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Abstract

The widespread use of handheld devices (e.g., smartphones) has led to a
significant evolution in the way the users connect to the Internet and access
contents or services. This entails a substantial change in the nature of net-
work traffic. Traffic classification—the set of techniques suited to infer the
applications generating network traffic—is currently the enabler for gather-
ing valuable information for different stakeholders in the Internet traffic de-
livery supply chain. This includes its application for network management
(e.g., service differentiation/blocking and quality-of-service enforcement),
network security, and user profiling. On top of that, traffic classification
highlights compelling privacy issues related to (the share of) this informa-
tion in thorny scenarios (e.g., healthcare apps and enterprise environments).

Nonetheless, the proliferation of encryption (e.g., anonymity tools) hin-
ders the suitability of solutions based on cleartext traffic inspection and
thus challenges current classifiers. Also, the moving-target nature of mobile
traffic, due to the daily-expanding set of apps sharing common third-party
services, accelerates the performance degradation of design solutions based
on standard machine learning approaches.

As such, this Thesis presents a set of novel methodologies for mobile
traffic classification that can operate under the encrypted-traffic assumption
and advances the state-of-the-art from multiple viewpoints. In detail, the
present dissertation devises innovative machine learning approaches based
on multi- and hierarchical-classification. Furthermore, it pioneers the adop-
tion of the deep learning paradigm to design practical and effective mobile
traffic classifiers through the automatic extraction of features reflecting com-
plex data patterns. Then, to overcome the complexity of these solutions,
a distributed deployment based on the big-data framework is investigated.



Such analysis highlights the non-transparent nature of the big-data accel-
erator when applied to the training phase of deep learning classifiers, shed-
ding light on intrinsic trade-offs. Extensive experimental evaluations are
conducted to assess the performance of proposed approaches and compare
them with most related state-of-the-art solutions. This goal is achieved by
the definition of a common benchmark encompassing public datasets. In
this regard, a novel architecture is designed and implemented to capture
and label our publicly-released dataset.
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Pescapé, “Mobile Encrypted Traffic Classification Using Deep Learn-
ing: Experimental Evaluation, Lessons Learned, and Challenges”,
IEEE Transactions on Network and Service Management (TNSM),
Volume 16, Number 2, June 2019, Pages 445–458.

1It is worth noting that the present list is not a comprehensive report of my publication
track but it encompasses only the papers concerning the main subject of this Thesis.



4. Antonio Montieri, Giuseppe Aceto, Domenico Ciuonzo, Antonio
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sico, Antonio Pescapé, “Know your Big Data Trade-offs when Clas-
sifying Encrypted Mobile Traffic with Deep Learning”, 3rd Network
Traffic Measurement and Analysis Conference (TMA 2019), June 17–
21, 2019, Paris, France.

3. Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, Antonio
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Pescapé, “Traffic Classification of Mobile Apps through Multi-
classification”, 2017 IEEE Global Communications Conference (IEEE
GLOBECOM 2017); Communication QoS, Reliability and Modeling
(CQRM) Symposium, December 4–8, 2017, Singapore.

5. Antonio Montieri, Giuseppe Aceto, Domenico Ciuonzo, Antonio
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Chapter 1

Introduction and
Background

Internet is the most crucial technology of the current age, having a tremen-

dous impact on economics, society, and politics with a user base of more

than 4.3 billion people, encompassing the 57% of total population around

the globe [1, 2]. However, the original design principles of the Internet [3]

were based on the best-effort paradigm and did not foresee the present

development as a global network of networks and the need for function-

alities not included in the initial Internetting concepts [4]. These needs

include, inter alia, security, privacy, uninterrupted access, and quality-of-

service guarantees. They are provided by means of various tools, such as

security or quality-of-service enforcement devices and network monitors,

that are in charge of managing, prioritizing or blocking certain network

traffic. Since these tools base their operations on the knowledge of the net-

work traffic, their use is limited (or impaired) when this requirement is not

(or loosely) satisfied. Thus, network traffic analysis (i.e. the umbrella of

procedures for distilling information from network traffic) represents an ac-

tivity of paramount importance that must follow and adapt to the fast-paced



traffic evolution.

In this chapter, Sec. 1.1 describes the mobile and encrypted context

in which the present study is carried out, underlining also its motivations.

Thereafter, Sec. 1.2 introduces the key subjects recently tackled in mobile

traffic analysis and Sec. 1.3 deepens the basic concepts underlying network

traffic classification. The last two sections illustrate the contribution of the

Thesis along with an overview on the most related literature (§1.4) and

outline its structure (§1.5).

1.1 The Growth of Mobile Traffic

The growing usage of smartphones in everyday life is deeply (and rapidly)

changing the nature of traffic traversing home and enterprise networks, and

the Internet. Smartphones have become the main medium of communica-

tion, providing fast and almost ubiquitous means for connecting groups of

users as well as users to services. Due to the users’ massive shift toward

mobile devices and mobile applications (in short, apps) running on them,

overall network traffic reached huge volumes and started evolving at an un-

precedented pace. Such rate of change is further increased for mobile apps

due to the software distribution systems (i.e. the app marketplaces), that

have fostered one-click installation and quick-paced automatic updates.

According to the June 2019 Ericsson mobility report [5], in the last year

(i.e. between the first quarter of 2018 and 2019), mobile data traffic has

grown 82%, being fueled by both the rising number of smartphone subscrip-

tions and the increasing average data volume per subscription. Moreover,

the number of smartphone subscriptions is expected to reach 7.2 billions by

2024, with a corresponding +30% predicted compound annual growth rate

of the traffic generated by mobile networks. Figure 1.1 reports the details
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Figure 1.1: Forecast of smartphone subscriptions by technology (in billions). Source: [5].

of this forecast, showing also a shift toward higher-throughput technolo-

gies (namely +1.2 and +1.8 billions for 4G and 5G, respectively) that will

contribute to the increase of mobile traffic data against broadband fixed con-

nections, whose subscriptions are expected to show a very limited growth of

around 3% per year through 2024. Interestingly, the proliferation of traffic-

demanding apps is also expected to nourish the mobile traffic growth, with

mobile video traffic accounting nearly the 75% of mobile data traffic, from

about the current 60%. Notably, the results from the 2019 Sandvine’s Mo-

bile Internet Phenomena Report [6] also deepen this analysis, showing that

YouTube is the global mobile apps’ leader with over 35% of worldwide mo-

bile traffic.

The huge increment of mobile data traffic has promoted great inter-

est in mobile traffic analysis. Indeed, analyzing the traffic of mobile apps

has the potential of providing extremely valuable profiling information that

could be useful for a plethora of stakeholders, like advertisers, insurance and

healthcare companies, and security agencies. On the other hand, it surely

raises privacy issues, with the users having no insights about the informa-



tion that is leaked from mobile data they generate, neither about who will

use this information and for what end. This is even exacerbated for sensi-

tive apps, as children-compliant apps [7] or context-sensitive apps (such as

health and dating ones) [8], and in controlled environments (e.g., compa-

nies enforcing bring-your-own-device policy), or when malicious parties can

infer and leverage mobile-traffic knowledge.

The next section gives a sketch of the recent subjects faced with the aid

of mobile traffic analysis.

1.2 Mobile Network Traffic Analysis

Monitoring the characteristics and behavior of networks has long been a

crucial task for operators, researchers, and developers. Telecom operators

and Internet Service Providers (ISPs) have a long history of traffic-data

analysis operations, possess a huge availability of network-level data, and

have thus enjoyed decades-long research and applications on the topic.

This section provides a brief review of (mobile) network traffic analysis,

discussing the key subjects tackled in last years, as summarized in Tab. 1.1.

For each subject, the latter highlights the related privacy (P), security (S ),

and network management (M ) concerns (possibly even partially affected by

the considered subject), along with the inference task associated (i.e. time-

series prediction or binary/multi-class classification). Moreover, it lists a

few exemplifying papers together with the methods applied as design solu-

tions to solve the related task. It is worth noting that the focus is on the

most recent papers (i.e. published within the last 5 years) to show also the

latest advancement of the techniques employed in mobile traffic analysis.1

1Traffic identification and classification are excluded, since a dedicated overview is
provided in Sec. 1.3.
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Table 1.1: Taxonomy of subjects pertaining to mobile network traffic analysis.

Concerns

Subject P S M Inference Task Method Paper

Network Prediction # #  Time-series prediction

MLP, SVM Nikravesh et al. [9]

CNN+LSTM Zhang et al. [10]

DBN Nie et al. [11]

Anomaly Detection #  G# Binary classification

K-Means, HC Parwez [12]

ANN R.-Grammatikis, et al. [13]

CNN Maŕın, et al. [14]

Attack Classification #   Multi-class classification

SAE Thing [15]

AE, RF Sridharan et al. [16]

LSTM Diro, et al. [17]

Malware Detection G#  G# Binary classification

NB Arora et al. [18]

DNN Chen et al. [19]

SVM, C4.5
NB, BN, AB

Chen et al. [20]

Malware Classification G#   Multi-class classification

CNN Wang et al. [21]

RF, RT, C4.5
KNN, LR

Lashkari et al. [22]

CNN Huang et al. [23]

Website Fingerprinting  # # Multi-class classification

JI Spreitzer et al. [24]

AE, CNN, LSTM Rimmer et al. [25]

AE, CNN Sirinam et al. [26]

Traffic Identification  G# G# Binary classification
Analysis in Section 1.3

Traffic Classification  G#  Multi-class classification

Concerns: Privacy (P), Security (S), Management (M).
ML-Method: AdaBoost (AB), Bayesian Network (BN), Hierarchical Clustering (HC),
K-Nearest Neighbors (KNN), Linear Regression (LR), Näıve Bayes (NB), Random For-
est (RF), Random Tree (RT), Support Vector Machine (SVM).
DL-Method: AutoEncoder (AE), ANN (Artificial Neural Network) Convolutional Neu-
ral Network (CNN), Deep Belief Network (DBN), Deep Neural Network (DNN), Long
Short-Term Memory (LSTM), MLP (MultiLayer Perceptron), SAE (Stacked AutoEn-
coder).
Other Method: JI (Jaccard Index). “+” symbol indicates hybrid methods.



In this regard, from Tab. 1.1, it can be noticed that the vast majority of

most recent works in mobile traffic analysis employ methods based on both

supervised and unsupervised Machine Learning (ML) and Deep Learning

(DL) (cf. §1.3.4). Indeed, the huge success of ML/DL in several fields has

recently ignited global interests in exploiting these paradigms also in net-

working [27, 28], where their adoption can leverage this solid know-how and

help facing new challenges of mobile network-level data analysis.

The present taxonomy is not strictly tight, since some degree of over-

lapping could be possible between certain works on related subjects. A

description of these subjects is given hereinafter. For example, studies tack-

ling malware classification usually also perform malware detection, as a

preliminary step of their analysis. Moreover, malware and (normal) traffic

classification have been also investigated together, as in W. Wang et al. [21]

and H. Huang et al. [23], both as separate problems or in a multi-task fash-

ion, respectively.

Network Prediction. It refers to forecasting network traffic or perfor-

mance indicators given historical measurements or related data. Specifically

for mobile networks, given the high variability of both traffic and network

conditions, as well as the stringent QoS requirements of new applications,

this constitutes a challenging subject. Hence, the design of algorithmic solu-

tions with increased traffic prediction abilities directly reflects on improved

network management.

Anomaly Detection and Attack Classification. The aim is to reveal

anomalies in the traffic due to attacks (anomaly detection) based on pat-

terns drawn from normal network behavior, and, possibly, to infer also the

specific attack experienced (attack classification). Specifically, the attacks
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against mobile networks are usually based on well-known vulnerabilities

(e.g., location leaks and denial of service in LTE). Accordingly, both these

subjects are directly linked to the security aspect, whereas attack classifica-

tion allows a finer network management, for example attack-specific network

countermeasures.

Malware Detection and Classification. The aim of malware detection

is to identify whether the observed network traffic is generated by either le-

gitimate apps or malware, while malware classification also tries to infer the

malware type. In the mobile domain, these subjects are even more urgent

since the countermeasures against malware are based on warning the users

on the permissions given to a certain app, being ineffective when malware

and benign apps require the same permissions. Hence, these subjects both

pertain to the security aspect. Besides, privacy aspects are involved when

malware provokes data exfiltration, while the network management aspect

is partially (resp. fully) affected by advances in malware detection (resp.

classification).

Website Fingerprinting. The aim is to classify which website (and, at

a finer level, which webpage) has been visited by a user via its traffic inspec-

tion, among a set of websites that an eavesdropper is monitoring. For mobile

networks, this subject is also related to the specific implementation of mo-

bile browsers and data leaked by smartphones (e.g., Android devices track

the amount of incoming/outgoing traffic on a per-app basis for data-usage

monitoring). Since websites may be targeted for censorship, this subject

has a direct impact on the network privacy aspect.



Traffic Identification and Classification. Traffic Identification (TI)

consists in identifying a specific application (or protocol) among the network

traffic, modeled as a binary classification task (i.e. application vs. other).

Differently, Traffic Classification (TC) discriminates several applications (or

protocols) among the network traffic and constitutes a multi-class general-

ization of TI. Besides monitoring goals, TI and TC outcomes are capitalized

in enforcing specific policing rules to the targeted application (or class of ap-

plications) traffic, such as prioritization, throttling, or blocking. This leads

to a finer network management. Also, TI and TC are both tightly-coupled

to the privacy aspect, for instance recognition of context-sensitive apps in

mobile scenarios. Lastly, both also have security applications, such as de-

tection of unexpected or unauthorized network services that, although not

malicious in nature, either expose a wider attack surface or violate poli-

cies (e.g., advertisers and analytics). A deeper analysis of TI and TC is the

object of the next section, that underlines their main characteristics and

requirements, together with the challenges arsing in encrypted and mobile

traffic-context.

1.3 An Overview on Traffic Classification

The process of associating (labeling) network traffic with the specific appli-

cations or application types generating it is known as Traffic Classification.

Differently, when the task is recognizing only the traffic generated by one

specific application among the others, it is referred to as Traffic Identifica-

tion. TC has been a critical task in network monitoring and management

for over a decade and has involved operators, researchers, and developers

working in several fields, being, consequently, backed by a wide scientific

literature [29, 30, 31, 32]. It is of utmost importance in Internet traffic engi-
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neering, along with related methodologies and tools, as they jointly support

activities such as network monitoring, security assessment, application iden-

tification, accounting, advertising, and service differentiation. For example,

ISPs use classification to enforce traffic management policies such as video

traffic throttling, VoIP traffic prioritization, content-sensitive pricing, and

censorship circumvention [33, 34, 35], whereas Content Delivery Networks

(CDNs) use TC to optimize their network for better content delivery and

quality-of-service guarantees [36, 37].

In the following, TC timeliness and granularity (§1.3.1), the means to

evaluate its performance (§1.3.2), and the approaches proposed for effec-

tive TC (§1.3.3) are discussed. Finally, the workflows of TC via ML and

DL (§1.3.4) are introduced, showing that they are particularly suitable for

working with encrypted and mobile traffic.

1.3.1 Traffic Classification Timeliness and Granularity

The timeliness of TC is defined on the basis of the amount of traffic needed

before emitting the verdict. In this regard, “early” TC [38, 39] can clas-

sify the traffic after a few bytes or packets, being particularly deemed for

concerns needing a swift action (e.g., security), as opposed to “late” (viz.

flow-based/post-mortem) TC that must wait for traffic object termination

and is suitable for concerns such as network management and privacy mon-

itoring.

Additionally, the main factors that determine the granularity of TC are

the considered traffic object and the traffic classes to which these objects

can be ascribed, being indeed the natural input and output of the traffic

classifier, respectively. As expected the finer the granularity, the harder the

TC task.



Traffic Object. TC literature has considered different traffic objects. The

definition of a specific traffic object determines how raw traffic is segmented

into multiple discrete traffic units [30].

The most-common traffic objects are the flow and the bidirectional flow

(shortly biflow). The former is defined as the set of all the packets hav-

ing the same 5-tuple (i.e. source IP, source port, destination IP, destination

port, and transport-level protocol) taking into account also their directions.

Differently, a biflow includes both directions of traffic sharing a given tuple

(i.e. the source and the destination are interchangeable). The biflow direc-

tion is defined according to its first packet: the packet source (destination)

is chosen as source (destination) for the whole biflow. Some definitions of

flow and biflow include also an additional timeout (i.e. idle time or periodic

reset) to determine its termination [40].

In addition to flows and biflows, other common traffic objects are:

(i) TCP connections, identified based on the observation of TCP flags

(i.e. SYN, ACK, FIN, etc.) or the utilization of TCP state machines;

(ii) services, including all the packets sharing the same transport-level pro-

tocol, source IP, and port; (iii) bag of flows, including all the packets sharing

the same transport-level protocol, destination IP, and port; (iv) hosts, con-

sidering both the transmitted and received traffic.

Furthermore, burst and Service Burst (SB) are traffic objects specifically

employed in the mobile-phone identification and mobile-app classification

domains. The burst [41] is a sequence of packets having an inter-packet time

smaller than a given threshold (named Burst Threshold (BT)), irrespective

of their source or destination addresses, as well as of the biflow they belong

to. Accordingly, a SB [42, 43] is then a set of packets, within a single burst,

that belongs to biflows sharing the same transport protocol, destination IP

address, and port number (i.e. to the same bag of flows). It is worth noting
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that the BT is a key (tunable) parameter in the definition of bursts and

SBs.2

Finally, when the traffic object is the single packet (i.e. the classification

is performed at packet level), it leads to the finest granularity for a TC

problem and virtually represents the hardest setup for the corresponding

classification task.

Traffic Class. The traffic class represents the category to which each

traffic object can be assigned. Traffic classes mainly depend on the specific

domain in which TC is performed. For example, the classes considered in

anonymous traffic classification are related to the specific anonymous net-

work taken into account (e.g., Tor Pluggable Transport or I2PSnark) [44],

whereas in the case of anomaly/malware detection, the focus is on dis-

criminating between normal/malicious traffic and classifying the different

malware types, respectively [17, 21].

Nevertheless, traffic classes of different granularities commonly used in

TC can still be identified: (i) Protocol, e.g., HTTP, FTP, SMTP, etc.;

(ii) Traffic Type, e.g., interactive, bulk, video, audio, P2P, etc.; (iii) Ap-

plication Category, e.g., web browser, email, chat, social networking, news,

etc.; (iv) Application, e.g., Firefox, Outlook, Skype, Facebook, WhatsApp;

(v) Content Type, e.g., text, binary, picture, etc.; (vi) Action, e.g., sending a

message, posting a content, registering/logging-in to a service, etc. Notably,

these classes can be further inflected depending on the specific domain.

2SB notion has been introduced in [42, 43] under the (different) name of flow. How-
ever to avoid any ambiguity with the common and established definition of flow, the
decomposition used in [42, 43] is herein referred to as SB.



1.3.2 Traffic Classification Evaluation Measures

The evaluation of the performance of traffic classifiers requires a rigorous

set of well-defined measures that could be used regardless of the specific

TC approach employed. All these measures are obtained comparing the

output traffic class with the actual traffic class, commonly referred to as the

ground-truth.

The most commonly used measure is the accuracy, being the fraction

of correctly classified instances among the total number of instances. Ac-

curacy is sometimes referred to as overall accuracy or when the flow/biflow

is the traffic object, as flow accuracy. However, some works [45, 46] have

also utilized the byte accuracy, which is the ratio of the sum of all bytes

carried by the correctly classified traffic objects to the sum of all bytes in

the traffic considered [32]. This latter measure is more related to the net-

work operational scenario and more robust to the class imbalance problem

afflicting ML-based classifiers (cf. §1.3.4). Moreover, the concept of Top-K

accuracy—recently used in Website Fingerprinting (WF) [47]—is also em-

ployed when the classifier outputs not only the traffic class but also the set

of prediction probabilities (viz. soft-outputs) for each of the L classes. It

defines a correct classification event if the true class is within the top K

predicted labels (K < L is a free parameter3), allowing to investigate the

soft-output behavior of a multi-class classifier.

In addition to accuracy, basic measures are instead defined for a binary-

classification problem (i.e. discriminating between two traffic classes A and

B) or a binary-equivalent one (i.e. discriminating between class A and the

others, e.g. TI). Referring to the latter more general case, four possible

measures can be identified:

3Of course K = 1 coincides with the standard accuracy.



An Overview on Traffic Classification 13

• True Positive Rate (TPR): the percentage of samples of class A cor-

rectly classified as belonging to class A.

• True Negative Rate (TNR): the percentage of samples of other classes

correctly classified as not belonging to class A.

• False Positive Rate (FPR): the percentage of samples of other classes

incorrectly classified as belonging to class A.

• False Negative Rate (FNR): the percentage of samples of class A in-

correctly classified as not belonging to class A.

Other measures are borrowed from the ML domain but could be seam-

lessly applied to all TC approaches. These are also defined on per-class

basis:

• Precision (prec): the proportion of classifier decisions for a given class

which are actually correct.

• Recall (rec): the class-conditional accuracy.

It is worth noting that, in the ML context the terms sensitivity (sens) or

recall and specificity (spec) are used to refer to TPR and TNR, respectively.

Usually, to account for the effects of multiple measures concisely, com-

posite metrics are considered:

• F-measure: the harmonic mean of precision and recall (F , (2 · prec ·
rec)/(prec + rec)).

• G-mean: the squared root of the product of the sensitivity (recall)

and specificity (G ,
√

sens · spec).



To leverage these per-class measures for the evaluation of a multi-class

traffic classifiers, their arithmetically averaged (viz. macro) versions are

employed.

Furthermore, to analyze the whole performance “picture” and identify

the most frequent misclassification patterns of a traffic classifier, the con-

fusion matrices are commonly used. Specifically, they report the predicted

classes on the rows and the actual classes on the columns. Thus, all the

predictions not located on the diagonal of the matrix are misclassifications,

whereas a higher concentration toward the diagonal implies better perfor-

mance.

Finally, to provide a complete performance view, classifiers can be also

tested when they are enriched with a “reject option”4, namely the classifi-

cation is performed only if the highest class prediction probability exceeds

a threshold γ and “unsure” classifications are then censored. This evalua-

tion is extremely interesting in the mobile traffic context [43], since mobile

apps typically send multiple flows when used, there remains high chance to

identify them from their more distinctive flows, without the need to classify

all the instances (i.e. the classifier does not reach a verdict when the high-

est class prediction probability is below γ). Hence, tuning γ can be effective

to improve classification performance while incurring negligible drawback,

i.e. a decreased ratio of classified flows.

1.3.3 Approaches to Traffic Classification

The evolution of methods employed to perform TC has been dictated by

the evolution of Internet traffic and the resulting increasing complexity to

perform the classification task.

4In this case, the classifier must output also the class-prediction probabilities.
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Port-based. The first and simplest method for TC leverages the

TCP/UDP port-number information, mapping applications to ports. In-

deed historically, many applications have used “well-known” port numbers

to offer their services to remote hosts (e.g., 80 for HTTP, 443 for HTTPS,

25 and 110 for email, 53 for DNS, etc.). Thus, a port-based classifier

is extremely simple and fast, since it can operate by only accessing the

transport-level header of the packets, without needing complex computa-

tions. However, the changing traffic nature has made this approach less and

less accurate. Indeed, many applications (i) do not have IANA-registered

ports and use custom or randomly-assigned ports, (ii) hide their traffic be-

hind HTTP(S) (i.e. toward port 80(443)) to pass through firewalls and

avoid filtering, (iii) use network address translation and dynamic port al-

location [30]. Therefore, this approach is useful only when the speed and

simplicity of classification are more urgent than accuracy.

Payload-based. To raise TC accuracy, methods based on the full pay-

load inspection—also known as Deep Packet Inspection (DPI)—have arisen.

Specifically, they implement pattern-matching techniques that compare the

content of packets with predefined byte-sequences or signatures, character-

istic of a specific traffic type or application [48, 49, 50]. Although DPI

is more reliable than simply relying on port information, it is extremely

computational-expensive and needs accurate and up-to-date signature bases,

being thus unfeasible to keep the pace of high bandwidth traffic and perform

the concurrent classification of a large number of traffic objects. Moreover,

the payload inspection clashes with privacy policies and legislation [51, 52]

that might impede direct analysis of application-layer content. Despite the

attempts done to mitigate these issues combining lightweight DPI with

port-based method [53], the increasing adoption of encrypted protocols



(TLS) [54, 55] makes this type of classification even more challenging, de-

feating also established approaches.

Behavior-based. Some works try to complement payload-based classifi-

cation with different heuristics based on host or application behaviors. For

example, they leverage constraints useful to simplify the onerous payload

inspection of each traffic flow, as classifying one flow through DPI and then

associating the same application to the other unknown flows having the

same destination IP and port number [56, 57]. Another example of behav-

ioral classification is based on observing and identifying patterns of host

behavior at the transport layer using only IP address and port informa-

tion and the role of a host in the network (i.e. provider or consumer of a

service) [45]. The main drawback of these methods is the need to gather

information from several flows generated by different hosts or applications

before they can emit a verdict, being thus infeasible for real-time operational

networks.

Statistical Traffic Classification. To overcome the limitations of pre-

vious methods, in the last years an increasing number of approaches relying

on statistical properties of traffic objects have been proposed. In other

words, they try to exploit the peculiar statistical characteristics of traffic

generated by a certain application (e.g., the distribution of packet lengths

or inter-arrival times) to infer the application itself [32]. In this context,

traffic classifiers based on Machine and Deep Learning have proved to be

promising, being able to cope also with encrypted traffic that hinders the

utilization of payload-based methods instead.
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1.3.4 Traffic Classification using Machine and Deep
Learning

In 1968, Donald Michie [58] stated:

“It would be useful if computers could learn from experience and

thus automatically improve the efficiency of their own programs

during execution. A simple but effective rote-learning facility

can be provided within the framework of a suitable programming

language.”

This intuition has laid the groundwork for the definition of ML that Shi [59]

in 1992 defined as:

“Machine learning is the study of making machines acquire new

knowledge, new skills, and reorganise existing knowledge.”

In addition to network traffic analysis (cf. §1.2), a wide range of appli-

cations have exploited the ML paradigm. These includes natural-language

processing, image recognition, video surveillance, financial trading, fraud

detection, search engines, virtual personal assistants, and many others.

As mentioned just before, the researchers have shown huge interest in the

application of ML also to TC to go beyond the limits of other approaches.

Figure 1.2a shows the workflow of an ML-based (mobile) traffic classifier,

highlighting its key steps.5

Firstly, the traffic is segmented into relevant traffic objects being the

classification samples (cf. §1.3.1). A successive step of paramount impor-

tance for ML-based TC is defining and extracting a set of features (usually

referred as feature engineering and extraction, respectively) from input data

5It is worth noting that the main steps of the reported workflow are independent from
the specific nature of network traffic (i.e. mobile vs. fixed).
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Figure 1.2: Traditional ML flow (a) vs. DL flow (b). For this latter the feature extraction
and selection are delegated to the DL architecture, without needing human
intervention.

that are able to synthesize peculiar characteristics of traffic objects useful to

identify and discriminate between the traffic classes. Indeed, the successful

use of ML classifiers relies on obtaining handcrafted (domain-expert driven)

features, which in TC context usually correspond to information extracted

from the sequence of packets [60, 43] or message sizes [61, 62]. For example,

ML techniques may be applied either directly on the whole sequence (such

as in [43, 61, 63]) or based on statistics/histograms extracted from it (such

as in [43, 63, 64, 65]). It is worth noting that the above statistical techniques

can be also combined with port-based algorithms (in scenarios where port-

info can be considered reliable) to develop hybrid approaches, such as [66].

The extracted feature set can be further refined (not necessarily) to remove

unnecessary or redundant features that have no or detrimental effect on

classification performance. This process is known as feature selection. In-

deed, having the smallest necessary set of features needed to attain certain

accuracy is a key advantage for an ML algorithm in an operational scenario

(i.e. the lesser the features, the simpler and faster the classifier). Feature

selection can be performed only on the basis of the traffic data character-
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istics (e.g., removing features based on their variance or using univariate

statistical tests) or can be dependent from the specific algorithm employed

for TC (e.g., removing features recursively based on the performance the

classifier achieves).

Then, the features are fed to the Machine Learning algorithm for the

training (also known as learning). The training phase strictly depends on

the specific algorithm considered. However, three main families can be

identified on the basis of the previous knowledge about the traffic classes

each sample (viz. traffic object) of the training (data)set belongs:

• Supervised Learning requires prior knowledge on the classes (viz. la-

bels) of the traffic objects within the training set. The classifier learns

the association rules between the features and traffic classes, that is

the input-output patterns. It is worth noting that the labeling (i.e. the

ground-truth quality) deeply influences the training process and con-

sequently the classification performance.

• Unsupervised Learning does not require prior knowledge about the

traffic classes in the training set (i.e. it works with unlabeled data).

The classifier learns patterns in the input data and groups samples

based on shared attributes or commonalities (i.e. clustering). Unla-

beled data is less expensive and simpler to collect but at the end of

the training phase, a domain expert must label the resulting clusters

to map unknown samples to traffic classes.

• Semi-supervised Learning requires a small number of labeled samples

and a large number of unlabeled ones belonging to the same set of traf-

fic classes. The classifier can both learn patterns in input data and

simultaneously associate the clusters to labels, combining the advan-



tages of supervised and unsupervised approaches, but without guar-

anteeing better classification performance [67].

The trained model is tested classifying unseen samples (i.e. test set).

Having prior knowledge on the classes of the test samples (viz. ground-

truth), one can evaluate the performance of the classifier by comparing its

output class or the resulting (labeled) cluster with the ground-truth, in the

case of supervised or unsupervised learning, respectively.

As underlined earlier, the feature extraction and (if carried out) selection

steps are fundamental to design an accurate and up-to-date traffic classifier.

Moreover, constant human-expert intervention is required to accomplish this

goal. Sadly, such process is time-consuming, unsuited to automation, and

it is becoming rapidly outdated when compared to the evolution and mix

of network traffic, being a constantly moving target. This is even exacer-

bated in the case of mobile traffic classifiers realized with “traditional” ML

approaches.

An advancement of ML-based TC is exploiting DL which allows training

classifiers directly from input data by automatically learning structured (and

complex) feature representations instead of relying on manually-designed

features. The terms “deep” refers to the usage of multiple transformation

steps to create these features, which is reflected in computations performed

by a deep neural network made of many “hidden” layers placed between

the input layer (passing input data to the first hidden layer) and the output

layer (producing the output variables).

Figure 1.2b depicts the workflow of a DL-based (mobile) traffic classi-

fier, reporting its main steps. Comparing DL with traditional ML workflow,

it can be noticed that the feature extraction and selection building blocks

are delegated to the DL architecture, without needing domain-expert inter-
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vention. Nevertheless, DL classifiers require also unbiased and informative

input data that derive from domain-expertise, thus reducing, but not elim-

inating the human intervention.

As stated above, the structure of the Deep Learning architecture is a

neural network whose computation unit is the neuron (or node). Each

node receives (weighted) inputs from other nodes (or from the external if it

belongs to the input layer) and produces an output applying a non-linear

function f called Activation Function (e.g.. Sigmoid, Rectified Linear Unit,

hyperbolic tangent, etc.) to the weighted sum of its inputs [68].

Similarly to ML classifiers, DL architectures can be gathered based on

their learning procedures into supervised, unsupervised, and semi-supervised.

However, DL architectures are trained in an iterative fashion leveraging the

stochastic gradient descent (first-order) optimization algorithm for finding

the minimum of a cost (or loss) function. Specifically, it calculates an esti-

mate of the gradient from a random subset of the training data instead of

considering the entire dataset. Three hyperparameters highly impact this

learning procedure:

• Training Epochs determine the times the whole training set is passed

forward and backward through the deep neural network (i.e. the times

the gradient descent works on the complete training set).

• Batch Size represents the total number of training samples present

in a single batch. Indeed, for computational constraints, the training

set is further divided into smaller parts (or number of batches). The

number of batches represents the iterations needed to complete one

epoch.

• Learning Rate controls to what extent the model must change in re-

sponse to the estimated error in each step. Since the learning rate



determines how fast the model converges, the larger the learning rate,

the fewer the training epochs required. However, a learning rate exces-

sively large can cause the model to converge to a suboptimal solution.

Final Remarks. TC comes with its own challenges and requirements that

are even exacerbated in the encrypted and mobile traffic-context, which

hinder the achievement of satisfactory performance with standard meth-

ods. Indeed, the increasing number of (mobile) applications communicating

with online services using HTTPS and the consequent adoption of standard

encrypted protocols (TLS) [69], and the proliferation of privacy-preserving

tools (e.g., anonymity tools) [70]—additionally hiding the source, the desti-

nation, and the nature of the communication—make the classification more

challenging, defeating established approaches (i.e. port- and payload-based)

and nourishing the adoption of advanced ML- and DL-based classifiers.

Also, achieving targeted TC performance in the mobile context is fur-

ther undermined by the large number of apps to discriminate from and the

adoption of a successful multi-platform framework-based development and

distribution model [71], implying: (i) the embedding of common (third–

party) network services to implement app features; (ii) the quick prolifera-

tion of (similar) apps to discriminate from; (iii) a fast-paced update cycle

of apps, development frameworks, and operating systems. For TC all these

characteristics impair app-fingerprint collection, definition, and update, also

possibly reducing the number of training samples available per app, due to

limited time between updates.
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1.4 Contribution and Background

Although earlier results have been published on TC in this domain, the

encrypted traffic of mobile apps represents a moving target for classifiers

due to its dynamic evolution and mix. Therefore, classifying this traffic

constitutes an open and evolving research field. In the following, Sec. 1.4.1

provides a summary of the main contributions of this Thesis, highlighting

also the set of Research Questions (RQs) it aims to answer, then Sec. 1.4.2

sets these contributions in the big picture of most related literature, leaving

to pertinent chapters its detailed analysis.

1.4.1 Summary of Contributions

This Thesis presents a set of novel methodologies for mobile and encrypted

TC, proposing various advancements with respect to the state-of-the art,

taking into account the peculiarities and challenges of TC performed in this

domain. In detail, different possibilities to improve current solutions are

identified, implemented, analyzed and evaluated separately to clearly high-

light in which way and to which extent each of these might be beneficial

but also to discuss their challenges, possible limitations, and open issues.

Nevertheless, it is necessary to stress that these proposals could–and indeed

should–be envisioned non only as alternatives, but as components of a com-

prehensive composite framework explicitly devised for mobile and encrypted

TC and able to deal with its unique traits.

As mentioned in Sec. 1.3, starting from the standpoint that current clas-

sification approaches fail to face issues in encrypted and mobile traffic, with

also traditional ML classifiers revealing some weak spots in this dynamic

context, the present dissertation shows how these latter might be improved,

proposing two advanced “structural” design choices against basic ML-based



TC.

The first advancement proposed is a Multi-Classification (MC) system

which intelligently combines the decisions of traditional ML classifiers, based

on both hard and soft approaches (i.e. taking into account only the classi-

fiers’ hard decision or also their class-prediction probabilities, respectively).

The implemented MC architecture leverages as (base) building blocks the

state-of-the-art classifiers specifically devised for mobile- and encrypted-TC.

Indeed, it can potentially overcome the deficiencies of each single classifier

and provide improved performance with respect to any of these, also allow-

ing for modularity of classifiers’ selection in the pool. By proposing and

evaluating such MC system, this contribution aims to answer the following

RQ1: to what extent is it possible to improve the classification performance

of mobile apps taking the best from each state-of-the-art ML classifier via

advanced combining techniques?

The MC scheme entails an “horizontal” enhancement in the classifier

structure, being still however a flat approach to TC. Indeed, a “vertical” en-

hancement can be further envisioned resorting to a structure of (potentially

different) classifiers (viz. nodes) arranged in a tree fashion, each specialized

in labeling a subset of (potentially more and more finer) classes (cf. §1.3.1).

This hierarchical framework exploits the “divide-et-impera” principle, en-

abling the partition of the workload among several classifiers and grants

scalability and modularity. Specifically, the obtained Hierarchical Classi-

fication (HC) structure permits fine-grained (i.e. per-node) design, tuning

and evaluation, potentially leading to classification performance gains, and

takes advantage of by-design benefits, as focused re-training and incremental

update of specific nodes or distributed deployment of TC tasks. Expressly,

the present investigation focuses on the RQ2: is it possible to capitalize the

inherent hierarchical class-structure of (encrypted) traffic to achieve various
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advantages in TC at increasingly finer granularity?

It is worth noting that multi- and hierarchical-classification could be

seamlessly blended into a framework in which each node is not a simple ML

classifier but a more advanced MC architecture, with the further ability of

fine-tuning the specific MC technique employed in each node of the hierarchy

based on the specific TC task to carry out.

In addition to structural enhancements, one can also act to improve the

elemental classifiers. Sec. 1.3.4 has shown the main differences in ML and

DL workflows for TC, underlining the suitability of this latter to the dy-

namic and challenging mobile context as opposed to traditional ML-based

classifiers. Despite being extremely promising, the näıve adoption of DL to

mobile and encrypted TC might entail misleading design choices and lead

to biased conclusions, due to the peculiar (and tricky) nature of network

traffic data. Therefore, this Thesis proposes the realization of mobile traf-

fic classifiers able to operate with encrypted traffic via DL, developing a

systematic framework for the design of novel DL-based TC architectures.

Leveraging this framework, existing solutions declined in the mobile scenario

are firstly compared, underlining the deficiencies of current DL-based traffic

classifiers and providing a fine-level performance evaluation workbench as

groundwork for their accurate design. Then, a novel multi-modal DL-based

mobile traffic classification (MIMETIC) approach is devised and evaluated.

MIMETIC is able to exploit the intrinsic multi-modal nature of traffic data

and can capitalize the different views (viz. modalities) of the same traffic

object (e.g., raw payload or header fields) with an effective improvement

over both single-modal DL-based traffic classifiers and their combination

(viz. MC). In this regard, it is worth noting that MIMETIC, capturing

both intra- and inter-modalities dependence, constitutes a generalization of

the MC framework, although being also usable in conjunction with this lat-



ter that would accomplish the fusion of the base multi-modal classifiers’

decisions. Therefore, the research question addressed here is RQ3: how can

mobile and encrypted TC benefit from the domain-aware application of DL

to capitalize the heterogeneous traffic nature and avoid biased outcomes?

Another possible limitation of DL-based TC is the generation of learn-

ing networks with very dense and complex structure, whose training might

be excessively slow and computational demanding with respect to the time-

liness and computational constraints of network domain, being even more

urgent in the mobile scenario (cf. §1.1). To solve this issue the present

manuscript suggests the integration of the Big Data (BD) framework with

DL-based TC architectures. BD solutions provide processing frameworks

that can parallelize the classification task by splitting the network data

and distributing it across different workers cooperating under the coordina-

tion of a single master. However, they should be carefully investigated in

the case of non-naturally-parallelizable tasks, like the optimization of DL

training procedure. With this aim, the usage of DL-based TC strategies as

supported by BD frameworks is also evaluated considering classification per-

formance, training completion time, and (cloud-implementation) costs and

highlighting relevant non-trivial trade-offs. Hence, the pertinent research

question to which the latter contribution answers is RQ4: which are the im-

plications on TC when adopting BD solutions to deal with the demanding

training phase of DL-based traffic classifiers?

The data-driven TC approaches presented herein require a reliably-

labeled dataset (viz. with a reliable ground-truth), possibly human-

generated, to ensure proper design, realization, and evaluation. Therefore,

to provide the foundation for the set of proposed TC methodologies, the

Thesis presents, as the first contribution, the design and implementation

of an architecture for mobile-app traffic capture and ground-truth creation
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(MIRAGE) expressly conceived to support mobile traffic analysis tasks.

The outcome of this architecture is the human-generated MIRAGE-2019

dataset that has been publicly released with the goal of advancing the state-

of-the-art in mobile-app traffic analysis, fostering its replicability and repro-

ducibility. Indeed, the versatility of the MIRAGE-2019 dataset is proven

by performing example tasks related to mobile traffic characterization and

modeling and employing (part of) it as common benchmark for the experi-

mental evaluation of devised approaches.

1.4.2 Background Overview

Table 1.2 reports the studies more closely related to this Thesis tackling mo-

bile TC—regardless of the specific technique—or standard TC employing

at least one of the techniques exploited in the set of proposed methodolo-

gies.6 It can be noticed that few works have taken into account the traffic

generated by mobile apps, leveraging either payload-based approaches un-

der the assumption of cleartext traffic [78, 89] or traditional ML-based ones

in the case of encrypted traffic [41, 80, 84, 86, 60, 43, 97]. In this regard, the

vast majority of non-mobile studies proposed approaches able to deal with

encrypted traffic, with the only exception of the works in [81] and [82, 83],

leveraging a set of DL classifiers based on plain-text (HTTP) data and an

MC/HC system comprising payload-based method, respectively.

Taking into account the techniques employed, earlier works mainly fo-

cused on MC frameworks, although none of them have analyzed mobile

traffic. Similar considerations could be inferred for HC, that, however, has

also had recent applications in combination with DL [96]. Indeed, this latter

has experienced enormous interest in the last few years due to its intrin-

6A corpus of works not shown in Tab. 1.2 dealt with encrypted TC by means of
standard ML-based approaches.



Table 1.2: Mobile and encrypted TC works and comparison with the set of proposed
methodologies.
Traffic: Mobile Traffic (MT), Encrypted Traffic (ET).
Technique: Multi-classification (MC), Hierarchical Classification (HC), Deep
Learning (DL), Multi-modal (MM), Big Data (BD).
Dataset: Human Dataset (HD), Open Dataset (OD).

Traffic Technique Dataset

Paper Year MT ET MC HC DL MM BD HD OD

Szabo et al. [72] 2007 � � � ♦ ♦ ♦ ♦  #
He et al. [73] 2008 � � � ♦ ♦ ♦ ♦  #

Callado et al. [74] 2010 � � � ♦ ♦ ♦ ♦  #
Yu et al. [75] 2010 � � ♦ � ♦ ♦ ♦  #

Dainotti et al. [76] 2011 � � � ♦ ♦ ♦ ♦  #
Mellia et al. [77] 2012 � � ♦ � ♦ ♦ ♦  #

Dai et al. [78] 2013 � � ♦ ♦ ♦ ♦ ♦ # #
Stöber et al. [41] 2013 � � ♦ ♦ ♦ ♦ ♦  #

De Donato et al. [40] 2014 � � � ♦ ♦ ♦ ♦  #
D’Alessandro et al. [79] 2015 � � ♦ ♦ ♦ ♦ � # G#

Wang et al. [80] 2015 � � ♦ ♦ ♦ ♦ ♦ G# #
Wang [81] 2015 � � ♦ ♦ � ♦ ♦  #

Yoon et al. [82, 83] 2015 � � � � ♦ ♦ ♦ G# #
Alan and Kaur [84] 2016 � � ♦ ♦ ♦ ♦ ♦ # #

Shbair et al. [85] 2016 � � ♦ � ♦ ♦ ♦  #
Conti et al. [86] 2016 � � ♦ ♦ ♦ ♦ ♦ # #

Saltaformaggio et al. [60] 2016 � � ♦ ♦ ♦ ♦ ♦  #
Yuan and Wang [87] 2016 � � ♦ ♦ ♦ ♦ �  G#

Dong et al. [88] 2017 � � ♦ � ♦ ♦ ♦  #
Li et al. [89] 2017 � � ♦ ♦ � ♦ ♦  #

Chen et al. [90] 2017 � � ♦ ♦ � ♦ ♦ G# #
Lopez-Martin et al. [91] 2017 � � ♦ ♦ � ♦ ♦  #

Lotfollahi et al. [92] 2017 � � ♦ ♦ � ♦ ♦  G#
Vu et al. [93] 2017 � � ♦ ♦ � ♦ ♦  G#

Wang et al. [21] 2017 � � ♦ ♦ � ♦ ♦  G#
Wang et al. [94] 2017 � � ♦ ♦ � ♦ ♦   

Ke et al. [95] 2017 � � ♦ ♦ ♦ ♦ �  G#
Taylor et al. [42, 43] 2018 � � ♦ ♦ ♦ ♦ ♦ # #

Chen et al. [96] 2018 � � ♦ � � ♦ ♦  G#
Le et al. [97] 2018 � � ♦ ♦ ♦ ♦ �  #

Huang et al. [23] 2018 � � ♦ ♦ � ♦ ♦  G#
Shi et al. [98] 2018 � � ♦ ♦ � ♦ ♦  G#

Zhang et al. [99] 2018 � � ♦ ♦ � ♦ ♦  G#
Wang et al. [100] 2018 � � ♦ ♦ � ♦ ♦  G#

Li et al. [101] 2018 � � ♦ ♦ � ♦ ♦  #
Liu et al. [102] 2019 � � ♦ ♦ � ♦ ♦  #
Sun et al. [103] 2019 � � ♦ ♦ � ♦ ♦  G#
Zeng et al. [104] 2019 � � ♦ ♦ � ♦ ♦  G#

This thesis 2020 � � � � � � �   
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sic ability to work with encrypted traffic and significantly reduce domain-

expert (viz. human) intervention in the design of classifiers (cf. §1.3.4).

Nevertheless, up to our knowledge, no previous studies have systematically

applied DL for both mobile and encrypted TC. Additionally, while single-

modal DL has been widely employed, multi-modal approaches have not

been considered yet, despite being able to better capitalize heterogeneity

of network data. Similarly, even though BD represents a fitting accelerator

for (computationally-demanding) training and test phase of DL-based traf-

fic classifiers, it has not been utilized in this context, but only along with

ML-based classifiers and marginally in the mobile domain [97].

Finally, Tab. 1.2 reports also the kind of traffic data exploited for the de-

sign and evaluation of TC approaches reviewed, highlighting if network data

is human-generated and if it has been released as an open dataset. Notably,

the works tackling mobile TC are more prone to exploit automatically-

generated (viz. non-human) datasets due to the usage of automated UI ex-

erciser “monkeys” that automatically test apps using randomized input [78,

84, 86, 42, 43]. Unfortunately, monkeys may generate results that are not

representative of normal user interaction with the app [105]. Additionally,

an half-circle in the “Human Dataset” column indicates that the correspond-

ing work does not clearly state if the traffic is human-generated [81, 90] or it

does not perform the experimental evaluation of its proposal at all [82, 83].

Moreover, only Wang et al. [21] have publicly released their dataset (be-

ing however tailored for malware classification), whereas other papers em-

ployed either private (blank circle) or publicly-available (half-circle) datasets

(i.e. not generated by the authors themselves). Interestingly, the majority

of these studies have employed only two public human-generated datasets,

namely the “Moore” [106] and “ISCX VPN-nonVPN” [107] datasets that do

not include mobile app traffic, highlighting the lack of an up-to-date human-



generated dataset with associated ground-truth for mobile and encrypted

TC.

1.5 Organization of the Thesis

The rest of the Thesis is organized as follows. Chapter 2 describes the MI-

RAGE architecture for mobile-app traffic capture and ground-truth creation

and the MIRAGE-2019 dataset obtained by means of MIRAGE and (par-

tially) employed for the experimental evaluation of devised TC methodolo-

gies. Chapter 3 details the proposed Multi-Classification System and shows

how it is able to achieve better performance than each single base classifier,

enjoying also the modularity given by readily plugged-in/out of its compo-

nents. Chapter 4 introduces the Hierarchical Classification approach and

demonstrates how it can deal with the challenging task of encrypted TC

of anonymity tools; the proposed hierarchical approach is compared with a

pool of flat counterparts. The design of mobile traffic classifiers via DL is

presented in Chapter 5; it defines a systematic framework exploited for the

tuning and comparison of existing single-modal DL-based approaches and

the design of the novel MIMETIC multi-modal architecture that is proved

to outperform the best single-modal baselines. The integration of the BD

accelerator for the deployment of DL-based traffic classifiers is discussed in

Chapter 6; it is shown how BD paradigm cannot be transparently applied

in this scenario underling the need for a careful evaluation shedding light

on deployment trade-offs. Finally, conclusions are drawn in Chapter 7.



Chapter 2

The MIRAGE Architecture

In this chapter, we introduce and describe MIRAGE (Mobile-app traffic

capture and ground-truth creation), a reproducible architecture for the cap-

ture of mobile-app traffic and the creation of the related Ground Truth

(GT). The outcome of this system is MIRAGE-2019, a labeled human-

generated dataset suitable for mobile (encrypted) traffic analysis that we

have publicly released1 with the goal of advancing the state-of-the-art in

this field.

In next sections, we provide the motivations that led us to design and

implement MIRAGE and review the current publicly-available datasets for

encrypted (and possibly mobile) traffic analysis (§2.1). Then, we give the

details of the whole MIRAGE architecture along with traffic-capture and

GT-building phases (§2.2) and describe the release format of the MIRAGE-

2019 dataset (§2.3). Finally, we perform a characterization of MIRAGE-

2019 proving that it can be capitalized for different tasks related to mo-

bile traffic analysis (§2.4), encompassing its utilization (in conjunction with

other datasets) as a benchmark for the experimental evaluation of proposed

1MIRAGE-2019 is publicly released at http://traffic.comics.unina.it/mirage.

http://traffic.comics.unina.it/mirage


TC methodologies (§2.5).

2.1 The Need for the MIRAGE Solution

As in almost all experimental-research fields, replicability and reproducibil-

ity are critical concerns in achieving significant and grounded progress [108].

Accordingly, a strong push for them is currently observed, with research ar-

tifacts being also evaluated in the standard peer-review process [109]. In

fact, provisioning datasets as well as carefully documenting workflows for

obtaining them, are critical to foster replicability and reproducibility, re-

spectively, with both fueling research dissemination. Indeed, by leveraging

wisely sourced and constructed datasets that are available to the research

community, research outcomes become (i) easier to reproduce, (ii) compara-

ble against other studies, and (iii) generalizable to other data/systems not

studied yet.

These possibilities have been sorely missing for a long time [30] in the

field of network traffic analysis. In spite of this huge interest, the availability

of data for performing research within this field has remained quite limited.

Many appealing research solutions have been (and are) mostly validated

on private datasets, thus precluding repeatability and safe advances on the

topic. Still, it is shared opinion that this aspect contributes to slow down

and limit the understanding of the tackled problems, since it constitutes a

severe drawback in both design and experimental validation phases.

Even worse, in recent years new challenges have arisen. As described

in Chapter 1, the smartphones have become the main medium of commu-

nication and also due to their software distribution systems (i.e. the apps

marketplaces), fostering one-click installation and quick-paced automatic

updates, the overall network traffic has reached huge volumes and started
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evolving at an unprecedented pace. In this scenario, privacy concerns fur-

ther limit the collection and publishing of raw mobile traffic traces. These

challenges call even more for the availability of mobile-traffic datasets, con-

sidering that even when they are made available to the community, the

common presence of bot-generated traffic or experiments run in controlled

environments (cf. §1.4.2) limit the validity of the proposed analysis or design

solutions.

In this context, MIRAGE represents a reproducible solution for human-

generating new mobile-app traffic datasets and automatically creating the

related high accurate GT. Moreover, to foster the replicability of traffic

analysis and its extension to multiple use cases (including benchmarking

of devised methodologies for TC), we have also collected and released the

MIRAGE-2019 dataset.

2.1.1 Encrypted Network Traffic Datasets

To underline the urgency of the MIRAGE solution, in the following, we re-

view the most related public traffic datasets released to date in the last years

(2014-19), highlighting their main characteristics as well as main shortcom-

ings and limitations, and categorize them according to the taxonomy defined

in Tab. 2.1. We point out that we have considered only the datasets col-

lecting encrypted network traffic tailored for TC. We have not taken into

account the datasets collected for other purposes, as those related to net-

work anomaly detection or malware/attack classification [21], due to their

peculiar focus on network security. Moreover, to reflect only the recent

trend toward the growing adoption of encrypted protocols, we have not in-

cluded “older” datasets (e.g., the widely used Moore dataset [106] released

in 2005) since they, although valuable, may be no longer capable to reflect

the characteristics of current network traffic.



Table 2.1: Summary of previous datasets on encrypted traffic analysis.

Reference Dataset Capture Span Æ ♂ TO R
a
w

P
k
t

S
ta

ts

M
e
ta

Task Diversity R

[107] ISCXVPN2016 Mar. ’15 - Jun. ’15 #  B Ë Ë TI&TC 7 TTs G#
[110] ISCXTor2016 Lug. ’15 - Feb. ’16 #  BF Ë Ë TI&TC 8 TTs / 18 apps G#
[44] Anon17 ’14 - ’17 #  F Ë Ë Ë TI&TC 3 ATs / 8 TTs / 21 apps G#
[111] QUIC Mar. ’18 # # BF Ë TI&TC 5 QUIC services G#
[112] MTD Oct. ’16 - Mar. ’17   BF Ë Ë TI&TC 12 Apps / 10 DEVs / 10 EXPs G#
[113] UNSWIoT Oct. ’16 - Apr. ’17 G#  BF Ë DevID 28 DEVs  
[114] NTD Reddit Apr. ’18 - May ’18 # # W Ë WebAN 5 BWs G#
[115] Video Streams Aug. ’15 - May ’16 # # F Ë VidID 2.1k VTLs  
[116] YouTube Video Sep. ’17 - Feb. ’18  # P Ë Ë VT-QoE 3 VTLs / 374 h  
[117] Netflix UE Oct. ’18 - Feb. ’19 # # F Ë VT-QoE 10 LOCs / 2.6k VTLs G#
This Thesis MIRAGE-2019 May ’17 - May ’19   BF Ë Ë Ë TI&TC 40 apps / 3 DEVs / 280+ EXPs  

Traffic Nature: Æ = Mobile, ♂ = Human-generated. Traffic Object (TO): BF = Biflow, F = Flow, P = Packet, W =
Webpage. Released Data: Raw = PCAP files, Pkt = Packet-level data, Stats = TO statistics, Meta = Metadata. Task:
DevID = Device Identification, TI&TC = Traffic Identification and Classification, VidID = Video Identification, VT-QoE =
Quality-of-Experience in Video Traffic, WebAN = Website Analysis. Diversity: AT = Anonymity Tool, BW = Browser, DEV
= Device, EXP = Experimenter, LOC = Location, TT = Traffic Type, VTL = Video Title. Reproducibility (R).
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In detail, we categorize each dataset based on whether (a) it focuses on

the mobile scenario, (b) it is generated by real human experimenters (as op-

posed to bots or scripts), and (c) the description of the capture system em-

ployed for generating the traffic makes it partially/completely reproducible.

As a complementary information, we also provide the capture span for each

dataset, either explicitly specified in the corresponding paper or obtained

by direct inspection of the artifacts. Additionally, we surface (i) the traffic

object considered (cf. §1.3.1), (ii) the type(s) of released data, and (iii) the

diversity of the collection space. Specifically, with respect to point (ii), we

classify the form of released data in Raw if PCAP files are available, Pkt

if fields from each packet are available, Stats if summarizing statistics for

each traffic object are available, and Meta if complementary metadata are

available. Differently, referring to point (iii), we provide the number of

different services/applications or types of objects considered. Finally, an

explicit mention to the main intended task approached is provided.

Firstly, referring to the capture span, we observe that the experimental

campaigns last from months to years, with longer ones typically associated

with human interaction (see later discussion). A similar rationale applies to

MIRAGE-2019, collected in the last two years by human users and expected

to reflect better the current nature of mobile traffic.

Differently, focusing on network traffic generated exclusively by mobile

(handheld) devices, it is apparent that only the datasets MTD [112] and

our MIRAGE-2019 have captured this type of traffic. The only exceptions

are represented by UNSWIoT [113] in which some background traffic is

generated from mobile devices and YouTube Video [116] where streaming

video was analyzed on smartphones.

As anticipated, not all the considered datasets have been generated by

human users. Indeed, we point out that the above feature may be crucial



when analyzing the traffic generated by complex interaction patterns from

the users, as in the case of anonymity tools [107, 44] and mobile apps [112]

with automated tools non reflecting completely the above complex behav-

ior. For example, in [111, 114, 115, 117] the authors have employed Sele-

nium [118] for automating web browsing.

Referring to traffic object segmentation, most of the works consider ei-

ther flows [44] or biflows as the relevant traffic analysis unit, with the sole

exception of [114] using webpages as the significant object of analysis.

Referring to the main task approached, most of the datasets have been

collected with the aim of performing and evaluating TI and TC, with specific

focus on anonymity tools to assess their degree of anonymity [110, 44],

specific traffic services (e.g., Google QUIC protocol) [111], Virtual Private

Networks (VPNs) [107], or mobile apps’ classification [112]. Differently,

other datasets are specifically focusing on (encrypted) video traffic analysis,

with either considering title fingerprinting [115] or Quality-of-Experience

(QoE) prediction [116, 117]. Finally, some works focus on identifying specific

devices generating traffic, such as Internet of Things (IoT) devices [113], and

others delve into website analysis [114].

Referring to diversity, reviewed datasets provide information with dif-

ferent degrees of variety, also according to the goal and the scope of the

work they are proposed with. Overall, different applications/services/-

contents are considered, as well as multiple experimenters (in the case of

human-generated traffic), capture devices, and locations. For instance, IS-

CXTor2016 [110] contains 8 different traffic traffic types (browsing, audio,

etc.) corresponding to 18 applications which are run under two different sce-

narios, one to detect Tor traffic flows and the other to detect the application

type. Differently, Anon17 [44] contains info about the traffic types and ap-

plications running on Tor, I2P, and JonDonym and it is provided in the
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form of three-level labels for each flow (cf. §2.5.2). However, each dataset

focuses on a limited set of the mentioned aspects in line with the nature of

the problem to investigate. In fact, none of those surveyed covers all these

aspects at best. At most, 21 applications [44], 28 devices [113], and 10 ex-

perimenters [112] are considered. MIRAGE-2019 takes into consideration

the traffic generated by 280+ experimenters using 40 mobile applications

via 3 devices.

Finally, referring to reproducibility, it is apparent that not in all the

cases the details, the setup, and the procedures required to reproduce the

same experimental environment for the traffic capture have been reported.

Nonetheless, in some cases, the authors have also provided a detailed de-

scription of the whole experimental environment, see e.g. [113, 115, 116].

2.2 The MIRAGE Architecture

At a high level, the MIRAGE system architecture consists of two main com-

ponents: the Capture System and the Analysis System. Figure 2.1a shows

the architecture of the Capture System. The capture server is a workstation

equipped with an IEEE 802.11g access point, which provides connectivity to

the mobile devices that generate the traffic when human experimenters op-

erate the apps. A wired connection brings the access of the capture server

to the public Internet, performing Network Address Translation (NAT). No-

tably, the upstream connections to the public Internet do not constitute a

bottleneck in terms of bandwidth, thus not impacting the properties of the

traffic stream flowing through the access WLAN. Each mobile device is also

physically attached to the capture server through the USB hub; this allows

leveraging the Android Debug Bridge (ADB) to send commands from the

capture server to the attached devices and receive responses on an off-band
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channel. Such procedure requires the devices to be rooted in order to suc-

cessfully run the traffic capture. Notably, our architecture is able to handle

traffic capture of multiple devices simultaneously. The captured traffic is

then processed by the Analysis System (in our prototype, hosted on the

capture server itself) to produce MIRAGE-2019.

In detail, the MIRAGE architecture builds the dataset in three phases

as shown in Fig. 2.1b:

1. Capture phase: traffic traces are collected in PCAP format together

with strace log-files keeping track of network system-calls.

2. GT building phase: PCAP traces are segmented and log-files are fil-
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tered; this information is then combined to produce labeled traffic

objects.

3. Dataset extraction phase: labeled traffic objects are processed to ex-

tract the information of interest (including statistical features) to be

used as input data for exploratory analysis or ML tasks.

The next subsections provide details about these three phases.

2.2.1 Capture Phase

A capture session begins when an experimenter connects a mobile device

to the USB hub: this procedure automatically kicks off the capture of the

network traffic as well as the logging of the system calls. In detail, the

traffic is captured on the wired interface of the capture server by means of

tcpdump [119]. Leveraging traffic filters based on the MAC address of the

connected devices allows to collect the traffic generated by multiple devices

at the same time, without any ambiguity. On the other hand, the system-

call tracing is enabled on the mobile device itself by using the strace utility

via ADB [120]. In detail, strace is set to log network-related and process-

management system calls (e.g., connect, bind, getsockname, fork, wait,

exec, etc.), also logging the related <IP:port> pairs and associating each

socket descriptor to the name of the Android package which originates the

call.2 As a result, this phase provides an strace log-file with GT infor-

mation for each PCAP trace collected (see Fig. 2.1b). This kernel-based

mechanism for gathering information being given, the finest TC-granularity

we can achieve is the (bi)flow level.

2To this aim, we monitor the Android zygote process that handles the forking of each
new application process. Then we extract the Android package names from the PIDs
returned by the fork system calls.



The described capturing system allows the capture of mobile-app traf-

fic when accessing the Internet through a Wi-Fi channel. In principle, the

behavior of the apps could be different from the one shown when connect-

ing through 3G/4G channel. Indeed, Android applications may detect the

type of network that is used to transport their data, telling apart Wi-Fi,

Mobile, and VPN connections and potentially acting in different ways ac-

cording to that.3 Other mobile-app traffic capture approaches leverage an

encrypted connection (i.e. VPN) that tunnels the traffic over 3G/4G to a

gateway/capture server [112]. Compared to our capture method, the VPN-

based ones not only suffer from the identical issue (i.e. apps are able to

know if the transport network is a VPN the same way), but possibly add

uncontrolled changes to the statistical properties of captured traffic due to

the underlying tunneling protocol mechanics and the network between the

mobile device and the capture gateway, resulting in a traffic timing less

accurate and possibly traces less representative of plain 3G/4G setups.

2.2.2 GT Building Phase

In the GT building phase, first the PCAP traces are segmented to obtain

traffic objects. Then, each of these objects is labeled taking advantage of

the information extracted from the associated strace log-file.

PCAP traces are segmented into biflows. As opposed to common heuris-

tics leveraged to define the 5-tuple that identifies each biflow (cf. §1.3.1), we

are able to order the items constituting the 5-tuple based on the knowledge

of IP addresses of the Android devices used for the captures. Therefore,

3The ConnectivityManager method getType() returns, among the others, TYPE WIFI,
TYPE MOBILE, TYPE VPN according to the active connection type (see https://developer.
android.com/reference/android/net/ConnectivityManager for API level before 21, or
https://developer.android.com/reference/android/net/NetworkCapabilities for the anal-
ogous constants prefixed with TRANSPORT in API level 21 and following).

https://developer.android.com/reference/android/net/ConnectivityManager
https://developer.android.com/reference/android/net/ConnectivityManager
https://developer.android.com/reference/android/net/NetworkCapabilities
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in the dataset the addresses in biflows are ordered in the upstream direc-

tion (i.e. local-to-remote, with reference to the mobile terminal). Note that

biflow segmentation in addition to being a common choice for traffic ob-

jects, it perfectly fits the metadata extracted from the network (viz. socket)

system-calls.

Then, each biflow is labeled with the Android package-name that exactly

matches the 5-tuple in the strace log-file, considering getsockname and

connect system calls. In the case a perfect match cannot be found in the log-

file for some biflows4, the procedure assigns labels according to a heuristic,

i.e. labeling these biflows with the most-common label (i.e. package name)

in the PCAP trace. As this approach can potentially cause mislabeling,

the case of heuristic labeling is explicitly marked as such in the dataset,

allowing the final user to decide between considering in the GT all traffic

objects (possibly noisy) or keep only strict matching ones.

2.2.3 Dataset Extraction Phase

This phase is in charge of taking each labeled traffic object and extract

the relevant information to feed any potential application of the collected

data (e.g., exploratory mobile-app traffic analysis or ML algorithms to solve

specific tasks). The output of this phase constitutes the final MIRAGE-2019

dataset. Since the traffic objects here considered correspond to biflows,

information can be drawn in the form of summarizing statistics from the

whole traffic object, or from a subset of the constituting packets. The

specific types of information provided for MIRAGE-2019 and the related

context are described in full details in the following section.

4This could be caused by either the pre-existence of these biflows before the capture
started or by a failure of the strace in following the corresponding child-processes forked
by zygote.



2.3 The MIRAGE-2019 Dataset

We have collected the MIRAGE-2019 dataset in the ARCLAB laboratory

at the University of Napoli “Federico II”. The capture sessions span from

May 2017 to May 2019. We employed three devices to generate the mobile

traffic, namely:

• Xiaomi Mi5

• Google Nexus 7

• Samsung Galaxy A5

In detail, we installed the custom firmware CyanogenMod v13.0 (corre-

sponding to the Android version 6.0.1) on all the devices and enabled the

root mode.

More than 280 experimenters took part to the dataset construction on

a voluntary basis, by performing one or two experimental sessions each.

The experimenters involved in this activity were students of three different

courses5 held at the University of Napoli “Federico II”, aged 19÷ 25 years,

with a 85/15% share between males and females. Each experimental session

lasted two hours, at most. Altogether, during each experimental session,

every experimenter performed 12 capture sessions of 5 ÷ 10 minutes, each

resulting in one PCAP traffic trace and one strace log-file, as described in

the previous section. In each capture session the experimenter was asked to

perform activities mimicking common uses of a single app with the intent to

explore its functionalities. In addition, we asked the experimenter to carry

out:

5Namely: Computer Architectures, Computer Networks, and Internet Analysis and
Performance.
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• First-time installation of the app to be exercised (only for the first

capture session).

• Registration of a new app-user (where possible).

• Login of the registered app-user (for half of the capture sessions, in

contrast to already logged-in scenarios).

We report the ethical considerations underlying the aforementioned traffic-

capture procedure in Appendix A.

MIRAGE-2019 is focused on apps running on Android, currently re-

taining the 76% of the whole market share [121]. Overall, the MIRAGE-

2019 dataset gathers the traffic generated by 40 Android apps belonging

to 16 different categories according to Google Play apps distribution por-

tal [122]. Before each experimental session, the exercised app is updated to

the latest version available on the Italian Play Store. The MIRAGE web-

site (http://traffic.comics.unina.it/mirage) reports the detailed app meta-

data together with the links to their pages on Google Play. As a whole, a

total of 4606 PCAP traces were collected within MIRAGE-2019.6

Figure 2.2 shows the cumulative distribution of the duration of the traces

collected, having an average duration of 370 s. It can be noted that the ma-

jority of traces has a duration corresponding to that prescribed for capture

sessions (i.e. 5 ÷ 10 min.), being the median equal to 329 s and the 5- and

95-percentile equal to 213 s and 674 s, respectively. Differently, outliers are

due to unintended disconnections from the traffic capture system, erroneous

procedures carried out by the experimenters, but also specific experimental

scenarios (e.g., prolonged video-playing, calls, etc.).

6We have filtered out the PCAP traces having an strace log-file less than 200 kB or
a duration less than 10 seconds.

http://traffic.comics.unina.it/mirage
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Figure 2.2: Cumulative distribution of the duration (s in log-scale) of the PCAP traces
collected. The diamond marker reports the average, whereas the shaded box
highlights the (5, 95)th percentile region.

We release the MIRAGE-2019 dataset in JSON format to foster its com-

patibility and increase its usability: one JSON file corresponds to one PCAP

trace captured (i.e. a self-contained capture session). In detail, for each

biflow—identified by its 5-tuple—we have extracted:

• Per-packet data

• Per-flow features

• Per-flow metadata

Figure 2.3 shows the structure of each JSON file. In the following, we

provide the details about released data and their format, summarized also

in Tab. 2.2.

Per-packet Data. We extract 6 informative header fields and the L4

payload of the first 32 packets of each biflow. Table 2.2a describes the

data Di extracted. In detail, each Di identifies a list of up to 32 elements.
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packet
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[Table (a)]
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Figure 2.3: Structure of the JSON files constituting MIRAGE-2019.

Researchers performing TC [81, 94, 91] and WF [25] via ML and DL used

these inputs in their works.

Per-flow Features. To provide information on the whole biflow and cor-

responding upstream and downstream flows, we select 17 statistical features

computed on the sets of upstream, downstream, and complete (i.e. both of

them) IP packet lengths and inter-arrival times, for a total of 102 per-flow

features. Table 2.2b reports the per-flow features Fi extracted. Previous

works in the field of TC via ML successfully leveraged these features to feed

the classification algorithms they devised [76, 85, 43].

Per-flow Metadata. Table 2.2c describes per-flow metadata complement-

ing per-flow features, being also related to complete biflow and upstream/-

downstream flows. GT (viz. the biflow-label extracted) granularity (i.e. ex-

act or most-common) refers to the GT-building procedures described in

Sec. 2.2.2.



Table 2.2: The MIRAGE-2019 dataset. Di, Fi, and Mi report the dict-keys in the released
JSON files.

(a) Per-packet data extracted from the first 32 packets of each biflow.

Di Description

src port Source transport-layer port
dst port Destination transport-layer port

packet dir Packet direction (0 upstream, 1 downstream)
L4 payload bytes Number of bytes in L4 payload

iat Inter-arrival time
TCP win size TCP window size (0 for UDP packets)

L4 raw payload Byte-wise raw L4 payload (integer ∈ [0, 255])

(b) Per-flow features extracted from the sets of up-
stream, downstream, and complete IP packet
lengths and inter-arrival times.

Fi Description

min Minimum
max Maximum
mean Arithmetic mean
std Standard deviation
var Variance
mad Mean absolute deviation
skew Unbiased sample skewness

kurtosis Unbiased Fisher kurtosis
q percentile qth percentile (q ∈ [10 : 10 : 90])

(c) Per-flow metadataMi related to the complete biflow (BF) and upstream
(UF) and downstream (DF) flows.

Mi Description

BF label Android-package name
BF labeling type Exact or most-common labeling

{BF,UF,DF} num packets Number of packets
{BF,UF,DF} IP packet bytes Total bytes in IP packets
{BF,UF,DF} L4 payload bytes Total bytes in L4 payloads

{BF,UF,DF} duration (Bi)flow duration in seconds
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2.4 Example traffic-analysis tasks enabled by
MIRAGE-2019

The released MIRAGE-2019 dataset can suit different kinds of traffic-analysis

tasks, ranging from app traffic modeling and prediction, to biflow-based TC.

Herein, we present an app-traffic characterization that can be directly de-

rived from the dataset, concerning per-packet data (§2.4.1), per-flow fea-

tures (§2.4.2), and per-flow metadata (§2.4.3). While providing a detailed

characterization of MIRAGE-2019, our analyses also point at tasks enabled

by the released dataset.

2.4.1 Per-app Modeling based on Per-packet Data

Modeling network traffic represents a key task in the study and design of In-

ternet architectures, as realistic (yet manageable) traffic models are needed

to predict, interpret, and solve performance-related issues of current and

future networks.

To prove the suitability of MIRAGE-2019 to support this class of tasks,

we provide a preliminary study aimed at devising per-app traffic models by

means of Markov Models, similarly as done in [123]. In detail, for each app

we consider the sequence of the L4 payload bytes of each biflow (i.e. fo-

cusing on the first 32 packets, cf. §2.3) and derive the so-called transition

matrix, whose (X,Y )th entry represents the probability that the next packet

comes with Y bytes of payload if the last observed packet has a payload of

X bytes (save from rounding errors due to binning). Notably: (i) packets

with null payload are filtered out (i.e. only the packets transferring contents

generated by the application layer are retained, while signaling such as TCP

SYNs, RSTs, and pure ACKs are discarded, as not of interest for this anal-

ysis); (ii) the payload-size interval between 1 B and 1500 B is divided in 33
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(b) air.com.hypah.io.slither.

Figure 2.4: Transition matrices of payload lengths. Axes are divided in two different
linear scales. The color-bar is in log-scale.

non-uniform bins, namely: bins from 1 to 20 (resp. from 21 to 33) are 10 B

(resp. 100 B) wide. This scheme allows to better appreciate the model dy-

namics by mitigating the impact of the high presence of packets with null

or very-small payload.

As an example, Fig. 2.4 reports the transition matrices for Dropbox

(Fig. 2.4a) and Slither.io (Fig. 2.4b). By looking at the two matrices, the

following observations can be derived:

• The presence of high values (darker colors) along the diagonal wit-

nesses the tendency to remain in the same state, i.e. sending/receiving

consecutive packets of similar sizes. This observation holds for both

apps, and becomes evident for very-small values (top-left corner) as

well as for very-large values (bottom-right corner).

• Vertical patterns highlight the trend in entering to a specific state,
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whichever the current payload length. This is particularly evident for

Fig. 2.4a, where next expected payload length is within 30–40 B when

current payload length lies within 300–1400 B, and in both apps when

the current payload belongs to 1400–1500 B.

• Scattered darker points highlight app-specific patterns.

2.4.2 Per-flow Statistical Characterization

Characterizing mobile-app traffic based on its statistical features is a ca-

pability of the utmost importance that mitigates a number of issues and

benefits different tasks in network administration. As discussed in Chap-

ter 1, trends in network applications and protocol design (e.g., protocol

encapsulation, encrypted transmission, use of non-standard ports, concerns

about users’ privacy) heavily challenge TC when exploiting some of the de-

veloped techniques (e.g., port-based and DPI). In fact, approaches based on

statistical properties of network traffic provide viable alternatives (cf. §1.3).

Leveraging the information directly provided by MIRAGE-2019, the

mobile-app traffic can be modeled at different granularities, considering both

the apps and the related categories. As an interesting example, Fig. 2.5 re-

ports the joint scatter plot (per biflow) of the mean packet lengths and inter-

arrival times for four different app categories: Productivity (Fig. 2.5a),

Sports (Fig. 2.5b), Games (Fig. 2.5c), and Music & Audio (Fig. 2.5d). Each

figure reports the apps with different colors, while the kernel density esti-

mation of the marginal distributions is shown in the side plots. Several

considerations can be drawn from this analysis.

First, given the different spatial concentration of the points over the

plane, different categories result in different joint scatter plots. For instance,

while points in Games mostly lie within [50, 400] B (x-axis) and [10 ms, 100 s]
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Figure 2.5: Joint scatter-plot of mean (payload length, inter-arrival time) of each biflow
for four different app categories. The packet length is reported in linear scale
(x-axis), whereas the inter-arrival time is shown using a log-scale (10 log10(x)).
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(y-axis), the same does not apply for the other three categories.

Secondly, the apps within the same category often show their own pe-

culiar statistical profile. For example, OneFootball (de.motain.iliga) up-

dates (Fig. 2.5b) generate points mostly concentrated around 100 B and

100 ms, as opposed to Diretta (eu.livesport.Diretta it). Differently,

for Games (Fig. 2.5c), while the inter-arrival time does not hold great dis-

criminating power, the packet length allows to separate biflows associated

to the two considered games easily enough.

Finally, this rationale is not as much evident for the apps within

Productivity and Music & Audio categories (see Fig. 2.5a and Fig. 2.5d).

However, in the former case, Dropbox (com.dropbox.android) may be dis-

tinguishable based on peculiar profile of both mean packet lengths and inter-

arrival times; whereas, in the latter case, Spotify (com.spotify.music) and

Musixmatch (com.musixmatch.android.lyrify) show distinctive marginal

distribution of only packet lengths and inter-arrival times, respectively. In-

deed, the presence of traffic generated by several (similar) apps is one of the

main challenges of mobile-app traffic analysis. This results in very-complex

patterns of current traffic which cannot be appropriately captured by com-

mon statistical features. This outcome confirms the recent trend discussed

in Sec. 1.2, applying novel ML- and DL-based techniques foreseen to be the

effective workhorse to cope with mobile-app traffic challenges.

2.4.3 Per-flow Volume Distribution

The information in MIRAGE-2019 also enables a characterization of the

traffic based on the transferred volumes. Figure 2.6a shows the volume of the

biflows in MIRAGE-2019, reporting the histogram of their sizes (bin width:

2 MB) which range from few bytes to several megabytes. In general terms,

our collected information shows that request-response interactions are more
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Figure 2.6: Per-flow characterization of MIRAGE-2019 biflows in terms of byte volume
(a-b) and downstream volume share ρd (c-d).
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common than long data transfers. Accordingly, voluminous biflows are less

frequent than (possibly short-lived) biflows transferring a limited amount of

bytes. As more than 88% of the biflows have volumes ≤ 100 kB, Fig. 2.6b

reports the histogram (bin width: 1 kB) for such dataset portion, revealing

that the biflows with volumes within [5, 10] kB are the most common.

To deepen the nature of the exchange, Fig. 2.6c reports—in the form

of cumulative distributions—the share ρd of the downstream bytes for each

biflow (i.e. ρd ,
Bd

Bd+Bu
, where Bd and Bu are the number of downstream

and upstream bytes of the biflow, respectively) for the whole MIRAGE-

2019 dataset (≈ 270k biflows). On average, downstream traffic accounts for

≈ 65% of the volume of the overall biflow traffic. However, we can notice a

clear pattern when considering biflows with different volumes: the smaller

the biflow volume, the lesser the share of downstream traffic (i.e. ρd ≤
0.5). Indeed, for biflows very small in volume (i.e. ≤ 1 kB) ρd = 0.35

on average. Notably, for around 5% of the biflows no downstream packets

were captured. As expected, all these communications are very small in

volume (i.e. ≤ 10 kB) and are the results of anomalous conditions, with

the mobile app asking for services to external servers and no reply returned

due to failures possibly at the communication endpoint or along the path.

Differently, when only flows with larger sizes are retained (i.e. ≥ 10 kB and

≥ 100 kB), the downstream traffic accounts for most of the volume, namely

mean ρd equals to 0.77 and 0.89, respectively.

The analysis of the exchanged traffic volumes and (un)balance of the

downstream-upstream ratio has an impact on access link dimensioning and

per-app traffic volume costs (for the operator), and transmission power con-

sumed (for the user). Indeed, breaking the above results down by different

app categories (see Fig. 2.6d), we are able to quantify the expected dif-

ference of transmission resources required. According to this analysis, two



categories (Comics and Maps&Navigation) show a distinct distribution of

ρd from the other ones, having a higher mean value and only ≈ 5% of the

biflows with ρd ≤ 0.5.

2.5 Benchmarking Traffic Classification

This section carefully describes the datasets used to assess the set of TC

methodologies proposed in the present dissertation. These correspond to

three human-generated mobile traffic datasets—encompassing part of

MIRAGE-2019—and to the public Anon17 dataset [44], whose details are

reported in Secs. 2.5.1 and 2.5.2, respectively.

2.5.1 Mobile Traffic Datasets

Leveraging the MIRAGE architecture, we collected mobile-app traffic for

more than two years (starting from 2017), cross-sectionally and simulta-

neously to the research activities described in this Thesis. Meanwhile we

have continued the experimental activities and updated the MIRAGE-2019

dataset, for benchmarking the set of devised TC methodologies, we have

employed a self-contained part of MIRAGE-2019, that we have comple-

mented with other two mobile human-generated datasets. In detail, the

MIRAGE-2019 subsample encompasses the traffic pertaining to either Face-

book (FB) or Facebook Messenger (FBM) apps, whose collection has been

recommended by a global mobile solution provider; whereas the other two

mobile datasets—named Android and iOS—have been produced and handed

to us directly by the same provider7.

We would emphasize that all the works dealing with mobile TC mostly

7Due to NDA with the provider, we can not report its name, details of its network,
detailed information on the datasets, nor release them.
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either consider iOS- [80] or (most of the time) bot-generated Android-

traffic [43, 78, 84, 86] (see also Tab. 1.2). Conversely, the three datasets

used herein cover both mobile operating systems with human-generated

traffic. Indeed, the different nature and history of the software and hard-

ware ecosystems revolving around the two operating systems suggest that

app traffic could inherit different properties as well. Consequently, app dis-

crimination ability on one system cannot be assumed as generalizable to the

other.8

Table 2.3 summarizes the details of the three mobile traffic datasets we

illustrate point-by-point in the following.

FB/FBM Binary Dataset. The first (binary) dataset was collected us-

ing the MIRAGE platform (viz. it is a subsample of MIRAGE-2019). In

detail, we consider the capture sessions related to FB or FBM generated by

means of the Xiaomi Mi5 (cf. §2.3) during May ’17 - Mar. ’18. This choice

derives from the peculiar nature of these two apps, both devoted to interac-

tive usage of the Facebook platform (author of both). This suggests a high

possibility of shared development framework, overlapping services usage,

and similar apps’ fingerprints, hampering the discrimination of the respec-

tive traffic needed for key management tasks e.g., billing differentiation.

The capture sessions are performed as described in Sec. 2.2.1 and involved

different activities (e.g., posting contents, commenting, liking, sending mes-

sages, making (video-)calls, etc.) carried out by the experimenters to ex-

plore app diversity (cf. §2.3). We collected more than 1100 traffic traces

and labeled them following the procedure reported in Sec. 2.2.2. The whole

dataset contains ≈ 34.2k instances, with 15.0k (resp. 19.2k) biflows from

8Similar concerns regard bot-generated traffic when extending results to actual human-
generated mobile app traffic.



Table 2.3: Details of the mobile traffic datasets employed in the experimental evaluation
of TC methodologies presented in this Thesis.

Dataset Type (#Apps) #Traces #Biflows %ET OS Version Collection Source

FB/FBM Binary (2) > 1100 34.2k 91% Android 6.0.1 05/17 - 03/18 MIRAGE

Android Multi-class (49) 607 77.3k 47% 4.2.2 - 6.0.1 04/15 - 01/17 Provider

iOS Multi-class (45) 419 44.1k 60% 7.0 - 10.0 09/14 - 01/17 Provider

FBM (resp. FB) app and a 44%/56% share. Precisely, FBM (resp. FB)

traffic consists of 13.2k (resp. 18.7k) TCP and 1.8k (resp. 0.5k) UDP bi-

flows, respectively. The encrypted biflow ratio (%ET) corresponds to 91%.

Multi-class Android and iOS Datasets. The other two (multi-class)

datasets, obtained from a global mobile solutions provider and generated

from 49 (resp. 45) apps on Android (resp. iOS) devices, are explored for

prioritization purposes. The corresponding Android (resp. iOS) traces have

been collected during Apr. ’15 - Jan. ’17 (resp. Sept. ’14 - Jan. ’17),

generated by users with different devices and OS/app versions, and provided

already anonymized and cleaned from background traffic. Uniformly to the

capture phase of MIRAGE, provided traces capture the traffic generated by

users running a single app at a time on a given device/OS, thus limiting

the presence of background traffic and allowing to label the traces with the

associated known GT. In detail, ≈ 89% (resp. ≈ 85%) of Android (resp.

iOS) traces has been captured in 2016. As a whole, the dataset is made

up of 607 (resp. 419) traffic traces, with an average duration of 282 (resp.

296) seconds and 1 to 60 (resp. 1 to 48) traces per app in Android (resp.

iOS). Moreover, 77.3k (resp. 44.1k) labeled instances compose the Android

(resp. iOS) dataset, with 73.8k (resp. 41.8k) TCP and 3.5k (resp. 2.3k) UDP

biflows and 47% (resp. 60%) encrypted biflow ratio (%ET).
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Figure 2.7: Cumulative distribution of the number of PCAP traces and biflows per app
for Android and iOS datasets. Diamonds mark the average.

Table 2.4 lists the apps belonging to both Android and iOS datasets,

the categorical class-labels used to identify them in the following chapters,

the number of biflows, and the number of PCAP traces per app. We can

notice that the multi-class datasets exhibit a non-negligible class (viz. app)

imbalance, both in terms of number of PCAP traces and biflows. This is

even more evident by looking at their cumulative distributions reported in

Fig. 2.7. The latter shows that the Android dataset has, on average, more

per-app traces and biflows, being 12 and 1546, respectively, compared to

10 and 1194 of the iOS dataset. However, the long tail of the distributions

discloses the presence of Android PureVPN (resp. iOS SayHi) app with up

to 12k (resp. 7k) biflows, against the 75% of apps having less than ≈ 1850

(resp.≈ 1100) biflows for the Android (resp. iOS) dataset. Such realistic and

challenging setup allows a fair evaluation of proposed TC methodologies.

Further Observations. We underline that the number of instances also

vary depending on the specific traffic object considered (other than bi-



Table 2.4: Apps pertaining to Android and iOS datasets. App name, categorical class-
label (CCL), number of PCAP traces, and number of biflows are reported for
each app.

Android iOS

App Name CCL #Traces #Biflows App Name CCL #Traces #Biflows

360Security 1 2 178 360Security 1 2 158
6Rooms 2 41 2034 6Rooms 2 24 754
80sMovie 3 8 1639 80sMovie 3 6 1079
9YinZhenJing 4 3 178 Anghami 4 13 1081
Anghami 5 19 1869 AppleiCloud 5 20 3110
BaiDu 6 8 2567 BaiDu 6 8 2551
Crackle 7 4 426 Brightcove 7 8 989
EFood 8 2 352 Crackle 8 4 297
FrostWire 9 2 1187 EFood 9 3 102
FSecureVPN 10 5 257 FSecureVPN 10 5 153
Go90 11 5 752 Go90 11 6 372
Google+ 12 37 1985 Google+ 12 26 680
GoogleAllo 13 24 931 GoogleAllo 13 11 627
GoogleCast 14 2 145 GoogleCast 14 2 116
GoogleMaps 15 12 874 GoogleMaps 15 12 624
GooglePhotos 16 4 167 GooglePhotos 16 4 250
GooglePlay 17 60 5050 GroupMe 17 4 328
GroupMe 18 4 621 Guvera 18 4 517
Guvera 19 4 471 Hangouts 19 22 1739
Hangouts 20 16 500 HiTalk 20 5 541
HidemanVPN 21 19 2950 HidemanVPN 21 10 415
Hidemyass 22 2 373 Hidemyass 22 6 519
Hooq 23 17 1746 Hooq 23 4 462
HotSpot 24 23 4011 HotSpot 24 24 2729
IFengNews 25 13 1307 IFengNews 25 11 852
InterVoip 26 15 209 LRR 26 2 179
LRR 27 2 381 MeinO2 27 2 677
MeinO2 28 2 700 Minecraft 28 4 155
Minecraft 29 4 190 Mobily 29 2 58
Mobily 30 2 88 Narutom 30 4 930
Narutom 31 4 804 NetTalk 31 10 485
NetTalk 32 8 607 NileFM 32 7 652
NileFM 33 5 662 Palringo 33 8 650
Palringo 34 10 786 PaltalkScene 34 1 70
PaltalkScene 35 32 2473 PrivateTunnelVPN 35 15 2925
PrivateTunnelVPN 36 9 1444 PureVPN 36 14 1560
PureVPN 37 12 12107 QQReader 37 12 2007
QQ 38 51 6259 QianXunYingShi 38 4 539
QQReader 39 15 4633 Repubblica 39 7 1316
QianXunYingShi 40 4 551 Ryanair 40 2 319
RaidCall 41 8 390 SayHi 41 48 7019
Repubblica 42 6 830 Shadowsocks 42 4 238
RiyadBank 43 1 27 Sogou 43 4 760
Ryanair 44 2 512 eBay 44 15 2099
SayHi 45 51 5960 iMessage 45 9 359
Shadowsocks 46 4 1811 - - - -
SmartVoip 47 6 246 - - - -
Sogou 48 4 352 - - - -
eBay 49 14 2731 - - - -
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flow) and relative segmentation parameters (e.g., Service Burst—and Burst

Threshold—employed for ML-based MC in Chapter 3). Moreover, it is

worth noting that preprocessing operations might have been carried out on

the datasets (both multi-class and binary), further varying the actual num-

ber of traffic objects (e.g., required for the MIMETIC approach described

in Chapter 5). If this is the case, we provide detailed report of traffic object

statistics in the related chapters.

2.5.2 Anon17 Dataset

Anon17 was collected in a real-network environment at the Network In-

formation Management and Security Lab [44] between 2014 and 2017 and

gathers traffic from three anonymity tools: Tor [70], I2P [124], and Jon-

Donym [125]. The dataset has been labeled leveraging the information

provided by the anonymity tools themselves (e.g., IP addresses of the Tor

nodes) without relying on any application classification tool. The data are

stored in ARFF format used in the data mining software tool Weka [126]

and report the features (detailed discussed in later Sec. 4.3.2) either on a

per-flow basis or pertaining to the Inter-Arrival Time / Payload-Length se-

quence of the first K packets of each flow. We point to [44] for obtaining

exhaustive information on Anon17 dataset.

The main peculiarity of Anon17 is that it provides labels at three

increasing-granularity levels:

(L1) Anonymous Network Level (3 classes).

(L2) Traffic Type Level (7 classes).

(L3) Application Level (21 classes).
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Figure 2.8: Anon17 Classification Levels: Anonymous network (L1), Traffic Type (L2)
and Application (L3), with total number of samples per class and class label
at each level.
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This label organization promotes the analyses of anonymous traffic at dif-

ferent levels, as well as the implementation of hierarchical approaches, as

remarked in Fig. 2.8, reporting the categorization of Anon17 classes. Specif-

ically, Normal Tor Traffic includes the circuit establishment and the user

activities, whereas Tor Apps refer to flows running three applications on

the Tor network (i.e. L3 classes: Browsing, Video streaming, and Torrent

file sharing). On the other hand, Tor Pluggable Transports (PTs) contain

flows for five different obfuscation techniques (i.e. L3 classes: Flash proxy,

FTE, Meek, Obfs3, and Scramble Suit). The flows belonging to the L2 class

I2P Apps Tunnels with other Tunnels are collected by running three ap-

plications (viz. L3 classes) on the I2P network: I2Psnark (file sharing),

jIRCii (Internet Relay Chat), and Eepsites (websites browsing). The dif-

ference between 0% and 80% bandwidth is in the amount of sharing rate

of the user bandwidth. I2P Apps contain traffic flows for the same three

applications. However, in the latter case, management tunnels belong to

separate L3 classes (i.e. Exploratory Tunnels and Participating Tunnels).

Lastly, JonDonym sub-dataset contains flows for the whole free mixes on

the JonDonym network.

Anon17 exhibits a (majority) class imbalance problem, as shown by the

total number of samples in Fig. 2.8 and summarily depicted in the top bar

of Fig. 2.9. To cope with it, we have randomly down-sampled9 (without

replacement) by applying a pre-processing filter10 to the instances of the

following highly-populated traffic types, so as to keep their number compa-

rable with the others: (i) Tor Pluggable Transports, (ii) I2P Apps Tunnels

with other Tunnels [0% BW], and (iii) I2P Apps Tunnels with other Tunnels

9Over-sampling methods (e.g., SMOTE, ROSE, etc.) are not considered here as
Anon17 dataset does not show a minority class imbalance problem.

10Adopted filter is implemented in the Weka environment by means of
weka.filters.supervised.instance.Resample Java class.
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Figure 2.9: Down-sampling of Anon17 dataset: upper barplot (original Full dataset),
middle barplot (down-sampling to 5%, D5), lower barplot (removal of “all-
zero-payload” flows, D̄5).

[80% BW]. The considered filter also preserves the proportions of the con-

tained L3 applications. Specifically, we consider a configuration correspond-

ing to the down-sampling to 5% of the original dataset of each traffic-type

set. For the sake of completeness, we have preliminarily tested two down-

sampling configurations (corresponding to 5% and 10%) of each traffic-type

set, showing a non-relevant difference in performance between them. How-

ever, aiming at a fairer investigation, here we have opted for the more bal-

anced configuration. Figure 2.9 shows the percentage of flows labeled with

different traffic types after performing the aforementioned down-sampling

(middle bar D5). We underline that we have chosen to down-sample the

whole dataset, as opposed to the sole training set, since the latter choice

would have biased the overall accuracy measure (evaluated from the test

set) toward the performance of the majority classes.

Finally, to perform TC of sole informative flows, we have discarded from

D5 all the instances containing only zero-payload packets. The latter filter-

ing procedure has been conducted implicitly by the inspection of the field
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maxPktSz (reporting the maximum packet length of each flow), as Anon17

does not provide the complete sequence of packet lengths [44]. The bottom

barplot in Fig. 2.9 shows the final resulting dataset (here denoted with D̄5)

considered in the following flow-based TC. On the other hand, for the early

TC, a specific different filtering procedure has been pursued, as explained

in detail later in Chapter 4.





Chapter 3

Multi-Classification
Approaches

As discussed extensively in Chapter 1, the traffic of mobile apps consti-

tutes a moving target for classifiers due to its dynamic evolution and mix.

Consequently, in this challenging scenario also standard ML-based classi-

fiers may give way to this swift progression. Indeed, on the one hand, they

are the most appropriate to deal with encrypted traffic, representing a large

amount of mobile one [55], but on the other hand, näıve “standard” ML

approaches might experience non-negligible performance degradation in the

mobile context [127].

In this Chapter, we envision a “structural” improvement of ML-based

traffic classifiers that aims to improve the classification performance of

mobile apps by proposing a Multi-Classification System (MCS) which

intelligently-combines decisions from state-of-the-art (base) classifiers specif-

ically devised for mobile- and encrypted-TC and currently considered the

best approaches in such context [43, 64, 65]. To the best of our knowl-

edge, we perform this investigation in the mobile context for the first time

(cf. §1.4).



Additionally, despite (wise) combination of state-of-the-ar t classifiers

is here analyzed to show how current classification performance of mobile

traffic can be improved, the proposed MCS is nor restricted to the con-

sidered set of classification algorithms and statistical features, neither to

the operational scenario (i.e. classifiers for “early” TC—see §1.3.1—may

be considered in the proposed framework without any further complica-

tion [128, 129]). Indeed, the MCS framework can potentially overcome the

deficiencies of each single classifier not improvable over a certain bound, de-

spite efforts in careful “tuning”, and provide improved performance with

respect to any of the base classifiers, also allowing for modularity of classi-

fiers’ selection in the pool, as each component may be readily plugged-in/out

to improve performance further. For this reason, research has focused on

MCSs in the last years [40, 72, 73, 74, 76].

Besides, with respect to the aforementioned works, our MCS allows for

choosing from several types of combiners developed in the literature [130,

131] and based on both hard and soft approaches. These latter, in par-

ticular, have been successfully applied to many practical problems [130]

and their application to mobile TC is deemed extremely appealing. It is

worth noting that the different combiners employed in this Thesis consti-

tute a wide spectrum of achievable performance, operational complexity,

and training set requirements. Furthermore, the generality and the weak-

coupling to any base classifier of the proposed MCS is capitalized to draw

out “best practices” in mobile traces’ pre-processing and (proper) traffic

object segmentation.

Based on the mobile multi-class datasets of true users’ activity described

in Sec. 2.5.1, our results show that MC framework can improve classification

performance with respect to the best base classifiers considered for the task.

Specifically, it is shown that macro recall can be appealingly improved by



Related Works 67

more than +9% on the best base classifier, and that there is room for further

possible improvement with evidence of over +10% achievable by the ideal

combiner. Finally, an investigation of subset selection of classifiers’ pool,

referring to all the combiners within the proposed MCS, is also reported,

highlighting an additional path of improvement and possible complexity

reduction.

In view of the streamlined contributions, this chapter is organized as

follows. Sec. 3.1 details related works, whereas Sec. 3.2 collectively de-

scribes the considered MCS for encrypted mobile TC. More specifically,

Sec. 3.2.1 recaps the traffic objects and introduces the set of features em-

ployed, whereas Sec. 3.2.2 describes the classification algorithms considered

as base classifiers and Sec. 3.2.3 introduces the hard and soft fusion tech-

niques adopted for their combination. Such detailed description is aimed at

the full specification of the present approach, so as to enable easy implemen-

tation or porting to any architecture, and comparison with other approaches

and tools. Experimental evaluation is reported in Sec. 3.3. We show both

dataset pre-processing (§3.3.1) and discuss its implication on performance

(§3.3.2); finally, we report the experimental results obtained with our MCS

(§3.3.3).

3.1 Related Works

As shown in Tab. 1.2, TC of mobile apps has been object of huge interest by

several recent works, mainly based on encrypted-traffic assumption. How-

ever, to the best of our knowledge no previous work tackled mobile TC using

a MC framework. In Tab. 3.1, we sum up the main aspects of these works

and provide a comparison with the MCS here proposed (last row). The first

group reports the papers using MC approaches for TC, whereas the sec-



Table 3.1: Summary of previous works (by year) employing MC approaches (first group) and tackling mobile TC (second
group). Only our MCS (last row) deals with mobile app traffic.

Paper MT ET ML MC TO Classes Input Data TC Technique TC Performance

Szabo et al. [72] # # #  BF 8 applications Ports, payload, stats,
connection patterns

WMV of S1 ≈ 99% best acc.

He et al. [73] #    BF 8 applications BC, PC, duration, rate,
statistics of PS & IAT

Co-Forest +11% acc.
w.r.t. baselines

Callado et al. [74] #    F/BF ≤ 12 applications BC, PC, ports,
duration, rate

RS, MV, DS,
EDS of S2

≥ 60% acc.

Dainotti et al. [76, 40] #    BF 12 applications

Protocol, ports,
duration, BC,

statistics of PS & IAT,
first 10 PS & IAT

MV, WMV,
NB, DS, BKS,

WER of S3

≥ 97% acc.

Yoon et al. [82, 83] # # #  BF N/A Header, payload, or
statistical features

N/A GT not available

Dai et al. [78]  # # # H 6 Android apps HTTP payload DPI GT not available

Stoöber et al. [41]    # B 20 users Statistics of PS & IAT SVC, K-NN ≥ 90% acc.

Wang et al. [80]    # B 13 iOS apps Statistics of PS & IAT RF ≈ 94% acc.

Taylor et al. [42, 43]    # SB 110 Android apps Statistics of PS SVC, RF 86.9% acc.

Alan and Kaur [84]    # T 1595 Android apps First 64 TCP PS WF 88% best acc.

Conti et al. [86]    # T ≤ 11 actions Clustering-based features RF 95% best acc. / prec.

Saltaformaggio et al. [60]    # SB 35 actions Statistics of PC, PS, & IAT SVC 78% prec. & 76% rec.

Li et al. [89]  #  # H 12 Android apps HTTP request & headers VAE 99.6% acc.

Le et al. [97]    # BF 7 apps BC, PC, ports, & first 5 PS NB, GBT, RF
SVM, NN

99.5% acc.

Our MCS     SB 49 Android
45 iOS apps

Statistics of PS Soft/Hard
combiners in §3.2.3

+9.5% rec.
w.r.t. best classifier

Mobile Traffic (MT). Encrypted Traffic (ET). Machine Learning (ML). Multi Classification (MC).
Traffic Object (TO): biflow (BF), burst (B), flow (F), HTTP session (H), Service Burst (SB), TCP connection (T).
Input Data: byte count (BC), inter-arrival times (IAT), packet count (PC), packet sizes (PS).
TC Technique - Classifier : Bayesian Network (BN), Deep Packet Inspection (DPI), Gradient-Boosted Tree (GBT), K-Nearest Neighbors
(K-NN), Multi Layer Perceptron (MLP), Näıve Bayes (NB), Neural Network (NN), Random Tree (RT), Random Forest (RF), Support Vector
Classifier (SVC), Variational Autoencoder (VAE), WF (Website Fingerprinting).
Combiner : Behavior-Knowledge Space method (BKS), (Enhanced) Dempster-Shafer (EDS), Majority Voting (MV), Näıve Bayes (NB),
Random Selection (RS), WERnecke’s method (WER), Weighted Majority Voting (WMV).
S1: Port-based, DPI, BLINC [45]. S2: NBTree, PART, C4.5, BN, SVC. S3: C4.5, K-NN, RT, Ripper, MLP, NB, Portload [53], port-based.
*N/A: information not available in the related manuscript.
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ond those facing TC of mobile apps. In detail, we underline if they tackle

(i) mobile and (ii) encrypted TC, possibly using (iii) ML-based classifiers

and (iv) MC frameworks, the TC granularity (in terms of (v) traffic object,

(vi) number and type of classes considered), (vii) the input data used to

feed the classifier/combiner, and (viii) the specific TC techniques (being a

classifier or combiner). Finally, we summarize (ix) the (best) classification

performance obtained.

Traffic Classification via Multi-classification Approaches. Szabo et

al. [72] have been the first proposing a combination method of multiple traf-

fic classifiers that relies on different types of approaches leveraging various

sources of information, namely statistics, payload (being thus not suitable

for encrypted traffic), port, heuristics, and connection patterns. The fi-

nal decision on application classification is given through a majority voting

mechanism weighted by classifiers’ priority, with payload-based one having

the highest. Authors test their model on several network traces with a total

of 8 different applications, and show that the proposed solution improves

both the completeness and the accuracy of TC up to ≈ 99% for certain

applications, when compared to existing methods.

In [73], the authors propose Co-Forest, a ML-based TC model, which

leverages ensemble learning, combining the predictions of multiple classifiers

by voting, and semi-supervised co-training, utilizing both (a small num-

ber of) labeled and (a large number of) unlabeled samples. Such general

framework is compared with both traditional ensemble learning methods

(i.e. Random Forest and Bagging) and standard ML classifiers (i.e. C4.5

and Random Tree), trained/tested with a set of flow-based features (see

Tab. 3.1) extracted from one-week traces captured at the edge of south cam-

pus of Sun Yat-Sen University in China. Experimental results (reported for



7 TCP applications plus the unknown class) show that Co-Forest can get

≈ 11% error-rate decline after co-training process, on average.

Callado et al. [74] perform an evaluation of different algorithms for TC in

four scenarios (i.e. active measurements, laboratory, academic, and commer-

cial network), showing that the performance of the single method strongly

depends on the context in which it is employed. Then, starting from these

observations, they present generic classifiers’ fusion rules (summarized in

Tab. 3.1) and validate them in the same scenarios. Specifically, the authors

consider various factors that could severely affect TC performance (e.g., con-

sidering uni- or bi-directional flows, including bad-performing classifiers in

the combiners’ pool, etc.) and provide guidelines for the proper usage of

combination algorithms. Extending the set of combiners considered, Dain-

otti et al. [76] apply the six combination methods reported in Tab. 3.1 to

a set of eight different classifiers fed with both per-flow statistical features

and input data suited for early-TC (cf. §1.3.1). Using a dataset collected at

the University of Napoli Federico II, the authors demonstrate that the pro-

posed MCS (implemented as classification plugins in the TIE platform [40])

can improve the overall accuracy over that of the best-performing classi-

fier. This result is particularly significant in the case of early classification,

showing that the accuracy decrease of the base classifiers can be effectively

compensated by their combination.

Finally, Yoon et al. [82, 83] devise a multilateral TC framework based

on four classification criteria: service, application, protocol, and function.

Despite not being a “pure” MC approach, experimental results (related to

Yahoo traffic) show that it is able to simultaneously identify the Yahoo-

service provided, specific application or protocol, and traffic purpose. Au-

thors claim that they were able to classify 99% of traffic, but the lack of a

valid GT hampers the evaluation of TC performance.
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State-of-the-art Techniques for Traffic Classification of Mobile

Apps. Dai et al. [78] have firstly introduced the concept of “network pro-

file”, playing the same role as DNA profiles for an Android app (i.e. a net-

work fingerprint). They propose NetworkProfiler, a system composed of a

module automatically executing an app in an emulator (DroidDriver), and

another module that from the generated network traffic builds a profile in

terms of (i) contacted hosts and (ii) a state machine of string sequences in

URLs (Fingerprint Extractor). Being based on DPI (e.g., HTTP payload)

features, the extractor is not suited for encrypted traffic. The approach has

been shown to be effective in identifying ad-traffic, whereas for non-ad apps

the evaluation has been carried out only for 6 apps. Additionally, in [78] the

full ground truth of the traffic traces being analyzed is not available, so mak-

ing it hard to quantify the classification performance of NetworkProfiler. A

similar spirit permeates the review of Tongaonkar [127], where challenges

and techniques for mobile TC and app identification are discussed, mainly

based on signature generation and fingerprint extraction from mobile traffic

payloads and apps’ metadata, as well as from third-party services (e.g., ad-

vertisement and profiling traffic). Nevertheless, the problem of dissecting

encrypted traffic is there bypassed by considering man-in-the-middle solu-

tions, suitable only in controlled environments such as enterprises. Li et

al. [89] propose a DL classifier, based on Variational Autoencoders and in-

put data taken from the reconstructed HTTP session and thus also designed

only for clear traffic. Authors employ a self-generated dataset comprising

the traffic of 12 Android apps and extract HTTP request lines and header

fields that convert to “input image” data. In this setup, experimental re-

sults show an accuracy up to 99.6% using a censoring threshold on the

classifier output (cf. §1.3.2). Unfortunately, the authors do not provide any

information on neither threshold value nor percentage of censored samples.



Stöeber et al. [41] develop a fingerprinting scheme for devices by learn-

ing their traffic patterns through background activities. They contend that

70% of smartphone traffic belongs to background activities, and this can

be leveraged to create a fingerprint. Based on 3G transmissions, bursts of

data are considered to evaluate statistical features. Then, by means of Sup-

port Vector Classifier (SVC) and K-Nearest Neighbors (K-NN), a model of

the traffic to be fingerprinted is built, being capable of identifying similar

bursts. Results show that using ≈ 15 minutes of traffic testing (based on 6

hours of training) leads to an accuracy ≥ 90% (among 20 users with differ-

ent combinations of apps installed). Wang et al. [80] propose a system for

classifying app usage over encrypted 802.11 traffic (reporting results for 13

iOS apps from 8 distinct categories). Data frames are collected from target

apps by running them dynamically for 5 minutes and training a Random

Forest (RF) classifier with the proposed set of features. The need for an

accurate ground-truth labeling is raised, highlighted by a counterintuitive

behavior of some app performance with the training time. AppScanner is

proposed in [42] as a framework for fingerprinting and identification of mo-

bile apps. The fingerprints are collected by running apps automatically on

an Android device and the network traces are pre-processed (to remove back-

ground traffic and extract features) to train an SVC and an Random Forest

(RF). Statistical features are collected on sets of packets defined through

timing criteria and destination IP address/port (cf. §1.3.1 and §3.2.1). The

results, evaluated on 110 most popular apps from Google Play Store, re-

port 99% average accuracy in identifying single apps, and up to 86.9% in

classifying them, outperforming state-of-the-art alternatives devised for the

(conceptually-)similar WF issue [64, 65]. More recently, AppScanner has

been employed on a larger dataset to test the aging of apps’ fingerprints

(due to updates) and possible invariance with respect to used device and
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app versions (due to different users’ usage) [43]. It is demonstrated that,

though updates, time, and different devices lead to a performance degrada-

tion (with updates being the more demanding issue), a good classification

accuracy can be still achieved. To this end, a method for the removal of

background / third-party services traffic is there conceived, however not

verified by an accurate labeling of the actual non-specific app traffic. The

terms of comparison in [42, 43] are also used by Alan and Kaur [84] to inves-

tigate whether Android apps can be identified from their launch-time traffic

using only TCP/IP headers (i.e. the sizes of the first 64 packets). They find

that apps can be identified with 88% accuracy when training and test sets

are collected on the same device, based on the simple classification meth-

ods developed in [64, 65]. On the other hand, accuracy drops significantly

(up to 26% for the best classifier) when the OS/vendor is different. The

same work analyzes the impact of the amount of training data required for

classification and its “aging” (due to updates). It is worth noticing that

the state-of-the-art approaches employed in the following as base classifiers

(cf. §3.2.2) outperform those analyzed in [84] in terms of accuracy and also

of other performance metrics (see §3.3.3). Le et al. [97] propose a frame-

work to integrate various state-of-the-art ML algorithms, BD analytics plat-

forms, software-defined networking, and network functions virtualization for

5G self-organizing network applications. As part of this framework, they

implement five ML-based traffic classifiers (see Tab. 3.1) using as features

byte and packet counts, source and destination ports, and sizes of the first

five packets of each biflow. Among considered classifiers, RF shows the best

performance, reaching 99.5% accuracy in the classification of 7 apps1.

1Despite the authors claim that their framework can operate with both Android and
iOS apps, they do not provide any information about the dataset used for the experimental
evaluation.



Other works aimed at identifying fine-grained user actions within mobile-

app traffic. Conti et al. [86] recognizes specific actions that users perform

while running a certain app, based on packet direction/size info. This is

achieved through the classification of incoming/outgoing/complete time-

series obtained from TCP connections via RF approach fed with clustering-

based features. Specifically, given an action, the kth feature indicate the

number of connections that have been assigned to the cluster Ck after the

execution of that action. This approach leads to ≥ 95% accuracy for most

of the considered actions within a set of 7 Android apps. Netscope [60] per-

forms a similar task taking into account a set of 35 different activities (for

both iOS and Android devices), based on statistics originated from IP head-

ers. Assuming an eavesdropper on a Wi-Fi network, it is shown that even

a small portion of encrypted traffic is enough for a given app to be recog-

nized. K-means clustering is employed for elementary-behavior discovery

and then an SVC is trained/tested on activity-behaviors binary mapping,

showing performance that varies with the device being tested, but reach

78.04% precision and 76.04% recall, on average.

3.2 Multi-classification System Architecture

Figure 3.1 graphically depicts the proposed MCS as a whole. Following

its workflow, in next sections we describe the traffic objects adopted along

with the definition of the features extracted from observed traffic (§3.2.1),

the state-of-the-art approaches used as base classifiers (§3.2.2), and finally

the hard and soft combiners employed for classifier fusion (§3.2.3).
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Figure 3.1: Architecture of the Multi-Classification System (MCS) proposed.

3.2.1 Traffic Object and Features

Traffic Object. In our MCS, the network traffic is decomposed into ser-

vice bursts (SBs), leveraging the notions introduced in [41] and [42, 43] for

mobile-phone identification and mobile-app classification, respectively, and

recapped in Sec. 1.3.1.2

Since the burst threshold (BT) is an essential parameter in the defini-

tion of SBs and a few different values have been chosen in recent stud-

ies [132, 42, 43], in our analysis we also account for sensitivity of classifica-

tion performance to this parameter (see §3.3.2). The process of extracting

the SBs from the considered traffic traces is summarized in Fig. 3.1 through

the block SB Extraction. In Sec. 3.3.2, we will also investigate the need for

a preprocessing step (represented in Fig. 3.1 as the Preprocess block) and,

in affirmative case, whether this should be performed before or after the

“burstification” process.

2We point that the SB notion has been used previously in [42, 43] under the (different)
name of flow which is here used to refer to the common and established decomposition
based on the direction-dependent 5-tuple (cf. §1.3.1).



Statistical Features. For the purpose of TC, we will consider features

which are extracted by statistical means from the whole vector of packet

lengths of the generic SB. This approach is analogous to flow-based TC

when a flow (resp. a biflow) is instead considered as the relevant object of

classification and the features are extracted from the sequence of packets

forming it. It is worth mentioning that other feature sets may be considered,

especially when early-TC of the generic SB is deemed of interest. The

aforementioned class includes the packet sizes of the first K packets or

some statistical features extracted from this “early” segment, as studied

in [128, 129] for the case of standard Internet TC.

For each SB, three packet series are here considered: (i) incoming pack-

ets only (In), (ii) outgoing packets only (Out), and (iii) bidirectional traffic

(i.e. both incoming and outgoing packets, In&Out). The following features

can be identified for each of these series [42]:

• vector of packet lengths with sign indicating direction;

• minimum, maximum, mean, median, absolute deviation, standard de-

viation, variance, skew, and kurtosis of packet lengths;

• percentiles (from 10% to 90%, with 10% increments) of packet lengths.

Also, for the incoming and outgoing packet series taken as a whole, the

joint histogram of packet lengths in both directions can be considered [64,

65].

Finally, in the following, the set of M features adopted by each clas-

sifier will be generically indicated with f1, . . . , fM (or collectively as f ,[
f1 · · · fM

]T
) and the set of classes (apps) as Ω , {c1, . . . , cL}.

The process of extracting the feature set for kth classifier from each SB

is summarized in Fig. 3.1 through the block FSk Extraction.
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Table 3.2: Summary of state-of-art techniques selected as base classifiers.

Abbreviation Method Features Set Reference

Lib NB Näıve Bayes (NB) Joint In&Out Histogram [64]
Her Pure/TF/Cos Multinomial NB Joint In&Out Histogram [65]
Tay RF Random Forest Stats + Percentiles (In/Out/In&Out) [42, 43]
Tay SVC Support Vector Classifier Stats + Percentiles (In/Out/In&Out) [42]
CART Decision Tree Stats + Percentiles (In/Out/In&Out) [133]

3.2.2 Base Classifiers

In this section we list the state-of-art approaches that we selected as the

pool of K = 9 base classifiers employed in our MCS. The generic kth base

classifier within the considered pool is represented in Fig. 3.1 by means of

the block Classifierk. More specifically, this block receives as input the

corresponding kth feature set from the preceding feature extraction block

and outputs either a hard or soft decision (mathematical details are later

provided in Sec. 3.2.3) to the hard/soft combiner. We briefly describe their

main properties and the motivations that guided us to their choice. For all

of them we have reproduced their exact implementation and executed them

with the same parameters as described in the respective works, to which we

refer for further details.

A recap of the base classifiers considered in this paper, along with the

abbreviations used, the supervised philosophy, the set of features taken as

input, and the corresponding reference is given in Tab. 3.2.

Lib NB. In Liberatore and Levine [64], two classifiers were proposed, one

based on the Jaccard similarity index and another based on the Näıve Bayes

(NB) learning technique. It was observed that the NB enjoys attractive per-

formance and increased robustness than the Jaccard-based classifier, if IP

packets are padded; thus we select the NB-based approach as a base clas-



sifier (Lib NB). The NB assumes class-conditional independence of the fea-

tures f that is not the case for real-world problems but working well in

practice, and evaluates the probability that a test instance fT belongs to

each class ci, i.e. the posterior probability P (ci|fT ) through the Bayes’ theo-

rem P (ci|fT ) ∝ P (ci)
∏M
m=1 P (fT,m|ci), where “∝” denotes proportionality.

The term P (ci) denotes the (prior) probability that a generic sample from

the dataset will belong to ci and is estimated from the training set popula-

tion, while each PDF P (fT,m|ci) is estimated by employing the (Gaussian)

kernel density estimation. The fine-grained feature there employed is the

joint histogram of packet lengths in both incoming and outgoing directions.

Her Pure, Her TF, and Her Cos. Herrmann et al. [65] proposed the

use of the Multinomial Näıve Bayes (MNB) classifier, adopting the same

set of features as Lib NB [64] but differing in the building assumption. In-

deed, the NB classifier estimates each feature PDF using Gaussian kernels

whose occurrence frequencies of the various packet sizes match best with

the observed values in the test instance. On the other hand, the MNB

classifier treats the fms as frequencies of a certain value of a categorical

random variable and compares the sample histogram of each test instance

with the aggregated histogram of all training instances per class. Then,

the evaluation of the conditional PMF P (fT |ci) is different from Lib NB

and equals P (fT |ci) ∝
∏M
m=1(ρm) fT,m , where ρm denotes the probability of

sampling the mth feature. This implementation is referred to as Her Pure

in our analysis. A few variants of MNB classifier, adopting term frequency

transformation without and with cosine normalization, were also success-

fully employed in [65] and compared in [42], and are referred in our analysis

to as Her TF and Her Cos, respectively.
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Tay RF and Tay SVC. In [42, 43], four (resp. two) approaches for

mobile-app traffic classification (resp. identification) were proposed, lever-

aging both an SVC (only in [42]) and an RF. The SVC is a supervised

model that represents the training samples as points in a feature (viz. vec-

tor) space, with the aim of finding a set of hyperplanes which provide the

best class separation. Then, during the testing phase, the SVC classifies the

new points according to the portion of space they fall into. On the other

hand, the RF is an ensemble classification method taking advantage of sev-

eral decision trees built at training time in order to form a stronger classifier

obtained by combining the ideas of bootstrap aggregating and random-feature

selection to avoid over-fitting [134].

In [42], these classifiers were fed with either (i) raw vectors of packet

lengths or (ii) statistical features extracted from mobile-app traffic, with the

latter approach leading to the best and least complex classifier (RF with

statistical features employed also in [43]) between the two. The latter set

has been drawn out in [42] as the most “informative” from a larger set of

54 statistical features (i.e. min, max, mean, standard deviation, variance,

mean absolute deviation, skewness, kurtosis, and percentiles pertaining to

upstream/downstream/complete IP packet length sequences) by means of

feature selection technique on mobile traffic data. For this reason, we con-

sider both RF (Tay RF) and SVC (Tay SVC) based on the 40 statistical

features selected in [42].

CART. Several works performed TC by means of decision trees (e.g., C4.5,

C5.0, and their variants [135]), both as flat classifiers [136, 133] and also

in a hierarchical [85] or multi-classification [74, 76] architecture. In this

paper, we leverage the Classification and Regression Tree (CART), a very

similar variant of the C4.5 algorithm, constructing binary trees exploit-



ing the features and thresholds that ensure the maximum information gain

at each node and allowing to perform both classification and regression

tasks (i.e. with categorical and numerical target variables, respectively).

The above classifier is fed with the same statistical features as Tay RF and

Tay SVC.

3.2.3 Classifier Fusion Rules

Different classifier fusion rules (viz. combiners) have been proposed in lit-

erature [76, 130]. In the following, we will focus firstly on hard combiners,

relying on Type 1 classifiers (i.e. those that output only the predicted class).

Then, we will discuss fusion rules resorting to classifiers’ soft-outputs (viz.

Type 3 classifiers), namely the soft combiners. The generic (hard/soft) com-

biner adopted within the proposed MCS is shown in Fig. 3.1 through the

block Hard/Soft Combiner.

In the proposed MCS, we will consider both non-trainable and trainable

combiners [130]. In the former case, the combiner has no extra parameters

that need to be trained, that is the combiner is ready-to-use once the sole

base classifiers are trained. In the latter case, the combiner requires some

parameters to be estimated, usually by means of a validation set, different

from both the training and the test sets. Overall, the proposed MCS will

provide twenty different choices, namely 6 hard- and 14 soft-combiners,

respectively, as the classifier-fusion block being employed.

Finally, for completeness of performance evaluation, in Sec. 3.3.3, we will

also consider an ORAcle combiner (ORA), i.e. an ideal upper bound on the

performance corresponding to a combiner correctly classifying a test sample

if at least one of the base classifiers provides the correct decision.
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Hard Combiners. Hard combiners are based on Type 1 classifiers, that

is they exploit only the classifiers’ predicted classes generically denoted with

d̂k(f) and collectively as d̂(f) ,
[
d̂1(f) · · · d̂K(f)

]T
, implying the least

requirements for designers [130].

In what follows, we will denote with µi(d̂T ) the confidence attributed

to the ith class by a generic hard combiner, based on decisions d̂T , d̂(fT )

pertaining to the test instance fT . Then, the combiner decision is obtained

as

d̂0 , arg max
i∈Ω

µi(d̂T ).

Before proceeding, we recall the definition of kth classifier confusion matrix

Ek, whose (i, j)th entry is denoted with eKi,j and represents the probability

of kth classifier deciding for jth class when the ith class is being observed

(cf. §1.3.2). Clearly, the matrices Ek employed by combiners are typically

estimated using a validation set. This is true for the estimation of the prior

class-probabilities P (ci) as well.

In this work, the following hard combiners3 will be considered [130]:

1. Majority Voting (MV): the estimated class corresponds to the one voted

by the relative majority of the classifiers. In case multiple classes

obtain the same highest value, ties are broken either (a) randomly

or (b) by using ekii, i.e. the vote of each classifier is weighted by the

confidence degree of that classifier when it assigns a sample to the

class it is voting for [76]. In the latter case, the MV becomes a trainable

combiner.

2. Weighted Majority Voting (WMV): this approach is an advancement of

the MV, obtained by weighting the vote of each classifier by its relative

3Note that all the hard combiners considered here are trainable, except for the Majority
Voting with random tie-breaking.



confidence. The ith class confidence of the combiner is evaluated as:

µi(d̂T ) ,

 δi + |Ii+| · ln(L− 1) +
∑
k∈Ii+

wk

 ,

where Ii+ denotes the subset of classifiers having decided for ith class,

δi , [lnP (ci)] denotes a class-constant offset, and wk , ln(pk/(1 −
pk)) denotes the weight of kth classifier, with pk being the estimated

accuracy [131].

3. Recall Combiner (REC): this combiner relaxes the assumption of equal

class-conditional accuracy (viz. recall) in WMV and thus it amounts to

different individual class-specific recalls. The REC confidence measure

is then:

µi(d̂T ) ,

 δ̄i + |Ii+| · ln(L− 1) +
∑
k∈Ii+

wk,i

 ,

where Ii+ denotes the subset of classifiers having decided for ith class,

δ̄i , [lnP (ci) +
∑K

k=1 ln(1− pk,i)] denotes a class-constant offset, and

wk,i , ln(pk,i/(1 − pk,i)) denotes the weight of kth classifier when

deciding for ith class, with pk,i being its estimated class-conditional

accuracy [131].

4. Näıve Bayes (NB): this combiner represents the ith class confidence

measure by the a posteriori probability P (ci|d̂1, . . . , d̂K) based on the

conditional independence of classifiers, that is:

µi(d̂T ) , P (ci)

{
K∏
k=1

P (d̂k,T |ci)
}
.
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5. Behavior-Knowledge Space method (BKS): this approach removes the

conditional independence assumption of NB combiner via multinomial

counting on the joint classifiers’ space d̂1, . . . , d̂K [137]. More specif-

ically, the validation set is used to estimate the a posteriori proba-

bility P (ci|d̂) for each ci and for each value of d̂.4 This allows label-

ing each possible value of d̂T with the most likely class, according to

µi(d̂T ) , P (ci|d̂T ) and constructing a look-up (BKS) table. Then,

during the testing phase, each new d̂T provides an index to retrieve

from the BKS table the estimated class d̂0. Ties are resolved by using

a MV (with random tie-breaking) between the elements of d̂T .

6. WERnecke’s method (WER): WER constructs the same table as BKS but,

to reduce over-fitting, considers the 95% confidence intervals of the

frequencies in each unit calculated by adopting the normal approx-

imation of the Binomial distribution. If there is overlap among the

intervals, there is no dominating class for labeling the test instance

d̂T . In this case, the “least wrong” among the K classifiers is iden-

tified based on the confusion matrices and authorized to assign the

class to that unit.

Soft Combiners. This section discusses the combiners based on Type 3

classifiers [130]. More specifically, we assume that kth classifier is able to

provide a soft-output vector rk(f) collecting L degrees of support (each be-

longing5 to the interval [0, 1]), whose ith entry dk,i(f) denotes the confidence

that kth classifier gives to the hypothesis that f was generated from class ci.

4The space complexity is thus O(LK), which requires a large validation set for training.
5Such constraint corresponds to the natural range of the output of a confidence measure

and can be ensured even though the specific classifier does not admit normalized soft-
outputs, see [130].



Consequently, for a feature vector input f the outputs of a pool of K clas-

sifiers can be summarized in a K×L Decision Profile (DP) matrix, denoted

with D(f). It is worth noting that kth row of D(f) equals rk(f), whereas

ith column of D(f), denoted with di(f), represents the soft-confidence at-

tributed to ith class by the classifiers’ pool.

In what follows, we will denote with µi(D(fT )) the confidence attributed

to ith class by the generic soft combiner based on the DP matrix D(fT )

obtained from the test instance fT . The corresponding decision is then

found as:

d̂0 , arg max
i∈Ω

µi(D(fT )).

The soft-combiners can be mainly categorized into Class-Conscious (CC)

and Class-Indifferent (CI) methods. CC methods use the DP matrix but

disregard part of the information, using only one column per class

(i.e. µi(D(fT )) = µi(di(fT ))). For this class of soft combiners, there exist

either trainable or non-trainable combiners. On the other hand, CI methods

use the whole DP matrixD(fT ) to evaluate ith class confidence, i.e. they in-

terpret the DP as a vector in the intermediate feature space. Only trainable

combiners belong to the CI category.

The following soft combiners have been considered in this work [130]:

1. [CC] Non-trainable combiners: the combination function can be cho-

sen among different simple alternatives, such as:

• Mean:

µi(di(fT )) ,
1

K

K∑
k=1

dk,i(fT )

• Maximum:

µi(di(fT )) , max
k

dk,i(fT )



Multi-classification System Architecture 85

• Minimum:

µi(di(fT )) , min
k
dk,i(fT )

• Median:

µi(di(fT )) , medkdk,i(fT )

• Trimmed Mean (Trim) Mean: the K degrees of support are sorted

and P% of the values are dropped on both tails6, conferring po-

tential robustness to “outliers”; the µi(di(fT )) is found as the

Mean of the remaining degrees of support.

• Generalized (Gen) Mean:

µi(di(fT )) ,

(
1

K

K∑
k=1

dk,i(fT )α

)1/α

comprises different means and functions as special cases.7

Finally, we consider also the Probabilistic Product (PP) aggrega-

tion [138], providing the maximum a-posteriori Bayes decision, based

on the (unrealistic) assumptions that the classifiers use mutually inde-

pendent subsets of features, and whose confidence measures yield the

true posterior probability, that is dk,i = P (ci|d̂k), on their respective

feature subspaces. The combination formula is:

µi(di(fT )) ,
K∏
k=1

dk,i(fT )/P (ci)
K−1,

where the prior probabilities P (ci) are estimated from training data.

2. [CC] Trainable combiners: here we will consider the (i) Fuzzy

6In the following, we have set P% = 20% for our Trimmed Mean combiner.
7In the following, we have set α = 1

2
for our Generalized Mean combiner.



Integral approach (FI) and (ii) trainable linear combinations.

FI combiner searches for the maximal grade of agreement between

the objective evidence, provided by the sorted classifier outputs for

ith class, and the expectation, namely the fuzzy measure values. More

specifically, the FI is based on evaluating the support as:

µi(di(fT )) ,
K

max
t=1
{min {dkt,i(fT ), g(t)}} .

In other terms, the vector di(fT ) (i.e. the values of the support for

ci) is sorted in descending order and fused with the fuzzy measure for

that class to get µi(di(fT )). In the above equation, tth element of the

fuzzy measure for class ci is denoted with g(t) and its explicit formula

is based on the accuracies of classifiers’ pool and estimated through

validation data. Therefore, for every test instance fT , L vectors of

length K are evaluated, each corresponding to a class and containing

values of the considered fuzzy measure.

Furthermore, we will consider the following trainable linear combina-

tions:

• K weights:

µi(di(fT )) , w̃Tdi(fT ),

where w̃ ∈ [0, 1]K×1 and w̃k ,
(1/εk)∑K
t=1(1/εt)

, being εk the (esti-

mated) error-rate of kth classifier [139].

• KL weights:

µi(di(fT )) , wT
i di(fT ),

where wi , (DiD
T
i )−1Dibi and Di ∈ [0, 1]K×N denotes the

matrix obtained arranging all the i columns of the DP matrices

belonging to the validation set, whereas bi ∈ {0, 1}N whose nth
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entry equals 1 when the corresponding sample of the validation

set belongs to ci [140].

3. [CI] Decision Templates (DT): the DT approach [130] stores the most

typical DP for each class ci (i.e. the DT of ith class, denoted with

D̄i) and then compares it with the current DP matrix D(fT ) using

a suitably chosen similarity measure S(D(fT ), D̄i)). The confidence

for ith class will be then:

µi(D(fT )) , S(D(fT ), D̄i)

when a new test instance fT is submitted. Differently, during the

training phase, the DT associated to ith class D̄i is built as the average

of the all the DP matrices within the validation set labeled with ci.

In this study, we will employ three common similarity measures for

the DT testing phase, based on the following distances: (a) squared

Euclidean (DT-SE); (b) `1 norm after vectorization (DT-L1); (c) sym-

metric fuzzy-set originated (DT-FSD).

4. [CI] Dempster-Shafer (DS) approach: the present combiner takes its

inspiration from the theory of evidence (viz. DS theory). Similarly

to DT method, in the DS approach the DT matrices D̄1, . . . , D̄L are

evaluated from the validation set. On the other hand, the similarity

evaluation between each D̄i and the DP matrix D(fT ) is replaced by

the following steps [130].

First, a L × K proximity matrix Φ is built, whose (i, k)th entry is

a normalized measure of distance8 between the kth rows of the ith

8Although any distance could be employed, in our MCS we concentrate on `2 norm
(DS-L2) for simplicity.



class DT D̄i and of the DP. In other words Φ represents a similarity

measure between the confidence vector of kth classifier and its “typical

profile” when ci is the actual class. Secondly, by using Φ, for every

class ci ∈ Ω and for every classifier k = 1, . . . ,K, a belief degree

βi (rk(fT )) is computed. Finally, the ith degree of support µi(D(fT ))

is obtained as a normalized product of the belief degrees βi(rk(fT )),

with k = 1, . . . ,K.

3.3 Experimental Evaluation

In this section, we firstly provide a detailed description of the pre-processing

operations (§3.3.1) carried out on the mobile multi-class datasets described

in Sec. 2.5.1. We then report a systematic investigation of the effectiveness

of these different pre-processing operations performed on data before actual

classification (§3.3.2), so as to underline “best practices” by measuring their

influence on the performance of all the considered classifiers/combiners. Fi-

nally, we report the performance of the proposed MCS and investigate its

modularity in comparison to state-of-the-art classifiers devised for mobile

TC (§3.3.3).

3.3.1 Dataset Pre-processing

In the successive analyses, the traces belonging (viz. the dataset correspond-

ing) to the Android and iOS operating systems are investigated separately,

in order to evaluate the detectability of mobile apps in a well established

scenario (i.e. belonging to the same operating system / app store).

In the proposed MCS, after the burstification process, the network traf-

fic is processed using the statistical features extraction block, both described

in Sec. 3.2.1. We remark that the minimum SB length considered in this
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Figure 3.2: ECDFs of the number of samples per app for Android and iOS datasets before
and after SMOTE application with different thresholds.

study is 7 (as suggested in [42]), since it is the shortest sequence of packets

representing a meaningful data transfer which includes a TCP handshake

and an HTTP/TLS request/response with corresponding ACKs. On the

other hand, in our analysis, we do not restrict superiorly the length of

the SB to be analyzed, since we did not consider—for reasons of computa-

tional complexity—the classification algorithms taking as input the varying

raw vector of packets, referred to as “per-flow length classifiers” in [42].

We observe that, given the collection methodology of the considered traces

introduced in Sec. 2.5.1, the SB definition is not prone to possible wrong-

segmentation of the SBs within the same burst, according to the aggregation

principle of the same destination IP address / port couple.

As evident from Tab. 2.4, the number of biflows for each app presents a

severe imbalance that is especially true for the least observed ones. This is

even exacerbated when considering the SB-segmentation as shown in Fig. 3.2

reporting the empirical CDF of the number of SBs per app for both Android

and iOS datasets. Note that this distribution depends on the initial number



of SBs and therefore on the value of the BT whose impact is deepened in

the next section. Generally, two different “philosophies” may be pursued for

dealing with class imbalance. These mainly pertain to re-sampling (com-

prising oversampling and undersampling) methods [141] and cost-sensitive

learning [63, 142] approaches (cf. Chapter 5).9

To deal with class imbalance problem, we apply an oversampling proce-

dure to the datasets. More specifically, we employed the Synthetic Minority

Oversampling TEchnique (SMOTE) [143] to the apps with a number of SBs

less than the 30th percentile of the distribution of the number of SBs per

app to obtain a reasonable number of samples per app as shown in Fig. 3.2.

SMOTE is one of the most popular approaches for data-based class-minority

oversampling. Specifically, we adopted the filter implemented in the Weka

environment [126] via weka.filters.supervised.instance.SMOTE Java

class. We remark also that the results obtained with different percentages

of SMOTE (e.g., corresponding to the 40th and 50th percentiles as depicted

in Fig. 3.2) have shown no discrepant relative performance among the clas-

sifiers and combiners (both hard and soft) considered in what follows, thus

underlining the stability of the considered dataset. Specifically, after apply-

ing SMOTE, we obtained 30680 (resp. 25465) SBs composing our Android

(resp. iOS) dataset, with the least populated classes composed by 155 (resp.

152) SBs. Finally, we underline that the present framework does not neces-

sarily rely on SMOTE and such procedure can be safely removed from the

pipeline in the case of a larger dataset. In the next section, we take into ac-

count the possibility to remove also TCP retransmissions and zero-payload

packets and evaluate the impact of these further pre-processing steps on the

“burstification” process.

9For an excellent introduction to different techniques which can be applied to imbal-
anced datasets, with specific focus on Internet TC, please refer to [141].
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3.3.2 Impact of Dataset Pre-processing and Related Hints

Our first investigation on pre-processing steps applied to considered traces

was aimed at assessing whether there is a substantial gain or, generically,

a significant change in performance when cleaning traffic traces from TCP

retransmissions. Results—not shown here for the sake of brevity—have un-

derlined (almost) insensitivity of performance to the aforementioned opera-

tion, quantified in less than 0.2% change in accuracy for the best base clas-

sifier observed when considering a SB definition corresponding to 1s of BT.

For this reason, in what follows, we have processed uncleaned (i.e. includ-

ing TCP retransmissions) traffic traces, as the above step does not affect

classification performance in a substantial way while adding unnecessary

complexity to the proposed classification approach.

Then, two (coupled) useful investigations are pursued in what follows.

First, we analyze the sensitivity of the classification performance to SB def-

inition, focusing on the BT, to analyze whether and, in the affirmative case,

to which degree, classifiers’ performance are affected by this parameter. In-

deed, previous studies have only provided results pertaining to empirically

chosen values of the BT, corresponding to 1s [42, 43] and 4.5s [41], respec-

tively. Hence, to provide a comprehensive BT analysis, we have employed

the interval [0.5, 5] seconds, with increments of ∆ = 0.5s, which includes

both the aforementioned empirical choices.

Secondly, the aim is to investigate the potential gain achievable when re-

moving zero-payload traffic. Indeed, a similar pre-processing step has been

suggested in [144] for a WF task. Specifically, it has been advocated to re-

move packets sized 52 from features’ evaluation, based on the intuition (con-

firmed by the appealing results in [144]) that packets of this length occur

for all possible web pages, as these correspond to acknowledgments between



sender and receiver (i.e. TCP ACK packets with no payload). Thus, an

evaluation of the features without packets sized 52 would allow to discard

non-website-specific behaviors, which may be regarded as noise for the eval-

uation of the considered features. We argue that this may be also the case of

mobile TC, as these packets correspond to a non-app-specific behavior. Ac-

cordingly, we pursue a similar (though more general, as some packets sized

52 could correspond to mobile data traffic exchange) approach, by removing

packets with zero-payload.

Since the two aforementioned processing steps are interdependent (i.e. the

BT is influenced by the presence/absence of zero-payload packets), the fol-

lowing three configurations of the dataset have been considered, by varying

the BT value:

(a) Original dataset (viz. no pre-processing).

(b) Dataset with zero-payload packets removed after the SB extraction.

(c) Dataset with zero-payload packets removed before the SB extraction.

Finally, SBs with a length less than “Min Length” packets (see Fig. 3.1)

have been discarded in order to improve classification performance, as sug-

gested in [42]. As mentioned before, in [42] a minimum flow length of 7

packets is considered as the optimal choice, since it represents the length

of the shortest “complete” SB, that consists of a TCP handshake (three

packets), an HTTP/TLS request/response pair (two packets) and the cor-

responding acknowledgments (two packets). Accordingly, we have made the

same choice for both the cases (a) and (b). On the other hand, in case (c),

we have selected a Min Length equal to 2, since in the latter case the SB ex-

traction is performed on traffic traces whose zero-payload packets have been
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(b) iOS dataset.

Figure 3.3: Number of service bursts for different values of the BT considering Android
(a) and iOS (b) datasets.

already removed (i.e. TCP handshake and acknowledgments belonging to

the shortest “complete” SB).

Fig. 3.3 shows the number of SBs in these three datasets as a function

of the BT. Intuitively, for all the datasets, the greater the BT, the lower the

number of (resp. the longer the) SBs obtained. In detail, this number ranges

from 16939 (resp. 15166) to 43089 (resp. 35064) for the Android (resp. iOS)

dataset with zero-payload packets removal after (with a 5s BT) and before

(with a 0.5s BT) the SB extraction, respectively. From the inspection of

the figure, it can be noticed a “slope” change at BT equal to 1s. It can be

inferred that, when the BT is less than 1s, the burstification process leads

to an excessive fragmentation, and does not adequately capture the bursty

nature of the considered mobile traffic. On the other hand, values higher

than 1s may represent solutions which may lead to merging actually-distinct

SBs, although in the range (1, 5] seconds such “merging effect” seems not

dramatic.

In Fig. 3.4 we show both the accuracy (left column) and the F-measure

(right column) for all the classifiers described in Sec. 3.2.2 vs. the BT

value, for the Android traces. More specifically, for each figure, cases (a)
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(b) Full dataset (F-measure).
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(c) Zero-payload packets removed after SB
extraction (Accuracy).
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(d) Zero-payload packets removed after SB
extraction (F-measure).
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(e) Zero-payload packets removed before SB
extraction (Accuracy).
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(f) Zero-payload packets removed before SB
extraction (F-measure).

Figure 3.4: Accuracy (a, c, e) and F-measure (b, d, f) of the base (state-of-the-art) clas-
sifiers to varying the BT for the Android dataset.
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(b) Full dataset (F-measure).
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(c) Zero-payload packets removed after SB
extraction (Accuracy).
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(d) Zero-payload packets removed after SB
extraction (F-measure).
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(e) Zero-payload packets removed before SB
extraction (Accuracy).
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(f) Zero-payload packets removed before SB
extraction (F-measure).

Figure 3.5: Accuracy (a, c, e) and F-measure (b, d, f) of the base (state-of-the-art) clas-
sifiers to varying the BT for the iOS dataset.



full dataset, (b) zero-payload packets removed after SB extraction, and (c)

zero-payload packets removed before SB extraction are reported in top, mid-

dle, and bottom boxes, respectively. From the inspection of results, the

highest performance is obtained with a threshold of 1s/1.5s in the case (c),

i.e. with zero-payload packets removed before SB extraction. The optimal

BT value found numerically also confirms the considerations on fragmenta-

tion/merging traffic effects arising from an inaccurate (viz. lower/higher)

choice of the BT value, somewhat anticipated by the slope change phe-

nomenon in Fig. 3.3. This trend can be observed for both Android and

iOS traces shown in Fig. 3.5. However, in this latter case, base classifiers’

performance exhibit a reduced dependence on the BT value, regardless of

the removal of zero-payload packets. The results agree qualitatively with

the considerations in [42, 43], thus underlining that 1s represents a good

and stable choice for the BT. Nonetheless, in any case, automatic design

and adaptability of this value would be desirable, being able to cope with

networks experiencing different delay conditions.

Similarly, it is evident that the removal of zero-payload packets always

provides some gain in performance, which is independent on the specific BT

considered, and whether such removal is performed after (b) or before (c)

SB extraction. Nevertheless, an additional performance improvement is ob-

tained when performing the removal before SB extraction (c). This may

be explained as this filtering of “noisy packets” is also beneficial for a more

effective SB segmentation. Indeed, taking into account a threshold value

of 1s, for the best base classifier (i.e. Tay RF), the removal of zero-payload

packets before and after SB partitioning produces an accuracy increment of

+6.7% (resp. +9.7%) and +3.3% (resp. +4.3%) for Android (resp. iOS),

respectively. Thus, as stated above, when this zero-payload cleansing is

performed before, a further enhancement of +3.4% (resp. +5.4%) can be
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obtained. Interestingly, F-measure increments—being in this case Her Cos

the best base classifier in terms of F-measure—are markedly smaller and

substantial only for the removal of zero-payload packets before SB extrac-

tion: +1.5% (resp. +3.6%).

Additionally, it is apparent a weakly-decreasing trend for the best per-

forming classifiers (namely Tay RF, Her Cos, and Her TF) for increasing val-

ues of the BT. Similar trends can be observed for considered hard and soft

combiners although less evident especially in the iOS case, since the influ-

ence of other base classifiers. The aforementioned behavior can be explained

as larger values of the BT imply longer SBs, thus precluding a correct seg-

mentation of the different actions associated to a certain app during time.

Therefore, since the removal of zero-payload packets before SB extrac-

tion seems an appealing pre-processing step over a wide range of BT values,

in what follows we compare the performance of (i) the best base classi-

fier (corresponding to Tay RF, thus qualitatively agreeing with the results

in [42, 43]), (ii) the best hard combiner (corresponding to either NB or

WMV combiner, depending on the specific performance metric deemed rele-

vant), and (iii) the best soft combiner (corresponding to the KL weights).

The present investigation is conducted by measuring their accuracy and F-

measure as a function of the BT over the same threshold range employed for

Figs. 3.4 and 3.5. In Fig. 3.6, we report these results for Android and iOS

traces. This allows investigating the general improvement provided by the

present MCS system over the best base classifier, either considering hard or

soft techniques, which is seen to be almost independent on the specific BT

considered, with only Android traces showing little decreasing trend. For

completeness, accuracy plots in Figs. 3.6a and 3.6c also report the perfor-

mance of the ORA combiner10, which highlights how the proposed approach

10Indeed, precision (and consequently F-measure) of the ORA cannot be evaluated since
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Figure 3.6: Accuracy (a, c) and F-measure (b, d) of the best base classifier, hard and
soft combiner versus the BT for the Android (a, b) and iOS (c, d) datasets.
Performance refers to the dataset with zero-payload packets removed before
the SB extraction.

“pushes” the performance toward the combining theoretical performance

(i.e. upper-bound) for the considered pool.

3.3.3 Optimized Multi-Classification Results

Based on the previous considerations, in what follows we focus on case (c)

(that is, removing zero-payload packets before burstification) and set the BT

to 1s, collectively representing the scenario with the highest performance

observed. Then, we show results at a finer detail obtained by the application

of the proposed MCS (see §3.2) to the aforementioned case. We remark that

its error patterns are not defined [76].
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each considered analysis will employ a random training-validation-test set

splitting (with corresponding percentages 50%− 25%− 25%, respectively).

Hard and Soft Combiners’ Performance. First, in Tab. 3.3, we report

the performance of all the base classifiers described in Sec. 3.2.2, in terms

of the considered synthetic measures. Also, for completeness, we report the

accuracy and recall achieved by the ORA in the rightmost column. From

the inspection of results, it is apparent that Tay RF, Her Cos, and Her TF

achieve the highest performance with respect to the considered measures in

the present setup, being still prone to classification errors. The quantita-

tive scores seem, only at first glance, in contrast to those typically observed

in Internet TC [76] and, more recently, to those achieved in the mobile con-

text [42, 43]. However, in the former case, the classification problem is

simplified by a homogeneous and less dynamic nature of the traffic being

observed—typically coping with a lower number of classes to discriminate

from—whereas in the latter case, it likely pertains to a non-exhaustive traf-

fic collection procedure, being bot-generated and probably not capable of

adequately “representing” all the “execution paths” of a generic app. Addi-

tionally, by looking at the ORA performance, the best accuracy (resp. recall)

of the base classifiers can be improved by means of the proposed MCS up

to 14.8% (resp. 19.5%) for Android and up to 16.8% (resp. 19.9%) for iOS,

respectively. We notice that the upper-bound performance may be further

improved by the adoption in the pool of other classifiers suitably-devised

for mobile TC, confirming the appeal of the proposed MCS.

To this end, in Tab. 3.4 we show and compare the performance of the

considered hard combiners. Results underline that BKS is able to provide

the highest improvement with respect to the best base classifier (Tay RF)

in terms of overall accuracy. The same reasoning applies to NB for recall



Table 3.3: Performance (%) of base (state-of-the-art) classifiers considering Android (iOS) traffic. Best base classifier
for each performance metric and dataset is highlighted in boldface.

Classifier Her Pure Her TF Her Cos Lib NB Tay RF Tay SVC CART ORA

Accuracy 48.7 (50.9) 65.2 (64.8) 68.4 (68.9) 28.0 (32.4) 72.8 (70.9) 21.2 (27.4) 59.4 (56.7) 87.6 (87.7)
Macro Precision 45.1 (47.2) 74.6 (70.0) 71.2 (69.3) 60.3 (60.7) 74.7 (71.5) 21.4 (30.0) 52.8 (50.9) -

Macro Recall 54.8 (49.9) 58.4 (56.8) 63.5 (62.3) 36.0 (33.6) 64.1 (62.3) 9.89 (14.2) 51.4 (49.3) 83.6 (82.2)
Macro F-Measure 46.7 (47.7) 70.7 (66.9) 69.5 (67.8) 53.1 (52.3) 72.3 (69.4) 17.4 (24.6) 52.5 (50.6) -

Table 3.4: Performance (%) of hard combiners considering Android (iOS) traffic. Best hard combiner for each perfor-
mance metric and dataset is highlighted in boldface.

Combiner MV WMV REC NB BKS WER ORA

Accuracy 72.2 (71.9) 72.8 (72.4) 73.8 (72.6) 75.0 (74.0) 75.0 (74.3) 73.8 (71.9) 87.6 (87.7)
Macro Precision 79.3 (76.9) 80.1 (76.9) 78.7 (76.3) 75.8 (73.5) 77.4 (74.2) 75.6 (72.1) -

Macro Recall 65.4 (63.4) 65.8 (63.9) 67.0 (64.2) 70.7 (67.6) 69.7 (67.2) 65.7 (63.5) 83.6 (82.2)
Macro F-Measure 76.1 (73.8) 76.7 (73.9) 76.1 (73.6) 74.7 (72.3) 75.7 (72.7) 73.4 (70.2) -
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measure, that also performs quite well in terms of accuracy. Differently, MV

and WMV result appealing because of the remarkable improvement in terms of

precision and F-measure over the best base classifier, being between +3.8%

and +5.4%, respectively. Interestingly, WMV and NB represent the most ap-

pealing choices in terms of the set of performance metrics considered, almost

collectively providing the highest performance. This is explained as they are

less prone to over-fitting and have less training requirements, while also en-

joying lower complexity with respect to WER and BKS. Remarkably, all the

considered hard combiners (except for MV, when referring to the sole overall

accuracy experienced with Android traffic) outperform the best base classi-

fier in terms of all the considered performance metrics. This holds in both

iOS and Android traffic.

A similar numerical comparison is shown in Tab. 3.5, where the per-

formance of the three different groups of soft-combiners considered in this

study are reported in separate sub-tables (i.e. CC non-trainable, CC train-

able, and CI in sub-tables (a-b), (c), and (d), respectively), so as to (pos-

sibly) underline an interesting performance trend of a given group. For

each group, ORA performance (as the rightmost column) is reported so as to

highlight the corresponding improvement achievable.

By looking at their performance, it is apparent that a remarkable per-

formance improvement can be achieved already with the sole use of CC

non-trainable combiners. We remark that for these latter the availability of

validation data is not needed. In fact, for the considered case, the Mean, the

Median, the Trimmed Mean, and the Generalized Mean are able to improve

Tay RF performance in terms of all the reported synthetic measures. This

holds in both iOS and Android traffic. On the other hand, the soft com-

bination approaches provided by PP, Maximum, Minimum, Harmonic Mean,

and Geometric Mean always lead to unsatisfactory performance when com-



Table 3.5: Performance (%) of different classes of soft combiners considering Android
(iOS) traffic. Best soft combiner for each performance metric and dataset
is highlighted in boldface.

(a) Class-conscious (CC) non-trainable combiners (1).

Combiner Mean Maximum Minimum Median PP ORA

Accuracy 75.3 (73.8) 61.5 (56.7) 51.8 (47.3) 73.7 (72.8) 52.1 (47.6) 87.7 (87.6)
Macro Precision 74.7 (71.8) 55.2 (50.2) 38.1 (35.3) 79.8 (77.4) 38.4 (35.6) -

Macro Recall 70.6 (67.5) 54.5 (50.5) 44.4 (40.0) 67.1 (64.2) 44.7 (40.3) 83.7 (82.3)
Macro F-Measure 73.8 (70.9) 55.0 (50.3) 39.3 (36.1) 76.9 (74.3) 39.5 (36.5) -

(b) Class-conscious (CC) non-trainable combiners (2).

Combiner Trim Mean Harm Mean Geom Mean Gen Mean ORA

Accuracy 75.6 (74.4) 51.8 (47.1) 52.3 (47.9) 75.8 (74.4) 87.7 (87.6)
Macro Precision 77.7 (75.1) 38.2 (35.1) 38.5 (35.6) 77.1 (74.9) -

Macro Recall 70.4 (67.7) 44.4 (39.9) 44.5 (40.3) 70.5 (67.3) 83.7 (82.3)
Macro F-Measure 76.2 (73.5) 39.3 (35.9) 39.6 (36.5) 75.7 (73.2) -

(c) Class-conscious (CC) trainable combiners.

Combiner FI K weights KL weights ORA

Accuracy 75.4 (73.5) 76.1 (74.2) 79.2 (77.8) 87.7 (87.6)
Macro Precision 77.0 (73.6) 76.3 (72.7) 80.6 (78.2) -

Macro Recall 70.4 (67.2) 71.1 (67.8) 73.6 (71.6) 83.7 (82.3)
Macro F-Measure 75.6 (72.2) 75.2 (71.7) 79.1 (76.8) -

(d) Class-indifferent (CI) combiners: Decision Templates (DT) and Dempster-Shafer
(DS) approaches.

Combiner DT-SE DT-L1 DT-FSD DS-L2 ORA

Accuracy 75.6 (72.6) 74.9 (73.8) 74.7 (72.8) 75.7 (73.0) 87.7 (87.6)
Macro Precision 73.3 (69.1) 73.2 (71.4) 73.2 (69.9) 73.5 (69.9) -

Macro Recall 72.6 (69.1) 71.1 (68.4) 69.9 (66.8) 72.2 (69.0) 83.7 (82.3)
Macro F-Measure 73.1 (69.1) 72.8 (70.7) 72.5 (69.3) 73.2 (69.7) -
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pared to the best base classifier (Tay RF). This can be explained as these are

more sensitive to soft-output misspecification of the classifiers in the pool.

Interestingly, a general remarkable improvement is achieved by the whole

group of CC trainable combiners over Tay RF. More specifically, though all

the combiners within this group perform quite well, KL weights represents

the most appealing choice in terms of all the measures considered and for

traffic belonging to different OSs.

Furthermore, CI combiners are also able to improve, in most cases—

except for a slight degradation of precision measure, see later discussion—

the performance over the best base classifier, with DT-L1 and DS-L2 perform-

ing slightly better than others in the CC group. Still, the larger generaliza-

tion capability of CI combiners does not pay back in terms of performance

in comparison to CC trainable combiners. This may be attributed to an in-

adequate number of validation samples or to an over-fitting phenomenon.

From a direct comparison of all the combiners belonging to all groups re-

ported (both hard and soft), it is evident that KL weights represents the

best combiner considered in this study for the present datasets. Finally, we

underline that improved absolute performance measures may be achieved by

the proposed MCS if additional (high performing and/or diverse) classifiers

are developed to enlarge the considered pool.

Additionally, to summarize the improvement achieved by each group of

hard/soft combining techniques, we have reported in Tab. 3.6 the Maximum

Improvement Over Best Classifier (MIOBC) provided by each group for ev-

ery performance measure. Referring to the group of hard combiners, it is

apparent that such group is always able to provide an improvement, rang-

ing from +2.2% (accuracy on Android traffic) to +6.6% (recall on Android

traffic), by means of diversity principle, representing the milestone for adop-

tion of classifier fusion techniques. However, as remarked before, different



Table 3.6: Maximum Improvement Over Best Classifier (MIOBC) of the F-measure (%)
for each class of hard and soft combiners, considering Android (iOS) traffic.
Highest MIOBC for each performance measure is highlighted in boldface.
Actual deterioration is reported in italic.

Combiner Hard CC non-trainable CC trainable CI

Accuracy +2.2 (+3.4) +3.0 (+3.5) +6.4 (+6.9) +2.8 (+2.9)
Macro Precision +5.4 (+5.4) +5.1 (+5.9) +5.9 (+6.7) -1.4 (-0,1)

Macro Recall +6.6 (+5.3) +6.5 (+5.4) +9.5 (+9.3) +8.5 (+6.8)
Macro F-Measure +4.4 (+4.5) +4.6 (+4.9) +6.8 (+7.4) +0.8 (+1.3)

approaches (namely MV, WMV, NB, and BKS) result best according to different

performance metrics. A similar reasoning applies to the group of CC non-

trainable combiners (second column), where the improvement ranges from

+3.0% (accuracy on Android traffic) to +6.5% (recall on Android traffic).

Here, the improvement is qualitatively similar to hard combiners. However,

CC non-trainable combiners, though requiring the availability of soft out-

puts from each classifier in the pool, do not require the availability of a

validation set, which is instead required in the design of almost all the hard

combiners here considered. This may be appealing in the case of scarcity of

additional training (validation) data. On the other hand, the group of CC

trainable combiners is able to provide the best improvement for each met-

ric, up to +9.5% in terms of recall on Android traffic. This is not only the

consequence of the presence of KL weights within the group, having the

highest performance. Indeed, as observed earlier, all the combiners within

the group are able to provide significant gains. Finally, CI combiners are

able to collectively provide a performance improvement over almost all the

considered metrics. The sole exception is represented by precision which is

slightly degraded for all the combiners within this group, with a consequent

gain reduction of the corresponding highest F-measure achieved by the CI



Experimental Evaluation 105

group.

Fine-grained Performance. We now compare the performance of the

best classifier with the best hard and soft combiners at a finer detail, that

is, by analyzing their confusion matrices, which allow to focus on misclas-

sification patterns among apps (cf. §1.3.2). To this end, with reference to

Android traffic, in Figs. 3.7a, 3.7c, and 3.7e, we show the confusion matri-

ces of Tay RF, NB, and KL weights, respectively. In addition, in Figs. 3.7b,

3.7d, and 3.7f, we report the same confusion matrices for iOS traffic. In

this case, only the best-performing hard combiner differs, being in fact the

BKS. It is worth noticing that similar qualitative trends have been observed

for both Android and iOS traffic. Indeed, from the inspection of the re-

sults, it is revealed a homogeneously-reduced occurrence of misclassification

patterns when employing a (good) combiner with respect to the best base

classifier. Specifically, given the severe class-imbalance issue (cf. §3.3.1) suf-

fered by both datasets11, the confusion matrix of the (best) base classifier

reveals a bias toward the most-populated classes that is considerably mit-

igated when considering our MCS. This is even more evident when a soft

combiner—being for both OSs the KL weights—is employed.

Classifiers’ Pool Selection. In Tabs. 3.7, 3.8, and 3.9 we delve into how

classifiers’ subset selection affects performance, focusing on the F-measure.

The intent is investigating possible performance gain of the considered com-

biners (grouped as done in Sec. 3.2.3) and computational complexity reduc-

tion, by discarding non-informative classifiers from the pool. Since the

number of different subsets is combinatorial and having available different

optimization criteria (i.e. considered combiners), it is impractical evaluat-

11This actually represents a realistic and challenging scenario.
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(a) (Android) Tay RF.
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(b) (iOS) Tay RF.
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(c) (Android) NB.
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(d) (iOS) BKS.
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(e) (Android) KL weights.
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(f) (iOS) KL weights.

 0.1  1  10  100

(g) Log-scale (%).

Figure 3.7: Confusion matrices of the best base classifier (a, b), hard combiner (c, d), soft
combiner (e, f) for Android (a, c, e) and iOS (b, d, f). Labels refer to apps
in Tab. 2.4, but are ranked according to decreasing abundance of samples.
Logarithmic scale (g) is used to evidence small errors.
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ing the performance for all the possible combinations. Hence, we adopt an

heuristic approach informed by the diversity of classification methods and

iteratively removing the worst performing classifier.

Referring to the hard combiners (cf. Tab. 3.7), we can make several

observations. The best overall F-measure performance is achieved by MV

and REC on iOS and Android traffic, respectively. The appeal of this result

is that these combiners have low requirements both in terms of training

samples and operational (viz. testing phase) complexity. Additionally, it

is apparent that the hard combiners requiring the least parameters to be

trained (i.e. MV, WMV, REC, and NB) all benefit from the selection of a subset

of classifiers within the pool. Interestingly, they all achieve their maximum

per combiner when only Her Cos, Lib NB, and Tay RF are employed. This

may be attributed at the higher diversity provided by these three different

base classifiers. On the other hand, WER also presents improved performance

with a different selection of the subset of classifiers. Specifically, it requires

a larger subset for Android traffic (i.e. all three Her variants, Lib NB, and

Tay RF), whereas only Her Cos and Tay RF are needed in the pool to achieve

its highest performance over iOS traffic. Finally, it is apparent that BKS does

not benefit from the same subset selection as MV, WMV, REC, and NB. Therefore,

we argue that this may be attributed to over-fitting issues (i.e. unnecessarily

modeled correlation between diverse base classifiers).

Then, with reference to CC non-trainable combiners (cf. Tabs. 3.8a

and 3.8b), we first observe that PP, Maximum, Minimum, Harmonic Mean,

and Geometric Mean combiners have a dramatic improvement of F-measure

performance when considering small subsets of the classifiers’ pool. Simi-

larly, the Mean, Median, Trimmed Mean, and Generalized Mean are able to

improve (almost always) their performance when considering the smallest

pool composed by Her Cos and Tay RF. However, their performance im-



provement is less steep. This trend may be explained as CC non-trainable

combiners are more prone to be biased from wrong classifiers in the pool,

due to the lack of high-level (viz. validation-based) training. Nevertheless,

the latter sub-group possesses an intrinsic robustness to having outliers in

the pool, due to their peculiar combination functions.

On the other hand, by observing the performance of CC trainable com-

biners (cf. Tab. 3.8c), it is apparent that KL weights benefits from a judi-

cious use of the subset. This allows reducing the number of parameters to

be trained, especially those related to weak classifiers, and thus avoids slight

over-fitting. A different trend is instead observed for K weights, being sim-

ilar to that observed for CC non-trainable combiners. The reason is that

the linear (separating) vector employed is based on the assumption that

each soft-output well-matches the actual one, except for some estimation

noise [139]. Therefore, this approach is potentially sensitive to erroneous

(i.e. providing incoherent soft-outputs) base classifiers. A somewhat simi-

lar behavior as BKS is observed for Fuzzy Integral, which does not benefit

from subset selection. This may be attributed to the fact that the proposed

fuzzy-based fusion design is resistant to classifiers’ uncertainty.

A less evident trend can be drawn for CI combiners (cf. Tab. 3.9).

Nonetheless, it can be concluded how all the proposed approaches achieve

the highest F-measure with the group considered by Her Cos, Lib NB, and

Tay RF, with the sole exception of DT-FSD in Android traffic, where the

smallest group composed by Her Cos and Tay RF should be employed to

reach the highest performance.

A summarizing comparison, reporting the MIOBC (in terms of F-

measure) for each group of combiners, is shown in Tab. 3.10, exploring the

same subset choices previously considered. From its inspection, it is appar-

ent how overall improved performance with respect to considering the whole
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pool of classifiers can be obtained on Android traffic (i.e. +0.5% employ-

ing Geom Mean on Her Cos and Tay RF against KL weights on the whole

pool) or the same results with less training requirements (i.e. using a CC

non-trainable combiner rather than a CC trainable one) in iOS traffic. It

is worth highlighting that, the modularity of the considered MCS allows its

virtual application to other suitably-devised classifiers for further perfor-

mance enhancement (as confirmed also by ORA performance), as DL-based

(multimodal) base classifiers discussed in Chapter 5. Moreover, the MCS

could be integrated with other advanced classification structures like hier-

archical ones, described in the next Chapter.



Table 3.7: F-measure (%) of hard combiners as function of the pool of selected classifiers considering Android (iOS) traffic.
Highlighted values: maximum per pool, maximum per combiner, overall maximum.

Pool of classifiers Combiners

Her Pure Her TF Her Cos Lib NB Tay RF Tay SVC CART MV WMV REC NB BKS WER

X X X X X X X 76.1 (73.8) 76.7 (73.9) 76.1 (73.6) 74.7 (72.3) 75.7 (72.7) 73.4 (70.2)
X X X X X X 75.7 (72.8) 76.4 (73.3) 75.5 (72.7) 74.7 (71.8) 74.8 (70.4) 73.3 (69.8)
X X X X X 73.1 (69.7) 73.8 (70.1) 73.0 (69.9) 72.7 (70.9) 71.4 (68.3) 73.8 (70.6)

X X X X 76.3 (73.2) 76.7 (73.8) 76.3 (73.9) 74.8 (72.7) 73.0 (69.9) 73.6 (70.4)
X X X 77.5 (77.6) 77.2 (76.0) 77.7 (77.0) 75.7 (75.7) 70.0 (67.8) 72.9 (69.7)

X X 75.1 (73.2) 75.1 (73.2) 75.4 (73.6) 74.4 (74.0) 71.5 (69.0) 73.1 (70.9)
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Table 3.8: F-measure (%) of soft combiners as function of the pool of selected classifiers considering Android (iOS) traffic.
Highlighted values: maximum per pool, maximum per combiner, overall maximum.

(a) Class-conscious (CC) non-trainable combiners (1).

Pool of classifiers Combiners

Her Pure Her TF Her Cos Lib NB Tay RF Tay SVC CART Mean Maximum Minimum Median PP

X X X X X X X 73.8 (70.9) 55.0 (50.3) 39.3 (36.1) 76.9 (74.3) 39.5 (36.5)
X X X X X X 73.2 (70.4) 55.2 (50.7) 39.6 (36.1) 74.6 (72.2) 39.6 (36.3)
X X X X X 70.4 (67.7) 62.3 (60.9) 52.0 (51.3) 71.5 (69.1) 55.6 (55.1)

X X X X 75.7 (73.1) 71.6 (70.0) 64.0 (61.6) 76.3 (73.7) 67.5 (66.3)
X X X 74.8 (73.9) 71.1 (70.2) 64.7 (63.0) 76.6 (75.3) 67.9 (66.3)
X X 77.5 (74.1) 76.6 (72.8) 79.0 (75.2) 77.5 (74.1) 75.8 (73.1)

(b) Class-conscious (CC) non-trainable combiners (2).

Pool of classifiers Combiners

Her Pure Her TF Her Cos Lib NB Tay RF Tay SVC CART Trim Mean Harm Mean Geom Mean Gen Mean

X X X X X X X 76.2 (73.5) 39.3 (35.9) 39.6 (36.5) 75.7 (73.2)
X X X X X X 75.5 (72.7) 39.5 (36.2) 39.8 (36.1) 74.6 (72.2)
X X X X X 71.9 (69.0) 52.3 (51.8) 58.7 (56.5) 71.3 (69.1)

X X X X 76.3 (73.7) 65.2 (62.1) 72.1 (68.2) 76.6 (74.4)
X X X 76.7 (75.3) 65.1 (63.5) 71.5 (67.8) 76.3 (75.7)
X X 77.5 (74.1) 79.2 (75.7) 79.6 (76.8) 78.8 (75.3)

(c) Class-conscious (CC) trainable combiners.

Pool of classifiers Combiners

Her Pure Her TF Her Cos Lib NB Tay RF Tay SVC CART Fuzzy Integral K weights KL weights

X X X X X X X 75.6 (72.2) 75.2 (71.7) 79.1 (76.8)
X X X X X X 70.5 (70.4) 72.1 (69.2) 79.4 (76.8)
X X X X X 72.0 (69.4) 73.5 (69.8) 79.3 (76.4)

X X X X 72.3 (70.7) 74.9 (72.9) 79.4 (76.5)
X X X 72.9 (71.0) 76.3 (73.6) 78.8 (76.2)
X X 71.6 (69.3) 76.7 (73.1) 78.2 (75.1)



Table 3.9: F-measure (%) of soft combiners as function of the pool of selected classifiers considering Android (iOS) traffic.
Highlighted values: maximum per pool, maximum per combiner, overall maximum. Class-Indifferent (CI):
Decision Templates (DT) and Dempster-Shafer (DS) approaches.

Pool of classifiers Combiners

Her Pure Her TF Her Cos Lib NB Tay RF Tay SVC CART DT-SE DT-L1 DT-FSD DS-L2

X X X X X X X 73.1 (69.1) 72.8 (70.7) 72.5 (69.3) 73.2 (69.7)
X X X X X X 73.1 (69.1) 72.8 (70.8) 72.4 (69.3) 73.2 (69.5)
X X X X X 70.5 (67.7) 68.8 (66.9) 68.1 (65.5) 70.2 (67.8)

X X X X 73.1 (70.6) 72.5 (69.3) 72.2 (70.1) 72.8 (70.2)
X X X 73.7 (72.0) 74.1 (71.5) 73.3 (72.2) 73.9 (71.7)
X X 73.3 (70.3) 73.9 (70.2) 73.7 (69.5) 73.2 (70.1)
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Table 3.10: Maximum Improvement Over Best Classifier (MIOBC) of the F-measure (%), as function of the pool of selected
classifiers, for each class of hard and soft combiners, considering Android (iOS) traffic. Actual deterioration
is reported in italic.

Pool of classifiers Combiners

Her Pure Her TF Her Cos Lib NB Tay RF Tay SVC CART Hard CC non-trainable CC trainable CI

X X X X X X X +4.4 (+4.5) +4.6 (+4.9) +6.8 (+7.4) +0.9 (+1.3)
X X X X X X +4.1 (+3.9) +3.2 (+3.3) +7.1 (+7.4) +0.9 (+1.4)
X X X X X +1.5 (+1.5) -0.4 (-0.3) +7.0 (+7.0) -1.8 (-1.6)

X X X X +4.4 (+4.5) +4.3 (+5.0) +7.1 (+7.1) +0.8 (+1.2)
X X X +5.4 (+8.2) +4.4 (+6.0) +6.5 (+6.8) +1.8 (+2.8)
X X +3.1 (+4.2) +7.3 (+7.4) +5.9 (+5.7) +1.6 (+0.9)





Chapter 4

Hierarchical Classification
Framework

In line with the growing criticality of the activities users perform online, pri-

vacy represents one of the key concerns regarding traffic analysis. In Chap-

ter 1, we have remarked how TC is tightly-coupled to the privacy aspect,

with a lot of effort spent in developing privacy-preserving solutions and, on

the other hand, understanding to what extent these solutions are effective

(e.g., against classification). In particular, preserving the anonymity of users

is an aspect that has gathered the attention of the research community, that

over the last years has put the effort in designing and developing tools able

to achieve privacy at varying degrees. As a result, at present a number of

Anonymity Tools (ATs) are freely available, able to hide—besides the con-

tent of the communication itself, via encryption—the identity of the parties

(i.e. source and destination) involved in the communication and in many

cases they are even capable of hiding the users’ identity to the final destina-

tion (i.e. the web-server). The most popular ATs developed in recent years

are The Onion Router (TOR) [70], the Invisible Internet Project (I2P) [124],

and JonDonym (formerly known as Java Anon Proxy or Web-Mix) [125].



These tools allow users to preserve their anonymity—e.g., encrypting data

multiple times and routing it through multiple stations—providing each

with just a piece of the information. From the user viewpoint, the ATs

allow browsing and running applications also circumventing restrictions en-

forced at either providers or governmental level, keeping their identity and

location secret to any intermediary entity observing the traffic. Accord-

ingly, tracing users and their activities across these networks is a complex

task.

In recent years, several studies have investigated ATs from different per-

spectives including: design improvement, AT delay and performance analy-

sis, feasibility of effective attacks to ATs, users’ behavior profiling and iden-

tity disclosure risk, and censoring policies enforced for ATs [145]. Among

these crucial aspects, a cardinal issue is understanding to what extent en-

crypted ATs’ traffic can be classified. More specifically, it is interesting to

ascertain to which degree an external observer can recognize an AT and how

fine would be the fingerprinting granularity achievable, that is, whether traf-

fic types and/or services/applications hidden into them could be inferred.

On the one hand, investigating TC of ATs is useful to designers, as

it puts their effectiveness to the test, reveals shortcomings, and leads the

way to robustify them. On the other hand, these studies are of interest to

providers as well as governmental entities, providing knowledge for exam-

ple, to enforce informed engineering policies or to prevent users performing

unwanted actions. Hence, classifying ATs’ traffic is a particularly appeal-

ing and challenging research field whose state-of-art solutions leave room

for improvement.

In this regard, the classification of ATs’ traffic represents an open and

challenging task in the realm of encrypted TC tackled in this Thesis. In-

deed, as already discussed in Sec. 1.3.4, given this encrypted nature, ML
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classifiers represent the natural enabler of its classification, overcoming the

shortcomings due to the application of traditional solutions. On the top of

that, hierarchical classification represents a perfect match for TC of ATs, as

(i) it allows fine-grained tuning and design, potentially leading to classifica-

tion performance gains; (ii) it also brings a number of “practical” benefits by

design, at cost of moderate complexity increase. For example, re-training

does not involve all the nodes in the hierarchy when new applications lever-

aging anonymity networks are released. Also, distributed deployment of

TC tasks, thanks to the modularity of the framework, is enabled in the

network, thus hierarchical classification could be achieved through chain-

ing of virtualized network functions, each associated to a classifier. Albeit

these benefits are granted by the hierarchical approach itself, research ef-

forts are needed to deepen the aspects of design optimization (to obtain

enhanced performance) and fine-grain evaluation to delve into privacy-level

assessment of ATs.

In view of these considerations, the present chapter proposes a gen-

eral Hierarchical Classification (HC) framework (see Fig. 4.1) for encrypted

TC, carrying out a detailed study on encrypted ATs’ traffic. This frame-

work represents another “structural” improvement over standard ML-based

classifiers, complementary to the MC architecture described in Chapter 3.

We deal with its design, implementation, optimization, and evaluation. In

detail, our analysis has a three-fold significance: (i) optimizes a pool of flat

classifiers to study minutely the number and nature of relevant features

needed for an accurate classification, (ii) investigates the unexplored adop-

tion of hierarchical approaches to TC of ATs as opposed to optimized flat

learning approaches, and (iii) overcomes the limitations of earlier hierarchi-

cal proposals dealing with standard (viz. non-encrypted/non-anonymous)

TC. Such HC framework uniquely suits to encrypted traffic and naturally



allows for both coarsening and narrowing of classification results.

Specifically, the hierarchical approach resorts to a structure of (po-

tentially different) classifiers arranged in a tree fashion, each specialized

in labeling a subset of classes. Such framework exploits the “divide-et-

impera” principle, enabling the partition of workload among several classi-

fiers, almost-naturally enabling a distributed implementation. Hence, the

obtained HC structure grants scalability, enables both per-node tuning and

performance analysis, and supports roll-up and drill-down operations of the

results, which are provided at different levels of detail. Per-node perfor-

mance figures also allow to accurately evaluate per-node behaviors and to

identify potential causes of performance degradation, thus proving useful

in guiding feedback-driven design improvement. Besides, HC design sup-

ports incremental-updates, for example only a minor additional training is

required when a new part of the application traffic is needed, instead of

re-training the whole system. Finally, the proposed architecture allows pro-

gressive censoring of “unsure” instances, implementing a per-classifier reject

option (cf. §1.3.2) via a set of independently-tunable thresholds.

The key issue researchers encounter in the collection of AT traffic datasets

and the resulting lack of data publicly available in this field—which prevents

experiments repeatability and, as a matter of fact, precludes unanimous

and shared conclusions, as discussed in Chapter 2—is herein overcome by

leveraging the recently released Anon17 dataset (cf. §2.5.2 and [44] for de-

tails). It constitutes an important shared workbench for research studies

on anonymity and consists of a collection of traces gathered by different

ATs, at different granularities: anonymous network, traffic type, and appli-

cation, that represent also the levels at which we carry out our analysis.

Although our HC strategy is encouraged by the nature of the classifica-

tion problem defined on this dataset, the underlying HC principle generally
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suits to the varying degrees of privacy ensured by a certain AT, including

its identification within “normal” traffic.

The results show that the proposed HC approach proves to be a very

good fit to the problem of classification of ATs’ traffic. It is able to discern

among ATs looking at their encrypted traffic, also when considering only

the features extracted from the first K packets of each flow (i.e. implement-

ing early TC, see §1.3.1). To prove its effectiveness, we compare our HC

methodology with various flat approaches, considering five ML-based clas-

sifiers: three of them are based on the Bayesian approach (i.e. Näıve Bayes,

Multinomial Näıve Bayes, and Bayesian Networks), whereas the other two

on the well-known decision trees (i.e. C4.5 and Random Forest). In this

way, we can not only compare different approaches (both among themselves

and with our HC), but we can also investigate the significant features re-

quired for an accurate classification, as well as the need to reach conclusions

not coupled to a specific classifier. Indeed, we will show that the hierarchical

framework, in addition to its unique advantages, also provides performance

gains at the application level. This result holds both when considering clas-

sic performance indexes at macroscopic level (typically adopted in the TC

literature) and by accurately breaking it down and evaluating it along mul-

tiple facets (i.e. by introducing metrics able to capture error severity).

The rest of the chapter is organized as follows. We recap the most re-

lated works in Sec. 4.1, considering those leveraging hierarchical approaches

or tackling TC of ATs. Successively, Sec. 4.2 describes the considered hi-

erarchical TC framework of ATs. The experimental environment and the

corresponding classification results (encompassing flat and hierarchical clas-

sification performance along with summarizing considerations) are reported

in Secs. 4.3 and 4.4, respectively.



4.1 Related Works

Up to our knowledge, there are no studies focused on classification of dif-

ferent anonymity services at various levels of granularity via hierarchical

learning. Accordingly, this section first deepens the few works tackling

standard TC (i.e. not focusing on traffic generated by ATs) via a hierarchi-

cal approach (see Tabs. 1.2 and 4.1). Then, we integrate this study with

a brief review of the literature tackling TC of ATs via a “flat” (viz. non-

hierarchical) approach, including the conceptually-related WF problem.

4.1.1 Hierarchical Traffic Classification

Table 4.1 summarizes the details of previous works leveraging hierarchi-

cal frameworks for TC. As already mentioned, none of them have dealt

with anonymous TC, whereas all (with the sole exception of the approach

proposed in [82, 83], whose detailed description is not provided) are able to

operate under the encryption assumption (i.e. they are all based on ML/DL

classifiers not relying on cleartext payload-based features). We detail each

work in the following.

A first approach to hierarchical TC is described in [75], where a three-

level system for Peer-to-Peer (P2P) biflow-based traffic categorization is

proposed to discern among 11 P2P and 5 non-P2P apps. The first-level

classifier adopts a Support Vector Machine (SVM) for P2P/non-P2P recog-

nition, whereas multi-class SVMs based on Support Vector Data Descrip-

tions are employed at the other two levels for P2P-type (i.e. file-sharing,

messenger, and TV) and P2P plus non-P2P app TC, respectively. Results

(pertaining to each single classifier in the hierarchy considered separately)

show that the proposed approach achieves precision and recall ≥ 95% in

P2P/non-P2P recognition and ≥ 93% in P2P-type classification, while a re-
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Table 4.1: Summary of previous works (by year) tackling TC via hierarchical approaches.

Paper ET AT TO #Levels Classes Input Data Classifier TC Performance

Yu et al. [75]  # BF 3
L1: P2P/nonP2P (2)
L2: P2P type (3)
L3: Application (16)

Protocol; duration; BC; PC;
statistics of PS, WS, & IAT

SVM ≥ 71% rec.

Grimaudo et al. [77]  # F 4

L1: Known/unseen (2)
L2: Protocol (3)
L3: Application (14)
L4: Video Stream (4)

≤ 35 mRMR-selected
features from 200 total

NB, BKE,
RB, DT, NN,
SVM, K-NN

≈ 95% F-meas.

Yoon et al. [82, 83] # # BF N/A N/A Header, payload, or
statistical features

N/A GT not available

Shbair et al. [85]  # BF 2 L1: Provider (68)
L2: Service (≈ 100)

Statistics of PC, PS, & IAT C4.5, RF 93.1% acc.

Dong et al. [88]  # BF 2 L1: (A)symmetric (2)
L2: Video App (6)

Statistics of PC, PS, & IAT K-NN ≥ 97% acc.

Chen et al. [96]  # P 2 L1: Service (≤ 24)
L2: Application (N/A)

IP packet [39× 39 B] 2D-CNN > 85% acc.

Our HC approach   F 3
L1: Anon Network (3)
L2: Traffic Type (7)
L3: Application (21)

81 per-flow features
First K PS

NB, MNB, BN,
C4.5, RF

+4.5% F-meas.
w.r.t. best flat

Encrypted Traffic (ET). Anonymous Traffic (AT).
Traffic Object (TO): biflow (BF), flow (F), packet (P)
Input Data: byte count (BC), inter-arrival times (IAT), packet count (PC), packet sizes (PS), TCP-window sizes (WS), minimum
Redundancy Maximum Relevance (mRMR).
Classifier: Bayesian Kernel Estimation (BKE), Bayesian Network (BN), Convolutional Neural Network (CNN), Decision Tree (DT),
K-Nearest Neighbors (K-NN), Multinomial Näıve Bayes (MNB), Näıve Bayes (NB), Neural Network (NN), Random Forest (RF),
Rule Based (RB), Support Vector Machine (SVM).
*N/A: information not available in the related manuscript.



call drop down to 71% is observed at the last level. Similarly, Grimaudo et

al. [77] propose the adoption of a hierarchical classifier to allow Internet TC

(into ≥ 20 fine-grained classes), showing a comparison with flat-learning re-

sults. The proposed tree-structured (four-level) taxonomy introduces also a

first level which identifies known/unseen traffic. Both per-classifier feature

selection (from a set of 200, as proposed by past literature) and coarse-

grained optimization with respect to different ML classifiers (see Tab. 4.1)

are considered. Results show that the proposed hierarchical system out-

performs off-the-shelf flat classification, with an average F-measure/recall

≈ 95% for the most popular traffic classes.

In [82] a novel multilateral (viz. multi-view) and hierarchical approach

for Internet TC is proposed, further refined into the FORMULA frame-

work [83], operating on biflow-segmented traffic. Specifically, the devised ap-

proach relies on a taxonomy that provides multilateral identification based

on four different classification criteria (i.e. service, application, protocol, and

function) via a hierarchical structure—whose working principle is however

not detailed—supporting roll-up and drill-down operations on the classi-

fication results. Unfortunately, the collected traffic lacks a ground truth,

precluding a verification of the reported results.

Recently, in [85] a two-level hierarchical classification framework is pre-

sented to identify the services running within HTTPS connections leveraging

a set of features robust to alteration (e.g., statistics of inter-arrival times

and packet/payload sizes). The proposed evaluation method, based on real

traffic traces, achieves a recall within [95, 100]% in 50 out of the 68 HTTPS

services considered. Dong et al. [88] propose a fine-grained scheme for hi-

erarchical TC of video traffic based on clustering. A hierarchical version of

K-NN is fed with the most discriminative statistical features selected among

40 extracted from downstream/upstream data, ranked by the information
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gain ratio. The dataset, including six types of symmetric and asymmetric

traffic, is collected on the campus network of Nanjing University. Exper-

imental results report ≥ 97% F-measure in discriminating among all the

considered video traffic and superior performance with respect to existing

alternatives, while providing only a slight time-complexity increase.

Finally, in [96] a DL-based scheme for encrypted packet classification is

proposed. Hierarchical structure is composed of two levels, service level and

application level. The former is potentially able to discriminate between 24

classes (e.g., video streaming, online chatting, online gaming, etc.), whereas

no details are given for the application-level classifiers. Authors perform

the experimental evaluation using a bi-dimensional Convolutional Neural

Network and considering only 2 services (i.e. data-chat and video) encom-

passing 5 and 1 applications, respectively. The best performance, shown

only for the single classifiers (and not for the whole hierarchy), is obtained

by the data-chat classifier fed with a matrix of 39× 39 B packet-data.

4.1.2 Flat Traffic Classification of Anonymity Tools

The analysis of ATs has been initially carried in private networks, that is

with the aim of discriminating between HTTPS and Tor traffic [146]. In

detail, by leveraging a dataset made of (i) regular HTTPS traffic, (ii) HTTP,

and (iii) HTTPS over a private Tor network, authors show that HTTP /

HTTPS traffic over Tor can be detected with ≥ 93% accuracy, employing

RF, C4.5, and AdaBoost classifiers.

On the other hand, a few works focus on TC analyzing real traffic

from anonymity networks, as most of the “experimental” literature explores

anonymous WF, whose aim is to identify a web-page accessed by a client of

encrypted and anonymized connections by observing patterns of data flows

(e.g., packet size and direction). Herrmann et al. [65] propose a MNB that



relies on the normalized frequency distribution of IP packet sizes to tackle

the WF problem in the context of different privacy-enhancing technologies

(in a closed-world scenario) including Tor and JonDonym. Although Tor

and JonDonym guarantee a better protection than other privacy-enhancing

technologies (i.e. OpenSSL and OpenVPN), they prove to be not perfect

(3% and 20% average accuracy, respectively). In [144] the same problem is

tackled via a SVC, obtaining a gain of detection rate over [65] from 3% to

55% (resp. from 20% to 80%) in Tor (resp. JonDonym) network. On the

other hand, in an open-world case, the detection rate drops with a maxi-

mum of 73% and 0.05% false-positive rate. More recently, in [147] a WF

approach aimed to overcome limitation of previously-devised alternatives

is proposed and tested on a huge real-world representative dataset, explor-

ing the limits of WF at Internet scale. Specifically, these are highlighted

by a precision/recall drop with the size of the background sites which the

monitored pages need to be distinguished from. Finally, we mention that

the adoption of DL to WF is also a currently-investigated topic. A novel

DL-based method to deanonymize Tor traffic is proposed in [25] and tested

on a dataset made of ≥ 3 · 106 network traces, with the best-performing

DL model being +2% accurate than state-of-the-art attacks. In [26] a WF

attack against Tor is developed, leveraging a Convolutional Neural Net-

work and evaluated against state-of-the-art defenses (i.e. WTF-PAD and

Walkie-Talkie). Results report an accuracy > 98% on undefended Tor traf-

fic, while reaching > 90% accuracy (resp. 49.7%) when WTF-PAD (resp.

Walkie-Talkie) is employed, with the attack remaining effective also in an

open-world setting.

Moving to pure TC of ATs based on real-data, He et al. [148] devise an

approach based on Hidden Markov Models (HMMs) to classify four cate-

gories of Tor traffic (i.e. P2P, FTP, IM, and Web). HMMs are employed
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to build inbound and output models of the application types considered,

and are fed with features based on burst volumes and directions of Tor

flows, obtaining an accuracy up to 92%. AlSabah et al. [149] present a ML-

based method employing NB, Bayesian Network (BN), functional and logis-

tic model trees to recognize applications used by Tor users. Both circuit-level

and cell-level information is leveraged for offline and offline/online classifi-

cation, respectively. The highest accuracy achieved in online (resp. offline)

case equals 97.8% (resp. 91%). A similar setup is proposed in [150] for

user activity recognition by means of four classifiers (i.e. NB, BN, RF, and

C4.5) fed with traffic-flow and circuit-level features. Both approaches reach

≈ 100% accuracy, with flow-based TC being less demanding and based on

data that could be captured anywhere between the user and the Tor’s relay.

Along the same lines, Shahbar and Zincir-Heywood [151] employ flow-based

(statistical) traffic analysis to prove whether Tor PTs can evade censorship

systems. Adopting a C4.5 classifier and based on a thorough analysis, the

authors show that Tor PTs’ usage is recognizable, as PT-based obfusca-

tion changes the content shape in a distinct way with respect to “normal”

Tor (i.e. conferring to flows distinctive fingerprints). The effects of band-

width sharing on I2P is analyzed by the same authors in [152] considering

both application and user profiling achievable by an attacker. Using a C4.5

classifier fed with flow-based features, the results show that users and appli-

cations on I2P can be profiled, with a harmful (resp. beneficial) effect of the

shared bandwidth increase on applications (resp. users) profiling accuracy.

Recently, Shahbar and Zincir-Heywood [44] describe Anon17 public

dataset comprising directional traffic-flows obtained by collecting data from

three ATs (i.e. Tor, I2P, and JonDonym). Besides, detailed information

about the traffic types and applications running on Tor and I2P, such as

“Browsing” and “EEpsites”, respectively, as well as the PTs employed on



the Tor network, is provided in the form of three-level labels for each flow.

Up to our knowledge, the sole public dataset similar to Anon17 is that

described in [110], containing however only Tor traffic of eight applications

(i.e. browsing, audio, chat, mail, P2P, FT, VoIP, and video) and providing

only time-related features.

4.2 Hierarchical Traffic Classification Approach

In this section, we introduce the proposed framework for HC of encrypted

and anonymous traffic, as streamlined in Fig. 4.1, whose main components

are discussed in the following. In detail, preliminaries on HC are discussed

first, together with a general overview of the proposed approach (§4.2.1).

Then, we introduce the possible traffic object choices, along with a descrip-

tion of the feature sets (§4.2.2). The section ends with the classification

algorithms (§4.2.3) which could be adopted for hierarchical analysis of ATs’

traffic.

4.2.1 Preliminaries and Proposed HC Framework

In what follows, we provide HC preliminaries needed to understand the

design choices adopted for the general HC framework here proposed and

investigated in the context of TC of ATs.

Firstly, we remark that our classification framework focuses on classes

whose relationship can be summarized in the form of a tree (i.e. each class

has one parent class, at most) with T classification levels and Lt classes to

discriminate from at the tth level (whose number increases with the depth),

organized in the corresponding set Lt , {1, . . . , Lt}.
The tree structure can be explored with three alternative approaches [153]:

(i) top-down approach, when the system employs a set of local classifiers
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Figure 4.1: Sketch of the proposed HC framework.

each tackled to a specific sub-problem; (ii) big-bang (or global) approach,

when a single classifier copes with the entire class hierarchy (i.e. it is trained

by considering the entire class hierarchy at once); (iii) flat classification

approach, ignoring the class relationships at different levels (i.e. solving a

classification task at each level of the hierarchy in an independent fashion).

We have chosen to adopt the top-down choice (similarly to [77]). In this

case, for each instance to be classified, the HC framework firstly predicts its

first-level (most generic) class, then it uses that predicted class to narrow the

choices of classes to be predicted at the second level (i.e. allowed second-level

predicted classes are the children of that predicted at the first level), and so

on. Although errors at a certain class level could propagate downwards the

hierarchy, this choice promotes the architecture modularity, which is crucial

in TC, as opposed to big-bang and flat classifiers.



Further, three different ways of using the local information can be em-

ployed, mainly differing in their training phase [153]: (i) Local Classifier

per Node (LCN); (ii) Local Classifier per Level (LCL); (iii) Local Classi-

fier per Parent Node (LCPN). LCN and LCL consist in training one binary

classifier for each node and a multi-class classifier for each level of the class

hierarchy, respectively. Unluckily, since these two approaches suffer from

class-membership inconsistency and have higher complexity, we have cho-

sen to adopt LCPN, that is widely used in the literature [77, 88] and requires

a multi-class classifier for each parent node in the class hierarchy, trained

to distinguish among its children nodes that are usually less than Lt, with

t being the node classification level.

Figure 4.1 reports a sketch of the proposed HC framework. We highlight

that the indexing of a node reflects the ordered list of its ancestors (except

the root C0); for example Cij denotes the jth L3 classifier having C0 and

Ci, as grandparent and parent, respectively. The classifier Cij is in charge

of discriminating from L̄ij < L3 classes, grouped within the set Ωij , based

on the associated prediction probabilities p1, . . . , pL̄ij
.

The proposed HC framework is trained by recursively splitting the train-

ing set according to the tree structure. Specifically, the procedure starts

from the root classifier C0 trained using the whole set. On the other hand,

each node concurring to t > 1 level classification uses a training set corre-

sponding to a subset of Lt, the elements all belonging to the same class at

(t − 1). Reducing the number of classes per classifier hopefully simplifies

the resulting problem and reduces the error scope of flat classification.

In addition, the proposed framework adopts a progressive-censoring (viz.

non- mandatory leaf node prediction [153]) policy, accomplished by equip-

ping each classifier node with a “reject option” that censors “unsure” clas-

sification outcomes at intermediate layers (“RO” blocks in Fig. 4.1). As
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introduced in Sec. 1.3.2, the reject option forces the classification process

to stop for a given instance when a classifier node (e.g., Ci,j) does not

reach a clear verdict, i.e. when the highest class prediction probability

(e.g., max`=1,...,L̄i,j
p`) is below a threshold (e.g., γij). This design choice

here avoids that misclassifications are propagated downwards, at the ex-

pense of coarser-grained predictions.

By looking at the hierarchy of classifiers reported in Fig. 4.1, it is ap-

parent that its näıvest implementation resorts to the same classification

algorithm and feature set throughout all the hierarchy. Nonetheless, al-

though HC can achieve a potential performance gain with respect to a flat

approach even in this case, the proposed framework allows for further op-

timization [153], due to the decomposition of the classification task into

sub-problems. Indeed, classification performance is expected to improve

with more refined implementations, leveraging a specific selection of fea-

tures for classification, and/or using different classification algorithms at

different nodes of the class hierarchy, chosen, for example, from a pool

of available classifiers. Therefore, we investigate both these optimization

degrees-of-freedom. In the case both the classifier and the feature set are

optimized at each node, the combinatorial explosion of the resulting opti-

mization is herein circumvented by a decoupled design resorting to per-node

performance, that is selecting the pair corresponding to the classifier and the

number of features ensuring the highest score for the sub-classification prob-

lem the classifier node is in charge to solve. Nonetheless, we remark that an

optimization based on complete enumeration or alternative heuristics does

not contrast with the HC architecture depicted in Fig. 4.1.



4.2.2 Traffic Object and Feature Design

Although several proposals exist and have been considered in the (anony-

mous) TC literature, flows and biflows are the most commonly used traffic

objects. Referring to the hierarchical approach illustrated in Fig. 4.1, we

assume that all the classifiers in the hierarchy shall operate on a common

TC object, although not restricted to a specific one.

As previously explained, different sets of features (of different sizes) can

be considered to feed the classifiers in the hierarchical architecture, as shown

in Fig. 4.1, with the aim to achieve accurate TC. For instance, referring

to the example in Sec. 4.2.1, the classifier Cij is assumed to rely on Mij

features, collected in the vector fij . Finally, given a set of features, feature

selection/extraction techniques are adopted to extract only a subset among

them, with the aim of improving further TC performance, while reducing

the computational complexity.

4.2.3 Classification Algorithms

As in the case of the set of features, the proposed HC approach allows for

a different classifier to be employed at each node (see Fig. 4.1). Therefore,

any ML/DL-based (that can deal with the encrypted nature of ATs’ traffic)

supervised classifier can be adopted. For example, referring to the classifier

Cij in the example of Sec. 4.2.1, any ML/DL-based classifiers could be used

to discriminate from L̄ij classes within the set Ωij . The sole requirement

for each classifier is to be able to provide its soft-output vector, required by

the censoring mechanism described in Sec. 4.2.1.
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4.3 Experimental Environment

Hereinafter, we first describe the scenario in which we have carried out our

analyses (§4.3.1); then we discuss the design choices made to implement the

HC system, matching the characteristics of the Anon17 dataset (§4.3.2);

finally, we introduce the performance metrics employed to evaluate our so-

lution (§4.3.3).

4.3.1 HC Scenario

To design, implement, and evaluate our HC approach, we have exploited the

publicly-available Anon17 dataset, whose details are reported in Sec. 2.5.2.

According to the Anon17 description, we tackle the (hierarchical) classi-

fication of anonymity networks, traffic types, and applications under the

assumption that we are in presence of anonymous traffic only, based on a

two-fold motivation. First, the depicted scenario refers to an application

context in which an upstream classifier has been able to provide an accu-

rate screening of clear and standard-encrypted traffic and then separate this

latter from ATs’ traffic, as demonstrated, for example by Barker et al. [146]

and more recently by Rao et al. [154] for the Tor network. Hence, the aim

of the proposed approach is to assess discrimination of anonymity services

and related applications once this ATs’ traffic has been separated from other

traffic. Indeed, the use of an upstream classifier would perfectly fit within

the hierarchical approach proposed, representing a further step toward the

development of a whole HC framework for traffic analysis of clear/encrypt-

ed/anonymous data, truly operating in an open-world scenario. Secondly,

the results of our analysis can be intended as an upper bound on the ATs’

classification performance in the case of an open-world assumption. In-

deed, a negative answer to our question (i.e. an unsatisfactory performance



in classifying anonymous traffic only) would lead to the conclusion that

anonymous traffic, even though perfectly screened from the remaining traf-

fic bulk, would still remain an unobservable black-box to an eavesdropping

user. Our results will show that this is not the case, and confirm that there

is room for classification of ATs in an open-world assumption.

4.3.2 HC Implementation Choices

Hereinafter, we briefly discuss how the general HC framework described in

Sec. 4.2 is specialized in the case of its adoption on the Anon17 dataset, with

the following paragraphs covering all the different aspects needing speci-

fication. The HC framework specialized for the classification of Anon17

traffic-flows has been implemented in Python, leveraging Weka wrapper

and Scikit-learn utilities. A Virtual Machine (OS Ubuntu Server 16.04)

equipped with 32 VCPUs and 64 GB RAM, running on private OpenStack

cloud platform, has been employed for evaluating the HC framework. Fi-

nally, the code used for the analyses has been made available on GitHub1

to foster reproducibility of the experiments.

HC Architecture. Based on the nature of the traffic in the Anon17

dataset, the TC here considered is arranged in three levels, correspond-

ing to anonymity networks, traffic types, and specific applications. As a

whole, the HC framework resorts on one classifier at L1, two classifiers at

L2, and five classifiers at L3.

Traffic Object and Feature Sets. Anonymous traffic contained in

Anon17 is split into different flows, by means of the flow-exporting tool Tr-

analyzer2 [155], constituting the traffic object here employed. We highlight

1https://github.com/NM2/hierarchical-tc-at.

https://github.com/NM2/hierarchical-tc-at
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that the direction of each flow (considered as a feature) is indicated as “A”

or “B” for client-to-server and vice versa, respectively. We note that the

proposed HC approach could even operate at the packet-level, in principle2

(viz. the traffic object could be the single packet).

For each traffic flow, Anon17 provides different sets of features extracted

via Tranalyzer2 [155]. More specifically, the latter is an open source tool

that generates flows from a captured traffic dump or directly by working on

the network interface, based on the libpcap library. Tranalyzer2 is bundled

with different basic plugins, being able to extract a plethora of features

per flow. However, the dataset provides only a subset of these features,

since some of them have been removed (e.g., ICMP and VLAN features)

because they do not provide useful fingerprinting information. Additionally,

aiming at protecting users’ privacy and simulate a true encrypted-traffic

scenario, IP addresses and payloads of the packets have also been removed

from the dataset. In our HC framework, we consider two different feature

sets, referred hereinafter to as TC set and EarlyTC set. In brief, TC set

capitalizes complete traffic flows, while EarlyTC set only relies on the first

K packets of each flow, thus enabling early-TC.

Specifically, TC set originally refers to 81 per-flow statistical features.

Firstly, we have performed dataset sanitization to remove the fields min pl,

max pl, and mean pl, as they seem repeated with respect to minPktSz,

maxPktSz, and avePktSize, respectively, considering the specific configu-

ration adopted in Tranalyzer2 for capturing the traffic. Additionally, we

have discarded the initial/final timestamps of each flow (time first and

time last) to avoid biased results, as this pair of features may be influ-

enced by a sequential collection of the traffic traces belonging to different

2Up to our knowledge, there is no work in literature tackling anonymous TC at this
granularity.



ATs and/or application types, potentially introducing classification arti-

facts. Therefore, we have considered a reduced set of 76 fields, that has

been exploited to extract three different types of features belonging to the

TC set. The first type of features considered comprises 74 summarizing

flow-based statistics, such as:

• Flow direction and duration.

• Packet Length (PL) statistics (mean, min, max, median, quartiles,

etc.).

• Inter-Arrival Time (IAT) statistics (mean, min, max, median, quar-

tiles, etc.).

• TCP header-related features3 (window size, sequence number, TCP

options, etc.).

• IP header-related features (type-of-service, time-to-live, IP flags, etc.).

• Number of Tx/Rx bytes and packets (including bytes/packets Tx rate

and stream asymmetry measures).

• Number of distinct hosts connected to flow source or destination IP

during its lifetime.

• Number of concurrent flows sharing the same (source IP, destination

IP) pair regardless of source & destination ports.

We point to the user manual of Tranalyzer2 [156] for further details about

these features. The second and third type of TC set features are based

on a finer histogram representation of PL and joint PL-IAT, respectively.

3TCP-related features have zero-value if the flow leverages UDP as transport protocol
(e.g., I2P network works on both TCP and UDP).
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These sets are obtained through an appropriate format conversion and/or

marginalization [157] from the Anon17 field ps iat histo. This field, as

provided by Tranalyzer2, contains precise (non-binned) PL info, whereas

applies a non-uniform binning to the (continuous-valued) IAT information.

More precisely, the IAT range is divided in 91 bins with the following ranges:

bins 0 − 39 covering [0, 200) ms with 5 ms width, bins 40 − 59 covering

[200, 400) ms with 10 ms width, bins 60 − 89 covering [400, 1000) ms with

20 ms width and bin 90 for IAT values higher than 1 s [156]. Their use

will be investigated similarly to [158] to understand whether finer-grained

features can improve classification performance.

Differently, EarlyTC set is made of the sequence of pairs (PL, IAT)

of the first K packets of each flow. This set is extracted from the field

nfp pl iat4, containing the info corresponding to the first K = 20 packets,

as set by Tranalyzer2 default options [156]. In the rest of the paper, we

will employ TC set when referring to standard TC, whereas the adoption

of EarlyTC set will be assumed just for early TC.

Finally, for the first type of features belonging to TC set, we consider

feature selection, based on a filtering approach, ranking the elements of the

set based on the relative importance of each feature, so as to skim the

more informative ones, in terms of mutual information with the class (ran-

dom) variable. The aim is to possibly improve further their performance,

while reducing their computational complexity. We do not consider wrap-

per methods since they may be considerably more complex and coupled to a

specific classification algorithm [159]. We also remark that other feature se-

lection measures have been also tried (e.g., the Pearson’s correlation or the

symmetric uncertainty), obtaining similar trends and slightly worse perfor-

4Only in this case, the pl acronym is referred to the Payload Length (and not to the
Packet Length), in accordance to Tranalyzer2 nomenclature [156].



mance. On the other hand, for EarlyTC set features, ranking is performed

according to a time-constraint (i.e. only the first K packets are employed).

We remark that, for the TC set, feature extraction techniques, such as Prin-

cipal Component Analysis (PCA), could be easily adopted in the proposed

HC framework without any substantial changes.

Classification Algorithms. Herein, we consider as potential nodes five

different ML-based classifiers, namely the (i) C4.5, the (ii) RF, the (iii)

NB, the (iv) MNB and the (v) BNs. Indeed, these classifiers have been

successfully employed in several works tackling TC of anonymous traf-

fic [149, 150, 152, 160]. Nonetheless, as the proposed HC framework is

general, other ML (e.g., SVM, Gradient Boosting, etc.) or even DL classi-

fiers (cf. Chapter 5) could be adopted with no substantial change. Specifi-

cally, the first two belong to the family of decision trees, whereas the latter

three to the Bayesian family. We underline that the base classifiers em-

ployed in the complementary MC framework described in Chapter 3 belong

to the same classifier families (they may differ in the feature set / config-

uration adopted being dependent from the specific context / dataset). In

the following, we recall the base principles of the classification algorithms

leveraged.

1. C4.5 : it is an algorithm employed to generate a decision tree used

(mainly) for classification purposes [161], based on the concept of en-

tropy of a distribution [157]. The training algorithm obviates to the

NP-hardness of optimal tree search by means of a greedy procedure,

based on a top-down recursive construction. Then, instances are par-

titioned recursively based on the chosen feature whose values most

effectively split so as to maximize a purity measure in the data, such
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as the “gain ratio”, that avoids bias toward features with a larger

support [161]. Thus, the splitting criterion is triggered by the fea-

ture ensuring the highest gain ratio (i.e. purity). C4.5 recurs on the

smaller sub-lists, until the following termination criteria are met: (a)

all the instances in the list belong to the same class (a leaf node is

here created with a label associated to that class); (b) there are no re-

maining features for further partitioning (each leaf is labeled with the

majority class in the subset); (c) there are no examples left. C4.5 in-

troduces also refinements introduced to reduce over-fitting, including

pre-pruning (i.e. stop growing a branch when information becomes un-

reliable) and post-pruning (i.e. growing a decision tree that correctly

classifies all training data and then simplify it later by replacing some

nodes with leaves), with the latter preferred in practice.

2. Random Forest (RF): it is a classification method based on an en-

semble of B several decision trees (it is a free parameter tuned by

cross-validation or via the “out-of-bag” error), built at training time

exploiting the ideas of “bootstrap aggregating” (bagging) and random-

feature selection to mitigate over-fitting [134]. Specifically, during the

training phase, each decision tree in the RF classifier is grown based

on a bootstrap (i.e. a uniformly random sampling procedure with re-

placement) sample set of the training data available. To further reduce

overfitting the RF adds to the above scheme a modified tree learning

algorithm named “feature bagging” that selects, at each candidate

split in the learning process, only a random subset (whose size is an-

other free tunable parameter) of the features. Finally, after training,

decision on testing samples can be made by taking the majority vote

or soft combination of the responses of B trees.



3. Näıve Bayes (NB): it is a simple probabilistic classifier that assumes

class conditional independence of the features, being not the case for

real-world problems, but working well in practice and leading to re-

duced complexity. More specifically, the NB evaluates the probability

that an unlabeled test instance fT belongs to each class ci, namely

the posterior probability P (ci|fT ) through the Bayes’ theorem, and

returns the label corresponding to the maximum posterior among the

classes, that is P (ci|fT ) ∝ P (ci)
∏M
m=1 P (fT,m|ci), where “∝” means

proportionality and P (ci) denotes the a-priori probability of class ci

(estimated from the training set). On the other hand, each distribu-

tion P (fm|ci) is estimated by resorting to a PMF when the feature

is categorical, whereas common alternatives for numerical features in-

clude: (a) Moment Matching to a Gaussian PDF (NB), (b) Super-

vised Discretization (NB SD), and (c) Kernel-based Density Estima-

tion (NB KDE) [126].

4. Multinomial Näıve Bayes (MNB): this classifier adopts sample his-

tograms as a different set of features and treats these features as fre-

quencies of a certain value of a categorical random variable, comparing

the sample histogram of each test instance with the aggregated his-

togram of all training instances per class. Therefore, the evaluation

of the conditional PMF P (fT |ci) is proportional to
∏M
m=1(ρm) fT,m ,

where ρm indicates the probability of sampling the mth feature. On

the basis of the results of Chapter 3, we will employ a variant of

the MNB classifier, adopting term frequency transformation with co-

sine normalization, exploited also in [65] for website fingerprinting in

anonymous networks.5

5It is worth noting that preliminary investigations have also confirmed the highest per-
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5. Bayesian Networks (BNs): they are graphical representations which

model dependence relationships between features and classes [162],

collectively represented as the set of random variables U , {f1, . . . ,

fM , C} =
[
U1 · · · UM+1

]T
. Unlike the NB classifier, they are not

based on the conditional independence assumption for the features.

Formally, a BN for U is a pair B , 〈G,Θ〉, which is learned dur-

ing the training phase. The first component (G) is a Directed Acyclic

Graph that encodes a joint probability distribution over U , where

each vertex represents a random variable among U1, . . . , UM+1 and

the edges represent their dependencies. The second component (Θ)

represents the set of parameters modeling the BN, uniquely deter-

mining the local conditional distributions associated to the BN, which

allow to encode the joint distribution PB(f1, . . . , fM , C). Finally, dur-

ing the testing phase, for each instance fT , the BN returns the label

ĉ , arg maxci∈Ω PB(ci|fT ), based on the Bayes’ theorem. We will ei-

ther consider a BN classifier with (default) K2 search (BN K2) for

structure learning, or impose the network to have a tree-augmented

form (BN TAN) where the tree is formed by calculating the maxi-

mum weight spanning tree.

In the following analyses, all the classifiers will be fed either with the

first type of features belonging to the TC set (i.e. flow-based statistics) or

with the features of the EarlyTC set (i.e. sequence of (Payload Length,

IAT) of the first K packets), with the sole exception of the MNB that,

working on features in the form of histograms, will be fed with the second

(i.e. PL histogram) and third (i.e. joint PL-IAT histogram) types of TC set

features.

formance of the considered variant with respect to the others [65] analyzed in Chapter 3.



4.3.3 Performance Metrics

In addition to common performance metrics described in Sec. 1.3.2, namely

accuracy, F-measure, and G-mean, along with confusion matrices, to detect

performance bottlenecks of our HC approach, we also provide per-node met-

rics (i.e. not considering classification errors introduced by upper levels),

also deriving useful guidelines for system design and evaluation. Consid-

ering that in our design each classifier implements a reject option, we also

deepen the impact of this design choice on performance. In more detail,

we investigate the impact of varying the censoring thresholds (see §4.2.1),

whose tuning can be effective to improve classification performance trading

it off with the reduction of the classified instances (viz. the ratio of classified

instances, CR).

Finally, for each considered analysis, our evaluation is based on a (strat-

ified) ten-fold cross-validation, representing a stable performance evaluation

setup. As a consequence, we report both the mean and the standard de-

viation (in the form of a ±3σ interval, corresponding to 99.7% confidence

under a Gaussian assumption) of each performance measure as a result of

the evaluation on the ten different folds.

4.4 Experimental Evaluation

In this section, we show experimental results aimed at investigating anony-

mous TC performance via the proposed hierarchical framework, also when

considering early TC. First, we identify the best-performing flat classifier fed

with TC set features (§4.4.1), considering both different classifiers’ variants

(e.g., for the NB and BNs) and various types of feature (e.g., histogram-

based features for the MNB). Then, we analyze the performance of the

proposed hierarchical approach and compare it with the best flat classifier,
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performing an optimization of the hierarchical framework in different steps

(§4.4.2) both in the flow-based (i.e. TC set features) and in the early-TC

scenario (i.e. EarlyTC set features). Regarding this latter scenario, since

the difference with the TC set analysis mainly concerns the feature selec-

tion performed, only the final results pertaining to fine-grained optimization

(along with the comparison with the best flat alternative) are reported. Fi-

nally, we perform a detailed evaluation that contains finer-grained analyses

of the error patterns of these two different classification “philosophies” along

with the severity of errors that leads to interesting conclusions on the ATs

considered (§4.4.3). Also, this analysis encompasses a first investigation of

classification performance obtained by resorting to progressive censoring in

the hierarchical case that we compare with the effects of censoring on a flat

classifier baseline.

4.4.1 Selecting the Best Flat Classifier

In the following, we preliminarily investigate flow-based TC leveraging the

features belonging to the TC set (i.e. comprising summarizing flow-based

statistics and PL/PL-IAT histograms) with the aim of selecting the best

flat classifier to use as baseline for the successive analyses. However, before

proceeding with a rigorous comparison of the classifiers here considered, we

firstly focus on relative performance evaluation of the different variants of

NB and BN taken into account in Sec. 4.3.2.

To this end, Fig. 4.2 shows the accuracy and F-measure of NB, NB SD,

and NB KDE (resp. BN K2 and BN TAN) in top (resp. bottom) plots.

Note that the results pertain to L3, being the hardest classification task, but

similar trends have been observed also for the other two levels. Furthermore,

the performance has been evaluated by training/testing the classifiers with

a varying subset of features, ranked in decreasing importance as described
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Figure 4.2: Accuracy and F-measure of NB (a-b) and BN (c-d) classifiers for different
subsets of features (from 5 to 74 with increments of 5) for L3 (Application)
level. Average on 10-folds and corresponding ±3σ confidence interval are
shown.

in Sec. 4.3.2 so as to draw general conclusions.6

From the inspection of the figure, it is apparent that both NB SD and

NB KDE outperform NB over all the range of feature subsets, with NB SD

achieving higher performance even in the case of a smaller set. Similarly,

BN TAN significantly outperforms BN K2. The former result can be ex-

plained as density estimation of each feature, either in a discretized (NB SD)

6Using the Scikit-learn estimator mutual info classif, employed in conjunction with
the SelectKBest ranker which allows obtaining the top K? (most informative) features,
with K? as input parameter.
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(f) L3- Application.

Figure 4.3: Accuracy (a, c, e) and F-measure (b, d, f) of flow-based classifiers for dif-
ferent subsets of statistical TC set features (from 5 to 74 with increments of
5) for each classification level. Average on 10-folds and corresponding ±3σ
confidence interval are shown.



or “kernelized” (NB KDE) fashion, is beneficial since the Gaussian hypoth-

esis represents an overly simplified assumption, whereas in the latter case

it is apparent that constraining BN structure learning to a tree-augmented

form (as opposed to a greedy sub-optimal learning) provides improved gen-

eralization capabilities. Thus, in the remainder of this section, only the

variants NB SD and BN TAN will be considered in our comparison, being

the best-performing Näıve Bayes and Bayesian Networks classifier variants

observed, respectively.

Then, with the aim of selecting the best subset (viz. an optimized num-

ber) of features and provide a comparison of the supervised techniques con-

sidered, in Fig. 4.3 we show the performance of all the classifiers considered—

except for the MNB, whose performance relies on histogram-based features

and will be thus discussed later—when varying the ranked subset of fea-

tures for both training and test sets. As apparent from the results, all

the classifiers obtain excellent results in L1 classification, that is all achieve

both > 95% accuracy and F-measure when approximately only the top 15

features are employed. On the other hand, performance metrics generally

degrade with the increasing granularity of the classification task (i.e. mov-

ing from L1 to L3). This intuitive trend can be attributed to the increasing

difficulty of the classification task being tackled. Indeed, the discrimina-

tion of anonymous traffic at L3 is harder than trying to discern merely

the anonymity network. Interestingly, the degradation level varies with the

classifier and it is observed to be milder for C4.5 and RF, whereas it is the

highest for NB SD. This finding can be explained as the conditional inde-

pendence assumption of the features for NB SD is limiting when tackling

harder classification tasks (i.e. L3). Overall, from the inspection of the fig-

ures, we can notice that the performance of all classifiers (approximately)

reaches a steady value when using a number of features that also depends
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Table 4.2: Best overall accuracy and macro F-measure for dataset D̄5 obtained with dif-
ferent [optimal number of features] employed. Highlighted values: maximum
accuracy and maximum F-measure for each level.

Classifier Metric L1 L2 L3

NB SD
Accuracy 97.45% [15] 84.16% [30] 61.75% [45]

F-measure 96.87% [15] 76.49% [30] 53.62% [60]

BN TAN
Accuracy 99.52% [50] 93.61% [35] 69.74% [55]

F-measure 99.54% [50] 88.16% [35] 61.40% [60]

C4.5
Accuracy 99.44% [74] 96.96% [74] 72.58% [60]

F-measure 99.42% [74] 94.43% [60] 69.42% [60]

RF
Accuracy 99.80% [50] 97.01% [35] 73.52% [65]

F-measure 99.80% [50] 94.30% [35] 71.14% [65]

on the classification granularity, with harder TC tasks requiring more fea-

tures to reach better performance. Indeed, around the top 15, 30, and 45

features are needed at L1, L2, and L3, respectively.

Collectively, with an optimized number of features, the highest perfor-

mance is obtained by RF and (in a single case) C4.5, corresponding to

99.80% (resp. 99.80%), 97.01% (resp. 94.30%) and 73.52% (resp. 71.14%)

at L1, L2, and L3, respectively, in terms of accuracy (resp. F-measure), as

shown by the summarizing results reported in Tab. 4.2.

We now focus on investigating whether (i) finer-grained features, such

as histograms, would improve performance and (ii) whether these finer-

grained features would require time-related information. We recall that the

appeal of histogram-based features has been highlighted by different works

on TC [158, 163]. Based on this reason, in Fig. 4.4 we report the performance

(in terms of both accuracy and F-measure) of MNB in conjunction with the

use of the second (PL histogram) and third (joint Payload Length & Inter-

Arrival Time histogram) type of TC set features. Similarly to the previous
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Figure 4.4: Accuracy (a) and F-measure (b) of MNB classifier [65] leveraging PL and
PL-IAT histograms as features. Average on 10-folds and corresponding ±3σ
confidence interval are shown.

analyses, the performance is evaluated at the three levels of granularity for

the sake of a complete comparison. First, it is apparent that considering

histogram-based features does not improve classification performance, as

evident from comparison of Fig. 4.3 and Fig. 4.4. The lack of improved

performance may be due to a two-fold reason: (i) when using the MNB,

the features pertaining to IP/TCP headers and number of connections are

not taken into consideration and (ii) the histogram discretization provided

by Anon17 may be not adequate for developing an accurate fingerprint.

Interestingly, time-related features do not improve appreciably classification

performance at the first two levels. The only exception is represented by

the increase of F-measure at L3 (+6.85%) when the PL histogram feature

set is employed, highlighting a detrimental effect of time-related features.

This trend may be attributed to the harder classification task to be solved.7

7Given this result, in the following, we will refer with TC set features to only the first
type (i.e. per-flow statistics), if not stated otherwise.
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Based on the outcome of these analyses, we select and employ the best-

performing flat classifier (i.e. the RF with different feature configurations)

as both baseline and starting point for the optimization of the proposed hier-

archical classification architecture as described in the following section. We

will also give further considerations on the early-TC scenario in a dedicated

paragraph.

4.4.2 Optimizing Hierarchical Classification Framework

The next paragraphs show increasingly advanced optimizations of the pro-

posed hierarchical TC framework. First, we demonstrate that the usage of a

“näıve” hierarchical architecture is already able to introduce non-negligible

improvements. Successively, the results of design enhancements are shown,

deepening the impact of both rough- and fine-grained optimization choices—

the former consisting in varying the number of features of the classifiers

(keeping the classifier type fixed) in the hierarchy with the same increment,

while the latter involving changes to both features and classifier types.

Naive Hierarchical Framework. In Tab. 4.3 we report the performance

of the best flat classifiers (e.g., the best configurations with an optimal

number of features in terms of accuracy) as derived from Sec. 4.4.1 and

resulting in the RF fed with 50, 35, and 65 features at L1, L2, and L3,

respectively (see Tab. 4.2). In the following, we show the performance in

terms of accuracy, F-measure, and G-mean at each classification level.8 Such

optimal setup is compared with a first näıve implementation of our HC

approach, obtained by using the best L3 flat configuration (i.e. the RF fed

with the best 65 features) in all the classifier nodes of the hierarchy, namely

8“n.d.” points out unavailable performance for flat classifiers at levels deeper than
that considered for classification.



Table 4.3: Accuracy, F-measure, and G-mean (%) of the best flat classifier (RF) with
[optimal number of features] at each level compared to naive hierarchical con-
figuration. Results are in the format avg. (± std.) over 10-folds. Highlighted
values: Best Accuracy (?), F-measure (†), and G-mean (♦) per level.

Classifier Metric L1 L2 L3

Best Flat
L1 [50]

Accuracy 99.80±0.03% n.d. n.d.
F-measure 99.80±0.04% n.d. n.d.

G-mean 99.83±0.03% ♦ n.d. n.d.

Best Flat
L2 [35]

Accuracy 99.75±0.06% 97.01±0.24% n.d.
F-measure 99.73±0.06% 94.30±0.35% n.d.

G-mean 99.80±0.05% 96.19±0.29% n.d.

Best Flat
L3 [65]

Accuracy 99.70±0.06% 96.77±0.24% 73.52±0.40%
F-measure 99.71±0.06% 93.51±0.58% 71.14±1.05%

G-mean 99.79±0.04% 95.71±0.34% 82.73±0.57%

Naive
Hierarchical
[65]

Accuracy 99.81±0.06% ? 97.17±0.24% ? 74.60±0.48% ?
F-measure 99.81±0.06% † 94.43±0.75% † 73.82±1.42% †

G-mean 99.83±0.05% 96.23±0.39% ♦ 84.35±0.74% ♦

it is the result of the decomposition in simpler TC sub-tasks.

Unsurprisingly, L1 performance metrics report a score ≥ 99.7%: the

traffic generated through different anonymity networks is easily distinguish-

able from each other, confirming that these tools are designed to provide

anonymity but not to hide the usage of the tool itself. Moreover, the re-

sults show that even a näıve hierarchical solution improves L3 performance

(up to +2.68% in terms of F-measure) with respect to the best L3 flat clas-

sifier, and performs on a par in terms of L1–L2 levels when compared to

the level-optimized best flat classifiers. Also, from a statistical significance

viewpoint, we observed a gain of the HC approach in 100% of the cases over

the considered folds. This overall improvement is due to the split of the

original TC task (21 classes at L3, see Fig. 2.8) into smaller tasks, at most
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Figure 4.5: Accuracy (a–c), F-measure (d–f), and G-mean (g–i) [%] of hierarchical and flat classifiers: RF fed with
different subsets of (statistical) features in TC set (from 5 to 74 with increments of 5). Average on 10-folds
and corresponding ±3σ confidence interval are shown.



discriminating between 5 classes.

Impact of Feature Selection. As a first step towards the optimiza-

tion of the proposed approach, we investigate here the performance of the

framework when varying the number of features used by each classifier but

considering a common number of features (here denoted M) for each node

in the tree, and keeping the classification algorithm fixed to RF, being the

best-performing one in the flat case also for different feature configurations

as depicted in Fig. 4.5. We remark that although there is a common M

(viz. number of features) for all the nodes, the specific set of features may

differ depending on the related ranking.

Figure 4.5 summarizes the obtained results—with a view to finding

the optimal value M for the entire hierarchy—also providing a comparison

against the three flat classifier counterparts in terms of accuracy, F-measure,

and G-mean. First, the results highlight that there is no appreciable perfor-

mance difference among L1–L3 flat classifiers and the hierarchical approach

by looking at L1 metrics, and only a slight performance improvement is

achieved with a high number of features. Also, performance saturation is

observed with at least 10 features. On the other hand, at L2 the hierar-

chical approach obtains slightly higher performance with a lower number of

employed features per node (approximately 10–20), whereas at L3 (being

the harder TC task) the following key observations can be made: (i) the hi-

erarchical approach provides a non-negligible improvement over the L3 flat

classifier for all the feature-range considered, (ii) the best performance of

the HC is attained with a smaller number of features. These considerations

apply to all the performance measures considered, with the most evident

improvement attained by the HC framework in terms of F-measure.
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Figure 4.6: Accuracy (a), F-measure (c) and G-mean (e) of the best classifiers and of their
early-TC counterparts (b, d, and f). Average on 10-folds and corresponding
±3σ confidence interval are shown.



Fine-grained Optimization. Herein, the fine-grained framework opti-

mization, in case of features from TC set, is discussed. In detail, with the

aim of trading off design complexity with performance, we remove the con-

straints previously introduced, and allow each node in the hierarchy to be

optimized in terms of both the number of features and the classifier type.

As remarked in Sec. 4.3.2, we consider four different ML-based classifiers,

namely C4.5, RF, NB SD and BN TAN, these latter two being the best-

performing Näıve Bayes and Bayesian Networks alternatives (cf. §4.4.1). We

remark that, to avoid a combinatorial explosion of the optimization prob-

lem, we resort to the per-node optimization rationale described in Sec. 4.2.1.

Based on the above rationale, in Fig. 4.6 we report the classification perfor-

mance in terms of accuracy (Fig. 4.6a), F-measure (Fig. 4.6c) and G-mean

(Fig. 4.6e), by comparing the flat classification approaches with the per-

node optimized hierarchical classifier. This proposed (optimized) hierarchi-

cal classifier is able, at least, to perform at the tth (t = 1, 2, 3) level on a par

with the corresponding flat classifier explicitly designed to solve the classi-

fication task at the same level. In detail, such optimized hierarchical ap-

proach is able to achieve 99.81% (resp. 99.83%), 95.81% (resp. 97.44%) and

75.56% (resp. 85.89%) F-measure (resp. G-mean) score at L1, L2, and L3,

respectively. These results (almost) represent a tie at L1, whereas +1.51%

(resp. +1.73%) and +4.42% (resp. +3.16%) gains are experienced at L2 and

L3, respectively. Moreover, from a statistical significance viewpoint, we ob-

served a gain of the HC approach in 97.5% of the cases over the considered

folds. The details of the optimized HC are reported in Fig. 4.7, where for

each classifier node the employed classification algorithm and the number of

features are reported. Remarkably, RF denotes the best classifier for each

node-specific classification task, while only for the classifier of Tor App ap-

plications BN TAN provides higher performance. Instead, the variability of
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the optimal number of features underlines no clear trend, except that usu-

ally I2P-related node classifiers require a lower number of features, at least

when leveraging those in TC set.
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(a) Fine-grained optimized hierarchical structure with TC set.

Classifier #Classes Accuracy F-measure G-mean

C0 → 1© L1 = 3 99.81 (± 0.06) 99.81 (± 0.06) 99.83 (± 0.05)

C1 → 2© L1 = 3 99.97 (± 0.04) 99.91 (± 0.20) 99.97 (± 0.04)

C2 → 3© L2 = 3 95.05 (± 0.29) 91.53 (± 1.06) 93.29 (± 0.79)

C11 → 4© L11 = 3 99.58 (± 1.25) 99.58 (± 1.25) 99.69 (± 0.94)

C12 → 5© L12 = 5 99.72 (± 0.12) 99.44 (± 0.21) 99.63 (± 0.14)

C21 → 6© L21 = 3 72.42 (± 1.32) 58.43 (± 1.63) 69.00 (± 1.26)

C22 → 7© L22 = 3 48.94 (± 0.51) 48.90 (± 0.52) 60.37 (± 0.42)

C23 → 8© L23 = 5 75.12 (± 5.95) 72.50 (± 6.99) 81.68 (± 4.58)

(b) Performance metrics with TC set.

Figure 4.7: Fine-grained optimized hierarchical structure with TC set (a). Optimal num-
ber of features for each classifier node is shown in square brackets. Lighter
red color points to worse performance. Related per-node metrics are shown
in (b), with < 60% F-measure nodes highlighted in gray.

Optimization for Early Traffic Classification. Herein we evaluate

the hierarchical framework when the classifiers are fed with features in

EarlyTC set (see §4.3.2) to investigate the possibility of performing “early”



classification of anonymous traffic. For the present analysis, we consider

PLs and IATs of the first K = 1, . . . , 16 (non-zero payload) packets. Specifi-

cally, we remove from dataset D5 (see Fig. 2.9) all the instances whose first

K = 20 packets have all zero payload. We recall that these correspond to

a super-set of those removed in the case of flow-based TC (i.e. the result-

ing dataset D̄5), as we are removing also the instances with some payload

exchange after the first 20 (zero-payload) packets. The reason for a differ-

ent filtering procedure is to avoid submitting “non-informative” (referring

to the first K = 20 packets) instances to the considered classifiers.

This analysis helps assessing the framework capability in supporting

early TC, that is to evaluate how soon and to which degree ATs and re-

lated services can be identified. To this end, we have paralleled the previous

investigations in the early-TC scenario. Nonetheless, herein we omit the re-

dundant details, and comment only the final (most interesting) results. We

remark again that the main difference with the previous analysis concerns

the feature selection process, herein performed on a time-basis (i.e. only the

features drawn from the first K packets are considered).

First, the results show that a näıve hierarchical “extension” of the best

flat L3 classifier (in this case a BN TAN with K = 11 packets) is not able to

provide improved performance (e.g., 48.80% F-measure at L3, as opposed to

50.23% in the flat case). This result highlights a key difference with respect

to the scenario leveraging TC set and emphasizes the need for hierarchical-

specific optimization in such case. Secondly, we investigate (as in Fig. 4.5)

how varying the features corresponding to the first K packets could improve

the performance of the näıve hierarchical extension, and compare it with

the best flat counterpart. Our investigations reveal that a performance

saturation is observed after ≈ 10 packets, and that the HC approach is

able to improve the best flat L3 approach in terms of G-mean, whereas
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a performance drop both in terms of accuracy and F-measure is observed

for all the values of K considered. Finally, fine-grained optimization (see

Figs. 4.6b, 4.6d, and 4.6f) provides higher performance with respect to the

optimized flat case, e.g., +1.71% F-measure and +1.59% G-mean at L3. In

this case, from a statistical significance viewpoint, we observed a gain of HC

approach in 90.0% of the cases over the considered folds.
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(a) Fine-grained optimized hierarchical structure with
EarlyTC set.

Classifier #Classes Accuracy F-measure G-mean

C0 → 1© L1 = 3 99.80 (± 0.05) 99.78 (± 0.06) 99.87 (± 0.04)

C1 → 2© L1 = 3 99.20 (± 0.12) 90.48 (± 1.61) 94.82 (± 1.27)

C2 → 3© L2 = 3 72.20 (± 0.81) 60.61 (± 1.70) 66.85 (± 1.02)

C11 → 4© L11 = 3 63.42 (± 4.92) 63.27 (± 4.92) 72.01 (± 3.85)

C12 → 5© L12 = 5 99.69 (± 0.07) 99.55 (± 0.18) 99.63 (± 0.13)

C21 → 6© L21 = 3 67.37 (± 0.81) 44.56 (± 1.45) 56.38 (± 0.97)

C22 → 7© L22 = 3 43.47 (± 0.75) 43.13 (± 0.72) 55.76 (± 0.63)

C23 → 8© L23 = 5 50.67 (± 9.21) 37.75 (± 11.24) 58.04 (± 7.81)

(b) Performance metrics with with EarlyTC set.

Figure 4.8: Fine-grained optimized hierarchical structure with EarlyTC set (a). Optimal
number of features for each classifier node is shown in square brackets. Lighter
blue color points to worse performance. Related per-node metrics are shown
in (b), with < 60% F-measure nodes highlighted in gray.



The corresponding optimized hierarchical structure is shown in Fig. 4.8

and—when compared to Fig. 4.7—clearly shows that per-node optimized

classifiers significantly differ in type and number of features, thus motivating

the need for fine-tuned optimization of the proposed HC. Although the

HC gain is not significant, its operating principle allows to delve into the

“information structure” of the anonymous TC problem and highlight critical

points, by excluding potential performance drops due to the size of the

classification task, as shown by the following detailed performance analysis.

4.4.3 Detailed Traffic Classification Performance

In this section, we perform a detailed performance evaluation of HC, dis-

cussing the results of per-node and per-class breakdowns and, finally, the

application of a censoring threshold to flat and hierarchical ATs’ traffic clas-

sifiers.

Per-node Detailed Classification Performance. We report in Tabs.

4.7b and 4.8b the detailed per-node classification performance, correspond-

ing to our optimized hierarchical classifier fed with TC set and EarlyTC set

features, respectively.

The following interesting observations can be made on the reported tree

representation. First, with respect to Anonymous Network Level classifica-

tion (L1), the nodes present near-ideal performance both when relying on

TC set and EarlyTC set, thus showing almost no errors propagating from

HC of anonymous networks. Secondly, at Traffic Type Level (L2) both the

approaches based on TC set and EarlyTC set show near-ideal performance

in classifying Tor traffic types, whereas some performance degradation is

observed in classification of I2P traffic types; this phenomenon is more pe-

nalizing in the early-TC case, with I2P F-measure dropping down to 60.61%.
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This represents one of the main causes of performance difference among the

two scenarios, as all these errors are propagated downwards. Finally, at

Application Level (L3), the behavior of the classifier nodes is more varied.

Indeed, referring to the approach based on TC set, it is apparent that Tor

nodes (i.e. TorApp and TorPT ) work well, whereas on I2P nodes significant

degradations (higher than those at L2) are observed, with I2PApp80BW suf-

fering the most significant. Differently, discrimination within each I2P traffic

type and TorApp is only possible with < 65% F-measure with the features

in EarlyTC set. Therefore, classification within I2PApp80BW cannot be

accurately attained with neither of the considered feature sets, thus confirm-

ing the intuition that I2PApp80BW represents traffic obtained by mixing

different apps. In such a case, the advantage of the classification task split

into sub-problems cannot exceed a certain threshold, due to the impossi-

bility of discerning applications within this traffic type, resorting to the set

of the available features, suggesting the use of more sophisticated classifier

nodes (as DL-based ones described in Chapter 5) and HC approaches.

Nevertheless, this analysis witnesses the appeal and effectiveness of the

HC framework also in real environments and provides insights in identifying

performance bottlenecks which lie on a very limited set of nodes in the

hierarchy (e.g., those in charge of classifying applications running within

I2P). This, for example, confirms the common thinking that I2P provides

a higher privacy level, from the TC viewpoint, with respect to Tor, at the

expenses of increased latency.

Per-Class Performance Breakdown. The classification at L3 is a chal-

lenging task but also the most interesting from a user’s privacy perspective.

Consequently, in Fig. 4.9 we report the per-class performance breakdown of

HC results in terms of confusion matrices at L3, comparing them against
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(a) Flat TC applied to L3.
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(b) Hierarchical TC at L3.
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(c) Flat early TC applied to L3.
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(d) Hierarchical early TC at L3.

Figure 4.9: L3 confusion matrices ([%] in log scale) of the best flat and hierarchical clas-
sifiers in flow-based TC (red) and early TC (blue).

the results obtained with the best-performing flat approach, being the RF

fed with 65 statistical features and the BNs fed with the first 11 packet

lengths in the case of flow-based and early TC, respectively. We recall that

for these matrices the higher the concentration toward the main diagonal,

the better the overall performance. Further, to highlight how errors at L3

which do not imply misclassifications at L1/L2 are less severe and should

be promoted as opposed to the others, in the same figures we also highlight

the error patterns confined to the same traffic type (solid boxes) and the
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same anonymous network (dashed boxes).

First, comparing flat and hierarchical approaches (Figs. 4.9a and 4.9b,

respectively), we can observe a reduction of error-patterns in the latter

case, highlighting the beneficial “divide-et-impera” principle of HC. Sec-

ondly, confusion matrices at L1 (dashed boxes) show that classifiers based

on both approaches (with different quantitative outcomes) present error

patterns which almost entirely lead to a misclassification of the traffic type

within the same anonymous network. Differently, referring to L2 standpoint

(solid boxes), HC provides improved capabilities in confining errors to the

same traffic type, especially in the case of I2P traffic. A similar considera-

tion applies to early-TC results (Figs. 4.9c and 4.9d) and, in particular, to

the errors concerning the applications of I2P Apps and Tor Apps. Hence,

HC approach performance clearly highlights the inability, not depending on

the size of the classification task, in satisfactorily discriminating (with an

early-TC setup in mind) among I2P traffic types and within their corre-

sponding applications, along with those in Tor Apps. On the other hand,

the results confirm the outcomes of [160], witnessing that the obfuscation

implemented by Tor Pluggable Transports induces a class fingerprint eas-

ily distinguishable (≥ 99% accuracy, see C2 classifier in Figs. 4.7 and 4.8)

from both Normal Tor Traffic and Tor Apps. Overall, this evaluation, delv-

ing into misclassification patterns and their severity, proves that the HC

approach better confines misclassifications in the same anonymous network

and even in the same traffic type.

Performance with Reject Option. Finally, in Fig. 4.10 we focus on

the adoption of censoring threshold(s) for flat and hierarchical classification

of ATs. Specifically, we report L3 performance, being the hardest task

considered. We recall that, although in the flat case there is only a single
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Figure 4.10: F-measures and Classified Ratios (CR) of best classifiers vs. γ.

tunable γ (referred to as FC3), HC allows to set a different threshold value

at each node (e.g., for Cij the threshold γij can be adjusted independently

from the others, see Sec. 4.2.1). Nonetheless, as a preliminary investigation

toward the censored behavior of the HC approach—to avoid cumbersome

analyses—we consider two simplified options: considering only a common

γ value shared by (a) all the nodes in the hierarchy (HCall) and (b) solely

by the classifier nodes concurring to L3 classification (HC3). Accordingly,

we report the F-measure vs. γ (similar trends have been observed for the

other metrics) along with the corresponding trend of the Classified Ratio

(CR) (viz. the percentage of classified samples).

Although using such thresholds cannot be intended as a panacea able

to cope with high-confidence wrong predictions, results pertaining to the

adoption of TC set show performance improvement with increasing γ. In
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detail, both hierarchical variants offer performance gain with higher CR—

corresponding to less discarded flows—with respect to FC3 (e.g., ≈ 80% F-

measure is attained with ≈ 80% CR), with HCall having slightly improved

performance, while incurring in a slightly lower CR, due to the presence

of non-zero thresholds for nodes at higher levels in the hierarchy. On the

other hand, in the early-TC scenario, the CR is lower for hierarchical ap-

proaches, while HCall provides slightly improved performance than FC3,

whose performance do not benefit from a γ increase. Nonetheless, such re-

sults underline how progressive censoring via per-node thresholds may be a

viable option for further performance improvement and paves the way for

developing advanced HC optimization, based, for example, on the automatic

computation of reject thresholds possibly differing at each node.





Chapter 5

Traffic Classification using
Deep Learning

In Chapters 3 and 4, we have described two different “structural” (viz.

design) enhancements (i.e. multi- and hierarchical-classification approach,

respectively) to standard ML traffic classifiers, able to improve classification

performance at various degrees. In addition to these latter, in this chapter

we propose the adoption of Deep Learning (DL) paradigm for the design

of classifiers able to deal with the challenging characteristics of mobile and

encrypted traffic. Indeed, the successful use of ML classifiers, both standard

and based on more complex structures (as MC and HC), relies on obtaining

handcrafted features from traffic objects that are suitable to accomplish the

specific classification task. As seen in previous chapters, in the TC context,

these usually correspond to statistics or other information (see Tabs. 3.1

and 4.1) extracted from the sequence of PLs or IATs.

On the other hand, in Sec. 1.3.4, we have shown how DL allows train-

ing classifiers directly from input data by automatically distilling structured

and complex feature representations [68], avoiding the domain-expert driven

feature-design process peculiar of “traditional” ML-based classification, be-



ing usually time-consuming, hardly automatable, and unable to keep the

pace of (mobile) network traffic evolution and mix. Since this process might

preclude the design of accurate and up-to-date mobile-traffic classifiers, we

believe that DL may be the stepping stone toward high-performing TC in

the dynamic and demanding mobile context, marked by a high number of

apps, possibly generating similar traffic patterns and with complex finger-

prints due to scarce number of training samples per app and device/OS/ver-

sion diversity. This intuition is also confirmed by recent survey [28] dis-

cussing the application of DL to mobile and wireless networking that iden-

tifies in advanced DL techniques a powerful enabler for effective app-level

data mining in encrypted TC.

However, DL benefits should not be taken for granted and its näıve adop-

tion to (mobile and encrypted) TC may imply misleading design choices and

lead to biased conclusions, due to the peculiar (and tricky) nature of net-

work traffic data. Last but not least, this traffic-data nature is heterogeneous

and its whole capitalization is yet to be achieved. This constitutes, in our

opinion, one of the main gaps to fill (viz. the prerequisite) for the success-

ful employment of DL assets to mobile TC, thus echoing its fruitful use in

“mature” fields, such as image and natural language processing [68].

Hence, we propose for the first time (cf. Tab. 5.1) the design of mo-

bile traffic classifiers able to operate with encrypted traffic via the adoption

of DL umbrella. To this end, we resort to the development of a systematic

framework for the design of novel DL-based TC architectures and compar-

ison of existing ones, declined in this chapter in the mobile scenario, but

having a wider applicability to encrypted TC. This originates from a critical

analysis (later provided in Sec. 5.1) of several non-mobile-specific DL clas-

sifiers recently appeared in TC literature [21, 47, 81, 91, 92, 94] and here

reproduced, so as to avoid focusing on a specific DL technique and draw
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close-to-general conclusions. In detail, the proposed framework dissects the

DL-based TC problem from different viewpoints (highlighted via Fig. 5.1):

(A) the traffic object adopted, (B) the type (and the amount) of input data

fed to the DL classifier, (C) the DL architecture employed, and (D) the

required set of performance measures for an objective and comprehensive

evaluation.

On the basis of these design milestones, we resort to the proposed frame-

work to provide a constructive design-oriented contribution for addressing

the multi-view capitalization of traffic data via a novel multi-modal DL-

based mobile traffic classification (MIMETIC) architecture, having the ca-

pability of exploiting effectively the heterogeneous nature of the different

views of a traffic object (e.g., payload bytes or header fields), by captur-

ing both intra- and inter-modalities dependence. It is worth noting that

multi-modal DL constitutes also a full-fledged generalization of the multi-

classification framework—in this context also referred to as late (or score/de-

cision) fusion—devised in Chapter 3. Although its adoption is obtaining a

growing and wider interest in the scientific literature [164, 165, 166], no

such approach has been proposed in (mobile) TC literature to date, up to

our knowledge. Since the capitalization of multi-modality in DL architec-

tures is far from trivial [166], it requires a thorough design which cannot

ignore expertise from network traffic monitoring. Hence, MIMETIC ap-

proach is carefully defined herein in terms of the general architecture and

proposed training procedure.

Our framework (expressly the evaluation workbench) is then applied

to a realistic experimental setup, consisting of the three different mobile

datasets of real human users’ activity described in Sec. 2.5.1. Our aim

is to assess the most appealing (single-modal) DL techniques, the potential

gain with respect to ML-based best alternatives and shallow architectures—



so as to justify the need for complex hierarchically-arranged features—and

highlight open issues for real-time and accurate mobile TC via DL. Up to our

knowledge, no similar systematic approach and experimental investigation

have been performed in the mobile scenario to date.

Moreover, we evaluate MIMETIC performance in the same setup and

compare it with the best (resulting from the aforementioned assessment)

single-modal DL-based and state-of-the-art ML-based traffic classifiers pre-

viously dissected, so as to draw close-to-general take-aways. Experimental

results highlight a performance improvement of the implemented MIMETIC

instance in terms of both concise and fine-grained measures, while report-

ing a lower training time (more than three times) with respect to existing

(single-modal) DL-based traffic classifiers. Specifically, the proposed imple-

mentation outperforms the best baseline up to +8.66% in terms of F-measure

(i.e. 82.99% when classifying the traffic generated by iOS apps). The im-

provement is also observed with respect to classifier fusion (as described in

Chapter 3) of best single-modal DL baselines, also unexplored to date. To

provide a finer performance control, we also enrich MIMETIC (and base-

lines) with the option of censoring some “unsure” classifications (i.e. it is

equipped with a “reject option”, see §1.3.2). Corresponding results report

very high performance with a moderate (controllable) number of unclassified

instances. Lastly, we deepen their (soft-output) behavior via a calibration

analysis to verify if the estimated class-prediction probabilities are repre-

sentative of the actual class probabilities.

The outcomes of this analysis underline the deficiencies of current DL-

based traffic classifiers and the need for: (i) unbiased, informative, and

heterogeneous inputs extrapolated from traffic data, (ii) sophisticated

(e.g., multi-modal) DL architectures, and (iii) a rigorous and multifaceted

performance evaluation. In this regard, it represents a first attempt to ad-
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dress (i) and (ii) issues, being also a “safe” groundwork for paving the way

to the design of accurate DL-based classifiers coping with highly-diverse mo-

bile traffic and able to capitalize its multi-view nature, whereas it provides

designers with a fine-level performance evaluation workbench (iii).

The rest of this chapter is organized as follows. Sec. 5.1 reviews the

related DL-based TC literature; Sec. 5.2 describes the DL framework for

mobile TC, focusing on key aspects to address, including the performance

evaluation workbench here proposed; in Sec. 5.3, we illustrate the MIMETIC

architecture, the training procedure adopted, and its implemented instance;

finally, the experimental evaluation is reported and discussed in Sec. 5.4.

5.1 Related Works

In this section, we firstly provide an intuitive categorization, via a systematic

taxonomy, of literature on DL-based Internet TC. Successively, we give the

details of these works, briefly discussing also DL applied to the conceptually-

similar task of WF, along with a wrap-up discussion that highlights the

limitations of current literature.

As pointed out in Secs. 1.4 and 3.1, a number of works have faced mobile

TC in the last five years, under encrypted-traffic assumption, mostly using

ML and based on bot-generated traffic (see Tab 1.2). On the other hand,

the appeal of DL to TC is confirmed by several recent works providing

initial design attempts of DL-based traffic classifiers, either not-mobile or

not-encrypted. In Tab. 1.2, we have already shown that all these works use

human-generated traffic datasets to evaluate their proposals. Also, from our

thorough search, TC in the mobile and encrypted scenario by means of DL

appears unexplored to date.

In detail, in Tab. 5.1, we summarize and categorize each work performing



Table 5.1: Summary of previous works (by year) tackling TC-related tasks via DL-based approaches. Only our DL
framework & MIRAGE deal with mobile and encrypted app traffic using a multimodal DL-based classifier.

Paper Task MT ET TO Classes� Input Data F Classifier MM Performance

Wang [81] TI/TC # # BF 25 protocols TCP payload [1000 B] # SAE # ≥ 90% prec. & rec.

Wang et al. [21] TC #  F/BF ≤ 20 malware/apps PCAP/L4 payload [784 B] # 2D-CNN # ≥ 89% per-class metrics

Wang et al. [94] TI/TC #  F/BF ≤ 12 traffic types PCAP/L4 payload [784 B] # 1D-CNN # +2.51% w.r.t. [21]

Chen et al. [90] TC #  BF 5 protocols/apps PS, IAT, PD [10 packets] # 2D-CNN # 88.4% best acc.

Lotfollahi et al. [92] TC #  P 17 / 12 apps L2 payload [1500 B] # SAE, 1D-CNN # 95% / 97% F-meas.

Lopez et al. [91] TI/TC #  BF 108 services 6 fields [20 packets] # LSTM+2D-CNN # 95.7% best F-meas.

Rimmer et al. [25] WF #  TS 900 websites Cell directions [150÷5k] # SDAE, CNN, LSTM # 94% acc.

Oh et al. [47] WF #  TS 100 websites Cell directions [784] # MLP, 2D-CNN, AE # 92% / 1% rec. / fall-out

Vu et al. [93] TI #  BF 2 SSH/nonSSH Flow-based statistics  AC-GAN # ≈ 95% F-meas.

Li et al. [89] TC  # H 12 Android apps HTTP fields [28×36 B] # VAE # 99.6% acc.

Chen et al. [96] TC #  P 6 apps L2 payload [39×39 B] # 2D-CNN # > 85% acc.

Li et al. [101] TC #  P 10 protocols/apps L4 payload # LSTM, bi-GRU # ≥ 90% F-meas.

Huang et al. [23] TI/TC #  BF 9 Trojans PCAP [1024 B] # 2D-CNN # > 90% per-class metrics

Shi et al. [98] TC #  BF 10 traffic types ML&DL-selected features  DBN # ≈ 60% G-mean

Sirinam et al. [26] WF #  TS 100 websites Cell directions [5k] # SDAE, CNN # 99% / 94% prec. / rec.

Zhang et al. [99] TC #  BF 10 services Flow-based statistics  SAE # ≥ 90% F-meas.

Wang et al. [100] TC #  P 15 apps L2 payload [1480 B] # MLP, SAE, 2D-CNN # ≥ 96% F-meas.

Liu et al. [102] TC #  BF 18 apps IP packet lengths [128] # bi-GRU # ≈ 99% mean TPR

Sun et al. [103] TC #  BF ≤ 50 apps Flow-based statistics  DNN # ≈ 97 best acc.

Zeng et al. [104] TI/TC #  BF 6 traffic types PCAP [900 B]* # 1D-CNN, LSTM, SAE # 99.8% best acc.

DL framework
& MIMETIC

TC   BF
49 Android apps

45 iOS apps

PCAP/L4 payload [256÷2304 B]
4 - 6 fields [4÷32 packets]

PD [784 packets]
#

SAE, LSTM, GRU,
1D-CNN, 2D-CNN,

LSTM+2D-CNN
 +8.6% MIMETIC acc.

w.r.t. best baseline

Multi-Modal (MM). Encrypted Traffic (ET). Mobile Traffic (MT). Features (F).
Task: Traffic Classification (TC), Traffic Identification (TI), Website Fingerprinting (WF).
Traffic Object (TO): biflow (BF), flow (F), HTTP session (H), packet (P), Tor cell sequence (TS).

Input Data: inter-arrival times (IAT), packet directions (PD), packet sizes (PS), raw data of PCAP trace (PCAP), Xth layer of ISO/OSI
model (LX).
Classifier: Auxiliary Classifier Generative Adversarial Network (AC-GAN), AutoEncoder (AE), Bidirectional Gated Recurrent Unit (bi-
GRU), Convolutional Neural Network (CNN), Deep Belief Network (DBN), Deep Neural Network (DNN), Long Short-Term Memory (LSTM),
MultiLayer Perceptron (MLP), Stacked AutoEncoder (SAE), Stacked Denoising AutoEncoder (SDAE), Variational AutoEncoder (VAE); +
symbol indicates hybrid architectures.
�: in Classes “apps” do not refer to mobile apps, if not stated explicitly (e.g., Android or iOS).
*: TCP/UDP headers and MAC addresses are removed.
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TC-related tasks via DL based on (a) the specific task it tackles (i.e. TI, TC,

or WF), whether (b) it focuses on the mobile scenario, and (c) it tackles en-

crypted TC. For each study, we surface from a design viewpoint: (i) the traf-

fic segmentation criterion employed (i.e. the traffic object), (ii) the classes

to discriminate between, (iii) the input type used to feed the classifier,

(iv) the specific DL classifier adopted, and (v) whether the DL architecture

is multi-modal (i.e. it is fed with multiple types of input). Furthermore, the

flag features integrates (iii), stressing the counter-productive use of hand-

crafted features as input data for DL architectures. Finally, we report the

(best) classification performance each proposal achieves. The above cate-

gorization prompts some caveats and warning flags in the adoption of the

approaches reported in Tab. 5.1 to the mobile and encrypted context. Each

of these is discussed hereinafter with regards to each separate aspect.

Regarding the traffic objects, we observe that the flows and biflows are

the most-common choices under the encrypted-traffic assumption, whereas

the HTTP sessions cannot be used in presence of encrypted traffic, due to

the need to access the cleartext of transport layer payload to define such

packet aggregation. Similarly, though DL-based TC can in principle be

performed on a per-packet basis [92], the common labeling among packets

of the same communication and the unavailability of cleartext payload in

each encrypted packet discourage the use of this traffic object.

Regarding inputs, although raw payload is widely used as a relevant in-

put type for DL architectures, the size and layer chosen vary from work

to work and layer choices lower than transport level are likely to intro-

duce bias in TC performance as we shall demonstrate in Sec. 5.4.1. The

same reasoning applies to byte-converted raw traces including also PCAP

metadata [21, 94] and inputs comprising source/destination port fields [91].

Equally important, the counter-productive application of DL to manually-



extracted traffic features, as opposed to input data, nullifies a key asset of

DL paradigm, that is no need of human-expert intervention for designing

informative features.

Referring to DL architectures all the works have designed DL traffic clas-

sifiers based on a single input type (viz. single-modal). Furthermore, some

research [21, 23, 96, 90, 91, 100] has used arbitrarily-shaped 2-D convolu-

tional layers as the relevant block to handle a naturally 1-D input (i.e. a

traffic packet series). Lastly, only the work in [91] (in addition to our DL

framework) started exploiting the composition possibilities offered by hy-

brid architectures (marked with + in the classifier column) allowed by the

connectionist philosophy underlying DL.

Details on State-of-the-art Traffic Classification via Deep Learn-

ing. Henceforth, we first discuss the applications of DL to the problem of

encrypted WF, then we complete our review of related literature by ana-

lyzing recent DL proposals to standard TC. Oh et al. [47] study the usage

of DL for WF and also prove its effectiveness on feature extraction—via

an AutoEncoder (AE)—for state-of-the-art ML algorithms. The results un-

derline that DL architectures successfully detect which website the user

visited among 100 ones against 100k background websites. A novel DL-

based method to deanonymize Tor traffic is proposed in [25] and tested on

a very-large WF dataset made of ≥ 3 ·106 network traces. The results high-

light that the performance achieved via DL is comparable to state-of-the-art

deanonymization attacks, with the best-performing DL model being +2%

accurate. Finally, Sirinam et al. [26] develop a WF attack against Tor which

is evaluated against state-of-the-art defenses (i.e. WTF-PAD and Walkie-

Talkie). Performance evaluation in an open-world setting shows that the

attack is effective against undefended traffic, while still relevant (95/70% of
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precision/recall) in case WTF-PAD defense is employed.

A first DL approach applied to cleartext TI and TC, but seamlessly

applicable also to encrypted traffic, is presented in [81], employing Stacked

AutoEncoders (SAEs) and comparing them to standard neural networks.

The results show that the SAE outperforms the latter and achieves ≥ 90%

precision and recall in protocol identification (on 25 most popular protocols),

and ≥ 80% class prediction probability on 6.7k out of 10k traffic samples

unrecognizable via DPI. The SAE, although trained on manually-designed

features, is also recently applied to TC in [99], showing that it outperforms

an SVC and achieves a high F-measure (≥ 90%) on a real-world dataset

comprising the traffic of 10 different services.

On the other hand, Wang et al. [21] propose a novel malware TC, based

on 2D-Convolutional Neural Networks (CNNs) and explicitly devised for

encrypted traffic. The approach is tested on a dataset (≈ 752k instances)

consisting of (i) 10 malware traffic types from public websites and (ii) 10

normal traffic types, in two different tasks: (i) malware vs. normal (TI)

and (ii) traffic-type (20 classes) classification. Also, to feed the classifier

the authors use two different choices of raw “traffic images” (named “ALL”

and “L7”) dependent on the protocol layers considered to extract the input

data, showing that biflow-based TC with “ALL” (referred to as “PCAP” in

Tab. 5.1) is the most informative and reaches the best performance for all

the metrics considered. Unfortunately, such design choice led to biased re-

sults1. In [94] the same authors devise a similar approach for encrypted TC

based on the 1D-CNN. The experiments are conducted on a selection of the

“ISCX VPN-nonVPN” (non-mobile) dataset [107] and consist of four differ-

ent setups including VPN/nonVPN TI, encrypted TC (6 or 12 classes), and

1We provide a thorough comparison taking into account this issue in Sec. 5.4.1.



TC of VPN-encapsulated data (6 classes). Consistently with [21], the con-

figuration “Biflow + ALL” performs the best. Moreover, the configuration-

optimized 1D-CNN always achieves higher accuracy than a 2D-CNN coun-

terpart (being both however ≥ 80%) in all the setups, uniformly with the

1-D nature of traffic packet series, and almost always outperforms the C4.5

classifier originally designed in [107]. The same dataset is used to test Deep

Packet [92] and Datanet [100], two DL-based encrypted traffic classifiers

working at packet-level and adopting a 1D/2D-CNN, a (deep) MultiLayer

Perceptron (MLP), or a SAE. In the former case, Deep Packet achieves an

average 95% (resp. 97%) F-measure for the application identification (resp.

traffic characterization) task, consisting of 17 applications (resp. 12 activi-

ties). In the latter case, Datanet reaches ≥ 96% F-measure with both the

SAE and 2D-CNN in discriminating among a subset of 15 applications. In

both studies the first 1480 bytes of L2 payload are used as the input, thus

leading to biased performance. Deep-Full-Range [104] is another framework

leveraging DL for encrypted TC and intrusion detection that is evaluated

by means of the “ISCX VPN-nonVPN” dataset along with the “ISCX 2012

IDS” one [167]. An 1D-CNN, Long Short-Term Memory (LSTM), and SAE

with L1 regularization are adopted for both the tasks on two subsets of the

above-mentioned datasets, comprising 6 encrypted and 5 malware traffic

types, respectively. The best performance is obtained with an 1D-CNN in

the first case (99.8% accuracy) and an LSTM in the latter (99.4% accuracy).

Different DL architectures for encrypted TC, based on hybrid com-

positions of LSTM and 2D-CNN layers, are proposed in [91]. The best-

performing of these variants attains an accuracy (resp. F-measure) up to

96.32% (resp. 95.74%) on a dataset captured on the Spanish academic back-

bone network and consisting of ≈ 266k biflows belonging to 108 distinct ser-

vices. The analysis also highlights (i) a performance drop by including IATs



Related Works 173

in the input and (ii) that 5 ÷ 15 packets are enough for satisfying results.

LSTM and Gated Recurrent Unit (GRU) layers are also employed in the

Byte Segment Neural Network architecture [101] proposed for datagram-

based classification and based on L4 payload. The experimental analysis,

on a self-generated dataset made of 10 classes (protocols and applications),

reports a ≥ 90% F-measure for the applications/protocols considered. As

a further innovation, Huang et al. [23] propose a multi-task DL approach

(with a 2D-CNN) to simultaneously solve TI and TC tasks: (i) malware

binary detection, (ii) binary recognition of VPN-encapsulation, and (iii)

Trojan classification (9 classes). Devised approach is successfully tested on

data assembled from “CTU-13” malware and “ISCX VPN-nonVPN” traffic

datasets.

Similarly, Chen et al. [90] propose Seq2Img, a pipeline made of repro-

ducing kernel Hilbert space embeddings (producing an equivalent image)

and a 2D-CNN architecture, suitable for early TC (namely, based on the

first 10 packets), where three packet informative fields (i.e. the PL differ-

ence, IAT, and packet direction) and the server IP address are used as the

input. The approach is validated on two self-generated datasets whose traf-

fic is related to five protocols and five Internet applications, respectively,

achieving 99.84% and 88.42% accuracy. Shi et al. [98] devise a novel fea-

ture optimization approach, based on deep belief networks and ML-based

feature selection techniques to improve TC performance, by overcoming the

negative impacts of multi-class imbalance and concept drift. Experiments

on real traffic traces show that the proposed approach outperforms existing

ML classifiers and a deep belief network without feature selection. Another

application of DL to TC with imbalanced network data is found in [93],

where an auxiliary-classifier generative adversarial network is used to gen-

erate synthesized samples again in the form of a set of handcrafted features,



for training set balancing, to be used by ML classifiers. The method, tested

on the NIMS dataset [136], outperforms a counterpart based on the syn-

thetic minority over-sampling technique.

More recently, Sun et al. [103] also employ a set of 16 handcrafted statis-

tics for feeding a multi-output deep neural network to simultaneously solve

three classification tasks, namely the duration, the flow rate (both divided

in two classes based on their median values), and the application. The au-

thors leverage four subsets of two network traffic traces dataset (i.e. the

WITS [168] and MOORE [106] ones) to evaluate their approach. Experi-

mental results attain up 95.82%, 98.17%, and 97.26% accuracy for duration,

flow rate, and application classification, respectively. However, performance

degradation is evidenced when transfer learning (i.e. training the classifier

on the target task starting from a structure pre-trained using data from the

other tasks) or one shot learning (i.e. training the classifier with a lot of

data from the other tasks and small data from the target task) are taken

into account.

FS-Net is a model for encrypted TC proposed in [102] that jointly learns

representative features from the packet length sequences of each biflow

and uses them for classification. It leverages a multi-layer bidirectional-

GRU encoder to learn the representation of the sequence and a multi-layer

bidirectional-GRU decoder to reconstruct the original sequence, using both

encoded and decoded features for TC. Authors uses a dataset self-captured

from a real-world campus network environment [169], encompassing > 956k

biflows from 18 applications, to evaluate FS-Net. Comparison with state-

of-the-art feature generation and TC techniques shows that FS-Net outper-

forms them reaching up to 99% average TPR against 0.05% average FPR.

To the best of our knowledge, the sole application of DL to mobile TC

seems to be [89], where a DL classifier, based on variational AE and input
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data taken from the reconstructed HTTP session (i.e. designed only for

clear traffic) is proposed and tested on a self-generated dataset.

Limitations of Existing Literature. The above literature review high-

lights the following limitations, which are addressed by our methodology for

DL-based TC.

First, it underlines the scattered nature of the existing approaches pur-

suing DL-based TC, as well as their implicit (or partially-justified) design

choices. This underlies the lack of a systematic design path, defining the key

pillars for the conception and implementation of a practical DL-based mo-

bile TC architecture, and motivates the need for a general DL framework

(developed herein) explicitly capitalizing these aspects by molding them

into rigorously-defined milestones. Moreover, most of the existing DL-based

TC approaches are analyzed in terms of per-class or synthetic classification

metrics [21, 91, 92, 94, 101], without investigating their performance behav-

ior at a finer-level. Differently, to draw firm conclusions, our performance

evaluation also resorts to our systematic evaluation workbench, allowing to

compare and assess performance comprehensively, for example from com-

plementary viewpoints (i.e. classification performance and complexity) and

at different levels of granularity.

On the basis of this comprehensive analysis, we confirm the inability of

current DL approaches of consistently outperforming the ML-based ones in

realistic and challenging mobile contexts. We trace these deficiencies back

to the use of only a single-modality in their end-to-end design. As a con-

sequence, in contrast to existing DL-based TC literature, our MIMETIC

framework is designed to exploit different modalities (viz. views or inputs)

jointly, and thus to reap DL promised benefits. Precisely, our proposal

is shown to provide a performance improvement in the challenging mobile



scenario with respect to (ML) state-of-the-art [43], single-modal DL base-

lines [91, 94], and even classifier fusion attempts of their outputs (cf. Chap-

ter 3), thus proving that the gain is due to our prescribed framework, and

not to the mere combination of DL algorithms.

5.2 A Framework for Deep Learning-based
Mobile Encrypted Traffic Classification
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Figure 5.1: Framework for design, tuning, and comparison of DL architectures for TC.

This section analyzes the milestones that should be taken into account

for the design of a DL-based (mobile) traffic classifier. We also dissect the

application of DL to TC by examining the most common choices made in

the state-of-the-art. In detail, the design milestones we consider are:

• Traffic object : the traffic aggregate atom which induces the segmen-

tation criterion (§5.2.1).

• Type(s) of input data: the number and sets of input selected from

each traffic object to feed the DL architecture (§5.2.2).

• DL architecture: the peculiar DL architecture (e.g., the composition

instance of elementary learning layers), coping with input and output
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constraints originating from the design choices concerning the number

and type(s) of input data (§5.2.3).

• Performance evaluation workbench: the measures used for a compre-

hensive performance evaluation of the DL architecture (§5.2.4).

Based on these points, Fig. 5.1 sketches out the framework devised for the

systematic design, tuning, and comparison of DL-based traffic classifiers.

It is worth pointing out that all the DL classifiers proposed for TC have

been carefully analyzed and reproduced. In detail, we have set the hyper-

parameter values suggested in their respective works or performed a basic

tuning procedure when the latter are not reported. We have leveraged the

DL models provided by Keras [170] (Python) API running on top of Ten-

sorFlow [171] to implement and test these approaches.

In the next sections, we discuss each design element of our DL-based

mobile TC framework separately.

5.2.1 Traffic Object

A key choice regards how raw traffic is segmented into multiple discrete

units (cf. §1.3.1). Considering mobile and encrypted traffic, we here suggest

the use of either flows or biflows. Indeed, as reported in Tab. 5.1, most of

the related works considered one of these as the relevant objects of classifica-

tion, with the latter generally achieving better performance with respect to

its flow-based counterpart [21, 94]. Other appealing choices are given by the

TCP connection and the service burst. The former differs from the biflow

only in the initiation and termination heuristics. The latter has been re-

cently adopted in mobile TC [41, 43] to exploit the bursty traffic-nature and

we have also employed it consistently in Chapter 3. Although appealing, a

definition of reasonable (and effective) input data for service bursts is not



as straightforward as in the case of (bi)flows given the presence of a varying

number of biflows toward the same destination IP/port. Moreover, while

there is longstanding practical experience and mature technology working

with biflows, using classification results from service bursts becomes hard

to translate into actionable and sensible reactions. Still, the service bursts

have not seen their direct application to security and policy enforcement

so far, as opposed to the ubiquitous (bi)flows. Lastly, in some works (cf.

Tab. 5.1) the (finest) object of classification is the single packet, entailing

the toughest TC task.

5.2.2 Types of Input Data

The recommended types of input data of a generic TC object ingested by

DL architectures may be roughly grouped within three categories:

I. The first Nb bytes of payload of traffic object [21, 81, 94].

II. The first Nb bytes of raw data pertaining to the PCAP file related to

the traffic object [21, 23, 94].

III. Informative data fields of the first Np packets [91, 102].

Based on the aforementioned categorization, it is worth noticing that

all the types of input data considered for DL are naturally suited for early

TC [39].

In the first case, the data being fed to the DL architecture is represented

by payload only, with input data in binary format. In all these works, the

payload is arranged in a byte-wise fashion and normalized so as to constrain

it within [0, 1]. The choice is always justified as a means to reduce the input

size for the DL architecture. On the other hand, the layer and size of the

payload being chosen depend on the specific work. For example, in [81]
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these correspond to the first 1000 bytes of TCP payload. A similar choice

is made in [94, 21] for the input labeled as “L7”, where 784 bytes from

the application layer in TCP/IP model are considered. Differently, in [92]

and [100] the authors consider the first 1500 and 1480 payload bytes at layer

2, respectively, namely the IP header and the first 1480 bytes of each IP

payload which results in a 1500 bytes input vector.

The second type of input data attempts to gather information from all

protocol layers (denoted with “ALL” layers in [21, 94]) as in some rele-

vant cases the data from levels lower than layer 7 also contain some useful

traffic information (such as transport-layer ports or flags), as pointed out

in [21, 94]. Then, since the considered data are typically captured at the

data-link layer, the payload from frames of layer 2 is extracted. However,

the traffic provided in this case is always in the form of PCAP files, con-

taining information that could introduce a bias in the classification results.2

Specifically, in [21, 94] only the first 784 bytes of each TC object are em-

ployed. On the other hand, other works chose different input sizes, as 1024

bytes [23] or 900 byte [104]3, justifying the need for careful fine-tuning of

the input size (see Sec. 5.4).

Finally, the third type of input data is represented by selected protocol

fields, not pertaining to the explicit inspection of encrypted payload, of the

first Np packets. For example, in [91], the authors consider only the first 20

packets exchanged into a traffic object (i.e. a biflow), and, for each packet,

the following 6 fields are extracted (thus a 20 × 6 matrix is obtained for

2We underline that the extraction of “ALL” layers input includes PCAP metadata
besides raw packet data (from MAC layer, included). In detail, PCAP global header is of
24 bytes and each packet is also prepended with a 16-byte header, including a timestamp
at µs granularity and packet size information.

3In this latter case, the authors explicitly remove TCP/UDP headers and MAC ad-
dresses with the aim to reduce bias.
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each traffic object): source and destination ports, number of bytes in trans-

port layer payload, TCP window size4, IAT, and packet direction (∈ {0, 1}).
However, as for the second input type, taking into account port informa-

tion could lead to biased classification performance. Similarly, in [102], the

lengths at the IP layer of the first 128 packets are considered—being how-

ever not suited for early TC—whereas in [90] the PL difference, IAT, and

packet direction of the first 10 packets are employed. We also highlight

that the binary-valued sequence of packets/messages directions has been

also recently employed in DL-based WF [25, 47].

Finally, we conclude the discussion mentioning that in all the above

cases, there may be instances longer or shorter than the considered fixed-

length (Nb or Np) data inputs. In such cases, longer instances are trun-

cated to the designed length of bytes (Nb) or packets (Np), in the case of

first/second or third type of data, respectively, whereas in the case of shorter

instances, padding with zeros is always applied in all the discussed works.
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5.2.3 Deep Learning-based Classification Architectures

Our framework defines four classes of DL architectures, as shown in Fig. 5.2,

based on two orthogonal aspects:

• Whether they are fed with a single type (single-modal) or multiple

types (multi-modal) of input modalities, to capitalize complementary

viewpoints of the same traffic object (e.g., using the first Nb bytes

of transport-level payload together with the informative data fields of

the first Np packets).

• Whether they are in charge of providing inference for one (single-task)

or multiple (multi-task) TC problems (e.g., inferring both the traffic-

type and the specific application generating a (bi)flow).

These DL architectures are obtained by composition of elementary lay-

ers [68], whose common choices are dense, convolutional, pooling, and re-

current layers (see Fig. 5.2):

• Dense layers (named also fully-connected) are the simplest atoms of

feed-forward DL architectures, consisting of an affine matrix operation

(i.e. a linear transformation) on inputs, followed by an entry-wise

activation function.

• Convolutional layers are the basic building blocks of CNNs, made

of a set of translation-invariant filters with a limited extent (i.e. the

“receptive field”) which are convolved with the input, with the aim of

extracting the features of a certain input region. Their most common

forms adhere to a 1-D or 2-D layout, depending on the specific input

nature.

4The TCP window size is set to zero for UDP packets.



• Pooling layers are other key components of CNNs and typically fol-

low a convolutional layer. They perform the down-sampling of the

intermediate representations from convolutional layers, with the aim

of complexity reduction and overfitting mitigation. Max- and average-

pooling are the most common.

• Recurrent layers present loopy connections and have in Long Short-

Term Memory and Gated Recurrent Unit their most popular variants.

These are in charge of recalling values over time, via a state vector,

and accept as input a vector sequence. Differently, they output either

the final state or its entire time-evolution.

In a nutshell, these elementary layers represent the building blocks of

more complex (i.e. deep) architectures, that in turn, on the basis of their

input/output configuration, belong to one of the above-mentioned classes.

Therefore, we now review the architectures obtained from these elementary

layers and employed (in their single-modal variants) for DL-based (non mo-

bile) TC.

For convenience, in the following, we define the mth instance of the train-

ing set (made of M samples, with M` being the number of samples belonging

to `th app) as x(m) while the corresponding label with `(m), belonging to one

among L different classes (i.e. `(m) ∈ {1, . . . , L}). All the considered DL

classifiers are trained to minimize the categorical cross-entropy loss func-

tion [68]:

L(·) ,
M∑
m=1

{
−

L∑
l=1

tl,(m) log cl,(m)

}
(5.1)

In the above equation, the one-hot representations of the label c(m) ,[
c1,(m) · · · cL,(m)

]T
and of the corresponding predicted vector t(m) ,[

t1,(m) · · · tL,(m)

]T
are employed. The minimization of the loss L(·) is
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Figure 5.3: DL architectures for TC: SAE (a), CNN (b), and LSTM/GRU (c).

achieved by means of standard (first-order) local optimizers (e.g., stochas-

tic gradient descent, adaptive moment estimation, etc.), resorting to the

usual back-propagation for the gradient evaluation (cf. §1.3.4). We also

highlight that in a common DL architecture, the last layer is followed by a

softmax returning a vector that represents the probability distributions of

each class.

In Fig. 5.3, we have sketched the following DL-based architectures:

(a) Stacked AutoEncoder (SAE): The SAE (Fig. 5.3a) relies on the ba-

sic AE, commonly employed for (unsupervised) feature learning, and

whose aim is to (ideally) set the output y(m) ≈ x(m), ∀m = 1, . . . ,M ,

by learning a compressed data representation. Specifically, the first

AE block (i.e. the encoder) provides a lower-dimensional data rep-

resentation via a hidden layer of neurons, whereas the second block

(i.e. the decoder) tries to reconstruct the data from the compressed

representation. It is worth noticing that the encoder is a particular

dense layer.

In practice, to obtain improved performance, a more complex (hier-

archical) architecture, namely the SAE, has been proposed [68]. This

scheme employs unsupervised greedy layer-wise pre-training (top part



of Fig. 5.3a) which stacks up several AEs so that the lower-dimensional

representation obtained from jth AE is used as the input of (j + 1)th

AE (i.e. each layer of the network is trained by keeping the weights

of lower layers frozen). After training greedily the AE layers, a final

softmax layer is added and supervised fine-tuning (i.e. a refinement

of all layers’ weights) of the whole network (bottom part of Fig. 5.3a)

for the classification task is performed (i.e. using x(1), . . . ,x(M) along

with `(1), . . . , `(M)). A relevant application of SAE to TC is found

in [92], consisting of five stacked layers—with {400, 300, 200, 100, 50}
neurons and 25% dropout-probability [68] after each layer (to mitigate

over-fitting)—all employing rectified linear unit activations.

(b) Convolutional Neural Networks (CNNs): The CNNs (Fig. 5.3b) are

widely-used DL models, inspired by visual mechanism of living or-

ganisms, and made of chained convolutional and (typically) pooling

layers. The higher layers of a CNN are usually a few dense layers sim-

ilar to those of the AE compressing stage, with the last having the

essential softmax activation. For example, the architecture in [94] is

made of two 1D convolutional layers (with 32 and 64 filters, respec-

tively), each followed by a 1D max-pooling, and terminated with two

dense layers.

Similarly, the CNN in [21] is obtained by replacing 1D with 2D (pool-

ing/convolutional) layers and interpreting the input as a “traffic im-

age”. A similar 2D-CNN is also considered in [91], where batch nor-

malization [68] is also applied after each max-pooling layer. Differ-

ently, in [92] a 1D-CNN consisting of two 1D convolutional layers (200

and 80 filters, respectively, with 1D average-pooling) and seven fully-

connected layers (with {600, 500, 400, 300, 200, 100, 50} neurons), all
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having rectified linear unit activations, is considered. Additionally, to

avoid the over-fitting, 25% dropout after the pooling layers and early

stopping technique are adopted [68].

(c) Long Short-Term Memory (LSTM) / Gated Recurrent Unit (GRU):

An LSTM (Fig. 5.3c) is a popular (easier to train) variant of recur-

rent neural networks having unit connections forming a directed cycle

and being able to model dynamic temporal behaviors with “long-term

dependencies” [68]. A neural network made of LSTM units is often

called an LSTM network.

An LSTM unit is in charge of “remembering” values (via a state vector

h[t]) over arbitrary time intervals and is composed of a cell, input,

output, and forget gates, while having as input a vector sequence of

length T : x[1], . . . ,x[T ] (i.e. each training instance is a matrix). The

final hidden state h[T ] corresponds to the output of the LSTM unit. A

standard LSTM network for classification is usually terminated with

a few dense layers, with the last having a softmax activation. On

the other hand, when several LSTM layers are stacked, they expose

as output (except for the last one) the finer-grained time-evolution of

the state vs. the input sequence, h[1], . . . ,h[T ] (modeling a “return-

sequences” behavior), forming the input to the higher LSTM layer.5

Similarly, a GRU unit is in charge of modeling long-term dependencies

like the LSTM, but it operates using only reset and update gates. Con-

sequently, a GRU network has less parameters to train [68] and thus

it is computationally more efficient (i.e. it uses less memory and it can

5We highlight that for successive LSTM layers, the temporal-dimension of data-input
does not change, whereas the vector-size of the successive inputs does, being function of
the size of the hidden state.



be trained faster). It should be noted that LSTM and GRU units can

be also conceived in an improved “bidirectional” form, namely their

internal representation is split into forward and backward directions.

For example in [91] a standard LSTM ending with two fully-connected

layers of 100 and 108 nodes (the latter being the number of services

to discriminate from) is considered. Interestingly, a stack of LSTM

layers is also proposed in [91] in the context of hybrid architectures,

as described henceforth.

Indeed, the discussed elementary learning layers can be also jointly em-

ployed within a single hybrid DL architecture. For example, architectures

based on the combination of 2D convolutional and LSTM layers may be con-

ceived [91], where the output tensor of the convolutional layer is reshaped

into a matrix fed as input to an LSTM unit.

5.2.4 Performance Evaluation Workbench

The proposed comparison framework includes the following common per-

formance measures (see §1.3.2): (i) accuracy, (ii) precision, (iii) recall, and

(iv) specificity. Since the latter three are defined on a per-app basis, we

consider the F-measure and the G-mean so as to account for their effects

concisely, and employ their arithmetically averaged (viz. macro) versions.

We consider also the Top-K accuracy to analyze the soft-output of a DL

classifier and report the confusion matrices with the aim of recognizing the

most frequent misclassification patterns. Additionally, we test the classifiers

when equipped with a reject option (with threshold γ) to evaluate the effec-

tiveness of tuning γ for improving classification performance with respect

to decreasing in CR.
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Moreover, to further deepen soft-output behavior, this performance eval-

uation workbench enables a calibration analysis, that allows to check whether

the class-probability estimates are representative of the true-class (poste-

rior) probabilities. Indeed, a miscalibrated classifier produces confidences

(i.e. class-prediction probabilities) that could not represent the true prob-

abilities, leading to either excessively optimistic or pessimistic decisions.

Specifically, we leverage reliability diagrams that show the accuracy as a

function of confidence and are obtained by partitioning the predictions into

M equally-spaced bins and calculating the accuracy of each bin. If the

classifier is perfectly calibrated, then the diagram should plot the identity

function (e.g., operating with 70% confidence leads to 70% accuracy) and

any deviation from a perfect diagonal represents a miscalibration. In ad-

dition to reliability diagrams, for conciseness we report also the Expected

Calibration Error (ECE). The latter measure is defined as the weighted

(based on the number of samples) mean, evaluated over all the bins, of the

difference between accuracy and confidence [172].

For completeness, as a preliminary investigation of the computational

complexity of DL-architectures’ training phase, we report their training

time, given the specificity of such phase in mobile TC, due to apps’ fin-

gerprint aging because of their (and OS) updates. Precisely, since training

is performed on multiple epochs [68], we report such info in a terse (nor-

malized) way, by providing the Run-Time Per-Epoch (RTPE).

Finally, for each considered analysis, our evaluation is based on a (strat-

ified) ten-fold cross-validation, (i) representing a stable evaluation process

and (ii) maintaining the same share of class imbalance in both training and

test sets within each fold. Accordingly, we report both the mean and the

variance of each performance measure as a result of the evaluation on the

ten different folds.



5.3 The MIMETIC Architecture

In the previous section, we have sketched the design milestones for the

fruitful application of DL to (mobile) TC, dissecting the most common

choices made in related literature according to these milestones, and defining

a framework for tuning and comparison of DL-based traffic classifiers. In

view of these considerations, herein, we resort to the proposed framework to

capitalize the multi-modal nature of traffic data by means of a novel multi-

modal DL-based mobile traffic classification (MIMETIC) architecture.

We introduce MIMETIC, starting from the high-level architectural de-

scription, in Sec. 5.3.1. We then focus, in Sec. 5.3.2, on the general procedure

adopted for training it. Both the architectural description and the train-

ing procedure are shown in Fig. 5.4 from a conceptual standpoint. Finally,

in Sec. 5.3.3, we focus on the specific instance of MIMETIC (see Fig. 5.5)

chosen and evaluated in later Sec. 5.4.

In the following, we refer to the same notation introduced in Sec. 5.2.3.

Overall, Tab. 5.2 describes the mathematical notations used to define the

MIMETIC architecture.

5.3.1 Architectural Overview

In Sec. 1.3.4, we have have shown that DL approaches—as opposed to ML-

based ones—are able to learn app fingerprints in an end-to-end fashion,

that is directly from the type of input selected, thus defeating the tedious

and lowly-adaptable process of feature design. However, the traffic data

is highly-structured by definition, as it contains information referring to

the whole protocol stack. As a result, a monolithic DL architecture taking

the whole information coming from a TC object in bulk—early (or data)

fusion—is likely to be suboptimal, since the parameter set would overfit to
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Table 5.2: List of the mathematical notations used to define the MIMETIC architecture.

Symbol Definition

M Number of training samples

M` Number of training samples of the `th app

P Number of different inputs (modalities)

Jp Number of single-modality layers

x(m) mth sample of the training set

`(m) Label (true class) of x(m)

t(m) One-hot representation of `(m)

c(m) Predicted class confidences of x(m)

CE(t, c) Categorical cross-entropy between t and c

wm Weight assigned to x(m)

θp Parameters of the pth single-modality layers

θ↑p Parameters optimized in pre-training and fine-tuning

θ↓p Parameters optimized only in pre-training

θstub
p Parameters of the pth “stub” layer

θ0 Parameters of the shared representation layers

θ̂p Pre-trained parameters of the pth single-modality layers

θ̂stub
p Trained parameters of the pth “stub” layer

Lp(·) Loss function minimized in pre-training of pth modality

L(·) Loss function minimized in fine-tuning

h[t] State vector of recurrent layers

one input subset while underfitting the others. Differently, the capitalization

of score-results—late (or score/decision) fusion or multi-classification—of

DL-based traffic classifiers built on different modalities, although effective

in some cases (cf. Chapter 3), is not able to fully exploit the benefits of

multi-modality (as also shown experimentally in Sec. 5.4). Based on these

reasons, multi-modal DL is here foreseen as an appealing alternative toward

a sophisticated form of information fusion, named intermediate fusion [166],

overcoming both the limitations of the early (or data) fusion and late (or

score/decision) fusion, offering a truly-flexible tool for practical mobile TC
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Figure 5.4: General illustration of the MIMETIC architecture. (a) depicts the archi-
tecture by highlighting single-modality representation layers, differentiated
as those that are only pre-trained (IM1) and those that are also fine-tuned
(IM2), and shared representation-layers (MM), along with the correspond-
ing parameter set. (b) and (c) depict the proposed training procedure based
on pre-training and fine-tuning.

enjoying multi-modality. The description of the MIMETIC architecture is

provided hereinafter.

As sketched in Fig. 5.4a, at an abstract level, the architecture

of MIMETIC is fed with P different inputs (modalities or views) for each

traffic object to be classified, with the pth modality provided from Input-

datap extraction block. Such deep network architecture is firstly composed

of Jp single-modality (input-specific) layers (depicted with different colors,

i.e. blue and red, in Fig. 5.4), allowing to extract in an increasingly-abstract

fashion the discriminative features pertaining to the pth view, capitalizing

intra-modality dependence. Specifically, the set of parameters referring to

single-modality layers of the pth modality is referred to as θp. On top of
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these layers, the abstract features are joined via a merge layer (in green in

Fig. 5.4), which represents the first layer channeling the modality-specific

distilled information toward a joint multi-modal representation. Although

the most general (and common) choice is represented by a concatenation

operation, other approaches may be pursued in case the abstract features

originating from different modalities have the same size, for example aver-

aging, entry-wise maximum, etc.

Finally, the architecture is completed with a few shared representation

layers (also in green), distilling the features capturing inter-modality de-

pendencies, and the usual softmax layer, returning the soft-output vec-

tor for the mobile TC task considered. Hereinafter, the set of parame-

ters related to shared representation layers (plus the final softmax) is re-

ferred to as θ0. Also, to promote regularization (so as to avoid overfit-

ting), dropout between successive layers and early-stopping techniques are

adopted [68]. Single-modality and shared-representation layers are com-

monly implemented choosing from the elementary layers prescribed in our

framework and described in Sec. 5.2.3.

Given the general definition of the MIMETIC architecture, we next de-

scribe the algorithmic procedure for its training.

5.3.2 Proposed Training Procedure

The high-level procedure suggested for training a classifier in the MIMETIC

architecture is shown as pseudocode in Algorithm 1 and described hereafter.

The architecture of MIMETIC is trained via a two-stage phase, made

of pre-training and fine-tuning [68]. The reason for a preliminary pre-

training procedure is to correctly distill discriminative information from

each modality so as to capitalize the advantage of the multi-modal traf-

fic representation. Before proceeding, we recall that training of DL ap-



Algorithm 1 Pseudo-code of MIMETIC Training Procedure.

/* pre-training */

1 for Modality p ∈ [1, P ] do /* parallelizable */

2 ( θ̂p, θ̂
stub
p ) ← trainSingleM(θp,θ

stub
p ,TrainingSet)

/* θ̂stub
p is discarded */

3 [θ̂↓p θ̂
↑
p]← θ̂p ; /* θ̂p is split */

4 end

/* fine-tuning */

5 θ↓ ← θ̂↓1,...,P ; /* frozen */

6 θ↑ ← θ̂↑1,...,P ; /* initialized */

7 ( θ0,θ
↑ ) ← trainMultiM(θ0,θ↓,θ↑,TrainingSet)

proaches resort to the “one-hot” representation [68] of each label `(m),

namely t(m) , [t1,(m), · · · , tL,(m)], whose entries are all zero, save from a

single “1” corresponding to `th(m) class.

Specifically, each single-modality stack is first (pre-)trained indepen-

dently, that is without the shared representation layers and by topping

each modality chain with a softmax layer “stub”, whose parameters are

collected within θstub
p —see Alg. 1 lines 1–4 and Fig. 5.4b. Specifically, the

pth “stubbed” chain is trained to minimize the classification loss function

Lp(·) with the intent of promoting pth modality capability to solve the TC

task alone, defined as:

Lp
(
θp,θ

stub
p

)
=

M∑
m=1

wm CE(t(m), c(m)[θp,θ
stub
p ]) (5.2)

We recall that the vector c(m) , [c1,(m), · · · , cL,(m)] collects the predicted

class confidences of DL classifier (which depend on the network parame-

ters) for the label of the mth training sample. These confidences should

be as close as possible to the (ground-truth originated) one-hot vector
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t(m) , [t1,(m), · · · , tL,(m)]. Such distance is measured via CE(t, c) ,

−{∑`=1 t` log c`}, denoting the categorical cross-entropy of the mth train-

ing sample. Furthermore, differently than the categorical cross-entropy com-

monly minimized by (single-modal) DL classifiers (as in defined in Sec. 5.2.3),

MIMETIC includes the minimization of a general weighted form of the cat-

egorical cross-entropy, with wm denoting the weight of the mth sample,

enabling cost-sensitive learning [68]. Indeed, the weight wm allows penal-

izing/favoring, during training phase, the discrimination capability toward

some app(s) and/or mitigating the class-imbalance problem. The learned

parameters from the above optimization are indicated with (θ̂p, θ̂
stub
p ).

Specifically, for each pth modality, the learned parameter set θ̂p is split

in [θ̂↓p θ̂
↑
p], corresponding to pre-trained parameters of low-layers (IM1 in

Fig. 5.4a) and high-layers (IM2 in Fig. 5.4a) in DL hierarchy, respectively.

Then, during the fine-tuning phase—see Fig. 5.4c and Alg. 1 lines 5–7—

the above softmax stubs are removed (i.e. θ̂stub
1 , · · · , θ̂stub

P are discarded from

the optimization before actual fine-tuning) and the training of the whole

MIMETIC architecture is performed (i.e. including both the parameters

of single-modality layers θ1, · · · ,θP and of shared-representation layers θ0,

associated to the MM block). However, as a result of the pre-training

phase, a share of single-modality layers (i.e. those corresponding to low-

layers in DL hierarchy, named IM1) are typically frozen when fine-tuning

phase is performed. This is due to the fact that the low-level layers refer

to intra-modality automatic feature extraction [165]. In other terms, within

θP ,
[
θ↓p θ↑p

]
only the subset θ↑p is (further) optimized during fine-tuning

(i.e. those corresponding to IM2), while θ↓p is kept fixed to the value learned

during pre-training, that is θ↓p = θ̂↓p. As a result, the following weighted form



of the categorical cross-entropy loss function is minimized:

L
(
θ↑1, · · · ,θ↑P ,θ0

)
,

M∑
m=1

wm CE(t(m), c(m)[θ
↑
1, · · · ,θ↑P ,θ0]) (5.3)

The loss functions concerning pre-training and fine-tuning phases (i.e. Lp(·)
and L(·), respectively) are minimized via standard first-order local optimiz-

ers (e.g., SGD, ADAM, etc.), resorting to the usual back-propagation for

gradient evaluation [68].

We now present the specific instance obtained from MIMETIC frame-

work and used for the experimental evaluation.

5.3.3 Implementation of a Traffic Classifier
based on MIMETIC

The specific implementation6 of the proposed MIMETIC architecture (see

Fig. 5.5) operates at biflow level—as prescribed in our proposed frame-

work and aiming at a consistent comparison with most of earlier works (see

Tab. 5.1) employing single-modal DL for TC—and is made of P = 2 modal-

ities. Based on the analysis carried out in Sec. 5.2.2, these are fed with

the corresponding two types of input prescribed in our framework, that

are naturally suited for early TC and have been already employed success-

fully in most related works performing TC via single-modal DL: (I) the first

Nb bytes (normalized within [0, 1]) of payload; (III) informative protocol

fields—namely: number of bytes in transport-layer payload, TCP window

size (set to zero for UDP), IAT, and packet direction (∈ {0, 1})—of the

first Np packets. We remark that we focus on payload at the application-

6We highlight that consistently with the DL models employed for single-modal DL
classifiers described in Sec. 5.2.3, we have leveraged Keras [170] (Python) API running
on top of TensorFlow [171] to implement and test the MIMETIC instance described in
this section.
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Figure 5.5: Implementation of considered traffic classifier based on the MIMETIC archi-
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layer (viz. L4 payload) in TCP/IP stack in (I) and, also, we do not con-

sider (II) input type (viz. the first Nb bytes of raw data belonging to the

PCAP file) as well as port info in (III), as otherwise these latter may both

lead to biased and inflated performance, as we show in Sec. 5.4.1. Finally,

pre-processing operations prescribed in Sec. 5.2.2 are also performed on in-

stances longer/shorter than the designed length of bytes (Nb) or packets

(Np). We underline that the above “traffic-originated” modalities refer to

different levels of abstraction (packet vs. biflow depth) and standpoints

(encryption-dependent vs. encryption independent) for the observed traffic.

This inspired the adoption of a multi-modal architecture to improve classi-

fication performance, as later supported by the experimental validation in

Sec. 5.4. For the mentioned reasons, we parallel the use of both modalities

as for audio and video modalities in natural language understanding.

Hereinafter, we refer to the building blocks of Fig. 5.5 to describe the

specific implementation of the proposed MIMETIC architecture. The single-

modality layers of the first view (the “payload” modality) are two 1D convo-

lutional layers (CONV1.1 and CONV1.2, made of 16 and 32 filters, respec-

tively, with kernel size of 25, unit stride, and rectified linear unit activa-



tions), each followed by a 1D max-pooling layer (POOL1.1 and POOL1.2,

with unit stride and spatial extent equal to 3) and, finally, by one dense

layer (DENSE1.1, with 256 nodes). The reason for this choice is the abil-

ity of 1D convolutional layers to extract spatially-invariant (discriminative)

patterns from the payload. On the other hand, the single-modality layers

of the second view (the “protocol fields” modality) are, in order, a bidirec-

tional GRU (GRU2.1, with 64 nodes and return-sequences behavior) and one

dense layer (DENSE2.1, with 256 nodes). Such choice was driven by the

GRU ability to capture long-term dependencies pertaining to the initial seg-

ments of the biflow, while requiring slightly-less parameters with respect to

the more common LSTM (cf. §5.2.3). The intermediate features of the two

branches are then concatenated via a merge layer (>>), and fed to a dense

(shared-representation) layer (DENSE, with 128 nodes), before the soft-

max (SMAX). In all the layers, the outputs are obtained via rectified linear

unit activations. Finally, 20% dropout is applied after (a) each dense layer

(including the merge layer) and (b) after flattening the 2D representation of

both the stack of convolutional/pooling layers and GRU.

The considered architectural instance is trained via the two-stage phase

described in Sec. 5.3.2. Specifically, all the classification loss functions

(L1(·), · · · ,LP (·) and L(·)) include cost-sensitive learning, here exploited

to mitigate natural class imbalance found in mobile traffic (cf. §2.5). To

this end, the weight wm , M/M`(m) is assigned to mth sample, being in-

versely proportional to the number of training-set samples labeled with

`(m), thus magnifying (resp. decreasing) the contribution of apps with a

few (resp. high) number of samples. Concerning the pre-training phase,

each single-modality stack is first (pre-)trained independently for 25 epochs

each by topping a softmax layer stub and by minimizing the loss Lp(·) (cf.

Eq. (5.2)), so that mobile TC could be performed on either (transport-layer)



Experimental Evaluation 197

payload or protocol fields. Then, fine-tuning of the whole multi-modal

DL architecture is performed (for 40 epochs) after freezing IM1 (i.e. the

low-layers in DL hierarchy), namely the convolutional and recurrent lay-

ers, CONV1.1/CONV1.2 and GRU2.1, respectively, and by minimizing the

loss L(·) (cf. Eq. (5.3)). For both phases, we have employed the ADAM

optimizer (batch size of 50) and the early-stopping technique (to prevent

overfitting) measured on the training accuracy. We underline that the over-

all number of epochs (25 × 2 + 40 = 90) has been chosen by considering

the values suggested in more-related works [21, 91, 94] so as to keep the

complexity low, while properly training the architecture.

5.4 Experimental Evaluation

This section investigates and compares the performance (from both classi-

fication and complexity standpoints) of existing single-modal DL classifiers

(§5.4.1) leveraging the framework—encompassing the evaluation workbench—

proposed in Sec. 5.2. This analysis enables to both outline key guidelines for

the design of effective and unbiased DL-based mobile and encrypted traffic

classifiers and determine the best-performing ones to be used as (one of the)

baselines for the assessment of the performance of devised MIMETIC ap-

proach (§5.4.2). The evaluation is consistently based on the common bench-

mark consisting of the three mobile traffic datasets described in Sec. 2.5.1.

5.4.1 Single-modal Deep Learning-based Classifiers

As just mentioned, we begin our investigation with the systematic com-

parison of the considered single-modal DL architectures. As indicated in

Sec. 5.2, the architectures are trained for 90 epochs, following the sugges-

tions in related studies [21, 47, 81, 91, 94], with the ADAM optimizer (batch



size of 50) and early-stopping technique measured on the training accuracy.

For completeness, two baseline approaches are also included in our analysis

of classification efficacy:

• The flow-based RF developed in [42, 43], that we have already em-

ployed and tested in Chapter 3 (referred to as Tay RF ), showing that

it outperforms other standard ML-based mobile-traffic classifiers when

fed with 40 carefully-handcrafted statistical features7. Therefore, such

flow-based RF represents the current state-of-the-art mobile-traffic

classifier, but is applicable only in the case of “post-mortem” TC,

as opposed to inputs used in DL classifiers, suited for early TC.

• A MLP with only one hidden layer (with 100 nodes), here denoted

as MLP-1, corresponding to a lower-bound on achievable performance

and trained on the same inputs as single-modal DL architectures, so

as to stress the performance achievable by “shallow” learning in the

same setup. Aiming at a consistent comparison, we have used the

same number of epochs (i.e. 90), optimizer (i.e. ADAM), and batch

size (i.e. 50) for training of MLP-1 (along with early-stopping).

Hereinafter, for compactness we refer to type (I) (resp. type (II)) in-

put data corresponding to the first Nb bytes of payload (resp. raw) data as

“L7-Nb” (resp. “ALL-Nb”) [21, 81, 94]. Differently, the Np × 4—indicated

as Np×6 and highlighted through a “?” marker, when ports are included—

input matrix of protocol fields extracted from each biflow (i.e. type (III))

is denoted with “MAT-Np” [91]. For example, considered single-modal

7We recall that these correspond to the 40 best-ranked statistics (i.e. min, max,
mean, standard deviation, variance, mean absolute deviation, skewness, kurtosis, and
percentiles) based on the Gini impurity score and computed on the sets of upstream,
downstream, and complete (i.e. both of them) IP packet lengths (see [42] and §3.2.1).
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DL classifiers adopted Nb = 1000 [81] or Nb = 784 [21, 94] bytes and

Np = 20 [91] packets, respectively. Finally, for consistency, the first Np

packet directions (i.e. type (III)) are reported as “DIR-Np” [47]. We refer

to Sec. 5.2.2 for further details on input data employed.

Table 5.3: Accuracy, F-measure, and G-mean [%] of single-modal DL-based and baseline
traffic classifiers. Results refer to the FB/FBM dataset and are in the format
avg. (± std.) obtained over 10-folds. Results with diamonds (3) and stars
(?) refer to biased inputs and inputs including TCP/UDP ports, respectively.
Best-performing DL-based and shallow classifiers fed with unbiased inputs
are highlighted.

Architecture Accuracy F-measure G-mean

SAE [92] (L7-1000) 73.52 (± 0.82) 71.82 (± 1.31) 70.49 (± 2.25)

2D-CNN [21] (L7-784) 75.56 (± 3.15) 73.95 (± 2.54) 71.81 (± 2.07)

2D-CNN [21] (ALL-784) 3 73.99 (± 3.03) 72.54 (± 2.80) 70.85 (± 3.33)

1D-CNN [94] (L7-784) 76.37 (± 0.73) 75.56 (± 1.01) 74.79 (± 1.76)

1D-CNN [94] (ALL-784) 3 75.91 (± 2.74) 75.53 (± 2.68) 75.46 (± 2.61)

2D-CNN [91] (MAT-20) ? 71.82 (± 1.13) 70.84 (± 1.12) 70.01 (± 1.07)

LSTM [91] (MAT-20) ? 72.59 (± 0.75) 71.76 (± 0.78) 71.10 (± 0.85)

HYBRID [91] (MAT-20) ? 72.36 (± 0.95) 71.41 (± 0.96) 70.58 (± 1.04)

2D-CNN [91] (MAT-20) 73.33 (± 0.93) 72.18 (± 1.04) 71.02 (± 1.16)

LSTM [91] (MAT-20) 73.54 (± 0.49) 72.50 (± 0.58) 71.49 (± 0.85)

HYBRID [91] (MAT-20) 74.26 (± 0.98) 73.23 (± 0.95) 72.18 (± 1.05)

2D-CNN [47] (DIR-784) 66.51 (± 0.57) 63.88 (± 0.82) 61.28 (± 1.23)

MLP-2 [47] (DIR-784) 58.93 (± 0.80) 56.65 (± 2.20) 54.73 (± 3.83)

MLP-1 (L7-1000) 73.78 (± 1.09) 72.58 (± 1.16) 71.95 (± 1.43)

MLP-1 (L7-784) 74.46 (± 0.88) 73.89 (± 0.86) 73.55 (± 0.89)

MLP-1 (ALL-784) 3 76.39 (± 0.96) 75.82 (± 0.90) 75.42 (± 0.91)

MLP-1 (MAT-20) ? 68.66 (± 0.99) 67.65 (± 1.13) 66.88 (± 1.45)

MLP-1 (MAT-20) 68.93 (± 1.32) 67.86 (± 0.94) 66.98 (± 0.75)

Tay RF [42] (biflow-based) 79.56 (± 0.62) 78.73 (± 0.62) 78.37 (± 0.76)

“HYBRID” refers to an hybrid DL architecture combining 2D convolutional and LSTM layers
(viz. LSTM + 2D-CNN) proposed in [91].

Biased vs. Unbiased Input Types. First, in Tabs. 5.3 and 5.4 we

report the results of state-of-the-art single-modal DL-based (and baseline)



approaches fed with inputs (and features) extracted from binary FM/FBM

dataset and multi-class Android and iOS datasets, respectively. We high-

light that the performance of classifiers marked with diamond (3) and star

(?) markers represents results from biased inputs and inputs including source

and destination ports (cf. §5.2.2) and, therefore, they should not be consid-

ered as meaningful elements of comparison. Indeed, a DL classifier fed with

all the data contained in a packet or in a set of packets (e.g., “ALL-Nb” in-

put), and thus overlooking the presence of PCAP metadata, likely leads to

misleading performance results. Similarly, the input including port numbers

yields DL statistical port-based architectures. Furthermore, whether desti-

nation port may be useful in some “static” contexts, this is never the case

for the source port, which is subject to a choice depending on sequential

numbering or, in a more sophisticated fashion, to randomization.

From the inspection of results it is apparent that, referring to the

FB/FBM dataset (cf. Tab. 5.3), only the 1D-CNN (L7-784) is able to out-

perform the shallow classifiers MLP-1 (L7-1000/L7-784) in terms of all the

metrics analyzed (i.e. +1.91%, +1.67%, and +1.24% in terms of accuracy,

F-measure, and G-mean, respectively). This result confirms the intuition

that discriminative information from traffic should be extracted by natu-

rally considering data as one-dimensional (viz. time-series) as compared

to those feeding 2D-CNN (L7-784). Nonetheless, in the binary dataset

neither the best DL classifier is able to achieve performance comparable

with the flow-based Tay RF. This may be attributed to the need of a more

informative type of input or more complex approaches (e.g., MIMETIC),

providing a higher discriminative power in the case of very similar apps,

like FB and FBM. Differently, focusing on the DL approaches with “MAT-

20 (?)” input, the results show that FB/FBM classification task is almost

port-independent, exhibiting even a slight performance gain—e.g., +1.91%
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accuracy with the HYBRID (viz. LSTM + 2D-CNN) (MAT-20) approach—

when ports are removed. This may be the consequence of high port ran-

domization or/and (likely) use of overlapping port sets (e.g., corresponding

to common Facebook-platform services).

On the other hand, referring to multi-class datasets (cf. Tab. 5.4), DL

approaches are able to provide improved performance with respect to shal-

low classifiers with analogous unbiased inputs, namely MLP-1 (L7-1000/L7-

784/MAT-20), and even outperform flow-based state-of-the-art RF. This is

ascribed to DL ability to implicitly learn very complex features able to dis-

tinguish (seemingly) similar traffic generated from different apps and thus

motivating the strong appeal of DL in this challenging scenario. Indeed,

in the Android setup, 85.70% accuracy, 78.68% F-measure, and 86.82% G-

mean are achieved by 1D-CNN (L7-784), as opposed to 84.78%, 75.49%,

and 83.86%, respectively, obtained by Tay RF. We also notice that, in both

datasets, 1D-CNN (L7-784) achieves very similar performance to 2D-CNN

(L7-784), still proving the benefit in considering one-dimensional traffic

data.

A similar reasoning applies to the iOS case, although the LSTM per-

forms the best in terms of the three considered metrics, but only when port

information is taken into account (i.e. with “MAT-20 ?” input). Differ-

ently, a significant performance drop is observed for each DL classifier with

“MAT-20” input compared to its counterpart including both source and des-

tination TCP/UDP ports in the input (“?” marker), highlighting a different

trend with respect to the FB/FBM dataset. For example, up to −19.68%

in F-measure is observed for multi-class datasets, with the worst drop af-

fecting precisely the LSTM in the iOS setup, confirming the assumption

that including port-information could lead to deceptive performance rise.

Finally, the directions of packets belonging to a biflow (albeit representing



Table 5.4: Accuracy, F-measure, and G-mean [%] of single-modal DL-based and baseline traffic classifiers. Results refer
to the the multi-class datasets and are in the format avg. (± std.) obtained over 10-folds. Results with
diamond (3) and star (?) markers refer to biased inputs and inputs including TCP/UDP ports, respectively.
Best-performing DL-based and shallow classifiers fed with unbiased inputs are highlighted for both datasets.

Architecture
Android iOS

Accuracy F-measure G-mean Accuracy F-measure G-mean

SAE [92] (L7-1000) 75.15 (± 1.52) 57.00 (± 2.78) 69.07 (± 3.42) 74.55 (± 0.80) 60.57 (± 2.06) 74.86 (± 1.89)

2D-CNN [21] (L7-784) 85.46 (± 0.48) 78.78 (± 1.39) 86.92 (± 1.26) 82.72 (± 1.47) 74.41 (± 0.90) 83.91 (± 0.95)

2D-CNN [21] (ALL-784)3 95.74 (± 0.24) 92.05 (± 0.65) 95.15 (± 0.56) 95.27 (± 1.19) 92.48 (± 0.91) 95.41 (± 0.76)

1D-CNN [94] (L7-784) 85.70 (± 0.45) 78.68 (± 1.20) 86.82 (± 0.87) 82.64 (± 1.63) 74.34 (± 1.29) 84.00 (± 1.31)

1D-CNN [94] (ALL-784)3 95.73 (± 0.67) 92.18 (± 1.19) 95.42 (± 1.02) 95.97 (± 0.38) 92.33 (± 0.99) 95.45 (± 0.67)

2D-CNN [91] (MAT-20) ? 82.22 (± 0.42) 70.81 (± 0.97) 82.18 (± 0.79) 81.23 (± 0.73) 73.04 (± 1.33) 83.64 (± 1.03)

LSTM [91] (MAT-20) ? 81.18 (± 0.41) 69.68 (± 0.81) 81.21 (± 0.65) 83.54 (± 0.64) 75.95 (± 1.11) 85.88 (± 0.89)

HYBRID [91] (MAT-20) ? 83.53 (± 0.41) 72.02 (± 0.77) 82.51 (± 1.01) 82.28 (± 0.42) 74.22 (± 0.93) 84.36 (± 0.92)

2D-CNN [91] (MAT-20) 76.01 (± 0.70) 62.83 (± 1.28) 75.60 (± 1.29) 68.53 (± 0.61) 58.67 (± 1.22) 72.95 (± 1.30)

LSTM [91] (MAT-20) 73.64 (± 1.56) 59.53 (± 1.40) 73.31 (± 1.01) 66.50 (± 1.03) 56.27 (± 1.73) 71.98 (± 1.45)

HYBRID [91] (MAT-20) 77.95 (± 0.41) 64.52 (± 1.17) 76.35 (± 1.45) 69.17 (± 0.64) 58.75 (± 0.76) 72.17 (± 0.75)

2D-CNN [47] (DIR-784) 40.11 (± 0.56) 15.41 (± 0.82) 24.61 (± 1.18) 32.95 (± 0.65) 11.42 (± 0.62) 18.18 (± 1.06)

MLP-2 [47] (DIR-784) 27.94 (± 0.82) 4.51 (± 0.22) 8.94 (± 0.26) 21.17 (± 0.44) 4.15 (± 0.32) 8.00 (± 0.59)

MLP-1 (L7-1000) 77.76 (± 0.38) 67.85 (± 1.45) 79.75 (± 1.29) 76.11 (± 0.84) 66.95 (± 1.47) 79.63 (± 1.44)

MLP-1 (L7-784) 78.71 (± 0.65) 69.79 (± 1.17) 81.52 (± 1.38) 77.16 (± 0.63) 67.61 (± 1.07) 80.11 (± 0.99)

MLP-1 (ALL-784)3 96.53 (± 0.27) 94.28 (± 0.72) 96.80 (± 0.54) 97.24 (± 0.50) 95.29 (± 0.81) 97.15 (± 0.65)

MLP-1 (MAT-20) ? 72.54 (± 0.47) 58.29 (± 1.11) 71.87 (± 1.27) 66.94 (± 0.90) 56.51 (± 1.24) 70.88 (± 1.08)

MLP-1 (MAT-20) 64.94 (± 0.47) 48.26 (± 0.96) 63.10 (± 1.07) 54.42 (± 0.63) 40.86 (± 1.04) 57.56 (± 1.03)

Tay RF [42] (flow-based) 84.78 (± 0.30) 75.49 (± 0.89) 83.86 (± 0.58) 80.77 (± 0.84) 72.39 (± 1.39) 81.88 (± 1.27)

“HYBRID” refers to an hybrid DL architecture combining 2D convolutional and LSTM layers (viz. LSTM + 2D-CNN) proposed
in [91].
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an unbiased input type) were shown to be not informative enough.

Fine-grained Performance via Top-K Accuracy. Delving into the

performance of DL-based classifiers, in Tab. 5.5 we report their Top-K ac-

curacy (K ∈ {1, 3, 5}) on the multi-class datasets.8 From now on we exclude,

for brevity, the results of DL classifiers based on biased inputs (also those

including port-information). By looking at these fine-grained results, we ob-

serve that, other than the highest DL accuracy, 1D-CNN (resp. 2D-CNN)

(L7-784) reports also the highest global (soft-output) behavior on the An-

droid (resp. iOS) dataset, for example 91.51% and 93.45% (resp. 91.02%

and 93.32%) accuracy when the Top-3 and Top-5 predicted apps are con-

sidered, respectively.9 Also, although shallow (baseline) classifiers present

an accuracy increase due to a larger pool of predicted apps taken into con-

sideration, they are never able to approach the same score as the best DL

classifiers, confirming also an improved global behavior of the latter (viz.

learning of the TC task as a whole). This is due to shallow classifiers’ in-

ability of inferring deeply-structured traffic patterns as a whole. Indeed,

they are not able to predict the true label even when considering the Top-

K classes ranked by their confidence. Such “global” performance gap is

even more apparent for DL classifiers resorting to packet directions, whose

best Top-5 accuracy is only 68.29% (resp. 64.40%) in Android (resp. iOS)

case. Hence, although mobile TC can be conceived as a conceptually-similar

task to WF, it shows higher requirements with respect to the former, since

the sole directions are usually sufficient for training of high-performing WF

classifiers [25, 47]. Finally, the (flow-based) Tay RF classifier provides a

8For the FB/FBM dataset, since the number of classes L = 2, we can define only the
Top-1 accuracy, corresponding to the overall accuracy (see Sec. 1.3.2).

9Still, 1D-CNN (L7-784) performs almost on par on the iOS dataset.



Table 5.5: Top-K accuracy [%] of single-modal DL-based and baseline traffic classifiers. Results refer to the multi-class
datasets and are in the format avg. (± std.) obtained over 10-folds. Only the classifiers fed with unbiased
inputs are shown. Best-performing DL-based and shallow classifiers are highlighted for both datasets.

Architecture
Android iOS

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

SAE [92] (L7-1000) 75.15 (± 1.52) 82.16 (± 0.85) 85.53 (± 0.72) 74.55 (± 0.80) 82.73 (± 0.92) 86.58 (± 0.79)

2D-CNN [21] (L7-784) 85.46 (± 0.48) 91.36 (± 0.31) 93.35 (± 0.30) 82.72 (± 1.47) 91.02 (± 0.42) 93.32 (± 0.33)

1D-CNN [94] (L7-784) 85.70 (± 0.45) 91.51 (± 0.27) 93.45 (± 0.29) 82.64 (± 1.63) 90.95 (± 0.36) 93.29 (± 0.32)

2D-CNN [91] (MAT-20) 76.01 (± 0.70) 86.49 (± 0.53) 90.32 (± 0.39) 68.53 (± 0.61) 82.75 (± 0.46) 87.96 (± 0.36)

LSTM [91] (MAT-20) 73.64 (± 1.56) 85.58 (± 0.58) 89.93 (± 0.50) 66.50 (± 1.03) 81.94 (± 0.88) 87.23 (± 0.73)

HYBRID [91] (MAT-20) 77.95 (± 0.41) 87.38 (± 0.37) 90.80 (± 0.29) 69.17 (± 0.64) 82.23 (± 0.38) 87.16 (± 0.39)

2D-CNN [47] (DIR-784) 40.11 (± 0.56) 58.88 (± 0.56) 68.29 (± 0.52) 32.95 (± 0.65) 53.91 (± 0.72) 64.40 (± 0.63)

MLP-2 [47] (DIR-784) 27.94 (± 0.82) 42.02 (± 0.26) 51.75 (± 0.27) 21.17 (± 0.44) 40.40 (± 0.55) 50.84 (± 0.64)

MLP-1 (L7-1000) 77.76 (± 0.38) 85.96 (± 0.30) 89.11 (± 0.20) 76.11 (± 0.84) 85.86 (± 0.65) 89.48 (± 0.51)

MLP-1 (L7-784) 78.71 (± 0.65) 86.93 (± 0.40) 89.88 (± 0.37) 77.16 (± 0.63) 86.96 (± 0.50) 90.40 (± 0.51)

MLP-1 (MAT-20) 69.94 (± 0.47) 79.22 (± 0.51) 84.94 (± 0.34) 54.42 (± 0.63) 72.47 (± 0.59) 80.03 (± 0.56)

Tay RF [42] (flow-based) 84.78 (± 0.30) 91.69 (± 0.31) 93.89 (± 0.24) 80.78 (± 0.79) 90.70 (± 0.61) 93.58 (± 0.52)

“HYBRID” refers to an hybrid DL architecture combining 2D convolutional and LSTM layers (viz. LSTM + 2D-CNN) proposed
in [91].
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slightly better global behavior than the best single-modal DL classifier on

the Android dataset, reaching 91.69% (resp. 93.89%) Top-3 (resp. Top-5)

accuracy.

Training Complexity of Deep Learning Architectures. To investi-

gate the training complexity of the considered DL classifiers, in Fig. 5.6

we report their RTPE obtained in the three datasets.10 Results highlight

a natural RTPE decrease of each classifier when the size of the classifica-

tion problem is reduced (i.e. moving from the Android dataset, to the iOS

and FB/FBM datasets). Additionally, the two classifiers reaching the high-

est performance are those having the highest RTPE (i.e. 2D-CNN (L7-784)

and 1D-CNN (L7-784)), highlighting a reasonable performance-complexity

trade-off. Referring to the aforementioned two classifiers, we remark that

1D-CNN (L7-784) experiences a higher RTPE than 2D-CNN (L7-784) be-

cause of lower size of the pooling layers (i.e. lower down-sampling) in its

implementation [21, 94].

On the other hand, all DL classifiers based on “MAT-20” input present a

significantly lower complexity, being this a direct consequence of the lower-

dimension input set (20 × 4 = 80 as opposed to 784). Analogous consid-

erations apply to DL classifiers based on “DIR-784” input, having a lower

complexity than those based on “L7-784”, because the former are binary val-

ued, with the 2D-CNN (DIR-784) showing a higher complexity with respect

to MLP-2 (DIR-784), because of its more complex architecture. Finally

we highlight that Fig. 5.6 reports, for the SAE, only the RTPE score cor-

responding to the fine-tuning phase (i.e. in which the SAE is trained in

10The times refer to the same hardware architecture (8× Intel(R) Core(TM) i7-4710MQ
CPU @ 2.50GHz with Ubuntu 16.04 (64 bit)) in the same load conditions (i.e. the DL
classifier is the sole CPU-intensive running process).
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Figure 5.6: Run-Time Per Epoch (RTPE) of DL-based traffic classifiers. Results are in
the format avg. (± std.) obtained over 10-folds. Only the classifiers fed with
unbiased inputs are shown.

a supervised fashion as a “deep” MLP) and thus neglects its pre-training

stage, which contributes additively to the RTPE with a linear growth in the

number of AE layers (since it is done in a layer-wise fashion).11

Classification Performance vs. Input Size. Focusing our investiga-

tion toward the choice of the most discriminative forms of input types, in

Fig. 5.7 we report accuracy, F-measure, and G-mean for the best-performing

single-modal DL classifiers on the three datasets, based on two types12 of

(unbiased) input data considered herein (i.e. “MAT-Np” and “L7-Nb”) vs.

the number of packets Np and payload bytes Nb, varying Nb ∈ {256−2034}
and Np ∈ {4 − 32}, respectively. To highlight the relevant input size-

complexity trade-off, we also report the RTPE measure vs. the size of

the considered input data.

11For example, in our scenario, the observed RTPE for the pre-training phase (of the
five AE layers) equals 16.97 (±0.27) s in Android, 11.35 (±0.08) s in iOS, and 9.21 (±0.15) s
in FB/FBM case.

12We omit, for brevity, the performance with “DIR-Np” input, as it has been shown
to be unable to reach satisfactory performance and its behavior with varying Np can be
qualitatively inferred from “MAT-Np” results.



Experimental Evaluation 207

 55

 60

 65

 70

 75

 80

 4  8  12  16  20  24  28  32
 0

 5

 10

 15

 20

 25

 30

P
e
rc

e
n
ta

g
e

s

Np

Accuracy
F-measure

G-mean
RTPE

(a) (FB/FBM) LSTM + 2D-CNN [91].
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(b) (FB/FBM) 1D-CNN [94].
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(c) (Android) LSTM + 2D-CNN [91].
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(d) (Android) 1D-CNN [94].
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(e) (iOS) LSTM + 2D-CNN [91].
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(f) (iOS) 2D-CNN [21].

Figure 5.7: Performance of the best DL-based classifier fed with “MAT-Np” input (a, c, e)
and “L7-Nb” input (b, d, f): accuracy [%], F-measure [%], G-mean [%] (left
axis), and RTPE [s] (right axis) vs. first Np packets (a, c, e) and first Nb bytes
(b, d, f), for the FB/FBM (a, b), Android (c, d), and iOS (e, f) datasets.
Average on 10-folds and corresponding ±3σ confidence interval are shown.



From the inspection of results, it is apparent that, in the case of the Np

input (Fig. 5.7(a, c, e)), there is a unimodal behavior and 12 − 20 packets

are usually enough to achieve the highest performance (denoting a higher

requirement with respect to the results shown in [91]), although using more

packets entails an increasing of RTPE without a significant improvement in

classification performance, especially in the Android and iOS scenarios.

On the other hand, in the payload size case (Fig. 5.7(b, d, f)), such

trend is less obvious (although N = 576 bytes is observed to be the best

choice among the different sizes considered), with classifiers fed with Nb >

786 payload bytes showing slightly poorer performance with increasing Nb

values.

In both cases an almost-linear increase of the RTPE with the input size

is apparent. The only exception is given by Np = 4 packets: the reason

is that, so as to implement the same DL architecture with a very small

input, we had to resort to a different padding choice, implying additional

complexity.

On the basis of the outcome of this analysis, we can select the best

configuration of Np and Nb values for our MIMETIC architecture, with

the aim of keeping both the complexity low and also allowing an “earlier”

TC. In detail, our MIMETIC instance is fed with the same unbiased input

types (cf. §5.3) of single-modal DL classifiers considered herein, but with

optimized (shorter) amounts of data, namely Np = 12 packets and Nb = 576

bytes. Starting from these considerations, the next section assesses the

proposed MIMETIC architecture.

5.4.2 Proposed MIMETIC-based Classifier

This section examines the performance, from both classification and com-

plexity standpoints, of the MIMETIC approach. Building on the results of
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Sec. 5.4.1, we methodically compares MIMETIC to the best existing single-

modal DL alternatives, to the approaches to fuse their information (see

Chapter 3), and finally to the baselines already considered in Sec. 5.4.1. We

recall that the proposed implementation of MIMETIC is fed with (I) and

(III) input types as prescribed in our framework, with a size of Nb = 576

bytes and Np = 12 packets, respectively.

Overall, four types of baselines are included for the sake of a complete

analysis:

• The first type of baseline is represented by the best single-modal DL

classifiers fed with each of the P = 2 (unbiased) inputs considered in

the MIMETIC approach. In the previous section, we have found that

these correspond to the 1D-CNN13 (with “L7-784” as input) [94] and

the LSTM + 2D-CNN (with “MAT-20” as input) [91]. We remark

that the number of payload bytes (resp. packets) used in 1D-CNN

(resp. LSTM + 2D-CNN) differs from that used for MIMETIC im-

plementation: the reason is to report performance for corresponding

input-optimized versions proposed in the respective works [94, 91].

Moreover, in Fig. 5.7, classification performance does not exhibit an

appreciable gain when using Nb = 576 bytes (resp. Np = 12 packets)

with respect to Nb = 784 byte (resp. Np = 20 packets).

• The second type of baseline corresponds to the shallow MLP (referred

to as MLP-1) already considered in Sec. 5.4.1.

• The third baseline is given by the flow-based RF (denoted as Tay RF)

that we have also adopted in Sec. 5.4.1.

13It is worth noticing that although 2D-CNN (fed with “L7-784”) performs approxi-
mately on par with 1D-CNN (except on the FB/FBM dataset, see Tab. 5.3), it does not
naturally consider the input as one-dimensional, thus being less meaningful.



• The fourth type of baseline corresponds to classifier fusion techniques,

capitalizing the best single-modal DL architecture for each of the

P = 2 inputs considered (namely, the architectures representing the

first set of baselines) and combining them to get (hopefully-)improved

classification results. The combination can be either performed with

(simpler) non-trainable strategies, such as (i) Majority Voting (MV)

and (ii) Soft-Output Average (SOA) (cf. Chapter 3). Alternatively,

(iii) “Trainable” Late Fusion (TLF) can be pursued by concatenat-

ing the softmax layers of the two single-modal DL architectures and

connecting them to a “fusion” softmax layer, in the same spirit of the

“KL weights”, being the best (soft) fusion rule employed in Chap-

ter 3. In the latter case, the same training algorithm (with the same

parameters) as the other DL baselines has been adopted. These com-

biners represent the simplest way to fuse these off-the-shelf DL traffic

classifiers.

General Overview of Performance. As a high-level performance com-

parison, in Tabs. 5.6 and 5.7 we report the results (in terms of accuracy,

F-measure, and G-mean) of the proposed MIMETIC approach, along with

those of the baselines previously introduced, for the FB/FBM and multi-

class datasets, respectively. First, it is apparent that the MIMETIC ar-

chitecture outperforms all the considered elements of comparison for both

metrics on all the three considered datasets, with an improvement up to

+8.66% and +7.05% (i.e. F-measure on the iOS dataset) over the best clas-

sifier (MIOB-C) and fusion technique (MIOB-FT), respectively.

As underlined in the previous section, in the FB/FBM scenario (see

Tab. 5.6), single-modal DL classifiers are able to outperform the correspond-

ing MLP-1 (shallow) counterparts but they cannot reach the performance of
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Table 5.6: Accuracy, F-measure, and G-mean [%] comparison of MIMETIC with the four
groups of baselines: (I) best single-modal DL classifiers, (II) shallow neural
networks, (III) state-of-the-art ML-based mobile-traffic classifier, (IV) classi-
fier fusion techniques. Results refer to the FB/FBM dataset and are in the
format avg. (± std.) obtained over 10-folds. The last group reports the
Maximum Improvement Over Best - Classifier (MIOB-C) and the Maximum
Improvement Over Best - Fusion Technique (MIOB-FT) [%] of MIMETIC ar-
chitecture. Highlighted values: overall best classifier, best baseline classifier
(�), and best baseline fusion technique (‡) for each dataset and performance
measure.

Architecture Accuracy F-measure G-mean

MIMETIC 79.98 (± 0.49) 79.63 (± 0.51) 79.53 (± 0.60)

I
{ 1D-CNN [94] (L7-784) 76.37 (± 0.73) 75.56 (± 1.01) 74.79 (± 1.76)

HYBRID [91] (MAT-20) 74.26 (± 0.98) 73.23 (± 0.95) 72.18 (± 1.05)

II
{ MLP-1 (L7-784) 74.46 (± 0.88) 73.89 (± 0.86) 73.55 (± 0.89)

MLP-1 (MAT-20) 68.93 (± 1.32) 67.86 (± 0.94) 66.98 (± 0.75)

III Tay RF [42] (flow-based) 79.56 (± 0.62)� 78.73 (± 0.62)� 78.37 (± 0.76)�

IV

{ MV 75.13 (± 0.92) 74.48 (± 1.14) 74.02 (± 1.65)

SOA 78.86 (± 0.79) ‡ 78.37 (± 1.00) ‡ 78.06 (± 1.61) ‡
TLF 74.61 (± 1.57) 73.60 (± 1.80) 72.59 (± 2.14)

MIOB-C + 0.42 (± 0.65) + 0.90 (± 0.68) + 1.16 (± 0.99)

MIOB-FT + 1.12 (± 0.89) + 1.26 (± 1.14) + 1.47 (± 1.84)

“HYBRID” refers to an hybrid DL architecture combining 2D convolutional and LSTM layers
(viz. LSTM + 2D-CNN) proposed in [91].

(off-line) Tay RF. We can now notice that even employing fusion techniques

of single-modal DL approaches (i.e. SOA), these latter perform worse than

Tay RF. This may be again attributed to the fact that FB and FBM rely

on several shared services. Hence, their generated traffic looks very similar.

Accordingly, either the whole biflow is required to reach a confident deci-

sion or more sophisticated approaches—such as MIMETIC—are required to

infer complex traffic patterns from the first packets.

On the other hand, referring to the multi-class datasets (see Tab. 5.7), we

have already shown that single-modal DL architectures represent the best



Table 5.7: Accuracy, F-measure, and G-mean [%] comparison of MIMETIC with the four groups of baselines: (I) best
single-modal DL classifiers, (II) shallow neural networks, (III) state-of-the-art ML-based mobile-traffic classifier,
(IV) classifier fusion techniques. Results refer to the the multi-class datasets are in the format avg. (± std.)
obtained over 10-folds. The last group reports the Maximum Improvement Over Best - Classifier (MIOB-C)
and the Maximum Improvement Over Best - Fusion Technique (MIOB-FT) [%] of MIMETIC architecture.
Highlighted values: overall best classifier, best baseline classifier (�), and best baseline fusion technique (‡)
for each dataset and performance measure.

Architecture
Android iOS

Accuracy F-measure G-Mean Accuracy F-measure G-Mean

MIMETIC 89.49 (± 0.32) 81.51 (± 0.93) 91.96 (± 0.95) 89.14 (± 0.82) 82.99 (± 1.14) 92.25 (± 0.84)

I
{ 1D-CNN [94] (L7-784) 85.70 (± 0.45)� 78.68 (± 1.20)� 86.82 (± 0.87)� 82.64 (± 1.63)� 74.34 (± 1.29)� 84.00 (± 1.31)�

HYBRID [91] (MAT-20) 77.95 (± 0.41) 64.52 (± 1.17) 76.35 (± 1.45) 69.17 (± 0.64) 58.75 (± 0.76) 72.17 (± 0.75)

II
{ MLP-1 (L7-784) 78.71 (± 0.65) 69.79 (± 1.17) 81.52 (± 1.38) 77.16 (± 0.63) 67.61 (± 1.07) 80.11 (± 0.99)

MLP-1 (MAT-20) 64.94 (± 0.47) 48.26 (± 0.96) 63.10 (± 1.07) 54.42 (± 0.63) 40.86 (± 1.04) 57.56 (± 1.03)

III Tay RF [42] (flow-based) 84.78 (± 0.30) 75.49 (± 0.89) 83.86 (± 0.58) 80.77 (± 0.84) 72.39 (± 1.39) 81.88 (± 1.27)

IV

{ MV 80.41 (± 0.40) 71.28 (± 0.85) 81.74 (± 0.77) 77.24 (± 0.62) 66.49 (± 0.97) 78.92 (± 0.97)

SOA 87.08 (± 0.29)‡ 80.07 (± 0.81)‡ 87.00 (± 0.80)‡ 84.68 (± 0.55)‡ 75.94 (± 1.10)‡ 84.15 (± 0.96)‡
TLF 68.87 (± 1.05) 48.82 (± 1.92) 62.55 (± 1.86) 62.01 (± 0.97) 39.07 (± 1.52) 54.07 (± 1.94)

MIOB-C + 3.79 (± 0.59) + 2.83 (± 1.66) + 5.14 (± 1.06) + 6.50 (± 2.12) + 8.66 (± 1.77) + 8.25 (± 1.72)

MIOB-FT + 2.40 (± 0.48) + 1.44 (± 1.56) + 4.96 (± 1.46) + 4.46 (± 1.01) + 7.05 (± 1.43) + 8.10 (± 1.27)

“HYBRID” refers to an hybrid DL architecture combining 2D convolutional and LSTM layers (viz. LSTM + 2D-CNN) proposed
in [91].
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baseline (i.e. they outperform both MLP-1 (L7-784/MAT-20) and Tay RF).

Furthermore, improved (although similar) performance is obtained by lever-

aging the SOA (i.e. the best fusion baseline observed) of these architectures.

For example, in the Android setup, 87.08% accuracy and 80.07% F-measure

are achieved by SOA, as opposed to 84.78% and 75.79%, respectively, ob-

tained by Tay RF, and a similar reasoning applies to iOS case. However,

these results are still worse than those obtained with MIMETIC approach

that can outperform the SOA in all cases, attaining +4.96% (resp. +8.10%)

G-mean on the Android (resp. iOS) dataset. This outcome can be directly

attributed to the gain, ensured by the (multi-modal) MIMETIC architec-

ture, arising from sophisticated fusion of the input types considered. Indeed,

the latter provides a higher discriminative power in the case of very similar

apps, like FB and FBM, and also further improves the effectiveness of DL

in the multi-class setups.

Fine-Grained Performance. We now deepen the (classification) perfor-

mance investigation of the MIMETIC framework (along with the baselines),

initially by reporting their Top-K accuracy (K ∈ {1, 3, 5}) on the multi-class

datasets in Tab. 5.8. We highlight that the above table does not include MV

Top-K accuracy score, as the latter is based on classifiers’ hard outputs and

therefore there is no (natural) definition for the confidence vector associated

to its decision. Clearly, from the inspection of these fine-grained results it

is apparent that all the considered classifiers are able to improve their accu-

racy when a larger pool of predicted apps may be taken into consideration,

(shallow) MLP-1 classifiers included. In detail, MIMETIC reports the high-

est global accuracy (soft-output) behavior in both the multi-class datasets,

surpassing not only MLP-1 but also single-modal DL approaches. Indeed,

although the (off-line) Tay RF classifier provides a slightly better global



Table 5.8: Top-K accuracy [%] comparison of MIMETIC with the four types of baselines. Results refer to multi-class
datasets and are in the format avg. (± std.) obtained over 10-folds. Top-K accuracy of MV is not reported
due to unavailability of soft-outputs. Highlighted values: overall best classifier, best baseline classifier (�),
and best baseline fusion technique (‡) for both multi-class datasets and each K considered.

Architecture
Android iOS

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

MIMETIC 89.49 (± 0.32) 94.29 (± 0.28) 95.82 (± 0.28) 89.14 (± 0.82) 95.17 (± 0.37) 96.74 (± 0.32)

I
{ 1D-CNN [94] (L7-784) 85.70 (± 0.45)� 91.51 (± 0.27) 93.45 (± 0.29) 82.64 (± 1.63)� 90.95 (± 0.36)� 93.29 (± 0.32)

HYBRID [91] (MAT-20) 75.24 (± 0.58) 85.60 (± 0.47) 89.80 (± 0.34) 70.80 (± 1.06) 83.34 (± 0.69) 87.82 (± 0.48)

II
{ MLP-1 (L7-784) 78.71 (± 0.65) 86.93 (± 0.40) 89.88 (± 0.37) 77.16 (± 0.63) 86.96 (± 0.50) 90.40 (± 0.51)

MLP-1 (MAT-20) 69.94 (± 0.47) 79.22 (± 0.51) 84.94 (± 0.34) 54.42 (± 0.63) 72.47 (± 0.59) 80.03 (± 0.56)

III Tay RF [42] (flow-based) 84.78 (± 0.30) 91.69 (± 0.31)� 93.89 (± 0.24)� 80.77 (± 0.84) 90.70 (± 0.61) 93.58 (± 0.52)�

IV
{ SOA 87.08 (± 0.29)‡ 92.83 (± 0.31)‡ 94.66 (± 0.26)‡ 84.68 (± 0.55)‡ 92.36 (± 0.28)‡ 94.65 (± 0.23)‡

TLF 68.87 (± 1.05) 79.35 (± 0.92) 83.41 (± 0.86) 62.01 (± 0.97) 75.03 (± 0.64) 80.40 (± 0.55)

“HYBRID” refers to an hybrid DL architecture combining 2D convolutional and LSTM layers (viz. LSTM + 2D-CNN) proposed
in [91].
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behavior than the best single-modal DL classifier (for K ∈ {3, 5} on An-

droid dataset and K = 5 on iOS dataset), namely 1D-CNN (L7-784), it is

able to outperform neither the proposed MIMETIC approach nor the sim-

pler SOA combination of single-modality DL classifiers. This result suggests

that the capitalization of multiple modalities improves the global discrimi-

nation capabilities of DL-based classifiers. In detail, in Android (resp. iOS)

scenario, the MIMETIC architecture is able to reach 94.29% and 95.82%

(resp. 95.17% and 96.74%) accuracy when the Top-3 and Top-5 predicted

apps are considered, respectively.

Then, to assess possible noteworthy misclassification-patterns and their

mitigation through intermediate-fusion, Fig. 5.8 shows the confusion ma-

trices of the MIMETIC approach (Figs. 5.8(a–c)) in the three datasets,

and compares them with those of the best-performing single-modal DL ap-

proach (Figs. 5.8(d–f)) and those obtained via SOA (Figs. 5.8(g–i)). From

inspection of the results, it is apparent that all the approaches achieve

almost-uniform error patterns in the multi-class setups. However, analyz-

ing FB/FBM matrix, we can notice that 1D-CNN (L7-784) exhibits poorer

performance than MIMETIC and SOA. This confirms that the main error

source on FB/FBM arises from the traffic similarity of the two apps and

thus highlights the inadequacy of considering DL architectures (and related

inputs) in a single-modal fashion. Indeed, MIMETIC clearly achieves less-

structured and milder misclassification-patterns in all three cases considered,

as opposed not only to 1D-CNN (L7-784) but also to SOA. This proves the

flexibility of the information fusion provided by our framework. Equally im-

portant, the confusion matrices highlight the appeal of cost-sensitive learn-

ing within the MIMETIC formulation (see the definition of loss functions

in Eqs. (5.2) and (5.3)), able to deal with imbalanced TC problems (which

are common in the mobile context) by preventing a classification imbalance



toward the most-represented classes.

Training Complexity of Implemented MIMETIC Architecture.

A useful analysis towards real-world implementations, complementing the

overview of performance, is the investigation of the training complexity

of the proposed multi-modal DL classifier. With this aim, Fig. 5.9a and

Fig. 5.9b show, respectively, the RTPE and the overall number of trainable

parameters of the implemented instance of MIMETIC architecture (consid-

ering both phases of the proposed training procedure). MIMETIC complex-

ity is then compared against that of single-modal DL baselines when they

are fed with the inputs extracted from the three datasets. For complete-

ness, we also show the complexity of TLF baseline. Differently, the com-

plexity of the other two classifier-fusion baselines (namely, SOA and MV) is

not reported, since it is strongly linked to the training requirements of the

single-modal DL classifiers being combined. Precisely, it corresponds to the

more complex single-modal baseline (resp. the sum of baseline complexi-

ties) in the case of a parallel (resp. sequential) implementation. We point

out that a similar reasoning applies to the pre-training phase of MIMETIC,

for which the most penalizing sequential implementation of per-modality

pre-training is assumed in this comparison. We highlight that the times re-

fer to the same hardware architecture considered in Sec. 5.4.1 in the same

load conditions. As expected, a decreasing RTPE is obtained when the

size of the classification problem is reduced—similarly to what reported

in Fig. 5.6—with a stronger trend for 1D-CNN (L7-784) and TLF, being

the most complex architectures. Interestingly, MIMETIC not only reaches

the highest classification performance, but it also shows an RTPE > 3.5×
lower than its “main competitor” 1D-CNN (L7-784) (i.e. 38.34 (±0.82) s vs.

142.72 (±1.74) s) in the hardest classification (i.e. Android) setup. This is
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(f) (iOS)
1D-CNN (L7-784).
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(h) (Android) SOA.
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Figure 5.8: Confusion matrices of implemented architecture based on MIMETIC (top),
best single-modal DL classifier (middle), and Soft-Output Average (SOA) of
single-modal DL classifiers (bottom) for the FB/FBM (a, d, g), Android (b, e,
h), and iOS (c, f, i) datasets. Note that the log scale is used to evidence small
errors (except for FB/FBM). Categorical class-labels for multi-class datasets
are reported in Tab. 2.3.
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to the whole MIMETIC framework.

Figure 5.9: Complexity analysis. Run-Time Per Epoch (RTPE) (a) and number of train-
able parameters (b) of MIMETIC architecture and DL-based baselines. “HY-
BRID” refers to an hybrid DL architecture combining 2D convolutional and
LSTM layers (viz. LSTM + 2D-CNN) proposed in [91].

due mainly to shorter inputs and simpler (viz. computationally-lighter) lay-

ers involved in the MIMETIC instance (cf. §5.3.3), allowed by an improved

capitalization of the inputs available. It is worth noting that the same rea-

soning equally applies with respect to MV and SOA baselines, whose com-

plexities are dominated (in the best case) by the most complex single-modal

DL architecture being fused. Moreover, MIMETIC shows also the lowest

complexity increase when passing to a harder classification problem (i.e. it

exhibits a higher scalability), being highly desirable in mobile contexts. In-
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deed, a +41% increment in RTPE (against +64% for 1D-CNN, +105% for

LSTM+2D-CNN, and +116% for TLF) is observed when moving from the

FB/FBM to the Android dataset. Finally, the inspection of Fig. 5.9b high-

lights that the RTPE is strongly related to the number of parameters to be

trained, with the MIMETIC approach (in its complete architectural con-

figuration) having ≈ 3.6× and ≈ 4.1× fewer trainable parameters than

1D-CNN and TLF, respectively.

Performance with Reject Option. As a complementary analysis sug-

gested in our performance workbench and oriented to finer performance

control, Fig. 5.10 shows the accuracy and F-measure (first and second col-

umn of plots, respectively) of (i) the proposed MIMETIC approach, (ii)

the best single-modal DL approach (i.e. 1D-CNN (L7-784)), and (iii) the

flow-based Tay RF [42] (i.e. the current ML-based state-of-the-art traffic

classifier) vs. the censoring threshold γ on each of the three datasets. We

exclude herein the SOA and shallow (i.e. MLP-1) approaches, due to lower

(overall and fine-grained) performance (see Tabs. 5.6, 5.7, and 5.8) with re-

spect to MIMETIC (while having a common “fusion” rationale) and single-

modal DL classifiers, respectively. In detail, this analysis delves into the

possibility for MIMETIC (and considered baselines) to classify apps more

accurately only from reliably-labeled biflows. We notice that a threshold

value implying varying performance with respect to unclassified samples,

can be observed only if γ ≥ 1/L—recall that L corresponds to the num-

ber of classes.14 In all the plots, for the sake of a thorough comparison,

we also report the ratio of classified samples (CR) vs. γ, for γ ≥ 50%, be-

ing smaller values of little practical interest. We highlight that we opted

14Specifically, this value corresponds to 0.5 in the case of the FB/FBM dataset, whereas
it equals ≈ 0.02 for Android and iOS datasets.
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Figure 5.10: Accuracy (a-c), F-measure (d-f), and ratio of classified samples (CR) [%]
vs. censoring threshold γ of MIMETIC (MM) architecture vs. best single-
modal DL classifier (DL) and state-of-the-art ML-based mobile-traffic clas-
sifier (RF). Average on 10-folds and corresponding ±3σ confidence interval
are shown. To ease direct comparison, the y-axes are limited to percentages
over 50%: only CR of RF continues dropping below that threshold, to values
of little practical interest.
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to keep the visualization of accuracy/F-measure and CR separate so as to

provide a finer understanding of the corresponding interplay among the two

conflicting measures. Also, to avoid redundancy, we have omitted G-mean

since it shows similar trends to accuracy and F-measure, having almost the

same profile (vs. γ) for all the approaches considered.

By looking at the qualitative profiles of CR and both performance mea-

sures, the following considerations can be drawn. First, the results highlight

that all the methods enjoy improved classification performance when in-

creasing γ, at the price of a decreasing CR. However, only in the multi-class

dataset it is evident a relevant performance improvement with a negligi-

ble ratio of unclassified samples, whereas for the FB/FBM (binary) dataset

this trend is sharper and less advantageous. Secondly, the Tay RF approach

shows the least evident improvement of accuracy and F-measure with γ

which is paid, unfortunately, with a quick CR decrease. This outcome may

be explained with a high number of biflows classified with low confidence

by Tay RF (see the next “calibration analysis” for details). As an example,

by looking at the Android dataset and having a 90% F-measure as a target,

the Tay RF approach rejects double of the tested biflows with respect to the

proposed MIMETIC approach (20% vs. 10%, respectively). On the other

hand, comparing MIMETIC with the (best) single-modal DL architecture,

a similar behavior of the CR with γ is observed for the two approaches,

whereas MIMETIC provides an almost-constant performance improvement

over all the range, also in the less-advantageous FB/FBM scenario. This

again confirms the global performance gain originating from the adoption of

more sophisticated multi-modal DL in our proposal. Specifically, by reject-

ing the classification of only 10% of instances, on the Android dataset, the

proposed MIMETIC approach is able to achieve accuracy and F-measure

such that ≥ 95% and ≥ 90%, respectively, corresponding to an increment



≥ 5% accuracy and ≥ 8% F-measure with respect to 1D-CNN (L7-784)

and Tay RF. Similarly, for the iOS dataset, the proposed approach is able

to achieve (roughly) the same targeted performance, with also a more sub-

stantial improvement over both baselines (up to +10% and +15% F-measure

against 1D-CNN (L7-784) and Tay RF, respectively). Unfortunately, in the

FB/FBM scenario, achieving ≥ 90% target performance on both measures

would require ≈ 30% biflows to be censored. This result reflects the diffi-

culty (although mitigated by MIMETIC) in solving an “overlapped-apps”

classification task, sharing many third-party (common) services in their ex-

ecution.

Calibration Analysis. Finally, to deepen the soft-output behavior of

the mobile traffic classifiers taken into account, we complement the inves-

tigation of performance vs. reject option, with a calibration analysis as

recommended in Sec. 5.2.4. To this end, Fig. 5.11 reports the reliability dia-

grams and the ECE of the proposed MIMETIC architecture, along with the

best single-modal DL and Tay RF baselines (i.e. the ones already consid-

ered in the aforementioned analysis) for the Android (left column) and iOS

(right column) datasets. In this case, we do not report the performance for

the FB/FBM dataset, as similar trends have been observed also in this sce-

nario. Additionally, since it is a binary dataset, the dynamic of reliability

diagrams is reduced since the class prediction probability is always higher

than 0.5.

It can be seen that the MIMETIC classifier results to be better calibrated

with respect to the two considered baselines, resulting in an ECE being less

than half of that of the 1D-CNN (L7-784) and Tay RF. This applies to

both datasets. Furthermore, by looking at the behavior of each classifier

on the two multi-class datasets, we can observe (i) an invariance of the
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(a) (Android) MIMETIC.
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(b) (iOS) MIMETIC.
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(c) (Android) 1D-CNN (L7-784).
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(d) (iOS) 1D-CNN (L7-784).
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(e) (Android) Tay RF.
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Figure 5.11: Reliability diagrams of MIMETIC (a & b), best single-modal DL (c & d),
and Tay RF (e & f) mobile traffic classifiers trained on the Android (a, c,
e) and iOS (b, d, f) datasets. Bin width is M = 10. Under and over gap
represent an under-confident (pessimistic) and over-confident (optimistic)
miscalibration pattern, respectively.



miscalibration pattern and (ii) a different ECE trend.

Specifically, referring to point (i), both the DL-based classifiers (namely,

MIMETIC and 1D-CNN (L7-784)) interestingly exhibit almost always (ex-

cept for the last bin) a miscalibration that tends to be over-confident (opti-

mistic) in its predictions (i.e. in each bin the confidence is higher than the

accuracy). This effect can be attributed to a slight overfitting phenomenon

and is one of the distinctive characteristics of DL architectures [172] (al-

though MIMETIC mitigates it). Differently, the Tay RF classifier shows an

accuracy always higher than the related confidence, which can be attributed

to a slight bias due to its “ensemble” nature (i.e. it is Random Forest whose

decision is taken based on the average of multiple parallel decision trees)

and thus validating its low-confident profile (vs. γ) shown in Fig. 5.10.

On the other hand, referring to point (ii), MIMETIC performs better

on the Android dataset, whereas the two baselines are more effective on the

iOS one. However, a relative performance inversion is observed between the

two baselines when passing from the Android to the iOS dataset, namely

Tay RF performs better than the 1D-CNN (L7-784) on Android, whereas

the 1D-CNN (L7-784) outperforms Tay RF on iOS. This confirms that the

difference in software and hardware ecosystems of these mobile operating

systems impacts also on the traffic proprieties and consequently on the app

discrimination ability of mobile traffic classifiers, being not generalizable

between the two cases.

Final Remarks. The analysis performed in this chapter and based on

the proposed framework enables the design, evaluation, and comparison of

effective (mobile) traffic classifiers via DL, with the aim to avoid pitfalls

and be the springboard of real-world implementations. Indeed, the formal-

ized evaluation workbench allows to investigate these classifiers both at a
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finer detail (e.g., considering per-app and fine-grained measure or reject-

option and calibration analysis) and also taking into account their complex-

ity, representing a key aspect in mobile TC where frequent re-training of

a classifier is required, due to aging of training data (e.g., because of app-

s/OS updates). Moreover, we have shown that mobile TC presents its own

peculiarities, which hinder the straightforward application of DL classifiers

originated from other domains (e.g., image/speech processing). Specifically,

skimming informative and unbiased information from traffic data used to

feed the DL classifiers is essential to prevent misleading performance results.

Nevertheless, based on the results of this careful evaluation, we notice

that there is no “killer” DL architecture for mobile TC. Indeed, the most

the DL model fits the nature of the input data, the better it is expected

to perform (one relevant example is the comparison of 1D- and 2D-CNN

based on payload data which is, by definition, one-dimensional). From these

observations we derive that, given the heterogeneous information available

from traffic data, the need for advanced DL architectures arises. To this

end, we propose MIMETIC, a multi-modal DL approach able to capitalize

heterogeneous input data by capturing intra- and inter-modal dependencies

and implement a specific instance of its general architecture. Leveraging the

proposed framework, we show that MIMETIC is able to outperform both

ML- and DL-based baselines, while having a training time more than three

times lower than its main single-modal DL competitor.





Chapter 6

Big Data-Enabled Traffic
Classification

Chapter 5 has shown that Deep Learning (DL) represents a promising so-

lution toward the fulfillment of high performance in the dynamic and chal-

lenging (mobile and encrypted) TC context and has attracted the attention

of research community, with several works recently appeared tackling TC

via DL (see Tab. 5.1). Nevertheless, our comprehensive investigation has

revealed that DL-based TC resulted thorny, and generally less well under-

stood than that adopting approaches based on standard ML. Indeed, DL

algorithms may generate learning networks with a very dense and complex

structure [68], whose training may result in completion times orders-of-

magnitude higher than those acceptable according to the constraints of the

specific application domain.

The constant repetition of tasks requiring high computational power

and strict time constraints is the target of Big Data (BD) frameworks.

Hence, leveraging BD parallelization potential is sought to be a solution

to DL-based TC. However, although BD framework embodies a transparent

accelerator to separable computational tasks (e.g., the test phase of inference



systems), this is not the case for non-naturally-parallelizable ones, like the

optimization in DL training procedure [173].

This motivated our research, in which for the first time in literature

we investigate and experimentally evaluate the adoption of DL-based net-

work traffic classification strategies as supported by BD frameworks. In

more details, pursuing our analysis along three different (but inter-playing)

dimensions—i.e. classification performance, training completion time, and

costs—in this chapter, we design, deploy, and evaluate state-of-art DL net-

works (namely, 1D-CNN and LSTM) for classifying encrypted mobile traffic

via BD. In our experimental campaigns, we run classification tasks adopting

the BD platform of a public-cloud service provider and still leveraging the

common benchmark described in Sec. 2.5.1, encompassing human-generated

mobile and encrypted traffic datasets. This choice provides also results re-

lated to popular and reproducible setups as well as to real-world traffic. Ac-

cordingly, this investigation is able to deliver a picture detailed at a depth

never achieved before, producing interesting outcomes and useful guidelines

for both researchers and practitioners willing to harvest the benefits deriv-

ing from the joint adoption of DL and BD in network traffic analysis, also

complementing, from an architectural viewpoint, the set of methodologies

for mobile and encrypted TC proposed in this Thesis.1

The rest of this chapter is organized as follows. Sec. 6.1 briefly reviews

the existing literature on BD network analytics (including traffic analysis

and classification); Sec. 6.2 illustrates the reference BD-enabled DL frame-

work for mobile TC, focusing on key aspects pertaining to the design phase;

Sec. 6.3 describes the experimental evaluation setup considered, with corre-

1We highlight that the BD accelerator can be applied also in conjunction with ML
traffic classifiers. However, its benefits are way fruitful in the case of computationally-
hungrier DL-based approaches.
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sponding results discussed in Sec. 6.4.

6.1 Related Works

In this section, we position our contribution against the available BD-based

solutions to address networking issues, that is not limited to traffic analysis

and identification/classification.

In Tab. 3.1, we have shown that various works tackled mobile TC in re-

cent years, mostly via standard ML techniques and often under encrypted-

traffic assumption. Also, in Tab. 5.1, we have reported a number of pro-

posals that lately emerged proving the appeal of DL to Internet TC (and

conceptually-related WF). However, for the latter only initial design at-

tempts are provided, all related to either non-mobile or non-encrypted sce-

narios, being the proposal of Chapter 5 the first methodological approach

to design DL-based mobile and encrypted traffic classifiers.

On the other hand, in line with the interest of the scientific community,

many works have employed BD solutions in the broad field of network-

ing to capitalize the value of network data, notwithstanding the constraints

they impose. These works mostly fall in the area of either network secu-

rity [174, 175, 176], or mobile and social networks analytics [177, 178], and

(almost) all benefit from distributed computations aimed at reducing the

time required for training ML models. Instead, only a few works specifi-

cally leverage BD solutions to focus on network TC via ML [97, 79, 87, 95],

with only [97] tackling the mobile case (see Tab. 1.2). D’Alessandro et

al. [79] implement a distributed SVMs framework for Internet TC adopt-

ing Hadoop2 to design a global parameter store that maintains the shared

parameters during the training phase of SVMs. Using a cluster of up to

2http://hadoop.apache.org/

http://hadoop.apache.org/


20 nodes, the authors claim that the training process of their solution is

up to 9× faster than standalone SVM. Similarly, Yuan and Wang [87] de-

vise HAC4.5, a parallelized version of common C4.5 based on the Hadoop

file-system and MapReduce parallel-processing framework, and employing

six cluster nodes. Leveraging the Moore dataset [106], the experimental re-

sults show only a minimal improvement over a non-optimized C4.5. Ke et

al. [95] integrate the Spark framework into their feature selection algorithm

for Internet TC. Specifically, they employ growth algorithm to discover the

relevant (viz. direct correlation) features and shrink algorithm to eliminate

redundant weak correlation ones, using Spark3 (with one, two, and four

nodes) to improve the efficiency of the algorithm. Here too, the authors use

the Moore dataset for performance evaluation, reporting an increasing com-

putational advantage of multi-nodes setup with the expansion of data scale.

As already mentioned in Sec. 3.1, Le et al. [97] envision a distributed com-

puting platform to integrate various ML algorithms, BD analytics platforms

(e.g., Apache Spark, IBM InfoSphere, etc.), software-defined networking,

and network functions virtualization for 5G self-organizing network applica-

tions. As a proof of concept, the authors implement an online classification

model in the InfoSphere cluster4, consisting of one computing master and

four workers. They show that the maximum classification speed is around

90k biflows/second with a latency ≈ 10ms, on average.

Recently, a few frameworks have bloomed for leveraging BD infrastruc-

tures to train (and run) DL algorithms in different flavors. However, only a

very limited set of works has already adopted BD for addressing networking

issues through DL algorithms [178, 179]. Alsheikh et al. [178] focus on an

activity recognition based on mobile-device data and evaluate the proposed

3https://spark.apache.org/
4https://www.ibm.com/analytics/information-server/

https://spark.apache.org/
https://www.ibm.com/analytics/information-server/
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setup in terms of both speedup efficiency and accuracy. Differently, Abeshu

and Chilamkurti [179] envisage DL adoption in fog-to-things communication

scenario for attack detection. Nonetheless, all these works mainly focused

on how BD frameworks are able to reduce the completion time of the DL

heavy tasks and—to the best of our knowledge—none of them evaluated the

detrimental effect of distributing data-analysis tasks across several (loosely

coordinated) workers.

To the best of author’s knowledge, (i) no work has performed TC by

means of BD-enabled DL classifiers to date. Equally important, (ii) the

challenging scenario of encrypted mobile traffic data has been only touched

tangentially within the BD framework, even considering (classic) ML tech-

niques. Finally, (iii) the validation leveraging human-generated traffic—that

is of paramount importance toward real-world implementations in mobile

contexts—has been often overlooked.

6.2 Big Data-enabled Deep Learning-based
Mobile Traffic Classification

A basic scheme for the proposed BD-enabled DL-based mobile TC solution

is reported in Fig. 6.1. Its related design choices can be categorized in

those strictly concerning the TC workflow (that are BD-independent) and

those related to the training mechanisms enforced by the DL architectures

when deployed on a BD framework (that are BD-dependent, by definition).

We refresh the former in Sec. 6.2.1, while we discuss in detail the latter in

Sec. 6.2.2.
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Figure 6.1: Scheme for the proposed BD-enabled DL mobile TC solution.

6.2.1 Deep Learning-based Mobile Traffic Classification
Workflow

As prescribed by the framework devised in Sec. 5.2, to design a DL architec-

ture for TC, milestone design choices should be made about: (i) the traffic

object (i.e. the traffic aggregate atom which induces the segmentation cri-

terion); (ii) the type(s) of input data, (i.e. the number and the sets of input

selected from each traffic object to feed the DL architecture); (iii) the DL

architecture (i.e. the composition instance of elementary learning layers)

coping with input constraints originating from the design choices concern-

ing the type of input data. We briefly discuss these aspects regarding the

proposed BD-enabled solution in the following, pointing to Sec. 5.2 for a

more detailed analysis.

Appealing traffic objects that might be adopted are the flow and biflow—

the latter also leading to better performance than the unidirectional one—
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and those purposely defined for mobile TC (e.g., service bursts), even tough

these last have some limitations as reported in Sec. 5.2.1.

The next step after segmentation is to extract for each traffic object

the corresponding unbiased input set(s), especially those suited for “early”

TC. In Sec. 5.2.2, we have shown that the most relevant unbiased types

of input data of a generic traffic object ingested by DL architectures may

be roughly grouped within two categories: (i) the first Nb bytes of the

payload at transport level or higher; (ii) selected informative data fields of

the first Np packets. In the first case, the payload data being fed to the DL

architecture is represented in binary format, arranged in a byte-wise fashion

and normalized so as to constrain it within [0, 1]. In the second case, the

type of input data is represented by selected protocol fields not pertaining

to the explicit inspection of encrypted payload (e.g., the packet size) of the

first Np packets.

Finally, the DL architectures are topped with a softmax layer provid-

ing inference among L possible apps, and are obtained by composition of

elementary layers, whose common choices are dense, convolutional, pooling,

and recurrent layers, as depicted in Fig. 5.2 and described in Sec. 5.2.3.

6.2.2 Training Deep Learning-based Mobile Traffic
Classification Architectures on Big Data

The learning process for DL architectures may be slow and computationally

demanding, since they consist of many hidden layers, millions of parameters

and require a high number of training samples. BD solutions are meant to

offer a way to address these issues, providing processing frameworks able

to parallelize computational tasks by splitting the information base and

distributing it across N cooperating working nodes (workers) coordinated

by a single central node (master).



Specifically, BD-enabled DL relies on data parallelism and federated

learning [173] to reduce the overall training time of the considered DL

architecture, by capitalizing the peculiarity of BD paradigm. In essence,

the workers w1, . . . , wN are given N distinct partitions D1, . . . ,DN of the

training set D to learn independent replicas of the (same) given DL archi-

tecture. Clearly, deploying a higher number of workers allows to enhance

the parallelization, namely the higher N , the smaller the size of the parti-

tions D1, . . . ,DN assigned to the workers. On the other hand, each worker

is able to learn only a “data-partial” DL model, being the outcome of its

limited-view training partition, in principle. Additionally, since learning is

based on (sophisticated versions of) stochastic gradient descent, the process

of the nth worker is naturally iterative and performed over Nepo “epochs”,

composed of different mini-batches (scanning the whole Dn), with the model

at time t completely specified by the parameter set θnt .

In federated learning, different workers are federated by the master to

optimize a central DL model—specified at time t by the parameter set θ̄t—

exploiting their DL model replicas by minimizing a single (common) loss

function L(·), being for TC a categorical cross-entropy [68], and implic-

itly capitalizing the whole training set D. This is achieved by periodically

synchronizing the state of each worker with the (centralized) view of the

master, whose model is incrementally updated leveraging the information

provided by the workers. The master is in charge of the coordination mech-

anism and has the responsibility to incorporate model updates periodically

coming from the workers (worker commits), and to serve the requests of

the most updated central model (worker pulls). Between subsequent com-

mits each worker learns independently on its training partition. The worker

update frequency F at which the workers execute a commit is thus a de-

sign parameter. Such frequency ranges from one update per mini-batch to
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exchanges after several epochs, the higher (resp. lower) values leading to

tighter (resp. looser) coupling.

Additionally, depending on the communication protocol governing the

exchange of commits/pulls between the workers and master, BD-enabled

DL approaches can be categorized into two main groups: synchronous and

asynchronous. In the former case, the commits from the workers are aligned

through a synchronization barrier, and the pull operation puts all the nodes

in the same state θ̄t+1 after the master aggregation. In the latter case, the

commits from the workers are handled in a first-come first-served fashion

by the master, which provides the updated central model θ̄t+1 based on the

message from the worker. Although the latter solution can incur the side-

effect that some workers are computing (and committing) updates based

on old central-model states (since the master incorporates updates into the

central model asynchronously), it is more time-efficient because it does not

include locking mechanisms that make all the workers wait for the slowest

one (the so-called straggler issue) and works well also with heterogeneous

hardware.

Lastly, the federated-optimization algorithm is another degree of free-

dom of the BD DL-based TC system proposed. It is defined by both local

workers’ computation and master update policy and is tightly coupled to

the communication protocol choice. Precisely, for each update of the cen-

tral model, in the synchronous (resp. asynchronous) case the master uses

all the commits at once (resp. one commit at a time).

Accordingly, the adoption of BD framework to support the learning pro-

cess of DL architectures is expected to greatly reduce the time required for

its training on the whole D. However this benefit comes at a cost: since no

node has the chance of working on the whole dataset, the DL architecture

resulting from this training procedure represents a sub-optimal solution to



the TC problem, exposing performance possibly worse than that of a cen-

tralized solution (with much longer processing periods but working on the

D training set as a whole). Hence, next section investigates the dependence

of DL training in mobile TC on the non-transparent BD accelerator.

6.3 Evaluation Setup

In this section, we detail the setup designed and adopted for the experimen-

tal evaluation. We resort to the three datasets being part of the common

benchmark described in Sec. 2.5.1 and already employed for the assessment

of (not BD-enabled) DL-based solutions carried out in Sec. 5.4. Since they

are associated to different mobile and encrypted TC tasks (e.g., FB/FBM

dataset to billing differentiation and multi-class ones to service prioritiza-

tion), we leverage them to understand if and how the BD infrastructure

impacts the performance of the different mobile TC problems. Also, co-

herently with the observations reported in Sec. 5.2.1 and for the sake of

a consistent assessment of almost all DL-based TC works published so far

(see Tab. 5.1), we have chosen to operate at the biflow level.

Turning to the details, in Sec. 6.3.1, we specify the BD-enabled DL-based

TC architecture deployed and the tools we adopted. Finally, in Sec. 6.3.2, we

introduce the performance metrics to investigate the proposed TC approach

along different dimensions induced by BD solutions.

6.3.1 Architecture Deployment

Herein we describe the experimental setup designed and implemented to

evaluate the performance of the DL-based TC solutions when deployed onto

BD architectures.

In line with the strategies usually adopted today by enterprises aim-
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ing at achieving both technical and economical advantages, we run all our

experimental-evaluation campaigns onto a cloud platform. In detail, we uti-

lize the services of Microsoft Azure, one of the market leaders among the

cloud providers. The impact of this decision on our analysis is two-fold: (i)

some of the following deployment choices depend upon the options commer-

cialized by the provider; (ii) the adoption of a public-cloud platform puts

under the spotlight the economical expenditure generated by the execution

of DL tasks. Though this choice may place constraints on the experimental

analysis because of the finite budget available, it allows us to further enrich

our study with interesting results along dimensions other than classification

performance, such as the cost charged to cloud customers for accomplishing

model training tasks (see §6.3.2).

We have obtained all the results discussed in Sec. 6.4 leveraging Dis-

tributed Keras [173], a distributed DL framework built on top of Apache

Spark3 and Keras [170]. In details, we rely on Azure Databricks5, which pro-

vides analytic services based on an Apache Spark environment optimized for

DL. Distributed Keras provides several state-of-art optimization algorithms

(based on data-parallelism and federated learning) and is claimed to reduce

the time spent for training models with respect to traditional centralized

approaches.

Specifically, we have selected the inputs for the experimental setup

(i.e. number of workers N and worker update frequency F ) according to

budget constraints as well as observed trends, so as to explore satisfactorily

the space generated by all their combinations. In detail, we consider deploy-

ments with the number of workers ranging from N = 2 to N = 16, while for

F we have considered values from one update per mini-batch (i.e. ≈ 139 up-

5https://azure.microsoft.com/it-it/services/databricks/.

https://azure.microsoft.com/it-it/services/databricks/


dates per epoch in our experimentation) to one update every Nepo epochs

(i.e. one single update per worker).

Furthermore, we have chosen the setup of master and worker nodes

according to the offers of the cloud provider, by adhering to the default set-

ting which employs the same node configuration for both the master and

the workers. In detail, we use general-purpose DS4v2 nodes (8 vCPUs, 28

GiB RAM, 0.698 e/hour) in all our experiments, with better-performing

D32sv3 nodes (32 vCPUs, 128 GiB RAM, 2.456 e/hour) leveraged for spe-

cific analyses, as detailed later.

Finally, we have selected the DL architectures based on diversity of

elementary layers and considering those attaining the best performance

(for each unbiased input type, see Sec. 6.2.1) in a centralized deployment

(see §5.4): a 1D-CNN [94] (fed with the first Nb = 784 payload bytes of the

transport level) and an LSTM [91] (fed with four informative fields6, of the

first Np = 20 packets in a biflow). The former corresponds to 5.82M, 5.87M,

and 5.86M, while the latter to 52.3k, 57.1k, and 56.6k training parameters

for FB/FBM, Android, and iOS datasets, respectively. Concerning the opti-

mization algorithm, we adopt the Asynchronous Elastic Averaging Stochas-

tic Gradient Descent (AEASGD) with Nepo = 90 [173], being asynchronous

and thus able to avoid the straggler issue.

6.3.2 Evaluation Metrics

Here we introduce the metrics adopted to evaluate the DL architectures

when deployed on cloud BD frameworks. Consistently with the previ-

ous chapters, our experimental analysis resorts to a stable performance-

evaluation setup, based on a stratified ten-fold cross-validation. Hence, for

6Packet size, packet direction, TCP window size, inter-arrival time.
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each of the metrics discussed in what follows, we report its mean and stan-

dard deviation. Notably, our experimental evaluation is performed along

three distinct dimensions: (i) training completion time, (ii) cloud deploy-

ment cost, and (iii) classification effectiveness. We are interested in inves-

tigating the trade-offs existing among these three intertwined dimensions.

The metrics defined and adopted for each dimension are detailed in the

following.

Training Completion Time. Since reducing the processing time re-

quired for a task completion is arguably the major driver leading to the

adoption of BD architectures, we provide a detailed evaluation of this key

aspect, focusing on the wallclock time T required for completing the training

phase of DL architectures.7 We recall that this analysis is of great interest

since mobile TC systems require frequent re-training operations, due to ag-

ing of training data as a result of both app and OS updates. Precisely, since

(distributed) DL training is performed on multiple epochs [68]—similarly

to Chapter 5, but referred to a cloud scenario—we report such information

in a normalized way, as Wallclock Time Per-Epoch (WTPE).

Cloud Deployment Cost. Cloud services are characterized by pay-as-

you-go billing strategies, thus abolishing capital expenditure for configuring

and maintain the BD infrastructure. Accordingly, here we consider the total

cost C charged to the cloud customers for running the processing tasks

needed for training the DL architecture. Specifically, our cost evaluation

function is:

C = (ρN + ρM )T (6.1)

7We recall that time reduction trends of testing phase are less interesting, due to
perfect parallelization.



where N denotes the number of workers, ρ (resp. ρM ) the hourly cost for

deploying one worker node (resp. the master), and T the training completion

(viz. wallclock) time.

Classification Effectiveness. Because BD frameworks do not represent

a transparent accelerator for the training phase of DL-based traffic classi-

fiers, to evaluate the effectiveness of the corresponding DL-based TC so-

lutions, the adopted evaluation metrics include common classification mea-

sures (cf. §1.3.2) such as the macro recall and F-measure, as well as confusion

matrices to identify the most frequent misclassification patterns.

6.4 Experimental Evaluation

Herein we discuss the results of the experimental campaigns we run deploy-

ing the designed system on Azure PaaS to evaluate its performance against

the mobile TC tasks related to three different datasets (i.e. binary and

multi-class), along the three evaluation dimensions (i.e. completion time,

monetary cost, and classification effectiveness, see §6.3). For each of these,

we assess the impact of different design choices such as the number of work-

ers (N), the update frequency (F ), and the DL architecture.

Completion Time vs. Number of Workers (N). Figs. 6.2a, 6.2d,

and 6.2g show the WTPE for the two considered DL-based TC architec-

tures on FB/FBM, Android, and iOS datasets, respectively, when increas-

ing N from 2 to 16. Herein, the worker update frequency F is set to one

update per epoch. To stress the overhead incurred by each BD-enabled DL

architecture, we consider the corresponding WTPE T1 needed to run it in a

centralized fashion, namely when one worker is in charge of processing the
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whole training set. Accordingly, we report the ideal-WTPE curve, defined

as T1/N and corresponding to a lower-bound on the achievable WTPE.

The results show an intuitive decreasing trend with N for all TC tasks

(with slightly higher WTPE for the multi-class datasets, in line with the

more complex classification tasks), thus confirming the appeal of the BD

framework which is able to reduce the training time up to −91.8%, −90.3%,

and −88.5%, when a 1D-CNN is used in the case of FB/FBM, Android, and

iOS, respectively, with respect to an analogous centralized deployment. For

example, with N = 8 workers, ≤ 11s WTPE is required in all TC tasks.

Additionally, the overhead incurred with respect to the theoretical curve also

increases for higher values of N (i.e. the larger N , the higher the overhead),

but remains negligible, although more evident in the multi-class scenarios.

Finally, a direct comparison of the two different DL architectures shows that

the more complex 1D-CNN benefits more from parallelization with respect

to the “lighter” LSTM.

Cost vs. Number of Workers (N). Figs. 6.2b, 6.2e, and 6.2h show

the impact of the number of workers (N ∈ {2, 4, 8, 16}) on the training

cost of the two considered DL architectures in line with the pay-as-you-go

billing model enforced, when addressing both binary and multi-class mobile

TC tasks (F is again set to one update for epoch). To stress the overhead

cost incurred by BD-enabled DL architectures, we also report (for each

architecture) the ideal-cost curve corresponding to (ρN + ρM ) · (T1/N),

namely the cost required to train the DL architecture in the ideal case

the BD framework guarantees perfect parallelization, being a lower-bound

on the achievable cost—with ρM = ρ in our case (see §6.3.1). While the

hourly cost for cloud system deployment linearly increases with N (namely

ρ (N + 1)), the resulting total cost C for completing the training phase is
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Figure 6.2: Impact of the number of workers on WTPE, Monetary cost, and F-measure
for FB/FBM (a, b, and c), Android (d, e, and f), and iOS (g, h, and i)
datasets. Both 1D-CNN and LSTM architectures are considered. Average on
10-folds with ±3σ confidence bands are shown.
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also proportional to the required time T . As the training time may deviate

from its ideal value as shown in the previous analysis for higher values

of N (e.g., only negligible benefits are achieved moving N from 8 to 16

when using 1D-CNN for Android and iOS), similarly, the resulting monetary

cost may increase as the decreased training time does not always match a

balanced gain in terms of hourly cost. Accordingly, while the deployment

cost for LSTM and 1D-CNN for the FB/FBM dataset almost saturates for

larger values of N , this is not the case for the multi-class ones. Indeed, the

LSTM (for Android) and the 1D-CNN (for all multi-class TC tasks) show

a clear increasing trend of monetary cost with N . In the latter cases (see

Figs. 6.2e and 6.2h), deploying a larger number of workers (N = 16) leads

to significantly higher costs (referring to the centralized deployment) for

both Android (+24.9%) and iOS (+54.2%) with respect to the case N = 8,

while the benefit in terms of reduced training time is negligible (−3.1% and

−2.3%, respectively).

Classification Effectiveness vs. Number of Workers (N). Figs.

6.2c, 6.2f, and 6.2i report the effectiveness of the two DL architectures

accomplishing binary and multi-class mobile TC tasks, when deployed on

clusters where N ranges from 2 to 16. Experimental results witness (solid

lines) how the degree of parallelization hinders the classification performance

achieved, with F-measure values significantly decreasing as N increases. Ac-

cordingly, the worst classification performance is observed when relying on

a 16-node cluster, namely −53.4% (resp. −41.5%) compared to a central-

ized solution when addressing FB/FBM (resp. iOS) classification via 1D-

CNN (resp. LSTM). Furthermore, although in the Android setup F-measure

shows the least deterioration for N = 16 nodes (i.e. −23.3% and −31.4%

for LSTM and 1D-CNN, respectively), we can notice a significant variabil-



ity of performance—as denoted by the higher standard deviation—due to

the harder TC task, also characterized by considerable class-imbalance (see

Tab. 2.4), hardening the balanced splitting of the dataset among the work-

ers. On the other hand, classification performance obtained by 2-node de-

ployments are closer to those attainable by centralized DL implementations

(dashed lines).
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Figure 6.3: Confusion matrices of 1D-CNN on iOS dataset for centralized case (a) and
BD-solutions with N ∈ {2, 4, 16} workers (b-c-d) ([%] in log scale).

To deepen the above investigation, we show in Fig. 6.3 the confusion ma-
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trices pertaining to the (best performing) 1D-CNN on iOS dataset—being

more interesting than the binary TC task and showing severer deteriora-

tion with increasing N with respect to Android—by investigating the error

patterns for N ∈ {2, 8, 16} in comparison to the centralized case. The con-

fusion matrices show a general degradation with growing N , with some apps

not recognized in most of the cases, as also confirmed by the correspond-

ing recall, namely 47.50% for N = 16 against 72.69% of the centralized

deployment.

Such results witness how the adoption of DL deployments leveraging the

power of BD frameworks may generate significant performance loss: though

current solutions provide ready-to-use implementations with interfaces sim-

ilar to (if not matching) the centralized counterparts, DL training stage is

not naturally parallelizable, thus resulting in worse classification results due

to reduced training accuracy collectively provided by workers when operat-

ing on smaller dataset portions.

Impact of worker update frequency (F ). In Figs. 6.4a, 6.4c, and 6.4e,

we evaluate the three considered dimensions versus worker update period

1/F (reported in terms of either number or fraction of epochs), with a range
1
F ∈ [1/139, 90] epochs (i.e. from one update every mini-batch to one up-

date during the whole training phase). For budget constraints, the analysis

focuses on the best performing BD-enabled DL architecture (i.e. 1D-CNN)

trained and tested on the binary FB/FBM dataset with N = 4 workers.

For both WTPE and cost analyses (Figs. 6.4a and 6.4c), we consider as the

lower-bound counterparts the values obtained considering the loosest cou-

pling between the workers and the master ( 1
F = 90), while for the F-measure

(Fig. 6.4e) the upper-bound value of the centralized case. As expected, both

WTPE and cost (Figs. 6.4a–6.4c) increase with F . Interestingly, a steep re-
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Figure 6.4: Impact of the number of epochs (reciprocal of worker update frequency) on
WTPE (a and b in log-scale), Monetary cost (c and d in log-scale), and F-
measure (e and f) for the FB/FBM dataset and 1D-CNN architecture using
DS4v2 (a, c, and e) and D32sv3 (b, d, and f) nodes (the latter for 1

F
≤ 1

7
).

Average on 10-folds with ±3σ confidence intervals are shown.
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duction is evident when passing from one update every single mini-batch

to one every 7 mini-batches (i.e. from 1
F = 1

139 to 1
F = 1

20 epoch) with a

−80.3% decrease. On the other hand, when the update period goes from
1
F = 1

20 to 1
F = 90 the decrease is only −53.2%.

Finally, Fig. 6.4e shows the classification effectiveness in terms of F-

measure. The best performance is obtained with 1
4 ≤ 1

F ≤ 10 with a

significant degradation for 1
F ≤ 1

10 and 1
F ≥ 30. Whilst worse performance

is expected when the exchange of updates is less frequent (i.e. 1
F ≥ 30, right

side of Fig. 6.4e), this phenomenon is unexpected in the presence of tight

coupling (i.e. 1
F ≤ 1

10 , left side of Fig. 6.4e).

To shed light on this evidence, we have performed additional focused ex-

periments with better-performing worker/master nodes (D32sv3) for 1
F ≤ 1

7

reported in Figs. 6.4b, 6.4d, and 6.4f. Results highlight that WTPE and

cost have similar trends to those depicted in Figs. 6.4a and 6.4c, with higher

costs due to the more expensive node configuration adopted (see §6.3.1).

Conversely, in this case the F-measure obtained with 1
F = 1

7 and 1
F = 1

10

is comparable with the best-performing case, thus not showing any perfor-

mance decrease due to the tight coupling. Nonetheless, the same perfor-

mance trend of Fig. 6.4e is observed for 1
F ≤ 1

20 . This result suggests that a

computational bottleneck exists at the master, hindering the correct collec-

tion of the updates from the workers, hence resulting in a worse-performing

DL model.





Chapter 7

Conclusions

In the last years network operators have experienced tremendous growth

of network traffic, mostly generated by mobile devices, providing users an

immediate and ubiquitous way to work, communicate, access content and

services, etc. over the Internet. Recent reports [5, 6] forecast that the mobile

subscriptions will be more than seven billions by 2024, with a compound

annual growth rate ten times higher than that of subscriptions of broad-

band fixed connections. To face this unique challenge, several network play-

ers employ increasingly sophisticated network monitoring and management

systems. These tools (e.g., security and quality-of-service enforcement de-

vices, network monitors, firewalls, etc.) require knowledge about network

traffic and, more specifically, about the mobile apps generating it. Thus,

mobile traffic analysis and particularly mobile traffic classification play a

role of paramount importance in the management of current and future

networks. However, if on the one hand, mobile TC provides valuable profil-

ing information that can be used by several stakeholders, such as advertisers,

healthcare and insurance companies, on the other hand, it reveals privacy

downsides related, for example, to the identification of health and dating



apps or to its application in combination with the enforcement of bring-your-

own-device policy. Concurrently, the broad adoption of encrypted protocols

(TLS) and dynamic ports, along with the spread of apps communicating

via HTTP(S) and privacy-preserving services (e.g., ATs), blocks the road

to accurate TC, defeating traditional deep packet inspection and port-based

techniques. This paves the way to advanced ML and DL techniques that,

starting from their solid know-how established in several fields, can help

facing the new challenges of network-level traffic analysis and classification

emerging in the mobile and encrypted scenario.

Fueled by these motivations, the Thesis has proposed an extensive set of

novel methodologies for mobile and encrypted TC that advances the state-

of-the-art from different points of view, considering both advanced ML-

based approaches and innovative DL architectures, also dissecting the trade-

offs of their deployment on BD cloud platforms. Moreover, the present

contributions allow to answer as many different emerging research questions

on mobile and encrypted TC (cf. §1.4.1).1

Contextually, the present dissertation has also faced a challenge specif-

ically important in (data-driven) research on TC, being affected by the

lack of timely and reliably-labeled public datasets generated by real human

users. This issue is further worsened for mobile traffic, where the possibil-

ity of sharing significant and up-to-date datasets is hindered by both the

highest privacy concerns and fast-paced evolution of traffic mix. In view of

these considerations, the MIRAGE architecture for app-traffic capture and

high accurate ground-truth creation has been designed, implemented, and

exploited for the construction of the MIRAGE-2019 dataset. The latter en-

compasses the traffic generated by more than 280 experimenters using 40

1For convenience, the research questions are reported herein as footnotes.
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mobile apps via 3 devices and provides both per-(bi)flow features and per-

packet data. The flexibility of the MIRAGE-2019 dataset has been proven

by performing mobile traffic characterization and modeling tasks at various

granularities. Also, a self-contained portion of MIRAGE-2019 (i.e. com-

prising the traffic of Facebook and Facebook Messenger apps), along with

two multi-class datasets (i.e. consisting of Android and iOS apps’ traffic)

and the public Anon17 one, has been leveraged to define a common bench-

mark for the set of TC methodologies. This has allowed to operate in a

more realistic and heterogeneous scenario with respect to related works, ei-

ther considering iOS or Android traffic usually generated using automated

bot-monkeys. Additionally, thanks to this setup, the anonymization level

provided by the most common ATs could be also investigated. Furthermore,

to promote the replicability of the analyses and the extension to multiple

use cases, MIRAGE-2019 has been publicly released as an open dataset.

The first envisioned enhancement has resulted in the composition of

traditional ML classifiers in advanced structures, able to better operate in

the dynamic and challenging mobile and encrypted context.

Firstly, the TC of mobile apps has been tackled by proposing a MCS

encompassing hard and soft classifier-fusion techniques. For the latter, sev-

eral soft-combination methods belonging to different philosophies have been

explored: CC trainable/non-trainable and CI combiners. Specifically, the

considered MCS employed a pool of 7 state-of-the-art classifiers specific or

suitable for mobile traffic and its performance has been evaluated on the

common benchmark of human-generated mobile apps’ traffic. The results

have shown a performance gain of the MCS over the best base classifier, up

to +9.5% macro recall in the case of Android traffic. Such improvement is

quite general over the different apps considered, given the homogeneously-

reduced error-patterns observed. Nonetheless, the modularity of the consid-



ered MCS allows its virtual application to other suitably-devised classifiers

and the appropriate selection of an optimized subset to obtain further per-

formance enhancement with possibly lower complexity (cf. RQ1
2).

Secondly, an HC approach has been conceived and applied to the en-

crypted TC of ATs, namely Tor, I2P, and JonDonym. This hierarchical

framework capitalizes the class-structure of encrypted ATs’ traffic by ex-

ploiting the ”divide-et-impera” principle and, beyond classification perfor-

mance gains, carries several advantages by design, in terms of modularity,

training efficiency, distributed deployment, and “tunable view” of classi-

fication outputs (cf. RQ2
3). In detail, the proposed framework has been

designed with varying constraints, resulting in implementations with differ-

ent degrees of complexity in terms of classifiers, features, and reject option.

The experimental analysis—carried on the Anon17 public dataset—has al-

lowed reasoning on which degree anonymous traffic can be told apart, con-

sidering different granularities such as the anonymity network adopted, the

traffic type tunneled in the network, and the application category generat-

ing such traffic. Moving from näıve to fine-grain optimized implementations

for the hierarchical classifier, the results at different granularities have high-

lighted how HC guarantees interesting performance gains, especially at the

finest (application) level, and confines misclassifications in the same anony-

mous network and even in the same traffic type. They have also witnessed

the appeal and effectiveness of the HC framework in real environments and

provided insights in identifying performance bottlenecks which lie on a very

limited set of nodes in the hierarchy (e.g., the applications running within

2RQ1: to what extent is it possible to improve the classification performance of mobile
apps taking the best from each state-of-the-art ML classifier via advanced combining
techniques?

3RQ2: is it possible to capitalize the inherent hierarchical class-structure of (encrypted)
traffic to achieve various advantages in TC at increasingly finer granularity?
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I2P are the hardest to told apart).

Since the successful adoption of ML traffic classifiers resorts to the design

of meaningful handcrafted features, thanks to domain experts, such process

is impractical when facing the fast-paced mobile traffic evolution as well as

its peculiarities (e.g., large number of similar apps, embedding of common

third-party services, periodical OS and app updates, etc.), because it can

be neither automated nor crowdsourced to non-experts due to the high

specialization required. Therefore, the present dissertation has envisioned

the application of DL as the disruptive breakthrough toward the automatic

design of accurate inference systems able to capture complex dependencies

among mobile-traffic data, thus limiting human expert intervention. The

lack of a comprehensive and principled approach to DL-based classifiers

applied to traffic has been one of the main motivation of this analysis.

Specifically, the Thesis has presented the development of a systematic

framework for the design, evaluation, and comparison of traffic classifiers

via DL, constituting a vital groundwork for sound advances on the general

mobile and encrypted TC topic. Precisely, this investigation has enabled

the surfacing of a list of guidelines and sparks, and highlighted caveats of

traffic analysis domain, so as to avoid pitfalls in the design and evaluation of

DL-based mobile traffic classifiers and be the springboard of real-world im-

plementations (cf. RQ3
4). It has been found that the presence of different

DL architectures raises the need of a performance evaluation workbench,

based on well-defined metrics and a common benchmark. Also, given the

tricky nature of mobile traffic, its segmentation is often implicit or over-

looked, while unfocused input-data selection causes biased inputs being fed

to DL classifiers, jeopardizing the validity of (inflated) results. Associated

4RQ3: how can mobile and encrypted TC benefit from the domain-aware application
of DL to capitalize the heterogeneous traffic nature and avoid biased outcomes?



with this lesson learned, the challenge of carefully analyzing and select-

ing the input of DL algorithms has been tackled. Unluckily, an elaborated

input selection process contrasts the DL promise of the reduced need of

domain expertise, with some studies even preliminarily extracting features

from data, instead of leveraging DL for that. In the case of DL-based clas-

sifiers, this issue is worsened by the black-box nature of most algorithms, as

the performance impact of specific inputs is barely or not-at-all predictable.

Hence, striking the right balance between näıve application and expertise-

driven effort constitutes a still open challenge. Moreover, though DL ar-

chitectures relieve the designer from the feature design issue, they come

with many hyper-parameters to be tuned (e.g., the optimizer, the number

of layers/hidden nodes, the regularizers). To explore the performance gain

brought by fine-grained design, this further process can be as complex and

resource-demanding as feature design and it is substantially overlooked in

most related works. On the plus side, differently from feature design of ML

solutions this process can be automated, as it is less domain-driven.

Starting from the design milestones emerged from the proposed frame-

work and observing that the choice of a DL traffic classifier seldom well

matches with the nature of input data, the heterogeneous information avail-

able from traffic has been capitalized through the definition of a general

multi-modal DL architecture (named MIMETIC ), the proposal of a sophis-

ticated training procedure, and the implementation of a specific MIMETIC

instance. The experimental evaluation has demonstrated that the latter

implementation outperforms both ML- and single-modal DL-based base-

lines, with up to +8.66% F-measure improvement over the best baseline

(i.e. 82.99% on the iOS dataset), while having a RTPE > 3.5× lower than

its “main single-modal DL competitor”.

Finally, mobile TC via DL architectures supported by BD solutions has
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been analyzed by realizing an actual deployment on the Microsoft Azure

public-cloud BD platform. A systematic evaluation has pursued along three

intertwined dimensions, namely training completion time, monetary costs,

and classification performance, employing the mobile common benchmark.

Accordingly, interesting outcomes and useful guidelines have been produced

for harvesting the benefits deriving from the joint adoption of DL and BD,

with specific focus on mobile TC. In detail, the above outcomes have high-

lighted the dependence of BD-enabled DL-based mobile traffic classifiers,

in a non-trivial way, on the degree of parallelization and on the commu-

nication frequency of the BD architecture supporting the training phase

of DL-based traffic classifiers. Although the adoption of the BD frame-

work to support DL architectures significantly reduces the overall training

time, especially in the case of high parallelization, its non-transparent na-

ture has a direct implication on DL classification performance. Indeed, the

joint use of data parallelism and federated learning provides a final trained

DL architecture representing a sub-optimal solution to the TC task, not

reaching the performance of a centralized solution, that takes longer times,

but works on the training set as a whole, with more marked effects in the

higher parallelization cases (cf. RQ4
5). Such performance gap significantly

depends also on the worker update frequency, and TC “centralized” per-

formance may be approached only through higher frequency values. Sadly,

this inherent trade-off leads to higher computational overhead for the mas-

ter (viz. more powerful hardware required) and impacts on both time and

cost performance. This precludes a wallclock time cut proportionally to the

number of workers, which reflects on the cost unsuitability, highlighted by

a cost-optimal number of workers.

5RQ4: which are the implications on TC when adopting BD solutions to deal with the
demanding training phase of DL-based traffic classifiers?



Thanks to the set of proposed methodologies for mobile and encrypted

TC, various possible directions to improve the state-of-the-art approaches

have been devised, critically studied, and experimentally evaluated. In de-

tail, this Thesis has envisioned both enhancements of standard ML classifiers

and the systematic adoption of the innovative DL paradigm, also declined in

advanced multi-modal fashion. Therefore, the analyzed solutions represent

increasingly-advanced aspects of a composite comprehensive TC framework

explicitly devised to deal with the unique traits of encrypted and mobile

traffic, bringing out a number of lessons learned and open issues that may

be useful also to further encourage advancements in this cutting-edge topic.

In this regard, possible suggestions for future research could be the pro-

posal of more sophisticated compositions (based on both “horizontal” and

“vertical” structures) of classifiers, operating with different traffic objects

and with applications arranged in “multi-view” structures, or fed with a

specifically-optimized set of features (e.g., selected by means of information-

theoretic measures and whose stability, with respect to the dynamic nature

of mobile traffic, needs to be carefully evaluated). For example, an OS-

agnostic classification concerning the possibility to distinguish not only the

specific app, but also the OS it belongs, represents an interesting further av-

enue. On the other hand, additional analyses on the inner structure of DL

networks can be also conducted along the lines of explainable AI [180], a re-

cent field of study that has yet to see application to TC. Complementary to

the latter, further performance gain is foreseen via the exploitation of mas-

sive unsupervised data (granted by BD solutions) for improved learning,

along with the use of pre-trained architectures (i.e. transfer learning) and

sophisticated learning layers (e.g., inception and residual connections). Ad-

ditionally, although some efforts have been made from a system viewpoint,

design and real-world implementations (e.g., in open-source tools such as
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TIE [40]) of accurate multi-modal/multi-task DL architectures are still un-

explored. Finally, advanced deployment could be envisioned by prototyping

of BD-enabled DL architectures for TC able to exploit both model and data

parallelism or leveraging stream-based learning implementations [174].





Appendix A

Ethical consideration in
MIRAGE-2019 collection

In this Appendix, we discuss the ethical considerations underlining the col-

lection of the MIRAGE-2019 dataset described in Chapter 2. Based on both

the presented design choices and the experimental setup, the capture pro-

cess (cf. §2.2) and the collected dataset (cf. §2.3) do not imply any ethical

concern [108]. We remark that experimenters involved in the acquisition

phase have been beforehand informed and warned about the objectives of

their activities (e.g. network traffic analysis) and the possible public release

of the corresponding traces for research purposes, even in a complete form

(although not being the case of MIRAGE-2019). Additionally, each experi-

menter received a thirty-minutes training phase (with the help of a written

document listing all the instructions) regarding the capture technologies

employed and the related working principles.

Moreover, the employed mobile devices were provided and used within

the ARCLAB laboratory at the University of Napoli “Federico II”. The

logged source IP addresses belong to the private IPv4 space, with no privacy

implications. Equally important, purposedly-created app accounts were em-



ployed for the capture sessions (cf. §2.2.1 and §2.3). The GT building phase

as described in Sec. 2.2.2 is automated and does not contribute any addi-

tional experimenter-related information. Hence, no personal information of

the experimenters was involved at any time from the capture phase to the

dataset creation.

Finally, experimenters have been also involved in the analysis and in-

spection of traces. Specifically, collected traces were made available to ex-

perimenters that captured them for educational purposes as well as to verify

the non-sensitive nature of their contents.
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