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INTRODUCTION 

Normal fetal brain development 

During early embryonic phase, a cluster of cells called blastula reorganizes into two primary 

germ layers; an inner layer, called endoderm, and an outer layer, called mesoderm; this 

process is known as gastrulation.  Later, these two layers interact to produce a third germ 

layer, called mesoderm. All human organs and systems develops from these three different 

germ layers ; in particular: 

- The ectoderm will form the external components of the body, such as skin and hair, 

the mammary glands and the nervous system; 

- The mesoderm will form skeletal muscles, bone, connective tissue, heart and 

urogenital system; 

- The endoderm will form gastrointestinal tube, thyroid and serosa. 

The first phase of neurulation is called primary neurulation: a section of ectoderm 

corresponding to the neural plate, fold inwards, transforming into an isolated tube, called 

neural tube, from which the Central Nervous System (CNS) will develop. It begins when the 

embryo is around 1 mm in length. The still open ends of the developing neural tube are 

known as rostral and caudal neuropores and they will close around 4 weeks of gestation. 

Once the caudal neuropore has closed, the secondary neurulation begins, forming the 

sacrococcygeal part of the spinal cord from the caudal eminence. (Timor-Tritsch, 2012) 

At 6 weeks of gestation, the lumen of the anterior neuropore forms the ventricular system, 

while the lumen of the posterior neuropore forms the central canal.  

Three primary brain vesicles develop: forebrain or prosencephalon; midbrain or 

mesencephalon; hindbrain or rrhomboencephalon. At this time, also the optic vesicle, which 

later will form the retina, and optic nerves develop. 

At 7 weeks of gestation, prosencephalon divides into telencephalon and diencephalon. The 

telencephalon forms the cerebral hemispheres, the caudate and the putamen and the lateral 
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ventricles. The diencephalon forms the thalami, hypothalamus, the globus pallidus and the 

third ventricle. Mesencephalon forms the midbrain and aqueduct of Sylvius. 

Rhomboencephalon divides into the metencephaolon and myelencephalon. The 

metenchepaholon forms the pons, cerebellar hemispheres, vermis, part of the fourth ventricle. 

The myelencephalon forms the medulla and part of the fourth ventricle. During this week, 

also eyes, nasal pit and lips will develop. (Figure 1) (Coady, 2015) 

 

 

Figure 1. Embrionic brain development with primary vesicles (prosencephalon, mesencephalon and 
rhomboencephalon); secondary vescicles and postnatal tissues and cavities. (Coady, 2015) 
 

 

At 9-10 weeks of gestation, the falx cerebri becomes evident. Ossification begins in the 

occipital region of the skull and the foramen magnum is definable. The frontal, occipital and 

temporal poles of the cerebral hemispheres and the insula start being detected.  

From this moment to term, we will assist to further growth and development of human brain. 

This process will continue also after life. The complexity of brain development  and the long 

time required for its completation can explain why CNS malformations (CNSM) can be 

evolutive and can develop also later during fetal life. (Timor-Tritsch, 2012) 
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Central Nervous System Malformations: epidemiology and classification 

CNSM represent a wide range of congenital birth defects, with an observed incidence of 

approximately 1% of all births (Bano, 2012). However, the reported rate can be 

underestimated and the true incidence is difficult to assess, because these malformations are a 

leading cause of spontaneous abortions and termination of pregnancy (TOP) (Frey, 2003; 

Girgis, 2010). 

CNSM account for 40% of all deaths within the first year of life and survivors experience a 

variety of neurological disorders, mental retardation and drug-resistant epilepsy (Herman-

Sucharska, 2009). 

As reported in Table 1, CNSM can be classified according to the phase of embryological 

development in which they occur into: dorsal induction abnormalities; ventral induction 

abnormalities, cell division and differentiation abnormalities; cellurar migration 

abnormalities; myelinization abnormalities. (Herman-Sucharska, 2009) 

The most common CNSM are Neural Tube Defects (NTD), resulting from an altered 

neurulation in the third or fourth week of development. The prevalence of NTD worldwide is 

1 to 2 per 1000 neonates. (Sarno, 2017) 

They are classified into cranial and caudal dysraphism: cranial dysraphism lead to 

anencephaly (Figure 2) or meningoencephalocele (Figure 3), while spinal dysraphism lead to 

spina bifida (Figure 4). Anencephaly is the most common CNSM with spina bifida. It has an 

incidence of about 1:500-1000 newborns and it is characterized by acrania (absence of the flat 

bones in the cranial vault) and subsequent exposure of the brain to amniotic fluid with its 

progressive destruction. Encephalocele has an incidence of about 1:3000-5000 and it is 

characterized by herniation of the brain through a cranial defect. Spina bifida is defined by a 

vertebral median defect, with external exposure of the spinal cord. The defect can involve the 

skin (open spina bifida) or not (closed spina bifida). Sometimes the defect can be extremely 

enlarged, with a very severe prognosis. (Figure 5) It has an incidence of around 1:500-1000, 
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but its incidence changes according to several factors: geographical area, ethnic differences 

and seasonal variotions. It is more common in Caucasian than eastern and such a difference 

persists after migrations, suggesting therefore a genetic background more than an 

environmental one. Its incidence shows a 20-fold increase in diabetic women, a 10- to 20-fold 

increase in patient taking valproic acid during first trimester, a 30-fold increase in case of a 

previous affected son and a 60-fold increase in case of two previous affected sons. (Sarno, 

2017; Sarno, 2017) 

 

Eziology of Central Nervous System Malformations 

The etiology of CNSM can be multifactorial and in many CNSM it is difficult to identify a 

specific causative agent (Girgis, 2010).  

Some of these malformations can be related to monogenic or choromosomal disorders. The 

incidence of aneuploidies among fetuses carrying an isolated CNSM is around 6%  and it can 

rise up to 20% in presence of other associated malformations. (Daniel, 2003; Chitty, 2016) 

The analysis by array CGH can identify abnormal copy number variations in 5% of cases of 

isolated CNSM and in 6,3% of cases with CNSM associated to other malformations. (Shaffer, 

2012) 

Other factors that can be causative of CNSM are: 

- Malnutrion: it has been established that deficit of specific micronutrients can be 

related to an increased risk of CNSM. It is well known the association between deficit 

of folic acid and NTD. Therefore, it has been established that a supplementation with 

400 Pg/day of folic acid must be ensured from preconceptional period, in order to 

reduce the risk of NTD. We analyzed the intake of food of 50 pregnant women with a 

normal BMI using a 7-day diary and we found that all women had an intake of folic 

acid below the recommended level (data not published yet). Therefore, a 

supplementation has to be recommended even in our zone, where the adherence to  
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Table 1. Classification of CNSM according to embryological phases. 

Classification Involved period Malformations 
Dorsal 
induction 
abnormalities 

Primary and secondary 
neurulation period (first 
4-5 weeks of gestation) 

Anencephalia 
Meningocele 
encephalo-meningocele, Chiari malformations 
(I–III) myelomeningocele myelocele 
hydromyelia 
hydromyelic cystocele 
lipomeningomyelocele 
epi-/subdural lipoma,  
dermoid sinus 
dermoid and epidermoid cyst 
caudal developmental disorders 
anterior dysraphies – neurenteric cyst 
caudal regression disorders (caudal regression 
syndrome)  
 

Ventral 
induction 
abnormalities 

5th-10th weeks of 
gestation 

Facial skeleton defects 
Oloprosencephaly 
septo-optic dysplasia 
velum pellucidum and fornix defects 
cerebellum aplasia/hypoplasia  
Dandy– Walker syndrome  

Cell division 
and 
differentiation 
abnormalities 

5th week-4th month of 
gestation 

Microcephaly 
Macrocephaly 
neuro- fibromatosis 
tuberous sclerosis  
angiomatosis (facio-cranial, retino-cerebellar, 
dermo-meningo-spinal)  
ataxia-teleangiectasia 
neurocutaneous melanosis 
aqueduct occlusion or narrowing 
congenital vessel malformations  
tumors  

Cellular 
migration 
abnormalities 

4th-20th weeks of 
gestation 

Agyria 
Lissencephaly 
Microgyria 
grey matter heterotopia/displacement  
corpus callosum agenesis/dysgenesis  
cerebral cleft  

Myelinization 
abnormalities 

6th month of gestation-2 
years of life 

accelerated myelinization 
delayed myelinization 
dysmyelinization 
demyelinization  
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Figure 2. Newborn with anencephaly. The cranium is absent as well as almost the whole brain. 
 
 
 

 
Figure 3. A voluminous occipital encephalocele, characterized by herniation of the brain through a defect 
of cranium. 
 
 
 

 

 
Figure 4. Open spina bifida: a wide defect of skin and vertebras exposing spinal cord,  involving sacral 
and lombar region.  
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Mediterranean diet should be quite high.  Other nutrients that can influence the risk of CNSM 

are vitamin B12 and Iodium. 

 

Figura 5. Anencephaly and enlarged spinal defect. 

.  

- Alcohol consumption: abuse of alcohol has been reported to be associated with 

specific CNSM, such as absent corpus callosum. (Paul, 2007) 

- Infections: fetal infections, such as Citomegalovirus and Toxoplasmosis, lead to 

CNSM. Recently, Zika virus has been identified as another agent related to different 

CNSM. (Sohan, 2017) 

- Environmental exposure: exposure to many agents has been related to CNSM. For 

example, it has been reported that exposure to heavy metals can lead to neurotoxicity. 

Indeed, nervous system has specific characteristics that make it highly susceptible to 

metals, due to its complex structure and long period of development. Metals can cross 

the blood-brain barrier and accumulate in cerebrospinal fluid. (Caito, 2015) Moreover, 

metals can alter enzymes involved in ATP production, being particularly dangerous in 

very metabolically active tissues, like the brain. (Baranowska-Bosiacka, 2011)  

 Aluminum may play a role in the onset of CNSM; in a case-control study, we found a 

direct relationship between congenital defects of CNS and maternal serum concentration 
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of aluminum. Levels of aluminum were significantly higher in women carrying a fetus 

with CNSM, compared both to mother carrying a fetus with another class of malformation  

and to controls.  (Figure 6, 7) (Troisi, in press) 

 

 

Figure 6. Level of aluminum in controls (CTRL), other malformations group and CNSM. (Troisi, in press) 
**CTRL vs <CNSM: 6.45±15.15 ug/L Vs 1.44±4.21 ug/L, p<0.0006 
*Other malformations vs CNSM: 6.45±15.15 ug/L Vs 0.11±0.51 ug/L, p<0.0006  
 
 
 
 
 
 

 

Figure 7. Serum metallome in pregnant women: Partial Least Square (PLS-DA) model built to 
discriminate mothers with a CNS malformed fetus  (green) from control mothers (yellow). (Troisi, in 
press) 

Figure
Click here to download Figure Fig 2.tif 

Figure Click here to access/download;Figure;Fig 3.tif
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Diagnosis of Central Nervous System Malformations 

Nowaday, the gold standard for prenatal diagnosis of CNSM is the routine second trimester 

anomaly scan. Ultrasound examination is non-invasive, widely available and safe for both 

mother and child. According to EUROCAT data, the detection rate ranges from 68% for spina 

bifida, to 94% for anencephalus. (Table 2) (Garne, 2005) 

However, success in detecting various pathologies is highly dependent upon the examiner’s 

experience and equipment quality. Moreover, several studies reported <80% agreement 

between ultrasound findings and fetal autopsy (Onkar, 2014), showing a very small 

improvement since 2000, when the agreement was approximately 77% (Carroll, 2000). 

 

Table 2. Prenatal diagnosis of 11 severe malformation in 17 European regions, 1995-1999 (Garne, 2005) 

 

 

Examples of ultrasonographic findings of CNSM during second trimester anomaly scan are 

reported in Figure 8 to 10.  

In the last decade, the detection rate of CNSM during first trimester has improved, due to a 

better training of sonographers and higher quality of ultrasonographic machines. A large 

study of more than 100000 cases scanned at 11-13 weeks, demonstrated that all cases of 

acrania, encephalocele and alobar oloprosencephaly were detected in the first trimester, 59% 

of cases of open spina bifida and 13% of hypoplastic cerebellum and/or vermis, while all 

other brain  
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Figure 8. Sagittal plane, evidence of a spinal defect (Sarno, 2017) 
 

 

 
Figure 9. Transcerebellar plane: there is obliteration of the cisterna magna and the cerebellum assumes a 
banana-like shape (banana sign); frontal bones lose their normal convex contour and appeare flattened, 
giving the skull a lemon–like shape (lemon sign). Lemon and banana signs have a strong association with 
spina bifida. (Sarno, 2017) 
 

 

 
Figure 10. Hydrocephaly. Bilateral ventriculomegaly and rupture of the falx at level of cavum spetum 
pellucidi. We can observe a modification of occipital horns shape, that appear pointed rather than 
circular (ventricular point). This is an indirect sign of spina bifida. (Sarno, 2017) 
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Figs 5A and B: (A) A 3D scan for the evaluation of the spine defect; and (B) it is possible the perfect reconstruction  
of the small defect (green arrow)

Fig. 6: A regular transcerebellar scan. This scan is used for the evalu-
ation of the posterior fossa. The cisterna magna (CM) is not obliterated

Fig. 7: A transcerebellar “banana sign.” There is obliteration of the 
cisterna magna, and the cerebellum assumes a banana-like shape

In the axial plane, the vertebral canal appears as a closed 

circle; it is anteriorly bounded by the ossification center of 

the vertebral body and posteriorly by the two ossification 

centers of the laminae. In case of a defect, the posterior 

part is absent and the vertebra affected will be deformed 

with a “C” or “U” shape; it will also be possible to see 

the protrusion of the myelomeningocele. 10 The skin 

and the muscles above the defect are absent. The ultra-

sound detection rate is 82%. The 3D ultrasound plays an 

important role in the study of the spine. In the volume 

acquisition, the starting scan is in the sagittal plane, and 

a rotation angle of 30 to 40° is sufficient in the majority 

of cases (Fig. 5).

The main advantage of 3D scanning is linked to the 

simultaneous viewing of the three vertebral processes of 

each vertebrae, and the possibility to rotate the volume 

according to the three axial planes, allowing easier detec-

tion of small defects.11-15 Acquiring a normal volume, 

however, does not exclude diagnosis of SB. 16

Not always the defects are identified through the 

study of the spine alone; often the indirect signs at the 

level of the fetal brain guide us to the diagnosis. As 

mentioned above, the SB can be open (when there is a 

skin involvement and the neural canal is exposed and 

protrudes) or occult (when the vertebral defect is covered 

by skin). In open SB, the protrusion through the defect 

causes a caudal regression of the cerebellum and the 

cerebral trunk, with obliteration of the cisterna magna 

(Chiari II malformation). The most important scan is, 

therefore, the transcerebellar (Fig. 6) where it is possible 

to evaluate the posterior fossa.

The main indirect signs are

Banana sign (Fig. 7): abnormalities of the cerebellar 

hemispheres, which assume a banana-like shape, with 

obliteration of the cisterna magna; 17

Lemon sign: deformation of the frontal bone, so that 

the skull assumes a lemon-like appearance; 17

percentile;17,18

19

Hydrocephaly: it is most likely caused by Chiari II 

malformation, associated with an obstructed flow of 

A B
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abnormalities were diagnosed during second trimester and, sometimes, also at third trimester 

growth scan. (Syngelaki, 2019) 

During the first trimester, we can directly visualize a malformation, as reported in Figure 11 

to 13, or we can suspect a CNSM by analyzing indirect signs. In particular, two different 

signs have been proposed as sonographic predictors of spina bifida or abnormalities of 

posterior fosse: the intracranial translucency and the brain stem/brain stem-occipital bone 

ratio. Intracranial translucency is an anechoic space visible in a sagittal view, corresponding 

to the fourth ventricle. In open spina bifida, there can be a compression of the fourth ventricle 

with no visible intracranial translucency. (Figure 14) We performed a systematic review and 

meta-analysis of the literature, assessing the diagnostic accuracy of intracranial translucency; 

the diagnostic performance of intracranial translucency in detecting spina bifida was as 

follows: sensitivity: 53.5% (95% CI 42.4–64.3), specificity: 99.7% (95% CI 99.6–99.8), 

meaning that even if the absence of intracranial translucency has a low detection rate, 

visualizing a normal intracranial translucency can be of reassurance in excluding spina bifida. 

(Maruotti, 2016) 

The brain stem/brain stem-occipital bone ratio has been reported to be abnormal (>1) in case 

of spina bifida. (Figure 15) (Chaoui, 2011) According to our recent meta-analysisis, this ratio 

shows a pooled sensitivity of 0.70 (95%CI, 0.47-0.87; I2=78.3%), specificity of 1.00 (95%CI, 

0.99-1.0; I2=99.2%). (Sirico, in press)  

Even if the detection rate of fetal abnormalities in the first trimester has improved, the second 

trimester routine anomaly scan is still considered the gold standard for diagnosis of CNSM. 

New ultrasound tecniques, such as 3-D and 4-D scan, can help decting some abnormalities, 

like spina bifida (Figure 16), absent corpus callosum and septo-optical dysplasia. (Pashaj, 

2016). 

Moreover, Magnetic Resonance Imaging (MRI) has been used as a support of ultrasound for 

diagnosis of CNMS. Some cellular migration abnormalities, for example, can be identified 
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only by MRI. (Salomon, 2007)  It has been demonstrated that MRI can be helpful in cases of 

isolated ventriculomegaly, in order to detect associated anomalies that can be difficult to 

identify by  

 
Figure11. First trimester diagnosis of acrania. (Sarno, 2017) 

 

 
Figure12. First trimester diagnosis of encephalocele (Sarno, 2017) 

 
 

 
Figure 13. First trimester diagnosis of alobar oloprosencephaly 
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Figure 14. Ultrasound image in the mid-sagittal plane of the fetal face in case of open spina bifida 
demonstrating compression of the fourth ventricle with no visible intracranial translucency (a) and in case 
of normal fetal brain structure (b). The occipital bone is highlighted by the white arrow. Blue, midline 
structure of the brain with the mesencephalon; yellow, forth ventricle with intracranial translucency; red, 
cisterna magna; yellow dashed line, nuchal translucency. (Maruotti, 2016) 

 

 
Figure 15. Brain stem/brain stem-occipital bone ratio: normal value <1. (Sarno,2017) 
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Fig. 1: Sagittal scan used for screening in the first trimester. It 
is possible to evaluate the anteroposterior diameter of the fourth 
ventricle (inner translucency) corresponding to an anechogenic 
space (blue space), between two hyperechogenic lines, the posterior 
margin of the diencephalus anteriorly (yellow space), and the 
choroidal plexus of the fourth ventricle (red space)

Fig. 2: Brain stem:brain stem/occipital bone ratio (BS:BS/OB). 
It normally results to be < 1

meninges are included in the cystic lesion, it is referred 

to as meningocele, if there are meninges and spinal cord 

inside, the word myelomeningocele has to be used. 3

Ultrasonographic Diagnosis in  
the First Trimester

In the last years, several markers have been proposed for 

the diagnosis of SB in the 11 to 14 weeks scan. The first 
marker introduced was the intracranial translucency,  

i.e., an anechoic space between two hyperechoic lines  

(the posterior margin of the diencephalus anteriorly and 

the choroidal plexus of the fourth ventricle posteriorly; 

Fig. 1).

Chaoui and Nicolaides4 reported the absence of the 

intracranial translucency in four cases of spina open bifida 

during the first trimester scan. Later, the same authors 

find out, on a 30-case analysis, as a sign of gradual loss 

of liquor through the defect, a shift of the diencephalus 

toward the occipital bone, with the disappearance of the 

cisterna magna. In the first trimester, this turns into an 

inversion of brain stem:brain stem/ occipital bone ratio 

(BS:BS/ OB), which normally results to be <  1.5,6 The 

correct acquisition technique is explained in Figur e 2.

In the axial plane, if two lines are traced along the 

margins of the cerebral peduncles and thalamus, they 

tend to form an acute angle in a normal fetus. In the 

open SB, instead, there is a posterior shift of the cerebral 

peduncles, so the two lines tend to become parallel. 5

In the first trimester, it is possible to observe an 

anechoic space corresponding to the third ventricle and, 

more posteriorly, another anechoic space correspond-

ing to the Sylvius aqueduct, well separated from the 

occipital bone; the lateral ventricles and their choroid 

plexi are well-evident too. The loss of liquor result-

ing from the spinal defect leads to a reduction in the 

ventricular spaces, which is already evident in the first 

trimester. In fetuses with open SB, in fact, a reduction 

in lateral ventricular diameters, third ventricle’s roof, 

Sylvius aqueduct, and fourth ventricle can be found.7 

As in the second trimester also in the first trimester a 

reduction in the biparietal diameter could be seen in 

fetuses with SB.7 In 2013, Mangione et al8 reported the 

sensitivity of several markers for the diagnosis of SB in 

the first trimester. Specifically, the nonvisualization of 

the cisterna magna was associated with a sensitivity of 

50 to 73%, while the lack of visualization of intracranial 

translucency was associated with a sensitivity of 29 to 

48%. Overall, any abnormality of the posterior fossa was 

associated with a sensitivity of 50 to 90%. Likewise, a 

recent meta-analysis of 21,070 fetuses reported a modest 

sensitivity of intracranial translucency in the diagnosis of 

open SB (53%), but a high specificity (99.7%).9 Although 

there have been many efforts to improve the diagnosis 

of SB in the first trimester, most cases are still diagnosed 

later in the second trimester.

Ultrasonographic Diagnosis  
in the Second Trimester

Compared with anencephaly and encephalocele, com-

monly diagnosed earlier in pregnancy, the diagnosis of 

SB is in most cases performed during the second trimes-

ter scan, still considered as the principal screening of 

the NTD. The ultrasound diagnosis of SB in the second 

trimester is based on the detection of direct signs, i.e., the 

direct visualization of the spine defect, and of indirect 

signs, which can be identified by examining the fetal 

head. The study of the fetal spine, in the second trimester 

of pregnancy, should be performed through three planes: 

coronal, axial, and sagittal (Fig. 3).
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ultrasound, even if the rate of associated fetal anomalies missed by uktrasound scan seems to 

be low (Di Mascio, 2019). However, even though MRI has shown good performance, its 

large-scale use in the screening of these conditions is limited by the high cost and resulting 

lack of availability in obstetric clinics.  

 
Figure 16. a) 3-D reconstruction of the vertebra can help identifying the level of the spinal defect. b) a 3-D 
reconstruction of the defect. (Sarno, 2017) 
 
 
Metabolomics 

Metabolomics is the large scale study of small molecules, called metabolites, that we can 

found in cells, biofluids, tissue or organisms. Just as genomics is the study of DNA and 

genetic information within a cell, trascriptomics is the study of mRNA expression, 

metabolomics is the study of substrates and products of metabolism. The whole metabolites 

and their interactions within a biological system determine the metabolome.  

The study of metabolites that are represented in a specific biofluid or tissue can give us 

information about the activation of specific enzymatic pathways that have produced those 

metabolites and it allows us to explain what are the physiological mechanisms underlying a 

specific conditions through the systematic study of the unique chemical fingerprints that 

specific cellular processes leave behind. (Sawyer, 2010) 

It has been demonstrated that during pregnancy there can be a transfer of metabolites from 

fetus to maternal blood; moreover, metabolomics changes in the mother can reflect a maternal 

response to the fetus and to related complications. Therefore, it has been hypothesized that 

different metabolomics profiles of maternal biofluid can be representative of different fetal 
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Figs 5A and B: (A) A 3D scan for the evaluation of the spine defect; and (B) it is possible the perfect reconstruction  
of the small defect (green arrow)

Fig. 6: A regular transcerebellar scan. This scan is used for the evalu-
ation of the posterior fossa. The cisterna magna (CM) is not obliterated

Fig. 7: A transcerebellar “banana sign.” There is obliteration of the 
cisterna magna, and the cerebellum assumes a banana-like shape

In the axial plane, the vertebral canal appears as a closed 

circle; it is anteriorly bounded by the ossification center of 

the vertebral body and posteriorly by the two ossification 

centers of the laminae. In case of a defect, the posterior 

part is absent and the vertebra affected will be deformed 

with a “C” or “U” shape; it will also be possible to see 

the protrusion of the myelomeningocele. 10 The skin 

and the muscles above the defect are absent. The ultra-

sound detection rate is 82%. The 3D ultrasound plays an 

important role in the study of the spine. In the volume 

acquisition, the starting scan is in the sagittal plane, and 

a rotation angle of 30 to 40° is sufficient in the majority 

of cases (Fig. 5).

The main advantage of 3D scanning is linked to the 

simultaneous viewing of the three vertebral processes of 

each vertebrae, and the possibility to rotate the volume 

according to the three axial planes, allowing easier detec-

tion of small defects.11-15 Acquiring a normal volume, 

however, does not exclude diagnosis of SB. 16

Not always the defects are identified through the 

study of the spine alone; often the indirect signs at the 

level of the fetal brain guide us to the diagnosis. As 

mentioned above, the SB can be open (when there is a 

skin involvement and the neural canal is exposed and 

protrudes) or occult (when the vertebral defect is covered 

by skin). In open SB, the protrusion through the defect 

causes a caudal regression of the cerebellum and the 

cerebral trunk, with obliteration of the cisterna magna 

(Chiari II malformation). The most important scan is, 

therefore, the transcerebellar (Fig. 6) where it is possible 

to evaluate the posterior fossa.

The main indirect signs are

Banana sign (Fig. 7): abnormalities of the cerebellar 

hemispheres, which assume a banana-like shape, with 

obliteration of the cisterna magna; 17

Lemon sign: deformation of the frontal bone, so that 

the skull assumes a lemon-like appearance; 17

percentile;17,18

19

Hydrocephaly: it is most likely caused by Chiari II 

malformation, associated with an obstructed flow of 

A B
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condition.  Several studies have investigated the impact of fetal malformation on fetal and 

maternal metabolism and they showed differentin maternal plasma, urine and amniotic fluid 

samples (Diaz, 2011; Graca, 2009; Zheng, 2011; Bahado-Singh, 2013; Pinto 2015; Amorini, 

2012)  

 

Use of Metabolomics in gynecology 

Our group has been using a metabolomics approach to identify the metabolomic signature of 

different gynecological disorders. 

We demonstrated that several serum metabolites and metabolomics pathways are associated 

with endometrial cancer. The network made by these molecules combined with a powerful 

machine learning algorithm allows group separation and offers a new way to non-invasive 

screening. (Figure 17) This network is characterized by higher levels of lactic acid, 

homocysteine and 3-hydroxybuthyrate and lower levels of progesterone, linoleic, stearic and 

myristic acid, threonine and valine. (Troisi, 2018) 

Moreover, we identified a metabolomics fingerprint of women affected by Polycystic Ovarian 

Syndrome (PCOS) and we analyzed metabolomics changes after 3 months treatment with 

myo-inositol, D-chiro-inositol and glucomannan. Multi-variate statistical analysis identified 

fifteen metabolites as being particularly important in separating cases from controls: 3-

methyl-1-hydroxybutyl-thiamine diphosphate, valine, phenylalanine, ketoisocapric acid, 

linoleic acid, lactic acid, palmitic acid and glucose were increased in PCOS patients compared 

to controls, while glutamine, glyceric acid, creatinine, arginine, citric acid, choline and 

tocopherol were decreased. According to these results, different metabolic pathways appear to 

be involved in PCOS pathology. In the serum of PCOS patients at enrollment time in 

comparison with control group, several metabolites, closely associated with carbohydrate and 

lipid metabolisms, are significantly dysregulated. (Figure 18 and Figure 19)  
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Figure 17. A1) Partial Least Square Discriminant Analysis (PLS-DA) classification model discriminating 
the patients on the basis of presence or absence of EC (Model I): red circles are CTRL, while green circle 
are EC. There is visual evidence of separation between the 2 groups. (A2) VIP Metabolites heat-map. (B1) 
PLS-DA model discriminating the patients on the basis of the histotype of the endometrial cancer (Model 
II) red circles are Type I, while green circles are Type 2. (B2) Heatmap of the metabolites with a VIP-
score greater than 1.5. (Troisi, 2018) 

 

 
 

 
Figure 18. Box and Whisker plot of the VIP metabolites in the cohort of patients and controls. (Troisi, 
2019) 
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Figure 19. A) Partial least square discriminant analysis (PLS-DA) models to discriminate Controls 
(CTRL, yellow circles), PCOS patients at enrollment (PCOS-T0, green circles) and PCOS patients after 3-
months treatment (PCOS-T1, purple circles). B) The 15 top-scoring VIP metabolites (VIP-score t1,5) ar 
eshown. The colored boxes on the right indicate the relative amount of the corresponding metabolite in 
each group. (Troisi, 2019)
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OBJECTIVES: 
 

1. To compare the maternal serum metabolomics profile in cases of fetal CNSM with that one 

of normal developed fetuses in order to characterize serum metabolomics signature of CNSM.  

2. To characterize the maternal serum metabolomics profile of fetal chromosomal 

abnormalities (CA) and fetal congenital heart diseases (CHD).  

3. To test the accuracy of these metabolomics characterization of congenital anomalies with  

an independent population. 

4. To evaluate if metabolomics profile of CNSM differs from that one of CA and CHD. 
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MATERIAL AND METHODS 

Study population and study design 

This was a prospective study conducted in three hospitals (University of Naples “Federico II”, 

University of Salerno, and Hospital “G. Moscati” of Avellino), in Campania, Southern Italy, 

from January 2013 to December 2018.  

Controls (CTRL=280) were enrolled during the second trimester anomaly scan.  

Cases were pregnant women admitted for a second trimester TOP, following a 

ultrasonographic diagnosis of: CNSM= 70; CHD=70; CA=108. 

Exclusion criteria were: known TORCH complex infections, twin pregnancy, maternal 

disease regardless of its relationship to pregnancy (such as diabetes, hypertension, 

proteinuria), in vitro fertilization.  

The study was approved by the ethics committee and all enrolled patients signed a written 

consent form. Enrolled patients completed a questionnaire addressing anamnestic and 

demographic characteristics and a complete obstetric visit was performed at enrollment to 

collect a thorough medical history. It was investigated the presence of any known etiological 

factors of malformations, including: history of infections; malnutrition or metabolic disease 

(e.g., diabetes); drugs (e.g., thalidomide, anticoagulants, chemotherapeutic agents) and drug 

addiction (e.g., cannabis, cocaine, heroin); radiological investigations (e.g., X-rays, CT); 

familiarity to genetic syndromes. 

 

Statistical analysis of demographic and clinical data 

Study data were collected and managed using REDCap electronic data capture tools (Harris et 

al. 2009) hosted at the INFN (Istituto Nazionale di Fisica Nucleare) in the University of 
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Salerno (Italy).  

Statistical analysis was performed using Statistica software (StatSoft, Oklahoma, USA) and 

Minitab (Minitab Inc, Pennsylvania, USA). Data are presented as median  

 (interquartile range) for continuous variables and number (percentage) for categorical 

variables.  

Demographic and clinical data were tested for normal- ity, via Kolmogorov–Smirnov test, 

after each attempt to normalize the data (e.g., natural log, square root, inverse). Because none 

of these transformations resulted in normally distributed data, only non-parametric statistical 

tests were employed. Continuous variables were compared by the Mann–Whitney rank sum 

test, while the Yates correction of the χ2 test was used to compare categorical variables. A 

significance level of α = 0.05 was adopted for all statistical testing.  

 

Samples collection 

Human tissue collection strictly adhered to the guidelines outlined in the Declaration of 

Helsinki IV edition. Blood sample of the cases were collected before TOP and before any 

drug administration, while blood samples of CTRL were collected during the second trimester 

routine anomaly scan. All patients were asked to respect a 12-h fast before blood collection. 

Blood samples were collected using a BD vacutainer (Becton Dickinson, Oxfordshire, UK). 

After centrifugation, the sample was immediately frozen to -80°C until the time of analysis.  

 

Metabolite extraction, derivation and analysis 

The metabolome extraction, purification and derivatization were carried by the MetaboPrep 
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GC kit (Theoreo, Montecorvino Pugliano, Italy) according to manufacturer instructions. 

Instrumental analyses were performed with a GC–MS system (GC-2010 Plus gas 

chromatograph and QP2010 Plus mass spectrometer; Shimadzu Corp., Kyoto, Japan).  

For metabolite identification, the linear index difference max tolerance was set to 10, while 

the minimum matching for NIST library search was set to 85% [level 2 identification 

according to Metabolomics Standards Initiative (MSI)] (Sumner et al. 2007). Metabolites that 

emerged as the most relevant in separating cases from controls (see below) were further 

confirmed using external standards (MSI level = 1).  

Dataset preparation 

Gas chromatography-mass spectrometry resulted in 10,200 data points (i.e., features) for each 

specimen; chromatograms were first aligned by means of parametric time warping using the 

PTW package (Wehrens et al. 2015), next, the aligned chromatograms were tabulated with 

one sample per row and one variable (feature) per column. Each value was transformed by 

taking the natural log and then scaled by mean-centering and dividing by the standard 

deviation of that column (auto scaling) (van den Berg et al. 2006).  

Future selection 

To reduce the dataset dimension and focus the analysis on the most relevant chromatogram 

points, features selection was performed by means of a genetic algorithm that is a heuristic 

search that mimics the process of natural evolu- tion such as inheritance, mutation, selection, 

and crossover (Whitley 1994). In genetic algorithms for features selection, ‘mutation’ means 

switching features on and off and ‘crosso- ver’ means interchanging used features. Features 

selection was performed by means of the “Optimize Selection (Evolu- tionary)” algorithm 

implemented in Rapid Miner (see Supplementary for used parameters).  
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Classification models 

All samples were subdivided into two equal sets (each containing an equal number of cases 

and CTRL). The first set was used to train the classification models and the second set was 

used to determine the diagnostic performance of the models in predicting the presence of 

absence of a specifica abnormalities (CNSM, CA or CHD). 

Training and test set were composed as follow: 

- 35 cases and 49 CTRL for CNSM; 

- 54 cases and 110 CTRL for CA; 

- 35 cases and 140 CTRL for  CHD. 

The number of CTRL was different in three groups because this thesis summarizes three 

different projects that we developed during the three years of PhD program; therefore, the 

number of CTRL is related to the available samples at the time of the analysis.  

After sample separation into training and test sets, the training set was subjected to nine 

classification models: Partial Least Square Discriminant Analysis (PLS-DA) (Wold. 2001), 

Linear Discriminant Analysis (LDA) (Fisher, 1936), Naïve Bayes (NB) (Hand, 2007), 

Decision Tree (DT) (Breiman, 1984), Random Forest (RF) (Ho, 1995), k-nearest neighbor (k-

NN) (Cover, 1967), Artificial Neural Network (aNN) (Schmidhuber, 2015), Support Vector 

Machine (SVM) (Cortes ,1995), and logistic regression (Le Cessie ,1992). 

The logistic regression model was built using variables that met inclusion criteria; 38% of the 

variables (3876/10,200) met the inclusion criteria and were thus used to generate the logit 

function. The logistic model optimization was performed according to methods established 

(Hosmer, 2013). The logistic regression score (LR-score) was created by multiplying the 

sinusoidal converted logit value by 10 [LR − score = 10(1∕1 − elog it )]. An LR-score of 5 

represents the mid-point of the sinusoidal curve and therefore the cutoff value: samples with 
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LR-score > 5 were indicated as controls, those with LR-score < 5 indicates the cases.  

All models were subjected to a bootstrapping cross-validation to estimate the statistical 

performance of the machine learning algorithms and to enhance the models’ generalization.  

PLS-DA was first performed on the training set in order to find the combination of 

metabolites that best separates cases from control subjects and to produce a graphical 

representation of the class separation. Ultimately, an ensemble machine learning (EML) 

model was built using the output results from the nine classification models and a weighted 

voting scheme based on the accuracy of their predictions. EML is a learning algorithm that 

constructs a set of classifiers and then classifies new data points by taking a weighted vote of 

their predictions (Dietterich 2000). Cross validation accuracy of each model was used as 

weight for the voting scheme. Data mining was con- ducted using RapidMiner Studio version 

7.6 (RapidMiner, Boston, MA, USA). PLS-DA and the voting scheme was conducted with R 

(RDevelopment CORE TEAM 2008) and integrated into the data mining algorithm.  

The metacost algorithm (Domingos, 1999) was used to correct for any class imbalance effect 

which was expected to be minimal in this study (70 cases vs. 98 controls). A cost matrix was 

built based on the number of samples in each class. The ensemble score decision cut-off value 

was evaluated as the one that shows the higher area under the curve (AUC) value in the 

receiver operating characteristic (ROC) analysis (DeLong, 1988). 

Identification of metabolites significantly associated with CNSM, CA and CHD  

The importance in class separation was evaluated for each feature using the variable 

importance in projection (VIP) scores (Wold, 1998) calculated for each feature used in the 

PLS-DA classification model. The molecular identity of features with a VIP-score > 2.0 

(Akarachantachote, 2014) were determined by analysis of the corresponding mass spectrum in 

the chromatogram. These identified metabolites were further confirmed using external 
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standards according to level 1 MSI (Sumner, 2007). Next, they were used for the 

metabolomic pathway analysis according to Karnovsky et al. (Karnovsky, 2012) using 

MetScape on the Cytoscape software (Nishida, 2014). This application allows the 

visualization and interpretation of metabolomic data in the context of human metabolism, 

analyzing networks of genes and compounds, identifying enriched pathways, and visualizing 

changes in metabolite data. MetScape uses an internal relational database that integrates data 

from KEGG (Kanehisa. 2014) and EHMN (Ma, 2007).  For CA, Metabolites that show a 

weight or a VIP score in the highest 25th percentile were combined. UpsetR package (Lex. 

2014) was used to evaluate the presence of the metabolites in several models. Metabolites that 

were in the upper 25th centile of at least 10 of the 18 (9 based on training set and 9 based on 

the test set) models were considered the most relevant and were used for the metabolomic 

pathway analysis.  
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RESULTS 

Metabolomic fingerprinting of CNSM 

Seventy cases of CNSM were compared to 98 CTRL. They were randomly separated into two 

equal group containing 34 CNSM and 49 CTRL. The 70 CNSM had the following 

distribution:, hydrocephalus, n = 20 (28.6%), anencephaly n = 15 (21.4%), acrania n = 7 

(10.0%), Dandy–Walker syndrome n=5 (7.1%), lateral ventricle ectasia n = 4 (5.7%), 

encephalocele n = 4 (5.7%), myelomeningocele n = 3 (4.3%), spina bifida n = 3 (4.3%), 

agenesis of corpus callosum n = 2 (2.9%), cerebral ventricular anomalies n = 2 (2.9%), 

cerebellar vermis syndrome n = 2 (2.9%), Krabbe leukodystrophy n = 1 (1.4%), lissencephaly 

n = 1 (1.4%), and alobar holoprosencephaly n = 1 (1.4%).  

The demographic and clinical characteristics of CNSM and CRL are reported in Table 3. 

there were no significant differences between the two groups. Additionally, blood parameters, 

such as glucose, creatinine, transaminases were all normal for all enrolled subjects. 

Figure 20A reports the PLS-DA scatter plot representation of the classification of CNSM and 

CTRL maternal serums, while Figure 20B reports the metabolites that were identified as the 

most relevant (VIP- score > 2.0) in class separation.  

 

Classification model performance 

Table 4 reports the diagnostic performance of each model and of the ensemble. Accuracy 

ranged from 58 to 95%. Best accuracies were obtained from DT, SVM and logistic regression 

(95%).  

The predictive ability of the models was assessed using an ensemble voting method.  
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Table 3. Demographic and clinical characteristics of the CTRL and CNSM cohorts. 

 CTRL CNSM 
Sample size 98 70 

Age (years)  30.2 (27.0-34.0) 33.0 (27.0-38.0) 

Marital status 
 
Single  
Married 

 
 

33 (33.7) 
65 (66.7) 

 
 

41 (58.6) 
29 (41.4) 

Education 
 
<HS  
HS/GED  
College 

 
 

20 (20.4) 
35 (35.7) 
43 (43.9) 

 
 

12 (17.1) 
28 (40) 

30 (42.9) 

Cigarette smoker 
 
Yes 

 
 

39 (39.8) 
 

 
 

21 (30) 
 

Parity 
Nulliparity 
Primiparity 
Multiparity 

 
40 (40.8) 
28 (28.6) 
30 (30.6) 

 
30 (42.9) 
20 (28.6) 
20 (28.6) 

Gestational age at 
sample (day)  

140 (11.5-146.0) 124.5 (99.3-163.8) 

 

Ensemble score was evaluated as following: if a sample was correctly classified as CNSM by 

a particular model, that model’s cross-validation accuracy was used, otherwise a zero value 

was assigned. Figure 21 represents the total score distribution. Total scores for CTRL and 

CNSM samples were 30.7.2 ± 104.4 and 643.2 ± 157.5 (p < 0.001), respectively. Ensemble 

model analysis showed an accuracy of 99%. Ensemble score cut-off value was set at 

369.  
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Figure 20. A. Partial least squares-discriminant analysis (PLS-DA) of maternal serum metabolites 
determined by GC–MS. A Two dimensional score plot showing clustering and separation between cases 
with fetal CNSA (green symbols) and controls (CTRL; red symbols). Ellipses represent 95% confidence 
intervals. B. Heatmap plot of the most relevant metabolites (VIP-score > 2.
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Table 4. Diagnostic performance of each classification model (value ± standard error) and of the ensemble  
 
  

Model Sensitivity Specificity Positive pre- 
dictive value  

Negative pre- 
dictive value  

Positive 
likeli- hood 
ratio  

Negative like- 
lihood ratio  

Accuracy 

Decision tree 0.91 ± 0.05  0.98 ± 0.02  0.94 ± 0.03  0.97 ± 0.03  43.89  0.09  

 

0.95 ± 0.05  

Naïve Bayes 0.94 ± 0.04  0.90 ± 0.04  0.96 ± 0.03  0.87 ± 0.05  9.05  

 

0.06  0.92 ± 0.04  

Random Forest 0.89 ± 0.05  0.98 ± 0.02  0.92 ± 0.04  0.97 ± 0.03  42.51  0.12  0.94 ± 0.05  

k-NN 0.77 ± 0.07  1.00 ± 0.00  0.86 ± 0.05  1.00 ± 0.00  ND  0.23  0.90 ± 0.07  

Artificial Neuronal 
net 

0.91 ± 0.05  0.96 ± 0.03  0.94 ± 0.03  0.94 ± 0.04  21.94  0.09  0.94 ± 0.05  

Linear Discriminant 
Analysis 

0.00 ± 0.00  1.00 ± 0.00  ND  

 

0.58 ± 0.05  ND  1.00  0.58 ± 0.00  

Support vectoral 
machine 

0.97 ± 0.03  0.94 ± 0.03  0.92 ± 0.04  0.98 ± 0.02  15.54  0.03  0.95 ± 0.03  

Logistic regression 0.89 ± 0.05  1.00 ± 0.00  1.00 ± 0.00  0.92 ± 0.04  ND  0.11  0.95 ± 0.05  

PLS-DA 0.83 ± 0.06  0.92 ± 0.04  0.88 ± 0.06  0.88 ± 0.05  9.94  0.19  0.88 ± 0.06  

Ensemble 1.00 ± 0.00  0.98 ± 0.02  0.97 ± 0.03 1.00 ± 0.00 48.00 0.00 0.99 ± 0.00 
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Figure 21 Ensembled score distribution of the test samples 

 
 

 
Figure 22. ROC curve describing the ensemble model performance. 
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This value was selected as the one that shows the higher AUC (0.996 ± 0.004) value in 

the ROC analysis (Figure 22 and Table 5). 

 

Table 5 Ensemble score cut-off evaluation 
Criterium Sens 95% CI Speci 95% CI Positive 

Likelihood 
Ratio 

Negative 
Likelihood 

Ratio 
>=0 100,00 90,0 -

 100,0 
0,00 0,0 - 7,4 1,00 

 

>0 100,00 90,0 -
 100,0 

87,50 74,8 - 95,3 8,00 0,00 

>88 100,00 90,0 -
 100,0 

89,58 77,3 - 96,5 9,60 0,00 

>92 100,00 90,0 -
 100,0 

93,75 82,8 - 98,7 16,00 0,00 

>275 100,00 90,0 -
 100,0 

95,83 85,7 - 99,5 24,00 0,00 

>369 * 100,00 90,0 -
 100,0 

97,92 88,9 - 99,9 48,00 0,00 

>370 97,14 85,1 - 99,9 97,92 88,9 - 99,9 46,63 0,029 
>375 91,43 76,9 - 98,2 97,92 88,9 - 99,9 43,89 0,088 
>462 88,57 73,3 - 96,8 97,92 88,9 - 99,9 42,51 0,12 
>554 85,71 69,7 - 95,2 97,92 88,9 - 99,9 41,14 0,15 
>558 80,00 63,1 - 91,6 100,00 92,6 - 100,0 

 
0,20 

>648 77,14 59,9 - 89,6 100,00 92,6 - 100,0 
 

0,23 
>649 74,29 56,7 - 87,5 100,00 92,6 - 100,0 

 
0,26 

>653 62,86 44,9 - 78,5 100,00 92,6 - 100,0 
 

0,37 
>655 51,43 34,0 - 68,6 100,00 92,6 - 100,0 

 
0,49 

>743 0,00 0,0 - 10,0 100,00 92,6 - 100,0 
 

1,00 
 

 

Metabolomics pathways of CNSM 

As shown in Figure 20B, 12 different metabolites were found to contribute significantly to 

group separation and are collectively referred to as the “most relevant” metabolites. The 

relative concentrations of these metabolites varied according to CTRL or CNSA 

classification—some metabolites had lower concentrations in CNSA compared to CTRL, 
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while others were elevated. These differences are presented in Figure 23 and can be compared 

using their relative fold change (FC); for example, propanoic acid in CNSA serum was 2809 

fold higher than CTRL (p = < 0.001). Accordingly, myo-inositol (FC = 409, p = < 0.001), 

mannose (FC = 6.21, p < 0.001), lactic acid (FC = 11.75, p < 0.001), gluconic acid (FC = 

7.50, p = 0.005), oxalic acid (FC = 13.54, p = 0.008), acetic acid (FC = 3.83, p = 0.02) and 2-

hydroxy-3-methylbu- tyric acid (FC = 9.56, p = 0.001) were higher in CNSA serum samples, 

while glucose (FC = 0.93, p < 0.001), myristic acid (FC = 0.42, p = 0.24), lauric acid (FC = 

0.95, p < 0.001), and stearic acid (FC = 0.72, p < 0.001), were higher in CTRL serum 

samples.  

The metabolic maps describing the relationship among the selected metabolites are shown in 

Figure 24. Several biochemical pathways may be involved including: arachidonic acid 

metabolism, de novo fatty acid biosynthesis, fructose and mannose metabolism, galactose 

metabolism, glycerophospholipid metabolism, glycine, serine, alanine and threonine 

metabolism, glycolysis and gluconeogenesis, phosphatidyl-inositol metabolism and the citric 

acid cycle.  
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Figure 23. Box and Whisker plot of the most relevant metabolites in class separation. Green boxes 
represent the serum of CNSA cases (n = 70), while yellow the control subjects (CRTL) (n = 98). The y-axes 
are related to metabolite concentrations. One asterisk (*) indicates p-value < 0.05, two (**) indicate p-
value < 0.01, while three (***) indicate p-value < 0.001.  
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Metabolomic fingerprinting of CA  

One-hundred-eight cases of CA were compared to 220 CTRL. They were randomly separated 

into two equal group containing 54 CA and 110 CTRL.  The first set was used to build the 

classification models and to validate therm; the second one was used to determine the 

diagnostic performance of the different classification models and of the ensemble model. Out 

of the 108 CA, 80 (74, 0%) had DS (trisomy-21), 19 (17, 6%) had Edwards syndrome 

(trisomy-18), 3 (2, 8%) had Patau syndrome (tri- somy-13), 3 (2, 8%) had Turner syndrome 

(Monosomy-X) and 3 (2, 8%) had Klinefelter syndrome (XXY)  

The demographic and clinical characteristics of CA and CTRL are reported in Table 6. As 

expected (Allen, 2009), women who had a CA were significantly older [38.0 (35.0–41.0) 

years] compared with controls [30.0 (26.0–34.0) years, p < 0.05], while they were similar for 

the other characteristics.  

 Additionally, blood parameters, such as glucose, creatinine, transaminases were all normal 

for all enrolled subjects. 

Figure 25A reports the PLS-DA scatter plot representation of the classification of CA and 

CTRL maternal serums. Thirteen metabolites (2-hydroxy buthyrate, alanine, linoleic, citric, 

benzoic, glyceric, elaidic, myristic and stearic acid, phenylalanine, 3-methyl histidine, proline 

and mannose) were found to be in the upper 25th quartile in terms of weight in information 

gain in at least 10 models. (Figure 25B) 

 

Classification model performance 

The diagnostic performance of each model and of the EML is reported in Table 7 and 

Table 8. Accuracy ranged from 43 to 100%. Best accuracies were obtained from DT, 
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k-NN and aNN (100%). The EML model showed an accuracy of 100%  

Table 6. Demographic characteristics of CTRL and CA 

 CTRL CA 

Sample size 220 108 

Age (years) 30 (26-34) 38 (35-41)* 

Marital Status 
 
Single 
Married 

 
 

112 (51.1) 
108 (48.9) 

 
 

58 (54.1) 
50(45.9) 

Education 
 
<HS 
HS/GED 
College 

 
 

72 (32.7) 
74 (33.6) 
74 (33.6) 

 
 

29  (27.1) 
44 (40.6) 
35 (32.3) 

Smokers 
 
Yes 

 
 

55 (25) 

 
 

34 (31.4) 
Parity 
 
Nulliparity 
Primiparity 
Multiparity 
 

 
 

38 (17.1) 
64 (29.3) 
118 (53.7) 

 
 

28 (26.2) 
44 (40.5) 
36 (33.3) 

Gestational age at sample 
(days) 

144 (124-147) 143 (119-225) 

Previous son with CA - 5 (4.6) 

 

 Metabolomics pathways of CA 

Figure 26 shows the Box and Whisker plot representation of the relative amount of thethirteen 

VIP metabolites. Elaidic acid had a − 14.61 fold change between CA and CRTL (p < 0.001), 

mannose − 10.63 (p < 0.001), myristic acid − 1.22 (p < 0.001), and stearic acid − 3.28 (p < 

0.001), while, 2-hydroxy butyrate 0.64 (p < 0.01), alanine 0.30 (p < 0.001), linolenic acid 

0.56, although the difference was not statistically significant (p = 0.06), citric acid 0.80 (p < 
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0.05), phenylalanine 0.41 (p < 0.01), 33-methyl histidine 0.66 (p <0.01), proline 0.64 (p < 

0.01), benzoic acid 0.45 (p < 0.05), glyceric acid 0.34 (p < 0.01). 

The metabolic maps that describe the relationship among the selected metabolites is 

represented in Figure 27. The following routes were involved: biopterin metabolism, 

butanoate metab- olism, de novo fatty acid biosynthesis, di-unsaturated fatty acid β-oxidation, 

fructose and mannose metabolism, galactose metabolism, glycerophospholipid metabolism, 

glycine, ser- ine, alanine and threonine metabolism, histidine metabolism, linoleate 

metabolism, TCA cycle, tyrosine metabolism, urea cycle and metabolism of arginine, proline, 

glutamate, aspartate and asparagine.  

 

 

 

  



 40 

 

 

 

 
 

 
Figure 25: A. PLS-DA classification model: green circles are CTRL, while red circles are CA. There is 
visual evidence of separation between the 2 groups. B. UpSetR plot of metabolites in the upper 25th
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Table 7. Diagnostic performance of each classification model and of the ensemble for all CA 
Model Sensitivity Specificity PPV NPV FPR LR+ LR- Accuracy 
Partial least square discriminant analysis 0.96 ± 0.03  

 

0.91 ± 0.03  

 

0.84 ± 0.05  

 

0.96 ± 0.02  

 

0.09  

 

10.59  

 

0.04  

 

0.93 ± 0.03  

 
Decision tree 1.00 ± 0.00  1.00 ± 0.00  1.00 ± 0.00  1.00 ± 0.00  0.00 ND 1.00 ± 0.00  1.00 ± 0.00  

Naïve Bayes 1.00 ± 0.00  0.86 ± 0.03  0.78 ± 0.05  

 

1.00 ± 0.00  

 

0.14  

 

7.33  

 

0.00  

 

0.91 ± 0.00  

Random forest 1.00 ± 0.00 0.86 ± 0.03  0.78 ± 0.05  

 

1.00 ± 0.00 0.14  

 

7.33  

 

0.00  

 

0.91 ± 0.00  

k-NN 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.00 ND 0.00 1.00 ± 0.00 
Artificial neuronal net 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.00 ND 0.00 1.00 ± 0.00 

Linear discriminant analysis 0.50 ± 0.07  0.32 ± 0.04  

 

0.26 ± 0.04  

 

0.50 ± 0.06  

 

0.68 0.73 1.57 0.38 ± 0.07  

Support vectoral machine 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.18 5.50 0.00 0.87 ± 0.00  

Ensemble 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.00 ND 0.00 1.00 ± 0.00 
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Table 8. Diagnostic performance of each classification model and of the ensemble for Down Syndrome 
Model Sensitivity Specificity PPV NPV FPR LR+ LR- Accuracy 
Partial least square discriminant analysis 0.98 ± 0.02  

 

0.95 ± 0.02  

 

0.89 ± 0.05  

 

0.98 ± 0.02  

 

0.05  

 

21.45  

 

0.03  

 

0.96 ± 0.02  

 
Decision tree 1.00 ± 0.00  1.00 ± 0.00  1.00 ± 0.00  1.00 ± 0.00  0.00 ND 0.00 1.00 ± 0.00  

Naïve Bayes 1.00 ± 0.00  0.86 ± 0.03  0.73 ± 0.05  1.00 ± 0.00 0.14 7.33 0.00 0.90 ± 0.00  

Random forest 1.00 ± 0.00 0.86 ± 0.03  0.73 ± 0.05  1.00 ± 0.00 0.14 7.33 0.00 0.90 ± 0.00  
k-NN 1.00 ± 0.00  1.00 ± 0.00  1.00 ± 0.00  1.00 ± 0.00  0.00 ND 0.00 1.00 ± 0.00  

Artificial neuronal net 1.00 ± 0.00  1.00 ± 0.00  1.00 ± 0.00  1.00 ± 0.00  0.00 ND 0.00 1.00 ± 0.00  

Linear discriminant analysis 0.50 ± 0.08  0.32 ± 0.04  0.21 ± 0.04  0.50 ± 0.07  0.68 0.73 1.57 0.37 ± 0.07  

Support vectoral machine 1.00 ± 0.00  0.82 ± 0.04  0.67 ± 0.06  1.00 ± 0.00  

 

0.18 5.5 0.00 0.87 ± 0.00  

Ensemble 1.00 ± 0.00  1.00 ± 0.00  1.00 ± 0.00  1.00 ± 0.00  0.00 ND 0.00 1.00 ± 0.00 
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Metabolomic fingerprinting of CHD 

Seventy cases of CHD were compared to 280 CTRL. They were randomly separated into two 

equal group containing 35 CHD and 140 CTRL.  The first set was used to build the 

classification models and to validate therm; the second one was used to determine the 

diagnostic performance of the different classification models and of the ensemble model. Out 

of the 70 CHD, 12 had Tetralogy of Fallot (17,1%), 20 had Atrio-ventricular septal defect 

(AVSD) (286%) 20Hypoplastic Left Heart Syndrome (11,4%), 9 Tricuspid atresia (12,9%) ,5 

Truncus (7,1%), 16 (22,9%) Aortic coartation.  

The demographic and clinical characteristics of CHD and CTRL are reported in Table 9.; 

there were no significant differences between the two groups. Additionally, blood parameters, 

such as glucose, creatinine, transaminases were all normal for all enrolled subjects. 

Figure 28 reports the PLS-DA scatter plot representation of the classification of CHD and 

CTRL maternal serums, while Figure 29 reports the metabolites that were identified as the 

most relevant (VIP-score>2.0) in class separation.  

 

Classification model performance 

Table10 reports the diagnostic performance of each model and of the ensemble. Accuracy 

ranged from 82% to 94%. Best accuracies were obtained from Decision Tree, and Random 

Forest, while the lower performance was of the PLS-DA.  

The predictive ability of the models was assessed using an ensemble voting method. 

Ensemble score was evaluated as following: if a sample was correctly classified as CHD by a 

particular model, that model’s cross-validation accuracy was used, otherwise a zero value was 

assigned. Figure 30A represents the total score distribution. Total scores for CTRL and CHD 
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samples were 39.8±88.1 (range 0 – 446) and 570.7±211.5 (range 85-810) (p<0.001), 

respectively.  

Table 9. Demographic and clinical characteristics of the CTRL and CHD cohorts.  

 CTRL CHD 

Sample size  280 70 

Age (years) 32.0 (27.0-34.5) 33.0 (29.3-35.8) 

Marital Status 
 

Single 
Married 

 
 

93(33.2%) 
187(66.8%) 

 
 

25(35.7%) 
45(64.3%) 

Education  
 

<HS  
HS/GED 
College 

 
 

64(22.9%) 
121(43.2%) 
95(33.9%) 

 
 

20(28.6%) 
28(40.0%) 
22(31.4%) 

Cigarette Smoker 
 
Yes  

 

 
 

98(35.0%) 
 

 
 

27(38.6%) 
 

Parity  
 

Nulliparity 
Primiparity 
Multiparity 

 
 

82(29.3%) 
106(37.9%) 
92(32.8%) 

 
 

15(21.4%) 
33(47.1%) 
22(31.5%) 

Gestational age at 
sample (day) 

140.0 (113.5-
146.0) 

147.0(140-161) 

 
 
 
 
Ensemble model analysis showed an accuracy of 93.7%. Ensemble score cut-off value was set 

at 185. This value was selected as the one that shows the higher AUC (0.983±0.008) value in 

the ROC analysis (Figure 30B). 
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Figure 28. PLS-DA scatter plot representation of the classification of CHD (purple circles) and CTRL 
(yellow circles) maternal serums  
 
 
 
 
 

 
 

Figure 29. Heatmap plot of the most relevant metabolites (VIP-score > 2.0) 
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Table 10. Diagnostic performance of each classification model (Value± Standard Error) and of the ensemble.   

 

 
 
 

Model Sensitivity 
 

Specificity  Positive Predictive 
Value 

Negative Predictive 
Value 

Positive 
Likelihood 

Ratio 

Negative 
Likelihood 

Ratio 

Accuracy  

Decision Tree 0.77±0.07 0.98±0.01 0.90±0.05 0.94±0.02 36.0 0.23 0.94±0.07 
Naïve Bayes 0.80±0.07 0.92±0.02 0.72±0.07 0.95±0.02 10.2 0.22 0.90±0.07 
Random Forest 0.77±0.07 0.98±0.01 0.90±0.05 0.94±0.02 36.0 0.23 0.94±0.07 
k-NN 0.77±0.07 0.97±0.01 0.87±0.06 0.94±0.02 27.0 0.24 0.93±0.07 
Artificial Neuronal Net 0.74±0.07 0.96±0.02 0.81±0.07 0.94±0.02 17.3 0.27 0.91±0.07 
Deep Learning 0.63±0.08 0.99±0.01 0.92±0.06 0.91±0.02 44.0 0.38 0.91±0.08 
Support Vector Machine 0.63±0.08 0.96±0.02 0.81±0.07 0.91±0.02 17.6 0.39 0.90±0.08 
Logistic Regression 0.74±0.07 0.88±0.03 0.60±0.07 0.93±0.02 6.1 0.29 0.85±0.07 
PLS-DA 0.80±0.07 0.83±0.03 0.54±0.07 0.94±0.02 4.7 0.24 0.82±0.07 
Ensemble 0.77±0.07 0.98±0.01 0.90±0.05 0.94±0.02 36.0 0.23 0.94±0.07 
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Figure 30. A. Ensemble score distribution of the test samples. B. ROC Curve describing 
the ensemble machine learning performance  
 
 
 
Metabolomics pathways involved in CHD 
 
Metabolomics fingerprint of CHD was characterized by lower levels of malonic acid, 

methylglutaric acid, fructose and tocopherol, and higher levels of 3-Hydroxybutyric Acid, 

urea, androstenedione, leucine and putrescine, compared to CTRL (Figure 28) 

 

Discrimination among CTRL, CA, CHD and CNSM metabolomics profile  

Figure 31 and 32 report the PLS-DA scatter plot representation of the classification of CNSM, 

CA, CHD and CTRL maternal serums. There is visual evidence of separation among groups, 

demonstrating that we were able to identify different metabolomics profile for CTRL, CA, 

CHD and CNSM.  
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Figure 31. PLS-DA classification model: yellow circles are CA, while purple circles are CNSM and green 
are CTRL. There is visual evidence of separation among groups  
 
 

 

Figure 32. PLS-DA classification model: yellow circles are CTRL, while purple circles are CNSM and 
blue are CHD. There is visual evidence of separation among groups 
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DISCUSSION 

We used a metabolomics based approach to characterize and differentiate metabolomics 

serum profiles of mothers carrying a fetus with a CNSM. Twelve metabolites and their 

relevant biochemical pathways were found to be associated to CNSM:  mothers with a fetus 

presenting a CNSM had lower serum levels of myristic acid, lauric acid, glucose and stearic 

acid and higher levels of lactic acid, propanoic acid, gluconic acid, mannose and oxalic acid, 

compared to controls. Propanoic acid is a short-chain fatty acid, is usally known as the main 

metabolite accumulating in propionic academia, an autosomal recessive genetic disease in 

which neurological impairment is caused not only by the concomitant condition of 

hyperammonemia and metabolic acidosis, but also by direct lesions detectable by imaging 

(Shchelochkov, 2012). Myo-inositol is a cyclic polyalcohol that plays an important role as a 

second messenger, in the form of inositol phosphates. Impairment of myo-inositol metabolism 

has been associated with the neurological impairment occurring in diabetes mellitus and 

galattosemia (Greene, 1988; Kinoshita, 1974). Moreover, lethal effects of massive doses of D-

mannose in culture of rat embryos has been associated with growth retardation and faulty 

neural-tube closure. This has been explained by a modest inhibition of the glycolysis that 

constitutes the principal energy pathway in rat embryos, before oxidative pathways develop 

(Freinkel, 1984). Impairment of the TCA cycle as well as glycine, serine and threonine 

metabolism has also been described in a previous study (Zheng, 2011), performing a GC–MS 

based metabolomic profile of pregnant women affected with neural tube defects in offspring 

in comparison with pregnant women with normal pregnancy outcomes. The ensemble model 

showed an accuracy of 99%, demonstrating as a promising tool for the screening of CNSM. 

Althoug some classification models showed a very good performance, the ensemble model 

represented a more stable alternative because it matched the results of all models that alone 

could be affected by overfitting (Abbott, 1999). 

In order to define if the models were able to differentiate only between normal (CTRL) and 
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abnormal (CNSM) or also among different types of malformations, we characterized also the 

metabolomics profile of mothers carrying a fetus with CA and CHD and then we defined if 

the model was able to discriminate among the three different profiles.  We choose these three 

types of abnormalities because they are the most common, but also because there are some 

coomon features; for example, patients with CA can have associated mental retardation and 

/or heart problems. Therefore, it can be possible that common metabolomics pathways are 

involved in these three categories and that the model could not be able to discriminate the 

single profiles.  

Mother with a pregnancy complicated by CA had higher levels of 2-hydroxy-butirrate, 

alanine, linoleic acid, citric acid, phenylalanine, 3-methyl histidine, proline, benzoic acid and 

glyceric acid and lower levels of elaidic acid, mannose, myristic acid and stearic acid. 

Overall, this preliminary analysis of the metabolomic profile of maternal serum in CA 

pregnancies appears suggestive of a metabolic environment conductive to increased oxidative 

stress and a disturbance in the fetal central nervous system development. For example, we 

observed reduced levels of elaidic acid, a trans fatty acid, myristic and stearic acid, one of the 

most abundant fatty acid in the Western diet. Long-chain polyunsaturated fatty acids are 

important for growth and development of fetal vision and central nervous system, two 

systems impaired in almost all chromosomal defects. This evidence was already reported by 

Charkiewicz et al. (Charkiewicz, 2015) both in serum (even if not significantly) and in 

amniotic fluid. The role of phospholipids and sphingolipids in various diseases, in which 

pathomechanisms are related to impaired myelination/demyelination of neurons in the brain, 

such as Down Syndrome, has already been presented (Murphy, 2000). Murphy et al. showed 

reduced content of sphingolipids in the brain tissue of people with Down Syndrome. 

Moreover, in 1977, Johnson et al. (Johnson, 1977) reported that myelin structure of patients 

with Down Syndrome is composed of a lesser amount of unsaturated and long chain fatty acid 

with respect to control subjects.  
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The lower maternal serum concentration of mannose in mothers carrying CA fetus we have 

observed, has not been reported yet. However, Demirhan et al. (Demirhan, 2011) reported an 

association between a polymorphism of mannose-binding lectin gene (MBL) 2 and the Down 

Syndrome. It is supposed that this association can partially explain the high occurrence of 

infections in Down Syndrome patients. MBL is an important constituent of the innate immune 

system.  

Moreover, 2-hydroxy-butyrate increased in CA group. It is a byproduct of the conversion of 

cystationine into cysteine by the enzyme cystathione-β-synthase (CBS) and cysteine is then 

used for glutathione synthesis. Therefore, its increase may reflect an increased oxidative 

stress. Also, Bahado- Singh et al. (Bahado-Singh, 2012; Bahado-Singh, 2013) defined it as a 

discriminant maternal serum metabolite between euploid and Down Syndrome pregnancies. 

Oxidative stress is thought to be one of the most likely causes of neurotoxicity in Down 

Syndrome (Busciglio, 1995). CBS is overexpressed in the brains of these patients (Ichinohe, 

2005). Indeed, the CBS gene is located at 21q 22.3. High levels of alanine, proline, phenyla- 

lanine and 3-methyl histidine were also reported by Bahado-Singh et al. (Bahado-Singh, 

2014) as indicative of fetal heart defects. Many Our similar finding can be explained in 

consideration of the heart defects associated with CA. Indeed, one of the most important 

marker for CA, the increased nuchal translucency, is a marker also of CHD, highlighting the 

possible involvement of common metabolomics pathways.  

The ensemble model was able to correctly identify all cases of CA. 

Comparing metabolomic fingerprints of CNSM and CA, many VIP metabolites identified as 

significant to discriminate between cases and CTRL were completely different; the only 

common metabolites were: 2-hydroxy-butirate, mannose and stearic acid. In both CA and 

CNSM, level of stearic acid was lower compared to CTRL and it might be related to the 

important role of polyunsaturated fatty acids in CNS development both in CNSM and CA. On 
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the contrary, mannose was higher in CNSM and lower in CA compared to CTRL, while 2-

hydroxy-butirrate was lower in CNSM and higher in CA compared to CTRL. As reported in 

Figure 30, we were able to discriminate among CA, CNSM and CTRL using our model.   

In the last year of my PhD Program, we decided to identify the metabolomics profile of 

another class of fetal malformations: the CHD. Compared to CTRL, metabolomics fingerprint 

of CHD was characterized by lower levels of malonic acid, methylglutaric acid, fructose and 

tocopherol, and higher levels of 3-Hydroxybutyric Acid, urea, androstenedione, leucine and 

putrescine. 

Increased levels of Leucine and 3-Hydroxybutyric Acid in CHD were previously described by 

Bahado-Singh et al. (Bahado-Singh, 2014). 

Leucine is an essential aminoacid and 3-hydroxybutirc acid is a bioactive metabolite formed 

from the breakdown of leucine. They are both related to oxidative stress, inflammation and 

cardiovascular risk. It has been reported a positive effect on excitation-contraction of muscle 

cells, increasing calcium-release from sarcoplasmic reticulum and on aerobic capacity, when 

we supplement leucine (Arazi, 2018). In mice and in a canine pacing model of progressive 

heart failure, 3-hydroxy-butirrate seems to be used as a metabolic stress defense against heart 

failure. (Horton, 2019) A similar mechanism might be developed in fetuses with CHD.  

Putrescine is one of the most common biogenic amines in food. However, its accumation has 

been related to cytotoxicity. The consumption of this vasoactive biamine has been related to 

increased cardiac output, dilation of the vascular system, hypotension and bradycardia, 

possibly leading to heart failure and cerebral hemorrhage (del Rio, 2019). 

The ensemble model showed an accuracy to discriminate between CTRL and CHD of 93,7%. 

A part from hydroxyl-butyrate, increased in both CNSM and CHD, there were no common 

VIP metabolites between CNSM and CHD.  

Our model was able to discriminate among CNSM, CHD and CTRL, as shown in Figure 31. 
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 The present data are the result of a pilot study. These data are promising; however, a 

greater sample size and a blind evaluation are needed before this metabolic signature 

can be considered for clinical screening. The ensemble model we propose is a strength 

of our study because it is a very stable alternative to the single classification models 

which are subject to dataset dimension variations and class imbalances (Elrahman, 

2013). Indeed, the ensemble model performs well in the two extreme cases of data 

availability: when data sets are small and when data sets are large and unwieldy. In the 

case of small datasets, ensemble can use bootstrapping methods, such as bagging or 

boosting. For large data sets, ensemble is useful to train classifiers on dataset partitions 

and merge their decisions using appropriate combination rules.  

Data on metabolomics profile of CNSM and CA have been already published. (Troisi, 2017; 

Troisi, 2018) 

 
CONCLUSION AND FUTURE AGENDA 

The results of this pilot study are promising, showing a very good accuracy of  

metabolomics in CNSM detection despite the type of abnormality. This makes our 

metabolomic approach a viable alternative to currently existing screening systems. 

Moreover, metabolomics has the ability to identify the enzymatic pathways involved 

in a pathologic process, giving the possibility to better understand factors related to 

single disease. It would be interesting to determine if there is a difference in 

metabolomic profiles among the different malformations represented in our cohort, 

and if this approach could be useful in the differentiation of the different CNSM. This 

is not currently possible due to the limited number of samples per given anomaly but 

can be the subject for future studies.  
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