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Abstract

Ferromagnetic materials play an important role in data recording technologies.
Several types of memories in the past relied on magnetic materials, such as
magnetic core memories and magnetic tapes, and even in modern hard disks
ferromagnetic media are used to store information. Hard disk devices are
nowadays the preferred type of digital memories for large databases thanks to
their low price per GB and their high data density. In the recent years, two
new types of technologies for hard disks became object of intense research
and brought significant improvements in the hard disk data density. Such
technologies are the Heat Assisted Magnetic Recording and the Microwave
Assisted Magnetic Recording.
The realization of these devices requires a deep understanding of the magneti-
zation processes. The physical theory employed to study these technologies is
the micromagnetic theory, which is presented in the first chapter.
The second chapter is entirely dedicated to the magnetization dynamics
of uniformly magnetized bodies. This is typically the case of magnetic
memories, where the small size of the memory cell forces the magnetization
to be uniform. One of the main points of this chapter is the study of the
ferromagnetic resonance, which is an important tool for the measurement
of material parameters and plays also an important role in the Microwave
Assisted Magnetic Switching. In this context my contribution is the descrip-
tion of the bifurcation diagram of axial symmetric systems. Such diagram
was already studied in literature for small values of the AC excitation, but a
description for intense AC field is still missing.
The third and fourth chapters deal with the magnetization dynamics when the
dimension and the time scale involved, respectively, are very small.
The magnetization process in small particles highlights the main problems
related to the enhancement of data density in magnetic storage technologies,
such as thermal instability or the reliability of the writing process. My work
on this topic mostly concerns numerical methods (Pseudospectral) for the
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6 ABSTRACT

solution of the Fokker-Planck equation and the analysis of the switching time
statistical distribution for magnetic memories. The pseudospectral method
turns out to be a useful tool for the study of systems with strong noise whereas
it does not perform well in systems where the energy barriers are high. The
analysis of the switching time statistical distribution is a relevant result for
the optimization of the switching process in both hard disks and Magnetic
Random Access Memories (MRAM).
Both ferromagnetic resonance and switching can be considered as fast
magnetization dynamics since the time resolution of interest is generally a
fraction of nanosecond. Phenomena that occur on a timescale of picoseconds
or less are instead considered ultrafast. In the last chapter of the thesis the
ultrafast magnetization dynamics is considered. This is a relatively recent
topic not entirely explored yet, but it is of interest for the development of
future magnetic storage technologies with high speed. According to theory,
in the ultrafast regime the effects of magnetization inertia become relevant
and the equation governing the magnetization dynamics must be properly
adjusted. The first direct experimental observation of one of these effects was
done by the Neeraj et al. [81] of the Stockholm University in a experimental
facility in Dresden. My contribution in this work was providing theoretical
support, and it is presented in the last chapter of the thesis.



Introduction

Ferromagnetic materials are one of the most important class of materials
for applications in electrical engineering. They are crucial components in
electrical machines, transformers, actuators, etc. Beside these traditional
applications, magnetic materials have had a central importance in information
technology. In this thesis we are mainly concerned with this latter class of
applications.
The spontaneous magnetization of ferromagnetic materials can be exploited to
store information in nonvolatile forms, which can be used for the realization
of data recording technologies.
A widespread technology that relies on ferromagnetic materials is the hard
disk, which is the main type of memory used for large databases.
The working principle of hard disks is rather simple: data are stored into
ferromagnetic media with a strong anisotropy such that only two possible
orientations of the magnetization are stable, one corresponds to the bit ”0”
and the other corresponds to the bit ”1”. The device and the media are shown
in Figure 1.
What made hard disks one of the top products for data storage is their high

data density and their low price per GB (figure 2). The achievement of such
a high density was a technological challenge that required a deep knowledge
of the magnetization dynamics and other related phenomena like the Giant
Magneto Resistive effect.

While the writing process on hard disks is simply achieved by applying an
intense magnetic field in the area of interest, the reading process is somehow
more complex and it employs spin valves. An illustration of the hard disk’s
head is on figure 3.
Spin valves are three layer structures, consisting of two ferromagnetic layers

separated by a nonferromagnetic spacer (see figure 4).
One magnetic layer, called “pinned” layer has a fixed magnetization. The
other one, called “free” layer, can change its magnetization when subject to
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8 INTRODUCTION

Figure 1: Schematic representation of hard disk structure (left) and
the magnetic media used for the recording (right). The orientation of
the magnetic grains magnetization defines the stored data.

Figure 2: Increase of the areal density of data in the years for different
types of memories
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Figure 3: Representation of the HDD Write/Read head. P1 and P1’
are used for the writing process to locally enhance the magnetic field
generated by the coils. P1 and P2 are used in the reading process to
enhance the magnetic field generated by the recording media The green
element (GMR read sensor or spin valve) is sensible to the magnetic
field.

polarized currents or, in the case of hard disks, external magnetic fields.
Because of the GMR effect the electrical resistance of a ferromagnetic
material to a polarized current depends on whether the polarization of the
current is parallel or antiparallel to the magnetization.

The reading process is done by injecting current into the spin valve and
measuring the electrical resistance, which depends on the magnetization of
the free layer and, hence, on the magnetic field generated by the memory cell
of interest.
For what concerns the future of magnetic recording, in order to reach an even
higher data density, three important problem are to be faced, i.e. the thermal
stability, the power consumption and the low signal to noise ratio. It turns out
that solving one of these problems can worsen the others. This is elegantly
represented by the magnetic trilemma [9]. For example a reduction of the
memory cell dimension will eventually cause thermal instability. Data can
become more stable if an high energy barrier is set, for example by using
materials with strong anisotropy, but resistance to thermal noise also implies
resistance to the fields used in the writing process, hence higher fields are
required and more energy losses occur, which raise the temperature and lower
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Figure 4: Representation of a spin valve device, blue layers are made
of ferromagnetic materials, the red layer is nonmagnetic. On the right
there are the configurations which achieve the highest and the lowest
electrical resistance.

the maximum density.
An ingenious possible solution to partially overcome this problem is the
Energy Assisted Magnetic Recording (EAMR). The basic idea is to “prepare”
the memory cell to be overwritten by lowering the energy barrier, so that a
weaker magnetic field is sufficient to switch the magnetization. The energy
barrier is restored after the switching so that the data are thermally stable.
Two different methods are included in this category: Heat Assisted Magnetic
Recording (HAMR) and Microwave Assisted Magnetic Recording (MAMR).
The two methods are illustrated in figure 5.

HAMR technology is based on positioning a laser diode directly in front
of the write head assembly, and very rapidly heating the high coercivity
media that cannot be written unless it is heated during the writing process.
As the media cools down from the intense laser heat, the coercivity of the
media increases, holding the bits in state, and making it difficult for the
magnetization to inadvertently change.
Seagate has been investing on HAMR technology [5, 6, 7] and succeeded in
manifacturing 20TB hard disks that will probably be available on market in
2020. Figure 6 shows the trend predicted by Seagate for such technology.
MAMR technology uses a microwave field generated from a spin torque
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Figure 5: Working principle of the Heat Assisted Magnetic Recording
(left): a laser heats the magnetic recording media at the beginning of
the write process. Working principle of the Microwave Assisted Mag-
netic Recording (right): a microwave frequency magnetic field is used
to move the magnetization away from the stable equilibrium point and
make the writing process easier.

Figure 6: Seagate previsions for the speed and capacity of magnetic
HDD. Perpendicular Magnetic Recording (PMR) is the HDD tech-
nology currently employed, a remarkable boost in performance is ex-
pected from the development of the Heat Assisted Magnetic Recording
(HAMR) technology.
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Figure 7: Western Digital previsions for the HDD capacity, Mi-
crowave Assisted Magnetic Recording (MAMR) technology is ex-
pected to give a significant enhancement of HDD capacity compared
to Perpendicular Magnetic Recording (PMR) technology.

oscillator (STO) [1, 2, 3]. In this method, the STO located near the writing
pole of the head generates an electromagnetic field that allows data to be
written on the perpendicular magnetic media at a lower magnetic field.
Western Digital has been working on MAMR [8] and commercial hard disks
with this technology will probably be available in the 2020. Figure 7 shows
the trend predicted by Western Digital for such technology.

Magnetic recordings do not only compete on the high density. Magnetic
Random Access Memories (MRAM) are non-volatile memories with high
speed and endurance. Their structure is displayed in figure 9. Information are
stored in arrays of spin valves, each device contains a single bit of information.
The bit is read by injecting current into the cell of interest. A measure of
the electrical resistance gives the state of the cell analogously to the reading
process in hard disks. The writing process is achieved by injecting a stronger
current into the cell, this causes a rotation of the magnetization in the free
layer according to the Spin Transfer Torque effect. A representation of the
electrical circuit is in figure 10.
Typical values of switching time, endurance and other features of interest for
the most widespread types of memories are reported in figure 8.
An important physical aspect of magnetic storage technologies is the speed at
which magnetization can be switched and the repeatability of the switching.
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Figure 8: Summary of the main feature of the recent competitive types
of memories.

Hence to obtain fast and reliable memories it is important to study fast
magnetization switching.

Another interesting technology based of ferromagnetic materials are the
magnetic nano-oscillators. It is indeed possible to induce oscillations of the
magnetization in a small magnet by injecting a constant current. This type of
oscillators is not ready yet for commercial use because of the low power of
the output signal.
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Figure 9: Scheme of a Magnetic Random Access Memory (MRAM),
the green and red blocks are spin valves and they are used as memory
cells, the blue bars are conductors.
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Figure 10: Scheme of the one transistor architecture [4] used to select
a memory cell and read the data stored in it. Spin valves are organized
into arrays, one word line (WL) is set to high such that one line of cells
are electrically connected to the source line (SL) and the bit line (BL).
Injection of current can be either used to read the data or to modify the
cell status.
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Chapter 1

Micromagnetics and LLG

In this chapter, the micromagnetic theory [10], [12], [13] is presented. The
discussion starts from the equation of magnetostatic and the principles of ther-
modynamics in order to formulate an equilibrium condition for ferromagnetic
systems in terms of an appropriate thermodynamic potential.
Once the equilibrium condition is defined, the dynamic equation is introduced
using a phenomenological approach and its main properties are discussed.

1.1 Magnetostatic Equations

Let us consider a magnetic field H generated by assigned current density J0

and magnetization M of a body occupying the volume V as in the situation
schematically represented in figure 1.1. The magnetostatic equation reads

∇×H = J0 , ∇ · (µ0H + µ0M) = 0 , (1.1)

where µ0 is the magnetic permeability of the void.
The magnetization itself is a function of the magnetic field. Consequently
equation (1.1) must be complemented with a constitutive relation M =M(H)
and the magnetostatic problem must be solved consistently.
In order to separate the contribution of the current density J0 and the one of
the magnetization M to the magnetic field H, we consider Helmholtz decom-
position of the field{

∇×Ha = J0

∇ ·Ha = 0
,

{
∇×HM = 0

∇ ·HM = −∇ ·M ,
(1.2)

17



18 CHAPTER 1. MICROMAGNETICS AND LLG

Figure 1.1: Magnetic field generated by a magnetized body and by a
coil with an electric current, the first (on the right) is the field HM , the
second (on the left) is the field Ha.

where H = Ha + HM . The analytical solutions for the two fields are respec-
tively

Ha(x) =
1

4π

∫
R3

J0(y)× (x− y)

|x− y|3
dVy , (1.3)

and

HM (x) =
1

4π
∇
(∫

V

∇ ·M(y)

|x− y|
dVy −

∫
∂V

M(y) · n̂(y)

|x− y|
dSy

)
. (1.4)

According to Poynting theorem (see appendix B) the power required to modify
the magnetic flux density is given by

P =

∫
R3

H · dB

dt
dx . (1.5)

However not all the energy spent is stored in the material, indeed some energy
is required even when there is no material.
By using the Helmholtz decomposition in equation (1.2), given B = µ0(Ha +
HM + M), we can write

P =

∫
R3

(
µ0Ha ·

dHa

dt
+ µ0Ha ·

dHM

dt
+ µ0Ha ·

dM

dt
+

+µ0HM ·
dHa

dt
+ µ0HM ·

dHM

dt
+ µ0HM ·

dM

dt

)
dx .

(1.6)
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The second and fourth addend in the sum give zero contribution when inte-
grated in the whole space. This happens because Ha and its time derivative are
conservative, while HM and its time derivative are solenoidal. Consequently
the Tellegen theorem (see appendix A) gives∫

R3

Ha ·
dHM

dt
dV = 0 , (1.7)

and ∫
R3

HM ·
dHa

dt
dV = 0 . (1.8)

By using again the Tellegen theorem it can also be proved that the last two
terms cancel out exactly. Indeed applying Helmholtz decomposition to M
yields

M =
BM

µ0
−HM . (1.9)

Consequently we have∫
R3

HM ·
dM

dt
dV =

∫
R3

HM ·
d

dt

(
BM

µ0
−HM

)
dV

= −
∫
R3

HM ·
dHM

dt
dV .

(1.10)

where we used the fact that BM is solenoidal and the Tellegen theorem.
Eventually the power required to modify the magnetic field is

P =

∫
R3

µ0Ha ·
dHa

dt
dx +

∫
V
µ0Ha ·

dM

dt
dx . (1.11)

The first term can be interpreted as the power required to create Ha in ab-
sence of material. Accordingly the second term gives the energy stored in the
magnetic material, i.e.

dLM
dt

=

∫
V
µ0Ha ·

dM

dt
dx. (1.12)

1.2 Principles of thermodynamics

Let us consider a small volume ∆V of magnetic material which is subject to
a fixed magnetic field H and is in contact with a thermal bath at a constant
temperature T . Let us also assume that the volume is small enough to be
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considered at the thermodynamic equilibrium, given the internal energy ∆U
and the entropy ∆S of the volume ∆V . We define the density of energy and
entropy respectively as

u =
U

∆V
, s =

S

∆V
. (1.13)

The first principle of thermodynamics states

dU

dt
=

dL

dt
+

dQ

dt
, (1.14)

where L is the work done on the system and Q is the heat injected. If no work
can be done by deforming the volume and there is no generated heat, according
to (1.12) the first principle becomes, after dividing by ∆V ,

∂u

∂t
= H · ∂M

∂t
−∇ · q (1.15)

where q is the density of the heat flux.
The second law of thermodynamics states that for any isolated system the en-
tropy s cannot decrease in time, i.e.

∂s

∂t
≥ 0 . (1.16)

This principle can be extended to a non isolated system. It reads

∂s

∂t
≥ − 1

T
∇ · q or

∂s

∂t
= − 1

T
∇ · q +

∂s∗

∂t
, (1.17)

where T is the temperature and s∗ is the entropy generated by irreversible
processes and is non negative

∂s∗

∂t
≥ 0 . (1.18)

By substituting (1.14) into (1.17) and multiplying by the temperature, after
some algebra, it yields

∂u

∂t
− T ∂s

∂t
−H · ∂M

∂t
= −T ∂s

∗

∂t
. (1.19)

By introducing the Helmholtz free energy

f = u− Ts (1.20)
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we get
df

dt
+ s

dT

dt
−H · ∂M

∂t
= −T ds∗

dt
. (1.21)

In experiments or applications the controlled variable is the applied field Ha.
Hence using the Leibenitz formula the equation (1.21) is reformulated as

df

dt
− d

dt
(µ0H ·M) + s

dT

dt
+ µ0M ·

dHa

dt
= −T ds∗

dt
. (1.22)

By recalling the hypothesis of constant temperature and applied field, equation
(1.22) becomes

df

dt
− d

dt
(µ0H ·M) = −T ds∗

dt
. (1.23)

We finally define the density of Gibbs-Landau free energy as

g = f − µ0H ·M . (1.24)

The state variable just defined is a thermodynamic potential when temperature
and applied field are fixed. Indeed it holds

dg

dt
= −T ds∗

dt
, (1.25)

which implies that equilibrium is reached when g is minimized.
In the general case the systems considered here are not small enough to assume
homogeneity of every thermodynamic property. In these circumstances we can
integrate equations from (1.21) to (1.25) over the volume occupied by the body
and define the total Helmholtz free energy, the Gibbs-Landau free energy, the
total entropy and the entropy generated

F =

∫
V
f dV , G =

∫
V
g dV , S =

∫
V
s dV , S∗ =

∫
V
s∗ dV .

(1.26)
Equation (1.25) becomes

dG

dt
= −T dS∗

dt
, (1.27)

since the global quantities are now well defined thanks to equations (1.26).
This is called principle of minimization of free energy.
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1.3 Free Energy Contributions

So far it was highlighted the role of the free energy in the determination of the
magnetization. What is still missing is an explicit expression of the Helmholtz
free energy.
A precise derivation of F from fundamental principles would require a detailed
knowledge of the microscopic structure of the material, which is in general not
available.
In micromagnetics the expression of the free energy is postulated according to
some phenomenological considerations. In particular four contributions to the
free energy are considered: the exchange energy, the anisotropy energy, the
magnetostatic energy and Zeeman energy.

1.3.1 Exchange energy

Exchange free energy is the main feature of ferromagnetic materials and it is
the one which causes spontaneous magnetization.

Weiss Mean Field Theory

Microscopically the media can be modeled as a large ensamble of magnetic
dipoles {µi}. When an external field H is applied, dipoles rotate to align with
the field, on the other hand thermal agitation prevents the realization of a fully
ordered structure.
Magnetic dipoles have random orientation with a preference for the direction
pointed by the external field. If the temperature is kept fixed, the probability
density function of any configuration is provided by the Boltzmann distribution
[14]

P (µ1,µ2, . . .) ∝ exp

(
−H(µ1,µ2, . . .)

kBT

)
(1.28)

where H is the Hamiltonian, kB is Boltzmann constant and T is the tempera-
ture.
For sake of simplicity, let us consider as Hamiltonian

H(µ1,µ2, . . .) = −
∑
i

µ0µi ·H (1.29)

where µ0 is the magnetic permeability of void. Magnetization is given by the
vector sum of all magnetic dipoles. Note that in the Hamiltonian (1.29) there
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is no interaction between different dipoles, they only interact with the external
magnetic field.
The magnetization is given by the average of the sum of all the moments, i.e.

M =

〈∑
i

µi

〉
. (1.30)

Because of the rotational symmetry of the system we expect M to be aligned
with the external field and the whole derivation can be developed by using the
scalar quantities. Moreover we assume, according to quantum mechanics, that
dipoles can only exhibit two orientations. Hence

M =
1

Z

N

V
µ

[
exp

(
µ0µH

kBT

)
− exp

(
−µ0µH

kBT

)]
, (1.31)

where µ = |µ|, H = |H|, N is the number of magnetic dipoles, V is the
volume occupied by the dipoles and

Z = exp

(
µ0µH

kBT

)
+ exp

(
−µ0µH

kBT

)
(1.32)

is the normalization constant which grants that probability is well defined. Z
is also called partition function.
Equation (1.31) gives

M = M0 tanh(y) (1.33)

where y =
µ0H µ

kBT
and M0 =

N

V
µ .

The Hamiltonian in equation (1.29) can not allow spontaneous magnetization,
the fundamental missing feature is the interaction between magnetic dipoles.
A simple but still effective way to introduce interaction consists in substituting
the applied field H with an effective field

Heff = H + λM , (1.34)

where λM is called molecular field and the parameter λ is determined experi-
mentally.

The magnetization is still given by equation (1.33) with y =
µ0Heff µ

kBT
and,

although it can not be expressed explicitly, the model can be easily analyzed
by using graphical methods. From equations (1.33) and (1.34), we haveM = M0 tanh(y) ,

M = λ−1kBT

µ0µ
y − λ−1H .

(1.35)
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Figure 1.2: Equations of system (1.35) for temperature higher than
the Curie temperature (TC). The only intersection is at zero and no
spontaneous magnetization can occur.

M is a linear function of y, hence the value of the magnetization is given by
the intersection of (1.33) and (1.34) in the plane y-M .
Let us consider H = 0. Qualitatively two possible scenarios can manifest: if
the slope of (1.35) is greater than the slope of (1.33) in y = 0 there is only
one intersection for M = 0 as sketched in figure 1.2; otherwise there are three
intersections and for two of them we have |M | > 0, which means that sponta-
neous magnetization occurs as illustrated in figure 1.3.
Spontaneous magnetization is a function of temperature. In particular mag-

netization vanishes in correspondence of the Curie temperature, which can be
obtained by imposing the derivative of (1.33) in 0 to be equal to the angular
coefficient of (1.35). It yields

M0 =
kBTC
µ0µλ

=⇒ Tc =
µ0µM0λ

kB
. (1.36)

The plot of the spontaneous magnetization as a function of the temperature is
in figure 1.4.

We can finally estimate the free energy due to the exchange interaction by
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Figure 1.3: Equations of system (1.35) for temperature lower than the
Curie temperature (TC). There are three intersections: two of them
correspond to a spontaneous magnetization, while the third one, in
M = 0, has no spontaneous magnetization and is unstable.

Figure 1.4: Magnitude of the spontaneous magnetization as a function
of the temperature.
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Figure 1.5: Gibbs free energy calculated by the Weiss model. The
deep minimum in M = MS justifies the assumption of considering
|M| a given constant of the material.

calculating the magnetic field from (1.35)

H =
kBT

µ0µ
tanh−1 M

M0
− λM . (1.37)

Integrating H in dM gives

GEX =
kBT

µµ0

[
(M0 +M) log

(
1 +

M

M0

)
+ (M0 −M) log

(
1− M

M0

)]
− λ

2
M2 .

(1.38)

The plot of the free energy as function of M/M0 is displayed in figure 1.5.

Effect of exchange interaction

The main result of Weiss theory is the existence of a spontaneous magneti-
zation due to exchange interaction. This means that free energy must have a
minimum for some module of the magnetization MS > 0, also called satu-
ration magnetization. The energy minimum is in fact so deep that even small
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variations of the magnetization module are hard to observe. For this reason the
module is generally considered fixed

|M| = MS . (1.39)

The exchange interaction affects also the variation of the magnetization. The
orientation of neighboring electrons spin is forced to be almost the same, but
after a long enough chain of neighboring electrons some significant change in
the spin orientation can arise. Its contribution to the free energy is given by

GEX =

∫
V
A (|∇mx|2 + |∇my|2 + |∇mz|2) dx , (1.40)

where mi = Mi/MS is the normalized i-th component of the magnetization
and A is called exchange constant. It is measured in J/m and depends on the
material considered.

1.3.2 Anisotropy energy

Anisotropy energy depends on the relative orientation of the magnetization
with respect to some preferred directions, this is a frequent occurence in ferro-
magnetic materials because of their crystalline structure.
Microscopically this is due to the interaction of electron spins angular mo-
menta, which are responsible for the magnetization, and electrons orbital an-
gular momenta, which are constrained by the crystal structure.
The free energy contribution is given by

GAN =

∫
fAN (m) dx . (1.41)

The explicit expression of fAN depends on the material considered.

Uniaxial Anisotropy

The simplest type of anisotropy is the uniaxial one, the function g(m) has a
rotational symmetry around some direction êz .
Let us call θ the angle between m and êz as sketched in figure 1.6. The expres-
sion of the free energy density can be expanded in series of powers of sin2 θ
as

fAN (θ) = K0 +K1 sin2 θ +K2 sin4 θ + . . . (1.42)
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Figure 1.6: Reference frame of the section 1.3.2

where Ki are anisotropy constants measured in J/m3.
The first constant K0 is not relevant and can be set to zero. If gAN (0) <
gAN (π/2) the axis of ê⊥ is called easy axis, if instead gAN (0) < gAN (π/2) it
is called hard axis.
For the applications of the following chapters, it is generally sufficient only the
first term of the expansion, i.e.

fAN (θ) = K1 sin2 θ , (1.43)

and the free energy can be expressed as follows

GAN =

∫
V
K1[1− (m · êz)2] dx. (1.44)

A representation of gAN as function of the direction is illustrated in figure 1.7
for negative and positive values of K1.

Cubic anisotropy

Cubic anisotropy is usually observed in materials with cubic crystalline struc-
tures. In this case there are three privileged directions, say êx, êy and êz .
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Figure 1.7: Free energy as function of the magnetization orientation
for a media with uniaxial anisotropy. The easy axis case (K1 > 0) is
in the left panel and the hard axis case (K1 < 0) in the right panel

A typical expression for the free energy contribution is

fAN (m) = K0+K1(m2
xm

2
y+m2

ym
2
z+m2

zm
2
x)+K2m

2
xm

2
ym

2
z+. . . , (1.45)

as before, the term K0 is irrelevant.
If the terms of order greater than four are neglected, free energy density in
equation (1.45) has six minima when K1 < 0 or six maxima when K1 > 0.
The total free energy is given by

fAN =

∫
V
K1(m2

xm
2
y +m2

ym
2
z +m2

zm
2
x) dx . (1.46)

A plot of gAN as function of the direction is illustrated in figure 1.8 for negative
and positive values of K1.

1.3.3 Magnetostatic energy

We have to take into account the dipole-dipole interaction, since magnetization
itself creates a magnetic field as shown in equation (1.4). The resulting free
energy is then given by

GMS = −
∫
V

µ0

2
HM ·M dx . (1.47)

By using Helmholtz decomposition and Tellegen theorem (see appendix A),
equation (1.47) can be reformulated as

GMS =

∫
R3

1

2
µ0H

2
M dx . (1.48)
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Figure 1.8: Free energy as function of the magnetization orientation
for a media with cubic anisotropy. On the left the case K1 > 0 where
lattice directions are energetically convenient, on the right the case
K1 < 0 where the lattice directions are energetically not convenient.

We observe that magnetostatic energy expresses a nonlocal interaction, since
the magnetostatic field depends on the whole magnetization vector field.
A criterion to guess the configuration that minimizes the magnetostatic energy
is the pole avoidance principle, i.e. the configurations with low magnetostatic
energy have divergenceless magnetization and possibly no discontinuities on
the normal component of M.

1.3.4 Zeeman energy

Zeeman energy is not a contribution to Helmholtz free energy, it is instead
included in Gibbs free energy as illustrated in equation (1.24), i.e.

GZE = −µ0

∫
V

Ha ·M dx . (1.49)

This energy tends to align magnetization with external applied fields.

1.4 Brown Equation

So far the micromagnetic formulation is presented in term of a minimization
problem. By using mathematical tools of functional analysis it is possible to
express the same model in terms of equations.
Since the module of M is fixed, we can consider the unit vector m = M/MS
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and the normalized magnetic fields ha = Ha/MS and hM = hM/MS . If the
magnetization field m(x) is an equilibrium, and hence gives a minimum of G,
for any sufficiently small perturbation εδm we have

G(m + εδm) > G(m) , (1.50)

and this is possible if and only if

dG(m + εδm)

dε
= 0 , (1.51)

for any perturbation δm.
By summing all the contribution to G given in equations (1.40), (1.41), (1.47)
and (1.49) we obtain

G =

∫
V

(
A∇m : ∇m + fAN (m)− 1

2
µ0M

2
ShM ·m− µ0M

2
Sha ·m

)
dVx ,

(1.52)
where : indicates the double dot product.
Let us consider a variation of the magnetization field δM(x). The first order
variation in δM of Zeeman energy and anisotropy energy are given by

δGZE = −
∫
V
µ0M

2
Sha · δm dVx , (1.53)

and

δGAN =

∫
V

∂fAN
∂m

· δm dVx . (1.54)

In order to have the first order variation of exchange energy we develop the
double dot product of the gradient ∇(m + δm) and keep only terms of first
order in δm

δGEX =

∫
V

2A∇m : ∇δm dx . (1.55)

Integrating by parts and applying the divergence theorem yields

δGEX =

∫
∂V

2A
∂m

∂n̂
· δm dSx −

∫
V

2A∇2m · δm dVx (1.56)

where n̂ is the unit vector normal to ∂V and pointing outward.
Finally we consider the variation of the magnetostatic free energy. For this
contribution it has to be kept in mind that hM is an integrodifferential operator
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acting on m, hence a variation δm corresponds also to a variation δhM . The
variation is then given by

δGMS = −
∫
V

1

2
µ0M

2
S (hM · δm + δhM ·m) dVx . (1.57)

The two addends in the integral give the same contribution due to the reci-
procity theorem, hence we can write

δGMS = −
∫
V
µ0M

2
ShM · δm dVx . (1.58)

We have the total free energy variation by summing the contributions from
(1.53), (1.54), (1.56) and (1.58)

δG =

∫
V

(
−2A∇2m +

∂fAN
∂m

− µ0M
2
Sha − µ0M

2
ShM

)
· δm dVx+

+

∫
∂V

2A
∂m

∂n̂
· δm dSx .

(1.59)
The variation δm has to satisfy a constraint due to the fixed module of M,
indeed it must hold

m · δm = 0 (1.60)

to keep the module unchanged. This constraint can be automatically satisfied
by imposing

δm = m× δθ . (1.61)

Inserting (1.61) into (1.59) yields

δG =

∫
V

(
−2A∇2m +

∂fAN
∂m

− µ0M
2
Sha − µ0M

2
ShM

)
·m× δθ dVx+

+

∫
∂V

2A
∂m

∂n̂
·m× δθ dSx .

(1.62)
We now define the effective magnetic field as

heff =
2A

µ0M2
S

∇2m− 1

µ0M2
S

∂fAN
∂m

+ ha + hM . (1.63)

This field is the sum of two maxwellian terms, ha and hM , which are the actual
magnetic fields and two extra terms which arise from the microscopic structure
of the material.
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By applying the mixed product properties and substituting (1.63) into (1.62)
we have

δG = −
∫
V
µ0M

2
S(heff ×m) · δθ dVx +

∫
∂V

2A

(
∂m

∂n̂
×m

)
· δθ dSx .

(1.64)
At equilibrium δG = 0 for every δθ, hence a magnetization field m(x) is an
equilibrium if and only if it holdsm× heff = 0 ∀ x ∈ V ,

∂m

∂n̂
×m = 0 ∀ x ∈ ∂V .

(1.65)

The boundary condition can be further simplified if we note that m is per-
pendicular to its derivatives because of the module constraint. We eventually
obtain Browns equation for the equilibriumm× heff = 0 ∀ x ∈ V ,

∂m

∂n̂
= 0 ∀ x ∈ ∂V .

(1.66)

1.5 Magnetization Dynamics

Up to now, we have presented a variational method based on the minimization
of the free energy of a ferromagnetic body. This method allows one to find the
equilibrium configurations for a magnetized body, regardless of how magneti-
zation reaches the equilibrium during time.
This section illustrates the equation describing the magnetization dynamics
and how it approaches the equilibrium.

1.5.1 Gyromagnetic precession

As previously stated, magnetization in ferromagnets originates from the elec-
trons spin magnetic moments µ. This is proportional to the spin angular mo-
mentum S

µ =
qe
mec

S = −γS , (1.67)

where qe is the electron charge, me is the electron mass and c is the speed of
light. γ is called gyromagnetic ratio [26].
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When an external magnetic field H is applied, the angular momentum changes
and its derivative is given by the applied torque

dS

dt
= µ×H . (1.68)

Substituting (1.67) into the latter equation yields

dS

dt
= γS×H . (1.69)

Equation (1.69) describes the precession of the electron magnetic spin around
the applied magnetic field. This is also called Larmor precession and the fre-
quency

fL =
γ|H|
2π

(1.70)

is also called Larmor frequency.

1.5.2 Landau-Lifshitz equation

The equation (1.69) holds for a single spin, magnetization arises from the col-
lective orientation of a large number of spins and it may have different dynam-
ics. The dynamic of magnetization was described for the first time by Landau
and Lifshitz [25], who postulated the so called Landau-Lifshitz equation start-
ing from some phenomenologial aspects. A starting point for a feasible equa-
tion is the conservation of the module. With this aim the following equation is
defined

∂M

∂t
= Ω×M . (1.71)

It can be immediately verified that (1.71) preserves the module. Indeed a scalar
multiplication by M gives

M · ∂M

∂t
=

1

2

∂|M|2

∂t
= M× (Ω×M) = 0 . (1.72)

To determine Ω it is assumed that at low temperatures and low wavelengths
dissipation can be neglected [26], this implies

dG

dt
=
δG

δm

∂m

∂t
= 0. (1.73)
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By replacing δG/δM = −Heff we have∫
V

Heff · (Ω×M) dVx = 0 . (1.74)

The latter condition is satisfied if Ω ∝ Heff, which is also compatible with
the equilibrium condition provided by Brown equations. Finally the constant
of proportionality is determined by observing that, when no anisotropy occurs
and the magnetization is uniform, the magnetization is expected to behave like
a freely precessing moment

∂M

∂t
= −γM×Heff . (1.75)

This is called Landau-Lifshitz equation and it is the fundamental equation of
micromagnetic dynamics, nonetheless the equation is still unsatisfactory since
it does not allow magnetization to reach the equilibrium condition.
In order to approach the equilibrium it is necessary to add a phenomenological
damping term into (1.75), which leads to the Landau-Lifshitz equation with
damping

∂M

∂t
= −γLM×Heff −

αLγL
MS

M× (M×Heff) , (1.76)

where αL > 0 is an adimensional damping constant and the subscript L is
introduced for convenience.
The qualitative behavior of equation (1.76) and (1.76) is illustrated in figure
1.9

1.5.3 Gilbert equation

A different approach to take into account the damping was proposed by Gilbert
in [27], where he derived equation (1.76) from a Lagrangian formulation with
generalized coordinatesMx,My andMz . To this end we define the Lagrangian
function

L(M, Ṁ) = T (M, Ṁ)−G(M) , (1.77)

where G is the Gibbs Landau free energy and T is the kinetic energy and
has yet to be defined. Conservative Landau-Lifshitz equation can be obtained
starting from the Euler-Lagrange equations, namely

d

dt

∂L(M, Ṁ)

∂Ṁ
− ∂L(M, Ṁ)

∂M
= 0. (1.78)
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Figure 1.9: Representation of the precession motion of the magne-
tization (left) and the effect of the phenomenological damping term
(right).

In this framework, damping is usually introduced by the Rayleigh termR(Ṁ).
A typical expression of such term is

R(Ṁ) =
η

2

∫
Ṁ · Ṁ dV , (1.79)

so that equation (1.78) is restated as

d

dt

∂L(M, Ṁ)

∂Ṁ
− ∂L(M, Ṁ)

∂M
+
∂R(Ṁ)

∂Ṁ
= 0 . (1.80)

Replacing equation (1.77) into the last equation, and recalling the definition of
the effective field Heff, yields

d

dt

∂T (M, Ṁ)

∂Ṁ
− ∂T (M, Ṁ)

∂M
+ [−Heff + ηṀ] = 0 . (1.81)

In the paper [27], Gilbert did not find explicitly the expression of T , but he
circumvented the problem by means of the following argument. When η = 0
the Landau-Lifshitz equation (1.75) must be obtained. The introduction of the
damping simply adds an extra term to the effective field, so that we eventually
get

∂M

∂t
= −γGM×Heff +

γGαG
MS

M× ∂M

∂t
, (1.82)

where γG must be equal to γL if the damping is zero and we set η = αGMS .
The attempts of Gilbert to obtain an expression for T required the introduction
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of an inertial tensor with two of the three principal components equal to zero,
and such object was considered not physically acceptable. Nonetheless this
approach was reconsidered later by Wegrowe in [55] and it is illustrated in the
section 4.3 of the thesis.
Although they are formally different, equation (1.76) and equation (1.82) de-
scribe exactly the same dynamic if the gyromagnetic ratio and the damping co-
efficient are appropriately adjusted. In order to see the equivalence of Landau-
Lifshitz equation and Gilbert equation let us vector multiply equation (1.82)
by M, we have

M× ∂M

∂t
= −γGM× (M×Heff)− γGαGMS

∂M

∂t
, (1.83)

where we used
∂M

∂t
·M = 0 and M×

(
M× ∂M

∂t

)
= −M2

S

∂M

∂t
. (1.84)

By substituting the expression of M× ∂M
∂t from (1.82) into (1.83), after some

algebra, we have
∂M

∂t
= − γG

1 + γ2
Gα

2
G

M×Heff+γG
γGαG

MS(1 + γ2
Gα

2
G)

M×(M×Heff) . (1.85)

This equation is exactly the Landau-Lifshitz equation if we set

γL =
γG

1 + γ2
Gα

2
G

and αL = γGαG . (1.86)

The opposite transformation is instead given by

γG = γL
(
1 + α2

L

)
and αG =

αL
γL(1 + α2

L)
. (1.87)

It is worthy to remark that Gilbert equation has a Ljapunov structure [23] for
a fixed applied field, i.e. there exists a function of the magnetization which
always decreases in time. The Lyapunov function is the free energy G

dG

dt
=

∫ (
δG

δM
· ∂M

∂t
+

δG

δHa
· ∂Ha

∂t

)
dVx =

−
∫

Heff ·
∂M

∂t
dVx +

∫
M · ∂Ha

∂t
dVx .

(1.88)

Substituting the expression of the effective field from the Gilbert equation
yields

dG

dt
= −

∫
αG

∣∣∣∣∂M

∂t

∣∣∣∣2 dVx +

∫
M · ∂Ha

∂t
dVx , (1.89)

which proves the Lyapunov structure of the equation.
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1.5.4 Normalized equation

For the analysis of magnetization dynamics, the use of normalized dimension-
less equations is often preferred. Let us define

g =
G

µ0M2
SV

, m =
M

MS
, ha =

Ha

MS
, hM =

HM

MS
, (1.90)

and introduce the dimensionless anisotropy function

f(m) =
1

2K1
fAN (m) . (1.91)

The normalized Gibbs-Landau free energy is then given by

g =
1

V

∫ (
`2EX

2
(∇m)2 + κf(m) +

1

2
hM ·m + ha ·m

)
dVx, (1.92)

where we defined the exchange length `EX as

`EX =

√
2A

µ0M2
S

, (1.93)

and the dimensionless paramenter κ as

κ =
2K1

µ0M2
S

. (1.94)

The demagnetizing field satisfies the equations

∇× hM = 0 , ∇ · hM = −∇ ·m . (1.95)

The effective field is now provided by the expression

heff = `2ex∇2m− κ ∂f
∂m

+ ha + hM =
Heff

MS
= − δg

δm
. (1.96)

When the normalization is applied inside the Gilbert equation it gives

MS
∂m

∂t
= −γGM2

Sm× heff + αGγGMSm× ∂m

∂t
, (1.97)

dividing by γGM2
S yields

1

γGMS

∂m

∂t
= −m× heff +

αGγGMS

γGMS
m× ∂m

∂t
. (1.98)
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We want to remove the coefficient of the time derivative and make time and
damping constant adimensional. To this end we define a normalized time and
the adimensional damping constant

τ = γGMSt , α = αGγG (1.99)

and the Gilbert equation becomes

∂m

∂τ
= −m× heff + αm× ∂m

∂τ
. (1.100)

Typical values of the exchange length and normalized time are respectively 5-
10 nm and 5 ps. In the following parts of the thesis the normalized time will
be denoted with t instead of τ in order to keep the notation simple.

1.6 Spin Injection

Electrons exert a torque of quantum-mechanical origin when they flow across
a ferromagnetic element, this torque is known as spin-transfer torque.
Spin-transfer effects are most often investigated in three-layer structures, also
called spin valves, consisting of two ferromagnetic layers separated by a non-
magnetic metallic spacer (see Fig. 1.10).
One layer, commonly known as the ’fixed’ or the ’pinned’ layer, is used as a
polarizer for the electron spins, its magnetization is kept fixed by using a large
volume or a large anisotropy or pinning by additional underlayers. The second
layer, termed the ’free’ layer, is the one where various dynamic phenomena
occur.

It is worthy to remark that the thickness of the spacer plays a crucial role.
The ferromagnetic coupling between the two magnetic layers is described by
Rudermann Kittel Kasuya Yosida (RKKY) interaction [30], which gives a con-
tribution to the free energy [31]

GRKKY = SJRKKY (x) M1 ·M2 , (1.101)

where m1 and m2 are the unit vector of the magnetization of the two magnetic
layers, S is the surface of contact and x is the thickness of the spacer. A quali-
tative plot of JRKKY (x) is reported in figure 1.11. To avoid coupling between
magnetic layers, the spacer thickness must be close to the zeros of the RKKY
function.
Spin valve devices are used in many technologies. The most remarkable one
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Figure 1.10: Structure of a spin valve device: the layers in grey are
made of ferromagnetic material, the layer in yellow is nonmagnetic (it
can either be an insulator or a conductor). When a current i is injected,
the magnetization of the free layer (the one on the top) is altered by the
spin transfer torque. The electrical resistance of the device depend on
whether the magnetization of the free layer is parallel or antiparallel
with the magnetization of the fixed layer (the one at the bottom).
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Figure 1.11: Qualitative plot of the RKKY interaction as function of
the distance between the two ferromagnetic layers. Usually spin valve
separators thickness are close to the zeros of JRKKY , antiferromag-
netic coupling can also be achieved by exploiting the fact that JRKKY
can be negative.
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is the hard disk, where the spin valve devices are employed in the reading pro-
cess thanks to the Gigantic Magneto Resistive (GMR) effect [29].
Other applications of the spin valves are Magnetic Random Access Memories
(MRAM) - where current is used in the writing to switch the magnetization of
the free layer - and the nano-oscillator - where DC current generates AC output
signal tunable with the intensity of the current.
By applying a semiclassical approach to the analysis of spin transfer between
the two ferromagnetic layers, Slonczewski [33] derived the following general-
ized LLG equation

dS2

dt
= s2 ×

(
γHAN (êx · S2)êx − α

dS2

dt
− GJe

qe
s1 × s2

)
, (1.102)

where S1 and S2 are the global spin orientation per unit area in the fixed and
free layers, s1 and s2 are the unit vectors along them, HAN is the anisotropy
field magnitude, êx identifies the direction of inplane anisotropy in the free
layer, qe is the absolute value of the electron charge, and Je is the electric
current density, taken as positive when the electrons flow from the free into the
fixed layer. The quantity G is given by the expression

G =

[
−4 + (1 + P )3 3 + s1 · s2

4P 2/3

]−1

(1.103)

where P is the spin-polarizing factor of the incident current. Typical values in
ferromagnetic metals are P ≈ 0.3− 0.4.
The total magnetic moment of the free layer is equal to−γ~S2As/µ0, whereas
its volume is equal to Asd, where d is the free-layer thickness and As is the
section.
Therefore: M = −γ~S2/µ0d and s2 = −m2. The correct way to generalize
Eq. (1.102) is to replace HAN (êx · s2)êx with Heff = Ha + HAN + HM

dm

dt
= −γMS

(
heff −

α

γMS

dm

dt

JeG

Jp
êp ×m

)
(1.104)

where êp = −s1 and Jp = µ0M
2
S
qed
~ . In terms of normalized time equation

(1.104) becomes

dm

dt
− αdm

dt
= −m× heff + β

m× (m× êp)

1 + cpm · êp
, (1.105)

where

β = bp
Je
Jp

, bp =
4P 3/2

3(1 + P )3 − 16P 2/3
, cp =

(1 + P )3

3(1 + P )3 − 16P 2/3
.
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In equation (1.104) it is possible to separate the conservative part of the dy-
namics by using a Helmholtz decomposition. In such a case the equation is
reformulated as

dm

dt
= m× ∂g

∂m
+ αm×

(
m× ∂Φ

∂m

)
, (1.106)

where g is the normalized Gibbs-Landau free energy and

Φ = g +
β

α

log(1 + cpm · êp)
cp

. (1.107)
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Chapter 2

Magnetization Dynamics in
Nanosystems

In this section the magnetization dynamics in nanosystems is analyzed. When
the system considered is sufficiently small, such as the case of nanomangets,
exchange energy becomes the prevalent energy and all nonuniform configu-
rations are strongly penalized. The typical assumption for nanosystems is to
consider uniform magnetization. Gilbert equation for nanosystems reads

dm

dτ
= −m× heff + αm× dm

dτ
. (2.1)

Despite its simplicity, uniform magnetized systems have static hysteresis and,
when subject to a time dependent magnetic field, they may exhibit complex
magnetization dynamics, including quasiperiodic motion and chaos.
The exchange energy is no longer present and the effective magnetic field is
now given by

heff = −κ ∂f
∂m

+ hM + ha . (2.2)

The demagnetizing magnetic field hM generally is a function of space,
nonetheless only its mean value affects either the energy or the dynamics and
we can safely use the replacement

hM →
∫

hM (x) dv .

Since the relationship between magnetization and demagnetizing field is linear,
it is represented by a 3× 3 matrix

hM = −Nm . (2.3)

45
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A special case is given by the ellipsoidal particle because the demagnetizing
field is exactly constant [18], [19] inside the particle and no substitution with
the average field is needed.
Finally we assume that anisotropy is uniaxial and, if not specified otherwise, f
is

f = −1

2
(m · êAN )2 =⇒ δf

δm
= êAN [m · êAN ] . (2.4)

The effective field due to anisotropy and demagnetizing field can be combined
in a single matrix. Since both contributions are represented by symmetric ma-
trices, there exist a reference frame where the resulting matrix D is diagonal

heff = −Dm + ha (2.5)

where D = N − κêAN ⊗ êAN .

2.1 Stoner-Wolhfarth Asteroid

Stoner Wolhfarth model applies to spheroidal particles with rotational sym-
metry. Let us consider a nanomagnet with symmetry axis and anisotropy axis
both aligned with the z axis, this implies Dx = Dy = D⊥.
By using |m| = 1, the free energy can be recasted as

g =
1

2
Dz +

1

2
κeff sin2 θ − haz cos θ − ha⊥ sin θ (2.6)

where κeff = Dz −D⊥ and θ is the angle with the z axis as in figure 1.6.
The equilibria can be found by setting to zero the derivative of the free energy

dg

dθ
= κeff sin θ cos θ + haz sin θ − ha⊥ cos θ = 0

=⇒ ha⊥
sin θ0

− haz
cos θ

= κeff .
(2.7)

Equation (2.7) can be recasted in a polynomial form as

h2
a⊥m

2
z = (hax + κeffmz)

2(1−m2
z) . (2.8)

This equation has two or four real solutions depending of the values on the
parameters haz and ha⊥.
Qualitatively speaking, for small values of the applied field the anisotropy en-
ergy prevails and the free energy has four extrema, when instead large fields
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are applied the Zeeman energy prevails and only two extrema are present.
A more systematic study can be carried out by computing the second derivative
of the free energy,

d2g

dθ2
=
κeff cos3 θ + haz

cos θ
=
ha⊥ − κeff sin3 θ

sin θ
. (2.9)

The boundary between the region with four equilibria and the region with two
equilibria is a bifurcation line which can be found by searching equilibria with
d2g
dθ2

= 0. These points correspond to a critical condition when equilibrium
disappears.
This condition yields the parametric representation of the bifurcation line
which is referred to as the Stoner-Wolhfarth asteroid{

haz = −κeff cos3 θ ,

ha⊥ = κeff sin3 θ ,
(2.10)

which can be expressed in implicit form by the following equation

h
2
3
az + h

2
3
a⊥ = κ

2
3
eff . (2.11)

The Stoner Wolhfarth asteroid is shown in figure 2.1.
From the Stoner Wolhfart asteroid the admissible directions of magnetization

equilibria can be identified: given an assigned value of θ, (2.7) is linear in haz
and ha⊥, hence equilibria with angle θ are represented by a line in the plane
ha⊥-haz with angular coefficient tan θ.
It is easy to check that this line is tangent to the asteroid at the point given by
the chosen θ

dha⊥
dhax

= tan θ . (2.12)

This geometrical property suggests the following construction: given a point
in the control plane ha⊥-haz , we can draw the lines tangent to the asteroid em-
anating from this point as illustrated in figure 2.2. Tangent lines to the upper
half of the asteroid correspond to magnetization pointing upward, tangent lines
to the lower half correspond to magnetization pointing downward.
Figure 2.2 shows that only two tangent lines can be drawn from points exter-

nal to the asteroids, while four tangent lines can be drawn from points inside
it. Stability can be determine using equation (2.9).
The asteroid properties are the bases for the analysis of the magnetization pro-
cess taking place when the applied field is slowly varied over time. This vari-
ation occurs on a time scale much larger than the time scale needed by the
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Figure 2.1: Asteroid figure generated by equation (2.11), the grey area
corresponds to the values of the field for which there are two minima.

Figure 2.2: Graphical construction of the magnetization for a given
applied field.
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Figure 2.3: Hysteresis loops obtained with the Stoner-Wolhfarth
model. Different loops are computed for different orientations of the
applied field.

transient to let magnetization relax to a stable equilibrium state. This condi-
tion corresponds to a static hysteresis process.
Let us consider the case when ha oscillates between opposite values along a
fixed direction. If the field oscillations are contained inside the asteroid the
magnetization oscillates reversibly. If instead the h crosses the asteroid, the
state may lose stability when the field point exits from the asteroid and the
magnetization discontinuously jumps to a new equilibrium; these jumps are
called Barkhausen jumps. A graphic construction of hysteresis loops is shown
in figure 2.3.

2.2 Conservative Dynamics

In many ferromagnetic materials the damping constant α is quite small. This
means that, on a relatively short time scale, the magnetization dynamics is ex-
pected to be very close to the undamped dynamics.
This suggests that a first fundamental step is analyzing the conservative mag-
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netization dynamics, which can be analytically studied by using the techniques
developed in this section.
Moreover, due to the smallness of α, the actual dissipative dynamics can be
treated as a perturbation of the conservative dynamics. Let us consider the
Landau-Lifshitz equation for a uniformly magnetized body without damping,
i.e.

dm

dt
= −m× heff . (2.13)

It turns out that (2.13) represents an Hamiltonian system, where G is an in-
tegral of motion. Although the most common definition of an Hamiltonian
system requires the number of variables to be even, it is possible to define an
Hamiltonian system by defining a Poisson bracket, i.e. a binary operation that
satisfies

[f, h] = −[h, f ], [f, vh] = [f, v]h+ v[f, h] and

[[f, v], h] + [[v, h], f ] + [[h, f ], v] = 0 .
(2.14)

In the system considered the Poisson bracket is given by

[f, h] = m×
(
∂f

∂m
× ∂h

∂m

)
, (2.15)

and the time derivative of any scalar quantity f , including the magnetization
components, is obtained as

df

dt
= [g, f ] . (2.16)

For f = mi, (2.16) gives the Landau-Lifshitz equation.
We now focus on the derivation of the analytical solution of the conservative
dynamics. Let us consider an ellipsoidal particle with uniaxial anisotropy, the
effective field is

heff = −Nm + κ(m · êAN )êAN + ha . (2.17)

We can merge together the contributions of the media anisotropy and the shape
anisotropy and rewrite the effetive field as

heff = −Dm + ha , (2.18)

where D is a symmetric matrix and hence it is diagonal in some reference
frame.
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We choose the reference frame such that D is diagonal with Dx ≤ Dy ≤ Dz

and we further assume that Hz = 0. The free energy is given by

g =
1

2
(Dxm

2
x +Dym

2
y +Dzm

2
z)−mxhx −myhy . (2.19)

If we substitute m2
z = 1 −m2

x −m2
y and multiply equation (2.19) by 2, after

some algebra, we get

(mx − ax)2 + k(my − ay) = p , (2.20)

where

ax = − hx
Dz −Dx

, ay = − hy
Dz −Dy

,

k2 =
Dz −Dy

Dz −Dx
, p2 = a2

x + k2a2
y +

Dz − 2g

Dz −Dx
.

(2.21)

Trajectories are given in the mx-my plane by ellipses centered in (ax, ay).
This can produce four different topologies illustrated in figure 2.4. In order
to have the time dependence of the magnetization, we consider the following
parametrization

mx = ax − p cosu , my = ay −
p

k
sinu . (2.22)

Consequently it holds

mz =

√
1− (ax − p cosu)2 −

(
ay −

p

k
sinu

)2
, (2.23)

and the equation governing the dynamics are

dmx

dτ
= (Dz −Dy)mz(my − ay) , (2.24)

dmy

dτ
= −(Dz −Dx)mz(mx − ax) , (2.25)

dmz

dτ
= (Dz −Dx)my(mx − ax)− (Dz −Dy)mx(my − ay) . (2.26)

By substituting the parametrization (2.22) into equation (2.25) we get∫
du√

1− (ax − p cosu)2 −
(
ay − p

k sinu
)2 =

∫
k(Dz −Dx)dt . (2.27)
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Figure 2.4: Different topologies for the conservative dynamics: (a)
two ellipses are tangent to the unit sphere, there are two stable equi-
libria (s1 and s2), two unstable equilibria (u1 and u2) and two saddles
(d1 and d2); (b) two ellipses are tangent to the unit circle, one of them
does not enter in the circle, there are two unstable equilibria (u1 and
u2), one saddle (d) and a stable equilibrium (s); (c) the center of the el-
lipses is outside the circle, one ellipse is tangent to the unit circle, there
are two stable equilibria (s1 and s2), one saddle (d) and one unstable
equilibrium (u); (d) there is only one ellipse tangent to the unit circle
and it is entirely outside the circle, there is one stable point (s) and one
unstable equilibrium (u).
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On the left hand side of equation (2.27) there is an elliptic integral. Let us take
ax = ay = 0, by using the substitution w = sinu equation (2.27) becomes∫

dw√
(1− w2)(1− k2

Hw
2)

=

∫
ΩH dt , (2.28)

where

kH =
p

k

√
1− k2√
1− p2

, ΩH = k
√

1− p2(Dz −Dx) . (2.29)

The analytical solution in the high energy region is

mx = ∓p cn(ΩHt, kH) , (2.30)

my =
p

k
sn(ΩHt, kH) , (2.31)

mz = ±
√

1− p2 dn(ΩHt, kH) , (2.32)

where cn, sn and dn are Jacobi elliptic functions [21]. With a similar deriva-
tion, the following solutions are obtained for the low energy region

mx = ∓p dn(ΩLt, kL) , (2.33)

my =

√
1− p2

√
1− k2

sn(ΩLt, kL) , (2.34)

mz = ±
√

1− p2 cn(ΩLt, kL) . (2.35)

with

kL =
k

p

√
1− p2

√
1− k2

, ΩL = kHΩH . (2.36)

The trajectories are illustrated in figure 2.5.

2.3 Ferromagnetic Resonance: Kittel Frequency

Let us consider a uniformly magnetized body with the effective field given by
(2.18) and the applied field aligned with the z-axis. If Dz − ha < Dy, Dz the
system has a stable equilibrium for m = êz .
In the present section the behavior of the system for small perturbations around
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Figure 2.5: Trajectories of the conservative Landau-Lifshitz-Gilbert
equation with anisotropy and no applied field.
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the stable equilibrium point is analyzed. To this end we consider the applied
field

ha = hDC êz + hAC(êx cosωt+ êy sinωt) (2.37)

with hAC � hDC , and we write the magnetization as

m = êz + δmxêx + δmyêy (2.38)

where δmx, δmy � 1.
By substituting (2.38) into the Gilbert equation and neglecting all the higher
powers of the perturbative terms we have

d

dt
δmx = −δmyheff,z + heff,y − α

d

dt
δmy ,

d

dt
δmy = −heff,x + δmxheff,z + α

d

dt
δmx .

(2.39)

Replacing the expression of the effective field yields

d

dt
δmx + α

d

dt
δmy = −(hDC −Dz +Dy)δmy + hAC sinωt ,

d

dt
δmy − α

d

dt
δmx = (hDC −Dz +Dx)δmx − hAC cosωt .

(2.40)

This system of equations can be easily solved using the phasors method. In
matrix form it reads[

iω iαω + hDC −Dz +Dy

−iαω − hDC +Dz −Dx iω

] [
δmx

δmy

]
= −hAC

[
i
1

]
.

(2.41)

Natural frequencies of the system are given by the zeros of the determinant of
the matrix on the left hand side, hence we have

ω2(1 + α2)− iαω(2hDC − 2Dz +Dx +Dy)

− (hDC −Dz +Dx)(hDC −Dz +Dy) = 0 .
(2.42)

If the damping is negligible we obtain the Kittel frequency [39]

ω =
√

(hDC −Dz +Dx)(hDC −Dz +Dy) . (2.43)
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2.4 Bifurcation map for axially symmetric system

When damping is present, there is no general analytical solution for magneti-
zation dynamics, although solutions may exist for specific cases [45]. However
it is possible to sketch the qualitative features of the trajectories using tools of
nonlinear dynamics. Let us consider a magnetic particle with axial symmetry,
i.e. Dx = Dy = D⊥, the effective field is

heff = −D⊥mxêx −D⊥myêy −Dzmzêz + ha . (2.44)

We can sum D⊥m to the effective field without modifying the dynamics, so
that the effective field becomes

heff = κeffmzêz + ha , (2.45)

with κeff = D⊥ −Dz . Moreover we consider as applied magnetic field

ha = hDC êz + hAC(êx cosωt+ êy sinωt) , (2.46)

and an injected current polarized along the z axis with cp = 0, so that Gilbert
equation reads

dm

dt
− αm× dm

dt
=

−m× ((hDC + κeffmz)êz + hAC cos(ωt)êx + hAC sin(ωt)êy − βm× êz) .
(2.47)

Explicit time dependence in equation (2.46) makes the system non-
autonomous, hence standard tools of bifurcation theory for a 2D system cannot
be applied.
Time dependence can be removed by an appropriate change in the reference
frame

êx′ = cosωt êx + sinωt êy ,

êy′ = − sinωt êx + cosωt êy .
(2.48)

In the new rotating reference frame the applied field is

ha = hDC êz + hAC êx′ , (2.49)

while the derivative of the magnetization becomes[
dm

dt

]
lab.frame

=

[
dm

dt

]
rot.frame

− ωm× êz , (2.50)
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so that Gilbert equation turns into

dm

dt
− αm× dm

dt
=

−m× ((hDC + κeffmz − ω)êz + hAC êx′ + (αω − β)m× êz) .
(2.51)

In equation (2.51) the effect of β can be included in the other terms by redefin-
ing

ω′ = ω − β

α
and h′DC = hDC +

β

α
. (2.52)

We eventually have

dm

dt
− αm× dm

dt
=

−m× ((h′DC + κeffmz − ω)êz + hAC êx′ + αω′m× êz) .
(2.53)

It is convenient to rewrite equation (2.53) in polar coordinates

dθ

dt
− α sin θ

dφ

dt
= hAC sinφ− αω′ sin θ , (2.54)

α
dθ

dt
+ sin θ

dφ

dt
= hAC cosφ cos θ − (h′DC − ω′ + κeff cos θ) sin θ . (2.55)

Equilibrium conditions are obtained by setting all time derivatives to zero

hAC sinφ0 = αω′ sin θ0 , (2.56)

hAC cosφ0 cos θ0 = (h′DC − ω′ + κeff cos θ0) sin θ0 . (2.57)

Let us define the variable

ν0 = αω′ cotφ0 . (2.58)

Equilibrium equations (2.56) and (2.57) are conveniently reformulated as

ν0 =
h′DC − ω′

cos θ0
+ κeff , ν2

0 =
h2
AC

sin2 θ0
− α2ω′

2
. (2.59)

It turns out that equations (2.59) can have two or four solutions, hence no
information about the type of equilibrium is available from it. In order to
determine stability of the equilibrium we have to consider the linearization of
(2.53) in an equilibrium. To this purpose we define the unit vectors

ê1 =
(êz ×m0)×m0

|(êz ×m0)×m0|
, ê2 =

êz ×m0

|êz ×m0|
. (2.60)
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Let δm1 and δm2 be the projections of δm = m−m0 on the unit vectors just
defined, the linearized system is given by

d

dt

[
δm1

δm2

]
= A

[
δm1

δm2

]
, (2.61)

where

A =
1

1 + α2

[
1 −α
α 1

] [
−αω′ cos θ0 −ν0

ν0 − κeff sin2 θ0 −αω′ cos θ0

]
. (2.62)

Eigenvalues of A establish the type of equilibrium: eigenvalues with nega-
tive real part correspond to stable modes converging to the equilibrium, while
eigenvalues with positive real part correspond to unstable modes escaping form
the equilibrium.
Since the matrix dimension is two all the information about stability can be
obtained by the determinant and the trace, which are respectively the product
and the sum of the eigenvalues.
Determinant and trace of A are given by

det(A) =
1

1 + α2
(ν2

0 − κeff sin2 θ0ν0 + α2ω′
2

cos2 θ0) (2.63)

and

tr(A) =
−2α

1 + α2

(
ν0 −

κeff sin2 θ0

2
+ ω′ cos θ0

)
. (2.64)

If the determinant is negative the equilibrium point is a saddle. If instead the
determinant is positive, then the equilibrium is stable for negative trace and
unstable for positive trace.
Rather than checking directly the sign of trace and determinant in every equi-
librium condition, one can efficiently map the types and the number of equi-
librium points by analyzing when the trace or the determinant become zero.
Whenever one or more eigenvalues change the sign of their real part the system
has a qualitative change of its phase portrait, such event are called bifurcations
(Appendix C).
Let us consider the trace first. When the trace becomes zero a Hopf bifurcation
takes place and a limit cycle collides with an equilibrium point and chages its
stability, as sketched in figure 2.6.
Substituting the first expression of (2.59) into (2.64) yields

ωHopf =
κeff cos θ0(1 + cos2 θ0) + 2h′DC

2 sin2 θ0
+
β

α
. (2.65)
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Figure 2.6: Qualitative representation of a Hopf bifurcation: on the
left a stable focus, in the middle the focus eigenvales cross the real
axis, on the right a limit cycle appears and the focus becomes unstable

Figure 2.7: Qualitative representation of a saddle node bifurcation:
on the left a stable node and a saddle, in the middle the two equilib-
ria collide and they become a semistable node, on the right, after the
bifurcation, there are no equilibria

By choosing a value for θ0 we obtain the angular frequency ωHopf. The value
of hAC can then be obtained by using the second equation of (2.59): After
some algebra it yields

hAC,Hopf = sin θ0

√
ν2

0 + α2(ωHopf − β/α)2 . (2.66)

The same exact procedure can be applied to find the zeros of the determinant
(2.63). In this case we are looking for saddle node bifurcations, where a couple
of equilibria with different stability collide and disappear, as sketched in figure
2.7.
Angular frequency as a function of θ0 reads
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Figure 2.8: Qualitative representation of a homoclinic bifurcation: on
the left a trajectory pointing to the saddle starts from the unstable fo-
cus; in the middle a trajectory pointing to the saddle matches exactly a
trajectory starting from the saddle and a closed trajectory is generated;
on the right the closed trajectory leaves the saddle and surrounds the
unstable focus.

ωSaddleNode =
−B ±

√
B2 − 4AC

2A
+
β

α
, (2.67)

with

A = 1 + α2 cos4 θ0 , B = −(2h′DC + κeff cos θ0(1 + cos2 θ0) , )

C = h′DC
2

+ h′DCκeff cos θ0(1 + cos2 θ0) + κ2
eff cos4 θ0 ,

(2.68)
and the applied field is given by

hAC,SaddleNode = sin θ0

√
ν2

0 + α2(ωSaddleNode − β/α)2 . (2.69)

By sweeping θ0 one can obtain the bifurcation curves through (2.65), (2.66),
(2.67) and (2.69). An example of bifurcation map is in figure 2.9.
There is a third type of bifurcations which can modify the topology of the
analyzed system, they are the homoclinic bifurcations.
This type of bifurcations occurs when a trajectory starting from a saddle ends
on the saddle itself, this generates a limit cycle as sketched in figure 2.8. Unlike
the other bifurcations, this type is not local and it is not detectable from the
linearized system. For this reason homoclinic bifurcations have been analyzed
using numerical methods [38] to integrate Gilbert equation.
A complete map of bifurcations is shown in figure 2.10. Each area is marked
by a letter and the topology of the trajectories is shown in figures 2.11.
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Figure 2.9: A bifurcation diagram for a system with the following
parameters: α = 0.01, κeff = 0.3, hDC = 0.5, β = 0. Only local
bifurcations are shown here.

Figure 2.10: A bifurcation map of a system with the following param-
eters: α = 0.05,κeff = 0.5, hDC = 0, β = 0. Five different areas
are labeled, the topological configuration of each area is illustrated in
figure 2.11.
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Figure 2.11: Topological configurations of the areas labeled in figure
2.10. (A) Two stable equilibria separated by a limit cycle. (B) A sad-
dle node bifurcation generates a saddle and a third stable equilibrium
in the upper half of the sphere. (C) A Hopf bifurcation generates a
new limit cycle and the equilibrium generated by the saddle node bi-
furcation becomes unstable. (D) The limit cycle created by the Hopf
bifurcation collides with the saddle during the homoclinic bifurcation,
equilibrium points do not change but the connections are different. (E)
The saddle collides with the limit cycle (homoclinic bifurcation), only
the four equilibria remain with no limit cycle.
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2.5 Analysis of non-symmetric systems

Let us consider again a uniformly magnetized particle with effective field

heff = −Dm + ha(t) , (2.70)

with
ha = hx cosωt êx + hy sinωt êy + hDC êz . (2.71)

As we saw in the last section, the time dependence of the applied field makes
the system non-autonomous, however the time dependence can be removed by
switching to a rotating reference frame if the field is circularly polarized.
Whenever the hypotheses of the previous section are not satisfied, time depen-
dence is present also in the rotating reference frame. To see this let us substi-
tute into the Gilbert equation magnetization and field in the rotating reference
frame

m = R(t)mrot , ha = R(t)ha,rot , (2.72)

where

R =

 cosωt − sinωt 0
sinωt cosωt 0

0 0 1

 . (2.73)

Since the vector product is invariant under rotations, i.e. R(A×B) = (RA)×
(RB), Gilbert equation becomes

R(t)
dmrot

dt
+

dR

dt
mrot = −R(t)[mrot × (−R−1(t)DR(t)mrot + ha,rot)]+

+αR(t)

(
mrot ×

dmrot

dt

)
+ αR(t)mrot ×

dR

dt
mrot ,

(2.74)
with

ha,rot = (hx cos2 ωt+hy sin2 ωt)êx′ + (hy −hx) sinωt cosωt êy′ +hDC êz .
(2.75)

To simplify notation we drop the subscript “rot” and we recall that R−1 = R†,
where † indicates the hermitian transpose and

dR

dt
m = R(t)(ωêz ×m) .
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By multiplying (2.74) by R†, after some algebra, we obtain

dm

dt
− α

(
m× dm

dt

)
=

− [m× (−R†(t)DR(t)m + ha)] + ωm× êz − αωm× (m× êz) ,
(2.76)

where

R†DR =


Dx +Dy

2
0 0

0
Dx +Dy

2
0

0 0 Dz

+


Dx −Dy

2
cos(2ωt)

Dy −Dx

2
sin(2ωt) 0

Dy −Dx

2
sin(2ωt)

Dy −Dx

2
cos(2ωt) 0

0 0 0

 .

(2.77)

Time depending terms in equation (2.75) and (2.77) have frequency ω or 2ω.

On the other hand, if α is small enough and hDC ≈ Dz −
Dx +Dy

2
, the dy-

namic of (2.76) is slow compared to these fluctuating terms. This observation
suggests the existence of two different time scales in the magnetization dy-
namic: a slow dynamic and a fast small ripple due to the fluctuating terms.
This idea can be implemented mathematically using the Krylov-Boguliobov
method [40]. We integrate (2.76) with respect to time for one period of exter-

nal excitation T =
2π

ω
. Since we suppose that magnetization does not have

appreciable variations in one period, the following approximation can be ap-
plied ∫ t

t−T
m(τ)v(τ) dτ ≈m(t)

∫ t

t−T
v(τ) dτ . (2.78)

By using (2.78), all the periodic terms in (2.76) disappear and the equation
becomes

dm

dt
−α

(
m× dm

dt

)
= −[m×(−Dm+ha)]+ωm×êz−αωm×(m×êz) ,

(2.79)
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where

D =


Dx +Dy

2
0 0

0
Dx +Dy

2
0

0 0 Dz

 (2.80)

and

ha =
hx + hy

2
êx + hDC êz (2.81)

The equation represents an autonomous dynamic system, hence the methods
of nonlinear dynamics (used in the previous section) can now be applied.

2.6 Hysteresis in ferromagnetic resonance

An evident effect of the bifurcations on the dynamics is hysteresis. A neces-
sary condition for having hysteresis is the existence of more than one equilib-
rium point. Whenever the equilibrium is destroyed the system state changes
abruptly. Even if the previous equilibrium is restored the system does not go
back until the new one becomes unstable.
In this section numerical simulations are executed in order to show the ef-
fect of a bifurcation and to check the approximation introduced by Krylov-
Boguliobov method in systems with small asymmetries. Let us consider a
nanomagnet with κeff = 0.5, α = 0.05, hDC = 0.3 and hAC = 0.03, the
bifurcation map is shown in figure 2.12.
Starting from ω = 0.55, the frequency is increased up to ω = 0.75 and
then decreased back to ω = 0.55 as highlighted in the figure. The ampli-
tude m⊥ =

√
1−m2

z is shown in figure 2.13: the analytical fold over the
curve is represented in blue, the interval in which m⊥ oscillates is represented
in red. Starting from the lower curve, when the saddle-node bifurcation line
is crossed the m⊥ jumps to a new equilibrium for ω ≈ 0.69 and stays on
the higher curve. When the frequency is decreased m⊥ remains on the higher
curve until the hopf bifurcation occurs at ω ≈ 0.66. Since the system is now
in a stable limit cycle m⊥ oscillates and the cycle grows in amplitude until
it collides with a saddle and gets destroyed by the homoclinic bifurcation at
ω ≈ 0.63.
A similar simulation is executed for a slightly asymmetric system. Let us con-
sider a nanomagnet with Dx = −0.05, Dy = 0.05 and Dz = −0.5, while
all the remaining parameters are the same used for the previous simulation, so
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Figure 2.12: Bifurcation map of the system considered in section 2.6
obtained via numerical simulation. In the region indicated by the black
double arrow, three bifurcation curves are crossed.

that the symmetrized model obtained with Krylov-Boguliobov method is un-
changed.
Results of the simulation are in figure 2.14. As expected the asymmetry causes
a ripple around the equilibrium state, nonetheless the averaged system still
gives a good approximation of m⊥ as long as the asymmetry is small.
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Figure 2.13: Simulation proposed in section 2.6 for a symmetrical
system. Hysteresis are observed in the region between the homoclinic
bifurcation curve and the saddle node bifurcation curve. The values of
the equilibria - analytically obtained - are illustrated in blue
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Figure 2.14: Simulation proposed in section 2.6 for a asymmetrical
system. The equilibrium for the equivalent symmetrized system - ob-
tained with the Krylov Boguliobov method - are illustrated in blue.
Since the asymmetry is small, the magnetization amplitudem⊥ is sim-
ilar to the one of the symmetric system except for a ripple.



Chapter 3

Noise in Nanosystems

In small systems the thermal fluctuations randomly influence the magnetiza-
tion. Thermal fluctuations may allow the system to pass through an high en-
ergy barrier after a long enough time as depicted in the figure 3.1.
An example of the probability density function evolution is shown in figure

3.2. Starting from a potential well, the distribution quickly changes in the well.
After a longer time the probability starts to grow in the other well and the equi-
librium is reached.
The dimensions of magnetized devices used in magnetic storage technologies

and spintronics are usually rather small and thermal effects must be included
in the analysis.
These effects are usually studied by introducing an appropriate stochastic term
in the Landau Lifshitz Gilbert (LLG) equation (1.82). The stochastic term
usually added has the form of a random magnetic torque m× νhN (t), where
hN (t) is a vector whose components are independent gaussian white noise
processes, and ν is a parameter which measures the intensity of thermal per-
turbations

∂m

∂t
= −m× (heff + νhN )− αm× [m× (heff + νhN )] . (3.1)

The assumption that the thermal noise is gaussian is usually motivated by the
central limit theorem: the random fluctuations are the result of a very large
number of statistically independent random events, hence the sum of their ef-
fects tends to have a gaussian distribution. Moreover the choice of the gaussian
distribution leads to results which are consistent with statistical mechanics.
On the other hand, the assumption that the noise has negligible correlation
time reflects the hypothesis that the random perturbations are expected to have

69
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Figure 3.1: Qualitative representation a small bistable systems af-
fected by thermal fluctuations

Figure 3.2: Evolution of the probability density function in a peri-
odic potential. After a long enough time, the probability of finding
the system state in potential well is the same regardless of the initial
probability density function.
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a correlation time much shorter than any time constant of magnetization dy-
namics.
Since equation (3.1) is stochastic, an analysis of the magnetization dynamics
requires a large number of realizations of the process in order to have reliable
statistics. Alternatively the time evolution of the probability density function
of the magnetization could be directly determined. These two approaches are
those conceptually proposed by Langevin in 1908 [51] and by Einstein in 1905
[50] respectively.
The study of the probability density function is generally preferable when the
noise is rather big compared to the drift. The equation governing the probabil-
ity density function evolution is called Fokker-Planck equation

∂w

∂t
= −∇Σ ·

[
(m×∇Σg − α∇Σg)w − ν2

2
∇Σw

]
, (3.2)

where w is the probability density function defined on the unit sphere, g is the
Gibbs-Landau free energy and “∇Σ” and “∇Σ·” are respectively the gradient
and the divergence on the surface of the unit sphere.
In the following we consider the influence of the thermal fluctuations in two
different scenarios: the switching times statistical distribution for magnetic
memories [49] and the persistence of data in a magnetic grain.

3.1 Probability density function at equilibrium

In the second chapter we analyzed the equilibrium of a uniformly magnetized
body. When there is noise the system can not have static equilibrium anymore
since hN makes the system non-autonomous and non-periodic. The magneti-
zation is expected to move, but at the same time it is expected to spend longer
time in the regions with low free energy.
Let us consider the Fokker-Planck equation (3.2), at the equilibrium the prob-
ability density function must satisfy

∇Σ ·
[
(−m×∇Σg + α∇Σg)w +

ν2

2
∇Σw

]
= 0 . (3.3)

In order to solve (3.3) we impose that the term in square bracket is null, this
procedure is also called detailed balance [43]. The solution can be found by
applying separation of variables if we assume that the probability distribution
depends only on the free energy, i.e.

w = w(g) . (3.4)
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This assumption implies that the precessional term gives no contribution. In-
deed we have

∇Σ · [(m×∇Σg)w] = ∇Σ ·(m×∇Σg)w+(m×∇Σg) ·∇Σw = 0 . (3.5)

The first term on the right hand side of (3.5) is zero because flows of Hamilto-
nian systems are divergenceless and the second term is null because ∇Σg and
∇Σw are parallel according to (3.4). Eventually we get

w =
1

Z
exp

(
−2α

ν2
g

)
, (3.6)

where Z is a renormalization constant needed to ensure that the total proba-
bility is unitary. This result is also expected by statistical mechanics, in fact
Boltzmann distribution reads

w =
1

Z
exp

(
−
µ0M

2
SV

kBT
g

)
. (3.7)

This last relation allows to find the value of ν, which is

ν2

2α
=

kBT

µ0M2
SV

=⇒ ν =

√
2αkBT

µ0M2
SV

. (3.8)

This relation is often referred to as the fluctuation-dissipation relation.

3.2 Data persistence in magnetic memories

Let us consider an axial symmetric particle with free energy given by

g = −1

2
κeffm

2
z . (3.9)

This situation appropriately models the state of a magnetic memory cell at rest.
By equation (3.6) at thermal equilibrium the magnetization has an equal chance
to be closer to the minimum mz = 1 or to the minimum mz = −1. In terms
of data this means that we have an equal chance to read “0” or “1” regardless
of what we wrote previously in the cell.
This worrying feature is actually present in every type of memory, nonetheless
digital memories work properly because the time required to reach the equilib-
rium is long enough to retain the data for the entire lifetime of the product.
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In magnetic memories this stability is achieved by increasing saturation, mag-
netization and anisotropy of the chosen material.
Let us consider Fokker-Planck equation for axialsymmetric particles

∂w

∂t
=

1

sin θ

∂

∂θ

[
sin θ

(
α
∂g

∂θ
w +

ν2

2

∂w

∂θ

)]
, (3.10)

where the terms in round bracket correspond to the surface current density of
the pdf.
If the energy barrier between the equilibria is high enough, we expect the prob-
ability density function to be approximated by

w(θ) =


w(0) exp

(
−G(θ)−G(0)

kBT

)
θ < π/2

w(π) exp

(
−G(θ)−G(π)

kBT

)
θ > π/2

(3.11)

with G = µ0M
2
SV g. The idea behind this assumption is that the modes that

redistribute the particles inside a potential well are much faster than the modes
that bring the particles through the barrier.
We now define

n1 = 2πw(0) exp

(
G(0)

kBT

)
I1 , n2 = 2πw(π) exp

(
G(π)

kBT

)
I2 ,

(3.12)
with

I1 =

∫ θ1

0
exp

(
−G(θ)

kBT

)
sin θ dθ , I2 =

∫ π

θ2

exp

(
−G(θ)

kBT

)
sin θ dθ .

(3.13)
The quantity n1 and n2 express the probability to find the magnetization in the
upper or in the lower potential well respectively, while θ1 and θ2 delimit the
region which is considered the center of the well. In fact, the exact values of
θ1 and θ2 do not matter since the integrand term quickly vanishes if the energy
barrier is high enough.
The integrals in equation (3.13) can be approximated by substituting g(θ) with
its Taylor expansion up to the second order in θ = 0 and θ = π respectively,
using θ1 =∞, θ2 = −∞ and by replacing sin θ by θ; it yields

I1 ≈
kBT

G′′(0)
exp

(
−G(0)

kBT

)
, I2 ≈

kBT

G′′(π)
exp

(
−G(π)

kBT

)
(3.14)
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where G
′′
(θ) is the second derivative of G(θ).

The flow of the probability density function is given by the Fokker Planck
equation

I = −2π sin θ

(
α
∂g

∂θ
w +

ν2

2

∂w

∂θ

)
=⇒ I

2π sin θ

2

ν2
= −

(
1

kBT

∂G

∂θ
w +

∂w

∂θ

)
(3.15)

where we used equation (3.8). By multiplying (3.15) by exp(G/kBT ) and
integrating with respect to θ we obtain

I

πν2

∫ θ2

θ1

eG(θ)/kBT

sin θ
dθ = w(θ1) exp

(
G(θ1)

kBT

)
− w(θ2) exp

(
G(θ2)

kBT

)
.

(3.16)
By using equation (3.11) the right hand side of equation (3.16) is restated as

w(θ1) exp

(
G(θ1)

kBT

)
− w(θ2) exp

(
G(θ2)

kBT

)
=

w(0) exp

(
G(0)

kBT

)
− w(π) exp

(
G(π)

kBT

)
.

(3.17)

According to (3.12) we obtain

I

πν2

∫ θ2

θ1

eG(θ)/kBT

2π sin θ
dθ =

1

2π

(
n1

I1
− n2

I2

)
. (3.18)

Because of the high energy barrier we can assume that the probability density
function is negligible in the area between θ1 and θ2, hence

I = −dn1

dt
=

dn2

dt
. (3.19)

Eventually we have

dn1

dt
= −dn2

dt
=

ν2

2Im

(
n2

I2
− n1

I1

)
, (3.20)

where

Im =

∫ θ2

θ1

eG(θ)/kBT

2π sin θ
dθ . (3.21)

In matrix form equation (3.20) reads

d

dt

[
n1

n2

]
=

 −
ν2

2ImI1

ν2

2ImI2
ν2

2ImI1
− ν2

2ImI2

[ n1

n2

]
. (3.22)
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The secular equation is(
ν2

2ImI1
+ λ

)(
ν2

2ImI2
+ λ

)
− ν4

4I2
mI1I2

= λ2 +
ν2

2Im

(
1

I1
+

1

I2

)
λ = 0

(3.23)
and the eigenvalues are

λ1 = 0 , λ2 = − ν2

2Im

(
1

I1
+

1

I2

)
. (3.24)

In particular λ2 provides an estimate of the lowest non-zero eigenvalue of the
Fokker Planck equation, its reciprocal is then the time constant for the thermal
activation of the magnetic memory.

3.3 Pseudospectral methods

Let us consider again the Fokker Planck equation. If there is no drift, the
equation becomes a diffusion equation on the unit sphere’s surface. In such a
case we have

∂w

∂t
= ∆Σw (3.25)

where ∆Σ is Laplace-Beltrami operator and its eigenmodes are the spherical
harmonics.
When instead there is a drift term, no general analytic solution is available and
numerical methods must be implemented.
For the analysis of these cases we consider the Pseudospectral method [52, 53].
This method has an excellent performance on equation (3.25) and the eigen-
values of the Laplace-Beltrami can be computed with machine precision as
illustrated in figure 3.3.
Let us consider a set of functions ϕi, i = 1, . . . , N , to be used in the approxi-

mation of the real solution of Fokker Planck equation, we define our approxi-
mated solution as

w(m, t) =
N∑
i=1

ci(t)ϕi(m) . (3.26)

If the exactw is a linear combination of the ϕi’s Fokker Planck equation can be
solved everywhere with machine precision. Otherwise we can choose at most
N cases where the equation is solved exactly and find the unknown coefficients
consequently.
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Figure 3.3: Comparison of the numerical errors in the computation of
Laplace-Beltrami operator eigenvalues between finite differences and
the pseudospectral method. The missing points in the blue curve cor-
respond to null errors (or errors smaller than the machine precision).
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To this purpose, we select a grid of points on the surface of the unit sphere
mi = (θi, φi), where we impose

∂w

∂t

∣∣∣∣
m=mi

= −∇Σ ·
[
(m×∇Σg − α∇Σg)w − ν2

2
∇Σw

]∣∣∣∣
m=mi

. (3.27)

This method is also called collocation method.
Then it is necessary to identify the basis function ϕi we want to use. According
to the properties of these functions the numerical method has a different name.
The simplest choice consists in piecewise linear functions which are zero in all
the grid points but one; this choice classifies the method as the finite element
method (FEM).
In some cases smooth functions are preferable. Smooth functions, with the
whole domain as support, classify the method as the spectral method.
The pseudospectral method is somehow intermediate between the finite ele-
ment method and the spectral method. We choose functions ϕi which are
defined in the whole domain though they have the collocation property

ϕj(mi) = δij . (3.28)

Let us use z = cos θ as variable instead of θ. By using the Leibenitz formula
for the derivatives we reformulate the Fokker Planck equation as follows

∂w

∂t
= (Lγ + Lα + Lν)w (3.29)

with

Lγ =
∂g

∂φ

∂

∂z
− ∂g

∂z

∂

∂φ
,

Lν =
ν2

2

(
−2z

∂

∂z
+ (1− z2)

∂2

∂z2
+

1

1− z2

∂2

∂φ2

)
,

Lα =α

(
−2z

∂g

∂z
+ (1− z2)

∂2g

∂z2
+ (1− z2)

∂g

∂z

∂

∂z

+
1

1− z2

∂2g

∂φ2
+

1

1− z2

∂g

∂φ

∂

∂φ

)
.

(3.30)

We choose a grid of points equispaced in θ and φ so that they are distributed
as Chebyshev nodes in z. We have

(zi, φj) with z ∈ {z1, . . . , zNz} and φ ∈ {φ1, . . . φNφ} , (3.31)
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Figure 3.4: Plot of the basis functions defined in equation (3.33).
On the left Lagrange polynomials with zeros distributed as Chebyshev
nodes, on the right periodic sinc functions.

where Nz and Nφ are respectively the number of different values of z and φ
used in the grid. Basis functions are given by

ϕij(z, φ) = Zi(z)Φj(φ) , (3.32)

with

Zi(z) =

Nz∏
m=1

z − zm
zi − zm

, Φj(φ) =
sin(Nφ(φ− φj)/2)

Nφ tan((φ− φj)/2)
. (3.33)

A representation of the functions Z and Φ is in figure 3.4. As benchmark for
the pseudospectral method we consider the first non zero time constant ob-
tained by the method of the previous section. The results are illustrated in the
figure 3.5.
The pseudospectral method accurately reproduces the time constants for low
to intermediate energy barriers. When the energy barrier increases the modes
of the FokkerPlanck equation become very sharp in space and in order to ac-
curately represent them an increasing number of basis functions is required,
which inflates the computational costs.
Time constants for a wide interval of energy barriers are in figure 3.6. Indus-
trial memories typically have ∆G/kBT ≈ 50 which means τ ≈ 1021ns ≈ 30
years.
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Figure 3.5: Comparison of the numerical solutions obtained with the
pseudospectral method and Langevin dynamics and the analytical so-
lution given by equation (3.24). The approximated analytical solution
works well for high potential barriers, the numerical method instead
works well for low or intermediate energy barrier. The analytical solu-
tion is used as benchmark.
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Figure 3.6: Extended plot of the analytical solution given in (3.24),
energy barriers of ∆G ≈ 50kBT are used in recording devices.

3.4 Switching time distribution for a magnetic mem-
ory

In the previous sections we analyzed the magnetization dynamics when the
memory cell is at rest. In particular we saw that no information can be stored
permanently. Nonetheless if the time scales - we are interested in - are small
compared with the time required to reach the equilibrium we can consider an
initial distribution like (3.11).
We still have to consider how the thermal noise influences the writing process,
which is our topic in the work [49].
Let us consider the Fokker Planck equation of a magnetic particle with uniaxial
anisotropy along êz , applied magnetic field ha and with an injected current β
polarized along the direction ep. We have

∂w

∂t
= −∇Σ ·

[
(m×∇Σg − α∇ΣΦ)w − ν2

2
∇Σw

]
, (3.34)

where
g = −1

2
κeff m

2
z −m · ha , (3.35)
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Φ = g +
β

α

ln(1 + cpm× êp)
cp

, (3.36)

and cp controls the spin torque transfer.
Let us also assume axial symmetry, i.e. êz = êp and êz parallel to ha, g and
Φ are then restated as

g = −1

2
κeff m

2
z − hamz (3.37)

and

Φ = g +
β

α

ln(1 + cpm× êz)
cp

. (3.38)

Before beginning the writing process, neither the applied field nor the current
are present, hence the equilibrium probability density function is given by

weq(mz) =
1

Z
exp

( α
ν2
κeffm

2
z

)
, (3.39)

with

Z = 2π

∫ 1

−1
exp

( α
ν2
κeffm

2
z

)
dmz , (3.40)

or in terms of the angle θ with the z axis

peq(θ) = B sin θ exp
( α
ν2
κeff sin2 θ

)
, (3.41)

where B is an appropriate normalization constant.
If the energy barrier is high enough, as in the case of magnetic memories, peq
quickly goes to zero as θ grows, hence we can approximate sin θ ≈ θ in the
relevant neighborhood of θ = 0 and obtain

p̃eq = Bθ exp
( α
ν2
κeffθ

2
)
, (3.42)

with the cumulative density function

Feq(θ) = 1− exp
[
−µκeff

2
θ2
]
. (3.43)

Closed form expressions can also be derived for the mean µθ and the variance
σ2
θ

µθ =

√
4− π
2µκeff

, σ2
θ =

4− π
2µκeff

. (3.44)

Let us now consider the switching process triggered by an applied field and a
polarized current. Due to the small duration of the whole process we can ignore
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the noise during the switch, although the noise affects the initial condition of
the process which may modify the time required for the process.
The component mz of the magnetization evolves according to

dmz

dt
= α

(
κeffmz + haz −

β

α
(1 + cpmz)

−1

)
(1−m2

z) . (3.45)

In order to switch the magnetization from êz to −êz , the current is required to
be above a critical value βcrit given by

β > βcrit = α(1 + cp)(κeff + haz) , (3.46)

whereas switching from −êz to êz requires a current below the following crit-
ical value

β < βcrit = α(1− cp)(−κeff + haz) . (3.47)

The equation (3.45) can be integrated analytically by separation of variables.
By setting the initial time t = 0 we have∫ mzf

mzi

dmz

[κeff + haz − β/α(1 + cpmz)−1](1−m2
z)

= αt . (3.48)

We can hence define the switching time as the time required to reach an as-
signed value of magnetization, say mzf = −0.9 starting from the initial con-
dition mzi.
In the case of a symmetric spin torque, namely cp = 0, it is possible to analyt-
ically integrate (3.48). In this case the equation becomes∫ mzf

mzi

dmz

(κeff + h̃)(1−m2
z)

= αt . (3.49)

with h̃ = haz − β/α and the solution is given by

ts =
1

α

[
1

2(h̃− κeff)
ln

(
1 +mzf

1 +mzi

)
− 1

2(h̃+ κeff)
ln

(
1−mzf

1−mzi

)
−

κeff

h̃2 − κ2
eff

ln

(
h̃+ κeffmzf

h̃+ κeffmzi

)]
= g(mzi) .

(3.50)
By using the composition rule for probability distribution functions we obtain
the statistical distribution for switching times

f(ts) = p̃eq(arccos(g−1(ts)))

∣∣∣∣∣ 1√
1− (g−1(ts))2

∣∣∣∣∣
∣∣∣∣dg−1(ts)

dts

∣∣∣∣ (3.51)
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Figure 3.7: Comparison of the probability density function and cumu-
lative density function obtained from the formulas (3.51) and (3.52)
and the histograms generated by using (3.50).

and the cumulative distribution function

F (ts) = exp
[
− α
ν2
κeff arccos2(g−1(ts))

]
. (3.52)

The function g−1(ts) cannot be easily expressed in closed form, but neverthe-
less it can be efficiently obtained by numerical inversion of the strictly mono-
tone fuction g(mzi) given by (3.50).
The probability and the cumulative distribution function are illustrated in figure
3.7 for the following material parametersMs = 106A/m, V = 7.07 ·10−25m3

, T = 300 K, Dx = Dy = 0.0464, Dz = −0.366 resulting in κeff = 0.412
and µκeff = 88.49.
Finally, it is useful deriving simple analytical formulas for the mean and the

variance of the switching time as function of the field and the current ampli-
tudes. By using Taylor expansion of the function g(mz0), it can be shown that
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up to second order term the average is

E[Ts] =
1

ακeff

[
− 1

h̃2 − 1
log

(
h̃+mzf

h̃+ cosµθ

)
1

2(h̃− 1)
log

(
1 +mzf

1 + cosµθ

)
− 1

2(h̃+ 1)
log

(
1−mzf

1− cosµθ

)]
,

(3.53)
while at first order the variance can be expressed as

σ2
T =

4− π
2µκeff

[
1

ακeff

− sinµθ

cos3 µθ + h̃ cos2 µθ − cosµθ − h̃

]2

. (3.54)

In order to check the accuracy of the analytical prediction for the probability
and the cumulative distribution function, we have performed numerical
simulations of magnetization switching in the presence of noise, the ma-
terial parameters are Ms = 106 A/m, V = 7.07 · 10−25m3, T = 300 K,
κeff = 0.412. The switching time distributions for different values of the
applied field are shown in figure 3.8. The figure shows also the distribution
obtained from numerical simulations with macrospin model and micromag-
netic simulations (1000 realizations).
Each realization of the stochastic dynamics has been performed starting from
the initial condition mz = 1 at t = 0 under zero external actions (field,
current) and letting magnetization relax for a time interval of 2 ns, then a
rectangular field pulse of amplitude haz < −κeff is applied and the time ts for
which mz = −0.9 is determined. The distribution function is estimated from
a collection of a large number of realizations.

The computed values of average and variance extracted from macrospin
and micromagnetic simulation are shown in table 3.1. It can be seen that
macrospin simulation exhibits a good agreement with the analytical formulas,
especially for high field, when the drift term prevails on the noise. On the other
hand micromagnetic simulation shows good agreement for intermediate fields,
whereas high field can activate spatially inhomogeneous modes that increase
the average swithing time with respect to the macrospin approximation.
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Figure 3.8: Probability density function (upper row) and cumulative
probability function (lower row) of the switching time for different val-
ues of the applied field. Solid black lines refer to analytical formulas,
dashed red lines refer to numerical results from macrospin simulation
(N = 1000 realizations) and the blue dot-dashed line refer to numerical
results from micromagnetic simulation (N = 1000 realizations)

— Analytical Macrospin Micromagnetic
haz/κeff E[TS ] σ2

TS
E[TS ] σ2

TS
E[TS ] σ2

TS
-1.5 1.8294 0.1420 1.4927 0.1562 1.4866 0.1009
-2.0 1.0854 0.0361 1.0180 0.0631 1.0399 0.0219
-2.5 0.7874 0.0161 0.7674 0.0250 0.9360 0.0164

Table 3.1: Values of the mean and the variance obtained with (3.53)
and (3.54), compared with the mean and the variance obtained from
macrospin simulation and micromagnetic simulation for different val-
ues of the applied field (no spin polarized current).
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Chapter 4

Ultrafast Magnetization
Dynamics

Until 20 years ago, all of the relevant physics of magnetization dynamics
were believed to be included in Landau-Lifshitz-Gilbert equation which was
thought to be the only reference for the optimization of storage devices.
However, the pioneering experiment of Bigot et al. in 1996 [54] revealed the
occurrence of spin dynamics on the sub-picosecond scales that could not be
described by the Landau-Lifshitz-Gilbert equation, giving birth to the field of
ultrafast magnetism.
In 2004 Zhu et al. [59] showed that the dynamics of spins in a tunnelling
barrier between two superconductors has an unusual behaviour in contrast to
a simple spin precession and they named it ’Josephson nutation’. Kimel et al.
[60] for the first time showed inertia-driven spin switching in antiferromag-
netically ordered systems.
The concept of inertia in proper ferromagnetic systems appeared only in 2011
with the works of Ciornei et al. [55]. The Landau-Lifshitz-Gilbert equation
was reformulated including a physically correct inertial response, which
was surprisingly missing from the original formulation, and which predicts
the appearance of spin nutations, similar to the ones of a spinning top, at
a frequency much higher (in the terahertz range) than the spin precession
described by the conventional Landau-Lifshitz-Gilbert equation, typically at
gigahertz frequencies.
However, the lack of intense magnetic field sources at these high frequencies
has hampered the experimental observation of such nutation dynamics.
This field is currently one of the most investigated and debated topic in con-

87
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densed matter physics [63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76],
with implications for our fundamental understanding of magnetism as well as
for possible applications for faster and more energy-efficient data manipula-
tion.

4.1 Experimental techniques for ultrafast dynamics

Measuring magnetization in ultrafast phenomena is a complex challenge that
requires appropriate method to be accomplished.
A physical effect widely used to measure magnetization is the Magneto Optic
Kerr Effect (MOKE). It was noticed by Faraday in 1845 that light reflected
by magnetized bodies manifests changes in the polarization depending on the
magnetization of the body [61, 62]. This effect is due to a change in the elec-
tric permettivity. In particular it can be observed that electric susceptibility is
represented by an antisymmetric matrix, i.e.

ε = ε

 1 0 0
0 1 0
0 0 1

+ ε

 0 iQz −iQy
−iQz 0 iQx
iQy iQx 0

 , (4.1)

the electric induction vector will hence be given by

D = εE + iεE×Q , (4.2)

where we introduced the vector Q = [Qx, Qy, Qz].
Phenomenologically, this can be answered by a simple argument based on
time reversal symmetry. Under the time reversal operation, the electric dis-
placement field D and the electric field E remain unchanged, but the mag-
netic field H changes its sign. Thus, Onsager’s relation gives εij(E,H) =
εji(E,−H) [61, 26]. By expanding εij up to terms linear in E and H it be-
comes obvious that the antisymmetric part of εij is generated by the magnetic
field. In general, any quantity that breaks time reversal symmetry could, in
principle, generate antisymmetric elements of the permettivity matrix.
Maxwell’s equations for plane waves become (assuming for simplicity H =
B) 

k ·E + ik · (E×Q) = 0

k×E =
ω

c
H

k ·H = 0

k×H = −ωε
c

(E + iE×Q)

. (4.3)
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Figure 4.1: Reference frame for section 4.1
.

Let us consider the reference frame in figure 4.1 where a wave that propagates
along the direction k̂ hits a ferromagnetic medium. The unit vector normal to
the surface of the medium is called êz . Let us choose ês to be perpendicular
to k̂ and êz and êp perpendicular to ês and k̂, from Maxwell’s equations we
obtain the following wave equations

(
ω2ε

c2
− k2

)
Es +

iω2εQ · êk
c2

Ep = 0 ,(
ω2ε

c2
− k2

)
Ep −

iω2εQ · êk
c2

Es = 0 .

(4.4)

If we consider a circularly polarized wave we have Es = ±iEp depending
on whether the wave is right polarized or left polarized. From equation (4.4),
by keeping only the first order term in Q, we obtain as refractive index for
circularly polarized waves

nR,L = n

(
1± 1

2
Q · êk

)
. (4.5)

This means that left polarized waves or right polarized waves travel at a differ-
ent speed producing a change of polarization of the transmitted waves, this is
known as Faraday effect.
Consequently also the reflected waves have a different polarization depending
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on the vector Q, and hence on the magnetization M. The reflected waves can
be calculated using a matrix formalism[

Ers
Erp

]
=

[
rss rsp
rps rpp

] [
Eis
Eip

]
(4.6)

where the first subscript of E denotes the reflected or the incident wave and
the second subscript of E denotes the component along ês or along êp.
The reflectivity coefficients are given by

rpp =
n2 cos θ1 − n1 cos θ2

n2 cos θ1 + n1 cos θ2
− 2in1n2 cos θ1 sin θ2Qx

(n2 cos θ1 + n1 cos θ2)2
(4.7)

rps =
in1n2 cos θ1(Qy sin θ2 −Qz cos θ2)

(n2 cos θ1 + n1 cos θ2)(n1 cos θ1 + n2 cos θ2) cos θ2
(4.8)

rsp =
in1n2 cos θ1(Qy sin θ2 +Qz cos θ2)

(n2 cos θ1 + n1 cos θ2)(n1 cos θ1 + n2 cos θ2) cos θ2
(4.9)

rpp =
n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2
(4.10)

where n1 and n2 are the refractive indexes of the two media in absence of
contribution from magnetization, and θ1 and θ2 are the angles of the incident
and transmitted waves with the normal to the interface between the two media.
In the experiments the rotation φ

′
and the ellipticity φ

′′
of the reflected wave

are measured. In the case of incident electric field aligned with ês, these are
given by

φ
′

= Re
[
Ers
Erp

]
= Re

[
rps
rss

]
, φ

′′
= Im

[
Ers
Erp

]
= Im

[
rps
rss

]
, (4.11)

while in case of incident electric field linearly polarized along êp they are given
by

φ
′

= Re
[
Erp
Ers

]
= Re

[
rsp
rpp

]
, φ

′′
= Im

[
Erp
Ers

]
= Im

[
rsp
rpp

]
. (4.12)

In order to measure dynamics that evolves in few picosecond, or even in few
femtoseconds, it is useful the pump probe method. Assuming that it is possible
to repeat the same experiment, the pump probe technique consists in sending
the pump signal and the probe signal with a different delay in every replication
of the experiment.
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Figure 4.2: Setup of an experiment with moke pump probe measurement.

The pump signal is the one with high energy that triggers the phenomena of
interest, while the probe signal is the one sent to the detector for the mea-
surement. The signal is then reconstructed by using as elapsed time the delay
between pump and probe instead of the actual time when the measure is ob-
tained. An example of setup for the pump probe measurement is in figure 4.2.

4.2 Inertial magnetization dynamics

According to the Landau-Lifshitz-Gilbert equation, the dynamics of the mag-
netization M in a ferromagnetic sample is described by the equation (1.82)
here reported

dM

dt
= −γGM×

(
Heff −

αG
MS

dM

dt

)
.

In the derivation of this equation, Gilbert introduced a Lagrangian for the fer-
romagnetic systems with an ad hoc inertia tensor. In this mechanical approach
for describing the motion of spins the two principal moments of inertia are set
to zero so that the inertial terms disappear from the dynamic equation. An in-
ertial tensor of such kind is not physically correct as the same Gilbert noticed.
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Despite its crudeness, this approximation turned out to be good enough to de-
scribe the dynamics of magnetization on time scales of 0.1 nanoseconds or
longer, and the general validity of the equation at faster time scales was not
questioned.
A full derivation of the inertial LLG equation was given later by Wegrowe et
al. [56], and the three principal momenta of inertia were realistically set to
non-zero values, which led to the so-called inertial LLG equation

dM

dt
= −γGM×

[
Heff −

αG
MS

(
dM

dt
+ τ

d2M

dt2

)]
. (4.13)

The last term of equation (4.13) has a second derivative term due to angular
momentum relaxation, in addition to the spin precession and the damping. It
is noticed from simulations that, on time scales shorter than τ , nutation os-
cillations are observed on top of the precession motion, identifying a novel
‘nutation regime’ driven by the inertia that had never been experimentally ob-
served before. On time scales longer than τ the usual Landau-Lifshitz-Gilbert
equation is recovered. The possible large separation between the time scales
of the two regimes would then explain the success of the standard Landau-
Lifshitz-Gilbert equation in correctly describing magnetization dynamics for
times larger than τ . The determination of the value of τ is however an open
problem which needs to be addressed experimentally, as different theoretical
works indicate values ranging from a few femtoseconds to hundreds of pi-
coseconds. The qualitative difference of magnetization dynamics of (1.82)
and (4.13) is shown in figure 4.3. In the following of the chapter the subscript
G of αG and γG are dropped to keep the notation simple.

4.3 Derivation of the inertial LLG equation

The derivation of the inertial Landau-Lifshitz-Gilbert equation (4.13) is based
on the Lagrangian mechanic approach similar to the one developed in section
1.5.3. As a starting point we consider the equation of a rotating rigid body, in
a body-fixed reference frame. The angular velocity vector reads

Ω1 = ϕ̇ sin θ sinψ + θ̇ cosψ ,

Ω2 = ϕ̇ sin θ cosψ − θ̇ sinψ ,

Ω3 = ϕ̇ cos θ + ψ̇ .

(4.14)

An illustration of the reference is shown in figure 4.4. For any vector M of
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Figure 4.3: Magnetization dynamics without inertia (on the left) and
with inertia (on the right). The inertial term causes the appearance of
an oscillation around the usual precessional motion at high frequency.
This oscillation is called nutation. The frequency response of the sys-
tem has a second small resonance peak at higher frequencies.
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Figure 4.4: . Illustration of the coordinates system of the body fixed
reference frame.
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constant magnitude carried with the rotating body we have

dM

dt
= Ω×M . (4.15)

This relation can be inverted by cross product multiplication of (4.15) by M.
By using M = MS ê3 we have

Ω =
1

M2
S

M× dM

dt
+ Ω3ê3 . (4.16)

Let us define the Lagrangian of the system as

L =
1

2
I1(Ω2

1 + Ω2
2) +

1

2
I3Ω2

3 −G(θ, ϕ) , (4.17)

where G is the Gibbs-Landau free energy and we assume that two of the three
principal momenta of inertia are equal.
The Euler-Lagrange equation, including the Rayleigh dissipation term, reads
as in equation (1.80)

d

dt

∂L(M, Ṁ)

∂Ṁ
− ∂L(M, Ṁ)

∂M
+
∂R(Ṁ)

∂Ṁ
= 0 ,

withR = η
2Ṁ2 = 1

2ηMS(Ω2
1 + Ω2

2).
By inserting (4.17) into it and using the expression of Ω given in (4.14) we
obtain

d

dt
(I1θ̇)− I1ϕ̇

2 sin θ cos θ + I3ϕ̇ sin θ
(
ϕ̇ cos θ + ψ̇

)
=
∂R
∂θ̇
− ∂G

∂θ
,

d

dt

[
I1ϕ̇ sin2 θ + I3

(
ϕ̇ cos θ + ψ̇

)
cos θ

]
=
∂R
∂ϕ̇
− ∂G

∂ϕ
,

d

dt

[
I3

(
ϕ̇ cos θ + ψ̇

)]
=

d

dt
(I3Ω3) = −∂R

∂ψ̇
= 0 .

(4.18)
The angular momentum is given by L1

L2

L3

 =

 I1 0 0
0 I1 0
0 0 I3

 Ω1

Ω2

Ω3

 , (4.19)

and the magnetization is proportional to the the angular momentum

M = −γL3ê3 = −γI3Ω3ê3 , (4.20)
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where γ is the gyromagnetic ratio already defined in section 1.5.1.
The third equation of (4.18) simply states the conservation of the magnetiza-
tion module, already stated in (4.15). After some calculations the first two
equations of (4.18) yield

Ω̇1 = −
ηM2

S

I1
Ω1 +

(
1 +

I3

I1

)
Ω2Ω3 −

1

I1

∂G

∂θ
,

Ω̇2 =
ηM2

S

I1
Ω2 −

(
1 +

I3

I1

)
Ω1Ω3 −

1

I1 sin θ

∂G

∂ϕ
.

(4.21)

The two terms containing the derivative of the free energy are the components
of the effective field perpendicular to ê3, namely

Heff · ê2 =
1

MS

∂G

∂θ
, Heff · ê1 = − 1

MS sin θ

∂G

∂ϕ
. (4.22)

Since Ω̇3 = 0, the equation (4.21) can be reformulated as

Ω̇ = −
ηM2

S

I1
(Ω− Ω3ê3) +

MS

γ

(
1

I3
− 1

I1

)
(Ω× ê3) +

MS

I1
(ê3 ×Heff) .

(4.23)
Finally, replacing (4.16) and (4.20) into the last equation yields

dM

dt
= −γM×Heff − γηM×

dM

dt
− γητM× d2M

dt2
, (4.24)

where we set τ = I1
ηMS

.
It is worthy to notice that the standard Gilbert equation is obtained if I1 = 0,
and the proportionality between the angular momentum L and the magnetiza-
tion M is also restored.

4.4 Analysis of the iLLG equation

In order to clearly understand the experimental data, some analytics on the
LLG equation with inertia must be introduced. Let us consider a ferromagnetic
thin film, and denote êz the unit vector perpendicular to the film. An external
magnetic field is applied and no material anisotropy is present. Moreover we
assume the magnetization to be uniform over space. The applied field is given
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by the sum of a constant field perpendicular to êx and a time varying magnetic
field HTHz parallel to êx

Ha = HTHz(t)êx +H‖êy +H⊥êz . (4.25)

We also define a spherical coordinates system, the semiaxis θ = 0 is the posi-
tive part of the z axis, while the semiaxis ϕ = 0 is represented by the positive
part of the x axis. In this case the transformation from cartesian to polar coor-
dinates is given by

Hr =Hx cosϕ sin θ +Hy sinϕ sin θ +Hz cos θ ,

Hθ =Hx cosϕ cos θ +Hy sinϕ cos θ −Hz sin θ ,

Hϕ =−Hx sinϕ+Hy cosϕ .

(4.26)

The LLG equation can hence be written in spherical coordinates as

ατθ̈ = ατ ϕ̇2 sin θ cos θ + γHeffθ − αθ̇ − ϕ̇ sin θ , (4.27)

ατ sin θ ϕ̈ = −2ατθ̇ϕ̇ cos θ + γHeffϕ − αϕ̇ sin θ + θ̇ . (4.28)

From these equations the equilibrium {θ0, ϕ0} can be immediately found by
setting all the derivatives equal to zero. These are of course also the equilib-
rium points of the standard Landau-Lifshitz-Gilbert equation

Heffϕ = Hy cosϕ0 = 0 =⇒ ϕ0 = ±π
2
,

Heffθ = ±H‖ cos θ0 −Hz sin θ0 +
1

2
DMs sin 2θ0 = 0 .

(4.29)

Linearization of the Gilbert equation with inertia

For the linearization of the iLLG equation (4.13) it is convenient to define an
appropriate cartesian reference frame depending on the equilibrium point. Let
{θ0, π/2} be the angular coordinates of the equilibrium point. The cartesian
reference frame is defined by three axis {êr, êθ, êφ}, where êr is parallel to the
magnetization at equilibrium, and êϕ and êθ point in the direction of increasing
ϕ and θ respectively

êr = sin θ0êy + cos θ0êz êϕ = −êx
êθ = sin θ0êy − cos θ0êz

(4.30)
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The reference frame is shown in figure 4.5.
The projections of equations (4.27) and (4.28) on êϕ and êθ, approximated to
the first order in δMϕ and δMθ, and their derivatives give

ατδM̈ϕ = γMsHϕ − γHrδMϕ − αδṀϕ + δṀθ ,

ατδM̈θ = γMsHθ − γHrδMθ − αδṀθ − δṀϕ ,
(4.31)

where the magnetic fields Hϕ, Hθ and Hr are given by

Hϕ =−HTHz Hθ = DδMθ sin2 θ0 to order one

Hr =H‖ sin θ0 +H⊥ cos θ0 −DMs cos2 θ0 to order zero
(4.32)

Equations (4.31) then become

ατδM̈ϕ = −γ(H‖ sin θ0 +H⊥ cos θ0 −DMs cos2 θ0)δMϕ

− αδṀϕ + δṀθ − γMsHTHz ,

ατδM̈θ = −γ(H‖ sin θ0 +H⊥ cos θ0 −DMs cos2 θ0)δMθ

− αδṀθ − δṀϕ − γDMs sin2 θ0δMθ .

(4.33)

By using h(H‖, H⊥, DMs) = H‖ sin θ0 + H⊥ cos θ0 − DMs cos2 θ0, (4.31)
can be expressed in its state-space form as

ατ
d

dt


δMϕ

δMθ

δṀϕ

δṀθ

 =


0 0 ατ 0
0 0 0 ατ
−γh 0 −α +1

0 −γ(h+DMs sin2 θ0) −1 −α



δMϕ

δMθ

δṀϕ

δṀθ

− γMs


0
0

HTHz
0

 .

(4.34)
Alternatively the transfer function representation can be used, by Fourier trans-
forming equation (4.33). It yields

(ατω2 − iαω − γh)δM̂ϕ + iωδM̂θ = γMsĤTHz

− iωδM̂ϕ + (ατω2 − iαω − γ(h+DMs sin2 θ0))δM̂θ = 0
(4.35)
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where the hat “ˆ” indicates the Fourier transform, in matrix form it reads[
δM̂ϕ

δM̂θ

]
=[

ατω2 − iαω − γh iω
−iω ατω2 − iαω − γ(h+DMs sin2 θ0)

]−1 [
γMsĤTHz

0

]
.

(4.36)
The imaginary parts of the eigenvalues of the matrices in (4.34) give the fre-
quencies of the ferromagnetic resonance and the nutation. In order to easily
find these frequencies we neglect the imaginary part and look for the poles of
the transfer function (4.36). The following equation in ω2 is obtained

α2τ2ω4− (2γατh+ γατDMs sin2 θ0 + 1)ω2 + γ2h(h+DMs sin2 θ0) = 0 .
(4.37)

Formula (4.37) contains as special case the Kittel frequency, seen in section
2.3. By choosing τ = 0 equation (4.37) becomes

ω = |γ|
√

(H‖ sin θ0 +H⊥ cos θ0 −DMs cos2 θ0) ·√
(H‖ sin θ0 +H⊥ cos θ0 −DMs(cos2 θ0 − sin2 θ0) .

(4.38)

It can be particularized for H‖ = 0 or H⊥ = 0 and yields respectively

ωk⊥ = |γ|
√

(H⊥ −DMs)2 and ωk‖ = |γ|
√
H‖(H‖ +DMs)

where the formula for ωk⊥ holds only for H⊥ ≥ DMs, otherwise no stable
equilibrium is possible.
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Figure 4.5: Reference frame used for the linearization in section 4.4
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In Plane Applied Field

It is worthy giving particular attention to the case of an in-plane applied field,
since it is used for the setup of the experiment of the next section. We have

H⊥ = 0 =⇒ θ0 = π/2 =⇒ h = H‖ .

In this specific condition (4.36) becomes[
δM̂ϕ

δM̂θ

]
=[

ατω2 − iαω − γH‖ iω

−iω ατω2 − iαω − γ(H‖ +DMs)

]−1 [
γMsĤTHz

0

]
.

(4.39)
By computing the inverse matrix the expressions for δM̂ϕ and δM̂θ are ob-
tained

δMθ =

−
(ατω2 − iαω − γH‖ − γDMs)γMsĤTHz

(ατω2 − γH‖ − iαω)(ατω2 − γH‖ − γDMs − iαω)− ω2
,

(4.40)

δMϕ =

− iωγMsĤTHz

(ατω2 − γH‖ − iαω)(ατω2 − γH‖ − γDMs − iαω)− ω2
.

(4.41)

If the imaginary part is neglected (which means neglecting the damping), the
maximum of the response occurs at the zero of the denominator, i.e.

α2τ2ω4 − (γατ(2H‖ +Ms) + 1)ω2 + γ2H‖(H‖ +Ms) = 0 . (4.42)

A further simplification arises if the ferromagnetic resonance frequency is
much smaller than the nutation frequency

ω ≈
√
γατ(2H‖ +Ms) + 1

α2τ2
≈ 1

ατ
. (4.43)

The amplitude and the phase of (4.39) are reported (in logarithmic scale) in
figure 4.6 for δMθ and in figure 4.7 for δMϕ.
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Figure 4.6: Amplitude and phase of the Transfer function (4.41) in
logarithmic scale. The parameters are τ = 10.66 ps, α = 0.025 and
µ0HDC = 0.3 T

Figure 4.7: Amplitude and phase of the Transfer function (4.40) in
logarithmic scale. The parameters are τ = 10.66 ps, α = 0.025 and
µ0HDC = 0.3 T
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4.5 Experimental evidence of inertial dynamics in a
ferromagnet

In order to experimentally detect nutations, it is necessary to perform mag-
netic field spectroscopy in the terahertz range, a task which was technically
unfeasible until very recently, when intense terahertz sources started becom-
ing available.
Intense and tunable narrow-band terahertz magnetic fields can now be gener-
ated at superradiant electron sources such as the TELBE facility in Dresden,
Germany [78], [79], where the experiments reported in [81] were executed.
In such experiments Neeraj et al [81] used intense narrow-band terahertz mag-
netic fields to detect inertial magnetization effects in ferromagnetic thin films.
The basic idea is to perform a forced oscillator experiment as a function of
the frequency of the terahertz magnetic field HTHz, and detect amplitude and
phase of the response with the femtosecond MOKE, in the attempt to observe
the signature of a resonance.
Three different thin film samples were investigated, all with easy-plane mag-
netization: amorphous CoFeB grown on Si/SiO2 substrate, and two epitaxial
and polycrystalline permalloy grown on single crystal MgO (100) and (111)
substrates respectively.
Figure 4.8 shows the amplitude of the femtosecond MOKE response of the
three ferromagnetic thin film samples after excitation with narrowband tera-
hertz pulses with a center frequency of 0.4, 0.6 and 0.8 THz.
In all cases, the observed response of the magnetization confirms the analogy

with a forced oscillator, where the terahertz magnetic field acts as the driving
periodic force.
The modulation of the amplitude of the response suggests already the pres-
ence of an underlying resonance at approximately 0.6 THz superimposed to
the purely off-resonant forced response of lower amplitude. To further vali-
date this point, Fig. 4.9 shows the relative phase shift between the integral of
the driving force (reconstructed independently via experimental electrooptical
sampling) and the experimental MOKE signal far away from the maximum
response (0.4 THz) and at the maximum response (0.6 THz).
The data show that at 0.4 THz the magnetization precession is in phase with
the driving field. This is also reproduced by simulations solving the inertial
LLG equation (4.13) including the experimentally measured terahertz mag-
netic field as the driving force.
At 0.6 THz, on the other hand, magnetization precession and driving field are
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Figure 4.8: Time-resolved magneto-optical Kerr (MOKE) response
of the magnetisation to narrowband terahertz fields centered around
0.4, 0.6 and 0.8 THz for (a)-(c) an amorphous CoFeB film on silicon,
(d)-(f) an epitaxial Ni81Fe19 (permalloy) film grown on MgO (100)
substrate and (g)-(i) of a polycrystalline Ni81Fe19 deposited on MgO
(111) substrate [81].
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Figure 4.9: Comparison of the phase resolved response at (a) 0.4 THz
and (b) 0.6 THz center frequency of the terahertz magnetic field pulse
for the polycrystalline permalloy film. Green curves: experimentally
measured magneto-optical Kerr rotations. Pink curves: simulated re-
sponse using the inertial LLG equation (4.13) with τ = 11:3 ps and
using the experimentally measured HTHz field amplitude. The right
vertical axis is the simulated nutation angle. Grey curves: time inte-
gral of the experimental terahertz magnetic field HTHz.

approximately 90 degrees out of phase, as reproduced also by the simulations.
This evidence provides further support to the statement that an underlying res-
onance is present in the system, at a frequency two orders of magnitude higher
than any known ferromagnetic resonance, and which is determined by one sin-
gle parameter τ .
In order to estimate the value of τ from the experiments, figure 4.10 plots the

amplitude of the measured response at six different frequencies. A fit with a
Lorentzian curve was used to return the center frequency ωn and the nutation
frequency, which is

ωn ≈
1

ατ
. (4.44)

Gilbert damping constant α was measured independently with ferromagnetic
resonance spectroscopy in all three samples and the corresponding τ was ex-
tracted, with the results summarized in Table 4.1. The outcome of numerical
calculations that solve the inertial LLG equation with these values of τ are
shown in figure 4.10, and reproduce the main features of the experimental
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data.
In conclusion, a narrowband terahertz magnetic fields is used to drive magne-

Sample ωn
2π (THz) FWHM (THz) α τ (ps)

CoFeB 0.59± 0.13 0.52 0.0044 60.5± 13.3
epitaxial NiFe 0.62± 0.12 0.57 0.0058 44.0± 8.5

polycristalline Nife 0.61± 0.12 0.58 0.0230 11.3± 2.2

Table 4.1: The center frequency fn = ωn/(2π) and the full-width half
maximum (FWHM) are the parameters extracted from the Lorentzian
fit of the experimental data plotted in figure 4.10 for all three sam-
ples. The Gilbert damping α was measured independently. The angu-
lar momentum relaxation time τ is calculated using the approximation
of equation (4.44).

tization dynamics in thin ferromagnetic films, which is probed with the fem-
tosecond magneto-optical Kerr effect. By analyzing both amplitude and phase
of the response, a broad resonance at approximately 0.6 THz is detected, which
is ascribed to the presence of a nutation spin resonance excited by the terahertz
magnetic field. Experimental observations are in good agreement with numer-
ical simulations performed with the inertial version of the LLG equation using
the angular momentum relaxation time τ extracted from the experimental data.
These results allow a better understanding of the fundamental mechanisms of
ultrafast demagnetization and reversal, with interesting implications for the re-
alization of faster and more efficient magnetic data storage.

4.6 Spin waves in thin films

A strong magnetic field is used in the experiment for the detection of nutations.
The field can cause the generation of nonuniformities in the magnetization
even when the field is uniform. For this reason an investigation on the entity
of such nonuniformities is necessary to motivate the use of a macrospin model.

SpinWave Calculation

The system considered here and the reference frame are the same used in sec-
tion 4.2, i.e. a thin film with normal unit vector êz , a constant applied field
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Figure 4.10: Symbols: (a), (c), (e) experimentally measured max-
imum MOKE amplitude normalized according to equation (3) for
CoFeB, epitaxial NiFe and, respectively, polycrystalline NiFe; (b), (d),
(f) calculated maximum magnetization response amplitude solving the
inertial LLG equation. Solid lines: Lorentzian fit to the data points.
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Figure 4.11: Reference frame for the calculations of section 4.6.

in the zy plane and a time dependent magnetic field in the x direction. The
geometry is represented in figure (4.11).
We assume the magnetization to be a function of x and y only and the film to

be large enough to neglect the effect of boundaries in the area of interest.
We expect the equilibrium magnetization to be homogeneous. The stable equi-
librium can be represented in angular coordinates {θ0, π/2} where θ0 must
satisfy M ·Ha > 0 and

H‖ cos θ0 +H⊥ sin θ0 −MS cos θ0 sin θ0 = 0 , (4.45)

where H‖ and H⊥ are the components of Ha along êy and êz respectively.
Let us consider a different cartesian reference frame for the linearization, as in
section 4.2,

êr = sin θ0 êy + cos θ0 êz , êϕ = −êx , êθ = cos θ0 êy − sin θ0 êz .
(4.46)

The reference frame is shown in the right panel of figure 4.11.
At the equilibrium we have Mr0 = MS , Mϕ0 = 0 and Mθ0 = 0. Developing
the Landau-Lifshitz-Gilbert equation with the perturbation method up to the
first order in δMφ and δMθ yields

δṀθ − αδṀϕ = −MSγδHeff,ϕ + γ Heff,r0 δMϕ ,

δṀϕ + αδṀθ = +MSγδHeff,θ − γ Heff,r0 δMθ ,
(4.47)

where the equilibrium effective field is a known term

Heff,r0 = H‖ sin θ0 +H⊥ cos θ0 −MS cos2 θ0 . (4.48)
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Including the Teraheartz applied field as perturbation of the applied field, the
first order perturbation of the effective field is given by

δHeff,ϕ = −δHx(r, t) + `2EX∇2δMϕ + δHMϕ[δM] ,

δHeff,θ = `2EX∇2δMθ + δHMθ[δM] ,
(4.49)

where δHMθ and δHMϕ are the demagnetizing field generated along êθ and
along êϕ respectively, their expression are in appendix D.
Let us consider solutions of the type

δM = Re
[
cθk(t) ejk·r

]
êθ + Re

[
cϕk(t) ejk·r

]
êϕ , (4.50)

with k lying in the xy plane and where the c’s are complex coefficients. Under
this hypothesis the demagnetizing field can be calculated exactly. The detailed
calculations are shown in the appendix D, eventually we have for the demag-
netizing field

δHM = (1− Sk)(δMϕ cosφk − δMθ cos θ0 sinφk)êk + Sk δMθ sin θ0êz
(4.51)

where φk is the angle between k and êx,

Sk =
1− exp(−|k|d)

|k|d
, (4.52)

and d is the thickness of the thin film.
To keep notation simple we define

Dθθ = −((1− Sk) cos2 θ0 sin2 φk + Sk sin2 θ0) ,
Dθϕ = 1

2(1− Sk) cos θ0 sin(2φk) = Dϕθ ,
Dϕϕ = −(1− Sk) cos2 φk .

The components of the effective field are given by

δHMθ = Dθθ δMθ +Dθϕ δMϕ ∇2δMθ = −k2δMθ

δHMϕ = Dϕθ δMθ +Dϕ δMϕ ∇2δMϕ = −k2δMϕ
, (4.53)

where the coefficients D depend on k although not explicitly shown in the
notation.
By applying space Fourier transform to the LLG equation

Fx[M](k, t) =

∫
R3

M(x, t) e−ik·x dV , (4.54)
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the space dependence of the magnetization is removed. In matrix form it reads[
1 −α

+α 1

]
d

dt

[
cθk
cϕk

]
= γMS

[
Fx[δHx]

0

]
+

γ

[
−MSDϕθ MS(`2EXk

2 −Dϕϕ) +Heff,r0
−MS(`2EXk

2 −Dθθ)−Heff,r0 MSDθϕ

] [
cθk
cϕk

]
(4.55)

The equation (4.55) can be used to compute the dispersion relation of the sys-
tem. If we set α = 0 the eigenvalues of the dynamic matrix of the system are
pure imaginary. The secular equation gives

λ2 =

γ2M2
S

[
D2
ϕθ −

(
`2EXk

2 −Dϕϕ +
Heff,r0

MS

)(
`2EXk

2 −Dθθ +
Heff,r0

MS

)]
(4.56)

This formula contains also the Kittel frequency (2.43) for the ferromangetic
resonance in the limit k → 0 and the above equation becomes

λ2 = −γ2
[
Heff,r0

(
Heff,r0 +MS sin θ2

0

)]
. (4.57)

Notice that equation (4.57) also shows that when k → 0 the dependence on φ
disappears as expected.
Dispersion relation of forward and backward spin waves are contained in equa-
tion (4.56) as well. In particular if H⊥ > MS and, H‖ = 0 the equilibrium
magnetization occurs out of plane and we have forward volume spin waves

λ2 = −γ2 (H⊥ −MS) (H⊥ −MSSk) . (4.58)

If instead we have H⊥ = 0 the equilibrium magnetization is in plane and
(4.56) becomes

λ2 = −γ2
(
MS(1− Sk) cos2 φk +H‖

) (
MSSk +H‖

)
. (4.59)

In particular for φk = π/2 the vector k and the equilibrium magnetization are
aligned and we have the formula of the backward volume spin waves

λ2 = −γ2H‖
(
H‖ +MSSk

)
. (4.60)

Demagnetization due to spin waves

In order to quantify the impact of nonuniformity in Teraheartz experiments
we consider a different experimental case described in [82]. This experiment
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Figure 4.12: Relative reduction of magnetization module measured in
the experiment [82].

is based on a similar experimental setup relying on the MOKE and the pump
probe method.
It is noticed that an intense ultrafast magnetic pulse can cause a reduction of
the magnetization module measured of 0.2%, as shown in figure 4.12.
Let us consider a thin film with α = 0.007, `EX = 4.4 nm and MS = 1.84

T. A constant magnetic field of 0.448 T is applied along the out of plane di-
rection and a weaker constant field of 0.056 T is applied in plane as pictured
in the figure 4.13. A Teraheartz magnetic field is applied in plane. This field
is perpendicular to the constant applied field. According to experimental mea-
surements we assume

HTHz = −0.06(σ2
t − t2) exp

(
1

2

t2

σ2
t

)
exp

(
x2

σ2
x

)
êx , (4.61)

with σt = 0.5 ps and σx = 0.5 mm. The field intensity as function of time is
shown in figure 4.14 while the space distribution and its fourier transform are
in figure 4.15.
Let us decompose the magnetization as follow

M = MS(m0 + δm(x, t)) , (4.62)

and expand the perturbative term into spin waves

δm = Re

[∑
k

cθk(t) eik·x êθ +
∑
k

cϕk(t) eik·x êϕ

]
, (4.63)
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Figure 4.13: System of section 4.6, this is also the setup of the exper-
iment described in [82].

Figure 4.14: Time profile of the magnetic field considered in section
4.6, this is also the model of the field in the experiment reported in [82]
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Figure 4.15: Space distribution (on the left) and its Fourier transform
(on the right) of the magnetic field used for the simulation of section
4.6, this is also a realistic model for the experiment described in [82]

The time evolution of the cθk’s and the cϕk’s, for any value of k, can be sim-
ulated using (4.55). In order to estimate the observed demagnetization we
normalize the magnetization as

M = MS
m0 + δm(x, t)

||m0 + δm(x, t)||
(4.64)

and we assume that the measured magnetization is given by an averaged value
of the magnetization over the measuring area (circular spot with 250µm of
diameter)

Mmeas =
1

|ΩM |2

∥∥∥∥∫ M(x, t) dS

∥∥∥∥2

. (4.65)

Replacing (4.64) into the latter equation yields

Mmeas = MS

∫
m0√

m2
0 + δm2

dS +MS

∫
δm√

m2
0 + δm2

dS , (4.66)

where we use m0 · δm = 0.
We expand in Taylor series the square root and neglect the terms of order
greater than 2 in δm. Hence we get the approximation∫

M(x, t) dS ≈MSm0

∫ (
1− 1

2
||δm||2

)
dS +

∫
δm dS . (4.67)
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Figure 4.16: Magnetization module observed in the spin wave sim-
ulation described in section 4.6, demagnetization measured in [82] is
orders of magntitude larger, hence it is not due to nonuniformity.

Finally we obtain the expression for the demagnetization

∆M = Mmeas −MS =
MS

|ΩM |

∫
‖δm‖ dS −

M2
S

|ΩM |2

∥∥∥∥∫ δm dS

∥∥∥∥2

, (4.68)

where we neglect the terms of order higher than 2 in δm.
The resulting magnetization is reported in figure 4.16.

By the end, we can confirm that demagnetization observed in experiments
(roughly 0.1% of total magnetization) is not due to nonuniformity in the mag-
netization. Indeed we can assert that non homogeneous modes barely appear
and do not have any significant impact on the measurements. Consequently
the macrospin model accurately describes the magnetization dynamics.



Conclusion

In the thesis the micromagnetic theory is used to analyze the physics of
digital memories based on ferromagnetic materials. After introducing the
fundamental theory, an analysis of uniformed magnetized bodies is proposed.
This is a common feature of both hard disk memories and Magnetic Random
Access Memories (MRAM), since the small size of the memory cell forces
the magnetization to be uniform.
A particular attention is given to the nonlinear magnetic resonance, since it is
of central importance in the implementation of Microwave Assisted Magnetic
Switching, a technology which can significantly enhance the data capacity of
magnetic storage devices. With this aim, the thesis develops analytical models
and methods for the analysis of these systems.
The second and third chapters consider corrections of the LLG equation
which allow its application to an extremely small length scale or an extremely
fast time scale. These topics are of great interest since they are related
to the increase of the capacity and the increase of the speed of memories,
respectively.
When the memory cell size is small, effects of thermal fluctuations must be
taken into account as they could reduce the data retention of the device and
the reliability of the switching process. For this reason, materials with strong
anisotropy and high saturation magnetization are required. On the other hand,
these properties make harder and slower the writing process.
The thesis proposes analytical models for the analysis of the damped switching
reliability and a numerical tool for the simulation of systems with low to
intermediate drift term compared to the diffusive term.
The last chapter deals with the ultrafast dynamics in magnetic materials,
where the term ultrafast denotes phenomena that occur in the time scale
of picoseconds or even less. Because of experimental difficulties, ultrafast
dynamics have been studied experimentally only recently, when appropriate
instruments have become available.
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In the ultrafast regime, there is a new relevant mode of the magnetization
dynamics, this mode has been neglected for a long time because of the
difficulties in exciting and measuring it. A direct experimental observation
of the ultrafast mode was done for the first time by Neeraj et al [81]. On
this occasion analytical models and numerical simulations were provided as
theoretical support to the experimental work. Analysis of the ultrafast mode is
not only an important result for the fundamental physics of magnetism, but it
may also play a fundamental role in the development of future memories with
high speed.



List of Publications

Journal Articles

D’Aquino M., Scalera V., Serpico C. (2019), “Analysis of switching times
statistical distributions for perpendicular magnetic memories”, Journal of
Magnetism and Magnetic Materials, Vol. 475, pag. 652-661

Quercia A., Serpico C., D’Aquino M., Perna S., Scalera V., Mayergoyz
I.D. (2018), “Normal form of nonlinear oscillator model relevant to spin-
torque nano-oscillator theory”, Physica B: Condensed Matter, Vol. 549, pag.:
87-90

D’Aquino M., Perna S., Quercia A., Scalera V., Serpico C. (2017),
“Current-Driven Hysteretic Synchronization in Vortex Nanopillar Spin-
Transfer Oscillators”, IEEE Magnetics Letters, Vol. 8

D’Aquino M., Quercia A., Scalera V., Perna S., Bertotti G., Mayergoy
I.D., Serpico C. (2017), “Analytical Treatment of Nonlinear Ferromagnetic
Resonance in Nanomagnets”, IEEE Transactions on Magnetics, Vol. 53, N. 11,

D’Aquino M., Perna S., Quercia A., Scalera V., Serpico C. (2017),
“Effect of Temperature in Hysteretic Synchronization of Magnetic Vortex
Spin-Torque Nano-Oscillators”, IEEE Transactions on Magnetics, Vol. 53, N.
11

117



118 CHAPTER 4. ULTRAFAST MAGNETIZATION DYNAMICS

Proceedings

Isernia N., Scalera V., Serpico C., Villone F., (2019) “Energy Balance Dur-
ing Disruptions” Proceedings of the 46th EPS Conference on Plasma Physics,
P4.1053

Preprint

Neeraj K., Awari N., Kovalev S., Polley D., Hagstrom N.Z., Arekapudi S.,
Semisalova A., Lenz K., Green B., Deinert J.C., Ilyakov I., Chen M., Bawatna
M., Scalera V., d’Aquino M., Serpico C., Hellwig O., Wegrowe J.E., Gensch
M., Bonetti S. (2019), ”Experimental evidence of inertial dynamics in ferro-
magnets“, https://arxiv.org/pdf/1910.11284.pdf
(under revision for Nature Physics)



Appendix A

Helmholtz and Tellegen
Theorems

In this appendix some theorems of mathematical analysis useful in electrody-
namics are recalled.
Before listing the theorems, we quickly summarize the fundamental definitions
used for vector fields.
By definition a vector field V : Ω → R3 is conservative if every line integral
over a closed line is zero, i.e.

V is conservative ⇐⇒
∫
γ

V · t̂d` = 0 ∀γ , (A.1)

where γ are curves contained in Ω and t̂ is the unit vector tangent to the curve.
An equivalent definition states that every line integral depends only on the
initial and final point and not on the path. Moreover conservative fields are
irrotational, i.e.

V is conservative =⇒ ∇×V = 0 . (A.2)

The converse is true if Ω is simply connected.
A conservative field can be written as the gradient of a scalar field

V is conservative ⇐⇒ ∃ϕ : V = ∇ϕ . (A.3)

Another class of important fields are the solenoidal fields. By definition a field
V is solenoidal if its flux through any surface is zero, i.e.

V is solenoidal ⇐⇒
∫

Σ
V · n̂dS = 0 ∀Σ , (A.4)
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where Σ is a surface contained in Ω and n̂ is the unit vector pointing outside
the surface.
Solenoidal fields are also divergenceless, which means

V is solenoidal =⇒ ∇ ·V = 0 , (A.5)

while the converse is true if the domain is simply connected.
An equivalent condition for fields to be solenoidal is to be equal to the curl of
a field

V is solenoidal ⇐⇒ ∃A : V = ∇×A . (A.6)

A.1 Helmholtz Theorem

Let V : R3 → R3 be a vector field defined in the whole euclidean space and
regular at infinity, i.e.

lim
x→∞

|x|2|V| <∞ . (A.7)

Helmholtz decomposition theorem states that V can be written as the sum of a
conservative field and a solenoidal field, i.e.

V = ∇ϕ+∇×A . (A.8)

In order to prove (A.8) we apply the sampling property of Dirac’s delta

V(x) =

∫
R3

V(y)δ(x− y) dVy , (A.9)

and we substitute the following expression

δ(x− y) = − 1

4π
∇2

x

1

|x− y|
, (A.10)

into (A.9). It yields

V(x) = − 1

4π
∇2

∫
R3

V(y)

|x− y|
dVy . (A.11)

By applying the vector identity ∇2V = ∇∇ · V − ∇ × ∇ × V we finally
obtain

V(x) = ∇
(

1

4π
∇ ·
∫
R3

V(y)

|x− y|
dVy

)
−∇×

(
1

4π
∇×

∫
R3

V(y)

|x− y|
dVy

)
,

(A.12)
and equation (A.12) proves the theorem. Indeed we have

φ =
1

4π
∇ ·
∫
R3

V(y)

|x− y|
dVy , A =

1

4π
∇×

∫
R3

V(y)

|x− y|
dVy . (A.13)
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A.2 Tellegen theorem

Let V : R3 → R3 be a conservative field defined on the whole space and let
W : R3 → R3 be a solenoidal field also defined on the whole space.
Furthermore let both fields be regular at infinity. The Tellegen theorem states
that ∫

R3

V ·W dVx = 0 . (A.14)

To prove the theorem, let us write the conservative field as V = ∇ϕ. The inte-
gral in equation (A.14), after integrating by parts and applying the divergence
theorem, becomes∫

R3

∇ϕ ·W dVx =

∫
∂R3

∇(ϕ ·W) dSx −
∫
R3

ϕ(∇ ·W) dVx . (A.15)

The proof is complete since the surface integral is null thanks to the regular-
ity conditions at infinity and the volume integral contains the divergence of a
solenoidal field which is zero.
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Appendix B

Poynting Theorem

Poynting theorem is a vector identity coming from Maxwell’s equations and it
is also an energy balance involving the electromagnetic field.
Let us calculate

∇ · (E×H) = H · (∇×E)−E · (∇×H) . (B.1)

By substituting the curl of the electric and magnetic field from the Maxwell’s
equations we obtain

∇ · (E×H) = −H · ∂B

∂t
−E · J−E× ∂D

∂t
. (B.2)

Dimensionally the terms in the equation (B.2) are powers. Moreover it con-
tains E · J which is known to be the power dissipated by joule effect. This
suggests that the equation can be interpreted as a power balance of energy in-
volved in electromagnetic phenomena.
If no medium is present we can use the constitutive relation of the void and get

∂

∂t

(
E2ε0

2
+

B2

2µ0

)
= −∇ · S−E · J (B.3)

where S = E×H is called the Poynting vector.

From (B.3) we can interpret
E2ε0

2
and

B2

2µ0
as energy in the electric field and

in the magnetic field respectively. Moreover we can interpret S as the flux
density of energy.
By integrating (B.3) over a fixed volume V we obtain

d

dt

∫
V

(
E2ε0

2
+

B2

2µ0

)
dV = −

∫
∂V

S · n̂ dS −
∫
V

E · J dV , (B.4)
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where n̂ is the normal to ∂V pointing outside.
It is important to remark that Poynting vector is defined modulo a divergence-
less field. When also media are present, the stored energy is given by

H
∂B

∂t
+ E

∂D

∂t
=

∂

∂t

(
E2ε0

2
+

B2

2µ0

)
+ µ0H ·

∂M

∂t
+ ε0E ·

∂P

∂t
. (B.5)

The last two terms are interpreted as the work done by magnetic field and
electric field respectively on the media.



Appendix C

Nonlinear Dynamics

To analyze nonlinear systems we need to define some topological properties of
the system.
We say that two systems are topologically equivalent if there exists an home-
omorphism between the state spaces that commutes with the time evolution
operator. Given two systems

ẋ = f(x) and ẏ = g(y)

the time evolution operators ϕt and φs are defined by

x(t) = ϕtx(0) and y(s) = φsy(0) . (C.1)

The two system are equivalent if there exists Φ such that

φsΦ(x) = Φ(ϕtx) (C.2)

for every point in the state space.
In two dimensions spaces, equivalent dynamic systems have the same number
of equilibrium points and limit cycles with the same type of stability; in higher
dimensions spaces there might exist other types of attractors such as tori.
A bifurcation is a qualitative change of the phase portrait topology due to the
variation of some parameters. This means that the number or the stability of
the equilibrium points and limit cycles is altered.

C.1 Saddle node bifurcation

The simplest type of bifurcation is the saddle-node bifurcation: it occurs when
two equilibria collide and consequently disappear as in figure C.1.
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Figure C.1: Qualitative representation of a saddle node bifurcation:
on the left a stable node and a saddle, in the middle the two equilib-
ria collide and they become a semistable node, on the right, after the
bifurcation, equilibria are no longer present

The limit condition, in the central panel of the figure, can be detected by an-
alyzing the linearized system in the two equilibria: a semistable equilibrium
is impossible in linear systems, hence this effect is due to the nonlinear part
of the system. In this condition one eigenvalue of the linearized system takes
value zero.
In two dimensional systems this condition can be easily detected by checking
the determinant of the linearized system in the equilibrium.

C.2 Hopf bifurcation

Hopf bifurcation occurs when an equilibrium point and a limit cycle collide,
or equivalently when a limit cycle spawns from an equilibrium point as repre-
sented in figure C.2.
Let us consider a stable limit point in a two dimensional system. The lin-
earized system has two eigenvalues with negative real part in this point. If they
are complex and conjugate, a Hopf bifurcation may occur.
If some parameters of the system change and the complex conjugate eigenval-
ues cross the imaginary axis, the equilibrium point becomes unstable. If its
basin of attraction is not instantly destroyed, there must be a new attractor, i.e.
a limit cycle surrounding the point.
An analogous logic can be applied also to unstable equilibrium points. In this
case the limit cycle will be stable, saddle cannot have Hopf bifurcation because
the eigenvalues of the linearized system cannot be complex conjugate.
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Figure C.2: Qualitative representation of a Hopf bifurcation: on the
left a stable focus, in the middle the focus eigenvalues cross the real
axis, on the right a limit cycle appears and the focus becomes unstable.

C.3 Homoclinic bifurcation

Let us consider a saddle equilibrium with a stable trajectory coming from an
unstable equilibrium (see figure C.3). By changing some system parameters,
the stable trajectory may get close to an unstable trajectory and they may
eventually match. When stable and unstable trajectories intersect, a closed
trajectory passing for the saddle appears. This condition corresponds to the
homoclinic bifurcation. If there is a further change in the parameter the
unstable trajectory gets surrounded by the stable one, so that it cannot end in
the unstable equilibrium point. Hence, for topological reasons, a limit cycle
must appear between the unstable trajectory starting from the saddle and the
unstable equilibrium.
Unlike the other bifurcations, a homoclinic bifurcation is not local and it
cannot be detected by using a linearized system.



128 APPENDIX C. NONLINEAR DYNAMICS

Figure C.3: Qualitative representation of a homoclinic bifurcation: on
the left a trajectory pointing to the saddle starts from the unstable focus,
in the middle a trajectory pointing to the saddle matches exactly with a
trajectory starting from the saddle and a closed trajectory is generated,
on the right the closed trajectory leaves the saddle and surrounds the
unstable focus.
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Figure C.4: Classification of the behavior of the equilibrium points in
two dimensions depending on the determinant and on the trace of the
dynamical matrix of the linearized system. Signs of the eigenvalues in
each region are also indicated.
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Appendix D

Magnetostatic field in thin films

This section shows in detail how the magnetostatic field for a sinusoidal mag-
netization distribution is computed. Let us assume that the magnetization is
given by

M(x, y, z) = Re
[
(êx Mx + êy My + êz Mz)e

jkx
]
χd(z) , (D.1)

where Mx,My,Mz ∈ C and χ is a characteristic function which takes into ac-
count the geometry. The magnetic field is given by the sum of two contributes,
one due to the volume charges and one due to the surface charges

HM (r) = − 1

4π
∇
(∫

Ω

∇ ·M(r′)

||r− r′||
dr′ −

∫
∂Ω

n̂ ·M(r′)

||r− r′||
dr′
)
, (D.2)

where Ω = R× R× [−d/2; +d/2].
Each type of charge is generated by a different component of the magnetiza-
tion:

• the component Mx generates the volume charges: ∇ · M =
Re
[
jkMxe

jkx
]
,

• the componentMz generates the surface charges: M·n̂ = Re
[
Mze

jkx
]
,

• the component My does not generate any demagnetizing field.

The two contributions can be computed separately, but they have some impor-
tant features in common. The analytical expression for the demagnetizing field

131



132 APPENDIX D. MAGNETOSTATIC FIELD IN THIN FILMS

is

HM (x, y, z) = Re[−∇ϕM ] =

−Re

[
1

4π
∇

(
jkMx

∫
Ω

ejk(x′−x)√
(x′ − x)2 + (y′ − y)2 + (z′ − z)2

dxdydz

−Mz

∫
∂Ω

ejk(x′−x)√
(x′ − x)2 + (y′ − y)2 + (z′ − z)2

dxdy

)]
.

(D.3)
Because of the translation symmetry of the system along the x-axis, we expect
(D.3) to have a solution of the type ϕ(x, y, z) = f(z)ejk(x−x0). This can also
be proved by applying the substitution x′′ = x′ − x in (D.3) which allows to
moves x outside the integral.
Once the x dependence is known, it is useful to investigate the possible so-
lutions of the Laplace equation which will be used to satisfy the boundary
condition. The Laplace equation is(

∂2
x + ∂2

z

)
ϕ0
M = −k2f(z)ejkx + f ′′(z)ejkx = 0 =⇒

f(z) = e±kz =⇒ ϕ0
M = ejkx±kz

(D.4)

where the sign can be chosen by imposing the field to be finite at z → ±∞.

D.1 Field Generated by Surface Charges

For the magnetic field the following set of equations need to be solved

∇2ϕM =


0 for z > +d/2

0 for − d/2 > z > d/2

0 for z < −d/2
, (D.5)

with the extra condition of periodicity in x and the interface conditions at z =
d/2 and z = −d/2. The interface conditions are applied on the tangent and the
normal component of HM right before and right after the interface (subscripts
“+” and “-” are used for different media)

(HM+ −HM−)× n̂ = 0 =⇒ ϕM is continous across the surfaces,

(HM+ −HM−) · n̂ = +Mze
jkx in z = +d/2,

(HM+ −HM−) · n̂ = −Mze
jkx in z = −d/2 .

(D.6)
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Despite the trivial solution seems to be correct inside the media, it does not
satisfy boundary conditions in case of surface charge. Hence solutions of the
Laplace equation must be added

ϕM =


Ae−kzejkx for z > +d/2

(B1e
−kz +B2e

+kz)ejkx for − d/2 > z > d/2

Ce+kzejkx for z < −d/2
. (D.7)

The four constants must satisfy the boundary conditions
+1 −1 −ekd 0
−1 +1 −ekd 0
0 ekd +1 −1
0 ekd −1 +1




A
B1

B2

C

 =
Mze

kd/2

k


0
1
0
1

 , (D.8)

hence 
A
B1

B2

C

 =
Mz

2k


−2 sinh(kd/2)

+e−kd/2

−e−kd/2
+2 sinh(kd/2)

 . (D.9)

The scalar potential of the demagnetizing field is then given by

ϕM =


−Mzk

−1 sinh(kd/2) e−kz ejkx for z > +d/2

−Mzk
−1 sinh(kz) e−kd/2 ejkx for − d/2 > z > d/2

+Mzk
−1 sinh(kd/2) e+kz ejkx for z < −d/2

.

(D.10)
If it is needed the average magnetic field inside the thin film, integration of
(D.10) over the thickness yields

HM = −Mz
sinh (kd/2)

kd/2
e−

kd
2 ejkxêz = −Mz

1− e−kd

kd
ejkxêz = −MzSk e

jkxêz

(D.11)
where Sk = (1− exp(−kd))/(kd).

D.2 Field Generated by Volume Charges

The field generated by the volume charges is composed by a particular solution
which satisfies the Poisson equation on the whole space and by a homogeneous



134 APPENDIX D. MAGNETOSTATIC FIELD IN THIN FILMS

solution which satisfies the boundary conditions.
The magnetostatic problem is defined by the following equations

∇2ϕM =


0 for z > d/2

jkMxe
jkx for − d/2 > z > d/2

0 for z < −d/2
(D.12)

with particular solution

ϕM =


0 for z > +d/2

−jk−1Mxe
jkx for − d/2 > z > d/2

0 for z < −d/2
(D.13)

As in the previous section we use the ansatz for the homogeneous solution
and we impose the boundary conditions. In the current case the linear systems
reads 

+1 −1 −ekd 0
−1 +1 −ekd 0
0 ekd +1 −1
0 ekd −1 +1




A
B1

B2

C

 = j
Mxe

kd/2

k


−1
0

+1
0

 (D.14)

with solution 
A
B1

B2

C

 =
Mx

2k


−2 sinh(kd/2)

e−kd/2

e−kd/2

−2 sinh(kd/2)

.

 (D.15)

The scalar potential for the demagnetizing field is

ϕM =


−jMxk

−1 sinh(kd/2) e−kz ejkx for z > +d/2

+jMxk
−1(cosh(kz) e−kd/2 − 1) ejkx for − d/2 > z > d/2

−jMxk
−1 sinh(kd/2) e+kz ejkx for z < −d/2

.

(D.16)
As before we consider the averaged field inside the ferromagnetic material

HM = −Mx

(
1− sinh (kd/2)

kd/2
e−

kd
2

)
ejkxêx = −Mx(1− Sk) ejkxêx

(D.17)
where Sk = (1− exp(−kd))/(kd).
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Formal definition of the noise

The gaussian white-noise process can be formally defined as the derivative of
the isotropic vector Wiener process (or vector Brownian motion) [50, 51, 43,
44]

hN (t) =
dW

dt
, (E.1)

where the cartesian components Wk(t) of W(t) are statistically independent
scalar Wiener processes.
By definition, the scalar Wiener process must satisfy the following three prop-
erties

W (0) = 0 (E.2)

〈[W (t)−W (s)]2〉 = t− s with t > s ≥ 0 (E.3)

〈[W (t1)−W (s1)][W (t2)−W (s2)]〉 = 0 with 0 ≤ s2 < t2 ≤ s1 < t1
(E.4)

where the brackets 〈·〉 denote statistical average.
A particular property of the Wiener process is that it has continuous trajectories
which are not differentiable in any instant of time. The second property implies

lim
t→s

〈[W (t)−W (s)]2〉
(t− s)2

= +∞ . (E.5)

Indeed, while for differentiable functions of time the differential is first order
in dt, in this case we have

〈(dW )2〉 = dt . (E.6)
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As consequence of equation (E.6), Riemann-Stieltjes is no more properly de-
fined. By definition it is given by∫ tf

ti

G(t)dW (t) = lim
n→∞

n∑
i=1

g(τi)(W (ti)−W (ti−1)) , (E.7)

where ti = t0 < t1 < · · · < tn = tf are a mesh of the interval [t0, t] and
ti−1 < τi < ti. Let us consider the case G(t) = W (t), the expected value of
the integral in equation (E.7) is〈∫ tf

ti

W (t) dW

〉
= lim
n→∞

n∑
i=1

〈W (τi)W (ti)〉 − 〈W (τi)W (ti+1)〉 =

lim
n→∞

n∑
i=1

(ti−1 − τi) .
(E.8)

Equation (E.8) has the unpleasant feature of depending on the choice of the
points τi. For this reason a default choice of the τi’s has to be made so that the
integral is univocally defined. The two choices are the Ito integral∫ tf

ti

G(t)dW (t) = lim
n→∞

n∑
i=1

g(ti−1)(W (ti)−W (ti−1)) (E.9)

and the Stratonovich integral∫ tf

ti

G(t)dW (t) = lim
n→∞

n∑
i=1

g

(
ti + ti−1

2

)
(W (ti)−W (ti−1)) . (E.10)

In the present thesis we consider always the Stratonovich integral because the
usual integration rules hold for it and hence it keeps the magnetization module
fixed.
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