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Introduction 

The spatial organization of the chromatin in the nucleus is known to play an 

important role in transcriptional regulation of genes in many organisms 

(Bickmore and Van Steensel 2013; Cremer and Cremer 2001; Dekker, Marti-

Renom, and Mirny 2013; Lieberman-Aiden et al. 2009; Misteli 2007; Tanay and 

Cavalli 2013). However, the comprehension of genome architecture and of the 

molecular mechanisms shaping its structure, represents a challenging problem 

which remains not fully understood. During the last two decades, the 

development of new technologies has allowed to investigate the three-

dimensional spatial folding of chromosomes in a quantitative way. Along with 

high resolution microscopy techniques, e.g. fluorescence in situ hybridization 

(FISH), which have been a great tool to visualize nuclear organization (Boyle 

2001; Tanabe et al. 2002), the majority of recent discoveries are based on 

Chromosome Conformation Capture (3C) techniques and its derivatives  

(Dekker, Marti-Renom, and Mirny 2013). These experiments can measure, in a 

population of cells, the frequency of interaction between pairs of chromatin 

regions close in the 3D nuclear space, but which may have a large separation 

along the linear genomic sequence. The method of choice for detecting genome-

wide contacts and determining large chromatin structure is Hi-C, which generates 

contacts maps between all parts of the genome. Thanks to these technologies, we 

now know that chromosomes are characterized by a complex, non-random, 3D 

organization occurring at different genomic length scales, through local and long-

range interactions. In mammals, different chromosomes occupy distinct 

territories (Cremer and Cremer 2001) and have preferred positions depending on 

cell type and transcription activity (Bickmore and Van Steensel 2013; Misteli 

2007). At the super-megabase scale, it was established that chromosomes are 

separated in two types of domains, namely A and B compartments, which tend 

to interact with each other in a homotypic fashion (Lieberman-Aiden et al. 2009). 
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Further improvements in the resolution of the 3C-based methods have revealed 

the partitioning of the genome into domains of preferential chromatin 

interactions, the topologically associating domains or TADs (Dixon et al. 2012; 

Nora et al. 2012). TADs extend up to ~3Mb (Mega bases) and are mostly stable 

between different cell types and across species (S. S. P. P. Rao et al. 2014). The 

function of TADs is to delimit the genomic regions sampled by each locus in 

order to correctly direct enhancer-promoter communication and, at the same 

time, to prevent the activation of promoters by spurious enhancer located in other 

TADs. TADs are, in turn, only one level of a more complex, hierarchical 

organization of higher-order domains (metaTADs) extending up to chromosomal 

scales (Fraser et al. 2015). However, non-trivial patterns are also seen within 

TADs and these domains, known as sub-TADs, are mostly associated with CTCF 

(a highly conserved zinc finger protein implicated in diverse regulatory 

functions) (Phillips-Cremins et al. 2013; Sexton et al. 2012). It is therefore 

conceivable that every one of these domains provide a different frame in which 

enhancer and promoter can find each other, or be insulated from each other, 

ultimately controlling the transcription of genes. Therefore, disruption or 

alterations of these structures, for instance via genomic mutations, can affect the 

regular gene activity and produce effects on the phenotype (Lupiáñez et al. 2015; 

Spielmann and Mundlos 2013). Although the functional significance of the 

discussed genomic features in gene regulation is better understood, the factors 

underlying their formation are still to be investigated. In this sense, polymer 

physics is turning out to be a great tool to understand the molecular mechanisms 

of the 3D chromatin spatial organization from first principles. So far, different 

models have been proposed (M. Barbieri et al. 2012; Brackley et al. 2013; 

Chiariello et al. 2016; Fudenberg et al. 2016; Giorgetti et al. 2014; Jost et al. 

2014; Nicodemi and Pombo 2014; Rosa and Everaers 2008; Sachs et al. 1995; 

Sanborn et al. 2015; Tiana et al. 2016) which try to make sense of the genome-

wide contacts data and lay the foundations of an exciting research field where 

Physics and Biology intermix. 
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The studies discussed in the present work have been devised in this general 

framework. They consist of a detailed description of results and conclusions from 

the projects that we have conducted in the Physics Department of University of 

Naples Federico II, under the supervision of Professor Mario Nicodemi, in the 

group of Complex Systems. Many results have been published or are currently 

in progress in collaboration with the Epigenetic Regulation and Chromatin 

Architecture group directed by Prof. Ana Pombo, at Max Delbruck Centre For 

Molecular Medicine (Berlin) and the Development and Disease Group directed 

by Professor Stefan Mundlos, at Max Planck Institute for Molecular Genetics 

(Berlin). 

 

The thesis is organized in four chapters. In Chapter 1, we introduce some basic 

concepts necessary to the comprehension of this research activity and summarize 

recent results related to the chromatin spatial organization, as the main 

experimental techniques, the interpretation of the chromosome interaction data 

and the relationship between spatial organization and cell functionality. Then, we 

briefly review the polymer models currently proposed to describe the 

chromosomes three-dimensional organization in the cell nucleus. In Chapter 2, 

we outline the ‘Strings and Binders Switch (SBS)’ model, developed in our 

research group, and we make use of it to quantitatively explain the information 

contained in the Hi-C interaction data via Molecular Dynamics simulations. We 

show that the thermodynamic phases envisaged by our mode can be used to 

explain the long-range contact profile of chromosomes; then we try to 

schematically model the hierarchical structure of chromatin, and finally we 

present a theoretical study of the multiple co-localization contact landscape. In 

Chapter 3, we introduce more sophisticated variant of the SBS polymer model 

by which we can reconstruct the 3D structure of real genomic region with high 

accuracy. Next, we employ this model to study the folding mechanisms and the 

enhancer-promoter communication at some important chromosome loci where 
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the failure of these mechanisms can lead to severe diseases. Finally, in Chapter 

4, we extend our modeling genome-wide, i.e. to the entire set of chromosomes of 

the mouse genome. The increase in statistics obtained with the genome-wide 

study, allows us to compare our polymer models with epigenetics factors, known 

to play an important role in gene regulation. In this way, we can clarify the 

molecular nature of the binding factors inferred by our model. 
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Chapter 1 - 3D genome organization in the cell 

nucleus 

The way in which eukaryotic DNA is organized inside the cell nucleus is likely 

to be of great importance for basic biological processes, such as transcription and 

gene regulation. Recent developments in molecular biology and novel 

computational methods, give us the opportunity to explore this interesting 

problem. In this chapter, far from being exhaustive about this huge topic, we 

briefly review some recent results which are crucial in this research field and that 

will help the comprehension of our research activity described in the following 

chapters. In Section 1.1 and 1.2 we summarize some fundamental concepts of 

molecular biology and some recent advances about genes regulation and 

epigenetics. Then in Section 1.3 we discuss the main technologies that allow to 

quantitatively investigate the architecture of the genome with a focus on the Hi-

C experimental technique. Thanks to Hi-C, important results have been obtained 

about the chromosome spatial organization, and that will be discussed in Section 

1.4. Finally, in Section 1.5 we review the most recent polymer models that aim 

to quantitatively explain and reconstruct the three-dimensional structure of the 

genome. The results described in this chapter have been introduced and discussed 

in the following important papers: (Dekker, Marti-Renom, and Mirny 2013; 

Dixon et al. 2012; Fraser et al. 2015; Lieberman-Aiden et al. 2009; Nora et al. 

2012). 

1.1 Packaging of the DNA inside the cell nucleus 

The cell nucleus of the living organisms can be modelled as a complex system in 

which multiple interactions between many different components operate to 
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translate the genetic information into physical processes which ensure the correct 

development of the organism itself. 

 

The genetic information is written in the DNA (deoxyribonucleic acid) molecule, 

which is a double helix consisting of two coupled polymer chains made of simple 

units called nucleotides. These latter are composed of three elements: a five-

carbon sugar, a phosphate group and a nitrogenous base, which may be either 

adenine (A), cytosine (C), guanine (G), or thymine (T). Hydrogen bonds between 

specific pairs of nucleotides (A binds T and C binds G) join the opposite strands 

together. The sequence of these four nucleobases along the polymeric chain 

encodes the genetic information. 

 

In eukaryotes, almost all the DNA is located inside the cell nucleus where it is 

packed into structural entities called chromosomes. In the crowded nuclear 

environment, each chromosome occupies a specific spatial region referred to as 

chromosomal territory, which is clearly visible in microscopy experiments 

(Figure 1.1). The majority of eukaryotic cells are diploid, i.e. they have two 

copies of each chromosome. The number of the different chromosomes and the 

total genomic length, that is the number of base pairs (bp) in the cell nucleus, 

strongly depends on the considered species. In the human genome, for instance, 

there are around 3.2 × 109 bp distributed over 24 chromosomes. The importance 

of the DNA folding is immediately clear if we consider that the linear length of 

the human genome is about 2m and is constrained in a nucleus of 10÷15μm, that 

is geometrically equivalent to packing 40km of an extremely fine thread into a 

tennis ball. This compaction level is achieved through an efficient interaction 

between DNA and proteins. 

 

Proteins binding the DNA are not only necessary for its spatial structure, but also 

to exploit many biological purposes as gene expression, DNA replication, DNA 

repair and DNA recombination. The complex of DNA and proteins is known as 
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chromatin and represents the real physical structure containing the information 

to be processed. Chromatin is spatially organized at different genomic length 

scale and degree of compaction. At the very first level we found the histones, 

around which the double strand of DNA is rolled up in forming the most basic 

unit of chromosome packing, the nucleosome. It consists of a structure of eight 

histone proteins (two molecules each of histone H2A, H2B, H3 and H4). The 

length of DNA associated with each nucleosome is 147 bp (about 11nm). Each 

nucleosome is separated from the next by a filament of linker DNA, which can 

vary in length from a few nucleotides pairs up to about 80 bp. On average, 

nucleosomes repeat at intervals of 200 bp. So, since human genome has 6.4×109 

bp, it consists of about 30×106 nucleosomes. This structure is known as “beads 

on a string” (where the “bead” is the nucleosome and the “string” is linker DNA) 

organization. As a second level of compaction, the nucleosomes are packed on 

top of one other, thanks to an additional protein known as histone H1. In this 

phase, the chromatin fiber has a diameter of about 30nm, which corresponds to a 

0.1cm in length for a mean human chromosome, which is too long to fit the cell 

nucleus. Clearly, there must exist other mechanisms of folding, still largely 

unknown, that eventually give rise to discrete 1μm wide chromosome territories 

(Cremer and Cremer 2001). 

 

Different chromosomal regions can be classified into two categories: 

heterochromatin and euchromatin. Heterochromatic regions are composed by 

DNA showing a high degree of compaction. Since the high level of compaction 

reduces its accessibility, it is less likely that these regions are transcribed. 

Euchromatin, on the other hand, is a lightly packed form of chromatin, enriched 

in genes and, often but not always, under active transcription. 
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Optical microscopy image (from chicken fibroblast cells) in which chromosomes have 

been tagged with different colors. Each chromosome occupies a specific, mutually 

exclusive, region of the cell nucleus, with homologous chromosomes seen in separate 

locations. Figure adapted from Cremer and Cremer 2001. 

1.2 Transcriptional regulation of gene expression 

Genes are crucial genomic sequences of DNA which encodes the synthesis of a 

gene product, either RNA or protein. Different cells in a multicellular organism 

may express very different sets of genes, even though they contain the same 

DNA. The set of genes expressed in a cell determines the set of proteins and 

functional RNAs it contains, giving it its unique properties. The mechanism of 

interpretation of genomic information is known as transcriptional regulation of 

gene expression and is mediated by the functionally diversified cis-regulatory 

elements, such as promoters, enhancers, silencers, and insulators. The 

transcriptional activity is primarily regulated by a control sequence, the gene 

promoter, usually located, in eukaryotes, within 1Kb upstream of the 

transcription start site (TSS) of the gene. Promoters contain specific DNA 

sequences such as response elements that provide a secure initial binding site for 

RNA polymerase and for proteins called Transcription Factors (TFs) that 

recruit RNA polymerase. In general, TFs are proteins that recognize a specific 

DNA sequence and bind to it to regulate gene expression by promoting or 

suppressing transcription. Enhancers, on the other hand, play a central role in 

Figure 1.1: Chromosome territories 



CHAPTER 1 - 3D genome organization in the cell nucleus 

 9 

driving cell-type-specific gene expression and are capable of activating 

transcription of their target genes at great distances, ranging from several to 

hundreds, in some cases even thousands, of kilobases (Bulger and Groudine 

2011; Calo and Wysocka 2013; Ong and Corces 2011). The mechanism of action 

of the enhancers, albeit still poorly understood, involves the physical proximity 

with their target genes. Indeed, extensive intra- and inter-chromosomal 

interactions between enhancers and promoters are detected at many co-regulated 

genes during development. This network of contacts among the different 

regulatory elements (REs) contributes to orchestrate gene expression giving rise 

to complex spatial conformations. 

 

REs can often be identified by specific epigenetic marks associated to them. 

Epigenetics is the study of heritable changes in a phenotype arising in the 

absence of alterations in DNA sequence, such as chemical modification of DNA 

and interactions with molecular factors. DNA methylation, the addition of a 

methyl group on a substrate, is an important example of epigenetic modification 

with a known functional role. For instance, methylation of cytosine may occur at 

CpG sites (regions of the genome where a cytosine is followed by a guanine), 

which are frequently encountered at gene promoter, to repress gene transcription. 

The amino acids of the histone tails are also subject to chemical modifications 

like acetylation, methylation, phosphorylation, and ubiquitination. Histone 

modifications exhibit both a repressive and active function on gene transcription 

and they can be used to assign a functional role to some genomic regions: for 

example H3K4me3 (histone H3 lysine 4 trimethylation) is associated with 

promoter regions, H3K4me1 (histone H3 lysine 4 methylation) and H3K27ac 

(histone H3 lysine 27 acetylation) characterizes enhancer regions, H3K36me3 

(histone H3 lysine 36 trimethylation) marks transcribed regions, H3K27me3 

(histone H3 lysine 27 trimethylation) Polycomb-mediated repressed regions and 

poised enhancers, and H3K9me3 (histone H3 lysine 9 trimethylation) 

heterochromatin regions (Allis and Jenuwein 2016). Histone modification 
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patterns can be mapped genome-wide thanks to the development of chromatin 

immunoprecipitation followed by next-generation sequencing (ChIP-seq) 

technique, a method to detect where a protein is bounded along the DNA, by use 

of specific antibodies that target the protein of interest. 

1.3 Experimental techniques to map chromosome 

contacts 

We have seen that transcriptional control may be mediated through physical 

contacts between enhancers and their target genes so highlighting the role of the 

3D organization of the chromatin in the functioning of the cell. In the last two 

decades, many efforts have been done in molecular biology to develop a series 

of experimental approaches to investigate the chromosomes spatial organization 

with high accuracy. Of particular importance are the methods based on the 

chromosome conformation capture (3C) protocol, which allow the measuring of 

the frequency with which any pair of genomic regions (loci) in the genome is in 

close enough physical proximity (in the range of 10÷100nm) to become 

crosslinked, that is the pair can be bound by some molecule. The most common 

methods are the 3C, 4C, 5C and HiC methodologies, all based on the following 

main steps: cells are crosslinked with formaldehyde to covalently link chromatin 

segments that are in close spatial proximity; next, chromatin is fragmented by 

sonication or restriction enzyme digestion; crosslinked fragments are then ligated 

to form unique hybrid DNA molecules; finally, the DNA is purified and analysed 

(Dekker, Marti-Renom, and Mirny 2013). The difference among each specific 

method is how the ligation product is detected and quantified. 

 

3C and 4C generate single interaction profiles for individual loci. More precisely, 

3C (Dekker et al. 2002) yields a long-range interaction profile of a selected gene 

promoter or other genomic element of interest versus surrounding chromatin (one 
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versus one) whereas 4C (Simonis et al. 2006) generates a genome-wide 

interaction profile for a single locus (one versus all). These data sets can be 

represented as single tracks that can be plotted along the genome and compared 

to other genomic features. 5C (Dostie et al. 2006) and Hi-C methods are not 

anchored on a single locus of interest but instead generate matrices of interaction 

frequencies that can be represented as two-dimensional heat maps with genomic 

positions along the two axes (many versus many).  

1.3.1 The Hi-C technique 

Hi-C (Lieberman-Aiden et al. 2009) in particular, represents the first genome-

wide (all versus all) adaptation of 3C and includes a further step in which, after 

restriction digestion, the staggered DNA ends are filled in with biotinylated 

nucleotides. The resulting DNA sample is composed by ligation products of 

chromatin that were in spatial proximity in the nucleus, with biotin at the ligation 

junction (Figure 1.2a). This facilitates selective purification of ligation junctions 

that are collected in a Hi-C experiment and then directly sequenced along the 

genome, producing a list of interacting fragments. In Figure 1.2b a typical output 

of a Hi-C experiment is depicted. Data are organized in a contact matrix Cij 

whose generic bin is the number of ligation products between the locus i and the 

locus j. To this aim, the genomic sequence is split into windows whose length is 

an important parameter and determines the Hi-C data resolution. Higher 

resolution, i.e. a reduced size of the genomic windows, corresponds to matrices 

with higher sizes. So, the outcome of a Hi-C experiment is a set of interaction 

matrices associated with each chromosome (Cis data) together with interaction 

data between loci belonging to different chromosomes (Trans data), the latter 

with a much lower frequency. Only Cis contact matrices will be analysed 

throughout this work. 
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a) Schematic representation of the Hi-C experimental procedure. Cells are cross-linked 

with formaldehyde to covalently link spatially adjacent chromatin segments; chromatin 

is digested with a restriction enzyme and the resulting sticky ends are biotinylated; 

crosslinked fragments are then ligated to form unique hybrid DNA molecules; DNA is 

purified and sheared. The labelling with biotin allows to efficiently detect the ligated 

fragments, which are finally identified by paired-end sequencing. Figure from 

Lieberman-Aiden et al. 2009 b) Example of Hi-C data output collected in a 

bidimensional heatmap. Data are from a 7 Mb long region of the mouse chr2 at 40Kb of 

resolution. The color intensity of each pixel is proportional to the number of reads 

detected in the experiment. Data from Dixon et al. 2012. 

 

Figure 1.2: Hi-C technique 
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It is important to observe that the 3C-based methods describe the relative 

frequency in a cell population by which two loci are in close spatial proximity, 

not distinguishing functional from non-functional associations. Indeed, spatial 

proximity can be the result of direct and specific contacts between two loci, the 

result of indirect co-localization to the same subnuclear structure (such as the 

nuclear lamina), or it can be due to random collisions in the crowded nuclear 

space. The polymer nature of chromosomes also determines the frequency with 

which pairs of loci interact even in the absence of any specific structure 

(Fudenberg and Mirny 2012). Finally, the precise conformation of the chromatin 

fiber is highly variable from cell to cell and is the effect of many different 

constraints that act on it. Each ligation event represents a contact involving a pair 

of loci in a single cell of the population. In other words, Hi-C (and all 3C-based) 

interaction frequency data represent the fraction of cells in which pairs of loci i 

and j are in spatial proximity at the time the cells are fixed and the final value 

contained in the matrix bin Cij represent the sum of interactions over a large cell 

population. Therefore, the typical maps obtained by these approaches probably 

represent a superimposition of all possible conformation states of a cell. This has 

important implications for the biological significance of chromatin contact data. 

1.3.2 Ligation-free methods 

The just discussed 3C methods are all based on proximity ligation, which creates 

covalent bonds between regions spatially close. However, these technologies 

often fail to detect chromatin regions too far apart to directly ligate. Recently, 

two techniques have been developed which can overcome this problem by using 

a ligation-free approach: Genome Architecture Mapping (GAM) and Split-

Pool Recognition of Interactions by Tag Extension (SPRITE). Both methods 

are also capable to detect multi-way contacts such as triplets, quadruplets, and so 

on, while only pairwise interaction can be detected by 3C-based techniques. 

GAM (Beagrie et al. 2017) was the first ligation-free approach able to detect 

contacts at a genome-wide level. Starting from a collection of slices obtained by 
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cryo-sectioning a population of nuclei in random directions, it is possible to 

estimate the frequencies of interaction between pairs of loci. In fact, loci which 

are physically close in the 3D nuclear space, have a high probability to be co-

segregated (to fall in the same slice). SPRITE (Quinodoz et al. 2018) shares some 

of the initial steps with the 3C-based methods, but it does not use the ligation as 

well as GAM. Precisely, after the crosslinking and the fragmentation processes, 

the interacting molecules in a cluster are barcoded by using a split-pool strategy. 

Interactions are identified by matching all the reads having the same barcode via 

genomic sequencing. The cluster obtained in this way are then converted in 

contact frequencies by counting all contacts observed in a single cluster and 

weighting each contact by the total number of molecules contained within the 

cluster. One of the advantages of this method is that it can also detect, in addition 

to DNA interaction, higher-order RNA interaction in the nucleus. 

1.4 Chromosome structural features from Hi-C data 

Genomic compartments 

The emergence of whole-genome 3C-based methodologies has allowed the 

discovery of peculiar structure of chromatin, providing powerful insights into 

how gene expression relates to chromatin compaction. Application of principal 

component analysis to Hi-C data revealed a strong segregation of the interactions 

into two distinct classes, named A and B compartments (Lieberman-Aiden et 

al. 2009; S. S. P. P. Rao et al. 2014), recently confirmed by microscopy 

experiments (Nir et al. 2018). A compartments preferentially interact with other 

A compartments throughout the genome. Similarly, B compartments associate 

with other B compartments (Figure 1.3). Compartments are considerably large 

regions of chromatin, having a characteristic size of 5÷10 Mb, and alternate along 

the chromosomes. Comparisons with indicators of transcriptional activity such 

as DNA accessibility, gene density, and several histone marks reveal a strong 
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relationship between the A compartment and transcriptionally active, open 

chromatin (euchromatin) and the B compartment with closed chromatin 

(heterochromatin). Increased depth of Hi-C data sets has allowed smaller sub-

compartments to be detected, which capture fine differences in replication timing 

as well as preferred associations with the nucleolus or the nuclear lamina (S. S. 

P. P. Rao et al. 2014). 

a) Pearson correlation map of a genomic region on the chromosome 14 and the principal 

component (PC) associated (bar plot on the top). The PC correlates with the plaid pattern 

in the correlation matrix, defining the compartment A (positive PC values) and B 

(negative PC values). b) Schematic representation of chromatin organization at nuclear 

scale, where chromosome territories (hundreds of Mb) occupy distinct regions, and at 

chromosome scale, where open and closed chromatin regions (5÷10 Mb) alternate. 

Figure adapted from Lieberman-Aiden et al. 2009. 

Topologically associated domains (TADs) 

One of the most interesting discoveries was that chromosomes are spatially 

segregated into sub-mega base scale domains, often called topologically 

Figure 1.3: A and B compartments 
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associating domains or, briefly, TADs (Dixon et al. 2012; Nora et al. 2012). 

They typically appear as contiguous square domains along the diagonal of Hi-C 

or 5C maps (or triangles as represented in Figure 1.4), in which regions within 

the same TAD interact with each other much more frequently than with regions 

located in adjacent domains. To identify TADs several computational algorithms 

have been developed (Dixon et al. 2012; Fraser et al. 2015; S. S. P. P. Rao et al. 

2014). Although initially mammalian TADs were identified with a median size 

of ~800 Kb (Dixon et al. 2012), subsequent analysis of higher resolution data Hi-

C data suggested a smaller median domain size of ~185 Kb (range 40 Kb–3 Mb). 

TADs are found to be a universal building blocks of chromosomes, as both mouse 

and human are composed by more than 2000 domains, covering almost all the 

genome. The spatial partitioning of the genome into TADs correlates with many 

linear genomic features and enhancer–promoter interactions seem to be mostly 

constrained within a TAD (Shen et al. 2012). The mechanism that regulates the 

formation of TADs is still not completely understood, and polymer models have 

been proposed to quantitatively describe it (M. Barbieri et al. 2012; Brackley et 

al. 2013; Chiariello et al. 2016; Fudenberg et al. 2016; Sanborn et al. 2015). 

 

 

Hi-C data for a region along chromosome 6 in mouse embryonic stem cells (mESC). 

TAD domains appear as high intensity square blocks along the diagonal of Hi-C matrix 

(here represented as a upper triangular matrix, since Hi-C is symmetric by construction). 

Loci belonging to the same TAD interact more frequently than loci in different TADs. 

(Figure from Dixon et al. 2012)  

Figure 1.4: Topologically Associated Domains (TADs) 
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Further research developments 

Beyond TADs and compartments, other important genomic features have been 

discovered thanks to the development of more sophisticated and refined 

experiments which resulted in the production of higher quality data. Analysing 

the interaction among TADs, higher-order chromatin 3D structures were 

identified through mouse neuronal differentiation. Chromatin was found to be 

organized in a hierarchy of domains-within-domains, named metaTADs, up to 

chromosomal scales. As for TADs, metaTADs correlate with a variety of 

epigenetic features, pointing towards a functional role of this organization (Fraser 

et al. 2015). In addition, analysis of higher resolution contact data (S. S. P. P. Rao 

et al. 2014) led to identification of loop domains, a particular type of TADs 

exhibiting a point-like interaction peak at its boundaries, known as chromatin 

“loops”. Loop domains derived from 3C-based technologies often coincide with 

pairs of convergent CTCF (CCCTC-binding factor) binding sites, indicating that 

CTCF can contribute to the partition of specific regions of the genome into self-

associating domains. Chromatin folding below the scale of TADs has recently 

been analysed with a novel high resolution, 3C-based, method Micro-C (Hsieh 

et al. 2019) which showed the existence of finer structures named microTADs 

and stripes. Micro-TADs encompass either single genes, multiple genes, or 

intergenic regions but are much smaller than TADs, while stripes correspond to 

lines extending from the diagonal in contact maps. Finally, experiments have 

been performed to evaluate the impact on health of chromatin structure 

alterations such as TADs disruption (Lupiáñez et al. 2015) or neoTAD 

formation (Franke et al. 2016), so demonstrating the deep relationship between 

chromatin organization and phenotype. 
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1.5 Polymer physics of chromatin folding 

Following the improvements of the experimental technologies, important 

progresses have been made in the development of theories. Several models have 

been proposed to understand the molecular mechanisms of chromosome folding 

and, in this subsection, we will list very briefly some of them, for sake of 

completeness (a detailed review of the models can be found in (Esposito et al. 

2018)). The String and Binders Switch (SBS) model (M. Barbieri et al. 2012) 

will be the fundamental starting point for our considerations in the following 

chapters. In this model a chromatin fiber is modelled as a bead chain, where some 

of those (binding sites) can interact with floating particles (binders), and the 

polymer folds through the interaction between binding sites and binders. Further 

details on the SBS model will be given in the next chapter. The idea of chromatin 

interacting with floating particles has been used also in other studies (Brackley 

et al. 2013; Chiariello et al. 2016). The first proposed model was the Fractal 

Globule (Lieberman-Aiden et al. 2009) in which the polymer condensation is 

subjected to some topological constraints preventing knotting and slowing down 

equilibration of the polymer. Another important model is the Dynamic Loop 

model (Bohn and Heermann 2010), where chromatin moves under diffusional 

motion and when two sites colocalize, they form a loop with a certain probability 

for a certain lifetime. In (Jost et al. 2014) a model is presented that considers 

chromatin as a sequence of regions characterized by an epigenetic state with 

regions in the same state having specific interactions. Other models consider 

chromatin folding as the result of interaction of boundary elements through 

dynamic mechanisms of Loop Extrusion (Fudenberg et al. 2016; Sanborn et al. 

2015). Following this, a Loop Extruding Factor (LEF), progressively extrudes a 

chromatin loop until it is stalled by a roadblock. In mammals, the Cohesin 

complex and zinc finger protein CTCF have been identified as the LEF and 

roadblock factors, respectively. Yet, CTCF binding events are not impermeable 



CHAPTER 1 - 3D genome organization in the cell nucleus 

 19 

to the extrusion complex, thereby accounting for the formation of chromatin 

domains within or between TADs (sub-TADs and meta-TADs). 
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Chapter 2 - Polymer physics explains key features 

of chromosome organization 

In this chapter, we are going to show how it is possible to recover complex 

features of chromatin organization with polymer physics. In Section 2.1, the 

Strings and Binders Switch Model (SBS) of chromatin, initially presented in 

Barbieri et al. 2012, will be discussed and followed by its molecular dynamics 

implementation (Section 2.2) and its phase diagram (Section 2.3). In Section 2.4 

we will show how, with few parameters, we are able to recapitulate the average 

behaviour of the experimental chromatin contact frequency, as mapped from Hi-

C methods, in a large range of genomic lengths going up to chromosomal scales. 

In Section 2.5, we will use the SBS model to reproduce important features of 

chromatin organization like TADs and higher order structures. Finally, the 

theoretical multiple contact profile of genome architecture will be described in 

Section 2.6. 

 

Most of the material presented in this chapter, including figures, paragraphs and 

sentences, is adapted or taken literally from the published papers: Annunziatella 

et al. 2018; Chiariello et al. 2016; Esposito et al. 2019; which I co-authored. 

2.1 The Strings & Binders Switch (SBS) model of 

chromatin 

In the Strings and Binders Switch (SBS) model (M. Barbieri et al. 2012; 

Nicodemi and Prisco 2009), a chromatin filament is represented as a self-

avoiding-walk (SAW) chain made of consecutive beads linked to each other. A 

fraction of the beads, named binding sites, can interact with molecular particles, 

the binders, dispersed in the surrounding environment with a concentration c, 
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through an attractive potential with interaction energy Eint. The interaction 

between beads and binders drives the folding of the polymer.  

A schematic representation of the SBS model is shown in Figure 2.1, where the 

binding sites (green and orange beads) can interact with their cognate binders. 

For the sake of simplicity, only two type of binders and binding sites (two 

different ‘colors’) are showed, yet, to describe more complex situations, different 

types of interactions can be introduced (Bianco et al. 2018; Chiariello et al. 2016). 

The SBS model is a self-avoiding chain of beads (the “string”), a fraction of which (the 

“binding sites”) interact with diffusing molecules (the “binders”) having a concentration 

c and a binding affinity Eint. The binders can bridge distant beads looping the polymer. 

Figure adapted from (Esposito et al. 2019) 

2.2 Molecular Dynamics of the SBS model 

To study the spatio-temporal evolution of an SBS polymer, we perform 

molecular dynamics (MD) simulations, a standard method to investigate 

molecular systems. To this aim, the LAMMPS (Large Atomic Molecular 

Massive Parallel Simulator) software will be adopted, which employs the Verlet 

algorithm to integrate the equations of motion (Plimpton 1995). 

binding  

sites

binders string

loop

Figure 2.1:The Strings and Binders Switch (SBS) model 
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Equations of motion 

In our simulations, N beads compose the polymer chain and each bead has a 

diameter equal to . The polymer and its binders are embedded in a surrounding 

viscous fluid, describing the cell nuclear environment, and undergoes a Brownian 

motion. Hence, the dynamics of each of the system particles obeys to the 

Langevin equation (Kremer and Grest 1990): 

 

𝑚
𝑑�⃗�(𝑡)

𝑑𝑡
= −𝜁�⃗�(𝑡) + 𝑓(𝑡) − ∇𝑉 (1) 

where 𝑚 is the mass of the generic particle, �⃗�(𝑡) the particle velocity, V is the 

potential acting on the particles and 𝑓(𝑡) a stochastic random force which takes 

into account the thermic fluctuation of the environment. The friction coefficient 

ζ is related to the viscosity of the solvent η from the Stokes relation ζ=3πησ. As 

usual in MD simulations, we work in dimensionless units. So, we set the diameter 

of the polymer bead  equal to 1 (the same is done for the binder diameter). The 

diameter fixes our length unit. Analogously, we set the mass of the particle 𝑚 

equal to 1. The energy scales are measured in kBT, where the Boltzmann constant 

kB and the temperature T are both equal to 1. For the dynamics, we set 𝜁=0.5 

(Kremer and Grest 1990; Rosa and Everaers 2008). The simulation box, with 

boundary periodic conditions, has a linear size D, that is as large as the gyration 

radius of a SAW with the same number of beads (D ∝ N0.588). Physical units will 

be obtained once we fix the length scale and other parameters of the system, as 

described in the following subsection. 

From the MD units to the physical units 

The units used in MD simulation, called Lennard-Jones or reduced units, are 

dimensionless. This means that , 𝜀 = 𝑘𝑏𝑇 and 𝑚 are taken as units of length, 

energy and mass, respectively. The mapping of these units to the physical 

quantities can be easily obtained with a simple multiplication by a factor 
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representing the specific unit, linked to the molecular details of the system or to 

experimental data. For instance, the physical diameter of the bead σ is estimated 

by imposing that the local chromatin density matches the average nuclear DNA 

density, i.e., by the relation 𝜎 = (𝑠0 𝐺⁄ )1/3𝐷0 where 𝐷0 is the nucleus diameter, 

G is the total genomic content of DNA, and 𝑠0 the number of base pair of each 

bead of the polymer (M. Barbieri et al. 2012). The molar concentration of binders 

is calculated using the relation 𝑐 = 𝑃 𝑉𝑁𝐴⁄  where P is the absolute number of 

binders in solution, V is the box volume and NA is the Avogadro number. Finally, 

the time scale 𝜏 is fixed by the standard MD relation 𝜏 = 𝜂(6𝜋𝜎3 𝜀⁄ ). So, by 

considering 𝜂 = 0.1P at room temperature T=300K, we obtain 𝜏 =0.03s. 

Potentials 

Each particle of the system has a potential energy V(�⃗�) consisting of the three 

different components listed below (see Figure 2.2):  

1) Between any two consecutive beads of the polymer chain there is a potential 

that models a finitely extensible non-linear elastic spring, the FENE potential ( 

see Kremer and Grest 1990). We set the FENE length constant 𝑅0(the maximum 

extension of the spring) equal to 1.6σ and K (the strength of the spring) equal to 

30𝑘𝐵𝑇/𝜎2 (Brackley et al. 2013; Kremer and Grest 1990); 

2) To account for excluded volume effects between any two particles there is also 

a purely repulsive, shifted Lennard-Jones (LJ) potential: 

 

𝑉ℎ𝑎𝑟𝑑(𝑟) = {4 [(
𝜎𝑏−𝑏

𝑟
)

12

− (
𝜎𝑏−𝑏

𝑟
)

6

− (
𝜎𝑏−𝑏

1.12
)

12

+ (
𝜎𝑏−𝑏

1.12
)

6

]     𝑟 < 1.12

0                                                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2) 

 

𝜎𝑏−𝑏 being the distance between any two particles when they are close in space. 

3) Finally, there is the bead-binder potential, between each bead and its cognate 

binders, modelled as an attractive LJ potential with a cut-off: 
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𝑉𝑖𝑛𝑡(𝑟) = {
4𝜖𝑖𝑛𝑡 [(

𝜎𝑏−𝑏

𝑟
)

12

− (
𝜎𝑏−𝑏

𝑟
)

6

− (
𝜎𝑏−𝑏

𝑟𝑖𝑛𝑡
)

12

+ (
𝜎𝑏−𝑏

𝑟𝑖𝑛𝑡
)

6

]     𝑟 < 𝑟𝑖𝑛𝑡

0                                                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3) 

 

where 𝑟𝑖𝑛𝑡 is the cut-off distance which regulates the interaction range, 𝜖𝑖𝑛𝑡, 

expressed in kBT units, is the parameter controlling the strength of the interaction, 

and 𝜎𝑏−𝑏 is the bead-binder distance when they are close in space (i.e. the sum 

of their radii which in our case is 1σ). For our simulation, we set 𝑟𝑖𝑛𝑡 = 1.3𝜎, 

unless otherwise stated. 

The absolute value of the minimum of the interaction potential, 𝑉𝑖𝑛𝑡, is taken as 

the energy of the interaction between beads and binders and it is proportional to 

𝜖𝑖𝑛𝑡 through the relation: 

 

𝐸𝑖𝑛𝑡 = |4𝜖𝑖𝑛𝑡 [(
𝜎𝑏−𝑏

𝑟𝑖𝑛𝑡
)

6

− (
𝜎𝑏−𝑏

𝑟𝑖𝑛𝑡
)

12

−
1

4
]| (4) 

a) Any pair of the system (bead-bead, bead-binder, and binder-binder) is subjected to a 

repulsive LJ potential (equation 2), which models the excluded volume effect. b) The 

bond between two consecutive beads is a finitely extensible non-linear elastic spring 

(FENE). c) Beads and binders interact via an attractive, shifted LJ potential, as in 

equation (3). 

a b c

Figure 2.2: Scheme of the three potentials used in the SBS model 
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Initial states of the system 

All the initial states of our simulations are self-avoiding-walk (SAW) 

configurations, obtained by a standard approach described in Kremer and Grest 

1990. First, we generate a random walk chain, where the distance between two 

consecutive beads is equal to the average length of an equilibrium SAW chain 

under the FENE potential above described. The random overlaps between beads 

and binders are then removed by replacing the hard-core repulsive LJ potential 

with a soft potential letting the system equilibrate for some timesteps (Brackley 

et al. 2013; Kremer and Grest 1990). The scaling properties of the polymer are 

then measured to check that the SAW state is attained. In particular, one of the 

physical quantities taken into account is the gyration radius Rg of the polymer, 

defined as: 

𝑅𝑔
2 =

1

𝑀
∑ 𝑚𝑖

𝑁

𝑖=1
(𝑟𝑖 − 𝑟𝐶𝑀)2 (5) 

 

where 𝑀 is the total mass of the polymer, 𝑚𝑖 and 𝑟𝑖 are the mass and the position 

of the i-th bead (respectively), and 𝑟𝐶𝑀 is the position of the center of mass of the 

polymer. When the polymer is at an equilibrium SAW state, the gyration radius 

as a function of time reaches a plateau. Furthermore, the scaling properties of Rg 

can be studied to check the quality of the SAW state. Indeed, as known from 

polymer physics (De Gennes 1979), 𝑅𝑔
2(𝑡) exhibits a power-law behaviour as a 

function of the polymer length 𝑅𝑔
2 ∝ 𝑁2𝜈 with the scaling exponent 𝜈 = 0.588. 

 

The MD simulation proceeds by randomly introducing, in the simulation box 

containing the SAW initial state, the binders at a concentration c. The system 

evolves towards its thermodynamics equilibrium state which, once again, can be 

monitored by looking at the plateauing of the gyration radius. 
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The gyration radius Rg (relative to its initial value) of an SBS polymer as a function of 

MD time steps. As the system evolves, the polymer folds as showed by the decreasing 

of its Rg, which, at equilibrium, reaches a plateau. (Figure adapted from Annunziatella 

et al. 2018) 

2.3 Conformational classes in the SBS homo-polymer 

system 

We now want to investigate the average behaviour of a generic region of the 

genome (i.e. a chromosome) with an SBS polymer (see Section 2.1) made of N 

= 1000 beads. Each bead of the polymer will correspond to a precise number of 

DNA base pairs. Indeed, if L is the length of the genomic region to be modelled 

and N is the number of beads forming the chain, 𝑠0 = L/N is the number of base 

pairs per bead and is named genomic content. Since for a typical mammalian 

chromosome L = 100Mb, each bead will contain  𝑠0 = 100Kb. In this section, 

we focus on the simplest SBS model, that is a self-avoiding chain of identical 

(equal-colored) beads all interacting with the binders (homo-polymer). In the 

Figure 2.3: Plateauing of the gyration radius 
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next sections, we will extend the model to accommodate different types of 

binding sites along the chain and their specific cognate binders. 

Phase diagram 

The control parameters of the system are the bead-binder interaction energy 𝐸𝑖𝑛𝑡 

and the binder concentration 𝑐. As known from polymer physics, there is a coil-

globule folding transition, highlighted by a sharp drop of the gyration radius, the 

order parameter for this transition, when crossing the theta point in the phase 

diagram (in Figure 2.4). The coil state is characterized by small values of 𝐸𝑖𝑛𝑡 

and 𝑐, i.e. when the binders not succeed in forming stable loops and the polymer 

remains open as in a SAW (Figure 2.4 and Figure 2.5b violet box). On the other 

hand, in the globular state the polymer is in a compact configuration, occupying 

a very small fraction of the open state volume (Figure 2.4 and Figure 2.5b red 

box). We also identify a new phase transition, occurring in the polymer globular 

phase, where the binders undergo an order-disorder transition, although they do 

not interact directly with each other. At low energies or concentrations, the 

binders form a disordered aggregate attached to the polymer chain, while at high 

energies, with a sufficiently high concentration, they form an ordered aggregate. 

Such thermodynamic stable states are expected to play an important role in the 

chromatin organization as discussed in the following chapters. 
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The equilibrium architectural classes correspond to the different phases of its phase 

diagram: at low binding affinity or concentration, the polymer is open and randomly 

folded in its coil phase; above its -point transition, in the globule phase, it is closed in 

more compact conformation. In the closed state, at higher values of 𝐸𝑖𝑛𝑡 or 𝑐, its binders 

undergo a transition from a disordered to an ordered arrangement. (Figure adapted from 

Chiariello et al. 2016). 

The order parameters 

The transition lines in the phase diagram of Figure 2.4 are identified as follows. 

The coil-globule transition is found by measuring, at equilibrium, the collapse of 

the gyration radius defined in equation (5), which is essentially a measure of the 

average linear size of the polymer. Rg has the predicted value of a SAW when the 

polymer is in the open state, while it jumps to a much lower value in the compact 

state (Figure 2.5a). The binder order-disorder transition is captured by two 

structural quantities associated to the spatial configurations of the binders bound 

to the polymer: their pair distribution function g(r) and the structure factor 

S(k), defined as: 
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Figure 2.4: The phase diagram 
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𝑔(𝑟) =
1

𝜌𝑁𝑏

〈∑ ∑ 𝛿(𝑟 − 𝑟𝑖𝑗)
𝑖≠𝑗𝑖

〉  (6) 

𝑆(𝑘) = 1 + 4𝜋𝜌 ∫ 𝑟2
sin 𝑘𝑟

𝑘𝑟
𝑔(𝑟)𝑑𝑟 

∞

0

(7) 

where i, j, label the different binders, 𝑟𝑖𝑗 is the distance between a pair of them, 

𝜌 = 𝑁𝑏 𝑉⁄  is the concentration of the binders attached to the polymer and 𝛿 is 

the Dirac delta function. The structure factor is almost flat in the disordered 

binder state, while it has sharp peaks in the binder ordered state. The transition 

order parameter is the ratio 𝑆(𝑘∗) 𝑆𝑚𝑎𝑥⁄  where 𝑘∗ is the value of k corresponding 

to the second peak in the S(k) function and 𝑆𝑚𝑎𝑥 is a normalization coefficient 

taken to be equal to the maximum value of  𝑆(𝑘∗) across the different considered 

cases. Such an order parameter has a sharp jump at the order-disorder transition 

(Figure 2.5c). Analogous results are obtained if other peaks (for instance the first 

or the third peak) of S(k) are taken. 

 

a b

c d
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a) The relative gyration radius of the SBS polymer as a function of the binders 

concentration. b) Two different spatial configurations at different concentrations. c) The 

structure factor sharp increase signals the order-disorder transition in the arrangement of 

the binders. d) The binders in the order (red) and disordered (green) configuration. 

(Figure adapted from Chiariello et al. 2016). 

Contact probabilities 

The conformational classes can be characterized by studying the contact 

probability 𝑃𝑐(𝑠) of a bead pair separated by a given genomic distance 𝑠. In the 

coil phase, the probability decreases as a power law, 𝑃𝑐(𝑠)~𝑠−𝛼, with an 

exponent 𝛼~2.1, as predicted by polymer physics (De Gennes 1979). At the theta 

point, the exponent becomes 1.5, while in the closed state the probability has 

different shapes depending on whether the system is in the disordered or in the 

ordered state. In the former, it has an asymptotic plateau, with 𝛼 = 0, in the latter 

it decreases with 𝛼 = 1 (Chiariello et al. 2016). These properties are general 

features of this kind of systems. In the following chapters, we will consider more 

complex polymer models, which, by use of appropriate binding sites positioning, 

can describe the detailed three-dimensional structure of specific genomic regions. 

The finer details of the polymer configurations depend anyway on other aspects, 

like the position of the binding sites on the chain, the presence of ‘inert’ neutral 

sites and confinement. Furthermore, off-equilibrium, unstable conformations are 

also expected to be encountered in real chromosomal regions, for example during 

changes in the folding state. 

2.4 Chromatin is a mixture of regions in different 

thermodynamics states  

To check the ability of our model to recapitulate the average properties of 

chromosome folding, we fitted the experimental contact probability 𝑃𝑐(𝑠) 

Figure 2.5: The order parameters of the transitions 
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obtained from Hi-C data with a linear combination of the different contact 

probabilities of each conformational class.  Indeed, a single chromosome is likely 

to be a mixture of differently folded regions, with some regions more compact 

than others, and, at first approximation, the conformation of each region must 

belong to the stable thermodynamic states previously identified (Figure 2.4). In 

a simple coarse- grained model where chromatin is approximately a homo-

polymer, the 𝑃𝑐(𝑠) is simply a linear combination of the different contact 

probability profiles. This combination depends on the relative abundances of the 

states in the mixture and on a scale factor necessary to map the bead size into 

genomic distances. The fit of genome-wide Hi-C average pairwise contact data 

as a function of the pairwise genomic separation is done by use of the Least 

Square Method (LSM). We compute the model predicted contact probability of 

a mixture of open and closed states by using the independently derived 

corresponding contact probabilities from the MD simulations of the homo-

polymer chain. Then, we find the composition of the mixture of open and closed 

states that minimizes the distance between the predicted and experimental 𝑃𝑐(𝑠). 

We find that the model can fit the experimental contact probability data over very 

large length scales, from the sub-mega base scale up to the whole chromosome 

length, in both genome-wide averaged data and single chromosomes data 

(Figure 2.6b-c). Furthermore, we use data obtained from different experimental 

techniques (Hi-C, TCC and in-situ Hi-C), and the results are similar. From the 

data fit we obtain the percentages of open and closed state that best describe the 

chromatin in a cell type (averaged over all the chromosomes), or the percentage 

that best describe the chromatin for a fixed chromosome. We find different results 

depending on the cell type: in the human embryonic stem cells, the open state is 

approximately 75%, while in the differentiated cells as IMR90 fibroblast, this 

value is approximately 50% (Figure 2.6d), in agreement with expectations. If we 

consider contact probabilities extracted from data obtained from different 

experimental techniques, the fit gives similar results, with a closed ordered state 

of 40%, but a slightly different balance between the other states. For a fixed cell 
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type, we find a wide variability of these fractions among the different 

chromosomes, as shown in Figure 2.6e for IMR90 cell type. Generally, the 

percentage of open state decreases with the chromosome size, while the closed 

disordered phase increases, even though it represents a very small fraction.  

 

a) We model a chromatin filament as a mixture of differently folded regions, each 

belonging to one of the stable conformational classes. b) Genome-wide average contact 

frequencies across human cell types, obtained from various experimental techniques, can 

be fitted from the sub-Mb to chromosomal scales by such a mixture model. c). Single 

chromosome data (here IMR90 cells) can be similarly explained. d) Different cell types 

have a different chromatin composition (where blue indicates the open state, yellow and 

pink the closed ordered and closed disordered states, respectively), with hESC (orange 

circle) more open than differentiated cells, such as IMR90 (blue circle). e) Within a given 

cell type (here IMR90 cells) distinct chromosomes have also a different composition, 

with chromosome X formed mostly of closed regions, whereas gene rich chromosomes, 

e.g., chr.19, are up to 70% open. (Figure from Chiariello et al. 2016) 

a b

c

d

e

Figure 2.6: Chromatin is a mixture of regions folded in different thermodynamic 

states 



Chapter 2 - Polymer physics explains key features of chromosome 

organization 

 33 

2.5 Chromatin architectural features are reproduced by 

the SBS model 

2.5.1 Block-copolymer model 

Although a simple SBS polymer as the one used in the previous section 

recapitulates the average properties of chromosome folding, more complex, local 

structures arise from Hi-C data (see Section 1.4). To correctly reproduce these 

structures, it is necessary to complicate the polymer chain by introducing more 

types of interaction. Therefore, we now consider a block-copolymer, with two 

types of beads (visually represented in red and green in Figure 2.7), that can 

interact only with its cognate kind of binder (red and green, respectively). 

We begin with a 2-block copolymer where each block is made of 500 beads, one 

red and one green, and the entire polymer is made of 1000 beads in total (Figure 

2.7a). Since we want to reproduce specific genomic structures, we are 

considering scales one order of magnitude lower than the chromosome modeling, 

which are the typical genomic lengths where chromatin is known to be subjected 

to compartmentalization (Lieberman-Aiden et al. 2009). So, here we suppose that 

the region is 10Mb long. To estimate the length scale, we proceed as before and 

we find that the bead has a diameter 𝜎 = 64nm and the time step results to be 

0.003s. The concentrations and interaction energies are sampled so to cover the 

three thermodynamic stable states identified in the homo-polymer study. When 

equilibrium is reached, each block folds in the configurations discussed in the 

previous subsection, and two stable globular domains are formed (Figure 2.7b), 

that can be interpreted as TADs. In fact, these objects correspond to enriched 

interaction squares along the diagonal of the contact matrix, whose calculation 

details are explained in the subsection 2.5.3 (Figure 2.7c). 

In the second block copolymer considered, the distribution of the colors along 

the polymer consists of four consecutive blocks (red-green-red-green, Figure 

2.7d), each block 250 beads long. As before, each block can fold in the stable 

configuration and it forms, at the beginning of the dynamic process, a lower level 
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structure, resembling a TAD sequence. (Figure 2.7d, central matrix). When 

equilibrium is completely reached, the blocks of the same color interact, and the 

result is a hierarchical organization of higher-order structures, which is known to 

be a feature of the mammalian genome (Fraser et al. 2015). In the contact matrix 

(Figure 2.7d, right matrix), such organization is represented by a chessboard-

like pattern. In the framework of our model, such structural features naturally 

emerge by specialization of the involved molecular factors under the laws of 

polymer physics. 

 

a-c) Block-copolymer model made of two types of beads (red and green) interacting 

with two types of binders. At equilibrium, two chromatin domains arise and the contact 

map of such a system shows a TAD-like pattern. (Figure adapted from Barbieri et al. 

2012) d) Dynamics of a block co-polymer model made of four consecutive blocks 

alternating their color (green- red-green-red). The gyration radius of the system 

decreases in time and a hierarchical self-assembly of domains spontaneously occurs. 

(Figure adapted from Chiariello et al. 2016)  

[s]

a b c

d

Figure 2.7: Formation of chromatin domains 
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The self-assembly of domains led to a symmetry breaking mechanism occurring 

in the spatial organization of the loci. Since TAD boundaries have been 

associated to an insulating role in the cell functionality, we consider the effect of 

the domains on the physical distance between pairs of sites having the same 

genomic distance (that is the contour distance along the polymer chain), but 

differently located with respect to the domain itself. In particular we focus on two 

cases where the sites can be symmetrically or asymmetrically located with 

respect to the boundary of the domains (see Figure 2.8 bottom panel). In the 

closed state, we find that the spatial distance between the sites is larger in the 

symmetric case, while in the open state no difference is observed. 

2.5.2 Distance distribution calculation 

To measure the physical distances between two sites in the block co-polymer 

model, we consider two loci A and B, belonging to different blocks (A in the red 

block and B in the green block). In both cases, their contour distance is 𝑑 = 125σ. 

In the symmetric case, they are equally distant from the boundary of the domain, 

while in the asymmetric case the site A is located at distance of 5σ from the 

domain boundary, and consequently the site B is 120σ from the boundary (so it 

is well inside the domain). 

2.5.3 Contact matrices calculation 

To obtain the pairwise contact matrices of the polymer models, we proceed in 

this way. We fix a contact threshold distance kσ, where σ is the length unit, and 

k is a dimensionless constant threshold, which we set to k=3.5. For a given spatial 

conformation of the polymer chain, we consider the distance rij between each 

bead pair i and j, (𝑖 ≠ 𝑗, where i and j are bead indices along the chain). If rij < 

kσ, then we count a contact between the beads i and j. We then compute the 

average of these matrices across the different configurations in the considered 

polymer state. 
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Pairs of sites with the same contour separation (here 125), differently positioned across 

a block boundary (see bottom panel), have the same average physical distances, r, in the 

open phase. Yet, in the closed states, the symmetry is broken by their different position 

relative to the boundary as the two pairs have a different physical distance, as seen from 

the corresponding distributions of r. 

2.6 Multiple contacts landscape 

In this section, we are going to discuss the probability of co-localization events 

of multiple sites, or many-body contact probability, which is a generalization of 

the pairwise contact probability previously defined. We first start looking at the 

probability of triple contact events 𝑃𝑐(𝑠1, 𝑠2) where the three beads are separated 

by different genomic separations 𝑠1 and 𝑠2. Then we compute the frequency of 

observing n>3 sites in physical proximity, and we do this in the three 

thermodynamic states previously identified. We find that in the closed states 

many-body contacts are exponentially more frequent than in the open state, as a 

function of the genomic distance. 

To estimate the average number of many-body contacts involving simultaneous 

interactions of n beads occurring in a given polymer conformation, we count the 

Figure 2.8: Symmetry-breaking mechanism 
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number of beads 𝑚𝑖 that are in contact with the i-th bead within the fixed 

threshold k (here we use as above k=3.5) and the number of possible 

combinations of n simultaneous contacts that contain the i-th bead,( 𝑚𝑖
𝑛−1

). We 

average that number over all the beads in the polymer. As normalization factor, 

we consider the number of total possible many-body contacts of n particles with 

the i-th bead, ( 𝑁
𝑛−1

). In Figure 2.9, we show the value of this frequency as a 

function of the multiplet complexity n, computed in the homopolymer case. 

Although multiple interactions cannot be detected by Hi-C, our model highlights 

that they are likely to be an abundant structural component of chromatin, as is 

emerging from new researches in the field (Beagrie et al. 2017; Olivares-Chauvet 

et al. 2016; Quinodoz et al. 2018). That hints towards an important functional 

role of chromatin domains where multiple regulatory regions (like enhancers) 

can loop simultaneously onto a given target (gene promoter) with a much higher 

probability than in open regions.  

The plot shows the frequency of observing n sites in simultaneous physical contact 

(normalized by the number of possible combinations of n sites) along the SBS homo- 

polymer discussed previously. The inset shows the ratio in the compact-disordered and 

open states. (Figure adapted from Chiariello et al. 2016).

Figure 2.9: The multiple contact profile 
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Chapter 3 - Polymer physics investigation of real 

genomic regions from pairwise contact data 

In the previous chapter, we have seen how the simple homo-polymer SBS model 

is able to recapitulate with a good degree of accuracy the average behaviour of 

the chromosome structure in a wide range of genomic lengths (from the sub-Mb 

scale up to the whole chromosome scale). The introduction of a second type of 

interaction (the red-green model) allowed us to explain other aspects of the 

chromatin architecture and to highlight mechanisms that could possibly have 

important functional roles: the existence of domains, the symmetry-breaking in 

the distance distribution, and the hierarchical structure of the experimental Hi-C 

contact matrices. In this chapter, we generalize our SBS model by introducing a 

multicolour polymer, where each color interact only with its cognate type of 

binder. We will show that, with this generalized model, the 3D folding of real 

genomic regions can be explained. The specialization of the generalized model 

to each of the different cases here presented will be obtained with the application 

of the PRISMR inference method (described in Section 3.1), which aims to infer 

the minimal factors that shape the folding of a chromatin locus and its equilibrium 

3D structure under the laws of physics, without a-priori assumptions. The 

PRISMR algorithm takes as input an experimental contact matrix and gives as 

output the optimal SBS polymer model of the corresponding genomic locus.  A 

brief description of the PRISMR algorithm will be given in Section 3.1. In the 

subsequent sections, we show that, albeit our polymer models are derived from 

pairwise contact matrices, they can be used to derive any further aspect of 

folding, such as the ensemble of its 3D conformations, not directly accessible 

from the interaction data. A first application of PRISMR will be shown in Section 

3.2, where we use our generalized SBS model to investigate the role of the 

folding on enhancer-promoter communication in developing limbs at the Pitx1 

locus (Kragesteen et al. 2018). In Section 3.3 we will presents the results about 
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the modeling of the Sox9 locus, containing a very important gene for the cell 

functionality (Franke et al. 2016). Then, in Section 3.4 we will model the Xist 

locus, which is another very important region (Giorgetti et al. 2014; Nora et al. 

2012), and we will apply the model to predict the effect of a deletion variant. 

Finally, in Section 3.5, the mechanism of enhancer-promoter interaction will be 

further investigated (together with the role of the structural protein CTCF) by a 

recent application of our model to the Shh locus, containing a gene crucial in 

posterior limb development (Paliou et al. 2019). 

 

Most of the material presented in this Chapter, including figures, paragraphs and 

sentences, is adapted or taken literally from the following papers, which I co-

authored: (Chiariello et al. 2016; Kragesteen et al. 2018; Paliou et al. 2019). 

3.1 The PRISMR algorithm 

In the generalized SBS model (Figure 3.1), the different types of interacting 

polymer beads within the chain are identified by different colors, while ‘gray’ 

marks inert beads in our notation, i.e., sites that do no interact with any binder 

except for the excluded volume effects. The number of different colors allowed 

in the model will be denoted by n. A given SBS polymer is then completely 

characterized by the number of the different binding sites and by their 

arrangement along the polymer chain. To determine the configuration of the 

system related to a real genomic region, here we use the PRISMR (Polymer-

based Recursive Statistical Inference Method) algorithm, which aims to find the 

minimal number and types (“colors”) of binding sites in a SBS polymer chain, 

and their position along the chain, that best reproduce the input contact matrix of 

a given chromosomal locus (Figure 3.1). Although here we focus on the SBS 

polymer model to describe a chromatin filament, the PRISMR algorithm can be 

easily generalized to different models. A detailed description of PRIMSR can be 
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found in (Bianco et al. 2018), here we just summarize the key points of the 

algorithm.  

 

An SBS polymer model of a genomic region is composed by L beads, depending 

on the resolution of the input contact matrix of the region, such as a Hi-C pairwise 

matrix. For instance, a 10Mb locus at 10kb resolution will be partitioned in 

L=1000 bins. Furthermore, we split each bin in r different sub-units, considering 

that a single DNA bin along the locus could include many binding sites and could 

interact with different molecular factors. In this way, we can resolve finer details 

such as the different binding sites located within a bin. The minimal value of r 

required to explain the input data is one of the outputs of PRISMR. However, in 

the practical cases discussed in this chapter, the number of binding sites within a 

bead is typically smaller than the total number of different types of binders, hence 

r = n is a safe assumption and will be adopted in the description of the algorithm.  

 

To find the SBS model which, at equilibrium, best describes the input contact 

matrix, PRISMR minimizes a given cost function, H, which includes two terms 

accounting for two main requirements, the necessity to fit well the input data and, 

at the same time, the attempt to avoid overfitting. The first term, H0, considers 

the distance between the input contact matrix, Cexp(i,j), from the one predicted by 

polymer physics thermodynamics, C(i,j). H0 is normalized to the average contact 

frequency and to the total number of sites. A constant scale factor F, whose value 

is returned by the optimization algorithm itself, is used to map the total counts in 

experimental matrix data onto the derived physical contact frequencies of loci in 

our 3D models. The second part of the cost function is a Bayesian term (a 

chemical potential in Statistical Mechanics) which penalizes the addition of new 

interacting beads, and it is indicated with H. It is proportional to the total number 

of colored sites of the polymer through a parameter λ and it is normalized to the 

total number of beads of the polymer chain, N. 
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For a given value of the parameters n and λ, PRISMR samples the huge space of 

all allowed color arrangements of the chain (which has (n+1)N elements) in order 

to find the one which minimizes the above cost function. To this aim we employ 

a standard Simulated Annealing (SA) iterative procedure (Kirkpatrick, Gelatt, 

and Vecchi 1983; Salamon, Sibani, and Frost 2002). Schematically, each SA step 

consists in randomly changing the color of a polymer bead, compute the average 

contact matrix of the new polymer, evaluate the new cost function, compare it 

with the cost function in the previous step and accept or reject the color change 

on the basis of the Metropolis algorithm. These steps are iteratively repeated until 

convergence (Bianco et al. 2018). The procedure is repeated to search for the 

minimal allowed value of n and then for the maximum of λ required to fit the 

data within a predefined accuracy. The best color arrangement is the final output 

of the algorithm, returning the minimal required number of binding domains and 

their best positioning along the SBS polymer to explain the input data within a 

given accuracy. 

 

The calculation of C(i,j) is a computationally demanding step of PRISMR and 

can be achieved, for instance, either by Molecular Dynamics computer 

simulations, which may require huge computational efforts, or by enhanced 

folding algorithms (see, e.g., MELD MacCallum, Perez, and Dill 2015), which 

albeit approximate can be much faster. Here, to speed up computation and to 

make our procedure feasible over genomic scales, we considered an 

approximation typical of mean-field methods of Statistical Mechanics. In our 

approach, the average contact frequency over the thermodynamics ensemble of 

allowed 3D conformations of the polymer, is estimated from the average contact 

frequency between two sites at the same genomic separation in a homopolymer 

SBS model of N beads (for a detailed description see Bianco et al. 2018). The 

advantage of the mean-field approximation is that the contact matrices can be 

calculated in an easy way and used throughout the SA Monte Carlo procedure to 
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make computation times feasible. Next, we can run MD simulations of the 

optimal model found by the SA procedure to derive its contact matrix without 

any approximation. 

a) The generalized SBS model, with the different types of binding sites (and their 

cognate bridging molecules) sowed in different colors. b) PRISMR samples the possible 

states of a given SBS polymer model to find the one which best describes a input contact 

matrix. Figure adapted from (Bianco et al. 2018) 

3.2 Modeling of the Pitx1 locus in mouse limb cells 

As discussed in the first chapter, the mechanism of gene regulation involves 

enhancers, which are short stretches of DNA that drive gene expression over long 

distances by physically contacting their target gene promoter. In this section, we 

employ the polymer physics models just described above to dissect the basic 

mechanisms of enhancer-promoter interaction and their role in gene regulation at 

the mouse Pitx1 locus, a gene which is critically required for establishing the 

identity and differentiation (DeLaurier, Schweitzer, and Logan 2006) of 

hindlimbs (posterior limb). Specifically, during limb development, the Pitx1 

gene is only expressed in hindlimbs, but not expressed in forelimbs (anterior 

Generalized SBS model PRISMR method
a b

Figure 3.1: The PRISMR method 
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limb). However, we demonstrate that Pitx1 is regulated by an enhancer (named 

Pen) which displays activity in both tissues. The restriction of this activity to the 

hindlimb is associated with tissue-specific differences in three-dimensional 

chromatin structure enabling the Pen enhancer to control Pitx1 transcription in 

hindlimbs only. This study has been developed in collaboration with Prof. Stefan 

Mundlos’ research group at Max Plank Institute, Berlin, who performed all the 

experimental part (Kragesteen et al. 2018). 

3.2.1 The regulatory landscape of the Pitx1 gene 

In the mouse genome, the Pitx1 gene is located on the chromosome 13 (chr13). 

To determine the position of regulatory elements controlling Pitx1 in hindlimbs, 

we examined the Capture-C (a 4C technique) interaction profiles and chromatin 

immunoprecipitation sequencing (ChIP-seq) for the enhancer mark H3K27ac 

(see Section 1.2) in hindlimbs, at mouse embryonic day (E) 10.5 (Figure 3.2). 

The chromatin interaction profile shows that the Pitx1 regulatory landscape 

extends over 400kb and forms several chromatin loops corresponding to 

H3K27ac peaks, termed regulatory anchors (RAs) 1–5. In the next, we will 

specifically focus our analysis on RA2, the Pitx1 promoter, and RA5, which 

marks Pen (pan-limb enhancer), an enhancer showing activity in both forelimb 

and hindlimb buds. 

3.2.2 Polymer modeling of Capture Hi-C (CHi-C) data highlights 

a switch in 3D chromatin architecture 

In order to characterize 3D chromatin folding with a higher definition, we 

analysed CHi-C interaction maps encompassing a 3Mb long region around Pitx1 

in mouse forelimbs and hindlimbs at E11.5. We found that the locus is divided 

into subdomains separated by the previously characterized regulatory anchors 

and that multiple interactions occur between the various RAs (Figure 3.3c, d top 

triangles). 
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The upper track shows the Capture-C data in E10.5 hindlimbs using the Pitx1 promoter 

as the viewpoint demonstrating chromatin interactions with regulatory anchors (RA1–

RA5). The bottom track displays H3K27ac ChIP-seq enrichment profile in E10.5 

hindlimbs. (Figure adapted from Kragesteen et al. 2018) 

The Pitx1 regulatory landscape displays extensive differences between the 

tissues, as highlighted by the subtraction of forelimb and hindlimb CHi-C contact 

maps (Figure 3.4a). On the one hand, we could recapitulate the forelimb-specific 

repressive interaction between Pitx1 and the functionally unrelated Neurog1 gene 

(blue arrow in Figure 3.4a), while, on the other hand, hindlimb-specific 

interactions between Pitx1 and RA1, RA3, and Pen occur (red arrows in Figure 

3.4a). To understand how these differences are translated into the locus 3D 

conformation, we employed our polymer physics approach. 

 

Based on the CHi-C interaction data at 10kb resolution, our PRISMR inference 

procedure gives a total of n=14 different types of binding sites, whose position 

and abundance along the genome is showed by the histograms in Figure 3.3a, b, 

where a different color is associated with each type of binding site. The derived 

ensembles of polymer structures allowed us to visualize the conformational 

changes in the 3D space and to perform quantitative measures, such as physical 

distances among regions of interest (Figure 3.6), helping to provide a clearer 

biological interpretation. As shown in Figure 3.3e, in forelimbs the locus 

segregates into two chromatin hubs, containing (1) Pitx1, RA3 and Neurog1 

(blue, pink and red spheres, respectively) and (2) Pen and RA4 (dark green and 

light green spheres, respectively). This spatial conformation is such that Pen and 

Figure 3.2: Pitx1 regulatory landscape includes a pan-limb region 
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Pitx1 are separated from each other and the repressed gene Neurog1 is close to 

Pitx1, so preventing its activation. Conversely, the hindlimb 3D structure is 

partitioned in three major hubs (Figure 3.3f), one containing RA1 only, another 

containing Pitx1 and RA3, and the last one RA4, Pen and Neurog1. Here, the 

physical proximity between Pitx1 and its enhancer Pen ensures a correct 

regulation of the gene. Therefore, chromatin spatial configuration restricts the 

activity of Pen to the hindlimb tissue by separating the enhancer from its 

promoter in forelimbs. 

a-b) Histograms displaying the position and abundance of the 14 different types of 

binding sites along the genome, in forelimbs (top) and hindlimbs (bottom) as derived 

from the E11.5 CHi-C data. Each binding site is displayed with a different colour. c-d) 

CHi-C (above) and model (below) derived contacts maps display high similarities. The 

Pearson correlation, r, and the distance corrected Pearson correlation, r´, between the 

CHi-C and SBS matrices are r=0.98 and r'=0.84 in forelimb, r=0.98 and r'=0.82 in 

hindlimb. e-f) A representative 3D-structure of the locus in forelimb (top) and hindlimb 

(bottom), selected from the ensemble of ‘single-cell’ model derived conformations. 

(Figure adapted from Kragesteen et al. 2018) 
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a) CHi-C subtraction between forelimb and hindlimb Wild Type (WT). Chromatin 

interactions more prevalent in forelimb or hindlimb tissues are shown in blue or red, 

respectively. The interaction between Pitx1 and Neurog1 that is more prevalent in 

forelimbs is indicated with a blue arrow. Chromatin interactions between Pitx1 and Pen 

that are more prevalent in hindlimbs are indicated with red arrows. b) Subtraction maps 

of Pitx1inv1 forelimbs and WT hindlimbs. Note the high similarity of 3D chromatin 

structure between both tissues in comparison to WT animals showed in panel a. (Figure 

adapted from Kragesteen et al. 2018) 

3.2.3 The forelimb Inv1 inversion effects are well captured by 

our polymer modeling 

One of the major differences between forelimbs and hindlimbs is the interaction 

of Pitx1 with the repressed gene Neurog1. To investigate if the inactive forelimb 

configuration can be converted to the active hindlimb state and induce Pitx1 

transcription, we perturbed the regulatory landscape of the locus by inverting, in 

the forelimb buds, a 113kb fragment containing Pen and RA4 (Figure 3.5b, 

horizontal bar). In contrast to the healthy Wild Type (WT) tissues, the chromatin 

organization in the forelimb Inv1 locus, indicated as Pitx1Inv1, was nearly 

identical to the WT hindlimbs, as showed in the CHi-C subtraction matrices of 

Figure 3.4b. Subtraction between WT and Pitx1Inv1 virtual Capture-C (obtained 

by considering the column in the contact matrix corresponding to the considered 

Neurog1PenRA4RA3Pitx1RA1

a

b

Figure 3.4: Inv1 inversion induces a spatial reorganization in forelimb 
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viewpoint) from the Pitx1 viewpoint showed several hallmarks of WT hindlimb 

architecture in Pitx1Inv1 forelimbs: a gain of interaction between Pitx1, RA3, and 

Pen, as well as a diminished interaction with Neurog1 (not shown here, see 

Kragesteen et al. 2018). Interestingly, 3D modeling of Pitx1Inv1 showed a 

hindlimb-like spatial conformation, with the formation of three chromatin hubs 

and a closer proximity between Pen and Pitx1 compared to forelimb wild type 

(Figure 3.5c). Because of this increased proximity, the Pitx1 gene in the Pitx1Inv1 

tissue displayed a 44-fold increase in expression and limb malformation was 

detected on these mice, that displayed a partial arm-to-leg transformation. As a 

control, a slightly smaller genomic region has been inverted (99kb, indicated by 

Pitx1Inv2) which leaves Pen at its original location. Pitx1Inv2 embryos had a normal 

skeleton (not shown here, see Kragesteen et al. 2018) and did not show ectopic 

expression, thus confirming the direct effect of the Pen enhancer and its role on 

the mis-expression of Pitx1 in Pitx1Inv1. 

 

a) Histograms displaying the position and abundance of the 14 different types of binding 

sites along the genome in Pitx1Inv1 forelimbs. b) Comparison of CHi-C (above) against 

SBS model (below) derived contacts maps in Pitx1Inv1 forelimbs show high similarities. 

The Pearson correlation, r, and the genomic distance corrected Pearson correlation, r´, 

between the matrices are r=0.97 and r´=0.74. c) Representative 3D structure of the locus 

in Pitx1Inv1 forelimbs, selected from the ensemble of ‘single-cell’ model derived 

conformations. Note the similarity between this conformation and the one from WT 

hindlimbs in Figure 3.3 panel f. (Figure adapted from Kragesteen et al. 2018) 
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Figure 3.5: The SBS model correctly describes the architectural changes caused by 
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Summarizing, the application of the SBS model to the Pitx1 gene region allowed 

us to translate the pairwise information in the ensemble of 3D conformations of 

the region under study, obtaining significant insights into the spatial organization 

of the locus, as the hindlimb-specific three hubs and forelimb-specific two hubs 

organization, not directly accessible from the experimental contact data. 

Additionally, physical distances among any region of the locus can be computed 

from the ensemble of polymers, confirming the greater proximity between Pen 

and Pitx1 in hindlimbs and between Neurog1 and Pitx1 in forelimbs with respect 

to the other tissue. 

3.2.4 Simulation details of the Pitx1 polymer model 

We applied our SBS model in forelimbs, hindlimbs, and Inv1-forelimbs to a 

broad genomic sequence encompassing the mouse Pitx1 regulatory landscape to 

avoid boundary effects and focused on chr13:55,600,000–56,650,000 (mm9). To 

derive an ensemble of the model equilibrium 3D conformations we implemented 

Molecular Dynamics (MD) computer simulations (see Section 2.2). Specifically, 

we used a polymer chain of N=1785 beads, so the elementary bead of the 

polymer is approximately 17nm. The molar concentration of binders is c = 135 

nmol/l and the scale of the bead-binder interaction energy is Eint=1.0 kBT and 

Eint=8.1 kBT, corresponding to the coil and globule conformational state of the 

polymer, respectively. The dimensionless friction coefficient is set to ζ=0.5 

(Chiariello et al. 2016; Kremer and Grest 1990). The MD integration time step is 

Δt=0.012 (Rosa and Everaers 2008) and we let the system evolve up to 5x108 

time steps, to reach stationarity. An ensemble of at least 102 different equilibrium 

configurations is derived by MD for each of the considered case.  

 

To test our models against the experiments, we compared the CHi-C data with 

the average contact matrix obtained from the ensemble of 3D model 
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conformations derived via MD. The contact maps were computed following the 

approach described in Section 2.5.3 using, as parameter for the interaction 

threshold k=8. To take into account the effects of cell population heterogeneity, 

that is, the possibility that the locus could be in different states (coil/globule) in 

different cells, we considered the contact matrix of the coil/globule mixture 

which maximized the Pearson’s correlation coefficient, r, with the CHi-C data 

(Bianco et al. 2018). An 80% (coil) – 20% (globule) mixture well describes all 

cases. To account for the effects of genomic proximity beyond Pearson’s r 

between model-predicted and CHi-C contact matrices, we also computed the 

distance-corrected Pearson’s correlation coefficient r´, that is the correlation 

between the two matrices where the average contact frequency at each genomic 

distance has been previously subtracted. The MD model versus the CHi-C 

Pearson’s r is 0.98 in WT forelimb, 0.98 in WT hindlimb, and 0.97 in the Inv1-

forelimb (Figure 3.3c, d and Figure 3.5b); the distance-corrected correlation r´ 

is 0.84 in WT forelimb, 0.82 in WT hindlimb, and 0.74 in the Inv1-forelimb (here, 

strong outliers above the 90th percentile were excluded).  

 

Finally, to capture the structural differences between forelimb and hindlimb, we 

measured the physical distances among all the regions of interest. The relative 

distance changes shown in Figure 3.6 represent to the ratio (dFL- dHL)/dFL of the 

distances in forelimbs and hindlimbs (respectively dFL and dHL) among its key 

regulatory regions averaged over the discussed state mixture; this confirms the 

above described scenario. 
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Heatmap showing relative changes in physical distances between forelimb and hindlimb 

3D structure as measured by the polymer model. Blue squares indicate that the 

corresponding regulatory elements are closer in forelimbs, while red squares indicate 

that they are closer in hindlimbs. (Figure adapted from Kragesteen et al. 2018) 

3.3 Polymer physics investigation of the Sox9 genomic 

region in mouse embryonic stem cells (mESC) 

To test the general applicability of the SBS model and the PRISMR method in 

reconstruct and visualize the 3D architecture of real loci, we modelled another 

important genomic region containing Sox9, a gene which is crucial in sex 

development and whose mutations are linked to severe congenital diseases 

(Franke et al. 2016). In particular, we focused on the 6Mb long region 

chr11:109000000-115000000 (mm9), which includes both gene rich and gene 

desert regions, as shown in Figure 3.7a. The Hi-C data set used to infer the model 

comes from mouse embryonic stem cell (mESC) line at 40kb resolution 

(published in Dixon et al. 2012) and is normalized as described in Yaffe and 

Tanay 2011 (Figure 3.7c). The optimal number of binding domains (colors) 

returned by our inference procedure PRISMR is, in this case, 𝑛 = 15 and the 
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polymer is made of N=2250 beads. So, the elementary bead of the polymer has a 

genomic content of L/N=2.67Kb and the size of the bead is 26nm, as follows 

from the calculation described in Section 2.2. The parameters used in the MD 

simulations are the same used for the modeling of the Pitx1 locus (see subsection 

3.2.4). 

 

As depicted in Figure 3.7a (bottom panel), the binding domains tend to overlap 

with the different TADs existing in the locus, but they also overlap with each 

other, producing interactions between TADs that result in the hierarchical 

structure (metaTADs) visible in the original experimental matrix. Once obtained 

the optimal arrangement of the binding sites along the polymer, we performed 

MD simulations to reconstruct the 3D structure of the region. Then we computed, 

from the ensemble of configurations, the model-derived contact maps and 

compare it with the experimental data. As in the previously discussed Pitx1 case, 

we considered separately the open phase (i.e. the SAW conformational class) and 

the closed phase (i.e. the equilibrium phase after the complete folding of the 

polymer) and we selected the open-closed mixture that maximizes the Pearson’s 

correlation coefficient between model inferred and Hi-C data. The contact matrix 

returned by our model is very similar to the experimental one, as the value of 

their Pearson’s correlation coefficient r=0.95 (Figure 3.7c). Figure 3.7b shows 

a single typical configuration of the locus in the closed state, with the relative 

positioning of Sox9 and other important genes, which are Kcnj2 and Slc39a11. 

Interesting features can be obtained by the conformational ensemble. For 

instance, we can consider the transcription starting sites (TSS) of the three nearby 

genes in the locus and compute their physical distances. We found that the Sox9 

and Kcnj2 TSS, having a genomic separation 𝑠 =1.72Mb, have an average 

physical distance 𝑑 =1190 nm, while the Sox9 and Slc39a11, having a genomic 

separation of 𝑠 = 0.46Mb (four times smaller) have a spatial distance 𝑑 = 590 

nm, so the two pairs are proportionally closer, as they belong to consecutive 
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regional areas. The Sox9 locus is marked by many-body contacts which are 

exponentially more abundant than expected in a randomly folded conformation 

(Figure 3.7d, error bars within symbol size). The self-assembly of the locus 

spatial structure starts from a totally random SAW initial state and proceeds 

hierarchically, passing through early local domains folding into larger and larger 

domains that cover the whole locus (Figure 3.7e). 

a) Top panel: the considered region in mESC cells, with some important genes marked. 

Bottom panel: distribution of the binding domains (different colors) of the polymer 

model best explaining the Hi-C contact data; their abundance is represented as a 

histogram over the genomic sequence. The bar at the bottom highlights three main 

regional areas to help 3D visualization. b) A snapshot of the Sox9 locus in its closed state 

as derived by the polymer model, with the position of some key genes highlighted. c) 

The model derived pairwise contact frequency matrix (bottom) has a 95% Pearson 

correlation with Hi-C experimental data (top). d) Many-body contacts of n sites result 

to be exponentially more abundant than in random SAW conformations. This could help 

the simultaneous colocalization of multiple functional regulatory regions. e) The Sox9 

genomic region dynamics starts from an initially open conformation and self-assemble 

hierarchically in higher-order structures in approximatively 20s. f) Heat map showing 

the Pearson’s correlations between the binding domains and some chromatin features. 

Single colours correlate with a combination of different marks. (Figure adapted from 

Chiariello et al. 2016) 
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Next, to investigate the molecular nature of the inferred binding domains, we 

compared the information of their positioning with epigenetic data available in 

mESC (see next chapter for an accurate description of the epigenetic data 

analysis). The heatmap in Figure 3.7f shows the correlation coefficient between 

the genomic positions of the binding domains and a number of published 

chromatin features, such as histone modifications and transcription factors, from 

the ENCODE database (Dunham et al. 2012). We find that single colours do not 

correspond to single molecular factors, as each usually correlates with a 

combination of different marks. Many binding domains also correlate with 

CTCF, known to play an important role in chromatin architecture through the 

formation of chromatin loops (Fudenberg et al. 2016; Nora et al. 2017; Sanborn 

et al. 2015). However, they also correlate with other, different groups of 

ENCODE marks, returning the view that additional factors can aid, specify or 

constrain CTCF linked interactions. Few of the binding domains (e.g., type 8 and 

9, Figure 3.7a) do not correlate with the considered epigenetic features, and 

result to be associated with the central, gene poor, region of the locus. 

3.4 Predicting the effect of genomic mutations 

In the previous two sections we have seen how the application of the SBS 

polymer model to real genomic loci is an important tool to study the chromosome 

spatial organization, both in normal and mutated genomes. In this section we will 

show how it is possible, with our model, to predict the effect on the spatial 

organization of a locus generated by a mutation along the genomic sequence. To 

this aim, we considered the Xist genomic region (chrX:100298000-101373000), 

since experimental data are available (Nora et al. 2012) for the Wild Type (WT) 

and for a deletion variant (indicated as ΔXTX deletion), so we can directly test 

the results of our simulated predictions with a completely independent dataset. 
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Precisely, we analysed a 5C data set from mouse ES cell line for the WT (Figure 

3.8b, top triangle), and 5C data from XO mouse ES cell line for the deletion 

ΔXTX (Figure 3.8c, top triangle), both mapped at 20kb resolution. We studied a 

region 1.3Mb long around the Xist gene (Figure 3.8a). Starting from the WT, we 

used PRISMR to obtain the number of different colors (10 in this case) and their 

distribution along the polymer (Figure 3.8a) best describing the input data. Next, 

we implemented in silico the ΔXTX deletion on the WT polymer model and 

performed MD simulations starting from a set of completely independent initial 

configurations.  

a) Top panel: the Xist locus in mESC-E14 with some gene highlighted. Bottom panel: 

representation of the 10 binding domains inferred by the polymer modeling (one domain 

per histogram) and, below, the color scheme used in the polymer representation 

reflecting the abundance of the colors in the considered region. To help visualization, 

the ΔXTX deletion is colored in cyan and the flanking regions in yellow. b) The model 

inferred contact matrix (bottom) has a Pearson’s correlation 0.96 with 5C experimental 

data (top). c) The contact matrix predicted by the WT model after the implementation of 

the ΔXTX deletion (bottom) reproduces with a high degree of similarity (correlation 

91%) the ectopic interactions (magenta box). d) A snapshot of the Xist locus in its closed 

state. e) A snapshot of the predicted ΔXTX 3D structure where the yellow regions come 

closer in space after the deletion of the cyan segment of panel d. (Figure adapted from 

Chiariello et al. 2016) 

a b c

d e

Figure 3.8: The SBS model predicts the effect of a deletion at the Xist mouse locus 
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As shown inFigure 3.8c (bottom triangle), the predicted matrix has a pattern of 

ectopic interactions compared to the WT case strikingly similar to the one 

detected in the experimental ΔXTX contact data (Figure 3.8c, top triangle), 

although the deletion was a very small change of the polymer model (N=540 

beads in the WT and N=510 beads for ΔXTX). Interestingly, a good agreement 

between the experimental contact matrix and the map computed from the 

simulations was obtained in both WT and mutant cases; the values of the 

Pearson’s correlation coefficient between model-derived and experimental 

matrices are r=0.96 (WT) and r=0.91 (ΔXTX). The inferred 3D structures of the 

locus allow us to visualize the effect of the deletion on its spatial organization. 

As we can see from the structure in Figure 3.8d-e, the yellow regions, close to 

the deletion (cyan part), are spatially repositioned with respect to each other, and 

contribute to form the ectopic contact between regions sharing the same binding 

sites. 

3.5 Preformed topology at the Shh murine locus 

In this last section, the mechanism of enhancer-promoter communication will be 

further investigated by a polymer physics SBS model of the Shh genomic locus 

in mouse limb buds, used as testbed. More precisely, the preformed interaction 

between the Shh gene and its limb-specific unique enhancer ZRS will be 

perturbed by using targeted genetic disruption of specific CTCF sites, known to 

be a crucial component of genome architecture (Fudenberg et al. 2016; Nora et 

al. 2017; Sanborn et al. 2015). The present study has been developed in 

collaboration with Prof. Stefan Mundlos’ research group at Max Plank Institute, 

Berlin, who performed all the experimental part (Paliou et al. 2019). 
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3.5.1 Shh gene is regulated from a tissue-specific, unique 

enhancer 

The Shh gene is expressed in the posterior part of the developing limb, within the 

zone of polarizing activity. This highly specific expression pattern is critical to 

ensure the development of limb extremities. In the limb bud, Shh is regulated by 

a single enhancer, the ZRS, the deletion of which results in a complete Shh loss 

of function in the limb, leading to digit aplasia (Sagai et al. 2005). The ZRS is 

located almost 1Mb away from the Shh promoter (Figure 3.9a), but despite this 

large genomic separation, FISH experiments have demonstrated complete 

colocalization of the Shh promoter and the ZRS in posterior limb buds, where Shh 

is expressed. Moreover, in contradiction to many enhancer–promoter interactions 

that are tissue- and time-specific, the two elements are found in close proximity 

even when inactive, suggesting a preformed mode of interaction (Amano et al. 

2009; Williamson et al. 2016). In the limb buds, three major CTCF binding 

events occur on either side of the ZRS, which we termed i4 (intron 4), i5, and i9 

(Figure 3.9a) and could account for the preformed interaction between the ZRS 

and Shh. However, how this preformed topology is established or how it relates 

to the expression of Shh in developing limb buds remains unclear. 

3.5.2 Modeling of the Shh locus  

To shed light on the mechanism regulating the Shh-ZRS interaction, we modeled 

the 3D architecture of the Shh locus by using CHi-C data produced in the E10.5 

limb buds in two different cases: Wild Type (WT) and ΔCTCF i4:i5, where a 

homozygous deletions specifically targeting the CTCF binding sites i4 and i5 

was performed. Precisely, we modeled the genomic region chr5:27,800,001-

30,600,000 (mm9) encompassing the mouse Shh gene, in both WT and ΔCTCF 

i4:i5. Based on the CHi-C interaction data at 10kb resolution our PRISMR 

procedure returns a polymer model made of 12 different types of binding 

domains for each case, whose distribution along the genomic sequence is shown 
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in Figure 3.9d-e. In order to obtain an ensemble of 3D single-molecule 

conformations of the studied loci, we employed a polymer chain of N=3,360 

beads and ran MD simulations starting from initial self- avoiding walk 

configurations (at least 102 independent simulations in each case). Then, we let 

the polymer evolve up to 108 timesteps to reach stationarity, using the interaction 

potentials described previously. A comparison between the experimental (Figure 

3.9b-c top triangles) and the model obtained equilibrium contact matrices 

(Figure 3.9b-c bottom triangles) shows that the model well recapitulates the 

experimental contacts pattern, as also illustrated by the values of the Pearson’s 

correlation coefficient, r, that equals to 0.97 in both cases, and by the value of the 

distance-corrected Pearson’s correlation coefficient, r´ (see subsection 3.2.4 for 

a description of r´), that equals to 0.87 in the WT and 0.86 in ΔCTCF i4:i5 model. 

The contact matrices of Figure 3.9b show a strong contact between Shh and the 

ZRS in WT limb. In our model this is explained by the presence of two peaks in 

the 8th binding domain (Figure 3.9d) in correspondence of the genomic location 

of the two elements (not present in the ΔCTCF i4:i5 binding sites distribution). 

Although the genomic separation between Shh and ZRS is greater than the one 

between the Mnx1 gene and ZRS, Shh and the ZRS are found in spatially close 

proximity and separated from Mnx1, as visualized in our 3D polymer model of 

Figure 3.10a, which illustrates a representative conformation of the locus. In 

contrast, in ΔCTCF i4:i5 mutant limb buds, Mnx1 is found closer to both ZRS 

and Shh (Figure 3.10b), whose mutual distance is increased as further confirmed 

by a shift in the distribution of distances across all of the polymer models derived 

from WT and mutant limb buds (Figure 3.10c). Figure 3.10d shows the relative 

distance changes among Shh and its regulatory regions, computed as (dWT – 

di4i5)/dWT (dWT and di4i5 being the average distances among the highlighted region 

in limb WT and ΔCTCF i4:i5, respectively). As a consequence of the increased 

Shh–ZRS distance, we detected, in ΔCTCF i4:i5 limb buds, a 51% loss of Shh 

expression, which, however, is still active and indeed no limb malformation were 

detected in the animals bearing the ΔCTCF i4:i5 mutation. This indicates that, in 
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the absence of the CTCF-driven chromatin interaction, Shh and the ZRS can still 

communicate in the 3D space of the nucleus, probably via an alternative 

mechanism such as molecular bridging of phase separation. 

a) CTCF ChIP-seq enrichment in WT E10.5 limb buds at the Shh locus. Note the i4, i5, 

and i9 CTCF binding sites around the ZRS. b) Contact maps from CHi-C (above) and 

SBS model (below) in the limb WT have a Pearson correlation, r, and the distance-

corrected Pearson correlation, r’, respectively equal to r = 0.97, r´= 0.87. c) Contact maps 

from CHi-C (above) and SBS model (below) in the limb ΔCTCF i4:i5 have a Pearson 

correlation, r, and the distance-corrected Pearson correlation, r´, respectively equal to r 

= 0.97, r´= 0.86. d-e) Distribution of the twelve binding domains (different colors) of 

the polymer model best explaining the experimental contact data in WT and ΔCTCF 

i4:i5 (respectively); their abundance is represented as a histogram over the genomic 

sequence. (Figure adapted from Paliou et al. 2019) 
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a) Representative 3D structure of the locus in WT limb buds. Note the proximity 

between Shh and ZRS and their distance from the Mnx1 gene. b) Representative 3D 

structure of the locus in ΔCTCF i4:i5 limb buds. Note the changes in proximity between 

Shh and ZRS and between Shh and Mnx1. c) Frequency plot of the distance distribution 

between Shh and the ZRS in WT and ΔCTCF i4:i5 limb buds. Note the increase in 

relative distance in the mutant limbs. P-value was calculated by Mann-Whitney test. d) 

Heatmap showing th relative distance changes among the three elements Shh, ZRS and 

Mnx1 in the limb WT and ΔCTCF i4:i5, averaged over the single-molecule population 

from the polymer modeling. (Figure adapted from Paliou et al. 2019)

Figure 3.10: 3D structure and physical distance changes in the Shh locus 
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Chapter 4 - Genome-wide analysis of pairwise 

chromatin contacts 

In the previous Chapter 3, we have introduced and applied in some interesting 

cases the machine learning based PRISMR method, a powerful tool to describe 

the folding of chromosome loci and reconstruct their detailed 3D structure. That 

is achieved by use of the SBS polymer model (Chapter 2) together with 

information obtained from Hi-C experiments (Chapter 1). In this final chapter, 

we present the first genome-wide application of the algorithm. We will use 

PRISMR to infer, from just Hi-C data, the minimal polymer model best 

explaining the contact patterns across the nineteen somatic chromosomes of the 

mouse embryonic stem cell genome. Precisely, we will find the specific location 

and combination of the distinct binding sites whereby DNA contacts are 

spontaneously established, i.e. the molecular code underlying the 3D architecture 

of chromosomes. The inferred polymer model describes Hi-C data across mouse 

chromosomes with high accuracy, showing that it is sufficient to make sense of 

a large fraction of contact patterns (Section 4.1). In Section 4.2 we will study the 

robustness and the structural feature of the inferred binding sites. Next, in Section 

4.3 we will investigate their molecular nature by showing that our domains can 

be used to bring together independently derived information on architecture and 

epigenetics, e.g., by crossing their genomic position with ENCODE databases. 

The different binding domains fall in similarity classes based on epigenetics, well 

matching functional chromatin states derived in linear epigenetic segmentation 

studies such as active, poised and repressed states. However, we discover that 

they have an overlapping, combinatorial genomic distribution at the current 

resolution of Hi-C experiments, lacking in linear segmentation studies, which is 

shown to be required to explain Hi-C contacts with high accuracy genome-wide 

(Section 4.4). The results presented in the last chapter have not been published 

yet and represent one of the current research projects of the group. 
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4.1 The inferred binding domains explain Hi-C data 

genome-wide 

To dissect the molecular mechanisms that contribute to chromatin folding at large 

scales, we used our previously described (see Section 3.1) machine learning 

procedure PRISMR over the nineteen somatic chromosomes of the mouse 

genome, obtaining the SBS polymers from the experimental data set. Precisely, 

we computed, for each chromosome independently, the distribution of the 

binding sites along the polymer chain best explaining the contact matrix of each 

whole chromosome, given as input to PRISMR. We employed, as experimental 

dataset, published Hi-C data (Dixon et al. 2012) from mouse embryonic stem cell 

(mESC) at 40kb resolution and normalized according to the method described in 

(Yaffe and Tanay 2011). The optimal value of the parameters of the algorithm 

(i.e. the minimal number of colors n, the number of beads per bin r, and the 

Bayesian factor λ used to avoid the overfitting) has been estimated by repeating 

the simulated annealing procedure many times starting from different initial 

conditions and different values of n, r, and λ and selecting the values required to 

fit the data within a predefined accuracy. For the parameter’s evaluation, we used 

as input the contact matrix of the chromosome eleven (chr11), a medium-sized 

chromosome, and obtained n=150, r=30, and λ=1. The same values of the 

parameters have been used to run PRISMR for all the other chromosomes.  

 

To check whether the model can explain Hi-C data genome-wide, we compared 

the PRISMR-derived SBS contact matrices to the original Hi-C data (Figure 

4.1a-b). The global pattern obtained by our model is highly correlated with the 

experimental one as quantified by the comparatively high values of the Pearson’s 

(r), distance-corrected Pearson’s (r’) and stratum-adjusted (SCC) correlation 

coefficients averaged over the different chromosomes, respectively equal to r =

0.95, r’= 0.60, and SCC = 0.80 (see Subsection 4.1.1 for the details on the 

calculation of the similarity measures). 
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The PRISMR method is highly generalizable across different experiment and 

data resolution. To test that, we also applied our method to a recent high 

resolution (5kb), mESC Hi-C data set (Bonev et al. 2017). As the task is 

computationally demanding, we only considered the chromosome 19 and used 

the same parameters discussed above, obtaining correlations values comparable 

to those reported above for the 40 kb data (r = 0.95, r’ = 0.51, and SCC = 0.74, 

see Figure 4.2a). Additionally, we modeled at 5kb resolution a specific genomic 

region around the Sox9 gene (chr11:109140000-115140000, mm10) and, in this 

case, we further evaluated the similarity between experiment and model by 

calling loops in both matrices and obtaining that most of the experimental loops 

were correctly captured in the model (Figure 4.2b). 

 

Taken together, the high correlations found between the SBS model and Hi-C 

contact data support the view that transcription factor (TF) mediated interactions 

between the inferred, different sets of binding sites can explain an important 

component of the molecular mechanisms shaping chromosome architecture. The 

binding domains inferred genome-wide by PRISMR identify the system 

architectural code as they contain key information required for TFs to 

spontaneously fold chromatin in its 3D structure through just the basic laws of 

physics. 
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a) Contact maps across chromosomes from the PRISMR inferred SBS model (upper 

triangle) and from Dixon et al. 2012 Hi-C data (lower triangle). Note the high similarity 

between the model and experimental contact patterns. b) Pearson’s (r), distance-

corrected Pearson’s (r’), and stratum adjusted correlation coefficients (SCC) between 

SBS model and Hi-C data. SCC values were computed using HiCRep (Yang et al. 2017). 

4.1.1 Details on the calculation of correlations and loops 

The agreement between experiment and model has been quantified using the 

Pearson’s correlation coefficient, r, between Hi-C contact matrices and the ones 

inferred by PRISMR. We also used two additional measures: 1) the distance 

corrected Pearson correlation coefficient, denoted by r’, that is the Pearson’s 

correlation coefficient between the two matrices where we subtracted from each 

diagonal (corresponding to a given genomic distance) their average contact 

frequency; 2) the stratum-adjusted correlation coefficient, denoted by SCC, from 

the HiCRep method (Yang et al. 2017) with a smoothing parameter h=1 and an 

upper bound of interaction distance equal to 5Mb. These two measures have been 

used to put aside the obvious decreasing trend of the pairwise contact frequency 

with genomic distance, that tend to dominate in the simple Pearson’s correlation 

Chr. r r’ SCC

1 0.94 0.55 0.85

2 0.94 0.59 0.86

3 0.94 0.59 0.84

4 0.95 0.64 0.89

5 0.94 0.62 0.87

6 0.98 0.73 0.89

7 0.96 0.68 0.88

8 0.94 0.55 0.81

9 0.94 0.55 0.78

10 0.94 0.52 0.77

11 0.95 0.60 0.83

12 0.94 0.58 0.81

13 0.94 0.54 0.77

14 0.95 0.56 0.79

15 0.95 0.58 0.77

16 0.94 0.55 0.76

17 0.95 0.61 0.82

18 0.95 0.58 0.77

19 0.96 0.69 0.81

PRISM
RHi-C

a b

Figure 4.1: Evaluation of the similarity between Hi-C and model-inferred matrices 
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values. Furthermore, as a control case, we computed HiCRep correlations 

between the Hi-C contact map of a chromosome from a different cell type, i.e. 

mouse Cortex cells (Dixon et al. 2012), with the corresponding chromosome 

contact matrix from our model in mESC. For instance, for chr11 we found 

SCCCortex_VS_Model = 0.49 (std ≈ 0.01) and r’Cortex_VS_Model = 0.16. These 

correlations are comparable with analogous values computed between mESC and 

Cortex HiC data: SCCCortex_VS_mESC = 0.56 (std ≈ 0.01) and r’Cortex_VS_mESC = 0.17. 

Moreover, they are significantly lower than the corresponding values between 

our model and Hi- C in mESC: SCCmESC_VS_Model = 0.83 (std ≈ 0.01), 

r’mESC_VS_Model = 0.60. 

 

Chromatin loops are thought to be a basic unit of interphase nuclear organization, 

since they can provide contacts between regulatory regions and gene promoters. 

Loops are often formed between TAD borders (S. S. P. P. Rao et al. 2014) and 

are recognizable on a heat map as points of strong increased contact frequencies 

at the top corner of the TAD (Figure 4.2b). As loop-calling method, we used the 

HiCCUPS algorithm from Juicer Tools (Durand et al. 2016) with 5kb, 10kb and 

25kb resolution and a False Discovery Rate (FDR) equal to 0.001 for each case. 

In particular, assuming as a reference the loops detected from Hi-C, we computed 

for the model data the fraction of actual positives that are correctly identified 

(sensitivity) and the fraction of actual negatives that are correctly identified 

(specificity), within a 50kb window. We obtained a sensitivity equal to 0.64 and 

a specificity equal to 0.998. We also checked the effect of using different FDR 

cut-off values, finding that both sensitivity and specificity are only marginally 

affected. 
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a) Heat-maps from the PRISMR inferred SBS model (upper triangle) and from Bonev 

et al. 2017 Hi-C data at 5kb resolution (lower triangle) relative to the entire chromosome 

19. Pearson, distance-corrected Pearson and stratum adjusted (SCC) correlations are 

r=0.95, r’=0.51, SCC=0.74, respectively. b) Heat-maps from the PRISMR inferred SBS 

model (upper triangle) and from Bonev et al. 2017 Hi-C data at 5kb resolution (lower 

triangle) around the genomic region spanning the Sox9 gene. Pearson, distance-corrected 

Pearson and stratum adjusted (SCC) correlations are r=0.95 and r’=0.59, SCC = 0.85 

respectively. The blue circles indicate the loops found using the HiCCUPS algorithm 

from Juicer Tools (Durand et al. 2016). 

4.2 Binding domains structural features 

The model binding domains, i.e., the sets of homologous binding sites along the 

chromosomes, are the output of PRISMR. To study how the different binding 

domains (colors) span along the genome we employed two measures. The first 

one, that measures the domain size, is the genomic coverage, i.e., the fraction of 

beads of a given color multiplied by the length of the chromosome it belongs to. 

Averaging over all the domains identified by PRIMSR across chromosomes, we 

find that the genomic length covered by each domain is on average 0.75 Mb, with 
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Figure 4.2: The SBS model works well across different data resolution and detects 

contacts at the scale of genomic loops 
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a standard deviation of 0.2 Mb, a value close to the mean-size of a TAD. To 

measure, instead, how long is the extension of the interaction due to a single 

domain we defined 𝑟𝑖𝑛𝑡 as two times the standard deviation of the center of mass 

of a domain (the cartoon in Figure 4.3a gives a visual impression of what 𝑟𝑖𝑛𝑡 is 

measuring). Precisely, as the location of the different colors obtained by PRISMR 

can be specified indicating the coordinates of their binding sites along the 

genome, we can compute the center of mass of each domain as the average of the 

coordinates of a given domain weighted over the occurrence number of the 

binding sites in each genomic window. The distribution of 𝑟𝑖𝑛𝑡 extends far 

beyond the size of the single domain, ranging from a few mega-bases to more 

than 100 Mb (Figure 4.3a). To check the statistical significance of the domains 

identified by PRISMR, we compared 𝑃(𝑟𝑖𝑛𝑡) from our binding domains (red 

curve in Figure 4.3a) with a random control model obtained by randomly 

bootstrapping the location of our binding sites along the genome (blue curve in 

Figure 4.3a) and we found that the two distributions are significantly different 

(p-value < 10-3, Wilcoxon’s rank sum test). We also found that 𝑃(𝑟𝑖𝑛𝑡) is 

asymptotically consistent with a power-low scaling 𝑃(𝑟𝑖𝑛𝑡)~𝑟𝑖𝑛𝑡
−1, as shown in 

Figure 4.3a where the right-hand side of the distribution is well described by a 

power-low fit (dotted red curve in the graph). 

 

To further test the level of randomness of the binding domains identified by 

PRISMR, we measured their genomic overlap 𝑞 and compared it to the level of 

overlap expected in the random model of bootstrapped domains mentioned 

before. For a generic pair of binding domains 𝑘1and 𝑘2, their overlap, which 

measures their similarity, is defined as: 

𝑞(𝑘1, 𝑘2) =
∑ 𝑓𝑖(𝑘1)∗𝑓𝑖(𝑘2)𝐿

𝑖=1

√∑ 𝑓𝑖
2(𝑘1)𝐿

𝑖=1 ∗∑ 𝑓𝑖
2(𝑘2)𝐿

𝑖=1

(6)

where 𝑓𝑖(𝑘𝑗) is the number of beads of the domain 𝑘𝑗 in the 𝑖-th bin of 

chromosome of length 𝐿 (the cartoon in Figure 4.3b gives a visual impression of 



Chapter 4 - Genome-wide analysis of pairwise chromatin contacts 
 

 67 

what 𝑞 is measuring). We found that the distribution 𝑝(𝑞) of the overlaps of the 

binding domains predicted by PRISMR is significantly different (p-value<0.001, 

Wilcoxon’s rank sum test) from the one expected in the random control model 

(red and blue curves in Figure 4.3b, respectively). 

a) Distribution of the range of interaction 𝑟𝑖𝑛𝑡 of the PRISMR inferred binding domains 

genome-wide. The blue curve corresponds to a random model where the binding sites 

are bootstrapped. A Cantor set has hierarchically nested domains: the distribution of their 

ranges scales as an inverse power law. b) The distribution of overlaps between all the 

possible pairs of binding domains on the same chromosome (red) compared to the one 

expected in a random model (obtained by bootstrapping, blue). 

4.3 Molecular nature of the binding domains 

4.3.1 Epigenetic profile of the binding domains 

To shed light on the nature of the model inferred binding sites we compared their 

genomic locations with a set of epigenetic marks available in mES cells from 

the ENCODE database (Dunham et al. 2012). We considered 8 histone 

modification signals available (H3K4me1, H3K4me3, H3K9ac, H3K27ac, 

H3K36me3, H3K9me3, H3K27me3 and H2AUb), which mark the different 
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Figure 4.3: Characterization of the identified binding domains 
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transcriptional state of chromatin (see section 1.2). In our analysis, we retained 

only statistically significant correlation values, i.e., those above a random control 

model with sites having bootstrapped genomic positions (see the next subsection 

4.3.3 for the details on the epigenetics analysis). As the different binding domains 

tend to fall in groups with similar epigenetic profiles, we clustered them to 

identify genome-wide significantly distinct epigenetic classes. The Akaike 

Information Criterion, (Akaike 1974) returns a set of 10 statistically different 

groups (Figure 4.4a-b), a result supported by the structure of the branching tree 

obtained via a simple hierarchical clustering procedure (Figure 4.4c). 

 

Two main classes of binding domains strongly correlate with active chromatin 

marks (Figure 4.4a), but they are clearly distinct from an epigenetic point of 

view. Class 1 is broadly enriched across all available active histone marks, 

whereas class 2 is only enriched for H3K4me1 and H3K36me3, associated 

especially to active enhancer regions (Boettiger et al. 2016; Gifford et al. 2013; 

Ho et al. 2014; Javierre et al. 2016). Interestingly, the genomic positions of the 

sites of the two classes are partially correlated (correlation coefficient = 0.3, 

Figure 4.5c). Their histone signatures are also consistent with gene annotation 

and transcription data (Figure 4.4a). That supports the view that the binding sites 

in class 1 and 2 are responsible, genome-wide, especially for specific contacts 

between transcribed and regulatory regions, mediated by factors such as active 

Pol-II, as experimentally demonstrated at a number of specific loci (see e.g., 

Mariano Barbieri et al. 2017). Class 3 has the typical signature of bivalent 

chromatin, with H3K27me3 combined with active marks. Its binding sites could 

be responsible for interactions between regions including, for instance, poised 

genes and their regulators, as seen in FISH co-localization experiments. Class 4 

is significantly correlated with only H3K27me3 and could be responsible of the 

experimentally observed self-interacting domains of PRC repressed chromatin 

(Kundu et al. 2017). Interestingly, classes 1, 2, 3, and 4 are the only to include 

active and inactive promoters and the only ones to correlate with CTCF binding 
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sites. That confirms the significance of CTCF in the regulation of chromatin 

architecture and gene activity (see, e.g. Tang et al. 2015), also highlighting that 

its role can be modulated by different sets of histone marks and molecular factors. 

a) The model binding domains, albeit inferred from Hi-C data only, correlate each with 

a specific set of ENCODE tracks. They cluster in 10 main classes genome-wide 

according to their Pearson’s correlations with the shown ENCODE histone marks. The 

epigenetic profile of the centroid of each class is shown in the heat-map, together with 

their correlation with a set of annotation data. The 10 classes match well chromatin states 

derived in epigenetic segmentation studies (e.g., active, poised, repressed states). b) The 

AIC statistical criterion has a minimum at k=10 clusters of binding domains based on 

their epigenetic profile shown in panel a). c) Hierarchical clustering of the model inferred 

binding domains with the 10 identified classes highlighted with different colors. 

Classes 5, 6 and 7 are distinct in their epigenetic profile, but all significantly 

correlated with H3K9me3, a mark usually associated to constitutive 
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heterochromatin and lack of transcription factor binding. Their genomic 

positioning is also weakly, yet significantly correlated (correlation coefficient 

around 0.15, Figure 4.5c). Classes 8 and 9 are gnomically partially overlapping 

with class 5, 6 and 7 and anti-correlated with active marks too. Finally, class 10 

(named “low signal”) has no significant correlation with available histone marks. 

However, consistently with previous studies (Ho et al. 2014), it covers almost 

25% of the genome, while the other classes range from around 5% to 10% in 

genomic coverage (Figure 4.5a). Interestingly, the different classes are 

significantly differently enriched over the different chromosomes and not 

consistent with a uniform random genomic distribution (Figure 4.5b, p-values < 

0.05). 

4.3.2 Classes removal 

To understand the relative importance of the different types of binding domains 

in shaping chromatin architecture, we conducted a set of in-silico experiments 

with mutant models where each class, one at the time, is erased. Specifically, 

given the list of the binding domains of each class, we removed all these domains 

along the different chromosomes by replacing their PRISMR-inferred binding 

sites with gray, non-interacting, elements. Then, we computed the contact 

matrices of the modified SBS polymers and compared them with the 

corresponding Hi-C matrices by measuring the variation of the Pearson’s 

correlation coefficient with respect to the ‘wild-type’ value, that is the mean value 

over the different chromosomes of the correlations obtained without the 

epigenetic class removal (𝑟 =0.95). The variation is found to be proportional to 

the genomic coverage of the different classes, with the exception of the “low 

signal” class, whose removal has an impact much lower than expected by 

coverage (Figure 4.5d). That implicates that no binding class has a special role 

in holding the architecture of the genome in place. The proportionality relation 

whereby the removal of, say, 10% of binding sites genome-wide roughly results 

in a 10% reduction of r, highlights the structural stability of the system: the 
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removal of a small fraction of binding sites proportionally alter the structure, but 

does not produce a sudden collapse of the architecture, as reported by recent 

experiments (Barutcu et al. 2018; Kubo et al. 2017; Nora et al. 2017; S. S. P. Rao 

et al. 2017; Rodríguez-Carballo et al. 2017). 

 

Importantly, the 10 classes of binding domains here identified match well the 

classes found by previous epigenetic genome segmentation studies (Ernst et al. 

2011; Gifford et al. 2013; Ho et al. 2014). However, our binding domains are 

inferred from only Hi-C data without previous knowledge of epigenetics. Hence, 

they bring together independent information on architecture and epigenetics. In 

particular, a crucial feature of the model binding domains to explain contact data 

is that the different types do overlap with each other along the genome at the 

resolution of the considered Hi-C data. Therefore, they naturally provide each 

DNA window with a complex barcode made of the list of the different included 

binding site types. This is an important difference with 1D epigenetic 

segmentation classes: by definition, those have no genomic overlap thus each 

DNA window is associated to only one of such classes. 

4.3.3 Computational details of the epigenetic study of the binding 

domains 

We downloaded, from the ENCODE database (Dunham et al. 2012), a set of 8 

histone modifications peak-called tracks files (H3K4me1, H3K4me3, H3K9ac, 

H3K27ac, H3K36me3, H3K9me3, H3K27me3 and H2AUb) relative to the mES 

cells. We then used the bedtools coverage tool (Quinlan and Hall 2010) to 

identify the number of called peaks contained within each genome-wide window 

for each chromatin feature; the signal thus obtained represent our histone mark 

profile. To measure the similarity of binding domains with histone marks we 

computed the Pearson’s correlation coefficient between the number of binding 

sites of each domain and each histone mark profile. Furthermore, we employed 

a control model to retain only the statistical significant correlations: first, we 
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computed the Pearson correlation between the chromatin mark signals and 

randomized binding domains signals obtained by bootstrapping the actual ones 

along the genomic locations; then, we considered significant only correlations 

above the 95th or below the 5th percentile of the distribution of the random 

correlations. Data are then collected in a rectangular matrix 𝑋, in which the 

element 𝑋(𝑖, 𝑗) is the significant correlation between the i-th binding domains 

and the j-th histone mark or zero if the correlation does not result significant. 

Since each row of 𝑋 represents the correlation profile of a binding domain with 

respect to the used histone modifications, we refer to them as the epigenomic 

signature of a binding domain. In order to find binding domains with similar 

epigenomic signatures, we performed a hierarchical clustering analysis on 𝑋 

using the Python SciPy clustering package with “Euclidean” distance metric and 

“Ward” linkage method. To assess the number of clusters in the hierarchical 

clustering output, we cut the dendrogram at different values (ranging from one to 

the number of binding domains) and evaluated the Akaike Information Criterion 

(Akaike 1974), or briefly AIC, as the number of clusters 𝑘 is varied. As shown 

in Figure 4.4b, while no sharp transitions are present, the curve has a global 

minimum at 𝑘 =10. We therefore grouped all the different rows of 𝑋 in ten 

different classes according to their affinity to each cluster. The centroid of each 

cluster, that is the average of the epigenomic signature of the domains belonging 

to it, was considered as the epigenetic signature of the entire class. To assign 

biologically meaningful labels to the obtained partition, we looked at the 

enrichment of several types of functional annotations in the different classes. 

More precisely, we first binned each annotation track using the same windows of 

the binding domains (taking the sum in each bin), and then, for each pair of 

annotation mark and epigenetic class, we computed the average of the Pearson 

correlation values between that mark and each binding domains of that class 

(Figure 4.4a). The set of functional annotations considered in this study is the 

follow (where all the coordinates are relative to the mm9 version of the mouse 
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genome): (1) CpG islands, exons, introns, genes, transcription start sites (TSS) 

and transcription end sites (TES) downloaded from the UCSC Table Browser. 

(2) Transcription factors binding sites and DNase peaks obtained from the 

ENCODE database in the mESC cell line. We also correlated the binding 

domains signal with ENCODE expression data in mESC, where the transcription 

level has been obtained based on GENCODE annotation and normalized to 

FPKM (Fragments Per Kilobase Million) values using the Cufflinks software 

(Trapnell et al. 2010). 

a) Genomic coverage of the 10 classes of the model binding domains. b) Number of the 

binding domains of the different classes across chromosomes. The distribution is not 

uniform (p-value<0.05). c) Pearson’s correlation coefficient of the genomic location of 

the different classes over the chromosomes. d) Effect of the withdraw of a class of 

binding sites on the architecture measured by the variation of the Pearson’s correlation 

with respect to the wild-type model. Δr is the difference between r in the wild-type model 

(r=0.60) and in a model where the domains of a given class are removed, averaged over 

chromosomes. 
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4.4 Epigenetic linear segmentation only partially 

captures chromatin folding 

To deepen our comprehension of the interplay of chromosome epigenetics and 

folding, we investigated the architectural information content retained in 1D 

epigenetic segmentations of the genome and compared it with the more complex 

DNA barcoding given by the classes of our binding domains. As done in previous 

studies (Boettiger et al. 2016; Gifford et al. 2013; Ho et al. 2014; Javierre et al. 

2016), we segmented chromosomes in 10 epigenetic classes based only on 

ENCODE histone marks. For simplicity, we opted for 10 classes to match the 

number of different types of binding domains found above. Such a number of 

classes is comparable to those in previous segmentations studies, but our results 

are not affected by more complex choices of segmentation (until the scale of the 

single binding domain is reached). Next, we derived in-silico the contact maps 

predicted by a polymer model based only on such a 1D epigenetic segmentation. 

Specifically, we considered a polymer where chromatin physical interactions 

only occur between homologous 1D-segmented epigenetic regions (Jost et al. 

2014). Interestingly, while the overall contact patterns from such a model 

visually resemble Hi-C patterns (r=0.80), their distance-corrected Pearson 

correlation, r’, with Hi-C data is low, r’= 0.05 (Figure 4.6b). Hence, the patterns 

derived from a polymer model constructed from 1D epigenetic segmentation is 

only marginally better than one where Hi-C pair-wise interactions are replaced 

by the average value corresponding to that genomic separation. Conversely, a 10 

color SBS model based on its epigenetics classes (see subsection 4.4.2), with 

overlapping binding domains, has r= 0.88 and r’= 0.20  and, as discussed, the 

model with the full set of inferred binding domains has r= 0.95 and r’= 0.60. 

 

To understand the partial failure of 1D epigenetic segmentation in explaining 

contact data, we identified, for each pair of genomic sites, the binding domain 

that mostly contributes to their pair-wise interaction within the full SBS model 
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(Figure 4.6d-e). For clarity, we focus on a case-study 34 Mb wide region on 

chromosome 11. Plaid-patterns are visible in its Hi-C contact map, as expected 

from A/B compartments; they are also visible in the matrix of the most 

contributing binding domains (see subsection 4.4.1), where rich and fine 

substructures appear as well. Consider, for instance, the TAD associated to region 

C in Figure 4.6c. The interactions within that TAD are mainly related to binding 

domains in class 5 (cyan, Figure 4.4a), which is indeed the most abundant within 

the genomic region where C is located (Figure 4.6d). However, the interactions 

between region C and B cannot be traced back to class 5, but they stem from 

binding domains in class 4 (magenta), which is the 2nd and 3rd most abundant for 

B and C, respectively. Such an example illustrates that a linear epigenetic 

segmentation model with homotypic interactions fails to account for the 

complexity of the observed contact pattern because an interaction between B and 

C would only occur if the two regions belong to the same class. Analogously, the 

contacts between region A and C (and between A and B) originate from different 

binding domains included in those regions. A similar reasoning can be extended 

to the plaid-pattern of A/B compartments (which is a specific example of a two-

classes genome 1D segmentation) capturing the overall interactions between 

homologous active and repressed regions respectively. Yet, a much more 

complex and finer structure of contacts exists (including interactions across A 

and B compartments). Indeed, it has been shown that polymer models based on 

a linear epigenetic classification of domains are forced to include combinatorial 

heterotypic interactions to accurately explain Hi-C data (Di Pierro et al. 2016). 

 

Summarizing, homotypic interactions between the domains of a coarse-grained 

linear epigenetic segmentation of the genome, such as compartment A/B, are not 

enough to explain Hi-C patterns with high accuracy, since a complexity of 

relevant heterotypic contacts exist between those regions. That is captured by the 

binding domains of our model. They associate a barcode to DNA segments, 

containing the information required to produce, through physics, the system 3D 
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conformations. On the other hand, by bringing together independent architectural 

and epigenetics data, our binding domains form epigenetic classes well matching 

those found in segmentation studies. 

a) Hi-C data (Dixon et al. 2012) of a 34 Mb wide region on chromosome 11 in mESC 

with highlighted TAD patterns around region A, B and C, and some pair-wise contacts 

(AC, BC, CC). b) The contact map of a model based only on homotypic interactions 

between linear segmented epigenetic domains has a Pearson correlation r=0.84 with Hi-

C data, but a distance corrected correlation r’=0.06, showing only a marginal 

improvement over a control model where each interaction is replaced by the average at 

the corresponding genomic separation. c) The contact map of the SBS model in the 

shown region has r=0.96 and r’=0.71. d) The PRISMR inferred 1st and 2nd most 

abundant binding site types of the SBS model along the zoomed region. e) The SBS most 

contributing binding domain to each pairwise contact highlights that the complexity of 

interaction patterns is captured by the combinatorial overlap of different binding site 

types along the sequence. For example, contacts within C (CC) are mainly mediated by 

the 1st most abundant binding site type in C (cyan), but the interactions of C with A and 

B (AC and BC) are mediated by different binding domains (respectively the 2nd (brown) 

and the 3rd (magenta) most abundant in C). 
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Figure 4.6: Contact patterns are only partially captured by linear epigenetic 

segmentation. 
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4.4.1 Most abundant and most contributing domains to pairwise 

contacts 

As the different binding domains can overlap with each other, to better visualize 

their locations along the genome, we show in Figure 4.6d the 1st and 2nd most 

abundant binding domain, i.e. the one and the second with the largest number of 

binding sites type per bin. In both cases, to help the visualization, the domains 

are colored with the color of their epigenetic class. The contribution of the 

different binding domains in forming the interactions between bins pairs is then 

highlighted in Figure 4.6e where the colors of the most contributing binding 

domains are shown. Specifically, for a given pair-wise contact we defined the 

contribution of a binding domain to that contact as the number of pairs of its 

binding site type between the two considered bins. The binding domain having 

the highest number of binding site pairs is then considered as the most 

contributing one and is shown in Figure 4.6e with the color corresponding to the 

epigenetic class it belongs to. 

4.4.2 Epigenetic linear segmentation model 

To build a model based only on linear epigenetics, we considered the same 

dataset of eight histone modifications previously discussed and assigned to each 

genomic window the sequence of the number of peaks of each histone mark. 

Then, we performed a hierarchical clustering analysis to gather the genomic 

windows with similar histone profile in 10 different classes, in order to match 

them with the 10 different types of binding domains found above. The obtained 

linear segmentation has been employed to define a polymer model for the 

chromosome 11 with 10 different colors corresponding to the different linear 

epigenetic classes, in such a way that the interacting elements belong to the same 

1D epigenetic segmented region. Finally, we derived in-silico the contact map of 

such a model and compared it with the experimental matrix (Figure 4.6a-b). We 

found that the Pearson’s correlation and distance-corrected Pearson’s correlation 
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between the matrices are r = 0.80 and r’= 0.05, respectively. We have also built 

a model by assigning at each of the different binding sites of chr.11 the colour of 

the epigenetic class it belongs to. We found that, this 10 color SBS model with 

overlapping binding domains has r = 0.88 and r’= 0.20. 
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Conclusions and perspectives 

Recent advancements in Molecular Biology have revealed that chromatin has a 

complex spatial organization, intimately linked to its biological functions. 

Thanks to the development of new experimental techniques, such as Hi-C, a large 

amount of data is now available, making it possible to address the problem of 

chromatin folding in a more quantitative way. Yet, a unified theoretical 

framework describing the molecular mechanisms of DNA folding is still lacking 

and polymer modeling can help to tackle this problem. This work wants to be a 

contribution towards this challenging goal. In particular, here we focused on the 

Strings and Binders Switch (SBS) model, in which chromatin 3D conformations 

form through the interaction of diffusing molecular binders with binding sites 

along the polymer chain. Firstly, we showed that a very simple polymer can 

recapitulate emerging aspects of chromatin structure such as its spontaneous 

hierarchical folding. A generalized SBS model in combination with the machine 

learning inference method PRISMR, can be used to accurately reconstruct the 

landscape of real genomic loci in 3D. For instance, we discovered that two 

different tissue-specific shapes regulate the correct limb development at the Pixt1 

genomic locus and that the perturbation of a sequence including the Pitx1 

enhancer can spatially revert the state of the locus and, consequently, lead to gene 

malfunctions. This highlights that the dynamic 3D chromatin architecture can 

play a determinant role in modulating the transcriptional activities. Next, we 

extended our method to the whole genome and inferred, from Hi-C data, the 

specific genomic location of the distinct sets of putative binding sites required to 

establish chromatin architecture. The increase of statistics obtained from the 

genome-wide study, allowed us to cross the architectural information with a set 

of available epigenetics data to investigate the molecular nature of the complexes 

that mediate chromatin interactions. Our results show that the molecular 

architectural code enclosed in the inferred binding domains of the SBS model 
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and its folding mechanisms must be capturing some general and important 

principle of regulation of chromatin structure. They provide an interpretation of 

the link between epigenetics, architecture and function, which can also help 

understanding the impact of genomic structural variations and epigenetic changes 

in diseases such as cancer and congenital disorders. The diseases potential of 

genetic and epigenetics modifications is most frequently hard to predict with 

current screens. Our results progress the research of new quantitative, in-silico 

methods for the medical interpretation of the phenotypic impact of such 

variations. Some results, which for brevity are not presented here, have already 

been obtained in this sense. New research lines we are following concern the 

employment of our polymer models to study the cell-to-cell variability of 

chromatin architecture and to capture the structural differences of a specific 

genomic region during differentiation or in any two different cell types. Our aim 

is to realize a reliable tool, able to elucidate the many, still unknown, mechanisms 

involved in the genome organization, and to predict the effects of genomic 

mutations on the genome architecture and, ultimately, on the cell functionality. 
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