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Abstract

This thesis deals with some central issues in the theory of competitive economies
and with the intrinsic topological nature that they exhibit. The topics discussed
focus on economic models with a multitude of agents and many commodities and
are divided in an extended introduction and four chapters.

In Chapter 2 we prove a convexity result for the range of finitely-additive vector
measures and correspondences with values in a locally convex space. These results
are based on a new topological reformulation of the so-called saturation property
which, in some form, generalizes the notion of non-atomicity of a measure space
and plays an important role in many economic problems.

Chapter 3 investigates what topological assumptions on the commodity space
are essential to formulate and study the problem of existence of competitive equi-
librium in a Walrasian competitive economy with many commodities. It includes
a general theorem on the existence of equilibrium prices in abstract markets with
infinite dimensional commodity spaces that is inspired by Nikaidô (1959).

In Chapter 4 we study a coalitional model of an exchange economy in which
coalitions are represented as the elements of a topological Boolean ring, allocations
are finitely additive vector measures and the commodity space is an ordered locally
convex space. In this general framework we will use the results of Chapter 2
to provide a topological condition for a perfectly competitive economy and use
it to prove two extensions of classical theorems on the veto power of coalitions
(Schmeidler (1972) and Vind (1972)). This will allow us to conclude that the
economic power of coalitions is an essentially topological property.

Finally, Chapter 5 studies the competitive objection mechanism in a saturated
economy with a separable Banach space of commodities whose positive cone has
non-empty interior. By doing so we will provide a new characterization of Mas-
Colell’s bargaining set in the infinite dimensional setting. We will then introduce
stronger notions of bargaining set that allow to extend our analysis to the case of
markets with imperfections.
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Chapter 1

Introduction

A competitive market is one in which individual agents act as if their personal
choices had no influence on the price formation and, more generally, on the overall
outcome of the trades. For this to happen, every trader must conform passively
to the given price system that, even if determined by the totality of individuals’
choices, remains for him an uncontrollable data.

When agents are aware of how prices are generated, this idea of competition is
closely related to that of economic negligibility of individuals and it is conceivable
only if large multitudes of economic agents participate in the economy. In fact,
in a market with only finitely many traders the determination of the prices can
easily be manipulated by a single agent altering his own supplies and demands for
goods. In other words, a competitive economy is to be thought as an idealized
construct that can only be achieved in the presence of infinitely many, negligible
economic agents.

To give a proper formalization of a competitive economy with a finite num-
ber of commodities, Aumann proposed in (1964) a model in which agents are
represented as the points of a non-atomic measure space and the aggregation of
individuals’ choices is obtained through a suitable integration procedure. From
a mathematical point of view, the effectiveness of this representation is twofold:
while it provides a concrete, measure-theoretical expression of the informal notion
of economic negligibility of individuals, it also shows how the aggregation over a
large number of economic agents has a convexifying effect on preferences, demands
and consumption sets. The first of these two points is clear: if every agent is iden-
tified with a point of a non-atomic measure space, and hence with a set of measure
zero, any change in his demands and supplies will not affect the global outcome of
the trades (that depends on the integral of all individual demands and supplies).
Rational traders will then be expected to behave as price-takers even when they
are perfectly informed of the market mechanism.

On the other hand, the mentioned convexifying effect is a somehow more subtle
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2 Introduction

point that should be discussed in details. What Aumann observed is that if one
assigns to each agent a set of commodity bundles and then averages these sets over
a significant share of agents (i.e. a non-negligible coalition) then the resulting set
must be convex. This allowed him to conclude that in a non-atomic economy with
finitely many commodities the aggregate demands and supplies of any significant
coalition can be modelled as convex-valued correspondences even when individ-
ual preferences are not convex. In the years, many key properties of non-atomic
economies have been based on this convexifying effect and contributed to the pop-
ularity of Aumann’s model. A non-exhaustive list of classical examples includes
the Core-Walras equivalence, as proved in Aumann (1964), Vind (1964), Cornwall
(1969), the existence of competitive equilibria, as in Aumann (1966), Hildenbrand
(1970) and the characterizations of value allocations in Aumann (1975), of fair allo-
cations in Varian (1976) and of competitive notions of bargaining set in Mas-Colell
(1989). The impact of this effect has indeed transcended the study of competitive
economies with many successful applications to problems dealing with coopera-
tive and non-cooperative games as well as abstract economies. We mention, as
examples, the classical contributions published in Aumann and Shapley (1974),
Schmeidler (1973) and Khan and Vohra (1984).

Unfortunately, the non-atomic model becomes much less effective in many im-
portant situations that emerge in the economic analysis and that require the use
of infinite dimensional commodity spaces. This convexifying effect on agents’ pref-
erences, in fact, relies on the finite number of commodities considered by Aumann
and it cannot be achieved, in general, in a model presenting an infinite dimen-
sional commodity space. This failure represents a major obstacle to the extension
of many important results to non-atomic economies with many commodities.

It becomes therefore necessary to replace the assumption of non-atomicity of
the measure space of agents with a stronger property that ensures a new convexi-
fying effect even when an infinite number of commodities is taken into account.

1.1 General outline of the thesis

In this work we discuss different aspects of competitive economies that become
significant when we want to study markets with many commodities and we cannot
rely on Aumann’s non-atomic model. Our primary interest will be to understand
the fundamental requirements needed to replicate the convexyifing effect men-
tioned above and to give a proper formalization of the intuition that ‘aggregation
eliminates nonconvexity’ even in more general settings. Clearly, this intention can
be pursued only together with a focus on what features of competitive economies
we want to capture in the new mathematical representation of the market.

To facilitate its exposition, the analysis we present is divided in four chapters
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devoted to four different issues: (i) the mathematical problem of generalizing the
notion of non-atomic measure space, (ii) the need of infinite dimensional commod-
ity spaces in Walrasian economies, (iii) the representation of the economic power
of coalitions intended as their capacity to affect the trading activities and (iv)
agents’ reaction to non-competitive allocations in a fully decentralized economy.
We briefly discuss these points in the following paragraphs.

The role of Lyapunov’s Theorem and the saturation prop-
erty

From a technical point of view, the convexifying effect in Aumann’s model is a
consequence of Lyapunov’s Theorem (1940). The Theorem states that the range
of any R`-valued measure defined on a non-atomic measure space is convex and
compact1. As it is known, the validity of this statement depends directly on the
finite dimension of R` and, in general, it does not hold if we consider measures with
values in infinite dimensional spaces (see (Diestel and Uhl, 1977, Chapter IX) for
a classical exposition of this issue). The problem of generalizing Aumann’s model
is therefore strongly related to finding suitable extensions of Lyapunov’s Theorem
to the infinite dimensional settings.

The centrality of this problem in the theory of competitive economies is wit-
nessed by the many articles on infinite dimensional versions of Lyapunov’s Theorem
that have been published in the economic literature over the last three decades.
Two major contributions in this direction were given first by Gretsky and Ostroy
(1985) and then by Rustichini and Yannelis (1991) with the introduction of new
economic models that contemplate a Banach space of commodities and, in some
form, generalize Aumann’s idea of a non-atomic economy. Thanks to their new
definitions, they were able to restore the convexifying effect on preferences with the
aid of two generalizations of Lyapunov’s Theorem proved respectively by Kingman
and Robertson (1968) and by Knowles (1975) (see Tourky and Yannelis (2001) for
a broad analysis of Rustichini and Yannelis’s model).

Since the late 1990’s, significant improvements were obtained by moving the
attention from non-atomic measure spaces to Loeb probability spaces, introduced
by Loeb in (1975), and then to saturated measure spaces, as defined in Hoover
and Keisler (1984). By considering Loeb spaces, in fact, important techniques from
the theory of non-standard analysis could be formulated in a measure-theoretical
register and used to prove different convexity results for Banach space valued

1Aumann explicitly refers to this formulation of Lyapunov’s Theorem in Aumann (1965).
However it was Vind who first proved in (1964) the connections between the convexifying effect
and Lyapunov’s Theorem. See also (Hildenbrand, 1974, Theorem 3, page 62) for a short proof
and further comments. Classical proofs of Lyapunov’s Theorem are given in Halmos (1948) and
Lindenstrauss (1966).
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correspondences, as in Sun (1996, 1997). The latter were then successfully applied
to a variety of economic problems dealing with multitudes of negligible economic
agents. We mention, among the many, the results in Khan and Sun (1996, 1997);
Sun and Zhang (2015) and the surveys Khan and Sun (2002), Anderson (2008).

It is, however, the property of saturation to be the most interesting in our
perspective. Saturated measure spaces are in fact a special class of non-atomic
spaces for which it is possible to reproduce many key properties of Loeb spaces
including those that we mentioned above (see Sun and Yannelis (2008) and Loeb
and Sun (2009)). Together with this, it is proved in Podczeck (2008) and Keisler
and Sun (2009) that the property of saturation is not only sufficient to ensure
many convexity results for Banach space valued correspondences, but it is also
necessary. This makes saturated measure spaces the natural candidate for any
generalization of the non-atomic spaces used by Aumann in his finite dimensional
economic model.

In 2013, profound extensions of Lyapunov’s Theorem were finally obtained in
Khan and Sagara (2013) with a reformulation of the saturation property that is
based on Maharam’s Theorem on classification of measure algebras (1942). In
their main theorem, which still relays on Knowles (1975), the authors considered a
Banach space E and proved that any E-valued measure defined on a homogeneous
measure algebra (Σ, λ) has a convex and weakly compact range provided that the
Maharam-type of Σ is strictly greater than the dimension of E. These results
were then sharpened in Greinecker and Podczeck (2013) and applied to prove the
core-Walras equivalence in a special class of economies with a Banach space of
commodities. Further extensions were then obtained in Khan and Sagara (2015,
2016) and Urbinati (2019).

The analysis in Chapter 2, which was partially presented in Urbinati (2019),
takes off from Khan and Sagara’s extension of Lyapunov’s Theorem. Using the
so-called Frechét-Nikodym approach, in which a measure is studied through the
topology it induces on its domain, we will be able to give a topological refor-
mulation of the saturation property using the notion of degree of saturation of
a measure, introduced in Urbinati (2019). With this approach, we will extend
the main results in Khan and Sagara (2013, 2016) and in Greinecker and Podczeck
(2013) and prove a convexity theorem for the range of finitely additive vector mea-
sures with values in a locally convex space. Thanks to a decomposition theorem
that was first presented in Urbinati and Weber (2017), it will also be possible to
base the proof on a simpler version of Knowles’ Theorem than the one needed in
Khan and Sagara (2016).

All of these results will then be applied to the study of finitely additive cor-
respondences with convex range and values that is presented here for the first
time.
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What space is the right commodity space for Walrasian
competitive economies?

In the late 1950’s, Hukakane Nikaidô extended some of the results obtained in
(1956a) and gave what is one of the first studies of equilibrium existence for Wal-
rasian economies with many commodities. His work, which remains surprisingly
little known, precedes most of the literature on the topic by over a decade and an-
ticipates some of its most characterizing concerns. Beside its historical relevance,
the approach presented in Nikaidô (1957, 1959) stands out for the very elementary
description of the commodity space in which commodity bundles are described as
the formal object of agents’ choices deprived from any physical attribute. In Chap-
ter 3, that was developed with Professor M. Ali Khan, we follow Nikaidô’s early
contributions to reflect on the mathematical description of infinite dimensional
commodity spaces needed in the Walrasian program.

As it is known, while there is essentially only one way to choose a topological
and order structure on the Euclidean space R`, on a general linear space there are
many different possibilities to do so. This means that when we consider economies
with infinitely many commodities it is no longer possible to refer to a natural
structure of the commodity space and the mathematical representation of com-
modities and prices has to depend on the nature of the economic phenomena one
wants to study. Since the early 1970’s, the literature on competitive economies
with many commodities has extended in many directions and a variety of different
topological, order and algebraic properties have been considered, mostly to allow
precise applications of the theory. Being interested specifically on the working of a
competitive economy, a natural question is whether or not any of these properties
is essential in the Walrasian analysis. In other words, we ask what mathematical
assumptions on the commodity space are necessary to study the existence of a
Walrasian equilibrium in a competitive economy.

As a matter of fact, the choice of a specific infinite dimensional commodity
space in modelling competitive economies is usually related to the particular kind
of allocations one wants to consider. In a rough simplification, we could say that in
the classical Malinvaud (1953), Debreu (1954), Peleg and Yaari (1970) and Bewley
(1972) the authors were primarily concerned with studying allocation over time or
different states of the nature, in Mas-Colell (1975) and Jones (1984, 1983) with the
analysis of commodity differentiation and in Hart (1975) with particular allocations
that arise in financial economics (see also Duffie (2010) for more references and
examples). In each of these cases, one is first brought to ask “how do we represent
a specific kind of allocation?” and only secondarily “how do we model a market
that involves such allocations?”.

In Chapter 3 we will try to move away from this approach and to shift the at-
tention from the physical description of allocations to the decision problem faced
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by the agents, in line with Nikaidô’s view. Formally, we will present an equilib-
rium existence theorem in which the commodity and price spaces are described
in a purely algebraic form (i.e. they will not be endowed with any intrinsic topo-
logical or order structure) and the only topological and order considerations will
follow directly from the linearity of prices and the characteristics of the agents.
This will allow us to argue that the study of the equilibrium existence, which is
essentially a fixed-point problem, requires the commodity space to be endowed
with a structure that is much weaker than the one necessary for other solution
concepts (see, for example, the study in Aliprantis and Burkinshaw (1991) of the
necessary assumptions to prove the Core-Walras equivalence).

The economic weight of coalitions in competitive economies

A central notion in the study of large economies is represented by the so-called
economic weight of coalitions, intended as the capacity of a group of agents to take
part and influence the trades. As we approach competitive economies, where the
idea of economic negligibility of individual traders plays a crucial role, the problem
of understanding how the actors in the economy and their economic weight should
be represented is an old and significant issue that we face in Chapter 4.

Following Aumann’s non-atomic model, it is common to address this problem
by representing the agents of the economy as the points of a measure space (T,Σ, λ)
where the elements of the σ-algebra Σ represent all the possible coalitions that can
be formed in the economy and λ can be thought as a measure of the economic
weight of coalitions.

A different but effective way to study the trading process in large economies is
to move the attention from the set of agents to the family of coalitions through the
so called coalitional representation, introduced in Vind (1964) and then generalized
in Cornwall (1969) and Armstrong and Richter (1984, 1986). The main idea of
this approach is to ignore all individual agents without economic weight and take
the coalitions in the economy as the primitive entities of the model. Coalitions
will therefore be seen as elements of an abstract Boolean ring R and allocations as
vector measures assigning to every coalition in R the correspondent (aggregated)
commodity bundle. Since it is always possible to derive a coalitional representation
of an individual model of the economy (via a suitable integration process) we
can take the coalitional approach as a more general environment to study large
economies (see the discussions in Debreu (1967) and in (Armstrong and Richter,
1984, pp. 117–118, 141)).

In Chapter 4 we consider a very general coalitional model of an exchange econ-
omy with infinitely many commodities and focus on the problem of representing
mathematically the economic weight of coalitions. Specifically, we will show how
in every exchange economy the set of all coalitions can be represented as a topo-
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logical Boolean ring so that coalitions with “small” economic power correspond to
“topologically small” elements of the ring, an idea presented for the first time in
Urbinati (2019). What will emerge is that the topological approach we propose
here is not only a natural consequence of the commodity-price duality, but also
a necessary tool to explore the study of economies with a locally convex space of
commodities without imposing significant (and apparently unjustified) restrictions
on the model.

Concretely, the economic model considered in Chapter 4 will be a generalization
of Armstrong and Richter (1984) and Cheng (1991) in which the commodity space
is an ordered locally convex space and allocations may be only finitely-additive.
In this framework, the topological extension of Lyapunov’s Theorem proved in
Chapter 2 will allow us to formulate a condition for competitive markets which,
in some sense, replicates the ‘many more agents than commodities’ condition pre-
sented in Rustichini and Yannelis (1991). Finally, we will use these results to prove
extensions of classical theorems on the veto power of coalitions originally proved
in Schmeidler (1972) and Vind (1972) and more recently extended to the infinite
dimensional settings in Hervés-Beloso et al. (2000), Evren and Hüsseinov (2008)
and Bhowmik and Graziano (2015) among the many.

The competitive objections mechanism

In a way, our original interest for competitive economies was motivated by the
possibility of studying optimal allocations of resources as the outcome of a fully
decentralized interaction of individual agents. When this happens, an equilibrium
state is defined as a balance-of-power situation where no group of agents is effective
and so there is no incentive for individuals to cooperate. To put it in another way,
in a properly formulated competitive economy it should always be possible that a
significant share of agents can improve upon a non-equilibrium allocation without
recurring to any centralized organization. Therefore, not only we expect to find
a coalition able to object any non-competitive allocation but we also require that
such an objection can be reached through a fully decentralized process.

This intuition can be formalized by means of the competitive objection mecha-
nism that is described as follows. Imagine that the agents of an exchange economy
are asked to choose between accepting the bundles assigned to them by a feasible
allocation f or to trade their initial resources at a given price system p. If f is
not competitive, some agents will certainly reject f in favor of other consumption
plans in their budget set that they find more profitable. A competitive objection
to f is reached if the transactions associated to these plans are performable, which
is to say that the total demands of all the deviating agents do not exceed their
total supplies.

The notion of competitive objection was introduced in Mas-Colell (1989) to
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study the bargaining set of an atomless economy with finitely many commodities.
Under assumptions that are close to those needed in Aumann’s existence and
equivalence results (1964; 1966), he was able to show that every non-competitive
allocation could be objected “competitively” and that every competitive objection
is justified, in the sense that it cannot in turn be counter-objected. This allowed
him to conclude that, in atomless economies with finitely many commodities, the
core, the bargaining set and the competitive allocations are all equivalent solution
concepts.

From a normative point of view, the interest in studying the competitive ob-
jection mechanism is therefore twofold: if on the one hand it provides a fully
decentralized mechanism to find objections against non-competitive allocations,
on the other it helps studying the bargaining set of large economies.

In Chapter 5 we present a first study of the competitive objection mechanism
and Mas-Colell’s bargaining set in the infinite dimensional settings. Formally, we
will consider an economy with a saturated measure space of agents and a separable
Banach space of commodities and prove that, in this framework, every feasible but
non-competitive allocation can be objected competitively. This will prove that, in
the economic model described, every allocation in the bargaining set is competitive.

We will then weaken the assumptions on the measure space of agents and study
some alternative notions of bargaining set in the presence of oligopolies and market
imperfections. This will also give us some infinite dimensional extensions of recent
results obtained in Hervés-Beloso et al. (2018).

1.2 What do we mean by topological analysis?

We have decided to base our analysis of competitive economies on a topological
approach. Accordingly, to facilitate the focus on purely topological considerations,
many of the arguments are presented in highly abstract settings (e.g. topological
Boolean rings, general topological linear spaces etc.) that may need a little eluci-
dation. In this paragraph we briefly discuss this choice and the method used to
construct our main research question.

The idea that many aspects of large economies should be studied with a topo-
logical perspective goes back to the dawn of economic theory. In a famous passage
of his Mathematical principle of the Theory of Wealth (1838), for example, Cournot
discusses the relation between the continuity of the market demand function and
the necessity of having a large number of agents interacting in the economy, see
(Cournot, 1938, pp. 49–50). With the development in both the fields, topology
and economic theory, an increasing number of topological techniques have been
successfully applied in several economic problems and have now become standard
arguments.
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In a purely instrumental view of mathematics, the role of topology in the eco-
nomic analysis may be reduced to providing the technical tools that allow to bypass
or simplify some aspects of a given economic model. Any topological consideration
is therefore justified as a necessary, mechanical expedient that is imported from
an extraneous discipline and applied to the specific economic problem.

The arguments in this thesis, however, are based on a completely different
standpoint that is very well framed in Samuelson’s famous opening statement
of his Foundation of Economic Analysis : “Mathematics is language”2. In the
approach we want to give here, in fact, the focus on a topological register is to be
thought as a precise declaration of the language we want to use not only in the
description, but also in the formulation and construction of the economic question.
The adjective topological in the title is therefore used to indicate a precise way to
think of the economic problem rather than a tool for solving it.

On a more concrete level, this thesis is an attempt to put the emphasis on
the topological implications underlying many models of perfectly competitive
economies. By doing so, it will be shown how these considerations allow to prove
extensions of known results as well as to discuss the minimal requirements to for-
malize some central concepts in the equilibrium analysis. As a way of illustration,
we could say that in Chapter 2 it is shown how the saturation property of mea-
sure spaces, on which the results in Chapter 4 and 5 are based, can be translated
into topological property of Boolean rings, Chapter 3 focuses on the topological
register needed for Walrasian models of competitive economies while Chapter 4 ex-
poses how the problem of studying the economic power of coalitions is essentially
topological.

2Samuelson quoted Gibbs’ motto “Mathematics is a language” in the first edition of Foun-
dation of Economic Analysis in (1947) only to shorten it to “Mathematics is language” in the
second edition of 1952. This second formulation was reissued as Article 26 in Stiglitz’ collection
(1966). A broad exposition of Samuelsons’ approach is given in Dixit (2005).
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Chapter 2

The saturation property and the
range of vector measures

The aim of this chapter is to provide conditions under which an additive corre-
spondence with values in an infinite dimensional space has a convex and weakly
compact range. More formally, we will be dealing with a Boolean ring R, a locally
convex space E and a correspondence Φ∶R ↠ E that is additive in the sense that
Φ(0) = {0} and Φ(a ∨ b) = Φ(a) + Φ(b) whenever a, b ∈ R are disjoint. In these
settings, the range of Φ is defined as the union R(Φ) ∶= ⋃{Φ(a) ∶ a ∈ R}. With
these definitions, our main concern can be seen as an attempt to find extensions
to the classical Theorem of Lyapunov on the range of vector measures that allow
to consider multiplicity of values and finite additivity in an infinite dimensional
framework.

Among the many possible lines of investigations, we will be primarily inter-
ested in the case of an additive correspondence Φ that can be entirely studied
through the family SΦ of its selections, which is the collection of every (finitely
additive) measure µ∶R → E with the property that µ(a) ∈ Φ(a) when a ∈ R. For
correspondences of this type, that are called rich in selections, many properties of
the range can be reduced to the study of spliceable families of measures1, a notion
that will be formalized and analyzed at page 16. The problem of characterizing
additive correspondences with a convex range can then be reduced to the following
question:

LetM be a spliceable set of E-valued measures defined on R. When is
it true that the setM(a) ∶= {µ(a) ∶ µ ∈ M} is convex for every a ∈ R?

Our main research question is therefore in line with that explored in Artstein
(1972); Costé and Pallu de la Barrière (1979) or Basile (1998) among the many.

1A set M of E-valued measures on R is said to be spliceable if for every α,β ∈ M and a ∈ R
the function η∶x↦ α(x ∧ a) + β(x ∖ a), for x ∈ R, is still a measure in M. See Definition 2.1.10.

11
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To allow the use of important tools of integration theory, in the literature it is
common to address the question above under the additional assumption that all
the measures in M are absolutely continuous with respect to some probability
measures λ∶R → [0,1]. By doing so, one can move the attention from the set M
to the measure λ and find conditions on the latter that are sufficient to ensure the
convexity of the range of each µ ∈ M.

To allow a more general view-point, however, we will answer the question above
using the so-called Fréchet-Nikodym approach, in which a class of measures M is
studied via the topological structure it induces on the Boolean ring where it is
defined.

The mathematical setting

We start by introducing some of the notation that will be used throughout this
chapter.

• Given a set X we will write P(X) for its power set and P0(X) for the
collection of all non-empty subsets of X. When A,B ⊂X are not empty A+B
will be the usual Minkowski sum {x + y ∶ x ∈ A, y ∈ B}. A correspondence
between two sets X and Y is a function Φ∶X → P(Y ). In this case we will
write Φ∶X ↠ Y .

• E will be a complete, Hausdorff locally convex topological vector space with
continuous dual E∗. For x∗ ∈ E∗, x ∈ E we will also write ⟨x∗, x⟩ instead of
x∗(x). A subset F of E∗ is said to separate the points of a non-empty Y ⊂ E
if for every x, y ∈ Y there is a x∗ ∈ F such that ⟨x∗, x⟩ ≠ ⟨x∗, y⟩.

• We agree to denote by R a Boolean ring and to write △,∧,∨,∖ and ≤ respec-
tively for the symmetric difference (sum), infimum (multiplication), supre-
mum, difference and the natural ordering. When R is a Boolean algebra, i.e.
a Boolean ring with unit, we shall write e for the unit of R and write ac for
the complement e ∖ a of a whenever a ∈ R. The principal ideal generated by
a a ∈ R will be the set Ra ∶= R ∧ a ∶= {b ∈ R ∶ b ≤ a}. For algebras of sets,
i.e. sub-algebras of the power sets of a non-empty set, we will also use the
standard set notation.

• By measure we will always mean a finitely additive function defined on a
Boolean ring. When µ is a measure on R we will refer to the set N(µ) ∶=
{a ∈ R ∶ µ(b) = 0 ∀b ≤ a} as the ideal of µ-null elements and denote by R̃µ
the quotient algebra R/N(µ) so that the elements of R̃µ are the classes of
equivalence determined by the relation a ∼µ b ⇐⇒ a△ b ∈ N(µ) for a, b ∈ R.
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Other notation conventions will be introduced throughout the chapter. As our
main references, we cite Bhaskara Rao and Bhaskara Rao (1983) and Weber (2002)
for the theory of finitely additive measures (charges) and topological Boolean rings,
Diestel and Uhl (1977), Aliprantis and Border (2006) and Fabian et al. (2011)
for elements of vector measures, integration and functional analysis. For what
concerns additive correspondences we will mainly refer to Drewnowski (1976a) and
Basile (1994), other classical references are Schmeidler (1971), Artstein (1972) and
Costé and Pallu de la Barrière (1979).

2.1 Definitions and preliminary results

We start this section by recalling some of the notions needed to formalize the
idea of an “infinite sum” in a topological linear space. Most of these results are
known in the literature but we recall them here as they are usually presented under
different notation and perspectives. We will mainly follow the approach given in
(Urbinati and Weber, 2017, Section 3) but still, we mention (Lindenstrauss and
Tzafiri, 1977, Chapter 1) for an introduction on sums and series in Banach spaces,
Bourbaki (2013) for a more general view in the context of topological groups and
(Drewnowski, 1976a, Section 1) for the analysis of infinite sums of sets.

Given an index set I let F(I) denote the collection of all its finite subsets and
endow F(I) with the inclusion order.

Definition 2.1.1. A family (xi)i∈I of elements of E is said to be summable if the
net of finite partial sums (∑i∈F xi)F ∈F(I) converges to some x ∈ E. In this case we
write s((xi)i∈I) ∶= ∑i∈I xi ∶= x.

The set of all summable families in E with index set I is denoted by `1(I,E).

With the definition given the set `1(I,E) can be thought as a linear sub-space
of the product space EI so that the function s∶ `1(I,E) → E is a linear map.

Definition 2.1.2. We say that a subset A ⊂ EI is uniformly summable if A ⊆
`1(I,E) and for every 0-neighborhood U in E there exists a F0 ∈ F(I) such that
whenever x = (xi)i∈I ∈ A and F ∈ F(I) is such that F0 ⊆ F one has:

s(x) −∑
i∈I
xi ∈ U.

As a consequence of the fact that E has a 0-neighborhood basis consisting
of closed sets, from the definition given we derive the following characterization
of uniformly summable families that is sometimes called Cauchy’s criterion (see
(Bourbaki, 2013, Section 5.2) for a proof).
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Proposition 2.1.3 (Cauchy’s Criterion). A family A ⊆ EI is uniformly summable
if and only if for any 0-neighborhood U in E there exists FU ∈ F(I) such that

∑i∈G xi ∈ U whenever G ∈ F(I) is disjoint from FU and (xi)i∈I ∈ A.

We stress that in Proposition 2.1.3 the completeness of the space E plays
a crucial role and cannot be dropped. The following theorem shows how the
continuity of the sum operations can be partially extended to infinite sums.

Theorem 2.1.4. Consider the topology τp induced on `1(I,E) by the product
topology on EI and let A ⊆ `1(I,E) be a uniformly summable set. Then the
restriction of s to A is a uniformly continuous function with respect to τp.

Proof. Let U ⊆ E be a 0-neighborhood, then take a closed, symmetric 0-
neighborhood U0 ⊂ E such that U0 + U0 + U0 ⊂ U . By the Cauchy Criterion there
must be a F0 ∈ F(I) such that ∑i∈G xi ∈ U0 whenever G ∈ F(I) is disjoint from F0

and (xi)i∈I ∈ A. Being F0 finite, there must be a 0-neighborhood V ⊂ E such that

∑i∈F0
V ⊂ U0.

Consider now the 0-neighborhood in (`1(I,E), τp) defined as the set W ∶=
{(xi)i∈I ∈ `1(I,E) ∶ xi ∈ V ∀i ∈ F0}. If we choose any two x = (xi)i∈I and
y = (yi)i∈I in A such that x − y ∈W we will have that ∑i∈F0

(xi − yi) ∈ ∑i∈F0
V ⊂ U0

while ∑i∈G xi ∈ U0, ∑i∈G yi ∈ U0 for every G ∈ F(I) disjoint from F0. But then, by
the closedness of the set U0, we will have that:

s(x) − s(y) = ∑
i∈F0

(xi − yi) + ∑
i∉F0

xi − ∑
i∉F0

yi ∈ U0 +U0 +U0 ⊂ U.

which proves that the restriction of s to A is a uniformly continuous function.

Corollary 2.1.5. Let (Ai)i∈I be a family of non-empty, convex and weakly compact
subsets of E such that A ∶= ∏i∈I Ai is uniformly summable. Then ∑i∈I Ai is convex
and weakly compact too.

Proof. Let us denote by w the sub-space topology induced on `1(I,E) by the
product topology on (E,σ(E,E∗)). Being each of the Ai’s convex and weakly
compact, by Tychonov’s Theorem the product A = ∏i∈I Ai must be convex and
compact with respect to the topology w.

Observe now that A is uniformly summable even in the weak topology and
so, by Theorem 2.1.4, the restriction of s to A, beside being linear, is uniformly
continuous with respect to w and the weak topology on E. It follows that ∑i∈I Ai,
which is the image of A under the function s, is convex and weakly compact
too.
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2.1.A Measures and additive correspondences

In what follows we talk about an additive correspondence Φ∶R ↠ E meaning a
map that assigns to every a ∈ R a non-empty subset of Φ(a) ⊆ E and that is such
that Φ(0) = {0} and Φ(a∨ b) = Φ(a)+Φ(b) whenever a, b ∈ R are disjoint. Clearly,
a measure can be seen as a special case of an additive correspondence whose values
are singleton.

Together with the definition given, that is purely algebraic, it will be often
needed to make the following topological considerations on additive correspon-
dences.

Definition 2.1.6. An additive correspondence Φ∶R ↠ E is said to be:

• Exhaustive if for every every sequence (an)n∈N of pairwise disjoint elements
of R and 0-neighborhood U in E there is a mU ∈ N such that Φ(an) ⊆ U for
every n ≥mU .

• Countably additive if for every sequence (an)n∈N of pairwise disjoint ele-
ments of R the system (Φ(an))n∈N is uniformly summable and ∑n∈N Φ(an) =
Φ(supn an) whenever supn an ∈ R.

• Completely additive if for every net (ai)i∈I of pairwise disjoint elements of
R the system (Φ(ai))i∈I is uniformly summable and ∑i∈I Φ(ai) = Φ(supi ai)
whenever supi ai ∈ R.

Clearly, being every measure an additive correspondence, we can say that a
measure is exhaustive, σ-additive or completely additive measure whenever it is
exhaustive, countably or completely additive as a correspondence. In particular,
a measure µ will be exhaustive if µ(an) → 0 whenever (an)n∈N is a sequence of
pairwise disjoint elements of R.

It follows from the definitions that every completely additive correspondence
is countably additive and every countably additive correspondence is exhaustive
(see Drewnowski (1976a)). The converse is, in general, not true but we still have
the following characterization of exhaustive correspondences.

Theorem 2.1.7. The following conditions are equivalent:

1. Φ is an exhaustive correspondence.

2. For every net (ai)i∈I of pairwise disjoint elements of R the system (Φ(ai))i∈I
is uniformly summable.

Proof. To prove that (1 ⇒ 2) we assume by contradiction that there is a net
(ai)i∈I of pairwise disjoint elements of R such that the family (Φ(ai))i∈I ⊂ EI
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violates the Cauchy Criterion for summability (see 2.1.3). This is to say that
for some 0-neighborhood U in E it is possible to associate to every F ∈ F(I) a
finite GF ⊂ I ∖ F such that ∑i∈GF Φ(ai) ⊈ U . With an inductive procedure we
can therefore find a sequence (Fn)n∈N of pairwise disjoint subsets of I such that

∑i∈Fn Φ(ai) ⊈ U for every n ∈ N. But then, if we call bn ∶= supi∈Fn ai for every n ∈ N,
we have that (bn)n∈N is a sequence of pairwise disjoint elements of R such that
Φ(bn) = ∑i∈Fn Φ(ai) ⊈ U for every n ∈ N, in contradiction with the assumption that
Φ is exhaustive.

Suppose now that (2) holds and let (an)n∈N be a sequence of pairwise disjoint
elements of R. By the Cauchy Criterion on summability, for every 0-neighborhood
U in E there is a finite set F ⊂ N such that ∑i∈G Φ(ai) ⊂ U whenever G ⊂ I ∖ F
is finite. But then it must be the case that Φ(ai) ⊆ U for every i ∉ F and Φ is
therefore exhaustive.

We shall now talk about additive selections of correspondences. Formally, if R
is a rule between two sets X and Y , i.e. a subset of the Cartesian product X ×Y ,
we usually call a selection of R any function f ∶X → Y such that (x, f(x)) ∈ R for
every x ∈ X. In the framework of additive correspondences a special importance
will be given to selections that are measures.

Definition 2.1.8. Let Φ∶R ↠ E be a correspondence. An additive selection of Φ
is a measure µ∶R → E such that µ(a) ∈ Φ(a) for every a ∈ R. The set of additive
selections of Φ is denoted by SΦ.

The correspondence Φ is rich in additive selections if Φ(a) = {µ(a) ∶ µ ∈ SΦ}
for every a ∈ R.

In the following we may say that an additive correspondence Φ is rich in (ex-
haustive, completely additive) selections if for every a ∈ Φ and x ∈ Φ(a) there is an
(exhaustive, completely additive) µ ∈ SΦ such that µ(a) = x.

It is clear that the study of an additive correspondence Φ that is rich in selec-
tions can be reduced to that of the set SΦ. On the other hand, we might ask when
for a given set M of E-valued measures on R the correspondence ΦM that maps
each x ∈ R in the set {µ(x) ∶ µ ∈ M} is additive.

Proposition 2.1.9. Let M be a set of measures defined on R with values in E.
Then the following are equivalent:

(i) The correspondence ΦM∶x↦ {µ(x) ∶ µ ∈ M}, for x ∈ R, is additive.

(ii) For every a ∈ R, µ1, µ2 ∈ M the function η∶x ↦ µ1(x ∧ a) + µ2(x ∖ a), x ∈ R,
is an additive selection of ΦM.
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Proof. Suppose that (i) holds and select µ1, µ2 ∈ M, a ∈ R. Define the measure
η∶R → E as in point (ii) and observe that, by construction, η(x) ∈ Φ(x∧a)+Φ(x∖a)
for every x ∈ R. But then, by the additivity of ΦS , η(x) ∈ Φ(x) for every x ∈ R
and hence η is a selection of ΦM.

Assume now that M satisfies condition (ii). To show (i) let a1, a2 ∈ R be
disjoint and take x1, x2 ∈ E such that xi ∈ ΦM(ai) for i = 1,2. Take µ1, µ2 ∈ M
such that µi(ai) = xi for i = 1,2 (such µi exists by the definition of ΦM) and define
the measure η by setting η(x) = µ1(x ∧ a1) + µ2(x ∖ a1) for every x ∈ R. But
then η is a selection of ΦM (by point (ii)) and by construction it is such that
η(a1 ∨ a2) = µ1(a1) + µ2(a2) = x1 + x2. It follows that x1 + x2 ∈ ΦM(a1 ∨ a2) and
thus the additivity ΦM.

We stress that point (ii) does not imply that the measure η is itself inM, it is
however clear that, if interested in the study of the correspondence ΦM, one gives
a special importance to all the measures that can be built from M through the
splicing operation described in point (ii) of Proposition 2.1.9.

Definition 2.1.10. A set M of E-valued measures on R is spliceable, or closed
under splicing, if for every µ1, µ2 ∈ M and a ∈ R the function η∶x ↦ µ1(x ∧ a) +
µ2(x ∖ a), for x ∈ R, is a measure in M.

A direct consequence of Proposition 2.1.9 shows that a correspondence Φ rich
in additive selections is additive if and only if SΦ is a spliceable set. In the spirit of
this observation one may also think that a similar result holds for exhaustive corre-
spondences, i.e. that a correspondence rich in exhaustive selections is exhaustive if
and only if the set of its exhaustive selections is spliceable. The following example
shows that this is not the case and that given a spliceable set M of exhaustive
measures it is possible that the correspondence ΦM is not exhaustive.

Example 2.1.11. Consider the setM consisting of all E-valued measures defined
on the algebra P(N) that have a finite support, i.e. all the measures µ∶ P(N) → E
such that {n ∶ µ({n}) > 0} is finite. It is clear that M is spliceable and that each
µ ∈ M is exhaustive. At the same time, since ΦM(F ) = E for every non-empty
F ⊆ N, the correspondence ΦM cannot be exhaustive.

Last we introduce one of the central notions of this chapter: the range of an
additive correspondence. This will simply be defined as the union of its values.

Definition 2.1.12. The range of the additive correspondence Φ∶R ↠ E is the set:
R(Φ) ∶= ⋃a∈RΦ(a). In the case of a measure µ, we also write µ(R) to denote its
range R(µ).
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Example 2.1.13. A relevant class of additive correspondences is formed by those
that are naturally obtained from a single measure. Given a measure µ∶R → E
we can define Φµ as the correspondence that assigns to each a ∈ R the set µ(Ra)
or, equivalently, the correspondence generated by the spliceable set of measures
{µb ∶ b ∈ Ra} (where µb maps x ∈ R into µ(b ∧ x)). In this case, one sees that Φµ

is exhaustive if and only if µ is so.
A large share of literature on convex-ranged measures is devoted to study the

cases in which, given a measure µ on R, each of the sets µ(Ra) are convex and
compact (see (Diestel and Uhl, 1977, Chapter IX) and its references for a survey of
classical examples). In our framework, this is equivalent with studying conditions
under which Φµ has convex and compact values.

2.1.B Topological Boolean rings

When λ is a positive, bounded, scalar measure on R the function dλ∶ (x, y) ↦
λ(x△ y), for x, y ∈ R, defines an invariant pseudo-metric2 on (R,△) and hence a
group-topology τ(λ). Such a topology, whose 0-neighborhood system is generated
by the sets ({x ∶ λ(x) ≤ 2−n})n∈N, is called the λ-topology and it is the coarsest one
making λ a (uniformly) continuous function. By moving the attention from the
measure λ to the uniform structure it induces on R, i.e. the topology τ(λ), one can
easily translate in a topological register many important features of the measure
space (R, λ) and facilitate many considerations that would be hard to formulate
otherwise. As a way of illustration, let us consider any measure µ∶R → RN and
observe that µ is absolutely continuous with respect to λ 3 if and only if it is
continuous with respect to the topology τ(λ). Furthermore, the topology τ(λ)
benefits from the following interesting properties:

• Its 0-neighborhood system is generated by a family of solid sets, where a
subset X of R is solid if y ∈X whenever y ≤ x for some x ∈X.

• The operations △ and ∧ are both uniformly continuous.

On a broader level, a group-topology on (R,△) that satisfies any of the two prop-
erties listed above (which are in fact equivalent by (Weber, 2002, Proposition 1.6))
belongs to the family of the so-called Fréchet-Nikodym topologies (or simply FN -
topologies). We will give a special importance to these topologies and, even though
FN -topologies do not represent all the possible topologies that can be defined on
R, we will agree with the following definition.

2We say that a pseudo-metric d on a group (G,+) is invariant if d(x + z, y + z) = d(x, y) for
every x, y, z ∈ G.

3We refer here to the ε − δ notion of absolute continuity as defined in (Bhaskara Rao and
Bhaskara Rao, 1983, Definition 6.1.1): i.e. µ is absolutely continuous with respect to λ if and
only if for all ε > 0 there exists a δ > 0 such that ∣µ(y)∣ ≤ ε whenever λ(x) ≤ δ for all y ≤ x ∈ R.
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Definition 2.1.14. A topological Boolean ring is a pair (R, u) such that R is
a Boolean ring and u is a group-topology on R whose 0-neighborhood system is
generated by a family of solid sets.

We will say that a topological Boolean ring (R, u) is exhaustive if every se-
quence of pairwise disjoint elements of R converges to 0 or, equivalently, if every
monotone net in R is Cauchy (Weber, 2002, Proposition 3.4). On the other hand,
if every monotone net in R order converging to some x ∈ R is also topologically
convergent to x we will call u an order continuous topology. These two classes of
measures, which link the algebraic and the uniform nature of topological Boolean
rings, are related by the following property.

Proposition 2.1.15 (Proposition 4.2 in Weber (2002)). Let (R, u) be an exhaus-
tive, Hausdorff topological Boolean ring that is complete (as a uniform space).
Then R is a complete Boolean algebra and u is order continuous.

Following the same approach used for a scalar measure λ we may want to
study any given measure µ∶R → E through the uniform structure it induces on
R. This will be given by the group-topology τ(µ) on R whose 0-neighborhood
system is generated by the sets {x ∶ y ∈ U for all y ≤ x} with U ranging over the
0-neighborhoods in E. Just like in the case of scalar measures, τ(µ) will result to
be the coarsest FN -topology on R making µ a (uniformly) continuous function,
see (Weber, 2002, Proposition 1.10).

Definition 2.1.16. Let µ∶R → E be a measure. We call µ-topology, and denote by
τ(µ), the coarsest FN-topology on R making µ a uniformly continuous function.

It is clear that definition we just gave generalizes that of λ-topology we consid-
ered for positive, scalar measures. Furthermore, one sees that a measure µ on R
is exhaustive if and only if (R, τ(µ)) is an exhaustive Boolean ring. Even the no-
tion of absolute continuity of measures, whose most general formalization is quite
involved, can be now expressed by topological means.

Definition 2.1.17. Given two measures µ and ν over R, we say that ν is ab-
solutely continuous with respect to µ, and write ν ≪ µ, if τ(ν) is coarser than
τ(µ).

In view of Proposition 2.1.15, we give a special importance to those measures
inducing a complete FN -topology on R, namely the closed measures.

Definition 2.1.18. A measure µ on R is closed if the topological Boolean ring
(R, τ(µ)) is complete as a uniform space.
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Let us call N(u) the closure of {0} in (R, u). Since N(u) is a closed ideal in
(R, u) (that coincides with N(µ) if u is the FN -topology induced by a measure
µ) the quotient (R̂, û) ∶= (R, u)/N(u) will be a Hausdorff topological Boolean ring
which is exhaustive or (uniformly) complete whenever u is so. Furthermore, if µ
is a u-continuous measure on R then µ̂∶ x̂ ↦ µ(x), for x ∈ x̂ ∈ R̂, defines on R̂ a û-
continuous measure that has the same range as µ. This, together with Proposition
2.1.15, gives us the following key result.

Proposition 2.1.19. Let (R, u) be a complete and exhaustive topological Boolean
ring and let (R̂, û) be the quotient (R, u)/N(u). Then R̂ is a complete Boolean
algebra and û is order continuous.

In addition, if µ∶R → E is a u-continuous measure and µ̂∶ R̂ → E is the function
defined by µ̂(x̂) = µ(x) for x ∈ x̂ ∈ R̂ then µ̂ is a completely additive measure and
µ(R) = µ̂(R̂).

It follows from the Proposition above that for closed and exhaustive measures
µ and ν over a complete ring, ν ≪ µ if and only if N(µ) ⊆ N(ν). This has to do
with the fact that for any two order continuous topologies u and v over a complete
Boolean ring R, u ⊆ v if and only if N(v) ⊆ N(u) (Weber, 2002, Theorem 4.8).

Remark 2.1.20. In the study of scalar valued measure (or even Banach space
valued measures) it is often much easier to work with σ-additive measures defined
on σ-algebras rather than finitely-additive ones. To make an example, if λ, η ∶R →
R are σ-additive measures on a σ-algebra then it is well known that λ≪ η if and
only if N(η) ⊂ N(λ) and that there is a partition of R based on the Lebesgue-
decomposition of λ with respect to η. None of these properties hold, in general, if
λ, η are only finitely additive.

Everything changes when we consider measures with values in a space that is
non-metrizable. In this case, most of the nice properties that made σ-additive
measures more appealing than finitely-additive ones (including those mentioned
above) fail for reasons that are similar to those that emerge in the scalar-valued,
finitely-additive settings. To restore the same properties in this more general
framework one needs to impose that the topologies induced by the measures are
complete (see for example the results in (Kluvánek and Knowles, 1976, Chapter
V) where an equivalent definition of closed measure is considered).

The topological approach we exposed here gives a nice and elegant explanation
for this phenomena: σ-additive measures defined on σ-algebras are in fact auto-
matically closed when they take values in a metrizable space but they may not be
so in the general case. In other words, it is the combination of exhaustivity and
completeness of the topology induced by a measure, rather than its σ-additivity
and the σ-completeness of its domain, the fundamental condition needed in many
situations. All this shows us the importance of Proposition 2.1.19.
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2.1.C The degree of saturation

Given a measure µ on R, by µ-atom is meant any element a ∈ R∖N(µ) such that,
for every x ≤ a, either x ∈ N(µ) or a ∖ x ∈ N(µ). It is therefore clear that if we
denote by π∶R → R/N(µ) the quotient map, a ∈ R∖N(µ) is a µ-atom if and only
if π(R ∧ a) = {0, π(a)}. With an inductive argument we can conclude that the
measure µ is non-atomic, i.e. that there are no µ-atoms in R, if and only if:

inf {∣π(R ∧ x)∣ ∶ x ∈ R ∖N(µ)} = ∞. (2.1)

In this section we want to extend the notion of non-atomicity of a measure µ
by introducing a cardinal function on topological Boolean rings that gives us an
estimation of the minumum ‘size’ of its non-trivial principal ideals. We will call
this function degree of saturation.

Recall that the density of a topological group G, denoted by dens(G), is the
least among the cardinalities of all dense subsets of G. It is straightforward to
see that, if H is the closure of the identity in G, then the Hausdorff quotient
G/H has the same density as G. In general, when H is a subset of G, it is not
necessarily true that dens(H) = dens(G). Consequently, for a given topological
Boolean ring (R, u) and x ∈ R we could have that the sub-space R∧x, considered
with the topology induced by u, has density strictly smaller than dens(R). This
observation brings us to the following definition.

Definition 2.1.21. The degree of saturation of a topological Boolean ring (R, u),
denoted by sat(u), is the least among the densities of all R∧x, with x ∈ R∖N(u),
each one considered as a topological sub-space of (R, u).

If µ is a measure over R, we also write sat(µ) to denote sat(τ(µ)) and call it
degree of saturation of the measure µ.

Just like the density character, we note that the degree of saturation of a topo-
logical Boolean ring (R, u) is the same as the one of the correspondent Hausdorff
quotient. To see this is enough to observe that if π∶ (R, u) → (R, u)/N(u) denotes
the quotient map then dens(R ∧ x) = dens(π(R ∧ x)) for every x ∈ R. In other
words we can alternatively define the degree of saturation of (R, u) as the cardinal:

sat(u) = inf {dens(π(R ∧ x)) ∶ x ∈ R ∖N(u)}

where, as usual, each principal ideal R ∧ x is considered endowed with the sub-
space topology induced by (R, u). The connections between the definition above
and equation 2.1 are then clear and we can see that a measure µ is non-atomic if
and only if sat(µ) is infinite. This explains why we can take the notion of degree
of saturation as a generalization of that of non-atomicity.
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Proposition 2.1.22. Let R be a complete Boolean algebra and u, v two order
continuous FN-topologies on R such that v ⊆ u. Then sat(u) ≤ sat(v).

Proof. We prove that for every x ∈ R ∖ N(v) there is a continuous function
f ∶ (R, v) → (R, u) such that f(R ∧ x) is of the form R∧ y for some y ∈ R ∖N(u).
This way, for every v-dense subset D of R∧ x, f(D) is a u-dense subset of R∧ y
with cardinality smaller or equal than ∣D∣. We do it only for x ∶= e, as the proof
strategy remains the same for a generic x ∈ R ∖N(v).

Since the ideal N(v) can be seen as a monotone net in R, it must converge to
a ∶= supN(v) ∈ R (which exists by the completeness of R) by the order continuity
assumption. This, being N(v) closed, implies that N(v) can be written as the
principal ideal R∧ a.

Let b ∶= ac and call ub and vb the sub-space topologies induced on R∧b by u and
v respectively. vb and ub are order-continuous topologies defined on a complete
Boolean algebra and, moreover, by the choice of b, N(vb) = N(v) ∧ b = {0} =
N(u) ∧ b = N(ub). But then, a glance at (Weber, 2002, Theorem 4.8) gives us
vb = ub. Let f ∶R → R ∧ b be the function that assigns x ∧ b to each x ∈ R. Of
course, f is surjective and continuous with respect to v and vb. Since vb = ub, f is
the desired function.

Corollary 2.1.23. Let (R, u) be a complete and exhaustive topological Boolean
ring and µ a u-continuous measure on R. Then sat(u) ≤ sat(µ).

Proof. Let (R̂, û), µ̂ be as in Proposition 2.1.19 so that R̂ is a complete Boolean
algebra and û and τ(µ̂) are order-continuous topologies on R. Since û and τ(µ̂)
satisfy the assumptions of Proposition 2.1.22, sat(û) ≤ sat(τ(µ̂)) = sat(µ̂). The
thesis follows from the fact that sat(u) = sat(û) and sat(µ) = sat(µ̂).
Remark 2.1.24. The notion of saturation of a measure space has been widely
employed in different applications of measure and probability theory in the last
decades (see Fajardo and Keisler (2004); Keisler and Sun (2009) and their refer-
ences for a survey). However, it is in Khan and Sagara (2013) that we find this
notion adapted to topological Boolean algebras with the following definition: a
measure µ on an algebra R is saturated if there is no x ∈ R ∖ N(µ) such that
R ∧ x, endowed with the topology τ(µ), is separable. The definition of degree of
saturation we gave in 2.1.21 can be seen as a natural extension of this concept: in
fact a measure µ is saturated in the sense given by Khan and Sagara if and only
if sat(µ) is uncountable.

2.2 The Lyapunov property

The classical Theorem of Lyapunov states that any RN -valued, σ-additive and non-
atomic measure defined on a σ-algebra has a convex and compact range. As a direct
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consequence of this, ifR is a σ-algebra and λ∶R → [0,+∞[ a σ-additive, non-atomic
measure, then the range of every RN -valued measure absolutely continuous with
respect to λ is convex and compact. With an abuse of the terminology introduced
in Khan and Sagara (2013) we may therefore say that the measure space (R, λ) has
the Lyapunov property with respect to any finite dimensional space. This, in our
general context of topological Boolean rings, brings us to the following definition.

Definition 2.2.1. We say that a topological Boolean ring (R, u) has the Lyapunov
property with respect to the space E if every u-continuous measure ν∶R → E has
a convex and weakly compact range.

We will say that a measure µ on R has the Lyapunov property with respect to
E if τ(µ) has the Lyapunov property with respect to E.

In other words, a measure µ∶R → E has the Lyapunov property with respect to
E if every E-valued measure absolutely continuous with respect to µ has a convex
and weakly compact range. Our main problem can then be written in the following
way:

Problem: Given the locally convex space E, which topological
Boolean rings have the Lyapunov property with respect to E?

We divide our analysis in two steps: first we consider only topological Boolean
rings whose uniform structure is induced by a scalar measure, then we tackle the
problem in the general case.

2.2.A The range of measures admitting a control

We say that a vector measure µ∶R → E has a control measure λ∶R → [0,+∞[ if
λ is bounded and µ ≪ λ, i.e. if limn µ(xn) = 0 whenever (xn)n∈N is a sequence
in R such that limn λ(xn) = 0. In this case, µ is continuous with respect to the
λ-topology and therefore it is exhaustive and bounded and it is σ-additive when
λ is σ-additive. Moreover, both µ and λ will be closed whenever R is a σ-algebra
and λ is σ-additive (see (Weber, 2002, Corollary 3.7) or (Aliprantis and Border,
2006, Lemma 13.13)).

In general not all vector measures are controlled. However, a slight general-
ization of Bartle-Dunford-Schwartz’s Theorem ensures that if µ is an exhaustive
measure with values in a metrizable, locally convex space then it admits a control
measure λ which can be taken σ-additive if µ is so (Weber, 2002, Corollary 7.5).

A useful advantage of working with measures that are controlled is that it is
possible to use functional analytical tools that would not be available otherwise.
In the following, we are going to use a special integration procedure to assign to
every controlled measure µ an integral operator Tµ (a more profound analysis of
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this procedure can be found, for example, in Kluvánek and Knowles (1976)). Let
A be a σ-algebra of subsets of a non-empty Ω and let λ∶A → [0,+∞[ be a σ-
additive measure. If we identify the functions that are equal λ-almost everywhere
we can associate every λ-continuous measure µ∶A → E with the unique continuous
operator Tµ∶L∞(λ) → E with the property that Tµ(χF ) = µ(F ) for every F ∈ A,
where χF denotes the characteristic function of F . This operator Tµ, that we call
the integral operator associated to µ, will result to be continuous with respect to
the weak∗ topology on L∞(λ) and the weak topology on E (Diestel and Uhl, 1977,
IX.1.4). In the following, we shall also write ∫ f dµ for Tµ(f) and observe that, by
a continuity argument, for all x∗ ∈ E∗ and f ∈ L∞(λ), x∗ ○ Tµ(f) = x∗ (∫ f dµ) =
∫ f d(x∗ ○ µ) = Tx∗○µ(f).

The following Theorem shows the relation between the non-injectiveness of the
operator Tµ and the convexity of the range of µ. Its proof can be found in (Diestel
and Uhl, 1977, IX.1.4) for Banach-space valued measures and in (Urbinati and
Weber, 2017, Proposition 2.3) for the locally convex case.

Proposition 2.2.2. Let µ∶A → E be a vector measure over a σ-algebra of sets
and λ∶A → [0,+∞[ a σ-additive control for µ. For every A ∈ A ∖N(λ), assume
that the restriction of the operator Tµ to the space L∞(λA), consisting of functions
in L∞(λ) vanishing off A, is non-injective. Then µ(A∩A) is weakly compact and
convex for all A ∈ A.

In view of the above, our next aim is to find conditions on the measures µ and λ
ensuring that each of the operators Tµ∶L∞(λA) → E, A ∈ A∖N(λ), is non-injective.
For example, we could ask that dim (L∞(λA)) > dim E4 for every A ∈ A ∖N(λ),
a condition studied in Rustichini and Yannelis (1991) and again in Tourky and
Yannelis (2001). The approach below closely follows the line of Greinecker and
Podczeck (2013) and it is included here for the sake of completeness. First we will
need the following lemma.

Lemma 2.2.3. Let λ∶A → [0,+∞[ be a σ-additive measure over a σ-algebra of
sets. Then dens(A, τ(λ)) = dens(L1(λ), ∥ ⋅ ∥1) whenever dens(A, τ(λ)) is infinite.

Proof. We first prove the inequality dens(A, τ(λ)) ≤ dens(L1(λ), ∥ ⋅ ∥1). Take a
dense set F ⊂ L1(λ) and for f ∈ F define Bf ∶= {x ∶ ∣1−f(x)∣ ≤ 1

2} ∈ A. Our goal is
to show that for any A ∈ A and ε > 0 we can take f ∈ F such that λ(A△Bf) < 2ε.
This way {Bf ∶ f ∈ F} is dense in (A, τ(λ)) and so the claim will follow from the
generality of F .

4Here dim E stands for the algebraic dimension of the linear space E.
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Choose A ∈ A, ε > 0 and take f ∈ F such that ∥χA − f∥1 < ε. We have that:

ε >∥χA − f∥1 = ∫ ∣χA − f(x)∣ dλ(x) ≥

≥∫
A∖Bf

∣1 − f(x)∣ dλ(x) + ∫
Bf∖A

∣f(x)∣ dλ(x).

By construction, ∣f(x)∣ ≥ 1
2 for x ∈ Bf while ∣1 − f(x)∣ ≥ 1

2 for x ∉ Bf so from the
previous equation follows that:

ε > ∥χA − f∥1 ≥ ∫
A∖Bf

1

2
dλ + ∫

Bf∖A
1

2
dλ =

= 1

2
λ(A ∖Bf) +

1

2
λ(Bf ∖A) = 1

2
λ(A△Bf)

as claimed.
We now prove that the inequality dens(A, τ(λ)) ≥ dens(L1(λ), ∥⋅∣1) holds when

dens(A, τ(λ)) is infinite. For a dense subset B ⊂ A, let F be the collection of all
(finite) linear combinations of elements of {χB ∶ B ∈ B} with rational coefficient.
Since F and B have the same cardinality and the space of simple functions5 S(A)
is dense in L1(λ), it will be enough to show that F is dense in S(A) to prove that
dens(L1(λ), ∥ ⋅ ∥1) ≤ ∣B∣.

Let f ∶= ∑n
i=1αiχAi be any simple function in S(A) and ε > 0. For every i ≤ n

choose βi ∈ Q and Bi ∈ B so that ∣βi − αi∣ ≤ ε/n and λ(Bi △ Ai) ≤ ε/nα, where
α ∶= supi≤n ∣αi∣. This way g ∶= ∑n

i=1 βiχBi is a function in F such that:

∣g − f ∣ ≤
n

∑
i=1

∣βiχBi − αiχAi ∣ ≤

≤
n

∑
i=1

∣βi − αi∣χBi + ∣αi∣ ⋅ ∣χBi − χAi ∣ =

=
n

∑
i=1

∣βi − αi∣χBi + ∣αi∣χBi△Ai .

But then:

∫ ∣g − f ∣ dλ ≤
n

∑
i=1

∣βi − αi∣λ(Bi) + ∣αi∣λ(Bi△Ai) ≤

≤ ε
n

n

∑
i=1

λ(Bi) + α
n

∑
i=1

λ(Bi△Ai) ≤ ε + ε

proving that F is dense in S(A).
5i.e. all linear combinations of characteristic functions of all A ∈ A.
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In Greinecker and Podczeck (2013), the authors consider a σ-algebra of sets A
and for every infinite cardinal number κ they define a class of κ-atomless measures.
The latter consists of σ-additive measure λ∶A → [0,1] such that densL1(λA) ≥ κ for
every A ∈ A∖N(λ) (by (Greinecker and Podczeck, 2013, Fact 1) this is equivalent
to the original definition of κ-atomless measures). By doing so, they were able
to prove in (Greinecker and Podczeck, 2013, Section 3) that if λ∶A → [0,1] is a
σ-additive, κ-atomless measure and E is a Banach space separated by a family
F ⊂ E∗ with ∣F∣ < κ then every measure µ∶A → E absolutely continuous with
respect to λ has a convex and weakly compact range.

Next Theorem can be seen as an extension of Greinecker and Podczeck’s main
result to the case of measures with values in a locally convex space.

Theorem 2.2.4. Let µ∶A → E be a measure on a σ-algebra of sets and let λ∶A →
[0,+∞[ be a σ-additive control measure for µ with infinite degree of saturation.
Assume that there exists a family F ⊂ E∗ that separates the points of spanµ(A)
with ∣F∣ < sat(λ). Then µ(A) is convex and weakly compact.

Proof. We identify functions which are λ-almost everywhere equal.
By Proposition 2.2.2 it will be sufficient to prove that for any A ∈ A ∖N(λ),

the restriction of the operator Tµ∶ f ↦ ∫ f dµ to L∞(λA) is non-injective. We will
do this for A = Ω, since the proof remains the same for the general case.

If F is finite then spanµ(A) must be finite dimensional. At the same time,
being sat(λ) infinite, the space L∞(λ) has infinite dimension and so the operator
Tµ∶L∞(λ) → E cannot be injective. Therefore we can assume that F is infinite.

By the Radon-Nikodym Theorem, to every x∗ ∈ F we can associate a function
gx∗ ∈ L1(λ) so that the measure x∗○µ is described by the relation A↦ ∫A gx∗ dλ for
A ∈ A. Put Y ∶= span{gx∗ ∶ x∗ ∈ F}. Since the set of finite linear combinations of
the gx∗ ’s with rational coefficients is a dense subset of Y with cardinality ∣F∣ and
the latter is strictly smaller than sat(λ) by hypothesis, we have that dens(Y ) ≤
∣F∣ < dens(A, τ(λ)). Consequently, Y cannot be the whole L1(λ), since L1(λ) has
density greater or equal to (A, τ(λ)) by Lemma 2.2.3.

Now, because Y is a closed proper sub-space of L1(λ) and L1(λ)∗ = L∞(λ),
as a consequence of the Hahn-Banach Theorem there must be a f ∈ L∞(λ) ∖ {0}
such that for all x∗ ∈ F , ∫ f d(x∗ ○ µ) = 0 and so, by a continuity argument,
x∗ ○ Tµ(f) = 0. But Tµ(f) belongs to spanµ(A), so x∗ ○ Tµ(f) = 0 for all x∗ ∈ F
implies that Tµ(f) = 0 and hence that Tµ is non-injective as claimed.

In the assumptions of Theorem 2.2.4, λ is a σ-additive real valued measure
defined on a σ-algebra and as such it is closed. The corollary that follows shows
that this property alone is enough to guarantee the validity of the results.

Corollary 2.2.5. Let λ∶R → [0,+∞[ be a closed control measure for µ∶R → E with
infinite degree of saturation and assume that there is a family F ⊂ E∗ separating
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the points of spanµ(R) such that ∣F∣ < sat(λ). Then µ(R) is convex and weakly
compact.

Proof. Let (R̂λ, û) be the quotient (R, τ(λ))/N(λ) and µ̂∶ R̂λ → E, λ̂∶ R̂λ →
[0,+∞[ be the measures defined by µ̂(x̂) = µ(x), λ̂(x̂) = λ(x) for x ∈ x̂ ∈ R̂λ.
By Proposition 2.1.19, being (R, u) complete and exhaustive, R̂λ is complete and
λ̂ is a completely additive control measure for µ̂.

By the Loomis-Sikorski representation Theorem (Sikorski, 1960, 29.1), there
exists a σ-algebra of sets A and a surjective homomorphism π∶A → R̂λ such that
Kerπ is a σ-ideal in A thus A/Kerπ is isomorphic to R̂λ. Let us define the
measures λπ ∶= λ̂ ○ π∶A → [0,+∞[ and µπ ∶= µ̂ ○ π∶A → E. By construction, λπ is a
σ-additive control measure for µπ, sat(λπ) = sat(λ̂) = sat(λ) and µπ(A) = µ(R).
In other words, spanµπ(A) is separated by the family F ⊂ E∗ with ∣F∣ < sat(λπ)
and so, being satisfied the condition of Theorem 2.2.4, µπ(A), and therefore µ(R),
is convex and weakly compact as claimed.

2.2.B The range of general measures

In the absence of a control measure for µ∶R → E, it is much harder to obtain a
result close to Theorem 2.2.4 with a similar approach. This is mainly due to the
difficulties that can arise in generalizing some of the functional analytic tools used
throughout the proofs of Proposition 2.2.2, Lemma 2.2.3 and Theorem 2.2.4, in
which the properties of L∞(λ) and L1(λ) were intensively employed.

Our main goal in this Section is to prove the following.

Let µ∶R → E be a closed and exhaustive measure with infinite degree
of saturation and suppose that there is a family F ⊂ E∗ that separates
the points of spanµ(R) with ∣F∣ < sat(µ). Then µ(R) is convex and
weakly compact.

The idea behind the proof is simple and it follows what has been done in Urbinati
and Weber (2017). It consists in decomposing µ as a sum µ = ∑i∈I µi in which each
one of the µi’s is a measure satisfying the hypothesis of Corollary 2.2.5 and then
showing that µ(R) = ∑i µi(R). However, if on one hand the writing ∑i∈I µ(R) has
a clear meaning when I is finite, in the infinite case things must be handled much
more carefully and a little more notation is needed. We refer to the exposition at
the beginning of the chapter (pages 13 to 15) for a short survey on infinite sums
and uniform summability.

The following Theorem is going to be necessary.

Theorem 2.2.6 (Theorem 4.5 in Urbinati and Weber (2017)). Let µ∶R → E
be a closed and exhaustive measure. Then there is a system ai ∈ R of almost
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disjoint6 elements and x∗i ∈ E∗, i ∈ I, such that the measures µi∶R → E defined by
µi(x) = µ(x ∧ ai), x ∈ R, satisfy the following conditions:

1. for each i ∈ I the measure µi is absolutely continuous with respect to ∣x∗i ○µ∣,
the variation of x∗i ○ µ;

2. for all x ∈ R, (µi(x))i∈I is summable and µ(x) = ∑i∈I µi(x);

3. ∏i∈I µi(R) is uniformly summable and ∑i∈I µi(R) = µ(R).

What Theorem 2.2.6 ensures is that whenever we have a closed and exhaustive
measure µ∶R → E, we can always write it as the infinite sum of some controlled
measures µi’s that can be chosen so that (µi(R))i∈I is uniformly summable. We
stress in particular that point (3) in the Theorem follows from (2) and from
Theorem 2.1.7: the correspondence Φµ∶R ↠ E that maps each x ∈ R in µ(Rx)
is in fact exhaustive (as noticed in Example 2.1.13) and, by construction, it is
such that Φ(ai) = µi(R) for every i ∈ I. It is therefore sufficient to apply the
implication (1 ⇒ 2) in Theorem 2.1.7 to the family (ai)i∈I to conclude that the
system (Φ(ai))i∈I , and hence (µi(R))i∈I , is uniformly summable.

We now have all the ingredients to prove our main theorem.

Theorem 2.2.7. Let µ∶R → E be a closed and exhaustive measure with infinite
degree of saturation and suppose that there is a family F ⊂ E∗ that separates the
points of spanµ(R) with ∣F∣ < sat(µ). Then µ(R) is convex and weakly compact.

Proof. Let x∗i ∈ E∗, ai ∈ R and µi∶R → E, i ∈ I, be as in Proposition 2.2.6 so
that ∏i∈I µi(R) is uniformly summable and µ(R) = ∑i∈I µi(R). If we prove that
each of the µi’s satisfies the assumptions of Corollary 2.2.5, so that the µi(R)’s are
all convex and weakly compact subsets of E, the thesis will follow from Corollary
2.1.5.

Fix a i ∈ I and call λ the measure ∣x∗i ○ µ∣∶R → [0,+∞[, which is a control
measure for µi by point (1) in 2.2.6. By construction, λ is absolutely continuous
with respect to µ and therefore, beside being closed, it has a degree of saturation
greater or equal than sat(µ) so that ∣F∣ < sat(λ).

Moreover, since µi(R) ⊆ µ(R), the family F separates the points of spanµi(R)
too. But then all the assumptions on Corollary 2.2.5 are satisfied and µi(R) is
convex and weakly compact as claimed.

Corollary 2.2.8. Let µ∶R → E be a closed and exhaustive measure with infinite
degree of saturation and suppose that there is a family F ⊂ E∗ that separates the
points of E with ∣F∣ < sat(µ). Then µ has the Lyapunov property with respect to
E.

6i.e. such that ai ∧ aj ∈ N(µ) for all i, j ∈ I distinct.
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Proof. Let ν∶R → E be a measure absolutely continuous with respect to µ. Then ν
is closed, exhaustive and has degree of saturation greater or equal to sat(µ), where
the latter is strictly greater than ∣F∣ by assumption. Since F separates the points
of E, and consequently of spanν(R), ν satisfies all the assumptions of Theorem
2.2.7 and as such it has a convex and weakly compact range.

Corollary 2.2.9. Let (R, u) be a complete and exhaustive topological Boolean ring
such that sat(u) is infinite. Furthermore, assume that there is a family F ⊂ E∗

that separates the points of E with ∣F∣ < sat(u). Then (R, u) has the Lyapunov
property with respect to E.

Proof. It follows directly from Corollary 2.1.23 that every u-continuous measure
µ∶R → E satisfies the assumptions of Corollary 2.2.8 and therefore it has a convex
and weakly compact range.

Remark 2.2.10 (Remarks on the main theorem). As mentioned before, what
makes it quite easier to work with a vector measure µ∶R → E admitting a control
λ∶R → [0,+∞[ is the possibility of employing many fine properties of the spaces
L1(λ) and L∞(λ). When such a λ does not exist, it is necessary to study other
function spaces in order to replace L1(λ) and L∞(λ). This is done, for example, in
Kluvánek and Knowles (1976) where a generalization of Proposition 2.2.2 is given.
Following this line of investigation, in (2016) Khan and Sagara proved that a closed,
σ-additive measure over a σ-algebra µ∶A → E has convex and weakly compact
range if it is homogeneous of type strictly greater than the topological dimension
of E, generalizing a previous result they had proved in (2013). The problem with
this approach is mainly due to the very deep analytical tools employed which seem
to be a very high price to be payed in this framework.

To prove Theorem 2.2.7, which can be seen as a general case of the above men-
tioned result of Khan and Sagara, we decided to follow a completely different path
inspired by Urbinati and Weber (2017). Theorem 2.2.7 improves previous results
in two respects: the less restrictive hypothesis, in which neither σ-additiveness of
the measures nor the σ-completeness of the algebra are required, and the proof
strategy itself which seems to be more flexible to further developments.

2.2.C The range of additive correspondences

We now go back to the study of the range of an additive correspondence Φ∶R ↠ E
that is rich in additive selections. Our first result is a standard argument that
allows to deduce the convexity of the values of Φ from the convexity of the ranges
of the measures belonging to a sufficiently rich subset of SΦ. We will need the
following Lemma.
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Lemma 2.2.11. Let (R, u) and E be as in Corollary 2.2.9 and let µ1, µ2∶R → E
be two u-continuous measures. Then, for every a ∈ R and every t ∈ [0,1] there is
a b ≤ a such that tµ1(a) = µ1(b) and (1 − t)µ2(a) = µ2(a ∖ b).

Proof. The first thing we observe is that, under these assumptions, it is possible
to find a family F ⊆ (E ×E)∗ that separates the points of E ×E and that is such
that ∣F∣ < sat(u). Therefore, by Corollary 2.2.9, every u-continuous measure with
values in E ×E will necessarily have a convex range.

Let us choose a ∈ R and t ∈ [0,1]. By setting η(x) = (µ1(x ∧ a), µ2(x ∧ a)) for
every x ∈ R we can define a u-continuous measure η∶R → E ×E that has a convex
range by the argument above. This will mean in particular that both 0 and η(a)
belong to η(R) and so there must be a y ∈ R such that η(y) = tη(a). Call b ∶= y∧a,
then observe that, by construction, we have that µi(b) = µi(y ∧ a) = tµi(a) for
i = 1,2. But then µ1(b) = tµ1(a) while (1−t)µ2(a) = µ2(a)−tµ2(a) = µ2(a)−µ2(b) =
µ2(a ∖ b) as claimed.

Theorem 2.2.12. Let (R, u) and E be as in Corollary 2.2.9, M be a spliceable
family of u-continuous measures with values in E and call ΦM the correspondence
that maps x ∈ R into {µ(x) ∶ µ ∈ M}. Then:

1. ΦM(a) is convex for every a ∈ R.

2. R(Φ) = ⋃x∈RΦ(x) is convex.

Proof. To prove point (1) let us take a ∈ R, v1, v2 ∈ ΦM(a) and t ∈ [0,1]. We
need to prove that v ∶= tv1+(1− t)v2 belongs to ΦM(a) or, equivalently, that there
is a ν ∈ M such that ν(a) = v. Let us choose, for i = 1,2, a measure µi ∈ M
such that µi(a) = vi. Being each µi a u-continuous measure, we can apply Lemma
2.2.11 and find a b ≤ a such that µ1(b) = tµ1(a) and µ2(a ∖ b) = (1 − t)µ2(a). In
particular we will have that µ1(b) + µ2(a ∖ b) = tv1 + (1 − t)v2 = v. The claim is
proved once we observe that the function ν that assign to each x ∈ R the vector
ν(x) = µ1(x ∧ b) + µ2(x ∖ b) is a measure in M (because M is spliceable) and it is
such that ν(a) = µ1(b) + µ2(a ∖ b) = v as desired.

We focus now on point (2). To prove that R(ΦM) is convex let us choose
v1, v2 ∈ R(ΦM), t ∈ [0,1] and claim that v ∶= tv1 + (1 − t)v2 ∈ R(ΦM), which is
to say that v = ν(d) for some ν ∈ M and d ∈ R. Let us take ai ∈ R and µi ∈ M
be such that µi(ai) = vi for every i = 1,2, then define b0 ∶= a1 ∧ a2, b1 ∶= a1 ∖ a2

and b2 ∶= a2 ∖ a1. As a consequence of Theorem 2.3.1, the range of each µi is a
convex set and so we can take c1 ≤ b1 and c2 ≤ b2 such that tµ1(b1) = µ1(c1) and
(1− t)µ2(b2) = µ2(c2). At the same time, by point (1) there must be a ν ∈ M such
that µ0(b0) = tµ1(b0) + (1 − t)µ2(b0). To conclude the proof let us define ν as the
measure that assigns µ1(x ∧ b1) + µ0(x ∧ b0) + µ2(x ∖ a1) to each x ∈ R and call
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d ∶= c1 ∨ b0 ∨ c2. This way the fact that M is closed under splicing ensures that
ν ∈ M while the identity ν(d) = v follows from the following series of equations:

ν(d) =µ1(c1) + µ0(b0) + µ2(c2) =
=tµ1(b1) + (tµ1(b0) + (1 − t)µ2(b0)) + (1 − t)µ2(b2) =
=tµ1(a1) + (1 − t)µ2(a2) = tv1 + (1 − t)v2 = v.

Thanks to Proposition 2.1.9 we can rephrase the Theorem above in the follow-
ing formulation that results more suitable to certain applications.

Corollary 2.2.13. Let (R, u) be a closed and exhaustive topological Boolean ring
with an infinite degree of saturation and suppose that there is a F ⊆ E∗ that
separates the points of E and that is such that ∣F∣ < sat(u). Then every additive
correspondence Φ∶R ↠ E that is rich in u-continuous selections has convex values
and a convex range.

Remark 2.2.14. On the set P0(E) we can define a topology, sometimes called
the Hausdorff topology, defined by the semi-metrics:

dp(X,Y ) ∶= sup
x∈X

inf
y∈Y

p(x − y)

with p ranging over continuous semi-norms on E. Thanks to this topological
structure on P0(E), one could define the FN-topology induced by Φ on R as the
coarsest FN -topology on R making Φ a continuous function and denote it by
τ(Φ). This idea is followed, for example in Drewnowski (1976a), Avallone and
Basile (1993) and Basile (1994, 1998).

In the approach we have proposed here we have studied an additive correspon-
dence Φ∶R ↠ E through the weakest FN -topology uΦ on R that makes every
selection in SΦ a uniformly continuous function. When Φ is rich in selections this
is equivalent with saying that uΦ is the weakest FN -topology making Φ an up-
per hemicontinuous correspondence. This uΦ is usually coarser than the topology
τ(Φ) described above. In the example 2.1.11 it is clear that uΦ is exhaustive while
τ(Φ) is not.

2.3 Refinements

As it was first proved in (Tweddle, 1968, Theorem 3), a finitely additive measure
taking values in a locally convex space has a relatively weakly compact range if and
only if it is exhaustive (see also or (Diestel and Uhl, 1977, Corollary 18.1.I) for the
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case of Banach-space valued measures). This implies that whenever µ∶R → E is
exhaustive, the space spanµ(R) belongs to the class of weakly compactly generated
spaces, where a linear sub-space Y of E is weakly compactly generated if it is the
closed linear span of a weakly compact subset of E.

In the light of this remark, we might agree with saying that most of the results
on the range of E-valued exhaustive measures can be reformulated in terms of
weakly compactly generated subsets of E. The following Theorem is a way to do
this.

Theorem 2.3.1. Let (R, u) be a complete and exhaustive topological Boolean ring
with infinite degree of saturation and assume that for every weakly compactly gen-
erated sub-space Y of E there is a family F ⊂ E∗ separating the points of Y such
that ∣F∣ < sat(µ). Then (R, u) has the Lyapunov property with respect to E.

Proof. Let ν∶R → E be a u-continuous measure and call Y ∶= spanν(R). Our
goal is to prove that ν has a convex and weakly compact range by showing that is
satisfies the assumptions of Theorem 2.2.7.

Being ν exhaustive, Y is a weakly compactly generated sub-space of E and so,
by hypothesis, its points are separated by a family F ⊂ E∗ with ∣F∣ < sat(µ). The
fact that ν is closed, and so sat(µ) ≤ sat(ν) by Corollary 2.1.23, concludes the
proof.

We stress that Theorem 2.3.1 is a significant improvement of Corollary 2.2.8 as
it allows us to consider a much wider class of measures. As a way of illustration,
in the following example, we describe a locally convex, infinite dimensional space
whose weakly compactly generated sub-spaces are finite dimensional.

Example 2.3.2. Consider the infinite dimensional space X = c00 consisting of all
real sequences with finite support (i.e. sequences (xn)n ⊂ R such that xn = 0 for
all but a finite number of indexes n ∈ N). On E we take the topology τB generated
by the base:

{E ∩ (∏
n∈N

Un) ∶ Un is an open set of R for all n ∈ N} .

Such τB is commonly known as box topology and, by (Jarchow, 1981, section 6.6),
it makes (X,τB) a complete locally convex space. Furthermore, one observes that
bounded sets in E must lie in finite dimensional sub-spaces of X (see for example
(Zabeti, 2016, Theorem 4)).

Consider now the algebra B of measurable subsets of the real unit interval
[0,1] with the Lebesgue measure λ. Since the range of every measure µ∶ B → X
absolutely continuous with respect to λ lies in a finite dimensional sub-space of
X, by the classical Lyapunov’s Theorem µ(B) must be compact and convex. This
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implies that (B, τ(λ)) has the Lyapunov’s property with respect to X even though
there is no family of functionals F ⊂ X∗ that separates the points of X with
∣F∣ < sat(λ).

Similarly with what is done in Khan and Sagara (2013, 2015) and (Greinecker
and Podczeck, 2013, Corollary 1), one might want to find a relation between the
density of the space E and the degree of saturation of a E-valued measure with
the Lyapunov property with respect to E. In order to do this, we will recall
the following preliminary result, due to Amir and Lindenstrauss (1968), whose
proof can be found in (Fabian et al., 2011, Theorem 13.3) for Banach spaces and
in (Cascales and Orihuela, 1987, Theorem 13) for a general class of spaces that
includes locally convex metrizable spaces.

Proposition 2.3.3. If E is a metrizable weakly compactly generated locally convex
space then dens(E) = dens(E∗) where E∗ is considered with the weak∗ topology.

Proposition 2.3.3 allows us reformulate the conditions in 2.3.1 in terms of the
density of weakly compactly generated sub-spaces of E.

Proposition 2.3.4. Let (R, u) be a complete and exhaustive topological Boolean
ring and assume that every weakly compactly generated sub-space of E is linearly
homeomorphic to some metrizable space with density strictly smaller than sat(u).
Then µ has the Lyapunov property with respect to E.

Proof. Let ν∶R → E be a u-continuous measure. We need to prove that ν(R) is
convex and weakly compact. Since ν is closed and exhaustive, it is sufficient to
show that the points of Y ∶= spanν(R) are separated by an infinite family F ⊂ E∗

with ∣F∣ < sat(ν), then apply Theorem 2.2.7.
Being ν exhaustive, Y is a weakly compactly generated sub-space of E and as

such it is metrizable by assumption. Thus, by applying Proposition 2.3.3, we can
take a family F ⊂ Y ∗ with cardinality dens(Y ) that is dense in Y ∗ with respect to
the weak∗ topology. The family F has therefore cardinality strictly smaller than
sat(u) by assumption and it separates the points of Y as a consequence of the
Hahn-Banach Theorem (Fabian et al., 2011, Proposition 3.39).

This, together with the fact that sat(u) ≤ sat(ν) (Proposition 2.1.23), implies
that ∣F∣ < sat(ν) as desired.

Remark 2.3.5. In the setting of Proposition 2.3.4, the measure µ takes values
in a sub-space of E whose topology can be induced by a metric. Thus, by the
Theorem of Bartle-Dunford-Schwartz (as formulated in (Weber, 2002, Corollary
7.5)) the measure µ is equivalent with respect to a scalar measure λ∶R → [0,+∞[
(i.e. τ(µ) = τ(λ)).

This makes possible to prove Proposition 2.3.4 via Corollary 2.2.5 without the
need of employing Theorem 2.2.7.
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2.3.A A characterization of the Lyapunov property

It is known that Lyapunov’s Theorem also characterizes finite dimensional spaces.
In fact, if E is a F -space7 such that every E-valued, non-atomic and σ-additive
measure on σ-algebras has a compact or convex range, E cannot have infinite
dimension (see (Diestel and Uhl, 1977, Corollary 6 on pg 265) for the case E is a
Banach space, for the general result see Wnuk (1980)). In the terminology we have
introduced, this is equivalent with saying that an F -space E has a finite dimension
if and only if every σ-additive, non-atomic measure λ∶R → [0,+∞[ defined on a
σ-algebra has the Lyapunov property with respect to E.

We wonder whether a similar statement can be generalized to spaces with
higher dimension, proving that those conditions that in Theorem 2.2.7 were shown
to be sufficient for the convexity result are also necessary. In other words, we ask
if the following question can be answered positively:

Question: Let µ∶R → E be a closed and exhaustive measure with the
Lyapunov property with respect to E. Is it true that sat(µ) must be
strictly greater then the cardinality of the minimum family F ⊂ E∗

that separates the points of spanµ(R)?

Following an idea of Wnuk (1980), we use the existence of a topologically inde-
pendent sequence in E to provide a partial answer to the previous question.

Recall that (vn)n∈N ⊂ E is a topologically linearly independent sequence in E if
for every f ∈ `∞(N) (i.e. the space of bounded functions f ∶N→ R) ∑n∈N f(n)vn = 0
implies f = 0. In Drewnowski et al. (1981) it is proved that every infinite dimen-
sional metrizable vector space (X,τ) contains a topologically linearly independent
sequence (vn)n∈N.

Proposition 2.3.6. Suppose that E is metrizable and infinite dimensional. Let
µ∶R → E be an exhaustive measure such that every measure ν∶R → E absolutely
continuous with respect to µ has a convex range. Then sat(µ) is uncountable.

Proof. Since E is metrizable and µ exhaustive, by Bartle-Dunford-Schwartz’s The-
orem (Weber, 2002, Corollary 7.5) there is a measure λ∶R → [0,+∞[ which is
equivalent to µ, i.e. such that τ(λ) = τ(µ). Clearly, if sat(λ) is uncountable there
is nothing left to prove so we assume by contradiction that sat(λ) ≤ ∣N∣. This
means that there exists a a ∈ R ∖N(λ) such that R ∧ a is a separable topologi-
cal subspace of (R, τ(λ)). Without loss of generality we can assume that R is a
Boolean algebra, that a = e and take a sequence bn, n ∈ N dense in (R, τ(λ)).

On R we define the family of scalar measures λn∶x ↦ λ(x ∧ bn), n ∈ N, and
observe that x△ y ∉ N(λ) implies that λn(x) ≠ λn(y) for at least one n ∈ N.

7i.e. a complete metrizable topological vector space.
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Since E is metrizable, we can select a topologically linearly independent se-
quence vn, n ∈ N, in E and choose a sequence of non-zero tn ∈ R, n ∈ N, so that
(tnvn)n∈N is summable in E. Then, we can define the measure ν∶R → E by setting
ν(x) ∶= ∑n∈N λn(x)tnvn for x ∈ R. Since ν is absolutely continuous with respect to
µ, ν(R) must be a convex subset of E, meaning that there is a d ∈ R such that
ν(d) = ν(dc) = ν(e)/2. But then:

0 = ν(d) − ν(dc) = ∑
n∈N

tn (λn(d) − λn(dc)) vn

and so, having taken vn, n ∈ N, topologically linearly independent and tn non-zero,
it must be λn(d) = λn(dc) for each n ∈ N.

The contradiction follows from the fact that, by construction, λ(d△ dc) > 0
and so there must be a n ∈ N with λn(d) ≠ λn(dc).

We stress that in the settings of Proposition 2.3.6 the assumption of metriz-
ability of the space E cannot be directly dropped. As seen in example 2.3.2, if E
is infinite dimensional but not metrizable it is possible to find a measure µ∶R → E
with the Lyapunov property with respect to E such that sat(µ) is countable.

Corollary 2.3.7. Let E be separable, infinite dimensional and metrizable and let
µ∶R → E be a closed and exhaustive measure. Then the following are equivalent:

1. µ has the Lyapunov property with respect to E.

2. every ν∶R → E with ν ≪ µ has convex range.

3. sat(µ) is uncountable.

Proof. The implication (1 ⇒ 2) is obvious while (2 ⇒ 3) is a consequence of
Proposition 2.3.6. Finally, (1 ⇒ 2) can be seen as a special case of Theorem
2.3.4.

Remark 2.3.8. Corollary 2.3.7 still holds if we replace the hypothesis on the
metrizability and separability of E with the less restrictive hypothesis that every
weakly compactly generated subset of E is linearly homeomorphic to a separable
and metrizable space. In fact, under this milder assumptions, the proofs remains
identical.

Remark 2.3.9. Using (Diestel and Uhl, 1977, Corollary 6, pg. 265), Khan and
Sagara proved in (2013, Section 4.2) that if E is an infinite dimensional separable
Banach space and µ∶A → E is a σ-additive homogeneous measure over a σ-algebra
then µ is saturated8 if and only if every ν∶A → E absolutely continuous with
respect to µ has a convex and weakly compact range.

8i.e. sat(µ) is uncountable.
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Their result is extended in this section via Proposition 2.3.6 and Corollary 2.3.7
to include finitely additive measures that are not necessarily homogeneous and that
can take values in locally convex metrizable spaces. Moreover, the proof is signifi-
cantly simplified by avoiding the necessity of recurring to Maharam’s Theorem of
classification of homogeneous measure algebras.



Chapter 3

The choice of the commodity
space in Walrasian competitive
economies

In this chapter we focus on the problem of choosing the right mathematical rep-
resentation of bundles and price systems in a competitive economy with many
commodities. As it is known, there have been many studies exploring the ex-
istence of Walrasian equilibrium with an infinity of commodities and a variety
of infinite dimensional commodity spaces have been considered. Depending on
specific applications of the theory, different order or topological properties on the
commodity spaces have been used to allow a better representation of specific kinds
of allocations. A natural question, that we explore in this chapter, is whether there
is a common subtext underlying all of these representations. To put it in a different
form, we ask the following.

What mathematical structure on the commodity space is essential to
describe and study the working of a Walrasian competitive economy?

The chapter is organized as follows. In the Section 3.1 we investigate the algebraic
aspects of the duality between commodities and prices. We first focus on the linear
representation of commodity bundles, seen as the formal object of agents’ choices
rather than lists of quantities of goods, then we discuss the nature of price systems
and the different possible ways of representing them.

In Section 3.2.A we analyze the working of a Walrasian economy with infinitely
many commodities and define a very elementary economic model which is entirely

0The results in this chapter were developed together with Professor M. Ali Khan from the
Johns Hopkins University of Baltimore, USA. Still, I take full responsibility of any error or
imprecision in this exposition.
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determined by means of the excess of supply correspondence and the set of bundles
that can be disposed freely by the economic agents. We will call this essential
model an abstract market, rephrasing the definition given by McKenzie in (1959).

We will then adapt the approach developed by Nikaidô (1957, 1959) to prove
the existence of a competitive price for a class of abstract markets. This result
will be based on an infinite dimensional extension of the Gale-Debreu-Nikaidô
Lemma, that will be proved in 3.3.1, which stands out for the weakness of the
topological assumptions on the commodity and price spaces. In this case, in fact,
the excess of supply correspondence and the set of freely disposable goods will
induce respectively a very weak locally convex topology and a pseudo-order on the
commodity space while no topological structure will be required for the space of
prices.

We will conclude the chapter with a discussion on how the Theorem 3.3.1 shows
the difficulties of giving an axiomatic definition of infinite dimensional commodity
spaces in Walrasian competitive economies (Sections 3.3.B and 3.4).

The mathematical setting

For the sake of the exposition we summarize here the definitions and the notation
conventions that will be used throughout this chapter.

• (E,F ) will be a dual pair of linear spaces. For every non-empty X ⊂ F ,
σ(E,X) will denote the weakest linear topology on E making every function
in X continuous. If not otherwise specified, E and F will be considered
endowed with the weak topologies that follow from the duality between them.

• By wedge we will mean a non-empty subset W of a linear space satisfying
W +W ⊆ W and λW ⊆ W for any λ > 0. It follows that any wedge W is
automatically convex and W ∩ −W is a linear sub-space. A wedge is called
a cone if it contains only the trivial sub-spaces, i.e. if W ∩ −W = {0}1. A
wedge W is proper if W ≠ E and non-trivial if it is not a linear subspace of
E.

If X ⊆ E is non-empty, the set X∗ ∶= {p ∈ F ∶ p ⋅ x ≥ 0 for every x ∈ X} is a
convex and closed wedge in F . We call X∗ the dual wedge of X and write
⟨X∗⟩ to denote X∗ ∖{0}. If W ⊂ E is a wedge with non-empty interior, then
its dual W ∗ is a cone (See (Aliprantis and Tourky, 2007, Chapter 2.1)).

• We will write φ∶X ↠ Y to say that φ is a correspondence between X and Y .
The correspondence φ∶X ↠ Y between subsets of topological linear spaces

1These definitions have been taken from Aliprantis and Tourky (2007) and are not universal.
Sometimes, a non-empty set C is called a cone if it is closed under multiplication by a positive
scalar and it is said to be pointed if C ∩ −C = {0}.
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is upper hemicontinuous if φ−1(U) ∶= {x ∶ φ(x) ⊂ U} is open whenever U is
an open set in Y . For any A ⊆ X, we will say that φ(A) ∶= ∪{φ(x) ∶ x ∈ A}
is the image of A under φ and call φ(X) the range of φ. If X is convex,
then φ is a Kakutani map if it is upper hemicontinuous and has non-empty,
compact and convex values2.

Our main reference for the general analysis of the working of a Walrasian economy
will be the classical Debreu (1959), Nikaidô (1968) and Arrow and Hahn (1971) for
the finite dimensional setting. For the case of economies with infinitely many com-
modities we refer to Aliprantis et al. (1990) and Chapter 5 in Florenzano (2003).
From a mathematical perspective, we mainly refer to Aliprantis and Tourky (2007)
for the study of Wedges, cones and duality.

3.1 The duality between commodities and prices

In the economies we will consider, commodity bundles and all possible price sys-
tems will be given as primitive notions. In the following sections we will base our
model on a dual pair (E,F ) of linear spaces representing, respectively, the set of
commodity bundles and the set of price systems. The bilinear map ⟨⋅, ⋅⟩∶F ×E → R
will be thought as the price evaluation function that assigns to every x ∈ E and
p ∈ F the value p ⋅x of the bundle x under the price system p. Here, the assumption
that F separates the points of E is required to ensure that for any two distinct
bundles x, y ∈ E we can always find a price system making x more expensive than
y.

However elementary, the settings described above are based on profound obser-
vations and choices that is worth discussing in details. We do this in the following
paragraphs addressing separately the representation of commodity bundles and
price systems.

3.1.A Linear representation of commodity bundles

Bundles of commodities are the central entity of the Walrasian model and the
object of consumers’ and producers’ activity. By moving the attention from the
physical attributes of commodities to the constraint decision problems faced by
economic agents, it becomes clear that, rather than lists of quantities of goods,
bundles are to be thought as formal objects that can be exchanged, aggregated or
reproduced in certain quantities. Therefore, we may define algebraically a com-
modity space as a set E, whose elements are the bundles, that is closed under some

2This definition is not standard and it was taken from (Dugundji and Granas, 1982, Definition
8.1, pg. 166).
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properly defined operations that capture the intuitive notions of aggregation, ex-
change and reproduction of bundles. In this perspective, there is a clear advantage
in endowing E with a linear structure: for any two bundles x, y ∈ E, in fact, one
can define x + y as their aggregate, x − y as the ‘net trade’ that allows to obtain
y from x and αx, for α > 0, as the bundles one obtains by reproducing x α times.
In other words, we can justify the linear space structure on the commodity space
E by the necessity of formalizing algebraically some operations between bundles.

In this general framework one observes that the assumption that E has a finite
dimension becomes very restrictive and the absence of a ‘natural basis’ for E makes
it impossible to refer directly to commodities but only to bundles. To overcome
these difficulties one can decide to take a set I of commodities as the primitive
entity of the model and to define a bundle x as a specification of how much of
each commodity is contained in x. For a given commodity space E, this idea
can be preserved only if E admits some form of Schauder basis (ei)i∈I so that for
every x ∈ E there is a unique way to write x as a linear combination ∑i∈I αiei.
By associating each i ∈ I to a single commodity, the representation x = ∑i∈I αiei
gives a precise meaning to the sentence “the bundle x contains αi units of the
commodity i”. It is crucial to point out that this approach can only be pursued
in very specific cases and when the commodity space E is already endowed with a
topological structure. Without such a topology, not only it is impossible to define
a Schauder basis, but also the expression ∑i∈I αiei has no mathematical meaning.

By choosing to work with a very generic linear space E there will be no real
advantage in fixing a preferred basis for E, for even if we take a generic coordinate
system (ei)i∈I of E, a bundle x ∈ E could admit two different representations

∑i∈I αiei and ∑i∈I βiei. One could still associate each i ∈ I to a different commodity
but in this case the the question “how many units of commodity i are present in
x?” will have multiple valid answers. This will mean that the formalization of
any economic concept will be given in an abstract way, without referring to a
specific coordinate system. We can call this kind of approach a coordinate-free
representation.

Remark 3.1.1. We stress that the coordinate-free approach to the representation
of commodity spaces can be useful even in the case one decides to work with fi-
nite dimensional commodity spaces. In his work of (1956), for example, Debreu
discusses the importance of considering agents whose consumption sets and pref-
erences may be described independently from any fixed base on the commodity
space even when the latter has a finite dimension.

Remark 3.1.2. It should be stressed that the linear structure on E is only one
of the many that one can consider. Depending on the economic question that one
wants to explore, it may be convenient to define operations on E in a different way
according to the specific contingencies of the problem. As a way of illustration,
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we mention a recent stream of research in which a set of bundle E is endowed
with an independent mathematical structure, called abstract convex structure, that
allows to formalize the intuitions described above without recurring to any linear
structure of E. An exposition of the main features of this approach can be found in
Mart́ınez-Legaz (2005) and the monograph Urai (2010). See also Singer (1997) for
a classical exposition of abstract notions of convexity and duality in optimization
problems. Other interesting questions on the algebraic structure of the commodity
space are widely influenced by the study of abstract economies and more general
notions of competition, see for example the work in Richter and Rubinstein (2015,
2018).

3.1.B Price systems

It should be stressed that, while commodity bundles are the natural object of
any economic analysis, the assumption that prices should be given exogenously
is a strong one that is proper to the Walrasian approach. In fact, while the
Paretian and Edgeworthian notions of equilibrium depend exclusively on the way
agents rank consumption bundles, the definition of Walrasian equilibrium is price-
dependent and can only be formalized by means of agents’ best response to in-
dependent prices. This centrality of price systems can be traced down to the
importance of obtaining full decentralization of allocations, which is on of the
main focuses of the Walrasian program.

A price system is essentially a specification of the exchange rates at which
commodities can be traded. In this perspective, the duality between prices and
commodities is the rule that describes what exchanges of bundles are made possible
when a given price system emerges.

We can formalize the ideas above through the following abstraction of the
duality between prices and commodities. If E is the collection of all commodity
bundles and F that of price systems we can define a correspondence π∶F ×E ↠ E
that assigns to each price system p ∈ F and commodity bundle x ∈ E the set
π(p, x) ⊆ E of all the alternatives to x that are available under the price system p.

Definition 3.1.3. An abstract commodity-price duality is a triple (E,F,π) where
E is a set of commodity bundles, F is the set of price systems and π∶F ×E ↠ E
is called price evaluation correspondence.

In our specific framework, where we have decided to endow E with a linear
structure, we will define F as a set of functionals on E and consider the price
evaluation correspondence π that assigns to every p ∈ F and x ∈ E the half-space
π(p, x) = {y ∶ p⋅y ≤ p⋅x}. This way, the duality will be in some form consistent with
the operations defined on E and the intuitive notion of exchange rate is preserved
by means of linear transformations as in the finite dimensional case.
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We stress that, with these definitions, the 0 functional in F corresponds to a
degenerate price system.

Remark 3.1.4. This definition of π is of course a choice and as such can be
criticized. As a way of illustration, one could want to allow exchanges that are
symmetric in the sense that, under any price system p, the bundle x can be ob-
tained from y if and only if y can be obtained from x. In this case π(p, x) should
be defined as the hyper-plane {y ∶ p ⋅y = p ⋅x}. Other more sophisticated examples
for the choice of π can be found in the literature on incomplete markets.

Remark 3.1.5. Let us go back to the map π∶ (p, x) ↦ {y ∶ p ⋅ y ≤ p ⋅ x} assigning
any x ∈ E and p ∈ F to all the bundles that can be obtained from x at price p.
Once F is endowed with a linear structure it is clear that π is homogeneous of
degree zero which is saying that any multiplication of a vector p ∈ F by a positive
scalar will not affect the exchanges that are possible under the price system p.

In a more formal way, we should define price systems as the equivalence classes
of the type [p], for p ∈ F , formed by all the q ∈ F such that p = λq for some λ > 0.
With a little more freedom of language we will continue talk about a price system
meaning the single functional p∶E → R instead of the entire equivalence class.

Remark 3.1.6. We have given a description of the commodity price duality that
is purely algebraic. This approach differs from most of the literature on infinite
dimensional competitive economies where it is common to introduce a commodity
space E as a linear space endowed with a topological (or lattice) structure and to
define a price system as any linear functional on E which is continuous (or positive).
This way, the notion of prices is derived from that of commodity bundles and from
the structure that is defined on the commodity space. In a purely Walrasian
framework, however, the central role played by price systems that are exogenously
generated suggests that prices should be defined together with commodity bundles
as if it was not possible to talk about the latter without a full description of the
former. In other words, it should be the choice of the topology (and order) on the
commodity space to depend on how prices are defined and not vice versa.

3.2 Equilibrium of excess of supply

A fundamental feature of Walrasian competitive economies is that agents’ be-
haviour can be described by means of supply and demand. The notion of compet-
itive equilibrium itself, which is the main interest of this theory, is determined by
the possibility of agents to make individual consumption and production choices
that are optimal under an exogenously given set of prices. In other words, even in
Walrasian models that are preference-based, the analysis of equilibrium existence
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is directly related to the possibility of defining the excess of supply for some price
systems.

Following the argument above, we will give a very abstract and synthetic de-
scription of the economy whose primitive elements will be the (total) excess of
supply correspondence and the set of all the bundles that can be freely disposed
by the agents. Intuitively, the excess of supply correspondence ζ assigns to every
p ∈ F the residuals of all the optimal transactions at price p. This is to say that any
bundle z ∈ ζ(p) can be seen as the difference of a virtual aggregated production
plan y and an aggregated consumption plan x both of which are optimal under
the price p3. If z can be disposed at no cost, which is to say that z ∈ Y , then the
transaction associated to z is performable and p is an equilibrium price.

Definition 3.2.1. An abstract market is a pair (Y, ζ) where Y is a closed wedge
in E, whose elements we call the freely disposable bundles, and ζ ∶ ⟨Y ∗⟩ ↠ E is a
correspondence, called excess of supply.

A vector p ∈ ⟨Y ∗⟩ is called equilibrium price for the abstract market (Y, ζ) if
ζ(p) ∩ Y ≠ ∅.

We observe that our notion of freely disposable bundles, i.e. the vectors in Y ,
is not related to any pre-existent property of the commodities themselves and it
may depend exclusively on the characteristic of the agents. Vectors in Y could be,
for example, the bundles that can absorbed by the production sector or consumed
by some agent at the equilibrium price. At the same time, every wedge Y defines
on E a pseudo-order ⪰Y defined by x ⪰Y z ⇐⇒ x − y ∈ Y (see (Aliprantis and
Tourky, 2007, Chapter 1) for definitions and basic properties of pseudo-ordered
linear spaces).

Our original concern can now be formulated as follows: if there is a competitive
price in every abstract market (Y, ζ) whose commodity-price duality is given by
the dual pair (E,F ), is there a natural topological and order structure on E? In
what follows we will give a negative answer to this question.

Remark 3.2.2. In the literature, a special relevance is given to the case in which
the cone Y has non-empty interior, as it was in Nikaidô (1956b). In Bewley
(1972), for example, the set Y coincides with the negative orthant −L∞(µ)+, in
Toussaint (1984) it is the production technology set and in Mas-Colell (1986) it is
derived from the uniform properness of preferences. However related to different
interpretations, in all of these examples the study of the geometric properties of
the cone Y is essentially the same, see Kajii (1988) for a discussion on this issue.

3The adjective virtual is borrowed from the register used in physics where it indicates a
potential displacement that may not meet the constraint of the model. In this case it is used to
stress the idea that the production and consumption plans y and x may not be actuated since
the correspondent transaction may not be feasible.
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3.2.A Gale-Debreu-Nikaidô Lemma

The main result of this section (Theorem 3.3.1) is an elaboration of (Nikaidô, 1957,
Main Theorem) and can be seen as an extension of the so-called Gale-Debreu-
Nikaidô Lemma (3.2.3) to general vector spaces. Given the dual pair (E,F ), this
result provides conditions on a wedge Y and a correspondence ζ that are sufficient
to guarantee the existence of equilibrium prices for the abstract market (Y, ζ). To
introduce some key observations, we first present it in the simplest case in which
both E and F are the `-dimensional Euclidean space R` and Y coincides with the
positive orthant R`+. These are the classic assumptions used, among the others,
by Gale (1955), Nikaidô (1956a), Kuhn (1956) and Debreu (1956), (1959, pg 82).

Lemma 3.2.3 (Gale-Debreu-Nikaidô). Let K ⊂ R`+ be the unit simplex and suppose
that the correspondence φ∶K ↠ R` is such that:

(i) φ is a Kakutani map.

(ii) The Walras’ law prevails, i.e. p ⋅ x ≥ 0 for every p ∈K and x ∈ φ(x).

Then there is a p ∈K such that ζ(p) ∩R`+ ≠ ∅.

The idea of the proof is to model the interaction between the whole society
and a price-adjusting mechanism so that the equilibrium prices can be obtained as
the fixed point of a correspondence opportunely constructed. We sketch the proof
here and break it in different steps to facilitate the successive discussion.

Proof. The first thing we observe is that, being K compact and ζ upper hemicon-
tinuous, the range ζ(K) must be a compact set too (see Lemma 3.3.3).

1. Fix a z ∈ ζ(K). Since the map p ↦ p ⋅ z is linear and continuous on the
compact and convex set K, θ(z) ∶= {p ∈K ∶ p ⋅ z ≤ q ⋅ z for all q ∈K} must be
a non-empty, convex and compact set too. Let us define the correspondence
θ∶ ζ(K) ↠K by the relation x↦ θ(x) and observe that θ is upper hemicon-
tinuous by Berge’s Theorem (for a proof see (Aliprantis and Border, 2006,
Theorem 17.31)).

2. Define now ψ∶K × ζ(K) →K × ζ(K) as the product (p, z) ↦ θ(z) × ζ(p). By
construction, ψ will be upper hemicontinuous and have non-empty, compact
and convex values (it is a Kakutani map) so that all the assumptions of
Kakutani’s fixed point Theorem are met (see (Florenzano, 2003, Theorem
1.1.2) for a proof). This is saying that that there must be a (p, z) ∈K×ζ(K)
such that p ∈ θ(z) and z ∈ ζ(p).
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3. We claim that z ∈ R`+ so that p is the desired vector in K. To see this we
observe that p ⋅ z ≥ 0 by the Walras’ law (condition (ii)) and for every q ∈K
we have p ⋅ z ≤ q ⋅ z by the definition of θ. This means that 0 ≤ q ⋅ z for every
q ∈K, proving that z ∈ R`+.

In the proof of Lemma 3.2.3, the finite dimension of the space R` plays a twofold
role: it ensures that K, the unit simplex, is a compact set and it allows to apply
Kakutani fixed point Theorem in Step 2. But is it really necessary? Can it be
dispensed by assuming that K is a compact set?

Imagine that (E,F ) is any dual pair, that K ⊂ F is a convex and compact set
and ζ ∶K ↠ E is a Kakutani map satisfying the Walras’ law (as in condition (ii) of
the Lemma 3.2.3). The first thing one observes is that the Step 1 of the proof can
be reproduced identically in this new context. Step 2 can also be easily adapted to
this infinite dimensional setting by applying the so-called Kakutani-Fan-Glicksberg
Theorem (proved in Fan (1952) and Glicksberg (1952). An expository proof can
be found in (Florenzano, 2003, Corollary 1.1.2)) instead of the classical Kakutani
fixed point Theorem to the correspondence ψ. Finally, following the procedure of
Step 3, one can prove the existence of a p ∈ K and a z ∈ ζ(p) such that q ⋅ z ≥ 0
for every q ∈ K. In other words, we have just adapted the proof of 3.2.3 to this
specific infinite dimensional extension of Gale-Debreu-Nikaidô Lemma.

Proposition 3.2.4. Suppose that K ⊂ F is a convex and compact set and that the
correspondence ζ ∶K ↠ E is such that:

(i) ζ is a Kakutani map.

(ii) The Walras’ law prevails, i.e. p ⋅ x ≥ 0 for every p ∈K and x ∈ φ(x).

Then there are a p ∈K and a z ∈ ζ(p) such that q ⋅ z ≥ 0 for every q ∈K.

Reading some of the references in Nikaidô (1957), we have reason to believe that
a similar version of Proposition 3.2.4 was presented by Nikaidô in a technical report
of the university of Stanford in 1956 with the title “On the existence of competitive
equilibrium with infinitely many commodities”, (1956b). We did not manage to
find a copy of the mentioned technical report, whose results are anyway extended
in Nikaidô (1957) and again in (1959). It shall be stressed that the approach
we chose to state 3.3.1 is independent of Proposition 3.2.4 as we will weaken the
assumption that the excess of supply correspondence ζ is upper hemicontinuous.
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3.2.B A note on the Walras’ law

From an economic perspective, the assumption that the excess of supply corre-
spondence ζ satisfies the so-called Walras’ law (condition (ii) in Lemma 3.2.3) is
a direct consequence of the idea that the consumers’ choices are subject to budget
constraints. This is to say that, at any price, the value of the total demand cannot
exceed that of the total supply.

From a more technical point of view, the Walras’ law plays an important role
in the proof of Gale-Debreu-Nikaidô Lemma as it ensures that the values of the
excess of supply correspondence ζ computed on p ∈ F are all contained in the half-
space {x ∶ p ⋅ x ≥ 0}. In the literature (see Yannelis (1985), Mehta and Tarafdar
(1987), for a broader exposition see (Florenzano, 2003, Chapter 2)) it is common
to give a direct proof of the Lemma 3.2.3 replacing the assumption (ii) with the
following, weaker condition.

∀p ∈K there is a x ∈ φ(p) such that p ⋅ x ≥ 0. (ii′)

This simplification is easily explained if one observes that, under assumption (ii′),
the correspondence φ′∶p ↦ {x ∈ φ(p) ∶ p ⋅ x ≥ 0} is a Kakutani map satisfying all
the assumptions of Lemma 3.2.3. By applying the Lemma to φ′, and observing
that φ′(p) ⊆ φ(p) for every p, we obtain that φ(K) ∩R`+ ≠ ∅. With this idea one
can replicate the proof of Lemma 3.2.3 and obtain the following.

Corollary 3.2.5. Suppose that K ⊂ R` is a compact and convex set and the cor-
respondence φ∶K ↠ R` is such that p ↦ {x ∈ φ(p) ∶ p ⋅ x ≥ 0} is a Kakutani map.
Then there is a p ∈K such that φ(p) ∩R`+ ≠ ∅.

In the next section the same line of Corollary 3.2.5 could be used to prove
Theorem 3.3.1 replacing the Walras’ law with the weaker (ii′). However, for the
sake of the exposition, we will not pursue this idea.

3.3 Nikaidô’s extension to the infinite dimen-

sional case

We are now ready to face the main Theorem of this section in its generality. With
minor exceptions, the proof will follow that of Nikaidô (1957) and (1959, Theorem
5). Let us say that a wedge Y ⊂ E is non-trivial if it is not a linear sub-space of
E.

Theorem 3.3.1. Suppose that Y is a non-trivial, closed wedge in E and the cor-
respondence ζ ∶ ⟨Y ∗⟩ ↠ E satisfies the following assumptions:
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1. For every finite dimensional sub-space L of F , the restriction of ζ to L∩⟨Y ⟩
is a Kakutani map when E is endowed with the topology σ(E,L).

2. The range of ζ is a compact set.

3. The Walras’ law prevails, i.e. p ⋅ x ≥ 0 whenever p ∈ ⟨Y ∗⟩ and x ∈ ζ(p).

Then there is a p ∈ ⟨Y ∗⟩ such that ζ(p) ∩ Y ≠ ∅.

Among the many approaches to infinite-dimensional extensions of the Gale-
Debreu-Nikaidô Lemma, Theorem 3.3.1 stands out for the weakness of the con-
tinuity assumptions stated in point (1). Assuming that the correspondence ζ is
not globally continuous, but it is well-behaving when restricted to finite dimen-
sional sub-spaces of its domain, has two major consequences. In the interest of
our research, it allows us to prove the existence of equilibrium prices without
recurring to any topology on the space of prices: in fact, the only topological con-
siderations needed on F are related to its finite-dimensional sub-spaces which are
naturally endowed with a topological structure (the fact that F does not need to
be a topological linear space is already observed in the assumptions of (Nikaidô,
1959, Theorem 4)). On the other hand, allowing some discontinuity of the ex-
cess of supply when the commodity space is infinite dimensional has important
microeconomic justifications, as seen in Florenzano (1983).

3.3.A Proof of the Theorem 3.3.1

As for most infinite dimensional extensions of the Gale-Debreu-Nikaidô Lemma,
the main idea in the proof of Theorem 3.3.1 is to apply the Lemma 3.2.3 to a class
of properly defined abstract markets, precisely we will approximate the wedge
⟨Y ∗⟩ through some of its finite dimensional sub-sets. As we shall see, differently
from Proposition 3.2.4, this Theorem cannot be proved directly with an approach
involving elementary extensions of Kakutani fixed point Theorem.

For the sake of the exposition we divide the proof in several steps and agree to
write P instead of ⟨Y ∗⟩. Our claim will be proved if we show that the intersection
between ζ(P ) and Y is not empty. The strategy of the proof goes as follows.

1. It is shown that Y is the intersection of a family of cones Yi, i ∈ I, such that
each ⟨Y ∗

i ⟩ is a finite dimensional subset of P .

2. Lemma 3.2.3 is used to show that for each i ∈ I the set ζ(P ) ∩ Yi is closed
and non-empty.

3. It is proved that the family ζ(P ) ∩ Yi, with i ∈ I, has the local intersection
property. By the compactness of the range of ζ it will follow that:

(ζ(P ) ∩ Y ) = ⋂
i∈I

(ζ(P ) ∩ Yi)
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is non-empty, and so there exists at least an equilibrium price for (Y, ζ).

We stress that, in this case, the approximation is made on the space of prices F
and not directly on E. Still, the compactness of the range of ζ will be crucial in
concluding the proof.

We first prove some auxiliary lemmas.

Lemma 3.3.2. Let W ⊂ E be a proper closed wedge with non-empty interior and
W ∗ the relative dual wedge. Then ⟨W ∗⟩ is convex and non-empty.

Proof. Since W is closed, W can be seen as the dual wedge of W ∗ by a standard
separation argument (see for example (Aliprantis and Tourky, 2007, Theorem 2.13
(3))). Therefore, W ∗ = {0} would imply that W = E in contradiction with the fact
that E ≠W .

To see that ⟨W ∗⟩ is convex let us choose p, q ∈ ⟨W ∗⟩, t ∈ (0,1) and claim that
tp + (1 − t)q ∈ ⟨W ∗⟩. Since W ∗ is automatically convex, it is enough to show that
tp + (1 − t)q ≠ 0. By assumption W has an interior point u and so we know that
p ⋅ u > 0 and q ⋅ u > 0 (Aliprantis and Tourky, 2007, Lemma 2.17). But then
(tp + (1 − t)q) ⋅ u > 0 proves the claim.

Lemma 3.3.3. Let K be a compact set and φ∶K ↠ E be an upper hemicontinuous
correspondence. Then φ(K) is compact.

Proof. Let U be an open cover of ζ(K) and claim that it has a finite sub-cover.
By construction, V ∶= {φ−1(U) ∶ U ∈ U} is a cover of the compact set K whose
elements must be open by the upper hemi-continuity of φ. We can therefore select
U1, . . . , Uk in U such that {φ−1(U1), . . . , φ−1(Uk)} covers K. But then U1, . . . , Uk
form a finite sub-cover of ζ(K) and the proof is concluded.

Step 1 (Lemma 9 in Nikaidô (1959)). There is a family (Yi)i∈I ⊂ E of proper
closed wedges with non-empty interior that is such that Y = ⋂i Yi.

Proof. The first thing we observe is that, being Y non-trivial, there must be a
u ∈ Y that does not belong to −Y . This, together with the closedness of Y , allows
us to claim the existence of a 0-neighborhood U in E such that (−u +U) ∩ Y = ∅.
Let V ∶= (Vi)i∈I be the filter of 0-neighborhoods in E that are convex, symmetric
and contained in U . The idea is to build each Yi by ‘inflating’ Y through the open
set Vi. To do this we consider the cone Qi generated by u + Vi and call Yi the
closure of Y +Qi. Please observe that every element of Yi can be written as a sum
x + t(u + v) + z for some properly chosen x ∈ Y , t ≥ 0 and v + z ∈ Vi.

We show that the (Yi)i is the claimed family of cones. First we fix i ∈ I and
observe that Yi is closed (by definition), it has non-empty interior (since u+Vi ⊆ Yi)
and it does not coincide with E. To show this latter point let us assume by
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contradiction that −u ∈ Yi: by the argument above, this means that we can find
x ∈ Y , t ≥ 0 and v, z ∈ Vi such that −u = x + t(u + v) + z and hence:

−u = 1

t + 1
x + t

t + 1
v + 1

t + 1
z ∈ Y + t

t + 1
Vi +

1

t + 1
Vi ⊆ Y + Vi

Where the last inclusion follows from the convexity of Vi. But then since Vi is
symmetric and Vi ⊆ U it must be that −u + U ∩ Y ≠ ∅, in contradiction with the
choice of u and U .

There is only left to show that ⋂i Yi ⊆ Y . This, together with the fact that Y
is closed and contained in each of the Yi’s, will conclude our proof. Take y ∈ ⋂i Yi
and let V ⊆ U be a symmetric 0-neighborhood. We want to prove that there is a
yV ∈ Y such that y − yV ∈ V .

By construction, for every i ∈ I there are xi ∈ Y , ti ≥ 0 and vi, zi ∈ Vi such
that y = xi + ti(u + vi) + zi. If limi ti = 0 then there must be a j ∈ I such that
tj(u + vj) + zj ∈ V . In this case we can put yV = xj. If (ti)i∈I does not converge
to 0 nor to ∞ then, for a j ∈ I we will have that tjvj + zj ∈ V . But then it will
be enough to put yV ∶= xj + tju. Last we observe that, if limi ti = ∞ then for a
j ∈ I we would have that −y/tj + vj + zj/tj ∈ U . But then we would have that
−u = xj/tj + (−y/tj + vj + zj/tj) ∈ Y +U which is in contradiction with the choice of
u.

Step 2. For every index i and every finite subset A of ⟨Y ∗
i ⟩ there are a p ∈ co(A)

and a z ∈ ζ(p) such that q ⋅ z ≥ 0 for every q ∈ A.

Proof. Fix an index i and observe that ⟨Y ∗
i ⟩ is non-empty and convex as Yi has an

interior point (see Lemma 3.3.2). Furthermore, from the inclusion Y ⊂ Yi we derive
that ⟨Y ∗

i ⟩ ⊂ P so that, whenever A ⊂ ⟨Y ∗
i ⟩ is finite, the correspondence ζ is defined

on the whole co(A). This proves that the statement above is well formulated.
Suppose now that A ⊂ ⟨Y ∗

i ⟩ is finite and non-empty. Without loss of generality
we can assume that all vectors in A are linearly independent so that the convex hull
co(A) is linearly and topologically isomorphic to the unit simplex K in Euclidean
space RA. Call L the linear sub-space of F spanned by co(A), let α∶RA → L be
the linear isomorphism that maps K into co(A) and define the function β∶E → RA

by βq(x) = q ⋅ x for every q ∈ A, x ∈ E. Then consider the composition

ζ̃ ∶= β ○ ζ ○ α∶K ↠ RA.

Using the linearity and continuity of α and β together with the upper hemi-
continuity of the restriction of ζ to the linear sub-space L (condition (1)) we
derive that ζ̃ is a Kakutani map that satisfies the Walras’ law. This, by Lemma
3.2.3, implies that there must be a p ∈K such that ζ̃(p) ∩RA+ ≠ ∅.

Take now any x ∈ E such that β(x) ∈ ζ̃(p) ∩RA+ and observe that, by construc-
tion, x ∈ ζ(α(p)) and q ⋅ x ≥ 0 for every q ∈ co(A). This proves the claim.
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It is worth emphasizing that another way to write the result in Step 2 is the
following: for every i ∈ I and every finite subset A of ⟨Y ∗

i ⟩ the set ζ(P ) ∩ A∗ is
non-empty. Here by A∗ we mean the dual wedge of A, i.e. the set of all x ∈ E such
that q ⋅ x ≥ 0 for all q ∈ A.

Step 3. The set ζ(P ) intersects Y .

Proof. Let us first fix some simplifying notation. For any i ∈ I let Fi be the
collection of all finite, non-empty subsets of ⟨Y ∗

i ⟩. It is clear that Yi will be the
intersection of all the A∗ with A ∈ Fi.

Consider the family G ∶= {A∗ ∩ ζ(P ) ∶ A ∈ Fi for some i ∈ I}. A little compu-
tation, together with the Step 1, shows that:

⋂G =⋂
i

( ⋂
A∈Fi

(A∗ ∩ ζ(P ))) = ⋂
i

(Yi ∩ ζ(P )) = Y ∩ ζ(P ).

To show that this intersection is non-empty, and hence prove the claim, it is
therefore sufficient to show that the sets in G, which are subsets of the compact
set ζ(P ), have the finite intersection property.

Let us choose two elements A∗ ∩ ζ(P ) and B∗ ∩ ζ(P ) in G and prove that
A∗ ∩B∗ ∩ ζ(P ) is a non-empty set in G. By the way we defined G there must be
indexes k, j ∈ I such that A ∈ Fk and B ∈ Fj.

We first observe that (A ∪ B) ∈ Fh for some h ∈ I. In fact, from Step 1 we
know that Y = ∩iYi and so there must be a h ∈ I such that Yh ⊆ Yk ∩ Yj. But this
means that Y ∗

h ⊇ Y ∗
k ∪ Y ∗

j and so ⟨Y ∗
h ⟩ ⊃ (A ∪ B) (remember that A and B are

finite subsets of ⟨Y ∗
k ⟩ and ⟨Y ∗

j ⟩ respectively). We then apply the result in Step 2
to (A ∪ B) and Yh to obtain that there must be a p ∈ co(A ∪ B) and a z ∈ ζ(p)
such that q ⋅ z ≥ 0 for every q ∈ (A ∪B). This shows that ζ(p) intersects the set
(A ∪B)∗ which is equal to A∗ ∩B∗.

3.3.B Comments on the Theorem

Let us make a parallel with the finite dimensional version of the Gale-Debreu-
Nikaidô as exposed in Lemma 3.2.3. If E is the Euclidean space R` and Y its
positive orthant, the assumptions (1) and (3) are exactly identical to conditions
(i) and (ii) in Lemma 3.2.3. On the other hand, in the finite dimensional setting
condition (2) is superfluous if ζ is assumed to be homogeneous of degree 04. To
see this it is sufficient to observe that the range of ζ coincides with ζ(K), where
K is the unit simplex of R`, and that the image of a compact set under an upper
hemicontinuous correspondence is a compact set (see Lemma 3.3.3). Furthermore,

4Recall that ζ is homogeneous of degree 0 if λζ(p) = ζ(p) for every λ > 0 and p ∈ F such that
ζ(p) ≠ ∅.



3.3 Nikaidô’s extension to the infinite dimensional case 51

condition (1) is in fact the more general assumption that can generalizes (i) in
3.2.3 and can hardly be weakened. At the same time, James’ Theorem allows to
rewrite condition (2) in the algebraic requirement that every p ∈ Y must attain
its maximum on the range of ζ, a condition that is always satisfied in the finite
dimensional case.

Among the assumptions needed to prove Theorem 3.3.1, the fact that the excess
of supply correspondence must have non-empty value for every p ∈ Y represents a
strong limitation to the class of economic phenomena that can be studied with this
approach. In fact, if we think of ζ as the difference between a supply correspon-
dence η and a demand correspondence ξ, this assumption coincides with asking
that ξ(p) is non-empty whenever η(p) is so. As it is now very well known, in infi-
nite dimensional economies this is rarely the case (see Aliprantis and Burkinshaw
(2006) for an exposition of this issue). Interesting developments in this direction
are obtained by assuming that the domain of the correspondence ζ is a dense
subset of ⟨Y ∗⟩ and ζ satisfies some boundary conditions . This idea is pursued,
for example, in Aliprantis and Brown (1983), Florenzano (1983) and Mehta and
Tarafdar (1987).

Remark 3.3.4. As mentioned, we proved Theorem 3.3.1 to show how the study of
existence of equilibria can be carried out with very weak topological requirements
on the commodity and price spaces. In fact, what emerges in Theorem 3.3.1
is that no topology is needed on the space of prices while the only topological
considerations on the commodity space are related to the weak topology induced
by the duality with prices. This is a result that can hardly be improved.

Remark 3.3.5. The proof of Theorem 3.3.1 depends on that of 3.2.3 which is
known to be equivalent to Kakutani fixed-point Theorem (see Uzawa (1962b)). As
such, condition (1) should not come as a surprise, just like condition (i) in 3.2.3.
Still it is important to stress that a similar result can be obtained if other fixed-
point Theorems are used instead of Kakutani’s. In Nikaidô (1959), for example,
the whole argument is based on Montgomery’s fixed-point Theorem and the excess
of supply correspondence is asked to be acyclic instead of convex-valued. We
have decided to present Theorem 3.3.1 in this form mainly because the shift to
Montgomery-like assumptions on the excess of demand correspondence did not
seem to bring significant contributions to our study of the commodity spaces. In
fact, having chosen to base the commodity-price duality on a dual pair of linear
spaces, we automatically gave a special importance to locally convex topologies
and hence to convex sets and Kakutani maps.

Remark 3.3.6. It seems that Theorem 3.3.1 can be easily extended by considering
some other, more general, fixed-point Theorems. Apart from the Montgomery’s
Fixed point Theorem, one could for example weaken the point (1) in Theorem
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3.3.1 and assume that each restriction of the ζ have the local direction property, as
in Park Park (2004), the generalized transferable open-lower sections property, as in
Scalzo (2015), the continuous inclusion property, as in He and Yannelis (2016) or, in
general, can be majorized as in Prokopovych (2016). Other interesting extensions
could be obtained by thinking of Theorem 3.3.1 as a purely variational inclusion
problem and studied using the techniques presented in Kristály and Varga (2003).

However interesting, it seems that none of these possible extensions of Theorem
3.3.1 can really contribute to our research focus on the topology needed on the
commodity and price spaces (as discussed in the Remark 3.3.4). For this reason,
we decided to present this more elementary version of the Theorem.

3.4 Conclusions

We have based our discussion on the description of the minimal mathematical
structure needed to represent an infinite dimensional commodity space in a Wal-
rasian economy. A similar question had been raised by Aliprantis and Burkin-
shaw in (1991) to understand what properties of commodities and prices were
necessary to ensure the equivalence of Core and competitive allocations in every
“well-behaving”economy based on the same sets of commodities and prices. What
we did in 3.3.1 is showing the great independence of the equilibrium existence
problem from any pre-existent topological assumption on E as the topological and
order properties that are used in the hypothesis and the proof are exactly those
that naturally follow from the (algebraic) duality established between E and F
(i.e. locally convex topologies and linear pre-orders). This contribution shows the
impossibility of giving an axiomatic definition of commodity space in Walrasian
economies as long as the linearity of prices is not dropped (see the discussion in
the paragraph 3.1.B).

Another observation we can derive from Theorem 3.3.1 is that almost all the
relevant properties of the commodity space are to be derived from the character-
istics of the abstract market we wish to study. Intuitively, this means that it is
pointless to describe the commodities and price systems without specifying the
actors that animate the economy. As an example, it is pointless to talk about a
“natural order”on the commodity (and price) space unless we know that all pos-
itive bundles are desirable by all the agents. In the same way, there is no reason
to endow E with a specific topology as long as we do not know for which price
systems the total demand and supply are well defined . Even the notion of free
disposal equilibrium should depend on agents’ reactions to the increase of some
specific commodities. By pushing these observations to their extremes, one could
even argue that the dimension of the commodity space itself is dependent on the
agents’ behaviour as it makes no sense to differentiate among bundles if agents’
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preferences are not sophisticated enough to distinguish among them. In an ex-
treme exemplification, it would be useless to distinguish among a large class of
physical goods in a market where agents are indifferent between all of them.



54 Commodity spaces in Walrasian competitive economies



Chapter 4

Competitive economies in
coalitional form

A fundamental feature of competitive economies is that individual agents have no
incentives to form alliances in order to affect the outcome of the trades. Every
large coalition is therefore unstable and can be easily broken down into many,
equally powerful subgroups. In other words, in a competitive economy we expect
small coalitions to be equally effective in opposing or objecting any unbalanced
distribution of resources.

In the light of the above, an important issue in modelling competitive economies
is to give a precise representation of the so-called economic weight, which is a
measure of the influence that each coalition can exert on the trades. We study this
problem in this chapter. To facilitate this analysis, we will consider an economic
model in which every actor unable to influence the economic activity is ignored
and the attention moves from individual agents to coalitions. This idea, that was
introduced in Vind (1964), is the foundation of what is often called the coalitional
representation of competitive economies.

Concretely, our model will extend the one presented in Urbinati (2019) and
will be articulated around these four main ingredients:

1. The infinite number of commodities : we will consider an infinite dimensional,
linear space E as space of commodities and endow it with the locally convex
topology that naturally follows from the commodity-price duality.

2. The finitely additive coalitional representation of the economy: coalitions will
be defined as the elements of an abstract Boolean ring R while allocations
will be represented by finitely additive vector measures α∶R → E+. Individual
agents will therefore disappear from the model.

3. The topological description of the economic weight : we will endow R with a
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ring-topology u which will be the smallest one making the initial endowment
a continuous function. Since u “regulates” the economic interactions within
coalitions, u will be taken as a non-numerical description of how the economic
weight is distributed in R.

4. The topological extension of Lyapunov’s Theorem: using the results proved
in Chapter 2, we will introduce a condition on (R, u) that ensures the con-
vexity of the range of every allocation. This property, which mimics the
convexifying effect in Aumann’s non-atomic model, will allow us to formu-
late a condition for competitive markets which, in some sense, replicates the
‘many more agents than commodities’ condition formulated in Rustichini
and Yannelis (1991).

The chapter is organized as follows. In Section 4.1 we describe the economic model,
in 4.2 we introduce our topological description of the economic weight and use the
results in Chapter 2 to formulate a condition for perfect competition.

Last in 4.3 we prove that, when the conditions for perfect competition are
met, every allocation outside the core can be blocked by arbitrarily small and
arbitrarily large coalitions, as in the celebrated Theorems of Schmeidler and Vind
(respectively in (1972) and (1972)). By using the topology u to describe ‘small’
and ‘large’ coalitions we will argue that these properties of competitive economies
are essentially topological.

4.1 The economic model

This section is devoted to the description of an exchange economy E with infinitely
many agents and commodities. We mainly adapt the abstract coalitional approach
introduced in Armstrong and Richter (1984) to obtain a finitely additive economy
with an infinite dimensional locally convex space of commodities. At this stage
we will try not to make any restrictive assumption on the model so as to allow
comparisons with other popular representations of exchange economies.

We will represent the commodity-price duality via a dual pair (E,E∗) of infinite
dimensional ordered linear spaces, where the positive orthant of E, denoted by E+,
stands for the spaces of commodity bundles while E∗+ ∖{0} for the set of prices. As
usual, for v ∈ E+ and p ∈ E∗+ we write ⟨p, v⟩ or p(v) to denote the value of the bundle
v at price p. Moreover, we let E be endowed with any linear topology consistent
with the duality and reserve the writing σ(E,E∗) (respectively σ(E∗,E)) to denote
the weak topology induced by E∗ on E (the weak∗ topology on E∗ induced by E).

An exchange economy in coalitional form with commodity space E, or simply
coalitional exchange economy, will be a description of all of the coalitions that are
able to take part in the trading activity, the set of possible ways to allocate the
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totality of resources and coalitions’ preferences toward the different allocations.
The goal of the rest of this section is to formalize and study all of the notions
mentioned above and introduce some of the assumptions that will be needed for
further applications.

4.1.A Coalitions, allocations and consumption

As mentioned, we will consider a model in which coalitions, instead of individual
agents, are taken as the primitive decision makers of the economy. The natural
way to do so is to describe coalitions as the elements of an abstract Boolean ring
R where the 0 element represents the empty coalition, ≤ the natural order on R
and the usual operations of symmetric difference (sum), infimum (multiplication),
supremum and set difference are respectively denoted by △, ∧, ∨ and ∖. When R is
a Boolean algebra we will denote its unit by e and refer to it as the grand coalition.
Even if R is a purely abstract object, by the Stone representation Theorem we
can identify R with a ring of subsets of some set of agents T ≠ ∅ so that each
coalition can be thought as a group of agents taking a joint decision. The following
definitions are standard.

Definition 4.1.1. We will call coalitions of the economy the elements of Boolean
ring R. For any a ∈ R, all the elements of Ra ∶= {b ∈ R ∶ b ≤ a} will be called
sub-coalitions of a.

Intuitively, the agents in each coalition will rank by unanimity the different
possible redistributions of resources. Therefore we shall consider allocations, rather
than the single consumption bundles, as the formal objects of coalitions’ choices
and include in the description of the model a set H as a specification of all the
consumption plans that can be chosen by coalitions. Formally, a consumption plan,
or allocation, is represented as a vector measure µ∶R → E+ with the intuition that
µ(a) is the bundle assigned to the coalition a through µ.

We will assume that all of the resources that are exchanged in the economic
activity are initially owned by the coalitions. Therefore, we will give a special
importance to a specific allocation ν ∈ H which we call initial endowment . Since
we want the total amount of resources available in the economy to be bounded,
we require that the initial endowment ν has a totally bounded range which, in
our framework, is equivalent with asking that ν is an exhaustive measure1. An
allocation µ ∈ H is said to be attainable by the coalition a ∈ R if all the resources
initially owned by a are redistributed through µ among a and its sub-coalitions,
i.e. if µ(a) = ν(a). When R is a Boolean algebra we will call feasible an allocation
that is attainable by the grand coalition.

1i.e. ν(an) → 0 for all sequences (an)n ⊂ R of pairwise disjoint coalitions (see (Diestel and
Uhl, 1977, Corollary 18.1.I)).
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For any allocation µ and coalition a the measure µa∶x↦ µ(a∧ x), for x ∈ R, is
to be thought as the way in which the agents in a reallocate among themselves the
resources that are listed in µ(a). In this perspective, the set Ha ∶= {µa ∶ µ ∈ H} is
the set of allocations on which the coalition a has some influence and represents the
consumption plans that depend on a alone. We can therefore say that a coalition
a is null if Ha is the zero measure, which means that a has no influence at all.

Following Armstrong and Richter’s axiomatic approach, we will consider only
sets of allocations that are spliceable cones.

Definition 4.1.2. A spliceable cone of allocations is a set H of measures on R
with values in E+ such that:

H1 ∶ H is a cone, i.e. α + β ∈ H and tα ∈ H for every α,β ∈ H and t > 0,

H2 ∶ H is closed under splicing, i.e. for every a ∈ R and α,β ∈ H the measure
defined by η(x) ∶= α(x ∧ a) + β(x ∖ a), for x ∈ R, is an allocation in H,

H3 ∶ for every α ∈ H, v ∈ E+ and every p ∈ E∗+ the measure defined by η(x) ∶=
α(x) + v⟨p, ν(x)⟩, for x ∈ R, belongs to H.

We will say that a coalition a is null if Ha = {αa ∶ α ∈ H} is the singleton {0}.

Condition H2 is a way to ensure that coalitions can act autonomously: if α
and β are two allocations in H, any coalition a can conceive both the distributions
αa and βa independently from how resources are allocated outside a. This is a
fundamental feature of competitive models.

On the space a(R,E) of all E-valued measures defined on R it is possible to
define a locally convex topology that follows directly from the commodity-price
duality. In a market regulated by a price system p ∈ E∗+, the total worth of an
allocation µ is given by the p-variation of µ, i.e. by:

∣µ∣p ∶= sup
π∈ΠR

∑
a∈π

∣⟨p,µ(a)⟩∣

where ΠR is the family of all finite subsets of pairwise disjoint elements of R.2 It
is clear that the higher ∣µ∣p is, the more significant the allocation µ will be in our
market. We follow this intuition and endow a(R,E) with the topology ρ induced
by all of the pseudo-norms ∣ ⋅ ∣p with p ranging in E∗+. This will be a locally convex
topology consistent with the pointwise-ordering and finer than the topology of
the pointwise weak-convergence on a(R,E). With an abuse of notation, we will
write ρ also for the subspace topology induced on H and call (H, ρ) the space of
allocations of our economy.

2In the specific case where µ takes values in E+ and p ∈ E∗
+, ∣µ∣p = sup{⟨p,µ(a)⟩ ∶ a ∈ R}.
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Remark 4.1.3. An alternative method to describe the possible ways to allocate
resources in the economy is through a consumption set correspondence X ∶R ↠ E+
that maps every a ∈ R into the non-empty set X(a) ⊂ E+ of the bundles that
she can own or consume on an aggregate level. Intuitively, if a and b are disjoint
coalitions and v,w ∈ E+ are bundles that are owned by a and b respectively, we
would expect v+w to be consumable by the joint coalition a∨b, i.e. v+w ∈X(a∨b).
Thus we shall assume that X is non-empty-valued, maps the empty coalition in
the set {0} and it is finitely additive in the sense that X(a) +X(b) = X(a ∨ b)
whenever a and b are disjoint coalitions.

In the presence of a consumption set correspondence X it is always possible to
define the set of allocations as the family of all additive selections of X, i.e. the
measures µ∶R → E that are such that µ(a) ∈ X(a) for every a ∈ R. On the other
hand, given a set of allocationsM, the correspondence X ∶R ↠ E+ that assigns the
set X(a) ∶= {µ(a) ∶ µ ∈ M} to each a ∈ R is a consumption plan correspondence
provided that M is closed under splicing, i.e. if for every a ∈ R and α,β ∈ M the
measure η∶R → E defined by η(x) ∶= αa(x) + β(x ∖ a), for x ∈ R, is an allocation
in M.

This approach was introduced and studied in Cornwall (1969) in a σ-additive
setting but it can easily be adapted to our model, as it has been done in Basile
(1993) and Donnini and Graziano (2009).

Example 4.1.4. With the axiomatic definition of a spliceable cone of allocations
given in 4.1.2 we can include a large variety of cases considered in the literature.
We leave to (Armstrong and Richter, 1986, pg. 137) and (Cheng, 1991, Section 5)
for classical examples both in the finite and the infinite dimensional settings.

In most of the situations, however, we usually work with a spliceable cone of
allocations that is formed by exhaustive measures alone. This is always the case in
finite-dimensional coalitional models (where order-boundedness and exhaustivity
are equivalent concepts) and it is often assumed, mostly implicity, in the infinite
dimensional settings. We list here a few examples:

• When every allocation is assumed to be absolutely continuous with respect
to a σ-additive, or bounded, measure λ∶R → [0,1]. This is the case of Zame
(1986), Greinecker and Podczeck (2013), where the measures are asked to be
σ-additive, but also of Cheng (1991), Donnini and Graziano (2009) in the
finitely additive framework.

• When R is a Boolean algebra and E is a convex-solid Riesz space. In this
case every order-bounded set is topologically bounded and therefore, since
the range of every E+-valued measure defined on R is contained in an order-
interval, every allocation has a topologically bounded range (see (Aliprantis
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and Burkinshaw, 2006, Section 3.3)). But then any of the following condi-
tions will imply that all the possible allocations are exhaustive:

– E is a separable space and R is σ-complete (see Labuda’s Theorem in
Labuda (1975)).

– There are no sub-spaces of E topologically isomorphic to `∞ and R is
σ-complete.

– There are no sub-spaces of E topologically isomorphic to c0.

The last two conditions are known with the name of Diestel-Faires Theorems and
can be found, for the Banach space-valued case, in Diestel and Faires (1974) and
in Drewnowski (1975, 1976b) for the extension to locally convex spaces (see also
the discussion in (Diestel and Uhl, 1977, pg. 34)).

4.1.B Preferences

If R is a Boolean ring of coalitions and H a spliceable cone of allocations, a
coalitional preference profile on (R,H) is a system ≻∶= (≻a)a∈R of irreflexive binary
relations on H that are not necessarily transitive or complete. When a ∈ R and
α,β ∈ H, α ≻a β reads that almost every agent in a prefers the bundle she receives
through the allocation α rather than β. Once ≻ is defined we can introduce weak
preference relations (≽a)a∈R on H by setting α ≽a β if and only if there is no
non-null coalition a′ ≤ a such that β ≻a′ α.

The following definition is standard in coalitional models of exchange
economies.

Definition 4.1.5. A coalitional preference profile on (R,H) is a system ≻∶= (≻a
)a∈R of irreflexive binary relations on H that are such that, for every α,β ∈ H and
a ∈ R:

P1: the set {x ∈ R ∶ α ≻x β} is an ideal in R,

P2: α ≻a β if and only if αa ≻a β if and only if α ≻a βa,
Condition P1, sometimes called ideal , is necessary to ensure that the formation

of coalitions is totally voluntary as it guarantees that a coalition a considers an
allocation α more profitable than β if and only if all of its sub-coalitions agree.
Condition P2, called selfish, states that the preferences of coalitions depend ex-
clusively on their own consumptions and it is needed to rule out the presence of
externalities on consumption.

If ≻∶= (≻a)a∈R is a coalitional preference profile, for every a ∈ R and α ∈ H it is
well defined the upper contour set :

Pα(a) ∶= {β(a) ∶ β ∈ H, β ≻a α} ⊆ E+. (4.1)
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The following proposition is a direct consequences of conditions P1 and P2 in the
definition of coalitional preference profile.

Proposition 4.1.6. Let ≻∶= (≻a)a∈R be a coalitional preference profile on (R,H).
Then, for every α ∈ H the upper countour set correspondence x ↦ Pα(x) is a
finitely additive correspondence on R that is rich in selections in H.

Proof. Let us fix α ∈ H then take two disjoint a1, a2 ∈ R and v1, v2 ∈ E+ so that
vi ∈ Pα(ai) for i = 1,2. We need to show that v ∶= v1 + v2 can be written as γ(a),
where a ∶= a1 ∨ a2 and γ is an allocation in H such that γ ≻a α.

For i = 1,2 let βi ∈ H be such that βi ≻ai α and βi(ai) = vi, then call γ the
measure that maps each x ∈ R into β1(x ∧ a) + β2(x ∖ a). This way, being H
closed under the splicing operation, γ belongs to H and it is such that γ(a) =
β1(a1) + β2(a2) = v. To show that γ ≻a α it is enough to observe that, for i = 1,2,
γ(x) = βi(x) for each x ≤ ai and so, by Condition P2, γ ≻ai βi. But then γ ≻a α
follows from condition P1.

We stress that no assumptions on completeness nor transitivity of preferences
are necessary. We might, however, need to consider the case in which preferences
are somehow consistent with the topological structure on the commodity space E
and, consequently, with the commodity-price duality. Following Armstrong and
Richter (1984) we will introduce the following definition to express the idea that
small changes in the bundle assigned to a coalition do not affect significantly its
choices.

Definition 4.1.7. A coalitional preference profile ≻∶= (≻a)a∈R is lower semi-
continuous if, for every a ∈ R and α ∈ H, the upper contour set Pα(a) is relatively
open in E+

In the definition above we are simply requiring that if a coalition a ∈ R prefers
an allocation β to α and v ∈ E+ is sufficiently similar to β(a) then there is a way to
allocate the resources listed in v among the sub-coalitions of a that is still preferred
to α by a. On this line, we might need to express the idea that a coalition can
always be made better off with small changes in its consumption. This notion is
formalized with the following definition.

Definition 4.1.8. A coalitional preference profile ≻∶= (≻a)a∈R is weakly locally
non-satiated if, for every non-null a ∈ R and α ∈ H, the bundle α(a) belongs to the
weak closure of Pα(a).

The topological considerations behind the definitions 4.1.7 and 4.1.8 are relative
to the space of commodities E, not to the space of allocations. With a different
approach one could call the coalitional preference profile ≻ continuous if the set
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{(β,α) ∶ β ≽a α} is closed for every a ∈ R (see for, for example, Vind (1964),
Cornwall (1969) and Cheng (1991)). Similarly, one could call ≻ coalitionwise locally
non-satiated if every α belongs to the closure of {β ∈ H ∶ β ≻a α} for every non-null
a ∈ R. It is clear that if a coalitional preference profile ≻ is coalitionwise locally
non-satiated then it is weakly locally non-satiated.

Last we analyse the notion of monotonicity of preferences. As discussed in
Cornwall (1969), given α,β ∈ H and a non-null a ∈ R we say that α ≥∗a β if and
only if α(x) > β(x) for every non-null x ≤ a.

Definition 4.1.9. A coalitional preference profile ≻∶= (≻a)a∈R is monotone if for
every non-null a ∈ R, α ≥∗a β implies α ≻a β for every α,β ∈ H.

There are of course other ways in which a coalitional preference profile may
depend on the order relation on E and, indirectly, on H. We shall discuss some of
them relative to Assumption 4 in Section 4.3.

4.1.C The general model

In the light of all the notions introduced above we define an exchange economy in
coalitional form on the commodity space E, a list:

E ∶= ⟨R,H, ν,≻⟩

where:

• R is the Boolean ring representing all the coalitions in the economy,

• H is a spliceable cone of allocations,

• ν ∈ H is an exhaustive measure representing the initial endowment,

• ≻∶= (≻a)a∈R is a coalitional preference profile on (R,H).

In what follows, we shall also refer to E as a coalitional exchange economy .
We remark that the model we have described stands out for two main reasons:

the finitely additive environment in which the sets of coalitions and assignments
are described and the generality of the commodity space on whose topological
structure we made no restrictions. A third peculiarity of this model is that we
did not impose that the initial endowment of resources ν had to be absolutely
continuous with respect to a scalar measure λ∶R → R+, a condition that is often
required in coalitional economies (as in Vind (1964); Armstrong and Richter (1984)
or Cheng (1991), where infinitely many commodities are considered). We will
discuss the details (and the consequences) of this choice in the paragraph 4.2.B.
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Remark 4.1.10. A significant contribution towards a more abstract formulation
of coalitional economies was given in the research memorandum by Cornwall (1968)
where he proposed to represent coalitions as the elements of a measure algebra
instead of the measurable sets of a probability space3 Cornwall’s approach can
therefore be seen as an attempt to consider the economy that one would obtain
by quotiening an economy “a’ la Vind” by the ideal of economically negligible
coalitions, when such an operation was well defined. See also (Cornwall, 1969,
Remark at pg. 355).

4.2 The space of coalitions

As mentioned in the introduction, by economic weight we mean the capacity of
a coalition to take part and influence the trades. Loosely speaking, in a pure
exchange framework coalitions with “better” initial endowment will more likely
play a significant role in the economic activity and therefore have a larger economic
weight. Following this intuition, we should measure how powerful a coalition a ∈ R
is in terms of what she will be able to attain if she decides to deviate from the rest
of the economy and act independently. In other words, we need to focus on the
set:

ν(Ra) ∶= {ν(x) ∶ x ∈ R, x ≤ a}
which is the collection of all bundles initially owned by a and its sub-coalitions. In
the light of this, the smaller the set ν(Ra) is, the “weaker” we expect the coalition
a to be.

With the observations above we focus on the structure induced on R by the
correspondence a↦ ν(Ra). Precisely, if we consider R as a ring, there is a natural
topology on R whose 0-neighborhood system is generated by the sets of the form
{x ∈ R ∶ ν(Rx) ⊂ U} where U ranges over a 0-neighborhood base of (E,ρ). This
topology, which is the coarsest ring topology on R making ν a continuous function,
is often called ν-topology and belongs to the class of Frechét-Nikodym topologies.

Definition 4.2.1. We call distribution of the economic weight the ν-topology on
R and denote it by the letter u.

With the definition given, we can always refer to the space of coalitions in the
economy E as the topological Boolean ring (R, u). Each allocation can therefore
be seen as a E-valued function on the topological space (R, u) that may, or may
not, be continuous with respect to u. For this reason, for the rest of these notes
we will make the following assumption on the model.

3Cornwall does not explicitly mention measure algebras, however he assumes that coalitions
form a Boolean σ-algebra Σ that supports a strictly positive σ-additive measure, i.e. a σ-additive
probability measure µ∶Σ→ [0,1] that is such that µ(F ) = 0 if and only if F = 0.
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Assumption 1. Each α ∈ H is absolutely continuous4 with respect to ν.

With the Assumption above we are restricting the class of allocations to those
that are “topologically dominated” by the initial endowment so that H and Hu
coincide and every allocation is automatically exhaustive. Similar Assumptions
are explicitly made in Vind (1964), Cheng (1991), Basile (1993) and Donnini and
Graziano (2009) and implicitly in Cornwall (1969) (with conditions (X.3) and
(Y.3)).

Remark 4.2.2. As it has been mentioned in the Example 4.1.4, the requirement
that every allocation is exhaustive is not very restrictive in most of the economic
models usually employed in the literature. As a further way of illustration, let
us consider the case of an economy E where E is a symmetric Riesz space and
R is a Boolean algebra: in this case the range of every feasible allocation α is
relatively weakly compact as it must lie in the interval [0, supν(R)] (which is a
weakly compact set by (Aliprantis and Border, 2006, Theorem 8.60)). This means
that α is exhaustive by (Diestel and Uhl, 1977, Corollary 18.1.I).

Remark 4.2.3. Under mild assumptions it can be shown that, even in models in
which Assumption 1 is violated and not every allocation is absolutely continuous
with respect to ν, most of the economic analysis can be reduced to the study of
the allocations in Hu of all u-continuous allocations in H. This is the approach
used, for example, in Richter (1971) and Armstrong and Richter (1984). In these
articles, where E is assumed to have a finite dimension and ν to be non-atomic,
it is proved that for monotone preference profiles every core allocation belongs to
Hu and if α ∈ Hu is blocked by some β ∈ H it is also blocked by an allocation in
Hu (see for example (Richter, 1971, Propositions 1, 3) or (Armstrong and Richter,
1984, Proposition 1)). In other words, the cores of the economies E = (R,H, ν,≻)
and E ′ = (R,Hu, ν,≻) coincide.

In our framework it is possible to pursue the same strategy used in Richter
(1971) by assuming that (R, u) is uniformly complete and that every α ∈ H is ex-
haustive. In fact, under these assumptions, the Lebesgue decomposition Theorem
used in (Richter, 1971, Proposition 1) can be replaced by (Weber, 2002, Theorem
8.2).

Remark 4.2.4. The idea that the economic weight of coalitions can be studied
as a topology on R, so that coalitions with a small influence are the ‘topologically
small’ ones, was introduced in (Urbinati, 2019, Section 4). It is however not the
first time that considerations on the influence of coalitions are expressed in a purely
topological form: in Basile (1995), for example, a FN -topology is defined on the

4Recall that for two α,β ∈ a(R,E) we say that α is absolutely continuous with respect to β
if α(xi) → 0 for every net (xi)i∈I in R such that β(xi) → 0.
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coalitions of a voting game and used to study the political influence of each group
of voters.

In a way, the notion of economic weight we defined here is not too distant from
that of diameter introduced in Grodal (1972). See the Remark 4.2.7 for a broader
discussion.

4.2.A An equivalent topology on coalitions

A possible alternative way of defining the economic weight of coalitions, more
closely related to the commodity-price duality, is to measure the economic potential
of each coalition under all the possible price systems that can emerge. Formally,
one could associate to every price system p ∈ E∗+ ∖ {0} the positive measure:

νp∶a↦ sup{⟨p, ν(x)⟩ ∶ x ∈ Ra} (4.2)

which assign to every coalition a ∈ R the maximum possible income she can attain
at price p if she deviates from the rest of the economy. With this idea, we are
brought to say that the economic power of a coalition a ∈ R should be “small”
whenever νp(a) is small for some p ∈ E∗+ ∖ {0}. Quite surprisingly, this approach
can be shown to be equivalent with the one showed above thanks to the following
proposition.

Proposition 4.2.5 (Corollary 7.3 in Weber (2002)). For any net of coalitions xi,
i ∈ I, and x0 in the Boolean ring R it is equivalent to say that:

1. the net xi converges to x0 in (R, u),

2. for all p ∈ E∗+, the net νp(xi) converges to νp(x0).

In other words, the topology induced onR by the collection νp, p ∈ E∗+, coincides
with the ν-topology and hence with the distribution of economic weight as defined
in definition 4.2.1. Our notion of economic weight can therefore be directly derived
from the commodity-price duality.

There are a few useful consequences of Proposition 4.2.5: the first is that the
topology u on R does not really depend on the specific topology chosen on E but
only on the duality (E,E∗), the second is that u is fully described by the class of
u-valued probability measures that can be defined on R.

Corollary 4.2.6. Let U be a 0-neighborhood in (R, u). Then there are a finite set
λi∶R → [0,1], i = 1, . . . , n, of u-continuous probability measures and an ε > 0 such
that:

{x ∈ R ∶ λi(x) ≤ ε∀i ≤ n} ⊆ U.
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Proof. By Proposition 4.2.5 the topology u is fully determined by the semi-metrics
νp∶R → R+, with p ranging over E∗+. Since U is a 0-neighborhood in (R, u), there
must be a finite set p1, . . . , pn ∈ E∗+ and δ > 0 such that:

{x ∈ R ∶ νpi(x) ≤ δ, ∀i ≤ n} ⊆ U.

We stress that, for every i ≤ n, being νpi exhaustive we have supνpi < ∞. Without
loss of generality we can therefore assume that supνpi > 0 for every i ≤ n.

To conclude the proof it is enough to define for each i ≤ n the probability
measure λi that maps each x ∈ R into νpi(x)/ supνpi and put ε ∶= sup{δ/ supνpi ∶
i ≤ n}.

Remark 4.2.7. When the space of commodities E is equipped with a norm ∥ ⋅ ∥,
it is common to define the diameter the function a ↦ ∣a∣ν ∶= sup{∥x∥ ∶ x ∈ Ra},
a ∈ R (see for example Grodal (1972) or Hervés-Beloso et al. (2000); Evren and
Hüsseinov (2008) for the case in which the dimension of E is infinite). Since every
p ∈ E∗+ defines on E the semi-norm x ↦ ∣⟨p, x⟩∣, we could see the function νp as a
special case of a diameter function.

It is also worth stressing that, when E is normed, the diameter function ∣ ⋅ ∣ν
provides a sort of numerical description of the economic weight in the sense that
the sets Uε ∶= {x ∈ R ∶ ∣x∣ν ≤ ε}, with ε > 0, form a 0-neighborhood base of (R, u).
All this implies that a coalition has “small” diameter if and only if it belongs to a
“small” open set in the space of coalitions (R, u).

4.2.B Numerical evaluations of the economic weight

A significant situation is when the initial endowment ν is a controlled measure i.e.
it is absolutely continuous with respect to a certain scalar measure λ∶R → R+ (then
we call λ a control measure for ν). If this is the case, the topology of the space of
coalitions (R, u) is fully determined by the semi-metric dλ∶ (x, y) ↦ λ(x△ y), for
x, y ∈ R, and λ(x) indicates the “distance” of coalition x from the empty coalition.
It seems therefore reasonable to think of λ as a measure of how powerful each
coalition is, justifying the following definition.

Definition 4.2.8. We call numerical evaluation of the economic weight any scalar
measure λ∶R → R+ such that ν is absolutely continuous with respect to λ.

In general, not all vector measures with values in a locally convex space are
controlled, thus a priori we cannot tell whether or not we can find a numerical
evaluation of the economic weight in the economy we are considering. However,
when the space of commodities E is a Banach space, or more generally a metriz-
able space, a slight generalization of a theorem by Bartle, Dunford and Schwartz
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guarantees the existence of a control measure for ν (Weber, 2002, Corollary 7.5).
This means that in every economy with a metrizable space of commodities we can
always describe the space of coalitions via the pair (R, λ), where λ is a control
measure for ν.

Remark 4.2.9. In most of the literature on coalitional economies it is common
to describe the space of coalitions as a measurable space (R, λ), where R is the
ring of coalitions and λ∶R → R+ is a control measure of the initial endowment. For
the reasons explained in this section, such a measure λ is often called measure of
the economic power of coalitions. However, as we have pointed out earlier, this
approach, while fully justified for economies with a Banach space of commodities,
puts a strong limitation on the set of allocations and on the possible choices of
initial endowment. A limitation which does not seem to have a real economical
justification.

It is to avoid this kind of eventuality that we decided to follow a complete
different line and to define the space of coalitions as a topological Boolean ring.
See also the discussion in Sections 2.2.A and 2.2.B in Chapter 2.

Remark 4.2.10. In the specific case in which E is a Banach space, Rybakov’s
Theorem ensures the existence of a p ∈ E∗+ such that ν is absolutely continuous
with respect to the measure p ○ ν, meaning that p ○ ν is a numerical evaluation of
the economic weight (see (Diestel and Uhl, 1977, Theorem IX.2.2) and (Weber,
2002, Corollary 7.5) for the finitely additive approach). This shows how, in this
particular framework, the condition H3 given in the Definition 4.1.2 implies the
conditions (S2) in Armstrong and Richter (1984) and H.1 in Cheng (1991).

The observation above implies, in particular, that if there is a p ∈ E∗+ such that
ν ≪ p ○ ν (i.e. a Rybakov functional for ν) it is always possible to distribute a
bundle v ∈ E+ ∖ {0} among all the non-null coalitions in the economy. In fact, by
condition H3 in 4.1.2 the relation x↦ v(⟨p, ν(x)⟩) defines an allocation in H that
assigns a non-zero bundle to each non-null x ∈ R.

In our general framework, when E is a locally convex space and ν does not have
any control measure this property might not hold. It could in fact be impossible
to allocate a positive amount of resources among all the non-null coalitions in the
economy. We will see in Section 4.3 how this affects the definitions of the blocking
mechanism.

4.2.C A condition for perfect competition

When the commodity space E has a finite dimension, Aumann’s notion of perfect
competitiveness of the market is stated in terms of non-atomicity of the initial
endowment and, consequently, of all allocations (see Aumann (1964)). We follow
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his idea to extend this notion to the case of infinite dimensional spaces by requiring
that ν satisfies the following conditions.

Assumption 2. sat(ν) is infinite and there is a family F ⊂ E∗ separating the
points of E such that ∣F∣ < sat(ν).

Once again we stress that in the finite dimensional settings Assumption 2
is equivalent to the condition of non-atomicity of allocations and therefore to
Aumann’s notion of perfect competitive market. Also, in line with Aumann, as
a direct consequence of Theorem 2.2.7 we have that, under Assumption 2, every
closed allocation has convex and weakly compact range. It is in view of this that
throughout we will also assume the following:

Assumption 3. (R, u) is a uniformly complete topological ring.

Assumptions 2, 3 give us important results on convexity of preferences. Pre-
cisely, if we fix a coalition a ∈ R and an allocation α ∈ H we can represent the
set of bundles preferred to α(a) by means of the set Pα(a) which we claim to be
convex.

Theorem 4.2.11. Under assumptions 2 and 3 the correspondence x↦ Pα(x), for
x ∈ R, has convex values for every α ∈ H.

Proof. Let α ∈ H. By Proposition 4.1.6, Pα is a finitely additive correspondence
rich in selections that belongs to H. But then, under Assumptions 2 and 3, Pα
satisfies all of the requirements of Theorem 2.2.12 and, as such, it has convex
values.

Theorem 4.2.11 reflects the idea that, when the structure of the space of coali-
tions is much richer than that of the space of commodities there is a convexifying
effect on preferences.

Remark 4.2.12. The conjecture that in a regime of perfect competition the ag-
gregation among agents could have a convexifying effect on their total demand
(even when individual preferences are not convex) was proved in Aumann (1964).
Even before that, Uzawa in (1962a) discussed a similar convexifying effect on pro-
duction functions as a consequence of the aggregation of infinitely many negligible
producers, a result which he attributes to Farrell (who proved it in (1959) in a
simple case) and to Hurwicz and Uzawa (who had presented it in the unpublished
manuscript Hurwicz and Uzawa (shed) and then in (1977)).

It was Vind, however, who first showed in (1964) how the convexifying effect
on preferences proved by Aumann is a direct consequence of Lyapunov’s Theorem
on the range of vector measures. In this perspective, Theorem 4.2.11 can be seen
as the natural extension of Vind’s intuition to the infinite dimensional setting in
which Theorem 2.2.7 was proved.
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Remark 4.2.13. It shall be stressed that the Theorem 4.2.11 does not imply
that the coalitional preference profile ≻ is convex, i.e. that {β ∈ H ∶ β ≻a α} is
a convex subset of H for every α,β ∈ H and a ∈ R. In general, the convexity
of a coalitional preference profile is a much stronger property than the convexity
of all the relative upper contour sets we have defined in Equation 4.1. Under
very common assumptions it can even be shown that if a coalitional preference
profile ≻ is derived from a system of individual preferences on E then ≻ is convex
if and only if almost every agent’s preference relation is convex. This property
was conjectured by Armstrong in 1984 at the Institute for Mathematics and Its
Applications at the University of Minnesota and proved Mauldin (1986) for the
case of economies with finitely many commodities.

What follows from Theorem 4.2.11, however, is that for every α ∈ H and non
null a ∈ R one has α ∉ co ({β ∈ H ∶ β ≻a α}), a condition similar to those introduced
by Shafer and Sonnenschein in (1975, Theorem 1) to replace the convexity of
preferences in the context of abstract economies.

4.3 On the core of exchange economies

We now move our attention to the problem of determining when a coalition is
capable of improving upon a given allocation. Intuitively, a coalition a can improve
upon a given allocation α if it finds a more profitable way to re-allocate its own
resources among its sub-coalitions. This intuition can be formalized in different
ways, depending on whether we consider strict or weak preferences. For the sake of
completeness, we include here some definitions that are standard in the literature.

Definition 4.3.1. Let α,β ∈ H. We say that α is dominated by β if there exists
a non-null coalition a ∈ R such that β(a) = ν(a) and β ≻a α. If this is the case we
also say that a blocks, or improves upon, the allocation α via β.

The core is defined as the set C(E) of all feasible allocations that are not dom-
inated.

Loosely speaking, a coalition a will block the allocation α via β if almost every
agent in a finds β more profitable than α. This condition can of course be weakened
by requiring that only a significant share of agents in a prefers α to β while the
remaining agents are indifferent between the two allocations. We formalize this
intuition by defining a relaxed veto mechanism based on the notion of ⋆-core, as
introduced in (Shitovitz, 1973, pg. 479).

Definition 4.3.2. Let α,β ∈ H and a ∈ R. We say that a ⋆-blocks α via β if
β(a) = ν(a) and there is a non-null a′ ≤ a such that β ≻a′ α and β(x) = α(x) for
every x ≤ a ∖ a′.
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The ⋆-core of the economy E is the set C⋆(E) of all feasible allocations that
cannot be ⋆-blocked by any coalition.

With the definition given, an allocation is ⋆-blocked whenever it is blocked in
the ordinary sense and so the ⋆-core of the economy is a subset of C(E). The
converse inclusion, in general, is not true in our environment and C(E) will usually
be strictly larger than C⋆(E). It is however possible to reconcile the two notions
of core under some additional assumptions.

Assumption 4. For every non-zero v ∈ E+ and every α ∈ H, a ∈ R we have
α(a) + v ∈ Pα(a).

Condition 4 can be thought as a coalitional form of desiderability of positive
bundles and it is a much stronger requirement than the simple monotonicity of
preferences. It is equivalent to asking that, for every allocation α ∈ H, every non-
null a ∈ R and every non-zero v ∈ E+ there exists a ζ ∈ H such that ζ ≻a α and
ζ(a) = α(a) + v.

We can now prove the following.

Proposition 4.3.3. Suppose that ≻ is lower semi-continuous, that Assumption 4
is met and let α be an allocation that is ⋆-blocked by a coalition a ∈ R. Then a
blocks α in the ordinary sense. In particular, C⋆(E) = C(E).

Proof. Since a ⋆-blocks α we can take a β ∈ H and a non-null a′ ≤ a such that
β(a) = ν(a), β(x) = α(x) for every x ≤ a ∖ a′ and β ≻a′ α.

By definition, the bundle β(a′) must belong to the set Pα(a′), that is open by
the lower semi-continuity of preferences. We can therefore pick a t ∈ (0,1) such
that tβ(a′) is still in Pα(a′) and call v ∶= (1 − t)β(a′). Clearly v ∈ E+ and so, by
Assumption 4, α(a ∖ a′) + v ∈ Pα(a ∖ a′). This means in particular that there will
be a γ ∈ H such that α(a ∖ a′) + v = γ(a ∖ a′) and γ ≻a∖a′ α.

Let us call µ∶R → E+ the measure that assigns to every x ∈ R the bundle:

µ(x) ∶= γ(x ∖ a′) + tβ(x ∧ a′).

The first thing we observe is that the allocation µ is attainable by coalition a. In
fact:

µ(a) =γ(a ∖ a′) + tβ(a′) = α(a ∖ a′) + v + tβ(a′) =
=β(a ∖ a′) + (1 − t)β(a′) + tβ(a′) = β(a) = ν(a).

Furthermore, it follows directly from the selfish property of ≻ (condition P2 in the
Definition 4.1.5) that that µ ≻a∖a′ α and µ ≻a′ α. But then, from the ideal property
of ≻ (condition P1 in 4.1.5), µ ≻a α. We conclude that α is blocked by a in the
ordinary sense.
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The equivalence C(E) = C⋆(E) is proved by observing that, by the argument
above, every feasible allocation outside C⋆(E) is blocked in the ordinary sense and
so the inclusion C(E) ⊆ C⋆(E) holds.

Remark 4.3.4. Please observe that, in particular, the condition presented in
4 is always met when E is a Banach space and ≻ is lower semi-continuous and
monotone. In fact, in this case, given a non-null a ∈ R and a v ∈ E+ ∖ {0}, by the
observations made in the Remark 4.2.10 it is always possible to find a β ∈ H such
that β(a) = v and β(x) ≠ 0 for every non-null x ≤ a. But then, for any α ∈ H,
ζ ∶= α + β is an allocation such that ζ(x) > α(x) for every non-null x ≤ a and so
ζ ≻a α by the monotonicity of preferences. Following this argument, one could
prove the claims of Proposition 4.3.3 hold whenever E is a Banach space and ≻ is
monotone and lower semi-continuous.

It is worth mentioning that equivalence results similar to those shown in Propo-
sition 4.3.3 were proved in (Shitovitz, 1973, Lemma 4) and (Hüsseinov, 1998,
Lemma at pg. 133) in an individualistic framework and under different condi-
tions on preferences. In particular, Husseinov was able to prove the equivalence
C(E) = C⋆(E) by assuming only measurability, continuity and local non-satiation
of preferences.

4.3.A On the veto power of small coalitions

In (1972) Schmeidler proved that in a competitive economy with a finite number
of commodities any allocation that does not belong to the core can be blocked
by arbitrarily small coalitions. In our framework, where it may be impossible to
refer to the exact “size” of a coalition, we can still formulate Schmeidler’s idea
using the topological structure on the space of coalitions. Formally we shall say
that a property P holds for arbitrarily small coalitions if and only if for every
0-neighborhood U in (R, u) there is a coalition a ∈ U for which property P holds
or, equivalently, if every null-coalition is a limit point of the set {a ∈ R ∶ P holds
for a}.

Schmeidler’s Theorem can therefore be formulated as follows.

Theorem 4.3.5. Under the Assumptions 2 and 3 let α be an allocation that is
blocked by a coalition a ∈ R via a given β ∈ H and let U be a 0-neighborhood in
(R, u). Then there is a coalition b ≤ a in U that blocks α via β.

Using the terminology we have introduced, we can rephrase the Theorem above
and claim that, under Assumptions 2 and 3, any allocation outside the core can
be blocked by arbitrarily small coalitions.
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Proof. If U is a 0-neighborhood in (R, u), by Corollary 4.2.6 we can find a finite
number of u-continuous measures λi∶R → [0,1], i = 1, . . . , n, and a ε ∈ (0,1) such
that x ∈ U whenever λi(x) ≤ ε for every i ≤ n.

Let us define the function η∶R → E × E × Rn that assigns to every x ∈ R the
vector:

η(x) ∶= (ν(x), β(x), λ1(x), . . . , λn(x))

and observe that η is a u-continuous measure that takes values in a space that is
separated by a family of functionals F such that ∣F∣ < sat(u). The set η(R ∧ a)
is then convex by Theorem 2.2.7 and it contains both the 0 vector and η(a). Let
b ≤ a be such that η(b) = εη(a). We claim that b is the desired coalition.

First of all we observe that b is non-null since ν(b) = εν(a) ≠ 0. On the other
hand, being λi(b) ≤ ε for all i ≤ n, b ∈ U . To see that b blocks α via β observe that
β is an allocation attainable by b, because ν(b) = εν(a) = εβ(a) = β(b), and that
b ≤ a and β ≻a α imply that β ≻b α because of the ideal property of preferences
(Condition P1 in 4.1.5).

In general, the larger is the economy, the harder it is to check whether a given
distribution of resources is a core allocation or not. Here we have shown that the
area in which we have to look for blocking coalitions can be narrowed from the
whole R to any neighborhood of 0 in (R, u). Alternatively, we might also say that
under the Assumptions of Theorem 4.3.5 any non-core allocation can be blocked
by re-allocating an arbitrarily small amount of resources. This last intuition is
formalized in the following corollary.

Corollary 4.3.6. Under the Assumptions 2 and 3 let α be a non-core allocation
and let V be a 0-neighborhood in (H, ρ). Then there is an allocation in V that
dominates α.

Proof. Let β ∈ H be an allocation that dominates α. By Theorem 4.3.5 we can find
a net (ai)i∈I of coalitions that converges to 0 in (R, u) and that is such that each
ai blocks α via β. In particular, this means that whenever we choose (xi)i∈I ⊂ R
so that xi ≤ ai for i ∈ I we will have that ν(xi) → 0 in E.

Recall now that, by assumption, β ∈ H implies that β ≪ ν and therefore
sup{⟨p, β(x)⟩ ∶ x ≤ ai} converges to 0 for every non-zero p ∈ E∗+.

For every i ∈ I call βi ∶= βai and observe that ai blocks α via βi. By construction
we will have that ∣βi∣p = sup{⟨p, β(x)⟩ ∶ x ≤ ai} converges to 0 for every p ∈ E∗+∖{0}.
But then, for a sufficiently large j ∈ I, βj is an allocation in V that dominates
α.
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4.3.B On the veto power of large coalitions

In the spirit of the work of Schmeidler, Vind presented in (1972) some sufficient
conditions under which any feasible allocation outside the core can be blocked by
an arbitrarily large coalition. This result, however close to that of Schmeidler, is
obtained under stronger assumptions on preferences and requires a more careful
analysis. To overcome some of the issues that arise in our settings, in this para-
graph we present an infinite dimensional extension of Vind’s Theorem in which we
consider a relaxed veto mechanism based on the notion of ⋆-core.

Using the blocking mechanism that defines the ⋆-core we can prove the follow-
ing version of Vind’s Theorem on the veto power on large coalitions (Vind (1972))
in which, like in the case of Theorem 4.3.5, the notion of arbitrarily large coalitions
is formalized using the topological structure on (R, u). Once again, we shall say
that a property P holds for arbitrarily large coalitions if R is a Boolean algebra
and for every neighborhood U of e in (R, u) the property P holds a coalition a ∈ U .

Theorem 4.3.7. Suppose that R is a Boolean algebra, that ≻ is lower semi-
continuous and weakly locally non-satiated and that Assumptions 2 and 3 hold.
Let α be a feasible allocation that can be ⋆-blocked and let U be a neighborhood of
e in (R, u). Then there is a coalition in U that ⋆-blocks α.

In other words, we are claiming that, under the assumptions above, every fea-
sible allocation outside the ⋆-core can be ⋆-blocked by arbitrarily large coalitions.

Proof. If U is a neighborhood of e in (R, u), by Corollary 4.2.6 we can select a
finite number of u-continuous measures λi∶R → [0,1] and a ε ∈ (0,1) that are such
that:

{x ∈ R ∶ λi(e△ x) ≤ 1 − ε, ∀i ≤ n} ⊆ U.
To prove our statement it will therefore be sufficient to find a coalition d that
⋆-blocks α and that is such that λi(d) ≥ ελi(e) for all i ≤ n (this way 1 − ε ≥
λ(e) − λ(d) = λi(e△ d)).

Suppose that a ∈ R is a coalition that ⋆-blocks α. This means that there exist
β ∈ H and a non-null a′ ≤ a such that: (i) β(a) = ν(a), (ii) β ≻a′ α and (iii)
β(x) = α(x) for every x ≤ a ∖ a′. Call η∶R → E × E × E × Rn the function that
assigns to each x ∈ R the vector:

η(x) ∶= (ν(x), α(x), β(x), λ1(x), . . . , λn(x))

and observe that η is a u-continuous measure that satisfies all of the assumptions of
Theorem 2.2.7. We can therefore find b′ ≤ a′ and b′′ ≤ a∖a′ such that η(b′) = εη(a′)
and η(b′′) = εη(a ∖ a′). Similarly, we can define b ∶= b′ ∨ b′′ and find a c ≤ bc such
that η(c) = εη(bc).
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We claim that the coalition d ∶= b ∨ c is the desired one. First of all observe
that, for every i ≤ n, λi(d) = λi(b) + λi(c) = ελi(a) + ελi(bc) ≥ ελi(e) which means
that d ∈ U . So we only need to prove that d ⋆-blocks α.

Let us focus on b. The first observation we make is that b ⋆-blocks α via β. In
fact: (i) ν(b) = εν(a) = εβ(a) = β(b), (ii) b′ is a non-null sub-coalition of a′ and
so β ≻b′ α (by selfishness of preferences) and (iii) b ∖ b′ = b′′ ≤ a ∖ a′, meaning that
α(x) = β(x) for all x ≤ b ∖ b′. Furthermore, being ≻b′ weakly locally non-satiated,
α(b′) belongs to the closure of the set Pα(b′) which, in turn, is convex by Theorem
4.2.11. This means that v = εα(b′) + (1 − ε)β(b′) ∈ Pα(b′) and hence v = γ(b′) for
some allocation γ such that γ ≻b′ α.

Let ζ ∶R → E be the allocation that assigns to each x ∈ R the bundle:

ζ(x) ∶= α(x ∖ b′) + εα(x ∧ b′) + (1 − ε)β(x ∧ b′).

First of all, we observe that b′ is a non-null subcoalition of d that is such that
ζ ≻b′ α and ζ(x) = α(x) for every x ≤ d ∖ b′. To prove that d ⋆-blocks α via ζ we
only have to show that ζ(d) = ν(d). By construction, ζ(b) = εα(b) + (1 − ε)β(b)
and ζ(c) = α(c) and so we can write:

ζ(d) = ζ(b) + ζ(c) = (1 − ε)β(b) + εα(b) + α(c).

Furthermore, we know that β(b) = ν(b), that α is feasible and, by the choice of c,
that α(c) = εα(bc). The equation above can then be rewritten in the form:

ζ(d) = (1 − ε)ν(b) + ε[α(b) + α(bc)] = (1 − ε)ν(b) + εν(e).

But then:

ζ(d) = ν(b) + ε[ν(e) − ν(b)] = ν(b) + εν(bc) = ν(b) + ν(c) = ν(d)

as claimed.

As it has been mentioned, the core and the ⋆-core of an economy may not
coincide and it is possible that an allocation is ⋆-blocked even if there are no
coalitions that block it in the standard sense. Therefore, Theorem 4.3.7 alone is
not sufficient to guarantee that any feasible, non-core allocation is blocked (in the
standard sense) by arbitrarily large coalitions. However, thanks to Proposition
4.3.3, we can prove the following corollary.

Corollary 4.3.8. Under the Assumptions of Theorem 4.3.7 suppose that Assump-
tion 4 holds. Let α be a feasible allocation that can be ⋆-blocked and let U be a
neighborhood of e in (R, u). Then there is a coalition in U that blocks α in the
ordinary sense.
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Proof. By Theorem 4.3.7 we can take a a ∈ U that ⋆-blocks α. It follows from
Proposition 4.3.3 that a blocks α also in the ordinary sense.

Remark 4.3.9. In a simpler framework, the idea of a topological description of
the economic weight was introduced and studied in (Urbinati, 2019, Section 4).
This allowed to prove a preliminary version of Theorem 4.3.5 in (Urbinati, 2019,
Theorem 4.12). The Theorem 4.3.7, however, is a much stronger result than those
presented in Urbinati (2019) where the only results dealing with the veto power of
large coalitions were proved in (2019, Theorem 4.15) and can be seen as a simplified
version of Corollary 4.3.8.

Remark 4.3.10. It is thanks to the assumptions 2, 3 on the economic weight of
coalitions that we could prove Theorems 4.3.5 and 4.3.7 using a classical approach
similar to what is done in the finite dimensional cases. Without such a restriction
on u, some additional assumptions on the commodity space are needed: in Hervés-
Beloso et al. (2000), for example, the commodity space is taken as the sequence
space `∞ while in Evren and Hüsseinov (2008) E is required to be a Banach lattice
whose positive cone has an interior point. Another approach, used in Bhowmik
and Cao (2012), consists in restricting the attention to allocations with the equal
treatment property. Last, in Bhowmik and Graziano (2015) the authors impose
the existence of a cone of arbitrage which allows them extend their analysis to
economies with atoms.

Remark 4.3.11. As mentioned in remark 4.2.7, when E is a Banach space en-
dowed with a norm ∥⋅∥ it is common to call diameter the function x↦ sup{∥ν(b)∥ ∶
b ∈ R∧x}, for x ∈ R, as in the equation 4.2. What we have is that for all ε > 0 the
set of coalitions with diameter smaller than ε forms a 0-neighborhood in (R, τ(ν))
showing that our definition of distribution of economic power is very closely related
to the idea of diameter.

In this view, when E is a Banach space it follows from Theorem 4.3.5 that every
non-core allocation can be blocked by coalitions with arbitrarily small diameter.
This result mimics the infinite dimensional reformulation of Grodal’s Theorem
(1972) that was given in (Hervés-Beloso et al., 2000, Theorem 1).



76 Competitive economies in coalitional form



Chapter 5

Competitive objection mechanism
in economies with many
commodities

In this chapter we study the competitive objection mechanism and the characteri-
zation of competitive allocations through the notion of bargaining set in economies
with many commodities. At the best of my knowledge, this is the first contribution
of this type.

The main concern will be to provide conditions under which it is always pos-
sible that some agents can raise a competitive objection against a feasible, non-
competitive allocation. This analysis will be carried out in two different scenarios
and will consider different notions of bargaining set in which both standard and
Aubin coalitions (i.e. fuzzy sets of agents) are considered in the objection and
counter-objection process.

We will mainly focus on the problem of existence of competitive objections in
competitive economies with a separable Banach space of commodities and on the
crucial role played by the “convexifying effect on preferences” that in the finite
dimensional settings is guaranteed by Lyapunov’s convexity Theorem. More pre-
cisely, we will study the problem of existence of competitive objections in exchange
economies in which: (i) the commodity space is a separable Banach space whose
positive cone has non-empty interior and (ii) both standard and fuzzy coalitions
are considered in the objection and counter-objection mechanisms.

The chapter is organized as follows. In Section 5.1 we describe a very standard
model of an exchange economy with a measure space of agents and with a separable
Banach space of commodities whose positive cone has non-empty interior. The
assumptions of the model are going to be almost identical to those described in
Khan and Yannelis (1991a) if not for the weaker impositions we make on the choice
of the initial endowment (see Remark 5.1.1 for a more detailed comparison with
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the literature). We will assume that the measure space of agents is ‘rich’ enough to
ensure some form of convexifying effect as a consequence of the saturation property
and the ‘many agent of every type’ assumption introduced in Podczeck (1997).

In Section 5.2 we redefine Mas-Colell’s bargaining set and the notion of com-
petitive objections in this new setting. In 5.2.3 we study the coalitions that can
raise competitive objections at a given price while in Proposition 5.2.5 we prove
that the existence of competitive objections against feasible allocations depends
on the existence of equilibrium prices of a properly defined correspondence. These
results are then used in Theorem 5.2.7 to show that, in our framework, every fea-
sible but non-competitive allocation can be objected competitively. This will also
allow us to conclude that every allocation in the bargaining set is competitive.

In Section 5.3 we weaken the assumptions on the measure space of agents to
allow the presence of market imperfections and oligopolists. In paragraph 5.3.A
we develop new definitions of bargaining sets in which we allow Aubin coalitions
to take part in the objection and counter-objection processes (as in Hervés-Beloso
et al. (2018)). Thanks to a new convexity result, which is proved in Lemma
5.3.6, we will be able to adapt what had been done in Section 5.2 and prove new
characterizations of competitive allocations by means of the different notions of
bargaining set considered.

The mathematical setting

We shall start by recalling some of the notation that will be used throughout this
chapter.

• Let (T,Σ,m) be a complete probability space. For every A ∈ Σ, the principal
ideal generated by A will be the set ΣA ∶= {F ∈ Σ ∶ F ⊆ A}. We will write
mA for the measure mA∶F ↦ m(A ∩ F ), for F ∈ Σ, and identify it with the
restriction of m to the algebra ΣA. As usual, we shall say that A ∈ Σ is
m-null if m(F ) = 0 for every F ∈ ΣA and write N(m) for the ideal of m-null
elements in Σ.

• E will be an ordered Banach space. As usual, we will write ≤ for the order
relation on E and call E+ ∶= {x ∈ E ∶ x ≥ 0} the positive cone of E. E∗

denotes the topological dual of E, i.e. the space of all continuous linear
functions from E to R. For any x ∈ E and p ∈ E∗ we will write both ⟨p, x⟩
and p ⋅ x for the value p(x). The duality between E and E∗ will induce on
E∗ a structure of Banach lattice for which the positive dual cone is the set
E∗+ ∶= {p ∈ E∗ ∶ p(x) ≥ 0 ∀x ∈ E+}.

• For any subset A ⊂ E, the interior, closure and convex hull of A will be
respectively denoted by int(A), A and co(A). The closed convex hull of A
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will in turn be denoted by co(A). To avoid the risk of ambiguity we shall
explicitly indicate what is the topology we are considering at each time and
write A

w
when the closure is considered with respect to the weak topology

σ(E,E∗) on E.

• Given a correspondence ϕ∶T ↠ E, by selection of ϕ we will mean a function
f ∶T → E such that f(t) ∈ ϕ(t) for almost every t ∈ T . The set of all
selections of ϕ that are integrable will be denoted by L(ϕ). We will talk
about the integral of a correspondence ϕ always referring to the Aumann-
integral defined by:

∫
A
ϕ dt ∶= {∫

A
f(t) dt ∶ f ∈ L(ϕ)} , A ∈ Σ.

The correspondence ϕ is said to be integrably bounded if there is a real-valued,
integrable function h∶T → R+ such that sup{∥y∥ ∶ y ∈ ϕ(t)} ≤ h(t) for almost
every t ∈ T . ϕ will be measurable when its graph Gr(ϕ) ∶= {(t, x) ∶ x ∈ ϕ(t)}
belongs to the product algebra Σ⊗ B(E), where B(E) stands for the Borel
σ-algebra on E.

We will primarily refer to (Khan and Yannelis, 1991b, Part I) and (Aliprantis
and Burkinshaw, 2006, Chapters 17, 18) as references for the general theory of
integration of correspondences and Podczeck (2008), Sun and Yannelis (2008) for
the specific case of integration over a saturated measure space. For what concerns
the study of the bargaining set and the competitive objection mechanism we refer
to Mas-Colell (1989) and the survey in (Grodal, 2009, Sections 4,5).

5.0.A Preliminaries on saturated measure spaces

Let (T,Σ,m) be a complete probability space. As usual, we will say that A ∈ Σ is
a m-atom if m(F ) ∈ {0,m(A)} for every F ⊆ A. The measure space (T,Σ,m) is
said to be non-atomic, or atomless if there are no m-atoms in Σ.

We will say that (T,Σ,m) is separable if there is a countable family (Fn)n ⊆ Σ
such that infnm(A∩Fn) = 0 for every A ∈ Σ. This is equivalent to asking that the
quotient algebra Σ̃m ∶= Σ/N(m) is generated by a countable family of elements.
We will say that (T,Σ,m) is saturated if for every non-null A ∈ Σ the measure
space (A,ΣA,mA) is not separable. It is worth observing that, with the given
definition, every saturated measure space is non-atomic while the converse may
not hold.

The proof of the following result can be found in (Podczeck, 2008, Theorem
1 and 2) in terms of super-atomless measure spaces. The equivalence between
super-atomless and saturated measure spaces is proved in (Podczeck, 2008, Fact
at page 839).
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Lemma 5.0.1. Let (T,Σ,m) be a saturated measure space and E an infinite di-
mensional Banach space. Then the following conditions are equivalent.

1. (T,Σ,m) is saturated.

2. ∫S ϕ(t) dt is convex for every correspondence ϕ∶T ↠ E.

3. ∫ ϕ(t) dt is weakly compact for every correspondence ϕ∶T ↠ E that is inte-
grably bounded and has weakly compact values.

Another significant property will be given by the following result proved in
(Sun and Yannelis, 2008, Proposition 1.6).

Lemma 5.0.2. Let (T,Σ,m) be a saturated measure space, E a separable Banach
space and Y a metric space. Suppose that ϕ∶Y ×T ↠ E is a weakly compact valued
correspondence for which all the following assumptions are met:

1. t↦ ϕ(y, t), t ∈ T , is measurable for every y ∈ Y .

2. y ↦ ϕ(y, t), y ∈ Y , is upper hemicontinuous with respect to the weak topology
on E for almost every t ∈ T .

3. y ↦ ϕ(y, t), y ∈ Y , is dominated1 by an integrably bounded correspondence
K ∶Y ↠ E.

Then y ↦ ∫T ϕ(y, t)dt, y ∈ Y , is upper hemicontinuous with respect to the weak
topology in E.

5.1 The economic model

The commodity space is an ordered, separable Banach space E whose positive
cone E+ is closed and has non-empty interior. We will refer to the vectors in E+
as the commodity bundles and call price systems the non-zero elements of E∗+.
Throughout, we will consider an economy E ∶= [(T,Σ,m), (X(t), e(t),≽t)t∈T ] with
the following specifications:

• individual agents will be represented as the points of a complete probability
space (T,Σ,m). As usual, the non-null elements of Σ will represent all the
possible coalitions that can be formed in the economy while m∶Σ → [0,1]
is a numerical evaluation of the economic power of each coalition. We will
refer to (T,Σ,m) as the space of agents ;

1There is a correspondence ϕ̃∶T ↠ E such that ϕ(y, t) ⊆ ϕ̃(y, t) for almost every T ∈ T .
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• X(t) ⊂ E+ is the consumption set of agent t. The map X ∶T ↠ E+ is called
the consumption set correspondence;

• e∶T → E+ is an integrable selection of the consumption set correspondence
X assigning to each individual agent her initial endowments;

• ≽t is a reflexive, transitive and complete binary relation on X(t) representing
agent t’s preferences over her consumption bundles. The symmetric and
asymmetric components of ≽t are respectively called indifference and strict
preference relation and denoted by ∼t and ≻t.

Choose a u ∈ int(E+) and let ∆ ∶= {p ∈ E∗+ ∶ p⋅u = 1} be a price space equipped with
the weak∗ topology σ(E∗,E). This way ∆ is a convex set, it is weak∗ compact
by Alaoglu’s Theorem (see for example (Aliprantis and Border, 2006, Theorem
5.105)) and, being E separable, it is metrizable (see (Aliprantis and Border, 2006,
Theorem 6.30)). Given a price system p ∈ ∆, for every t ∈ T we can define agent
t’s budget set at p as:

β(p, t) ∶= {x ∈X(t) ∶ p ⋅ x ≤ p ⋅ e(t)}.

The demand set of agent t at the price system p is the set ξ(p, t) of those con-
sumption bundles in β(p, t) that are maximal with respect to ≽t. In symbols:

ξ(p, t) ∶= {x ∈ β(p, t) ∶ x ≽t β(p, t)}2.

An allocation, or consumption plan, is a function in L(X), the family of all inte-
grable selections of the consumption set correspondence X ∶T ↠ E+. We will say
that an allocation f is feasible if ∫T f(t)dt ≤ ∫T e(t)dt.

A competitive equilibrium for E is a price-consumption pair (p, f) where p ∈ ∆
and f is a feasible allocation such that f(t) ∈ ξ(p, t) for almost every t ∈ T . In this
case we call f a competitive allocation and write f ∈W (E).

5.1.A Further assumptions

Throughout the rest of this chapter we will assume that the economy E satisfies
some additional properties listed below. Precisely, we will need to make restrictions
on the consumption set correspondence X ∶T ↠ E+ and the preferences relations
that can be considered in our analysis.

Assumption 5. The consumption set correspondence X ∶T ↠ E satisfies all of
the following conditions:

2For any x ∈ X(t) and subset A ⊂ X(t), the expression x ≽t A will be used meaning that
x ≽t y for every y ∈ A. Similar notation will be adopted for ≻t and ∼t.
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(C1) for every t ∈ T , X(t) is non-empty, weakly compact and convex,

(C2) X ∶T ↠ E is integrably bounded and has a measurable graph,

(C3) for every t ∈ T there is a yt ∈X(t) such that e(t) − yt ∈ int(E+).

The Assumption (C3) imposes that the initial amount of resources of agent
t is not “minimal” in her consumption set X(t). The following assumptions on
preferences are standard continuity and measurability assumptions.

Assumption 6. The preference relations (≽t)t∈T satisfy all of the following con-
ditions.

(P1) For every t ∈ T , the set {(x, y) ∈X(t)×X(t) ∶ x ≽t y} is closed in the product
topology.

(P2) For every t ∈ T , the set {(t, x, y) ∈ T × X(t) × X(t) ∶ x ≽t y} belongs to
Σ⊗B(E) ⊗ B(E).

The last set of assumptions in this section will be related to the notion of
satiability of agents’ preferences. More formally, for every t ∈ T and x ∈ X(t) we
will call Pt(x) ∶= {y ∈ X(t) ∶ y ≻t x} the better than set of agent t with respect to
x. We will then say that x is a satiation point for t if Pt(x) is empty.

Assumption 7. For every t ∈ T and x ∈ X(t) all of the following conditions are
satisfied.

(P3) The set {y ∈X(t) ∶ y ≽t x} is closed in the weak topology.

(P4) If x is a satiation point for t then x ≥ e(t).

(P5) If x is not a satiation point for t then it belongs to the closure of Pt(x) in
the weak topology.

Assumption (P4) rules out the possibility that an agent will accept to trade
her initial endowments for a strictly smaller bundle. Assumption (P5), on the
other hand, can be seen as a weak local non-satiation rule on non-satiation points.

Remark 5.1.1. The Assumptions made here are all quite standard in economic
models involving a measure space of agents and an infinite dimensional commodity
space. In particular, in the models considered in Khan and Yannelis (1991a),
Rustichini and Yannelis (1991) and Podczeck (1997) all of the three assumptions
5, 6 and 7 are satisfied. A discussion on all of these assumptions with reference to
the literature can be found in Tourky and Yannelis (2001) and Martins-da Rocha
(2003).
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As it is known, the evaluation map (p, x) ↦ p ⋅ x, for p ∈ E∗ and x ∈ E, is
no longer jointly continuous when we endow E∗ and E with the weak∗ and the
weak topology respectively (see (Aliprantis and Border, 2006, pp. 241–242)). As a
consequence, we will usually have that the standard demand correspondence ξ may
fail to be upper hemicontinuous and it is therefore much harder to use it in fixed
point arguments. In order to overcome these difficulties we can follow the approach
given in Podczeck (1997) and introduce a new correspondence ξ̃∶∆ × T ↠ E that
assigns to every price system p and agent t the set:

ξ̃(p, t) ∶= {x ∈X(t) ∶ x ≽t β(p, t)}.

We call ξ̃ the extended demand correspondence. Differently from ξ, under the
Assumptions above this new correspondence benefits from many nice properties
which we recall here for the sake of completeness. We refer to (Podczeck, 1997,
pp.415–416) for the proofs of these results.

Lemma 5.1.2. For every p ∈ ∆ and almost every t ∈ T one has that:

(i) ξ̃(p, t) is non-empty and weakly compact.

(ii) p ⋅ x ≥ p ⋅ e(t) for every x ∈ ξ̃(p, t).

(iii) co ξ̃(p, t) ∩ {x ∈ E ∶ p ⋅ x = p ⋅ e(t)} = co ξ(p, t).

(iv) For every t ∈ T the correspondence ξ̃(⋅, t)∶p ↦ ξ̃(p, t), for p ∈ ∆, is upper
hemicontinuous with respect to the weak topology on E.

(v) For every p ∈ ∆ the correspondence ξ̃(p, ⋅)∶ t ↦ ξ̃(p, t), for t ∈ T , has a mea-
surable graph.

We shall see in Paragraph 5.2.9 that it is possible to study the existence of
competitive objections even with an alternative approach that does not require
the introduction of the extended demand correspondence.

5.1.B The space of agents

Since we did not require m to be non-atomic, it is allowed in Σ the presence of a
family A of m-atoms, i.e. any non-null A ∈ Σ such that µ(B) = 0 or µ(A ∖B) = 0
for every B ∈ ΣA. Given that A is at most countable, the union T1 ∶= ∪A is a
measurable set in Σ which we call atomic component of (T,Σ,m). Let us call
T0 ∶= T ∖ T1 the atomless component of (T,Σ,m) and write Σ0 for Σ∩ T0. We will
refer to agents in T1 and T0 as the large and small traders respectively.

It will often be necessary to impose the following condition.
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Assumption 8. For all t ∈ T1 the preference relation ≽t is convex, i.e. the set
{y ∈X(t) ∶ y ≽t x} is convex whenever x ∈X(t).

Let us focus on the atomless component T0. We can partition T0 as the union
of two disjoint, measurable sets T sep0 and T sat0 such that, for every B ∈ Σ, it must
be:

• B ⊆ T sep0 if and only if (B,ΣB,mB) is separable,

• B ⊆ T sat0 if and only if (B,ΣB,mB) is saturated.

We will refer to T sat0 as the saturated component and to T sep0 as the separable
component of (T,Σ,m).

We say that two agents s, t ∈ T are of the same type, or equivalent, if X(s) =
X(t), e(s) = e(t) and ≽s=≽t. The relation t ∼ s ⇐⇒ “t is equivalent to s” is then
an equivalence relation on T that is measurable with respect to Σ, in the sense
that {s ∈ T ∶ s ∼ t} ∈ Σ for every t ∈ T . An allocation f ∈ L(X) is said to have
the equal treatment property if every agent t ∈ T will be indifferent between the
bundles that are assigned by f to the agents in T that are equivalent to t.

Observe that, by the measurability of X, e and ≽t, each equivalence class in
Σ/ ∼ is therefore the projection of some A ∈ Σ representing a type of consumers. Let
us call C ∶= T / ∼ and πC ∶T → C the corresponding quotient map. On the quotient
algebra ΣC ∶= Σ/ ∼ we can define a new measure ν by putting ν(F ) = m ○ π−1

C (F )
for every F ∈ ΣC . We will call (C,ΣC , ν) the space of agent types.

Following Podczeck (1997) we formalize here the idea that there are many
agents of every type in a given coalition.

Definition 5.1.3. We say that in a coalition F there are many agents of every
type if there exists a family (mc)c∈C of measures on Σ such that:

1. m∗
c(π−1

C ({c})) = 1 for all c ∈ C, where m∗
c denotes the inner measure induced

by mc,

2. for every A ∈ Σ such that A ⊆ F , the mapping c↦mc(A), c ∈ C, is measurable
and ∫ mc(A)dν(c) =m(A),

3. the restriction of mc to Σ ∩ F is atomless for ν-almost every c ∈ C.

If in F ∈ Σ there are many agents of every type then each of the measures mc

gives us an estimate of how many agents of type c belong to any given allocation.
Thus, using (mc)c∈C , we can say that two coalitions A,B are equivalent if mc(A) =
mc(B) for ν-almost every c ∈ C. Observe that condition (2) ensures that the
measure of a coalition A ⊆ F can be obtained knowing, for every type of agent
c ∈ C, the share of agents of c that belong to B.
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Assumption 9. In T sep0 there are many agents of every type.

The following is Theorems 3.1 and 3.3 in Podczeck (1997) and Proposition
5.0.1.

Theorem 5.1.4. Suppose that Assumptions 8 and 9 hold and let ϕ∶T ↠ E be
an integrably bounded, non-empty and weakly compact valued correspondence with
measurable graph and that is such that ϕ(t) = ϕ(s) whenever t, s ∈ T sep0 are of the
same type. Then:

∫
T
coϕ(t)dt = ∫

T
ϕ(t)dt.

In particular, ∫T0 ϕ(t)dt is convex and weakly compact.

More comments and observations on Definition 5.1.3, Assumption 9 and Theo-
rem 5.1.4 can be found in Podczeck (1997) together with examples of economies in
which all the three conditions in 5.1.3 are satisfied. Compare also with Assumption
(A) in Martins-da Rocha (2003).

5.2 Mas-Colell’s bargaining set

The notion of bargaining set for atomless economies, as introduced by Mas-Colell
in (1989), can be naturally adapted to the economic framework we have described
so far. Let us start by considering an allocation f that is not necessarily feasible.
A coalition S can block, or object, f via an allocation g if:

• ∫S g(t)dt ≤ ∫S e(t)dt,

• g(t) ≽t f(t) for almost every t ∈ S,

• m({t ∈ S ∶ g(t) ≻t f(t)}) > 0.

In this case we say that (S, g) is an objection to f and write (S, g) ∈ Ob(f). If f
is a feasible allocation that cannot be blocked by any coalition, then f is said to
belong to the core of the economy, denoted by C(E).

When (S, g) is an objection to f , a coalition Q is said to counter-object (S, g)
if there is an allocation h such that:

• ∫Q h(t)dt ≤ ∫Q e(t)dt,

• h(t) ≻t g(t) for all t ∈ Q ∩ S,

• h(t) ≻t f(t) for every t ∈ Q ∖ S.
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In this case we call (Q,h) a counter-objection to (S, g) and write (Q,h) ∈
CObf(S, g). The objection (S, g) is said to be justified if it cannot be counter-
objected, i.e. if CObf(S, g) = ∅.

Definition 5.2.1. The bargaining set of the economy E is the collection BS(E)
of all feasible allocations against which it is not possible to raise any justified
objection.

In other words, a feasible allocation f will belong to the bargaining set of the
economy if whenever (S, g) is an objection to f we have CObf(S, g) ≠ ∅. Clearly
every allocation in the core, and hence every competitive allocation, belongs to
the bargaining set as it cannot be objected at all.

5.2.A Competitive objections

As mentioned at the beginning of the chapter, the idea of competitive objections is
that of imposing a price system p and letting each individual agent decide whether
he want to keep the bundle assigned to him by the allocation f or to trade his initial
resources in a market regulated by the price system p. This notion is formalized
as follows.

Definition 5.2.2. Let f be a feasible allocation. An objection (S, g) to f is com-
petitive at a price system p if for almost every t ∈ T and every x ∈ X(t) one
has:

• p ⋅ x ≥ p ⋅ e(t) whenever t ∈ S and x ≽t g(t),

• p ⋅ x ≥ p ⋅ e(t) whenever t ∉ S and x ≽t f(t).

A first observation that can be made is that an objection (S, g) to f will be
competitive if and only if there is a price system p such that g(t) ∈ ξ(p, t) for
almost every t ∈ S while f(t) ≽t β(p, t) whenever t ∉ S.

In order to fully understand this mechanism, let us introduce some additional
notation that will be necessary for the rest of the chapter. Given a feasible allo-
cation f and a price system p we can define the sets:

Cf(p) ∶= {t ∈ T ∶ ξ(p, t) ≻t f(t)}, Df(p) ∶= {t ∈ T ∶ ξ(p, t) ≽t f(t)}.

Intuitively, an agent t will belong to Cf(p) (resp. Df(p)) if she strictly (resp.
weakly) prefers what she obtains by trading e(t) at price p over the bundle f(t).
Please observe that a feasible allocation f will be competitive if and only if there
is a price system p such that m(Cf(p)) = 0.

A first result on the characterization of competitive objections is the following.



5.2 Mas-Colell’s bargaining set 87

Proposition 5.2.3. Let f be a feasible allocation that is not competitive. A pair
(S, g) is a competitive objection against f if and only if there is a price system p
such that:

1. g(t) ∈ ξ(p, t) for almost every t ∈ S,

2. Cf(p) ⊆ S ⊆Df(p) almost everywhere3,

3. ∫S(g(t) − e(t)) dt ≤ 0.

Proof. Let us assume that (S, g) is competitive and call p the relative price system.
By definition, for almost every t ∈ S g(t) is a maximal element in β(p, t) for ≽t,
which in turn is equivalent to saying that g(t) ∈ ξ(p, t) as claimed in (1). If point
(2) is violated then either m(Cf(p) ∖ S) > 0 or m(S ∖ Df(p)) > 0. In the first
case let t ∈ Cf(p) ∖ S and take x ∈ ξ(p, t): by definition we will have x ≻t f(t) and
p ⋅x ≤ p ⋅e(t) and so (S, g) is not competitive. On the other hand, for t ∈ S ∖Df(p)
then f(t) ≻t g(t) contradicts the fact that (S, g) is an objection against f . Last,
point (3) follows from the fact that (S, g) is an objection to f .

Suppose now that (S, g) and p satisfy conditions (1), (2) and (3). We first need
to prove that (S, g) ∈ Ob(f). The requirement that ∫S γ(t)g(t) dt ≤ ∫S γ(t)e(t) dt
follows from point (3). For almost every t ∈ S we will have that t ∈ Df(p) (point
(2)) and g(t) ∈ ξ(p, t) (point (1)) meaning that g(t) ≽t f(t). Furthermore, from (1)
and (2) we also derive that {t ∈ S ∶ g(t) ≻t f(t)} = Cf(p) and has non-zero measure
(recall that, being f non competitive, m(Cf(q)) > 0 for every price system q). To
prove that (S, g) is competitive let us we pick x ∈ E+ and observe that if x ≽t g(t) for
some t ∈ S then it must be that x ≽t ξ(p, t) and so p ⋅x ≥ p ⋅e(t). On the other hand,
if t ∉ S then t ∉ Cf(p) and so, by the completeness of preferences, f(t) ≽t ξ(p, t).
But then x ≽t f(t) implies that x ≽t ξ(p, t) and again p ⋅ x ≥ p ⋅ e(t).

The last Theorem of this section, which is the equivalent formulation of in (Mas-
Colell, 1989, Theorem 1 ), will play a crucial role in characterizing objections that
are justified and hence the bargaining set.

Theorem 5.2.4. Every competitive objection to a feasible allocation is justified.

Proof. Let f be a feasible allocation and (S, g) an objection to f that is competitive
at a price p. If, by contradiction, (S, g) was not justified there would be a counter-
objection (Q,h) to (S, g). This would mean that h(t) ≻t g(t) for every t ∈ Q∩S and
h(t) ≻t f(t) for every other t ∈ Q. By points (1) and (2) in Proposition 5.2.3, this
would imply that for every t ∈ Q we have h(t) ≻t ξ(p, t) and hence h(t) ∉ β(p, t).
But then ∫ δ(t)h(t)dt ≰ ∫ δ(t)e(t)dt.

3A ⊆ B almost everywhere if and only if m(B ∖A) = 0.
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5.2.B Existence of competitive objections

We will devote this section to the study of conditions under which every feasible
but non-competitive allocation can be objected competitively. The main idea of
our approach, that does not differ substantially from that used by Mas-Colell in
(1989) for the finite dimensional case, is to characterize competitive objections as
the equilibrium prices of a specific correspondence and then use some variation of
the Gale-Debreu-Nikaidô Lemma to prove the existence of such prices. In this per-
spective, we shall give a special importance to the characterization of competitive
objections that was given in Proposition 5.2.3.

Proposition 5.2.5. Let f be a feasible but non-competitive allocation. Then there
is a competitive objection to f at a price system p if and only if the negative cone
−E+ intersects the set:

Ψf(p) ∶= {∫
S
(ξ̃(p, t) − e(t)) dt ∶ Cf(p) ⊆ S ⊆Df(p)} .

Proof. Let us first assume that (S, g) ∈ Ob(f) is competitive at the price system
p and prove that x ∶= ∫S(g(t) − e(t))dt ∈ Ψf(p). By Condition (2) in 5.2.3,
Cf(p) ⊆ S ⊆ Df(p) while Condition (3) ensures that x ∶= ∫S(g(t) − e(t))dt ∈ −E+.

Furthermore, for almost every t ∈ S g(t) belongs to ξ(p, t) (and hence to ξ̃(p, t))
by point (1). It follows that x belongs to Ψf(p) as claimed.

Suppose now that there are p ∈ ∆ and x ∈ Ψf(p) such that x ∈ −E+. By the
definition of Ψf there must be an allocation g and a coalition S such that: (i)
g(t) ∈ ξ̃(p, t) for every t ∈ S, (ii) Cf(p) ⊆ S ⊆Df(p) and (iii) ∫S(g(t)−e(t))dt = x.
To show that (S, g) is a competitive objection to f at price p it will be sufficient
to show that g(t) ∈ ξ(p, t) for almost every t ∈ S and then apply Proposition 5.2.3.
For every t ∈ S, being g(t) ∈ ξ̃(p, t) it must be that p ⋅ (g(t) − e(t)) ≥ 0 (see Lemma
5.1.2). At the same time, from point (iii) we know that ∫S p⋅(g(t)−e(t))dt = p⋅x ≤ 0
and so it must be that p ⋅ g(t) = p ⋅ e(t) for almost every t ∈ S. We conclude that
g(t) belongs to β(p, t), and hence to ξ(p, t), for almost every t ∈ S.

The Proposition 5.2.5 will play a crucial role in proving the existence of com-
petitive objections to a given a feasible but non-competitive allocation f . The
main idea will be to find conditions under which the correspondence Ψf ∶∆ ↠ E
satisfies the following infinite dimensional variation of the Gale-Debreu-Nikaidô
Lemma.

Theorem 5.2.6 (Yannelis (1985)). Let ϕ∶∆↠ E be a correspondence that satisfies
the following assumptions:

1. ϕ(p) is non-empty, convex and weakly compact for every p ∈ ∆,
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2. ϕ is upper-hemicontinuous with respect to the weak∗-topology on ∆ and the
weak topology on E,

3. for all p ∈ ∆ there exists a z ∈ ϕ(p) such that p ⋅ z ≤ 0.

Then there exists a p ∈ ∆ such that ϕ(p) ∩ (−E+) ≠ ∅.

For the rest of this section, our concern will be to find conditions under which
Ψf satisfies all of the three requirements in Theorem 5.2.6. As it will be shown, the
main difficulty will be understanding when Ψf(p) is convex and weakly compact
for every p ∈ ∆.

Theorem 5.2.7. Suppose that (T,Σ,m) is a saturated measure space and f is a
feasible but non-competitive allocation. Then there is a competitive objection to f .

Proof. Let us start by defining the modified extended demand correspondence
ψf ∶∆ × T ↠ E as the one that assigns to every p ∈ ∆ and t ∈ T the set:

ψf(p, t) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ξ̃(p, t) − {e(t)}, if t ∈ Cf(p),
ξ̃(p, t) − {e(t)} ∪ {0}, if t ∈Df(p) ∖Cf(p),
{0}, otherwise.

Let us observe that for the correspondence ψf all of the following conditions are met
(see Lemma 5.1.2): (i) ψf(p, t) is weakly compact for every p ∈ ∆ and t ∈ T ; (ii)
for every t ∈ T , the correspondence p ↦ ψf(p, t), for p ∈ ∆, is integrably bounded
and upper hemicontinuous with respect to the weak topology on E; (iii) for every
p ∈ ∆, the correspondence t ↦ ψf(p, t), for t ∈ T , is measurable. Moreover, by
construction, for every p ∈ ∆ we have that:

Ψf(p) = ∫
T
ψf(p, t)dt.

We only need to show that Ψf satisfies all of the three conditions in Theorem 5.2.6
and then apply Proposition 5.2.5. Let us start by observing that, being (T,Σ,m) a
saturated measure space, point (i) and Lemma 5.0.1 imply that ∫T ψf(p, t)dt (and
hence Ψf(p)) is a convex and weakly compact set for every p ∈ ∆. At the same
time, by point (ii), (iii) and Lemma 5.0.2 it follows that p ↦ Ψf(p), for p ∈ ∆,
is upper hemicontinuous with respect to the weak topology on E. Last, for every
p ∈ ∆, by the measurability of t ↦ ξ(p, t), for t ∈ T , we can find an allocation gp

such that gp(t) ∈ ξ(p, t) ⊆ ξ̃(p, t) almost everywhere. But then p ⋅ (gp(t) − e(t)) ≤ 0
for almost every t ∈ T and so z ∶= ∫Df (p)(g

p(t) − e(t))dt is a point in Ψf(p) such

that p ⋅ z ≤ 0. Since all the assumptions of Theorem 5.2.6 are met, there is a
p ∈ ∆ with Ψf(p) ∩ −E+ ≠ ∅ and so we can apply Proposition 5.2.5 to obtain our
claim.
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Corollary 5.2.8. Suppose that (T,Σ,m) is a saturated measure space. Then
W (E) is non-empty and coincides with BS(E).

Proof. Let us assume that the initial endowment e is non-competitive. By Theorem
5.2.7 there must be an objection (S, g) to e that is competitive for some price
system p. This means that g(t) ∈ ξ(p, t) for almost every t ∈ S and e(t) ≽t β(p, t)
for almost every t ∉ S which in turn implies that e(t) ∈ ξ(p, t). But then the
allocation g̃ ∶= gχS + eχSc is feasible because ∫T (g̃(t) − e(t))dt = ∫S(g(t) − e(t))dt
and it is such that g(t) ∈ ξ(p, t) for almost every t ∈ T . This proves that g is
competitive.

To prove the equivalence W (E) = BS(E) observe that every f ∈ W (E) is a
feasible allocation that cannot be blocked and therefore it belongs to BS(E). To
show that the reverse inclusion holds, suppose that f ∉ W (E) is feasible and
apply Theorem 5.2.7 to find a competitive objection to f . Since every competitive
objection is justified by Theorem 5.2.4, f does not belong to BS(E) either.

Remark 5.2.9. From a technical point of view, one of the hustles in proving The-
orem 5.2.7 was the lack of global continuity of the demand correspondence. For
this reason, we had to follow the intuition given by Podczeck (1997), move the
attention to the extended demand correspondence and then apply Yannelis’ gen-
eralized version of Gale-Debreu-Nikaidô Lemma 5.2.6. A different way to skirt this
continuity issue would be to use an approach similar to that of Nikaidô (1959) and
Florenzano (1983) and presented in Chapter 3. By focusing on finite dimensional
restrictions of the demand functions, in fact, it would be possible to use a form
of Theorem 3.3.1, instead of Theorem 5.2.6, without recurring to the extended
demand.

More formally, if one proves that the restriction of the standard demand corre-
spondence ξ to each finitely generated simplex in ∆4 is upper-hemicontinuous, it
should be possible to prove Theorem 5.2.7 as follows. First of all, one can define
the correspondence Ψ′

f as the one that assigns to each p ∈ ∆ the set:

Ψ′
f(p) ∶= {∫

S
(ξ(p, t) − e(t)) dt ∶ Cf(p) ⊆ S ⊆Df(p)} .

Now, even if the correspondence Ψ′
f may not be globally upper-hemicontinuous,

and so it may be impossible to apply Theorem 5.2.6, it should be possible to
show that the restrictions of Ψ′

f to each finite dimensional subspace of ∆ is upper-
hemicontinuous. If this is the case, following the same path used in the proof of
5.2.7 one can show that Ψ′

f satisfies all the assumptions of Theorem 3.3.1. This
would prove the existence of an equilibrium price for Ψ′

f and hence the existence
of a competitive objection to f by Proposition 5.2.5.

4By finitely generated simplex in ∆ we mean the convex hull of a finite subset of ∆.
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5.3 Objection mechanism in imperfect markets

In Theorem 5.2.7 we have proved the existence of competitive objections assuming
that the space of agents was saturated. In general, when this is not the case, it
is possible that a feasible but non-competitive allocation cannot be blocked by
“standard” coalitions and therefore the core is strictly greater than W (E). It is
also possible that W (E) coincides with the core but is still strictly contained in
BS(E). In this section we study different notions of bargaining set in which we
relax the class of coalitions that can raise objections and counter-objections, then
study the relations between this new notion of bargaining set and competitive
allocations.

Recall that by coalition we mean an element of Σ of positive measure. In the
following, we will often refer to them as standard, or crisp, coalitions. For the rest
of this section we will identify each A ∈ Σ with the corresponding characteristic
function χA, which is the one that assigns 1 to each t ∈ A and 0 to every other
agent. This way we can think of Σ as a subset of:

B ∶= {γ∶T → [0,1] ∶ γ is measurable}

An element γ ∈ B is an Aubin coalition if its support Sγ, which is the set {t ∈ T ∶
γ(t) > 0}, is a non-null set. Let us write m(γ) instead of ∫ γ(t)dt and observe
that γ is an Aubin coalition if and only if m(γ) > 0. Intuitively, for an Aubin
coalition γ the value γ(t) represents agent t’s share of resources employed in the
formation of the coalition γ while m(γ) can be thought as a numerical evaluation
of the economic weight of γ (for a standard coalition it simply coincides with its
measure).

5.3.A Aubin-bargaining sets

The notion of objections, counter-objections and bargaining set, as introduced in
Mas-Colell (1989), can be extended to include also Aubin coalitions. Let us fix an
allocation f . An Aubin coalition γ with support S can object or block f if there
is an allocation g such that:

(i) ∫ γ(t)g(t)dt ≤ ∫ γ(t)e(t)dt,

(ii) g(t) ≽t f(t) for almost every t ∈ S,

(iii) m({t ∈ S ∶ g(t) ≻t f(t)}) > 0.

In this case, we call (γ, g) an Aubin-objection to f and write (γ, g) ∈ ObA(f). We
stress that a standard coalition S ∈ Σ can object f via some allocation g if and
only if (χS, g) is an Aubin-objection to f . In the light of this, we call standard
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objection any Aubin-objection that can be obtained from a standard coalition, i.e.
any pair (γ, g) ∈ ObA(f) that is such that γ = χA for some A ∈ Σ.

Let us now suppose that (γ, g) is an Aubin-objection to f . An Aubin coalition
δ with support Q counter-objects (γ, g) if there is an allocation h such that:

(i) ∫ δ(t)h(t)dt ≤ ∫ δ(t)h(t)dt,

(ii) h(t) ≻t g(t) for every t ∈ Q such that δ(t) + γ(t) > 1,

(iii) h(t) ≻t f(t) for every t ∈ Q such that δ(t) + γ(t) ≤ 1.

In this case we say that (δ, h) is an Aubin-counter-objection to (γ, g) and write
(δ, h) ∈ CobA(γ, g). Similarly to what we did for objections, we call (δ, h) ∈
CobA(γ, g) a standard counter-objection to (γ, g) if δ = χQ for some Q ∈ Σ.

A bargaining set is the collection of all feasible allocations against which it
is impossible to raise an objection that is not counter-objected itself. Different
notions of bargaining sets can therefore be obtained by specifying which classes of
objections and counter-objections are allowed at each time.

With the definitions given above, we can introduce four different types of
bargaining sets depending on whether or not Aubin or standard objections and
counter-objections are considered. Formally, for a feasible allocation f we will say
that:

• f ∈ BSss if all standard objections to f have a standard counter-objection.

• f ∈ BSas if all Aubin-objections to f have a standard counter-objection.

• f ∈ BSsa if all standard objections to f have an Aubin-counter-objection.

• f ∈ BSaa if all Aubin-objections to f have an Aubin-counter-objection.

One of the main interests in this chapter is to determine the relations between these
four notions of bargaining sets and the set of competitive allocations. Clearly, every
f ∈ W (E), is a feasible allocation that cannot be objected at all and as such it
belongs to each of the bargaining sets we have defined. Another observation we
can make is that a bargaining set will shrink whenever we allow a larger set of
objections or a smaller set of counter-objections. This can be used to prove the
following result.

Proposition 5.3.1. The following inclusions always hold.

• W (E) ⊆ BSsa ⊆ BSss ⊆ BSas.

• W (E) ⊆ BSsa ⊆ BSaa ⊆ BSas.
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In general, without making any further assumption on preferences, all the
inclusions in the Proposition above are not strict.

Remark 5.3.2. Extensions of the notion of bargaining set to Aubin coalitions have
been already introduced, among the others, in Hervés-Estévez and Moreno-Garćıa
(2018a,b) and again in Hervés-Beloso et al. (2018) to study finite economies and
their replicas. In the upcoming work by Graziano et al. (2019a), similar notions
of bargaining sets are used to study competitive allocations in mixed markets.

We shall point out here that our notion of Aubin-counter-objection differs from
that given in the mentioned articles where, instead of condition (ii) is asked that:

h(t) ≻t g(t) for all t ∈ Q ∩ Sγ. ((ii)′)

It is clear that (ii)′ implies the condition (ii) we have chosen here. This will
make it harder to find Aubin-objections against which it is not possible to raise
Aubin-counter-objections in our settings.

Other notions of bargaining set for mixed markets are described in the forth-
coming by Graziano et al. (2019b).

Last, we adapt to this new framework the notion of competitive objection.

Definition 5.3.3. Let f be a feasible allocation. An Aubin-objection (γ, g) to f
is competitive at a price system p if for almost every t ∈ T and every x ∈ X(T )
one has:

• p ⋅ x ≥ p ⋅ e(t) whenever γ(t) = 1 and x ≽t g(t),

• p ⋅ x ≥ p ⋅ e(t) whenever γ(t) < 1 and x ≽t f(t).

Once again we point out that if (S, g) is a competitive (standard) objection to
f if and only if (χS, g) is a competitive Aubin-objection to f . Another observation
we can make is that (γ, g) ∈ ObA(f) will be competitive if and only if there is a price
system p such that f(t) ≽t β(p, t) for every t such that γ(t) < 1 and g(t) ≽t β(p, t)
for every t ∈ Sγ. To see this notice that, for almost every t ∈ Sγ, either γ(t) = 1,
and so g(t) ≽t β(p, t) by definition, or γ(t) < 1 and so g(t) ≽t f(t) which in turn is
weakly preferred to every x ∈ β(p, t).

5.3.B Existence of competitive Aubin-objections

We now show how, under suitable assumptions, it is possible to find a competitive
Aubin-objection to a given feasible but non-competitive allocation. More formally
we want to prove the following variation on the Theorem 5.2.7.
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Theorem 5.3.4. Suppose that Assumptions 8 and 9 are satisfied and let f be
a feasible but non-competitive allocation with the equal treatment property. Then
there is a competitive Aubin-objection to f .

Once again, the ideas of the proof will be standard and are somehow similar to
those given in section 5.2.B. More precisely, we will first characterize the compet-
itive Aubin-objections by means of the equilibrium prices of the correspondence
coΨf (where Ψf is the one defined in Proposition 5.2.5) and then show that such
a correspondence satisfies all of the conditions of Theorem 5.2.6.

Proposition 5.3.5. If the assumptions of Theorem 5.3.4 are met then there is
a competitive Aubin-objection to f at a price system p if the negative cone −E+
intersects the set:

K(p) ∶= {∫ γ(t)(g(t) − e(t))dt ∶ Cf(p) ≤ γ ≤Df(p), g ∈ L(ξ̃(p, ⋅))} 5.

Proof. Suppose that there are a p ∈ ∆ and a x ∈ K(p) such that x ∈ −E+. By
definition, there must be a selection g of ξ̃(p, ⋅) and a γ ∈ B such that Cf(p) ⊆ γ ⊆
Df(p) and x = ∫ γ(t)(g(t) − e(t))dt. Let S denote the support of γ and observe
that, being Cf(p) a subset of S of positive measure, S is a coalition.

We will first show that (γ, g) is an Aubin-objection to f . Being g a selection of
ξ̃(p, ⋅) we know that g(t) ≽t f(t) for every t ∈Dp(f) with strict preference when t ∈
Cf(p). But then g(t) ≽t f(t) for almost every t ∈ S and m({t ∈ S ∶ g(t) ≻t f(t)}) =
m(Cf(p)) > 0. Last, the condition for which ∫ γ(t)g(t)dt ≤ ∫ γ(t)e(t)dt ≤ 0 is
satisfied because ∫ γ(t)(g(t) − e(t))dt = x and x ∈ −E+.

We now prove that (γ, g) is competitive at the price p. Pick any t ∈ T and let
x ∈ X(t). If γ(t) = 1, then t ∈ S and so g(t) ∈ ξ̃(p, t). Therefore, p ⋅ x ≥ p ⋅ e(t)
whenever x ≽t g(t). If γ(t) < 1, then t ∉ Cf(p) and so f(t) ≽t β(p, t). But then
x ≽t f(t) implies that p ⋅ x ≥ p ⋅ e(t).

Lemma 5.3.6. Under the Assumptions of Theorem 5.3.4, for every p ∈ ∆, the set
K(p) is weakly compact and coincides with coΨf(p).

Proof. Fix a p ∈ ∆. We first prove that K(p) is a convex and weakly compact
subset of E. Let us define Bp ∶= {γ ∈ B ∶ Cf(p) ≤ γ ≤ Df(p)} and call S the set
of integrable selections of ξ̃(p, ⋅) − e(⋅). As a consequence of Assumption 8 and
Theorem 5.1.3, we can rewrite the set K(p) in the following way:

{∫ γ(t)g(t)dt ∶ γ ∈ Bp, g ∈ coS} .

5Since we are identifying sets in Σ with functions in B, for every A ∈ Σ and γ ∈ B we write
A ≤ γ if and only if χA(t) ≤ γ(t) almost everywhere.
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In other words, the set K(p) is the image of Bp×coS under the operator F ∶L∞(m)×
L1(m,E) → E that assigns to every γ ∈ L∞(m) and g ∈ L1(m,E) the integral

∫ γ(t)g(t)dt.
Observe now that Bp is a bounded, closed subset of L∞(m) and hence it is

weakly∗ compact by the Alaoglou’s Theorem (see (Aliprantis and Border, 2006,
Theorem 5.105)). At the same time S is a relatively weakly compact subset of
L1(m,E) by Diestel’s Theorem (Diestel (1977)). This means that the set Bp × coS
is a convex subset in L∞(m)×L1(m,E) that is compact in the product topology τ
obtained from the weak∗ topology on L∞(m) and the weak topology on L1(m,E).
But then, being the restriction of F to Bp × coS continuous with respect to the
topology τ and the weak topology on E, K(p) = F (Bp×coS) is convex and weakly
compact too.

To prove that coΨf(p) =K(p) let us first observe that Ψf(p) ⊆K(p) holds by
construction. To show the reverse inclusion consider a simple function γ ∈ Bp, a
g ∈ S and claim that x ∶= ∫ γ(t)g(t)dt belongs to coΨf(p). This will prove that a
weakly dense subset in K(p) is contained in coΨf(p) and so K(p) ⊆ Ψf(p). Since γ
is simple there will be A1, . . . ,An ∈ Σ and θ1, . . . , θn ∈ [0,1] such that γ = ∑n

i=1 θiχAi
and 1 = supt ∣γ(t)∣ = ∑n

i=1 θi. Furthermore, since Cf(p) ≤ γ ≤ Df(p), we can choose
the Ai’s so that Cf(p) ⊆ Ai ⊆Df(p) for every i ≤ n. We can conclude that:

x = ∫
n

∑
i=1

θiχAi(t)g(t)dt =
n

∑
i=1

θi∫
Ai
g(t)dt.

By the choice of the Ai’s, we have that xi ∶= ∫Ai g(t)dt ∈ Ψf(p) for every i ≤ n
which concludes the proof.

We now have all of the ingredients to prove the main theorem of this section.

Proof of Theorem 5.3.4. We shall prove that the correspondence coΨf ∶∆ ↠ E
satisfies all of the requirements in Theorem 5.2.6. This way there would be a price
system p ∈ ∆ such that −E+ ∩K(p) ≠ ∅ and so, by Proposition 5.3.5, there would
be a competitive Aubin-objection to f .

It has been proved in Theorem 5.2.7 that: (i) the correspondence Ψf is upper
hemicontinuous with respect to the weak topology on E, (ii) for every p ∈ ∆
there is a z ∈ Ψf(p) such that p ⋅ z ≤ 0. Furthermore, by Lemma 5.3.6 we know
that (iii) coΨf(p) is convex and weakly compact for every p ∈ ∆. By Theorem
(Aliprantis and Border, 2006, 17.35), points (i) and (ii) are enough to ensure
that the correspondence coΨf is upper-hemicontinuous with respect to the weak
topology on E as well. Since all of the conditions in Theorem 5.2.6 are satisfied,
there must be a p ∈ ∆ and a z ∈ coΨf(p) = K(p) that is such that z ≤ 0. This
concludes the proof.
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Corollary 5.3.7. Suppose that Assumptions 8 and 9 hold. Then W (E) is non-
empty and coincides with:

{f ∈ BSas ∶ f has the equal treatment property}.

Proof. Let us assume that the initial endowment e is non-competitive. By Theorem
5.3.4 there must be an Aubin-objection (γ, g) to e that is competitive for some
price system p. This means that, for almost every t ∈ Sγ, g(t) ∈ ξ̃(p, t) and so
p⋅(g(t) ≥ p−e(t)) by Lemma 5.1.2. But then, since 0 ≥ p⋅x = ∫ γ(t)p⋅(g(t)−e(t))dt,
it must be that p ⋅ g(t) = p ⋅ e(t). This means that g(t) ∈ ξ(p, t) for almost every
t ∈ Sγ. At the same time we know that e(t) ≽t β(p, t) for almost every t ∉ Sγ which
in turn implies that e(t) ∈ ξ(p, t). But then the allocation h ∶= gχSγ+eχScγ is feasible
because ∫T (g̃(t) − e(t))dt = ∫S(g(t) − e(t))dt and it is such that h(t) ∈ ξ(p, t) for
almost every t ∈ T . This proves that h is competitive.

To prove the equivalence observe that every f ∈ W (E) is an allocation in
BSfas with the equal treatment property that cannot be blocked. To show that
the reverse inclusion holds suppose that f ∉ W (E) is feasible and has the equal
treatment property and apply Theorem 5.3.4 to find a competitive Aubin-objection
to f . Since every competitive objection is Aubin-justified by Theorem 5.2.4, f does
not belong to BSas either.



Index

µ-atom, 21, 79
µ-topology, 19
⋆-core, 70

Absolute continuity, 19
Abstract commodity-price duality, 41
Abstract market, 43
Agent type, 84
Allocation, 57, 81

⋆-blocked, 69
Attainable, 57
Blocked, 69
Competitive, 81
Feasible, 57, 81

Bargaining set, 86, 92
Better than set, 82
Boundary condition, 51
Box topology, 32
Budget set, 81

Cauchy’s Criterion for summability, 14
Coalition, 57

Aubin, 91
Null, 58
Standard, 91

Coalitional exchange economy, 62
Coalitional preference profile, 60

Coalitionwise locally non-satiated,
62

Continuous, 61
Ideal, 60
Lower semi-continuous, 61

Monotone, 62
Selfish, 60
Weakly locally non-satiated, 61

Commodity space
Coordinate free, 40

Component
Atomic, 83
Atomless, 83
Saturated, 84
Separable, 84

Consumption set, 59, 81
Control measure, 23
Convexifying effect, 68
Core, 69, 85
Correspondence

additive, 15
completely additive, 15
countably additive, 15
exhaustive, 15
Integrably bounded, 79
Integral of, 79
Measurable, 79
range of, 17
rich in selections, 16
Upper hemicontinuous, 39

Counter-objection, 86
Aubin, 92
Standard, 92

Degree of saturation, 21
Demand set, 81
Diameter, 65

97



98 INDEX

Economic weight, 63
numerical evaluation, 66

Equal treatment property, 84
Equilibrium price, 43
Excess of supply, 43
Extended demand, 83

Freely disposable bundles, 43

Initial endowment, 57
Integral operator associated to a mea-

sure, 24

Kakutani map, 39

Lemma
Gale-Debreu-Nikaidô, 44
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Nikaidô, H. (1957). Existence of equilibrium based on the Walras’ law. Technical
report, ISER Discussion Paper, Osaka University.
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