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Abstract 

 
The role of fission in the search of the super 

heavy promised land 
 

by Alessandro Pulcini 

 

The study of the fission process is considered mostly important both for searching 

pathways to synthesize new superheavy elements and predict their stability against 

fission, and for the direct impact on the understanding of the fission recycling process in 

the r-process of nucleosynthesis. A description of the fission process with reliable 

predictive power is necessary, in particular, for low-energy fission where the fission-

fragment mass distributions are strongly sensitive to microscopic effects. In this thesis, 

the study of five reactions aimed at a deeper understanding of the fission process in the 

mercury region is presented. This study was triggered by the recent hypothesis that the 

fission mechanism is different in the mercury region from the one postulated in the 

neighboring actinoid region. Furthermore, a method aimed at separating fission 

products from the ones produced by mechanisms with different time scales by means of 

the measurement of gamma rays in coincidence with binary fragments is presented. The 

main target of this method is the disentanglement of fission and quasi-fission products, 

two mechanisms with many common properties often overlapped in experimental data. 
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Introduction 

 

In the last few decades, through technological, experimental and theoretical advances, 

the outcomes of experimental fission studies have considerably progressed. With the use 

of advanced ion beam productions and detection techniques, much more detailed and 

precise information can now be obtained for the traditional mass regions of fission 

research and, more important, new regions of nuclei have become consistently 

accessible for fission studies. Nuclear fission is one of the most striking examples of a 

nuclear decay, where the nucleus splits predominantly in two smaller nuclei releasing a 

large amount of energy. It is a unique tool mostly important not only for searching 

pathways to synthesize new superheavy elements and to predict their stability against 

fission, but also for the direct impact on the understanding of the fission recycling 

process in r-process nucleosynthesis. A description of the fission process with reliable 

predictive power is therefore needed, in particular for low-energy fission where the 

fission-fragment mass distributions are strongly sensitive to microscopic effects.  

 This thesis will show two specific studies. The first is a campaign of five different 

reactions (64, 68Zn + 112Sn at different bombarding energies) carried out with the aim of 

observing the fusion-fission (FF) mass distributions of 176Hg and 180Hg. The second is 

on the reaction 32S + 197Au, used as a test for a method aimed at the disentanglement of 

fission and quasi-fission (QF) products, two mechanisms with many common properties 

often overlapped in experimental fission data. 

 The interest on the fission in the mercury region was triggered by a recent study in 

which it was observed the occurrence of asymmetric fission in 180Hg, whereas in the 

neighboring pre-actinoid region predominantly symmetric FF mass distributions occur. 

Moreover, the repartition of the mass between the two fragments triggered the 

hypothesis that the fission mechanism in 180Hg is also different from the one postulated 

in the actinoid region, where strong shell effects due to the nascent fission fragments are 

observed. In such a case, the fission of 180Hg should have been a symmetric split (two 

90Zr fragments with shell closure N = 50). Several theoretical models have reproduced 

the experimental observation but experimental data for nuclei in the surrounding area 

are scarce: only few yield distributions have been measured, some with very limited 

statistics. Hence, it would be highly valuable to test experimentally the theoretical 
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predictions, especially considering that these same models are widely used in the 

literature throughout the whole Segrè chart and, in particular, in the superheavy mass 

region to estimate the stability against fission. The isotopes 176Hg and 180Hg, populated 

at different excitation energies, provide a particularly interesting testing ground for 

these models, due to their FF mass distributions expected to behave differently. The 

experiment has been performed at the JYFL accelerator laboratory in Jyväskylä 

(Finland) using a detection setup consisting of the CORSET time-of-flight spectrometer, 

for detecting the two fission fragments in coincidence. 

 The overlap in the mass symmetric region of the reaction products from FF and QF 

complicates the assignment of symmetric events to complete fusion on the basis of the 

mass distribution alone. Additional observables, besides mass distribution, should be 

used. The method proposed here relies on the fact that FF and QF are characterized by a 

different timescale. Within this framework a detailed study has been carried out to find 

out how timescales can be probed via angular momentum transfer as measured via 

gamma rays multiplicity, namely the number of gamma rays emitted per event. The 

proof of principle was explored by measuring the gamma rays in coincidence with two 

fragments in the reaction 32S + 197Au at beam energy near the Coulomb barrier. This 

reaction is characterized by a large FF cross section and a negligible contribution from 

the QF. The central part of mass-TKE distribution, corresponding to the symmetric 

scission, is therefore dominated by fragments originated in FF process and would not be 

polluted with components from processes of nearby time scale. Consequently, the 

comparison between the gamma multiplicity in the quasi-elastic (QE) channel and the 

FF channel would provide the best conditions to evaluate the validity of the concept 

described above. The experiment has been performed at the Tandem ALTO accelerator 

facility at IPN Orsay (France) using a detection setup consisting of ORGAM and PARIS 

detector arrays coupled with the CORSET time-of-flight spectrometer. 
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Thesis Layout 

 

Chapter organization: 

• Chapter 1 introduces the main features of nuclear fission, gives a brief 

description of a dynamical model used for its description and shows the behavior 

of the most commonly used experimental observables, with a focus on induced 

fission in heavy and super heavy nuclei; 

• Chapter 2 and 3 contain details about the experiments mentioned above, the 

experimental setup, the analysis method and the result of data analysis 

performed by the author; 

• Chapter 4 provides conclusions and remarks. 

A Bibliography section follows. 
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Chapter 1 - Nuclear fission 

 

1.1 Reaction mechanism classification 

Nuclear reactions are induced by bombarding fixed target nuclei with accelerated ion 

beams. At energies comparable with the Coulomb barrier, given by: 

 

 
𝐸𝐵 = 

1

4𝜋𝜀0

𝑍1𝑍2𝑒
2

𝑟
 

[1.1] 

 

where r is the separation of the centers of the beam and target atomic nuclei and e the 

elementary charge, heavy ions typically have De Broglie wavelengths much smaller 

than their radii, so that in some respect their motion is similar to that of a classical 

particle.  

 On this basis, the overall features of nuclear reactions can be classified in terms of 

the impact parameter b, as shown in Figure 1.1. Four different b windows can be 

identified:  

 

 

Fig 1.1 Reaction mechanisms as a function of the impact parameter b. [1]  
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a) Distant collisions:  bgr < b 

b) Grazing collisions: bdir < b < bgr 

c) Close collisions: bfus < b < bdir 

d)    Central collisions: b < bfus 

 

 In case a) the impact parameter is bigger than the sum of the radii of the two atomic 

nuclei. The two nuclei can only interact through the Coulomb field and this results in 

Rutherford scattering and in case Coulomb excitation. bgr is defined as the grazing 

impact parameter and it is equal to the sum of the radii of the two nuclei. It can be 

determined experimentally. As the impact parameter decreases, the increasing 

superposition of nuclear matter opens the way to new reaction channels. 

 In case b) the impact parameter value decrease down to bdir, where deep inelastic 

reactions show up. In this window nuclear forces are no longer negligible and the 

trajectories after collision are defined by the competition between Coulomb and nuclear 

forces. These reactions come with some loss of relative motion energy, hence are called 

quasi elastic reactions. 

 In case c), with impact parameter reduced still further, the nuclei begin to interact 

very strongly. This happens quite sharply because the nuclear density rises very rapidly 

in the surface region and several scenarios where the produced nuclei differ from those 

interacting can be observed. The collision can produce the exchange of few nucleons 

among the interacting nuclei accompanied by a small reduction of the relative motion 

energy or in case of so called deep inelastic reactions a more massive nucleon transfer 

with large kinetic energy damp can occur. Hence, the relative motion energy loss is 

transferred to the reaction products that are produced in high excited states, with masses 

similar to those of the projectile and of the target. 

 In case d), if the energy is high enough to overcome the repulsive Coulomb potential, 

the complete fusion process becomes accessible. In complete fusion there is a complete 

superposition of the nuclear matter; the two nuclei lose their individuality and form a 

compound nucleus that reaches thermodynamic equilibrium. In this kind of process all 

the relative motion energy is transferred into the intrinsic degree of freedom and the 

system is in an excited state. 

 A discussion in term of the impact parameter is equivalent to a discussion in term of 

the angular momentum, being 
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 𝑙ℏ =  𝜇𝑣∞𝑏 = 𝑘ℏ𝑏 [1.2] 

 

where k is wavenumber associated to the relative motion and μ is the reduced mass and 

𝑣∞ is the relative asymptotic velocity. The total cross section for these processes σR may 

be estimated with angular momentum as 

 

 
𝜎𝑅 = 

𝜋

𝑘2
∑ (2𝑙 + 1)𝑇𝑙

∞

𝑙=0
 

[1.3] 

 

where Tl is the transmission coefficient, i.e. the probability to form a CN in the collision 

between a projectile and the target nucleus with mutual angular momentum l. In the 

strong absorption model, it is usually used the sharp cut-off approximation for Tl 

 

 Tl =1 l<lgr 

Tl =0 l>lgr 

 

[1.4] 

 

where lgr is the angular momentum corresponding to the grazing impact parameter. For 

a generic l < lgr one has that 

 

 𝜎 =  
𝜋

𝑘2
(𝑙 + 1)2 [1.5] 

 

and, deriving with respect to l, one obtain 

 

 𝑑𝜎

𝑑𝑙
=  

2𝜋

𝑘2
𝑙 

[1.6] 

 

From this formula, it is possible to identify three different windows of angular 

momentum limited by different values of l, as shown in Figure 1.2: 0 ÷ lfus in which we 

have mostly fusion reactions; lfus ÷ ldir in which we have mostly inelastic reactions; ldir ÷ 

lgr in which we have mostly direct reactions. The first window can be further divided in 

two different windows. One at lower angular momentum values, where the excited 

compound nucleus has high probability to deexcite with the emission of light particles; 

this leads to the formation of the so-called evaporation residue. A second one for higher 

angular momentum values, where the fission barrier of the exit channel decreases and 

the fission decay becomes dominant; in this window there is mostly production of 

fission fragments.  
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Fig 1.2 Reaction mechanisms as a function of the angular momentum l. [1]  

 

 Reaction mechanisms can also be categorized according to the time-scale of the 

interaction. Typical values extracted with systematics are: 

• Quasi elastic reactions: 𝜏𝑖𝑛𝑡 < 10−22 𝑠 

• Dissipative reactions: 10−22𝑠 < 𝜏𝑖𝑛𝑡 < 10−20𝑠 

• Complete fusion reaction: 𝜏𝑖𝑛𝑡 > 10−20𝑠  

 It has to be said that the sharp distinction amongst mechanisms is somewhat blurred 

by a full quantum-mechanical treatment. The character of the interaction depends on the 

masses and charges of the two atomic nuclei and on their relative energy. Furthermore 

there are particular phenomena that occur in special circumstances. 

 Semi-classical models describing heavy ions reactions are based on an effective 

potential made by three terms [1]: the repulsive electrostatic Coulomb potential, equal 

to Z1Z2e2/r outside the nuclei and rather less inside, the strongly attractive nuclear 

potential that essentially acts only within the volume occupied by the nuclei and falls off 

exponentially outside and the repulsive centrifugal potential l(l+1)/r2 that accounts for 

the increasing difficulty for nuclei with higher momentum to approach each other. The 

sum of these three terms gives a series of potentials that depend on l and on the radial 

distance r as shown in Figure 1.3 for the case of 18O+120Sn. 
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Fig 1.3 Effective potential for the system 16O+120Sn as a function of the radial distance of the center of the 

two nuclei. Different curves are for different values of the angular momentum. [2] 

 

 The value of lfus is one of the most important quantities predicted by these models, 

because it allows to calculate the fusion cross section. In fact classically, in order for an 

incident ion with angular momentum l to cross the potential barrier, the relative kinetic 

energy should be higher than the value V(l, Rlfus ). Fusion can occur only if potential has 

a pocket and dissipative forces are strong enough to deexcite the system in to a bound 

state. These dissipative forces represent a schematization of energy transfer from the 

relative motions to intrinsic excitation. As l increases, the centrifugal potential increases 

and this means that the relative minimum of the potential will be less pronounced up to 

the disappearance of the pocket. Therefore, fusion does not occur for angular 

momentum higher than a critical value lcrit. Consequently, given the value of the energy 

of the relative motion in the center of mass (CM) reference frame ECM, the maximum 

value of the angular momentum that allows the fusion to occur, the one identified before 

as lfus, can be obtained imposing ECM equal to the potential barrier V(lfus, Rlfus). lfus is 

limited by the lcrit value beyond which fusion cannot occur anymore. In sharp cut off 

approximation, according to [1.5], the fusion cross section is 

 

 𝜎𝑓𝑢𝑠 = 
𝜋

𝑘2
(𝑙𝑓𝑢𝑠 + 1)

2
 [1.7] 
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1.2 Fusion and fission  

Reactions with low impact parameter, low angular momentum and enough kinetic 

energy to overcome the Coulomb barrier can lead to the complete fusion of the two 

nuclei with the formation of the compound nucleus (CN). During the interaction, all the 

relative motion energy and the relative angular momentum are distributed to the 

intrinsic degrees of freedom through a series of nucleon-nucleon interaction leaving the 

CN in a highly excited state. Due to the relatively long interaction time, 𝜏𝑖𝑛𝑡 > 10−20𝑠, 

the system reaches thermodynamic equilibrium before the decay. The energy of the 

system is the energy of the relative motion in the center of mass reference frame plus 

the reaction Q-value; the angular momentum is the vector sum of the orbital angular 

momentum and the spins of the two nuclei. 

 It is called nuclear fission the process where the CN decays by splitting into two 

fragments of similar masses. 

 A model that describes the fission process is the Rotating Liquid Drop Model 

(RLDM). According to RLDM, the CN behaves like an incompressible macroscopic 

rotating liquid drop, with uniform charge distribution, that deforms in an elongated 

shape up to the separation of the two fragments. The nucleus shape is determined by the 

action of the attractive nuclear force that acts like a surface tension, and repulsive 

Coulomb and centrifugal forces. Therefore, a potential energy is defined as a function of 

deformation and of angular momentum. This potential has a maximum (saddle point) as 

shown in Figure 1.4 after which the nucleus has high chances to fission. At the scission 

point, the elongated nucleus breaks into two separate pieces, called primary fragments. 

Primary fragments have usually high excitation energy and cool down predominantly by 

neutron evaporation. Fragments, which no longer emit neutrons and deexcite by gamma 

ray emission, are called secondary fragments. Unstable ground states of secondary 

fragments decay by 𝛽− emission until a stable nucleus is reached. This is illustrated 

schematically in Figure 1.5.  
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Fig 1.4 Fission potential as a function of the nuclear deformation. 

 

 

 

 

Fig 1.5 Schematic drawing showing the formation of fragments in the fission of 248Cm. Primary and 

secondary fragments, as used in the text, are defined in this figure. [3] 
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Fig 1.6 Schematic drawing showing entry points into a secondary fission fragment after neutron 

evaporation from a primary fragment. The contours, spaced roughly at intervals successively decreasing 

by factor of two, show the region of excitation energy and spin from which the secondary fragments 

deexcite by emission of statistical gamma rays to discrete yrast or near-yrast levels. [3] 

 

 

 Gamma rays in the secondary fragment arise from a broad range of excitation energy 

corresponding to the spread in energies of the neutrons emitted from the primary 

fragment. They also arise from levels with a large spread of spins corresponding to the 

spread in the primary fragments introduced by fission mechanism. There are also many 

gamma ray paths to the ground state from any point in this entry region. A variable 

number of statistical gamma rays, with essentially continuous energy distribution and 

relatively high energies of an MeV or greater, takes the secondary fragments from the 

initial chaotic entry region down to a more ordered regime in which there are rather few 

yrast or near-yrast levels. An yrast level is the state of a nucleus with the minimum 

excitation energy for a given angular momentum. This is illustrated schematically in 

Figure 1.6. The number of statistical gamma rays depends partly on the initial excitation 

energy of the primary fragment. This is higher for fission of high-excited systems but, 

typically, gamma ray deexcitation from the entry region involves from one to three 

statistical gamma rays per fragment [3]. Decays from the relative few levels populated 

in the yrast region are observed as discrete gamma rays. 

 From the potential energy defined within the RLDM, it can be derived a useful 

parameter, the fissility parameter. It is defined as the ratio between the Coulomb term 

and two times the nuclear term in the potential energy of a non-deformed nucleus, 



12 

 

giving a measure of the disruptive electrostatic forces compared to the surface tension. 

This parameter is related to the probability of the nucleus to decay by fission and it’s 

defined as:  

 

 
𝜒 =  

𝐸𝐶
(0)

2𝐸𝑆
(0)

= 
𝑍2 𝐴⁄

( 2𝑎𝑆 𝑎𝐶⁄ ){1 − 𝑘[(𝑁 − 𝑍) 𝐴⁄ ]2}
    

[1.8] 

 

where 𝐸𝐶
(0)

 and 𝐸𝑆
(0)

 represent respectively the Coulomb and the surface energy of the 

non-deformed nucleus, 𝑎𝐶 and 𝑎𝑆 are respectively the parameters related to 𝐸𝐶
(0)

 and 

𝐸𝑆
(0)

 and k is the surface asymmetry constant. Values of 𝜒 are linked to the number of 

equal spherical shaped fragments that determine the absolute minimum in the effective 

potential energy [4]: for 𝜒 <  0.35 a single sphere has the lowest energy, which means 

that a non-deformed nucleus with such a fissility parameter will decay preferably by 

emitting light particles; for 0.35 <  𝜒 <  0.61 two equal fragments at infinite 

separation have least energy; for 0.61 <  𝜒 <  0.86 three fragments; etc. These ranges 

are related to the tendency to form fragments with the strongest binding energy, which 

occurs for nuclei with 𝜒 =  1 4⁄ . This corresponds to the region of in the vicinity of 

iron. Nuclei in this region are indeed among the relatively more abundant elements in 

nature. 

 

1.3 Quasi-fission 

In heavy-ion collisions at energy around the Coulomb barrier, the complete fusion 

process has to face a strong counteracting binary process, the quasi-fission (QF). QF is a 

transitional mechanism between deep-inelastic collisions and complete fusion, in which 

the composite system separates in two main excited fragments without forming a CN 

due to the action of the repulsive Coulomb force. 

 Despite the QF process is strongly connected with the reaction entrance channel a 

clear picture of what are the most important characteristics that either enhance or hinder 

QF is still matter of discussion. Being the fusion-fission and QF products not simple to 

separate, three criteria are widely used to identify the dominant process in a given 

reaction: 
 

• The reaction Coulomb factor Z1Z2, the charge product of reaction partners. This 
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parameter relates to the Coulomb energy in the entrance channel. It has been 

identified a threshold value of Z1Z2 = 1600 for the appearance of QF. 

• Entrance channel mass asymmetry  

 

 𝛼0 = (𝐴𝑝 − 𝐴𝑡) (𝐴𝑝 + 𝐴𝑡)⁄  [1.9] 

 

where 𝐴𝑝 in the mass number of the projectile and 𝐴𝑡 the mass number of the 

target. With decreasing mass asymmetry, the cross section for QF increases. 

• Effective fissility parameter  𝜒𝑒𝑓𝑓 connected with repulsive and attractive forces 

in the entrance channel. Recently, a mean fissility parameter was proposed in 

[5], given by  𝜒𝑚 =  0.75𝜒𝑒𝑓𝑓 +   0.25𝜒, where  𝜒 is the one identified by the 

[1.8]. From analysis of a large data set, it has been found that QF take place for 

reaction with 𝜒𝑚 > 0.68. 

 

 Those criteria, however, are not universal. For instance, they do not take into account 

the shapes of the interacting nuclei. The relative orientation of deformed nuclei changes 

the Coulomb barrier and the distance between the centers of the colliding nuclei and this 

leads to a change in the balance between repulsive and attractive forces. 

 The interaction energy is also a very important parameter for QF. The relative 

contribution of QF process decreases when the interaction energy increases. The 

question about the influence of angular momentum on the QF process is furthermore 

still open and additional experimental data including the gamma-ray probe can provide 

information on the excitation states of the reaction products needed to shed light on this 

point. 

 The QF has been described as a reaction mechanism in which, after the capture by 

nuclear attraction, there is a formation of an intermediate di-nuclear system. During the 

interaction there is an exchange of nucleons among the two partners but they re-separate 

due to Coulomb repulsion before reaching the complete amalgamation that leads to the 

CN formation. This interpretation implies a dynamical view of the interaction. A 

dynamical treatment, necessary for the description these processes, is discussed in the 

next Section. 
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1.4 Dynamical description of fusion-fission and 

competitive mechanisms 

A dynamical description of a nuclear reaction cannot follow all the single particle 

degrees of freedom. Instead, it becomes important to identify some bulk degrees of 

freedom, which can provide a realistic picture of collective behavior. All the remaining 

degrees of freedom (unknown) are treated as a heat bath. The energy transfer between 

the degrees of freedom describing the collective motion of the excited nucleus and the 

internal excitation is schematized with the presence of dissipative forces. Hence, the 

forces leading the evolution of the system are the nuclear conservative potential, the 

dissipation treated with a friction term and a stochastic term depending on the 

temperature to introduce fluctuations. The equations that couple these degrees of 

freedom describe the time evolution of the reaction in terms of the chosen variables and 

their conjugate momenta. The choice of the variables to describe the shape of system is 

crucial to properly simulate the evolution of the system from the first interaction among 

the reactants until the formation of reaction products in order to provide a correct 

estimation of physical observables, e.g. cross sections of different competing reaction 

mechanisms. On one side, the number of degrees of freedom must be minimized in 

order to have a limited set of coupled differential equations to solve. On the other side, 

too few variables would not allow the simultaneous description of several 

configurations assumed by the complex system before the collision, during the survival 

of the di-nuclear system, and in the re-separation stages that determine the evolutive 

path of the nucleus, i.e. the competition among different reaction mechanisms as for 

instance fusion and QF.  
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Fig 1.7 Schematic representation of the degrees of freedom used in the model to describe the nuclear 

shape of the complex system in a collisional event [6] 

 

In the stochastic model of Zagrebaev and Greiner (DNS model) [6], the variables 

selected to describe the collision among two nuclei are the following:  
 

• the distance R between nuclear centers or elongation of mono-nucleus; 

• the quadrupole deformation of the two fragments, 𝛽1,2; 

• the mass asymmetry as defined by [1.9]; 

• the angle of rotation of nuclei in the reaction plane, 𝜙1,2; 

• the angle between beam axis and the line connecting nuclear centers, θ. 

 

The equation that describe the time-evolution of each variable are in the form of 

Langevin type:  

 

 
𝜇𝑞̈ =  −

𝜕𝑉

𝜕𝑞
−  𝛾𝑞̇ + √𝛾𝑇Γ(𝑡)   

[1.10] 

 

where : 
 

• q is the generic degree of freedom; 

• V is the potential energy (Coulomb + nuclear) plus the centrifugal barrier; 

• γ is the friction coefficient associated to q; 

• 𝑇 = √𝐸∗ 𝑎⁄  is the nuclear temperature, 𝐸∗ = 𝐸𝐶𝑀 − 𝐸𝑘𝑖𝑛 − 𝑉 the excitation 
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energy, a the nuclear level density; 

• Γ(t), aleatory function with Gaussian distribution (zero mean value, takes into 

account stochastic diffusion). 

 

 The friction and the stochastic terms are responsible of the dissipation and are used 

to describe the mechanism of energy loss during mass transfer. The time evolution of 

the system represented by the chosen variables is represented by trajectories in the 

phase space. 

 One of the key ingredients of this type of models is clearly the choice of the potential 

once the degrees of freedom are chosen. The choice of the multidimensional potential 

determines the driving potential on which the trajectories of the solutions of the 

Langevin equations describe the possible reaction channels. For instance in Figure 1.8 is 

shown the driving potential energy surface (PES) of the 238U nucleus depending on two 

variables: elongation and mass asymmetry. Figure 1.8 (a) shows the simplified 

macroscopic potential initially proposed to explain fission based on the liquid drop 

model (LDM). According to this model in a fission event the nuclear shape initially 

spherical elongates along the line of zero mass asymmetry due to the repulsive forces. 

The nuclear shape in the two-dimensional phase space evolves along the path indicated 

by the red line in Figure 1 (a): it overcomes the saddle point and reaches the scission 

point, splitting in two equal fission fragments.  

 While the LDM approach was able to qualitatively explain why fission is one of the 

main decay modes of heavy nuclei, it failed to describe the experimental observation 

that the fission happens asymmetrically too, giving rise to two fragments with different 

masses. The introduction of the microscopic corrections, given by the nuclear shell 

model, naturally led to the appearance of new valleys and peaks in the PES, as shown in 

Figure 1.8 (b), that were able to explain the appearance of the asymmetric fission-

fragment mass distribution. As the microscopic shell effects depend strongly on specific 

neutron and proton numbers, their influence on the PES will differ among the nuclei, 

often leading to even more complex fission potential-energy landscapes with several 

fission valleys (or fission modes), each characterized by its unique saddle and scission 

points. 
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Fig 1.8 (a) Macroscopic and (b) total potential-energy surface for the 238U nucleus as a function of 

elongation and fission-fragment mass asymmetry. The most probable fission paths (or “fission valleys”), 

which follow the lowest energy of the nucleus, are shown by the red lines with arrows. While in the LDM 

approach only symmetric fission can happen along the single symmetric valley, the introduction of 

microscopic shell effects produces the asymmetric fission valleys. [7] 

 

 A detailed knowledge of the potential for a given nuclear system allows to predict the 

more probable mass split or the most probable reaction mechanisms for reaction leading 

to that given nuclear system. In Figure 1.9 is shown the calculated PES as a function of 

elongation and mass asymmetry for the nuclear system formed in 48Ca + 248Cm 

collision. If the projectile energy is lower than the Coulomb barrier and tunneling effect 

does not occur, the reaction is expected to proceed through the deep inelastic channel. 

Otherwise, if the contact point is reached, the intermediate system can follow different 

paths and go through one of the possible valleys, due to the stochastic term in the 

Langevin equations. The different trajectories plotted in Figure 1.9 represent different 

reaction mechanisms, namely quasi-fission with asymmetric mass split (solid line 

“QF1”), quasi-fission with symmetric mass split (solid line “QF2”), fusion-fission (FF) 

with symmetric mass split (dashed line) that leads to the same mass asymmetric 

distribution of QF2.  

 To study of FF and QF is so extremely important for several reasons: it highlights the 

presence of shell effects, it provides the basis for predicting properties of the fission of 

heavy and super heavy nuclei, it allows to measure the fusion cross sections for the most 

promising reactions for the synthesis of new super-heavy elements. 
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Fig 1.9 Example of a driving potential energy surface as a function of elongation and mass asymmetry for 

the nuclear system formed in 48Ca + 248Cm collision. The solid lines with arrows show schematically 

(without fluctuations) the quasi-fission trajectories going to the lead and tin valleys. The dashed curves 

correspond to fusion (CN formation) and fission processes. 

 

1.5 Fission in heavy and superheavy nuclei 

At relatively high excitation energy (~ 50 MeV), the influence of shell effects is 

negligible and the dominant process is the symmetric fission well described in the 

framework of  the LDM. Due to the quenching of shell effects occurring at high 

excitation energy, the fission into two symmetrical nuclei is energetically favorable 

accordingly to the LDM. It is well known that in the fission of heated nuclei the mass 

distribution of fragments is one-dumped and close to a Gaussian shape whose variance 

𝜎𝑀
2  increase approximately proportionally to the temperature of the fissioning nucleus. 

In Figure 1.10 the mass-TKE distribution of fission fragments of 216Ra formed in the 

reaction 12C + 204Pb at CN excitation energy of 40 MeV is presented as an example of a 

classic case of LDM fission [8]. The TKE (Total Kinetic Energy) is the sum of the 

kinetic energies of the two fragments in the center of mass reference frame:  

 

 𝑇𝐾𝐸 = 𝐸𝐶𝑀
(1)

+ 𝐸𝐶𝑀
(2)

 [1.11] 

 

The solid curves in Figure 1.10 are the mass distribution, average TKE and its 

dispersion as function of fragment mass expected according to LDM with parameters 

set from the systematics. 
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Fig 1.10 In the left column, from top to bottom: mass-TKE distribution of fission fragments of 216Ra* and 

mass distribution of fission fragments. In the right column, from top to bottom: average TKE distribution 

and TKE dispersion as function of the fragment masses. [8] 

 

 In the framework of LDM, the average TKE has a parabolic dependence on the 

fragment mass and does not depend on the initial excitation energy and angular 

momentum of the fissioning nucleus, but only on its mass and atomic numbers. The 

average TKE is expected to increase with the ratio (𝑍𝐶𝑁)2 (𝐴𝐶𝑁)1 3⁄⁄ , where 𝑍𝐶𝑁 and 

𝐴𝐶𝑁 are the atomic and mass number of the fissioning nucleus, as indicated by the 

formulas of well-known Viola systematics [9-10]. The formulas of this systematics 

predicting the average TKE for symmetric mass fragments (𝑇𝐾𝐸𝑠, fragments with mass 

equal to 𝐴𝐶𝑁/2) and asymmetric mass fragments (𝑇𝐾𝐸𝑎, fragments with mass equal to 

𝐴 and 𝐴𝐶𝑁 − 𝐴) are:  

 

 
𝑇𝐾𝐸𝑠 =  0.1189 

𝑍𝐶𝑁
2

𝐴𝐶𝑁
1 3⁄

+  7.3 𝑀𝑒𝑉 
[1.12] 

 
𝑇𝐾𝐸 =  𝑇𝐾𝐸𝑠 𝐴𝐶𝑁

−5 3⁄  28 3⁄
𝐴 (𝐴𝐶𝑁 − 𝐴)

𝐴1 3⁄ + (𝐴𝐶𝑁 − 𝐴)1 3⁄
 

[1.13] 

 

 Spontaneous and low energy fission have a different behavior. At low excitation 

energy, an asymmetric fission mode is observed in mass-TKE distribution of fission 

fragments for all nuclei from A ≈ 200 u up to A ≈ 256 u. For nuclei with A < 220 u the 

LDM symmetric mode prevails, with a small contribution ( < 0.5%) of the asymmetric 

component [11]. Whereas, for actinide nuclei with Z = 90-102 and A = 226-256 u the 

asymmetric mode prevails in spontaneous fission as well as in induced fission at 
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excitation energies up to 30-40 MeV. For transitional cases like nuclei in the region of 

Ra [12] or Ac [13], the mass distributions at low energy fission are a superposition of 

symmetric and asymmetric modes with comparable contributions. 

 

 

Fig 1.11 The mass and TKE distributions for spontaneous fission of 252Cf and 258Fm [14]. 

 

 The phenomenon of bimodal fission has been observed for the case of spontaneous 

and low energy fission of nuclei in Fm–Rf region. Bimodality means the co-existence of 

two different modes of fission having both symmetric mass but two different average 

values of TKE in the same nucleus. The TKE distribution strongly differs from a 

Gaussian shape distribution as found in the fission of all other actinides. It is important 

to note that bimodal fission appears for Fm isotopes (Z=100) and more heavy elements 

when two fission fragments are close to the spherical proton Z=50 and neutron N=82 

shell closures. An example of this phenomenon is given in Figure 1.11 for the 

spontaneous fission of 252Cf and 258Fm. The mass distribution of 258Fm is symmetric and 

the associated TKE distribution can be decomposed into two Gaussian distributions. 

The opposite holds true for the spontaneous fission of 252Cf for which the mass 

distribution is grossly asymmetric and the TKE grossly unimodal. These findings cannot 

be explained by the LDM, and it was natural to resort to shell effects. 

 In Figure 1.12 is given an overview of the measured mass and nuclear-charge 

distributions of fission products from low-energy fission [15] described so far. It shows 

a region of the Segrè chart around 208Pb (the nucleus in correspondence of the two 

spherical shell closures Z = 82 and N = 126). Black empty squares are for stable nuclei, 

blue and green symbols mark nuclei whose mass distribution has been measured (blue 
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symbols for direct kinematics: circles for mass distributions and plus symbols for Z 

distributions; green cross symbols for Z distributions in inverse kinematics). Red 

distributions are taken from experimental data. 

 

 

Fig 1.12 Region of the Segrè chart around 208Pb. Blue and green symbols indicate a measured mass 

distribution. Blue symbols are for measurements in direct kinematics: circles for measured mass 

distributions and plus symbols for measured Z distributions; green cross symbols are for measured Z 

distributions in inverse kinematics. The red mass distributions are from experimental data. Black empty 

squares are for stable nuclei [15]. 

 

 The above properties of the fission fragments mass distributions have been 

understood qualitatively, and in some case quantitatively on the basis of the concept of 

multimodal nuclear fission, whose foundation arises from the valley structure in the 

PES in the multimodal deformation space of the fissioning nucleus, as shown in Figure 

1.9. In a frame of a two-center shell model, the PES exhibits a sequence of pronounced 

valleys as the consequence of the shell structure of the forming fragments. Four main 

fission modes, in accordance with Brosa model [16], have been distinguished in 

theoretical calculations  as well as experimentally:  

• symmetric mode;  

• standard I mode, caused by the influence of spherical proton Z = 50 and neutron 

N = 82 shell closures;  

• standard II mode determined by deformed nuclear shell closures with Z ≈ 54-56 

and N ≈ 86;  
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• supershort mode, manifesting itself only when light or heavy fragments are close 

in their nucleon composition to the double magic tin with A ≈ 132 (132Sn).  

 Empirically, the multimodality is supported by the reproduction of measured mass 

and TKE spectra of fission fragments as a sum of several Gaussian curves representing 

each fission mode. For instance, although the mass distribution for 258Fm in Figure 1.11 

is symmetric, the TKE distribution is represented by a sum of two components: one is 

centered at TKE ≈200 MeV characterized by symmetric fission mode, the other 

distributed around 230 MeV, corresponding to the super-short mode.  

 The average TKE of fission fragments is determined by the mutual Coulomb 

repulsion among the primary fragments at scission point, which, in turn, depends on the 

shape of the two fragments. The different TKE values of the different fission modes 

could be explained by considering different paths in the PES. One path reaches the 

scission point in a stretched neck configuration, as the one predicted by the LDM; the 

other reaches the scission point in a touching sphere configuration and therefore higher 

TKE than the other path. 

 The same PES concept can also explain the widths of the mass and TKE 

distributions. According to the shape of the PES, the distribution width grows with the 

valley width: wider valleys correspond to larger widths. Therefore, even if two paths 

result in symmetric mass distributions, the higher TKE valley is narrower than the lower 

TKE valley. This explains the differences in the widths of the mass and TKE 

distributions of the different modes. 

 In Figure 1.13 are shown the mass distributions, the average TKE and its variance as 

a function of the mass of the binary product of the 18O + 208Pb → 226Th reaction for 

different excitation energy of the CN [17]. The mass distributions are reproduced 

summing the contributions of symmetrical fission mode (the filled areas) and 

asymmetrical fission modes standard I and standard II (hatched areas). In the average 

TKE distributions, it is possible to notice that for asymmetric fission modes the TKE 

has higher value than for symmetric fission. 
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Fig 1.13 Mass-TKE distributions of binary product of the 18O + 208Pb reaction at different excitation 

energies. From top to bottom: mass yields, average TKE and its variance as a function of mass. Filled 

areas in the mass distributions are associated to symmetric mode, hatched are associated with the sum of 

standard I and standard II asymmetric modes. [17] 
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Chapter 2 – Experiment 64,68Zn + 112Sn 

 

2.1 Scientific motivation 

The process of nuclear fission continues to provide new and unexpected features 

regardless of a long history of intensive theoretical and experimental studies [18]. The 

study of the fission process is considered presently mostly important not only for 

searching pathways to synthesize new superheavy elements and to predict their stability 

against fission, but also for the direct impact on the understanding of the fission 

recycling process in r-process nucleosynthesis [19]. A description of the fission process 

with reliable predictive power is therefore needed, in particular for low-energy fission 

where the fission fragments mass distributions are strongly sensitive to microscopic 

effects. Many observations, summarized in Section 1.5, strongly support the hypothesis 

that nuclei may fission through several independent fission modes (multimodal fission) 

corresponding to different prescission shapes and fission paths in a multidimensional 

potential-energy landscape, in which shell effects are dominant. 

 

2.1.1 Fission in the mercury region 

In the pre-actinoid region, predominantly symmetric FF mass distributions have been 

observed. Recently, in a study of β-delayed fission of 180Tl at ISOLDE, CERN, it was 

observed the occurrence of asymmetric fission in 180Hg [20-21], with the most probable 

mass numbers in the mass distribution at ∼ 80 for the mass of the light fragment and ∼ 

100 for the mass of the heavy one. This result triggered the hypothesis that the fission 

mechanism in 180Hg is different from the one postulated in the actinoid region, where 

strong shell effects of the nascent fragments, driven by the double magic 132Sn, decide 

the shape of the mass distribution. For such a case, the fission of 180Hg should have been 

a symmetric split in two 90Zr fragments (N = 50 shell closure in the fragments). The 

mechanism occurring in the fission of 180Hg should therefore be different from the one 

in the actinide region, since strong shell effects due to the nascent fission fragments are 

not observed. 

 Several theoretical models have reproduced this observation [22-24]. In Ref. [22], 
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Panebianco and collaborators have performed scission-point calculations that can 

explain the asymmetric splitting of 180Hg and the symmetric splitting of 198Hg as 

connected to shell effects of the fragments (spherical and deformed ones) in the 

determination of the most probable fragmentation. Using a micro-macro scission point 

model, Andreev and collaborators [23] have studied the isotopic chain of mercury and 

predicted an evolution from symmetric distribution in 174Hg to asymmetric around 180Hg 

and more symmetric for 192-196Hg. Finally, they showed that the observed asymmetric 

mass distribution can be understood in terms of conventional fragment shell effects at 

the scission point where the most probable mass split away from symmetry is attributed 

to the deformed scission-point configurations. These calculations also predict that the 

influence of the excitation energy on the shape of the mass distribution is rather weak.  

 

 

Fig 2.1 Calculated symmetric-yield to peak-yield ratios for 987 fissioning systems. Black squares (open 

in colored regions, filled outside) indicate β-stable nuclei [24]. 
 

 The most extensive calculations of the FF mass yields were carried out by Moller et 

al. [24] by using a recently developed Brownian Metropolis shape-motion treatment on 

5D micro-macro potential energy surface. The larger dimensional space has highlighted 

that the potential surface changes very rapidly and consequently the asymmetric mass 

distribution in 180Hg is attributed to the rapid localized single-particle effects in the 

vicinity of the saddle point. A concise overview of the calculated fission modes 

expected is shown in Figure 2.1. Two extended regions of asymmetric fission are drawn 

in red color. The one in the bottom left corner is the predicted region of the new type of 
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asymmetric fission and includes 178,180Hg, while the previously known asymmetric 

fission region in the heavy actinides is seen in the top right corner. These two red 

regions are separated by a region of predominantly symmetric fission (shown in blue) 

which is now considered to be another transitional region.  

 Experimental data for nuclei in the blue and red colored lower left corner of Figure 

2.1 are scarce: only ten or so yield distributions have been measured, some with very 

limited statistics [18]. Regions where there might be differences between calculated 

results and measurements lie near the calculated transition line between symmetric and 

asymmetric fission. To draw more definite conclusions about the accuracy of the present 

implementation of Moller’s model in this region experimental data for additional 

nuclides are clearly needed. Because the nuclear potential-energy structure is so 

different in this region compared to the actinide region, additional experimental data 

together with fission theory studies, which incorporate additional dynamical aspects 

should provide new insights. 

 To dig inside the fission modes, it is very useful to explore the neighboring isotopes. 

For what it concerns with the Hg region, Figure 2.2 shows calculated yields [25] for 

four even Hg isotopes from 174Hg to 180Hg for three different excitation energies: 2 MeV 

above the calculated saddle energy, 20 MeV, and 40 MeV. The experimental analysis 

indicates a mass yield of 180Hg that is clearly asymmetric, with the most probable heavy 

and light masses of 100 and 80, respectively [20]. The calculations, though providing an 

asymmetric mass distribution, miss the most probable masses by about 10 mass units. 

However the calculated yields for 180Hg become narrower and tend toward the masses 

100 and 80 as the compound-system energy decreases. 

 The following trends in the calculated fission-fragment mass distributions in Figure 

2.2 are particularly remarkable: (1) for the lighter isotopes the yield distributions are 

flatter and less dependent on energy than in the heavier region; (2) for 174Hg and 176Hg 

the yield distribution becomes more asymmetric with increasing energy. This behavior 

is at variance with all the other Hg isotopes, also heavier ones. Hence, it would be 

highly valuable to test experimentally the theoretical prediction of an anomalous energy 

dependence for the lighter Hg isotopes. The test of Moller’s model acquires much more 

relevance by considering that its predictions concerning the fission barriers and ground 

state deformations are widely used in the literature throughout the whole Segrè chart 

and, in particular, in the superheavy mass region to estimate the stability against fission. 

For instance, the issues why the center of the superheavy region, where fission barriers 
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are higher, does not overlap with the expected magic number Z=114 and N=184 and the 

fission barriers are of about 1 MeV higher than the few measured near the superheavy 

island are still not understood. These are important aspects that should require additional 

insight and experimental data.  

 

 

Fig 2.2 Calculated yields for four Hg isotopes at three excitation energies. For the lighter isotopes the 

yields become more asymmetric with increasing energy, an unusual behavior. [25]. 
 

2.1.2 Performed experiment 

As a key test for Moller’s predictions, the following reactions have been studied at the 

JYFL accelerator laboratory in Jyväskylä (Finland): 

 

 𝑍𝑛68 + 𝑆𝑛112  →  𝐻𝑔180   @𝐸𝑙𝑎𝑏 = 355 𝑀𝑒𝑉  

 𝑍𝑛68 + 𝑆𝑛112  →  𝐻𝑔180   @𝐸𝑙𝑎𝑏 = 300 𝑀𝑒𝑉  

 𝑍𝑛64 + 𝑆𝑛112  →  𝐻𝑔176   @𝐸𝑙𝑎𝑏 = 300 𝑀𝑒𝑉  

 𝑍𝑛64 + 𝑆𝑛112  →  𝐻𝑔176   @𝐸𝑙𝑎𝑏 = 280 𝑀𝑒𝑉  

 𝑍𝑛64 + 𝑆𝑛112  →  𝐻𝑔176   @𝐸𝑙𝑎𝑏 = 265 𝑀𝑒𝑉  

 

Relevant information are shown in Table 2.1. If fusion occurs, these reactions lead to the 
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formation of 176, 180Hg whose fission fragments mass distributions should behave in 

opposite ways with growing excitation energy of the CN. 

 It is remarkably interesting to get insight in the fission fragments mass distribution 

for 176Hg, never measured before, because Moller et al. have predicted that it becomes 

more asymmetric at higher excitation energy, contrarily to all known expectations about 

the damping of the shell effects. The experimental finding of this feature could offer a 

key for the explanation of Moller’s prediction that the mass region around Hg has 

different features than all the nearby regions as for instance the actinide one, where 

fission is asymmetric and becomes more symmetric with the increasing of excitation 

energy. 

 

Tab 2.1 Table of the most relevant parameters concerning the measured reactions: projectile energies 

(both in laboratory, 𝐸𝑙𝑎𝑏 , and center of mass,  𝐸𝐶𝑀 , reference frames); Coulomb barrier, 𝑉𝐶; fusion Q 

value; excitation energy of the CN, 𝐸𝐶𝑁
∗ ; fission barrier of the CN, 𝐵𝑓. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Mass-TKE distributions of the reaction products can be measured by using a 

kinematic method, namely by measuring the time-of-flight of two fragments in 

coincidence along with the momentum and mass number conservation laws. In this way 

the mass and TKE distributions of primary fragments are obtained. 

 A description of the experimental setup and the analysis method used is provided in 

the following Sections. 

 

𝑍𝑛68 + 𝑆𝑛112  →  𝐻𝑔180  

𝐸𝑙𝑎𝑏 [MeV] 𝐸𝐶𝑀 [MeV] 𝑉𝐶 [MeV] Q [MeV] 𝐸𝐶𝑁
∗  [MeV] 𝐵𝑓 [MeV] 

355 221 172.2 -138.7 82 9.8 

300 187 172.2 -138.7 48 9.8 

𝑍𝑛64 + 𝑆𝑛112  →  𝐻𝑔176  

𝐸𝑙𝑎𝑏 [MeV] 𝐸𝐶𝑀 [MeV] 𝑉𝐵 [MeV] Q [MeV] 𝐸𝐶𝑁
∗  [MeV] 𝐵𝑓 [MeV] 

300 191 173.5 -142.8 48 9.6 

280 178 173.5 -142.8 35 9.6 

265 169 173.5 -142.8 26 9.6 
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2.2 Experimental setup 

2.2.1 CORSET 

Binary reaction products of the five studied reactions have been detected in coincidence 

by using the two-arm time-of-flight (ToF) spectrometer CORSET (CORrelation SETup) 

[26]. Each arm of the spectrometer consists of a compact start detector and a position-

sensitive stop detector, both based on microchannel plates (MCP). Depending on the 

reaction under investigation, the arms can be positioned at different angles to the beam 

axis. The distance between the start and stop detectors of each arm (the fight path) and 

the distance from the start detector to the target can be adjusted as needed . 

 

 

Fig 2.3 Schematic diagram of the start detector. [26] 

 

 The start detector is composed of a conversion foil, an accelerating grid, an 

electrostatic mirror and a chevron MCP assembly. A schematic diagram of a start 

detector is shown in Figure 2.3. When passing through the conversion foil of the 

detector, a particle (from protons to heavy ions) knocks out electrons, which are 

accelerated in the electric field between the foil and the accelerating grid to an energy of 

~3 keV. The grids of the electrostatic mirror deflect the electrons by 90°, and then they 

hit the chevron MCP assembly. Wherever a particle hits the entrance foil, the electron 
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ranges have the same length; therefore, the output time signal is position-independent. 

The detector design has been optimized in order to obtain the maximum active area for 

a minimum detector size. 

 The entrance foil can be made either of carbon or mylar. An aluminum or gold layer 

may be sputtered on the mylar foil to raise the secondary yield of electrons. A particle 

passes through all electrostatic fields generated by the grids without being deflected 

from its primary direction and practically without changing its initial velocity. 

Nevertheless, one must take into account the energy lost by a particle in its passage 

through the conversion foil. For fission fragments, these losses in the used foils are few 

MeV (2–5% of the initial energy of a particle). The change in the particle direction due 

to collisions with atoms of the foil appears to be negligible. 

 The stop detector consists of a conversion entrance foil directly mounted on an 

assembly of two MCPs and coordinate system and a printed circuit board with fast 

amplifiers for one time signal and two coordinate signals. A schematic diagram of a stop 

detector is shown in Figure 2.4. The coordinate system consists of two mutually 

perpendicular delay lines of wire. Each “coordinate” is composed of two independent 

delay lines shifted by 0.5 mm with respect to each other. The voltages applied to the 

delay lines are selected so that electrons escaping from the MCP are collected on only 

one of them. The other delay line (which does not collect electrons) is used to 

compensate for the interference of the fast time signal from the exit surface of the MCP. 

The coordinate of a particle’s hit point at the detector is determined from the difference 

in the arrival time of the time signal and the signal from the relevant delay line. The 

angular resolution of the stop detectors is about 0.3°. 

 

 

Fig 2.4 Schematic diagram of the position-sensitive stop detector. [26] 
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 In order to monitor the beam intensity and its position at the target and to register 

beam ions that are elastically scattered by target nuclei, four surface-barrier detectors, 

the so-called beam monitors, are placed into the reaction chamber symmetrically with 

respect to the beam. Knowing the counting rates of elastically scattered ions for each of 

the four detectors and comparing them to the values calculated from the Rutherford 

elastic scattering, one can find the point of incidence of the beam onto the target. 

 The time resolution, taken as the full width half-maximum (FWHM), of both ToF 

arms is 150 ps. The mass resolution is 3 u. The geometrical efficiency of CORSET 

spectrometer is about 3%. 

 In the present experiment, two different geometries were used. For all the reactions, 

data have been taken with a symmetric geometry of the CORSET detectors. Moreover, 

for two reactions (64Zn + 112Sn at Elab = 280, 265 MeV), additional data have been taken 

with an asymmetric geometry. In the symmetric geometry, the two arms of CORSET 

were at ±45° from the beam axis. In the asymmetric geometry, the two arms of 

CORSET were at -35° and +70° from the beam axis. In both the configurations and for 

both arms, the start detectors were at 52 mm from the target and the stop detectors at 

300 mm from the start. The size of the CORSET stop detectors is 178 mm × 68 mm, 

covering an angular acceptance of ±14.2° in the horizontal plane and ±5.5° in the 

vertical plane. Beam monitors were at 8.9° from the beam axis and at ~ 630 mm from 

the target. The used target is a 30 µg/cm2 thick aluminum oxide foil used as backing 

with a 157 µg/cm2 thick layer of 112Sn placed at 90° with respect to the beam axis in the 

symmetric geometry and 132° with respect to the beam axis in the asymmetric 

geometry. In Figure 2.5 it is illustrated the geometry of the CORSET setup (symmetric 

configuration) for the present experiment. 

 The two different CORSET configuration have been used to change the intensity 

between the observed reaction mechanisms and get more insight on the FF mass 

distribution. Figure 2.6 shows, as example, the calculated angular correlation for the 

64Zn + 112Sn reaction at Elab = 280 between the two fragments in the case of elastic 

scattering and FF for three different mass ratios, 𝐴1 𝐴2⁄ = 1, 2, 3 (and their inverse). 

The two black frames in figure delimit the angular coverage of the two CORSET 

detectors in the two different configurations. The symmetric configuration, compared to 

the asymmetric one, has a larger kinematic efficiency for larger mass ratios and smaller 

kinematic efficiency for the symmetric split and for elastic scattering. 
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Fig 2.5 Geometry for the CORSET setup (symmetric configuration) for the present experiment. In the 

bottom left corner are illustrated the characteristic of the target and of the start and stop foils. 

 

 

Fig 2.6 Calculated angular correlation for the 64Zn + 112Sn reaction at Elab = 280 between the two 

fragments in the case of elastic scattering, blue solid line, and FF for three different mass ratios, A1/A2 = 

1, 2, 3 (and their inverse), respectively red, green and pink solid lines. The two black frames delimit the 

angular coverage of the two CORSET detectors in the two different configurations. 
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2.2.2 Electronics and trigger 

The circuit diagram of the double-arm ToF spectrometer is shown in Figure 2.7. The 

time and coordinate signals from the start and stop detectors (St1, St2, Sp1, Sp2, X1, 

Y1, X2, and Y2) are fed into constant-fraction discriminators (CFDs). Then, signals St1, 

St2, Sp1, and Sp2 arrive to the logic modules, which generate an output signal (a 

trigger) if there are two stop signals and at least one start signal.  

 The start and stop signals come to time-to-amplitude converters (TACs) and then to 

analog-to-digital converters (ADCs). These converters are used to measure the 

following time intervals: 

 

Fig 2.7 Block diagram of the double-arm ToF spectrometer. [26] 

 

 
 

• ToF1 between the arrival of signals St1 and Sp1, 

• ToF2 between the arrival of signals St2 and Sp2, 

• ΔTSt between the arrival of signals St1 and St2, 

• ΔTSp between the arrival of signals Sp1 and Sp2. 

 

 The start and stop signals, as well as the coordinate signals, are independently 

transmitted via delay lines to a time-to-digital converter (TDC). The trigger signal acts 

as the start signal for the TDC. The TDC is used to measure the time intervals between 

the trigger and all the other signals. The coordinate signals are extracted from the 
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difference between two time intervals: the interval between that coordinate signal and 

the trigger; the interval between the stop signal and the trigger. 

 Used modules include ORTEC CFDs, mod. 935, and TACs, mod. 566; CAEN ADC, 

mod. V785, and TDC, mod. V775; Mesytec ADC, mod. MADC-32; SIS GmbH scaler 

SIS3800; commercial NIM modules (such as preamplifiers, delay generators, logic 

units, FIFO, trigger box, NIM/ECL translators). 

 During the processing of a signal the ADCs and TDCs prevent the electronics to 

accept new trigger with a busy signal used as a veto for further trigger. The dead time, 

defined as the number of refused triggers to the number of total trigger ratio, is returned 

by the electronics.  

 

2.2.3 CORSET time calibration 

The time calibration consists in the calibration of both TAC and TDC electronic 

modules. A Time Calibrator module is plugged into the TACs and TDCs, providing a 

series of equally distant (in time) peaks used for the evaluation of the slope of the linear 

calibration. 

 Since the position information is extracted from time measurements, the TDC 

channels for X, Y, Start and Stop are separately calibrated and their slope is used to 

convert position raw data in time. The intercept in the position calibration is obtained 

through the presence of at least two points on the detector surface whose position is 

well-known (along X and Y axis): in many cases a mask with some known positions is 

put in front of the sensitive area (e.g. a plastic reticule in front of CORSET Stop) while, 

in absence of this tool, the edges of the detector are used. 

 ToFs may be measured by the difference Stop-Start (TDC channels) or by means of a 

TAC. In both cases, the difference Sp-St from TDC and the output of TAC+ADC chain 

provide a spectrum in which a known peak may be used to find the intercept of the 

linear calibration. Usually the known peak is the one related to elastic scattering of the 

projectile on target and specific calibration runs are conducted. Another option is to use, 

whenever possible, elastic scattering peaks of both projectile and target to perform a 2-

point linear calibration. 
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2.3 Results and discussion 

2.3.1 Selection of binary reaction channels 

ToF data along with position information are used to measure the velocity vector of 

each fragment: given the impact point of the particle on the stop detector, under the 

hypothesis that the fragments originate in the center of the target, it is possible to 

reconstruct event-by-event the trajectory length of each fragment and, hence, its 

velocity vector.  

 Thus, event-by-event it is possible to apply the momentum and mass number 

conservation laws to obtain the mass and energy distribution of the fragments. Given the 

two conservation laws 

 

 𝑀𝑝𝑟𝑜𝑗𝑉⃗ 𝑝𝑟𝑜𝑗  =  𝑀1𝑉⃗ 1 + 𝑀2𝑉⃗ 2 [2.1] 

 𝑀𝑝𝑟𝑜𝑗 + 𝑀𝑡𝑎𝑟 = 𝑀1 + 𝑀2 + 𝑀𝑛 [2.2] 

 

where 𝑀1,2 and 𝑉⃗ 1,2 are the masses and velocity vectors of the two products and 𝑀𝑛 is 

the multiplicity of preequilibrium neutrons, and projecting Equation 2.1 onto the beam 

axis, it possible to extract the two masses as following: 

 

 
𝑀1  =  

(𝑀𝑝𝑟𝑜𝑗 + 𝑀𝑡𝑎𝑟 − 𝑀𝑛)𝑉2𝑠𝑒𝑛𝜃2

𝑉1𝑠𝑖𝑛𝜃1 + 𝑉2𝑠𝑖𝑛𝜃2
  

 

[2.3] 

 

 𝑀2 = 𝑀𝑝𝑟𝑜𝑗 + 𝑀𝑡𝑎𝑟 − 𝑀1 −  𝑀𝑛 [2.4] 
 

 

where 𝜃1,2 is the angle between the velocity vectors of the fragments and the beam axis. 

The TKE, as defined by Equation 1.11, is obtained as:  

 

 𝑇𝐾𝐸 = 0.5183 𝑀1𝑉1,𝐶𝑀
2 + 0.5183 𝑀2𝑉2,𝐶𝑀

2   [2.5] 

 

where the factor 0.5183 is a modification to the classical kinetic energy formula, applied 

in order to match masses in atomic units and velocities in cm/ns into energies in MeV. 

Hence, it is possible to obtain the Total Kinetic Energy Loss (TKEL), namely the 

difference between the available kinetic energy in center of mass reference frame and 

the TKE of the fragments, as:  
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 𝑇𝐾𝐸𝐿 = 𝐸𝐶𝑀 −  𝑇𝐾𝐸  [2.6] 

 

TKEL represents the amount of energy dissipated during the interaction. 

 After the first mass-energy extraction, a correction for energy loss in both target and 

start detectors is necessary. This is done by means of a recursive algorithm [27] that 

estimates the energy losses of the fragments passing through matter and recalculates at 

each step their masses and velocities until a given tolerance is reached. 

 The hypothesis that the fragments originate in the center of the target introduces an 

uncertainty on the reconstructed trajectory lengths and, therefore, on the masses. Being 

the diameter of the used targets ~ 1 cm, the error introduced on the masses is lower than 

1 u (lower than the CORSET resolution of 3 u), and so negligible. 

 It is worthwhile to note that the fragments that arrive in the CORSET detector are 

secondary fragments, i.e. after the emission of few neutrons. Under the hypothesis that 

the emission of few neutrons does not affect sensibly (due to the ratio between the 

neutron mass and the fragment mass) the velocity vector (in terms of its direction and 

modulus) of the emitting fragment, the reconstruction method allows to obtain the 

primary fragments mass and energy distributions. 

 Along with the two masses and TKE, many other useful quantities can be evaluated 

from the raw data. Some examples are the folding angle, namely the angle between the 

velocity vectors of the two fragments, and the projections of velocity vectors onto the 

reaction plane (Vpar) and orthogonally to it (Vper). These two projections are an 

extremely useful tool in the search for binary Full Momentum Transfer (FMT) events, 

for which Vpar is distributed around the center of mass velocity and Vper around zero. 

Figure 2.8 shows a kinematic diagram explaining how the value of Vpar (V|| in figure) 

can be used to distinguish three different cases: 

a) Vpar = Vcm, a binary FMT event for which the kinematic reconstruct is well 

interpreted; 

b) Vpar > Vcm, the case where (sequential) fission of a fragment (usually the target-

like one) occurs and the secondary fragment emitted forward is detected, leading 

to a misinterpretation of the velocities; 

c) Vpar < Vcm, similar to the previous but the secondary fragment emitted backward 

is detected. 
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Fig 2.8 Kinematic Diagram, useful to tell if an event is a binary FMT or a sequential fission. (a) Vpar = 

Vcm, a binary FMT event; (b) Vpar > Vcm, (sequential) fission of a fragment and the secondary fragment 

emitted forward is detected; (c) Vpar < Vcm, similar to the previous but the secondary fragment emitted 

backward is detected [28]. 

 

 

2.3.2 Mass-TKE distributions 

Figure 2.9 shows the experimental Vpar - Vper matrix for the 68Zn + 112Sn reaction at Elab 

= 300 MeV. The most populated spot lies in region with Vper distributed around zero and 

Vpar around the center of mass velocity (1.10 cm/ns in this reaction) and a gate around 

this spot is used to select the FMT events. 

 The angular correlation of the two fragments provides a useful tool to check the 

correct application of the presented selection method. For a binary FMT event, the two 

detected fragments recoil at 180° with respect to each other in the center of mass 

reference frame. Figure 2.10 a) shows the experimental matrix of the x and y folding 

angles (𝐹𝑜𝑙𝑑𝑥,𝐶𝑀 and 𝐹𝑜𝑙𝑑𝑦,𝐶𝑀 in Figure). After the application of the condition on the 

velocities, the only remaining events are the ones around 180° on both axes, as shows in 

Figure 2.10 b).  
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Fig 2.9 Experimental Vpar - Vper matrix for the 68Zn + 112Sn reaction at Elab = 300 MeV. The most 

populated spot lies in region with Vper distributed around zero and Vpar around the center of mass velocity 

(1.10 cm/ns). The black circle represents the gate used to select the binary FMT events. 

 

 

Fig 2.10 Experimental 𝐹𝑜𝑙𝑑𝑥,𝐶𝑀 and 𝐹𝑜𝑙𝑑𝑦,𝐶𝑀 matrix for the 68Zn + 112Sn reaction at Elab = 300 MeV a) 

without conditions and b) with the selection of FMT events  
 

 The symmetrized mass-TKE matrix obtained for the 68Zn + 112Sn reaction at Elab = 

300 MeV (leading, if fusion occurs, to 180Hg at E* = 82 MeV) after the application of 

the mentioned gate is shown Figure 2.11. The most populated regions of the matrix lie 

in correspondence of the elastic masses (68 and 112 u, respectively) and the center of 

mass energy (187 MeV). This can be seen from the mass and TKE distributions, 
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obtained as projections of the mass-TKE matrix presented, shown respectively in 

Figures 2.12 and 2.13. The markers highlight the elastic masses and energy. The events 

around these regions can be confidently attributed to elastic and quasi-elastic scattering. 

With decreasing TKE, the contribution of FF increases up to the maximum expected in 

coincidence of the Viola TKE, 142 MeV for the present reaction, according to Equation 

1.12. 

 The experimental Vpar - Vper and symmetrized mass-TKE matrices for the other 

reactions are shown in Figures from 2.14 to 2.19. The mass-TKE matrices for the 64Zn + 

112Sn reaction at Elab = 280, 265 MeV with asymmetric detection geometry (Fig 2.17 

and 2.19) show a more pronounced elastic component, as expected according to Fig 2.6. 

 

 

 

Fig 2.11 Mass-TKE distribution of binary FMT products for the 68Zn + 112Sn reaction at Elab = 300 MeV. 
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Fig 2.12 Mass distribution of binary FMT products. The markers highlight the masses of projectile and 

target (68 and 112 u).  

 

 

 

Fig 2.13 TKE distribution of binary FMT products. The marker highlights the bombarding energy in the 

center of mass reference frame (187 MeV). 
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Fig 2.14 a) Experimental Vpar - Vper matrix and b) mass-TKE distribution of binary products in the 68Zn + 
112Sn reaction at Elab = 355 MeV. 

 

 

Fig 2.15 a) Experimental Vpar - Vper matrix and b) mass-TKE distribution of binary products in the 64Zn + 
112Sn reaction at Elab = 300 MeV. 

 

 

Fig 2.16 a) Experimental Vpar - Vper matrix and b) mass-TKE distribution of binary products in the 64Zn + 
112Sn reaction at Elab = 280 MeV. 
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Fig 2.17 a) Experimental Vpar - Vper matrix and b) mass-TKE distribution of binary products in the 64Zn + 
112Sn reaction at Elab = 280 MeV with asymmetric detection geometry. 

 

 

Fig 2.18 a) Experimental Vpar - Vper matrix and b) mass-TKE distribution of binary products in the 64Zn + 
112Sn reaction at Elab = 265 MeV. 

 

 

Fig 2.19 a) Experimental Vpar - Vper matrix and b) mass-TKE distribution of binary products in the 64Zn + 
112Sn reaction at Elab = 265 MeV with asymmetric detection geometry. 
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2.3.3 Selection of fusion-fission events 

The aim of the present work is to measure the FF mass distribution of the two Hg 

isotopes, with a closer look at the asymmetric component. Due to the large symmetry in 

the entrance channels, the mass-TKE matrices do not allow a clear separation of the 

contributions of the elastic and quasi-elastic components from the asymmetric FF one. 

 The TKE (or similarly the TKEL) can help in the separation of the two mechanisms, 

as FF is expected to be the most dissipative process, so the one with higher TKEL. 

Figure 2.20 shows the TKEL for the 68Zn + 112Sn reaction at Elab = 300 MeV (leading to 

180Hg at E*
CN = 48 MeV) empirically decomposed in 4 different Gaussians. The first 

Gaussian is centered around 𝑇𝐾𝐸𝐿 = 0 that, according to Equation 2.6, means 𝑇𝐾𝐸 =

𝐸𝐶𝑀 and corresponds to the elastic component. The second and third Gaussians, 

centered around 𝑇𝐾𝐸𝐿 ≈  7  and ≈  20 MeV, can be ascribed to quasi elastic and 

inelastic components. Those processes usually have an expected TKEL lower than ~ 30 

MeV. The forth Gaussian is centered at 𝑇𝐾𝐸𝐿 = 43 𝑀𝑒𝑉 and marks the most 

dissipative process. It is in correspondence of the TKE expected for symmetric FF mass 

split, therefore it is reasonable to ascribe this component of the TKEL spectrum to the 

FF process. 

 

 

Fig 2.20 Experimental TKEL distribution of binary FMT products for the 68Zn + 112Sn reaction at Elab = 

300 MeV. The experimental data have been decomposed in 4 different Gaussians: the first one, centered 

around ECM corresponds to the elastic component; the second and third ones, centered around ~7 and ~21 

MeV can be ascribed to quasi elastic and inelastic components; the forth one, as the most dissipative 

process, can be ascribed to FF component. The red curve is the sum of the four different Gaussians. The 

marker highlights the TKEL in correspondence of the Viola TKE for symmetric mass split (142 MeV). 
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 The effect of the selection of different windows of TKEL is shown in Figure 2.21. 

The experimental mass distributions of primary TLF are shown for different ranges of 

TKEL: blue curve for TKEL in the range 35 ÷ 40 MeV, orange curve for 40 ÷ 45 MeV, 

green curve for 45 ÷ 55 MeV and yellow curve for 55 ÷ 70. Intervals have been chosen 

to have distributions with comparable amount of counts. The trend that emerges is an 

increasing relative yield of the symmetric component of the mass distribution as the 

TKEL increases. 

 An analogous trend is present in the other reactions. The experimental TKEL and 

mass distributions for the other reactions are shown in Figures from 2.22 to 2.26. 

Results for the 64Zn + 112Sn reaction at Elab = 265 MeV with asymmetric detection 

geometry are not shown as the statistics in the FF region was not sufficient for a detailed 

analysis. This is due to the presence of a predominant elastic component in the mass-

TKE matrix that hinders an unambiguous separation of the FF component. 

 

 

 

Fig 2.21 Experimental mass distribution of binary FMT products for the 68Zn + 112Sn reaction at Elab = 

300 MeV for different windows in TKEL: blue curve correspond to TKEL in the window 35 ÷ 40 MeV, 

orange curve 40 ÷ 45 MeV, green curve 45 ÷ 55 MeV, yellow curve 55 ÷ 70 MeV. Intervals have been 

chosen to have a comparable counting statistics. 
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68Zn + 112Sn at Elab = 355 MeV leading to 180Hg at E*
CN = 82 MeV 

 

     

 

Fig 2.22 (Top) Experimental TKEL distribution of binary FMT products for the 68Zn + 112Sn reaction at 

Elab = 355 MeV. The experimental data have been decomposed in 4 different Gaussians: the first one, 

centered around ECM corresponds to the elastic component; the second and third ones, centered around 

~14 and ~33 MeV can be ascribed to quasi elastic and inelastic components; the forth one, as the most 

dissipative process, can be ascribed to FF component. The red curve is the sum of the four different 

Gaussians. The marker highlights the TKEL in correspondence of the Viola TKE for symmetric mass split 

(142 MeV). 

(Bottom) Experimental mass distribution of binary FMT products for different windows in TKEL: blue 

curve correspond to TKEL in the window 70 ÷ 80 MeV, orange curve 80 ÷ 90 MeV, green curve 90 ÷ 110 

MeV. Intervals have been chosen to have a comparable counting statistics. 
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64Zn + 112Sn at Elab = 300 MeV leading to 176Hg at E*
CN = 48 MeV 

 

         

 

Fig 2.23 (Top) Experimental TKEL distribution of binary FMT products for the 64Zn + 112Sn reaction at 

Elab = 300 MeV. The experimental data have been decomposed in 4 different Gaussians: the first one, 

centered around ECM corresponds to the elastic component; the second and third ones, centered around 

~11 and ~25 MeV can be ascribed to quasi elastic and inelastic components; the forth one, as the most 

dissipative process, can be ascribed to FF component. The red curve is the sum of the four different 

Gaussians. The marker highlights the TKEL in correspondence of the Viola TKE for symmetric mass split 

(143 MeV).  

(Bottom) Experimental mass distribution of binary FMT products for different windows in TKEL: blue 

curve correspond to TKEL in the window 35 ÷ 43 MeV, orange curve 43 ÷ 50 MeV, green curve 50 ÷ 60 

MeV, yellow curve 60 ÷ 90 MeV. Intervals have been chosen to have a comparable counting statistics. 
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64Zn + 112Sn at Elab = 280 MeV (symmetric CORSET geometry) leading to 176Hg at E*
CN 

= 35 MeV 

 

        

 

Fig 2.24 (Top) Experimental TKEL distribution of binary FMT products for the 64Zn + 112Sn reaction at 

Elab = 280 MeV. The experimental data have been decomposed in 4 different Gaussians: the first one, 

centered around ECM corresponds to the elastic component; the second and third ones, centered around ~8 

and ~20 MeV can be ascribed to quasi elastic and inelastic components; the forth one, as the most 

dissipative process, can be ascribed to FF component. The red curve is the sum of the four different 

Gaussians. The marker highlights the TKEL in correspondence of the Viola TKE for symmetric mass split 

(143 MeV).  

(Bottom) Experimental mass distribution of binary FMT products for different windows in TKEL: blue 

curve correspond to TKEL in the window 33 ÷ 36 MeV, orange curve 36 ÷ 40 MeV, green curve 40 ÷ 45 

MeV, yellow curve 45 ÷ 70 MeV. Intervals have been chosen to have a comparable counting statistics. 
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64Zn + 112Sn at Elab = 280 MeV (asymmetric CORSET geometry) leading to 176Hg at 

E*
CN = 35 MeV 

 

 

 

Fig 2.25 (Top) Experimental TKEL distribution of binary FMT products for the 64Zn + 112Sn reaction at 

Elab = 280 MeV in the asymmetric geometry. The experimental data have been decomposed in 3 different 

Gaussians: the first one, centered around ECM corresponds to the elastic component; the second one, 

centered around ~10 MeV can be ascribed to quasi elastic and inelastic components; the third one, as the 

most dissipative process, can be ascribed to FF component. The red curve is the sum of the three different 

Gaussians. The marker highlights the TKEL in correspondence of the Viola TKE for symmetric mass split 

(143 MeV).  

(Bottom) Experimental mass distribution of binary FMT products for different windows in TKEL: blue 

curve correspond to TKEL in the window 35 ÷ 40 MeV, orange curve 40 ÷ 45 MeV, green curve 45 ÷ 60 

MeV. Intervals have been chosen to have a comparable counting statistics. 
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64Zn + 112Sn at Elab = 265 MeV (symmetric CORSET geometry) leading to 176Hg at E*
CN 

= 25 MeV 

 

 

 

Fig 2.26 (Top) Experimental TKEL distribution of binary FMT products for the 64Zn + 112Sn reaction at 

Elab = 265 MeV. The experimental data have been decomposed in 4 different Gaussians: the first one, 

centered around ECM corresponds to the elastic component. The identification of the other Gaussians is 

more uncertain, but it is reasonable to ascribe to FF the events after 40 MeV of TKEL. The red curve is 

the sum of the four different Gaussians. The marker highlights the TKEL in correspondence of the Viola 

TKE for symmetric mass split (143 MeV).  

(Bottom) Experimental mass distribution of binary FMT products for TKEL in the window 40 ÷ 80 MeV. 
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2.3.4 Fission modes in 180,176Hg 

Results shown in Figures from 2.21 to 2.26 are summarized in Figures 2.27 and 2.28. 

Figures 2.27 and 2.28 show the experimental symmetric-yield to peak-yield ratio for 

different values of TKEL for the CN 180Hg and 176Hg, respectively. The abscissa has 

been taken as the ratio between the weighted average TKEL of the considered interval 

and the TKEL corresponding to Viola TKE (TKELVIOLA), to compare reactions with 

different 𝐸𝐶𝑀. With increasing TKEL, 180Hg tends to a more symmetric mass split than 

176Hg. Moreover, for increasing excitation energy of the CN, 180Hg tends to a more 

symmetric mass split than 176Hg. This behavior agrees qualitatively with Moller’s 

prediction presented in Figure 2.2, however the fission fragment mass distribution of 

176Hg appears to be much more asymmetric than predicted by Moller’s calculations. A 

more detailed analysis follows. 

 To evaluate the presence of specific fission modes in the experimental data, the mass 

distributions calculated by Moller and collaborators [25] have been taken as a guideline 

to search for fission modes. The approach used here is 1) to decompose each computed 

mass distributions into different Gaussian contributions, each with an average 

corresponding to a fission mode, and afterwards 2) to attempt to reproduce the full 

experimental mass distribution with the same fission modes. This method is constrained 

by the fact that if a fission mode is identified, its average mass cannot change with the 

excitation energy being it a property of the fissioning nucleus. If found experimentally, 

it is also a manifestation that such nucleus was indeed formed in the nuclear reaction. 

This is not always guaranteed being the entrance channel dynamics very important in 

the fusion process.  

 As a first step, the calculated mass distributions have been fitted with the sum of 

three Gaussian contributions: one for symmetric mass mode and two for asymmetric 

mass mode. A total of three Gaussians are necessary: the lowest mass asymmetric peak, 

the symmetric peak and the higher mass asymmetric peak. Figure 2.29 shows the 

decomposition of the calculated mass distributions at three different excitation energies 

for 180Hg. The best fits have been obtained minimizing the chi-square. Black dots are 

the calculation provided in ref [25], green line is the symmetric Gaussian component, 

the two orange lines are the asymmetric Gaussian components, and the red line is the 

sum of these Gaussians. The first striking unexpected feature is that to properly fit the 

data the mean of the Gaussian asymmetric contributions moves toward more symmetric 
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masses as the excitation energy increases. However, this behavior is not compatible with 

the concept of fission modes: each fission mode is due to a valley in the potential of the 

CN and its position is independent on the excitation energy of the fissioning nucleus. 

This indeed is already an indication that to reproduce the computed mass distributions 

an additional asymmetric fission mode is necessary. 

 

 

Fig 2.27 Symmetric-yield to peak-yield ratio versus TKEL to Viola TKEL (TKELVIOLA) ratio for 68Zn + 
112Sn reaction at Elab = 355 and 300 MeV leading respectively to excited 180Hg with E*CN = 82 (green 

dots) and 48 MeV (purple triangles). 
 

 

Fig 2.28 Symmetric-yield to peak-yield ratio versus TKEL to Viola TKEL (TKELVIOLA) ratio for 64Zn + 
112Sn reaction at Elab = 300, 280 and 265 leading respectively to excited 176Hg with E*CN = 48 (blue dots), 

35 (red triangles for symmetric configuration and empty triangles for asymmetric configuration) and 25 

MeV (yellow diamonds). 
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Fig 2.29 Decomposition of the calculated mass distributions for 180Hg [25] (black dots) into the best 

combination of a symmetric and an asymmetric Gaussian components. Red line is the sum of the 

Gaussian curves. 
 

  

180Hg 
E* = Bf + 2 MeV 

E* = 20 MeV 

E* = 40 MeV 
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 The suspect that a third fission mode is occurring appeared well grounded after 

trying to fit the experimental distributions with only two modes as found in Figure 2.29. 

In each decomposition, each Gaussian has a fixed average as obtained from the 

decomposition of the calculated mass distribution with the excitation energy closest to 

the experimental one. Figure 2.30 shows an example of the experimental mass 

distribution for the TLF (black dots with error bars) decomposed into two Gaussian 

contributions (one for symmetric mass split, green line, and one for asymmetric mass 

split, orange line). Red line is the sum of the Gaussian curves; the blue line is the 

difference between the red line and the data. What immediately catches the eye is that, 

with this decomposition, there is a large component of the mass distribution that is not 

reproduced by these Gaussians. The more asymmetric region, centered around A = 116, 

can be due to QF or DI processes that are not well separated from the FF component. 

The more symmetric region, centered around A = 100 may mark the presence of a third 

fission mode present in this mass distribution. 

 

 

Fig 2.30 Decomposition of the experimental mass distributions of TLF for 180Hg at E* = 48 MeV (black 

dots with error bars) into a symmetric (green line) and an asymmetric (orange line) component. Red line 

is the sum of the Gaussian curves, blue line is the difference between the red line and the data. 
 

 The mass distributions of the other reactions present similar patterns, reinforcing the 

idea of the presence of a third fission mode, with A ~ 99 - 100. Whit this scheme in 

mind, the mass distribution calculated by Moller and collaborators have been 

decomposed into 3 different Gaussian components, one for symmetric mass split, one 
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for asymmetric mass split and A of the TLF around 100, one for asymmetric mass split 

and A of the TLF around 110. Figures 2.31 and 2.32 show the decomposition of the 

calculated mass distributions respectively for 180Hg and 176Hg and for three excitation 

energies. With this new decomposition, the three gaussian components maintain the 

same mean over the different excitation energies while their variance increase with 

excitation energy. In case of 180Hg, we have the three possible fission modes centered on 

A = 90 for the symmetric split, green curve, on A = 100 (and the symmetric A = 80) for 

the asymmetric split, purple curve, and on A = 109 (and the symmetric A = 71) for the 

second asymmetric split, orange curve. In case of 176Hg, we have the three possible 

fission modes centered on A = 88 for the symmetric split, green curve, on A = 99 (and 

the symmetric A = 77) for the asymmetric split, purple curve, and on A = 110 (and the 

symmetric A = 66) for the second asymmetric split, orange curve. 

 At this point, the experimental mass distributions have been decomposed by using 

these newly found hypothetical modes. The results are shown in Figures from 2.33 to 

2.38. The color legend is analogue to the one in Figures 2.31 and 2.32: black dots with 

error bars are the experimental data, green curve is the symmetric component, purple 

curves are the first asymmetric component, orange curves are the second asymmetric 

component, red curve is the sum of the Gaussian components. An additional blue curve, 

for most asymmetric masses, represent the component of the mass distribution that, as 

in Figure 2.30, can be ascribed to QF and DI processes. 

 With three modes (one symmetrical and two asymmetrical) all the experimental mass 

distributions are now extremely well reproduced. What is clearly different is the relative 

contribution of the different modes and their width. The consequences and implications 

of this finding is discussed in the next session.  
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Fig 2.31 Decomposition of the calculated mass distributions for 180Hg [25] (black dots) into the best 

combination of a symmetric and two asymmetric Gaussian components. Red line is the sum of the 

Gaussian curves. 
 

  

180Hg 
E* = Bf + 2 MeV 

E* = 20 MeV 

E* = 40 MeV 
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Fig 2.32 Decomposition of the calculated mass distributions for 176Hg [25] (black dots) into the best 

combination of a symmetric and two asymmetric Gaussian components. Red line is the sum of the 

Gaussian curves. 
 

  

176Hg 
E* = Bf + 2 MeV 

E* = 20 MeV 

E* = 40 MeV 
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180Hg 

E* = 82 MeV 

 

Fig 2.33 Decomposition of the experimental mass distributions for 180Hg at E* = 82 MeV (black dots with 

error bars) into a symmetric (green line) and two asymmetric (orange and purple lines) components. Red 

line is the sum of the Gaussian curves. 
 

E* = 48 MeV 

 

Fig 2.34 Decomposition of the experimental mass distributions for 180Hg at E* = 48 MeV (black dots with 

error bars) into a symmetric (green line) and two asymmetric (orange and purple lines) components. Red 

line is the sum of the Gaussian curves. 
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176Hg 

E* = 48 MeV 

 

Fig 2.35 Decomposition of the experimental mass distributions for 176Hg at E* = 48 MeV (black dots with 

error bars) into a symmetric (green line) and two asymmetric (orange and purple lines) components. Red 

line is the sum of the Gaussian curves. 
 

E* = 35 MeV (symmetric) 

 

Fig 2.36 Decomposition of the experimental mass distributions for 176Hg at E* = 35 MeV, symmetric 

detection configuration, (black dots with error bars) into a symmetric (green line) and two asymmetric 

(orange and purple lines) components. Red line is the sum of the Gaussian curves. 
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E* = 35 MeV (asymmetric) 

 

Fig 2.37 Decomposition of the experimental mass distributions for 176Hg at E* = 35 MeV, asymmetric 

detection configuration, (black dots with error bars) into a symmetric (green line) and two asymmetric 

(orange and purple lines) components. Red line is the sum of the Gaussian curves. 
 

E* = 25 MeV 

 

Fig 2.38 Decomposition of the experimental mass distributions for 176Hg at E* = 25 MeV (black dots with 

error bars) into a symmetric (green line) and two asymmetric (orange and purple lines) components. Red 

line is the sum of the Gaussian curves. 
 

  



60 

 

2.3.5 Discussion 

The need of a third fission mode in the calculated mass distributions, suggested by the 

experimental data, provides an interpretative key to the fact that the mass distribution of 

180Hg becomes more symmetric with increasing excitation energy whereas the one of 

176Hg becomes more asymmetric, the main subject of this experiment.  

 A closer look at Figures 2.31 and 2.32 gives the clear path to interpret the different 

behavior of 180Hg and 176Hg. 

 In the case of 180Hg, in the computed mass distributions (Figure 2.31), with 

increasing excitation energy, the calculated symmetric mode contribution becomes 

larger. However, the more asymmetric mode still remains dominant. The fact that the 

whole mass distribution becomes more symmetric is due to the increase of the 

symmetric component, but also to the weaker medium-asymmetric mode (the purple 

curve). The experimental mass distribution at E* = 48 MeV is in agreement with this 

trend. For an even larger excitation energy (E* = 82 MeV), the symmetric mode 

becomes dominant, the medium-asymmetric mode disappears, and the most-asymmetric 

mode clearly survives. This is consistent with the expectations. The shell effects are 

gradually quenched with increasing excitation energy, each mode disappearing at 

different excitation energy, but only the symmetric mode is last survivor. In this view, 

180Hg behaves as expected. There are some subtle differences still between the widths 

and the relative intensities of the modes in the experimental and computed distributions 

that will be discussed at the end. For now, we can conclude that the gross behavior with 

the excitation energy follows the expectation. 

 In the case of 176Hg, the computed mass distributions (Figure 2.32), with increasing 

excitation energy, becomes more asymmetric. As stated before, this is considered at 

variance with what expected. The reason of this trend has to be searched in the 

competition of the three different modes identified by the combined analysis with the 

experimental data. The symmetric mode is truly reduced with increasing excitation 

energy, but the rate of the growing asymmetry is the consequence of the dropping of the 

mid-asymmetric mode and the strong increase of the most-asymmetric mode. Therefore, 

the symmetric mode is hindered by the most-asymmetric mode and partially by the mid-

asymmetric mode. This is at variance with the behavior of 180Hg. 

 When we turn now to the decomposition of the experimental mass distribution, we 

can compare the computed distribution at E* = 20 MeV with the experimental one at E* 
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= 25 MeV. Clearly, all three modes survive, however the relative intensity is strikingly 

different. In particular, the symmetric mode is strongly suppressed in favor of the most 

asymmetric mode. What is indeed more interesting is the evolution with the excitation 

energy. Going from E* = 25 to 35 MeV the symmetric component grows, as expected, 

but at variance with the calculation. At E* = 48 MeV we see a drop of its relative 

intensity (not a continuous growing) triggered, reasonably, by the increase of the most-

asymmetric mode. The same behavior occurs, but to a minor extent, to the mid-

asymmetry mode. It seems that the symmetric mode increases up to a certain point in 

the excitation energy after which it starts dropping. The dominance of the most-

asymmetric mode is the cause of the hindrance of the mass symmetric mode. In the 

Moller’s calculation, the symmetric mode is instead dominant at the lowest excitation 

energy and drops monotonically. In the experimental data, we observe its fast increase 

and afterwards a drop around 40 MeV. This behavior of 176Hg is not reproduced in the 

calculations and is at variance with the regular behavior of 180Hg. 

 A further comment concerns the width of the modes (Gaussian) and the computed 

intensity of the different modes. The widths of the modes give an indication of the width 

of the potential valleys: the larger the widths, the larger the width of the valleys. 

However, fluctuations in the width are also expected. This makes the width to change 

with the excitation energy. The relative intensity of the different modes is related to 

number of times a trajectory is walked through in the potential: the most populated 

trajectory gives rise to the most populated mode. The decision of which trajectory will 

be populated in a decay is matter of the dynamics of the decay. In Moller calculations, 

the dynamics is implemented with a simple model. For instance, no dissipation is 

included (viscosity is null). This, by itself, produces a bias in the relative intensity of the 

different modes, and consequently, in the shape of the mass distributions. To dig more in 

this detail, the analysis of the mass distributions should be done in parallel with the 

computed TKE distributions. However, these are not available. Regardless of this 

unimplemented features, it is clear that the experimental mass distributions are 

compatible with the same modes that reproduce the calculated mass distributions for 

both 176Hg and 180Hg. This is already an important result because it tells that the shell 

corrections occur in the same place in the potential as calculated. However, the relative 

intensities follow a different pattern in the case of 176Hg. This means that the dynamics 

is still very important besides the shell corrections. This analysis reveals that 176Hg 

behaves at variance with what expected. In particular, the relative strength of the 
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different fission modes changes quite surprisingly with the excitation energy. This 

finding of course requires further work for its confirmation. At the same time, it 

provides the motivations for searching a similar effect in other nuclei. 

 As a last point, it is worth to compare the Moller distributions with the ones obtained 

by fitting the data and removing the part due to the QF or quasi-elastic components (the 

blue curves). These comparisons summarize the whole picture. Some gross features are 

reproduced by the calculations, but the relative intensities of the different modes are not. 

The awkward behavior of 176Hg is confirmed. As a result of this study, it is attributed to 

an unexpected competition among two main modes, the symmetric and the most-

asymmetric one, with a minor role played by the mid-asymmetric mode. 

 

 

 

 

 

Fig 2.39 Experimental fission fragments mass distributions for 180Hg at E* = 48 (red solid line) and 82 

MeV (red dashed line) compared to Moller’s calculations for E* = 40 MeV (black solid line). 
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Fig 2.40 Experimental fission fragments mass distributions for 176Hg at E* = 48 MeV (red solid line) 

compared to Moller’s calculations for E* = 40 MeV (black solid line). 
 

 

 

Fig 2.41 Experimental fission fragments mass distributions for 176Hg at E* = 35 MeV (red solid line) 

compared to Moller’s calculations for E* = 40 MeV (black solid line). 
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Fig 2.42 Experimental fission fragments mass distributions for 176Hg at E* = 35 MeV, asymmetric 

geometry, (red solid line) compared to Moller’s calculations for E* = 40 MeV (black solid line). 
 

 

 

Fig 2.43 Experimental fission fragments mass distributions for 176Hg at E* = 25 MeV (red solid line) 

compared to Moller’s calculations for E* = 20 MeV (black dashed line). 
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Chapter 3 – Experiment 32S + 197Au 

 

3.1 Scientific motivation 

Heavy-ion induced fusion reactions at bombarding energies around the Coulomb barrier 

have been very successfully used for the production of superheavy elements (SHE) [29, 

30, 31]. To select the optimal reactions for the production of new elements heavier than 

Og and/or new isotopes around the superheavy island of stability the measurement of 

fusion cross sections is an essential step [32]. In fusion events, a compound nucleus 

may evolve toward fission or the formation of an evaporation residue (ER) after the 

evaporation of light particles. The fusion cross section is measured by summing the 

cross sections of these two decay channels. The fission cross section is usually 

measured by counting the number of fragments produced in binary reactions. In the case 

of reactions between massive nuclei necessary for the search of superheavy elements, 

the evaporation residues cross section is negligible with respect to the fission one. 

Therefore, it is sufficient to select and count the fission events to estimate the fusion 

cross section [14]. However, at energies around the Coulomb barrier, the quasi-fission 

reaction mechanism, which also gives rise to binary products, becomes dominant and 

counteracts the complete fusion, as seen in Section 1.3. CN fission and QF are both 

binary decay channels characterized by large nucleon exchange and energy dissipation. 

These common properties make the experimental separation between them difficult, 

especially in the case where both processes result in symmetric mass split, like in Figure 

1.9. In order to achieve a signature providing a clear separation among the events of 

these two different processes, several techniques based on the analysis of different 

experimental observables of fission like fragments have been used. 

 

3.1.1 Signatures of quasi-fission 

The characterization of fission like fragments produced by CN fission and QF has been 

achieved by exploiting the properties of fission like fragments produced in reactions 

leading to the formation of the same composite system from different entrance channels. 

In the lack of comprehensive theoretical models, it is necessary to proceed empirically 
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by searching for correlations between observables in order to provide a systematic 

description and to extrapolate their behavior in unknown regions. One of the real doubts 

on the extrapolation reliability concerns the fact that nuclear properties in the regions of 

heavy and superheavy nuclei, challenging to access even with the most performant 

setups, may change dramatically just by adding few nucleons because of the sharp 

change due to the shell effects. 

 Typical patterns of the mass-TKE distributions, which elucidate the onset of the QF, 

are summarized in Figure 3.1 [14]. All reactions lead to the formation of the Hs 

composite system but entrance channels are vastly different. These reactions were 

chosen as a case study to provide a prompt view of some of the most relevant features 

of QF. From left to right, the entrance channel mass asymmetry decreases and Coulomb 

factor increases. The two reactions in the middle are expected to form the same CN at 

similar excitation energies from different entrance channels.  

 

 

Fig 3.1 Mass-TKE distributions of binary product at energy above the Coulomb barrier. From left to right 

the entrance channel mass asymmetry decreases and the Coulomb factor Z1Z2 increases. Solid curves in 

the average TKE and its variance are the LDM expectation for CN fission. [14] 
 

 The area between the expected quasi-elastic region and the symmetric mass split 

region, typical of CN fission, gets filled with further binary products with the increases 

of the entrance channel asymmetry. In the case of the reaction 22Ne + 249Cf, the mass 

distribution shows a Gaussian shape. In the reaction 26Mg + 248Cm the mass distribution 
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is nearly Gaussian with the appearance of two slight shoulders. These two reactions 

show mass-TKE distributions features that can be ascribed to the expectation of the 

LDM fission and therefore can be considered mainly originated by a CN fission process. 

With the decreasing mass asymmetry, the mass distributions of the fragments change 

quite remarkably: in the case of 36S + 238U the two asymmetric QF shoulders become 

more pronounced and for 56Fe + 208Pb the mass distribution becomes a pot-shaped.  

 Also quite striking is the difference in the shapes of the mass-TKE distributions 

observed in the two cases in which the same composite system 274Hs is populated. The 

progression in the mass-TKE distribution, which makes one to invoke QF mechanism, 

is also reflected in the other two observables, the average TKE and the variance of the 

TKE distributions as a function of mass fragment 𝜎𝑇𝐾𝐸
2 . Both these observables deviate 

from the expectation of the LMD model. In particular, the deviation observed in the 

reaction 56Fe + 208Pb makes one suspect that this QF process is dominant with respect to 

CN fission in the full mass range and results in colder fragments being the average TKE 

higher. 

 The mass asymmetry and the Coulomb factor of the entrance channel are reported to 

play a primary role in the rising of QF. However, microscopic features, such as shell 

closures, have quite a striking impact on the mass-TKE distribution, which is the main 

playground where to probe our knowledge of the shell effects. Moreover, microscopic 

features offer a key to interpret the competition between QF and CN fission and a way 

to estimate their relative contribution. 

 It is well known that in superheavy composite system QF mainly leads to the 

formation of asymmetric fragments with mass asymmetry ~ 0.4 [33]. This type of QF 

process is characterized by asymmetric angular distributions in the center of mass 

system and fast reaction times (~ 10-21 s). The TKE of these fragments is observed to be 

higher than that for CN fission and hence this process is less dissipative. This means 

that the nuclear temperatures involved are low and the fragments, usually defined as 

“colder fragments”, are produced at low excitation energies. Due to this reason shell 

effects in asymmetric QF are more pronounced.  

 Besides the asymmetric component, also the symmetric component may be affected 

by the presence of the QF process. Consequently, the question of whether the symmetric 

fragments originate from CN fission or QF process arises. Figure 3.2 shows the 

experimental mass distribution for fission-like fragments (black squares) produced in 

the reaction 36S + 238U (black squares). Panels a) and b) show two (among many) 
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possible decompositions of the same data into a fission component (red curve, taken as 

a LDM Gaussian) and a QF component (blue curve, taken as the remaining part of the 

mass distribution). As the LDM can predict the shape of the fission fragments mass 

distribution, but cannot predict the relative intensity of CN fission with respect to QF 

this model cannot be used to get indication on how to separate the two different 

processes in the symmetric mass region by considering the mass distribution or TKE 

distribution. Also the angular distribution for all those mass-symmetric fragments is 

symmetric with respect to 90° in the center of mass system. The overlap of CN fission 

and QF in the symmetric mass region constitutes an inescapable problem when CN 

fission cross section has to be estimated. 

 

 

Fig 3.2 Experimental mass distributions for fission-like fragments (black squares) formed in the reactions 
36S + 238U at energy below the Coulomb barrier. a) and b) show two (among many) possible 

decomposition of the same data into a CN fission component (red curve) and a QF component (blue 

curve). Data from [14] 
 

 That said, it appears clear that a disentanglement of CN fission and QF processes is 

very hard to achieve. This is possible only, to some extent, for the asymmetric part of 

the mass distribution. Furthermore, most of the analyses are based on the decomposition 

of mass and TKE distributions with the help of model predictions, so the experimental 

results are greatly model dependent. Consequently, mass, TKE and angular distributions 

with their variances do not represent a set of observable providing clear signatures for 

the correct disentanglement of the two processes. In addition, a complete picture 

describing the QF process features is still missing. Therefore, to better define the 

intriguing features of this transition region between direct and complete fusion nuclear 

reactions involving massive nuclei, large efforts by considering innovative experimental 

approaches and new theoretical models are still needed. 
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3.1.2 Gamma ray probe 

 The differences between these two processes mark the path towards the identification 

of better observables for their disentanglement. On one side there is CN fission, a 

process in which two nuclei fuse with the dissipation of all the relative motion energy, 

passing through an equilibrium stage consisting in the formation of a CN, with the 

successive decay; typical times are about  𝜏 ~ 10−19𝑠. On the other side there is QF, a 

faster process with less mass transfer, less energy transfer and partial motion energy 

dissipation; typical times are about  𝜏 ~ 10−21  ÷  10−20𝑠. It is reasonable to think that 

for the slower process all the orbital angular momentum is transferred into internal 

degree of freedom of the CN and so the two fragments after the fission have an higher 

spin than the two fragments produced by QF. 

 The possible ways to probe angular momentum of the two fragments are neutrons 

and gamma rays emission. Neutrons have higher detection efficiency than gammas but 

to extract information on the angular momentum transported by neutrons it is necessary 

to use the statistical model. This implies a model dependent analysis. Furthermore, the 

availability of neutron detection systems are less common than gamma ones. 

 It is possible to probe angular momentum through gamma rays by means of the 

discrete gamma transitions of the fragments or the total number of gammas emitted per 

event (summing up statistical and discrete gamma rays), namely the gamma 

multiplicity, Mγ. The gamma multiplicity gives access to a more straightforward 

analysis: the larger the gamma multiplicity, the larger is the angular momentum and 

energy transferred. Furthermore, assumed that each gamma quanta takes away some 

average value of intrinsic angular momentum, a proportionality exists between the 

multiplicity and the highest spin populated. 

 

3.1.3 Performed experiment 

The possibility to establish a method that, by correlating the gamma ray multiplicity and 

the composite system spin, allows to identify the time scale corresponding to the 

reaction producing the event have to be experimentally verified. In this work, it has 

been considered as representative of the short time scale process the quasi-elastic (QE) 

reaction channel. As shown in Figure 3.1, fragments from the quasi-elastic channel in 

the mass-TKE matrix are well distinguishable from FF and QF products, in fact they are 
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located in the regions around the mass of the target and projectile nuclei. If the 

hypothesis that a higher angular momentum population corresponds to a large 

interaction time is valid, the gamma multiplicity measured in coincidence with the QE 

component should be smaller than the one in coincidence with the fission fragments in 

the symmetric mass region. This would prove the concept and would open the road to 

experiments that, by employing an additional probe, allow to distinguish between QF 

and CN fission events even in the symmetric mass region. 

 To explore this concept, the 𝑆32 + 𝐴𝑢197  reaction, at the energy near the Coulomb 

barrier, 𝐸𝑙𝑎𝑏( 𝑆32 ) = 166 𝑀𝑒𝑉 (𝐸𝐶𝑀 𝑉𝐶⁄ = 0.997), was proposed and performed at the 

Tandem ALTO accelerator at IPN Orsay (France). This reaction is characterized by a 

large fusion-fission cross section, and a negligible contribution from the QF. The central 

part of mass-TKE distribution corresponding to the symmetric scission is therefore 

dominated by fragments originated in FF process and would not be polluted with 

components from processes of nearby time scale. Consequently, the comparison 

between the gamma multiplicity in the QE channel and the fusion-fission channel would 

provide the best conditions to evaluate the validity of the concept described above. 

 In this experiment, the time-of-flight spectrometer CORSET was used to detect the 

fragments, and the ORGAM and PARIS arrays were used to detect gamma rays. In this 

way, the mass-TKE of the binary fragments and the gamma rays in coincidence can be 

extracted. 

 A description of the experimental setup and the analysis method used is provided in 

the following Sections. 

 

3.2 Experimental setup 

3.2.1 CORSET 

Binary reaction products have been detected in coincidence by using the two-arm time-

of-flight spectrometer CORSET. For a description of the apparatus, see Section 2.2.1.  

 The two arms of CORSET were at 68° and 66.5° from the beam axis. The start 

detectors for both the arms were at 60 mm from the target and the stop detectors at 210 

mm from the start. The size of the CORSET stop detectors is 89 mm × 68 mm, covering 

an angular acceptance of ±12.0° in the horizontal plane and ±5.5° in the vertical plane. 
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Beam monitor detectors were at 18° from the beam axis and at 130 mm from the target. 

The used target is a 40 µg/cm2 thick carbon foil used as backing with a 350 µg/cm2 

thick layer of 197Au placed at 90° with respect to the beam axis. 

 In Figure 3.3 is illustrated the geometry of the CORSET setup for the present 

experiment. 

 

 

Fig 3.3 Geometry for the CORSET setup for the present experiment. In the bottom right corner are 

illustrated the characteristic of the target and of the start and stop foils. 
 

3.2.2 ORGAM  

ORGAM (ORsay GAMma Array) [34] is a closely-packed array of high-resolution 

germanium (Ge) detectors surrounded by bismuth germanate (BGO) scintillators. Figure 

3.4 gives a schematic diagram of a single detector. The Ge detectors are large, coaxial, 

hyper pure n-type crystals, ~ 70 mm in diameter and ~ 75 mm in length. The liquid 

nitrogen cryostat keeps the detector at operative temperature. 

 Every Ge detector has a Compton suppression shield composed of ten optically 

isolated BGO scintillators, each with a photomultiplier readout. BGO detectors have a 

resolution (for 662 keV gamma rays) of 18 – 22% when the source is placed in the 

germanium detector position. The detectors are tapered over the front 3 cm out of their 
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lengths to allow closer packing when in the array.  

 In the present experiment, 10 ORGAM detector units were used, all placed at 

backward angles. Each detector has an angular opening of 20°. The target is positioned 

181 mm from the front of the Ge crystals. The average geometrical efficiency is 0.6% 

per detector. 

 

 

Fig 3.4 Schematic diagram of a single ORGAM element. [34] 

 

3.2.3 PARIS 

PARIS (Photon Array for the studies with Radioactive Ion and Stable beams) [35] is a 

high efficiency gamma-calorimeter detector array composed by LaBr3(Ce)-NaI(Tl) 

phoswich base units. A phoswich, literally ”phosphor sandwich”, is a scintillation 

detection system consisting of two or more different scintillator crystals, with dissimilar 

pulse shape characteristics, optically coupled to each other and to a common 

photomultiplier tube. The primary crystal is thick enough to absorb the radiation of 

interest, while the secondary one, which is thicker, acts as a Compton suppression 

shield. 

 The individual phoswich detector element consists of a front LaBr3(Ce) cubic crystal 

(5 × 5 × 5 cm³) optically coupled to a NaI(Tl) crystal (5 × 5 × 15 cm³) at the back. 

Every detector is coupled with a cylindrical photomultiplier tube (PMT), which collects 

the light outputs generated in both phosphor components. The phoswich is then 

hermetically sealed in a single aluminum case, coupled through a glass window to the 

PMT. 
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 In the present experiment, 10 PARIS detectors were used, all placed at forward 

angles, packed in a 3 × 3 cluster plus a single detector. Figure 3.5 shows a picture of the 

cluster (left) and of the single detector (right). The center of the cluster was located at ~ 

38 cm from the target, the single detector was located at ~ 30 cm from the target. The 

average geometrical efficiencies are 0.14% per single detector in the cluster 

configuration and 0.22% for the single detector. 

 To discriminate LaBr3(Ce) from NaI(Tl) events, the electronic board “LaBrPro” [36] 

has been used. It provides a first Gaussian signal (also called “fast” signal) whose 

amplitude is proportional to the integral of the light signal from the fast leading edge up 

to the maximum, and a second Gaussian signal (also called “slow” signal) whose 

amplitude is proportional to the integral of the entire signal that correspond to the total 

energy released into the phoswich (LaBr3 (Ce) and NaI(Tl)). The comparison of the fast 

and slow signals provides a method for the identification of Compton events between 

the two crystals of a single phoswich detector. The time information is given by a CFD. 

 

 

Fig 3.5 On the left, a PARIS cluster. On the right, a single phoswitch detector element. 

 

3.2.4 Electronics and trigger 

The circuit diagram of the double-arm ToF spectrometer is shown in Figure 2.7. For the 

description of the electronics used for the acquisition of the CORSET signals, see 

Section 2.2.2. The trigger, as in the experiment previously presented, is given by the 

coincidence between the two stop signals and at least one of the two start signals. 
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Fig 3.6 Block diagram of the used electronics. 

 

 The photon energy signals from ORGAM and PARIS detectors are transmitted to 

ADCs for the spectroscopic information. Signals from the Compton suppression shield 

are fed into CFDs together with energy signals and come to TDCs. This gives the time 

information for the Compton anticoincidence. Signals from the PARIS detectors, 

instead, are fed into the LaBrPro module, and, thus, are transmitted to ADCs. The 

constant fraction signal of LaBrPro is transmitted to TDC for time signal. The 

amplifications of the individual spectroscopic signals from ORGAM detectors were set 

to span a dynamic range from ~ 100 keV to ~ 2.5 MeV. In the case of PARIS, the 
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chosen dynamic range went up to ~ 20 MeV. Figure 3.6 shows a general block diagram 

for the electronics used in the present experiment. Signals from ADC and TDC were fed 

into the VIPERS data acquisition system (see refs [37-40]). 

 Used modules include ORTEC CFDs, mod. 935, and TACs, mod. 566; CAEN ADC, 

mod. V785, and TDC, mod. V775; SIS GmbH scaler SIS3800; commercial NIM 

modules (such as preamplifiers, amplifiers, delay generators, logic units, FIFO, trigger 

box, NIM/ECL translators). 

 

3.2.5 ORGAM and PARIS calibration 

Both ORGAM and PARIS detectors were calibrated with a 152Eu source. The energy 

calibration for the ORGAM detectors has been done using 11 of the 152Eu gamma ray 

peaks, with an energy resolution for the full-energy peak of 4 keV at 1408 keV. The 

energy calibration for the PARIS detectors (separately for the fast and slow signals) has 

been done using 4 of the 152Eu gamma ray peaks (because of the different dynamic 

range, the least energetic peaks were in the pedestal and the least intense peaks were 

covered by near, more intense peaks), with an energy resolution for the full-energy peak 

of ~15 keV at 1408 keV.  

 To obtain the efficiency calibration spectra, the source was placed in the target 

position for about 10 minutes. The number of events for each full energy peak has been 

obtained by a Gaussian fit, cutting the background and correcting for the acquisition 

dead time. Given the activity of the source with its reference time and calculated the 

present activity, the efficiency curves have been obtained for each detector in the form:  

 

  (𝐸) = 𝐴1𝑒
(−𝐸 𝐸1⁄ ) + 1 [3.1] 

 

in which E is the gamma ray energy; A1, E1 and 1 are parameters obtained by fitting the 

experimental data. The total photopeak efficiencies in the low energy range are 1.5% for 

the ORGAM array and 0.7% for the PARIS array. 

 Figures 3.7, 3.8, and 3.9 show the spectra for single detector (respectively detector 

number 1 from ORGAM, from PARIS -fast signal- and from PARIS -slow signal-) used 

for the energy calibration. The used peaks are marked with a number representing their 

energy in keV. 
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Fig 3.7 Calibration spectrum collected with an ORGAM Ge detector. The peaks used for the calibration 

are labelled with their energy in keV. 

 

 

 

Fig 3.8 Calibration spectrum collected with a PARIS detector, relative to the fast signal from the LaBrPro 

module. The peaks used for the calibration are labelled with their energy in keV. 
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Fig 3.9 Calibration spectrum collected with a PARIS detector, relative to the slow signal from the 

LaBrPro module. The peaks used for the calibration are labelled with their energy in keV.  

 

3.3 Results and discussion 

3.3.1 Selection of binary reaction channels 

The ultimate goal of the experimental program is to find a signature of the reaction 

dynamics in order to separate FF and QF products using γ-ray observables. In this study 

there is a wide profit in the measurements of mass and TKE of the coincident fragments. 

 The mass-TKE matrix for binary events is reconstructed from CORSET coincidence 

data. The measurements of the ToFs and the flight paths of the fragments are used to 

reconstruct the event-by-event velocity vectors of the two emerging fragments; then, 

from the two velocity vectors, masses and energies of each couple of fragments are 

reconstructed, as shown in Section 2.3.1. The mass-TKE matrix obtained in this 

experiment for center of mass angles at (90 ± 10)° is shown in Figure 3.10 (top).  

 By considering only the FMT events, as shown in Section 2.3.1, it is possible to 

isolate the FF reaction products. The mass-TKE distribution in Figure 3.10 (bottom) is 

obtained requiring the FMT and selection of FF events in the velocity plot and can be 

considered as originated in FF reactions, being the QF component negligible in this 

reaction. The two loci on the left and right of the FF region, Fig 1 (top), can be ascribed 
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to the QE reaction. Preliminary results were already published in [41] and the present 

mass-TKE distribution in [42]. 

 

 

Fig 3.10 Mass-TKE matrix within the 32S (Elab = 166 MeV) + 197Au reaction without conditions (top) and 

applying the full momentum transfer condition, with an additional gate on fission fragments only 

(bottom). Data already published in [42]. 

 

3.3.2 Selection of gamma rays in coincidence with binary 

reaction channels 

By gating on specific regions of the mass-TKE distribution for FMT events, one is able 

to select only gamma rays associated to each reaction mechanism, FF or QE. To extract 

gamma spectra, however, gamma ray events have to be properly processed. For 

instance, for both PARIS and ORGAM, gates have been considered on time signals to 

isolate the prompt gamma rays component of the energy spectra. The anti-coincidence 

condition between Ge and BGO detectors suppresses the Compton component of the 

ORGAM energy spectrum. Spectra resulting from this procedure are shown in Figure 

3.11. Both spectra correspond to a single ORGAM detector: the red solid one is in 

coincidence with QE events; the black dashed one is the spectrum in coincidence with 

FF events. The most intense peaks in the QE gamma spectrum have been assigned to the 
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low-energy and low-angular momentum 197Au transitions (marked in Figure with 

numbers from 1 to 4). These peaks are strongly suppressed in the spectrum in 

coincidence with FF events. This behavior represents an indication that a faster process 

transfers less angular momentum to the final fragments.  

 

 

Fig 3.11 Gamma spectra detected in coincidence with quasi elastic events (red solid line) and with fission 

fragments (black dashed line) events. Marked peaks in the red spectrum are identified as 197Au transitions. 

Energies of the peaks are, in order from (1) to (4): 77 ± 2 keV, 192 ± 3 keV, 280 ± 2 keV, 549 ± 4 keV. 

Candidates 197Au gamma transitions are: 77.351 keV, 191.437 keV, 279.01 keV, 547.5 keV. 

 

 By taking advantage of the good separation of QE and FF events in the mass-TKE 

matrix, it is possible to estimate the QE and FF gamma fold distributions, namely, the 

distributions of the number of gamma rays detected per event, by gating on the mass-

TKE distribution only. In addition to the previous processing of gamma rays, the fold 

extracted from PARIS detectors had to be corrected for cross-talk among the 

phoswiches packed in a 3 × 3 cluster configuration. The correction has been done using 

a simple algorithm: if two or more neighboring detectors produce signals in a single 

event, their total contribution to the fold is considered to be 1. Background has been 

also subtracted. An estimate of background gives 1.5% for ORGAM and 0.5% for 

PARIS. 

 

3.3.3 The gamma ray fold distributions 

Figure 3.12 shows the comparison between the gamma fold distributions obtained with 

PARIS alone (green line), ORGAM alone (red line) and PARIS+ORGAM considered as 
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a single array (labeled as TOT, blue line) in coincidence with all binary FMT events. For 

each distribution the yields are normalized to the yield without gamma rays in 

coincidence (gamma fold = 0). No efficiency correction is performed on these data. 

Average fold values are: 0.03 ± 0.02 for PARIS alone, 0.09 ± 0.03 for ORGAM alone 

and 0.12 ± 0.04 for PARIS+ORGAM combined (TOT). These averages are consistent 

with the fact that PARIS and ORGAM have different efficiencies.  

 

 

Fig 3.12 Gamma fold distributions for gamma rays obtained with PARIS alone (green line), ORGAM 

alone (red line), and PARIS and ORGAM considered as a single array (labeled as TOT, blue line) in 

coincidence with all binary events. Counts are normalized for comparison. 

 

 To verify that the differences between the three distributions are only due to the 

efficiency and not to other effects (i.e. corrections for the cross-talk or background for 

the different arrays), ORGAM and PARIS gamma fold distributions have been 

processed by taking into account the energy averaged total efficiencies of ORGAM and 

PARIS independently. The efficiencies are εP = 0.6%, εO = 1.3% εTOT = εP + εO = 1.9% 

for PARIS, ORGAM and PARIS+ORGAM combined, respectively. 

 Figure 3.13 shows the comparison the ORGAM fold distribution with the one of 

PARIS (labelled PARIS(1)) corrected for the efficiency ratio between ORGAM and 

PARIS. The ansatz is that if the two arrays measure the same fold distribution, the ratio 

between the yields of each fold YO (fold) = YP (fold) is given by the ratio of the 

efficiencies to the fold power, namely:  

 

 𝑌𝑂/𝑌𝑃 = (ε𝑂/ε𝑃)
(𝑓𝑜𝑙𝑑) [3.2] 
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The new fold distribution labeled as PARIS (1) in Figure 3.13 turns out to be in 

excellent agreement with the ORGAM fold distribution. 

 

 

Fig 3.13 Gamma fold distribution for gamma rays detected in coincidence with binary events by 

ORGAM (red line), and PARIS, renormalized for the efficiency ratio (PARIS (1), green line). Counts are 

normalized for comparison. 
 

 

Fig 3.14 Gamma fold distribution for gamma rays detected in coincidence with binary events by 

ORGAM and PARIS together (blue line) compared to PARIS and ORGAM distributions, renormalized 

for efficiency (ORGAM (2), red line, and PARIS (2), green line). Counts are normalized for comparison. 

 

 To complete the check, both ORGAM and PARIS fold distributions were processed 

in the same way as above but now referring to the total detection efficiency. The new 

distributions, ORGAM (2) and PARIS (2), are shown in Figure 3.14 compared to the 

TOT fold distribution. The average fold values for these new distributions are 0.13 ± 
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0.06 for PARIS(2) and 0.13 ± 0.04 for ORGAM(2), in good agreement with TOT 

average fold value (0.12 ± 0.04). The positive outcomes of these stringent tests gives 

confidence that it is possible to manage the different characteristic features of ORGAM 

and PARIS in a proper way. Therefore, PARIS and ORGAM can be managed as a single 

array and work out directly on the total fold distribution. It is possible to further note, as 

expected, that when considered as a single array, PARIS and ORGAM combined can 

measure a larger fold than when they are taken singularly. Consequently, it is convenient 

to combine gamma ray detectors when there is an interest in the measurements of high-

fold processes. 

 

Fig 3.15 Gamma fold distributions detected with PARIS and ORGAM together in coincidence with quasi 

elastic products (“QE”, blue) and fission fragments (“FF”, red). Counts are normalized for comparison. 

 

 Finally, the TOT fold distributions of gamma rays detected in coincidence with FF 

and QE products were extracted and are compared in Figure 3.15. The gamma fold 

distribution of quasi elastic events drops much faster than the FF one, by orders of 

magnitude. Furthermore, in FF events, up to 6 gamma rays have been detected in 

coincidence, whereas in QE events 2 was the maximum fold observed. The average fold 

associated to fusion-fission events is 0.26 ± 0.07, the average fold associated to quasi-

elastic events is 0.009 ± 0.004. Under the hypothesis that the gamma detection 

efficiency does not change sensibly with the binary channel (QE or FF) these data 

confirm that the gamma fold distribution could represents an observable sensitive to the 

reaction time scale. For a faster process a lower amount of orbital angular momenta is 

expected to be transferred than in a slower process. This translates in a smaller average 

gamma fold for the faster process. 
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3.3.4 The response matrix of ORGAM + PARIS 

The conversion of the measured fold distribution into the real multiplicity distribution is 

usually a complex task which requires some well-constraint guesses. The complexity is 

due to the fact that the detected number of gammas in each event is less than the number 

of gammas truly emitted in an event because of the limited (intrinsic and geometrical) 

efficiency of the  detectors. For instance, fold = 1 means that only one gamma ray is 

detected out of the many (unknown number) emitted. Therefore, fold = 1 is the overlap 

of a distribution of an unknown number of gamma rays being the process of detection of 

stochastic origin. In other words, it is necessary to calculate what is the probability that 

fold = 1, for instance, is due to a multiplicity of 1; 2; 3… n gamma rays truly emitted. 

This is also called the response function of the gamma detecting array. In general, one 

can expect that increasing the number of gammas truly emitted also the probability of 

detecting more than one gamma ray increases. However, the rate of such increment is 

strongly dependent on the detector efficiency. Thus, to obtain an estimate of the 

multiplicity distribution, since the fold distribution has been measured, the response 

function should be inverted. 

 To compute the response function in a way to include the characteristic features of 

ORGAM + PARIS setup, namely the geometrical plus the intrinsic efficiency and the 

dependence of the intrinsic efficiency on the energy of the gamma rays as measured, a 

Monte Carlo simulation code has been prepared. This code generates a matrix P(F, M) 

that gives the conditional probability that F gamma rays are detected out of M emitted 

in the physical event, within an interval of values selected by the user [Mγ, min, Mγ, max]. 

Namely, the code calculates what is the probability that a fold F comes from a 

multiplicity Mγ. 

 The code works by generating Mγ gamma rays per event, from a user-defined 

distribution limited in the range Mγ, min to Mγ, max, each with a randomly generated 

direction and energy. The directions are generated isotropically and the energies are 

generated according to a user defined distribution. Afterwards, the code checks how 

many gamma rays are detected by comparing the direction of each gamma ray with the 

detectors positions and geometrical openings given by the user. For each gamma ray 

firing a detector, the code compares a randomly generated number in the interval [0, 1] 

with the intrinsic efficiency of the fired detector. The intrinsic efficiencies have been 
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experimentally measured and implemented in the code according to the equation 3.1. If 

the random number is lower than the efficiency, the gamma ray is considered to be 

detected, otherwise not. Given the number F of gamma rays detected out of Mγ gamma 

rays generated and repeating the process enough times to have a sufficient precision, the 

matrix P(F, Mγ) is generated. 

 To test the validity of this method, a comparison have been made with the results of 

the formula proposed in ref. [43] for the probability P(F, Mγ):  

 

 𝑃(𝐹,𝑀𝛾) =  𝑎𝐹𝑃(𝐹,𝑀𝛾 − 1) + 𝑏𝐹(𝐹 − 1,𝑀𝛾 − 1) 

+ 𝑐𝐹𝑃(𝐹 − 2,𝑀𝛾 − 1) 

[3.3] 

 

with:  

 

 
𝑎𝐹 =  1 − (𝑁 − 𝐹)𝜀 (1 + 𝜔

𝐹

𝑁 − 1
) 

 

 
𝑏𝐹 = (𝑁 − 𝐹 + 1)𝜀 (1 − 𝜔

𝑁 − 2𝐹 + 1

𝑁 − 1
) 

 

 
𝑐𝐹 = (𝑁 − 𝐹 − 2)𝜀𝜔 (

𝑁 − 𝐹 + 1

𝑁 − 1
) 

 

 

being Mγ the multiplicity, F the number of triggered detectors out of N total detectors 

with equal energy-independent efficiency (𝜀), and equal cross-talk probability (𝜔), with 

P(F, Mγ) = 0 for F < 0 and Mγ ≤ 0 and P(F, Mγ) = 1 for F = Mγ = 0. (The notation has 

been changed with respect to the original reference for uniformity reasons). The term 

accounting for cross talk in this formula has been put to 0, having the experimental 

cross-talk already been accounted for in the data.  

 This formula is based on a recursive algorithm and includes a total efficiency 

independent from the gamma ray energy. In the first test, the same dummy value for the 

detector efficiency has been used in both the formula and the Monte Carlo code. To 

make the test independent from the gamma ray energy, the intrinsic efficiency was set 

equal to 1, namely, it was considered the geometrical efficiency only. Furthermore, the 

input Mγ distribution is uniform in [Mγ, min, Mγ, max]. Figure 3.16 shows the comparison 

between the results of two different methods of computing the probability P(F, Mγ) for 3 

different values of the fold: 0, 1, and 2. As expected, the results obtained with the two 

methods are indistinguishable. The trends of the curves are in agreement with the 

expectation: the probability of detecting more than one gamma ray increases as the 
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multiplicity increases and the maximum of the curve for each fold moves toward larger 

multiplicities.  

 

 

Fig 3.16 Comparison between the multiplicity distribution computed with the Monte Carlo code (dots) and 

the formula 3.3 from ref [43] for 3 different values of fold. The efficiency used is only geometrical. 
 

To check the effects of the gamma ray energy dependence of the efficiency, another 

comparison has been made between the two methods. In the formula 3.3 only an 

average energy-independent efficiency is accounted for. For this case, it has been used 

the efficiency obtained as the average over the full energy range (weighted for the 

experimental gamma energy spectrum) and over different detectors. In the code it is 

possible to take advantage of the intrinsic flexibility of a Monte Carlo approach and for 

each detector the relative measured efficiency curve has been considered. This 

flexibility is essential because ORGAM and PARIS detectors are characterized by very 

different intrinsic efficiencies. This means that in a single tool it is possible to include 

detectors with different performances. In the test, the energy spectrum is chosen as a flat 

distribution between 150 and 3000 keV. Figure 3.17 shows the comparison between the 

two different methods for 3 different values of the fold: 0, 1, and 2. It is clear that there 

are only slight differences between the two methods which seem to disappear for 

increasing fold values above 2. 
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Fig 3.17 Comparison between the calculation of the probability P(F, M) made with the new code, which now 

includes the dependence of the detection efficiency on the gamma ray energy and the formula 3.3 from ref 

[43] for 3 different values of fold. Solid lines are the prediction of the formula, dashed lines are the results of 

the Monte Carlo code. 
 

 Therefore, a tool to compute the fold distribution for known multiplicity distribution, 

has been successfully developed. In the tests above, an input uniform multiplicity 

distribution has been used within a user defined interval [Mγ, min, Mγ, max]. In principle, 

any shape can be used. Essentially, it has been set up a filter (that mocks the 

experimental setup) that tells us what is the probability of detecting F gammas when M 

are emitted in an event. However, for the study purpose the process has to be inverted, 

namely, the goal is to extract the Mγ distribution for a given or measured fold 

distribution. This inversion is not straightforward and it is more convenient to find a 

motivated reasonable guess for the true multiplicity distribution and compare the 

computed fold distribution (via the response function) with the measured one. 

Therefore, a guess is needed for the multiplicity distribution which should be grounded 

on some physical information.  

 

3.3.5 From gamma ray fold to multiplicity 

In order to find the best guess for the multiplicity distribution the method proposed by 

Ockels [44] has been used. This method provides a rapidly converging algorithm to 

compute the first few moments of the multiplicity distribution given the measured fold 

distribution and the efficiency of the gamma ray detecting array. The algorithm is based 

on the calculation of the probability of observing no gammas in (N - n) detectors, where 
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N is the total number of detectors and n the triggered detectors. 

 Compared to other methods present in literature (see refs [45-47]), this method gives 

more precise results for lower values of the maximum observed fold. In the case 

presented in ref [44], the authors extracted ~95% of the information of the first 3 central 

moments of the multiplicity distribution from the probabilities up to fold = 6 (the 

percentage is evaluated from the cumulative contribution to the central moments of the 

terms containing the fold probabilities). In general, the largest is the fold measured, the 

larger is the number of moments that can be computed. 

 The equation used for the extraction of the multiplicity distribution moments is:  

 

 𝑙𝑛〈𝐺𝑛〉𝑒𝑥𝑝

𝑦𝑛
= 〈𝑀〉 + 𝑦𝑛

µ2

2!
+ 𝑦𝑛

2
µ3

3!
+ 𝑦𝑛

3
µ4 − µ2

2

4!

+ 𝑦𝑛
4
µ5 −  10µ3µ2

5!
 + ⋯ 

[3.3] 

 

where µ𝑗 is the j-th moment of the distribution with respect to the average, 〈𝐺𝑛〉𝑒𝑥𝑝 and 

𝑦𝑛 are related respectively to the experimental probabilities 〈𝑃𝐹〉𝑒𝑥𝑝 of observing a 

given for F and to the detection efficiencies (𝜀, considered to be independent from the 

gamma energies and the same for all detectors) as follow:  

 

 
〈𝐺𝑛〉𝑒𝑥𝑝 = ∑ (

𝑛

𝐹
) (

𝑁

𝐹
)
−1

〈𝑃𝐹〉𝑒𝑥𝑝

𝑛

𝐹=0

 
 

 𝑦𝑛 =  ln (1 − (𝑁 − 𝑛)𝜀)  

 

(The notation has been changed with respect to the original reference for uniformity 

reasons). 

 By using Equations 3.3 (truncated to the term in µ4) the value of the first 3 moments 

of the gamma multiplicity distributions associated to FF and QE fold distributions in 

Figure 3.15 have been obtained. The efficiency parameters used in the formula were 

obtained as the average over the energy (weighted for the experimental gamma energy 

spectrum) and over different detectors. Table 3.1 shows the different values obtained for 

the moments of the two gamma multiplicity distributions.  

 Although the 3rd moment precision is very low - this should be due to the big error in 

the experimental probabilities for the higher FF folds (fold = 5 and 6) and to the too low 

maximum observed QE fold (foldmax = 2), even if the error is not greater than the 
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parameter - a higher gamma multiplicity is associated to fusion-fission. Consequently, 

this study demonstrates that gamma multiplicity distribution unambiguously represents 

an observable sensitive to the reaction time scale. 

 

Tab 3.1 Momenta of the multiplicity distribution associated with fusion-fission (FF) and quasi elastic (QE) 

events. 
 

 

 

 

 

 

 

 The obtained parameters (1st and 2nd momenta) have been used in the reconstruction 

of the multiplicity distributions. In both the FF and QF channels, it has been used the 

negative binomial distribution function, a 2-parameters asymmetric probability 

distribution for discrete variables, well suited for the description of a multiplicity 

distribution [48]. The probability mass function is given by:  

 

 
𝑃(𝑘) =  (

𝑘 + 𝑟 + 1

𝑘
) (1 − 𝑝)𝑟𝑝𝑘 

[3.4] 

 

with p and r related to the average and the variance of the distribution through the 

following:  

 

 µ1 = 
𝑝𝑟

1 − 𝑝
  

 µ2 = 
𝑝𝑟

(1 − 𝑝)2
  

 

As p and r assume non-integer values in the present case, the factorials have been 

calculated through the gamma function. Figures 3.18 and 3.19 show the plot of the 

negative binomial distributions in case of FF and QE respectively with parameters given 

in Table 3.1. Min and Max in the legend correspond to the limiting distributions due to 

the errors in the moments. 

 These multiplicity distributions have been converted back into fold distribution using 

the Monte Carlo code presented in Section 3.3.4 and compared to the experimental data. 

Figures 3.20 and 3.21 show the comparison between the experimental fold distribution 

and the minimum and maximum multiplicity distribution presented in Figures 3.18 and 

3.19, for CNF and QE events, respectively. 

Moments 〈𝑀〉 µ2 µ3 

FF 12.5 ± 0.4 23 ± 6 100  ± 200 

QE 0.46 ± 0.05 1.0  ± 0.5 1.2 ± 0.6 
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Fig 3.18 Gamma ray multiplicity distribution associated to FF events reconstructed through the method 

proposed in ref [44] and assuming a negative binomial distribution (black solid line). The min and max curve 

in the legend correspond to the limiting distributions due to the errors in the shape parameters as in Table 3.1. 
 

 

Fig 3.19 Gamma ray multiplicity distribution associated to QE events reconstructed through the method 

proposed in ref [44] and assuming a negative binomial distribution (black solid line). The min and max curve 

in the legend correspond to the limiting distributions due to the errors in the shape parameters as in Table 3.1. 
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Fig 3.20 Experimental gamma ray fold distribution associated to FF events (black dots) compared to the min 

and max multiplicity distribution presented in Figure 3.18 converted back into fold distribution through the 

Monte Carlo code (blue and red dashed lines). 
 

 

Fig 3.21 Experimental gamma ray fold distribution associated to QE events (black dots) compared to the min 

and max multiplicity distribution presented in Figure 3.19 converted back into fold distribution through the 

Monte Carlo code (blue and red dashed lines). 
 

3.3.6 Comparison with simulations 

These results are of great importance because, if this reconstruction is well made, it 

means that with a gate on high multiplicity events it is possible to separate processes 

with different time scales, in this case quasi elastic and fusion-fission.  

 To gain confidence in the good agreement shown in Figures 3.20 and 3.21, it has 

been chosen to simulate the fission process and the related gamma ray emission with the 

GEF (GEneral description of Fission observables) code [49]. In the simulation the input 
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parameters in GEF have been fixed by considering interaction potential calculation for 

the average angular momentum of the compound nucleus (lrms = 12.4 ħ) and using the 

excitation energy (E* = 43.5 MeV) from simple kinematic calculation, known the fusion 

Q-value.  

 To verify the correctness of the input parameters, the simulated mass distribution, 

TKE distribution and gamma energy spectra have been compared to the experimental 

data. In order to properly compare the two different results, the experimental mass and 

TKE distributions have been corrected for kinematic efficiency of the CORSET 

detectors. The gamma energy spectrum used is the sum of the spectra detected with the 

ORGAM detectors and corrected for the detection efficiencies. Figure 3.22, Figure 3.23 

and Figure 3.24 show respectively the experimental mass distribution, the experimental 

TKE distribution and the experimental gamma ray energy spectrum compared to GEF 

simulations. The GEF simulated observables have been renormalized for the 

comparison.  

 

 

Fig 3.22 The experimental mass distribution efficiency corrected (black dots) compared to GEF simulation. 

The vertical black line indicates the symmetric mass split.  
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Fig 3.23 Experimental TKE distribution efficiency corrected (black dots) compared to GEF simulation. The 

vertical black line indicates the Viola TKES as defined by Equation 1.12.  
 

 

 

 

 

Fig 3.24 Experimental gamma ray energy spectrum (black dots) detected by ORGAM detectors and 

efficiency corrected compared to GEF simulation.  
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 Next, gamma multiplicity distributions were compared. Figure 3.25 shows the 

multiplicity distribution simulated with GEF (green solid line) compared to the min and 

max multiplicity distributions (blue and red dashed lines). The average multiplicity for 

the GEF simulated distribution is 12.5, in perfect agreement with the average 

multiplicity presented in Table 3.1. The simulated multiplicity distribution has been 

converted into fold and compared to experimental data, as shown in Figure 3.26. 

Experimental data are represented with black dots with errors, green solid line is the 

GEF simulated multiplicity distribution converted into fold by the Monte Carlo code 

and blue and red dashed lines are the min and max distributions obtained with the 

method presented in ref [44]. The average fold value associated with GEF simulation is 

0.30 (to be compared with 0.26 ± 0.07). 

 

 

 

 

 

Fig 3.25 Gamma ray multiplicity distribution associated to FF events simulated by GEF (green solid line), 

compared to the multiplicity distribution min and max (blue and red dashed lines). 
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Fig 3.26 Experimental gamma ray fold distribution associated to FF events (black dots) compared to the GEF 

simulated multiplicity distribution converted into fold through the Monte Carlo code (green solid curve) and 

min and max fold distributions (blue and red dashed lines). 

 

 

3.3.7 Angular momentum transfer 

The next and final task of this data analysis is to estimate, from the measured 

multiplicity distributions, the amount of the initial orbital angular momentum that is 

transformed into the angular momentum of the final fragments in the FF and QE 

channels, |𝑙𝑖⃗⃗ −  𝑙𝑓⃗⃗ |. 𝑙𝑖⃗⃗  and 𝑙𝑓⃗⃗  are, respectively, the entrance and exit channel orbital 

angular momenta and are related, by the conservation law, to the spin of the two 

fragments at the scission point, 𝐽1⃗⃗   and 𝐽2⃗⃗⃗  , namely:  

 

 𝑙𝑖⃗⃗ = 𝐽1⃗⃗  +  𝐽2⃗⃗⃗  + 𝑙𝑓⃗⃗ =  𝐽 + 𝑙𝑓⃗⃗  [3.5] 

 

For the average values one obtains: 

 

 〈𝐽〉 = 〈𝑙𝑖⃗⃗ − 𝑙𝑓⃗⃗ 〉 [3.6] 

 

In other words, 〈𝐽〉 is the average angular momentum transferred from the orbital 

angular momentum to the intrinsic spin of the fragments, the central observable in this 

work. Mγ distributions include contributions from both fragments but is independent 

from the relative orientation of their respective angular momenta 𝐽1⃗⃗   and 𝐽2⃗⃗⃗  . Therefore 

〈𝑀𝛾〉 depends on the average angular momentum 〈𝐽〉 at scission point 
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 The conversion from 〈𝑀𝛾〉 to 〈𝐽〉 involves however some uncertainties. It is generally 

assumed that the fragments deexcite in two steps. First, emission of light particles, that 

carry away some angular momentum, and then gamma ray emission when the excitation 

energy becomes low enough to hinder particle emission. At this second stage, most of 

the decays proceed via stretched E2 transition, corresponding to a spin change 2 ħ, 

while a small number proceed via statistical gamma rays by dipole transitions which 

correspond to an average spin change 0.5 ħ. The total amount of orbital angular 

momentum transferred into intrinsic angular momentum 𝑙𝑓 is given by:  

 

 〈𝐽〉 = 〈𝛥𝐼𝑙𝑝〉 + 〈𝛥𝑙𝛾〉  [3.7] 

 

where 𝛥𝐼𝑙𝑝 and 𝛥𝐼𝛾 are the angular momentum carried away by the light particles and  

rays, respectively. Therefore, the measured 〈𝑀𝛾〉 is a function of 〈𝐽〉 but also of the 

excitation energy at scission point. Because of Equation 3.7, the conversion 〈𝑀𝛾〉 to 〈𝐽〉 

suffers from the lack of knowledge of the spin removed by the evaporated particles and 

the average multipolarities of the gamma ray transitions. In the FF channel, at the low 

energy of our reaction, mostly neutrons are evaporated. From the data analysis 

performed in [50], an average of 6 neutrons are emitted per fission decay, as confirmed 

by GEF calculations, and can carry away on average 0.5 ħ. Therefore, 〈𝛥𝐼𝑙𝑝〉 =

 〈𝑁𝑛〉〈𝑙𝑛〉  ≈ 3 ħ, where 〈𝑁𝑛〉 is the average number of evaporated neutrons and 〈𝑙𝑛〉 is 

the average angular momentum carried away by a single neutron. 

 

Tab 3.2 Estimate of the orbital angular momentum transferred 〈𝐽〉 according to Equation 3.7 in the QE and 

FF channels. 〈𝑙𝑛〉 is the average angular momentum carried away by a single neutron and 〈𝑁𝑛〉 the average 

number of evaporated neutrons per fission events from fragments. 〈𝑀𝛾〉 is the experimental average 

multiplicity and α the average number of statistical gamma ray (dipole) transitions. 

 

 

 

 

 

 

 

 Accordingly, for the gamma rays it has been used a common and well-known 

expression [51]:  

 

 〈𝛥𝑙𝛾〉 =  2( 〈𝑀𝛾〉 − 2𝛼) [3.8] 

 

 〈𝑙𝑛〉 〈𝑁𝑛〉 〈𝛥𝐼𝑙𝑝〉 〈𝑀𝛾〉 α 〈𝛥𝐼𝛾〉 〈𝐽〉 

FF 0.5 ħ 6  3 ħ 12.5 3 13 ħ 16 ħ 

QE 0 ħ 0 0 ħ 0.5 0 0 ħ 1 ħ 
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where α is the average number of statistical (dipole) transitions. In this picture, stretched 

E2 transitions take away most of the angular momentum. By reviewing the pertinent 

literature, it has been used the values of α = 3 as in Table 3.2, which also shows the 

transferred angular momentum as computed from Equation 3.8. 

 In the QE channel, the two nuclei barely overlap and their kinetic energies and 

masses are not altered appreciably. Therefore, the nuclei, after a transfer of few 

nucleons, continue along Coulomb-like trajectories given the expected relatively low 

dissipation of energy and angular momentum. The outgoing nuclei is not expected to 

carry enough excitation energy to induce neutron evaporation. Furthermore, only the 

very first few levels of the outgoing fragments can be excited. Consequently, during the 

gamma decay a gamma ray is expected to carry away, on the average, 1.5 ħ of angular 

momentum. Given the measured 〈𝑀𝛾〉 = 1 and 𝜎𝑀𝛾
= 1, it can be reasonably deduced a 

narrow window of transferred angular momentum between 1 and 3 ħ in the QE channel. 

 From Table 3.2 it is quite evident a striking difference between the angular 

momentum transferred in the FF and QE channels that holds regardless of the 

assumptions underlying Equations 3.7 and 3.8. This strong contrast could be expected 

from the average gamma multiplicities measured in the two channels, the implications 

of which will be discussed in the next Section.  

 As a further support to the whole procedure used to measure the 〈𝑀𝛾〉 and to connect 

it to the transferred angular momentum, is it possible to observe that the result presented 

in this work is in noteworthy agreement with the systematics proposed by Ogihara et al. 

[52] which connects the excitation energy of the fission fragments to the average 

angular momentum transferred to the fission fragments〈𝐽〉. According to the authors, it 

is possible to extract 〈𝐽〉 as:  

 

 〈𝐽〉 = 0.11 〈𝐸𝑓
∗〉 𝑀𝑒𝑉⁄ + 7.5 ħ [3.9] 

 

where 〈𝐸𝑓
∗〉 is the average excitation energy of the two symmetric fragments. From the 

data analysis performed in [50], the average excitation energy of the symmetric 

fragments is ~ 40 𝑀𝑒𝑉 , as confirmed by calculations using the equations presented in 

ref. [52]. This brings to an expected value of 〈𝐽〉 = 16.3 ħ, in great agreement with the 

analysis presented in this work.  
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3.3.8 Discussion 

In the present measurements the average gamma multiplicity 〈𝑀𝛾〉 is used to determine 

the amount of angular momentum 〈𝐽〉 introduced into internal rotation of the fragments 

produced in two-body decays over the full range of impact parameters, from fusion-

fission to quasi-elastic reactions. It is found that in the FF channel 〈𝐽〉 is much larger 

than in the QE channel. This result is understandable on the basis of the known picture 

of the FF and QE reaction paths. Classically, the conversion of orbital angular 

momentum of the entrance channel 𝑙𝑖⃗⃗  into intrinsic angular momentum of the fragments 

is described as the result of tangential friction. In a first step, the nuclei slide on each 

other and viscous forces set in a torque which puts them into rotation. 

 For angular momenta close to the maximum, the two nuclei undergo grazing 

collisions. Since the two nuclei barely overlap the kinetic energies and masses are not 

altered appreciably, and the nuclei continue along Coulomb-like trajectories. Hence, the 

reaction mechanism is confined to a very narrow gap of orbital angular momentum 

around the grazing angle and only few nucleons are exchanged during a rather short 

interaction time. 

 For smaller impact parameters, or lower l waves, the closer contact leads to stronger 

damping of the kinetic energy and more extensive mass transfer. In these conditions, 

tangential forces continue to act until the system reaches a rolling stage in which the 

peripheral velocities are matched. Then, the rolling friction slows down the rotation of 

the nuclei until they form a rigid body (sticking condition) [2]. 

 According to this view of the angular momentum transfer, one expects a rapid 

increase of the angular momentum transferred to the fragments with increasing 

interaction time until the rolling state is reached. The maximum value that 𝐽 can reach, 

at the sticking point, is given by: 

 

 
𝐽 =  

𝐼1 + 𝐼2
𝐼1 + 𝐼2 + 𝐼𝑟𝑒𝑙

𝑙𝑖 
[3.10] 

 

where 𝐼1 and 𝐼2 are the moment of inertia of the fragments and 𝐼𝑟𝑒𝑙 is the moment of 

inertia of the relative motion. 

 The important point to remark here is that an increase of angular momentum transfer 

(or energy loss) is correlated to a growing interaction time, with the maximum 

dissipation of angular momentum and energy corresponding to complete fusion. 
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Afterward, the fused system may evolve as an evaporation residues or decays into 

fission. In any case, the complete fusion requires interaction times longer than 

peripheral reactions. 

 It is possible to check the consistency of the data in Table 3.2 with the above picture 

in mind. In the QE channel (the faster process) 〈𝐽〉 is only few units of ħ, namely almost 

no transfer of angular momentum occurs. Since this reaction is confined around the 

grazing angle 𝑙𝑔𝑟 = 25 ħ, 𝑙𝑓 remains confined around 25ħ and 𝑇𝐾𝐸 ≈  𝐸𝐶𝑀. In the FF 

channel (the slower process), being 𝑙𝑖 fully transformed into intrinsic spin, 〈𝑙𝑖〉  ≈  〈𝐽〉 =

16 ħ. In the hypothesis of a triangular distribution, 〈𝑙𝑖〉  = 16 ħ corresponds to a 

maximum orbital momentum 〈𝑙𝑚𝑎𝑥〉  = 24 ħ. In other words, the whole in-going orbital 

angular momentum distribution is exhausted by the FF and QE channels. 

 A further check on the outgoing orbital angular momentum 𝑙𝑓 comes from the 

evaluation of the TKE. With the assumption of rigid rotation of the dinuclear complex at 

scission, the total kinetic energy of the fragments can be expressed as the sum of their 

Coulomb repulsion and rotational energies:  

 

 
𝑇𝐾𝐸 = 

𝑍1𝑍2𝑒
2

𝑑
+ 

𝑙𝑓(𝑙𝑓 + 1)ħ2

2µ𝑑2
 

[3.11] 

 

where 𝑑 is the separation distance of the fragments at scission and 𝑙𝑓 is their relative 

orbital angular momentum. By taking the TKE for symmetric mass split and 

considering the final fragment with ellipsoidal shape (with their axes of symmetry along 

the axis joining their center) having a deformation parameter 𝛽 = 0.6, it results 𝑙𝑓 = 0. 

This result is in agreement with the hypothesis that the whole in-going orbital angular 

momentum is dissipated and appears as spin of the fragments. 
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Chapter 4 – Conclusions and perspectives 

4.1 Experiment 64, 68Zn + 112Sn 

Mass distributions for binary fragments were measured in the systems 64, 68Zn + 112Sn at 

different bombarding energies. The observations suggested an interpretative key to the 

fact that the mass distribution of 180Hg becomes more symmetric with increasing 

excitation energy whereas the one of 176Hg becomes more asymmetric, the main subject 

of this experiment.  

 In the case of 180Hg, in the computed mass distributions, the calculated symmetric 

mode contribution becomes larger with increasing excitation energy. However, the more 

asymmetric mode, centered at A = 71 and 109, has been observed to remains dominant. 

The fact that the whole mass distribution becomes more symmetric has been explained 

with the concurrent increase of the symmetric component and the weaker medium-

asymmetric mode, centered at A = 80 and 100. With further increase of the excitation 

energy, the symmetric mode becomes dominant, the medium-asymmetric mode 

disappears, and the most-asymmetric mode clearly survives. This is consistent with the 

expectations that the shell effects are gradually quenched with increasing excitation 

energy, each mode disappearing at different excitation energy, but only the symmetric 

mode is last survivor. 

 In the case of 176Hg, the computed mass distributions, with increasing excitation 

energy, becomes more asymmetric. The competition of the different three modes 

identified by the combined analysis with the experimental data held the key for the 

interpretation of this behavior: the symmetric mode is reduced with increasing 

excitation energy, but the rate of the growing asymmetry is the consequence of the 

dropping of the mid-asymmetric mode, centered at A = 77 and 99, and the strong 

increase of the most-asymmetric mode, centered at A = 110 and 66. Therefore, the 

symmetric mode is hindered by the most-asymmetric mode and partially by the mid-

asymmetric mode, at variance with the behavior of 180Hg. The comparison with 

experimental data showed a curious drop, at a certain excitation energy, of the relative 

intensity of the symmetric mode (and not a continuous growing) triggered, reasonably, 

by the increase of the most-asymmetric mode. The same behavior occurs, but to a minor 

extent, to the mid-asymmetry mode. The dominance of the most-asymmetric mode is 
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the cause of the hindrance of the mass symmetric mode. This behavior is not reproduced 

in the calculations. However the finding in the experimental data of the same modes that 

reproduce the calculated mass distributions for both 176Hg and 180Hg is already an 

important result because it tells that the shell corrections occur in the same place in the 

potential as calculated. From this analysis, we can confirm that 176Hg behaves at 

variance with what expected. In particular, the relative strength of the different fission 

modes changes quite surprisingly with the excitation energy. This finding of course 

requires further work for its confirmation. 

 

4.2 Experiment 32S + 197Au 

Gamma rays multiplicity 𝑀𝛾 distributions were measured in the system 32S + 197Au in 

coincidence with the QE and FF fragments. The aim is to show that, by selecting a 

faster and a slower process in the Mass-TKE matrix, the slower process is characterized 

by a larger transfer of the in-going orbital angular momentum. The interpretation of the 

data is supposed to rely on the fact that QE and FF reaction paths are known to be at the 

extreme of the interaction time scale: the fastest and the slowest, respectively. It is found 

that the average values of such 𝑀𝛾 distributions are consistent with a full transfer of the 

in-going orbital angular momentum 𝑙𝑖 to the spin of the fragments on the FF channel, 

whereas only a few units of ħ are transferred to the QE fragments. 

 The observation that the average gamma rays multiplicity 〈𝑀𝛾〉 is larger for the 

slower reaction channel gives support to the expectation that increasing amounts of 

orbital angular momentum can be transferred only by selecting slower and slower 

processes. It is important to remark that the observed quantities are the lower moments 

of the multiplicity distribution (mean and variance). These quantities cannot therefore 

be obtained on an event-by-event basis, but only as an average over a sample of events. 

Consequently, those averages cannot be used for the reverse process of data analysis, 

namely, the selection of a slower process by gating on the multiplicity distribution. 

However, the most direct observable is the gamma fold distribution. Figure 3.15 is thus 

the key result of this work and shows that gating on higher fold processes favors the 

selection of the slower process. This results suggests that the gamma ray probe can play 

a very important role in disentangling FF and QF in the regions of the mass-TKE matrix 

where they are overlapped. The expectation is that QF is a process faster that FF and 
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should give rise to a lower gamma multiplicity, thus lower gamma fold values. To 

accomplish this separation a large efficiency for gamma ray detection would be 

mandatory. 

 For the future plans, it is crucial to test this method in condition of major interest: 

when FF and QF are overlapped with comparable intensity in the same mass region. 

However an intermediate step would be to measure the gamma fold distribution in 

systems where QF is dominant. It would also be important to benefit of the properties of 

the QF to populate unknown neutron-rich nuclei. Reactions can be chosen carefully to 

populate neutron-rich regions of the nuclide chart of specific interest, like the one of 

interest from the r-process. However, it is clearly evident that the experimental 

condition must be kept at the optimum and that much larger gamma ray detection 

efficiency is necessary to reach a sufficient statistics. 
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