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Figure 1.1 Sketch of the double-well system: in a the un-
biased, symmetric case; in b a finite bias ε is
present. 5

Figure 1.2 Schematic circuit diagrams of superconduct-
ing Josephson qubits. Equivalent circuit scheme
for flux and charge qubits respectively; EJ is
the Josephson coupling energy, EC is the elec-
trostatic Coulomb energy. Adapted from [54].
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Figure 1.3 Sketch of the phase diagram of SBM at T = 0,
adapted from [65]: in panel a, the phase dia-
gram in the Ohmic case is plotted, which ex-
hibit a QPT of BKT kind at ε = 0 and αc = 1,
signaling the transition from delocalized to lo-
calized phase. At finite bias ε the transition is
replaced by a crossover between the two phases.
In panel b, the sub-Ohmic case is plotted. 8

Figure 1.4 Scheme of the LMSZ avoided level crossing.
In solid blue (red) lines the instantaneous en-
ergy eigenstates of the non interacting LSMZ
Hamiltonian. Diabatic states at t → ±∞ are
also depicted. 18

Figure 2.1 Time evolution of 〈σz(t)〉 for an unbiased qubit
in an Ohmic bath (s = 1), having chosen η =

5 · 10−2, ωc = 10Γ and T = 0. We fixed M =

{ 1000, 500, 300 }, for Nph = { 1, 2, 3 }, respec-
tively. SIL results are plotted against the Lind-
blad curve (solid black curve), from Eq. (a.13). 26

Figure 2.2 Time evolution of 〈σz(t)〉 for an unbiased qubit
in an Ohmic bath (s = 1), with η = 5 · 10−2,
ωc = 10Γ and T = 0, and two different start-
ing conditions: the traditional |ẑ;+〉 and the
state c1 |ẑ;+〉 + c2 |ẑ;−〉, with c1 = cos ξ and
c2 = exp(i φ) sin ξ (see the main text for their
definition). In the inset, SIL results for the qual-
ity factor as a function of the coupling parame-
ter, compared with conformal field theory and
NIBA (solid orange line) [76]; in the IC regime,
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σ
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I N T R O D U C T I O N

The control of dynamical evolution of engineered quantum system is
one of the main goals of modern science and technology. The related
far-reaching technological applications span from the realization of reli-
able quantum computing devices, to quantum criptography, metrology
and sensing. This field is rapidly evolving, as several tech companies
claimed to have succeded in achieving the quantum supremacy, i. e. the
experimental demonstration of a computing device that, exploiting
the properties of quantum mechanics, could outperform classical com-
puters in solving computational tasks belonging to a given complexity
class [1]. Besides offering promising technological applications, in
the last three decades the realization of artificial interacting quantum
systems has been prompted by fundamental open problems in physics.
Following Richard Feynman’s seminal paper [2], who first advanced
the idea of simulating the properties of complex quantum systems
by employing a quantum computer, in the last two decades the field
of quantum simulation has seen impressive advances [3]. Different
experimental platforms are now available, which have been designed
to simulate ground state properties [4], dynamical phase transitions
[5], and thermalization [6] of complex many body quantum systems;
strongly-correlated quantum systems are special cases of study, be-
cause they impose severe limits to classical computer simulations.
Topological properties of quantum systems, as well, can also be mim-
icked by quantum simulators [7, 8], and in principle entirely artificial
system Hamiltonians could be simulated by exploiting the properties
of these experimental platforms.

In this context, the study of open quantum systems, i. e. the dynam-
ical properties of quantum systems in contact with external environ-
ment, has regained momentum, motivated by the need for accurate
control of the decoherence effects on systems performing quantum
operations. Except for fault-tolerant topological quantum computing
devices, whose experimental realization is yet to come [9], quantum
gates acting on systems of qubits are unavoidably affected by environ-
mental decoherence, which acts as a source of errors on any quantum
operation [10]. Decoherence also severely hinders the entanglement
between different qubits, so that it negatively affects the performance
of nearly all quantum information devices [11]. These detrimental
effects can be limited and taken under control only by employing
sophisticated engineering techniques.

Open quantum systems can be conceived as a very special instance
of quantum many-body systems, where typically one or few quantum
degrees of freedom are in contact with an ensemble of many other

xvii
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different degrees of freedom, i. e. the environment, which typically can
be described by a continuous distribution of energy levels. Although
many different models of environment have been devised [12–14],
several common features affecting the quantum state of the reduced
system can be considered, e. g. decoherence effects, relaxation occur-
ring during dynamics and dissipation. Thanks to its generality, this
description finds applications in actual experiments, from solid-state
qubits to optical lattices. In the past three decades open quantum
systems have also provided an ideal testbed for purely foundational
problems in quantum mechanics, e. g. the emergence of classicality
the interaction of the quantum system with its environment, quantum
to classical transition and quantum Darwinism [15, 16].

The control of artificial quantum degrees of freedom can be achieved
by coupling them to external electromagnetic (E.M.) driving fields.
Modeling driven quantum systems in the presence of external en-
vironment, e. g. thermal or structured baths, is thus of paramount
importance to quantum devices. A striking example is given by Adia-
batic Quantum Computing (AQC), a field which has attracted great
interest during the last two decades as a feasible way to realize Quan-
tum Computation (QC), alternative to standard circuit model [17].
Furthermore, D-Wave quantum machines based on Quantum Anneal-
ing (QA) protocols are already available on the market [18]. AQC
protocols have been devised to solve optimization problems belonging
to NP complexity class [17]: these problems are known to be equiva-
lent to finding the ground state of an interacting, frustrated quantum
many body Hamiltonian, i. e. usually called the target Hamiltonian.
The main idea thus relies on QA, i. e. on the realization of the adia-
batic evolution of a system of qubits described by a time-dependent
Hamiltonian that, at the end of the evolution, is equal to the target
Hamiltonian. These adiabatic protocols have also been known to be
less prone to the environmental decoherence than their circuit models
counterparts [19, 20], but a complete understanding of decoherence
effects in these devices is still an open problem [21].

Driven quantum systems in the presence of one or more heat baths
are at basis of prototypical models of quantum heat engines, i. e. micro-
scopic machines performing heat-to-work conversion while operating
in the quantum realm [22–25]. Beyond their potential technological
impact, these ideal machines are fundamental in the understand-
ing of the implications of quantum mechanics on heat and work
exchange, i. e. thermodynamics at the microscopic level. The so-called
field of Quantum Thermodynamics [26], recently linked to quantum
information theory [27], encompasses several long-standing open prob-
lems.

The basic conceptual framework of open quantum systems finds
applications in several problems in condensed matter physics, where a
microscopic description of dissipation effects is required[28]. Fermionic
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systems interacting with lattice quantum degrees of freedom, i. e.phonons,
belong to this class. Various models of electron-phonon (E-PH) inter-
actions, developed sixty years ago, account for the influence of the
microscopic environment on the dynamics of charge carriers and give
a description of dissipation effects. As an example, Frölich polaron
theory describes the charge transport in low dimensional systems in
terms of polaronic quasiparticles, i. e. electrons surrounded by the
cloud of lattice distortions [29]. E-PH correlations are responsible for a
wide range of interesting effects occurring in solids, from conventional
superconductivity to instabilities of the Fermi sea in 1-D chains, the
latter corresponding to the emergence of ordered ground states of
matter, i. e. charge-density waves (CDW) [30]. It has been proven that
strong E-PH interactions are among the main mechanisms involved
in the formation of many competing ground state phases of high
temperature superconductors, like copper-oxides [31]. Nowadays high
Tc superconductivity remains a puzzling state of matter, where com-
peting ordered states arising from strong correlation effects manifest
themselves, giving rise to an incredibly rich phase diagram. The major
paradigm employed to describe these properties is based on Quantum
Phase Transitions [32], i. e. phase transitions characterized by quan-
tum fluctuations of the ground-state properties occurring at T = 0, in
the vicinity of a phase diagram point where nonthermal parameters
assume critical values [33]. However, many phenomena in modern
condensed matter theory cannot be properly described in the context
of conventional QPT.

Topological insulators are short-range entangled topological phases
of matter [34], i. e. they cannot be described by means of a conventional
Ginzburg-Landau theory [35]. These phases of matter are characterized
by insulating properties in the bulk, while on the edges symmetry-
protected gapless electronic conduction modes can be measured [36,
37]. The physics of these materials is found to be suitably modeled by
means of topological band invariants [38, 39], i. e. integers which de-
scribe the global, geometric properties of single-particle band structure.
The bulk-boundary correspondence [36] links the values of topological
invariants to the number of edge modes flowing at the boundary of
these materials. Different topological phases are thus distinguished by
the values of these invariants, i. e. the Hamiltonians describing insula-
tors in different topological phases cannot be connected to each other
by adiabatic deformation. As a result, the topological phase diagram
of these special insulators consists of different regions separated by
curves of zero gap. Owing to their short-range entanglement character,
these systems are well-described by single-particle band theories.

Quite recently, several efforts have been spent to shed light on the
effects of electronic correlations in topological insulators [40]. To avoid
confusions, electron-electron correlations can bring about a variety of
physical effects, and a clear understanding of the physical scenario
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when topological features are involved is yet to come. However, sev-
eral lines of research have been established in the last decades. The
physics of correlated topological insulators has been the subject of
great interest in order to test the robustness of topological insulating
phases in the presence of interactions. Prototypical models, like Kane-
Mele-Hubbard have been put forward [41]. Another set of theoretical
proposals have been focused on the possible existence of interaction-
induced topological phases. Typical examples belonging to the latter
group are topological phases arising by long-range Coulomb interac-
tions [42] and fluctuation-induced topological insulators. However, in
an even more exotic context, correlated topological phases without
noninteracting analogoues have been proposed, where topological
order can play a role. Among them, topological Mott insulators and
fractional topological insulators [42, 43]. However, as the interplay
between Coulomb interactions and topological insulating phases has
been widely discussed, much less attention has been devoted to E-PH
interactions effects on prototypical topological insulating phases. The
possibility for E-PH interactions to stabilize or destroy existing topo-
logical insulating phases and the occurrence of interaction-induced
topological phases thus deserves more attention.

This work reports the results of our theoretical study on different
quantum systems coupled to external environments. Our analysis
extends to very different systems, ranging from dissipative qubits to E-
PH correlated topological fermionic systems. We focus on interesting
physical regimes where consolidated weak-coupling approximations
schemes may fail to give a reliable theoretical description of these
systems.

The work is divided in two parts.
The first part of the work deals with the study of dynamics of

dissipative two-level systems (TLS) driven by external classical time-
dependent control fields. They work as archetypal models of a single
qubit in contact with a quantum thermal bath. As we shall see, these
models have been widely employed in the theoretical description of
superconducting Josephson tunnelling circuits in the low tempera-
ture regime, where various sources of quantum noise act to degrade
the device perfomances. The actual realizations of the driving field
include, but are not limited to, microwave pulses through coplanar
waveguides [44]. Although these models are conceptually simple, ana-
lytical solutions are available only in special points of the parameter
space, after mapping procedures valid under limiting conditions. As a
consequence, in order to obtain a reliable description of dynamics in
the non-Markovian setting and beyond the weak-coupling approxima-
tion, numerical methods have to be employed which can simulate the
physics in a sufficiently wide range of parameters.

Chpt. 1 is devoted to a brief introduction to the physics of several
prototypical models of quantum dissipative systems which will be
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simulated below. We also quickly summarize traditional theoretical
approaches employed over the last decades to solve these problems.

In Chpt. 2, we propose a numerical approach based on Short Itera-
tive Lanczos method (SIL) to simulate the dynamics of the dissipative
TLS, both in the absence of a fixed bias field and in the presence of a
time-dependent linear field. In the latter case, both the bias field and
the tunnelling element are driven with fixed rate t−1

f . Similar driving
schedules have been extensively used in theoretical simulations of
Adiabatic Quantum Computing devices (AQC)[20], where the effects
of dissipation are described by means of Markovian quantum master
equations (QME). While typical devices comprise many interacting
qubits, with nonomogeneous coupling strengths and a driven tun-
nelling element, here we focus on the effects of the environment on
a single qubit. We show that our method can successfully decribe
non-Markovian quantum dynamics arising from the coupling with the
bath, thus giving a reliable description of the physics against approxi-
mated QME predictions. In addition, we compare the results of our
simulations with well-known analytical predictions on the dissipative
TLS, discussing the main differences and drawing conclusions.

In Chpt. 3, we extend the study carried out in Chpt. 2 of a dissipative
TLS, going from intermediate to strong coupling regime; the dynamics
in the unbiased case, as well as in the presence of a simple non-linear
driving protocol are considered. Quite recently, the time-dependent
protocol has been experimentally realized employing superconducting
circuits driven by microwave pulses, in order to simulate topological
phases of matter. We show that, in the time-independent unbiased
case, we are able to simulate the crossover to a completely incoherent
tunnelling regime due to the strong qubit-bath correlations, which
can be analytically predicted for fixed value of the coupling strength
α = 0.50 and in the scaling limit. In the driven case, we show that an
interplay between nonadiabatic dynamics due to the driving field and
dissipation may arise for rapid sweeps, which has not been accurately
described in previous works, where Stochastic Schrödinger equation
(SSE) has been employed [45].

In Chpt. 4, we study the dynamics of a periodically driven TLS
in contact with a thermal bath, where two driving fields of different
amplitudes, for fixed frequency and phase difference, modulate the
levels asymmetry. This system can be employed as a microscopic
model of driven isothermal engine [46], acting as a work to work
converter. Similar systems have been studied in the literature as simple
instances of microscopic heat engines, i. e. devices performing heat
to work conversion while operating at the microscopic scale. These
machines have been mainly conceived to test thermodynamic bounds
on efficiency at finite power, in order to understand whether they could
achieve better performance than macroscopic devices, i. e. finite-time
cyclic heat engines operating at Carnot efficiency.
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We study the effects of quantum coherence and system-bath quan-
tum correlations on efficiency, output power and power fluctuations of
our work-to-work converter, restricting to linear irreversible thermo-
dynamics setting. We show that a recently derived tradeoff relation,
the so-called Thermodynamic Uncertainty Relation (TUR), valid for
periodically-driven classical Markovian engines, can be violated in
the quantum regime, i. e. a work to work converter in the quantum
regime may achieve a better performance than its classical analogue,
for different ranges of the driving frequency. We also discuss feasi-
ble generalizations of our work in the context of non-linear response
theory.

In the second part of the thesis, we study topological properties of
fermionic systems in contact with a microscopic environment made
of lattice quantum vibrations. Our aim is study the stability of topo-
logical phases of matter in the presence of strong E-PH correlations,
characterizing the possible occurrence of topological quantum phase
transitions and the strongly correlated phases which take over as the
system turns into a trivial insulator.

Chpt. 5 is aimed at giving general information on the models of
noninteracting topological systems we intend to study. In particular,
the physics of Chern insulators and Time-Reversal (TR) symmetry-
protected topological insulators will be briefly covered.

In Chpt. 6, we study the properties of the first prototype of topo-
logical insulator, i. e. the Haldane model of a Chern insulator on a
honeycomb lattice, in the presence of lattice vibrations. As a con-
sequence of lattice motion, the electrons modify their energies by
interacting with the underlying lattice degrees of freedom. We model
the E-PH by means of the Holstein model [47], i. e. electrons couple lo-
cally with the lattice displacements, which occours through a phonon
mode of fixed frequency. We restrict our description to the case of
e-hole symmetry; by employing cluster perturbation theory (CPT) [48],
we show that in the limit where the lattice vibrational energy is greater
than the hopping parameters, i. e. in the anti-adiabatic limit, the E-PH
interaction drives the topological quantum transition of the fermionic
system from a topological state to a trivial one. Furthermore, in the
particular case of zero mass term, our approach signals the onset of
CDW order.

In Chpt. 7, we employ the same approach as in Chpt. 6, to explore
the effects of E-PH interactions on a paradigmatic model of topologi-
cal insulators, i. e. the quantum spin Hall effect (QSH). These system
exhibit a Z2 symmetry-protected topological state, which can be de-
scribed by means of an integer, known as Z2 invariant. For simplicity,
we consider a QSH system in the absence of Rashba coupling term.
The traditional way to obtain this system is to take two different copies
of the Haldane model on different honeycomb lattices. We show that
the increase of E-PH coupling strength causes the system to leave the
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topological state to get into trivial one, as the band inversion occurs
and the Z2 invariant changes. We discuss possible implications of this
effect and its relations with the Chern insulator case.
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D I S S I PAT I V E S Y S T E M S





1 M O D E L S O F D I S S I PAT I V E
S Y S T E M S

Quantum systems interacting with their environment exhibit decoher-
ence and dissipation. The pursuit of accurate theoretical description
of dissipation in the quantum realm dates back to 1960s, while from
the mid-1980s to 1990s several pioneering works have been written,
encompassing both analytical and numerical approaches [12, 49–53].
However, in the last two decades, the field has regained popularity, fol-
lowing the impressive advances in the field of quantum technologies.
One of the primary goals in this field is the control of devices made
of one up to hundreds of quantum degrees of freedom performing
unitary evolution to execute a computational task. The building blocks
of these devices are superconducting quantum circuits coupled to each
other and to microwave photons [54], as well as cold atoms in optical
lattices [55, 56]. Depending on the specific experimental platform, the
environment can consist of different sources of quantum noise and
decoherence, e. g. in solid-state based Cooper Pair Boxes (CPB) qubits
renowned noise sources are background charge fluctuators [11].

In Chapters 2,3,4, we will focus on minimal yet nontrivial models of
dissipative quantum systems. These models consist of a single quan-
tum degree of freedom, i. e. a two-level system (TLS), linearly coupled
to a thermal bath at fixed temperature, which acts as a reservoir. The
thermal bath is modeled by a set of quantum harmonic oscillators,
with frequencies obeying a fixed spectral distribution. Models of these
kind are popularly known as Spin-Boson Models (SBM) and can be
employed to describe a wide class of quantum systems, ranging from
cold atom impurities in optical lattices [57], to superconducting qubits
subject to time-dependent E.M. fields [44] and quantum heat engines
[23]. In the following sections, we introduce the general form of the
models we intend to study, discussing the main features which can be
found in the literature.

1.1 from caldeira-leggett model to spin-
boson model

The Caldeira-Leggett model [12, 28] is the standard theoretical de-
scription of dissipation effects on single quantum systems. It describes
the evolution of a quantum degree of freedom, e. g. q subject to a

3
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potential V(q), in contact with an ensemble of quantum harmonic
oscillators. The Hamiltonian of this model reads

H =
p2

2m
+ V(q) +

N

∑
k=1

p2
k

2mk
+

N

∑
k=1

1
2

mkω2
k

(
xk −

ck

mkω2
k

F(q)

)2

, (1.1)

where mk, ωk are respectively the masses and frequencies of the oscil-
lators, while F(q) is a generic function describing the coupling. We
intend to restrict to the linear coupling case, i. e. F(q) = q, the quan-
tum degree of freedom is linearly coupled to each mode of the bath.
From Eq. (1.1), the equations of motion for the variable q and the
oscillators can be derived. A classical Langevin equation for q can be
written

mq̈(t) + m
∫ t

0
dt′γ(t− t′)q̇(t′) + V ′(q) = ξ(t). (1.2)

Here the influence of the bath on the dynamics of the quantum degree
of freedom can be described in terms of friction, measured by a
damping coefficient γ(t), and a stochastic force ξ(t) exerted by the
bath oscillators giving rise to fluctuations. Notice that Eq. (1.2) exhibits
memory effects, described by the nonlocal in time character of the
kernel. In this context, the damping coefficient γ(t) is a function of
time, which in the case of Eq. (1.1) reads

γ(t) = θ(t)
1
m ∑

k

c2
k

mkω2
k

cos(ωkt). (1.3)

We can usefully introduce the spectral density function of the bath
J(ω) as follows

J(ω) =
π

2 ∑
k

c2
k

mkωk
δ(ω−ωk). (1.4)

This function describes the properties of the thermal bath. Actually, it
can be shown by taking the continuous limit of J(ω), i. e. assuming an
infinite number of bath frequencies modes, belonging to a continuous
set; then, taking the Fourier transform of Eq. (1.3), it is easily shown
that it can be written as follows

γ(ω) = lim
ε→0

−2iω
πm

∫ ∞

0
dω′

J(ω′)
ω′

1
ω′2 −ω2 − iωε

. (1.5)

The spectral function J(ω) is thus proportional to the real part of
γ(ω), i. e. J(ω) = mω Re{γ(ω)}. Thus, J(ω) describes the nature of
dissipation. It is conventional to assume a phenomenological model
for J(ω) which takes into account the Ohmic dissipation and the
possible deviations from it. Furthermore, it is sensible to assume a
frequency cutoff on J(ω), i. e. in the limit of infinite frequency the
spectral distribution must vanish. Though several choices may be
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taken for J(ω) (see Chapters 2 and 3), we will mostly adopt the usual
exponential cutoff form

J(ω) = ηω1−s
c ωs exp(−ω/ωc), (1.6)

where ωc is a the cutoff frequency, η has the dimensions of a viscosity,
and the parameter s distinguishes among three different kinds of
dissipation that have been studied in the recent literature [28, 49, 58]:
Ohmic (s = 1), sub-Ohmic (s < 1) and super-Ohmic case (s > 1).
Eq. (1.1) can be employed to model a wide range of physical problems,
differing from one another with respect to the single quantum degree
of freedom involved.

The quantum dynamics in a double-well effective potential V(q),
as depicted in Fig.1.1, is of great relevance [28]. Here the quantum



(a)



(b)

Figure 1.1: Sketch of the double-well system: in a the unbiased, symmetric
case; in b a finite bias ε is present.

degree of freedom can tunnel through the potential barrier, with a
given tunneling energy splitting h̄∆. The height of the barrier, as well
as the asymmetry of the two wells mimima h̄ε, can be controlled by
the experiment. The energy difference between the ground state of the
well and the first excited state is h̄ωg. If the barrier height is greater
than h̄ωg, and in turn ωg > ε, ∆, kBT/h̄, the Hilbert space of the system
can be restricted to two-dimensions, i. e. a TLS where the two states
coincide with low-lying energy eigenstates of the two wells. Thus,
the particle position operator and the tunneling can be conveniently
written in terms of pseudospin 1/2 operators {σi}. Choosing as a set
of basis states the eigenstates of σz operator, i. e. σz |ẑ;±〉 = ± |ẑ;±〉,
the position operator can be written as q = (q0/2)σz, so that the
basis states are also position eigenstates, i. e. localised in each of the
two wells. From now on, we set h̄ = 1. The Hamiltonian of the TLS
describing the tunneling between the two minima of the well is thus

HS = − ε

2
σz −

∆
2

σx. (1.7)

In order to describe the quantum nature of the bath, the formalism of
bosonic creation (annihilation) operators b†

k (bk ) can be adopted, with
commutation relations

[
bk , b†

l

]
= δkl . The Hamiltonian of the free bath

HB can thus be written as follows

HB = ∑
k

ωkb†
k bk. (1.8)
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Within this framework, the fluctuating force acting on the system can
be modeled as a dipole-field interaction, where the single quantum
degree of freedom couples linearly to the bath coordinates, in a similar
fashion to Eq. (1.1). The interaction Hamiltonian HSB can thus be
written as

HSB =
1
2

σz ∑
k

λk(b†
k + bk). (1.9)

The coupling elements λk are proportional to those of Eq. (1.1), i. e. λk =

q0ck. The spectral density of the bath changes accordingly and can be
written as

J(ω) = ∑
k

λ2
kδ(ω−ωk) = 2α

ωs

ωs−1
c

e−
ω

ωc , (1.10)

where the adimensional parameter α is a measure of the strength of
the dissipation. Collecting the terms in eqs. (1.7) to (1.9) we obtain the
SBM Hamiltonian

HSBM = − ε

2
σz −

∆
2

σx + ∑
k

ωkb†
k bk +

1
2

σz ∑
k

λk(b†
k + bk). (1.11)

Eq. (1.11) is the simplest, minimal model describing decoherence and
dissipation effects on a TLS. Dynamical and thermodynamical prop-
erties of Hamiltonians of the form in Eq. (1.11) have been extensively
studied, due to their connection to Macroscopic Quantum Tunneling
(MQT) experiments [49].

The solid state experimental platforms where SBM has found many
applications are superconducting Josephson tunneling junctions. The
actual quantum degrees of freedom experiencing tunneling depend
on the considered device. The two archetypal devices (see Fig. 1.2)
are Cooper Pair Box (CPB), i. e. the first example of charge qubit, and
flux qubits. In the simplest CPB, at sufficiently low temperatures (of
the order of mK) a superconducting island is connected to a super-
conducting reservoir by means of a Josephson junction. The island is
contacted with a biasing gate in series with a capacitor. The charge
in the island is measured with respect to a reference value. Super-
conducting Cooper pairs experience tunneling from the reservoir to
the island across the Josephson junction. If the device works in the
charge configuration, the two different quantum states of the TLS can
be represented by the states of charge in the island, i. e. |n〉 , |n + 1〉
which are those with n and n + 1 Cooper pairs respectively. CPB
was historically the first device where superposition of charge states
|n〉 , |n + 1〉 was observed [59, 60]. On the other hand, flux qubits con-
sist of a superconducting ring interrupted by one to three Josephson
tunneling junctions. The magnetic flux through the superconducting
ring tunnels between two different states, encoded by the clockwise
and anticlockwise circulating supercurrents respectively [60]. Due
to the macroscopic nature of these devices, in the last twenty years
they have been found to be prone to decoherence. For instance, in
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Figure 1.2: Schematic circuit diagrams of superconducting Josephson qubits.
Equivalent circuit scheme for flux and charge qubits respec-
tively; EJ is the Josephson coupling energy, EC is the electrostatic
Coulomb energy. Adapted from [54].

the case of charge qubits, 1/ f noise arising from background charge
fluctuators [61, 62] and voltage fluctuations, have been studied as
possible sources of decoherence. However, these devices have now
been replaced by Transmon and Xmon qubits architectures, allowing
much longer coherence times (T1 ' 140µs) with respect to the early
devices [63]. In modern experimental and computing platforms made
of hundreds of qubits the problem of decoherence and dissipation can
be reduced yet not completely eliminated [64].

1.2 phase diagram of sbm

The minimal model in Eq. (1.11), despite its conceptual simplicity,
has a fairly rich phase diagram, which we report in Fig. 1.3. The
physical properties of the SBM phase diagram depend on the nature
of dissipation, i. e. on the parameter s. Ohmic dissipation (s = 1)
represents a rather special case. In the absence of bias (ε = 0), at
fixed temperature T = 0, a critical value of the adimensional coupling
strength αc exists for which the system exhibit a Quantum Phase
Transition (QPT) [32, 33] from delocalized to localized phase, arising
from the ground state quantum fluctuations. Namely, at α = αc = 1
the tunneling element ∆ is renormalized to zero, and the spin gets
trapped in one of the two wells, depending on the initial conditions.
The equilibrium magnetization 〈σz〉 at T = 0 shows a quick drop
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exactly at the critical point, while 〈σx〉 is a monotonic decreasing
function of α. For finite bias ε 6= 0, a crossover from delocalized to
localized phase has been predicted by the use of analytical approaches
[65]. The nature of this phase transition has been understood by
mapping the Eq. (1.11) in the anisotropic Kondo model [66], which
describes the exchange interactions of a a single magnetic impurity
immersed in a fermionic bath. In the following, we briefly report the
main steps, while the details of the calculation can be found in [49,
67]. The anisotropic Kondo Hamiltonian reads

HK = ∑
k,σ

ε(k)c†
k,σck,σ + J‖Szsz(0) + J⊥(Sxsx(0) + Sysy(0)) (1.12)

where S, s describe the spin of the impurity and the band fermions
respectively. The low-temperature excitations of the fermionic bath
in Eq. (1.12) around the Fermi energy can be described by means
of bosonic degrees of freedom. Employing standard bosonization

Localized

Delocalized
BKT

 



c

 

(a) Ohmic phase diagram

c

Localized Delocalized

Quantum 
  Critical

 



(b) Sub-Ohmic phase diagram

Figure 1.3: Sketch of the phase diagram of SBM at T = 0, adapted from [65]:
in panel a, the phase diagram in the Ohmic case is plotted, which
exhibit a QPT of BKT kind at ε = 0 and αc = 1, signaling the
transition from delocalized to localized phase. At finite bias ε the
transition is replaced by a crossover between the two phases. In
panel b, the sub-Ohmic case is plotted.

techniques [49, 65, 67, 68], a set of bosonic operators (ak, bk) can be
employed to describe charge and spin excitations around the Fermi
surface as follows

bk =
( π

kL

) 1
2

ρ(−k), ak =
( π

kL

) 1
2

σ(−k) (1.13)

where ρ(k) = ∑p,σ c†
p+k,σcp,σ and σ(k) = ∑p,σ σc†

p+k,σcp,σ are respec-
tively the charge and spin density operators. Assuming linear dis-
persion of the Fermionic band around Fermi energy, i. e.ε(k) = εF +

vF(|k| − kF), where vF is the Fermi velocity, it can be easily shown that
the free fermionic contribution in Eq. (1.12) can be written in terms of
two separate bosonic fields, i. e. HB

0 = vF ∑k>0 k(a†
k ak + b†

k bk), due to
charge and spin excitations respectively. While the longitudinal inter-
action term can be easily rewritten in terms of a linear combination of
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a†
k(ak), the transverse coupling terms are proportional to products of

fermionic operators of the kind c†
↑c↓(c

†
↓c↑). Following a non-rigorous

bosonization approach [69], new bosonic fields can be introduced

jσ(x) = ∑
k>0

exp(−ak/2)
(

2π

kL

)1/2 (
b̃k,σ exp(iσkx)− b̃†

k,σ exp(−iσkx)
)

,

(1.14)
where b̃k,σ = (bk + σak)/

√
2 and a cutoff on the electronic momenta

has been introduced, so that a = k−1
F . In addition, new operators

defined by means of the exponential of operators in Eq. (1.14) can be
introduced, i. e. ψσ(x) = (2πa)−1/2 exp{jσ(x)}. It can be easily shown
that, evaluating products of the previous operators on the ground state
of the bosonic noninteracting system, e. g.

〈
ψ†

σ(x)ψσ(y))
〉
, they behave

as real fermionic operators when evaluated on the noninteracting
Fermi sea. Though not rigorous, this procedure allows to write a
bosonized version of Eq. (1.12), with decoupled bosonic fields, which
reads

HB
K = vF ∑

k>0
ka†

k ak +
J‖
4

σz ∑
k>0

(
k

πL

)1/2

exp(−ak/2)(a†
k + ak)+

+
J⊥

4πa
(σ+ exp(ξ) + σ− exp(−ξ)) (1.15)

where ξ = ∑k>0 exp(−ak/2)(4π/kL)1/2(ak − a†
k). This form allows,

after a straightforward canonical transformation, to rewrite the Hamil-
tonian in Eq. (1.15) in terms of an unbiased SBM Hamiltonian.

By rewriting Eq. (1.15) in terms of the adimensional coupling
strength ρJ, where ρ = (2πvF)

−1, it can be shown that Eq. (1.15)
is thus equivalent to an unbiased SBM where:

∆
ωc

= ρJ⊥, α =

(
1− 1

2
ρJ‖

)2

(1.16)

From Eq. (1.16), it can be seen that the coupling strength αc = 1 sepa-
rates the two phases of the Kondo problem, i. e. the antiferromagnetic
coupling phase (ρJ‖ > 0) from the ferromagnetic case (ρJ‖ < 0). In
turn, in a famous Anderson’s paper [70], the phase transition in the
Kondo model has been analytically mapped into that of a long-ranged
classical Ising model. The transition occurring in the latter system has
been later recognized to be due to topological defects by Kosterlitz and
Thouless [71], so that it is known as Berezinskii-Kosterlitz-Thouless
(BKT) transition. In order to better understand the correspondence
between the critical behavior of the Ohmic SBM and that of the long-
ranged Ising model, the problem has been studied by employing
quantum to classical mapping: here the quantum SBM model can
be mapped in a d + 1-dimensional classical system evolving in the
imaginary time τ and described by the action

Scl =
∫ β

0
dτ
∫ β

0
dτ′σz(τ

′)K(τ − τ′)σz(τ), (1.17)
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where K(τ) ∝ 1/τ1+s. Then, for s = 1, the critical properties of SBM
are found to be described by a classical long-range (∝ τ−2) Ising model
in the imaginary time, which shows BKT phase transition. However,
in the last twenty years, the BKT nature of the transition in the ohmic
SBM has been confirmed with NRG calculations [65, 72], and more
recently, by means of variational approaches [73], while the sub-Ohmic
regime has been investigated using Numerical Renormalization Group
(NRG) and Quantum Monte Carlo (QMC) techniques [58, 74].

In the delocalized phase, where tunneling is present, starting from
the mapping procedure it can be shown that the tunneling element ∆
gets increasingly renormalized as follows

∆r = ∆(∆/ωc)
α/(1−α) (1.18)

With increasing α, it becomes increasingly small, and in the limit
ωc → ∞ it tends to zero at the transition. This behavior has several
consequences on the dynamics of the TLS, as we will show in the
subsequent sections.

1.3 dynamics

The dynamics of SBM has been investigated by the use of different
theoretical approaches. Despite all the efforts, a reliable analytical
description of the bath influence on the TLS dynamics has not been
found. The dynamics of the model in Eq. (1.11) can be studied follow-
ing the general approach of open quantum systems [28, 75]. As with
any bipartite system, the Hilbert space of the TLS and the bath can be
written as

H = HS ⊗HB (1.19)

where HS and HB indicate the Hilbert space of the TLS and the bath
respectively. The Hamiltonian in Eq. (1.11) acting in the total Hilbert
space can be written as customary

H = HS + HB + HSB. (1.20)

The density matrix of the whole system ρ(t) evolves obeying to Von
Neumann equation of motion with Hamiltonian H

d
dt

ρ(t) = −i[H, ρ]. (1.21)

From the total density matrix, the state evolution of any subsytem
belonging to the bipartition can be computed tracing over the degrees
of freedom of the other subsystem. The reduced density matrix of the
TLS can thus be written as

ρS(t) = trB ρ(t), (1.22)
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where the partial trace is taken over the bath degrees of freedom.
The evolution of the reduced density matrix in Eq. (1.22) allows us
to compute the expectation values of the observables of the TLS.
Several approximate analytical treatments have been devised in order
to compute the behavior of correlators as functions of time, namely
the magnetization along the ẑ axis 〈σz(t)〉, or the two-time correlation
functions 〈σz(t)σz(t′)〉 which are directly related to experiments.

In the unbiased case (ε = 0), with Ohmic dissipation (s = 1), theoret-
ical approaches based on Conformal Field Theory (CFT) [65] predict
that 〈σz(t)〉 exhibits underdamped oscillations in time, for fixed val-
ues of the coupling strength 0 ≤ α < 1/2, which is a signature of
coherence loss. However, the detailed expressions of the oscillation
frequency and the damping rate depend on the approximation scheme
adopted [76].

In the following, we will briefly introduce the main consolidated ap-
proaches to study dynamics of SBM, which will serve as starting points
for the original contributions reported in the subsequent chapters.

1.3.1 Quantum Master Equations

Quantum master equations (QME) approach to open systems aims
at describing the dynamics of the reduced density matrix in Eq.(1.22)
by means of a first-order differential equation. This problem has been
formulated by means of projection theory, a well-known approach
in nonequilibrium classical statistical mechanics [77]. The main idea
is interpret the trace over the bath as the result of the application of
a given projection operator, acting on the space of density matrices
of the total system. Thus, for the projected, i. e. the relevant part, a
formally exact integro-differential equation of motion can be derived,
which in principle describes all non-Markovian, i. e. time-retardation
effects arising from the system-bath interaction. While the influence of
non-Markovianity in quantum mechanics is still a challenging open
problem [78], the most common description of open quantum systems
oriented towards a broad range of applications [79, 80], relies on
Markovian Master Equations (MME). MME equations are linked to
the definition of dynamical maps [81]. At initial time t0, the state of
the system is assumed to be factorized,

ρ(t0) = ρS(t0)⊗ ρB. (1.23)

A dynamical map [78] is a linear operator which maps physical states
at time t0 into physical states at any time t

ρS(t) = Φ(t, t0)ρS(t0) = trB U(t, t0)ρS(t0)⊗ ρBU†(t, t0). (1.24)

It preserves Hermiticity, the trace of operators, and is also a Com-
pletely Positive (CP) map. The requirement of complete positivity
is crucial for many application in quantum information science [82].
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However, considering a two-parameter family of maps Φ(t1, t2) =

Φ(t1, t0)Φ−1(t2, t0), t1 > t2 > t0, if the inverse exists for each of the
positive maps, the maps is said to be divisible. There is no assurance
that Φ(t1, t2) is also CP. The subset of CP maps that are also divisible
is the relevant subset of maps for MME [78]. It is clear that, if there
exists an operator L such that:

Φ(t) = exp(Lt) (1.25)

the map is CP divisible. In this case, the map belongs to a one-
parameter group called dynamical semigroup, the superoperator L
being the generator of the semigroup, and the reduced density matrix
evolution obeys to the following equation

d
dt

ρS(t) = LρS(t). (1.26)

In this special case, it can be proven that L assumes the Lindblad form
[83], and the Eq. (1.26) reads

d
dt

ρS(t) = −i[H, ρS(t)] +D(ρS(t)) (1.27)

where we have introduced the dissipator D, which is a superoperator
acting on the reduced density matrix that reads

D(ρS) = ∑
k

γk

(
AkρSA†

k −
1
2

{
A†

k Ak, ρS

})
. (1.28)

It can be expressed in terms of fixed Lindblad operators Ak, one for
each mode of the bath, acting in the reduced Hilbert space HS, which
are linked to the orthonormal basis of operators chosen to characterize
the map[75].

Eq. (1.27) is the MME in the Lindblad form. In Eq. (1.27), the first
contribution describes the unitary part of dynamics, while the dissi-
pator accounts for the effects of irreversibility, namely decoherence,
dissipation, and entropy production. The parameters γk are nonnega-
tive and describe relaxation rates : it is actually a necessary condition
for achieving CP [84]. The dynamical semigroup structure requires
that HS, as well as the Lindblad operators Ak and the γk are time-
independent. However, the notion of CP divisibility allows to general-
ize Eq. (1.27) to the case where the generator depends on time. It is
found that a time dependent MME in the Lindblad form is CP positive
if and only if the time dependent rates are nonnegative, i. e. γi(t) ≥ 0.
On the other hand, the conditions for which CP holds for the general
time-dependent Lindblad equation is still an open problem [78].

The MME in the Lindblad form in Eq. (1.27) can be derived from the
unitary dynamics of the total system in Eq. (1.21) only if a given set of
approximations is adopted, also known as Born-Markov approxima-
tions. In the first place, a general form for the interaction Hamiltonian
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is assumed, i. e. HSB = ∑k Ak ⊗ Bk, where Ak, Bk are operators of the
system and the bath respectively. In the case of Eq. (1.11), it is clear
that Ak = σz, Bk = λk(a†

k + ak). By rewriting Eq. (1.21) in the interac-
tion representation and tracing over the bath degrees of freedom, all
the contribution of order higher than two with respect to the interac-
tion Hamiltonian are disregarded. Further, the density matrix of the
total system is forced to be a product state, i. e. ρ(t) ' ρS(t)⊗ ρB at
every time t, hence the system-bath correlations are disregarded. This
approximation can hold only in the limit of weak coupling between
system and bath. Furthermore, the Markov approximation disregards
all the memory effects in the dynamics, and the important assumption
is done that the bath correlations decay on times which are much
smaller than the relaxation time of the reduced system. Eventually, an
additional rotating wave approximation, which disregards the non-
secular terms of dynamics, assures that the MME is of Lindblad form.
The actual expression of the final equation is quite different from
Eq. (1.27), as it describes also the renormalization of the bare model
energies due to Lamb-type contribution. In the Schrödinger picture
[75], it reads

d
dt

ρS(t) = −i[Hs + HLS, ρS(t)] +D(ρS(t)) (1.29)

where the Lamb-shift Hamiltonian and the dissipator can be rewritten
in terms of the Lindblad operators as follows

D(ρS(t)) = ∑
ω

∑
k,k′

γk,k′

(
Ak′(ω)ρS A†

k(ω)− 1
2

{
A†

k(ω)Ak′(ω), ρS

})
(1.30)

HLS = ∑
ω

∑
k,k′

Sk,k′(ω)A†
k(ω)Ak′(ω) (1.31)

Here the operators A(ω) are known as eigenoperators of HS; both
the decay rates γk,k′(ω) and the Lamb-Shift Sk,k′(ω) depend on the
equilibrium correlation function of the bath, and can be written as

γk,k′(ω) =
∫ +∞

−∞
exp(iωτ) 〈Bk(τ)Bk′(0)〉 (1.32)

Sk,k′(ω) =
∫ +∞

−∞

dω′

2π
γk,k′(ω)P

(
1

ω−ω′

)
(1.33)

In the case of SBM Hamiltonian in Eq. (1.11), as a consequence of
the time-independent nature of the TLS Hamiltonian, Eq. (1.29) has a
simple closed-form analytical solution, reported in App. a, which we
will further discuss in the subsequent chapters.

1.3.2 Influence functional method

In the previous subsection, a time-local QME for the reduced density
matrix of the TLS has been introduced. It can be easily expected
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that, for increasing system-bath coupling strength, the Markovian
QME in Eq. (1.29) fails to describe the correct physical behavior of
the reduced density matrix in Eq. (1.22). The main reason is that the
state of the system + bath cannot be described with such a simple
factorized product form as in Eq. (1.23), i. e. system-bath quantum
correlations become relevant. Moreover, in the low temperature regime,
the assumptions of Markovianity are questionable, as memory effects
due to the quantum fluctuations have to be considered.

The formally exact expression for the reduced density matrix can
be written by employing real-time path integral formalism [49, 85]. A
given element of the reduced density matrix is the probability for the
TLS to go from a fixed initial point xi to a final point xf in the space
of real-time trajectories. For a general system-bath linear interaction,
indicating the paths of the system and the bath with (x(t), X(t))
respectively, the reduced density matrix reads

ρ(xf, t) =
∫
Dx(τ)Dy(τ′) exp i(S[x(τ)]− S[y(τ′)])F [x(τ), y(τ′)],

(1.34)
where the sum is over all the TLS paths x(τ′)(y(τ′)) connecting the
initial and final points xi, xf, i. e. x(t0) = y(t0) = xi, x(t) = y(t) = xf
and F is a functional of the TLS coordinates only that can be computed
by summing over all paths X(t), Y(t) as follows

F [x(τ), y(τ′)] = ∑
X(tf)

∫
DX(τ′′)DY(τ′′′) exp i

(
S0[X(τ′′)]−S0[Y(τ′′′)]

+ Sint[x(τ), X(τ′′)]− Sint[y(τ′), Y(τ′′′)]
)
. (1.35)

Here the sum is over all the possible final times configurations of the
bath, and S0, Sint are the free and the interaction contribution to the
total action S of the system, respectively. Notice that, by adopting
this formalism, both the populations and the coherences of the TLS
density matrix can be treated on equal footing. The functional F , the
so-called influence functional, includes all the effects arising from
system-bath interactions without any limitation. Furthermore, due to
the easy structure of the interaction Hamiltonian in Eq. (1.1), the sums
over paths X(t), Y(t) of the bath can be straightforwardly worked out,
and the final result can be written in the form [49]

F [x(τ), y(τ′)] = exp
1
π

∫ t

t0

dτ̃
∫ t

t0

ds̃(iL1(τ̃ − s̃)[x(τ̃)− y(τ̃)]

· [x(s̃) + y(s̃)]− L2(τ̃ − s̃)[x(τ̃)− y(τ̃)][x(s̃)− y(s̃)]), (1.36)

where
L1(t) =

∫ ∞

0
dω J(ω) sin ωt

L2(t) =
∫ ∞

0
dω J(ω) coth(βω/2) cos ωt.

(1.37)
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By direct examination of Eq. 1.34 and 1.35, it is evident that the bath
correlation functions cannot be factorized as in Sec. 1.3.1, and the
effects of bath on the density matrix are non-local in time. It is also
clear that the influence functional can account for decoherence of the
TLS dynamics, as the contributions to the functional coming from
paths which resides in the off-diagonal states, i. e. x(τ)− y(τ) 6= 0
contribute to reduce the coherence. The double paths in Eq. (1.35)
can be seen as a single real-time path through the 4 possible con-
figurations : {+,+}, {+,−}, {−,+}, {−−}, where direct transitions
between couples of mutual diagonal and off-diagonal states are forbid-
den. These paths can be discretized by the values of symmetric and
antisymmetric coordinates [28], i. e. ξ(s) = (1/q0)(x(s)− y(s)), χ(s) =
(1/q0)(x(s) + y(s)). As Eq. (1.35) depends on the free action of the
TLS, the paths giving nonzero contributions are only those that visit
states linked by spin flips. These considerations are sufficient to
parametrize the path integral in Eq. (1.34) in terms of "blips" and
"sojourns" variables at each time t. Except for values of the coupling
strength α = 1/2− r, r → 0, the resulting expression for the elements
of the reduced density matrices is analytically intractable, due to terms
involving interblip correlations at different times and sojourn-blips
correlations [49]. Several analytical approximations have thus been
devised, which hold only in limited ranges of parameters values [86].

One of the most popular approximation is the non-Interacting Blip
Approximation (NIBA) [49, 87]: this approach is based on neglecting
all the inter-blip correlations at any time t, and restricting the range of
blip-sojourns correlations as explained in [28]. The main idea is that,
during its dynamics, the system spend, on average, much more time in
the diagonal states than in the off-diagonal ones. Limiting the analysis
to the Ohmic case, it is found to be true only in the absence of bias, in
the weak coupling regime or in the case of strong damping or high
temperature. According to NIBA scheme, for 0 < α < 1/2 and T = 0
the magnetization 〈σz(t)〉 show underdamped oscillations in time and
can be described in terms of analytic functions of the rescaled time
∆efft, with the effective tunneling energy ∆eff reading

∆eff = [Γ(1− 2α) cos πα]
1

2(1−α) ∆r , ∆r = ∆
(

∆
ωc

) α
1−α

. (1.38)

Here ∆r is the renormalized gap as in Eq. (1.18). The form of the
solution is given as a Mittag-Leffler function [88]

〈σz(t)〉 =
+∞

∑
m=0

(−1)m

Γ[1− 2(1− α)]
(∆efft)2(1−α)m. (1.39)

While the resulting expression for the oscillation frequency is expected
not to be valid [89], this analytical treatment provides the correct result
for the quality factor of the damped oscillation, i. e.

Q =
Ω
γ

= cot
(

πα

2(1− α)

)
, (1.40)
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(see Chap. 2.2 for details), which is a monotonic decreasing function
of α.

Further, for α = 1/2 Eq. (1.39) reduces to an exponentially decresing
function of time, i. e. 〈σz〉 = exp

(
−π∆2/2ωc

)
. It is knwon as Toulouse

limit. Here a crossover from coherent to incoherent dynamics takes
place: at zero bias, the oscillation frequency tends to vanish, as well as
the quality factor Q, and the tunneling is totally incoherent.

Although the NIBA approach successfully describes the main fea-
tures of the system in the unbiased case, in the presence of an external
bias field ε, it fails in describing the long-time limit of 〈σz(t)〉 (see 2.2).
However, several exact analytical treatments based on perturbation
theory are known which, in the weak coupling limit, give the correct re-
sults for the qubit observables, taking into account the fully-quantum
correlations with the bath degrees of freedom (see Chap.3.2.2). These
theories have been recently employed to derive analytical results for
the dynamics of heat exchange between the qubit and the reservoir
[90].

The Toulouse point α = 1/2 is special, as here the path integral
expression for 〈σz〉 (t) can be summed analitically. If 〈σz(0)〉 = 1, in
the limit of small ∆/ωc, i. e. ωc → ∞ (scaling limit) the magnetization
dynamics takes the form

〈σz(t)〉 = e−γt + 2
∫ t

0
dτ

sin(ετ)

β sinh
(

πτ
β

) (e−γ τ
2 − e−γteγ τ

2

)
(1.41)

where β = 1/T (kB = 1) and the damping rate is proportional to
the renormalized gap at α = 1/2, i. e. γ = π∆2/2ωc. In the absence
of external bias, 〈σz(t)〉 takes the exponential form which is also
recovered in the NIBA approximation.

Interestingly, the analytical solution in Eq. (1.41) can be found by
mapping the SBM into a Resonant Level Model (RLM), describing a
single localized impurity in contact with a bath of spinless fermions
at the Fermi level; in addition, Coulomb interactions between the
impurity and the fermionic bath are present [49, 65, 91], and the
resulting coupling strength is a function of α. For α = 1/2, Coulomb
interactions vanish and the model can be exactly solved: by preparing
the qubit in the state |ẑ;+〉, it is possible to derive Eq.1.41.

1.4 dissipative driven systems

Models of driven quantum system contacted with thermal bath are
of great importance in many technological applications, ranging from
semiconducting devices to superconducting quantum circuits [44]. In
particular, driven quantum tunneling has been extensively studied in
the past three decades [87].
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Prototypical models are quantum degrees of freedom subject to
time-dependent potentials and contacted with one or more thermal
baths. Driven SBM are among the most studied models thanks to their
wide range of applications reported in 1.1. In the following, we will
focus on the dynamics of driven dissipative TLS, where in place of the
TLS Hamiltonians in Eq. (1.7) we take

HS(t) = −
∆(t)

2
σx −

ε(t)
2

σz, (1.42)

Here both the tunneling element and the bias field of the TLS are
externally driven in time, following different schedules. In actual
experiments, the simplest device is a superconducting flux qubit, and
the driving is obtained by means of E. M. fields, like microwave pulses
sent via circuit waveguides [44]. Depending on the form of the driving
fields, different nonequilibrium dynamical effects have to be expected.
Below, we introduce two main theoretical models known as famous
instances of driven TLS, namely the dissipative Landau-Majorana-
Stückelberg-Zener (LMSZ) model and the periodically driven TLS
model.

1.4.1 Dissipative LMSZ model

Dissipative LMSZ model describes a TLS system subject to a linearly
driven magnetic field, experiencing tunneling between the two levels.
The LMSZ Hamiltonian is

HLMSZ =
∆
2

σx +
vt
2

σz + HB + HSB, (1.43)

where v is the velocity of the LMSZ sweep, HB is the Hamiltonian of
the free bath as in Eq. (1.8), and the system-bath Hamiltonian assumes
a more general form with respect to Eq. (1.9)

HSB =
1
2 ∑

k
λk(cos θkσz + sin θkσx)(b†

k + bk). (1.44)

In the absence of dissipation, the LMSZ Hamiltonian describes the
dynamics of a TLS during a sweep with fixed velocity v through an
avoided level crossing, as depicted in Fig. 1.4. In this condition, the
dynamics starts at time t → −∞, when the TLS is assumed to be in
the ground state, i. e. |↑〉. As it is driven at later times t through the
avoided level crossing, i. e. the time of minimum gap, transitions from
the instantaneous ground state to the excited eigenstate can occur. As
a consequence, there is a finite probability, i. e. P↑→↑(t), of finding the
TLS in the excited diabatic state. It clearly depends on time, on the
tunneling element and on the sweep velocity v. In its asymptotic form,
it reads [92]

P↑→↑(t→ ∞) = exp
(
−π∆2

2v

)
. (1.45)
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|↓〉

|↓〉

t
Figure 1.4: Scheme of the LMSZ avoided level crossing. In solid blue (red)

lines the instantaneous energy eigenstates of the non interacting
LSMZ Hamiltonian. Diabatic states at t→ ±∞ are also depicted.

Eq. (1.46) is popularly known as LMSZ formula. Several works [93–96]
have studied the possible modifications of the excitation probability
in Eq.(1.46) occurring when the TLS interacts with a thermal bath.
Indeed, an exact result holds at T = 0, which is based on direct
computation of time-ordered expansion of the survival probability
of the state |↑〉, i. e. P↑→↑(t→ ∞) = 〈↑, 0|U(−∞, ∞) |↑, 0〉 [96]. Here
the Hamiltonian in Eq.(1.43) can be written as H(t) = H0(t) + HI, the
first containing HB and all the operators proportional to σz, while
the remaining one HI, which is proportional to σx, is considered as
a perturbation. The operator H0(t) can be diagonalized exactly after
the application of a polaronic transformation. |↑, 0〉 is thus the ground
state of the shifted-oscillators Hamiltonian, while the time-evolution
operator is computed in the interaction representation starting from
HI(t). The following result holds for the modified LMSZ formula

P↑→↑(t→ ∞) = exp
(
−πW2

2v

)
, (1.46)

where a new parameter W appears in place of the bare tunneling
element, which can be written in a closed form as follows

W2 =

(
∆−

M

∑
k=1

λ2
k

sin θk cos θk

ωk

)2

+
M

∑
k=1

λ2
k sin2 θk. (1.47)

Several features of this results are interesting: the asymptotic excita-
tion probability retains the same form as Eq. 1.46. Furthermore, by
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fixing all the angles θk = 0, i. e. in the longitudinal coupling case, the
parameter W is equal to the bare tunneling element ∆, so that the
excitation probability is left unchanged. On the other hand, adding
a transverse coupling component to the bath can alter the excitation
probability, by inducing spin flips during the course of the sweep.
This result is independent on the nature of the dissipation, i. e. the
bath spectral distribution in Eq. (1.4). It has different implications
in the field of AQC, where the paradigm of LMSZ sweeps has been
frequently employed in order to give a description of the annealing
procedure, involving systems of interacting qubits [18, 97, 98]. In this
context, the annealing procedure is designed to find solution to a com-
putational NP-hard problem by means of adiabatic quantum evolution
of a system of coupled qubits. The target Hamiltonian, i. e. the system
Hamiltonian at final time encodes the solution to the problem in its
ground state [17]. As claimed in several works on AQC [19, 20, 98,
99], the effects of dissipation are not necessarily detrimental to the
success of the annealing procedure. However, the beneficial influence
of the external bath at finite temperature T has not been yet completely
understood [21], and possible explanations addressing the nature of
the qubit-bath coupling have been recently proposed [100].

1.4.2 Periodically driven dissipative systems

Periodically driven TLS in the presence of dissipation belongs to an
interesting class of driven quantum systems. Referring to our TLS in
Eq. (1.42), here the bias field ε(t) is periodically modulated in time.
Beside its established widespread applications in driven tunneling
systems [87], periodic modulation has been recently proven to be of
fundamental importance for achieving high-fidelity control of engi-
neered qubits in the presence of noise [101, 102]. The periodic nature
of the TLS Hamiltonian, i. e.

H(t) = H(t + T ), (1.48)

has several consequences on the nature of the eigenstates. By using
Floquet theory, it can be proven that the solutions of Schrödinger
equations have peculiar properties

|ψ(t)〉 = exp
(
−iε jt

) ∣∣φj(t)
〉

,
∣∣φj(t + T )

〉
=
∣∣φj(t)

〉
, (1.49)

where
∣∣φj(t)

〉
are known as Floquet modes, and the real-valued ε j are

the quasi-energies of the system. Floquet modes form a complete set
of states in the Hilbert space. Another fundamental property linked to
Eq.(1.48) is that the evolution operator U(t0 + nT , t0) can be written
as

U(t0 + nT , t0) = [U(t0 + T , t0)]
n . (1.50)

It follows that the knowledge of the evolution operator in a single
period T is sufficient to compute the time evolution operator at any
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later time t0 + nT . For the very special case of TLS subject to harmonic
drive in the absence of dissipation, these properties can be proven
to bring about interesting phenomena, entirely due to the periodic
nature of the drive. Perhaps a strikingly important example, in the
case of single monochromatic driving field, is the existence of relations
between the fields amplitude and frequency bringing to Coherent
Destruction of Tunneling (CDT) [103]. However, in the case of periodi-
cally driven dissipative TLS, approximate analytical treatments have
been developed, properly working only in limited ranges of model
parameters. Widespread analytical methods are Floquet Born-Markov
approaches [87] and Floquet expansions [104, 105] i. e. consisting of
QME written in the basis of Floquet states, which can also include non
Markovian effects. Numerical approaches have also received consider-
able attention in the last decades: the Quasi Adiabatic Path Integral
Method (QUAPI) [52, 106], which is based on iterative calculation of
the influence functional is a consolidated tool; more recent, non pertur-
bative approaches include Stochastic Schrödinger Equation methods
[76], and Tensor Product States related techinques [107]. However, de-
spite all the efforts, only few, numerical methods have been developed
which can give access to a reliable physical description of quantum
systems in the presence of strong coupling with the bath and without
significative restrictions on the driving field strengths and frequencies.
On the other hand, the regime of strong system-bath coupling has
seen a growing interest in the last years, prompted by the need to un-
derstand the implication of quantum mechanics on thermodynamics
of microscopic heat engines, entropy production, energy conversion.
In the following chapters, we propose a study of models of driven
TLS in the presence of dissipation, adopting an entirely numerical
approach which differs from those proposed in the literature. We focus
on dynamics of these systems, which can be relevant in the field of
control of noisy qubits (Chpt. 2, 3) and in the simulation of simple
instances of microscopic work-to-work converters 4, which in turn
offer an ideal testbed to probe thermodynamics relations.



2 D I S S I PAT I V E DY N A M I C S
B E YO N D B O R N - M A R KO V
A P P R O X I M AT I O N .

In this chapter, we present part of our results based on original contri-
butions published in [108].

In the last years, there has been a growing effort to describe decoher-
ence effects in adiabatic quantum computation (AQC) and quantum
annealing (QA) protocols [109, 110]. This field regained momentum
since the first experimental demonstration of the D-Wave machine [18],
and the subsequent launch on the market of the first devices.

As anticipated in Sec. 1.3.1, QME are a consolidated tool for studying
the dynamics of open quantum systems. They have been extensively
used in the modeling of AQC and QA protocols [19, 111, 112]. The
Lindblad equation relies on several assumptions on the system dynam-
ics: in particular, on the Born approximation (disregarding qubit-bath
correlations at any times during the dynamics provided that their
coupling energy is weak enough) and on the Markov approximation
(which ensures that the dissipation mechanism involves no memory
effects). Moreover, its extensions to time-dependent dynamics depend
on the considered protocol. In the field of AQC, adiabatic QME [79]
have been frequently employed, which are strictly valid when the
rotating wave approximation (RWA) holds.

Recent works [97–100, 109, 110] show that AQC of a qubit ensemble
with intermediate coupling to its bath may have shorter annealing
time than a closed system. This speed-up is predicted at very low
temperatures and intermediate couplings to the environment: a regime
where non-Markovian effects and multiple-excitation processes may
be relevant [113–116].

In this work, we discuss an alternative technique to account for de-
coherence and dissipation in open quantum systems, which could in
principle overcome the limitations of the Lindblad equation, allowing
us to avoid the set of Born-Markov approximations. This approach
combines: a discretization of the bath in Eq. (1.9) and (1.10) [117],
which is described in terms of a finite number of independent har-
monic oscillators; a smart truncation scheme of the bosonic Hilbert
space; short-iterative Lanczos (SIL) method [118–121]. Our technique
is not affected by the limitations of standard perturbative approaches,
as it guarantees the trace preservation and positivity of the density
operator. Due to its stability and reduced computational effort, this
method allows us to include multiple-excitation processes, not ac-
counted by the Lindblad theory [122, 123]. Moreover, as we do not

21
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trace over the bath degrees of freedom, we have access to the full wave
function, and we can compute all the properties of either the reduced
system and the bath. By means of our technique, we will focus on two
different models describing the dynamics of a TLS interacting with
its environment. These models obey to the general form described in
Sec. 1.1 and 1.4.

This chapter is organized as follows: in Sec. 2.1, we discuss the main
features of our numerical method; in Sections 2.2 and 2.3, we introduce
the particular TLS Hamiltonians to be studied and present our results,
comparing them with known approximations schemes. Eventually, we
discuss further possible extensions of this work in Sec. 2.4.

2.1 short-iterative lanczos method

Here we present our numerical approach devised to simulate the
dynamics of models ruled by Hamiltonian operators H(t) as in Eq.
Eq. (1.20). Although in the following sections HS(t) will be restricted
to the case of a single TLS as in Eq. (1.42), the method can find
application to the case of single as well as multiple interacting degrees
of freedom. The bath degrees of freedom are of the form in Eq. (1.8),
while the system-bath interaction can in principle assume the general
form in Eq.(1.44). For the sake of simplicity, at the initial time t0, we
assume the density matrix of the qubit and bath to be factorized:

ρ(t0) = ρS(t0)⊗ ρB, (2.1)

where ρS(t0) is the density operator of the reduced system at the initial
time and ρB is the bath density operator at thermodynamic equilibrium
at temperature T = 1/β (kB = 1 here and in the following). Given the
time evolution operator

U(t, t0) = T̂ exp
(
− i

∫ t

t0

H(τ)dτ

)
, (2.2)

where H(t) is the total interacting Hamiltonian of the system and the
bath, T̂ is the time-ordering operator, then the density operator at any
time t can be computed as

ρ(t) = U(t, t0)ρ(t0)U†(t, t0). (2.3)

Eventually, the density operator of the reduced system at time t is
readily found by tracing out the bath degrees of freedom,

ρS(t) = trB ρ(t), (2.4)

thus allowing for the evaluation of any observable of the reduced
system.

A useful numerical approach to calculate U(t, t0) is the short-
iterative Lanczos method (SIL) [118, 119], which can be employed
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to propagate the full system-bath quantum state |Ψ(t)〉 at time t, once
the starting state |Ψ(t0)〉 is known. This technique combines a projec-
tion scheme of the full Hamiltonian H(t) to a truncated state space
and exact diagonalization methods. While conventional approaches
describe the influence of the bath degrees of freedom on the reduced
systems in terms of an analytically exact effective interaction poten-
tial, here the main difficulty resides in finding a suitable truncation
scheme of the bath Hilbert space, which could successfully describe
the dynamics of ρS(t), at least in a range of model parameters.

To pursue this goal, we start by discretizing the bosonic spectrum
by considering M equally spaced modes, having frequencies

ωk =
ωc

M
k, k = 1, . . . , M. (2.5)

The bath space state is spanned by the basis { |n1, n2, . . . , nM〉 }, where
nk = 0, . . . , Nmax is the number of excitations in mode k, up to a cut-off
Nmax. We integrate the spectral density function in Eq. (1.10) around
each mode, and extract the couplings λk which are able to reproduce
the correct spectral density of the bath up to some desired level of
accuracy, controlled by M. For sufficiently large M, the integral can be
approximated by the mean value theorem as

λ2
k ≈ 2α

ωs
k

ωs−1
c

δω ≡ 2αω2
c

ks

Ms+1 , (2.6)

where δω = ωc/M. This uniform sampling is the simplest choice,
and allows us to reach convergence in all the investigated regimes, as
we will show in the next section. Different samplings have also been
proposed in the literature [58, 117, 124, 125].

Further, the truncation scheme to be performed on the set of bath
states clearly depends on the value of the coupling strength α. As
evident from Eq. (1.44), the creation or annihilation of a boson in a
certain state k leads to a variation in the occupation number nk with
respect to its thermal equilibrium value neq

k , fixed by the Boltzmann
distribution. In the following, we will denote as Nph the absolute
maximum number of bosonic excitations, with respect to the ther-
mal equilibrium. Performing the truncation of the Hilbert space to
those states with ∆nk = nk − neq

k =
{

0,±1,±2, . . . ,±Nph
}

, with
∑k |∆nk| ≤ Nph, a numerically exact description of the system-bath
dynamics can be obtained up to terms proportional to αNph . In the
weak coupling regime (WC), we find that a correct description can
be obtained by choosing Nph = 1; we emphasize that, at WC, our
approach recovers the Lindblad results in the limit of extremely weak
coupling strengths. For increasing values of α, we can fine-tune our
results by progressively adding more states to the bath Hilbert space,
corresponding to multiple excitations from the equilibrium state; the
computational resources needed to simulate the system dynamics
at these couplings are necessarily heavier, but calculations remain
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affordable in the intermediate coupling (IC) regime, where Nph = 3
is enough to get a good quantitative description of the dynamics. As
a consequence, this approach is well-suited to describe the correct
physical behavior of the system in a parameter range going from weak
to intermediate coupling.

Once the final set of basis states has been fixed, an iterative calcu-
lation of the state |Ψ(tf)〉 can be set up for any final time tf in the
following way. First, we divide the entire time interval in subintervals
of fixed duration dt. Then, for every fixed time interval [t, t + dt], we
evaluate the Hamiltonian at midpoint and project it onto the subspace
K = { |Ψ(t)〉 , H |Ψ(t)〉 , . . . , Hn |Ψ(t)〉 }, where |Ψ(t)〉 is the full sys-
tem state at time t and n is the minimum number of vectors needed
to achieve convergence. An orthonormal basis of vectors in K is given
by the set of Krylov vectors { |Φk〉 }n

k=1, obtained by recursive Gram-
Schmidt orthogonalization techniques. The reduced Hamiltonian H̃ in
the n-dimensional Krylov subspace can thus be obtained as

H̃ = PHP†, (2.7)

where P is the projector operator into the Krylov subspace at time
t; following the chosen time discretization, the evolution operator
Ũ(t + dt , t) can be recast as follows:

Ũ(t + dt , t) ' exp
[
− i H̃(t + dt /2)dt

]
. (2.8)

The minimum dimension n to achieve convergence depends on
dt; its typical values are of the order of 20 to 100, thus allowing the
numerical evaluation of Eq. (2.8) by means of direct diagonalization
of the matrix H̃(t + dt /2). Eventually, expanding the state |Ψ(t)〉 in
terms of the eigenvectors of H̃(t + dt /2), the full state of the system
at time t + dt can be evaluated by straightforward matrix products.
This procedure turns out to be particularly useful if the matrix H is
Hermitian, because in that case the reduced matrix H̃(t + dt /2) has
tridiagonal form and thus can be easily diagonalized.

One intrinsic limitation of this approach is that it is valid only up to
a specific upper time scale. The minimum frequency ω1 determines
the Poincaré recurrence time tp = 2π/ω1, which is an upper limit
for the total evolution time that can be studied with this method.
After tp, the collection of harmonic oscillators ceases to be a good
approximation of an ergodic thermal bath. Hence, realistically, this
numerical approach is not feasible to study very long time (adiabatic)
dynamics, except in the WC regime, where the Hilbert space scales
linearly with M, allowing to simulate a large number of modes (up to
106) and, consequently, moderately long times.

On the other hand, short time dynamics is well-described even
with a limited number of modes, both in WC and IC. That is where
our method proves its usefulness. This allows us to study memory
effects, which are considered of great interest in real, experimentally
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controllable, baths [113, 114]. Nonetheless, our method provides the
whole system+ bath wave function. With a change of perspective, this
could be useful to test the influence of the reduced system over the
environment, and this is potentially interesting for studying structured
environments with a limited number of degrees of freedom.

2.2 spin-boson model

In what follows, we analyze the dynamics of SBM with longitudinal
coupling to the bath as in Eq. (1.11) by means of the SIL technique
described in Sec. 2.1. Then, we compare our numerical results with
their analytical closed-form counterparts which can be obtained from
the Lindblad equation in Eq. (1.29).

Below, we slightly change our notation, by rewriting the tunneling
element ∆ and the coupling element λk in Eq. (1.11) such that ∆/2→
Γ, λk → 2gk. It is equivalent to rewriting the Hamiltonian Eq. (1.11) as
follows

H = −εσz − Γσx + ∑
k

ωkb†
k bk + σz ∑

k
gk(b†

k + bk). (2.9)

We call η the new adimensional coupling strength, so that α = 2η.
Furthermore, we adopt a different cutoff function, so that the bath
spectral density function takes the form

J(ω) = ∑
k

g2
kδ(ω−ωk) = η

ωs

ωs−1
c

Θ(ωc −ω). (2.10)

This change of notation is adopted only in this Chapter, as we want
to describe the properties of quantum annealing in the next section.

We first restrict to the unbiased case ε = 0, i. e., HS = −Γσx, and we
take the temperature T = 0. We choose a cut-off frequency ωc = 10Γ,
take the coupling parameter η in the range η = 5 · 10−4 to 1 · 10−1,
and assume s = { 1/2, 1, 2 }; in addition, following this choice of
parameters, we perform the basis truncation including up to three ex-
citations per mode (Nph = 3). We prepare the system at time t = 0 in a
linear combination of the basis states at fixed starting values 〈σx(0)〉 =
〈σz(0)〉 = 1/2, i. e., |ψ(0)〉 = cos(ξ/2) |ẑ;+〉+ sin(ξ/2) exp(i φ) |ẑ;−〉,
with ξ = π/3 and φ = acos(1/

√
3). Then, we compute the time-

evolved mean values 〈σx(t)〉 and 〈σz(t)〉, extracted from the reduced
density matrix ρS(t), and eventually compare them with the corre-
sponding results based on the Lindblad equation.

In Fig. 2.1, we show the results for 〈σz(t)〉 in the IC regime, in the
case of Ohmic dissipation, for different values of the maximum num-
ber of excitations per mode Nph, compared with the result predicted
by the Lindblad equation in Eq. (1.29). Choosing a minimum value of
Nph = 2, the time evolution of 〈σz(t)〉 converges to the right physical
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Figure 2.1: Time evolution of 〈σz(t)〉 for an unbiased qubit in an Ohmic
bath (s = 1), having chosen η = 5 · 10−2, ωc = 10Γ and T = 0.
We fixed M = { 1000, 500, 300 }, for Nph = { 1, 2, 3 }, respectively.
SIL results are plotted against the Lindblad curve (solid black
curve), from Eq. (a.13).

behavior, which shows underdamped oscillations due to decoherence
and dissipation effects. It follows that at long times the equilibrium
value

〈
σ

eq
z
〉
= 0 is reached and the populations of the two levels

assume their stationary value.
Notice that, as expected, these features do not depend on the starting

condition. In the main plot of Fig. 2.2, we support this statement by
comparing the dynamics for our choice of the initial state with the
more traditional |ψ(0)〉 = |ẑ;+〉. Here it can be clearly seen that both
the decay rate and the oscillation frequency are preserved; in order
to emphasize this, we shifted one of the curves to make them in
phase. Simulation parameters are the same as Fig. 2.1 and we chose
Nph = 2. The exact functional form of 〈σz(t)〉 is not known. However,
as anticipated in 1.2, several theoretical arguments [49] show that the
interaction with the environment is responsible for a renormalization
of the tunneling amplitude (and, correspondingly, of the spectral gap
of the qubit system), depending on the coupling strength, of the form

Γr = Γ
(

2Γ
ωc

) 2η
1−2η

. (2.11)

Furthermore, the properties of the underdamped oscillations of the
magnetization 〈σz(t)〉 can be described by means of the quality factor
Ω/γ, where the frequency Ω and the damping factor γ are related
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Figure 2.2: Time evolution of 〈σz(t)〉 for an unbiased qubit in an Ohmic
bath (s = 1), with η = 5 · 10−2, ωc = 10Γ and T = 0, and two
different starting conditions: the traditional |ẑ;+〉 and the state
c1 |ẑ;+〉+ c2 |ẑ;−〉, with c1 = cos ξ and c2 = exp(i φ) sin ξ (see
the main text for their definition). In the inset, SIL results for the
quality factor as a function of the coupling parameter, compared
with conformal field theory and NIBA (solid orange line) [76];
in the IC regime, increasing the phonon number is necessary to
improve the accuracy.

to the tunneling amplitude. As anticipated in Chpt.1,] despite its
limitations, NIBA [49] yields correct predictions for the quality factor,
which are also in agreement with conformal field theory [76]. It reads

Ω
γ

= cot
2πη

2(1− 2η)
. (2.12)

Assuming a simple functional form for the underadamped oscilla-
tions, i. e. 〈σz(t)〉 = A cos(Ωt + µ) exp(−γt), we can extract from our
numerical simulations good estimates for the parameters of interest
as function of the the dissipation strength η. In the inset of Fig. 2.2,
we show that the SIL method succesfully recovers the behavior of the
quality factor in the entire range of investigated coupling strengths.

On the other hand, in Fig. 2.3 we analyze the numerical results
for the time evolution of 〈σx(t)〉 obtained by means of SIL technique,
plotted against the result predicted by the Lindblad equation reported
in Eq. (1.29) and (a.13); our results exhibit a non-monotonic behavior
at short times, while a prominent saturation behavior at long times can
be observed, for every value of Nph. Analogous properties hold for the
time evolution of this observable in the sub-Ohmic and super-Ohmic
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Figure 2.3: Time evolution of 〈σx(t)〉 for the same parameter values as in
Fig. 2.1. The non-monotonic region occurs at short times 0 <
Γt < 2.5 while at long times the curve saturates to a well-defined
equilibrium value.

cases (see Fig. 2.4), provided that the analysis is restricted to WC and
IC regimes. As shown in Fig. 2.4, the three saturation curves, in the
same parameter region as in Fig. 2.1, clearly differ in the equilibration
times as well as in the equilibrium values σ

eq
x .

As can be inferred from Fig. 2.3, our results remarkably differ
from the Lindblad one, because the latter predicts as the long-time
stationary value the one corresponding to the ground state of the qubit
Hamiltonian disentangled from the bath. Instead, our calculations
show that the stationary value is related to the ground state of the
qubit-bath system: at long times, qubit and bath remain entangled, as
expected at equilibrium.

While such a striking difference can be observed in the equilibrium
values of 〈σx(t)〉 obtained by using SIL and the Lindblad equation,
the relaxation rates are very similar in the two approaches. As a
deeper analysis of Figs. 2.1 and 2.3 shows, the Lindblad result for
〈σz(t)〉 qualitatively agrees with the SIL result, correctly predicting
the underdamped oscillating behavior, which takes place in a time
T2 depending on the energy gap 2Γ, temperature and the damping
parameter η (see Eqs. (a.13)).

Note also that the time dependence obtained by the SIL method
with Nph = 1 fails to recover the correct physical behavior suggesting
that, as expected, the Lindblad solution includes multiple uncorrelated
scattering processes. On the other hand, as previously discussed, the
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Figure 2.4: Time evolution of 〈σx(t)〉 for the same parameter values as
in Fig. 2.1, for three different dissipations considered s =
{ 1/2, 1, 2 }. Both the equilibration times and saturation values
depend on s.

Lindblad result for 〈σx(t)〉—equal to the difference in populations of
states |x̂;±〉—saturates towards the wrong asymptotic value after a
time T1 = T2/2 (see App. a). In this case, correlations among multi-
ple scattering processes, correctly included by our approach, play a
relevant role.

In addition, while the relaxation times are correctly reproduced, we
note that the Lindblad approximation in Eq. (a.13) does not take into
account the non-monotonic behavior of 〈σx(t)〉 at very short times, as
shown in Fig. 2.3. This behavior can be understood by carrying out
a detailed analysis of the time evolution of each contribution to the
expectation value of the total Hamiltonian in Eq. (2.9). As shown in
Fig. 2.5, at short times the absolute value of the system-bath interaction
energy 〈HSB(t)〉 rapidly grows up to an absolute maximum and, as
a consequence, both the reduced system and the bath undergo an
excitation from their initial states, while the total energy remains
constant in time. After this brief transient time, depending on the
chosen initial condition, the expectation value of the reduced system
energy 〈HS(t)〉, as well as 〈HB(t)〉 and 〈HSB(t)〉, saturates towards its
equilibrium value.

The previous results suggest that, moving from WC to IC, a physical
description of the dynamics of the SBM entirely based on the Lindblad
equation can suffer from severe limitations, in agreement with theoret-
ical [75] and experimental findings [113, 114]. On the other hand, the
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Figure 2.5: Time evolution of 〈HS(t)〉, 〈HB(t)〉, 〈HSB(t)〉, and 〈H(t)〉, in units
of Γ, for an Ohmic bath with M = 300, Nph = 3, η = 5 · 10−2 and
ωc = 10Γ.

SIL approach can successfully reproduce the correct physical scenario
in this parameter region. In order to provide further evidence for it,
we study the equilibrium values σ

eq
x as a function of the coupling

parameter η for the three different kinds of dissipation mentioned
before, choosing the maximum number of excitations per mode up to
Nph = 3.

In order to obtain reliable values of σ
eq
x , we performed an exponen-

tial fit of the numerical results 〈σx(t)〉 and extracted the best estimates
of the saturation values. In Figs. 2.6, 2.7 and 2.8, we show the fitted
equilibrium values σ

eq
x as a function of the coupling parameter η

compared with the Lindblad result. We also plot the equilibrium val-
ues calculated using a Monte Carlo approach at thermal equilibrium
(orange filled diamonds), with the purpose of further testing the relia-
bility of our calculations. We note that, as the coupling factor becomes
larger than 10−3, the Born-Markov approach misses the correct physi-
cal behavior for every bath spectral distribution considered. It follows
that, at long times, the unavoidable system-bath entanglement effects
start to play a role, noticeably reducing the value of σ

eq
x . This effect

becomes particularly evident in the case of sub-Ohmic dissipation,
which shows a rapid decrease of the 〈σx(t)〉 as η reaches 10−2. This
is due to the fact that, in this case, the critical coupling strength at
which the quantum phase transition of the SBM [49] occurs is smaller
than in the Ohmic case [58, 124], explaining the observed quantitative
difference between Monte Carlo data and SIL predictions. On the other
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Figure 2.6: Semi-logarithmic plot of the saturation value σ
eq
x , extrapolated

with exponential fits, as a function of the dimensionless coupling
η, at T = 0, for an Ohmic bath (s = 1). The simulated data of
the numerical diagonalization, up to Nph = 3 bosonic excitations
from the vacuum state, are compared to Lindblad and Monte
Carlo predictions at equilibrium. The ranges of parameters where
the physics is ruled either by single or multiple-phonon processes
are easily distinguishable by those values of η where the curve
at different Nph separate.

hand, in the Ohmic and super-Ohmic case a good physical description
can be achieved by truncating the phonon bases to three excitations
per mode, as long as the coupling factor is weaker than 10−1.

Following these results, we can apply the SIL technique to per-
form an analogous analysis for the biased case (ε 6= 0). Here, the
gap between the qubits states changes to a constant value equal to
Eg = 2

√
ε2 + Γ2, the eigenstates being linear superpositions of the

computational basis states. The biased case is of particular interest
for us, since it has been shown that the NIBA, predicting the qubit
localization in the state |ẑ;−〉 at long times, fails to describe the correct
physical behavior [49, 86]. We can therefore further test the predictions
of our numerical technique by analyzing the asymptotic behavior of
〈σz(t)〉. By turning back to the |ẑ;±〉 basis, we prepare the qubit at
initial time in the state |ẑ;+〉 and simulate the time evolution of the
biased system in WC, by fixing the values ε = −Γ, η = 5 · 10−3 and
T = { 0, 0.1 } in units Γ.

As shown in Fig. 2.9, the numerical results for 〈σz(t)〉 clearly indicate
an asymptotic value that, while differing from the NIBA (〈σz(∞)〉NIBA =

tanh(βε/2)) [49], is consistent with that obtained by means of WIBA
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Figure 2.7: Same as Fig. 2.6, but for a sub-Ohmic bath (s = 1/2).

approach [86]. It follows that our method can provide an accurate de-
scription of correlation effects, and it can be fruitfully used to describe
the physics of these system even in the IC regime. In addition, a more
detailed numerical analysis may be pursued in order to measure in
a systematic way the differences between our result and the WIBA
predictions.
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Figure 2.8: Same as Fig. 2.6, but for a super-Ohmic bath (s = 2). In presence
of a super-Ohmic bath, because of the reduced number of low-
energy bosons, equilibrium is reached more slowly and it is
difficult to extrapolate σ

eq
x at WC.
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Figure 2.9: Time evolution of 〈σz(t)〉 for the biased case and Ohmic dissi-
pation, obtained by choosing ε = −Γ , η = 5 · 10−3, ωc = 20Γ,
Nph = 2, and T = { 0, 0.1 } in units Γ (red and blue solid curves).
The asymptotic value, while differing from that predicted by
NIBA, fairly agrees with WIBA results (solid black curve), ex-
tracted from Ref. [86].
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2.3 quantum annealing

Here we focus on a typical quantum annealing problem, where we
choose a time dependent TLS Hamiltonian as in Eq. (1.42). We study
the dynamics of a TLS where both the tunnelling element and the bias
field change in time following a linear interpolating schedule. This
driving is typical in AQC setting [20, 97], where in place of the single
TLS more complex models of interacting Hamiltonian are employed.

Below, we slightly change our notation, by rewriting the time-
dependent field as ∆(t)/2 → Γ(t) = (1− t/tf)Γ and ε(t)/2 → εt/tf,
where tf is the final annealing time,so that the TLS Hamiltonian reads

HS(θ) = −(1− θ)Γσx − θεσz. (2.13)

Here θ = t/tf ∈ [0, 1] is a dimensionless time. We choose the transverse
field Γ as our reference energy scale and fix ε = Γ. As prescribed by
AQC, we start by preparing the reduced system at θ = 0 in the
instantaneous eigenstate of HS(0), i. e., a fully displaced state having
maximum kinetic energy, and we let it evolve towards the localized
ground state of HS(1). The environment is initialized in its thermal
equilibrium state, and, in order to keep the discussion simple, we
restrict to the case T = 0.

With our SIL method, we are able to simulate both short and long
time dynamics, while the usually employed tools for simulating AQC
algorithms strictly require long annealing times (tf → ∞) in order
to provide reliable results. Among these tools, the Lindblad equa-
tion (1.29) for the reduced ground state occupation probability can
be solved analytically in the adiabatic limit [20], and provides the
solution, in the instantaneous eigenbasis of HS(θ),

ρ−−(θ) =
1

G(θ)

[
ρ−−(0) +

∫ θ

0
F(θ′)G(θ′)dθ′

]
, (2.14)

where, at zero temperature,

G(θ) = exp
∫ θ

0
F(θ′)dθ′ , (2.15)

F(θ) = tf ξ2(θ)γ
(
Eg(θ)

)
, (2.16)

ξ(θ) = 2Γ
1− θ

Eg(θ)
, (2.17)

and Eg(θ) is the instantaneous reduced spectral gap. Eq. (2.14) predicts
that, at long tf, the fidelity saturates to ρ−− = 1 independently of the
system-bath coupling strength η, which only affects the characteristic
relaxation time, proportional to η−1. This reflects the Born-Markov
approximation: the bath state is uncorrelated with the reduced system
state, hence, in this picture, the only effect of the zero-temperature
reservoir is to drive the TLS towards its ground state. However, as
discussed in Sec. 2.2, in IC this picture is misleading as entangled
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system-bath states may arise, significantly modifying the occupations
of the qubit eigenstates.

In order to catch the correct physics in this interesting regime, we
coupled this system to M = 200 modes, each possibly occupied by
maximum Nph = 3 phonons. At θ = 1, we compute the excess energy
εres with respect to the reduced ground state energy εgs = −ε. For a
TLS, εres is proportional to the ground state error 1− ρ−−, i. e.,

εres ≡ tr[HS(1)ρS(1)]− εgs = 2ε[1− ρ−−(1)]. (2.18)

In Fig. 2.10, we compare the excess energy, in units Γ, as a function
of the final annealing time (in units 1/Γ) of several TLSs, coupled
with different strengths η to an Ohmic environment. Similar curves,
obtained by numerical integration of the Lindblad equation using a
fourth-order Runge-Kutta routine, are shown in Fig. 2.11. By compar-
ing the curves, it is evident that system-bath correlations, disregarded
by the Lindblad QME, modify quantitatively and also qualitatively
the behavior of the solution in the analyzed time range, hence a
Born-Markov dynamics is not able to reproduce the correct behavior.

In fact, in the Lindblad picture of Fig. 2.11, the only noticeable
effect of progressively increasing system-bath coupling strength is
a very small damping of the amplitude of short-time oscillations in
the ground state occupation, while both the function profile at short
times and the long times power-law tail are preserved in the presence
of a dissipative environment. By contrast, what we found with SIL
method (Fig. 2.10) is that, while the description at short times is
in agreement with Lindblad results, at intermediate times system-
bath correlations tend to increase the value of the excess energy with
respect to the isolated case η = 0, and this feature is not present in the
QME solution. In fact, at intermediate times we observe a transient
plateau, anticipating a further decrease in the excess energy towards
the solution of the isolated case. As the exhaustion time of the plateau
inversely depends on η, we observe a non-monotonic behavior of
the excess energy as a function of η in the time window where this
decrease takes place. The oscillations in the excess energy of the closed
system are well-known and due to the finite annealing time of the
chosen schedule. The effect of the environment is to suppress these
oscillations in the open system case. Moreover, the excess energy of the
open system can become smaller than its closed system counterpart,
but this effect can only occur at some particular values of the final
annealing times. It is evident in the inset of Fig. 2.10, showing that
eventually, at longer annealing times, the curve corresponding to
η = 10−2 approximately tends to the mean value of the closed system
oscillating pattern. Whether or not this feature survives also at low
but finite temperature is currently under investigation.

As for the analysis at the end of Sec. 2.2, concerning the oscillation
frequency of 〈σz(t)〉, it may be tempting to explain the influence of
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Figure 2.10: Excess energy, in units Γ, as a function of the final annealing
time, in units 1/Γ, for coupling strengths η going from zero to
10−2. Simulations involve M = 200 bosonic modes at T = 0,
with ωc = 10Γ and Nph = 3 (Ohmic bath). At short times,
the environment does not have the time to act and the system
always stays close to the isolated solution. At intermediate times,
the residual energy shows a plateau. At longer times, a further
decrease of εres brings the solution again towards the isolated
case. At these time scales, this effect is visible only at IC. The
inset focuses on longer annealing times (reached using M = 450
modes) and follows the same color scheme as the main plot.
Here, we show that at long times the effect of the bath may be
beneficial for the annealing.

the environment on the quantum annealing in terms of a renormal-
ization of the spectral gap of the reduced system. According to this
argument, however, we should always expect a decrease of quantum
annealing performances due to the gap reduction in the presence of
the bath. Moreover, we should observe a progressive worsening of
the annealing performances with increasing η due to this effect (see
Eq. (2.11)). This argument reduces the full system to an effective TLS
with renormalized spectral gap, which is a completely satisfactory
description of time-independent problems as the SBM in Sec. 2.2, but
cannot rigorously reproduce the dynamical behavior of a system with
time-dependent Hamiltonian.

To show that the previous picture might be misleading, recall that
the physical description of a quantum annealing process can be un-
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Figure 2.11: Excess energy, in units Γ, as a function of the final annealing
time, in units 1/Γ, for coupling strengths η going from zero
to 10−2, simulated using the Lindblad master equation at T =
0 and a cut-off frequency ωc = 10Γ (Ohmic bath). The only
noticeable effect of increasing η is the progressive damping of
short time oscillations in the ground state occupation, but the
plateau and the following decrease of εres observed in Fig. 2.10

are not recovered.

derstood in terms of the Landau-Zener (LZ) model [126, 127]. The LZ
Hamiltonian reads

HLZ(t) = −
vt
2

σz −
∆
2

σx, (2.19)

it has a minimum spectral gap ∆ at t = 0 and in this case the TLS
system evolves from t = −∞ to t = +∞ with sweep velocity v. The adi-
abatic limit holds when v→ 0. It has been shown in many works [96,
128, 129] (see also Sec. 1.4.1) that a zero-temperature thermal bath lon-
gitudinally coupled (i. e., via σz) to the LZ system cannot provide any
thermal speed-up with respect to the isolated dynamics for any sweep
velocity v, i. e., the probability of finding the system in its ground
state at t = +∞ coincides with that of the closed system and is η-
independent. This exact result holds exclusively for an evolution from
t = −∞ to t = +∞ and proves that, even though a renormalization of
the minimal gap occurs, this does not necessarily lead to a decrease in
the annealing performances.

Our Hamiltonian (2.13) inherently differs from the LZ model (2.19),
thus the aforementioned theorem does not apply here. The LZ sweep
velocity is inversely proportional to our final annealing time tf, which
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is always finite: v ∝ 1/tf. The excess energy in LZ is computed at
t = +∞, while we always compute it at t = tf < ∞. The finiteness of
tf, experimentally more realistic than the limit tf → ∞, is responsible
for the oscillations of the residual energy in the isolated case; as a
consequence, the excess energy in the open quantum annealing of
the system Hamiltonian (2.13) can be inside these oscillations at long
times, causing a “partial speed-up” (i. e., occurring only at specific final
annealing times tf) of the annealing procedure due to the environment.

2.4 conclusions

In this chapter, we showed that a numerical technique based on the
iterative application of the time evolution operator, obtained by an
appropriate reduction of the problem in the Krylov subspace, is well-
suited for describing decoherence and dissipation effects in systems
where a qubit interacts with an external bath. Tuning the number of
bosonic modes and the corresponding maximum occupations of single-
particle basis states, this technique allows the perturbative inclusion
of relevant phononic processes in the dynamics of the reduced system,
and enables to correctly describe time-correlation effects owing to
the bath influence, ranging from weak to intermediate couplings. We
emphasize that, within the proposed approach, both the full and the
reduced density operator are not affected by any limitation as in
standard perturbative methods, as non-positivity or non-preserved
trace.

The conceptual simplicity or our method and the ease of its nu-
merical implementation allow a fine control on the limitations and
possible sources of errors during the numerical simulations. Further,
our technique, yielding the entire wave function of the system + bath,
allows the calculation of all the observables related to either one of
the two subsystems, or to both of them, for all kinds of dissipations.
Quite recently, there has been a renewed interest in understanding the
physics of structured baths and thermal reservoirs in general [130–132].
Thus, our technique might be a valid tool to provide some insights on
this class of phenomena. In addition, it allows to study general many-
body and time-dependent problems without modifying the structure
of our code and with no loss of precision.

With our method, we tested the limits of a description entirely based
on Born-Markov hypotheses and recovered known results, providing
some insights on the reliability of known analytical approximations.
We claim that this technique can be useful for studying simple open
quantum systems and for simulating adiabatic quantum processors,
perhaps in combination with other numerical tools such as NRG when
the complexity grows. Moreover, it can be easily extended to the study
of non-equilibrium behavior of many physical systems, e. g., qubits in
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presence of structured baths, externally driven qubits, small clusters
of spatially-correlated qubits immersed in external environments,
or many-body Ising systems restricted to symmetry subspaces. In
the following chapters, we will extensively employ this technique to
simulate nonequilibrium behavior of TLS system under particular
driving fields.





3 TO W A R D S T H E S T R O N G
C O U P L I N G R E G I M E .

In this chapter, we present part of our original contributions published
in [133].

The prototypical SBM in Eq. (1.11) has been widely employed in
the study of energy exchange in dissipative driven systems [134]
from weak to strong coupling regimes. Further, the effect of a thermal
environment on the ground state topology of SBM has been considered
in recent works [45], showing that only local geometric properties are
noticeably affected, while global properties remain unchanged as long
as the system is in the delocalized phase, i. e. the coupling to the bath
degrees of freedom does not exceed the critical value (α < αc = 1).

In addition, the bath-induced non-adiabaticity in models of driven
TLS subject to a sweep in the Bloch sphere has been addressed [45],
and in the strong coupling regime the crossover from quasi-adiabatic
to non-adiabatic dynamics due to the environment has been studied.
While this picture holds true in the quasi-adiabatic regime, it is not
a priori clear how the environment affects the dynamics of the TLS
at not-so-low sweep velocities; furthermore, different forms of the
coupling could lead to changes in this scenario, as stressed in several
works [100, 128, 129] addressing the dissipative dynamics of Landau-
Majorana-Stückelberg-Zener (LMSZ) model [126, 127, 135].

In this chapter, we extend the numerical study of the dissipative
dynamics of SBM, begun in Chpt. 2, going from weak to strong
coupling regime. By employing the numerical approach described
in section 2.1, we first address the static field case, focusing on the
biased SBM in contact with an Ohmic bath. Then, we consider a
time-dependent protocol, which has been recently implemented in
solid-state devices in order to realize dynamical measurements of
topological phase transitions [136, 137].

We show that in the case of unbiased SBM our approach is successful
in describing the crossover from coherent to incoherent behavior of
magnetization dynamics, occurring at the Toulouse point at α = 1/2
(see Sec. 1.3). In addition, taking advantage of our technique we find
the dynamical evolution of the mean population of the bath modes
as a function of time, and we observe a change from non-resonant to
resonant response at fixed coupling strengths. Furthermore, in the case
of the time-dependent protocol, we show a non-monotonic behavior
of the fidelity at fixed final times as a function of the dissipation
strength: this behavior, which is found to depend on the detailed form
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of interaction with the environment, signals the complex interplay
between non-adiabatic effects due to the external time-dependent
driving force and dissipation.

The chapter is organized as follows: in Sec. 3.1, we briefly describe
our model with reference to SBM. In Sec. 3.2, we extend the study of
the dynamics of SBM in Eq. (1.11), begun in the previous chapter, from
intermediate to strong coupling regimes, comparing our predictions
with renowned theoretical approximations. In Sec. 3.3, we study the
time-dependent protocol in the presence of dissipation and we discuss
possible physical intepretations of our numerical results. Eventually,
in 3.4 we discuss viable extensions of this work along with future
perspectives.

3.1 model hamiltonian

Here we consider as a model Hamiltonian that of a TLS, i. e. a qubit,
subject to time-dependent external fields and interacting with its sur-
rounding, following the general form of Eq. (1.20). Similar to Chpt. 2,
the time-dependent Hamiltonian HS(t) reads

HS(t) = −
1
2

h(t) · σ, (3.1)

where we make use of the spin 1/2 Pauli matrices σ = (σx, σy, σz).
We take as h a time-dependent magnetic field vector which at fixed
time t points in a given direction of the three-dimensional coordinate
space. We conventionally adopt as a basis for the qubit states, i. e. the
computational basis, the set of eigenstates of σz operator, namely
σz |ẑ;±〉 = ± |ẑ;±〉: as a consequence, the component of h along the ẑ
axis acts as a bias on the energy levels of the two states, while linear
combinations of σ± operators give rise to tunnelling between these
two states.

We model our bath as in Eq.(1.8), while for the time-independent in-
teraction term coupling the qubit to the bath, we assume the following
expression

HI =
1
2

σ · n̂ ∑
k

λk(b†
k + bk). (3.2)

In Eq. (3.2), λk is the usual parameter describing the coupling with the
k-th oscillator, while n̂ is a general coupling direction in the Cartesian
coordinate space.

Eq. (3.2) is rather general: it has been recently proposed to study
the effect of a thermal environment on qubits subject to different
time-dependent protocols, including the widely studied LMSZ sweeps
[100, 129, 138]; in the latter case, it has been argued that the intro-
duction of a "transverse" coupling direction, i. e. orthogonal to the
time-dependent bias field, could provide a simple theoretical expla-
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nation of the experimental findings regarding D-Wave Rainier’s chip
[98].

In the following we extend our analysis to a qubit coupled to a
thermal bath along different spatial directions. As a first example, we
turn back to SBM model, in order to simulate its behavior in the strong
coupling regime. As a second example, we analyze a time-dependent
protocol where the qubit is subject to a rotating magnetic field h(t)
performing a sweep in a fixed plane, and the dissipation can take
place along two particular directions in the plane of rotation.

3.2 sbm in the strong coupling regime

Taking a static tunnelling element along x̂ axis, i. e. hx = ∆, the bias
field along ẑ axis, hz = h0, hy = 0, and restricting to the case of Ohmic
dissipation (s = 1), with n̂ = ẑ, the interacting qubit-bath model with
Eq. (3.1) and (3.2) reduces to the biased Ohmic SBM.

Following the same route as in Chpt. 2, we start by preparing the
system and the bath at initial time t0 in a factorized state:

ρ(t0) = ρS(t0)⊗
e−βHB

ZB
(3.3)

where ρS(t) is the reduced density matrix of the qubit that can be
computed by tracing out the bath degrees of freedom, i. e. ρS(t) =

trB ρ(t). We choose |ẑ;+〉 as the initial state of the qubit, while the bath
state is taken as the equilibrium state at T = 0. We model our bath
with a collection of M = 50 bosonic modes, choosing the absolute
maximum number of excitations up to Nph = 6 (see Sec.2.1 for details)
and we fix the cutoff frequency of the bath to ωc = 5∆.

3.2.1 The unbiased case

In the following, we restrict to the unbiased case (h0 = 0). We simu-
late the dynamics of the system for different values of the coupling
strength α, ranging from 1 · 10−1 to 5 · 10−1. In Fig. 3.1, we plot the
qubit magnetization 〈σz(t)〉 as a function of the rescaled time ∆rt:
we show that the magnetization dynamics experiences a crossover
from a regime of underdamped oscillations in time to an incoherent
regime where the oscillation frequency tends to vanish, as long as the
coupling strength approaches the expected crossover value α = 0.50.

The crossover from coherent to incoherent behavior can be inter-
preted in terms of the growth of the entanglement between the qubit
and its bath [65], a mechanism which can be found in several bipartite
systems [139]. Indeed, starting from the initial condition in Eq. (3.3),
where the state of the system is factorized into a product of states
of the two subsystem, the state of the qubit thermalizes towards the



44 towards the strong coupling regime.

0.0 1.0 2.0 3.0 4.0 5.0 6.0

−0.50

0.00

0.50

1.00
ωc = 5∆, Nph = 6

∆rt

〈σ
z(

t)
〉

α = 0.10
α = 0.20
α = 0.30
α = 0.40
α = 0.50

Figure 3.1: Magnetization 〈σz(t)〉 as a function of the rescaled time ∆rt, in
the case of Ohmic bath (s = 1), T = 0, h0 = 0, for different values
of the coupling strengths α in the range 1 · 10−1 to 5 · 10−1. The
number of bath modes is M = 50, the cutoff frequency ωc = 5∆
and the maximum number of excitations is Nph = 6.

equilibrium state of the whole interacting Hamiltonian in Eq. (1.20) at
T = 0, showing entanglement with the bath degrees of freedom. Each
numerical curve reported in Fig. 3.1 describes the correct dissipative
behavior of the qubit, as it can be shown by a direct comparison with
the theoretical results for the quality factor as a function of the cou-
pling strength α, reported in Fig. 3.2b. Our results are also in good
agreement with recent findings obtained through novel numerical
approaches based on non-perturbative stochastic techniques [76]. A
detailed comparison with the analytical prediction in the case α = 1/2
(see Eq. (1.41)), reported in Fig. 3.2a, shows also good agreement with
theory at long times, while at shorter times small deviations start to ap-
pear. These discrepancies can be due the small value of the frequency
cutoff chosen ωc = 5∆, which cannot meet the parameters conditions
ensuring the validity of Eq. (1.41); we argue that this limit is also
responsible for the residual coherent behavior of the magnetization
at α = 1/2 observed in Fig. 3.1 for long times. A similar analysis of
the magnetization dynamics can be performed in the biased case, con-
sidering both the well-known limits of weak coupling and Toulouse
point: we shift the discussion to the subsquent section.

Additional insights on the dynamics of SBM can be derived from the
analysis of the expectation values of the difference of number operators
from their initial equilibrium values, i. e. 〈∆nk(t)〉 = 〈nk(t)〉 − n0

k,
computed for each bosonic mode at fixed time intervals in the range
[t0, tf], as shown in Fig. 3.3a; it can be inferred that at short times
the bath response extends over the whole frequency spectrum, high-
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Figure 3.2: Panel a: Magnetization 〈σz(t)〉 as a function of the rescaled time,
computed at the Toulouse point (α = 1/2), for h0 = 0 (unbiased
case), at T = 0; we plot of the numerical SIL result (red curve),
compared with the theoretical curve in Eq. (1.41) (solid blue
curve), which is valid in the limit ωc → ∞. As in the main text,
M = 50, ωc = 5∆, Nph = 6. Panel b: Plot of the quality factor
Q against the coupling strength α at T = 0: numerical estimates
derived from a fit of the simulated curves shown in Fig. 3.1 (red
points), compared with the theoretical result in Eq. (2.12) known
from CFT and NIBA predictions (blue curve).

frequency modes showing slightly greater occupation than the slower
ones, even if the occupation is quite small. At intermediate times, a set
of peaks start to come into play, due to multiple scattering processes
of the qubit with the bath modes. Hence, the bath response shows
a first order peak which signals the onset of a resonant behavior,
its position shifting towards lower frequencies with increasing time.
As expected, the behavior of each curve at intermediate times, as
well as at longer times shows a clear dependence on the value of
the coupling strength α. In Fig. 3.3b, we plot 〈∆nk(t)〉, computed
at sufficiently long time tsat for different coupling strengths α: the
results show that the position of the first-order peak shifts towards
lower energies for increasing coupling strengths, and the characteristic
energy of the system is proportional to the effective tunnelling energy
∆eff. Moreover, the curves of bosonic excitations exhibit oscillations
in ωk/ωc that tend to disappear as the coupling strength approaches
the crossover value: this effect can be seen as a consequence of the
increasingly incoherent behavior of the system. These features confirm
that, for coupling strengths in the range 0 ≤ α ≤ 0.5 the dynamical
evolution of the whole system reaches an equilibrium state that can
be interpreted in terms of a single qubit whose tunnelling energy is
renormalized proportionally to ∆r, experiencing incoherent tunnelling
between localized states.

The exchanged energy with the bath can also be studied for different
values of the coupling strengths α: from Fig. 3.4, it can be shown that
all the curves tend to a saturation value, which in our simulation is
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Figure 3.3: Panel a: Expectation values of ∆nk(t) computed for each bath
mode k at different times { t1, t2, t3, tf } = { 0.03, 0.06, 1.14, 6.00 }
(in units of ∆−1

r ), for fixed coupling strength α = 0.40, ωc = 5∆,
T = 0, h0 = 0, M = 50 and Nph = 6. Panel b: Expectation
values of 〈∆nk〉 computed for each bath mode k at rescaled time
tsat = 4.85 (in units of ∆−1

r ), for different coupling strengths α
in the range 1 · 10−1 to 4 · 10−1, ωc = 5∆, T = 0, h0 = 0, M = 50
and Nph = 6.
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Figure 3.4: Expectation values of 〈HB(t)〉 (in units of ∆r ) computed as a
function of the rescaled time ∆rt, for different coupling strengths
α in the range 1 · 10−1 to 5 · 10−1, ωc = 5∆, T = 0, h0 = 0,
M = 50 and Nph = 6.

fixed by the energy conservation: as shown in [108], at every time t
the energy of the non-equilibrium initial state of the qubit is equal
to the sum of the expectation values of the different operators in
Eq. (1.20). It can also be noticed that the saturation value of 〈HB(t)〉
strongly depends on the coupling strength α. Moreover, for increasing
coupling strengths, it can be observed that the bath energy exhibits
an oscillatory behavior at short times, and a moderately prononunced
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peak which tends to be greater than its long-time value. This feature is
due to the increasing importance of the qubit-bath correlations which,
in the strong coupling regime, can modify the mechanism of energy
exchange.

3.2.2 The biased case from weak to strong coupling

Below, we report a comparison of our numerical results for the dy-
namics of the qubit magnetization in the biased SBM (h0 6= 0), with
analytical curves derived by means of a first order expansion in the
model parameters reported in [90]. In the limit of weak coupling
regime (α� 1), and taking T = 0, the qubit magnetizations along x̂, ẑ
axes read

〈σz(t)〉 =
h0

Ω
(1− e−γrt) +

h2
0

Ω2 e−γrt +
∆2

r
Ω2 cos(Ωt)e−γ̃rt

〈σx(t)〉 =
∆2

r
∆Ω

(1− e−γrt) +
h0∆2

r
∆Ω2 (e

−γrt − cos(Ωt)e−γ̃rt)

(3.4)

where Ω =
√

∆2
r + h2

0, and the damping rates are γr = πα∆2
r /Ω,

γ̃r = γr/2.
For non-zero temperatures T of the reservoir, these results slightly

change [90]. Eq. (3.4) include the quantum non-Markovian effects due
to the interaction of the qubit with the bath. In Fig. 3.5, we compare
numerical SIL results with analytical curves in Eq. (3.4), having fixed
the bias field h0 = 0.5∆ and the coupling strength α = 1 · 10−3. As
expected, SIL results show an excellent agreement with the curves
in Eq.(3.4). It could be shown that small quantitative differences may
appear as we compare the numerical results for the energy exchanged
with the reservoir with the analytical expression reported in [90].
However, by means of our technique the qualitative features of the
energy exchange, from intermediate to long times, can be correctly
described, and we argue that the observed differences are mainly due
to the choice of the small cutoff frequency ωc.

Moving to stronger coupling strength α, we compare our numerical
findings for the SBM with analytical prediction in (1.41). As it is
evident from Fig. 3.6, while the numerical curve correctly describe the
qualitative behavior of the function in Eq. (1.41), which is strictly valid
for ωc → ∞ as leading order, several quantitative differences can be
observed, e. g. the long-time value of 〈σz(t)〉 slightly differs from that
expected from Eq. (1.41) at T = 0, i. e. 〈σz(∞)〉 = 2

π arctan
(

4h0ωc
π∆2

)
. As

anticipated in the previous section, these results are mainly due to the
small value of the frequency cutoff ωc chosen: we expect these small
numerical differences to vanish with increasing the frequency cutoff,
as well as the number of the bath oscillators M.

However, it should be noted that from Sec.2.1, as the dimension
of the truncated Hilbert space considered rapidly grows with the
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Figure 3.5: Plot of 〈σx(t)〉 as a function of time t for the biased SBM, having
fixed ωc = 5∆, α = 0.001, h0 = 0.5∆, T = 0 and Nph = 3.
SIL results (red points) compared with theoretical curve from
Eq. (3.4) (solid blue curve).

absolute maximum number of excitations Nph and the number of
modes M, the inclusion of additional modes in the strong coupling
regime can become prohibitively costly. These findings point towards
the need for an optimized basis of states for the implementation of
SIL method, which could hopefully reduce its computational cost.

0.0 0.5 1.0 1.5 2.0
0.85

0.90

0.95

1.00

1.05 ωc = 5∆, α = 0.50, h0 = 3∆

∆rt

〈σ
z(

t)
〉

SIL, Nph = 6
Toulouse limit

Figure 3.6: Magnetization 〈σz(t)〉 as a function of the rescaled time, com-
puted at the Toulouse point (α = 1/2), with fixed bias h0 = 3∆,
and T = 0; we plot the numerical SIL result (red points), com-
pared with the theoretical curve in Eq. (1.41) (solid blue curve).
As in the main text, M = 50, ωc = 5∆,Nph = 6.
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3.3 time dependent protocol

In this section, we study the effect of decoherence and dissipation
on a two level system subject to a rotating magnetic field. We take
the qubit Hamiltonian as in Eq. (3.1), where h is the magnitude of
the applied magnetic field; we adopt a system of polar coordinates
(θ, φ), i. e. h = (h sin θ cos φ, h sin θ sin φ, h cos θ). We also introduce an
additional static magnetic field along the positive ẑ direction, i. e. h0ẑ.
We restrict the rotating magnetic field h in the x̂-ẑ plane by fixing
φ = 0. The qubit Hamiltonian thus reads

HS(t) = −
1
2
(h0 + h cos θ(t))σz −

h
2

sin θ(t)σx (3.5)

The magnetic field h evolves performing a sweep in x̂-ẑ plane in a total
time tf, i. e. the polar angle changes according to θ (t) = π(t− t0)/tf,
from θ(t0) = 0 to θ(tf) = π(1− t0/tf).

This protocol, widely studied in the field of Nuclear Magnetic Reso-
nance (NMR), has regained attention following recent theoretical and
experimental works [136, 137]. It has been shown that physical imple-
mentations of Hamiltonians of the form of Eq. (3.5) can be achieved
with high level of control employing superconducting circuits; more-
over, a simple mapping exists from Eq. (3.5) to the Haldane model
at half filling on a honeycomb lattice [140], which is a prototypical
model of a Chern insulator. Following this mapping, every qubit state

h0

h

hx hy

hz

(a)

h

hx hy

hz

(b)

Figure 3.7: Picture of two characteristic field configurations h0, h(t). In panel
a, h0 > h so that during the sweep of the magnetic field h
along the fixed circle no degeneracy of the energy levels is
present, i. e. the integral of the Berry curvature over the sphere
gives always zero, as the monopole (orange dot) is outside the
sphere. In panel b, the situation is reversed, and the qubit can
simulate the topological phase of the Haldane model.

on the Bloch sphere at fixed coordinates (θ, φ) can be mapped onto
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a single quasi-momentum state (kx, ky) around the high-symmetry
points of the first Brillouin zone of the honeycomb lattice. As a con-
sequence, it allows for a dynamical measurement of the topological
properties of the Haldane model by making use of a superconducting
qubit, e. g. the first Chern number can be probed. It follows that, by
tuning the ratio of the field amplitudes h0/h and performing quantum
state tomography at different times t during the sweep, topological
transitions can be measured with high level of accuracy.

In the following, we analyze the dissipative dynamics of a qubit
described by Eq. (3.5) at weak and strong coupling strengths, both
for long and short sweep times tf as compared with the time scale
1/h, i. e. we consider both adiabatic and anti-adiabatic regimes. The
qubit is coupled to the environment along a direction which lies in
the plane of rotation of the magnetic field, and we focus on the two
particular cases n̂ = ẑ, x̂. We compute the excess energy of the qubit
at the end of the sweep, i. e. the difference between the mean value of
the reduced system energy and the ground state energy εgs(tf) of the
non-interacting qubit Hamiltonian in Eq. (3.5), computed at final time
tf

εres = Tr[ρ(tf)HS(tf)]− εgs(tf) (3.6)

Due to the simple form of Eq. (3.5), the excess energy can also be
linked to the fidelity F (tf) at the end of the sweep

εres = |h− h0|(1−F (tf)) (3.7)

where F (tf) = 〈ψgs(tf)| ρS(tf) |ψgs(tf)〉 and |ψgs(tf)〉 is the ground
state of qubit Hamiltonian in Eq. (3.5) at t = tf. In addition, we
compute the expectation values of qubit operators as functions of
time 〈σ〉 = (〈σx(t)〉 , 〈σy(t)〉 , 〈σz(t)〉), i. e. the dynamical evolution of
the Bloch vector, at fixed final times tf and for different values of the
coupling strength.

We first consider the qubit system in the absence of dissipation,
taking the static bias field h0 = 0: at initial time t0 = 0, the magnetic
field is aligned along the positive ẑ direction and the qubit is prepared
in its ground state, i. e. |ψ(t0)〉 = |ẑ,+〉. For t > 0, the field h rotates
around the ŷ axis. The qubit dynamics can be straightforwardly solved
in the counter-rotating frame around the ŷ axis (see App. b): due to
its simple form, the Hamiltonian in Eq. (3.5) in the rotating frame is
time-independent, and it follows that the excess energy of the closed
system reads

εres =
hθ̇2

2

1− cos
(

π
√

h2 + θ̇2/θ̇
)

h2 + θ̇2
(3.8)

where we put for brevity θ̇ = π/tf. The qubit dynamics is described
by a cycloid on the Bloch sphere, i. e. the Bloch vector periodically
points out of the x̂-ẑ plane. This trajectory is due to the oscillations
in time of the magnetization along the ŷ axis: therefore, 〈σy(t)〉 can
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Figure 3.8: Bloch-sphere pictorial representation of the evolution of the TLS
during the sweep of the magnetic field from the north (θ = 0)
to the south pole (θ = π). The orange line follows the adiabatic
path, while the finite-t f path is a cycloid (blue solid line).

serve as a measure of deviation from the adiabatic path, which is a
circle in the x̂-ẑ plane. The non-adiabatic response of the Bloch vector
is thus proportional to 〈σy(t)〉 [136]; furthermore, using perturbation
theory it has been shown that at first order in θ̇/h the non-adiabatic
response can be linked to the curvature of the ground state manifold
of the Hamiltonian in Eq. (3.5), i. e. to the Berry phase of the qubit.
As a consequence, the measure of 〈σy(t)〉 at each time t allows to
achieve the fidelity at final time tf that, in the quasi-adiabatic limit,
can be used to compute the first Chern number of the system [137].
The deviation from the adiabatic path can also be seen from the excess
energy in Eq. (3.8), which is plotted in Fig. 3.9 (black curve): notice
that it exhibits several maxima corresponding to different final times tf
owing to the fact that, in the non-adiabatic regime, the qubit dynamics
cannot follow the evolution of the externally driven magnetic field, and
the state vector of the qubit at the end of the sweep differs from the
corresponding ground state. However, the amplitude of these maxima
is decreasing as long as the time tf is increased, i. e. the dynamics can
be considered truly adiabatic only in the limit tf � 1/h.

This scenario undergoes several changes if the interaction with the
external bath is considered.

3.3.1 Coupling along z direction

We first analyze the case of interaction along ẑ axis. In Fig. 3.9, we
plot the excess energy curve of the qubit interacting with a bath at
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Figure 3.9: Excess energy plotted as a function of the final time tf (in
units of h−1), for different coupling strengths ranging from
1 · 10−2 to 2 · 10−1, in the case n̂ = ẑ. The number of modes
has been fixed to M = 80, the cutoff frequency ωc = 5h, Nph = 3
and T = 0. Inset: semi-logarithmic plot of the same curves as in
the main plot.

T = 0, for different values of the coupling strength α ranging from
0 to 2 · 10−1. As it can be noticed, the interaction with the external
bath acts to reduce the coherence of the system dynamics. The effect
of decoherence results in a smoothing of the excess energy curve with
respect to the closed case. However, the difference between the closed
and the open system curve depends on the final time tf: at short final
times tf, the interaction with the environment generally leads to an
increase of the excess energy, resulting in a non-adiabatic behavior of
qubit dynamics; conversely, at intermediate times tf, the effect of the
bath can lead to a decrease of the local maxima of the excess energy
as compared with the closed case, i. e. the state of the qubit at θ(tf)

is closer to the corresponding state on the adiabatic path. It follows
that, at weak coupling regime the effect of friction counteracts the
non-adiabaticity of the system induced by the fast external drive, thus
resulting in a reduction of the excess energy. This scenario changes in
the intermediate coupling regime: for coupling strengths α > 0.1, it
can be noticed that the excess energy starts to increase, and the system
definitely misses the adiabatic path. The resulting non-monotonic
behavior of the excess energy can be clearly observed for final times tf
where the closed system curve shows secondary maxima of excitation,
while for values of tf corresponding to minima the interaction with
the bath leads to monotonic non-adiabaticity. It should also be noticed
that, as depicted in the inset of Fig. 3.9, for very slow sweeps the
open system curves at weak coupling strengths tend to coincide, and
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Figure 3.10: Plot of 〈σz(t)〉 as a function of time t for the protocol in Eq. (3.5),
with fixed final time tf = tfmax = 8.42/h. The qubit couples to
an Ohmic bath (s = 1) along n̂ = ẑ , for different coupling
strengths ranging from 0 to 4 · 10−1. The number of modes has
been fixed to M = 70, the cutoff frequency ωc = 5h, Nph = 5
and T = 0.

they are consistent with the closed system result. Interestingly, the
monotonic non-adiabaticity at strong coupling regime was recently
observed in [45], where the dynamical behavior of the Chern number
in a dissipative environment was studied and a description of the
bath-induced non-adiabaticity was achieved using non-perturbative
Stochastic Schrödinger equation.

Further information on the dynamics of the open system at inter-
mediate final times tf can be derived from the analysis of the expec-
tation values 〈σx(t)〉 , 〈σy(t)〉 , 〈σz(t)〉: in Figures 3.10, 3.11 and 3.12,
we plot the expectation values of the spin operators as a function of
time t, from weak to strong coupling regime and for fixed final time
tf = tfmax = 8.42/h, corresponding to the first second-order maximum
of Eq. (3.8). It can be noticed that, following the Heisenberg equa-
tions which link the time derivative of 〈σz(t)〉 to 〈σy(t)〉, the decrease
in the excess energy occurring for tf = tfmax = 8.42/h observed at
weak coupling can be traced back to the progressive change of 〈σy(t)〉.
Hence, for increasing coupling strengths α it can be noticed that the
magnetization along ŷ loses the oscillatory behavior with frequency√

θ̇2 + h2 (see App. b), which is a characteristic feature of dynamics in
the absence of dissipation: actually, as it can be inferred from Fig. 3.11

the second local minimum turns into a local maximum, its position
drifts towards higher times t, causing the inflection point of 〈σz(t)〉 in
Fig. 3.10 to change accordingly; eventually, at the end of the sweep the
magnetization along ẑ tends to the adiabatic value, and the state of the
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Figure 3.11: Plot of 〈σy(t)〉 as a function of time t for the protocol in Eq. (3.5),
with fixed final time tf = tfmax = 8.42/h. The qubit couples to
an Ohmic bath (s = 1) along n̂ = ẑ, for different coupling
strengths ranging from 0 to 4 · 10−1. The number of modes has
been fixed to M = 70, the cutoff frequency ωc = 5h, Nph = 5
and T = 0.

qubit in the open dynamics at final time tf is closer to the ground state
|ψgs(tf)〉. While the previous description holds true also when the
closed-system excess energy in Eq. (3.8) shows local minimum values,
e. g. tf = tfmin = 12.7/h, it can be observed that at weak coupling
strengths the interaction with the bath cannot noticeably change the
excess energy.

More information on the physics at strong coupling regime can be
drawn: as shown in Fig. 3.10, for α > 0.10 〈σz(tf)〉 starts to increase.
This behavior clearly depends on the final time tf, i. e. on the slope
of the external drive: for faster sweeps, the non-adiabatic behavior
due to the interaction with the environment occurs at lower coupling
strengths as compared to slower evolutions; as a consequence, the
coupling strength directly influences the adiabaticity condition. This
feature can be inferred from Fig. 3.13, where we plot the behavior of
fidelity F (tf) at the end of the sweep, computed for two different fixed
final times tf = { tfmax, tfmin } = { 8.42/h, 12.17/h }, corresponding to
the first second-order maximum and the second minimum of Eq. (3.8)
(see Fig. 3.9, black curve), for different coupling strengths α taken in
the range 1.0 · 10−1 to 4.5 · 10−1. At final time tf = tfmax, where the
closed system excess energy exhibits a local maximum, fidelity shows
a small non-monotonic behavior, due to the previously described effect;
conversely, at tf = tfmin a flat behavior at weak coupling, followed by
monotonic decrease occurring at higher values of α can be observed.
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Figure 3.12: Plot of 〈σx(t)〉 as a function of time t for the protocol in Eq. (3.5),
with fixed final time tf = tfmax = 8.42/h. The qubit couples to
an Ohmic bath (s = 1) along n̂ = ẑ, for different coupling
strengths ranging from 0 to 4 · 10−1. The number of modes has
been fixed to M = 70, the cutoff frequency ωc = 5h, Nph = 5
and T = 0.

As shown in [45], an adiabaticity criterion for the protocol in Eq. (3.5)
has been proposed which links the velocity of the sweep θ̇ to the
renormalized field ∆r along x̂ direction (with ∆ = h), i. e. θ̇ � ∆r,
provided that θ̇ � h. Further, for fixed values of θ̇ well below h, at
strong coupling a crossover from quasi-adiabatic to non-adiabatic
behavior occurs at θ̇ ' ∆r. We find that our numerical results at
strong coupling generally agree with this scenario, while in the weak
coupling regime several intervals of final times tf exist where the bath
can act to improve the adiabaticity. It follows that, at weak coupling
strengths the dynamical measure of the topological properties shows
robustness to the external noise.

3.3.2 Coupling along x

Qualitatively different results can be found if the qubit couples with
the bath along x̂ axis. Here we restrict to weak coupling regime and
simulate the dissipative dynamics at T = 0 of the time-dependent
protocol in Eq. (3.5) with n̂ = x̂ and h0 = 0. In Fig. 3.14, we plot the
excess energy as a function of the final time tf for different coupling
strengths, taken in the same range as in Fig. 3.9.

It can be shown that, for very fast sweeps the excess energy can be
lower than the closed system result: the actual numerical results at
short final times tf depend on the coupling strength α at fixed cutoff
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Figure 3.13: Fidelity at final time tf F (tf), plotted against the coupling
strength α in the range 1.0 · 10−2 to 4.5 · 10−1, for two fixed final
times tf = { tfmax, tfmin } = { 8.42/h, 12.17/h } corresponding
to the first second order maximum and the second minimum of
Eq. (3.8). The number of modes has been fixed to M = 70, the
cutoff frequency ωc = 5h, Nph = 5 and T = 0.

frequency ωc. As shown in Fig. 3.15, by increasing the cutoff frequency
ωc, the short final time limit of the excess energy curve decreases, as a
result of the reduced reaction time of the bath. However, the choice
of different cutoff frequencies ωc does not qualitatively change the
physics at long times tf. The decrease in the excess energy at short tf
is due to the peculiar form of the coupling to the external environ-
ment, which causes the qubit to flip at a fixed rate proportional to
the coupling strength. This effect can provide a slight advantage to
the success of the protocol, as long as the final time tf is sufficiently
short. However, for longer final times tf the open system excess en-
ergy tends to be greater than the closed curve: this effect leads to an
increasingly non-adiabatic dynamics, even at weak coupling strengths,
as opposed to the case studied in 3.3.1 where, as long as the closed
system dynamics is quasi-adiabatic, the dynamics is unaffected by
the environment. This result shows several analogies with a recent
study of the finite-time LMSZ protocol [141], showing that the effect
of a transverse coupling to the bath at long final times tf can lead to a
fidelity F (tf) lower than 1, as opposed to the exact result proposed in
[96]. In addition, here the effect of time-periodic driving can be clearly
observed, noticing the persistence of a structure made of several sec-
ondary maxima in the excess energy. These findings point towards
an increasingly non-adiabatic behavior due to the bath, as long as
the coupling strengths increases, occurring at intermediate up to long
final times tf.
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Figure 3.14: Excess energy plotted as a function of the final time tf (in
units of h−1), for different coupling strengths α ranging from
1 · 10−2 to 2 · 10−1, in the case of n̂ = x̂. The number of modes
has been fixed to M = 80, the cutoff frequency ωc = 5h, Nph =
3 and T = 0.
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Figure 3.15: Excess energy plotted as a function of the final time tf chosen in
the range 0.2 to 1.5 (in units of h−1), for fixed α = 0.10, M = 80,
Nph = 3, T = 0 and different cutoff frequencies ωc.

3.4 conclusions

In this work, we studied the dynamics of a qubit in contact with its
environment, subject both to static and driven external fields, from
weak to strong coupling strengths, using the SIL approach. We showed
that our method can provide a good description of the physics of the
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SBM as a function of the coupling strength up to Toulouse point,
where a crossover from coherent to incoherent behavior of the qubit
magnetization takes place. We provided additional insights on the
dynamics of the bath degrees of freedom, showing the changes in the
bath response as a function of time. Moreover, we studied a protocol
of a driven qubit subject to a time-periodic driving, with dissipation
taking place along different directions. We showed that in the case of
coupling along ẑ, if the dissipation strength is sufficiently weak, the
influence of the bath can counteract the non-adiabaticity of the closed
system evolution, leading to a non-monotonic behavior of the fidelity
as a function of the coupling strength at fixed values of the final times.
Conversely, at strong coupling bath-induced non adiabaticity [45] takes
place, hindering the success of the protocol. This scenario changes
if the coupling along x̂ axis is considered: a measurable advantage
over the closed system dynamics can be observed only for very fast
sweeps, while for longer sweep durations we predict an increasingly
non-adiabatic behavior, i. e. the excess energy tends to increase at
increasing coupling strength. In the near future, we plan to extend our
analysis to recently proposed time-dependent protocols implementing
counter-diabatic driving [142, 143], in order to investigate the influence
of the environment on the final success probability of these protocols
in a broad range of coupling regimes. In addition, energy exchanges
between systems of externally driven interacting qubits and the bath
will also be analyzed, as well as prototypical models of quantum heat
engines.



4 A N O N - L I N E A R LY D R I V E N
W O R K TO W O R K C O N V E R T E R

In this chapter we present part of our original contributions to be
submitted for publication.

Energy conversion at the microscopic scale poses great experimental
and theoretical challenges. In the classical context, stochastic cyclic
heat engines [144] are among the prototypical systems of interest [145,
146]. Here a single optically-trapped, micrometre-sized particle subject
to periodically-driven forces and put in contact with two thermal
reservoirs acts as working medium. In this context, the experimental
realization of Brownian Carnot cycles has been recently achieved [147].

As the driving forces vary over timescales smaller than the ther-
mal relaxation time, in these engines the thermal fluctuations arising
from fluctuating forces cannot be neglected; as a consequence, the
concepts of classical thermodynamics, i. e. heat, work and entropy pro-
duction, need to be adequately generalized to nonequilibrium regime,
and the fundamental limits set to heat-to-work conversion have to
be reconsidered. The theoretical framework of Stochastic Thermody-
namics [148], based on universal nonequilibrium fluctuation theorems
[149, 150], has been widely employed to describe energy conversion
in these microscopic engines, as it models heat, work and entropy
production as stochastic quantities. The search for optimal working
performance of these machines is relevant in the so-called field of
finite-time thermodynamics [151, 152].

Steady-state thermal machines, e. g. thermoelectric devices con-
tacted with time-independent reservoirs [153], belong to the class of
autonomous thermal machines. Several interesting results have been
derived for these machines, e. g. in the absence of time-reversal sym-
metry due to a magnetic field Carnot efficiency can be achieved at
finite power [154]. Quite recently, a universal tradeoff relation has
also been estabilished in the classical domain, linking the entropy
production to power output and power fluctuations [155, 156], i. e. the
so-called Thermodynamics Uncertainty Relations (TUR). TUR rule
the tradeoff between entropy production and the output power rel-
ative fluctuations, i. e. the precision of the machine, so that working
machines operating at near-to-zero entropy production cannot be
achieved without a divergency in the relative output power fluctua-
tions. Quite recently, a generalization of TUR has been provided in the
context of periodically-driven systems, and operationally-accessible

59
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bounds to entropy production, i. e. written in terms of quantities
directly accessible to experiment [157, 158].

The implications of quantum mechanics on the mechanism of heat
to work conversion have been not yet completely understood [26].
Fluctuation theorems have been generalized to the quantum domain
[159, 160], so that a theoretical description of quantum fluctuations
of heat and work has been provided. However, the measurement
problem poses nontrivial difficulties to probe work statistics [161],
and several measurement strategies have been devised to solve the
issue [162]. A further fundamental difficulty is the lack of a rigorous
definition of work, heat and entropy production in the presence of
strong correlations with the thermal reservoirs [163].

However, different models of quantum heat engines and refriger-
ators have been devised, where the working medium can consist of
a single driven TLS [23, 24, 164, 165], couples of harmonic oscillators
[166, 167], pairs of qubits subject to unitary gates [168], quantum dots,
autonomous motors made of Brownian particles [169], as well as many
body systems near criticality [170]. Otto cycles, Carnot cycles, both
in the adiabatic and finite-time configuration have been considered,
where the working medium undergoes a finite number of strokes [24],
and it is put in contact with two thermal reservoirs. In these works,
different interesting results for the efficiency at maximum power have
been reported, showing that in some cases the upper bound of the
efficiency can be quite different from the Curzon-Ahlborn bound [171],
while in some others the engine performance are found to depend on
the bath spectral properties [80]. Despite all these efforts, it remains
unclear whether or not the quantum nature of the working medium
can provide a relevant enhancement in the efficiency of heat to work
conversion. Further, the experimental realizations of these devices
remain limited [172–174].

Great part of these works model the coupling with the reservoir by
making use of Quantum Master Equations (QME), thus limiting the
analysis to the weak coupling regime, while the mechanism of heat to
work conversion in the strong coupling regime has received much less
attention [175–179]. Furthermore, in the case of periodically-driven
quantum engines, the actual validity of the tradeoff relations between
entropy production, output power and fluctuations, devised in the
classical Markovian setting, remains highly controversial [180].

Below, we consider a simple model of periodically driven, isother-
mal machine, where the working medium consists of a single TLS,
driven by two external periodic fields of fixed amplitudes and perma-
nently put in contact with a thermal bath. Similar machines, which
have been recently discussed in the classical setting using linear ir-
reversible thermodynamics [181], act as prototypes of work-to-work
converters, where the work spent in the input channel, corresponding
to positive entropy production, is converted to the output channel with
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fixed efficiency. Employing a standard definition of work [179], we nu-
merically simulate the dynamics of this engine for different values of
the model parameters, restricting to linear response regime. We com-
pute the efficiency, the output powers and fluctuations as functions
of the model parameters, i. e. driving frequency, phase difference and
dissipation strength. Our numerical approach, based on Short Iterative
Lanczos (SIL) method, allows us to provide a reliable description of
the system dynamics from weak to moderately strong dissipation, in
the low-temperature regime, with almost no limitations on the value
of the driving frequency. We show that a violation of TUR can occur in
a wide range of model parameters, so that different working regimes
exist in which the quantum converter may achieve a better tradeoff
between entropy production and output power fluctuations.

4.1 setup of the converter

We model our system with a TLS in the presence of two external
time-periodic driving fields of fixed amplitudes, phase difference and
frequency ω. The TLS is in contact with a heat bath at fixed tempera-
ture T, as sketched in Fig. 4.1. Following Sec. 1.4, the Hamiltonian of
the whole system can be written as

H(t) = HS(t) + HB + HSB, (4.1)

where HS(t), HB are respectively the free Hamiltonian of the system
and bath and HSB is the interaction energy between the TLS and the
bath.

T

Figure 4.1: Schematic diagram of the coverter: a the TLS bias is periodically
modulated in time, while the TLS is in contact with a thermal
reservoir at fixed temperature T.

We choose for the TLS Hamiltonian the following form

HS(t) = −
1
2
(ε1(t) + ε2(t))σz −

∆
2

σx. (4.2)

Here ∆ is the tunnelling element, and ε1(t), ε2(t) are two exter-
nal periodic driving fields, i. e. εi(t) = εi(t + T ), i = 1, 2, which
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modulate the levels asymmetry. While there is no limitation on the
form of the driving fields, we fix their configuration as follows:
ε1(t) = ε1 sin ωt, ε2(t) = ε2 cos(nωt− φ), where ε1, ε2 are the driv-
ing field amplitudes, ω = 2π/T is the driving frequency and φ is the
phase difference.

As in the previous chapters, we choose as a set of basis states for
the TLS the eigenstates of σz operator, i. e. σz |ẑ;±〉 = ± |ẑ;±〉. We
model the bath as in Eq. (1.8), and we fix the system-bath interaction
as customary in the SBM, i. e. Eq.(1.9).

In this system the TLS, i. e. the working medium, is driven out of
equilibrium by means of the two external fields, while the permanent
contact with the bath induces dissipation and decoherence. Although
Floquet theory provides a satisfactory description of the nonequi-
librum dynamics of periodically-driven systems in the absence of
system-bath interactions, the physical description of the open system
dynamics beyond conventional Born-Markov approximation is still
incomplete [182].

For this class of driven open quantum systems, at long times a
nonequilibrium stationary state is expected, where the reduced den-
sity matrix of the TLS undergoes periodic time evolution with period
T . In this regime, the dynamics of energy exchange shows that the
expectation values of the different contributions to the Hamiltonian
operator in Eq. (4.1), i. e. 〈HS(t)〉 , 〈HB〉 , 〈HSB〉, exhibit a periodic evo-
lution with period equal to T . However, the constant time-averaged
power injected by the external drive onto the system is entirely drained
by the bath, i. e. the powers drained by the TLS and the interaction
channel SB average to zero over a period T .

Provided that the two external driving fields can be experimentally
distinguished [183], several parameter ranges of the model in Eq. (4.1)
exist where the two fields behave as input and output channels, i. e. the
mean powers of the different driving fields are opposite in sign and the
whole system acts as a work-to-work converter. For sufficiently small
amplitudes of the driving fields with respect to the driving frequency
ω, a description based on linear irreversible thermodynamics [153,
181] can be employed, i. e. the mean values of the input and output
powers to the field amplitudes (ε1, ε2), the formers being proportional
to the currents, while the latters playing the role of thermodynamic
forces.

Similar models of converters have been studied [183], where in
place of a single TLS a quantum Brownian particle in a tight-binding
lattice has been considered. In the weak-tunnelling regime, it has been
shown that the system can reach optimal performance maximizing
the efficiency at finite power and achieving low power fluctuation,
thus violating TUR over a wide range of driving frequencies. In the
subsequent sections, we study the linear nonequilibrium properties
of our converter: we first find regions in the parameter space where
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work-to-work conversion occurs; then, we find evidence for systematic
violations of TUR, which show up in the region of weak dissipation
and in the low temperature regime.

4.2 energy balance of the system

The dynamics of system in Eq. (4.1) is described by the density matrix
ρ(t), which obeys to Von Neumann equation of motion

d
dt

ρ(t) = −i[H, ρ], (4.3)

From the total density matrix, the state evolution of any subsytem
belonging to the bipartition can be determined by performing the
partial trace over the degrees of freedom of the other subsystem. The
reduced density matrix of the TLS can be written as

ρS(t) = trB ρ(t) (4.4)

where the partial trace is taken over the bath degrees of freedom.
The knowledge of the density matrix ρ(t) allows us to compute the
expectation value of the total energy of the system as follows

〈H(t)〉 = tr [H(t)ρ] (4.5)

Due to the external driving fields, the expectation value of the total
energy of the system changes in time. From Eq. (4.1), we have

d
dt
〈H(t)〉 = tr

[
∂HS(t)

∂t
ρ

]
(4.6)

We can thus define the power operator linked to each driving field as
follows

Pi(t) = −
1
2

ε̇i(t)σz(t) (4.7)

where i = 1, 2. These operators describe the exchanges of work per
unit time linked to the converter. In general, the dynamics of ρ(t) is
nontrivial, due to the combined effects of the external fields and dissi-
pation. However, at sufficiently long times a nonequilibrium stationary
state is reached, where the state of the system evolves periodically in
time, with period T . Hence, at long times we can describe the physical
properties of the system in terms of time-averaged expectation values
of the power operators

Pi =
1
T

t+T∫
t

〈
Pi(t′)

〉
dt′ (4.8)

As it follows from analytical results [134], at long times the total power
associated to the two channels is drained by the bath, i. e. the time
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derivatives of the expectation values 〈HS(t)〉 , 〈HSB〉 average to zero
over a period T . This can be directly seen by computing the time
evolution of the former expectation values, showing that they evolve
periodically in time (see Sec.4.4.1). This property allows to unambigu-
osly define the heat exchanged with the bath per unit time, i. e. ẆB as
the energy which flows into the bath per unit time, reading

ẆB = − tr [HBρ̇] = i tr [[HB, HSB]ρ] . (4.9)

Integrating Eq. (4.9) over a period, from Eq. (4.8) we find

WB = −
t+T∫
t

tr [HBρ̇] dt = 〈HB(0)〉 − 〈HB(T)〉 = T (P1 + P2) (4.10)

Eq. (4.10) fixes the energy balance of our machine in the nonequi-
librium steady-state regime. The system operates as a work-to-work
converter if the average powers are opposite in signs, i. e. one of the
channels behaves as the output, thus converting part of the work per
unit time spent in input. We are interested in the efficiency of the
conversion, which reads

η =

∣∣Pout
∣∣

Pin
, (4.11)

where we conventionally take as the output channel the one which
brings negative power: Pout = P1(P2) if P1(P2) < 0. Achieving a con-
version efficiency close to 1 means that a small amount of the power
spent in output is dissipated into the bath. However, in cyclic engines
high efficiency has been often achieved in the adiabatic limit, with
low output power. Furthermore, diverging output power fluctuations
have been reported [170], which could hinder the performance of any
engine. In order to characterize the converter performance, the com-
putation of the output power fluctuations is thus needed. Following a
recent work [183], at long times t, i. e. when the nonequilibrium station-
ary state has been reached, the power fluctuations can be computed
as follows

Di(t) =
∫ ∞

0
dτ(〈δPi(t)δPi(t− τ)〉+ 〈δPi(t− τ)δPi(t)〉) (4.12)

where Pi(t) is the power operator and δPi(t) = Pi(t) − 〈Pi(t)〉. The
brackets indicate the quantum mechanical expectation value using
the whole system + bath density matrix at time t. Inserting Eq. (4.8)
into Eq. (4.12) and taking the time average over a period, the time-
averaged power fluctuations can be expressed in terms of the two-time
correlation functions

Di =
1

2T

∫ T
0

dtε̇i(t)
∫ ∞

0
dτε̇i(t− τ)(Re{〈σz(t)σz(t− τ)〉}

− 〈σz(t)〉 〈σz(t− τ)〉) (4.13)
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For fixed driving frequency ω, the ratio of input and output powers
over the corresponding field amplitudes can be modeled as currents of
a two-terminal steady-state machines [153, 181, 183], where the field
amplitudes εi play the role of the thermodynamic forces. Hence, it is
possible to investigate the tradeoff between output power, entropy pro-
duction and output power fluctuations for the work-to-work converter
in the nonequilibrium steady-state regime.

As anticipated in the introduction, in the classical thermodynamics
context it has been shown that currents in microscopic steady-state
devices are linked to their mean fluctuations and to entropy production
σ by means of TUR. In the case of our converter, TUR reads

σ
Dout

P2
out

> 2. (4.14)

Here it is worth rewriting the left hand side of Eq. (4.14), i. e. our
tradeoff parameter, in terms of the conversion efficiency in Eq. (4.11)
as follows

Q = σ
Dout

P2
out

= βPout

(
1
η
− 1
)

Σ2
out (4.15)

where Σout =

√
Dout/P2

out is the relative power uncertainty. This rela-
tion imposes a lower bound to the product of power fluctuations and
entropy production at fixed output power, so that in the reversible op-
eration regime the divergency of relative fluctuations follows. Several
works have reported violations of TUR in the quantum realm [184],
and a possible explanation has been proposed in [180], pointing to-
wards a smaller lower bound set by quantum mechanics with respect
to the classical case.

However, TUR has been recently generalized to the particular in-
stance of periodically-driven nonequilibrium engines [158] as follows

σ(ω)
Dout(ω)

P2
out(ω)

> 2
(

1− ω

Pout(ω)
P′out(ω)

)2

. (4.16)

Eq. (4.16), as compared to the static relation, provides an expression
for the bound written in terms of experimentally accessible quantities.

The nonequilibrium dynamics of the expectation values of power
operators in Eq. (4.8), along with the two-time correlation function in
Eq. (4.13) for the work-to-work converter in Eq. (4.1) can be computed
numerically by employing the SIL method (see Chpt. 2), for every
value of the fields amplitudes. We can thus compute all the quantities
involved in Eq. (4.16) and look for possible violations. In the following
section, we focus on the characterization of the converter in the linear
response regime, i. e. adopting the framework of linear irreversible
thermodynamics [153, 181]. This formalism allows us to easily find
optimal operating regimes for the work-to-work conversion. We dis-
cuss the results and the regime of validity of the theory, postponing
the nonlinear analysis to a subsequent work.
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4.3 linear response regime

Following linear response theory, the Hamiltonian in Eq. (4.1) can be
rewritten by grouping all the operators which explicitly depend on
time t in the following way

H = H0 + Hext(t), Hext(t) = − ∑
i=1,2

1
2

εi(t)σz (4.17)

where the operator H0 is the time-independent unperturbed Hamil-
tonian. In this limit, the term Hext(t) acts as a perturbation to the
Hamiltonian H0. The fluctuation of the expectation value of a generic
observable O(t) with respect to the unperturbed case can be written
at first order in the perturbation Hext(t) as follows

〈O(t)〉 − 〈O(t)〉
0
=

i
h̄

∫ t

t0

dt′
〈[

Hext(t′), O(t)
]〉

0
(4.18)

where 〈O(t)〉 = 〈Ψ(t0)|O(t) |Ψ(t0)〉, the subscript 0 indicates that the
expectation values are computed with respect to the unperturbed, time-
independent Hamiltonian H0, and |Ψ(t0)〉 is the ket state at t = t0.
Here we want to compute the response of the power operators in
Eq. (4.7): inserting the formal expressions of the operators in Eq. (4.18),
we obtain

〈Pj(t)〉 − 〈Pj(t)〉0 =
1
4 ∑

i=1,2

∫ ∞

t0

dt′ ε̇ j(t)εi(t′)χ(t, t′), (4.19)

where we recasted Eq. (4.18) in terms of the susceptibility χ(t, t′)

χ(t, t′) = − i
h̄

Θ(t− t′) 〈Ψ(t0)|
[
σz(t), σz(t′)

]
|Ψ(t0)〉0 . (4.20)

Here j = 1, 2 and the σz operators are computed in the Heisenberg
representation of the unperturbed Hamiltonian H0. At long times t,
the correlation function on the right-hand side of Eq. (4.21) becomes a
function of the time differences t− t′ = τ and the expectation value
〈Pj(t)〉0 vanishes.

After straightforward manipulations, we can take the average of the
power expectation values over a period T of the driving frequency,
in order to compute the nonequilibrium stationary mean powers as
in Eq. (4.8) in the limit of linear response. Introducing the correlation
function C(τ) =

〈
Ψ(t)

∣∣ σz(τ)σz(0)
∣∣Ψ(t)

〉
0
, where t is a sufficiently

long time, we find for the mean powers

Pj = 〈Pj(t)〉 =
1

2h̄ ∑
i=1,2

1
T

∫ T
0

dtε̇ j(t)
∫ ∞

0
dτεi(t− τ) Im{C(τ)} (4.21)

From Eq. (4.21), we can easily derive the general form of the Onsager
matrix, which links the mean powers Pj to the field amplitudes as
follows

Pi = ∑
j=1,2
Lij(ω)ε iε j (4.22)
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In this limit, the element of the Onsager matrix can be expressed in
terms of the Fourier transform of the correlation function Im{C(τ)}, i. e. we
rewrite Eq. (4.21) in terms of χ(ω) =

∫ ∞
0 exp(iωτ) Im{C(τ)}dτ. Thus,

inserting the field expressions ε1(t), ε2(t) into Eq. (4.21), for each value
of the driving frequency ω and the phase difference φ, the Onsager
matrix reads

L11(ω) = L22(ω) = −ω

4
Im{χ(ω)}

L12(ω) =
ω

4
(cos φ Re{χ(ω)} − sin φ Im{χ(ω)})

L21(ω) = −ω

4
(cos φ Re{χ(ω)}+ sin φ Im{χ(ω)})

(4.23)

The knowledge of Onsager functions allows us to access the mean
fluctuations of the output powers. Following a similar treatment as in
Eq. (4.21), we can write

Di =
ε2

i ω2

4

∫ ∞

0
dτ cos ωτ(Re{C(τ)}) (4.24)

The last expression can be easily written in terms of the diagonal ele-
ments of the Onsager matrix: making use of the standard fluctuation-
dissipation equalities holding at equilibrium, i. e. at long times t, we
find

Di = ε2
i ω coth(βω/2)Lii(ω) (4.25)

From eqs. (4.21) and (4.24), it follows that the computation of the
correlation function C(τ) allows us to characterize the nonequilibrium
dynamics of the converter in the linear response regime. We stress
that, although the function C(τ) is computed from the interacting
spin-boson Hamiltonian in the absence of external fields, analytical
solutions for C(τ) are limited to special values of the dissipation
strength [91]; as a consequence, even in the linear response regime, a
fully numerical approach is required.

Once the Onsager matrix is known, optimal working conditions
can be easily found with straightforward algebra [153]. The line of
maximum efficiency (ME) in the parameter space (ε1, ε2), for fixed
driving frequency and phase difference (ω, φ) reads

ε1ME = −
L22(ω)

L21(ω)

(
1−

√
detL

L11(ω)L22(ω)

)
ε2. (4.26)

Here detL indicates the determinant of the Onsager matrix. Notice
that when the system operates in TR symmetric regime, i. e. φ = π/2,
the Onsager matrix is symmetric, and all its element are equal to one
another.
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4.4 converter performance and bound vio-
lations

Below, we simulate numerically the dynamics of the converter in the
linear response regime. We employ the numerical SIL approach, which
as explained in Chpt. 2 allows us to compute the unitary dynamics
of the driven TLS + bath density operator ρ(t), after a controlled
truncation of the bath Hilbert space. We first identify regions in the
parameter space where the system operates as a work-to-work con-
verter; then, by choosing the operating point at ME, we characterize
the performance of our converter, i. e. output power, efficiency and
fluctuations, for different values of the coupling strength α, in the
low temperature regime where non-Markovian effects are expected.
Eventually, we compute both sides of Eq. (4.16) and indentify several
frequency intervals where the Markovian TUR is violated. We also
discuss the limits of validity of linear response regime, as SIL method
can be employed with no further restrictions beyond linear response.

4.4.1 Powers, efficiency, fluctuations

We set the density matrix of system and the bath at initial time t0 in a
factorized state as in the previous chapters

ρ(t0) = ρS(t0)⊗
e−βHB

ZB
, (4.27)

where ρS(t) = ρS(t0) = |ẑ;+〉 〈ẑ;+|. Thus, we simulate the nonequi-
librium dynamics of the expectation values of one time and two-time
operators of interest, for different values of the model parameters,
fixing the maximum number of excitations (see 2.1) Nph = 3. In what
follows, we set the fields ε1(t), ε2(t) so that they modulate the level
asymmetry of the TLS with the same frequency, i. e. we take n = 1.
We start by describing the main features of the nonequilibrium dy-
namics of power operators in Eq. (4.7) and the energy exchange of the
converter. In Fig. 4.2a, the dynamics of expectation values of power
operators is plotted for fixed values of the field parameters, dissipation
strength and temperature. It is shown that while the powers exhibit a
transient behavior, marked by fast oscillations in time of decreasing
amplitude, for t ≥ 30∆−1

eff a stationary regime occurs, where the power
expectation values undergo periodic oscillations in time, with period
equal to T , mean values over a period different from zero and opposite
signs. A part of the work per unit time spent in a channel is thus given
back in the other, i. e. the system operates as a work-to-work converter
with finite efficiency η. The analysis of energy exchange among the
TLS, the bath and interactions channels can be performed by plotting
the expectation values of the different contributions in Eq. (4.1) as
function of time, as reported in Fig. 4.2b. Notice that also the different
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Figure 4.2: Panel a: Expectation value of power operators 〈Pi(t)〉 , i = 1, 2 as
function of time t, with fixed parameter ε1 = −∆, ε2 = 0.50∆, α =
0.10, T = 0, Nph = 3. Inset: nonequilibrium stationary state at
long time show mean powers oscillating with period T , and
the time averages are of opposite signs, signaling work-to-work
conversion. Panel b:variation of the expectation values of energy
operators in Eq. (4.1), i. e. ∆ 〈Hi(t)〉 = 〈Hi(t)〉 − 〈Hi(0)〉 with
i = S, B, SB and exc indicating the total energy pumped in the
system at time t. It can be noticed that the excess energy is
entirely drained by the bath.

energy contributions experience a transient behavior, and at suffi-
ciently long times a nonequilibrium stationary state is reached, where
they oscillate in time with period T . However, the analysis confirms
that the mean total power injected into the system, i. e. P = Pin − Pout

is entirely drained by the bath while the TLS and the interaction en-
ergies oscillate around constant values, and the mean power drained
by their channels vanishes. We stress that Fig. 4.2 reports the numer-
ically exact expectation values of the operators of interest, without
recurring to linear response. This is an advantage of our numerical
approach (see 2.1), which can be directly employed in the nonlinear
regime. From Fig. 4.2, it follows that the energy exchange has a clear
interpretation only in the nonequilibrium steady state, while during
the transient time a nontrivial energy exchange mechanism among the
three different channels shows up. Limiting the analysis to the linear
response regime, from the expression of the Onsager matrix elements
reported in Eq. (4.25) for fixed phase difference φ, the occurrence of a
frequency region where work-to-work conversion is absent follows. In
Fig. 4.3, we plot the mean powers related to channels 1, 2 against the
driving frequency ω, as derived from Eq. (4.22), for fixed dissipation
strength and temperature T: it can be noticed that they both hold
positive for frequencies of the order of the renormalized gap of the
TLS ∆r = ∆(∆/ωc)α/(1−α), i. e. when the driving frequency is near
resonance. Here both the channels absorb the power injected into the
system, which is entirely dissipated into the bath, i. e. the heat flux to
the bath is maximum and no work conversion occurs. On the other
hand, when driving the system with frequency sufficiently far from
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Figure 4.3: Average nonequilibrium powers P1, P2 computed in the linear
response regime as function of the driving frequency ω, for fixed
values of the fields amplitudes ε1 = ε2 = 0.50∆, α = 0.10, T = 0.
It is evident that a distinct region of driving frequencies exists so
that the system cannot operate as work-to-work converter.

the resonance, the conversion takes place with finite efficiency. These
results clearly depend on the phase difference φ between the two
drives.
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Figure 4.4: Efficiency as a function of the driving fields amplitudes (ε1, ε2),
plotted for fixed α = 0.10, T = 0.10∆, φ = 0 and ω = {∆, 5∆}
respectively. Magenta dots indicate the parameter regions where
no conversion occurs, while the ME line is plotted in cyan.

In what follows, we fix the phase difference φ = 0, i. e. the converter
operates in a TR asymmetric configuration and the Onsager matrix
is antisymmetric. The conversion efficiency η can be computed from
Eq. (4.11) as a function of the field amplitudes (ε1, ε2), for fixed dissi-
pation strength and temperature. In Fig. 4.4 we plot the efficiency for
two different values of the driving frequency ω = (∆, 5∆). It is evident
that, tuning the driving frequency near the resonance, all but lim-
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ited regions of the plane (ε1, ε2) exhibit no work-to-work conversion,
while in the regions where conversion occurs a very low efficiency is
achieved. On the other hand, tuning the frequency out of resonance
a very different scenario can be observed, where the efficiency reach
near-to-one value along the ME lines (cyan squares in Fig. 4.4) in
Eq. (4.26), while small but finite input and output powers can be
achieved.

As a consequence, choosing the converter operating point along the
ME line allows us to optimize its performance. However, the analysis
of the fluctuations of the output powers in this regime is also required,
as with any microscopic heat engine. In addition, the mean fluctuations
enter directly in the definition of TUR in Eq. (4.16). Moreover, an
increase in the strength of dissipation at fixed temperature degrades
the performance of the converter, changing the behavior of output
power, efficiency and fluctuations. We set the operating point of the
converter on the ME line and we investigate the non Markovian
effects of dissipation on the converter performance, for any frequency
value ω, at fixed temperature. In Fig. 4.5, we report the plots of the
absolute value of output power, efficiency and mean fluctuations as
function of the driving frequency, at fixed temperature T = 0.1∆ and
for different values of the coupling strength α, taken in the range
1.25 · 10−2 to 2.0 · 10−1.

The powers in the two channels at ME are quite different from
those in Fig. 4.3, as they don’t change sign crossing the resonance.
Fig. 4.5a shows the plot of the absolute value of the output power as
function of driving frequency ω. A characteristic double-peak feature,
separated by a narrow region where it drops to zero is clearly visible.
By increasing the driving frequency ω, the output as well as the input
power smoothly decreases. For increasing dissipation strengths, the
double peak structure tends to smooth down and the resonance fre-
quency, due to progressive shrinking of the TLS gap, moves toward
lower frequencies. The input power changes similarly as function of
dissipation strength α. As a direct consequence of this behavior, it can
be noticed that the maximum efficiency curve ηME, plotted in Fig. 4.5c,
decreases in the whole frequency region with increasing α, i. e. the en-
tropy production grows as a function of dissipation strength. However,
even in the presence of moderately strong dissipation, i. e. α < 0.2 the
efficiency retains much of its shape and, for increasing frequencies ω

its value remains above 0.50.
Mean fluctuations of the output power are shown in Fig. 4.5b as

a function of the frequency ω. Notice that, in the resonance region
the function shape is quite similar to the output power, though the
double-peaked structure shows evident asymmetry. Fluctuations also
decay at high driving frequencies. However, a marked difference with
respect to the output power can be observed: sufficiently far from
resonance, for increasing the coupling strength α a distinct growth
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Figure 4.5: Performance of the work-to-work converter at ME as a function
of the driving frequency ω, for different values of the dissipation
strength α and fixed temperature T = 0.10∆. In Panel a, the
absolute value of the output power Pout. In Panel b, the output
power fluctuations; in Panel c, the efficiency curve computed
from Eq. (4.11); in Panel d, the relative power uncertainty Σ =√

Dout/P2
out. The phase difference has been fixed to φ = 0, and

ε2 = 0.5∆, so that the chosen point along ME line in Eq. (4.26)
remains fixed for each value of ω.

in the mean fluctuations can be observed. This feature, along with
the increase in the entropy production and the renormalization of the
tunnelling element, is a characteristic effect of the quantum dissipative
environment on the working medium. By inspecting the mean relative
uncertainty, reported in Fig. 4.5d, it is shown that a divergency occurs
in the vicinity of resonance region, mainly due to the rapid drop of
output power with respect to fluctuation. Further, for increasing driv-
ing frequencies the relative uncertainty falls to a minimum and then
start to grow slowly, i. e. at high frquency the converter porgressively
loses precision. The loss of precision in the conversion process tends
to increase mainly to the environment effect.
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4.4.2 TUR violations

The study of converter performance as a function of the driving fre-
quency and dissipation strength, carried out in the previous section,
allows us to investigate the validity of TUR in Eq. (4.14) and (4.16)
in the quantum domain. We compute the tradeoff parameter at ME
QME, i. e. the left-hand side of Eq. (4.14), which links the conversion
efficiency η, the output power Pout and the relative uncertainty Σout, as
a function of the driving frequency ω, for different coupling strengths
α and fixed temperature T = 0.10∆. We compare QME with the lower
bound, predicted in the static and periodically-driven fields case re-
spectively. In Fig. 4.6a, we show the tradeoff parameter QME as a
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Figure 4.6: Tradeoff parameter QME plotted as a function of the driving
frequency ω, for different values of the coupling strength α, as
compared with the lower TUR bounds in Eq. (4.14) and (4.14).
The field parameters are the same as in Fig. 4.5. In Panel a,
the parameter QME is plotted against the static TUR bound, for
different values of α. In Panels b,c,d, QME is plotted against the
dynamic bound, for α = 0.025, 0.10, 0.20 respectively.

function of the driving frequency ω, computed for different values
of dissipation strength. A divergency of the parameter QME can be
observed in the resonance region, which can be traced back to the pe-
culiar behavior of relative fluctuations reported in Fig. 4.5d, while the
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entropy production is finite. In this frequency region, where the sys-
tem behaves as a trivial dissipator with no work-to-work conversion,
the TUR holds. However, moving away from the resonance region, the
tradeoff parameter falls well below the static bound in Eq. (4.14), thus
violating the static TUR in a wide range of out-of-resonance driving
frequencies. We stress that, from our numerical results of the tradeoff
parameter QME, the violation of a finite static bound of the order of
unity has also to be expected for sufficiently high driving frequencies.
However, the observed violation might be due to the fact that Eq. (4.14)
doesn’t hold for periodically-driven systems, i. e. it has been derived
for Markovian systems subject to static fields [155]. In Fig. 4.6, we thus
compare QME with the generalized bound in Eq. (4.16), which has
been explicitly derived in the context of periodically-driven Markovian
systems. Here it can be shown that, as in the static case, the resonance
region exhibit a divergency which rules out any possible violation of
Eq. (4.16). In addition, for ω slightly above and below resonance, the
lower bound imposed by Eq. (4.16) vanishes, i. e. the output power
is proportional to the driving frequency. It follows that, in the driven
case even above resonance the TUR can be satisfied. On the other hand,
this scenario dramatically changes at higher frequencies, where an
even more pronounced violation of TUR with respect to the static case
occurs. Due to the dependence of the dynamic bound on the output
power, for increasing dissipation strength, our numerical results show
that the shape of the bounding function in Eq. (4.16) undergoes severe
changes. The double-peak structure above and below resonance tends
to smooth down, while moving toward lower frequencies. It follows
that at low frequency, the frequency region where violation is present
reduces, while at high frequencies the dynamical bound decreases,
and the tradeoff QME increase.

Our analysis shows that the frequency regions where violation of
TUR occurs progressively narrow with increasing dissipation strength,
both in the static and dynamic setting. This could serve as a valid
insight to explain that quantum coherence and non-Markovian effects
induced by the system-bath coupling could be the main causes of
the observed violations. Further useful tests would be the study of
the tradeoff Q in the peculiar case of α = 1/2, where the converter
exhibit a completely incoherent dynamics due to the influence of the
bath (see Chpt. 3). Also, the analysis in the Markovian setting, though
extensively covered in the recent literature, could provide additional
insights to shed light on the solution. Eventually, the extension of our
analysis to nonlinear response regime would also add to the present
understanding of the problem.
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4.5 conclusions

We studied the driven system in Eq. (4.1), showing that it can operate
as a monothermal work-to-work converter. We provided a charac-
terization of the converter performance by computing the efficiency,
power fluctuations and output power in the linear response regime
as function of the coupling strength α and driving frequency ω, in
the low temperature regime. Combining these results, we tested the
validity of classical TUR, in the driven as well as in the static field
case. We found evidence of several parameter regions where the TUR
are violated, i. e. a signature that the quantum machine in the time-
reversal broken symmetry confguration (φ 6= π

2 ) can achieve a better
tradeoff between mean power fluctuations and entropy production
for fixed power output. Actually the causes of these violations, which
have been obtained in different contexts, are not yet clear. As it was
observed in several works, in the static case the classical TUR relation
in Eq. (4.14) may provide a wrong lower bound to the tradeoff Q.
In the quantum case, this lower bound has to be smaller [180], so
that the observed violations could be traced back to the coherence of
the quantum system. However, non-Markovian effects arising from
system-bath correlations, correctly described by our simulation in a
fairly wide range of parameters, may also play a role in the observed
violation. A more accurate analysis of these violations is thus needed
in order to achieve a better understanding of the physical scenario.
A sensible starting point could be the test of the TUR relations in
different limiting cases where analytical results are known, e. g. the
completely incoherent tunnelling regime occurring at α = 1/2 or the
Markovian limit. Moreover, a quite unsettled and interesting issue is
the test of validity of TUR in the nonlinear response regime, which
we defer to a future work.
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5 S I M P L E M O D E L S O F
TO P O LO G I C A L I N S U L ATO R S

Topological insulators are one of the most active field of research in
modern condensed matter physics. These materials are band insulators
exhibiting a topologically non-trivial band structure [36, 37, 39]. The
distinct topological phases are described in terms of the values of
a bulk invariant [39], which depend both on the symmetries of the
system and on the global properties of the band structure. The integer
values assumed by the bulk invariants determine the presence of
gapless edge modes, while the material has insulating behavior in the
bulk.

Starting from the early-days experimental discovery of the integer
Quantum Hall Effect (IQHE) [185] in 2D electron gas, described in
terms of topological Chern number [186], the field has experienced a
tremendous growth.

An enormous progress in the field has taken place following the
works by Kane and Mele [187, 188], Bernevig and Zhang [189], who
first theoretically predicted the existence of TR symmetry-protected
topological band insulators in 2D, known as Quantum Spin Hall
(QSH) insulators. In these systems, the possible topological phases
are classified according to values of a Z2 invariant [188, 190, 191]; TR
symmetry-protected helical (opposed chirality) pairs of edge modes
are present and their number is related to the change in the value of
Z2 invariant at the edge by bulk-boundary correspondence [36, 188,
189]. QSH insulators were found to belong to DII topological class
[192–195]. Shortly after these works, the theory of QSH insulators was
generalized to 3D [196], and it was confirmed by a number of experi-
mental findings [197, 198]. Interestingly, the simultaneous presence of
crystal symmetries and TR can lead to novel symmetry-protected topo-
logical states in 3-D, the so-called higher order topological insulators
[199].

Topological insulators are short-range entangled topological phases
of matter, being described by means of one-particle band theories. In
general, the presence of electron-electron interactions are known to
lead to topologically ordered phases [34], where the single-particle
description cannot hold. The Fractional Quantum Hall Effect (FQHE)
[200, 201], discovered in the 1980s, is now considered a prototype of
topologically ordered state [36], exhibiting several distinctive prop-
erties, such as ground-state degeneracy, gapped anyonic excitations
bringing fractional charge. However, the complete understanding of
the effects of correlations on topological insulators remains an open
problem, and it is the subject of an active field of research [40], as new
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exotic states may arise from the interplay of nontrivial topology and
interactions.

This chapter is aimed at giving a brief introduction to the general
properties of two prototypical models of topological insulators which
will be of interest below. We also quickly introduce the relations linking
the band invariants to the fermionic Green functions, proposed in [202–
205]. The knowledge of the Green function of the fermionic system in
the presence of interactions allows us to compute the band invariants
as function of the interaction parameters, thus sheding light on the
properties of correlations.

5.1 chern insulators

Models of Chern insulators describe fermions on a lattice showing
nontrivial topological band structure properties , which are signaled
by a nonzero Chern number. Historically, they have been introduced
to describe fermionic systems displaying IQHE without a net magnetic
flux through the lattice; in a modern perspective, they are considered
as the simplest realization of topological insulators.

The IQHE has been first measured in systems of 2D electron gas
in a Hall bar, i. e. subject to magnetic field of B ' 10 T orthogonal to
the plane of the sample, in the low temperature regime. Transport
measurement pointed towards the striking property of the existence
of plateaus in the transverse Hall conductance

σH = ν
e2

h
, (5.1)

where ν, i. e. the filling factor, assumes perfectly quantized values.
Furthermore, the occurrence of plateaus corresponds to the vanishing
of longitudinal resistivity. It was soon realized that this property could
be explained with the full occupation of Landau levels below the
Fermi energy, when the latter lies in the localized tails of density
of states between adjacent Landau bands. The noticeable absence
of backscattering due to the structure of Landau states implies that
electrons occupying the extended states in the Landau bands bring
the same currents as with the bare Landau state, so that each Landau
band contributes to the total conductivity by an amount e2/h. Further,
the lack of excited extended states in the vicinity of the Fermi level
causes the longitudinal conductivity to vanish. However, the stability
of the quantization was explained by Laughlin [201] in terms of the
gauge invariance of the theory of the electron gas immersed in a
magnetic field. Shortly after, in a subsequent work [186], by employing
the Kubo formula the conductance of a system of fermions subject to
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2D periodic potential and to an external magnetic field was shown to
be written as follows

σH =
e2

h
1

2π

∫
kx ,ky∈BZ

dkxdky

(
∂Ay(k)

∂kx
− ∂Ax(k)

∂ky

)
, (5.2)

where the components of the vector field Ai(k) read

Ai(k) = −i ∑
n filled

〈n, k| ∂

∂ki
|n, k〉 , i = x, y (5.3)

Here |n, k〉 are the 2D Bloch states of the electronic system, and the
partial derivatives are taken with respect to the two components of
wavevector (kx, ky). The integral in (5.2) is taken over the first Brillouin
Zone (BZ) of the system. Due to the form of (5.2), the conductance can
be rewritten by employing the Stokes theorem as follows

σH =
e2

h
1

2π

∫
kx ,ky∈BZ

d2k ·∇× A(k) =
e2

h
1

2πi

∫
C

A · dr, (5.4)

where C is the "boundary" of BZ. Notice that the vector A is the
Berry potential, where the Bloch states of the filled band replace the
instantaneous eigenvectors of the Hamiltonian. In the formalism of
Berry potential, a pure state |ψ(0)〉 evolves adiabatically in time under
the Hamiltonian H(ξ(t)), which depends on the parameter ξ(t). In
the limit of adiabatic evolution, the evolved state at given time t̄ differs
from the instantaneous eigenstate of H(ξ(t̄)), which we call |α(ξ(t′)〉,
only by a phase γ(t),

γ(t) =
1
h̄

∫ t̄

0
Eα(ξ(t′))dt′ − i

∫ t̄

0

〈
α(ξ(t′)

∣∣ d
dt′
∣∣α(ξ(t′)〉 dt′. (5.5)

For a closed path in the parameters space, the phase assumes a form
analogous to Eq. (5.3), as it reads

γα = −i
∫

C
〈α(ξ)| ∇ξ |α(ξ)〉 dξ, (5.6)

It is known as geometric Berry phase. Provided that the instanta-
neous eigenvectors are single valued, the phase in Eq. (5.6) over a
closed path is a gauge-invariant quantity. It also can change by inte-
ger multiples n of 2π. It follows that the Hall conductance has to be
quantized as in Eq. (5.1).

The integer n is called Chern number. Actually, the rigorous proof
of the quantization follows from the observation that Berry phase is
an example of a Bott-Chern connection on principal U(1)-bundle. The
curl of the Berry potential A is commonly called the Berry curvature,
and it is the first Chern class corresponding to the connection. The
integral over BZ of the Berry curvature, as in Eq. (5.2), is thus equiva-
lent to the integration of the first Chern class over a torus T2 in the
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parameter space [206, 207]. A non-zero Chern number thus signals
non trivial properties of the Berry potential in the BZ, i. e. a non trivial
U(1) bundle. It manifests by means of singularities in the vector po-
tential A, and it is equivalent to the impossibility of finding a global
gauge in the parameters space continuous and single valued [39]. The
singularity of the Berry vector potential implies that on the boundary
between a Chern insulator and a trivial one, gapless chiral edge modes
are present. The bulk-boundary correspondence links the change in

Ch=1 Ch=0

Figure 5.1: Schematic diagram of a chiral edge mode at the boundary of a
nontrivial Chern insulator and a trivial insulator.

the Chern number across the interface with a trivial insulator to the
number of edge modes, i. e. the number of edge modes is equal to ∆n.
Edge modes propagate in a single direction, as backscattering is not
possible; they are reponsible for perfectly quantized conductance, and
are robust against perturbations, i. e. the presence of disorder.

Band insulators exhibiting nontrivial Chern number, i. e. IQHE,
can also occur in the absence of a net magnetic flux through the
lattice plane [140]. The fundamental requirement to obtain IQHE is the
absence of TR symmetry. In the following section, we introduce the
prototypical model of the Haldane Chern insulator on a honeycomb
lattice, which has been the first proposal in the field.

5.1.1 Haldane model of Chern insulator

The Haldane model [140] describes spinless fermions on a honeycomb
lattice at half-filling. It is a tight binding model with nearest-neighbor
(NN) and complex next nearest neighbor (NNN) hopping terms, in-
cluding an on-site mass term, M. As compared to a conventional
tight-binding models with NN hopping, the mass term M breaks
the inversion symmetry of the lattice with respect to the center of
the honeycomb cell (see Fig. 5.2a). The complex tunnelling breaks
the time-reversal symmetry, realizing a staggered magnetic field on
the lattice without a net magnetic flux through the plaquette. The
Hamiltonian reads

HH = −∑
i,j

ti,jc†
i cj + M ∑

i
ξic†

i ci (5.7)

where c†
i (ci) are fermionic creation (annihilation) operators on the

site i, ti,j = t1 (t2eiξiφ) is the nearest (next nearest) neighbor electronic
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hopping, and ξi is an integer which takes the values ±1 respectively
on the two sublattices (A, B). As depicted in Fig. 5.2a, it is evident that
the hopping elements of fermions on the two different sublattices are
the complex conjugate of each other.

~e3~e2

~e1
~v2

~v3

~v1

t2eiφt2e−iφt2e−iφt2e−iφ

B −M

A M

(a)

K′ Γ K

(b)

Figure 5.2: Panel a: the honeycomb lattice. In red, NN vectors ei, and the
NNN vectors (blue arrows) vi, i = 1,2,3. Different sublattice sites
A and B are labelled with different colors (orange,green). Dashed
lines shows NNN complex hopping terms. Panel b: The B.Z. of
the honeycomb lattice, with high-symmetry points K, K′

The model in Eq.(5.7) describes a topological Chern insulator, gapped
at Dirac points K, K′ of the Brillouin zone. To show how it occurs, the
Hamiltonian in Eq. (5.7) can be rewritten in the quasi-momentum
space k. We rewrite as (ai, bi) the two different fermionic opera-
tors at each sublattice site A, B, and take their Fourier transform
ai(bi) = 1√

Nc
∑k eik·ri ak(bk), where Nc = N/2. The Hamiltonian (5.7)

can thus be written in the momentum space: for each vector k it can
be recast in terms of that of a two level systems reading

HH = ∑
k

(
a†

k b†
k

)
(ε(k)1+ h(k) · σ)

(
ak

bk

)
(5.8)

where

hx(k) = −t1 ∑
i

cos(k · ei) (5.9)

hy(k) = t1 ∑
i

sin(k · ei) (5.10)

hz(k) = M + 2t2 sin φ ∑
i

sin(k · vi) (5.11)

and ε(k) = −2t2 cos φ ∑i cos(k · vi). Here σj, with j = {x̂,ŷ,ẑ} are the
Pauli matrices along three spatial directions, while ei, i = { 1, 2, 3 } are
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three vectors in the lattice plane linking the NN sites (depicted in red
in Fig. 5.2a), which read

e1 = (0, a)

e2 = (−
√

3
2

a,−a/2)

e3 = (

√
3

2
a,−a/2)

(5.12)

Further, the vectors vi (depicted in blue in Fig. 5.2a) link NNN sites
belonging to the same sublattice

v1 = (
√

3a, 0)

v2 = (−
√

3
2

a,
3
2

a)

v3 = (

√
3

2
a,

3
2

a)

(5.13)

and a is the lattice constant. In the vicinity of high symmetry points
of the BZ of the honeycomb lattice, Eq. (5.8) has the form of a Dirac
Hamiltonian [39], with a nonzero mass term. It is thus evident that
for this model TR symmetry is broken even without a net magnetic
flux through the lattice.

Thanks to its simple form, Eq. (5.8) can be diagonalized analytically,
and the lower and upper band read

Ek,±(k) = ε(k)±
√

h2
x(k) + h2

y(k) + h2
z(k). (5.14)

Notice that we are considering the chemical potential µ to be coin-
cident with E = 0. From the two-band structure computed in the
two nonequivalent points of the Brillouin zone, respectively K =

(4π/(3
√

3a), 0) K′ = (−4π/(3
√

3a), 0), by using vectors vi it can be
shown that the system gap is ∆ = 2|M∓

√
3t2 sin φ|. The gap thus de-

pends on the mass term M and on the hopping parameter t2. It follows
that the Haldane model predicts the existence of different parameter
regions in which the system behaves as an insulator, separated by a
curve in the parameter space where gap closure occurs. In the vicinity
of K′,K, crossing the curve of zero gap, the sign of hz(k) changes, as
evident from Eq. (5.14). It is the mechanism of band inversion: the two
gapped phases separated by the curve of zero gap are topologically
distinct insulating phases, marked by the values of a topological in-
variant, i. e. the Chern number Ch. The different parameters regions
corresponding to these insulating phase are depicted in Fig. 5.3b.

The topologically non-trivial insulating phase is characterized by
Ch = ±1, and it occurs for −Mc < M < Mc, where Mc ≡ 3

√
3t2 sin φ.

In all other cases Ch = 0, and the system behaves as a trivial insulator.
The particular nature of the problem can also be seen by observing
that, if we restrict to the vicinity of the points K′,K, the Haldane Hamil-
tonian reduces to that of a massive Dirac fermion: if the Chern number
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Figure 5.3: Panel a: Plot of the two bands of the Haldane model in the
gapped topological phase. Panel b : Phase diagram of the Hal-
dane model in the plane (φ, m/(3

√
3t2). The solid orange curve

separates different topological phases (regions corresponding
to different values of Ch). A topological transition can occur by
crossing the line (gap closure).

is computed following Eq. (5.4), the results reads Ch = 1
2 signm, where

m is the mass term of the effective model [39]. It means that when
the mass term changes sign by traversing the line of zero gap, we
can only infer that ∆Ch = 1, but the exact value of the Ch can only
be computed from the integral over the whole BZ. The eigenvectors
corresponding to different bands can be written as

|k,−〉 = 1√
2(1 + nz)

(nx − iny,−(nz + 1)) (5.15)

|k,+〉 = 1√
2(1 + nz)

(nz + 1, nx + iny) (5.16)

where we indicate with ni =
hi(k)
‖h‖ . We can also introduce the quasi-

particle operator basis γk,±, which diagonalizes the Hamiltonian (5.8),
i. e.HH = ∑k(Ek,−γ†

k,−γk,− + Ek,+γ†
k,+γk,+); these operators are linked

to fermion operators by means of a unitary transformation

γk,+ =
1√

2(1 + nz)
[(1 + nz)ak + (nx − iny)bk] (5.17)

γk,− =
1√

2(1 + nz)
[(nx + iny)ak − (1 + nz)bk] (5.18)

which clearly hold if nz 6= −1, otherwise another expression for the
operators has to be used.

5.2 topological insulators

In the previous chapter, we have described the topological properties
of Chern insulators as arising from TR symmetry breaking. If TR sym-
metry is restored, due to the structure of Dirac Hamiltonian, IQHE
effect cannot occur. However, after the Kane and Mele (KM) seminal
paper in 2005 [187], it has been proved that even in the presence
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of TR symmetry nontrivial topological effect can occur. Indeed, TR
symmetry gives rise to a different kind of topological phase, which
has been called TR symmetry-protected topological state, i. e. a topo-
logical insulating state. In the following, our interest will be focused
on the simplest prototypical model of topological insulator, namely
the KM [187] model. It describes a 2D system of spinful fermions
on a honeycomb lattice, where in place of the NNN hopping term a
spin-orbit interaction is present. Spin-orbit interactions are a natural
choice if a TR invariant Hamiltonian has to be written down. In its
simplest formulation, the KM model assumes the form of a doubled
Haldane model, each for the two different spin state. In this limit, it is
equivalent to a doubled IQHE, with state of opposite spins described
by different values of the Chern number. The striking signature of

QSHI

Figure 5.4: Schematic diagram of a 2D Quantum Spin Hall Insulator (QSHI).
Adapted from [187].

topological properties described by KM model relies on the existence
of odd number of pairs of gapless helical edge modes on each edge,
as schematically depicted in Fig. 5.4. This phase is known as Quantum
Spin Hall (QSH) effect. These edge modes are protected by TR sym-
metry, i. e. they cannot be gapped, only if they are an odd number of
pairs for each edge, as a consequence of the Kramers theorem [39, 187].
The topological phase can be described by means of a Z2 invariant,
which in analogy with the Chern insulator, distinguishes between a
topologically trivial phase from QSH. In the following we will analyze
only 2D systems, thus the invariant can be written as follows [191]

(−1)ν =
4

∏
i=1

δ(Γi) =
4

∏
i=1

Pf(w(Γi))√
w(Γi)

. (5.19)

Here wnm(k) = 〈n,−k| T |m, k〉 is the expectation value of TR op-
erator, i. e. T = exp

(
iπSy

)
K on the occupied Bloch states, Γi are

the TR points in the BZ of the considered system and the Pfaf-
fian is defined from the determinant of matrix wnm(k) as follows:
Pf(w(Γi))

2 = det{w(Γi)}. Notice that, when computed in the TR
points, the matrix wnm(k) is antisymmetric. The topologically non-
trivial QSH state is thus described by the value ν = 1, while if ν = 0
the system can be adiabatically connected to a trivial insulator. In
the prototypical KM model, in the absence of Rashba spin-orbit term
a topological transition between the two phases can take place only
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by closing the gap [39]. In the presence of additional symmetries,
Eq. (5.19) can be noticeably simplified [41, 191], and it will turn useful
in the subsequent chapters.

5.2.1 The Kane-Mele model

The KM model [187, 188] describes spin-1/2 fermions on a honeycomb
lattice, it is a prototypical model of QSH. Its general form reads

HKM = Hnn + HM + HSO + HR, (5.20)

where Hnn is the usual NN hopping term, HM is the on-site mass term
as in the Haldane model, HSO is the spin-orbit coupling energy and
HR is the Rashba coupling interaction. The last two contribution read
respectively [41]

HSOC = − ∑
�i,j�,σ,σ′

tsoc†
iσνij(sz)σσ′cjσ′

HR = tR ∑
<i,j>

c†
i (s× d)zcj.

(5.21)

Here νij = (d1× d2)z, where d1(d2) are the two NN vectors which link
the NNN sites i, j and d is a vector which links the NN sites; c†

iσ(ciσ)

are fermionic creation (annihilation) operators on the site i with spin
σ, on the two sublattices (A, B); tso, tR are the strengths of the second
nearest neighbor SOC term and the Rashba interaction, respectively.
Below, we take into account only the SOC component term, thus
disregarding Rashba-type terms (they break the spin symmetry and
the spatial inversion symmetry), and we fix the mass term of the
Haldane model to be zero. It follows that Eq. (5.20) can be described
in terms of two copies of the Haldane model, one for each value of
the spin along ẑ axis, with additional Rashba SOC term. Then the KM
Hamiltonian can be written as follows

HKM = −t1 ∑
<i,j>,σ

c†
iσcjσ − ∑

�i,j�,σ
tsoeiξiσφc†

iσcjσ, (5.22)

where t1 is the nearest-neighbor hopping element, ξiσ = ±1(∓1) for
hopping on the sublattice sites A, (B) and spin-↑ (spin-↓) respectively.
As evident from Eq. (5.22), the phase choice in the SOC term ensures
that the net magnetic flux through the honeycomb is zero. However,
due to the fact that the phases for different spin values are complex-
conjugate of each other, the SOC term can open a gap in the high-
symmetry points of the first Brillouin zone (BZ) of the honeycomb
lattice without breaking TR symmetry. In what follows, we restrict to
the case of particle-hole symmetry, i. e. we take φ = π/2 and fix the
chemical potential to be zero. The KM model can be rewritten in the
quasi-momentum space, introducing creation (annihilation) fermionic
operator (akσ, bkσ) on each sublattice

HKM = ∑
k

Ψ†
kH(k)Ψk, (5.23)
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with Ψ†
k = (a†

k↑, b†
k↑, a†

k↓, b†
k↓) and H(k) denotes the four-dimensional

matrix
H(k) = h(k) · σ1σσ′ + hso(k)σz(sz)σσ′ , (5.24)

where sz is the spin operator along ẑ. As usual, we denote with
σ = σi, i = x, y, z Pauli matrices, and the quasi-momentum k =

(kx, ky) belongs to BZ. The vector h(k) is generally analogous to
a 3D magnetic field, h(k) = (hx(k), hy(k), hz(k)); in the presence
of inversion symmetry, the field component along ẑ vanishes. The
matrices (1, sz) act on the space of the spin degree of freedom. The
4D Hamiltonian H(k), which is invariant under TR and inversion
symmetry, can be written as a linear combination of 5 out of the 15
SU(4) matrices, i. e. Γα = (σx1, σy1, σzsx, σzsy, σzsz) [39, 41, 191]. It can
be readily diagonalized, through a unitary transformation, to give :
H(k) = Ek,− ∑σ γ†

k,−,σγk,−,σ + Ek,+ ∑σ γ†
k,+,σγk,+,σ, where γk,±,σ denote

quasi-particle creation (annihilation) operators and

Ek,± =
√

h2
so(k) + h2

x(k) + h2
y(k), (5.25)

are the two-fold degenerate quasi-particles energy bands. The SOC
term, which is ∝ Γ5, opens a gap at Dirac points K, K′. Notice that a
small value of SOC is sufficient to open a gap at the high symmetry
points. As long as the gap is open, the topological phases of KM can
be classified according to the values of Z2 invariant. In the case of
inversion symmetry, which is also the case of Eq. (5.24), it has been
shown that using the properties of the parity operator P = σx ⊗ 1, the
Z2 invariant in Eq. (5.19) can be reduced to

(−1)ν =
4

∏
i=1

δ(Γi), δ(Γi) = −sign(hx(Γi)). (5.26)

It follows that when the gap is open, the invariant in Eq. 5.26 gives
exactly ν = 1. The TR points Γi can be taken as Γ = n1b1 + n2b2 ,

M

M1

M2
Γ

K

Figure 5.5: BZ of the honeycomb lattice and TR points.
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where (b1, b2) are the primitive vectors of the reciprocal lattice. In the
case of the honeycomb lattice, it can be easily found that these points
correspond to the M points of BZ and the point Γ as in Fig. 5.5.

5.3 band invariants in the presence of in-
teractions

It is sensible to conclude this chapter with a quick overview on the
computation of band invariants. In the single-particle context, band
invariants have succesfully been defined to describe different topolog-
ical phases. However, in the presence of interactions a band theory
cannot describe the physics of the system, so that the invariants have
to be reformulated. We will adopt the approach followed by [204,
205], where an expression for the band invariants in the presence of
interactions,e. g.Coulomb interactions is derived, starting from the
Green function of the interacting system. The first step is the compu-
tation of the eigenvectors of the inverse Green function written in the
momentum space and G−1(i ω, k)

G−1(i ω, k) |n(i ω, k)〉 = µn((i ω, k)) |n(i ω, k)〉 . (5.27)

It can be shown that

G−1†(i ω, k) = G−1(− i ω, k), (5.28)

so that exactly at ω = 0 the Green function is a Hermitian matrix. It
follows that not only the eigenvalues are real, but the eigenvectors cor-
responding to different eigenvalues belong to orthogonal subspaces.
Given that the eigenvectors of G and G−1 are the same, the straet-
egy is based on finding the eigenvectors of the zero-frequency Green
functions. These eigenvectors |n(0, k)〉 can be classified according to
the signs of their eigenvalues µn(0, k). Eigenvectors corresponding to
positive eigenvalues are necessarily orthogonal to those corresponding
to the negative ones. It means that a subspace R(L) can be identified,
which is spanned by the collection of all |n(0, k)〉 corresponding to
different k, and having negative(positive) eigenvalues. All the eigen-
vectors in R are orthogonal to those in L. This is sufficient for defining
a band invariant which can be written in terms of a a kind of Berry
potential

Ai(k) = −i ∑
n∈R space

〈n, k| ∂

∂ki
|n, k〉 , (5.29)

where the Bloch states are replaced with the many-body states be-
longing to the R space. Thus it is possible to define the invariant
in the interacting case as the integral of the curvature related to the
previous potential, in the same way as with (5.2). The main difference
is that for every k the bundle is composed by all the eigenvectors
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of R space. In this way, the major complexity in the computation of
topological invariants in the presence of interactions resides only in
the computation of the interacting Green function at ω = 0 and in
its diagonalization. The Chern number in the interacting case can be
directly computed following this route. Notice that this method cannot
work in the presence of nontrivial ground state degeneracies, as in
FQHE. However, it has been proved to be totally equivalent to the
rather more complicated field-theoretical formulation [208]. Besides
Chern number, also Z2 invariants can be generalized to the interacting
case by employing this method. In the following chapters, we will
compute the invariants following this technique.



6 E - P H A N D TO P O LO G I C A L
T R A N S I T I O N I N T H E H A L DA N E
C H E R N I N S U L ATO R

In this chapter we present part of our original contributions published
in [209].

In the previous chapter, we introduced the properties of prototypical
models of topological insulators. Below, we focus on Haldane model
of Chern insulator (see Sec. 5.1.1), and we investigate the effects on
the topological properties of the system when the spinless fermions
couple to the lattice degrees of freedom.

The study of topological properties in the presence of correlations
has been the focus of recent research. In general, the most of the-
oretical work has been done aimed at understanding the effect of
Coulomb correlations on the topological properties [41, 210–215]. On
the other hand, electron-phonon interaction is so inevitably present in
any solid that, from the first principles, one cannot even distinguish
and separate Coulomb and electron-phonon interaction because they
are unambiguously connected [216]. The issue of Coulomb correla-
tions has been thoroughly studied in the last decade, and the main
properties of the phase diagrams are already known. Current studies
are mainly focused on improving the reliability of the physical descrip-
tion, by the use of more refined numerical approaches, see e. g. [215].
On the other hand, there are only few studies of the influence of
electron-phonon coupling (EPC) [217, 218] all considering models
different from Haldane Chern insulator. To fill this gap, we account
for the lattice quantum dynamics including on-site optical phonons
coupled a la Holstein to spinless fermions, described by the Haldane
model. We perform a numerical study of the bulk properties of the
interacting system, employing Cluster Pertubation Theory (CPT) [48],
that, starting from the exact numerical computation of the Green func-
tion, performed on a suitably chosen cluster, allows us to compute the
interacting Green functions of the whole lattice, an experimentally ac-
cessible function through angle resolved photoemission spectroscopy
measurements [219].

We find evidence of a topological phase transition driven by EPC.
Starting from the topological phase in the bare Haldane model, we
show that the increasing of the strength of the EPC drives the sys-
tem towards a trivial insulator. Across the phase transition, a strong
hybridization of the quasiparticle bands of the bare Haldane model oc-
curs. Numerical simulations show also that the renormalized phonon
propagator exhibits a two peak structure across the quantum transi-

91
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tion, whereas, in absence of the mass term, there is indication of a
complete softening of the effective vibrational mode signaling a CDW
instability.

6.1 the interacting haldane model

We add to the Haldane Hamiltonian described by Eq. (5.7) an interac-
tion term typical of the Holstein model, where charge fluctuations are
linearly coupled to the displacement of local lattice vibrations

H = HH + ω0 ∑
i

d†
i di + gω0 ∑

i
(c†

i ci −
1
2
)(d†

i + di). (6.1)

We employ shorthand notation d†
i (di) for two different bosonic opera-

tors, which respectively create (annihilate) a phonon on the two (A, B)
sublattice sites, ω0 is the optical mode frequency, and g represents the
strength of the coupling with lattice. We introduce also the dimen-
sionless parameter λ = g2ω0/4t1. Here we restrict our attention to
the case of half-filling, i.e. ∑i∈A a†

i ai + ∑i∈B b†
i bi = Nc = N/2, where

Nc (N) is the number of unit cells (lattice sites). In what follows, we
present different approaches which can be employed to understand
the physics behind Eq. (6.1).

6.2 lang-firsov approach

If the optical mode frequency is the highest energy scale (antiadi-
abatic regime), i.e. ω0 � t1, t2, M, the physics is well captured by
the Lang-Firsov approach (LFA) [220], that is based on the unitary
transformation:

H̃ = eSHe−S (6.2)

where S = g ∑i(c†
i ci − 1

2 )(d
†
i − di). In the new basis, the electronic

hopping is assisted by phononic operators that, in the antiadiabatic
regime, can be treated as a small perturbation. This approximation

leads to renormalized values of t1 and t2 through the factor e−
4λt1
ω0 .

On the other hand, as it is straightforward to verify, the value of M
is not affected by the unitary transformation. The net result is that
it is possible to replace the Hamiltonian H̃ with that of an effective
Haldane model, where now the parameters, and then the topological-
trivial insulator transition, are controlled by the strength of the EPC.
In other words, by increasing the value of λ, it is possible to induce
a topological quantum transition. On the other hand, this approach
becomes exact only in the limit t1 = t2 = 0. In order to investigate
if these effects survive for parameter values of physical interest, a
more accurate treatment of EPC is needed. To this aim we employ
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the CPT (see Sec. 6.3), that allows us to compute the electronic Green
function, Gi,j(q, z), of the interacting system, from which detailed
informations on the renormalized band structure as well as spectral
functions can be derived. Here i stands for (A, B), i.e. indicates the
two sublattices, and z = ω + iη lies in the complex upper half plane.
Starting from Gi,j, it is straightforward to derive the Green functions
G(+,+) and G(−,−), corresponding to the quasiparticle operators of the
bare Haldane model. We will focus our attention on the following set
of parameters: t2/t1 = 0.3, ω0 = 3t1, φ = π

2 and two different values
of M, i.e. M1 = 0.94Mc and M2 = 0.42Mc. In the absence of EPC, these
two values describe the topological insulator phase near and far from,
respectively, the transition towards to a trivial insulator. Furthermore,
for these values of the parameters, the lowest gap is located at K point,
and HH exhibits hole-particle symmetry so that µ = 0.

6.3 cluster perturbation theory

We employ the Cluster Perturbation Technique (CPT) [48] in order to
compute the Green functions of the interacting system described in
Eq. (6.1); the general expression for the Green function can be written
as

Gij(ω) = G+ij (ω) + G−ij (ω), (6.3)

where
G+ij (ω) = 〈ψ0| ci(ω− H + E0)

−1c†
j |ψ0〉

G−ij (ω) = 〈ψ0| c†
i (ω + H − E0)

−1cj |ψ0〉 .
(6.4)

|ψ0〉 is the ground state of H, and E0 is the corresponding ground
state energy.

The numerical method is based on the division of the lattice in
identical clusters containing a finite number Nc of sites. As a conse-
quence, each cluster can be interpreted as a site of a superlattice. The
Hamiltonian of the full system can thus be rewritten as a sum of a
cluster Hamiltonian and an interaction term which links inter-cluster
sites

H = Hc + Vic (6.5)

where Vic is a one-body operator. The Fourier transform of the Green
function (6.3) over the whole superlattice can be written as

G−1(K, ω) = G−1
c (ω) + Vic(K) (6.6)

where K is the reduced wave-vector belonging to the first Brillouin
zone of the superlattice, and Gc is the Green function of the cluster,
which is independent of K; Vic(K) is the Fourier transform of the
inter-cluster term, that is diagonal in K. The advantages of using
this method for interacting Hamiltonians of the form reported in
Eq. (6.1) are clear: if the interactions can be modeled by means of local
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fermionic operator, like the electronic occupation on each site of the
lattice, the computation of the whole Green function of the bulk system
is reduced to the numerical computation of Gc on the cluster chosen.
Several numerical reduction techniques, like Lanczos algorithm, allow
to perform an efficient diagonalization of the matrix describing the
cluster, when the number of cluster’s sites grows. Moreover, exploiting
the superlattice properties, each wavevector in the original lattice
Brillouin zone can be uniquely written in terms of the reciprocal
superlattice wavevector Kr, i.e. k = Kr +K; it follows that, by imposing
periodic boundary conditions, the Green function in the bulk of the
system can be computed.

Below, we make the simple choice of a two-sites cluster containing
the lattice basis, i. e. a couple of nearest-neighbor sites, respectively of
type A and B displaced along a single bond of the Graphene lattice.

Figure 6.1: Schematic diagram of the cluster adopted to compute the Gc: it
contatins two NN sites of type A and B.

Adopting a truncation of the Hilbert space of bosonic field, the
cluster Hamiltonian can be directly diagonalized, and the function Gc

is readily computed. Due to the simple structure of the problem, the
analytic form of Vic(K) can be straightforwardly computed for each
couple of sites belonging to different sublattices.

We thus can efficiently compute the Green functions in Eq. (6.3)
related to each sublattice fermionic operator, i. e. ck = (ak, bk), along
with the Green functions for the quasi-particle operators (γk+ , γk−)

of the single-particle Haldane model in the presence of interactions.
From each Green function, the computation of the spectral functions
can be performed

A(k, ω) = − 1
π

Im{G(k, ω)} (6.7)

Furthermore, the Density of States (DOS) of the interacting model can
also be computed from the spectral function

ρ(ω) =
1

Nc
∑

k
A(k, ω) (6.8)

Thus, we can directly analyze the change in the spectral properties of
the system in the presence of interactions, e. g. the lower band spectral
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function A(−,−)(k, ω) around the Dirac points K, K′. Eventually, every
moment of the spectral functions A(k, ω) can be computed, e. g. the
occupation of a given fermionic band reading

nk =
∫ +∞

−∞
A(k, ω)nF(ω)dω (6.9)

This numerical approach can thus provide useful information on the
effect of interactions on the topological properties of Chern insulators.

6.4 results

Within the hole sector, near K point, we followed the dispersion of
lowest energy quasiparticle peak associated to one of the two spectral
weight functions A(∓,∓)(q, ω) = − Im

{
G(∓,∓)(q, z)

}
/π. It turns out

to be equivalent to that of an effective Haldane model. In Fig. 6.2a
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Figure 6.2: (a) and (b): parameters of the effective Haldane model vs λ; (c)
and (d): behavior of the gap and the energies of the peaks of
A(A,A) and A(B,B), at K and K′, as function of λ.

and Fig. 6.2b we plot, as function of the interaction strength λ, the
renormalized values of the electronic hopping and M, i.e. t1r, t2r and
Mr, and compare them with those predicted within LFA. In the CPT
all the parameters, including M, are renormalized, but, also in this
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approach, a topological quantum transition occurs. Indeed, around
λc ' 0.08, the ratio Mr/(3

√
3t2r) becomes greater than 1, signaling

the phase transition. Fig. 6.2c shows that the gap, by increasing λ,
first decreases, at λc becomes zero, and then increases. It is also
worth noting that, within the bare Haldane model, the spectral weight
functions corresponding to the two sublattices assume the follow-
ing form: A(A,A)(q, ω) = (1+nz)

2 δ(ω − Eq,+) +
(1−nz)

2 δ(ω − Eq,−) and

A(B,B)(q, ω) = (1−nz)
2 δ(ω− Eq,+) +

(1+nz)
2 δ(ω− Eq,−), where nz =

hz
‖h‖ .

Here δ(ω) is the Dirac delta function. On the other hand, we empha-
size that, again at λ = 0, if the system is in the topological phase
0 < M < Mc, nz, when evaluated at K and K′, assumes opposite
values, respectively −1 and 1, whereas, in the trivial insulating phase
(M > Mc), nz = 1 at both K and K′. Then, at λ = 0, it is clear that
A(A,A)(K, ω) (A(B,B)(K, ω)) is peaked only at EK,− (EK,+) in the topo-
logical phase and only at EK,+ (EK,−) in the trivial insulating phase.
On the other hand, A(A,A)(K

′, ω) (A(B,B)(K
′, ω)) has spectral weight

different from zero only at EK′,+ (EK′,−), independently on the phase.
We followed, as function of λ, the peak position of these two spectral
functions at both K and K′. Fig. 6.2d shows that at λ < λc (λ > λc) the
behavior of the fermions on the two sublattices is in agreement with
that predicted by the bare Haldane model in the topological (trivial)
insulating phase. It confirms that at λc a quantum transition occurs.

Now we focus our attention on the spectral weight functions cor-
responding to the operators describing the quasiparticles in the bare
Haldane model, i.e. A(−,−) and A(+,+). These two functions, at the
Dirac point K, are plotted in Fig. 6.3a and Fig. 6.3b for two different
values of λ, λ = 0.075 and λ = 0.085, respectively before and after the
topological phase transition. Crossing λc, the energy gap closes and
opens again, and, at the same time, the character of the two bands
changes, i.e. the peak of A(−,−) (A(+,+)) is located above (below) the
chemical potential. The plots (Fig. 6.3c and Fig. 6.3d) of the density of
states associated to the two bands, DOS(−,−)(ω) = 1

Nc
∑q A(−,−)(q, ω)

and DOS(+,+)(ω) = 1
Nc

∑q A(+,+)(q, ω), furtherly clarify this picture.
Indeed DOS(−,−) (DOS(+,+)) (see the two insets) exhibits a peak above
(below) µ, at λ > λc. It indicates a strong hybridization between the
quasiparticles of the bare Haldane model across the topological quan-
tum transition. In the density of states, the Van Hove singularities and
the satellite bands, stemming from the EPC, are clearly distinguishable.

In Fig. 6.4a we plot the average number of fermions n(−,−)(q),
at q = K, as function of λ: n(−,−)(q) =

∫ ∞
−∞ A(−,−)(q, ω)nF(ω)dω,

where nF(ω) is the Fermi function. By decreasing the broadening
factor η, it becomes more and more clear that n(−,−)(K) exhibits a
finite discontinuity at the transition point, so that it can be used as
direct indicator of the topological quantum transition. We find also
(Fig. 6.4c) that a greater EPC is needed to destroy the topological
phase when the initial parameters of the bare Haldane model are such
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Figure 6.3: (a) and (b): A(−,−) and A(+,+), at K, just below and above λc; (c)
and (d): density of states with zoom (insets) around µ (ω = 0),
at λ = 0 and λ > λc.

that spinless fermions are well inside the topological phase. In this
case the discontinuity at the transition point reduces indicating the
presence of strong electron-electron correlations induced by the EPC.
The plots in Fig. 6.4b and Fig. 6.4d, i.e the behavior, across the phase
transition, of n(−,−)(q) along the line K′ − Γ− K, point out that the
quantum transition affects only a small region of the Brillouin zone
around the Dirac point K.

The occurrence of the topological phase transition is further verified
by means of the computation of the interacting Chern number Ch (see
Sec. 5.3), which we report as a function of the coupling strength λ in
the inset of Fig. 6.4, panel a. Here we show that exactly at the critical
coupling strength λc, Ch drops from 1 to 0, signaling the transition
from topological to trivial phase.

Finally, we investigate the effects of the quantum transition on the
lattice. To this aim, we emphasize that the exact integration of the
phonon degrees of freedom, through path integral technique, leads to
a retarded electron-electron interaction on the same sublattice. This
coupling is controlled by the bare phonon propagator, D0(q, z) =

1
z−ω0

− 1
z+ω0

, and the charge-phonon vertex: V0
i,i(q, z) = g2ω2

0
Nc

D0(q, z)
[220, 221]. At the lowest order in the EPC, there is no coupling between
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Figure 6.4: The average number of fermions n(−,−), at K ((a) and (c)) and
along K′− Γ−K ((b) and (d), in the inset n(A,A)), for two different
values of M.

two electrons on different sublattices, i.e. V0
(A,B)(q, z) = 0. On the other

hand, the effective interaction between two charge carriers obeys the
Dyson equation [220, 221]:

Ve f f
i,j (q, z) = V0

i,j(q, z) + V0
i,h(q, z)Π∗h,k(q, z )Ve f f

k,j (q, z),

which defines the proper polarization insertion Π∗i,j(q, z). Since Π∗i,j, in
general, is a non diagonal matrix, there is an effective phonon medi-
ated interaction even between two charge carriers located in different
sublattices. At the lowest order Π∗i,j(q, z) is the particle-hole bubble.
The next step is to replace, in this lowest order diagram, the unper-
turbed electron Green functions with the interacting Green functions
calculated within the CPT. This procedure allows to obtain the effec-
tive interaction between two electrons and, then, the renormalized
phonon propagator Di,j.

We focus our attention on the spectral weight function B(A,A)(q, ω) =

− Im{D(A,A)}(q,z)
π , an odd function, that, in the absence of EPC, is peaked

at ω = ω0. At λ 6= 0, it exhibits a softening at qc around b1
2 and b2

2 ,
where b1 and b2 are the primitive vectors of the reciprocal lattice. In
Fig. 6.5 we plot B(A,A)(qc, ω) for four different values of the EPC. Near
the topological phase transition there is a splitting of the main peak.
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Figure 6.5: Phonon spectral weight function for four different values of λ.

By increasing λ, the spectral weight of the lowest (highest) energy
peak increases (decreases), and, around λc, the two peaks have the
same intensity. We emphasize that the energy of the lowest peak is
strictly related to the energy difference between the two Dirac points,
both in the hole and particle sectors (compare energy of K and K′ in
Fig. 6.2d and its inset), i. e. K and K′ are connected by the EPC. On the
other hand, the highest energy peak is reminiscent of the bare phonon
frequency.

Finally, at M = 0, by increasing EPC, the peak softening becomes
more and more pronounced signaling a CDW. We can investigate the
tendency of the system towards a CDW instability as follows. The
dynamical effective interaction between two charge carriers obeys the
Dyson equation in Eq. (6.10). It follows that

Ve f f = (1−V0Π∗)−1V0. (6.10)

The evaluation of the function P = (1−V0Π∗)−1 provides information
on the stability of the system. In particular a divergence of this quantity,
at ω = 0, signals the occurency of a CDW instability. Indeed one
can immediately recognize that it implies a diverging response of
the boson propagator, of the scattering amplitude mediated by the
same boson propagator and the density-density correlation function.
The numerical simulations show that P(q → 0, ω = 0) exhibits a
divergence at λc ' 0.877, in the four channels (A, A) (see Fig. 6.6a),
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Figure 6.6: Panel a: correlation function PA,A(q → 0, ω = 0) plotted vs λ,
for fixed band-model parameters: φ = π/2, t3 = 0.3t1, M = 0.
Panel b: Average number of fermions n(−,−) computed in the
K point as a function of λ, and fixed band-model parameters
φ = π/2, t3 = 0.3t1, M = 0.

(B, B), (A, B) and (B, A), signaling a charge density wave within the
unit cell. On the other hand, the average number of fermions at K point,
plotted as a function of λ in Fig. 6.6b, in this parameter region, λ ≤ λc,
don’t exhibit a rapid drop as shown in 6.4. It follows that we don’t
observe a gap closing and reopening, as in Fig. 6.2 [209]. In conclusion,
at M = 0, the system does not exhibit any topological transition, but
only a tendency towards a charge density wave instability, that sets in
before the gap closing.

6.5 conclusions

We have investigated the effects of the interaction between the vi-
brational modes of the lattice and the spinless charge carriers in the
Haldane model on a honeycomb lattice. We found evidence of a topo-
logical quantum transition. Starting from the topological phase in
the bare Haldane model, the increasing of the strength of the EPC,
λ, drives the system towards a trivial insulator. By varying λ, the
energy gap first decreases, closes at the transition point, and then
increases. Across the transition point, a strong hybridization between
the quasiparticles of the bare Haldane model occurs near the Dirac
point characterized by the lowest gap. The average number of fermions
exhibits a finite discontinuity at the transition in this particular point
of the Brillouin zone and can be used as direct indicator of the topo-
logical quantum transition. We have also shown that the renormalized
phonon propagator exhibits a two peak structure across the quantum
transition, whereas, in absence of the mass term, there is indication
of a complete softening of the effective vibrational mode signaling a
charge density wave instability.



7 E - P H A N D TO P O LO G I C A L
T R A N S I T I O N I N T H E Q S H
S Y S T E M .

In this chapter we present part of our original contributions published
in [222].

Below, we extend the study of the previous chapter by taking into
account the effect of EPC on the topological properties of the KM
model of a QSH band insulator. Although KM model describes spin
1/2 fermions in the presence of a hopping contribution, an intrinsic
spin-orbit coupling (SOC) term, and an additional Rashba SOC on a
half-filled honeycomb lattice [187, 188], in this paper we consider the
Rashba spin-orbit interaction to be zero.

As explained in Sec. 5.2.1, the Hamiltonian can be obtained by
considering two copies of the model introduced earlier by Haldane
[140], where the second-nearest neighbor hoppings for spin-↑ and -↓
electrons are complex valued and complex conjugate to each other.
We will focus our attention on the case where next-nearest-neighbor
spin-orbit hopping integral is purely imaginary, i.e. in the presence of
the particle-hole symmetry. As in the previous chapter, we describe
the lattice dynamics by introducing on-site optical modes, coupled to
fermions by means Holstein-type interaction term.

We compute the single particle Green’s propagator in the thermody-
namic limit by using the CPT. We choose the model parameter values
such that the minimal gap of the bare topological insulator is located
at the two inequivalent Dirac points of the Graphene, K and K′. We
show that EPC induces a topological-trivial quantum phase transition
through a gap closing and reopening in the M point of the Brillouin
zone.

By following Wang et al. [204, 205] we compute the topological
invariant via the parity eigenvalues of the fully interacting Green’s
function obtained at the time-reversal invariant momenta and zero
energy. The numerical simulations show that, by varying the strenght
of EPC, the Z2 invariant drops from one to zero just where the gap
closes. Here a strong hybridization between the two bare quasipar-
ticle bands of the KM model occurs. We show also that, in analogy
to the previous chapter, the average number of fermions at the M
point of the Brillouin zone can be used as a specific indicator of the
quantum phase transition. Furthermore, a splitting and a softening
of the phonon Green’s function are observed around the topologi-
cal transition; eventually, we show that many kinks in the electron
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renormalized dispersion appear as direct consequence of the coupling
between the charges and the lattice boson mode.

7.1 the interacting km model

We aim at describing the effects of the EPC on the topological proper-
ties of KM model (5.22). Following the previous chapter, we introduce
the EPC by means of the Holstein model, which linearly couples the
charge fluctuations to the displacement of on-site lattice vibrations:

H = HKM + ω0 ∑
i

d†
i di + gω0 ∑

i
(ni − 1)(d†

i + di) (7.1)

We employ shorthand notation d†
i (di) for two different bosonic opera-

tors, which respectively create (annihilate) a phonon on the two (A, B)
sublattice sites, ni indicates the electron number operator on the site i,
ω0 is the optical mode frequency, and g represents the strength of the
coupling with lattice. We introduce also the dimensionless parameter
λ = g2ω0/4t1. Here we restrict our attention to the case of half-filling,
i.e. ∑i∈A a†

i ai + ∑i∈B b†
i bi = 2Nc = N, where Nc (N) is the number of

unit cells (lattice sites). We choose t1 = 1, ω0 = 0.1, tso = 0.1, and use
units such that h̄ = 1.

7.2 results

The single particle Green’s function Gσ(k, z), where z = ω + iη lies
in the complex upper half plane, is obtained by using the CPT. Due
to the explicit sz conservation of the Hamiltonian, the Green’s func-
tion is block-diagonal in spin-space, and, furthermore, Gσ is a 2x2
matrix in the (A, B) sublattice basis. We emphasize that this does
not mean that up and down spin electrons are decoupled. Indeed
they interact with each other through the EPC. By using the uni-
tary transformation introduced to diagonalize the Hamiltonian, it is
straightforward to extract the Green’s functions relative to the op-
erators γk,±,σ representing the quasiparticles in the absence of the
EPC. In Fig. 7.1 we plot, for different values of the charge-lattice
coupling, the density of states: DOS(∓,∓)(ω) = 1

Nc
∑k Aσ,(∓,∓)(k, ω),

where the two spectral weight functions Aσ,(∓,∓)(k, ω) are given by:

Aσ,(∓,∓)(k, ω) = − Im{Gσ,(∓,∓)(k,z)}
π . At λ = 0, where Aσ,(∓,∓) are delta

functions peaked at Ek,− and Ek,+, the two density of states exhibit Van
Hove singularities and a finite gap due to the presence of spin-orbit
coupling tso. In this case the two bands are completely separated, i.e.
Aσ,(−,−) (Aσ,(+,+)) is different from zero only at ω lower (greater) than
µ. By increasing EPC the two bare bands of the KM model hybridize
and the gap reduces.
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Figure 7.1: Density of states for different values of EPC.

In particular the spectra point out that, near the Van Hove singular-
ity, there is a stronger effective charge-lattice coupling. At λc = 0.1841,
the gap closes and, then, by further increasing EPC, reopens and be-
comes larger and larger. Figures 7.2a and 7.2b show that, at the K
point, the spectral weight functions exhibit a finite gap for any value of
λ, i.e. the Dirac points of the Graphene, K and K′, are not responsible
of the behavior observed in the DOS. On the other hand, the plots
in Fig. 7.2c, Fig. 7.2d and Fig. 7.3a point out that, by increasing the
strength of EPC, the gap at M point reduces, closes exactly at λc (here
both the functions display a peak at µ) and reopens for λ > λc. In
particular, at λc, we followed, within the hole sector and near M point,
the dispersion of the lowest energy quasiparticle peak. Fig. 7.3b shows
that, at the M point, a semimetal Dirac cone appears just at λc. It is also
worth mentioning the behavior of the average number of electrons,
n(−,−) and n(+,+), associated to the lower and upper bands of the bare
KM model at the M and K points. They are obtained integrating the
corresponding spectral weight function up to the chemical potential.
Fig. 7.3c and Fig. 7.3d show that: i) n(−,−)(M) and n(+,+)(M) present
a sharp discontinuity at λc pointing out that they can be used as
direct indicators of the quantum phase transition; ii) n(−,−)(K) and
n(+,+)(K) exhibit a change of the sign of the second derivative at the
value of λ where the gap at M point becomes less than the one at K
point (see also Fig. 7.3a). Furthermore the value, near 0.5, reached by
all the average fermion numbers for λ > λc, points out the strong
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Figure 7.2: Spectral weight function at: K ((a) and (b)) and M ((c) and (d))
for different values of λ across the quantum phase transition. In
the panel (a) the Brillouin zone with the time reversal invariant
momenta (Γ, M, M1,M2) and K point indicated.

hybridization, induced by EPC, between the two bare bands of the
bare KM model.

In order to shed light on the nature of the observed phase transition,
we calculated the Z2 topological index, that, in two dimensions and in
the presence of time-reversal invariance, characterizes topological band
insulators. The Z2 invariant, ν, in the presence of inversion symmetry,
can be computed via the parity eigenvalues of the interacting Green’s
function, obtained within the CPT, at zero energy and the time-reversal
invariant momenta Γi. Here: i) Γi satisfies the relation: −Γi = Γi + b,
where b is a reciprocal-lattice translation vector; ii) the parity operator,
i.e. the operator that interchanges the two sublattices and squares to
the identity, is represented, in the sublattice basis, by the first Pauli-
matrix, P = σx. Indeed, simultaneously diagonalizing the two matrices
P and Gσ(Γi, 0), and considering, for each of the four momenta Γi,
the eigenvalue of P, δi, for the common eigenvector with a positive
eigenvalue of Gσ(Γi, 0), it can be shown [204, 205] that: (−1)ν =

∏4
i=1 δi. A topological non-trivial phase (ν = 1) is associated with the

occurrence of a TR-symmetry-protected pair of gapless edge modes on
each edge, which takes quantized conductance. The inset in Fig. 7.3b
points out that ν changes from one to zero just where the gap closes,
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Figure 7.3: (a): the gap at K and M as function of λ; (b): the quasiparticle
dispersion, within the hole sector, along the K-M-K′, at λc; n(K)
and n(M) ((c) and (d)) as function of EPC.

i.e. at λc. It confirms that at λc a quantum phase transition, from
topological to trivial insulator, occurs.

Now we investigate the effects of the quantum transition on the
lattice. To this aim, we emphasize that the exact integration of the
phonon degrees of freedom, through path integral technique, leads to
a retarded electron-electron interaction on the same sublattice (V0). On
the other hand, the effective interaction between two charge carriers
obeys the Dyson equation [220, 221]:

Ve f f
i,j (q, z) = V0

i,j(q, z) + V0
i,h(q, z)Π∗h,k(q, z )Ve f f

k,j (q, z),

which defines the proper polarization insertion Π∗i,j(q, z). Here i repre-
sents a pair of indexes: the first one indicates the sublattice and the
other one the spin. At the lowest order Π∗i,j(q, z) is the particle-hole
bubble. The next step is to replace, in this lowest order diagram, the
unperturbed electron Green’s functions with the interacting Green’s
functions calculated within the CPT. This procedeure allows to ob-
tain the effective interaction between two electrons and, then, the
renormalized phonon propagator Di,j.

We focus our attention on the spectral weight function B(i,i)(q →

0, ω) = − Im{D(i,i)}(q,z)
π (i = (A, ↑)), an odd function, that, in the ab-

sence of EPC, is peaked at ω = ω0. In Fig. 7.4 we show that, by
increasing λ, the spectral weight function displays a two-peak struc-
ture. Furthermore: i) the lowest energy peak softens with EPC; ii) the
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and (c)). In the inset the behavior of the lowest energy peak as
function of λ; (d): hole dispersion from momentum distribution
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maximum softening occurs across the quantum phase transition (see
inset of Fig. 7.4c). It is well known that the doubling of the phonon
peak occurs when the phonon frequency is close to electronic excita-
tion which is strongly coupled to phonon [223]. Hence, the retarded
nature of the interaction induced by EPC with its own (phonon) fre-
quency gives us a chance, which is absent in case of instantaneous
Coulomb interaction, to pin down the characteristic energy scale sta-
bilizing the topological phase, close to phonon energy within our set
of parameters. Finally, in Fig. 7.4d we plot the hole peak dispersion,
derived from the momentum distribution curves, along the K-Γ di-
rection of the Brillouin zone, at different values of λ. It is evident the
presence of many kinks, at λ 6= 0, caused by the coupling between the
charges and the lattice vibrations.

7.3 conclusions

We have highlighted the effects, induced by a local electron-phonon in-
teraction, on the QSH topological insulator described by the half-filled
KM model on an honeycomb lattice. By increasing EPC, a quantum
phase transition, from topological to trivial insulator, is observed
through a gap closing and reopening in the M point of the Brillouin
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zone. Here, when the gap is closed, a semimetal Dirac cone appears
and a strong hybridization between the two bare quasiparticle bands
of the KM model occurs. The abrupt change in the average number of
fermions at the M point, the two peak structure and the softening of
the phonon Green’s function, and the presence of several kinks in the
renormalized quasiparticle dispersion are other distinctive features of
this topological quantum phase transition.





C O N C L U S I O N S A N D
P E R S P E C T I V E S
In this thesis work, we carried out a theoretical study of different
instances of quantum systems in the presence of their environment,
focusing on physical regimes where consolidated weak-coupling ap-
proaches cannot be employed. Our analysis has focused on models of
macroscopic quantum systems and topological insulators. Here the
physical environment is very different from one model to another. As
stressed in chapter 1, in the case of a macroscopic quantum system
the environment is described according to a phenomenological model,
which takes into account the quantum noise arising from the coupling
of the system to its sorrounding. On the other hand, in solids the
presence of lattice vibrations at low temperatures is responsible for the
emergence of strongly correlated phases, e. g. CDW instabilities, dra-
matically changing the equlibrium phase diagram of these electronic
systems.

In both cases, however, in the strong coupling setting, a description
based on single-particle (qubit) model cannot be succesful, as the
entanglement between the interacting systems cannot be neglected,
leading to interesting physical effects.

Adopting a numerically exact approach in a truncated Hilbert space,
in chapters 2 and 3 we have investigated the effects of strong system-
bath coupling on the dynamics of a single qubit, taking into account
the non-Markovian contributions on the dynamics arising from the
interaction. In the absence of driving fields, our approach has proven
to succesfully describe the physics of system-bath correlations in a
fairly wide range of coupling strengths.

Our analysis has then moved to different finite-time driving pro-
tocols, which are of interest in the fields of AQC and quantum sim-
ulation. Here we described in detail the dynamics of the relevant
observables of the system, focusing on the environmental effects on
the fidelity at final time. For intermediate up to strong dissipation, we
found limited ranges of the driving parameters where the environ-
mental influence can act to improve the fidelity of the protocols at final
time. These results mainly arise from the nontrivial competition of
nonadiabatic effects and decoherence in the dynamics of the reduced
density operator. However, the magnitude of these effects is found to
crucially depend on the form of the coupling with the environmental
degrees of freedom and on the detailed protocol chosen, so that it
appears difficult to draw general conclusions, and the problem thus
deserves further analysis. On the other hand, for increasing coupling
strengths, we found that the fidelity of the protocol quickly decreases
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as strong decoherence effects set in, and our results agree with the
accepted scenario.

Adopting a similar approach, in chapter 4 we studied a model of
a periodically driven TLS in contact with a thermal bath, a simple
model of isothermal machine operating as work-to-work converter. We
simulated the nonequilibrium dynamics of the converter, and analyzed
its performance in terms of efficiency, output powers and fluctuations,
for different values of the driving frequency and dissipation strength.
Restricting only for the sake of simplicity to the linear response regime,
a wide range of driving frequencies was shown to exist such that the
converter performance can violate TUR. We stress that TUR was
developed in the stochastic thermodynamics setting as a tradeoff
relation between entropy production and relative fluctuations of the
power output in steady-state heat engines. As previous violations have
been reported in the literature, a clear explanation of this result is
still lacking. Coherence and non-Markovian effects in the dynamics,
correctly described in our approach, could be the main causes of
the described violation. It is also worth mentioning that the converter
operates in a TR symmetry broken configuration, for which it has been
proven that Carnot efficiency and finite power can be achieved. In the
near future, our work will be devoted to a systematic understanding
of these effects. As a feasible extension of our analysis, we plan to
consider cyclic heat engines contacted with two thermal reservoirs and
periodically driven by external fields, in order to go beyond the widely
employed Markovian approach and fully understand the influence
of strong system-bath correlations on the engine performance. The
study could be further extended to recently proposed counter-diabatic
protocols, in order to analyze their consequence on energy exchange
at the microscopic scale.

In chapters 6 and 7 we have proposed a study of systems of fermions
on lattices, known as prototypical examples of topological insulators.
We considered the effects of microscopic EPH correlations on these
systems, describing the optical phonons on the lattice by means of
the Holstein model. Actually these systems belong to the class of
correlated topological insulators and they have received much less
attention with respect to e-e interacting case. By employing CPT
methods, we studied the effects of strong EPH correlations in the
Haldane model of a Chern insulator. We showed that a critical coupling
strength exists for which a topological phase transition driven by EPH
occurs, in which the Chern number quickly drops from 1 to 0 as
a function of the EPH interaction strength. In the absence of mass
term, the analysis of the phonon propagator has shown a typical
signature of CDW order, i. e. the ground state of the system becomes
strongly-correlated and no quantum phase trasition occurs.

A quite similar analysis has been performed in the case of KM
model. In the absence of Rashba-type term, the electronic spin along
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the ẑ direction is conserved. Starting from the topological phase, which
is estabilished with the gap opening due to spin-orbit interaction, in-
creasing the interaction strength causes the gap to close in the M point
of the honeycomb lattice BZ. This in turn causes the Z2 invariant to
change sign, and thus the system turns into a trivial insulator. Our
findings show that the EPH correlations act as detrimental effects to
the stability of the topological phase, i. e. a gap closure and reopen-
ing occurs. This effects may be of interest, as they confirm that EPH
correlations can induce bulk modifications capable of altering the
topological phase, both in the absence and in the presence of TR. As
it was not previously unknown that EPH can lead to band inversion,
this findings can help in sheding light on the complex interplay be-
tween strong correlations and topological properties. Indeed, further
extensions of this work could be linked to the search of physical sys-
tems where EPH correlations can give rise to nontrivial topological
bandstructures.





Part III

A P P E N D I X





a S P I N - B O S O N M O D E L I N T H E
L I N D B L A D A P P R O X I M AT I O N

Below, we briefly report the solution of the Lindblad equation in
Eq. (1.29) for the SBM Hamiltonian, discussed in Chpt.2. Following
Eq. (1.29), we have to write down the eigenoperators of HS, which can
be written in terms of the Lindblad operators Ak as

Ak(ω) = ∑
Ei−Ej=ω

P(Ei)AkP(Ej) (a.1)

where P are the projector over the subspace spanned by the eigenvec-
tors of HS, and Ei indicate the corresponding eigenvalues. The general
form of the system-bath interaction is

HSB = ∑
k

Ak ⊗ Bk = σz ⊗∑
k

gk(a†
k + ak) (a.2)

We also indicate with E1, E2 and {|ψ1〉 , |ψ2〉} the eigenvalues and the
eigenvectors of the TLS Hamiltonian in Eq. (1.7) respectively. Then the
form of the eigenoperators Eq. a.1 is straightforward, and reads

Ak(ω) = ∑
Ei−Ej=ω

|ψi〉 〈ψi| σz
∣∣ψj
〉 〈

ψj
∣∣ (a.3)

Notice that the Lindblad operators are independent on k, so that we
can restrict the sum over the bath modes only to the decay rates. It
follows that we can rewrite the dissipator and the Lamb shift as

D(ρS(t)) = ∑
ω

γ(ω)

(
A(ω)ρSA†(ω)− 1

2

{
A†(ω)A(ω), ρS

})
(a.4)

HLS = ∑
ω

S(ω)(ω)A†(ω)A(ω) (a.5)

with γ(ω)(S(ω)) = ∑k,k′ γk,k′(ω)(Sk,k′(ω)).
The decay rate can be found by easy manipulations. First of all, we

recast it as follows

γk,k′(ω) =
∫ +∞

−∞
exp(iωτ) 〈Bk(τ)Bk′(0)〉 =

=
∫ +∞

−∞
dτ exp(iωτ)g?k gk′

〈
(a†

k + ak)(τ)(a†
k′ + ak′)

〉
(a.6)

where the mean expectation values are to be taken over the equilibrium
state of the bath, so that it holds

γk,k′ = δk,k′ |gk|2
∫ +∞

−∞
dτ exp(iωτ) (exp(iωkτ)nk + exp(−iωkτ)(1 + nk))

(a.7)
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where nk = 1/(exp(βωk)− 1) are bosonic equilibrium populations
of each mode. In the continuum limit, we can write the decay rate
needed in Eq. (a.4) in terms of the bath spectral distribution J(ω) =

∑k g2
kδ(ω−ωk) as follows

γ(ω) = ∑
k

γk,k(ω) =
∫ +∞

−∞
dτ exp(iωτ)·∫ ∞

0
dω′ J(ω′)(exp

(
iω′τ

)
n(ω′) + exp

(
−iω′τ

)
(1 + n(ω′))) =

=
∫ +∞

−∞
dτ
∫ ∞

0
dω′ J(ω′)(cos ω′τ coth

(
βω′

2

)
− i sin ω′τ) (a.8)

As a consequence, the closed form of S(ω) follows from reads

S(ω) = 2π J(ω)(n(ω)Θ(−ω) + (1 + n(ω))Θ(ω)) (a.9)

It is thus easy to find the differential equation for the reduced density
matrix ρS(t). Indicating with Eg = E2 − E1 the gap of the TLS, only
three eigenoperators are different from zero, namely

A(Eg) = |ψ2〉 〈ψ2| σz |ψ1〉 〈ψ1|
A(−Eg) = |ψ1〉 〈ψ1| σz |ψ2〉 〈ψ2|

A(0) = 〈ψ1| σz |ψ1〉 |ψ1〉 〈ψ1|+ 〈ψ2| σz |ψ2〉 |ψ2〉 〈ψ2|
(a.10)

In the following, we restrict to the unbiased case, as it is the case of
interest in Sec. 2.2 thus the qubit Hamiltonian reads HS = −Γσx. We
choose the eigenstates |x̂;±〉 of HS as a set of basis states, and fix the
values of the reduced density matrix [ρS(0)]ij, i, j = ± at initial time
t = 0. In this basis, the only two eigenoperators different from zero are
A(Eg), A(−Eg), and the gap is Eg = 2Γ, so that the Lindblad solution
for the considered expectation values reads [20]

ρ−+(t) = ρ−+(0) e− i [S(2Γ)−S(−2Γ)+2Γ] t e−t/T2 ;

ρ−−(t) = ρG(−) + [ρ−−(0)− ρG(−)] e−t/T1 ,
(a.11)

where ρG(±) = e±βΓ /Z are the Gibbs distributions associated with
the eigenstates |x̂;±〉, respectively, Z = eβΓ + e−βΓ is the partition
function, S(ω) is defined in Eq. (1.32) and the times T1,2 are equal to

T1 =
1

γ(2Γ)
(
1 + e−2βΓ

) , T2 = 2T1. (a.12)

Starting from Eq. (a.11), the time evolution for the expectation values
of 〈σx(t)〉 and 〈σz(t)〉 can be derived:

〈σz(t)〉L = ρ−+(0) e− i [S(2Γ)−S(−2Γ)+2Γ] t e−t/T2 + c. c.;

〈σx(t)〉L = tanh(βΓ)− 2[ρ−−(0)− ρG(−)] e−t/T1 .
(a.13)

As evident from Eq. (a.13), the asymptotic value of 〈σx(t)〉L does not
depend on the coupling strength η, but the latter affects only the
equilibration time T1.



b D E TA I L S O N T H E Q U B I T
DY N A M I C S

The qubit dynamics ruled by Eq. (3.5) can be easily solved in the
counter-rotating reference frame around the ŷ axis, if the static field
h0 is taken to be equal to zero. Given the rotation operator of angle
φ around the n̂ direction U(n̂, φ) = exp(− i n̂ · σφ/2), we can write
the Schrödinger equation for the rotated ket |ψ(t)〉r = U |ψ(t)〉; taking
h̄ = 1, the Hamiltonian Hr in the rotating frame reads

Hr = i
dU
dt

U† + UHU† (b.1)

Notice that the Hamiltonian can be written as a sum of two terms,
the first is the adiabatic gauge potential in the rotating frame, while
the second is the diagonalized Hamiltonian operator. The adiabatic
gauge term is responsible for the transitions between diabatic states
in the rotating frame: this implies that, as shown in [143, 224], at least
in principle it is possible to engineer counter-adiabatic Hamiltonians
for which these transitions are always suppressed in the rotating
frame. In our conventional scheme, we take n̂ = ŷ and impose the
counter-rotating condition φ(t) = −θ(t), the resulting Hamiltonian
Hr is time-independent and it reads:

Hr = −
h
2

σz −
θ̇

2
σy (b.2)

The adiabatic eigenvalues of Hamiltonian in Eq. (b.2) are E± =

± 1
2

√
θ̇2 + h2; after computing the adiabatic eigenvectors of Eq. (b.2),

given the initial state of the qubit |ψ(t0)〉, the state of the qubit at final
time t can be easily found:

|ψ(t)〉 = U†(ŷ, θ(t))Ur(t, t0)U(ŷ, θ(t0)) |ψ(t0)〉 (b.3)

where Ur(t, t0) is the evolution operator in the rotating frame. In the
protocol described in 3.3 the qubit is initially prepared in the state
|ψ(t0)〉 = |ẑ;+〉: by choosing t0 = 0, the magnetic field evolves from
θ(0) = 0 to θ(tf) = π, thus the final state reads

|ψ(tf)〉 = − i σy exp(− i Hrtf) |+〉 (b.4)

From Eq. (b.4), the magnetization along ẑ at the end of the protocol
can be straightforwardly derived, and it reads:

〈σz(tf)〉 = −
h2 + θ̇2 cos

(
π
√

θ̇2 + h2/θ̇
)

θ̇2 + h2
(b.5)

The excess energy at the end of the annealing can thus be directly
evaluated and gives Eq. (3.8).
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andÂăbeyond.” In: Nature Reviews Physics 1 (2019). doi: 10.
1038/s42254-019-0071-1. url: https://doi.org/10.1038/
s42254-019-0071-1.

[208] Grigory E. Volovik. The Universe in a Helium Droplet. Oxford,
2009. isbn: 9780199564842.

[209] L. M. Cangemi, A. S. Mishchenko, N. Nagaosa, V. Cataudella,
and G. De Filippis. “Topological Quantum Transition Driven
by Charge-Phonon Coupling in the Haldane Chern Insula-
tor.” In: Phys. Rev. Lett. 123 (4 2019), p. 046401. doi: 10.1103/
PhysRevLett.123.046401. url: https://link.aps.org/doi/
10.1103/PhysRevLett.123.046401.

[210] Christopher N. Varney, Kai Sun, Marcos Rigol, and Victor
Galitski. “Interaction effects and quantum phase transitions in
topological insulators.” In: Phys. Rev. B 82 (11 2010), p. 115125.
doi: 10.1103/PhysRevB.82.115125. url: https://link.aps.
org/doi/10.1103/PhysRevB.82.115125.

https://doi.org/10.1103/PhysRevLett.50.1395
https://link.aps.org/doi/10.1103/PhysRevLett.50.1395
https://link.aps.org/doi/10.1103/PhysRevLett.50.1395
https://doi.org/10.1103/PhysRevB.83.085426
https://link.aps.org/doi/10.1103/PhysRevB.83.085426
https://link.aps.org/doi/10.1103/PhysRevB.83.085426
https://doi.org/10.1103/PhysRevB.84.125132
https://link.aps.org/doi/10.1103/PhysRevB.84.125132
https://link.aps.org/doi/10.1103/PhysRevB.84.125132
https://doi.org/10.1103/PhysRevX.2.031008
https://link.aps.org/doi/10.1103/PhysRevX.2.031008
https://link.aps.org/doi/10.1103/PhysRevX.2.031008
https://doi.org/10.1103/PhysRevB.85.165126
https://link.aps.org/doi/10.1103/PhysRevB.85.165126
https://link.aps.org/doi/10.1103/PhysRevB.85.165126
https://doi.org/10.1038/s42254-019-0071-1
https://doi.org/10.1038/s42254-019-0071-1
https://doi.org/10.1038/s42254-019-0071-1
https://doi.org/10.1038/s42254-019-0071-1
https://doi.org/10.1103/PhysRevLett.123.046401
https://doi.org/10.1103/PhysRevLett.123.046401
https://link.aps.org/doi/10.1103/PhysRevLett.123.046401
https://link.aps.org/doi/10.1103/PhysRevLett.123.046401
https://doi.org/10.1103/PhysRevB.82.115125
https://link.aps.org/doi/10.1103/PhysRevB.82.115125
https://link.aps.org/doi/10.1103/PhysRevB.82.115125


142 bibliography

[211] M Hohenadler and F F Assaad. “Correlation effects in two-
dimensional topological insulators.” In: Journal of Physics: Con-
densed Matter 25.14 (2013), p. 143201. doi: 10 . 1088 / 0953 -

8984/25/14/143201. url: https://doi.org/10.1088%2F0953-
8984%2F25%2F14%2F143201.

[212] Maria Daghofer and Martin Hohenadler. “Phases of correlated
spinless fermions on the honeycomb lattice.” In: Phys. Rev. B
89 (3 2014), p. 035103. doi: 10.1103/PhysRevB.89.035103. url:
https://link.aps.org/doi/10.1103/PhysRevB.89.035103.

[213] Sylvain Capponi and Andreas M. Läuchli. “Phase diagram
of interacting spinless fermions on the honeycomb lattice: A
comprehensive exact diagonalization study.” In: Phys. Rev. B
92 (8 2015), p. 085146. doi: 10.1103/PhysRevB.92.085146. url:
https://link.aps.org/doi/10.1103/PhysRevB.92.085146.

[214] Bohm-Jung Yang, Eun-Gook Moon, Hiroki Isobe, and Naoto
Nagaosa. “Quantum criticality of topological phase transitions
in three-dimensional interacting electronic systems.” In: Nature
Physics 10 (2014), pp. 774–778. doi: 10.1038/nphys3060. url:
https://doi.org/10.1038/nphys3060.

[215] Igor S. Tupitsyn and Nikolay V. Prokof’ev. “Phase diagram
topology of the Haldane-Hubbard-Coulomb model.” In: Phys.
Rev. B 99 (12 2019), p. 121113. doi: 10.1103/PhysRevB.99.
121113. url: https://link.aps.org/doi/10.1103/PhysRevB.
99.121113.

[216] Igor S. Tupitsyn, Andrey S. Mishchenko, Naoto Nagaosa, and
Nikolay Prokof’ev. “Coulomb and electron-phonon interactions
in metals.” In: Phys. Rev. B 94 (15 2016), p. 155145. doi: 10.1103/
PhysRevB.94.155145. url: https://link.aps.org/doi/10.
1103/PhysRevB.94.155145.

[217] Mirko M. Möller, George A. Sawatzky, Marcel Franz, and
Mona Berciu. “Type-II Dirac semimetal stabilized by electron-
phonon coupling.” In: Nature Communications 8 (2017). doi:
10.1038/s41467-017-02442-y. url: https://doi.org/10.
1038/s41467-017-02442-y.

[218] Chuang Chen, Xiao Yan Xu, Zi Yang Meng, and Martin Ho-
henadler. “Charge-Density-Wave Transitions of Dirac Fermions
Coupled to Phonons.” In: Phys. Rev. Lett. 122 (7 2019), p. 077601.
doi: 10.1103/PhysRevLett.122.077601. url: https://link.
aps.org/doi/10.1103/PhysRevLett.122.077601.

[219] Andrea Damascelli. “Probing the Electronic Structure of Com-
plex Systems by ARPES.” In: Physica Scripta T109 (2004), p. 61.
doi: 10.1238/physica.topical.109a00061. url: https://doi.
org/10.1238%2Fphysica.topical.109a00061.

https://doi.org/10.1088/0953-8984/25/14/143201
https://doi.org/10.1088/0953-8984/25/14/143201
https://doi.org/10.1088%2F0953-8984%2F25%2F14%2F143201
https://doi.org/10.1088%2F0953-8984%2F25%2F14%2F143201
https://doi.org/10.1103/PhysRevB.89.035103
https://link.aps.org/doi/10.1103/PhysRevB.89.035103
https://doi.org/10.1103/PhysRevB.92.085146
https://link.aps.org/doi/10.1103/PhysRevB.92.085146
https://doi.org/10.1038/nphys3060
https://doi.org/10.1038/nphys3060
https://doi.org/10.1103/PhysRevB.99.121113
https://doi.org/10.1103/PhysRevB.99.121113
https://link.aps.org/doi/10.1103/PhysRevB.99.121113
https://link.aps.org/doi/10.1103/PhysRevB.99.121113
https://doi.org/10.1103/PhysRevB.94.155145
https://doi.org/10.1103/PhysRevB.94.155145
https://link.aps.org/doi/10.1103/PhysRevB.94.155145
https://link.aps.org/doi/10.1103/PhysRevB.94.155145
https://doi.org/10.1038/s41467-017-02442-y
https://doi.org/10.1038/s41467-017-02442-y
https://doi.org/10.1038/s41467-017-02442-y
https://doi.org/10.1103/PhysRevLett.122.077601
https://link.aps.org/doi/10.1103/PhysRevLett.122.077601
https://link.aps.org/doi/10.1103/PhysRevLett.122.077601
https://doi.org/10.1238/physica.topical.109a00061
https://doi.org/10.1238%2Fphysica.topical.109a00061
https://doi.org/10.1238%2Fphysica.topical.109a00061


bibliography 143

[220] Gerald D. Mahan. Many-Particle Physics. Springer US, 2000.
isbn: 978-0-306-46338-9.

[221] John Dirk Walecka Alexander L. Fetter. Quantum theory of many-
particle systems. Mineola, N.Y. : Dover Publications, 2003. isbn:
0486428273.

[222] L. M. Cangemi, A. S. Mishchenko, N. Nagaosa, V. Cataudella,
and G. De Filippis. Topological phase transition in quantum spin
Hall insulator in the presence of charge lattice coupling. 2019. arXiv:
1905.01383 [cond-mat.str-el].

[223] G. De Filippis, V. Cataudella, R. Citro, C. A. Perroni, A. S.
Mishchenko, and N. Nagaosa. “Interplay between charge-lattice
interaction and strong electron correlations in cuprates: Phonon
anomaly and spectral kinks.” In: EPL (Europhysics Letters) 91.4
(2010), p. 47007. doi: 10.1209/0295- 5075/91/47007. url:
https://doi.org/10.1209%2F0295-5075%2F91%2F47007.

[224] M V Berry. “Transitionless quantum driving.” In: Journal of
Physics A: Mathematical and Theoretical 42.36 (2009), p. 365303.
url: http://stacks.iop.org/1751-8121/42/i=36/a=365303.

https://arxiv.org/abs/1905.01383
https://doi.org/10.1209/0295-5075/91/47007
https://doi.org/10.1209%2F0295-5075%2F91%2F47007
http://stacks.iop.org/1751-8121/42/i=36/a=365303

	Contents
	List of Figures

	Publications
	Introduction
	 Dissipative systems
	1 Models of dissipative systems
	1.1 From Caldeira-Leggett model to Spin-Boson model
	1.2 Phase diagram of SBM
	1.3 Dynamics
	1.3.1 Quantum Master Equations
	1.3.2 Influence functional method

	1.4 Dissipative driven systems
	1.4.1 Dissipative LMSZ model
	1.4.2 Periodically driven dissipative systems


	2 Dissipative dynamics beyond Born-Markov approximation.
	2.1 Short-iterative Lanczos method
	2.2 Spin-boson model
	2.3 Quantum annealing
	2.4 Conclusions

	3 Towards the strong coupling regime.
	3.1 Model Hamiltonian
	3.2 SBM in the strong coupling regime
	3.2.1 The unbiased case
	3.2.2 The biased case from weak to strong coupling

	3.3 Time dependent protocol
	3.3.1 Coupling along z direction
	3.3.2 Coupling along x

	3.4 Conclusions

	4 A non-linearly driven work to work converter
	4.1 Setup of the converter
	4.2 Energy balance of the system
	4.3 Linear Response regime
	4.4 Converter performance and bound violations
	4.4.1 Powers, efficiency, fluctuations
	4.4.2 TUR violations

	4.5 Conclusions


	 Topological systems in the presence of e-ph interactions.
	5 Simple models of topological insulators
	5.1 Chern insulators
	5.1.1 Haldane model of Chern insulator

	5.2 Topological insulators
	5.2.1 The Kane-Mele model

	5.3 Band invariants in the presence of interactions

	6 E-PH and topological transition in the Haldane Chern insulator
	6.1 The interacting Haldane model
	6.2 Lang-Firsov approach
	6.3 Cluster Perturbation Theory
	6.4 Results
	6.5 Conclusions

	7 E-ph and topological transition in the QSH system.
	7.1 The interacting KM model
	7.2 Results
	7.3 Conclusions


	 Appendix
	a Spin-boson model in the Lindblad approximation
	b Details on the qubit dynamics
	 Bibliography


