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Abstract

Piecewise-smooth systems are common in applications, ranging from dry friction oscilla-
tors in mechanics, to power converters in electrical engineering, to neuron cells in biology.
While the theory of stability and the control of such dynamical systems have been studied
extensively, the conditions that trigger specific collective dynamics when many of such
systems are interconnected in a network are not fully understood. The study of emergent
behaviour, and in particular synchronization, has applicability in seismology, for what
concerns the dynamics of neighbouring faults, in determining frequency consensus in
power grids, in operating multi-body mechanical systems, and more. In the first part
of this work we provide a series of sufficient conditions to assess global asymptotic
state synchronization. Most notably, when the agents’ dynamics satisfy the QUAD
condition, an ordinary diffusive coupling is sufficient to achieve synchronization, even if
the dynamics is discontinuous. In the case of more generic dynamics, we found that a
further discontinuous coupling layer can be added to enforce convergence. Moreover, we
show that the minimum threshold on the coupling gain associated to the new discontinuous
communication protocol depends on the density of the sparsest cut in the graph. This
quantity, which we named minimum density, plays a role very similar to that of the
algebraic connectivity in the case of networks of smooth systems, in describing the
relation between synchronizability and topology. In the second part of the thesis, we focus
on specific applications of single PWS systems, and the unique challenges that emerge
when particular domains are considered. In particular, we dealt with the design of control
strategies to suppress undesired oscillations in the landing gear of an aeroplane and in a
robotic set-up in contact with a moving belt. In addition, we expand the tools available to
design observers for PWS systems through the use of contraction theory.
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Chapter 1. Introduction

1 Introduction

1.1 Nature and applications of piecewise-smooth dynamical
systems

A great variety of real-world systems exhibit behaviour that can be better captured by
means of piecewise-smooth (PWS) dynamical systems (also known as Filippov systems),
i.e., sets of ordinary differential equations (ODEs) with discontinuous right-hand side
[56, 43, 34, 87, 29]. Examples are found in multiple domains of Science and Engineering.
In Mechanics, rigid bodies that are subject to dry-friction, backlash, or impacts experience
instantaneous changes in their acceleration [85] that can be modelled on a macroscopic
time-scale using differential equations with discontinuous right-hand sides. This is the
case of gears, cam-followers, positioning systems using lead screws, or robotic arms
manipulating objects or performing cuts [84, 1]. PWS systems are also used to model
dry friction in earthquake models [22, 96]. In Electrical Engineering, diodes and other
switching components (e.g. those used in power converters), together with some nonlinear
resistors, are all modelled through sets of PWS differential equations [135]. PWS systems
are also common in control theory, where bang-bang, switched, or hybrid controllers
are often used [136]. Also, in Medicine and Biology, neurons display slow changes
in their electrical potential, interrupted by abrupt large variations, named “spikes”. In
some cases, this twofold fast-slow dynamics is modelled through PWS ODEs [31, 30].
Furthermore, non-smooth models are also used to describe the dynamics of cardiac cells
[9, 43] and gene regulatory networks [23]. Other applications include the modelling of
transmission control protocols (TCP) in computer science [121, 91], social consensus
formation in opinion dynamics [79, 143], and disease spreading in epidemiology [63]
and more [41, 78]

In many domains of application, it is possible to think of groups of interconnected PWS
systems. These ensembles, where each agent is a dynamical system and one or more graphs
are used to describe communication between the systems goes by the name of complex
networks [141, 130, 140, 6, 124, 98]. Examples include a series of interconnected faults
in earthquake engineering, networks of cardiac cells, the driveline in a vehicle, electronic
devices in power grids, and so on. Complex networks can exhibit many different types
of collective behaviour; examples include various kinds of synchronous behaviour such
as complete synchronization, cluster synchronization, and partial-state synchronization
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1.2. Key research questions

[112, 113, 10, 131]. Understanding the occurrence of synchronization (i.e., the states of all
the nodes converging towards a common trajectory) for PWS networks is crucial in many
applications. To give only a few examples, synchronization of the generators’ frequencies
in power grids—where there can be switching components like diodes—translates to an
efficient operating condition, and spike synchronization in neurons has a crucial role in
activities such as vision and motor coordination [52, 134]. In mechanical engineering,
synchronization may be useful when a series of robot manipulators or mobile robots must
achieve a cooperative task in the presence of impacts or other discontinuities [26], or to
transfer kinetic energy avoiding losses in multi-body systems [65].

1.2 Key research questions
Aspects of the theory concerning PWS dynamical systems, such as stability analysis,
bifurcations and control are mostly understood [43, 87]. Nonetheless typically, when
applications are concerned, the design of the best control scheme for a specific system and
a certain control goal is a unique problem, that requires special ad-hoc considerations,
depending on the nature of the system and the limitations of the control environment.
One of the emerging phenomena that discontinuity in the vector field can give birth to are
undesired oscillations. Moreover, not all of the theory that is complementary to control is
completely mature. An example of this is state observation for PWS systems, which does
not yet encompass all the design tools available in the case of smooth systems.

Moreover, the analysis and control of collective behaviour emerging in ensembles
of discontinuous agents still poses some significant challenges. The reason is that many
common mathematical tools and assumptions used to prove convergence in networks of
dynamical systems (e.g., Lyapunov approaches or the master stability function (MSF)
technique [113]), in their standard form, require some degree of smoothness in the
agents’ vector fields. By the same token, hypotheses on the vector fields, like the QUAD
hypothesis [39], commonly used when dealing with synchronization problems, although
being useful in some cases, cannot always be exploited. Therefore, extensions need to
be found to the available analysis and control approaches. Up to now, conditions for the
local stability of the synchronization manifold, or for bounded global convergence have
been presented. However, criteria cannot be found in the existing literature that guarantee
global asymptotic synchronization of a network of PWS systems in the absence of an
external control acting on all of the nodes.

Summing up, the big questions that motivate this work are the following.

1. What conditions guarantee global asymptotic convergence and synchroniza-
tion in a network of piecewise-smooth systems?

2. How to control emergent phenomena such as oscillations in piecewise-smooth
systems, and how to estimate the state of these systems?

We give an answer to the first question in Part I, whereas the second question will find
an answer in Part II.

2



Chapter 1. Introduction

1.3 Contributions of this work

The contributions of this thesis can be grouped in two areas, those concerning synchro-
nization and convergence of complex networks of PWS dynamical systems and those
related to the analysis and control of emergent complex behaviour in individual PWS
systems.

Concerning the former topic, we present findings also reported in [33] and [32] (the
latter currently under peer review), where we advance the current state of the art as
follows:

• We give simple conditions for global asymptotic convergence of the class of PWS
systems that satisfy to the QUAD condition, which is a regularity assumption on
the vector field of the systems, presented in Section 2.2. Specifically, we allow
for a large variety of coupling laws, including nonlinear ones and linear diffusion
where the inner coupling matrix is not positive definite. In all cases we provide
analytical expressions for the critical thresholds of the coupling gains required for
synchronization.

• We propose a multiplex control approach where diffusive coupling among the nodes
is extended via an additional discontinuous coupling layer whose topology might
differ from that of the diffusive one. We show that this communication protocol
can be used to guarantee global asymptotic synchronization for a much wider class
of PWS systems. Furthermore, we give analytical estimates of the critical values of
both the coupling gains associated to the diffusive coupling and the discontinuous
coupling, sufficient to enforce convergence.

• We shed light on the dependence of the analytically computed threshold values of
the gains upon the properties of the vector fields of the nodes, and more importantly
the structural properties of the network control layers. More specifically, we show
that their value is dependent on a quantity we name minimum density of a graph,
which is tightly related to its sparsest cut, a widely used concept in graph theory.
In simple terms, this relation shows that the presence of a severe bottleneck in the
communication graph undermines the chance of achieving synchronization.

Regarding the analysis and control of PWS systems, we describe here the following
results, which we reported in [19, 102, 57].

• Shimmy is a dangerous phenomenon that occurs when aircraft’s nose landing
gears oscillate in a rapid and uncontrollable fashion. We propose the use of two
nonlinear control approaches (zero average control and model reference adaptive
control based on minimal control synthesis) as simple yet effective strategies to
suppress undesired oscillations, even in the presence of uncertainties and partial
state measurements.

• The Painlevé paradox is a phenomenon that causes instability in mechanical
systems subjects to unilateral constraints. We investigate the manifestation of
this phenomenon in a two-links robot in contact with a moving belt, through a
bifurcation study. Then, we use the results of this analysis to inform the design of

3



1.4. Thesis structure and outline

two control strategies (a PID and a hybrid force/motion control) to keep the robot
sliding on the belt and avoid the onset of undesired lift-off.

• We show that by using a recent extension of contraction theory to nondifferentiable
vector fields, it is possible to design observers for a large class of nonlinear bimodal
piecewise-smooth systems, resulting in increased flexibility in the design process.

1.4 Thesis structure and outline
This thesis is organised into two parts. Part I is concerned with synchronization and
convergence in networks of piecewise-smooth systems, while Part II deals with the
analysis and control of single PWS systems.

In Part I, Chapter 2 presents the problem statement, while Chapter 3 illustrates the
state of the art on synchronization in piecewise-smooth complex networks. After that,
Chapter 4 introduces some mathematical preliminaries. Then, in Chapter 5, the theoretical
convergence results are given, together with numerical simulations to validate the findings;
part of the proofs are postponed to Chapter 6. Finally, Chapter 7 reviews the content of
Part I.

In Part II, Chapter 8 details the control design of strategies to suppress undesired
oscillations in landing gears. After that, in Chapter 9, we discuss the occurrence of the
Painlevé paradox in a two-link planar robot, presenting a structural stability analysis and
validating two control schemes to stabilize vibrations occurring in the system. Then, in
Chapter 10, we show how recent results on the contraction of PWS systems can be used
to synthesise observers for Filippov systems.

Conclusions are drawn in Chapter 11. After that, three appendices follow. Appendix A
reviews various regularity conditions that are applied to the PWS vector fields in order to
study synchronization. Appendix B presents some analytical expressions concerning the
concept of minimum density (a topological connectivity measure for graphs introduced in
Section 4.3). Finally, Appendix C contains an early extension of the techniques presented
in Part I to enforce asymptotic synchronization in networks of non-identical systems.

1.5 Notation
In this section, we expound the general notation we will use throughout the thesis. We
encourage the reader to to feel free to skip this section and to return to it in case they
encounter some symbols whose meaning is not clear.

Notation concerning sets is as follows, Q being a generic set:

• N is the set of natural numbers including zero, andN>0 is the set of natural numbers
excluding zero,

• Z is the set of integers,
• R is the set of real numbers, R≥0 excludes negative numbers, and R>0 excludes
non-positive numbers,

• C is the set of complex numbers,
• � is the empty set,

4



Chapter 1. Introduction

• if Q is finite, |Q| is its cardinality.
• If Q ⊂ R, the notation Q ≤ 0 means that ∀s ∈ Q, s ≤ 0 (analogously for ≥, =, etc.),
• F [ f ] is the Filippov set-valued function associated to the function f (see Section
4.2,

• Cp(Q1,Q2), with p ∈ N, is the set of functions from Q1 to Q2 that are continuous
and continuously differentiable p times.

Notation concerning operators is as follows:

• the dot diacritic Û represents total derivative with respect to time,
• ∂a
∂b is the partial derivative of a with respect to b,

• ∇ is the gradient and is a row vector,
• ⊗ denotes the Kronecker product,
• × is the Cartesian product,
• T is the transpose,
• ≈ means “approximately equal”,
• , means “is defined as”,
• when considering a one-sided limit, a ↘ b means that a approaches b from the
right (or from above), and a↗ b means approaching from the left (or below).

• the right vertical bar with a subscript means “evaluated with the subscript as a
constraint”. For example, “ f (x, y)|x=1” is the same as “ f (1, y)”.

Notation concerning scalars is as follows, s ∈ R being a generic scalar:

• |s | is the absolute value of s (although if s ∈ C, then |s | is the module of s),
• sign(s) is its sign (with sign(0) = 0),
• bsc is the largest integer r such that r ≤ s,
• dse is the smallest integer r such that r ≥ s.
• e is Euler’s number.

Notation concerning vectors is as follows, v ∈ Rn being a generic vector:

• normally we will denote a vector by a lower-case bold letter; if not specified
differently, we assume it is a column vector,

• vi is the i-th element of v; in the presence of a set {v1, . . . ,vN } of N vectors, vk ,i is
the i-th element of the k-th vector in the set,

• |v| = [|v1 | |v2 | · · · |vn |]
T,

• sign(v) = [sign(v1) sign(v2) · · · sign(vn)]T,
• ii ∈ Nn is the column vector having 1 in position i and 0 elsewhere,
• diag(v) ∈ Rn×n is the diagonal matrix having the elements of vector v on its
diagonal,

• ‖v‖p is the p-norm of v, with p being equal to 2 if it is omitted; we recall that
‖v‖1 ,

∑n
i=1 |vi |.

Notation concerning matrices is as follows, A ∈ Rn×m being a generic matrix:

• normally we will denote a matrix by an upper-case bold letter,
• Ai j is the (i, j)-th element of A.

5



1.5. Notation

• sym(A) =
(
A + AT) /2 is the symmetric part of A,

• λi(A) is its i-th eigenvalue, with the eigenvalues being sorted in an increasing
fashion if they are all real (λmin(A) , λ1(A) is the smallest one),

• ‖A‖p is the p-norm of A, with p being equal to 2 if it is omitted; we recall that
‖A‖∞ , max

i=1,...,n

(∑n
j=1

��Ai j

��) ,
• µp(A) is the matrix measure of A induced by the p-norm (see Section 4.1), with p
being equal to 2 if it is omitted,

• The notation A > 0 indicates that A is positive definite (analogously for semi- and
negative definiteness),

• In is the n × n identity matrix; we will omit the subscript when not necessary,
• 0n×m is the n × m null matrix, and 0n is the null column vector with n entries; we
will omit the subscripts when not necessary.

6



Part I

—— ·——

Synchronization and convergence in
networks of piecewise-smooth systems
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Chapter 2. Background

2 Background

In this chapter we state the goal of Part II and expound, for the sake of clarity, a small
number of formal preliminaries that are preparatory to the following Chapters.

2.1 Problem description
We consider N ∈ N>0 identical piecewise-smooth systems (also called agents or nodes,
in the context of complex networks), whose internal dynamics are given by{

Ûxi(t) = f(xi; t),

xi(0) = x0,i,
i = 1, . . . ,N,

where

• xi ∈ Rn is the state vector of the i-th agent,
• t ∈ R≥0 is time,
• the vector field f : Rn × R≥0 → Rn can be discontinuous with respect to xi and
might possibly exhibit sliding mode dynamics [43].

• x0,i ∈ R
n is the initial condition of the i-th agent; below we will omit to explicitly

state the initial conditions.

The lack of continuity in f (or at least one of its derivatives) with respect to xi is what
characterises piecewise-smooth systems, in contrast to smooth systems, that feature a
continuous f. Moreover, systems where f is discontinuous are also called Filippov
systems [56], whereas systems where f is continuous but its Jacobian is not are called
piecewise-smooth continuous (PWSC) systems. For the sake of completeness, we mention
that further notable cases are those of hybrid systems, where there exist some maps
that make x(t) discontinuous, and time-switching systems, where f is discontinuous with
respect to time t.

When two or more PWS systems are coupled in a network, they form a complex
piecewise-smooth network, whose dynamics is given by

Ûxi(t) = f(xi; t) + ui(x1, . . . ,xN ; t), i = 1, . . . ,N, (2.1)

where the functions ui represent the effects of coupling. The information of which agents
communicate with whom is encompassed in one or more graphs [17]. Assume that

9



2.1. Problem description

communication between agents in (2.1) takes place over K ∈ N>0 coupling layers (a
graphical representation with K = 2 layers is portrayed in Figure 5.1). Each layer is
represented by a graph Gk = (V,Ek), k = 1, . . . ,K, where V is the set of vertices (or
nodes) and Ek is the set of edges (or links) in the graph. Each vertex inV corresponds
to one of the agents, and an edge exists in Ek between two agents if and only if some
communication exists between the two over the k-th layer. Important properties of the
edges are to be undirected or directed, unweighted or weighted, and constant or not
constant [17]; Unless specified differently, we always assume that edges are undirected,
unweighted and constant. A fairly generic expression for the terms ui is

ui(x1, . . . ,xN ; t) =
K∑
k=1

(
ck

∑N

j=1
Lk
i jgk(xi,xj ; t)

)
, i = 1, . . . ,N,

where

• ck ∈ R is the coupling strength or coupling gain in the k-th layer,
• Lk

i j is the (i, j)-th element of the Laplacian matrix Lk ∈ R
N×N [6] of graph Gk ,

• gk : Rn × Rn × R≥0 → Rn are coupling functions.

Of course, different and much more complicated structures exist for the coupling terms
ui , e.g., accounting for stochastic variations, inter-layer communication, time-delays and
more. However, that will not be relevant to the theory described in this thesis.

Our goal is to find sufficient conditions on the internal vector field f and on the
coupling laws ui , i = 1, . . . ,N , so that all the agents converge asymptotically towards a
common evolution, regardless of the initial conditions. In more formal terms, we seek
conditions such that global asymptotic synchronization is achieved.

Definition 2.1 (Asymptotic synchronization). Network (2.1) achieves asymptotic syn-
chronization in Ω ⊆ RnN if, for all initial conditions in Ω,

lim
t→+∞

xi(t) − xj(t)
 = 0, ∀i, j = 1, . . . ,N .

In some papers, asymptotic synchronization is called complete synchronization.

Definition 2.2 (Bounded synchronization). Network (2.1) achieves bounded synchro-
nization in Ω ⊆ RnN if there exists ε ∈ R>0 such that, for all initial conditions in
Ω,

lim
t→+∞

xi(t) − xj(t)
 ≤ ε, ∀i, j = 1, . . . ,N .

As far as Definitions 2.1 and 2.2 are concerned, we say that synchronization is global
if Ω = RnN . Differently, if Ω is a neighbourhood of the synchronous trajectory(-ies) in
the state space of the network, then we say that synchronization is local. Note that in
general the meaning of convergence is more general than that of synchronization, as it
indicates that the trajectories of the agents converge towards some specific attractor, which
needs not be a synchronous solution. Also, convergence is a term often used in control

10



Chapter 2. Background

theory when describing the fact that some error goes to zero, typically in stabilization,
regulation and tracking problems. In this work, when we talk about convergence we refer
in particular to synchronization, and to the fact that synchronization errors1 become zero.

2.2 Regularity properties of vector fields

Here we give two mathematical assumptions that are used to characterise the internal
dynamics of the agents. These, along with the other assumptions mentioned in this Section
are preparatory to compare the different results present in the literature and described
in Chapter 3. A condition that is widely used in the field of complex networks is the
so-called QUAD (quadratic) condition [39, 38].

Definition 2.3 (QUADness). A function f : Rn × R≥0 → Rn is QUAD(P, Q) if, there
exist P,Q ∈ Rn×n such that, for all ξ1, ξ2 ∈ R

n, t ∈ R≥0, it holds that

(ξ1 − ξ2)
T P [f(ξ1; t) − f(ξ2; t)] ≤ (ξ1 − ξ2)

T Q (ξ1 − ξ2) .

To have a broader picture of how QUADness compare to other regularity conditions
typically used in the literature, like Lipschitz continuity, we refer the reader to Appendix
A. In particular, it is useful to consider that if some not too strict bounds hold on the
Jacobian of a function, then it is QUAD, as illustrated in Proposition A.4. There is the
possibility for QUAD functions to display a limited kind of jump discontinuities, but
the vast majority is left out. Therefore, to use a framework flexible enough to fit a large
variety of piecewise-smooth functions, we introduce the following definition, where σ
stands for “signum”.

Definition 2.4 (σ-QUADness). A function f : Rn × R→ Rn is σ-QUAD(P, Q, M) if,
there exists P,Q,M ∈ Rn×n such that, for all ξ1, ξ2 ∈ R

n, t ∈ R, it holds that

(ξ1 − ξ2)
T P [f(ξ1; t) − f(ξ2; t)] ≤ (ξ1 − ξ2)

T Q (ξ1 − ξ2)

+ (ξ1 − ξ2)
T Msign (ξ1 − ξ2) .

Note that, in the case that M = 0n×n, Definition 2.4 becomes equivalent to Definition
2.3. However, differently from the QUAD condition, the σ-QUAD property includes
cases where f has any number of arbitrary finite jumps discontinuities. As an illustrative
example of what the σ-QUAD property implies, consider the functions f1, f2 : R→ R,
given by f1(ξ) = ξ − sign(ξ) and f2(ξ) = ξ + sign(ξ), represented in Figure 2.1. f1 is
σ-QUAD with P = 1, Q = 1, M = 0, and thus is also QUAD; differently, f2 is σ-QUAD
with P = 1, Q = 1, M = 2, and can be proved not to be QUAD.

Definition 2.4 can be seen as a slight extension of a similar condition in [146] (see
Assumption A.7), where M is constrained to be a diagonal matrix. A related concept is
the QUAD-affine condition defined in [38] (see Definition A.6), where an affine term is

1One such error is the difference between the state of a node and the average of the others.
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ξ

f1(ξ)

ξ
(a) (b)

f2(ξ)

1 1

−1 −1

Figure 2.1: (a) f1 is QUAD and σ-QUAD; (b) f2 is not QUAD, but is σ-QUAD.

added to the right-hand side of (2.3) to account for the presence of finite jumps. Moreover,
in [90], the notion of a non-autonomous vector field being semi-QUAD is introduced
(see Definition A.5). Specifically, a vector field, say f(ξ ; t), is said to be semi-QUAD
if its difference with respect to another vector field g(ξ ; t), known to be QUAD, tends
asymptotically to zero as time increases. Finally, another related concept is the growth
condition for a vector field, defined in [92] (see Definition A.8).

12
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3 State of the art on
piecewise-smooth networks

Since the 2010’s the Control Theory and Applied Mathematics scientific communities
have shown greater and greater interest towards the study of synchronization in networks
of PWS systems. In order to start tackling this difficult problem, the various scientists that
have taken on this research area have focused on a small series of simplifying assumptions
or selected scenarios. In particular, some focused their study on local synchronization, for
which an extension of the master stability function approach was developed. Others have
investigated bounded convergence, in which case common Lyapunov functions are to be
used. On the other hand, fairly generic criteria to assess global asymptotic synchronization
have not been published; the exception being when using centralised switching controllers
on all the nodes. However, such a control system is rather difficult to implement, because
there is some information that an entity needs to pass to all the nodes, and in a way
frustrates the beneficial effect of communication, that is what is typically used to enforce
convergence in networks. As we show in Chapter 5, also in the case of PWS network a
suitable coupling action is sufficient to enforce synchronization and no costly centralised
controllers are needed. It is worth to point out that, at the current state, enough evidence
suggests that some kind of discontinuous action is required to prove global asymptotic
convergence in PWS networks; we chose to incorporate such action in the coupling terms
between the agents.

In Tables 3.1 and 3.2 we summarise the results contained in the main works we cite
in this chapter and the examples contained therein. Note that Table 3.1 also contain a
time-line that can be used to trace how knowledge in this field has progressed through the
years.

13



3.1. Local stability of the synchronization manifold

Table 3.1: Primary references in chronological order. The regularity conditions on the
dynamics are explained in Section 2.2 and Appendix A. The meaning of the acronyms
are as follows. A: adaptive, ASS: assumption A.7, ASY: asymptotic, BOU: bounded,
CHA: chaotic, Conv.: convergence, DEL: delayed, DFO: dry-friction oscillators, DIS:
discontinuous, GC: growth condition, GLO: global, HOM: homogeneous (identical
systems), HET: heterogeneous (non-identical systems), LIN: linear, LOC: local, NN:
neural network, N-LIN: nonlinear, OTH: other, PWA: piecewise-affine, QUAD-A: QUAD
affine, Ref.: reference SEQ: semi-QUAD, SYN: synchronization, TRA: tracking.

Year Ref. Agents Dynamics Coupling Problem Conv. Region

2011 [93] 2HOM NN, GC LIN SYN, TRA BOU GLO
2012 [90] HOM SEQ, OTH LIN SYN ASY GLO
2012 [92] HET GC LIN+DEL SYN BOU GLO
2013 [145] 2HOM NN, GC A LIN+DIS SYN, TRA ASY GLO
2013 [146] HET CHA+ASS LIN+DIS TRA ASY GLO
2015 [38] HET QUAD-A N-LIN SYN BOU GLO
2016 [31, 30] HOM PWA LIN SYN ASY LOC
2017 [103, 104] HOM DFO LIN SYN ASY LOC
2018 [33] HOM QUAD LIN SYN ASY GLO
2019 [32] HOM σ-QUAD LIN+DIS SYN ASY GLO

3.1 Local stability of the synchronization manifold

One of the first papers where sufficient conditions for the occurrence of local synchro-
nization between coupled PWS systems are discussed is [37], where the case of two
interconnected discontinuous systems is studied, although the specific case of coupled
friction oscillators was discussed earlier in [64, 65, 66].

More recently, alternative criteria for local stability of the synchronization manifold
were presented in [31, 30, 80], where synchronization of limit cycles in bimodal piecewise-
affine models of neurons was investigated via the extension of the master stability function
technique to a class of PWS systems [113]. Most commonly, the systems considered are
in the form1

Ûxi = f(xi) − c
N∑
j=1

Li jΓ(xj − xi), i = 1, . . . ,N, f(xi) =

{
A+xi + b+, σ(xi) > 0,
A−xi + b−, σ(xi) < 0.

Initially, a known extension of Floquet theory is used to assess the stability of limit cycles
of PWS systems. This theory requires the explicit form of the solution which can be
obtained by “gluing” together the smooth parts of the solutions. In turn, it is possible
to write these smooth parts in a closed form, because the dynamics is piecewise-affine.
Next, the master stability function method is applied in order to get a series of differential

1A+,A− ∈ Rn×n , b+, b− ∈ Rn , σ : Rn → R.
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Table 3.2: Examples used in primary references, listed in chronological order.

Ref. Examples

[93] delayed neural network
[90] abstract systems, variant of Lorenz
[92] Chua circuit, abstract systems
[145] delayed neural network
[146] Sprott, Chua, and Chen circuits
[38] Ikeda system, Chua circuit, chaotic relay, Kuramoto network
[31] McKean, absolute, and homoclinic neuron models
[30] Piecewise-linear and Heaviside Wilson–Cowan neural mass models
[103, 104] dry-friction oscillators
[33] relay, Sprott circuit, hierarchical oscillator, energy harvester
[32] chaotic relay, hierarchical oscillator

equations describing the piecewise-smooth dynamics of small perturbations in the network.
At that point, the theory on monodromy matrices (comprising saltation matrices [43]) is
used to account for the discontinuity in the dynamics. In conclusion, N n-dimensional
monodromy matrices Φi are obtained, with the expression of each containing at least two
saltation matrices, say Sk with different k’s. If Φi , i = 2, . . . ,N , have stable eigenvalues
(module less than 1), then it is possible to conclude that the synchronous limit cycle
is locally stable. Note that if the agent dynamics is piecewise-smooth continuous (i.e.,
f is continuous, but not differentiable), then all Sk = I, and the outlined method is
easily applicable, as the eigenvalues of the Φi’s are computable without great effort.
Unfortunately tough, as remarked in [80], the computation of theΦi’s becomes practically
infeasible if the internal node dynamics is not piecewise-smooth continuous. The reason
is that the ordering by which the agents cross their switching manifold becomes crucial in
computing the Sk’s (which appear in the Φi’s). However, it is not easy to determine such
ordering a priori.

Local synchronizability was also the main focus of the work on coupled dry-friction
oscillators presented in [103, 104], in the form2

Ûxi =
[

xi,2
−xi,1 + fdf(xi,2) + U

xi ,1(t=0) cos(ωt)

]
− c

N∑
j=1

Li j

[
0 0
1 0

]
(xj − xi), i = 1, . . . ,N .

fdf(ξ) =
(
µk + (µs − µk) e−k |v−ξ |

)
sign(v − ξ).

The method used is that of the two-probe-oscillator. In a simple two-agents network, a
series of numerical simulation are run, with initial conditions close to the synchronization
manifold. All values of the coupling strength c such that synchronization is achieved

2xi ∈ R2,U , ω, µs, µk , k ∈ R>0, v ∈ R.
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are recorded, C ∈ R being the set of such values. Then, A , {α ∈ R | α = cλ2(L) =
2c, c ∈ C} is defined. After that, for different and larger networks (thus with a different
Laplacian L) to display local stability of the synchronization manifold, it is just required
that cλi(L) ∈ A, for i = 2, . . . ,N . The justification of this method lies in the master
stability function approach. However, in their study, the authors approximate the sign
function present in fdc with the arc tangent function, thus making fdc continuous and the
systems smooth, and without taking any special precaution to properly extend the theory
of master stability function to the case of discontinuous agents. Therefore, it cannot be
taken for granted that the results still hold when the agents really are discontinuous.

3.2 Global bounded convergence
Sufficient conditions for global bounded convergence to a synchronous solution are given
in [38], where the case of complex network systems with non-identical, possibly PWS,
nodes is investigated in the case of either linear or nonlinear, possibly discontinuous,
diffusive coupling functions. The network model used is

Ûxi = fi(xi; t) − c
N∑
j=1

Li jgi j(xj − xi; t), i = 1, . . . ,N .

Exploiting the notion of Filippov solutions and common Lyapunov functions, it is shown
that, in the case of linear coupling (i.e., gi j(xj − xi; t) = Γ(xj − xi)), if the agents are
QUAD affine (see Definition A.6 and Section 2.2), then there exists a minimum coupling
gain c∗ > 0 such that bounded synchronization is achieved and the synchronization error
converges to a ball of finite radius that depends on the coupling gain; a conservative
estimate of this critical gain is also provided. In addition, if the agents’ dynamics satisfy
to the QUAD affine condition with Q < 0—which can be read as an intrinsic non
divergence of the internal dynamics of the nodes—then a further different bound on the
synchronization error is given. Such a bound is independent of the coupling gain, which
in this case can be simply non negative in order to have bounded synchronization. While
a large variety of settings are considered, conditions are only obtained for bounded rather
than asymptotic convergence to the synchronization manifold.

Also, the bounded synchronization of two neural networks (each one being modelled
as a single dynamical system) is investigated in [93], considering a linear feedback
term acting on only one of the two agents. The proofs employ dissipativity and the
Halanay inequality. Moreover, importantly, the authors claim that the two systems cannot
synchronize asymptotically even if they are identical, because a discontinuous action
is missing either in the coupling or as a control term. This is in accordance with our
findings, that in general asymptotic synchronization is not obtainable without some added
discontinuous action. In [92], results on bounded synchronization are expanded to the
framework of heterogeneous PWS networks controlled with a linear feedback control
on all the nodes, in the presence of linear coupling, and with the possibility of having
delays in the communication protocol. The proofs exploit the Filippov notion of solution,
Lyapunov functions and the generalised Halanay inequality. The article also contains
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conditions for the boundedness of the solutions of the network. Finally, the case of
networks with switching topology or time-switching dynamics is considered, giving
conditions for bounded synchronization.

3.3 Global asymptotic synchronization

A step towards the achievement of asymptotic synchronization in a pair of coupled PWS
systems can be found in [145], where the authors exploited a state-feedback control plus
a discontinuous action to make one chaotic neural network track the state of another
identical one. Both the cases of constant gains and adaptive gains are studied. When
the gains are constant, an estimate of the convergence time is given, which is instead
missing for the case of adaptive gains, with the benefit however of saving energy. The
two scenarios are investigated with both increasing activation functions and with more
general ones. The theoretical framework used in the proof is that of Filippov solutions
and Lyapunov functions.

In [146], the authors expand the analysis to a network of generic size of chaotic
non-identical PWS nodes, using again a state-feedback control with a discontinuous
action, applied to all the nodes:3

Ûxi = fi(xi) + uc,i(xi − s) − c
N∑
j=1

Li jΓ(xj − xi), i = 1, . . . ,N .

uc,i(xi − s) = −k1,i(xi − s) − k2,isign(xi − s).

The first main assumption in this paper is that a certain regularity condition on the internal
dynamics f holds (see Assumption A.7); such condition can be seen as a slightly simpler
(but earlier) version of σ-QUADness (in Definition 2.4). Secondly, it is mandatory to
be able to exert a centralised control action on all the systems and that the uncontrolled
coupled network (i.e., with uc,i = 0) and the reference trajectory s are chaotic. This
last fact is used to infer that the trajectories of the agents in the controlled network are
bounded. Then, it is showed that if the control gains k1,i, k2,i are large enough, the
trajectories xi(t) of the agents will be steered towards the desired one, s(t), in a finite time.
A similar approach was employed in [144] to synchronize time-delayed neural networks
with discontinuous activation functions. While this is an interesting take on the problem
at hand, the main drawback of these findings resides in the need of a centralised controller,
able to communicate to all the nodes. Furthermore, injecting a control input on all the
agents from the same controller trivialises the effect and structure of the network, de
facto degrading the coupling to not much more than a (possibly helpful) disturbance. In
reality, the beneficial effect of the discontinuous term in uc,i can be more efficiently and
meaningfully implemented in the coupling, as we show in Section 5.4 and Chapter 6.

So far, the only attempt we found in the literature at finding conditions to ensure
global asymptotic convergence in a network of generic PWS nodes without a centralised

3uc,i is the control input, s is the target synchronous trajectory; k1,i , k2,i ∈ R, i = 1, . . . , N .
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control action is presented in [90], using the network model4

Ûxi = f(xi) − c
N∑
j=1

Li jΓ(xj − xi), i = 1, . . . ,N .

Therein, a set of sufficient conditions for convergence are given, under the assumption that
the internal agent dynamics verifies a specific, and rather convoluted, regularity condition,
that is [90, (6)]. This condition is satisfied if (i) the agents’ dynamics are continuous (thus
making the systems smooth) and QUAD or (ii) the agents are PWS but with semi-QUAD
dynamics (i.e., QUAD asymptotically; see Section 2.2 and Appendix A). However, if
these are not the cases, as remarked by the authors, it is particularly difficult to verify
formally whether condition [90, (6)] holds for generic discontinuous dynamics. Therefore,
the results are not easily applicable to fairly generic PWS systems.

3.4 Our contribution to the literature
Recently in [33], exploiting Filippov theory and common Lyapunov functions, we gave
sufficient conditions for global asymptotic synchronization in the case that the agents are
PWS but also satisfy the QUAD assumption, employing only a diffusive (not necessarily
linear) coupling protocol. In that work, we also accounted for the troublesome case where
the inner coupling matrix in a linear diffusive coupling law is not positive definite. We
also presented extensive numerical simulations to preliminarily validate a framework that
we only later proved formally in [32], which at the time of the writing of this thesis is
ongoing the revision process in order to be accepted for publication. Namely, since many
PWS functions do not fulfil the QUAD assumption (See for example [38, 146, 92]), we
showed that a discontinuous coupling protocol can be added to the typical diffusive layer
to enforce synchronization. With respect to the previous literature, one notable benefit of
this theory is that the discontinuous coupling law, which could be seen as a control action,
is decentralised. The results we mentioned in this Section, contained in both [33, 32], are
expounded in detail in Chapter 5.

3.5 Other related papers
For the sake of completeness, we briefly mention a handful of other related works. Given
that these papers do not deal directly with synchronization of PWS systems, we do not
discuss them extensively, but we report them here, as they may be of inspiration in the
design of new analytical tools for synchronization problems and contain relevant insights
about ensembles of discontinuous systems.

In [116], convergence of piecewise-linear maps was investigated in a semi-analytical
fashion; consensus for PWS systems was studied in [142]; tracking for piecewise-affine
systems was investigated in [138]; in [152], passivity of two interlaced PWS systems was
defined and analysed; finally, in [123] synchronization of hybrid systems was studied.

4The coupling graph can be directed and weighted.
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4 Mathematical preliminaries
and definitions

Here we give a series of definitions and properties that are instrumental to the theoretical
results and the proofs in Chapters 5 and 6.

4.1 Matrices

Definition 4.1 (Diagonalisability). A matrix A ∈ Rn×n is diagonalisable if there exists
an invertible matrix T ∈ Rn×n such that A = T−1∆AT, where ∆A is a diagonal matrix
containing the eigenvalues of A.

Note that if A is diagonalisable and symmetric, then TT = T−1.

Definition 4.2 (Simultaneous diagonalisability). Two matrices A,B ∈ Rn×n are simul-
taneously diagonalisable if there exists an invertible matrix T ∈ Rn×n such that A
and B are both diagonalisable using T.

We highlight that A and B are simultaneously diagonalisable if they are diagonalisable
and they commute, i.e., AB = BA.

The matrix measure [42, 36, 139, 148] of A ∈ Rn×n induced by the given norm ‖·‖ is
the function µ : Rn×n → R defined as

µ(A) , lim
h↘0

(‖I + hA‖ − 1)
h

.

The most commonly used matrix measures are those associated to the `1-norm, the
Euclidean norm and the uniform norm, given by the following expressions

µ1(A) = max
j=1,...,n

©«Aj j +
∑

i=1,...,n,i,j
|Ai j |

ª®¬ ,
µ2(A) = λmax

(
A + AT

2

)
,
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µ∞(A) = max
i=1,...,n

©«Aii +
∑

j=1,...,n, j,i
|Ai j |

ª®¬ .
Definition 4.3. The function µ−∞ : Rn×n → R, for all A ∈ Rn×n, is given by

µ−∞(A) , min
i=1,...,n

(
Aii −

n∑
j=1, j,i

��Ai j

�� ) . (4.1)

The symbol µ−∞ was chosen to highlight the algebraic similarity between this quantity and
the matrix measure µ∞ induced by the infinite-norm. We also note that µ−∞(Im ⊗ A) =
µ−∞(A), for any m ∈ N>0.

Definition 4.4 (Z- and M-matrices). Let A ∈ Rn×n be a matrix.

• A is a Z-matrix if Ai j ≤ 0 for i , j.
• A is an M-matrix if it is a Z-matrix and it is possible to write A = αI − B,
where Bi j ≥ 0 for all i, j, and α ≥ |λi(B)| for all i.

4.2 Filippov vector fields and solutions
In Definitions 4.5–4.8, we briefly recall the main concepts introduced by Filippov to
characterise solutions of PWS systems [56, 34]. In this subsection we use the following
notation:

• co(·) is a function that gives the convex closure of a set,
• P(Rn) is the power set of Rn,
• N̂ ⊂ P(Rn) is the set of all sets in Rn that have null Lebesgue measure,
• ξ is a vector in Rn,
• Ao

δ(ξ) is an open ball centred in ξ with radius δ > 0,
• t ∈ R≥0 represents time,
• f : Rn × R≥0 → Rn is a not necessarily continuous vector field,
• V : Rn → R is a locally Lipschitz function, which is differentiable everywhere but
in a zero-measure set NV .

Definition 4.5 (Filippov set-valued function). The Filippov set-valued function associ-
ated to f is F [f] : Rn × R≥0 → P(R

n), and is given by

F [f](ξ ; t) ,
⋂
δ:δ>0

⋂
N∈N̂

co
{
f(Ao

δ(ξ) \ N ; t)
}
.

Note that if f is continuous, then F [f] = f.

20



Chapter 4. Mathematical preliminaries and definitions

Definition 4.6 (Filippov solution). A Filippov solution is an absolutely continuous
curve ξ(t) : R≥0 → Rn satisfying, for almost all t ∈ R≥0, the differential inclusion
Ûξ ∈ F [f](ξ ; t).

Definition 4.7 (Generalised gradient). The generalised gradient of V is ∂V : Rn →

P(Rn), and is given by

∂V(ξ) , co
{(

lim
k→+∞

∂

∂ξ
V(ξk)

)
∈ Rn

���� (ξk)k∈N>0 : ξk → ξ, (ξk) ∩ NV = �

}
.

Definition 4.8 (Set-valued Lie derivative). The set-valued Lie derivative LF[f](V) :
Rn → P(R) of V with respect to F [f] is given by

LF[f]V(ξ) ,
{
` ∈ R | ∃a ∈ F [f](ξ ; t) : ∀v ∈ ∂V(ξ), vTa = `

}
.

When we give regularity conditions like QUADness or similar on a vector field f that
must hold in a set or globally, for all points ξ where f(ξ) is discontinuous, we assume the
implicit reformulation that the condition must hold for all φ ∈ F [f(ξ)].

4.3 Minimum density

Consider a graph G = (V,E), with |V| = N . We introduce the following:

• a cut C is a partition ofV in two subsetsV1,V2, with N1 = |V1 |, and N2 = |V2 |,
• ĈG is the set of all possible cuts on G,
• b is the number of edges that connect a vertex inV1 with one inV2, for a given cut,
• the density of a cut is the ratio b/N1N2.

Definition 4.9 (Minimum density). Given a graph G, its minimum density is

δG ,
N
2

min
C∈ĈG

b
N1N2

. (4.2)

The minimum density can be seen as a measure of connectivity in a graph; in simple
terms, the smaller the quantity, the more pronounced is the worst bottleneck in the graph.
The optimal cut arg minC∈ĈG

b
N1N2

associated to δG is known as the sparsest cut [105],
and is here denoted by Csc (despite the name, it could be not unique). The problem of
finding such a cut is called the sparsest cut problem, which is a special kind of graph
partitioning problem [18]. The sparsest cut problem is NP-hard and is normally solved
algorithmically, as discussed below and in [7, 8].

The minimum density of a graph can be computed using the free software METIS
[77], which can solve the generic graph partitioning problem, i.e., given a graph, it finds
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(a) (b)

(c) (d) (e)

Figure 4.1: Example of well-known graphs, assuming they all contain N = 6 vertices. (a)
is a path graph, (b) is a ring graph, (c) is a star graph, (d) is a complete graph, and (e) is a
l-nearest neighbours graph with l = 2.

a partition of the vertices in two subsets of roughly equal size, such that the fewest edges
exist among them, so that the resulting cut is

Cgp = arg min
C∈ĈG

b, N1 ≈ N2.

For our purpose, we need to solve the sparsest cut problem and find

Csc = arg min
C∈ĈG

b

N1N2
.

This can be done by running METIS iteratively, constraining the sizes N1 and N2 of the
two subsets resulting from the cut. Specifically, we run METIS bN/2c times, so that

in run 1, (N1,N2) = (1,N − 1),
in run 2, (N1,N2) = (2,N − 2),

· · ·

in run bN/2c, (N1,N2) = (bN/2c, dN/2e).

At each run, we compute the value of the quantity N
2

b
N1N2

and eventually choose the
smallest one as the minimum density of the graph, according to Definition 4.9. For the
sake of completeness, we mention the Arora-Rao-Vazirani (ARV) algorithm [8, 7] as an
alternative way of computing the sparsest cut.

Note that the minimum density of some selected graph topologies, represented in
Figure 4.1, can be computed analytically by relatively simple algebra (see Appendix B).
We summarise these findings in Table 4.1.
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Table 4.1: Values of the minimum density δG , the algebraic connectivity λ2(L), and
the number of edges NE for selected topologies. “l-near.-n.” stands for “l-nearest-
neighbours”; c1 , cos (π/N), c2 , cos (2π/N). The values of the algebraic connectivity
are taken from [55].

Topology δG λ2(L) NE

Complete N/2 N N2−N
2

Star N/(2(N − 1)) 1 N − 1

Path

{
2/N, if N is even
2N/(N2 − 1), if N is odd

2 (1 − c1) N − 1

Ring

{
4/N, if N is even
4N/(N2 − 1), if N is odd

2 (1 − c2) N

l-near.-n.


4
∑l−1

k=0(l−k)

N , if N is even
4N

∑l−1
k=0(l−k)

N2−1 , if N is odd
- Nl
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5 Convergence results

Firstly, in Theorems 5.2 and 5.3 in Section 5.2, we provide sufficient conditions to assess
global synchronization of piecewise-smooth networks, applicable to the case that the
internal agent dynamics f is a QUAD function (see Definition 2.3). A certain number
of discontinuous functions fall into this category, e.g. Coulomb friction, some relay
functions, continuous but not differentiable functions like the characteristics of nonlinear
resistors and more. The difference between the two theorems is that the latter allows
for more generality in the coupling law, but contains more restricting conditions on the
dynamics. Secondly, for the case that the internal dynamics f fails to satisfy the QUAD
condition, but is σ-QUAD (see Definition 2.4), in Theorems 5.5 and 5.6 in Section 5.4,
we give further sufficient conditions that can be used to ensure synchronization. Again,
the difference between these two theorems is that the latter allows for the coupling laws
to have positive semi-definite inner coupling matrices (rather than positive definite), but
requires the inner dynamics of the agents to satisfy stricter assumptions. The theoretical
results are illustrated by examples.

5.1 Coupling laws
We will consider two specific kinds of coupling, that is, two expressions for the functions
ui in (2.1).

1. The first one is a nonlinear single-layer coupling, associated to an undirected
unweighted graph G = (V,E). The dynamics of the network is given by

Ûxi(t) = f(xi; t) −
∑N

j=1
Li jg(xi,xj ; t), i = 1, . . . ,N, (5.1)

where Li j is the (i, j)-th element of the symmetric Laplacian matrix L ∈ RN×N [6]
of G, and g : Rn × Rn × R≥0 → Rn is a coupling function. In conjunction with
(5.1) we will also make the following assumption.

Assumption 5.1. The coupling function g : Rn × Rn × R≥0 → Rn in (5.1) is
such that, for all ξ1, ξ2 ∈ R

n, t ∈ R≥0, it holds that
(i) g(ξ1, ξ1; t) = 0,

25



5.1. Coupling laws

G = (V, E)

Gd = (V, Ed)

Figure 5.1: A multilayer network with N = 5 vertices and two coupling layers.

(ii) g is antisymmetric with respect to its first two arguments, i.e., g(ξ1, ξ2; t) =
−g(ξ2, ξ1; t), and

(iii) there exist c ∈ R≥0, P,G ∈ Rn×n, with G = GT such that

(ξ2 − ξ1)
T Pg(ξ1, ξ2; t) ≥ (ξ1 − ξ2)

T cG (ξ1 − ξ2) .

Clearly, a special case that satisfies Assumption 5.1 is that of linear diffusive
coupling, where

g(xi,xj ; t) = cΓ(xj − xi), (5.2)

with Γ ∈ Rn×n, P = I and G = sym(Γ).
2. The second communication protocol is a multiplex one [20], combination of a

linear diffusive layer and a discontinuous layer. The two layers are associated to two
graphs, say G = (V,E) and Gd = (V,Ed), both being undirected and unweighted
(see Figure 5.1). Thus, the dynamics of the network is

Ûxi(t) = f(xi; t) − c
N∑
j=1

Li jΓ(xj − xi) − cd

N∑
j=1

Ld
i jΓdsign(xj − xi), i = 1, . . . ,N,

(5.3)
where Li j, Ld

i j are the (i, j)-th elements of the symmetric Laplacian matrices
L,Ld ∈ RN×N associated to G,Gd, respectively; Γ,Γd ∈ Rn×n are the inner
coupling matrices describing how the coupling actions affect the dynamics of the
nodes.

The coupling protocol in (5.1) with Assumption 5.1 can be used to describe a large
variety of communication laws occurring in natural phenomena and Engineering. Indeed,
diffusive couplings can be used to describes the effect of springs, resistors, and chemical
diffusion processes. However, as illustrated in [38, 93, 92], a purely diffusive protocol
does not suffice to achieve asymptotic synchronization in all cases. Therefore, in (5.3) we
consider an additional discontinuous coupling layer, which could be seen as a control
term, that is able to enforce synchronization in a much wider range of scenarios.

Finally, with reference to (2.1), we list here a series of symbols that will be employed
in this and the next chapter.

• x̃ ,
∑N

i=1 xi/N ∈ Rn is the average of the states of the nodes,
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Chapter 5. Convergence results

• ei , xi − x̃ ∈ Rn, i = 1, . . . ,N are the synchronization errors, and we denote the
h-th element of ei by ei,h ,

• x̄ , [xT
1 · · · xT

N ]
T ∈ RnN is the stack of the states of the nodes,

• ē , [eT1 · · · eTN ]
T ∈ RnN is the stack of the errors,

• eh , [e1,h · · · eN ,h]T ∈ RN groups the h-th components of all the errors
ei, i = 1, . . . ,N ,

• etot ,
1
N

∑N
i=1 ‖ei ‖2 is the total synchronization error.

5.2 Convergence of QUAD piecewise-smooth systems
Here, we present results appeared in [33] that extend [38, 117, 39] and give conditions
for the global complete synchronization of PWS agents whose dynamics is QUAD,
accounting for the generic nonlinear diffusive coupling function (5.1). Namely, considering
Assumption 5.1, Theorem 5.2 can be used when G > 0 (resp. Γ > 0 if (5.2) holds),
whereas Theorem 5.3 is to be employed when no assumptions on the definiteness of G
(resp. Γ) can be made.

Theorem 5.2. Network (5.1) achieves global asymptotic synchronization if

(a) there exist c ∈ R, P,Q,G ∈ Rn×n such that:
• f is QUAD(P, Q), with P > 0,
• g verifies Assumption 5.1 with c, P and G, and with G > 0,

(b) G is a connected graph, and
(c) c > c∗, with

c∗ ,
‖Q‖2

λ2(L)λmin(G)
. (5.4)

Proof. First, Note that

Ûei , φi(x1, . . . ,xN ; t) = Ûxi − Û̃x =

f(xi; t) −
N∑
j=1

Li jg(xi,xj ; t) −
1
N

N∑
i=1

©«f(xi; t) −
N∑
j=1

Li jg(xi,xj ; t)ª®¬ . (5.5)

Then, consider the candidate set-valued Lyapunov functionV(e) , 1
2
∑N

i=1 eTi Pei . The fact
that f is not continuous causes V to not be differentiable. However, employing Filippov
formalism we can state that ÛV(x) ∈ V, where1

V , LF[φi ]

(
1
2

N∑
i=1

eTi Pei

)
=

1
2

N∑
i=1
LF[φi ]

(
eTi Pei

)
.

Hence, if ∀v ∈ V, v < 0, then limt→+∞ V = 0 and the network achieves synchronization
globally. Note that, in (5.5), the facts that L is symmetric and g is antisymmetric (with

1The sum rule [34] is used to apply the set-valued Lie derivative operator separately to each addend inV .
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5.2. Convergence of QUAD piecewise-smooth systems

respect to xi and xj) imply that
∑N

i=1
∑N

j=1
(
Li jg(xi,xj ; t)

)
= 0. Then, from Definition 4.8

and (5.5) we can write

V =

N∑
i=1

eTi P

(
F [f(xi; t)] − F

[
N∑
i=1

f(xi; t)
N

])
−

∑N

i=1

N∑
j=1

Li jeTi PF
[
g(xi,xj ; t)

]
.

As
∑N

i=1 ei = 0, we have
∑N

i=1 eTi PF
[∑N

i=1 f(xi; t)/N
]
= 0 and

∑N
i=1 eTi PF [f(x̃; t)] = 0.

Thus, we can rewrite

V =

N∑
i=1

eTi P (F [f(xi; t)] − F [f(x̃; t)]) −
N∑
i=1

N∑
j=1

Li jeTi PF
[
g(xi,xj ; t)

]
.

Focusing on a generic element v ∈ V and exploiting the hypotheses on f and g, we get2

v ≤

N∑
i=1

eTi Qei − c
N∑
i=1

N∑
j=1

Li jeTi Gej .

This inequality can be rewritten in terms of the stack of the errors ē as

v ≤ ēT (IN ⊗ Q − cL ⊗ G) ē ≤ ēT (‖Q‖IN ⊗ In − cL ⊗ G) ē

= ‖ē‖2 ‖Q‖ − ēT (cL ⊗ G) ē. (5.6)

Since
∑N

i=1 ei = 0, that is

∀h = 1, . . . ,n,
N−1∑
i=0

ē(i−1)n+h = 0,

we can apply Corollary 13.4.2 in [68] and get3

v ≤ ‖ē‖2 (‖Q‖ − cλ2(L)λmin(G)) .

Therefore, if c > c∗, ÛV(ē) < −α ‖ē‖2 withα > 0, and the network achieves synchronization
globally. �

Theorem 5.3. Network (5.1) achieves global asymptotic synchronization if

(a) there exist c ∈ R, P,Q,Q−,Q′,G ∈ Rn×n such that:
• f is QUAD(P, Q), with P > 0,
• g verifies Assumption 5.1 with c, P and G, with G ≥ 0,

2Recalling that L = LT, and using (i), (ii), (iii) in Assumption 5.1, we get

−
∑N

i=1

∑N

j=1
Li j eTi Pg(xi , x j ; t) = −

∑N

i=1

∑N

j>i
Li j (xi − x j )

TPg(xi , x j ; t)

≤ −c
∑N

i=1

∑N

j>i
Li j (xi − x j )

TG(x j − xi ) = −c
∑N

i=1

∑N

j=1
Li j eTi Ge j .

3If (5.2) holds, with Γ being an M-matrix (see Definition 4.4), then a diagonal matrix M exists (that is P)
such that sym(MΓ) = sym(G) = G > 0 [40].
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Chapter 5. Convergence results

• Q = Q− +Q′, Q− < 0, Q′ = (Q′)T,
• Q′ and G are simultaneously diagonalisable,
• λh(G) > 0 if λh(Q′) > 0, with h = 1, . . . ,n.

(b) G is a connected graph, and
(c) c ≥ c∗, with

c∗ ,


1
λ2(L)

max
h=1,...,n

λh(Q′)
λh(G)

, if ∃h ∈ {1, . . . ,n} : λh(Q′) > 0,

0, otherwise.
(5.7)

Proof. The first part of the proof is identical to that of Theorem 5.2 until (5.6), then we
can write

v ≤ ēT (IN ⊗ Q − cL ⊗ G) ē
= ēT (IN ⊗ Q−) ē + ēT (IN ⊗ Q′) ē − cvG,

(5.8)

where vG , ēT (L ⊗ G) ē. Now, given that Q′ and G are simultaneously diagonalisable,
there exists an invertible matrix T ∈ Rn×n such that Q′ = T−1∆Q′T and G = T−1∆GT,
where ∆Q′ and ∆G are diagonal matrices containing the real eigenvalues of Q′ and G,
respectively (note thatQ′ = (Q′)T andG = GT imply thatTT = T−1). Let us also define the
transformed synchronization errors yi , Tei ∈ Rn and their stack ȳ , (IN ⊗ T) ē ∈ RnN .
Therefore, we can rewrite vG as

vG = ēT (L ⊗ G) ē = ēT
[
L ⊗

(
T−1∆GT

)]
ē

= ēT
[(

L ⊗ T−1
)
(IN ⊗ (∆GT))

]
ē

= ēT
[(

L ⊗ T−1
)
(IN ⊗ ∆G) (IN ⊗ T)

]
ē

= ēT
[(

IN ⊗ TT
) (

IN ⊗ TT
)−1 (

L ⊗ T−1
)
(IN ⊗ ∆G)

]
ȳ

= ȳT
[(

IN ⊗ TT
)−1 (

L ⊗ T−1
)
(IN ⊗ ∆G)

]
ȳ

= ȳT
[(

L ⊗
(
TT−1

))
(IN ⊗ ∆G)

]
ȳ = ȳT (L ⊗ ∆G) ȳ.

Applying the same steps to ēT (IN ⊗ Q′) ē, we rewrite (5.8) as

v ≤ ēT (IN ⊗ Q−) ē + ȳT (
IN ⊗ ∆Q′ − cL ⊗ ∆G

)
ȳ.

Now, let us define yh , [y1,h y2,h · · · yN ,h]
T ∈ RN , with h = 1, . . . ,n, as the vector of

all the h-th components of the N transformed synchronization errors yi . Since ∆Q′ and
∆G are diagonal matrices, it is possible to write

v ≤ ēT (IN ⊗ Q−) ē +
n∑

h=1

(
yh

)T
(λh(Q′)IN − cλh(G)L) yh,
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5.3. Examples of convergence of QUAD piecewise-smooth systems

and, using again Corollary 13.4.2 in [68], we have

v ≤ ēT (IN ⊗ Q−) ē +
∑n

h=1

yh2
(λh(Q′) − cλh(G)λ2(L)) .

In order to have v ≤ ēT (IN ⊗ Q−) ē < 0, and thus prove synchronization, it is required
that λh(Q′) − cλh(G)λ2(L) ≤ 0, h = 1, . . . ,n. Note that if λh(Q′) ≤ 0, then λh(G) can
be null. Differently, if λh(Q′) > 0, then it is required that λh(G) > 0. The value of c∗ in
(5.7) stems trivially from the last consideration. �

As a handy simplification of Theorem 5.3, we give the following corollary. With reference
to (5.2), assume that

Γ = diag ([γ1 · · · γn]) , where γh ≥ 0 ∀h = 1, . . . ,n. (5.9)

Corollary 5.4. Network (5.1) with linear diffusive coupling (5.2)-(5.9), achieves
global asymptotic synchronization if

(a) there exist Q,Q−,Q′ ∈ Rn×n such that:
• f is QUAD(In, Q),
• Q = Q− +Q′, Q− < 0, and Q′ = diag ([q1 · · · qn]),
• γh > 0 if qh > 0, with h = 1, . . . ,n.

(b) G is a connected graph, and
(c) c ≥ c∗, with

c∗ ,


1
λ2(L)

max
h=1,...,n

qh
γh
, if ∃h ∈ {1 . . . ,n} : qh > 0,

0, otherwise.
(5.10)

Proof. The proof follows immediately from the application of Theorem 5.3. �

5.3 Examples of convergence of QUAD piecewise-smooth
systems

5.3.1 Example 1: Positive definite coupling term
As an application of Theorem 5.2, consider the relay system

f(xi) =
[
−1 −1
2 3

]
xi −

[
0

2sign(xi,1 + xi,2)

]
.

Such a system can either reach an equilibrium point in the set {xi ∈ R2 | xi,1 =
−xi,2, xi,2 ∈ [−2,2]} or diverge, and is QUAD with P = In and Q = 3.06In. We coupled
N = 50 of these relays through an Erdös-Rényi random graph built with wiring probability
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Figure 5.2: State dynamics and global synchronization error etot for coupled relay systems.
Top panels: c = 0.05; bottom panels: c = 0.25.

p = 0.5 [54], resulting in a topology with λ2(L) = 14.80; in addition, we considered
a linear diffusive coupling (5.2) with Γ = In. The critical value of the coupling gain
computed using Theorem 5.2 is c∗ = ‖Q‖ /λ2(L) = 0.21. Figure 5.2 shows the absence
and the emergence of synchronization in the cases c = 0.05 < c∗ and c = 0.25 > c∗.

5.3.2 Example 2: Positive semi-definite coupling term
To illustrate Theorem 5.3 and Corollary 5.4, consider the following PWS oscillator as a
representative example:

f(xi; t) =
[
−xi,1 + 2xi,2sin(t)

f2(xi,2)

]
, where f2(xi,2) =


−xi,2 − 2, if xi,2 ≤ −1,
xi,2, if − 1 < xi,2 < 1,
−xi,2 + 2, if xi,2 ≥ 1.

This is a cascaded system, as Ûxi,2 depends only on xi,2. Moreover the state variable xi,2 has
two stable equilibria in −2 and +2; xi,1 displays a sinusoidal behaviour, whose amplitude
and phase are dependant on xi,2. Notice that f is continuous but not differentiable, and
QUAD with P = In and Q =

[
−1 2
0 1

]
; then we take Q− =

[
−1 2
0 −3

]
and Q′ =

[ 0 0
0 4

]
. As

in the previous example, we deploy a random network with N = 50 nodes, and again
λ2(L) = 14.80, but this time Γ =

[ 0 0
0 1

]
(note that Γ ≯ 0). Applying Theorem 5.3 with

T = In we get c∗ = λ2(Q′)/(λ2(L)λ2(Γ)) = 4/(14.80 · 1) = 0.27. Figure 5.3 shows the
results of two simulations, with c = 0.02 < c∗, and c = 0.28 > c∗; only the latter case
displays synchronization.
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Figure 5.3: State dynamics and global synchronization error etot for coupled oscillating
systems. Top panels: c = 0.02; bottom panels: c = 0.28.

5.4 Convergence of generic PWS systems
through distributed discontinuous coupling

Next, we expound results contained in [32], which is under revision at the time of the
writing of this thesis. In particular, assuming the σ-QUAD condition to hold for the
piecewise-smooth dynamics f, we show that convergence towards a common synchronous
solution can be enforced when a discontinuous coupling layer is added on top of the
diffusive one (see (5.3)). In addition, we provide expressions for the values of the critical
coupling gains c∗ and c∗d of the diffusive and discontinuous coupling layers, respectively,
required for synchronization.

Theorem 5.5. Network (5.3) achieves global asymptotic synchronization if

(a) there exist P,Q,M ∈ Rn×n such that:
• f is σ-QUAD(P, Q, M), with P > 0,
• sym(PΓ) > 0,
• µ−∞(PΓd) > 0,a

(b) G and Gd are connected graphs, and
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(c) c > c∗, and cd ≥ c∗d with

c∗ ,
‖Q‖2

λ2(L)λmin(sym PΓ)
, c∗d ,

‖M‖∞
δGd µ

−
∞(PΓd)

. (5.11)

aWe recall that the expression of the function µ−∞ is given in Definition 4.3.

A proof of this theorem is given later in Chapter 6. Here, we wish to emphasise that
the critical coupling gains depend on the internal node dynamics through the matrices
Q, P, M, the inner coupling matrices Γ, Γd, and the structure of the control layers L, Ld
through the algebraic connectivity λ2(L) and the minimum density of the discontinuous
coupling layer δGd (see Section 4.3). Hence, the convergence theorem above can be
effectively used to design the network control layers as illustrated via representative
examples in Section 5.5.

Next, we provide an alternative condition for global synchronization to deal with
the case in which the inner coupling matrices Γ and Γd do not fulfil the conditions
sym(PΓ) > 0 and µ−∞(PΓd) > 0 in Theorem 5.5.

Theorem 5.6. Network (5.3) achieves global asymptotic synchronization if

(a) there exist P,Q,Q−,Q′,M ∈ Rn×n such that:
• f is σ-QUAD(P, Q, M), with P > 0, M = diag([m1 · · · mn]),
• Q = Q− +Q′, Q− < 0, Q′ = (Q′)T,
• PΓ = (PΓ)T, Q′ and PΓ are simultaneously diagonalisable, and
λh(PΓ) ≥ 0 ∀h = 1, . . . ,n, but λh(PΓ) > 0 if λh(Q′) > 0,

• PΓd = diag([γ1 · · · γn]), and γh ≥ 0 ∀h = 1, . . . ,n, but γh > 0 if
mh > 0;

(b) G and Gd are connected graphs, and
(c) c > c∗ and cd ≥ c∗d, with

c∗ ,


1
λ2(L)

max
h=1,...,n

λh(Q′)
λh(PΓ)

, if ∃h : λh(Q′) > 0,

0, otherwise,
(5.12)

c∗d ,


1
δGd

max
h=1,...,n

mh

γh
, if ∃h : mh > 0,

0, otherwise.
(5.13)

Note that the theorem above relaxes some of the assumptions on the inner coupling
matrices, but requires other alternative structural hypothesis on these matrices that,
although seemingly more restrictive, can be of use in some cases as shown in Section 5.5.
The proof of the theorem is given later in Chapter 6.

Note that Theorems 5.5 and 5.6 give sufficient conditions on the threshold values of
the coupling gain that scale with λ2(L)−1 for c∗ and δ−1

Gd
for c∗d. Table 4.1 shows how

these structural variables change for a set of paradigmatic network topologies of N nodes
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together with their total number of links. The multiplex nature of the strategy proposed
here allows to pick the structure of each layer so as to fulfil a trade-off between the values
of the required coupling gains and the number of edges in each layer.

5.5 Examples of convergence of σ-QUAD piecewise-smooth
systems

5.5.1 Example 1: Positive definite coupling terms
We consider the problem of achieving global asymptotic synchronization in a network of
N = 30 relay systems whose vector field is given by f(xi) = Axi − Bsign(xi,1), with

A =


1.51 1 0
−99.922 0 1
−5 0 0

 , B =


1
−2
1

 .
As shown in [43], with these parameter values each relay system exhibits chaotic behaviour
and therefore, when a group of such relays is considered, they will not synchronize unless
appropriately coupled. In [38], it is shown that under some hypotheses a network of
such relays can achieve bounded convergence to the synchronous manifold. We show
below that using Theorem 5.5, we can prove instead global asymptotic convergence of
this network of discontinuous systems towards each other.

Note that each relay can be shown to be σ-QUAD according to Definition 2.4 through
simple algebraic manipulations with

P = I3, Q = A, M =

0 0 0
4 0 0
0 0 0

 ;

therefore ‖Q‖2 = 100.063 and ‖M‖∞ = 4. We assume that the relays are coupled via
two layers as in (5.3) with the structure of the proportional layer, L, corresponding to
a ring graph, with λ2(L) = 1, while the structure of the discontinuous coupling layer,
Ld, being chosen as the Erdős-Rényi-like graph [53] shown in Figure 5.4a. Figure 5.4b
shows the sparsest cut of this latter graph obtained numerically, whose minimum density
is computed to be δGd = 1.290. We assume all states are available for coupling so that
Γ = Γd = I3; hence, λmin(sym(PΓ)) = µ−∞(PΓd) = 1. From Theorem 5.5, we can then
compute the critical coupling gains as c∗ = 100.063 and c∗d = 3.102 that are sufficient for
global convergence.

Figures 5.5a and 5.5b show the evolution of the total synchronization error etot
(defined in Section 1.5) when the coupling gains are chosen below and above the critical
threshold values. As expected from the theoretical results, when the gains are above the
thresholds, the synchronization error converges asymptotically to zero. Note that the
analytical estimates of the critical coupling gains are very conservative as expected from
a Lyapunov-based proof of convergence.
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Figure 5.4: (a) Topology of the discontinuous coupling layer. The graph is an Erdős-
Rényi-like one, with wiring probability p = 0.2. (b) Sparsest cut of the topology in (a);
N1 = 17, N2 = 13. b = 19.

5.5.2 Example 2: Resilience to edge faults
Next, we show how the findings in Theorem 5.5 can be used to evaluate the resilience
of the network with respect to structural changes in the communication layer. To this
aim, consider the graph in Figure 5.4 which contains 82 edges. Now, assume that, due to
some fault, 8 links (roughly 10% of the total) are removed. We investigate two possible
scenarios.

A: 4 blue and 4 red links are removed from each cluster in the sparsest cut of the
original graph; the minimum density of this new graph GA, shown in Figure 5.6a,
will be called δGA .

B: 8 green links interconnecting the two different clusters are removed, so that by δGA

we refer to the minimum density of the perturbed graph GB in Figure 5.6b.

The minimum densities of the perturbed graphs can be computed numerically as δGA =

1.080 and δGB = 0.747, respectively. Consequently, the threshold value c∗d as obtained
from (5.11) associated to GB will be larger (thus worse) than that associated to GA.
This shows that removing some links rather than others can be more impactful on the
synchronizability of the network and hence on its resilience to intentional or unintentional
perturbations. Specifically, we observe a greater loss of resilience when the inter-cluster
links are removed, although a detailed analysis of this effect is beyond the scope of this
paper and will be the subject of future work.
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Figure 5.5: Error dynamics in a network of relay systems with (a) c = 0.1, cd = 0.001
and with (b) c = 101, cd = 3.200.

5.5.3 Example 3: Positive semi-definite coupling terms
To illustrate an application of Theorem 5.6 and the importance of the discontinuous
coupling action, we present the following example. Consider the cascaded PWS oscillator
whose vector field is

f(xi; t) =
[
−xi,1 + 2sin(xi,2πt)

f2(xi,2)

]
, with f2(xi,2) =

{
+cos(xi,2), if xi,2 > 0,
−cos(xi,2), if xi,2 < 0.

The dynamics of the state variable xi,2 is decoupled from that of xi,1 and has infinite
(stable and unstable) equilibrium values; xi,1 instead displays a sinusoidal behaviour in
time, whose amplitude and frequency depend on xi,2.

It can be easily verified that f is not QUAD, but is σ-QUAD with P = I2, M =
[ 0 0

0 2
]

and Q =
[
−1 2
0 1

]
= Q− +Q′, where we select Q− =

[
−1 2
0 −3

]
and Q′ =

[ 0 0
0 4

]
. Similarly to

example 1, we deploy N = 30 nodes, with the same topologies for the coupling layers,
having again λ2(L) = 1 and δGd = 1.290. However, this time Γ = Γd =

[ 0 0
0 1

]
, and

therefore sym(PΓ) and µ−∞(PΓ) are not positive definite, thus not fulfilling the assumptions
of Theorem 5.5. Applying Theorem 5.6 instead, we get c∗ = λ2(Q′)/(λ2(L)λ2(Γ)) = 4
and c∗d = m2/(γ2δGd ) = 1.550. Figure 5.7 shows the results of two simulations, with
c = 4.100 > c∗, cd = 0 < c∗d, and with c = 4.100 > c∗, cd = 1.600 > c∗d. Convergence is
observed only in the latter case, where both the coupling gains are above the thresholds
found with Theorem 5.6; differently, in the former case, the diffusive action alone is not
enough to guarantee synchronization, even though its coupling gain is selected above the
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Figure 5.6: Topologies obtained removing links in the graph in Figure 5.4b and associated
sparsest cuts. (a) 4 blue links (2-9, 5-9, 6-11, 6-16) and 4 red links (17-22, 18-26, 19-30,
23-28) from Figure 5.4b were removed; (b) 8 green links (3-10, 5-19, 6-10, 7-26, 7-28,
8-11, 22-27, 24-30) from Figure 5.4b were removed.

relative threshold.

5.5.4 Example 4: A numerical study of synchronizability

To provide a demonstration of the interplay between the two communication layers in
(5.3), we consider a network of N = 10 identical Sprott circuits, whose dynamics is given
by

f(xi) =


0 1 0
0 0 1
−1 −1 −0.5

 xi +


0
0

sign(xi,1)

 .
In the network, Γ = Γd = In, and the nodes are diffusively coupled via a graph with
Laplacian matrix L associated to a 3-nearest neighbours topology. Differently, Ld is
associated to 3 possible topologies, as portrayed in Figure 5.8, which displays the steady
state value of the global synchronization error etot (defined in Section 1.5) for each
different combination of the coupling layer structures. Initial conditions were selected
randomly (with a uniform distribution), in the range of chaoticity of the Sprott circuit.
We notice that the stability region depends on the relative choice of the structures of the
two coupling layers. Obviously, the worst case is when the structure of the discontinuous
layer is the sparsest (see Figure 5.8a). Surprisingly, to enhance stability it is sufficient
to add a few long range links to the discontinuous coupling layer (see Figure 5.8b); the
largest stability region being observed when the discontinuous coupling layer shares the
same links as the underlying diffusive one.

Notice that applying Theorem 5.5, rather conservative results are obtained. In-
deed, the hypotheses of the theorem hold with P = I3, ‖Q‖2 = 1.70 ‖M‖∞ = 2,
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Figure 5.7: (a) Error dynamics in a network of cascaded systems with c = 4.1, cd = 0. (b)
Error dynamics with c = 4.1, cd = 1.6.

λmin (sym(PΓ)) = µ−∞(PΓd) = 1, λ2(L) = 4.382, and δGd ∈ (0.5,0.714,2.4), for the three
different configurations (a), (b) and (c) of the discontinuous coupling layer in Figure 5.8.
Therefore, we have c∗ = 0.388 and c∗d ∈ (4,2.801,0.833).

5.5.5 Example 5: The necessity of a discontinuous coupling term
To further illustrate the beneficial effect of the discontinuous layer, we consider a network
of N = 10 PWS bistable systems, used to model energy harvesters [27] or simplified
climatic models [82], and described by

f(xi) =
[

0 1
−1 −1

]
xi +

[
0

sign(xi,1)

]
.

The system has two coexisting stable equilibria in [1 0]T and [−1 0]T. The agents are
coupled over a path graph, with L = Ld and Γ = Γd = I2. We consider the particularly
challenging case where five nodes are started at one of the equilibria, while the other five
are at the other. In this case, as shown in Figure 5.9, the diffusive coupling layer alone is
unable to synchronize the network for any value of c, when the discontinuous coupling
layer is disconnected (cd = 0). In this case, synchronization is only achieved when both
coupling layers are present.
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Figure 5.8: Characterization of synchronizability in a network of Sprott circuits. Five
random initial conditions were used, with xi(0) ∈ [[0,1] [0,0.5] [0,0.5]]T, and, for each
combination of c and cd, etot is taken as the average of the five simulations. The diffusive
layer is always associated to a 3-nearest neighbours; differently, the discontinuous coupling
layer varies in each figure.
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Figure 5.9: Characterization of synchronizability in a network of bistable systems.
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Chapter 6. Proofs of convergence with discontinuous coupling

6 Proofs of convergence with
discontinuous coupling

We give here the proofs of Theorems 5.5 and 5.6 presented in Chapter 5. We start by
giving some lemmas and definitions in Section 6.1, then we introduce the concept of star
functions in Section 6.2 and show how such functions can be associated to a given graph
in Section 6.3. In particular, we show that semi-negativity of the star function for a given
graph can be studied by evaluating its value on the bipartitions of the graph, which will
be crucial to prove the two theorems.

6.1 Preliminary lemmas and definitions

Definition 6.1 (Clusterization). Given a vector ξ ∈ Rn, we define its clusterization,
denoted by clus(ξ), as a partition of the set of indicesI = {1, . . . ,n}, say {I1, . . . ,IQ}
with 1 ≤ Q ≤ n, such that, for all i, j ∈ I, ξi = ξj if and only if there exists q such
that i, j ∈ Iq .

For example, according to this definition, the vector ξ = [1 1 6 2 2]T has a
clusterization clus(ξ) = {I1,I2,I3} with I1 = {1,2},I2 = {3},I3 = {4,5}. Clearly, the
clusterization of a vector is unique up to a reordering of the clusters.

Lemma 6.2. Given ξ ∈ Rn and A ∈ Rn×n, it holds that

ξTAsign(ξ) ≤ ‖A‖∞ ‖ξ ‖1 .

Proof. We can write

ξTAsign(ξ) =
n∑
i=1

©«Aii |ξi | +

n∑
j=1, j,i

Ai jξisign(ξj)
ª®¬

≤

n∑
i=1

©«|Aii | |ξi | +

n∑
j=1, j,i

��Ai j

�� |ξi |ª®¬
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≤ max
i=1,...,n

©«
n∑
j=1

��Ai j

��ª®¬
n∑
i=1
|ξi | .

�

Lemma 6.3. Given ξ ∈ Rn and A ∈ Rn×n, it holds that

ξTAsign(ξ) ≥ µ−∞(A) ‖ξ ‖1 ,

with µ−∞(A) defined as in (4.1).

Proof. We have

ξTAsign(ξ) ≥
n∑
i=1

©«Aii −

n∑
j=1, j,i

��Ai j

��ª®¬ |ξi | ≥ min
i=1,...,n

©«Aii −

n∑
j=1, j,i

��Ai j

��ª®¬
n∑
i=1
|ξi | .

�

Let Vd be a vector space in Rd .

Definition 6.4 (Cones).

(i) A set K ⊆ Vd is a (convex) cone if, for any ξ1, ξ2 ∈ K and α1, α2 ≥ 0, it holds
that α1ξ1 + α2ξ2 ∈ K.

(ii) A cone is finitely generated if it is the conic combination (i.e. a linear
combination with non-negative coefficients) of a finite number of unit norm
vectors, which we call generators of the cone.

(iii) A cone K is polyhedral if there exists a matrix C = [c1 c2 · · · cq] ∈ Rd×q

(with q ≥ d and C having rank d) such that CTξ ≥ 0, for all ξ ∈ K.

A finitely generated cone in R3 is illustrated in Figure 6.1a. Note that a convex cone
contains its boundary.

Lemma 6.5 (Equivalence of cones [16]). A polyhedral cone is a finitely generated
cone having p generators; the i-th generator ξ̂i is such that cTj ξ̂i = 0 for n− 1 indices
j , i. A finitely generated cone is also a polyhedral cone.

Definition 6.6 (Incidence matrix [68]). Given a graph G, the incidence matrix B ∈
ZN×NE has columns bi , i = 1, . . . ,NE , where bi is associated to edge i connecting
vertices vj and vk , and has all its elements equal to zero, except for positions j and k,
where it has arbitrarily either 1 and −1, or −1 and 1.
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Figure 6.1: (a) A finitely generated coneKj in R3; ξ̂1, ξ̂2, and ξ̂3 are the generators of the
cone. (b) Example of the domain of a star function with 12 cones Kj , j = 1, . . . ,12, in
the case that n = 2.

Definition 6.7 (Bipartitions and tripartitions). We term as bipartitions B̂ and triparti-
tions T̂ of a graph G the set of all the possible partitions of the vertices setV of the
graph in two or three subsets (or clusters), respectively. We require that in both the
bipartitions and the tripartitions there are at least two clusters made of connected
vertices.

As far as notation is concerned, we denote generic bipartitions and tripartitions by
B = {I1,I2} and T = {I1,I2,I3}, respectively, where Ii is the set of indices of the
vertices belonging to the i-th cluster. Finally, we denote as P̂ the set of all bipartitions and
tripartitions of a graph of interest, i.e. P̂ , B̂ ∪ T̂ . A partition that is either a bipartition
or a tripartition is denoted by P ∈ P̂.

6.2 Star functions

Definition 6.8 (Star function). A continuous piecewise-linear function φ : Rn → R is
a star function if

(i) it is linear in a set of polyhedral convex cones Kj , j = 1, . . . , J, with J ∈ N>0,
(ii) the cones can overlap only on their boundaries, and
(iii) they are a cover for Rn.

An example of the domain of a star function is illustrated in Figure 6.1b. We can now
give the following Lemma, used to assess the semi-negativity of a star function.

Lemma 6.9. Given a star function φ : Rn → R, if φ(ξ) ≤ 0 on the generators of the
cones Kj , j = 1, . . . , J over which it is defined, then φ(ξ) ≤ 0 for all ξ ∈ Rn.

Proof. Without loss of generality, consider any cone Kj where φ is linear. Since by
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definition Kj is a finitely generated cone, each of its points can be expressed as

ξ = α1 ξ̂1 + α2 ξ̂2 + . . . + αp ξ̂p, ξ ∈ Kj,

where ξ̂1, . . . , ξ̂p are the p generators ofKj , and α1, . . . , αp ≥ 0. Then, exploiting linearity
of φ, we have

φ(ξ) = α1φ(ξ̂1) + α2φ(ξ̂2) + . . . + αnφ(ξ̂n), ξ ∈ Kj .

Thus, since α1, . . . , αp ≥ 0, if φ is non-positive on all the generators ξ̂i of Kj , then
φ(ξ) ≤ 0 for all ξ ∈ Kj . The same is true for any other Kj .

�

6.3 Star function associated to a graph

Next we give a set of results concerning a specific type of star function that can be
associated to a graph G. We also show that the properties of this function can be
interpreted in a graph-theoretic manner and derive some results that will be useful later in
Section 6.4 to prove Theorem 5.5.

We denote by S ⊂ RN the subspace

S ,

{
e ∈ RN

����� N∑
i=1

ei = 0

}
. (6.1)

We associate to any graph G a function φG : S → R, given by

φG(e) = a1

N∑
i=1

��iTi e
�� − a2

NE∑
i=1

��bT
i e

�� , (6.2)

where N and NE are the numbers of vertices and edges in G, respectively, a1,a2 are
positive scalars, ii is the i-th vector of the canonical basis of RN , and bi are the columns
of the incidence matrix B of G.

Lemma 6.10. Given a graph G, the function φG constructed as in (6.2) is a star
function.

Proof. We prove that φG is a star function by verifying that all the three conditions in
Definition 6.8 are fulfilled.

(i) From its definition, φG is linear in the set of regions, which we name Kj with
j ∈ N>0, where the argument of each of the absolute values in (6.2) has a certain sign.
Next, we need to show that allKj are polyhedral cones. Without loss of generality, assume
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K1 is the set where the arguments of the absolute values have the following signs:1
iT1e ≥ 0, . . . , iTN−1e ≥ 0,
iTNe ≤ 0,
bT

1e ≥ 0, . . . ,bT
NE

e ≥ 0.
(6.3)

K1 can be equivalently expressed as the locus where the vector constraint CTe ≥ 0 holds,
with

C ,
[
i1 · · · iN−1 −iN b1 · · · bNE

]
.

Given that i1 . . . , iN are linearly independent, C has rank N; thus K1 is a polyhedral cone
in S; see Definition 6.4. Considering a different regionKj would only change the signs of
the inequalities in (6.3), and thus the signs of the columns in C, not affecting the validity
of the argument. Therefore, all Kj’s are polyhedral cones.

(ii) Since each Kj is defined by a specific combination of signs for the inequalities
in (6.3), the intersection of any two Kj’s can either be the origin or only contain
points in their boundaries. In fact, a point e′ such that cTe′ = 0, for some c ∈ Ci,b ,
{i1, . . . , iN ,b1, . . . ,bNE }, belongs both to a region where cTe′ ≥ 0 and to one in which
cTe′ ≤ 0, and is on the boundaries of both. Conversely, if another point e′′ is such that
cTe′′ , 0, for all c ∈ Ci,b, it can only belong to one region Kj .

(iii) Finally, given that each value of e ∈ S determines a combination of signs for
the non-zero arguments in the absolute values in (6.2), each point e belongs to at least
one Kj ; therefore, the family of all Kj’s is a cover for S. Hence, the thesis follows.

�

Lemma 6.11. Let G be a connected graph and φG its associated star function defined
as in (6.2). Say ê any generator of φG , then the clusters of indexes in clus(ê) form
either a bipartition or a tripartition of G.a

aNote that clus(ê) is a partition of {1, . . . , N }.

Proof. To prove the thesis, we need to show that (i) clus(ê) = {I1, . . . ,IQ} with Q = 2 or
Q = 3; (ii) the partition of G contains at least two clusters of connected vertices.

(i) From the proof of Lemma 6.10 (step (i)) and Lemma 6.5, it follows that any
generator ê of φG is a vector in S with unit norm such that N − 2 independent constraints
cTi ê = 0 hold, with the vectors ci’s picked from the set Ci,b , {i1, . . . , iN ,b1, . . . ,bNE }.

We term as p the number of constraints of the form iTi ê = 0, so that those of the kind
bT
i ê = 0 are N − 2 − p, with 0 ≤ p ≤ N − 2.
According to the definition of bi , each of the constraints bT

i ê = 0 implies that two
components of ê are equal, i.e. that êj = êk , for some pair of indices ( j, k). Therefore,
from the N − 2 − p constraints of the form bT

i ê = 0, we can conclude that clus(e) contains
at most N −(N −2− p) = p+2 clusters. We need now to apply the remaining p constraints
of the form iTi ê = 0; we analyse separately the cases when p = 0 or p > 0.

1We set iTN e ≤ 0 because the sign of iTN e is automatically determined by the set of inequalities {iT1e ≥
0, . . . , iT

N−1e ≥ 0}, by virtue of
∑N

i=1 ei = 0.
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b links

j ∈ I2

N1 nodes N2 nodes

ej = ε2
j ∈ I1

ej = ε1

Figure 6.2: A bipartition B = {I1,I2} of a graph; N1 and N2 are the number of vertices
in each cluster and b is the number of edges between the clusters.

• If p = 0, there are no constraints like iTi ê = 0 to consider; thus, clus(ê) = {I1,I2}
with {

êj = ε1, j ∈ I1,

êj = ε2, j ∈ I2,
(6.4)

for some ε1, ε2 ∈ R, with ε1, ε2 , 0 and ε1 , ε2.
• If, on the other hand, p > 0, then we need to apply the additional p constraints of
the form iTi ê = 0. Each of these implies an element of ê is null. For example, if
p = 1, we get that ei = 0 for some i. Without loss of generality, assume e1 = 0 then
one cluster in clus(ê) will be characterised by all the null elements in ê and there
will be Q = p + 2 = 3 clusters in total.
Analogously, if p > 1, the p elements such that ei = 0 will form one cluster in
clus(e) so that out of the p+2 possible clusters in clus(ê) onlyQ = p+2−(p−1) = 3
will remain. Hence, clus(ê) = {I1,I2,I3} with

êj = ε1, j ∈ I1,

êj = ε2, j ∈ I2,

êj = 0, j ∈ I3,
(6.5)

for some ε1, ε2 ∈ R, with ε1, ε2 , 0 and ε1 , ε2.

(ii) To show that clus(ê) = {I1, . . . ,IQ} contains at least two clusters that are
clusters of connected vertices in G it suffices to notice that in our derivation there were at
least two clusters induced by the constraints of the form bT

i ê = 0. Since, by construction,
the vectors bi represent edges in G then these clusters must correspond to connected
vertices in G.

�

Note that given a bipartition (or a tripartition) of G we can always find at least a
generator ê ∈ S such that clusters of indexes in clus(ê) corresponds to vertices of G in
that bipartition (or tripartition) verifying (6.4) (or (6.5)). In what follows we will denote
by φG(B) the set of values that the function φG takes over each of the vectors ê ∈ S
whose clusterization corresponds to the bipartition B (analogously for φG(T ), being T a
tripartition). We will say that φG(B) ≤ 0 if this is true for all values of φG in that set (and
equivalently for φG(T )).
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Figure 6.3: A tripartition T = {I1,I2,I3} of a graph; N1, N2, N3 are the number of
vertices in each cluster and b, l1, l2 are the number of edges between the clusters.
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Figure 6.4: Relations between the sets and functions used in Section 6.3.

The relations between the setsS,Ĥ, B̂, T̂ , P̂ and the functions clus, φG are summarised
in Figure 6.4.

Lemma 6.12. Given a connected graph G and its associated star function φG , if
φG ≤ 0 on all of the bipartitions of G, then φG ≤ 0 on all of the tripartitions of G.

Proof. The proof is composed of three steps. First, we determine what conditions must
hold so that φG(B) ≤ 0 for any bipartition B. Then, we do the same for a generic
tripartition T . Finally, we show that, for each T , there exists a specific B ′ such that
φG(B

′) ≤ 0⇒ φG(T ) ≤ 0. Hence, if φG(B) ≤ 0 for all B ∈ B̂, then also φG(T ) ≤ 0
for all T ∈ T̂ , that is the thesis.

(i) Let us consider a generic bipartition B = {I1,I2} of G. Then, from (6.2) and
(6.4), we can write

φG(B) = a1(N1 |ε1 | + N2 |ε2 |) − a2b |ε1 − ε2 | , (6.6)
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where N1 = |I1 |, N2 = |I2 |, b is the number of edges connecting vertices in I1 with
vertices in I2 (see Figure 6.2), and ε1, ε2 are (different non-zero) constants depending on
the generic vector ê ∈ S whose clusterization corresponds to B according to (6.4).

Even though N1, N2, and b depend on the specific B being considered, we omit this
dependence to simplify the notation. Since

∑N
i=1 êi = 0, then N1ε1 + N2ε2 = 0, that is

ε2 = −
N1
N2
ε1. Therefore, we may rewrite

φG(B) = 2a1N1 |ε1 | − a2b N1+N2
N2
|ε1 | .

Hence, φG(B) ≤ 0 if and only if

a2 ≥
2a1N1N2
(N1 + N2)b

, (6.7)

independently from the value of the constants ε1 and ε2 associated to the specific vector
whose clusterization is being considered.

(ii) Let us now consider a generic tripartition T = {I1,I2,I3}. Using similar
arguments to those presented for bipartitions, from (6.2) and (6.5), we obtain

φG(T ) = a1(N1 |ε1 | + N2 |ε2 | + N3 |0|)
− a2(b |ε1 − ε2 | + l1 |ε1 − 0| + l2 |ε2 − 0|),

(6.8)

where N1 = |I1 |, N2 = |I2 |, N3 = |I3 |, and b, l1, l2 are the numbers of edges connecting
vertices in I1 with vertices in I2, vertices in I1 with vertices in I3, and vertices in I2 with
vertices in I3, respectively (see Figure 6.3). N1, N2, N3, b, l1, and l2 all depend on T .
Since

∑N
i=1 êi = 0, then N1ε1 + N2ε2 + N3 · 0 = 0, that is again ε2 = −

N1
N2
ε1. In view of

this, and multiplying both sides of (6.8) by N2, we obtain

N2φG(T ) = 2a1N1N2 |ε1 |

− a2(b(N1 + N2) |ε1 | + l1N2 |ε1 | + l2N1 |ε2 |).

As N2 > 0, this yields that φG(T ) ≤ 0 if and only if

a2 ≥
2a1N1N2

b(N1 + N2) + N2l1 + N1l2
. (6.9)

(iii) We now show that

∀T ∈ T̂ ∃B ′ ∈ B̂ such that φG(B
′) ≤ 0⇒ φG(T ) ≤ 0. (6.10)

Let us consider again the generic tripartition T = {I1,I2,I3} introduced in point (ii); see
Figure 6.3 for a graphical representation. With an appropriate labelling of the clusters,
without loss of generality we can assume that l2 ≥ l1. To any T , we can always associate
a specific bipartition B ′ = {I ′1 ,I

′
2 }, where I

′
1 = I1 and I ′2 = I2 ∪ I3, characterised by

N ′1 =
��I ′1 ��, N ′2 =

��I ′2 ��, and b′ being the number of edges between I ′1 and I ′2 . Thus, it
follows that N ′1 = N1, N ′2 = N2 + N3, and b′ = b + l1. According to (6.7), φG(B ′) ≤ 0 if
and only if

a2 ≥
2a1N ′1N ′2
(N ′1 + N ′2)b

′
=

2a1N1(N2 + N3)

(N1 + N2 + N3)(b + l1)
. (6.11)
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Next, we prove that (6.11) implies (6.9), independently of T . To that aim, we need to
show that

2N1(N2 + N3)

(N1 + N2 + N3)(b + l1)
≥

2N1N2
b(N1 + N2) + N2l1 + N1l2

,

which is trivially verified by recalling that l2 ≥ l1. The thesis directly follows. �

We are now ready to give the final result that summarises previous findings and will
be used in the proof of the main theorems.

Lemma 6.13. If φG ≤ 0 on all the bipartitions of G, then φG ≤ 0 for all e ∈ S.

Proof. According to Lemma 6.12, since φG(B) ≤ 0 for all B ∈ B̂, then

φG(P) ≤ 0,∀ P ∈ P̂ . (6.12)

Exploiting Lemma 6.11, the clusterization clus(ê) of each generator ê ∈ Ĥ is a partition
P ∈ P̂. Therefore, (6.12) implies that

φG(ê) ≤ 0,∀ ê ∈ Ĥ . (6.13)

Since φG is a star function (Lemma 6.10), (6.13) implies the thesis through Lemma
6.9. �

6.4 Proof of Theorem 5.5
The dynamics of the average state x̃ of the network under the multilayer control action in
(5.3) are given by

Û̃x =
1
N

N∑
i=1

f(xi; t) +
N∑
i=1

N∑
j=1

Li jΓ(xj − xi) +
N∑
i=1

N∑
j=1

Ld
i jΓdsign(xj − xi). (6.14)

As L and Ld are symmetric, the last two terms of the right-hand side of (6.14) are zero,
and therefore we have Û̃x = 1

N

∑N
i=1 f(xi; t). Therefore, the dynamics of the synchronization

error ei are given by

Ûei = Ûxi − Û̃x = f(xi; t) −
1
N

N∑
i=1

f(xi; t) − c
N∑
j=1

Li jΓej − cd

N∑
j=1

Ld
i jΓdsign(ej − ei),

where we used the fact that
∑N

j=1 Li j

(
xj − xi

)
=

∑N
j=1 Li jxj =

∑N
j=1 Li jej and that

sign(xj − xi) = sign(ej − ei). Now, consider the candidate common Lyapunov function
V , 1

2
∑N

i=1 eTi Pei . Its time derivative is ÛV =
∑N

i=1 eTi PÛei , that is,

ÛV =
N∑
i=1

eTi P

(
f(xi; t) −

1
N

N∑
i=1

f(xi; t)

)
− c

N∑
i=1

N∑
j=1

Li jeTi PΓej − cd

N∑
i=1

N∑
j=1

Ld
i je

T
i PΓdsign(ej − ei).

(6.15)
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As
∑N

i=1 ei = 0, we have
∑N

i=1 eTi Pf(x̃; t) = 0 and
∑N

i=1 eTi P
(∑N

i=1 f(xi; t)/N
)
= 0. Thus,

we can rewrite (6.15) as

ÛV =
N∑
i=1

eTi P [f(xi; t) − f(x̃; t)] − c
N∑
i=1

N∑
j=1

Li jeTi PΓej − cd

N∑
i=1

N∑
j=1

Ld
i je

T
i PΓdsign(ej − ei).

In addition, the communication graphs are undirected; therefore, Ld
i j = Ld

ji , and for each
term eTi PΓdsign(ej − ei), there exists another term eTj PΓdsign(ei − ej). Hence, we may
recast ÛV as

ÛV =
N∑
i=1

eTi P [f(xi; t) − f(x̃; t)]−c
N∑
i=1

N∑
j=1

Li jeTi PΓej−cd
∑
(i, j)∈Ed

(ei−ej)TPΓdsign(ei−ej),

recalling that Ed is the set of edges in the graph Gd. Then, we use the hypothesis that f is
σ-QUAD and get

ÛV ≤
N∑
i=1

(
eTi Qei + eTi Msign(ei)

)
− c

N∑
i=1

N∑
j=1

Li jeTi PΓej − cd
∑
(i, j)∈Ed

(ei − ej)TPΓdsign(ei − ej).
(6.16)

Now, if we define ȳ ,
(
BT

d ⊗ In
)

ē, where Bd is the incidence matrix of Gd, then we can
rewrite (6.16) as ÛV ≤ W1 +W2, where

W1 , ēT (IN ⊗ Q − cL ⊗ PΓ) ē, (6.17)

W2 , ēT (IN ⊗M) sign(ē) − cdȳT
(
INEd
⊗ PΓd

)
sign(ȳ). (6.18)

We can then study W1 and W2 separately, so as to find conditions that guarantee the
former is negative definite and the latter is semi-negative definite.

6.4.1 Negativity of W1

To find a condition such that W1 < 0, we observe that

W1 ≤ ‖ē‖22 ‖Q‖2 − ēT (cL ⊗ PΓ) ē.

Since
∑N

i=1 ei = 0n ⇔
∑N−1

i=0 ēi ·n+h = 0 ∀h = 1, . . . ,n, we can apply Corollary 13.4.2 in
[68] and get

W1 ≤ ‖ē‖22 [‖Q‖2 − cλ2(L)λmin(sym(PΓ))] .

Therefore, W1 < 0 if c > c∗, with c∗ defined as in (5.11). Note that the fact that G is
connected ensures that λ2(L) > 0.
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6.4.2 Semi-negativity of W2

Next, we seek an expression of the threshold value c∗d such that W2 ≤ 0 if cd ≥ c∗d. Firstly,
consider that, from (6.18), using Lemmas 6.2 and 6.3, we have

W2 ≤ ‖ē‖1 ‖M‖∞ − cd ‖ȳ‖1 µ−∞(PΓd). (6.19)

Using the definition of the vector 1-norm, we have ‖ē‖1 =
∑nN

i=1 |ēi | =
∑n

h=1‖e
h ‖1 =∑n

h=1
∑N

i=1 |i
T
i eh |, where ii and eh are defined in Sections 1.5 and 2.1. Note that eh ∈ S,

with S being defined in (6.1). Similarly, it is straightforward to compute that ‖ȳ‖1 =∑n
h=1

∑NEd
i=1

��bT
i eh

��, where bi are the columns of the incidence matrix Bd of Gd. For the
sake of compactness we define M , ‖M‖∞ and µ , µ−∞(PΓd). Thus, we can recast (6.19)
as W2 ≤

∑n
h=1 Wh

2 , where

Wh
2 (e

h) , M
N∑
i=1

��iTi eh
�� − cdµ

NEd∑
i=1

��bT
i eh

�� . (6.20)

The analytical framework and results presented in Sections 6.2 and 6.3 can be used to
more easily assess the semi-negativity of Wh

2 . In fact, Wh
2 is in the form (6.2), and thus is

a star function associated to the graph Gd; see Definition 6.8 and Lemma 6.10. Exploiting
Lemma 6.13, it is immediate to state that Wh

2 (e
h) ≤ 0 for all eh ∈ S, i.e., globally, if

Wh
2 (B) ≤ 0 for all B ∈ B̂; B̂ being the set of all bipartitions of Gd.
Consider a generic bipartition B = {I1,I2} of Gd, where I1 and I2 are the indices of

the vertices in the two connected clusters. Moreover, let N1 = |I1 |, N2 = |I2 |, and b be
the number of edges connecting a vertex in I1 with a vertex in I2 (see Figure 6.2); note
that N1, N2, and b depend on B. According to (6.6) and (6.7), Wh

2 (B) ≤ 0 if and only if

cd ≥
2M
Nµ

(
N1N2

b

)
, (6.21)

where we used the fact that N1 + N2 = N . We highlight that this last step is independent
from h; therefore, if (6.21) holds, then Wh

2 (B) ≤ 0 ∀h = 1, . . . ,n. From the hypotheses
we know that

cd ≥ c∗d ,
1
δGd

M
µ
=

2M
Nµ

1

minC∈ĈGd

(
b

N1N2

) . (6.22)

where δGd is the minimum density of Gd (Definition 4.9) and ĈGd is the set of all possible
cuts on Gd. (6.22) can be reformulated as

cd ≥
2M
Nµ

1

minB∈B̂
(

b
N1N2

) = 2M
Nµ

max
B∈B̂

(
N1N2

b

)
.

Therefore, (6.21) holds for all B ∈ B̂. This ensures that Wh
2 (B) ≤ 0 for all B ∈ B̂,

which through Lemma 6.13 gives Wh
2 ≤ 0 globally. As mentioned previously, if Wh

2 ≤ 0
for some h, then Wh

2 ≤ 0 for all h, and hence W2 ≤ 0. This completes the proof, as
ÛV = W1 +W2 < 0 globally.
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6.5 Proof of Theorem 5.6
Starting from (6.16) in the proof of Theorem 5.5, exploiting the fact that M =

diag([m1 · · · mn]) and PΓd = diag([γ1 · · · γn]), we have

ÛV ≤
N∑
i=1

eTi Qei − c
N∑
i=1

N∑
j=1

Li jeTi PΓej +
N∑
i=1

n∑
h=1

mh

��ei,h �� − cd
∑
(i, j)∈Ed

n∑
h=1

γh
��ei,h − ej ,h

��
, W1 + Ŵ2,

where W1 is defined as in (6.17) and Ŵ2 =
∑n

h=1 Ŵh
2 , with

Ŵh
2 , mh

N∑
i=1

��iTi eh
�� − cdγh

NEd∑
i=1

��bT
i eh

�� . (6.23)

In Theorem 5.3, we have proved that W1 < 0 if the hypotheses of the present theorem
hold.2 Note that Ŵh

2 has the exact same structure as Wh
2 in (6.20), with the difference

being the multiplicative constants M and µ in Wh
2 , and mh and γh in Ŵh

2 . In (6.23), if
mh ≤ 0, then Ŵh

2 ≤ 0 even if γh = 0 (recall that in general γh ≥ 0). Differently, if mh > 0,
following steps analogous to that in the proof of Theorem 5.5, it is possible to show that
Ŵh

2 ≤ 0 if

cd ≥
1
δGd

mh

γh
.

Finally, in order to have Ŵh
2 ≤ 0 for all h = 1, . . . ,n, we require that cd ≥ c∗d, with c∗d

being defined in (5.13). Therefore, we get Ŵ2 =
∑n

h=1 Ŵh
2 ≤ 0 and ÛV = W1 + Ŵ2 < 0,

globally.

2In Theorem 5.3, a matrix named G is present in place of PΓ.
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7 Discussion

We addressed the challenging problem of proving global asymptotic convergence to
synchronization in a network of piecewise-smooth dynamical systems.

Initially, we have discussed spontaneous synchronizability. Specifically, we started
by providing sufficient conditions for ensembles of QUAD PWS systems, applicable
to problems with a large variety of coupling laws, including linear diffusive coupling
with indefinite inner coupling matrix. Then, we showed that, for more general σ-QUAD
agents, adding a discontinuous coupling layer to the commonly used diffusive coupling
protocol is sufficient to ensure convergence. All this without employing, as done in
previous attempts in the literature, costly centralised control actions on all the nodes.
In all cases we provided critical values of the coupling gains required for convergence,
even when the inner coupling matrices are not positive definite. The conditions depend
explicitly on structural properties of the underlying network graphs that can be computed
algorithmically. In particular, we introduced the concept of minimum density of a graph
that can be used to compute the critical coupling gain of the discontinuous control layer.

An open problem left for further study is to investigate if there exist some best
structures of the diffusive and discontinuous coupling layers in terms of performance,
robustness and stability. For example, numerical simulations reported in Section 5.5.4
show that different layers’ structures can enhance the regions in the control parameter
space where synchronization is attained.
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Chapter 8. Adaptive and quasi-sliding control of shimmy in landing gears

8 Adaptive and quasi-sliding
control of shimmy
in landing gears

8.1 Introduction to shimmy in landing gears

When taking-off, landing or taxiing, any airplane might experience vibrations due to
unstable oscillation of the nose landing gear (NLG). This phenomenon, also known as
shimmy, is often unpredictable with consequences ranging from annoying vibrations to
serious damage or even collapse of the airplane [11]. Shimmy is not an exclusive problem
in aeronautics; in fact, motorcycles and cars also display a similar issue which is often
termed as wobble [88].

The study of shimmy can be traced back to the early 20s when the first tires were
manufactured [120]. Since then, many mathematical models have been proposed aiming
at replicating these oscillations and uncovering the main causes for their emergence (see
[11, 132, 120] and references therein for a detailed list of shimmy models). One of the
main causes of shimmy is the interaction of the tire with the road. As a matter of fact, the
presence of a lateral force on the tire produces a side slip angle, and thus rotations of the
NLG. This in turn produces further lateral forces on the tire, thus creating a repetitive
(positive-feedback) loop that causes oscillations. Recently, it has also been shown that
shimmy can be caused by other nonlinear effects such as friction [154], free-play, and
gyroscopic forces [72]. Therefore, designing and implementing control approaches for
suppressing shimmy despite model uncertainties is of great importance for reliability
and safety of airplanes on the ground. It is worth mentioning that shimmy control
strategies should guarantee fast convergence and most importantly a small overshoot of
approximately one degree at most. The classic solutions to reduce shimmy are based
on the adoption of passive strategies, where the aim is to increase the NLG stiffness
and damping constant by using different construction materials or additional passive
dampers, respectively [118]. However, airplanes are subject to a plethora of unexpected
and dynamic disturbances like changing loads and nonuniform tire-road interfaces; in
addition, aircrafts require frequent maintenance, making passive approaches less effective
and costly [133].

57



8.2. Problem Statement

Moreover, recent developments in the aircraft industry are aimed at implementing
fly-by-wire strategy, replacing mechanical and pneumatic actuators by electromechanical
devices [12]. In fact, novel steering architectures consider electromechanical actuators
where the gear rotation is controlled by a brush-less motor located on the top of the
turning tube [89]. Within this context, the use of active control solutions for suppressing
shimmy can be easily implemented [13]. Indeed, in the last decade, different active control
strategies for shimmy have been proposed. For instance, in [69], a feedback linearization
approach based on full state measurements has been shown to be effective in suppressing
the oscillations; however, nonlinearities in the model are assumed to be perfectly known.
This approach was later extended in [118] to the case where the nonlinear functions are
unknown and they are estimated using adaptive strategies and fuzzy logic theory. More
recently, in [70], a robust model predictive control was designed for a linearized model of
an NLG. Differently, in [133], a nonlinear optimal control was presented based on the use
of state-dependent Riccati equations; furthermore, a switching action in the controller
was added to better stabilize the closed-loop system. Finally, a simpler PID controller is
utilized in [107], where the control gains are designed using a decline population swarm
optimization technique.

Previous control approaches either consider linearized models and assume full state
measurements to be available or adopt very complex and sophisticated control solutions
[118, 70, 133, 107]. In contrast, in this work we only use partial state measurements and
we also test the controllers in the case that the nonlinear terms in the model are uncertain.
In particular, we propose the use of either a model reference adaptive control (MRAC)
with minimal control synthesis (MCS) [129], or a zero-average dynamics (ZAD) control
[62]. To reconstruct the inaccessible states, and hence close the loop, we make use of
a classic Luenberger observer which is designed under the assumption that the vector
field is QUAD [39] rather than Lipschitz continuous (as is usually done in this type of
problem). We show that the QUAD condition provides less conservative results, so that
lower values of the control gains can be chosen, thus avoiding large overshoots in the
closed-loop system.

8.2 Problem Statement

8.2.1 Nose landing gear model
We consider a simplified model of a single wheeled aircraft’s nose landing gear (NLG)
with an electromechanical actuator (see Figure 8.1), which is described by the third order
nonlinear differential equation given by [127]{

Iz Üψ(t) = MN(ψ(t), Ûψ(t)) + MT(α(t), Ûψ(t)) + τ(t),

σ Ûα(t) = V(ψ(t) − α(t)) + (e − a) Ûψ(t),

where ψ(t) [rad] and α(t) [rad] are the state variables denoting the yaw and slip angles
respectively, Iz is the moment of inertia about the z-axis, V is the wheel forward velocity,
e is the wheel caster length, a is the half contact length of the tire on the ground, and σ is
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(a) (b)

Figure 8.1: Simplified model of an NLG: (a) side and (b) top views.

the relaxation length of tire deflection. The torque MN(ψ(t), Ûψ(t)) , cψ(t) + k Ûψ(t) is the
sum of a linear elastic torque provided by the turning tube, with constant torsional rate
c, and a linear damping term, with coefficient k, that models viscous frictions coming
from the shock absorber on the bearing of the oil-pneumatic and the shimmy damper. An
external torque, τ(t) , u(t) + ζ(t), models the action u(t) exerted by the control input
and some disturbance ζ(t). For what concerns the values of the parameters, we use
those reported in Table 8.1, as in [127]. Moreover, MT(α(t), Ûψ(t)) , MD( Ûψ) + MG(α)
represents the tire moments originated from tire damping and deformations. Specifically,
MD( Ûψ) , (κ/V)ψ(t) is the damping term with coefficient κ, whereas MG(α) describes the
interaction between the tire and the ground. This interaction is highly nonlinear and is
due to lateral tire deformations caused by side slip; it is given by

MG(α) = Mz(α) − eFy(α),

where Mz(α) and Fy(α) are nonlinear functions representing the aligning torque about the
tire’s center and the tire side force, respectively. In particular, we consider two different
pairs of functions approximating Mz(α) and Fy(α). The first one is a piecewise-smooth
approximation:

Mz,1(α) =


FzcM ,α

αg

π
sin

(
πα

αg

)
, if |α | ≤ αg,

0, otherwise,
(8.1)

Fy,1(α) =
cF ,αFz

2
(|α + δ | − |α − δ |) , (8.2)

where αg = 10π/180 and δ = 5π/180. The second one is a smooth approximation:

Mz,2(α) = cM ,αFzγM
2ααM

α2 + α2
M

, (8.3)
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Table 8.1: NLG parameters

Parameter Symbol Value Unit

velocity V [0,80] m/s
half contact length a 0.1 m
caster length e 0.1 m
moment of inertia Iz 1 kg·m2

vertical force Fz 9000 N
torsional spring rate c −100000 N·m/rad
side force derivative cF ,α 20 1/rad
moment derivative cM ,α −2 m/rad
torsional damping constant k −10 N·m·s/rad
tread width moment constant κ −270 N·m2/rad
relaxation length σ = 3a 0.3 m

Fy,2(α) = cF ,αFzγF
2ααF
α2 + α2

F

, (8.4)

where αM = 3π/180, γM = 0.1αg/π, αF = 3αg, and γF = 0.085. The functions Mz,1(α),
Mz,2(α), Fy,1(α), and Fy,2(α) are shown in Figure 8.2.

The NLG dynamics can be written in compact form as{
Ûx(t) = Ax(t) + f(x) + Bu(t) + Bζ(t),
y(t) = Cx(t),

C =
[
1 0 0
0 1 0

]
, x(0) = x0, (8.5)

where y is the output, and

x ,

ψ
Ûψ
α

 , f(x) ,


0
MG(α)/Iz

0

 , B ,


0
1/Iz

0

 ,
and

A ,


0 1 0
c/Iz (k/Iz) + (κ/(IzV)) 0
V/σ (e − a)/σ −V/σ

 .
Note that we only consider the yaw angle ψ and its velocity Ûψ as the available outputs. In
fact, ψ can be measured using a RVDT (Rotary Variable Differential Transformer) sensor
on the NLG, while the velocity Ûψ can be easily obtained from ψ or using a dedicated
sensor [118]. Moreover, the state variable α is related to the lateral displacement of
the tire, and, as a consequence, it is much more cumbersome to design appropriate
sensors to accurately measure this variable [118]. Therefore, the challenge is to design an
appropriate observer for reconstructing this missing state, together with robust controllers
that suppress undesired oscillations, while guaranteeing fast convergence and overshoots
lower than 1◦.
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Figure 8.2: Approximating functions for Mz(α) (a) and Fy(α) (b). Black and blue lines
represent the piecewise-smooth and smooth approximations, respectively.

8.2.2 Open-loop dynamics: bifurcation diagrams
To illustrate the control problem, we start by showing the NLG dynamics in the absence
of control (u(t) = 0). More specifically, we describe how using either of the two different
approximations for the nonlinear forces Mz and My affects the system dynamics. To
that aim, we compute bifurcation diagrams of system (8.5) for both approximations.
Indeed, bifurcation diagrams are an important tool for analysis of nonlinear systems
and have been recently used for studying shimmy behavior [72]. We select the forward
velocity V as bifurcation parameter, as increasing or decreasing it corresponds to the
common scenarios of taking off, landing or taxiing. We choose to vary the velocity in the
interval [0,80] m/s—common in small planes—using unitary steps. For each value of the
forward velocity, we plot the minimum and maximum amplitudes ψ̃ and α̃ of the steady
state response for the states ψ and α, respectively (see Figure 8.3). Note that, for both
the piecewise-smooth and the smooth approximation, we observe the system undergo
a Hopf bifurcation at V = 20 and V = 16.5, respectively. This suggests that different
approximations of the nonlinear moment MD shift the bifurcation point. Hence, designing
robust control strategies that can cope with uncertainty on the nonlinear forces Mz and
My is crucial, given that in real world scenarios these moments are not known exactly
or their parameters might change over time. Moreover, the peak oscillation amplitude ψ̃
is found to be 26.4 for both approximations, and is reached when V = 30 and V = 46.5,
respectively. As for the frequency of the oscillations, in both cases it is approximately 50
Hz.
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Figure 8.3: Bifurcation diagrams varying the velocity V with the nonlinear function f(x)
being: (a, b) non-smooth, (c, d) smooth. ψ̃ (a, c) and α̃ (b, d) represent the minimum and
maximum amplitude of the steady state trajectory for ψ and α, respectively.

8.3 Controlling Shimmy
We employ two different control strategies for attenuating shimmy vibrations: namely,
a Zero Average Dynamics (ZAD) control [62] and a model reference control based on
Minimal Control Synthesis (MCS) [129]. These control strategies require full knowledge
of the state variables; however, we only have access to the output y(t). Hence, first we
need to design an observer for reconstructing the missing states.
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8.3.1 Observer design

Consider the classic Luenberger observer given by

Û̂x(t) = Ax̂(t) + Bu(t) + f(x̂(t)) − L(Cx̂(t) − y(t)). (8.6)

The pressing challenge is to design appropriately the matrix L that guarantees x̂(t) → x(t)
as t →∞. To that aim we define the observation error e(t) , x̂(t) − x(t) and present the
following result.

Proposition 8.1. Observer (8.6) asymptotically reconstructs the states of system
(8.5), that is, limt→+∞ ‖e(t)‖ = 0, if the following conditions are fulfilled:

(i) there exist a nonzero constant ρ and a symmetric positive definite matrix P
such that (v1 − v2)

TP(f(v1) − f(v2)) ≤ ρ(v1 − v2)
T(v1 − v2),∀ v1,v2 ∈ Ω ⊆ R

3,
(ii) there exist a generic matrix L and a symmetric positive definite matrix Q such

that P(A − LC) + (A − LC)TP = −Q,
(iii) λmin(Q) > ρ.

Proof. The proof follows from choosing V = eTPe as candidate Lyapunov function [119],
yielding ÛV ≤ −eTQe + eTP(f(x̂) − f(x)). Then, ÛV < 0 if the three conditions are fulfilled,
which completes the proof. �

We wish to highlight two facts. Firstly, condition (i) is the QUAD condition (given
in Definition 2.3), widely used for proving convergence in complex networks [39] (the
special case when P = In is also known as one-sided Lipschitz continuity [34, 151],
given in Definition A.2). In fact, several nonlinear possibly chaotic systems satisfy this
condition [39]. Moreover, condition (ii) is standard within the context of observer design
[119, 151], and can be easily solved by using standard optimization software. Secondly,
one of the main issues when designing Luenberger observers for nonlinear systems are the
restrictive synthesis conditions based on Lipschitz continuity of the vector-fields [119].
In fact, for some systems, this condition might not be fulfilled or the Lipschitz constant
might be excessively large, yielding to overly conservative results [149]. Indeed, as we
show below, the high value of the Lipschitz constant for the NLG model considered here
yields a matrix L with large entries. Although convergence is guaranteed, performance is
not, since high gains (entries of L) would cause overshoots larger than 1◦. On the other
hand, the QUAD condition is more general than the Lipschitz condition [39] (i.e. a wider
class of nonlinear systems satisfy it), and most importantly it provides less conservative
results. As a matter of fact, any contracting vector field or system with bounded Jacobian
is QUAD [39].

Next, we use Proposition 8.1 to find the matrix L. Thus, we first start by noticing that
the nonlinear function f(x) given by either (8.1)-(8.2) or (8.3)-(8.4) has bounded Jacobian.
For the sake of simplicity, we only consider the piecewise-linear function (8.1)-(8.2),
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whose Jacobian matrix Df is given by

Df =

0 0 0
0 0 D f23
0 0 0

 ,
where

D f23 =


m1 cos(απ/αg) − m2, if |α | ≤ δ
m1 cos(απ/αg), if |α | > δ and |α | ≤ αg

0, otherwise
,

with m1 , FzcM ,α and m2 = ecF ,αFz . Next, we define g(θ) , f(v2 + θ(v1 − v2)), for
θ ∈ [0,1]. From the fundamental theorem of calculus, one has

f(v1) − f(v2) = g(1) − g(0) =
∫ 1

0

dg(θ)
dθ

dθ =
[∫ 1

0
Df(v2 + θ(v1 − v2))dθ

]
(v1 − v2).

Thus, we have that

‖f(v1) − f(v2)‖ ≤ sup
θ∈[0,1]

‖Df(v2 + θ(v1 − v2))‖ ‖v1 − v2‖ ,

and from the fact that

sup
θ∈[0,1]

‖Df(v2 + θ(v1 − v2))‖ ≤ |D f23 | = |m1 cos(απ/αg) − m2 |,

we have
‖f(v1) − f(v2)‖ ≤ L f ‖v1 − v2‖ ,

with L f = 36000 being the Lipschitz constant. This quantity is excessively large, and
using the classic approach would lead to very conservative results [149]. Therefore, we
consider the less restrictive QUAD condition instead. Indeed, the function f satisfies the
QUAD condition by setting ρ = L f and P = IN [39]. However, to find the lowest value
of ρ, we need to find the optimal matrices P and L such that condition (i) and (ii) are
fulfilled. To do so, we rewrite these two conditions as a constrained nonlinear multivariate
optimization problem, that is, minv1 ,v2 ,P,L{ρ} such that (i) and (ii) hold. We solve it using
the Matlab’s Optimization Toolbox, and we find that ρ = 27.86,

P =


0.6995 0 −0.004
0 0.001 0

−0.004 0 3

 , L =


21 −141
0.12 14705
267 −0.18

 ,
and Q = diag{29.437,29.437,1624.266}. Note that both P and Q are symmetric
and positive definite. Moreover, λmin(Q) = 29.437; hence, the third condition (iii)
λmin(Q) > 27.8644 of Proposition 8.1 is fulfilled and the synthesis of the observer is
complete.
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8.3.2 Zero Average Dynamics (ZAD)
The ZAD controller is a quasi-sliding technique, where the goal is forcing the switching
function to be zero on average over a finite period of time. This strategy was originally
developed for controlling DC-DC power converters in [62]; however, it has been also
recently used for controlling gene expression in synthetic biology [59]. This strategy
has been shown to provide low regulation error and most importantly fixed switching
frequency. In fact, when compared with traditional sliding control, where there is typically
an infinite number of commutations (thus inducing chattering), ZAD control guarantees
a finite number of switches over a finite period of time. Specifically, we consider the
control input u(t) to be given by a centered PWM of the form

u(t) =


µ, if kT ≤ t ≤ kT + dk/2
−µ, if kT + dk/2 < t < (k + 1)T − dk/2
µ, if (k + 1)T − dk/2 ≤ t < (k + 1)T

,

where T is the switching period, k ∈ {0,1,2, . . . ,m}, with m being the number of
samples, µ > 0, and dk is the duty cycle (i.e. the time that the switch remains ON). We
choose the sliding surface to be a combination of a proportional and a derivative term,
i.e. S(ψ(t), Ûψ(t)) , ψ(t) − ks Ûψ(t), with ks > 0 [4]. Then, the main design problem is to
find the duty cycle dk such that

(k+1)T∫
kT

S(ψ, Ûψ) dt = 0, ∀k ∈ {1,2, . . . ,m}.

As pointed out in [4], solving this transcendental equation for each time interval demands
high computation cost. Therefore, using a linear approximation of the sliding surface
and solving for the variable dk yields a simple expression for the duty cycle and its
normalization dc , dk/T (for further details about this approximation, see [4] and
references therein):

dk =
2S(kT) + T ÛS2(kT)
ÛS2(kT) − ÛS1(kT)

,

where ÛS1(kT) and ÛS2(kT) are given by

ÛS1(kT) = ÛS(kT)|u=µ = ( Ûψ(kT) + ks Ûψ(kT))|u=µ,
ÛS2(kT) = ÛS(kT)|u=−µ = ( Ûψ(kT) + ks Üψ(kT))|u=−µ .

Note that, in order to find ÛS1(kT) and ÛS2(kT), we need the knowledge of α(kT); instead,
we will use the estimation α̂(kT) provided by the observer.
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8.3.3 Minimal Control Synthesis (MCS)
Minimal Control Synthesis (MCS) is a strategy used to determine the control gains of a
classical Model-Reference Adaptive Controller (MRAC) [129]. The aim is that of making
the plant, typically assumed to be in controllable canonical form, track asymptotically the
output, ym, of some linear reference model described by the matrices Am, Bm, Cm, so
as to make the error em , ym − y asymptotically null. To this aim, the control input is
selected as u(t) = −K(t)x(t), where

K(t) = kP

(
w(t)xT(t)

)
+ kI

(∫ t

0
w(τ)xT(τ)dτ

)
,

with kP and kI being constants, w(t) , BT
mPem(t) and P being a symmetric positive

definite matrix that verifies the Lyapunov equation PAm +AT
mP = −Q, with Q > 0. Here,

we present an empirical implementation of the MCS on the NLG model in equations (8.5)
by selecting Am = A, Bm = B, Cm = C, kP = 103, kI = 104, and P = I3. Note that all
nonlinear terms in model (8.5) are assumed as nonlinear disturbances acting on the linear
terms of the plant. As in the case of the ZAD controller, again here the observer is needed
to estimate the whole state vector required to compute the control action u(t).

8.4 Numerical Results
In this section, we test the two control strategies described in the previous one. In
particular, we consider two different tests that have been widely used in the literature for
evaluating the performance of shimmy control techniques [118].

• Test 1: Tire damage. In this case, we assume a constant speed V = 80 with
zero initial conditions. Then, for 0.2 ≤ t ≤ 0.3, an impulse function acting as a
disturbance torque in (8.5) is present, that is, ζ(t) = 1000 nM, as shown in Figure
8.4a.

• Test 2: Taxiing on non-uniform road. In this scenario, the aircraft is taxiing with
increasing velocity, that is the velocity varies according to the ramp depicted in
Figure 8.4d, while the disturbance ζ(t) is given by the function shown in Figure
8.4b, which simulates potholes on the road. Note that the velocity range adopted
here is similar to that explored in the bifurcation diagrams of Figure 8.1, where it
has been shown that shimmy occurs for velocities grater than 20 m/s.

To further test the robustness of the control strategies, we add uncertainty to the nonlinear
function f(x) by using the piecewise-smooth approximation (8.1)-(8.2) for the NLGmodel,
while the smooth approximation (8.3)-(8.4) is used for the observer and the controllers.
For the sake of comparison, we first present the open-loop responses of the NLG in Tests
1 and 2, in Figures 8.4e and 8.4f, respectively. Note that in both cases oscillations with
large amplitude are present.
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8.4.1 Test 1: Tire damage
We first test the ZAD controller in the case of constant speed and impulsive disturbance.
In particular, we set the sampling period T = 10−3, the constant ks = 0.5, the control gain
µ = 1000 and zero initial conditions. The time response of the closed-loop systems is
shown in Figure 8.5a, where it is evident that the yaw angle ψ is driven to zero and the
maximum overshoot is less than one degree. Furthermore, the normalized duty cycle
dc converges to a constant value and hence the control action exhibits fixed switching
frequency.

Next, we perform Test 1 for the NLG controlled by MCS. The time trajectories are
shown in Figure 8.5b, which shows that the controller is able to suppress the undesired
oscillations despite the presence of uncertain nonlinear terms, while guaranteeing
boundedness of the adaptive control action.

8.4.2 Test 2: Taxiing on non-uniform road
The time response of the NLG controlled by ZAD and MCS is shown in Figures 8.6a and
8.6b, respectively. Note that even in this case, where there are multiple perturbations (due
to the potholes), the controllers are able to effectively suppress shimmy.

8.5 Discussion
We have proposed the use of ZAD and MCS control approaches for suppressing shimmy
in a NLG with uncertain non-linearities and partial state measurements. In so doing,
we adopted less conservative conditions for designing observers with nonlinear terms,
so that large overshoots can be avoided. Using numerical simulations, we showed the
effectiveness of the proposed control strategies under two representative scenarios. Future
work is needed to develop stability analysis of the closed-loop systems, together with
an accurate performance assessment of both control techniques. In addition, the control
approaches can be also tested using more realistic NLG models as those considered in
[72].
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Figure 8.4: Time trajectories of disturbance ζ (a, b), velocity V (c, d) and wheel angle ψ
(e, f) in the cases of Test 1 (a, c, e) and Test 2 (b, d, f).
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Figure 8.5: Time response of the NLG under impulsive disturbance, controlled by (a)
ZAD strategy and (b) MCS. In the top, middle and bottom panels, ψ(t), α(t), and dc(t)
(or u(t)) are shown respectively. The red dashed line represents the estimation α̂(t) made
by the observer, whereas the solid line line is α(t).
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Figure 8.6: Time response of the NLG for time-varying velocity and non-uniform road,
controlled by (a) ZAD strategy and (b) MCS. In the top, middle and bottom panels, ψ(t),
α(t), and dc(t) (or u(t)) are shown respectively.
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9 Control of Painlevé Paradox in
a Robotic System

9.1 Introduction to the Painlevé Paradox and application to
robotic arms

Most people have experienced at least once the annoying high-pitched sound that chalk
may produce when pressed against a blackboard. As it is now well known [24], the sound
is the result of fast vibrations of the piece of chalk that quickly and repeatedly detaches
from the blackboard and comes back into contact with it. This phenomenon is paradoxical
as the more one presses the chalk against the surface, the more likely bouncing motion
becomes. This type of oscillatory behaviour is not only annoying but can be costly and
troublesome when it manifests in practical applications. For example, the repeated lift of
an automated tool performing a cut leads to imprecise processing, resulting in unusable
goods or ones with reduced value [73]. Moreover, in an assembly line, a robotic arm used
grasping objects from a moving belt may abruptly be pushed away from the belt, resulting
in decreases in speed and accuracy [25].

The phenomenon described above was named after Paul Painlevé, who, in 1905,
published the first studies related to the paradox, providing a mathematical model. In
particular, in [108], he analysed the dynamics of a rigid stick sliding on a surface, showing
that, assuming a Coulomb friction law, when the friction coefficient was higher than a
certain threshold value, a non-trivial phenomenon occurs. Namely, the solution to the
differential equations describing the motion of the stick may become indeterminate or
inconsistent, in the sense that the model would predict the stick to penetrate the rigid
surface, which clearly is not realistic. In the following years, many mathematicians
and scientists have been interested in the study of this paradoxical phenomenon, but, as
pointed out by Champneys in [24], to this date, all the ways in which the stick can enter
the inconsistent or indeterminate solution modes have not been determined analytically.
For this reason, most of the research follows a numerical or experimental approach in the
investigation of the problem.

For example, in [97], Lötstedt created a digital simulation of the dynamics of rigid
mechanical systems under unilateral constraints, in order to study the Painlevé phenomenon.
In [147] and [21], numerical simulations are used to investigate how the paradox affects
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the motion of an inverted pendulum sliding on an inclined plane and that of a double
pendulum, respectively. Furthermore, in [83], Leine et al. studied through numerical
simulations the paradox in a specific two-masses system, called frictional impact oscillator.
They showed that the critical friction value was strictly linked to the masses ratio, and the
Painlevé paradox was the cause of a Hopf bifurcation, in which a sliding equilibrium loses
its stability and a periodic bouncing motion appears. Similar results can be found in [81].

Another system whose motion is influenced by the paradox, is the prismatic revolute
robotic set-up analysed in [51] via numerical simulations. It is also important to highlight
that the phenomenon studied by Painlevé can influence the motion of walking robots. As
a matter of fact, most of the passive walking models such as the compass biped or the
rimless wheel [28], assume that there is a frictional sticking contact between the foot and
the surface, whereas in reality there is always a slipping of the foot. For instance, the
numerical results obtained in [106] showed that regular periodic gait can be subject to an
instability, related to the Painlevé phenomenon. Moreover, in recent work by Zhao et al.
[153], the occurrence of the Painlevé paradox was demonstrated experimentally in a two
link robotic arm whose end effector is in contact with a sliding belt. It was shown that for
certain parameter values, the arm can lift off from the moving belt, showing, for the first
time in the literature, a physical demonstration of the paradox in a realistic robotic set-up.

To the best of our knowledge, the only instance of a control strategy employed to avoid
the onset of the paradox is described in [86], where a PID regulator is used to control the
sliding of a two-links robot on a vertical wall.

The contribution of our work is twofold. Firstly, we extend the analysis of the
system originally presented in [153] unfolding the bifurcation mechanisms behind the
occurrence of the Painlevé paradox. Secondly, we exploit this new information to
synthesise appropriate control strategies to prevent the paradox from taking place; being
this one of the very few attempts at using active controllers to address the problem, along
with [86]. In particular, in order to better understand the conditions that trigger the onset
of the phenomenon, we present a characterisation of the steady state dynamics for different
values of the velocity of the belt. Specifically, we find that the paradox manifests itself
only when the speed of the belt is in a certain critical interval. However, we show that,
even when the velocity of the belt is within that critical interval, some control strategies
may be employed to avoid the undesired lift-off and bouncing motion stemming from it.
In particular, we show how a PID regulator and a hybrid force/motion control scheme can
be exploited to reach some positioning control goals while keeping the robot in a region
of the phase space such that the paradox is not triggered. According to our simulations,
the hybrid control shows the most promising results, representing an innovation with
respect to [86], where only a PID control strategy was used. Our results nicely combine
bifurcation analysis with control system design, offering a novel approach for the active
suppression of the Painlevé paradox in realistic mechanical systems.
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2z zt zn

Figure 9.1: A double-revolute robotic arm on a moving belt.

9.2 Bifurcation analysis

9.2.1 Model description
We consider a two-links mechanical set-up as that represented in Figure 9.1. Rotational
dashpots with damping coefficient σ are present in both the joints, and a rotational spring
with elastic constant k is mounted in the lower joint; moreover, the belt is moving at a
speed vbelt. We define the generalised coordinates q , [θ1 θ2]

T, the coordinates of the
end effector z , [zt zn]

T, and, for later use, the state vector x , [θ1 Ûθ1 θ2 Ûθ2]
T. Then, a

mathematical model of the system can be given as

Üq =M−1(−w − c + JTf + u), (9.1)

where:

• M is the mass matrix;
• w contains the torques determined by the elastic force, viscous friction, and gravity;
• c are the torques determined by the centrifugal and Coriolis forces;
• J is the Jacobian, defined by the relation Ûz = J Ûq;
• u = [u1 − u2 u2]

T contains the control torques, with u1 and u2 being the torques
applied to the first and the second joint, respectively;

• f = [ ft fn]T are the contact forces acting on the end effector, with fn being the
normal reaction and ft being the Coulomb friction. In particular, ft = −µsign( Ûzr) fn,
where Ûzr , Ûzt − vbelt is the velocity of the contact point with respect to the belt and
µ is the friction coefficient.

The expressions of the above quantities are

M =

[ 4
3 ml2 ml2

2 cos(θ2 − θ1)

ml2

2 cos(θ2 − θ1)
ml2

3

]
,
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Table 9.1: Robot parameters

Parameter Symbol Value Unit

belt speed vbelt [−1,−0.1] m/s
friction coefficient µ [0.1,1] -
links mass m 0.12 kg
links length l 0.21 m
damping coefficient σ 0.005 N·s/m
elastic constant k 1.3 N/m
robot height H 0.3775 m
spring rest position α0 13.72 degrees

w =

[ 3mgl
2 sinθ1 − k(θ2 − θ1 + α0) − σ( Ûθ2 − 2 Ûθ1)

mgl
2 sinθ2 + k(θ2 − θ1 + α0) + σ( Ûθ2 − Ûθ1)

]
,

c =

ml2

2
Ûθ2
2sin(θ1 − θ2)

ml2

2
Ûθ2
1sin(θ2 − θ1)

 ,
J =

[
jT1
jT2

]
=

[
lcosθ1 lcosθ2

lsinθ1 lsinθ2

]
.

The values of the parameters are set using the experimentally derived ones reported in
[153] and are given in Table 9.1.

Model (9.1) can be recast in terms of the position z of the end effector as

Üz = −JM−1(w + c − u) +Qf + s, (9.2)

where Q , JM−1JT = (Qi, j), i, j = 1,2, and s is the centripetal acceleration, given by

s =

[
s1

s2

]
=

[
−l( Ûθ2

1sinθ1 + Ûθ
2
2sinθ2)

l( Ûθ2
1cosθ1 + Ûθ

2
2cosθ2)

]
.

Model (9.2) can be expressed componentwise as

Üzt = −jT
1 M−1(w + c − u) + fn(−µsign( Ûzr)Q1,1 +Q1,2) + s1, (9.3)

Üzn = −jT
2 M−1(w + c − u) + fn(−µsign( Ûzr)Q2,1 +Q2,2) + s2. (9.4)

For a fixed value of µ, when Ûzr > 0, we will show that there exists a region in the state
space, say R+ ⊆ R4, such that when the state vector x ∈ R+ the paradox is triggered.
Differently, when Ûzr < 0, the paradox manifests itself if x ∈ R− ⊆ R4. However, the sets
of positions and velocities represented by R+ are symmetrical with respect to the y-axis
to those contained in R−. Therefore, for the sake of simplicity, we can limit our analysis
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to the case that Ûzr is positive; the results might then easily be extended to the case that Ûzr
is negative by simply taking into account the symmetry between R+ and R−. Defining
the functions p : R3 → R and b : R6 → R, given by

b , − jT
2 M−1(w + c − u) + s2,

p , − µQ2,1 +Q2,2,

we can rewrite (9.4) as
Üzn = b(q, Ûq,u) + p(q, µ) fn. (9.5)

In (9.5), the physical meaning of the newly introduced functions b and p is more evident. b
is the free normal acceleration, i.e. the normal acceleration in the absence of contact forces,
whereas p determines how the normal reaction fn influences the normal acceleration Üzn
of the end effector.

When zn = −H, the end effector is in contact with the moving belt, reproducing a
situation analogous to that originally investigated by Painlevé. As explained in [108] for a
more general case, if µ is greater than a critical value µc, system (9.2) can display four
different types of solution, depending on the signs of b and p, which in turn depend on
q, Ûq, u, and µ. The first two modes, sliding and flight, are associated to solutions to the
motion equation (9.5), both characterized by p > 0; while, when p < 0, the solution to
(9.5) is indeterminate or inconsistent. Next, we describe each solution mode in greater
detail.

(i) Sliding, p > 0, b < 0. — The end effector is in contact with the belt, i.e. zn = −H,
fn = − b

p , and possibly Ûzt , 0.
(ii) Flight, p > 0, b > 0. — Either zn > 0, or zn = −H and Üzn > 0.
(iii) Indeterminate, p < 0, b > 0. — The solution is not unique; nonetheless, according

to [51], when simulating the system, it is possible to resolve the indeterminate
mode into a flight mode.

(iv) Inconsistent, p < 0, b < 0. —Given the signs of p and b, we would have Üzn < 0,
which, recalling that zn = −H, is not physically feasible, because both the robot
and the belt are assumed to be rigid. This troublesome scenario can be resolved, as
explained in [153], as an impact without collision [67], in which Ûzn turns from zero
to positive, determining the lift-off of the end effector, followed by a succession of
bounces on the belt.

In Figure 9.2, we provide an example of the regions associated to each of the four solution
modes.
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Figure 9.2: Different modes of solution for different values of θ1 and Ûθ1. Here µ = 0.6,
u = 0, and θ2 and Ûθ2 are chosen in order to have the tip of the robot in contact with the
belt. “indet.” stands for indeterminate and “∗” stands for inconsistent. The black solid
line is the place where b = 0, while the dashed red lines are the places where p = 0.

9.2.2 Bifurcation diagrams
To better understand the occurrence of the paradox causing the lift-off of the end effector,
we traced a two-dimensional numerical bifurcation diagram in the parameter space
consisting of the friction coefficient µ and the speed of the belt vbelt.

The system was simulated using event-detection routines available in Matlab to detect
transitions between each of the solution modes described in Section 9.2.1. The bifurcation
diagram was constructed via a brute-force method [74] by simulating the system from a
set of random initial conditions for parameters selected in a grid defined by the ranges
0.1 ≤ µ ≤ 1 and −1 ≤ vbelt ≤ −0.1, with steps of 0.1, and 0.005, respectively. In each
run, the state values are recorded, after a transient time of 250 s, over a time interval of 50
s. Then, if in a certain run max Ûθ1 > 0, it means that the parameter values used in that
simulation are such that persistent bouncing motion manifests, which is undesired.

We observed that the bounces appear only for µ ≥ µc = 0.4, that is max Ûθ1 = 0 if
µ < µc, for all values of vbelt. Moreover, we verified that, when µ ≥ µc, features of the
bouncing motion such as duration and (a)periodicity depend only on vbelt. Given that the
bifurcation diagram is flat for µ < µc, and independent of µ provided that µ ≥ µc, we
only present a two-dimensional section of the diagram, in Figure 9.3, where µ = 0.6 was
considered. We note that (i) not all initial conditions trigger the bounces (see the red
dashed line), and that (ii) bounces are present only when −0.575 ≤ vbelt ≤ −0.3.

In order to gain greater knowledge on the specific behaviour of the system when
−0.575 ≤ vbelt ≤ −0.3 (still with µ = 0.6), we traced a second more detailed bifurcation
diagram in Figure 9.4, in which we plot the value of θ1 when Ûθ1 turns from negative to
positive, as a function of the parameter value. The diagram shows the presence of both
periodic and chaotic solutions, providing evidence for the onset of complex seemingly
aperiodic behaviour in the parameter regions depicted in red in Figure 9.4c.
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Figure 9.3: Bifurcation diagram with µ = 0.6. The black solid line corresponds to
initial conditions x0,a = [32 0 18.27 0]T, whereas the dashed red line corresponds to
x0,d = [−11.4 0 − 35.1 0]T.

Table 9.2: Admissible configurations for µ = 0.6

Elbow position Admissible configurations [m]

elbow up (θ2 − θ1 > 0) −0.184 ≤ zt < 0.183
elbow down (θ2 − θ1 < 0) −0.184 ≤ zt < 0.168

9.3 Control synthesis
Next, we wish to design a controller able to avoid the onset of the bouncing motion due to
the paradox and keep the robot moving in contact with the belt. This in turn requires using
a feedback control to guarantee that p > 0 and b > 0 at all times in (9.5). Without loss of
generality, we set vbelt = −0.4, that is a value that allows the occurrence of the paradox.
Firstly, setting µ = 0.6, in Table 9.2 we determine analytically the values of zt such that
p > 0; we call these admissible configurations, given that indeterminate and inconsistent
solutions will not appear for such values of zt. Secondly, one should determine, among
the admissible configurations, those corresponding to b < 0; nevertheless, this task is not
easy to achieve analytically, because, differently from p, b is also a function of Ûq and u.
However, b < 0 can be attained using a control scheme that aims at keeping fn > 0, as
it is easy to verify from (9.4), when Üzn = 0. We start by using a simpler PID controller,
showing that such strategy can keep the end effector in contact with the belt only in a
narrow range of the admissible configurations. Next, we move to a hybrid force/motion
control [125] (that allows the regulation of fn) and demonstrate that this latter approach
guarantees avoidance of the lift-off of the end effector in a wider range of the admissible
configurations.
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9.3.1 PID strategy
For the sake of simplicity, we started by considering a simpler PID control approach
to test its feasibility to solve the control goal. Let z∗ be the reference value for the end
effector coordinates, e , z∗t − zt a reference error, and q′ , [θ1 θ2 − θ1]

T. Say q′∗ the
reference value for q′, computed from z∗ using inverse kynematics as explained in [125].
Hence, the control terms ui , i = 1,2, obtained using a PID control scheme are given by

ui = KP,i(q′∗i − q′i ) + KI,i

∫ τ

0
(q′∗i − q′i )dt + KD,i( Ûq′∗i − Ûq

′
i ),

where KP,i , KI,i , KD,i , i = 1,2, are constants. The PID gains were selected heuristically
by running a series of numerical simulations from two sets of initial conditions. These
are x0,d = [−11.4 0 − 35.1 0]T and x0,u = [−35.1 0 − 11.4 0]T, both corresponding
to z = [−0.1624 0]T, with the only difference that x0,d is an “elbow down” posture
(θ2 − θ1 < 0) and x0,u is an “elbow up” posture (θ2 − θ1 > 0). The gains were adjusted in
a trial-and-error process with the aim of obtaining a large value of Zt,sliding, that is the
largest value of zt such that no lift-off occurs. We observed different results, depending on
the initial condition. For x(t = 0) = x0,d, Zt,sliding = 0.0375, and acceptable values of the
gains were found to be KP,1 = 200,KI,1 = 25,KD,1 = 2, and KP,2 = KI,2 = KD,2 = 0. The
corresponding simulation graphs, are shown in Figure 9.5. Differently, for x(t = 0) = x0,u,
the simulations results showed that the PID control is not able to effectively avoid the
onset of the paradox. As a matter of fact, we could not find values of the control gains such
that lift-off was avoided. An example is visible in Figure 9.6, where the time evolution of
the normal reaction fn is depicted; notice that it eventually becomes zero, meaning that
the end effector detaches from the belt.

9.3.2 Hybrid force/motion control
Next, we show that better performance can be achieved with a force/motion control
scheme [125], since it allows to regulate the value of the normal reaction fn in addition to
the end effector’s tangential position zt. In particular, defining the unit vectors i1 , [1 0]T
and i2 , [0 1]T, associated to the x and y Cartesian axes, the control action is given by

u = w + c +MJ−1 (
−ÛJ Ûq + i1αv

)
+ JT (

−i1 ft − i2αf

)
. (9.6)

Note that, in (9.6), on the right-hand side, the first, second, and fifth terms compensate
corresponding terms in (9.2). Differently, the fourth and and sixth terms are used to assign
dynamics for zt and fn, respectively. Specifically, letting f ∗n be a reference value for the
normal reaction, we choose

αv =Üz∗t + K ′P(z
∗
t − zt) + K ′D( Ûz

∗
t − Ûzt),

αf = f ∗n + K ′I

∫ τ

0
( f ∗n − fn)dt,

where K ′P, K ′D, and K ′I are control gains. A block diagram of the hybrid force/motion
control scheme is illustrated in Figure 9.7.

78



Chapter 9. Control of Painlevé Paradox in a Robotic System

To test the performance of the control system, we ran a series of simulations from
the same initial conditions used to validate the PID control strategy; the control gains
being selected heuristically as K ′P = K ′D = 900,K ′I = 650 for x(t = 0) = x0,d and
K ′P = K ′D = 900,K ′I = 0 for x(t = 0) = x0,u. The numerical results showed that, for x0,d,
Zt,sliding = 0.148, whereas, for x0,u, Zt,sliding = 0.163, which are both higher than the
values obtained with the PID, meaning that the force/motion control scheme allows the
robot to operate in a wider range of configurations. Examples of simulations are shown
in Figures 9.8 and 9.9, representing the results of the simulations starting from x0,d and
x0,u, respectively. Moreover, we verified that when using the present control strategy,
the persistent bouncing motion is suppressed for all vbelt ∈ [−1,−0.1]. This is shown in
the closed-loop bifurcation diagram in Figure 9.10, which can be compared with that in
Figure 9.3, representing the bifurcation diagram for the open loop system. As expected,
the closed-loop system remains in contact with the belt over the entire parameter region
of interest without any bifurcation to persistent bouncing motion.

9.4 Discussion
We dealt with the analysis and control of the Painlevé paradox in a two-links robot in
contact with a moving belt. The paradox determines occasional lift-off of the tip of the
robot, which is undesired for a number of applications, like cutting or objects moving.
We started by conducting a bifurcation study varying the belt speed, finding that some
values determine a chaotic motion of the end effector, while for others the motion is
a periodic bouncing. Then, we used the results of the bifurcation analysis to inform
the control design and proposed two control schemes, a PID controller and a hybrid
force/motion control strategy, which we compared through numerical simulations. We
showed that the latter strategy is effective in preventing the paradox from occurring and
hence guaranteeing that end effector of the robot stays in contact with the belt over a wider
parameter range with respect to the PID.
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Figure 9.4: Bifurcation diagramwith µ = 0.6 and initial conditions x0,a = [32 0 18.27 0]T.
(a) is the full picture, while (b) is an enlargement of the portion in the red box traced in
(a); (c) depicts the type of the asymptotic behaviour: red represents a chaotic dynamics,
whereas black stands for periodic motion.
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Figure 9.8: Simulation with force/motion control, x(t = 0) = x0,d and f ∗n = 10 N. In the
third panel from the top, the black solid line is u1, whereas the red dashed line is u2.
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third panel from the top, the black solid line is u1, whereas the red dashed line is u2.
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10 Observer design for
piecewise-smooth systems
via contraction theory

10.1 Introduction to observer design for piecewise-smooth
systems

The problem of designing state observers for nondifferentiable systems is the subject
of current research. For example, the design of observers for Lipschitz continuous
nonlinear systems was investigated in [119, 150], while in [5, 15] design approaches based
on passivity theory were proposed for Lur’e-type systems. Also, in [76, 50] sufficient
conditions were presented to ensure stability of the estimation error for state observers
of bimodal piecewise-linear (PWL) systems (both continuous and discontinuous on the
switching surface). The analysis was conducted analyzing the quadri-modal estimation
error dynamics based on quadratic Lyapunov functions and LMIs. Related results were
presented in [138] for the case of piecewise-affine (PWA) systems. Therein, using
theoretical results developed in [110], sufficient conditions guaranteeing exponential
stability of the estimation error were given in terms of a set of appropriate LMIs. More
recently, the state estimation problem was investigated in [71] for linear complementarity
systems and in [61] for hybrid systems with impacts.
Contraction theory [94, 122, 75, 60, 2] is a powerful analysis tool providing sufficient
conditions for incremental stability [3] of a dynamical system. Namely, if the system vector
field is contracting in a set of interest, any two of its trajectories will converge towards each
other in that set, a property that can be effectively exploited to design state observers and
solve tracking control problems as discussed, for instance, in [94, 138, 14, 48, 101, 100, 45].
More specifically, incremental exponential stability over a given forward invariant set is
guaranteed if some matrix measure, say µ, of the system Jacobian matrix is uniformly
negative in that set for all time.
The original results on contraction analysis were presented for continuously differentiable
vector fields limiting their application to observer design for this class of dynamical
systems. Recently, extensions have been presented in the literature for applying contraction
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and convergence analysis to different classes of nondifferentiable and discontinuous vector
fields [95, 110, 47, 99, 46, 44, 58].
In this work, we propose a methodology to design state observers for nondifferentiable
bimodal vector fields, which stems from the results presented in [58] on extending
contraction analysis to Filippov systems. Specifically, we derive conditions on the
observer dynamics for the estimation error to converge exponentially to zero. These
conditions, when particularized to the case of PWA systems, generalize those presented
in [138] to the case of non-Euclidean norms.
In what follows, after reviewing some key results on contraction analysis of switched
systems, we present our procedure for state observer design complementing the theoretical
derivations with some illustrative examples.

10.2 Contraction analysis of switched systems

10.2.1 Incremental stability and contraction theory
Let U ⊆ Rn be an open set. Consider the system of ordinary differential equations

Ûx = f(x; t), (10.1)

where f is a continuously differentiable vector field defined x ∈ U and for t ∈ [0,∞), that
is f ∈ C1(U × R≥0,R

n).
We denote by ψ(t, t0,x0) the value of the solution x(t) at time t of the differential equation
(10.1) with initial value x(t0) = x0. We say that a set C ⊆ Rn is forward invariant for
system (10.1) if x0 ∈ C implies ψ(t, t0,x0) ∈ C for all t ≥ t0.
A nonlinear dynamical system (10.1) is contracting if it forgets initial conditions or tem-
porary state perturbations exponentially fast, implying convergence of system trajectories
towards each other and consequently towards a steady-state solution which is determined
only by the input (entrainment property). Theorem 10.3 summarises the basic results of
contraction theory [122, 94].

Definition 10.1 (Contractivity [39]). Let C ⊆ U be a forward invarianta K-reachableb
set. The continuously differentiable vector field (10.1) is contractive on C if there
exist a norm with associated matrix measurec µ and a constant c > 0, called the
contraction rate, such that, for all x ∈ C, t ∈ R≥0, it holds that

µ

(
∂f(x; t)
∂x

)
≤ −c. (10.2)

If µ is induced by the p-norm, we say that f is contractive in norm p.
aA set C is forward invariant for a system if x0 ∈ C impliesψ(t , t0, x0) ∈ C for all t.
bA set C ⊆ Rn is K-reachable if, for any two points x1, x2 ∈ C, there exists a continuously
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differentiable curve γ : [0, 1] → C, with γ(0) = x1 and γ(1) = x2 such that, for all r ∈ [0, 1], it holds that
|dγ(r)/dr | ≤ K |x1 − x2 |. It is immediate to show that convex sets are 1-reachable and vice-versa.

cFor more detail on matrix measures, see Section 4.1.

Definition 10.2 (Incremental exponential stability). If for every two solutions of system
(10.1), say x1(t) = ψ(t, t0,x0) and y(t) = ψ(t, t0,y0) with initial conditions x0,y0 ∈ C,
there exists c > 0, called the convergence rate, it holds that

‖x(t) − y(t)‖ ≤ K e−c(t−t0) ‖x0 − y0‖ , ∀t ≥ t0, (10.3)

then the system is incrementally exponentially stable (IES) in C.

Theorem 10.3. If the vector field in system (10.1) is contractive in C with contraction
rate c, then, the system is incrementally exponentially stable in C with convergence
rate c.

In this work, we analyze contraction properties of dynamical systems based on norms
and matrix measures [94, 122]. Other more general definitions exist in the literature, for
example results based on Riemannian metrics [94] and Finsler-Lyapunov functions [60].
The relationships between these three definitions and the definition of convergence [111]
were investigated in [60].

10.2.2 Switched systems
Switched (or bimodal) Filippov systems are dynamical systems Ûx = f(x) where f(x)
is a piecewise-continuous vector field having a codimension-one submanifold Σ as its
discontinuity set [56, 137]. The submanifold Σ is called the switching manifold and is
defined as the zero set of a smooth function h : U ⊆ Rn → R, that is Σ , {x ∈ U |
h(x) = 0}, where 0 ∈ R is a regular value of h, i.e., ∇h(x) , 0, ∀x ∈ Σ. Σ divides U in
two disjoint regions, S+ , {x ∈ U | h(x) > 0} and S− , {x ∈ U | h(x) < 0} (see Figure
10.1).
Hence, a bimodal Filippov system can be defined as

Ûx =

{
f+(x), if x ∈ S+

f−(x), if x ∈ S−
, (10.4)

where f+, f− ∈ C1(U,Rn). We assume that solutions of system (10.4) are defined in the
sense of Filippov (and therefore admitting slidingmotions on Σ) and they have the property
of right-uniqueness in U [56, pag. 106]. Condition (10.2) was previously presented as a
sufficient condition for a dynamical system to be incrementally exponentially stable, but it
cannot be directly applied to system (10.4) because its vector field is not continuously
differentiable. In recent work reported in [58], sufficient conditions were derived for
convergence of any two trajectories of a Filippov system towards each other. Instead
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Figure 10.1: Regions of state space: switching manifold Σ, S+, S− (hatched zone) and
Sε (grey zone).

of directly analyzing the Filippov vector field on Σ, the analysis is conducted on its
regularization, say fε(x), defined as

fε(x) =
1 + ϕε (h(x))

2
f+(x) +

1 − ϕε (h(x))
2

f−(x),

where ϕε ∈ C1(R,R) is the so-called transition function. In this new system the switching
manifold Σ is replaced by a boundary layer Sε (Figure 10.1) of width 2ε, defined as
Sε , {x ∈ U | −ε < h(x) < ε}, and, more importantly, fε is continuously differentiable
in U, so that condition (10.2) can be applied to it. Finally, contraction properties of
Filippov systems (10.4) are recovered taking the limit for ε → 0 and considering the
following Lemma.

Lemma 10.4. Denoting by xε(t) a solution to the regularized system and by x(t) a so-
lution to the switched system with the same initial conditions x0, then ‖xε(t) − x(t)‖ =
O(ε), uniformly for all t ≥ t0 and for all x0 ∈ U.

For further details see [128, 137, 58]. The resulting sufficient conditions for a bimodal
Filippov system to be incrementally exponentially stable in a certain set are stated in the
following theorem (see [58] for a complete proof and further details).

Theorem 10.5. The bimodal switched system (10.4) is incrementally exponentially
stable in a K-reachable set C ⊆ U with convergence rate c , min {c1, c2} if there
exists some norm in C, with associated matrix measure µ, such that, for some positive
constants c1, c2,

µ

(
∂f+

∂x
(x)

)
≤ −c1, ∀x ∈ S̄+,

µ

(
∂f−

∂x
(x)

)
≤ −c2, ∀x ∈ S̄−,

µ
( [

f+(x) − f−(x)
]
∇h(x)

)
= 0, ∀x ∈ Σ.

In the above relations S̄+ and S̄− represent the closures of the setsS+ andS−, respectively.
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10.3 State observer design

10.3.1 Problem formulation
Consider the bimodal switched system

Ûx =

{
f+(x) + u(t), h(x) > 0
f−(x) + u(t), h(x) < 0

, (10.5)

y = g(x), (10.6)

where x ∈ Rn, y ∈ Rp , u ∈ Rn are the state, output and the input of the system, respectively,
and f+, f−, g are continuously differentiable vector fields.
As an observer for the system (10.5)-(10.6), we propose a bimodal Luenberger-like
switched observer of the form

Û̂x =

{
f+(x̂) + L+(y − ŷ) + u(t), h(x̂) > 0
f−(x̂) + L−(y − ŷ) + u(t), h(x̂) < 0

, (10.7)

ŷ = g(x̂), (10.8)

where x̂(t) ∈ Rn is the estimated state and L+,L− ∈ Rn×p are observer gain matrices to
be selected appropriately.
We are interested in deriving conditions on the observer gain matrices L+ and L− that
guarantee exponential convergence to 0 of the estimation error e(t) , x(t) − x̂(t) for all
x(t) : R+ → Rn satisfying (10.5)-(10.6) for any given continuous functionu(t) : R+ → Rn.
Note that in what follows we will not require system (10.5)-(10.6) to be contracting, i.e.
Theorem 10.5 must not necessarily hold for this system. Instead, contraction theory
will be exploited to analyze convergence of the system describing the dynamics of the
estimation error.

10.3.2 Main results

Theorem 10.6. The state estimation error e(t) converges exponentially to zero, that
is, for some c > 0,

‖e(t)‖ ≤ K e−c(t−t0) ‖x(t0)‖ , ∀t ≥ t0, (10.9)

if there exists some matrix measure µ, such that, for some positive constants c1, c2,

µ

(
∂f+

∂x
(x̂) − L+

∂g
∂x
(x̂)

)
≤ −c1,∀x̂ : h(x̂) > 0, (10.10)

µ

(
∂f−

∂x
(x̂) − L−

∂g
∂x
(x̂)

)
≤ −c2,∀x̂ : h(x̂) < 0, (10.11)
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µ
( [
∆f(x̂) + ∆L(y − ŷ)

]
∇h(x̂)

)
= 0,∀x̂ : h(x̂) = 0, (10.12)

where ∆f(x̂) = f+(x̂) − f−(x̂) and ∆L = L+ − L−. Moreover, the convergence rate c
can be estimated as min{c1, c2}.

Proof. Conditions (10.10)-(10.12) come from the application of Theorem 10.5 to the
dynamics of the state observer (10.7)-(10.8) by rewriting them as

Û̂x =

{
f̄+(x̂) + η+(t), h(x̂) > 0
f̄−(x̂) + η−(t), h(x̂) < 0

,

where f̄±(x̂) = f±(x̂) − L±g(x̂) depends only on x̂, and η±(t) = L±g(x(t)) + u(t) is a
function of t.
Hence, if such conditions are satisfied, then the state observer is contracting; this in turn
implies that, for two generic solutions x̂1(t) and x̂2(t), (10.3) holds, i.e.

‖x̂1(t) − x̂2(t)‖ ≤ K e−c(t−t0) ‖x̂1(t0) − x̂2(t0)‖ , ∀t ≥ t0.

Now, notice that a solution x(t) of system (10.5) is a particular solution of the observer
(10.7) — because (10.5) and (10.7) have the same structure, except for the correction
term g(x) − g(x̂), which is null when considering x(t) as a solution of the observer. Then,
we can replace x̂2(t) with x(t), rename x̂1(t) as the general solution x̂(t), and write

‖e(t)‖ = ‖x(t) − x̂(t)‖ ≤ K e−c(t−t0) ‖x(t0)‖ ,

for all t ≥ t0, where x̂(t0) = 0 as usual in observer design. Hence, the exponential
convergence to zero of the estimation error is proved. �

Remark 10.7. Alternatively, the theorem can be proved considering the regularized
dynamics of both system (10.5) and observer (10.7). Denoting by xε(t) a solution
to the regularized switched system (10.5), and by x̂ε(t) a solution to the regularized
observer (10.7), we have

‖e(t)‖ = ‖x(t) − x̂(t)‖
≤ ‖x(t) − xε(t)‖ + ‖xε(t) − x̂ε(t)‖ + ‖x̂ε(t) − x̂(t)‖ .

The first and the third terms are the error between a solution to the discontinuous
system and a solution to its regularized counterpart; hence, from Lemma 10.4 we
know that ‖x(t) − xε(t)‖ = O(ε), and ‖x̂(t) − x̂ε(t)‖ = O(ε).

Furthermore, similarly to what done in [58], it can be shown that conditions
(10.10)-(10.12) imply incremental stability of the trajectories of the regularized
observer, thusx̂ε,1(t) − x̂ε,2(t)

 ≤ K e−c(t−t0)
x̂ε,1(t0) − x̂ε,2(t0)

 ,∀t ≥ t0.

The theorem is finally proved by taking the limit for ε → 0+ and taking the same last
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step as that in the proof of Theorem 10.6.

Remark 10.8. If one of the two modes, f+ or f−, of the observed system (10.5) is
already contracting, the corresponding observer gain matrix, L+ or L−, in (10.7) can
be set to zero to simplify the design problem. The drawback is that the convergence
rate of the estimation error will depend on that of the contracting mode that cannot
be altered if this choice is made.

Remark 10.9. In the presence of bounded disturbances or uncertainties on the models,
contraction properties of the vector fields guarantee boundedness of the estimation
error (a more detailed analysis is not the aim of the current paper; the interested
reader can refer to [94]).

10.4 Examples
Here we present some examples to illustrate the use of Theorem 10.6 for the design
of observers for switched systems. All simulations presented in this section have been
computed using the numerical solver in [114].

10.4.1 Example 1: A nonlinear piecewise-smooth system
Consider a nonlinear bimodal switched system as in (10.5)-(10.6) with

f+(x)=
[
−9x1 − 3x2

1 − 18
−4x2

]
, f−(x)=

[
−9x1 + 3x2

1 + 18
−4x2

]
,

and h(x) = x1, y = g(x) = x2
1 .

According to Theorem 10.6, a state observer as in (10.7)-(10.8) with L+ = [`+1 `+2 ]
T

and L− = [`−1 `−2 ]
T for this system has the property that its estimation error converges

exponentially to zero if there exist choices of the gain matrices L+ and L− so that all three
conditions (10.10)-(10.12) are satisfied.
To find L+ and L−, it is first necessary to select a specific matrix measure; here we use the
measure µ1, associated to the so-called `1-norm (see Section 4.1). Therefore, conditions
(10.10) and (10.11) translate respectively to

µ1

( [
−9 − 6x̂1 − 2`+1 x̂1 0
−2`+2 x̂1 −4

] )
< 0, with x̂1 > 0,

µ1

( [
−9 + 6x̂1 − 2`−1 x̂1 0
−2`−2 x̂1 −4

] )
< 0, with x̂1 < 0.

Selecting for simplicity `+2 = `
−
2 = 0, the above inequalities are satisfied if

max{−9 − 6x̂1 − 2`+1 x̂1, −4} < 0, with x̂1 > 0,
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Figure 10.2: Panel a: Time evolution of the states x1(t) (solid line) and x̂1(t) (dashed
line) of Example 1, with initial conditions x0 = [3 3]T, x̂0 = [0 0]T. Panel b: Norm of
the estimation error ‖e(t)‖1. The dashed line represents the analytical estimate (10.9)
with c = 4 and K = 1. Parameters: L+ = [−2 0]T and L− = [2 0]T.

max{−9 + 6x̂1 − 2`−1 x̂1, −4} < 0, with x̂1 < 0.

This is true if `+1 > −3 and `−1 < 3.
Next, from the the third condition (10.12), we have

µ1

( [
−6x̂2

1 − 36 + (`+1 − `
−
1 )(x

2
1 − x̂2

1)
0

] [
1 0

] )
= 0,

with x̂1 = 0, which is verified ifmax{−36+(`+1 −`
−
1 )x

2
1, 0} = 0, i.e. if−36+(`+1 −`

−
1 )x

2
1 < 0,

which holds for all x1 if `+1 < `−1 . Therefore, to satisfy all three conditions of Theorem
10.6, it is possible for example to select L+ = [−2 0]T and L− = [2 0]T. The resulting
state observer is contracting and its estimation error satisfies (10.9) with convergence rate
c = 4. In Figure 10.2(a) we show numerical simulations of the evolution of the states x1
and x̂1 when an input u(t) = [1 1]T sin(2πt) of period T = 1 is applied to the system. In
Figure 10.2(b) the evolution of the `1-norm of the state estimation error e(t) is reported,
confirming the analytical estimate (10.9).

10.4.2 Example 2: A piecewise-affine system

Consider a piecewise-affine (PWA) system of the form

Ûx =

{
A1x + b1 + Bu, if hTx > 0
A2x + b2 + Bu, if hTx < 0

, (10.13)

y = cTx, (10.14)

where

A1 =

[
−1 0
2 −2

]
, b1 =

[
−1
−3

]
, A2 =

[
−1 0
2 −3

]
, b2 =

[
2
4

]
,
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and B = [0 1]T, h = [0 1]T, c = [1 1]T.
A state observer as in (10.7)-(10.8) for this system has the structure

Û̂x =

{
A1x̂ + b1 + L+(y − ŷ) + Bu, if hTx̂ > 0
A2x̂ + b2 + L−(y − ŷ) + Bu, if hTx̂ < 0

, (10.15)

ŷ = cTx̂, (10.16)

where, for the sake of simplicity, we choose L+ = L− = L. Again we decide to proceed
using the matrix measure induced by the `1-norm. In this case, conditions (10.10) and
(10.11) yield respectively µ1

(
A1 − LcT

)
= max{−1 − `1 + |2 − `2 |, −2 − `2 + |`1 |}, and

µ1
(
A2 − LcT

)
= max{−1− `1 + |2− `2 |, −3− `2 + |`1 |}. It is easy to verify that choosing

`1 = `2 = 1 both measures are equal to −1. Condition (10.12) is verified independently of
L.
Hence, the designed observer (10.15) is contracting and the estimation error converges
exponentially to zero with rate c = 1. In Figure 10.3(a) we show numerical simulations
of the evolution of the states x2 and x̂2 when an input u(t) = 4 sin(2πt) of period T = 1 is
applied to the system. In Figure 10.3(b) the evolution is reported of the `1-norm of the
state estimation error e(t).
Note that faster convergence can be obtained by choosing higher values of `1 and
`2 fulfilling conditions (25)-(26). For example choosing L = [1.5 2]T we obtain a
convergence rate c = 2.5, as shown in Figure 10.3(c).

10.4.3 Example 3: An actuated dry friction oscillator
Consider now a harmonic oscillator affected by Coulomb friction, described by the
equations 

Ûx1 = x2,

Ûx2 = −ω
2
n x1 −

ωn
Q

x2 −
Ff
m

sgn(x2) +
Fd
m

sin(ωdt),
(10.17)

y = x1, (10.18)

where x1 ∈ R is the position of the oscillator, x2 ∈ R is its velocity, ωn is its natural
frequency, Q is said Q factor and is inversely proportional to the damping, m is the mass
of the oscillator, Fd is the amplitude of the driving force, ωd is the driving frequency and
Ff is the amplitude of the dry friction force which is modeled through the sign function as
in [35]. The proposed observer for system (10.17)-(10.18) has the form

Û̂x1 = x̂2 + `1(x1 − x̂1),

Û̂x2 = −ωn x̂1 −
ωn
Q

x̂2 −
Ff
m

sgn(x̂2) + `2(x1 − x̂1) +
Fd
m

sin(ωdt),

ŷ = x̂1.

Note that system (10.17) may be viewed as a PWA system (10.13) where

A1 = A2 =

[
0 1
−ωd −ωd/Q

]
,
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Figure 10.3: Panel a: Time evolution of the states x2(t) (solid line) and x̂2(t) (dashed
line) of Example 2, with initial conditions x0 = [0.3 0.3]T, x̂0 = [0 0]T. Panel b: Norm
of the estimation error ‖e(t)‖1. The dashed line represents the analytical estimate (10.9)
with c = 1 and K = 1. Parameters: L+ = L− = [1 1]T. Panel c: Norm of the estimation
error using observer gain L = [1.5 2]T.

B = [0 1/m]T, b1 = [0 − Ff/m]T, b2 = [0 Ff/m]T, h = [0 1]T, and excited by an input
u(t) = Fd sin(ωdt).
Using the measure µ∞ induced by the uniform norm (see Section 4.1), conditions (10.10)
and (10.11) of Theorem 10.6, combined, yield

µ∞

( [
−`1 1

−ωn − `2 −ωn/Q

] )
< 0, with x̂2 , 0,

which in turn is equivalent to

max {−`1 + 1, − f racωnQ + |−ωn − `2 |} < 0, with x̂2 , 0.

Therefore `1 and `2 must be chosen so that `1 > 1, and −ωn (1 + 1/Q) < `2 <
−ωn (1 − 1/Q).
Furthermore, condition (10.12) is verified if max{0,−Ff/m} = 0, which always holds
because Ff,m > 0.
Numerical simulations reported in Figure 10.4 confirm the theoretical predictions, showing
that the estimation error converges to zero. In practice, the exact value of the parameter
Ff is not known. This implies bounded convergence of the estimation error, as stated in
Remark 10.9.
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Figure 10.4: Panel a: time evolution of the states x1(t) (solid line) and x̂1(t) (dashed
line) of Example 3, with initial conditions x0 = [−1 0]T, x̂0 = [0 0]T. Panel b: Norm of
the estimation error ‖e(t)‖∞. The dashed line represents the analytical estimate (10.9)
with c = 0.1 and K = 1. Parameters: ωn = 1 rad/s, Q = 10, m = 1 kg, Fd = 1 N,
ωd = π rad/s, Ff = 0.1 N, `1 = 1.1, `2 = −1.

10.5 Discussion
We presented an approach based on contraction for the design of state observers for a
large class of nonlinear switched systems including those exhibiting sliding motion, such
as the friction oscillator. The design methodology is based on the analysis of incremental
exponential stability based on the extension of contraction theory to switched bimodal
Filippov systems derived in [58]. The conditions were formulated in terms of matrix
measures of the Jacobians of the observer dynamics and of an additional condition on
the vector fields on the discontinuity set. The theoretical results were illustrated through
simple but representative examples demonstrating the effectiveness of the proposed
methodology. Future work will be aimed at extending the approach to a wider class of
switched systems, investigating constructive methods to design both metrics and observer
gains, and reformulating the design procedure as a convex optimization problem to
compute them numerically.
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11 Conclusion

In Part I, we addressed the challenging problem of proving global asymptotic convergence
to synchronization in a network of piecewise-smooth dynamical systems, without employ-
ing, as done in previous attempts in the literature, costly centralised control actions on all
the nodes. We showed that, under some assumptions on the agents’ vector field, adding a
discontinuous coupling layer to the commonly used diffusive linear coupling protocol is
sufficient to ensure convergence. We derived sufficient conditions that allow computation
of the critical values of the coupling gains required for convergence, even when the inner
coupling matrices are not positive definite. The conditions depend explicitly on structural
properties of the underlying network graphs that can be computed algorithmically. In
particular, we introduced the concept of minimum density of a graph that can be used to
compute the critical coupling gain of the discontinuous control layer.

An open problem left for further study is to investigate if there exist some best
structures of the diffusive and discontinuous coupling layers in terms of performance,
robustness and stability. For example, numerical simulations reported in §5.5.4 show
that different layers’ structures can enhance the regions in the control parameter space
where synchronization is attained. On the other hand, as illustrated in §5.5.2, some edges
are more important than others in order to determine small thresholds on the coupling
gains. Finally, in the future we will thoroughly investigate and discuss the application of
the discontinuous coupling action to achieve asymptotic synchronization in networks of
non-identical systems. As a matter of fact, In Appendix C, we demonstrated the feasibility
of this approach.

In Part II, we focused on three problems related to the control of piecewise-smooth
systems. In particular, (i, ii) we compared the performances of known control-schemes
in the suppression of undesired oscillation in two different mechanical systems—an
aircraft landing gear and a two-link planar robot, respectively—and (iii) expanded the
mathematical design tools to synthesise observers of PWS systems. In nonlinear PWS
systems, there are multiple different factors that can give birth to instabilities such as
oscillations. Hence, the control schemes that best suit each case depend on the application.
In the case of landing gear, we found that a zero average dynamics sliding control and
a model reference adaptive controller with minimal control synthesis are both able to
stabilise the system, even though the former gave slightly better performance. As far as
the planar robot is concerned, we found out that hybrid force/motion control performs
significantly better than a simpler PID control in the task of stabilisation. In both scenarios,
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we have employed bifurcation analysis to guide the control synthesis process. Lastly,
concerning observer design, our contribution owes much to recent advances in contraction
theory for bimodal PWS systems. One of the main reasons this theory proves advantageous
is that it allows to perform the design using any norm, when satisfying certain conditions,
rather than only the euclidean norm, which is what was previously possible.

In these last lines, we would like to highlight what are the pieces that are still missing
in the puzzle that piecewise-smooth systems are. First, concerning networks, we only
studied state synchronization, where the states of all the agents converge towards the
same trajectory. However, there exist a plethora of different collective behaviours that
still deserve further investigation; these feature cluster synchronization, formation control,
and partial state synchronization, among others. Moreover, one huge issue that hinders
progress in network science as a hole, also for smooth systems, is the limitation that
non-positive-definite inner coupling matrices pose (we are referring to the matrices Γ and
Γd in (5.3)). Evidence suggests that in many cases it is not required that these matrices are
positive definite to achieve synchronization (e.g., smooth mechanical oscillators coupled
diffusively on position). Nonetheless, to the best of our knowledge, there are no fairly
generic techniques to prove this globally, at the current state. Regarding the control theory
on PWS systems, depicting a holistic framework of which research directions are the
most pressing in this immensely vast topic would be beyond the scope of this thesis.
Although, one current gap that emerged from our study of the literature is the observation
of multimodal (i.e., not bimodal) PWS systems. If one thought that multimodal systems
are rare, consider that one emerges as soon as a bimodal system is controlled with another
one that does not share perfectly the switching hyper-plane. Besides, given the known
relations between observability and controllability, advancements in the former field could
easily contribute to research into the latter.
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Appendix A. Regularity conditions on vector fields

A Regularity conditions
on vector fields

For the sake of comparison with the QUAD and σ-QUAD conditions (Definitions 2.3 and
2.4) presented in Section 2.2, we list here other regularity conditions for vector fields used
in the literature on synchronization. The relations between the various conditions are
reviewed in Figure A.1. Note that, as stated in Section 4.2, if a function f is discontinuous,
when stating that a certain condition holds on f, we imply that the condition must hold for
all φ ∈ F [f].

Definition A.1 (Lipschitz continuity [126]). A function f : Rn ×R≥0 → Rn is Lipschitz
continuous if there exists Q ∈ R≥0 such that, for all ξ1, ξ2 ∈ R

n, t ∈ R≥0, it holds that

‖f(ξ1; t) − f(ξ2; t)‖ ≤ Q ‖ξ1 − ξ2‖ .

Note that all Lipschitz continuous functions are continuous, but the converse is not true.

Definition A.2 (One-sided Lipschitz continuity [49]). A function f : Rn ×R≥0 → Rn is
one-sided Lipschitz continuous if there exists Q ∈ R≥0 such that, for all ξ1, ξ2 ∈ R

n,
t ∈ R≥0, it holds that

(ξ1 − ξ2)
T (f(ξ1; t) − f(ξ2; t)) ≤ Q ‖ξ1 − ξ2‖

2 .

As examples, f (x) = −x3 and f (x) = −sign(x) are one-sided Lipschitz, but are not
Lipschitz; f (x) = +sign(x) is not one-sided Lipschitz, but is σ-QUAD. As a further note,
it is immediate to show that if a function is QUAD(I, Q), then it is one-sided Lipschitz
with constant Q = λmin(sym(Q)).

In the following proposition, we describe the relationship between QUADness
(Definition 2.3) and contractivity (Definition 10.1).

Proposition A.3 (Relation between QUADness and contractivity [39]). Consider a
function f : Rn × R≥0 → Rn.

• If f is differentiable and QUAD(I, Q) with Q being diagonal and Q ≥ −kI,
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Figure A.1: Relations between regularity properties of vector fields. “Assumption ∗”
refers to Assumption A.7. The horizontal implication in the top line refers to both
σ-QUAD and QUAD affine.

with k > 0, then f is contractive in norm 2 with contraction rate c ≤ k.
• If f is contractive in norm 2 with convergence rate c > 0, then f is QUAD(I, Q)
with Q being diagonal and Q ≥ −cIn.

It is also possible to show that if certain simple bounds hold on the Jacobian of a vector
field f, then it is QUAD.

Proposition A.4 (Bounds on Jacobian to infer QUADness). If a function f : Rn → Rn

has an upper bounded Jacobian in Ω ⊆ Rn, in the sense that, for all ξ ∈ Ω, it holds
that

∂ fi
∂xi
(ξ) ≤ Sii,���� ∂ fi

∂xj
(ξ)

���� ≤ Si j, i , j,

for Si j ∈ R≥0, i, j = 1, . . . ,n, then f is QUAD(I, Q) in Ω, with Q being diagonal and
Qii = Sii +

∑n
j=1, j,i

Si j+S j i

2 .

Proof. Let us define ξ,δ ∈ Rn, so that ξ, ξ +δ ∈ Ω. According to the mean value theorem
for vector-valued functions, there exists λi ∈ [0,1] such that

fi(ξ + δ) − fi(ξ) = ∇ fi(ξ + λiδ) δ.

We can rewrite

fi(ξ + δ) − fi(ξ) =
n∑
j=1

∂ fi(ξ + λiδ)
∂xj

δj .
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We denote ∂ fi (ξ)
∂x j

by Ji j(ξ) and multiply both sides by δi to get

δi( fi(ξ + δ) − fi(ξ)) =
n∑
j=1

Ji j(ξ + λiδ) δiδj . (A.1)

To streamline notation, we denote Ji j(ξ + λiδ) simply by Ĵi j . Adding (A.1) for all
i = 1, . . . ,n, we have

δT(f(ξ + δ) − f(ξ)) =
n∑
i=1

n∑
j=1

Ĵi jδiδj =
n∑
i=1

Ĵiiδ2
i +

n∑
i=1

n∑
j=1, j,i

Ĵi jδiδj .

Notice that, recalling the expression of the square of a binomial and the bounds on the
Jacobian, it holds that

Ĵi jδiδj ≤
��Ĵi jδiδj �� ≤ ��Ĵi j ��

2

(
δ2
i + δ

2
j

)
≤

Si j
2

(
δ2
i + δ

2
j

)
.

Then,

δT(f(ξ + δ) − f(ξ)) ≤
n∑
i=1

Ĵiiδ2
i +

n∑
i=1

n∑
j=1, j,i

Si j
2

(
δ2
i + δ

2
j

)
≤

n∑
i=1

Siiδ2
i +

n∑
i=1

n∑
j=1, j,i

Si j
2

(
δ2
i + δ

2
j

)
≤

n∑
i=1

©«Sii +
n∑

j=1, j,i

Si j + Sji

2
ª®¬ δ2

i .

Let Qii = Sii +
∑n

j=1, j,i
Si j+S j i

2 , Qi j = 0 for i , j. Define ξ1 , ξ + δ, and rename ξ as
ξ1; the thesis is evident as we can rewrite

(ξ1 − ξ2)
T(f(ξ1) − f(ξ2)) ≤ (ξ1 − ξ2)

TQ(ξ1 − ξ2).

�

Definition A.5 (semi-QUADness [90]). A function f : Rn ×R≥0 → Rn is semi-QUAD
if there exists g : Rn × R≥0 → Rn such that

(i) “condition λ” in [90] holds,a
(ii) g is QUAD(P, Q) with Q being a diagonal matrix,
(iii) limt→+∞ f(ξ ; t) − g(ξ ; t) = 0, for all ξ ∈ Rn,
(iv)

∫ +∞
0 supξ |f(ξ ; τ) − g(ξ ; τ)| dτ < +∞, for all ξ ∈ Rn.

aThis a set of 6 more regularity conditions on F[f].
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Definition A.6 (QUAD affine condition [38]). A function f : Rn ×R≥0 → Rn is QUAD
affine if there exist g,h : Rn × R≥0 → Rn and M < +∞ such that

(i) f(ξ ; t) = g(ξ ; t) + h(ξ ; t), for all ξ ∈ Rn, t ∈ R≥0,
(ii) g is QUAD,
(iii) ‖h(ξ ; t)‖2 < M , for all ξ ∈ Rn, t ∈ R≥0.

Next, we report an assumption from [146] that was used to prove synchronization in
piecewise-smooth networks.

Assumption A.7 ([146]). Given f : Rn × R≥0 → Rn, there exist Q,M ∈ R≥0 such
that, for all ξ1, ξ2 ∈ R

n, t ∈ R≥0, it holds that

(ξ1 − ξ2)
T (f(ξ1; t) − f(ξ2; t)) ≤ Q ‖ξ1 − ξ2‖

2 + M
n∑
i=1

��ξ1,i − ξ2,i
�� .

Definition A.8 (Growth condition [93, 92]). A function f : Rn × R≥0 → Rn satisfies
the growth condition if there exist Q,M ∈ R≥0 such that

(i) it is continuously differentiable except on a finite set of isolated points, where
the limit exist along all directions, and

(ii) ‖f(ξ ; t)‖p ≤ Q ‖ξ ‖p + M , for all ξ ∈ Rn, t ∈ R≥0, p = 1,2, . . . ,+∞.
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B Minimum density
for selected topologies

With reference to the minimum density introduced in Definition 4.9 and in Section 4.3, we
give a series of propositions that contain analytical expressions of this topological measure
for complete, path, ring, star, and l-nearest neighbours graphs, which are represented in
the examples in Figure 4.1.

Proposition B.1. The minimum density of a complete graph G with N vertices is

δG = N/2.

All cuts are a sparsest cut.

Proof. We apply a generic cut C that splits the graph in two subgraphs G1 = (V1,E1)
and G2 = (V2,E2), with cardinalities N1 and N2, respectively. Since the graph G is a
complete graph, each vertex in V1 is connected to each vertex in V2. Therefore, the
number b of edges between the two subgraphs is N1N2, independently of the cut. Then,
exploiting (4.2), the thesis is proved. �

Proposition B.2. The minimum density of a path graph G with N vertices is

δG =

{
2/N, if N is even,
2N/(N2 − 1), if N is odd.

A cut is a sparsest cut if and only if it minimises the difference in size between the two
subgraphs.

Proof. We apply a generic cut C that splits the graph in two subgraphs G1 = (V1,E1) and
G2 = (V2,E2), with cardinalities N1 and N2, respectively. Since the graph G is a path, the
number b of edges between the two subgraphs is 1, independently of C. Then, in order
to solve the minimisation problem in (4.2), we consider the problem maxN1 ,N2 N1N2,
which is solved when N1 and N2 are the closest (this also characterises the sparsest cut(s)).
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Namely, when N is even, we take N1 = N2 = N/2; differently if N is odd, we select
N1 = (N − 1)/2 and N2 = (N + 1)/2 or vice versa. These values of N1 and N2, when
inserted in (4.2), prove the thesis. �

Proposition B.3. The minimum density of a ring graph G with N ≥ 3 vertices is

δG =

{
4/N, if N is even,
4N/(N2 − 1), if N is odd.

A cut is a sparsest cut if and only if it minimises the difference in size between the two
subgraphs.

Proof. The proof is almost identical to that of Proposition B.2, with the difference that
here b = 2 (rather than b = 1). Note that if the hypothesis that N ≥ 3 were not satisfied,
the graph would be a path and not a ring. �

Proposition B.4. The minimum density of a star graph with N vertices is

δG = N/2(N − 1).

A cut is a sparsest cut if and only if it generates a subgraph composed only of a single
vertex that is not the centre of the star.

Proof. We apply a generic cut C that splits the graph in two subgraphs G1 = (V1,E1)
and G2 = (V2,E2), with cardinalities N1 and N2, respectively. Without loss of generality,
assume it is G1 that contains the centre vertex in the star. Then, the number b of edges
between the two subgraphs is equal to N2, as all vertices in G2 are connected only to the
centre of the star in G1. Then, from (4.2),

δG =
N
2

min
C∈ĈG

N2
N1N2

=
N
2

min
C∈ĈG

1
N1
=

N
2

1
N − 1

,

which corresponds to the thesis. For the minimisation, we took N1 = N − 1, with G1
containing all vertices but one that is not the centre of the star. �

Proposition B.5. The minimum density of a l-nearest neighbours graph with N
vertices and l < (N − 1)/2 is

δG =


4
∑l−1

k=0(l − k)
N

, if N is even,

4N
∑l−1

k=0(l − k)

N2 − 1
, if N is odd.

A cut is a sparsest cut if and only if it minimises the difference in size between the two

104



Appendix B. Minimum density for selected topologies

subgraphs.

Proof. First, note that we require l < (N − 1)/2 to ensure that G is not a complete
graph. We apply a generic cut C that splits the graph in two subgraphs G1 = (V1,E1)
and G2 = (V2,E2), with cardinalities N1 and N2, respectively. Assume, without loss
of generality, that N1 ≤ N2. It is straightforward to verify that the number b of edges
between the two subgraphs is given as

b = 2
K∑
k=0
(l − k), K =

{
N1 − 1, if N1 < l

l − 1, if N1 ≥ l
(B.1)

First, we aim to show that (
b

N1N2

)
1≤N1<l

≥

(
b

N1N2

)
N1=l

,

which we will prove by demonstrating that(
b

N1N2

)
N1=N

∗
1−1
≥

(
b

N1N2

)
N1=N

∗
1

, 2 ≤ N∗1 ≤ l . (B.2)

In light of (B.1) and the fact that N2 = N − N1, (B.2), becomes∑N1−2
k=0 (l − k)

(N1 − 1)(N − N1 + 1)
≥

∑N1−1
k=0 (l − k)

N1(N − N1)
, 2 ≤ N1 ≤ l . (B.3)

First, define

a ,
N1−1∑
k=0
(l − k) (B.4)

and consider that
N1−2∑
k=0
(l − k) = a − (l − N1 + 1). (B.5)

At this point, using (B.4) and (B.5), (B.3) becomes

a − (l − N1 + 1)
(N1 − 1)(N − N1 + 1)

≥
a

N1(N − N1)
.

Through some manipulations, we get the following refinements:

[a − (l − N1 + 1)][N1(N − N1)] − a[(N1 − 1)(N − N1 + 1)] ≥ 0;

aN1N−aN2
1 −lN1N+lN2

1 +N2
1 N−N3

1 −N1N+N2
1 −aN1N+aN2

1 −aN1+aN−aN1+a ≥ 0;

− lN1N + lN2
1 + N2

1 N − N3
1 − N1N + N2

1 − 2aN1 + aN + a ≥ 0. (B.6)
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Now, consider that

a =
N1−1∑
k=0
(l − k) = N1l −

N1−1∑
k=0

k = N1l −
(N1 − 1)N1

2
,

which, inserted into (B.6), gives

−lN1N + lN2
1 + N2

1 N − N3
1 − N1N + N2

1 +

(
N1l −

(N1 − 1)N1
2

)
(−2N1 + N + 1) ≥ 0;

−lN + lN1 + N1N − N2
1 − N + N1 − 2lN1 + lN + l + N2

1 − N1 −
NN1 − N

2
−
(N1 − 1)

2
≥ 0;

−2lN1 + N1N − N + 2l − N1 + 1 ≥ 0;

(N − 2l − 1)(N1 − 1) ≥ 0.

The last inequality is satisfied because N − 2l − 1 > 0 and N1 − 1 ≥ 0, which proves
that (B.2) actually holds. Through (B.2), we can establish that the optimal value of N1
(generated by the sparsest cut) for (4.2) is at least equal to l. Next, we consider that in
order to solve the minimisation in (4.2), we need to solve the problem

min
l≤N1≤N−1

(∑l−1
k=0(l − k)

N1(N − N1)

)
,

that is equivalent to maxN1 N1(N − N1) = maxN1 N1N2. This last problem is solved for
N1 being the closest to N2 (this also characterises the sparsest cut(s)). That is, the optimal
values of N1 are N/2 if N is even, and (N − 1)/2 (or equivalently (N + 1)/2) if N is odd.
This last consideration, together with (4.2) and (B.1), proves the value of the minimum
density in the thesis. �
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C An extension:
Synchronization of
heterogeneous systems

The theoretical results in Chapter 6 can be extended without great effort to prove
synchronization in the case of networks of (smooth or non-smooth) heterogeneous agents.
A thorough description of the state of the art on synchronization of heterogeneous systems
is beyond the scope of this thesis. Nonetheless, we remark that it is known that a diffusive
linear coupling action is not able to asymptotically synchronize heterogeneous networks
[38, 109], but can only guarantee bounded convergence.

C.1 Theoretical results

In this framework each agent can have a different internal dynamics fi(xi). Assume the
presence of both a linear diffusive and a discontinuous coupling layers, the dynamics of
the network is given by

Ûxi(t) = fi(xi; t) − c
N∑
j=1

Li jΓ(xj − xi) − cd

N∑
j=1

Ld
i jΓdsign(xj − xi), i = 1, . . . ,N, (C.1)

where the symbols have the same meaning as those in (5.3). Let us define the average
vector field f̃ : RnN → Rn as

f̃(x̄) ,
1
N

N∑
i=1

fi(xi) = Û̃x, (C.2)

where the coupling terms in Û̃x cancel out thanks to the fact that L and Ld are symmetric.
We also let Ac

r be a closed ball of the origin with radius r ∈ R>0, and introduce the
following definition.
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C.1. Theoretical results

Definition C.1 (Uniform ultimate boundedness). A dynamical system is uniformly
ultimately bounded to Ac

r , if there exists a function T : Rn → [0,+∞[ such that

∀t ≥ T(x(0)), ‖x(t)‖ ≤ r .

Theorem C.2. Consider network (C.1). If

(a) the network is uniformly ultimately bounded to some ball Ac
r ,

(b) each agent dynamics fi is QUAD(P, Qi) in Ac
r , and sym(PΓ) > 0 and

µ−∞(PΓd) > 0.
(c) G and Gd are connected graphs,

then

(a) there exist some thresholds c∗ and c∗d such that, if both c > c∗ and cd ≥ c∗d,
then global asymptotic synchronization is achieved. Moreover, the asymptotic
synchronous trajectory s(t) is a solution to Ûs(t) = 1

N

∑N
i=1 fi(s(t); t).

(b) c∗ and c∗d are given by

c∗ ,
maxi (‖Qi ‖2)

λ2(L)λmin(sym PΓ)
, c∗d ,

‖(|P|)m‖∞
δGd µ

−
∞(PΓd)

, (C.3)

where m is a vector such that

m ≥
��fi(x̃) − f̃(x̄)

�� , ∀i ∈ [1, . . . ,N], ∀x̄ ∈ Ac
r .

Proof. Recalling that ei , xi − x̃, we can compute that

Ûei = Ûxi − Û̃x = fi(xi) − c
N∑
j=1

Li jΓ(xj − xi) − cd

N∑
j=1

Ld
i jΓdsign(xj − xi) − f̃(x̄). (C.4)

Consider the candidate common Lyapunov function V , 1
2
∑N

i=1 eTi Pei . Then, exploiting
(C.4), and following steps analogous to the proof of Theorem 5.5 in Section 6.4, we have

ÛV =
N∑
i=1

eTi P
(
fi(xi) − f̃(x̄)

)
− c

N∑
i=1

N∑
j=1

Li jeTi PΓej − cd

N∑
i=1

N∑
j=1

Ld
i je

T
i PΓdsign(ej − ei).

Adding and subtracting
∑N

i=1 eTi Pfi(x̃), we get

ÛV =
N∑
i=1

eTi P (fi(xi) − fi(x̃)) +
N∑
i=1

eTi P
(
fi(x̃) − f̃(x̄)

)
− c

N∑
i=1

N∑
j=1

Li jeTi PΓej − cd
∑
(i, j)∈Ed

(ei − ej)TPΓdsign(ei − ej).
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At this point, we exploit the hypothesis that the network is uniformly ultimately
bounded. Therefore, there exists a finite time T such that for t ≥ T , ‖x(t)‖ ∈ Ac

r . From
now on, we assume that t ≥ T . Then, using the assumption that fi is QUAD(P, Qi), we
get that

eTi P (fi(xi) − fi(x̃)) ≤ eTi Qiei .

We define the diagonal block matrix Q̄ having Q1, . . . ,QN on its diagonal, so that we can
rewrite

∑N
i=1

(
eTi Qiei

)
= ēTQ̄ē.

It is immediate to verify that since all fi are QUAD in the compact set Ac
r , they are

also bounded therein. Hence, there exists a vector m ∈ Rn
≥0, such that

m ≥
��fi(x̃) − f̃(x̄)

�� , ∀i ∈ [1, . . . ,N], ∀x̄ ∈ Ac
r .

Therefore, letting M , ‖(|P|)m‖∞, it holds that

N∑
i=1

eTi P
(
fi(x̃) − f̃(x̄)

)
≤

N∑
i=1
‖ei ‖1

P (
fi(x̃) − f̃(x̄)

)
∞
≤ M

N∑
i=1
‖ei ‖1 = M ‖ē‖1 .

Now, defining ȳ ,
(
BT

d ⊗ In
)

ē, we can rewrite ÛV ≤ W1 +W2, where

W1 , ēT
(
Q̄ − cL ⊗ PΓ

)
ē,

W2 , M ‖ē‖1 − cdȳT
(
INEd
⊗ PΓd

)
sign(ȳ).

From here, one can follow the steps in Section 6.4.2 to find that W1 < 0 if c > c∗, and
W2 ≤ 0 if cd ≥ c∗d, with c∗, c∗d given in (C.3). Finally, since W1 < 0 and W2 ≤ 0, ÛV < 0,
which means that all ei tend to zero. In turn, this means that all xi tend to x̃, whose
dynamics is given in (C.2). �

We wish to make three important remarks.

1. In Theorem C.2, to satisfy the hypothesis that the network is uniformly ultimately
bounded, it is possible adapt some results in [115], which employ semipassivity.
Indeed, with some care to account for discontinuities, it can be shown that if a
network of diffusively coupled systems is uniformly ultimately bounded, than it
retains this property even if a discontinuous coupling is added (with cd,Γd ≥ 0).
We omit a formalisation of these results and their proof as they are far beyond the
scope of this thesis.

2. To satisfy the hypothesis that the dynamics are QUAD, it is possible to use
Proposition A.4.

3. Theorem C.2 can easily be adapted to account for the fact that the dynamics fi
are discontinuous. In that case, the agents are required to be σ-QUAD(P, Qi , Mi)
(rather than QUAD) and the critical threshold for the discontinuous coupling layer
is given by

c∗d ,
‖(|P|)m‖∞ +

M̄
∞

δGd µ
−
∞(PΓd)

, where M̄ , diag([M1 · · · MN ]).
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C.2 Example
We consider a modified van der Pol oscillator in the form

Ûx = f(x) + u =
[

x2 − ε1x1
µ(1 − x2

1 − ε2x2
2)x2 − x1

]
+

[
u1
u2

]
,

where ε1, ε2 > 0. For small values of ε1, ε2, the phase portrait is topologically equivalent to
that of a van der Pol oscillator. We then consider a complete network of three oscillators,
all having ε1 = 0.01 and ε2 = 0.001 and with µ1 = 1, µ2 = 2, µ3 = 3, respectively.
The agents are coupled with the diffusive and discontinuous coupling law in (C.1), with
Γ = Γd = I2.

It is possible to show that the network is uniformly ultimately bounded to a ball Ac
r

if the agents are strictly semipassive. In turn, semipassivity of any of the agents can be
shown [115] by selecting V = 1

2 (x
2
1 + x2

2) as a storage function. Indeed,

ÛV = x1 Ûx1 + x2 Ûx2 = x1x2 − ε1x2
1 + x1u1 + µx2

2(1 − x2
1 − ε2x2

2) − x1x2 + x2u2

= −ε1x2
1 + µx2

2(1 − x2
1 − ε2x2

2) + xTu = yTu − h(x),
(C.5)

where clearly y = x is the output of the oscillator and h(x) , ε1x2
1 + µx2

2(x
2
1 + ε2x2

2 − 1).
Since all fi are continuous, their Jacobian matrices are bounded inAc

r , therefore the three
agents are QUAD(I, Qi), i = 1, . . . ,n, therein (see Proposition A.4). For simplicity we
shall not determine the matrices Qi .

TheoremC.2 can be used to assert that some critical values c∗ and c∗d exist that guarantee
asymptotic synchronization. In Figure C.1a, where c = 0.1 and the discontinuous
coupling is absent, we show that the network does not achieve synchronization. When
the discontinuous action is turned on with strength cd = 2, as portrayed in Figure C.1b,
convergence is attained. Note that even if c is large, as in Figure C.1c with c = 10, the
diffusive coupling alone is not able to bring the synchronization error to zero.
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Figure C.1: Total synchronization error in a network of three modified van der Pol
oscillators. In (a), c = 0.1, cd = 0; in (b), c = 0.1, cd = 2; in (c), c = 10, cd = 0; The
initial conditions are x̄(t = 0) = [1.5 1.5 1.75 1.75 2 2]T.
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