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Chapter 1

Introduction to Machine Learning

1.1 Introduction

Nowadays, there is a huge, growing interest in Machine Learning (see Figure 1.1). This field
became known to the large public relatively recently, but its roots go deep into the past century.

General interest is motivated by popular applications like: machine learning algorithms beating

the Go world champion (Silver et al., and Silver et al., ); self-driving cars being safer
than human drivers (Teoh and Kidd, ); algorithms for facial recognition achieving astonishing
accuracy rates (Parkhi, Vedaldi, and Zisserman, ). The excitement for these and other

applications made the name for algorithms being capable of “superhuman” intelligence.

Aside from these popular applications, the interest in these methodologies is rightfully moti-
vated by the fact that, viewed as a general purpose technology, they are literally (re)shaping our
society: web search engines; advertisements; customers profiling; social media; financial systems;
health sector and many others. All of these applications use some machine learning algorithms,
and some would likely not be possible without it. These algorithms make it possible to anal-
yse huge sets of data efficiently and effectively, and this motivates why they are interesting to
Economics.

There are two main lens under which Economics may look at Machine Learning. The first
one is analysing and understanding the impact that these new technologies are having on our
societies. Machine Learning is part of what is sometimes referred to as the fourth industrial
revolution,' and it is having and will have a tremendous impact on economic growth, inequalities,
productivity, innovations, employment, competition, consumers’ demand, etc. Also, this poses
serious problems for regulations. For example, Calvano et al., show that in some type of
algorithmic pricing” the algorithms learn to collude with one another; this clearly undermines
competition and raise regulatory issues.

The second point that motivates economists’ interest in Machine Learning resides in applied
economic research. In fact, machine learning methodologies have a lot to bring to more traditional
empirical research. We will focus on this second aspect in this work. For an excellent, broad

collection containing discussions on the impact of Machine Learning from the perspective of

!This term is first attributed to the Economist Klaus Schwab (Schwab, ).
2The paper analyses Q-learning, a type of reinforcement learning algorithm, which is designed to maximize a
stream of rewards based on a set of actions. Simply put, the algorithm learns to play the best action.
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Figure 1.1: Web searches for the term "Machine Learning" (on Google’s browsers) across all
over the world, since 2004. Values on the y-axis are between 0 (insufficient data) to 100 (highest
amount of searches). The graph shows a clear increasing interest in the topic as proxied by the
frequency of the searches. Source: Google Trends (https://www.google.com/trends).

several different fields in Economics, see Goldfarb, Gans, and Agrawal,

In this introduction, we briefly introduce two broad categories of machine learning methods.
Section 1.2 introduces supervised learning and unsupervised learning and briefly present different
applications in FKconomics. In Section 1.3 we concludes the chapter detailing supervised and
unsupervised learning approaches that will be functional for the contributions of the next two
chapters. This introduction is by no means a comprehensive survey of the literatures. However,

we will try to point out useful references and concepts relevant to the subsequent analyses.

1.2 Supervised and Unsupervised learning and Economics

In this section, we introduce both supervised and unsupervised learning, providing the general
ideas and goals of the two. Then we are going to briefly motivate why they are of interest to

applied research in Economics.

1.2.1 Supervised Learning

Supervised Learning (in the Machine Learning community); Supervised Pattern Recognition;
Classification. These names all refer to the same problem, of which several definitions can be

found.

The problem of searching for patterns in data is a fundamental one and has a long and
successful history. For instance, the extensive astronomical observations of Tycho Brahe

in the 16% century |...]. The field of pattern recognition is concerned with the automatic
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discovery of reqularities in data through the use of computer algorithms and with the use
of these regularities to take actions such as classifying the data into different categories.
(Bishop, )

In pattern recognition | .. .| each object is assumed to belong to one of a known number
of classes, whose characteristics have been determined using a training set, and the aim

is to identify the class to which the object should be assigned. (Gordon, )

[...] to extract important patterns and trends, and understand “what the data says.”

We call this learning from data.

In supervised learning, the goal is to predict the value of an outcome measure based on

a number of input measures.

In a typical scenario, we have an outcome measurement, usually quantitative (such
as a stock price) or categorical (such as heart attack/no heart attack), that we wish to
predict based on a set of features (such as diet and clinical measurements). We have a
training set of data, in which we observe the outcome and feature measurements for a set
of objects (such as people). Using this data we build a prediction model, or learner, which
will enable us to predict the outcome for new unseen objects. A good learner is one that

accurately predicts such an outcome. (Hastie, Tibshirani, and Friedman, )

All of the above definitions share the elements peculiar to supervised learning. These basic

ingredients, that are present in every classification task, are the following:

e A set of objects (data) with some measured characteristics (features, or to build a parallel

with classical Econometrics terminology, these play the same role as the regressors.)

e An outcome variable of interest (class labels) associated /known for a subset of the objects.

These labelled objects constitutes the training set.

e A learner/algorithm/model that, using the information of the training set, builds a mapping

from the features to the outcome.
e A set of non-labelled objects to be classified using the mapping above.

The fourth point above is not essential to perform classification tasks, but motivates the need
for supervised learning in the first place; there are two types of supervised learning tasks, namely
classification and regression. A classification problem is one in which the outcome variable is a
categorical one. On the other hand, in a regression problem the outcome variable is a quantitative
one.

For a visual example, refer to Figure 1.2. Here the objects are geometric shapes of different
size and number of sides, the color of the shapes is the outcome we are interested in. We would
like to infer a rule to assign colors to objects. We can structure the data information in a matrix
as shown in Table 1.1. Note that the size was coded as a dummy variable taking value 1 for big
size shapes and 0 otherwise. This is typical in Machine Learning: categorical variables often needs

to be encoded, and the type of encoding may affect the final classification performances and this
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is not always a straightforward task (Micci-Barreca, ). Despite its simplicity, this example
shows the archetypal supervised learning problem. In our example, the training set would consist
of the first 13 objects (or observations) having a label (Color) attached. A learning algorithm
would use the training information to infer a map m : Number of Sides x Size Big — Color.
Every classification algorithm (e.g., classification trees, artificial neural network, multinomial
logistic regression .. .) will produce such a mapping, which depends both on the training data at
hand and on the particular specification of the chosen algorithm. A “good learner” should be able
to predict “magenta” color for the 14-th object. Note that a learner using only the information
on size is likely to get the color wrong, assigning a “blue” label. This shows the importance of
model complexity (or degrees of freedom): more complex models can usually adapt better to
the data and have an higher predicting power on the training data (e.g. think about the R? in
linear regression with as many regressors as there are observations). However, if too complex, a
model can perform poorly on unseen data. This is known as the bias variance trade-off (Hastie,
Tibshirani, and Friedman, ).

Usually, to control for this trade-off, it is common to split the training set in two or three parts
(see Figure 1.3). A portion of the data is used to train the algorithm (train set); another portion is
used to make out of sample prediction (validation set); (optionally) a third portion is used to make
out of sample predictions after tuning (test set). The splitting is motivated as follows. Typically,
every classification algorithm needs to be defined in its structural /architectural components. For
example, in a regression model, we need to decide how many regressors to include, or if we use
a penalized estimation method we need to decide the value of the penalty. Another example is

the choice of nodes and layers in neural networks models.
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Figure 1.2: A toy example for super-
vised learning. The outcome vari-
able of interest is the color (binary:
magenta/blue). The shape size and
number of sides are the features. The
classification task is to infer the color
of the non-colored object.

Table 1.1: Colored shapes dataset.

Object Index

Number of sides
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Figure 1.3:  Train/Validation/Test
split. Proportions vary according to
the sample size. For moderate sam-
ple (> 1000 points), typical splits are
60/20/20 % or 50/25/25%. For very
large data, (> 1000000) 98/1/1%
might suffice.



6 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

These decisions are formalized in terms of quantities called hyperparameters, and these define
the model complexity. Once these parameters are set, the algorithm is “trained” on the training
set. To evaluate its out-of-sample performance, we use the validation set. If the performances are
poor on both training set and validation set, it is likely that the classifier is either too simple, or
the data are insufficient for the task provided. If the performances are good on the training set
and bad on the validation set it is likely due to a lack of similarity between train and validation or
to overfitting problems (i.e., the classifier is way too adapted to the observed data and generalizes
poorly on unseen data).

The scores on the training and validation set give a rough indication on the overall quality of
the classifier, which will in turn be adjusted in a trial and error fashion to improve the score on
both sets. Since both sets are used in this optimization problem (the training for estimation of
parameters and the validation for hyperparameter tuning®) a third set, the test set, is used for an
unbiased assessment of the out-of-sample quality of the final classifier (note that no optimization
is ever carried on this set). Tuning a classifier is not a simple task and tunable components
differ from classifier to classifier. Several classifiers may then be compared and selected on
their performances on the training and validation sets. There are several methods (more or less
sophisticated) to perform this model selection task (see Arlot and Celisse, and Kohavi,

).

Now let us summarize the typical workflow in supervised learning as described so far:

e Define a research question.

e Collect labelled data; perform opportune preprocessing to structure data information.
e Define a set of competing models/learning algorithms to be trained on the data.

e Split the labelled data; train the models and obtain performance metrics; optimize the

models with the aid of validation set.

e Select a model according to some criteria (as for example, the model maximizing a score

function on the validation dataset).

e Get an unbiased estimate of model performance on a test set, and use the selected model

to answer the research question.

1.2.2 Unsupervised learning

Clustering, or to immediately highlight its main difference with classification, unsupervised learn-

ing has a long history. Let us describe it via the words of some great contributors to the field.
Clustering is the grouping of similar objects.

A cluster is a set of similar objects. The basic data in a clustering problem consist of a

number of similarity judgements on a set of objects. The clustering operations attempt to

3In general, the tuning of a classifier is the “optimizations” of its hyperparameters (determining complexity
and architecture) in order to improve results both on validation and training set
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represent these similarity judgements accurately in terms of standard similarity structure

as a partition or a tree. (Hartigan, ,pp- 1;9.)

[...] the classes are not known at the start of the investigation: the number of classes,
their defining characteristics and their constituent objects all require to be determined.

(Gordon, , P 3.)

Informally speaking, clustering means finding groups in data. Aristotele’s classification

of living things was one of the first-known clusterings, a hierarchical clustering.

The aim of cluster analysis is often described as collecting similar objects in the same
cluster and having large dissimilarity between objects in different clusters.

(Hennig et al., , Pp- 2; 7.)

The basic characteristics of a clustering problem are as follows.
e A set of objects with some measured characteristics (variables or features).

e An definition of what type of clustering we require. That is, what is a “good” grouping of

objects? To what criteria should it respond to?
e A measure of similarity between objects coherent with the required clustering.
e A strategy (method) to cluster the objects together.

A fundamental aspect, which dramatically separates supervised and unsupervised learning,
is that the we do not have any “truth” to use as a reference. In supervised learning, we had to

classify points to a given number of classes. This immediately clarifies two aspects.
1. We know how many classes (or groups) we should look for.

2. We already have an understanding of what a good grouping is. This also guides intuition

on how the objects should be studied to deliver the correct classification.

In clustering, we do not have a correct classification. There is no label, nor any underlying
“truth” that guides the analysis. In the absence of classes (or groups) labels, how should the be
objects grouped in the first place? How many groups (or classes) should we look for? Consider
the example in Figure 1.4. The data is similar to that in Figure 1.2. Here we have either triangles
or square in the space. We observe their location in the space (say an Euclidean bi-dimensional
space) and their number of sides. The main difference is that we do not have class labels (actually,
we do not even know what is a “class” in this case). The figure shows three possible groupings.
We may want to define groups as being geometrical known objects, as square or triangles. In
this case, we can use as a similarity criterion the number of sides of an objects. Thus, we obtain
the third solution in Figure 1.4, which separates squares and triangles. Or maybe, we might not
be interested in geometrical shapes, but in physical objects’ proximity. Then, we may measure
objects similarity by the Euclidean distance. In this case, the “good” clusters are shown by the
first two solutions in the figure: in the first solution, we looked for two groups of most similar

objects; in the second solution we looked for three groups. Now the question is: which of the
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Figure 1.4: Example of a clustering problem
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tree solutions is the best? As usual, it depends. All the three solutions seem reasonable, and
all of them answer (reasonably well) to different clustering definitions. This example was used
to briefly introduce the problem: what is a cluster? How do we retrieve clusters? How many
clusters? Of course, there is no simple answer to these questions and there is a plethora of
equally valid approaches to the problem. To be precise, this is not even the full picture. Up to
now, we implicitly considered a cluster to be a partition of objects (into clusters). However, we
might want to “softly” split objects into clusters. That is, we may want to assign a degree of
class membership to objects for each class (also known as fuzzy clustering). Also, the number of
clusters we look for in the data, might be suggested by the data themselves (this can be done via
clustering validation and clustering selection methods). Finally, there are many different ways to
approach clustering: hierarchical clustering; spectral clustering; density-based clustering; model

based clustering; and others. Describing these different many approaches is not in the scope of

this introduction. However, we point at Hennig et al., for further references. This is a very

comprehensive collection, containing surveys on all the most relevant clustering approaches and
techniques. Also, a clear and wide perspective is given by Jain, Murty, and Flynn, , which is
an extensive and systematic review. The authors introduce the problem and also provide a typical
workflow. They make a distinction in two fundamental approaches to clustering (hierarchical
and partitional; further distinction follows) and treat a number of more subtle issues (e.g. data

representation, computational costs, ...). It is important to stress two points here:

There is no clustering technique that is universally applicable in uncovering the variety

of structures present in multidimensional data sets.

[...] clustering algorithms often contain implicit assumptions about cluster shape or

multiple-cluster configurations based on the similarity measures and grouping criteria used.
(Jain, Murty, and Flynn, )
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1.2.3 Economics and Machine Learning

There are many ways in which the interaction between Economics and Machine Learning can be
beneficial. Here we will illustrate some of them. We identify three main areas where Machine

Learning offers interesting solutions to Economics. These may be summarized as follows.
e Off-the-shelf usage of machine learning algorithms in applied Economics.
e Literature on Machine Learning and Causal Inference.
e Model selection methodologies.

In the following, we are going to treat each of them in order.

Nowadays, the great and large availability of new type of data opens many possibilities for
economic analysis. Usually, most of this information can not be processed with standard tech-
niques from Econometrics. These are typically scenarios in which off-the-shelf machine learning
methods can be applied. An excellent example of this are text analysis techniques. In general,
with this term one refers to the collection of methods to analyse and process textual data. In fact,
a large amount of them are unsupervised learning techniques. Gentzkow, Kelly, and Taddy,
provide a systematic review of text analysis methodologies. These allow to extract information
from text data and to summarize text similarities via, for example, distance-based clustering or
model-based clustering. For example, Bandiera et al., cluster textual information on CEOs’
activities collected at a frequency of 15 minutes blocks for one week. They are able to identify
two different behaviours for them, which they call “managers” and “leaders”, and also use this
information in analysing performance of the hiring firm. In general, these techniques can be used
to create new variables to be used in applied research.

Another example is satellite data. These are image data, which typically need machine
learning methodologies to be efficiently processed. Jean et al., use a convolutional neural
network on daytime and nighttime satellite data to identify features in the daytime images that
correlates with socioeconomic indicators such as household consumption expenditure and asset
wealth in African countries.

These are cases where machine learning methods are used to synthesize information from
new data that would not have been possible to exploit otherwise (other examples can be found
in Mullainathan and Spiess, ).

There are other cases where off-the-shelf ML methods can be applied improving on classical
approaches. These are prediction problems, and machine learning algorithms have proven to be
extremely good at prediction tasks. We distinguish three main type of prediction problems. The
first one is prediction in policy problems. Kleinberg et al., gives several examples: predict-
ing which teacher to hire for the most value (assessing whether to do it is a causality problem);
evaluating creditworthiness of borrowers; assessing whether or not to detain an arrestee based
on his/her probability of committing a crime; whether or not a patient should undergo medical
surgery, etc. Another category of prediction problems is that of prediction in estimation tasks
(Mullainathan and Spiess, ). For example, in instrumental variable two stage approach, the
first stage of regressing the explanatory variable on the instrument can be seen as a prediction

task. After all, only the predictions from this stage enter the subsequent one. Finally, the last



10 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

category is that of predictions used to test economic theories that make statements about pre-
dictability issues (e.g. efficient market hypotheses). For further insight see Mullainathan and
Spiess,

Those described above are all cases in which plain vanilla machine learning methods can be
applied without further modifications. However, ML methods are also interesting to the liter-
ature on Causal Inference. In effect, this concerns more supervised learning than unsupervised
learning. Indeed, thinking at the standard regression problem, unsupervised learning has totally
different goals as we saw in Subsection 1.2.2. The former is interested in the relationship among
explanatory and outcome variables, the latter is interested in similarity between objects. On a
different note, supervised learning seems much more closer to the regression framework. In fact,
in this case we are willing to find a relationship between features and outcomes (see Subsec-
tion 1.2.1). Nonetheless, there is one substantial difference between the classical ML approach
and the causal inference approach, namely their different focus: machine learning algorithms
are typically optimized to make predictions, not causal statements. We can think of them as
maximizing the R? (as a measure of goodness-of-fit) of a regression problem. On the other hand,
in causal inference we are usually willing to trade off explanatory power with the identification
of parameters, so as to being able to assess causal relationships. A typical example is as follows
(Athey, ). Imagine to have available data on prices and hotels’ occupancy rates. Typically,
at higher prices are associated higher occupancy rates as hotels tend to increase prices when
they fill up. Thus, price would be a good predictor of occupancy rate, so that if we were to
make an estimate of the latter, looking at price would be a good choice. Nonetheless, if we
were to run our hotel, we would never conclude from this that if we raised the prices enough we
would immediately fill up all the vacancies. How occupancy rate changes as the price change
is a causal inference question. Machine learning algorithms are typically meant to solve the
prediction tasks instead (Mullainathan and Spiess, discuss this aspect in an extremely clear
way with LASSO regression). Does this mean that ML algorithms can not be used for causal
inference? The answer is no. In principle, there is no conceptual difference between the aim of
a regression or that of a neural network: they both minimizes the sum of squared differences
between a function of explanatory variables and the outcome variable. In practice, there are
several reasons why ML algorithms can not be directly used for assessing causal relationships:
(i) difficult interpretability for more complex methods (e.g. it is not really clear how one should
interpret nodes’” weights in a neural network); (ii) classical implementations of ML algorithms are
pursuing a different target than what needed for causal inference; (iii) lack of an identification
strategy for the parameters of interests. Upon solving these problems, ML methods could also be
used in assessing causal relationships. Typically, this requires to either reformulate the objective
function that the algorithm optimizes (for example this is done in trees used for treatment effects
estimation proposed in Athey and Imbens, ) or to design carefully the employment existing
methods (an example of this is the double LASSO procedure proposed in Belloni, Chernozhukov,
and Hansen, ). Athey, reviews many different settings where the literature investigates
the application of machine learning methodologies to classical causal inference problems. As the

author argues, one important aspect is that, while it is likely that methodologies are going to
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change to include more sophisticated ML algorithms, the basic identification strategies are going
to stay unmodified. Only the latter can ensure the validity of causal inferences. We quote from

Athey, the identification strategies that received attention from the literature:
e “treatment randomly assigned (experimental data)”;
e “treatment assignment unconfounded (conditional on covariates)”;
e “instrumental variables”;
e “panel data settings (including difference-in-difference” design)”;
e “structural models of individual or firm behaviour”.

For each of these strategies, different problems of interests are: estimating average treatment
effects, estimating heterogeneous treatment effect (parametrically and nonparametrically), es-
timating optimal treatment assignment policies and identifying groups of individuals that are
similar in terms of their treatment effects. In these cases, advantages of machine learning meth-
ods are to be found in their higher degree of complexity with respect to standard methods and

their ability to handle high dimensional data efficiently.

Finally, Machine Learning is also interesting to applied research in Economics for its sys-
tematic approaches to model selection. For example, methodologies as cross-validation (see also
Subsection 1.3.2) can be extremely beneficial to researchers to aid the selection of a model speci-
fication, especially in those contexts where complex data structure are at hand. In such cases, it
would be an hard task to fully document the procedure that led to the selection of a particular
model. On the contrary, model selection methods from Machine Learning gives a data-driven,

principled and systematic way to assess this, being also reproducible (see Athey, ).

1.3 Learning: introductory material

In this section, we review the supervised and unsupervised learning concepts introduced above.
This discussion will set the basis for the next two chapters. The review here is extremely limited.
We only introduce basic notions (e.g. misclassification rate, bias-variance trade-off, etc.), and

methods useful for Chapers 2 and 3.

1.3.1 Probability models and related methods for clustering

McLachlan and Rathnayake, report that one of the first works adopting a model-based
approach to cluster analysis is Scott and Symons, . Since then this approach has been widely
developed and applied. The well known McLachlan and Peel, book gives an exhaustive clear
treatment of mixture models and related issues (not confined to cluster analysis only). Other good
surveys on model-based clustering are given in: Fraley and Raftery, Fraley and Raftery,

, and McLachlan and Rathnayake, (which is also the opening reference of this section).

We borrow from these sources to introduce model-based clustering.
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Model-based clustering is a probabilistic approach. Probabilistic in the sense that we as-
sume that there is a probabilistic model generating the data and we try to retrieve this model.
The model itself has an implied clustering scheme. It is typical to assume that the underlying

generating process is a mixture distribution specified by density:

K

fl@) =), mful®), (1.1)

k=1

where K is the number of mixture components, 7 are mixing proportions such that Yk 0 <
mp < 1, and Y, m, = 1, and f;, are density functions. For example, one typical formulation is

the use of Gaussian density functions, so that for each k, fj is represented by:

L 1 xr — Iy—1 T —
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where ¢( - ;u, X) indicates the (multivariate) Gaussian density with mean p and (co)variance
(matrix) 3, p is data dimensionality, i.e. € RP. However, in general, densities are not restricted
to be Gaussian (McLachlan and Peel, ). Then, we may identify groups or clusters with the
mixture components, i.e. each component defines a cluster.

Figure 1.5 gives a graphical example. In the top figure, we see a two dimensional mixture
distribution with 3 Gaussian components. In the bottom figures we see the implied clustering
by some model-based method. Each component defines a single cluster, these are highlighted by
different colors and are well separated. Thus, we say that a good clustering is the one that is
implied by the mixture components or that mimics the mixture components. This is evident in
case of well separated mixture components. However, when the components overlap, it may not
be desirable to identify each cluster with a component. We will see this later.

Practically, one observes only points X,, = {x1,...,x,}. These are assumed to be realizations
of independent and identically distributed random variable X;, ¢ = 1,...n, with density function
f (see (1.1)).* Usually, also the form of the components’ density, fi’s, is assumed beforehand;
everything else needs to be estimated. This is usually done via mazimum likelihood, where the
data likelihood is defined as: ok

LO) =1 mafulzi), (1.2)

i=1k=1

where 6 collects all the parameters of the model, § = [my, p1,%1,..., 7Kk, br, XKx]. Let 0% =
arg maxy L(#). This can be used to cluster data at hand by assigning points to the most “suitable”
component described by 0*. We will make this clear this in what follows. Analytic maximization
of (1.2) over 6 is not feasible in general, so that typically other approaches are needed, like the
EM (Expectation Maximization) algorithm. In order to introduce the latter, we first need to
rephrase the problem in terms of an incomplete information problem.

We will consider each of the X; random variable as arising from one of the K components.
]T

Thus, consider n i.i.d. random vectors, Z;, i = 1,...,n, such that Z; = [Z; 1,...,Z; k|, where

each Z; j, can take value 0 or 1 with probability of being 1 equal to m, and ), Z;, = 1. Thus,

4Tt would be more precise to say that a mixture distribution is hold to be good representation of the data at
hand.
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Mixture Density
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Figure 1.5: (Top) A 3 components Gaussian mixture distribution. (Bottom-Left) Contour sets
of the 3 component Gaussian mixture; each component is highlighted with a different color. In
model-based clustering we assume that each component constitutes a cluster. (Bottom-Right) A
sample from the 3 components mixture; points are colored (clustered) as the generating mixture
component.

for each i, z = [21,. .. ,zk]T, 2 €{0,1}, Yz = 1:

K
P{Z; =z} = szk,
k=1

so that Z; is a draw from a multinomial distribution with probabilities 7;’s. Conditioning on
Zir = 1 we assume that X; has density f. Thus, the unconditional distribution of X; in given
by (1.1), so that this framework gives the mixture model introduced above. Had we observed

the full information, we could compute the complete data likelihood:

CL(9) = ﬁ ﬁ (kak(xi)>2i’k, (1.3)

i=1k=1
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where
1 if x; was drawn form component k,
Zik =
0 otherwise.
Thus, the observed data, {z1,...,x,}, is said to be incomplete because we miss the information
on z; . The complete data is {(z1,21),..., (zn,20)} (2 = 201, ,z@K]T), where the indicator

variables, zj’s, are realization of the variable Z; introduced above (see McLachlan and Peel,

).

It is preferable to work with logarithmic transformation of the above quantities, so that:

n K
1(6) ==log L(6) = Y log ( 3 Trkfk(:ni)), (1.4)

i=1 k=1
n K
cl(0) :=1logCL(#) = Z 2 zi g log (T fr (). (1.5)
Now consider the following (Biernacki, Celeux, and Govaert, ):

K
Z zi g log (g fr(2i)) =

—cl(f Zlog ( i Tk fr (i) ) -
k=1 k=1
n K K
> <log ( > k(i ) Z‘ 2 log (71 fi xz))) =

k=1

Zk 17kak($z) _ = lo Hk 1 (ﬂkfk(%))zm _
<Hk 1(7kak($z))zl’k> Z g< S 17kak($z') )

_ZZZZkIOg <7kak($z> EZszlog Tzk h’<9)

k=1 Zk 17Tk:fk( )

||M:

|M:

=1

It is possible to show that 7’s are the expected values of the variables Z’s given observed data

and parameters; that is the posterior distribution of the indicator variables (McLachlan and Peel,

):
7k [ (i)

Z?=1 kak(%)

Therefore, the sample log-likelihood function can be decomposed as:

Tik = Tk(l‘i;e) = = E{Zi,]C = I‘Xl' = {L‘Z,e} (1.6)

1(6) = cl(6) — h(6).

We can not maximize [(0) yet, since the z’s are still unknown. Finally, consider taking the
expectation over the indicator variables conditional on data and parameter vector 0" (i.e. z;
should be replaced by Z; j, and we are going to take expectation along these variables; see Redner
and Walker, or McLachlan and Krishnan, ):

E{1(0)|Xn;0'} = 1(0) = Q(010') — H(0]6") = E {cl(0) — h(0)|Xn;0'} (1.7)
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where, making explicit the parameters 6 or #’ with respect to which the quantities are computed,

Il
1=
M=

E{cl(0)[Xn;0'} == Q(0]0) Tik(0') log (7 (0) fi (245 0)),

-
Il
—_
B
Il
—_

7ik(0") log(7i 1(0)).

M=
D=

E {h(0)[Xn:0'} == H(0]0) =

~
Il
—
B
Il
—

These quantities can be computed and used to maximize [(6). The EM algorithm does this by
maximizing Q(6]0’) in an iterative fashion, as shown in algorithm 1, which also details the closed
form solutions for the Gaussian case.” The procedure will give an estimate, g+EM ), of 6*.

It is possible to show that 1(§7*+1D) = 1(A®)), so that at every iteration the likelihood function
is monotonically increasing (Dempster, Laird, and Rubin, ). In general, for a sequence of
likelihood values [(0%) bounded from above, the EM algorithm is guaranteed to converge to some
value of the likelihood l(é*) that is also guaranteed to be a stationary point. This, however, need
not to be a local or global maximum (see McLachlan and Krishnan, ). Under additional
assumptions the convergence to global or local maxima for the EM algorithm can be established
(Boyles, ; Redner and Walker, ; McLachlan and Krishnan, ).

The EM algorithm is widely used in practice but may present drawbacks (Fraley and Raftery,

): conditions ensuring convergence to optima are usually not verifiable or not satisfied; it may
be sensitive to initialization; it is typically computationally slow when the number of components
K is large.

The estimated 6*FM is then used to cluster data. This may be used to retrieve an “hard”

assignment of points to clusters or a “fuzzy” one by computing the following quantities:

%i(fM) = (2 0FFMY k=1, K; égM) = arg max 7, (2;; 0*FM). (1.8)
’ ’ k=1,...K
For each i = 1,...,n and each k = 1,..., K, the 7’s (estimated posterior probabilities) give a

measure of the confidence with which point x; is assigned to cluster k. This is a fuzzy clustering in
the sense that points are not definitively assigned to one cluster or another. Rather we estimate
for each point the probability that it belong to a particular cluster. An hard assignment, which
assign each point z; to a single cluster k, defines a partition of the sample data given by the Z’s.
These are computed as the optimal Bayes allocation, so as to assign point x; to the cluster, k,
most likely to have generated it, according to the posterior probabilities 7’s. 2’s is also called
the MAP estimator of class assignment.

Up to now, we implicitly assumed a fixed number of mixture components, i.e. clusters, given
by K. However, the number of clusters is typically not known in advance and needs to be selected
(along with other modelling aspects). This will be discussed in length in Chapter 2.

Another common approach in model-based clustering maximizes the classification likelihood,
defined as:

LC(G, Zlv e 7271) = H(bzz(xl)?
=1

5The presented one is a basic implementation of the algorithm. There are many different choices, including:
initialization methods, different convergence criteria, and restriction on estimated parameters. Also, this can be
adapted when the M-step does not have closed form solution (GEM); see McLachlan and Krishnan,
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Algorithm 1: EM algorithm. (GM: Gaussian Mixture updates.)

Input: data X,,; initialization of parameters 0(?); threshold e.
Output: 0%,
i< 0
Converged < 0
while Converged < 1 do
E-step: Compute Q(A|0®)) = E (cl(0)[Xy, H(i))
M-step: Compute A0+ = argmax, Q(A|0™)
if {1(00T1)) —1(0%)) < €} then
| Converged <« 1
1<—1+1
é*EM — o)

In case of Gaussian mixtures, i.e. fr = ¢, k = 1,..., K, the E-step and the M-step can
be conveniently expressed in closed forms solution:
E-step (GM):

n (00 7k (09) pp (w5 61))
’ S 7 (00) g (53 00))

M-step (GM):

ﬂ_}gi-‘rl) - an Tz}k(e(i)); MSH) - S i p(09)
i Zz 174, k( ( )
st i =g ) — ) T (09).
k n o (00 ’
21:1 T’L,k( )
pli+1) _ [Tr(i+1) (i+1) y(i+1) (i+1)  (i+1) Z(i+1):|.

1 oML s e T LR Ty A

where z; = k if point ¢ belongs to component k (more generally, ¢ is replaced by density func-
tion f; composing the mixture; these may be different from Gaussian densities of course). This
is similar to the complete data likelihood, (1.4), except for the weight n’s. Also, the direct
maximization of the classification likelihood treats z’s as parameters to be estimated as well,
introducing a combinatorial aspect that makes this task typically hard to solve. For this reason,
other approaches are preferred, like the CEM (classification EM algorithm), which is a modifica-
tion of the standard EM, introducing the C-step in between the E and M steps. The C-step hard
assigns points to cluster via the posterior probabilities from the E-step, the M-step maximizes
parameters cluster-wise (see for example Celeux and Govaert, ).% This method Agglomer-
ative hierarchical clustering is another option (i.e., successively agglomerating points in clusters

in order to maximally increase L.. See Fraley and Raftery, ).

Lastly, we briefly discuss restriction and parametrizations for covariance matrices in Gaussian

mixture models.

5Tt must be noted that several authors used a CEM-type algorithm more or less explicitly; for earlier references
than Celeux and Govaert, , see Scott and Symons, , Bryant and Williamson, and McLachlan,
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The degeneracy of covariance matrices may cause a failure of the EM algorithm due to the
unboundedness of the likelihood (e.g. see McLachlan and Peel, ). This happens when one of
the component is centred on a sample point and its covariance tends to a singular matrix. This
motivates the introduction of some restrictions to prevent the covariance matrices to become
singular. For example, in univariate case Hathaway, proposed to restrict components’ vari-
ances so that min; j {o;/0;} = ¢ >0, foralli # j,i,5 = 1,..., K, for some ¢ > 0. This guarantees
the existence of a global maximizer, 8*, of the likelihood. The author also proposes a possible
extension to the multivariate case. This is reformulated via eigenratio constraint by Ingrassia,

(in this work and also in Ingrassia and Rocci, EM algorithms implementing these
constraints are proposed). Eigenratio constraints were also proposed in the context of classifica-
tion likelihood in Garcia-Escudero et al., . Under few regularity conditions, this constraint
guarantees existence and consistency of the solution to the maximum likelihood problem (see

Coretto and Hennig, ). The eigenratio constraint is as follows:

Amax
ma <,y< +OO, (19)

)\min

where Apax and Apin are the highest and smallest eigenvalues of all the components’ covariance
matrices.

That this constraint affect the geometric shape of the clusters. For example, setting v = 1
implies that all the covariance matrices are spherical (as in k-means clustering). However, since
the parameter « can change continuously, it is not easy to state its effect on the shapes for other
values. Intuitively, higher values of v allow for more flexible shapes of the covariance matrices.
However, the shape of the clusters may be more easily controlled via parametrizations of the
covariance matrices.

In model-based clustering, the geometric shape of the mixture components determine also the
clusters’ shape: elliptical clusters, spherical clusters, elongated and so on. In Gaussian mixtures
this is essentially controlled via the components’ covariance matrices. Collecting other proposals
in the literature (Fraley and Raftery, ), Banfield and Raftery, proposed to consider the

eigenvalue decomposition of the covariance matrices given by
Y = \e DA DY (1.10)
where

o )\ = ’Ek‘l/ P is the highest eigenvalue, controlling for k-th cluster size, meaning the volume

of the cluster in the p-dimensional space.

e D;’s are the eigenvector matrices, controlling for the orientation of the cluster in the p-

dimensional space.

e Ay is a diagonal matrix of normalized eigenvalues sorted in decreasing order, {ax1, ak2, - .., akp} , ’Ak’ =
1. This controls for the shape of the cluster. For example, if ap; » aro then the cluster is
basically concentrated on a line (note: the orientation of the line depends on Dy), while if

all the eigenvalues are of the same magnitude we have a spherical cluster.
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Table 1.2: Covariance eigenvalue parametrizations. p is data dimensionality. « counts the num-
ber of parameters other than those in covariance matrices, i.e. means p’s and mixing proportions
m’s; « = Kp + K — 1; if mixing proportions are restricted to be equal, @« = Kp. f counts the
number of parameters in a covariance matrix; § = p(p + 1)/2.

5 # parameters Implied Clusters’  Clusters’ Clusters’
k to estimate Distribution Volume Shape Orientation
A a+1 Spherical Equal Equal -
Al a+p Spherical Variable Equal -
AA a+p Diagonal Equal Equal Coord. Axes
A A a+p+K-1 Diagonal Variable Equal Coord. Axes
A a+Kp—K+1 Diagonal Equal Variable  Coord. Axes
A Ag a+ Kp Diagonal Variable  Variable  Coord. Axes
ADADT a+ B Ellipsoidal Equal Equal Equal
MDA, DT a+pB+K-1 Ellipsoidal Equal Variable Equal
A\ DADT a+B8+(K-1)(p-1) Ellipsoidal Variable Equal Equal
Ay DALDT a+ B+ (K—-1)p Ellipsoidal Variable  Variable Equal
AD,ADT a+ KB—(K—1)p Ellipsoidal Equal Equal Variable
M. D AD a+KB—(K—-1)(p—1) Ellipsoidal Variable Equal Variable
ADy A Dy, a+ KB—(K—-1) Ellipsoidal Equal Variable Variable
Ak DkAkDg a+ KB Ellipsoidal Variable Variable Variable

The parametrization (1.10) is a flexible one and allows to easily take into account several dif-
ferent clustering scenarios, controlling for the relative shapes of the clusters by constraining some
of the components to be equal across k. One of the main motivation for these parametrization is
to have more parsimonious models: some parametrizations, indeed, allow for a great reduction in
the number of estimable parameters, which helps reducing the variance of maximum likelihood
estimates, especially in smaller samples (e.g. see Table 1.2 ahead). Celeux and Govaert,
give a detailed treatment of 14 different models of interest arising from this parametrization and
they detail the M-step for both EM and CEM approaches (E and C steps stay as usual). The
Mclust package in R language implements EM estimation with these parametrizations. Table 1.2
joins Table 3 of Scrucca et al., and Table 1 of Celeux and Govaert, . This table shows
all the 14 different cases together with the number of parameters to be estimated (note that
when the subscript k is present, it means that the model allows the corresponding object to vary
across clusters).

It must be noted that these parametrizations are also extendible to non-Gaussian mixture
(Banfield and Raftery, ). For example, the popular EMMIXskew Package (Wang, Ng, and
McLachlan, ) allows one to estimate not only (skewed) Gaussian mixtures, but also mixtures

of (skewed) t distributions use similar alternative parametrizations.

1.3.2 Model fitting, approximation error and the bias-variance trade-off

Let X be the feature space, i.e. the space where the features are represented. In our framework,
X is a space of the form RP! x NP2 x {0, 1} for some integers p1, p2, ps. In other words, the
features can be quantitative, categorical or binary. We will denote a single element of the space
X as x and address it as features. If p; + p2 + p3 = p, we say that the number of features is
p, and x = [z1,29,... ,xp]T. Let Y be the space of the outcome variable; in our application
Y € N, i.e. a categorical variable. Thus, we are interested in classification problems. In other
settings, ) could be binary or quantitative as well. A further generalization is to have more than

one dimension for ): these are known as multi-label classification problems (e.g. see Tsoumakas
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and Katakis, for a brief introduction and known methodologies). An element of ) will be
denoted by y and referred as label. We assume to observe n labelled objects from X, namely we
observe n pairs from (X,)); we refer to those pairs as (z;,¥;), i = 1,...,n. Note that the pairs
(x,y) may be seen as realizations of random variables (X, Y), taking values in (X, )) and defined
on an underlying probability space (2, F, P). With a slight abuse of notation, we will refer to
P also for the probability induced by the random variable X and Y, so that P(X,Y") indicates
their joint probability. In fact, we are interested in modelling some aspects of the conditional
distribution P(Y|X) = P(X,Y)/P(X). Typically, this is modelled through mappings from the
feature space to the outcome space:

fO) =Y.

this mapping is chosen in order to optimize some criterion. Building a parallel with Econometrics,
suppose we are interested in predicting the values of a continuous variable Y (i.e. Y € R) using
information on X. As a criterion to evaluate our predictions we may look at the classical squared

error (Y — f(X ))2 Now, minimizing the average value of this criterion leads to:

Exy (Y — f(X))2 =Exy (Y — f(X)+EyxY —Eyx Y)2 =
Ex Ey|x ((Y —Ey|x Y)2 + (f(X) —Eyx Y)2 —2(Y —Eyx V) (f(X) —Ey|x Y)) =

Ex Eyix ((V = Eyix ¥)* + (F(X) = Eyjx Y)°),

which is minimized at:
f(X) =Eyx Y = f*,

(see Hastie, Tibshirani, and Friedman, , or Angrist and Pischke, ). Of course, f* is not
available and needs to be approximated somehow: the learning algorithms differ in the way they
approximate this function. The function f* was determined minimizing the particular criterion
(Y - f(X ))2 These criteria are often called loss functions and we will denote a generic loss
function by L. A common choice of L for classification problems is the so-called 0-1 loss, which
takes value 1 if the predicted class is the true one and 0 otherwise. A generalization of the
square loss presented above is Cucker and Smale, ; for a comparison of loss functions for
both classification (binary) and regression problem see Rosasco et al., ; for a survey on

classification strategies with categorical output variables see Aly,

Generalizing the discussion above, the aim of a supervised learning problem is to minimize
the risk R, where:

R(f) = Exy L(Y, f(X)),

for a given L. The minimum achievable risk is defined as:

R(f*), f*= argmin Exy L(Y, f(X)). (1.11)

feall functions
Typically, (1.11) is not feasible. With learning algorithms, we try to approximate f*, by re-
stricting the possible functions f to a subset, say H, the dimension of which depends on the

algorithm’s complexity. If P(X,Y) was known, the minimum achievable risk, according to a
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given algorithm, would then be:

R(f), f= ar§minEX7y L(Y, f(X)). (1.12)

eH
However, (1.12) is not achievable either, because we do not usually know P(X,Y’). However,
P(-,-) can be learned from the data. Typically, the empirical measure replaces P so that (1.12)

is solved in terms of the empirical version:

A A~

1y
R(fn), fa=argmin— )" L(y;, f(x:)). (1.13)
fen NG
Note that R(f*) < R(f) < R(f,). Then it is natural to ask: using f, in place of f*, how far

from the optimum are we? In term of the above quantities, this can be expressed as:

R(fa) = R(f*) = (R(f) = R(f*)) = (B(fa) = R(])),

where we call approzimation error the first term on the right-hand side and estimation error
the second term. The approximation error depends on the complexity of the learner. The more
complex is the learner, the richer is the set H, and the closer are f and f* (refer to Figure 1.6).
The estimation error arises because we are estimating f with sample information. It depends
both on the complexity of the learner and on the sample information. Increasing the complexity
of the learner, the approximation error usually drops, while it can be shown that the estimation
error increases (this is basically due to the overfitting bias). This is also sometimes referred as
the bias-variance trade-off. It is worth to notice that for some algorithms, there exist bounds for

the estimation error.”

In order to evaluate a model, we would need to estimate R( fn), which is given by:
IEX,Y L(Ya fn(X))S

This is not available of course, and a naive estimate of this would be the following:

n

L3 L ). (1.14)

i=1

Unfortunately, (1.14) is not a good estimate of R( fn) Indeed, recalling its definition, f,, mini-
mizes (1.14), leading to underestimate R( fn) For this reason, a more sensible way to proceed is

the following: split the data in two part, a training set, Tr, and a test set Te; compute fn by

fn = argmin% Z L(yi, f(x4));

ferm el &

"The terminology used here was adapted from Vapnik, , Vapnik, , Hastie, Tibshirani, and Friedman,
. For a short introduction see Vapnik, . For the bound of estimation error one needs to evaluate the
so-called Vapnick-Cervonenkis dimension of the learner, which measures its complexity: for further details see
Vapnik, Levin, and Cun, ; for neural network see Koiran and Sontag,
8Since this quantity is computed for a given fn, we take the expectation conditioned on a particular sam-
ple/training set (this is what is referred as Erry in Hastie, Tibshirani, and Friedman,
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Figure 1.6: Representation of the approximation error and estimation error. Among the space
of functions (blue set) the function f* minimizes R; the function f minimizes the risk R among
the functions of the space H (dark orange set), implied by the chosen model; fn minimizes
the sample average of the loss function L on the observed sample. The dashed lines represent
distances. As the classifier becomes more complex, the space H becomes wider (represented by
H', light orange set) and the new solutions are represented by f" and fT’L the approximation error
(dashed line connecting f and f*) reduces, while the estimation error (dashed line connecting
f, and f) increases.

approximate R(f,) with
Z ym fn xz (115)

i€Te

The idea is to approximate the risk, for a given fn on unseen data, in order to mitigate the

underestimation due to overfitting. Note also that (1.15) is an unbiased estimator for R(f,).

A second issue is model selection. Typically, we have a plethora of classification/regression
models and each of them has several hyperparameters. These are parameters that determines
the set H, and thus the function fn obtained by optimization, but are not directly optimized
when minimizing ﬁ Diete L(yi, f(x;)) (as an example, these are the number of nodes/layers in a
neural network; allowed numbers of splits in a classification trees and minimum number of point
in each terminal node; penalization parameter in a lasso regression etc.). However, we would
like to optimize these “architectural” parameters as well. An approach is to try many different
configuration and compute the implied risk for each of them. More formally, let a configuration

of hyperparameters denoted as «, we need to rewrite fn considering its dependency on «:

) = argmin 3 Ly S
feHa zeTr

Then, ideally we would like to find a* so that:

R(f(a*)) = arg min R(ﬁ(f‘))

«
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A couple of remarks here: we are evaluating the optimum obtained using the training set for a
given a, ﬁ(La), on unseen data to avoid error underestimation; the minimization over all the pos-
sible configurations of « is typically extremely hard and computationally unfeasible. A solution
to this is to try in a principled way only few of the possible configurations of o and to select the
one achieving the minimum value for R( fT(La)). Selecting the best value for « is known as tuning.
Once the tuning is completed and the best model has been selected, we might ask what the error
of this model is. Note that if we were to use the same error used to select the model, we would
incur in the same issue above in using the training error (1.14) as a proxy for R(f,): the error
used to select « is minimized with respect to the chosen «, so that it would likely underestimate
the error on unseen data. To overcome this issue, we split the original dataset in three different
samples as shown in Figure 1.3. For convenience let us (re)define the training error, validation

error and test error as:

eny = \T\Z (v, £ (20 (1.16)

€T

Z L(ys, f$* (21)); (1.17)

zeVa

€Te 1= |T | Z yl,fn x;)). (1.18)

i€Te

Then, the procedure goes as follows: for a given «, use the training set to compute fT(La) and
eTy; with the so computed f,sa), compute ey, using the validation set; use e and ey, to aid the
choice of a; select a* giving the lowest ey,; using the test set, obtain an unbiased estimator of

the risk by computing e, for fT(La*). Figure 1.7 provides a typical workflow.”

9This is just for illustrative purposes. We do not intend to provide an exhaustive listing of cases, or a definitive
way to approach the problem. It is a rough indication of a typical workflow and some of the suggestions may not
apply in all cases.



Research . Collect
Question Data

Training not converged

Validation_Set

Test Set. |

Answer
Question

Figure 1.7: Typical workflow. Define a research question (can be inspired by data availability, motivating the
double-sided arrow) and collect the needed data. Also, define some model (learning algorithms) in order to exploit
data information. Having a model (with an initial architecture «), we can start an iterative procedure to optimize
it. Split the data in training, validation and test set (separated by the dashed line). Train/fit the model on training

data and compute the training error obtaining fﬁ“) and eTy. The “goodness” of the errors is problem specific: in
some fields values that would be otherwise be too low might be acceptable; one could use the related literature as
a benchmark. Poor values here may depend on failure in training convergence (needs to re-estimate; sometimes
requires tuning « to achieve convergence), or the learner may lack complexity to adapt to the data. Upon an
acceptable ery, use the validation set to estimate the generalization error, ey,. Poor values here are usually due
to overfitting (tune « to obtain a “simpler” model). In some cases, data might not contain enough information
to obtain good results (#-line; collect more data). In trial and error fashion, tune « to achieve the best value for
eva. Repeat to tune other learners (if more than one is considered), and choose the one achieving the best ey,.
Calling f,;" the result of this process, we can (optionally) obtain an unbiased estimation of its generalization error
using the test set to compute ete. Finally, we re-train f;’: using the whole data and use it to answer the research
question.
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There are several ways to perform tuning and model selection. All of them rely on splitting
the original data in multiple samples. There is no general principle to decide splitting pro-
portions, however there are some splitting proportions that are more popular than others (see
Figure 1.3). Other popular methodologies are k-fold Cross Validation, leave-one-out, bootstrap-
ping and stratified splitting (see Hastie, Tibshirani, and Friedman, and Kohavi, ) and
various corrections for them (Adler and Lausen, ). Before closing this brief introduction, let

us stress two important points.

Remark 1.3.1. Up to now, we implicitly assumed that the loss function L used to compute fn
is the same used in the computation of the errors (1.16), (1.17) and (1.18). However, there
are some cases where the learning algorithm uses a different loss function, say L'. This is
typically due to computational reasons, since differentiability and convezity play an important
role in most optimization procedures. Thus, it may happen (especially in classification problems)
that the algorithm minimizes a different loss function with respect to the one used to compute the
errors that guide validations procedures and models assessment. As an example, the classification
trees often minimize either the Gini or Entropy criteria (Breiman, ), while it is common
to evaluate model performances using the number of misclassified points, i.e. L(y;, f(z;)) =
1{y; # f(x;)}. Sometimes, the optimization problem faced by the algorithm is a reformulation
of the loss employed to compute the errors. Other times, the two losses coincides (e.g. the
squared loss in regression problems). However, the aim is still errors minimization. So, even
if the algorithm returns estimates fn minimizing a slightly different loss, we will choose the one
minimizing the errors (1.16) and (1.17). In most cases the minimizer of the two different loss

function, L and L', coincides.

Remark 1.3.2. When splitting the data in train, validation and test set, it is important that the
resulting splits are homogeneous. That s, even if with different sample sizes, the set should not
contain substantially different information. This might be the case when non-random sampling
is used (e.g. we use only individuals with particular characteristics to be in the training set).
Or, even when using random sampling, this problem may arise in presence of very unbalanced
datasets, where some classes are dramatically under-represented with respect to the others (here

stratification may be a better resampling scheme).
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Chapter 2

Scoring and selection of clustering

solutions in unsupervised learning

2.1 Introduction

In this chapter we address the problem of the selection of a clustering solution. We are mainly
interested in the case where the clusters are reasonably identifiable with elliptic-symmetric den-
sity regions. Thus, we address situations in which a cluster is described by its centre, scatter
and size.

In this context, there are a variety of choices to take into account when selecting a clustering
model. One of the critical modelling aspects, to which it is usually given the most attention by
the literature, is that of choosing the “adequate” number of clusters, K. Consider Figure 2.1,
at the end of this introduction. The figure shows 5 different clustering solutions for the data
represented in the top-left panel. Visualizing the solutions (which may be not feasible in higher
dimensional settings), we see that some of them are rather more plausible than others, and a
solution can be (relatively) easily selected. Of course, it is clear the need of a systematic approach
to perform these choices.

There is a plethora of valid methodologies in the literature to tackle this problem. This
particular framework, where clusters are represented by a size, centre and scatter parameters, is
easily framed and understood under a model-based clustering approach, introduced in Chapter 1.
In this case, there are two main approaches to model selection: information based criteria and
criteria testing the number of components via likelihood-ratio type tests (see McLachlan and Peel,

and Fraley and Raftery, ). More general criteria, not necessarily implying distributional
assumptions as in model-based approaches, pertain to the evaluation of intra-cluster homogeneity
and inter-clusters dissimilarity (e.g. Calinski and Harabasz, ; Rousseeuw, ).

In this chapter, we propose a novel methodology to select clustering solutions. This is a
general approach in the sense that it can be used to evaluate any clustering solution where it
makes sense to describe clusters in terms of size, centre and scatter quantities. This implies
that clustering regions are elliptic-symmetrically shaped, but we do not require any specific
assumption regarding distributional aspects for the data generating process.

We propose to evaluate a clustering solution via a scoring function that relates to the

quadratic scoring (Hastie, Tibshirani, and Friedman, ). This function gives a measure
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of the degree of adequacy with which sample points fit into given clusters. The selection of a
clustering scheme is based on the evaluation of this scoring function at various solutions produced
by any considered method. These solutions are formed estimating a clustering multiple times
on bootstrap resamples. This allow us to obtain consistent estimates of the average value of the
score at different parameters estimates, and also to take into account its variability.

The proposed procedure has several advantages.

e Even if strongly linked to model-based approaches, it does not actually require distribu-

tional assumptions;
e [t allows to select many aspects of methods rather than just the number of clusters, K.

e [t accounts for the variability that is induced by the implementation of a given clustering
strategy (a method). Here we do not restrict to the comparison of clustering methods
that are founded on model assumptions (model-based clustering). Although many of the
concepts, and the intuitions used in this work are inspired by the model-based clustering

literature. This is the reason why model-based clustering was introduced in Chapter 1.

A note on the last bullet. Typically, classical model selection criteria are focussed on se-
lecting the number of components, K. However, there are usually many other choices to be
considered. For example, in model-based clustering we reviewed constraints on covariance ma-
trices and different parametrizations (Subsection 1.3.1); also, different initializations methods for
the clustering algorithms are possible (McLachlan and Krishnan, ). As we will show later in
the empirical analysis, our procedure is able to automatically take into account these different
choices.

The consistency of this methodology is proven theoretically. We conduct an extensive empir-
ical analysis comparing different clustering selection methods. In the empirical comparison, the
proposed method is able to retrieve the true underlying clustering structure of the data

The chapter is so organized. The remaining part of this section (Subsection 2.1.1) reviews
some of the methods proposed in the literature to select clustering solutions; Section 2.2 intro-
duces the scoring function and the related methodology we propose; Section 2.3 introduces the
proposed resamlping scheme and develops the theoretical analysis; Section 2.4 illustrates the

empirical analysis; Section 2.5 concludes the chapter with some final remarks.
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2.1.1 Methods from the literature

There are different aspects and approaches in cluster validation. These are summarized in Hennig

and Meila, as:

e techniques to test whether data are clustered in the first place or not;

e indexes defined by means of some objective function to define a measure of cluster quality

(these methods are generally independent from the particular clustering approach);

e indexes to compare different clustering solutions (this may be particularly helpful when

there is external information to be considered or to evaluate stability of the solutions);

e cvaluating the stability of clustering solutions (i.e. different but similar data should be

clustered analogously);

e data visualization techniques to aid the clustering process.

Here we will be mainly concerned with indexes to evaluate and select a clustering solution.
In what follows, we review some of the existing methodologies for model selection. As briefly
mentioned in the introduction, there is a huge number of different criteria. A comprehensive
review of these approaches is not in the scope of the thesis. Also, as far as the author knows,
there is no exhaustive survey on these. We point at Hennig et al., and Halkidi, Vazirgiannis,
and Hennig, for a wide survey, although not complete.

Before doing that, we want to highlight a difference with model selection methods in su-
pervised learning: cluster selection is concerned with observed data and not with unobserved
“future” data, as it is the case in supervised learning. Thus, most of the methods do not re-
quire the construction of a validation set as we did in supervised learning; rather, the quality
of the solution is evaluated in-sample. There are exception as we will see later. The conceptual
difference is that supervised learning is concerned about predictions, which are meaningful on
unseen data. Unsupervised learning is mainly concerned in optimally representing data at hand,
by describing some of its unobserved structure or characteristic.

We review the indexes that are going to be used in later analysis. We consider two broad
categories of indexes: model-free indexes and model-based indexes. The former, does not require
any particular distributional assumption on the data. These indexes takes as input the partition
of sample points given by a clustering method.

The second category, instead, explicitly implies a model-based approach, where there are
precise distributional assumptions (see Subsection 1.3.1). These methods typically relies on
penalized likelihood criteria (hence the model-based framework).

We recall that we restrict ourselves to a case where clustering solutions be fully represented by
a sizes, centres and scatters. These clustering solutions are typically generated by location-scale
families distributions and can be easily framed into model-based clustering by an appropriate
choice of the underlying mixture distribution.

Thus, in what follows, we will consider clustering solutions as a member m of a set of candidate
solutions, M, where each member of M is a parametric description of the clustering structure
implied by a certain methods. In particular, since we are interested in situations where the

groups have symmetric and elliptical shapes, each element m is determined by:
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e K(m), the number of clusters;
(m) () 52(m) m)  (m) sm) |7
e O(m) = [7r1 N RPN 7""7TK(m)>/‘K(m)7ZK(m)] , a vector of K(m) cluster propor-
tions, centres and scatters for the K(m) clusters;

(m)
k

e 2., the assignment of point z; to cluster k.

In what follows, if not otherwise specified, X,, indicates an observed sample of size n and x;

denotes an element of X,,.

Model-free criteria

We consider two different model-free indexes. The first one was proposed by Caliniski and
Harabasz, , and it is defined as follows.
B trace((W(m)) n — K(m)

CHO(m) = trace(B(m)) K(m)—1’ (2.1)

where

i=1 "tk mi'zl(j:):l
K(m)
W(m) = (z; — Zp) (z; — Tp) T
k=1 xzzzz(j?:l
K(m)
B(m) = ng(Zp — Z)(ZTg — T)
k=1

(note, for convenience,we suppressed the dependence of ny and Zx on m). The first ratio in (2.1)
is the ratio between the intra cluster variability (within variability), W, and the inter cluster
variability (between variability), B. The higher this ratio the better the clustering, because we
expect homogeneous clusters (low W) that differ a lot one from each other (high B). The second
ratio is a correction term: the variance of B, considering K terms, has K — 1 degrees of freedom;
the variance of W has n — K degrees of freedom.

Note that an increasing number of clusters K, should reduce both W (smaller clusters)
and B (closer cluster means due to their increased number). Thus, CHC trades-off these two
effects. The CHC criterion does not assume a model for the data generating distribution. The
underlying cluster notion is that clusters are well separated group of points having low intra-
cluster variance. Of course this homogeneity notion has a model interpretation when we assume
that the generating distribution produces spherical clusters as noted in Halkidi, Vazirgiannis,
and Hennig,

The second index we consider is the Average Silhouettes Width (ASW) criterion introduced
by Rousseeuw, . As for the CHC criterion, this method measures the intra cluster homo-

geneity and inter cluster variability, Let d(x;,x;) be a proper measure of dissimilarity between
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the observed points x; and x;, the ASW criterion is defined as follows:

1 L bi — Q;

where

1 m
di = Z d(xi,xj) wherek : Zi(k:) =1;

b; = rl]rl;?;l Z d(x;,x;) where k : zl(f) =1.
zjizj =1

Therefore, the ASW criterion requires the specification of a dissimilarity measure to assess the

underlying homogeneity intra-cluster notion. Thus, a; is the average dissimilarity of point x;

from points within its assigned cluster; b; is the dissimilarity of point x; from points in the

cluster to which z; is most similar to.

Each summand in (2.2) is the silhouette of point x;; it is lower for points that lie at the
“borders” of a cluster, i.e. those points that do not clearly belong to one or another cluster (b;
small, a; big). The idea is that the more the clusters are separated and internally homogeneous
(b; big, a; small for all points) the higher is the value of ASW.

The ASW statistics in (2.2) measures the average silhouettes across the sample points. As
for the CHC criterion this popular statistics does not require any model assumption, although
the choice of d(-,-) implicitly formalizes the specific notion of homogeneity that the analyst is
pursuing. The Silhouettes Width plot, a graphical display based on the silhouette values, is also

a popular display for assessing a data partition (see Rousseeuw and Kaufman, ).

Model-based criteria

As mentioned above, these methods hypothesize a particular form for the data distribution. In
our case, this is a mixture distribution with components being distributions of a location-scale
family.

In principle, the log-likelihood function (1.4) could be used as a measure of cluster quality:
the higher the likelihood the better the ability of the clustering solution to represent the data.
Thus, the solution maximizing the log-likelihood would be the chosen one. However, this is likely
to be a poor solution, since this method tends to overestimate K.

The likelihood of the data will monotonically increase with model the complexity, which is
expressed both in terms of number of free parameters (e.g. refer to Table 1.2) and number of
components. To see this, imagine a simple case where 7, = % and Xp =1 forall k=1,..., K.
Consider these parameters to be fixed, while only K and the centres are allowed to be chosen
in order to optimize the observed likelihood. In this case, only distances of observed points to
components’ centres, u’s, matter. In particular, the closer a point to any centre, the better the
likelihood evaluated at the point. Thus, it is always possible to achieve an higher likelihood under

K + 1 components rather than K. Eventually, this reasoning would select K = n components,
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where each component is centred at a sample point.

Define the observed log-likelihood for model m to be:

K(m)

Wm) = D 1og () ™ (s ™, 51M)). (2.3)
=1 k=1

where fi is a density function completely specified by parameter u; and 3. According to this
criterion, one may select:

m* = arg max [(m)
meM

This naive implementation would select solutions with too many clusters. This motivates the
introduction of some penalizations for model complexity. Note that in the model-based context

where these criteria are used, a member m identifies a model.

The Bayesian Information Criterion (BIC) was introduced by Schwarz, . It is obtained
as an asymptotically valid approximation of the posterior probability of model m being the “true”
model, given observed data. This posterior probability is also called the integrated likelihood of
model m (see Fraley and Raftery, ). This criterion tends to select the model, among the
considered set of models M, with the highest posterior probability of having generated observed
data.

The BIC criterion for model m is defined as:
BIC(m) = 2l(m) — v(m)logn, (2.4)

where [(m) is as in (2.3) and v(m) is the number of free parameters in model m, that needs
to be estimated. The BIC in (2.4) increases with the observed likelihood, i.e. where we have a
better fit of the underlying density. However, this quantity is penalized by the model complexity,
captured by the term v(m). This penalization grows with the sample size n at a logarithmic
rate. The intuition is that more complex models may achieve an high value of the likelihood
because of their excessive fit the data (overfitting). This problem exacerbates when the sample
size increases.

Keribin, showed that, under suitable conditions, this method consistently estimates the
correct number of components, K, for mixture densities (an example are Gaussian mixtures
with compact parameters space and covariance matrices of the type AI; refer also to Table 1.2).
Hence, BIC is widely used in this context (Fraley and Raftery, ; also Fraley and Raftery,

gives examples of successful applications).

It must be noted that the BIC tries to select a model, within the considered set of models,
that approximate well the underlying data distribution. This might not always be desirable. For
example, suppose that the underlying data in generated with very K’ asymmetric groups, and
that the set of models, M, is made of Gaussian mixture models only, with different number of
components. Then, since a mixture of Gaussian with a sufficiently high number of components
can approximate any continuous distribution, BIC may easily prefer a model such that K » K’,
in order to fit the underlying data generating process well. Thus, the number of groups for which

the BIC would (supposedly) be consistent need not to relate to the number of clusters.
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The Integrated Complete Likelihood criterion (ICL) was introduced in Biernacki, Celeux,
and Govaert, , and tries to overcome this latter problem of the BIC. This is derived under
the same Bayesian conceptual framework underlying the BIC. However, differently from the
BIC, this takes into account the ability of a mixture model to assess clustering structure of the
data. This is done by constructing an approximation not for the integrated likelihood (as in
BIC), but for the integrated complete likelihood. That is, in the derivations of models’ posterior
probability, the complete likelihood (1.3) is considered instead of likelihood (1.2). Now, this

quantity is approximated via a BIC-like approximation, leading to the following criterion:
ICL(m) := 2cl(m) — v(m) logn. (2.5)

where, to actually compute it, indicator variables z’s are estimated via the MAP estimator Z as
in (1.8).
Baudry et al., provides more insights and theoretical properties for the ICL. The author

also suggests that this criterion tends to prefer more separated clusters than the BIC. Indeed,

using the decomposition of (1.4) and (1.5) in Subsection 1.3.1, we can rewrite the ICL as:

ICL(m) := 2cl(m) — v(m)logn = 2l(m) — v(m)logn + 2h(6(m)) =
BIC(m) — (=h(0(m))).

Thus, the ICL is substantially equivalent to the BIC penalized by the estimated mean entropy
term —h(6(m)) (also here the z’s should be replaced by MAP z). The entropy term is non
negative and is higher for unclear assignment of point to clusters, which usually happens when
there is a high number of overlapping components. This will help to mitigate the overestimation
problem discussed for the BIC. However, in case of well separated components, BIC and ICL

will tend to choose the same solution.

Another widely adopted criterion is the Akaike Information Criterion (AIC) introduced by

Akaike, . The criterion is defined as follows
AIC(m) := 2l(m) — 2v(m), (2.6)

AIC is derived under an information theoretic approach as an asymptotically valid approxi-
mation of the expansion of the Kullback-Leibler distance of the candidate model with respect
to the (unknown) true data generating process. This criterion selects the model, in the set of
considered models, minimizing the expected value (where expectation is taken with respect to
all possible generated samples from the true distribution) of the Kullback-Leibler distance with
respect to the underlying true data generating process. For a full account on the derivations of
AIC and historical notes, see Burnham and Anderson, . Leroux, shows that, under
suitable conditions, AIC does not underestimate the number of components in a mixture model
asymptotically, while Celeux and Soromenho, show its tendency to overestimate number of

components in finite samples.
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The AIC has essentially the same interpretation of the BIC, in the sense that it is computed
as the maximized value of the observed likelihood, penalized for model complexity. However,
here the difference is that the penalization does not increase with the sample size n. Thus,
especially in large samples, the AIC tends to penalize complex models less than BIC, tending to

overestimate the number of components.

This tendency is partially taken into account by the AIC3, proposed by Bozdogan,

AIC3(m) = 2l(m) — 3v(m). (2.7)

We now review one last criterion, not coming in the form of penalized likelihood. This
approach was introduced by Smyth, , who investigated a cross-validation approach to au-
tomatically determine the number of clusters in model-based clustering. We briefly mentioned
cross-validation in Chapter 1. This is indeed typical in supervised learning and less common in
unsupervised learning. The idea is to split the data in two independent part: one is used to fit
the mixture model (implied by the model m); the other is used to evaluate the fitted model. The
reason of scarce usage of this method in cluster analysis is that we do not have a ground truth
available and usually it is not straightforward to evaluate performances (via the misclassification

loss in this case) on unseen data.

Smyth, proposed the negative expected log-likelihood as the base loss function for the
cross-validation. The rational is as follow. It is easy to see that the expected log-likelihood is
proportional to the Kullback-Liblier loss attained when the formulated model is used to approx-
imate the true data distribution. One may estimate it based on the observed sample using the
sample estimate of the unknown model’s parameter. However, Akaike, showed that this
would produce such a biased estimate of the loss due to the overfitting trap. The proposal of
Smyth, is to estimate the expected log-likelihood out-of-sample using cross-validation. The
idea is that models that performs too well on the data at hand, might be too specific and adapted

so that they generalize poorly on unseen data.

A general definition for this criterion is
Ly (i)y. (0
CV(m) = v Z-_E 1l(m(XtZ, ); Xio ),

where [(m; X) is the log-likelihood function for model m evaluated on data X; m(XE?) indicates
that model m’s parameters were obtained by estimation on XEZ,); V' is an integer number depend-
ing on the particular form of cross-validation used; Xg? and Xg? are subsets or X,, and their

construction also depends on the form of cross-validation.
In 10-fold cross-validation, for example, we randomly shuffle the data, X,;, and then partition

it in 10 subsets of equal size:

X, = XD UXD G uxA0: w2 XO AXOD = g a2
14 14 14 Y Y 14 14 Y 10
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Random Shuflle

Figure 2.2: Ten-fold Cross-Validation. The data is first randomly shuffled and then partitioned
in 10 equal size portions or folds. Each of the fold will be used once as a validation set (purple),
while using the remaining 9 folds as a training set (magenta) for model estimation.

Then, V =10 and for each : = 1,...,V we set:
x5 % -

That is, the data is split in 10 folds; each fold is used once as test set while the remaining 9 are

used as training set. Figure 2.2 gives a graphical representation of the described procedure.
Another type of cross-validation is the so called Monte Carlo cross-validation. In this case,

we randomly shuffle the data X,, and partition it in two subsets of sizes yn and (1 — v)n, where

v € (0,1) is set by the user. The two subsets constitute the training (tr) and test (te) sets. This

procedure is repeated V times independently, obtaining, for i = 1,...,V:
X =X 0XD; XD X =g XD =, X2 = 1= )n,

and the obtained partitions are independent one another across ¢. Smyth, 2000 adopts this
latter type of cross-validation, using v = 0.5 and V' = 100 (however the author suggests that V'
in the range 20 to 50 should suffice for many applications). For more details on cross-validation

techniques see Arlot and Celisse, 2010.

2.2 Scoring cluster configurations

As stated in Section 2.1 one of the contributions of this Chapter is the introduction of a scoring
mechanism based on the quadratic discriminant rule, a popular tool in classification analysis.
We assume that there is population distribution F' that produces clustered regions of points
where each cluster is meaningfully described by a set of size, centrality and scatter parameters.

A cluster configuration m is described by

K the number of clusters;
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7y, the relative size of the cluster. This is well understood in model-based clustering as mixing

Nk

proportion. Otherwise this is given by “%, where ny is the number of points in the k-th

group, and n is total number of points. As usual >}, 7, = 1;
1 the centre of the cluster k.

>;, the scatter matrix of cluster k. Usually this is understood as the covariance matrix of the

k-th group.

When needed, we make the dependence on a model m explicit.

These parameters have a clear interpretation in model-based clustering. However, they can
also be retrieved in other clustering methods. In fact there are methods that, although they do not
assume a location-scale model for the underlying clusters’ distributions, they produce solutions
that can be interpreted in this sense. For example the popular K-means algorithm produces a
partition that coincides with the MAP assignment one would obtain under the parameter that
maximizes the likelihood function of a mixture-model with K spherical Gaussian components.
Therefore, in many cases clusters’ size, centres and scatters can be treated as a meaningful
description of the clustered regions, and this also applies outside the model-based domain where
one assumes a certain location-scale model for the groups’ distributions. We now describe and
motivate the construction of a scoring function for a clustering solution m that can be described

in terms of the overall parametric description

m) . m m) m m) (m m T (m m T
0( ): [Wg )7M§ azg )7"'77T§((m)7/’LK(7)n)?E§((7)n):| = I:el )7"‘795((2@] .

We remark that these serves a general descriptions of a clustering solution: while, for convenience,
we will refer to these as parameters, in principle they do not assume an underlying parametric
model.

The proposed scoring mechanism is based on the well-known quadratic discriminant rule
(e.g. see Bishop, or Hastie, Tibshirani, and Friedman, ). This rule is usually derived in
supervised frameworks, where sample points are assigned to classes via optimal Bayes allocation.
This is based on posterior probabilities, computed as the probability that a point came from a
particular class, given the observed sample and hypothesized conditional class densities.! We
will now illustrate how we use this score to evaluate clustering solutions and cluster assignments.

In the case of clustering, given a fized solution m and looking at its clusters as classes, the
quadratic score for point x, for a given cluster & is given by (for simplicity we drop the dependence

of the parameters on m):

(= ) "5 (& — )
5 :

q(x,0r) == log(mg) — %log (det(Ek)) - (2.8)

The score is composed of three terms. The third term in (2.8) is the squared Mahalanobis distance
of point z from the centre. The second term, —% log (det(Xy)), accounts for the extension of the

geometric region covered by the cluster (see Anderson, ). These two terms have the same

!These rule are usually derived under the assumption of Gaussian densities. However, as we will see later, they
are much more general. Also, in practical situation they are documented to perform well even in the absence of
the validity of the assumptions Hastie, Tibshirani, and Friedman,
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effect on ¢, which is increased when the two decrease. ¢ is higher for points close to the centre of
small-volume clusters. The first term, log(my), accounts for cluster’s size and positively affects
the score. Note that this is always negative and is smaller for small clusters. Overall, the score
q(z,0;) may be viewed as the strength with which point z fit into cluster k. Indeed, for point
closer to the centre (accounting for cluster size and variability), ¢ is higher.

In a supervised framework, this score is used to assign new points to classes by the MAP
estimator. That is, point x is assigned to class k if k = arg maxy, q(x,6;). We indicate this as
Z;r = 1. Under some conditions, this assignment is optimal in that it minimizes the misclassi-
fication rate, defined as the probability that a point arising from class k is assigned to a wrong
class k’. This concept can also be extended to the case of clustering.

Too see this, consider the problem of assigning points to K clusters. Consider the family of

densities described by:

fil@) = (27 fo (@ = ) S5 @ — ) ) (2.9)

Y being square positive definite matrices and fy is a strictly decreasing positive function and it
is a density in fo(2'x), x € RP. This includes elliptic-symmetric densities characterized by centre
and scatter (Anderson, ). Assume that fi(x) represents the distribution of points belonging
to the k-th group. That is fx(z) is the class-conditional density for k = 1,2,..., K. Let 7, be the
probability that a point is observed from cluster k, with density, f, given by (2.9) parametrized
at 0. Thus, we are in the case of elliptical-symmetric clusters. As usual, Z are the indicator
variables for the generating component. Consider a partitioning rule r(z) used to assign points
to clusters; r defines Ag, k = 1,..., K, disjoint subset in R?. Then, the misclassification rate is

defined as the complement to 1 of the rate of correct assignments from rule r.

K K
Lr(z)):=1— > P{Z=k}P{r(X)e A4lZ =k} =1- ) ka fi(2)dz. (2.10)
k=1 k=1 YA
It is possible to show (Velilla and Hernandez, ) that the optimal Bayes rule, minimizing

(2.10), is the rule 7* such that:

r(z) =k < xze€A}; Al := {x e RP : m fre(x) = argmaXijj(x)} .
j=1,,K
Were the true parameters (6;) known, the same optimal misclassification rate is achieved by an
assignment rule based on the quadratic score ¢ in (2.8), assigning points to the cluster for which
they show the highest relative quadratic score. Such a rule is called quadratic discriminant rule
(QDA). This result can be showed under an additional assumption on clusters’ scatters, which

Velilla and Hernandez, argue to be not too restrictive in case of an approximate solution.

Proposition 2.2.1. Assume that: (i) clusters are generated by a mizture model as in (1.1),
with component densities as in (2.9); (ii) the true mizture parameters 0y are known; either
(iti.a) det(Xy) = det(X;) = c, i # 7, 4,5 = 1...,j, or (ii.b) fr = ¢ (where ¢y, is a Gaussian
density parametrized at iy, X ). Then, the assignment rule z*(x) = arg maxy, q(x, 0) (see (2.8)),

achieves the optimal misclassification rate as defined in (2.10).
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Proof. First notice that if X is distributed according (1.1), then the conditional distribution of
X|Z = k has density fi(z). That is fx(z) is a component of the mixture density, and coincides
with the class-conditional density.

Then, A {z € RP : m, fi(z) = argmax;_; g m;fj(x)} achieves the optimal misclassification rate.
Consider (iil.a). Now, writing v, yx = (x—uk)’zlzl(x—,uk), consider fo(y;yx) and exp {—%ykyk}

These are both monotonically strictly decreasing in 1'y, so that:

1 1
Yibk > Y5y = exp {—Qyzyk} > exp {—Qy}yj} , and fo(yryr) > fo(Ysy5)-
Thus, for all &, 5:
_1 1 (iii.a)
T fr(®) > i fi(r) = mpdet(Xr) 72 fo(yryr) > T det(35) 72 fo(vjy;) <=
2

_1 1 _1 1
log (wkc 2 exp {—2(y,'€yk)}> > log (ch 2 exp {—Q(y;yj)}>

Now, note that ¢(z, i) = log <7rk det(Zj)_% exp {—%(y;y])} ) Thus, the rule z*(z) = arg max;, q(z, 0x)

_1 1 / -1 1 /
e 2 expl —=(YpYk) ¢ > TKC 2 eXp _i(yjyj) A

produces the partition A}, which is also the optimal one. In case (iii.a) is replaced by (iii.b), the
result is trivial since 7 fi in the proof above can be simply replaced by 7wk, the logarithm of

which is equivalent to the quadratic score, but for a constant term. O

It is important to stress that the hypothesis on clusters’ scatters used above can be relaxed,
leading to a good approximation of the optimal misclassification rate. Thus, using the true pa-
rameters 0, a clustering solution assigning point based on the quadratic score ¢, would minimize

the misclassification rate in case of elliptic-symmetric clusters with comparable clusters’ volumes.

Of course, the true parameters are not known in practice, and needs to be estimated from the
data. In the case of classification, Velilla and Hernandez, , show that for consistent estimates
of centres and scatter matrices (consistent to the hypothesized true mixture parameters), and
similar scatter volume across the classes, then the QDA is (approximately) consistent for families
of the type (2.9). Meaning that as, n — 00, QDA will achieve the optimal misclassification rate.
This would in principle extend also to a clustering framework, had we had consistent estimates
of the parameters. Unfortunately, here there are more subtleties: unknown number of clusters;
unknown class memberships.

Note that the assumption (i) in proposition 2.2.1 on the data generating process being a
mixture was only needed to achieve an optimal misclassification rate in those cases. However,
the QDA can also be used in cases where these assumptions do not hold. This is frequently the
case in practical applications. Hastie, Tibshirani, and Friedman, document the successes
of QDA even in these cases. In particular QDA seems to work well when the data can support
at most quadratic boundaries for groups splitting.

Based on the previous observation we restrict our attention on those situations where the

quadratic score assignment make sense. Therefore for a given clustering solution 6(m), we
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consider the class memberships indicator defined as

1 if k = argmax,,, g(x;, 0™
21(72) _ Zk;(xiﬁ(m)) _ g k> 4( )
0 otherwise.

Recalling that ¢ also gives a measure of the degree with which each point is accommodated to a
cluster, we can evaluate how well a point fits into a clustering solution, m, by what we call the
hard scoring (HS):

K(m)
HS(x;,m) = 2 Aff)q(xzﬂ,(gm)). (2.11)
k=1

In the case of overlapping clusters, it may be sensible not to define an hard assignment of
points to clusters. We propose to use a smooth degree of membership of points to clusters,

computed as:

(m) exp {q(:ci, Gém))}
Tk = Tk(xi,ﬁ(m)) = € [0,1].

ST

Note that the 7’s are obtained by exponentiation of the score attached to a point to belong to

a cluster relative to the summed score that the point achieves across all clusters. Therefore this
normalized weights will tell how strongly a point z; is connected to the k-th group according to
6(m). Any other positive strictly monotonically increasing transform of ¢(-) other than exp(-)
would have produced a similar goal. However, the exp(-) transform used above allows to connect
the scoring mechanism to number of well known likelihood-type quantities that are central in the
model-based clustering literature. In this sense this will allow to construct a parallel between
solutions m € M that have large score, with solution pursued by ML-type methods when one

assume a mixture model for the underlying data generating process.

In this case, the extent to which a point x is well accommodated in a clustering solution

described by m, is given by a smooth score (SS):

K (m)

SS(xi,m) = Z %i,kq(xi,ﬁl(gm)). (2.12)
k=1

Finally, the overall adequacy of a clustering solution on observed data X,, may be evaluated

by the average adequacy of points to clusters. This defines the HSC, SSC criteria:

HSC(m) = q(zi,0M); (2.13)

3\*—‘

SSC(m) = q(zi,0). (2.14)

3\’—‘

n K(m
i=1 k=1
n K(m
One wants to choose an m € M so as to maximize quantities (2.13) and (2.14). In both
cases, the criterion selects the m for which the points are best accommodated into clusters,

on average, according to the quadratic score ¢q. In the case of HSC, only points assigned to a

cluster participate to the evaluation of that cluster. In the case of SSC, all the point participate
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to the evaluation of all the clusters according to their degree of membership to clusters. The
contribution to the overall score of each point is given by the quadratic score that the point
achieve in the relative cluster.

A final remark on the proposed scoring functions (2.11) and (2.11). Their different behaviour
should be accentuated with overlapping or not well-separated clusters. In these cases, one can
expect that the weights 7 behave much differently with respect to the indicators z. We expect
that the smooth version gives higher relative importance to points closer to the cluster centre
and that can be assigned with more confidence. Indeed, in HS (2.15) points are weighted either
1 or 0 and contributes to the scoring by (2.8). In the smooth version SS (2.12), points not only
contribute by (2.8) (decreasing moving afar from the centre), by they are also weighted by 7

which is decreasing when moving towards other cluster centres.

Connection with likelihood theory

The scores HS and SS introduced above can be shown to have connections ((2.11) and (2.12))
with classical likelihood theory in particular cases. In this section, we will see that, under some
assumptions HSC and SSC may be seen as selecting the best model m in terms of the likelihood
function. In more general cases, they can be seen as selecting an optimal solution in terms of
the Kullback-Leibler distance to the underlying data generating process.

Throughout this section, we call with ¢y (x) a Gaussian density parametrized at ug, X, were
it will be clear from the context where the parameters comes from. We may emphasize the
dependency on model parameters writing ¢ (z, m) = ¢(z; u](cm), E,E:m)). Also, ¢ = 277 P/2, where
p is the dimensionality of random vector X (see Subsection 1.3.1). We assume also that M is
such that all the quantities used later are well defined for models in it (this, for example, amounts
to non singular scatter matrices).

First, we note that the quadratic score (2.8) has a connection with mixtures of Gaussian

distributions in the following sense. Consider a redefinition of the scores HS and SS given by:

K(m)

sp(xzym) = Z 1 {k‘ = arglf:nax {W,(Cm)gbk(x; m)}} log (W,im)¢k(x;m)) (2.15)
k=1
K(m)

s(wym) = > " o (5 m)

e log W(m)¢ (z;m)). (2.16)
k=1 Zsz(l)Tf;E; )¢>k($;m) ("

Then s and s preserve the same ordering for solutions m as HS an SS. Thus, we may redefine
the criteria HSC and SSC by equivalent formulation in term of Gaussian densities. This result
is essentially motivated by the usual derivation of the quadratic score, which is obtained under
Gaussianity. Thus, in a sense, HSC and SSC may be seen as evaluating the adequacy of clustering
solutions, m, according to the cluster that these solutions would imply under a Gaussian mixture

model.

Proposition 2.2.2. For all m,m’ € M then:

SH(x,m) = SH(z,m') < sp(x,m) = sp(x,m’)

SS(x,m) = SS(z,m') = s(x,m) = s(x,m)
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(refer to equations (2.12), (2.11), (2.15) and (2.16)).

Proof. The following proof is for SS. The proof for HS is analogous. For any m:

(@ — ) "5 (@ = i)

ol ) = los(me) — 5 los (det(1) —

2
1 (z — ) TS (@ — )
= log (7Tk det(Zg) " Zexp{ — 5 }) = log (qubk(x)) —loge. (2.17)
Note the equivalence:
mede(Ti)  exp(g(ziOk) L

Dok ThOr(x:) N S exp(q(z:, 61)) =Tk
)

. . (m)
Finally, since Zszl 7ik = 1, we have:

K(m) K (m)
Z ﬁ,kq(xi, ngm)) = Z <7A-Z»7k log (Wkgi)k(x))) —loge = s(x,m) —loge.
k=1 k=1
Note that log ¢ depends on the dimensionality of z only and is independent of m. Thus it now

follows:

SS(xz,m) = SS(x,m') < s(x,m)—logc > s(x,m’) —logc

= s(z,m) = s(z,m).

This completes the proof for SS. For HS, simply note from the above proof that the indicator

variables z implied by the two formulation are equivalent. O

Note also that (2.17) reformulates the score ¢ in term of Gaussian densities and a constant

correction term.

The assertion that the scores can be looked as evaluating solutions according to an implicit
Gaussian mixture model, can be confirmed in the case that the data are truly generated from
Gaussian mixture models. In this case, the scores select m € M according to likelihood maximiza-
tion criteria. This is stated in the next two propositions, which show that, under Gaussianity of
the true data generating processes, the solutions selected by SSC and HSC are the same solutions

that would maximize the complete version of the data likelihood.

Proposition 2.2.3. Assume that (i) F is a Gaussian mizture model as in (1.1) with K compo-
nents; (1) K(m) = K. (i) X, is a sample of size n of i.i.d. random variables from F. The
solution m € M maximizing the HSC given in (2.13), also maximizes the complete log-likelihood
of the data, cl(0) (see (1.3)).

argmax HSC(0) = argmaxcl(f(m))
meM meM
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Proof. We drop the dependence on m in what follows. Simply note that:

3
3\'—‘

1 n K n K
HSC(m —ZZ Zikq(2i,0k) = ZZ Zi g log(mydp(x:))—

% Z Z Zi ke = %cl(@) — ¢

The last equality is motivated as follows. In ¢l(f) the unknown z are replaced via MAP

estimators, ZJV,QAP. These are equal to 1 if & = argmax, mp¢r(z), 0 otherwise. However,

up to the constant ¢, q(x;,0x) is equivalent to the logarithm of mr¢x(z) (see (2.17)). Thus,

A%AP =1 < k = argmax, mp¢p(r) <= k = argmax, q(x;,0y) < 2% = 1. Finally,
since for any given n, arg maxy 2 cl(f) — ¢ = arg max cl(0), the result follows. O

Proposition 2.2.4. Assume that (i) F' is a Gaussian mizture model as in (1.1) with K com-
ponents; (i) K(m) = K; (i1i) X,, is a sample of size n of i.i.d. random variables from F. The
solution m € M mazximizing the SSC given in (2.14), also maximizes the conditional complete

log-likelihood of the data, E(cl(0)|X,,) (see (1.5)):

argmax SSC(m) = argmax E(cl(0(m))|X,,)
meM meM

Proof. We drop the dependence on m in what follows. Note that, conditioning on the data,

the expectation in E(cl(0)|X,,) is taken with respect to the indicator variables z. As discussed

in Subsection 1.3.1, these correspond to the posterior probabilities 7/, = % Then
E(cl(0)|X,,) is obtained by simply replacing the z’s in cl(f) with 7’s (see (1.5)). Also recall the

TPk (T) exp(q(z;,0k))

equivalence 7/ k= S (@) = S expla@itn) 7i k- Then consider the following:

1 & K A 1& K
SSC(m ﬁggﬂgq i, 0) = n;g Tk log(mrpdp ()

n K 1
“ 2 3 e = L ECO) —
i=1k=1

3\*—‘

Finally, since for any given n, argmax, = E(cl(0)[X,) — ¢ = argmaxy E(cl(0)[X,,), the result
follows. O

Finally, in case the underlying process F', is not Gaussian, the SSC criterion will still have
the following appealing interpretation: it pursues a good fitting of the data, trying to avoid
overfitting. That is, asymptotically, it selects the model that minimize {dxr(f||m) + H(0(m))},
where the first term is the Kullback-Leibler distance between the data generating process, F',
and Gaussian mixture model parametrized at 0(m); H(6(m)) is an entropy term. The first term
is smaller when the model adapts better to the data. An high fitting, however, may require an
excessive complexity of the model, causing overfitting (see Subsection 2.1.1). This is taken into
account by the entropy term, which increases when the assignment of points to clusters in not
clear: typically, models that are too complex will have many strongly overlapping clusters, which

in turns implies unclear points assignments. Note that the adequacy of the fitting is evaluated
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in terms of a Gaussian mixture model implied by the parameters of the clustering solution 6(m).
This further clarify in which sense the scores can be seen as evaluating solutions according to
implicit Gaussian mixture models. However, we remark that the solutions given by SSC or HSC
do not aim to recover nor assume a true model for the data.

This, is stated in the next two proposition. The second shows that, under the additional
assumptions that the true data generating process is a Gaussian mixture and that M contains
it, this principle reduces to selecting m € M maximizing the expected likelihood in case of well

separated clusters.

Proposition 2.2.5. Assume that (i) F has continuous density f. (ii) Fiz K(m) = K (i) X,
1s a sample of size n of i.i.d. random wvariables from F. Then, as n — oo, the solution m € M

mazximizing the smooth score SSC given in (2.14), is such that

arg max{ lim SSC(m)} = argmin {dicr (f|}m) + H(6(m)}

meM n—a

where: dgy, is the Kullback-Leibler distance between f and a Gaussian mizture model (see (1.1))
parametrized at O(m); H is an entropy term defined as Hy(0) = E{h(0)|X,} = 1", ZkK=1 i i log(7i k)
and H(0) = Ex Y% | 7(X, 0) log(.(X, 0)), where 7’s are defined by (1.6).

Proof. Consider the log-likelihood of the Gaussian mixture model in 6(m). We define its density
with m(z,0(m)). The log-likelihood is [,,(6(m)) (compare with (1.1) and (1.4); we drop the
dependency on m in what follows). Define the complete log-likelihood as the complete version of
ln, asin (1.5). Than, with the expansions as in Subsection 1.3.1 (see in particular (1.7)), we can

expand the Kullback-Leibler distance as (a is a constant; see Burnham and Anderson, )

dir(fllm) =a—Ex~p <logm(:z:,9)> =a— %EXNF (ln(9)> =
a— %EX~F (E(Cln(0)|xn) - Hn(9)> =c— %Exw <E(Cln(9)!Xn))) — H(0)
—c—Ex.p (E(czn,l(enxn))) —H(b).

clp,1 emphasize that we consider a single summand in ¢l (compare with (1.5)). Furthermore,
note that

arg min {dgr,(f||m) + H(0(m))} = arg maxEy - r (E(czm(e(m)nxn))).
memM

me

Finally, using proposition 2.2.4, as n — 00, by the law of large numbers (e.g. see Bierens, )

SSC, for any fixed m € M, converges to the quantity on the right-hand side:

lim SSC(m) % Exr (E(czn,l(a(m))yxn))).

n—0o0
Thus, the result follows. O
A similar result also holds for HSC, replacing the expected complete log-likelihood above with

the complete log-likelihood ((1.5)) and defining H not taking the expectation over the assignment
variables (Z), but replacing them via the MAP estimator.
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Now, if we specialize the above to the case where f is also a Gaussian mixture model, with

well separated components, we obtain a parallel intuition in terms of maximum likelihood.

Proposition 2.2.6. Assume that assumptions of proposition 2.2.5 are satisfied. Additionally
assume that: (i) f is a Gaussian mixture model with K groups, parametrized at 0y. (ii) f
generates well separated components, in the sense that P{x € RP: H(0y) > 0} < €, for some
0 <e<x1; (i) m* e M and 6(m*) = 6y. Then, with probability 1 — e:

m* e argmax{ lim SSC(m)} = argmax E(f(x,0(m))).
memM P meM

Proof. First note that by assumptions (ii) and (iii), on a set of probability 1 — e,

argmin,, . v {dxr(f|lm) + H(0#(m))} = m™*, since at m*, a Gaussian mixture model parametrized

at 0(m*) = 6y coincides with f. Thus dgr(f||m*) = 0, and H(6y) = 0. Also, by expansion

of I(#) and cl(f) in Subsection 1.3.1, when H, () = 0, cl,(0) = [,,(0). By (ii) this happens

with probability 1 — e. Thus, within a set with probability 1 — e, with the same line of proof of

proposition 2.2.5:

Exr (E(clna(00m)|%0))) = Exr (o1 (6(m))) = Ex~p f(X,0(m))

where the last equality is motivated by (i). Now the result follows from the convergence of SSC
to E (E(cl()|X,)) as in the proof of proposition 2.2.5. O

A similar results also holds for HSC, noting that under the strong separation hypothesis, the
indicators z and the posteriors 7, are such that z(z,0y) ~ 7(z,0y), with high probability, at the

true mixture parameters 6.

Further insights on HSC and SSC

As shown in the previous Section, cluster configurations that maximizes HSC(m) ((2.13)) or
SSC(m) ((2.14)) may have an interpretation in terms of clusterings obtained based on likelihood-
type procedures when a mixture model for the underlying data distribution is assumed. As seen
previously, the connection holds only in specific cases (e.g. number of groups K fixed and
Gaussian class-conditional densities). Here we want to remark that, more generally, the scoring
approach proposed in this work does not aim to recover a true underlying generating model, if
it one ever exists, but it tries to assess whether for a model m the K groups of points are well
fitted into K (m) ellipsoids described by §(m). In general, a solution that is highly ranked based
on SSC or HSC, may not be related the model m that well represents the underlying true data
generating process. To see this let us consider the following example.

Figure 2.3 shows the behaviour of Ex SSC(m) for two datasets generated by a mixture

distribution with two components; for each dataset we compare the SSC' of two different models:

m: Km)=1, =™ =1, st -1 ,0m—,/m
m' s Km) =2, m" =05 s =1 x" =0 " =y,

where p is the true centre of the second component of the mixture generating the data. Thus,
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the quoted models m and m’ are tied to the true data. By moving p closer to or away from 0,
we obtain data with more or less overlapping components. We can then study the behaviour
of SSC for different datasets with different distances between clusters’ centres. If the distance
is larger than a threshold, SSC prefer models that fuse the clusters together. Computing this
threshold is not at all straightforward, and depend on the specific distribution of the data (for
a given distribution, they can be computed approximately via numerical integration). In the
first row (data from Gaussian mixture), model m’ coincides with the true mixture density. We
find that SSC chooses to represent the mixture with a single component when the amount of
overlap of the Gaussian densities is about 30% (shown in Figure 2.3). Beyond this threshold, the
entropy term (higher for higher overlaps) does no longer offset the gains obtained by fitting the
data with two components. For the shown uniform mixture, one component model is preferred
even if the true overlap is 0%: the true components’ separation needs to be very large for the
components to be treated as two groups. Indeed, note that the entropy as per evaluated by SSC

is still higher than 0 unless the two uniform densities are not too far apart.



‘porrggald st syuouoduiod omy
)M W [ppow ‘S je juouodurod suo ym ‘w siwjord HG S (eouregsIp [RO1ILID) Juiod WOT}DSSISIUL Y} JO 3J9] o) ¥y 1! Surduerp je JW pue w
s[epout 10} HGS H JO an[eA (TWN[o)) PIYJ,) "SINOJUOD i PUR Ui SPPOW [[JIM SOINIXIUL S UWN[00 Is1Y Wwolj o[dureg (UWN[oy) puodsg) oourIsIp
[eON)LID Je IN)XTW uljelousr) (uwnjo)) 1sIg) (0 ‘7) pue ((‘Q) & PaIjued SULIOJUN JO IMIXI]N D (Mmoy puodag) (1 ‘) pue ((‘0) 1e
poxjued syuouoduwoo [enbo pue [eoloyds om) )M [OPOW SINIXIW URISSNRY) :$50001d Surjerouad vje( (MOY ISI) "INOIARYD( HSS (€'g 9IS

sixe-x Buoje sisjua) Jo souelsiqg X
s v e 2z b 0
..mu
|.V|
=M — Jmn
- 7%
=y — 3
|m|
|N|
GGz~ e Ajenby
DSS Jo anjep UQH.OOQXM SJNOJU0d ueissney) Yyiim wiojiun >u_._m—._¢ﬂ SJNIXIN
[euobBelp Buoje sisluan Jo souelsIq X
s v 8 & L 0
XY
|w| “ln
= — L 1
. o &
= — = v
<L | S ool o . o | el 11 N i s
M %@
99| = e Aljenbg

0SS 10 enjeA pejosedx3 SINOJUOD UBISSNEH Y}IM UeliSsnen Ausuaqg ainpxip



50 CHAPTER 2. SCORING AND SELECTION OF CLUSTERING SOLUTIONS

2.2.1 Random cluster solutions and scoring

Up to now, throughout the discussion in Section 2.2, we assumed that the models m, elements
of M, were a fixed collection of clusters’ centre, scatter and size, {#(m)},,c(. In practice, we
do not usually work with an exogenous, finite list of these. Rather, it is way more typical to
obtain clustering solutions as output of clustering or algorithms evaluated on the data. That
is, specifying a clustering method m, this takes data, X,,, as input and returns an estimated
clustering solution m(X,).

For example, imagine that m’ € M specifies a clustering model obtained by the k-means
algorithm, with a pre-specified number of clusters, K(m’). Then, we compute a solution on
observed data, i.e. m/(X,), and obtain the K (m’)-means partition of X,,. We may then retrieve
a configuration of centres, scatters and sizes 6(m/(X,,)) by computing the sample means, scatters
and sizes of the points assigned to each cluster according to solution m/(X,,).

Thus, we see that the solutions we are willing to score, m(X,,), are random variables, depend-
ing on the underlying data generating process, I, that generates samples, X,,. To simplify the
notation, let us call these as 6, (m) == 8(m(X,)). We call Gy, the distribution of 8, (m). Also,
let us emphasize the dependency of SSC and HSC on the sample data and on the collections of
centres, scatters and sizes, by writing S(X,,,0) (see (2.13) and (2.14)).

Remark 2.2.1. From now onwards, S will refer to any of SSC or HSC (or any other scoring

criterion that shows conforming structure). Thus, for example (see (2.12))

S(X,,0) f s(an, 0(m))dF, (x), (2.18)
RP
where s is either HS or SS (see (2.11) and (2.12)), 6 = 6(m) and F,, is the empirical cumulative

distribution function of the data.

Now, in order to score solutions, {m(X,)}, it would be tempting to estimate these on data

and plug them in into the score, so as to evaluate
s(xn, én(m)).

Furthermore, under suitable conditions (like for example consistency of én(m) to a scalar vector
0o(m) and regularity conditions for a uniform law of large numbers), we may expect to obtain
consistent estimates of the population counterpart:

lim S’(Xmén(m)) — Ex s(X, 0p(m)).

n—0o0

Although, with finite samples, this may be a poor solution. Indeed, similarly to the motiva-
tions underlying the AIC (Akaike, ) and to the discussions in Subsection 2.1.1, this approach
will typically incur into overfitting. That is, when the complexity of the model is higher, the
adaptation of the fit to a given sample may be excessive. If we used the same sample informa-
tion to evaluate the score, we would get good results which are only due to this excessive fit.
Imagine computing the score on a sample using a solution that, given a sample, regards each

observed point as a cluster. This is of course a poor solution. However, referring to the intuition
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on the trade off between fitting and entropy exposed in the previous section, we may achieve,
upon evaluating it on the same sample used for estimation, a perfect assignment (0 entropy)
and a perfect fitting. This in-sample evaluation of a fitted model does not take into account the
introduced variability due to model estimation. This overfitting problem will also clearly emerge
from the empirical analysis in Section 2.4.

An ideal solution to this problem would be the following. Suppose that we observed multiple

independent samples from F, say {X%b)}, for b = 1,...,B. Then, we could form multiple

clustering solutions G(m(XS’))) i (m). Now we could evaluate:

This would solve the overfitting problem. In fact, in the example proposed above, the one-point
one-cluster solution would likely score very poorly when evaluated on a different sample than
the one used for fitting 6 (m).

Building on this, we could also take into account the variability of the estimated solutions
at different samples. We could then evaluate a clustering model via the following average, less

affected by estimates’ variability:

1 d )
—— > 5(x, 00 (m))).
19—1;2 < m )

Under regularity conditions, assuming that G, ,, —— G, then as n — 00 and B — 0, this

n—0o0

quantity would converge to its population counterpart, that is:

lim ﬁ DTS (xD.60(m))) - Eg,, Er s(X, 6o(m)). (2.19)

B [e'e)
e b—2

where Gy, is the distribution of 6y(m) (possibly a random variable), the limit value of 6, (m).

Note that the right-hand side of (2.19) computes the average score (under F') at solutions
obtained fitting m on full information on F’; then these solutions are averaged together. In prac-
tical situation, it is often the case that 0(m(F)) = 6p(m), and Gy, is a degenerate distribution.
In such cases, it would also be possible to estimate a confidence interval for Er s(X,00(m)),
which will allow to better account for variability induced by model estimation.

Of course, this procedure is not feasible in reality. It would require multiple independent
samples from F', while we only observe one, namely X,,. We propose a simple resampling proce-
dure to mimic this scheme and estimate the right-hand side of (2.19). That is, instead of using
multiple samples from F', we use multiple samples from Fj,, the empirical distribution function

of X,,. We illustrate our approach in the next section.

2.3 A resample approach to score cluster solutions

In Subsection 2.2.1 we introduced the limitations of an in-sample approach when the solution m
is fitted on sample data. Also, we argued that a resampling scheme can be used to cope with

this problem. Here we will illustrate our proposal.
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We recall that the quantity of interest here is the double expectation on the right-hand side
of (2.19)
Eq, Er s(X,0p(m)), (2.20)

where X ~ F, 6p(m) ~ Gy, and lim,,_,oc Gy, — Gy, where én(m) ~ Gnm

This is the quantity we are willing to estimate. That is, the average over all realizations
of 6p(m) of the average average score S (2.18). The outer expectation on G,, allows to take
into account the variability introduced due to the estimation of #(m); the inner expectation over
F' allows to score a solution at F'. In the case of a degenerate G,,, we are also interested in
confidence intervals for Eps(X, 6y(m)).

Since multiple independent samples from F' are not available (see Subsection 2.2.1), we pro-
pose to resample form F,, the empirical cumulative distribution function (ECDF) of the sample
data. The resamples will be used to fit multiple solutions for a certain m € M. These will be
used to approximate the outer expectation in (2.20). The original sample, instead, will be used
to approximate the inner expectation. The procedure stated in Algorithm 2 gives the pseudo-
code for the estimation of the quantities of interest when a clustering method corresponding to

m € M is performed on the sample at hand.

Algorithm 2: Resampling Scheme

Input: sample, X,;; model m; scoring function S; a fixed integer B; a fixed a € (0, 1).
Output: S} (m); LX(m); Uk (m).
forb=1,...,B do

STEP 1: extract X" resampling from F,, (ECDF)

STEP 2: fit the solution 6" )( ) on x;®

STEP 3: compute S (m) «— S(X,, sl )(m))
STEP 4: compute S¥(m) < & ZbB=1 S (m)
STEP 5: compute

Hy® (m) — an (S5 (m) = S}(m)),

for an appropriate scaling sequence {a,} (see below).
STEP 6: Compute the empirical quantiles of the root:

(00 <1} 5]
v <1} 1-5)

Specialization of the algorithm in case of bootstrap resampling:
scaling sequence becomes a,, = 4/n. Also Step 1 becomes:

STEP 1b: X:® = {X7,..., X}}, is an i.i.d. sample from F,,, i.e. it is obtained from
resampling the original sample with replacement according to the empirical measure.

L} (m )<—1nf{

Uk(m )<—1nf{

D:J \

Bl
2

The procedure is described and motivated as follows (refer to Algorithm 2).

STEP 1 Here we take a sample from F),, the ECDF of the sample data, according to some
#(b)

resampling scheme. The resampling scheme needs to guarantee that resamples X,,* are
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independent across b’s. These resamples will serve as the basis to estimate the outer
expectation Eg, in (2.20). This mimics the idea of observing multiple sample from F', and

will be used to form independent fit of m € M (compare with Subsection 2.2.1).

STEP 2 Once a resample from Fj, has been obtained, we fit the solution #(m) on it. This will
produce a clustering solution from which we retrieve the usual vector of centres, scatters

®) (m). Due to the resampling scheme, these vectors are independent one

and sizes 9?;
another and they are i.i.d. takes from the distribution G7, ,,. This distribution will be used

to approximate E¢, in (2.20).

STEP 3 Here we score solutions from STEP 2, obtaining Si®) (m). The scoring is computed
according to S (e.g. SSC or HSC) on the sample X,,. Thus, the original sample data is

used to approximate the inner expectation, Ep in (2.19).

(B) It is the number of times that STEP 1, STEP 2, STEP 3 are repeated. The higher the value
of B the more precise the approximation of E¢, in (2.20). However, higher B usually comes
with higher computational costs. Typically, the majority of this cost is due to multiple

fitting of a certain clustering strategy m € M.

STEP 4 Once we iterated STEP 1-3 for B times, we compute the sample average of the scores

obtained via STEP 3: 5

S*(m) = é 3 550 (). (2.21)

b=1
Note that this quantity account for both Eq,, (via resamples; see STEP 1 and STEP 2)

and Er (via the original sample; see STEP 3). This will allow us to consistently estimate
(2.20).

STEP 5 As we anticipated, the independence of the resampled quantities, allows us to construct
asymptotic confidence intervals for (2.20). Therefore, we compute a rescaled and centred

version of the resampled scores Sz(b)(m),
H:O(m) = a, (SE®) (m) — Sk (m)). (2.22)

The previous quantity is usually called the “root” in the resampling literature. Based on
Proposition 2.3.2 the distribution of these quantities can be used to construct the confidence

interval in the next step.

STEP 6 Empirical quantiles of (2.22) are computed. The following analysis justifies the use
of these quantiles to approximate the (1 — a)-level confidence interval for (2.22) with
LY (m),U}(m). In other words this implements the idea of getting bootstrap confidence
interval via the simple “percentile method” approximation.
Ur L}
P sz~ B0 < (0, b)) < 3 (m) - ZC .

an Qn

(STEP 1b) Algorithm 2 can be adapted to alternative resampling schemes. When resampling
is performed according to the bootstrap idea of Efron, , STEP 1 becomes STEP 1b
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and the scaling sequence becomes a,, = /n.

In principle, the procedure described above can be used with any resampling algorithm.
Bootstrap (Efron, ) is one of the most popular and is also the one we adopt here. For
simplicity, in the following exposition we will sometimes refer to this as a bootstrap procedure,

naming it after the resampling scheme. Nonetheless, this is not a standard bootstrap procedure.

Remark 2.3.1. Bootstrap resampling is only used to obtain independent resamples from F,
(compare with STEP 1b and STEP 2 of algorithm 2). Note that in order to approxzimate confi-

dence intervals we construct
H O (m) = a, (S5O (m) — Sk (m)).

This is not the standard root employed in typical bootstrap procedures, as resampled quantities are
not centred on a consistent in-sample analogue (e.g. see Mammen, ); rather they are centred
with respect to a quantity computed via the resampling itself. Also, these quantities are defined
with respect to two independent random variables (conditioning on F,). From now onward we
stick on the resampling with replacement from the empirical measure, and therefore we call the

resamples “bootstrap samples”.

Under suitable conditions, we will show that:

n,B—o0 n,B—o0

B
lim Sf(m)= lim % 1550 (m) - Eg,, Er s(X, 00(m)).
b=1

We are also able to show that, for the smooth scoring function SS (i.e. s is as in (2.12)), with

G, degenerate, and other regularity conditions that the following limit exists:
HY O (m) = Vn (87 (m) — S5 (m) > D.

This last result is needed to justify the use of the percentile method in STEP 6 of Algorithm 2,
so that

_Un(m)

an, an

lim P {s;(m)

n,B—o

< S(Xp,00(m)) < Si(m) — W} =1—-aq, (2.23)

(which can also be shown to be valid for Er S(X, 6p(m))).

These quantities may be then used in several ways to compare models and select an element
of m € M. For example, one could select the solution m maximizing (2.21), which leads to
a consistent estimate of the desirable target (2.20). However, in order to better account for
variability induced by the fit of m € M (compare also with Subsection 2.2.1) we advocate to
choose using the lower limit of the confidence interval (2.23). This lead us to the introduction
of the BHSC and BSSC criteria, defined as (see (2.13) and (2.14)):

BHSC(m) = S*(m) — U;a(m); S = HSC, (2.24)
BSSC(m) = §*(m) — 2. g _ g5 (2.25)

an
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Then, we choose m € M so as to maximize BHSC and BSSC. This will help hedge better against
the additional variability introduced by the fit én(m) induced by the implementation of the
corresponding clustering strategy. We want to select solutions for which the “worst” scenario
(as taken into account by the lower bound of the confidence interval) is the best among all
alternatives.

The validity of the procedure, and the desirability of the BHSC and BSSC criteria is strongly
documented by the empirical analysis in Section 2.4 and the theoretical developments in Sub-

section 2.3.1.

2.3.1 Theoretical analysis of the resampling algorithm

In this section, we present the main theoretical results on the bootstrap resampling procedure
illustrated in Algorithm 2. The notation used so far needs to be enriched, and we do this in
a dedicated section for convenience. We will establish theoretical results using the equivalent
scoring functions using Gaussian densities, (2.15) and (2.16). This is done to keep notation as
simple as possible. However, resorting to proposition 2.2.2 and (2.17), the same results hold also
for HS and SS (see (2.11), (2.12)).

In this section we will prove consistency for the double expectation (2.21), and, in the case
of the smooth score (2.16), convergence of the root (2.22) and asymptotic coverage of interval
(2.23). Also, a series of other ancillary results are proved.

To keep the focus on the resampling procedure, we move at the end of the section all additional

results for the scoring function.

Notation

We adopt the following notation.

(€2, A, P)
Is the underlying probability space. Where € is the sample space, w are elements in 2
and F is a o-algebra on the sample space. P is the probability measure defined on the

measurable space (Q,]:).

X(w)
random variable defined on the space (€2, A, P). X (w) € RP for some integer p > 0.

F Distribution function of the data generating process:
teRP, F(t)=P{weQ: X(w)<t}.
X, An observed sample of random variables from F, X,, = {X;... X}, X; ~ F

F,,  Empirical cumulative distribution function (ECDF') of the sample:

teRP, Fu(t) =— > 1{X; <t}
=1
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P*  Is the bootstrap estimator of P.> More precisely, for the standard bootstrap, which we are
going to analyse in the following, let X be a random vector on the space (92,4, P), with
distribution F'. Then, let F,, the ECDF of a sample of size n from F. Then, P* is the
distribution of i.i.d. random vectors each with ECDF given by F,, (see Andrews ( );

more rigorous and general definition is given in Gongalves and White ( )). Note that
P* = Py, that is, P* depends on a particular realization w and on the sample size n.

To keep notation as clean as possible, we are going to drop these dependencies. We will

specify them when added clarity is needed.

X Y

Indicates bootstrap samples extracted independently one of each other from X,. Each
bootstrap sample is made of independent random resamples with replacement (as for the
standard non-parametric bootstrap). The size of the samples will be indicated by a sub-
script. Thus, for example, Y/ = {X{,..., X"}, where X} ~ F, fori = 1,...,1 and

= {X7*, ..., X[}, where X)* ~ F, fori =1,...,h; Xj, L Y;. Clearly, each sam-
ple extracted this way depends on the sample size n as well. Formally, we should write
X5, =1{Xnq-- >X;Lk,l}- However, to simplify notation, we make this dependence implicit

and drop the n subscript.

M A set of candidate strategies m used to represent the data through 6(m). As usual, each
of them implies a fixed K (m) and parameters 6(m) = ((Tr,im), H/E; ™) E(m))k 1. K) These
are estimated on data in the sense explained in Subsection 2.2.1. In the present discussion,
we will almost always drop the dependence on m. The analysis is conducted for a generic
fixed m.

0%, 6, 0

In this section we will typically be interested in the parameters retrieved from the fitting
of a certain m € M. This is a change with respect to previous notation. These coincides
with 6%(m) = 0(m(X*)), O,(m) = 0(m(X,)), Oo(m) = O(m(F)) (compare with Subsec-

tion 2.2.1). © defines the space where the parameters can take value for a given m € M.

Sny, S, s
Scoring function (sample version and expected value, respectively) used to evaluate a
m € M. This is a change with respect to previous notation. We need to emphasize

the dependence on sample size here.

S (X, 0) : Z (X:,0);  S(0) = fRds(:v,H)dF(:v).

a:leXn

Here we recall that s is either one of (2.15) or (2.16), unless differently specified (see also

the incipit of this section).

B Number of bootstrap replicates. Superscript (b) will be used when needed to indicate a

particular bootstrap iteration.

2Bootstrap was introduced in Efron, ; an accessible detailed survey is in Efron and Tibshirani, ; its
theoretical properties were fully developed later (see Bickel and Freedman, and Giné and Zinn,
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n',n'
In the following, we will make use of subsequence arguments. To ease the notation, as in
Gongalves and White, , we adopt the notation n’ and n” that is intended as follows.
For a sequence (n), n’ indicates a subsequence of (n); further subsequences of n’ are denoted
with n”. Formally, for a sequence (n), (n) is a subsequence of (n), and (ng,) is a further
subsequence of (ny) (compare with Bierens, ~Theorem 2.7.1 or Billingsley, -
Theorem 20.5).

The above leads to the following notational changes (refer to Algorithm 2). What was previously

denoted as
Old notation New notation
SO (m) = §(X,, 050 (m)) S5O = 5,(X,, 051
Eq,, Er s(X,0p(m)) Eg S(0)
Borrowing from Gongalves and White ( ), we are going to use the following notation: a

bootstrap statistic 7% := T,(X}",w) is said to converge to 0 in probability—P*, almost sure-P if
there exists a set A € F such that P(A) = 1 and for w € A we have lim,, ;oo P*{|T*| > €} = 0.
Similarly, we say the convergence happens in probability—P*, probability—P if for any ¢ > 0
and 6 > 0, limy, ;o0 P{w : P*{|T*| > €} > 6} = 0. Note that by a subsequence argument,
for any quantity converging in probability—Py ,, probability—P, we can find for any subsequence

n’ € N a further subsequence n” such that the convergence holds in probability—P* almost

n’ w?
surely—P; this allows us to move back and forth from almost sure convergence and convergence
in probability for P. Finally, T* converges in distribution—P*, almost surely—P to F' if there
is A e F, P(A) = 1 such that for w € A, and for any ¢ > 0, n > 7, for some n € N:

P{sup, |P*{T* <t} — P(F <t)| > ¢} = 0.

Asymptotic properties of the resampling procedure

In order to establish consistency properties for (2.21) and (2.23) we need two preliminary results.

The first results establishes the convergence for each single summand of (2.21). This result
basically extend the uniform convergence of random function of random variables to the case of
bootstrap random variables. The analysis of the bootstrap procedure will be presented as follows:
(i) in Proposition 2.3.1 and Proposition 2.3.2 we prove the desired results general assumptions
involving s, F', P and P*; (ii) secondly we prove that some of this assumptions are fulfilled for
the hard and the smooth scoring ((2.11) and (2.12)) under fairly weak conditions on the data

generating process F.

Proposition 2.3.1. Let (2, F, P) be a probability space, and let X be a random variable with
distribution F' on this space, with X (w) € RP for some finite integer p. Let X (w), Xo(w), ... be an
infinite sequence of independent and identically distributed random variables; X,, = {X1,... Xp}
being the first n terms. Let F,, be the ECDF of X,,; X7, Y[ are two standard bootstrap samples
from Xy, of size h and [ respectively. Let © < R?, for some finite integerd. Sy, : [T, RPxO - R
random functions S : © — R an almost sure continuous random function of 0. Let 0 € RP;
On = 0(X,,) € RP; 07 := O(Y?) € RP. Assume that:
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(b.i) for alll,n=1,2,..., P(P*(§f €©)) =1, P(6,€0©)=1and P(f € ©) = 1.

(b.ii) (Convergence of the estimator in conditional probability) for any e > 0, § > 0 as n,l — o0o:

lim P{Hn -0 > 6} =0
n—0oo

lim P{P*{Hel* — by > €} > 5} =0
n,l—00

(b.iit) (Uniform convergence of Sy) for any € > 0:

lim P{ sup |S, (X, t) — S(t)| > 6} =0
n—n0 te®

Then, for any € > 0,0 > 0:

lim P{P*{Sn(Xn,Gl*) —S(O)] > ¢} > 5} =0, (2.26)

n,l—oo
which is a convergence in probability—P*, probability—P.

Proof. First, consider that assumption (b.ii) implies the convergence of 6 to # in conditional
probability P*. Indeed:

p{p*{wl* — 0] > 2¢} > 5} < P{P*{HG,* —Op]| + (|00 — 0] > 2¢} > 5},

since the event |6 — 6, + [0, — 6| > € contains the event |/ — 8| > € for any value of . Now,
due to the convergence of 6,, to 0, for any subsequence n/, we can find a further subsequence n”
where the convergence happens almost surely. Since this can be done for all sequences, consider
directly the almost sure argument. Thus, we can make the term [|6,, — 0| as small as we please,

say not bigger than e as n grows. Hence, if n > n for some integer n:

P{P*{Hel* — 0] > 2¢} > 5} < P{P*{wl* — On + |6n — 0] > 2¢} > 5}
= P{P*{Hel* — O] > 2¢— [0, — 0|} > 5} < P{P*{\H;“ — 0y > ¢} > 5}.

We note that the term |6,, — @] is constant when considering the probability P*. Moreover, the
last inequality is justified by the fact that the set |6 — 6, > € contains the set 0] — 6, > ¢ if
e < €. However, the last term of the inequality above goes to 0 by assumption if n,l — 0. So

we have that, for any € > 0:

lim P{P*{|91* — 0] > €} > 5} =0 (2.27)

n,l—o0

The remaining part of the proof is basically the same as in theorem 2.6.1 of Bierens ( )
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Consider the following chain of inequalities:

P{P*ﬂsn(xn,@l*) —S(0)] > €} > 6} <
PLPH15,06,.00) = 501 + 150D 50/ > ¢} = 0} <

P{P*{igg |Sn (X, 1) = S()| +|S(0]) — S(O)] > €} > 5} w.p.l.
The last inequality holds with probability 1 due to assumption (b.i), which ensures 6, 6,, and of
are in © with probability 1.

Consider now any subsequence of (n), n’. For this sequence there is a subsequence, say n/
such that assumption (b.iii) holds almost surely. This implies that, there is an integer 7}, such
that for any € > 0, sup;eg |Sn(Xn,t) = S(t)| < € if n > 7} but for a null set Ny. For the sequence
n}, it is possible to find a further subsequence, nf, such that the convergence in (2.27) holds in
probability—P*, almost surely—P. That is, there is a null set N3 such that for w € Q\N3, any
€ > 0: limy, ;o0 P*(|0] — 0| > €) — 0.

Now consider the set Ny = {{J, U, NI*J,n} U{U.Ni,.} UNY, where NYjns Nip, and NY
are the null sets where assumption (b.i) fails to hold for 6}, 6,, and 6 respectively. Being the
countable union of null sets, N7 € F and is null. Let N4 be the null set where S(-) fails to be
continuous, and let NV := Ny JNaJ N3 |J N4; being the countable union of null sets in F, N is
a null sets, N € F and P(Q\N) = 1. For we Q\N, and n,l > @/, we have:

P*{sup|Sn (X, t) — S(t)| + [S(0]) — S(0)] > ¢} =
te©

P*{|S(0F) — S(0)| > € — sup 1Sn (X, t) — S()|} <

PH{|S(0F) — S(0)] > e — €'}

By the continuity of S and the convergence of 6 — 0, as n,l — 0, the last term goes to 0.
Thus, the term S, (X, 6;) — S(6) in probability—P*, almost surely—P for the sequence n’. Since
this argument holds for any sequence n’, this implies that the convergence S, (Xy,6;) — S(0)
in probability—P*, in probability—P or equivalently:

lim P{P*{|Sn(Xn,Ql*) —S(O)] > e} > 5} =0

n,l—00

Remark 2.3.2. In general, the rate at which | goes to o is determined as a function of n and
depends by the particular result applied to show validity of assumption (b.ii). A typical choice is

[ =n.

Remark 2.3.3. Assumption (b.ii) can be replaced by any result stating the convergence of the
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bootstrapped quantity 0, as for example: for any e >0, 6 > 0,

lim P{P*{|6] — 6] > ¢} > 5} = 0.
n,l—00

Now, we move to the second result, showing the convergence in distribution of the quantities
(2.22). This convergence will be essential to justify the confidence intervals (2.23). The proof
basically relies on the delta method applied to the root (2.22).

Proposition 2.3.2. Let be assumptions of proposition 2.5.1 be satisfied and assume for conve-

nience that | = n. Assume additionally that:

(b.iv) (bootstrap estimator’s convergence in distribution): for any e > 0:

P*{an (67 — 6,) <t} — P{ay (6, — 0) < t}‘ : e} _o, (2.28)

n—0o0

lim P { sup

for some rate ay, an, — 0 asn — 00; call T the distribution to which a, (0, —0) converges.

(b.v) (uniform convergence of the first derivative of Sy, over 8): Syp(Xy,0) is twice differentiable
over 0 with uniformly converging first derivatives (over 8, in probability). That is, as 6, — 0

in probability, assume:

V05a (X, 6) 2> VyS(0).

Then, as n — oo, in distribution—P*, probability—P:

B
(s (X, 070 2 (X0, 07 ) 4 VeS(O)T + VaS(O)ET, (2.29)
or, if ET =0,
B
1

an (sn<xn, ZSOEE=DY Sn<xn,e;““’>>) 4 T9S(0)T. (2.30)

b=1
Proof. The requirement in assumption (b.iv) is equivalent to the following (van der Vaart ( )):

Jim P{an (0, — 0) <t} = T(t)

lim P{)P*{an(af‘ —0n) <t} = T(1)| > e} 0,

n—ao0

for all ¢ and any € > 0, for some distribution 7. That is a, (Hn — 9) converges in distribution to
T and this can be approximated by the bootstrap distribution of a, (0* — Gn) that converges in
distribution—P*, probability—P to T

We consider the almost sure-—P argument. Here, by a subsequence argument, consider all the
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convergence stated above to be almost sure—P. Then consider the following:

B
an<sn(xn,07(b Z S (X, 051 >:

1

B
an <Sn<Xm97(b)) — = 2, Su(Xa, 7)) 4 8, (X, 0) — S (X, en)> _
b=1

B
an (sn(xn, 7)) — S, (X, 6,,) ) Z ( (X, 07 ) = S,,(X,, en)). (2.31)
Consider now the expansion of S,,(X,,, 0;) around 6,

Sn(Xna el*) = Sn(Xm Hn) + VGSH(Xnv Hn)T(al* - 9n)"‘
(0F — 0,)T 8pS, (X, 0,)(0F —0,) + ...,

where Ay indicates the matrix of second derivatives of S,,. Rearranging the terms and multiplying

by a,, yields:

Qan <Sn(Xm 9l*> - Sn(Xnv 071)) = VGSTL(XTM Hn)Tan(el* - 071) + opx (an)7

where we indicated by op+ a term that goes to 0 when n — o0, at a rate a, in probability—
P*, probability—P (note that this follows from assumption (b.ii) of proposition 2.3.1). Then, as

n — oo:

an <Sn(Xn, 0f) — Sn(X,, Hn)> =

V05 (X, 00) an(0F — 0) + 0px (an) > VeS(O)T, (2.32)

Note now that as B — o0, since the bootstrap scheme produces i.i.d. random variables over
resamples #(b), the last term in equation (2.31) goes to VpS(6) ET. This is motivated by the
strong law of large numbers for i.i.d. variables and (2.32). Thus, by an application of Slustky’s
theorem applied to the bootstrap probability P* and again (2.32), as B,n — o0:

B
(s (X, 07 Z (X, 07 > 4 VeS(0)T + VaS(O)ET = VeS(0)T,

in distribution—P*, almost sure—P. The last equality holds only if ET = 0.

Finally we note that the above is an almost sure argument in P, assumed to hold for any
subsequence n” of a subsequence n’ € N. Thus, for the stated assumptions, the actual convergence
is in distribution—P*, probability—P. O

Remark 2.3.4. In the proposition above we used | = n for convenience. The above can be
probably extended to scenarios where | = l(n) and n — oo implies | — 0. It would be needed
that the bootstrapped distribution converges to the same distribution as the sample statistic. We

do not pursue this further here.
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Remark 2.3.5. The last term in equation (2.31) gives an indication of the minimum magnitude
of B, which should be high enough to drive down the variance of the term a, (Sn(Xn,Hl*(b)) —

Sn(Xn,Hn)> = BT:(b). Note that asymptotically BT;(b) are i.i.d. random wvariables extracted
from VgS(0)T'; let us call them Zy. Thus, assuming the convergence holds in distribution—P*,
almost sure-P (is the convergence is in probability—P, then use a subsequence argument), by

Chebyshev’s inequality we have:

1 & 1 & 1S 2 E (Z,)2
. ES * _ —
lm P(| Y BT > 1) = Pl Y 2] > 1) = P((5 X2)° > #) < =5
b=1 b=1 b=1

Thus, the relative magnitude of B with respect to the variance of Z determines the rate at which

the convergence stated in proposition 2.53.2 is to be trust.

Remark 2.3.6. Note that with the same set of assumptions, it is possible to show that (by
expanding Sy (X, 0,) around 0):

n—o0

lim ay, (sn(xn,en) . Sn(Xn,0)> — VoS(0)T, (2.33)

in distribution-P. Note the extra bias term that is present in (2.29) is missing here, namely
VoS(O)ET. When the bias is 0, the bootstrapped quantity (2.29) and (2.33) converges to the

same distribution.

To be precise, this result is yet not enough to prove the consistency of (2.22). In particular,
note that the term a,, is determined by the hypothesis on the convergence of ,, and 6. Were
an = +/n and the required assumptions satisfied, then asymptotic distribution of (2.22) would
immediately follow.

Finally, we establish the consistency of (2.21) and (2.23). In order to do so, we also need
further conditions on the underlying F' and on the scoring function s. These are needed to ensure
sufficient smoothness of the scoring function. These issues are analyzed in details at the end of
this section. To ease the presentation, we report here the additional assumptions. These pertain

to the underlying distribution F' and the parameter space ©.
(s.i) X ~ F where F is such that E{(XX')?} < o0;

(s.i*) X ~ F is such that E{(XX')*} < co.

(s.ii) 7 > 0 for every k and Zszl e = 1;

(s.13) ||pklla < M for some large M for every k;

(s.iv) X is non singular for every k.

We now show that we can consistently estimate Ey S(6) with the bootstrapped version. For
the moment being, we are going to assume (b.i), (b.ii) and (s.i), (s.ii), (s.iii), (s.iv) hold; also
assume X, is a sequence of i.i.d. random variables from F. These assumptions ensure that

s(X,0) is a continuous function in both arguments; © is a compact set; E(sup;cq s(X,t)?) < o0
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(by propositions 2.3.6 or 2.3.7). Now, by a straightforward application of theorem 2.7.5 — Bierens
( ), we have that for any € > 0:

n

P{ lim sup 1 Zs(Xi,t) —Es(X,t)’ > e} =

no® e 1M

P{ lim sup

n—=%0 teQ

S (X t) — S(t)‘ > e} —0. (2.34)

Result (2.34) states the almost sure uniform convergence of S,,, which is stronger than that
required by assumption (b.iii). Now, with the assumptions above and (2.34), we can apply
proposition 2.3.1, yielding the convergence in probability—P*, probability—P for the considered
Sy statistic: for any e >0, § >0, and any b=1,...,B:

n—0o0

lim P{P*{|5n(xn,9:;<b>) —S(0)] > e} = 0.
Thus, applying the law of large numbers to the bootstrap probability—P*, we have the following;:

B
. : 1 #(b) —
A%J%B;Sn —ES(0) = EgEx s(X,0), (2.35)
where the convergence happens in probability—P*, in probability—P. This result states that we

can consistently estimate (2.20) with its bootstrap counterpart. Next we show the adequacy of

the confidence interval.

The following discussion consider s to be specified as (2.12). Under the same set of assump-
tions, strengthened by (b.iv) and (s.i*) (which automatically implies (b.v) by proposition 2.3.8
similarly to (b.iii)), we can apply Proposition 2.3.2 together with Lemma 23.3—van der Vaart
( ), yielding the consistency of the bootstrapped quantiles for the distribution VS (0)T
(eventually shifted by a bias term). We indicate these with t¢,. More precisely, L (i.e. L (m))
and U} (i.e. U}(m)) as defined in Algorithm 2 converges to L and U, where:

L= inf {t . P(VS(O)T <t) > %} +VoSO)ET = tg + VeS(O)ET:
U = inf {t L P(VeSO)T <t)>1— %} +VoS(O)ET = t,_s + VS(0)ET;

the convergence occurs as B — o0, n — o0, in probability—P*, in probability—P.

Now, for simplicity, we assume that the convergence stated in proposition 2.3.2 holds in
distribution—P*, almost sure—P; a subsequence argument allows to extend the following to the

convergence in probability—P. Thus, along almost all sample sequences, that is, with probability—
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P 1,as B,n — o

; . Lk of (1D e \
{00 251 ) < o ( Y810 - si0000) < 13}

an

{ ( 25 ®) _g xn,9)> <S(X 6,,) xn,e) }

P{(VQS(H)IETJrVgS(H)T) < VeSO ET + ta } {vgsw) <t

[N]])
——
||

*
where we used £ to indicate that the convergence is in probability—P*, and is motivated by an
application of Slutsky’s theorem to the bootstrap probability P*. The same reasoning applies
to U}, therefore S, (X, 0):

U* L*
P*{S;; o < (X, 0) < 57— a—:} —~1-a,

where the convergence is in probability—P*, probability—P (as B,n — o). This result establishes
(2.23). Note that by Remark 2.3.6, via a similar expansion, it can be shown that
Uy L
P*{SZ——” < S(0) <S*——”}—>1—a,

an " oan

where the convergence is in probability—P*, probability—P (as B,n — o).

Assumptions in Propositions 2.3.1 and 2.3.2 are rather general, some of them can be char-
acterized in terms of easier to interpret conditions involving F', some other are not easy to be
established for the clustering algorithm at hand. In the following Propositions (labelled from
2.3.3 to 2.3.8) we show that, under fairly easy to interpret assumptions on data distribution, all
sufficient conditions for Propositions 2.3.1 and 2.3.2 are satisfied, except the conditions (b.ii) and
(b.iv) about P*. The latter are different and will be treated at the of the this section.

Properties of the scoring function s(X,6)

In this section we formally illustrate properties of the considered scoring function s. These were

largely used above to show asymptotic properties of the resampling scheme.

Let us recollect here the quantities used in the following.

Dis(X,0);  S(0) =Ex s(X,0);
i=1

S (X, 6) :

3\’*

K(m) m .
sem) = Y OB 1og (2 i m)):
k=1 Zk 1 7Tk )¢k(x m)

K(m)
sp(zym) = 2 1 {k = arglgnax {W,gm)¢k(x;m)}} log (7Tk ¢k(x m));
k=1

(m) — (m) (m) E(m)

. (m) (m)
0= (71'1 STy H1 e g () )y

).
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where K (m) is a finite integer determined by the method m € M and ¢(X; g, Xx) are (mul-
tivariate) normal distributions with centres given by pj and covariances given by Xi. In the
following we will assume some m € M is specified and consider a fixed K = K(m). We drop the
dependency on m.

Note that due to (2.17) this analysis is also valid for HS and SS scores based on the quadratic
score (see (2.11) and (2.11)).

The following three propositions establish basic properties of the scoring functions s and sp,.
Proposition 2.3.3 (continuity). s(x, ) and sp(x,0) as defined above are continuous in x, 6.

Proof. s(x,0) is obviously continuous in x, 6, being the product of continuous functions.
Consider sp(z,0). Discontinuity points might occur when the indicator function switches
from one component to another. Without loss of generality, we treat the case where K = 2.

Consider the following;:

log(m¢1(w)) if 1 = argmax 5 mi¢; ()

sn(,0) = = max {log(m1¢1(z)), log(ma¢2(x))}

log(magpa(z)) if 2 = arg max o mi;(z)
The maximum of continuous functions is continuous.

Proposition 2.3.4 (Bounded from above). If m; € (0,1) and det¥; > 0 for allk =1,..., K,
s(xz,0), then sp(x,0) are bounded from above. I.e. AM € R : s(x,0) < M for any x € RP.

Proof. We give the proof for s; s follows by the same argument, changing the smooth weight
with the indicator variable. For a given number of K, m; € (0,1) Yk = 1... K (if one of the my
is equal to 0 we are in a case with K — 1 components; if one of the 7y is equal to 1 we are in the
case of K = 1). Moreover, ¢y(z) for finite px and non-singular ¥y is bounded by 0 from below

and by ¢ (ux) from above. As a consequence:

G NP < B /Y C) B 236
25:1 7Tk¢k(x) E( 7 )’ 1;1 25:1 Wk(z)k(ﬂf) ( )

Consider log(m¢r(x)), this quantity belongs to the interval (—oo,log(mrdr(ug))). As a conse-

quence, it is easy to see that:

K K K
TG (T
ST () < 3 log(midn(@) < 3 log(mn(u)) <0 (237
i1 2ik=1 ThOk(T) k=1 k=1
However, it is not bounded from below, as it may happen that as ||z| — oo, Z:KL’“(;U)() > 0
_1 "o (T
and log(mg o (z)) — —o0. ! O

Proposition 2.3.5 (Bounded in probability). If 7 € (0,1) and det X > 0 for allk =1,..., K,
s(x,0), then s(X,0), sp(X,0) are bounded in probability. ILe. for any e > 0, 3IM € R :
P{|s(X,0)| <M} >1—ce.

Proof. We give the proof for s; s; follows by the same argument, changing the smooth weight
with the indicator variable. We need to show that: Ve > 0, 3IM e R: Pr{|s(X,0)| < M} > 1—e.
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Consider the following (this argument holds for crisp weights as well):

K
Z log(mxr(X))]. (2.38)

We note that, for the (multivariate) normal distribution, Ye > 0, 30 < a. < b € R : Pr{¢x(X) €
(ae,be)} > 1 — €. Thus, since the logarithm is a continuous transformation, we have that, for

some M, eR: 0<e M <q. <b <eMe < o0

1 — € < Pr{¢p(X) € (ac, b))} = Priac < ¢p(X) < b} < Prie e < ¢ (X) < Me}
= Pr{—M. <log(¢x(X)) < M.} = Pr{|log(¢r(X))| < Mc}. (2.39)

Thus, log(¢x(X)) is bounded in probability (we note that if all 7 are greater than 0, the
argument to prove boundedness in probability is exactly the same, taking into account the added
constant: log(mpor(x)) = {log(mi) + log(¢r(z))}). Thus, as absolute sum of random variable
bounded in probability, S5 |log(m¢x (X)) is bounded in probability and so is s(X,6).

O

The following two propositions prove the existence of the second moment of s and s, with
respect to random variable X, for all possible values of . These are crucial, in that they need
to establish uniform convergence required by assumption (b.iii), on which Propositions 2.3.1 and
2.3.2 heavily rely. This is an essential regularity condition, and amounts to shape the degree of

smoothness required for the scoring function used in the resampling scheme.
Proposition 2.3.6 (Existence of first two moments of s). If for every value t of 6
(s.i) X ~ F where F is such that E{(XX")?} < oo;

(s.ii) T3, > 0 for every k and Y5 mp = 1;

(s.iii) ||ux|l2 < M for some large M for every k;

(s.iv) Xy is non singular for every k ;

then:
Esup (s(X,0)?) < oo (2.40)
0O
Proof. Consider a partition of RP| {Ax}r—1. x, where:

— {2 € B : log(midi(x)) > log(mo(a)) Vk # i}; (2.41)

Note that due to the continuity of the functions involved, such a partition can always be found
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for any value of 8. Then:

K mdu(o) i
S 2 = M og\ 7 X ) X
E (s(X,0)%) jRp (; S oy R >>> dF(z) <

. 2
Jp (Z log(wkqbk(x))> EJ (Z log(mx¢x ( ))) dF(z) <

M=
) f (K log(migh () 2 f (K log(mio ()" dF (z) =
Z K2 log(m;)?dF (x Z Kzlog (¢s(x))?dF (2)+

Z K2210g (m:) log(¢(z))dF (x). (2.42)

Note that the inequality passing back from A; to RP is due to the positiveness of the integrand
(which is a squared function). Having in mind these last three term, we are going to analyse

them in turn.

Consider the first term. It is clearly finite if and only if we have a finite number of components

K and m; > 0 for each i (ensured by assumption (s.ii)).
K K K
KQZJ CRF() < K23 ECE= K2 Y €2 = C < (2.43)
=174 k=1 k=1

Consider the second term. We can rewrite it more explicitly as:

ziﬁm K2 1og(i(2))2dF( KQZJ ( — i) 221- (—a:—,ui)>2dF($)

K2
_K2202+—ZE (X'S7X 4+ Sy — 25 X) -
i=1 i=1
K

K? Y GE(X'S7X + piS; e — 2051 X)), (2.44)
=1

where: C; = log(2n~%?|%;|~%/2). Consider now the second term of the expansion above. Since all
the terms involving parameters only are finite due to assumptions (s.iii) and (s.iv), the remaining
difficulties involve terms where X appears. Now, the term E(X ’E;IX )2 involves computing the
expected value of linear combinations of the components of X up to the fourth power. Let p be
the dimension of X. Define a set of integer vectors I := {(i1,142,...,%p) : 0 < i; < 4, Z?:l i; = 4}.
Let be I'* the set of unique elements of I, and let i* denote elements in I*. Based on some algebra,

we can arrange the previous term as follows:

(X'S7'X)? = D) XXX (2.45)

i*el*

where 7;+ is a coefficient depending on i*. Note that in (2.45) at most four distinct component
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of X can be present in each summand. Thus, to have this quantity bounded we need that:
EX, X; X1 X, <o0; Vi, g, l,m=1,...,p. (2.46)

Assuming this condition holds, we can proceed with the rest of the proof. Going back to the
second term of (2.44), consider the terms in the brackets. The first term is finite for the same
argument as above. The second term, does not depend on X, and the assumptions on ¥ and puy
ensure this term is finite as well. The third term requires boundedness of E(X X') to be finite.
However, the existence of these moments is already implied by (2.46). Thus the second term in
(2.44) is bounded because of (s.i).

For the third term in (2.44), the reasoning is exactly as above, since the moments conditions
required are less restrictive than (and thus implied by) (2.46).

Finally, consider the superior over #. Since the integrand function is continuous in ©, and ©

is compact, the superior is equal to the maximum of the integrand function in ©. Call 6, the

maximizer:
E <sup s(X,G)Q) =E (s(X, 90)2) < o0, (2.47)
0cO
since the argument above applies to any 6 € ©. O

Remark 2.3.7. Note that the above proof can be adapted to the existence of the q-th moment of
s. In this case, the set I used in the proof should be modified as I := {(i1,42,...,3p) : 0 < i; <
2q, Z] 11 = 2q}, and adapt accordingly the requirements in (2.46).

Proposition 2.3.7 (Existence of first two moments of sp). Propositions 2.5.6 carries over on

Sn, that is replacing smooth weight with indicator variables.

Proof. Consider a partition of RP, {A}r—1. x, where:

— {2 € B : log(myu(x)) > log(mig(x)) Vi # k) (2.48)

Then,
K
X0 = ). j log(mo () *dF (z) <
K 2
o )2 |z — pge]|? ) =
kZlng(m ar(e Zf (-0 ar
B Cullo —ul? 4, L[ e P
f CRdF(x 2Zf LACESDY [ o= wltare) 2

where Cy, = —Elog(27) — 3 log(|Zk).
The rest of the proof is identical to that of proposition 2.3.6. O

The next proposition is the analogous to the above two to show the validity of assumption
(b.v). This is needed to ensure regularity conditions once delta method is applied in proposition

2.3.2. This is shown for smooth scoring s only.
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Proposition 2.3.8 (Existence of VyS(0) second moment). Let assumptions of proposition 2.3.6
hold. Let assumption (s.i) be strengthened by the following:

(5.i*) X ~ F is such that E{(XX')*} < .

Then:
E <Sup IVos(X, t)H?) < . (2.50)
te®

Proof. Consider the typical components of Vgs(z,t):

B & Thon(T) , - ,
s(a,t) == )] log(mrr(z));  call f(z,0) Y mrep(z);
k=1 f(x7 0) k=1
0 Pr(z) .
st = 565 (tog(mion(@)) + 1= s(x,6)): (2.51)
0 TG () - .
Sarset) = T (10g(mkon(2)) + 1 = s(z,60)) S5 @ = ue): (2.52)
0 ok () 1 (i — p 71-)2
aUk’is(ac,t) = ;(;’ ) <log(7rk¢k(sc)) +1-— s(:z:,@)) <0k,1; + G,%j>’ (2.53)

where, for simplicity, we show the case for diagonal covariance matrices. That is ¥, are diagonal,
and oy, ; indicates the i-th diagonal term in the k-th covariance matrix. This is without loss of
generality, since the result can also be shown in the more general case of positive definite variance
matrices. In fact, the expansion of the derivative in this latter case includes at most quadratic
terms in z and the argument used later does not change. However, the algebra is much more
involved, so that it is not easy to visualize the results. Note that the above equations are of the

form:

Tk ()
f(x,0)

where g(z,0) = % for equation (2.51); g(z,0) = X'z — py) for (2.52); g(z,0) = (Jil +

(10g(mkon(2)) +1 = s(z.6) ) g(x, 0), (2.54)

(@i—p,i)? r St e . )
5 for (2.53). Now it is easy to see that:

2
E (%(mg(wm(m) 1 s(X, 0))9()(, 9)) (2.55)
is bounded if: )
E (%( ~s(X, 0))g(X, 9)) < o0, (2.56)

since the boundedness of this term automatically implies the boundedness of all the other inte-
grals arising from the expansion of the square in (2.55) (because this term contains the others).

In turn, the boundedness of the term:

m i — i)\
= (i (o) (550)

will imply the boundedness of (2.56), because it involves higher order term with respect to X

than the others. However, noting that the term g(X, 0) is always continuous in X, by using the
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same line of proof in proposition 2.3.6, we have:

2 (g (—oor) (S T) ) < (o) (R’ <

ki ki
K 4
Xi — [k,
3 K%og(m)%#)dF(m)—i—
iZ1JRe Ok,i
K

o )4
S [ K2 0m(6, (2 apay

j=1JRP Ok

((Xi —4Mk,i)4 ) dF (z),

Ok

Z K2210g W])log(¢g( T))

where the last inequality is motivated by using the sets A; as in proposition 2.3.6 (note that

here the subscript is changed from ¢ to j, since we are using the subscript {k,i} to denote the

derivative with the respect to the i-th term of the k-th covariance matrix; note also that the

(X—pge)*

i)
g

term is multiplied for all the terms in s(x, 6)). Using the same argument of Proposition

ki
2.3.6, the term that involves the higher moments in term of X is:

S K 1ogtoy(e? (K220 p o),
o}

j=1R? i

It can be seen from (2.44) that this requires the finiteness of the following expectations:
E (XpX; X X)) <05 Vh,j,l,m=1,...,p,

p being the dimension of X. Since this has to happen for any ¢ = 1,...,p, this condition can
be ensured by E(XX’)* < oo. Now, this condition implies that all the terms appearing in
|Vgs(X,0)|? have a finite expectation. Similarly, because these terms are continuous function
over © compact, the suprema over © are actually maxima, and by the assumptions on © (see
2

proposition 2.3.6) the expectations of the terms in | suppeg Vos(X,0)|° are finite. Then by

linearity of the integral it follows:
E(sup |Vos(z,0)[?) < E(||sup Vgs(z,0)|?) < o
0c© 0c©

O

In Propositions 2.3.3 to 2.3.8 we have shown, under interpretable conditions on the data
generating process, that some of the assumptions required for the consistency of the resampling
procedure are fulfilled. These conditions essentially involve the existence of moments of the
observable X, and certain requirements for the set © containing the solutions #(m). More or
less we require that the clustering method under study does not output singular clusters, and
that none of the K (m) cluster is returned empty. Although central in the proof of Propositions
2.3.1 and 2.3.2, no further insight is possible for conditions (b.ii) and (b.iv) involving P*. These
conditions essentially requires that the behaviour of the algorithm that computes é*(m) (the

bootstrap version of én(m), is nice enough that its bootstrap probability measure is able to
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mimic the true underlying one. Andrews, shows that, when #* is an argmax functional
(e.g. an MLE estimator), and the F' has density which is sufficiently smooth beyond the second
order, then these conditions are satisfied. However, these sort of sufficient conditions involving
high order derivatives of the density of the generating model are difficult to check, perhaps except
for simple cases that are of limited interest in clustering analysis.

Even if it is interesting to find sufficient conditions for 2.3.1 and 2.3.2 in such cases, this would
be still unsatisfactory because usually the functional that maps X'’s into cluster solutions 6(m)
in practice may be too difficult to frame in terms of well understood mathematical object. To
give a toy example suppose that we want to cluster points using the k-means. It has been argued
that we can map the k-means output into a well defined #(m). Note that, the k-mean problem
can be framed in terms of a ML problem, and the corresponding 6(m) would coincide with an
MLE that is an argmax functional of F' (Pollard et al., ). Now even if one is able to establish
(b.ii) and (b.iv) using results as in Andrews, or Andrews, , won’t be a too reassuring
guarantee indeed. In fact, it is well known that the k-mean optimization problem is NP-hard, in
practice we approximate its solution using an heuristic algorithm, such as the popular Lloyd’s
algorithm. The latter only guarantees convergence, but whether the optimal k-mean solution is
found strongly depends on the initialization, which adds a further level of randomness to 6(m).
Therefore, what we would compute along the bootstrap resamples may not be even close to the
object defined by the target functional.

The main message here is that perhaps a sensible practical thing to do is to gain insights on
the bootstrap behaviour of (m) by running some experiment. For example, O’Hagan et al.,
show empirically that bootstrapping the EM-algorithm approximation of the MLE of Gaussian
mixtures parameters produced results that confirm that the bootstrap distribution of the EM
solutions is well behaved, although there is no theoretical guarantee for it. Again, in practice
(b.ii) and (b.iv) require that the bootstrap distribution of the clustering solutions provided by the
method m € M is nice enough to be close to its true counterpart. For many practical clustering

methods’ implementations, we can only hope for this.

2.4 Empirical Analysis

In this section we show numerical experiments that include both real and artificial data, this
allow us to test our methodology on a range of sample size, dimensionality and classes overlap.
This section so organized: Subsection 2.4.1 presents the real and artificial datasets used for the
analysis; Subsection 2.4.2 discusses the different criteria for selecting a clustering solution we
put under comparison; Subsection 2.4.3 illustrates the construction of the set M of clustering
methods we use to obtain a clustering solution; 2.4.4 concludes the section showing discussing

the empirical results.

2.4.1 Datasets and sampling designs

Dataset are both real and simulated. Figures are collected at the end of this section for conve-
nience.

We note that the sample size is set reasonably small for all data sets relatively to the dimen-
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sionality of the data. In fact, sample sizes for the following data sets range from n = 150 to
n = 600, where the dimensionality ranges from p = 2 to p = 10. This is to put the resampling
algorithm under stress.

Subsection 2.3.1 shows a number of statistical properties for the algorithm, however those
are asymptotic-type statements, meaning that they are guaranteed to hold in large samples.
The numerical experiments here are built to assess the performance in the more realistic case
of finite sample size. Moreover, taking bootstrap resamples of the original data for moderate
n increases the probability of ties in the resamples. Algorithm 2 uses bootstrap resamples to
compute a cluster solution obtained from a given method m a number of times, and this may
be problematic here for various reasons: first in the presence of small clusters, these may be
under-represented in the resamples; secondly, ties in the resamples increases the probability that
spurious solutions are found by the clustering algorithms considered in the following study. These
issues have been discussed in O’Hagan et al., . Designing experiments where the ratio n/p

is reasonably small, can be considered as a robust check for all the aforementioned issues.

Iris Dataset

The Iris dataset is a famous one. The data was collected by Anderson ( ). Fisher ( )
used it for the first time in a classification problem, in the paper introducing Linear Discriminant
Analysis. Since then, the dataset has been used in a countless number of papers, to analyse both
classification and clustering algorithms, starting a long tradition.

The Iris data collects measurements on three different Iris species, namely Iris virginica, Iris
versicolor and Iris setosa. Each of the three classes counts 50 observations, for a total of 150. The
features measured are the sepal length, sepal width, petal length and petal width. Thus, here
n = 150 and p = 4. Figure 2.5 gives a visual representation of the data along two-dimensional
slices of the four dimensions. It is possible to note that two of the classes have a substantial
overlap.? The classes’ overlap makes it difficult for clustering algorithms to split the data in the

true groups.

Olive Dataset

The Olive dataset collects data on fatty acids of selected samples of Italian virgin olive oils. This
dataset was introduced by Forina and Tiscornia ( ) and Forina et al. ( ), who used the
percentage composition of the eight acids to predict the origin region of the oils. *

The Olive data is made of n = 572 observations, measured on p = 8 features each. The
grouping of the data is twofold: a coarser one, where oils are classified according to macro
regions of origin (Southern Italy, Sardinia and Northern Italy); a finer one, where the macro
regions are split in several areas (North Apulia, South Apulia, Calabria, Sicily, Inland Sardinia,

Costal Sardinia, East Liguria, West Liguria and Umbria). As discussed in Forina et al. ( ),

3This similarity between the two classes is motivated by the interesting theory by Anderson ( ), stating
that Iris versicolor is a hybrid between the Iris setosa and the Iris virginica, receiving its genetics for one third by
the former and for two thirds by the latter.
“The authors mention a previous work where they had previously described the data (Forina and Amarino,
). The dataset is made available within the GGobi software (Swayne, Lang, and Lawrence, ) and accessed
through the R software via the pgmm package (McNicholas et al., ).
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some of these areas are well separated, namely West Liguria, Costal Sardinia and Inland Sardinia,
while some others show a large similarity, like Sicily, Calabria and South Apulia. The data is
represented via its principal components in Figure 2.6. Also, Figure 2.7 shows bidimensional
plots for some selected acid variables with the finer group classification. It can easily be seen
that data comes with an high amount of discreteness. Also, for some areas, the scatters are
highly concentrated along some hyperplanes. These aspects of the Olive data typically cause
many algorithms to struggle in retrieving the true 9 areas, estimating poor solutions (compare

also with the discussion on complexity in Subsection 2.1.1).

Banknote Dataset

Banknote data is made of n = 200 observations on both genuine and counterfeit Swiss 1000-franc
banknotes. The notes recorded in the dataset are those from the second banknote series, first
issued between 1911 and 1914 and recalled in 1958. The dataset was introduced in Flury and
Riedwyl ( ) and was collected to analyse statistical techniques to tell genuine and counterfeit
notes apart.

In Flury and Riedwyl ( ), only six measures on one side of the bill were reported, namely:
length of the bill (length); width measured on the left side (left); width measured on the right
(right); width of margin at the bottom (bottom) width of margin at the top (top); image diagonal
length (diagonal). Measurements are in millimetres (see figure 2.8). The data has observations
evenly split across the two type of notes: 100 samples of genuine bills; 100 samples of counterfeit
ones.” Overall, the dataset has n = 200 observation in p = 6 dimensions. Some of the features,
like the bottom margin and the image diagonal, seem to be better discriminating the two classes.

The two-by-two scatter-plots are represented in Figure 2.9.

Pentagonb

The pentagond data are simulated from a mixture of 5 spherical Gaussian components in a
two-dimensional space. The Gaussian components are centred along the sides of an imaginary
pentagon centred at the origin, hence the name of the sample design. Each component defines a

cluster. The data generating process is represented by the following mixture model density,

5

fl@) =Y mfle);  fule) = o p; ),

k=1

where ¢ is a Gaussian density parametrized at g and . Components parameters are set at the

following values:

5The sample size is limited because of the process of data acquisition, which was rather involved. Indeed, to
magnify the small variability of the measured characteristics, the notes were projected on a wall and characteristics
measured on the projections.
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m = 0.2, w9 = 0.35, w3 = 0.35, my = 0.05, 5 = 0.05,
H1 = M2 = H3 = 4 w5 =
[0,5], [—4.5,—0.5], [4.5,—0.5], [3,—2.5], [—3,—2.5].

The total sample size is fixed at n = 300.

The peculiarity of this dataset arises from components’ high unbalancedness, so that both
solutions with K = 3 or K = 5 components may be considered reasonable. As Figure 2.10 shows,
with a big enough sample, it should be relatively easy to identify 5 clusters for any methodology.
However, when the sample size is small, it might be more sensible to identify only 3 clusters in the
data: this is an example where the true density describes a non desirable clustering structure,
which depends on the sample size. If groups’ within homogeneity is pursued, here for small

sample sizes it may be preferable to have 3 groups rather than 5.

t52D

This dataset is a 2-dimensional artificial design, obtained by sampling n = 300 points from
a mixture of 5 t-student distributions (hence the name that reads t-student; 5 components;

2Dimensions). The model density is as follows:

5

fl@) = mfu(@);  fula) = 75<33;dfk7uk7

k=1

Ek(dfk_2)>7

. (2.57)

where t is a multivariate t-student density with df degrees of freedom, location parameter pu,

and scale parameter 3 (note that this is corrected so that the resulting covariance is ¥; e.g. see

MecNeil, Frey, and Embrechts, ). Components’ parameters are set at the following values:
m = 0.15, o = 0.04, w3 = 0.05, my = 0.15, 5 = 0.25,
df; = 10, dfy = 12, dfs = 14, dfs = 16, dfs = 18,
K1 = K2 = H3 = pa = s =
[0,3], [7,1], [5,9], [—11,11], [—7,5],
Y1 = 3= Y= Y5 =

Yy = »
2 —15 2 1.3
15 2 1.3 2|

This design is composed of 5 clusters as shown in Figure 2.11. Differently from the previous
design, there is a mix between rather spherical clusters and elongated ones. When there is few
data, the difficulty arise because of the clusters’ varying shape, which cause problems for solutions
with fixed shape clusters. Some clustering solutions may prefer to join some clusters (solutions
with highly elongated clusters) or split some others (solutions with spherical clusters); see also

Figure 2.1 which represent some possible solutions for this design.
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t510D

This is a slight modification of the t52D design. The t510D is a design in p = 10 dimensions.
Here, along the first two dimensions, we have the same 5 t mixture distribution as in the previous
design. However, on the remaining dimensions, we add 8 noisy features. The additional features
are noisy in the sense that they increase the dimensionality of the t52D data without carrying
additional group structure. In practice, these 8 noisy features have an unclustered spherical
distribution.

Therefore, the model density representing the distribution of t510D, is the same as the den-
sity in (2.57), with the difference that now p = 10 and the remaining centrality and scatter
parameters are set as spherical components. Thus, the density above is modified with respect to

its parameters as follows:

X, O
te < [tk,1, 5,2,0,0,0,0,0,0,0,0]; Xj [ 0 IS] ) k=1...,5,
where Ig is an eight-dimensional identity matrix.

This produces the design shown in Figure 2.12 via plotting pairs of dimensions. The first
two dimension reproduce exactly the t52D design. The added noise, interact with these 2 di-
mension and produces varying results. On some pairs a different, still visible, clustering appears;
this shows sometimes 4 separate components, some others may be regarded as 3 overlapping
components. Considering only noisy pairs, these appears clearly unclustered. Overall, this de-
sign makes the appropriate clustering choice very unclear, even by human judgement. Several
solutions appear reasonable when considering pairs of dimensions.

Finally, this design also uses n = 300 sampled points. The limited sample size, especially in

this 10-dimensional dataset, makes the clustering task even more difficult.

Uniform

Finally, we include an example of unclustered data. This is obtained by sampling n = 300
points from a two dimensional uniform distribution. The sample is shown in Figure 2.4. Many

clustering algorithms will still return a clustered solution even in such cases (see Hennig et al.,

).
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300 Uniform Sample Points

~ Class
S 0.50

0.00 0.25 0.50 0.75 1.00
Vi

Figure 2.4: Sample from a two dimensional uniform distribution. Data is unclustered.
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Table 2.1: Real and artificial designs used for experimental analysis. For each designs, size (n)
and data dimensionality (p) is reported. (B) indicates the number of resamples used in applying
Algorithm 2. Reasonable amount of groups supported by the data is indicated. Also, the number
of Monte Carlo replications of the simulated datasets is reported.

. o Reasonable Number

Design Real/Artificial  n P number of groups K of replicates
Iris Real 150 4 1000 2 or 3 -
Olive Real 572 8 1000 3or9 -
Banknote Real 200 6 1000 2 -
Pentagonb Artificial 300 2 100 3orbh 10
t52D Artificial 300 2 100 ) 10
t510D Artificial 300 10 100 4orb 10
Uniform Artificial 300 1 100 1 10

Summary of the designs

Table 2.1 summarizes all the designs exposed so far. Note that the (B) column indicates the
number of bootstrap resamples that we take, for the specific design, in applying the proposed
Algorithm 2. These are required for resample-type criteria (see next, Subsection 2.4.2). Also,
based on their discussion, for each of them we provide a reasonable amount of groups that we
can expect the data to support.

We conclude this section with two final remarks.

Remark 2.4.1. Some of the clustering methods considered for this numerical study (see the next
section) are based on the assumption that the underlying clusters have at least approximately a
Gaussian shape. Moreover, as highlighted in Section 2.2, the scoring approach proposed here has
connections with the likelihood theory when the true underling class conditional distribution is
Gaussian.

The artificial data set considered here introduce some deviation from the normality to check
whether the proposed method performs reasonably in situations where the groups have a non-

Gaussian elliptical-symmetric distribution.

Remark 2.4.2. Usually artificial sampling designs are introduced to perform Monte Carlo inte-
gration for computing average performance statistics with standard errors. In this study we only
perform 10 replications the simulation designs. These seems an insufficient number of replicates
to compute reliable averages and standard errors on selection criteria.

Thus, in what follows, we will consider just the first realization for each artificial sample
design. Datasets used in the experiment are exactly those shown in Figure 2./ to Figure 2.12.
The other 9 replicates merely serve as preliminary assessment of the stability of the results. From
these, we find that, qualitatively, the analysis given later in unmodified.

The reason why we do not perform more than 10 replicates for the simulated designs is be-
cause this would be unfeasible given the available hardware. This will be clear after the exposi-
tions of Subsection 2.4.2 and Subsection 2.4.5. We anticipate that, for resampling methods for
each dataset, we fit the clusters at least B times for each of the considered alternative, that is
|IM| = 320. This is, for simulated designs where B = 100, at least 3200 re-estimates. Overall,
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these are at least 32000 re-estimates for just 10 replicates, when we would like to have at least
100 different replicates for an overall Monte Carlo analysis of the simulated design. This is com-
putationally extremely intensive, and unfortunately poses serious problem to computing time and
memory management for the hardware we have access to. Note that in practical situations | M|
would be much smaller. Moreover, the resampling method proposed here easily adapts to the toy-
parallelization technique to split each bootstrap re-fitting on a node-cpu. With the availability of
modern computer clusters, we could have performed much more than 100 Monte Carlo replicates,

however this was not possible.
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Figure 2.6: Top graph: principal components’ explained fraction of total variance. The first two components amount for 98% of total data
variability. Bottom-left: Olive data represented by origin region across the first two principal components. There is few overlap between
regions. Bottom-right: Olive data represented by origin area across the first two principal components. The graph confirms that some of the
areas are well separated (West Liguria, Costal Sardinia, Inland Sardinia) the others exhibits an higher amount of overlap. Circles (centred on
class centres) represent the relative amount of classes in the sample.
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Figure 2.8: Swiss 1000-franc note, as those collected in the Banknote dataset. First issued in
1911. Data has measures on the back side only: 1) length; 2) left (width); 3) right (width);
4) bottom (margin width); 5) top (margin width); 6) diagonal (image length). Source for bill
images: Swiss National Bank, 2019
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Figure 2.9: Two-by-two scatter-plots of the Swiss Banknotes data. The dimensions represented in each scatter-plot are specified on the main

diagonal (range of the characteristic in square brackets). Some of the dimensions, like image diagonal length, seem to be able to distinguish

the two classes well.
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Figure 2.10: Top-left: contours plot of the mixture density f(z). Darker areas indicate an higher value of the density. Lines represent the
density levels; Bottom-left: a 3-dimensional representation of the top-left plot. The value of f is represented on the z-axis. Note that the plot
is rotated to ease the visualization. The top mixture component is indicated by the blue dot; Top-right: 300 random sampled data points from
f; Bottom-right: 3000 random sampled data points from f. The top mixture component is well separated from the others, while the other
four exhibit a pairwise overlap. Overall, the components are well separated.
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Figure 2.12: Pairs plot of the first 4 dimension of the t510D design. Showing remaining dimensions is uninformative. The first two dimensions
(V1, V2) reproduce the 5t2D design; along this pairs 5 clusters appears the most reasonable choice. Pairs (Vj,Vi), with j = 1,2, i = 3,4
reproduce the effect of interacting the clustered dimension with the noise: here we can still see that a clustering might be found with either 3
or 4 components (e.g. (V2,V3) and (V1,V4)). The noise dimensions appear clearly unclustered.
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2.4.2 Clustering solutions under comparison

In this section we define the set M of considered methods. These methods will be used to
compare criteria to select clustering solutions.

In this Chapter we were interested in cases in which it is reasonable to assume that data
can be approximately described in terms of elliptical-symmetric density regions (Section 2.1). In
such cases, we also saw that (Subsection 2.1.1) mixture model-based clustering, as described in
(Subsection 1.3.1), based on elliptic-symmetric families (e.g. (2.9)), is a natural choice.

Among possible approaches proposed in the literature, we decided to resort to Gaussian
mixture models. There are other extremely valid proposals that we could have considered here,
as for example Student-t mixture model (e.g. see Peel and McLachlan, , McLachlan and
Peel, ), which for some of the designs described above (e.g. Olive or t510D; see Table 2.1)
may also be more suitable.

However, we chose to adopt Gaussian mixture models because there is an higher availability of
well-established software packages that implement differently the model estimation. In particular,
various implementations treat differently some modelling parameters. This allows us to analyse
the ability of our proposed methodology to take into account these differences, being able to
compare and select clustering solutions obtained by similar models implemented in different
way. This is an advantage of our methodology (as also discussed in Section 2.1), since comparing
different implementations of the same model is something that cannot be usually done explicitly
using classical state-of-the-art criteria (see Subsection 2.1.1).

In this analysis we consider the implementation of Gaussian mixture models via two popular
packages in R. These are the Mclust package (Scrucca et al., ) and the OTRIMLE package
(Coretto and Hennig, ).

Mclust implements model-based clustering based on Gaussian-mixture models. The package
allows to specify the number of components and the parametrizations of the covariance matrices
reviewed in Table 1.2.° Also, in model estimation, Mclust implements a Bayesian regularization
of the covariance matrices as proposed in Fraley and Raftery, . It is not possible for the end
user to control it. Also, the package does not allow to choose the initial partition.

Overall, we consider 140 model estimated via Mclust. These are obtained considering mix-
tures with K components, for K = 1,2,...,10; for each number of component K, we consider all
the 14 parametrizations reviewed in Table 1.2. These constitute a set of methods MM . Thus,
for example, an element of this set contains the following information: number of components,
K; covariance parametrization; and estimation method. In MMY the computational method
for the mixture parameters estimation is always the EM algorithm as implemented in Mclust.

For example:
m: (K(m)=05); (Zx=A,k=1,...,5); (Mclust EM)

The OTRIMLE package also allows to estimate Gaussian mixture models.” This package

allows to specify the mixture’s number of components. Differently from Meclust, this package

5The 14 parametrizations shown in table Table 1.2 are named in mclust with the following acronyms (in order):
{EII, VII, EEI, VEI, EVI, VVI, EEE, EVE, VEE, VVE, EEV, VEV, EVV, VVV}.
"This package also allows to estimate noise proportion in the data; this feature is not used here.
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implements a regularization for the covariance matrices via the eigenratio constraint (see Sub-
section 1.3.1; Coretto and Hennig, ). The value for the constraint can be set by the user.
Also, OTRIMLE allows the user to choose different initial partitions to initialize the EM algo-
rithm.

Overall, we consider 180 estimation settings for the OTRIMLE. These are obtained con-
sidering mixtures with K components, for K = 1,2,...,10; for each number of components
K, we consider the following values of the eigenratio constraint v = {1, 5, 10,100, 1000, 10000}.
For each combination of (K, ) we consider three different initialization methods, I = {1,2,3}.%
These constitute a set of methods M©PT. Thus, for example, an element of this set contains the
following information: number of components, K, eigenratio constraint, -; initialization I, and
estimation method. In MOT | the estimation method for the mixture parameters is always the
EM algorithm as implemented in OTRIMLE. For example:

m: (K(m)=2); (y=10); (I =1); (OTRIMLE EM)

The final set of considered methods to obtain a clustering solution is M = MM¢ y MOT,
For each element of m we will estimate the parameters of the implied Gaussian mixture model on
data, obtaining m(X,,). The estimation is performed according to the estimation method (taking
into account restrictions and initializations) specified by m. From these we obtain 6(m(X,)),

that is used in computing the selection criteria.

Remark 2.4.3. The reason why we compare solutions based on Mclust against solutions based on
OTRIMLE is because this allows for an interesting comparison where different implementations
of the same estimation method (i.e. the EM approximation of the MLE for Gaussian mizture
models), introduce different method’s tuning to manage similar modelling aspects. In fact, both
OTRIMLE and Mclust allow to control the overall relative discrepancy of the groups’ shape, and
to impose a lower bound for the within-cluster variance (covariance regularization).

However, they do it in a dramatically different way. Mclust does not allow the user to con-
trol the lower bound for the within-cluster variance, but it allows to choose between a number
of covariance matriz parametrizations to control the relative discrepancy in cluster shapes. Al-
though the effect of choosing different covariance model finally controls the relative difference in
cluster shapes, originally the covariance model selection has been introduced to control the dimen-
sionality of the underlying mizture model parameter space. Note that for the Mclust approach
going from one covariance model to another does not produce a continuous path in the implied
parametrization.

On the other hand, the OTRIMLE also allows to control similar aspects of the clustering, but
it does it in a completely different way. The eigenratio constraint parameter controls the relative
discrepancy between cluster shapes in a continuous way, so that one goes from imposing all equal
spherical shapes (y = 1) to arbitrary shapes (y = +o0). Moreover, the eigenratio constraint
mmposes a lower bound to the within-cluster variances, although the link between the two things

18 not direct.

8We choose between OTRIMLE’s default method, k-means, and pam. For further reference see Coretto and
Hennig,
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For the Mclust parametrization one can compute degrees of freedom, v, of each model speci-
fication, this is not trivial for the OTRIMLE approach. It can be argued that, for a fized K, an
OTRIMLE solution computed with v = 100 corresponds to an higher degree of model complexity
compared to the case where v = 3, although in practice it is not possible to quantify what is
the magnitude of the difference in the implied model complexity. Furthermore, when we jointly
vary both K and -y, it is not totally clear how to order the relative model complexity (see also

considerations in the next Section).

Summarizing, for each dataset considered in Subsection 2.4.1 we compare a total of 320
clustering solutions. Of these, 140 are obtained using the Mclust package, and 180 are obtained
by using the OTRIMLE package.

2.4.3 Selection methods under comparison

For each dataset described in Subsection 2.4.1, we compare 15 different criteria to select a clus-
tering solution. We may distinguish three main set of these: in-sample criteria, cross-validation
criteria, (bootstrap) resample criteria.

In the following, we will refer to the sample data as X,,. Also, M refers to the set of methods

described in Subsection 2.4.2. The criteria are described as follows.

In-sample criteria
For each m € M, estimate m(X,,), call M the set of estimated solutions. Then, the in-
sample criteria evaluates m,, € M on X,, and choose the best solution as follows. Note that
some criteria can only be computed for solutions obtained by methods in MM Call this
subset of estimated solutions MMC. Indeed, these criteria require the number of estimated

parameters v, only available for parametrizations available in Mclust (see Remark 2.4.3).
CHC Selects the solution maximizing the CHC implied by m (see 2.1):

mcuc = argmax CH (my,).
MneM

ASW Selects the solution maximizing the ASW implied by m (see 2.2):

masw = arg max ASW (m,).
mneM

LogLk Selects the solution maximizing the log-likelihood implied by m (see 2.3):

MLogLk = argmax(ry,).
mnpeEM

HSC Selects the solution maximizing HSC as implied by m (see 2.13):

musc = arg max HSC(m,,).
TR eM
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SSC Selects the solution maximizing SSC as implied by m (see 2.14):

mgsc = argmax SSC(1y,).
A€M

AIC (Mclust only) Selects the solution maximizing the AIC implied by m (see 2.6):

maic = argmax AIC(1y,).
mnEMJ\/IC

AIC3 (Mclust only) Selects the solution maximizing the AIC3 implied by m (see 2.7):

marcs = argmax AIC3(my,).
mneMIVIC

BIC (Mclust only) Selects the solution maximizing the BIC implied by m (see 2.4):

mpic = arg max BIC(mmy,).
mneM]VIC

ICL (Mclust only) Selects the solution maximizing the ICL implied by m (see 2.5):

micr, = argmax ICL(1hy,).
mne/\;l]\/fc

Cross-validation criteria

These criteria are computed via a ten-fold cross validation (e.g. see Arlot and Celisse, ;
also compare Subsection 2.1.1). The procedure is as follows. Randomly shuffle observations
of X,,; partition in ten (roughly) equal parts:

(10)

2
gUX ""UX~n/1O

_xM
Xn = X~n ~n/10u’

/1
(where all the set unions are disjoint unions). For each m € M, let (" be m(Xn\X(jL /10)
(method fitted on all but i-th partition’s data). Then, score () on the i-th partition.

Select the model maximizing the average:

10
1 .
mY¥ = argmax — s(z, m®). 2.58
xeXNn/lo

Eventually, re-estimate the selected m* on sample data X,,, obtaining:

miocvs = ma (Xy,).

Criteria differ in the scoring function s used in (2.58).
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10CVLogLk Replace s in (2.58) with the mixture density implied by the model:

s < log(f(z;m));

M10CVLoglk = m: (Xn)-

where f(-;m) is (1.1) parametrized at parameters 6(m).

10CVHS Replace s in (2.58) with HS (2.11):

s — HS(x;m);

miocvus = My (Xy).
10CVSS Replace s in (2.58) with SS (2.12):

s — SS(z;m);

miocvss = ma(Xp).

Bootstrap resampling criteria
These criteria make use of the proposed resampling procedure extensively described in
Subsection 2.2.1 (see also Algorithm 2).

BHSC Takes the solution maximizing BHSC (see (2.24)) and eventually re-estimate the

selected model on data X,;:

m* = argmax BHSC(m);
meM

mpusc = m*(X,,).

BSSC Takes the solution maximizing BSSC (see (2.25)) and eventually re-estimate the

selected model on data X,,:

m* = arg max BSSC(m);
meM

mpssc = m*(X,).

BLogLk This applies the same procedure described in Algorithm 2 replacing S with the
log-likelihood, I, implied by model m (compare with (2.3); how this should be done
is detailed in Algorithm 2 where s should be replaced by log f(z;m), which is the
density (1.1) implied by m; compare also with (2.25)).

*
BLogLk(m) == S}(m) — Un (m); S =1

an

m™* = arg max BLogLk(m);
meM

MBLogLk = M™(X,,).

All the described criteria above will ultimately select a clustering method’s setup. In the
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next section, we discuss the results of the empirical analysis comparing them. Before moving on,

we stress two points regarding some in-sample criteria and the cross-validation criteria.

Remark 2.4.4. Although the original idea of Smyth (Smyth, ) was to cross-validate a mea-
sure of risk given by the negative expected log-likehood, here we extended the cross-validation
approach to the scoring measures proposed in this work.

Regarding the selection methods based on information-theoretic indexes (AIC, AIC3, BIC and
ICL), these are only compared for clustering methods in MMC | that correspond to the Mclust
setups. In fact these information theoretic quantities, as discussed in Subsection 2.1.1, requires
that the model complexity can be quantified in terms of underlying model parameters. As shown
i Remark 2.53.6 this not possible for the OTRIMLE setups

2.4.4 Results

In this section, we show the results on the selection criteria exposed in Subsection 2.4.2. We report
the experimental results on the 3 real and 4 simulated datasets (see Table 2.1 and Remark 2.4.2).
For each of them we repeated the analysis described in Subsection 2.4.2 obtaining a list of 15
selected methods, M* = {mcH, ..., MBLogLk}-

In order to make comparisons, we evaluated each of the selected solutions against the ground
true partition, which is normally not available in practical applications. For the real datasets, this
is given by the original classes the points belong to. For the simulated datasets, we assume that
the “true” partition is given by assigning points to the mixture component which generated them.
Call the ground true partition myye. Then, for each of the solutions m € M*, we computed
external validation indexes on the couple (m,myye). The indexes computed are the Adjusted
Rand Index (ARI), the misclassification rate (CE) and the Variation of Information (VI). These
are reviewed in Section 2.6. We present CE and VI as 1 — C'E and —V I, so that all of the three
indexes indicate higher similarity of the solutions when they take higher values.

Furthermore, it could happen that, in some settings, none of the criteria was able to select
a good solution, while this was indeed among the considered 320 methods, M. To account for
this, we also compute the best possible achievable misclassification rate within the considered
M. This is the closest solution to the ground truth, in the list of candidates M, that is

Melosest = argmax {1 — CE(m, mye)} ,
meM

(where M is the set of methods estimated on the original data).

Comparisons of models in M™ and mjosest are shown in Table 2.2 and Table 2.3 for real and
simulated datasets respectively. Tables show for each model in M* the values of the external
indexes. We also report them for mejogest.- An arrow highlights the best models in M* in term
of 1 — C'E. We note here that, at least in our experiments, all the three external indexes achieve
(almost always) the same identical ranking for the considered solutions.

Before commenting the results, let us also introduce the visualization method we propose.
This is a compact way to visualize, for any of the criteria described in Subsection 2.4.2, the
values achieved by all of method in M. We think these simple plot may be very useful especially

when there are a lot of solutions to compare. Figures 2.13 and 2.13 give an example.
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To construct these plots, we need to (approximately) order the models in terms of increasing
complexity. In light of the discussion in Subsection 2.4.2 (in particular, see Remark 2.4.3), it is
possible to find an approximate ordering by sorting clustering methods based on the parameters
they receives as input, in a hierarchical fashion: we first order on inputs that are expected to

have an higher impact on the complexity.

As an example, for methods in both sets MMC and MOT | we first sort them according to
increasing number of mixture components K. Indeed, this parameter is expected to have the
highest impact on model complexity. Secondly for MMC  for each value of K’ = 1,...,10, we
order methods with K(m) = K’ by the number of parameters v they require to estimate. In
this case, this is a straightforward solution to account for model complexity. For M7 we order,
within methods with K’ components, by increasing values of « (eigenratio constraint). Finally,
we further order, within methods with the same (K’,~), by initialization methods. Here we

simply fix an arbitrary order for these.

Even if it is true that this ordering may not be monotonically increasing in model complexity
(e.g. a solution with K = 7 and unrestricted covariances is likely more complex than a solution
with K = 8 and spherical covariances), the idea is to decide a ranking for the inputs that the
clustering methods receive. Then, a hierarchical ordering can be pursued based on the effect

that the values of each input have on model complexity.

Figures 2.13 and 2.13 show the values of the LogLk (2.3) and BSSC (2.25) criteria for all
the 320 methods considered. They are constructed as follows. On the x-axis we list on the left
the MMC and MOT on the right. The two are ordered as described above. The green line is
the SSC (2.14). The blue line is the bootstrap average (2.21) and the shaded are its confidence
intervals as shown in (2.23), so that the lower bound of this is the BSSC criterion (2.25). The

magenta line is drawn in correspondence of mpggc.

In the graph, overall, we can see that as the models becomes more complex, the fitting of the
underlying data becomes better (green line goes up). However, some of this improved fitting is
going to be due to excessive adaptation to the data. This is shown by the blue line lying below
the green one, helping to visualize the overfitting problem (extremely evident for Iris, Banknote
and t510D data). Also, the confidence intervals for the bootstrapped quantity tend to become
wider for more complex models. This is expected: models overfitting the data are likely to
have high variance due to the overfit with respect to minimal changes in the data. The upward
trending behaviour of the green line in these graphs is exactly what penalizations a la BIC or
ICL try to cope with: penalization will pull the green line down as models become more complex;
this will ultimately help select a model that does not overfit. In this case, this behaviour can be

visualized explicitly.

Overall, this kind of graphs seems appealing for their informativeness: they allow to com-
pactly visualize results from different models and algorithms. Similar graph can be obtained for
the other criteria. Discussing the results based on all the graphical displays of the 15 selection
methods for each of the 7 designs, would have made the analysis rather difficult. The pictures
cannot show the details of the winning solution. Moreover comparing the 15 selection methods
in a single plot for each dataset is not feasible. However, here we want to stress again that

visualization like Figure 2.13 and Figure 2.14 are valuable representation of the selection mech-
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anism. In fact, as discussed before, they show how the variance introduced by the unnecessary
model complexity enters in action, and, for resample procedures, contrary to what offer existing
methods they give a clear picture of the uncertainty of the solutions considered in the list of
candidates.

We now discuss in detail the results on each dataset. Performances will be discussed in term

of the external validation indexes mentioned above.

Olive data
Refer to Table 2.2(a) and Figure 2.13(a).

As seen in Subsection 2.4.1, this data has two possible ground truths: 3 or 9 classes.
However, since most of the criteria select solutions closer to the latter classification, we
considered this as the true partition. We immediately note that meesest i @ model with
8 groups. This means that even if models with the true number of components were
considered, it is likely not possible to retrieve the ground truth via Gaussian mixture

models.

As we were anticipating, this data poses serious difficulties for most classical methodologies.
We note that almost all in-sample methods select likely overfitted models, which show poor
performances. This is not true for the ICL that seems to over-penalize, choosing a solution
with 6 groups, similarly to cross-validated criteria. However, this solution does not seem

optimal neither in the sense of 9 true classes nor in the sense of 3.

An exception are the ASW and CHC scores, which seem to aim to retrieve the 3 true

classes partition.

Finally, the bootstrap resampling scheme proves to be the top performing solution. The
chosen partition has 8 groups reaching a misclassification rate very close to the best possible

score.

In this case, Figure 2.13(a), is showing a very noisy pattern. This is likely due to the fact
that models with highly restricted covariances perform poorly on the data: they can not
fit well the data scatters, which we showed to be very concentrated on hyperplanes (see
Figure 2.7).

Iris data
Refer to Table 2.2(b) and Figure 2.13(b).

In-sample non-penalized criteria perform poorly, preferring an excessive fit of the data. On

the other hand, the penalty of ICL, BIC seems too strong in this context.

On the Iris data both bootstrap and cross-validation works well. This probably helps to
disentangle the two overlapping classes. Also, the overlap causes the ASW to identify 2

spherical components rather than three.
Furthermore, we see a clear overfitting path in the graph, which exacerbate after K = 3,

and the increasing variability for more complex model.

Banknote data
Refer to Table 2.2(c) and Figure 2.13(c).
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The banknote dataset appears to be of a different nature than the other dataset. Here
all methods performs quite poorly in retrieving the two groups except for AWS and CHC
finding the optimal partition. Typically, a 3 groups partition is selected. This is not
totally unreasonable: by looking at the last column of Figure 2.9, the third cluster is used
to account for the more variable counterfeit notes, departing from the core. In this case
the second best solution is given by BHSC and BSSC.

Not-penalized in-sample criteria also selects two group. However, these are the worst
possible groups as the validation indexes show. As usual, this is motivated by overfitting

(here due to unrestricted covariances) as can be seen clearly from the graph.

Pentagon5 design
Refer to Table 2.3(a) and Figure 2.14(a).

In the pentagonb data, several methods finds an equally valid partition. However, this is
always a 3 components partition, while the true data has 5 true groups. Indeed, the closest

partition to the truth mglsest 1S @ one with 5 groups.

As expected, most algorithms fuse together the overlapping components (refer to Fig-
ure 2.10). Here the overlap is so significant that this seems a reasonable solution. Also,
other selected partition with 5 groups are not partitioning the data as good as 3 groups

solutions.

It is interesting to observe the path on the graph. This is the unique case where the
green line does not lie always above the blue one. In this case, we attribute this to the
high variability of the estimates and to the greater impact that the resampling scheme
has on data information, due to the two extremely under-represented mixture components
(here bootstrap resamples may easily not include any point from the under-represented

components).

t52D design
Refer to Table 2.3(b) and Figure 2.14(b).

The t52D is also an easy design for most criteria: even if the best criteria are 10CVHS,
10CVSS, BHSC, BSSC, also AIC3, BIC, ICL and ASW select substantially equally valid

solutions.

t510D design
Refer to Table 2.3(c) and Figure 2.14(c).

The design t510D is interesting in that there seems to be no consensus at all from the model
selection criteria. Only 10CVSS and BSSC were able to find surprisingly good partitions.
BSSC also select the best possible solution. This design was expectedly hard due to the

noise components and the small sample size.
Note also the profound different behaviour of the green and blue lines in the graph: resam-

pling here plays a fundamental role in finding the optimal solution.

Uniform design
Refer to Table 2.3(d) and Figure 2.14(d).
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Finally, in the uniform setting only the ICL, 10CVSS and BSSC were able to correctly

avoid to partition the data.

Interestingly, if not at all penalized, SSC returns 8 clusters. This confirms the overesti-
mating behaviour of this statistic and that a penalization is required. Resampling can also

be seen as to provide a sort of penalization.

Also, it appears that the entropy-type built-in penalization of SS (see (2.12)) makes this
method superior in this case, since, for other criteria, neither bootstrap nor cross-validation
worked (compare also with the discussion on the differences between the smooth and the

hard score in Section 2.2).



Table 2.2: Real dataset results. Panels show the selected methods in M* (second column) for the
15 selection criteria (column one). Second columns report methods settings (O for OTRIMLE; M
for MCLUST). Validation indexes are reported for the selected solution (last three columns). Line
outside table shows the indexes computed for the closest partition to the truth, mciosest-

(a) Olive dataset

Method Selected ARI 1-CE -VI
Samp. LogLk M, K =10, VVV 0.54 0.71 —1.25
HSC M, K =10, VVV 054 071 —1.25
SSC M, K =10, VVV 0.54 0.71 —1.25
AIC M, K =10, VVV 054 0.71 —1.25
AIC3 M, K =10, VVV 054 071 —1.25
BIC M, K =10, VVE 059 080 —1.11
ICL M, K =6, VVV 0.78 0.79 —0.90
ASW O,K=2~v=5 020 044 —2.27
CHC M, K =3, EII 0.42  0.52 —2.27
10CV LogLk M, K =9, VEE 0.65 0.81 —1.00
10CV HS M, K =6, VVV 0.79 0.79 —0.90
10CV SS M, K =6, VVV 0.79 0.79 —0.90
—  BLoglk M, K =8, VVV 0.86 0.88 —0.74
— BHSC M, K =8,VVV 0.86 0.88 —0.74
— BSSC M, K =8, VVV 0.86 0.88 —0.74
Closest M, K =8, EVE 0.88 0.90 —0.65
(b) Iris dataset
Method Selected ARI 1-CE -VI
Samp. LogLk O, K =10, v =10000 0.44 0.54 —1.79
HSC O, K =10,v=10000 0.44 0.54 -—1.79
SSC O, K =10,~v=10000 044 054 -1.79
AIC M, K =9, VEV 0.37 049 —-1.90
— AIC3 M, K =3, VEV 0.90 0.96 —0.32
BIC M, K =2, VEV 0.57 0.67 —0.67
ICL M, K =2, VEV 0.57 0.67 —0.67
ASW M, K =2, VII 0.57 0.67 —0.67
CHC M, K =3, EIl 0.73 0.89 —0.76
— 10CV LoglLk O, K=3,~v=100 090 097 —-0.32
— 10CV HS 0, K=3,v=100 0.90 0.97 —0.32
— 10CV SS O, K=3,v=100 0.90 097 —0.32
—  BLogLk 0,K =3, v =100 0.90 0.97 —0.32
— BHSC 0, K=3,v=100 0.90 0.97 —0.32
— BSSC O, K=3,v=100 0.90 097 —0.32
Closest M, K = 3, EEE 094 098 —0.26
(c) Banknote dataset
Method Selected ARI 1-CE -VI
Samp. LogLk O, K =2, v=10000 0.26 041 —2.14
HSC 0, K =2 v=10000 026 041 —2.14
SsC 0O, K =2,v=10000 026 041 —2.14
AIC M, K =6, EVE 0.40 0.55 —1.47
AIC3 M, K =6, EVE 0.40 0.55 —1.47
BIC M, K =3, VVE 0.84 091 —0.43
ICL M, K =3, VVE 0.84 091 —-043
—  ASW M, K = 2, EII 1 1 0
— CHC M, K =2, EIl 1 1 0
10CV LogLk M, K =4, VVE 0.68 0.73 —0.70
10CV HS M, K =4, VVE 0.68 0.73 —0.70
10CV SS O,K=3,v=10 0.86 0.92 —0.37
BLogLk M, K = 6, EEE 0.47 0.60 —1.31
BHSC O, K=3v=10 0.86 0.92 —0.37
BSSC O, K=3,v=10 0.86 0.92 —0.37

Closest M, K =2, EIl 1 1 0




Table 2.3: Simulated dataset results. Panels show the selected methods in M* (second column) for the 15 selection criteria (column one).
Second columns report methods settings (O for OTRIMLE; M for MCLUST). Validation indexes are reported for the selected solution (last

three columns). Line outside table shows the indexes computed for the closest partition to the truth, mcosest-

(a) pentagon5 design

(b) t52D design

Method Selected ARI 1-CE -VI Method Selected ARI 1-CE -VI
Samp. LogLk O, K =10,y =1000 044 0.60 —1.66 Samp. LogLk O, K =10,y =10000 0.74 0.79 —0.89
~ HSC M, K =3, VVV 0.86  0.92 —0.39 HSC 0, K =09, ~=10000 084 091 —0.50
— SSC M, K =3, VVV 0.86 0.92 —0.39 SSC O, K =9, v = 10000 0.84 091 —0.50
AIC M, K =5, EIl 0.85 091 —0.56 AIC M, K =10, VVV 0.76 0.83 —0.86
AIC3 M, K =5, EII 0.85 0.91 —0.56 AIC3 M, K =5, VVE 0.95 0.97 —0.28
BIC M, K =5, EI1 0.85 091 —0.56 BIC M, K =5, VVE 0.95 097 —-0.28
— ICL M, K =3, EVE 0.86 091 —0.39 ICL M, K =5, VVE 0.95 097 —0.28
—  ASW M, K =3, EIl 0.86 0.92 —0.39 ASW M, K =5, EEE 0.96 0.98 —0.22
— CHC M, K = 3, EII 0.86 0.92 —0.39 CHC M, K =6, VEV 0.80 0.89 —0.50
10CV LogLk M, K =5, EVI 0.86 0.92 —0.55 10CV Loglk O, K =6,v=5 0.88 094 —0.38
— 10CV HS M, K =3, EVE 0.86 0.92 —0.39 — 10CV HS O, K=5~v=5 0.96 0.99 —-0.17
— 10CV SS M, K =3, EVE 0.86 0.92 —0.39 — 10CV SS O, K=5~v=5 0.96 099 —0.17
BLogLk O, K=5~vy=1 0.85 091 —0.56 BLogLk O, K=6,vy=5 0.88 094 —0.38
— BHSC M, K =3, EVE 0.86 0.92 —0.39 — BHSC O, K=5~v=10 0.96 0.99 —0.17
— BSSC M, K =3, EVE 0.86 0.92 —0.39 — BSSC O, K=5~v=10 0.96 099 —-0.17
Closest M, K =5, EEE 0.87 093 —-0.38 Closest M, K =5, EEV 0.97 099 —-0.17
(c) 510D design (d) Uniform design
Method Selected ARI 1-CE -VI Method Selected ARI 1-CE -VI
Samp. LogLk O, K = 10, v = 10000 0.51 0.61 —1.26 Samp. LogLk O, K =10,y =1000 0  0.14 —3.24
HSC O, K =10, v = 10000 0.51 0.61 —1.26 HSC 0O, K =10, v = 1000 0 0.14 —3.24
SSC O, K =10,~v=10000 0.51 0.61 —1.26 SSC M, K =8, VVV 0 0.31 —2.96
AIC M, K =9, EVE 0.73 0.80 —1.21 AIC M, K =10, VVI 0 0.20 —-3.11
AIC3 M, K =8, VII 0.65 0.72 —0.80 AIC3 M, K = 6, VVE 0 024 —250
BIC M, K =6, VII 0.75 0.79 —0.50 BIC M, K =5, VVE 0 0.34 —2.22
ICL M, K =6, VII 0.75 0.79 —0.50 — ICL M, K =1, EII 1 1 0
ASW M, K = 2, EII 054 0.68 —1.03 ASW M, K = 3, EEV 0 036 —1.58
CHC M, K =2, EIl 0.54 0.68 —1.03 CHC M, K =9, EII 0 0.16 —-3.13
10CV LogLk O, K=8~v=1 0.60 0.64 —0.94 10CV LogLk M, K =7, VEE 0 0.24 —2.63
10CV HS O, K=6v=1 073 079  —0.59 10CV HS 0, K =5,~ =100 0 031 —225
10CV SS O, K=5~v=1 0.97 0.99 —-0.17 — 10CV SS M, K =1, EEI 1 1 0
BLogLk O, K=8~v=5 0.57 0.66 —1.00 BLogLk M, K =10, VVI 0 0.20 —3.11
BHSC O, K=8 v=5 0.57  0.66 —1.00 BHSC 0,K=9,vy=10000 0 020 —3.03
— BSSC O, K=5v=5 0.98 099 —0.14 — BSSC M, K =1, EEI 1 1 0
Closest O, K=5~v=5 098 099 —-0.14 Closest M, K =1, EIl 1 1 0




Figure 2.13: Real data. (Blue-line) Bootstrapped value of SS (2.21). (Shaded light blue region) SS
bootstrap confidence interval (10% level); the lower bound of this is BSSC (2.25). (Green line) SSC

(2.14); this correspond to the in-sample counterpart of the blue line.

(a) Olive data; selected mclust, K = 8, cov=VVV
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(b) Iris data; selected rimle, K = 3, v = 100
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(c) Banknote data; selected rimle, K = 3, v = 10
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Figure 2.14: Simulated designs. (Blue-line) Bootstrapped value of SS (2.21). (Shaded light blue region) SS bootstrap confidence interval (10%
level); the lower bound of this is BSSC (2.25). (Green line) SSC (2.14); this correspond to the in-sample counterpart of the blue line.
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2.5 Conclusions

In this Chapter we introduced a new method for comparing cluster solutions that may arise from
performing different algorithms. We formalized the set of candidate cluster solutions, M, as a
set of parametric descriptions of the obtained partitions in terms of size, centrality e and scatter
parameters. We introduced scoring functions that assigns a score to each element of m € M. The
scoring is based on the quadratic discriminant function, and we showed its strong relationships to
the likelihood theory for Gaussian mixture models. Despite this connection the scoring proposed
here is appropriate to evaluate clustering solutions produced by class-conditional distributions
that belong to a larger elliptical-symmetric family.

Based on the analysis of the empirical results we can recommend the smooth scoring 2.12 to
the hard scoring 2.11. The reason why the smooth scoring approach reports better performance is
because it can better manage overlapping groups. We also proposed a bootstrap-based resampling
method to estimate the average score of a member m € M, and to construct confidence intervals
for it. Based on the bootstrap estimate we proposed several strategy to perform a selection of a
solution from M.

Theoretical guarantees for the resampling method have been derived, and the overall perfor-
mance of the proposed methodology have been assessed in finite samples via numerical experi-
ments. The results have shown that the proposed method always selects solutions close to the
optimal. While some of the well-established competing methods sometimes have fallen dramati-
cally, the proposed method always provided a reasonable answer, if not the best. An additional
advantage of our methods is that it provides an inbuilt tool for assessing the uncertainty related
to the choice of a member of M. This allows to assess the variance introduced by each clustering
strategy under comparison.

The main drawback of our proposal is that it is computationally involved. Each member
m € M has to be recomputed a large B number of times. To ease the computational workload,
we could run two iteration of the procedure: the first with a reduced number of bootstrap
resamples, B’, can be used to exclude m € M which are clearly poor performing; the second
iteration with bootstrap replicates B will carefully select the best model; B’ « B. Also, further
speed up could be obtained via the k-step bootstrap estimator described in Andrews,
However, this might be hard to apply and its not clear whether it would keep the necessary

variability of the estimates providing good results for the bootstrap.
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2.6 Appendix: external validation indexes

In this appendix, we review the three indexes used in the empirical section to compare clustering
solutions. These indexes are usually referred as external validation indexes, and are not used
to select one clustering solution over the others. Rather, they are meant to compare a selected
solution with external clustering information. In general, these indexes provide a measure of
the dissimilarity between two different partitions. Thus, the information that will be compared
among two clustering solutions, given by models m and m/, is based on the partitions of points
into clusters given by z(™) and z(™) (where we remind that these are the indicator variables
indicating points’ assignment to clusters implied by m and m’ respectively). A comprehensive
review on these methodologies is given in Meila, , from which we borrow for the following

discussion.

Let us define some quantities that will be useful in the exposition. Assume that we want
to compare two clustering models (or their solutions) m and m’. Then, we denote with k =
1,...,K(m) clusters defined by m and with &' = 1,..., K(m') clusters defined by m’. Also, ny

will be the number of points in cluster k£ for model m:
ety 1)
k T; € Ap & sz

(analogously for ny); ng i will denote the number of points assigned to cluster k£ under m and
to cluster k¥’ under m/:
g j = ‘ {xz eX,: zl.(jg)zi(fnk,) = 1} ’

First we define the misclassification error (ME). The misclassification error between two
partitions is generally understood as the proportion of mismatched assignments. However, cluster
labels are not meaningful, i.e. cluster labelling is just a convenient way to identify the groups,
but a label switching may imply exactly the same solution. Furthermore, we try to obtain a

measure that is invariant with respect to the sample size n. Thus, define this criterion as:

K(m)
1
ME(m,m’) =1 — ~ max kZl Tk (k) (2.59)

where we assume, without loss of generality, that K(m) < K(m') and 7 is a mapping 7 :
{1,...,K(m)} = {1,...,K(m')}. Thus, we first need to find the best matches of clusters in m
to clusters in m’ (note that the numerosity of the clusters need not to be the same), and then
we count the proportion of misclassified points. In this sense, the misclassification error has a
probabilistic interpretation as the probability of disagreeing clustering labels on data points given
the best possible label correspondence (Meila, ). It is easy to see that this index ranges in
[0,1].7

Another popular index to compare clustering partitions is the adjusted Rand index (ARI).

It is a method correcting the Rand index to cope with some of its drawbacks. This is is one of

9 Additional notes on ME: it is a metric; it can be computed in polynomial time; it is a local and additive index
(see Meila, )
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the oldest indexes to compare partitions; it was introduced by Rand, and is defined as:
Ni1 + Noo
Rand(m,m') = —————,
( ) n(n—1)/2

where (following Meila, )

Ni1 number of pairs of point belonging to the same cluster under both m and m’/, that are

points x; and x; such that z%) = z](TZ) = zf’,?,l) = zj(?:) = 1, for some k and %'

Noo number of pairs of point belonging to different clusters under both m and under m/, that

are points z; and z; such that zz(T) = zj”,?) = zi(rz,l/) = zﬁrz:) =1, for some h # [ and b/ # ['.

Nig number of pairs of point belonging to the same cluster under m and to different clusters
under m/, that are points z; and z; such that zij;:) = z](n,z) = zi(j;?) = z](jq,z,) = 1, for some k
and b/ # I’

N7p number of pairs of point belonging to the different clusters under m and to the same cluster
under m/, that are points z; and x; such that zz(zz) = zj(T) = 21(7;/) = zj(.?Z,) = 1, for some

h # [ and k'

Note that the total number of pairs is n(n —1)/2.
The problem with this index is that it is not uniformly ranging in [0, 1] and will be usually
pushed away from 0, since Nyg is usually very large. To cope with this type of issues, Hubert

and Arabie, , proposed the following corrected version:

Rand(m,m') — E Rand(m,m’)
1 — E Rand(m,m')

ARI(m,m') == : (2.60)
where the expected value is the value of the index for two independent clustering, i.e. the index
computed as if the two partitions for m and m’ were obtained at random.'” The adjusted index
is bounded by 1, and may assume negative values. This correction does not ensure that the
index ranges linearly in the unit interval nor that the index is comparable for different models."!
An higher value for the ARI indicates higher concordance of the two clustering m and m’ and
it is equal to 1 for perfect overlap.
The last criterion we use is the Variation of Information index, which was proposed in Meila,
This index is a based on an information theoretic approach. Intuitively, this criterion
captures “the amount of information lost and gained from changing to clustering m to clustering

m’ (Meila, ). Consider the following quantities:

P(k) this is the probability that a point falls in cluster k£ under model m. Empirically, this is
defined as P(k) = "t (analogously we define P(k’) for model m/).

H (m) is the entropy associated with model m; it is a measure of the uncertainty of the clustering
and it is defined as H(m) = —ZkK:(T) P(k)log(P(k)). The higher its value the more well

balanced clusters there are.

10The hypothesis of independent partitions basically assumes an hypergeometric distribution for the confusion
matrix with elements ny /. Also, for an exact expression of the expectation term, see Meila,
11 Additional notes on ARI: it is not local nor additive.
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P(k, k") Similarly to P(k), this is the joint probability of a point falling in clusters k& and &’

under m and m’ respectively. It is computed as P(k, k') = %
H(k, k') is the joint entropy defined as H(m,m') = > ,, P(k, k') log(P(k, k')).

I(m,m’) is the mutual information. It is defined as

K(m) K(m/)
- > Z (k, k") log(P(k, k).
k=1 k/'=1

It can be intuitively described in the following way: the uncertainty of the assignment of
a point under model m’ is given by H(m'). If we knew the assignment of the point under
m, by how much does this information reduce the uncertainty of assignment under model
m'? Averaging this over all points we obtain I(m,m’). Indeed, note that for two different
models m, m’ carrying no information one for the other (i.e. P(k, k') ~ P(k)P(k')), so
that I(m,m’) ~ 0.

Then the criterion is defined as:

VI(m,m') == H(m) + H(m') — 2I(m,m') =
(H(m) —I(m,m)) + (H(m') — I(m,m/)) = 2H(m,m') — H(m) — H(m'). (2.61)

(the above are all equivalent formulations). This index is always non-negative, and is minimized
at 0 for two equal clusterings. This criterion enjoys several desirable properties, which are
detailed in Meila, . Among the others, it is worth noticing that it is a metric on the space

of clusterings.'?

12 Additional properties for VI: does not depend directly on the sample size n; it is local and additive; it is
bounded from above by log n; bounds exists for certain clustering configuration and are well understood.
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Chapter 3

Supervised Learning:
Employees-to-tasks assignment in

Labor Economics

3.1 Introduction

In this chapter we deal with the problem of jobs allocation. More precisely we investigate how
firms assign or should assign employees to tasks. In other words, how employers select the right
(wo)man for a given task, job or position. This is a relevant problem in Labor Economics and
has several implications. As we will see, this is one of the drivers of productivity dispersion.

Our contribution is twofold. As we will argue, the problem of allocating employees to tasks
may be treated as a classification problem. We propose to infer an optimal allocation rule from
observed data via machine learning (ML) algorithms. The advantage of our approach has an
advantage with respect to other methodologies (e.g. sorting; see Eeckhout, ) in that it
does not need to model explicitly criteria with which the worker allocation should be performed.
These are learned implicitly from data.

We propose several indexes to evaluate observed allocations. Based on these indices we can
evaluate how well a firm allocated its workforce with respect to a benchmark allocation. In our
case, the benchmark will be the ML inferred optimal allocation. These criteria are general, in
the sense that they can be used whenever a criterion of suitability of worker to tasks is available.

We conduct our analysis using a huge database matching employers and employees infor-
mation. This is the LISA database from Statistic Sweden. While classical methodologies from
Econometrics can not be directly applied to this estimation task, machine learning methodologies
allow efficient exploitation of these type of data.

The following sections are organized as follows. The rest of this section motivates the problem
from an Economics perspective. Section 3.2 defines the problem of interest and frames it in a
supervised learning fashion. Section 3.3 introduces measures evaluating the quality of employees-
to-tasks allocations. Section 3.4 reviews the methodology we use for the estimation task and
Section 3.5 presents the data used in this analysis. Finally Section 3.6 illustrates the empirical

analyses, and Section 3.7 gives final comments.

109



110 CHAPTER 3. EMPLOYEES-TO-TASKS ASSIGNMENT

3.1.1 Economic motivation

In this section, we will briefly review the motivations that make the problem we address in this
chapter interesting from an Economic point of view. The relevant questions we are willing to

answer are:

e whether or not there exists a regular pattern in how a firm assigns an employee to a

particular job/task/position, upon observing his/her characteristics;

e how could be assessed whether or not some firms are better than others in allocating their

workforce;

e whether or not firms’ allocation of workforce impacts on their performances (e.g. prof-

itability, productivity per employee).

The employees-to-tasks assignment is not new in economics. Furthermore, it typically has
several implications, and there are different perspectives in the literature to look at it.. The last
point above is an example of what we mean. For example, typically workers’ allocation is used
to explain (partially) productivity dispersion and this is also the perspective with which we look
at the employees assignment problem.

It must be noted that there is an extensive literature investigating the factors determining
productivity dispersion across firms. The latter has many drivers, and different approaches in
Economics try to motivate it under different perspectives. Syverson, gives a review taking
into account several of these approaches. Labour economists partially explain the productivity
dispersion with human capital quality. This is also supported by thorough empirical studies,
made possible by the increasing availability of rich databases, usually matching information on
both employer and employees. For example, Abowd et al., define different measures of
workers’ skill and determines positive relationships between skill and productivity using data
from the U.S. Census Bureau. Fox and Smeets, also explain productivity dispersion with
input quality using data on all Danish citizens for the time span 1980-2001. Quoting their
findings:

Input quality is one of perhaps many factors that contribute to productivity dispersion.
[...] our results suggest that productivity mostly represents some attribute of a firm that
cannot easily be bought and sold on the market for inputs. Possibilities include manage-
ment quality, business strateqy, the appropriate use of new technologies, and heterogeneous

production technologies. (Fox and Smeets, )

A slightly different literature is more focussed on task assignment and managerial positions
and practices. Early works, like Rosen, , study the allocation of workers to positions (divided
in production, supervision and management). Costa, investigates the assignment of man-
agerial tasks in a two period framework. More recently, Lazear, Shaw, and Stanton, put the
emphasis on the positive impact of managerial quality on workers’ productivity. Adhvaryu, Kala,
and Nyshadham, study reassignment of workers to tasks (operated by managers) in case of

productivity shocks. Bloom et al., analyse Census Bureau survey data, showing the positive
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effect on firm performances (measured in different ways, like productivity and profitability) of
structured manager practices.

Yet another perspective is to look at employers employees matching. It is important to
consider how firms and workers should be matched in the first place (Lazear and Oyer, ),
and also the effects of team working and how workers should be matched with each other (Lazear
and Oyer, . These problems are generally known as sorting problems. Eeckhout, gives
an extensive and rigorous review of these models for labour markets.

Summarizing some of the main points arising from the literature, we observe that:
e human capital quality matters in determining productivity.

e How employers should assign workers to tasks is an interesting problem, and has non trivial

solutions. Also, this has a role in determining firms’ productivity.

e Dispersion in firms’ productivity has many different drivers, some of which depends on

unobservable factors.

In this study, we adopt a supervised learning approach in determining allocations of employees
to tasks (which we will refer to as allocation rule). As far as the author knows, this approach
has not been used yet in this context. We are interested in inferring an allocation rule and in
measuring the quality of firms’ assignments. More precisely, we want to asses how well a firm
assigns its workforce to the needed tasks. Our approach is model-free (not assumptions-free).

The methodology is briefly described as follows. Using data on matched employers and em-
ployees, we select a subset of firms and try to infer an allocation rule (a function/mapping from
observables to tasks) from this subset. The inferred rule would then be used as benchmark in
order to measure the extent by which other firms depart from this optimal assignment. Assuming
the validity of such a rule, this measure could be useful to capture and quantify the effects on
firms’ productivity (but potentially also other performance indicators) of unobservable charac-
teristics that relates to work organization (such as those mentioned in Fox and Smeets, ).
Also, the inferred rule could be used to suggest possible assignment or reallocation for firms’
workforce. This methodology has the advantage of being model-free and data driven. In what

follows, we will discuss the proposed methodology and the underlying assumptions in details.

3.2 Predicting Job Allocation

In this section, we illustrate the conceptual framework of allocation of workers to tasks as intended

in our study and we will also provide some intuitions on the validity of this approach.

3.2.1 Job Assignment Rule framework

In this section, we illustrate how we frame the problem of estimating employees-to-tasks alloca-
tion as a supervised learning problem. For convenience, we first recollect the notation we use in

the this chapter. The second part of this section introduces the general framework.
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General notation and setup

Let us fix the notation used in the following. In doing so, we assume the existence of the objects

specified.

(Q, A, P) An appropriate underlying probability space. Where € is the sample space, w are
elements in Q and A is a o-algebra on the sample space. P is the probability measure

defined on the measurable space (Q, .A).

X set of workers/employees. An employee (element of the set) will be denoted by z, a vector of
employee’s features (e.g. education, age, sex, ...); x = [:v(l),x@), ... ,x(dl)]T (dy fixed in-
teger). An employee is perfectly identified with his/her characteristics. x; denote employee

1. Random variable on €, taking value in X are denoted with X.

Z set of firms. A firm (element of the set) will be denoted by z, a vector of firm’s features (e.g.
productivity, total assets, size, age ...); z = [z(l), 2 z(d2)]T (do fixed integer). Firm
k features are denoted as zp. Random variable on 2, taking value in Z are denoted with

Z.

Y A set of possible task/jobs/positions in the market. ) = {1,2,...,])|} is assumed here to be
a discrete set with |)| elements. An element of this set is typically denoted with j (job).

Random variable on €2, taking value in ) are denoted with Y; realization of Y are denoted

by y.

S Set of job allocation rules. These are mappings s of the type s : X x Z — Y. f € S denotes
the optimal assignment rule (see next section). f; for j = 1,...,|)| model the conditional
probabilities: P(Y = j|X,Z) = f;(X,Z), where, with a slight abuse of notation, P also
indicates the joint probability induced by the random variables X and Z on the space
(. F.P).

top-firms The set of firms assumed to make use of an optimal workforce allocation rule, f. We
also refer at this set of firms as the learning set. Typically, these firms are chosen to satisfy

some criterion.

4's 7% Will indicate the observed job allocation and the optimal job allocation (according to the
optimal allocation rule f). Additional subscripts will indicate the individual and the firm
(in this order): e.g. jlf’k indicates the observed task assigned to employee x; in firm z.
Note that possible jobs are j = 1,...,|}].

p’; p* Optimal allocation rule’s conditional probabilities (given worker characteristics and firms

characteristics) for observed allocation j' and optimal allocation j*. E.g.:
p* =P = j*|X,2).

Additional subscripts will indicate the individual and the firm (in this order). That is
Py = P(Y = j*|zi, z).
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Job allocation as a classification task

Consider the following informal argument. A firm z, needs to employ a resource/worker z;. The
question is: given firm characteristics z; and employee’s observable characteristics x;, to which
task would employee ¢ be most suited for? We would like to be able to assign a task to individual

x; in firm z; to satisfy any given optimality criterion.

Remark 3.2.1. We are interested in allocating pairs of (z;, zx) to tasks, jobs or positions. Pre-
cisely, we want to find the best position for individual i working in firm k in order to satisfy
some optimality criterion. Moreover, for the pair employee-firm (z;, z), the choice regarding the

allocation of employee i is taken by the employer, i.e. firm k.

Conceptually, this is very different from the employees-employees matching or employees-
firms matching, as framed in the literature on sorting problems (Eeckhout, ).

Note that it may be desirable to include characteristics for both firm and individual in the
allocation decision. For example, firms in different industries might want to allocate differently
similar individuals, i.e. z;, &~ x;,, because some tasks may be less relevant in one firm than
the other. Moreover, two different individuals with different set of characteristics may well be
allocated to different tasks by similar firms, i. e. 2z, &~ 2j,. This is formalized as follows.

For jobs 7 = {1,...,|Y|} in the economy, we assume there are functions f]O such that f](-] :
X x Z — R. These functions give for each pair of individuals and firms characteristics a score
for each job. Also, we assume that these functions respond to some optimality criterion. That
is, if f]()(xi,zk) > fj(.),(xi,zk), then the individual is taken to be better suited for job j rather
than j’, because she/he is, for example, more productive doing j. This defines the best possible
assignment as fO(X,Z) = arg max;; f]Q(X, Z). Finally, we assume that f° gives rise to the
random variable Y

Yzargmax{f]o(X,Z)—i—aj}, (3.1)
J

where {o;} are suitable random variables on the same probability space (€2, F, P). Here, o0;’s
capture the noise in the allocation. These are meant to take into account some variability with
respect to a deterministic allocation rule (once conditioned on values of X and Z). Examples
of this variability are: the employee expressed a strong personal taste for a particular job so as
to influence employer’s decision; the optimal task may be unavailable at the moment of hiring;
misreport in evaluating candidate characteristics etc.

In practice f¥ is not known. However, we observe realizations of Y. From these, we would like
to retrieve f9 or at least an allocation rule that mimics it. Furthermore, we are not only interested
in estimating the optimal allocation, but also the “confidence” with which the assignment was
done. In other words, was the assignment a clear cut? Are there other equally valid allocations?
In principle, there may be some x and z for which the indication for a particular job given by
f]Q(x, z) is so strong that it dominates any possible noise {¢;}, and some others = and z for which
this indication is weak, so that the optimal allocation can be easily off-set even by a minimal
amount of noise. For example, employees not particularly suited for any task would be more
easily assigned to any vacancy. We would like to identify those cases in order to assess the extent

to which employers detach from the gold standard given by f°.
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One way to assess this is by modelling the conditional probability of job allocation given the
observables, i.e. P(Y|X,Z):
P(Y; = jlag, zi) = fj(xs, 2). (3.2)

In fact, we expect that the higher the adequacy of the employee x; in firm z; for job j, the
higher would be f;(z;,2;). To see this, imagine fjo(xi,zk) = w0 > fjo,(a;i,zk), for 7 # j' and
P(|oj| < ) =1 for all j, then fj(x;,2;) = 1. These conditional probabilities will also be used

to define the optimal allocation rule, which is our target rule:
J* = f(z4, z) == argmax fj(x;, zx). (3.3)

Je{l,...[Y[}

This gives us a way to indirectly evaluate choices that would be made according to f°. In
fact, were there no noise at all, Y would perfectly resemble choices made according to f°. When

the noise variation is small, which may be a reasonable assumption, Y closely reflects f0.

Remark 3.2.2. We assume that there is a systematic, deterministic way to assign employees to
jobs, upon knowing relevant characteristics, in order to satisfy some optimality criterion. This
is expressed as fO. It is unrealistic that in real world we could ever observe such a function. At
most, we may hope to observe what may be regarded as sensible choices in workforce allocation,
based on f°. These choices (being human choices) are affected by some variability and we will
indicates them via f. Then, we are interested in retrieving this allocation rule f, that is different
from fO. However, the two will be close when the noise {a} is relatively small. Therefore, we are

interested in f.

Knowing f;, and thus f, we can then evaluate actual task assignments made by firms as
follows. Based on firm’s observed characteristics z;, worker’s characteristics «, and the actual

job in which ] is employed, (y;r = j'), consider

j* = f(UCQaZ@ = argmax fj(l';v'z;c)v

Je{l,..,|V[}
1o ro
ix (L) 2 = max i\T:y 21 ),
f] ( (Al k) je{l,...,|y|}f]( (2l k)7

j' = actual task assignment for (x/, 2}.);

fj/(l‘;, 21,) = conditional probability for the actual assignment j’.

Then, 1 {j* = j'} answers to the question whether the optimal task allocation was selected by
the employer, and fjx (2}, 2;.) — f (], 2},) returns a measure of how far apart is the actual choice
4" from what would have been optimal the optimal 7* according to the allocation rule f.

In practice, the function f and the implied f;’s, our targets, are not available. We propose to
estimate them from data. Repeating ourselves, we refer to f as the optimal allocation rule; also
fj’s are optimal, where the optimality is in the sense described above. Note that the problem of
estimating f, can be framed exactly via risk minimization as treated in Subsection 1.3.2. Once
a loss function L is defined, we can proceed to the estimate of f using observed data {(y,z, z)}
by loss minimization. This was described in (1.13). Moreover, in Section 3.4 we give a review of

the methodologies we use to tackle this estimation problem.
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One final subtlety needs to be taken into account before moving on. Up to now, we assumed
that Y is based on f°. However, in reality it is way more plausible that there are multiple rules,
s, by which firms allocate workers. This generates multiple different random variables similar
to Y. Let us call as top-firms the population of firms that base their workforce allocation on
the optimal rule fO. Non top-firms denotes firms using other allocation rules, which we assume
not to be optimal in the sense that workforce allocation based on these rules do not satisfy the
desired optimality criterion. The two populations are denoted with 7 and N respectively. Note
that the conditional probabilities we are willing to estimate (of the type (3.2)), vary according
to the population considered. Because of the different decision processes of top-firms and non
top-firms, we have that the true relationship P(X, Z,Y") is different in top-firms set 7 and the
non top-firms set A/. This is because the random variable Y is different in the two populations.
Top-firms’ f¥ give rise to the allocations Y7; non top-firms’ s”’s (there may be differences across

them) lead to the allocations Ys. Thus, we write:
P(Yr =j|X,2) = [;(X, Z) # P(Yy = j|X, Z) = 5;(X, Z).

Now, before proceeding with estimation, is important to filter out Y7, as this will allow us
to estimate and retrieve the optimal allocation rule f. Was this not possible, our estimates will
make use of a variable Y that reflects multiple non-optimal decision rules. This would lead to
a not well defined target and to an estimated allocation rule which does not reflect the optimal
one.

Typically, we will assume that such a split in top and non top firms is possible. So that, if not
explicitly stated, we drop the subscripts on Y, and write P(Yr = j|X,Z) = P(Y = j|X,Z) =
fi(X, Z).

This splitting, basically consists in the definition of training data. We mentioned previously
that the functions f’s optimize some criterion. Assume that, ceteris paribus, firms productivity'
has among its drivers the ability of the employer to properly assign its workforce to tasks (e.g.
Lazear and Oyer, ). We could then assume that firms exhibiting the highest productivity
levels (among other comparable firms) are those that have an optimal employees-to-tasks al-
location strategy. Once identified, we use data on these top-firms to learn how they allocate
workers. We do this on employers-employees matched data, by estimating a classification model
using top-firms’ characteristics and their employees’ characteristics as features variables, and the
observed job/task assignments as the outcome variable (see Subsection 3.5.1. The classification
model would then return the estimates of the target f and f;’s, which we call f and fj’s.

Finally note that the this approach is essentially model-free (see also discussion in the next
section) in the sense that we do not need to be explicit on how the assignment affects productivity

nor specific assumption on the form of f© (for example compare with Eiselt and Marianov, ).

The estimation of an optimal allocation rule f is a trivial task and for this reason we would
like to check that the estimates we retrieve are actually capturing a systematic optimal workforce
allocation rule. This is unfortunately hard to do in classical ways. In fact, measures to evaluate

the goodness of fit as described in Subsection 1.3.2 cannot be used directly. Even if we were

n principle, replacing productivity with other firms’ performance measures does not affect this reasoning.
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able to achieve high scores for f in the top-firms set, where we estimate it, this would not
automatically allow to assess the ability of f to capture the optimal rule f. This is because
the filtering of top-firms from non top-firms is endogenous to the analysis. For this reason there
is no way to assess in a rigorous way whether or not the top-firms set actually contains only
firms adopting the allocation rule f. Furthermore, these measures can not be used to assess the
performances of f on non top-firms set either. High scores for the measures would indicate that
f actually generalizes well to this set. However, we do not want it do generalize well on non
top-firms! Non top-firms are assumed to use other allocation rule s, so that we would like to see
deviations from f in this set.

Nonetheless, it is still possible to partially check the efficacy of the estimated f via its
connection with the criterion for which f is an optimal allocation rule. Say we are interested
in an allocation rule that maximizes productivity. Then, let productivity be a non constant

function of workforce allocation and other observable, O, and unobservable U characteristics:
productivity = g(f(X, Z),U, O) (3.4)

(this writing is legitimated by Economic intuition (e.g. Lazear and Oyer, , Fox and Smeets,
). Then, as discussed in this section, we would expect from an optimal allocation rule that

Yz, z, o, u, and for all j # j’
fi(w,2) > fi(@,2) = g(j,0,u) > g(j', 0, u). (3.5)
If this is true, then we can check the estimated f ex post in the following way.

Remark 3.2.3. By construction, we expect to find a negative relationship between productivity
and the extent to which observed allocations deviate from the optimal allocations given by f. Iff
1s estimating f we expect that deviations from it are negatively related to productivity in the non

top-firm set.

Let us visualize this with an example. Imagine xz, z, o and u to be fixed. Also assume that
je{1,2,3} =) and:

1

- 1 w.p. 5
P@.2) = [5,4,00: Vi, 05(2) = e
-1 w.p.%
In this case, it is easy to see that:
5
fl(xaz) = ga fg(flf, Z) = év f3(.'17,2> =0.

Top-firms using f choose job 1 (no deviation observed). Other firms may choose any of the three
jobs. Note that due to (3.5) we have that

g(1,0,u) > g(2,0,u) > g(3,0,u). (3.6)

Evaluating the deviation from the optimal allocation j* = f(x, z) as suggested above (compare
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with Remark 3.2.2 and discussion following it), d(j*, j) = fj*(x, 2) — f;(z, z) and

A =0, At =2, dGt) = (3.7)

Finally, comparing (3.6) with (3.7) we see (for non top-firms) that at increasing deviation
from f we have decreasing productivity levels, as stated in Remark 3.2.3.

Were f a good estimate of f, we should observe, in the non top-firms set, the same negative
relation between deviations from it and productivity. We can check this on the data (even if we
do in term of positive relationship by considering degree of accordance with f and productivity).

Thus, ultimately we need an estimator of f and measures that can precisely state deviation
from an optimal allocation rule. For the former we use methodologies described in Section 3.4
and for the latter we now move to the construction of such measures in Section 3.3. In addition,
these measures can be directly use to account for the amount of residual productivity dispersion

due to the workforce allocation strategy.

3.3 Measuring Job Allocation Quality (JAQ)

In this section we propose to measure the ability of an employer to assign its employees to tasks.
We will build measures that evaluate single employees’ allocations and measures to evaluate the
overall ability of a firm in allocating its workforce. First, we briefly introduce the quantities that
will be used for the evaluation and then in the following and in and Subsection 3.3.1 we will
describe the two type of measures.

To ease the discussion, we will assume that the optimal allocation rule f is known and we
disregard estimation issues. Nonetheless, if f has to be estimated, say f is the estimated value,

the following discussion similarly follows by simply replacing f with its estimated counterpart,

I

Let us first introduce the quantities we are interested in. We want to define measures to
evaluate the quality of job assignments, j’, based on observed realizations of X and 7, i.e. x € X
and z € Z. Recall that f is the optimal allocation rule and f; are the conditional probabilities
of job assignment (see (3.3) and (3.2)). The assignment j' need not to be done according to f
in this case. Firms may use a different s, which may coincide with f but need not to. Consider
an observed sample for (X, Z,Y) (here Y is not filtered out in the sense exposed at the end of
Subsection 3.2.1). A single observation in the data is identified by the individual, z;, and the
firm where he/she is employed zj.> Thus, the indexes i and k perfectly identify the observation.
Since, typically a firm employs more than one person, say we observe z; where k = 1,..., K, and
K is the number of unique firms and, associated with each k, we observe I}, employees x;, where
ir = 1,..., I}, where I, is equal to the number of individuals employed at firm k.° Note that the
total number of observations is given by >}, I, and typically K « >3, Ij;. Then, let (y;, = j{ i)

2We typically have also a temporal observation, so that more precisely a single observation is perfectly identified
with an individual index ¢, a firm index k and a time index ¢t. To ease notation, we disregard the time dimension
for the moment being. The analysis can be extend straightforwardly by repeating it for each value of the time
variable (e.g. by years), adding a time index.

3Such a scenario could be obtained by considering a discrete Z, and a continuous X, independent one from
another. Or more generally, denote Z1 and Z> two random variables distributed as Z, we require P((X,Z1) =
(X, Z2)|X) > 0.
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be the {7, k}-th sample realization of Y, i.e. be the observed task assigned to individual ¢ in firm

k. If firm 2 allocates employees according to some s¥), we define the following quantities:

Jig = s (24, 21); Pig = fir (@i, 2k); 33)
. " 3.8
* — . — . . .

Jik - f(xi, 2) Jil{flgmgf'(} [i(xi, 21); ka — fj?fk (x4, 21).

These are: (on the first line) the observed job allocation for employee i in firm k and the
conditional probability of the observed job allocation according to the optimal allocation rule
f; (on the second line) the optimal job allocation for employee i in firm k and the conditional
probability of the optimal job allocation according to the optimal allocation rule f.* Note that

the p’s are probabilities and thus take value in [0, 1]. Moreover, from their definition (see (3.2)):

Y
Mfilwim) =i+ ol + Y filwiam) =1
j=1

345} i}

Referring to these quantities, we build several measures of job quality allocation that will
be described in the next sections. We will define measures to evaluate the allocation of a single
employee and to evaluate the overall quality in firms’ workforce allocation. Before moving on,

let us stress two important points.

Remark 3.3.1. Fvaluations are being done according to the optimal allocation rule: p;'k,k 15 the
job showing the highest conditional probability according to the optimal allocation rule; p;’k 18
the conditional probability of the observed job according to the optimal allocation rule, and gives
a measure of the suitability of the employee to the job she/he was assigned to. Thus, the term
p;’jk —p;’k captures the distance between the optimal allocation and the current one, judging from
the perspective of an employer who allocates optimally its employees.

Consider the cases in which p:k ~ p;}k' Ezxcluding cases with excessive noise, this happens
when the observed job j' correspond to the job that would have been assigned according to the
optimal rule, j*. Such cases include no clear allocation for the employee, i.e. fj(x;, z) ~
fi(zi, zi) foralll,j =1,...,]Y].°
Remark 3.3.2. f is based on all jobs in the Economy, {1,...,|Y|}. In practice it may happen
that j;jk = f(x;, zi) may be a job that is not required by the firm k. That is, an ideal employer
who optimally allocates employees would suggest an allocation for an employee that is not needed
by the firm. We will take a task as not needed if we do not observe for the firm any employee
allocated to task . This may well be the case when we compare two different populations of firms,
top-firms and non top-firms (see Section 3.2.1). Intuitively, from an Economics perspective,
firms for which the suggested job is never observed should be interpreted as having hired the
wrong ndividual, who do not fit their needs, at least in the short run. In the long run, based on
evidence from other top performing firms, these firms may decide to open new positions as the

one suggested, if they find it beneficial.

4In practice, only j' is an observed quantity. All the others are unknown since we do not get to observe f.
These are estimated via f.

5(Cases in which we do not observe any clear allocation could happen when the employee is either not particularly
skilled or so talented that whatever job would be suitable for him /her.
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Employee-wise JAQ

Based on the above considerations, we can now define the employee-wise job assignment quality
(EJAQ) measure as:

EJAQi,k =1- (Pfk - p;,k) (3.9)

This is an employee-wise measure in the sense that it is computed for every employee in every
firm. EJAQ ranges in [0, 1], and measures the distance from the optimal allocation in term of
conditional probabilities.

EJAQ is maximal when pzk = p;k, i.e. when the employer correctly allocated the employee
according to f . EJAQ is minimal when there is high polarization (i.e. the individual has a very
high conditional probability to be assigned to a job) and the observed job does not correspond
to the optimal allocation. This may happen when the employee is manifestly a perfect fit for a
job (pfy ~ 1, and by consequence p; ; ~ 0, if j' # j*), but was misallocated to a different job.
Thus, EJAQ is increasing in allocation quality (according to the optimal rule f).

Based on considerations in Remark 3.3.2, note that p:k in (3.9) may well be a non open
position in the firm under evaluation. Hence EJAQ captures not only the ability of the employer
to allocate the worker, but also its ability to pick the right resource in the market. That is, if
the employee is a clear fit for job j*, but this position is not required by the firm, EJAQ will
penalize not only for the misallocation (note j* could never be observed in the firm, so that
j" must be different from j*), but also for having selected a worker in the market who clearly
has other specializations and skills. In fact, we are not considering the optimal jobs among the
positions available in the firm, but the most suitable job among all the possible positions in the
market. This is in line with the idea of evaluating whether or not we observe the right (wo)man

for the position (see Section 3.1).

3.3.1 Firm-wise JAQ

The EJAQ (3.9) introduced above does not automatically evaluate the overall performances of
an employer in workforce allocation. For this type of statements, we need to aggregate somehow
the quality of each employee-task assignment observed in the firm. In fact, there are many
possible way of doing this. In this section we will propose four measure to evaluate firms’ overall
assignment quality and will also comment on the difference perspectives implied by each of them.
We call these measures firm-wise job assignment quality measures (FJAQ). We recall that for
every firm, indexed by k, we observe I} employees (Section 3.3).

In order to evaluate overall workforce allocation, one natural approach is to simply average
quality of the employee-task assignments observed from the employer. This defines a first FJAQ
measure as (refer to (3.8)):

Zilil p;,k

k

(3.10)

FJAQ1 has at the numerator the sum of the conditional probabilities for the observed allocated
jobs, p; ;> divided by the total number of employees in the firm, I}. It takes value in [0, 1]. The

probabilities at the numerator are higher when the firm hires highly specialized® employees and

SHere we use the term “specialized” meaning a worker with characteristics that makes him /her almost a perfect
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allocates them to the job for which they are specialized. Indeed, if this is the case, then we
would have p;,k = p;'ik ~ 1 (recall that the conditional probability and the “specialization” of
the employee are always evaluated according to f). Thus, in order to do well, the firm must
hire perfectly specialized employees, for positions needed in the firm, and each worker must be
correctly allocated to his/her most suitable position. Note that at the denominator we have the
number of employees in the firm. Visualizing this as Zfi 1 1, we see that this measures penalizes
by comparing firm’s results with that of an employer hiring perfectly specialized employees
(according to f; pir=Lli=1,..., Ii) and allocating them correctly.

FJAQI1 is harshly penalizing for misallocation and poor selection of employees. The penal-
ization of hirings is even stronger than that of EJAQ, because we are comparing it with ideal
employees with pj, =1 (these might not even exist in the market).

FJAQL1 is not really taking into account a comparison with the benchmark rule. In fact, if
all p} are approximately equal and |)| is large, this measure results in a low value, even if we
know that in this case any allocation should be regarded as optimal (see Remark 3.3.1). This
leads us to the next measure.

To overcome this issue we can use the EJAQ (3.9) and simply take its average across employee-
task allocations in the firm. This defines the FJAQ4 measure:

Iy,

Iy,
1 1
i=1 =1

FJAQ4 is also penalizing for bad hirings, because the EJAQ’s consider penalization with
respect to the most suitable job for the employee among all available jobs in the Economy, and
not with respect to those available in the firm. Nonetheless, this penalization is less severe
than FJAQ1 (3.10) since it does not compare the actual assignment to ideal case of perfectly
specialized hirings. It is likely more easy to see this by looking at the FJAQ1 as a special case
of FJAQ4, obtained by replacing in p;k in (3.11) with 1. In addition, this measure is more in
line with the idea of evaluating employee-task assignment not in absolute terms, but in relative
to a benchmark, i.e. the optimal feasible alternative.

One possible critique to both FJAQ measures could be as follows. In the short run, positions
available at the firm and employees are fixed. Thus, we may be willing to assess whether the firms
achieves the best possible allocation under f with employees and positions available. FJAQ1 and
FJAQ4 can not answer these question. First, in this case, we should not use as a comparison j*
if this position is not available in the firm. Second, we can not simply evaluate employee-wise
allocation in this case. The employee-wise measures are implicitly assuming that each employee
should do the job she/he is the best fit for. However, this might imply that all employees should

be assigned to the same task in the firm! We will address this issue in the following section.

3.3.2 Firm-wise JAQ for employees-to-tasks assignment problems

In the discussion above, we did not really consider restriction on possible job allocations. That is,
whenever we compared the observed allocation j’ to the optimal one, j*, we assumed the latter

to possibly be any of the jobs observed in the market (see Remark 3.3.2). Nonetheless, even if

fit for a job in the firm. This is assessed on the base of f.
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the function f prescribes job ji"jk, for employee z; in firm z, this solution should not be taken
into account if firm 2z, does not require task j*.” To see why this is an important consideration,
think at a situation in which an employee is perfectly suited for a position not needed in the
firm, while for all the positions available in the firm, f;(x;, z;,) = 0. If we were not to consider
this fact, we would say that the firm allocated very poorly its employee, while in a sense, the
firm allocated the employee well, since, according to f, we are indifferent between any of the
available positions.

Furthermore, as anticipated in Subsection 3.3.1, consider the case in which all the employees
in the firm are best suited for the same job. Clearly, the firm might need multiple tasks to be
done, and even if all of its employees would be allocated to the same job according to f, this
is not a feasible solution. Moreover, we should take care of comparative advantages in moving
worker in different allocations: it might be not optimal to assign every employee to the most
suitable job, but maybe to his/her second best, to achieve an overall better allocation.

This is an old, well known problem. Kuhn, provides a very clear introduction and
illustrates the popular “Hungarian method”. There are several generalizations of the problem,
and it is also of interest in several fields (e.g. in Labor Economics see Crawford and Knoer,

). Here we deal with a basic formulation described as follows. Considering firm k, we need
to allocate I employees to jobs. Job types are constrained to those observed in the firm. Let
m < |Y| be the number of unique jobs. Each worker suitability for job j is evaluated by the
conditional probability f;j(x;,z;). Each employee can be allocated to only one job. The goal is
to maximize the overall suitability for employee-task allocations.

Consider the following example. In the Economy, there are a total of 6 jobs: || = 6. For
firm k, we observe I = 6 employees allocated to the j” tasks in Table 3.1.

Table 3.1: Observed job allocations.

employees’ id: ‘ idl id2 id3 id4 id5 id6
observed job (/): | 5 3 2 2 2 4

Consider now the matrix of conditional probabilities, C' = (¢; ;) = fj(s, 21) (2 is fixed),
shown in Table 3.2. As argued above, we should not consider job 1 and job 6 because they are
never observed in the firm, thus we assume those positions are not required and note that that

the firm requires three employees in job 2: in this case I = 6 and m = 4. Then, we modify the

"We recall that to decide which tasks or jobs are needed by firm k, we simply assume that the jobs that we
observe in the firm are the ones that are needed.

Table 3.2: Conditional Probability matrix. (") indicates the observed allocation and (*) indicates
the optimal allocation according to f; these coincides in some cases.

‘jobl job2 job3 job4 jobb5 job6

id1 0 0 0 0.5% 0.5 0
id2 | 0.1 0.5* 0.4 0 0 0
id3 | 0.4* 0.3 0.1 0.1 0.1 0
id4 | 0.2 0.1 0.1 0.1 0.1 0.4*
ids | 0.2 0.6" 0.1 0.1 0 0
id6 0 0.7* 0 0.3 0 0
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Table 3.3: Assignment Problem scores. Entries are c(7,5) = fi;(id ¢, job j).

| job2 job2 job2 job3 job4 jobb

id1 0 0 0 0 0.5 0.5
id2 | 0.5 0.5 0.5 0.4 0 0
id3 | 0.3 0.3 0.3 0.1 0.1 0.1
id4 | 0.1 0.1 0.1 0.1 0.1 0.1
id5 | 0.6 0.6 0.6 0.1 0.1 0
idé | 0.7 0.7 0.7 0 0.3 0

Table 3.4: Solution to the assignment problem optimal job allocation

employees’ id: ‘ idl id2 id3 id4 id5 id6
optimal job (j*): | 5 3 2 4 2 2

matrix C with C as shown in Table 3.3.%5 That is, we repeat each job column as many times as we
observe the corresponding job was allocated to an employee. Matrix C' can be seen as a matrix
of employees-jobs scores. Then, we want to select for each row ¢ a column j, without repetition
of columns, such that the sum of the so selected ¢; ; is maximal. This is the assignment problem
at hand and it can be formulated in term of integer linear programming (Steiglitz, ). Let E
be the set of employees defining the rows of C, and J the set of jobs defining the columns of C.
For i € ¥ and j € J define

1 if employee ¢ is allocated to job j,
617.] =
0 otherwise.

Then, we can write the assignment problem as the following linear programming:’

max >, &jeij,
€ij  ieE. jeJ

s.t.: Z e j =1, VjeJ,
el
Z €ij = 1, Vi e E,
jed
Oéemél, Vie E, jeJ.

Solving this problem for the example above, we obtain the allocations presented in Table 3.4.
Note that this solution does not prescribe trivial allocations. Not all the employees are assigned
to their optimal job j* (refer to Table 3.2) nor to the job they are most suitable for once deleting
the unavailable positions in the firm. Moreover, the solution is different from the observed alloca-
tion. Finally, by summing the conditional probabilities for the observed allocations j' (Table 3.1)
and that just derived (Table 3.4) we obtain respectively: 2.2 and 2.6.

8A formal definition is as follows: C' = (é;) = f;(xi, zx) where

I " I .y
t=1,..., I, Jj= {1}2121 I{Ji'kzl} PR {D}|}Zzi1 ]l{]i’k:‘yl} .

9Note that this formulation does not exclude fractional solutions, however these solutions are not selected
when the problem is solved via specific algorithms as the Hungarian method (Steiglitz, ).
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We will refer to allocations obtained for the pair (x;, z;) solving firm k assignment problem
as ji;, i.e. the job assigned to employee z; in firm 2, obtained by solving the employees-to-tasks
assignment problem, by an employer using the optimal allocation rule f. The relative conditional

probabilities of these jobs are denoted as

piy = fia, (@i, 2x).- (3.12)

This solution is the one that would have been chosen by an employer with allocation rule f,
constrained to allocate the available employees to current open positions in the firm, in order
to maximize the overall workforce allocation quality. Note that this might be considered as the
optimal short run reshuffling of employees to tasks. In the long run it would be possible to either
hire/fire employees or to open new positions in the firm. In this analysis, we consider the former

case so that what can possibly change is just the allocation of employees.

We now proceed with the definition of the FJAQ’s measures based on the solution of firms’

assignment problems.

FJAQ for the firm’s assignment problem

As described at the beginning of Subsection 3.3.2, in order to evaluate the overall ability of
employers in workforce allocation, it may be sensible to frame the employee-to-task allocation
problem as an assignment problem. This makes sense if we want to filter out the penalizations
due to the hiring process and we consider a fixed set of employees and tasks.

We define two measure using the solution of firms’ assignment problem. The first of these

two measures is the FJAQ2, and is defined as follows:

Iy, /
it Pk
T, )

FJAQ2k = a
i=1Pik

(3.13)

where p®’s are given by (3.12). This measure builds on FJAQI (see (3.10)). Indeed, the quantity
at the numerator stays the same. The quantity at the denominator is given by the sum of
conditional probabilities relative to the jobs assigned by the solution of the firm’s assignment
problem. FJAQ2 has a weaker penalization than FJAQI since it compares the observed allocation
j' to the best allocation that could been achieved under f, considering workforce and available
tasks constraints, j*. Thus, a firm is not penalized for not having a specialized workforce (i.e.
with polarized conditional probabilities) nor for bad hiring decisions.

The second measure we introduce is motivated by the same rationale as FJAQ2 and as a
form similar to FJAQ4 (see (3.11)). It is defined as:

Iy o a Iy v
Zi:lpi,k* i=1Pik

p

(3.14)

This measure capture the same effects as FJAQ2 (3.13): firms are penalized for not allocating

the workforce properly, while effects due to not being able to hire specialized employees are
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disregarded. However, the penalization acts differently in FJAQ3, and it tends to be more
generous than FJAQ2 when the workforce is overall not well suited for positions available at
the firm. The latter happens when an employer is not able to hire specialized employees for the
tasks required. In such cases, the optimal allocation is such that (3, jf';) ~ 0. The measure is
normalized with respect to the number of employees in the firm, making it comparable across
firms with different size.

FJAQ3 (3.14) takes values in [0,1]. It is minimal when the firm has perfectly specialized
employees for every required task and does not allocate them properly. It is maximal when when
the firm allocates its workforce optimally (compare with Remark 3.3.1).

Figure 3.1 (at the end of this section) gives a visual representation of FJAQ1 (3.10), FJAQ2
(3.13) and FJAQ3 (3.14) and confirms the intuitions given so far. FJAQI is neglecting any
benchmark rule and is the one penalizing the most. FJAQ2 has a penalization for workforce
allocations that is non linear with respect to the benchmark optimal allocation. FJAQ3 is more
generous than FJAQ2 with not specialized workforce. Note that the graph gives only intuition
for the functional forms of these measures, so that in practice the graph of FJAQ4 (3.11) will be
the same as that of FJAQ3. Nonetheless, the two captures two different aspects in that FJAQ4
does not take into account solutions given by the firms’ assignment problem.

It must be noted that, even if FJAQ2 (3.13) and FJAQ3 (3.13) are appealing in that they may
better capture only aspects related to employers’ allocation decisions, they are computationally
very intensive. Consider that these require to solve an assignment problem for every firm in
the data. For big datasets the number of unique firms may be in the order of fifty to hundred
thousands firms. In addition, the complexity of each assignment problem is determined by the
number of employees in the firm, which may also be very large, in the order of few thousands.
Even if there are efficient algorithms to solve assignment problems, due to their numerosity this
may still require unfeasible computing power to solve this problem for all the observed firm in

reasonable amount of time.!"

We propose an approach to find an approximate solution to the
assignment problem as described in Algorithm 3. The idea is that of splitting the firm into
many smaller sub-firms. This is done by taking the pool of firm’s employees, shuffling them
randomly, and partitioning them in set of ¢t employees. Then, an assignment problem is defined
and solved for any sub-firm. We then join together all the solutions for the sub-firms to recover
an assignment for the original firm. This procedure may be repeated multiple times and the best
allocation (in term of highest sum of conditional probability) can be taken. Of course, if ¢t = I},
this correspond to solve the problem for the original firm. So that, as t and iterations increase
we may expect to approximate increasingly well the solution to the original problem.

We now move to the estimation of f. In the next section, we will review the methodologies we
adopt. We conclude this section with an important aspect to take into account when computing

these measure with an estimation of f (refer also to Remark 3.3.1).

Remark 3.3.3. Consider a case in which fj(z;,zr) ~ fi(zi,z,) for all 1 # j. This is not a
problem in general. However, when f need to be estimated, say via f these cases are rather

delicate. In fact, there may be two reason why fj(xi, 2E) A fl(xl, z) for alll # j.

OFor example, it is known since Munkres, that the Hungarian algorithm requires at most (lln3 +12n2 +
31n)/6 operations. n = Ij in our case.
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1. Because of his/her characteristics, the employee is indeed well suited for all type of jobs
or for none in particular. Moreover, the employing firm does not have characteristics that

would make any particular task more suitable for the employee.

2. The particular instance (z;, zi) is not frequently observed in the data, so that the estimator
has no evidence on it and is not able to allocate it to any particular job. This is introduced

by estimating f with f .

These two motivations are very different, but lead to similar results: JAQ measures for these
allocations would be high, because there is basically no chance to get the allocation wrong since
there is mo correct allocation. If this is motivated by 1 above, this is perfectly acceptable. If it
s motivated by reason 2, it is not. This problem is however lessened if the number of jobs and
their diversity increases. Indeed, employees of the type implied by motivation 1 are rare, and
the richer the description of the Economy (in term of jobs) the rarer should be these individuals.
Thus, it is more likely that the motivation underlying equal conditional probabilities for all jobs
18 motivation 2.

In order to discriminate these effects, while computing JAQ’s, we consider only those em-
ployees with at least a minimal amount of polarization, that is one of the conditional probabilities

should exceed a threshold.'' That is, for some n € [0,1] we consider only observations for which

pzk>7]'

1To be concrete, imagine that there are 100 available tasks. A non allocable employee would exhibit fi =~
ﬁ = 0.01 for all j. However, suppose we can cluster these jobs in say 5 different broad classes, of 20 jobs each.
In addition, say we expect that a factotum employee might be expected to do well on at mos t 2 of the 5 broad
classes. Than, this employee would be would be equally suitable for at most %02 = 40 different tasks, leading to a
minimum threshold of at least i = 0.025. Thus, considering employees with f; > 0.025 for at least one j, would
make us more confident that the employee was allocated by f correctly and that the non polarized conditional

probabilities are due to his/her characteristics rather than estimator flaws.
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Algorithm 3: Mini Solver for Assignment Problem

Input: zp; Ix; x; Vi =1,..., Ij; f; t; R.
Output: j',, pf, Vi=1,..., I.

C = (cij) < fj(:pi,zk) Vi=1,...,I, j=VYj=1,...,])|. Le. form the matrix of
conditional probabilities for all employees in the firm

forrel,...,Rdo

{r(1),...,m(I;)} < random permute the set {1,..., I;}

C" = (c;;) < (e(m(@),5)) Vi=1,.... Ik, j=Vj=1,...,]Y]. Le. shuffle randomly
the rows of C

bins — {[1,t + 1), [t + 1,2t),...,[({x/t), Ix]}. Le. divide I} in bins of size ¢

for k' € bins do
Cr < (cj ;) Vie K. Le. of the reshuffled matrix C consider only the rows in bin

k/
Chs «— assignment problem relative to matrix Cy
jfk/, pf s < solution of Cr
j’z?’kj pr g — {(jgk,)k,, (ﬁ?k,)k/}. Le. form the solution of the assignment problem
relative to the full C' by joining the solutions of the smaller problems
D" 2 Dig

r* « arg max, p,

Ak

-a a A‘T*
Jikr Pik < Jik Pik
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3.4 Review of the learning algorithms

In order to estimate probabilities f;’s (see (3.2)), we will use two main approaches. The first
is a classical multinomial logistic regression from Econometrics. The second approach employs
machine learning methods based on trees. These are random forests and bagging. This will allow
us to compare machine learning methods with standard method in applied Economic research,

and assess their advantages.

In the following sections, we briefly recall the multinomial logistic model and give a more

extensive treatment of the machine learning algorithms.

3.4.1 Multinomial Logit

A multinomial logistic model is a type of qualitative response model, that is, it is intended
to model a categorical outcome/dependent variable. Following Amemiya, , we define the
model in a general formulation as follows. Let ¢ index denote observations and let the variable
Y; take K; + 1 possible values; let X for k = 1,..., K; be a vector of characteristics/features
and 0 = {0, ...,0k,} a conformable vector of parameters. Then, the multinomial logistic model

represents the following probabilities:

| exp(e/,0;)
P(yi = j|X) = Pj = —g—— i ; (3.15)
Zk:lo exp(z, k)
where i =1,...,n, 7 =0,..., K; and it is assumed without loss of generality that ;0 = 0. This

formulation is quite general, and can represent both conditional logit models (with class specific
features; McFadden, ) and multinomial logit. Indeed, for the i-th observation and the j-th
class we can have:

x;:0; = a+ B + 2,

where ¢ is a vector of characteristics independent of the class (e.g. individual characteristics)
and we allow the parameters 3; to depend on the class; z;; is a vector of characteristics that can

be class specific and « is a common parameter vector.

In what follows, we will use a multinomial logit (see Greene, ) where we assume K; = K

for every i and some fixed K, and z;; = z; = ¢;:
zi0; = a+ cp;
1770 IV

For this model the negative of the log-likelihood is defined as:

n K
—logL =) Z yi; log(P,
i=1k=0

where y;; = 1{y; = j}. We seek parameters ¢ in order to minimize the quantity above (this may
be seen as the loss function that the algorithm tries to minimize). This can be done via gradient

based methods (e.g. conjugate gradient methods; see Quarteroni, Sacco, and Saleri, ). With
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the estimated parameters 0, we can then compute estimated probabilities:

5 exp(};)

i = NE
Si—o exp(a}fr)

(3.16)

and we can classify point z; to class j if j = argmaxe . g} ]5” Note that in our case a single

observation z; in (3.16) is the pair (z;, zx) of firm and individual features.

3.4.2 Classification Trees, Random Forest and Bagged Trees

As pointed out in Hastie, Tibshirani, and Friedman, , the classification trees date back
at least to Morgan and Sonquist, . An extensive and dedicated treatment is given in the
well known Breiman’s book Breiman, . An advanced survey introducing trees and growing
procedures at a general level is Safavian and Landgrebe, . A detailed review about the usage
of classification trees in different fields and related methodology is Murthy, . In addition,
Rokach and Maimon, is a relatively recent survey of Top-Down induced trees, which also
reviews several measures to evaluate goodness of splits. We follow these references to introduce
the basics of these models.

For visualizing a tree algorithm refer to Figure 3.2 (at the end of this section). A tree
recursively partitions the feature space defining cells (or hypercube in multidimensional spaces).
This splitting is done in order to optimize some criterion. In general, this is a difficult task.'? For
this reason, we need to use alternative strategies. Here we illustrate a Top-Down greedy approach
to “grow” the tree. In Figure 3.2 a two dimensional space is presented. A tree is composed of
node (circles) and edges (lines); the terminal nodes are called leaf. At each node, we ask along
which variable and where we should split the sample in order to obtain “purer” subsets (where
purity is intended as homogeneity of the classes represented in the subsets). Thus, by splitting
along X at value a, we are able to define a subset (at the left of the vertical line in a) containing
only samples from one class. Continuing with this reasoning, we find the successive best split for
Xs at b (in this particular example an equal good split could be found at X;) and subsequently
a split for X7 at c¢. At the third split, we are able to perfectly identify the two classes and there
is no reason to continue the splitting procedure. Notice that only one feature at each recursion is
eventually used to split the sample and that at each recursion we search the best splitting point
across all features. Also, the resulting classifier is highly non-linear, and such a dataset could
have not been perfectly classified by any linear model.

Formalizing the discussion above, we need to define a splitting criterion. Let us denote with
h a node in the tree. Note that each tree of the node is associated with a region of the space, i.e.
the region of the space collecting all the points satisfying the conditions leading to that node.
Thus, the node “X; > a?”, the very first node in Figure 3.2, is associated with the entire data
since no condition led to this node. Its children nodes are associated to the region at the left of
the vertical line at a (left node) and at the right of the line (right node). We call these regions

Ap, and their number of points is indicated with |A|. Now, assuming that the outcome variable

12For example, Laurent and Rivest, show that finding a tree minimizing the expected values of splits
required to classify an unseen sample is NP-complete; Hancock et al., showed that it is NP-hard to find the
minimum tree consistent with the training set (unless P=NP).
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Y assumes at most K different values, we define the estimated proportion of class k in node h

as:
. 1
Puk = T 1y =k} (3.17)
h iEAh
With this notation, we can now define the splitting criterion. A very popular one is the Gini

index, and it is given by (evaluated at node h):

K
L= pwkbrw = Y Prk(l — Pak)-
oy k=1

It is easy to see that if h is a pure node, i.e. containing observations from a unique class, then
Ly = 0. On the other hand, if all the classes are equally present in node h, then Lj is maximal
at the value % Suppose now that we are at node h and we need to decide for the next best
split. Say we can split along p variables and that by splitting on variable j, at cutoff s produces

the nodes h; and ho associated with regions:
Ai(j,8) ={re X :x; <s}; As(j,8) ={rxe X :x; > s}.
Then we select j and s so as to minimize the following:
min {Ly, + Lp,}

where j ranges from 1 to p and s ranges in the domain of z;.

The full tree is grown by iterating this procedure at each new node. In principle, we could
grow the tree as long as splits can be made, or in other words, until we reach the point where
every leaf (terminal node) is associated with a single observation in the data. It should be
apparent that such a complex tree would be overfitting the data and would not be desirable. We
face the dilemma of the bias-variance trade-off. Tree complexity is generally measured by one of
the following (Rokach and Maimon, ): total number of nodes, total number of leaves, tree
depth, or number of features used. It is possible to limit the tree complexity while growing it
(e.g. specifying a maximum number of nodes or a minimum number of points in each leaf) or to
reduce its complexity ex-post (pruning). The first approach basically defines stopping criteria,
leading to an underfitted tree, so that the pruning approach is usually preferred. While there are
several ways to prune a tree, the basic idea is to aggregate somehow nodes from a fully grown
tree to achieve a better generalization error.'?

Building on the classification trees, we now briefly review bagging and random forests.

Bagging

Bagging stands for “Bootstrap Aggregating” and was introduced in Breiman, . The basic

idea is that of averaging models fitted on independent training sets. Since we usually observe

131n Cost-Complexity pruning, for example, by iteratively collapsing nodes from bottom to top, we form several
trees from the initial fully grown tree. Loosely speaking, the nodes that are pruned at each iteration are those
which carried the least improvement in the growing criterion. All the trees obtained this way are then evaluated
on the validation set (or with k-fold cross validation) and the best tree is selected. For this and other pruning
methods refer to Rokach and Maimon,
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only one sample, the independent training sets are formed via bootstrap (introduced by Efron,
; an accessible detailed reference is Efron and Tibshirani, ). Observing a sample of size

®) On this sample

n, X,,, sample n observations, with replacement, from it; call this sample X},
fit a classification tree to obtain the estimated mapping f:(b). Repeat for b = 1,...,B. Upon

seeing a new sample, classify it according to:

B

A 1 R
fr}fag(l‘new) = argmax — Z 1 {k = f:(b)(xnew)} s
ke{l,...,K} b=1

that is, we assign the class assigned by the majority of the bootstrap trees (majority vote).
Bagging should improve the overall performance of the algorithm by reducing its variability. To
see this, consider the square loss function (Subsection 1.3.2), and consider averaging estimated

models fb;14 the averaged estimator is given by f = % Zszl fb(m), where its bias and variance

Bias| f| = Erv(f(2)) — E(Y|x) = % f Er.(fo(2)) — E(Y]z) = f Bias| /s
b=1 b=1
B
Var [f] = Var ;;fb] = ;2 ;Var [fb] + 52 ;COV [f],fl] ~ U;

Note that averaging unbiased estimators returns an unbiased estimator and the approximation
of the variance holds if the averaged estimators have a low covariance (e.g. for independent
estimators) and their variance is roughly the same.

This message is general in bootstrap aggregation. It also give an intuition of why bagging
works for unstable classifiers rather than stable ones, and why averaging stable poor classifiers
is a bad idea and could worsen the overall performances (Breiman, )10

It is possible to apply bagging to a variety of estimators. In what follows, we use it with
classification trees. One question when using bagging with these estimators is whether to prune
or not the trees. In the original paper, Breiman, , pruning is performed using the original
sample as a test sample. On on hand, pruning avoids averaging classifiers that overfit the data; on
the other hand, too much pruning could lead to averaging classifiers that are too stable, worsening
the gains from bagging. An extensive empirical study, Dietterich, , showed that there is no
clear pattern to whether pruning makes a substantial difference for the final performances, even

though it seems that pruning reduces the number of bootstrap repetitions required.

Random Forests

Random Forests were introduced in Breiman, and build on the same concept of bagging.
Actually, in the paper, the author uses the term Random Forest to refer to a collection of
classification procedures based on trees, where each tree uses some independent (identically
distributed) “information” with respect to the other trees. However, what is commonly known

with the name of Random Forests is a particular example from this class: it is the same as

'4The following representation is taken from lecture notes of prof. Joachim M. Buhmann’s Advanced Machine
Learning course, given at ETH Zurich in Autumn 2018 (unpublished material).
15 A formal treatment of the properties of bagged estimators are given in Biithlmann and Yu,
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Algorithm 4: Random Forests

Input: X, training set; B, integer; L, integer;
Output: f, classifier;

forbel,...,B do

fla

Xz(b) «— random sample with replacement of size n from X,
f:(b) «— a tree grown on X:(b) where: while not fully grown, for each node h, do
1 «— sample without replacement L features among the features set of features of
Xn
h1 hg < children nodes obtained splitting h, considering only the best split
among the [ features

) < argmaxpeqy k) % Zle 1 {fﬁ(b) (x) = k:} (majority vote).

bagging, except that each of the tree is grown only on a randomly selected sample of the features.

The procedure is illustrated in algorithm 4.

In random forests, the trees are neither pruned nor limited in their growth. It is possible to

show that this reduces the correlation of the trees in the forest and that, similarly to bagging, this

is desirable when averaging across trees. Also, the overfitting problem arising from fully grown

trees has a negligible impact with random forests (Hastie, Tibshirani, and Friedman, ).
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Figure 3.2: Classification Tree. At each node a binary split of the feature is selected in
order to induce higher class homogeneity in the created cells.
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3.5 Data and Top-firms set construction

In this section we provide data description and some technical notes on the methods we used in

the estimation process.

Remark 3.5.1. The data used contains sensitive information and it was never possible to access
it directly. The data contains private information on Swedish citizens a industries. The analysis
need to be performed via Statistics Sweden proprietary servers. This constitutes a strong limi-
tation to the methodologies that can be adopted in the analysis, since it is not possible to have
direct control on the software available from the servers. This motivated some choices that had
to be made to stmplify the analysis.

In addition, the access to the server is granted upon approval from Statistic Sweden. This
procedure is very long and can take several months to complete. For this reason, the analysis
was performed indirectly, through the aid of a third person, Dr. Joacim Tdg, Program Director
at the Research Institute of Industrial Economics (IFN), who mediated the communications with

the servers and to whom goes the author’s gratitude.

The data used is a database from Statistics Sweden: LISA database (seeTéag, Astebro, and
Thompson, and Olsson and Tag, ). The dataset is a matched employer-employee
panel, collecting individual-level information for all people, older than 15, registered as living in
Sweden. Individuals’ information is matched with employers’ information. In addition, this is
also matched with information of occupations, describing for some of the individuals the type of
task in which they are employed.

An individual ceases to exist in the data either by dying or by moving to another country.
Individual information is available from year 1990 up to 2011. Individual information on oc-
cupation is available since year 2001. For this reason, we limit ourselves to the time window
2001-2011.

Individual level characteristics include: personal and social characteristics (e.g. age, immi-
grant status, sex ...), working history (e.g. days of unemployment, number of firms worked
for, ...), education history (e.g. detailed information on type of education, ...). About 70%
of individuals do have firm-worker links and information on occupation. For firms there are
several characteristics: operating industry, structural components (e.g. family owned, size, ...),
productivity measures (e.g. value added per employee .. .).

The information on occupation is very detailed and is given by the Swedish Standard Classifi-
cation of Occupations (SSYK), which is very similar to the International Standard Classification
of Occupations (ISCO-88). This data is gathered via two surveys (one is the official wage statis-
tics survey and the other one is a supplementary survey). These surveys are organized as rolling
panel and every eligible firm is surveyed at least once every 5 years, but for firms with more
than 500 employees, which are always included. The surveys exclude self-employed workers and
owners who receives solely dividend as payment from their companies.

Overall, the data comprises roughly 70000 observations on firms and 30 million observations
on employees. Tables 3.5 and 3.6 summarize available information at employees and firms levels
(these are the features referred as x and z in Section 3.3). Table 3.7 summarizes information

on the occupation variable (SSYK; this is the variable we use as the outcome variable, y, in
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Subsection 3.3.2).

3.5.1 Finding top-firms in the data

As discussed in Section 3.1, being able to filter out firms using the optimal allocation rule f
is essential to estimate it. Were this not possible our estimates would not capture a unique
underlying allocation rule used to assign workforce. This advocates for a careful selection of
top-firms.

Based on the relationships in (3.4) and (3.5), a possible approach is to select firms with higher
level of productivity. In fact, we know that using the allocation f maximizes it. However, this is
a naive and likely poor solution as it is. It is well known that (e.g. Syverson, ) productivity
levels varies strongly across non homogeneous firms (e.g. different industries, different size etc.).
Moreover, there are different drivers for this productivity dispersion. If these are not taken into
account and if they have much larger impact on productivity than workforce allocation, we are
going to to capture these in our split and not the allocation rule f. Thus, a better approach is to
first isolate the residual productivity that can be reasonably attributed to workforce allocation
and only then select firms showing higher levels of productivity.

Controlling for other factors (the O variables in (3.4)) allows to split firms in (more or less)
homogeneous bins and makes the selection of top-firms within bins more reliable. Nonetheless,
there is a trade-off. On the one hand, adding more controls allow to better filter out residual
productivity depending on allocation rule. On the other hand, adding too much of them will kill
all the residual productivity dispersion, also that arising from the allocation rule. For example,
in the extreme case of one firm-one bin, all the firms would be top-firms, and all the allocation
rules would be optimal allocation rules.

For this reason, controlling for observables should be supported by economic theory. For
example, it known that different industries may behave very differently in term of productivity
one from another (Bernard and Jones, or Syverson, ), so it may reasonable to consider
industries when splitting firms. Controlling for firm’s age, on the contrary, might be a more
arguable choice: there seems to be contrasting evidence on the relationship between the age and
productivity, at least for firms older than 10 years (see Kok, Brouwer, and Fris, ). Adding

this control could result in adding just more noise to the selection of top-firms.

We now describe the procedure we use to split the data in top-firms and non top-firms. We
also refer to the first set the learning set, because on this set we are going to estimate f . The
second set is also referred to as control set, and is the set of firms where we are going to evaluate
f to compute the JAQ measures (see Remark 3.2.3). These will be used to assess the extent by
which these firms deviate from the optimal rule f.

The learning set is constructed according to Algorithm 5, which is briefly described as follows.
According to some criteria, we split the full data in bins and from these we extract a part of
top-firms. Further refinement criteria are applied and the learning and control set are defined.
The criteria used to split the data in different bins are defined by control variables.

We now give an example of how the data are split according to Algorithm 5. Consider the
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Algorithm 5: Create top-firms set

Input: X full firms data; By, ..., Bjs binning criteria; ¢ thresholding criterion; s
splitting variable; R further refinement criterion.
Output: learning set, control set.

formel,...,M do
Xy« {z € X : z satisfies B}
top,, < {x € X, : s(z) = t(X,)}. Le. define top the elements of the subset for
which the variable s is above a threshold, computed on the subset itself.

top <« {(topm)m}. L.e. join the top elements.
learning set < {x € top : x satisfies R}
control set — X\learning set

following splitting criteria:
1. Size intervals: [50,100]; [101,250]; [251, 1000]; [1001, 6000].
2. Year: 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010.
3. Industry: 58 categories of industries (see Table 3.6).

A bin B,,, will be defined as one of the possible combinations of the above criteria (e.g. observa-
tions in year 2005, firms with size in [50,100] and within industry 6). We split on value added
per employee, and this defines variable s. For each bin, we compute the top productivity decile;
this defines the thresholding criterion ¢. Then, we collect for each bin, firms with s greater or
equal than the (within bin) top productivity decile. Finally, we refine the set by keeping as
top-firms only those that for at least 6 years were classified as top-firms in this way. This defines
the refinement criterion R. Note that top-firms set is made by firm, and not by firm in particular
years. Thus, if a firm is in this set, it is in this set for the whole data time window, even if for
some of the year considered its productivity level was not above the threshold. The idea is that

allocation rule is not changing with the years, while productivity may undergo some shocks.
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Table 3.6: Summaries on Firms Characteristics. Total Observations: 71432

(a) Observations on Firms per Year

year | 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
obs. | 6884 6936 6788 6891 6928 7152 7476 7600 7249 7528

(b) Productivity: value

added per employee (c) Firm Size (in Employ- (e) Total assets (MSEK
(MSEK 2017) ees) (d) Sales (MSEK 2017) 2017) (f) Firm age from 1990
min. —17.28 min. 50 min. 0 min. 0 min. 0
25% 0.46 25% 65 25% 77.84 25% 12.19 25% 9
50% 0.60 50% 99 50% 166.42 50% 61.74 50% 13
75% 0.81 5% 210 75% 397.12 75% 203.03 5% 16
max. 245.10 max. 52151 max. 120641.4 max. 362723.5 max. 20
mean. 0.76 mean. 401.93 mean. 664.92 mean. 789.71 mean. 12.01
std. dev. 1.70 std. dev. | 1592.15 std. dev. | 2954.57 std. dev. | 6959.61 std. dev. | 5.29
(i) State or mu-
(g) Firm industry (h) Family Firm nicipality owned (j) Listed Firm
N. different Categories 58 Yes | 10870 Yes | 9866 Yes | 870
Obs. Smallest Category 7 No | 60562 No | 61566 No | 70562
Median Obs. in Categories 688
Obs. Biggest Category 7322

Mean. Obs. in Categories 1231.59
Std. dev. Obs. in Categories | 1511.39

(k) Broad industry (Obs.)

Not harmonized or other 466 Agriculture, hunting, forestry, and fishing | 429
Mining 141 Manufacturing 18846

Utilities 889 Construction 3753

Wholesale and retail 11109 Hotels and restaurants 2070
Transport, storage, and communications | 4761 Financial intermediation 1886
Real estate, renting, and business 12486 Public administration and defence 1496
Education 3285 Health and social work 5577

Other service activities 4238




Table 3.7: Occupation Variable (SSYK). Right columns of panels (b), (c), (d) report values in number
of employees observed in the data.

(a) Occupation Categories. Major groups, number of subdivisions and skill level.

Cod Mai N. Sub-major N. minor N. Unit | Skill level
ode ajor groups groups groups groups (ISCO)
1 Legislators, senior officials and managers 3 6 29 N/A
2 Professionals 4 21 67 4th
3 Technicians and associate professionals 4 19 72 3rd
4 Clerks 2 8 17 2nd
5 Service workers and shop sales workers 2 7 27 2nd
6 Skilled agricultural and fishery workers 1 5 11 2nd
7 Craft and related trades workers 4 16 58 2nd
8 Plant and machine operators and assemblers 3 20 59 2nd
9 Elementary occupations 3 10 14 1st
0 Armed forces 1 1 1 N/A

Totals 9 | 27 113 355 |

(b) Composition Major groups (Obs.).
Not available 1317155
Managers 1279702
Professionals 5760078
Technicians and associate professionals 5580636
Clerks 2474938
Service, shop, and market sales workers 6105558
Skilled agricultural and fishery worker 110989
Craft and trades related workers 1787794
Plant and machine operators and assemblers | 2597792
Elementary occupations 1695822
Total ‘ 28710464
(c) Minor groups composition (d) Unit groups composition.
N. different Categories 113 N. different Categories 355
Obs. Smallest Category 114 Obs. Smallest Category 7
Median Obs. in Categories 115047 Median Obs. in Categories 19863
Obs. Biggest Category 4549131 Obs. Biggest Category 1526392
Mean. Obs. in Categories 243451.19 Mean. Obs. in Categories 67435.17
Std. dev. Obs. in Categories | 469362.06 Std. dev. Obs. in Categories | 152118.08
N/A | 1200480 N/A | 4770978
Total | 28710464 Total | 28710464
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3.6 Empirical Analysis

As seen in Section 3.4 and Section 3.5, our analysis consists of two main tasks. The first is the
creation of the learning set and the second in the estimation of an allocation rule f . In this

section, we present the empirical results for both of them.

3.6.1 Top-firms and non top-firms sets

Motivated by the discussion in Subsection 3.2.1, the degree by which we are able to estimate the
optimal allocation rule f depends on the ability to isolate the top-firms from the non top-firms.

Data presented in Section 3.5 is split in bins according to the following criteria in input to
Algorithm 5.

1. Size quantiles:(—00, Qa5%); [Q25%; @50%); [Q50%, Q75%); [Q75%, ).

2. Total Assets quantiles:(—0, Qo5%); [Q25%, Q50%); [@50%,> Q75%); [Q75%, ).

3. Year: 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010.
4. Industry: 58 categories of industries (see 3.6).

5. s is taken to be the value added per employee.

6. t is taken to be the top decile, Qgoy of s in the bin, By,.

7. R is taken to be: “Satisfy t for at least 6 different years”.

The quantiles above are computed on the average firms’ size and total assets over the years.
Results of this split are visualized in Figures 3.3 and 3.4.

Figure 3.3 shows the average counts of firms in each bin, across years and industries. These
bins are created splitting firms by number of employees (size) and total assets, within industries
and years. We used these quantities to control for labour and capital input, known to determine
productivity (Syverson, ). Note that the bin identified by [Q759,00) for both size and asset
is inflated with respect to the others: this is because of the upper limit oo, used to take into
account everything above the 75% quantile. Even if none of the bin is empty, the low average
counts suggests that adding further controls would be detrimental to the analysis, to the trade-off
exposed in Subsection 3.5.1. For each bin, the top 10% firms for value added per employee will
be assigned a “top” tag; firms exhibiting this tag for at least 6 years will be considered top-firms
(for all the years).

Figure 3.4 provides summaries for the two sets constructed (for variables, refer to Table 3.5
and Table 3.5). This is also a sanity check in the sense that we do not want the two sets to
be very different in nature. In fact, if they were, it would not make sense at all to allocate
workforce using f in the non top-firms set. After all, for the world of non top-firms resources
would be totally different with respect to top-firms. Instead, we want to capture deviations from
the optimal allocations where it is reasonable that this is optimal for both worlds. Thus, at least
common support for the features involved is a requirement. Nonetheless, differences are still

expected by sample selection. We require them not to be too severe. In addition, higher degree
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Histogram of Size/Asset Bins; Mean: 8.5.
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Figure 3.3: Histogram of the average number of firms in each bin across years and industries. Of
each bin, the top decile will be candidate to be in the top-firms set (or learning set). Size and
Assets quantiles on the x-axis and y-axis; counts on the z-axis; mean of the bin counts is shown

in the title. Note that the last bin along the diagonal is inflated with respect to the others; this
is due to the oo bound, used to capture everything above the 75% quantile.

of similarity implies that the extension of the inferred assignment rule to the non top-firm set is

(~ 10) million in the non top-firm set. This is a ratio of approximately 5% (observations in
number of employees). This is due to the stringent criteria for a firm to qualify for the top-firm
data.

more reliable. Overall, the two sets seem to share a good amount of similarity. The only notable
set. Unless otherwise specified, algorithms shown later ran with this version of the learning set

difference is on productivity (“VA/Employee”) and is due to the construction of the sets. The

resulting sets are composed of a total of (~ 400) thousands observations in top-firms set against
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3.6.2 Notes on algorithms implementation

The algorithms used in the empirical analysis are multinomial logit, random forest and bagging
with tree classifiers (see Section 3.4)

Outcome and feature variables used are collected in Table 3.8. Unless otherwise specified,
all the algorithms used these as input features. The outcome variable used changes according to
the algorithm due to computational issues, and will be indicated when discussing results. Input
features are to be intended as the pairs (z, z) and outcome variable (classes) is to be intended as
the jobs y (refer to Section 3.2).

We used two programming languages in this analysis: R (R Core Team, ) and Python
(for a reference, see www.python.org). Because we run the algorithms on a third party server, it
is not at all possible to modify the libraries providing them. In addition we were forced to drop
some methods (e.g. neural network) because of missing libraries. A positive aspect is that we
had to use off-the-shelf algorithms implementations for the core estimation and we can report

on the performances of ready-to-use packages.

Multinomial Logit
The multinomial logit in Subsection 3.4.1 was implemented via the scikit-learn library in
Python (Pedregosa et al., ). The algorithm used is the Logistic Regression algorithm
with no penalization. For this model, we added as a regressor interacting firms’ Industry
variable with the individuals’ Narrow Education level (see Table 3.8). This algorithm
(differently from the others) has as objective the conditional probabilities, so that fj are

directly estimated. estimated.

Random Forests
Random forests (see Subsection 3.4.2) are particularly interesting in our case for multiple
reasons: they have (relatively) few tuning parameters, and this is a plus in our case since
we can not easily iterate on the server; they generally powerful estimators; they are less
prone to overfit than other methods. We implemented the random forest estimator via
the randomForest R package (Liaw and Wiener, ), building on the original Breiman’s
Fortran code.
Because this implementation does not handle categorical variables with more than 56 cat-
egories, we used the encoding via the target statistics proposed in (Micci-Barreca, ).10
This was used for the Narrow Education level and also for the interaction variable between

Narrow Education level and firms’ Industry.'”

For this algorithm, we use the Gini information criterion and set the number of features

sampled at each node at the square root of total features multiplied by 1.5 (roughly 20

1This method encodes the categorical variable of interest with as many variables as the levels of the output
variable. Say j is a level of the outcome variable, y; x is the categorical variable of interest and t = 1,...,T are the
levels of z. Then, for each j, create ') by replacing level ¢ (for every t) of variable « with: »7 | %.
In the paper, the author proposed a more structured a rigorous version. However, we use this one because of its
simplicity and the high number of available observations.

7These interaction would not be useful in a tree, since it is automatically captured by the estimator structure.
However, in a random forest, due to the random sampling of the feature, this is not always the case. We decided
to include these in the estimator because of high conjectured relevance: experimentations confirm the conjecture
and the performance of the estimator tend to be higher when these variables are included.
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feature per split; this was chosen in a training-validation approach as described in Subsec-
tion 1.3.2). The size of terminal nodes was set to a minimum of 3 to 5 observations (going
below this number caused memory overflows). We used total number of trees in the forests

ranging from 1000 to 5000 trees.

For this implementation, class probabilities fj are obtained from the proportion of trees
voting for a class (see Algorithm 4). This is how they are implemented in Liaw and
Wiener, , even if they are know not to be good estimators of class probabilities (Hastie,

Tibshirani, and Friedman, ; this is also the reason why we considered bagging).

Because of the excessive memory footprint of this package, we were also forced to consider
random forest implementation from ranger (Wright and Ziegler, ) and the CORElearn
(Robnik-Sikonja and Savicky, ). The former is efficient on estimation but not on
prediction, thus it can be problematic on extremely large prediction tasks. The latter, on

the contrary, is efficient in estimations and has a much smaller memory footprint.

Bagged trees
Bagged trees (Subsection 3.4.2) shares with the random forest the advantage of few tunable
parameters. The estimator is implemented via the CORFElearn R package (Robnik-Sikonja
and Savicky, ).

We use the Gini information criterion to split nodes. The terminal nodes’ size is kept at a
minimum of 5 (going below this number increases estimation time excessively). We use 300
to 500 trees. The class probabilities are estimated via classes fraction in trees’ terminal
nodes (exact formulation given in Section 3.8, (3.18)) and averaged across the trees (as
advocated in Hastie, Tibshirani, and Friedman, ). Moreover, we do not prune trees
and use a Laplace smoothing for class probability estimates. More detail on these are to

be found in Section 3.8.
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Table 3.8: Variables used in the estimation.

(a) Dependent Variable / Outcome Varaible

Variable Type

Occupation: Major groups Categorical (9 cat.)
Occupation: Sub-major groups Categorical (27 cat.)
Occupation: Minor groups Categorical (100 cat.'®)

(b) Feature variables as input to the estimation task.

1nd1v1§1;1;:11 ((3 Variable Type
(1) Firms worked at quantitative
(1) Tenure quantitative
(i) Sex dummy
(i) Education Type categorical (10 cat.?)
(i) Graduate during Recession dummy
(i) Labour Market Exp. quantitative
(1) Age quantitative
(1) Industries worked at quantitative
(i) Education Level categorical (4 cat.)
(i) Lives where born dummy
(i) Unemployment days quantitative
(1) Immigrant dummy
(1) Narrow Education categorical (347 cat.)
() Family firm dummy
() Industry categorical (50 cat.?")
() State owned dummy
(f) Total assets quantitative
() Sales quantitative
() Age quantitative
() Number of employees quantitative

8The following occupations were aggregated due to the few number of observations: 110 = {111,112}; 520 =
{521,522}; 619 = {611,612,613,615}; 740 = {741, 742,743,744}. The following occupations were dropped due to
the few number of observations and diversity with respect to other categories: 246; 345; 348; 733; 911.

19This variable is not in the summary Table 3.5; it is a reduced version of the Narrow education type variable.

20Due to the few observations and to lower the number of categories in order to be handled by standard software,
the following were aggregated:10 = {10, 13,14, 16,17, 18,19}; 93 = {93, 99}.
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3.6.3 Results on the estimation of employees-to-tasks allocation

In this section we analyse the results on the employees-to-task classification problem, i.e. esti-
mation of f.

Unless otherwise specified, the categorization of the dependent variable is taken to be the
“Minor groups compositions” (see Table 3.7), for a total to 100 jobs (classes). This is the finest
level of the occupational information we were able to use. Being able to exploit such a fine level
of categorization is a great plus of some of the procedure considered. Analyses were conducted
also on the other two categorization levels. Estimates are less noisy in this case, due to the
higher balancedness of classes. With the finer categorization, some of the jobs are extremely
under-represented in the data (see Table 3.7).

To evaluate performances on the classification task we used the overall accuracy score and
the class-wise Fl-score. We also aggregate the latter by averaging it across the 100 classes
(both simple and weighted averages; weights are given by class proportions). These measure
the classification ability of the classifier (i.e. f) To evaluate the goodness of fit of estimated
conditional class probabilities (i.e. fj) we use the Brier score. Due to the limitations of the
analysis (see Remark 3.5.1), it was not possible to implement more sophisticated measures.
Details on the evaluation methods are to be found in Section 3.8.

Results are reported in Figure 3.5, Figure 3.6a, and Figure 3.6b at the end of this section.
These report the evaluation metrics just described (when available) at increasing cutoffs for
the highest class probability. In fact, to cope with the problem of unclassifiable observations,
based on Remark 3.3.3, at each threshold we consider only individuals with at least one class’
predicted probability ( f]) higher than the threshold. Class-wise Fl-scores are reported for a
selected threshold.

Results are presented for top-firms set split in a training set and a test set in 90%-10%,
motivated by the big size of the data (Subsection 1.3.2).

Multinomial Logit
From our experiments it is clear that multinomial logit, at least as implemented in its
classical version (see Subsection 3.4.1), can not be used to estimate an optimal allocation
rule with the data analysed. The high number of observations and the huge number
of categories of the outcome variable caused the algorithm to not converge (in term of

likelihood improvements) in feasible amount of time.

We had to downscale the problem considering only for firms with less than 250 employees
in the manufacturing industry (data presented in above; see Figure 3.4). This amount to
roughly 50 and 600 thousand observations for top-firms and non top-firms respectively.
Moreover, we also had to consider the other two coarser categorizations for the outcome
variable (see Table 3.7).

Referring to Figure 3.5, we can see that results are not particularly good. The aggregated
scores are low unless imposing a high threshold. This however results in a massive drop of
data. At the selected threshold of 0.1, where almost 70% of the data are kept, the algorithm
is not able to identify class 6 at all. For the 27 class categorization, only aggregated results

are shown. These confirm general poor results. However, we note that the algorithm did
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not achieve convergence.

Random Forests
Figure 3.6a shows results for an implementation of random forests with the randomForest
package. The forest has 5000 trees. This algorithm was trained considering firms with less
than 250 employees (from data in Figure 3.4) (300 thousands observations in top-firm set;

1.7 million in non top-firms).

The forest was able to successfully handle the 100 classes categorization. Nonetheless, we
see that it clearly overfits the data. This can be seen by the accentuated distance of the
two line for the aggregated scores and from the very different pattern of Fl-score. In this
particular implementation it seems that the number of features selected at each split was

too high, inducing excessive correlation among trees in the forest.

Even if overfitting, these results are instructive in the sense that they show that it is possible
to achieve an high fit of the data. At a cutoff of 0.3, 70% of the observations are kept and

we achieve 80% aggregated scores for the test set.

This particular implementation, even with a lower number of trees (500), has a large
memory footprint, so that it was not possible to test it again on Statistic Sweden servers
on the full dataset. For this reason other implementations are being considered (see random

forests in Subsection 3.6.2).

Bagged Trees
Results for this algorithm are shown in Figure 3.6b. This algorithm was trained of full
data shown in Figure 3.4. This was the only algorithm able to handle such a dataset in

our experimentations.

We can see that the algorithm does not overfit. This is shown by very similar pattern in

all the considered metrics for both train and test results.

A 0.1 cutoff keeps roughly 80% of the data (in Figure 3.6b this is represented by shaded
areas in the metric score panels) and achieves 70 to 75% accuracy and F1 aggregated
scores, and a brier score of ~ 0.5. As shown by the class-wise F1 score, not all the classes
are retrieved by the algorithm. This is expected due to the high unbalance in classes

proportions, especially for the 100 classes categorization.

Even if these results are not as good as the those seen for the random forest (Figure 3.6a)

they are much more reliable and are also stable across several iterations we ran.

Overall, we find that the most stable and reliable estimate is given by bagged trees. Since
we need to use the estimated rule on a different set than the training one (see considerations
immediately preceding Remark 3.2.3), we value even more than usual stability of the estimates
and lack of overfitting behaviour. For this reason the bagged trees are the advocated solution to
estimate the optimal allocation rule f.

In the next section, we show results on the FJAQ4 obtained with this estimator.
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Figure 3.6: Random Forests and Bagged Trees results
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3.6.4 FJAQ figures and productivity

In this section, we report the analysis on FJAQ4 (3.11) and productivity, where the former was
computed with estimates from the bagged trees estimator as shown in Subsection 3.6.3.

As commented in Subsection 3.3.2 FJAQ2 and FJAQ3 measure ((3.13) (3.14)) are compu-
tationally intensive. Even if Algorithm 3 is used (this is needed to make the problem feasible),
these measures still requires more than one week to compute on a reduced version of the data,
as the one used for random forests (see Subsection 3.6.2). However, preliminary results showed
that, qualitatively, FJAQ4 is a good proxy of the others. Indeed, it seems that neglecting the
assignment problem does not lead to a dramatically different interpretation for deviating be-
haviours with respect to the optimal (estimated) allocation rule. We attribute this to relative
few occurrences of predicted assignments that coincide with non available positions or that are
overly-concentrated on the same tasks.

Results are thus shown only for the FJAQ4 measure only.?!

Figure 3.7, shows a plot of FJAQ4 against productivity. For non top firms there seems to be
a strong positive relationship, which deteriorates in the top-firms set. This is as expected from
Remark 3.2.3. Firms that deviates less from the optimal (estimated) allocation rule are (higher
FJAQ4) achieves higher productivity.

This is also confirmed in a preliminary regression analysis. Here, we regress the FJAQ4
measure against productivity (deciles), controlling for other factors. Even after adding controls,
the positive correlation in control set (non top-firms) seems to hold. In the top-firm this is less
clear and the estimates, relative to productivity deciles, show more variability. An intuition for
this fact is as follows. The split in top-firms and non top firms is made by conditioning on some
factors. Then, the estimated function f is estimated on the firms that (supposedly) use the
optimal allocation rule. For this reason, once we control for the same factors with which we
operated the split, there should be no left variability in the top-firm set to be correlated with the
FJAQ. On the contrary, in the non top-firm set, the residual productivity can still be affected
by the different allocation rules by which firms in this set allocate their workforce.

These results are not meant to be causality statements, but are encouraging in investigating

further these measures.

21'We are not showing FJAQ1, FJAQ2 and FJAQ3 results since the available ones were produced in early stages
of the experimental phase (in our implementation FJAQ1 is produced along with FJAQ2 and FJAQ3). At the
time, the split in top-firm and non top-firm was implemented considering only industry as control variable for the
split. For this reason, estimates are much less reliable. However, the similar pattern between FJAQ4, FJAQ2 and
FJAQ3 was already observed. Hence, in subsequent trials, the computations based on the assignment problems
were suspended until a stable solution for the estimation of f would have been achieved.



Table 3.9: Regression tables: FJAQ4 against productivity deciles (top decile omitted), years, total
assets, firm size and industry. Robust standard errors adjusted by firms’ clusters. (*) means significant
at 10% level.

(a) Non Top-Firms set. Bagged Trees.

dep.: FJAQ4 Coef. Std. Error T-stat p— value 95% conf. interval

Productivity Decile

1 —0.021 0.011 —1.940 0.052* —0.041 0.000
2 —0.023 0.008 —2.790 0.005* —0.038 —0.007
3 —0.023 0.008 —2.990 0.003* —0.038  —0.008
4 —0.013 0.007 —-1.830 0.068* —0.028 0.001
5 —0.013 0.007 —1.810 0.070* —0.026 0.001
6 —0.012 0.007 —1.680 0.092* —0.026 0.002
7 —0.015 0.007 —2.160 0.031% -0.029  —0.001
8 —0.004 0.007 —0.650 0.513 —0.017 0.009
9 0.003 0.006 0.390 0.694 —0.010 0.015
(f) Size —0.000  597E-06 —5.31 0.000* —0.000  —0.000
(f) TA 1.13E-06 7.28E-07 1.56 0.119  —2.93E-07 2.56E-06
year (omitted)

(f) Industry (omitted)

constant (omitted)

N. Obs (firms): 4812 R? =0.49

(b) Top-Firms set. Bagged Trees.

dep.: FJAQ4 Coef. Std. Error T-stat p—wvalue  95% conf. interval

Productivity Decile

1 —0.102 0.020 —5.190 0.000* —0.141 —0.064
2 —0.019 0.014 —1.330 0.185 —0.047 0.009
3 —0.029 0.014 —-2.130 0.033* —0.056  —0.002
4 —0.007 0.013 —0.570 0.567 —0.033 0.018
) —0.021 0.012 —-1.690 0.091* —0.046 0.003
6 —0.014 0.012 -1.110 0.266 —0.038 0.011
7 —0.027 0.013 —2.150 0.031* —0.0562 —0.002
8 —0.015 0.012 —-1.220 0.223 —0.038 0.009
9 —0.004 0.011 —-0.360 0.721 —0.026 0.018
(f) Size —6.9E-5 1.56E-5 —4.410 0.000* —9.97E-5 3.84E-5
(f) TA 2.24FE-5 9.84E-06 2.270 0.023*  3.07E-06 4.17E-5
year (omitted)

(f) Industry (omitted)

constant (omitted)

N. Obs (firms): 4130 R%? =0.48




Figure 3.7: FJAQ4 against productivity for both top-firms and non top-firms sets. The
positive correlation is evident in the control set, while it is rather unclear in the learning
set.
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3.7 Conclusion

In this chapter we proposed an application of supervised learning techniques to Labor Economics.
The problem of interest was that of estimating optimal allocation rule for employees-to-tasks
assignment. We proposed to approach the problem as a classification task. This perspective has
the advantage of being model-free. The allocation rule is estimated on a subset of observed data
(top-firms), that can be reasonably thought as adopting an optimal allocation rule.

Moreover, we introduced different measures to evaluate assignation quality against a bench-
mark rule. These captures different aspect of workforce allocation. Some of them, are computa-
tionally intensive.

We applied out methodology to the Statistics Sweden LISA database, a rich dataset matching
information on employers and employees. Overall, the empirical results suggest the validity of
our approach. We find that it is possible to construct measures of deviation from an optimal
allocation rule and that firms who deviate the most are even those that are less productive.

The proposed approach provides a different perspective to look at productivity drivers. This
methodology can also be used to predict the most probable allocation of a new employee to jobs
according to the top performing firms in the economy.

Concluding, there are several possible improvements and other unexplored uses for our

methodology:

1. The overall quality of the whole procedure heavily relies on the selection of top-firms.
Further refinements of the selection procedure may improve the results and reliability of

estimates.

2. Due to the limitations exposed above, in principle, there is still room to improve algorithmic
performances with a more careful tuning process. Also, other algorithms and estimation

schema could be added for further comparisons.

3. The theoretical framework needs further development. In addition, given the promising
behaviour of the constructed measure, it would be interesting to investigate further causal

relationship between productivity and constructed measures.
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3.8 Appendix Chapter 3

Calibration

The problem of calibration is that of refining the estimated class probabilities of a classifier.
That is, given a set of estimated and observed probabilities, {(p1,p1),- -, (Pn,Pn)}, where, in our

notation,

pi = [fl(wz‘,xz),---af|y|($zw$z)], pi= [ﬂ{yi =1}, I{y = D/\}]

we want to find a mapping p — @(p), so as to minimize some loss function. There are several
choices for the latter, and a popular one in classification methods is the so called Brier Score

(i.e. mean square error):*?

1< o(Bi) — pil3
BS = - ; n2
Intuitively, better calibrated probabilities better estimates of class conditional probabilities, and
one can be more confident on the resulting class ranking. To see why this problem is relevant
in classification, imagine estimation of class probabilities by vote averaging in random forests If
the true class probability is 1, the only way of getting such an estimated value would be that all
trees in the forest estimated the correct class, which highly unlikely. Calibration tries to cope
exactly with this problem (see Hastie, Tibshirani, and Friedman, ).

Most of the times, poor class probability estimates are due to the fact they are not the target
of the classifier (rather, we are interested in classifying points), but come as a byproduct of the
estimation (Subsection 1.3.2).

Regarding the methods discussed above, the multinomial logistic regression exactly estimates
class probabilities (by maximum likelihood) and the classification is done according to these prob-
abilities. Thus, the multinomial logistic regression is is a well calibrated model. Niculescu-Mizil
and Caruana, and Bostrom, find by empirical studies that random forests perform bet-
ter at estimating class probabilities if calibrated. However, due to the additional computational
overhead?® (not feasible in our case), we do not calibrate in this case. Note that un-calibrated
random forests should also perform better at classification task.

Finally, we decided to calibrate bagged trees. These are known to be well calibrated models
by default (Niculescu-Mizil and Caruana, ). While there is general consensus that bagging
improves probability estimations by decision trees, there is contrasting evidence on whether
to calibrate or not these models. Provost and Domingos, argue that both bagging and
Laplace calibration remarkably improve probability estimation (for binary problems). They also
recommend not pruning. Similar evidence was found in Ferri, Flach, and Hernéndez-Orallo,

. Based on their findings, we decided to use bagged unpruned trees with Laplace smoothing
due to their superior performances. Then, let 7' be the number of bagged trees, |Y| be the

number of classes, nh(z) and nhy(z)U) be the number of points and the number of points of

22This measure was introduced for multi-class classification in Brier, . It must be noted that the term
calibration is more general than how we use it here, and refers to different problems (Bella et al., ).

Z8The type of calibration considered for random forests in the cited studies implies estimating calibration
parameters on a validation set.
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class j, in the terminal node in tree ¢ where x fall. The calibrated bagged trees estimates the

following:
T
» new -1, (new 1
Py = jlae) = 23"

T t=1

nh%j)(x(new)) +1
nhy(z@ew)) + | Y|

(3.18)

We decided for this calibration method because, while being effective (even if outperformed by
other methods, e.g. Ferri, Flach, and Hernandez-Orallo, ), it is simple and easy to deploy.

Also, there is essentially no additional overhead in estimation time.

Evaluation Methods

24 as the accuracy

In order to evaluate classifiers, we decided to use relatively simple metrics
score and the Fl-score, to evaluate classification performances. The accuracy score is simply

defined as the ratio of the correctly classified points as:

n

Ace. = n{A‘-z} 1

ce. = Z; flxi,zi) =vie (3.19)

(where the set of points where we compute Acc. may vary). This measure simply takes into

account the proportion of correctly classified points and its generalization to multi-class problems

is straightforward. However, there are problems with this metrics. Consider for example a binary

classification problem with 95% points from one class. A constant classifier predicting always

that class would achieve 95% accuracy, even if the classifier itself is bad or does not uses data
information at all. Thus, accuracy is problematic with highly unbalanced data.

For this reason, we also provide the precision, recall and F1-score metrics. To extend these

measure to the multi-class problem, we define each of them class-wise, considering for each class

a one-vs-others approach:

S 1 {f(wi,zi) = 1} 1{y; = i}.

precision; := - ; (3.20)
Sy 1 i, z) = i}
Sy 1 flwsz) =i} Ty = 1)
recall; = - : ; (3.21)
o1 Wy =}
F1, — 2 - precision; - recall; (3.22)

precision; + recall;

(so that measures that refer to class i consider the classification as a binary problem: class i
against classes {1,...,7i — 1,4+ 1,|)|}). Precision measures the ability of the classifier to classify
only the true instances as being true. At the numerator we have points correctly classified to class
i (true positives); at the denominator we have all point classified by the algorithm as belonging to
class i (whether this is true or not; these is the sum of the true positives and the false positives).

Recall measures the ability of the classifier to retrieve the instances of class i correctly. At the

24Tuning and evaluating classifiers was not an easy task. First, we deal with a multi-class classification problems,
and all the usual binary evaluation metrics need to be adapted or modified (and are in general more complicated).
Secondly, the huge time needed to deploy and fit any of the algorithms forced us to discard any methodology based
on Cross-Validation or resampling. Thirdly, the memory limitations prevented us to extract the fitted classifiers
and to produce elaborated evaluation methods.
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numerator we have points correctly classified to class i (true positives); At the denominator we
have all the points belonging to class @ (true positive plus false negatives). The Fl-score is the
harmonic mean of the two. As an example, a constant classifier (classifying to i) would have
high recall but poor precision; on the other hand, a classifier with extremely high precision may
have poor recall. There is usually a trade-off. These measure are reviewed, together with others,
in Sokolova and Lapalme, . Also, the authors point out that F score measures might be a
more sensible choice for high unbalanced data and might be more appropriate in a one-vs-others
approach.

We also provide two aggregated measure for the Fl-score. The first one is a sample average
across classes, FI-macro; the second one is a weighted average of the scores across classes,
weighted by classes prior probabilities (i.e. the amount of points belonging to the classes),
F1-weighted.

These measures are all bounded in [0, 1], where higher values means better performances.

Finally, to evaluate class probability estimation, we use the Brier score defined as:

2
S (fitiszw) = Ly = 7})° , (3.23)

inia 2k 1

where )] (i,k) indicates the sum over all points in the considered set and Z(i’ ) 1s the total number
of points. This measure ranges in [0, +00), where values closer to 0 implies better estimates.””
Given these evaluation metrics, tuning was performed in the following way. At each run on
the server, we randomly split the learning set in a training set and a test set, of sizes 90% and
10% respectively. We used the results on the test set to aid the choice of parameters for the
next run. We note that this was possible because the classifiers used (primarily random forests,
multinomial logit and bagged trees) do not require excessive parameter tuning. The test set was
thus used to avoid overfitting problems. Note also that, since the parameters are tuned on a test
set from a previous iteration, the test set of the subsequent run constitutes a valid set to evaluate
classifiers’ final performances. The relative few percentage sampled for test set are motivated by
generally massive data size. This also lessen the possible gains from cross-validation procedures

as well as the need for calibration in case of bagged trees (Ferri, Flach, and Hernandez-Orallo,

).

2In the case of a classifier that predicts |V| classes equally at random, the expected value of this score is
I = 0.99, for | Y] = 100.
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