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Chapter 0O

Introduction

Heisenberg’s uncertainty principle bounds the precisions with which one can mea-
sure the position and the momentum of a particle simultaneously, but puts no
bounds on each of them separately. A fundamental bound on the precision of
position measurements is expected to arise in any consistent quantum theory
of gravitation, whatever it will be; this bound is of the order of 10733cm, the
socalled Planck length. As first suggested by Heisenberg!, a fundamental length
might also play a role as a parameter regularizing the divergences arising in quan-
tum field theory (even on Minkowski spacetime); and a more commonly adopted
regularization parameter is an energy cutoff. Such lengths may also help to unify
fundamental interactions (see e.g. [3, 4, 5, 6, 7]) and they might naturally arise
from small but non-vanishing commutators between different coordinates.

These are some physical motivations of Non-Commutative Geometry [8, 9],
whose program is to develop the analog of differential geometry after replacing
the commutative algebra of functions on a manifold by a noncommutative one,
e.g. generated by a set of non-commutative coordinates (the quantization of the
phase space of a particle in nonrelativistic quantum mechanics can be seen as the
first example of non-commutative geometry).

Often one deals with a one (or more) parameter family of noncommutative
geometries which become commutative when the parameter(s) go to some limit
(e.g. h — 0 in the previous example).

Fuzzy Spaces are particular examples parametrized by a positive integer n,
such that the noncommutative algebra A, (playing the role of ‘algebra of func-
tions’) has a finite dimension increasing and diverging with n and A, =3 A,
which is the algebra of regular functions on an ordinary manifold.

The first and seminal fuzzy space is the Fuzzy 2-Sphere (FS) of Madore and

Heisenberg proposed it in a letter to Peierls [1] to solve the problem of divergent integrals
in relativistic quantum field theory. The idea propagated via Pauli to Oppenheimer. In 1947
Snyder, a student of Oppenheimer, published the first proposal of a quantum theory built on a
noncommutative space [2].



Hoppe [10, 11], it is a sequence of SO(3)-equivariant? [SO(D) is the rotation
group in D dimensions|, finite noncommutative algebras 4,, isomorphic to M,,
(the algebra of n x n matrices); each matrix represents the expansion in spher-
ical harmonics of an element of C(S?) truncated at level n. The algebra A, is
generated by coordinate operators {xi}?zl fulfilling

2

T, Tj| = —=—
o0 2] = <

3
giikg, and lexl =1, (1)
i=1

with n € N'\ {1}. In fact, these operators are obtained by the rescaling

2L, :
T =——, 1=1,2,3 (2)
n?—1
of the elements L; of the standard basis of so(3) in the irrep (7, Vj 3) characterized
by L? := Zf’:l L;L; = l(I+1)I, or equivalently the one of dimension n = 2/+1.
In this thesis we propose and study a new class of fuzzy spaces: for every
dimension D > 2 we propose an O(D)-equivariant [O(D) is the orthogonal group
in D dimensions] fuzzy hypersphere S¢, where d := D — 1. The relations (1)
are covariant under SO(3), but not under the whole O(3), in particular not
under parity x; — —x;; this is in contrast with the O(3)-covariance of both
the ordinary sphere S? [where the right-hand side of (1); is zero] and the new
O(3)-equivariant fuzzy 2-sphere S% [where the right-hand side of (1); depends on
the angular momentum components, as in Snyder [2] commutation relations]; the
coordinate operators {fi}iD:l of these new fuzzy spaces generate the whole algebra
of observables A, p, as for the F'S. Moreover, while the Hilbert space V; 3 of the F'S
carries an irreducible representation of SO(3), that £2(S?) of a quantum particle
on S?% decomposes as the direct sum of all the vector irreducible representations

of SO(D): N
L5 = P Vip. (3)

It turns out that the one H, p of Sj( decomposes as the direct sum Hpp =
EBZ\ZO Vip, and therefore also in this aspect S¢ better approximates the config-
uration space S¢ in the limit A — oo, so the Madore FS algebra A, should be
seen simply as the spin phase space algebra, not as a fuzzyfication of the algebra
of configuration space observables on S2.

According to this, we believe that this framework is an improvement of Madore
fuzzy approximation of the sphere because

2The concept of equivariance (or covariance) is very relevant in Physics: given a map f from
an algebra M to an algebra A/ (not necessarily distinct from M) one says that it is equivariant
with respect to an abstract group G (which acts on M and N) if applying a G transformation
and then computing the function produces the same result as computing the function and then
applying the G transformation.
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1. We obtain O(D)-equivariant algebraic relations between the operators, while
the Madore’s ones are covariant with respect to a smaller group.

2. In the commutative limit, our Hilbert space of admitted states coincides
with £2(5?), and this is not true for the FS.

3. We are able to fuzzy approximate, in every dimension D > 2, all the co-
ordinate operators and also all the quantum angular momentum operator
components of R”: and this is not true for the FS.

The commutation relations among our coordinates z° are similar to the ones
among the coordinates in Snyder’s quantized spacetime algebra [2]. The latter
is generated by 4 coordinate operators {i*} ,i=0.1.2,3> and 4 momentum operators
{Du},—0,1 035 they fulfill (here v is a suitable constant)

[Dps D] = 0, [, D] = k(0L — ap''py), [z#,2"] = —ihal®,  (4)

where we have set L* = z#p” — 2¥p" and we raise and lower indices by the
Minkowski metric n = diag(1, -1, —1,—1) = n~: v* = n*v,, v, = n,,v". These
relations are invariant under inversion of the axes, in particular under parity.
The L* span the Lorentz Lie algebra, and their commutation relations with the
4-vectors pt, z* are as on the Minkowski space.

This thesis can be divided in four parts. The readers that are familiar with Lie
groups, Lie algebras representations, root vectors, weights and noncommutative
spaces can skip the first part (chapter 1), which is based on [12] and contains
a short introduction to the above topics, and to noncommutative geometries;
group representations are applied in the second part (which is partially based on
an unpublished article) to construct new noncommutative-geometry toy-models
S¢ (chapter 2), which may be useful in some modern applications to condensed
matter physics and quantum field theory; the readers that want to give a first
look to the simplest elements of our new class of fuzzy spaces, i.e. the fuzzy
low-dimensional spheres S}, S%, S3 and S%, can firstly read chapter 3. Finally,
in the third (chapter 4) and fourth (chapter 5) parts we study further aspects of
these new noncommutative spaces.

First of all, in section 1.1 the notion of group representation is introduced,
that is a homomorphism between the group and a group of operators over a vector
space. Then reducible and irreducible representations are introduced and charac-
terized; these characterizations are necessary since one cannot always recognize
if a representation is irreducible only by the use of a matrix realization.

Then we do the proof of the Schur’s lemma, which is very useful in group
representations, for example when there are operators of a Lie algebra which
commute with all the others; section 1.2 contains a summary about semisimple
Lie algebras, root vectors, weights and weight spaces. Sections 1.3 and 1.4, which
are about the algebra so(D).



In this thesis we construct a fuzzy approximation of the unit d-sphere S¢ ob-
tained as the hypersurface of RP S¢ = {z € R” : ||z|? = 1}. An alternative way
to obtain S¢ would be as the coset space S¢ = SO(D)/SO(d). For completeness,
in section 1.5 we give a short review on coset space geometry and systematic
harmonic analysis on coset spaces.

A simple mechanism to modify a quantum mechanical model with commuting
coordinates into one with non-commuting coordinates is illustrated by the well-
known Landau model, which describes a charged quantum particle interacting
only with an uniform magnetic field (in the z direction) B. The separation
between the levels of energy is %; if B := ||B]| is strong (or, equivalently, m
is small) and the energy is constrained to be below a cutoff E, then the Hilbert
space of states is projected to the subspace of lowest energy, and £Bx,y become

canonically conjugates, i.e. have a non-zero (but constant) commutator.

Inspired by the Landau model, in chapter 2 a quantum particle is considered
in every dimension D > 2, where the Hamiltonians consist of the standard kinetic
terms and rotation invariant potential energies V (r) with a very deep minimum
(well) on the d-dimensional sphere of unit radius. The imposition of an energy
cutoff makes only a finite-dimensional Hilbert subspace H' accessible and the
coordinates become noncommutative on H'; they also generate the whole algebra
of observables of H'. On H' the distance from the origin is not strictly 1, but its
spectrum collapses to 1 (with the exception of highest square angular momentum
eigenvalue) in the limit of an infinitely narrow and deep well; the latter can be
considered as a quantum version of the constraint r = 1.

In other words, in that chapter, the procedure used in [13, 14] is applied to
the generic D-dimensional case; in this way the fuzzy spheres constructed are
equivariant not only under SO(D), but under the full orthogonal group O(D),
obtaining then an O(D)—equivariant fuzzy sphere, for every dimension D. Fur-
thermore, the algebra of observables Ay p is realized through a suitable irre-
ducible vector representation of Uso (D + 1) (the universal enveloping algebra of
so (D + 1); see definition 1.1.11), and then we do the proof of the convergence
(in a certain sense) of this new fuzzy sphere to ordinary quantum mechanics on
the sphere S9.

The aforementioned procedure does not strictly depend on the dimension of
the carrier space, but one has to replace all the 2-dimensional and 3-dimensional
objects by the corresponding D-dimensional ones; for instance, the D-dimensional
spherical harmonics are needed, together with the action on them of the D-
dimensional angular momentum operator components.

For this reason, let

1 0 0
Ly =~ — =T ith h,j 1,2,---,D )
h,j i (whaxj xj@a:h) Wi )] E{ b ) } ( )
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be a component of the quantum angular momentum in R”, and

C, = Z Lfm with p € {2,3,--- , D} (6)

1<h<j<p

be the realization of the quadratic Casimir of Uso(p); in particular, Cp = L? is
the opposite of the Laplace-Beltrami operator Aga on the sphere S?. This and
the fact that the action of C'5 in SP~! coincides with the one in S¢ (see section
7.0.1) imply that C, is the opposite of the Laplace-Beltrami operator Agy,-1 on
the sphere SP~! in every dimension D > p > 2, and its eigenvalues (see [15], p.
169, theorem 22.1) are

Li(ly1+p—2), with ,€Z and [, €Ny Vp>2. (7)

Following [13, 14], start with a quantum particle in R” subject to a confining
potential well V(r), which has a very deep minimum in r = 1 [= V’(1) = 0,
V'(1) =: 4kp, with kp > 0]; assume that, when r &~ 1, it can be approximated
with the potential of a one-dimensional harmonic oscillator, in symbols V (r) ~
Vo+2kp(r—1)% where Vj := V(1) and kp plays the role of a confining parameter.

This choice of V(r) ensures that, in the limit kp — 400, the quantum particle
is forced to stay on the unit d-dimensional sphere S?, and this leads to prove also
the convergence of this new fuzzy space to ordinary quantum mechanics on the
sphere, in that limit.

Once introduced this V' (r), one has to study the eigenvalue equation

Hep = HA " V(r)] = By, ®)

which is a PDE in the unknowns 1), /' and its resolution provides a basis of the
Hilbert space of quantum states Hp; in addition, from

9
[Ll,%cpz] = [Cpucpz] = 07 Vp1>p2 € {273a e 7D} ( )

it follows that H, L; o and all these C), operators can be simultaneously diago-
nalized in the resolution of (8).
In order to do this, let’s look for an eigenfunction 1 in the form

Y= f(r)Y(04,041, - ,01), (10)

where Y is a common eigenfunction of the CSCO (Complete set of commuting
observables, i.e. a set of commuting operators whose set of eigenvalues completely
specify the state of a system) Ly o, Cs, -+ ,Cy and L?; while 7,604,041, - ,0; are
polar coordinates. It is obvious that, in order to have ¢ € £? (RD ), it is necessary

that 7/f € £*(R;) and Y € £2 (59).



The Ansatz (10) transforms the PDE H1 = E4) into an ODE in the unknown
f, which is solved in section 2.1.1; while in section 2.1.2 an orthonormal basis
of £?(S%) of eigenfunctions of L? is determined, in particular we prove that

every basis-function Y is uniquely determined by a collection of d indices 1 :=
(lgy -+ 1o, 1y), fulfilling

CPYE = lpfl(lpfl +p— 2)}/2 , g=>->1 > ‘ll‘ and [; € Z Vi.

Then, it turns out that an orthonormal basis Bp of the space of quantum states
Hp is (here and later on [ := ;)

Bp = {fnip(r)Yi(04,04-1,--- ,01)[n € N, > 141 > --- > 1 > |l4],1; € ZVi}.

Furthermore, the consequence of the imposition of a sufficiently low energy cutoff
E < E (see section 2.2) is that the Hilbert space of ‘admitted’ states Hg ;, € Hp
becomes finite-dimensional and spanned by all the H-eigenstates having eigenval-
ues £ < E. We also replace every observable A by the corresponding projected
one A := Pg pAPg p, (here and later on P, is the projection on Hz ;) and we
give to A the same physical interpretation; in this way we have only states and
operators that are ‘physical’.

The condition E < 2/2kp implies that the Hamiltonian operator H can be
seen, in a first approximation, as the square angular momentum operator L? (in
other words radial excitations are ‘frozen’), while two crucial steps, necessary to
obtain a fuzzy space, are the choice of a A-dependent energy cutoff E := E (A)
so that E (A) diverges with A € N, and the assumption that also kp depends on
A in a way such that E (A) < 24/2kp (A). This implies that the Hilbert space
of admitted states can be definitively re-labeled as Ha p, and the corresponding
algebra of observables End (Ha,p) as Ax,p; then the sequence {Ax p}, oy is made
of finite-dimensional algebras, which become infinite dimensional in the limit
A — +o0.

In order to calculate the algebraic relations between the generators of A p
we need to determine the action of every Z,w» = Ly ; and T), on a basis of H, p.
Because of (10), it is possible to use the knowledge of the action of L ; on the
spherical harmonics Y; obtained from the above CSCO, to recover the one on
. p; since we have not found the action of this in the literature when D > 3,
we have explicitely calculated it in 2.3.1, while in section 2.3.2 we compute the
action of coordinate operators 7.

Asin [13, 14], in section 2.3.3 it is shown that 7, T; fulfill Snyder commutation
relations, in other words their commutator is proportional to the component
Ly, ; of the D-dimensional angular momentum operator, up to a scalar operator
depending on L2. Then there is a list of all the relations involving the projectors
of Ax,p which show that the s generate the whole algebra of observables, for
instance every component of the angular momentum operator can be written as
a ordered polynomial in the Z;,. The square distance from the origin operator
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x? = > 5 TnTp is not identically 1, but a function of L? such that nevertheless
its spectrum is very close to 1 and collapses to 1 in the kp — oo limit.

Furthermore, in section 2.4 some tools of Lie algebra theory are used in order
to realize the algebra of observables A\ p through a suitable irreducible vector
representation mp py1 of Uso (D + 1); this is suggested by the fact that the di-
mension of H, p coincides with the one of the representation space Vj pi; of
Ta,p+1; then (up to isomorphisms)

A
Hap = @ Vi.o = VA D41
1=0

That realization is O(D)-equivariant and the algebra isomorphism ® fulfills
@ (A) =B (41). (11)

The proof of the aforementioned convergence is a sort of certification of the
goodness of this approximation of quantum mechanics on the sphere S?, and this
job is done in section 2.5; this is inspired by the behavior of the potential V (r) in
the limit kp — +o00o, where it forces the quantum particle to stay on the unit d-
dimensional sphere S¢. The ‘projected’ spherical harmonics are firstly identified
as a basis of a space of all spherical harmonics, A\ p as a subalgebra of B (Sd),
the algebra of bounded functions on S? [or C (Sd), the algebra of polynomial
functions on S9], and then we prove the convergence (in a certain sense) of the
operators in Aj p to the corresponding ones in B (Sd) IC (Sd), respectively];
furthermore, we use a kp(A) growing faster with A € N to prove this result.

It is possible to see the explicit constructions of S¢ for d = 1,2, 3,4 in chapter
3, while in Appendix A (chapter 7) there are lengthy computations and proofs of
that chapter.

For a coordinate operator x; (from now later on we identify x; = 7;) to
approximate well and in an O(D)-equivariant way the corresponding coordinate
of a quantum particle forced to stay on the unit sphere S¢, its spectrum X, should
fulfill at least the following properties, which are fulfilled also by the Madore FS:

1. The spectrum ¥, of each z;, for all choices of the orthogonal axes, is the
same.

2. If a is an eigenvalue of z;, then also —a is.

3. In the commutative limit the spectrum X, becomes uniformly dense in
[—1,1], in particular the maximal and the minimal eigenvalues converge to
1 and —1, respectively.

Then, in chapter 4 we present the study of the x;-eigenvalue equation on S¢,
based on [16], in particular to show that ¥, fulfills these and other properties.
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Figure 1: The vectors x, (x),  — (x), the region o and the tangent plane
at u.

Among the latter one, not shared by the FS, justifies why (see chapter 6) the
S% can be interpreted as a fuzzy configuration space, while the FS should be
interpreted only as a fuzzy spin phase space: namely that the eigenstate of xj3
with maximal eigenvalue (this is very localized around the North pole of S?) is
an eigenstate of L3 with zero eigenvalue. In section 4.1 we do a summary about
the diagonalization of a Toeplitz tridiagonal matrix; the xz;-eigenvalue equation
on Si, 5% and S¢ when d > 2 is studied in sections 4.2, 4.3 and 4.4, respectively;
then in chapter 6 we do a comparison between the results on S% and FS, while
in Appendix B (chapter 8) there are lengthy computations and proofs of that
chapter.

The x;-eigenvalue problem is strictly linked to the one of finding the most
localized (and therefore closest to ‘classical’) states of this new fuzzy spaces: first
of all, as a measure of localization of a state in configuration space its spacial
dispersion is here adopted, i.e. the expectation value

D

(Az)® =) (Az,)* = ((z—(2))") = (2°) - ()’ (12)

=1

on the state; here & = (21,...,x,), () = ((x1),...,(z,)) pinpoints the average
position of the particle in the ambient Euclidean space R”, the scalar observable
x? = Zi’il x;x; measures the square distance from the origin, the vector observ-
able x—(x) measures the displacement from the average position, and expression

(12) is the average of the square of the latter. This choice is motivated by the
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fact that it is manifestly O(D)-invariant and that if the state is localized in a
small region o C S around a point u = (x) € S? then (Ax)? essentially reduces
to the average square displacement in the tangent plane at w, and the metric on
the sphere is induced by the one in the ambient Euclidean space, as wished.
The above O(D)-symmetry means (Az);, = (ARx)j, for every state ¥ € Ha
and O(D)-transformation R. This implies that one can equivalently try to mini-
mize (Ax)? = (x2) — (z;)° with a fixed i € {1,---, D}. On the other hand, since
x? ~ 1 on the new fuzzy spheres, the most localized states are obtained once one
determines the x;-eigenstates corresponding to the maximal eigenvalues. The
knowledge of the x;-eigenvectors and most localized states will be essential for
investigating the quantum metric aspects of these new fuzzy spheres, in particu-
lar for studying the ‘distance’ (either the spectral distance of Connes [8, 17, 18],
or alternative ones, see e.g. [19, 20]) between two such pure states. Moreover,
most localized states, especially when arranged in systems of coherent states
(21, 22, 23, 24], are an extremely useful tool for a number of purposes (see e.g.
25, 26]), notably for studying path integrals (partition and correlation functions)
in quantum field theory (QFT) both with a finite and with an infinite number of
degrees of freedom. In particular, they may decisively simplify the computation
of path integrals representing propagators, correlation functions and their gen-
erating functionals; this has applications in nuclear, atomic, condensed matter
physics, as well as in QFT and elementary particle physics (see e.g. [27, 28, 29]).
From a more foundation-minded viewpoint, the Berezin quantization procedure
itself [30] on Kéhler manifolds is based on the existence of sets of coherent states
(see e.g. chpt. 16 in [31]). The ‘cutoff’ n (A in these new models) works as
a regularizing parameter of ultraviolet divergences on all fuzzy spaces, so that
integration over fields amounts to integration over matrices (see e.g. [4, 32| for
the first QFT on the FS, and [33, 34, 35, 36] for examples of QFT on fuzzy
spheres of higher dimensions); it has been recently proposed [5] that it may also
parametrize the large (but finite) amount of information hidden in a black hole;
finally, if spacetime M is enlarged to a higher-dimensional one M’ = M x S,
- where 5, is a fuzzy space, instead of a compact manifold S - it reduces the
number of massive Kaluza-Klein modes of a field theory on M’ to a finite value
[7]. According to this, the main aim of chapter 5, which is based on [37], is to in-
troduce on S¢ (d = 1,2) various systems of coherent states (SCS) and study their
different localization properties in configuration as well as (angular) momentum
space, which are respectively expressed in terms of the uncertainties Ax;, AL;;;
for equivariance reasons it is convenient to adopt O(D) or - when this is redun-
dant - S¢ = SO(D)/SO(d) as a label space parametrizing the elements of the
SCS. Then, the SCS are considered both in the strong sense, i.e. providing a res-
olution of the identity, and in the weak sense, i.e. making up an (over)complete
set in Hy. Awx;, AL;; must fulfill a number of uncertainty relations and other
inequalities following from the algebraic relations (commutation, etc.) among
the z;, L;;. Neither on the commutative nor on the fuzzy spheres is it possible
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to saturate all of these inequalities (and their consequences, a fortiori), and for
this reason in chapter 5 there is a preliminary discussion about the saturation of
suitable O(D)-equivariant inequalities first on S? then on S¢; we privilege the
latter because they have a physical meaning independent of the particular chosen
reference frame, and because a state saturating them is automatically mapped
into another one by the unitary transformation U(g) corresponding to any or-
thogonal transformation g € O(D) [by definition g;;z; = U'(g) z; U(g), etc.].
Eq. (12) can be seen as a generalization of the square dispersion (AL)? of the
spin L as introduced by Perelomov [31], to which it reduces upon replacing @ by
L. In fact, (AL)? is adopted as a measure of localization of the state in (angular)
momentum space. Given a state, consider an orthogonal transformation g€ O(D)
such that g(x)=(|(x)],0,...,0); then the state is mapped by U(g) into a new one
with the same (x?), (z1) = |(z)|, (z;) =0 for i>1 (of course one obtains the
same result replacing x; by any other z;, or by the L;). If 22 is central in the al-
gebra of observables and the representation of the latter is irreducible, then (x?)
is state-independent, and (12) is minimal on the state(s) that are eigenvectors
of x; with the highest (in absolute value) eigenvalue. In particular, in Madore’s
FSitis z; oc L;, x> =1, and the spacial uncertainty (12) coincides up to a
factor with the aforementioned (AL)?; hence on the representation space V} it is
minimized by the same SCS, on which it amounts to

2 1
n+1 [+1

(13)

Using the results of chapter 4, it is possible to show that on the new fuzzy spheres
Sk
3.5 ifd=1,

(Aw)’ Cu |
11 ifd=2,

min < (A—I— 1)2’ <14)

where C; = {
and that the states minimizing (Az)? make up a weak SCS. Its elements can be
considered as the closest [31] states to pure classical states - i.e. points - of S¢ |
because they are in one-to-one correspondence with points of S¢, are optimally lo-
calized around the latter and are mapped into each other by the symmetry group
O(D). In the case d = 2 the right-hand side goes to zero as A — oo much faster
than the uncertainty (13) for all irreducible components appearing in the decom-
position Hy = @', Vi, including the one (Ax)2,;, = 1/(A+1) corresponding
to the highest . In this sense the optimally localized states on the new S3 have
a sharper spacial localization than the CS on Madore FS3. It is also possible to
determine various strong SCS, in particular one with (Az)?> < 1/(A +1); the
elements of the latter SCS are eigenvectors of a suitable component of the angular
momentum, so that the corresponding states (rays or equivalently 1-dim projec-
tions) are in one-to-one correspondence with points of S? and the resolution

2

30f course a future, more precise determination of (Az)? ;, will indicate an even sharper

localization.



14 CHAPTER 0. INTRODUCTION

of the identity holds also integrating just over the coset space S¢; furthermore,
in Appendix C (chapter 9) there are lengthy computations and proofs of that
chapter. In view of potential physical applications to a quantum particle moving
within a very thin domain with the shape of a sphere (like e.g. an electron in
fullerene), the three-dimensional model is more useful than the FS because in
this new model the restriction to the unit sphere is obtained ‘a posteriori’ from
the dynamics. Beside their theoretical interest as toy-models of fuzzy geometries
in quantum gravity, these models may thus have some application to one- and
two-dimensional quantum systems, which are a very ‘hot’ topic of research in con-
densed matter physics (quantum waveguides or nanotubes; fullerene, graphene?,
quantum Hall-effect, etc.). In all cases there are very thin layers of matter where
electrons are confined by potential energies with very deep minima there and
steep gradients in the normal direction.

4Graphene is an allotrope of carbon in the form of a two-dimensional layer of carbon atoms
and it has the resistance of diamond and the flexibility of plastic.



Chapter 1

Theoretical framework

1.1 Lie Group and Lie algebra representations

1.1.1 Basics notions about Lie groups and Lie algebras

1.1.1.1 Definition of a Matrix Lie Group

We begin with a very important class of groups, the general linear groups.

Definition 1.1.1 The general linear group over the real numbers, denoted G L(n;R)
1s the group of all n X n invertible matrices with real entries. The general linear
group over the complexr numbers, denoted GL(n;C), is the group of all n X n
wnvertible matrices with complex entries.

The general linear groups are indeed groups under the operation of matrix
multiplication: The product of two invertible matrices is invertible, the identity
matrix is an identity for the group, an invertible matrix has (by definition) an
inverse, and matrix multiplication is associative.

Definition 1.1.2 Let M,,(C) denote the space of all n x n matrices with complex
entries.

Definition 1.1.3 Let A, be a sequence of complex matrices in M, (C). We say
that A,, converges to a matriz A if each entry of A,, converges (as m — +0o0) to
the corresponding entry of A [i.e., if (Am)w converges to Ay for all1 < k,n < n].

Definition 1.1.4 A matriz Lie group is any subgroup G of GL(n;C) with the
following property: If A, is any sequence of matrices in G, and A,, converges to
some matriz A then either A € G, or A is not invertible.

The condition on G amounts to saying that G is a closed subset of GL(n;C)
[this does not necessarily mean that G is closed in M,,(C)]. Thus, definition 1.1.4
is equivalent to saying that a matrix Lie group is a closed subgroup of GL(n;C).

15
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The condition that GG be a closed subgroup, as opposed to merely a subgroup,
should be regarded as a technicality, in that most of the interesting subgroups of
GL(n; C) have this property. Most of the matrix Lie groups G we will consider
have the stronger property that if A, is any sequence of matrices in GG, and A,,
converges to some matrix A, then A € G [i.e., that G is closed in M,,(C)].

1.1.1.2 The orthogonal and special orthogonal groups, O(n) and SO(n)

A n x n real matrix A is said to be orthogonal if the column vectors that make
up A are orthonormal, that is, if

ZAlelk =0k, 1<7,k<n,
=1

where 0, is the Kronecker delta, equal to 1 if j = k and equal to zero if j #
k. Equivalently, A is orthogonal if it preserves the inner product, namely if
(r,y) = (Az, Ay) for all vectors =,y € R" (angled brackets denote the usual
inner product on R™, (z,y) = >, xxys. Still another equivalent definition is that
A is orthogonal if ATA = I, ie. if AT = A~! (here, AT is the transpose of A,
(A" = Aw).

Since det AT = det A, we see that if A is orthogonal, then det(ATA) =
(det A)? = det I = 1. Hence, det A = =1, for all orthogonal matrices A.

This formula tells us in particular that every orthogonal matrix must be in-
vertible. However, if A is an orthogonal matrix, then

<A*1:1c, A*1y> = <A (Aflx) VA (Afly)> = (z,y).

Thus, the inverse of an orthogonal matrix is orthogonal. Furthermore, the prod-
uct of two orthogonal matrices is orthogonal, since if A and B both preserve inner
products, then so does AB. Thus, the set of orthogonal matrices forms a group.

The set of all n x n real orthogonal matrices is the orthogonal group O(n), and
it is a subgroup of GL(n;C). The limit of a sequence of orthogonal matrices is
orthogonal, because the relation AT A = I is preserved under taking limits. Thus,
O(n) is a matrix Lie group. The set of nxn orthogonal matrices with determinant
one is the special orthogonal group SO(n). Clearly, this is a subgroup of O(n),
and hence of GL(n;C). Moreover, both orthogonality and the property of having
determinant one are preserved under limits, and so SO(n) is a matrix Lie group.
Since elements of O(n) already have determinant £1, SO(n) is ‘half’ of O(n).

Geometrically, elements of O(n) are either rotations or combinations of rota-
tions and reflections. The elements of SO(n) are just the rotations.

1.1.1.3 Homomorphisms and Isomorphisms

Definition 1.1.5 Let G and H be matriz Lie groups. A map ® from G to H is
called a Lie group homomorphism if
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1. ® s a group homomorphism,

2. ® 15 continuous.

If, in addition, ® is one-to-one and onto and the inverse map ®~! is continuous,
then ® is called a Lie group isomorphism.

Note that the inverse of a Lie group isomorphism is continuous (by definition)
and a group homomorphism (by elementary group theory), and thus a Lie group
isomorphism. If G and H are matrix Lie groups and there exists a Lie group
isomorphism from G to H, then G and H are said to be isomorphic, and we
write G ~ H. Two matrix Lie groups which are isomorphic should be thought of
as being essentially the same group.

The simplest interesting example of a Lie group homomorphism is the deter-
minant, which is a homomorphism of GL(n;C) into C. Another simple example
is the map ® : R — SO(2) given by

B () = (

sinf cos®

cosf) —siné )

1.1.1.4 Lie Groups

A Lie group is something that is simultaneously a smooth manifold and a group.
As the terminology suggests, every matrix Lie group is a Lie group. The reverse
is not true: Not every Lie group is isomorphic to a matrix Lie group.

Definition 1.1.6 A Lie group is a differentiable manifold G which is also a group
and such that the group product

GxGE—=dG

1

and the inverse map g — g~ are differentiable.

Now let us think about the question of whether every matrix Lie group is
a Lie group. This is certainly not obvious, since nothing in our definition of a
matrix Lie group says anything about its being a manifold (indeed, the whole
point of considering matrix Lie groups is that one can define and study them
without having to go through manifold theory first!. Nevertheless, it is true that
every matrix Lie group is a Lie group, and it would be a particularly misleading
choice of terminology if this were not so.

Theorem 1.1.1 Every matriz Lie group is a smooth embedded submanifold of
M, (C) and is thus a Lie group.

It is customary to call a map ® between two Lie groups a Lie group homo-
morphism if ® is a group homomorphism and ® is smooth, whereas we have
(in definition 1.1.5) required only that ® be continuous. However, the following
proposition shows that our definition is equivalent to the more standard one.
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Proposition 1.1.1 Let G and H be Lie groups and let ® be a group homomor-
phism from G to H. If ® is continuous, it is also smooth.

1.1.1.5 The Matrix Exponential

The exponential of a matrix plays a crucial role in the theory of Lie groups.
The exponential enters into the definition of the Lie algebra of a matrix Lie
group and is the mechanism for passing information from the Lie algebra to the
Lie group. Since many computations are done much more easily at the level of
the Lie algebra, the exponential is indispensable in studying (matrix) Lie groups.
Let X be an n x n real or complex matrix. We wish to define the exponential
of X, denoted eX or exp X, by the usual power series

+oo xm

X =) — (1.1)

m=0

We will follow the convention of using letters such as X and Y for the variable
in the matrix exponential.

Proposition 1.1.2 For any n X n real or complex matriz X, the series (1.1)
converges. The matriz exponential e* is a continuous function of X.

1.1.1.6 The Lie Algebra of a Matrix Lie Group

The Lie algebra is an indispensable tool in studying matrix Lie groups. On the
one hand, Lie algebras are simpler than matrix Lie groups, because (as we will
see) the Lie algebra is a linear space. Thus, we can understand much about Lie
algebras just by doing linear algebra. On the other hand, the Lie algebra of
a matrix Lie group contains much information about that group. Thus, many
questions about matrix Lie groups can be answered by considering a similar but
easier problem for the Lie algebra.

Definition 1.1.7 Let G be a matrix Lie group. The Lie algebra of G, denoted
g, is the set of all matrices X such that e is in G for all real numbers t.

This means that X is in g if and only if the one-parameter subgroup generated
by X lies in G. Note that even though G is a subgroup of GL(n;C) [and not
necessarily of GL(n;R)], we do not require that ¢ be in G for all complex
numbers ¢, but only for all real numbers t. Also, it is definitely not enough to
have just eX in G. That is, it is easy to give an example of an X and a G such
that eX € G but such that e'* € G for some real values of t. Such an X is not
in the Lie algebra of G.

It is customary to use lowercase characters such as g to refer to Lie algebras.

It is possible to show that every matrix Lie group is an embedded submanifold
of GL(n;C), and then that g is the tangent space to G at the identity. This means
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that g can alternatively be defined as the set of all derivatives of smooth curves
through the identity in G.
The following ones are basic properties of the Lie algebra of a matrix Lie

group.

Proposition 1.1.3 Let G be a matriz Lie group, with Lie algebra g. Let X be
an element of g, and A an element of G. Then, AXA ! isin g.

Theorem 1.1.2 Let G be a matriz Lie group, g its Lie algebra, and X and Y
elements of g. Then

1. sX € g for all numbers s,
2. X+Y eg,
3. XY -YXeg.

Definition 1.1.8 Given two nxn matrices A and B, the bracket (or commutator)
of A and B, denoted [A, B] , is defined to be

[A, B] = AB — BA.

According to last theorem, the Lie algebra of any matrix Lie group is closed
under brackets.

We return now to the setting of general, not necessarily complex, matrix
Lie groups. The following very important theorem tells us that a Lie group
homomorphism between two Lie groups gives rise in a natural way to a map
between the corresponding Lie algebras. In particular, this will tell us that two
isomorphic Lie groups have ‘the same’ Lie algebras (i.e., the Lie algebras are
isomorphic).

Theorem 1.1.3 Let G and H be matriz Lie groups, with Lie algebras g and h,
respectively. Suppose that ® : G — H is a Lie group homomorphism. Then,
there exists a unique real linear map ¢ : g — h such that

& (eX) — X
for all X € g. The map ¢ has following additional properties:
1. g(AXA Y =@ (A) p(X)P(A)7", forall X e g, A€ G,
2. 6(IX,Y]) = [6(X),6(Y)], for all X,Y € g,
3. ¢(X) = 4@ (") |,zo, for all X € g.

Suppose that G, H, and K are matriz Lie groups and ® : H - K and ¥ : G — H
are Lie group homomorphisms. Let A : G — K be the composition of ® and W,
A(A) = ®(U(A)). Let ¢, v, and X\ be the associated Lie algebra maps. Then,

AX) = o(¥(X)).
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In practice, given a Lie group homomorphism ®, the way one goes about
computing ¢ is by using Property 3. Of course, since ¢ is (real) linear, it suffices to
compute ¢ on a basis for g. In the language of differentiable manifolds, Property
3 says that ¢ is the derivative (or differential) of ® at the identity, which is the
standard definition of ¢.

A linear map with Property 2 is called a Lie algebra homomorphism. This
theorem says that every Lie group homomorphism gives rise to a Lie algebra
homomorphism. The converse is true under certain circumstances. Specifically,
suppose that G and H are Lie groups and that ¢ : g — h is a Lie algebra
homomorphism. If GG is simply connected, then there exists a unique Lie group
homomorphism ® : G — H such that ® and ¢ are related as in the last theorem.

1.1.1.7 Lie Algebras

We now consider the abstract notion of a Lie algebra, not necessarily given to us
as the Lie algebra of a matrix Lie group.

Definition 1.1.9 A finite-dimensional real or complex Lie algebra is a finite-
dimensional real or complex vector space g, together with a map [-,-] from g x g
into g, with the following properties:

1. [-,] is bilinear.
2. [X,Y]=—[Y,X] forall X,Y € g.
3 (X, [V, 2] + [V, |7, X]| + [Z,[X, Y] = 0 for all X, Y, Z € g.

Condition 2 is called ‘skew symmetry’. Condition 3 is called the Jacobi iden-
tity. Note also that Condition 2 implies that [X, X]| =0 for all X € g.

We will deal only with finite-dimensional Lie algebras and will from now on
interpret ‘Lie algebra’ as ‘finite-dimensional Lie algebra’.

It should be emphasized here that g can be any vector space (not necessarily
a space of matrices) and that the ‘bracket’ operation [-,:] can be any bilinear,
skew-symmetric map that satisfies the Jacobi identity. In particular, [X,Y] is
not necessarily equal to XY — Y X; indeed, the expression XY — Y X does not
even make sense in general, since g does not necessarily have a product operation
defined on it.

Although the bracket operation in a Lie algebra does not have to be given to
us as [X,Y] = XY — Y X it is possible to construct Lie algebras in this way.

That is to say, if A is an associative algebra and we define [-,-] : A x A — A
by [X,Y] = XY — Y X then this operation does, indeed, make A into a Lie
algebra. This operation is clearly bilinear and skew-symmetric, and it is a simple
computation to check, using the associativity of A, the Jacobi identity. For any
Lie algebra, the Jacobi identity means that the bracket operation behaves as if
it were XY — Y X, even if it is not actually defined this way. Indeed, it can be
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shown that every Lie algebra g can be embedded into some associative algebra
A in such a way that the bracket on g corresponds to the operation XY — Y X
in A.

If g is a Lie algebra, we can think of the bracket operation as making g into
an algebra in the general sense. This algebra, however, is not associative. The
Jacobi identity is to be thought of as a substitute for associativity.

Proposition 1.1.4 The space M, (R) of all n x n real matrices is a real Lie
algebra with respect to the bracket operation [A,B] = AB — BA. The space
M, (C) of all n x n complex matrices is a complezx Lie algebra with respect to the
same bracket operation.

Let V' be a finite-dimensional real or complex vector space, and let gl(V)
denote the space of linear maps of V' into itself. Then, gl(V') becomes a real or
complex Lie algebra with the bracket operation [A, B] = AB — BA.

The last proposition shows that the Lie algebra of a matrix Lie group is indeed
a Lie algebra in the abstract sense.

Definition 1.1.10 A subalgebra of a real or complex Lie algebra g is a subspace
h of g such that [Hy, Hs] € h for all Hy and Hy € h. If g is a complex Lie
algebra and h s a real subspace of g which is closed under brackets, then h s
said to be a real subalgebra of g.

If g and h are Lie algebras, then a linear map ¢ : g — h is called a Lie
algebra homomorphism if ¢ ([X,Y]) = [¢(X),o(Y)] for all X,Y € g.

If, in addition, ¢ is one-to-one and onto, then ¢ is called a Lie algebra iso-
morphism. A Lie algebra isomorphism of a Lie algebra with itself is called a Lie
algebra automorphism.

A subalgebra of a Lie algebra is, again, a Lie algebra. The inverse of a Lie
algebra isomorphism is, again, a Lie algebra isomorphism.

Proposition 1.1.5 The Lie algebra g of a matrix Lie group G is a real Lie
algebra.

Proof. By Theorem 1.1.2, g is a real subalgebra of the space M,, (C) of all com-
plex matrices and is, thus, a real Lie algebra. O

We end this section with the following

Definition 1.1.11 (Universal enveloping algebra)
Let g be a Lie algebra over a field K. The universal enveloping algebra of g is a
pair (Ug; 1), satisfying the following:

1. Ug 1is an associative algebra with unit over K.

2.4:9 — Ug is linear and i(X)i(Y)—i(Y)i(X) = i([X,Y]), forall X,Y € g.
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3. For any associative algebra A with unit over K and for any linear map
j g — A satisfying j(X)j(Y) — j(Y)j(X) = j([X,Y]) for each X,Y € g,
there exists a unique homomorphism of algebras ¢ : Ug — A such that
poi=j.

1.1.1.8 Structure constants

Let g be a finite-dimensional real or complex Lie algebra, and let X;,--- , X, be
a basis for g (as a vector space). Then, for each i and j, [X;, X;] can be written
uniquely in the form

[Xi, X5] = Z Cijk Xk
k=1

The constants c¢;j, are called the structure constants of g (with respect to the
chosen basis). Clearly, the structure constants determine the bracket operation
on g. The structure constants satisfy the following two conditions:

Cijk + Cjik = 0,

E (Cijmcmkl + CikmCmil + Ckimcmjl) =0

m

for all 7,7, k,I. The first of these conditions comes from the skew symmetry of
the bracket, and the second comes from the Jacobi identity.

1.1.2 The Complexification of a Real Lie Algebra

Definition 1.1.12 If V' s a finite-dimensional real vector space, then the com-
plexification of V', denoted Vi, is the space of formal linear combinations

V1 + 1V

with v, vy € V. This becomes a real vector space in the obvious way and becomes
a complex vector space if we define

i(vl + iUg) = —vy + 1.
We will regard V' as a real subspace of V¢ in the obvious way.
Proposition 1.1.6 Let g be a finite-dimensional real Lie algebra and gc its
complexification (as a real vector space). Then, the bracket operation on g has a

unique extension to gc which makes gc into a complex Lie algebra. The complex
Lie algebra gc is called the complexification of the real Lie algebra g.
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1.1.3 Representations

Definition 1.1.13 Let G be a matriz Lie group. Then, a finite-dimensional
complex representation of G is a Lie group homomorphism

II:G— GL(n;C)
(n > 1) or, more generally, a Lie group homomorphism
II:G— GL(V)

where V' is a finite-dimensional complex vector space (with dim'V > 1). A finite-
dimensional real representation of G is a Lie group homomorphism 11 of G into
GL(n;R) or into GL(V'), where V is a finite-dimensional real vector space. If g
s a real or complex Lie algebra, then a finite-dimensional complex representation
of g is a Lie algebra homomorphism m of g into gl(n;C) or into gl(V'), where
V' is a finite-dimensional complex vector space. If g is a real Lie algebra, then a
finite-dimensional real representation of g is a Lie algebra homomorphism m of
g into gl(n;R) or into gl(V).

If IT or 7 is a one-to-one homomorphism, then the representation is called
faithful.

One should think of a representation as a linear action of a group or Lie algebra
on a vector space [since, say, to every g € G, there is associated an operator I1(g),
which acts on the vector space V]. In fact, we will use terminology such as ‘Let
IT be a representation of G acting on the space V.

Even if g is a real Lie algebra, we will consider mainly complex representations
of g.

Definition 1.1.14 Let II be a finite-dimensional real or complex representation
of a matriz Lie group G, acting on a space V. A subspace W of V s called
invariant if II(A)w € W for allw € W and all A € G. An invariant subspace W
is called nontrivial if W # {0} and W # V. A representation with no nontrivial
mwvariant subspaces s called irreducible. The terms invariant, nontrivial, and
irreducible are defined analogously for representations of Lie algebras.

Definition 1.1.15 Let G be a matriz Lie group, let 11 be a representation of G
acting on the space V', and let 32 be a representation of G acting on the space W'.
A linear map ¢ -V — W s called an intertwining map of representations if

¢ (T(A)v) = 5(A)p(v)

for all A € G and all v € V. The analogous property defines intertwining maps
of representations of a Lie algebra.

If ¢ is an intertwining map of representations and, in addition, ¢ is invertible,
then ¢ s said to be an equivalence of representations. If there exists an isomor-
phism between V' and W, then the representations are said to be equivalent.
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Two equivalent representations should be regarded as being ‘the same’ rep-
resentation. A typical problem in representation theory is to determine, up to
equivalence, all of the irreducible representations of a particular group or Lie
algebra.

Proposition 1.1.7 Let G be a matriz Lie group with Lie algebra g and let 11 be
a (finite-dimensional real or complex) representation of G acting on the space V.
Then, there is a unique representation © of g acting on the same space such that

I(e*) = e™X)
or all X € g. The representation m can be computed as
g

d
L1 () iz

"X =%

and satisfies
T (AXA™") = H(A)r(X)I(A4)~"
forall X € g and A € G.

Proposition 1.1.8

1. Let G be a connected matrix Lie group with Lie algebra g. Let 11 be a
representation of G and 7 the associated representation of g. Then, 11 is
wrreducible if and only if ™ is irreducible.

2. Let G be a connected matrix group, let Hy and Hs be representations of G,
and let my and o be the associated Lie algebra representations. Then, m
and mo are equivalent if and only if 11y and Iy are equivalent.

Definition 1.1.16 Let G be a matriz Lie group, let H be a Hilbert space, and
let U(H) denote the group of unitary operators on H. Then, a homomorphism
IT: G — U(H) is called a unitary representation of G if Il satisfies the following
continuity condition: If A,, A € G and A, — A, then

II(A,)v — (A

for all v € H. A unitary representation with no nontrivial closed invariant sub-
spaces and such that TI(A™Y) = [II(A)]" is called irreducible.

1.1.3.1 Schur’s Lemma

Let II and X be representations of a matrix Lie group G, acting on spaces V
and W. Schur’s Lemma is an extremely important result which tells us about
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intertwining maps of irreducible representations. Part of Schur’s Lemma applies
to both real and complex representations, but part of it applies only to complex
representations.

It is desirable to be able to state Schur’s Lemma simultaneously for groups
and Lie algebras. In order to do so, we need to indulge in a common abuse of
notation. If, say, II is a representation of G acting on a space V', we will refer to
V' as the representation, without explicit reference to II.

Lemma 1.1.1 (Schur’s Lemma) 1. Let V and W be irreducible real or com-
plex representations of a group or Lie algebra and let ¢ : V. — W be an
intertwining map. Then, either ¢ =0 or ¢ is an isomorphism.

2. Let V' be an wrreducible complex representation of a group or Lie algebra
and let ¢ : V. — V' be an intertwining map of V with itself. Then, ¢ = A1,
for some X € C.

3. Let V and W be irreducible complex representations of a group or Lie alge-
bra and let ¢1, 09 : V — W be nonzero intertwining maps. Then, ¢1 = \po
for some X € C.

1.1.3.2 Adjoint representation of an algebra

Let A be an algebra and X € A, one can consider the linear transformation
ad(X): ZeA—=[Z,X]e A
IfY,Z K € A, then (according to the Jacobi identity)

[ad(Y),ad(2)|K = ad(Y)ad(Z)K — ad(Z)ad(Y)K = ad(Y)[Z, K] — ad(Z)[Y, K|
=Y, [Z, K]| - [Z,[Y,K]| = [[Y, Z], K] = ad ([Y, Z]) K.

So the map ad provides a representation of the algebra, which is called ‘adjoint
representation’.

1.2 Semisimple Lie Algebras

In this section, we will consider a class of Lie algebras (the complex semisimple
ones) that their representations can be described by a ‘theorem of the highest
weight’.

Definition 1.2.1 If g is a complex Lie algebra, then an ideal in g is a complex
subalgebra h of g with the property that for all X in g and H in h, we have
X, H] in h.
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Note that the definition of an ideal is stronger than that of a subalgebra. For
a subalgebra, we require only that the bracket of two elements of the subalgebra
remain in the subalgebra. For an ideal, we require that the bracket of an element
of the ideal with any element of g be, again, in the ideal. Any Lie algebra g has
two ‘trivial” examples of ideals: g itself and the zero ideal h = {0}.

Definition 1.2.2 A complex Lie algebra g is called indecomposable if the only
ideals in g are g and {0} . A complex Lie algebra g is called simple if g is
indecomposable and dim g > 2.

Definition 1.2.3 A complex Lie algebra is called reductive if it is isomorphic
to a direct sum of indecomposable Lie algebras. A complex Lie algebra is called
semisimple if it isomorphic to a direct sum of simple Lie algebras.

Definition 1.2.4 If g is a complex semisimple Lie algebra, then a compact real
form of g is a real subalgebra p of g with the property that every X in g can be
written uniquely as X = Xy + 11Xy with X1 and Xy in p and such that there is a
compact simply-connected matriz Lie group Py such that the Lie algebra py of P,
18 1somorphic to p.

One can prove that every complex semisimple Lie algebra has a compact real
form. The compact real form is not unique, but it is ‘unique up to conjugation’.

1.2.1 Cartan Subalgebras

We now begin to develop the structure that we will use in describing the repre-
sentations of complex semisimple Lie algebras. These same structures are used
to give a classification of semisimple Lie algebras.

Definition 1.2.5 If g is a complex semisimple Lie algebra, then a Cartan sub-
algebra of g is a complex subspace h of g with the following properties:

1. For all Hy and Hy in h, [Hy, Hy] = 0.
2. For all X in g, if [H,X] =0 for all H in h, then X is in h.

3. For all H in h, ady is diagonalizable, where ady(Y) = [H, Y], for all' Y in
g.

Condition 1 says that h is a commutative subalgebra of g. Condition 2
says that h is a maximal commutative subalgebra (i.e., not contained in any
larger commutative subalgebra). Condition 3 says that each ady is diagonaliz-
able. Since the Hs in h commute, the ady’s also commute, and thus they are
simultaneously diagonalizable.

Of course, the definition of a Cartan subalgebra makes sense in any Lie al-
gebra, semisimple or not. However, if g is not semisimple, then g may not have
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any Cartan subalgebras. In fact, one can prove that every semisimple Lie algebra
has a Cartan subalgebra, and all Cartan subalgebras of a given complex semisim-
ple Lie algebra have the same dimension. In light of this result, the following
definition makes sense.

Definition 1.2.6 If g is a complex semisimple Lie algebra, then the rank of g is
the dimension of any its Cartan subalgebra.

1.2.2 Roots and Root Spaces

From now on we assume that we have chosen (and one can show that these choices
are always possible if g is a complex semisimple Lie algebra) a compact real form
p of g and a maximal commutative subalgebra t of p, the Cartan subalgebra
h =t + it and an inner product on g that is invariant under the adjoint action
of P (P is the subgroup of G whose Lie algebra is p) and that takes real values
on p.

Definition 1.2.7 A root of g (relative to the Cartan subalgebra h) is a nonzero
linear functional o on h such that there exists a nonzero element X of g with

[H,X] = a(H)X

for all H in h.
The set of all roots is denoted R.

The condition on X says that X is an eigenvector for each ady, with eigen-
value a(H). Note that if X is actually an eigenvector for each ady with H in h,
then the eigenvalues must depend linearly on H. That is why we insist that a be
a linear functional on h. So, a root is just a (nonzero) collection of simultaneous
eigenvalues for the adgy’s. Note that any element of h is a simultaneous eigen-
vector for all the ady’s, with all eigenvalues equal to zero, but we only call o a
root if « is nonzero. Of course, for any root «, some of the «(H)’s may be equal
to zero; we just require that not all of them be zero.

Definition 1.2.8 If « is a root, then the root space g, s the space of all X in
g for which [H,X| = a(H)X for all H in h. An element of g, is called a root
vector (for the root «v).

More generally, if a is any element h*, the space of real-valued linear func-
tionals on h, we define g, to be the space of all X in g for which [H, X] = a(H)X
for all H in h (but we do not call g, a root space unless v is actually a root).

Taking a = 0, we see that gg is the set of all elements of g that commute with
every element of h. Since h is a maximal commutative subalgebra, we conclude
that go = h. If v is not zero and not a root, then g, = {0}.
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Now, since h is commutative, the operators ady, H € h, all commute. Fur-
thermore, by the definition of a Cartan subalgebra, each ady, H € h, is diago-
nalizable. It follows that the ady’s, H € H, are simultaneously diagonalizable.
As a result, g can be decomposed as the direct sum of h and the root spaces g,.

Thus, we have established the following.

Proposition 1.2.1 The Lie algebra g can be decomposed as a direct sum as

follows:
9=hePag.

aER

This means that every element of g can be written uniquely as a sum of an
element of h and one element from each root space g,.
In addition,

Proposition 1.2.2 1. If o € h* is a root, then so is —a.
2. The roots span h*.
And

Theorem 1.2.1 1. If a is a root, then the only multiples of o that are roots
are a and —a.

2. If a is a root, then the root space g, is one dimensional.

3. For each root o, we can find nonzero elements X, in go, Yo in g_o and H,
i h such that

[Hay Xa] = 2Xa7
[HaaYa] = _2Yo¢a
[(Xa, Ya] = H,.

The element H, is unique (i.e., independent of the choice of X, and Yy, ).

Point 3 of the theorem tells us that X,, Y,, and H, span a subalgebra of g.
The elements H, of h given in Point 3 of the theorem are called the co-roots.
Their properties are closely related to the properties of the roots themselves.

Theorem 1.2.2 The roots form a finite set of nonzero elements of a real inner-
product space E and have the following properties (we denote the inner product

1. The roots span E.

2. If a is a root, then —a is a root and the only multiples of a that are roots
are o and —o.
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3. If a is a root, let w, denote the linear transformation of E given by

(.8).,

(o, q)

we[B] = —2

Then, for all roots ac and [3, we[f] is also a root.

4. If a and B are roots, then the quantity
2 <Q7 /8>

(@, a)

18 an integer.

Any collection of vectors in a finite-dimensional real inner-product space hav-
ing these properties is called a root system.

1.2.3 Positive Roots

What we need now is simply some consistent notion of higher and lower that
will allow us to divide the root vectors X, into ‘raising operators’ and ‘lowering
operators’. This should be done in such a way that the commutator of two raising
operators is, again, a raising operator and not a lowering operator. This means
that we want to divide the roots into two groups, one of which will be called
‘positive’ and the other ‘negative’. This should be done is such a way that if
the sum of positive roots is again a root, that root should be positive. There is
no unique way to make the division into positive and negative; any consistent
division will do.

Definition 1.2.9 Suppose that E is a finite-dimensional real inner-product space
and that R C E is a root system. Then, a base for R is a subset A = {ay, -+ ,a,}
of R such that A forms a basis for E as a vector space and such that for each
a € R, we have

@ =n10q + Nt + - -+ + NpQyy,

where the n;’s are integers and either all greater than or equal to zero or all less
than or equal to zero.

Once a base A has been chosen, the o’s for which n; > 0 are called the positive
roots (with respect to the given choice of A) and the o’s with n; < 0 are called
the negative roots. The elements of A are called the positive simple roots.

Therefore, to be a base (in the sense of root systems), A C R must, in
particular, be a basis for E in the vector space sense. In addition, the expansion
of any a € R in terms of the elements of A must have integer coefficients and all
of the nonzero coefficients (for a given «) must be of the same sign.

Theorem 1.2.3 For any root system, a base exists.
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Definition 1.2.10 An element p € h s called a dominant integral element if
(u, Hy) is a non-negative integer for each positive simple root . Equivalently p
is a dominant integral element if

(1w, @)
e a)

1 a non-negative integer for each positive simple root c.

If 4 is dominant integral, then (u, H,) will automatically be a non-negative
integer for each positive root «, not just the positive simple ones.

1.2.4 The Theorem of the Highest Weight
We begin with elementary properties of the representations of g.

Definition 1.2.11 Suppose w is a finite-dimensional representation of g on a
vector space V. Then, p € h is called a weight for 7 if there exists a nonzero
vector v in V' such that

m(H)v = (u, Hyv (1.2)

for all H € h. A nonzero vector v satisfying (1.2) is called a weight vector for
the weight 1, and the set of all vectors satisfying (1.2) (zero or nonzero) is called
the weight space with weight . The dimension of the weight space is called the
multiplicity of the weight.

To understand this definition, suppose that v € V' is a simultaneous eigenvec-
tor for each w(H), H € h. This means that for each H € h, there is a number
Ap such that w(H)v = Agv. Since the representation m(H) is linear in H, the
Ag’s must depend linearly on H as well; that is, the map H — Ay is a linear
functional on h. Then, there is a unique element u of h such that \y = (u, H).
Thus, a weight vector is nothing but a simultaneous eigenvector for all the 7(H)’s
and the vector p is simply a convenient way of encoding the eigenvalues.

Definition 1.2.12 Let puy and ps be two elements of h. Then, py is higher than
we (or, equivalently, ps is lower than ) if there exist non-negative real numbers
ai,--- ,a, ar such that

U1 — Mo = a0 + Qo0ig + - - - + Qr Oy

where {ay, -+ ,a.} = A is the set of positive simple roots. This relationship is
written as p1 = fo o1 Uo = U7.

If 7 1s a representation of g, then a weight pg for m is said to be a highest
weight if for all weights p of ™, 1 = pg.

Theorem 1.2.4 (Theorem of the Highest Weight)



1.3. THE ORTHOGONAL ALGEBRAS SO (2N, C) 31

1. Ewvery irreducible representation has a highest weight.
2. Two irreducible representations with the same highest weight are equivalent.

3. The highest weight of every irreducible representation is a dominant integral
element.

4. Fvery dominant integral element occurs as the highest weight of an irre-
ducible representation.

1.3 The orthogonal algebras so (2n,C)

The root system for so (2n,C) is denoted D,,. We consider so (2n, C), the space
of 2n x 2n skew-symmetric complex matrices, with compact real form so (2n),
the space of 2n x 2n skew-symmetric real matrices. We consider in so (2n) the
maximal commutative subalgebra t consisting of 2 x 2 block-diagonal matrices
in which the k" diagonal block is of the form

( _(;k 08“ ) (1.3)

for some a; € R. We then consider the Cartan subalgebra h = t+it of so (2n, C),
which consists of 2 x 2 block-diagonal matrices in which the k** diagonal block is
of the form (1.3) with a; € C [The calculations in the next two paragraphs show
that so (2n,C) decomposes as a direct sum of h and root spaces g,, corresponding
to (nonzero) elements o € h*. It follows from this that ¢ is actually a maximal
commutative subalgebra of so (2n), which is not obvious from the definition of
t]. The root vectors are now 2 x 2 block matrices having a 2 x 2 matrix C' in
the (k,1) block (k < 1), the matrix —C7T in the (I, k) block, and zero in all other
blocks, where C' is one of the four matrices

1 1 —i 1 —i 1 i
Cl:(i —1)’ CQ:(—@ —1)’ 03:(1' 1)’ O4:<—z' 1)‘

A little calculation shows that these are, indeed, root vectors and that the cor-
responding roots are the linear functionals on h given by i(ax + a;), —i(ax + @),
i(ar — ap), and —i(agy — a;), respectively.

We may consider the inner product (X,Y’) := trace(X*Y) on so (2n, C) which
is invariant under the adjoint action of SO (2n). If we use this inner product to
identify h* with h, then the roots are thought of as elements of h instead of h*.
Let ©; denote the 2 x 2 block-diagonal matrix whose k* diagonal block is

(50)
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and whose other diagonal blocks are zero. The roots (as elements of h) are then
the matrices ;
2
with 1 < k <[ <n. Each of the roots has length 1 with respect to the given inner
product. The inner product of % (£0; £ ;) with % (£0x £ Oy) is zero if the
set {k,1} is disjoint from {&’,I'}, and the inner product is +1 if the intersection
of {k,l} and {&',I'} has one element. The root 5 (0, — ©;) is orthogonal to the
root 3 (O + 6y).
As a base, we may take the n — 1 roots

(£0r £ 06)),

S(01-0:),5(0:-0y) -,

2 (@n—Q - @n—l) y

(On-1—64) (1.4)

N | .

together with the one additional root,

% (O, 1 +0,) (1.5)

Note that for 1 < k <[ < n, we have the following formulas:
Or — 0, = (0 — Op41) + (Ops1 — Oppa) + -+ (011 — ©y),

O0r+0,=(0r—06,1)+ (0,1 +6,),
Or+60,(0,+06, +(0,—0,).

This shows that every root of the form £ (6, — ©,) or £ (04 + ©;) can be written
as a linear combination of the base in (1.4) and (1.5) with non-negative integer
coefficients. The roots of this form are then positive and the remaining roots are
negative.

1.4 The orthogonal algebras so (2n + 1,C)

The root system for so (2n + 1, C) is denoted B,,. We consider so (2n + 1,C), the
space of (2n+1) x (2n+ 1) skew-symmetric complex matrices, with compact real
form so (2n + 1), the space of (2n + 1) x (2n + 1) skew-symmetric real matrices.
We consider in so (2n + 1) the maximal commutative subalgebra ¢ consisting of
block diagonal matrices with n blocks of size 2 x 2 followed by one block of size
1 x 1. We take the 2 x 2 blocks to be of the same form as in so (2n) and we take
the 1 x 1 block to be zero. The associated Cartan subalgebra h of so (2n + 1,C)
is then matrices of the same form as in ¢ except that the off-diagonal elements of
the 2 x 2 blocks are permitted to be complex.

The Cartan subalgebra in so (2n + 1,C) is identifiable in an obvious way
with the Cartan subalgebra in so (2n,C). In particular, both so (2n,C) and
so (2n + 1,C) have rank n. With this identification of the Cartan subalgebras,
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every root for so (2n,C) is also a root for so (2n + 1,C). There are 2n additional
roots for so (2n + 1, C). The root vectors for these additional roots are as follows.
First, the matrices having
1
(1)

in entries (2k,2n+1) and (2k+1,2n+1) and having —B{ in entries (2n + 1, 2k)
and (2n + 1,2k + 1). Second, the matrices having

(1)

in entries (2k,2n+1) and (2k +1,2n+ 1) and having — B in entries (2n+ 1, 2k)
and (2n+1,2k+1). The corresponding roots, viewed as elements of h*, are given
by 2a; and —iay.

Let © have the same meaning as in the previous subsection, except that now
O isa (2n+1) x (2n+1) matrix. We use the inner product (X,Y) = trace(X*Y),
which is invariant under the adjoint action of SO(2n + 1), to identify h* with h.
In that case, the additional roots for the so (2n + 1,C) case are given by

i
+—-0y.
5 Ok

These additional roots have length \% with respect to the given inner product,
whereas the roots that are the same as for so (2n, C) have length 1.
As a base for our root system, we may take the n — 1 roots

S(01-0:),5(0:-0y) -+,

2 (@n—Q - ®n—1) )

(On-1—64) (1.6)

N | .

[exactly as in the so (2n,C) case| together with the one additional root,
1

§®n.

The positive roots are those of the form £ (6 — ©,) or £ (0, + 6;) (k < 1) and
those of the form 10 (1 <k < n).

1.5 Coset spaces

1.5.1 Coset spaces geometry

We give now a short review, based on [38] (pag. 190-195), of coset space geometry,
beginning with a few definitions.
First of all



34 CHAPTER 1. THEORETICAL FRAMEWORK

Definition 1.5.1 (Transitive action of a group on a metric space)

Let G be a group, M be a metric space and @ : G x M — M be an action of G on
M. The action ¢ is said transitive if any two points of the space are connected
through the group action.

Definition 1.5.2 (Homogeneous space)
Let G be a group, M be a metric space and ¢ : G X M — M be a transitive action
of G on M. The metric space G is said to be homogeneous if p is an isometry.

In addition, the subgroup H of G which leaves a point X fixed is called the
isotropy subgroup, so any other point X’ = ¢X (g € G,g ¢ H) is invariant under
a subgroup gHg~! of G isomorphic to H.

Example 1.5.1 The unit sphere S? in R3 is isometric under the transitive action
of SO(3), and any point remains fized under SO(2) rotations around the azis
passing through that point, so that SO(2) is the isotropy subgroup.

The points X of a homogeneous space will be labeled, in the next lines, using
the parameters which identify the G-group element which transform a fixed X
(the origin) into X. These parameters are redundant and there are infinitely
many group elements g such that X = gXj, because of H-isotropy. According to
this, it is natural to characterize the points of a homogeneous space by the cosets
gH, and a further action of another ¢’ € G on the coset gH is ¢'gH.

A homogeneous space is then a coset space G/H and, according to example
1.5.1, the two-sphere S? can be considered as the coset space SO(3)/SO(2); one
can show that, in general, for a d-sphere S = SO(D)/SO(d).

In the case of a Lie group G, one obtains coset manifolds, endowed with a
Riemannian structure. The Lie algebra of G can be split as:

g=hok (1.7)

where h is the Lie algebra of H and k contains the remaining generators, called
‘coset generators’, and the commutation relations
[H;, H;] = ¢i;H, H;€h
[H;, K, =l Hj+ K, K,€k (1.8)
(Ko, K] = szij + o Ke
define the structure constants of G.
One can show that, if H is compact or semisimple, it is always possible to
determine a set of K, such that all the ¢/, = 0, and the ¢, are antisymmetric in

a,b.

In a generic exponential

g = exp(yK,)exp(a'H;). (1.9)
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the G coordinates are y,, x;, and it is easy to see that is clear that the dim G —
dim H parameters y, corresponding to the K, generators characterize the cosets
gH.

So, each coset (which is labeled by the y parameters) can be mapped into an
element L(y) of G, the coset representative. For instance

L(y) = exp(y" Ka), (1.10)

and this means that the whole geometry of G/H can be constructed in terms of
coset representatives.
A left multiplication by a generic element g of G, sends L(y) to L(y') = L(y')h

gL(y) = L(y')h, heH, (1.11)

and in general it belongs to another equivalence class, while ¥’ and h depend on
y and ¢, and on the way of choosing representatives.

1.5.2 H-Analysis on Coset Spaces

In this section we want to give a short review on harmonic analysis on G/H,
based on [39] (pag. 1175 - 1182).

It is well known how to write the Fourier expansion of a sufficiently regular
function on S', and in the next lines we generalize this to arbitrary G/H mani-
folds, where GG is a compact group manifold. In this case a complete functional
basis is given by the matrix elements D of the unitary irreps of G. So, if ¢ is a
function on G, it can be expanded as

dim (p

=> Z () D (1.12)

(n) mmn=1

m, n being indices in the unitary irrep labeled by (u), and dim (x) the dimension
of the (p)-irrep. In addition, the matrix elements fulfill the following

_ I(Q)
DWW (\DW) Y dg = U'O B OnsOMY |
| Pny (o) o = 322

> DU (g)DY) (1) dim () = 6 (g — ¢') vol(G).

(1.13)

where the G-invariant measure dg fulfills

/Gdg = vol(G),

so, from (1.12) (1.13), it follows.

dim (p
= / D" o(g)dg.
UOl



36 CHAPTER 1. THEORETICAL FRAMEWORK

In addition, if the given function ¢(g) transforms under right G-multiplication as

oW (gg') = oW (9) DY (d) | (1.14)
then it turns out that
oW (g) = MDY () [no sum on (u)] (1.15)
with )
A = iz [ PR @y frosumon (). (116)

Condition (1.15) substantially means that
DW 1 n fixed (1.17)

is a complete basis for functions ¢$,’f) (g) fulfilling (1.14), and it is the subset of
the complete functional basis which transforms as in (1.14).
The expansion (1.15) always exists because choosing g = e (the identity in G)

in (1.14) yields (1.15) with M = o) (e); while (1.16) follows from Dnﬁ‘%( Do (g) =
®(e).

If ¢(y) is a function on G/H, then the matrix elements DY) |L(y)| are still a
complete functional basis: they can be seen as vectors and the dimension of their

vector is vol(G/H).
All the above formulas continue to hold, but one has to replace vol(G) with
vol(G/H) = vol(G) /vol(H) and also dg with du(y) = invariant measure on G/H

Assume that a function ¢(L(y)) [here ¢(L(y)) is considered as a function of
L(y) € G rather than of the coset coordinate y| in an irrep (a) of the subgroup

H, fulfills
& (L(y)h) = DL (h)e\™ (L(y)); (1.18)

then ¢% is not constant over the points of a coset gH but varies linearly under
right action of H. In [39] it is shown that

e Every Dj(h) is generated by the structure constants %, i.e.
Dy(h) = lexp(ci)]s,

e In the expansion (1.15) one has to include all the G-irreps containing ()
under reduction to H, this means

o (L(y) =Y DL (1.19)
() n
where the sum on (v) is restricted because of

W)L (o) + -
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e The
D" ifixed, (v) contains (a) (1.20)

nt

form a complete basis for coset functions ¢(®(y) fulfilling (1.18).

Indeed, out of the complete set DY), the particular subset (1.20) transforms as
n (1.18).
In order to invert (1.19), one needs to calculate

m: (u) — irrep index
(1) () 1 r: (v) — irrep index
/Dmk(L@))D’W (L(y) ) dp k: (o) — irrep index contained in both

(1) and (v) irreps
and, from (1.13)y, it follows
vol(G) W) [ -1
6,650 = [ DY (g)D! d
i () % / i (97) dg
/dh DU (L(g)h) DY) (h1L71(g)) dp
G/H

= [ DD (7 Yan [ D@D (L7 w) da

G/H

voltd) 5 [ DU (L) DY (L7 () d
dlm( ) G/H

and therefore

() W) (71 _dim(e) (G »
[ )DL (7 ) e = Gt (G )

So, the ¢ in (1.19) are

1 dim (p)

v _
T ol(G/H) dim (@) Jem

D (L(y)s (L(y) ™) -

The coset functions DZ(Z)(L(y)) are called the H-harmonics on G/H.
Using the action of the covariant Lie derivative Lk on L(y) (we use the sim-
plified notation Ly = Lk, ),

LaL(y) = KaL(y) — L(y)T;Wi(y) = TaL(y),
one can prove the following
Theorem 1.5.1 The H-harmonics are eigenfunctions of the covariant Laplace-

Beltrami operators:

AL AL Ay Al An Al
g gz gt Trlea cay o ca | LagLay o Ly,

with
g8 = G-group metric, ciB = G-structure constants.
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We end this section with some useful results on Laplace-Beltrami operators
1. If O is a differential operator on G/H and
[0, L4l =0 for every A (1.21)

[ is called an invariant operator on GG/ H, and is diagonal on the harmonics.
The Laplace-Beltrami operators are a complete set of invariant operators:
every [J satisfying (1.21) is a function of them.

2. There are r = rank(G/H) independent Laplace-Beltrami operators. The
rank of G/H can be defined to be the maximal number of mutually com-
muting generators in the ‘coset algebra’ k.

3. In a coset space of rank r, the first r Laplace-Beltrami operators can be
chosen as a complete basis of invariant operators. The remaining higher-
order Laplace-Beltrami operators are functionally dependent on the first r
Laplace-Beltrami operators.

Points 1. and 2. generalize the well known fact that a group of rank r has r
independent Casimir operators.

1.6 Non commutative geometry and Fuzzy Spaces

1.6.1 Introduction to non-commutative geometries

In a broad sense, the first example of a non-commutative geometry is the non-
commutative version of phase space at the basis of quantum mechanics; in fact,
according to this definition

Definition 1.6.1 (C*-algebra)
A C*-algebra A is

1. a linear associative algebra over the field C of complex numbers, i.e. a
vector space over C with an associative product linear in both factors,

2. a normed space, i.e. a norm ||| is defined on A:
|Al| >0, JJAl=0< A=0, VAcA,
IINA] = [A|||A]l, Y AeC,VAe A
A+ Bl <Al +B]l, VA BeA,
with respect to which the product is continuous:

IAB] < [|A1BI;

and A is a complete space with respect to the topology defined by the norm
(thus A is a Banach algebra),
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3. a *-(Banach) algebra, i.e. there is an involution * : A — A,

(A+B)" = A*+ B*, (MA)"=)A*, (AB)"=B*A*, (A")* = A,

4. with the property (C*-condition)

1A Al = ]| A]”.

it turns out that the algebra of observables of a classical system is an abelian
C*-algebra, but this is no longer true when one deals with atomic or other mi-
croscopic systems.

(C*-algebras are now an important tool in the theory of unitary representations
of locally compact groups, and are also used in algebraic formulations of quantum
mechanics; moreover, the C*-algebraic formulation of Quantum Mechanics, which
has unquestionable advantages for logic and conceptual economy, especially for
a mathematically oriented audience, and has played a crucial role for the recent
non-commutative extensions of Calculus, Geometry, Probability etc. , has not
yet become standard in quantum mechanics textbooks.

They were first considered primarily for their use in quantum mechanics to
model algebras of physical observables. This line of research began with Werner
Heisenberg’s matrix mechanics and in a more mathematically developed form
with Pascual Jordan around 1933. Subsequently, John von Neumann attempted
to establish a general framework for these algebras which culminated in a series
of papers on rings of operators. These papers considered a special class of C*-
algebras which are now known as von Neumann algebras.

Around 1943, the work of Israel Gelfand and Mark Naimark yielded an ab-
stract characterisation of C*-algebras making no reference to operators on a
Hilbert space.

The measurement of the position of a particle requires an experimental appa-
ratus which distinguishes points at very small scales and in macroscopic systems,
it is enough to identify the position with a precision of a few orders of magnitude
smaller than the size of the body, than for the realizability of the measurements
one needs a control of the physics at scales which are still macroscopic. The
situation changes if one wants to localize the position of an atomic particle of
size 10~8cm or of a nucleus of size 10~*3¢m, in fact there are intrinsic limitations.
Heisenberg showed that any attempt to localize an atomic particle with sharp
precision will produce a large disturbance on the microscopic system, with the
result that the mean square deviation of the measurements of the momentum
becomes larger and larger. For example, a precise localization of the particle can
be obtained by taking a photograph, which requires sending light on the particle;
the picture is the result of a reflection of light by the particle and, since light rays
carry energy and momentum, the reflection of light changes the momentum of
the particle. The result of these analysis led Heisenberg to the conclusion that for
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any state there is an intrinsic limitation in the relative precision by which z (the
position) and p (the momentum) can be measured, independently of the state.
The Heisenberg bound indicates that for all the states, if x; and p; denote the
cartesian coordinates and the components of the momentum of the the particle,
then

h
Ax;Ap; > . where h is the Planck’s constant.
s

The above relations, called the Heisenberg uncertainty relations, should be re-
garded as unavoidable limitations for the preparation of states with sharper and
sharper values of position or momentum. Clearly, since h is very small, the above
inequality is relevant only for microscopic systems and this is the crucial point
where atomic physics departs from classical physics. Heisenberg’s idea is that
the uncertainty relations arise as direct consequences of the following Heisenberg
commutation relations

[z, pe] = tho;,Z,  where h= i
2m
Thus, the position and momentum of an atomic particle cannot be described by
a commutative algebra, and, in a broad sense, the phase space of quantum me-
chanics is an example of non-commutative geometry. Planck’s constant h plays
the role of a continuous deformation parameter, i.e. a parameter that controls the
noncommutativity, and h — 0 is the commutative limit, i.e. the limit in which
noncommutativity disappears [Technically speaking, x;, p; do not belong to a C*-
algebra, but using their exponentials '@’ VP one can construct a C*-algebra
containing all the observables]. In a stricter sense, in noncommutative geometry
also the subalgebra generated by the space(time) coordinates alone is noncom-
mutative. By the Gelfand-Naimark Theorem, every C*—algebra is isomorphic to
an algebra of bounded operators in a Hilbert space, the vectors of which describe
a full set of states; such a general Hilbert space description is equivalent to a
representation in terms of continuous functions and probability measures only if
the algebra of observables is abelian. The Gelfand-Naimark Theorem is therefore
very important for the mathematical description of a physical system, because it
settles the basic difference between classical and quantum physics.

Theorem 1.6.1 (Gelfand-Naimark) Fvery C*—algebra A is isomorphic to an
algebra of (bounded) operators on a Hilbert space.

One can get the Gelfand-Naimark characterization of abelian C*-algebras
from the above theorem; in fact it is possible to show that the irreducible repre-
sentations 7, are defined by pure states, which for abelian C*—algebras are mul-
tiplicative, so that the corresponding representation are one-dimensional 7,(A) =
w(A)Z. Then the family F of all inequivalent irreducible representations coincides
with the Gelfand spectrum and the faithful representation m(A) = ®yerm,(A)
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is given by the collection {w(A),w € F}, that is by the function A(w) = w(A).
Furthermore,

1Al = sup [Aw)] =) lw(A)] = [|A].

With the weaks* topology one can show that F is a compact Hausdorff topological
space and the functions A are continuous; this approach shows one basic difference
between the abelian and the non-abelian case. In the first case, the set of pure
states defines a ‘classical’ space; in the second case, the set of pure states defines
a ‘quantum’ or ‘non-commutative’ space, whose points are rays in Hilbert spaces.

Another example is the Tannaka-Krein Theorem which is a generalization of
the Gelfand-Naimark Theorem for compact groups.

1.6.2 The Fuzzy Sphere of Madore

This is a noncommutative model of a curved 2-dimensional space, more precisely
of a sphere S?; it is based on the algebra of n x n complex matrices which replaces
the one of functions on S?. The former looks like the latter above the length
scale k ~ =, where r is the radius of the sphere; n plays the role of a discrete
deformation parameter, and n — oo the role of classical limit. In general, fuzzy
spaces are noncommutative geometries based on a sequence of finite-dimensional
algebras which become infinite-dimensional and commutative in the limit n — oo.
The fuzzy sphere was proposed by Madore also to construct on it a toy-model of
a quantum field theory on a (Wick-rotated) spacetime and investigate whether
the ultraviolet divergences due to local field interactions could be regularized
by a finite n. In fact, in the classical formulation of the quantum fields theory
on Minkowski spacetime there are ultraviolet divergences which are corrections
coming from perturbative methods applied to point-like field interactions. It was
an idea of Heisenberg [1] to avoid this problem replacing the notion of points by
some alternative structure which makes the infinitely precise measurements of
position impossible. For example one can suppose that with length less than &
the coordinates of a point are non-commuting operators and the position of the
particle does not have an exact meaning. For instance, one can choose k less than
the Compton wavelength, that is A, = mioc with mg the mass of the particle; then
the internal structure gives an uncertainty to the point less than the quantum
uncertainty of the position of the particle.

The geometry of a manifold can be described using the algebra of functions
defined on it, the coordinates are the generators of the algebra and the vector
fields are the derivations; but one can describe the differential geometry using
the operators over an algebra of functions and it is natural try to develop a new
non-commutative version of the differential geometry replacing the algebra of
functions C with a non-commutative one A. It is possible to use a lattice struc-
ture, which eliminates the ultraviolet divergences since the associated algebra
of functions is finite-dimensional. The finiteness of the algebra is linked to its
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non-commutativity and the algebra of matrices which will be used recalls finite
versions of the algebra of observables on a phase space. The matricial geometries
recall classical phase spaces where they have a symplectic form and they recall a
quantum phase space since their algebra is not commutative.
Consider R? with coordinates 7,, 1 < a < 3, the Euclidean metric Gab = Oap,
the sphere
JapTaly =17, (1.22)

and then the algebra C(S?) of complex-valued polynomial functions f(7,) on S?

f(@a) = fo+ fTa+ %fa,bza’fb SEE (1.23)

This is an algebra which separates points and it is dense in the algebra of smooth
functions. Madore constructs a sequence of non-commutative approximations of
C(S?).

A truncation of all functions to the constant term implies that the algebra
C(S?) is reduced to A; = C of complex numbers and the geometry of S? is
reduced to that of a point.

Keeping the term linear in the z,, the output is a four-dimensional vector
space A,. It is possible to define a new product in the 7,, so that A, becomes
an algebra.

If we require that the radical of A, is equal to zero then there are two ways.
We can define the product so that Ay becomes equal to the direct sum of four
copies of C, then the resulting algebra is commutative, the sphere looks like a set
of four points and this would be a lattice approximation. The second possibility
is to define the product so that A5 becomes equal to the algebra Mas, of complex
2 x 2 matrices. That is, we replace x, with x, = ko®, where ¢® are Pauli’s
matrix and  is such that 72 = 3x2. The sphere is not well described and one can
distinguish only two points, because all x, admit only two, opposite eigenvalues;
the eigenvectors of e.g. x3 can be identified with the north and the south pole.

Suppose next that we keep the term quadratic in the z,, then the resulting
vector space A3 has dimension 9 and one can introduce in it a product such that
it becomes equal to the algebra M3 of complex and square matrices of order 3;
the x, can be replaced with x, = kJ%, where the J* form the three-dimensional
and irreducible representation of SU(2), that is [J?, J] = 2igq.J¢, with k such
that r? = 8x2. The sphere is now less fuzzy and one can distinguish the equator
and the poles, corresponding to the three eigenvalues of 3.

In general suppose that we suppress the terms of degree larger than n in the
Zq. The resulting set is a vector space A,. Let N, = (Q;Z) be the number of
components of a completely symmetric tensor f,, ... ,,. Because of the constraint
(1.22) for [ > 2, N;_5 of these components would not contribute to the expansion
(1.23). Therefore there are N; — N;_5 = 2l + 1 independent monomials of degree
I and 377 (20 + 1) = n® components in all. So A, is of dimension n? and we
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can introduce a new product in the z, which will make it into the algebra M,
of complex n x n matrices. That is, one makes the replacement

T+ Ty = RS (1.24)

but where the J* form the n-dimensional irreducible representation of the Lie
algebra of SU(2), and the parameter n is related to r by the equation r? =

(n? — 1)k. For large n we have

Ko~ —
n

and so k — 0 as n — +o00. Introduce the constant
k = 4nkr

It has the dimension of (length)? and plays here a role analogous to that played
by Planck’s constant in quantum mechanics. The commutative limit is given by
k — 0. It is convenient also to define £ := % = 2KT.

The generators z, of the algebra M,,, satisfy the commutation relations

, —1
[z, xp] = ikCSx. Cope =17 Eape-

So in the limit they commute and all of the points of the sphere can be distin-
guished.

We shall be more interested in the mapping ¢,,, of M,, into C (S?) given by
the inverse of (1.24) on the generators x,. Every element f € M, has a unique
expansion

n—1 1
f = Z ﬁfal"'alxal T T
=0

where f,,..q, 1s a symmetric trace-free tensor. Let f be the element of C (S?)
obtained from f by replacing x, by z, in this expansion. Then f fdeﬁnes a
linear mapping ¢, of M,, into C (5?). The range of ¢, is the subspace of functions
on S? which are polynomials in the 7, of degree up to and including n — 1. If we
consider the vector space W, of elements in M, which possess an expansion of
degree at most [ < n — 1 then we have for f,g € W,

On(f9) — on(f)Pnlg) ~ 0 (%) (1.25)

To see this consider first the case [ = 1. Then f = fy + fox, and g = go + guTa
and

6u(F9) — On(£)nlo) = ik FunC .

If [ > 1 then each monomial except the first will contribute in general a term
containing a factor k. This yields [ — 1 terms each of which will vanish in the
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limit n — 4o00. If [ = n — 1 then (1.25) is an empty assertion. In the limit of
very large n however ¢, can be considered as a morphism between the algebra
of polynomials in x, and the algebra of polynomials in z,. As the order of the
polynomials involved approaches n — 1, the error involved in considering ¢, an
algebra morphism becomes more and more important.

One wishes to approximate a commutative algebra C (S%) by a sequence of
noncommutative approximations M,. To see in which sense this can be done
one can define a norm on M,, and show that in the limit n — 400 the algebra
C (S?) can be considered as the image of the diagonal matrices in M,,. For each
element f € M, one sets

1 *
171l = ~Tr (F°F). (1.26)
The generators x, have a norm given by

1
lzall, = 57

This is independent of n. If we define the norm of an element f € C (S2) by

71 = 5 S 171

then ||z,||,, = ||Za]|. Let f € M,, and set f = én(f). Then we have

1 1 ~
-T —
n r(f) 47r? / /
as n — +00. Indeed the left-hand side tends to an SO(3)-invariant integral over
S2.
The normalization is fixed by considering the case f = 1. In particular

11, = |7

A general element f € M, with entries O(1) will have a norm || f||, = O(n).
A diagonal matrix with entries O(1) or a matrix with only a number O(1) of
off-diagonal terms will on the other hand have a norm || f]|, = O(1). For large
n then bounded functions will be the image of near-diagonal matrices, that is of
matrices which commute with each other to within order &.

We cannot speak of the position of a particle because of the absence of lo-
calization but the state of a particle on the sphere is described as in quantum
mechanics by a state vector ¥, which we shall assume to be normalized. For the
matrix algebra M, then a particle is described by a vector v, which we shall
assume to be normalized. For the matrix algebra M,, then a particle is described
by a vector ¢» € C™ with ¢*1) = 1. An observable associated to the particle is a
Hermitian element of M,, and the value of an observable f is given by the real
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number ¢* fio. For example, what corresponds to the position of the particle is
given by two of the three numbers ¥*z,1). When n — 400, these must converge
to well defined values of the coordinates z, if the particle is to be considered as
localized. The state vectors lie in P"~! (C), a space of complex dimension n — 1.
So the ¥*z,1) do not determine a state. The additional 2n — 4 real numbers
needed to fix a point in P"~! (C) give information about the dispersion of the
particle. If we measure one generator, say x3, then after the measurement v
becomes its eigenvector and is completely determined. The expectation values of
the other two generators then vanish since there is equal probability of a positive
and negative value. The most general state vector can be written in terms of the
eigenvectors of x3. The matrix which takes the latter to the former corresponds
to what in quantum mechanics would be the Schrodinger wavefunction. As £ — 0
it becomes more and more dilficult to distinguish a vector uniquely using x3. In
the limit the eigenvalues of one of the other two generators must be used as well.
In the limit the function v (z,) gives the (purely classical) probability of finding
the particle at the point with coordinates z,.

The analogue of a general coordinate transformation is a change of generators

/
Tq > T,

of the algebra M,,. This mapping does not necessarily respect the relations of
the algebra and it does not necessarily possess an extension to an automorphism
of M,,.

As an example we shall briefly consider a second set of generators (u, v) of the
algebra M,, which are in no way related to the group SU(2) and which satisfy
the relations ,

=1, =1, w=enou (1.27)
This describes a particular case of the two-dimensional quantum plane, and the
relations (1.27) are invariant under the transformations

u— v =exp (2mip/n)u, v v =exp(2wig/n)wv,

for (p,q) in the discrete group Z x Z. So in the limit n — +o0 the sequence of
matrices (u,v) tends to generators (u, v) of an algebra of functions defined on the
torus

u=exp (2miz/r), v =exp (2miy/r),

where 0 < x,y < r. Abbreviating ¢ := exp (27i/n), a concrete realization of u, v
fulfilling (1.27) is provided by the socalled clock and shift matrices

1

L)
O = O
_ O O
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For any matrix in M,,, in particular for the x,, there exist matrix polynomials
Tq = x4(u,v) and their inverses u = u(z,) and v = v(z,), for each value of n.
However if the limit exists when n — 400 the corresponding functions would
have to be discontinuous since they would otherwise define a homeomorphism of
the sphere with the torus. Identify the torus as the region of the real plane (x,y)
with 0 < z,y < r defined by an algebra of functions which are periodic at the
two boundaries and the sphere as the same region but defined by an algebra of
functions which have a constant value around the boundary. Then there is an
embedding of the set of continuous functions on the sphere into the continuous
functions on the torus. We can consider however the algebras of all functions on
the two manifolds to be identical. They are both the limit of the sequence of
matrix algebras M,,. The generators of M,, which we have used above have two
different symmetries and these symmetries are to be found in the manifold which
is defined in the limit. The SO(3) symmetry defines an S? geometry; the Z x Z
defines the torus.

A diffeomorphism of S? defines and is defined by an automorphism of the al-
gebra of smooth functions on S2. Let ¢ be a diffeomorphism of S2. Then ¢ has an
extension ¢® to R and we can set 7/, = ¢*(¥). This defines an automorphism of
C(S?) which is independent of the extension. Conversely such an automorphism
¢ restricted to the generators 7, defines a coordinate transformation of R? and
by restriction a diffeomorphism of S?. The non-commutative analogue of a dif-
feomorphism of S? is therefore an automorphism of M,,. Since M,, is a simple
algebra all of its automorphims are of the form f — f’ = ¢g~!fg where ¢ is a
fixed arbitrary element of M,, which has an inverse. We have considered complex-
valued functions on S? and the algebra C(S?) has a x-operation f — f* obtained
by taking the complex conjugate of le A diffeomorphism of S? will define an auto-
morphism of C(5?) which respects this *-operation: f"* = f*'. We must therefore
require the same condition on the automorphisms of M,:(g7'fg)* = g~ 'f*g.
This means that ¢* = ¢~! and therefore that

vl =g 'r.g, g€ SU(N). (1.28)

A different choice of x/, not related to z, by this formula would be equivalent to

a different choice of differential or topological structure. An element f € M, has

an expansion f = f(x,) in the basis z, and an expansion f = f’(x}) in the basis
/

x/. If (1.28) is considered as an automorphism then f — g~'fg. If it is to be

regarded as a change of generators then f +— f and f'(y,) is determined in terms

of f(ya) by the identity f'(x)) = f(z4).

A smooth global vector field on S? defines and is defined by a derivation of
the algebra C(S?). The non-commutative analogue of a global vector field on
S? is therefore a derivation of the algebra M,,, that is, a linear map X of M,
into itself which satisfies Leibnitz’s rule: X (fg) = X(f)g + fX(g). Since M,,
is a simple algebra all of its derivations are of the form X = ad(h) where h is
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a fixed arbitrary element of M,,. Since we wish also to have (X (f))* = X(f*)
we shall require that h be antiHermitian. A diffeomorphism of S? leaves the
set of smooth global vector fields invariant. The change of generators (1.28)
takes X into X’ = ad(g~'hg) and so all automorphisms of M,, are analogues of
diffeomorphisms of S2.

Let 2/, be the limit of the sequence {z/ } defined above. Then the map z, — 7,
is a coordinate transformation of R®. If ¢ is near to the identity we can write

/

o ~x, — [h,z.], g=1+h.

An important special case is given by

h= —hata. (1.29)
In this case 2/, ~ z, + CiLh’x, and therefore in the limit it corresponds to an
infinitesimal rotation about the axis h, in R®. The formula (1.28) with h small
and given by (1.29) yields the adjoint action of the Lie algebra of SO(3) on M,,.
On the algebra M,,, we have a representation of SO(3) which contains exactly
once the irreducible representation of dim 2j + 1 for 0 < j <n — 1.

1.6.3 Fuzzy spaces through energy cutoff and confining
potentials

As known, in classical mechanics a charged particle (e.g. an electron) in the plane
z = 0 subject to a magnetic field B pointing along the z direction moves with
constant speed v along a circle of radius r = muwc/||eB]| (the cyclotron radius),
where m, e are the mass and the charge of the particle and v := ||v||, B := |B||.
The Lorentz force causes the electron to spiral around and the centrifugal force
must balance the Lorentz force, that is

mv? e

= —ub;
r c

then it is possible to calculate the cyclotron radius

mcv
r=-—=

le| B
and the angular frequency of the cyclotron motion is

v le| B
Ww=2r—=—-.
2mr mc
In quantum mechanics the energy levels of this system (the socalled Landau
model) are quantized and the x, y coordinates from the center of the circle do not

commute.
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The literature is very rich of works about this topic; in particular, Peierls [40]
firstly studied the one band Hamiltonian for a Bloch electron in a magnetic field,
while in [41, 42] R. Jackiw and G. Magro analyze the Landau Hamiltonian and
show that the x,y coordinates of the particle themselves become noncommuting
if one imposes an energy cut-off, namely projects down all the observables to
the subspace of the Hilbert space of states characterized by and energy below a
certain quantity (the cut-off). Thus this mechanism can provide an example of
non-commutative geometry. The Hamiltonian of this system is

1 A2
Hz—(p—e—) ,
2m c

where A is the electromagnetic vector potential, that is B =V x A. Choosing a
suitable gauge, one has A = (0, Bx,0) and the Hamiltonian is

2 1 Bz\?
W (o)

2m  2m c

The operator y is not into this Hamiltonian, then p, commutes with H, so this
operator can be replaced by its eigenvalue hk,, and using the cyclotron frequency

one has , )
1 hk

H:p—’”+—mw2 x——2 | .

2m 2

The eigenvalue equation of the Hamiltonian is the same of the quantum harmonic
oscillator; then there is a quantization of energies:

1

These values of the energy increase with n and correspond to the so-called Landau
levels, they have infinite degeneration. Let H be the Hilbert space of all quantum
states, the imposition of an energy cut-off £ means that one assumes to make
only low-energy measurements; the consequence is that the space of physical
states is reduced from H to the subspace Hyp spanned by the eigenfunctions
with B, < E. In this situation (as for the new fuzzy hyperspheres that are
introduced in the next chapter) some commutation relations become non trivial
after the projection on ‘Hy. In particular if one confines the particle in a bounded
region of the plane imposing some boundary conditions (or an infinite barrier of
potential) the flux of B through the surface must be quantized and this value
determines the degeneration which is finite; alternatively, one can consider the
same problem on a torus and impose that the wavefunction is periodic up to a
phase factor, and this yields a finite degeneration. In these situations one has a
finite-dimensional subspace of H and, through the use of a projector, any operator
can be transformed into an endomorphism of H.
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More generally, if the Hamiltonian has a confining potential, then classically
the position of the particle can be only in a compact region, and also p is compact
because E), < E. The quantization ensures that Hz has finite dimension (that can
be estimated even without solving the eigenvalue problem). In this way one can
construct a non-commutative fuzzy geometry if the original coordinates projected
on Hz do not commute and generate (through non-ordered polynomials') the
algebra Az of all endomorphisms of H.

'If one wants to use only generators with a pre-determined order some more generators may
be necessary.



Chapter 2

The general construction of SX
with d € N

2.1 General setting

As mentioned before, consider a quantum particle in R”, with a Hamiltonian
operator

1
H = —§A + V(r)

such that the potential V(r) has a very sharp minimum at r = 1 with a very
large kp := V'(1)/4 > 0, and fix V; := V(1) so that the ground state has zero
energy, i.e. Fy = 0. In addition, impose here that the energy cutoff E is chosen
so that

V(r)~ Vo +2kp(r—1)* if r fulfills V(r) <E, (2.1)

then one can neglect terms of order higher than 2 in the Taylor expansion of V' (r)
around r = 1 and approximate the potential with a harmonic one in the classical
region by C RP compatible with the energy cutoff V(r) < E. The equality
L*Y (04,041, -+ ,601) = 1(l+ D —2)Y (04,041, ,0;) and the Ansatz (10) are
used to simplify the resolution of the PDE Hv = FE1, in fact this problem is
consequently split in two:

1. Solve the corresponding ODE for f(r);

2. Determine all the eigenfunctions of L?, which will be also square-integrable
because S? is compact and L? is regular.

In addition, it is also necessary to verify if H is a self-adjoint operator on the
Hilbert space Hp of pure quantum states.

20
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Figure 2.1: Three-dimensional plot of V()

2.1.1 Resolution of Hy = Fi{) — Step 1

The ODE for f(r) turns out to be equivalent to equation (9) in [13, 14]; this
means that one has to solve

0 (D= 10,4 I+ D=2 + V()| f(r) = EF0). (22)

In section 7.0.2 it is shown that the hypothesis 72V (r) N e [which is
obviously compatible with (2.1)] and the request that ¢ € D(H) = D(H*) (self-
adjointness of H) imply that f(r) is regular at r = 0, and then the same applies

to the function g(r) := f(r)r%. Consequently, (2.2) becomes

[D* —4D + 3+ 4l(l + D — 2)]
47?2

—g"(r) +g(r) +V(r)g(r) = Eg(r).  (2.3)

For the purposes of this thesis, the solution of this last equation is interesting
only around r = 1; this means that one can use the equalities (at leading order)

1
S=1- 2(r — 1) +3(r — 1), V(r) = Vo +2kp(r — 1),

which lead to this 1-dimensional harmonic oscillator equation

—g"(r) + g(r)kip (r — ?Z,D)2 = El,DQ(T)a (2.4)
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where
D?*—4D 41+ D —2
b(l, D) := + 3; (I + ) Ko = 3b(0. D) + 2kp.
N (2.5)
Fip e 4b(1, D) + 2kp Fip e B —Vy— 20(1, D) [kp + b(l, D)]

3b(l, D) + 2kp’ 3b(l,D) +2kp '
so at leading order the lowest eigenvalues E are those of the 1-dimensional har-
monic oscillator approximation of (2.3).

The (Hermite) square-integrable solutions of (2.4) are (M, p is a suitable
normalization constant)

\/ ki,D _\2
gn,l,D(T) = Mn,l,D e 2 (T_TL’D) - H, ((T — ,TYI,D) \4/ kl,D) with n € No, (26)

implying

Q‘

k
M, p LD

fn,l,D(r) = D!l € 2 (T_FZ’D) . Hn ((7" - :FZ,D)\AL/ kl,D) with n € No. (27)

r-2

The corresponding ‘eigenvalues’ in (2.4) are E,%LD = (2n+1)4/k; p and this leads
to energies

2b(1, D)[kp + b(l, D)]
3b(l, D) + 2kp
As mentioned before, Vj is fixed requiring that the lowest energy level, which

corresponds to n =1 = 0, is Fy o p = 0; this implies

- 2b(0, D) [kp + b(0, D)]
Yo =—vkop = 3b(0,D) +2kp 2

while the expansions of 7, p and E,; p at leading order in kp are the following
ones:

En,l,D = (277, + 1)\/ th + % + (28)

b(1,D) 3b(l,D)?

p=1+ o 2 +0 (kp?),
3b(0,D)  b(0,D)>  9b(0,D)>  3b(0, D)3
Vo = —/2kp — b(0, D) — + + T — +0 (k
° o= b0 D) = = o 8 (2kp)? 452, (
Enip=(2n+ 1)v/2kp + Vo + b(l D)+(2n+1)3b(l’D>
n,l,D— D 0 I 2\/%
b(l, D)? 9b(1, D)2 3b(l, D) s
) (9 1 kn?
ST LYY 4k +O< D )
1 3
= 2n+\/2kp + (1 + D —2) + 3nb(l, D)+ =l(l+ D — 2
nVBrp +1(1+ D~ 2) + o |3t D)+ il + D - 2)
2D* —8D+6+4l(l+ D — 2) _3
_ D—92 2.
+2kp[ (1 + )][ 1 ]+O(kD>

(2.10)
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2.1.2 Resolution of HiY = F1 — Step 2

In section 7.0.3 it is shown that an orthonormal basis of £2(S?), made up of
L2-cigenfunctions, is the collection of all the

eillel

Y:n(eda”'ae%el):\/ﬂ

d
[H ”ﬁﬁzl(en)] , = (ld7 cyl, ll)a (2'11)
n=2

where

Py = 2L +2j -1 \/ (L +( é”f]\j)!_ 2! fsin )7 PL_E? ) (cos0), (2.12)

lg>--->1ly >4, l; € Z Vi and P/" is the associated Legendre function of first
kind (see [43] for a summary about these special functions).

They fulfill
LY, =LY, = O, = Z%YL, CoYr =l—1(lp—1 +p — 2)Y],

y (2.13)
and / YWYyida =9,
Sd

where do is the usual measure on S¢,
da = [sind’1 (04) sin™2 (04_1) - - - sin (92)] df,dby - - - db,.
According to these last equations, every [ € Ny identifies a

Vipi=span{Y;: 1= (Llay, -+ o) 1> lgoy > -+ > 1y > |l l; € ZVi}
(2.14)
which is the representation space of an irrep of Uso(D), and {L;2,Cs,--- ,Cp}
is a CSCO of this irrep, where CSCO stands for complete set of commuting
observables, i.e. a set of commuting operators whose set of eigenvalues completely
specify elements of a basis of Hj p.
In addition, in section 7.0.3.4 it is shown that
!
Vi.p is isomorphic to @ Vina i D >3,

m=0

!
while V; 3 is isomorphic to @ Vin,2;

m=—I

this decomposition can be also applied to H p, up to isomorphisms, and this job
is done in section 2.4.

So, the pure quantum states (the elements of an orthonormal basis of Hp)
are the following ones:

d)n,l,D(Ta Hda T 7927 01) = fn,l,D(T)}/l(eda e 7627 Hl)a (215)
WlthnENQ,lEldzzlgz |l1|,ll€ZVZ
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2.2 The imposition of the cutoff

As mentioned before, a low enough energy cutoff £ < E is imposed in a way
such that it excludes all the states with n > 0; according to this, it must be
E < 2y/2kp, which (from the physical point of view) means that radial oscillations
are ‘frozen’ (= n = 0, as wanted), so that all corresponding classical trajectories
are circles; the energies E below E will therefore depend only on [ and D, and
are consequently denoted by Ej p.

n=1

|

)

1 J
E1 2D \ | E1'3'D
E1,D,D II'.

Eon= EU,A.DII'-.I:—I.'I
\ ; I."I Es,n = En,s,n

E:o EED,Z,DII":_!'I o
L e=———"xoEp=Eow» >
Eop=Eoop f r

L
\\

-\/B,D 2'@

Figure 2.2: Two-dimensional plot of V (r) including the energy-cutoff

The Hilbert space of ‘admitted’ states is Hg p C H, it is finite-dimensional
and spanned by the states v fulfilling the cutoff condition; on the other hand,
one has also to replace every observable A by A := Pg pAPg p, where Pg p is
the projection on Hg 5, and we give to A the same physical interpretation.

Then, at leading orders in 1/v/kp,

1
HzEl,Dzl(z+D—z)+o(_);

Vkp
M, ERVALN) )2
Tbl,D(TﬁD—l,“',el):#e 5 (r=7in) Yy (0a,---,01),

T o2

(2.16)
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where the normalization factor M; p is fixed so that M; p > 0 and all ¥, p have
unit norm in £2 (R?) (see section 7.0.5).

The choice of a A-dependent energy cutoff E = E(A) := AA + D — 2),
implies that the condition E < E becomes equivalent to the projection of the
theory onto the Hilbert subspace Ha p = Hg , spanned by all the states vy p
with [(l+ D —2) < A(A+ D —2) & | < A. For consistency it must be

AN+ D —2) < 2¢/2kp, (2.17)

and for instance one can define kp (A) > [A(A + D — 2)]?, while in section 7.0.12
a larger kp(A) is used in order to prove the convergence to ordinary quantum
mechanics on S?. According to this first choice of kp(A), all E; p are smaller than
the energy levels corresponding to n > 0; this is also sufficient to guarantee that
kip>1foralll <A [by the way, k;,p > 0 is a necessary condition for (2.4) to
be the eigenvalue equation of a harmonic oscillator]; furthermore, the spectrum
of H becomes the whole spectrum {I(I + D — 2)}en, of L? in the commutative
limit, i.e. A — oc.

2.3 The algebra A, p

2.3.1 The action of angular momentum components on Y,

In the next lines there are the R coefficients, they are determined in section 7.0.6
and used in the following definition (which is given by induction) of the action of
a generic Ly ; on a spherical harmonic Y;.

Definition 2.3.1 For D = 2 there is only one angular momentum component,
Ly 2, and its action s L12Y;, = 11Y),. For D > 2, let

dpgip=+V(L+1)(L+D—-3)—1(1+D—4) =+ (L—1+1)(L+1+D—23)
and
Rh,D <l7l,) = <}/2'7th}/l>7

the action of the angular momentum operators is defined in this way:

LI/,DK = 1 Z {dl,ld_l,DRl/,d <l7 l,y> Yby - dl,ld_l—&—LDRu,d <l7 llu) }/;/71/} ’
! Uil =l 5|=1
for j=v—1,- d—1
(2.18)

where

lA;V = (lefl - 17l:1—27 T 71/1/717[1/727 tt 711) s

Z7V = (l7 lg—1+ L, l;l—2a T 71/1/—17 ZV—27 T all) ’
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forve{l,--- ,d—2}, lp =1 and
Uy = (Llgor — 1 lga, - 1), V) = (Llgor + 1 lga, -+ 1)

Furthermore,

LZ,Z/ + iLl,I/

LD,j = _Lj,D s L:‘;V = \/5

Yv >3

and the action of L, 5 on a D-dimensional spherical harmonic, when h < D < D,

is defined as the same of L, 5 on a ﬁ—sphem'cal harmonic in ]Rf); then it, when
acts in RP, does not ‘affect’ the indices l,141,---l5_,.

Summarizing,

e In section 7.0.6 the action in R” of the coordinate operators t,, := £ on the
D-dimensional spherical harmonics Y] is calculated, this action essentially
defines the aforementioned R, p coefficients;

e This implies that one can easily derive the action in RP~! of coordinate
operators ¢, on a generic (D — 1)-dimensional spherical harmonic Yy, | .. ;,,
which consequently uses the Rj, 4 coefficients;

e S50, in definition 2.3.1 the action of L, p on Y} is the same, up to the M

dii, +1,D
and ——4=——— coefficients, of t, on Y}, | ... ;,; this is also in agreement Wlth

1
the Wigner-Eckart theorem, because

tdig, ,pRua <l, P,,) il =1lg1—1,
(Yo, LupYe) = < —Ldy, o1 pRoa (lf) 0 =g+ 1,

0 otherwise,

where the first factor depends only on the index [;_1, which identifies the
SO(d) irrep, while the second one is a Clebsch-Gordan coefficient.

In sections 7.0.7 and 7.0.8 the following relations are explicitly checked for the
reader’s convenience:

L’y,= Y LpYi=Il(+D-2)Y,
1<h<j<D (2.19)

[Lhm Lp,S] =1 (5h,pLJ}s + 5jvsLh,p - 5h75Lj7P - 5j7pLh78) .
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2.3.2 The action of ‘projected’ operators on H, p

The Hilbert space of admitted states H p, constructed in section 2.2, is spanned
by all the states 1y p fulfilling [ < A. In the following lines we do a complete
study of the action of the ‘projected’ angular momentum operators fh,j and of the
‘projected’ coordinate operators T; on the pure quantum states. The definition
2.3.1 implies zh,j¢l,D = Ly ;1. p, which is a consequence of the invariance of H
(and therefore Pg ) with respect to rotations (i.e. they commute with every
Ly ;); from this and the fact that the action of every L ; does not ‘affect’ the
index [ it follows that the action of Lj; on a vy p essentially coincides with the
one of Y;. Then

1 - .
L,pYip = A Z {dz,zd,l,DRu,d (l, l'u> Y, p— i, +1,0Rud <l, l'u> QbﬁV,D} ;

Vil =1 |=1
for j=v—1,-,d-1
(2.20)

Lpjthip:=—Lijpthip , Li,ip:=(LayFil1,)thip Vv =3,
and the action of L, 5 on a ¥y p, when D < D, is essentially the same of L, 5

on a D-spherical harmonic in RP| as for (2.18) and (2.20).

On the other hand, the action of Zj, on a state 1, p can be obtained from the
one of the multiplication operator t;,- on a D-dimensional spherical harmonic Y}
(see section 7.0.6), while sometimes it is useful to consider the operators

f:l: = Tl + Z'TQ.

It is easy to see that the action of projected coordinate operators ‘affect’ the
index [, for this reason further calculations are needed, because in this case the
integral

+00
/0 7 fi.o(r) fr,p(r)dr

is not trivial, unlike what happens for the action of Ly, ;.
According to this,

Tpthi,p = Z |:Cl,DRh,D (l, f'h) ¢§h 5, T crpBRip (l, i’h) T/)f,h D} :

|Lj=V51=1
je{h—1,,d—1}
(2.21)

where

~ -~

l,h = (l - 1al,d—17' o ,l,h_l,lh_g' o 7l1>7 i;h = (l+ 17l/d—17 e 7l/h—17lh—2' o 711)7

“+o00 +o00
CI,D 32/ sz,D(T)fZ—LD(T)d?", Ci+1,D 22/ Tfl,D(T)flﬂ,D(?")dT,
0 0

c_p2=Ccpa+12:=0 and cop=cpr1p:=0 VD > 3;
(2.22)
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the explicit values of ¢; p are calculated in section 7.0.9 and

C1,D (7.76) \/1 + b(t, D) +b(1 ~ 1, D)] up to terms O ( L ) ) (2.23)

[SMI[9Y

QkD (kD)

2.3.3 The commutation relations and the action of x?

The calculations of section 7.0.8.1 can be used to determine the action of [z, Z;]
on H, p, this because the action of T, on vy p is essentially the same of Lj, piq
on Y;, ;; the only difference is the replacement of _%dlp7l+1,D+1 with ¢41,p and
%dlD7l7D+1 with ¢, p, respectively. These arguments and (7.77) are sufficient to

prove that (see section 7.0.10.1 for explicit calculations)

@, 7] = _LJF L+M P
et T, T\ kp T 2A+D—2) TP

where PA p is the projector on the A(A + D — 2)- elgenspace of L.

L, (2.24)

On the other hand, it is obvious that PA D= PE p commutes with Ly ;, for
all 1 < h < j < D; this and

—~
=
S N

[Lps, 2] = (5jxh — (S?SL’S) (2.25)

imply

[Lh,s: ;) = PapLnsPaoPa,pxiPa,0 — Pa.pxnPa,pPr.pLisPap
= PrpLp 2Py p — PrnpxjLp sPap

= ﬁA,D [Lh,s, ;] ﬁA,D

1, .
== (5jxh - 5;?:105) )

Furthermore, if one defines &* := )", T»7y, then the calculations of section 7.0.7
can be used to prove that [see section 7.0.10.2 for the explicit calculations, while
here the b(l, D) coefficients are the ones defined in (2.5)]

b {1 | YD) + [+ 1, D)3zB% + b~ 1, D)ty
L,D —
| 2k (A

_{(1+b(A,D);I;§((//\\)+ 1,0)) zAAilz))__q }%D

(2.26)

In addition (here Igh,j is the projector on the eigenspace of Cp_; corresponding
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to lp_n = 7),

A l
[[2—w+p-21]=0 , [ [Cp-1—li-s(las + D =3)I] Py =0,
1=0 lg_1=0
lo N
oI e =60 Posy, =0, (@) =0, and (L,2)*** =0,v0 >3

li=—12

(2.27)

The relations (2.24)-(2.27) imply that the coordinate operators generate the whole
algebra of observables A, p, in fact every Ly, ; can be written in terms of [Ty, 7;]

and therefore every projector P, ; can be written as a non-ordered polynomial in
the ).

2.4 Realization of A, p through Uso(D + 1)

Let A € N, mp p41 be the irreducible representation of Uso(D +1) having [p = A
and Vi p+1 be the corresponding representation space [see (2.14)]. First of all,
in section 7.0.3.4 it is shown that dimH, p = dim Vi p41, and if one identifies
YPi.p = Yaq € VA p41, then the operators on Ha p, in particular Zh,j and T, are
naturally realized in 7w p1[Uso(D + 1)].

In fact one has [here the Ly, ;s are seen as basis elements of so(D + 1)]

Zh,j = Lh,j if h < j <D-+1 and Ty = p*D ()\) Lh,D+1pD ()\) ,
2— D+ /(D —2)2+4L? (2.28)
5 :

where M\ :=

It turns out that the function pp has to fulfill

\/1 b(l D)+b z+1 D)

V(A A+Z+D—1)’

\/1 b(1,D)+b(1—1,D)
ap . 4kD(A)

dAlD+1 VA-I+1)(A+1+D-2)

1 1
pE (l+1)pD (l)z—,dCHLD -
1 AAI+1,D+1 . (2 29)

pp(I=1)pp(l) =

it can be determined recursively, starting from pp(0) := 1 and then using the last
formulas.
This means that

Theorem 2.4.1 Formulas (2.28), (2.29) and section define an O(D)-equivariant
x-algebra isomorphism between the algebra Ay = End(Hya) of observables (endo-
morphisms) on Ha and the Cpyqy = A[A + (D + 1) — 2] irreducible representation
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map+1 of Uso(D +1):

Ap = End(Hp) ~ Mn(C) ~ wp[Uso(D + 1)],
A+ D — 2) 2A+D -1 (2.30)

. (7.20)
=N: =
where  dimH, p ( A1 A

As already recalled, the group of x-automorphisms of My (C) ~ A, is inner
and isomorphic to SU(N), i.e. of the type

a—gag a € Ay,

with ¢ an unitary N x N matrix with unit determinant. A special role is played
by the subgroup SO(D +1) acting in the representation 7y, namely g = m, [¢],
where o € so(D + 1). In particular, choosing o = oy, jLy; (ap; € R and
h < j < D) the automorphism amounts to a SO(D) C SO(D+1) transformation
(a rotation in D-dimensional space). Parity (L ;, Lp.p+1) = (Lnj, —Lpp+1), 18
an O(D) C SO(D + 1) transformation with determinant —1 in the L, p1 space,
and therefore also in the z, space. This shows that (2.28) is equivariant under
O(D), which plays the role of isometry group of this fuzzy sphere.

2.5 Convergence to O(D)-equivariant quantum
mechanics on S?

Here it is explained how this new fuzzy space converges to O(D)-equivariant
quantum mechanics on the sphere S% as A — oo.

The fuzzy analogs of the vector spaces B(S?), C'(S%) are defined as [see (7.88)
for the explicit definition of Y}]

Cap = spanc {Tfl NS I=1y> > > L] € ZW} C Axp C BILX(SY),

(2.31)
and here the highest [ is 2A because Y 24 ... 2 is the ‘highest’” multiplying oper-
ator acting nontrivially on H, p (it does not annihilate a a... —a.p).

So

2
Cap = EB Vi.p (2.32)
1=0

is the decomposition of Cy p into irreducible components under O(D); further-
more, V; p is trace-free for all [ > 0, i.e. its projection on the single compo-
nent Vp p is zero and it is easy to see that (2.32) becomes the decomposition of

B(S8%),C(8%) in the limit A — oo.
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In addition, the fuzzy analog of f € B(S?) is

2A
fa=> > £V € Axp C BIL2(SY)]; (2.33)
1=0 ly_1<l
lh_1<ly for h=d—1,--,3

[11]<l2

while the ¥, p € Ha p are the fuzzy analogs of the spherical harmonics Y; con-
sidered just as elements of an orthonormal basis of the Hilbert space £2(S5%); for
this reason, consider the O(D)-covariant embedding Z : H p < £2(S?) defined
by

A A
T 5 E ohip | = E oYy,
1=0 ly_1<l 1=0 lg_1<l
1;_1<l; for j=d—1,-3 1;_1<l; for j=d—1,--3
[11]<l2 [11]<l2

and below the symbol Z is dropped and then simply identified ¢; p = Y.
The decomposition of H p into irreducible components under O(D) reads

( )
A
%A,D = @VE, ‘/l = Z ¢l¢l,D : qbl € C > 5 (234)
=0 lg_1<l
1;1<l; for j=d—1,- 3
\ [11]<l2 y,

and (2.34); becomes the decomposition of £2(S5?) in the limit A — oc.
For all ¢ € £2(S5%) let

A
dni= ) > ¢,
=0

lg—1<l
1,1<l; for j=d—1,-3
[11|<l2
where ¢; are the coefficients of the decomposition of ¢ in the orthonormal basis
of spherical harmonics; clearly ¢ — ¢ in the £2(S%)-norm || ||, and in this sense
Ha.p invades L£2(S9) as A — oo.

Let B [EQ (Sd)] be the algebra of bounded operators on £? (Sd), the em-
bedding Z induces the one J : Ay p < B [L£*(S%)] and by construction A p
annihilates 7—[/{ p; the operators Lhyj,f;w- coincide on H, p, while one can easily
check that Lj; — Ly strongly as A — oo on the domain D (Ly ;) C £*(S9)
Uand, similarly, f(Ln;) — f(Lpn;) strongly on D[f(Ly ;)] for all measurable
function f(s).

IThe strict inclusion it follows from the fact that Ly, ; is unbounded; for example ¢ € D(L1 2)
only if Z?:SJ Dty <l 11]2]¢]? < +o0.
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Bounded (in particular, continuous) functions f on the sphere S¢, acting as
multiplication operators f-: ¢ € £L2(S?) — f¢ € L£L3(S?), make up a subalgebra
B(S%) [resp. C(5%)] of B [£*(S%)]. An element of B(S?) is actually an equiva-
lence class [f] of bounded functions differing from f only on a set of zero measure,
because this ensures that for any f1, fo € [f], and ¢ € L3(S?), fi¢ and fy¢ differ
only on a set of zero measure, and therefore are two equivalent representatives of
the same element of £2(S5?). Since f belongs also to £2(S?), then

N
fN(0d7”'791) ::Z Z flifl(eda"'761)
1=0 ly1<l
1;1<l; for j=d—1,--3
1] <l2
converges to f(fg,--- ,0;) in the £2(S?) norm as N — oo.

In section 7.0.12 it is shown that every projected coordinate operator Z; con-
verges strongly to the corresponding t;, as A — oo if

kp (A) > A[dim Ha p]” b(A, D).

Again, since for all A>0 the operator T; annihilates Hk D, Tp does not converge
to ty, in operator norm. It is possible to prove also this more general result:

Theorem 2.5.1 Choosing
kp (A) > A2[dim Han p]® [(2A)1]7 22D [(2A + DIPP b(A, D)y/dim Hya p, (2.35)

then for all f,g € B(S%) the following strong limits as A — oo hold: fr —
[ (f9)y = fg- and fagn — fg-.

In other words, the product in A, p between the approximations ﬁ\ and g, goes
to the product in B [£?(S?)] between f- and g- [although (E) =+ ﬁ\/g\A]
A



Chapter 3

The cases 2 < D <5

3.1 S}

When D = 2 the choices E = E(A) := A? and ky = ky(A) > A* imply that
the Hilbert space of admitted states H, 2 is generated by all the functions (see
sections 2.1.1 and 2.1.2)

il0
Pro = Pra(r,0) = fir(r)Yi(0) = fia(r) m I < A

hence

) . A 2A +1
dim Hy 2 (720 (A— 1) = 2A + 1.

The only one angular momentum component is L := Ly, and it acts as follows
(see definition 2.3.1 in section 2.3.1):

Lapy =lpy;
with
L4y = 1Py
The coordinate operators are Ty,Z2, T4+ := T £ iT2, and they act on Hp o as

follows (see section 2.3.2):

_ Cl4+1,2 Ci,2 _ Cl4+1,2 C1,2
1Y = 5 1/)z+1+777/)z—1 . TPy = 5 Yy — Ewl—l»

i =W, TP = o,

where
2-43 .
<2.23>{ 1+ 0 A+ 1<i<A,

0 otherwise.

63
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They fulfill (see section 2.3.3)

_ 1 I 1 (C—A—H 2)2 ~ 1 (CA 2)2 ~ —
= - |—— —_ " | P —— . P L
[T, T2 ; s + (k‘Q + A A2 T " A A2 | L2,
_ 1_ _ 1_ _ _ _ _
[L7332] = zmla [Laxl] = _;x% [Laer] = Ty, [vaf] = —T_,
(3.1)
2
2L? +1 1 AN? + 4N + 3 ~ ~
2 ._ = = R s e
=) T = {” 2k (A) [2 <1+ Aky(N) )} (PA»ﬁp“)}
h=1
(3.2)
and
l2
I Ze—0n=0 , (@)**' =0 (3.3)

li=—l2

According to this, the algebra of observables is generated by the coordinate
operators, in fact every projector can be written as a ordered polynomial in the
Ty.

Furthermore, the SO(3)-irrep 7, 3, the one characterized by C5 = A(A + 1)1
with representation space

Vas = span{Ya(62,61) : A > |I|; Al € Z},
can be used to identify 1, = Y, and also the operators
Lpj=Lp; for 1<h<j<2 and T;=pa(A)Lssp2(N), (3.4)

where

A= VL2

while py(\) is an analytic function and the values ps(l), when [ € Ny, can be
obtained recursively from (2.29) starting from p,(0) := 1.

Furthermore, in order to prove the convergence of S} to ordinary quantum
mechanics on S*, it is convenient to identify t; = ¥, and then to consider their
fuzzy counterparts Y; [see (7.88)], which can be used to approximate a generic
f € B(S") or f € C(S'); this is possible because the Y; are an orthonormal basis
of £2(S1), and also homogeneous polynomials in the ¢, := x,/r variables. Then,

2A
fa= Y Y, where fii= (¥, f),

I=—2A

is an approximation of f because of the following two theorems (see section 2.5)
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Theorem 3.1.1 Fvery projected coordinate operator T converges strongly to the
corresponding tp, as A — oo if

ky (A) > A(2A +1)° (4A24_ 1) .

Theorem 3.1.2 Choosing ko () fulfilling (2.35) for D = 2, then for all f,g €
B(SY) the following strong limits as A — oo hold: fa = f (fg) — fg- and
Jagan — fg-

3.2 5%
When D = 3 the choices E = E(A) := A(A + 1) and
ks = ks(A) > [A(A + 1)) (3.5)

imply that the Hilbert space of admitted states Ha g is generated by all the
functions (see sections 2.1.1 and 2.1.2)

Vi3 =Y, a(r,01,02) == fi3(r)Y,,(01,602), <A

hence
) (720) (A4 1\ 2A + 2 9
d = — = (A+1).
1m HA 3 <A . 1) A ( + )
The angular momentum components are L1y =: Ly = Ly = L,, L13 =1 —Ly =

—Ly, Lyg = Ly = L,, Ly := L, £iL, and they act as follows (see definition
2.3.1 in section 2.3.1):

Lapy, =l
1T du, dis,
Ly, = = [ & S i1 + & +13'¢’ll1+1} ;
1 du, di, 3.6
Lot =;[ Uiy — ”*13¢lh+1], (3.6)

Loy, Zdl,l1+1,3¢z,zl+17
L_vpyy, =dig, 3911, -1,

where dl,ll,3 = \/(l - ll + 1)(l + l1>
They fulfill

[Li, L]] = ié‘ithh, LQ’l/JUI = l(l + 1)’(#1711 and Cg@bl’ll = l%wul.
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The coordinate operators are Ty, %2, T3 =: Tp, T+ = X1 £ 1T and they act on Hy 3
as follows (see section 2.3.2):

- +,h1
_ C 3A G 3A
Ty, = '¢l -1+ Yi_10,41
iy
Ci138," Cl+1,35’z+’l1
Twl-ﬁ-l,ll—l + T’l/)l+17ll+1 s
Cl 3A7 Cl 3A+ h (37)

Toyy, = Pi_10,-1 + Yi_10,41

Cl4+1, 3Bi Ciy1, BB

—22 Yi1,-1 + —22 ¢z+1 Lt s

— _ 0,01 0,01
Ty, =ci3A; i1y, s B iy,

— _ +,01 +,01
T, = asA Y+ a1 3B T Y1,

— o —,l1 _7l1
T i, = as3A Y o1 a3 B Y-,

where

(2.23){ 1+,i—2 if 1 <l <A,
C3 = N

0 otherwise,

and, according to (7.32),

I+L+D)(+5L+2)
B+’l1 —A _ ( 1
l (101,2) = \/ 20+1)(20+3)

(I—5L—1(1-1h)
A+7l1 1 1
l B, 4,2) \/ (20+1)(20—1)
—L+2)(1 =1 +1
B = O(1L1y.2) (=L +2)(1 -1+ )7
(20 +1)(21 + 3)

I+4L)I+15—1)
20+1)(20—-1)

I+L+1)(1 -1 +1)
2U+1)20+3) 7

({=01)(1+ 1)
Q2+ 1)(20— 1)

ATt = D(1,13,2) =

B = F(1,1,,2) =

AM =G, 1,2) =
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They fulfill (see section 2.3.3)

L I 1 (a8)’ )5 |- T B
e} = _k_3+(k_s+2/\+1 Pus| Dngs Do T3] = 5 (057 = 05%,)
(3.8)
3
L?+1 (A+1)*\ A+17 5
2._ T — 41 i S | P 3.9
@ = ) T U (R an ) e 69)
and
A la "
[L?—1(l+1)I] =0 |, [L12 = W] Py =0,
lll hllz (3.10)

7)™ =0, and (LL)* =0,

where Igh,j is the projector on the eigenspace of C5_;, corresponding to l3_;, = j.
According to this, the algebra of observables is generated by the coordinate
operators, in fact every projector can be written as a ordered polynomial in the
T,
Furthermore, the SO(4)-irrep 7y 4, the one characterized by Cy = A(A +2)1
with representation space

Viaa i= span{Ya i, (05,02,01) : A > 1> |l1|,l; € ZVi},
can be used to identify 4;;, = Y}, ,,,, and also the operators
Lh,j = Lh,j for 1<h <j7<3 and T, = p3<>\)L574p3(/\), (311)

where
-1+ VI+ 412
— 5 ,

while p3(A) is an analytic function and the values p3(l), when [ € Ny, can be
obtained recursively from (2.29) starting from p3(0) := 1.

Furthermore, in order to prove the convergence of S% to ordinary quantum
mechanics on S?, it is convenient to identify 1);;, = Y;;, and then to consider their

A

fuzzy counterparts }Aful [see (7.88)], which can be used to approximate a generic
f € B(S?) or f € C(5?%); this is possible because the Y;;, are an orthonormal
basis of £2(S?), and also homogeneous polynomials in the t; := z;,/r variables.
Then,

20 1
Ja = Z Z finYi, where  fi, = (Yo, f),

=0 l1=-1

is an approximation of f because of the following two theorems (see section 2.5)
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Theorem 3.2.1 Fvery projected coordinate operator Ty converges strongly to the
corresponding tp, as A — oo if

ks (A) > A2 (A+1)°.

Theorem 3.2.2 Choosing ks (A) fulfilling (2.35) for D = 3, then for all f,g €
B(S52) the following strong limits as A — oo hold: fr — f-, (fg)y — fg- and
fagn — fg-

3.3 53

When D = 4 the choices E = E(A) := A(A + 2) and ky = ky(A) > [A(A +2)]?
imply that the Hilbert space of admitted states Ha 4 is generated by all the
functions (see sections 2.1.1 and 2.1.2)

Vito 4 = Yo 1y,4(7,01,02,03) = f1a(r)Yii,0,(61,62,03), <A
hence

dim (7.20) (A + 2 2A+3_2A3+9A2+13A—|—6_1
Mo \A-1) A 6 E

(A+1)(A+2) (A + g) .

The angular momentum components are {L,; : 1 < h < j < 4}, Ly, :=
L4 FilLy 4 and they act as follows (see definition 2.3.1 in section 2.3.1):

Lo i,0, =L,

1[d d
Ly, = h 12;1’3¢l,z2,11—1 - ZQ’l;l’Slbl,lz,le} )
1 r diy 3 Ay 0,413
L2,3¢l,l2,ll = Z __ 2221 ¢l712,l1—1 - 2212 "pl,lz,ll-ﬁ—l )
1 [dyg, aB(ls, 11,2 dy 1, 4D (1, 11,2
Ly, = H Lot (22 : )¢l,1271,11+1 4 bt (22 ! )@01,1271,1171
dl,12+1,4A(l27 lla 2) dl,l2+1,40(l27 ll) 2)
- 2 wl,l2+1,l1+1 - 2 ¢l,l2+1,l171 9
1 [dyg, aB(ls, 11,2 dy 1, 4D(l9, 11,2
Lostprg,0, = 7 Lot ;; ! )¢1,12—1,11+1 — bl 2(2.2 ! )¢l,12—1,11—1
d;; A(ly, 14,2 d;; C(ly, 11,2
— Lltld 25 21 )¢l,12+1,11+1 4 el 22.( 21 )l/)z,12+1,11—1 ;

1
L3,4¢l,l2,ll = Z [dl,l2,4G(l27 l17 2)¢171271,l1 - dl,l2+1,4F<l27 ll; 2)¢l,12+1,l1] )

L+,4¢l,l2,l1 = - dl,lQ,4B(Z27 ll? 2)¢l,l2*1,l1+1 + dl,l2+1,4A(l2) l17 2)¢l,l2+1,l1+17
L_qtpy 1,0, =dii,aD (Lo, 11, 2)W10—10,-1 — digy41.4C (lay 11, 2)0 1541 05 -1,
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where dl71274 = \/(l - lg + 1)(l + 12 + 1).
They fulfill

[Lh,ja Lp,s] ¢l,12,l1 =1 (5h,pLj,s + 5j,sLh,p - 5h,sLj,p - 5j,pLh,s) wl,lg,lp

L2y, = 1+ 2)0,0,,  Cstbipg, = b(lo+1)8,,,  and  Cothriyy, = ;-

as follows (see section 2.3.2):

caD(1,15,3)D(ly, 14,2 c4D(1,19,3)B(ly, 11,2
TPy, = 11D 1 2> G )¢l—1,12—1,11—1+ aD(L Ly 2) (2, 1,2) =100 —1,11+1

caB(l,15,3)C(ly, 11,2 aaB(l,15,3)A(ly, 11,2
4 (L1, 2) I )¢171,12+1,1171+ EEICT 2) (2, )1/1171,12+1,11+1

e114C (1L 1. 3)D (I, 11, 2 11 4C (1 1y, 3)B(l. 1y, 2
ERpai ( 22) CIL )¢l+1,1271,l171+ 1140 22) CIL )¢l+1,1271,ll+1

o1 1Al 1, 3)C(la, 1y, 2 ot 4 AL 1y, 3) A(ly, 1y, 2
Tidents ( 22) G )¢l+1,l2+1,l171+ 1Al 22) CIL )1/Jz+1,12+1,11+1 ,

_ caD(1, 13, 3)D(l2,11,2) caD(l,13,3)B(l2, 11, 2)
1U21/)l,12,z1 = 2 ¢171,1271,1171 - 2 1—1,0o—1,11+1

. caB(l, 1, 3)C(l2, 11, 2) aaB(l,12,3)A(l2, 4, 2)

22 'lblfl,l2+1,llfl - 22 ¢l*1712+1,l1+1
Cl+1,40<l7 l27 S)D(l27 l17 2) Cl+1,4c(l7 l27 3)B(l27 ll) 2)
+ 5 Yif1 o1, -1 — 5 Yit1,0—1,0141
cl+1,4A(l7 l27 3)C(l27 l17 2) Cl+1,4A(l7 l27 3)A(l27 l17 2)
+ 5 Vi1t -1 — 5 Vi1l 1,041 | 5

T3P0, = [claD (1, 12, 3)G(la, 11, 2) 1145140, + craB(l 1o, 3) F(la, 11, 2) 1 141,
1,401 12, 3)G (o, I, 2) i1, - 10, + i1 a Al 12, 3) F(ly, 1y, 2)Wig100410]
Ty 0, =C1aG (L Lo, 3) i1 1,0, + CryraF (1 12, 3)Wii1 00,
Ty, = [caD (1,12, 3)B(la, 1, 2) Y110, 41 + caB(1, 12, 3) A(ly, 1y, 2) W1 15410, 41
tc1114C (1 1o, 3) B(l2, 11, 2) WY1 151,41 + 1,4 AL 12, 3) Al2, 11, 2) WY1 1041041 5
T Y0 = [caD (1,12, 3)D(ly, 1y, 2)Wi1 1510, —1 + c1aB(1, 1o, 3)C(la, 11, 2) Y11 1y41,0, 1
41,401, 12, 3) D(la, 11, 2) Y1410 —10, -1 + 1,4 AL 12, 3)C(l2, 11, 2) W1 gy 41,0, -1)

where

k4

1
e W1+ B <<,
14 =
0 otherwise,
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and, according to (7.32),

A(z,zQ,g):\/<”l2+2)(l”2+3>

2l +2)(20+4)

(1= 1= 1) —b)
B(l,l2,3)=—\/ 20+2)2)
)

)

(

(
L)+
0(1,12,3)——\/ (2U+2)(20+4)

(I+lL+1)(+1)
(2l+2)21)
)
)

F(z,zQ,g):\/<l+z2+2 he

(20+2)(20+4)

({=1)(l+1+1)
(21 +2)(20)

They fulfill (see section 2.3.3)
I 1 CA 4 =~
= Py
B <k4 " 2A+2)

4
AL? +9 AN +12A+9\ A+2 7 ~
2= mE, =11 —1(1 P
x Za:hxh { + [( + 4k4(A) )2A+21 A,4}

Lh]7 [thaxj]

@|H

(57, — 07

A
[[E -1 =0 . J[ICs— b+ Py =0,
=0 l2=0

(3.12)
II 12— 001 Py =0, (@) =0, and (L,2)*"" =0,Vv >3,

where ﬁh,j is the projector on the eigenspace of C4_j corresponding to Iy, = j.
According to this, the algebra of observables is generated by the coordinate
operators, in fact every projector can be written as a ordered polynomial in the
T,
Furthermore, the SO(5)-irrep 7y 5, the one characterized by C5 = A(A + 3)1
with representation space

VA75 = span {YA,l,lg,ll (94, 93, 6‘2, 91) A > l > lg > ’lly, ll € ZVZ},
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can be used to identify 4, ;, = Ya11,,,, and also the operators
Ly;=L; for 1<h<j<4 and T, =ps(N)Lssps(N), (3.13)

where

A

—24++4+4L2
= + 2+ =V1+ L% -1,

while ps(\) is an analytic function and the values py(l), when [ € Ny, can be
obtained recursively from (2.29) starting from p4(0) := 1.

Furthermore, in order to prove the convergence of S3 to ordinary quantum
mechanics on S3, it is convenient to identify Yi1p0, = Y., and then to consider
their fuzzy counterparts 371712,11 [see (7.88)], which can be used to approximate
a generic f € B(S?) or f € C(S®); this is possible because the Y, are an
orthonormal basis of £2(5%), and also homogeneous polynomials in the t;, := x, /7
variables. Then,

2N 1 l2
fa= Z Z Z fl7l2711)/l,l2,l17 where fl:l%ll = <Y2’l2’ll’f>’

1=0 lo=0l1=—Is
is an approximation of f because of the following two theorems (see section 2.5)

Theorem 3.3.1 Fvery projected coordinate operator Ty converges strongly to the
corresponding t, as A — oo if

ki (A) = A%(A+ 1%(A + 2)° <A+ 3>2 AN(A +2) + 3

2 4
Aé(A +1)%(A + 2)? (A + g)g (A + %) :

Theorem 3.3.2 Choosing ky (A) fulfilling (2.35) for D = 4, then for all f,g €
B(S3) the following strong limits as A — oo hold: fA — f.(fg)p, = fg- and
fagn — fg-

3.4 S}

When D = 5 the choices E = E(A) := A(A +3) and ks = ks(A) > [A(A + 3)]?
imply that the Hilbert space of admitted states Hajs is generated by all the
functions

¢l,l3,l2,l1,5 - ¢l,l3,l2,l1,4(r7 017 927 037 04) = fl,5 (T)Yl,lg,lg,ll (017 927 037 94); l S A

hence

%(A +1)(A +2)*(A + 3).

A 2A+4
dimHAﬁ — ( +3> + —

A—1 A
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The angular momentum components are {Lp; : 1 < h < j < 5}, Lys =
Ly s FiL;15 and they act as follows:

LioWiis000, =Uiuis o005

13 o 1 dlg,ll,3 dlg,l1+1,3
13Wlatats = 5 |75 Pllalai-1 — T 5 Yladahi+|
Lyt 1 dlz,h,:%w dlz,ll+1,3¢
03Wilsios = = | == Vlis 1y 011 — . Lislo.li+1
3,502,011 7 I 27, 3,502,061 2/L 3,502,061 )
L o ]- dlg,l2,4B(l2a l17 2) dl3,l2,4D(127 lla 2)
14W0s 100 = n 5 Vit lo—1h+1 + 5 Wi lslo—1,01-1
diy 1o+1,4A(1l2, 11, 2) dig1p+1,4C (12,11, 2)
- 5 Vi lglo 10 +1 — 5 Vg lo+10-1] 5
I 1 [di,4B(12,11,2) diy 14D (12,11, 2)
2,4¢l,l3,l2,ll - Z 2 ¢l,l3,lg—l7l1+1 - 2 vvbhlg,lz—l,ll—l
_ dig 15414412, 11, 2) Ay 15+1.4C (12,11, 2)

Yiislot1+1 +

21

¢l,l Jo+1,01—1
27/ 3,02 1 :| Y

1
Ly st 0,0, = 7 [diy 154G (l2, 11, 2) Y115 00101 — i tor1.4F (Lo 11, 2)W1 10410,

1 [dig, 5D (5,12, 3)D(lg, 11, 2)

L175¢l’l3712,l1 — Z 5 ,lpl,lg—l,lg—l,h—l

d D l 9 l 9 3 B l I l U 2

4 Gl (s 22 ) B, I )¢l,13—1,12—1,ll+1
d B(l ; l ) 3)C(l ) l ) 2

+ 1,l3,5 ( 3 22 ) ( 2,01 )wl,l3*1712+1:l171
d B(l ) l ) 3)A(l ) [ ) 2

n 1,l3,5 ( 3 22 ) ( SRR >’¢171371,12+1,l1+1
di,1511,5C (I3, 12, 3) D (1o, 11, 2)

- ; Wtz 4100-10-1
dl7l3+175c(l37 l27 3)B(l2’ ll’ 2)

_ 5 W10 -1, 41
diis11,5A(3,12,3)C (12, 11, 2)

-~ 5 Yz 4102410 -1

dis+15A(13, 12, 3)A(ls, 11, 2)
B 2 ’lpl,l3+1,12+1,l1+1 )
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1 [di, 5D (s, 12, 3)D(la, 11, 2)
1

Losthii, 100, = Vils—1,00—1,1 -1

21

dl,l3’5D(l3,l2,3)B(l2all72)

B o Vi s— 105105 +1
15 5B(13,12,3)C(la, 1y, 2

4 Bt (I 222') (la, 1y )¢l7l3_17l2+17h_1
dy155B(13, 1y, 3)A(ly, 11, 2)

B T Viis 1,10+ 1,0 +1
di1y415C (13,12, 3) D(la, 11, 2)

B 5 V341001011
d Cl7l73Bl’l’2

L s (3 222 )B(lz, )¢z,13+1,1271,h+1
dygy15A(ls, 12, 3)C (I, 11, 2)

. 5 ’l,bl,13+1,12+1,1171
d Al’l’SAl,l72

n L1540 22Z A2, ),’bl’lsﬂylﬁl,hﬂ ;

1
Ls sty 0,0, = n [d115,5D (13,12, 3)G(l2, L1, 2) 1151051,

+ dl,l3,5B<l3a l2a B)F(127 lla 2)¢l,l3—1712+1,l1
- dl,l3+1,50<l37 127 3)G<l27 llu 2)¢l,l3+1,l2—1,l1
_dl,l3+1,53(l37 l27 3>A(l27 ll? 2)¢l,l3+1,l2+1711] )

1
Lystiigi,0, = n (d115.5G (U3, 12, 3)Wri—1100, — Diiss1,5F (L3, 12, 3)Wiigt1.00.01)

Ly 53105000 =di155D(13, 12, 3) B(la, 11, 2) 105105 — 1,041
+ dii5 5B (13,12, 3) A(la, I, 2) 11510541, 41
— d115+15C (13,12, 3) B(l2, I, 2)1541 151,01 4+1
— diis415A(13, 12, 3) A2, 11, 2) W1 1541104100 +15

L_ 515050 = — digs5D(13,12,3)D(lg, 1y, 2)r05—105—1,0, -1
—di155B(13,12,3)C(l2, 11, 2)¥105- 1,111, 1
+ di1541,5C(l3, 12, 3) D(l2, 11, 2)W1 541 051,01
+ diis415A(03, 12, 3)C(l2, 11, 2)W1 141,00 11,0 -1,

where dl,13,5 = \/(l — 13 + 1)(l + l3 + 2)
They fulfill

[Lnjs Lps) WYiginny = 1 (OnpLijs + 855Lnp — OnsLjp — 65pLns) Wi s

LY, 00, = U+ 3) Vs 00, Cathrigion, = l3(l3 + 2)W1is 1001 5
C3¢z,13,12,11 = 12(12 + 1)¢z,13,l2,11 and 02%,13,12,51 = Z%Tﬂz,lg,b,zl-

73
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Ha 5 as follows:

1 5D(1,13,4)D(l3, 15, 3)D(ly, 11,2
1V 0000 = s D(L 15, 4) <Z 2,3) Dila, )¢l—1,l3—1,z2—1,11—1
+ CH—l,SC(Za l374)D(Z37 l27 3)D(l2a lla 2)

2

CZ,SB(la l37 4)C(l3a l27 3)D(l27 ll: 2)
+ 2 Vi1 1at1,00—1,01—1

cir15A(L 15,4)C (15, 15,3)D(12, 14, 2)
+ 7 Yl l5 41,001, -1
s D(l 13,4)B(ls, 15, 3)C(lo, 11, 2)
+ 2
1 Cz+1,50(l; l3, 4)3(137 la, 3)0(127 I, 2)
2
Cl75B(l, lg, 4)A(l3, lg, 3)0([2, ll, 2)
+ 2
+ Cl+175A(l7 l37 4)A(137 l27 3)0(127 l17 2)
2

Cl75D(l7 l37 4)D(l37 l27 3>B(l27 lla 2)
+ 5 Vi1 15— 100—101+1

c1,5C (1, 13, 4) D(ls, 12, 3) B(l2, 11, 2)
+ 5 VYit1 15— 1,00—1,01+1
asB(l 13, 4)C (s, b, 3) B(la, 11, 2)
+ 2
+ Cl+175A<l7 l37 4)0(137 l27 3)B<l27 l17 2)
2
Cl75D(l, 13, 4)3(13, l2, 3)14([2, ll, 2)
* 2
+ CH—l,SC(la l37 4)3(137 127 3)A(127 l17 2)
2
I asB(l 13, 4)A(ls, 12, 3)Alle, 11, 2)
2

Cl+1’5A(l, lg, 4)A(l3, l2, 3)A<l27 l17 2)
—+ 5 ¢l+1,l3+1,l2+1,l1+17

"7bl+1,l3—1712—1,l1—1

Vi105-100+1, -1

’(pl-‘rl,lg—l,lg-i-l,ll—l

¢l—1,l3+1,l2+1,l1—1

¢l+1,l3+1,l2—|—1,l1—1

¢l*1,l3+1,lgfl,ll+l

¢l+l,13+1,l2—1,l1+1

¢l—1,l3—17l2+1,l1+1

¢l+1,l3—1,l2—|—1,l1+1

Vi 105410041, +1

s D(l15,4)D(ls, 1, 3) D (1o, 11, 2)

f2¢l,l3,l27ll = wlfl,lgfl,lzfl,llfl

21
ci415C(1,15,4)D(13, 12, 3) D(l2, 4, 2)
_|_ 2Z ¢l+171371,l271,11*1
Cl,5B(l, l3, 4)C(l37 l27 3)D(12’ ll’ 2)
+ > Vi1 1541, lo— 1,1 -1

+ Cl+1,5A(l, I3, 4)0(53, la, 3)D(l2, I, 2)

: V11341, lo— 1, —1
2 +1,l3+1,l2 1
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n Cl75D(l, l3, 4)B(l37 l27 3)C(l2? ll’ 2)

¢l—1,13—17l2+1,l1—1

21

41501 13, 4)B(l3, 15, 3)C(ls, 11, 2)

+ oF V111,101, —1
csB(l,13,4)Al3, 15, 3)C(la, 11, 2)

+ 5 VI 10541 11,0 -1
Cl+1’5A(l, l37 4)A(l37 l27 3)0(l27 ll’ 2)

+ 5; VL1541, 1o+ 1,0 1
csD(l,13,4)D(l3,12,3)B(l2,11,2)

_ 5 Y1 1,05—1,lo—1,11+1
1i1.5C(1 13, 4) D(13, 1y, 3) B(la, 11, 2)

_ > V1 ls—1lo— 1,0 +1
Cl75B(Z, l3, 4)C(l37 l27 3)3(127 ll’ 2)

_ > VI 1341, lo— 1,1 +1
Cl+175A(l, 13, 4)O(l37 127 3)3(127 ll’ 2)

_ 5; V11341, lo— 1, +1
csD(l,13,4)B(l3,13,3)A(ly, 11, 2)

_ 5 VIl 1,00 +1,1+1
cir15C( 13, 4)B(ls, o, 3)A(l, 11, 2)

_ 5 V1151101, +1
asB(l,13,4)A(lz, la, 3) A(la, 11, 2)

_ 5 Yl 1,054+1 1o 41,01 +1
s AL Us, D) A(ls, 1y, 3) A(ly, 11, 2)

_ 5 Vi1l + 1o+, 415

T3ty 100, =C15D(1,13,4)D (13,12, 3)G(l2, 11, 2) VY11 15-100—1.1
+ 415C (1 13,4) D (13, 12, 3)G(l2, 1, 2) Wi 105 —100 104
+ 5Bl 15,4)C(l3, 12, 3)G (Lo, 11, 2) Y11 151100104
+ cir15A(L 13,4)C (13, 12, 3)G (12, U1, 2) WY1t 1541 10—1.01
+asD(113,4)B(l3, 12, 3)F(la, I, 2)Wi—105—1 15+1.10
+ c1415C (1, 15, 4) B(ls, 1o, 3) F (Lo, Ly 2) Y1 05— 1 4o 104
+ c15B(1, 13, 4) A(ls, Iy, 3)F(lg, 1y, 2) V11034100410,
+ c15A( 13, 4) Als, 1o, 3) F(la, 1y, 2) W41 g1 10+1.0

TaPri o0, =CisD( 13, 4)G (13, 2, 3)Pr-145-1000, + 5B 13, 4) F(ls, b2, 3)1-1 541000,
1501 13, 4)G (13, la, 3) Y1115 1000 + r15A1 13, 4) F (s, 12, 3) i1 is 1000,
TP 1500 =C1G L s, )11 g 10 + 15 F (1 I3, )W ig o



76 CHAPTER 3. THE CASES2 <D <5

TPy 100 =CsD (1, 13,4)D(13, 12, 3) B(la, I, 2)W¥1 1151151, 11
+ c111,5C (1 13, 4) D(13, 13, 3) B(l2, 11, 2) Y1415 1,001,141
+c15B(1,13,4)C (13,12, 3) B(l2, 11, 2)W1- 1054105 — 1,0, +1
+ 11154, 13, 4)C(l3, 1y, 3) B(l2, 11, 2)Wi41,0541,00 1,141
+a5D(1,13,4)B(l3, 12, 3) A(l2, 11, 2) Y1105 —1,1041,0 41
+ c1115C(1 13, 4) B(l3, 12, 3) A(l2, 11, 2)WYi1,05 1,041,041
+asB(l,13,4)A(ls, 12, 3) A(l2, 11, 2) Y- 1154 1,004 1,041
+ 111,541, 13, 4) A(ls, 12, 3) A(l2, 11, 2) W41 05 41,00 41,1415

T Y1y 00 =CsD (1, 13,4)D(13, 12, 3) D(l2, 11, 2)W1-105—1,15—1,0,—1
+ c111,5C (1, 13, 4) D(13, I3, 3) D(la, 1y, 2) 8141 15—1,10—1,1-1
+c5B(1,13,4)C(13, 12, 3) D(la, 11, 2)W1- 1,134 1,05— 1,1 —1
+ cry15A(L 13, 4)C (13, 12, 3) D(l, Iy, 2) W14 1541010, -1
+c15D(1,13,4)B(l3, 12, 3)C(la, 1, 2)W¥1-115- 11541, -1
+ 111501 13, 4) B(l3, 12, 3)C(la, 11, 2) 141,151,154 1,0 -1
+ c15B(1, 13, 4) A(l3, Iz, 3)C(la, Iy, 2)W¥i—1154 1,004 1,1 -1
+ 11,541, 13, 4) A(ls, 12, 3)C (g, 1y, 2)Wi41 13410041, -1

(m@{wl+ﬁﬁﬁ if1<1<A,
Cs =

0 otherwise,

where

and, according to (7.32),

Aa&’%_¢a+@+$a+g+®

(20 +3)(20+5)

(I —13—1)(1—1I5)
(20+3)(20+1)
(1

l l3a

ClL 1y 1 J
(1

—l3+2) (I =13+ 1)
(20+3)20+5)

D1 Fls+2)(I+ 15+ 1)
34 +3)20+1)

Pl ({+13+3)(1—13+1)
34 (21 +3)(2l+5)

G (I —13)(I +13+2)
34 (20+3)(20+1)
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They fulfill (see section 2.3.3)

|1 L, (ens)” Py:| L L, Ti] = ! 85T, — 0T
[l’h,Ij]— _k?_5+ k’_5+2A+3 A5 h,j» [ h,Sij]_g(jxh_ j‘rs)’
5
2L +8 2A2 +8A+8\ A+3 7 ~
2:: Ty = 1 - 1 P
v ;xhxh { MTaTN) K T ey )2A+3} A"‘}
and

A
[Tz -w+21) =0 . [[ICs—tolle+ I Pry=0,

=0 =0 (3.14)

IT 22— 00 Py, =0, (@)* =0, and (L,2)*""! =0,Vv > 3,

li=—l2

where ﬁh,j is the projector on the eigenspace of C5_;, corresponding to I5_, = j.
According to this, the algebra of observables is generated by the coordinate
operators, in fact every projector can be written as a ordered polynomial in the
Ty.
Furthermore, the SO(6)-irrep 7, ¢, the one characterized by Cs = A(A +4)1
with representation space

Ve = span {Ya 11500, (05,04,03,05,01) : A > 1> 13> 1, > |ly],l; € ZVi},
can be used to identify 4, 1,1, = YA 145,01, , and also the operators
Lh,j = Lh,j for 1<h< 7 < 5 and T, = p5<)\>Ls,6p5(/\)7 (315)

where

. =34+VO+4L2

= 5 ,

while ps(\) is an analytic function and the values ps(l), when [ € Ny, can be
obtained recursively from (2.29) starting from ps(0) := 1.

Furthermore, in order to prove the convergence of S} to ordinary quantum
mechanics on S*, it is convenient to identify Vilsioly = Y, and then to
consider their fuzzy counterparts }//\}7Z37l2,ll, which can be used to approximate
a generic f € B(S*) or f € C(S*); this is possible because the Y, ;,,;, are an
orthonormal basis of £2(S5), and also homogeneous polynomials in the t;, := x, /7
variables. Then,

2A l I3 lo
fA = Z Z Z Z fl713,l2,11Yl,l3712,117 where fl,l3712,ll = <Yl,ls,l2,lu f> )

1=0 I13=012=011=—12

A

l3,l2,l1

is an approximation of f because of the following two theorems (see section 2.5)
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Theorem 3.4.1 FEvery projected coordinate operator T converges strongly to the
corresponding tp, as A — oo if

(A+1)*(A+2)°(A+3)%

1 4N(A+3) +8 1
> A 2 4 2 —
ks (A) > A144 (A+1)*(A+2)*(A+3) 1 T

Theorem 3.4.2 Choosing ks (A) fulfilling (2.35) for D =5, then for all f,g €
B(S%) and C(S*) the following strong limits as A — oo hold: fa — f-,(fg), —
Jg- and fagan — fg-.



Chapter 4

The z;-eigenvalue problem

4.1 Diagonalization of Toeplitz tridiagonal ma-
trices

A real Toeplitz tri-diagonal matrix is a n x n matrix

b 00 0 00O

ca b 0 0 0O00O0
0 c b 0 0 0 0
P,(a,byc):=| ¢+ ¢+ ¢ .t where a,b, c € R. (4.1)
0000 -+ a b0
00 0O0 - ¢ b
00 0O0 - 0 c a

Its eigenvalues are (see e.g. [44] p. 2-3)

Ay = a—i—?@cos( i

n+1

), h=1,-.,n (4.2)

and the corresponding eigenvectors x" are columns with the following components

kp
o _ (€2 oo [ PET _
X <b) sin (n m 1), h kp=1,2,--- ,n, (4.3)

up to normalization. In the symmetric case (b = ¢) all eigenvalues are real and
the highest one is clearly A;; the norm of ! is easily computed:

e, = 3w (227) L (44

kp=1

79
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4.2 Spectrum of z; in the O(2)-equivariant fuzzy
circle

In this subsection the spectrum of x; is studied. This is not a restriction because
the algebraic relations (3.1-3.3) are covariant under O(2) transformations x
' = Rx, L is covariant under 2-dimensional rotations, L — —L under x;-
inversion and the same applies under xo-inversion; this implies that the spectra
Y., (A) of all coordinate operators z; are equal, and for this reason it is reasonable
to focus the attention only to x;. The spectrum X, for A = 1,2 is presented in
formulae (8.2-8.3) of the appendix.

More generally, on the basis B of H, the operator z; is represented by the
(2A+1) x (2A+1) symmetric tri-diagonal matrix [cf. (4.1)]

0  ba 0 0 0 0 0 0

b 0 by1 O 0 0 0 0
1 0 bar O bro O 0 0 0 1
A _ A
A I _X”O(F)’
0 0 0 0 -+ bop 0 byip
0 0 0 o - 0 bi_pn O
where X' := %P (0,1,1), and it is obvious that all the eigenvalues of X* are real.

Let ¥ := {&h(A)}ZiJ{l be the set of the eigenvalues of X4 arranged in de-
scending order; according to (4.2) one has

hm
2N 42

&h(A):COS< ), h=1,2,--- ,2A+ 1. (4.5)

It is easy to see that a € ¥} = —a € X}, all the eigenvalues of 3{} are simple,
ai(A+1) > a;(A) and X becomes uniformly dense in [—1,1] as A — oo.

In section 8.2 it is shown that the same holds true also for the spectrum ¥4
of z,, in particular one has

Theorem 4.2.1 (A) If a is an eigenvalue of X*, then also —a is.

(B) For all A, all eigenvalues of X* are simple; they are denoted as a1(N), as(A),
ey aoa11(A), in decreasing order.

(C) Let kp(A) > A(A — 1)(2A + 3)%(2A + 4)* /4x*, then
a; (A+1)>a3(A) VAeN. (4.6)

(D) XA becomes uniformly dense in [—1,1] as A — oo, in particular

7T2

] = >1— —— — . .
AEToom(A) 1 and oy (A)>1 S 1) VA eN (4.7)
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Let x := 22:7 A Xn¥n, the eigenvalue equation z;x = ax amounts to

bA ann—l + bn+1Xn+1

?Xﬁ:(/\—l) = QX+, 5

= QXn if |n| <A; (4.8)

on the other hand, b, — 1 in the commutative limit and in section 8.2.4 it is

shown that ay, (A) ~ cos (2}(12) in the limit A — +o00, so (4.3) and (4.4) imply

2 . hnm
T1Xh (A):ah (A)Xh (A):>thn (A)Z 2A_'_281n (2A+2>

4.3 Spectrum of z; in the O(3)-equivariant fuzzy
sphere

The spectrum of z( is studied in the following lines, this is not a restriction

since the covariance of the algebra under O(3) transformations ¢ — ' = Rz,

L — L' = RL implies that the spectra ¥, (A) of all coordinate operators x; of

the new fuzzy space are equal; on the other hand, because of [z, Lo] = 0, it is
possible to simultaneously diagonalize xy and L.

Eq. (3.6); and
- B
{LOX§ = ﬁxg | (4.9)
LoXa = XX

implies

A
B=me{-A-A+1- A=1A} and xJ'= > xi;  (4.10)

I=|m|

SO ToX = ax' can be re-written as

( m m
Xa,\m\+1c\m\+1G(|m| +1,m,2) = QX o, Jm|

Xojm|Clml+1E (M|, 2) + X3 s 2Cmi+2G (M| + 2,m, 2) = axg)jms

Xoopm|+1Clm+2F (Im] +1,m, 2) + X0 i 43Cm 3G (Im] + 3,m, 2) = axy 12

XZL,A—QCA—L?)F(A —2,m, 2) + XZI,AC/L?)G(A? m, 2) = OéXZtA—l
CA,3F<A —1,m, 2)XZ€A71

QXQA
(4.11)
which in turn can be rewritten in the matrix form B,,(A)x = ax, where y =

\

T
(Xgl,\m\v Xovjm|4+17 - - 7XZL,A> and B,,(A) is the following n(A;m) x n(A;m) sym-
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metric tridiagonal matrix

0 Cm+1G(Im| +1,m,2) : 0
Cm+1G(Im| 4+ 1,m, 2) 0 : 0

0 0 0 casG(A,m,2)

0 0 : 0

or equivalently M,,(A;«)x = 0, where 0 here is the null vector, with
n = n(Aim) = A = m| + 1, Mn(8;) = Bu(A) = aLuiam)

It is well known that the problem of determining analytically the eigenvalues of a
square matrix of large rank is absolutely not trivial, but the B,,(A) have several
good properties (for example they are symmetric and tri-diagonal) which will
help in studying their spectra. First of all,

Remark 1 All the eigenvalues of B, (A) are real, and B,, (A) = B_,, (A) implies
that it is reasonable to focus the attention to the cases 8 =m € {0,1,---  A}.

As for the fuzzy circle,

Theorem 4.3.1 (A) If a is an eigenvalue of By, (A), then also —« is.

(B) For all A,m, all eigenvalues of By, (A) are simple; they are denoted with
ar(A;m), as(A;m), ..., apam)(A;m), in decreasing order.

(C) Let ay (A;m) be the highest eigenvalue of By, (A), then
a1 (A;0) > aq (As1) > -+ > a9 (A A), (4.12)
and

oy (A +1;0) > ay (A;0)  definitively, if kp(A) > AS. (4.13)

(D) Epyn) becomes uniformly dense in [—1,1] as A — oo, in particular

2

lim a3 (A;0)=1 and oy (A;0)>1 T

Item (C) of last theorem allows also to make a connection between these new
localized states and the classical ones because the o (A;0)-eigenstate approxi-
mates a quantum particle on S? concentrated (because of the above equivalence
between the ay (A;0)-eigenstate and the most localized state of the new fuzzy
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space (see chapter 5) on the North pole and rotating around the z3-axis; on the
other hand, taking a classical particle forced to stay on S? and in the position
(0,0,1) then it must be

Ls = (L)g,: (EXB)SZO,

as for this new case.

Note that, the spectrum ¥ (4) contains exactly A + 1 eigenvalues and the
highest one fulfills (4.12), for this reason the attention is focused only on that
matrix.

It is important to point out that the proof of item (D) can be trivially re-
arranged in order to prove that it holds for ¥p, () and aq (A;m) also if m > 0 is
any other fixed integer.

Let m € Ny and assume that x7' := Zf:m Xaa¥[" is a common eigenstate of
xo and Lo; let {ay, (A; m)};};{nﬂ be the set of the eigenvalues of Py_p41 (0, 3, 3)
arranged in descending order; according to (4.2) one has

hm

ah(A,m) = COS (A——W’L—{—Q

),h:Lz~,A—m+L

Cos (A_h—rgw) in the limit

n the other hand, when
~ 1 in the commutative

One can prove (as for section 8.2.4) that oy, (A;m
A — 400, although in this case ¢, 3G(I,m,2) —» %
|m| < 1, it is possible to approximate well ¢;3G(I, m
limit, for this reason it is expected that

m / 2 ‘ him
) — gin | —m——
Xan(dim).1 A—m+2 A—m+2)’

as for the D = 2 case.

) >
O
,2)

|

4.4 Spectrum of z; in the O(D)-equivariant fuzzy
hypersphere when D > 3

In this section (which is based on an unpublished article) we do the analysis of

the spectrum of xp, this is not a restriction since the covariance of the algebra

under O(D) transformations @ — ¢’ = Rz, L — L' = RL implies that the

spectra X, (A) of all coordinate operators x; of the new fuzzy space are equal;
on the other hand, because of

[ID,L1,2] = [$D,Cs] == [l'D,Cd] =0,

it is possible to simultaneously diagonalize xp and L; o, -, Cy.
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Eq. (2.13) and
(xDXa = 0 Xa
L1,2Xa = 02X«
C3Xa = @3Xa (4.15)

\Can = 0dXa
imply
ad:ld,l S {0,1, ,A— 1,A}

043:l2€{0,1,"' ,lg-l,l:;}
as =11 € {—l2,—l2+1,"' o — 1,[2} (416>

A
a‘nd Xa,dl - § Xa,l,dl¢l,dl;
I=lg—1
SO TpXa,y = “Xa,,l Can be re-written as
(
Xavld—1+17dlcld—1+17DG(ld—1 +1, ld—la d) = OXa,lg_1,al

Xady 1.a1Cly1+1.0F (la—1,la—1,d) + Xaiy 142,46, 1+2.0G (a1 + 2,la—1,d) = aXaiy 1 +1.4

Xty 14+1,00Cly 1 +2,0F (lam1 + 1, la—1,d) + Xayy 1+3,0C1 1+3,0G (la—1 + 3, la—1,d) = aXa, +2,4

XaA—2,4CA-1,0F (A —2,14-1,d) + Xanr,4ca,pG(A, lg—1,d) = aAXan-1,4
LeapF'(A =1, 1g-1,d)XaA-1,00 = OXaA i

(4.17)

which in turn can be rewritten in the matrix form ©;, ,(A)x = «ax, where

T : .
X = (Xa)ldflydh Xody 1414l - - - ,XQ,Aﬁdl) and O, , (A) is the following N(A; ;1) X
N(A;l4—1) symmetric tridiagonal matrix

0 Vly 41,0y 1,D 0 0
Vig 141,04 1,D 0 Uiy 420440 0
0 Uld71+2’ld7171) 0 0
@ld 1 (A) = . )
0 0 0 UAl4_1,D
0 0 VA4 1,D 0

or equivalently =;, (A; ) x = 0, where 0 here is the null vector, with
n=n(Alg1) =Nl +1, 5, (Asa):=0, (A —alynag, ),

and Ul,ld,l,D = ClyDG(l, ld—la d)
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It is well known that the problem of determining analytically the eigenvalues of
a square matrix of large rank is absolutely not trivial, but the B,  (A) have
several good properties (for example they are symmetric and tri-diagonal) which
will help in studying their spectra. First of all,

Remark 2 All the eigenvalues of By, , (A) are real.
Then, as for the dimensions D = 2, 3, one has
Theorem 4.4.1 (A) If « is an eigenvalue of By, | (M), then also —a is.

(B) For all A, 11, all eigenvalues of By, , (A) are simple; they are denoted with
a1(Alg—1), ca(Nslg—1), -y angagy ) (Ailg—1), in decreasing order.

(C) Let ay (A;m) be the highest eigenvalue of By, (A), then

a; (A;0) > aq (A1) > - > a1 (A A). (4.18)

(D) Epyn) becomes uniformly dense in [—1,1] as A — oo, in particular

Agrfoo ap (A;0) =1 (4.19)



Chapter 5

Coherent states

5.1 Preliminaries

5.1.1 Basics about Coherent States

Coherent states (CS) were originally introduced in quantum mechanics on R?
as states [21, 22, 23] saturating the Heisenberg uncertainty relations (HUR)
Az;Ap; > h/2 and mapped into each other by the Heisenberg-Weyl group; they
make up an overcomplete set yielding a nice resolution of the identity. The lat-
ter properties are usually taken as minimal requirements [27] for defining CS in
general: a set of CS {¢;},., is a particular set of vectors of a Hilbert space H,
where [ is an element of an appropriate (topological) label space €2, such that the
following properties hold:

1. Continuity: the vector ¢; is a strongly continuous function of the label [.

2. Resolution of the identity: there exists on ) an integration measure
such that

I— / Pdl,  P= o) = o)l (5.1)
Q

3. or, at least, Completeness: Span{¢,:1€ Q} =H;

the first two properties characterize a strong SCS, while the first and third a weak
SCS.

A. M. Perelomov and R. Gilmore develop [24, 45] the concept of CS when 2 is a
Lie group G acting on a Hilbert space H via an unitary irreducible representation
T (see e.g. Perelomov’s book [31]). Actually, most arguments hold also if the
group G is not Lie. Fixed ¢y € H Perelomov defines ¢, := T'(g)¢po and the
coherent-state system {T, ¢o} as

{1, 90} ={y :=T(9)p0 | g € G}. (5.2)

36
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Clearly {T, ¢} = {T, ¢,} for all g € G. The maximal subgroup H of G formed
by elements A fulfilling

¢n = exp [ia(h)]eo,
with some function o : H — R, is called the isotropy subgroup for ¢y. Clearly,
g = gh implies

by =T(9)T(h)po = T(g) exp [ir(h)]po = exp [ia(h)]¢py,

i.e. @y, @, belong to the same ray. Therefore equivalence classes z(g) 1= {¢ =
gh | h € H}, ie. elements of the coset space X := G/H, are in one-to-one
correspondence with coherent rays, or equivalently with coherent 1-dimensional
projections (states): hence one shall denote P, := ¢y(¢y, ) = Py also as P,. A
left-invariant measure du(g) on G induces an invariant measure dz on X. T is
said square-integrable if I = [ [(¢0, T[g(2)]¢o)|* dx < oo (this is automatically
true if G, or at least X, is compact, because then the volume of X is finite);
here g(z) is any (smooth) map from X to G such that g(x) € z [the result does
not depend on the representative element in x because it is invariant under the
replacement g — gh; g(x) can be seen as a section of a U(1)-fiber bundle on X].
If T is square-integrable then the integral defining the operator B := [ ~ Pedx
is automatically convergent. From the identities T'(¢')P,T(¢'"') = P, (with
7’ := ¢'z) and the invariance of dz it follows that T(¢')BT(¢'"') = B, and
therefore B is central; then by Schur lemma there is b € Rt such that B = bl.
One can determine b taking the mean value of both sides on ¢y; one easily finds
b{¢o, po) = Ir. In general the set {¢g(s)}zex is overcomplete (this is certainly
the case if X is a continuum); one can extract a basis out of it in many different
ways. Introducing the normalized integration measure dv(z) := dx/b one finds
the first resolution of the identity in

I:/Xdey(x), I:/GPgd,u’(g); (5.3)

the second holds if H has a finite volume h, with du'(g) := du(g)/bh, so {T, ¢o}
is a strong SCS. In particular, Perelomov applies (chpt. 4 in [31]) these notions
to the irreducible representation (m;, V;) of G = SU(2) selecting a vector ¢ that
minimizes the square dispersion (AL)?. As explained in the introduction, one
possible such ¢y is the highest weight vector |I,1) € Vj, i.e. the eigenvector of
L3 with the highest eigenvalue [ (Ls|l,m) = m|l,m) with |m| < [, in standard
ket notation), whereby (L;) = (L) = 0, (AL)? = (AL)?,, = l. Therefore these
CS coincide with the socalled coherent spin [46] or Bloch states. By the SU(2)
invariance of (AL)?, all elements ¢, € {m,¢o = |I,1)} - including |I,—I) ~
T(e™1)|1,1) - have the same minimal dispersion. As the isotropy subgroup H is
that SO(2) of rotations e“* around the Z-axis, the states associated with this
system are in one-to-one correspondence with the points of SO(3)/SO(2) = S2.
The latter sphere can be considered as the phase manifold for spin (angular
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momentum); these coherent states are the closest to the classical ones on such a
sphere. Applying the rescaling (2) one immediately finds that also in the Madore
F'S the space uncertainty is minimal on the |¢,)’s and equal to (13).

Out of the ¢,’s only the vectors proportional to |[,£l) saturate (i.e. satisfy
as equalities) for all i, j the uncertainty relations AL; AL; > |e%%(L;)|/2, which
follow from the commutation relation [L;, L;] = i€*L; (on them one has in addi-
tion (L;) = (Ly) = 0 = ALg, |(L3)| =1, AL; = ALy = /1/2). Incidentally, the
authors in Ref. [47] consider also two alternative definitions of sets of optimally
localized states: the set of ‘intelligent states’, that saturate the uncertainty rela-
tion ALy ALy > [(L3)]/2, and the set of ‘minimum uncertainty states’, for which
ALj; AL, has a local minimum (note that then in general ALy AL3, ALy ALz are
not minimized). But neither one is invariant under arbitrary rotation, in contrast
with the definition of Perelomov and of the present thesis; one can easily show
(see e.g. [22] pp. 27-28) that these states are ‘fewer’ than the points of S?, i.e
cannot be put in one-to-one correspondence with the points of S2, but just of a
finite number of lines on S2.

5.1.2 Uncertainty relations and coherent states on com-
mutative S!
Let z1, 79 be Cartesian coordinates on R?, 9;=0/0x;, L = —i(x10» — 220;) be

the angular momentum operator up to i . From [L, z1] = ixs, [L, x5] = —iz; one
derives in the standard way the uncertainty relations (UR)

(ALPA0) > (m), (ALPAn) > (n),  (ALXAe) > | ()54)

A

the third inequality is obtained summing the first two. These commutation rela-
tions and UR hold not only for the operators on H = £?(R?), but also for those
on H = L2(S"). In the latter case the x; fulfill the constraint x? = 23 + 23 = 1,
or equivalently z x_ = 1, where x4 := 1 +ix9, whence (2, )" = (z_)", and the
third inequality represents a lower bound for the dispersion AL |Ax| in phase
space; L is the momentum along the circle. The inequalities (5.4) are therefore
the analog [48] on the circle of the Heisenberg UR (it is important to underline
that adopting the azimuthal angle ¢ as the observable canonically conjugate to
L, [¢, L] = i, would be inconsistent). The orthonormal basis B := {1, },cz of
L£2(SY), V2mp, == €™ = (1,)" consists of eigenvectors of L, L, = n,, while
r4+ acta as ladder operators: zi1v, = ¥,+;. These relations characterize the
basic! unitary irreducible representation T of the *-algebra A of observables gen-
erated by L,zy fulfilling [L,zs] = +2y, 240 =22, =1, L' =L, 2l =z_.
The ), saturate the inequalities (5.4), because on them (AL)? = (z1) = (23) = 0,

!The inequivalent unitary irreducible representation of A are parametrized by « € [0, 2x],
entering L1y, = (n + a)tp,,.



5.1. PRELIMINARIES 89

while (Ax;)? = 1/2; in appendix 9.3 it is shown that in fact these are the only
states saturating (5.4). The decomposition of the identity associated to B (first
equality)

=Y r= [ Pdu), P (5.5

thus involves all and only the states saturating (5.4), i.e. is of the type (5.1) with
labels n € Q = Z; the second equality is explained once noted that H = £2(S1)
carries a unitary irreducible representation of the group

G = {(z) ") | (a,b,n) € R? x Z} ~ U(1) x U(1)XZ (5.6)

(consisting of #-automorphisms of the algebra of observables) with product rule

($+)nei(aL+b) <x+)n’ei(a’L+b’) _ (x+)n-i—n'6i[(a+a’)L+(b+b’+an’)];
ellap(p) = (¢ + a), i.e. el is the translation operator along the circle (it
rotates ¢ by an angle a), while 11, = ¥,,11, i.e. 4 act as discretized boost
operators in the (anti)clockwise direction. G acts transitively on the set of states
saturating the HUR (5.4), i.e. the eigenvectors of L. H = {e!@F*)} ~ [U(1)]? is
the isotropy subgroup of g (and of all other 4,,), and G/H = {(z,)"|n € Z},
hence integrating over G/H amounts to summing over n € Z. In this broader
sense {1, v} is a strong SCS.

5.1.3 Uncertainty relations and coherent states on com-
mutative S?

From the commutation relation [L;, L;] = i¥*L; (for all 4, j), valid on £*(R3?)
and £2(S?), one derives in the standard way the UR
AL ALy, >

1
|(Ls)/, ALy ALy > §\<L1>|, AL3 ALy > [(La)|. (5.7)

DN | —
DO | —

As already said, the set of coherent spin states within H = V] is the subset of
states minimizing (AL)?. Among them only |I,1), |I, —I) saturate (5.7). Is there
some UR which is saturated by all coherent spin states? In appendix 9.1 it is
shown not only that the answer is affirmative, but that such a UR is actually
l-independent and valid on all of £2(S?):

Theorem 5.1.1 The following uncertainty relation holds on L£*(S?) = @2, Vi
(AL)* > [(L)] & (L?) > (L) (L) + 1), (5.8)

and is saturated by the spin coherent states ¢, = m(g)|l,1) € Vi C L*(S?),
g€ SO(3), I € Ny.
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Remarks:

1. The theorem seems to be new, albeit the proof is very simple. One cannot
obtain inequality (5.19) directly from (5.7) or the Robertson inqualities?®.

2. Summing Perelomov’s resolutions of the identities for all V;, the result is
the resolution of the identity for £2(5?)

- 21+1

I = ZCZ/ dpi(g) P, Py = bre(drg.-), Ci= a2 Grg = T(9)Y/;
—o 50(3) Q

(5.9)

this holds also integrating over S? [instead of SO(3)] and replacing C;
271'01.

From the commutation relation [L;, ;] = ic*x;, (for all ¢, j), valid on £2(R?),
and £2?(S5?%), one derives in the standard way the UR

1 1

ALy Awy > Sl(ws)l, AL Awg > l(wa),
1 1

ALZ AZEl Z §|<I3>|, ALQ A[E3 Z §|<I1>|, (510)
1 1

ALg A.’L’l Z 5‘([[’2”, ALg A.’L’Q 2 §‘<$1>‘

Relations (5.10) are analogs of the Heisenberg UR (HUR), as the L; are the
‘momentum’ components along the sphere. Alternative ones can be found e.g. in
[49]. In the literature it is not easy to find works investigating whether they can
be saturated.

5.2 Coherent and localized states on the fuzzy
circle S}

5.2.1 O(2)-invariant UR and CS systems on S}

First of all, since relations (3.3)-(3.1) are as in the commutative case, the ‘Heisen-
berg’” UR (5.4) hold, the eigenvectors ), of L make up again a set of states
saturating (5.4), because on them (AL)* = (z;) = (z5) = 0, while

1<1+n_2>, 142 if [n] < A,
(Arp=qir W @eP=g
Z|:1+ = :|7 §|:1+T] 1f|n|:A

2Using (5.7) one can obtain the weaker inequality (AL)? > [(L)|/3/4: (5.7) implies the
inequalities 2AL? AL3 > (L3)?/2, (AL} +AL3)/2 > (L3)?/4 and the ones obtained permuting
1,2,3 cyclically; summing all of them, one has (AL)* > (L)?|3/4.
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The first resolution of the identity in (5.5) still holds,

ngyzzémammm P, =, (1, ), (5.11)

provided n runs over Q@ = {—A, 1-A, ..., A} instead of Z. For the second one to be
valid one should replace Z by Zsa 41 in the definition (5.6) of GG, more precisely
replace (xy)" by u”, where the unitary operator u is defined by upy = 1p_j,
u, = VP, otherwise. Such a G is a subgroup of the group of *x-automorphisms
of Ajx. In appendix 9.3 it is shown that in H, again only the 1, saturate all
of the inequalities of (5.4). Nevertheless, there is a whole family (parametrized
by © € R) of complete sets of states saturating (5.4); alone. These states are
eigenvectors of ay := L—ipux; (They are explicitly determined for A = 1), and the
family interpolates between the set of eigenvectors of L and the set of eigenvectors
of xy.

In the commutative case the spacial uncertainties Az, Azy can be simulta-
neously as small as one wishes. In the fuzzy case even the Robertson UR

4 (Aml)Q (Am2>2 > <L,>2+<$1$2+l’21‘1>2, I = _-= +

kb k 2

which follow from (3.1); and is slightly stronger than the Schrodinger UR, is
not particularly stringent, in that the right-hand side vanishes on a large class
of states®, hence does not exclude that either Ax; or Az, vanish. However, the
latter cannot vanish simultaneously, because (Ax)? is bounded from below (see
section 5.2.2).

In the following lines (5.2) is applied adopting T'=m, and as a G not SO(3)
(the largest A-independent subgroup of the group of x-automorphism of A, ), but
its subgroup G = SO(2); hence H, carries a reducible representation of G, so
that completeness and resolution of the identity are not automatic. Consider a
generic unit vector w = anzf A W and let

A
w, = ey = Z €™ W m, P, = wo{wy, ),
m=—A
(wo = w). The system A := {wq }acjo,2+ is complete provided w,, # 0 for all m
(then it is also overcomplete). Defining B := fo%doz P, one finds

A

o 2T
B@bn _ w_n/wae—iom do = o Z wmd]m / eia(m—n) da = 27T‘0Jn|2¢n7
0 0

m=—A

Ixm|?Jm/kp + [Ixal? = Ix-al?][1/2+A(A—1)/2kp], which vanishes e.g. if |x_m|=|xm]| for all
m, and (x122 + T2x1) = <a:?|r — x2)/2i. which vanishes if e.g. all x,, € R, so that <x3_> is real.

3In fact, on the generic vector x = Eﬁl_ﬂ\ Xm¥m one finds (L) = Z,’):IHX_WP—

L AA+1) 1P —P_
{1—1— (A+1) } A A
D

)
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implying B = Zf::f A 27r\wn|213n; this is proportional to the identity only if |w, |*
is independent of n and therefore (since w is normalized) if |w,|* = 1/(2A+1).
Setting w,, = € /\/2A+1 one finds the following resolutions of the identity,
parametrized by 3 € (R/2wZ)*M:

IN+1 [2F = iloms "‘)
7= 28t /dan, Pl i=wi(wh, ),  whi= Z
o J, > Y

(5.12)
By choosing 3., = f, the strong SCS {w?} is fully O(2)-equivariant, be-
cause is mapped into itself also by the unitary transformation ,, — _,,
that corresponds to the transformation of the coordinates (with determinant -
1) (z1,22) = (21, —x3). What is the 8 minimizing (Az)?? In appendix 9.2 it
is shown that on the states w?

A(A+1)

(L) =0, (AL)* = (L?) = for all a, 3, (5.13)

A

@y < 2A L 2A-DAGAY eia

= Bm=1=Bm)p, (5.14
= 2A+1 320+1)kp () 2A+1mzzl_A bm- (5:14)

Therefore (z)* = |(z,)[? is maximal, and (Az)®> = (x?) — (z)? is minimal, if
£ = 0; then

Where ¢ = wY; in particular (x2)y = 0, (x1)g = (24)p € R, where ¢ := ¢pg =

. The corresponding strong SCS is denoted with S* := {@a }acjo21[-

The w? have no limit in £2(S') as A — oo, since all their components in
the canonical basis {9, }nez go to zero; the renormalized v2A+1¢, /27 have at
least a limit in the space of distributions, more precisely go to d,, where J,, is the
Dirac § on the circle centered at angle ¢ = a.

5.2.2 O(2)-invariant overcomplete set of states minimizing

(Az)?

As (Ax)? is O(2)-invariant, so is the set W' of states on S} minimizing (Az)?.
Therefore one can first look for a state x € W' such that (z5) = 0, and then
recover the whole W' as W' = {x_:= e¢**x[a € [0,2n[}. This is an O(2)-
invariant, overcomplete set of states (i.e. a weak SCS) in one-to-one correspon-
dence with the points of the circle. The determination in closed form of x, W!
for general A is presumably not possible. Since it is &% = 1+ O(1/A?) (except on
11y ), it is reasonable to think that the eigenstate X of 21 with highest eigenvalue
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(or the eigenstate with opposite eigenvalue) approximates x at order O(1/A?).
But also the determination in closed form of such an eigenvector is presumably
not possible. Here x, X are explicitely determined for A = 1, while for general
A it is calculated a set of states having a smaller (Az)? than that of the ¢, of
the previous subsection, more precisely going to zero as 1/A?; this is done with
the help of the results of chapter 4, where a detailed study of the x;-eigenvalue
problem is carried out.

When A = 1 normalized eigenvectors and eigenvalues of x; are given by

- V2 + V2
mz%, z1X0 = 0, Xi:¢1 2% il Xz = £ x(5.16)

One easily checks that on X = x4 it is (x?) = 3/4, (v,) = v/2/2, and therefore
(Az)? = 1/4. On the other hand in section 9.2 it is shown that (Ax)? is slightly
smaller on x:

x=Lworwl+ e = Ger=a.=g 617

For general A, on the basis By of H, the operator z; is represented by the
(2A+1) x (2A+1) matrix

0 b 0 0 0 0 0 0
bn 0 by; O 0 0 0 0
10 b6ay 0 bas 0 0 0 0 N |
RS I S S :X°+O(P>’
0O 0 0 O -+ bopn 0 bi_a
0 0 0 0 - 0 by 0

where X{' := 2 P2541(0,1,1) [see (4.1)]. The spectrum Zf of X§ is {cos[mn/(2A+
2)]}nz12...2a+1 (see section 4.1); Zf}“, YA interlace, i.e. between any two subse-
quent eigenvalues in 26\“ there is exactly one in ¥4, and X4 becomes uniformly
dense in [—1,1] as A — oo. In chapter 4 it is shown that the same properties hold
true also for z, ~ xy, by studying its spectrum. Here as a first good estimate
of X the eigenvector x of the Toeplitz matrix X' with the maximal eigenvalue
Au = cos[n/(2A+2)] is taken. The associated (Az)3, which is a first good
estimate of (Az)?2 ;. and goes to zero as 1/A?, fulfills (see appendix 9.2)

min

(Az)? < ﬁ (5.18)



94 CHAPTER 5. COHERENT STATES

5.3 Coherent and localized states on the fuzzy
sphere S%

5.3.1 O(3)-invariant UR and CS systems on 5%

First of all, since the commutation relations [L;, L;] = ie”*L; are as on S?, then
not only the UR (5.7), but also Theorem 5.3.1 and the resolution of the identity
(5.9) hold, provided [ runs over {0, 1, ..., A} instead of N:

Theorem 5.3.1 The uncertainty relation
ALY = (D) & (L) = (L) (L) +1) (5.19)
holds on Ha = @i,Vi and is saturated by the spin coherent states ¢y, =

mA(g)p! € Vi, 1 € {0,1,...,A}, g € SO(3). Moreover on Hy the following
resolution of identity holds:

A
2l+1
I=2.¢ du(g)F Ci=——%, DPy= ). (5.20
Z l/SO(3) 1(9) g, ! 372 bg = Prg(Drg: ). ( )

=0

It is possible to parametrize g € SO(3), the invariant measure and the integral
over SO(3) through the Euler angles ¢, 0, 1:

0 10 0 0 —1
g =efl3e2e%ls where I5:= -1 0 0], L:=[0 0 0 (5:21)
0 00 10 0
2 2m
wa(g) = e'¥tseifleeivls /du :/d /d@sm@ dip = 87°. (5.22)
50(3) 0 0

Since the commutation relations [L;, z;] = i"*z; hold also on S%, so do the
UR (5.10). However here it is not investigatd whether they (or some alternative
ones) can be saturated, because seems to be this is not known even for the
commutative S2.

In the commutative case the spacial uncertainties Az, Azs, Azs can be si-
multaneously as small as one wishes, because [z;, z;] = 0. In the fuzzy case even

the Robertson UR

/ / I D
4 (AZEl)Q (A$2)2 2 <L3>2 —+ <CL’1ZL‘2 + 172I1>2, L3 = <— — k?DPA) Lg,
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and its permutations, which follow from (3.8) and are slightly stronger than the
Schrodinger UR, are not particularly stringent, in that the right-hand side van-
ishes on a large class of states*, hence does not exclude that either Az, Azy or
Ax3 vanish. However, in the next lines it is shown that they cannot vanish simul-
taneously, because (Az)? is bounded from below (see section 5.3.2). Summing

the Schrodinger UR

(Ax1)4;(Ax2)4 > (Axy)? (Axy)® > <Lf;’>2
(Azy) +(Axy)?

2(Az1)” (Azz)” > (L5)%,

oo

2
and the ones with permuted indices 1,2, 3 one finds the O

—~

3)-invariant UR
3
(Az)* > Z<L’>2. (5.23)

Note that on the eigenstates of zq, Lo = L3, with Ly = m it is (L/.) = 0 and
(L] = (LR = Im] (1/kp—kp(Py)); in particular for m = 0 the right-hand
side of (5.23) is zero. It is left for possible future investigation to determine the
states, if any, saturating the UR (5.23); clearly there can be no saturation on a
state such that (L}) = 0, because as said (Az)? has a positive minimum.

In the nest lines (5.2) is applied adopting as a G not SO(4) (the largest A-
independent subgroup of the group of x-automorphism of A4, ), but its subgroup
G = SO(3) with Lie algebra spanned by the L;, and T'=m,. By (2.34), (Ha, 7A)
is a reducible representation of GG, more precisely the direct sum of the irreducible
representations (V},m), [ =0, ..., A; therefore completeness and resolution of the
identity are not automatic. Fixed a normalized vector w € H,, for g € G let

wy = T (g)w, P, = w,(wy, ). (5.24)

The system A := {w, },ec is complete provided that for all [ there exists at least
one h such that wf* # 0 (then it is also overcomplete). In appendix 9.4 we do the
proof of the following

Theorem 5.3.2 If w= Z Z I fulfills
—0 h=—1
2041
[=0,1,...,A 0.25
}LZ:Z| A+ 1) Y Y ) Y ( )

A A=1 1
4In fact, on the generic vector x = > Z X7"Pp" one finds (Lg), = >° Z [x; ™1 -
=0 m=—1 =0 m=1

1+ ,{\;

A
IXPP) + sy 2 [Ixa™ P = IXX[?], which vanishes e.g. if |[x; ™| = [xj"| for all I,m, and
=

(129 + Tow1) = (x%_ — x2)/2i, which vanishes if e.g. all x]" € R, so that (z%) is real.
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then the following resolution of the identity on Hy holds:

A+1)?
I = —( 87'('2_) /SO(S)d/L(g) P97 Pg = wg("’”g, ~>’ Wy = ﬂA(g)UJ (526)

If wh = w; " the strong SCS {wy}ges0() s fully O(3)-equivariant.

In particular, choosing w = w’ = ZzA:o Ple?'\/2l+1/(A+ 1) one finds
a family of strong SCS {wgﬁ }geso(s) and associated resolutions of the identity
parametrized by S = (B, ..., Br) € (R/27Z)*!. In appendix 9.6 the uncertain-
ties (AL)? (Ax)? are calculated on this strong SCS; the first is independent of
B, g, the second is minimal if § = 0. Then they are given by

3
A+1

o A(2A°+32A%+65A4-36)

(AD) 36(A+1)? |

(Ax)? < (5.27)
It is possible to construct a strong SCS with a larger (AL)? and a smaller (Ax)?.
Choosing w = ¢° = Z?:o PPePiy/21+1/(A+1) [this is suggested by the arguments
following (5.23) and the ones of next subsection| one again finds a family of strong
SCS and associated resolutions of the identity parametrized by 5 = (o, ..., 5a) €
(R/27Z)™. This SCS is fully O(3)-equivariant. Since ¢? are eigenvectors of
L3 (actually with zero eigenvalue), the isotropy group H = {e'¥l2 |1 € R} ~
SO(2) is nontrivial, and the resolution of the identity holds also with the integral
extended over just the coset space S% =~ SO(3)/SO(2) 3 g = e?lseifl2;

(A+1)2 2 T .
[:T/Odgp 0d0 sm@PgB, Pf:¢§<¢§v'>v
‘ 5.28
¢ﬁ_ - L '2l+1ﬂ— ( )1!;0 ( )
y = 2 At Ag)Yr-

In the appendix the uncertainties (AL)?, (Ax)? are calculated on the SCS {¢) }je:
this is the analog of the SCS (5.12-5.15). Again (Az)? is smallest if 3 = 0. Cor-

respondingly, one finds
s A(A+2)
2 Y

(Az)? < —— (5.29)

(AL) A+1

5.3.2 O(3)-invariant overcomplete set of states minimizing

(Az)*

As (Az)? is O(3)-invariant, so is the set W? of states on S3 minimizing (Ax)?.
Arguing as in the introduction, one can first look for the states x € W? on which
(xo) = |(x)| [whence (z+) = 0, (Az)?> = (x?) — (x0)?], and then recover the
whole W? as W? = {Xg = ma(g)x |g € SO(3)}. Presumably it is not possible
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to determine the most localized state xz in closed form for general A. Since eq.
(3.9) implies that @? > 1 on the L? = A(A+1) eigenspace and &? = 1+ O(1/A?)
on the orthogonal complement, (Ax)? = (x?) — (x¢)? on the eigenvector X of x
with highest eigenvalue exceeds (Aw)mm at most by a term O(1/A?). Presumably
it is not possible to determine x in closed form for general A either; determining
analytically the eigenvalues and eigenvectors of a square matrix of large rank is an
absolutely nontrivial problem. Nevertheless in chapter 4 we do a detailed study of
their properties. In particular, since [xg, L] = 0, it is possible to simultaneously
diagonalize zy and Ly. By (3.6); the eigenvalues of Ly are m € {—A, 1-A, ..., A};
let H}' be the corresponding eigenspaces. One can look for eigenvectors of both
%o, Lo in the form (4.9).

Note that Lox = mx (with any m) implies (z+), = 0, [(z), | = |(z0), |-
The second equation in (4.9) turns out to be an eigenvalue equation for a real,
symmetric and tri-diagonal square matrix B,,(A) having dimension A — |m| +
1. It is easy to see that it is possible to focus the attention only to the cases
m € {O, 1,--+,A}; by (4 12), the eigenveetor 55 of x With the highest eigenvalue
HY is
0O ag 0O 0O 0 O 0 O
ag 0 aa 0 0 O 0 O

0 az 0 ag O 0 0 O
By = By (A) = S S SR : S ) (5.30)

@]
]
]
o
]
o
S
>
@]

where

1
= 3G(1,0,2) =4/1 —@/ — I <A, A eN,
ap = (3 +/{3D 4[2_1 ) M VA €

and this implies (see proposition 8.1.2)

| Boxl|, > H§PA+1(O, 1,1)x Vx € Rﬁ“. (5.31)

2

The normalized vector X = (Xo, ---, X1) € ]Rfrl maximizing the right-hand side is
the eigenvector of $Px1(0,1,1) with highest eigenvalue A; = cos[m/(A+2)]:

- [ 2 [+ Dr
— <[ <A:
X1 A+281H|:A+2:|, 0<I<A;

Hence as the highest lower bound for ‘(m))?’ = (20)g = a1 (A;0) = || Boxlly / [IX]

11
P e
A+1<0)272)X

one finds

on (A0) > (zo) = |1 Boily > \

| =cos (/&2) . (5.32)
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This finally suggests that a quite stringent upper bound for (Azx)? . should be

min

(Az)? on x = E?:o XY € HY. In fact, in the appendix it is shown that

aep_ ™, 1 1
X (A+2)2  (A+1)2 ~ (A+1)%

(5.33)

This leads to the important result mentioned in the introduction: the smallest
space dispersion on the new fuzzy sphere is smaller than the one (13) on the
Madore’s FS when [ = A, i.e. the cutoffs of the two fuzzy spaces are the same;

in formulas,

(Aw)?,, < (Aw): < (Az)? S (5.34)

min minMadore A + 1

Replacing x by X, X in the definition of W? one respectively obtains fully O(3)-

invariant weak SCS WZ,WQ approximating WW?2. Since X, X are eigenvectors
of Lg, the corresponding isotropy subgroup of SO(3) is isomorphic to SO(2),
and the rays of the elements of X, X are in one-to-one correspondence with the
points of the sphere S? ~ SO(3)/SO(2). The fact that the eigenvalue is zero is
in agreement with the classical picture of the particle: the angular momentum
L = r A p is orthogonal to the position vector r, hence if r ~ kp (i.e. the
particle is located concentrated around the north pole) then L is approximately
orthogonal to the x3 = xg-axis, and L3 = Ly ~ 0.



Chapter 6

Conclusions, outlook and
comparison with literature

The construction of the O(D)-equivariant fuzzy sphere in the second section has
been done through the imposition of a sufficiently low (and A-dependent, with
A € N) energy cutoff £ := A (A + D — 2) on the quantum mechanics of a particle
subject to a rotation-invariant potential V'(r) having a very deep minimum in
r = 1, and regulated by a confining parameter k(A) > [A(A + D — 2)]*, which
expresses the sharpness of that minimum.

The output is a sequence {Axp},oy Of finite-dimensional algebras. Every
operator A € A, p acts on the corresponding Hilbert space of admitted states
‘Ha p, which is also finite-dimensional and can be realized using an irreducible
representation of Uso(D + 1) (the one having Ip = A), but also a reducible
representation of Uso(D); in fact it can be decomposed through the irreps of
Uso(D) having 0 < < A.

The algebraic relations involving Ehvj,fp are invariant under parity, as well
as under any O(D)-transformation of the coordinates, and this was expected
because of the application of a rotation-invariant energy-cutoff to a theory having
the same covariance; then, as shown, the projected theory has inherited that
symmetry. It is also important to underline that these relations are nothing but
the generalizations, to the D-dimensional case, of the ones calculated for D = 2
and D = 3.

The focal point is the definition 2.3.1. It is inspired by the action of a generic
coordinate t, on a spherical harmonic, and it allowed to repeat (in the generic
D-dimensional case) what was done in [13, 14]; in fact, in almost all the proof it
was fundamental that the action of L; p on Y; coincides, more or less, with the
one of the coordinate ¢, on Y, , ..; this is also in agreement with the Wigner-
Eckart theorem, and this is also in agreement with the Wigner-Eckart theorem,
because both ¢, and L, p transform in the same way under SO(d).

Another crucial point of this section is the research of all the eigenfunctions
of L? (section 7.0.3) on S¢, for this reason the goal was the determination of

99
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an orthonormal basis of eigenfunctions {Y;}, for L? in £2 (S7); this returned
an orthonormal basis of H, p and then the subsequent possibility of calculating
explicitely the action of 7, and Zhd on every state 1 (section 2.3.2).

On the other hand, every space (here [ is a fixed number of Ny)

span {Yi(0q, -+ ,01) : I=13> -+ > 1> ||, l; € ZVi}

is the representation space of an irrep of so(D), the one corresponding to L? =
Z(Z+ D — 2) I; it is important to underline that the Cartan subalgebra is too
small to be a CSCO, which means that the sets of their eigenvalues do not
univocally identify all spherical harmonics; then, in this case, one is not able
to write down explicitely an orthonormal basis of L?-eigenfunctions in £? (S?)
[as for (2.15)] and, consequently, to calculate the action of T and Ly ; on every
quantum state .

The aforementioned definition of the components Ly, ; of the D-dimensional
angular momentum operator was also fundamental to realize the algebra of ob-
servables Ax p with a suitable irreducible representation of Uso(D + 1). In fact,
in that realization the ‘projected’ coordinate operator 7, is identified with L, p11
up to some scalar left and right factors.

Finally, we do the proof of the convergence of this new fuzzy hypersphere
to quantum mechanics on S? in the commutative limit A — 400, this was also
expected because in that limit the potential V'(r) forces the particle to stay on
the unit sphere, which (from the mathematical point of view) is represented by
c,p — 1, and then that every operator 7, converges to the corresponding ;.

We now compare our fuzzy spheres with with other ones appeared in the
literature; in [50] the authors build their two fuzzy versions of S3:

e In the first case, from CP} they firstly obtain a fuzzy S} using the fact
that CP? is a S? bundle over S* and that there is a well defined matrix

approximation of CP3 ~ Sg(%), then they construct S% from this S.

e In the second case, they obtain S, starting from the orthogonal Grass-
manian ﬁ% and then using the existence of a well defined matrix
approximation of the algebra of functions on this Grassmanian, in other

words they consider fuzzy orthogonal Grassmanians.

A well-known fuzzy 4-sphere is built in [34], and it essentially coincides
with [51]; there the author considers the Dirac I' matrices, which form the 4-
dimensional spin representation of so(5), and are used in the n-fold symmetric
tensor representation of I' (here Sym means the restriction to the completely
symmetrized tensor product space)

G =ele - @I+I® - l+ -+ - @1a L))

Sym
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forie=1,---,5. The Gg") defined above are N x N matrices, with

(n+1)(n+2)(n+3)

N =

and they fulfill

Then, from
" A 2 .2 1
X;:=—=G;" it follows ZXZ- =rily+0(—]).
n - n

The representations of Spin(5) [or equivalently Sp(2)] are considered in [52]

in order to build another fuzzy S*; in particular, the irrep (é, %) contains the 5
Dirac matrices J,, a = 1,--- ,5, which can be realized as the symmetrization of
L copies of the I" matrices in the Spin(5) fundamental representation:
Jo = Te@I® - @I+I0T,® - @I+ - +1®---®11T,)

Sym

where Sym means the projection in the totally symmetrized irreducible repre-

sentation.

The J, fulfill J,J, = L(L+4)L, then from X, := %Ja, it follows X, X4 =

R?T and that in the limit L — 400 the algebra becomes commutative.

In [35] the authors approximate the sphere SV = Sgng;)l) starting from the
cartesian co-coordinates X“, the angular momentum components L, in RN+,
with a,b € {1,2,---, N + 1}, and then also the Lap in R¥*? with A,B €
{1,2,--- , N +2}. The definition X, := puL, N2, with g € R, returns Snyder-
type commutation relations

(X, X" = —ip® Loy,
and also that (here C3' is the square angular momentum in RY")
XX, =2 [C)2 =),
which is central in the fundamental spinor representation of Spin(N + 2)

(N +1)
2

X, X, = I.

In agreement with the above construction, Sperling and Steinacker [36, 53] build
their approximation S% of S* with a reducible representation of Uso(5) (as for
the above S}) on a Hilbert space V obtained decomposing an irreducible repre-
sentation 7 of Uso(6) characterized by a triple of highest weights (ny,ns, N); so
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End(V) ~ n[Uso(6)], in analogy with our scheme. The elements X := r M9
play the role of noncommutative cartesian coordinates and they fulfill Snyder-
type commutation relations (as for the above S}). As a consequence the O(5)-
scalar R? = XX is no longer central, but its spectrum is still very close to
1if N > ny,ny [because then the decomposition of V' contains few irreducible
representations under SO(5)].

On the other hand, if ny = ny = 0, the representation of Uso(5) turns out
to be irreducible (unlike the above S%) [the highest weight is (0,0, N)], and one
obtain the basic fuzzy 4-sphere S3;, which is essentially the same of [34, 35], but
in the case N = 4:

1
XX, =R*= ZN(N + 4,

so the coordinates can be trivially ‘normalized’; furthermore, from su(4) ~ so(6)
it follows
HA - (07 07 N)su(4) - (07 N)so(5)‘

The authors fuzzy approximate the quantum mechanics on the 4-sphere with the
algebra End (Hy), and it fulfills

End(Hy) = (0,0,N) @ (N,0,0) = @(n,0,n),

n=0

which is its decomposition in the su(4) harmonics.
In turn, every (n,0,n) decomposes in this way in the so(5) harmonics:

n

(n,0,n) = @(n —m,2m).

m=0

So, in End (Hy), there are
N

Pn.0),

n=0
which corresponds to the algebra Ay p when D = 5, but there are also ‘further
modes’; i.e. the representations (n,2s) with s > 1, that can be seen as higher
spin algebras in the Vasiliev theory.

Their physical interpretation of End(V') is that it represents a fuzzy approx-

imation of some fiber bundle on a sphere S* (rather than of the algebra of ob-
servables of a quantum particle on a S%).

In addition, in the analysis of the spectra 3., (A) of the new fuzzy spaces
(chapter 4) it has been shown the following;:

1. O(D)-equivariance: the spectrum 3., of each z;, for all choices of the or-
thogonal axes, is the same.
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2. Parity property:
acX, (A)=—aeck, (A).

3. Monotonicity of the maximal eigenvalue with respect to A:

max ¥, (A) <max¥,, (A+1) and Alirf max ;. (A)] = 1.

4. Density property

Y., (A) becomes uniformly dense in [—1, 1] when A — +o0.

5. On the new fuzzy sphere S% the state x most localized around the North
pole fulfills the property Lsx = 0 (item (C) of theorem 4.3.1), as the gener-
alized quantum state (distribution) 26(0)/sin 6 ~ §(x;)d(z2) on S? concen-
trated on the North pole (here 6 is the colatitude); the classical counterpart
of this property is that the classical particle on S? in the position (0,0, 1)
has zero Lz (z-component of the angular momentum).

It is important to underline that these are welcome properties for a xz;-operator
which is required to approximate well, in the commutative limit, the x;-coordinate
of a quantum particle forced to stay on the unit sphere S2.

Moreover, the spectrum of L; is X7, (A) = {—A, 1-A, ..., A} forall i = 1,2, 3,
by the SO(3)-covariance, and fulfills properties 1,2 (the multiplicity of the eigen-
value m is A—|m|+1).

In the Madore fuzzy sphere, since the x; are obtained by the rescaling (2) of
angular momentum operators acting in an irreducible representation, then all x;
have again the same spectrum as x3, by SO(3)-covariance, and this is obtained
by the rescaling of the spectrum of Lg; this leads to the eigenvalues (all simple)
and eigenvectors

m
T3Pm = ———POm
W= AT A

where A:=(n—1)/2. Hence also in this case properties 1-4 are fulfilled. However,
for this reason there is no longer room for independent observables playing the
role of angular momentum operators on the carrier Hilbert space V,, and property
5 is lost.

For this reason, and the other ones mentioned in the introduction, it is more
natural to interpret the L; in the irreducible representation (ms, Vi) still as the
inthrinsic angular momentum components of a particle of spin A, and the states
(rays) in V} as states on the corresponding spin phase manifold. Then, since the
spin degrees of freedom have no classical limit, it is not possible to define also
position observables or see any state ¢ € V) as an approximation of a classical
point in S2-configuration space; the algebra A,, should be seen simply as the spin

with m € {—=A,--- A},
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phase space algebra, not as a fuzzyfication of the algebra of configuration space
observables on S2.

In chapter 5 various strong and weak systems of coherent states (SCS)! have
been introduced on the fuzzy spheres Si,S%, and we do also a study of their
localizations in configuration as well as (angular) momentum space. As on
the commutative spheres S¢ (d = 1,2), these localizations can be respectively
expressed in terms of the uncertainties Ax;, AL;;, or in terms of their O(D)-
invariant (D=d+1) quadratic polynomials (Ax)?, (AL)? (sums of the variances
of the x; and L;;, respectively); as a consequence, the localizations expressed
through (Azx)?, (AL)? are preferable because reference-frame independent. Gen-
eral bounds (e.g. uncertainty relations following from commutation relations)
for Ax;, AL;;, (Az)? (AL)? are determined, it is estimated the latter on these
SCS, and then it is partly investigated which SCS may saturate these bounds.
Preliminarly we do a discussion about these issues for the commutative circle S*
and sphere S?, because the literature for the latter seems incomplete.

In particular, after the derivation of the O(3)-invariant uncertainty relation
(5.19) (both on S% and on S%), we do a discussion about its virtues compared
to the AL,AL; uncertainty relations (5.7), and then it is shown that the system
of spin coherent states saturates it (see theorems 5.3.1 and 5.3.1); also for the
commutative S? this result is new. Moreover, we do a discussion about the
Heisenberg (i.e. AxAL) type uncertainty relations (HUR) (5.4), which hold both
on S and on S}, and the states saturating them: it has been shown that only the
eigenvectors? v, of L saturate both (5.4);_, or equivalently the O(2)-invariant
inequality (5.4)3, while there is a complete family (parametrized by pu € R) of
states saturating (5.4); alone (these states are eigenvectors of af := L—iux;); the
family interpolates between the set of eigenvectors of L and the set of eigenvectors
of x1.

Moreover, for d = 1,2 a large class of strong SCSs is built on S¢ applying
SO(D)-transformations on suitable initial states w € H,, see eq. (5.12) and
Theorem 5.3.2; in particular, the SCS have been chosen so that they minimize
(within the class) either (AL)?, or (Azx)?; the SCS 8% minimizing (Ax)? is fully
O(D)-equivariant, its states (rays) are actually in one-to-one correspondence with
points of S¢ ~ SO(D)/SO(d), and their (Ax)? is smaller than the uncertainty
(13) in Madore FS, i.e. satisfies (Az)?> < 1/(A + 1) - see (5.15), (5.29) [more
careful computations will lead to lower upper bounds for (Az)?].

For both d = 1,2 a fully O(D)-equivariant, weak SCS W¢ = {Kg =mal9)x|g €
SO(D)} have been introduced; it consists of states minimizing (Az)? within the
whole Hilbert space H,; the states (rays) of W are actually again in one-to-one

LA strong SCS yields a resolution of the identity; a weak SCS is just (over)complete.

2The 1, make an orthonormal basis of the Hilbert space; in a broad (but rather unconven-
tional) sense this basis can be considered the system of coherent states associated to the group
(5.6), semidirect product of a Lie group times a discrete one.
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correspondence with the points of S¢ ~ SO(D)/SO(d). They are determined up
to order O(1/A?), with the help of the results of chapter 4 the vector x is ap-
proximated as the eigenvector x with maximal eigenvalue of a suitable Toeplitz
tridiagonal matrix, and denoted as W? the corresponding SCS; this eigenvec-
tor is in turn very close to the eigenvector with maximal eigenvalue of x; (resp.
xy = x3), because numerical computations suggest that HXA”2 and || Bo(A)]],
both converge with order 2 to 1.

For these reasons the strong SCS 8% (or alternatively the weak one W, if a
resolution of the identity is not needed) can be considered the system of quantum
states that is the ‘closest’ approximation to S¢.

It is important to underline that the states of the strong SCS &% (resp. of
the weak SCS W2, W2> are better localized than the most localized states of the
Madore fuzzy sphere with the same cutoff (I = A) by a factor smaller than 1, see
(5.29) [resp. by a power of 1/A, see (5.34)]. On S3 the state x € S? centered
around the North pole (i.e. with (z1) = (23) = 0, (z3) > 0) fulfills the property
L3x = 0; the classical counterpart of this property is that a classical particle at
the North pole of S? has zero L3 (z-component of the angular momentum), see
section 5.3.2. As noted in chapter 4, such a property is impossible to realize on
the Madore-Hoppe FS. For these reasons, and the other ones mentioned in the
introduction, it is reasonable to see the fuzzy sphere S3 as a much more realistic
fuzzy approximation of a classical S? configuration space.

Finally, the construction of various systems of coherent states on the new
fuzzy circle and fuzzy sphere will be very useful to study quantum mechanics and
above all quantum field theory on these fuzzy spaces.



Chapter 7

Appendix A

7.0.1 The action of (5 in R” and in Rﬁ, when 2< D < D

Let (xq,---,zp) be the rectangular coordinates in R” and (r,04,---,6;) the
spherical ones:

x1 =rsinfysinfy_q - - -sin by cos by,
To =1rsinfysinfy_q - - -sinfysin by,

r3 =rsinfysinfy_q - - - cos o,

rq =rsinf cosl,_q,

Tp = rcosby,

with 7 > 0, 0, € [0,27[ and 6y, --- ,04 € [0, 7.
First of all, in both R” and R” the equality

(6)
Cp= >, L

1<j<h<D

holds, but the crucial difference is that the expression of z, in polar coordinates
(7.1) changes when one passes from R”

~ . / . - . .
Ty =r'sinfy | ---sinb,cosb, 1,
to RP
. . . . ro. . ~
Ty i=rsinfy---sinfzsinfy | ---sind,cosb,_; = - sinfy - - - sin 057,

where

106
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This means that, in order to understand the difference between the action of the
operator C'5 in the two ambient spaces, one can focus the attention only on the

differences between the action (&) of L, in RP and the one (#) in RP.

According to this, if f(zp,---,z1) is a differentiable function on R” and
r" =r, then

0 0 0
xja,\ fxp, -+ ,x1) =T;sinby-- smﬁﬁa—x{l(xp,--- , 1) :xja—:i(xp,n- ,T1);

which implies that the action & on the sphere SP ~! coincides with the one # on
5S¢ in particular they coincide on the corresponding unit spheres.

7.0.2 About the regularity of f(r) in (2.2)

In the case of a second order linear ODE

Y (2) + P(2)y'(2) + Q(2)y(2) = 0, (7.2)

a point zp € C is singular for the equation if P(z) and @(z) have an isolated
singularity at z = zo; 2o is a fuchsian point if P(z) has a pole of order at most 1
in z = 2y and @(z) has a pole of order at most 2 in z = 2.

Fuchs theorem states that in the neighborhood of a fuchsian point every so-
lution of (7.2) is a combination of the two independent ones having the following
behavior:

y1(z) = (2 — 20)"wi(z) and  yo(z) = (2 — 20)*wa(2),
where «; are the solutions of the algebraic equation
2?+ (po— D)z + g0 = 0,

w;(z) are holomorphic functions which do not vanish in z = z,

po= lim (2 — 2)P(z) and ¢y = lim (2 — 20)’Q(2).
Z—r20

Z—r20

From this last theorem, applied to (2.2) under the hypothesis

lim 7*V(r) =T € RT, (7.3)
r—0t
it follows
p=D—-1 and q=—-[(l+D-2)+1T],
then
2— D+ /(D —-2)? +4[Z(Z+D—2)+T]T>02—D+\/ —2)2 0
o] = 9
2
2—-D— AMI+D —-2)+T
y — V(D U + )+ T] >0
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Hence

f(r) =yr*w(r) + 0r*?wy(r) when r — 0;
in addition, according to the self-adjointness of H, it must be
YeDH)=DH")={ype L (RP) : 4 is twice differentiable and Hy € £ (RD)} ,
which implies 6 = 0 and then f(0) = 0.

7.0.3 The D-dimensional spherical harmonics

In this section it is explained how to determine an orthonormal basis of £2 (Sd)
made up of eigenfunctions Y of L? in R,

7.0.3.1 The resolution of L?Y = [(I+ D —2)Y by separation of variables

First of all, from (9) it follows that L, and all these C}, operators can be si-
multaneously diagonalized; in addition, in section 7.0.1 we do the proof that C,
coincides with the opposite of the Laplace-Beltrami operator Agp-1 on the sphere
SP=1in every dimension D, then from [54] p. 21, it follows

0? 10 1

AL L p-1)-ZL_ 2
or? + )7" or r2 7 (7.4)
0? 0 '
L? = — (1 —ty)~ 4 (D—1)t=
( 2)8t2 * o T

where t = cos 8.
Furthermore, when 6 € [0, 7],
g 00 2 L 1 3
dcos  OcosfOP  sinf Il

2 1 9 Loy 1 cosf O 1 9?
dcos2f  sinf oo <_sin6%> ~ sinf <_Sin29% * siHQﬁ)
~ cosf 0 1 o
B _sin39%+ sin26 062
According to this,

and

C —L2——(1—t)8—2+(D—1)t2+ L ¢
b= > ot, ot 11—ty °
9%  cosbl; O cosf; O 1
__Z 2 _(p-1 AT
962 " sin 6, 06, Sin0, 00, sm?d, "
2 (7.5)
__8__(D_20089di 1
003 sinf; 00y  sin?6, d

e (aa )

 gindt 04 a0, 00, sin® 4, ¢
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The aforementioned proof of (7.4); and also (7.5) can be trivially generalized to

every dimension, which means that, when n € {3,--- |, D},
1 0 0 1
Cn = - in" enf Cnf )
sin"2 6,1 00,1 (sm ! (99n1) * sin®f,_, "
) (7.6)
hile L L9 = C 0
W = ——— = ——,
b2 66, 2062

Section 7.0.1 and (7.6) suggest to apply a separation of variables in the resolu-
tion of C,Y =1, 1(l,-1 +p—2)Y forp=2,--- D; then Y = Y1(04,--- ,02)1(61),
(7), (7.6)2 and CoY = Li,Y = IIY with l; € Z imply ¢;(61) = Ce'r?, with
l, € Z.

The constant C' can be fixed by requiring that

27
/ glgfde1 =1,
0

. . . . 1
which implies C = oz

Furthermore
1 0 i 0 1 (7
Cy=— — Oy — —C d C3Y = [5(l 1Y
37 T Sin s 06, (Sm 2892)+sm292 2 and CoV = h(L+1)Y,

while LIL ; = Ln j and the fact that every operator B := AT A has positive spectrum

imply
(Y,C3Y) > (Y, oY) <= 15+ 1, — 1] >0 with 1,1, € Z,

and this is possible if and only if [y > |[1].
The separation of variables

Yl<9D717"‘ ,92) = Y2(6D717"' ,93)92(92)7

returns

. 1 (9 . agg 1 2
bl +1)g: = =250 (Sm 0 892> T Sz, 192

and setting z = cos 6y, then
0 0z 0 0
12
90, 00,0~ “ o2
so one has to solve

0 0 2
lg(lg + 1)92 = & <—(1 — z%%) + 1_—122g2,

which is equivalent to

0? 9, 12
2 i
(1-2 )8z2 _2262 Tl 1) - 1—22

}9220
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This last equation is the general Legendre differential equation (see [55] formula
8.1.1 p. 332) and the solution is the associated Legendre function of first kind:

92(2) = CB}(2) = g2(62) = OB} (cos 0s).

The constant C' can be determined by requiring that

|C\2/ P (cos 6) [ i (00592)} sin Oy dfy = 5 611,
and after the replacement z = cos s, it becomes

! I * 1 ol
cf [ Pie [Ri)] @ = dia.
—1
The equalities

! 2 2 (n + TTI,)l

1 B ()] de = 2n+1(n—m)!

/_ 1 P™(z)P"(z)dr =0 (I#n) and /_

1

from [55] formulas 8.14.11, 8.14.13 p. 338 and P"(x) € R Vx € R imply

2[2—1—1 (Iy — I))!
C 7.8
o= (78)
21+ 1 /(I
g2(cosby) = 2+ l2—|—l Pl1 (cos ).
(la+1)

On the other hand, Iy > |l1| and [1,ls € Z imply that the formula 8.2.5 in [55]
(here Q% is the associated Legendre function of second kind)

then

P = o) P = 2o

v Fv+up+1)| "
becomes ( |
v+pu)t o
Pl'(z) = Py (z); 7.9
(2) = R e) (19

then

241 ()

g2(cosby) = 4/ 5| / 0= ll)!PZQ L(cos By).

This last procedure can be repeated for the angular variables 65, - - - , 64, because

(7.6); links every C,, with C,,_;, for this reason one can now work with a generic

Ch.
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From (7.6),

CotY Ll o(la+n—3)Y and CY 210 (g +n—2)Y

it follows {,,_1 > l,,_» and

0? cosf,_1 O lno(lp—2+n—3)
ln_ ln_ —2 n—1— | — - - . . n—1-
111 =2) g Iy T sin? 0, In=1
The replacement z = cos#,_; implies
0 dz 0 0
= — = 1 — 22—
00p_1 00,10z o
and then the last ODE becomes
0 0Gn_1 ln—o(lp—2+n—3)
ln— ln— -2 n—:__1_2 n—1,
b1 1 = 2)gn-s Gz{( Z)ﬁz}—{— 1—22 In-1
which is equivalent to
82 3 l_g(l _2—|—n—3)
2 n—2\n _
(1-—=2 )@—(n—l)z&+ln,1(ln,1+n—2)— T gn-1=0.
Assume that .
gnfl(Z) = (1 — Zz)T fn,1<2) (710)
and that the function f,,_1(z) (which is determined in the following lines) has a
zero in z = 1 of order higher than 232 (see section 7.0.4 for the proof of this);
then ( )
zin—3 _l4n 3-n
g = T Lo (-2 T L)
and
n—3 Lin z(n —3)z(n+1)

(1- 22)_5% fo1(2)
Fan-3)(1-2) T L+ (12T 1),
which implies

D2 = ~(n-0z |2 =T 4 (-2 g0

— (1) [—Z("Q([ 2 a0 - (= 1) ;_1<z>]
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and, similarly,

. _ 2
(1= = (1 -7 22 au

+2(n = 3)fr1(2) + (1= 2) £ 4(2)] -

Furthermore,

Ino(ln_a+n—3) 22(n*—=2n+3) 2%(n*—4n+3)

a 1— 22 L TG ) TG Ry
lno(lno+n—3) 2*(n*—2n—3—2n>+8n—6)
B 1—22 * 4(1 — 22)
ln2(lna+n—3) 2*(—n*+6n-9)
o 1— 22 4(1 — 22)
1/,,2
:i(n2—6n+9)— ln—2(ly—2+n 133—;4(71 6n+9).

At this point, the first term of the ODE for f, ; [after deleting the common
3—n
factor (1 —2%) 7 | is
(1= 2 fra(2),
the second term is
2(n=3)f1(2) = 2(n = 1) f, 1 (2) = =22f,_4(2),
the third term is

(ot 1 = 2) fan(2) + =2 (o) + wfn \(2)

>—4n+3
= (li_l +lpan = 20,1 + w) fro1(2)

4
= (z _ _ 3) (z _ + 1) fro1(2)

:l/(l/ + 1)fn—1(z)7

with ' :=1,,_1 + ”T_?’, and the last term is

B thon = Bo 0?6009, (st )’ !
1= Fia(&) = T ) = )
with m' :=1,,_o + TLT*Z’»

This means that there is another associated Legendre equation:

(12 )8—2—22£+l(l'+1) 1(”_1/)2

922 0z Jaa(2) =
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and then the solution is [here the constant C' is fixed as done in (7.8)]

20 +1 [(I" —m)!
fn—1(cos 1) + T Pl, (cos b, 1)
20, 1—|—TL—2 ln— 2)' ln—o+75=
=1/ P 2 0,
\/ Ly 1+ln 2+n—3)' In-1tg (COS 1)

which implies

2,1 +n—2 N . Bon g+ 08
Gn_1(cos b, 1) = 1 5 \/(ln_l( = lln_2 - :L>_ B [sinf,_,] 2 PlnjjnT_g (cosb,_1).

It is obvious that I' +m/, I’ — m’ € Ny, so

79) [2lp14+n—2 [(ln-1+1lh2+n—3) . son(lnoat 252)
Gn—1(cosb,_1) = 5 \/ (o — o)) [sinf,_q] 2 PZTHJF,LT_B2 (cosb,_1).
Summarizing,
eiior [P=1 )
Yi(0q,--- ,05,0,) = ZP(0,)] 7.11
l( d 2 1) \/ﬁ ;!i[2 In ( ) ( )
where

PY(0) = )2k +2] - 1\/ (L +( é”f]\j)!_ 2! (sin )7 PH(J ) (cos 0). (7.12)

7.0.3.2 The orthonormality of Y

The Y] built above are eigenvectors of self-adjoint operators, so
/ ViYida =0 if 1#1;
Sd

in order to prove (2.13)3 it remains to show that

/ Y da =1,
Sd
and this is done recursively.
First of all, it is important to underline that from (7.11-7.12) it follows

2w 62([1 l _,
/ Y Yy do = H/ Pl" "(00)n ? 1(0,) sin" ! 6,,df,
52 0 0 I
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2m Li(li—17)01 y
/ SR N
0 2 !

it follows that, if [; # [}, then (2.13)3 vanishes; otherwise, if [; =} > 0 (the case
l; < 0 is essentially the same), then

While from

/ 2?2 (62) l’ ((92) sin 926‘[62 :1 9
0

\1
Il
[\
~
[}
+
[—
|~ |~ |~
o~ |~
[N} (o}
+ | |
o~ | =~
[ .
~— | — ~— | — — =
[\
o~
o~
[\
+
—_
—~ | —~~ |~ |~
o~ | =~
[ RN ol
+ | |
o~ | =~
==
~— | ~— ~— | ~— ~— | ~—

2 2
vmcosty |20+ 1(lL—1)! 2B+ 1 (L —0L)! (1, I
- > i\ T2 @y ), @k @d
(7.7) 52

and if [y # [}, then (2.13)3 vanishes.
In general, if [; =[] fori € {1,--- ,n— 1},

T 1) (2l 4 —1(ly+ byt =2 [20 £ 1( + Ly + 71— 2)!
/ P (6,07 (Qn)smHndQn(?:lz)\/l b1+l +n—2) (20 10 + Ly +n—2)
0

2 (ly = lp—1)! 2 (1" —lp—1)!
R (R 14252 :
. /0 Pzninf )(Qn)PlHn; )(Qn) sin 0,,d0,,
(7.9) |2l +n—1 (I — lp—)! 20 +1 (1 —lp)!
B 2 (L +lpo1 +n—2)! 2 (I 4+l +n—2)
T - lnf +L72 - ln— +L72 .
: /0 Pl£ 2 )(en)P%inQ; 2 )(en) sin 6,,d6,,
x=Ccos b, 2L, +n—1 (ln — ln—l)!
N 2 (In + lp1 +n—2)! (

A +1 (I, —lyy)!
2 (I, 41y +n—2)
X

. / Cp ) g pr () g

Wt lh+5
(.7)

- 512
and this proves (2.13)s.

7.0.3.3 The Y] seen as homogeneous polynomials

The next proposition uses the equality (see section 7.0.4 for its proof)

h—2

WP;(0) = (sinf)™ ]%;gT) (cosf) = (sinh)™ {[cos G]Z_m + [cos 0]"”‘_2 4. } :
2 (7.13)
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which is true up to any multiplicative constant before every power of cosf and
sin 6.

Proposition 7.0.1 FEvery D-dimensional spherical harmonic Y, can be written
as a homogeneous polynomial of degree | in the t, variables.

Proof. This proof is given by induction over D; if D = 3 and m > 0 [the assump-
tion m < 0 is essentially equivalent, because of (7.9)], then (7.13) implies

2P} (63) = (sin )™ |(cos B2)" ™™ + (cos B2)" ™ 4 (cos )" 4 - } ,
S0

}/lm (92, 01) = Q?lm (62) Gimel = (tl + Ztg)m
(t3)l_m + (t3)l_m_2 (tltl + t2t2 + t3t3) + (tg)l_m_4 (tltl + t2t2 + t3t3>2 + ° i| ,

which means that the claim is true for D = 3.

_ Let D > 3 and assume that the claim is true for D — 1, then there exists
P, ..., asuitable homogeneous polynomial of degree [;_; in the ¢y, - - , ¢4 vari-
ables, such that

lh—1 il 6 o)
ld 1l HhP '6 U= Pld—ly'“,h (t17"' 7td)'

On the other hand, the polar system of coordinates (7.1) depends on the dimen-
sion of the carrier space, and then, in R?,

H hPlh 1 . ei1191 — (Sin 9d)ld_1 -ﬁld_lv"'vll (t17 e ’td) 5

for the same P.
This,

d?ﬁz_l (04) = (sin )"+ [(COS 02) 71 4 (cos ) T 4 (cos ) T T -
= (Sil’l Hd)ld_l [(tD)l_ld_l + (tD)l_lD71_2 (tltl + -+ tDtD)

+(tp) T T (it - A tptp) A -

and (2.11) imply the claim. ]
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7.0.3.4 The Y, are a basis of £? (Sd)

Let
e PP be the vector space of polynomials in the zy, - - - ,xp variables of degree
at most [;
e OF be the vector space of homogeneous polynomials in the zy,---,xp

variables of degree [;

e 7,” be the vector space of homogeneous harmonic polynomials in the z1, - - ,xp
variables of degree [ (the ¢ € QP fulfilling Aq = 0);

. 75le , élD and ﬁD be the restriction to the sphere S¢ of PP, QP and T,7,
respectively;

l l
Ql,D = @TmD, QI,D = @le). (714)
m=0 m=0

The goal is to show that
Vfe £?(S%),ve > 03l €Ny, 3g € Qp such that |[f —gll, <e.  (7.15)

The density of C° (S?) in £* (S%) implies that it is sufficient to show (7.15) for
a generic continuous function on the unit sphere; on the other hand, from the
Stone-Weierstrass theorem it follows that the function f can be replaced with a
polynomial, without loss of generality. According to this and

it remains to show that every homogeneous polynomial can be approximated by
the harmonic homogeneous ones, and then that ; p =€ p VI, D.
In order to do this, let

L:p(xy,-- ,xp) € PP — (xf + —I—x%)p(m, e >$D)P£r27
and define in this way an internal product in PP:

(@t al™ g, = (n)!l - (np)! i ng =ma, - np = mp,

0 otherwise.
L is linear and

(L[p],q),.0 = (p.Ag), VpePP and qeP,,



117

which means that L* = A; then
iy =L(Q°) & Ker (L") =r"Q) & T%,.

This implies (the dimension of QF is the the number of ways to sample [ ele-
ments from a set of D elements allowing for duplicates, but disregarding different
orderings)

dim (7;°) = dim (QF) — dim (Q,)
<D+l—1) B (D+l—3) _ <D+l—3) (D+2l—2)(D—-1)

; 1_9 1—2 I(t—1)
_(D+I=3\D+2-2
= -1 I )
(7.16)
and also that
PID:ﬁD@T27;_D2@T47E_D4@"' — élD:ﬁD@ﬁ—DQ@ﬁ_D‘l@.”?

in other words, every homogeneous polynomial on the sphere is a linear combi-
nation of homogeneous harmonic polynomials.
Furthermore,

hE'ﬁD — p=rlg, Ap=0 and with qGﬁD§

this and (7.4); imply
L?q=1(l+ D —2)q.

Then, both q € 'ﬁD and Y] are eigenfunctions of L? with eigenvalue [([4 D —2)
and homogeneous polynomials in the ¢, variables of degree [; this and (7.14) imply
that (; p = p VI, D is equivalent to the proof of the following

Theorem 7.0.1 B )
T.” =Vip VI€Ny,VDeN. (7.17)

Proof. This proof is by induction on the dimension D of the carrier space RP.
When D = 3,

. ~ . (7.16) l 20l + 1 -
dim <7}3> = dim (7}3) = (Z N 1) — =20+1,

and

Vip 2 span{Yy:1=1>1g1 > - > 1y > |L],l; € ZVi}
<
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so (7.17) is true when D = 3.
Assume that it is true for d, this means that

<D+@4—4>D+2@4—3

L1 ; (7.18)

dimV}UH,d = ( ld
-1

this, the hockey stick identity (see [56] formula (2))

n—

() -20)-Tam = 2= (")

i=r m=0 m=0
n=a+r ‘ <m+T) <G+T+1>
> =
— m r+1
(7.19)
and (7.11) imply
1 1
) ) (7.18) D4+m—4\D+2m—3
d T = d md = _—_
imV; p mZ:O im Vi, q mzzo( 1 ) -
_i (D+m—4) D+2m—3
mZO(D—S)!(m—l)' m
1 1
(D+m—4)! (D+m—4)!
I R M
= (D —4)!m! = (D-3)ml
1 1
D—44m D—4+4+m
= 2
e (00)
i -1
m=0 m n=0 n
T (l+D—4+1 ) l-1+D-3+1
-\ D—4+1 D-3+1
_(D+1-3 o D+1-3
\ D-3 D -2
(D+1-3) ) (D +1-23)!
(D =3)! (D —2)1(1 —1)!
D+1-3\2l+D -2 ~
_(PFI=AAAD2
[—1 l !
so the proof is finished. O

According to this last proof
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e The spherical harmonics Y; are the harmonic homogeneous polynomials on
the unit sphere S¢;

e The spherical harmonics are an orhonormal basis of £2 (Sd);

e The collection of operators {L; 5, Cy, - - - ,Cp}is a CSCO for the L2-eigenfunctions

in L2 (Sd);

e The dimension of H p coincides with the one of ’7;{3 +l (and then also with
the one of Vi pi1), so

(7.20)

D+A—2\D+2A~1
dim = (V74T PR

A—-1 A

e Every V] p is the representation space of a SO(D)-irrep, the one with L? =
I(l4+ D —2)I, and
!
Vi.p is isomorphic to @ Vina i D >3,

m=0

while V; 3 is isomorphic to @ Vin,2;

once one defines V;,, » as the representation space of the SO(2)-irrep, the
one with L; o = ml.

7.0.4 The associated Legendre function of first kind

In this section L,l,h € Ny and the behavior of hFlL (0) is investigated, in order
to prove the regularity of g,_1(2) in (7.10).
The equations (7.9) and (7.12) imply that h?lL (0) basically coincides (up to
a multiplicative constant, depending on L, [ and h) with
. 2-h 4 h=2
[sinf] 2 PL+% (cos0)

where P?7 is the associated Legendre function of first kind, L + % (and also
[+ %) is integer if and only if h is even, while it is half-integer if and only if h

is odd; according to this, one has to analyze the following two cases.

7.0.4.1 The case h even
When h is even, then from eq. (6) pag. 148 and eq. (17) pag. 151 in [43]

md"P(x 1 d
P = (-3 T gy o

(2% — 1) (7.21)
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it follows (in the next equations there is not any multiplicative constant, depend-
ing on the indices of P, because they are not relevant in this case, except when
that constant is 0)

_ h—2 _9 ~j  h—2
PLJEZ%Q ) (cos ) = (sin 9)l+¥ Pii% (cosh),
gy h=2
where Pii »2s (cos®) is a polynomial of degree L — [ in cosf which does not
2

contain any terms of degree L — [ — (2n + 1), with n € Ny; so,

WP (0) = (sind)' P 7, (cos).

In addition, from (7.9) and (7.21) it follows that the highest coefficient multiplying
a power of cosf in P! (cos®), when L > |I| and L,l € Z is

(2L)! L<A (2A)!

A 2
T < wapg <2V A+ 1P,

7.0.4.2 The case h odd

In [43] eq. (7) pag. 122 there is another explicit expression of the associated
Legendre function of first kind (pay attention to the different fonts P and P,
while here F' is the Gauss hypergeometric function)

!
2! z4+1\2 1—2z
Pl(2) = Fll1-1+L—-1—-L1-
) r<1—l><z—1) ( bk )

l (7.22)
2 1 1—=2
_ F(1-1+L,~1-L1-1, ,
INORN)) (22 —1)2 2
while in [43] eq. (5) pag. 143 there is the following definition
P! (z) == e2?" PL(z +40). (7.23)
So, putting together (7.22) and (7.23),
1, 2l 1 11—z
P! (z) = e2"" F(l1-I1+L—-l—-L1-1
L(x) e?2 F(l _ l) ($2 B 1)% ( + L, ) ) 9 )
(7.24)

2! 1 1—2
= F|l1—-I+L,—-l—-L1-1 :
F(l—l) (]_—.ZUQ)% ( + ) ) ) 2 )7

in this thesis there the P font is always used, but this is only a stylistic choice,
in fact it is always referring to this ‘real’ function P of (7.24).
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In addition, from [43] p. 161 (12)-(14) it follows

VIZ 2P (r) = - [(L— 1+ (L — 1+ 2)PFA(@) — (L 41— D(L+ )P ()]

2L +1
1
V1—a?Pp(x) = (=P () + Pl ()]
2L+ 1
PPL(a) = 5 (L= 14 )P (o) + (L + P (@]
(7.25)
so, if L =1= %, eq. (11) p. 101 in [43]
1 1 1
cosaz = F (—a, ——a, =, (sin 2)2) ,
2 2 2
implies
1 2 1 11— 0
P2 (cosf) = \/_ F(l,—l, ,ﬂ)
2 ) Vsin 2 2 (7.26)
1 5 0 2 cosf '
1,—1,=,sin’= | = /= .
sin 6 "2’ 2 sin 6

If L =—1=1, theneq. (4) p. 101, eq. (18) p. 102 and eq. (3) p.105 in [43]
F(—a,bb,z)=(1+2)* , F(a,b,cz)=F(ba,c,z),

F(a,b,c,2)=(1—2)""F (a,c—b,c,z : >,

-1
imply
_ o\ 2 1
F 2707§71 & = 1_1 - F 27§7§71_2
2" 2 2 272 55 -1
1 - 5t
= R F _(_2)7§7§7_ __12_
2 2°2 o
(5 ()
- 2 —1l-x
2
(5" (3)
2 Lz ’
and then
1 2 1— 2
Péz(cosé)) F(%2)\/sm F( 3 %Sﬁ) =\ sin 6. (7.27)
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Once calculated these P1 2 (7.25) leads to

»

_1 -1 2
cosOP, ? (cosf) = P, * (cos ) = \/icos 0v/sin 0 (7.28)
3 T

N}

and

sin QP;% (cosf) = ;[2 3]P (cos ) = \/gsin 6+ sin 6; (7.29)
2 ™

for completeness, according to (7.9),

@ ol
@l

2
P; (cosf) = 2\/jcos fvsin 0. (7.30)
m

N
NI}

2

(cosf) = \/jsin Ovsinf , P
s

At this point, in order to conclude the proof of the regularity of g,_1(z) in (7.10),

it is necessary the following

Proposition 7.0.2 Let L and | be half-integer and positive, 0 < | < L, then
P! (cos ) = (sin @) P (cosb),

where ﬁL_l (cos @) is a polynomial of degree L — 1 in cos @ which does not contain
any term of degree L — 1 — (2h + 1), with h € Ny.

Proof. This is proved by induction over L. When L = § and L = %, (7.26)-(7.29)
imply that the claim is true in these two cases. Let L = % +n, with2 <neN
and assume that the claim is true for n—1, then (7.25)5 implies, if n > n'+1 € N
and n’ € Ny,

“[+e-n]  —[3+] [3+n]
sinfPy 3+(n=1) N P%—i-n T P1+(n 2)’
then, from
sin 0P, ~[5+v-n)] (cos ) = (sin 9)2+n/ ﬁ_[%ﬂn/_l)] (cos®)
+( 1) %Jr(nfl)
and | .
—|3+7 . 1y ~— 1
P%Jjn_m (cos@) = (sinf)z™" P%—i—?n—?) (cos ),
it follows that also
P;Einl] (cosf) = (sin 9)%% Pli "] (cosf),
2 2

1 n
where P [2+ 1, is a polynomial of degree n — n’ in cos# which does not contain
any term of degree n —n’ — (2h + 1), with h € Ny.
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On the other hand, (7.25)3 implies

cos 6P§+?:_(T)l)] (cosf) = PéJ_iLJr(nl)] (cosf) + 0 = P;ki(nl)] (cos ) ;
SO ) )
Pl—[§+(n—1)] (COS 9) _ (Sin 9) (nfl) ﬁ:[i-‘r(n—l)] (COS 9) ’
2tn ztn
where P [ +n-)] (cosf) is a polynomial in cos @ of degree 1.
Furtherrnore, (7.25); implies
sin QP 2 +(n) 2l (cosf) = P;[?m] (cos @) = (sin 8)% Plk n) Rl (cos ),

so the claim is true also for n, because this last equality means that

Pékfﬁ] (cosf) = [sin 0]%Jrﬁ }Njékfﬁ] (cos ),

~_[i457 . .
where Plkf ] (cos®) is a polynomial of degree n — n in cos€@ which does not
2

contain any term of degree n —n — (2h + 1), with h € Ny. H

It is important to underline that the hypothesis [ > 0 in the last proof is not
stringent, in fact the same result can be proved also when [ is negative, because
of (7.9).

In addition, from (7.26)-(7.30) it turns out that the highest coefficient multi-
plying a power of cosf in P! (cosf), when % > L>|l|and L,l € % is always less
or equal that 2L + 1; on the other hand, from (7.25) it follows

_ 2L +1 (L+1-1)(L+1) _
P1(z) = V1 — 22P! P
L) (L—1+1)(L—1+2) ‘ L($)+(L—l+1)(L—l+2) L-1();
Pt (z) = —V1 = 22(2L + 1) Py (z) + P, (2),
2L +1 L+1
Pl (x) = L——Hlxpﬂx) “I-i+1 1 (2);

and then that the highest coefficient multiplying a power of cos in PY 41 (cosB)
is less then [2(L + 1) + 1]? times the sum of the highest coefficient multiplying a
power of cosf in P! (cosf).

According to this, by recursion one has that the highest coefficient multiplying
a power of cosf in P! (cos®) is

2P [(2L + DI S 2N [(2A + D).
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7.0.5 The square-integrability of ¢; p

In this section we do the proof that that every 1, p is square-integrable and also
the explicit calculation of M; p.
The integral
[ 1ol ds
RD
can be factorized in this way:
2 2 e [9075717(7“)]2 d
[Yup|” dr =M p| A
RD T

0
: { / Yi|? (sin® ! Ogsin 2 0y - - - sin o) d1dbs - - - dby
Sd

+oo

2.13

(219 |Mz,D!2/ g0, (r)]* dr.
0

So, proceeding as in section 6.5 of [13],

Y/ ki.p

/ lrpl de =1 <= M p = T (7.31)
RD
7.0.6 The action of #;, on Y]
First of all
Definition 7.0.1 Let L > |l| and 2 < j € N, then
N LI+ =1L +1+ )
A(LL) _\/(2L+j—1)(2L+j+1)’
N (L—1—-1)(L—-1)
B(L,1,j) = \/(2L+j—1)(2L+j—3)’
4 (L—1+2)(L—1+1)
C(Lvlaj) ::_\/
2L +j—1) (2L +j +
L+j-1)Q2L+j+1) (7.32)
N LAl =2 (L5 —3)
D(L’l’])'_\/ @L+j—1)@2L+j—3)
L JLHlF (L -1+ 1)
F(L.1.) "\/(2L+;-1)(2L+;+1)
o @=L+lt-2)
G5 '_\/(2L+j—1)(2L+j—3)'
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They fulfill

A(L,l,j)=D(L+1,1+1,j), B(L!j)=C(L-11+1,7j),
F(L,1,j) = G(L+1,1,5), F(LLH)AL+11j) = AL L j)F(L+1,01+1,j),

G<L>l?j)B<L_ 17l>j) = B<L717J)G(L_ 17l+ 1>j)>
(7.33)

but it is also important to point out something about the generalized associated
Legendre functions P?.

From (7.25) and (7.32), it follows

2L -1 [(L+1 —2 2—j i=2
[sin 6] ; P +] \/ + +] [sin@] 2" [sinf] P (l;r 2 )(cos 0)
— L+
2L+]—1 L~|—l+]—2 =) 1
[sinf] 27 ———
2L+j5 -1

[(+1)+732]
{ L+l+j—1)(L+1+] )P[(LHHJ 2 (cosb)

—(L-=0)(L—-1- 1)P[(L[(Flrl)+] }(cos 0)}

/2L+j+1 (L+1+7)!
\/ L-1)!

ﬁwugﬂ( m¢lﬁJ+J—1@+l+ﬂ

(L+1)+352] (2L+j—1)(2L+j+1)

PLvj—3 [L+i+j—2), 2
N 2 J T

[(+1)+132] (L—-l-1)(L=1)
- P 3 0 . .
M1HJ1@%)¢@L+9—U@L+J—@

(L+l+j—1xL+l+j)—HWm
(2L+j—1)(2L+j+1)7 &

] @w-l-nE-
2L+ —1)(2L+j —3)

A(L7l7.]) PL+1(9> +B<Lvl7]> PL 1(8)

+

(7.34)
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2L -1 [(L+1 —2 i=2
[sin 6] ; P =4/ +‘7 \/ i +‘7 [sin 9] [Sln 0] PL (]+22 ) (cosf)
2L+j—1 L+l—|—j—2 [s'ne]? 1
=V ' oL +j — 1

{ P{“ D+ ]( os) + P Sl ](COSG)}

(L+1)+132] [(L-1)+132]

[2L+j5+1 [(L —2)! 2
B +7+1 [(L+1+] )hmﬂﬁ*
2 (L—1+2)!

it \/ ( (L—1+2)(L-1+1)

(L+D)+15] 2L+ j—1)(2L+j+1)

L+ —3 [(L+i+j—a), e
+ 5 \/ =D [sin 6]

: LAl4+j—o)(L+1+j—3
plo- l’tg](cose) (L + +J )L+ +J )
[(L-1)+757] 2L+j5—-1)(2L+j—3)

B (L=1+2)(L—-14+1)
B (2L+j7—1)2L+j+1)

)
)
\/(L+l+j—2)(L+l+j—3) i
_|_
)
)

—l-1

jPL+1 (9>

(2L+j—1)(2L +j — 3) P 0)

- C(Lalvj) PL—|—1(0 +D(Lal7.]) PL 1(0)
(7.35)

2L -1 [(L+1 —2 2—j (14432
[cos 6] ;P =4/ +] \/ i +] [sinf] 2 [cos | PLJEZ;F;QQ )(COSH)
2
2L+j—1 L+l+]—2 =) 1
[sinf] 2 ———
2L+j5 -1
piz2

[()+152] [0 ]
{(L+z+3 - 1)P[(L+1)+] 2}(0089) (L-np " 1)+j22]<cose)}

_ [\/(L+l+j—1)(L—l+1)

—1
jPL+1(9)

QL+ -DEL+j+1)
\/ (L-D(L+1+]-2) ] 20

+

(2L+j—1)(2L + 5 —3)

= F(L,1,5);Py1(0) + G(L, 1, §),Py_,(6).
(7.36)
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These last relations are fundamental, in fact they are used in order to under-
stand the action of a coordinate t; (seen as a multiplication operator) on a D-
dimensional spherical harmonic Y;.

Remark 3 Let t := % and t, := =, when v € {1,2,--- D}; obviously

tyt_ +t_ty = (t1)° + (t2), so (7.34)-(7.36) can be used to write t,Y; in terms of
other D-dimensional spherical harmonics, for instance

ln 1 ]-
P — ¢ (l1+1)91;
H ] V2

t. Y, =sinf;sinfy ;- --sinby

then in the product sin (6;) - Q.F)llzl (09) it is necessary to use (7.34), because t,
changes 1% to e hitD01 g

t.Y; =sinfgsinfy_1 - -sins [A (I, 11, 2) 2P (01) + B (lo, 14, 2) o P (61)]

la+1
d —in—1 ]' i(l1+1)91
. anln (6,) —\/%e

n=3
and so on with the remaining factors sin6; - jPJ L (6;).

Of course, this last procedure can be repeated also for £_ and then for every
t, with v € {3,---, D}, while the actions of ¢; and ¢, can be recovered from the
ones of £, and t_. According to this, let

Rh,D (l, l,) = <Y2/, thYD (737)
and this definition implies that, in general

LYi= > RepGl)Yy, where U=l 1oy, Uy lya, - 1)
Vil =U51=1
for j=v—1,-.d
(7.38)

Remark 3 and (7.37) suggest that every R, p can be written as a sum of
elements, where every addend is a product of several A, B,C, D, F,G; it is im-
portant to note that there are some simple rules, reported in the the next lines,
which help to calculate every R, p.

The first rule is that the generic term of a R, p is always written in an ‘ordered’
way, in fact the factors appear in this ‘order’:

Ryp(-vi-or) =t D2, liv1, 5 +2) By, [, + DAL, Lia, §) o4

in other words a factor having third argument j + 1 is always right-multiplied by
a factor having third argument 5 and always left-multiplied by a factor having
thirs argument j + 2.
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Remark 4 The other rules are these ones:

o Every A(l;,1;-1, ) is always left-multiplied by an A(l;41,1;, j+1) or B(lj41,1;, j+

1),

o Every B(l;,1;_1, ) is always left-multiplied by an C(lj41,1;, j+1) or D(lj11,1;, j+

1);

o Every C(l;,l;_1,7) is always left-multiplied by an A(lj41,1;, j+1) or B(lj+1,1;, j+

1),

o Every D(l;,1;_1,j) is always left-multiplied by an C(lj41,1;, j+1) or D(lj4q,1;, j+

1);
o In Ry p the first factor (from right to left) is A(ly,11,2), or B(ls,11,2), or
C(lg, ll, 2), or D(lg, ll, 2),

o In Ry p the first factor (from right to left) is A(la,14,2), or B(ls,11,2), or
C(lg, ll, 2), or D(l27 ll, 2),

o Ifv >3, in order to calculate R, p, it is better to start by using (7.36) with
0=40,_1, and then go ‘backward’.

7.0.7 Proof of (2.19),

The definition 2.3.1 (which uses the R coefficients) allows to take the relations
among the coordinates ¢, (seen as multiplication operators) and obtain from
them some relations among the components L ; of the D-dimensional angular
momentum operator.

In particular,

(t1)2 + (t2)2 +--- 4 (tD)2 =t t_+t_ty+ (t3)2 NS (tD)2 —1
implies
[(t1)* + (82)° + -+ + (tp)*] Vi = Vi; (7.39)

but (7.38) implies also that [here Z (I,1’) are suitable coefficients, which can be
obtained from the Rs]

[(t)? + (2)* + -+ ()’ Yi= Y Z(A,V)Ye; (7.40)
IR

in addition, (7.39) and (7.40) imply Z (I,1’) = 0 if there is at least one j such
that [; # ;. On the other hand, it is obvious that

ZW) = 2Z(1) =1, (7.41)

so only the Z () are relevant.
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Remark 5 FEquations (7.34)-(7.36) imply that

o if Rpp(-- by, U5, U520,-++) contains a factor A(lj, 14, j),
then l/j _l + ]_ (an l/ 1 = lj—l +1,

o if Rpp (-l lj—1,--- -+, U5, U521,-++) contains a factor B(l,1;_4,j),
then l'; —l —1 andl =l +1;

o if Rpp (- ULz, -5+ U'5,lU4,-++) contains a factor C(l;,1;_1,7),
then l/j = lj + 1 and l/]’,1 = lj,1 — 1,

o if Rp (-, li—q, ;- U5, U21,--+) contains a factor D(l;,1l;_1,7),
then l'; =1; —1 andlj 1 =1l —1;

o if Rpp (-l lji—y,--- 5, U5, U521,-++) contains a factor F(lj,1;_4,j),
then l/j _l —|— 1 G/ﬂdl] 1 = lj—l;'

o if Rpp (-l lj—y,--- -+, U;,U521,-++) contains a factor G(l;,1;_4,j),
then l/j l —1 and l/] 1= ljfl,'

in other words, these A, B,C, D, F, G express that an index is raising or lowering,
as i remark 3.
Furthermore

L=t t 4+t t,+(ts3)>+ -+ (tp)

= [cos 0] + [sin 04)” {[cos Og_1]" + [sin Oa1]” {- - {[cos Bo)* + [sin O)*} -} }
(7.42)

implies

{[COS 92]2 + [Sin 62]2} Yi = {[F(l2> lla 2)]2 + [A(ZZ> ll> 2)]2 + [C(l27 ll> 2)]2
+ [Gllay 11, 2)) + [B(la, 11, 2)) + [D(l, 1, 2)]°}
Y

= {Z12(l2) + Z22 (I2)} Vi
(7.43)

while remark 4 implies

{[cos 0s)° + [sin B3] {[cos 0o)” + [sin6,)°} } Y =
{[F(I3,15,3)]> + [A(l3, 12, 3)]* Z1.2 (1) + [C (I3, 12, 3)]* Za2 (I2)
+ (G315, 3)) + [B(l3,12,3)] Zio (I) + [D(l3,12,3)]* Zoo (1)} (7-44)
Y
= {Z15(l3,12) + Zo3 (I3, l2) } V1;
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and so on with the other elements of (7.42), so

{[cos 0,]> + [sin 6;)° {[cos 0, 1]° + [sin6;_,]? {---{[cos 02]” + [sin 02]2}}}} Y, =
{F (L, ma, )P+ [AW, o1, D Zrgr (oay La, -+ )

+[C(s,19,3))* Zojo1 (Ljm1, lj—a, -+ 1o) + (G, i1, 5))

+ B im1, ) Zjor (L1, Loy 1) + [D(Is, 12, 3)]” Zajo1 (=1, Ly -+, 12) }
Y

=: {Zl,j (lj, li—1,--- o) + Zaj (lj; li—1,--- o)} Y.
(7.45)

It is important to underline that every Z,; defined above does not depend
on the dimension D of the ambient space, and this is a direct consequence of the
factorization in (7.11).

A crucial result of this section is the following

Proposition 7.0.3

l+d—-1 l

Dol =g gy el =5

(7.46)

Proof. The proof is by induction on the dimension D of the carrier space R”. If
D = 3, then

t-i-YEz,h = A(l27 ll? 2)}/22-%1,11-&-1 + B(l27 ll> 2)}/22—17114-17
t—YZQ,ll - C<l27 l17 2>}/12+1,l1—1 + D(ZQ) l17 Q)Ylg—l,h—h
t3Y 0 = Flo,11,2)Yi410, + G(lo, 11,2) Y01y,

and

1 1
[ttt ty + ()] Yigu, =9 = [A(l, 1, 2)]° + 5 B2, L, 2))* + 5 (Ol 2))* +

N | = —
N | —

wwﬁﬁfwMMﬂW+W@mmﬁmw

SO

loy+3-3 1 la 1

W33 2 222l

Zio (1 -
12 (I2) 2,+3—-3 2

then (7.46) is true when D = 3. Let D > 3 and assume that (7.46) is true for
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D — 1, from (7.45) it follows

ZLd (l7ld—17" ) ) [F(l ld 1, )]
+ (A lger, )] Zygon (lg-r, lg—oy -+ o)
+[C(, L1, )] Zo.d-1 (la—1,la—2, -+, 12)

_(tlaa+d—1)(1 —lay +1)
(2l 4+d—1)(2l + D)
I+l +d—1D)(1+1g1+d) lgy+d—2
(2l+d—1)(21+ D) 241 +d—2
(=l +2)(I=1g-1+1) la—1
(2l+d—1)(2l—‘r—D) 21d_1+d—2
_l+d-1
C24d-1

(7.47)

and

Z27d (la ld—l; Tt 7l2) = [G(la ld—l; d)]Z
+ [B(l, g1, d)]2 Zyg-1 (la=1,la—2, -+, 12)
+ [D(1,lg-1, d)]2 Zod—1 (la—1,la—a, -+ ,12)
(U= lg) (I + g +d —2)
- (204+d—-1)(21+ D —4)
(l—=lgr =D =1gq) lg1+d—2
20+d—1)2L+D—4)2ly3 1 +d—2
{+lgr+d—=2)(1+ 141+ D —4) la—1
(2l+d—-1)(20+ D —4) g1 +d—2

l

T2A+d-1
(7.48)
so the proof is finished. n
It is interesting to note that, because of this last proposition,
Zia(l) +Zza(l) =1, (7.49)

which agrees with
Vo= [ttt + ()" 4+ (tp)"] Vi = {Z1a () + Zoa D} Vi (7.50)

Here comes the proof of (2.19);.
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Theorem 7.0.2 The definition 2.5.1 implies

LYY= Y LpYi=Il(1+D-2)Y. (7.51)

1<i<j<D

Proof. This proof is by induction on the dimension D of the carrier space; if
D =2, then L*Y}, = L?,Y;, = (11)*Y},; so (7.51) is true for D = 2. Let D > 2
and assume that (7.51) is true for D — 1, which means that

Y Ly Yi=lia(laa+D=3)Y (7.52)

1<i<j<d

From remark 5, proposition 7.0.3 and definition 2.3.1 it follows

ZL = (di, 1.p)" Zoa—r (L1, 1) Vi
(dz,ld_1+1,D) Zia—1(lg—1,- )N
la—1 (7.53)
=< |(l+1)(l+D—-3)—1lg_1(lyer+D —4)| ——— 2 Y] :
{j0+ 00+ D=9 -t + 0 -0 0y
lg1+D—3
I+1)({+D—3)— (l4— V(g1 +D —3)| ———
{0 D=3 = a4 D+ D= 3] g D=
=[l(+D—-2)=lg1(lag-1+D—3)]Y.
The proof can be now completed because
vi= Y nyi- Y 1 Yl+ZL v, TPET 4 D -2
1<h<j<D 1<h<j<d
(7.54)

]

7.0.8 Proof of (2.19),

The definition 2.3.1 is given by induction on the dimension D of the carrier space
RP, this means that, in order to prove (2.19),, it is sufficient to show that

) 1
[Lyp,Ljpl =1iLn; , [Lnj, Ljp]l= th,Dy

[LhJ, Lp,D] =0if D 7& h,] and V% 7A h,]

(7.55)

7.0.8.1 Proof of (7.55);

Let h < j, of course [ty, t;]Y; = 0 Vh, j, but this and (7.38) can be used to obtain
some informations about the action of [Lj p, L; p] on a spherical harmonic Y;.
It is important to point out that
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Remark 6 Let 1 < h < j < d, then tyt;Yi, 1, 5.1 can be written as a lin-
ear combination of (D — 1)-dimensional spherical harmonics Yy, | .. p, with, in
principle, |l —U'n| <2, Vh < d—1.

More precisely, tp- on'Yy, 1, ,..1,, ‘modifies’ only the integers lg_q, -, lh_1,
while tj- ‘modifies’ only lg_1,--- ,l;_1, then the ‘modified’ integers from the action
of tyt;-, as the ones from the action of tjty- are ly_1,--- ,ln—1 and, in particular,
’lp_l,P’ <2 /pr € {d_17 7j_1}7 while ‘lp_l/p‘ =1 pr S {j_27 7h_1}

Then

0=1ltwt;]Yu= Y. Qonjlaalh) Y, (7.56)
|l/;01 71?1‘§2
pr=d—1, j—1
|l,P2 _lpz‘zl
p2:j727"' 7h71
where

ab = (g1, 1) and g, = g1, U1, g, 1)

Furthermore, the definition 2.3.1 implies that the action of L, p on Y} is
similar to the action of the coordinate ¢; on Y, the only difference is given by
the presence of the d coefficients; so

Lo, LiplYi= Y Qpny (L1) Yy,
Uy —lp | <2
pl‘:dl—l,-l-l,j—l (7.57)
‘l/p2*1p2|:1
p2=j—2,+,h—1
where
lfz = (lv l/d—la e 7l/h—17 lh—27 e 711) .

It is necessary to prove the following

Proposition 7.0.4 B
if there exists at least onep € {d —1,---,j — 1} such that |l, — U, = 2.

Proof. First of all, if [;_1 # 'q_1, for example I’y 1 = 151 + 2 (the case 'y =
lg—1 — 2 is similar), then

Qong (L) = —digy 41,0011, 1+2.0Qpn; (1,1),

but Qp; (1,1}) = 0 because of (7.56), and this implies Qp 5 (I, 1;) = 0.
Furthermore, if j < d — 1 and l4_y = l'y_1, while I}, , = l4_2 + 2 (the case
Il 5 =1l4q—o — 2 is similar), then it must be
<Yl;” Lh,DLj,DYE> = [dz,ld,l,DB (lg—1,lg—2,d = 1) dyy, , DA (lg—1 — 1, lg—2 +1,d = 1)
+digy 41,04 (la—1,lg—2,d = 1) dyy, 1,pB (lg—y +1,1lgo+1,d — 1)} g(1,1;)
::’g (la ld—la ld—2) g (la l;1) )
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for a certain function g and, similarly,

<Yl§n LipLypYy) = [di, 0B (la—1,lg—2,d — 1) dyy, , pA(lg—1 — 1 lg—a +1,d — 1)
+dig, +1.0A (la—1,la—2,d — 1) diy, 11,08 (lgo1 +1,lg—2+1,d — 1)} g(L,1})
=g (1, la—1,1la—2) g (L,1},)
for the same function g, because Qp 5 ; (1,17) = 0; so, also in this case @D,h,j (L,y) =
0.

In general, if thereisap e {d—1,---,j+ 1} such that ',y = [,_1 + 2 (the
case I'p_1 = l,_; — 2 is similar), while [, = I, Vg > p, then

<Y2;L, Lh,DLj,DYE> =ag1 (I, lg—1, -+ 7lp)

’ [A (lpa lp—lvp) B (lp + 17 lp—l + 17p) + B (lpa lp—lap) A (lp - 17 lp—l + 1,p)]
" 92 (l7 l;L) )

and

<Y1;L, LipLnpYy) =g1 (I, la—1, -+, 1)
’ [A (lpa lp,l,p) B (lp +1, lpfl + 1717) + B (lpa lp,l,p) A (lp -1, lpfl + 1,]?)]
" 92 (l7 l;z) ’

for the same functions g; (because l, = ', Vg > p) and g, [because Qpp ; (1,1}) =

0]; so, also in this case, @p; (1,1},) = 0.
Finally, if l/j—l = lj—l +2 (the case l/j—l = lj—l —21is similar), l/j_2 = lj_g +1
(also here, the case I';_o = l;_o — 1 is similar), while [, = I';, Vg > j, then
<Yz;1, Lh,DLj,DY2> =gs (l, lg—1,-- 7lj)
. [F (ljfly lj*27j - 1) A (ljfl + 17 ljf27j - 1)]
* 94 (l7 l;z) )

<Yl;L, LipLypYr) =g5 (L, lg—1, -+, 1))
Ay g, i = D) F (L + 1, Lo+ 1,5 — 1)

" 94 (l7 %) )
for the same functions g (because I, = ', Vg > j) and g4 [because Qp . ; (1,1}) =
0]; so, because of (7.33), Qp,n; (1,1}) = 0. O
The last proof implies
Lo, LiplYi= Y Qoag (L1) Yy, (7.58)
L

and from now on assume that [}, = [, Vp > j — 1, otherwise @Dvh,j (L,1) =0.
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It is necessary to further investigate about these
@Dﬁ’j (1,1;) when |l',—1,|=1,pe{j—2,---,h—1}.
In order to do this, let

Tl(l lp-1,p )3214( lp-1,p )G<lp+llp 1+1p)—F( plp)B(lp+llplp)7
Tl(lp’lp LP ) B(lp>lp LD )F(lp 1 lp 1+1 p) G(lpﬁlp LP )A(ZP_LZP LD )7
T ( p LP ) C( p LP )G(lp+17lp—1 ) F( p LP )D(lp"'l’lp 1, P )7
T (lpalp LD ) D(lpalp LD )F(lp - 17lp71 - >_ G<lp=lp 1 p)C<lp - 1vlp 1, P )7
they fulfill
\/(lp +lpa+p =1, — 1) diy 1y 1 +1,p+1
T (l lp 1,P )_ = )
2, +p—1 20, +p—1
\/(lp +lp+p =1, — 1) diy 1y 1 +1,p41
T (l lp 1,P ) - - = )
2, +p—1 2, +p—1 (7.59)
Tl(l I ) = — \/(lp Flh1tp=2)l =l +1) _ iy 1y p1 .
prip=1rP o, +p— 1 o0, +p—1
1 \/(lp + lp—l +D— 2)(lp - lp—l + 1) _ dlp»lp—17p+1
T (lzhlpflvp) = = .
20, +p—1 20, +p—1

Similarly, for n > 2, let

TV (ptn—1:bps l—1, p) = [Alp4n—1, lp4n—2,p + 1 — 1)]2 Tln_l(lp—i-n—% lps lp-1,D)
+ [CUp+n—1,lp4n—2,p+n — 1)]2 T2nil(lp+nf27 lps lp-1,p)

_ dlp,lp,1+1,p+1
21p+n71 +p+ n — 2’

T35 (lp+n—1,lps lp-1, ) = [B(lpsn-1, lprn—2,p + 1 — 1)]2 T17171<lp+n72a lps lp-1,p)
+ [D(lpsn—1, lpn—2,p + 1 — 1)]2 13 lpin-2,lp-1,D)

diy i, 1 +1,p+1
21p+n71 +p+ n — 2’

T3 (lpn—1,lps lp—1,0) == [A(lptn—1,lp4n—2,p + 1 — 1)]2 T;A(lp—i-n—% lps lp—1, D)
+ [Clptn—1; lppn—2,p + 1 — 1)]2 T3 lptn-2:lps lp-1,p)

diy i, 1 pt1
21p+n—1 +p+ n — 27

T} (prn—1, by bp—1, ) = [B(lptn-1, lprn-2,p + 1 — 1)]2T§Z_1(lp+n—2;l lp-1,p)
+ [D(lp4n—1; lptn—2,p + 1 — 1)]2 Tf_l(lp—i-n—?v lps lp—1,P)

_ dlp,lp_1,p+1
2pin1+p+n—2

(7.60)
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Assume (witout loss of generality) that I';_5 = [;_o — 1, then

Qs 1) = { (doa 1 1,0)" {[AQ1,la20d = 1) {[Alla2las, D = 3)P {-++)

+[C(lu—a,la—s, D = 3)* {--- }}
+[C(l—1, la—a,d — 1)* {[B(la—z, la—3, D = 3)* {- - }
+[D(lg—2,l4—3, D — 3)]2 { }}}
+ (digy 10)  {[BUa1slasyd = 1)* {[Allas,las, D =3) {---}
+[C(la-2,la-3,D = 3)*{--- }}
+[D(lg1,la—a,d — D {[Bla—s, la_s, D — 3)]2{ -}
+[D(la-2,la-3,D = 3)]" {-- }} } }

Ry (090007
(7.61)

where
il = (g, i, d) VPP = (g — 1, U, D)
Remark 7 The {---} in (7.61) is such that
o cvery [A(ly, lh_y, h)]? is always left-multiplied by [A(lhsr, ln, h + 1)) or [B(lpsr, In, h 4+ 1));
o cvery [B(ln, ln_1, h)] is always left-multiplied by [C (Ins1, I, b + 1] or [D(lpi, I, b+ 1)]%;
o cvery [C(ln, ln_1, h)]? is always left-multiplied by [A(lps1, ln, b+ 1)]* or [B(lns1, In, h + 1)]%;
o cvery [D(l, lh_1, h)]* is always left-multiplied by [C(Ihyr, ln, b+ D)) or [D(lpi, In, b+ 1)]%;
o the most ‘internal’ term of {---} is T, (lj—1,1;—2,7), with p € {1,2,3,4};

o cveryTy (I;_1,1j_o,7) and T} (I;_1,1;_2, ) are always left-multiplied by [A(L;,1;_1, )]
or [B(l]’ lj—lvj)]2;'

o cvery Ty (i_1,1j_2,7) and T} (1;_1,1;_9, ) are always left-multiplied by [C(1;,1;_1,b)]”
or [D(lj, 11, 5)I".
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This and (7.60) imply
Qpay (L1) = {(dz,zd_1+1,D)2 { [A(lg-1.lp—3, D = 2)P T’ (Ip-3, i1, 1jo2,§ — 1)
+¢Cx@fthf&1)-2n275*4*1an&zf4,@,%j-—1)}
+ (digyy,0) { [Blact,lp—3, D = 2P T 7 (Ip—s, o1, 2.5 — 1)
+[D(a1 5, D = 2P TP (s bl = 1)}
- Rnj1 (l|j7h’i7|j,h>
d;.

—1,lj-2,7 ih 7719.h
J J R - (l s ’l/ s )
2y 1+D—3 " P

(e [— (dl,ld71+1,D)2 + (dl,ld,l,D)Q}

=dy;_ ;5B <l‘j,h’ f/lj,h> :
(7.62)
and this proves the following

Theorem 7.0.3 The equation (7.61), using the rules of remark 7, becomes
Qg (L1) =di 1, 5Rnj (l|j’ha fl“) : (7.63)

The same job can be done with the assumption I';_o = [;_o + 1, in this case
the result is an equation like (7.61), but with 77 and T5 instead of T3 and Ty,
respectively; and in this case it turns out that

@D,h,j (L1,) = —di,_, 1, o415 - Rnj <l|j’h>lA’|j’h> ; (7.64)

where lA’ = (lj_Q + 1, e ,l,h—la lh_Q).
Finally, definition 2.3.1 and (7.63-7.64) imply

[Ln,p: Ljp] = il (7.65)

7.0.8.2 Proof of (7.55); and (7.55)3

Let 1 < h < j < d, the definition 2.3.1 implies that the action of L; p in RP is
the same of ¢; in R?, the only difference is given by the %d%_p p coefficients and
their signs (here I ; = gy or I;_; = l4_1 + 1), but the action of L ; on a Y,
does not change the indices [ and [;_;.

According to this and (2.25), from

1 1
[LhJ', .I’j] = < Ty 1t fOHOWS [Lh,j7 Lj,D] = —_thD,
7 2

and from

[Lpj,xp) =0 if p#h,j it follows [Ly;,L,p]=01if D # h,jand p # h,j.
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7.0.9 On the action of ‘projected’ coordinate operators ),

The behavior (2.15)-(2.16) of a generic 1 p and the expression of the integration
measure dx of R” in spherical coordinates

de = rP sin®t (0) sin?"2 (Bg_1) - - - sin (B2)drdfydbs - - - dby
allow to factorize the scalar product (Yy p,Zpthi p)pp in this way:
(Yv.p,Tuthi.p) = (fou,.p:7for.0) g - Yv, th Y1) ga s

where
(for,p:7fou,0)ps == MypMy p /+°° re- k”D(T_FI’D)QG’M(T*”l’,D)QdT, (7.66)
0
while the value of the ‘angular’ scalar product
(Y, thYi)ga = /Sd YiitnY [sin®™! (04) sin?™? (64_1) - - - sin (62) ]| d61dbs - - - db,

is
(Y, thY1) ga = Bup (L),

according to sections 7.0.3 and 7.0.6.
On the other hand, as for section 6.6 in [13],

B \/kl,D’“lil,D(ﬁ,D—ﬁiLD)Q 5
/ ™ ~
(foux1,0, 7 foup)gs = MipMis1p e 2(VEupty/fin) T11+1,D;
Vkip + ki

with _ _
N KkipTip + \/kix1,0T141,0
TLi+1,D = \/k n \/k . (7.67)
1.D 1+1,D
Then, in order to calculate (fo;+1,p,7fo1,0)p+ at leading orders in 1/v/kp, the

following steps are needed.
First of all

- b(l,D) ,[b(L, D)  [b(, D) 27[b(l, D)]* s
_ _ _ . (7.68
Tp =1+ o 3 2 9= e +0 (kp’); (7.68)
while
3 9 [b(t, D) 27 [b(l, D)]’
Vkip =v/2k b(l,D) — = =
hp ot s P = o vk T 16 452 /2K (7.69)
405 [b(1, D))* '

U9 —4
128 8k3./2kp (ko).
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implies

9[b(l, D) —b(l + 1, D)]?
8 2kp

[b(l, D)) [b(I + 1, D)]

VEokip 2kD+ b(1, D) + b(l + 1, D)] —

27 [b(l D)+ [b(l +1,D)]* -

16 k2,

[b(1 £ 1, D)]* [b(, D)]
a k2

(7.70)

+ 0 (kp%),

s+ Vs =23/%h + 3b(1,D) +b(l£1,D) 9{[b({ D)+ [b(l+1,D)"}

2 V2kp 8 2kpv/2kp
27 {[b(l, D)’ + [b(l £ 1, D)’} 405 {[b(1, D)* + [b(l = 1, D)]*}
16 4/@3% 128 8k3v/2kp
+0 (kp°) .

1 1 3], D) +b(l+1,D)]
VEp+ ko 2V2kp 8 (2kp)2
9 [b(1, D))* + [b(I £ 1, D)]* + b(l, D)b(I £ 1, D)

+ 1_6 (2]{D)% +0 (kBS) )
(7.71)
i+ i 3405 + 2D L)
45v2[b(l, )] [b(1 £ 1,D)]* + 2b(1, D)b(l £ 1, D)
128 (2kp)i
5672 [b(1, D)]> + [b( + 1, D)]* + 1 [b(1, D)]*b(1 £ 1, D)
1024 (2kp) T
y PEDIBEELDIE sy
(QICD) 4
1 1 3v2b(l,D) +b(l £ 1,D)

Vo + Vo V2o 16 (k)

63v/2 [b(1, D)]” + [b(I £ 1, D)* + Sb(1, D)b(i £ 1, D)
256 (2kp)1

O (kp’) -

(7.72)
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So, from (7.31) and (7.70), it follows

\/EMI,DMlil,D :m = /2kp + §[b(l; D)+ b(l+1,D)]

8 (2kp)1

63 [b(1, D)]” + [b(i £ 1, D))* — 2b(I, D)b(l + 1, D)
128 (2kp)}
945 [b(1, D)® + [b(i £ 1,D)]* — L [b(l, D)]* b(l £ 1, D)

1024 (2kp)T
b+ 1,D)§b(l,D) L0 (k).

(2kp)+
and then
o (7.72) 9 [b(l, D) — b(l + 1, D)]? L
Ml,DMl:tl,D\/\/kl’D T R =1~ 61 12 +0 (kD ) )
(7.73)

Furthermore, from

_ (7.68)&(7.69) 5b(1,D) 21 [b(l,D)]* 81 [b(l,D)]? 3
NG 10 fokp + 2 =2 += +0 (k%)
LDTLD P 0 Bky 8 2kpykp | 16 4k2v2kp (k")

it follows

ioFn + SR =2v/2kp + 5[b(,, D) +b(ix1,D)] 21 {[b(l, D)]* + [b(l + 1, D)"}

2v/2kp 8 2kp\/2kp
81 {[b(l, D))* + [b(1 £ 1, D))} 0 (k)
16 4k2\/2kp b

then the last equalities and (7.67) imply

A 1b(L, D) +b(l£1,D)  9[b(,D)*+ [b(I +1,D)]* + 2b(1, D)b(l £ 1, D)
Tii+1,p =1+ = - =

2 2kp 8 452,
+0 (k) ;

Similarly,
2 (69)[b(1, D) — b(1 £ 1, D)}
B 4k?,
~ 6{(p(1, D)’ + [b(I £ 1, D)]" = [b(l, D) b(I £ 1,D) [b(l £ 1, D)]*b(l, D) }
8k3

(71,0 — T141,0)

oo (k54) | (7.74)



141

\ kipkiz,p (Typ — :Fl:i:l,D)Q (7.70),(7.71)&(7.74) l[b(l, D) —b(l £1, D)]2

2 (ko + /kix1,p) a 4 (2kp)2
21 [b(1, D) + [b(1 £ 1, D)’ — [b(l, D)] bl £ 1, D) — [b(I £ 1, D)]* b(l, D) +0 ()
16 (Qka)g D )
which implies
o l;f)\}%)f\l/f&ffjp) _,_1pD)—b(i£1,D)
4 (2kp)2
21 [b(1, D) + [b(l £ 1, D)]?
16 (2kp) (7.75)
[b(l, D) b(1 £ 1, D) + [b(I + 1, D)]* b(l, D)
- (2kp)?
+0 (kp’).

So, according to the above equalities,

Fousro 7 foup)s =1 + 1, D) +b(l£1,D)] 1[b(I, D) = b(l+1, D)

2 2kp 4 (2kp)?
81[b(1, D) + [b(1 £ 1, D)]* + (1, D)b(l + 1, D) s
T 64 1k +0 (k7).

(7.76)

Furthermore, (2.22) and this last equality imply

b(l+1,D)—0b(l—1,D) 1) 20+D-2 1
(7.77)
Similarly, the scalar product (¢ p,tx¥,p)pp can be factorized, obtaining

(Yv.p,ththip) = (fou.p: foup) g - (Yr, th Y1) ga

(cirin)’—(ep)’ =

and also in this case
(Y, thY1)ga = Ryp (1,1")

does not vanish if I’ = £1. On the other hand, as for the previous ‘radial’ scalar
product,

+o0o . /kLD _ 2
(foax1,05 fou.0) g+ :MZ,DMH:I,D/ e Yz (r7in) -
0

2
+oo VAN>) _ N/ Fi£1.D B
:MZ,DMZ:I:LD/ e 2 (Tfrl’D)2@7 2 : (T*Tlil,D)sz,

—0o0

\/ ki+1,D

(T*ﬁil,D)sz
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with

D (i) - L (o )

+oo \/F1,D \/k1+1,D
(&
—0o0
~2 ~2 ~ P
A/ k1D pta/kix1,D7ix1,p [T 2\/kl,D+\/kli1,D o A/ k1,071, D+ /Fi+1,DT1+1,D
- _T' T

—e 2 2 dr

V1,07 pty/*iE1,07141,D (\/kl D7L,DH\/Fit1,DTix1, D)
:ei 2 2(\/E+\/kl:tl D) BRI VAL ARVALSR > fi1,0 (

\/m (TLD Fie1 D) +o0 w/leWL\/kl:I:lD
( [k, D+\/klj:1 D / (

Tl 141 D) dr

—00

T—Tl 141 D) dr

—00

\/ ki,pk1+1,D
- 7’1 D—T141,D
2( [k o+ /k
e 1,D \/ 1£1, D

\/\/le+\/klilD

then

B \/ki,pk1+1,D
(fou+1,0, fou.0) g+ =MipMi+1 pe 2(Viupt s

(7.73)&(7.75)1 10 (ig) .
kb

7.0.10 The algebraic relations fulfilled by Zh’j and 7,

- _ 2
) (rl,D_""lil,D>

2T
Vkip + ko

(7.78)

7.0.10.1 Proof of (2.24)

The proofs of section 7.0.8.1 can be used here to calculate [Ty, ;] p when
h < j and [ < A; this is possible because definition 2.3.1 implies that the action
of Ly py1 in RPTis very similar to the one of ¢, (and also of ;) in R”. In fact,
the only difference is the replacement of _%dlp,l+1,D+1 and %dlD,l,DH with ¢41.p
and ¢ p, respectively.

Then it must be I;, =1, Vp > j — 1 and

TnT o= > Qo 1.14) %y o (7.79)

' p—lnl=1
h=j—2,- h—1
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Ifl';_o=1;_5—1, then
Qg (0,17) = {(cterp)’ { AU laor, D = VP TP (I, by, b2, j — 1)
+ 10l D= VP TP (s, o, o, = 1)
+(cp)* { [BUsla—1, D = VDT (lar, o1, o, — 1)
F[D a1, D= DP TP (b1, lanj — 1) }
g (W TP

(7.80)
The equations (7.60) and (7.77) imply
~ dl~, ,lj, J . ~ .
Qpnj (L,1,) = [— (Cz+1,D)2 + (Cl,Dﬂ QZ:TZRM—I <l|j’h7 l'|j’h>
.81
. _dlj71,lj—2,jR ' (l’j’h Z;’j’h) _ (7 8 )
kD(A) h,]—]. 9 )
similarly, if I;_o = [;_o + 1, then
Qg (L) = =28 Rijon (.2 (7.82)
and then, when [ < A,
_ Ly
[:Cfuxj] ¢l,D = Z/{:D(A) ¢1,D-

On the other hand, if [ = A, the only difference is that cyy1 p = 0 and then (of
course, the calculations of section 7.0.8.1 are used also here)

2
. . CA,D
[Th, T Yagg 0 = (e1.)

A T e h.D-
ZQA T D—_9 h,]¢A,ld_1, d1,D

According to this,
— . [ 1 (CA D)2 ~ i
l=1i|— ’ P Ly ;.
(2, 7] Z[ b (kD(A) ToATD—2)Ap| B

7.0.10.2 Proof of (2.26)

The proofs of section 7.0.7 can be used here to calculate the value of &ty p; in
fact it is easy to see that, when [ < A,

Py p = [(Cz+1,D)2 Zia (1) + (CZ,D)2 Zad (l)} V1D
(7.49) b(l, D) +b(l+1,D)|Z14(1) [b(l,D)+b(l —1,D)|Zs4(1)
2 2% () * 2% () o

2kp(A)

1

kp

_ {1 | bD) + b+ 1, D)lgpms + b0~ 1 D)lamps (ki) } Pip.
D

o
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On the other hand, if [ = A, cp4+1,p = 05 so

A
T YN Jy 1D = [(CA,D)2 m] YA Ly, D-
And 1
nd then, [up to O <k2 )]
D
b — {1 LB D) T, D)2 4 [b(1 — 1, D)) grrh
l,.D —
| 2%kp(A)
b(A,D)+b(A+1,D)\ A+D—-21] ~
pR— P .
Kl - 2kp(A) 9N+ D 2| NP Yo

7.0.11 The product of two D-dimensional spherical har-
monics

First of all, it is important to summarize that in section 7.0.4 it has been shown
that (in the following equations there is not any multiplicative constant, depend-
ing on the indices of P, because they are not relevant also in this case, except
when that constant is 0)

P (cos ) = (sin€)™ P (cos )

where 0 < m <[, 15[7” (cosf) is a polynomial of degree [ —m in cos § which does
not contain any term of degree [ —m — (2n + 1), with n € Ny; so, coming back
to ;PL(0),

—m — (s h=2 m m o
WP, (0) = (sin®)™ P, (,1_:2> cosf) = (sin6 cos 0™ + [cos O] I
! 4252
(7.83)
It is now possible to calculate the product of two spherical harmonics Y; and Yj;
first of all, e101¢ih01 — pillit'1)01  thep
2?51; (92) 2?2 (92> ei(l1+l/1)01
(7.83) (sin 92)”1 [(cos 9)”2_”1 + (cos 9)”2_”1_2 + (cos «9)“41_4 + - ] 2?2 (6,) eihit)0n

(7.25) [ —sla+l' —hl _—— iy
= [QPZ;—H’; (62) + 2P sy (02) + 2Py sy (62) + - ] elhHiin,

(7.84)
Similarly,
— — 4
[3sz§ (03) 5P, (93)} 2P, (62)
e (sin 93)l/2 [(COS 93)ll3_l/2 + (cos 93)1,3_1,2_2 + (cos 93)1’3—1’2—4 + - ] 2F§;ﬂ:; (02)
(7.25) [ ~=lo+l/ ol ot — i+
= [3Pl§+l’§ (03) + 3Pl§+l’§72 (03) + 3Pl§+l’§72 (03) + - ] 2Py iy, (02)

(7.85)
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Furthermore, in order to calculate
P B2 Sh+
3P, (03) 31, (03) 2Pt s, 2 (02)

the formula (7.25)s must be used I’y — 1 times and then 1 time the formula
(7.25); in correspondence of sinf3-, while the formula (7.25); must be used in
correspondence of cos f5-; then

—=l'2 —l2 ==L+l
3Py, (03) 3P, (03) 2Py, pr, o (02)

(723) (Sin 03)[’2 [(COS 03>l’3—l/2 + (COS 93)[’3—1’2—2 + (COS 03)1/3—l’2—4 + .. ] 3F§§ (93> 2?21;,;_2 (02)
(7.25) [ =slo+l'2—2 —=lo+l'o—2 —lo+l'2—2 ==+l
= [3Pl§+l’§ (03) + 3Plz+l/§72 (03) + 3Pl§+l’§74 (03) + - ] 2Pz;+1/;2 (02)

(7.86)

and so on with the other angles and factors.
According to this,

4 laa+H g la+1'2
iVi=>Y" Y > wYe, where UVi= (U0, 1L+ 1)
=0 =0 1,=0
(7.87)
so, this last equation describes the action of the generic multiplication operator
Y;.- on the Hilbert space of D-dimensional spherical harmonics.
Furthermore, from section 7.0.3.3 and the fact that the ¢, commute it follows

Yi= D0 e ()" ()™ ()™

ae(No)”
lleellr=t
o (an)!(a2)!- - - (ap)!
- Z G Al ZN<h‘7a7t17t27"'7tD)a
ae(No)” h
lleellr=t
where ¢* is a suitable constant and N (h, a, ty,t9,--- ,tp) is the ordered mono-

mial obtained applying 7, (the permutation with ripetition of I objects with ay
identical objects of type 1, s identical objects of type 2,..., ap identical objects
of type D) to the monomial (¢1)** (t2)™ - - (tp)*”.

Inspired by this, define the fuzzy approximations l?l of the spherical harmonics
Y, as

v= 3 c;l(o‘l)!(o‘”!”'(o@”ZN(h,a,@,fz,-.. Tp).  (7.88)

{!
ac(Ng)?
[leellr =1

It is also important to underline that
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Remark 8 From |A|,|B|,|C|,|D|,|F|, |G| < 1 it follows

—] —1
jPL++11 (9) + jPLJr—ll (9) )

—l-1 —=l-1

iPria (0) + [P (0)), (7.89)

sin OjFlL (0)

IN

sin 0, Py, (6)

IA

Py ()| + [Py (0)].

IN

‘cos QjﬁlL (0)

This, the recursive procedures of section 7.0.4 and the calculations of this section,
imply that the product szL’/ (9) jFZL (0) when A>L' >0'>0and A>L>1>0
is the sum of (at most) A2" terms j]_Dl]:, (0), and some of them may have the same
indices. Furthermore, (7.89) implies that the product of jFZL by sinf and cos 6

returns coefficients that are bounded by 1, while in (2.13) every jﬁi(ﬁ) contains
a normalization constant which is less or equal than (2A)!.

7.0.12 Some proofs about convergence

Let ¢ € Hy p, with |||z =1, and

Y= Z ©1v1,p

0<I<A
lh,lglh fOI" h:d,,3
li2]<l2

be the decomposition of ¢ in that orthonormal basis of H, p; of course, ||¢]ls =1
implies |p| < 1.
According to these statements,

1@n — tn) ¢l < > [l 1(Zn — tn) Yl

0<I<A
1<l for h=d,.. 3
[11]<l2

lpr|<1
< > |(@n — tn) Yol

0<I<A
1<l for h=d,- 3
[11]<lo

%[dim%ApP (

Zb(A7 D)
kp

b(l+1,D)+ 2b(l, D)+ b(l — 1, D)
4kp

#
<[dim 'HAp]

where the * inequality follows from the fact that the sum is of dim H, p elements,
that both Ty p and ¢,y p can be written as the linear combination of (at most)
dim Ha p elements, that |A|, |B|, |C|,|D|,|F|,|G| < 1, that (Y p, Tpip)pp and
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(YD, th1,p)gp do not vanish if I’ =1+ 1, and the values of the corresponding
‘radial’ scalal product are

(7.76)

(foux1,0, 7 fou,0) g+ 3

1+ -
2 K

1[b(l, D) + b(l £ 1, D) 1
o )

7.78) 1
and  (foux,0; fo1,0)p+ | +0 < > :
k2

while the # inequality follows from (2.5);.
So, if

kp (A) > A[dim Hap]? b(A, D), then |[(Z), — tn) ¢ll, =57 0.

In section 7.0.11 we do the product between two generic D-dimensional spher-
ical harmonics and the in section 7.0.3.3 it is shown that every D-dimensional
spherical harmonic is a homogeneous polynomial in the ¢; variables, this sug-
gested the definition (7.88).

Those Y; are the fuzzy spherical harmonics, they are elements of B [£2(S)]
and, in particular,

Remark 9 The action off/l on Yy can be obtained through the following replace-
ments to Yy - Yy :

o replace every A(l,lg_1, D — 1) with ¢;y1. pA(l,lg—1, D — 1);

o replace every B (l,lg—1, D — 1) with ¢, pB (I,l4—1,D — 1);

o replace every C (I,lq—1, D — 1) with ¢;41pC (I, 14—1, D — 1);

o replace every D (1,11, D — 1) with ¢, pD (I,l4—1,D — 1);

o replace every F (1,141, D — 1) with ¢;y1 pF (I, l4—1,D — 1);
(1, — 1) with ¢, pG (I,14-1, D — 1).

e replace every G (I,1q_1, D

7.0.12.1 Proof of Proposition 2.5.1
Let ¢, f € B (S?), then

(f = fa)o =) > Yie+ > Yi(féh,

1=0 lg_1<l I>A ly_1<l
1<l for h=d—1,-- 3 1<l for h=d—1,-- 3
[11|<l2 [11]<l2

(7.90)
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where

vi= (ol = (Faol o (Foh = (Yifo) and (fag) = (Vi fao)

in particular

2A
=Y (f=Fa)o) = <Yl,Z > (%) ¢>
=0 v, <l
Uy, <ty for h=d-1,--3
17 1<15
2A +oo N
=X XY e (N (Ye-T) ),
'=0 I, <l =0 I, <l
1, <ty for h=da—1,- 3 1, <ty for h=da—1,-3
|17 1<t |17 1<t
(7.91)
On the other hand,
A
I(f = Fa)olla = > al+ > > (fo)l,
1=0 ly_1<l I>A ly_1<l
Ih_1<l, for h=d—1,-3 1<l for h=d—1,-3
[11]<l2 [11]<l2
(7.92)

the second sum goes to zero as A — oo, it remains to show that the first sum
does as well.

The sum over I’ in (7.91) consists of at most dim Hsy p elements, as for the
one over ' (because 0 <1 < A),; the equality (7.87) can be applied in this case,
and it implies that both Yy Y, and }A/l/Y}r can be written as a linear combination
of, at most, dim Hsp p basis elements, then the sum in (7.91) is made up by at
most [dim Hap p]® non-vanishing addends, while the one over [ in (7.92) is of at
most dim H, p elements.

In addition, the fact that in (2.13) every jFlL(Q) contains a normalization
constant which is less or equal than (2A)!, that the highest coefficient multiplying
a power of cosf in P! (cos®) is less or equal than

2N [(2A + 1)),

that |A|7 |B|: |C|7 |D|’ |F|’ |G| S 1? that <’¢l’,D7Eh¢l,D>RD and <¢l’,D7thwl,D>RD do
not vanish if I’ = [+ 1, and the values of the corresponding ‘radial’ scalal product
are

3

7.7 1b(l,D)+b(+1,D 1
(foux1,0, 7 fou,0) g+ 776 | _[ ({, D) +b( )] L0
2 2kp K

7.78 1
and  (foux,0, fou,0)p+ .z )1 + O (—3>

kb
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imply
A Ab(A, D) ?
> > Ixt|? < [dim M p] {[dim Honp]? [(2A)1]° 24P [(2A 4 1117 W}
1=0 la_1<l p(8)
lh_1<lp for h=d—1,-,3
[11|<l2
So, if

kp (A) > A%[dim Hap p)? [(2A)1]7 227 [(2A + DI b(A, D)/dim Hy b,

then

1/ = Foll < AP 161 15 Z 3 (o)l 230, (7.93)
- lh—1<lp é?)}lil:d—l,--~,3
[11]<l2

ie. J?A — f- strongly for all f € B(Sd), as claimed.

The replacement f — fg, implies that (fg), — (fg)- strongly for all f, g €
B(S5), while from (7.93) it follows

I = F)el < IR 1617 55 + 17l < <”f =y >||¢||2, (7.94)
with
i i < I+ 171 < 1A+ 1 (7.95)
and then

. . . (7.94)&(7.95)
[fadll < I(Fa=H)ollHIfoll < I a=Doll+I fllclell - < (IfI+ 2||f||o(o) ||¢)||7
7.96
i.e. the operator norms ||fA||Op of the fx are bounded uniformly in A: ||fA||Op <
I f1l + 2] f]|oc. Therefore, as claimed, (7.93) implies

1(fg = fagn)oll < I(f — fa)goll + |1 fa(g — Ga)oll
< N = F@ + [ fallop (g = ga)ol =F 0. (7.97)



Chapter 8

Appendix B

8.1 A very useful proposition

The following proposition is very useful

Proposition 8.1.1 Let A = (a;;)7 ;= be a square matriz such that a;; > 0 Vi, j,
then there exist a vector X € R’ fulfilling

IXllz =1 and [[A[X] ]2 = [ All2-

Proof. By definition
[A]l2 = sup [[A[x]ll2,

lIxll2=1
the Weierstrass theorem implies that
sup [[A[x]lla = max [[A[x]]l2, (8.1)
lIxll2=1 lIxll2=1

so it is possible to consider a vector Y € R™ fulfilling (8.1) and ||x||2 = 1. One
needs to prove that y; > 0 for all . If x; < 0 for some j in {1,2,--- ,n}, then
the vector ¥ := (X1, [Xal,- -, [Xa])"- It is such that ||]2 = ||X]l» = 1 and

AR, = Z(Zam) v Z(Zai,j\%)

i=1 \j=1 i=1 \j=1

n

_ Z(gai,j@) ~ A,

=1

This last inequality proves that one can consider in the realization of the maxi-
mum the ‘positive’ vector Y, instead of Y, so the proof is finished. n

150
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Proposition 8.1.2 Let A = (a;;)},=, and B = (bi;)i;=; be square matrices
fulfilling 0 < a; ; < b; ; Vi, j, then

[A]l2 < [[Bll2-

Proof. According to proposition 8.1.1 it is possible to consider a vector ¥ € R
with [[§lls = 1 fulfilling || All> = | A [{]]; so

n n 2lli,'Sbi,' n n 2
1], = Z(Zai,j@) <" Z(Zbi,j@) < [|B]l2.
j=1 1 \j=1

=1 i=

8.2 The proofs about the z; spectrum in S}

8.2.1 Proof of item (A) in theorem 4.2.1

Consider the unitary and involutive operator U; = UlT = U;! corresponding to
the inversion operator of the x;-axis (this exists by the O(2)-covariance of the
new model': Uy xy Uy = —x1, UpzoU; = x5. Then x1x = ax implies z,(U;x) =
—a(Urx), i.e. Upx is an eigenvector of z; with the opposite eigenvalue.

8.2.2 Proof of item (B) in theorem 4.2.1

According to the last proof, if I,, is the n x n identity matrix and My () := x5 +
alspy 1, then the eigenvalue problem for x, is equivalent to solve det [M,(a)] = 0.
In order to do this, let M} be the n x n submatrix of M, formed by the first n
rows and columns, then

pala) :=det [Mp(a)] and pj(a) :=det {M} (a)}.
It is not difficult to see that

e when A =1, then

o

. 1) _ V/(b0)?+(b1)?

)
2

OplS O
NISpeRNI e
Qg o

(
=:p1(a) = { (1) =0,
( —

A/ (b0)2+(b1)?
az(l) = —¥Y——

2

117, is obtained by projection on H, of the original unitary operator U; acting on £2 (Rz)
as follows: U : (21, 22) — (—x1,x2).

V2.
2

(8.2)
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e when A = 2, then

a 2 0 0 0
b b
Foayo 000
pala) =1 0 3 o 2 bO
b -1
0 0 % ba -
0 0 0 =

16

0(2) = \/IVA + VB =13+ &,

0‘2(2):\/2 Ay — /By = /1 + &,
= as(2) =0,

0i(2) = —\/IVA — VB = 1,1+ 2,

5@ = IV + VB = -5, 3+ 2,

BQ =2 [(b1b0)2 — (bgbo)z + (b_1b0)2 + <b2b1)2 — (b_1b1)2 — (bgb_l)Q}
+ (bo)* + (b1)* + (bo)* + (b_1)"* = 4.

e in general, when A > 2, one can calculate p, () through the use of this
recursion formula:

by -
pale) =a [ (@)] = (52) " ().
So the claim is true because of (8.4) and the following

Theorem 8.2.1 The Favard theorem, [57] (p. 60)
Let {p,(z) = xp+ -} (n = 0,1,--) be a sequence of polynomials with real
coefficients, satisfying a recursion formula

pn(a:) = (.% - Bn) pn—l(x) - ann—?(x) (85)

=« {a4 a2 [<b2)2 + (b1>2 + (b0)2 + (b—lﬂ + (blb—1)2 + (5250)2 + (525—1)2 }
4

(8.3)
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with positive X, and real B3,; then there exists a distribution da such that

/_ T pu(@)pm(@)dalz) =0 (m #n).

o0

Theorem 8.2.2 [58] (p. 44)
The zeros of the orthogonal polynomials p,(x), associated with distribution do(z)
on the interval [a,b] are distinct and are located in the interior of the interval

la, b].

8.2.3 Proof of item (C) in theorem 4.2.1

First of all, p(A) = ||A||2 for every symmetric matrix A, where p(A) is the spectral
radius, i.e.
p(A) :=max {|\;| : \j € Z4}.

From 1 <, < 1+A(A

and proposition 8.1.2, one has

=[x, < 1+ 2o e (05:3)|

11 T
Ponss (0,2, 2 )] = .
2A+3 ( 727 2> ) COos (2A+4)

On the other hand, by algebraic calculations, one can easily see that

1_’_A(A—l) T < T
ko(d) P\2ar2) =P oAt 4

=/1+

A(A —1)
—kD(A) COS (

and

o (A4 1) = a2 \

is equivalent to

AN -1 2 (+Z
kD (A) Z 2( )COS (22A+2)
COS (2A+4) COS (2A+2)
A(A — 1) cos? (ﬁ)

2 sin (%) sin (m) [COS (2A+4) + cos (2A+2)]

And from

™

a+1 - 1 COSZ(2A+2)
ala+2) = 1+a’  cos(5575) +cos (5553)

<

N —

)

2A+2

VYA € Nand sinz > 22 Vre [O,
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it follows

A(A = 1) cos? (555) _ AA-1)

. m(2A+3) : s s s T s
2sin <(2A+2)(2A+4)> Sin <(2A+2)(2A+4)> [COS (2A+4> + cos (2A+2)] 4 <2A+3 (2A+2)(2A+4))

< 4%4/\(/\ —1)(2A + 2)%(2A + 3)%(2A + 4).

2

According to this,

kp(A) > —— A(A—1)(20+2)2(2A+3)2(2A+2)" = a1 (A)<ar(A+1) VAeEN.

— 47t

8.2.4 Proof of item (D) in theorem 4.2.1
The scheme of the proof is the following:

e First of all,
lim oy (A) =1 (8.6)

A—+o00

Then it is shown that, in the limit A — +o00, X* can be approximated by
Py (0, %, %), so one can consider the spectra of both matrices.

For every A € N it is possible to define a continuous, odd and increasing
(with respect to ) function G, (z) mapping one spectrum into the other.

From lemma 8.2.1 and lemma 8.2.2 it follows theorem 8.2.3, which tells that
limp—s 400 Ga(z) = 2 Vo € [-1,1].

Finally, in theorem 8.2.4, it is shown that G, — [ uniformly, and this
trivially implies the claim of (D).

As for the previous proof, from

) 1 4 A

Eng% Ve {AA—1,---,2—A,1—A}

<

DN | —

and proposition 8.1.2 one obtains
A(A—1 A(A—1
P (0 L) < 0, < s (o, V5 VI
2A+1 ) 27 92 ) = 9 = 2A+1 9 9 ) 92

which is equivalent to

cos <2A”+ 2) <ar(A)<4[1+ A(Ak; D cos (2A”+ 2), (8.7)

I

2
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this and kp = kp (A) > A2 (A + 1) concludes the proof of (8.6).

The inequality (4.7)y follows trivially from (8.7), cosz > 1 — % Vo € [0,1]
and 5775 <1VA €N.

Corollary 6.3.8 in [59] p. 370 states that (here M, is the space of n x n
complex matrices)

Let A E € M,, assume that A is Hermitian and that A + E is normal, let
{1, , A} be the eigenvalues of A arranged in increasing order (A < Ao < -+- < \)

and let {Xl, e ,Xn} be the eigenvalues of A + E, ordered so that Re <X1) <
Re(%) <+ < Re (M), Then

1

~ 2|2
VDY ] < |IE],. (8.8)

>

=1

According to this, setting A := Popriq ( % —) = XN - Py (O, 1 %) then
A and A+ E are both symmetric, so (8.8) becomes

1
2

<Ell,-

2A+1
[Z i (A) — ai( )|2

From 142 <1+ 5, kp =kp(A) > A? (A + 1)2 and |n| < A one obtains

1 n(n—1) n(n—1) 1
Sl M= g < <
2 (VT T S Tdkp A2

so proposition 8.1.2 implies

1 1 1 T 1

El., < ||P = 57x a2
121 —' 2t (O’ 4(A+1)2’4(A+1)2) . 20A+1)p COS(2A+2) REIEE
and then

2A+1 2 1

2
; — — VA. .
Z o(A) ~ &P < 5y (8.9)

For every A € N it is possible to define a continuous function G, : [—1,1] —
[—ay (A), a1 (A)] such that Gy (o, (A)] = a, (A), Ga(—z) = —Gp(z), Ga(z) =

ay (A) Vz € [ay (A), 1], for instance one can join two ‘consecutive’ points (a; (A) , a; (A))
and (@11 (A), ;41 (A)) by a straight line; furthermore, because of

Galan (N)] = an (A) < Galan (A)] = ana (A),

one can assume that every function G (x) is also increasing with respect to .
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The Go(z) are all odd functions so one can restict the attention to the z €
[0, 1], but it is also true that the continuity and the monotonicity of every Gy
implies that

|z —y| <& = |Ga(z) — Galy)| <,

Ve > 0,Vz € [0,1]30 = d(e, A, z) s.t. y € [0,1], {|x > 6= (Galz) — Cal)] >

At this point the following lemma is needed

Lemma 8.2.1 Let ¢ > 0 and T € [0, 1] such that
lim SUPA 400 |f - GA (f)| = 07

then

liminfy,1o0d(e, A, T) = 6(e,7) > 0. (8.10)
Proof. Let ¢ > 0 and assume, per absurdum, that

liminfy . d(e, A, Z) =0,

then one can find a sequence {An} such that
neN
lim§(e, A, ) = 0 (8.11)

and, correspondingly, because of (8.11) one can assume that n is sufficiently large
so that there exists z € [0,1] with § > [T —z[ > d(¢, A, @), [T — G5 (T)] < § and
’GT\TL (Z) — Gy, (x)| > &; then

|z =G}, (@) = [v =T +7 - Gg (7) + G, (T) - G, ()]

> |Gy, (7) = G (@) = |7 — 2| = |7 = G} (7)]
E €
>e - =,
=272
This last inequality and (4.5) implies that there exist a finite set of indices 1
with |/| = m(n) such that the correspondings eigenvalues of P,5 ., (0,3, 3

2An+1 7575)711“
symbols {az- (An>} . fulfill
el

> \f—azi (Kn) > (e, A7) Vie | =

i 5 (1) -G, 3 (R)]| > & wier
n—+o00 o

and of course (8.11) implies that m(n) — +

i | X[ (3,) - 6. 5 ()

1€
which disagrees with (8.9), so the proof is finished. O

, SO

2

= —'—Oo’
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Let
A= {1; €[0,1] : lim sup,_,, o |z — Ga(x)| = 0}’

then 0 € A and also 1 € A because

lim oy (A) = lim a3 (A) = lim Gpla; (A)] =1

A—r+o0 A—+oo A=+oo
In order to prove item (D) in theorem 4.2.1 one needs the following
Lemma 8.2.2 [f0 <z < 1,7 € A, then 3o > 0 such that
r € lmax {7 — 0,0} ,min {7 + 0,1} = z € A.
Proof. Let € > 0, then lemma 8.2.1 implies

liminfé (¢,A,7) = S(E,T) > 0;

A—+oo

4(e,T)
2

so, if o := min{ ,5} and x € |max {Z — 0,0} ,min{ZT + o, 1}|, then

limsup |z — Ga(z)| =limsup |z — Ga(z) =T +7 — G (T) + Gy (7))
A—+oco A—+o0

< limsupla — 7| + |7 — Ga (7)) + |Ga(2) — G (7)] < 22,
A—+o0
of course € can be chosen arbitrary small, so the proof is finished. O]

According to this, one has

Corollary 8.2.1
A=10,1]

or
A =0,z [U]zg, x3[U- - Uz, 1] and B :=1[0,1]\ A = [z1, 2] U [z3, 24] U+ -+,
where 1 < x9 < x3 < x4--- are suitable points of |0, 1].

It is now possible to prove the following

Theorem 8.2.3
A=10,1]

Proof. Assume, per absurdum, that A # [0, 1], then corollary 8.2.1 implies

B = [O, 1]\14: [$1,$2]U[3§‘3,1’4]U"' s (812)
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soife e A, 0 >0, 21— < <ax and limsup,_,, |1 — Ga (z1)| = kp > 0,
then

limsup|Ga (z) — G (21)] = limsup [Ga () — 21 + 2 — G (1)

A—+o0 A—+o0

< limsup |Gy (2) — 21| + |21 = Ga (z1)]  (8.13)
A—+oo

§5+kD7

because z € A.
On the other hand

limsup Gy () — Gy (e1)] = limsup (G () — 1 + a3 — G ()
A—+o0 A—+o0

> limsup [x1 — Ga (z1)| — |Ga (2) — 24 (8.14)
A—+o0

> kp — 0.

According to this, one has

lim [limsup |Ga () — Gy (21)| — kD] =0

=0 | Ao4oo

so limsups_, o Ga (1) = kp + 21 and then there exists a sequence {Kn}
neN

such that
lim GKn (Ll'l) = ]i'D + xy,

n—-+o00

but G, () is increasing with respect to x, so

n——+o00

k
liminf Gz (x) >kp+x Vxe [ml,xl + TD} )
This implies
kp

o k k
liminf |2 — G5 ()] > kp + 21 (x1+7’3> == Vre {xl,xﬁ?]

This last inequality and (4.5) implies that there exist a finite set of indices [

with |I| = m(n) such that the correspondings eigenvalues of Pz ., (0,3,3), in

symbols {ai (Z{n) }ig, fulfil

@ (Ra) - Gz, [@ (Ra)]] > %D Vi€l

ai<xn)€[x1,x1+%)} Viel =—

n—+oo
and of course m(n) — +o0, so

X[ (8) -G, [ (3)

1€
which disagrees with (8.9), so the proof is finished. O

2
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According to this, one has

lim Ga(x) =2z Vzel0,1],

A—+o00

in the next theorem the sequence {A}, . and its subsequences are always denoted
with the same notation.

Theorem 8.2.4
lim sup {max {lx — Ga(x )|}} =

A—4oo [2€[01]

Proof. Assume, per absurdum, that

A—+oo | =€[0,1]

imsup | o - Galo)}] =3 >0,

and set

zp = max {|r — Ga(z)|};

z€[0,1]

one has (up to a suitable subsequence)

lim |zpn — Ga (2a)| = M.

A—+o0

The sequence {x},y is bounded, so (up to a further suitable subsequence)

Agrfwa =7 €0,1] = A4,

at this point, choose ¢, x so that
0< <M . g(s,E)M -0 c [z 0_+0
€ g 0 = min 5 g , TET—5T
and A such that

M
‘wA_GA($A)’>? , |£I?—33A <o , T —xp| <O,

then (if A is sufficiently large)

2 = G (2)] = [on — Ga (2a)] = & — 24| = |GA (T) = Ga (24)] = |Ga (T) — G (2))]
> M > M
— —0—g—g>—.
2 8
This last inequality implies that there exist a finite set of indices I with |I| =

m(A) such that the correspondings eigenvalues of Pz (0, %, %), in symbols

{@ (M)}, fulfill

M
& (A) e z—%,mg] viel — a0 -Gala Wl > Viel
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and of course m(A) AZHR oo, s0
AEI-POO Z la; (A) — Gy [ (M)]]7]| = +o0,
el
which disagrees with (8.9), so the proof is finished. O

The proof of item (D) of theorem 4.2.1 can be completed, because if £ > 0
the last theorem implies that there exists a A = A (¢) such that |z — Gy (z)| < &
VA > A and Vz € [0, 1], while (4.5) implies

| @1 (A) = @, (A)] = |cos {%} T (An_:—r 1)‘

C[@n+ )] . 0 , T
= At < _
28111|: AT sin Al < 2sin Ari)

this means that there exists a A = A (¢) such that |&; (A) — i1 (A)] < & VA > A,
Vi.
Finally, if A (¢) = max {/AX (e), A (g)}, then VA > A one has

i (A) — i1 (M)] <o (A) — @i (A)| + [aigr (A) — @igr (A)] + i — @i
= |Ga [a; (A)] — a; (A)| + |G [@ig1 (A)] — qipr (A)] + | — @i
<ete+te=3,

so the proof is completed.

8.3 The proofs about the z; spectrum in S%

8.3.1 Proof of item (A) in theorem 4.3.1

Consider the unitary and involutive operator U, = Ug = U, "' corresponding
to the inversion operator of the zs-axis (this exists by the O(3)-covariance of
this new model): UyzoUy = —x¢, UpxrLUy = z4+. Then zox = ax implies
zo(Upx) = —a(Upx), i.e. Upx is an eigenvector of zy with the opposite eigenvalue.

8.3.2 Proof of item (B) in theorem 4.3.1

According to the last proof, one can equivalently set M,, (A;«) = B, (A) +

alp_ i1, then the eigenvalue problem for B,, (A) is equivalent to solve det [M,,(A; )] =
0; in order to do this, let M” be the h x h submatrix of M, formed by the first

h rows and columns, then

Pr(a;m) (@) == det [M,,,(A; )] and pZ(A;ml)(a) i=det {M} (A;a)},
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where n(A;m’) := A — |m’| + 1 is the degree of the polynomial p, m.

It is not difficult to see that

e when n =1« |m|= A, then a = 0;

e when n = 2, then

o' casG(AA—1,2)
casG(AA—1,2) «

=:po (@) = a1 = £easG(A A — 1,2);

=a? — (exsG(A A —1,2))

e when n = 3, then

« CA_1’3G<A— 17A—272) 0
CA_173G(A - 1, A— 2, 2) (67 CA73G(A, A— 2, 2)
0 CA73G(A, A — 2, 2) (0%

=a[a® = (ca3G(A A -2, 2))2] — a(ea_13G(A = 1,A —2,2))* = p3 (a);

e in general, let n = n (A;m), then one can calculate p; (o) through the use
of this recursion formula

Py (a
P (

) :=det {M2 (A; )},
)= det { M2 (A; )},
} (crr33G(m+3,m, 2))2p% (a),

px (@) —Oé[p (
= QP%(O‘)’

5 (@)
[p~( ) (cm+473G(r7z+4,m, 2)) (8.15)

pr (o >'—'a ['p"‘('a)}' (ensGA, 71,2)) 52 ().

Then the proof of item (B) follows trivially from (8.15), theorem 8.2.1 and the-
orem 8.2.2, as for section 8.2.2.

8.3.3 Proof of (4.12) in theorem 4.3.1

In this proof the following theorem (here {p,},.y is a sequence of orthogonal
polynomials) is used:

Theorem 8.3.1 [58] (p. 46)
Let x1 < x9 < --- < @y be the zeros of pn(x). Then each interval [x,,x, 1]
contains exactly one zero of ppy1(x).

This is the scheme of the proof:

e First of all, theorem 8.2.1 is used to prove that there exist a R-measure

n(A;m)
such that the polynomials { n(A; m)} are orthogonal with respect to
h=1

that measure; this implies that one can apply theorem 8.2.2 getting that
all the roots of every polynomial pz( Aym) 8re real and simple.
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e Then lemma 8.3.2 and theorem 8.3.1 can be used to prove also that

n(A;m nA;m
p(Br) = 11Bulls < I Bl = o (BLA™).

where p is the spectral radius.
e This last inequality involving the spectral radii trivially implies (4.12).
According to this, let’s start with the first point of this scheme.

Lemma 8.3.1 The roots of pr(A;m) are real and simple, and if of(A;m) >

az(Asm) > - > aj(Aym) are the zeros of p . (a), then every interval
[a7 i (Aym), @i 1 (A;m)] contains exactly one zero of piy ., (a).

Proof. The matrices B (A) are all symmetric, so the roots of pfl( Aamy (@) are real;

n(A;m
while the sequence of polynomials {pﬁ( A,m)} fulfill the recurrence relation
")) =1

(8.15) and because of theorem 8.2.1 one has that there exists a distribution dO ()
such that

+oo
/'zﬁmgwﬁmmmmm®=o (j # h).

—00

Finally, theorem 8.2.2 and theorem 8.3.1 can be applied to the set {pZ(A;m (o) h(Alm)

of polynomials, so the proof is finished.

First of all, an inequality involving the B,,-matrix elements is proved, which
implies the aforementioned inequality between the spectral radii.

Lemma 8.3.2 Let
1<m<A, jeNy, 1<l =m+j<A; (8.16)

then
asG(l,m—1,2) > ¢ 3G(L+1,m,2). (8.17)

Proof. Because of (7.32) and (7.76), one has

/ “)il—m+1
asG(lm —1,2) = 1+F¢lﬂn ( m+)
D

B (+1)2 J(l+m+1){I—m+1)
Cl+1,3G(l + 17 m, 2) - \/1 + k'D 4([ + 1)2 -1 )

and
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then (8.17) becomes

(o) (Ge) - (0550 (=) >

V1<m<Aand1l< 1 <A; by algebraic calculations, one can prove that the
last inequality is equivalent to the following one:

[kp+ ] (l+m—1)20+3) = [kp+ (1 +1)*] (+m+1)(2l—1) >0 (8.18)

[ J/ J/
-~ -~

A B

Vi<m<Aand1l<[<A.
Furthermore, one has

A= 2kpl® + 2kplm + kl + —3kp + 20" +288m + 1® + 31°m — 302,
B = 2kpl? + 2kplm + Ll — —kp + 20" +2Pm + 51 +3Pm + 37 -1 —m —1;

finally, (8.18) becomes
A-B= —2kp — 4> =6 +14+m+1>0

Vi<m<Aand1l<[<A.
From kp (A) > A% (A + 1) it follows

Akpm—2kp—A* =61 +14+m—+1 > 2A*(A+1)*—4A°—6A% = 2A* (A* = 2) > 0 VA >2,
while when A =1

dkpm —2kp — AP — 61 +14+m+1>2[1%(2)*] -4 —-6+3 =1,
so the proof is finished. O
Lemma 8.3.3 Let m > 1, then

n(A;m
[Bunlla < [ BEY™]l5.

Proof. The matrices B,, and B::l(fjm) have the same dimensions, they are

0 Cmr13G(m+1,m,2) : 0

cm+173G(m + 1, m, 2) 0 0

B 0 Cmi23G(m+1,m,2) : 0
0 CA,3G(A7 m, 2)

0 : 0

(8.19)
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and
0 Cm3G(m,m—1,2) : 0
Cm3G(m,m —1,2) 0 : 0
Bn(Aim) _ 0 Cm13G(m+1,m—1,2) : 0
0 0 D eal1sGA —1,m —1,2)
0 0 : 0
(8.20)

Lemma 8.3.2, together with proposition 8.1.2, (8.19) and (8.20), imply

n(A;m
|Bunll2 < 11B2Y™ o,

so the proof is finished. n

At this point, let oy (A) := max{a; (A;0);01 (A;1);--- ;a5 (A;A)} and as-
sume, per absurdum, that a; (A) = a3 (A;m) with m > 0. One can take the
matrix B,,_; and its elements; from lemma 8.3.3 it follows

|Ballz < 1B (8:21)
and from lemma 8.3.1 one has that the eigenvalues of Bj;(ﬁm ‘separate’ the ones

of B,,_1, then
o (BN™) < p(Bua). (8.22)

The inequalities (8.21) and (8.22) lead to ay (A) < g (A;m — 1), but this is not
possible. It is possible to conclude that a; (A) = a3 (A;0) and with the same
procedure one can prove the other inequalities in (4.12).

8.3.4 Proof of (4.13) in theorem 4.3.1

Let
0 G102 ¢ 0
G(1,02) 0 i 0
~ 0 G(2,0,2 : 0
By=| O GBI
0 0 ¢ G(A0,2)
0 0 : 0
A+1

and its spectrum {a; (A;0)}
order.

.—1 » where the eigenvalues are arranged in descending
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First of all, from 1 < ¢35 < ,/1+ #(QA) V1 <1 < A and proposition 8.1.2, it
follows

A2 5
a1 (450) = By (W < /14— | Bo ()
kp(A)

and oq (A+1;0) = [[Bo(A+1)], > HBO A+1)H = a1 (A +1;0); then, by

algebraic calculations, one has

A2 A? [, (A; 0))?

1+ ——=a; (A 0) <ap (A+1;0) < kp(A) > — )
kp(A) @ (A+1;0)]" — [@1 (A; 0)]

(8.23)

As done for section 8.2.2, one can use theorem 8.2.1 and theorem 8.2.2 to

prove that a; (A + 1;0) > a; (A 0) VA € N, while it is obvious that

2
ﬁ > % VieN — HBQ H —a1 (A 0) > COS (ﬁ) VAGN,
finally, in section 8.3.5 it is shown that ay (A; O) — 1 when A — +oc0.

According to this, one has @; (A;0) 1 1, @; (A;0) = cos (%) + €(A) with
e(A) > 0 and e(A) — 0.

It is well known that cosxz = 1 — %2 + o (z3), then it is obvious that ¢(A) =
—+0 (%) when A — +o00 is not possible, because it is in constrast with a; (A;0) =
cos( ) 4+ (A) < 1 VA; for the same reason, it must be

A2
1+ -——a1 (A0
k’D(A) 1( )

A2

< — hen A — 4o0.
2(A+2)2 whnen O

Finally, this and

implies

al(A—l-l;O)—&l(A;O)—%jLo(i) when A — +o0,

for a suitable constant C' > 0.

Coming back to (8.23), from \/g < ay (A;0) < 1 VA € N one has

A2[@; (A;0)) o1 A?
@1 (A + 1;0)) = [a1 (A; 0] ~ o 1a1<A+10>—a1(A0> 25\@

AS+0 (M%)

when A — +00.
Then
kp(A) > A® = a; (A+1;0) > a; (A;0)  definitively.
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8.3.5 Proof of item (D) in theorem 4.3.1

First of all, from 4z2 >3 ‘v’l € N and proposition 8.1.2, it follows

11
Po (0,2, =
‘ A+1<7272)2

then the inequality (4.14), follows trivially from (8.24), cosz > 1 — % Vo € |0, 1]
and A+2 <1VA>2.

On the other hand, if x; is the xg-eigenvector having «a; (A,0) eigenvalue,
then Lyx; = 0, which implies

:am(X£§)<OqMﬂD:HBMAM% (8.24)

(x1,2z4x1) =0, (x1,2-x1) =0= (x1,z1x1) =0, (Xx1,22Xx1) =0;

so, from
3
(Az)y, = (x1,2°x1) — Y (x1,zix1)” > 0,
=1

it follows

69 AA+1)+1

o1 (A, 0)” = (x1,20x1)” < (x1.@*x1) < 1+ F () (8.25)

It is obvious that (8.24) and (8.25) trivially implies

lim a4 (A,0) = 1.

A—+o00

Once proved this, then the proof of (D) is essentially the same of section 8.2.4,

the only difference is that here A = Py (0, ;, 2) A+ E = By(A) and ||E]]; <

2 {1 /14 m [% - %} — %}, which follows from proposition 8.1.2; (4.2) and

/ / m2 / 1
Cl,SG(l> m, 2) kD + 412 1
1
<

1t 1, 1
= (A+1)2 2 2
A+1)2 ]2 2
R Wae
R o
- (A+1)2 2 " 12]°
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8.4 The proofs about the z; spectrum in S{ when
d> 2

8.4.1 Proof of item (A) in theorem 4.4.1

This proof is essentially the same of section 8.3.1, one has only to replace xy with
xp and x4 with x,, h # D.

8.4.2 Proof of item (B) in theorem 4.4.1

This proof is essentially the same of section 8.3.2, one has only to use in this case
the =, , (A; ) matrix.

8.4.3 Proof of (4.18) in theorem 4.4.1

This proof is essentially the same of section 8.3.3, one has only to prove that
Lemma 8.4.1 Let
1<m<A, jeN, 1<l:=m+j<A; (8.26)

then
CLDG(l,m— 1,d) Z cLDG(l,m,d). (827)

Proof. Because of (7.32) and (7.76), one has

apG(l,m—1,d) = \/1+b(l»D)+b(l—17D)\/(Z—m+1)(l+m+d_3)

2kp 2l+d—1)(2l+d—-3)

and

- bL,D)+b(l—1,D) [(I—m)(i+m+d—2)
cpG(l,m,d) = \/1 + 2% \/(zz T d— 1)@ +d—3)

then (8.17) becomes
(—m+1){l+m+d-3)—(l—-m)l+m+d—2)=d+2m—-3>0
and this is true because of (8.26) and d > 3. O

Similarly to section 8.3.3, from this it follows that

P (O1,_,-1(A) > p (61, (7)), (8.28)
and then the inequality (4.18).
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8.4.4 Proof of item (D) in theorem 4.4.1

In order to clarify the notation, let x = (x% x*,--- ,XA)T € RM1 50 applying
the matrix O to this vector, and calculating the norm ||||2, one obtains (here and
later on v; 1= v p)

2 2 2 2
100 [X]II3 = (v1x")” + (01X +v2x®) " + (v2x" +v3x*) " + (vax® +vax’) " + -+
_ 1\ 2 _ 2 12
s (vasaX ™ P oasiy™ )T+ (vacixX® 2 o)+ (oax™) 7
(8.29)
then one can try to find some informations about g (A) by calculating (8.29) on
particular algebraic vectors x. In particular, if

1

X=X=| vam )
1
VvVA+1
then (8.29) becomes
A A
19[X1115 = A+1 22 +QZUZUJ—1 ; (8.30)
=1 =2
with
A A apx A 11 + d—2)
2 =2 G(1,0, d > 2
;(” IZ:;CZD = ; 2 +d—1)(2l +d—3)
A
I(+d—2)
> 2 —_— 8.31
>2) B a1y (8.31)
=1
A 2 A
e 2 B —
lzl(zz+d—1 ; 2l+d—1
and
A A
QZUZUI—I ZQZCZVDG(Z,O,CZ)C[_LDG(Z - 170,d)
=2 =2
em,p>1 R
> 2) G(,0,d)G(1—1,0,d) > 2> [G(,0,d) (8.32)
=2 =2
(8.31) 12

A
= 2 Z(2l+d—1 Zzz+d—1

=1 =1
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where the inequality $ follows from

I(l4+d—2) - (I-1)(1+d-3)
U4+d—-1)(20+d—3) ~ (20 +d—3)(2l +d—5)
Sll+d—2)20+d—-5)>1-1)(1+d—-3)2l+d—1)
s d®—4d+3>0,

G(1,0,d) > G(I —1,0,d) <

which is true because d > 3. According to this,

2 [& & -
OulX]II5 >
A
2 12
AT ;(2l+d—1 ; 2z+d—1 ]

A
4 2 2 [ 1 d-2
> — .
> T | @ A+1[d+1+d+1] (8:33)

1 & 2(d —1)
A+ Z<l+%)2]_(/\+1)(d+1)

1 ZA: 1 o 2d-1)
A+1 = (1+%)2 (A+1)(d+1)
So, from
1
——>1-2 1>1-2 2 34
T T r — 3z (8.34)

which is true when = > 0, and from [60]

1 + ! +v+ ! < L 1 + L +7+ ! (8.35)
nin — —_— - nin — — .
o) T T U tap = Ak 2 ) T T 2t )

with

A A
TR d—1 |
> Tz 2 5(1—22—1):/\—(65—1)5 7
= 0rE) = (5.36)
“Pa_w@-1h (A + 1> by —
> A—(d—1) |In |+
2 24 (A +1)°
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Then
ag(A) := p(89) > [|60[X]I3

1 1 p 1 (8.37)
> | ——{A—(d=1)|In(A+=
= A+1{ (d—1) n( +2>+7+d+1+24(/\+%)2 }

On the other hand, one can easily prove a bound from above for ag(A), but it is
important to point out that

X € Ha and ||x| =1= (x,L*x) < A(A+ D —2). (8.38)

Theorem 8.4.1 The mazimal eigenvalue oy of Og and the corresponding eigen-
vector Xo fulfill

D?—-2D+1+AA+D—2)

[ao(M)* <1+ = VA € N. (8.39)
Proof. The equalities
Caxo="-+=0Csxo=Liaxo=0
imply
{(Xo|Z+x0) = (xo[Z-|x0) = (X0lTnlx0) =0
for all h # D.

Consequently, the inequality ARiO > 0, or more explicitely

0 < [(xol @p)* Ix0) = ({(xolZplx0)*] + > (X0l (@n)* x0) ;

becomes 5
oo (M) <>~ {xol (@n)° Ixo0) = (X0l R?[x0) »
with -
i 22 {1 | b D)+ [b(i +1, D)) HD=2 1 b(1— 1, D)]grre—
’ 2kp(A)

BA,D)+b(A+1,D)\ A+D—27 «
—Kl )2A+D—2] PA,D}¢1,D (5.40)

2kn(A)
_{,, D= 2D 1AL
- oo (h)
b(A,D)+b(A+1,D)\ A+D—-21] »
KH 2kn(A) A+ p—z|hoyven

and these two last equations, together with (8.38), imply obviously (8.39); so the
proof is finished. O
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The inequalities (8.37) and (8.39) trivially imply the following
Corollary 8.4.1 The mazimal eigenvalue oy = ag(A) of Tp fulfills

A1—1>I—|I-loo ap(A) = 1. (8.41)

Once proved this, then the proof of (D) is essentially the same of section 8.2.4,
the only difference is that here A = Py (0 —) A+ FE =0,(A) and

DRI

b(A,D)+bA—1,D) 1
IIEHzS?{\/H 2 (A) —5},

which follows from proposition 8.1.2, (4.2) and

c.pG(l1,0,d) = \/1 i b(l, D) + b(l — LD)\/ I(l4d—2)

2%n (M) 2l +d— 12 +d—3))

. \/1+b(A,D)+b(A—1,D)'

2%p(A)

8.5 Some useful summations

From h(h+1)(h+2)...(h+j+1) — (h—1)h(h+1)...(h+7) = (j+2)h(h+1)...(h+7)
(with j € Np) it follows

Zh (h+1)...(h+7) = 5 n(n+1)(n+2)...(n4j+1); (8.42)
this implies, in particular,
. o nn+1)(n+2)  n(n+l)  n(n+1)(2n+1)
Zh > [h(h+1) —h] = ; = ; , (8.43)
h=1
There are also other equalities that are useful:
+ 1) a 4n3 4+ 9n? + 5n
o — 1 h(2h + 1) = 8.44
Z , Z (2h + 1) : : (8.44)
- 1
h(h +1)(2h + 1) = 5n(n +1)*(n +2), (8.45)
h=1
n 1 20,2 2 9 2
h(h+1)+ 1] 2h+1) = OF >(”2+ n+?) Zh(l——) n

h=1

2
(8.46)
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Using the inequalities 14+x/2 > /1+x > 14x/2—2%/8 (the first one is valid for
x > —1, the second for x < 8) one has

m(m—1) m(m—1) m?*(m—1)2
I+———=2>0b,>1 — 4
(n—1)n(n+1) & (n—=Dn(n+1) (n—=1)n(n+1)(3n*-2)
> > — .
= n+ ok _m:1bm >n+ on e £8.48)

Using trigonometric formulae it is straightforward to show that

Zcos { 22;” 21)} =0 (8.49)

(the terms cancel pairwise: the terms with m = 2, n cancel each other, the terms
with m = 3,n—1 cancel each other, etc.), and

Qsm{w}sm{M} _ COS{ T }_Cos{w(2n+1+2m)}

2n-+2 2n-+2 2n-+2

- COS[2RZ21 + cos [%} . (8.50)




Chapter 9

Appendix C

9.1 Proof of Theorems 5.3.1 and 5.3.1

Consider a generic Hilbert space H carrying a unitary representation of O(3).
For any vector ¢ € H, let g € O(3) be a 3 x 3 matrix such that the expectation
values of L; on 1 fulfill
9i{L;) = &(L)]- (9.1)
The expectation values of the L;, L? on the states 1, ¥ := U(g)4 fulfill (L)' =
(Ly) =0, (L3) = |(L)| = |(L)] > 0, (L*) = (L?) (the second equalities hold
because U(g) is unitary). Hence 4 fulfills/saturates (5.19) iff ¢’ respectively
fulfills/saturates
(L%)" = (L)' ({La) +1) > 0. (9-2)

If H = V] the first term equals [(I+1), the inequality (9.2) is fulfilled, and it
is saturated by @’ = |[,1), because Spec(L3) ={—Il,1—1,...,1}.

Now assume that H can be decomposed as the direct sum H = Hi ® Hs of
orthogonal subspaces Hi, Ho carrying subrepresentations of O(3) and on which
(5.19) is fulfilled; moreover, let I'; C H,; be the subsets of vectors saturating (5.19).
Decomposing ¥’ = a1, + aztby and setting a := |a1|?, one finds 0 < o < 1,
las|? = 1—q, and

(L) = (Ls)' ((Ls)' +1)

(9.3)

= a(L?)1 + (1=a)(L%)2 — [a(Ls)1 + (1=a)(Ly)2]” — [a(Ls)r + (1-a)(Ly)2] =: f(a),

where (A); = (A)y,. The polynomial f’(«) vanishes only at one point o/ € R,
which however is of maximum for f(«), because f'(a) = —[(Ls);—(Ls)s]* <O0.
Hence the minimum point of f(«) in the interval [0, 1] is either 0 or 1. But, by
the above assumptions,

F(1) = (L1 = (Ln] ({Lh]+1) = 0,
F(0) = (L2 — (L)a] ([(L)2] + 1) > 0,

173
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proving that (5.19) is fulfilled on H. Moreover, the set of states of H saturating
the inequality is clearly I' = 1"y U I's.

Choosing first H; = Vy and Hy = Vi, then H, = Vo @ V4 and Hy = Vs, and
so on, one thus iteratively proves the statements of Theorems 5.3.1 and 5.3.1 for
pure states.

Similarly, also mixed states (i.e. density operators) p fulfill (5.19), but can-
not saturate it: abbreviating (A) = (A), := tr(pA), let g € O(3) be a 3 x 3
matrix such that the expectation values of L; on p fulfill (9.1). Then the expec-
tation values of L;, L* on the state p' = U(g)pU~(g) fulfill (L,)" = (L,)' = 0,
(L3) = [(L)'| = (L)| > 0, (L?*)' = (L?), and p fulfills/saturates (5.19) iff p/
fulfills/saturates (9.2). If o' = ap; + (1 —a)p2, the left-hand side of (9.2) again
takes the form (9.3). Hence, reasoning as before, one finds that p fulfills (5.19),
and that there are no mixed states saturating this inequality.

9.2 Proofs of some results regarding S}

On a vector X = 30 XmW¥m one has 2.x = S0~ Ybims1¥mr1, and

A
<.’L’+>X = ZX_XM lbmy (94)
2 — m? 2 1 AA—1) 2 2
()% = Z 1+ T [Xom|” + 5 1+ Tk (Ixal” + Ix-al")
m=1—A

-t X P 5 |1 Gl heaos

mlA

In the next lines we do firstly the proof (5.13),

A

A
1 1
Bt =anet 2 =0 e g 2

m=—

-

Then, the proof of (5.14). By (3.9), (8.43), (9.4-9.5)

2 w1 [AGA+Y)
<w2>¢g = (o), 2°P]) =1+ mmzzl kp  2A+1 [ kp " 1}
AA+D 1 [A(A +1) 1} 2 2(A-DA(A+T)

-1 _
L TRy W R A1 | 32At Ry

A+1)
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as claimed. Now it is possible to prove (5.15):

) B o s 2A 2(A%-1) B 4
(Aw)ge = @ge = ol = 57 * 3pa 0k, — @ATLE

e 20 2A-1)A 4N

2A+1 T 302A+)kn | (A1)

A 2
> 0]
m=1

@ oA 4N (A1) _o
= 2A+1  (2A+1)2 "3Q2A+DAA+1D) C (2A+1)2 ' 3AA+1)
) 20, 1 1 (1 . L) Az 2

ANA+1)  3AA+1) A+1\2 3A) T 3(A+1)

At this point comes the proof of (5.17). On a generic normalized x (9.4-9.5)
with A =1 gives

1 1 . _
<$2>x = 5 [1 + |X0|2} = 5 [1 + 5] ) <I+>x = XoX-1 *+ X1Xo;

= Ixol> (X1 +x=1]%) + (eXIX=1+ X0 X1X-1) = s(1 — 5) + 2st cos a,

(Az)2 = (@) — [(r)xl? = % [1— ] + 5> — 25 cos 9.6)

[C Ay

where s := |xol* < 1, t := |xi1x_1], and « is the phase of x2x1x_1; by the
Cauchy-Schwarz inequality ¢ < (|x1]|*+|x_1|%) /2 = (1—s)/2. For fixed s, (9.6) is
minimized by o = 0 and ¢ = (1—5)/2 (namely |x1| = |x_1| = Vvt = /(1—5)/2),

what then yields

1 31

(A@i = 5(1—3) + 5% —5(1—5) = 28* — 53 + 5
This is minimized by s = 3/8, and the minimum value is (Az)?, = 7/32, as
claimed. The corresponding minimizing vectors are x = T5 [6i6¢_1 + eiy¢1] i

%ei(ﬂﬂ)/%j;g; the one in (5.17) is chosen so that (z,) € R.

Next, the proof of (5.18). Up to normalization, the components of the eigen-
vector x of the Toeplitz matrix Xy with the maximal eigenvalue (A\y; = cos [7/(2A+2)])
are [see (4.1)]

7T(A+1+m)} :COS{ m };

2A+2 2A+2 (9.7)

Xm = Sin {
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AA-1)(2A -1
L Aa-nea-y

m=1 "D 3le
which implies

9

o (oE*x) A(A = 1)(2A — 1) 35
S v

2 A(A—l)(2A—1)<1+ 1
3kp(A+1) - 3A2(A +1)3 (A+1)2
(9.8)
Moreover, due to (8.47), (8.48) Xm € R, it is (x1), = (z4), because the
latter is real, whence
A
(9.4) . [ m(A+1+m)| . [7(A+m)
(x,r1xX) = 2mz__lbm sin [ L2 |\
by >1
S Z |:7T(A+].+m):| {W(A—i-m)]
2 2A+2 2A+2
A
(8.50)

mzzl {COS [2A7T+2] + cos [M

2A+2 }}
(8-49) s
=" (A+1)cos {2A+21 —
bemix))’ > 3 IS T 1 DS O G 952))
(¢ X) = % 2a+2) T T |2Ag2) T SATS
(Aw)i = (x?) — <x1>§<
(9.8)§(9.9) . 1 - 2
- +(A+1)2 T\
_ 1+ 7 3.5
(A+1) (A+1)

(9.10)
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9.3 States saturating the Heisenberg UR (5.4)
on S, St

For any p € R, i = 1,2 let a! := L—ipx;, 2z := (L) —iulx;), AL = al' — 2.
The inequality 0 < (ATAY) = (AL)* + p2(Ax;)? + pe (z;) (here €' = €2 =0,
€'?=—e* =1, and a sum over j=1,2 is understood) is saturated on the states
annihilated by AY, which are the eigenvectors x = > xn¥, of a}'; here the sum
runs over n € Z for S* [where 4, is (z4)" = €™¥], over n € I := {—A,1-A, ..., A}
for Si. One can just stick to ¢ = 1; the UR will be thus saturated on the
eigenvectors of af. The results for a4 can be obtained by a rotation of /2,
by the O(2)-equivariance.
One easily checks that afx = zx in H = £*(S') amounts to the equations

2xn(n — 2) — ip(Xnt1 + Xn-1) = 0, n € 7. (9.11)

One way to fulfill them (with a non trivial x) is with p = 0; this implies y,, =0
for all n but one, i.e. x o 1, for some m € Z, and z = (L) = m. This is actually
the only way: if p # 0 then the equations can be used as recurrence relations
to determine all the x,, as combinations of two, e.g. xg, x1; if the latter vanish
so do all x,,, otherwise the resulting sequence does not lead to a x € H because
>, Ixnl? = co. In fact, rewriting (9.11) in the form X411 = —Xn-1 + CnXn, with
Cp = %(n — z) it is easy to iteratively prove the relation

Xo 1
Xn+1 = Xn@n Q1Q2----Qn—1’ Ql = Cl; Qn = Cn Qn—l .

This implies that as n — oo |Cp,| = 00, |Qn] = |Cr] = 00, |Xni1/Xnl? = |Qn|* —

oo, whence by the D’Alembert criterion the series Y -~ |x»|* diverges. The 4,

are also eigenvectors of ai:o and therefore saturate not only (5.4)1, but also (5.4),
and therefore all of (5.4).

One easily checks that the eigenvalue equation afx = zx in H, (i.e. on S})
amounts to the equations

2X-A(A+ 2) +ipbi_axi-a = 0,
2xXn(n — 2) — ipu(bns1Xnt1 + buXn-1) =0, n=1-A2-A,..,A—1,(9.12)
2XA(A — 2) —ipbaxa—1 =0

(actually the second equations include also the first, third, because for n=+A,
b_A=0bay1 = 0). One way to fulfill (9.12) is with px=0; this implies x,, =0 for all
n but one, i.e. x ¥, for some m € I, and z= (L) =m. But nontrivial solutions
exist also with nonzero u#0. In fact, equations (9.12) can be used as recurrence
relations to determine all the yx, in terms of one. It is possible to use them in
the order to express first y;_ as y_a times a factor, then yo_, as x_a times
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another factor, etc., then the last equation amounts to the eigenvalue equation,
a polynomial equation in z of degree (2A+1). Note that if z is an eigenvalue
and x the corresponding eigenvector then also z’ = —z is an eigenvalue with
corresponding eigenvector characterized by components x/ = (—1)"y_,. Since
ah = e L2akemL/2 1o each eigenvector x of a! there corresponds the one
X' = e "/2x of a} with the same eigenvalue z and components related by y/, =
Xn(—7)". Hence x cannot be a simultaneous eigenvector of af, ay and therefore
again cannot saturate all of (5.4), but only one of the first two inequalities, unless
1 = 0, namely unless it is an eigenvector of L; hence again the ), are the only

states saturating all of (5.4).

Here the eigenvectors of a} are determined for A=1. The eigenvalue equation
amounts to z(2%~1+u%/2)=0. One can easily find that (9.12) admits the following
solutions:

z = 0, i\/ 1—%2, X = X-1 {’l,b_l + %(14—2)1#0 — |:1+%(1+Z):| ¢1} . (913)

|x||2=1 amounts to lX;—iF {u4 + 4?1 +2* + |u2+4z(1+z)|2} = 1. This leads
to

2

W
=0 = |x_1]* =
z Ix—1] o+
ot p 2
z =+ 1—M_2 = € Ra ’X71‘2: 32(1+2) 812 lfl,b S 27
? iR, I if p? > 2.

In the ;1 — 0 limit one recovers the eigenvectors 1, 1, 91 of L with eigenvalues
—1,0, 1, whereas in the u— oo limit the eigenvectors ¢_, ¢g, ¢+ of x; with eigen-
values —v/2/2,0,v/2/2 (they are obtained in the reverse order ¢, , g, p_ in the
limit 4 — —o00). On the other hand if p? =2 then all eigenvalues coincide with
the zero eigenvalue, which remains with geometric multiplicity 1; in other words,
in this case (only) there is no basis of H, consisting of eigenvectors of af. More-
over, recalling that z = (L) —iu{x;) one finds that if y*> <2 then (z1)=0 on all
eigenvectors (because z is real), whereas if > >2 then (L) =0 on all eigenvectors
(because z is purely imaginary). One easily checks that

. 21 4z
(z1) +i(xa) = (wy) = ;|X_1|2 2+z+Z2+ E|1+z|2 ,
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leading to
21 44
< y > <.1'1> ) <$2> u2+27 <£B> (M2+2)27 (9 )
2 1 2 1
2=0, 4" >2 = (r1) =0, (x9) = ﬁ, (x)* = l7’ (9.15)

2 2
2= im_%, <2 = (21) =0, () = g (x)? = MZ (9.16)

2 1 [ 1 1
z:iu/%—l, W2>2 = (1)) = %,/%_1, (o) = (@)? = 2. (97)

As on Hy it is 2 = 1 — (Py4+P_1)/2, one finds

() =1-— xal {1—!—'1—1—%(1—1—2)

2
leading to
2 2
14 1 2-3u
220, 12<2 = (@)=L (Ap)2=c 4 2F 9.18
2 4 2
+4 w42p°—4
2 2 1 2
2= 1—%, P<2 = (@) =+ (Aw)2:§—%, (9.20)

o 2 2y _ 9 .

2
L 2 2 2 72 _1
z =i ?—1,,u >2 = (AL) —<L>—§. (9.24)
(

For all i1 x, := € is characterized by the same (AL)?, (Az)? as x. For all
p # 0 and any of the eigenvectors x of a! the system X := {Xa }ac[o,2+[ is complete
(actually overcomplete), but the resolution of the identity fo%doz Xo(Xa, ) = ¢l
does not hold.
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9.4 Proof of Theorem 5.3.2

This is based on the following two lemmas:

Lemma 9.4.1 Let P'= Zf\:w Pl +) be the projector on the Ly=h eigenspace.
Then

2
/ da eL3=h) — o ph. (9.25)
0

This can be proved applying both sides to the basis vectors 1);". In subsection
9.5 we do the proof of

Lemma 9.4.2 (Lemma I) If |h|,|n| <, j then

/ 0 sin (37, PPl (0l by = 2 (9.26)

=5
o 2+ 1

A
with a generic w = > Y wlpf; here comes the
1=0 h=—

Now let B : fso

g Y

computation of By} (|n| <I):
B'd)l / /d@ $in 9 /dOé €ZLpL3 ei@LQ eiaL3w <€i9L2 eiaL3w’ e—i(,DL3 ,l/);l>
2w
(36) /d(p glella—n) /d0 sin 0 /da eflzgiols y (giflzgials , o)

27T Z ¢n /d@ Slne/ n zGLg eiong,w) <6i9L26iaL3w7 d)ln>

j=In|

=27 Z Py /d@ sm@/da Z wh Z P I9L2(2""‘L*°’1,b;”> <ei€L26mL31/)lh, (V)
j= \n\ h=—I1 m=—j

=27 Z (o Z wh Z /d931n9/da glelm= h) n ”L?zp;ﬁ) (e0T2qpl apm™)

=|n| h=-1 m=—j

mjy
2 0 S 30 G ! [dsing Gy ol (e )
j=In| h=—m

I
where mj;:=min{j,}. By (9.26) this becomes By = ¥ >~ |wl|*87%/ (21 + 1).
h=—1
In order that this equals C}', i.e. that B = CI with some constant C' > 0,
I
it must be > |wh|?> = C(20+1)/87% for all [=0,...,A. Summing over [ and
h=1I
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imposing that w be normalized one finds

A l A
20+1 (A+1)? 872
— — hi2 _ — —
L=wlla=> Y =) 7 C="53C = C—m,
=0 h=-1 =0
(9.27)

as claimed. The strong SCS {wy }ses003) is fully O(3)-equivariant if wf = w; "

because then it is mapped into itself also by the unitary transformation )" — ;" h
that corresponds to the transformation of the coordinates (with determinant -1)
(1, 22, w3) > (21, —T2, T3).

9.5 Proof of Lemma /

First of all, denoting as F'(a,b;c; z) the Gauss hypergeometric function and as
(2)n the Pochhammer’s symbol, then, by definition,

['(z+n) " (—=1)™2™(b)
ni=—— d F(—n,b;cz):= _ 2
(2) N8 an (—n,b;c; 2) mZ:O <m) O (9.28)
According to [55] p. 561 eq 15.4.6, one has
!
F(—n,a+1+f8+nja+1;1z) = (&Z—'l)nPfﬂ)a — 22), (9.29)
where Pfla’ﬂ ) is the Jacobi polynomial. From p. 556 eq. 15.1.1 one has
F(a,b;c;z) = F(b,a;c; 2), (9.30)
p- 559 eq. 15.3.3
Fla,bic;2) = (1 —2)"""F(c—a,c—b;c; 2) (9.31)
and from p. 774
1
/ (1= 2)°(1 4 2)° PP (2) POA) (1) d
-1
9.32
- 2008t TPln4+a+1)Il(n+B+1) (9.32)
S 2mta+ B+l nlnta+B+1) T
In addition, one needs the following
Proposition 9.5.1 Let [ > s> h > —[ and
IS0+ ) =56+ 0] if h<s,
then L |
£l hys) = L) (9.34)
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Proof. When h = s,

assume that h < s and (induction hypothesis)

(I —h)(I+s—1)
(+nll—s+1)

Fl hys—1) =

SO

FUhes) = Fuhs = DI+ 1) = (5= sl = (=51
(L= B+ 9)!
T+ R = s)!
O
In the same way one can prove that, when I > s > h > —I, and setting
o hs) ::{ [Timnia L0 +11) —j(j - 1) i Ziz (9.35)
then
an -
so, when 1 > s > h > —,
F(Lhh) =1=g(l,—h,—h) and
£(0,hys) = ﬁ[«z F1) =41 = H U1+ 1) = G — 1)) = g(l, =, —h).

(9.37)
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It is important to point out that, when 0 <n < h <[,

<6210g (cos g)Lo 6tan gL+ '(,blh; e—tan gLJr ,lpln>

1 25 (tan ¢ s—h L= " (tan 2) "
(3 () VAR 3 S e )

2 \*"2) s—h 2 (r
"éh<—1>h—"§<—1>sh% F0h.s) (g) VT
:(_1)”;(_1)8%@ ) (Cosg)mrh (smg)%_n_h (S_ln)! Fns)
e () ()

'g—”s‘h(z_sngiii(s_h)! (Sing o

e () ()
l 1+ h+ ) ( 9)2j7

. jo(_l)J (l —h —j)'(h —n +])'(])' Sin§

e (ot ()

(I+h)! ‘ . 2
.(l—h)!(h—n)!F<_(l_h),l+h+1,h—n—|-1,(Sln§)>

e (o) )

1 (l_h>'(h_n)' (h—n,h+n) . 29
N ) L= 2sin” 3

(o) () (12 )
(9.38)

A= <€—210g (cos g)Loe—tan gL,wfh’ etan gL,Tpfn>

—1 —2s ( 1\—s—h an ? —s—h -l an )"
(9.35) <Z (COSQ) (1)~ (tan §) Vs i, S (tan 5) ! \/mwzr>

(—s —h)! (—r —n)

r=—n
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20 (3 (wng) " R, 3

s=—h ) r=-n (

R Z (cos g) =) (_s Etzl)l!i) \/mlbfs’z (taﬂ ) V(L r)yy >

: B an 2" " % Ttan 217" —
ngh ;(—I)S_h—[t(s —2}h)' f(l, h,s) (cos g) [t(s _QL)! f(l,n,s)
l [ s—h 2s an 075~ "n
— h(—l)s_h’ [t(s —Q]h)' f(l,h,s) <COS g) [t(s _211)' f(l,n,s)

@28 ( cos o " sing SN GO ROl plomhtm (1 9gin? 4
2 2 (I+n)(1 —n)!"=h 2]’

B .= 210g(cos )Lo tan 3 L+,¢ h 6—tan L+,¢n>

(¢
03 <i (Cosg>28 (tan Whm@bl,z ”T_nftir)‘!g)rn\/f<—z,n,r>¢{>

s=—h (7“
l anQ s+h 2s anQ s—n
_h:S"Z(—l)S’” [t(s —1—2}}1)' f(l,=h,s) (cos g) [t(s _211)! f(l,n,s)
l 1 AN A S
—;(—1) GEn f(l,=h,s) (cos 5) (sm 5) Gon) f(l,n,s)
(9.34) ON" "/ " [ =n)(l+h)!
- (COS§> (Sm 5) \/(z T )l —h)!

. —1)%" (L4 s)! sing e
S s ()

(e ) (s L
S0 i ()

029 ( g) (sin 2) . \/ Eﬁ n Z; : 8 . Z;:

.(l_n)!(h+n)!F(—(l—n)>l+n+1,h+n+1, <s1n§> ),
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n—h h+n
(9.31) 7 .0 ({+n)l+h)! 1
b= (Cosz> (sz) \/(l—n)!(l—h)!(h+n)!
0\ 2 h=n 0\ 2
-[1—(sin§) F(l+h+1,—(l—h);h—l—n+1;(sinﬁ))

2 (o) ()
=Ml pann-n (1 — 2sin? Q)
2

(I +n)! bh
N (O JU=Rm)I+h) e L0
— (0085) (smi) \/(l—kn)!(l—n)!Pl(f’j h—n) (1—28111 5)
(9.40)
and
<67210g (COS g)Loe—tan gLi'lplh, etan 5 QL,,lpl—n>
—1 —2s h—s —s—n
(9.35) 0 (—=1)"* (tan &)~ (tan %) )
3 <; (0085) ) V(l, s, h)?, Szn_s—_n)!\/g(z,s, —n)a;
-1 —2s h—s HQ n? 2]
(927)< (COS g) S (h (_ti)|2) VI —=h, —s);, Z (Ea D) m¢z>
s=h ) s=—n
s——s : 0 28( 1)s+h t ¢ o s tan
= <s:h (cos 2) (s—l(—h)'Q) VI, —h,s), ’Z ((s ) " VI, s)y,
Chen l IlQ s+h 0 2s IlQ
h:_ ;(_1> h [t(s _i}hy f(l? ha 8) <COS 5) [t(i _2}77/)' f(l>n> 5)?
. l o, [tan o 0\ [tan "
=(=1)" ;H) % f(l,—=h,s) (cos§> [(S _]m! f(,n,s)
(9.40) " ON"" (. 0\ (1 —h)(+h) (h n,h—n) . o0
='(-1)" (cos 5) (51115) \/(l—i—n)'(l i P (1—23111 5)
(9.41)
Finally, when [ > h > n > 0, one has
—=nlI+h) 1 9(htn)+(h—n)+1
(I+n)(l—n)122" 2(l—h)+ (h+n)+ (h—n)+1 (0.42)
T '

l—h)+(h+n)+)I(({—-h)+(h—n)+1) 2
(I=m)T((=h)+(h+n)+(h—n)+1)  204+1’
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(I—=m)!(+h) 1 2(h=n)+(htn)+1

(I+n)(I—n)'22 20—h)+(h—n)+ (h+n)+1
D((L—h)+ (h—n)+ DIl —h) + (h+n)+1) 2
(=TI =h)+(h—-n)+(h+n)+1)  2A+1

(9.43)

It is now possible to prove the aforementioned lemma.

Assume that 0 < n < h < [; by means of the Gauss decomposition, €2 can
be written in the ‘antinormal form’ (see e.g. eq. (4.3.14) in [31])

pifLz — ,—tan§L_ 2log(cos §)Lo,, tan9L+ (9.44)

hence

K
/d@ sin 6 (7', e"2aply (P2 ap)', b))
0
™ 9 o)
:/d081n0< QIOg(COS,)LO tan9L+¢h76—tangL+¢?> <€210g(cos§)LoetangL+¢lh,e—tan§L+,¢Zz>

(9.38 2(h " / (COS _) (n+h)+1 (Sin Q) 2(h—n)+1

2
\/< M+ )\/( TEND]
L+ =n)\ (F+n)(j—n)

pomhtn) (1 2sin? ) ](hhn’th) (1 — 2sin? g)

p=1-2sin’ 3 \/E;;Z;:E;jn;'\/gj+h§ 8*7}3 ;fh (1—@)" " (14a)rtr pl it () plomhan) ()

(9.32)&(9.42) 2 .
T 2417

s
. . _ i0 _ i0 _ _
On the other hand, in order to calculate /d9 sin 0(1p; ", €' L2’(/)j "My (eF2aph ap ),
0
one can use now the ‘normal form’ of the Gauss decomposition (see e.g. eq.

(4.3.12) in [31])

ei@Lz — etans L+e 2log (COS )Loe—taneL_’ (945)
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and then

/d9 sin 6 <¢;n’ ei@Lg,¢;h> <6i9L21/);h’ w;n)

0

w
o : —2log (cos &) Lo ,—tan 8L ,j.—h _tan8L_ ;. —n
—/d981n0<e (cos ) e 2 '17[;3. ,etans ¢j

0

. <67210g (cos )Lo —tan gL,,”bl—h7 etan gL, 'l,bl_n>

030, [ A 2<h‘”>“\/(l-h)!(Hh)!\/(j—h)!(j+h)!
2/0 ‘”(‘mz) (2) I+l =)\ G+l —n)

-1
(9.32)&(9.42) 2
T 241V

Furthermore

/d@ sm@( n 19L2¢;h> <ei9L2,¢l—h’,¢ln>

0

(0.44) ) o ) 0 0 _
w sin 6 2 log (cos o )Lo etan sL+ ,lpj h7 e—tan sL4 ,(p;n 62 log (cos 5 )Lo etan 3 Ly ’(/)l
0

h _—tan2L n
, € 2 +1/)l>

SRac 9)“’"”‘")“ (sm 9)2“””)“ (=i m) (G =G+
0 2 (+n)!l—=n)\ (F+n)(j—n)
Pl(_h:nh " ( — 2sin? g) P(h+nh ") ( — 2sin? g)

et-2sin 4 \/(z h)I(1+h)! \/(y WIG+h)! 1
I+ =mt\ G+n)l(

I(j—n)! 2%
1

/d.%‘ 1 x h+n(1+ )h njjl(fi—:n’h_n)(x) F)j(ﬁ—]:nﬁ_n) (x>

-1
(9.32)&(9.43) 2
o 2+1"
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and, finally, as claimed,
™
E = / dfsin 0 (", eF2apl) (P2, )
0
9 45) _ 6
( /Od,g sin @ < —2log (COS )LO —tangL, ]}'L? etan gL,,l/)J—n> <6 2log (cos g)Loe—tangL, 17/)1}17 etangL,lbl_n>

(9.41) e [T o\t g\ T+ ) (G — R)I(G + h)!
Lo | C”(“’Sé) (5) \/ (= nl\ G+nlG —n)

n,h—nm . 0 n.h—n . 9
Pl(f];r h=n) <1 — 2sin? 5) P-(hz ) <1 — 2sin? 5) )

Eac1251 g\/

-1
(9-32)&(9.43) 2
20 + 1"

(-
(l+n)‘( n)!

S
‘.:f
NI
|
=
<
_|._
=
—_

1
dl‘ 1— SL’ h+n<1+ )h nPl(iL];rn,hfn)<x> Pj(ﬁ;;n,h—n)<x)

9.6 Proofs of some results regarding 5%

Proof of (5.27). L w’? =0, L_w” is a combination of 1, ', therefore is or-
thogonal to w?. Hence

A
(Li)wr=0, = [(L)ws| = (Lo)us = Y 1(21+1) (s.49), A(4A+5)

2 (A+1)2 T 6(A+1)

while
ZA:Z (1+1)( 21+1) sa5) SAA+12(A+2)  AA+2)
B (A +1)2 2

=

Replacing these results in (AL)?, = (L?),s — (L)2 5, one finds

o, AA+2) [AMAA+5)\® A(2A4+32A2465A+36)
(ALZ, = =22 (22T =

2 6(A+1) 36(A+1)2

On the other hand, zow” is a combination of ! ,, ! 41, therefore is orthogonal
to w?, and (z¢) = 0. Hence

(o ) (v —a)

()" = (00) H{we) + ()" = = wo)” = (o) (o) = (e[
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(Az)® = (@) — [(21) [

But
A
o (39) (I+1)+1 20+1 (A+1)27 1
92 ~ |1
<.’IU> B +Z D A_|_ ) kD A+1
A A+1 A A A
= — 2 (+1)(1+2)— (1+1) 20+ 1
A TG lz: + 1)+ 3;+ ;(-F)
®46); A A+1 1 A 2
= — —(A+1D)(A+2)(A+3) — A(A+1)(A+2 A+1
A +kD(A+1)2{2< FIA2)(A43) ~ AA+T(A+2) + (A + 1)
A A+1 1+ (A+1)? A A2 35 A 1
- — = < A4
T T S T A+l 2%kp © Atl o 2(A+ 1) (9.46)
while
A-1 A-1
(3.7) g V20 +1 (7.32) g V20 +1 20 + 2
W’ = Zeﬁl A+l Cl+1sB+l¢llﬂ = ;6& A+l G+13 | — 20+3 d’fii
251 1 21_1) C1,3
2l—|—1 A+1
_ i(Br_1—By) 1.3 (20)(20 - 1)
et = Ze e
SO 9
A g2y /1— 5
(@)%, = [(x) 57 = Z—ﬂel(ﬁzqfﬁl) _
@ @ (A+1)2

=1

a3/ (20)(20-1)
(A+1)2
needs to take all the 5; equal (mod. 27r) in particular 5, = 0.

In this case, from /1—2 > 1— & Vi € N and ¢;3 > 1, it follows (here and

below w = w')

Since all > 0, to maximize |(x),s|, and thus minimize (Azx)2;, one

) 2 A 1 i (8.46)2 2 A2 S
@i e 2! Oﬁ)] w2l —mrr
Finally,
2 _ /.2 2 A 1 AT 2AA 1)+ (A +1)2 - 240
(o), = @) @l s ity Gry 2(A+ 1)1

_6APHTA? + 4N+ 1 _ 3A° 4+ 9N +9A+3 3
2(A +1)4 (A+1)4 A+
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Proof of (5.29). Ly¢’= 0, while Ly’ are combinations of 1,b !, therefore are
orthogonal to ¢?; similarly, z4¢” are combinations of ¢l 1 l +1, therefore are
orthogonal to ¢°. Hence

(La)gs =0, (zi)gs =0 = (L)gs =0, [@)gs| = [(zo)gs!.
Replacing these results in (AL)? = (L?)4s — (L)3, and using (5.28), one finds,

as claimed

(AL)2 _ <L2>¢B _ <¢67L2¢5> _ Z l(l?/iif?l)jl) (825) A(A2+2).

=1

On the other hand,

A
57 e~ 5 V2L 1
xo(ﬁﬂ (:) E e B A 1 (Clng(l, 0, 2)1/)10_1 + Cl+1,3F<l7 07 2)¢10+1)

(7.32 Z <C l 1/)0 L [+1 w )
A+1 lﬁ’)m -1 l+13m I+1

ePicy s ePiegs 1+1
ZA+1 ,—¢z1+z A+l ValT3 P

A—

eﬁl“cllg [+1 Zeﬁl loys
ha wla
—~ A+1 V2+1 A+1 \/25+
A—1
[+1 - l

i(Bi+1—B1) (BB "

e )e + E e C
- TEA12 T A PN+ 1)

A
2lc
Z l3 5 COS 51 1—51)

=1

this means that (x())fbﬁ = <w>f/)ﬁ is maximal when 5 = 0, and in this case one has
(here and later on ¢ = ¢@°)

2
(842)  A?

A+ 12

c,3>1 EA: 921
(A+1)2

=1

One easily checks that (x?)4s = (x?),s; hence, using (9.46), on ¢ it follows, as
claimed

(B = (@) — (@ < oL N
¢ = A+T T 2(A+1)2 (A+1)2
C2MA+1)+1-2A% 2A+1 o1
B 2(A +1)2 C2A+1)2 A+
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Proof of (5.33).

el

o (B9 (2 [Zfzﬂl(“—l) |5€l|2]+1 (A+1)*] A+1
(@) = ZZM + o) B [1 k(M) ]2A+1

L=ty [Zl ol DI } - [1+ (Z;th\lﬂ 213\111

)
+ 1) +1 (842 2 3.5 2
) } <<> 3A(A+1)+1(<)1+3A(A+1)+1

= TTTRe) S AN(A 1)
(9.47)

bl

1)

(A

| m [T

< o

so, putting together (5.32) and (9.47), one obtains, as claimed,

2 2/ 9 2 o f T SAA+T1)+1
(@)= = (o7) = (ot < 1= )+ B

VAR 2424+ a8 7 1 11
= sin < + < .
A+2 (A + 1) (A+22 " (A+1)2 " (A+1)?
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