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Chapter 1 Brief thesis presentation 

 

 

CHAPTER 1 

 

 

Brief thesis presentation 

 

 

1.1 Overview 

The term microbiome refers to the whole community of living microorganisms in a sample 

along with their potential activities that might influence the metabolic capabilities and 

functioning of such micro-environment. In particular, the human gut microbiome includes 

symbiotic bacteria, viruses, fungi and archaea located in the last part of our gastrointestinal 

tract. Each individual has a unique gut microbial composition as a peculiar fingerprint and it 

has been agreed that the development of several types of diseases in humans might be linked 

to gut microbiome perturbation in its microbial equilibrium, such condition known as 

dysbiosis. 

To this regard, in the last decades a worrisome increase in food allergy prevalence linked to a 

defect in immune tolerance mechanisms has been observed. The onset of such multifactorial 

disease is in turn associated to a gut microbiota alteration and mediated by both genetic and 

environmental risk factors, especially in pediatric age. Moreover, it's known that the immune 

system may control microbial composition and diversity. It should be considered that most of 

the knowledge on the associations between gut microbiota and immunity system derives from 

animal model studies. For this reason, the understanding of the relationship between food 

allergies and intestinal dysbiosis could be translated into advances regarding i) knowledge in 

prevention of onset of such diseases and ii) clinical practice with diet-directed therapeutic 

interventions using pro- or prebiotics, aimed at modulating the compromised immune system 

indirectly through gut microbiota activities. 

Indeed, the role of diet in influencing the gut microbiota composition and functions is widely 

recognized and the existence of the axis diet-microbiota-health is nowadays well established. 

The food-human interplay is of interest because the most recent trends are oriented towards a 

profitable use of diet to provide benefits to human health. In this respect, the Mediterranean 

diet received great attention as an appropriate strategy for the prevention and improvement of 

human health status. In fact, it has been demonstrated such dietary pattern being beneficial for 
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the treatment of obesity, type II diabetes, inflammatory diseases, colorectal cancer and 

cardiovascular diseases. The significant and tangible evidence of the link between the 

Mediterranean diet and gut microbiota opens encouraging paths towards the establishments of 

diet-based health care and disease prevention. 

Despite such evidences, many challenges still exist since most of the studies assessed the 

impact of diet over human microbiome through correlation as well as association researches. 

Further efforts are necessary to understand the complicate host-microbiome interaction and to 

contribute to shed light on novel and different dietary strategies in order to beneficially impact 

human microbiome as well as human health. 
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1.2 Aims and outline 

The overall aim of this thesis is to contribute to the evidences regarding the effects of dietary 

interventions in modulating the human microbiome which might in turn significantly impact 

human health, as to support the improvement of knowledge in such context. This general aim 

has been addressed through the accomplishment of three randomized clinical trials (RCTs). In 

particular, the evaluation of the dietary treatments efficacy over gut microbiota composition 

and butyrate production of i) a fermented milk product by probiotic Lactobacillus paracasei 

CBA L74 (FM-CBAL74) in healthy schoolchildren, ii) an extensively hydrolyzed casein 

formula enriched with the probiotic Lactobacillus rhamnosus GG in children with 

diagnosticated non-IgE cow’s milk allergy and iii) the overall effects exerted by a nutritional 

intervention based on the health-promoting Mediterranean dietary pattern over gut and 

salivary microbiota composition in overweight/obese subjects. These objectives were 

achieved making use of a research plan structured according to the following thesis outline. 

 

The first RCT regarded the assessment of a dietary treatment using a cow's milk fermented 

product with the probiotic Lactobacillus paracasei CBA L74 (FM-CBAL74) in young 

children attending school (Chapter 3). Dietary intervention with FM-CBAL74 was 

conducted in order to figure out specific signatures in gut microbiota composition induced by 

such dietary supplementation, the potential stimulation of microbiota-related butyrate 

producers as well as the impact over levels of butyrate concentration. Moreover, the 

correlation of microbial changes with levels of innate and acquired immunity biomarkers was 

also tested to evaluate potential health outcomes, driven by dietary treatment and mediated by 

gut microbiota composition. 

 

The effect of a dietary treatment with an extensively hydrolyzed casein formula (EHCF) alone 

or in combination with the probiotic Lactobacillus rhamnosus GG (LGG) was tested in 

children with a non-IgE-mediated cow’s milk allergy (CMA) (Chapter 4). In this RCT, we 

evaluated gut microbiota changes and fecal butyrate levels in children affected by non-IgE-

mediated CMA and treated with such formula. At this purpose, the level of gut dysbiosis was 

also compared to IgE-mediated CMA patients from a previously published study. 

 

Chapter 5 reports the effects of an 8-week randomized controlled trial through an isocaloric 

Mediterranean diet (MedDiet) intervention among overweight/obese subjects with metabolic 

disease risk due to unhealthy lifestyle. Dietary adherence, metabolic parameters, gut 
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microbiome and systemic metabolome changes were monitored over the study period along 

with microbial-derived metabolites production. This RCT aimed at monitoring the beneficial 

effects of dietary changes in line with an increased level of adherence to the Mediterranean 

diet in subjects with cardiometabolic risk for low level of physical activity. Similarly, 

Chapter 6 describes results regarding the effects of such Mediterranean-based dietary 

intervention over salivary microbiota composition in the same study population. Altogether, 

the adoption of nutritionally recommended dietary pattern such as the Mediterranean diet was 

considered for clinical outcomes amelioration beyond individual probiotics employments. 

 

The last chapter (Chapter 7) is a general discussion of the overall findings as well as future 

perspectives based on knowledge generated. 

 

All the studies described in the above chapters are multidisciplinary and carried out in 

collaboration with other researchers with multiple different expertises. My role in all the 

studies was the evaluation of the microbiota structure, bioinformatics analyses and statistical 

analysis/modelling of the microbiological as well as other types of metadata. 
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Chapter 2 Literature Review 

 

 

CHAPTER 2 

 

 

Literature Review 

 

 

2.1 Introduction 

The human body harbors 10-100 trillion of symbiotic microbial cells and the term 

‘microbiota’ refers to a collection of all taxa constituting microbial communities, most of 

them located in the human gut (Ursell et al., 2012). Similarly, the term microbiome refers to 

the whole community of living microorganisms living in a specific matrix along with its 

potential genome activities that might influence the metabolic capabilities and functioning of 

such micro-environment. It was estimated that the genes of our microbiome outnumber 100 

times the number of the genes represented in our genomes (Zhao, 2010; De Filippis et al., 

2018). In particular, each individual has a unique gut microbial composition as a peculiar 

fingerprint and it has been agreed that the development of several types of diseases in humans 

might be linked to gut microbiome perturbation, such condition known as dysbiosis. In fact, 

the gut microbiota is an organ which is in symbiosis with the human host, a mutual 

association established due to a long story of coevolution and the homeostasis of such strictly 

anaerobic ecosystem is necessary for the maintenance of human health (Ley et al., 2006). 

Moreover, the human oral cavity is a complex and open ecosystem, harboring a whole 

community of microorganisms and it is considered the second most complex symbiont 

microbiota in the human body after the gut (Dewhirst et al., 2010). Several publications 

appeared in recent years documenting that alterations in salivary microbial communities are 

associated to both oral and non-oral diseases. Accordingly, the oral microbiota dysfunction 

has been linked to atherosclerosis and cardiovascular disorder (Acharya et al., 2017). Hence, 

oral symbionts may indirectly elicit the immune dysregulation leading to the progressive 

inflammation associated with cardiovascular diseases (Slocum et al., 2016). Notably, the oral 

homeostasis is an important factor in order to avoid the growth of opportunistic pathogens, 

potentially causing both oral inflammation and systemic infection (Kodukula et al., 2017). 
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Overall, the human microbiome is recognized as our second genome and the understanding of 

its composition and modulation could be used as therapeutic target for personalized 

microbiome-directed interventions in order to prevent the onset of human diseases. 

In particular, the gut microbiota is made of hundreds of species and while its composition 

could vary in the early stages of life, it has been observed an overall microbial stability during 

adulthood (Zoetendal et al., 2002). Due to endogenous and exogenous factors, the 

composition of gut microbiota may slightly change. Among others, antibiotics, diet and/or 

food supplements as well as pathological conditions are able to provisionally modulate the 

microbial structure. Therefore the resilience, or rather the gut ability to resist to perturbations 

depends on the responsive capabilities of the core taxa. Such condition plays a role in 

maintaining gut homeostasis, its normal composition and functioning, affecting in turn the 

microbiota-host interaction (Uhr et al., 2019). 

In adults, it has been observed that the most dominant bacteria belong to Bacteroidetes and 

Firmicutes phyla, with proportions that vary across the population (Marchesi et al., 2016). 

Despite the stability of such phylogenetic groups, diversity in both specific species and strains 

characterize the inter-individual variability. This led to the observation that different 

individuals host different structural and functional gut profiles, as representing a personal 

signature (Tierney et al., 2019). Nevertheless, the Gram-positive Firmicutes phylum is the 

most abundant, which the most represented members belong to Eubacterium, Clostridium and 

Ruminococcus genera, followed by Bacteroidetes (Bacteroides and Prevotella among others) 

which are Gram-negative bacteria (Rajilić‐Stojanović et al., 2007; Marchesi et al., 2016). The 

remaining percentage of dominance is represented by the Actinobacteria phylum (including 

the Bifidobacterium and Collinsella spp.) and Verrucomicrobia (Akkermansia spp. among 

others) (Rinninella et al., 2019). A stratification in enterotypes according to three bacterial 

taxa was initially proposed, independently of age, gender and geography, namely Bacteroides, 

Prevotella and Ruminoccous in the attempt to simplify gut microbiome diversity and to 

partially reduce complexity (Arumugam et al., 2011). This is illustrated in Figure 2.1. The 

proposed stratification resulted in functional and ecological differences between enterotypes 

varying in microbial community and richness diversity (Costea et al., 2018). 



 16 

 
Figure 2.1 Phylogenetic differences between enterotypes. Principal Component Analysis and 

clustering of the genus compositions from three different metagenomes datasets reveal three robust 

clusters, called enterotypes. IBD, inflammatory bowel disease (a, b, c). Abundances of the main 

contributors (d) and Co-occurrence networks of each enterotype (e). Image from Arumugam et al., 

2011. 

 

It was demonstrated that under the influence of diet, drugs and other factors in a given 

individual it was possible to observe shifts and movements of gut microbiota composition 

through the space of these three configurations, even though each enterotype had a specific 

ecological stability and a lower propensity to switch to another one (Knights et al., 2014). 

However, this paradigm was overtaken since among individuals considerable variations in 

microbiota composition were described (Falony et al., 2016; Gilbert et al., 2018). Despite 
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being core taxa contributing to enterotype clustering, it has been shown a large variance in 

terms of relative abundances (Falony et al., 2016). Morevover, species- and strain-level 

variations were neglected and several studies highlithted the important contribution of such 

taxa to functional differences between individuals in clinical contexts (Schloissnig et al., 

2013; Zhu et al., 2015). In addition, recent meta-analyses made progress in understanding the 

strain-level diversity within the human gut microbiome and gene-level variation across strains 

was found to be related to gut microbiome divesity in human health and disease (Almeida et 

al., 2019; Pasolli et al., 2019; Zeevi et al., 2019). Despite less prevalent species in well-

studied populations are newly identified, the bacterial diversity remains uncultured and the 

complete bacterial and functional repertoire of the human gut microbiome remains still to be 

undefined (Almeida et al., 2019). However, the identification of the complex gut ecosystem 

may help us understanding human health and disease status. 

Individual microbiome contains rare microbial strains and genes in a metagenomic sample are 

individual-specific, thus may explaining variations in both microbiome composition among 

people and microbiome-associated human diseases (Tierney et al., 2019; Sandoval-Motta et 

al., 2017). Moreover, it has been observed that variations in the gut microbiome composition 

induce metabolic shifts resulting in phenotype alterations (Visconti et al., 2019) and certain 

host genetic variants define the composition of the gut microbiome predisposing towards 

microbiome dysbiosis (Gilbert et al., 2016; Hall et al., 2017). Indeed, the gut microbiome 

composition is affected by both genetic and physiological predispositions or environmental 

factors and together are involved in maintaining gut homeostasis. In turn, a healthy gut 

microbiota composition is substantially pivotal to maintain both intestinal and distal proper 

host metabolic functioning. Such interactions between intestinal microbiota and host 

metabolism are depicted in the following Figure 2.2. 
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Figure 2.2 Interactions between gut microbiota and host metabolism. A number of external 

factors such as host background, diet, and medical treatments could influence gut microbiota 

composition. An imbalance of intestinal microbiota structure can lead to severe metabolic 

disorders by altering host insulin sensitivity or energy homeostasis, among others. Image from 

Yang and Kweon, 2016. 

 

Among host factors, genetics, geographical location and circadian rhythm seemed to be 

modulating the gut microbiome composition (Mueller et al., 2006; Yatsunenko et al., 2012; 

Thaiss et al., 2014). Beyond genetic components, Wu and colleagues showed that long-term 

dietary habits may have the strongest impact on gut microbiome distribution and composition. 

Thus, different diets are associated to bacterial species diversification in the gut. Accordingly, 

they reported the Bacteroidetes enterotype to be dominant in subjects adopting a Western diet 

richer in sugars, proteins and fats of animal origin while conversely, a diet rich in fruits and 

vegetables promoted a Prevotella enterotype (Wu et al., 2011). 

In conclusion, a comprehensive understanding of the human microbiome seems challenging. 

The key message is that due to the resilience property, each microbiome is heterogeneous and 

adapted to each host while several and still poorly understood regulatory mechanisms are 

necessary to maintain gut homeostasis and human wellness (Lloyd-Price et al., 2017; Zhao et 

al., 2019). To this regard, understanding the association of gut ecological patterns with the 

pathophysiological phenotypes could result in the identification of health/disease signatures 

and host features. These could represent in turn targets for microbiota-directed therapeutic 

intervention aimed at preserving and restoring the microbiota-host symbiosis. Many factors 

could modulate gut ecological composition and such changes could pave the way of possibly 

modulate the gut microbiota for therapeutic purposes thorough dietary interventions.  
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2.2 The concept of dysbiosis 

Microbial consortia harbored in our bowels might be used as biomarker for both health 

condition and diseases risk factors (Blottière et al., 2013). Each microbiota is a high-specific 

individual fingerprinting and poised interconnections between gut microbiota, host cells and 

organs are required for a healthy host ecosystem. In particular, the development and the 

maintenance of the microbiota depend on host and conversely, the host depends on gut 

microbial composition for its physiological functions (Thursby and Juge, 2017). Being 

structured as an ecosystem, a healthy gut microbiota configuration in terms of richness and 

biodiversity promotes stability, resistance and resilience to the host. (Huttenhower et al., 

2012; Marteau and Doré, 2017). However, such established symbiosis between host and its 

microbiota may be lost through environmental insults and endogenous factors affecting gut 

ecology. Indeed, the term dysbiosis is an anomaly in the commensal microbial structure likely 

associated with a disease condition. Such intestinal disorder is related to the lack of usual 

aspects of a balanced microbiota, thought as loss of diversification in term of species and 

important functions. Hence, a microbiota enriched in pathobionts or depleted in protective 

microorganisms as well as biodiversity and gene richness restrictions provoke a homeostasis 

alteration, making the host susceptible to and increasing the risk of disease development (Tap 

et al., 2009; Le Chatelier et al., 2013; Blottière et al., 2013). This breakdown of the 

microbiota-host symbiosis is now commonly recognized as a sign of dysbiosis. (Marteau and 

Doré, 2017). To this regard, a perturbation in microbial functions may also be assumed in 

such definition. In particular, biomarkers of metabolic signatures in disease condition could 

be identified. Alteration of usual capabilities like digestion, modulation of absorption, 

intestinal permeability variation, short chain fatty acids (SCFAs) depletion or bile acids (BAs) 

production are some examples, due to their consequences on inflammation status. (Weiss and 

Hennet, 2017). A fine-tuned dysbiosis description might be used in practical and medical 

perspectives, using the detection of microbial features, immune markers and metabolic 

signatures as diagnostic tools for disorders strongly associated to dysbiosis. 

In conclusion, new diagnostic strategies may be proposed aimed at modulating and correcting 

the host-symbionts alterations, improving in turn host disease condition. Thus, beyond widely 

used antibiotic treatments, new therapeutic practice could conceive the use of microbiota-

targeted new generation prebiotics, probiotics and whole dietary pattern. 
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2.2.1 Obesity 

Obesity is a clinical condition recognized as a social health disease and it is acknowledged as 

an independent risk factor for metabolic-driven chronic diseases (Cox et al., 2014; De 

Lorenzo et al., 2019). Obesity and the increasing prevalence of obesity-associated conditions, 

including cardiovascular disease and type 2 diabetes, are widespread health concerns 

worldwide. They have an economic impact on the health system and social implications. 

However, obesity is a preventable and reversible condition and innovative strategies like 

optimal dietary interventions and promising metabolic therapies are urgently needed, in order 

to easily control both patients’ weight and obesity-related disease throughout life, beyond 

primary lifestyle prevention (Lean et al., 2019). 

The etiology of obesity is complicate, and it includes both genetical and environmental 

factors. In high-income countries, sedentary lifestyle, high-fat food consumption and low-

grade systemic inflammation are the key components of obesity (Cox et al., 2014; Choi et al., 

2013). Moreover, gut microbial alterations have been associated to obesity pathophysiology, 

behavioral and eating disorders, energy disregulation and fat storage (Ley at al., 2005; 

Rosenbaum et al., 2015; Patterson et al., 2016; Torres-Fuentes et al., 2017; Liu et al., 2017). 

Indeed, the involvement of intestinal microbiota in energy balance has been assessed in 

studies with animal models. Despite a higher calories’ consumption, germ-free mice were 

shown to be protected against obesity. They were significantly leaner compared to control 

mice, conventionalized with normal microbiota (Bäckhed et al., 2004). Additionally, higher 

levels of Firmicutes taxa were found in obese compared to lean mice. Conversely, 

Bacteroidetes phylum was found to be more abundant in normal weight mice and notably, 

some members are responsible of plant starch and fiber breakdown for energy harvest 

(Turnbaugh et al., 2006; Ley et al., 2005). These findings were the first tangible proof of 

obesity-associated microbiota signatures. Consistently, changes in the human microbiome 

were also linked to obesity, further confirming the straight connection between gut microbiota 

composition and such disease condition (Turnbaugh and Gordon, 2009; Ridaura et al., 2013). 

Further investigations are needed to exploit the possible existence of obesity-associated 

microbial biomarkers. Beyond phylum-changes, microbial taxa at lower taxonomic levels 

have also been associated with obesity, although with a strain-dependent effect (Gérard 2016). 

For instance, Lactobacillus casei and L. plantarum were found to be associated to weight loss 

in animals and humans along with some strains of bifidobacterial species, exerting anti- 

obesogenic effects. Interestingly, the relative abundance of Faecalibacterium prausnitzii was 

found to be decreased in obese patients and A. muciniphila was found to be inversely related 
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to fat accumulation and adipocyte diameter in obese humans (Furet et al., 2010; Dao et al., 

2015). Overall, these findings suggest that some species may directly contribute to obesity 

development or protection. Conversely, the wide human gut heterogeneity and confounding 

factors affecting intestinal ecology make the obese-microbiota profile difficult to define. 

However, functions and the production of secondary metabolites produced by symbionts may 

contribute to obesity development. These molecules regulate host appetite and food reward, 

which in turn have roles in obesity. Accordingly, microbial-derived bioactive metabolites 

produced by gut microorganisms in a diet-dependent manner, exert peripheral and central 

effects on the hypothalamus. The gut bacterial fermentation activity of complex dietary plant 

polysaccharides results in the production of SCFAs, principally acetate, propionate, and 

butyrate. These molecules represent an important host energy source but also fine tune signals 

influencing energy intake and human metabolism (Conterno et al., 2011). Such SCFAs, γ-

aminobutyric acid (GABA), serotonin (5-HT), and other neurotransmitters (NTs) modify host 

metabolism via vagal stimulation or through immune–neuroendocrine mechanisms. Hence, 

after a meal the presence of nutrients in the gastrointestinal tract (GIT) causes a complex 

network of gut-brain signaling in order to regulate appetite and energy balance. Moreover, an 

increase of BAs production and an altered BAs metabolism was associated to low-grade 

inflammation (Ridlon et al., 2014). Nevertheless, one of a major function of the gut symbionts 

is to contribute to energy harvest from non-digestible dietary starches. The presence of an 

obesity-related microbiota increases the calorie uptake providing more energy to the host. 

Accordingly, the contribution of the intestinal microbiota to regulate fat storage and energy 

harvest and its associations with body composition was demonstrated (Ding et al., 2010; Cani 

et al., 2007; Turnbaugh et al., 2006; Jumpertz et al., 2011). 

Despite the observations reported in the scientific literature, the possible association between 

dysbiosis and obesity is still debated. Interestingly, evidences from gut microbiota transplant 

experiments in mice demonstrated a causal role of the gut microbiota in obesity. These 

findings showed the transmissibility of metabolic abnormalities and obese phenotype via gut 

microbiota transfer along with intestinal bacterial species responsible of lean status, addressed 

to have the capacity to protect from obesity (Turnbaugh et al., 2008; Turnbaugh et al., 2009; 

Ridaura et al., 2013). Hence, obesity is characterized by a gut microbiota different from that 

of a lean individual in terms of composition, diversity, metabolic activity and bacterial gene 

richness (Le Chatelier et al., 2013). However, further translational researches conducted in 

humans should be promoted to validate assumptions from animal experiments. 
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A healthy gut microbiota is substantially pivotal to maintain proper host metabolic 

functioning, intestinal homeostasis and central appetite mechanisms. Gut microbiota is a 

potentially effective therapeutic target for anti-obesity therapies, through dietary interventions 

and/or dietary patterns recommendations. 
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2.2.2 Food allergy 

The gut microbiota is an extremely complex ecosystem and constantly interacts with host 

cells and physiological functions. Thus, it is not surprising that the pivotal role of the 

microbiota dysbiosis as a pathophysiological risk factor for the development of several 

diseases. Indeed, the understanding of the molecular mechanisms underlying the commensal 

bacteria-humans symbiosis would shape ad hoc strategies for immunologic treatment of 

diseases. Hence, microbiome-targeted therapeutic interventions including dietary modulation 

and the use of pre- and probiotics could potentially allow the development of new strategies 

to improve clinical outcomes. 

The host immune system should be able to distinguish between beneficial and pathogenic 

microorganisms, since both share similar molecular patterns. The ability of recognize is an 

adaptive immune system skill, which is in turn driven by an efficient co-evolved gut 

microbiota. Data from several studies highlight how the commensal bacteria and microbial-

derived metabolites program the T cells differentiation, promoting the development and 

shaping the maturation of the adaptive immunity, influencing the wellbeing and pathogens 

clearance (Jacobson et al., 2018; Ludwig et al., 2018; Ansaldo et al., 2019; Skelly et al., 

2019). The ingested nutrients are metabolized by the gut microbiota and the derived 

metabolites exert the modulation of host immunity. To this regard, fiber-degrading species 

such as F. prausnitzii and Roseburia intestinalis taxa through the metabolization of 

indigestible carbohydrates produce fermentation products (SCFAs). Acetate, propionate and 

butyrate are involved in a sophisticated host–microbiome network participating in regulatory 

T cell (Tregs) development, B cell proliferation, the release of anti-inflammatory cytokines 

and antibody production (Zhang et al., 2019). (Figure 2.3) 

  



 24 

 

Figure 2.3 Mechanisms of signaling from microbial-derived SCFAs to multiple immune cells 

in the gut. Image from Zhang et al., 2019. 

 

In particular, it has been discovered that our commensals provide signals inducing the CD4+ T 

cell differentiation into pro- and anti-inflammatory cells to contrast microbial infections, 

along with the inhibition of the proinflammatory Th17 cell expansion to enhance immunity 

(Atarashi et al., 2008). Accordingly, SCFAs produced by commensal bacteria such as 

Bifidobacteria infantis and F. prausnitzii induce the anti-inflammatory Foxp3+ Tregs 

development and interleukin IL-10 production in the gut (O’Mahony et al., 2008; Sokol et al., 

2008; Mariño et al., 2017). Bacteroides fragilis has been shown to prevent colitis through the 

bacterial molecule Polysaccharide A (PSA) and the Akkermansia muciniphila species induces 

intestinal adaptive immune responses (Mazmanian et al., 2008; Ansaldo et al., 2019). These 

findings suggest that host cell differentiation in the colon is promoted by signals from the host 

genome and gut microbiota, which is in turn pivotal for the maintenance of host homeostasis. 

Moreover, an efficient immune system along with the gut microbiota will be able to contrast 

pathogens proliferation. SCFAs depletion and antibiotic-induced gut dysbiosis induce the 

expansion of proinflammatory Th1 cells, undermining the pH homeostasis and promoting the 

loss of the intestinal barrier function. Hence, the host is exposed to damages caused by 

Clostridium difficile toxins as well as susceptible to pathogens infection such as the invasion 

of Clostridium rodentium (Byndloss et al., 2017; Scott et al., 2018; Gillis et al., 2018; Fachi 

et al., 2019; Desai et al., 2016). 

Microbiota composition and diversity are in turn controlled by the immune system and a loss 

of the interplay between these two can determine onset of disease. In addition, the immune 
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system as well as the commensal microorganisms are sensitive to the nutritional status of the 

host. Evidences now exist concerning the bidirectional interactions between diet, immune 

system and microbiota (Figure 2.4. 

 

 

Figure 2.4 Interdependence of Diet, Immune, and Microbiota Interactions. Image from 

Belkaid and Hand, 2014. 

 

A dysbiosis during childhood increases the risk of onset of food allergies (Prince et al., 2015; 

Azad et al., 2015; Savage et al., 2018). Food allergy (FA) is a common allergic disorder in the 

pediatric age, a global health problem particularly in industrialized world (Boyce et al., 2010). 

This condition derives from a breakdown of immune tolerance mechanisms involved in the 

activation of specific Tregs cells to dietary antigens exposure (Noval Rivas et al., 2013). 

Multiple risk factors could influence the FA onset, including sex, C-section, ethnicity, genetic 

background and epigenetic modulation of gene expression (Trompette et al., 2014; 

Greenwood et al., 2014; Berni Canani et al., 2019). However, recent evidences suggest the 

pivotal influence of gut microbiome dysbiosis as responsible for the occurrence of FA, being 

involved in the alterations of the intestinal barrier and immune system function (Prince et al., 

2015; Berni Canani et al., 2019). Due to its early introduction, cow’s milk allergy (CMA) is 

one of the earliest and most common FA (Agostoni et al., 2014). In fact, children affected by 

CMA in the first year of life have an increased risk to develop other atopic manifestations in 
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their later life (Branum and Lukacs, 2009; Boyce et al., 2011), as well as other chronic 

immune-mediated disorders such as inflammatory bowel diseases (Virta et al., 2013). 

Summarizing the studies reviewed, it appears that promoting the development of a beneficial 

microbiota with pre- and/or probiotic supplementation in children may be an important step to 

prevent FA. This indicates a need to translate the information emerging from descriptive 

researches and controlled clinical interventions aimed at establishing the gut microbiome as 

causative factor for FA onset. However, data on gut microbiota features in FA seem still 

preliminary because the general small number of observations. The proper interpretation of 

such findings might be the starting point for appropriate approaches of personalized medicine 

strategies (Bashiardes et al., 2018; De Filippis et al., 2018). To this regard, the screening of 

gut microbial diversity in FA patients of larger cohorts may be useful in identifying 

microbiome signatures responsible of specific FA conditions. Furthermore, microbiome 

biomarkers and microbial-derived metabolites inferred with multi-omics approaches in such 

complex network might be meaningful in targeted intervention against FA conditions using 

post-biotic strategies (Figure 2.5). 

 

Figure 2.5 The scheme for a gut microbiome-based precision medicine against food allergy. 

Image from Berni Canani et al., 2019. 

 

In conclusion, targeting the diet-gut microbiome–immune system axis might be a promising 

target to restore an “eubiosis” state and for FA care. Thus, understanding how through dietary 

intervention and/or supplementation we could influence gut bacteria communities in school 

children will led to encouraging findings for innovative clinical practice, nutritional 

counselling and educational programs.  
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2.3 Modulation of the microbiota 

Data from scientific literature demonstrated the straight connection between diet, gut 

microbiota and human health (De Vos et al., 2012). In particular, the microbiota processes 

nutrients and specific food components reaching the colon. For this reason, diet has a key role 

impacting microbial composition and functions mostly depending on proteins and non-

digestible carbohydrates. This mutual interaction is established since early childhood during 

the first years of life. The human milk is rich in oligosaccharides and these are the main factor 

affecting breastfeed infants’ gut microbiota, mainly colonized by Bifidobacterium taxa, and 

promoting development of an optimal host immune system (Derrien et al., 2019). Currently, 

newborn feed formulas are nowadays enriched with prebiotics as well as probiotics in order to 

positively impact the well-being and health especially for bottle-fed infants (Hemarajata and 

Versalovic, 2013). Following weaning, diet assortment is related to a diversification of 

bacterial species (McDonald et al., 2018). Most notably, different diets and eating habits 

related to socio-economic status, lifestyle, ethnicity and different cultural practices formed 

over a long period, directly and profoundly shape gut microbiota composition between 

populations acting as a long-term nutritional regulator (De Filippo et al., 2010; Yatsunenko et 

al., 2012; Tyakht et al., 2013). Despite such observations and inter-individual genetic 

differences, short-term nutritional interventions were demonstrated to be effective in rapidly 

changing the biodiversity of gut microbial composition, even though in a transient manner 

(David et al., 2014; Leeming et al., 2019). In fact, rapid and meaningful gut microbial 

changes were achieved through either short-term or long-term human dietary interventions. 

Besides, several studies displayed that the gut microbiota reverts back to baseline composition 

after the treatments, with long-term diet emerging as key driver (Wilson et al., 2017). Core 

microbial taxa appear to be resilient to most outside influences and possibly responsible of 

inter-individual variation to dietary interventions (Wu et al., 2011; Schmidt et al., 2018). 

However, the foods absence/reduction or the supplementation of components in habitual diet 

and dietary choices may beneficially and temporarily influence symbionts leading in turn to a 

positive effect on human health. 

Hence, the interplay between diet, gut microbiota and human health is becoming clear and has 

been extensively reported. For this reason, modulation of the gut microbiota through diet will 

be a potential therapeutic target for both the prevention and treatment of specific diseases. 

Plant-based foods contain dietary fiber. Specific dietary fiber types including inulin, fructo-

oligosaccharides and galacto-oligosaccharides are considered to be prebiotic, “a substrate that 

is selectively used by host microorganisms conferring a health benefit” (Gibson et al., 2017). 
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Several studies reported the effect of dietary components such as non-digestible 

carbohydrates to qualitatively impact gut microbiota composition, consequently promoting 

the growth of beneficial bacteria such as an enrichment in fiber-degrading taxa (Everard et al., 

2014; Bendall et al., 2018). To this regard, gut bacteria are rapidly capable of adapting their 

metabolism to changes in nutrients intake. Hence, a transient increase of fiber intake is related 

to an increase in glycosidases and amylase gene expression (Tap et al., 2015). Therefore, the 

degradation and fermentation of indigestible sugars in the colon leads to a higher abundance 

of taxa belonging to Bifidobacterium, Ruminoccous, Eubacterium and Lactobacillus spp. 

among others and to the production of vitamins and SCFAs, whose anti-inflammatories 

properties are widely known (Torres-Fuentes et al., 2015; Pryde et al., 2002; LeBlanc et al., 

2017). At the same time, such microbiota modulation confers health benefits to the host by 

causing anti-obesity effects and decreasing diabetes severity in animal models and human 

studies as well as reducing circulating pro-inflammatory cytokines (Kellow et al., 2014; 

Chassaing et al., 2015; Torres-Fuentes et al., 2015). In addition, recent researches focused on 

the effects of whole grains cereal products, rich in dietary fibers and resistant starch and 

known to be related to protection against chronic diseases. The results suggested a prebiotic-

like outcome over inflammation by such fiber consumption despite no significant changes 

over the gut microbiota composition were detected (Costabile et al., 2008; Vanegas et al., 

2017; Roager et al., 2019). However, Tap et al. demonstrated that a 5-days supplementation 

of dietary fibers was associated with a higher richness and diversity of gut microbiota 

composition. Higher proportions of Prevotella and Coprococcus levels were achieved as well 

as a modulation in the expression of many metabolic pathways and fermentable activities 

(Tap et al., 2015). Altogether, these findings further corroborated such beneficial effects over 

human health exerted by short-term dietary interventions, indirectly mediated by microbiome 

activities. 

Analogously, the term probiotics as defined by the Food and Agricultural Organization and 

the World Health Organization refers to “live microorganisms which when administered in 

adequate amounts, confer a beneficial health effect on the host” (Guarner et al., 2011). 

Probiotics are currently available as drugs, foods or foods supplements. Several publications 

appeared demonstrating the beneficial effects exerted by probiotics ameliorating obesity or 

metabolic disorders both in animal models and in human studies (Yin et al., 2010; Derwa et 

al., 2017; Kunk, 2019). Probiotics alter gut microbiota composition inducing the production 

of beneficial microbial-derived metabolites, although it was shown that outcomes may vary 

depending on individuals, probably due to the competition with host symbionts for substrates 
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(Licciardi et al., 2010). Commonly, the most used probiotics contain strains belonging to 

Bifidobacterium and Lactobacillus genera. In particular, several strains of Lactobacillus such 

as L. rhamnosus, L. plantarum, L. paracasei, L. reuteri, L. acidophilus, L. fermentum were 

widely used in animal models showing positive effects on health, reducing body fat mass and 

improving lipid profiles and glucose homeostasis in obese mice (Gérard, 2016). Similarly, 

strains of L. gasseri in controlled studies in overweight human subjects were associated with 

weight loss. More recently, the administration of Akkermansia muciniphila in 

overweight/obese insulin-resistant volunteers improved blood metabolic parameters for liver 

dysfunction and inflammation (Depommier et al., 2019). This opens up a new concept 

regarding Akkermansia muciniphila as a promising candidate among the next-generation 

beneficial microbes (Cani and de Vos, 2017). Moreover, probiotics play an important role in 

the maintenance of immunologic homeostasis in the GIT through a direct interaction with 

host immune cells and they have been widely studied in a variety of gastrointestinal-related 

diseases (Wilkins et al., 2017). Indeed, several probiotics-derived genes and specific 

compounds mediate immunoregulatory effects, by regulating the functioning of systemic and 

mucosal immune cells and intestinal epithelial cells, by stimulating the production of 

interleukins from peripheral blood cells as well as by modulating innate immunity response 

(Yan and Polk, 2011). In addition, several studies were performed in order to evaluate the 

effects of probiotics in the prevention and treatment of allergy (Gourbeyre et al., 2011; 

Schiavi et al., 2011). These results provided evidences of the complexity and functionality of 

probiotics targeting the GI tract and its microbiota composition. 

In conclusion, probiotics efficacy has to be assessed through the highest level of evidence 

such as double-blind RCTs and more should be carried on in the field of food allergies. Thus, 

due to encouraging results from therapeutic and in vivo experiments it seems clear that 

probiotics supplementation and administration might be an appropriate approach to modulate 

and maintain a healthy microbiota and further studies are requested in this field. The Chapter 

3 addressed this topic. 
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2.4 Mediterranean Diet and human health 

Long-term dietary patterns and habitual food intake play a major role in shaping an individual 

and resilient microbiota profile more than acute dietary treatments. The adoption of whole and 

nutritionally recommended dietary pattern should also be considered for clinical outcomes 

amelioration, beyond individual components. Thus, the gut homeostasis may be achieved with 

beneficial implications for human health mediated by the synergistic effects within foods of 

an appropriate dietary-model. 

The Mediterranean diet (MedDiet) is a dietary model adopted by countries neighbouring the 

Mediterranean Sea. It consists of a high intake of plant-based compared to animal-based food 

products, such as legumes and vegetables, fruits and nuts, whole grains cereal products and 

vegetable oils (mainly olive oil), a moderate consumption of fish, eggs and dairy products and 

a limited intake of processed cereals and red meat (Mitrou et al., 2007). This historical dietary 

pattern established between food availability and humans surrounding the Mediterranean 

basin has been recognized as intangible cultural heritage by UNESCO (Lăcătușu et al., 2019; 

Turmo, 2012). Several studies proved the beneficial effects of such dietary pattern in lowering 

the risk of overall incidence and mortality of cardiovascular diseases (CVD), CVD-related 

morbidities and neurodegenerative disease (Dinu et al., 2018). Moreover, scientific literature 

has identified robust evidences for a higher adherence to MedDiet to be efficient in the 

treatment of obesity risk factors, type II diabetes (T2D), colorectal cancer as well as 

inflammatory parameters (Del Chierico et al., 2014a; Martínez-González et al., 2016; 

Eleftheriou et al., 2018). 

Despite a growing body of knowledge assessing the human health improvement due to the 

MedDiet exposure, further epidemiological studies and clinical trials are needed. 

Optimistically, cost-effective strategies such as a proper diet adoption may be able to 

advancing our understanding of such MedDiet dietary pattern efficacy upon health outcomes 

and to implement preventative medicine. 

Conversely, the molecular and metabolic mechanisms underlying the complex diet–

microbiome–host interactions have not been completely elucidated. Nevertheless, the 

evidences of the correlation between the dysbiosis condition in a wide variety of pathologies 

and the dynamic response of the gut microbial ecology to dietary interventions sustained the 

hypothesis of a direct modulation of the gut microbiome through diet. Hence, the study of 

host-enteric microbial ecology has been defined as a reliably therapeutic target affecting 

human health and challenging in nutrition studies. In addition, delineating the effectiveness of 

a nutritionally recommended dietary pattern such the MedDiet upon both human metabolome 
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and microbiome will facilitate the discovery of microbial signatures and diet-specific 

biomarkers in health/disease status. These findings will lead to the development of 

personalized dietary guidelines in the era of ‘precision medicine’ for the prevention but 

mostly the treatment of specific type of diseases. 

Several recent researches in nutritional metabolomics focused on discovery of metabolic 

biomarkers for the assessment of the MedDiet adherence (Vázquez-Fresno et al., 2015; 

González-Guardia et al., 2015; Almanza-Aguilera et al., 2017) along with metabolites 

correlated to health outcomes following a MedDiet-based dietary intervention. To this regard, 

Guasch-Ferré and coworkers found positive associations of protein degradation products such 

as aromatic amino acids (tyrosine and phenylalanine) and branched-chain amino acids 

(BCAAs) such as leucine, isoleucine, and valine with type II diabetes incidence. Similarly, it 

has been estimated that acylcarnitines and dicarboxylacylcarnitines generally linked to meat 

consumption were associated with increased CVD risk along with TMAO, different classes of 

lipids, ceramides, tryptophan and phosphatidylethanolamine, further highlighting the 

cardioprotective effects of the MedDiet (Ruiz-Canela et al., 2017; Wang et al., 2017; Jin et 

al., 2019). 

Up to now, recent advances on culture-independent methods and high-throughput sequencing 

aimed at analyzing the microbial composition carried out several evidences, suggesting the 

pivotal role of host gut microbiome on metabolic functions, immunity, and health outcomes 

(Del Chierico et al., 2014b; Singh et al., 2017). In addition, as stated before long-term diet is 

the major environmental factor affecting human microbiome (Zhang et al., 2010; De Filippis 

et al., 2016). With respect to the MedDiet, existing studies assessed the impact of single 

components and individual foods particularly beneficial to health over microbial ecology 

composition and metabolome features (Widmer et al., 2105; Roager et al., 2019; Garcia-Aloy 

et al., 2019) but fewer analyzed the effects of the overall MedDiet-dietary pattern over 

clinical outcomes. Conventionally, the Prevotella spp. have been associated to a MedDiet 

style and accordingly to higher levels of consumption of vegetables and grain cereal products. 

Conversely, taxa belonging to Bacteroides spp. correlated with a Westernized dietary pattern 

(Wu et al., 2011; Del Chierico et al., 2014a; De Filippis et al., 2019). Moreover, Gutiérrez-

Díaz et al. recently found that higher level of adherence to MedDiet increased the relative 

abundances of Faecalibacterium prausnitzii (a butyrate producer), Akkermansia spp., whose 

strain A. muciniphila has been defined as the next-generation beneficial microorganism (Cani 

and de Vos, 2017) and Bifidobacterium spp. These results suggest a beneficial impact of such 

dietary style on gut microbial ecology and indirectly impacting metabolites production 
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(Garcia-Mantrana et al., 2018). Therefore, additional clinical researches are warranted to 

define MedDiet-adherence gut biomarker along with MedDiet-derived effects on 

microbiome-mediated disease outcome. 

The impact of the MedDiet on gut microbial composition associated to health and disease is 

currently an area of active investigation. It was recently figured out that a MedDiet 

consumption is associated with higher gut microbial diversity and a restored gut dysbiosis in a 

cohort of people with diagnosed T2D or obesity (Haro et al., 2016a; Haro et al., 2016b). In 

addition, increased levels of bacteria known to be associated to health in humans were found 

after a MedDiet-based intervetion, among others the fibre-degrading Bacteroides 

thetaiotaomicron and F. prausnitzii, the butyrate-producing genus Roseburia spp., the 

probiotics taxa B. adolescentis and B. longum. (see Figure 2.6). 

 
Figure 2.6 MedDiet-related effects upon microbiota composition in health and disease 

conditions. : decreased levels through MedDiet consumption. : increased levels through 

MedDiet consumption. Image from Jin et al., 2019. 

 

The restoration of gut eubiosis linked to the increase in the relative abundance of taxa with 

saccharolytic activity are associated with an increase in fermentation capacity, leading to 

microbial-derived metabolites such as SCFAs or urolithins for which health benefits have 

been described (De Filippis et al., 2016; Selma et al., 2018). 

However, an extensive variability in MedDiet-derived signatures were proved, despite the 

well-known clinical outcomes in which the MedDiet is involved, like lowering risk factors for 

diseases onset through metabolome and microbiome alterations (Jin et al., 2019). These 

discrepancies may result from different analytical methods, laboratory variability techniques, 
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heterogeneity of dietary assessment methods (because of a wide variety of dietary indices) but 

mostly the complexity of the diet–disease relationship. Such induced biases might result in 

inconsistent results on MedDiet-based dietary interventions in cohort studies. In addition, the 

worryingly globalization and a spread westernized food-culture are now driving a 

continuously growing prevalence of eating-related chronic diseases in the Mediterranean-

neighboring populations, beyond several territories of the world. A Western diet is 

characterized by an excessive intake of foods with a high energy density and that are rich in 

fats, sugars, and animal proteins, as well as a very low intake of fruits and vegetables. Such a 

dietary style, accompanied by low levels of physical activity, promotes inflammation and 

predisposes individuals to obesity, CVD, type 2 diabetes and metabolic syndrome (Myles, 

2014; Minihane et al., 2015; Mozaffarian et al., 2011). 

In conclusion, it is undeniable that multi-omics approaches will improve our understanding of 

the complex diet–microbiota-health relationships. Future researches are needed to validate 

previous findings in westernized countries as well as conclusive evidences and proof-of-

concept of MedDiet-based dietary intervention upon clinical outcomes (Cani, 2018). Thus, 

integrating the observations deriving from microbiome analysis and metabolomic data will 

help in i) discovering biomarkers related to the whole MedDiet-adherence pattern and ii) 

comprehensively elucidating several aspects of dysbiosis-related human diseases. The 

adoption of a nutritionally recommended dietary pattern was considered for clinical outcomes 

amelioration and the findings related to a MedDiet-based RCT are presented in the Chapters 5 

and 6. 
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CHAPTER 3 

 

 

Probiotic dietary supplementation correlates with gut microbiota changes and immunity 

biomarkers 

 

 

3.1 Introduction 

 

Common infectious diseases, affecting the respiratory and gastrointestinal tracts, are an 

important problem for young children attending preschool or day care centers (Maldonado et 

al., 2012). Young children are especially prone to infection, and this susceptibility is thought 

to be driven by immaturity in organ function, immune response, and also potentially in the gut 

microbiota (Prodeus et al., 2016). Functional foods, based on the fermentation of cow’s milk 

with probiotics, have been proposed as an effective strategy to reduce the incidence of 

infectious diseases in children, but the results are still conflicting (Merenstein et al., 2010; 

Campeotto et al., 2011; Nagata et al., 2011; Thibault et al., 2004; Mullié et al., 2004; 

Agostoni et al., 2007). These discrepancies could derive mainly from different study designs 

and population studies and from different functional properties of the investigated fermented 

foods. The efficacy of fermented foods is believed to be strain specific and dose dependent. 

Therefore, additional research is required to understand the mode of action and the impact of 

each product, and clinical trials are needed to determine efficacy of claims in human 

populations. 

Bacteria associated with fermented foods may influence gut-associated microbial composition 

and function by direct competition, by metabolic interaction, through direct immune 

activation, or via the production of bioactive molecules, such as the short-chain fatty acids 

(SCFAs), that are able to influence the host health regulating a number of immune and non-

immune protective mechanisms (Marco et al., 2017; Tamang et al., 2016; Unno et al., 2015; 

Derrien and van Hylckama Vlieg, 2015; Corrêa-Oliveira et al., 2016). 

Many fermented foods are processed such that viable bacteria are inactivated at the time of 

consumption (Marco et al., 2017). Postbiotics containing dead bacterial cells have been 
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shown to exert biological effects on the host immune system and to stimulate the production 

of anti-inflammatory cytokines (Vieira et al., 2015; Vieira et al., 2016; Asama et al., 2016). 

We previously demonstrated that a fermented cow’s milk product with heat-killed 

Lactobacillus paracasei CBA L74 (FM-CBAL74) efficiently protects schooled children 

against respiratory and gastrointestinal tract infections and that this protective effect is 

associated with a significant stimulation of innate and acquired immunity (Nocerino et al., 

2015). 

In order to assess the possible association of these effects with the structure of the gut 

microbiota, we designed this study to determine the effects of FM-CBAL74 treatment on gut 

microbiota composition and butyrate production. 

 

3.2 Materials and Methods 

 

Study subjects 

 

Detailed description of screening and recruitment of study population has been provided 

elsewhere (Nocerino et al., 2015). Briefly, consecutive healthy children (12 to 48 months of 

age) attending day care or preschool at least 5 days a week, were invited to participate to the 

study. The exclusion criteria were as follows: age ≤ 12 months or ≥ 48 months, concomitant 

chronic systemic diseases, congenital cardiac defects, gastrointestinal or urinary or respiratory 

tract surgery, active tuberculosis, autoimmune diseases, immunodeficiency, chronic 

inflammatory bowel diseases, cystic fibrosis, metabolic diseases, history of suspected or 

challenge-proved food allergy, lactose intolerance, malignancy, chronic pulmonary diseases, 

malformations of gastrointestinal or urinary or respiratory tract, severe malnutrition (z score 

for weight-for-height < 3 SD scores), and the use of pre/pro/symbiotics, antibiotics, or 

immune stimulating products in the 2 weeks before the enrollment. From the original study 

population enrolled (Nocerino et al., 2015), we randomly selected 10 subjects per group 

through a random number generator (Randomness and Integrity Services, Ltd., Dublin, 

Ireland (https://www.random.org). Anamnestic, demographic, and clinical features, including 

innate and acquired immunity biomarkers data, as well as information regarding dietary 

habits, assessed by a 3-day food diary collected every week for the entire study duration, were 

available for the entire cohort (Nocerino et al., 2015). The sample size was calculated, taking 

into account the size effect estimated from our previous data on butyrate levels (Berni Canani 

et al., 2016). We calculated that 10 children per group were needed to detect an increase of at 
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least 50% above baseline mean fecal butyrate level with a power of 0.80 at an alpha level of 

0.05 (t test for two independent samples with common variance two-tailed test). This study 

was approved by the Ethics Committee of the University of Naples Federico II and was 

registered in the Clinical Trials Protocol Registration System (ClinicalTrials.gov) with the 

identifier NCT01909128. 

 

Intervention 

 

The investigators were blinded to the treatment at all times, i.e., allocation, intervention, 

laboratory analysis, and statistical analysis (Nocerino et al., 2015). The study subjects were 

distributed into two groups according to a computer-generated randomization list. The 

investigators assigned each child the next available number on entry into the trial. 

Investigators, parents, and children were not aware of the dietary treatment assigned. Subjects 

were supplemented daily for 3 months with either a dietary product deriving from cow’s milk 

fermented with L. paracasei CBA L74 (MILK) or a placebo (PL). The composition of the 

dietary products used is reported in Table 3.1. They were provided in powder by Heinz Italia 

SpA, Latina, Italy, an affiliate of H. J. Heinz Company, Pittsburgh, PA. The fermented milk 

was prepared from skimmed milk fermented by L. paracasei CBA L74. The fermentation was 

started in the presence of 106 bacteria, reaching 5.9 X 109 CFU/g after a 15-h incubation at 

37°C. After heating at 85°C for 20 s in order to inactivate the live bacteria, the formula was 

spray-dried. Thus, the final fermented milk powder contained only bacterial bodies and 

fermentation products and no living microorganisms. The placebo consisted of maltodextrins 

with similar energy content of the fermented milk. Study products were provided in tins 

containing 400 g of powder, and the packaging was similar. Study products were stored at 

room temperature and in a dry environment. 

The investigators instructed parents about the daily amount of the assigned study product and 

the method of preparation. All subjects received 7 g/day of study products diluted in a 

maximum of 150 ml of cow’s milk or water. Parents were encouraged to contact the 

investigators if necessary and to maintain the habitual diet of the child, but to exclude 

prebiotics, probiotics, postbiotics, symbiotics, and immune stimulating products during the 3-

month study period. 

Compliance was defined as the consumption of at least 80% of the assigned treatment during 

the study and was evaluated by counting and weighing the returned tins and by the notes on 
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the diary compiled by parents. At the enrollment and at the end of the trial, a stool sample (3 

g) was obtained from all study subjects and stored at -80°C prior to further analysis. 

 

Table 3.1 Composition of the study dietary products 

Component Composition (per 100 g of product) for each treatment group 

MILK PL 

Energy (kcal) 367 388 

Protein (g) 24.0 0 

Carbohydrate (g) 66.4 97 

Fat (g) 0.6 0 

L. paracasei CBA L74 (CFU)a 5.9 × 1011   
a The CFU of killed bacteria 

 

DNA extraction and 16S rRNA gene sequencing 

 

Fecal samples (~1 g) were fully homogenized in STE buffer (100 mM NaCl, 10 mM Tris-HCl 

[pH 8.0], 1 mM EDTA [pH 8.0]) and centrifuged (1,000 rpm X 1 min) in order to pellet 

debris. The supernatant was centrifuged again (12,000 X g, 2 min), and the pellet was used for 

DNA extraction by using a PowerFecal DNA isolation kit (Mo Bio Laboratories, Inc., 

Carlsbad, CA). The V3-V4 region of the 16S rRNA gene was amplified by using the primers 

S-D-Bact-0341F5’-CCTACGGGNGGCWGCAG and S-D-Bact-0785R5’-

GACTACHVGGGTATCTAATCC (Klindworth et al., 2013). Library multiplexing, pooling, 

and sequencing were carried out according to the Illumina 16S metagenomic sequencing 

library preparation protocol on a MiSeq platform and using the MiSeq Reagent kit v2, 

yielding 2X250-bp, paired-end reads. 

 

Bioinformatics and statistical analysis 

 

Demultiplexed, forward, and reverse reads were joined by using FLASH (Magoč and 

Salzberg, 2011). Joined reads were quality trimmed (Phred score < 20) and short reads (<250 

bp) were discarded by using Prinseq (Schmieder and Edwards, 2010). High-quality reads 

were then imported into QIIME (Caporaso et al., 2010). Operational taxonomic units (OTU) 

were picked using a de novo approach and the uclust method, and taxonomic assignments 

were obtained by using the RDP classifier and the Greengenes (McDonald et al., 2012) 

database, following a pipeline previously reported (De Filippis et al., 2014). In order to avoid 

biases due to the different sequencing depth, OTU tables were rarefied to the lowest number 

https://aem.asm.org/content/83/19/e01206-17#fn-4
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of sequences per sample. Bray-Curtis distance matrix and alpha diversity indices were 

computed by QIIME on rarefied OTU tables. PICRUSt (Phylogenetic Investigation of 

Communities by Reconstruction of Unobserved States (http://picrust.github.io/picrust) 

(Langille et al., 2013) was used to predict the functional profiles of the samples, as recently 

reported (De Filippis et al., 2016a). Statistical analyses and plotting were carried out in an R 

environment (https://www.r-project.org). Permutational multivariate analysis of variance 

(nonparametric MANOVA) based on Jaccard and Bray-Curtis distance matrices was carried 

out using 999 permutations to detect significant differences in the overall microbial 

community or oligotype patterns, by using the adonis function in the vegan package. The 

Bioconductor statistical package DeSeq2 (Love et al., 2014) was used to find taxa 

differentially abundant between the groups. Spearman’s pairwise correlations were computed 

between OTU and other quantitative variables (the corr.test function in the psych package) 

and plotted by using the heatplot function in the made4 package. P values were corrected for 

multiple testing using the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995). 

 

Oligotyping analysis.  

 

Reads assigned to Bacteroides and to genera within Ruminococcaceae and Lachnospiraceae 

with an abundance of >5% in at least 10% of the samples were extracted, and entropy analysis 

and oligotyping were carried out (Eren et al., 2013). Only Bacteroides, Roseburia, and 

Blautia oligotype patterns were significantly affected by treatment. After the initial round of 

oligotyping, high-entropy positions were chosen (-C option): 2, 27, 30, 31, 32, 94, 114, 120, 

and 291 (Bacteroides); 1, 2, 12, 27, 28, 30, 56, 57, 58, 61, 82, 101, 103, 157, 160, 170, 172, 

174, 176, 184, 191, 213, 215, 220, 235, 237, 273, 274, 293, 343, 347, 371, and 409 (Blautia); 

and 2, 28, 57, 215, 272, 369, 370, 409, and 410 (Roseburia). To minimize the impact of 

sequencing errors, we required an oligotype to be represented by at least 100 reads (-M 

option). Moreover, rare oligotypes present in fewer than 10 samples were discarded (-s 

option). These parameters led to 56, 59, and 52 samples and 90,195, 298,288, and 24,503 

sequences left in the Bacteroides, Blautia, and Roseburia data sets, respectively. BLASTn 

was used to query the representative sequences against the NCBI nr database, and the top hit 

was considered for taxonomic assignment. Statistical analyses and plotting were carried out in 

R. 

 

Fecal butyrate analysis 
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One gram of frozen feces was diluted with saline buffer, vortexed, and centrifuged (12,000 X 

g) for 10 min in 2-ml tubes. The supernatant was filtered (0.45 m pore size) and stored at 

20°C until analysis. Frozen fecal extracts were acidified with 20 l of 85% (wt/vol) 

phosphoric acid and 0.5 ml of ethyl acetate, mixed and centrifuged (12,000 X g) for 1h and 

extracted in duplicate. About 0.5 ml of the pooled extract containing the acidified butyrate 

was transferred into a 2-ml glass vial and loaded onto an Agilent Technologies (Santa Clara, 

CA) 7890 gas chromatograph (GC) system with an automatic loader/injector. The GC column 

was a J&W DB-FFAP (Agilent Technologies) of 30 m, with an internal diameter of 0.25 mm 

and a film thickness of 0.25 m. The GC was programmed to achieve the following run 

parameters: an initial temperature of 90°C, a hold for 0.5 min, and ramp of 20°C min-1 up to a 

final temperature of 190°C; a total run time of 8.0 min; a gas flow of 7.7 ml min-1 split less to 

maintain 3.26 lb/in2 column head pressure; and a septum purge of 2.0 ml min-1. Detection was 

achieved using a flame ionization detector. Peaks were identified using a mixed external 

standard and quantified by using a peak height/internal standard ratio. 

 

Assessment of innate and acquired immunity biomarkers 

 

For all study subjects, data related to the fecal levels of -defensin (HNP1-3), -defensin 2 

(HBD-2), cathelicidin (LL-37), and sIgA were available. The determinations were performed 

as previously described (Nocerino et al., 2015). The results are expressed as ng/ml for -

defensin, -defensin, and LL-37 and as g/ml of supernatants for sIgA. 

 

Accession number(s) 

 

The 16S rRNA gene sequences produced in this study are available at the Sequence Read 

Archive (SRA) of the National Center for Biotechnology Information (NCBI) under accession 

number SRP100769. 

 

  



 52 

3.3 Results 

 

Study subjects 

 

The main features of the study populations are reported in Table 3.2. All children were from 

families of middle socioeconomic status from the same urban area. The dietary habits were 

very similar between the two study groups -energy (kcal ± the standard deviations [SD]), 

1,420 ± 51 versus 1,388 ± 59; carbohydrate (in grams ± the SD), 225.9 ± 7.3 versus 215.1 ± 8; 

protein, 31.8 ± 2.7 versus 30.6 ± 2.9; fat, 51.28 ± 4.3 versus 51.46 ± 4; and fiber, 9.3 ± 3.6 

versus 11.9 ± 2.7—in MILK (dietary product deriving from cow’s milk fermented with L. 

paracasei CBA L74)- and placebo (PL)-treated groups, respectively. All children were 

nonfebrile at inclusion, and none was suffering from respiratory tract or gastrointestinal 

symptoms. The vaccination status was identical among the two groups. The interventions 

were well accepted by the children, and the compliance was good in all study subjects. No 

differences were detected in the daily intake of the active and placebo products between the 

study groups. No modifications in blood sugar and insulin levels were observed upon 

treatment. Significant increases in -defensin (HNP1-3), -defensin 2 (HBD-2), and 

cathelicidin (LL-37) were observed only in children treated with FM-CBAL74, as well as an 

increasing trend in secretory IgA (sIgA) (Supplemental Material from Berni Canani et al., 

2017). No differences in the average weighted Unifrac distances were detected between the 

MILK and PL groups at the beginning of the treatment (P < 0.05). 
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Table 3.2 Main anamnestic, demographic, and immunological features of the study 

population 

Parameter 
Mean ± SDa 

MILK PL 

Demographic data 

  

    No. of subjects 10 10 

    No. (%) of male subjects 8 (80) 5 (50) 

    Age (mo) 34.3 ± 8.9 37.2 ± 8.7 

    No. (%) breastfeeding 10 (100) 7 (70) 

    Duration (mo) of breastfeeding 6.2 ± 5.9 10 ± 6.6 

Wt (kg) 

  

    t0 15.7 ± 3.3 14.9 ± 2.2 

    t3 16.1 ± 2.8 15.6 ± 2.4 

Ht (cm) 

  

    t0 95.9 ± 8.5 95.7 ± 6.2 

    t3 97.6 ± 7.6 98 ± 6.1 

Level 

  

    Alpha-defensin at t0 (ng/ml) 1.5 ± 1.4 1.2 ± 1.2 

    Alpha-defensin at t3 (ng/ml) 4.2 ± 1.9 1.6 ± 1.3 

    Beta-defensin 2 at t0 (ng/ml) 28.7 ± 25.1 32.3 ± 13.2 

    Beta-defensin 2 at t3 (ng/ml) 46.8 ± 21.1 38.6 ± 15 

    LL-37 at t0 (ng/ml) 13.3 ± 6.9 16 ± 9.3 

    LL-37 at t3 (ng/ml) 32 ± 16.3 19.4 ± 14.5 

    sIgA at t0 (μg/ml) 24.1 ± 9.9 30.8 ± 18.2 

    sIgA at t3 (μg/ml) 42.8 ± 14 32.5 ± 16.4 

 

Values are reported as means ± the standard deviations, except as noted otherwise in column 1. Treatment 

groups: MILK, cow's milk fermented with L. paracasei CBA L74; PL, placebo. 

 

 

Effects of FM-CBAL74 on gut microbiota composition 

 

We did not observe significant differences in alpha and beta diversities between children 

belonging to the two groups at the baseline (data not shown). Treatment with FM-CBAL74 

affected gut microbiota composition. Although a great variability was observed, multivariate 

analysis of variance (MANOVA) showed significant differences in the gut microbiota 

composition between the two study groups following intervention (P < 0.05). Nevertheless, 

principal-coordinate analysis did not show any clustering of the subjects according to the 

treatment received (data not shown). The relative proportion of Lactobacillus and 

https://aem.asm.org/content/83/19/e01206-17#fn-3
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Ruminococcaceae significantly increased following FM-CBAL74 treatment (P < 0.05), with 

specific significant increases in Oscillospira and Faecalibacterium (Figure 3.1, P < 0.05). In 

addition, we found positive correlations between the relative abundance of several genera 

belonging to Ruminococcaceae and fecal LL-37 level, whereas Lachnospira and 

Ruminococcus (Lachnospiraceae) correlated with HBD-2 levels (Figure 3.2). The gut 

microbiotas of PL subjects were significantly different from those of FM-CBAL74-treated 

subjects after 3 months of treatment, with significantly higher levels of Bacteroides (data not 

shown, P < 0.05). 

 

 
 

Figure 3.1 Oscillospira and Faecalibacterium levels. Box plots show the abundance of 

Oscillospira and Faecalibacterium in the studied population at baseline (t0) and after 3 months of 

treatment (t3) with fermented milk (MILK) and placebo (PL). Boxes represent the interquartile 

range (IQR) between the first and third quartiles, and the line inside represents the median (second 

quartile). Whiskers denote the lowest and highest values within 1.5 × IQR from the first and third 

quartiles, respectively. Asterisks indicate a significant difference as obtained by a pairwise 

Wilcoxon test (P < 0.05). 
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Figure 3.2 Lachnospiraceae and Ruminococcaceae abundance correlates with innate and 

acquired immunity. A heatplot shows the Spearman correlations between genera belonging to 

Lachnospiraceae and Ruminococcaceae and the levels of immunity biomarkers. Rows and 

columns are clustered by Euclidean distance and Ward linkage hierarchical clustering. The 

intensity of the colors represents the degree of association, as measured by Spearman correlations. 

Only genera occurring in at least 20% of the samples were included. Asterisks indicate a 

significant correlation after Benjamini-Hochberg correction. 

 

Effect of fermented milk on gut microbiota at subgenus level 

 

In order to explore the possible effect of FM-CBAL74 at a subgenus level, we carried out 

oligotyping on sequences of Bacteroides and genera belonging to Ruminococcaceae and 

Lachnospiraceae, since these bacterial groups are well-known butyrate producers. Only 

Bacteroides, Blautia, and Roseburia oligotype patterns showed significant changes after 

dietary intervention, as shown by MANOVA (P < 0.05). Specific Roseburia oligotypes were 

promoted by FM-CBAL74 treatment (Roseburia oligotype 1) and showed positive 

correlations with sIgA (Rho= 0.63, P < 0.038) and -defensin (Rho= 0.87, P < 0.023). Blautia 

oligotypes 5 and 13 also increased with FM-CBAL74 treatment and were positively 

correlated with -defensin (Rho= 0.84, P < 0.007; Rho= 0.58, P < 0.040). Finally, 

Bacteroides oligotypes 12 and 19 increased after FM-CBAL74 treatment, but only Bac12 

(Rho= 0.67, P < 0.042) was positively correlated with -defensin. 
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FM-CBAL74 treatment promotes butyrate production in the gut 

 

FM-CBAL74 treatment resulted in an increase in the relative abundance of predicted genes 

involved in butyrate synthesis (PICRUSt-predicted metagenomes), especially genes encoding 

butyryl coenzyme A (butyryl-CoA) transferase (EC 2.8.3.8) and butyrate kinase (EC 2.7.2.7) 

(Supplemental Material from Berni Canani et al., 2017, P < 0.05). Consistently, a significant 

increase in fecal butyrate levels in children consuming FM-CBAL74 was observed (Figure 

3.3, P < 0.05). 

 

 
 

Figure 3.3 Fecal butyrate concentration. Box plots show the abundance of fecal butyrate in the 

study population at baseline (t0) and after 3 months of treatment (t3) with fermented milk (MILK) 

and placebo (PL). Asterisks indicate a significant difference. as obtained by pairwise Wilcoxon 

test (P < 0.05). See the legend to Figure 3.1 for a description of the box plots. 

 

3.4 Discussion 

 

It is increasingly understood that the outcomes of microbial fermentation provide additional 

properties to fermented foods beyond basic nutrition (Marco et al., 2017). During 

fermentation, the metabolic activity of microorganisms can change the nutritional and 
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bioactive properties of food matrices with possible beneficial consequences for human health 

(Marco et al., 2017). The gut microbiota plays a key role in the development and function of 

the immune system (Gensollen et al., 2016) and some of the health benefits of fermented 

foods could derive also from their impact on gut microbial composition and function (Marco 

et al., 2017). In a randomized controlled trial, we demonstrated that a cow’s milk fermented 

product containing the heat-killed probiotic strain L. paracasei CBA L74 is effective in 

reducing the incidence respiratory and gastrointestinal tract infections in young children 

(Nocerino et al., 2015). Interestingly, these results have been recently confirmed by a 

multicenter trial with a similar study design (Corsello et al., 2017). Here, we tested the effect 

of this specific fermented product on gut microbiota composition and butyrate production. 

Distinctive traits of the gut microbiota, with an increase in genera known as butyrate 

producers such as Oscillospira and Faecalibacterium (Konikoff and Gophna, 2016; Ríos-

Covián et al., 2016), were observed in children receiving the fermented product. It has been 

previously shown that Faecalibacterium strains exert a stimulating effect on the immune 

system and on T cell differentiation (Rossi et al., 2016). In addition, an increase in 

Lactobacillus abundance was observed upon treatment with the fermented product, which is 

unlikely due to the presence of heat-killed lactobacilli in the fermented product and more 

probably derives from a stimulatory effect of this product on such populations of lactic acid 

bacteria. 

We also demonstrated an effect of the fermented milk product beyond the genus level. In fact, 

specific oligotypes of Roseburia and Blautia were boosted by the treatment, suggesting an 

effect at the subgenus level and highlighting a possible different effect of the fermented 

product on species and strains belonging to these genera, as previously pointed out for other 

common members of the gut microbiota (De Filippis et al., 2016b; Ley, 2016). The dietary 

treatment resulted in an increase in the relative abundance of predicted genes involved in 

butyrate synthesis, especially genes encoding butyryl-CoA transferase (EC 2.8.3.8) and 

butyrate kinase (EC 2.7.2.7), and an associated significant increase in fecal butyrate levels 

likely deriving from lactate catabolism, one of the primary pathways for butyrate production 

by gut bacteria (Duncan et al., 2004). Altogether, these results suggest that a shift in the 

relative proportion of certain bacterial genera and oligotypes may be associated with an 

enhanced butyrate synthesis. Butyrate regulates several non-immune and immune defense 

mechanisms against infections, including the regulation of luminal pH in the gut, mucus 

production, cell growth and differentiation, the modulation of gut permeability and of 

transepithelial ion transport, the modulation of the inflammatory response, and the stimulation 
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of innate and acquired immunity (Ríos-Covián et al., 2016; Berni Canani et al., 2011; Keku et 

al., 2015; Macfarlane and Macfarlane, 2012). Although we investigated only butyrate, it 

cannot be excluded that also the production of other SCFAs could be regulated by this 

particular fermented product. 

We found positive correlations between specific gut microbiota signatures and the fecal levels 

of innate and acquired immunity biomarkers. These data are in line with the results obtained 

using a fermented milk formula containing two heat-inactivated probiotic strains in preterm 

infants (Campeotto et al., 2011). 

The results of this study support the concept of a mutualistic interaction occurring between 

gut microbiota and immune system, where gut microbiota influences immune system 

development and function, and the immune system shapes gut microbiota composition 

(Honda, 2015; Jenke et al., 2013). It is possible to speculate that the effect of this particular 

fermented food on gut microbiota could derive at least in part by a modulation of innate 

immunity peptides. Indeed, evidence on the positive correlations between specific members 

of the gut microbiota and immunity peptides has been obtained in this study. The final result 

is the establishment and consolidation of a microbiota composition that can be responsible for 

a protective action against infectious diseases. In line with this view, we have recently 

demonstrated that, through a direct interaction with human enterocytes, FM-CBAL74 

stimulates the synthesis of -defensin 2 and LL-37 (Paparo et al., 2015). Future studies are 

necessary to define the components of this particular fermented product that are involved in 

these effects. In this light, comparison with different types of placebo, such as milk without 

the addition of bacteria or fermented by other lactobacilli, would provide useful information. 

It is important to recognize that this study investigated a dietary product fermented with a 

specific probiotic strain, a well-defined dose, and age group and that our findings cannot be 

extrapolated for other products containing different probiotic strains. Indeed, it cannot be 

excluded that similar results could be obtained with milk products fermented by 

phylogenetically close lactic acid bacteria. In this study, the similar dietary habits of treated 

and placebo groups strongly suggest that the effects observed on gut microbiota composition 

and butyrate production derive from the administration of the fermented milk used. In this 

study, children enrolled in the placebo group, received maltodextrins. Maltodextrins, even at 

higher doses, are commonly used as placebos in clinical trials (Kolida et al., 2007; Abrams et 

al., 2005). Contrasting data suggest that maltodextrins could influence gut microbiota 

composition and immune system (Costabile et al., 2010; Nickerson et al., 2015; Kredier et 

al., 2007). Here, we did not observe significant changes in the gut microbiota composition, 
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fecal butyrate levels, and innate and acquired immunity biomarkers in children enrolled in the 

placebo group, which supports the use of maltodextrins in placebo treatments. 

 

3.5 Conclusion 

 

In conclusion, although additional research should be focused on the specific molecular 

mechanisms involved, we have shown that FM-CBA L74 induces positive regulation of the 

mutual interaction between the immune system and gut microbiota. The use of a fermented 

milk product containing the heat-killed probiotic strain Lactobacillus paracasei CBAL74 

induces changes in the gut microbiota, promoting the development of butyrate producers. 

These changes in the gut microbiota composition correlate with increased levels of innate and 

acquired immunity biomarkers. 

 

3.6 Notes 

 

This chapter reports the content of paper entitled “Specific Signatures of the Gut Microbiota 

and Increased Levels of Butyrate in Children Treated with Fermented Cow’s Milk Containing 

Heat-Killed Lactobacillus paracasei CBA L74” by Berni Canani R, De Filippis F, Nocerino 

R, Laiola M, Paparo L, Calignano A, De Caro C, Coretti L, Chiariotti L, Gilbert JA and 

Ercolini D (2017) published on Applied and Environmental Microbiology 83:e01206-17. 
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Chapter 4        The host-microbiota interaction in food allergy 

 

 

CHAPTER 4 

 

 

Probiotic dietary treatment influences gut dysbiosis in children with non-IgE cow’s milk 

allergy 

 

 

4.1 Introduction 

 

Food allergy (FA) results from an abnormal immune-mediated reaction against food antigens, 

such as cow’s milk proteins (Sicherer and Sampson, 2014; Renz et al., 2014). Due to its early 

introduction, cow’s milk allergy (CMA) is one of the earliest and most common FA 

(Agostoni et al., 2014). The immune mechanism of CMA can be IgE-mediated or non-IgE-

mediated (cell mediated) and it is recognized as a first indicator of a dysregulated immune 

response in the pediatric age (Fiocchi et al., 2010). In fact, children affected by CMA in the 

first year of life have an increased risk to develop other atopic manifestations in their later life 

(Branum and Lukacs, 2009; Boyce et al., 2011), as well as other chronic immune-mediated 

disorders such as inflammatory bowel diseases (Virta et al., 2013). Therefore, understanding 

CMA pathogenesis is important in order to effectively prevent and manage the disease and its 

later life consequences. The intestinal microbiota plays a critical role in the maturation and 

continued education of the host immune system (Fulde and Hornef, 2014). Evidence suggests 

that selected bacterial species and their metabolites from healthy gut microbiota, in particular 

the short-chain fatty acid butyrate, may positively modulate immune tolerance mechanisms 

(Feehley et al., 2015; Atarashi et al., 2011; Atarashi et al., 2013; Smith et al., 2013; 

Wesemann and Nagler, 2016; Berni Canani et al., 2016d). On the contrary, emerging data 

suggest that gut microbiota dysbiosis, characterized by imbalanced composition and function 

of the intestinal microbes, could be associated to the development of FA (Lynch and 

Pedersen, 2016; Ling et al., 2014; Fazlollahi et al., 2018; Bunyavanich et al., 2016). Data on 

gut microbiota features in FA seem still preliminary because the general small number of 

observations, difference in the experimental tools used, poor characterization of the study 

subjects and lack of adequate matched controls (Berni Canani et al., 2015c). We recently 
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demonstrated that gut microbiota in IgE-mediated CMA infants shows significantly higher 

diversity than that of healthy controls. Bacterial families chacteristic of the healthy infant gut, 

such as Bifidobacteriaceae were significantly decreased in the IgE-mediated CMA gut (Berni 

Canani et al., 2016d). Butyrate-producing bacteria were significantly enriched by dietary 

treatment with extensively hydrolyzed casein formula (EHCF) with the probiotic 

Lactobacillus rhamnosus GG (LGG) (Berni Canani et al., 2016d). 

In about one third to half of CMA patients a non-IgE-mediated mechanism is recognizable 

(Nowak-Węgrzyn et al., 2015). Gut microbiota features in children affected by non-IgE-

mediated CMA are still poorly characterized. We aimed to comparatively evaluate gut 

microbiota composition and butyrate production in children affected by non-IgE-mediated 

CMA and in healthy controls. The impact of treatment with EHCF alone or in combination 

with LGG was also investigated, and a comparative evaluation of gut microbiota features in 

IgE- and non-IgE mediated CMA was also performed. 

 

4.2 Materials and Methods 

 

Study subjects 

 

From March to September 2014, 52 consecutive children (age range 1–26 months) visiting 

our tertiary pediatric allergy center for recent occurrence (last 2–4 weeks) of signs or 

symptoms of suspected non-IgE-mediated CMA, or for follow up visit after 6 months of 

exclusion diet upon a confirmed diagnosis of non-IgE-mediated CMA were evaluated and 

invited to participate in a cross sectional study. The exclusion criteria were: use of pre- or 

probiotic products and/or antibiotics in the previous 4 weeks; history of cow’s milk-induced 

anaphylaxis and/or other IgE-mediated signs of food allergy; concomitant presence of other 

food allergies or allergic diseases, eosinophilic disorders of the gastrointestinal tract, chronic 

systemic diseases, congenital cardiac defects, active tuberculosis, autoimmune diseases, 

immunodeficiency, chronic inflammatory bowel diseases, celiac disease, cystic fibrosis, 

metabolic diseases, lactose intolerance, malignancy, chronic pulmonary diseases or 

malformations of the gastrointestinal tract. Written informed consent was obtained from the 

parents/guardians of each subject. The diagnosis of non-IgE-mediated CMA was based on 

clinical history, negative result of skin prick test, and/or negative level of IgE serum-specific 

anti-cow’s milk proteins, and the results of a double blind placebo-controlled oral food 

challenge (DBPCFC) (Berni Canani et al., 2012a; Berni Canani et al., 2017b). All DBPCFC 
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were performed in a double-blind, placebo-controlled manner in the outpatient clinic on 2 

separate days with a 1-week interval. Parents of patients taking antihistamines were advised to 

withhold these medications for 72 hours before and during the challenge. Randomization and 

preparation of the challenges were performed by experienced dietitians who were not directly 

involved in the procedures. In detail, every 20 minutes, increasing doses (0.1, 0.3, 1, 3, 10, 30, 

and 100 mL) of fresh pasteurized cow’s milk containing 3.5% of fat or an amino acid formula 

were administered. Full emergency equipment and medications (epinephrine, antihistamines, 

and steroids) were available. The results were assessed simultaneously by experienced 

pediatric allergists. Study subjects were scored for 9 items divided into 4 main categories on a 

0 to 3-point scale (0, none; 1, light; 2, moderate; and 3, severe): (1) general (decreased blood 

pressure plus tachycardia); (2) skin (rash and urticaria/angioedema); (3) gastrointestinal 

(nausea or repeated vomiting, crampy- like abdominal pain, and diarrhea); and (4) respiratory 

(sneezing or itching, nasal congestion or rhinorrhea, and stridor deriving from upper airway 

obstruction or wheezing). If at least 2 of the 3 physicians independently scored one item at 

level 3 or 2 (or more) items at level 2, the test result was considered positive. Children were 

observed for up to 4 hours after the final dose and then discharged. In case of a positive 

DBPCFC result at any testing dose, the patient remained under observation until symptom 

resolution. If the patient did not show any symptoms within the first 24 hours, parents were 

advised to provide a single feed of 100 mL of the tested formula (verum or placebo) every 

day at home for 7 days. If any symptoms occurred during this period, the patients returned to 

the outpatient clinic on the same day. After 7 days of verum or placebo administration, the 

patients were examined, and the parents were interviewed at the center. Parents were asked to 

contact the center if any symptoms occurred in the 7 days after the DBPCFC procedures to 

rule out false-negative challenge results. The challenge result was considered negative if the 

patient tolerated the entire challenge, including the observation period. Fifty-two CMA 

patients were evaluated. Four patients were excluded because of the presence of exclusion 

criteria, and 2 were excluded for the lack of informed consent. Therefore, 46 CMA patients 

were included in this study. According to disease state and dietary treatment, CMA patients 

were divided in three groups: group 1 included patients with non-IgE-mediated CMA at 

diagnosis, before any therapeutic intervention and receiving standard formula (n = 23); group 

2 (n = 9) included patients with diagnosis of non-IgE-mediated CMA after treatment for 6 

months with an extensively hydrolyzed casein formula (EHCF; Nutramigen, Mead Johnson 

Nutrition, Evansville IN, US); group 3 (n = 14) included patients with diagnosis of non-IgE-

mediated CMA after treatment for 6 months with EHCF added with the probiotic L. 
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rhamnosus GG (EHCF + LGG; Nutramigen LGG, Mead Johnson Nutrition, Evansville IN, 

US). The specific formula use was prescribed and adherence was checked according to the 

standard procedure adopted at our Center. Briefly, the parents received written instructions 

regarding the commercial name of the product and the formula preparation procedure. Then, 

the adherence to the treatment was checked monthly during the first 3 months of treatment 

and then every 6 months. Formula use was evaluated at each time visit by dietitians, 

counseling parents about issues that could arise during the elimination diet and on how to 

reach the daily recommended intake for Italian children. This allowed the study staff to 

evaluate compliance with the formula and to ensure that the patients received an appropriate 

quantity of formula to meet their nutritional requirements. During the same study period, 

consecutive healthy children (group 4, n = 23), with negative clinical history for any allergic 

condition visiting our center because of minimal surgical procedures or vaccination program 

were also enrolled. Anamnestic, demographic, anthropometric and clinical data were obtained 

from the parents of each subject and recorded in a clinical database. The 3-day dietary diary 

was collected from all study subjects at enrolment. All diaries were assessed using a specific 

software (Winfood, Medimatica srl, Colonnella Teramo, Italy). For all study subjects, a stool 

sample (3 g) was collected to evaluate gut microbiota composition and fecal butyrate 

concentration and stored at −80 °C until analyses. 

The study was approved by the Ethics Committee of the University of Naples Federico II and 

was registered in the Clinical Trials Protocol Registration System on March 14, 2014 

(https://clinicaltrials.gov - ID number: NCT02087930). 

 

DNA extraction and 16S sequencing 

 

Fecal samples (about 1 g) were fully homogenized in STE buffer (100 mMNaCl, 10 mMTris-

Cl pH 8.0, 1 mM EDTA pH 8.0) and centrifuged (500 × g, 1 min) in order to pellet debris. 

The supernatant was centrifuged again (12,000 × g, 2 min) and the pellet was used for DNA 

extraction with the PowerFecal DNA Isolation kit (Mo Bio Laboratories, Inc., Carlsbad, CA). 

V3-V4 region of the 16S rRNA gene was amplified by using primer and PCR conditions 

recently described (Berni Canani et al., 2017e). PCR products were purified with the 

Agencourt AMPure XP beads (Beckman Coulter) and quantified using a Plate Reader 

AF2200 (Eppendorf). Amplicon multiplexing, pooling and sequencing were carried out 

following the Illumina 16S Metagenomic Sequencing Library Preparation protocol, on a 

MiSeq platform and using the MiSeq Reagent kit v2, leading to 2 × 250 bp, paired-end reads. 
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Fecal butyrate analysis 

 

One gram of frozen feces was diluted with saline buffer, vortexed and centrifuged (12,000 × 

g) for 10 min in 2 ml tubes. The supernatant was filtered (0.45 μm) and stored at −20 °C until 

analysis. Frozen fecal extracts were acidified with 20 μl of 85% (w/v) phosphoric acid and 0.5 

ml of ethyl acetate, mixed, centrifuged (12,000 × g) for 1 h, and extracted in duplicate. About 

0.5 ml of the pooled extract containing the acidified butyrate was transferred into a 2 ml glass 

vial and loaded onto an Agilent Technologies (Santa Clara, CA, USA) 7890 gas 

chromatograph (GC) system with automatic loader/injector. The GC column was an Agilent 

J&W DB-FFAP (Agilent Technologies) of 30 m, internal diameter 0.25 mm and film 

thickness 0.25 μm. The GC was programmed to achieve the following run parameters: initial 

temperature 90 °C, hold 0.5 min, ramp of 20 °C min−1 up to a final temperature of 190 °C, 

total run time 8.0 min, gas flow 7.7 ml min−1 split less to maintain 3.26 p.s.i. column head 

pressure, septum purge 2.0 ml min−1. Detection was achieved using a flame ionization 

detector. Peaks were identified using a mixed external standard and quantified by peak 

height/internal standard ratio. 

 

Statistical and bioinformatics analysis 

 

All data were collected in a dedicated database and analysed by a statistician with IBM SPSS 

Statistics version 19.0 for Windows (SPSS Inc, Chicago, IL). The χ2 test and Fisher’s exact 

test were used for categorical variables. The level of significance for all statistical tests was 2-

sided, P < 0.05. 

Raw sequence quality filtering and pre-processing was carried out as recently reported (Berni 

Canani et al., 2017e). Briefly, demultiplexed, forward and reverse reads were joined by using 

FLASH (Magoč and Salzberg, 2011). Joined reads were quality trimmed (Phred score < 20) 

and short reads (<250 bp) were discarded by using Prinseq (Schmieder and Edwards, 2011). 

High quality reads were then imported in QIIME (Caporaso et al., 2010). OTUs were picked 

through de novo approach and uclust method and taxonomic assignment was obtained by 

using the RDP classifier and the Greengenes database (McDonald et al., 2012), following a 

pipeline previously reported (Berni Canani et al., 2017e). In order to avoid biases deriving 

from different sequencing depth, OTU tables were rarefied to the lowest number of sequences 
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per sample. Statistical analyses and visualization were carried out in R environment 

(https://www.r-project.org). 

To discriminate the microbial profiles as a function of disease, a model based on projection on 

latent structures (PLS) in its discriminant (DA) version was built, based on the normalized 

abundance (log10) of the microbial genera identified. The R package mixOmics was used. 

Permutational Multivariate Analysis of Variance (non-parametric (PER)MANOVA) based on 

Jaccard and Bray Curtis distance matrices was applied with 999 permutations to detect 

significant differences in the overall microbial community composition, by using the adonis 

function in vegan package. Non-parametric Kruskal-Wallis and pairwise Wilcoxon tests were 

carried out in order to find OTUs differentially abundant between the groups. A Generalized 

Linear Model (R function glm) was built in order to test the importance of continuous or 

discrete variables available for the subjects (mode of birth, age at weaning, age at sampling, 

sex, months of exclusive breastfeeding, average daily consumption of proteins and fat, health 

status – that is, healthy or CMA) on the relative abundance of bacterial genera significantly 

different between healthy and CMA subjects. Spearman’s pairwise correlations were 

computed between OTUs or oligotypes and short-chain fatty acid abundance (corr.test 

function in psych package). Correction of p-values for multiple testing was performed 

(Benjamini and Hochberg, 1995). Differences in fecal butyrate levels between the groups 

were evaluated by non-parametric Kruskal-Wallis and pairwise Wilcoxon tests. In order to 

compare the gut microbiota composition in children with non-IgE (analyzed in the present 

study) and IgE-mediated CMA from our previous study (Berni Canani et al., 2016d), quality 

filtered reads of the previous study were downloaded from MG-RAST. Since the reads from 

the previous study included only V4 region of the 16S rRNA gene, they were aligned to those 

produced in this study, that were trimmed in 5′ direction to the same length. Reads from both 

the studies were re-analyzed as described above. 

 

Sub-genus diversity of Bacteroides 

 

Reads assigned to Bacteroides genus were extracted and entropy analysis and oligotyping 

(Eren et al., 2013) were carried out as described previously (De Filippis et al., 2016). After 

the initial round of oligotyping, high entropy positions were chosen (−C option): 2, 30, 94, 

104, 106, 107, 109, 114, 302, 380. To minimize the impact of sequencing errors, we required 

an oligotype to be represented by at least 100 reads (−M option). Moreover, rare oligotypes 

present in less than 10 samples were discarded (−s option). These parameters led 70,142 
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sequences left in the dataset. BLASTn was used to query the representative sequences against 

the NCBI nr database, and the top hit was considered for taxonomic assignment. Statistical 

analyses and visualization were carried out in R environment as described above. 

 

Data availability 

 

The 16S rRNA gene sequences produced in this study are available at the Sequence Read 

Archive (SRA) of the National Center for Biotechnology Information (NCBI), under 

accession number SRP092171. 

 

4.3 Results 

 

Study subjects 

 

During a six-month study period, 52 non-IgE-mediated CMA subjects were evaluated for the 

study. Four were excluded because of the presence of exclusion criteria and 2 were excluded 

because the lack of informed consent, thus 46 patients were enrolled in the study. According 

to disease state and dietary treatment, the CMA patients were subdivided in three groups: 

Group 1 (CMA patients at diagnosis before any dietary intervention) (n = 23); Group 2 (CMA 

patients treated for 6 months with extensively hydrolyzed casein formula, EHCF) (n = 9); 

Group 3 (CMA patients treated for 6 months with EHCF containing the probiotic L. 

rhamnosus GG, LGG) (n = 14). 

During the same study period, consecutive healthy children, with negative clinical history for 

any allergic condition visiting our center because of minimal surgical procedures or 

vaccination program were also enrolled in the study, Group 4 (n = 23). 

Main demographic and clinical features of the study subjects and p-value of paired 

comparisons are reported in Table 4.1. In particular, the age at enrolment, when stool 

sampling was performed, was similar among groups. All study subjects were weaned. Study 

subjects enrolled in Group 1 (CMA at baseline before any dietary intervention) were on 

standard formula at the time of enrolment. The adherence to treatment was optimal in all 

subjects. Dietary habits were similar among the four groups, with the exception of the type of 

hypoallergenic formula used for CMA treatment in subjects enrolled in Groups 2 and 3. The 

hypoallergenic formula was previously prescribed by physicians when CMA diagnosis was 

confirmed. 
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The median (minimun-maximum) formula intake was 480 ml (400–500 ml) in Group 2 and 

465 ml (400–500 ml) in Group 3. The protein (daily intake of 1–2 g/kg) and fat (daily intake 

of 2.5–6.0 g/kg) intakes were similar into the 4 study groups. All study subjects were 

caucasian and were from an urban area. All subjects were single child. Information about 

exposure to pets and/or history of maternal/infant dietary supplements were reported. Clinical 

manifestations in all CMA patients enrolled in Groups 1, 2 and 3 were limited to the 

gastrointestinal tract. 

 

Table 4.1 Main demographic and clinical features of the study population 

 
 

Subjects with non IgE-mediated CMA  
 

At diagnosis 

 

 

Treated with  

EHCF 

 

Treated with  

EHCF + LGG 

 

Healthy  

subjects 

Group 1 Group 2 Group 3 Group 4 

N.  23  9  14  23  
Male, n (%)  12 (52.2)  6 (66.7)  8 (57.1)  9 (39.1)  

Age at enrolment, months (SD)  11.4 (7.2)  11.3 (1)  14.1 (5.8)  12.9 (7.4)  

Age at diagnosis, months (SD)  11.4 (7.2)  5.3 (1)  8.1 (5.8)  —  

Vaginal delivery, n (%)  11 (47.8)  6 (66.7)  5 (35.7)  10 (43.5)  

Birth weight, kg (SD)  3.1 (0.3)  2.9 (0.5)  2.9 (0.5)  3.1 (0.4)  
Breastfeeding for at least 1 month, n (%)  19 (82.6)  8 (88.9)  9 (64.3)  14 (60.4)  

Duration of breastfeeding, months (SD)  4.1 (2.7)  2.12 (2.03)  4.55 (4.1)  3.1 (2.05)  

Age at weaning, month (SD)  5 (0.8)  4.9 (0.8)  4.9 (1.2)  4.7 (1)  

   
p-value 

Group 1  

vs 

Group 2  

vs 

Group 3  

vs 

Group 2 Group 3 Group 4 Group 3 Group 4 Group 4 

Male, n (%)  0.694 0.769 0.375 1.000 0.243 0.286 

Age at enrolment, months (SD)  0.967 0.255 0.483 0.179 0.521 0.634 
Age at diagnosis, months (SD)  0.018 0.149 — 0.179 — — 

Vaginal delivery, n (%)  0.444 0.471 0.767 0.214 0.433 0.641 

Birth weight, kg (SD)  0.171 0.095 0.937 0.942 0.201 0.114 

Breastfeeding for at least 1 month, n (%)  1.000 0.255 0.102 0.340 0.210 0.835 

Duration of breastfeeding, months (SD)  0.079 0.733 0.246 0.150 0.309 0.260 
Age at weaning, month (SD)  0.724 0.661 0.323 0.944 0.681 0.741 

Familiar allergy risk, n (%)  1.000 1.000 0.522 1.000 0.685 0.713 

 

p-values of paired t-test were reported for all variables. 

 

Gut microbiota of children with non-IgE-mediated CMA differs from that of healthy controls 

 

Non-IgE-mediated CMA children at diagnosis, before dietary treatment, presented significant 

differences in gut microbial composition when compared to healthy controls, while the alpha 

diversity of the microbiota was not associated with the health status (data not shown). A PLS-

DA model was able to discriminate healthy from non-IgE-mediated CMA subjects (Figure 

4.1). Only one bacterial phylum, Bacteroidetes, was significantly enriched in non-IgE-

mediated CMA patients (Wilcoxon pairwise tests, p < 0.05, data not shown). However, at the 

level of genus, two Bacteroidetes genera, Bacteroides and Alistipes, and a single Firmicutes, 
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Sarcina, were significantly enriched in non-IgE-mediated CMA when compared to healthy 

controls (Wilcoxon pairwise tests, p<0.05, data not shown).  

We applied a Generalized Linear Model (GLM) for Bacteroides abundance against eight 

features, including protein and fat consumption, mode of delivery, sex, age, age at weaning, 

breastfeeding duration and health status, to compare between non-IgE-mediated CMA (group 

1) and healthy controls (group 4). Health status (healthy or non-IgE-mediated CMA) 

described the majority of the variance in the relative abundance of Bacteroides between these 

cohorts (Figure 4.2). 

 

 
Figure 4.1 Score plot of the sPLS-DA model based on the microbiota composition at genus level 

of healthy and non-IgE mediated CMA subjects. 
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Figure 4.2 Generalized linear model fitting of patient demographic information across 

relative abundance of Bacteroides (A) and box plots showing the abundance of Bacteroides 

(B). In panel A, parallel x axis represents the relative contribution value of every factor, as 

predicted by the GLM model (*p < 0.05). In panel B, boxes represent the interquartile range (IQR) 

between the first and third quartiles, and the line inside represents the median (2nd quartile). 

Whiskers denote the lowest and the highest values within 1.5 x IQR from the first and third 

quartiles, respectively. Asterisks indicate a significant difference as obtained by pairwise 

Wilcoxon test (p < 0.05). 
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Dietary management and gut microbiota composition in children with non-IgE-mediated 

CMA 

 

The abundance of Bacteroides and Alistipes significantly decreased with both dietary 

supplementation (data not shown) compared to initial non-IgE mediated CMA samples at 

diagnosis. However, the relative abundance of both Bacteroides and Alistipes was 

significantly lower in the samples from patients treated with EHCF + LGG (Wilcoxon 

pairwise tests, p < 0.05; Figure 4.2). In addition, EHCF + LGG treated patients showed a 

significantly greater relative abundance of Lachnospira, Ruminococcus, Oscillospira 

compared to patients given EHCF alone (p < 0.05, Supplementary Material). Finally, 

Lactobacillus was observed at a greater relative abundance in EHCF + LGG treated children 

(data not shown). 

 

Sub-genus diversity of Bacteroides differentiates healthy and non-IgE-mediated CMA subjects 

 

As Bacteroides had the strongest statistical association with non-IgE-mediated CMA, we 

further stratified the sequences annotated to this genus using oligotyping analysis. A total of 

29 Bacteroides oligotypes were identified, and the diversity in oligotype composition was not 

associated to the relative abundance of the genus (data not shown). CMA children maintained 

a greater average number of Bacteroides oligotypes compared to healthy subjects (11.9 vs 4.4, 

respectively; Wilcoxon test, p < 0.001), and the oligotypes that were enriched substantially 

differentiated healthy versus CMA children (Fig. 3). In particular, oligotypes Bac10 and 

Bac12 were significantly enriched and Bac8 and Bac9 were significantly reduced in CMA at 

diagnosis (p < 0.05). Both dietary interventions altered the oligotype diversity of Bacteroides, 

but EHCF + LGG resulted in a Bacteroides diversity pattern similar to that seen in healthy 

controls (Figure 4.3). Indeed, the abundance of oligotypes associated with CMA (Bac10 and 

Bac12) was significantly reduced compared with CMA at diagnosis upon both the treatments 

(p < 0.05), but only EHCF + LGG resulted in an abundance of oligotype Bac8 similar to that 

found in the healthy controls (p > 0.05). Oligotype Bac9 also increased but was still lower 

than the controls (p < 0.05). Oligotype representative sequences were queried against the 

NCBI nr database and 11 different Bacteroides species were identified, some showing exact 

match (100% identity on the whole length), with sequences in the database (data not shown). 

Overall 11 of the oligotypes were most similar to sequences of species belonging to B. fragilis 

group (data not shown). 
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Figure 4.3 Pie charts showing the abundance of Bacteroides oligotypes in the different subject 

categories. 

 

Dietary treatments, fecal butyrate concentration and correlation with specific gut bacteria 

 

Children with non-IgE-mediated CMA had a significantly lower fecal concentration of 

butyrate compared to healthy controls (pairwise Wilcoxon tests, p < 0.05). While both dietary 

regimens were associated to a significant increase in butyrate concentrations, the result was 

more evident in children treated with EHCF + LGG (Figure 4.4). Butyrate concentration was 

significantly correlated to the relative abundance of Lachnospira and two Bacteroides 

oligotypes (Bac7 and Bac8) that were enriched in EHCF + LGG treated children. On the 

contrary, the relative abundance of oligotype Bac12, which was enriched in the CMA group, 

was negatively correlated to butyrate concentration. 
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Figure 4.4 Box plots showing faecal butyrate concentration in CMA, healthy and treated children 

(*p < 0.05). For a description of the box plots, see Figure 4.2 legend. 

 

Gut microbiota features overlaps in IgE and non-IgE-mediated CMA children 

 

The sequence data from this study were re-analyzed alongside data produced in a previous 

study to compare the microbiota in non-IgE-mediated CMA vs. IgE-mediated CMA patients 

(Berni Canani et al., 2016d). Healthy subjects from both studies clustered together in a 

hierarchical clustering based on Ward distance (Figure 4.5). IgE-mediated CMA children at 

diagnosis and after treatment clearly clustered apart, indicating strong differences in gut 

microbiota composition, while non-IgE-CMA patients (with or without treatment) were more 

similar to healthy subjects (Figure 4.5). This progressive gradient of dysbiosis was also clear 

in the PLS-DA model, where non-IgE-CMA subjects were closer to the healthy controls and 

separated from IgE-mediated CMA children (data not shown). Accordingly, the average 

weighted Unifrac distance between IgE-mediated CMA and healthy subjects was significantly 

higher than that between non-IgE-CMA and healthy controls (0.68 ± 0.04 and 0.49 ± 0.08, 

respectively; p < 0.05). Interestingly, overlapping features characterized the gut microbiota 

dysbiosis in the two forms of CMA. In particular, a significant enrichment in Bacteroides was 

observed from healthy to non-IgE-mediated, and then to IgE-mediated CMA profiles (Figure 

4.6). Alistipes, Fusobacterium and Bilophila were significantly enriched in IgE-mediated 
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compared to non-IgE-mediated CMA subjects (Wilcoxon test, p < 0.05; Supplementary 

Material), while Eubacterium, Blautia, Akkermansia and Raoultella resulted increased in non-

IgE-mediated CMA patients (data not shown). 

 

 
Figure 4.5 Hierarchical McQuitty-linkage clustering of the samples based on the Pearson’s 

correlation coefficient of the abundance of OTUs present in at least 10% of the samples. 

Subjects from a previously published study (Berni Canani et al., 2016d) were included. The color 

scale represents the scaled abundance of each variable, denoted as Z-score, with red indicating 

high abundance and blue indicating low abundance. Column bars are colored according to the 

subject categories. Row bar is colored according to the phylum: Actinobacteria, green; 

Bacteroidetes, red; Firmicutes, navy blue; Proteobacteria, grey; others, orange. 
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Figure 4.6 Box plots showing the abundance of Bacteroides in healthy, non-IgE mediated and IgE 

mediated CMA subjects (*p < 0.05). Subjects from a previously published study (Berni Canani et 

al., 2016d) were included. For a description of the box plots, see Figure 4.2 legend. 

 

4.4 Discussion 

 

We are witnessing a dramatic and apparently ongoing increase in the prevalence of FA 

(Wood, 2015), but the cause of this increase is still largely undefined. Recent evidence has 

emphasized the role of intestinal bacteria in the prevention or treatment of FA, and there is 

mounting evidence that microbial dysbiosis early in life represents a critical factor underlying 

FA development (Prince et al., 2015; Di Costanzo et al., 2016). We observed that children 

with non-IgE-mediated CMA had elevated relative abundances of Bacteroides and Alistipes. 

Different sub-genus patterns of Bacteroides were associated with CMA. An increase in 

Bacteroides has been associated with peanut and tree nut allergy and other atopic 

manifestations (Hua et al., 2016; Odamaki et al., 2008; Kirjavainen et al., 2002), and 

Bacteroides species are reported to alter gut permeability (Hua et al., 2016; Odamaki et al., 

2008; Kirjavainen et al., 2002; Curtis et al., 2014). Conversely, Ling and co-workers (Ling et 

al., 2014) reported a decrease in Bacteroidetes in a cohort of Chinese children characterized 

by different types of FA. These discrepancies may be due to different variable regions of 16S 

rRNA gene targeted, to the low number of children evaluated in the study (non-IgE-mediated 

CMA children, n=4), and to different dietary patterns or ethnicity (Ling et al., 2014). We 
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found that the relative abundance of Bacteroides was higher in children with IgE-mediated 

CMA compared to patients with non-IgE-mediated CMA and healthy controls, suggesting a 

key role of this genus in CMA pathogenesis and pointing to potential common pathways 

predisposing to both non-IgE- and IgE-mediated FA. Interestingly, a transition to IgE serum 

level positivity has been demonstrated in up to 30% of non-IgE-mediated FA subjects 

(Nowak-Węgrzyn et al., 2015). 

Both EHCF and EHCF + LGG treatments influenced gut dysbiosis in non-IgE-mediated 

CMA children, but the result was more pronounced in patients treated with EHCF + LGG. 

Remarkably, the treatment with EHCF + LGG appeared to restore the Bacteroides sub-genus 

composition and structure, which exhibited diversity similar to that shown by the healthy 

controls. 

Bacterial metabolites are an important communication tool between the commensal 

microbiota and the host immune system and establish a broad basis for mutualism (Smith et 

al., 2013). Short chain fatty acids (SCFAs) are among the most abundant microbial 

metabolites and play a critical role in mucosal integrity, local and systemic metabolic function 

and regulation of immune response (Wesemann and Nagler, 2016; Geuking et al., 2013; 

Furusawa et al., 2013; Maslowski and Mackay; 2011). In agreement with previous findings 

(Berni Canani et al., 2016d), EHCF + LGG treatment significantly increased butyrate 

production. This increase correlated with an enrichment of potential SCFA-producers as well 

as selected Bacteroides oligotypes. Previous clinical findings showed that dietary 

management with EHCF + LGG results in a higher rate of tolerance acquisition in infants 

with non-IgE-mediated CMA (Berni Canani et al., 2012a; Berni Canani et al., 2013b). 

The use of a well characterized and homogeneous study population without ethnic diversities 

and with similar environmental influences (all weaned and living in urban area, similar 

breastfeeding rate, single child, no pets and no history of maternal/infant dietary supplements) 

represents a major strength of this study. Conversely, the relatively small number of subjects 

and the cross-sectional design are the major limitations. Longitudinal cohort studies in 

children with CMA are advocated and could better assess the development of gut microbiota 

during the disease course, and also in response to different therapeutic dietary strategies for 

CMA treatment. Moreover, although the age at enrolment (when faecal samples collection 

was done) was similar among the groups, we detected a significant difference in the age at 

diagnosis between Group 1 and 2, that might have affected the differences observed in the gut 

microbiota.  
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4.5 Conclusion 

 

Our data support the hypothesis that gut microbiota dysbiosis could be a relevant target of 

treatment in CMA and that EHCF + LGG-based diet can be an efficient strategy for 

microbiome-targeted intervention. Integrating these data with data generated through 

transcriptome, epigenome, and metabolome investigations, will facilitate our understanding of 

FA and might drive the development of new preventive and therapeutic strategies. 

 

4.6 Notes 

 

This chapter reports the content of paper entitled “Gut microbiota composition and butyrate 

production in children affected by non-IgE-mediated cow’s milk allergy” by Berni Canani R, 

De Filippis F, Nocerino R, Paparo L, Di Scala C, Cosenza L, Della Gatta G, Calignano A, De 

Caro C, Laiola M, Gilbert JA and Ercolini D (2018) published in Scientific reports 8.1:12500 
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Chapter 5       The MedDiet and gut microbiome 

 

 

CHAPTER 5 

 

 

Impact of a Mediterranean diet intervention on gut microbiome and metabolome 

 

 

5.1 Introduction 

 

Diet is a fundamental factor affecting gut health. Mounting evidence highlights that diets 

richer in plant- rather than animal-based foods could represent healthier choices to prevent 

disease (Kelly et al., 2017; Chiavaroli et al., 2019). The Mediterranean diet (MD) is a 

recommended nutritional pattern with evidence of beneficial effects including the prevention 

of several types of disease, such as cardiovascular disease (CVD), type 2 diabetes, obesity, 

inflammatory diseases, degenerative diseases and cancer (Bendall et al., 2018; Eleftheriou et 

al., 2018; Martínez-González et al., 2019). 

The microbiome partly but significantly affects individual metabolism and how one responds 

to changes in dietary habits (David et al., 2014; Cani, 2018). Host health is influenced by 

microbiome composition and by microbial metabolites that can be produced from host 

metabolic intermediates or from dietary precursors (Roager and Dragsted, 2019). Therefore, 

current trends in personalized nutrition suggest that diet can be used to modulate microbiome 

composition and function (Bashiardes et al., 2018; Johnson et al., 2019). Indeed, the 

production of beneficial microbial metabolites can be increased, and the production of 

detrimental metabolites can be reduced by modulating nutrient intake and supplying a 

beneficial pattern of key precursors to the microbiome. 

The current knowledge of the role of diet on microbiome-mediated health outcomes in 

humans mainly relies on observational studies in which confounding affects the conclusions 

(Grosso et al., 2017). Intervention studies to address the causal effects of diet on microbiome 

functions are still scarce or have been performed in animal models, and this lack of 

knowledge also applies to the MD (De Filippis et al., 2018; Bailey and Holscher, 2018). 

Despite their cost and labour-intensiveness, randomized controlled trials (RCTs) are the gold 

standard for evidence-based medicine and are an appropriate tool for identifying a causal 
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relationship of a specific nutrient/diet on a health outcome in humans (Harris et al., 2001; 

Blumberg et al., 2010). 

A Western diet is characterized by an excessive intake of foods with a high energy density 

and that are rich in fats, sugars, and animal proteins, as well as a very low intake of fruits and 

vegetables. Such a dietary style, accompanied by low levels of physical activity, promotes 

inflammation and predisposes individuals to obesity, CVD, type 2 diabetes and metabolic 

syndrome (Myles, 2014; Minihane et al., 2015; Mozaffarian et al., 2011). Because obesity is 

highly prevalent worldwide and is recognized as an independent risk factor for metabolic-

driven chronic diseases, efforts need to be made urgently to provide evidence-based 

recommendations for healthy dietary patterns. 

The aim of this study was to evaluate the effect of an individually tailored MD intervention in 

subjects at increased risk of cardiovascular disease. 

 

5.2 Materials and Methods 

 

Study design and population 

We investigated the gut microbiome, faecal, blood and urinary metabolomic profiles in 82 

overweight/obese subjects in response to an 8-week isocaloric dietary intervention with a MD 

or a control diet. The trial was conducted at the University of Naples Federico II and was 

approved by the related Ethics Committee (Protocol number: 108/16). Each participant 

provided written informed consent and received no financial compensation. The trial was 

registered at ClinicalTrials.gov (number NCT03071718). The protocol ended when the last 

group of participants completed the protocol (Study Start Date: June 2016; Actual Primary 

Completion Date: July 2017; Actual Study Completion Date: February 2019). 

The study design, selection criteria and participant flow throughout the study are reported in 

the online Supplementary Materials (Supplementary Figure 1). Plasma lipids (including 

plasma cholesterol and triglycerides) and faecal levels of short-chain fatty acids (SCFAs) 

were registered as primary outcomes of the study, while changes in gut microbiota and some 

intermediate markers of metabolic disease, such as blood pressure, fasting blood glucose, 

serum high sensitivity C-reactive protein (hs-CRP), urinary and plasma trimethylamine oxide 

(TMAO), plasma gastrointestinal peptides, and urinary polyphenols, were secondary 

outcomes (detection methods described in the Supplementary material). Briefly, 334 

potentially eligible adults were screened on the basis of the inclusion/exclusion criteria, 

including medical and lifestyle conditions (i.e., habitual diet and physical activity) (detailed 
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criteria are in the Supplementary Materials). Adherence to the MD was estimated by using the 

11-unit dietary score and is reported as the Italian Mediterranean Index (MD index) (Agnoli et 

al., 2011). 

Eighty-two subjects (43 female and 39 male, average BMI 31.1±4.5 kg/m2, age 43±12 y, 

further baseline features in the Supplementary Table 1) were selected, enrolled and 

randomised between the two intervention arms of the parallel study design, i.e. MedD or 

ConD.  

 

Dietary intervention 

 

Each participant in the MedD group consumed an individually tailored diet that maintained 

the daily energy and macronutrient intake of the habitual diet and guaranteed a dietary pattern 

typical of the MD. Participants in the ConD group were asked to maintain their habitual diet. 

Individual compliance with the protocol was assessed every 2 weeks by self-recorded 7-d 

food diaries and physical activity questionnaires. Visits and sample collection were performed 

at baseline, 4 weeks and 8 weeks (full details reported in the Supplementary Material). 

 

Metabolomics 

 

Untargeted urine, serum and faeces metabolomics as well as targeted quantification of bile 

acids (BAs) and SCFAs in the faeces were performed by ultra-high-performance liquid 

chromatography mass spectrometry (UHPLC-MS) (Andersen et al., 2014; Barri et al., 2013; 

Christiansen et al., 2018; Hjerpsted et al., 2016). Trimethylamine N-oxide (TMAO), 

carnitine, choline, creatinine, betaine in plasma and urine as well as urinary urolithins were 

also determined by targeted metabolomics using liquid chromatography tandem mass 

spectrometry (LC-MS/MS). Details are available in the Supplementary Materials. 

Metabolomics untargeted data were yielded at the University of Copenaghen (Denmark). 

 

Metagenomics 

 

A full description of the sampling, sequencing and data analysis procedures is reported in the 

Supplementary Materials. DNA libraries were sequenced using the Ion Proton Sequencer 

(ThermoFisher Scientific, Waltham, US), with a minimum of 20 million 150-bp high-quality 

reads generated per library. Metagenomic species pangenome (MSP) was used to identify and 
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quantify species associated with the 9.9-million-gene integrated reference catalogue (Plaza 

Oñate et al., 2018). The functional potentials of the intestinal gut microbiota were determined 

by using the in-house FAnToMet pipeline as described in the Supplementary Materials. High 

throughput sequencing, MSP and functional potentials determination were performed at 

MetaGenoPolis center (INRAE, Jouy-en-Josas, France) 

 

Statistical analysis 

 

Statistical analysis and visualization were carried out in R environment version 3.4.2 

(https://www.r-project.org). ggpubr and PMCMR R packages were used to assess significant 

differences. Variations in dietary and clinical variables at specific timepoints compared to 

baseline values between the MedD and ConD groups were evaluated by 2-way ANOVA with 

repeated measures and Tukey’s post hoc test. Non-parametric Wilcoxon signed-rank test 

(testRelations function of momr R package) was performed to compare means between ConD 

and MedD subjects at each time point, while the post hoc Nemenyi test for multiple 

comparisons following the Friedman test was used within each group. 

Pairwise Spearman's rank correlations were used to estimate the overall similarity of the 

microbiome and metabolome within the MedD and ConD groups and between time points 

(baseline vs 4 weeks and 4 weeks vs 8 weeks). The same test was applied to the microbiome, 

dietary variables, clinical markers and targeted metabolome datasets. Adjustments were 

performed using the Benjamini-Hochberg procedure. Correlations were visualised using the 

ComplexHeatmap package (Gu et al., 2016). 

Machine learning-based classification (Pasolli et al., 2016) of metabolomics data and further 

details on data analysis and visualization are provided in the Supplementary Materials from 

Meslier et al., 2020). 

 

5.3 Results 

MD lowered plasma cholesterol in the overall population 

No significant differences in anthropometric measures or clinical variables monitored in 

blood and urine samples were observed between the ConD (n=39) and MedD (n=43) groups 

at baseline (Supplementary Table 1). Regarding the primary outcomes, as a consequence of 

the intervention, the participants in the MedD showed a significant decrease in total plasma 

cholesterol (Figure 5.1) and HDL-cholesterol after 4 weeks compared to the ConD group 
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(Supplementary Table 1). No changes in any of the secondary outcomes such as blood 

glucose, serum hs-CRP, plasma insulin, TMAO or any intermediate markers of metabolic 

disease (glucagon, ghrelin, GIP, GLP-1, leptin, C-peptide, resistin, visfatin and PAI-1) were 

observed (Supplementary Table 1). 

Compliance throughout the intervention and MD adherence-based analysis 

Adherence to the MD significantly increased in the MedD group at 4 weeks and 8 weeks 

compared to the baseline (Figure 5.1) and was highly correlated with the Healthy Food 

Diversity (HFD) index (Supplementary Figure 2) (Drescher et al., 2007). Significant 

percentage changes in dietary and metabolic variables are shown in Figure 1B. Participants in 

the MedD group significantly increased their daily intake of dietary fibre by 2-fold and their 

dietary vegetable:animal protein ratio by 2.5-fold over the intervention compared to the ConD 

group (p<0.005, Figure 5.1). A significant reduction in saturated fat intake and an increase in 

polyunsaturated fat intake was also achieved (p<0.005, Figure 5.1). These changes in nutrient 

intake in the MedD vs the ConD group were due to increased consumption of fruits, 

vegetables, nuts, wholegrain cereals and fish products concurrent with reduced consumption 

of refined cereals, dairy and meat products. The reduced consumption of meat products was 

confirmed by the reduction in the biomarker of the intake of these foods in the MedD vs 

ConD group, i.e., the concentration of carnitine in the plasma (14% and 11% reductions after 

4 and 8 weeks, p<0.05 and p<0.005, respectively, Figure 5.1) and urine (75% and 51% 

reductions after 4 and 8 weeks, p<0.01 and p<0.005, respectively, Figure 5.1). 
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Figure 5.1 Adherence to the Mediterranean diet (MD) and changes in dietary and metabolic variables. (A) Box plots showing MD index score for controls (ConD) or 

treated subjects (MedD) during the intervention, the significance was tested by applying the post hoc Friedman-Nemenyi test for pairwise test of multiple comparisons within 

each group. (B) Percentage changes in dietary and metabolic variables are represented as spider chart. Changes in levels of dietary components consumption including (C) 

dietary fibre, (D) vegetable proteins/animal proteins ratio, (E) saturated to polyunsaturated fats ratio. Reduction in serum and urinary markers such as (F) plasma carnitine, (G) 

urinary carnitine and (H) total cholesterol. The significance was tested by applying unpaired Wilcoxon rank-sum tests for variation at the specific timepoint compared to 

baseline in MedD vs ConD. Orange boxes refer to controls and green boxes to Mediterranean subjects, respectively. Baseline, 0 weeks; 4w, 4 weeks; 8w, 8 weeks of 

nutritional intervention. (* p<0.05, ** p<0.01 and *** p<0.001). 
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During the run-in period, some subjects (12 in the MedD group and 6 in the ConD group) 

undesirably increased their intake of fruit and vegetables above 3 servings/day compared to 

their consumption at the time of enrolment. We decided to strictly focus on the population 

who maintained a baseline dietary intake of fruits and vegetables <3 servings/day. In addition, 

two subjects were not considered because not all the faecal samples were available. 

Therefore, the subsequent data analyses were carried out with a subgroup of 62 subjects, 32 in 

the ConD group and 30 in the MedD group. High compliance with the intervention was 

confirmed in both groups. Changes in dietary intake of nutrients from several food categories 

are shown in Supplementary Figure 3. The effect of MedD on plasma cholesterol was 

confirmed in this subgroup. Indeed, following 4 weeks of intervention with a MD, a 

significant reduction (p=0.03) in plasma LDL-cholesterol from 2.90±0.13 mmol/L at baseline 

to 2.66±0.12 mmol/L at 4 weeks was observed in the MedD group compared to the change in 

the ConD group (3.24±0.13 mmol/L at baseline to 3.25±0.12 mmol/L at 4 weeks), and a 

significant reduction (p=0.02) in plasma HDL-cholesterol from 1.26±0.05 mmol/L at baseline 

to 1.18±0.04 mmol/L at 4 weeks was observed in the MedD group compared to the change in 

the ConD group (1.21±0.05 mmol/L at baseline to 1.25±0.05 mmol/L at 4 weeks). 

Interestingly, a significant inverse correlation was found between cholesterol levels and the 

MD index. By applying a linear model, it was found that each unit increase in the MD index 

corresponded to ≃2% reduction in total plasma cholesterol (p=0.003, Supplementary Figure 

4), a 2% reduction in plasma LDL-cholesterol (p=0.01) and 1% reduction in plasma HDL-

cholesterol (p=0.04) after adjustment for age, sex, BMI and energy intake. 

MD-mediated metabolome changes highlight several biomarkers of the MD and compliance 

with the intervention 

 

We measured approximately 11,000 molecular features in all our participants during the 

intervention (2,200 in faeces, 4,125 in blood and 4,645 in urine). A list of annotated 

metabolites is provided in Supplementary Table 4 and the evidence substantiating the 

annotation of diet-responsive metabolites is provided in Supplementary Figures 5-25. Clear 

shifts in the metabolomic profiles were observed in the MedD group after the intervention 

compared to the baseline conditions and to the ConD group (Figure 5.2). Decreasing 

Spearman’s correlation coefficients (4 weeks vs baseline; 8 weeks vs baseline) indicated a 

significant change in the urine metabolic profiles after 4 (p=0.01) and 8 weeks (p=0.01) of 

intervention in the MedD group vs the ConD group. In order to validate the robustness of the 

shifts observed, we used a machine learning-based classification approach (area under the 
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curve (AUC) = 0.88 and 0.87 between the ConD and MedD groups at 4 weeks and 8 weeks, 

respectively; as a control, AUC = 0.52 was observed at baseline), which supported the 

metabolome changes found. In agreement with the replacement of refined cereal with 

wholegrain products and the replacement of meat, eggs and dairy products with fishery 

products, legumes and provided nuts, we found increased levels of the biomarkers of 

wholegrains (3-(3,5-dihydroxyphenyl) propanoic acid-glucuronide), legumes (tryptophan 

betaine), vegetables/berries (oxindole-3-acetic acid), and nuts (urolithins) in the MedD group, 

while biomarkers of meat (carnitine), BAs, leucine and isoleucine were more closely linked to 

the ConD group (Figure 5.2) (Roager et al., 2019; Keller et al., 2013; Cuparencu et al., 2016; 

Tulipani et al., 2012; Dragsted, 2010). Notably, no change in urine or serum TMAO was 

observed, possibly due to contrasting effects of increasing fish intake and lowering intakes of 

animal proteins in the MedD group. 

MD-mediated increase in biomarkers of wholegrain (benzoxazinoids, pipecolic acid betaine), 

vegetable (oxindole-3-acetic acid), legume (tryptophan betaine, pyrogallol-sulphate), nuts 

(urolithins) and fish (3-carboxy-4-methyl-5-propanyl-2-furanpropionic acid) consumption and 

decrease in meat (carnitine) and protein degradation products such as branched-chain amino 

acids (BCAAs), aromatic amino acids, N-acetylcadaverine and microbial-derived proteolysis 

products (p-cresol sulphate, indoxyl sulphate, phenylacetylglutamine) was further confirmed 

by their significant associations with the MD index (Supplementary Figure 5). Finally, a 

range of host-derived short- and medium-chain acylcarnitines was significantly reduced in the 

urine following the MD intervention, indicating a shift in substrates for energy metabolism 

from fat to complex carbohydrates and protein (Khakimov et al., 2016). 
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Figure 5.2 Mediterranean diet changes the intestinal and systemic metabolome. Partial Least Squares Discriminant Analysis (PLS-DA) plots based on 

molecular features detected in (A) faeces and (B) urine. Subjects belonging to different categories were coloured according to diet and timepoints: MedD 

subjects at baseline (light green), after 4 (green) and 8 weeks of intervention (dark green). ConD subjects at baseline (light orange), after 4 (orange) and 8 weeks 

(dark orange) of intervention. The loading plots display vectors that contributed the most to variability of individual dataset; variables explaining the variance 

between the groups in (C) faecal and (D) urine metabolome are reported as bar plots. RT, Retention Time. 
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Gut microbiome composition is modulated by adherence to the MD 

 

Gene (average = 555,131.5 ± 120,191) and MSP richness (average = 230.9 ± 53.1) metrics 

were maintained during the intervention. However, a significant inverse correlation was found 

between the variation in gut microbial gene richness and individual inflammatory status 

evaluated by serum hs-CRP variations (Figure 5.3). Subjects showing increased gene richness 

displayed significantly lower levels of serum hs-CRP after 8 weeks of the dietary intervention 

(Figure 5.3). 

 

 

Figure 5.3 Microbial diversity richness anti-correlates with inflammation. (A) Spearman’s 

correlation between variation of gut microbial gene richness and individual inflammatory status 

(serum hs-CRP) variation at the end of trial; n observation=62. (B) Violin plot showing differences 

in serum hs-CRP variation between subjects increasing (n=25, yellow) compared to subjects 

decreasing (n=37, light blue) gene richness at the end of trial. Statistical differences between 

groups were determined using unpaired Wilcoxon rank-sum tests. 

 

The increased adherence to the MD in the first 4 weeks corresponded to a decrease in the 

microbiome similarity in the MedD group during the same time-interval, suggesting a MD-

induced rearrangement of the gut microbiome composition. This change was not observed 

either in the ConD group over the entire intervention or in the MedD group between 4 weeks 

and 8 weeks, i.e. in intervention conditions when participants did not change their adherence 

to the MD (data not shown).  

While a negligible number of differentially abundant MSPs was found at baseline between the 

ConD and MedD groups (n=27 MSPs, Supplementary Figure 6 and Supplementary Table 5), 

more contrasting species were observed at 4 (n=77 MSPs) and 8 weeks (n=44 MSPs, 

Supplementary Figures 7-8 and Supplementary Table 5), with the proportion of contrasting 

species consistently linked to the MD adherence evaluated by MD index (Supplementary 

Tables 5-6). 
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During the increasing MD adherence phase (baseline-4 weeks), Ruthenibacterium 

lactatiformans, Flavonifractor plautii, Parabacteroides merdae, Ruminococcus torques and 

R. gnavus were significantly reduced in the MedD compared to the ConD group, along with 

Streptococcus thermophilus, a well-known marker of dairy product consumption. In contrast, 

5 members of the Faecalibacterium prausnitzii clade were enriched in the MedD compared to 

the ConD group at either 4 or 8 weeks (Supplementary Table 5-6), along with several 

members of the Roseburia and Lachnospiraceae taxa. Consistently, MSPs enriched in the 

MedD group after 4 weeks were significantly linked to MD food biomarkers (Supplementary 

Figure 9). 

While only 5 gut metabolic modules (GMMs) were different between the diets (4% of 

functional potential variation; Supplementary Table 7) at baseline, 18% variation in the 

metabolic potential captured by GMM was observed after 4 weeks. Several GMMs (n=19) 

were enriched in the MedD group, mainly including pathways related to amino acid and 

carbohydrate degradation. The pathways also included triglyceride and glycoprotein 

degradation and conversion of acetyl-CoA and glutamate degradation, both leading to 

crotonyl-CoA, a possible precursor of butyrate metabolism (Supplementary Table 7). 

Although only 6% variation was observed after 8 weeks, enrichment in glutamate degradation 

to crotonyl-CoA was maintained in the MedD group. This pathway was significantly linked to 

the levels of Faecalibacterium prausnitzii msp_0388 (Spearman’s rho= 0.73, p< 10e-6, 

Supplementary Figure 9). 

Altogether, by integrating the three meta-omics datasets, we observed a separation of the 

ConD and MedD groups on the basis of microbiome diversity, functional modules and 

metabolomic profiles (Hotelling T2=40.95, p<7.038e-12; Supplementary Figure 10) 

corroborating the changes induced by the MD intervention. (Singh et al., 2019) 

 

MD intervention affects microbiome activities 

 

We measured a number of metabolites associated with gut microbial metabolism to 

investigate the effect of the MD dietary intervention upon health-related microbial activities. 

Urinary levels of urolithin glucuronides increased in the MedD compared the ConD group 

(Table 5.1). Such increase was consistently linked with the levels of urolithin producers in the 

microbiome, including, among others, members of the Eggerthellaceae family 

(Supplementary Table 8), and with the consumption of nuts that were the sole dietary source 

of ellagitannins significantly increased in the MedD group (FDR<0.05, Supplementary Figure 
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11). Interestingly, urolithin production was negatively correlated with serum hs-CRP, 

triglycerides, body fat mass, body weight, BMI and urinary carnitine (FDR<0.05, 

Supplementary Figure 11). 

Compared to the baseline values, a significant reduction in faecal concentrations of total BAs, 

including both primary and secondary BAs, was observed in the MedD group upon the MD 

intervention (Figure 5.4). In addition, faecal deoxycholic acid was significantly reduced after 

4 (p<0.01) and 8 weeks of the intervention (p<0.01) along with faecal lithocholic acid (p<0.05 

and p<0.01 after 4 and 8 weeks, respectively) within the MedD group. Paired Wilcoxon rank-

sum tests of faecal BA concentrations within each intervention group are shown in 

Supplementary Figure 12. A comparison of faecal BA concentrations between the MedD and 

ConD groups after 8 weeks showed a significant reduction in faecal chenodeoxycholic acid 

(p<0.05). Accordingly, primary and secondary BAs in the faeces were positively linked to 

proteins and fats from animal-based food products as well as systolic blood pressure, BMI, 

body weight and urinary carnitine (FDR<0.05, Supplementary Figure 11). 

We also noticed that subjects showing the highest reduction in total BAs and the 

secondary/primary BA ratio had higher baseline levels of Bilophila wadsworthia, which 

decreased significantly after 4 weeks of the intervention (p<0.05, Figure 5.4). 

Despite the 2-fold increase in dietary fibre intake, no changes in faecal concentrations of the 

main SCFAs acetate, butyrate and propionate were observed. However, significant reductions 

in branched-chain fatty acids (BCFAs), such as valerate, isovalerate, isobutyrate and 2-

methylbutyrate, were observed in the faeces of the participants in the MedD group over the 

intervention (Figure 5.5), and these changes mirrored the increased intake of plant-based 

foods (FDR<0.05, Supplementary Figure 11). Moreover, subjects in the quartile of the highest 

faecal butyrate increase at 4 weeks showed consistently higher levels of F. prausnitzii and 

Lachnospiraceae taxa (Figure 5.5). 
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Table 5.1 Urinary urolithins-glucuronides levels (ng/µmol creatinine) detected over the study period. 

 

 MedD  ConD  P values 

 baseline 4w 8w baseline 4w 8w (4w – baseline) (8w – baseline) 

Urolithin-A-glucuronide 30.837.7 139.8296.8 214.4358 5.430.5 6.935.7 528.3 0.013 0.025 

Urolithin-B-glucuronide 0.10.7 21.760.6 74.1243.4 0.20.9 0.10.5 5.430.6 0.0073 0.086 

Urolithin-C-glucuronide 1.68.8 46.8107.2 43.2176.6 00 00 00 0.021 0.16 

Total Urolithins (A+B+C) 32.691.8 208.3373.8 336.7594.3 5.530.5 735.7 10.441 0.00034 0.033 

 

Data are expressed as mean±standard deviation (SD).  

P values refer to variation at the specific timepoint compared to baseline in MedD vs ConD measured by unpaired Wilcoxon rank-sum tests. 
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Figure 5.4 Faecal bile acids (BAs) concentrations over the nutritional intervention. Parallel coordinates plot showing variations of faecal (A) primary, (B) 

secondary and (C) total BAs concentrations within the MedD group during the intervention. The red triangles indicate mean values, the lines connecting dots are 

used to indicate the same sample at each time point. The significance was tested by applying the post hoc Friedman-Nemenyi test for pairwise test of multiple 

comparisons within each group. (D) In the box plot the relative abundances of Bilophila wadsworthia are compared considering subjects falling in the highest 

quartile (n=16, green) and in the lowest quartile of reduction (n=16, blue) of secondary to primary BAs ratio after 4 weeks of treatment. Baseline, 0 weeks; 4w, 

4 weeks; 8w, 8 weeks of nutritional intervention. H, highest quartile of reduction; L, lowest quartile of reduction; BAs, bile acids. 
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Figure 5.5 MD intervention determines a reduction of faecal branched-chain fatty acids (BCFAs) concentrations and higher levels of Faecalibacterium prausnitzii 

and Lachnospiraceae taxa. Parallel coordinates plot showing variations of (A) valerate, (B) isovalerate, (C) isobutyrate and (D) 2-methylbutyrate faecal concentrations 

within MedD population. The red triangles indicate mean values, the lines connecting dots are used to indicate the same sample at each time point. The significance was tested 

by applying the post hoc Friedman-Nemenyi test for pairwise test of multiple comparisons within each group. In the box plots, the relative abundances of (E) 

Faecalibacterium prausnitzii 3 and (F) Lachnospiraceae family are compared considering subjects falling in the highest quartile (n=16, violet) and in the lowest quartile 

(n=16, purple) of faecal butyrate increase after 4 weeks of treatment. Statistical differences between groups were determined using Wilcoxon rank-sum tests. Baseline, 0 

weeks; 4w, 4 weeks; 8w, 8 weeks of intervention. H, highest quartile of increase; L, lowest quartile of increase. 
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Microbiome composition, MD intervention and variation in insulin resistance 

 

The Homeostatic Model Assessment for Insulin Resistance (HOMA) was calculated as a 

measure of insulin resistance, and it did not change as a result of the intervention 

(Supplementary Table 1). However, by stratifying the subjects by the variation in HOMA at 4 

weeks compared to baseline, we found that subjects who reduced their HOMA upon the MD 

intervention had significantly higher baseline levels of several Bacteroides species (including 

B. uniformis and B. vulgatus, p<0.05) and lower Prevotella sp. and P. copri levels (p<0.05) 

than subjects who did not exhibit changes in HOMA over time (Supplementary Figure 13). 

Interestingly, P. copri baseline levels showed a positive correlation with HOMA variation 

over the intervention (Spearman’s rho=0.28; p=0.031). 

Consistently, when we computed co-abundance groups (CAGs) from 16S rRNA gene 

sequencing analysis, we found significantly lower levels of CAG2 (including Prevotella as 

the most abundant genus) in subjects who exhibited reduced HOMA, while levels of CAG4 

(including Faecalibacterium, Roseburia, Bacteroides, other Clostridia) were significantly 

higher at baseline in participants who exhibited reduced HOMA and increased upon dietary 

treatment (Supplementary Figure 14). 

The pangenome of the HOMA- and serum hs-CRP-associated species (P. copri, F. 

prausnitzii, B. uniformis, B. vulgatus) was further investigated. No clear differences were 

found according to intervention, increase in dietary fibre consumption or decrease in HOMA 

indicating a high subject-specificity at the strain level (Supplementary Figure 15). 

 

5.4 Discussion 

 

The results of this study clearly show that a change from a Western diet to a Mediterranean 

dietary pattern, without any concomitant change in energy intake, macronutrient intake or 

physical activity, modulates individual clinical outcomes, the gut microbiome and 

metabolome after 4 weeks of the intervention in a population with cardiometabolic risk due to 

unhealthy lifestyle habits. 

Each participant in the MedD group received a diet that was tailored to his/her habitual 

energy and macronutrient intake to increase the adherence to a typical MD pattern. In other 

words, each subject was instructed on the exact replacements of foods so that specific 

amounts of Western diet foods were exactly replaced by foods typical of a MD. At the best of 
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our knowledge, this approach has not been previously used in intervention studies with the 

MD. This ensured that changes in metabolic markers, the gut microbiome, and systemic 

metabolome were not biased by variation in energy intake over the nutritional intervention. 

From a clinical perspective, the data show that within a short period, a MD can lower total, 

LDL- and HDL- cholesterol in plasma independently of energy intake. The decrease in LDL-

cholesterol (by 0.24 mmol/L, -8.3% vs baseline) associated with MD in this study is far from 

the reduction of 1 mmol/L that has been indicated as clinically relevant towards a reduction in 

heart disease risk (Lewington et al., 2008). However, it is higher than the average reductions 

(between 0.11 and 0.23 mmol/L) that have been found in RCTs comparing meat-based diets 

with plant-protein based diets including nuts or legumes separately as well as those 

achievable (~0.1 mmol/L) with diets including ellagitannins or anthocyanins (García-Conesa 

et al., 2018; Guasch-Ferré et al., 2019). Interestingly, in our study, the cholesterol-lowering 

effect was linearly associated with individual adherence to the MD. The relationship between 

the MD index and plasma cholesterol highlights the importance of the whole MD pattern and 

of individual dietary compliance in eliciting the hypolipidaemic effect of the MD. We 

hypothesize that the lower dietary intakes of cholesterol (p<0.0001 at 4 weeks and 8 weeks vs 

baseline) and saturated fats (p=0.005 at 4 weeks and at 8 weeks vs baseline) upon the MD 

intervention are the main factors responsible for that effect (Wolff et al., 2011). 

Adherence to the MD was confirmed by comprehensive untargeted metabolic profiling of 

faeces, serum and urine, as well as targeted quantification of selected biomarkers. In 

agreement with the MD pattern, we found increased levels of biomarkers of wholegrains, 

legumes, vegetables and nuts, as well as reduced levels of biomarkers of meat and protein 

degradation products after the MD intervention. These objective measures substantiated the 

dietary records obtained by the FFQ and the 7-day food diary. The MD-dependent 

metabolome shift was particularly evident in the urine metabolome due to the accumulation of 

diet-derived metabolites of wholegrains, nuts and vegetables. In addition, a range of short- 

and medium-chain acylcarnitines were consistently reduced in urine following the MD 

intervention, suggesting a diet-induced shift in energy production from beta-oxidation to 

glycolysis in the mitochondria, probably due to an extended period of carbohydrate 

availability due to a steady release from fibre degradation. In agreement with these findings, 

plasma short-chain acylcarnitines have been associated with a Western diet and have been 

found in higher concentrations in meat eaters than in vegetarians and vegans, and urine levels 

of acylcarnitines were reduced with increased wholegrain intake (Bouchard-Mercier et al., 

2013; Schmidt et al., 2015; Ross et al., 2013). Since acylcarnitines have been associated with 
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an increased risk of CVD, the reduction in acylcarnitines in urine suggests a beneficial MD-

induced effect on energy metabolism caused by increased intake of dietary fibre (Guasch-

Ferré et al., 2016). 

Overall, the differences in the faecal metabolome associated with the intervention reflect the 

replacement of foods of animal origin with plant-based foods following MD adherence. 

Oxindole-3-acetic acid, a naturally occurring auxin in plants, as well as the BCAAs leucine 

and isoleucine and BAs appeared to be the main drivers (Korver et al., 2018). BAs can be 

implicated in atherosclerosis, diabetes, and other cardiometabolic diseases (Chávez-Talavera 

et al., 2017). Targeted quantification of faecal BAs confirmed a significant reduction in their 

concentrations within the MedD group coherently with the reduced intake of meat products. 

In line with these findings, a vegan diet has been found to reduce plasma BCAAs and BAs in 

comparison with the levels associated with an animal-based diet (Draper et al., 2018). 

High adherence to a MD has also been associated with increased faecal concentrations of 

SCFAs (De Filippis et al., 2016). Despite the fact that participants doubled their intake of 

dietary fibre, the MD intervention did not significantly increase the faecal concentrations of 

SCFAs. Stool SCFAs represents the difference between the production and absorption or 

utilization of SCFAs in the colon and rectum. We speculate that a possible improved gut 

epithelial function may have increased SCFAs utilization and absorption thus hampering the 

observation of their increase due to higher fibre intake. This result was corroborated by recent 

findings that dysbiosis is associated with increased faecal SCFA excretion (de la Cuesta-

Zuluaga et al., 2019). The MD decreased faecal concentrations of BCFAs, including valerate, 

which is in agreement with previous studies reporting faecal valerate as linked to the 

consumption of protein-rich animal foods and not to MD adherence (De Filippis et al., 2016; 

Mitsou et al., 2017). These results suggest an altered colonic proteolytic fermentation caused 

by the replacement of animal-based products with plant-based foods. This finding was 

substantiated by microbial-derived proteolytic products being reduced with increased MD 

adherence. An interesting increase in urolithins was observed in the MedD group. Urolithins 

are gut microbial metabolites of ellagitannins (Cerdà et al., 2005). Dietary sources of these 

polyphenols are berries, pomegranate and walnuts. However, our data indicated that only nuts 

consumption significantly increased over the intervention with MD. Therefore, increase in 

urinary urolithin glucuronides were most likely attributed to the intake of walnuts in our study 

as previously reported by others (Garcia-Aloy et al., 2019). 

Recently, urolithin A has been shown to improve intestinal barrier function in a pre-clinical 

model and has also been associated with lower cardiometabolic risk (Singh et al., 2019; 
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Selma et al., 2018). In addition, urolithin A has been demonstrated to be involved in the 

prevention of prostate, endometrial and breast cancer in vitro (Stanisławska et al., 2019; 

Zhang et al., 2016; Teixeira et al., 2017). Interestingly, in our intervention study urolithins 

levels were negatively correlated to cardiometabolic risk factors such as triglycerides and 

BMI and these observations further corroborate the hypothesis that a MD dietary pattern 

might beneficially impacts human health status through gut microbiota metabolism. 

It was recently reported that microbiome composition is more associated with specific food 

choices than with nutritional patterns, that food-microbe interactions are highly personalized, 

and that these factors might limit the observation of overall microbiome responses to specific 

diets (Johnson et al., 2019). Interestingly, despite such insightful evidence, we observed clear 

microbiome shifts following our dietary intervention protocol. 

Gut microbial taxonomic and functional composition in our isocaloric MD intervention 

revealed that the overall microbial richness was maintained, which is consistent with recent 

studies showing similar trends after increased consumption of wholegrain (Roager et al., 

2019; Haro et al., 2016a). However, we observed that the MD dynamically modulates the 

intestinal microbiome composition and that the microbiome variations are proportional to the 

increase in MD adherence rates. 

Even though prior studies addressed the link between diet, gene richness and inflammation 

markers, interventional studies aimed at describing variation of the microbial genetic richness 

following a MD dietary pattern have not previously been described (David et al., 2014; 

Roager et al., 2019; Haro et al., 2016a; Haro et al., 2016b; Vanegas et al., 2017). 

Interestingly, here MD improves the inflammatory status of individuals experiencing an 

increase in gut microbiome gene richness during controlled energy and modified 

macronutrient intakes, further supporting the idea that MD might be an efficient dietary 

strategy to reduce inflammation (Vitaglione et al., 2014; Bailey and Holscher, 2018). 

The MD intervention protocol determined a decline in Ruminococcus torques and R. gnavus. 

This latter has been recently demonstrated as a proinflammatory species due to secretion of a 

polysaccharide that induces tumor necrosis factor alpha (TNFα) in dendritic cells, whereas 

possible involvement of R. torques in inflammation remains largely uncertain and is currently 

based on associations (Le Chatelier et al., 2013; Brahe et al., 2015; Henke et al., 2019). 

We noticed that subjects with the highest reduction in faecal BAs consistently also exhibited 

reduced relative abundance of Bilophila wadsworthia, which was previously linked to higher 

BA levels, animal-based and high fat diets, as well as irritable bowel diseases (IBDs) 

(Devkota et al., 2012; David et al., 2014; Natividad et al., 2018). This decline was 
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accompanied by an increase in several potentially beneficial species, including the fibre-

degrading Faecalibacterium prausnitzii, Roseburia, and members of the Clostridiales and 

Lachnospiraceae taxa, linked to butyrate precursor functional pathways. These favourable 

species were previously documented for their anti-inflammatory properties and their role in 

the development of the intestinal barrier and were, in the present study, found to be boosted 

with foods recommended as part of a healthy MD nutritional pattern (Sokol et al., 2008; Vital 

et al., 2017). 

Our data also show that a MD-tailored dietary intervention might be helpful in ameliorating 

insulin sensitivity in individuals harbouring higher levels of several Bacteroides species and 

lower levels of Prevotella sp. and P. copri. The association of P. copri with insulin resistance 

was already reported by Pedersen et al. and it was recently demonstrated to be strain-

dependent and correlated with the occurrence of genes involved in BCAA biosynthesis 

(Pedersen et al., 2016; De Filippis et al., 2019). 

 

5.5 Conclusion 

 

These findings are in line with the concept of personalized responses of individuals to similar 

diets, and they are of importance for clinical practice in the era of precision medicine and 

personalized nutrition (De Filippis et al., 2018; Johnson et al., 2019). 

Taken together, our findings indicate that a MD may remodel the intestinal microbiome 

towards a state that promotes metabolic and cardiovascular health. In addition, our results can 

be useful to plan baseline stratifications of subjects based on microbiome composition to 

select specific metabotypes that could be involved in ad hoc nutritional interventions to 

potentiate the clinical outcomes. 

 

5.6 Notes 

 

This chapter reports the content of manuscript entitled “Mediterranean diet intervention in 

overweight and obese subjects lowers plasma cholesterol and leads to multiple shifts in the 

gut microbiome and metabolome independently of energy intake” by Victoria Meslier, 

Manolo Laiola, Henrik M. Roager, Francesca De Filippis, Hugo Roume, Benoit Quinquis, 

Rosalba Giacco, Ilario Mennella, Rosalia Ferracane, Nicolas Pons, Edoardo Pasolli, Angela 

A. Rivellese, Lars O. Dragsted, Paola Vitaglione, Dusko S. Ehrlich, Danilo Ercolini (2019) 

published in Gut. doi:10.1136/gutjnl-2019-320438. 
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Chapter 6 The MedDiet and salivary microbiota 

 

 

CHAPTER 6 

 

 

Impact of a Mediterranean diet intervention on salivary microbiota 

 

 

6.1 Introduction 

 

The human oral cavity is a complex and open ecosystem, harboring a whole community 

of microorganisms. More than 700 bacterial species inhabit the site making up the oral 

microbiota (Paster et al., 2006) and it is considered the second most complex symbiont 

microbiota in the human body after the gut (Dewhirst et al., 2010). 

Different individuals display a vast genetic variation in the oral microbial ecology. This 

dynamic ecosystem is influenced by both biological host parameters including age 

(Peterson et al., 2009), health status (Francavilla et al., 2014) and genetic predisposition 

(Maukonen et al., 2008) and local environmental factors such as diet (De Filippis et al., 

2014), geographical environment (Eriksson et al., 2017), antibiotics consumption 

(Costello et al., 2013) and smoking (Wu et al., 2016). In addition, the oral microbiota 

composition varies among different oral sites (Segata et al., 2012). Therefore, a healthy 

composition of the oral microbiota cannot be easily defined (Idris et al., 2017). 

Surprisingly, despite remarkable inter- and intra-individual variability, the microbial 

composition of the oral cavity is stable over time and in particular, saliva exhibits high 

evenness in terms of microbial diversity (Zhou et al., 2013; Cameron et al., 2015). 

Several publications appeared in recent years documenting that alterations in salivary 

microbial communities are associated to both oral and non-oral disease (Acharya et al., 

2017) and specific components of the salivary microbiota were proposed as predictive 

biomarkers for different type of pathologies (Hajishengallis et al., 2011; Cockburn et al., 

2012; Zhang et al., 2015). 

Recently, the oral microbiota dysfunction has been linked to atherosclerosis and 

cardiovascular disorder. Hence, oral symbionts may indirectly elicit the immune 

dysregulation leading to the progressive inflammation associated with cardiovascular 

diseases (Slocum et al., 2016). 
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Beyond host’s health, data from several studies highlight that diet is able to affect and to 

restore the homeostasis of a particular microenvironment concerning microbial ecology. 

Although in a recent paper (De Filippis et al., 2014) it has been observed that the salivary 

metabolome could categorize individuals depending on their dietary habits, more than the 

occurrence of specific bacterial signatures, studies on both the connection and the effect of 

long-term diet and the salivary microbiota composition are still lacking. 

Mediterranean diet (MD) is a healthy dietary pattern useful for both prevention and 

treatment of diet-related diseases. High-level of adherence to the MD is significantly and 

directly correlated to protection against the major chronic inflammatory diseases (Sofi et 

al., 2010), and it has been recently shown to impact gut microbiota and metabolome (De 

Filippis et al., 2015). Several researches have been focused on the effect of dietary 

interventions on gut microbiota composition, but little is known about the possible effects 

on salivary microbial ecology. In order to further explore the effects of MD on human 

health, in this study we investigated the global changes in the salivary microbial 

communities in overweight subjects after a MD intervention. 

 

6.2 Materials and Methods 

 

Study design and population 

 

We investigated the salivary microbiota profiles in 50 overweight/obese subjects in 

response to an 8-week isocaloric dietary intervention with a MD or a control diet. A 

selection of participants was made from the original study population of the trial number 

NCT03071718. 

 

Dietary intervention 

 

Subjects were randomly distributed into two groups: Mediterranean (MedD, n=30) and 

control diet (ConD, n=20). The MedD group underwent to an individual dietary 

intervention based on a MD model for 8 weeks, preserving both the usual energy and the 

individual intake of macronutrients. The Mediterranean-based dietary pattern involved 

high-level intake of fruit, vegetables, legumes, nuts, olive oil and minimally processed 

cereals, moderately high consumption of fish, low intake of saturated fat, meat and dairy 

products and low-to-moderate consumption of alcohol. On the contrary, subjects in the 
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ConD group continued with their habitual diet and low physical activity. The compliance 

was assessed with weekly food diaries. Saliva samples were collected during the 

intervention, at the baseline (t0), after 4 (t1) and 8 weeks (t2). 

 

DNA extraction and 16s rRNA gene sequencing 

 

Saliva samples were processed as previously described (De Filippis et al., 2014); aliquots 

of 2 ml were centrifuged (10,000 x g; 1 min) and the pellet was used for DNA extraction 

by using the QIAamp BiOstic Bacteremia DNA Kit (Mo Bio Laboratories, Inc., Carlsbad, 

CA). The V3-V4 region of the 16S rRNA gene was amplified by using primers and PCR 

conditions recently described (Canani Berni et al., 2017). Amplicon libraries were 

sequenced on a MiSeq platform, leading to 2x250bp paired-end reads. 

 

Bioinformatics and statistical analysis 

De-multiplexed forward and reverse reads were joined by using FLASH (Magoč et al., 

2011). Bases with a Phred score < 30 were trimmed by Prinseq (Schmieder and Edwards, 

2011) and those shorter than 250 bp were discarded. High-quality reads were analyzed by 

QIIME 1.9 (Caporaso et al., 2010), with a pipeline recently described (Canani Berni et al., 

2017). Statistical analysis and visualization was carried out using R environment 

(https://www.r-project.org). The principal component analysis (PCA) was assessed on 

log10 transformed OTU tables by using dudi.pca function (library made4). To separate 

groups based on microbial profiles, a Partial Least Squares Discriminant Analysis (PLS-

DA) was performed with the plsda function (library mixOmics). The non-parametric 

Wilcoxon-Mann-Whitney test was performed (pairwise.wilcox.test) to discriminate MedD 

and ConD conditions at the baseline and after treatment and only microbial features 

differentially abundant with an adjusted p-value <0.05 were considered (Benjamini-

Hochberg correction). 

In order to identify discriminant taxa avoiding incorrect identification, all picked OTUs 

found to be significantly different between groups were double-checked against the 

human oral bacterial 16S rRNA gene sequences available at HOMD platform 

(https://www.homd.org). 

The sub-genus diversity of Streptococcus was investigated as recently reported (De 

Filippis et al., 2016). Reads assigned to this genus were sorted and entropy analysis and 

oligotyping were carried out (Eren et al., 2013). The –C option was set to assess high-
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entropy nucleotides from Streptococcus reads (16,17,19,22,23,93,84,127,192,230,269 and 

299). The result of the analysis led to 18 oligotypes representative sequences, 

subsequently blasted (BLASTn) against the HOMD 16S rRNA RefSeq database for the 

identification and the top hit was considered for taxonomic assignment. 

 

6.3 Results 

 

Effects of the dietary treatment on salivary microbiota composition 

 

In this study, we analysed the bacterial composition of one hundred fifty saliva samples 

from overweight/obese subjects. The overall microbial diversity was not significantly 

different between MedD and control groups and after the dietary intervention. Likewise, 

the weighted and unweighted Unifrac distance was unchanged after the treatment. 

Accordingly, we did not observe any clustering of the subjects according to the dietary 

intervention nor the group (MedD or ConD), suggesting no remarkable differences in the 

overall microbiota composition after the dietary treatment (Figure 6.1). A core microbiota 

with thirteen genera (Actinomyces, Atopobium, Rothia, Porphyromonas, Prevotella, 

Granulicatella, Gemella, Streptococcus, Moryella, Veillonella, Neisseria, Haemophilus, 

Leptotrichia) shared by the 99% of saliva samples was identified (Figure 6.2). These 

genera belonged to the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria 

and Fusobacteria. Moreover, these microbial taxa were not affected by the dietary 

intervention although their relative abundances showed great inter-individual variability. 

There was no significant difference in the average abundance of the core microbial genera 

between the two intervention groups, both at baseline (t0) and after the treatment with the 

Mediterranean (MedD) or control diet (ConD) for 4 (t1) or 8 (t2) weeks. In all the 

samples, Prevotella occurred at highest levels concerning the relative abundance (22.6% ± 

9.1), followed by Streptococcus (16.5% ± 6.3), Veillonella (10.4% ± 4.3), Neisseria (8.9% 

± 6.5), Porphyromonas (6.2% ± 4.8), Rothia (5.3% ± 4), Actinomyces (4% ± 2.1), 

Haemophilus (4% ± 4), Granulicatella (2.7% ± 1.2), Leptotrichia (2.4% ± 2.2), Gemella 

(2% ± 1.2). 
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Figure 6.1 Principal Component Analysis (PCA) based on log10 transformed OTU tables at 

genus level. The two principal components were plotted using the dudi.pca function. Subjects 

belonging to different categories were colored according to diet and timepoints: MedD subjects at 

baseline (Med0, light green), after 4 (Med1, green) and 8 weeks of intervention (Med2, dark 

green). ConD subjects at baseline (Ct0, light orange), after 4 (Ct1, orange) and 8 weeks (Ct2, dark 

orange) of intervention. 

 

 
Figure 6.2 Relative abundance of the microbial genera identified as core salivary microbiota 

in this study. Occurrence of the core genera was set at 99% in all subjects. The bottom and top of 

the box indicate the first and third quartiles, the line inside the box the median. The boxes are 

grouped according to phylum. 
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The Mediterranean diet and microbial features 

 

Although there were no significant differences in the salivary microbiota composition 

between treated and untreated subjects, we found specific microbial signatures varying in 

relative abundance upon the dietary intervention. In particular, a significant decrease in 

the relative abundance of the genus Subdoligranulum (Wilcoxon-Mann-Whitney test, 

p<0.05) and the species Treponema denticola (p<0.05), Porphyromonas gingivalis 

(p<0.005) and Prevotella intermedia (p<0.05) was observed after 8 weeks of treatment 

with the MedD (Figure 6.3). In addition, lower levels of Streptococcus, Filifactor and 

Lactobacillus genera were registered after both 4 and 8 weeks of dietary treatment with 

MD, although such differences failed to reach significance. 

 

 
Figure 6.3 Microbial features significantly impacted by Mediterranean Diet. Boxplots 

showing the relative abundance of P. gingivalis (A), P. intermedia (B), T. denticola (C) and 

Subdoligranulum spp. (D) from saliva samples. Boxplots describe median, lower/upper quartile 

and standard deviation. A Wilcoxon-Mann-Whitney test was used to analyze differences between 

MedD and ConD groups and the time points (*p < 0.05 and **p < 0.005). For a description of 

subjects and categories, see Figure 6.1 legend. 

 

Sub-genus diversity of Streptococcus genus 

 

The oligotyping analysis of Streptococcus genus led to 18 different oligotypes. The 

diversity in oligotypes composition did not separate subjects belonging to different 

groups. Indeed, the dietary intervention did not affect the Streptococcus diversity since all 

the oligotypes were closely related in a hierarchical clustering analysis based on distance 

matrix. Surprisingly, Streptococcus oligotype S3 showed a significant increase in its 

relative abundance within treated group compared to controls after 8 weeks of dietary 
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treatment, as shown in Figure 6.4. (Wilcoxon-Mann-Whitney test, p < 0.05). We blasted 

the representative sequences against the HOMD 16S rRNA RefSeq database for the 

identification and further labelled S3 oligotype as Streptococcus cristatus (ID 99.3%). 

 
Figure 6.4 Box plots showing the relative abundance of Streptococcus cristatus oligotype in 

the categories analyzed in this study. Boxes represent the medians and the interquartile ranges 

(IQRs), the whiskers indicate the lowest and highest values that were within 1.5 times the IQR 

from the first and third quartiles (*p<0.05). For a description of subjects and categories, see Figure 

6.1 legend. 

 

 

6.4 Discussion 

 

The human oral microbiota is a complex ecosystem and its homeostasis is important in 

order to avoid growth of opportunistic pathogens and dysbiosis, potentially resulting in 

both oral inflammation and systemic infection (Kodukula et al., 2017). 

Here we described the effect of a well-known health-promoting dietary model on the oral 

microbial ecology in overweight subjects. Overweight is a worldwide public health 

syndrome, a condition associated to systemic low-grade inflammation and correlated to 

gut microbiota dysbiosis (Bendall et al., 2017; Ley et al., 2005). It has been reported that 

overweight status is positive associated with an increased risk of oral chronic 

inflammatory diseases such as periodontitis (Suvan et al., 2011; Chaffee and Weston, 

2010), which in turn is caused by oral dysbiosis and facilitates oral pathogens colonization 

(Kodukula et al., 2017). On the other hand, possible mechanisms by which oral bacteria 

could affect body weight and contribute to overweight condition have been proposed 

(Goodson et al., 2009). The aim of this paper is to explore changes in salivary microbial 

community of overweight subjects upon a Mediterranean diet-based intervention. The 
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results may provide a profitable therapeutic diet-based approach leading to an oral 

eubiosys condition, which in turn could positively affect host’s biology. 

Detected taxa in 99% of saliva samples largely coincided with those reported in previous 

studies. Recently, De Filippis et al. (2014) observed that the salivary microbiota was not 

significantly linked to specific dietary habits, although a core microbiota was identified, 

which included 6 out of the 13 core genera identified here. In line with our results, other 

detected members of the core (Veillonella, Gemella, Actynomices and Rothia) coincided 

with those found in other saliva samples (Segata et al., 2012). However, these shared 

genera seem to be as part of common oral commensals, although reported studies 

investigated salivary microbial communities in healthy cohorts whereas our work focused 

on overweight subjects. In addition, the overall microbiota composition showed to be 

lately resistant to external perturbations as well as dietary intervention. This finding is 

consistent with other researches finding that human salivary microbiome is stable in 

adulthood as a result of lifestyle factors and environmental events (Stahringer et al., 

2012). 

Despite inter-individual variability, host and environmental effects, understanding the oral 

microbiome could have a potential role for the prevention and the management of diseases 

(Acharya et al., 2017). In particular, we detected the effects of diet on genera well known 

to be associated to both oral and systemic diseases. Interestingly, after 8 weeks there was 

a significant decrease in the relative abundance of some oral pathogens such as 

Porphyromonas gingivalis, Prevotella intermedia and Treponema denticola in MedD 

subjects. These microorganisms were classified as periodontopathogenic bacteria and 

named as “red bacterial complex” (Holt and Ebersole, 2005). Due to their virulence 

factors, they are responsible of periodontitis disease and following oral tissue destruction, 

subgingival pathogens colonization and host defence immunomodulation (Bodet et al., 

2007). These periodontal pathogens have a proteolytic pool of enzymes involved in 

adhesion and nutrition phase. In addition, they are non-saccharolytic microorganisms and 

they require peptides and amino acids to grow (Eley and Cox, 2003). The Mediterranean 

diet is a vegetarian-oriented dietary pattern that entails a high intake of fibre and 

carbohydrates and a lower intake of proteins, especially of animal origin. Indeed, the 

lower levels of protein nitrogen might explain the lower levels of the potential periodontal 

pathogens. Mechanical treatments and locally applied antimicrobial agents are currently 

used in periodontal therapy. Since the chronic oral infection of periodontitis may be a risk 

factor for systemic pathologies (Pereira et al., 2017; Acharya et al., 2017; Zhang et al., 
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2015), the effect of diet could be relevant in reducing both periodontal bacteria and risks 

factors in the oral cavity, resulting in an improved oral health. In addition, the most 

interesting finding is that we observed a significant increase in the relative abundance of 

Streptococcus cristatus oligotype in MedD group compared to ConD. In particular, this 

observation is in agreement with that obtained by Ho et al. (2017) which demonstrated 

how Streptococcus cristatus inhibits virulence genes expression in P. gingivalis with a 

direct interaction. Hence, the observed decrease in the relative abundance of P. gingivalis 

within treated subjects could be attributed to an antagonistic presence of S. cristatus (Xie 

et al., 2012). Our findings suggest that Mediterranean diet may have a protective effect 

against the occurrence of the ‘red bacterial complex’ responsible of periodontal lesions. 

Clearly, further research will be required to validate a Mediterranean-based diet as an 

additional and useful tool to manage and to treat periodontitis disease.  

It’s well known that salivary dysbiosis is related to non-oral pathologies and that saliva 

could be used as a non-invasive biomarker in diagnostics. In our cohort, we found an 

increase in the relative abundance of the genus Leptotrichia between groups after 4 and 8 

weeks, although not significant (p>0.05). It has been reported that a greater abundance of 

Leptotrichia in oral samples was associated with a decreased risk of pancreatic cancer 

(Fan et al., 2016). On similar lines, subjects in MedD tended to have a lower prevalence 

of Lactobacillus and Streptococcus. The occurrence of these genera in saliva samples 

seems to be related to HNSCC (head and neck squamous cell carcinoma) as reported by 

Guerrero-Preston et al. (2016). 

After 8 weeks, a significant decrease of Subdoligranulum levels (p<0.05) was assessed 

after treatment. As reported in literature, Subdoligranulum genus is correlated to 

inflammatory parameters in human type 1 diabetes (De Groot et al., 2017), although it 

was detected in human stool samples. This is not surprising if we consider the emerging 

link between oral and gut microbiomes. Recent evidences suggest the hypothesis that the 

oral microbiome is linked to the gut microbiome. Indeed, metabolic disorders could be 

enhanced by swallowed oral pathogens as shown in mice model (Arimatsu et al., 2014) 

and gut microbiota alterations in diabetes condition could cause a pathogenic shift in the 

oral microbiome leading to an oral dysbiosis (Xiao et al., 2017). Therefore, reducing or 

suppressing the systemic dissemination of oral bacteria might be crucial in managing 

diabetes disease. 
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6.5 Conclusion 

 

The oral microbiota is resistant to diet as environmental insult seemingly to be not 

affected by dietary habits or dietary intervention. In the present intervention study, the 

overall structure of the oral microbial community was minimally disturbed by treatment, 

although the results highlighted the impact of a Mediterranean-based diet model reducing 

the relative abundance of both oral and non-oral pathogens. Currently, the concept of 

“Precision Nutrition” is rising up as a new topic of personalized medicine and a health-

promoting diet could play an essential role for the prevention of diseases. In this case, MD 

might be used to positively influence oral microbial ecology, to prevent the onset of diet-

related pathologies and to pursue host homeostasis. 
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Chapter 7                    General discussion 

 

 

CHAPTER 7 

 

 

General discussion 

 

 

Nowadays, the perturbation in the gut equilibrium among different members of the gut 

microbiota has been extensively correlated to the development of several types of diseases. 

Moreover, the modulation of microbial composition and activity through dietary interventions 

is a fascinating and promising research topic for both prevention and treatment of diseases. To 

this regard, further clinical interventions need to be based on evidences-derived and proof-of-

concept provided by microbiome-directed RCTs, thought to identify the underlying 

relationship between diet, gut symbionts and clinical outcomes. Therefore, in order to 

accomplish this aim a multidisciplinary approach is necessary. This strategy could provide 

stronger evidences and produce valuable applications in the fields of personalized nutrition, 

preventive and precision medicine as well as functional food development (De Filippis et al., 

2018). 

In this thesis, the potential of microbiome-targeted dietary interventions was investigated. 

These studies demonstrated the potential of beneficial dietary manipulations over human 

microbiome for patients care in health and disease. Importantly, a probiotic-enriched formula 

induces significant changes in gut microbiota composition, promoting the development of 

butyrate producers in healthy children. Moreover, such changes correlate with increased 

levels of innate and acquired immunity biomarkers, as described in the Chapter 3. Similarly, 

as presented in the Chapter 4, a gut microbiota dysbiosis related to non-IgE-mediated CMA 

condition is attenuated by a probiotic dietary treatment. Such findings further highlight the 

microbiota as a relevant target for innovative therapeutic strategies in children affected by FA. 

Interestingly, the results in the Chapters 5 and 6 clearly show that an isocaloric 8 weeks 

intervention with a MedDiet-based pattern modulates individual clinical outcomes, the oral 

microbiota and gut microbiome composition along with its metabolome in obese and 

overweight subjects with cardiometabolic risk for unhealthy lifestyle. These findings provide 
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insights into profitable therapeutic diet-based approach leading to eubiosys condition, 

positively affecting host biology. 

Despite the relevant improvements toward the useful application of RCTs to health 

amelioration, some challenges still need to be addressed for clinical practice and to further 

study the complex nature of the diet-microbe-host interactions in order to achieve the ultimate 

goal of precision medicine. Before adopting microbiome-directed interventions there is a need 

for an improved understanding of the crucial role of microbiome related to the onset, 

maintenance and progression of disease (Figure 7.1). 

 

Figure 7.1 Translating microbiome science into clinical practice. Image from Harkins et al., 2019. 

 

To this end, further clinical and nutritional trials interventions on ever larger cohorts are 

needed. Hence, collected evidences and observations will be helpful to clearly identify 

biological mechanisms and to elucidate the causal relationships between diet/food and 

microbiome changes underlying clinical outcomes. Moreover, data carried out will be 

functional to stratify population for responsive phenotypes or metabotypes in the attempt to 

develop ad hoc personalized nutrition approaches. Later, the proper management of critical 

factors (e.g., study design and population, biomarker selection, compliance, data analysis) 

will lead to more sensible data used for specific mechanistic studies. Sorted observations from 

such evidences will underpin machine-learning models i) to fuel microbial or gene-based 

signatures identification as health/disease biomarkers and ii) to predict individual metabolic 

responses for personalized microbiota-targeted therapeutic approaches. Accordingly, it was 

recently reported that different subjects may have very different metabolic responses to the 
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same meals (Lynch and Pedersen, 2016). In fact, in order to successfully modify blood 

glucose levels, personalized diets might be used as predicted by individual postprandial 

glycemic responses (Zeevi et al., 2015). Consequently, intra-individual variability of the 

baseline microbiome composition should be also considered regarding responsiveness to 

dietary intervention to intensively modulate gut ecology and microbial metabolic potential in 

a highly personalized manner (Doré and Blottière, 2015; Visconti et al., 2019). The 

stratification in enterotypes/metabotypes/phenotypes will have potential clinical benefits 

contributing to diagnosis, monitoring the disease etiology and progression as well as guiding 

treatments (Costea et al., 2018). Lastly, meta-analyses correlating microbiome features with 

host genomics, transcriptomics, epigenomics and metabolomics data should be performed, 

representing another exciting step for investigating human outcomes. Despite such long 

workflow and huge amount of data are in the process of being validated, the results presented 

in this thesis well fit the scientific request of rationally modulating host-microbiome 

interactions through dietary interventions for clinical management. 

In conclusion, as literally Hippocrates stated in “De Alimento” more than 2000 years ago “In 

nutriment purging excellent, in nutriment purging bad; bad or excellent according to 

circumstances”. Specifically, “In food excellent medicine can be found, in food bad medicine 

can be found; good and bad are relative”, we are now looking at and contributing to the start 

of the precision medicine era, heralding diet as a practical tool to promote host health by 

managing human microbial ecology. 
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Master’s degree in Plant biotechnology (LM-7) obtained at the University of 

Naples “Federico II” (110/110 cum laude). Experimental thesis on “Effect 

of probiotics on gut microbiota of infants”. Tutor Prof. Danilo Ercolini 

(ercolini@unina.it) 

 

September 2014 

Bachelor’s degree in Biotechnology (L-2, undergraduate degree of first 

level) obtained at the University of Naples “Federico II” (102/110). 

Experimental thesis on “RNAi targeting NIMIN-1 gene in A. thaliana”. 

Tutor Prof. Giandomenico Corrado (giandomenico.corrado@unina.it). 

 

July 2008 

High school degree. 

 

 

Foreign languages 

English and French 
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Technical skills 

• DNA/RNA extraction from plant, microbial and environmental 

samples; 

• Microbiological analyses, through culture- independent techniques 

(qPCR, PCR); 

• Preparation of libraries for 16S rRNA and shotgun sequencing for 

metagenomic analysis; 

• Knowledge of the protocols for next-generation sequencing, in 

particular Illumina sequencing. 

 

 

Bioinformatics skills 

• Good knowledge of QIIME software for the analysis of next-

generation sequencing data (from amplicon-based and shotgun 

sequencing); 

• Bash scripting; 

• Good knowledge of R software for biostatistical analysis, plotting and 

clustering; 

• Multi-omics data analysis and clinical data integration; 

• Microsoft Office for data manipulation and presentation. 

 

 

Participation to international research projects 

February 2017 up now 

European project under the Joint Action "Healthy diet for a heathy life" 

(HDHL), JPI- Intestinal Microbiomics. Project titled "Diet-INduced 

Arrangement of the gut Microbiome for Improvement of Cardiometabolic 

health " - Acronym "DINAMIC". Project Coordinators: Prof. Thomas 

Clavel and Dirk Haller. 

 

 

Grants and Awards 

September 2019 

Winner of an Early Carrier Scientific meeting grant from The MD2019 

FEMS Grant Committee for the presentation of the poster “Mediterranean 

based dietary intervention affects oral microbial ecology in overweight 

subjects” Laiola M., De Filippis F., Vitaglione P., Ercolini D. at the 5th 

International Conference Microbial Diversity. “Microbial diversity as a 

source of novelty: function, adaptation and exploitation” 

 

 

Publications in peer-reviewed international journals 
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1. De Filippis, F., Laiola, M., Blaiotta, G., & Ercolini, D. (2017). 

Different amplicon targets for sequencing-based studies of fungal 

diversity. Appl. Environ. Microbiol., 83(17), e00905-17. 

2. Berni Canani, R., De Filippis, F., Nocerino, R., Laiola, M., Paparo, 

L., Calignano, A., ... & Ercolini, D. (2017). Specific signatures of 

the gut microbiota and increased levels of butyrate in children 

treated with fermented cow's milk containing heat-killed 

Lactobacillus paracasei CBA L74. Appl. Environ. 

Microbiol., 83(19), e01206-17. 

3. Berni Canani, R., De Filippis, F., Nocerino, R., Paparo, L., Di 

Scala, C., Cosenza, L., Della Gatta, G., Calignano, A., De Caro, C., 

Laiola, M., Gilbert, J. A., Ercolini, D. (2018). Gut microbiota 

composition and butyrate production in children affected by non-

IgE-mediated cow’s milk allergy. Scientific reports, 8(1), 12500. 

4. Meslier, V.,§ Laiola, M.,§ Roager, H.M.,§ De Filippis, F., Roume, 

H., Quinquis, B., Giacco, R., Mennella, I., Ferracane, R., Pons, N., 

Pasolli, E., Rivellese, A.A., Dragsted, L.O., Vitaglione, P., Ehrlich, 

D.S., Ercolini E. (2019). Mediterranean diet intervention in 

overweight and obese subjects lowers plasma cholesterol and leads 

to multiple shifts in the gut microbiome and metabolome 

independently of energy intake. Gut, doi: 10.1136/gutjnl-2019-

320438. (§) These authors contributed equally to this work. 

5. Vitale, M., Giacco, R. Laiola, M., Della Pepa, G., Luongo, D., 

Mangione, A., Salomone, D., Vitaglione, P., Ercolini, D., Rivellese, 

A.A. (2019). Acute and chronic improvement in postprandial 

glucose metabolism by a diet resembling the traditional 

Mediterranean dietary pattern: may SCFAs have a role?. submitted 

to Clin. Nutr. 

6. Laiola, M., De Filippis, F., Vitaglione, P., Ercolini E. (2019). A 

Mediterranean diet intervention reduces the levels of salivary 

periodontopathogenic bacteria in overweight and obese subjects. 

submitted to Appl. Environ. Microbiol. 

 

 

Abstracts and oral presentations in international conferences proceedings 

• Laiola M., De Filippis F., Nocerino R., Di Scala C., Cosenza L., 

Calignano A., De Caro C., Paparo L., Berni Canani R., Ercolini D., “Gut 

microbiota dysbiosis in children with cow’s milk allergy is partly restored 

by a hydrolysed casein formula treatment”, 4th International Conference 

On Microbial Diversity 2017, pp. 310-311, Bari (Italy). 

• Laiola M., De Filippis F., Nocerino R., Paparo L., Calignano A., De Caro 

C., Berni Canani R., Ercolini D., “A Lactobacillus paracasei CBA L74 

fermented cow’s milk impacts gut microbiota composition and butyrate 

levels”, 4th International Conference On Microbial Diversity 2017, pp. 312-
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313, Bari (Italy). 

• Laiola M., De Filippis F., Mennella I., Vitaglione P., Ercolini E., “Changes 

in the salivary microbiota after a Mediterranean diet-based intervention in 

overweight subjects”, 7th International Human Microbiome Congress 2018, 

p. 50, Killarney (Ireland). 

• De Filippis F., Laiola M., Nocerino R., Di Scala C., Cosenza L., 

Calignano A., De Caro C., Paparo L., Berni Canani R., Ercolini1 E., 

“Overlapping signatures in the gut microbiota dysbiosis in children with 

IgE- and non-IgE-mediated cow’s milk allergy”, 7th International Human 

Microbiome Congress 2018, p. 37, Killarney (Ireland). 

• De Filippis F., Laiola M., Mennella I., Vitaglione P., Ercolini E., “Dietary 

intervention with a Mediterranean-style diet modulates gut microbiome 

in healthy obese subjects”, 7th International Human Microbiome 

Congress 2018, p. 35, Killarney (Ireland). 

• Laiola M., De Filippis F., Vitaglione P., Ercolini E., “Mediterranenan-based 

dietary intervention affetcs oral microbial ecology in overweight subjects”, 

5th International Conference On Microbial Diversity 2019, pp. 336-337, 

Catania (Italy). 

• De Filippis F., Laiola M., Gallo M.A., Giacco R., Rivellese A.A., 

Vitaglione P., Ercolini E., “Mediterranean-style dietary intervention 

promotes the production of beneficial metabolites and modulates gut 

microbiome in healthy obese subjects”, 5th International Conference On 

Microbial Diversity 2019, pp. 88-89, Catania (Italy). 
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