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Introduction

Unmanned aerial vehicles (UAVs) or drones are currently in the prominence of
technology expansion of many organizations in different application fields in-
cluding logistics, surveillance, security, emergency response, agriculture, and
investigative science. Indeed, recent advances in unmanned vehicle technology
set up new opportunities to increase the efficiency and effectiveness of drone
systems that can be exploited by these organizations. However, there are many
complex issues in modeling, solving, and implementing drone systems. These
issues constitute a topic receiving considerable attention in the last years but
the operations research community has only recently started to focus on them
with particular reference to the logistic applications.

Indeed, the use of drones for last-mile delivery induced a transformation
in the logistic processes since it can produce several benefits to this field: cost
reduction if compared to a regular delivery vehicle since a drone operates with-
out a costly human pilot; time reduction since a drone is usually faster than a
truck and its route is not affected by the traffic since it can fly over congested
roads without delay. However, there are some limitations to the drone use.
The size of the drone represents a constraint on the maximum size and weight
of the parcels it can carry. Furthermore, the current drone technology can put
an upper limit to the number of packages that can be carried simultaneously.
Therefore, if the number of customers to be served is greater than this limit,
then the drone has to return to the depot to pick up further parcels. Finally,
the delivery range is constrained by the drone battery and it can result limited,
especially if compared to regular truck delivery.

On the other hand, we recall that a regular delivery truck is heavier and
slower than a delivery drone but it also has a long delivery range and can carry
several parcels simultaneously (the truck capacity can be assumed to be infinite
compared to the drone one).

On this basis, a new combined delivery system has been proposed in liter-
ature that consists of the use of a truck and a drone to exploit the advantages of

vii



viii INTRODUCTION

both the vehicles. In this system, the delivery truck and the drone jointly serve
all customers. From a transportation planning perspective, this innovative sys-
tem gives rise to planning problems that can be described as truck-and-drone
coordination problems. These problems involve both assignment decisions
and routing decisions. Assignment decisions determine which vehicle, drone
or truck, will serve which customers, and routing decisions determine the de-
livery sequence according to which customers assigned to each vehicle are
visited.

This thesis brings together an overview of drone technology and appli-
cations, and a state-of-the-art of the operational research contributions to
the optimization of drone systems. Moreover, it presents some optimization
approaches to some truck-and-drone coordination problems. In particular, the
outline of the thesis is described in the following.

Chapter 1 presents an overview of drone history and terminology. Moreover,
it describes some characteristics of the drone technology and its applications.
Finally, a classification of the operational problems arising from these appli-
cations is presented together with some drone characteristics that are relevant
in the modelling of the related operational problems.

Chapter 2 provides an extensive review of the literature contributions to
the optimization problems with drones. The review is divided in two parts.
The first part covers the problems arising in application fields as safety,
surveillance and covering. The second part collects the problems arising in
the logistic industry. Moreover, an original classification of these problems is
reported at the end of this chapter.

Chapter 3 presents a general framework for solving truck-and drone-
coordination problems based on the concept of operation. An operation is
a set of actions performed by both vehicles. The vehicles must be together
at the beginning and at the end of an operation. The framework exploits the
possibility to represent a solution of a generic truck-and-drone problem in
terms of operations and transforms the original problem into the well-known
travelling salesman problem.

Chapter 4 introduces a new mathematical formulation for a problem
proposed in literature consisting in a truck-and-drone delivery system where
the two vehicles work in tandem. Unlike other formulations proposed in
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literature, the proposed one does not use BigM constraints. Moreover, a
Branch-and-Cut algorithm, able to solve to optimality instances of up to 20
customers, is described.

Chapter 5 focuses on a truck-and-drone coordination problem where the
truck has the capability of launching and retrieving a drone along the road
network edges. A computational analysis is reported which quantifies
potential gains achievable by using this capability. The solution of this
problem is obtained through an original heuristic solution algorithm which
uses discretized and continuous methods.

The studies reported in these chapters were carried out with the members
of the Optimization and Problem Solving Laboratory (Professors Maurizio
Boccia, Antonio Sforza and Claudio Sterle) of the University Federico II of
Naples, Professor Bruce Golden of the University of Maryland and Professor
Stefan Poikonen of the University of Colorado. In particular, chapters 3 and
5 are the results of four study and research abroad periods (two periods at the
University of Maryland and two at the University of Colorado).
Finally, we highlight that the results of the studies presented in the last three
chapters are competitive with or represent the state of the art on the addressed
topics. As evidence of this, these studies produced papers that are submitted
or will be submitted to some of the most recognized journals of the Opera-
tions Research community. In particular, the studies reported in chapters 3
and 5 produced two papers submitted to Computers & Operations Research
and INFORMS Journals on Computing, respectively. On the other hand, the
study reported in chapter 4 produced a working paper that will be submitted to
Transportation Research Part C: Emerging Technologies.





Chapter 1

Unmanned aerial vehicles:
history, technology and
applications

1.1 Introduction

Use of drones for civil applications gives a new perspective in the socioeco-
nomic system management. In the past, drones were principally employed in
the military field for warfare in remote zones. Drone use in the military domain
set the groundwork for the use of drones in civil contexts and constituted the
basis of the civil market for drones. As a consequence, nowadays small drones
for civil use are increasingly available for purchase by private consumers, be-
cause they become cheaper and easier to buy. For few tens of euros, small
drones can be purchased in electronic toy stores or via the Internet. Moreover,
it is possible to buy a professional drone with an advanced camera for taking
photo and video with few hundreds of euros. The majority of the non-military
drones can fly within a range of a couple of meters to a several hundred meters
and have a weight up to several kilograms.

It is virtually possible to use drones in all socioeconomic fields. In the
public sector, possible applications can be: crime prevention and crime scene
reconstruction, disaster mitigation, dike inspection, geological analysis, fraud
detection, border control and environmental and agricultural inspections. In
the private sector the potential applications are: aerial photography, heat de-
tection, water transport, package delivery, medicine delivery.

The potential advantages connected to the use of drones are balanced by
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some threats that can arise from their use: the possibility of drones to be target
of damage (e.g., for stealing the drone itself or its payload); the possibility to be
an environmental responsible for damaging effects (e.g., air traffic crashing).

In this chapter, in Section 1.2 we will depict a brief history of drones giving
a short description of the terminology. Then, some key elements of the drone
technology will be depicted in Section 1.3. An overview of the most common
civil applications is reported in Section 1.4. A classification of the operational
problems arising from drone applications is reported in Section 1.5. Finally,
some drone characteristics that are relevant to operational planning are dis-
cussed in Section 1.6.

1.2 Drone history and terminology

The term drone was firstly used in military applications and it continues to
keep this connotation still today for many people. The earliest unmanned air-
craft was probably the steam-powered flying pigeon of Architas the Tarantine
in ancient Greece [23] (Figure 1.1). However, this pigeon cannot be strictly
considered as the first drone mainly because it was not possible to control its
flight.

During the first world war, radio control techniques were employed in the
construction of the unmanned aircraft. The Hewitt-Sperry Automatic Airplane
flied for the first time in 1917. It was developed as an aerial torpedo and it
is considered as the precursor of cruise missile since it was mainly a flying
bomb. A proper unmanned aerial vehicle, called Kettering Bug, and able to
strike targets within a range of 120 km and flying at 80 km/h, flew for the first
time in 1918.

After the first world war, airplanes were transformed into drones. The first
examples of this new kind of aircraft were the Larynx (1927), the Fairy Queen
(1931) and the DH82.B Queen Bee (1935). In particular, the name Queen Bee
is said to have led the use of term ‘drone’ (a male bee) for pilotless aircraft.
Indeed, the first use of this term in the US Navy was in 1935, as reported in
[18].

The first drone mass-production was during the World War II. Indeed, the
Radioplane Company produced nearly 15000 Radioplane OQ-2 drones for the
US army. These drones were launched with a catapult and recovered by a
parachute.

After World War II, drones were employed for other purposes rather than
dropping or being bombs. The MQM-57 Falconer was the first drone used
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Figure 1.1: A representation of the steam-powered pigeon of Archytas

Figure 1.2: An image of the MQ-1 Predator

for aerial reconnaissance in 1955. Its weight was 124 kg and it could carry
cameras and illumination flares for night reconnaissance. Over 73000 units
were produced and they were used in nearly twenty countries.

Nowadays, one of the most popular drone is the MQ-1 Predator (Figure
1.2). In 2013 the total number of Predators built was 360 and most of these
are still in service. A single Predator drone costs about 4 million US dollars.
Predators are longer than eight meters, with a wingspan of about 15 meters and
a weight of 512 kg (empty). They can fly at a speed of 130-165 km/h, within
a range of 1110 km and an autonomy of 24 hours. It is equipped with cameras
and other sensors and can carry fire missiles. It has been used since 1995 by
the US Air Force and the CIA for military reconnaissance and combat but later
it has been used also for border enforcement, scientific studies and forest fire
monitoring.

The interested reader is referred to [21] for a detailed overview of drone
history but it is clear from this brief overview that drones were mainly devel-
oped in a military context even if nowadays they also offer many civil appli-
cations as it will be showed in the following. Indeed, today drones can be
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relatively small, inexpensive and easily available and, accordingly, the images
associated with the word drone are slowly shifting from the military ones to
small helicopters, generally equipped with a camera, that are controlled by a
smartphone.

However, an important issue when talking about drones is related to the
terminology. The term drone typically indicates an aircraft that does not carry
an on-board pilot and is instead maneuvered by an operator in a ground con-
trol system or is capable to fly autonomously. However, in literature and in
practice, there are several terms that refer to drones. For example, the most
common terms are Unmanned Aerial Vehicle (UAV) and Unmanned Aeriale
System (UAS). The term UAV focuses on the flying platform (and its pay-
load), while the term UAS ia a broader term referring to both the flying plat-
form and the ground station that maneuvers the platfom. In practice, both
terms (UAV and UAS) are used to indicate the same aircraft as the term drone.
Another term often used instead of drone is Remotely Piloted Aircraft Sys-
tems (RPAS). This term is generally used to describe unmanned aerial systems
that are remotely controlled by a pilot and it refers more to radio control air-
planes and helicopters. It differs from the other terms (drone, UAV and UAS)
since it assumes that there is a pilot, so excluding fully autonomously flying
aircraft. This is not necessarily the cases of drones and UAVs. Indeed, as men-
tioned before, there are technological developments that allow drones to fly
autonomously, for instance, pre-programmed or self-learning. Therefore, all
RPASs are UAVs, but not all UAVs are RPASs and so the term RPAS refers to
a subset of drones or UAVs.

1.3 Drone technology

Different types of drones can be identified, according to [61], on the basis
of some technical properties: structure, degree of autonomy, size and weight,
and power source. These characteristics are important to understand the drone
operational aspects as the cruising range, the maximum flight duration, and the
maximum loading capacity.

Furthermore, it is important to distinguish between the drone itself (i.e., the
flying platform) and the equipment attached to it (the payload). In this context,
the drone itself can be considered a flying platform which can be made suitable
for different tasks. These tasks can be performed only in combination with a
specific payload suitable for that goal. For instance, a camera can be attached
to a drone to make it suitable for particular inspections. Different types of
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Figure 1.3: An image of the Raven drone

payloads can be distinguished, including freight (e.g., mail parcels, medicines,
fire extinguishing material, flyers, etc.) and different types of sensors (e.g.,
cameras, sniffers, meteorological sensors, etc.).

Moreover, to be able to perform a flight, drones need wireless communi-
cation with a pilot on the ground or a need for communication with a payload,
like a camera or a sensor. To allow this communication to take place frequency
spectrum is required. These requirements for frequency spectrum depend on
the type of drone, the flight characteristics, and the payload. The main char-
acteristics that can be considered to differentiate drones will be discussed in
the following subsections together with some information about the possible
payloads that can be carried by a drone.

1.3.1 Structure

The term structure indicates the technology used to keep the drone flying since
this characteristic is also the key factor in the definition of drone shape and
appearance. On the basis of this technical property, it is possible to differen-
tiate drones in two main types (fixed-wing systems and multirotor systems)
representing the majority of existing drones. Examples of other systems are
so-called hybrid systems, which are both multirotor and fixed-wing systems,
ornithopters, and drones that use turbo fans.

Fixed-Wing Systems are aircraft that use fixed, static wings in combination
with forward airspeed to generate lift. Examples of this kind of aircraft are tra-
ditional airplanes and different types of gliders like hang gliders or paragliders.
Even a simple paper airplane can be defined as a fixed-wing system. An ex-
ample of a fixed-wing drone is the widely used Raven drone (Figure 1.3).

Multirotor systems are aircraft that use rotary wings to generate lift and
are a subset of rotorcraft. A clear example of a rotorcraft is the traditional



6 CHAPTER 1. UAV: HISTORY, TECHNOLOGY AND APPLICATIONS

Figure 1.4: An image of the Phantom drone made by DJI

Figure 1.5: An image of a hybrid quadcopter

helicopter. Rotorcrafts can have one or multiple rotors. Drones using rotary
systems are almost always equipped with multiple small rotors, which are nec-
essary for their stability, hence the name multirotor systems. Generally, these
drones use at least four rotors to keep them flying. A popular example of these
multirotor drones is the widely used Phantom drone made by the Chinese com-
pany DJI (Figure 1.4).

There are pros and cons connected with these two kinds of systems. On
one hand, multirotor drones do not need a landing strip, make less noise than
their fixed wing counterparts and can hover in the air. On the other hand, fixed-
wing drones can fly faster and are more suitable for long distances than their
multirotor counterparts.

Some drones cannot be classified within these two categories. Sometimes
because the drone simply is neither fixed-wing nor multirotor, sometimes be-
cause the drone has characteristics of both types. Hybrid systems are systems
that have characteristics of both multirotor and fixed-wing systems. The hy-
brid quadcopter (Figure 1.5) is an example of such a drone. This drone uses
multiple rotors to take-off and land vertically but also has wings so it can fly
longer distances.

Drones that are neither fixed-wing nor multirotor systems are very un-
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Figure 1.6: An image of an ornithopter drone

Figure 1.7: An image of a T-Hawk drone

common. An example of such a drone is the ornithopter (Figure 1.6). These
drones fly by mimicking wing motions of insects or birds. The size of these or-
nithopters is often similar to the one of the animal they represent. These small
drones are mostly still under development and are not widely used in practice.

Another example of drones that are neither fixed-wing nor multirotor are
drones using jet engines. The T-Hawk drone is an example of this sort of drone
(Figure 1.7). This drone uses a turbo fan, making the drone look more like an
unmanned (hydro)jetpack than a fixed-wing or multirotor drone.

1.3.2 Degree of autonomy

Drones always have a certain degree of autonomy since no pilot is on-board.
The autonomy can vary from fully controlled by a remote pilot to full au-
tonomous operations. Therefore, an important distinction within the concept
of autonomy is the difference between automatic and autonomous systems. An
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automatic system is a fully preprogrammed system that can perform a preas-
signed task on its own. Automation also includes aspects like automatic flight
stabilization. Autonomous systems, on the other hand, can manage unexpected
situations by using a preprogrammed ruleset to help them make choices. Au-
tomatic systems are not able to use this ‘freedom of choice.’

The United States Department of Defense distinguishes four levels of au-
tonomy for unmanned systems [61]:

1. A human operated systems. These are systems in which a human opera-
tor makes all the decisions regarding drone operation. This system does
not have any autonomous control over its environment.

2. A human delegated system. This system can perform many functions
without the human supervision. It can perform tasks when delegated to
do so, without further human input (e.g., engine controls).

3. A human supervised system. This system can perform various tasks
when it is given specific permissions and directions by a human. Both
the system itself and the supervisor can perform actions based on sensed
data. However, the system can only execute actions within the scope of
the current task.

4. A fully autonomous system. This system receives commands input by
a human and translates these commands in specific tasks without fur-
ther human interaction. In case of an emergency, a human operator can
interfere with these tasks.

1.3.3 Size and weight

Two noteworthy characteristics that highly differentiate drones are size and
weight. The size can vary from drones the size of an insect to drones the size
of a commercial airplane. The weight can vary from several grams to hundreds
of kilograms.

A classification which distinguishes large drones and small drones, but
divides the small drones in multiple subcategories is presented in [18]. The
author also adds minimum weight indicators to the drone categories. The lower
weight limit of large drones is 150 kg for fixed-wing drones and 100 kg for
multirotor drones.

Many countries classify drones on the basis of their weight. For exam-
ple, the Dutch Human Environment and Transport Inspectorate (ILT) makes
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a distinction between light drones and heavy drones. Light drones are drones
lighter than 150 kg and heavy drones are drones of 150 kg or more.

The development of drones is currently focused on making smaller and
lighter drones for the general public. Indeed, a shift can be observed from
large drones to smaller drones. This shift can require a new definition of the
reference categories and the category parameters. Therefore, a classification
which makes a distinction between large and small drones but with different
criteria than those mentioned above is proposed in [22]. The authors suggest
to use the term large drones for fixed wing drones between 20 and 150 kg and
multirotor drones between 25 and 100 kg. Small drones are fixed-wing drones
up to 20 kg and multirotor drones up to 25 kg. Within the category of small
drones, they suggest to use a subcategory of mini drones. Mini drones can vary
in weight from several grams up to several kilograms. These mini drones are
mainly suitable for indoor applications and recreational applications.

1.3.4 Power source

The last drone characteristic discussed is the power source. There are four
main energy sources:

1. Airplane fuel (kerosene). It is mainly used in large fixed-wing drones.

2. Battery cells. They are mainly used in smaller multirotor drones. These
drones are short range and require less operating time than drones using
kerosene. These drones are often employed for recreational use, making
it more practical for the drone to run on a rechargeable battery cell.

3. A fuel cell. It is an electrochemical device that converts chemical energy
from fuel directly into electrical energy. This conversion is efficient and
environment friendly since it does not require conversions in thermic
and mechanical energy, . Fuel cells are currently rarely used in drones.
Only fixed-wing drones can be equipped with such a cell because of the
cell’s relatively high weight. A major advantage of using a fuel cell is
the fact that drones can fly longer distances without recharging.

4. Solar cells. Drones using solar cells are rare in the current drone indus-
try. The rising of new technologies, such as thin film phtovoltaic panels,
enable the so-called harvesting (i.e., drones may recharge their batteries
during flight in the sunlight). Drones using solar cells are mainly fixed-
wing drones. However, these cells are also suitable for many multirotor
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drones and small ornithopters due to the low efficiency of current solar
cells.

1.3.5 Payload

Theoretically, all kinds of payloads can be attached to drones but the weight
and size of payloads can cause some restrictions. Most drones are equipped
with cameras by its manufacturer. Other specific payloads can be ordered at
drone manufacturers, but the payloads can be attached by the drone users them-
selves.

An important category of payloads are sensors. Most drones are nowadays
equipped with cameras and microphones (they often come by standard when
buying a drone). Cameras can be regular cameras but also infrared. Infrared
cameras may enable night vision and heat sensing. Other sensors include: bi-
ological sensors that can trace microorganisms; chemical sensors (‘sniffers’)
that can measure chemical compositions and traces of particular chemical sub-
stances (e.g., radioactive particles); meteorological sensors that can measure
wind, temperature, humidity, etc.

Apart from sensors, most payloads involves cargo that needs to be deliv-
ered, i.e., mail like letters and parcels, medicines, meals, supplies, and fire
extinguishers. In some cases, the cargo is not intended for delivery; examples
of such payloads are advertisements (e.g., Objects, banners, ticker tapes, and
speakers) and WiFi hotspots. However, we recall that there are technological
limits to the size and weight of the cargo that small drones currently can carry.

Other useful payloads include, for example, speakers and light signals for
crowd control purposes. More controversial is the use of drones equipped with
weapons.

1.4 Drone applications

Many industries can potentially benefit from pilotless technology because it
can reduce labor cost. Moreover, drones can operate in dangerous environ-
ments that would be inaccessible to humans. Furthermore, pilotless technology
lowers the weight of the aircraft, and thus its energy consumption, by making
the cockpit and environmental systems (i.e., the systems providing air supply,
thermal control, and cabin pressurization) unnecessary. Moreover, drones do
not require roads and can, thus, access locations that are difficult to reach by
roads.
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Possible civilian UAV applications include scientific research, search and
rescue,emergency response, traffic control tasks, infrastructure support, aerial
photography, forest protection and wildfire monitoring, environmental moni-
toring, energy and electrical facility monitoring, pipeline inspection, and coast
guard support, to name but a few of the possible applications.

In the following, the most promising emerging drone applications will be
described. The interested reader is referred to [54] for a detailed survey on
civil applications of drones.

Search and rescue
UAVs can be of huge advantage in support of public safety, search and rescue
operations and disaster management. In case of natural or man-made disasters
like floods, Tsunamis, or terrorist attacks, critical infrastructure including
water and power utilities, transportation, and telecommunications systems can
be partially or fully damaged by the calamity. These kind of events require
rapid solutions to provide communications coverage in support of rescue
operations. For example, if the public communications networks are disrupted
drones can very effective providing prompt disaster warnings and assisting
in speeding up rescue and recovery operations. UAVs can be even more
useful since they can cover large areas without ever risking the security or
safety of the personnel involved in certain dangerous disastrous situations like
poisonous gas infiltration, wildfires and avalanches. Generally, UAVs are used
in search and rescue missions for taking high resolution images and videos
using onboard cameras to survey a given target area. The images and videos
can be used to evaluate the magnitude of the damage in the infrastructure
caused by the disaster and to find victims or lost persons. Moreover, drones
can also carry medical supplies to areas that are inaccessible to conventional
vehicle.

Remote sensing
Drones can be used to collect data from other sensors and send the collected
data to ground base stations. UAVs equipped with sensors can also be
used as aerial sensor network for environmental monitoring and disaster
management. Several datasets acquired from UAVs remote sensors have been
used to support the research teams, serving a broad range of other applications.

Construction and infrastructure inspection
There is a growing interest in drone uses in large construction projects mon-
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itoring and power lines, gas pipelines and communication towers infrastruc-
ture inspection. Indeed, drones do not only provide high resolution 3D aerial
recordings at low cost, but also offer safety benefits by replacing human op-
erators for dangerous inspections. Generally, the tasks performed by drones
for construction and infrastructure inspections are: asset inspections and data
acquisition; data processing with 2D and 3D images; detailed reports of the
inspected asset; critical land building inspection (e.g., communication tower);
extreme condition inspection (e.g., inspection of onshore and offshore assets).

However, drones have also been used to examine terrain at future con-
struction sites, to track progress at existing construction sites, to inventory the
assets, and to regularly inspect facilities as part of maintenance.

Precision agriculture
The use of drones in agriculture is a cost-effective and time saving technology
which can help for improving crop yields, farms productivity and profitability
in farming systems. Generally, the tasks performed by drones in precision
agriculture are: spraying targeted fertilizer and pesticide; providing measure-
ments for the irrigation scheduling; plant and field disease detection; weed
detection; soil texture mapping; crop residue cover and tillage mapping; field
tile drains mapping; crop maturity and crop yield mapping. Furthermore
drones can be employed for gathering data from ground sensors (moisture,
soil properties, etc.,).

Road traffic monitoring
Drones can be used as a new traffic monitoring technology to collect informa-
tion about traffic conditions on roads. Compared to the traditional monitoring
devices such as loop detectors, surveillance video cameras and microwave
sensors, drones are less expensive, and can monitor large continuous road
segments or focus on a specific road segment . The most common tasks for
the UAVs employed in traffic monitoring are: stopping vehicle for traffic
violations (e.g., the UAV can change the traffc light in front of the vehicle it or
relay a message to a specific vehicle); recognition of suspicious or abnormal
behavior of vehicles moving along the road; monitoring of pedestrian traffic;
incident response; monitoring road conditions; emergency vehicle guidance;
monitoring of parking lot utilization.

Communication networks
Drones can be used to provide wireless coverage during emergency situations
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where each drone is used as an aerial wireless base station when the cellular
network goes down. They can also be used to supplement the ground base
station in order to provide better coverage and higher data rates for users. The
typical tasks for drones used as aerial wireless base stations are the following:
assisting a wireless network in providing seamless wireless coverage within
the serving area; providing connectivity to backbone networks, communica-
tion infrastructure, or the Internet being used as gateway nodes; providing
wireless connectivity between two or more distant wireless devices without
reliable direct communication links being used as relay nodes; collecting
delay-tolerant information from a large number of distributed wireless devices.

Delivery of goods
Drones can be used to deliver food, packages and other goods. For example,
in healthcare field, ambulance drones can ship medicines, immunizations, and
blood samples, into and out of places that are hardly reachable. They can
rapidly transport medical instruments in the crucial few minutes after cardiac
arrests. Furthermore, postal and logistic companies have been more and more
interested to find new business models of delivery due to the rapid demise of
snail mail and the massive growth of e-Commerce. Generally, in drone-based
delivery system, a UAV is capable of traveling between a pick up location
and a delivery location. The UAV is equipped with control processor and
GPS module. It receives a transaction packet for the delivery operation that
contains the GPS coordinates and the identifier of a package docking device
associated with the order. Once the UAV arrives at the delivery location,
the control processor checks if the identifier of a package docking device
matches the device identifier in the transaction packet, performs the parcel
transfer operation, and sends confirmation of completion of the operation to
an originator of the order. This thesis focuses on a combined delivery system
constituted by a drone and a truck. As it will be showed in the following
chapters, this hybrid system received great attention in the literature of the last
years since it allows to obtain several benefits in terms of delivery completion
time and levels of emissions.

1.5 Drone Management Operations

As seen in the previous section, drones can be used in several and very dif-
ferent application fields. Therefore, the possible related operations manage-
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ment problems are manifold and cross-cutting. Indeed, similar optimization
problems may arise from very different application fields. For example, the
traveling salesman problem (TSP) can be used to model a problem where a
drone that has to visit multiple locations and it can be found in several fields:
in the infrastructure industry, where a drone has to inspect points of interest of
a building; in agriculture, where a drone collects information on sample points
in a field; in delivery applications, where a drone delivers parcel to several cus-
tomers. In [45], a classification of the operational problems is provided. This
classification distinguish different types of drone operations such as:

• Area coverage, where drones should cover a certain area with a sensor
of a limited footprint.

• Search operations, where drones have to find a stationary or moving
object.

• Routing for a set of locations, where drones have to visit a discrete set
of positions.

• Data gathering in a wireless sensor network, where drones have to col-
lect information from a discrete set of locations while considering com-
munication scheduling and memory capacity constraints.

• Allocation of communication links and computing power to mobile de-
vices, where drones are positioned (or routed) to provide communication
links to mobile devices of sufficient quality.

• Operational aspects of a self-organizing network of drones, where a fleet
of drones has to perform some task in coordination among themselves
to achieve a specific goal.

In the following, each type of drone management problem will be discussed
in detail.

Area coverage
In coverage problems, one or more drones equipped with sensors of a limited
footprint have to monitor (cover) some area P , which can take different shapes.
For example, the coverage path planning problem consists in finding paths
of drones equipped with sensors of a limited footprint to cover all points of
area P at the lowest possible cost. Another problem related to the planning
of area coverage consists in maximizing the information collected from the
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partially covered area, given some budget constraints. A further problem is the
determination of drone positions such that their sensors cover all points of P .
Theses sort of problems can arise: in disaster management (as post-earthquake
assessment), in agriculture (as in observation of vegetation indexes), and in
creating digital terrain maps.

Although area coverage problems with drones are closely related to
general coverage problems, some peculiarities may arise and are considered
in the problem settings. First of all, since drones perform aerial observations,
there is a trade-off between taking pictures from a higher altitude with a larger
camera footprint, but lower resolution and higher energy consumption, and
taking pictures from a lower altitude with a smaller camera footprint, but
higher resolution and lower energy consumption. Secondly, cameras and
sensors may be attached to a drone at different orientations (eg, side-aimed
cameras vs. directly-downward facing cameras), so that different shapes and
positions of the camera footprint relative to the drone are possible. Moreover,
more sophisticated sensors can change their orientation during flight. Lastly,
because drones, especially fixed-wing drones, may traverse long distances
quickly, coverage problems involving nonconvex or disconnected areas gain
importance.

Search operations
In the search problem with drones, which can be easily observed in wildlife
monitoring and search and rescue applications, a search path for one or
several drones must be determined to find an object with an unknown location.
Obviously, search problems with drones closely resemble search problems
with piloted aircraft. Innovations in modeling and methodology in articles
on drones are mainly motivated by applications that are now profitable due
to the low cost of drone technology when compared to piloted aircraft. Such
applications include monitoring of livestock and environmental monitoring
(e.g., icebergs).

Routing for a set of locations
In a number of surveillance and delivery applications, drones have to perform
a tour over some set of locations which starts and ends at a depot. The resulting
planning problems can be modeled as generalized versions of one of the basic
routing problems, such as the TSP or the vehicle routing problem (VRP).

Note that, drones face a problem that some vehicles (e.g, long-distance
trucks and electric vehicles) do not face, as drones have to periodically refuel
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or recharge their batteries at depots to overcome their limited travel range. In
contrast to trucks, however, drones may select a battery of the most suitable
size for the tour, taking into account that energy consumption depends heavily
on the weight of the drone. Drones also fly in 3D space without a road
network and may have to make a detour to avoid obstacles or dangerous
zones. Another aspect that has to be taken into account in route planning is
that drones have a minimum turning radius if they travel at a constant speed.

Data gathering in a wireless sensor network
A wireless sensor network (WSN) is a set of spatially distributed wireless
sensors that gather information about the environment and transmit it to a
base station. Drones can serve as an additional layer between a network of
stationary sensors and the base station: spatially distributed sensors gather
information about the environment, and drones gather data from stationary
sensors and transmit it or carry it back to the base station. In a number of
relevant applications without the use of drones, data gathering from stationary
sensors would be slow, very expensive or even impossible. Therefore, the use
of drones allowed new solutions for the modeling of WSNs. For example, a
drone routing can be exploited to gather quickly data from stationary sensors.
In contrast to the routing operations of drones, data gathering operations of
drones in WSNs have to respect communication, memory, and data recency
constraints. For instance, the communication range is limited and reliability of
data transmission depends on the communication distance. Direct information
transmission from one node (sensor or drone) of the WSN to another node
or the base station is called a hop. Because of the limited communication
range, nodes may have to perform a multihop transmission. The limited
memory capacity of drones and sensors is another constraint. Overall in
these problems, because data collection and transmission consume the limited
energy of sensors and drones, a widely used objective function is to maximize
the WSN life time, that is, the time interval before the first sensor failure
due to energy expiration, or maximal energy consumption among sensors to
transmit the collected information. Some problems minimize makespan, total
travel distance of the drone and the energy required for the drone’s operations.

Allocation of communication links and computing power to mobile
devices
To establish connectivity with a drone, a mobile device should be located
within its communication range. Therefore, the arising planning problems
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involve decisions about area coverage. However, in contrast to the area
coverage problems involve probability theory and nonlinear equations de-
scribing communication constraints. For instance, drones have to allocate
communication links (and communication time slots) to mobile devices and
select such locations that minimize interference and ensure acceptable levels
of signal-to-noise ratio. Different ways of drone employment are possible and
so different problems can be conceived. First of all, drones may be assigned
to stationary locations and serve as intermediaries to connect mobile devices
to macrocell base stations. Secondly, instead of staying in a fixed location, a
drone may fly, for example, along a cyclic trajectory. Thirdly, drone-to-drone
transmissions may take place so that a mobile device connected to one drone
may establish links to a mobile device connected to another drone. Generally,
the problem consists in the placement of several drones into stationary
positions over some area of interest.

Operational aspects of a self-organizing network of drones
In some drone operations, in which communication is an issue and the base
station needs to obtain recent collected information with the shortest possible
delays, it is possible to conceive a set of drones as a flying wireless ad-hoc
network. A flying ad-hoc network (FANET) is a dynamically self-organizing
network of drones that may utilize direct drone-to-drone communication.
Direct drone-to-drone communication may have several advantages. First,
since the speed of direct data transmission between two nodes is usually
faster than the flying speed of a drone, multihop transmissions to the base
station may increase the recency of the received information from drones that
are out of the direct communication range. It may also free up the limited
buffer size of the drone for further data collection. Second, communication
between drones is important for flying in formation. Third, users can reduce
the payload of some drones and economize on cost by equipping only select
drones with the hardware enabling direct long-distance communication with
the base station or satellites. Fourth, because of the limited communication
range, several drones may be required to provide connectivity to mobile
devices.
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1.6 Peculiarities of drones in operations management
problems

Drones have peculiarities that must be considered in modeling, as reported in
[45]. In this section, we briefly summarize common parameters and restric-
tions used in existing modeling approaches for drone operations.

• Specifics of motion. Drones are able to move in 3D space. Autopi-
lots of drones are generally able to maintain flight stability, keep the
required altitude, and autonomously land and take off. Nevertheless,
certain specifics of drone motion may need to be taken into account in
planning of drone operations. One of them is the minimum turning ra-
dius restriction while changing directions in flight, which is especially
important for fixed-wing drones. Although rotorcraft drones, such as
quadcopters, may easily change their flight direction by making sharp
turns, each reversal requires additional time and energy, as the drones
must come to a halt before moving in a different direction. Small and
micro drones are highly susceptible to weather conditions, such as wind,
which may be modeled as uncertain travel times. Finally, requirements
for minimum and maximum flight angles of fixed-wing drones should
be taken into account during landings and takeoffs.

• Limited payload. The maximum weight of the payloads for package
delivery generally does not exceed 3 kg (6.5 pounds), and a drone usu-
ally carries just one package per sortie. Limitations on the payload are
closely related to the capacity of the drone’s energy storage unit and the
size and configuration (and cost) of the drone. For example, to main-
tain a stable flight, the propeller of a rotorcraft drone should generate
enough lift to counter the force of gravity. Therefore, a heavier drone
needs more energy than a lighter drone to fly the same distance.

• Limited flight range. Most drones carry an energy unit of a limited
capacity. Energy consumption of a drone depends on a multitude of fac-
tors, such as drone structure (fixed wing vs. rotorcraft), flying altitude
(e.g., propellers of rotorcrafts have to rotate faster at higher altitudes
because of lower air density), flight conditions (such as hovering vs.
forward flight), climbing speed, payload, and weather conditions, such
as wind. The limited capacity of the energy unit is usually modeled as
maximal operation time, maximal flying distance, or the limited number
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of locations a drone can visit during one flight. Battery swaps and refuel-
ing usually require assistance of a human operator; however, there exist
fully automated platforms able to exchange or to recharge the battery of
a drone in just a couple of minutes.

• Specifics of information processing and connectivity. Drones have
to maintain communication links with the ground control station to re-
ceive instructions and transfer the collected information. Since line-of-
sight communications are typically required, the signal gets weaker in
the shadow of buildings in urban areas, indoors, or under the crowns
of trees. Additionally, transmission lines and telecommunication towers
may cause signal interference. Therefore, path planning methodologies
may avoid or penalize visitation of certain regions. Drones may use
different wireless access methods to provide communication services,
which may require assignment of particular time slots and/or frequen-
cies to the users. Another consideration is that the power density of the
signal reduces as it passes through a communication channel. Therefore,
drone positioning as a flying base station depends on signal fading along
the communication path, path loss, interference, and noise. Other con-
nectivity challenges emerge when several drones perform tasks coop-
eratively, since they may need to exchange information by establishing
communication links that are subject to noise and dependent on trans-
mission distance. Drone-to-drone communication also enables drones to
attend a GPS-denied area while maintaining a communication link with
another drone able to receive the GPS signal. Finally, the limited mem-
ory capacity of the drone should be respected in gathering data from
sensors.

• Handling by a human operator. Drone regulations foresee the com-
pulsory presence of a human operator in several countries. Generally,
a human operator performs a number of setup operations before the
drone’s takeoff and, after its landing, he or she may have to control the
drone and to examine information collected by the drone in real time.

1.7 Conclusions

An overview of Unmanned Aerial Vehicles history (starting from when the
concept was conceived in ancient Greece), technology (all different kinds of
developed UAVs and the correspondent uses) and applications (linked with the
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different technologies) has been provided in this chapter. This overview repre-
sents the starting point of the following chapters. More precisely, the literature
contributions on drone applications arising in surveillance and logistics sec-
tors will be analyzed in the next chapter; the studies reported in the successive
three chapters are based on the drone management operations and peculiarities
discussed in this chapter.



Chapter 2

Literature review

2.1 Introduction

In this chapter, an extensive literature review of operations research contribu-
tions related to optimization problems with drones is provided. The review
is organized on the basis of the application field of the papers. Section 2.2 is
devoted to the studies that tackle optimization problems for surveillance and
safety missions (i.e., covering, targeting, image sensing etc.). Section 2.3 is re-
lated to works that tackle optimization problems arising in logistics (i.e., last-
mile logistics, delivery with drones, etc.). A new classification of this works
is provided at the end of the chapter together with an original notation for this
kind of problems.

2.2 Surveillance with drones

In this section, a collection of papers tackling problem of surveillance in many
application fields (safety, infrastracture inspection, communication networks)
is reported. The papers will be presented in chronological order. These
papers address different operations management problems as node routing,
arc routing, covering and location problems.

UAV Routing for Area Coverage and Remote Sensing (Avellar et al., 2015)
A methodology for optimal time coverage of ground areas using multiple
fixed-wing UAVs is presented in [4]. The authors solved the coverage problem
by creating a graph and then transforming the original problem into a vehicle
routing problem. In particular, they decomposed the area to be covered as a

21
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set of sweeping rows. These rows form the edges of a graph where an original
variant of the vehicle routing problem (VRP) is solved. They assumed that the
number of human operators responsible for launching and retrieving the UAVs
is smaller than the number of vehicles. This assumption is incorporated in the
model by defining a so-called setup time. This means that, since one operator
cannot prepare more than one UAV at the same time, the setup time of each
UAV is cumulative. Given the constraint on the number of operators, there
are scenarios where launching a large number of UAVs may have a negative
impact in the total mission time, due to the influence of the cumulative setup
time. The solution method was evaluated in a real-world experiment with two
actual aerial vehicles and a single human operator.

The mobile target covering problem (Di Puglia Pugliese et al., 2016)
A problem where a set of mobile targets (points that have to be monitored
such as vehicles, animals, humans) with little a-priori information about their
mobility has to be covered through the deployment of UAVs is tackled in
[28]. The aim is to ensure that each mobile target is covered by at least one
UAV. The authors also add another dimension bcause each UAV can change
its observation (coverage) radius, depending on its altitude, to cover more
or less targets. In addition, it is assumed that the energy consumed by each
UAV is related to its altitude and when an UAV runs out of battery, it is
replaced by a new one. The objective is to minimize the number of used
UAVs to cover all the targets. The number of UAVs depends on the number of
targets, their dispersion, their movement but also on the energy consumed by
each UAV. A mixed integer non-linear programming formulation is provided
together with a series of valid cuts. The authors also developed a MIP-based
heuristic procedure. The proposed solution strategy is an iterative procedure,
considering, at each step, a subset of targets to be monitored (i.e., solving a
restricted MIP problems), which is enlarged at each iteration. The subprob-
lems are easier to solve than the entire problem and the solution obtained
at some iteration is built by considering the decisions taken in the previous
ones. The computational results underlines the difficulty of the problem and
for only 23 % of the instances the solver has been able to provide the optimal
solution in 2 h. The heuristic showes very promising performance, exhibiting
a reasonable trade-off between quality of the solution and computational effort.

Drone placement and cost-efficient target coverage (Zorbas et al., 2016)
A drone location problem devoted to determine the optimal location of a set
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of drones to cover a set of target is tackled in [65]. The authors assumed
drones equipped with one or more electrical motors (quadcopters) and a
fixed-angle camera targeting on the ground. The drones are able to identify
static or mobile ground targets, which are considered as points that have to
be monitored. In case of mobile targets, no a priori information about their
mobility is known, except their maximum speed. The aim is the optimal
deployment of drones, ensuring, at the same time, that each target is covered
by at least one drone. Another dimension in the considered problem is that
each drone can change its coverage radius, depending on its altitude that
allows it to cover more or less targets. It is assumed that the energy consumed
by each drone is related to its altitude. An empirical energy consumption
model based on some real measurements with electrical motors and drone
manufacturers data is taken into account. The problem objective function is
the minimization of the cost, that is the number of drones or the total energy
consumption. The maximum number of drones depends on the number of
targets, their dispersion, and their movement. An integer and a mixed-integer
non-linear optimization models are formulated to tackle the variant with static
and mobile targets, respectively. Two heuristic algorithms which provide
scalable and efficient solutions to the drone location problem are proposed.
The heuristic algorithms can solve instances of the considered problem with
more than 50 targets and infinite possible positions for the drones. On the
other hand, the models can be solved for up to 10 targets and 7803 possible
positions for the drones.

Drone arc routing problems (Campbell et al., 2018)
The idea of using drones to optimize the coverage of specific edges in a
network like for inspection sensing and surveillance along linear structure
(e.g., roads, railroads, boundaries, pipelines, etc.) is presented in [12]. They
define the Drone arc routing problem as follows: given a network and a set of
lines that has to be covered, each line with an associated cost, the objective is
to determine the drone tour covering all the required lines minimizing the total
cost. The main difference with respect to the typical arc routing problems is
the drone ability to travel directly between any two points in the plane without
considering the edge network. The authors tackle the problem variant which
considers the use of a single drone with an unlimited endurance. A heuristic
solution method was developed to solve the problem. It iteratively discretizes
the network and solves a Rural Postman Problem on the discretized network.
The best solution obtained is choosen as the solution of the original problem.
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Preliminary results showed that using drones is possible to obtain a saving of
3% on the total cost compared to the one obtained using vehicles that have to
follow the network edges.

A vehicle routing problem arising in UAV monitoring (Zhen et al., 2019)
The study reported in [64] investigates a routing problem in which UAVs
monitor a set of areas with different accuracy requirements. The main
difference with classical vehicle routing problem consists in determining not
only the order in which to visit a set of nodes but also the height at which to
visit them. In particular, the height will impact directly the accuracy level and
the service time. To tackle the problem, the authors discretize the monitoring
area into several smaller squares. Each square represents a unit monitoring
area. The center of discrete squares or the vertices of the square are the
planar projections of the nodes in the space at different heights. On this basis,
the problem was formulated through an integer linear programming model
minimizing the total duration of the monitoring task. To solve large scale
instances, the authors proposed an original Tabu Search metaheuristic method.
Computational results showed that the algorithm was able to effectively
solve instances up to 81 areas to be monitored by 724 possible points. An
illustration of two UAV’s monitoring routes is reported in Figure 2.1

Minimizing dispersion in multiple drone routing (Dhein et al., 2019)
The problem addressed by [27] consists in defining the routing of a set of
drones deployed to perform a collaborative mission. The spatial and temporal
proximity of the drones throughout their route is a crucial factor for the
success of the mission (e.g., communication, coordination and situation
awareness requirements). The drones must depart simultaneously from the
depot, reaching and servicing a predefined set of locations, before returning
to the depot. The sequence of locations visited by each drone is chosen
minimizing the dispersion with regards to the route of each other drone. A
mathematical programming model is proposed to solve the problem but its
practical relevance is limited to small-sized instances. Therefore, the authors
proposed a Local Search Genetic Algorithm where the genetic algorithm
provides a good exploration of the solution space while the local search
improve the solutions/elements of the population. In particular, the local
search is based on the Variable Neighborhood Search (VNS) framework
[40]. It uses two different kind of neighborhoods: one is designed with the
objective of reducing the completion time and the other one with the objective
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Figure 2.1: An illustration of two UAV’s monitoring routes (Source:
Zhen et al., 2019)

of improving the synchronization among the drones.

The location-allocation problem of drone base stations (Cicek et al., 2019)
The location problem of multiple Drone Base Stations (DBS) servicing the
users in a wireless communication network is tackled in [17]. A sample
representation of a telecommunication network using DBSs is reported in
Figure 2.2. In this problem, the drones are used as a base stations since they
can extend the coverage, improve spectral efficiency and increase the quality
of experience. The objective is to determine the number of DBSs and their 3D
locations to serve all customers together with the allocation of the available
resources among the users to maximize the profit of a service providers. The
authors proposed a mathematical model together with a two phase heuristic
solution method. In the first phase, it fixes the location of the DBS and
solves the bandwidth allocation sub-problem considering the capacity and the
service provision. In the second phase, the location of the DBS is modified
with respect to the allocation made in the previous phase. The two phases
are repeated until the DBS locations remain unchanged in two consecutive
iterations.
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Figure 2.2: An illustration of a telecommunication network using
DBSs (Source: Cicek et al., 2019)

Optimization of UAVs coordination in target search (Alfeo et al., 2019)
The problem of discovering of targets located in an unstructured environment,
with no prior knowledge about their location and about obstacle layout was
tackled in [2], that is . This problem is known in literature as the target
search problem whose objective is to minimize the overall time needed for
completing the mission. The target search mission is performed by a swarm of
UAVs. In the pape,r the swarm behavior is modeled considering two different
paradigms: biological behavior like in other social animal metaheuristics and
computational behavior which exploits the additional information provided
using the UAV techonology. These behaviors are considered in the devel-
opment of an evolutionary algorithm. The solution of the algorithm is used
to determine the parametrization of the stygmergy and of the flocking of
the swarm of UAVs. Experimental results showed that considering the UAV
techonology in modelling the agent behavior improves the swarm cooperation
and coordination.

UAVs for the internal security of a heritage site (Boccia et al., 2020)
The use of drones for the internal security of the the Archeological Park of
Pompeii (PAP) is evaluated in [6]. This study arise from a research agreement
devoted to identify and apply Operational Research models and methods to
support the camera surveillance system already implemented in the park.
First, a graph representing the area object of study is obtained through
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discretization. Then, a visibility and covering analysis has been carried out
based on the approach presented in [28] for different values of drone flying
altitude. For each analysis, a coverage matrix is determined representing the
input of a Set Covering Problem that is solved using a commercial MIP solver.
The drone locations determined in the set covering optimal solutions are
used to define a surveillance route for the drone solving a TSP among them.
The computational experiments show the effect of the flying altitude and the
number of available drones on the time required to monitor the whole park

2.3 Logistics with drones

A selection of studies investigating the use of drone in logistics is reported
in this section. The majority of the problems assumes the use of a truck in
combination with a drone to overcome some of the drone technical limitations
(e.g., limited flight range, limited payload, etc.). In particular, two kinds of
coordination problems arise when the two kinds of vehicles are used. The first
one foresees that the truck and the drone serve customers independently. The
second one requires a certain level of synchronization between the two kinds
of vehicles since the drone is carried by the truck when the first one is not
servicing some customer.

On this basis, the papers are classified in three categories:

• Vehicle Routing Problems with drones

• Vehicle Routing Problems with trucks and drones in parallel

• Vehicle Routing Problems with trucks and drones in tandem

The contributions belonging to each category will be presented in chrono-
logical order in the next subsections. More details about the settings of each
problem will be given within each study description.

2.3.1 Vehicle Routing Problems with drones

In this subsection we report the contributions that tackle problems consid-
ering the use of drones without the interaction with other kind of vehicles.
Generally, these contributions extend the classical settings of vehicle routing
problems to take into account drone peculiarities.
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A multi-objective green UAV routing problem (Coelho et al., 2017)
A multi-objective Green UAV Routing Problem (GUAVRP) is proposed in
[19]. It minimizes seven objective functions: total traveled distance; uavs
maximum speed; number of used vehicles; makespans of the last collected
and delivered package; average time spent with each package; and maximize
batteries load at the end of the schedule. Furthermore, the model respects
drones operational requirements, such as: maximum weight they are able to
carry, battery minimum Depth-of-Discharge (DoD); UAV maximum speed.
Moreover, UAVs are allowed to refuel/charge at the charging stations, since
their autonomy does not allow them to fly over long periods. Finally, UAVs
can be limited to fly only at predetermined levels of altitude, related to their
load capacity and size. A simple flying environment is modelled with the
biggest and fastest ones flying at higher levels. These levels or layers can be
interconnected by vertical displacement points, where UAV will be allowed
to exchange layer and products. Thus, loads can be redistributed by smaller
drones using supporting spots that allow vertical displacement between layers
(an example of this supporting spot is reported in 2.3). A case of study
composed of an airspace divided into two layers is designed: a lower layer
in which smaller UAVs travel with lower speed and an upper layer where the
traffic is mainly composed of faster drones with heavier loads. Each layer is
subdivided into horizontal and vertical strips, where vehicles are allowed to
move.

Formulations and Algorithms for Drone Routing Problem (Cheng et al.,
2018)
Two formulations to solve the multitrip vehicle routing problem where the
vehicles are UAvs are provided in [16]. Both the formulations explicitly
consider the influence of payload and distance on flight duration. The
difference between this two formulations consists in one having a drone
index while the other one doesn’t use a drone index. Some valid inequalities
based on the energy function are proposed together with a Branch-and-Cut
algorithm. Moreover, an extensive literature review on drone routing problems
is provided with a table which classifies the surveyed works. A new set of
benchmark instances for this problem was generated on the basis of instances
used in literature for VRP and VRPD. The extensive numerical experiments
showed that the 2-index formulation can solve more instances to optimality
and provide good quality solutions.
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Figure 2.3: An example of supporting spot that allow drone vertical
displacement between layers (Source: Coelho et al., 2017).

A facility location problem for a drone system (Shavarani et al., 2019)
In [55] an optimization problem is presented which considers a drone delivery
system comprised of warehouses and refuel stations. The warehouses are
the initial take-off locations for the drones. They are considered as the main
nest for the drones. Opening a launch center requires more infrastructure
in comparison with the refuel stations. The refuel stations are designed
for extending the coverage of the drones by giving them the possibility to
refuel/recharge on their way to demand points. The capacity of each facility
is determined by the total number of assigned drones. A drone may visit
one or more refuel stations on its route to satisfy demand. Moreover, the
waiting time of a customer to be served is limited by a threshold parameter.
Four major costs are addressed in this problem: establishment costs of launch
stations, establishment costs of refuel stations, and procurement and usage
costs of drones. The authors proposed a fuzzy mathematical formulation to
model the problem where the fuzziness is associated to the four considered
costs that are minimized in the objective function. Due to non-linearity of
the proposed model even small instances were unsolvable. Therefore, the
authors proposed a genetic algorithm in which each element of the population
represents a feasible solution. A greedy search is applied when generating



30 CHAPTER 2. LITERATURE REVIEW

Figure 2.4: (a) - San Francisco’s transportation network. (b) - San
Francisco’s take-off and rendezvous location set (Source: Shavarani et
al., 2019).

new elements of the population that optimizes the solution downgrading all
the opened facility (from a warehouse to refuel station or from a refuel station
to a closed facility) if the objective function value associated to that solution
does not increase. The solution method was tested on a case study based on
the Amazon Prime Air project applied to the city of San Francisco. The San
Francisco’s transportation network and candidate location set are shown in
Figure 2.4.a and 2.4.b , respectively.

Potential estimation of delivery by drones (Aurambout et al., 2019)
An estimation of the market viability of a drone delivery systems in the EU
region is provided in [3]. The considered delivery systems is based on the use
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Figure 2.5: Amazon drone-beehive concept (Source: Aurambout et al., 2019)

of fulfillment centres called beehives (Figure 2.5) designed to accommodate
landing and take-off of unmanned aerial vehicles in densely populated areas.
Drones are used for delivery and require a surface of "open space" to land
(gardens, etc.). The drones can travel a maximum distance of 24 km. The
set of beehive potential locations and the set of customer locations are
defined on the basis of the data produced by the European Commission Joint
Research Centre’s LUISA (Land Use and Scenario modeling for Integrated
Sustainability Assessment) Territorial Modelling Platform. The evaluation of
the market potential is performed in a two step modelling approach. The first
step computes the potential economic return achievable locating a beehive
in a potential location and which deliver each customer within its reachable
range, for each location. The second step identifies the highest economic
return locations for the beehives on the basis of the whole set of locations.
The results of the analysis showed that about the 7.5% of the EU population
could benefit from this service.
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Pickup and Delivery with autonomous vehicles (Ulmer and Streng, 2019)
The work presented in [58] considers a depot, a set of capacitated pickup
stations and a delivery fleet autonomous vehicles. The customer requests
are stochastic and follow a known probability distribution. The goods can
be delivered to the preferred pickup station or to one in its neighborhood.
The provider has to decide about sending a vehicle (or to wait), what to
load on a vehicle, and to which station to send the vehicle. The objective
is to minimize the delivery time. This problem is defined as the Stochastic
Dynamic Dispatiching Problem for Same Day Delivery with Pickup Stations
and Autonomous Vehicles. The authors proposed a policy function approx-
imation approach to solve the problem. The parameter considered for the
policy is the number of parcel that the vehicle can deliver to a station. If the
number of parcel is greater than the selected threshold the vehicle is sent
for the delivery. The approach is tested on a real case study for the city of
Braunschweig. Computational results showed that the number of deliveries
performed using the proposed approach is significantly more than the usual
number of deliveries reported in the same-day delivery literature.

A dynamic algorithm for on-demand meal delivery (Liu, 2019)
An investigation on the online routing of drones for meal pickup and delivery
in a dynamic operational environment is reported in [38]. In this context, it
is assumed that meal orders are requested randomly over the time horizon
and the corresponding delivery location is random across the considered
region. The objective of the fleet operator is to dispatch the drones in real-time
to make the fastest and most efficient delivery of all orders. The author
presented a an optimization-driven progressive algorithm for drone dispatch
and order delivery in a dynamic, real-time operational environment. The
algorithm is based on a mathematical model of the business operations and a
temporal progression framework that connects decision across time periods.
Computational and simulation experiments showed the algorithm capability
of handling online dispatches of moderately sized systems.

2.3.2 Vehicle Routing Problems with trucks and drones in parallel

In this subsection we report the contributions in which trucks and drones
operate in parallel. In these problems, the required level of synchronization
between the two vehicles is low. The main decision consists in the assignment
of the customers to each kind of vehicle. Generally, the routes of the vehicles
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will not have any intersection (other than the depot) since the subsets of
customer served by each vehicle are disjoint.

The parallel drone scheduling TSP (Murray and Chu, 2015)
A problem associated with devising optimal truck and UAV assignments
in the case of a distribution center located in close proximity to customers
(i.e., the UAV can fly directly from the DC to the customer and then come
back) was first introduced in [43]. This work was the first to introduce
a variant of the traditional TSP that address the challenge of determining
optimal customer assignments for a UAV working in parallel with a delivery
truck. This problem is defined as the parallel drone scheduling TSP and a
mathematical programming formulation is provided. A heuristic to solve large
scale instances is also described. It first assigns all the reachable customers
to the drone and then the remaining ones to the truck. Then the algorithm
reassign some drone customer to the truck and the truck route is modified until
no possible savings are available. Finally, an extensive numerical analysis is
conducted proving the effectiveness of the proposed heuristics and the benefits
of last-mile parcel delivery by a UAV/truck parallel system.

Same-day delivery with drones and vehicles (Ulmer and Thomas, 2018)
The study presented in [59] analyzes the impact of using a combination of
road-based vehicles and drone on the delivery costs and the customer served
in Same-day delivery operations. To do so, they introduced a problem which
considers a fleet of vehicles and a fleet of drones starting from a depot for
servicing customers. The customers can make requests during a day that are
unknown before the time of the order. Therefore, the provider has to decide
whether or not an order can be served on the same day and whether a vehicle
or a drone performs the delivery trying to maximize the expected number
of customers served within the same day. The authors used an approximate
dynamic programming technique known as a parametric policy function
approximation to find a good decision policy for the provider. The parameter
considered in the function is the travel time of the vehicle from the depot. This
parameter represents a threshold that splits the service are in two zones. The
customers that have vehicle time lower than the threshold should be preferably
served by a drone while the others by the vehicles. The results showed that
the customer partitioning obtained using the threshold increased the overall
number of services.
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A heuristic for the parallel drone scheduling TSP (Saleu et al., 2018)
An original solution method for the PDSTSP firstly defined in [43] was
proposed in [39]. The authors showed that the PDSTSP can be considered as
a bi-level program. In the first level, the customers are assigned to the vehicle
or to the fleet of drones. In the second level, the route are determined, solving
a TSP for the vehicle and a parallel machine scheduling problem for the fleet
of drones. The proposed method is based on this consideration. Indeed, it
starts from a sequence of all the customers that is splitted into a tour for the
vehicle and series of trips for the drones. Then these routes are optimized
and the whole method is repeated until the solution cannot be improved
anymore. Moreover, they showed that if there is only one drone available
then the proposed method is exact. Finally, computational results proved the
effectiveness of the proposed approach compared to the heuristic proposed in
[43].

Integrated scheduling of m-truck, m-drone, and m-depot (Ham, 2018)
A variant of the Parallel Drone Scheduling Problem is presented in [33]. The
operating conditions of the considered problem are the following: multiple
depots exists, from which multiple trucks and multiple drones must depart
and return. A truck can serve multiple customers along its route but it
cannot pickup any parcel. A drone can serve multiple customers and it can
pickup parcels along its route. The capability of the drone to pickup parcels
is considered to overcome the limited capacity characterizing this kind of
vehicle. Customers can request multiple products each one with a different
time-window. To better understand the difference between a traditional
approach, where all the customers are served by truck, the system proposed in
[43] and the proposed approach, the solutions obtained using the three systems
are reported in Figure 2.6.a, Figure 2.6.b and Figure 2.6.c, respectively. In
contrast to other approaches presented in literature the problem is tackled
considering it as a parallel machine scheduling problem which minimizes
the completion time with sequence-dependent setup (for travel-distance),
precedence-relationship (for drop-pickup) and reentrant (for multi-visit and
time-windows). Moreover, a constraint programming approach is proposed
to solve the problem since this kind of approach excels most notably in
scheduling application. Numerical results showed the efficacy of the proposed
approach.
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Figure 2.6: A comparison of the delivery schedule of the three systems
(Source: Ham, 2018)

2.3.3 Vehicle Routing Problems with trucks and drones in tandem

In this subsection we report the contributions in which trucks and drones
operate in tandem. In these problems, the required level of synchronization
between the two vehicles is high. In addition to assignment and routing de-
cisions there is another type of decision connected to the operations between
trucks and drones in these problems. Indeed, for each drone sortie, the points
where the truck launches and collects the drones have to be determined.

The flying sidekick traveling salesman problem (Murray and Chu, 2015)
The flying sidekick traveling salesman problem (FSTSP) was first defined
in [43]. This work was the first to introduce a variant of the traditional TSP
that address the challenge of determining optimal customer assignments for
a UAV working in tandem with a delivery truck. The authors provided a
mixed integer linear programming formulation that is able to solve instances
of up to 10 customers. Therefore, they also proposed a route and re-assign
heuristic. It first solves a TSP assigning the truck to visit all customers and
then assign some customers to the UAV on the basis of the resulting saving.
Finally, an extensive numerical analysis is conducted proving the effectiveness
of the proposed heuristics and the benefits of last-mile parcel delivery by a
UAV/truck tandem system.
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Optimization of a truck-drone delivery network (Ferrandez et al., 2016)
The work presented in [31] has a twofold objective. On one hand it in-
vestigates the time and energy associated to a truck-drone delivery system
compared to a standalone truck or drone system. On the other hand it proposes
an optimization algorithm that determines the number of launch sites and
locations and the optimal total time on the basis of the algorithm result. The
considered problem assumes that one or more drones and a single truck work
in tandem to deliver packages. The drones are not constrained by range to gain
a better sens of the upper/lower boundaries of time and energy. However, the
truck has to wait stationary while a drone is airborne. The proposed algorithm
first determines k truck stops where the drone will be launched using the
well-known k − means algorithm. Then, it determines the best truck route
between those launch locations using a genetic algorithm. Computational
experiments showed the energy expenditure and the completion time for
different values of the number of launch locations.

Coordinated Truck-and-Drone Logistics (Carlsson and Song, 2018)
An analysis of the efficiency of a hybrid approach in which a UAV provides
service to customers while making return trips to a truck that is, itself, moving
is presented in [13]. In other words, a UAV picks up a package from the
truck (which continue on its route), and after delivering the package, the UAV
returns to the truck to pick up the next package. The analysis goal is to reduce
the problem to a small set of parameters, using the continuous approximation
paradigm, and then determine how these parameters affect the outcome of the
problem. The parameters identified by the authors were the truck and drone
speeds and the probability distribution function of the customers on a compact
region. On the basis of the asymptotic theoretical analysis performed, the
authors concluded that the improvement in the efficiency due to augmenting
a delivery truck with a UAV is related to the square root of the ratio of the
speeds of the truck and the UAV.

Worst-case analysis for the VRP with drones (Wang et al., 2017)
The first formal description and definition of the Vehicle Routing Problem
with Drones (VRPD) is given in [62]. The authors proved several worst case
theorems and their goal is to provide theoretical bounds on the benefit from
using drones. In each of the theorems presented, two related problems are
compared. These problems have the same set of customers but served with a
different fleet. In the first one, the fleet consists of trucks only while in the
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second one of trucks and drones. Each result reveals the amount of time that
could be saved, in the best case, as a result of using trucks and drones rather
than trucks alone in delivering packages to customers.

Models and Connections for the VRP with drones (Poikonen et al., 2017)
The same authors of [62] proposed an extension of their work in [48]. They
first summarize the key results of the previous paper since they will serve
as templates for further proofs. Then, they extend some worst-case bounds
to more generic distance/cost metrics. Moreover, they also consider limited
battery life and cost (in addition to the completion time) objectives. Finally,
the authors highlight the connection between the VRPD and two well-known
problems in literature as the min-max close-enough VRP (CEVRP) and
the min-max VRP, where the objective function of both problems is the
minimization of the longest route. In particular, they showed that the VRPD
objective value is bounded below by the CEVRP objective value and above
by the objective value of the VRP. The authors underline that other than the
bounds on optimal objective values no relationship is known between the
optimal solutions of these problems.

Vehicle Routing Problems for Drone Delivery (Dorling et al., 2017)
A problem in which the delivery fleet consists of a fleet of drones is presented
in [29]. The authors defined this problem as the drone delivery problem and
they tackled it as a multitrip VRP. Indeed, compared to the classical setting
of the VRP, the multitrip ability compensates the limited drone payload by
reusing drones when possible. Moreover, the MTVRP developed considers
battery and payload weight when calculating energy consumption. In addition
to the problem definition, the authors proposed a linear energy consumption
model for multirotor drones. On the basis of this consumption model,
the authors formulated the MTVRP as mixed integer linear programming
model. In particular, two version of the problem are given. In the first one is
minimized the cost of deliveries while the overall delivery time is minimized
in the second one. Finally, a string-based simulated annealing algorithm
is proposed for solving the MTVRP on practical scenarios with hundred
of locations. Numerical results showed that optimizing the battery weight
resulted in a saving of 10% compared to the case where the battery weight is
the same for each drone. On the other hand, a saving of up to 80% is obtained
optimizing the payload weight.
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Scheduling truck and autonomous robot deliveries (Boysen et al., 2018)
A new truck-based robot delivery concept is presented in [10] on the basis of
the strategic partnership between Mercedes-Benz Vans and a start-up company
which develops autonomous robots for last-mile deliveries. In the considered
system, a truck loads the parcels for a set of customers at a central depot.
A fixed part of the truck capacity is reserved for the autonomous robots on
board. The truck moves into the city center and launches one or more robots
to deliver the parcels once it reaches a drop-off point. The robots have single
capacity and after the delivery they come back to a decentralized robot depot
within the city center. Then, the truck moves onwards to successive drop-off
points until all robots are launched. If the truck has to serve other customers
and no robots are available on board then it can move to a decentralized robot
depots to load other robots. This process is repeated until all the customers are
serviced. The aim of the problem is to determine the truck and robots routes
such that the number of late customer deliveries is minimized. The authors
defined this problem as the truck-based robot delivery scheduling problem
and they formulated it through Mixed Integer Programming model. Moreover,
they develop an efficient approach to determine the optimal assignment of
customers to drop-off points and robot depots given a fixed truck route. On
the basis of this approach, they proposed a multi-start local search that at each
iteration determines a new truck route that represents the input of the approach
for the optimal assignment of the customers. Computational study showed
that the decentralized robot depots contribute to an efficient delivery process
since they avoid the waiting times that arise in the case the truck has to wait
for the return of the robots.

A decomposition-based algorithm for TSP-D (Yurek and Ozmutlu, 2018)
An improved mathematical model for the TSP-D is presented in [63]. The
proposed model is not able to solve instances with more than 10 customers
within one-hour computational time limit. To overcome this limit, the
authors proposed an algorithm in which a mathematical integer programming
formulation is iteratively solved. This algorithm decomposes the problem into
two stages. The truck route and the drone route are determined in the first and
second stage, respectively. In the first stage, the customer assignment is also
determined since the customer that are not in the truck route will be served by
the drone. The drone route is then defined in the second stage solving a MIP
formulation that determines for each customer that is serviced by the drone
its launching and landing locations. The proposed algorithm was tested using
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randomly generated instances and compared with the solutions of different
formulations proposed in other papers. Experiments showed that the proposed
moethod was able to solve instances up to 12 customers.

A metaheuristic for the FSTSP (De Freitas and Vaz Penna, 2018)
The effectiveness of the combination of an UAV and a truck for last mile
parcel delivery is analyzed in [25]. A hybrid local search heuristic based
on the Randomized Variable Neighborhood Descent (RVND) method is
proposed. The proposed heuristic is composed of three steps. In the first
step, the optimal TSP solution, i.e., when all customers are served by the
truck is generated using a TSP solver. In the second step, the TSP solution is
modified removing some customers from the truck route and determining how
to serve them with the UAV. Finally, in the last step, the solution is optimized
applying the RVND method. The authors proposed a new set of benchmark
instances generated from the TSPlib. Computational experiments showed that
the potential reduction of the total delivery time can be up to 20%, compared
to a route without the drone.

Algorithms for the VRP with drones (Schermer et al., 2018)
Two heuristics for solving large scale VRPD are proposed in [52]. The
first heuristic, called Two-Phase Heuristic, initially ignores the drones and
focuses on constructing good VRP tours. Then, starting from the first vertex
in a tour, all the customers are analyzed and whenever a feasible sortie is
possible and reduce reduces the time required to complete the tour, the drone
is inserted. The solution so obtained is optimized trying to exchange the
method of delivery of two customers that are serviced by a truck and a drone,
respectively. The second heuristic, called Single-Phase Heuristic, inserts
drones from the beginning when the routes are determined. The performance
of the two heuristics were evaluated experimenting them on large-scale TSP
instances adapted for being used in the context of the VRPD.

Optimization Approaches for the TSP-D (Agatz et al., 2018)
The traveling salesman problem with drone (TSP-D) was first defined in [1].
The main contributions of the paper are the following: 1) a new IP model
is developed that is able to solve instances of up to 12 nodes; 2) A greedy
partitioning heuristic and an exact partitioning algorithm based on dynamic
programming, to perform the assignment of truck and drone deliveries for any
given delivery sequence, are described. The dynamic programming algorithm
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find the optimal assignment and it is based on a route first cluster second
procedure. It first constructs a tsp solution using a TSP solver. Then, the
TSP-D solution is constructed assigning some nodes as drone nodes and
some as truck nodes; 3) a theoretical analysis of the worst case approximation
guarantee of the heuristic is conducted; 4) a new set of benchmark instances
is generated; 5) a numerical study of the truck and drone delivery system
is conducted to evaluate its performance on the basis of different customer
densities, geographical distributions, and drone speeds. These results showed
that substantial savings are possible using a combined truck and drone system
compared to the truck-only solution.

Dynamic programming approaches for the TSP-D (Bouman et al., 2018)
Exact solutions approaches for the TSP-D based on dynamic programming are
presented in [8]. The authors first introduced a 3-pass dynamic programming
approach and then they extend the last pass of this approach to an A*
algorithm (i.e., a graph traversal and path search algorithm). The three passes
of the approach are the following: 1) enumerate the shortest paths for the truck
for every start node, end node, and set of truck nodes covered by the path;
2) combine these truck paths with drone nodes to obtain efficient operations
(i.e., operations that represents the least costly way to cover a set of nodes
with an operation); 3) compute the optimal sequence of these operations such
that all locations are covered and the sequence start and ends at the depot.
Computational experiments showed that the proposed dynamic programming
approaches were able to solve larger problems (up to 20 nodes) than those
solved by the mathematical programming approach presented in literature so
far.

On the min-cost Traveling Salesman Problem with Drone (Ha et al., 2018)
A variant of the TSP is presented in [32]. This variant is called min-cost
TSP-D, the objective is to minimize the total operational cost of the system
including two distinguished parts. The first part is the transportation cost of
truck and drone while the second part relates to the waste time a vehicle has
to wait for the other whenever drone is launched. The authors proposed a new
MILP model whose main difference with the formulation presented in [43] is
that the waiting time is captured by a variable in order to calculate the waiting
cost of the two vehicles. Moreover, two heuristics to tackle the problem are
described. The first one is a greedy randomized adaptive search procedure
(GRASP) that, at each iteration, first constructs a TSP and then generates a
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TSP-D solution splitting the customers between drone and truck. Instead,
the second heuristic is based on the heuristic proposed in [43]. In particular,
the authors modified the calculation of the cost in the heuristic replacing
the times with the cost and adding a component that takes into account the
waiting times. The computational results showed that the GRASP heuristic
outperforms the second one.

Drone scheduling for given truck routes (Boysen et al., 2018)
The problem tackled in [9] address the truck-based drone delivery problem
from a different perspective. Indeed, the authors assume that the truck route is
already given and the objective is to optimize the schedule of drones launched
from the truck when servicing a given set of customers. They assume that
drones can leave the truck and return to the truck only at predetermined stops
of the truck long its route. On this basis, six variants of the drone schedule
sub-problem are investigated. Indeed, they considered single or multiple
drones based on the truck and three degree of freedom with respect to where a
drone returns to the truck. In particular, the three cases are the following: 1)
the start stop and return stop of a drone trip are the same; 2) the return stop is
the immediately successive stop after the start stop; 3) the return stop can be
one of the successive stop after the start stop. Two mixed integer programming
model are presented and can be adapted to tackle the six presented variants
of the considered problems. As the two formulations presented in [16], the
main difference between these two formulation is represented by the third
index used to have the information about the route of each drone that it is not
present in the second formulation. Furthermore, they showed how to integrate
the drone sub-problem into a metaheuristic framework, if the original problem
requires the determination of the truck route.

FSTSP with Payload dependency and No Fly zones (Jeong et al., 2019)
A variant of the FSTSP which considers no-fly zones during certain period
and energy consumption on the basis of the weight carried by the drone is
presented in [35]. The shape of the no-fly zone is a circle and the zones do not
overlap each other. Moreover, these areas can forbid drone operation only at a
specific time or indefinitely. Instead, the possible flight duration is estimated
considering a model which uses the loading weight to compute energy
consumption. These new characteristics of the problem are taken into account
in a mathematical formulation that is proposed in the paper. Computational
results showed that a commercial MIP solver was able to solve the proposed
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model on instance of up to 10 customers in several hours. Therefore, the
authors proposed a two phase construction and search algorithm to tackle
larger scale problems. In the first phase, an initial truck routes is generated.
Then, it proceeds to assign some customers to the drone simultaneously
determining the corresponding routes. After having determined a total route,
in the second phase, a section of the truck route is optimized by a local
search trying to improve the truck and drone synchronization. The results
showed that considering no-fly zones and the package weight in the energy
expenditure reduce the advantages of drone operations in a truck and drone
delivery problem since the use of drones is limited.

The hybrid vehicle-drone routing problem (Karak and Abdelghany, 2019)
An integrated vehicle-drone system is presented in [36] and defined as the
mothership system. This system consists of vehicles that carry drones from
depots to locations where the drones are dispatched to perform multiple pick-
up and delivery operations. The mothership system allows dozens of pick-up
and deliveries simoultaneously since the UAV are dispatched according to a
swarm-like approach. The authors proposed a mixed-integer programming
formulation that determines the routes of the vehicle and of the drones
minimizing the total cost of the pick-up and delivery operations. The optimal
solution of the formulation can be obtained in a reasonable computation time
for small problem. Therefore, the authors developed a method based on the
well-know Clarke and Wright heuristic and called hybrid Clarke and Wright
heuristic. This heuristic considers at the same time the saving costs for both
the vehicle and the drones so generating an efficient multimodal delivery
system. It is compared with two other heuristics proposed in the same paper
and called vehicle-driven heuristic and drone-driven heuristic, respectively.
The vehicle-driven heuristic first determines the vehicle route and then the
drone routes while the drone-driven use the reverse approach. Computational
results showed that the first heuristic outperforms the other two since they
mainly optimize the cost of one delivery mode only.

On a truck-and-drone delivery system (Crişan and Nechita, 2019)
A new heuristic for solving the FSTSP is proposed in [20]. This heuristic
first solve a TSP considering all the customers served by the truck and then
constructs in a greedy way the drone route. In particular, it removes from
the truck path the nodes that result in the biggest savings from the truck
route length point of view. The customer visit order determined by the TSP
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solution is not changed while designing the drone route. This assumption
makes this approach computationally efficient since its major advantage is
its speed. The heuristic is tested on two instances generated in the Roma-
nian (with 2950 customers) and Bulgarian region (with 1954 customers),
respectively. Despite the large size of the instances, the computational re-
sults proved the speed of the approach since they are solved within 90 seconds.

Parcel delivery by vehicle and drone (El-Adle et al., 2019)
A new mathematical formulation for the TSP-D is presented in [30]. The
model is enhanced by employing cut generation and bound improvement
strategies. In particular, the cut generation is based on the introduction of a
series inequalities which ensure the connectivity of the subgraph induced by
the movement of the two vehicles. The bound improvement, on the other hand,
is obtained by defining a set of M parameters, each tuned to satisfy a specific
constraint in the proposed model instead of have a single M throughout the
formulation. These values are determined on the basis of the duration of
a feasible TSP-D solution. Therefore, the authors also proposed a greedy
heuristic. The heuristic determines a solution starting at the last node visited
(the depot at the first iteration) and analyzing its first two nearest nodes. If it is
convenient to serve the first nearest node with the drone and then recollect it
in the second nearest node location then the algorithm assigns a drone launch
to the first nearest node. Otherwise, the first nearest is served by the truck with
the drone on board and the process is repeated until every customer is served.
The results showed the effectiveness of the new formulation since instances
up to 24 nodes are solved to optimality.

A metaheuristic for the VRP with drones (Sacramento et al., 2019)
An extension of the VRP where each truck collaborates with a single UAV
is studied in [50]. The problem is a variant of the FSTSP for the multi-truck
case, and includes capacity and time completion constraints, while having cost
minimization as objective function. The capacity constraint is devoted to take
into account the capacity of the truck. The time completion constraints, on the
other hand, ensure that driver maximum workable-hours per day is respected.
Contrary to the FSTSP, the objective function is focused on the route total cost
rather than on reducing the completion time. The authors presented a new
mathematical formulation for the problem and an adaptive large neighborhood
search metaheuristic. The metaheuristic is based on the use of a set of repair
and destroy methods. At each iteration a destroy method is randomly selected
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and it is applied to the current solution. Then the solution is repaired using a
randomly selected repair method. The repair methods ensure that an infeasible
solution cannot be obtained. Computational results showed the performance
of the algorithm and the differences with the VRP using different parameters
for the problem (i.e., drone endurance, drone speed, payload capacity, etc.)
and proved the clear advantege of using drones for delivery activities.

The VRPD with en route operations (Schemer et al., 2019)
An extension of the VRP with drones is proposed in [53] and it is called
the VRP with Drones and En Route Operations. This new problem assumes
that drones might also be launched and retrieved at some discrete locations
on each arc. The authors formulated the problem as a mixed integer linear
programming model that can be used to solve small-scale problem within
a reasonable computational time. To tackle larger instances, the authors
proposed a heuristic that combines elements from Variable Neighborhood
Search and Tabu Search metaheuristics. The structure of the algorithm is
similar to the basic VNS (initialization, shaking step and local search). In
particular, the shaking step is used to determine different truck routes while
the local search inserts the drone operation. A tabu list, which stores the
truck routes, is implemented in the algorithm to avoid that a given truck route
is optimized by the local search multiple times . Numerical results showed
that en route operations reduce the completion time and increase the drone
utilization. These advantages are notably greater when the drone endurance is
small or the drone speed is relatively higher compared to the truck speed.

Multi-visit drone routing problem (Poikonen and Golden, 2019)
The multi-visit drone routing problem was first defined in [47] and it considers
a tandem between a truck and a drone for servicing a set of customers.
The proposed problem allows for a drone to carry multiple heterogeneous
packages but also allows a specification of the energy drain function that
considers each package weight. Each drone can serve one or more customers
and it may return to the truck, acting as a mobile depot, to swap/recharge its
battery and pick up a new set of packages. A linear integer programming
model based on the concept of operation is formulated to define the problem.
An operation is a set of actions beginning with the truck and the drone
at a launch location and terminating with both the vehicles in a retrieving
location. During an operation, the drone may launch from the truck, visit
one or more customer and then rendezvous with the truck that has to travel



2.4. CLASSIFICATION OF DRONE MANAGEMENT PROBLEMS 45

directly to the retrieving location after having launched a drone. A heuristic
solution approach is proposed since the number of feasible operations may
be extremely large as the size of the instance grows. This approach is based
on a graph transformation that given a fixed customer visit order transforms
the original problem in a shortest path problem. Computational experiments
showed that the completion time is highly sensitive to drone speed.

New formulations for the FSTSP (Dell’Amico et al., 2019)
A study tackling the flying sidekick traveling salesman problem is reported
in [26]. The authors focus their attention on the mathematical formulation of
the problem. They first improve the formulation proposed in [43]. Then, they
propose two original formulations substituting some explicit constraints with
exponentially many constraints that will be added in cutting plane fashion.
Indeed, the two formulations are solved by a Branch-and-Cut algorithm.
The main difference between the two original formulations is represented
by the number of indexes used for representing the variable a drone sortie.
In particular, the first one uses three indexes (launch location, customer
served, retrieval location) while the second one uses only two indexes (start
location, end location). Moreover, a set of valid inequalities are proposed.
Computational results were carried out on literature instances ([43] and [63]).
They showed that the 2-index formulation outperfomed the other two tested
formulations.

2.4 A classification scheme for drone management
problems in logistics

In this section, a classification of the papers examined in the previous section
is provided. In particular, Table 2.2 extends the table proposed in [16] in terms
of parameters and analyzed papers. The first two columns report the year and
the authors of the paper. The third and fourth columns show the number of
trucks and the number of drones considered in the problem tackled by each
paper. In particular, if trucks are used the number of drones is related to the
drones available on each truck, otherwise it refers to the drones present at the
depot. The fifth column reports the number of customer served by a drone
during a single sortie. This column is filled with 1 if, for technical reason, it
is assumed that a drone cannot serve more than one customer and with k if
the number of customer served per sortie depends on different factors (e.g.,
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distance travelled, package weight, etc.). and so it is not set an apriori upper
limit. The successive column indicates if there is synchronization between the
two kind of vehicles. If Yes is reported, then it means that the two vehicles need
to be synchronized since the truck has to launch and to recollect the drone.
If No is reported, then it indicates that the two vehicles serve the customers
independently. If no truck is considered in the tackled problem, then a dash (-)
is reported. The column solution approach indicates the method used by the
authors in tackling the studied problem. The column named reference problem
reports the problem indicated as the reference problem in the paper. The next
column shows the largest instance size solved in the each paper. The value
reported indicates the number of customers served in the largest instance. If
no numerical test was performed, then the term N/A is reported. The column
Notes gives further information about the problem settings and the instance
used in the computational experiments. In filling this column, two assumptions
were made: the standard objective is the completion time minimization (or a
function of it) of the delivery task; the truck is allowed to served customer, if
the truck is considered in the problem. These assumptions allow us to reduce
the information in the table. Indeed, we explicitly report details about the truck
and the objective function only if they are different from these assumptions.
Finally, in the last column is reported an original classification for the problem
with drones. In particular, the proposed notation is similar to the one proposed
for scheduling problems in [15]. The format of the proposed notation is based
on three parameter X-Y-Z, where:

• X represents the type of coordination between the truck and the drone.
It can assume two values: P if the two vehicles work in parallel since
they act independently; T if the two vehicles work in tandem.

• Y indicates the number of trucks available. It can assume three possible
values: N if no truck are used in the considered problems (this means
that the deliveries will be performed only by drones); S (M ) if a single
(multiple) truck(s) is (are) available. If this symbol is followed by a star
(*), then it means that the truck cannot perform any delivery.

• Z indicates the number of drones available. If trucks are used it will
refer to the number of drones on each truck, otherwise it will refer to
the number of drones available at the depot. It can assume two values:
S (M ) if a single (multiple) drone(s) is (are) available. If a drone can
perform multiple deliveries per sortie, then the symbol will be preceded
by a k.
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Based on the literature and the related classification, it is possible to define
other three main categories for the papers on the basis of the number of truck
considered:

• A: No truck and multiple drones (6 papers)

• B: Single truck (18 papers, 11 of them consider a single drone and 7 of
them consider multiple drones)

• C: Multiple trucks (8 papers, 6 of them consider a single drone on each
truck and 2 of them consider multiple drones on each truck)

To summarize, the papers related to each class are: A - [19, 16, 55, 3, 58,
38]; B - [41, 31, 13, 39, 10, 63, 25, 8, 1, 32, 9, 35, 36, 20, 30, 47, 26]; C -
[59, 62, 48, 29, 33, 52, 53].

Furthermore, the following observations can be made:

1. the truck-drone tandem system (B and C categories) is the most inten-
sively studied problem;

2. almost all surveyed studies assume that drone flight range depends ex-
clusively on the distance travelled;

3. most papers addressing the truck-drone system assume that during each
drone sortie it can serve at most one customer;

4. most papers addressing the truck-drone system assume that the truck can
serve customer while the drone is detached;

5. most studies on the truck-drone system assume that there is only one
drone on each truck (this is due to the complexity arising from the re-
quired synchronization between truck and drone).

2.5 Conclusions

An extensive and detailed review of the scientific literature on optimization
problems involving the use and management of drones has been reported in
this section. The review is focused on problems arising in surveillance and
logistics sectors. In particular, we deeply analyzed the problems arising from
logistics and propose a new classification based on the kinds of vehicles in-
volved and on the synchronization level between the vehicles. On the basis of
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this classification, the truck-drone tandem system resulted the most intensively
studied problem. Therefore, the studies presented in the successive chapters
focused on different variants of this problem.



Chapter 3

Transformation of
Truck-and-Drone Coordination
Problems into Traveling
Salesman Problems

3.1 Introduction

The number of literature contributions which considers civilian uses of
drones, among which exists a class of problems that may be described
as truck-and-drone coordination problems, is rapidly increasing. Problem
definitions, model assumptions, and even the kind of vehicles used differ, but
they generally have a premise in common.

In particular, in a truck-and-drone coordination problem there exists a
main carrier vehicle that is capable of deploying one or more generally smaller
vehicles. The combination of the carrier and deployed vehicles must serve
multiple locations, typically minimizing the completion time or the total
operational cost. Each deployed vehicle must repeatedly come back to the
carrier vehicle, typically to pick up new cargo, share gathered information, or
replenish its battery.

The majority of the contributions on the topic explicitly considers the
case of same-day parcel delivery, where the main carrier vehicle is a truck
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and the smaller deployed vehicle(s) is an unmanned aerial vehicle (drone) or
a ground-based robot (droid). For simplicity, we henceforth call the carrier
vehicle the truck and any deployable vehicle will be called a drone. We will
call this class of problems truck-and-drone coordination problems.

In this chapter, we will display that a broad swath of truck-and-drone
coordination problems can be recast as an ordinary traveling salesman
problem (TSP). To solve the resulting TSP, we will exploit the capabilities of
existing solution techniques for the TSP.

3.2 Related works

As already highlighted in the first chapter, a recent survey article [45] explores
the many uses of drones in a civilian context. Application areas of drones
include agriculture, glaciology, mapping, target tracking, entertainment,
security, and infrastructure inspection, among others. However, one specific
area of focus that has garnered significant attention involves the use of drones
in the context of consumer parcel delivery, especially last-mile parcel delivery.

In particular, mainly due to the limited range and payload capacity of
drones, several papers have considered hybrid models of delivery which
require synchronized behavior between one or more trucks and one or more
drones. First among these [43] introduced the Flying Sidekick Traveling
Salesman Problem (FSTSP). In this problem, a single drone, capable of
serving one customer per sortie, is allowed to launch from the truck to assist
it in delivery. It may return to the truck to replenish its battery and pick up
further parcel. The drone battery may represent a maximum flight duration
constraint, and while the drone is airborne the truck may make deliveries.
The objective is to minimize the elapsed time until both vehicles have arrived
back to the depot. Murray and Chu present both a formulation and heuristic
solution methods. A similar problem has been studied [1], titled the traveling
salesman problem with drone (TSP-D), which differs slightly from the FSTSP
because it allows the launch and landing site for a drone to be the same
location. The authors propose a mixed integer linear programming (MILP)
formulation and a family of heuristics. Each of these heuristics is based on a
framework that may be described as “route first, partition second”, where the
order of customer delivery is determined in the first step, and the partitioning
of the customer set into truck-delivered and drone-delivered package sets is
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determined in the second step. Another paper [32] studies the min-cost (rather
than min-time) version of the TSP-D, which accounts for additional costs that
may occur in drone operations (e.g., costs connected to the waiting times).
Their work proposes two heuristics: a greedy randomized adaptive search
procedure (GRASP) heuristic and a heuristic called TSP-LS, which extends a
heuristic proposed by Murray and Chu. Yurek and Ozmutlu [63] describe an
iterative decomposition algorithm to solve the TSP-D. Freitas and Penna [25]
propose a variable neighborhood descent heuristic to solve the FSTSP.

The Horsefly Problem [13] has also been studied where a truck-and-
drone tandem operate in the Euclidean plane; the main difference with the
other studies consists in the assumption of a non-discrete set for the set of
launch locations. The drone has unit capacity and the goal is the minimize
route completion time. Asymptotic analyses are conducted and bounds
are established on objective values as the customer density moves toward
infinity. In another paper [46], a similar problem is studied, which the authors
refer to as the Mothership and Drone Routing Problem. They propose a
branch-and-bound tree to explore potential visit orders and a second order
cone program to optimally select launch and rendezvous locations relative
to a fixed visit order. In Campbell et al. [11], continuous approximation
methods are used and the potential economic benefit of drones under a variety
of assumptions (e.g., differing numbers of drones and customer densities)
is assessed. A different model of truck-and-drone coordination has been
considered [24], where drones fly from the depot to resupply trucks that are
on their delivery routes.

The Vehicle Routing Problem with Drones [62] contains multiple ho-
mogeneous trucks, each capable of launching one or more drones. Several
theoretical bounds regarding maximum speed-up ratios are established. The
same authors extend this work [48] and draw a relationship to the close-
enough traveling salesman problem.

As the current chapter will eventually propose a transformation into a
TSP, we would like to note the classic work [37] that described an extremely
efficient heuristic approach for solving the TSP, which still provides great
utility today, including in more recent implementations such as LKH2 [34].
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3.3 Preliminaries

Let V be a discrete set of locations where a drone is allowed to launch from
or land on a truck.1 Let C be a set of customer locations that must be serviced
by the truck or a drone. The problem objective is to service all customers with
feasible operations in a least cost manner.

Let us define an operation and related terms. An operation o is a set of
actions beginning at a location known as the launch point of the operation.
We denote the launch point of operation o as l(o) ∈ V . An operation ends
at a location called the rendezvous point of the operation, denoted r(o) ∈ V .
The truck and all drones must be present at the launch point at the start of the
operation. The vehicles may then disperse, potentially service one or more
customers, and eventually regather at the rendezvous point of the operation. If
the problem considers multiple drones for a truck, then the launch/rendezvous
point (i.e., the beginning and the end) of an operation is the point where all
the vehicles (the truck and the multiple drones) are present together. Drones
that are not servicing customers may ride atop the truck instead. In Figure 3.1
is reported an example of a route which contains two operations o1 and o2.
Green dashed segments show the flight path of drones during an operation.
Black dashed segments show the path of the truck during an operation. Black
solid segments show the path of the truck relocating (deadheading) between
consecutive operations. The red squares are customer locations. Blue circles
are either launch points or retrieval points for operations. The four red squares
towards the top left, collectively, are the cover of operation o1. The two
red squares bottom right, collectively, are the cover of o2. A feasible route
is a closed tour that begins and terminates at the depot, and consists of an
alternating sequence of feasible operations and truck relocation.

The set of customers that are serviced by the truck or any drone during an
operation o is denoted cov(o). We denote the size of the operation as the
number of customers in its cover: s(o) = |cov(o)|. We require that, within
each operation, at least one vehicle among the truck and drone(s) services one
or more customer locations. That is, s(o) ≥ 1.

1The model easily extends to the case where we separately define V − to be a discrete set of
locations where a drone may launch from a truck and V + to be a discrete set of locations where
the drone may return to the truck. However, for ease of notation we assume that V = V + =
V −.
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Figure 3.1: An example route containing two operations.

The feasibility of an operation o is denoted feas(o); the cost associated
with an operation is denoted cost(o).

In the following, we will assume that for any prospective operation o,
we know or can easily compute in advance:

• l(o)

• r(o)

• cov(o)

• feas(o)

• cost(o)

Each of the five elements above are assumed to be problem inputs. In
particular, we highlight that the feasibility and cost of an operation should be
defined with respect to the constraints and objective function for the specific
problem under study. On the basis of the addressed problem, the computation
of the cost and/or feasibility of each operation may be a simple calculation, or
potentially a complex subproblem, depending on the related assumptions.

Moreover we make a few additional assumptions:
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• the cost and/or feasibility of one operation have no impact on the cost
and/or feasibility of another operation (we will refer to this property the
separability of operations).

• the cost of any operation is non-negative.

• for two feasible operations o1, o2 where l(o1) = l(o2) and r(o1) = r(o2)
and cov(o2) ⊆ cov(o1), if o1 is feasible, then o2 must also be feasible,
and cost(o2) ≤ cost(o1). In other words, the addition of extra customers
to an infeasible operation cannot make it feasible, and the addition of a
customer to an operation cannot lower the cost of the operation.

Finally, any feasible route must service all customers, and the objective is
defined as minimizing the total cost, which is the simple sum of the costs of
all operations that are chosen as part of the route plus the costs associated with
relocating the truck and drones between consecutive operations.

3.4 Solution Method

In this section, each phase of the proposed solution method will be described in
detail. Each operation is split in multiple copies, one for each customer served,
so generating the set of split operation in the first phase. In the second phase,
the construction of an Equality Generalized TSP is performed. Finally, in the
third phase the resulting E-GTSP is transformed into an Asymmetric TSP.

3.4.1 Formation of the Set of Split Operations

Enumerate All Operations

In the first phase of the solution method, the first step is the generation the set
of all feasible operations, denoted F (O). For each o ∈ F (O), we should retain
the following information: l(o), r(o), cov(o), cost(o).

Removal of Dominated Operations

Once the set of feasible operations is generated, we prune this set re-
moving the dominated operation. In particular, for any pair of operations
o1, o2 ∈ F (O) such that l(o1) = l(o2), r(o1) = r(o2), cov(o1) ⊇ cov(o2),
and cost(o1) < cost(o2), we say that operation o1 dominates operation o2.
That is, if one operation covers the same set (or a superset) of customers as
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another operation, but at a lower cost, it is clearly superior and so dominant.

Moreover, for any distinct pair of operations o1, o2 ∈ F (O) such that
l(o1) = l(o2), r(o1) = r(o2), cov(o1) = cov(o2), and cost(o1) = cost(o2),
we arbitrarily declare that the operation with lower index dominates the other.
Any operation that is not dominated by another operation is called dominant.
Therefore, we obtain the set of all dominant operationsD(O), D(O) ⊆ F (O),
pruning the set of feasible operations F (O).

Splitting of Operations that Service Multiple Customers

The main step of the first phase consists in the generation of a set of operations
each one serving exactly one customer. In particular, for any o ∈ D(O) that
services more than one customer, we will split the operation into multiple clone
operations. That is, for each oj ∈ D(O), if cov(oj) = {cj,1, cj,2, ..., cj,l}, then
∀i ∈ {1, 2, ..., l} there is an operation oj,i ∈ S(O) such that cov(oj,i) = {cj,i},
and where l(oj,i) = l(oj), r(oj,i) = r(oj), cost(oj,i) = cost(oj). The set
S(O) is called the set of split operations. In S(O), we effectively store separate
copies of an operation for each customer it services. For each pair of clones
oj,i1 , oj,i2 ∈ S(O), we define lCostoj,i1 ,oj,i2 = 0.

Special Operation for the Depot

If the addressed problem requires the route to start and terminate at a
predefined depot location, we add an artificial customer c0 into the set C
corresponding to the depot location. We also construct an artificial operation
o0 ∈ S(O) where l(o0) = c0, r(o0) = c0, cov(o0) = {c0} and cost(o0) = 0.
Moreover, c0 is not covered by any other operations. As a consequence of
this, any feasible solution will necessarily include artificial operation o0 to
ensure that artificial customer c0 is serviced.

Finally, we highlight that |S(O)| =
∑

o∈D(O) s(o) + 1, inclusive of the
special operation for the depot.

3.4.2 Construct an Equality Generalized TSP

In the second phase, a graph is built on the basis of the set S(O). More precisely,
each o ∈ S(O) will correspond to a vertex. For each o1, o2 ∈ S(O) there is
an arc (o1, o2) and let xo1,o2 be a binary variable equal to 1 if o1 and o2 are
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operations that have both been selected as part of our solution, and o2 is the
first operation that occurs after the completion of o1. Otherwise, xo1,o2 = 0.
For each arc (o1, o2) , the corresponding cost is lCosto1,o2 . In particular, for
any pair of operations o1, o2 ∈ S(O), where o1 and o2 are not clones of the
same operation, we define:

lCosto1,o2 = cost(o1) + relCost(r(o1), l(o2)),

where relCost(r(o1), l(o2)) is defined as the cost of relocating the truck
with all drones on board from the rendezvous point of o1 to the launch point
of o2. (In problems where we seek to minimize route completion time, this
relocation cost is the time required for the truck to drive directly from r(o1)
to l(o2).) Thus, the cost of linking two consecutive operations is the direct
cost of the first operation plus the cost of relocating between consecutive
operations.

On this basis, it is possible to recast the truck-and-drone coordina-
tion problem as an Equality Generalized Traveling Salesman Problem
(E-GTSP). For each customer location c ∈ C, we must visit ex-
actly one vertex o such that cov(o) = {c}. Moreover, let us define
cluster(c) = {o ∈ S(O) : cov(o) = {c}}. Because we split operations
that covered multiple customers, for any pair of customers c1, c2 ∈ C,
cluster(c1) ∩ cluster(c2) = ∅. That is, our clusters are disjoint. We define a
cover matrix covMat, where the element covMato,c has value 1 if and only
if cov(o) = {c} and has value 0 otherwise, ∀o ∈ S(O), c ∈ C.

We may formulate our problem as follows:

Minimize:
∑

o1,o2∈S(O)

lCosto1,o2 ∗ xo1,o2 (3.1)

subject to: (3.2)∑
o1∈S(O)

xo1,o2 =
∑

o1∈S(O)

xo2,o1 ,∀o2 ∈ S(O) (3.3)

∑
o∈S(O)

(covMato,c ∗ (
∑

o1∈S(O)

xo1,o)) = 1, ∀c ∈ C (3.4)

xo1,o2 ∈ {0, 1}, ∀o1, o2 ∈ S(O) (3.5)

subtour elimination (3.6)
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Figure 3.2: A conceptual depiction of a solution of a truck-and-drone
coordination problem with four customer locations as an E-GTSP so-
lution.

The objective function (3.1) accounts for all costs during operations and all
costs between operations. Constraints (3.3) are ordinary flow constraints.
Constraints (3.4) ensure that every customer is serviced (covered) by at least
one operation that is visited in the solution path. Constraint (3.5) ensures our
decision variables are binary. Constraints (3.6) are generic subtour elimina-
tion constraints. A conceptual depiction of a truck-and-drone coordination
problem with four customer locations as an E-GTSP is showed in Figure 3.2.
Each oval-shaped region defines the boundary of a cluster associated with a
particular customer. Each triangle within a cluster represents an operation
o ∈ S(O) that services the customer associated with the cluster. The line
segments trace a closed tour that visits at least one triangle (operation) within
each cluster. Thus, the tour services all customers. We emphasize that
the clusters are disjoint, because no split operation services more than one
customer. The depot is represented as customer c0 and cluster(c0) consists of
one special operation that covers the depot.
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3.4.3 Transform the E-GTSP Problem into an Asymmetric TSP

A procedure for transforming any E-GTSP instance into an asymmetric TSP
(ATSP) instance with the same number of nodes has previously been described
[44]. To apply that procedure in this case, the following steps must be per-
formed:

1. For each c ∈ C, create an arbitrary directed cycle among cluster(c) and
set c′oi,oj = 0 whenever oj immediately follows oi in a directed cycle
within a cluster.

2. For any oi, oj ∈ S(O) such that cov(oi) 6= cov(oj), set c′oi,oj =
lCostok,oj + M , where ok succeeds oi in the directed cycle of
cluster(cov(oi)). Here, M is a sufficiently large number.

3. Set c′oi,oj = 2M for all other edges.

4. Solve the ATSP, where the vertex set is S(O) and the cost between an
arbitrary set of vertices oi, oj ∈ S(O) is c′oi,oj .

5. Subtract M |C| from the objective value, to get the objective value for
the original problem.

Our solution is then extracted by selecting the operation associated with the
first node visited within each cluster in the ATSP solution. These selected
operations are performed in the same order that the clusters are visited in the
ATSP solution. Solving the ATSP can be accomplished using an exact or
heuristic approach.

In Figure 3.3, we display an example solution resulting from our algo-
rithm applied a truck-and-drone coordination problem, where |V | = 50 and
|C| = 50. Customer locations are distributed uniformly over a 100km by
100km square region. A feasible operation in this example contains at most
one customer delivery by drone. Dashed green and red line segments show
the outbound and inbound flight paths of the drone, respectively. Solid black
segments shows the path of the truck. Each v ∈ V or c ∈ C is shown as
a black square. The red circle in the bottom left is the depot location. The
drone has a range of 20 minutes. The truck has speed 1 km/minute; the drone
has speed 2 km/minute. Both vehicles follow the Euclidean distance metric.
Integer labels offset above and to the right of a black square indicate order of
delivery. A feasible operation, in this example, allows the drone to carry a
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Figure 3.3: An example solution resulting from our algorithm applied
a truck-and-drone coordination problem, where |V | = 50 and |C| =
50.

single package, and the finite flight time of the drone must be respected.

3.5 Analysis of Algorithm

In this section we will analyze some properties of the proposed algorithm. In
particular, the optimality of the solution method and the maximum size of the
resulting ATSP will be discussed in detail.



62 CHAPTER 3. TRUCK & DRONE COORDINATION PROBLEMS INTO TSP

3.5.1 Optimality of Solution Method

Theorem 1. If the ATSP resulting from the problem transformation described
in Section 4 is solved exactly, then the algorithm constructs an optimal solution
to the truck-and-drone coordination problem under consideration.

Proof. All feasible operations are initially considered. In any feasible solu-
tion, replacing a dominated operation, o1, by an operation o2 that dominates
o1 preserves feasibility, as o1 and o2 service the same set of customers, and the
replacement of o1 by o2 never increases the objective value. Thus, an optimal
solution exists that is strictly composed of operations contained within D(O).

Next, we note that in the E-GTSP formulation, the objective function is
set in a manner that accounts for all costs associated with the tour. Next, we
applied a transformation from E-GTSP to ATSP, which has been proven in
[44] to produce an equivalent problem.

Therefore, the resulting ATSP is equivalent to the original truck-and-drone
coordination problem, and the optimal solution to the ATSP corresponds to an
optimal solution of the truck-and-drone coordination problem.

Remark. We highlight that if a heuristic solver is used to solve the ATSP
resulting from Section 3.4, then the only source of suboptimality is related to
the suboptimality of the heuristic solver.

3.5.2 Bounds on the Size of the Resulting ATSP

Our proposed algorithm requires solving an ATSP instance where the vertex
set is S(O). The tractability of the algorithm, therefore, depends heavily
on the cardinality of the set S(O). That is, if S(O) is very large, it may be
intractable to solve an ATSP over S(O). Thus, we seek to establish bounds on
the size of the set S(O) for various problem assumptions.

For each fixed launch point, fixed rendezvous point, and given customer
set, there is at most one non-dominated operation for that combination of
launch point, rendezvous point, and customer set. Therefore, the number of
non-dominated operations can be bounded as follows:

|D(O)| ≤ |V |2 ∗
MaxS∑
i=1

(|C|!/(|C| − i)!),
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where MaxS = maxo∈F (O)(s(o)) is the maximum number of customers that
may be visited within any single feasible operation. The above inequality is
formed by noting that there are |V |2 pairs of launch/rendezvous points, and for
each pair, we could at worst choose any subset of 1 ≤ i ≤ MaxS customers
within the entire customer set C. We note that the right-hand side of the above
inequality is O(|V |2 ∗ |C|MaxS). By noting that the size of an operation o ∈
D(O) is represented as i in the above inequality, we can conclude:

|S(O)| ≤ |V |2 ∗
MaxS∑
i=1

i ∗ (|C|!/(|C| − i)!).

In the case that MaxS = |C|, it follows that:

|D(O)| ≤ |V |2 ∗ (2|C| − 1)

and

|S(O)| ≤ |C| ∗ |V |2 ∗ (2|C| − 1).

In the case that MaxS = 1, then:

|S(O)| = |D(O)| ≤ |V |2 ∗ |C|.

Let us define reach(l, r) as the set of customers that are reachable (i.e., could
feasibly be serviced) by an operation that begins at l and terminates at r. We
could tighten our bounds as follows:

|D(O)| ≤
∑
l∈V

∑
r∈V

min(MaxS,reach(l,r))∑
i=1

(|reach(l, r)|!/(|reach(l, r)| − i)!

and

|S(O)| ≤
∑
l∈V

∑
r∈V

min(MaxS,reach(l,r))∑
i=1

i ∗ (|reach(l, r)|!/(|reach(l, r)| − i)!.

That is, for any launch point (l) and rendezvous point (r) combination, we can
select any subset of customers of size 1 ≤ i ≤ min(MaxS, reach(l, r)) from
the set reach(l, r) to be serviced in the operation.
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3.6 Computational Results

Instance and solution data for our computational results is available upon re-
quest from the corresponding author. Visual solutions for each instance solved
are also available. All computations were performed on the same computer
with an Intel i7-6700 processor operating at 3.4 GHz and containing 16 GB of
RAM. Python 2.7 was used to implement code.

3.6.1 Single Truck Instances: Exact Solver vs. LKH2 for ATSP

We tested our proposed algorithm on benchmark instances [7], which are de-
scribed in [1]. In each instance, V = C. Throughout Euclidean distances are
used. In Table 3.1, we apply our algorithm to a truck-and-drone coordination
problem and compare the use of an exact ATSP solver and heuristic ATSP
solver. In this truck-and-drone coordination problem, a drone is allowed to
visit a single customer. After launch of the drone, the truck is assumed to drive
directly to the rendezvous location. The truck moves at unit speed. The drone
moves at twice the speed of the truck and has a maximum battery duration
of 20 time units, which must be respected. Each row in Table 3.1 represents
averages over ten instances. Time is in seconds.

The column titled Size reports the value of |V | = |C|. The column
Type describes the distribution of customers in the instances. In the Uniform
type, depot and customer locations were randomly selected from a 100 by
100 square region. The distribution for the 1-center instances exhibits radial
symmetry around the origin, (0,0), which is meant to simulate a city center.
The distance from the origin is normally distributed with mean of 0 and
standard deviation of 50. The 2-center instances are generated in the same
manner as the 1-center instances, except that there is a 0.5 probability of a
displacement of 200 units along the x-axis. In other words, there are two city
centers at (0,0) and (200,0).

The columns under Exact Solver refer to measurements observed when
we used an exact formulation in Gurobi 8.1.0 to solve the ATSP resulting from
the problem transformation. Likewise, the columns under LKH2 Solver refer
to measurements observed when LKH2 [34] (which is an implementation
of [37]) was used as the solver for the resulting ATSP. All default settings
of LKH2 were used, except we used five independent runs. Columns titled
Obj and Time state the average objective value and computation time,
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respectively, for a given ATSP solution method. The column ATSP Size
refers to the average cardinality of the set S(O), and thus the average number
of nodes contained in the resulting ATSP. The column Gap% measures the
suboptimality of the solutions yielded by using LKH2 as the ATSP solver
(i.e., (LKH2 Obj - Exact Obj)/Exact Obj). Preliminary testing indicated that
the exact solver was incapable of solving instances of size 50 or 75 within a
reasonable amount of time (i.e., within five hours). In these cases, we reported
a dash (-) in the corresponding table entries for Obj and Time. If an exact
objective value was not found for a row instances, then Gap% could not be
computed and a dash (-) was placed in the corresponding row in the Gap%
column. We highlight that when using the exact solver for the ATSP resulting
from the problem transformation, optimal solutions are found. On instance
sets where we know the optimal solutions, using LKH2 as the ATSP solver
resulted in optimality gaps from 0.00% to 0.07%.

Instance Exact Solver LKH2 Solver ATSP Size Gap%
Size Type Obj Time Obj Time

10 Uniform 301.12 0.127 301.13 0.309 21.1 0
10 1-center 431.44 0.186 431.45 0.216 30.7 0
10 2-center 714.31 0.092 714.31 0.234 17.9 0
20 Uniform 364.42 9.085 364.67 0.613 113 0.07
20 1-center 581.71 51.118 581.86 1.612 226.1 0.03
20 2-center 790.08 2.27 790.28 0.383 85.7 0.03
50 Uniform - - 455.98 81.457 1394.8 -
50 1-center - - 757.58 605.892 4169 -
50 2-center - - 1203.13 38.364 925.4 -
75 Uniform - - 525.54 1339.36 5349.3 -
75 1-center - - 1045.68 5448.51 10857.4 -
75 2-center - - 1460.38 708.976 4124.1 -

Table 3.1: Objective values, computation time and ATSP size for our
algorithm applied to a truck-and-drone coordination problem.

3.6.2 Analysis of Computational Results

In Table 3.1, we note that we were able to find exact solutions within a
minute on average to all instances of size 20 or less. However, once the
problem size rose to 50, the exact solver became intractable. We also note
that among the instances for which we know the optimal solution, the average
gap by applying LKH2 as the ATSP solver varied between 0.00% and
0.07%. The maximum gap on any individual instance was 0.6%. LKH2 has
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Figure 3.4: Computational times, when using LKH2 as the solver,
appears to scale quadratically with the ATSP Size.

been extensively benchmarked across a variety of TSP and ATSP problems,
typically yielding solutions very near to optimal. [34] The small optimality
gaps observed in Table 3.1 suggest that the proposed transformation does not
result in an unusual ATSP structure that causes LKH2 to perform poorly.

We also solved instances of size 50 and 75 using the LKH2 heuristic,
but we would like to point one implementation detail especially relevant
to larger instances. Explicitly storing the full matrices for lCost and c′,
which are O(|S(O)|2), can cause a computational bottleneck due to memory
usage. However, it is possible to compute each value of c′ without ever
explicitly storing lCost. Instead, each element of c′ can be computed on the
fly if we know the cost of the operations (O(|S(O)|)), the relocation cost
between any pair of vertices in V (O(|V |2)), and cluster memberships of each
split operation (O(|S(O)|)), which collectively require much less memory
(O(max(|V |2, |S(O)|)).

Computational times predictably increased with instance size. For a
fixed size instance, the 1-center instances had the largest computational times
(with the exception when Size=10). The 1-center instances had the largest
number of feasible operations, as the customer locations display the greatest
level of clustering. Therefore, the average ATSP Size was also larger. In
general ATSP Size was closely associated with total computational time when
using LKH2 as the solver. In Figure 3.4, we can see the relationship is nearly
quadratic in nature.

The distribution of customer locations was impactful. As an example, in
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1-center instances, the customer density in the circle of radius 10 around the
origin (0,0) was more than five times larger than the density of customers in the
uniform distribution. This resulted in a larger number of feasible operations
relative to uniform and 2-center instances. This can be seen by observing that
the value in the column ATSP Size is larger for 1-center instances than it is for
uniform or 2-center instances. Additionally, we observed that the computa-
tional time was typically right-skewed, especially for 1-center instances (e.g.,
median computation time for 1-center instances of size 75 was 2560 seconds;
the mean was 5449 seconds). We relate this to the fact that if the density of
launch, retrieval, and customer sites are all multiplied by a factor of n within
a small region, we would expect the number of feasible operations to rise by
approximately a factor of n3. Even small variability in the size of the central
cluster in a 1-center instance can have an approximately cubic impact on the
number of feasible operations, which consequently affects computational time.

Lastly, we point out that we always used five independent runs when
calling the LKH2. If computation time is at a premium, we could reduce the
number of independent runs. If we wish to increase confidence in the quality
of the solutions, we may increase the number of runs.

3.7 Conclusions

We described a framework for transforming a broad swath of truck-and-drone
coordination problems first into equality generalized traveling salesman prob-
lems and consequently into asymmetric traveling salesman problems. This
framework can be extended to cases where multiple trucks are allowed. The
resulting ATSP can then be solved by existing solvers. The key requirement
is that the set of feasible operations for the truck-and-drone coordination
problem can be enumerated.

We applied this transformation to a test truck-and-drone coordination
problem. We were able to find optimal solutions to problems with 20
uniformly distributed customers in 9 seconds, on average. By replacing the
exact ATSP solver with a heuristic solver [34], we found solutions that were
between 0.00% and 0.07% suboptimal, depending on the characteristics of
the instance. The heuristic solver significantly decreased computation times
and allowed us to solve significantly larger instances. Due to the extensive
benchmarking of LKH2 and small gaps on instances where we know the
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optimal solution, we are encouraged that applying this heuristic solver on
transformed problems does not result in significantly suboptimal solutions.

We also found that computation time was strongly correlated with the
cardinality of the set of split operations, S(O). We used five independent runs
in LKH2, which could be reduced if computation time is excessively costly.

We would like to conduct further testing of our framework applied to
several other problem types, including the Flying Sidekick Traveling Sales-
man Problem [43], the min-time Traveling Salesman Problem with Drone
(TSP-D) [1], and min-cost TSP-D [32], which all allow the truck to visit
customers while the drone is airborne. We would also like to study problems
which allow multiple drones per truck including the k-Multi-visit Drone
Routing Problem (k-MVDRP)[47], which allows k drones per truck where
the drones can potentially visit multiple customers in a single flight, and the
Multiple Flying Sidekicks Traveling Salesman Problem [42]. An extensive
computational study comparing objective values across problem types and
various geometries of customer locations and street networks might provide
valuable insights.

Due to the strong link between |S(O)| and computation time, we would
like to explore mechanisms to prune the set of operations considered. The
goal would be to effectively reduce the cardinality of S(O) and, therefore,
computation time, while maintaining high solution quality. An analysis of
operations that appear in the optimal solution versus operations that do not
appear in the optimal solution may shed light on the question: “What are the
characteristics of a ‘good’ operation?” Other potential research directions can
be the use of a divide-and-conquer strategy to solve smaller subproblems or the
integration of the proposed method within a column generation approach. In
particular, the combination of the proposed method and a column generation
approach could result in a very effective method since the operations would be
generated on the fly. In this way, the drawback related to the quadratic growth
of the number of operation with the size of the problem could be partially
overcome.

More generally, by recasting truck-and-drone coordination problems as
traveling salesman problems, we can explore what methodologies for the
ordinary traveling salesman problem can now provide value to transformed
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truck-and-drone coordination problems.





Chapter 4

An exact solution method for
the Flying Sidekick Traveling
Salesman Problem

4.1 Introduction

In the last years, the attention of the operations research community towards
optimization problems with drones has continuously grown, as reported in
[45]. The motivations leading to this level of attention were mainly related
to the new developments in drone technology and the subsequent exploration
by large corporations such as Amazon, Google, UPS, and DHL of using drones
[5, 14, 56, 57, 60].

One of the most promising application field where the use of drones can
result useful is the last-mile logistic. Indeed, several studies showed the bene-
fits, in terms both of emissions and mainly of completion time reduction, that
can be achieved using drones for parcel deliveries. The drone delivery sys-
tem most studied in literature is the one consisting of a truck and a drone. The
truck, other than servicing customers, can carry one or more drones and acts as
a mobile depot for them (replenishing their batteries and providing the parcels
that have to be delivered). The drone is launched from the truck to serve some
customers and then it comes back to the truck to pick up a new parcel to de-
liver or to the depot. The first problem which considered this hybrid working
unit to make the delivery process more efficient and, possibly, less expensive
was the Flying Sidekick Traveling Salesman Problem (FSTSP). After that, sev-
eral variants of this problem were defined but the majority of these studies put

71



72 CHAPTER 4. AN EXACT SOLUTION METHOD FOR THE FSTSP

scarce attention to the exact solution of the addressed problem. Indeed, their
main focus usually consists of the development of a heuristic method able to
tackle effectively the problem. In this chapter, a study of the exact solution of
the FSTSP will be presented.

In particular, the chapter is organized as follows: in Section 4.2 the stud-
ies focusing on the exact solution of delivery problems with drones will be
recalled; In Section 4.3 a detailed description of the problem setting is given
together with a new Mixed integer Linear Programming Formulation that, con-
trarily to the formulations in literature, doesn’t use BigM constraints. More-
over, some valid inequalities are presented within the same section; in Section
4.4 an original row-and-column generation approach is described; Section 4.5
proves the effectiveness of the proposed approach showing some computa-
tional results; finally, conclusions are given and future perspectives are dis-
cussed in Section 4.6.

4.2 Related works

A large body of literature has been dedicated to optimization problems with
drones; however, in this section, we will report only those studies that are
highly related to the FSTSP or those in which the focus is on the exact solution
of the tackled problem.

The first definition of the FSTSP is given in [43]. The authors, in addi-
tion the problem definition, presented a Mixed Integer Linear Programming
formulation and a set of benchmark instance of up to 10 nodes. The proposed
formulation wasn’t solvable within a time limit of half an hour for some of the
proposed instances.

A problem similar to the FSTSP, and named TSPD, is defined in [1]. In this
paper, a mathematical programming formulation is proposed together with two
heuristic algorithms and a new set of benchmark instances of up to 50 nodes.
The formulation was solvable only for some of the instances with 10 nodes.
The same authors proposed an exact solution method based on dynamic pro-
gramming in [8]. The authors showed through an extensive numerical analysis
that the proposed approach was more effective than the solution of the integer
programming proposed in their previous work.

A slightly different problem, named min − cost TSPD, was defined in
[32]. The main difference is represented by the objective function that mini-
mizes the operational costs arising from the distance traveled by the two ve-
hicles and the waiting times of a vehicle for the other one. An original mixed
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integer linear programming formulation is also proposed but only instances up
to 10 nodes can be solved to optimality.

A study very focused on the optimal solution of the TSPD is reported in
[30]. The authors presented a new mathematical formulation for the prob-
lem. Moreover, they enhanced the tractability of the proposed MIP formulation
through a combination of valid inequalities, pre-processing, and other bound
tightening strategies. Computational results, carried on the instances provided
in [1], showed that the proposed formulation was able to solve instances up to
24 nodes.

Two original formulations are proposed in [26] and solved through a
Branch-and-Cut algorithm. The authors first reformulate the model proposed
in [43] and then they substitute some explicit constraints of this model with
exponentially many constraints so obtaining the two formulations proposed.
Moreover, the authors proposed a new set of valid inequalities to tighten their
formulations and showed that the proposed formulations are able to solve in-
stances of up to 12 customers.

4.3 Problem description and formulation

The FSTSP can be seen as a particular variant of the TSP (in Figure 4.2 an
example of the solutions of these two problems is reported). Solving a TSP
instance requires to decide the order according to which the customer will be
served minimizing the total route length. On the other hand, solving an FSTSP
instance requires to decide:

• The route performed by the truck;

• The set of clients served by the drone where the drone can only deliver
parcels to eligible customers (payload capacity);

• The launch node and the pick-up node for each drone flight satisfying
the endurance limit of the drone;

with the aim of minimizing the overall delivery time.

To formulate the problem we make exactly the same assumptions as in
[43]. More precisely we have that:

1. Each customer must be served once by either the truck or the drone.
If the weight of a parcel exceeds the drone payload capacity the corre-
sponding customer can be served only by the truck.



74 CHAPTER 4. AN EXACT SOLUTION METHOD FOR THE FSTSP

 

Figure 4.1: A comparison of the TSP and FSTSP solutions

2. The truck and the drone depart and return to a single depot exactly once.

3. The truck has an infinite capacity and acts as a mobile depot for the
drone.

4. The drone has a limited endurance in terms of flight time and can serve
one customer for flight.

5. Each drone sortie may begin either at the depot or from a customer lo-
cation.

6. Prior the launch, a service time is required for the driver to change the
battery and load the parcel.

7. The second node of a sortie must be a customer served by the drone.

8. The third node may be either the depot or a customer location where the
drone meets the truck (each customer cannot be re-visited by the truck
just to retrieve the drone).

9. If a sortie ends at a truck location, then another service time is required
for the driver to recover the drone.

10. The objective function requires the minimization of the time needed to
serve all the customers and come back to the depot.

4.3.1 Extended graph representation

A "natural" representation of an FSTSP instance is given by a multi-graph
G(V ;ET ∪ ED) where: V = {0, 1, ..., n} is the set of vertices with vertex
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0 representing the depot and the other vertices representing the clients; ET
is the set of truck edges; ED is the set of drone edges. For each truck arc
(i, j)T ∈ ET we have a cost cT(i,j) given by the time needed for the truck to
move from the vertex i to the vertex j. For each drone arc (i, j)D ∈ ED we
have a cost cD(i,j) given by the time needed for the drone to move from the
vertex i to the vertex j.

In the following, we will use a representation of the FSTSP based on an
extended simple-graph G′({s, t} ∪ T ∪D;AT ∪AD) where:

• the depot 0 ∈ V is splitted into two nodes, an origin node s with only
outgoing arcs and a destination node t with only incoming arcs;

• each vertex i ∈ V \ {0} is splitted in a truck node i ∈ T that can be
served by the truck and a drone node i′ ∈ D reachable only by the
drone;

• for each i ∈ {s}∪T and each j ∈ T ∪{t} with i 6= j, we define a truck
arc (i, j) ∈ AT whose cost dij is given by the time needed for the truck
to move from node i to node j;

• for each i ∈ {s} ∪ T and j′ ∈ D, we define a loaded drone arc (i, j′) ∈
ALD whose cost dij′ is given by the time needed for the drone to move
from node (depot or customer) i to customer j;

• for each i′ ∈ D and j ∈ T ∪ {t}, we define an empty drone arc (i′, j) ∈
AED whose cost di′j is given by the time needed for the drone to move
from customer i to node (depot or customer) j;

• the set of drone arcs is given by the union of the truck arcs, the loaded
drone arcs and the empty drone arcs AD = AT ∪ALD ∪AED.

To better understand the extendend graph, in Figure 4.2 we report the same
feasible solution of an FSTSP instance on the original and the corresponding
extended graph.

We can observe that any feasible solution on the extended graph consists
of a truck path and a drone path from {s} to {t} and, for each customer i,
either node i belongs to the truck path or node i′ belongs to the drone path.
Moreover, we have that the drone arc (i, j) with i, j ∈ T ∪ {s, t} can belong
to the drone path if and only if the truck arc (i, j) belongs to the truck path.
Similarly, a drone arc (i′, j) with i′ ∈ D and j ∈ T ∪ {t} can belong to the
drone path if and only if node j belongs to the truck path.
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Figure 4.2: An example of feasible solution

On the basis of this observation, it is possible to express the total delivery
time of a generic feasible solution as a sum of three terms:

• the duration of the truck route;

• the total launch and delivery time;

• the total truck delivery time.

Let Πij be the the set of all the paths from i to j on the truck sub-
graph G′T ({s, t} ∪ T ;AT ), to evaluate the total delivery time of a feasible
solution we can consider the set of couples S = {(k′, Pij)|k′ ∈ D, i, j ∈
T ∪ {s, t} and Pij ∈ Πij} where each couple (k′, Pij) denotes a sortie in
which the drone travels the path i − k′ − j and the truck travels the path Pij .
A sortie (k′, Pij) is feasible if either the drone path i − k′ − j and the truck
path Pij have a duration less than the endurance of the drone Dtl (drone time
limit). Moreover, we say that it is a waiting truck sortie if it is feasible and the
duration of the drone path is greater than the duration of the truck path. For
each waiting truck sortie we denote by W k

Pij
the truck waiting time.
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4.3.2 Problem formulation

To introduce the new formulation for the FSTSP, we define three sets of binary
variables:

- yij , for each (i, j) ∈ AT is equal to 1 if the arc (i, j) belongs to the truck
path, 0 otherwise.

- xij , for each (i, j) ∈ AD is equal to 1 if the arc (i, j) belongs to the
drone path, 0 otherwise.

- zkPij
, for each waiting time sortie ((k′, Pij) ∈ S such that W k

Pij
> 0) is

equal to 1 if the drone travels the path i−k′− j and the truck travels the
path Pij , 0 otherwise.

By using these variables, the objective function is:∑
(i,j)∈AT

dijyij +
∑

(i,j′)∈AL
D

(SL+ SR)xij′ +
∑

(k′,Pij)∈S|Wk
Pij

>0

W k
Pij
zkPij

where SL and SR are the launch and the recovery service time, respectively.
The first term measures the duration of the truck path, the second term the total
service and recovery time and the third term measures the total truck waiting
time.

The set of constraints can be divided into seven subsets:

Single assignment constraints∑
i:(i,j′)∈AL

D

xij′ +
∑

i:(i,j)∈AT

yij = 1 j ∈ T (4.1)

They impose that each client must be served either by the drone or by the truck.

Consistency constraints∑
j′:(i,j′)∈AL

D

xij′ ≤
∑

j:(i,j)∈AT

yij i ∈ T (4.2)

xij ≤ yij (i, j) ∈ AT (4.3)

Constraints (4.2) impose that every drone sortie has to start from a node i
belonging to the truck path. Constraints (4.3) enforce that an arc (i, j) ∈ At
can belong to the drone path iff (i, j) belongs also to the truck path.
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Truck routing constraints∑
j:(s,j)∈AT

ysj =
∑

i:(i,t)∈AT

yit = 1 (4.4)

∑
j:(i,j)∈AT

yij =
∑

j:(j,i)∈AT

yji i ∈ T (4.5)

∑
i,j∈S|(i,j)∈AT

yij ≤ |S| − 1 S ⊆ T (4.6)

They impose that in any feasible solution there is a truck path from the origin
node s to the destination node t. Constraints (4.6) are the subtour elimination
constraints.

Drone routing constraints∑
j:(s,j)∈AD

xsj =
∑

i:(i,t)∈AD

xit = 1 (4.7)

∑
j:(i,j)∈AD

xij =
∑

j:(j,i)∈AD

xji i ∈ T (4.8)

∑
i,j∈S|(i,j)∈AT

xij ≤ |S| − 1 S ⊆ T ∪D (4.9)

They impose that in any feasible solution there is a drone path from the origin
node s to the destination node t. Similarly to constraints (4.6), constraints
(4.9) represent subtour elimination constraint for the drone path. We highlight
that these constraints are not necessary, but they can be used to tighten the
formulation.

Backward constraints∑
(u,v)∈Pij

yij + xjk′ + xk′i ≤ |Pij |+ 1 k′ ∈ D, i, j ∈ T ∪ {s, t}, P ij ∈ Πij

(4.10)

where |Pij | denotes the number of arcs in the path Pij .
The backward constraints (4.10) are necessary to forbid backward sorties like
the one highlighted in Figure 4.3.
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Figure 4.3: An example of backward sortie

Drone endurance constraints

xik′ + xk′j ≤ 1 i ∈ {s} ∪ T, j ∈ T ∪ {t}, k′ ∈ D : dik′ + dk′j > Dtl − SR

(4.11)∑
(u,v)∈Pij

yuv + xik′ + xk′j ≤ |Pij |+ 1 (k′, Pij) ∈ S : D(Pij) > Dtl − SR

(4.12)

where D(Pij) =
∑

(u,v)∈Pij
duv denotes the duration of the truck path Pij .

The drone endurance constraints (4.11, 4.12) impose that the duration of each
sortie must be less tha or equal to the drone endurance.

Waiting time constraints

zkPij
≥

∑
(u,v)∈Pij

yuv + xik′ + xk′j − |Pij | − 1 (k′, Pij) ∈ S : W k
Pij

> 0

(4.13)

Waiting time constraints (4.13) impose that if the drone makes the sortie
(k′, Pij) then the corresponding variable zkPij

must be equal to 1 to take into
account the truck waiting time in the objective function. Obviously, zkPij

can
be equal to zero, if the corresponding sortie does not provide a truck waiting
time (W k

Pij
= 0).

4.3.3 Preprocessing

The performance of the formulation solution can be improved applying some
simple preprocessings that exploit the drone endurance. In particular, let
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(i, k′) ∈ ALD be a loaded drone arc and let dik′ be its drone travel time. If
dik′ + dk′j > Dtl − SR for each node j ∈ T ∪ {t} then xik′ is equal to 0 in
any feasible solution.

Similarly, if we consider an empty drone arc (k′, j) ∈ AED such that dk′j +
dik′ > Dtl−SR for each node i ∈ {s}∪T , we can conclude that xk′j = 0 in
any feasible solution.

Moreover, let us consider a travel arc (i, j) ∈ AT whose truck travel time dij
is greater than Dtl−SR. Due to the triangle inequality no one sortie (k′, Pij)
can be in a feasible solution and then the inequalities xik′ + xk′j <= 1 for
each k′ ∈ D are valid for the problem.

4.3.4 Valid inequalities

To strengthen the formulation we added to it, a set of valid inequalities.

Proposition 1. Let (i, k′) ∈ ALD be a loaded drone arch and let Tik′ ⊆ T ∪{t}
be the subset of nodes for which a feasible sortie (k′, Pij) exists. Due to the
triangle inequality, Tik′ = {j ∈ T ∪ {t} : dik′ + dk′j <= Dtl − SR}. It is
trivial to prove that the inequality:

xik′ ≤
∑
j∈Tik′

xk′j (4.14)

is valid for the FSTSP problem.

Similarly, let us consider an empty drone arch (k′, j) ∈ AED and the subset
of nodes Tk′j = {i ∈ {s} ∪ T : dik′ + dk′j <= Dtl − SR}. The inequality:

xk′j ≤
∑
i∈Tk′j

xik′ (4.15)

is valid for the FSTSP problem.

Proposition 2. Consider three nodes i, σ, j such that i ∈ {s} ∪ T , σ ∈ T and
j ∈ T ∪ {t}. If diσ + dσj > Dtl− SR, no sortie (k′, Pij) can be in a feasible
solution, if (i, σ) or (σ, j) belongs to the path Pij . Therefore, the inequalities:

xik′ + xk′j +
∑
σ∈Sij

yiσ ≤ 2 k′ ∈ D (4.16)
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xik′ + xk′j +
∑
σ∈Sij

yσj ≤ 2 k′ ∈ D (4.17)

are valid for the FSTSP problem where Sij = {σ ∈ T : diσ + dσj > Dtl −
SR}.

Moreover, let Pij = {i, s1, ..., sn, j} be a truck path from node i to node j
where S = {s1, ..., sn} is the set of intermediate nodes.

Proposition 3. If D(Pij) > Dtl − SR, then at least an arc or a node of the
path must be touched by the drone. Hence, the inequalities:∑

(u,v)∈Pij

yuv ≤ |Pij | − 1 + xis1 +
∑
s∈S

∑
k′∈D

xk′s (4.18)

are valid for the FSTSP problem.

For |Pij | = 1 inequality (4.18) begins

yij ≤ xij

.
For |Pij | = 2 inequality (4.18) begins

yis + ysj ≤ 1 + xis +
∑
k′∈D

xk′s

.

Proposition 4. The inequalities:∑
(u,v)∈Pij

yuv + xik′ + xq′j ≤ |Pij |+ 1 +
∑
s∈S

xk′s k′, q′ ∈ D : k′ 6= q′

(4.19)

are valid for the FSTSP problem.

For |Pij | = 1 inequality (4.19) begins

yij + xik′ + xq′j ≤ 2 (4.20)

For |Pij | = 2 inequality (4.18) begins

yis + ysj + xik′ + xq′j ≤ 3 + xk′s (4.21)
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Inequalities (4.20) can be lifted obtaining the following valid inequalities:

yij + xik′ +
∑

q′∈D:q′!=k′

xq′j ≤ 2 (4.22)

yij +
∑

q′∈D:q′!=k′

xiq′ + xk′j ≤ 2 (4.23)

If dik′ + dk′j > Dtl − SR, we can further strengthen inequalities (4.22)
and (4.23) obtaining the valid inequalities:

yij + xik′ +
∑
q′∈D

xq′j ≤ 2 (4.24)

yij +
∑
q′∈D

xiq′ + xk′j ≤ 2 (4.25)

Inequalities (4.21) can be lifted obtaining the following valid inequality:

yis + ysj + xik′ +
∑

q′∈D:q′!=k′

xq′j ≤ 3 + xk′s (4.26)

If dik′ + dk′j > Dtl − SR, then we can further strengthen inequalities
(4.26) obtaining:

yis + ysj + xik′ +
∑

q′∈D:q′!=k′

xq′j ≤ 3 (4.27)

4.3.5 Symmetry breaking constraint

In our computational experience, we worked on a symmetric graph so in the
enumeration tree we had many symmetries. To reduce these symmetries, we
can add the inequality:

∑
j:(s,j)∈AT

dsjysj ≤
∑

i:(i,t)∈AT

dityit (4.28)

The problem is that adding these constraints, we could not consider the
launch time SL if the sortie starts from the depot. Therefore, we have to add a
new variable defined by the following constraints:
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θ ≤
∑

k′:(k′,t)∈AD

xk′t (4.29)

1− θ ≥
∑

k′:(s,k′)∈AD

xsk′ (4.30)

The variable has coefficient equal to −SL in the objective function.

4.3.6 A variant of the FSTSP

The definition of the FSTSP does not include the possibility for the truck of
waiting for drone retrieval in the same location where the drone is launched.
Instead, this capability is provided by the Min-cost TSPD where the objective
function minimizes the operational costs ([32]). In this subsection, we address
a new problem called FSTSP* that is a generalization of the FSTSP in which
the drone can be launched and recovered in the same node but, contrarily to
the Min-cost TSPD, the objective is still the completion time minimization. To
formulate this problem on the basis of the formulation previously described,
we have to introduce a new set of binary variable. These variables are the
assignment variable σij for each (i, j) ∈ AD, where σij = 1, if the client
j is served by the drone starting from and returning to the same node. The
coefficient of a generic variable σij in the objective function is cσij = sl + sr +
dij + dji. Obviously, if sr + dij + dji > Dtl, then the client j cannot be
assigned to the node i and σij = 0. Therefore, the new objective function is
the following:

∑
(i,j)∈AT

dijyij +
∑

(i,j′)∈AL
D

(SL+ SR)xij′+

+
∑

(k′,Pij)∈S|Wk
Pij

>0

W k
Pij
zkPij

+
∑

(i,j′)∈AL
D

cσij′σij′

Moreover, in addition to the objective function, we also need to modify the
single assignment constraints (4.31) as follows:

∑
i:(i,j′)∈AL

D

xij′ +
∑

i:(i,j′)∈AL
D

σij′ +
∑

i:(i,j)∈AT

yij = 1 j ∈ T (4.31)

These new constraints impose that each client must be served either by the
truck, by the drone with a standard sortie or by the drone with a cyclic sortie.
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4.4 A row-and-column generation approach

To solve to optimality the FSTSP we developed a row-and-column generation
procedure and we embedded it into a Branch-and-Cut framework. The column
generation procedure does not require to solve a pricing problem so it would
be wrong to consider it a Branch-and-Cut-and-Price algorithm. Therefore, a
Branch-and-Cut algorithm is adopted for the solution of the proposed model
strengthened through the addition of the valid inequalities (4.14, 4.15, 4.16 and
4.17). More precisely, at the root node of the enumeration tree, we solve the
LP relaxation where:

i) the preprocessing constraints are added to the formulation;

ii) the valid inequalities (4.14, 4.15, 4.16 and 4.17) are added to the formu-
lation;

iii) the symmetry breaking constraint and the variable θ are added to the
formulation;

iv) the set of the new valid inequalities is added to the formulation;

v) the set of z−variables (zkPij
) with |Pij | ≥ 3 are excluded from the LP

relaxation;

vi) the subtour elimination constraints (4.6) and (4.9) are relaxed;

vii) the backward constraints (4.10), the drone endurance constraints (4.12)
and the waiting time constraints (4.13) with |Pij | ≥ 3 are relaxed.

Then, at each node of the enumeration tree:

i) we separate the subtour elimination constraints by using a max flow sep-
aration procedure;

ii) if an integer solution is found, we separate the endurance and the back-
track constraints;

iii) if a feasible integer solution is found for each sortie (i − k − j) such
that W k

Pij
> 0, we add the variable zkPij

with related cost W k
Pij

and the
corresponding waiting time constraint.
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4.5 Computational results

In this section, the results of the numerical experiments, aimed at evaluating
the effectiveness of the new set of valid inequalities and the performance of
the branch-and-cut algorithm, are presented. The experiments have been per-
formed on an Intel(R) Core(TM) i7-8700k, 3.70 GHz, 16.00 GB of RAM. The
branch-and-cut algorithm has been coded in C language using Cplex 12.7 with
default setting as MIP solver, with a time limit of 1 hour. The experiments
have been carried out on two test beds:

• the set of benchmark instances proposed in [43] (Murray’s instances);

• a set of 30 new problem instances, named from unina101 to unina2010
(Unina’s instances).

For the sake of completeness, we recall the main features of the set of
benchmark instances. The set of customers is distributed across an 8-mile
square region and its cardinality is equal to 10. The depot location is randomly
chosen to be either the average of the x- and y-coordinates of the customers
(i.e., near the center of gravity), the average of the customers’ x-coordinates
with a y-coordinate of zero, or at the southwest corner of the region (ori-
gin). Between 80% and 90% of the customers were designated as being UAV-
eligible. The drone time limit was chosen to be either 20 or 40 min. UAV
speeds were selected as 15, 25, or 35 miles/h, with drone travel being based on
Euclidean metric. The truck speed was set to be equal to 25 miles/h, with Man-
hattan truck travel paths. The overhead parameters SL and SR were assumed
to be one minute each.

Moreover, the 30 new instances were generated defining 10 problem in-
stances for three values of the customer set cardinality (C = {10, 15, 20}).
The customer and depot locations have been determined coherently with the
instances proposed in [43]. The percentage of customer UAV-eligible is be-
tween 80% and 90%. The drone time limit was selected as 13.34, 20 or 40
min. Truck and drone speeds was chosen to be either 20 or 40 miles/h. The
parameters SL and SR were assumed to be one minute each.

4.5.1 Murray’s Instances

The computational experiments carried on the benchmark instances were
aimed to evaluate the efficacy of the new set of valid inequalities and the break-
ing symmetry constraint, in addition to the assessing of the proposed solution
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method. For this reason, we compared two version of the proposed method.
The first version calledB&P1.0 is the algorithm described in Section 4.4 with-
out the addition of the new set of valid inequalities and the breaking symmetry
constraint. The second version is exactly the algorithm described in the previ-
ous section. The results of the two versions are given in Table 4.1, where the
first three columns represent the instance detail (name, number of customer
and drone time limit). The fourth column reports the objective function value
of the optimal solution. The successive columns show the number of columns
added and the running times for B&P1.0 and B&P1.1, respectively. Finally,
we reported in the last column of the table the running times of [26] to better
evaluate the performance of the proposed method.

In terms of running times, it is possible to observe that on average the
B&P1.1 is the best method among the three reported. Moreover, we can
observe that both B&P1.0 and B&P1.1, are able to solve all the instances
within a time limit of 1 hour. Finally, we note that the number of columns gen-
erated by B&P1.1 is significantly lower than the number of columns generate
by B&P1.0. These results confirm the effectiveness of the new valid set of
inequalities and of the symmetry breaking constraint.

4.5.2 Unina’s Instances

The motivation leading us to generate a new set of instances was related to the
need of testing the FSTSP*. Indeed, the solutions obtained solving the FSTSP*
formulation on Murray’s instances didn’t present any cyclic sortie. Therefore,
we generated these new instances with the aim of finding a FSTSP* solution
with a cyclic sortie. We report the results of the Branch-and-Cut specialized for
the FSTSP* on the Unina’s instances with 10, 15 and 20 customers in Tables
4.2, 4.3 and 4.4, respectively. The first five columns of these tables report the
instance details (name, number of customers, truck speed, drone speed and
drone time limit). The successive four columns show some information about
the solution method (number of columns added, Upper bound, Lower bound
and running times). Finally, the last two columns indicate the number of drone
sorties and of cyclic sorties in the obtained solution.

On the basis of the reported results, it is possible to observe that, as ex-
pected, the number of drone sorties increase when the drone speed is higher
than the truck speed. Moreover, a critical parameter is the drone time limit.
Indeed, given a combination of truck and drone speeds, reducing the drone
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B&P 1.0 B&P 1.1 Dell’Amico
Name #C Dtl OPT #Cols Time #Cols Time Time

M37V1 10 20 57.45 77 10.32 26 8.51 2.85
M37V2 10 20 53.79 5 1.96 13 4.59 1.247
M37V3 10 20 54.66 17 2.78 6 4.38 12.637
M37V4 10 20 67.46 3 1.03 4 4.30 14.912
M37V5 10 20 51.78 1279 1190.00 228 321.72 3600
M37V6 10 20 48.60 1170 536.11 183 210.34 1905.68
M37V7 10 20 49.58 135 32.77 63 37.66 204.339
M37V8 10 20 62.38 104 36.39 39 47.50 208.581
M37V9 10 20 43.48 1164 1583.12 248 384.38 3600
M37V10 10 20 41.91 924 1001.25 101 168.37 2087.216
M37V11 10 20 42.90 673 42.57 10 26.28 46.48
M37V12 10 20 56.85 203 37.73 58 23.26 74.366

M40V1 10 20 49.43 151 44.10 32 35.24 107.425
M40V2 10 20 51.71 212 60.48 45 39.87 25.198
M40V3 10 20 57.10 162 34.53 32 29.91 13.005
M40V4 10 20 69.90 74 12.59 6 13.53 1.981
M40V5 10 20 45.46 669 525.96 116 169.44 1505.067
M40V6 10 20 44.51 221 60.38 43 33.07 72.531
M40V7 10 20 49.90 107 26.49 25 10.15 39.141
M40V8 10 20 62.70 77 10.73 24 10.97 25.591
M40V9 10 20 42.53 231 76.54 18 21.20 150.344
M40V10 10 20 43.08 183 53.96 6 3.78 20.322
M40V11 10 20 49.20 15 1.94 2 1.26 1.034
M40V12 10 20 62 2 0.65 1 1.43 1.076

M43V1 10 20 69.59 0 0.37 0 0.55 0.577
M43V2 10 20 72.15 0 0.39 0 0.54 0.502
M43V3 10 20 77.34 0 0.17 0 0.34 0.938
M43V4 10 20 90.14 0 0.21 0 0.37 0.433
M43V5 10 20 58.71 804 1226.47 290 307.92 1788.517
M43V6 10 20 59.09 522 347.32 176 96.24 694.346
M43V7 10 20 65.52 122 26.53 16 23.97 22.341
M43V8 10 20 84.81 157 28.68 80 43.78 276.468
M43V9 10 20 46.93 1382 1855.16 409 381.47 3600
M43V10 10 20 47.93 502 132.07 151 49.09 421.915
M43V11 10 20 57.38 55 8.10 31 9.61 5.009
M43V12 10 20 69.20 18 2.77 6 4.82 2.384

Table 4.1: Results of the proposed solution method
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endurance the number of drone sorties decreases. Finally, we can observe that
the cyclic sortie is scarcely performed. These result can be explained consid-
ering that the main advantage of adopting an hybrid truck and drone delivery
system consists in the parallelization of the workload of the two vehicles. This
advantage cannot be fully exploited since the truck is waiting stationary for the
drone during a cyclic sortie. Therefore, a cyclic sortie arise only if a customer
is far from the other customers and once this customer is served by a drone the
drone cannot reach no other customer than the one from where it was launched.

4.6 Conclusions

In this study, we proposed a new Mixed Integer Linear Programming formu-
lation for the FSTSP, which unlike previous formulations for this problem in
the literature, does not present BigM constraints. Moreover, we introduced
a variant of the FSTSP, called FSTSP*, where cyclic sorties are allowed. We
developed a Branch-and-Cut algorithm that is able to solve to optimality in-
stances up to 20 customers within a time limit of 1 hour. Moreover, we in-
troduced a new set of valid inequalities and a symmetry breaking constraints.
Computational results showed the effectiveness of the proposed contributions.

Future research directions naturally include further refinement of the algo-
rithm. In addition, it may be interesting to extend the proposed formulation to
the multi-truck and/or multi-drone version of the same problem.





Chapter 5

The Multi-visit Drone Routing
Problem with Edge Launches

5.1 Introduction

A growing body of literature within operations research has considered the
use of drones in civilian contexts. In particular, the reported exploration by
large corporations such as Amazon, Google, UPS, and DHL of using drones
in a commercial delivery context has spurred significant interest in academia
[5, 14, 56, 57, 60].

Although some papers, including [16, 62], consider warehouse-direct-to-
customer models of drone delivery, many other papers have explored truck-
and-drone hybrid schemes of delivery. Many of these papers note that hybrid
truck-and-drone models of delivery offer significant potential for cost savings,
reduced delivery time, and reduced emissions. This occurs as the larger ca-
pacity and range of the truck is complemented by the speed of the drone, and
because there exists an ability to parallelize the work that must be done.

Despite the myriad of papers that have explored various models and com-
putational methods related to truck-and-drone routing problems, as far as we
are aware, no paper has considered the ability of a drone to launch from or
come back to a truck along an edge through a continuous approach. This abil-
ity can enlarge the solution space resulting in greater gains compared to those
of the traditional truck-and-drone delivery schemes. An example of the benefit
of launching along an edge is reported in Figure 5.1. Figure 5.1(a) and Figure
5.1(b) show a solution with node launches and node and edge launches, re-
spectively. Solid lines indicate the path of the truck and dashed lines indicate
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the flight path of the drone. Figure 5.1(c) shows the maximum flight range of
a drone serving customer C2 represented by the diameter of the green circle.
Therefore, customer C2 cannot be served by a drone in a solution with node
launches. Figure 5.1(d) shows a feasible solution with edge launches in which
customer C2 is served by a drone. However, the practicality of this idea de-
pends on the regulatory climate of the country and region in which the delivery
model is applied. In any case, it is possible to suppose that on rural and neigh-
borhood roads (or any other roads with low traffic volume) the truck can slow
down or even stop to allow a launch or a rendezvous of the drone along that
road. Generally, real contexts contain roads with both high and low volumes
of traffic, and the proposed contribution can be easily adapted to this scenario,
as we will further discuss. In particular, the study reported in this chapter will
consider a modified version of the Multi-visit Drone Routing Problem (MV-
DRP) [47] where launching a drone along an edge is allowed. Both discretized
and continuous methods will be used. Analyses will be conducted which quan-
tifies potential gains by using edge launches. Our approach can be applied to
other truck-and-drone problems since it is easily generalizable.

This chapter is organized as follows: Section 5.2 contains an overview
of the related literature meaningful to the proposed study. In Section 5.3, the
original MVDRP problem description and solution method, proposed in [47],
called Route, Transform and Shortest Path (RTS), are reviewed. Section 5.4
first defines the MVDRP with Edge Launch (MVDRP+EL), then describes
three procedures which improve solution quality. The results of extensive ex-
perimentation utilizing various combinations of the improvement methods are
reported in Section 5.5. Finally, Section 5.6 presents conclusions and perspec-
tives on future work on this topic.

5.2 Related works

In this section, we provide an overview of routing optimization problems
which consider the use of hybrid truck-and-drone delivery schemes.

The first routing optimization problems related to the use of a truck and a
drone for parcel delivery were presented in [43]. The authors introduced two
original problems where a vehicle and a drone, starting from a depot, must
serve a set of customers. In both problems, a customer can be served by the
drone or by the vehicle, and the objective is to minimize the time needed by
them to return to the depot after all the customers have been served. In the
first problem, titled the Flying Sidekick Traveling Salesman Problem (FSTSP),



5.2. RELATED WORKS 95

Figure 5.1: A comparison between the solution of the proposed ap-
proach and the traditional schemes.
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the vehicle may directly serve customers or act as a mobile depot and battery
swap station for the drone, which is capable of carrying one homogeneous
package to a customer. They also introduced the Parallel Drone Scheduling
TSP (PDSTSP), where the drone delivers packages that are within flight range
to the depot. The authors proposed two Mixed-Integer Linear Programming
(MILP) formulations for the problems and two heuristics since only instances
up to 10 customers can be solved to optimality within a reasonable amount of
time.

A similar problem called the Traveling Salesman Problem with Drone
(TSP-D) was proposed independently in [1]. The main difference is that, in
the TSP-D. a node can be visited more than once. The authors proposed an In-
teger Programming (IP) model and several route-first, cluster-second heuristics
based on local search and dynamic programming. The same authors proposed
a dynamic programming based exact method for the TSP-D in [8].

In [32], the authors define a min-cost version of the TSP-D where the ob-
jective is to minimize total operational costs, not just route duration. The au-
thors proposed a MILP formulation for the problem similar to the one proposed
by Murray and Chu for the FSTSP in [43]. A Greedy Randomized Adaptive
Search Procedure (GRASP) heuristic and an adaptation of the heuristic in [43]
for the FSTSP were proposed to solve larger instances.

A two-stage iterative algorithm was proposed to solve the TSP-D in [63].
In the first stage, a set of truck routes that visit a subset of customers are gen-
erated to determine a lower bound for TSP-D solutions that use the same truck
routes and serve the other customers by drone. In the second stage, for each
truck-route, the drone route to serve the remaining customers is determined
solving a MILP model which minimizes the truck-waiting time. The proce-
dure is repeated until the best lower bound determined in the first stage is
lower than the incumbent TSP-D solution determined.

A variant of the TSP-D, named the Horsefly Routing Problem (HRP), in-
spired by commercial systems developed by AMP Electric Vehicles and the
University of Cincinnati, was presented in [13]. In the HRP, the truck acts
exclusively as a mobile depot for the drone which is solely responsible for
the last-leg of delivery. The authors analytically determine completion time
upper and lower bounds under the assumption that demand is continuously
distributed in the Euclidean plane. Moreover, they characterize the savings ob-
tainable using the HRP as a function of truck and UAV speed.

A problem which focuses exclusively on the optimal determination of the
drone route was presented in [10]. The authors defined the Drone Scheduling
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Problem (DSP) and proposed two MILP formulations to model it. The problem
objective is to determine the drone schedule which minimizes the completion
time given a predetermined truck route.

The first paper to consider the use of multiple vehicles equipped with
drones is [62]. The authors define the Vehicle Routing Problem with Drones
(VRPD) as the problem where a set of customers has to be served by a ho-
mogeneous fleet of trucks, each carrying a certain number of homogeneous
drones. The problem objective is to minimize the completion time. In VRPD,
a drone flight is feasible if the duration of the flight is less than the maximum
battery duration of the drone and the drone lands on the same truck from which
it launched. The authors studied the problem from a worst-case perspective to
determine the maximum potential savings obtainable by the use of this delivery
system compared to traditional ones. The same authors extended their work
in [48] and consider the impact on objective value of the battery capacity of
the drone and various distance metrics for the trucks and drones. Moreover,
the authors point out that the VRPD may be characterized as an intermediate
problem between the vehicle routing problem (VRP) and the close-enough ve-
hicle routing problem (CEVRP).

Two heuristic algorithms were proposed in [52] for the VRPD. The two
heuristics are based on the route-first, cluster-second framework. The first is
a two-stage heuristic that, in the first stage, determines a VRP solution by ex-
clusively considering the fleet of trucks and, in the second stage, improves the
solution by inserting drones to serve some customers. The second heuristic
first determines a TSP solution. Then, the solution is improved allowing the
drones to serve some customers. Finally, the route is split into different sub-
routes, where one truck is assigned to each subroute.

The same authors proposed a new MILP formulation for the VRPD in
[51]. Moreover, the authors provided an extensive literature review on hybrid
truck-and-drone problems and derived some valid inequalities for the model.
Finally, an original Variable Neighbourhood Search procedure is presented to
tackle large instances.

A variant of the VRPD is introduced in [49]. The authors present a MILP
formulation of a VRPD with time windows where the objective is minimizing
the total route length. The formulation is solved using a commercial optimiza-
tion solver and tested on instances up to 20 customers.

The only other paper to consider the possibility of edge launches is [53].
The authors define the Vehicle Routing Problem with Drones and En Route
Operations (VRPDERO). The problem is similar to the VRPD with the addi-
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tion of the ability to launch and retrieve the drone at some discrete points that
are located on each arc. The authors proposed a MILP formulation to solve the
problem for instances up to 10 customers and a hybrid Variable Neighborhood
Search/Tabu Search algorithm for instances up to 50 customers.

5.3 Multi-visit Drone Routing Problem: Problem
Description and Summary of Previous Solution
Method

In this section, we describe the Multi-visit Drone Routing Problem. Then we
review the Route, Transform and Shortest Path algorithm proposed in [47] to
determine a heuristic solution for the MVDRP. This algorithm forms the basis
for the proposed method further discussed in Section 5.4.

5.3.1 MVDRP formulation

The Multi-visit Drone Routing Problem (MVDRP) is a scheme of delivery
which considers a tandem between a truck and a drone to serve a set of cus-
tomers. The tandem is initially located at a warehouse, called the depot. The
objective of the MVDRP is to minimize the completion time, which is the time
needed for the tandem to serve all the customers and return to the depot. An
overhead time, called LaunchP , is a penalty which arises each time the truck
launches the drone. Additional characteristics and assumptions of the truck
and drone in MVDRP follow.

Truck - characteristics and assumptions. The truck can serve customers or
act as a mobile depot and recharging location for the drone. However, when
the drone is airborne, the truck must proceed directly to the rendezvous loca-
tion and may not service customers. The route of the truck is constrained by
the road network. The truck has infinite capacity and range.

Drone - characteristics and assumptions. The drone launches from the
truck to make deliveries to one or more customers and then returns to the truck
for recharging (or battery swap) and to pick up further packages for the succes-
sive launches. The drone route is not constrained by the road network, hence
it can move straight from one location to another. The drone speed is known
in advance and it is usually greater than truck speed. wmax is the maximum
weight that the drone can carry. Finally, the drone is equipped with a battery
which has a maximum energy capacity emax. The energy dissipation rate by
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the drone per unit of time is a function of the sum of package weights carried.
The drone must return to the truck before the battery is depleted.

5.3.2 RTS Algorithm

Due to the difficulty in finding an optimal solution to the MVDRP, the heuris-
tic RTS algorithm was proposed. The RTS algorithm consists of three steps.
In the first step, called Route, the customer visit order is determined by solv-
ing a Traveling Salesman Problem (TSP) over the customers. Given a set of
customers, C, a TSP is solved on C where each customer is connected to each
other customer by an edge whose weight is equal to the time needed by a drone
to go from one customer to the other one. The output of this step is a sequence
of customers {c1, ..., c|C|} which indicates the fixed order according to which
the customers will be served in the final solution.

In the second step, called Transform, a graphG′ is constructed to represent
all the possible routes for the tandem given the customer visit order determined
in the first step. This step is the fundamental one of the algorithm. It is based
on the concept of an operation. An operation for the RTS is a movement of the
tandem such that at the beginning and at the end of the operation the drone and
truck are together in the same locations. Its expression consists of a 4-tuple
(i1, j1, i2, j2) which means that the operation begins with the tandem located
at the vertex i1 in a state where the first j1 customers have been serviced and
ends with the tandem at the vertex i2 in a state where the first j2 customers
have been serviced. This expression also provides information about truck and
drone routes within the operation. Indeed, we can retrieve this information on
the basis of i1, j1, i2, j2 as follows:

• If i1 6= i2 ∧ j1 = j2, then the truck carried the drone from i1 to i2.
Because j1 = j2, no customers were serviced.

• If i1 = i2 ∧ j1 < j2, then the truck stops at i1 and the customers in
[cj1+1, ..., cj2 ] are served. If the position of the served customers is equal
to the position of i1, then the truck serves these customers. Otherwise,
the drone makes the deliveries moving from customer to customer while
the truck waits at i1.

• If i1 6= i2 ∧ j1 < j2, then the truck launches the drone at i1 and moves
to the rendezvous location at i2. The drone serves all the customers in
[cj1+1, ..., cj2 ].
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It is also possible to compute the maximum weight carried by a drone during an
operation, which is its weight at take-off. Let wc be the weight of the package
demanded by customer c. The maximum weight carried by a drone within the
operation (i1, j1, i2, j2) is given by the following expression:

w(i1, j1, i2, j2) =

j2∑
k=j1+1

wk .

Moreover, the weight carried by the drone after servicing customer ca but be-
fore arriving to customer ca+1, such that j1 + 1 ≤ a ≤ j2, may be computed
as w(i1, j1, i2, j2)−

∑a
k=j1+1wk. That is, the take-off weight minus the sum

of the weights of packages already delivered within the operation.
The time needed to perform the operation (i1, j1, i2, j2) may be expressed

as:

t(i1, j1, i2, j2) = max{td(i1, j1, i2, j2), tt(i1, j1, i2, j2)}+ I ∗ LaunchP

where:

tt(i1, j1, i2, j2) = dt(i1, i2)/Speedt,

td(i1, j1, i2, j2) = (dd(i1, cj1+1) +

j2−1∑
x=j1+1

dd(cx, cx+1) + dd(cj2 , i2))/Speedd,

tt represents the amount of time required for the truck to travel from i1 to
i2. td represents the amount of time for the drone to go from launch location
i1 , service customers [cj1+1, ..., cj2 ] (in order), then return to the truck at i2.
If td > 0 then indicator variable I takes value 1, which effectively imposes
the overhead launch penalty; if td = 0, then I = 0 and no launch penalty
is assessed. The functions dt(i1, i2) and dd(i1, i2) output the distance which
has to be covered by a truck and a drone to go from i1 to i2, respectively.
Speedt(Speedd) is the speed of the truck (drone).

Because we can compute the weight of packages carried and the duration
of each flight segment of the drone within an operation, we can also compute
the total energy expenditure. Let e(i1, i2, w) be the function which expresses
the amount of energy spent by a drone moving from i1 to i2 carrying a weight
equal to w and let h be a constant that indicates the rate of energy consumption
per unit time for a drone, whenever it is hovering. The energy expenditure (ee)



5.3. MVDRP: DESCRIPTION AND SOLUTION METHOD 101

of an operation (i1, j1, i2, j2) can be computed as follows:

ee(i1, j1, i2, j2) = e(i1, cj1+1,

j2∑
k=j1+1

wk) +

j2−1∑
x=j1+1

e(cx, cx+1,

j2−1∑
k=x+1

wk)+

e(cj2 , i2, 0) + h ∗max{0, tt(i1, j1, i2, j2)− td(i1, j1, i2, j2)} .

The first three terms in the energy expenditure expression represent the energy
required by the drone to move from the launch position to the first customer, to
go from one customer to the next in [cj1+1, ..., cj2 ], and to move from the last
customer to the landing position, respectively. The fourth term expresses the
energy spent by the drone if it must wait for the truck at the landing position.
Indeed, the drone cannot land if the truck has not yet arrived, so it must hover
until the truck has reached the rendezvous position.

Once the concept of operation has been defined, it is possible to explain the
Transform phase of the algorithm, where graphG′ is constructed. This process
takes as input the vertices of the original network G = (V,E) representing the
road network and generates |C|+ 1 copies for each vertex in V . In particular,
for a vertex i in V we will generate the vertices {(i, 0), (i, 1), ..., (i, |C| −
1), (i, |C|)} in V ′ . In this way, we are linking each vertex copy to a different
number of served customers. Hence, a vertex of G′ is denoted by v′i,j ∈ V ′

to represent the original vertex i ∈ V in a state where customers c1, c2, ..., cj
have been serviced. Thus, an operation (i1, j1, i2, j2) may be thought of as
an arc in G′, linking v′i1,j1 to v′i2,j2 . The cost of the arc (v′i1,j1 , v

′
i2,j2

) is equal
to the time needed to perform the corresponding operation, t(i1, j1, i2, j2), if
the operation is feasible. Considering the weight and energy constraints, it is
possible to formally define the arc set (i.e., the set of feasible operations), A′,
of the new graph G′ as follows:

A′ = {(v′i1,j1 , v
′
i2,j2) : (j1 ≤ j2) ∧ ee(i1, j1, i2, j2) ≤ emax ∧ w(i1, j1, i2, j2) ≤ wmax} .

Therefore, at the end of the second phase, a directed graph G′ = (V ′, A′) is
built, in which the cardinality of V ′ is equal to |V | ∗ (|C|+ 1).

Finally, in the last step of RTS (Shortest Path), the heuristic solution to the
MVDRP is determined by solving a Shortest Path Problem on the graph G′.
Indeed, once the graph G′ has been constructed, it is possible to determine a
MVDRP solution solving a shortest path problem on G′ where the origin is
the vertex corresponding to the depot with no customer served (v′depot,0) and
the destination is the vertex corresponding to the depot with every customer
served (v′depot,|C|+1). An example of a MVDRP solution on G′ is shown in the
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Figure 5.2: An example of the representation of a solution on the
graph G′ and on the original graph G on the left and on the right,
respectively.

left half of Figure 5.2. Each row corresponds with some launch/landing loca-
tion. Each column corresponds to a number of completed deliveries. Arrows
connect the start and end location and state of each operation used by the tan-
dem. On the right of Figure 5.2, is reported the associated representation of the
physical path of the solution. The red square is the depot location. Green and
yellow squares represent locations of customers and possible launch/landing
sites, respectively. Solid black lines show the path of the truck; dashed black
lines show the path of the drone.

5.4 MVDRP+EL: Definition and Proposed Solution
Method

5.4.1 Defining MVDRP+EL

In MVDRP, we made the assumption that the set of feasible locations where a
drone may be launched or retrieved was given by a discrete set V . We define
MVDRP with Edge Launch (MVDRP+EL) identically, except that a drone is
allowed to launch from/rendezvous with the truck at any location v ∈ V or at
any location along an edge e ∈ E.
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5.4.2 Solution Framework to MVDRP+EL

The original RTS algorithm assumes that all launch/rendezvous locations were
from the discrete set of locations V . In the case that the optimal customer visit
order is known, RTS produces the optimal MVDRP solution. Our heuristic
solution framework for MVDRP+EL involves an iterative improvement pro-
cedure where the RTS algorithm is used as a subprocedure.

In principle, if we know the optimal customer visit order and the RTS al-
gorithm is executed on a graph G∗(V ∗, E∗) where V ∗ is the set of all points
along all edges in the road network and E∗ is the related edge set, it would be
possible to determine the optimal solution of the MVDRP+EL. However, as
V ∗ and E∗ are uncountably infinite, this is clearly not practical from a compu-
tational point of view.

We could consider, however, a finite discretization of each edge e ∈ E and
then apply RTS. Indeed, we recall that, using the RTS, from a graph G with
|C| customers and n vertices builds a graph G′ with n ∗ (|C| + 1) vertices.
Suppose we introduce k additional launch/retrieval locations along each edge
of the graph, subdividing each edge into k + 1 smaller segments. The number
of vertices of G would be equal to n + k|E| and then the number of vertices
of G′ would be equal to (n + k|E|) ∗ (|C| + 1). To preserve computational
tractability, the number of discretized points added per edge, must be limited.

Based on this, we propose a method based on three improvement ideas ap-
plied to the RTS algorithm. Two ideas are devoted to determining additional
launch/retrieval location points. The first one iteratively discretizes the road
network edges. The second one assumes a fixed truck route and set of drone
operations as input, but optimizes launch and retrieval locations for each op-
eration in a continuous manner. Finally, the last improvement is related to the
customer visit order and is devoted to determine different orders by varying
the metric considered solving the TSP in the first step of the RTS.

Improvement 1: Iterative Discretization of Road Network Edges

This improvement iteratively forms discretizations of the edges of graph G.
The total number of intermediate points added to the original graph in each
iteration is fixed and it is equal to the parameter ipmax. We limit the number
of intermediate points because the storage of G′, particularly arc set A′, may
run into memory issues. Because ipmax is limited, we wish to strategically
budget our use of intermediate points across the graph. A parameter pote(i)
which indicates the potential number of intermediate points to be generated on
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edge e is computed at each iteration, i, of the discretization procedure. The
analytic expression of pote(i) is the following:

pote(i) = e{[(−f(e)/T (i)]+le/lmax)}

where

• le is the length of the edge e;

• lmax is the maximum length of any edge, computed as maxe∈E(le);

• f(e) is a measure of the distance of e from the last solution;

• T (i) is the temperature of iteration i, which is a decreasing function.

In the expression of pote(i), we consider the length of each edge. Introducing
an intermediate point on a very short edge is unlikely to introduce new fea-
sible operations that substantially reduce completion times, because the edge
end points are not far from any choice of an intermediate point. Because the
scale of distances involved is larger for longer edges, discretization of longer
edges may have a greater impact on objective values. Therefore, we want to
generate more intermediate points for the longer edges, rather than the shorter
ones.

The term f(e) measures the distance of an edge e from the truck route in
the solution of the previous iteration. In the first iteration, f(e) =∞,∀e ∈ E.
The idea is that if an edge e is near the truck route of the most recent solution
(i.e., f(e) is small), we would like to prioritize this edge for more intermediate
points, as this edge is a good candidate to be part of the final solution. Hence,
we want to generate more intermediate points for these edges rather than for
the peripheral edges, far away from the existing solution route.

The distance f(e) is equal to the minimum distance from one of the end-
points of e to one of the vertices belonging to the truck route of the last solution
found. Let Et be the set of the edges traversed by the truck in the last solution
found, and let fpe and spe be the endpoints of the edge e, then the formal
expression of f(e) is the following:

f(e) = min
j∈Et

{dt(fpe, fpj), dt(fpe, spj), dt(spe, fpj), dt(spe, spj)}

where dt indicates the truck distance between two vertices.
Finally, we have introduced in the expression of pote(i) the parameter

T (i), which we refer to as the temperature, inspired by simulated annealing
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approaches. The temperature parameter changes according to a simple cool-
ing schedule. At each iteration, the temperature is decreased by multiplying
by a constant β. In particular, T (i + 1) = β ∗ T (i), where β is in [0, 1]. As
the number of iterations, i, increases, T (i) decreases in value (cools). Thus,
the relative importance of f(e) in the computation of pote(i) increases. That
is, in early iterations, when we are determining pote(i), less emphasis is given
to the proximity of an edge to the previous solution; as the solution cools, we
begin to focus more on edges near to the solution. As the procedure progresses
through iterations and the temperature cools, the focus gradually shifts from a
more equitable discretization of edges across the whole network to a focused
refinement of edges that are near the incumbent solution. In other words, our
strategy changes gradually from global search to local search.

Once the value of pote(i) is determined for every edge, the parameter
ipe(i), which represents the actual number of intermediate points to be al-
located to edge e in iteration i, is computed by taking into account ipmax and
pote(i) of all the edges.

At each iteration i, our discretization improvement procedure may be sum-
marized by the following steps:

1. Compute pote(i) for each edge e.

2. Compute totp(i) as the sum of the potential number of intermediate
points of each edge, totp(i) =

∑
e∈E pote(i).

3. Compute ipe(i) for each edge e, ipe(i) = pote(i) ∗ ipmax/totp(i).

4. Sort edges according the value of ipe(i) in descending order.

5. Move through the list of sorted edges, and generate dipe(i)e intermediate
points for edge e, where d.e is the ceiling function. These intermediate
points are uniformly spaced along the edge. Continue allocating inter-
mediate points in this manner until ipmax intermediate points have been
generated.

6. Run the RTS algorithm on the resulting graph.

The iterative process ends when two consecutive iterations produce the same
truck route or if the temperature is lower than a threshold Tmin. We point out
that at the beginning of each iteration the intermediate points previously gen-
erated are removed and the new ones will be added to the original graph G.
In each iteration, we have n + ipmax vertices in V ′. Moreover, we highlight
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that if the truck cannot use edge launches on some roads then it is possible to
take this situation easily into account just imposing that ipe(i) = 0 for these
edges. An example of the iterative discretization of road network edges is re-
ported in Figure 5.3, using the same notation of Figure 5.2 with the addition
of red lines and yellow circles to indicate the road network edges and the in-
termediate points, respectively. In particular, Figures 5.3(a) and 5.3(b) display
the network with the addition of the intermediate points when T = T0 and
the corresponding solution, respectively. Then, the Figures 5.3(c)-5.3(d) and
5.3(e)-5.3(f) show the discretized network-solution for decreasing values of T .
We can observe that in the first iteration the intermediate points are generated
on the longest edges. As T decreases, the intermediate points are more often
added to edges on or near the last incumbent solution.

Improvement 2: Continuous Optimization of Launch/Retrieval Locations

In this improvement procedure, we assume that we begin with a feasible MV-
DRP+EL solution. We fix the truck route and fix the ordered groups of cus-
tomers that are serviced in each of the operations. What remains fluid, how-
ever, is where the drone will launch/rendezvous for each operation. We will
seek to optimize the location of the launch and rendezvous for each operation,
subject to the restriction that the truck route is fixed and the ordering of drone
operations must be preserved.

The truck route time plus mandatory launch penalties represents a lower
bound to the solution objective function value. Indeed, if the drone is perfectly
synchronized with the truck along the route, then the truck will not incur ad-
ditional waiting time for the drone. If the truck has to wait for the drone to
arrive at a rendezvous location, then this waiting time delays the completion of
the route. We will determine the set of launch and rendezvous locations which
minimizes the waiting time of the truck and, therefore, minimizes completion
time. To this end, we have developed a Mixed Integer Second Order Cone
Programming (MISOCP) model. In order to provide the model formulation,
let us introduce the following notation:
Known inputs :

• te - number of edges traversed by the truck throughout its route.

• S - Sequence of vertices in the truck route, S = {vs0 , vs1 , vs2 , ..., vste}.

• Et - Sequence of edges in the truck route, Et = {e1, e2, ..., ete}.

• Lt - edge lengths in the truck route, Lt = {l(e1), l(e2), ..., l(ete)}.
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Figure 5.3: An example of iterative discretization of road network edges
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• Customer locations - c1, c2, ..., c|C|.

• O - set of the operations along the route that include a drone flight.
O = {o1, o2, .., o|O|}.

• C(o) - set of the customers served within operation o, for each o ∈ O.

• w(o) - sum of the package weights of the customer in C(o).

• DL - Location of the depot.

• vere - unit vector which expresses the direction of the edge e.

• Speedd - speed of the drone.

• Speedt - speed of the truck.

• e(w∗) - function which expresses the instantaneous drone energy con-
sumption carrying a weight equal to w*.

• h - function which expresses the instantaneous drone energy consump-
tion to hover.

Preprocessed parameters :

• mindistc - minimum distance between the customer c and any edge of
the truck route, mindistc = minei,i=1,..tn dist(c, ei).

• earliesto - the earliest location encountered along the truck route that
could feasibly serve as the launching location for operation o.

• latesto - the latest location encountered along the truck route that could
feasibly serve as the landing location for operation o.

• tintraod - time spent by the drone from the arrival at the first customer of
the operation o until depearture from the last customer of the operation
o.

• eintraod - energy spent by the drone from the arrival at the first customer
of the operation o until departure from the last customer of the operation
o.
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The earliesto and latesto parameters are determined by using the energy con-
straint. Indeed, the earliest launching location for each operation o, earliesto
is the first locationX encountered along the truck route such that the following
inequality holds:

e(W (o)) ∗ dd(X, fc(o)) + eintrad(o) + e(0) ∗mindistlc(o) ≤ emax

where fc(o)(lc(o)) is the first (last) customer served within the operation o
(i.e., the first (last) element of the ordered set C(o)). Similarly, latesto is
the last location X encountered along the truck route such that the following
inequality holds:

e(W (o)) ∗mindistfc(o) + eintrad(o) + e(0) ∗ dd(lc(o), X) ≤ emax .

Decision variables :

• yoe,l - binary variable that is equal to 1 if the truck has completely tra-
versed edge e before launching the drone to perform operation o, 0 oth-
erwise.

• yoe,r - binary variable that is equal to 1 if the truck has completely tra-
versed edge e before the drone lands after operation o, 0 otherwise.

• sol - integer variable indicating the number of edges completely traversed
by the truck before the launch of the drone in operation o.

• sor - integer variable indicating the number of edges completely traversed
by the truck before the landing of the drone within operation o.

• xoe,l - continuous variable in [0, 1] which indicates the portion of the edge
e traversed by the truck before the launch of the operation o occurs at.

• xoe,r - continuous variable in [0, 1] which indicates the portion of the edge
e traversed by the truck before the landing of the operation o occurs at.

• locol - position of the launching location of the operation o.

• locor - position of the retrieving location of the operation o.

• tod - time needed by the drone to perform operation o.

• toutod - outbound time needed by the drone to move from the launch
location to the first customer of the operation o.
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• tinod - inbound time needed by the drone to move from the last customer
to the retrieval location of the operation o.

• tot - time needed by the truck to perform operation o. This is equal to the
driving time from locol to locor along the truck route.

• twaitot - waiting time of the truck for the drone in operation o.

• eoutod - outbound energy spent by the drone to move from the launch
location to the first customer of the operation o.

• einod - inbound energy spent by the drone to move from the last customer
to the retrieval location of the operation o.

• ehod - energy spent by the drone to hover, while waiting for the truck at
the rendezvous location, in operation o.

On the basis of this notation, it is possible to introduce the following model
formulation, where the objective function is:

minimize
∑
o∈O

twaitot (5.1)

where the sum of the truck waiting times is minimized. Indeed, since the
truck route is fixed the possible drone waiting time is already included in the
truck route duration. On the other hand, the truck waiting time represent an
overhead for the truck route duration.

The set of constraints can be divided into 6 subsets:

Consistency constraints

tod − tot ≤ twaitot , ∀o ∈ O (5.2)

toutod + tintraod + tinod ≤ tod,∀o ∈ O (5.3)

(
te−1∑
e=0

{[(yoe,r + xoe,r)− (yoe,l + xoe,l)] ∗ l(e)})/Speedt ≤ tot , ∀o ∈ O (5.4)

te−1∑
e=0

yoe,l = sol ,∀o ∈ O (5.5)

te−1∑
e=0

yoe,r = sor, ∀o ∈ O (5.6)
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locor = DL+

te−1∑
e=0

vere ∗ (yoe,r + xoe,r),∀o ∈ O (5.7)

locol = DL+

te−1∑
e=0

vere ∗ (yoe,l + xoe,l), ∀o ∈ O (5.8)

Constraints (5.2) set the truck waiting time of each operation to be equal
to the difference between the time needed for the drone and the truck to
perform the operation. Constraints (5.3) define the time needed for the drone
to perform each operation. Constraints (5.4) define the truck time needed
for each operation as the required driving time from the launch location
to the rendezvous location. Constraints (5.5-5.6) set the number of edges
completely traversed equal to the sum of them. Constraints (5.7)/(5.8) define
the landing/launching position of each operation.

SOC constraints

‖locol − locofc‖/Speedd ≤ toutod,∀o ∈ O (5.9)

‖locor − locolc‖/Speedd ≤ tinod, ∀o ∈ O (5.10)

Constraints (5.9) and (5.10) define for each operation the time needed for the
drone to go from the launching position to the first customer location and from
the last customer location to the retrieving location, respectively.

Precedence constraints

yoe,l ≤ yoe−1,l, ∀o ∈ O,∀e ∈ {0, ..., te− 1} (5.11)

yoe,r ≤ yoe−1,r,∀o ∈ O,∀e ∈ {0, ..., te− 1} (5.12)

yoe−1,l − yoe,l ≥ xoe,l,∀o ∈ O,∀e ∈ {0, ..., te− 1} (5.13)

yoe−1,r − yoe,r ≥ xoe,r, ∀o ∈ O,∀e ∈ {0, ..., te− 1} (5.14)

sol +

te−1∑
e=0

xoe,l ≤ sor +
te−1∑
e=0

xoe,r,∀o ∈ O (5.15)

so,r +

te−1∑
e=0

xoe,r ≤ so+1,l +

te−1∑
e=0

xoe,l,∀o ∈ O (5.16)

Constraints (5.11)/(5.12) ensure that an edge cannot be completely traversed
before the launch/landing of the drone in an operation if the previous edge
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has not been completely traversed. Constraints (5.13-5.14) guarantee that an
edge can only be partially traversed if the previous edge has been completely
traversed. Moreover, they also guarantee that an edge cannot be at the
same time completely and partially traversed. Constraints (5.15) ensure
that the launching position precedes the landing position for each operation.
Constraints (5.16) guarantee that the landing position of an operation has to
precede the launch location of the successive operation.

Energy constraints

eoutod = toutod ∗ e(W (o)), ∀o ∈ O (5.17)

einod = tinod ∗ e(0), ∀o ∈ O (5.18)

eho ≥ h ∗ (tot − tod),∀o ∈ O (5.19)

eoutod + eintraod + einod + eho ≤ emax, ∀o ∈ O (5.20)

Constraints (5.17) and (5.18) define for each operation the energy consumed
by the drone to go from the launching position to the first customer location
and from the last customer location to the landing position, respectively.
Constraints (5.19) define the energy needed by the drone to hover while it
is waiting for the truck to arrive. Constraints (5.20) limit the drone energy
consumption during a single operation to emax.

Endurance constraints

earliesto ≤ so,l +

te∑
e=0

xoe,l,∀o ∈ O (5.21)

so,r +

te−1∑
e=0

xoe,r ≤ latesto,∀o ∈ O (5.22)

Constraints (5.21/5.22) guarantee that a launch/retrieval location cannot
be previous/successive to the earliest launch/latest retrieval one. These
constraints are valid cuts in the interest of computational performance based
on drone endurance, but are not necessary to maintain feasibility.

Variable definition constraints

eho ≥ 0,∀o ∈ O (5.23)

0 ≤ twaitot ,∀o ∈ O (5.24)
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yo−1,l = 1,∀o ∈ O (5.25)

yo−1,r = 1, ∀o ∈ O (5.26)

yoe,l ∈ {0, 1}, ∀o ∈ O,∀e ∈ {0, ..., te− 1} (5.27)

yoe,r ∈ {0, 1},∀o ∈ O,∀e ∈ {0, ..., te− 1} (5.28)

sol ∈ N,∀o ∈ O (5.29)

s
|O|
l = te (5.30)

dor ∈ N, ∀o ∈ O (5.31)

x
|O|
e,l = 0, ∀e ∈ {0, ..., te− 1} (5.32)

xoe,l ∈ [0, 1], ∀o ∈ O,∀e ∈ {0, ..., te− 1} (5.33)

xoe,r ∈ [0, 1],∀o ∈ O,∀e ∈ {0, ..., te− 1} (5.34)

Constraints (5.23) to (5.34) generally relate to the domain of variables (e.g.,
constraints related to non-negativity, binary/integer nature of variables, special
treatment of variables related to depot location).Moreover, we underscore that
if it is not allowed to have a drone launch/retrieval on some of the truck route
edges then we can take into account this constraint just by changing the nature
of the corresponding variables xoe,l and xoe,r from continuous in [0, 1] to binary.
An example of the continuous optimization of launch/retrieval locations is re-
ported in Figure 5.4. In particular, Figure 5.4(a) shows the solution obtained
using the RTS algorithm. We can observe that in this solution the truck has
to wait for the drone while it it serving the customers. Figure 5.4(b) shows
the optimized solution obtained solving the MISOCP. The notation used in the
picture is the same used in Figure 5.3.

Improvement 3: Varying TSP Metric to Produce Different Customer Visit
Orders

In Section 5.3.2, we showed how the customer visit order is determined by the
RTS algorithm as the solution to the Euclidean TSP on the customer set. By
fixing the customer visit order, our solution space is restricted, but the size of
G′ is also limited. Indeed, if we would like to consider all the possible cus-
tomer visit orders for a graph with n vertices and c customers, it would require
us to build a graph G′ with n ∗ (c! + 1) vertices.

Rather than massively expanding the size of G′, we generate a number of
different promising customer visit orders. To this end, we generate various
distance metrics, solve a TSP over the customer set for the given distance met-
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Figure 5.4: An example of continuous optimization of launch/retrieval
locations

ric, and fix the resulting customer visit order. As a result, our graph G′ only
considers operations (arcs) where this visit order is obeyed.

The idea of introducing a new metric distance arises from the kind of dis-
tance used in the basic RTS. Indeed, we recall that the customer visit order
in the basic RTS is determined using the drone (Euclidean) distance between
each customer pair. Although it is reasonable to incorporate the distance met-
ric of the drone, this distance does not take into account the truck travel times.
Therefore, we would like to combine the truck and drone distance metrics in
some way.

Because the truck cannot always reach every customer location (as the sets
V and C are not defined identically), defining the truck distance between two
customers requires some adaptation. Thus, each customer c is mapped to the
nearest vertex to c that the truck can reach: near(c) = mini∈V {dd(i, c)}.
Hence the truck distance between two customers c1 and c2 will be given by
the following expression dt(c1, c2) = dt(near(c1), near(c2)). Therefore, it
is possible to define a new distance metric as a function of the parameter α,
which weights the truck and drone distances. The expression is the following:

d(c1, c2, α) = α ∗ dd(c1, c2) + (1− α) ∗ dt(near(c1), near(c2)) .

The value of α can vary in the range [0, 1] and, at each value, can correspond
to a different distance metric d. By varying the distance metric d and solving
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the associated TSP over the customer set, we encounter a variety of different
customer visit orders, each corresponding to a different structure for the graph
G′.

5.4.3 Proposed Solution Method

The proposed approach integrates the three improvements previously de-
scribed with the RTS algorithm in an iterative two-phase solution method. In
the outer loop of our solution method, we iteratively increase the value of α.
We start with α = 0 and increment the value of α by αstep after the completion
of each loop, until α > 1.

Within each loop, we begin by solving a TSP for the given value of α to
determine the customer visit order. In the first improvement phase, we apply
the iterative edge discretization procedure. The resulting solution is further
improved through the continuous improvement procedure, the second phase,
which determines the optimal launch and retrieval locations. After the second
phase improvement is complete, the loop is complete.

In the case that two distinct values of α produce the same customer visit
order, we do not need to repeat the Phase 1 and Phase 2 improvements, as they
are deterministic algorithms, and the results will be the same.

We use the solution corresponding to the lowest objective value encoun-
tered at any point during our solution process. The structure of the solution
method is illustrated in Figure 5.5.

5.5 Computational results

The proposed approach has been implemented in Python and uses Gurobi 8.1.0
to solve the TSPs and the MISOCPs. The computational experiments were car-
ried out on a computer with an Intel Core i7-4750HQ processor operating at
2.00 GHz, 8 GB RAM, and Windows 10 (64 bit) as the operating system.

Our test set consists of 150 instances generated with the same settings de-
scribed in [47]. This choice is motivated by the assumption that the sets V and
C can be disjoint in the tackled problem, unlike other problems as the FSTSP
and the TSP-D. In particular, given a number of customer locations, |C|, and
a specified number of road network vertices, |V |, we randomly generated all
customer locations and vertices uniformly within a 100 by 100 square region.
The depot location was also randomly generated within the same region.

The truck can move at unit speed only on road network edges (i.e., the
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Figure 5.5: The flow-chart of the proposed solution method
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edges connecting two road network vertices), characterized by the Euclidean
distance. The drone can move from and to any two vertices (customer loca-
tions or road vertices) according to the Euclidean distance, but at a speed of 2
units.

The weight of packages, w, demanded by each customer was distributed
uniformly over the range [0, 5]. We fixed the energy capacity, emax, to 40
and used e(w) = (1+(w/5)4), which is meant to impose a soft cap maximum
weight of five pounds, to align with comments made by Amazon CEO, Jeff Be-
zos, during an interview [5]. The hovering and the launch penalty constants,
h and LaunchP , were set to 0.5 and to 1, respectively. We set αstep = 0.1,
the initial value of T equal to the length of the longest road network edge,
Tmin = Tstart/100, and β=0.4

We considered instances with |V | equal to 20, 40, 60, 80, and 100. For each
value of |V |, we considered three values of |C|: 0.1|V |, 0.4|V |, and 0.7|V |.
Then, for a given pair of |C| and |V |, we generate two instances with the same
customer and road network vertex locations, but we vary the number of road
network edges with values of |E1| and |E2|, with |E1| < |E2| to assess the
effectiveness of our approach on the basis of the sparsity of the road network.
Edges were chosen by starting with a complete graph and randomly deleting
edges with a probability of 90% and 75%. Finally, for each combination of
|V |, |C|, and |E|, we generated 5 instances. The aggregated results for each
value of |V | are reported in this section. The interested reader is referred to the
Appendix for the aggregated results for each combination of |V |, |C|, and |E|.

In these computational experiments, the test instances are solved in several
ways to assess the improvement obtainable applying each idea independently
and combinations of them. Therefore, first, we solved the instances using the
RTS algorithm. Then, we solve the instances applying each improvement sep-
arately. Successively, we tested each pairwise combination of the improve-
ments. Finally we tested the proposed solution method, which combines all
three improvement ideas.

5.5.1 Single Improvement results

In this subsection, we report the results obtained by applying each improve-
ment to the RTS separately. The resulting improvement procedures are the
following:

• αRTS - The solution is obtained by solving the RTS for different values
of α
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• DRTS1 - The solution is obtained by applying the first phase of the
algorithm with ipmax = |V |/2.

• DRTS2 - The solution is obtained by applying the first phase of the
algorithm with ipmax = |V |.

• CRTS - The solution is obtained by applying the MISOCP to the solu-
tion of the basic RTS.

Objective values and computation times found by applying each individual im-
provement procedure are shown in Tables 5.1 and 5.2, respectively. Table 5.1
shows the percentage savings obtained by applying the single improvements.
The cardinality of V is listed in the first column of Table 5.1. The successive
columns of Table 5.1 show the average of the percentage savings, compared to
the RTS solution, obtained by each improvement. αRTS, DRTS1, DRTS2,
and CRTS indicate the savings computed for each of these three improve-
ment methods, respectively. The final row reports average savings across all
instances generated.

From Table 5.1 we observe that the best results are obtained using the im-
provement DRTS2. We also note that the savings averaged only on sparser
graphs (i.e., considering the instances with E1, |E1| < |E2|) was 4.3% greater
than on denser graphs (i.e., considering the instances with E2, |E2| > |E1|).

Table 5.2 reports the cardinality of V, and the computation times of the
RTS algorithm and of each improvement. We observe that the computation
times of the different improvements are greater than that of the RTS. More-
over, we observe that the time required to solve an instance increases with the
cardinality of V .

Table 5.1: Savings (%) of single improvement approaches
V αRTS DRTS1 DRTS2 CRTS

20 3.03 12.25 13.47 14.25
40 1.28 10.35 12.36 10.29
60 1.19 5.43 7.80 5.84
80 0.45 5.30 6.60 6.59

100 1.06 2.79 3.15 5.55
Mean 1.40 7.22 8.68 8.50
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Table 5.2: Times of single improvement approaches
V RTS αRTS DRTS1 DRTS2 CRTS

20 0.07 0.63 1.85 3.40 0.35
40 0.28 2.32 6.62 15.13 0.88
60 0.82 7.09 14.37 38.23 1.77
80 1.82 17.64 26.14 76.47 3.53

100 3.47 34.39 45.22 133.51 5.58
Mean 1.29 12.41 18.84 53.35 2.42

5.5.2 Combined improvement results

We also solved the instances by applying each pairwise combination of the
proposed improvements, so obtaining the following procedures:

• αDRTS1 - The solution is obtained applying the first phase of the algo-
rithm, with ipmax = |V |/2, to the customer visit orders obtained using
different values for α.

• αDRTS2 - The solution is obtained applying the first phase of the al-
gorithm, with ipmax = |V |, to the customer visit orders obtained using
different values for α.

• αCRTS - The solution is obtained applying the MISOCP to the solu-
tions obtained by the basic RTS for different values of α.

• DCRTS1 - The solution is obtained applying the MISOCP to the solu-
tion obtained by the procedure DRTS1.

• DCRTS2 - The solution is obtained applying the MISOCP to the solu-
tion obtained by the procedure DRTS2.

The resulting objective values and computation times from application of pair-
wise improvements are shown in Tables 5.3 and 5.4, respectively. Table 5.3
shows the cardinality of V in the first column, and the percentage savings (rel-
ative to RTS) obtained applying the solution methods resulting from each pair-
wise combination in the remaining columns.

From Table 5.3 we observe that the best results were obtained using the
procedure DCRTS2, which reduced objective values by slightly more than
13%, on average. Notably, the two constituent improvements (DRTS2 and
CRTS) were the two individual improvements that produced the most savings
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in Table 5.1. Moreover, the savings obtained applying each combination of
improvements is greater than the savings achieved using either constituent im-
provement process.

Table 5.4 reports the cardinality of V, and the average computation times
of procedure for each pairwise improvement combination. First, we observe
that the computation times are greater than those of the single improvements.
The αDRTS1 and αDRTS2 are the most time consuming procedures. This
behavior can be explained as the DRTS procedure is relatively time consum-
ing, and it is performed for each distinct value of α. Although αCRTS,
DCRTS1, and DCRTS2 required less computational time than the other
procedures, they produced the greatest amount of savings among the pairs of
improvements.

Table 5.3: Saving (%) for combined improvement approaches
V αDRTS1 αDRTS2 αCRTS DCRTS1 DCRTS2

20 15.12 16.36 17.64 17.01 18.63
40 11.58 13.73 11.85 15.67 16.60
60 6.34 8.95 7.47 10.70 12.86
80 3.23 4.57 7.26 8.67 8.77

100 3.75 3.95 6.97 7.77 8.18
Mean 8.00 9.51 10.24 11.96 13.01

Table 5.4: Times for combined approaches
V αDRTS1 αDRTS2 αCRTS DCRTS1 DCRTS2

20 8.57 16.82 2.52 2.25 3.82
40 37.70 84.76 7.13 6.39 13.02
60 95.06 269.88 17.74 15.13 39.71
80 234.82 657.63 36.80 27.21 77.69

100 396.10 1221.32 67.30 46.53 135.01
Mean 154.45 450.08 26.30 19.50 53.85

5.5.3 Solution method results

The results obtained by applying all three components of our proposed solu-
tion method are reported in Table 5.5. Consistent with the previous exper-
imentation, we tested two versions of the solution method αDCRTS1 and
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αDCRTS2 with ipmax = |V |/2 and ipmax = |V |, respectively. Again, car-
dinality of V is listed in the first column of Table 5.5. The second and third
columns show the average percentage savings, compared to the RTS solution,
obtained by the two variants tested. The last two columns show the corre-
sponding average computation times.

We can observe that αDCRTS2, which uses a greater number of inter-
mediate points, produced the best objective values with a savings of 14.64%
relative to RTS. Naturally, a finer discretization yields a better choice of truck
routes and operations in the first phase. The quality of the objective value
comes at a cost of additional computational time, however. Indeed, the aver-
age computation time of αDCRTS2 is three times that of αDCRTS1.

Both versions utilizing all three improvement mechanisms show an aver-
age savings greater than the ones obtained by any other method tested in the
previous experimentation.

Moreover, we highlight that the solution methods using the improvement
α can be sped up. Detailed observation of the solutions indicated that the best
solution of these methods is generally obtained when α is in the range [0.6, 1].
Therefore, by restricting the range of α to [0.6, 1] instead of [0, 1], it is possi-
ble to consistently reduce the computation times of these methods without a
significant change in objective values.

Table 5.5: Solution method results
Savings Time

V αDCRTS1 αDCRTS2 αDCRTS1 αDCRTS2

20 20.05 21.47 10.82 19.22
40 17.46 18.93 48.15 107.26
60 11.94 13.78 106.14 281.24
80 9.30 9.60 250.13 675.54

100 9.19 9.44 424.24 1250.61
Mean 13.59 14.64 167.90 466.77

5.6 Conclusions

In this study, we introduced a new truck-and-drone routing problem, MV-
DRP+EL, which unlike previous papers on this topic in the literature, allows a
drone to launch from a truck along an edge. We developed an algorithm that
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improves the existing RTS heuristic, which was designed for a problem that
does not allow edge launches. Utilizing these improvements and the ability to
launch along an edge resulted in an average improvement of nearly 15% rela-
tive to solutions produced by RTS.

Our algorithm contained three separate improvements that may be summa-
rized as (1) considering various customer visit orders by combining the truck
and drone distance metrics, (2) discretizing edges in an iterative fashion to in-
troduce new launch and retrieval points, and (3) using a mixed integer second
order cone program to select the best launch and landing location for each op-
eration in a continuous fashion. In addition to testing all three improvements
simultaneously, we tested every subset of improvement procedures and found
that an iterative discretization of edges was the best individual mechanism for
improving solution quality.

Iterative edge discretization and the use of a mixed integer second order
cone program are improvements that are only possible when launching along
an edge is allowed. The combination of these two improvements yielded more
than 13% savings, relative to solutions that only allowed launches to occur at
the vertices of the street network. This strongly suggests that the ability to
launch along an edge has a non-trivial impact on objective values on truck-
and-drone coordination problems.

Future research directions naturally include further refinement of the algo-
rithm and additional testing on other parameter settings. In addition, it may be
worth exploring other mechanisms to determine the granularity of discretiza-
tion of edges, adapt these improvement procedures to slightly different prob-
lems, and further study in which contexts edge launch provides the greatest
benefit.



Conclusions

In this thesis, a twofold objective has been pursued. The first one is to provide
a broad and comprehensive insight on drone systems and the related optimiza-
tion problems. The second one is to present the main findings and achieve-
ments of three studies on truck-and-drone coordination problems.

Drone history, technical properties and applications have been discussed to
highlight the current relevance of these systems. Then, some classes of opera-
tional problems considering the use of drones have been examined to point out
current and possible future research areas. Finally, an extensive overview of
the main contributions of the operation research community has been reported
to represent the state-of-the-art on this topic.

The first study is concerned about providing a framework able to address
a broad swath of truck-and-drone coordination problems. It first transforms
the original problem into an equality generalized traveling salesman problem
and then into an asymmetric traveling salesman problem. The proposed frame-
work can be easily extended to different variants of this kind of problems. The
only requirement consists of the possibility to enumerate the set of feasible
operations.

The second study is devoted to the improvement of the current state-of-
the-art of the formulations proposed for the Flying Sidekick Traveling Sales-
man Problem. The findings arising from this study can be extended to other
truck-and-drone coordination problem variants to motivate the development of
optimal solution method for these problems.

The third study is dedicated to the evaluation of the benefits arising from
the possibility of launching and retrieving a drone along the edges of the road
network. The performed experimentation strongly suggested that this ability
of the truck has a significant impact on truck-and-drone coordination problems
in terms of completion time reduction.

Future research directions naturally include improvement of the proposed
algorithms. Moreover. it would be interesting to apply the proposed methods
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to several other problem variants. In any case, since drone technology evolves
rapidly, it is very likely that new operational problems with drones can arise
so generating the need of the development of new exact or heuristic solution
methods.



Appendix

This appendix contains the aggregated results of Chapter 5, for each combina-
tion of |V |, |C|, and |E| averaged over the 5 generated instances. Tables A.1
and A.2 contain the savings and the times solving the instances with each sin-
gle improvement, respectively. Moreover, Tables A.3 and A.4 show the savings
and the times when the instances are solved using each pairwise combination
of the improvements. Finally, Table A.5 shows the results from solving the in-
stances through the two versions of the solution method (ipmax = |V |/2 and
ipmax = |V |).
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Table A.1: Savings (%) of single improvement approaches
V C E αRTS DRTS1 DRTS2 CRTS

20 2 21 0.000 10.711 9.118 13.842
20 2 50 0.000 9.741 12.015 11.276
20 8 21 5.760 11.212 12.228 14.921
20 8 50 3.664 8.514 11.351 15.553
20 14 21 6.033 18.527 18.481 17.419
20 14 50 2.743 14.779 17.628 12.517
40 4 90 0.469 7.567 8.086 1.564
40 4 211 0.004 4.515 6.371 2.292
40 16 90 1.728 18.056 22.162 15.519
40 16 211 2.253 9.831 10.702 12.212
40 28 90 0.805 18.049 17.957 21.834
40 28 211 2.398 4.057 8.872 8.313
60 6 205 0.542 12.921 15.816 2.560
60 6 467 0.000 2.285 2.185 0.665
60 24 205 0.324 7.860 11.074 7.606
60 24 467 0.124 0.273 4.895 4.096
60 42 205 3.978 8.859 9.894 12.993
60 42 467 2.179 0.404 2.930 7.119
80 8 311 0.000 22.517 19.046 6.975
80 8 798 0.095 1.167 2.121 3.400
80 32 311 0.476 6.382 6.952 11.137
80 32 798 0.542 0.261 1.800 4.461
80 56 311 0.876 1.337 8.183 8.859
80 56 798 0.714 0.144 1.515 4.686

100 10 483 1.655 6.698 6.155 5.160
100 10 1245 0.219 1.095 2.170 2.689
100 40 483 2.114 5.901 5.476 7.000
100 40 1245 1.866 0.000 0.000 4.301
100 70 483 0.327 3.031 5.103 8.717
100 70 1245 0.183 0.000 0.000 5.404

Mean 1.402 7.223 8.676 8.503
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Table A.2: Times of single improvement approaches
V C E RTS αRTS DRTS1 DRTS2 CRTS

20 2 21 0.026 0.196 0.956 2.359 0.139
20 2 50 0.038 0.197 1.201 2.803 0.146
20 8 21 0.063 0.501 1.951 2.879 0.357
20 8 50 0.124 0.928 2.122 3.831 0.353
20 14 21 0.055 0.820 2.260 3.608 0.581
20 14 50 0.127 1.126 2.616 4.914 0.554
40 4 90 0.114 0.616 3.987 8.298 0.327
40 4 211 0.210 0.661 3.453 9.039 0.447
40 16 90 0.230 2.253 7.092 15.415 0.946
40 16 211 0.280 2.010 6.668 14.110 0.708
40 28 90 0.404 4.432 11.162 22.719 1.483
40 28 211 0.441 3.976 7.353 21.185 1.391
60 6 205 0.376 1.173 10.652 25.242 0.677
60 6 467 0.562 1.937 8.852 17.247 0.889
60 24 205 0.708 5.823 15.839 43.401 1.513
60 24 467 0.840 6.261 8.526 32.668 1.679
60 42 205 1.098 12.634 24.850 65.219 2.879
60 42 467 1.341 14.741 17.530 45.595 2.970
80 8 311 0.643 2.925 18.227 42.890 1.209
80 8 798 0.918 2.771 10.112 31.088 1.457
80 32 311 1.680 17.810 37.648 101.450 3.615
80 32 798 2.008 18.738 18.762 47.706 3.764
80 56 311 2.576 30.494 43.808 148.874 5.040
80 56 798 3.120 33.096 28.276 86.810 6.067

100 10 483 1.257 7.287 38.513 94.128 2.189
100 10 1245 1.594 7.318 27.774 64.931 2.648
100 40 483 3.060 31.599 52.536 194.523 4.186
100 40 1245 3.770 32.948 28.710 64.356 4.722
100 70 483 5.026 59.011 79.461 287.512 8.895
100 70 1245 6.113 68.162 44.299 95.618 10.813

Mean 1.293 12.415 18.840 53.347 2.421
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Table A.3: Saving (%) for combined improvement approaches
V C E αDRTS1 αDRTS2 αCRTS DCRTS1 DCRTS2

20 2 21 10.711 9.118 13.842 13.842 13.157
20 2 50 9.741 12.015 11.276 11.276 14.429
20 8 21 15.789 16.972 21.224 16.873 16.873
20 8 50 14.393 17.154 20.481 11.495 18.208
20 14 21 23.050 23.484 23.989 27.417 27.970
20 14 50 17.046 19.411 15.032 21.183 21.142
40 4 90 7.567 8.086 2.049 8.853 8.853
40 4 211 4.556 6.570 6.360 6.326 9.848
40 16 90 18.290 22.399 15.950 24.169 27.513
40 16 211 11.536 11.874 12.950 14.644 14.129
40 28 90 19.755 21.644 22.736 29.676 25.982
40 28 211 7.768 11.786 11.050 10.326 13.282
60 6 205 12.921 15.816 4.009 15.852 19.331
60 6 467 2.285 3.366 0.665 3.939 5.261
60 24 205 9.601 14.315 9.734 14.583 16.847
60 24 467 2.070 6.893 6.706 5.282 9.054
60 42 205 8.998 10.229 15.753 18.428 18.642
60 42 467 2.179 3.107 7.939 6.093 8.015
80 8 311 5.580 5.320 7.713 9.572 6.737
80 8 798 1.291 2.246 3.400 4.127 4.892
80 32 311 6.693 7.246 11.815 16.268 14.418
80 32 798 0.803 2.342 5.028 5.630 5.960
80 56 311 4.146 8.771 9.872 10.651 13.402
80 56 798 0.858 1.515 5.745 5.774 7.238

100 10 483 8.947 6.779 7.122 8.613 9.638
100 10 1245 1.095 2.501 2.689 3.854 4.476
100 40 483 7.382 7.293 10.192 12.479 12.976
100 40 1245 1.866 1.866 5.688 4.301 4.301
100 70 483 3.031 5.103 8.817 11.993 12.314
100 70 1245 0.183 0.183 7.295 5.404 5.404

Mean 8.004 9.513 10.237 11.964 13.010
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Table A.4: Times for combined approaches
V C E αDRTS1 αDRTS2 αCRTS DCRTS1 DCRTS2

20 2 21 1.126 2.530 0.309 1.115 2.582
20 2 50 1.359 2.962 0.305 1.381 3.031
20 8 21 8.716 13.190 1.911 2.487 3.358
20 8 50 10.799 23.208 2.932 2.432 4.209
20 14 21 16.253 29.653 5.090 2.832 4.380
20 14 50 13.194 29.364 4.594 3.234 5.369
40 4 90 13.996 29.086 1.375 4.255 8.720
40 4 211 8.497 21.832 1.210 3.741 9.437
40 16 90 58.454 126.956 9.255 7.829 16.210
40 16 211 35.128 79.170 5.545 7.169 14.723
40 28 90 96.943 222.140 20.814 12.128 23.681
40 28 211 47.985 130.886 12.182 8.086 21.929
60 6 205 26.706 62.634 2.099 11.094 25.764
60 6 467 23.251 65.729 3.035 9.286 21.165
60 24 205 130.761 316.645 14.519 16.539 44.195
60 24 467 69.684 241.629 12.276 9.227 33.418
60 42 205 211.636 648.063 40.785 26.002 66.507
60 42 467 108.318 284.590 33.751 18.625 47.196
80 8 311 68.663 181.041 5.014 18.758 43.552
80 8 798 34.227 96.991 4.226 10.697 31.864
80 32 311 380.008 979.385 41.270 38.620 102.648
80 32 798 170.631 513.599 32.746 19.838 48.925
80 56 311 515.811 1555.306 75.659 45.298 150.434
80 56 798 239.562 619.437 61.888 30.066 88.717

100 10 483 187.952 499.387 11.686 39.190 95.028
100 10 1245 83.165 275.734 10.793 28.581 66.029
100 40 483 539.700 1877.957 58.606 53.781 195.901
100 40 1245 242.911 623.361 45.485 29.842 65.701
100 70 483 875.954 3049.412 129.568 81.393 289.471
100 70 1245 446.891 1002.058 147.653 46.413 97.933

Mean 155.609 453.464 26.553 19.665 54.403
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Table A.5: Solution method results
Savings Time

V C E αDCRTS1 αDCRTS2 αDCRTS1 αDCRTS2

20 2 21 13.842 13.157 1.285 2.753
20 2 50 11.276 14.429 1.540 3.189
20 8 21 22.275 22.275 10.357 15.007
20 8 50 17.988 23.502 12.711 25.412
20 14 21 31.441 32.036 17.987 32.921
20 14 50 23.501 23.393 21.044 36.024
40 4 90 9.339 9.339 14.974 30.450
40 4 211 8.951 10.784 9.207 22.772
40 16 90 24.951 28.177 66.204 135.615
40 16 211 14.838 16.886 32.071 72.800
40 28 90 30.453 29.374 110.302 242.636
40 28 211 16.242 19.008 56.161 139.285
60 6 205 15.852 19.331 28.129 64.118
60 6 467 3.939 5.261 24.718 67.615
60 24 205 16.425 18.399 139.550 326.720
60 24 467 7.852 11.191 75.282 247.553
60 42 205 19.219 19.092 243.821 676.766
60 42 467 8.366 9.395 125.338 304.658
80 8 311 10.140 8.340 71.033 184.030
80 8 798 4.127 4.892 35.870 99.123
80 32 311 16.268 15.314 399.121 1001.748
80 32 798 6.196 6.789 181.964 527.012
80 56 311 12.478 14.837 548.807 1595.676
80 56 798 6.617 7.425 263.995 645.636

100 10 483 12.414 11.068 192.494 505.227
100 10 1245 3.854 5.300 86.643 280.434
100 40 483 13.844 14.995 561.683 1908.834
100 40 1245 5.688 5.688 255.230 637.596
100 70 483 12.052 12.314 936.565 3103.468
100 70 1245 7.295 7.295 512.813 1068.108

Mean 13.591 14.643 167.897 466.773
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