2)
]∗

sin θ2dθ2 = δ
l′2
l2
δ
l′1
l1
,

and after the replacement z = cos θ2 it becomes

|C|2
∫ 1

−1

P l1
l2

(z)
[
P
l′1
l′2

(z)
]∗
dz = δ

l′2
l2
δ
l′1
l1
.

The equalities∫ 1

−1

Pm
n (x)Pm

l (x)dx = 0 (l 6= n) and

∫ 1

−1

[Pm
n (x)]2 dx =

2

2n+ 1

(n+m)!

(n−m)!
(7.7)

from [55] formulas 8.14.11, 8.14.13 p. 338 and Pm
l (x) ∈ R ∀x ∈ R imply

|C| =
√

2l2 + 1

2

√
(l2 − l1)!

(l2 + l1)!
, (7.8)

then

g2(cos θ2) =

√
2l2 + 1

2

√
(l2 − l1)!

(l2 + l1)!
P l1
l2

(cos θ2).

On the other hand, l2 ≥ |l1| and l1, l2 ∈ Z imply that the formula 8.2.5 in [55]
(here Qµ

ν is the associated Legendre function of second kind)

P−µν (z) =
Γ(ν − µ+ 1)

Γ(ν + µ+ 1)

[
P µ
ν (z)− 2

π
e−iµπ sin (µπ)Qµ

ν

]
becomes

P µ
ν (z) =

(ν + µ)!

(ν − µ)!
P−µν (z); (7.9)

then

g2(cos θ2) =

√
2l2 + 1

2

√
(l2 + l1)!

(l2 − l1)!
P−l1l2

(cos θ2).

This last procedure can be repeated for the angular variables θ3, · · · , θd, because
(7.6)1 links every Cn with Cn−1, for this reason one can now work with a generic
Cn.
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From (7.6)1,

Cn−1Y
(7)
= ln−2(ln−2 + n− 3)Y and CnY

(7)
= ln−1(ln−1 + n− 2)Y

it follows ln−1 ≥ ln−2 and

ln−1(ln−1+n−2)gn−1 =

[
− ∂2

∂θ2
n−1

− (n− 2)
cos θn−1

sin θn−1

∂

∂θn−1

+
ln−2(ln−2 + n− 3)

sin2 θn−1

]
gn−1.

The replacement z = cos θn−1 implies

∂

∂θn−1

=
∂z

∂θn−1

∂

∂z
= −
√

1− z2
∂

∂z
,

and then the last ODE becomes

ln−1(ln−1 + n− 2)gn−1 =
∂

∂z

[
−(1− z2)

∂gn−1

∂z

]
+
ln−2(ln−2 + n− 3)

1− z2
gn−1,

which is equivalent to[
(1− z2)

∂2

∂z2
− (n− 1)z

∂

∂z
+ ln−1(ln−1 + n− 2)− ln−2(ln−2 + n− 3)

1− z2

]
gn−1 = 0.

Assume that

gn−1(z) =
(
1− z2

) 3−n
4 fn−1(z) (7.10)

and that the function fn−1(z) (which is determined in the following lines) has a
zero in z = 1 of order higher than n−3

4
(see section 7.0.4 for the proof of this);

then

g′n−1(z) =
z(n− 3)

2

(
1− z2

)− 1+n
4 fn−1(z) +

(
1− z2

) 3−n
4 f ′n−1(z)

and

g′n−1(z) =
n− 3

2

(
1− z2

)− 1+n
4 fn−1(z) +

z(n− 3)

2

z(n+ 1)

2

(
1− z2

)− 5+n
4 fn−1(z)

+ z(n− 3)
(
1− z2

)− 1+n
4 f ′n−1(z) +

(
1− z2

) 3−n
4 f ′n−1(z),

which implies

−(n−1)zg′n−1(z) = −(n−1)z

[
z(n− 3)

2

(
1− z2

)− 1+n
4 fn−1(z) +

(
1− z2

) 3−n
4 f ′n−1(z)

]

=
(
1− z2

) 3−n
4

[
−z(n2 − 4n+ 3)

2(1− z2)
fn−1(z)− (n− 1)zf ′n−1(z)

]
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and, similarly,

(1− z2)g′n−1 =
(
1− z2

) 3−n
4

[
n− 3

2
fn−1(z) +

z2(n2 − 2n− 3)

4(1− z2)
fn−1(z)

+z(n− 3)f ′n−1(z) + (1− z2)f ′n−1(z)
]
.

Furthermore,

− ln−2(ln−2 + n− 3)

1− z2
+
z2(n2 − 2n+ 3)

4(1− z2)
− z2(n2 − 4n+ 3)

2(1− z2)

= − ln−2(ln−2 + n− 3)

1− z2
+
z2(n2 − 2n− 3− 2n2 + 8n− 6)

4(1− z2)

= − ln−2(ln−2 + n− 3)

1− z2
+
z2(−n2 + 6n− 9)

4(1− z2)

=
1

4
(n2 − 6n+ 9)−

ln−2(ln−2 + n− 3) + 1
4
(n2 − 6n+ 9)

1− z2
.

At this point, the first term of the ODE for fn−1 [after deleting the common

factor (1− z2)
3−n

4 ] is
(1− z2)f ′n−1(z),

the second term is

z(n− 3)f ′n−1(z)− z(n− 1)f ′n−1(z) = −2zf ′n−1(z),

the third term is

ln−1(ln−1 + n− 2)fn−1(z) +
n− 3

2
fn−1(z) +

n2 − 6n+ 9

4
fn−1(z)

=

(
l2n−1 + ln−1n− 2ln−1 +

n2 − 4n+ 3

4

)
fn−1(z)

=

(
ln−1 +

n− 3

2

)(
ln−1 +

n− 3

2
+ 1

)
fn−1(z)

=l′(l′ + 1)fn−1(z),

with l′ := ln−1 + n−3
2

, and the last term is

l2n−2 + ln−2n− 3ln−2 + n2 − 6n+ 9

1− z2
fn−1(z) =

(
ln−2 + n−3

2

)2

1− z2
fn−1(z) =

(m′)2

1− z2
fn−1(z),

with m′ := ln−2 + n−3
2

.
This means that there is another associated Legendre equation:[

(1− z2)
∂2

∂z2
− 2z

∂

∂z
+ l′(l′ + 1)− (m′)2

1− z2

]
fn−1(z) = 0,
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and then the solution is [here the constant C is fixed as done in (7.8)]

fn−1(cos θn−1) =

√
2l′ + 1

2

√
(l′ −m′)!
(l′ +m′)!

Pm′

l′ (cos θn−1)

=

√
2ln−1 + n− 2

2

√
(ln−1 − ln−2)!

(ln−1 + ln−2 + n− 3)!
P
ln−2+n−3

2

ln−1+n−3
2

(cos θn−1),

which implies

gn−1(cos θn−1) =

√
2ln−1 + n− 2

2

√
(ln−1 − ln−2)!

(ln−1 + ln−2 + n− 3)!
[sin θn−1]

3−n
2 P

ln−2+n−3
2

ln−1+n−3
2

(cos θn−1).

It is obvious that l′ +m′, l′ −m′ ∈ N0, so

gn−1(cos θn−1)
(7.9)
=

√
2ln−1 + n− 2

2

√
(ln−1 + ln−2 + n− 3)!

(ln−1 − ln−2)!
[sin θn−1]

3−n
2 P

−(ln−2+n−3
2 )

ln−1+n−3
2

(cos θn−1).

Summarizing,

Yl(θd, · · · , θ2, θ1) =
eil1θ1√

2π

[
D−1∏
n=2

nP
ln−1

ln (θn)

]
, (7.11)

where

jP
M

L (θ) :=

√
2L+ j − 1

2

√
(L+M + j − 2)!

(L−M)!
[sin θ]

2−j
2 P

−(M+ j−2
2 )

L+ j−2
2

(cos θ). (7.12)

7.0.3.2 The orthonormality of Yl

The Yl built above are eigenvectors of self-adjoint operators, so∫
Sd
YlY

∗
l′dα = 0 if l 6= l′;

in order to prove (2.13)3 it remains to show that∫
Sd
YlY

∗
l dα = 1,

and this is done recursively.
First of all, it is important to underline that from (7.11-7.12) it follows∫
S2

YlY
∗
l′dα =

∫ 2π

0

ei(l1−l
′
1)θ1

√
2π

dθ1 ·

[
d∏

n=2

∫ π

0
nP

ln−1

ln (θn)nP
l′n−1

l′n
(θn) sinn−1 θndθn

]
.
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While from ∫ 2π

0

ei(l1−l
′
1)θ1

2π
dθ1 = δ

l′1
l1
,

it follows that, if l1 6= l′1, then (2.13)3 vanishes; otherwise, if l1 = l′1 ≥ 0 (the case
l1 < 0 is essentially the same), then∫ π

0
2P

l1
l2

(θ2)2P
l1
l′2

(θ2) sin θ2dθ2
(7.12)
=

√
2l2 + 1

2

(l2 + l1)!

(l2 − l1)!

√
2l′2 + 1

2

(l′2 + l1)!

(l′2 − l1)!

∫ π

0

P−l1l2
(θ2)P−l1l′2

(θ2) sin θ2dθ2

(7.9)
=

√
2l2 + 1

2

(l2 − l1)!

(l2 + l1)!

√
2l′2 + 1

2

(l′2 − l1)!

(l′2 + l1)!

∫ π

0

P l1
l2

(θ2)P l1
l′2

(θ2) sin θ2dθ2

x=cos θ2=

√
2l2 + 1

2

(l2 − l1)!

(l2 + l1)!

√
2l′2 + 1

2

(l′2 − l1)!

(l′2 + l1)!

∫ 1

−1

P l1
l2

(x)P l1
l′2

(x)dx

(7.7)
= δ

l′2
l2

and if l2 6= l′2, then (2.13)3 vanishes.
In general, if li = l′i for i ∈ {1, · · · , n− 1},∫ π

0
2P

ln−1

ln (θn)2P
ln−1

l′n
(θn) sin θndθn

(7.12)
=

√
2ln + n− 1

2

(ln + ln−1 + n− 2)!

(ln − ln−1)!

√
2l′n + 1

2

(l′n + ln−1 + n− 2)!

(l′n − ln−1)!

·
∫ π

0

P
−(ln−1+n−2

2 )
ln+n−2

2

(θn)P
−(ln−1+n−2

2 )
l′n+n−2

2

(θn) sin θndθn

(7.9)
=

√
2ln + n− 1

2

(ln − ln−1)!

(ln + ln−1 + n− 2)!

√
2l′n + 1

2

(l′n − ln−1)!

(l′n + ln−1 + n− 2)!

·
∫ π

0

P
−(ln−1+n−2

2 )
ln+n−2

2

(θn)P
−(ln−1+n−2

2 )
l′n+n−2

2

(θn) sin θndθn

x=cos θn=

√
2ln + n− 1

2

(ln − ln−1)!

(ln + ln−1 + n− 2)!

√
2l′n + 1

2

(l′n − ln−1)!

(l′n + ln−1 + n− 2)!

·
∫ 1

−1

P
−(ln−1+n−2

2 )
ln+n−2

2

(x)P
−(ln−1+n−2

2 )
l′n+n−2

2

(x)dx

(7.7)
= δ

l′n
ln

;

and this proves (2.13)3.

7.0.3.3 The Yl seen as homogeneous polynomials

The next proposition uses the equality (see section 7.0.4 for its proof)

hP
m

l (θ) = (sin θ)m P̃
−(m+h−2

2 )
l+h−2

2

(cos θ) ≡ (sin θ)m
{

[cos θ]l−m + [cos θ]l−m−2 + · · ·
}
,

(7.13)
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which is true up to any multiplicative constant before every power of cos θ and
sin θ.

Proposition 7.0.1 Every D-dimensional spherical harmonic Yl can be written
as a homogeneous polynomial of degree l in the th variables.

Proof. This proof is given by induction over D; if D = 3 and m ≥ 0 [the assump-
tion m < 0 is essentially equivalent, because of (7.9)], then (7.13) implies

2P
m

l (θ2) = (sin θ2)m
[
(cos θ2)l−m + (cos θ2)l−m−2 + (cos θ2)l−m−4 + · · ·

]
,

so

Y m
l (θ2, θ1) = 2P

m

l (θ2) eimθ1 = (t1 + it2)m

·
[
(t3)l−m + (t3)l−m−2 (t1t1 + t2t2 + t3t3) + (t3)l−m−4 (t1t1 + t2t2 + t3t3)2 + · · ·

]
;

which means that the claim is true for D = 3.

Let D > 3 and assume that the claim is true for D − 1, then there exists
P̂ld−1,··· ,l1 , a suitable homogeneous polynomial of degree ld−1 in the t1, · · · , td vari-
ables, such that

Yld−1,··· ,l1 =
d−1∏
h=2

hP
lh−1

lh
(θh) · eil1θ1 = P̂ld−1,··· ,l1 (t1, · · · , td) .

On the other hand, the polar system of coordinates (7.1) depends on the dimen-
sion of the carrier space, and then, in RD,

d−1∏
h=2

hP
lh−1

lh
(θh) · eil1θ1 = (sin θd)

ld−1 P̂ld−1,··· ,l1 (t1, · · · , td) ,

for the same P̂ .

This,

dP
ld−1

ld
(θd) = (sin θd)

ld−1

[
(cos θd)

l−ld−1 + (cos θd)
l−ld−1−2 + (cos θd)

l−ld−1−4 + · · ·
]

= (sin θd)
ld−1

[
(tD)l−ld−1 + (tD)l−lD−1−2 (t1t1 + · · ·+ tDtD)

+ (tD)l−ld−1−4 (t1t1 + · · ·+ tDtD)2 + · · ·
]

and (2.11) imply the claim.
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7.0.3.4 The Yl are a basis of L2
(
Sd
)

Let

• PDl be the vector space of polynomials in the x1, · · · , xD variables of degree
at most l;

• QDl be the vector space of homogeneous polynomials in the x1, · · · , xD
variables of degree l;

• T Dl be the vector space of homogeneous harmonic polynomials in the x1, · · · , xD
variables of degree l (the q ∈ QDl fulfilling ∆q = 0);

• P̃Dl , Q̃Dl and T̃ Dl be the restriction to the sphere Sd of PDl , QDl and T Dl ,
respectively;

•

Ωl,D :=
l⊕

m=0

T̃ Dm , Ω̂l,D :=
l⊕

m=0

Vm,D. (7.14)

The goal is to show that

∀f ∈ L2
(
Sd
)
,∀ε > 0∃l ∈ N0,∃g ∈ Ω̂l,D such that ‖f − g‖2 < ε. (7.15)

The density of C0
(
Sd
)

in L2
(
Sd
)

implies that it is sufficient to show (7.15) for
a generic continuous function on the unit sphere; on the other hand, from the
Stone-Weierstrass theorem it follows that the function f can be replaced with a
polynomial, without loss of generality. According to this and

PDl =
l⊕

m=0

QDm

it remains to show that every homogeneous polynomial can be approximated by
the harmonic homogeneous ones, and then that Ωl,D ≡ Ω̂l,D ∀l, D.

In order to do this, let

L : p(x1, · · · , xD) ∈ PDl −→
(
x2

1 + · · ·+ x2
D

)
p(x1, · · · , xD)PDl+2,

and define in this way an internal product in PDl :

〈xn1
1 · · ·x

nD
D , xm1

1 · · ·x
mD
D 〉l := (n1)! · · · (nD)! if n1 = m1, · · · , nD = mD,

0 otherwise.
L is linear and

〈L[p], q〉l+2 = 〈p,∆q〉l ∀p ∈ PDl and q ∈ PDl+2,
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which means that L∗ = ∆; then

QDl+2 = L
(
QDl
)
⊕Ker (L∗) = r2QDl ⊕ T Dl+2.

This implies (the dimension of QDl is the the number of ways to sample l ele-
ments from a set of D elements allowing for duplicates, but disregarding different
orderings)

dim
(
T Dl
)

= dim
(
QDl
)
− dim

(
QDl−2

)
=

(
D + l − 1

l

)
−
(
D + l − 3

l − 2

)
=

(
D + l − 3

l − 2

)
(D + 2l − 2)(D − 1)

l(l − 1)

=

(
D + l − 3

l − 1

)
D + 2l − 2

l
,

(7.16)

and also that

PDl = T Dl ⊕ r2T Dl−2 ⊕ r4T Dl−4 ⊕ · · · =⇒ Q̃Dl = T̃ Dl ⊕ T̃ Dl−2 ⊕ T̃ Dl−4 ⊕ · · · ,

in other words, every homogeneous polynomial on the sphere is a linear combi-
nation of homogeneous harmonic polynomials.

Furthermore,

h ∈ T Dl =⇒ p = rlq, ∆p = 0 and with q ∈ T̃ Dl ;

this and (7.4)1 imply
L2q = l(l +D − 2)q.

Then, both q ∈ T̃ Dl and Yl are eigenfunctions of L2 with eigenvalue l(l+D−2)
and homogeneous polynomials in the th variables of degree l; this and (7.14) imply

that Ωl,D ≡ Ω̂l,D ∀l, D is equivalent to the proof of the following

Theorem 7.0.1
T̃ D
l

= Vl,D ∀l ∈ N0, ∀D ∈ N. (7.17)

Proof. This proof is by induction on the dimension D of the carrier space RD.
When D = 3,

dim
(
T̃ 3
l

)
= dim

(
T 3
l

) (7.16)
=

(
l

l − 1

)
2l + 1

l
= 2l + 1,

and

Vl,D
(2.14)
= span

{
Yl : l ≡ l ≥ ld−1 ≥ · · · ≥ l2 ≥ |l1|, li ∈ Z∀i

}
=span

{
Y m
l

: |m| ≤ l,m ∈ Z
}
,
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so (7.17) is true when D = 3.
Assume that it is true for d, this means that

dimVld−1,d =

(
D + ld−1 − 4

ld−1 − 1

)
D + 2ld−1 − 3

ld−1

; (7.18)

this, the hockey stick identity (see [56] formula (2))(
n+ 1

r + 1

)
=

n∑
i=r

(
i

r

)
=

n∑
i=r

i!

(i− r)!r!
m=i−r

=
n−r∑
m=0

(m+ r)!

m!r!
=

n−r∑
m=0

(
m+ r

m

)
n=a+r
=⇒

a∑
m=0

(
m+ r

m

)
=

(
a+ r + 1

r + 1

)
(7.19)

and (7.11) imply

dimVl,D =
l∑

m=0

dimVm,d
(7.18)
=

l∑
m=0

(
D +m− 4

m− 1

)
D + 2m− 3

m

=
l∑

m=0

(D +m− 4)!

(D − 3)!(m− 1)!

D + 2m− 3

m

=
l∑

m=0

(D +m− 4)!

(D − 4)!m!
+ 2

l∑
m=0

m
(D +m− 4)!

(D − 3)!m!

=
l∑

m=0

(
D − 4 +m

m

)
+ 2

l∑
m=1

(
D − 4 +m

m− 1

)

=
l∑

m=0

(
D − 4 +m

m

)
+ 2

l−1∑
n=0

(
D − 3 + n

n

)
(7.19)
=

(
l +D − 4 + 1

D − 4 + 1

)
+ 2

(
l − 1 +D − 3 + 1

D − 3 + 1

)
=

(
D + l − 3

D − 3

)
+ 2

(
D + l − 3

D − 2

)
=

(D + l − 3)!

(D − 3)!l!
+ 2

(D + l − 3)!

(D − 2)!(l − 1)!

=

(
D + l − 3

l − 1

)
2l +D − 2

l
= dim T̃ D

l
,

so the proof is finished.

According to this last proof



119

• The spherical harmonics Yl are the harmonic homogeneous polynomials on
the unit sphere Sd;

• The spherical harmonics are an orhonormal basis of L2
(
Sd
)
;

• The collection of operators {L1,2, C2, · · · , CD} is a CSCO for theL2-eigenfunctions
in L2

(
Sd
)
;

• The dimension of HΛ,D coincides with the one of T D+1
Λ (and then also with

the one of VΛ,D+1), so

dimHΛ,D =

(
D + Λ− 2

Λ− 1

)
D + 2Λ− 1

Λ
. (7.20)

• Every Vl,D is the representation space of a SO(D)-irrep, the one with L2 ≡
l(l +D − 2)I, and

Vl,D is isomorphic to
l⊕

m=0

Vm,d if D > 3,

while Vl,3 is isomorphic to
l⊕

m=−l

Vm,2;

once one defines Vm,2 as the representation space of the SO(2)-irrep, the
one with L1,2 ≡ mI.

7.0.4 The associated Legendre function of first kind

In this section L, l, h ∈ N0 and the behavior of hP
l

L (θ) is investigated, in order
to prove the regularity of gn−1(z) in (7.10).

The equations (7.9) and (7.12) imply that hP
l

L (θ) basically coincides (up to
a multiplicative constant, depending on L, l and h) with

[sin θ]
2−h

2 P
l+h−2

2

L+h−2
2

(cos θ)

where P s
r is the associated Legendre function of first kind, L + h−2

2
(and also

l + h−2
2

) is integer if and only if h is even, while it is half-integer if and only if h
is odd; according to this, one has to analyze the following two cases.

7.0.4.1 The case h even

When h is even, then from eq. (6) pag. 148 and eq. (17) pag. 151 in [43]

Pm
l (x) = (−1)m(1− x2)

m
2
dmPl(x)

dxm
, Pl(x) =

1

2ll!

dl

dxl
(x2 − 1)l (7.21)
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it follows (in the next equations there is not any multiplicative constant, depend-
ing on the indices of P , because they are not relevant in this case, except when
that constant is 0)

P
−(l+h−2

2
)

L+h−2
2

(cos θ) = (sin θ)l+
h−2

2 P̃
l+h−2

2

L+h−2
2

(cos θ) ,

where P̃
l+h−2

2

L+h−2
2

(cos θ) is a polynomial of degree L − l in cos θ which does not

contain any terms of degree L− l − (2n+ 1), with n ∈ N0; so,

hP
l

L (θ) = (sin θ)l P̃
l+h−2

2

L+h−2
2

(cos θ) .

In addition, from (7.9) and (7.21) it follows that the highest coefficient multiplying
a power of cos θ in P l

L (cos θ), when L ≥ |l| and L, l ∈ Z is

(2L)!

2LL!

L≤Λ

≤ (2Λ)!

2ΛΛ!
< 2Λ [(2Λ + 1)!!]2 .

7.0.4.2 The case h odd

In [43] eq. (7) pag. 122 there is another explicit expression of the associated
Legendre function of first kind (pay attention to the different fonts P and P,
while here F is the Gauss hypergeometric function)

P l
L(z) =

2l

Γ(1− l)

(
z + 1

z − 1

) l
2

F

(
1− l + L,−l − L, 1− l, 1− z

2

)
=

2l

Γ(1− l)
1

(z2 − 1)
l
2

F

(
1− l + L,−l − L, 1− l, 1− z

2

)
,

(7.22)

while in [43] eq. (5) pag. 143 there is the following definition

Pl
L(x) := e

1
2
ilπP l

L(x+ i0). (7.23)

So, putting together (7.22) and (7.23),

Pl
L(x) = e

1
2
ilπ 2l

Γ(1− l)
1

(x2 − 1)
l
2

F

(
1− l + L,−l − L, 1− l, 1− x

2

)
=

2l

Γ(1− l)
1

(1− x2)
l
2

F

(
1− l + L,−l − L, 1− l, 1− x

2

)
;

(7.24)

in this thesis there the P font is always used, but this is only a stylistic choice,
in fact it is always referring to this ‘real’ function P of (7.24).
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In addition, from [43] p. 161 (12)-(14) it follows

√
1− x2P l

L(x) =
1

2L+ 1

[
(L− l + 1)(L− l + 2)P l−1

L+1(x)− (L+ l − 1)(L+ l)P l−1
L−1(x)

]
,

√
1− x2P l

L(x) =
1

2L+ 1

[
−P l+1

L+1(x) + P l+1
L−1(x)

]
,

xP l
L(x) =

1

2L+ 1

[
(L− l + 1)P l

L+1(x) + (L+ l)P l
L−1(x)

]
;

(7.25)

so, if L = l = 1
2
, eq. (11) p. 101 in [43]

cos az = F

(
1

2
a,−1

2
a,

1

2
, (sin z)2

)
,

implies

P
1
2
1
2

(cos θ) =

√
2

Γ
(

1
2

) 1√
sin θ

F

(
1,−1,

1

2
,
1− cos θ

2

)
=

√
2

π

1√
sin θ

F

(
1,−1,

1

2
, sin2 θ

2

)
=

√
2

π

cos θ√
sin θ

.

(7.26)

If L = −l = 1
2
, then eq. (4) p. 101, eq. (18) p. 102 and eq. (3) p.105 in [43]

F (−a, b, b, z) = (1 + z)a , F (a, b, c, z) = F (b, a, c, z),

F (a, b, c, z) = (1− z)−aF

(
a, c− b, c, z

z − 1

)
,

imply

F

(
2, 0,

3

2
,
1− x

2

)
=

(
1− 1− x

2

)−2

F

(
2,

3

2
,
3

2
,

1−x
2

1−x
2
− 1

)
=

(
1 + x

2

)−2

F

[
−(−2),

3

2
,
3

2
,−
(
−

1−x
2

−1−x
2

)]
=

(
1 + x

2

)−2(
1−

1−x
2

−1−x
2

)−2

=

(
1 + x

2

)−2(
1

1+x
2

)−2

= 1;

and then

P
− 1

2
1
2

(cos θ) =
2−

1
2

Γ
(

3
2

)√sin θF

(
2, 0,

3

2
,
1− cos θ

2

)
=

√
2

π

√
sin θ. (7.27)
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Once calculated these P
± 1

2
1
2

, (7.25) leads to

cos θP
− 1

2
1
2

(cos θ) = P
− 1

2
3
2

(cos θ) =

√
2

π
cos θ
√

sin θ (7.28)

and

sin θP
− 1

2
1
2

(cos θ) =
1

2
[2 · 3]P

− 3
2

3
2

(cos θ) =

√
2

π
sin θ
√

sin θ; (7.29)

for completeness, according to (7.9),

P
3
2
3
2

(cos θ) = 2

√
2

π
sin θ
√

sin θ , P
1
2
3
2

(cos θ) = 2

√
2

π
cos θ
√

sin θ. (7.30)

At this point, in order to conclude the proof of the regularity of gn−1(z) in (7.10),
it is necessary the following

Proposition 7.0.2 Let L and l be half-integer and positive, 0 ≤ l ≤ L, then

P−lL (cos θ) = (sin θ)l P̃−lL (cos θ) ,

where P̃−lL (cos θ) is a polynomial of degree L− l in cos θ which does not contain
any term of degree L− l − (2h+ 1), with h ∈ N0.

Proof. This is proved by induction over L. When L = 1
2

and L = 3
2
, (7.26)-(7.29)

imply that the claim is true in these two cases. Let L = 1
2

+ n, with 2 ≤ n ∈ N
and assume that the claim is true for n−1, then (7.25)2 implies, if n > n′+1 ∈ N
and n′ ∈ N0,

sin θP
−[ 1

2
+(n′−1)]

1
2

+(n−1)
= P

−[ 1
2

+n′]
1
2

+n
+ P

−[ 1
2

+n′]
1
2

+(n−2)
,

then, from

sin θP
−[ 1

2
+(n′−1)]

1
2

+(n−1)
(cos θ) = (sin θ)

1
2

+n′ P̃
−[ 1

2
+(n′−1)]

1
2

+(n−1)
(cos θ)

and

P
−[ 1

2
+n′]

1
2

+(n−2)
(cos θ) = (sin θ)

1
2

+n′ P̃
−[ 1

2
+n′]

1
2

+(n−2)
(cos θ) ,

it follows that also

P
−[ 1

2
+n′]

1
2

+n
(cos θ) = (sin θ)

1
2

+n′ P̃
−[ 1

2
+n′]

1
2

+n
(cos θ) ,

where P̃
−[ 1

2
+n′]

1
2

+n
is a polynomial of degree n − n′ in cos θ which does not contain

any term of degree n− n′ − (2h+ 1), with h ∈ N0.
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On the other hand, (7.25)3 implies

cos θP
−[ 1

2
+(n−1)]

1
2

+(n−1)
(cos θ) = P

−[ 1
2

+(n−1)]
1
2

+n
(cos θ) + 0 = P

−[ 1
2

+(n−1)]
1
2

+n
(cos θ) ;

so

P
−[ 1

2
+(n−1)]

1
2

+n
(cos θ) = (sin θ)

1
2

+(n−1) P̃
−[ 1

2
+(n−1)]

1
2

+n
(cos θ) ,

where P̃
−[ 1

2
+(n−1)]

1
2

+n
(cos θ) is a polynomial in cos θ of degree 1.

Furthermore, (7.25)1 implies

sin θP
−[ 1

2
+(n−1)]

1
2

+(n−1)
(cos θ) = P

−[ 1
2

+n]
1
2

+n
(cos θ) = (sin θ)

1
2

+n P̃
−[ 1

2
+(n−1)]

1
2

+(n−1)
(cos θ) ,

so the claim is true also for n, because this last equality means that

P
−[ 1

2
+ñ]

1
2

+n
(cos θ) = [sin θ]

1
2

+ñ P̃
−[ 1

2
+ñ]

1
2

+n
(cos θ) ,

where P̃
−[ 1

2
+ñ]

1
2

+n
(cos θ) is a polynomial of degree n − ñ in cos θ which does not

contain any term of degree n− ñ− (2h+ 1), with h ∈ N0.

It is important to underline that the hypothesis l ≥ 0 in the last proof is not
stringent, in fact the same result can be proved also when l is negative, because
of (7.9).

In addition, from (7.26)-(7.30) it turns out that the highest coefficient multi-
plying a power of cos θ in P l

L (cos θ), when 3
2
≥ L ≥ |l| and L, l ∈ Z

2
is always less

or equal that 2L+ 1; on the other hand, from (7.25) it follows

P l−1
L+1(x) =

2L+ 1

(L− l + 1)(L− l + 2)

√
1− x2P l

L(x) +
(L+ l − 1)(L+ l)

(L− l + 1)(L− l + 2)
P l−1
L−1(x),

P l+1
L+1(x) = −

√
1− x2(2L+ 1)P l

L(x) + P l+1
L−1(x),

P l
L+1(x) =

2L+ 1

L− l + 1
xP l

L(x)− L+ l

L− l + 1
P l
L−1(x);

and then that the highest coefficient multiplying a power of cos θ in P l′
L+1 (cos θ)

is less then [2(L+ 1) + 1]2 times the sum of the highest coefficient multiplying a
power of cos θ in P l′

L (cos θ).
According to this, by recursion one has that the highest coefficient multiplying

a power of cos θ in P l
L (cos θ) is

c2L [(2L+ 1)!!]2
L≤Λ

≤ 2Λ [(2Λ + 1)!!]2 .
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7.0.5 The square-integrability of ψl,D

In this section we do the proof that that every ψl,D is square-integrable and also
the explicit calculation of Ml,D.

The integral ∫
RD
|ψl,D|2 dx

can be factorized in this way:∫
RD
|ψl,D|2 dx = |Ml,D|2

(∫ +∞

0

[g0,l,D(r)]2

rd
rddr

)

·
[∫

Sd
|Yl|2

(
sind−1 θd sind−2 θd−1 · · · sin θ2

)
dθ1dθ2 · · · dθd

]
(2.13)2

= |Ml,D|2
∫ +∞

0

[g0,l,D(r)]2 dr.

So, proceeding as in section 6.5 of [13],∫
RD
|ψl,D|2 dx = 1⇐⇒Ml,D =

8
√
kl,D

4
√
π
. (7.31)

7.0.6 The action of th on Yl

First of all

Definition 7.0.1 Let L ≥ |l| and 2 ≤ j ∈ N, then

A (L, l, j) :=

√
(L+ l + j − 1)(L+ l + j)

(2L+ j − 1)(2L+ j + 1)
,

B (L, l, j) := −

√
(L− l − 1)(L− l)

(2L+ j − 1)(2L+ j − 3)
,

C (L, l, j) := −

√
(L− l + 2)(L− l + 1)

(2L+ j − 1)(2L+ j + 1)
,

D (L, l, j) :=

√
(L+ l + j − 2)(L+ l + j − 3)

(2L+ j − 1)(2L+ j − 3)
,

F (L, l, j) :=

√
(L+ l + j − 1)(L− l + 1)

(2L+ j − 1)(2L+ j + 1)
,

G (L, l, j) :=

√
(L− l)(L+ l + j − 2)

(2L+ j − 1)(2L+ j − 3)
.

(7.32)
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They fulfill

A(L, l, j) = D(L+ 1, l + 1, j), B(L, l, j) = C(L− 1, l + 1, j),

F (L, l, j) = G(L+ 1, l, j), F (L, l, j)A(L+ 1, l, j) = A(L, l, j)F (L+ 1, l + 1, j),

G(L, l, j)B(L− 1, l, j) = B(L, l, j)G(L− 1, l + 1, j),

(7.33)

but it is also important to point out something about the generalized associated
Legendre functions P s

r .

From (7.25) and (7.32), it follows

[sin θ] jP
l

L (θ) =

√
2L+ j − 1

2

√
(L+ l + j − 2)!

(L− l)!
[sin θ]

2−j
2 [sin θ]P

−(l+ j−2
2

)

L+ j−2
2

(cos θ)

=

√
2L+ j − 1

2

√
(L+ l + j − 2)!

(L− l)!
[sin θ]

2−j
2

1

2L+ j − 1

·
{

(L+ l + j − 1)(L+ l + j)P
−[(l+1)+ j−2

2
]

[(L+1)+ j−2
2

]
(cos θ)

−(L− l)(L− l − 1)P
−[(l+1)+ j−2

2
]

[(L−1)+ j−2
2

]
(cos θ)

}
=

√
2L+ j + 1

2

√
(L+ l + j)!

(L− l)!
[sin θ]

2−j
2

· P−[(l+1)+ j−2
2

]

[(L+1)+ j−2
2

]
(cos θ)

√
(L+ l + j − 1)(L+ l + j)

(2L+ j − 1)(2L+ j + 1)

−
√

2L+ j − 3

2

√
(L+ l + j − 2)!

(L− l − 2)!
[sin θ]

2−j
2

· P−[(l+1)+ j−2
2

]

[(L−1)+ j−2
2

]
(cos θ)

√
(L− l − 1)(L− l)

(2L+ j − 1)(2L+ j − 3)

=

√
(L+ l + j − 1)(L+ l + j)

(2L+ j − 1)(2L+ j + 1)
jP

l+1

L+1(θ)

+

[
−

√
(L− l − 1)(L− l)

(2L+ j − 1)(2L+ j − 3)

]
jP

l+1

L−1(θ)

= A(L, l, j)jP
l+1

L+1(θ) +B(L, l, j)jP
l+1

L−1(θ);

(7.34)
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[sin θ] jP
l

L (θ) =

√
2L+ j − 1

2

√
(L+ l + j − 2)!

(L− l)!
[sin θ]

2−j
2 [sin θ]P

−(l+ j−2
2

)

L+ j−2
2

(cos θ)

=

√
2L+ j − 1

2

√
(L+ l + j − 2)!

(L− l)!
[sin θ]

2−j
2

1

2L+ j − 1

·
{
−P−[(l−1)+ j−2

2
]

[(L+1)+ j−2
2

]
(cos θ) + P

−[(l−1)+ j−2
2

]

[(L−1)+ j−2
2

]
(cos θ)

}
= −

√
2L+ j + 1

2

√
(L+ l + j − 2)!

(L− l + 2)!
[sin θ]

2−j
2

· P−[(l−1)+ j−2
2

]

[(L+1)+ j−2
2

]
(cos θ)

√
(L− l + 2)(L− l + 1)

(2L+ j − 1)(2L+ j + 1)

+

√
2L+ j − 3

2

√
(L+ l + j − 4)!

(L− l)!
[sin θ]

2−j
2

· P−[(l−1)+ j−2
2

]

[(L−1)+ j−2
2

]
(cos θ)

√
(L+ l + j − 2)(L+ l + j − 3)

(2L+ j − 1)(2L+ j − 3)

=

[
−

√
(L− l + 2)(L− l + 1)

(2L+ j − 1)(2L+ j + 1)

]
jP

l−1

L+1(θ)

+

√
(L+ l + j − 2)(L+ l + j − 3)

(2L+ j − 1)(2L+ j − 3)
jP

l−1

L−1(θ)

= C(L, l, j)jP
l−1

L+1(θ) +D(L, l, j)jP
l−1

L−1(θ);

(7.35)

[cos θ] jP
l

L (θ) =

√
2L+ j − 1

2

√
(L+ l + j − 2)!

(L− l)!
[sin θ]

2−j
2 [cos θ]P

−(l+ j−2
2

)

L+ j−2
2

(cos θ)

=

√
2L+ j − 1

2

√
(L+ l + j − 2)!

(L− l)!
[sin θ]

2−j
2

1

2L+ j − 1{
(L+ l + j − 1)P

−[(l)+ j−2
2

]

[(L+1)+ j−2
2

]
(cos θ) + (L− l)P−[(l)+ j−2

2
]

[(L−1)+ j−2
2

]
(cos θ)

}
=

[√
(L+ l + j − 1)(L− l + 1)

(2L+ j − 1)(2L+ j + 1)

]
jP

l

L+1(θ)

+

[√
(L− l)(L+ l + j − 2)

(2L+ j − 1)(2L+ j − 3)

]
jP

l

L−1(θ)

= F (L, l, j)jP
l

L+1(θ) +G(L, l, j)jP
l

L−1(θ).

(7.36)



127

These last relations are fundamental, in fact they are used in order to under-
stand the action of a coordinate th (seen as a multiplication operator) on a D-
dimensional spherical harmonic Yl.

Remark 3 Let t± := x1±ix2√
2r

and tν := xν
r

, when ν ∈ {1, 2, · · · , D}; obviously

t+t−+ t−t+ = (t1)2 + (t2)2, so (7.34)-(7.36) can be used to write thYl in terms of
other D-dimensional spherical harmonics, for instance

t+Yl = sin θd sin θd−1 · · · sin θ2

[
d∏

n=2

nP
ln−1

ln (θn)

]
1√
2π
ei(l1+1)θ1 ;

then in the product sin (θ2) · 2P
l1
l2

(θ2) it is necessary to use (7.34), because t+
changes eil1θ1 to ei(l1+1)θ1, so

t+Yl = sin θd sin θd−1 · · · sin θ3

[
A (l2, l1, 2) 2P

l1+1
l2+1 (θ1) +B (l2, l1, 2) 2P

l1+1
l2−1 (θ1)

]
·

[
d∏

n=3

nP
ln−1

ln (θn)

]
1√
2π
ei(l1+1)θ1

and so on with the remaining factors sin θj · jP
l′j−1

l′j
(θj).

Of course, this last procedure can be repeated also for t− and then for every
tν with ν ∈ {3, · · · , D}, while the actions of t1 and t2 can be recovered from the
ones of t+ and t−. According to this, let

Rh,D (l; l′) := 〈Yl′ , thYl〉 (7.37)

and this definition implies that, in general

tνYl =
∑

l′j :|lj−l′j |=1

for j=ν−1,··· ,d

Rν,D (l; l′ν)·Yl′ν , where l′ν := (l′, l′d−1, · · · , l′ν−1, lν−2, · · · , l1) .

(7.38)
Remark 3 and (7.37) suggest that every Rν,D can be written as a sum of

elements, where every addend is a product of several A,B,C,D, F,G; it is im-
portant to note that there are some simple rules, reported in the the next lines,
which help to calculate every Rν,D.

The first rule is that the generic term of a Rν,D is always written in an ‘ordered’
way, in fact the factors appear in this ‘order’:

Rν,D(· · · ; · · · ) = · · ·+ · · ·D(lj+2, lj+1, j + 2)B(lj+1, lj, j + 1)A(lj, lj−1, j) · · ·+ · · ·

in other words a factor having third argument j+ 1 is always right-multiplied by
a factor having third argument j and always left-multiplied by a factor having
thirs argument j + 2.



128 CHAPTER 7. APPENDIX A

Remark 4 The other rules are these ones:

• Every A(lj, lj−1, j) is always left-multiplied by an A(lj+1, lj, j+1) or B(lj+1, lj, j+
1);

• Every B(lj, lj−1, j) is always left-multiplied by an C(lj+1, lj, j+1) or D(lj+1, lj, j+
1);

• Every C(lj, lj−1, j) is always left-multiplied by an A(lj+1, lj, j+1) or B(lj+1, lj, j+
1);

• Every D(lj, lj−1, j) is always left-multiplied by an C(lj+1, lj, j+1) or D(lj+1, lj, j+
1);

• In R1,D the first factor (from right to left) is A(l2, l1, 2), or B(l2, l1, 2), or
C(l2, l1, 2), or D(l2, l1, 2);

• In R2,D the first factor (from right to left) is A(l2, l1, 2), or B(l2, l1, 2), or
C(l2, l1, 2), or D(l2, l1, 2);

• If ν ≥ 3, in order to calculate Rν,D, it is better to start by using (7.36) with
θ = θν−1, and then go ‘backward’.

7.0.7 Proof of (2.19)1

The definition 2.3.1 (which uses the R coefficients) allows to take the relations
among the coordinates th (seen as multiplication operators) and obtain from
them some relations among the components Lh,j of the D-dimensional angular
momentum operator.

In particular,

(t1)2 + (t2)2 + · · ·+ (tD)2 = t+t− + t−t+ + (t3)2 + · · ·+ (tD)2 = 1

implies [
(t1)2 + (t2)2 + · · ·+ (tD)2]Yl = Yl; (7.39)

but (7.38) implies also that [here Z (l, l′) are suitable coefficients, which can be
obtained from the Rs][

(t1)2 + (t2)2 + · · ·+ (tD)2]Yl =
∑

j=1,··· ,d
|lj−l′j|≤2

Z (l, l′)Yl′ ; (7.40)

in addition, (7.39) and (7.40) imply Z (l, l′) = 0 if there is at least one j such
that lj 6= l′j. On the other hand, it is obvious that

Z (l, l) =: Z (l) = 1; (7.41)

so only the Z (l) are relevant.
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Remark 5 Equations (7.34)-(7.36) imply that

• if Rh,D (· · · , lj, lj−1, · · · ; · · · , l′j, l′j−1, · · · ) contains a factor A(lj, lj−1, j),
then l′j = lj + 1 and l′j−1 = lj−1 + 1;

• if Rh,D (· · · , lj, lj−1, · · · ; · · · , l′j, l′j−1, · · · ) contains a factor B(lj, lj−1, j),
then l′j = lj − 1 and l′j−1 = lj−1 + 1;

• if Rh,D (· · · , lj, lj−1, · · · ; · · · , l′j, l′j−1, · · · ) contains a factor C(lj, lj−1, j),
then l′j = lj + 1 and l′j−1 = lj−1 − 1;

• if Rh,D (· · · , lj, lj−1, · · · ; · · · , l′j, l′j−1, · · · ) contains a factor D(lj, lj−1, j),
then l′j = lj − 1 and l′j−1 = lj−1 − 1;

• if Rh,D (· · · , lj, lj−1, · · · ; · · · , l′j, l′j−1, · · · ) contains a factor F (lj, lj−1, j),
then l′j = lj + 1 and l′j−1 = lj−1;

• if Rh,D (· · · , lj, lj−1, · · · ; · · · , l′j, l′j−1, · · · ) contains a factor G(lj, lj−1, j),
then l′j = lj − 1 and l′j−1 = lj−1;

in other words, these A,B,C,D, F,G express that an index is raising or lowering,
as in remark 3.

Furthermore

1 =t+t− + t−t+ + (t3)2 + · · ·+ (tD)2

= [cos θd]
2 + [sin θd]

2 {[cos θd−1]2 + [sin θd−1]2
{
· · ·
{

[cos θ2]2 + [sin θ2]2
}
· · ·
}}

(7.42)

implies{
[cos θ2]2 + [sin θ2]2

}
Yl =

{
[F (l2, l1, 2)]2 + [A(l2, l1, 2)]2 + [C(l2, l1, 2)]2

+ [G(l2, l1, 2)]2 + [B(l2, l1, 2)]2 + [D(l2, l1, 2)]2
}

· Yl
=: {Z1,2 (l2) + Z2,2 (l2)}Yl;

(7.43)

while remark 4 implies{
[cos θ3]2 + [sin θ3]2

{
[cos θ2]2 + [sin θ2]2

}}
Yl ={

[F (l3, l2, 3)]2 + [A(l3, l2, 3)]2 Z1,2 (l2) + [C(l3, l2, 3)]2 Z2,2 (l2)

+ [G(l3, l2, 3)]2 + [B(l3, l2, 3)]2 Z1,2 (l2) + [D(l3, l2, 3)]2 Z2,2 (l2)
}

· Yl
=: {Z1,3 (l3, l2) + Z2,3 (l3, l2)}Yl;

(7.44)
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and so on with the other elements of (7.42), so{
[cos θj]

2 + [sin θj]
2 {[cos θj−1]2 + [sin θj−1]2

{
· · ·
{

[cos θ2]2 + [sin θ2]2
}}}}

Yl ={
[F (lj, lj−1, j)]

2 + [A(lj, lj−1, j)]
2 Z1,j−1 (lj−1, lj−2, · · · , l2)

+ [C(l3, l2, 3)]2 Z2,j−1 (lj−1, lj−2, · · · , l2) + [G(lj, lj−1, j)]
2

+ [B(lj, lj−1, j)]
2 Z1,j−1 (lj−1, lj−2, · · · , l2) + [D(l3, l2, 3)]2 Z2,j−1 (lj−1, lj−2, · · · , l2)

}
· Yl

=: {Z1,j (lj, lj−1, · · · , l2) + Z2,j (lj, lj−1, · · · , l2)}Yl.
(7.45)

It is important to underline that every Zh,j defined above does not depend
on the dimension D of the ambient space, and this is a direct consequence of the
factorization in (7.11).

A crucial result of this section is the following

Proposition 7.0.3

Z1,d (l) =
l + d− 1

2l + d− 1
, Z2,d (l) =

l

2l + d− 1
. (7.46)

Proof. The proof is by induction on the dimension D of the carrier space RD. If
D = 3, then

t+Yl2,l1 = A(l2, l1, 2)Yl2+1,l1+1 +B(l2, l1, 2)Yl2−1,l1+1,

t−Yl2,l1 = C(l2, l1, 2)Yl2+1,l1−1 +D(l2, l1, 2)Yl2−1,l1−1,

t3Yl2,l1 = F (l2, l1, 2)Yl2+1,l1 +G(l2, l1, 2)Yl2−1,l1 ;

and

[
t+t− + t−t+ + (t3)2]Yl2,l1 =

{
1

2
[A(l2, l1, 2)]2 +

1

2
[B(l2, l1, 2)]2 +

1

2
[C(l2, l1, 2)]2 +

1

2
[D(l2, l1, 2)]2 + [F (l2, l1, 2)]2 + [G(l2, l1, 2)]2

}
Yl2,l1 ;

so

Z1,2 (l2) =
l2 + 3− 3

2l2 + 3− 3
=

1

2
, Z2,2 (l2) =

l2
2l2 + 3− 3

=
1

2
,

then (7.46) is true when D = 3. Let D > 3 and assume that (7.46) is true for
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D − 1, from (7.45) it follows

Z1,d (l, ld−1, · · · , l2) = [F (l, ld−1, d)]2

+ [A(l, ld−1, d)]2 Z1,d−1 (ld−1, ld−2, · · · , l2)

+ [C(l, ld−1, d)]2 Z2,d−1 (ld−1, ld−2, · · · , l2)

=
(l + ld−1 + d− 1)(l − ld−1 + 1)

(2l + d− 1)(2l +D)

+
(l + ld−1 + d− 1)(l + ld−1 + d)

(2l + d− 1)(2l +D)

ld−1 + d− 2

2ld−1 + d− 2

+
(l − ld−1 + 2)(l − ld−1 + 1)

(2l + d− 1)(2l +D)

ld−1

2ld−1 + d− 2

=
l + d− 1

2l + d− 1
,

(7.47)

and

Z2,d (l, ld−1, · · · , l2) = [G(l, ld−1, d)]2

+ [B(l, ld−1, d)]2 Z1,d−1 (ld−1, ld−2, · · · , l2)

+ [D(l, ld−1, d)]2 Z2,d−1 (ld−1, ld−2, · · · , l2)

=
(l − ld−1)(l + ld−1 + d− 2)

(2l + d− 1)(2l +D − 4)

+
(l − ld−1 − 1)(l − ld−1)

(2l + d− 1)(2l +D − 4)

ld−1 + d− 2

2ld−1 + d− 2

+
(l + ld−1 + d− 2)(l + ld−1 +D − 4)

(2l + d− 1)(2l +D − 4)

ld−1

2ld−1 + d− 2

=
l

2l + d− 1
;

(7.48)

so the proof is finished.

It is interesting to note that, because of this last proposition,

Z1,d (l) + Z2,d (l) = 1, (7.49)

which agrees with

Yl =
[
t+t− + t−t+ + (t3)2 + · · ·+ (tD)2]Yl = {Z1,d (l) + Z2,d (l)}Yl. (7.50)

Here comes the proof of (2.19)1.
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Theorem 7.0.2 The definition 2.3.1 implies

L2Yl :=
∑

1≤i<j≤D

L2
h,jYl = l (l +D − 2)Yl. (7.51)

Proof. This proof is by induction on the dimension D of the carrier space; if
D = 2, then L2Yl1 = L2

1,2Yl1 = (l1)2Yl1 ; so (7.51) is true for D = 2. Let D > 2
and assume that (7.51) is true for D − 1, which means that∑

1≤i<j≤d

L2
h,jYl = ld−1 (ld−1 +D − 3)Yl. (7.52)

From remark 5, proposition 7.0.3 and definition 2.3.1 it follows

d∑
i=1

L2
h,DYl =

(
dl,ld−1,D

)2
Z2,d−1 (ld−1, · · · , l1)Yl

+
(
dl,ld−1+1,D

)2
Z1,d−1 (ld−1, · · · , l1)Yl

=

{
[(l + 1)(l +D − 3)− ld−1(ld−1 +D − 4)]

ld−1

2ld−1 +D − 3

}
Yl

+

{
[(l + 1)(l +D − 3)− (ld−1 + 1)(ld−1 +D − 3)]

ld−1 +D − 3

2ld−1 +D − 3

}
Yl

= [l (l +D − 2)− ld−1 (ld−1 +D − 3)]Yl.

(7.53)

The proof can be now completed because

L2Yl =
∑

1≤h<j≤D

L2
h,jYl =

∑
1≤h<j≤d

L2
h,jYl +

d∑
j=1

L2
j,DYl

(7.52)&(7.53)
= l (l +D − 2)Yl.

(7.54)

7.0.8 Proof of (2.19)2

The definition 2.3.1 is given by induction on the dimension D of the carrier space
RD, this means that, in order to prove (2.19)2, it is sufficient to show that

[Lh,D, Lj,D] = iLh,j , [Lh,j, Lj,D] =
1

i
Lh,D,

[Lh,j, Lp,D] = 0 if D 6= h, j and p 6= h, j.
(7.55)

7.0.8.1 Proof of (7.55)1

Let h < j, of course [th, tj]Yl = 0 ∀h, j, but this and (7.38) can be used to obtain
some informations about the action of [Lh,D, Lj,D] on a spherical harmonic Yl.

It is important to point out that
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Remark 6 Let 1 ≤ h < j ≤ d, then thtjYld−1,ld−2,··· ,l1 can be written as a lin-
ear combination of (D − 1)-dimensional spherical harmonics Yl′d−1,··· ,l′1 with, in
principle, |lh − l′h| ≤ 2, ∀h ≤ d− 1.

More precisely, th· on Yld−1,ld−2,··· ,l1, ‘modifies’ only the integers ld−1, · · · , lh−1,
while tj· ‘modifies’ only ld−1, · · · , lj−1, then the ‘modified’ integers from the action
of thtj·, as the ones from the action of tjth· are ld−1, · · · , lh−1 and, in particular,
|lp− l′p| ≤ 2 if p ∈ {d−1, · · · , j−1}, while |lp− l′p| = 1 if p ∈ {j−2, · · · , h−1}.

Then
0 = [th, tj]Ydl =

∑
|l′p1−lp1 |≤2

p1=d−1,··· ,j−1
|l′p2−lp2 |=1

p2=j−2,··· ,h−1

QD,h,j (dl, dl
′
h)Ydl′h , (7.56)

where

dl := (ld−1, · · · , l1) and dl
′
h := (l′d−1, · · · , l′h−1, lh−2, · · · , l1) .

Furthermore, the definition 2.3.1 implies that the action of Lh,D on Yl is
similar to the action of the coordinate th on Y

dl, the only difference is given by
the presence of the d coefficients; so

[Lh,D, Lj,D]Yl =
∑

|l′p1−lp1 |≤2
p1=d−1,··· ,j−1
|l′p2−lp2 |=1

p2=j−2,··· ,h−1

Q̃D,h,j (l, l′h)Yl′h ,

(7.57)

where
l′h := (l, l′d−1, · · · , l′h−1, lh−2, · · · , l1) .

It is necessary to prove the following

Proposition 7.0.4
Q̃D,h,j (l, l′h) = 0

if there exists at least one p ∈ {d− 1, · · · , j − 1} such that |lp − l′p| = 2.

Proof. First of all, if ld−1 6= l′d−1, for example l′d−1 = ld−1 + 2 (the case l′d−1 =
ld−1 − 2 is similar), then

Q̃D,h,j (l, l′h) = −dl,ld−1+1,Ddl,ld−1+2,DQD,h,j (l, l′h) ,

but QD,h,j (l, l′h) = 0 because of (7.56), and this implies Q̃D,h,j (l, l′h) = 0.
Furthermore, if j ≤ d − 1 and ld−1 = l′d−1, while l′d−2 = ld−2 + 2 (the case

l′d−2 = ld−2 − 2 is similar), then it must be〈
Yl′h , Lh,DLj,DYl

〉
=
[
dl,ld−1,DB (ld−1, ld−2, d− 1) dl,ld−1,DA (ld−1 − 1, ld−2 + 1, d− 1)

+dl,ld−1+1,DA (ld−1, ld−2, d− 1) dl,ld−1+1,DB (ld−1 + 1, ld−2 + 1, d− 1)
]
g (l, l′h)

=:g̃ (l, ld−1, ld−2) g (l, l′h) ,
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for a certain function g and, similarly,〈
Yl′h , Lj,DLh,DYl

〉
=
[
dl,ld−1,DB (ld−1, ld−2, d− 1) dl,ld−1,DA (ld−1 − 1, ld−2 + 1, d− 1)

+dl,ld−1+1,DA (ld−1, ld−2, d− 1) dl,ld−1+1,DB (ld−1 + 1, ld−2 + 1, d− 1)
]
g (l, l′h)

=:g̃ (l, ld−1, ld−2) g (l, l′h) ,

for the same function g, becauseQD,h,j (l, l′h) = 0; so, also in this case Q̃D,h,j (l, l′h) =
0.

In general, if there is a p ∈ {d− 1, · · · , j + 1} such that l′p−1 = lp−1 + 2 (the
case l′p−1 = lp−1 − 2 is similar), while lq = l′q ∀q ≥ p, then〈
Yl′h , Lh,DLj,DYl

〉
=g1 (l, ld−1, · · · , lp)
· [A (lp, lp−1, p)B (lp + 1, lp−1 + 1, p) +B (lp, lp−1, p)A (lp − 1, lp−1 + 1, p)]

· g2 (l, l′h) ,

and〈
Yl′h , Lj,DLh,DYl

〉
=g1 (l, ld−1, · · · , lp)
· [A (lp, lp−1, p)B (lp + 1, lp−1 + 1, p) +B (lp, lp−1, p)A (lp − 1, lp−1 + 1, p)]

· g2 (l, l′h) ,

for the same functions g1 (because lq = l′q ∀q ≥ p) and g2 [because QD,h,j (l, l′h) =

0]; so, also in this case, Q̃D,h,j (l, l′h) = 0.
Finally, if l′j−1 = lj−1 + 2 (the case l′j−1 = lj−1− 2 is similar), l′j−2 = lj−2 + 1

(also here, the case l′j−2 = lj−2 − 1 is similar), while lq = l′q ∀q ≥ j, then〈
Yl′h , Lh,DLj,DYl

〉
=g3 (l, ld−1, · · · , lj)
· [F (lj−1, lj−2, j − 1)A (lj−1 + 1, lj−2, j − 1)]

· g4 (l, l′h) ,〈
Yl′h , Lj,DLh,DYl

〉
=g3 (l, ld−1, · · · , lj)
· [A (lj−1, lj−2, j − 1)F (lj−1 + 1, lj−2 + 1, j − 1)]

· g4 (l, l′h) ,

for the same functions g3 (because lq = l′q ∀q ≥ j) and g4 [because QD,h,j (l, l′h) =

0]; so, because of (7.33), Q̃D,h,j (l, l′h) = 0.

The last proof implies

[Lh,D, Lj,D]Yl =
∑

|l′p−lp|=1
p=j−2,··· ,h−1

Q̃D,h,j (l, l′h)Yl′h , (7.58)

and from now on assume that l′p = lp ∀p ≥ j − 1, otherwise Q̃D,h,j (l, l′h) = 0.
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It is necessary to further investigate about these

Q̃D,h,j (l, l′h) when |l′p − lp| = 1, p ∈ {j − 2, · · · , h− 1}.

In order to do this, let

T 1
1 (lp, lp−1, p) := A(lp, lp−1, p)G(lp + 1, lp−1 + 1, p)− F (lp, lp−1, p)B(lp + 1, lp−1, p),

T 1
2 (lp, lp−1, p) := B(lp, lp−1, p)F (lp − 1, lp−1 + 1, p)−G(lp, lp−1, p)A(lp − 1, lp−1, p),

T 1
3 (lp, lp−1, p) := C(lp, lp−1, p)G(lp + 1, lp−1 − 1, p)− F (lp, lp−1, p)D(lp + 1, lp−1, p),

T 1
4 (lp, lp−1, p) := D(lp, lp−1, p)F (lp − 1, lp−1 − 1, p)−G(lp, lp−1, p)C(lp − 1, lp−1, p);

they fulfill

T 1
1 (lp, lp−1, p) =

√
(lp + lp−1 + p− 1)(lp − lp−1)

2lp + p− 1
=
dlp,lp−1+1,p+1

2lp + p− 1
,

T 1
2 (lp, lp−1, p) = −

√
(lp + lp−1 + p− 1)(lp − lp−1)

2lp + p− 1
= −

dlp,lp−1+1,p+1

2lp + p− 1
,

T 1
3 (lp, lp−1, p) = −

√
(lp + lp−1 + p− 2)(lp − lp−1 + 1)

2lp + p− 1
= −

dlp,lp−1,p+1

2lp + p− 1
,

T 1
4 (lp, lp−1, p) =

√
(lp + lp−1 + p− 2)(lp − lp−1 + 1)

2lp + p− 1
=

dlp,lp−1,p+1

2lp + p− 1
.

(7.59)

Similarly, for n ≥ 2, let

T n1 (lp+n−1, lp, lp−1, p) := [A(lp+n−1, lp+n−2, p+ n− 1)]2 T n−1
1 (lp+n−2, lp, lp−1, p)

+ [C(lp+n−1, lp+n−2, p+ n− 1)]2 T n−1
2 (lp+n−2, lp, lp−1, p)

=
dlp,lp−1+1,p+1

2lp+n−1 + p+ n− 2
,

T n2 (lp+n−1, lp, lp−1, p) := [B(lp+n−1, lp+n−2, p+ n− 1)]2 T n−1
1 (lp+n−2, lp, lp−1, p)

+ [D(lp+n−1, lp+n−2, p+ n− 1)]2 T n−1
2 (lp+n−2, lp−1, p)

=−
dlp,lp−1+1,p+1

2lp+n−1 + p+ n− 2
,

T n3 (lp+n−1, lp, lp−1, p) := [A(lp+n−1, lp+n−2, p+ n− 1)]2 T n−1
3 (lp+n−2, lp, lp−1, p)

+ [C(lp+n−1, lp+n−2, p+ n− 1)]2 T n−1
4 (lp+n−2, lp, lp−1, p)

=−
dlp,lp−1,p+1

2lp+n−1 + p+ n− 2
,

T n4 (lp+n−1, lp, lp−1, p) := [B(lp+n−1, lp+n−2, p+ n− 1)]2 T n−1
3 (lp+n−2, lp, lp−1, p)

+ [D(lp+n−1, lp+n−2, p+ n− 1)]2 T n−1
4 (lp+n−2, lp, lp−1, p)

=
dlp,lp−1,p+1

2lp+n−1 + p+ n− 2
.

(7.60)
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Assume (witout loss of generality) that l′j−2 = lj−2 − 1, then

Q̃D,h,j (l, l′h) =
{(
dl,ld−1+1,D

)2 {
[A(ld−1, ld−2, d− 1)]2

{
[A(ld−2, ld−3, D − 3)]2 {· · · }

+ [C(ld−2, ld−3, D − 3)]2 {· · · }
}

+ [C(ld−1, ld−2, d− 1)]2
{

[B(ld−2, ld−3, D − 3)]2 {· · · }
+ [D(ld−2, ld−3, D − 3)]2 {· · · }

}}
+
(
dl,ld−1,D

)2 {
[B(ld−1, ld−2, d− 1)]2

{
[A(ld−2, ld−3, D − 3)]2 {· · · }

+ [C(ld−2, ld−3, D − 3)]2 {· · · }
}

+ [D(ld−1, ld−2, d− 1)]2
{

[B(ld−2, ld−3, D − 3)]2 {· · · }
+ [D(ld−2, ld−3, D − 3)]2 {· · · }

}}}
·Rh,j−1

(
l|j,h, l̃′|j,h

)
,

(7.61)

where

l|j,h := (lj−2, · · · , lh−1, lh−2) , l̃′|j,h := (lj−2 − 1, · · · , l′h−1, lh−2) .

Remark 7 The {· · · } in (7.61) is such that

• every [A(lh, lh−1, h)]2 is always left-multiplied by [A(lh+1, lh, h+ 1)]2 or [B(lh+1, lh, h+ 1)]2;

• every [B(lh, lh−1, h)]2 is always left-multiplied by [C(lh+1, lh, h+ 1)]2 or [D(lh+1, lh, h+ 1)]2;

• every [C(lh, lh−1, h)]2 is always left-multiplied by [A(lh+1, lh, h+ 1)]2 or [B(lh+1, lh, h+ 1)]2;

• every [D(lh, lh−1, h)]2 is always left-multiplied by [C(lh+1, lh, h+ 1)]2 or [D(lh+1, lh, h+ 1)]2;

• the most ‘internal’ term of {· · · } is Tp (lj−1, lj−2, j), with p ∈ {1, 2, 3, 4};

• every T 1
1 (lj−1, lj−2, j) and T 1

2 (lj−1, lj−2, j) are always left-multiplied by [A(lj, lj−1, j)]
2

or [B(lj, lj−1, j)]
2;

• every T 1
3 (lj−1, lj−2, j) and T 1

4 (lj−1, lj−2, j) are always left-multiplied by [C(lj, lj−1, b)]
2

or [D(lj, lj−1, j)]
2.
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This and (7.60) imply

Q̃D,h,j (l, l′h) =
{(
dl,ld−1+1,D

)2 { [A(ld−1, lD−3, D − 2)]2 TD−j−1
3 (lD−3, lj−1, lj−2, j − 1)

+ [C(ld−1, lD−3, D − 2)]2 TD−j−1
4 (lD−3, lj−1, lj−2, j − 1)

}
+
(
dl,ld−1,D

)2 { [B(ld−1, lD−3, D − 2)]2 TD−j−1
3 (lD−3, lj−1, lj−2, j − 1)

+ [D(ld−1, lD−3, D − 2)]2 TD−j−1
4 (lD−3, lj−1, lj−2, j − 1)

}}
·Rh,j−1

(
l|j,h, l̃′|j,h

)
(7.60)
=
[
−
(
dl,ld−1+1,D

)2
+
(
dl,ld−1,D

)2
] dlj−1,lj−2,j

2ld−1 +D − 3
Rh,j−1

(
l|j,h, l̃′|j,h

)
= dlj−1,lj−2,jRh,j−1

(
l|j,h, l̃′|j,h

)
;

(7.62)

and this proves the following

Theorem 7.0.3 The equation (7.61), using the rules of remark 7, becomes

Q̃D,h,j (l, l′h) = dlj−1,lj−2,jRh,j−1

(
l|j,h, l̃′|j,h

)
. (7.63)

The same job can be done with the assumption l′j−2 = lj−2 + 1, in this case
the result is an equation like (7.61), but with T1 and T2 instead of T3 and T4,
respectively; and in this case it turns out that

Q̃D,h,j (l, l′h) = −dlj−1,lj−2+1,j ·Rh,j−1

(
l|j,h, l̂′|j,h

)
, (7.64)

where l̂′ := (lj−2 + 1, · · · , l′h−1, lh−2).
Finally, definition 2.3.1 and (7.63-7.64) imply

[Lh,D, Lj,D] = iLh,j. (7.65)

7.0.8.2 Proof of (7.55)2 and (7.55)3

Let 1 ≤ h < j ≤ d, the definition 2.3.1 implies that the action of Lj,D in RD is
the same of tj in Rd, the only difference is given by the 1

i
dl,l′d−1,D

coefficients and

their signs (here l′d−1 = ld−1 or l′d−1 = ld−1 + 1), but the action of Lh,j on a Yl
does not change the indices l and ld−1.

According to this and (2.25), from

[Lh,j, xj] =
1

i
xh it follows [Lh,j, Lj,D] =

1

i
Lh,D,

and from

[Lh,j, xp] = 0 if p 6= h, j it follows [Lh,j, Lp,D] = 0 if D 6= h, j and p 6= h, j.
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7.0.9 On the action of ‘projected’ coordinate operators xh

The behavior (2.15)-(2.16) of a generic ψl,D and the expression of the integration
measure dx of RD in spherical coordinates

dx = rD−1 sind−1 (θd) sind−2 (θd−1) · · · sin (θ2)drdθ1dθ2 · · · dθd

allow to factorize the scalar product 〈ψl′,D, xhψl,D〉RD in this way:

〈ψl′,D, xhψl,D〉 = 〈f0,l′,D, rf0,l,D〉R+ · 〈Yl′ , thYl〉Sd ,

where

〈f0,l′,D, rf0,l,D〉R+ := Ml,DMl′,D

∫ +∞

0

re−
√
kl,D(r−r̃l,D)

2

e−
√
kl′,D(r−r̃l′,D)

2

dr, (7.66)

while the value of the ‘angular’ scalar product

〈Yl′ , thYl〉Sd =

∫
Sd
Y ∗l′ thYl

[
sind−1 (θd) sind−2 (θd−1) · · · sin (θ2)

]
dθ1dθ2 · · · dθd

is
〈Yl′ , thYl〉Sd ≡ Rh,D (l, l′) ,

according to sections 7.0.3 and 7.0.6.
On the other hand, as for section 6.6 in [13],

〈f0,l±1,D, rf0,l,D〉R+ = Ml,DMl±1,D e
−

√
kl,Dkl±1,D(r̃l,D−r̃l±1,D)

2

2(
√

kl,D+
√

kl±1,D)
√

2π√
kl,D +

√
kl±1,D

r̂l,l±1,D;

with

r̂l,l±1,D =

√
kl,Dr̃l,D +

√
kl±1,Dr̃l±1,D√

kl,D +
√
kl±1,D

. (7.67)

Then, in order to calculate 〈f0,l±1,D, rf0,l,D〉R+ at leading orders in 1/
√
kD, the

following steps are needed.
First of all

r̃l,D =1 +
b(l, D)

2kD
− 3

[b(l, D)]2

4k2
D

+ 9
[b(l, D)]3

8k3
− 27 [b(l, D)]4

16k4
+O

(
k−5
D

)
; (7.68)

while √
kl,D =

√
2kD +

3

2
√

2kD
b(l, D)− 9

8

[b(l, D)]2

2kD
√

2kD
+

27

16

[b(l, D)]3

4k2
D

√
2kD

− 405

128

[b(l, D)]4

8k3
√

2kD
+O

(
k−4
D

)
,

(7.69)



139

implies

√
kl,Dkl±1,D =2kD +

3

2
[b(l, D) + b(l ± 1, D)]− 9

8

[b(l, D)− b(l ± 1, D)]2

2kD

+
27

16

[b(l, D)]3 + [b(l ± 1, D)]3 − [b(l, D)]2 [b(l ± 1, D)]

4k2
D

− [b(l ± 1, D)]2 [b(l, D)]

4k2
D

+O
(
k−3
D

)
,

(7.70)

√
kl,D +

√
kl±1,D =2

√
2kD +

3

2

b(l, D) + b(l ± 1, D)√
2kD

− 9

8

{
[b(l, D)]2 + [b(l ± 1, D)]2

}
2kD
√

2kD

+
27

16

{
[b(l, D)]3 + [b(l ± 1, D)]3

}
4k2

D

√
2kD

− 405

128

{
[b(l, D)]4 + [b(l ± 1, D)]4

}
8k3
√

2kD

+O
(
k−3
D

)
,

1√
kl,D +

√
kl±1,D

=
1

2
√

2kD
− 3

8

[b(l, D) + b(l ± 1, D)]

(2kD)
3
2

+
9

16

[b(l, D)]2 + [b(l ± 1, D)]2 + b(l, D)b(l ± 1, D)

(2kD)
5
2

+O
(
k−3
D

)
,

(7.71)

√√
kl,D +

√
kl±1,D =

√
2 4
√

2kD +
3
√

2

8

b(l, D) + b(l ± 1, D)

(2kD)
3
4

− 45
√

2

128

[b(l, D)]2 + [b(l ± 1, D)]2 + 2
5
b(l, D)b(l ± 1, D)

(2kD)
7
4

− 567
√

2

1024

[b(l, D)]3 + [b(l + 1, D)]2 + 1
3

[b(l, D)]2 b(l ± 1, D)

(2kD)
11
4

+
1
3
b(l, D) [b(l ± 1, D)]2

(2kD)
11
4

+O
(
k−3
D

)
,

1√√
kl,D +

√
kl±1,D

=
1√

2 4
√

2kD
− 3
√

2

16

b(l, D) + b(l ± 1, D)

(2kD)
5
4

+
63
√

2

256

[b(l, D)]2 + [b(l ± 1, D)]2 + 6
7
b(l, D)b(l ± 1, D)

(2kD)
9
4

+O
(
k−3
D

)
.

(7.72)
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So, from (7.31) and (7.70), it follows

√
πMl,DMl±1,D = 8

√
kl,Dkl±1,D = 4

√
2kD +

3

8

[b(l, D) + b(l ± 1, D)]

(2kD)
3
4

− 63

128

[b(l, D)]2 + [b(l ± 1, D)]2 − 2
7
b(l, D)b(l ± 1, D)

(2kD)
7
4

+
945

1024

[b(l, D)]3 + [b(l ± 1, D)]3 − 1
5

[b(l, D)]2 b(l ± 1, D)

(2kD)
11
4

−
1
5

[b(l ± 1, D)]2 b(l, D)

(2kD)
11
4

+O
(
k−3
D

)
,

and then

Ml,DMl±1,D

√
2π√

kl,D +
√
kl±1,D

(7.72)
= 1− 9

64

[b(l, D)− b(l ± 1, D)]2

4k2
D

+O
(
k−3
D

)
.

(7.73)

Furthermore, from√
kl,Dr̃l,D

(7.68)&(7.69)
=

√
2kD +

5b(l, D)

2
√

2kD
− 21

8

[b(l, D)]2

2kD
√

2kD
+

81

16

[b(l, D)]3

4k2
D

√
2kD

+O
(
k−3
D

)
,

it follows√
kl,Dr̃l,D +

√
kl+1,Dr̃l+1,D =2

√
2kD +

5 [b(l, D) + b(l ± 1, D)]

2
√

2kD
− 21

8

{
[b(l, D)]2 + [b(l ± 1, D)]2

}
2kD
√

2kD

+
81

16

{
[b(l, D)]3 + [b(l ± 1, D)]3

}
4k2

D

√
2kD

+O
(
k−3
D

)
;

then the last equalities and (7.67) imply

r̂l,l±1,D =1 +
1

2

b(l, D) + b(l ± 1, D)

2kD
− 9

8

[b(l, D)]2 + [b(l + 1, D)]2 + 2
3
b(l, D)b(l ± 1, D)

4k2
D

+O
(
k−3
D

)
;

Similarly,

(r̃l,D − r̃l±1,D)2 (7.68)
=

[b(l, D)− b(l ± 1, D)]2

4k2
D

−
6
{

[b(l, D)]3 + [b(l ± 1, D)]3 − [b(l, D)]2 b(l ± 1, D) [b(l ± 1, D)]2 b(l, D)
}

8k3

+O
(
k−4
D

)
,

(7.74)
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kl,Dkl±1,D (r̃l,D − r̃l±1,D)2

2
(√

kl,D +
√
kl±1,D

) (7.70),(7.71)&(7.74)
=

1

4

[b(l, D)− b(l ± 1, D)]2

(2kD)
3
2

− 21

16

[b(l, D)]3 + [b(l ± 1, D)]3 − [b(l, D)]2 b(l ± 1, D)− [b(l ± 1, D)]2 b(l, D)

(2kD)
5
2

+O
(
k−3
D

)
,

which implies

e
−

√
kl,Dkl±1,D(r̃l,D−r̃l±1,D)

2

2(
√

kl,D+
√

kl±1,D) =1− 1

4

[b(l, D)− b(l ± 1, D)]2

(2kD)
3
2

+
21

16

[b(l, D)]3 + [b(l ± 1, D)]3

(2kD)
5
2

− [b(l, D)]2 b(l ± 1, D) + [b(l ± 1, D)]2 b(l, D)

(2kD)
5
2

+O
(
k−3
D

)
.

(7.75)

So, according to the above equalities,

〈f0,l±1,D, rf0,l,D〉R+ =1 +
1

2

[b(l, D) + b(l ± 1, D)]

2kD
− 1

4

[b(l, D)− b(l ± 1, D)]2

(2kD)
3
2

− 81

64

[b(l, D)]2 + [b(l ± 1, D)]2 + 54
5
b(l, D)b(l ± 1, D)

4k2
D

+O
(
k
− 5

2
D

)
.

(7.76)

Furthermore, (2.22) and this last equality imply

(cl+1,D)2−(cl,D)2 =
b(l + 1, D)− b(l − 1, D)

2kD
+O

(
1

k2
D

)
=

2l +D − 2

kD
+O

(
1

k2
D

)
.

(7.77)
Similarly, the scalar product 〈ψl′,D, thψl,D〉RD can be factorized, obtaining

〈ψl′,D, thψl,D〉 = 〈f0,l′,D, f0,l,D〉R+ · 〈Yl′ , thYl〉Sd ,

and also in this case
〈Yl′ , thYl〉Sd ≡ Rh,D (l, l′)

does not vanish if l′ = ±1. On the other hand, as for the previous ‘radial’ scalar
product,

〈f0,l±1,D, f0,l,D〉R+ =Ml,DMl±1,D

∫ +∞

0

e−
√

kl,D

2 (r−r̃l,D)
2

e−
√

kl±1,D

2 (r−r̃l±1,D)
2

dr

'Ml,DMl±1,D

∫ +∞

−∞
e−
√

kl,D

2 (r−r̃l,D)
2

e−
√

kl±1,D

2 (r−r̃l±1,D)
2

dr,
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with

∫ +∞

−∞
e−
√

kl,D

2 (r−r̃l,D)
2

e−
√

kl±1,D

2 (r−r̃l±1,D)
2

dr

=e−
√

kl,Dr̃
2
l,D+
√

kl±1,Dr̃
2
l±1,D

2

∫ +∞

−∞
e−r

2

√
kl,D+
√

kl±1,D

2
+2r

√
kl,Dr̃l,D+

√
kl±1,Dr̃l±1,D

2 dr

=e
−

√
kl,Dr̃

2
l,D+
√

kl±1,Dr̃
2
l±1,D

2
+

(
√

kl,Dr̃l,D+
√

kl±1,Dr̃l±1,D)
2

2(
√

kl,D+
√

kl±1,D)
∫ +∞

−∞
e−
√

kl,D+
√

kl±1,D

2 (r−r̂l,l±1,D)
2

dr

=e
−

√
kl,Dkl±1,D

2(
√

kl,D+
√

kl±1,D)
(r̃l,D−r̃l±1,D)

2 ∫ +∞

−∞
e−
√

kl,D+
√

kl±1,D

2 (r−r̂l,l±1,D)
2

dr

=e
−

√
kl,Dkl±1,D

2(
√

kl,D+
√

kl±1,D)
(r̃l,D−r̃l±1,D)

2√
2π√

kl,D +
√
kl±1,D

,

then

〈f0,l±1,D, f0,l,D〉R+ =Ml,DMl±1,De
−

√
kl,Dkl±1,D

2(
√

kl,D+
√

kl±1,D)
(r̃l,D−r̃l±1,D)

2√
2π√

kl,D +
√
kl±1,D

(7.73)&(7.75)
= 1 +O

(
1

k
3
2
D

)
.

(7.78)

7.0.10 The algebraic relations fulfilled by Lh,j and xs

7.0.10.1 Proof of (2.24)

The proofs of section 7.0.8.1 can be used here to calculate [xh, xj]ψl,D when
h < j and l < Λ; this is possible because definition 2.3.1 implies that the action
of Lh,D+1 in RD+1 is very similar to the one of th (and also of xh) in RD. In fact,
the only difference is the replacement of −1

i
dlD,l+1,D+1 and 1

i
dlD,l,D+1 with cl+1,D

and cl,D, respectively.

Then it must be l′p = lp ∀p ≥ j − 1 and

[xh;xj]ψl,D =
∑

|l′h−lh|=1
h=j−2,··· ,h−1

Q̂D,h,j (l, l′h)ψl′h,D. (7.79)
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If l′j−2 = lj−2 − 1, then

Q̂D,h,j (l, l′h) =
{

(cl+1,D)2 { [A(l, ld−1, D − 1)]2 TD−j3 (ld−1, lj−1, lj−2, j − 1)

+ [C(l, ld−1, D − 1)]2 TD−j4 (ld−1, lj−1, lj−2, j − 1)
}

+ (cl,D)2 { [B(l, ld−1, D − 1)]2 TD−j3 (ld−1, lj−1, lj−2, j − 1)

+ [D(l, ld−1, D − 1)]2 TD−j4 (ld−1, lj−1, lj−2, j − 1)
}}

·Rh,j−1

(
l|j,h, l̃′|j,h

)
.

(7.80)

The equations (7.60) and (7.77) imply

Q̂D,h,j (l, l′h) =
[
− (cl+1,D)2 + (cl,D)2] dlj−1,lj−2,j

2l +D − 2
Rh,j−1

(
l|j,h, l̃′|j,h

)
= −

dlj−1,lj−2,j

kD(Λ)
Rh,j−1

(
l|j,h, l̃′|j,h

)
;

(7.81)

similarly, if l′j−2 = lj−2 + 1, then

Q̂D,h,j (l, l′h) =
dlj−1,lj−2+1,j

kD(Λ)
Rh,j−1

(
l|j,h, l̂′|j,h

)
; (7.82)

and then, when l < Λ,

[xh, xj]ψl,D = −i Lh,j
kD(Λ)

ψl,D.

On the other hand, if l = Λ, the only difference is that cΛ+1,D = 0 and then (of
course, the calculations of section 7.0.8.1 are used also here)

[xh, xj]ψΛ,ld−1,··· ,l1,D = i
(cΛ,D)2

2Λ +D − 2
Lh,jψΛ,ld−1,··· ,l1,D.

According to this,

[xh, xj] = i

[
− I

kD(Λ)
+

(
1

kD(Λ)
+

(cΛ,D)2

2Λ +D − 2

)
P̂Λ,D

]
Lh,j.

7.0.10.2 Proof of (2.26)

The proofs of section 7.0.7 can be used here to calculate the value of x2ψl,D; in
fact it is easy to see that, when l < Λ,

x2ψl,D =
[
(cl+1,D)2 Z1,d (l) + (cl,D)2 Z2,d (l)

]
ψl,D

(7.49)
=

{
1 +

[b(l, D) + b(l + 1, D)]Z1,d (l)

2kD(Λ)
+

[b(l, D) + b(l − 1, D)]Z2,d (l)

2kD(Λ)
+O

(
1

k2
D

)}
ψl,D

=

{
1 +

b(l, D) + [b(l + 1, D)] l+D−2
2l+D−2

+ [b(l − 1, D)] l
2l+D−2

2kD(Λ)
+O

(
1

k2
D

)}
ψl,D.
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On the other hand, if l = Λ, cΛ+1,D = 0; so

x2ψΛ,ld−1,··· ,l1,D =

[
(cΛ,D)2 Λ

2Λ +D − 2

]
ψΛ,ld−1,··· ,l1,D.

And then, [up to O
(

1
k2
D

)
]

x2ψl,D =

{
1 +

b(l, D) + [b(l + 1, D)] l+D−2
2l+D−2

+ [b(l − 1, D)] l
2l+D−2

2kD(Λ)

−
[(

1 +
b(Λ, D) + b(Λ + 1, D)

2kD(Λ)

)
Λ +D − 2

2Λ +D − 2

]
P̂Λ,D

}
ψl,D.

7.0.11 The product of two D-dimensional spherical har-
monics

First of all, it is important to summarize that in section 7.0.4 it has been shown
that (in the following equations there is not any multiplicative constant, depend-
ing on the indices of P , because they are not relevant also in this case, except
when that constant is 0)

P−ml (cos θ) = (sin θ)m P̃−ml (cos θ) ,

where 0 ≤ m ≤ l, P̃−ml (cos θ) is a polynomial of degree l−m in cos θ which does
not contain any term of degree l −m − (2n + 1), with n ∈ N0; so, coming back
to jP

l
L(θ),

hP
m

l (θ) = (sin θ)m P̃
−(m+h−2

2 )
l+h−2

2

(cos θ) = (sin θ)m
{

[cos θ]l−m + [cos θ]l−m−2 + · · ·
}
.

(7.83)
It is now possible to calculate the product of two spherical harmonics Yl′ and Yl;
first of all, eil

′
1θ1eil1θ1 = ei(l1+l′1)θ1 , then

2P
l′1
l′2 (θ2) 2P

l1
l2

(θ2) ei(l1+l′1)θ1

(7.83)
= (sin θ2)l

′
1

[
(cos θ)l

′
2−l′1 + (cos θ)l

′
2−l′1−2 + (cos θ)l

′
2−l′1−4 + · · ·

]
2P

l1
l2

(θ2) ei(l1+l′1)θ1

(7.25)
=
[

2P
l1+l′1
l2+l′2 (θ2) + 2P

l1+l′1
l2+l′2−2 (θ2) + 2P

l1+l′1
l2+l′2−4 (θ2) + · · ·

]
ei(l1+l′1)θ1 .

(7.84)

Similarly,[
3P

l′2
l′3 (θ3) 3P

l2
l3

(θ3)
]

2P
l1+l′1
l2+l′2 (θ2)

(7.83)
= (sin θ3)l

′
2

[
(cos θ3)l

′
3−l′2 + (cos θ3)l

′
3−l′2−2 + (cos θ3)l

′
3−l′2−4 + · · ·

]
2P

l1+l′1
l2+l′2 (θ2)

(7.25)
=
[

3P
l2+l′2
l3+l′3 (θ3) + 3P

l2+l′2
l3+l′3−2 (θ3) + 3P

l2+l′2
l3+l′3−2 (θ3) + · · ·

]
2P

l1+l′1
l2+l′2 (θ2) .

(7.85)
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Furthermore, in order to calculate

3P
l′2
l′3 (θ3) 3P

l2
l3

(θ3) 2P
l1+l′1
l2+l′2−2 (θ2) ,

the formula (7.25)2 must be used l′2 − 1 times and then 1 time the formula
(7.25)1 in correspondence of sin θ3·, while the formula (7.25)3 must be used in
correspondence of cos θ3·; then

3P
l′2
l′3 (θ3) 3P

l2
l3

(θ3) 2P
l1+l′1
l2+l′2−2 (θ2)

(7.83)
= (sin θ3)l

′
2

[
(cos θ3)l

′
3−l′2 + (cos θ3)l

′
3−l′2−2 + (cos θ3)l

′
3−l′2−4 + · · ·

]
3P

l2
l3

(θ3) 2P
l1+l′1
l2+l′2−2 (θ2)

(7.25)
=
[

3P
l2+l′2−2

l3+l′3 (θ3) + 3P
l2+l′2−2

l3+l′3−2 (θ3) + 3P
l2+l′2−2

l3+l′3−4 (θ3) + · · ·
]

2P
l1+l′1
l2+l′2−2 (θ2) ,

(7.86)

and so on with the other angles and factors.
According to this,

Yl′Yl =
l+l′∑
l′=0

ld−1+l′d−1∑
l′d−1=0

· · ·
l2+l′2∑
l′2=0

γl′Yl′ , where l′ :=
(
l′, l′d−1, · · · , l′2, l1 + l′1

)
;

(7.87)
so, this last equation describes the action of the generic multiplication operator
Yl′ · on the Hilbert space of D-dimensional spherical harmonics.

Furthermore, from section 7.0.3.3 and the fact that the th commute it follows

Yl =
∑

α∈(N0)D

‖α‖1=l

cαl (t1)α1 (t2)α2 · · · (tD)αD

=
∑

α∈(N0)D

‖α‖1=l

cαl
(α1)!(α2)! · · · (αD)!

l!

∑
h

N (h,α, t1, t2, · · · , tD) ,

where cαl is a suitable constant and N (h,α, t1, t2, · · · , tD) is the ordered mono-
mial obtained applying πh (the permutation with ripetition of l objects with α1

identical objects of type 1, α2 identical objects of type 2,..., αD identical objects
of type D) to the monomial (t1)α1 (t2)α2 · · · (tD)αD .

Inspired by this, define the fuzzy approximations Ŷl of the spherical harmonics
Yl as

Ŷl :=
∑

α∈(N0)D

‖α‖1=l

cαl
(α1)!(α2)! · · · (αD)!

l!

∑
h

N (h,α, x1, x2, · · · , xD) . (7.88)

It is also important to underline that
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Remark 8 From |A|, |B|, |C|, |D|, |F |, |G| ≤ 1 it follows∣∣∣sin θjP l

L (θ)
∣∣∣ ≤ ∣∣∣jP l+1

L+1 (θ)
∣∣∣+
∣∣∣jP l+1

L−1 (θ)
∣∣∣ ,∣∣∣sin θjP l

L (θ)
∣∣∣ ≤ ∣∣∣jP l−1

L+1 (θ)
∣∣∣+
∣∣∣jP l−1

L−1 (θ)
∣∣∣ ,∣∣∣cos θjP

l

L (θ)
∣∣∣ ≤ ∣∣∣jP l

L+1 (θ)
∣∣∣+
∣∣∣jP l

L−1 (θ)
∣∣∣ .

(7.89)

This, the recursive procedures of section 7.0.4 and the calculations of this section,

imply that the product jP
l′

L′ (θ) jP
l

L (θ) when Λ ≥ L′ ≥ l′ ≥ 0 and Λ ≥ L ≥ l ≥ 0

is the sum of (at most) Λ2Λ terms jP
l′

L′ (θ), and some of them may have the same

indices. Furthermore, (7.89) implies that the product of jP
l

L by sin θ and cos θ

returns coefficients that are bounded by 1, while in (2.13) every jP
l

L(θ) contains
a normalization constant which is less or equal than (2Λ)!.

7.0.12 Some proofs about convergence

Let ϕ ∈ HΛ,D, with ‖ϕ‖2 = 1, and

ϕ =
∑

0≤l≤Λ

lh−1≤lh for h=d,··· ,3
|l1|≤l2

ϕlψl,D

be the decomposition of ϕ in that orthonormal basis of HΛ,D; of course, ‖ϕ‖2 = 1
implies |ϕl| ≤ 1.

According to these statements,

‖(xh − th)ϕ‖2 ≤
∑

0≤l≤Λ

lh−1≤lh for h=d,··· ,3
|l1|≤l2

|ϕl| ‖(xh − th)ψl,D‖2

|ϕl|≤1

≤
∑

0≤l≤Λ

lh−1≤lh for h=d,··· ,3
|l1|≤l2

‖(xh − th)ψl,D‖2

∗
≤[dimHΛ,D]2

(
b(l + 1, D) + 2b(l, D) + b(l − 1, D)

4kD

)
#

≤[dimHΛ,D]2
b(Λ, D)

kD
;

where the ∗ inequality follows from the fact that the sum is of dimHΛ,D elements,
that both xhψl,D and thψl,D can be written as the linear combination of (at most)
dimHΛ,D elements, that |A|, |B|, |C|, |D|, |F |, |G| ≤ 1 , that 〈ψl′,D, xhψl,D〉RD and
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〈ψl′,D, thψl,D〉RD do not vanish if l′ = l ± 1, and the values of the corresponding
‘radial’ scalal product are

〈f0,l±1,D, rf0,l,D〉R+

(7.76)
= 1 +

1

2

[b(l, D) + b(l ± 1, D)]

2kD
+O

(
1

k
3
2
D

)

and 〈f0,l±,D, f0,l,D〉R+

(7.78)
= 1 +O

(
1

k
3
2
D

)
;

while the # inequality follows from (2.5)1.
So, if

kD (Λ) ≥ Λ [dimHΛ,D]2 b(Λ, D), then ‖(xh − th)ϕ‖2

Λ→+∞−→ 0.

In section 7.0.11 we do the product between two generic D-dimensional spher-
ical harmonics and the in section 7.0.3.3 it is shown that every D-dimensional
spherical harmonic is a homogeneous polynomial in the th variables, this sug-
gested the definition (7.88).

Those Ŷl are the fuzzy spherical harmonics, they are elements of B[L2(Sd)]
and, in particular,

Remark 9 The action of Ŷl on Yl′ can be obtained through the following replace-
ments to Yl · Yl′:

• replace every A (l, ld−1, D − 1) with cl+1,DA (l, ld−1, D − 1);

• replace every B (l, ld−1, D − 1) with cl,DB (l, ld−1, D − 1);

• replace every C (l, ld−1, D − 1) with cl+1,DC (l, ld−1, D − 1);

• replace every D (l, ld−1, D − 1) with cl,DD (l, ld−1, D − 1);

• replace every F (l, ld−1, D − 1) with cl+1,DF (l, ld−1, D − 1);

• replace every G (l, ld−1, D − 1) with cl,DG (l, ld−1, D − 1).

7.0.12.1 Proof of Proposition 2.5.1

Let φ, f ∈ B
(
Sd
)
, then

(f − f̂Λ)φ =
Λ∑
l=0

∑
ld−1≤l

lh−1≤lh for h=d−1,··· ,3
|l1|≤l2

Ylχl +
∑
l>Λ

∑
ld−1≤l

lh−1≤lh for h=d−1,··· ,3
|l1|≤l2

Yl(fφ)l,

(7.90)
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where

χl := (fφ)l − (f̂Λφ)l , (fφ)l = 〈Yl, fφ〉 and
(
f̂Λφ

)
l

= 〈Yl, f̂Λφ〉;

in particular

χl =
〈
Yl,
(
f − f̂Λ

)
φ
〉

=

〈
Yl,

2Λ∑
l′=0

∑
l′d−1≤l

′

l′h−1≤l
′
h for h=d−1,··· ,3
|l′1|≤l′2

fl′
(
Yl′ − Ŷl′

)
φ

〉

=
2Λ∑
l′=0

∑
l′d−1≤l

′

l′h−1≤l
′
h for h=d−1,··· ,3
|l′1|≤l′2

+∞∑
l′=0

∑
l′d−1≤l

′

l′h−1≤l
′
h for h=d−1,··· ,3
|l′1|≤l′2

fl′φl′
〈
Yl,
(
Yl′ − Ŷl′

)
Yl′
〉
.

(7.91)

On the other hand,

‖(f − f̂Λ)φ‖2 =
Λ∑
l=0

∑
ld−1≤l

lh−1≤lh for h=d−1,··· ,3
|l1|≤l2

|χl|2 +
∑
l>Λ

∑
ld−1≤l

lh−1≤lh for h=d−1,··· ,3
|l1|≤l2

|(fφ)l|2,

(7.92)

the second sum goes to zero as Λ → ∞, it remains to show that the first sum
does as well.

The sum over l′ in (7.91) consists of at most dimH2Λ,D elements, as for the
one over l′ (because 0 ≤ l ≤ Λ),; the equality (7.87) can be applied in this case,

and it implies that both Yl′Yl′ and Ŷl′Yl′ can be written as a linear combination
of, at most, dimH2Λ,D basis elements, then the sum in (7.91) is made up by at
most [dimH2Λ,D]3 non-vanishing addends, while the one over l in (7.92) is of at
most dimHΛ,D elements.

In addition, the fact that in (2.13) every jP
l

L(θ) contains a normalization
constant which is less or equal than (2Λ)!, that the highest coefficient multiplying
a power of cos θ in P l

L (cos θ) is less or equal than

2Λ [(2Λ + 1)!!]2 ,

that |A|, |B|, |C|, |D|, |F |, |G| ≤ 1, that 〈ψl′,D, xhψl,D〉RD and 〈ψl′,D, thψl,D〉RD do
not vanish if l′ = l±1, and the values of the corresponding ‘radial’ scalal product
are

〈f0,l±1,D, rf0,l,D〉R+

(7.76)
= 1 +

1

2

[b(l, D) + b(l ± 1, D)]

2kD
+O

(
1

k
3
2
D

)

and 〈f0,l±,D, f0,l,D〉R+

(7.78)
= 1 +O

(
1

k
3
2
D

)
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imply

Λ∑
l=0

∑
ld−1≤l

lh−1≤lh for h=d−1,··· ,3
|l1|≤l2

|χl|2 ≤ [dimHΛ,D]

{
[dimH2Λ,D]3 [(2Λ)!]D 2ΛD [(2Λ + 1)!!]2D

Λb(Λ, D)

kD(Λ)

}2

So, if

kD (Λ) ≥ Λ2[dimH2Λ,D]3 [(2Λ)!]D 2ΛD [(2Λ + 1)!!]2D b(Λ, D)
√

dimHΛ,D,

then

‖(f − f̂Λ)φ‖2 ≤ ‖f‖2 ‖φ‖2 1

Λ2
+
∑
l>Λ

∑
ld−1≤l

lh−1≤lh for h=d−1,··· ,3
|l1|≤l2

|(fφ)l|2
Λ→∞−→ 0, (7.93)

i.e. f̂Λ → f · strongly for all f ∈ B
(
Sd
)
, as claimed.

The replacement f 7→ fg, implies that (̂fg)Λ → (fg)· strongly for all f, g ∈
B
(
Sd
)
, while from (7.93) it follows

‖(f − f̂Λ)φ‖2 ≤ ‖f‖2 ‖φ‖2 1

Λ2
+ ‖fφ‖2 ≤

(
‖f‖2

Λ2
+ ‖f‖2

∞

)
‖φ‖2 , (7.94)

with √
‖f‖2

Λ2
+ ‖f‖2

∞ ≤
√
‖f‖2 + ‖f‖2

∞ ≤ ‖f‖+ ‖f‖∞ , (7.95)

and then

‖f̂Λφ‖ ≤ ‖(f̂Λ−f)φ‖+‖fφ‖ ≤ ‖(f̂Λ−f)φ‖+‖f‖∞‖φ‖
(7.94)&(7.95)

≤ (‖f‖+ 2‖f‖∞) ‖φ‖,
(7.96)

i.e. the operator norms ‖f̂Λ‖op of the f̂Λ are bounded uniformly in Λ: ‖f̂Λ‖op ≤
‖f‖+ 2‖f‖∞. Therefore, as claimed, (7.93) implies

‖(fg − f̂ΛĝΛ)φ‖ ≤ ‖(f − f̂Λ)gφ‖+ ‖f̂Λ(g − ĝΛ)φ‖

≤ ‖(f − f̂Λ)(gφ)‖+ ‖f̂Λ‖op ‖(g − ĝΛ)φ‖ Λ→∞−→ 0. (7.97)



Chapter 8

Appendix B

8.1 A very useful proposition

The following proposition is very useful

Proposition 8.1.1 Let A = (ai,j)
n
i,j=1 be a square matrix such that ai,j ≥ 0 ∀i, j,

then there exist a vector χ̂ ∈ Rn
+ fulfilling

‖χ̂‖2 = 1 and ‖A [χ̂] ‖2 = ‖A‖2.

Proof. By definition

‖A‖2 = sup
‖χ‖2=1

‖A[χ]‖2,

the Weierstrass theorem implies that

sup
‖χ‖2=1

‖A[χ]‖2 = max
‖χ‖2=1

‖A[χ]‖2, (8.1)

so it is possible to consider a vector χ̃ ∈ Rn fulfilling (8.1) and ‖χ̃‖2 = 1. One
needs to prove that χ̃i ≥ 0 for all i. If χ̃j < 0 for some j in {1, 2, · · · , n}, then

the vector χ̂ := (|χ̃1|, |χ̃2|, · · · , |χ̃n|)T . It is such that ‖χ̂‖2 = ‖χ̃‖2 = 1 and

‖A [χ̃]‖2 =

√√√√ n∑
i=1

(
n∑
j=1

ai,jχ̃j

)2
ai,j≥0

≤

√√√√ n∑
i=1

(
n∑
j=1

ai,j|χ̃j|

)2

=

√√√√ n∑
i=1

(
n∑
j=1

ai,jχ̂j

)2

= ‖A [χ̂]‖2 .

This last inequality proves that one can consider in the realization of the maxi-
mum the ‘positive’ vector χ̂, instead of χ̃, so the proof is finished.
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Proposition 8.1.2 Let A = (ai,j)
n
i,j=1 and B = (bi,j)

n
i,j=1 be square matrices

fulfilling 0 ≤ ai,j ≤ bi,j ∀i, j, then

‖A‖2 ≤ ‖B‖2.

Proof. According to proposition 8.1.1 it is possible to consider a vector χ̂ ∈ Rn
+

with ‖χ̂‖2 = 1 fulfilling ‖A‖2 = ‖A [χ̂]‖2; so

‖A‖2 =

√√√√ n∑
i=1

(
n∑
j=1

ai,jχ̂j

)2
ai,j≤bi,j
≤

√√√√ n∑
i=1

(
n∑
j=1

bi,jχ̂j

)2

≤ ‖B‖2.

8.2 The proofs about the xi spectrum in S1
Λ

8.2.1 Proof of item (A) in theorem 4.2.1

Consider the unitary and involutive operator U1 = U †1 = U−1
1 corresponding to

the inversion operator of the x1-axis (this exists by the O(2)-covariance of the
new model1: U1 x1 U1 = −x1, U1x2U1 = x2. Then x1χ = αχ implies x1(U1χ) =
−α(U1χ), i.e. U1χ is an eigenvector of x1 with the opposite eigenvalue.

8.2.2 Proof of item (B) in theorem 4.2.1

According to the last proof, if In is the n×n identity matrix and MΛ (α) := xΛ +
αI2Λ+1, then the eigenvalue problem for xΛ is equivalent to solve det [MΛ(α)] = 0.
In order to do this, let Mn

Λ be the n× n submatrix of MΛ formed by the first n
rows and columns, then

pΛ(α) := det [MΛ(α)] and pnΛ(α) := det {Mn
Λ (α)} .

It is not difficult to see that

• when Λ = 1, then

∣∣∣∣∣∣
α b1

2
0

b1
2

α b0
2

0 b0
2

α

∣∣∣∣∣∣ = α

[
α2− (b0)2

4
− (b1)2

4

]
=: p1(α) =⇒


α1(1) =

√
(b0)2+(b1)2

2
=
√

2
2
,

α2(1) = 0,

α3(1) = −
√

(b0)2+(b1)2

2
−
√

2
2

;

(8.2)

1U1 is obtained by projection on HΛ of the original unitary operator Ũ1 acting on L2
(
R2
)

as follows: Ũ : ψ(x1, x2)→ ψ(−x1, x2).
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• when Λ = 2, then

p2(α) :=

∣∣∣∣∣∣∣∣∣∣

α b2
2

0 0 0
b2
2

α b1
2

0 0
0 b1

2
α b0

2
0

0 0 b0
2

α b−1

2

0 0 0 b−1

2
α

∣∣∣∣∣∣∣∣∣∣
= α

{
α4 − α2

[
(b2)2 + (b1)2 + (b0)2 + (b−1)2]

4
+

(b1b−1)2 + (b2b0)2 + (b2b−1)2

16

}

=⇒



α1(2) =
√

1
8

√
A2 +

√
B2 = 1

2

√
3 + 2

kD
,

α2(2) =
√

1
8

√
A2 −

√
B2 = 1

2

√
1 + 2

kD
,

α3(2) = 0,

α4(2) = −
√

1
8

√
A2 −

√
B2 = −1

2

√
1 + 2

kD
,

α5(2) = −
√

1
8

√
A2 +

√
B2 = −1

2

√
3 + 2

kD
,

(8.3)

because A2 := (b2)2 + (b1)2 + (b0)2 + (b−1)2 = 4
(

1 + 1
kD

)
and

B2 :=2
[
(b1b0)2 − (b2b0)2 + (b−1b0)2 + (b2b1)2 − (b−1b1)2 − (b2b−1)2]

+ (b2)4 + (b1)4 + (b0)4 + (b−1)4 = 4.

• in general, when Λ > 2, one can calculate pΛ (α) through the use of this
recursion formula:

p2
Λ (α) := det {M2

Λ (α)} = α2 −
(
bΛ
2

)2
,

p3
Λ (α) := det {M3

Λ (α)} = α
[
α2 − (bΛ)2+(bΛ−1)2

4

]
,

p4
Λ (α) := α [p3

Λ (α)]−
(
bΛ−2

2

)2

p2
Λ (α) ,

p5
Λ (α) := α [p4

Λ (α)]−
(
bΛ−3

2

)2

p3
Λ (α) ,

...
...

...
...

...
...

...
...

...
...

...
...

...
...

pΛ (α) = α
[
p2Λ

Λ (α)
]
−
(
b1−Λ

2

)2

p2Λ−1
Λ (α) .

(8.4)

So the claim is true because of (8.4) and the following

Theorem 8.2.1 The Favard theorem, [57] (p. 60)
Let {pn(x) = xn + · · · } (n = 0, 1, · · · ) be a sequence of polynomials with real
coefficients, satisfying a recursion formula

pn(x) = (x− βn) pn−1(x)− Σnpn−2(x) (8.5)
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with positive Σn and real βn; then there exists a distribution dα such that∫ +∞

−∞
pn(x)pm(x)dα(x) = 0 (m 6= n).

Theorem 8.2.2 [58] (p. 44)
The zeros of the orthogonal polynomials pn(x), associated with distribution dα(x)
on the interval [a, b] are distinct and are located in the interior of the interval
[a, b].

8.2.3 Proof of item (C) in theorem 4.2.1

First of all, ρ(A) = ‖A‖2 for every symmetric matrix A, where ρ(A) is the spectral
radius, i.e.

ρ(A) := max {|λj| : λj ∈ ΣA} .

From 1 ≤ bn ≤
√

1 + Λ(Λ−1)
kD(Λ)

and proposition 8.1.2, one has

α1 (Λ) =
∥∥XΛ

∥∥
2
≤

√
1 +

Λ(Λ− 1)

kD(Λ)

∥∥∥∥P2Λ+1

(
0,

1

2
,
1

2

)∥∥∥∥
2

=

√
1 +

Λ(Λ− 1)

kD(Λ)
cos

(
π

2Λ + 2

)
and

α1 (Λ + 1) = ‖xΛ+1‖2 ≥
∥∥∥∥P2Λ+3

(
0,

1

2
,
1

2

)∥∥∥∥
2

= cos

(
π

2Λ + 4

)
.

On the other hand, by algebraic calculations, one can easily see that√
1 +

Λ(Λ− 1)

kD(Λ)
cos

(
π

2Λ + 2

)
≤ cos

(
π

2Λ + 4

)
is equivalent to

kD (Λ) ≥
Λ(Λ− 1) cos2

(
π

2Λ+2

)
cos2

(
π

2Λ+4

)
− cos2

(
π

2Λ+2

)
=

Λ(Λ− 1) cos2
(

π
2Λ+2

)
2 sin

(
π(2Λ+3)

(2Λ+2)(2Λ+4)

)
sin
(

π
(2Λ+2)(2Λ+4)

) [
cos
(

π
2Λ+4

)
+ cos

(
π

2Λ+2

)] .
And from

a+ 1

a(a+ 2)
>

1

1 + a
,

cos2
(

π
2Λ+2

)
cos
(

π
2Λ+4

)
+ cos

(
π

2Λ+2

) ≤ 1

2
∀Λ ∈ N and sinx ≥ x2 ∀x ∈

[
0,

1

2

]
,
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it follows

Λ(Λ− 1) cos2
(

π
2Λ+2

)
2 sin

(
π(2Λ+3)

(2Λ+2)(2Λ+4)

)
sin
(

π
(2Λ+2)(2Λ+4)

) [
cos
(

π
2Λ+4

)
+ cos

(
π

2Λ+2

)] < Λ(Λ− 1)

4
(

π
2Λ+3

π
(2Λ+2)(2Λ+4)

)2

<
1

4π4
Λ(Λ− 1)(2Λ + 2)2(2Λ + 3)2(2Λ + 4)2.

According to this,

kD(Λ) ≥ 1

4π4
Λ(Λ−1)(2Λ+2)2(2Λ+3)2(2Λ+2)4 ⇒ α1 (Λ) < α1 (Λ + 1) ∀Λ ∈ N.

8.2.4 Proof of item (D) in theorem 4.2.1

The scheme of the proof is the following:

• First of all,
lim

Λ→+∞
α1 (Λ) = 1. (8.6)

• Then it is shown that, in the limit Λ→ +∞, XΛ can be approximated by
PΛ

(
0, 1

2
, 1

2

)
; so one can consider the spectra of both matrices.

• For every Λ ∈ N it is possible to define a continuous, odd and increasing
(with respect to x) function GΛ(x) mapping one spectrum into the other.

• From lemma 8.2.1 and lemma 8.2.2 it follows theorem 8.2.3, which tells that
limΛ→+∞GΛ(x) = x ∀x ∈ [−1, 1].

• Finally, in theorem 8.2.4, it is shown that GΛ → I uniformly, and this
trivially implies the claim of (D).

As for the previous proof, from

1

2
≤ bn

2
≤

√
1 + Λ(Λ−1)

kD

2
∀n ∈ {Λ,Λ− 1, · · · , 2− Λ, 1− Λ}

and proposition 8.1.2 one obtains

∥∥∥∥P2Λ+1

(
0,

1

2
,
1

2

)∥∥∥∥
2

≤
∥∥XΛ

∥∥
2
≤

∥∥∥∥∥∥P2Λ+1

0,

√
1 + Λ(Λ−1)

kD

2
,

√
1 + Λ(Λ−1)

kD

2

∥∥∥∥∥∥
2

,

which is equivalent to

cos

(
π

2Λ + 2

)
≤ α1 (Λ) ≤

√
1 +

Λ(Λ− 1)

kD
cos

(
π

2Λ + 2

)
, (8.7)
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this and kD = kD (Λ) ≥ Λ2 (Λ + 1)2 concludes the proof of (8.6).
The inequality (4.7)2 follows trivially from (8.7), cosx ≥ 1 − x2

2
∀x ∈ [0, 1]

and π
2Λ+2

≤ 1 ∀Λ ∈ N.
Corollary 6.3.8 in [59] p. 370 states that (here Mn is the space of n × n

complex matrices)
Let A,E ∈ Mn, assume that A is Hermitian and that A + E is normal, let

{λ1, · · · , λn} be the eigenvalues of A arranged in increasing order (λ1 ≤ λ2 ≤ · · · ≤ λn)

and let
{
λ̂1, · · · , λ̂n

}
be the eigenvalues of A + E, ordered so that Re

(
λ̂1

)
≤

Re
(
λ̂2

)
≤ · · · ≤ Re

(
λ̂n

)
. Then

[
n∑
i=1

∣∣∣λ̂i − λi∣∣∣2]
1
2

≤ ‖E‖2 . (8.8)

According to this, setting A := P2Λ+1

(
0, 1

2
, 1

2

)
, E := XΛ − P2Λ+1

(
0, 1

2
, 1

2

)
, then

A and A+ E are both symmetric, so (8.8) becomes[
2Λ+1∑
i=1

|αi(Λ)− α̃i(Λ)|2
] 1

2

≤ ‖E‖2 .

From
√

1 + x ≤ 1 + x
2
, kD = kD (Λ) ≥ Λ2 (Λ + 1)2 and |n| ≤ Λ one obtains

1

2

√1 +
n(n− 1)

kD
− 1

 ≤ n(n− 1)

4kD
≤ 1

4(Λ + 1)2
,

so proposition 8.1.2 implies

‖E‖2 ≤
∥∥∥∥P2Λ+1

(
0,

1

4(Λ + 1)2
,

1

4(Λ + 1)2

)∥∥∥∥
2

=
1

2(Λ + 1)2
cos

(
π

2Λ + 2

)
<

1

2(Λ + 1)2

and then [
2Λ+1∑
i=1

|αi(Λ)− α̃i(Λ)|2
] 1

2

<
1

2(Λ + 1)2
∀Λ. (8.9)

For every Λ ∈ N it is possible to define a continuous function GΛ : [−1, 1]→
[−α1 (Λ) , α1 (Λ)] such that GΛ [α̃n (Λ)] = αn (Λ), GΛ(−x) = −GΛ(x), GΛ(x) =
α1 (Λ) ∀x ∈ [α̃1 (Λ) , 1], for instance one can join two ‘consecutive’ points (α̃i (Λ) , αi (Λ))
and (α̃i+1 (Λ) , αi+1 (Λ)) by a straight line; furthermore, because of

GΛ [α̃n (Λ)] = αn (Λ) < GΛ [α̃n−1 (Λ)] = αn−1 (Λ) ,

one can assume that every function GΛ(x) is also increasing with respect to x.



156 CHAPTER 8. APPENDIX B

The GΛ(x) are all odd functions so one can restict the attention to the x ∈
[0, 1], but it is also true that the continuity and the monotonicity of every GΛ

implies that

∀ε > 0,∀x ∈ [0, 1]∃δ = δ(ε,Λ, x) s.t. y ∈ [0, 1],

{
|x− y| < δ ⇒ |GΛ(x)−GΛ(y)| < ε,

|x− y| > δ ⇒ |GΛ(x)−GΛ(y)| > ε.

At this point the following lemma is needed

Lemma 8.2.1 Let ε > 0 and x ∈ [0, 1] such that

lim supΛ→+∞ |x−GΛ (x)| = 0,

then
lim infΛ→+∞δ(ε,Λ, x) = δ̃(ε, x) > 0. (8.10)

Proof. Let ε > 0 and assume, per absurdum, that

lim infΛ→+∞δ(ε,Λ, x) = 0,

then one can find a sequence
{

Λ̃n

}
n∈N

such that

lim
n
δ(ε, Λ̃n, x) = 0 (8.11)

and, correspondingly, because of (8.11) one can assume that n is sufficiently large

so that there exists x ∈ [0, 1] with ε
4
> |x−x| > δ(ε, Λ̃n, x), |x−GΛ̃n

(x)| < ε
4

and
|GΛ̃n

(x)−GΛ̃n
(x)| > ε; then

|x−GΛ̃n
(x)| = |x− x+ x−GΛ̃n

(x) +GΛ̃n
(x)−GΛ̃n

(x)|
≥ |GΛ̃n

(x)−GΛ̃n
(x)| − |x− x| − |x−GΛ̃n

(x)|

≥ ε− ε

2
=
ε

2
.

This last inequality and (4.5) implies that there exist a finite set of indices I
with |I| = m(n) such that the correspondings eigenvalues of P2Λ̃n+1

(
0, 1

2
, 1

2

)
, in

symbols
{
α̃i

(
Λ̃n

)}
i∈I

, fulfill

ε

4
>
∣∣∣x− α̃i (Λ̃n

)∣∣∣ > δ(ε, Λ̃n, x) ∀i ∈ I =⇒
∣∣∣α̃i (Λ̃n

)
−GΛ̃n

[
α̃i

(
Λ̃n

)]∣∣∣ > ε

2
∀i ∈ I

and of course (8.11) implies that m(n)
n→+∞−→ +∞, so

lim
n

[∑
i∈I

∣∣∣α̃i (Λ̃n

)
−GΛ̃n

[
α̃i

(
Λ̃n

)]∣∣∣2] = +∞,

which disagrees with (8.9), so the proof is finished.
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Let

A :=
{
x ∈ [0, 1] : lim supΛ→+∞ |x−GΛ(x)| = 0

}
,

then 0 ∈ A and also 1 ∈ A because

lim
Λ→+∞

α1 (Λ) = lim
Λ→+∞

α̃1 (Λ) = lim
Λ→+∞

GΛ [α̃1 (Λ)] = 1.

In order to prove item (D) in theorem 4.2.1 one needs the following

Lemma 8.2.2 If 0 ≤ x ≤ 1, x ∈ A, then ∃σ > 0 such that

x ∈ ]max {x− σ, 0} ,min {x+ σ, 1}[ =⇒ x ∈ A.

Proof. Let ε > 0, then lemma 8.2.1 implies

lim inf
Λ→+∞

δ (ε,Λ, x) = δ̃ (ε, x) > 0;

so, if σ := min
{
δ(ε,x)

2
, ε
}

and x ∈ ]max {x− σ, 0} ,min {x+ σ, 1}[, then

lim sup
Λ→+∞

|x−GΛ(x)| = lim sup
Λ→+∞

|x−GΛ(x)− x+ x−GΛ (x) +GΛ (x)|

≤ lim sup
Λ→+∞

|x− x|+ |x−GΛ (x)|+ |GΛ(x)−GΛ (x)| ≤ 2ε,

of course ε can be chosen arbitrary small, so the proof is finished.

According to this, one has

Corollary 8.2.1

A = [0, 1]

or

A = [0, x1[ ·∪]x2, x3[ ·∪ · · · ·∪]xs, 1] and B := [0, 1] \ A = [x1, x2] ·∪ [x3, x4] ·∪ · · · ,

where x1 < x2 < x3 < x4 · · · are suitable points of ]0, 1[.

It is now possible to prove the following

Theorem 8.2.3

A = [0, 1]

Proof. Assume, per absurdum, that A 6= [0, 1], then corollary 8.2.1 implies

B := [0, 1] \ A = [x1, x2] ·∪ [x3, x4] ·∪ · · · , (8.12)
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so if x ∈ A, δ > 0, x1 − δ < x < x1 and lim supΛ→+∞ |x1 −GΛ (x1)| = kD > 0,
then

lim sup
Λ→+∞

|GΛ (x)−GΛ (x1)| = lim sup
Λ→+∞

|GΛ (x)− x1 + x1 −GΛ (x1)|

≤ lim sup
Λ→+∞

|GΛ (x)− x1|+ |x1 −GΛ (x1)|

≤ δ + kD,

(8.13)

because x ∈ A.
On the other hand

lim sup
Λ→+∞

|GΛ (x)−GΛ (x1)| = lim sup
Λ→+∞

|GΛ (x)− x1 + x1 −GΛ (x1)|

≥ lim sup
Λ→+∞

|x1 −GΛ (x1)| − |GΛ (x)− x1|

≥ kD − δ.

(8.14)

According to this, one has

lim
δ→0

[
lim sup
Λ→+∞

|GΛ (x)−GΛ (x1)| − kD
]

= 0

so lim supΛ→+∞GΛ (x1) = kD + x1 and then there exists a sequence
{

Λ̃n

}
n∈N

such that
lim

n→+∞
GΛ̃n

(x1) = kD + x1,

but GΛ(x) is increasing with respect to x, so

lim inf
n→+∞

GΛ̃n
(x) ≥ kD + x1 ∀x ∈

[
x1, x1 +

kD
2

]
.

This implies

lim inf
n→+∞

∣∣x−GΛ̃n
(x)
∣∣ ≥ kD + x1 −

(
x1 +

kD
2

)
=
kD
2
∀x ∈

[
x1, x1 +

kD
2

]
.

This last inequality and (4.5) implies that there exist a finite set of indices I
with |I| = m(n) such that the correspondings eigenvalues of P2Λ̃n+1

(
0, 1

2
, 1

2

)
, in

symbols
{
α̃i

(
Λ̃n

)}
i∈I

, fulfill

α̃i

(
Λ̃n

)
∈
[
x1, x1 +

kD
2

]
∀i ∈ I =⇒

∣∣∣α̃i (Λ̃n

)
−GΛ̃n

[
α̃i

(
Λ̃n

)]∣∣∣ > kD
4
∀i ∈ I

and of course m(n)
n→+∞−→ +∞, so

lim
n→+∞

[∑
i∈I

∣∣∣α̃i (Λ̃n

)
−GΛ̃n

[
α̃i

(
Λ̃n

)]∣∣∣2] = +∞,

which disagrees with (8.9), so the proof is finished.
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According to this, one has

lim
Λ→+∞

GΛ(x) = x ∀x ∈ [0, 1],

in the next theorem the sequence {Λ}Λ∈N and its subsequences are always denoted
with the same notation.

Theorem 8.2.4

lim sup
Λ→+∞

[
max
x∈[0,1]

{|x−GΛ(x)|}
]

= 0.

Proof. Assume, per absurdum, that

lim sup
Λ→+∞

[
max
x∈[0,1]

{|x−GΛ(x)|}
]

= M > 0,

and set
xΛ := max

x∈[0,1]
{|x−GΛ(x)|} ;

one has (up to a suitable subsequence)

lim
Λ→+∞

|xΛ −GΛ (xΛ)| = M.

The sequence {xΛ}Λ∈N is bounded, so (up to a further suitable subsequence)

lim
Λ→+∞

xΛ = x ∈ [0, 1] = A,

at this point, choose ε, x so that

0 < ε <
M

8
, σ := min

{
δ̃ (ε, x)

2
,
M

8

}
> 0 , x ∈

[
x− σ

2
, x+

σ

2

]
and Λ such that

|xΛ −GΛ (xΛ)| > M

2
, |x− xΛ| < σ , |x− xΛ| < σ,

then (if Λ is sufficiently large)

|x−GΛ (x)| ≥ |xΛ −GΛ (xΛ)| − |x− xΛ| − |GΛ (x)−GΛ (xΛ)| − |GΛ (x)−GΛ (x)|

>
M

2
− σ − ε− ε > M

8
.

This last inequality implies that there exist a finite set of indices I with |I| =
m(Λ) such that the correspondings eigenvalues of P2Λ̃n+1

(
0, 1

2
, 1

2

)
, in symbols

{α̃i (Λ)}i∈I , fulfill

α̃i (Λ) ∈
[
x− σ

2
, x+

σ

2

]
∀i ∈ I =⇒ |α̃i (Λ)−GΛ [α̃i (Λ)]| > M

8
∀i ∈ I
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and of course m(Λ)
Λ→+∞−→ +∞, so

lim
Λ→+∞

[∑
i∈I

|α̃i (Λ)−GΛ [α̃i (Λ)]|2
]

= +∞,

which disagrees with (8.9), so the proof is finished.

The proof of item (D) of theorem 4.2.1 can be completed, because if ε > 0

the last theorem implies that there exists a Λ̃ = Λ̃ (ε) such that |x−GΛ (x)| < ε

∀Λ > Λ̃ and ∀x ∈ [0, 1], while (4.5) implies

|α̃n+1 (Λ)− α̃n (Λ)| =
∣∣∣∣cos

[
(n+ 1)π

Λ + 1

]
− cos

(
nπ

Λ + 1

)∣∣∣∣
=

∣∣∣∣2 sin

[
(2n+ 1)π

Λ + 1

]
sin

(
π

Λ + 1

)∣∣∣∣ ≤ 2 sin

(
π

Λ + 1

)
,

this means that there exists a Λ̂ = Λ̂ (ε) such that |α̃i (Λ)− α̃i+1 (Λ)| < ε ∀Λ > Λ̃,
∀i.

Finally, if Λ (ε) = max
{

Λ̂ (ε) , Λ̃ (ε)
}

, then ∀Λ > Λ one has

|αi (Λ)− αi+1 (Λ)| ≤ |αi (Λ)− α̃i (Λ)|+ |αi+1 (Λ)− α̃i+1 (Λ)|+ |α̃i − α̃i+1|
= |GΛ [α̃i (Λ)]− α̃i (Λ)|+ |GΛ [α̃i+1 (Λ)]− α̃i+1 (Λ)|+ |α̃i − α̃i+1|
< ε+ ε+ ε = 3ε,

so the proof is completed.

8.3 The proofs about the xi spectrum in S2
Λ

8.3.1 Proof of item (A) in theorem 4.3.1

Consider the unitary and involutive operator U0 = U †0 = U−1
0 corresponding

to the inversion operator of the x3-axis (this exists by the O(3)-covariance of
this new model): U0 x0 U0 = −x0, U0x±U0 = x±. Then x0χ = αχ implies
x0(U0χ) = −α(U0χ), i.e. U0χ is an eigenvector of x0 with the opposite eigenvalue.

8.3.2 Proof of item (B) in theorem 4.3.1

According to the last proof, one can equivalently set Mm (Λ;α) := Bm (Λ) +
αIΛ−m+1, then the eigenvalue problem forBm (Λ) is equivalent to solve det [Mm(Λ;α)] =
0; in order to do this, let Mh

m be the h× h submatrix of Mm formed by the first
h rows and columns, then

pn(Λ;m)(α) := det [Mm(Λ;α)] and phn(Λ;m1)(α) := det
{
Mh

m1
(Λ;α)

}
,
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where n(Λ;m′) := Λ− |m′|+ 1 is the degree of the polynomial pn(Λ,m′).
It is not difficult to see that

• when n = 1⇔ |m| = Λ, then α = 0;

• when n = 2, then∣∣∣∣ α cΛ,3G(Λ,Λ− 1, 2)
cΛ,3G(Λ,Λ− 1, 2) α

∣∣∣∣ = α2 − (cΛ,3G(Λ,Λ− 1, 2))2

=: p2 (α)⇒ α1,2 = ±cΛ,3G(Λ,Λ− 1, 2);

• when n = 3, then∣∣∣∣∣∣
α cΛ−1,3G(Λ− 1,Λ− 2, 2) 0

cΛ−1,3G(Λ− 1,Λ− 2, 2) α cΛ,3G(Λ,Λ− 2, 2)
0 cΛ,3G(Λ,Λ− 2, 2) α

∣∣∣∣∣∣
= α

[
α2 − (cΛ,3G(Λ,Λ− 2, 2))2]− α (cΛ−1,3G(Λ− 1,Λ− 2, 2))2 =: p3 (α) ;

• in general, let ñ = n (Λ; m̃), then one can calculate pñ (α) through the use
of this recursion formula

p2
ñ (α) := det {M2

m̃ (Λ;α)},
p3
ñ (α) := det {M3

m̃ (Λ;α)},
p4
ñ (α) := α [p3

ñ (α)]− (cm̃+3,3G(m̃+ 3, m̃, 2))2 p2
ñ (α) ,

p5
ñ (α) := α [p4

ñ (α)]− (cm̃+4,3G(m̃+ 4, m̃, 2))2 p3
ñ (α) ,

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

pñ (α) = α
[
pñ−1
ñ (α)

]
− (cΛ,3G(Λ, m̃, 2))2 pñ−2

ñ (α) .

(8.15)

Then the proof of item (B) follows trivially from (8.15), theorem 8.2.1 and the-
orem 8.2.2, as for section 8.2.2.

8.3.3 Proof of (4.12) in theorem 4.3.1

In this proof the following theorem (here {pn}n∈N is a sequence of orthogonal
polynomials) is used:

Theorem 8.3.1 [58] (p. 46)
Let x1 < x2 < · · · < x2 be the zeros of pn(x). Then each interval [xν , xν+1]
contains exactly one zero of pn+1(x).

This is the scheme of the proof:

• First of all, theorem 8.2.1 is used to prove that there exist a R-measure

such that the polynomials
{
phn(Λ;m)

}n(Λ;m)

h=1
are orthogonal with respect to

that measure; this implies that one can apply theorem 8.2.2 getting that
all the roots of every polynomial phn(Λ;m) are real and simple.
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• Then lemma 8.3.2 and theorem 8.3.1 can be used to prove also that

ρ (Bm) = ‖Bm‖2 < ‖Bn(Λ;m)
m−1 ‖2 = ρ

(
B
n(Λ;m)
m−1

)
,

where ρ is the spectral radius.

• This last inequality involving the spectral radii trivially implies (4.12).

According to this, let’s start with the first point of this scheme.

Lemma 8.3.1 The roots of phn(Λ;m) are real and simple, and if αν1(Λ;m) >

αν2(Λ;m) > · · · > ανν(Λ;m) are the zeros of pνn(Λ;m)(α), then every interval[
αν+1
i+1 (Λ;m), αν+1

i (Λ;m)
]

contains exactly one zero of pνn(Λ;m)(α).

Proof. The matrices Bh
m (Λ) are all symmetric, so the roots of phn(Λ;m)(α) are real;

while the sequence of polynomials
{
phn(Λ;m)

}n(Λ;m)

h=1
fulfill the recurrence relation

(8.15) and because of theorem 8.2.1 one has that there exists a distribution dΘ(α)
such that ∫ +∞

−∞
pjn(Λ;m)(α)phn(Λ;m)(α)dΘ(α) = 0 (j 6= h).

Finally, theorem 8.2.2 and theorem 8.3.1 can be applied to the set {phn(Λ;m)(α)}n(Λ;m)
h=1

of polynomials, so the proof is finished.

First of all, an inequality involving the Bm-matrix elements is proved, which
implies the aforementioned inequality between the spectral radii.

Lemma 8.3.2 Let

1 ≤ m ≤ Λ, j ∈ N0, 1 ≤ l := m+ j ≤ Λ; (8.16)

then

cl,3G(l,m− 1, 2) > cl+1,3G(l + 1,m, 2). (8.17)

Proof. Because of (7.32) and (7.76), one has

cl,3G(l,m− 1, 2) =

√
1 +

l2

kD

√
(l +m− 1)(l −m+ 1)

4l2 − 1

and

cl+1,3G(l + 1,m, 2) =

√
1 +

(l + 1)2

kD

√
(l +m+ 1)(l −m+ 1)

4(l + 1)2 − 1
,
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then (8.17) becomes(
1 +

l2

kD

)(
l +m− 1

4l2 − 1

)
−
(

1 +
(l + 1)2

kD

)(
l +m+ 1

4(l + 1)2 − 1

)
> 0

∀ 1 ≤ m ≤ Λ and 1 ≤ l ≤ Λ; by algebraic calculations, one can prove that the
last inequality is equivalent to the following one:[

kD + l2
]

(l +m− 1)(2l + 3)︸ ︷︷ ︸
A

−
[
kD + (l + 1)2

]
(l +m+ 1)(2l − 1)︸ ︷︷ ︸
B

> 0 (8.18)

∀ 1 ≤ m ≤ Λ and 1 ≤ l ≤ Λ.
Furthermore, one has

A = 2kDl
2 + 2kDlm+ kl + 3kDm− 3kD + 2l4 + 2l3m+ l3 + 3l2m− 3l2,

B = 2kDl
2 + 2kDlm+ kl − km− kD + 2l4 + 2l3m+ 5l3 + 3l2m+ 3l2 − l −m− 1;

finally, (8.18) becomes

A−B = 4kDm− 2kD − 4l3 − 6l2 + l +m+ 1 > 0

∀ 1 ≤ m ≤ Λ and 1 ≤ l ≤ Λ.
From kD (Λ) ≥ Λ2 (Λ + 1)2 it follows

4kDm−2kD−4l3−6l2+l+m+1 ≥ 2Λ2(Λ+1)2−4Λ3−6Λ2 = 2Λ2
(
Λ2 − 2

)
> 0 ∀Λ ≥ 2,

while when Λ = 1

4kDm− 2kD − 4l3 − 6l2 + l +m+ 1 ≥ 2[12(2)2]− 4− 6 + 3 = 1,

so the proof is finished.

Lemma 8.3.3 Let m ≥ 1, then

‖Bm‖2 < ‖Bn(Λ;m)
m−1 ‖2.

Proof. The matrices Bm and B
n(Λ;m)
m−1 have the same dimensions, they are

Bm =



0 cm+1,3G(m+ 1,m, 2)
... 0

cm+1,3G(m+ 1,m, 2) 0
... 0

0 cm+2,3G(m+ 1,m, 2)
... 0

...
...

...
...

0 0
... cΛ,3G(Λ,m, 2)

0 0
... 0


(8.19)
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and

B
n(Λ;m)
m−1 =



0 cm,3G(m,m− 1, 2)
... 0

cm,3G(m,m− 1, 2) 0
... 0

0 cm+1,3G(m+ 1,m− 1, 2)
... 0

...
...

...
...

0 0
... cΛ−1,3G(Λ− 1,m− 1, 2)

0 0
... 0


.

(8.20)
Lemma 8.3.2, together with proposition 8.1.2, (8.19) and (8.20), imply

‖Bm‖2 < ‖Bn(Λ;m)
m−1 ‖2,

so the proof is finished.

At this point, let α1 (Λ) := max {α1 (Λ; 0) ;α1 (Λ; 1) ; · · · ;α1 (Λ; Λ)} and as-
sume, per absurdum, that α1 (Λ) = α1 (Λ;m) with m > 0. One can take the
matrix Bm−1 and its elements; from lemma 8.3.3 it follows

‖Bm‖2 < ‖Bn(Λ;m)
m−1 ‖2; (8.21)

and from lemma 8.3.1 one has that the eigenvalues of B
n(Λ;m)
m−1 ‘separate’ the ones

of Bm−1, then

ρ
(
B
n(Λ;m)
m−1

)
< ρ (Bm−1) . (8.22)

The inequalities (8.21) and (8.22) lead to α1 (Λ) < α1 (Λ;m− 1), but this is not
possible. It is possible to conclude that α1 (Λ) = α1 (Λ; 0) and with the same
procedure one can prove the other inequalities in (4.12).

8.3.4 Proof of (4.13) in theorem 4.3.1

Let

B̂0 (Λ) :=



0 G(1, 0, 2)
... 0

G(1, 0, 2) 0
... 0

0 G(2, 0, 2)
... 0

...
...

...
...

0 0
... G(Λ, 0, 2)

0 0
... 0


and its spectrum {α̂i (Λ; 0)}Λ+1

i=1 , where the eigenvalues are arranged in descending
order.
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First of all, from 1 ≤ cl,3 ≤
√

1 + Λ2

kD(Λ)
∀1 ≤ l ≤ Λ and proposition 8.1.2, it

follows

α1 (Λ; 0) = ‖B0 (Λ)‖2 ≤

√
1 +

Λ2

kD(Λ)

∥∥∥B̂0 (Λ)
∥∥∥

2
=

√
1 +

Λ2

kD(Λ)
α̂1 (Λ; 0)

and α1 (Λ + 1; 0) = ‖B0 (Λ + 1)‖2 ≥
∥∥∥B̂0 (Λ + 1)

∥∥∥
2

= α̂1 (Λ + 1; 0); then, by

algebraic calculations, one has√
1 +

Λ2

kD(Λ)
α̂1 (Λ; 0) ≤ α̂1 (Λ + 1; 0)⇔ kD(Λ) ≥ Λ2 [α̂1 (Λ; 0)]2

[α̂1 (Λ + 1; 0)]2 − [α̂1 (Λ; 0)]2
.

(8.23)
As done for section 8.2.2, one can use theorem 8.2.1 and theorem 8.2.2 to

prove that α̂1 (Λ + 1; 0) > α̂1 (Λ; 0) ∀Λ ∈ N, while it is obvious that√
l2

4l2 − 1
>

1

2
∀l ∈ N =⇒

∥∥∥B̂0 (Λ)
∥∥∥

2
= α̂1 (Λ; 0) > cos

(
π

Λ + 2

)
∀Λ ∈ N;

finally, in section 8.3.5 it is shown that α1 (Λ; 0)→ 1 when Λ→ +∞.
According to this, one has α̂1 (Λ; 0) ↑ 1, α̂1 (Λ; 0) = cos

(
π

Λ+2

)
+ ε(Λ) with

ε(Λ) ≥ 0 and ε(Λ)→ 0.
It is well known that cosx = 1 − x2

2
+ o (x3), then it is obvious that ε(Λ) =

1
Λ

+o
(

1
Λ

)
when Λ→ +∞ is not possible, because it is in constrast with α̂1 (Λ; 0) =

cos
(

π
Λ+2

)
+ ε(Λ) ≤ 1 ∀Λ; for the same reason, it must be

ε(Λ) <
π2

2 (Λ + 2)2 when Λ→ +∞.

Finally, this and

cos

(
π

Λ + 3

)
− cos

(
π

Λ + 2

)
=

π

Λ3
+ o

(
1

Λ3

)
implies

α̂1 (Λ + 1; 0)− α̂1 (Λ; 0) =
C̃

Λ3
+ o

(
1

Λ3

)
when Λ→ +∞,

for a suitable constant C̃ > 0.

Coming back to (8.23), from
√

1
3
≤ α̂1 (Λ; 0) < 1 ∀Λ ∈ N one has

Λ2 [α̂1 (Λ; 0)]2

[α̂1 (Λ + 1; 0)]2 − [α̂1 (Λ; 0)]2
≤ 1

2
√

1
3

Λ2

α̂1 (Λ + 1; 0)− α̂1 (Λ; 0)
=

1

2C̃
√

1
3

Λ5+O
(
Λ6
)

when Λ→ +∞.
Then

kD(Λ) ≥ Λ6 ⇒ α1 (Λ + 1; 0) > α1 (Λ; 0) definitively.
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8.3.5 Proof of item (D) in theorem 4.3.1

First of all, from
√

l2

4l2−1
> 1

2
∀l ∈ N and proposition 8.1.2, it follows∥∥∥∥PΛ+1

(
0,

1

2
,
1

2

)∥∥∥∥
2

= cos

(
π

Λ + 2

)
< α1 (Λ; 0) = ‖B0 (Λ)‖2 , (8.24)

then the inequality (4.14)2 follows trivially from (8.24), cosx ≥ 1− x2

2
∀x ∈ [0, 1]

and π
Λ+2
≤ 1 ∀Λ ≥ 2.

On the other hand, if χ1 is the x0-eigenvector having α1 (Λ, 0) eigenvalue,
then L0χ1 = 0, which implies

〈χ1, x+χ1〉 = 0, 〈χ1, x−χ1〉 = 0⇒ 〈χ1, x1χ1〉 = 0, 〈χ1, x2χ1〉 = 0;

so, from

(∆x)2
χ1

:=
〈
χ1,x

2χ1

〉
−

3∑
i=1

〈χ1, xiχ1〉2 ≥ 0,

it follows

[α1 (Λ, 0)]2 = 〈χ1, x0χ1〉2 ≤
〈
χ1,x

2χ1

〉 (3.9)

≤ 1 +
Λ(Λ + 1) + 1

kD(Λ)
. (8.25)

It is obvious that (8.24) and (8.25) trivially implies

lim
Λ→+∞

α1 (Λ, 0) = 1.

Once proved this, then the proof of (D) is essentially the same of section 8.2.4,
the only difference is that here A = PΛ+1

(
0, 1

2
, 1

2

)
, A + E = B0 (Λ) and ‖E‖2 ≤

2
{√

1 + 1
(Λ+1)2

[
1
2

+ 1
12

]
− 1

2

}
, which follows from proposition 8.1.2, (4.2) and

cl,3G(l,m, 2) =

√
1 +

l2

kD(Λ)

√
l2 −m2

4l2 − 1
≤

√
1 +

1

(Λ + 1)2

√
l2

4l2 − 1

≤

√
1 +

1

(Λ + 1)2

[
1

2
+

(√
l2

4l2 − 1
− 1

2

)]

=

√
1 +

1

(Λ + 1)2

1

2
+

 1
4(4l2−1)√
l2

4l2−1
+ 1

2


≤

√
1 +

1

(Λ + 1)2

[
1

2
+

1

12

]
.
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8.4 The proofs about the xi spectrum in SdΛ when

d > 2

8.4.1 Proof of item (A) in theorem 4.4.1

This proof is essentially the same of section 8.3.1, one has only to replace x0 with
xD and x± with xh, h 6= D.

8.4.2 Proof of item (B) in theorem 4.4.1

This proof is essentially the same of section 8.3.2, one has only to use in this case
the Ξld−1

(Λ;α) matrix.

8.4.3 Proof of (4.18) in theorem 4.4.1

This proof is essentially the same of section 8.3.3, one has only to prove that

Lemma 8.4.1 Let

1 ≤ m ≤ Λ, j ∈ N, 1 ≤ l := m+ j ≤ Λ; (8.26)

then
cl,DG(l,m− 1, d) ≥ cl,DG(l,m, d). (8.27)

Proof. Because of (7.32) and (7.76), one has

cl,DG(l,m− 1, d) =

√
1 +

b(l, D) + b(l − 1, D)

2kD

√
(l −m+ 1)(l +m+ d− 3)

(2l + d− 1)(2l + d− 3)

and

cl,DG(l,m, d) =

√
1 +

b(l, D) + b(l − 1, D)

2kD

√
(l −m)(l +m+ d− 2)

(2l + d− 1)(2l + d− 3)
,

then (8.17) becomes

(l −m+ 1)(l +m+ d− 3)− (l −m)(l +m+ d− 2) = d+ 2m− 3 > 0

and this is true because of (8.26) and d ≥ 3.

Similarly to section 8.3.3, from this it follows that

ρ
(
Θld−1−1(Λ)

)
> ρ

(
Θld−1

(Λ)
)
, (8.28)

and then the inequality (4.18).
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8.4.4 Proof of item (D) in theorem 4.4.1

In order to clarify the notation, let χ =
(
χ0, χ1, · · · , χΛ

)T ∈ RΛ+1, so applying
the matrix Θ0 to this vector, and calculating the norm ‖‖2, one obtains (here and
later on vl := vl,0,D)

‖Θ0[χ]‖2
2 =

(
v1χ

1
)2

+
(
v1χ

0 + v2χ
2
)2

+
(
v2χ

1 + v3χ
3
)2

+
(
v3χ

2 + v4χ
4
)2

+ · · ·

· · ·+
(
vΛ−2χ

Λ−3 + vΛ−1χ
Λ−1
)2

+
(
vΛ−1χ

Λ−2 + vΛχ
Λ
)2

+
(
vΛχ

Λ−1
)2

;

(8.29)

then one can try to find some informations about α0 (Λ) by calculating (8.29) on
particular algebraic vectors χ. In particular, if

χ ≡ χ̃ =



1√
Λ+1
1√

Λ+1
1√

Λ+1
...
1√

Λ+1

 ,

then (8.29) becomes

‖Θ0[χ]‖2
2 =

1

Λ + 1

[
2

Λ∑
l=1

(vl)
2 + 2

Λ∑
l=2

vlvl−1

]
; (8.30)

with

2
Λ∑
l=1

(vl)
2 = 2

Λ∑
l=1

[cl,DG(l, 0, d)]2
cl,D≥1

≥ 2
Λ∑
l=1

l(l + d− 2)

(2l + d− 1)(2l + d− 3)

≥ 2
Λ∑
l=1

l(l + d− 2)

(2l + d− 1)2

= 2

[
Λ∑
l=1

l2

(2l + d− 1)2
+ (d− 2)

Λ∑
l=1

l

(2l + d− 1)2

] (8.31)

and

2
Λ∑
l=2

vlvl−1 =2
Λ∑
l=2

cl,DG(l, 0, d)cl−1,DG(l − 1, 0, d)

cm,D≥1

≥ 2
Λ∑
l=2

G(l, 0, d)G(l − 1, 0, d)
$

≥ 2
Λ∑
l=2

[G(l, 0, d)]2

(8.31)

≥ 2

[
Λ∑
l=1

l2

(2l + d− 1)2
+ (d− 2)

Λ∑
l=1

l

(2l + d− 1)2

]
,

(8.32)
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where the inequality $ follows from

G(l, 0, d) ≥ G(l − 1, 0, d)⇔ l(l + d− 2)

(2l + d− 1)(2l + d− 3)
≥ (l − 1)(l + d− 3)

(2l + d− 3)(2l + d− 5)

⇔ l(l + d− 2)(2l + d− 5) ≥ (l − 1)(l + d− 3)(2l + d− 1)

⇔ d2 − 4d+ 3 ≥ 0,

which is true because d ≥ 3. According to this,

‖Θ0[χ]‖2
2 ≥

2

Λ + 1

[
Λ∑
l=1

l2

(2l + d− 1)2
+ (d− 2)

Λ∑
l=1

l

(2l + d− 1)2

]

+
2

Λ + 1

[
Λ∑
l=2

l2

(2l + d− 1)2
+ (d− 2)

Λ∑
l=2

l

(2l + d− 1)2

]

≥ 4

Λ + 1

[
Λ∑
l=1

l2

(2l + d− 1)2

]
− 2

Λ + 1

[
1

d+ 1
+
d− 2

d+ 1

]

=
1

Λ + 1

[
Λ∑
l=1

l2(
l + d−1

2

)2

]
− 2(d− 1)

(Λ + 1)(d+ 1)

=
1

Λ + 1

[
Λ∑
l=1

1(
1 + d−1

2l

)2

]
− 2(d− 1)

(Λ + 1)(d+ 1)
.

(8.33)

So, from
1

(1 + x)2
≥ 1− 2x⇔ 1 ≥ 1− 2x3 − 3x2 (8.34)

which is true when x > 0, and from [60]

ln

(
n+

1

2

)
+ γ +

1

24(n+ a)2
≤

n∑
k=1

1

k
≤ ln

(
n+

1

2

)
+ γ +

1

24(n+ b)2
, (8.35)

with

a :=
1√

24
[
1− γ − ln

(
3
2

)] ' 0.55, b :=
1

2

and γ is the Euler-Mascheroni constant; it follows

Λ∑
l=1

1(
1 + d−1

2l

)2

(8.34)

≥
Λ∑
l=1

(1− 2
d− 1

2l
) = Λ− (d− 1)

Λ∑
l=1

1

l

(8.35)

≥ Λ− (d− 1)

[
ln

(
Λ +

1

2

)
+ γ +

1

24
(
Λ + 1

2

)2

]
.

(8.36)
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Then

α0(Λ) := ρ (Θ0) ≥ ‖Θ0[χ]‖2
2

≥

√√√√ 1

Λ + 1

{
Λ− (d− 1)

[
ln

(
Λ +

1

2

)
+ γ +

2

d+ 1
+

1

24
(
Λ + 1

2

)2

]}
(8.37)

On the other hand, one can easily prove a bound from above for α0(Λ), but it is
important to point out that

χ ∈ HΛ and ‖χ‖ = 1⇒
〈
χ,L2χ

〉
≤ Λ(Λ +D − 2). (8.38)

Theorem 8.4.1 The maximal eigenvalue α0 of Θ0 and the corresponding eigen-
vector χ0 fulfill

[α0(Λ)]2 ≤ 1 +
D2 − 2D + 1 + Λ(Λ +D − 2)

4kD
∀Λ ∈ N. (8.39)

Proof. The equalities

Cdχ0 = · · · = C3χ0 = L1,2χ0 = 0

imply
〈χ0|x+|χ0〉 = 〈χ0|x−|χ0〉 = 〈χ0|xh|χ0〉 = 0

for all h 6= D.
Consequently, the inequality ∆R2

χ0
≥ 0, or more explicitely

0 ≤
[〈
χ0| (xD)2 |χ0

〉
− (〈χ0|xD|χ0〉)2]+

d∑
h=1

〈
χ0| (xh)2 |χ0

〉
,

becomes

[α0 (Λ)]2 ≤
D∑
h=1

〈
χ0| (xh)2 |χ0

〉
=
〈
χ0|R2|χ0

〉
,

with

x2ψl,D
(2.26)
=

{
1 +

b(l, D) + [b(l + 1, D)] l+D−2
2l+D−2

+ [b(l − 1, D)] l
2l+D−2

2kD(Λ)

−
[(

1 +
b(Λ, D) + b(Λ + 1, D)

2kD(Λ)

)
Λ +D − 2

2Λ +D − 2

]
P̂Λ,D

}
ψl,D

=

{
1 +

D2 − 2D + 1 + 4L2

4kD(Λ)

−
[(

1 +
b(Λ, D) + b(Λ + 1, D)

2kD(Λ)

)
Λ +D − 2

2Λ +D − 2

]
P̂Λ,D

}
ψl,D

(8.40)

and these two last equations, together with (8.38), imply obviously (8.39); so the
proof is finished.
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The inequalities (8.37) and (8.39) trivially imply the following

Corollary 8.4.1 The maximal eigenvalue α0 = α0(Λ) of xD fulfills

lim
Λ→+∞

α0(Λ) = 1. (8.41)

Once proved this, then the proof of (D) is essentially the same of section 8.2.4,
the only difference is that here A = PΛ+1

(
0, 1

2
, 1

2

)
, A+ E = Θ0 (Λ) and

‖E‖2 ≤ 2

{√
1 +

b(Λ, D) + b(Λ− 1, D)

2kD(Λ)
− 1

2

}
,

which follows from proposition 8.1.2, (4.2) and

cl,DG(l, 0, d) =

√
1 +

b(l, D) + b(l − 1, D)

2kD(Λ)

√
l(l + d− 2)

(2l + d− 1)(2l + d− 3))

≤

√
1 +

b(Λ, D) + b(Λ− 1, D)

2kD(Λ)
.

8.5 Some useful summations

From h(h+1)(h+2)...(h+j+1)− (h−1)h(h+1)...(h+j) = (j+2)h(h+1)...(h+j)
(with j ∈ N0) it follows

n∑
h=1

h(h+1)...(h+j) =
1

j+2
n(n+1)(n+2)...(n+j+1); (8.42)

this implies, in particular,

n∑
h=1

h2 =
n∑
h=1

[h(h+1)− h] =
n(n+1)(n+2)

3
− n(n+1)

2
=
n(n+1)(2n+1)

6
, (8.43)

There are also other equalities that are useful:

n∑
h=1

h3 =
n2(n+ 1)2

4
,

n∑
h=1

h(2h+ 1) =
4n3 + 9n2 + 5n

6
, (8.44)

n∑
h=1

h(h+ 1)(2h+ 1) =
1

2
n(n+ 1)2(n+ 2), (8.45)

n∑
h=1

[h(h+ 1) + 1] (2h+ 1) =
(n+ 1)2(n2 + 2n+ 2)

2
,

n∑
h=1

h

(
1− 1

2h

)
=
n2

2
.

(8.46)
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Using the inequalities 1+x/2 ≥
√

1+x ≥ 1+x/2−x2/8 (the first one is valid for
x ≥ −1, the second for x ≤ 8) one has

1+
m(m−1)

2kD
≥ bm ≥ 1+

m(m−1)

2kD
−m

2(m−1)2

(2kD)2
(8.47)

⇒ n+
(n−1)n(n+1)

6k
≥

n∑
m=1

bm ≥ n+
(n−1)n(n+1)

6k
− (n−1)n(n+1)(3n2−2)

60k2
.(8.48)

Using trigonometric formulae it is straightforward to show that

n∑
m=2

cos

[
π(2m−1)

2n+2

]
= 0 (8.49)

(the terms cancel pairwise: the terms with m = 2, n cancel each other, the terms
with m = 3, n−1 cancel each other, etc.), and

2 sin

[
π(n+1+m)

2n+2

]
sin

[
π(n+m)

2n+2

]
= cos

[
π

2n+2

]
−cos

[
π(2n+1+2m)

2n+2

]
= cos

[
π

2n+2

]
+ cos

[
π(2m−1)

2n+2

]
. (8.50)
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Appendix C

9.1 Proof of Theorems 5.3.1 and 5.3.1

Consider a generic Hilbert space H carrying a unitary representation of O(3).
For any vector ψ ∈ H, let g ∈ O(3) be a 3× 3 matrix such that the expectation
values of Lj on ψ fulfill

gij〈Lj〉 = δ3
i |〈L〉|. (9.1)

The expectation values of the Lj,L
2 on the states ψ, ψ′ := U(g)ψ fulfill 〈L1〉′ =

〈L2〉′ = 0, 〈L3〉′ = |〈L〉′| = |〈L〉| ≥ 0, 〈L2〉′ = 〈L2〉 (the second equalities hold
because U(g) is unitary). Hence ψ fulfills/saturates (5.19) iff ψ′ respectively
fulfills/saturates

〈L2〉′ − 〈L3〉′ (〈L3〉′ + 1) ≥ 0. (9.2)

If H = Vl the first term equals l(l+1), the inequality (9.2) is fulfilled, and it
is saturated by ψ′ = |l, l〉, because Spec(L3) = {−l, 1−l, ..., l}.

Now assume that H can be decomposed as the direct sum H = H1 ⊕ H2 of
orthogonal subspaces H1,H2 carrying subrepresentations of O(3) and on which
(5.19) is fulfilled; moreover, let Γi ⊂ Hi be the subsets of vectors saturating (5.19).
Decomposing ψ′ = a1ψ1 + a2ψ2 and setting α := |a1|2, one finds 0 ≤ α ≤ 1,
|a2|2 = 1−α, and

〈L2〉′ − 〈L3〉′ (〈L3〉′ + 1) (9.3)

= α〈L2〉1 + (1−α)〈L2〉2 − [α〈L3〉1 + (1−α)〈L3〉2]2 − [α〈L3〉1 + (1−α)〈L3〉2] =: f(α),

where 〈A〉i ≡ 〈A〉ψi . The polynomial f ′(α) vanishes only at one point α′ ∈ R,
which however is of maximum for f(α), because f ′(α) = − [〈L3〉1−〈L3〉2]2 ≤ 0.
Hence the minimum point of f(α) in the interval [0, 1] is either 0 or 1. But, by
the above assumptions,

f(1) = 〈L2〉1 − |〈L〉1| (|〈L〉1|+ 1) ≥ 0,

f(0) = 〈L2〉2 − |〈L〉2| (|〈L〉2|+ 1) ≥ 0,

173
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proving that (5.19) is fulfilled on H. Moreover, the set of states of H saturating
the inequality is clearly Γ = Γ1 ∪ Γ2.

Choosing first H1 = V0 and H2 = V1, then H1 = V0 ⊕ V1 and H2 = V2, and
so on, one thus iteratively proves the statements of Theorems 5.3.1 and 5.3.1 for
pure states.

Similarly, also mixed states (i.e. density operators) ρ fulfill (5.19), but can-
not saturate it: abbreviating 〈A〉 ≡ 〈A〉ρ := tr(ρA), let g ∈ O(3) be a 3 × 3
matrix such that the expectation values of Lj on ρ fulfill (9.1). Then the expec-
tation values of Lj,L

2 on the state ρ′ = U(g)ρU−1(g) fulfill 〈L1〉′ = 〈L2〉′ = 0,
〈L3〉′ = |〈L〉′| = |〈L〉| ≥ 0, 〈L2〉′ = 〈L2〉, and ρ fulfills/saturates (5.19) iff ρ′

fulfills/saturates (9.2). If ρ′ = αρ1 + (1−α)ρ2, the left-hand side of (9.2) again
takes the form (9.3). Hence, reasoning as before, one finds that ρ fulfills (5.19),
and that there are no mixed states saturating this inequality.

9.2 Proofs of some results regarding S1
Λ

On a vector χ =
∑Λ

m=−Λ χmψm one has x+χ =
∑Λ−1

m=−Λ χmbm+1ψm+1, and

〈x+〉χ =
Λ∑

m=1−Λ

χmχm−1bm; (9.4)

〈x2〉χ =
Λ−1∑

m=1−Λ

(
1 +

m2

kD

)
|χm|2 +

1

2

[
1 +

Λ(Λ− 1)

kD

]
(|χΛ|2 + |χ−Λ|2)

= 〈χ,χ〉+
Λ−1∑

m=1−Λ

m2

kD
|χm|2 +

1

2

[
Λ(Λ− 1)

kD
− 1

]
(|χΛ|2 + |χ−Λ|2).(9.5)

In the next lines we do firstly the proof (5.13),

〈L〉φβα =
1

2Λ + 1

Λ∑
m=−Λ

m = 0,
〈
L2
〉
φβα

=
1

2Λ + 1

Λ∑
m=−Λ

m2 =
2

2Λ + 1

Λ∑
m=1

m2 (8.43)
=

Λ(Λ + 1)

3
.

Then, the proof of (5.14). By (3.9), (8.43), (9.4-9.5)

〈x2〉φβα = 〈φβα,x2φβα〉 = 1 +
2

2Λ+1

Λ∑
m=1

m2

kD
− 1

2Λ+1

[
Λ(Λ + 1)

kD
+ 1

]
= 1 +

Λ(Λ+1)

3kD
− 1

2Λ+1

[
Λ(Λ + 1)

kD
+ 1

]
=

2Λ

2Λ+1
+

2(Λ−1)Λ(Λ+1)

3(2Λ+1)kD
,
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as claimed. Now it is possible to prove (5.15):

(∆x)2

φβα
= 〈x2〉φβα − |〈x+〉φβα|

2 =
2Λ

2Λ+1
+

2(Λ2−1)

3(2Λ+1)kD
− 4

(2Λ+1)2

[
Λ∑

m=1

bm

]2

1≤bm
≤ 2Λ

2Λ+1
+

2(Λ2−1)Λ

3(2Λ+1)kD
− 4Λ2

(2Λ+1)2

(3.5)

≤ 2Λ

2Λ+1
− 4Λ2

(2Λ+1)2
+

2(Λ−1)

3(2Λ+1)Λ(Λ + 1)
<

2Λ

(2Λ + 1)2
+

1

3Λ(Λ + 1)

<
2Λ

4Λ(Λ + 1)
+

1

3Λ(Λ + 1)
=

1

Λ + 1

(
1

2
+

1

3Λ

)
Λ≥2

≤ 2

3(Λ + 1)
.

At this point comes the proof of (5.17). On a generic normalized χ (9.4-9.5)
with Λ = 1 gives

〈x2〉χ =
1

2

[
1 + |χ0|2

]
=

1

2
[1 + s] , 〈x+〉χ = χ0χ−1 + χ1χ0,

|〈x+〉χ|2 = |χ0|2
(
|χ1|2+|χ−1|2

)
+ (χ2

0χ1χ−1+χ0
2χ1χ−1) = s(1− s) + 2st cosα,

(∆x)2
χ = 〈x2〉χ − |〈x+〉χ|2 =

1

2
[1− s] + s2 − 2st cosα(9.6)

where s := |χ0|2 ≤ 1, t := |χ1χ−1|, and α is the phase of χ2
0χ1χ−1; by the

Cauchy-Schwarz inequality t ≤ (|χ1|2+|χ−1|2) /2 = (1−s)/2. For fixed s, (9.6) is
minimized by α = 0 and t = (1−s)/2 (namely |χ1| = |χ−1| =

√
t =

√
(1−s)/2),

what then yields

(∆x)2
χ =

1

2
(1−s) + s2 − s(1−s) = 2s2 − 3

2
s+

1

2
.

This is minimized by s = 3/8, and the minimum value is (∆x)2
min = 7/32, as

claimed. The corresponding minimizing vectors are χ =
√

5
4

[
eiβψ−1+eiγψ1

]
+

√
3√
8
ei(β+γ)/2ψ0; the one in (5.17) is chosen so that 〈x+〉 ∈ R.

Next, the proof of (5.18). Up to normalization, the components of the eigen-
vector χ of the Toeplitz matrixX0 with the maximal eigenvalue (λM = cos [π/(2Λ+2)])
are [see (4.1)]

χm = sin

[
π(Λ+1+m)

2Λ+2

]
= cos

[
πm

2Λ+2

]
; (9.7)
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then 〈χ,χ〉 = Λ+1,

〈χ,x2χ〉 (9.5)
= 〈χ,χ〉+ 2

Λ−1∑
m=1

m2

kD
χ2
m +

[
Λ(Λ− 1)

kD
− 1

]
χ2

Λ

=Λ + 1 + 2
Λ−1∑
m=1

m2

kD
χ2
m +

[
Λ(Λ− 1)

kD
− 1

]
χ2

Λ

χ2
m≤1

≤ Λ + 1 + 2
Λ−1∑
m=1

m2

kD
+

[
Λ(Λ− 1)

kD
− 1

]
χ2

Λ

(3.5)

≤ Λ + 1 + 2
Λ−1∑
m=1

m2

kD

(8.43)
= Λ + 1 +

Λ(Λ− 1)(2Λ− 1)

3kD
,

which implies

〈x2〉χ =
〈χ,x2χ〉
〈χ,χ〉

≤1 +
Λ(Λ− 1)(2Λ− 1)

3kD(Λ + 1)

(3.5)

≤ 1 +
Λ(Λ− 1)(2Λ− 1)

3Λ2(Λ + 1)3
≤ 1 +

1

(Λ + 1)2
.

(9.8)

Moreover, due to (8.47), (8.48), χ−m = χm ∈ R, it is 〈x1〉χ = 〈x+〉χ because the
latter is real, whence

〈χ, x1χ〉
(9.4)
= 2

Λ∑
m=1

bm sin

[
π(Λ+1+m)

2Λ+2

]
sin

[
π(Λ+m)

2Λ+2

]
bm≥1

≥ 2
Λ∑

m=1

sin

[
π(Λ+1+m)

2Λ+2

]
sin

[
π(Λ+m)

2Λ+2

]
(8.50)
=

Λ∑
m=1

{
cos

[
π

2Λ+2

]
+ cos

[
π(2m−1)

2Λ+2

]}
(8.49)
= (Λ + 1) cos

[
π

2Λ+2

]
=⇒

〈x1〉2χ =

(
〈χ, x1χ〉
〈χ,χ〉

)2

≥ cos2

[
π

2Λ+2

]
= 1− sin2

[
π

2Λ+2

]
≥ 1−

(
π

2Λ+2

)2

,(9.9)

(∆x)2
χ = 〈x2〉χ −〈x1〉2χ

(9.8)&(9.9)

≤ 1 +
1

(Λ + 1)2
− 1 +

(
π

2Λ + 2

)2

=
1 + π2

4

(Λ + 1)2
<

3.5

(Λ + 1)2
. (9.10)
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9.3 States saturating the Heisenberg UR (5.4)

on S1, S1
Λ

For any µ ∈ R, i = 1, 2 let aµi := L− iµxi, zi := 〈L〉− iµ〈xi〉, Aµi := aµi − zi.
The inequality 0 ≤ 〈Aµi †A

µ
i 〉 = (∆L)2 + µ2(∆xi)

2 + µεij〈xj〉 (here ε11 = ε22 = 0,
ε12 =−ε21 = 1, and a sum over j = 1, 2 is understood) is saturated on the states
annihilated by Aµi , which are the eigenvectors χ =

∑
n χnψn of aµi ; here the sum

runs over n ∈ Z for S1 [where ψn is (x+)n = einϕ], over n ∈ IΛ := {−Λ, 1−Λ, ...,Λ}
for S1

Λ. One can just stick to i = 1; the UR will be thus saturated on the
eigenvectors of aµ1 . The results for aµ2 can be obtained by a rotation of π/2,
by the O(2)-equivariance.

One easily checks that aµ1χ = zχ in H = L2(S1) amounts to the equations

2χn(n− z)− iµ(χn+1 + χn−1) = 0, n ∈ Z. (9.11)

One way to fulfill them (with a non trivial χ) is with µ = 0; this implies χn = 0
for all n but one, i.e. χ ∝ ψm for some m ∈ Z, and z = 〈L〉 = m. This is actually
the only way: if µ 6= 0 then the equations can be used as recurrence relations
to determine all the χn as combinations of two, e.g. χ0, χ1; if the latter vanish
so do all χn, otherwise the resulting sequence does not lead to a χ ∈ H because∑

n |χn|2 =∞. In fact, rewriting (9.11) in the form χn+1 = −χn−1 + Cnχn, with
Cn := 2

iµ
(n− z) it is easy to iteratively prove the relation

χn+1 = χnQn −
χ0

Q1Q2....Qn−1

, Q1 := C1, Qn := Cn −
1

Qn−1

.

This implies that as n→∞ |Cn| → ∞, |Qn| ' |Cn| → ∞, |χn+1/χn|2 ' |Qn|2 →
∞, whence by the D’Alembert criterion the series

∑∞
n=0 |χn|2 diverges. The ψm

are also eigenvectors of a2
µ=0 and therefore saturate not only (5.4)1, but also (5.4)2,

and therefore all of (5.4).
One easily checks that the eigenvalue equation aµ1χ = zχ in HΛ (i.e. on S1

Λ)
amounts to the equations

2χ−Λ(Λ + z) + iµ b1−Λχ1−Λ = 0,

2χn(n− z)− iµ(bn+1χn+1 + bnχn−1) = 0, n = 1−Λ, 2−Λ, ...,Λ−1,

2χΛ(Λ− z)− iµ bΛχΛ−1 = 0

(9.12)

(actually the second equations include also the first, third, because for n=±Λ,
b−Λ =bΛ+1 = 0). One way to fulfill (9.12) is with µ=0; this implies χn=0 for all
n but one, i.e. χ ∝ ψm for some m∈IΛ, and z=〈L〉=m. But nontrivial solutions
exist also with nonzero µ 6=0. In fact, equations (9.12) can be used as recurrence
relations to determine all the χn in terms of one. It is possible to use them in
the order to express first χ1−Λ as χ−Λ times a factor, then χ2−Λ as χ−Λ times
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another factor, etc., then the last equation amounts to the eigenvalue equation,
a polynomial equation in z of degree (2Λ+1). Note that if z is an eigenvalue
and χ the corresponding eigenvector then also z′ = −z is an eigenvalue with
corresponding eigenvector characterized by components χ′n = (−1)nχ−n. Since
aµ2 = e−iπL/2aµ1e

iπL/2, to each eigenvector χ of aµ1 there corresponds the one
χ′ = e−iπL/2χ of aµ2 with the same eigenvalue z and components related by χ′n =
χn(−i)n. Hence χ cannot be a simultaneous eigenvector of aµ1 , a

µ
2 and therefore

again cannot saturate all of (5.4), but only one of the first two inequalities, unless
µ = 0, namely unless it is an eigenvector of L; hence again the ψm are the only
states saturating all of (5.4).

Here the eigenvectors of aµ1 are determined for Λ=1. The eigenvalue equation
amounts to z(z2−1+µ2/2)=0. One can easily find that (9.12) admits the following
solutions:

z = 0, ±
√

1−µ
2

2
, χ = χ−1

{
ψ−1 +

2i

µ
(1+z)ψ0 −

[
1+

4z

µ2
(1+z)

]
ψ1

}
. (9.13)

‖χ‖2 =1 amounts to |χ−1|2
µ4

{
µ4 + 4µ2|1+z|2 + |µ2+4z(1+z)|2

}
= 1. This leads

to

z = 0 ⇒ |χ−1|2 =
µ2

2µ2 + 4

z = ±
√

1−µ
2

2
⇒ z ∈

{
R,

iR,
|χ−1|2 =

{
µ4

32(1+z)−8µ2 if µ2 ≤ 2,

1
4

if µ2 ≥ 2.

In the µ→0 limit one recovers the eigenvectors ψ1,ψ0,ψ−1 of L with eigenvalues
−1, 0, 1, whereas in the µ→∞ limit the eigenvectors ϕ−, ϕ0, ϕ+ of x1 with eigen-
values −

√
2/2, 0,

√
2/2 (they are obtained in the reverse order ϕ+, ϕ0, ϕ− in the

limit µ→−∞). On the other hand if µ2 = 2 then all eigenvalues coincide with
the zero eigenvalue, which remains with geometric multiplicity 1; in other words,
in this case (only) there is no basis of HΛ consisting of eigenvectors of aµ1 . More-
over, recalling that z = 〈L〉−iµ〈x1〉 one finds that if µ2≤ 2 then 〈x1〉= 0 on all
eigenvectors (because z is real), whereas if µ2≥2 then 〈L〉=0 on all eigenvectors
(because z is purely imaginary). One easily checks that

〈x1〉+ i〈x2〉 = 〈x+〉 =
2i

µ
|χ−1|2

[
2 + z + z̄ +

4z

µ2
|1+z|2

]
,
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leading to

z = 0, µ2 ≤ 2 ⇒ 〈x1〉 = 0, 〈x2〉 =
2µ

µ2+2
, 〈x〉2 =

4µ2

(µ2+2)2
, (9.14)

z = 0, µ2 ≥ 2 ⇒ 〈x1〉 = 0, 〈x2〉 =
1

µ
, 〈x〉2 =

1

µ2
, (9.15)

z = ±
√

1−µ
2

2
, µ2 ≤ 2 ⇒ 〈x1〉 = 0, 〈x2〉 =

µ

2
, 〈x〉2 =

µ2

4
, (9.16)

z = ±i
√
µ2

2
−1, µ2 ≥ 2 ⇒ 〈x1〉 =

∓1

µ

√
µ2

2
−1, 〈x2〉 =

1

µ
, 〈x〉2 =

1

2
. (9.17)

As on H1 it is x2 = 1− (P̃1+P̃−1)/2, one finds

〈x2〉 = 1− |χ−1|2

2

{
1+

∣∣∣∣1+
4z

µ2
(1+z)

∣∣∣∣2
}

leading to

z = 0, µ2 ≤ 2 ⇒ 〈x2〉 =
µ2+4

2(µ2+2)
, (∆x)2 =

1

2
+

2−3µ2

(µ2+2)2
, (9.18)

z = 0, µ2 ≥ 2 ⇒ 〈x2〉 =
µ2+4

2(µ2+2)
, (∆x)2 =

µ4+2µ2−4

2µ2(µ2+2)
,(9.19)

z = ±
√

1−µ
2

2
, µ2 ≤ 2 ⇒ 〈x2〉 =

1

2
+
µ2

8
, (∆x)2 =

1

2
−µ

2

8
, (9.20)

z = ±i
√
µ2

2
−1, µ2 ≥ 2 ⇒ 〈x2〉 =

3

4
, (∆x)2 =

1

4
. (9.21)

One also finds

z = 0, ⇒ (∆L)2 = 〈L2〉 =
µ2

µ2+2
, (9.22)

z = ±
√

1−µ
2

2
, µ2 ≤ 2 ⇒ (∆L)2 = 1−µ

2

4
−
[
1− µ2(1+z)

4(1+z)−µ2

]2

, (9.23)

z = ±i
√
µ2

2
−1, µ2 ≥ 2 ⇒ (∆L)2 = 〈L2〉 =

1

2
. (9.24)

For all µ χα := eiαLχ is characterized by the same (∆L)2, (∆x)2 as χ. For all
µ 6= 0 and any of the eigenvectors χ of aµ1 the systemX := {χα}α∈[0,2π[ is complete

(actually overcomplete), but the resolution of the identity
∫ 2π

0
dαχα〈χα, ·〉 = cI

does not hold.
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9.4 Proof of Theorem 5.3.2

This is based on the following two lemmas:

Lemma 9.4.1 Let P h=
∑Λ

l=|h|ψ
h
l 〈ψh

l , ·〉 be the projector on the L3 =h eigenspace.
Then ∫ 2π

0

dα eiα(L3−h) = 2πP h. (9.25)

This can be proved applying both sides to the basis vectors ψm
l . In subsection

9.5 we do the proof of

Lemma 9.4.2 (Lemma I) If |h|, |n| ≤ l, j then∫ π

0

dθ sin θ 〈ψn
j , e

iθL2ψh
j 〉 〈eiθL2ψh

l ,ψ
n
l 〉 =

2

2l + 1
δlj. (9.26)

Now let B :=
∫
SO(3)

dµ(g)P β
g , with a generic ω =

Λ∑
l=0

l∑
h=−l

ωhl ψ
h
l ; here comes the

computation of Bψn
l (|n| ≤ l):

Bψn
l =

∫ 2π

0

dϕ

∫ π

0

dθ sin θ

∫ 2π

0

dα eiϕL3eiθL2eiαL3ω 〈eiθL2eiαL3ω, e−iϕL3ψn
l 〉

(3.6)
=

∫ 2π

0

dϕ eiϕ(L3−n)

∫ π

0

dθ sin θ

∫ 2π

0

dα eiθL2eiαL3ω 〈eiθL2eiαL3ω,ψn
l 〉

(9.25)
= 2π

Λ∑
j=|n|

ψn
j

∫ π

0

dθ sin θ

∫ 2π

0

dα 〈ψn
j , e

iθL2eiαL3ω〉 〈eiθL2eiαL3ω,ψn
l 〉

= 2π
Λ∑

j=|n|

ψn
j

∫ π

0

dθ sin θ

∫ 2π

0

dα

l∑
h=−l

ωhl

j∑
m=−j

ωmj 〈ψn
j , e

iθL2eiαL3ψm
j 〉 〈eiθL2eiαL3ψh

l ,ψ
n
l 〉

= 2π
Λ∑

j=|n|

ψn
j

l∑
h=−l

ωhl

j∑
m=−j

ωmj

∫ π

0

dθ sin θ

∫ 2π

0

dα eiα(m−h)〈ψn
j , e

iθL2ψm
j 〉 〈eiθL2ψh

l ,ψ
n
l 〉

(9.25)
= (2π)2

Λ∑
j=|n|

ψn
j

mjl∑
h=−mjl

ωhl ω
h
j

∫ π

0

dθ sin θ 〈ψn
j , e

iθL2ψh
j 〉 〈eiθL2ψh

l ,ψ
n
l 〉

where mjl :=min{j, l}. By (9.26) this becomes Bψn
l = ψn

l

l∑
h=−l
|ωhl |28π2/(2l+ 1).

In order that this equals Cψn
l , i.e. that B = CI with some constant C > 0,

it must be
l∑

h=−l
|ωhl |2 = C(2l+1)/8π2 for all l = 0, ...,Λ. Summing over l and
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imposing that ω be normalized one finds

1 = ‖ω‖2 =
Λ∑
l=0

l∑
h=−l

|ωhl |2 =
Λ∑
l=0

2l + 1

8π2
C =

(Λ + 1)2

8π2
C ⇒ C =

8π2

(Λ + 1)2
,

(9.27)
as claimed. The strong SCS {ωg}g∈SO(3) is fully O(3)-equivariant if ωhl = ω−hl ,
because then it is mapped into itself also by the unitary transformationψh

l 7→ ψ−hl
that corresponds to the transformation of the coordinates (with determinant -1)
(x1, x2, x3) 7→ (x1,−x2, x3).

9.5 Proof of Lemma I

First of all, denoting as F (a, b; c; z) the Gauss hypergeometric function and as
(z)n the Pochhammer’s symbol, then, by definition,

(z)n :=
Γ(z + n)

Γ(z)
and F (−n, b; c; z) :=

n∑
m=0

(
n

m

)
(−1)mzm(b)m

(c)m
. (9.28)

According to [55] p. 561 eq 15.4.6, one has

F (−n, α + 1 + β + n;α + 1;x) =
n!

(α + 1)n
P (α,β)
n (1− 2x), (9.29)

where P
(α,β)
n is the Jacobi polynomial. From p. 556 eq. 15.1.1 one has

F (a, b; c; z) = F (b, a; c; z), (9.30)

p. 559 eq. 15.3.3

F (a, b; c; z) = (1− z)c−a−bF (c− a, c− b; c; z) (9.31)

and from p. 774∫ 1

−1

(1− x)α(1 + x)βP (α,β)
n (x)P (α,β)

m (x)dx

=
2α+β+1

2n+ α + β + 1

Γ(n+ α + 1)Γ(n+ β + 1)

n!Γ(n+ α + β + 1)
δnm.

(9.32)

In addition, one needs the following

Proposition 9.5.1 Let l ≥ s ≥ h ≥ −l and

f(l, h, s) :=

{ ∏s−1
j=h [l(l + 1)− j(j + 1)] if h < s,

1 if h = s;
(9.33)

then

f(l, h, s) =
(l − h)!(l + s)!

(l + h)!(l − s)!
. (9.34)
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Proof. When h = s,

f(l, h, h) = 1 =
(l − h)!(l + h)!

(l + h)!(l − h)!
;

assume that h < s and (induction hypothesis)

f(l, h, s− 1) =
(l − h)!(l + s− 1)!

(l + h)!(l − s+ 1)!
,

so

f(l, h, s) = f(l, h, s− 1) [l(l + 1)− (s− 1)s] =
(l − h)!(l + s− 1)!

(l + h)!(l − s+ 1)!
(l + s)(l − s+ 1)

=
(l − h)!(l + s)!

(l + h)!(l − s)!
.

In the same way one can prove that, when l ≥ s ≥ h ≥ −l, and setting

g(l, h, s) :=

{ ∏s
j=h+1 [l(l + 1)− j(j − 1)] if h < s,

1 if h = s;
(9.35)

then

g(l, h, s) =
(l − h)!(l + s)!

(l + h)!(l − s)!
; (9.36)

so, when l ≥ s ≥ h ≥ −l,

f(l, h, h) = 1 = g(l,−h,−h) and

f(l, h, s) =
s−1∏
j=h

[l(l + 1)− j(j + 1)] =
−h∏

j=−s+1

[l(l + 1)− j(j − 1)] = g(l,−s,−h).

(9.37)



9.5. PROOF OF LEMMA I 183

It is important to point out that, when 0 ≤ n ≤ h ≤ l,〈
e2 log (cos θ

2)L0etan θ
2
L+ψh

l , e
−tan θ

2
L+ψn

l

〉
(9.33)
=

〈
l∑

s=h

(
cos

θ

2

)2s
(
tan θ

2

)s−h
(s− h)!

√
f(l, h, s)ψs

l ,
l∑

r=n

(−1)r−n
(
tan θ

2

)r−n
(r − n)!

√
f(l, n, r)ψr

l

〉
n≤h
= (−1)h−n

l∑
s=h

(−1)s−h
[
tan θ

2

]s−h
(s− h)!

√
f(l, h, s)

(
cos

θ

2

)2s
[
tan θ

2

]s−n
(s− n)!

√
f(l, n, s)

= (−1)h−n
l∑

s=h

(−1)s−h
1

(s− h)!

√
f(l, h, s)

(
cos

θ

2

)n+h(
sin

θ

2

)2s−n−h
1

(s− n)!

√
f(l, n, s)

(9.34)
= (−1)h−n

(
cos

θ

2

)n+h(
sin

θ

2

)h−n√
(l − n)!(l − h)!

(l + n)!(l + h)!

·
l∑

s=h

(−1)s−h
(l + s)!

(l − s)!(s− n)!(s− h)!

(
sin

θ

2

)2(s−h)

j=s−h
= (−1)h−n

(
cos

θ

2

)n+h(
sin

θ

2

)h−n√
(l − n)!(l − h)!

(l + n)!(l + h)!

·
l−h∑
j=0

(−1)j
(l + h+ j)!

(l − h− j)!(h− n+ j)!(j)!

(
sin

θ

2

)2j

,

(9.28)
= (−1)h−n

(
cos

θ

2

)n+h(
sin

θ

2

)h−n√
(l − n)!(l − h)!

(l + n)!(l + h)!

· (l + h)!

(l − h)!(h− n)!
F

(
−(l − h), l + h+ 1;h− n+ 1;

(
sin

θ

2

)2
)

(9.29)
= (−1)h−n

(
cos

θ

2

)n+h(
sin

θ

2

)h−n√
(l − n)!(l + h)!

(l + n)!(l − h)!

· 1

(h− n)!

(l − h)!(h− n)!

(l − n)!
P

(h−n,h+n)
l−h

(
1− 2 sin2 θ

2

)
= (−1)h−n

(
cos

θ

2

)n+h(
sin

θ

2

)h−n√
(l − h)!(l + h)!

(l + n)!(l − n)!
P

(h−n,h+n)
l−h

(
1− 2 sin2 θ

2

)
,

(9.38)

A :=
〈
e−2 log (cos θ

2)L0e−tan θ
2
L−ψ−hl , etan θ

2
L−ψ−nl

〉
(9.35)
=

〈
−l∑

s=−h

(
cos

θ

2

)−2s (−1)−s−h
(
tan θ

2

)−s−h
(−s− h)!

√
g(l, s,−h)ψs

l ,
−l∑

r=−n

(
tan θ

2

)−r−n
(−r − n)!

√
g(l, r,−n)ψr

l

〉
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A
(9.37)
=

〈
−l∑

s=−h

(
cos

θ

2

)−2s (−1)−s−h
(
tan θ

2

)−s−h
(−s− h)!

√
f(l, h,−s)ψs

l ,
−l∑

r=−n

(
tan θ

2

)−r−n
(−r − n)!

√
f(l, n,−r)ψr

l

〉
r,s→−r,−s

=

〈
l∑

s=h

(
cos

θ

2

)2s (−1)s−h
(
tan θ

2

)s−h
(s− h)!

√
f(l, h, s)ψ−sl ,

l∑
r=n

(
tan θ

2

)r−n
(r − n)!

√
f(l, n, r)ψ−rl

〉
n≤h
=

l∑
s=h

(−1)s−h
[
tan θ

2

]s−h
(s− h)!

√
f(l, h, s)

(
cos

θ

2

)2s
[
tan θ

2

]s−n
(s− n)!

√
f(l, n, s)

=
l∑

s=h

(−1)s−h
[
tan θ

2

]s−h
(s− h)!

√
f(l, h, s)

(
cos

θ

2

)2s
[
tan θ

2

]s−n
(s− n)!

√
f(l, n, s)

(9.38)
=

(
cos

θ

2

)n+h(
sin

θ

2

)h−n√
(l − h)!(l + h)!

(l + n)!(l − n)!
P

(h−n,h+n)
l−h

(
1− 2 sin2 θ

2

)
,

(9.39)

B :=
〈
e2 log (cos θ

2)L0etan θ
2
L+ψ−hl , e−tan θ

2
L+ψn

l

〉
(9.33)
=

〈
l∑

s=−h

(
cos

θ

2

)2s
(
tan θ

2

)s+h
(s+ h)!

√
f(l,−h, s)ψs

l ,
l∑

r=n

(−1)r−n
(
tan θ

2

)r−n
(r − n)!

√
f(l, n, r)ψr

l

〉
−h≤n

=
l∑

s=n

(−1)s−n
[
tan θ

2

]s+h
(s+ h)!

√
f(l,−h, s)

(
cos

θ

2

)2s
[
tan θ

2

]s−n
(s− n)!

√
f(l, n, s)

=
l∑

s=n

(−1)s−n
1

(s+ h)!

√
f(l,−h, s)

(
cos

θ

2

)n−h(
sin

θ

2

)2s−n+h
1

(s− n)!

√
f(l, n, s)

(9.34)
=

(
cos

θ

2

)n−h(
sin

θ

2

)h+n
√

(l − n)!(l + h)!

(l + n)!(l − h)!

·
l∑

s=n

(−1)s−n
(l + s)!

(l − s)!(s− n)!(s+ h)!

(
sin

θ

2

)2(s−n)

j=s−n
=

(
cos

θ

2

)n−h(
sin

θ

2

)h+n
√

(l − n)!(l + h)!

(l + n)!(l − h)!

·
l−n∑
j=0

(−1)j
(l + n+ j)!

(l − n− j)!(j)!(h+ n+ j)!

(
sin

θ

2

)2j

(9.28)
=

(
cos

θ

2

)n−h(
sin

θ

2

)h+n
√

(l − n)!(l + h)!

(l + n)!(l − h)!

· (l + n)!

(l − n)!(h+ n)!
F

(
−(l − n), l + n+ 1;h+ n+ 1;

(
sin

θ

2

)2
)
,
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B
(9.31)
=

(
cos

θ

2

)n−h(
sin

θ

2

)h+n
√

(l + n)!(l + h)!

(l − n)!(l − h)!

1

(h+ n)!

·

[
1−

(
sin

θ

2

)2
]h−n

F

(
l + h+ 1,−(l − h);h+ n+ 1;

(
sin

θ

2

)2
)

(9.29)
=

(
cos

θ

2

)h−n(
sin

θ

2

)h+n
√

(l + n)!(l + h)!

(l − n)!(l − h)!

1

(h+ n)!

· (l − h)!(h+ n)!

(l + n)!
P

(h+n,h−n)
l−h

(
1− 2 sin2 θ

2

)
=

(
cos

θ

2

)h−n(
sin

θ

2

)h+n
√

(l − h)!(l + h)!

(l + n)!(l − n)!
P

(h+n,h−n)
l−h

(
1− 2 sin2 θ

2

)
(9.40)

and 〈
e−2 log (cos θ

2)L0e−tan θ
2
L−ψh

l , e
tan θ

2
L−ψ−nl

〉
(9.35)
=

〈
−l∑
s=h

(
cos

θ

2

)−2s (−1)h−s
(
tan θ

2

)h−s
(h− s)!

√
g(l, s, h)ψs

l ,
−l∑

s=−n

(
tan θ

2

)−s−n
(−s− n)!

√
g(l, s,−n)ψs

l

〉
(9.37)
=

〈
−l∑
s=h

(
cos

θ

2

)−2s (−1)h−s
(
tan θ

2

)h−s
(h− s)!

√
f(l,−h,−s)ψs

l ,
−l∑

s=−n

(
tan θ

2

)−s−n
(−s− n)!

√
f(l, n,−s)ψs

l

〉
s→−s

=

〈
l∑

s=−h

(
cos

θ

2

)2s (−1)s+h
(
tan θ

2

)s+h
(s+ h)!

√
f(l,−h, s)ψ−sl ,

l∑
s=n

(
tan θ

2

)s−n
(s− n)!

√
f(l, n, s)ψ−sl

〉
−h≤n

=
l∑

s=n

(−1)s+h
[
tan θ

2

]s+h
(s+ h)!

√
f(l,−h, s)

(
cos

θ

2

)2s
[
tan θ

2

]s−n
(s− n)!

√
f(l, n, s),

=(−1)h+n

l∑
s=n

(−1)s−n
[
tan θ

2

]s+h
(s+ h)!

√
f(l,−h, s)

(
cos

θ

2

)2s
[
tan θ

2

]s−n
(s− n)!

√
f(l, n, s)

(9.40)
= (−1)h+n

(
cos

θ

2

)h−n(
sin

θ

2

)h+n
√

(l − h)!(l + h)!

(l + n)!(l − n)!
P

(h+n,h−n)
l−h

(
1− 2 sin2 θ

2

)
.

(9.41)

Finally, when l ≥ h ≥ n ≥ 0, one has

(l − h)!(l + h)!

(l + n)!(l − n)!

1

22h
· 2(h+n)+(h−n)+1

2(l − h) + (h+ n) + (h− n) + 1

·Γ((l − h) + (h+ n) + 1)Γ((l − h) + (h− n) + 1)

(l − h)!Γ((l − h) + (h+ n) + (h− n) + 1)
=

2

2l + 1
,

(9.42)
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(l − h)!(l + h)!

(l + n)!(l − n)!

1

22h
· 2(h−n)+(h+n)+1

2(l − h) + (h− n) + (h+ n) + 1

·Γ((l − h) + (h− n) + 1)Γ((l − h) + (h+ n) + 1)

(l − h)!Γ((l − h) + (h− n) + (h+ n) + 1)
=

2

2l + 1
.

(9.43)

It is now possible to prove the aforementioned lemma.

Assume that 0 ≤ n ≤ h ≤ l; by means of the Gauss decomposition, eiθL2 can
be written in the ‘antinormal form’ (see e.g. eq. (4.3.14) in [31])

eiθL2 = e−tan θ
2
L−e2 log (cos θ

2)L0etan θ
2
L+ ; (9.44)

hence

∫ π

0

dθ sin θ 〈ψn
j , e

iθL2ψh
j 〉 〈eiθL2ψh

l ,ψ
n
l 〉

=

∫ π

0

dθ sin θ
〈
e2 log (cos θ

2)L0etan θ
2
L+ψh

j , e
−tan θ

2
L+ψn

j

〉〈
e2 log (cos θ

2)L0etan θ
2
L+ψh

l , e
−tan θ

2
L+ψn

l

〉
(9.38)
= 2(−1)2(h−n)

∫ π

0

dθ

(
cos

θ

2

)2(n+h)+1(
sin

θ

2

)2(h−n)+1

·

√
(l − h)!(l + h)!

(l + n)!(l − n)!

√
(j − h)!(j + h)!

(j + n)!(j − n)!

· P (h−n,h+n)
l−h

(
1− 2 sin2 θ

2

)
P

(h−n,h+n)
j−h

(
1− 2 sin2 θ

2

)
x=1−2 sin2 θ

2=

√
(l−h)!(l+h)!

(l+n)!(l−n)!

√
(j−h)!(j+h)!

(j+n)!(j−n)!

1∫
−1

dx

22h
(1−x)h−n(1+x)h+nP

(h−n,h+n)
l−h (x)P

(h−n,h+n)
j−h (x)

(9.32)&(9.42)
=

2

2l + 1
δlj.

On the other hand, in order to calculate

∫ π

0

dθ sin θ〈ψ−nj , eiθL2ψ−hj 〉〈eiθL2ψ−hl ,ψ−nl 〉,

one can use now the ‘normal form’ of the Gauss decomposition (see e.g. eq.
(4.3.12) in [31])

eiθL2 = etan θ
2
L+e−2 log (cos θ

2)L0e−tan θ
2
L− , (9.45)
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and then

∫ π

0

dθ sin θ 〈ψ−nj , eiθL2ψ−hj 〉 〈eiθL2ψ−hl ,ψ−nl 〉

=

∫ π

0

dθ sin θ
〈
e−2 log (cos θ

2)L0e−tan θ
2
L−ψ−hj , etan θ

2
L−ψ−nj

〉
·
〈
e−2 log (cos θ

2)L0e−tan θ
2
L−ψ−hl , etan θ

2
L−ψ−nl

〉
(9.39)
= 2

∫ π

0

dθ

(
cos

θ

2

)2(n+h)+1(
sin

θ

2

)2(h−n)+1
√

(l − h)!(l + h)!

(l + n)!(l − n)!

√
(j − h)!(j + h)!

(j + n)!(j − n)!

· P (h−n,h+n)
l−h

(
1− 2 sin2 θ

2

)
P

(h−n,h+n)
j−h

(
1− 2 sin2 θ

2

)
x=1−2 sin2 θ

2=

√
(l−h)!(l+h)!

(l+n)!(l−n)!

√
(j−h)!(j+h)!

(j+n)!(j−n)!

1

22h

·
1∫

−1

dx (1−x)h−n(1+x)h+nP
(h−n,h+n)
l−h (x)P

(h−n,h+n)
j−h (x)

(9.32)&(9.42)
=

2

2l + 1
δlj.

Furthermore

∫ π

0

dθ sin θ 〈ψn
j , e

iθL2ψ−hj 〉 〈eiθL2ψ−hl ,ψn
l 〉

(9.44)
=

∫ π

0

dθ sin θ
〈
e2 log (cos θ

2)L0etan θ
2
L+ψ−hj , e−tan θ

2
L+ψn

j

〉〈
e2 log (cos θ

2)L0etan θ
2
L+ψ−hl , e−tan θ

2
L+ψn

l

〉
(9.40)
= 2

∫ π

0

dθ

(
cos

θ

2

)2(h−n)+1(
sin

θ

2

)2(h+n)+1
√

(l − h)!(l + h)!

(l + n)!(l − n)!

√
(j − h)!(j + h)!

(j + n)!(j − n)!

· P (h+n,h−n)
l−h

(
1− 2 sin2 θ

2

)
P

(h+n,h−n)
j−h

(
1− 2 sin2 θ

2

)
x=1−2 sin2 θ

2=

√
(l−h)!(l+h)!

(l+n)!(l−n)!

√
(j−h)!(j+h)!

(j+n)!(j−n)!

1

22h

·
1∫

−1

dx (1−x)h+n(1+x)h−nP
(h+n,h−n)
l−h (x)P

(h+n,h−n)
j−h (x)

(9.32)&(9.43)
=

2

2l + 1
δlj
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and, finally, as claimed,

E :=

∫ π

0

dθ sin θ 〈ψ−nj , eiθL2ψh
j 〉 〈eiθL2ψh

l ,ψ
−n
l 〉

(9.45)
=

∫ π

0

dθ sin θ
〈
e−2 log (cos θ

2)L0e−tan θ
2
L−ψh

j , e
tan θ

2
L−ψ−nj

〉〈
e−2 log (cos θ

2)L0e−tan θ
2
L−ψh

l , e
tan θ

2
L−ψ−nl

〉

(9.41)
= 2(−1)2(h+n)

∫ π

0

dθ

(
cos

θ

2

)2(h−n)+1(
sin

θ

2

)2(h+n)+1
√

(l − h)!(l + h)!

(l + n)!(l − n)!

√
(j − h)!(j + h)!

(j + n)!(j − n)!

· P (h+n,h−n)
l−h

(
1− 2 sin2 θ

2

)
P

(h+n,h−n)
j−h

(
1− 2 sin2 θ

2

)
,

E
x=1−2 sin2 θ

2=

√
(l−h)!(l+h)!

(l+n)!(l−n)!

√
(j−h)!(j+h)!

(j+n)!(j−n)!

1

22h

·
1∫

−1

dx (1−x)h+n(1+x)h−nP
(h+n,h−n)
l−h (x)P

(h+n,h−n)
j−h (x)

(9.32)&(9.43)
=

2

2l + 1
δlj.

9.6 Proofs of some results regarding S2
Λ

Proof of (5.27). L+ω
β = 0, L−ω

β is a combination of ψl−1
l , therefore is or-

thogonal to ωβ. Hence

〈L±〉ωβ =0, ⇒ |〈L〉ωβ | = 〈L0〉ωβ =
Λ∑
l=0

l(2l+1)

(Λ+1)2

(8.44)2
=

Λ(4Λ+5)

6(Λ+1)
;

while 〈
L2
〉
ωβ

=
Λ∑
l=0

l(l + 1)(2l + 1)

(Λ + 1)2

(8.45)
=

1
2
Λ(Λ + 1)2(Λ + 2)

(Λ + 1)2
=

Λ(Λ + 2)

2
.

Replacing these results in (∆L)2
ωβ

= 〈L2〉ωβ − 〈L〉2ωβ , one finds

(∆L)2
ωβ =

Λ(Λ + 2)

2
−
(

Λ(4Λ+5)

6(Λ+1)

)2

=
Λ(2Λ3+32Λ2+65Λ+36)

36(Λ+1)2
.

On the other hand, x0ω
β is a combination of ψl

l−1,ψ
l
l+1, therefore is orthogonal

to ωβ, and 〈x0〉 = 0. Hence

〈x〉2 = 〈x1〉2+〈x2〉2+〈x3〉2 =
〈x+ + x−〉2

4
−〈x+ − x−〉2

4
+〈x0〉2 = 〈x+〉 〈x−〉 = |〈x+〉|2 ,
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(∆x)2 =
〈
x2
〉
− |〈x+〉|2 .

But

〈
x2
〉
ωβ

(3.9)2
= 1 +

Λ∑
l=0

l(l + 1) + 1

kD

2l + 1

(Λ + 1)2
−
[
1 +

(Λ+1)2

kD

]
1

Λ+1

=
Λ

Λ+1
− Λ+1

kD
+

1

kD(Λ + 1)2

[
2

Λ∑
l=0

l(l + 1)(l + 2)− 3
Λ∑
l=0

l(l + 1) +
Λ∑
l=0

(2l + 1)

]
(8.46)1

=
Λ

Λ+1
−Λ+1

kD
+

1

kD(Λ+1)2

[
Λ

2
(Λ+1)(Λ+2)(Λ+3)− Λ(Λ+1)(Λ+2) + (Λ + 1)2

]
=

Λ

Λ+1
− Λ+1

kD
+

1 + (Λ + 1)2

2kD
=

Λ

Λ+1
+

Λ2

2kD

(3.5)

≤ Λ

Λ+1
+

1

2(Λ + 1)2
, (9.46)

while

x+ω
β (3.7)

=
Λ−1∑
l=0

eiβl
√

2l + 1

Λ + 1
cl+1,3B

+,l
l ψ

l+1
l+1

(7.32)
=

Λ−1∑
l=0

eiβl
√

2l + 1

Λ + 1
cl+1,3

(
−
√

2l + 2

2l + 3

)
ψl+1
l+1

= −
Λ∑
l=1

eiβl−1

√
(2l)(2l − 1)

2l + 1

cl,3
Λ + 1

ψl
l =⇒

〈x+〉ωβ = −
Λ∑
l=1

ei(βl−1−βl) cl,3
√

(2l)(2l − 1)

(Λ + 1)2
,

so

〈x〉2ωβ = |〈x+〉ωβ |
2 =

∣∣∣∣∣∣
Λ∑
l=1

cl,32l
√

1− 1
2l

(Λ + 1)2
ei(βl−1−βl)

∣∣∣∣∣∣
2

.

Since all
cl,3
√

(2l)(2l−1)

(Λ+1)2 > 0, to maximize |〈x+〉ωβ |, and thus minimize (∆x)2
ωβ

, one

needs to take all the βl equal (mod. 2π), in particular βl = 0.

In this case, from
√

1− 1
2l
≥ 1 − 1

2l
∀l ∈ N and cl,3 ≥ 1, it follows (here and

below ω ≡ ω0)

〈x〉2ω ≥

[
2

(Λ + 1)2

Λ∑
l=1

l

(
1− 1

2l

)]2

(8.46)2
=

{
2

(Λ + 1)2

[
Λ2

2

]}2

=
Λ4

(Λ + 1)4
.

Finally,

(∆x)2
ω =

〈
x2
〉
ω
− 〈x〉2ω ≤

Λ

Λ+1
+

1

2(Λ + 1)2
− Λ4

(Λ + 1)4
=

2Λ(Λ + 1)3 + (Λ + 1)2 − 2Λ4

2(Λ + 1)4

=
6Λ3 + 7Λ2 + 4Λ + 1

2(Λ + 1)4
<

3Λ3 + 9Λ2 + 9Λ + 3

(Λ + 1)4
=

3

Λ + 1
.
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Proof of (5.29). L0φ
β = 0, while L±φ

β are combinations of ψ±1
l , therefore are

orthogonal to φβ; similarly, x±φ
β are combinations of ψ±1

l−1,ψ
±1
l+1, therefore are

orthogonal to φβ. Hence

〈La〉φβ = 0, 〈x±〉φβ = 0 ⇒ 〈L〉φβ = 0, |〈x〉φβ | = |〈x0〉φβ |.

Replacing these results in (∆L)2 = 〈L2〉φβ − 〈L〉2φβ and using (5.28), one finds,
as claimed

(∆L)2 = 〈L2〉φβ = 〈φβ,L2φβ〉 =
Λ∑
l=1

l(l+1)(2l+1)

(Λ+1)2

(8.45)
=

Λ(Λ+2)

2
.

On the other hand,

x0φ
β (3.7)

=
Λ∑
l=0

eiβl
√

2l + 1

Λ + 1

(
cl,3G(l, 0, 2)ψ0

l−1 + cl+1,3F (l, 0, 2)ψ0
l+1

)
(7.32)
=

Λ∑
l=0

eiβl

Λ + 1

(
cl,3

l√
2l − 1

ψ0
l−1 + cl+1,3

l + 1√
2l + 3

ψ0
l+1

)

=
Λ∑
l=1

eiβlcl,3
Λ + 1

l√
2l − 1

ψ0
l−1 +

Λ−1∑
l=0

eiβlcl+1,3

Λ + 1

l + 1√
2l + 3

ψ0
l+1

=
Λ−1∑
l=0

eiβl+1cl+1,3

Λ + 1

l + 1√
2l + 1

ψ0
l +

Λ∑
l=1

eiβl−1cl,3
Λ + 1

l√
2l + 1

ψ0
l , =⇒

〈x0〉φβ =
Λ−1∑
l=0

ei(βl+1−βl)cl+1,3
l + 1

(Λ + 1)2
+

Λ∑
l=1

ei(βl−1−βl)cl,3
l

(Λ + 1)2

=
Λ∑
l=1

2lcl,3
(Λ + 1)2

cos (βl−1 − βl),

this means that 〈x0〉2φβ ≡ 〈x〉
2
φβ is maximal when β ≡ 0, and in this case one has

(here and later on φ ≡ φ0)

〈x〉2φ
cl,3≥1

≥

[
Λ∑
l=1

2l

(Λ + 1)2

]2

(8.42)
=

Λ2

(Λ + 1)2
.

One easily checks that 〈x2〉φβ = 〈x2〉ωβ ; hence, using (9.46), on φ it follows, as
claimed

(∆x)2
φ = 〈x2〉φ − 〈x〉2φ ≤

Λ

Λ+1
+

1

2(Λ + 1)2
− Λ2

(Λ+1)2

=
2Λ(Λ + 1) + 1− 2Λ2

2(Λ + 1)2
=

2Λ + 1

2(Λ + 1)2
<

1

Λ + 1
.
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Proof of (5.33).

〈
x2
〉
χ̃

(3.9)2
=

Λ∑
l=0

∣∣χ̃l∣∣2 +

[∑Λ
l=0 l(l + 1)

∣∣χ̃l∣∣2]+ 1

kD(Λ)
−
[
1 +

(Λ + 1)2

kD(Λ)

]
Λ + 1

2Λ + 1

∣∣χ̃Λ
∣∣2

‖χ̃‖2=1
= 1 +

[∑Λ
l=0 l(l + 1)

∣∣χ̃l∣∣2]+ 1

kD(Λ)
−
[
1 +

(Λ + 1)2

kD(Λ)

]
Λ + 1

2Λ + 1

∣∣χ̃Λ
∣∣2

≤1 +

2
Λ+2

[∑Λ
l=1 l(l + 1)

]
+ 1

kD(Λ)

(8.42)

≤ 1 +
2
3
Λ(Λ + 1) + 1

kD(Λ)

(3.5)

≤ 1 +
2
3
Λ(Λ + 1) + 1

Λ2(Λ + 1)2
,

(9.47)

so, putting together (5.32) and (9.47), one obtains, as claimed,

(∆x)2
χ̃ =

〈
x2
〉
χ̃
− 〈x〉2χ̃ =

〈
x2
〉
χ̃
− 〈x0〉2χ̃ < 1− cos2

(
π

Λ+2

)
+

2
3
Λ(Λ + 1) + 1

Λ2(Λ + 1)2

= sin2

(
π

Λ+2

)
+

2
3

+ 2
3Λ

+ 1
Λ2

(Λ + 1)2

Λ≥3
<

π2

(Λ + 2)2
+

1

(Λ + 1)2
<

11

(Λ + 1)2
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